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Zusammenfassung

Diese Dissertation behandelt Strukturen auf der Grundlage von Quanten-Spin-Hall-Iso-
latoren, in denen deren Randzustände mit supraleitender und magnetischer Ordnung in
Verbindung gebracht werden. Quanten-Spin-Hall-Isolatoren sind Beispiele für Systeme
in der Festkörperphysik, deren physikalische Eigenschaften auf die topologische Struk-
tur der Energiebänder zurückzuführen sind. Eine bemerkenswerte Konsequenz daraus
ist die Entstehung von besonderen Randzuständen an der Oberfläche. Im Fall der zwei-
dimensionalen Quanten-Spin-Hall-Isolatoren sind diese eindimensional und bestehen aus
leitenden, metallischen Zuständen von gegenläufigen Elektronen mit entgegengesetztem
Spin – sogenannte helikale Randzuände. Sie bergen großes Potenzial für Anwendun-
gen in der Spintronik, bei der Informationen nicht durch die Ladung, sondern den Spin
von Elektronen übertragen werden, und als Plattform für Quantencomputer. Am Be-
ginn der Dissertation werden eindimensionale topologische Supraleiter allgemeiner be-
sprochen. Ausgehend von der Kitaev-Kette und einem kontinuierlichen Modell wer-
den grundlegende Konzepte anschaulich eingeführt, insbesondere im Hinblick auf die
topologische Unterscheidung von trivialer und nicht-trivialer Phase und dem Auftreten
von Majorana-Zuständen an deren Enden. Letztere sind die entscheidenden Bausteine
auf dem Weg zu geschützten Operationen für Quanten-Bits. Da Randzustände von
Quanten-Spin-Hall-Isolatoren im Zusammenspiel mit s-Wellen-Supraleitung und Mag-
netismus eine Möglichkeit für die Realisierung eines solchen eindimensionalen topologis-
chen Supraleiters ist, wird in der Folge untersucht, unter welchen Bedingungen Majorana-
Zustände auftreten können. Es wird gezeigt, dass dies zwischen Gebieten geschieht, in
denen die Randzustände entweder nur von Supraleitung oder von Supraleitung und Mag-
netismus beeinflusst werden. In Systemen mit mehr als einer supraleitenden Region
spielt die Phasendifferenz dabei eine übergeordnete Rolle und kann sogar dazu benutzt
werden, Majorana-Zustände zu manipulieren. Weiterhin behandelt die Dissertation die
Auswirkungen der helikalen Randzustände auf anomale Korrelationsfunktionen, die von
der Supraleitung induziert werden. Es zeigt sich, dass Helizität und Magnetismus deren
Eigenschaften bereichern können und unkonventionelle, exotische Paarungs-Mechanismen
auftreten. Zusätzlich wird ein Zusammenhang zu Majorana-Zuständen demonstriert.
Abschließend wird eine mögliche thermoelektrische Anwendung eines hybriden Systems
besprochen, die die besonderen supraleitenden Eigenschaften ausnutzt, um eine Temper-
aturdifferenz zur Erzeugung von Cooper-Paaren mit Spin-Polarisierung zu verwenden.
Diese stellen im Rahmen der supraleitenden Spintronik vielversprechende Einheiten zur
verlustarmen Übertragung von Informationen dar.
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Abstract

This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and
in particular the interplay of their edge states and superconducting and magnetic order.
Quantum spin Hall insulators are one example of topological condensed matter systems,
where the topology of the bulk bands is the key for the understanding of their physi-
cal properties. A remarkable consequence is the appearance of states at the boundary
of the system, a phenomenon coined bulk-boundary correspondence. In the case of the
two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge
states of counter-propagating electrons with opposite spins. They hold great promise,
e.g., for applications in spintronics – a paradigm for the transmission and manipulation
of information based on spin instead of charge – and as a basis for quantum computers.
The beginning of the Thesis consists of an introduction to one-dimensional topological su-
perconductors, which illustrates basic concepts and ideas. In particular, this includes the
topological distinction of phases and the accompanying appearance of Majorana modes
at their ends. Owing to their topological origin, Majorana modes potentially are essen-
tial building-blocks for topological quantum computation, since they can be exploited
for protected operations on quantum bits. The helical edge states of quantum spin Hall
insulators in conjunction with s-wave superconductivity and magnetism are a suitable
candidate for the realization of a one-dimensional topological superconductor. Conse-
quently, this Thesis investigates the conditions in which Majorana modes can appear.
Typically, this happens between regions subjected to either only superconductivity, or
to both superconductivity and magnetism. If more than one superconductor is present,
the phase difference is of paramount importance, and can even be used to manipulate
and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical
edge states on the anomalous correlation functions characterizing proximity-induced su-
perconductivity. It is found that helicity and magnetism profoundly enrich their physical
structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal
correlation functions can be connected to the Majorana bound states within the system.
Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum
spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced
superconductivity in order to create spin-polarized Cooper pairs from a temperature bias.
Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and
offer tremendous potential for efficient information technologies.
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1
Introduction

Over the last couple of centuries, life on earth has been completely reshaped by
science and technology. Physics, in particular, has long been a bridge between the
two. For instance, the spread of steam-powered machines was accompanied by the
development of thermodynamics, just as electrification came about at the same time
as Maxwell laid out his theory of electromagnetism. It is probably impossible to tell
when in the past technology drove physics and vice versa.

This interconnectedness is nicely illustrated by the example of the Hampson-
Linde cycle, – a refrigeration cycle independently developed by William Hampson
in the United Kingdom and Carl von Linde in Germany – which really is a child
of both technological and scientific advancement in the late 19th century [1, 2]. It
allowed the liquefaction of air, and was subsequently improved by H. Kamerlingh
Onnes to liquefy helium [3]. This, in turn, opened up new ways to probe the behavior
of metals at unprecedentedly low temperatures, and eventually led to the discovery
of superconductivity in 1911, a completely new state of matter at the time and
awarded a Nobel prize in 1913 [4]. This scientific achievement has of course found
its way into current technological applications such as MRI machines and SQUIDs,
but also holds future promise for transmission lines and even wind turbines [5–7].
However, superconductors also keep facilitating new scientific findings, of which the
discovery of the Higgs Boson in 2012 at CERN is a prominent example [8].

Of course, the way in which physics and technology push each other forward is
often unexpected and hard to predict. It might sometimes take a very long time to
happen, or maybe it does not work as intended at all. However, it seems hard to
dismiss that the bond is strong and fruitful, and that not trying to find synergy is
foolish.

At present, there are at least two major challenges for technology as the basis
of the global economy. First, the effects of global warming are becoming more and
more evident each year, even in the moderate climate of Central Europe. Second,
improvements in silicon-based information technology as one of the pillars of the
growth of the economy today are getting more difficult to achieve, with the technol-
ogy reaching an incredibly mature state. This is often framed as the end to Moore’s
law, which states that the number of transistors in an integrated circuit doubles
every two years [9, 10]. In fact, these two problems are likely going to merge, since
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Chapter 1. Introduction

electrification as well as the need for smart and efficient management of resources
might demand extraordinary progress in information technology.

In this context, it is not surprising that one of the overarching goals for the global
physics community, directly and indirectly, has become to push for new paradigms
for information technology over the last decades. The topics covered in this thesis
– including topological phases of matter, topological superconductivity and Majo-
rana fermions, quantum spin Hall insulators and helical edge states, unconventional
superconductivity, and quantum thermodynamics – have to a large extent been de-
veloped with these problems in mind, and the attention they receive is a direct
consequence of the hope people have for potentially beneficial outcomes.

More specifically, this thesis is concerned with quantum spin Hall edge states,
from more fundamental properties towards a more applied proposal for a device.
The applications that are the closest related to this fall into the categories (su-
perconducting) spintronics and (topological) quantum computation. The former
holds the promise of more efficient and faster logic operations than in traditional
transistor-based chips [11, 12], while the latter constitutes a whole new computing
paradigm.

Quantum computation is an immensely exciting research area in itself and has
been kick-started by Richard Feynman in 1982 [13], who realized that simulating
quantum mechanical systems with a classical computer is utterly inefficient, while
a computer operating under the laws of quantum mechanics is perfectly capable
of the task [14]. However, it was only the discovery of the first powerful quantum
algorithms – Shor’s algorithm for factorizing large numbers in 1994 [15], and Grover’s
algorithm for searching an unordered list [16] – which really sparked the interest of
a broader community and fueled the drive to realize such a machine. This quest
culminated in Google claiming to have reached “quantum supremacy” just last year
in 2019 [17], seemingly bringing a useful quantum computer within reach. This
could be a huge stimulus for innovation and also drive much needed progress in,
e.g., material science and quantum chemistry [10].

In the remainder of the introduction, we briefly sketch the history and state of
the art in the realization of quantum spin Hall insulators and, importantly, hybrid
systems at the quantum spin Hall edge. We are going to explain below why this
extension is necessary.

The discovery of quantum spin Hall insulators is part of a larger paradigm shift in
condensed matter physics, which started with the study of topological phase transi-
tions defying the standard Landau classification by symmetry breaking [18,19]. The
experimental discovery of the quantum Hall effect in 1980 [20] and its explanation
in terms of a topological invariant of the bulk bands [21] further confirmed that
topology can be used to distinguish gapped phases even with the same symmetries,
and that topologically distinct systems can have dramatically different properties.
Importantly, two systems are topologically equivalent when their Hamiltonians can
be smoothly deformed into one another without ever closing the gap in the spec-
trum. In the example of the quantum Hall effect, the topological invariant is a Chern
number and is directly tied to the Hall conductance and the number of conducting,
chiral states localized at the edge of the sample. This is the first example of the
bulk-boundary correspondence, relating global, bulk properties to states localized at
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Chapter 1. Introduction

interfaces with systems of different topology.
The quantum Hall effect was quickly used to accurately determine the fine struc-

ture constant [20], but widespread application is difficult due to the high magnetic
fields required. It was Duncan Haldane who realized that in Graphene one could in
principle build systems showing the quantum Hall effect, but without external mag-
netic field [22]. However, only in 2005 Charles Kane and Eugene Mele showed that
two copies of the Haldane model can actually be realized in graphene if spin-orbit
interaction is present [23, 24]. Interestingly, in this case the two spins experience
opposite Hall conductances, such that states with opposite spins counterpropagate.
It is this phenomenon that leads to the names helical edge states and quantum spin
Hall insulator. Furthermore, the spin-momentum locking provides a very robust
building block for spin transport and thus for spintronics.

Unfortunately, graphene has a rather small spin-orbit coupling such that the
experimental detection of helical edge states in graphene is out of question. How-
ever, in the search for a semiconducting platform to mimic the physics behind the
quantum spin Hall effect in Graphene, HgTe/CdTe quantum wells were theoreti-
cally identified as ideal candidates [25, 26] and subsequently shown to exhibit the
quantum spin Hall effect [27–30]. Since then, the samples have been constantly
improved and can now be turned into more complicated devices, i.e., by including
superconductivity [31–34]. Furthermore, there is an intense search for additional
platforms for helical edge states, for instance InAs/GaSb quantum wells [35], bis-
muthene [36, 37], and monolayer transition metal-dichalgonides such as WTe2 [38].
Note that the mechanism developed for graphene is partly resurrected in these latter
two examples. Moreover, progress is made in inducing superconductivity and even
magnetism into those systems [39–42].

The reason why the interplay of the edge states with superconductivity and fer-
romagnetism is important is because they can form new topological phases with
interesting properties. In particular, it has been predicted that the boundary states
are Majorana fermions, i.e., particles described by a hermitian second-quantized cre-
ation/annihilation operator γ = γ† which are therefore their own anti-particles [43–
45]. They were originally proposed by Ettore Majorana in the 1930s as real solutions
to the Dirac equation [46], but so far Majorana fermions do not seem to exist as
elementary particles. In superconductors, however, one can hope to combine elec-
trons and holes in equal-weight superpositions, where it might become possible to
construct a charge conjugation invariant particle.

Due to the reduced dimensionality of the Majorana fermions as effective degrees
of freedom at the boundary of a topological superconductor, they can exhibit exotic
exchange statistics beyond the standard Bose-Einstein and Fermi-Dirac paradigm.
This property is the cornerstone of the applicability of Majorana fermions for quan-
tum computation [47–52].

In the main part of the thesis, we are going to explore hybrid systems on the
basis of helical edge states, especially with respect to Majorana and Andreev bound
states, unconventional superconductivity beyond standard BCS-theory, and super-
conducting spintronics. The thesis is organized as follows:

In Chapter 2, we give a short introduction in one-dimensional, spinless, super-
conducting systems and specifically consider the Kitaev chain and a related con-
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tinuum model. We discuss the bulk-boundary correspondence and show how Ma-
jorana modes appear at the ends of topological domains. Furthermore, we explain
how quantum spin Hall edge states and spin-orbit coupled nanowires relate to one-
dimensional topological superconductors. Lastly, we motivate why Majorana modes
are promising building blocks for topological quantum computers.

Chapter 3 focuses specifically the helical edge states of a quantum spin Hall in-
sulator. Starting from general properties of helical edge states, we discuss in detail
how bound states arise from elementary scattering processes in a variety of struc-
tures with superconducting and ferromagnetic regions. Of particular importance are
conditions under which Majorana bound states are possible, and how they can be
manipulated.

In Chapter 4, we study the influence of the helical nature of the edge states on
superconducting, anomalous correlation functions. After giving a very brief intro-
duction in superconductivity beyond BCS theory, we proceed to discuss how pairing
amplitudes can be classified and contain information about the physics of a system.
We apply these concepts to the helical edge and give detailed calculations of both
local and nonlocal correlation functions. Finally, we study the relation of bound
states and nonlocal pairings.

In Chapter 5, a thermoelectric device for the generation of equal-spin Cooper
pairs on the basis of helical edge states is proposed. Building on the derivation of ex-
pressions for the charge current within scattering theory, we show how a temperature
gradient can be used for a thermoelectric effect in which nonlocal spin-polarized An-
dreev processes dominate over normal transmission. Furthermore, we demonstrate
that this translates in an enhancement of supercurrent, which constitutes a signature
of the creation of equal-spin Cooper pairs. Lastly, we connect the thermoelectric
effect to the results of Chapter 4 and show it to be a consequence of odd-frequency
pairing.

We provide concluding remarks and a short outlook in the final Chapter 6.

4



2
The Kitaev chain & Majorana

fermions

Contents

2.1 The Kitaev chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Spectrum and topological invariant . . . . . . . . . . . . . . . 6
2.1.2 Majorana fermions in the Kitaev chain . . . . . . . . . . . . . 12

2.2 Continuum model of a one-dimensional spinless superconductor . . . 18
2.2.1 Phase diagram of the continuum model . . . . . . . . . . . . . 18
2.2.2 Bulk-boundary correspondence . . . . . . . . . . . . . . . . . 19

2.3 Physical realizations of the Kitaev chain . . . . . . . . . . . . . . . . 22
2.3.1 Quantum spin Hall edge states . . . . . . . . . . . . . . . . . 22
2.3.2 Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Quantum computation with Majorana fermions . . . . . . . . . . . . 29
2.4.1 Many-body ground state & non-Abelian statistics . . . . . . . 29
2.4.2 Realizing quantum gates with Majorana fermions . . . . . . . 31

5



Chapter 2. The Kitaev chain & Majorana fermions

The goal of this introductory chapter is to familiarize ourselves with some of the
basic concepts behind one-dimensional, topological, superconducting systems. To
that end, we first discuss the Kitaev chain as a lattice model of a one-dimensional
spinless superconductor in Section 2.1. We identify points in parameter space at
which the gap in the spectrum closes and which therefore separate topologically
distinct phases. Furthermore, we show that the topological phase is characterized
by zero-energy Majorana states localized at the ends of an open chain. Next, we
consider topological phases and the bulk-boundary correspondence of a continuum
model of a one-dimensional spinless superconductor in Section 2.2, since it will be
closer to the effective description of helical edge states. To make this connection
explicit, we show in Section 2.3 how the physics of a one-dimensional spinless super-
conductor can be mimicked by helical edge states of a quantum spin Hall insulator
and nanowires. Lastly, Section 2.4 connects Majoranas as representatives of non-
Abelian anyons to quantum computation.

Of course, there is a large body of literature on the topic. Most broadly helpful
for the matter discussed in this chapter are Refs. [45, 53, 54], but we point towards
more specialized references over the course of the chapter.

2.1 The Kitaev chain

2.1.1 Spectrum and topological invariant

We begin this chapter with the Kitaev chain as a simple toy model in which Majorana
fermions appear in a straightforward and illuminating fashion as a consequence
of a topological invariant. Conceived by Alexei Kitaev in Ref. [47], it is a one-
dimensional model of a spinless p-wave superconductor. With N the number of
sites, its Hamiltonian reads (we set the lattice constant to one)

H = −µ
N∑
j=1

ĉ†j ĉj −
1
2

N∑
j=1

(
t ĉ†j ĉj+1 + tĉ†j+1ĉj

)
+ 1

2

N∑
j=1

(
∆eiφ ĉj ĉj+1 + ∆e−iφ ĉ†j+1ĉ

†
j

)
,

(2.1)
where the operator ĉ†j (ĉj) creates (annihilates) an electron at site j, µ is the chemical
potential and t,∆ are positive parameters describing the nearest neighbor hopping
and the p-wave pairing amplitude, respectively. The phase of the superconducting
pairing is described by φ. We emphasize the fact that because of dealing with spinless
fermions, this unusual pairing term effectively couples particles with the same spin.
Due to the Pauli principle, electrons at adjacent sites are paired since they cannot
occupy the same site. In contrast, a standard Bardeen-Cooper-Schrieffer (BCS)
pairing term typically is local and couples electrons with opposite spin.

Note that with periodic boundary conditions, the sites 1 and N are considered
to be adjacent to one-another such that the pairing and hopping terms in Eq. (2.1)
also couple these sites.

We introduce the Fourier transforms of the fermionic creation/annihilation op-
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Chapter 2. The Kitaev chain & Majorana fermions

erators in terms of the momentum k, which read

ĉk = 1√
N

N∑
j=1

eikj ĉj

ĉj = 1√
N

π∑
k=−π

e−ikj ĉk,

(2.2)

where we used periodicity to restrict the momentum to the interval [−π, π].
The Hamiltonian can be recast in the form

H = 1
2
∑
k

Ψ†kHBdG Ψk, (2.3)

where we introduced the Bogoliubov-de Gennes (BdG)-Hamiltonian

HBdG =
(
εk ∆̃∗k
∆̃k −εk

)
(2.4)

and the Nambu-spinor
Ψ†k =

(
c†k, c−k

)
. (2.5)

We see that the BdG-Hamiltonian contains the standard kinetic term on the diagonal
in a manifestly particle-hole symmetric way, whereas the superconducting pairing
potential couples electrons and holes.

The standard tight-binding kinetic energy is given by εk = −t cos(k) − µ, and
∆̃k = −i∆eiφ sin(k) is the Fourier transform of the pairing. Note that the latter is
odd in k and hence constitutes a triplet pairing function. Since we discuss spinless
fermions, this is required by the Pauli principle. We will return to this point in
depth in Chapter 4.

One can now straightforwardly diagonalize the BdG-Hamiltonian. The energy
spectrum is determined by the eigenvalues E± of HBdG, which read

E± = ±Ebulk with Ebulk =
√
ε2k +

∣∣∣∆̃k

∣∣∣2. (2.6)

The corresponding eigenvectors ϕ± are found to be

ϕ− =
 cos

(
θk
2

)
ieiφ sin

(
θk
2

)
 and ϕ+ =

ie−iφ sin
(
θk
2

)
cos

(
θk
2

)
 , (2.7)

and we define the mixing angle θk via1

cos(θk) = εk
E+

, sin(θk) = ∆ sin(k)
E+

. (2.8)

The eigenvectors define the unitary Bogoliubov transformation, which diagonalizes
the Hamiltonian and provides a connection between the original fermions on the

1Note that in order to obtain θk from the definition in Eq. (2.8), only applying the inverse sine
or cosine might not be enough. Since arcsin(x) and arccos(x) need to be injective functions, they
map the interval [−1, 1] only to [−π/2, π/2] and [0, π], respectively.
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Chapter 2. The Kitaev chain & Majorana fermions

(a) (b)

Figure 2.1: Energy spectrum of the Kitaev chain in (a) the topological phase and
(b) the trivial phase. In (a), we choose µ = 0 and t = 0.5∆. The horizontal dashed
gray line indicates the chemical potential, while the dashed black line corresponds
to the normal state dispersion −t cos(k). It touches the hole band (red line) at
k = 0, but the electron band (blue line) at k = ±π, which corresponds to the
eigenstate changing its character from electron- to hole-like and back as k changes
from −π to π. In (b), we change the chemical potential to µ = ∆, such that it no
longer intersects the dispersion −t cos(k). This is the key distinction between the
two phases.

chain, described by ĉk, ĉ
†
k, and the elementary fermionic excitations of the BdG-

Hamiltonian, described by a new set of operators âk, â†k. Explicitly, the Bogoliubov
transformation reads(

âk
â†−k

)
= Uk

(
ĉk
ĉ†−k

)
with Uk =

(
ϕ−, ϕ+,

)
, (2.9)

such that
âk = cos

(
θk
2

)
ĉk + ie−iφ sin

(
θk
2

)
ĉ†−k. (2.10)

In essence, the coupling of electrons and holes through the superconducting pairing
potential leads to new fermionic degrees of freedom, which arise by a rotation of the
elementary electrons in particle-hole (or Nambu) space.

The diagonalized version of the BdG-Hamiltonian becomes

H =
∑
k

Ebulk(k) â†kâk. (2.11)

The system is described by particles, created and annihilated by the operators â†k, âk,
with energies Ebulk(k). The elementary excitations of the system are superpositions
of electrons and holes. Having a closer look at Ebulk(k), we see that the coupling
of electrons and holes leads to quasiparticles with an additional contribution |∆̃k|2
to their energies, which introduces a gap in the spectrum (see Fig. 2.1). Panel (a)
corresponds to the topological strong pairing phase, while (b) is a representative of
a topologically trivial system in the weak pairing phase. Below, we are going to
show that the key difference is whether the chemical potential intersects the normal
state dispersion.
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Chapter 2. The Kitaev chain & Majorana fermions

The distinction between the two phases can be made by the topological structure
of the BdG-Hamiltonian. As a first step, let us rewrite

HBdG = h(k) · τ̂ (2.12)

where τ̂ = (τ̂1, τ̂2, τ̂3) are the Pauli matrices acting in Nambu space. We can omit
any contribution proportional to the unit matrix. For our standard form in Eq. (2.4),
we can deduce

h(k) = (∆ sin(φ) sin(k),−∆ cos(φ) sin(k), εk)T . (2.13)

Notably, writing the Hamiltonian in this way admits an intuitive relation to the
energy spectrum. Squaring gives

H2
BdG = |h(k)|2τ̂0, (2.14)

which obviously has eigenvalues ±|h(k)|2. Therefore, the eigenvalues of the BdG-
Hamiltonian itself are simply given by the modulus of h(k) and one finds |h(k)| ≡
Ebulk(k).

In the following, we can make a more general argument by considering more
general vectors h(k). However, the particular structure of the BdG-Hamiltonian
arising due to particle-hole symmetry poses an important constraint on h(k). The
spinor Ψk satisfies (

Ψ†−k
)T

= τ̂1Ψk and (Ψ−k)T = Ψ†kτ̂1, (2.15)

which allows us to rewrite the Hamiltonian according to

H = 1
2
∑
k

Ψ†k h(k) · τ̂ Ψk = 1
2
∑
k

Ψ†k
1

(τ̂1)2 h(k) · τ̂
1

(τ̂1)2 Ψk

= 1
2
∑
k

(
Ψ†k τ̂1

)
τ̂1 h(k) · τ̂ τ̂1

(
τ̂1 Ψk

)
= 1

2
∑
k

(
Ψ−k

)T
τ̂1 h(k) · τ̂ τ̂1

(
Ψ†−k

)T

= 1
2
∑
k

(
Ψk

)T (
τ̂1 (h(−k) · τ̂ )T τ̂1

)T(
Ψ†k
)T

= −1
2
∑
k

[
Ψ†k τ̂1

(
h(−k) · τ̂

)T
τ̂1 Ψk

]T
.

(2.16)

Resolving the product of transposed objects into the transpose of a product involves
the anticommutation of fermionic creation/annihilation operators in the last step
and thus picks up a minus sign. Note that we again ignore constant terms.

In order for the expressions after the first and last equal sign in Eq. (2.16) to be
the same, we need to impose the relation

h(k) = −τ̂1
(
h1(−k)τ̂1,−h2(−k)τ̂2, h3(−k)τ̂3

)
τ̂1. (2.17)

Using the fact that the Pauli matrices anticommute, which implies τ̂iτ̂j τ̂i = −τ̂j for
i 6= j, we therefore obtain the constraints

h1,2(−k) = −h1,2(k) and h3(−k) = h3(k) (2.18)

9



Chapter 2. The Kitaev chain & Majorana fermions

Figure 2.2: (a) Possible path of ĥ(k) in the topological phase if k is swept from 0 to
π. The path is fixed to north and south pole (or vice versa) at k = 0, π, but can be
smoothly deformed in between without changing the invariant ν. (b) Possible path
of ĥ(k) in the trivial phase. The vector ĥ(k) points to the same pole at k = 0, π.
Smoothly changing the path in between again leaves ν the same.

on the elements of the vector h(k). Eq. (2.18) means that h1,2,3(k) are purely even
or odd functions of k, implying that we can restrict the further discussion to the
interval k ∈ [0, π]. Furthermore, note that for periodic boundary conditions, the
points k = −π and k = π can be identified with one-another. A direct consequence
of this and Eq. (2.18) is the property

h1,2(±π) = 0 and h1,2(0) = 0, (2.19)

since h1,2(−π) = h1,2(π) = −h1,2(π) and even more straightforwardly h1,2(0) =
−h1,2(0) .

The important map for which we are going to define a topological invariant is
given by

ĥ : [0, π] 7→ S2

k 7→ ĥ(k) = h(k)
|h(h)|

(2.20)

which takes the real numbers in [0, π] to a point on the unit sphere. We aim to
classify gapped systems, i.e., h(k) and thus ĥ(k) is finite for all k.

Due to Eq. (2.19), the vector ĥ(k) must be parallel to the z-axis at k = 0, π and
point to either north or south pole. We can therefore write

ĥ(0) = s0 ẑ, ĥ(π) = sπ ẑ, (2.21)

where ẑ is the unit vector in the positive z-direction and s0,π = sgn(ε0,π) = ±1 are
the signs fixing ĥ(0, π) to either the north or the south pole, given by the sign of
the kinetic energy at the respective momenta.

As a result, as one maps k 7→ ĥ(k) from k = 0 to k = π, the resulting points on
the sphere can form two kinds of paths, which are topologically distinct. Either both
start and end point are at the same pole and the path is closed, or start and end point
are on opposing poles and the path is open (see Fig. 2.2). Note that neither do we
need to specify which pole the starting and end point is, nor whether the open paths
go from north to south pole or vice versa. There is always a unitary transformation

10
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Figure 2.3: Plot of the mixing angle as one sweeps k across the Brillouin zone in the
topological (blue line) and trivial regime (red line). We choose the same parameters
as in Fig. 2.1. In the trivial regime, the angle stays within a small interval around
θ = π, whereas in the topological regime, the mixing angle wraps around the unit
circle once as it moves continuously from 2π to 0 (these two points can be identified
with one-another).

connecting the two respective cases, and the only meaningful invariant is whether
or not the path is closed. Using the notation in Eq. (2.21), this is equivalent to
s0 = sπ for a closed path, and s0 = −sπ for an open path, respectively. This can be
formulated in a concise fashion by defining the Z2 invariant

ν = s0sπ. (2.22)

For closed maps from one pole back onto itself, we therefore have ν = +1, whereas
ν = −1 for open paths connecting opposite poles. The fact that only the closure
of the path is important corresponds to the product of s0 and sπ being invariant,
instead of the values of s0,π itself.

The physical intuition gained here is the following. First, ν = 1 means that
sgn(εk) is the same at 0 and π. Then, there are no states at the Fermi level and we
have a trivial insulator, since this situation is smoothly connected with the trivial
vacuum µ → −∞, where no states are occupied. However, if ν = −1, there is one
pair of states at the Fermi level and the pairing leads to a nontrivial insulator.

Another way of making a topological distinction between the phases is provided
by the mixing angle θk [55]. We can think of cos(θk) ≡ x and sin(θk) ≡ y as x- and
y-components of all points on a unit circle in R2 (which is equivalent to S1). The
angle θk is thus the one-dimensional parameter marking the angular position of the
point on the circle. As such it is 2π-periodic, and thus θ(k) represents a map from
the unit circle onto the unit circle:

θ : S1 7→ S1

k 7→ θ(k).
(2.23)

As we have seen before, the chain is in a topological phase if µ is within the band
εk and trivial otherwise. In the trivial regime, where µ < −t (µ > t), we readily see
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that x = cos(θk) = εk/E+ is strictly positive (negative). By contrast, y = sin(θk) =
∆ sin(k)/E+ is negative for −π ≤ k < 0 and positive for 0 < k ≤ π. Put together,
sweeping k from −π to π therefore traces θk on a path on the circle which stays in
the first and fourth (second and third) quadrant, but will never wrap around the
full circle. Note that this is a direct consequence of the chemical potential being
outside the band, and therefore the absence of states at the Fermi level. In the
topological regime for −t < µ < t, however, the sign of x = cos(θk) does change.
Importantly, it does so when −t cos(k) = µ and therefore not at k = 0, π, which is
where y = sin(θk) changes sign. This means that sweeping k across the Brillouin
zone will definitely force θk through all quadrants. Since the signs of x = cos(θk)
and y = sin(θk) change in an alternating fashion, it is actually guaranteed that θk
performs a full turn around the circle. We illustrate this in Fig. 2.3.

2.1.2 Majorana fermions in the Kitaev chain

2.1.2.1 A short introduction

In 1937, Ettore Majorana discovered that the Dirac equation admits a real solution,
with the remarkable consequence that it is invariant under the charge conjugation
operator connecting particles and antiparticles [46]. A state with these properties
would therefore describe a neutral spin-1/2 particle, which is its own antiparticle [56].
It has been coined Majorana fermion in honor of its discoverer.

Although Majorana himself speculated that Neutrinos might be their own an-
tiparticles, the observation of lepton number conservation seemed to make a strong
distinction between neutrinos and antineutrinos. More recently, however, the dis-
covery of neutrino oscillations among their flavor eigenstates suggests that only the
sum of lepton numbers over all three flavors can be conserved, thus opening a back-
door for Majorana fermions in the form of neutrinos as fundamental part of the
standard model [57].

For the purposes of this thesis, however, we ignore the particle physics back-
ground to the Majorana fermion and turn to condensed matter realizations [58–61].
They rely on the simple idea that in superconductors, basic excitations are always
superpositions of electrons and holes [62, 63]. However in conventional BCS super-
conductors the energy spectrum of excitations is gapped. Since charge-conjugation
links states at energies ±E, the only invariant energy E = 0 is forbidden by the
superconducting gap. Moreover, since Cooper pairs in BCS superconductors are
spin singlet states, the elementary excitations also have mixed spin, which further
obstructs the construction of Majorana operators [54,57,64].

Remarkably, the rise of topological superconductivity has provided a way out.
As we are going to see in the rest of the chapter for the example of a one-dimensional
spinless superconductor, nontrivial topological properties of the bulk gap allow for
mid-gap zero-energy states located at the edge by means of the so-called bulk-
boundary correspondence [45, 59, 60, 65–67]. In rough terms, the second-quantized
operators associated with these states have the form

γ+ = ĉ+ ĉ†, γ− = −iĉ+ iĉ† (2.24)

12
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and thus are hermitian, i.e., they fulfill

γ± = γ†±. (2.25)

This implies that creation and annihilation of these states are equivalent, and it is
in this sense that they are their own antiparticles. Strictly speaking, as we will see
shortly, they are not fermions since there is no well-defined occupation number asso-
ciated with them. Therefore, states with operators fulfilling the constraint Eq. (2.25)
should be called Majorana modes for clarity [67, 68]. However, the condensed mat-
ter literature is often quite loose in this regard and we adopt this convention after
having clarified this point here.

By now, there is an abundance of physical systems which aim to realize topo-
logical superconductors with Majorana modes at their boundary. Early proposals
based on vortices in p + ip superconductors [69–73] could effectively realized by
means of the proximity effect in two-dimensional electron gases [74] or at the sur-
face of three-dimensional topological insulators [43]. However, more relevant to the
material discussed in this thesis are end states of one-dimensional topological sys-
tems. Research in this direction was driven by Kitaev [47, 48] and the insight that
the physics of the Kitaev chain can be realized using helical edge states [43,44] and
nanowires [75, 76] (see Section 2.3). Other one-dimensional examples are chains of
magnetic adatoms on top of a Pb superconductor [77,78] and helical hinge states of
Bismuth films subjected to superconductivity and magnetism [79].

The most basic experimental signatures of Majorana modes is a zero-bias con-
ductance peak of quantized value 2e2/h. Since the earliest report of experimental
evidence for Majoranas in nanowires in 2012 in Ref. [80], advances in device fabri-
cation have led to more robust results and conductance measurements closer to the
theoretical prediction [81–88].

Furthermore, Majorana modes can be associated with transferring single elec-
trons across Josephson junctions instead of Cooper pairs. A direct consequence of
this is a doubling of the supercurrent period from 2π to 4π as a function of the phase
difference across the junction, thus leading to a fractional Josephson effect [44,89,90].
Experimentally, this signature has been found in HgTe/CdTe and InAs/GaSb quan-
tum wells [32, 33,91,92] as well as in semiconductor nanowires [81,93].

2.1.2.2 Kitaev chain

Going back to the Kitaev chain as introduced in Section 2.1.1, Majorana fermions
appear straightforwardly as a consequence of the nontrivial topology as edge states.
In order to make them apparent, we need to move to the situation of an open chain
with N sites. This corresponds to removing the hopping and pairing between the
first and the N -th site in the Hamiltonian in Eq. (2.1), which yields

H = −µ
N∑
j+1

ĉ†j ĉj −
1
2

N−1∑
j=1

(
t ĉ†j ĉj+1 + tĉ†j+1ĉj

)
+ 1

2

N−1∑
j=1

(
∆eiφ ĉj ĉj+1 + ∆e−iφ ĉ†j+1ĉ

†
j

)
,

(2.26)
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Next, we introduce Majorana operators through the definition

γA,j = ĉj eiφ/2 + ĉ†j e−iφ/2 (2.27a)
γB,j = i

(
ĉj eiφ/2 − ĉ†j e−iφ/2

)
. (2.27b)

Given the fermionic anticommutation relations of the standard creation/annihilation
operators ĉj, ĉ†j, it is straightforward to verify that the Majorana operators from
Eq. (2.27) fulfill the important relations

{γα,i, γα′,j} = 2δi,jδα,α′ (2.28a)
γ†α,j = γα,j. (2.28b)

The former relation, Eq. (2.28a), constitutes the Clifford algebra obeyed by the
Majorana operators, whereas the latter relation Eq. (2.28b) is a manifestation of
Majoranas being their own antiparticles. One way to interpret Eq. (2.28b) is that
the complex2 fermionic operators ĉj, ĉ†j are split in their real and imaginary parts by
Eq. (2.27). In other words, the fermions at each site are split into two Majoranas
at the same site. An important consequence of Eq. (2.28) is the property

γ†α,jγα,j = γα,jγα,j = 1. (2.29)

This means that there is no well-defined occupation number associated with the
Majorana operators.

The question to be addressed now is how the Hamiltonian Eq. (2.26) can be
understood in terms of Majorana operators. To proceed, we invert Eq. (2.27) to
find

cj = e−iφ/2

2 (γB,j + iγA,j) (2.30)

c†j = eiφ/2

2 (γB,j − iγA,j) , (2.31)

which we can subsequently insert into the Hamiltonian Eq. (2.26). It is illustrative
to note explicitly that

ĉ†i ĉj = 1
4 [γB,iγB,j + γA,iγA,j + i (γB,iγA,j − γA,iγB,j)] , (2.32)

which, using Eq. (2.28), leads to

ĉ†j ĉj = 1
4
[
γ2
B,j + γ2

A,j + i (γB,jγA,j − γA,jγB,j)
]

= 1
2 (1 + iγB,jγA,j) (2.33)

and

ĉ†j ĉj+1 + ĉ†j+1ĉj = i
2 (γB,jγA,j+1 − γA,jγB,j+1) , (2.34)

where the terms of the form γα,jγα,j±1 must cancel each other in the Hamiltonian
since they are anti-hermitian. From the pairing terms we obtain

eiφĉj ĉj+1 + e−iφĉ†j+1ĉ
†
j = i

2 (γB,jγA,j+1 + γA,jγB,j+1) . (2.35)

2Complex in the sense of non-hermitian, i.e., not invariant under “conjugation”. In the same
way, the Majorana operators can be thought to be real.
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Figure 2.4: Schematic depiction of the Kitaev chain. (a) The chain in terms of
electrons (gray circles) with indicated hopping t, pairing |∆| and Majorana opera-
tors γA/B,j. (b) In the topologically trivial regime, Majoranas at the same sites are
coupled more strongly than Majoranas at different sites. Consequently, they can
pair and form normal fermions. (c) In the nontrivial regime, the coupling between
Majoranas on neighboring sites is dominant. The resulting fermions are thus super-
positions of Majoranas from adjacent sites. Clearly, as panel (c) shows, for open
chains this leaves two Majoranas at the ends unpaired. They form a highly nonlocal
fermionic state.

We thus see that the on-site terms give rise to a term coupling Majoranas at the
same site (plus a constant term, Eq. (2.33)), whereas the hopping and pairing terms
couple Majoranas at different sites (Eqs. (2.34) and (2.35)). Note that the latter
two come with a relative sign.

After rewriting the terms making up the previous Hamiltonian in terms of Ma-
jorana operators, we can straightforwardly write

H = −µ2

N∑
j=1

(1 + iγB,jγA,j)−
i
4

N−1∑
j=1

[
(∆ + t) γB,jγA,j+1 +(∆− t) γA,jγB,j+1

]
. (2.36)

The general Hamiltonian is rather complicated to analyze. However, since we have
already seen that the system has a topologically nontrivial phase for finite ∆ and
−t < µ < t and a trivial phase otherwise, we will focus on special, tractable points
within the phases.

For the trivial phase, we choose ∆ = t = 0 – i.e., an inert chain of localized
electrons with uniform onsite potential µ 6= 0. Note that if µ < 0, the ground
state |GS〉 will be the vacuum state |0〉 with occupation numbers nj = ĉ†j ĉj|0〉 = 0,
whereas for µ > 0 ∀j the ground state will be the one with every fermion state
filled, |1〉, i.e., nj = ĉ†j ĉj|1〉 = |1〉 ∀j. In either case the energy spectrum will
have a gap, since creating an excited state by adding (for |GS〉 = |0〉) or removing
(for |GS〉 = |1〉) a particle, respectively, will cost energy |µ|. Notably, this is true
regardless of where the particle is added, and therefore the trivial phase has no edge
states. For completeness, note that we have to exclude the case µ = 0, since then
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the system would be gapless. In the Majorana formulation, for ∆ = t = 0 in the
trivial phase the latter term in Eq. (2.36) vanishes and thus the Hamiltonian only
couples Majoranas at the same site. This is of course a direct consequence of turning
off all couplings of the original fermions to the nearest neighbors.

The topologically nontrivial phase is best understood for ∆ = t 6= 0 and µ = 0.
The Hamiltonian thus becomes

H = − it
2

N−1∑
j=1

γB,jγA,j+1, (2.37)

meaning that the description boils down to a chain with a coupling of Majorana
operators at different sites, i.e., Majorana operators γB,j are coupled with γA,j+1 at
the next site. This has the crucial implication that the Majoranas γA,1 and γB,N are
not paired at all, since there are no partners available to these modes at the ends of
the chain. In fact, γA,1 and γB,N do not even enter the Hamiltonian in Eq. (2.37),
which implies

[γA,1, H] = [γB,N , H] = 0 (2.38)
by simply applying the anticommutation relations.

To see that this actually translates into a fermionic edge state, we define the
operator

f̂ = 1
2 (γB,N + iγA,1) . (2.39)

One can easily check that f̂ does fulfill fermionic anticommutation relations [also
compare with Eq. (2.30)]. Moreover, the fermion defined through the annihilation
operator in Eq. (2.39) is highly nonlocal since it combines Majoranas at opposite
ends of the chain.

Since the commutator is linear, f̂ and f̂ † also commute with the Hamiltonian,
i.e., [

f̂ , H
]

=
[
f̂ †, H

]
= 0. (2.40)

As a result, the ground state will now be two-fold degenerate.
Let us first have a look at the bulk3 of the chain, which still remains gapped.

This can be made explicit by defining fermionic operators

d̂j = 1
2 (γB,j − iγA,j+1) . (2.41)

A simple calculation shows that the Hamiltonian can be written in the form

H = t
N−1∑
j=1

(
d̂†j d̂j −

1
2

)
, (2.42)

which is the Hamiltonian of a chain of N − 1 sites with onsite potential t, up to a
constant. Clearly, the corresponding ground state |GS〉 is just an empty chain with
occupation numbers zero. Adding a particle creates an excited state, separated from
the ground state by energy t.

3Bulk refers to all Majorana operators except for γA,1 and γB,N . Note that sites 1 and N then
still partly belong to the bulk through γA,N and γB,1.
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In contrast, adding one fermion created by the operator f̂ † costs zero energy,
since the energy of the state |1f̂〉 ≡ f̂ †|GS〉 is

〈1f̂ |H|1f̂〉 = 〈1f̂ |H f̂ †|GS〉 = 〈1f̂ |f̂
†H|GS〉 = EGS〈1f̂ |1f̂〉 = EGS, (2.43)

i.e., equal to the ground state energy. We thus conclude that the states |GS〉 and
f̂ †|GS〉 form a basis of the low-energy (and in fact degenerate) subspace.

The physical properties of the Kitaev chain in the topological phase are rooted
in the nontrivial topology associated with the bulk of the chain. At the boundary
of the topological chain, an interface between a trivial and nontrivial phase arises.
This interface binds a localized state within the gap. The mathematical reason
behind is the bulk-boundary correspondence. Loosely speaking, there is no smooth
way of interpolating across the boundary between distinct topological phases, and
hence the gap has to close, i.e., some subgap state must exist. At the special points
above, this boundary was well illustrated by the different couplings of Majoranas
in the two phases. Clearly, an open chain in the topological phase or an interface
between a trivial and a topological region leave a single Majorana mode per interface
unpaired, leading to zero-energy modes localized at the interfaces (cf. Fig. 2.4).

Strikingly, much of the behavior of the Majorana zero modes localized at the
edges is stable even away from µ = 0, precisely because it is a feature of the topology.
In the topological phase, but for µ 6= 0, Majorana operators of type A will be coupled
to Majoranas of type B on the same site, as well as on neighboring sites on both
sides. This has two important consequences:

(i) The edge modes will no longer simply be given by γA,1, γB,N . Introducing the
shorthand γL (γR) for the mode localized at the left (right) end of the chain,
the edge modes are given by superpositions of the form [47]

γL =
N∑
j=1

(
αL,+x

−j
+ + αL,−x

−j
−

)
γA,j

γR =
N∑
j=1

(
αR,+x

j
+ + αR,−x

j
−

)
γB,j,

(2.44)

where x± = 2(t+ ∆)/(−µ±
√
µ2 − 4t2 + 4∆2) with |x±| > 1, and coefficients

αL/R,± subject to boundary conditions. The weights of the mode γL (γR) are
therefore decaying (growing) with j, as desired. Eq. (2.44) is valid in the
thermodynamic limit N → ∞, where γL,R give rise to a truly zero-energy
fermion via

f̂ = 1
2 (γR + iγL) . (2.45)

(ii) For a finite chain, the different couplings between Majoranas for µ 6= 0 will
lead to a weak coupling between γL and γR and thus a splitting between the
degenerate zero-energy states. The effective Hamiltonian takes the form

Heff = i
2εγLγR ≡ ε

(
f̂ †f̂ − 1

2

)
, (2.46)

where the splitting energy scales as ε ∝ exp(−N/l0). The length l0 is deter-
mined by the larger value of ln(|x±|), which is the larger localization length
scale of the modes γL/R.
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Note that both of the above points originate from the more complicated inter-
play of couplings away from the special case µ = 0. First, they allow the edge
modes, which are perfectly pinned to the boundary of the chain for µ = 0, to
interact and spread away from the edge. Not only does that lead to an overlap
(although exponentially small) of the edge modes, the additional couplings
also allow for a nonzero matrix element of the effective Hamiltonian coupling
the two edge modes and therefore a splitting of the degeneracy. The distinc-
tion between an overlap of wave functions and a nonzero energy splitting will
reappear throughout this thesis.
As a last remark, note that given a sufficiently long chain, i.e., N · a� l0, the
energy splitting and the delocalization of the zero modes can safely be ignored
since they become negligible in comparison with all other relevant length and
energy scales in the system.

2.2 Continuum model of a one-dimensional spinless su-
perconductor

2.2.1 Phase diagram of the continuum model

More insight into the physics of spinless one-dimensional superconductors can be
gained by considering a continuum model. As opposed to the Kitaev chain as a
lattice model, where it was possible to define discrete Majorana operators at each
site and study the coupling between them, the continuum model enables us to make
a more precise connection between Majorana modes and boundaries of topological
phases.

The normal state Hamiltonian in momentum space in this case can be written
in the form

H =
∫ dp

2π

[
ψ†p

(
p2

2m − µ
)
ψp + p∆

(
ψpψ−p + h.c.

)]
, (2.47)

where ψ†p (ψp) creates (annihilates) a spinless fermion with momentum p. Further-
more, ξp = p2/2m − µ is the normal state dispersion, with m the electron’s mass
and µ the chemical potential. The second term in Eq. (2.47) describes the effect of
p-wave superconductivity. For simplicity, we choose ∆ > 0, implying that ∆ is real.

To proceed, we bring H in a BdG-form, which reads

H = 1
2

∫ dp
2πΨ†pHBdG Ψp (2.48)

with the Hamiltonian density

HBdG =
(
ξp p∆
p∆ −ξp

)
= ξp τ̂3 + p∆ τ̂1. (2.49)

In Eq. (2.48), we introduce the spinor Ψp = (ψp, ψ†−p)T. By diagonalizing the BdG-
Hamiltonian the spectrum can be easily found to be

E± = ±
√
ξ2
p + ∆2p2, (2.50)
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i.e., the system exhibits an energy gap unless the expression within the square
root vanishes. Inspecting the two terms inside the square root, we see that in the
presence of superconductivity (∆ 6= 0) the gap can only close if µ = 0 and only at
zero momentum p = 0. As it turns out, the µ = 0 line separates a trivial from a
topological regime. Just as we saw for the Kitaev chain, in the trivial phase the
chemical potential lies outside the band (µ < 0), while in the topological phase the
chemical potential is within the band (µ > 0).

To make this connection more explicit, note that we can write

HBdG = h · τ̂ , (2.51)

with h = (h1, h2, h3) = (p∆, 0, ξp)T, which is analogous to the way we treated the
BdG-Hamiltonian for the Kitaev chain in Section 2.1. As a consequence of the fact
that h lies in the x, z-plane, by defining the unit vector ˆh(p) = h(p)/|h(p)| we
obtain a map

ĥ : R 7→ S1

p 7→ ĥ(p)
(2.52)

from the real numbers to the unit circle. The winding number associated with this
mapping as one sweeps p from −∞ to ∞ along the real axis distinguishes the two
phases.

The argument follows similar lines as in Section 2.1. First note that h1 linearly
depends on p (remember ∆ > 0), which means ĥ points in negative x-direction for
p < 0 and in positive x-direction for p > 0. Furthermore, in the limit p→ ±∞, the
quadratic contribution to h3 = ξp dominates the linear behavior of h1 and thus ĥ is
parallel to the z-axis for p→ ±∞.

In the trivial phase, for µ < 0, the chemical potential is outside the band and
thus ξp > 0 ∀p. Therefore, the vector ĥ always points in positive z-direction and is
only slightly tilted away from the z-axis as |p| grows away from zero. As explained
above, at large p it comes back to the z-axis, such that ĥ as a whole traces an arc
less than half the circumference of the unit circle.

In the nontrivial, topological phase, ξp switches sign at p = ±
√

2mµ. While the
behavior for large |p| is unaffected and ĥ points along the positive z-axis, h3 is now
negative for |p| <

√
2mµ. Therefore, sweeping p from −∞ to ∞ sends ĥ from the

“north pole” in a counterclockwise fashion around the unit circle, such that it wraps
around the unit circle one time.

2.2.2 Bulk-boundary correspondence

In this section, we show explicitly how an interface between a topological and a
trivial region of a one-dimensional spinless superconductor gives rise to a boundary
state.

We can construct such a domain wall by making the chemical potential position
dependent. The trivial region is created by choosing µ < 0 for x < 0 and, respec-
tively, the nontrivial region by taking µ > 0 for x > 0. The point x = 0 therefore
separates the two regions and a domain wall is formed. A natural case to consider
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is a profile for µ(x) which saturates at |µ(x)| ≡ µ∞ far away from x = 0 and is zero
at x = 0, i.e., µ(0) = 0. This is achieved by taking

µ(x) = µ∞ tanh
(
x

λ

)
, (2.53)

for instance. In Eq. (2.53), λ is a parameter determining the length scale on which
µ(x) transitions between ±|µ∞|, and µ∞ fixes the energy scale for the chemical
potential term.

If the spatial profile of the chemical potential is sufficiently smooth, i.e., µ(x)
varies relatively slowly, only small momenta will play a role4. This allows us to
neglect the kinetic term in the Hamiltonian. Indeed, while the chemical potential
term is of order µ∞ and the pairing term is of order ∆/λ, the kinetic energy scales
with 1/(λ2m). The kinetic energy is therefore small compared to the chemical
potential and pairing terms if

1� µ∞λ
2m and 1� ∆λm, (2.54)

which can be achieved by making λ large, or alternatively by taking m→∞.
As a consequence, near the interface the BdG-Hamiltonian can be written as

HBdG = −µ(x)τ̂3 + p∆ τ̂1 (2.55)

Eq. (2.55) has the form of a massive Dirac equation, where the role of the mass is
played by the term −µ(x). The dispersion relation of course follows directly from the
general BdG-Hamiltonian in Eq. (2.49) and its spectrum in Eq. (2.50) by simplifying
ξp = µ(x) and is thus given by E± = ±

√
(µ(x))2 + ∆2p2. Importantly, the mass

term depends on position and changes sign at the domain wall. This situation
is well-known in the context of high-energy physics and has been first studied by
Jackiw and Rebbi in 1976 [94]. Their groundbreaking finding was that under very
general circumstances, a particle obeying the Dirac equation coupled to a scalar field
– which is just another name for a mass term – with a kink profile will develop a
zero-energy bound state localized at the kink. This mode is called a soliton, because
it appears alone and separated in energy from the continuum of states in the bulk
bands.

In a sense, the appearance of the bound state is a topological feature of the mass
profile. To see this, note that far away from the domain wall, µ(x) is practically
constant and the spectrum is gapped. Importantly, the sign of µ(x) does not influ-
ence the spectrum itself, but the interpolation between masses with opposite signs
requires a zero in the mass term, which is enough for a bound state to form. The
existence of the bound state does not depend on the exact shape of the interpolation
and thus is robust against small variations, as long as the signs of the asymptotic
values limx→±∞ µ(x) remain fixed.

4It is helpful to think in terms of the Fourier decomposition of µ(x). Indeed, one finds

FT [µ∞ tanh(x/λ)] (p) = iµ∞

√
π

2
1

sinh (λpπ/2) ,

which roughly decays exponentially on a scale 1/λ.
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To see that the Hamiltonian in Eq. (2.55) does have exactly one zero energy
eigenstate, we make the ansatz

φ0(x) = 1
Nµ

e−
1
∆

∫ x
0 dx′ µ(x′)

︸ ︷︷ ︸
:=χ0(x)

(
u0
v0

)
︸ ︷︷ ︸
:=|ψ0〉

, (2.56)

where |ψ0〉 is a spinor still to be determined and Nµ is a normalization factor de-
pending on the exact form of µ(x). Inserting the ansatz into the real space version
of Eq. (2.55), where p→ p̂ = −i∂x, we obtain

HBdG φ0(x) = (−τ̂3 + iτ̂1)µ(x)χ0(x)|ψ0〉. (2.57)
For φ0(x) to be a zero energy solution, it needs to fulfill HBdG φ0(x) = 0, which
allows us to determine the spinor |ψ0〉 = (u0, v0)T. We find(

−1 i
i 1

)
|ψ0〉 = 0 or

−u0 + iv0 = 0
iu0 + v0 = 0.

(2.58)

Crucially, by multiplying the second equation on the right hand side of Eq. (2.58)
with i, we readily see that there is only a single condition for the two components
from the Hamiltonian, and of course another from normalization. Hence, up to a
global phase, there is only a single zero-energy solution of the form of Eq. (2.56).
In fact, Jackiw and Rebbi showed in their original paper that this ansatz together
with the continuum states form a complete and normalized set of states. Hence, we
conclude that φ0(x) is the only zero-energy state present and is found to be

φ0(x) = 1
2 χ0(x)

(
1 + i
1− i

)
. (2.59)

The reason why we chose |ψ0〉 in this way will become apparent below.
Finally, any general wave function of the form φ(x) = (u, v)T solving the BdG-

Hamiltonian allows us to find the associated second-quantized quasiparticle operator
γ according to (see, e.g., Ref. [95])

γ =
∫

dx φ∗(x)TΨ(x), (2.60)

where Ψ(x) = (ψ(x), ψ(x)†)T is the real-space form of the spinor introduced in
Eq. (2.49). Here, the operator corresponding to the zero-energy bound state is thus

γ = 1√
2

∫
dx u(x)

[
(1 + i)ψ(x) + (1− i)ψ†(x)

]
, (2.61)

which has the important property
γ = γ†. (2.62)

In summary, we found that there is a single bound state at the boundary be-
tween a topological and a trivial phase of a spinless one-dimensional superconductor.
The associated quasiparticle operator is hermitian, and thus the quasiparticle is its
own antiparticle. We have therefore shown that the edge state of a spinless, one-
dimensional topological superconductor is a Majorana mode. The discussion in this
section is a special case of the more general index theorem in mathematics due to
Atiyah and Singer, which relates the topology of certain parameters of a differential
equation (comparable to the mass term in our case) to solutions with particular
properties (comparable to bound states) [57,96,97].
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2.3 Physical realizations of the Kitaev chain

While the Kitaev chain is a convenient model to introduce and illustrate the general
idea behind Majorana fermions in condensed matter systems, there are severe limi-
tations to its direct applicability. The basic challenges of an experimental realization
are connected with the assumption of spinless fermions in the Kitaev chain. Since
electrons are spin one-half particles, they generally come in pairs of both spin polar-
izations. Ignoring possible intricacies of spin playing a role, we simply note that two
fermionic states per site will lead to four Majoranas per site. Therefore, copying the
Kitaev chain for each spin species will still leave two unpaired Majoranas at both
ends of the chain, which can be recombined into one local fermion. Furthermore,
in the Hamiltonian in Eq. (2.1), we assumed p-wave pairing in a one-dimensional
electronic system, which is a rather exotic state of superconductivity. Realistic pro-
posals will therefore have to eliminate one half of the spin-degrees of freedom from
the problem, and also find a way to utilize standard s-wave singlet pairing.

2.3.1 Quantum spin Hall edge states

The striking consequence of the topological nature of the gap in quantum spin Hall
systems is the emergence of edge states localized at the boundary to a topologically
trivial region. Their defining properties are that they are counter-propagating and
of opposite spin, i.e., the direction of motion is locked to the spin projection. When
the Fermi level is within the bulk gap, the edge states are the only low-energy degrees
of freedom and can be modeled by the Hamiltonian

H0 =
∫

dxΨ(x)† (vFp̂ σ̂3 − µ) Ψ(x), (2.63)

with the Fermi velocity vF and the chemical potential µ. The spinor is defined
as Ψ(x) = (ψ↑(x), ψ↓(x))T. Note how the peculiar structure of the kinetic term
reflects the special physical properties of the edge states. The term linear in p̂
leads to a linear dispersion with group velocity ±vF. However, the Pauli matrix σ̂3
acting in spin space results in a relative sign of the kinetic terms of spin ↑ and ↓.
As a consequence, the particular Hamiltonian in Eq. (2.63) describes rightmoving
(leftmoving) spin-↑ (↓) electrons.

Importantly, by focusing on the edge states and their effective Hamiltonian, we
are left with a single pair of fermionic states and thus avoid fermion doubling. One
can hope to find a route to a topological superconducting phase by utilizing the
spin-momentum locking of the edge states (which can be thought of as infinitely
strong spin-orbit coupling (SOC)), the spin-polarizing effect of a magnetic field, and
proximity induced s-wave singlet pairing. Note that the latter is naturally supported
by the counterpropagating electrons of opposite spin we find at the helical edge. The
effect of proximity induced s-wave singlet pairing can be modeled by adding the term

H∆ =
∫

dx∆ (ψ↑(x)ψ↓(x) + h.c.) (2.64)

to the Hamiltonian. Although H∆ has a standard BCS-form, the physical conse-
quences it has on the edge states go beyond s-wave singlet effects. We will discuss
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this in depth in Chapter 4, but restrict ourselves in this chapter to what we need to
connect quantum spin Hall insulator (QSHI) edge states to spinless superconductiv-
ity.

To see how these ingredients fit together, let us start without superconductivity
and only including a Zeeman coupling into the edge states, which explicitly breaks
time-reversal symmetry and introduces a gap in the spectrum (cf. Chapter 3 for
more details). We thus consider the Hamiltonian

H ′ = H0 +Hz, (2.65)

where the Zeeman term is given by

Hz = b
∫

dxΨ†(x) σ̂1 Ψ(x), (2.66)

with b the strength of the magnetic field. We choose the field along the x-direction,
but the precise orientation is not important as long as it lies in the plane perpendic-
ular to the SOC. We can straightforwardly diagonalize the Hamiltonian and write
it in the form

H ′ =
∫ dk

2π
(
ψ†+(k), ψ†−(k)

) (ε+(k) 0
0 ε−(k)

)(
ψ+(k)
ψ−(k)

)
, (2.67)

where we have taken the Fourier transform and switched to momentum space. The
operators ψ±(k) now annihilate particles in the two bands given by their dispersions
ε±(k) = −µ ±

√
v2

Fk
2 + b2. Note that the new operators ψ± are related to the

previous operators by a unitary transformation (UU † = 1)(
ψ+(k)
ψ−(k)

)
= U

(
ψ↑(k)
ψ↓(k)

)
. (2.68)

The new operators are thus superpositions of the field operators ψ↑, ψ↓, and conse-
quently not eigenstates of σ̂3 anymore.

Next, we address the question how superconductivity affects the edge states. To
do so, we invert Eq. (2.68) and write H∆ in terms of ψ±. We find

H∆ =
∫ dk

2π {∆s(k) [ψ−(−k)ψ+(k) + h.c.]

+∆p(k) [ψ−(−k)ψ−(k) + ψ+(−k)ψ+(k) + h.c.]} ,
(2.69)

with the effective pairings

∆s(k) = − b∆√
v2

Fk
2 + b2

and ∆p(k) = − vFk∆
2
√
v2

Fk
2 + b2

. (2.70)

Eq. (2.69) has a straightforward interpretation. The first term represents s-wave
pairing (since ∆s is even in k) which couples states in different bands. It is a
remnant of the original s-wave singlet pairing and strongest at k = 0. Note that
taking the limit b → 0 in Eqs. (2.69) and (2.70) is problematic, since they were
explicitly derived for a nonzero magnetic field. Nevertheless, the magnetic field
intertwines with s-wave pairing in the following way. At k = 0, the spin of the
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+ band points along the magnetic field in positive x-direction, whereas the spin
of the − band points in negative x-direction. For k away from zero, the spin of
the + (−)band rotates back to the projections without magnetic field, i.e., ↑ for
k →∞ and ↓ for k → −∞ (and vice versa for the − band). Therefore, only around
k = 0 are the spins in different bands and at momenta k and −k really anti-aligned.
The region in momentum space where this is the case, and s-wave singlet pairing
therefore possible, is larger for larger magnetic fields.

More important for the connection to the Kitaev chain, however, is the second
term in Eq. (2.69). It describes pairing which couples states in the same band
and opposite momenta, where, crucially, the pairing strength is an odd function of
k. This is necessary since field operators with the same band index (as the only
quantum number here) anticommute, rendering products such as ψ±(−k)ψ±(k) odd
in k. Were they coupled by s-wave pairing, the product of pairing and field operators
would not survive the integration over all momenta. A p-wave pairing term, however,
avoids this problem. Note that ∆p(k) is zero at k = 0 by definition and saturates
at ±∆/2 for k → ±∞. The physical mechanism how s-wave singlet pairing can
mediate p-wave pairing is closely related to the behavior of the spin projections
along the bands mentioned before. Away from k = 0, the spins within one band
tend to be antiparallel, whereas they tend to be aligned with the magnetic field
close to k = 0. Consequently, singlet pairing can couple states at momenta ±k.
The degree to which spins are parallel or antiparallel, respectively, depends on the
momentum and the strength of the magnetic field.

Summarizing the considerations above, placing the chemical potential within one
of the two bands is essentially enough to realize a spinless p-wave superconductor
with only one pair of states at the Fermi level. For instance, in the limit b � ∆,
where the gap between the bands becomes very large, we can place µ close to the
bottom of the upper band such that the lower band plays no role for the low-energy
physics. Note that this means the chemical potential is of the order of the magnetic
field strength, or more precisely µ ≥ b. Projecting the lower band away and focusing
on small momenta, we can write

ε+(k) ≈ −µeff + k2

2meff
(2.71)

with µeff = µ− b and meff = b/v2
F, as well as

∆p(k) ≈ ∆eff k (2.72)

with ∆eff = vF∆/(2b). With these approximations and going back to real space, we
thus obtain

H ′ +H∆ ≈
∫

dx
[
ψ†+(x)

(
p̂2

2meff
− µeff

)
ψ+(x) + ∆eff

(
ψ+(x) p̂ ψ+(x) + h.c.

)]
.

(2.73)
We can readily identify the low-energy Hamiltonian of the helical edge states of a
QSHI, proximity coupled with an s-wave superconductor and subject to a magnetic
field, with the continuum model of a spinless p-wave superconductor. As noted
before, the system is in a trivial phase if µeff < 0 ⇔ µ < b, i.e., if the chemical
potential is outside the upper band. The topological phase is realized if µeff > 0⇔
µ > b. This argument is only valid as long as h� ∆.
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In order to obtain a full phase diagram, let us go back to the original description
in terms of the ψ↑,↓ operators and consider the full Hamiltonian H = H0 + Hz +
H∆. Bringing H in a BdG-form, it is straightforward to determine the excitation
spectrum. One finds two positive eigenvalues

E±(k) =
√
b2 + ∆2 + µ2 + k2v2

F ± 2
√
b2∆2 + b2µ2 + µ2k2v2

F (2.74)

and two negative ones with a minus sign in front of E±, therefore the gap in the
excitation spectrum vanishes if E± = 0. This reveals that only E− can be zero at
k = 0. We have

E±(k = 0) =
√
b2 + ∆2 + µ2 − 2b

√
∆2 + µ2 =

√(
b−

√
∆2 + µ2

)2
, (2.75)

and arrive at the conclusion that the topological phase transition happens at the
gap closing b =

√
∆2 + µ2. Since we know that the topological phase requires µ > b

for small ∆, we deduce that the system is in the topological regime if

∆2 + µ2 > b2. (2.76)

Roughly speaking, the system is topological if the quasiparticle gap is dominated
by superconductivity and trivial if the gap is largely due to the magnetic field.
Curiously, this implies that the topologically nontrivial phase extends to the case of
zero magnetic field, i.e., b = 0.

2.3.2 Nanowires

The pursuit of an experimental detection of Majorana fermions in the laboratory
received a major push, when two seminal works [75,76] showed that the topological
phase of the Kitaev chain can be mimicked by a nanowire. All the setup needs to
have is sizable SOC intrinsic to the wire, as well as proximity to a magnetic field and
a conventional s-wave superconductor. We are going to review the intricate interplay
of these ingredients in the following and show how the physics of the Kitaev chain
emerges under the right circumstances.

The lowest subband of such an electron-doped semiconducting wire, for instance
InAs or InSb, can be modeled by the Hamiltonian

H = Hwire +H∆, (2.77)

where

Hwire =
∫

dx
(
ψ†↑, ψ

†
↓

)
(H0 +Hsoc +Hz)

(
ψ↑
ψ↓

)
, (2.78a)

with

H0 =
(
− ∂2

x

2m − µ
)
σ̂0, (2.78b)

Hsoc = −iασ̂2∂x, (2.78c)
Hz = bσ̂3, (2.78d)
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describe the spin-orbit coupled wire subjected to a magnetic field, and

H∆ =
∫

dx∆
(
ψ↑ψ↓ + ψ†↓ψ

†
↑

)
(2.79)

describes the effect of the proximity induced s-wave pairing. Note that the Pauli
matrices σ̂i act in spin space. The field operator ψ†σ (ψσ) adds (removes) an electron
with spin σ =↑, ↓ to (from) the wire.

Let us set ∆ = 0 and discuss Hwire first. It contains a standard kinetic term
H0 with effective mass m and chemical potential µ, a SOC term Hsoc along the
y-direction with coupling constant α, and finally the Zeeman term Hz coupling the
electron spin to a magnetic field of strength b along the z-direction. We note that
SOC and magnetic field have to be perpendicular, but only the relative angle between
them is important. We choose to align the magnetic field with the spin quantization
axis. The effect of the three terms in Hwire is as follows. Clearly, the kinetic term
alone produces two degenerate dispersion relations in the form of parabolas, one for
each spin. The Zeeman term lifts the spin-degeneracy by shifting up/down spins in
opposite directions. Lastly, the SOC term is off-diagonal in spin space and therefore
couples ↑ and ↓ spins. It aims to align the spins along the y-axis, although with
a coupling strength that depends on momentum. Especially, the coupling changes
sign at zero momentum.

On the basis of these general arguments, we can get a rough idea how nanowires
can reproduce topological phases. Since using s-wave singlet pairing and magnetic
fields is usually counterproductive, with the latter polarizing spin while the former
necessarily requires opposite spins, it is not hard to see that SOC is of paramount
importance. It provides a way of tilting the spins away from the quantization axis,
such that there are now pairs of electrons with opposite components in the plane
perpendicular to the SOC. Due to the spin-splitting by the magnetic field, the spin-
degeneracy is automatically lifted. This turns out to be enough to create an effective
p-wave pairing in an effectively spinless channel.

In order to illustrate the physics of the wire and to relate it to the Kitaev chain
and the edge states of the quantum spin Hall insulator more concretely, we are going
to consider two specific limits. In both cases, we assume that the pairing is smaller
than the bigger of the two energy scales set by the magnetic field and SOC, i.e.,
∆� max(b, εsoc) with εsoc = mα2.

As a first step, let us rewrite the Hamiltonian in momentum space and in terms
of Nambu spinors, thus bringing it in the form of a BdG-Hamiltonian. We find

Hwire = 1
2

∫
dxΨ†pHBdG Ψp, (2.80)

where the BdG-Hamiltonian is given by the matrix

HBdG =


p2

2m − µ+ b −ip 0 ∆
ip p2

2m − µ− b ∆ 0
0 ∆ − p2

2m + µ+ b ip
∆ 0 −ip − p2

2m + µ− b

 (2.81a)

or

HBdG = τ̂3

[(
p2

2m − µ
)
σ̂0 + ασ̂2

)
− b τ̂0σ̂3 + ∆ τ̂1σ̂0 (2.81b)
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in short, with the spinor5

Ψp =
(
ψ↑(p), ψ↓(p), ψ†↓(p),−ψ

†
↑(p)

)
. (2.82)

In Eq. (2.82), ψ†σ(p) [ψσ(p)] creates [annihilates] an electron with spin σ and mo-
mentum p and we use the notation τ̂i for Pauli matrices in Nambu space.

2.3.2.1 Kitaev limit

In the Kitaev limit, the largest energy is the magnetic field and we assume b� εsoc.
As a lowest order approximation, we can set the SOC to zero. Also setting ∆ = 0
for now, the eigenvalues of the matrix in Eq. (2.81) give the normal state dispersions
εp,σ = p2

2m − µ + sgn(σ)b, with σ =↑, ↓ and sgn(σ =↑) = 1 (sgn(σ =↓) = −1). As
mentioned before, we find two parabolas shifted up or down depending on the spin.

When the chemical potential is below the bottom of the spin-↑ band, i.e., µ < b,
there are either no states at the Fermi momentum for µ < −b, or a single right- and
left-moving mode both with spin ↓.

If the chemical potential is within the spin-↓ band, but close to the bottom of it,
the states in the spin-↑ band play no role for the low-energy physics. We introduce
the basis

|e↑〉 = (1, 0, 0, 0)T, |e↓〉 = (0, 1, 0, 0)T, |h↓〉 = (0, 0, 1, 0)T, |h↑〉 = (0, 0, 0, 1)T,
(2.83)

of which only the spin-↓ states |e ↓〉 and |h ↓〉 are important when considering the
effect of superconductivity without SOC.

It is now easy to verify that spin-polarization prohibits superconducting pairing.
All matrix elements of the pairing term with respect to |e↓〉, |h↓〉 are indeed zero,
explicitly

〈e↓ |∆ τ̂1σ̂0|e↓〉 = 〈e↓ |∆ τ̂1σ̂0|h↓〉 = 〈h↓ |∆ τ̂1σ̂0|e↓〉 = 〈h↓ |∆ τ̂1σ̂0|h↓〉 = 0.
(2.84)

Note that this also means that superconductivity cannot introduce a gap into the
system at the Fermi level, i.e., at band crossings at finite momenta. This is actually
true even when the high-energy spin-↑ states are taken into account, since the pairing
not only requires opposite spins, but also needs to couple states at opposite momenta.
However, finite ∆ would slightly push the bands apart at p = 0.

Including SOC perturbatively to first order, the physical picture changes. The
dispersion without superconductivity does not change, since the matrix elements of
the states in Eq. (2.83) with an off-diagonal perturbation are zero. However, the
first order correction of the eigenstates is nonzero, and the low-energy states to first
order are then given by (up to normalization)

|e↓(1)〉 =
( iαp

2b , 1, 0, 0
)T

, |h↓(1)〉 =
(

0, 0, 1, −iαp
2b

)T
(2.85)

5Note the order and the sign in the last two components of the spinor, which looks unnecessary,
but in fact allows a somewhat simpler spin structure in the anomalous part of the Hamiltonian.
We will come back to this point in the discussion about superconducting correlations.
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The low-energy states thus acquire a nonzero spin-↑ component. One can check that
the particular superpositions arising in Eq. (2.85) are given by a large component
still pointing in negative z-direction (corresponding to spin ↓), but additionally a
small component pointing in positive (negative) y-direction for |e ↓〉 (|h ↓〉). The
spins are therefore slightly tilted away from the z-axis. Hence, |e ↓〉 and |h ↓〉 now
have opposite polarization along the y-direction. Note that the deviation from the
z-axis is linear in the momentum, and inversely proportional to the magnetic field.
This reflects the fact that a larger magnetic field increases the initial polarization
along z.

To see how superconductivity now enters the low-energy physics, we calculate

〈e↓(1) |∆ τ̂1σ̂0|h↓(1)〉 = − i∆αp
b

, 〈h↓(1) |∆ τ̂1σ̂0|e↓(1)〉 = i∆αp
b

, (2.86a)

〈e↓(1) |∆ τ̂1σ̂0|e↓(1)〉 = 0, 〈h↓(1) |∆ τ̂1σ̂0|h↓(1)〉 = 0. (2.86b)

The resulting low-energy Hamiltonian in the basis |e↓(1)〉, |h↓(1)〉 is thus

H '
(
p2

2m − µ
′
)
τ̂3 + ∆αp

b
τ̂2, (2.87)

where we shifted the chemical potential µ′ = µ + b. Comparing Eq. (2.87) with
Eq. (2.4), we conclude that the low-energy physics of the wire in the Kitaev limit
corresponds to the low momentum expansion of the BdG-Hamiltonian of the Kitaev
chain.

2.3.2.2 QSHI limit

In this section, we are going to show how the physics of the spin-orbit coupled
nanowire relates to the edge states of a QSHI. In the QSHI limit, we reverse the
relationship between SOC and the magnetic field compared to the Kitaev limit and
assume that εsoc � b. Neglecting the Zeeman field at first, the Hamiltonian in
Eq. (2.81) gives the normal state energies

εp = 1
2m (p+ sgn(λ)mα)2 − µ− 1

2mα
2, (2.88)

where λ = ±1 indicates the polarization of the spin of the eigenstates in y-direction,
i.e., along the SOC. The eigenstates read

|→〉 = 1√
2

(1, i)T , |←〉 = 1√
2

(1,−i)T , (2.89)

where σ̂2|→〉 = |→〉 and σ̂2|←〉 = −|←〉, i.e., |→〉 (|←〉) corresponds to λ = 1
(λ = −1). Thus, we find two bands in the form of shifted parabolas and a crossing at
p = 0, and additionally with opposite polarization along the y-axis. In the following,
we are interested in the question how a magnetic field and superconductivity can
lift the zero-momentum crossing. For simplicity, we set µ = 0 and therefore place
the chemical potential in the middle of both magnetic and superconducting gap.

Since we focus on small momenta now, we neglect the kinetic energy term in
Eq. (2.81). The p ∼ 0 part of the Hamiltonian thus reads

HBdG ' αp τ̂3σ̂2 + b τ̂0σ̂3 + ∆ τ̂1σ̂0, (2.90)
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which we readily identify as the model for QSHI edge states from Section 2.3.1
and Chapter 3, first rotated in spin-space about the x- and then about the y-axis
by 90 degrees. Of course, this close relationship arises since around zero momentum
the bands of the wire in the QSHI limit without magnetic field exactly mimic the
spin-momentum locking of helical edge states.

Close to p = 0, the spectrum of the wire is therefore analogous to the helical
edge and given by εp = ±

√
(αp)2 + (b±∆)2. Note that the gap closes linearly for

b = ±∆, which signals a topological phase transition. In order to decide which is
the trivial and which is the topological phase, we note that without closing the gap
in the full spectrum (i.e., not only around p ≈ 0) one can increase the magnetic field
from the QSHI limit with |∆| < |b| < εsoc to the Kitaev limit discussed previously,
where |∆| < εsoc < b. Thus, the case |b| > |∆| phase of the QSHI limit is smoothly
connected with the topological phase in the Kitaev limit, and thus topological itself.
For nonzero µ, one finds the topological criterion b >

√
∆2 + µ2 in the same fashion.

It is important to note that this is the reverse condition as in the QSHI case in
Section 2.3.1. The physical reason for this is the fact that the quantum wire has
a parabolic dispersion, i.e., away from p = 0 the bands bend upwards. Loosely
speaking, it can be thought of as a QSHI edge model for p ' 0 and an additional
spinless superconductor at the outer wings of the dispersion for larger p. The wire
therefore has one additional pair of states at the Fermi energy, which renders the
|∆| > |b| phase of the wire trivial since standard s-wave singlet pairing is always
possible.

2.4 Quantum computation with Majorana fermions

In this section, we aim to sketch the connection between Majorana fermions and
quantum computation, which is arguably the biggest promise and main motivation
behind the realization of Majoranas in the laboratory.

While the goal of this section is to merely give a hint of how to utilize Majorana
fermions for quantum computation, a more comprehensive discussion of this exciting
line of research can be found in, e.g., [48, 51,52,67,68,98–101].

2.4.1 Many-body ground state & non-Abelian statistics

The most fundamental building blocks of any quantum computer are qubits, which
store information, and quantum gates, which manipulate qubits to perform compu-
tations. In this section, we consider how Majorana fermions can be used to construct
qubits and perform operations on them, before we turn to the explicit relation of
braiding and quantum gates in Section 2.4.2.

Fortunately, for a simple and accessible discussion we can turn to the Kitaev
chain again, and similar ideas apply to almost all realizations of topological super-
conductors. We already have done most of the work in Section 2.1.2 and merely
use the results in the context of quantum computation. We restrict ourselves to
the special point t = ∆, µ = 0 within the topological region. Recall that the bulk
of the chain corresponds to a chain of inert fermions d̂†j, d̂j. The bulk ground state
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|GS〉 with energy EGS corresponds to all states j being empty, but is in fact two-fold
degenerate due to the presence of the zero-energy fermion

f̂ = 1
2 (γB,N + iγA,1) , (2.91)

where γB,N and γA,1 are Majoranas located at opposite ends of the chain. As a
consequence, |GS〉 and f̂ †|GS〉 span a degenerate ground state subspace.

The key insight due to Kitaev and his seminal work [48] was the realization that
|GS〉 and f̂ †|GS〉 could be used as states forming a qubit. Assuming the Majoranas
γB,N and γA,1 are well-separated and isolated, their recombination into a single
fermion means that the qubit is actually nonlocal. Crucially, using Majoranas for
quantum computation offers the possibility to realize protected operations on these
qubits. The reason for this is deeply rooted in the fact that in lower than three
dimensions, exchanging particles can have more complicated effects than simply
giving a factor of ±1 as for bosons and fermions. In two dimensions, for instance, a
particle adiabatically encircling another particle and finally returning to its starting
point is associated with a winding number, since the traced out path cannot be
smoothly contracted to a point without crossing the position of the other particle.
Thus, the final state does not need to be the same as the initial one [51,52,68].

In general, there are two possibilities. The final state |ψf〉 can differ from the
initial state |ψi〉 by an arbitrary phase 2λ, such that

|ψf〉 = e2iλ|ψi〉, (2.92)

where λ is the phase associated with one exchange of positions, i.e., “half” of one
full encircling. Note that λ = 0 (λ = π) corresponds to the familiar case of bosons
(fermions). If the phase is neither bosonic nor fermionic, the particle is said to obey
anyonic statistics.

Even more exotic behavior, however, can occur when the ground state is actually
a degenerate manifold spanned by ground states |ψni 〉. The superscript in |ψni 〉 labels
the degenerate ground states. In this case, there is nothing that stops the adiabatic
encircling operation from mixing the different ground states, such that the final state
becomes a superposition of the form

|ψf〉 =
∑
m,n

Umn cn|ψni 〉 ≡ U |ψi〉, (2.93)

with |ψi〉 = ∑
n cn|ψni 〉 the initial state. The action of the encircling operation is

thus represented by a unitary matrix U corresponding to a rotation in the ground
state manifold. Intriguingly, the matrices associated with distinct exchanges do not
need to commute, potentially leading to non-Abelian statistics. These rotations can
therefore be exploited to realize unitary quantum gates. Note that since they only
rely on the topological properties of the exchange protocol, but not on the local
details of the exact path, they too offer the potential for topological protection.

As a last remark, while these considerations apply to two-dimensional systems
directly, it is not immediately obvious how to realize exchanges with one-dimensional
topological superconductors and zero-dimensional Majoranas at the ends. We are
going to show one example at the end of the chapter.
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2.4.2 Realizing quantum gates with Majorana fermions

2.4.2.1 Braid group representation

In this section, we first review Ivanov’s seminal work on the relationship of non-
Abelian statistics and braiding to Majorana modes bound to vortices in spinless
p+ip superconductors. After that, we show in a simplified toy model how Majorana
modes bound to the end of one-dimensional topological phases can exhibit similar
behavior.

Let us first briefly introduce the basic physics of a spinless p+ip superconductor.
A two-dimensional electron gas exhibiting this kind of superconducting order can
be modeled by the Hamiltonian

H =
∫

d2r
{
ψ†
(
−∇2

2m − µ
)
ψ + ∆

2
[
eiφψ (∂x + i∂y)ψ + h.c.

]}
, (2.94)

where ψ(r) annihilates a particle with mass m at position r = (x, y)T, µ is the
chemical potential, and the order parameter is determined by its modulus ∆ > 0
and a phase φ. Note the structure of the derivatives within the pairing term, which
gives the p+ ip pairing phase its name.

We do not want to analyze this exotic superconducting state in any detail. How-
ever, by following a protocol very much like the one we discussed for the Kitaev chain,
one can write Eq. (2.94) in a BdG-form and define a map from the two-dimensional
momentum space to a unit sphere. Analogous to the 1D cases presented in ear-
lier sections, it turns out that this mapping has a topological invariant, namely the
number of times the mapping covers the unit sphere. Mathematically, the invariant
is called a Chern number. Coincidentally, the p + ip superconductor is topological
for µ > 0, i.e., when the chemical potential intersects the band.

The interesting feature for our purpose is that a vortex created by threading
a magnetic flux through the two-dimensional bulk in the topological phase forms
a small trivial region and therefore introduces a boundary between phases with
different topological character. The bulk-boundary correspondence turns out to
apply to this case as well, and the zero-energy edge state associated with it is a
Majorana mode yet again.

As a last introductory remark, spinless p+ ip superconductors could be realized
at the surface of 3D topological insulators [43] or in conventional two-dimensional
electron systems by utilizing SOC, ferromagnetism, and conventional s-wave su-
perconductivity [74]. Additionally, there is an ongoing search for intrinsic p + ip
superconductors, of which Sr2Ru4 is an exemplary candidate [73]. Finally, p + ip
superconductors share defining features with the Moore-Read state in fractional
quantum Hall systems [51,69,70].

With this basic introduction at hand, let us consider two vortices binding Majo-
rana modes, which we label i and i + 1 for reasons becoming apparent later on, as
shown in Fig. 2.5. We assume that the vortices remain well-separated, such that the
overlap of Majoranas is negligible. Note that a vortex is associated with a twist of
the superconducting phase of 2π when going around the vortex. Therefore, in order
for the phase to be single-valued we introduce branch cuts (indicated by the dashed
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Figure 2.5: Schematic depiction of an elementary braiding operation Ti of two Ma-
jorana modes γi, γi+1 bound to vortices, represented by yellow stars. Note that we
define the braiding operator Ti to exchange the vortices in a clockwise fashion. The
dashed lines indicate the branch cuts associated with the vortices.

lines), where the phase jumps by 2π. The operators γi fulfill the same defining
algebra as the Majoranas we encountered in the Kitaev chain, i.e., [compare with
Eq. (2.28)]

{γi, γj} = 2δi,j, γ†i = γi. (2.95)

Importantly, the locations of the vortices can be manipulated by moving the local
pinning potentials. When a Majorana crosses the branch cut from another vortex, its
associated operator changes in a nontrivial way. To see this, note that pairing terms
such as ∆eiφψψ and ∆e−iφψ†ψ† are globally gauge invariant under the simultaneous
transformations φ → φ + θ, ψ → e−iθ/2ψ and ψ† → eiθ/2ψ† (we can omit spatial
dependencies and derivatives for a global phase rotation). Thus, if Majoranas move
across a branch cut and the phase of the order parameter changes by 2π, the fermion
fields acquire a factor of −1. Consequently, the same is true for Majorana operators,
since they are formed by a linear combination of creation and annihilation operators
(cf. Eq. (2.27)).

We are now in the position to examine the effect of exchanging and braiding of a
set of N Majorana modes. We refer to a braid if Majoranas are moved around and
return to one of the initial positions of the Majoranas. Note that we use exchang-
ing and braiding interchangeably. Importantly, braiding operations are not simply
permutations, precisely because the statistics of Majorana modes is non-Abelian, so
that braiding operations do not commute. We will return to this point shortly. Fur-
thermore, for N vortices they form the so-called Braid group BN , which is generated
by elementary exchanges Ti of adjacent elements obeying (i = 1, . . . , N − 1)

TiTj = TjTi |i− j| > 1
TiTjTi = TjTiTj |i− j| = 1.

(2.96)

In our particular case, we choose the convention that Ti exchanges Majoranas γi and
γi+1 in a clockwise fashion. Of course, all other exchanges can be decomposed into
a product of the generators Ti. Therefore it suffices to find a representation of the
exchange of neighboring Majoranas.

Focusing on the situation in Fig. 2.5, we can read off the action of Ti on the
operators γi and γi+1. Exchanging them as in a clockwise fashion moves γi to the
position of the vortex hosting γi+1, crossing its branch cut in the process. At the
same time, γi+1 is moved to the position of γi without crossing any branch cuts.
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Thus, the effect of Ti on γi and γi+1 can be summarized as

Ti :
γi 7→ −γi+1

γi+1 7→ γi.
(2.97)

Ivanov’s groundbreaking prediction was that there is a unique, unitary represen-
tation implementing the effect of Ti given by (up to a phase factor)

Ui,i+1 = exp
(
π

4γiγi+1

)
= 1√

2
(1 + γiγi+1) , 6 (2.98)

such that
Ti(γi/i+1) = Ui,i+1γi/i+1U

†
i,i+1 = ∓γi+1,i. (2.99)

Note that the inverse braiding operation is the counter-clockwise exchange, upon
which γi+1 acquires the minus sign, i.e., γi+1 → −γi, while γi → γi+1. Since the rep-
resentation given in Eq. (2.97) is unitary, we obtain T−1

i (γi/i+1) = U †i,i+1γi/i+1Ui,i+1.
Furthermore, since the braiding of the vortices essentially corresponds to the adia-
batic time evolution of the operators, the effect of a braiding operation on a state
is simply given by applying the unitary operators to the states themselves, i.e., for
some state |ψ〉 in the degenerate ground-state manifold

|ψ〉 7→ Ui,i+1|ψ〉. (2.100)

As a last remark, observe that Ui,i+1 as defined in Eq. (2.98) is even in Majorana
operators and thus even in fermionic creation/annihilation operators. Hence, a
braiding operation can never change the parity of the acted upon state. We will
return to this restriction below.

2.4.2.2 Examples for braiding operators

Let us use the results of the previous section to explicitly discuss how systems of two
and four vortices behave under braiding operations, and how to construct quantum
gates from them.

Starting with two vortices binding Majoranas γ1 and γ2, there is of course only
one fermionic degree of freedom. We construct it according to

ĉ = 1
2 (γ1 + iγ2) , ĉ† = 1

2 (γ1 − iγ2) . (2.101)

From there, we obtain the basis {|0〉, |1〉} with the states defined as

ĉ†|0〉 = |1〉, ĉ|0〉 = 0. (2.102)

First, note that the two basis states are distinguished by their parity since

P̂ |0〉 = −1, P̂ |1〉 = 1 (2.103)
6The latter equality follows from the series expansion of the exponential.
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Figure 2.6: Schematic depiction of elementary braiding operations of four Majoranas
γ1,2,3,4 as an extension of Fig. 2.5.

with P̂ = iγ1γ2 = 2ĉ†ĉ− 1. Therefore, braiding operations will never be able to mix
the basis states and can only induce phase rotations. As a consequence, the single
fermionic state stemming from two Majorana modes is insufficient to encode a qubit.
This is related to the fact that for two vortices, there is only a single generator of
the braid group, which reads

U1,2 = exp
(
π

4γ1γ2

)
= exp

[
iπ4
(
1− 2ĉ†ĉ

)]
≡ exp

[
iπ4 σ̂3

]
(2.104)

where σ̂3 is a Pauli matrix in the space spanned by {|0〉, |1〉}. Braiding the pair of
Majoranas therefore leads to a phase shift that depends on the parity of the state
it acts on. This is clearly a unitary rotation and not just an overall phase shift.

Next, we extend the previous system by two more Majoranas, γ3 and γ4, as
depicted in Fig. 2.6. For better comparability, we group the Majoranas in a pairwise
fashion according to

ĉ1 = 1
2 (γ1 + iγ2) and ĉ2 = 1

2 (γ3 + iγ4) . (2.105)

Explicitly, the basis of the subspace is {|00〉, |11〉, |01〉, |10〉}, where the basis states
are given by

|10〉 = ĉ†1|00〉, |01〉 = ĉ†2|00〉, |11〉 = ĉ†1ĉ
†
2|00〉, (2.106)

as well as the empty state with ĉ1|00〉 = ĉ2|00〉 = 0. Note that we grouped the basis
according the parity of the states, which is even for |00〉, |11〉 and odd for |01〉, |10〉.
There are now three elementary exchanges of adjacent Majoranas. Clearly, nothing
changes about the action of U1,2 on γ1 and γ2, apart from identifying ĉ1, ĉ

†
1 with ĉ, ĉ†

from before. Since braiding the first two Majoranas leaves γ3 and γ4 unchanged, we
immediately have

U1,2 = exp
(
π

4γ1γ2

)
= 1√

2
(1 + γ1γ2) = 1√

2
(
1 + i− 2iĉ†1ĉ1

)

= 1√
2


1 + i 0 0 0

0 1− i 0 0
0 0 1 + i 0
0 0 0 1− i

 ,
(2.107)
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which is a generalization of the case of two Majoranas. We choose to write it in a
slightly different form, since the second pair of Majoranas complicates the notation.
Similarly, braiding γ3 and γ4 gives

U3,4 = exp
(
π

4γ3γ4

)
= 1√

2
(1 + γ3γ4) = 1√

2
(
1 + i− 2iĉ†2ĉ2

)

= 1√
2


1 + i 0 0 0

0 1− i 0 0
0 0 1− i 0
0 0 0 1 + i

 ,
(2.108)

which only differs from U1,2 in that the relative phase shifts in the odd parity sectors
are different.

The most interesting effect, however, is produced by braiding Majoranas con-
tributing to different fermionic states, in our case this is achieved by the operator
U2,3. We obtain

U2,3 = exp
(
π

4γ2γ3

)
= 1√

2
(1 + γ2γ3) = 1√

2
[
1 + i

(
ĉ†1ĉ
†
2 − ĉ1ĉ2 + ĉ†1ĉ2 − ĉ1ĉ

†
2

)]

= 1√
2


1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

 .
(2.109)

Braiding γ2 and γ3 thus has the remarkable effect of mixing the basis states of the
same parity. This becomes even more obvious if we consider exchanging γ2 and γ3
twice, which is implemented by the operator

(U2,3)2 =


0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

 , (2.110)

which means that up to a phase, the states of equal parity are interchanged by
repeating the braid. Note that this corresponds to transitions between |01〉 and |10〉,
i.e., a charge transfer between the first pair of vortices to the second, or between |00〉
and |11〉, i.e., the addition or removal of two fermions (corresponding to a Cooper
pair).

As a final remark, it is now easy to check that the braiding operations U1,2 and
U2,3, as well as U2,3 and U3,4, respectively, do not commute. Hence, the outcome
of a sequence of braids will depend on the order of the individual exchanges and is
thus non-Abelian, distinguishing braiding of Majoranas from mere permutations of
fermions or bosons.

2.4.2.3 Quantum gates

The results in the previous section demonstrate that braiding Majoranas does lead
to nontrivial operations on a degenerate set of states. We now want to build on
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this formalism to make the bridge to quantum information processing and quantum
computing more explicit.

The fundamental building block of quantum computing is a quantum bit, or
qubit, which is a two-level quantum system with states |0̄〉 and |1̄〉7. These states
are the quantum analog of the possible values of classical bits, 0 and 1. Any pos-
sible operation on a qubit is then engineered by subjecting the qubit to precisely
controlled physical manipulations, leading to a unitary time evolution generated by
the Hamiltonian of the manipulation. Any operation on a single qubit is therefore
given by a 2×2 unitary operator U , also called a quantum gate. In the following, we
are going to relate the braiding operations to a few special representatives of single-
qubit gates and discuss limitations of braiding for quantum computing applications.
For a comprehensive introduction of Quantum Computation see the excellent text
book by Nielsen and Chuang [102].

As a first step, we need to define a two-level system on which to operate. Note
that the two states resulting from the fermionic level associated with a single pair
of vortices are not sufficient, since they differ in parity and can never mix under
braiding. Therefore, we turn to the four-vortex case, which results in four degenerate
fermionic states, two even-parity and two odd-parity states, respectively. Possible
choices for the qubit states are then8

|00〉 ≡ |0̄e〉 and |11〉 ≡ |1̄e〉 (2.111a)
or |01〉 ≡ |0̄o〉 and |10〉 ≡ |1̄o〉, (2.111b)

where we introduce the subscript to distinguish between the qubit built from even-
and odd-parity states.

With our construction of a qubit at hand, the first important set of gates to
construct are the Pauli gates X, Y, Z, which simply correspond to the familiar Pauli
matrices acting in the space of the qubit. The gates X and Z can be determined
directly from the braiding operators. We find(

Ze 0
0 Zo

)
= −i (U1,2)2 (2.112)

and (
Xe 0
0 Xo

)
= −i (U2,3)2 , (2.113)

implying that Ze/o and Xe/o in both parity subspaces are derived from braiding
Majoranas γ1,2 and γ2,3, respectively, up to a global phase shift which could for
instance be absorbed in the definition of the qubit states. We can use this result to
straightforwardly construct the third Pauli gate according to(

Ye 0
0 Yo

)
= −i (U2,3)2 (U1,2)2 , (2.114)

7We add the bar in order to distinguish the qubit states from the states characterized by
occupation numbers in the previous section.

8Of course it is only important to choose states of equal parity, the subsequent assignment to
|0̄〉, |1̄〉 is arbitrary.
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which also follows directly from the multiplicative property of Pauli matrices, i.e.,
σiσj = iεijkσk.

Furthermore, we can use the braiding operators to build the Hadamard (H) and
phase gate (S), defined as

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (2.115)

We readily obtain (
Se 0
0 So

)
= eiπ4 (U1,2)−1 (2.116)

as well as (
He 0
0 H0

)
= −iU1,2U2,3U1,2 = iU2,3U1,2U2,3. (2.117)

The quantum gates discussed in this section, together with the two-qubit CNOT-
gate, are called Clifford gates. We do not show it here, but it is possible to construct
the CNOT-gate on the basis of Majorana zero modes using auxiliary qubits and par-
ity measurements [103]. Therefore, all Clifford gates can be constructed by braiding
operators.

However, there are of course infinitely many possible unitary operations on a
given number of qubits, which raises the question how significant the Clifford gates
actually are for realizing a useful quantum computing task. Remarkably, one can
show that there are discrete sets of gates that allow for an arbitrarily accurate
approximation of any unitary operation on an arbitrary number of qubits, using
only these gates. Such sets are called universal for quantum computing. It turns
out that adding a single non-Clifford element elevates the Clifford gates to a universal
set of gates9, where the missing piece is the T -gate10 defined as

T =
(

1 0
0 eiπ/4

)
. (2.118)

While this prevents braiding of Majoranas from being universal on its own [104,105],
realizing quantum gates on the grounds of their non-Abelian statistics still holds
great promise. The reason for this is the topological protection enjoyed by the
braiding operations, which is rooted in the fact that a braid does not depend on
specific details of the procedure, but the outcome is completely determined by the
topology of it instead.

2.4.2.4 Explicit calculation of the braid operator for two Majoranas

To conclude the section, we now want to take a step back and have a closer look at
how Majorana modes can be braided. Specifically, we want to connect the effect of

9Actually, the single-qubit Hadamard- and T -gate together with the CNOT-gate are enough
for universality [102]. The Pauli gates are not needed at all, and the phase-gate is usually added
because of its importance for quantum error-correction.

10The T -gate also goes by the name magic gate or, awkwardly, π/8-gate – the latter name
referring to the possibility to write T = exp(−iπ/8) diag[exp(iπ/8), exp(−iπ/8)].
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Figure 2.7: Schematic depiction of a braiding operation at a Y-junction formed
by three topological superconductors, represented by numbered lines. The circles
indicate Majorana modes located at the ends of the superconductors. Note that in
the center, Majoranas from all three superconductors hybridize and form one true
Majorana mode as well as one fermionic state, which we ignore. The dashing of
the lines indicates whether the couplings ∆i associated with the superconductors
are zero (dashed) or finite (solid). At the ends of section with zero coupling, the
Majorana modes remain at zero energy (indicated by colored circles). The figure
shows the three stages at times 0, T, 2T, 3T of the braiding protocol at which only
one of the couplings is finite. Additionally, the intermediate steps are indicated by
operations Oij during which the couplings are tuned. Figure without changes from
Ref. [106], licensed under CC BY 4.0. Copyright IOP Publishing Ltd and Deutsche
Physikalische Gesellschaft.

the braid operation on the Majorana operators, which we defined rather ad-hoc in
Eq. (2.97), to the adiabatic time evolution of a quantum system. For completeness,
we note that one can beautifully connect it to a non-Abelian Berry phase [54, 68,
101,106].

For simplicity, we restrict ourselves to the explicit time evolution and to that end
turn to a Y-junction of three one-dimensional spinless superconductors as depicted in
Fig. 2.7. Interestingly, a similar setup can be used to construct a robust T -gate [107].

In the following, we will ignore the exact physical realization of the Y-junction
and focus on the effective minimal model [54,106]. It consists of four Majorana zero
modes, three of which located at the outer ends of the wires, while the fourth one
emerges through hybridization of the three inner ones. Since the wires are assumed
to have a finite length, an outer Majorana γj is coupled to the central one with a
coupling strength ∆j (which is assumed to be adjustable), and we can describe the
system with the Hamiltonian

H = i
3∑
j=1

∆jγ0γj = i∆̄γ0γ∆̄, (2.119)

with γ∆̄ = ∑
j ∆jγj/∆̄ where ∆̄ =

√
∆2

1 + ∆2
2 + ∆2

3. Eq. (2.119) thus describes the
coupling between the central Majorana and a specific linear superposition of the
outer ones, with a coupling given by ∆̄. The Majoranas γ0 and γ∆̄ thus split and
form levels at ±∆̄. However, one can construct linearly independent superpositions
of the outer Majoranas γ, γ′, which fulfill

{γ0, γ} = {γ0, γ
′} = {γ∆̄, γ} = {γ∆̄, γ

′} = {γ, γ′} = 0 (2.120)

as well as γ2 = γ′2 = 1 and γ† = γ, γ′† = γ′. Thus, as long as ∆̄ 6= 0, the
system always features two true zero-energy Majoranas, which we can use to define
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Chapter 2. The Kitaev chain & Majorana fermions

a fermionic state. Away from ∆̄ = 0, the ground state will hence remain twofold
degenerate.

Note that if only one of the couplings ∆j is nonzero, the Hamiltonian only couples
γ0 and γj such that the zero modes are given by the two γk 6=j and are localized at
the end of the uncoupled wires. From this observation, we can develop the idea for
a braiding operation. Specifically, let us start with ∆3 6= 0 and ∆1 = ∆2 = 0, such
that we have true zero-energy Majoranas γ1 and γ2. If we then tune to the point in
parameter space, where ∆3 = 0 and ∆1 6= 0 with ∆2 = 0 throughout (and avoiding
∆̄ = 0), γ2 would remain uncoupled and stay at zero energy and the end of wire
2. However, the available position of the other unpaired Majorana γ1 moves to the
end of wire 3, which is equivalent to γ1 moving to the end of wire 3. With the end
of wire 2 now being available, we can then switch on ∆2 and tune ∆1 back to zero,
which moves Majorana 2 to the end of wire 1. Finally tuning back to the point
∆3 6= 0 and ∆1 = ∆2 = 0 and thus completing one cycle, we move Majorana 1 to
the end of wire 2. In effect, we have exchanged the positions of γ1 and γ2 and hence
performed a braid.

This can be shown by explicitly calculating the time evolution of the Majorana
operators in the Heisenberg representation. In every step of the above procedure,
we transfer one Majorana γk′ to another position k by tuning ∆k to zero and turning
on ∆k′ . We therefore evaluate

γ̇k′(t) = i [Hkk′(t), γk(t)] , (2.121)

where the time-dependent Hamiltonian would be

H(t) = i [(1− α(t)) ∆kγ0γk + α(t)∆k′γ0γk′ ] (2.122)

and α(t) adiabatically interpolating between 0 at time t = 0 and 1 at time t = T . By
using a nice analogy with the motion of a spin in an adiabatically varying magnetic
field, one can show that (see [106,108] for details)

γk(T ) = −sksk′γk′(0), (2.123)

where sj = sgn ∆j. Applied to the first step above, we indeed find that γ3(0) 7→
γ3(T ) = −sksk′γ1(0). This means that γ3(T ), which is an instantaneous zero mode
of H(T ) located at the end of wire 3, will be formed by the time-evolved operator
corresponding to γ1 at the beginning of the procedure.

All we have left to do is to combine the recipe in Eq. (2.123) to all three of the
steps outlined above. For simplicity, let us assume that ∆j > 0. We then obtain

γ1 → −γ3, γ2 → γ2 step 1
−γ3 → −γ3, γ2 → −γ1 step 2
−γ3 → γ2, −γ1 → −γ1 step 3,

(2.124)

such that the overall effect is summarized as

γ1 → γ2, γ2 → −γ1. (2.125)

Therefore, we can immediately identify the successive coupling/decoupling of pairs
of Majoranas with the effect of an inverse elementary braid on the Majoranas bound
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in vortices in Eq. (2.97). A similar protocol, in which γ2 is parked at wire 3 whereas
γ1 jumps directly to wire 2, yields exactly the elementary braid in Eq. (2.97).

Note that since we only consider two unpaired Majoranas, the ground states
have opposite parity and can therefore never mix in a Y-junction setup as the one
we discussed. In order to go beyond the diagonal unitary operator associated with
this, one would have to move to more complicated structures with more Majorana
zero modes [68].
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Chapter 3. Majorana modes at the helical edge

In Chapter 2, we discuss how the effective theory of helical edge states realized
in QSHIs relates to the continuum model of a spinless p-wave superconductor. We
found that under the influence of s-wave singlet pairing and a magnetic field and
as long as the induced gap is dominated by superconductivity, the spin-momentum
locking of the edge states is able to mediate p-wave pairing, and the edge states
correspond to the topological phase of the spinless p-wave superconductor. As such,
we expect Majorana modes to appear at boundaries between a region with a super-
conducting gap and regions with topologically trivial gaps, for instance, a magnetic
gap. In this chapter, we are first going to discuss helical edge states in more detail
in order to provide a solid basis for the results in the following chapters. We then
proceed to show explicitly how Majorana bound states (MBSs) and Andreev bound
states (ABSs) arise and behave in hybrid systems at the helical edge.

The possibility of realizing Majorana modes at the boundary of topological in-
sulators was first pointed out in a seminal paper by Fu and Kane [43]. This sparked
a lot of interest in the community, and the connection to the helical edge states of
two-dimensional quantum spin Hall insulators is the focus of Refs. [44,109–116]. In
particular, the material presented in this chapter is well-complemented and more
importantly greatly extended in Refs. [95, 117–119].

In the following, we are going to focus on a single helical edge with specific re-
gions subjected to either proximity induced superconductivity or a magnetic field
(e.g., by proximity to a ferromagnetic insulator). In this thesis, we therefore dis-
tinguish between (i) normal regions (N), – bare helical edge states described by H0
– (ii) superconducting regions (S), – helical edge states with proximity induced su-
perconducting order described by H0 +H∆ – and (iii) ferromagnetic regions (F), –
helical edge states subject to a magnetic field described by H0 +Hm.

3.1 General properties of helical edge states

3.1.1 The Bogoliubov-de Gennes Hamiltonian

The Hamiltonian of the edge states including superconductivity and the magnetic
field in the BdG-form is given by

H = 1
2

∫
dxΨ(x)†HBdG Ψ(x), (3.1)

where the spinor is Ψ(x) = (ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x))T. The BdG-Hamiltonian
can be split into three parts according to

HBdG = H0 +H∆ +Hm, (3.2)

with the bare Hamiltonian density of the edge states

H0 = vFp̂ τ̂3 ⊗ σ̂3 − µ τ̂3 ⊗ σ̂0, (3.3)

the contribution from s-wave superconductivity

H∆ = [∆1 τ̂1 + ∆2 τ̂2]⊗ σ̂0 = [∆ cosϕ τ̂1 + ∆ sinϕ τ̂2]⊗ σ̂0, (3.4)
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Figure 3.1: The spectrum of the BdG-Hamiltonian in (a) N, (b) F, and (c) S regions.
In (a), solid (dashed) lines indicate electrons (holes), while red (blue) refers to spin-
↑ rightmovers (spin-↓ leftmovers). Note that due to particle-hole symmetry, the
spectra of electrons and holes are mirrored. If the helical edge states are coupled to
a magnetic field, a gap opens in the spectrum [see (b)]. States with different spins
hybridize such that the polarization of states within one band changes with k. The
dashed gray lines correspond to the dispersion in N regions for better comparability.
Panel (c) shows the gap opened by a proximity coupled superconductor, which
hybridizes electron- and hole-states of opposite spins (as indicated by the colored
transition). Since electron- and hole-blocks are now mixed, a distinction by using
solid and dashed lines is no longer possible.

and the term stemming from the ferromagnet

Hm = τ̂0 ⊗m(x) · σ̂ = τ̂0 ⊗
[
m‖ cosλ σ̂1 +m‖ sin λ σ̂2 +mz σ̂3

]
. (3.5)

As before, vF is the Fermi velocity and µ the chemical potential. In Eq. (3.4),
the two real parameters ∆1,2 can be parametrized in polar coordinates, where ∆ =√

∆2
1 + ∆2

2 > 0 is the modulus of the (complex) superconducting order parameter
and ϕ its phase. In Eq. (3.5), we parametrize the magnetic field by m‖ > 0 as the
modulus and λ as the angle of the field in the x, y-plane (measured from the x-axis).
The component in z-direction is denoted by mz.

Note that the Pauli matrices σ̂i act in spin space, while the Pauli matrices τ̂i
act in Nambu (or particle-hole) space. For notational simplicity, we are going to
drop the tensor product from now on and choose the basis above as a standard
convention. Furthermore, we neglected the dependence on position of all parameters
describing proximity induced superconductivity or magnetism, which we need to
model heterostructures. The same applies to the chemical potential.

Before exploring the spectrum in detail, we note that the BdG-Hamiltonian in
Eq. (3.1) features a duality of the spin and particle-hole degrees of freedom [109,
113, 118, 120, 121], since the structure of superconducting and magnetic terms in
Eqs. (3.4) and (3.5) are the same. Thus, one can identify the Pauli matrices σ̂i ↔ τ̂i
and the parameters (∆, ϕ, µ)↔ (m‖, λ,mz).
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Throughout this thesis, we adopt the convention ~ = vF = 1 ubiquitously used
in the literature. However, we might restore these constants for more clarity.

We show the spectrum of the BdG-Hamitonian for various cases in Fig. 3.1 and
provide detailed expressions for eigenstates and eigenenergies in Appendix A. With-
out superconductivity and magnetism (∆ = 0, m‖ = 0, mz = 0), the helical edge
consists of two counterpropagating modes with linear dispersion and group velocity
vF. Due to spin-momentum locking, they also have opposite spins. Throughout this
thesis we adopt the convention that right movers have spin ↑, while leftmovers have
spin ↓. Because of the description in the BdG-formalism and the corresponding
introduction of holes, the spectrum is doubled (dashed lines for holes). Particle-hole
symmetry ensures that electron and hole dispersions of the same spin are symmetric
with respect to the point E = 0, k = 0.

Turning on a magnetic field in the x, y-plane (i.e., mz = 0) couples electrons of
different spins and holes of different spins. Consequently, the crossing at k = 0 is
lifted and the spectrum develops a gap of size 2m‖. Note that this only remains
true for a ferromagnetic insulator, i.e., as long as |µ| < m‖. A finite z-component
shifts the electron- and hole-dispersions in opposite k-directions. For vanishing in
plane field m‖ = 0, this is of course equivalent to pushing spin ↑ and ↓ dispersions
up or down in energy, resulting in a crossing away from k = 0. We remark that the
in-plane angle does not affect the spectrum, but enters in the eigenstates.

Finally, in a region with superconductivity the structure of the BdG-Hamiltonian
in Eq. (3.4) reveals a coupling of electrons with spin ↑ (↓) and holes with spin ↓
(↑). Consequently, the resulting eigenstates are superpositions of those states and
the spectrum develops an energy gap of 2∆.

The important conclusion from this discussion is that both superconductivity and
magnetism lead to a gap in the spectrum of the helical edge states. The eigenstates
of the bare helical edge are simply propagating plane waves, whereas for energies
below the corresponding gap they become evanescent waves whenever an order pa-
rameter (superconducting or magnetic) is present. Therefore, superconducting and
ferromagnetic regions can act as barriers, which are able to trap bound states. In
turn, the nature of these bound states is the focus of the remainder of the chapter.

3.1.2 Magnetism and time-reversal symmetry

At this point it is worth discussing the role played by time-reversal symmetry (TRS)
for the helical edge states. In the absence of superconductivity and magnetism, the
Fourier transformed Hamiltonian of the edge states can be written in the form

H =
∫ dk

2π
(
ψ†↑, ψ

†
↓

)
H0(k) (ψ↑, ψ↓)T , (3.6)

where

H0(k) =
(
vFk − µ 0

0 −vFk − µ.

)
(3.7)

The Hamiltonian is obviously block-diagonal, with energies E↑/↓(k) = ±vFk − µ
and corresponding eigenstates ϕ↑ = (1, 0)T and ϕ↓(0, 1)T. The blocks are related by
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time-reversal symmetry (TRS). For our case of spin-1/2 particles, the time-reversal
operator is given by [53]

T = iσ̂2 ·K, (3.8)
where σ̂2 acts in spin space and K denotes complex conjugation. Importantly, the
time-reversal operator fulfills

T 2 = −1 (3.9)
and is antiunitary. Following Ref. [122], this always implies that one can write
T = U · K, with U a unitary matrix. Note that if T 2 = −1, U needs to be
antisymmetric UT = −U . All of these properties are of course fulfilled by the
representation in Eq. (3.8).

It is now straightforward to check that the Hamiltonian of the helical edge states
is time-reversal invariant and obeys

TH0(k)T−1 = H0(−k), (3.10)

while the eigenstates are transformed into one-another under time-reversal, since

ϕ↑ = Tϕ↓, ϕ↓ = −Tϕ↑. (3.11)

Due to the particularly simple structure of our Hamiltonian, the eigenstates are
always orthogonal and, importantly, are not coupled by the Hamiltonian.

However, as long as time-reversal invariance (TRI) is present, even more compli-
cated Hamiltonians share an important feature with our simple one. Let us consider
a k-dependent Hamiltonian H(k) of a spin-1/2 particle with TRS, i.e.,

TH(k)T−1 = H(−k), (3.12)

where H(k) is a matrix in spin space and T 2 = −1. Given an eigenstate |φ(k)〉 with
energy Ek fulfilling

H(k)|φ(k)〉 = E(k)|φ(k)〉, (3.13)
the time-reversed partner T |φ(k)〉 is an eigenstate of H(−k) with energy Ek, since

H(−k)T |φ(k)〉 = TH(k)T−1 T |φ(k)〉 = TEk|φ(k)〉 = Ek T |φ(k)〉. (3.14)

In other words, the spectrum of T |φ(k)〉 can be obtained by flipping the dispersion
of |φ(k)〉 and taking k → −k. Consequently, at k = 0 the spectrum is potentially
degenerate, if T |φ(k)〉 and |φ(k)〉 are distinct states.

In order to check, we compute the overlap (we drop the momentum for simplicity)
by explicitly using the representation of time-reversal operator and eigenstate in spin
space. We find

〈φ|T |φ〉 =
∑
i,j

φ∗i UijKφj =
∑
i,j

φ∗i (−Uji)φ∗j = −
∑
i,j

φ∗j UjiKφi = −〈φ|T |φ〉 = 0,

(3.15)
where we have used the antisymmetry of U . Eigenstates related by time-reversal
are therefore not only distinct, but orthogonal!

A similar calculation shows that the matrix element of time-reversed partners
with respect to the Hamiltonian has the property 〈Tφ|H|φ〉 = −〈Tφ|H|φ〉 = 0 and
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thus vanishes. Hence, any scattering from one state to the other one is forbidden by
TRS.

Applied to the case of helical edge states, we conclude that backscattering – i.e.,
the transition from a right- to a leftmover or vice versa – is impossible, unless TRS
is explicitly broken by a magnetic field.

Of course, this picture changes as soon as superconductors enter the game. In this
case, the breaking of a U(1)-symmetry allows the coupling of counterpropagating
electrons and holes and thus gives rise to the possibility of Andreev reflection.

3.1.3 Superconductivity and Majorana fermions

As a last precursor before moving to bound states, we review a few features of the
BdG-Hamiltonian of the helical edge with regard to particle-hole symmetry following
Refs. [54, 95, 123]. This will enable us to discuss Majorana bound states and their
wave functions in a straightforward manner.

In a similar way as for the Kitaev chain in Section 2.1.1, there is a built-in redun-
dancy in the spinor Ψ(x) = (ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x))T, which can be expressed
as

Ψ(x) = CΨ†(x), (3.16)
where we introduce the charge conjugation operator

C = τ̂2σ̂2 K, (3.17)

with K the operator of complex conjugation.
This implies that the BdG-Hamiltonian must fulfill the constraint

τ̂2σ̂2 (HBdG)∗ τ̂2σ̂2 = −HBdG. (3.18)

We can equivalently state the particle-hole symmetry of the BdG-Hamiltonian in
the form

C (HBdG)∗ C−1 = −HBdG. (3.19)
As a consequence, the BdG-Hamiltonian anticommutes with the charge conjugation
operator, i.e.,

{HBdG, C} = 0. (3.20)
We emphasize that this is not a physical symmetry, but merely a consequence of the
doubling of degrees of freedom and thus required for consistency.

However, Eq. (3.19) has important consequences for the eigenspinors φj,Ej(x) of
HBdG, fulfilling the eigenvalue equation

HBdGφj,Ej(x) = Ejφj,Ej(x), (3.21)

where Ej is the energy of the eigenspinor. Eq. (3.21) is also called the Bogoliubov-de
Gennes equation (BdG equation). The index j labels possibly degenerate states.

Due to Eq. (3.19), for every solution φj,Ej(x) with energy Ej, there is always a
charge conjugated partner Cφj,Ej(x) which is an eigenstate of the BdG-equation at
−Ej. It is helpful to introduce the notation

Cφj,Ej = φjc,−Ej (3.22)
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for the charge conjugated spinor, where jc is the label of the charge-conjugated
partner state. We furthermore define the components of φj,Ej(x) as

φj,Ej(x) =
(
u↑,j,Ej , u↓,j,Ej , v↓,j,Ej , v↑,j,Ej

)T
. (3.23)

For simplicity, we are often going to drop the subscripts j, Ej.
Furthermore, since the BdG-Hamiltonian is hermitian, the eigenspinors fulfill

the completeness relations ∫
dx φ†i,Ei(x)φj,Ej(x) = δij (3.24a)

and ∑
j

φj,Ej(x)φ†j,Ej(y) = 1 δ(x− y). (3.24b)

Using Eq. (3.24), the Hamiltonian can be diagonalized and brought into the form

H =
∑
j

Ejγ
†
jγj, (3.25)

where the fermionic Bogoliubov (quasiparticle) operators are given by

γj =
∫

dx
[
φj,Ej(x)

]†
Ψ(x),

γ†j =
∫

dxΨ†(x)φj,Ej(x).
(3.26)

Note that the sum over energies might need to be converted into an integral, if there
is a continuum of states. Moreover, it will become useful to invert Eq. (3.26) and
express the field operators in terms of the operators γi, γ†i . One finds

Ψ(x) =
∑
Ej>0

[
φj,Ej(x) γj + Cφj,Ej γ

†
j

]
. (3.27)

By combining Eqs. (3.22) and (3.26), one can readily see that the Bogoliubov
operators are also constrained according to

γjc,−Ej = γ†j,Ej , (3.28)

i.e., creating a Bogoliubov particle at energy Ej in state j is equivalent to annihi-
lating one at energy −Ej in state jc.

This last property has the important consequence of allowing for the existence
of Majorana fermions, if the left and right hand side of Eq. (3.28) coincide. Note
that this is only possible at zero energy, i.e., if Ej = 0, and if the state is invariant
under charge conjugation such that j = jc.

Importantly, for any zero-energy quasiparticle with Bogoliubov operator γj,0 for
which j 6= jc, we can always construct new operators γ± in the form

γ+ = γj,0 + γjc,0, γ− = −iγj,0 + iγjc,0. (3.29)

Both of these manifestly fulfill the Majorana condition

γ†± = γ±. (3.30)

47



Chapter 3. Majorana modes at the helical edge

Equivalently, one can construct Majorana wave functions φ± obeying

Cφ± = φ± (3.31)

from the wave function φj,0 associated with the operator γj,0. They have the form

φ+ = φj,0 + Cφj,0, φ− = −iφj,0 + iCφj,0, (3.32)

and one can straightforwardly show that following Eq. (3.26), they lead to second-
quantized Majorana operators γ± = γ†±.

In conclusion, in order to find Majorana wave functions in hybrid systems at the
helical edge, a good starting point is to look for any zero-energy solutions to the
BdG-equation. The analysis in this section then provides a clear recipe to construct
Majorana wave functions according to Eq. (3.32).

3.2 Bound states in single cavities

In the previous section, we discussed the effects of superconductivity and ferromag-
netism on the entire helical edge, and established that S and F regions can act as
barriers. As a next step, we consider heterostructures with two barriers (either two
S or one S, one F) and discuss the emerging bound states.

3.2.1 Two superconducting barriers

We start with the case of two superconducting barriers. The basis of our discussion
is very similar to one of the first problems in quantum mechanics any physics student
has to solve: scattering off a step potential in one dimension. In order to make this
connection, and since the procedure in this section is of great importance for the
rest of the thesis, the discussion in this section is quite detailed. In future sections,
we then skip a lot of analogous steps for brevity and clarity.

3.2.1.1 The NS-junction

The elementary building block for this section is the interface between a normal
helical edge region (N) and a domain with proximity induced superconductivity (S)
as depicted in Fig. 3.2 In the following, the chemical potential plays no role and is
therefore set to zero.1 For a single superconductor, the superconducting phase can
be gauged away. However, anticipating cases with more than one superconducting
region, we keep it in this section.

We choose the origin to be exactly at the interface, and model the system
by a position dependent pair potential of the form ∆1(x) = θ(x)∆0 cosϕ and
∆2(x) = θ(x)∆0 sinϕ, where ∆0 > 0 and θ(x) is the Heaviside step function. As a

1The reason for this can be seen in the explcit expressions in Appendix A and the fact that the
chemical potential only leads to a shift of momenta which is the same within the (u↑, v↓)T- and
(u↓, v↑)T-blocks, respectively. The blocks refer to components of solutions φ = (u↑, u↓, v↓, u↑)T to
the BdG-equation, see main text.
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Figure 3.2: The two possible scattering states of an NS-junction below the gap.
Solid (dashed) lines indicate electrons (holes), and red (blue) corresponds to spin-↑
(spin-↓) modes. The arrows indicate the direction of propagation. Additionally, the
possible Andreev reflection processes are shown in black.

consequence, the Hamiltonian can be split in two parts. For x < 0, it corresponds
to the free helical edge and the eigenstates are plane waves, wheras for x > 0 the
spectrum acquires a gap. For energies below the gap, the eigenstates are evanescent
waves. Note that there are two solutions exponentially decaying to the right (i.e.,
for growing x), and two solutions exponentially growing to the right.

In the following, we discuss how the NS-interface affects solutions of the BdG-
equation (E < ∆0)


vFp̂ 0 θ(x)∆0e−iϕ 0
0 −vFp̂ 0 θ(x)∆0e−iϕ

θ(x)∆0eiϕ 0 −vFp̂ 0
0 θ(x)∆0eiϕ 0 vFp̂

φ(x) = E φ(x) (3.33)

by determining the scattering matrix. In the basis we choose, the solutions φ are
vectors of the form φ = (u↑, u↓, v↓, u↑)T, i.e., uσ (vσ) refers to electrons (holes) with
spin σ =↑, ↓.

Note that the Hamiltonian is constant for x < 0 and x > 0 and that within these
regions, the eigenstates correspond to the ones discussed in Section 3.1. Hence,
within both regions, any superposition of the corresponding eigenstates at the same
energy is a solution to the BdG-Hamiltonian. Crucially, however, integrating the
BdG-equation in Eq. (3.33) across the interface from −ε to ε (ε > 0) and taking
the limit ε→ 0 implies that the solution φ(x) needs to be continuous at x = 0 due
to the derivative in p̂ = −i∂x. Therefore, the task at hand boils down to finding
superpositions of the known eigenstates within each region which match at the
interface. Furthermore, note that the coefficients in front of the χe−, χh+ solutions
in the superconductor need to be zero for normalizability.

To obtain the scattering matrix, one conveniently makes use of scattering states.
In our particular system, there are two of them, namely

φ1(x) =

eiEx/vFφe+ + ree e−iEx/vFφe− + rhe e−iEx/vFφh− x < 0
Ce e−Ω(E)xχe+ +De e−Ω(E)xχh+ x > 0

(3.34a)
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and

φ2(x) =

eiEx/vFφh+ + rhh e−iEx/vFφh− + reh e−iEx/vFφe− x < 0
Ch e−Ω(E)xχh+ +Dh e−Ω(E)xχe+ x > 0.

(3.34b)

They are constructed by adding one plane wave with amplitude 1 moving towards
the interface (rightmoving electron for φ1, rightmoving hole for φ2) and a linear com-
bination of all modes moving away from the interface. In our case, since we consider
energies below the gap, there are no propagating modes on the superconducting
side, but evanescent waves instead. This method works for arbitrarily complicated
setups, but is particularly simple to explain for the case of an NS-junction.

The unknown coefficients in the linear superpositions are then determined by
matching the ansatzes for x > 0 and x < 0 of φ1 and φ2, respectively. Note that we
have four unknowns and four equations.

The coefficients are straightforwardly found to be

rhe = e−iη(E)+iϕ, reh = e−iη(E)−iϕ, ree = rhh = 0
Ce =

√
2e−iη(E), Ch =

√
2, De = Dh = 0.

(3.35)

The physical interpretation of this result is striking. The two coefficients rhe, reh
associated with an incoming electron (hole) but outgoing hole (electron) – known as
Andreev reflections – are given by a complex phase, which depends on the energy and
also contains the phase of the superconductor. In contrast, the coefficients ree, rhh
corresponding to normal reflection are zero. Since the absolute square of these
coefficients is associated with a scattering probability, we conclude that the NS-
interface on top of a helical edge induces perfect Andreev reflection [124]. Incoming
electrons are turned into holes and vice versa, and acquire a phase shift of −η(E)±ϕ
in the process.

Notice the close connection of this result with the structure of the BdG-Hamil-
tonian in Eq. (3.33). It is essentially block-diagonal in the (u↑, v↓)T- and the (u↓, v↑)-
blocks, respectively. Consequently, electrons with spin ↑ (↓) are only coupled to
holes with spin ↓ (↑) in the former (latter). As a result, there is no way in which
a rightmoving electron with spin ↑ approaching a superconductor can be scattered
back as a leftmoving electron with spin ↓. The only possible scattering channel
is Andreev reflection. Thus, the corresponding coefficient has modulus one. This
is in contrast to conventional metal-superconductor interfaces, where an additional
normal scattering potential can be associated with the interface and thus normal
backscattering occurs [124–128].

A general solution to the BdG-equation in Eq. (3.33) can now be written as a
linear combination of both scattering states in the form

φ(x) = aeφ1(x) + ahφ2(x). (3.36)

For x < 0, this reads (keeping the coefficients ree/hh/eh/he general for a moment)

φ(x) = ae eiEx/vFφe+ + ah eiEx/vFφh+

+ (aeree + ahreh) e−iEx/vFφe− + (aerhe + ahrhh) e−iEx/vFφh−.
(3.37)
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We can therefore read off a linear relationship between the amplitudes of all modes
moving toward the interface (incoming, given by ae, ah) and the modes moving away
from it (outgoing, named be, bh). For our case of an NS-junction, it has the simple
form (

be
bh

)
=
(

0 reh
rhe 0

)
︸ ︷︷ ︸

SNS

(
ae
ah

)
=
(

0 e−iη(E)−iϕ

e−iη(E)+iϕ 0

)(
ae
ah

)
, (3.38)

where we introduced the scattering matrix SNS.
Note that for energies above the gap, the procedure would be similar. For the

scattering states with particles coming in from the left, one would only have to
replace the evanescent waves by the corresponding propagating ones. However,
there would be additional scattering states for quasiparticles coming in from the
right. Consequently, the scattering matrix would then be a 4 × 4-matrix coupling
the amplitudes of two incoming modes per side and the two outgoing modes per
side. Furthermore, the propagating modes on the S side would give rise to finite
transmissions. True bound states are therefore not possible above the gap.

3.2.1.2 The SN-junction

In order to form a potential well out of two superconductors, we need to consider
the mirror counterpart of the previous section, i.e., an SN-junction. Of course, the
calculation is analogous and equally simple, so we merely state the results here. The
scattering matrix SSN relating the incoming and outgoing modes in this case is given
by (

be
bh

)
=
(

0 r′eh
r′he 0

)
︸ ︷︷ ︸

SSN

(
ae
ah

)
=
(

0 e−iη(E)−iϕ

e−iη(E)+iϕ 0

)(
ae
ah

)
, (3.39)

where we the prime distinguishes the coefficients from the previous case, and we
again use the notation of ae/h (be/h) for incoming (outgoing) electrons or holes.
Conveniently, the scattering matrices for both SN- and NS-junction have the same
form.

3.2.1.3 Resonance condition for bound states

With the results from the previous sections at hand, we can now turn to the system
depicted in Fig. 3.3. It consists of two semi-infinite S regions separated by a normal
region of width d. For simplicity, we assume that the modulus of the superconducting
gap is the same on both sides, whereas the phase can be different. The pair potential
can then be written as ∆1(x) = θ(−x− d/2)∆0 + θ(x− d/2)∆0 cosϕ and ∆2(x) =
θ(x − d/2)∆0 sinϕ. The chemical potential does not influence the appearance of
bound states, and we set it to zero as before.

There are several ways to find the conditions under which bound states arise.
We start with the most straightforward way, and then use the results from the
NS-junction to show more elegant ways. For notational simplicity, we set vF = 1
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Figure 3.3: Schematic depiction of the two bound states in an SS-junction. Colors
and dashing to distinguish electrons/holes with different spins as in Fig. 3.2.

from now on. Furthermore, let us first focus on the (u↑, v↓)T-block of a bound state
wave function φ(x) = (u↑(x), u↓(x), v↓(x), u↑(x))T, i.e., the block which consists of
rightmoving electrons and leftmoving holes in the N region of the junction.

A suitable ansatz for a bound state is then

φ(x) =


A eΩxχh− x < −d/2
B eiExφe+ + C e−iExφh− −d/2 < x < d/2
D e−Ωxχe+ x > d/2.

(3.40)

In the central N region, it is a superposition of both possible modes, whereas the
choice of eigenstates of the S regions is made such that the wave function decays
to zero for x → ±∞. As before, the wave function needs to be continuous at the
interfaces at x = ±d/2. After some straightforward algebra, matching the wave
function leads to an equation of the form
− 1√

2e−Ωd/2e−iη e−iEd/2

− 1√
2e−Ωd/2 eiEd/2

eiEd/2 − 1√
2e−Ωd/2eiηe−iϕ

e−iEd/2 − 1√
2e−Ωd/2


︸ ︷︷ ︸

M


A
B
C
D

 =


0
0
0
0

 , (3.41)

which only has a nontrivial solution if detM = 0. Calculating the determinant, we
see that it vanishes whenever the simple relation

e2idE−2iη(E)+iϕ − 1 = 0 (3.42a)

holds, where we explicitly hint at the energy dependence of η (recall that η(E) =
arccos(E)). This condition can equivalently expressed as

Ed− η(E) + ϕ/2 = nπ (3.42b)

or
sin (Ed− η(E) + ϕ/2) = 0. (3.42c)

In conclusion, whenever Eq. (3.42a) is fulfilled, the ansatz in Eq. (3.40) leads to
a well-defined wave function, provided the coefficients A,B,C,D are chosen such
that the wave function is normalized.
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The condition in Eq. (3.42a) has a straightforward and illuminating interpreta-
tion. As mentioned before, the bound state in Fig. 3.3 (a) consists of a rightmoving
electron and a leftmoving hole, connected by two Andreev reflections. A bound
state arises if this loop of traversing the cavity as electron, being converted into a
hole, moving back towards the SN-interface as a hole, and finally being Andreev
reflected again, happens phase coherently. The three terms in the exponential of
Eq. (3.42a) directly correspond to the dynamic phase picked up during free mo-
tion across the normal region and the two Andreev reflections (compare with Sec-
tions 3.2.1.1 and 3.2.1.2!). Eq. (3.42a) thus corresponds to the condition that the
total phase of one loop is equal to a multiple of 2π. This tracking of phases during a
closed loop or a general scattering process can be a helpful tool to develop a sound
physical picture.

In principle, we could now repeat the procedure outlined above for the remaining
(u↓(x), v↑(x))T block in order to find the resonance condition for the bound state
in Fig. 3.3 (b). However, due to particle-hole symmetry, the ansatz in Eq. (3.40) is
the charge-conjugated version of the ansatz in the (u↓(x), v↑(x))T block at energy
−E. Hence, sending E → −E in Eqs. (3.40)–(3.42) directly yields the condition for
a bound state as shown in Fig. 3.3, which reads

e2idE−2iη(E)−iϕ−1 = 0 ⇔ Ed−η(E)−ϕ/2 = nπ ⇔ sin (Ed− η(E)− ϕ/2) = 0.
(3.43)

Note that we used arccos(−x) = π−arccos(x) and rearranged the conditions in order
to bring them into this form, which corresponds to the other resonance conditions
in Eq. (3.42) for ϕ→ −ϕ. Observe how this result is immediately apparent through
the phase-tracking method. While the dynamical phases stay the same, the Andreev
processes involved are now different and induce the change of sign in front of the
superconducting phase ϕ.

In Fig. 3.4, we show solutions to the resonance conditions Eqs. (3.42) and (3.43)
for two exemplary values of the junction width d.

3.2.1.4 The short and the long junction limit

There are two particularly illustrative cases worth discussing, namely the short and
the long junction limit for which d → 0 and d → ∞, respectively. The most
convenient resonance conditions for this analysis are the ones in the form

Ed− η(E)± ϕ/2 = nπ. (3.44)

In the short junction limit, we can solve for η(E) and apply the cosine to both
sides. Taking care of the range of η(E) ∈ [0, π] and ϕ ∈ [0, 2π], which restricts the
index n, the resonance conditions then reduce to

E = ±∆0 cos (ϕ/2) , (3.45)

where the + (−) corresponds to the (u↑, v↓)T [(u↓, v↑)T] block. We conclude that
for d = 0, there is a single 4π-periodic pair of bound states, both of which touch
the gap edges at ϕ = 0, 2π, but cross zero energy at ϕ = π [also see Fig. 3.4
(a)]. This crossing is protected by fermion parity and leads to MBS, as we shall
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(a) (b)

Figure 3.4: Plot of the spectrum of bound states in an SS-junction for d = 0ξ0
(a) and d = 2ξ0 (b), where ξ0 = ~vF/∆0 is the coherence length (we restore the
constants ~, vF for clarity). The blue [red] line corresponds to the bound state in
Fig. 3.3 (a) [(b)] – i.e., the (u↑, v↓)T [(u↓, v↑)T] block. The blue areas indicate the
continuum of states above the gap.

see below. The 4π-periodicity is a hallmark of topological superconductivity and
the appearance of MBS. There has been substantial experimental and theoretical
effort to find and understand the signatures of it in the properties of Josephson
junctions [32, 33,44,89–92].

Increasing the distance d between the superconductors from zero to finite values
activates the first term in Eq. (3.44), such that the range of the entire left hand side
extends 2π. The physical consequence is the appearance of additional bound states,
since the dynamical phase picked up during propagation becomes nonzero such that
the entire phase shift of a closed loop can reach different multiples of 2π, depending
on the energy. Also note that the new states at higher energies push the other ones
down. For larger and larger d, the term −η(E) becomes less relevant and the states
will approach linear dependency on the phase, as can already be seen in Fig. 3.4 (b).

3.2.1.5 Deriving the resonance condition with scattering matrices

As simple and straightforward the condition for bound states can be derived from the
wave function ansatz or the phase tracking method, these are not really practical
in more complicated systems. Matching the wave function at the interfaces was
simplified due to the simplicity of the Hamiltonian. The fact that there was only a
single decaying solution in the outer S regions lead to a simple system of equations,
the solutions of which were easy to determine. All of this is no longer true for more
complicated systems and obtaining the resonance condition becomes significantly
more tedious. Furthermore, calculating the phase picked up during a closed loop
only gives a definite condition for bound states as long as there is only a single one.

Anticipating the need for a more elegant way of finding bound states, we are
going to discuss how we can directly use the scattering matrices for the NS- and
SN-junctions. At this stage, this does not really make a big difference, but will prove
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to be useful later on.
As a first step, we note that in Fig. 3.3, we center the origin within the N

region such that the interfaces are located at x = ±d/2. However, the discussion
in Sections 3.2.1.1 and 3.2.1.2 assumed the interfaces between N and S regions to
be at x = 0. The scattering matrices within the SS-junction are thus phase-shifted,
accounting for the translation needed to relate the scattering problems. One can
think of these phases as the dynamical phases picked up by particles traveling an
additional distance before reaching the interface.

Next, consider Fig. 3.3 and a suitable wave function in the (u↑, v↓)T-block at the
origin. It consists of a rightmoving electron and a leftmoving hole. With respect
to the right NS-interface, the u↑(x = 0) component is an incoming mode, while the
u↓(x = 0) component is an outgoing mode. Consequently, they are related by an
Andreev reflection coefficient r̃he = eidE rhe according to

v↓(0) = r̃heu↑(0), (3.46)

where rhe is the Andreev reflection coefficient for the NS-interface placed at the
origin.

Accordingly, considering the opposite SN-interface at x = −d/2, the u↓(0) com-
ponent is the incoming one, whereas u↑(0) amounts to an outgoing mode. They are
related via the Andreev reflection coefficient r̃′eh = eidEr′eh in the form

u↑(0) = r̃′ehv↓(0), (3.47)

where r′eh is the corresponding reflection from the SN-interface at the origin.
Combining the two conditions from the two elementary scattering events in

Eqs. (3.46) and (3.47) leads to

(r̃her̃′eh − 1) v↓(0) = 0 ⇔ e2idE rhe r
′
eh − 1 = 0. (3.48)

Inserting the expressions for rhe and r′eh into Eq. (3.48) then immediately reproduces
the resonance condition in Eq. (3.42) [note that the phase in the left S region is
zero and ϕ in the right one]. In an analogous way one can combine the scattering
coefficients for the u↓, v↑-block, which of course leads back to Eq. (3.43).

In more complicated setups, there could for instance be an additional scattering
region in the center of the structure. In this case, an equivalent process will amount
to a combination of scattering matrices relating wave functions with multiple com-
ponents, but the underlying idea remains the same. One uses the fact that the wave
functions within the system must be related by the elementary scattering processes,
in order to derive a compatibility relation in the same spirit as Eq. (3.48). For
arbitrary wave functions, it will only be fulfilled for definite energies, for which the
appropriate combination of scattering coefficients (or matrices in general) amounts
to multiplying with 1 (applying the identity operator). An example of this is the
SFS-system discussed in Section 3.3.2

3.2.1.6 Majorana bound states

After establishing the spectrum of bound states within the SS-junction, we can now
proceed to discuss the appearance of MBS in the system. It turns out that most of
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the work is already done. Using the resonance conditions in Eq. (3.44) derived in
Section 3.2.1.3, one can easily see that there is always a bound state at E = 0 in
both blocks if the phase difference is ϕ = π. The bound state in the (u↑, v↓)T-block
is easily obtained by inserting the explicit expressions for the eigenstates within the
different regions in the ansatz Eq. (3.40) for E = 0 and ϕ = π. Furthermore, without
loss of generality we set A = 1, and and the other coefficients B,C,D follow from
Eq. (3.41). The wave function at zero energy then acquires the form

φ1(x) = χ0 ·


e∆0(x+d/2) x < −d/2
1 −d/2 < x < d/2
e−∆0(x−d/2) x > d/2,

(3.49)

where we use the spinor χ0 = (−i, 0, 1, 0)T. It is constant in the N region, and
exponentially decays into the superconductors for |x| > d/2.

Instead of repeating the same steps for the solution in the other block, we recall
that the two blocks are actually related through charge conjugation, provided E →
−E. However, since we discuss a zero energy bound state, charge conjugation
directly yields the bound state in the other block via

φ2 = Cφ1, (3.50)

with the charge conjugation operator C = τ̂2σ̂2 K as defined in Eq. (3.17).
Finally, using the fundamental properties of the BdG-Hamiltonian of the helical

edge from Section 3.1.3, we know that any zero-energy solution can be decomposed
into two Majorana wave functions. Hence, we find

φ+ = φ1 + Cφ1 and φ− = −iφ1 + i Cφ1, (3.51)

which satisfy the Majorana condition in Eq. (3.31) by definition. Note that since
φ2 = Cφ1 and C2 = 1, decomposing φ2 in an analogous way leads to the same
Majorana wave functions.

We conclude this section by noting that the presence of zero-energy Majorana
wave functions can be understood in terms of the Jackiw-Rebbi model of a massive
Dirac Hamiltonian with a mass kink similar to Section 2.2.2. To see this, consider
the Hamiltonian in the (u↑, v↓)T-block, which for phase difference ϕ = π reads

(
vFp̂ ∆(x)

∆∗(x) −vFp̂

)
= vFp̂ τ̂3 + sgn(x)∆0 τ̂1 (3.52)

and thus has a form similar to Eq. (2.55).

3.2.2 Superconducting and ferromagnetic barrier

The previous section equips us with the tools to discuss the case of one S and one
F barrier more efficiently. However, we take a similar approach and start with an
NF- and FN-interface as a precursor.
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3.2.2.1 The NF- and FN-junction

In line with the discussion above, we model the NF-junction by taking m1(x) =
θ(x)m‖ cosλ and m2(x) = θ(x)m‖ sin λ. Furthermore, note that the BdG-equation
takes the form

vFp̂− µ θ(x)m‖e−iλ 0 0
θ(x)m‖eiλ −vFp̂− µ 0 0

0 0 −vFp̂+ µ θ(x)m‖e−iλ

0 0 θ(x)m‖eiλ vFp̂+ µ

φ(x) = E φ(x). (3.53)

First, since the chemical potential affects the size of the gap in the spectrum within
the F region, we do need to take it into account here. Interestingly, due to the
duality between magnetism and superconductivity, in Eq. (3.53) the component mz

plays the same role as the chemical potential in the cases of NS- and SN-junctions
(cf. Sections 3.2.1.1 and 3.2.1.2). It merely leads to unimportant phase factors and
is therefore set to zero. Secondly, apart from the chemical potential, Eq. (3.53)
has the same block-diagonal structure as Eq. (3.33) in the (u↑, u↓)T- and (v↓, v↑)T-
blocks, i.e., in the electron- and hole sectors. This is also reflected in the similarity
of the eigenstates, see Appendix A. Hence, as long as we keep track of the chemical
potential, we know that we can adapt the results from the previous section. These
properties are a manifestation of the superconductor-magnetism duality of the BdG-
Hamiltonian.

Solving the scattering problem then leads to the scattering coefficients

ree = e−iρe(E)+iλ, rhh = e−iρh(E)−iλ, rhe = reh = 0, (3.54)

where ree, rhh (rhe, rhe) are the normal (Andreev) reflections within the electron and
hole blocks (in the blocks familiar from the previous section). Furthermore, we
restrict ourselves to energies below the gap. In conclusion, using the same notation
for incoming and outgoing modes as before, the scattering matrix for the NF-junction
can be expressed as (

be
bh

)
=
(
ree 0
0 rhh

)
︸ ︷︷ ︸

SNF

(
ae
ah

)
. (3.55)

Similarly, just as in the previous SN- and NS-junctions, the scattering coefficients
in the FN-junction have the same form and read

r′ee = e−iρe(E)+iλ, r′hh = e−iρh(E)−iλ, rhe = reh = 0. (3.56)

Clearly, the scattering matrices are also equal, i.e., SNF = SFN.

3.2.2.2 Resonance condition for bound states

With the elementary scattering coefficients for junctions involving ferromagnets at
hand, we can proceed to determine a resonance condition for a bound state between
an S and an F barrier. Without loss of generality, we choose to place the super-
conductor to the left and the ferromagnet to the right, see Fig. 3.5. The schematic
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Figure 3.5: Sketch of an SF-junction and the formation of bound states. As before,
red (blue) lines refer to spin-↑ (-↓), while red (blue) lines indicate electrons (holes).

depiction of the system already reveals a striking difference to the SS-case. The
combined Hamiltonian of superconductivity and magnetism at the helical edge does
no longer decouple into blocks, which manifests itself in the fact that a full loop
between S- and F-barrier requires all four solutions in the normal region. A suit-
able ansatz for a bound state wave function is thus much more complicated, since
both solutions exponentially decaying away from the N region are required within
S and F. Accordingly, the ansatz in the interior N region needs to comprise all four
propagating modes.

As a consequence, instead of matching the full ansatz at the interfaces at x =
±d/2 and deriving the bound state condition from there, we take advantage of the
two other approaches outlined in Section 3.2.1.5.

First, we note that there is only a single way of completing a full loop involving
all possible scatterings at the barriers. Hence, tracking the phase picked up in the
process yields the correct resonance condition. The loop consists of four crossings of
the internal N regions, each of which contributes a phase factor eiEd. Following Sec-
tions 3.2.1.2 and 3.2.2.1, the two Andreev reflections amount to a phase factor of the
form e−2iη(E). Note that the phase dependencies of both Andreev reflections cancel.
Moreover, the two normal reflections off the ferromagnet yield e−iρe(E)−iρh(E), where
the dependence on the in-plane angle cancels in the same fashion. Put together, we
find the resonance condition

4Ed− 2η(E)− ρe(E)− ρh(E) = 2π n, (3.57)

with n ∈ Z.
Furthermore, we note that making use of the scattering matrices SSN and SNF

and taking into account the phase shift due to the translation of the interfaces as
before, we can write down conditions on any solution φ(x = 0) of the BdG-equation
as before. From the SN-interface we have(

u↑(0)
v↑(0)

)
= S̃SN

(
u↓(0)
v↓(0)

)
, (3.58)

while the NF-interface leads to(
u↓(0)
v↓(0)

)
= S̃NF

(
u↑(0)
v↑(0)

)
. (3.59)

The scattering matrices are given by

S̃SN =
(

0 r̃′eh
r̃′he 0

)
and S̃NF =

(
r̃ee 0
0 r̃hh

)
, (3.60)
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where the tilde expresses the phase shift as r̃αβ = eiEdrαβ and accordingly r̃′αβ =
eiEdr′αβ.

One can combine Eqs. (3.58) and (3.59) into the condition

(
S̃SNS̃NF − 1

)(u↑(0)
v↑(0)

)
= 0, (3.61)

such that the system has a bound state if

det
(
S̃SNS̃NF − 1

)
= 0. (3.62)

It is straightforward to show that Eq. (3.62) is equivalent to

r̃′ehr̃hhr̃
′
her̃ee − 1 = 0, (3.63)

and that Eq. (3.63) is equivalent to Eq. (3.57).
Remarkably, the resonance condition Eq. (3.57) only depends on the width of

the normal region d, the induced superconducting gap ∆0, as well as the parameters
determining the magnetic gap, i.e., the in-plane component of the magnetic field m‖
and the chemical potential µ. Hence, there is no easily accessible way of tweaking the
appearance of bound states as there was with the phase difference in the SS-junction.

Additonally, observe that if there is an energy E for which the resonance con-
dition Eq. (3.57) is fulfilled, it also holds for −E due to η(−E) = π − η(E) and
ρe(−E) = π − ρh(E). As a direct consequence, there is always a bound state at
E = 0. Note that for a junction without N region, i.e., d = 0, the zero energy bound
state is the only one possible, while for finite width d, more bound states may arise
due to the additional winding of the phase during propagation.

3.2.2.3 Majorana bound state

In this section, we discuss how the fact that the resonance condition is always fulfilled
at E = 0 relates to MBSs. First, we remark that there is only one way to complete
the loop in the SF-junction, in contrast to the SS-case. This is already a hint that
the state at zero energy is special and can not be decomposed in two Majorana wave
functions in the same way as before.

In the following, since we are only interested in the zero energy state, we discuss
a junction with d = 0. Furthermore, let us consider the SF-junction for µ = 0 and
λ = ϕ = 0, such that ∆1(x),m1(x) > 0 and ∆2(x) = m2(x) = 0. The Hamiltonian
thus has the form

HBdG =


vFp̂ m1(x) ∆1(x) 0
m1(x) −vFp̂ 0 ∆1(x)
∆1(x) 0 −vFp̂ m1(x)

0 ∆1(x) m1(x) vFp̂


= vFp̂ τ̂3σ̂3 +m1(x) τ̂0σ̂1 + ∆1(x) τ̂1σ̂0.

(3.64)
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We can perform a unitary rotation with U = exp(iτ̂2σ̂1π/4), leading to

UHBdGU
† = vFp̂ τ̂3σ̂3 +m1(x) τ̂0σ̂1 + ∆1(x) τ̂3σ̂1

=
(
vFp̂ σ̂3 + [m1(x) + ∆1(x)] σ̂1 0

0 −vFp̂ σ̂3 + [m1(x)−∆1(x)] σ̂1

)
.

(3.65)
We can identify the two blocks of Eq. (3.65) as two uncoupled Jackiw-Rebbi models
with masses M1(x) = m1(x) + ∆1(x) and M2(x) = m1(x) −∆1(x). Hence, for our
choice of parameters, the system consists of one massive Dirac equation with a mass
kink and one massive Dirac equation without mass kink, since M1 ≥ 0 ∀x, while
M2(x) < 0 for x < 0 and M2(x) for x > 0. Consequently, we expect a zero energy
state localized at the mass kink.

In order to explicitly determine the wave function of a solution at zero energy,
we use the explicit form of the eigenstates within S and F regions (see Appendix A).
We also reinstate the chemical potential, since it does influence the size of the gap
and subsequently the following results. We make the ansatz [129]

φ(x) =

A e∆0x−iµxχe− +B e∆0x+iµxχh− x < 0
C e−m̄xζe+ +D e−m̄xζh+ x < 0,

(3.66)

where m̄ = κe/h(0) =
√
m2
‖ − µ2. Matching the wave function at x = 0 leads to a

relation between the coefficients A,B,C,D. The final solution, up to a normalization
constant, can be expressed as

φ(x) = θ(−x) e∆0x


c1c2 eiµx

c1c
∗
2 e−iµx

c∗1c2 e+iµx

−c∗1c∗2 e−iµx

+ θ(x) e−m̄x


c1c2
c1c
∗
2

c∗1c2
−c∗1c∗2

 , (3.67)

where we introduced the shorthands c1 = (1− i) and c2 = eiρe(0)/2.
Note that the ansatz in Eq. (3.66) required four coefficients, and that the wave

function matching produces four equations. Hence, up to a global factor there is
only one distinct solution. Except for a proper normalization constant, the wave
function in Eq. (3.67) is chosen such that it explicitly fulfills the Majorana require-
ment φ(x) = Cφ(x). Note that this directly implies that applying the decomposition
in Section 3.1.3 yields φ+ = φ + Cφ ∝ φ and φ− = −iφ + iCφ = 0. In conclusion,
the SF-junction discussed in this section binds exactly one MBS.

3.2.2.4 Differential conductance signatures

One of the smoking-gun experimental signatures for the appearance of MBS is a
characteristic peak in the differential conductance originating from resonant tunnel-
ing into the bound state. Arguably, a conductance peak in a nanowire setup much
like the ones we discussed in Chapter 2 was the basis for the claim of successful
realization of MBS in Ref. [80] and subsequent works [82, 83, 86, 87]. Importantly,
however, the peak should also be quantized at a value of G = 2e2/h, i.e., exactly
the conductance of two quantum channels. It took substantial effort to improve
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Figure 3.6: Schematic sketch of an SF-junction with finite barriers, such that the
system outside the S- and F-regions is described by the BdG-Hamiltonian H0 of the
bare helical edge. The color and dashing distinguish the modes as in Fig. 3.5. For
clarity, we indicate the scattering state φ1 corresponding to an electron coming in
from the left, including all outgoing modes together with the scattering coefficients.

the experiments enough in order to actually achieve a properly quantized conduc-
tance peak. The transport properties of a system on the basis of QSHI edge states
hosting a single MBS are thus of great importance as well and were studied in
Refs. [44, 95,129].

For our case at of an MBS bound between an S- and an F-region, the simplest
way to make the state accessible for electrical probing is to make the width of
superconducting and ferromagnetic regions finite, see Fig. 3.6 and Ref. [129]. For
simplicity, we ignore phase difference and in-plane angle of the magnetic field and
take the distance between S and F region to zero, such that there are no higher
energy ABSs. We therefore model the system by taking ∆1(x) = ∆0θ(x+LS)θ(−x)
and m1(x) = m0θ(x)θ(−x + LF ), with ∆0,m0 > 0 and ∆2 = m2 = 0. As before,
the z-component of the magnetic field plays no role and is neglected as well.

The now finite widths of the barriers does not change the appearance of a state
localized at the SF interface at zero energy. Clearly the Hamiltonian is the same
within the S and F regions, so that the wave function φ(x) from Eq. (3.67) is still
valid in the interval [−LS, LF]. Outside of this region, the Hamiltonian is diagonal.
As a result, matching the previous solutions to a linear combination of the eigenstates
in the outer N regions is trivially possible.

In order to determine the differential conductance at zero energy, we need to solve
the scattering problem of the SF-junction. The scattering states are constructed in
a similar fashion as in the simple cases in Section 3.2.1. Note that due to the N
regions on the very left and right of the junction, there are four possibilities of
injecting particles and hence four scattering states φj, j = 1, 2, 3, 4, corresponding
to (i) an incoming electron from the left (j = 1), (ii) an incoming hole from the left
(j = 2), (iii) an incoming electron from the right (j = 3), (iv) an incoming hole from
the right (j = 4).

Furthermore, the physics of the SF-junction, where superconducting and mag-
netic order are combined, is richer than in systems with only S or F regions. This is
simply due to the fact that the BdG-Hamiltonian is no longer block diagonal, which
opens up new scattering channels compared with purely S- or F-systems. In more
graphical terms, notice for instance how a subsequent scattering of a rightmoving
electron off the NF- and then off the SN-interface turns it into a rightmoving hole.
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As a consequence, incoming electrons from either direction can either be reflected as
an electron (normal reflection) or as a hole (Andreev reflection), or be transmitted
as an electron (electron cotunneling (EC)) or as a hole (crossed Andreev reflection
(CAR)).

For completeness, we give the asymptotic form of the scattering states at zero
energy outside the S- and F-regions, i.e., for x < −LS and x > LF. In the leftmost
region, they read

φ1(x) =
(
eiµx, r(1)

ee e−iµx, r
(1)
he eiµx, 0

)T
φ2(x) =

(
0, r(2)

eh e−iµx, r
(2)
hh eiµx, e−iµx

)T
φ3(x) =

(
0, t(3)

ee e−iµx, t
(3)
he eiµx, 0

)T
φ4(x) =

(
0, t(4)

eh e−iµx, t
(4)
hh eiµx, 0

)T
,

(3.68)

and in the rightmost region, we find

φ1(x) =
(
t(1)
ee eiµx, 0, 0, t(1)

he e−iµx
)T

φ2(x) =
(
t
(2)
eh eiµx, 0, 0, t(2)

hh e−iµx
)T

φ3(x) =
(
r(3)
ee eiµx, e−iµx, 0, r(3)

he e−iµx
)T

φ4(x) =
(
r

(4)
eh eiµx, 0, eiµx, r

(4)
hh e−iµx

)T
.

(3.69)

The scattering coefficients denote reflections (transmissions) of an injected particle of
type β into a particle of type α as r(i)

αβ (t(i)αβ). The superscript refers to the scattering
state.

In the following, we focus on the case of strong barriers in order to have a
well-localized MBS. This is achieved by choosing large values for m0LF and ∆0LS,
cf. Eq. (3.67). As a consequence, we expect negligible transmissions away from
resonances, such that the scattering properties are captured well by the reflection
coefficients. The local differential conductances GLL and GRR, defined as

GLL := (∂IL/∂VL)VL=0 and GRR := (∂IR/∂VR)VR=0 (3.70)

where IL,R, VL,R are the currents and voltages in the left and right lead, are related
to the scattering coefficients at zero energy by the well-known Blonder-Tinkham-
Klapwijk (BTK)-formula [125]

GLL = e2

h

[
1− |r(1)

ee |2 + |r(1)
he |2

]
= e2

h

[
1− |r(2)

hh |2 + |r(2)
eh |2

]
GRR = e2

h

[
1− |r(3)

ee |2 + |r(3)
he |2

]
= e2

h

[
1− |r(4)

hh |2 + |r(4)
eh |2

]. (3.71)

Determining the scattering coefficients r(j)
αβ , t

(j)
αβ amounts to matching the scat-

tering states φj(x) at the interfaces x = −LS, 0, LF and solving the resulting linear
system of equations. Note that in the intererior of the S and F domains, the scat-
tering states are given by a superposition of all four corresponding eigenstates. The
explicit solutions are lengthy and not very illuminating, so we restrict ourselves to
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(a) (b)

Figure 3.7: Plot of the differential conductances at zero energy. In panel (a), we
show the Andreev reflection amplitudes |r(1)

he |2, |r
(3)
he |2 (blue), the normal reflection

amplitude |r(1)
ee |2, |r(3)

ee |2 (red), and the resulting local conductances GLL, GRR (black)
as a function of the thickness of the F region, which essentially varies the effective
magnetic gap. We choose LS = 10ξ0, m0 = ∆0, µ = 3.5∆0, with ξ0 the coherence
length. In panel (b) we show a density plot of the local conductances as a function of
both the effective superconducting and the effective magnetic gap. The transition
coincides with the black dashed line where m2

0L
2
F − µ2L2

F = ∆2
0L

2
S. As before,

µ = 3.5∆0.

numerical results in this section. However, we remark that the case of a finite F
region and a semi-infinite S region was solved analytically in Ref. [95]. Their re-
sult of perfect Andreev reflection at zero energy is approached for our system for
∆0LS →∞.

Indeed, our results can be summarized as shown in Fig. 3.7. For strong barriers,
we find that all Andreev reflection amplitudes approach unity, i.e., |r(i)

eh |2, |r
(i)
he |2 → 1,

if the superconducting barrier dominates and the condition

∆2
0L

2
S > m2

0L
2
F − µ2L

2
F (3.72)

is fulfilled, in agreement with Ref. [95]. Note that almost perfect Andreev reflection
necessarily implies negligible normal reflection, due to unitarity of the scattering
matrix. Accordingly, the local conductances tend to the expected value as GLL =
GRR ∼ 2e2/h.

However, in the opposite case for a stronger magnetic barrier, where

m2
0L

2
F − µ2L2

F > ∆2
0L

2
S, (3.73)

normal reflection amplitudes are close to one, |r(i)
ee |2, |r

(i)
hh|2 → 1, while Andreev
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reflections go to zero. As a consequence, the local conductances also vanish and we
find GLL = GRR ∼ 0.

In conclusion, there is a transition between conductance values of 2e2/h and 0
whenever the gaps become comparable, i.e., m2

0L
2
F − µ2L2

F ≈ ∆2
0L

2
S. However, in

our case this does not signal the appearance of a protected zero-energy bound state,
since we have shown above that the MBS is always present for any configuration.

To resolve this apparent contradiction, we introduce yet another way of solving
the scattering problem in terms of transfer matrices. To that end, we rewrite the
BdG-equation at zero energy, HBdGφ(x) = 0, in the form

∂xφ(x) = ih(x)φ(x), (3.74)

where we essentially ordered the derivatives from the momentum operator on one
side and everything else on the other. Hence, the matrix h(x) is given by

h(x) = µτ̂0σ̂3 − im1(x)τ̂3σ̂2 − i∆1(x)τ̂2σ̂3. (3.75)

In analogy of the formal solution to the Schrödinger equation, Eq. (3.74) can be
solved by introducing a unitary “position evolution” operator U(x, x′). It relates
solutions according to

φ(x) = U(x, x′)φ(x′) (3.76)
and is defined as

U(x, x′) = S←ei
∫ x′

x
dξ h(ξ), (3.77)

where S← is the spatial ordering operator [130–134], which orders according to
increasing spatial argument from right to left(hence the arrow). The matrix U(x, x′)
can be regarded as a transfer matrix, because following Eq. (3.76) it relates wave
functions at different positions, i.e., left and right of a scattering region. This is in
contrast to the scattering matrix, which sorts into in- and outgoing modes and thus
mixes left and right. However, both matrices essentially link the same coefficients
in a linear way, so there is a one-to-one correspondence between the two. The
convenient property of transfer matrices is, that they can easily be combined by
repeatingly applying Eq. (3.76).

In order to solve the scattering problem of interest to us, we therefore need to
solve the equation

U(LF,−LS)φ(−LS) = φ(LF), (3.78)
and thus all relevant information is contained in the matrix U(LF,−LS).

By evaluating Eq. (3.77) and using that h(x) is constant within S and F region,
we find

U(LF,−LS) = exp [iLF (µτ̂0σ̂3 − im0τ̂3σ̂2)] exp [iLS (µτ̂0σ̂3 − i∆0τ̂2σ̂3)] . (3.79)

To proceed, we first note that we can simply decompose the latter exponential
into a product, since [τ̂0σ̂3, τ̂2σ̂3] = 0 such that the terms commute.2 Furthermore,
the term from the chemical potential within the superconductor exp(iLSµτ̂0σ̂3) is
diagonal and unitary, i.e., its entries are mere phase factors. Hence, this term does
not change the important properties and is therefore ignored.

2Recall the Baker-Campbell-Hausdorff formula

eXeY = eX+Y+ 1
2 [X,Y ]+... (3.80)
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Next, since additionally [τ̂3σ̂2, τ̂2σ̂3] = 0, the term containing the pairing potential
can safely be joined into the exponential stemming from the F region. Upon gauging
away the term exp(iLSµτ̂0σ̂3) and a little rewriting, we find the effective propagator

U(LF,−LS) = exp
[
i(LS + LF)

[
LF

LS + LF
(µτ̂0σ̂3 − im0τ̂3σ̂2)− i LS

LS + LF
∆0τ̂2σ̂3

]]
.

(3.81)
As a result we can conclude that the order, and in fact the exact position, of the
barriers do not matter at zero energy (additional phases due to propagation vanish
at E = 0). Specifically, one can identify Eq. (3.81) as the propagator of a system
with chemical potential µ̃ = LFµ/(LS + LF), where a magnetic field with m̃ =
LFm/(LS + LF) and proximity induced superconductivity with pair potential ∆̃ =
LS∆0/(LS + LF) are superimposed between x = −LS and x = LF.

This insight is important, since there is a connection between helical edge states
and the small momentum sector of a nanowire with SOC subjected to s-wave su-
perconductivity and a magnetic field along the direction of the wire, as indirectly
alluded to in Section 2.3. In the latter system, we saw that there was a topological
phase transition at m̃2 = ∆̃2 + µ̃2, which coincides with the location of the transition
in the conductances. Our propagator, and by extension the scattering coefficients,
therefore capture the behavior of a transition in a different system. The connection
to the appearance of a bound state is therefore not a direct one, mathematically ex-
pressed by the possibility of manipulating the exponentials in the propagator freely.

3.3 Tunable hybridization in double cavities

To conclude this chapter, we now proceed to an extension of the SS-junction dis-
cussed in Section 3.2.1 by inserting an additional, finite S- or F-barrier between the
two semi-infinite outer S regions. We are interested in the question how the bound
states in such a double cavity are related to the bound states in single cavities, and
in particular if and how Majorana bound states can still arise. Since the systems
now become increasingly complex, we will not be able to provide as detailed analyt-
ical steps as before. However, the results from the previous sections together with
numerical solutions will convey a compelling physical picture.

3.3.1 Three superconducting barriers

3.3.1.1 Bound state condition and spectrum

We start by considering an SSS-junction, see Fig. 3.8. For simplicity, we assume
that the pair potential has the same modulus in each S region. Furthermore, the
chemical potential plays no role and is therefore set to zero.

We use the phase of the leftmost S region as reference and set ϕL = 0. Instead
of working with the phases ϕM, ϕR directly, it will be more convenient to use the
phase differences across the LM-cavity ϕ1 := ϕM − ϕL and across the RM-cavity
ϕ2 := ϕR − ϕM instead.

for noncommutative X,Y , where . . . stands for higher nested commutators.
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Figure 3.8: Sketch of a triple superconductor SSS-junction. We assume the outer
S regions to be semi-infinite and thus extending to x → ±∞. Furthermore, for
simplicity we choose the modulus of the pairing potentials to be ∆0 in all S regions
and set the phase in the left S region to zero. The other parameters are dL = dR = ξ0,
L = 1.5ξ0, where ξ0 = ~vF/∆0 the coherence length as before.

Again, just as in every system with only N and S regions, the problem decomposes
into the (u↑, v↓)T- and (u↓, v↑)-blocks, which considerably simplifies the discussion.
As before, we first focus on the former of the two blocks.

As a first step, we need to tackle the central S region, since we are subsequently
going to be able to use our previous results for the outer SN- and NS-interfaces.
Thus, we need to solve the scattering problem of a single S region, which is of course
a special case of the SF-case of Section 3.2.2.4, we can use the same asymptotic form
of the scattering states as in Eqs. (3.68) and (3.69) for the regions left and right of
the barrier. The only difference is that in the absence of a magnetic domain, there
are only Andreev reflections and EC. Matching the wave functions at the interfaces
at x = ±L/2 straightforwardly leads to the scattering matrix, and we shall only
state the solutions we are going to need in the following. The ingoing and outgoing
amplitudes are related by (

be
bh

)
=
(
t(1)
ee r

(4)
eh

r
(1)
he t

(4)
hh

)
︸ ︷︷ ︸

SM

(
ae
ah

)
, (3.82)

where be (bh) is the outgoing electron (hole) amplitudes on the right (left), ae (ah) is
the incoming electron (hole) amplitude from the left (right), and SM is the scattering
matrix within the (u↑, v↓)T-block. The coefficients are given by

r
(1)
he = −ie−iLE+iϕM

sinh(LΩ)
sinh(iη + LΩ) , r

(4)
eh = −ie−iLE−iϕM

sinh(LΩ)
sinh(iη + LΩ)

t(1)
ee = t

(4)
hh = ie−iLE sin(η)

sinh(iη + LΩ) .
(3.83)

Next, we note that the outer interfaces between intermediate normal regions and
superconductors are essentially shifted SN- and NS-interfaces. Building on previous
sections, we can summarize their effect in the equation(

ae
ah

)
=
(

0 e−iηeiE(L+2dL)

e−iη+iϕReiE(L+2dR) 0

)
︸ ︷︷ ︸

SA

(
be
bh

)
. (3.84)
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Note that the role of incoming and outgoing modes is reversed here. The first
exponential in both nonzero elements of SA stem from the Andreev reflection itself,
whereas the second exponential is the phase shift due to the location of the interfaces.

Combining Eqs. (3.83) and (3.84) then yields the consistency condition

det (SMSA − 1) = 0. (3.85)

In an analogous way, for the (u↓, v↑)T-block one can derive a similar resonance
condition. As before, particle-hole symmetry ensures that they are closely related
and bound states always appear in pairs at energies ±E.

Remarkably, in both blocks one can simplify the left hand side of Eq. (3.85) quite
a lot. After some algebra, we arrive at an equation of the form [118]

D1 +D2 +
(
e2ΩL − 1

)
D2 = 0, (3.86)

where

D1 +D2 = sin(η) sin
[
2E(dL + dR)− η ± ϕ1 + ϕ2

2

]
, (3.87a)

D2 = sin
[
EdL − η ±

ϕ1

2

]
sin

[
EdR − η ±

ϕ2

2

]
. (3.87b)

The + (−) sign refers to the (u↑, v↓)T- ((u↓, v↑)T-) block. Comparing with Sec-
tion 3.2.1, we thus find a remarkably simple interpretation of the resonance condi-
tion for the SSS-junction in Eqs. (3.86) and (3.87). The term D1 +D2 is equivalent
to a resonance condition of an SS-junction with width dL +dR, corresponding to the
total width of both normal regions in the SSS-system. Furthermore, D2 is a prod-
uct of resonance conditions of two separate SS-junctions with respective widths dL,
dR and phase differences ϕ1 and ϕ2. Eq. (3.86) therefore interpolates between the
case of one big SS-junction for L = 0 and two uncoupled SS-junctions for L → ∞.
Hence, we can think of the SSS-junction as two cavities hosting bound states, where
the finite central S region enables them to leak into the other cavity and acquire a
delocalized character, expressed through the term D2.

The resonance condition can be solved numerically. In Fig. 3.9, we show two
spectra for a symmetric system, in which we fix the phase difference across the left
cavity to be ϕ1 = π (left panel) and ϕ1 = π/2 (right panel), and vary the phase
difference across the right cavity from ϕ2 = 0 to 2π.

In the first case, where ϕ1 = π, the decomposition in separate SS-cavities would
lead one to expect a zero energy state in the left cavity, and a state with a dispersion
similar to Fig. 3.4. If they are brought together in an SSS-junction, however, Fig. 3.9
reveals hybridization around ϕ2 = π, where bound states in both cavities have
equivalent energies. In particular, in single SS-cavities we would have zero-energy
states and hence Majoranas in both of them. Evidently, the close proximity of two
such systems leads to hybridization and thus prevents true zero-energy states from
forming. Note that at ϕ2 = 0, 2π, a zero-energy bound state localized primarily in
the left cavity is possible (see below).

If ϕ1 = π/2, the hypothetically isolated right cavity still hosts a state dispersing
as in Fig. 3.4, whereas the bound states in the left cavity now move to a finite
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(a) (b)

Figure 3.9: Plot of the bound state spectrum as a function of ϕ2 for the SSS-junction
with parameters as in Fig. 3.8, where ϕ1 = π in panel (a) and ϕ1 = π/2 in panel
(b), with the parameters as in Fig. 3.8. As in the case of the SS-junction, the blue
[red] line corresponds to the bound state in the (u↑, v↓)T [(u↓, v↑)T] block.

energy. The spectrum in Fig. 3.9 shows avoided crossings around ϕ2 = ϕ1 due to
hybridization. However, at phase differences ϕ2 = 2π−ϕ1 the crossings persist, even
though the spectrum in both constituent SS-cavities is be the same. This is because
of the fact that at this phase configuration, the states at the same energies belong
to the two distinct sub-blocks of the Hamiltonian – in contrast to the ϕ1 = ϕ2 case
– and thus never have a finite matrix element between them.

3.3.1.2 Majorana wave functions

From Eqs. (3.86) and (3.87) we can easily identify two situations in which E = 0
solves the resonance condition. The first is realized when ϕ1 = π and φ2 = 0,
such that ϕ1 + ϕ2 = π, cf. Fig. 3.9. In this case, the first factor in Eq. (3.87b)
corresponds to an SS-junction with phase difference π, which we know has a zero
energy solution. As a consequence, this factor becomes zero. The same is true for
Eq. (3.87a). Consequently, it is easy to see that Eq. (3.86) is also fulfilled. The other
possibility is ϕ1 = 0 and ϕ2 = π, for which an analogous argument can be made.

One can interpret these configurations in the following way. For states at zero
energy, neighboring superconducting regions with the same phase can be thought
of as being one larger S region, since at E = 0 there is neither scattering nor phase
propagation within the additional N region. Hence, the two possibilities outlined
above correspond to SS-junctions with semi-infinite S regions and phase difference
π, and we know from Section 3.2.1 that such a system hosts two Majorana modes
localized between the superconductors. Therefore, we expect a similar state to arise
in the SSS-case, where the Majorana states should be localized in the cavity between
different superconducting phases. Note that one can again apply the Jackiw-Rebbi
argument that we have a massive Dirac equation with a mass kink, where the mass
kink corresponds to a phase difference of π.

Interestingly, it is not possible to place two mass kinks next to each other and still
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obtain bound states at zero energy. Indeed, it is easy to see that for ϕ1 = ϕ2 = π,
D1 +D2 6= 0 in Eq. (3.87a), if E = 0 and as long as L 6= 0.

It is straightforward to write down the zero-energy wave functions for these two
configurations hosting bound states at E = 0. Here, we take a symmetric system
with dL = dR ≡ d, since the appearance of bound states does not depend on the
widths and the explicit expressions are easier to compare. For ϕ1 = π, ϕ2 = 0, we
find (with χ0 = (−i, 0, 1, 0)T as before and up to a normalization constant)

φL
1 (x) = χ0 ·



e∆0x x < −(d+ L/2)
e−(d+L/2)∆0 −(d+ L/2) < x < L/2
e−(d+L)∆0−∆0x −L/2 < x < L/2
e−(d+3L/2)∆0 L/2 < x < d+ L/2
e−∆0L−∆0x x > d+ L/2,

(3.88)

which clearly has the highest weight in the left normal region, and is exponentially
suppressed in the right cavity by a factor of exp(−L∆0). The superscript indicates
where the wave function is localized, while the subscript refers to the (u↑, v↓)T-block
as before.

It is worth mentioning that within the central S region, there could in principle be
another contribution from the exponentially growing solution to the BdG-equation
within the superconductor. However, due to the phase difference of π, it is actually
orthogonal to the spinor in the leftmost S region. In other words, at phase difference
π between two S regions, the decaying and growing solutions within them become
aligned. Together with the boundary condition that the wave function needs to decay
away from the outmost SN-/NS-interfaces, this is what gives rise to the localization
of the zero-energy states.

Furthermore, notice the strong similarity to the solution in the SS-case, which
underlines the picture of the SSS-junction effectively reducing to the SS-junction.

Similarly, the zero-energy solution for ϕ1 = 0, ϕ2 = π reads

φR
1 (x) = χ0 ·



e−∆0L+∆0x x < −(d+ L/2)
e−(d+3L/2)∆0 −(d+ L/2) < x < L/2
e−(d+L)∆0+∆0x −L/2 < x < L/2
e−(d+L/2)∆0 L/2 < x < d+ L/2
e−∆0x x > d+ L/2.

(3.89)

As expected, the zero-energy state is localized in the right cavity, but is otherwise
completely analogous to φL

1 .

As a final step, we can decompose the solutions φL/R
1 into two Majorana wave

functions φL/R
+ = φ

L/R
1 + CφL/R

1 and φ
L/R
− = −iφL/R

1 + i CφL/R
1 . However, since

the exponentials are real, they can be straightforwardly obtained from the wave
functions φL/R

1 by replacing χ0 → χ0 + Cχ0,−iχ0 + iCχ0. Consequently, the spatial
dependence of the Majorana states is completely determined by the wave functions
φ

L/R
1 . Crucially, this also implies that the two Majorana wave functions are always

on top of each other and can never be separated.
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Figure 3.10: Plot of all values for ϕ1,2 solving the resonance conditions for the SSS-
junction at zero energy, with the same parameters as before.

We conclude this section by noting that the zero-energy bound states for the
special cases above are connected by a continuum of configurations ϕ1, ϕ2, which
also host bound states at E = 0. Specifically, in Fig. 3.10 we plot all pairs ϕ1, ϕ2,
for which the resonance condition Eq. (3.86) is fulfilled at E = 0. Clearly, the
cases discussed above correspond to the start and end points of the two branches
in Fig. 3.10, respectively (note that we can identify 0 and 2π). Remarkably, by
tuning the phases ϕ1 and ϕ2 along this trajectory, it appears to be possible to tune
the wave functions in such a way that they shift their localization from one cavity
to another. In Ref. [119] this feature combined with the effect of an additional
ferromagnetic barrier (see Section 3.3.2 below) is used to move a single Majorana
mode in a controlled fashion. By including a second edge and a quantum point
contact connecting the edges, the authors develop a braiding protocol for Majorana
modes in a QSHI.

3.3.2 Alternating superconducting and ferromagnetic barriers

3.3.2.1 Bound state condition

In the last part of the chapter, we turn to a system with semi-infinite outer super-
conductors and a finite F region between the two. Our interest is again focused
on the appearance of bound states. Specifically, we expect MBS and ABS from
both constituent SF- and FS-cavities to hybridize. Note that in Section 3.2.2 we
saw that a single interface of a superconducting and a ferromagnetic region binds
only one MBS. Thus, one important question is whether the proximity of two such
states affects the localization of the MBS. For completeness, we note that due to the
superconductivity-magnetism duality the SFS-system discussed below has similar
features as an FSF setup, which is the focus of Ref. [118].

Since there are only two superconductors in this setup, we choose the phase of
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Chapter 3. Majorana modes at the helical edge

Figure 3.11: Sketch of an SFS-system with semi-infinite outer S barriers. Through-
out the section, we choose d ≡ dL = dR = 1.5ξ0, L = 0.75ξ0, m‖ = 1.5∆0, mz = 0,
λ = 0.

the left one to be zero and use ϕ to describe the phase difference. Conversely, since
there is only a single F region, due to the duality between S and F regions we are free
to choose λ = 0 for the in-plane angle of the magnetic field. Futhermore, we remark
that the z-component of the magnetic field can be absorbed in the phase difference
ϕ by a gauge transformation of the BdG-Hamiltonian of the form [95,131,132,135]

HBdG → U †HBdGU, U = e−iτ̂3m̃z(x)/vF , (3.90)

where m̃z(x) =
∫ x
xF

dx′ mz(x′) and xF is an arbitrary point within the F region.
Hence, m̃z(x) is a nonzero constant outside the F region and a linear function within
it. The derivative in the BdG-Hamiltonian acting on U thus cancels the mz term.
Furthermore, the pairing term in the BdG-Hamiltonian does not commute with U
due to the τ̂3 matrix. Performing the transformation of the pairing term shows
that the gauge transformation shifts the phase difference according to φ → ϕ′ =
ϕ− 2mzL. In the following, we will use ϕ′ as the key parameter to tune the system.

Finally, for simplicity, we put the chemical potential to zero as well. While the
effect of the chemical potential outside the F region again only leads to phase shifts,
within the F region it actually changes the size of the gap for electrons and holes (cf.
Section 3.2.2). A few details are lost by choosing µ = 0, but make the development
of a physical picture significantly easier. For more details we refer the reader to
Ref. [95, 119]. We also restrict ourselves to cases when the magnetic gap is larger
than the superconducting gap, i.e., m‖ > ∆0, such that the bound states never have
a propagating solution within the F region.

In order to obtain a condition for bound state energies, we follow the same recipe
as for the SSS-junction. However, note that the problem is now more complicated
since the BdG-Hamiltonian can no longer be decomposed into blocks. The central
F region alone, however, still has the block-diagonal structure in Nambu space.
Consequently, the scattering problem associated with the F region has the form

bL
e

bL
h

bR
e

bR
h

 =
(
R̂ T̂ ′

T̂ R̂′

)
︸ ︷︷ ︸

SF


aL
e

aL
h

aR
e

aR
h

 , (3.91)

where R̂, R̂′, T̂ , T̂ ′ are 2×2-matrices representing reflection and transmission within
the blocks connecting the left and right sides of the F region. Explicitly, in terms of
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the scattering coefficients they are given by

R̂ =
(
r(1)
ee 0
0 r

(2)
hh

)
, R̂′ =

(
r(3)
ee 0
0 r

(4)
hh

)
, T̂ =

(
t(1)
ee 0
0 t

(2)
hh

)
, T̂ ′ =

(
t(3)
ee 0
0 t

(4)
hh

)
.

(3.92)
All coefficients mixing electrons and holes vanish due to the form of the BdG-
Hamiltonian of the F region. For completeness, the expressions for the coefficients
read

r(1)
ee = r

(2)
hh = r(3)

ee = r
(4)
hh = −ie−iLE sinh(Lκ)

sinh(iρ0 + Lκ)

t(1)
ee = t

(2)
hh = t(3)

ee = t
(4)
hh = ie−iLE sin(ρ0)

sinh(iρ0 + Lκ) ,
(3.93)

where ρ0 ≡ ρ(µ = 0) = ρh(µ = 0). Note that they are particularly simple because
of our choice of parameters. Additional phase factors would arise for finite λ,mz.

Including the outer SN- and NS-interfaces is a straightforward extension of Sec-
tion 3.3.1.1, since we need to include both blocks. We find

aL
e

aL
h

aR
e

aR
h

 =
(
R̂L

A 0
0 R̂R

A

)
︸ ︷︷ ︸

SA


bL
e

bL
h

bR
e

bR
h

 , (3.94)

where R̂L/R
A encode the perfect Andreev reflection of modes at the left SN- and the

right NS-interface. They explicitly read

R̂L
A =

(
0 rL

eh

rL
he

)
=
(

0 e−iηeiE(L+2dL)

e−iηeiE(L+2dL) 0

)

R̂R
A =

(
0 rR

eh

rR
he

)
=
(

0 e−iη+iϕeiE(L+2dR)

e−iη−iϕeiE(L+2dR) 0

)
.

(3.95)

The condition for bound states can then be readily obtained by combining
Eqs. (3.91) and (3.94). In terms of the scattering matrices, we arrive at

det (SFSA − 1) = 0. (3.96)

Upon inserting the scattering coefficients from Eqs. (3.91) and (3.92) and Eqs. (3.94)
and (3.95), we can write the resonance condition in the form

1−Σ = 0, (3.97)

where
Σ = ΣL

1 + ΣR
1 − ΣL

1 ΣR
1 + Σ↑2 + Σ↓2 − Σ↑2Σ↓2 + Σe

3 + Σh
3 . (3.98)

Each of the terms in Eq. (3.98) corresponds to a specific closed loop with the SFS-
junction, see also Fig. 3.12. They are given by

ΣL
1 = r(1)

ee r
L
her

(2)
hh r

L
eh, ΣR

1 = r(3)
ee r

R
her

(4)
hh r

R
eh,

Σ↑2 = t(1)
ee r

R
het

(4)
hhr

L
eh, Σ↓2 = t

(2)
hhr

R
eht

(3)
ee r

L
he,

Σe
3 = t(1)

ee r
R
her

(4)
hh r

R
eht

(3)
ee r

L
her

(2)
hh r

L
eh, Σh

3 = t
(2)
hhr

R
her

(3)
ee r

R
het

(2)
hhr

L
ehr

(1)
ee r

L
he.

(3.99)
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Figure 3.12: Sketch of the bound state interpretation of the self-energies. As be-
fore, red (blue) lines correspond to spin ↑ (spin ↓) modes, while solid lines refer
to eelctrons (holes). Adapted from Ref. [136], copyright (2020) by The American
Physical Society.

In conclusion, while it was fairly straightforward to derive a condition for bound
states with the methods developed in this chapter, the connection to the constituent
closed loops is rather complicated and of not much use analytically. However, we
can use Eq. (3.96) or, alternatively, Eq. (3.98) to numerically obtain the spectrum
of the system.

3.3.2.2 Spectrum and Majorana bound states

For the remainder of the section, we focus on a symmetric system with equal widths
of the intermediate normal regions for simplicity, i.e., dL = dR ≡ d. With the
resonance condition Eq. (3.96) at hand, we plot the resulting bound state energies
as a function of the phase difference ϕ in Fig. 3.13. Since the SFS-structure can be
thought of as an SS-junction with inserted F-region, it is particularly interesting to
compare with Fig. 3.4. Notably, the presence of a time-reversal breaking magnetic
field lifts the degeneracies at ϕ = 0, 2π and thus disconnects the bound states.
However, the crossings at ϕ = π are preserved and hence are the signatures of
Majoranas relying on their 4π-periodic levels. Furthermore, we remark that the
degeneracy of ABS scan be lifted by, e.g., asymmetry in the setup [95,118,119].

Knowing that there is a zero-energy bound state at ϕ = π, it is interesting to find
out where it is localized, and especially where the MBS wave functions are localized.
Straightforwardly, we can make the ansatz for the wave function of the form

φ(x) =



a1e∆0xχe− + a2e∆0xχh− x < −(d+ L/2)
b1φe+ + b2φe− + b3φh− + b4φh+ −(d+ L/2) < x < L/2
c1e−m‖xζe+ + c2em‖xζe− + c3em‖xζh− + c4e−m‖xζh+ −L/2 < x < L/2
d1φe+ + d2φe− + d3φh− + d4φh+ L/2 < x < d+ L/2
e1e−∆0xχe+ + e2e−∆0xχh+ x > d+ L/2,

(3.100)
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Figure 3.13: Plot of the bound state spectrum [panel (a)] and zero-energy wave
function [panel (b)] of the SFS-junction, with parameters as defined in Fig. 3.11. In
(a), the shaded blue area indicates the continuum of states above the gap. In (b),
the shaded red (blue) regions refer to the F (S) regions in the system to visualize
the localization of the bound states.

where we of course need the zero-energy expressions for the eigenstates φα±, χα±, ζα±.
Matching the wave function at the interfaces, we can determine the coefficients

aj, bj, cj, dj. In Fig. 3.13, we plot the norm of the normalized resulting wave function,
as well as the normalized Majorana wave functions φ+ = φ+Cφ and φ− = −iφ+iCφ.
We find that the ferromagnetic region between two semi-infinite S regions is enough
to split the two MBS and localize them on opposite sides of the F region.

This can also be understood in terms of the Jackiw-Rebbi form of the BdG-
Hamiltonian, which we derived in Eq. (3.65) for the SF-junction. For a phase dif-
ference of ϕ = π, the pairing potential within the left S region is still ∆0τ̂1σ̂0, while
within the right S region it is −∆0τ̂1σ̂0. In terms of the masses M1(x) = m(x)+∆(x),
M2(x) = m(x)−∆(x), we see that M1 now shows a sign change between the F and
the right S region, while M2 has a mass kink between the left S and the F region.
Hence, the system can be understood as two Jackiw-Rebbi models with mass kinks
located in the gapless normal regions within the two cavities. This is consistent with
the localization of the two Majorana wave functions shown in Fig. 3.13.
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Chapter 4. Unconventional superconductivity in helical edge states

In Chapter 2, we noted on several occasions that the symmetry properties of the
proximity induced superconducting order parameter are intimately connected to the
appearance of topological phases. For the model of the Kitaev chain, for instance,
we assumed a spinless p-wave superconductor, whose order parameter transforms
trivially under spin rotation, since it has no spin structure, and non-trivially under
orbital rotations. One major obstacle for the realization of topological phases is
precisely the need to effectively engineer such a pairing phase in spinful systems,
especially in light of the fact that most superconductors available for practical pur-
poses show s-wave singlet pairing. In this section, we turn this point around and
start with the helical edge and proximity induced s-wave singlet pairing, in which
we now know how to realize Majorana bound states. From there, we take a closer
look at how the spin-momentum locking and proximity to magnetism affects super-
conducting correlations in the system.

As a disclaimer, for most of this chapter we are ignoring any details related to
the proximity effect, which is to say that we are not interested in self-consistency
equations and bulk properties. The exception is Section 4.1.1. Furthermore, we
do not consider any effect superconducting correlations might have on the parent
superconductor, a phenomenon called inverse proximity effect.

4.1 Correlation functions & symmetry classification

4.1.1 Generalized BCS-theory

In order to relate this chapter to the well-known framework of the standard BCS-
theory of superconductivity and introduce important notation and concepts, we
first give a generalized mean-field formulation of it to go beyond the standard s-
wave singlet case. We follow Ref. [137] and point towards Refs. [138–141] for more
and complementary information.

The first step to take is simply to allow a more general microscopic interaction
in the Hamiltonian, writing the latter as (we use the letter s =↑, ↓ to denote spin,
and k for momenta in 3D)

H =
∑
k,s

ξkĉ
†
ksĉks + 1

2
∑
k,k′

∑
s1,s2,s3,s4

Vk,k′;s1s2s3s4 ĉ
†
ks1 ĉ

†
−ks2 ĉ−k′s3 ĉk′s4 . (4.1)

Note that the scattering only involves pairs of electrons, whose total momentum
vanishes. The matrix elements are given by

Vk,k′;s1s2s3s4 =
〈
−k, s1;k, s2

∣∣∣V̂ ∣∣∣−k′, s3;k′, s4
〉

(4.2)

and must fulfill

Vk,k′;s1s2s3s4 = −V−k,k′;s2s1s3s4 = −Vk,−k′;s1s2s4s3 = V−k,−k′;s2s1s4s3 (4.3)

because of the fermionic anticommutation relations of the creation/annihilation op-
erators ĉ†ks, ĉk′s′ .

The mean-field Hamiltonian is obtained using

bk,ss′ = 〈ĉ−ksĉks′〉, (4.4)
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which differs from the standard BCS choice in that it has a spin structure, instead of
simply pairing states with opposite spins yielding a singlet state. The quantity bk,ss′

can be interpreted as the Cooper pair wave function. Assuming small fluctuations
around the mean-field defined in Eq. (4.4), the Hamiltonian becomes

HMF =
∑
k,s

ξkĉ
†
ksĉks + 1

2
∑
k

∑
s1,s2

[
∆k,s1s2 ĉ

†
ks1 ĉ

†
−ks2 + ∆∗k,s1s2 ĉks1 ĉ−ks2

]
+K. (4.5)

The constant term K quadratic in bk,s1s2 is disregarded in the following. The gen-
eralized gap ∆k,ss′ is then determined by the self-consistent equations

∆k,ss′ = −
∑
k′

∑
s3,s4

Vk,k′;ss′s3s4 bk,s3s4 ,

∆∗k,ss′ = −
∑
k′

∑
s3,s4

Vk,k′;ss′s1s2 b
∗
k,s2s1 .

(4.6)

We see that the more general spin structure of the Cooper pair wave function in
Eq. (4.4) translates into a gap function with matrix structure in spin space, which
can be written as

∆̂k =
(

∆k,↑↑ ∆k,↑↓
∆k,↓↑ ∆k,↓↓

)
. (4.7)

The anticommutation relations of the creation/annihilation operators also influ-
ence the properties of the gap function, much like they lead to the properties of
the interaction matrix elements in Eq. (4.3). Separating the momentum- and spin-
dependent parts of the wave function, i.e., bk,s1s2 = φ(k)ξs1s2 , we note that we can
distinguish the cases of even parity and spin singlet, for which

φ(k) = φ(−k)⇔ χss′ = 1√
2

(|↑↓〉 − |↓↑〉) , (4.8)

and odd parity and spin triplet, reading

φ(k) = −φ(−k)⇔ χss′ =


|↑↑〉

1√
2 (|↑↓〉+ |↓↑〉)
|↓↓〉.

(4.9)

Note that the former case in Eq. (4.8) corresponds to conventional BCS-theory,
whereas the latter case in Eq. (4.9) only arises for the more general interaction.

In the even parity, singlet case, the gap function fulfills

∆s
k,s1s2 = −∆s

k,s2s1 = ∆s
−k,s1s2 = −∆s

−k,s2s1 , (4.10)

while the odd parity, triplet gap function obeys

∆t
k,s1s2 = ∆t

k,s2s1 = −∆t
−k,s1s2 = −∆t

−k,s2s1 . (4.11)

In conclusion, the singlet gap function ∆s
k,s1s2 acquires a minus sign if the spin

indices are exchanged, but is insensitive to k → −k, while the opposite is true for
the triplet gap function ∆t

k,s1s2 . Importantly, note that both gap functions are odd
under the simultaneous s1 ↔ s2, k→ −k, which can be summarized as

∆̂s/t
k = −

(
∆̂s/t
−k

)T
. (4.12)
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It is now useful to parametrize these two cases. In the conventional BCS case of
even parity, singlet pairing, this can be achieved by a single scalar function ψ(k),
i.e.,

∆̂s
k =

(
∆s
k,↑↑ ∆s

k,↑↓
∆s
k,↓↑ ∆s

k,↓↓

)
= iσ̂2ψ(k), (4.13)

where σ̂2 is the Pauli matrix acting in spin space. Since there are three possible spin
configurations in the triplet case, we need three functions of the momentum di(k)
with di(k) = −di(−k) and i = 1, 2, 3. The triplet gap function then reads

∆̂t
k =

(
∆t
k,↑↑ ∆t

k,↑↓
∆t
k,↓↑ ∆t

k,↓↓

)

=
(
−d1(k) + id2(k) d3(k)

d3(k) d1(k) + id2(k)

)
= i (d(k) · σ̂) σ̂2.

(4.14)

Note that the notation in terms of the Pauli matrix σ̂2 is a common choice, so we
shall adapt it as well. Furthermore, it can also be helpful to think of ∆̂s/t as a vector
in the Hilbert space of the two spins with basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}.

In conclusion, a straightforward generalization of standard BCS-theory shows
nicely, how the spin structure and the orbital character of the pairing are interrelated.
In particular, we recovered the widely used equivalency of spin singlet and even
parity, as well as spin triplet and odd parity.

As a last remark, we note that one can calculate the spin expectation value of
Cooper pairs according to [142]

〈Ŝ〉 = Tr
[
∆̂s/t
k

(
∆̂s/t
k

)†
Ŝ
]
, (4.15)

where Ŝ = σ̂ ⊗ σ̂0 + σ̂0 ⊗ σ̂. Using Eqs. (4.13) and (4.14), one can show that

∆̂s
k

(
∆̂s
k

)†
= |ψ(k)|2 σ̂0 (4.16)

and
∆̂t
k

(
∆̂t
k

)†
= |d(k)|2 σ̂0 + i (d(k)× d∗(k)) · σ̂. (4.17)

Therefore, since the Pauli matrices are traceless, we immediately see that singlet
pairing does not lead to any spin expectation value. In the triplet case, if the vector
d is real the second term in Eq. (4.17) vanishes, and the spin expectation value is
zero as well. However, if d is complex, the quantity

q(k) = id(k)× d∗(k) (4.18)

can be finite. These pairing states are called non-unitary and, remarkably, lead to a
finite spin expectation value. In fact, the spin polarization is proportional to q(k).

4.1.2 Classification of correlation functions

The goal of this chapter is to discuss the effects of an s-wave order parameter on the
(anomalous) correlation functions at the helical edge. While some of the concepts
from Section 4.1.1 are still going to be of use, in this section we will adapt them in
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order to be able to move on to the helical edge. Good references presenting these
methods include Refs. [143–145] and references therein.

The key mathematical object to consider is the Nambu-Gor’kov Green function
[146]

Gσσ′(r1, r2; t1, t2) = −
〈
T Ψσ(r1, t1)Ψ†σ′(r2, t2)

〉
= −

(
〈T ψσ(r1, t1)ψ†σ′(r2, t2)〉 〈T ψσ(r1, t1)ψσ′(r2, t2)〉
〈T ψ†σ(r1, t1)ψ†σ′(r2, t2)〉 〈T ψ†σ(r1, t1)ψσ′(r2, t2)〉

) (4.19)

where the Nambu spinor is defined as Ψσ′(r2, t2) = (ψσ′(r2, t2), ψ†σ′(r2, t2))T. The
field operator ψσ(r1, t1) [ψ†σ(r1, t1)] annihilates [creates] a particle with spin σ at
position r1 and time t1. In principle, there could be more indices, e.g., representing
a band.

While the diagonal elements of the Nambu-Gor’kov Green function describe reg-
ular electron and hole propagation, the off-diagonal elements correspond to the
creation/annihilation of Cooper pairs when two electrons are added to or removed
from the condensate. Note the close relation between the off-diagonal terms and the
Cooper pair wave function introduced in Eq. (4.4) in the previous section, which
is a momentum space, equal-time version of the Nambu-Gor’kov Green function.
This, in turn, also connects the self-consistency equation of the gap function to the
Nambu-Gor’kov Green function.

In the following, we focus the discussion on the element

fσσ′(r1, r2; t1, t2) = 〈T ψσ(r1, t1)ψσ′(r2, t2)〉. (4.20)

In order to analyze the symmetry content of the function fσσ′(r1, r2; t1, t2), we
first need to restrict ourselves to equal times t2 = t1. Only then the field operators
have a well-defined anticommutation relation. This leads to the crucial result, that
the anomalous Green function needs to fulfill

fσσ′(r1, r2; t1, t1) = −fσ′σ(r2, r1; t1, t1). (4.21)

In other words, upon exchanging the spin indices σ, σ′ and electron positions r1, r2,
the anomalous Green function needs to acquire a sign. Evidently, this is similar
to the Cooper pair wave function discussed in the previous section. Note that the
mere permutation of indices is not equivalent to the action of time-reversal or parity
operator, both of which involve complex conjugation. This would actually amount
to a conversion of fσσ′(r1, r2; t1, t2) into the correlator 〈T ψ†σ(r1, t1)ψ†σ′(r2, t2)〉.

Following Eq. (4.21), one possibility to fulfill the constraint is a conventional
BCS superconductor, which obeys

fσσ′(r1, r2; t1, t1) = fσσ′(r2, r1; t1, t1), fσσ′(r1, r2; t1, t1) = −fσ′σ(r1, r2; t1, t1),
(4.22)

i.e., it is odd under the exchange of spin indices (i.e., singlet), but even if the
coordinates are exchanged. Importantly, Eq. (4.21) is also satisfied if

fσσ′(r1, r2; t1, t1) = −fσσ′(r2, r1; t1, t1), fσσ′(r1, r2; t1, t1) = fσ′σ(r1, r2; t1, t1),
(4.23)
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corresponding to a triplet correlation function even under the exchange of spin
indices, but odd under the permutation of coordinates.

Henceforth, we shall refer to BCS superconductors in general, and these symme-
try relations in particular, as conventional. All other instances are coined unconven-
tional. The precise connection to the previous section is made by introducing center
of mass and relative coordinates, followed by taking the Fourier transform over the
relative coordinate.

We take a different direction by introducing time coordinates t, T according to

t = t1 − t2, T = (t1 + t2)/2, (4.24)

i.e., t is the time difference between both time arguments and T represents a global
time coordinate. Since we discuss static problems without any explicit time depen-
dence, the correlation functions should not depend on T . We will thus drop this
coordinate for simplicity.

We therefore replace the correlation function in terms of t and replace

fσσ′(r1, r2; t1, t2)→ fσσ′(r1, r2; t). (4.25)

Then, we can rephrase Eq. (4.21) in terms of the relative time in the form

fσσ′(r1, r2; 0) = −fσ′σ(r2, r1; 0). (4.26)

This looks like a trivial reformulation of the same property. However, writing the
correlation function in terms of the Fourier transform fσσ′(r1, r2;E) depending on
the energy E yields

fσσ′(r1, r2; t) =
∫ ∞
−∞

dE eiEtfσσ′(r1, r2;E). (4.27)

Inserting Eq. (4.27) into Eq. (4.26) thus leads to∫ ∞
−∞

dE fσσ′(r1, r2;E) = −
∫ ∞
−∞

dE fσ′σ(r2, r1;E). (4.28)

This constraint is fulfilled if the correlation function is odd under the exchange of
positions and spins as before, i.e., if

fσσ′(r1, r2;E) = −fσ′σ(r2, r1;E). (4.29)

Arriving here is of course not surprising, and basically corresponds to the line of
argumentation from before. Remarkably, however, there is a second way of satisfying
Eq. (4.28), which is the relation

fσσ′(r1, r2;E) = −fσ′σ(r2, r1;−E). (4.30)

Eq. (4.30) suggests that the equal time constraint Eq. (4.26) can also be fulfilled
if the Fourier transformed correlation function is odd in energy and satisfies

fσσ′(r1, r2;E) = −fσσ′(r1, r2;−E), (4.31)
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E → −E σ ↔ σ′ r1 ↔ r2 class
+ − + ESE
− − − OSO
+ + − ETO
− + + OTE

Table 4.1: Classification scheme for anomalous correlation functions. They can be
either even (+) or odd (−) under the exchange of spins σ ↔ σ′ or positions r1 ↔ r2,
or upon taking E → −E. In the class nomenclature, the first letter refers to even-
(E) or oddness (O) under E → −E in the frequency domain, the second letter labels
singlet (S, odd under σ ↔ σ′) and triplet (T, even under σ ↔ σ′), and the third
letter labels even- (E) or oddness (O) under r1 ↔ r2.

i.e., the sign arises due to the sign change of E1. This type of pairing is called odd-
frequency superconductivity and has first been proposed by Berezinskii in the context
of liquid 3He [147]. For more recent reviews on this subject, see Refs. [145,148,149].

It is worth pointing out that due to Eq. (4.27), the oddness of fσσ′(r1, r2;E)
implies that the time correlation function is odd in its time argument, i.e., it fulfills

fσσ′(r1, r2; t) = −fσσ′(r1, r2;−t). (4.32)

In terms of the original coordinates t1, t2 we see that odd-frequency superconduc-
tivity amounts to a correlation function which is odd under the exchange of its
time arguments. Note that this necessarily implies that the equal-time correlation
function vanishes, which trivially also fulfills Eq. (4.21).

As a last step before we can move on to the helical edge, we note that so far we dis-
cussed time-ordered correlation functions, which might not be the most convenient
choice. However, we note that one can go through similar arguments for Matsubara
Green functions. This leads to the equivalent requirement on the anomalous part of
the Matsubara Green function fM

σσ′(r1, r2; iωn) of the form

fM
σσ′(r1, r2; iωn) = −fM

σ′σ(r2, r1;−iωn), (4.33)

where ωn = (2n+ 1)π/β are the Matsubara frequencies.
This intermediate step is of importance to us, since the real-time retarded and

advanced Green functions fR/Aσσ′ (r1, r2;E) are obtained via analytical continuation
according to

lim
iωn→E±iδ

fM
σσ′(r1, r2; iωn) = f

R/A
σσ′ (r1, r2;E), (4.34)

where δ → 0 is understood. By using the definition of retarded and advanced
Green functions in Eq. (4.34) and the property of the Matsubara Green function in
Eq. (4.33), it is straightforward to show that retarded and advanced Green functions
fulfill

fR
σσ′(r1, r2;E) = −fA

σ′σ(r2, r1;−E). (4.35)
For retarded and advanced Green functions, the oddness under exchanging spins,
coordinates and times (or taking E → −E) thus transforms them into one-another.

1Note that fσσ′(r1, r2;E) then must be either even under the exchanges of spins and positions,
or odd under both the exchange of spins and positions.
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Note that even-frequency superconductivity implies

fR
σσ′(r1, r2;E) = fA

σσ′(r1, r2;−E), (4.36)

while odd-frequency superconductivity is present if

fR
σσ′(r1, r2;E) = −fA

σσ′(r1, r2;−E). (4.37)

We summarize the different possibilities in Table 4.1.

4.2 Correlation functions at the helical edge

In this section, we summarize the most important aspects with regard to correlation
functions at the helical edge. The goal is to introduce notation and conventions,
as well as explain how Green functions can be calculated. We follow the formalism
developed in Refs. [117,150–152].

4.2.1 Retarded Green function from scattering states

The cornerstone for the discussion in the following sections is the retarded Green
function, which can be defined in terms of the Nambu spinor according to

GR(x, x′; t, t′) = −iθ(t− t′)
〈{

Ψ(x, t),Ψ†(x′, t′)
}〉
, (4.38)

where the spinor reads Ψ(x, t) = (ψ↑, ψ↓, ψ†↓,−ψ
†
↑)T as before. It is more convenient

to work with its Fourier transform

GR(x, x′, E) =
∫ ∞
−∞

dt ei(E+i0+)(t−t′) GR(x, x′; t, t′), (4.39)

where we moved to the relative time coordinate and neglect the global time coordi-
nate, as before. Importantly, GR(x, x′, E) fulfills the equations of motion

[E −HBdG(x)] GR(x, x′, E) = δ(x− x′), (4.40a)
GR(x, x′, E) [E −HBdG(x)] = δ(x− x′), (4.40b)

where HBdG is the BdG-Hamiltonian of the helical edge states discussed in Sec-
tion 3.1. The second equation of motion Eq. (4.40b) can be justified by noting
that one can think of the Green function to be the inverse of the linear operator
E − HBdG. Furthermore, by taking the transpose Eq. (4.40b) can be rewritten in
the form [

E −HT
BdG(x)

] (
GR(x, x′, E)

)T
= δ(x− x′). (4.41)

Upon integration of Eq. (4.40a) from −ε to ε (subsequently ε→ 0), the derivative
contained in HBdG together with the delta-function on the left hand side of the
equation of motion leads to the boundary condition

lim
ε→0

[
GR(x′ + ε, x′, E)−GR(x′ − ε, x′, E)

]
= 1

ivF
τ̂3σ̂3, (4.42)
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i.e., the retarded Green function has a discontinuity.
The boundary condition together with the equations of motion Eqs. (4.40a)

and (4.41) justify the commonly used ansatz for the retarded Green function

GR(x, x′, E) =


∑4
i,j=1 αijφi(x)φ̃j(x′) x < x′∑4
i,j=1 βijφi(x)φ̃j(x′) x > x′,

(4.43)

where φi(x) and φ̃j(x′) are scattering state solutions to the BdG-equations

HBdGφi(x) = Eφi(x), HT
BdGφ̃

T
i (x) = Eφ̃T

i (x). (4.44)

It is easy to verify that this ansatz indeed satisfies the equations of motion.
Finally, one can impose outgoing boundary conditions on the retarded Green

function, which allows us to setting almost all αij, βij to zero. The final ansatz for
the retarded Green function GR(x, x′, E) in terms of scattering states reads

GR(x, x′, E) =



α31φ3(x)φ̃1(x′) + α32φ3(x)φ̃2(x′)
+ α41φ4(x)φ̃1(x′) + α42φ4(x)φ̃2(x′) x < x′

β13φ1(x)φ̃3(x′) + β23φ1(x)φ̃4(x′)
+ β14φ2(x)φ̃3(x′) + β24φ2(x)φ̃4(x′) x > x′.

(4.45)

Note that the scattering states φi(x), φ̃j(x′) can be straightforwardly determined
in the same fashion as in Chapter 3. The remaining unknown coefficients αij, βij
from Eq. (4.45) can then be obtained by utilizing the boundary condition Eq. (4.42),
which we demonstrate in more detail below.

4.2.2 Nambu space structure & advanced Green function

Once we calculated the retarded Green function from the scattering states following
Section 4.2.1, we can proceed to analyze its symmetries.

To that end, let us introduce a few definitions first. The retarded Green function
GR(x, x′, E) is, by definition, a matrix in Nambu and spin space. We can specify its
blocks using

GR(x, x′, E) =
(
GR
ee(x, x′, E) GR

eh(x, x′, E)
GR
he(x, x′, E) GR

hh(x, x′, E)

)
. (4.46)

The blocks GR
ee and GR

hh are the normal contributions to the retarded Green func-
tions, which would also be present without superconductivity. In contrast, the
anomalous blocks GR

eh and GR
he carry information about Andreev scattering and

Cooper pairs, since they connect electrons and holes, and only emerge in the pres-
ence of superconductors.

We can further decompose the spin components of the individual blocks, which
gives

GR
ee =

(
[GR

ee]↑↑ [GR
ee]↑↓

[GR
ee]↓↑ [GR

ee]↓↓

)
, GR

hh =
(

[GR
hh]↓↓ [GR

hh]↓↑
[GR

hh]↑↓ [GR
hh]↑↑

)
,

GR
eh =

(
[GR

eh]↑↓ [GR
eh]↑↑

[GR
eh]↓↓ [GR

eh]↓↑

)
, GR

he =
(

[GR
he]↓↑ [GR

he]↓↓
[GR

he]↑↑ [GR
he]↑↓

)
,

(4.47)
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where we suppressed the arguments of the spin components for brevity.
Since we ultimately seek to characterize the symmetry properties of the Green

function, it is useful to explicitly extract the spin structure. To that end, we
parametrize the anomalous part GR

eh according to

GR
eh(x, x′, E) = fR

0 (x, x′, E) +
∑
i

fR
i (x, x′, E)σ̂i. (4.48)

Here, fR
0 is the singlet component, whereas the functions fR

i denote the vector
specifying the triplet components. Note that our choice of basis in the Nambu
spinor contained a minus sign in the hole sector, which might make some signs look
suspicious.

The spin structure of the other anomalous block follows due to particle-hole
symmetry. Since the retarded Green function is closely related to the Hamiltonian,
it also shares its particle-hole symmetry. Using the charge conjugation operator
C = τ̂2σ̂2 K, the retarded Green function fulfills

CGR(x, x′, E)C† = −GR(x, x′,−E). (4.49)

We can use Eq. (4.49) to relate the blocks within the retarded Green function.
Explicitly, we find

GR
ee(x, x′,−E) = −σ̂2G

R
hh(x, x′, E)∗σ̂2, (4.50a)

GR
eh(x, x′,−E) = σ̂2G

R
he(x, x′, E)∗σ̂2, (4.50b)

which means that the blocks GR
ee and GR

eh are sufficient to determine the entire
retarded Green function.

As a last step, we note that the advanced Green function is related to the retarded
Green function via the relation

GA(x, x′, E) =
(
GR(x′, x, E)

)†
. (4.51)

Hence, we can use the retarded Green function to find the advanced one. The decom-
position of GA into electron-hole blocks and into spin components is analogous to
the structure of GR. As a result, we can straightforwardly obtain the spin functions
from the advanced Green function fA

0 (singlet) and fA
i (triplet).

With the tools summarized in this section at hand, we are now able to clas-
sify the pairing characterized by the electron-hole block of retarded and advanced
Green function according to Eq. (4.35). Since the singlet (triplet) components are
necessarily odd (even) with respect to the exchange of spin indices, the functions
f

R/A
j=0,1,2,3(x, x′, E) fulfill

fR
0 (x, x′, E) = fA

0 (x′, x,−E), fR
1,2,3(x, x′, E) = −fA

1,2,3(x′, x,−E) (4.52)

in order to keep the global antisymmetry. We classify the singlet into the ESE/OSO
classes according to

ESE : fR
0 (x, x′, E) = fR

0 (x′, x, E), fR
0 (x, x′, E) = fA

0 (x, x′,−E)
OSO : fR

0 (x, x′, E) = −fR
0 (x′, x, E), fR

0 (x, x′, E) = −fA
0 (x, x′,−E),

(4.53)
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and the triplet into ETO/OTE following

ETO : fR
1,2,3(x, x′, E) = −fR

1,2,3(x′, x, E), fR
1,2,3(x, x′, E) = fA

0 (x, x′,−E)
OTE : fR

1,2,3(x, x′, E) = fR
1,2,3(x′, x, E), fR

0 (x, x′, E) = −fA
1,2,3(x, x′,−E).

(4.54)

4.3 Anomalous Green function at the helical edge

We can now proceed to explicitly calculate the retarded Green function for hybrid
systems at the helical edge. To connect the symmetry classification of the pairing
amplitudes to the previous chapter, we specifically discuss an SFS-system as in
Section 3.3.2, with the only difference being that it has finite outer S barriers. In
particular, except for the widths of the S regions we choose the same parameters as
before.

The reason why we move to a setup with finite barriers is the close connection
of the (retarded) Green function and the scattering coefficients [153]. In particular,
the main focus of this section are nonlocal pairings and their connection to crossed
Andreev reflection as well as Majorana and Andreev bound states. However, note
that finite barriers imply that bound states turn in to quasi-bound state resonances.
For completeness, we remark that local pairings have been studied in Refs. [117,154].

Although we will focus on a specific setup, some of the following results apply to
generic scattering regions at the helical edge, since all details are hidden in the scat-
tering coefficients. As a useful first step, we present expressions for the anomalous
Green function when both positions fall within the same lead (i.e., left or right of all
barriers) before moving to nonlocal Green functions. We remark that keeping the
positions outside of the heterostructure simplifies the expressions significantly, since
we are able to use the asymptotic form of the scattering states. Note that we num-
ber the scattering states in the same way as in Section 3.2.2.4, i.e., scattering state
1 (2) corresponds to an incoming electron (hole) from the left, wheras scattering
state 3 (4) refers to an incoming electron (hole) from the right. In this chapter, the
reflection (transmission) coefficients are labeled as rαi (tαi ), where i = 1, 2, 3, 4 refers
to the scattering state and α = e, h to the outgoing particle type. For instance, rh1
refers to the Andreev reflection of an electron from the left being backscattered as a
hole. Extending the analysis to Green functions within the heterostructure is more
involved, but can be straightforwardly done numerically.

4.3.1 Retarded Green function

4.3.1.1 Left lead

We start by discussing the form of the retarded Green function if both spatial
arguments are placed within the left lead. Note that in that case scattering states
φ1,2, φ̃1,2 contain normalized incoming modes as well as reflected ones, while φ3,4, φ̃3,4
only contain transmitted modes. The structure of the retarded Green function thus
only depends on the explicit form of the scattering states, which is determined by
the scattering processes allowed. Therefore, the most general case for us is a junction
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containing both S and F regions, but the results trivially generalize to systems with
only S or F barriers by setting the corresponding scattering coefficients to zero.

The retarded Green function is then obtained by inserting the ansatz in the form
of Eq. (4.45) into the boundary condition in Eq. (4.42). This yields an equation of
the form

C0 +C1 e−2ikex+C2 e−2ikhx+C3 ei(ke−kh)x+C4 e−i(ke−kh)x+C5 e−i(ke+kh)x = 1
ivF

τ̂3σ̂3,

(4.55)
where ke/h = E ± µ and the Ci are 4 × 4-matrices whose elements consist of all
contributions from the ansatz Eq. (4.45) which do not depend on position. Eq. (4.55)
is fulfilled for arbitrary choice of x, x′ if

C0 = 1
ivF

σ3τ3

C1 = C2 = C3 = C4 = C5 = 04×4.

Solving all these equations leads to expressions for the coefficients αij, βij. Addi-
tionally, some equations lead to relations between the scattering coefficients present
in φi(x) and φ̃j(x). One finds

α31 = − th4
ivF(te4th3 − te3th4) α41 = th3

ivF(te4th3 − te3th4)

α32 = te4
ivF(te4th3 − te3th4) α42 = − te3

ivF(te4th3 − te3th4)

β13 = − t̃h4
ivF(t̃e4t̃h3 − t̃e3t̃h4) β14 = t̃h3

ivF(t̃e4t̃h3 − t̃e3t̃h4)

β23 = t̃e4
ivF(t̃e4t̃h3 − t̃e3t̃h4) β24 = − t̃e3

ivF(t̃e4t̃h3 − t̃e3t̃h4)

(4.56)

and
re1 = r̃e1, rh2 = r̃h2 , re2 = r̃h1 , rh1 = r̃e2. (4.57)

Eqs. (4.56) and (4.57) are enough to simplify the general ansatz for the retarded
Green function. One can combine both lines in the ansatz Eq. (4.45) in one compact
expression. The blocks of the retarded Green function are of the form

GR
ee(x, x′, E) = 1

ivF

(
θ(x− x′) eike(x−x′) 0

e−ike(x+x′) re1 θ(x′ − x) e−ike(x−x′)

)
(4.58a)

GR
eh(x, x′, E) = 1

ivF

(
0 0
0 e−(ikex+ikhx′) re2

)
(4.58b)

GR
he(x, x′, E) = 1

ivF

(
e−(ikhx+ikex′) rh1 0

0 0

)
(4.58c)

GR
hh(x, x′, E) = 1

ivF

(
θ(x′ − x) e−ikh(x−x′) e−ikh(x+x′)rh2

0 θ(x− x′) eikh(x−x′)

)
. (4.58d)

The diagonal terms of GR
ee, corresponding to the diagonal elements of Eqs. (4.58a)

and (4.58d), contain a step function to account for the discontinuity. Physically,
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this feature corresponds to the helical nature of the edge states. The diagonals are
associated with mere propagation of a specific particle with a given spin. Due to
helicity, motion is only possible in one direction for each spin projection. Note that
the positions x, x′ can be thought of as corresponding to two times t, t′. Hence, the
↑↑-component of GR

ee, for instance, is only finite if the “later” position x is larger,
i.e., further to the right, than x′.

Furthermore, the offdiagonal terms in Eq. (4.58) correspond to a reflection pro-
cess, which turns a rightmover into a leftmover of opposite spin. It is worth pointing
out that the offdiagonal matrix elements of the retared Green function in Eq. (4.58)
are proportional to the associated scattering coefficient.

4.3.1.2 Right lead

Following the same steps as in the previous section, one can calculate the retarded
Green function if both spatial arguments are within the right lead. Note that in
this case the states φ3,4, φ̃3,4 are composed of incoming and reflected modes, while
φ1,2, φ̃1,2 only contribute transmitted modes. The system of equations resulting from
the boundary condition is solved for

α31 = − t̃h2
ivF(t̃e2t̃h1 − t̃e1t̃h2) α41 = t̃e2

ivF(t̃e2t̃h1 − t̃e1t̃h2)

α32 = t̃h1
ivF(t̃e2t̃h1 − t̃e1t̃h2) α42 = − t̃e1

ivF(t̃e2t̃h1 − t̃e1t̃h2)

β13 = − th2
ivF(te2th1 − te1th2) β14 = te2

ivF(te2th1 − te1th2)

β23 = th1
ivF(te2th1 − te1th2) β24 = − te1

ivF(te2th1 − te1th2) ,

(4.59)

and
re4 = r̃h3 , rh3 = r̃e4, re3 = r̃e3, rh4 = r̃h4 . (4.60)

The retarded Green function is then readily obtained and reads

GR
ee(x, x′, E) = 1

ivF

(
θ(x− x′) eike(x−x′) eike(x+x′) re3

0 θ(x′ − x) e−ike(x−x′)

)
(4.61a)

GR
eh(x, x′, E) = 1

ivF

(
eikex+ikhx′

re4 0
0 0

)
(4.61b)

GR
he(x, x′, E) = 1

ivF

(
0 0
0 eikhx+ikex′

rh3

)
(4.61c)

GR
hh(x, x′, E) = 1

ivF

(
θ(x′ − x) e−ikh(x−x′) 0

eikh(x+x′) rh4 θ(x− x′) eikh(x−x′)

)
. (4.61d)

4.3.1.3 Nonlocal retarded Green function

The nonlocal retarded Green function where both spatial arguments are placed in
opposite leads cannot be obtained in an analogous fashion. This is because the
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boundary condition Eq. (4.42) relates the two pieces in the ansatz for the retarded
Green function if their spatial arguments are equal, which is impossible for nonlocal
correlations by definition.

However, note that the coefficients αij, βij are constants which do not depend
on position. Therefore, we can use the solutions either from solving the boundary
condition in the left or the right lead, i.e., Eq. (4.56) or Eq. (4.59). More specifically,
since the coefficients also cannot depend on where the boundary condition is solved,
the solutions in Eqs. (4.56) and (4.59) need to be equal. This implies further relations
between tilded and non-tilded coefficients, reading

te1 = t̃e3, te3= t̃e1, te2 = t̃h3 , te4= t̃h1 ,

th1 = t̃e4, th3= t̃e2, th2 = t̃h4 , th4= t̃h2 .
(4.62)

The ansatz for the nonlocal retarded Green function with spatial arguments in
opposite leads then assumes a simple form using Eqs. (4.57), (4.60) and (4.62) and
either the solutions for αij, βij from Eqs. (4.56) and (4.59). For x < x′, which
corresponds to a propagation from the right to the left lead, we find

GR,<(x, x′, E) = 1
ivF


0 0 0 0
0 e−ike(x−x′) te3 e−ikex+ikhx′

te4 0
0 e−ikhx+ikex′

th3 e−ikh(x−x′) th4 0
0 0 0 0

 (4.63a)

whereas for x > x′, i.e., propagation from left to right lead, one has

GR,>(x, x′, E) = 1
ivF


eike(x−x′) te1 0 0 eikex−ikhx′

te2
0 0 0 0
0 0 0 0

eikhx−ikex′
th1 0 0 eikh(x−x′) th2

 . (4.63b)

We introduce a superscript <,> to distinguish these two cases. Note that these are
still retarded Green functions and should not be confused with lesser and greater
Green functions familiar from the Keldysh formalism.

As before, observe how the entries in Eq. (4.63) are proportional to the corre-
sponding scattering coefficient. In particular, we see that GR,<(x, x′, E) only con-
tains processes connecting electrons and holes with spin ↓, in agreement with our
convention for the helical edge states. Accordingly, the only nonzero elements of
GR,>(x, x′, E) are between electrons and holes with spin ↑. Note that, essentially,
we have explicitly derived the Fisher-Lee relation for the system at hand [153].

4.3.2 Symmetry classification

4.3.2.1 Local anomalous Green function

It is now straightforward to show that unconventional superconductivity is inevitable
in hybrid junctions on the basis of helical edge states. We start by discussing the
local retarded Green functions from Sections 4.3.1.1 and 4.3.1.2.
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In the left lead, the only nonzero element of the anomalous retarded Green
function GR

eh(x, x′, E) reads

[GR
eh]↓↑(x, x′, E) = 1

ivF
e−(ikex+ikhx′) re2, (4.64)

corresponding to the Andreev reflection of an spin ↑ hole into a spin ↓ electron.
Clearly, since the ↑↓-element of GR

eh(x, x′, E) is zero due to helicity, the decomposi-
tion in spin space according to Eq. (4.48) results in

fR
0 (x, x′, E) = −fR

3 (x, x′, E) = 1
2ivF

e−(ikex+ikhx′) re2. (4.65)

This means that helicity necessarily implies local spin singlet and triplet pairing of
equal amplitude, and therefore an inevitable emergence of unconventional supercon-
ductivity. A similar argument can be made for the anomalous Green function in the
right lead.

For the sake of brevity, we refer the reader to Refs. [117,154] for a more detailed
symmetry analysis of local pairing amplitudes, especially with respect to even- and
odd-frequency pairing.

4.3.2.2 Nonlocal anomalous Green function

Focussing on the anomalous part GR
eh(x, x′, E) of the nonlocal retarded Green func-

tions, i.e., the upper right block of Eqs. (4.63a) and (4.63b), we extract

[GR,<
eh ]↓↓(x, x′, E) = 1

ivF
e−ikex+ikhx′

te4 (4.66a)

and
[GR,>

eh ]↑↑(x, x′, E) = 1
ivF

eikex−ikhx′
te2. (4.66b)

They are clearly proportional to the crossed Andreev reflection of a hole injected
from the right [Eq. (4.66a)] and left [Eq. (4.66b)], respectively. Notably, the nonlocal,
anomalous retarded Green function only has equal-spin components and is therefore
manifestly a triplet correlation function. Note that this is clearly a consequence of
helicity together with both proximity induced superconductivity (converting elec-
trons and holes into each other) and magnetism (allowing spins to mix). Hence,
nonlocal anomalous correlation functions in heterostructures at the helical edge are
always unconventional and go beyond the singlet superconducting order provided
by the “parent” superconductor.

However, categorizing the pairing amplitude into the ETO and OTE symmetry
classes by analyzing the even- or oddness under x ↔ x′ and E → −E is not
straightforward. To see this, let us introduce the equal-spin triplet components of
the anomalous Green function defined as

fR,≷
± (x, x′, E) = fR,≷

1 (x, x′, E)∓ fR,≷
2 (x, x′, E), (4.67)

which is only another variable name for the equal-spin elements in Eq. (4.66) [+
(−) refers to ↑↑ (↓↓)]. In order to classify the pairing according to Eq. (4.54), we
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would either need to compare the pairings fR,≷
± (x, x′, E) under the exchange x↔ x′,

or compare fR,≷
± (x, x′, E) with the associated pairing function from the advanced

Green function fA,≷
± (x, x′,−E). Both of these comparisons are not well defined.

First, the pairings do not have a partner in the same spin channel under x↔ x′

because of helicity, since propagation from left to right (right to left) is tied to spin
↑ (↓).

Strikingly, the same is true for comparing retarded and advanced Green func-
tions: while the retarded Green function corresponds to an expectation value with
respect to a positive relative time between the two field operators, see the defini-
tion in Eq. (4.38), the advanced Green function correlates events with a negative
relative time. Thus, in our helical system, the nonlocal advanced Green function
GA(x, x′, E) in the spin ↑ channel will only be nonzero if x < x′, i.e.,

[GA,<
eh ]↑↑ 6= 0, [GA,>

eh ]↑↑ = 0. (4.68)

Of course, this can be checked straightforwardly by using the relation between re-
tarded and advanced Green functions, see Eq. (4.51). In conclusion, the advanced
Green function which would be the partner to, for instance, fR,>

+ is zero. The same
argument can be made for the other nonzero pairings.

In order to resolve this issue, we now construct an antisymmetric correlation
function which is manifestly odd under the exchange of spins, positions, and the
transformation E → −E. To that end, we combine the general relation between
retarded and advanced Green function in Eq. (4.51) with particle-hole symmetry, as
shown in Eqs. (4.49) and (4.50). This leads to the relation

[GA
eh]σσ′(x, x′, E) = −[GR

eh]σ′σ(x′, x, E) (4.69)

between elements in the electron-hole block of interest.
To see why this is useful, we explicitly construct the scalar spin-singlet and

pseudovector spin-triplet components

fR
µ (x, x′, E) =


fR

0 (x, x′, E) ≡ [GR
eh]↑↓(x, x′, E)− [GR

eh]↓↑(x, x′, E)
fR

3 (x, x′, E) ≡ [GR
eh]↑↓(x, x′, E) + [GR

eh]↓↑(x, x′, E)
fR

+ (x, x′, E) ≡ [GR
eh]↑↑(x, x′, E)

fR
+ (x, x′, E) ≡ [GR

eh]↓↓(x, x′, E),

(4.70)

where the index µ = 0, 3,± denotes the spin channel. Furthermore, we introduce
the exchange of spin indices by introducing indices with a bar µ̄, such that

fR
µ̄ (x, x′, E) = (−fR

0 (x, x′, E), fR
j (x, x′, E)) (4.71)

with j = 3,±.
Next, we furthermore symmetrize with respect to positions and define

fR
±,µ(x, x′, E) = fR

µ (x, x′, E)± fR
µ (x′, x, E). (4.72)

Note that so far we only repeated the problem described above, since the last sym-
metrization step is again problematic for nonlocal pairing amplitudes.
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However, one can perform the same construction for the advanced anomalous
Green function GA

eh, leading to amplitudes fA
±,µ. Due to the relation to the retarded

Green function in Eq. (4.69), they obey

fA
±,µ(x, x′, E) = fA

µ (x, x′, E)± fA
µ (x′, x, E) = −fA

µ̄ (x, x′,−E)∓ fA
µ̄ (x′, x,−E)

= ∓fR
±,µ̄(x, x′,−E).

(4.73)
It is now easy to see that the correlation function F (x, x′, E) = GR

eh(x, x′, E) +
GA
eh(x, x′, E) is antisymmetric under the exchange of spins and positions and E →
−E, i.e.,

[F (x, x′, E)]σσ′ = −[F (x′, x,−E)]σ′σ. (4.74)

Furthermore, one can construct its components f±,µ(x, x′, E) symmetrized with
respect to positions and spins in the same fashion as retarded and advanced Green
functions. Importantly, they fulfill

f±,0(x, x′, E) = ±f±,0(x, x′,−E) (4.75a)
f±,j(x, x′, E) = ∓f±,j(x, x′,−E), (4.75b)

with j = 3,±. The first line Eq. (4.75a) clearly shows that the singlet even (odd) in
spatial coordinates is also even (odd) in frequency and thus defines the singlet ESE
and OSO classes. Eq. (4.75b) tells us that the triplet even (odd) in positions is odd
(even) in frequency, giving rise to the triplet OTE and ETO pairing classes.

4.4 Nonlocal pairing in SFS-hybrid junctions

In this section, we put the technical definitions of the previous sections to use and
explicitly calculate nonlocal pairing amplitudes in an SFS-heterostructure based
on helical edge states. In particular, we compare them with resonances due to
Majorana and Andreev quasi-bound states. For completeness, we note that the
relation between local pairing amplitudes, in particular odd-freqency pairing, and
Majorana bound states has been explored in Refs. [117,154–161].

First, following the previous section we can write down an expression for the
nonlocal pairing amplitude between left and right lead. As explained above, due to
helicity they need to be spin-polarized. Using the result from Eq. (4.66), we find
[introducing spatial coordinates xL ( xR) in the left (right) lead]

f±,+(xR, xL, E) = 1
ivF

eiµ(xL+xR)
[
e−iE(xL−xR)te2(E)∓ eiE(xL−xR)te2(−E)

]
(4.76a)

in the spin ↑↑-channel and

f±,−(xR, xL, E) = ∓ 1
ivF

e−iµ(xL+xR)
[
eiE(xL−xR)te4(E)∓ e−iE(xL−xR)te4(−E)

]
(4.76b)

in the spin ↓↓-channel. The latter is now nonzero because of the symmetrization
procedure, even though we fixed the coordinates in opposite leads.

As mentioned before, we discuss a system as in Section 3.3.2 and Fig. 3.11 with
finite S barriers. We take the widths of left (SL) and right (SR) superconductors
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(a) (b)

Figure 4.1: Density plot of the squared moduli of the nonlocal triplet pairings in the
↑↑ channel as a function of position and energy. As explained in the main text, one
spatial argument is fixed at x = −ξ0 in the left lead, while the other is swept across
the junction. We show the odd-frequency pairing f+,+ in the OTE-class in panel
(a), and the even-frequency pairing f−,+ in the ETO-class in panel (b). The widths
of left (SL) and right (SR) superconductors are chosen to be dSL = dSR = 1.5ξ0,
and the phase difference is ϕ = 0. Note that by the convention in this section,
the left superconducting region is confined to [0, 1.5ξ0] and the right S region to
[5.25ξ0, 6.75ξ0].

to be dSL = dSR = 1.5ξ0, with ξ0 the coherence length. For convenience, we shift
the origin to the interface of the left lead and the left superconductor and start the
analysis at phase difference ϕ = 0.

For brevity, we focus on f±,+ and thus the spin ↑↑-channel, but an analogous
analysis can be done for f±,−.

In order to see the nonlocal amplitudes unfold, we take the following approach.
First, in Fig. 4.1 we fix one spatial argument in the left lead, one coherence length ξ0
away from the left superconductor, and sweep the other one across the junction. We
furthermore plot the pairings as a function of energy, with the odd- (even-)frequency
pairing to the left (right). Clearly, the nonlocal amplitudes build up within the left
superconducting barrier and show rich behavior within the junction (in Fig. 4.3, we
show cuts of the density plots and sketch the different regions for better illustration).
Due to the interplay of superconductors and ferromagnet, CAR across the junction
is possible such that the pairing amplitude remains finite when the variable spatial
argument is within the right lead.

Interestingly, both OTE [panel (a)] and ETO [panel (b)] pairings seem to be
enhanced at energies associated with quasi-bound state resonances. To make this
connection explicit, we calculate the local density of states (LDOS) ρ(E, x) from the
retarded Green function according to

ρ(E, x) = − 1
π

Im
[
Tr
(
GR(x, x, E

)]
. (4.77)
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Figure 4.2: Cut of the absolute square of the nonlocal OTE amplitude f+,+ (green)
and ETO amplitude f−,+ (purple) from Fig. 4.1 at the interface of right supercon-
ductor and right lead at x = 6.75ξ0. Additionally, in dashed black we plot the
local density of states ρNL within the left intermediate N region, normalized to the
constant value in the leads.

We focus on the LDOS within the NL region ρNL(E) = ρ(E, xNL), since we know
from the previous chapter that bound states are trapped between S and F barriers.
In Fig. 4.2 we compare the LDOS within NL and cuts of the pairings in Fig. 4.1 along
the interface between the right superconductor and the right lead. Evidently, the
pairing is enhance for quasi-bound state resonances. Furthermore, we see that the
low-energy resonances associated with hybridized MBSs in an SFS-system with semi-
infinite outer superconductors are dominated by the odd-frequency pairing compo-
nent, while the higher energy Andreev resonances are more mixed. The connection
between odd-frequency pairing and Majorana bound states is the main result of
Ref. [118]. Note that these pairings can equivalently be evaluated using Eq. (4.76).

To analyze the difference between the Majorana- and Andreev-induced pairings
in more detail, we show cuts along the energies of LDOS-peaks in Fig. 4.3. Interest-
ingly, there seems to be a qualitative difference, since at E ≈ 0.141∆0 (left panel)
the behavior is more stable and less oscillatory than at E ≈ 0.843∆0 (right panel).
Furthermore, note that the odd-frequency component for the lower energy peak only
starts to dominate the even-frequency pairing to the right of the ferromagnet.

As a last step, we discuss how the established behavior of nonlocal odd- and
even-frequency pairing changes when the phase difference between the supercon-
ductors is varied and thus the hybridization of the bound states changes. Thus, in
Fig. 4.4 we show the phase dependence of the nonlocal pairing between left lead
and superconductor-right lead interface as in Fig. 4.2. Moreover, we add the ener-
gies of the LDOS-peaks as a dashed line. We find that except around ϕ = π, the
low-energy Majorana quasi-bound states are always dominated by odd-frequency
pairing, whereas the even-frequency component shows a dip at these resonant en-
ergies. The picture at the ABS-energies is less clear and both pairings can have
roughly comparable magnitude (just as in Fig. 4.2), but overall the ETO pairing
appears to be the dominating one.
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(a) (b)

Figure 4.3: Cuts of nonlocal OTE amplitude f+,+ (green) and ETO amplitude f−,+
(purple) from Fig. 4.1 along the energies E = 0.141∆0 [panel (a)] and E = 0.843∆0
[panel (b)] associated with quasi-bound state resonances.

(a) (b)

Figure 4.4: Plot of the nonlocal OTE [panel (a)] and ETO [panel (b)] pairings
between x′ = −ξ0 and the right S-right lead interface at x = 6.75ξ0 as a function of
energy and phase difference ϕ, compared to the maxima of the LDOS ρNL shown by
the dashed green line.
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Figure 5.1: Schematic depiction of the proposed device. We consider an SFS-system
proximity coupled to helical edge states, where spin ↑ (↓) electrons represented by
the green (brown) arrow travel to the right (left). The edge states connect a left (L)
and a right (R) reservoir at chemical potential µ = 0 and temperatures T0 + θ and
T0, respectively. Here, µ = 0 and T0 are chemical potential and temperature of the
superconductors, see main text. Note that we model the temperature dependence
of the pairing potential according to ∆(T ) = ∆0 tanh

(
1.74

√
Tc
T
− 1

)
such that ∆0

corresponds to the zero-temperature value. The latter also defines a length scale via
the coherence length ξ0 = ~vF/∆0. Throughout the chapter, we take the widths of
the superconducting barriers to be dSL = dSR = ξ0, the widths of the normal regions
are dNL = 0.4ξ0, dNR = 0.9ξ0, and the ferromagnetic region dF = 0.6ξ0, unless
specified otherwise. Furthermore, our standard convention is Tc = ∆0, T0 = Tc/2,
θ = Tc/4 and ϕ = π/2. Note that for most of the chapter, we set ~ = vF = kB = 1
where kB is the Boltzmann constant. Adapted from Ref. [136], copyright (2020) by
The American Physical Society.

One of the promises of the study of unconventional superconductivity is the field
of superconducting spintronics, which aims to utilize triplet superconductivity and
Cooper pairs with finite net spin for future information technology [12,143,162,163].
Typically, one uses hybrid junctions out of standard s-wave superconductors and fer-
romagnets to carefully manipulate the singlet pairing from the bulk superconductor
and turn it into a triplet amplitude. This requires a high level of control over
nanoscale magnetic building blocks.

Furthermore, S-F structures are known to be excellent thermoelectrics. Usually,
superconducting materials by themselves show very small thermoelectric signatures,
since particle-hole symmetry forces transport to be symmetric with respect to the
Fermi surface. In conjunction with magnetic fields, however, the density of states
in the superconductors can become spin-split. Together with a spin-filtering trans-
port mechanism, the electron-hole coupling in the superconductor can actually be
exploited to create asymmetric transport [164–176].

In this chapter, we present a synthesis of these two research areas. We employ
an SFS-system and helical edge states as a spin filter, to allow for nonlocal CAR
processes. Following Chapter 4, these are associated with a spin-polarized anomalous
Green function and thus spin-polarized Cooper pairs. In the following, we first show
that the system as depicted in Fig. 5.1 shows a thermoelectric effect which is in
fact dominated by nonlocal CAR events. Subsequently, we present evidence that
the equal-spin Cooper pairs responsible for the thermoelectric effect also induce
enhanced supercurrents. We therefore propose a device which turns a temperature
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difference into triplet Cooper pairs and possibly even spin-polarized supercurrent.
This chapter builds on similar ideas in different settings, i.e., thermoelectric effects
in Andreev interferometers [177,178] and in Cooper pair-splitters [179–182].

We remark that the idea pursued in this chapter brings us close to the field of
quantum thermodynamics, which studies how temperature, heat, entropy and other
quantities familiar from classical thermodynamics translate into quantum systems.
This is especially interesting with respect to possible nanoscale devices converting
heat into useful work (heat engine) or using electrical power to direct heat flow from
cold to warm baths (refrigeration), for instance. For a comprehensive introduction
into the topic, we refer the reader to the superb reviews [183–188] and references
therein.

5.1 Current operators and average current

5.1.1 Current operators

We start the discussion by deriving the charge current operator. To that end, we
need to consider the charge density n(x) given by

n(x) = e (n↑ + n↓) = e
(
ψ†↑ψ↑ + ψ†↓ψ↓

)
. (5.1)

The time evolution of the charge density is determined by the commutator of
n(x) and the Hamiltonian H according to (we set ~ = 1)

∂tn(x) = i [H,n(x)] , (5.2)

where we write the Hamiltonian in the standard, non-BCS fashion as

H = H0 +H∆ +Hm, (5.3)

with the normal part

H0 =
∫

dx
[
ψ†↑(x) (−ivF∂x − µ)ψ↑(x) + ψ†↓(x) (ivF∂x − µ)ψ↓(x)

]
, (5.4)

the term describing proximity induced s-wave superconductivity

H∆ =
∫

dx
[
∆(x)eiϕψ↓(x)ψ↑(x) + ∆(x)e−iϕψ†↑(x)ψ†↓(x)

]
, (5.5)

and finally the contribution from the ferromagnetic regions

Hm =
∫

dx
(
ψ†↑(x), ψ†↓(x)

)
m(x) · σ̂

(
ψ↑(x)
ψ↓(x)

)
. (5.6)

It is instructive to evaluate the commutator for each contribution toH separately.
To that end, we make use of the relation

[AB,CD] = −AC {D,B}+ A {C,B}D − C {D,A}B + {C,A}DB (5.7)
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where {A,B} = AB+BA denotes the anticommutator, as well as standard fermionic
anticommutation rules {

ψσ(x), ψ†σ′(y)
}

= δσσ′δ(x− y). (5.8)

We then find

[H0, nσ(x)] = ievF sgn(σ)
(
ψ†σ(x)∂xψσ(x) + (∂xψ†σ(x))ψσ(x)

)
= ievF sgn(σ)∂x (nσ(x)) ,

(5.9)

where sgn(↑) = +1, sgn(↓) = −1. Note that the chemical potential does not influ-
ence the commutator at all.

From the superconductor, one obtains the result

[H∆, n↑ + n↓] = −e∆eiϕ (ψ↑ψ↓ − ψ↓ψ↑)− e∆e−iϕ
(
ψ†↑ψ

†
↓ − ψ

†
↓ψ
†
↑

)
, (5.10)

where we omitted the position dependence for clarity.
Crucially, the contribution from the ferromagnetic part vanishes,

[Hm, n↑ + n↓] = 0, (5.11)

since it neither contains a derivative as H0, nor an anomalous term as the supercon-
ductor, such that the individual anticommutators can readily be shown to cancel.

With these commutators at hand, we can write out the continuity equation for
the charge current in the form

∂tn(x) + ∂xÎ(x) + S = 0, (5.12)

where the charge current operator1 due to particle propagation is

Î(x) = −vF [n↑(x)− n↓(x)] = −evF
[
ψ†↑ψ↑ − ψ

†
↓ψ↓

]
, (5.13)

and the source term stemming from the superconductor reads

S = ie∆
[
eiϕ (ψ↑ψ↓ − ψ↓ψ↑) + e−iϕ

(
ψ†↑ψ

†
↓ − ψ

†
↓ψ
†
↑

)]
. (5.14)

Hence, the current operator Î in Eq. (5.13) simply counts the difference between
left- and rightmovers. The source term arises since the pairing term H∆ breaks
charge conservation by allowing for Cooper pairs to be added or removed from the
condensate. Note that ∆ in Eq. (5.14) is the modulus and the phase dependence is
explicitly written out in the bracket. Note that the supercurrent is obtained from
the source term via

ÎS(x) =
∫

dx′ S(x). (5.15)

1We explicitly signal the operator nature here to avoid confusion with the charge current aver-
ages later on.
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5.1.2 Average currents

The expressions for the charge- and supercurrent in Eq. (5.13) and Eqs. (5.14)
and (5.15) are not immediately useful. The reason why we cannot simply take the
average right away is that the field operators ψ†σ, ψσ are not the appropriate basis.
Thus, the average should instead be taken with respect to fermionic quasiparticles2

diagonalizing the Hamiltonian, which we introduced in Section 3.1.3.
Furthermore, note that we assume scattering within the heterostructure to be

elastic. Hence, equilibration only takes place within the reservoirs, and particles
carry information about the reservoir they originate from with them until they
reach another one. For this reason, a natural basis for the evaluation of the average
current are the scattering states.

For this section, we adopt the following convention. Scattering state φE,1 (φE,2)
corresponds to an electron (hole) coming in from the left at energy E, whereas
scattering state φE,3 (φE,4) is associated with an electron (hole) at energy E coming
in from the right. The components of the scattering states are written as φE,j =
(u↑,j(E), u↓,j(E), v↓,j(E), v↑,j(E))T. Additionally, we set vF = 1 in the following.

Note that in our description of proximity induced superconductivity at the he-
lical edge, there is no quasiparticle3 injection from or escape into the parent bulk
superconductor. Accordingly, the only contributions to the charge current are the
standard particle current as well as the supercurrent contribution from the Cooper
pair condensate.

We start by rewriting the current operator to properly take advantage of the
Nambu formalism. For our purposes we need to express the current operator in a
particle-hole symmetric fashion in terms of the Nambu spinors

Î(x) = −e
(
ψ†↑ψ↑ − ψ

†
↓ψ↓

)
= −1

2e
(
ψ†↑ψ↑ − ψ↑ψ

†
↑ − ψ

†
↓ψ↓ + ψ↓ψ

†
↓

)

= −1
2e

(
ψ†↑, ψ

†
↓, ψ↓,−ψ↑

)
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



ψ↑
ψ↓
ψ†↓
−ψ†↑


= −1

2e Ψ† [τ̂0 σ̂3] Ψ .

(5.16)

This expression now corresponds to the common physical interpretation of holes
contributing to the current, but with opposite sign. This rewriting is not strictly
necessary. However, the symmetrized expression gives a result which is easier to
deal with and can be connected to the Anantram-Datta formula in Ref. [189].

Before inserting the relation between field operators and Bogoliubov quasiparticle
operators from Eq. (3.27) in Section 3.1.3, note that there are four scattering states
but only two independent fermionic degrees of freedom: The field operators ψ↑, ψ↓
representing spin up/down electrons, and two Bogoliubov operators γi, γj. This is

2In this specific instance, quasiparticle refers to the solution of the effective BdG-Hamiltonian
of the helical edge states with proximity induced superconductivity.

3Here we really do refer to the quasiparticles in the parent superconductor.
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ensured by particle-hole constraint on the BdG formalism. It guarantees that for
every solution φE,j there is a charge conjugated one CφE,j = φ−E,jc . Equivalently,
this means that the creation operator γ†E,j has a partner annihilation operator via
γ†E,j = γ−E,jc .

One way forward is thus to choose two scattering states and eliminate the charge
conjugated ones. We then end up with two Bogoliubov quasiparticles and can treat
them as ordinary fermions. If we kept four Bogoliubov operators, we would end up
with ambiguous cross terms such as 〈γE,iγE′,j〉, which should be zero for i 6= j. If
they are, however, related by charge conjugation, i.e. i = jc, this is no longer the
case.

Let us make this explicit for our particular problem. For now, our interest is
solely in the asymptotic form of the scattering states in the left and right leads
and we set any details within the system aside. The states have asymptotic forms
reading (we introduce an additional superscript in order to specify the lead)

φL
E,1(x) =


eikex

seeLL e−ikex

sheLL e−ikhx

0

 , φL
E,2(x) =


0

sehLL e
−ikex

shhLL e−ikhx

eikhx

 ,

φL
E,3(x) =


0

seeLR e−ikex

sheLR e−ikhx

0

 , φL
E,4(x) =


0

sehRL e−ikex

shhRL e−ikhx

0


(5.17a)

in the left lead and

φR
E,1(x) =


seeRL eikex

0
0

sheRL eikhx

 , φR
E,2(x) =


sehRL eikex

0
0

shhRL eikhx

 ,

φR
E,3(x) =


seeRR eikex

e−ikex

0
sheRR eikex

 , φR
E,4(x) =


sehRR eikex

0
e−ikhx

shhRR eikhx


(5.17b)

in the right lead. The momenta are given by ke/h = E ± µ. In Eq. (5.17), sαβij is
the scattering coefficient associated with a particle of type β coming in from lead j
to be scattered into a particle of type α exiting the system in lead i. Note that the
scattering coefficients are solely determined by the asymptotic form of the scattering
states in the leads in Eq. (5.17), since inside the system they are given by completely
general superpositions of eigenstates in the intermediate regions. Therefore, the
linear equations that produce the scattering coefficients for the different scattering
states really only differ where the leads are involved.

This observation is crucial. Note that we can link scattering states 1 and 2 as
well as 3 and 4, respectively, by observing that

φE,2(x) = −C [φ−E,1(x)] and φE,4(x) = C [φ−E,3(x)] , (5.18)
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if

sᾱβ̄iL (E) = −[sαβiL (−E)]∗ and sᾱβ̄iR (E) = [sαβiR (−E)]∗ , (5.19)

where ᾱ = h/e if α = e/h. The additional sign for scattering states 1 and 2 is
due to the choice of basis and the convention that the incoming current is always
represented by an amplitude of +1. The point of this exercise is the conclusion that

φE,2 = −φE,1c and φE,4 = φE,3c , (5.20)

indicating that we can express the scattering states 2 and 4 through the scattering
states 1 and 3.

Recall from Section 3.1.3 that the quasiparticle operators can be expressed as

γE,j =
∫

dx
[
φ∗E,j(x)

]T
Ψ(x) =

∫
dx

[
u∗↑,jψ↑ + u∗↓,jψ↓ + v∗↓,jψ

†
↓ − v∗↑,jψ

†
↑

]
(5.21)

and

γ†E,j =
∫

dx [φE,j(x)]T Ψ†(x) =
∫

dx
[
−v↑,jψ↑ + v↓,jψ↓ + u↓,jψ

†
↓ + u↑,jψ

†
↑

]
. (5.22)

Using the notation CφE,j = φ−E,jc , this directly implies

γ†E,j = γ−E,jc (5.23)

and also, combining Eqs. (5.20) and (5.23),

γE,2 = −γ†−E,1 and γE,4 = γ†−E,3. (5.24)

With that, we can rewrite the field operators by making use of the relations between
the components uσ,i, vσ′,j that Eq. (5.18) implies. More specifically[

u↑,2γE,2 − v∗↑,2γ
†
E,2 + u↑,4γE,4 − v∗↑,4γ

†
E,4

]
=
[
−v∗↑,1(−E) γ†−E,1 + u↑,1(−E)γ−E,1 − v∗↑,3(−E)γ†−E,3 + u↑,3(−E)γ−E,3

] (5.25a)

[
u↓,2γE,2 + v∗↓,2γ

†
E,2 + u↓,4γE,4 + v∗↓,4γ

†
E,4

]
=
[
v∗↓,1(−E) γ†−E,1 + u↓,1(−E)γ−E,1 + v∗↓,3(−E)γ†−E,3 + u↓,3(−E)γ−E,3

]
,

(5.25b)

where we have explicitly reinstated the energy dependence of the components after
the equal sign to emphasize the sign reversal. We see that substituting the terms
from scattering states 2 and 4 by using particle-hole symmetry leads to expressions
that are equivalent to the contributions from states 1 and 3 to the field operators
(cf. Eq. (3.27) in Section 3.1.3) , but with a sign in the energy dependence.

Explicitly, inserting Eqs. (5.25a) and (5.25b) into a continuum-version of the
definition of the field operators in Section 3.1.3 gives

ψ↑ =
∫ ∞
−∞

dE√
2π

[
u↑,1(E)γE,1 − v∗↑,1(E)γ†E,1 + u↑,3(E)γE,3 − v∗↑,3(E)γ†E,3

]
(5.26a)

ψ↓ =
∫ ∞
−∞

dE√
2π

[
u↓,1(E)γE,1 + v∗↓,1(E)γ†E,1 + u↓,3(E)γE,3 + v∗↓,3(E)γ†E,3

]
, (5.26b)
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where we now integrate over all energies.
Importantly, the quasiparticle operators in Eq. (5.26) fulfill

〈γ†E,iγE′,j〉 = δi,j δ(E − E ′) f ie(E)
= δi,j δ(E − E ′) f0(E, Ti, µi),

〈γE,iγ†E′,j〉 = δi,j δ(E − E ′)
(
1− f ie(E)

)
= δi,j δ(E − E ′) f ih(−E),

〈γE,iγE′,j〉 = 〈γ†E,iγ
†
E′,j〉 = 0 ,

(5.27)

where f ie(E, Ti, µi) ≡ f0(E, Ti, µi) = (exp((E − µi)/kBTi) + 1)−1 is the usual (elec-
tronic) Fermi distribution function, f ih(E) ≡ f0(E, Ti,−µi) = (exp((E+µi)/kBTi)+
1)−1 is the hole distribution function, and Ti and µi are temperature and chemical
potential in lead i, respectively. Note that the Bogoliubov quasiparticles create or-
thogonal states since we removed the redundancy, and hence the factor of δi,j where
i, j ∈ {1, 3}.

With the help of Eqs. (5.26) and (5.27), we can now finally calculate the expec-
tation value of the current operators derived in the previous section. For the particle
contribution, we find

〈Î(x)〉 = 1
2
e

h

∑
i=1,3

∫ ∞
−∞

dE
[
|u↑,i|2 f ie(E) + |v↑,i|2 f ih(−E)

− |u↑,i|2 f ih(−E)− |v↑,i|2 f ie(E)
− |u↓,i|2 f ie(E)− |v↓,i|2 f ih(−E)
+ |u↓,i|2 f ih(−E) + |v↓,i|2 f ie(E)

]
,

(5.28)

where we omit the energy and position dependence of the components for brevity
and restored Planck’s constant h. Eq. (5.28) allows us to calculate the particle
current contribution at every position x within the junction.

The average supercurrent is given by

IS =
∫

dx′〈S(x)〉, (5.29)

where the average of the source term can be evaluated with the help of Eqs. (5.26)
and (5.27). We obtain

〈S(x)〉 = −2e∆
∑
j=1,3

∫ ∞
−∞

dE
{[

Im
(
e−iϕu∗↑,jv↓,j

)
+ Im

(
e−iϕu∗↓,jv↑,j

)]
f je (E)

−
[
Im

(
e−iϕv↑,ju

∗
↓,j

)
+ Im

(
e−iϕv↓,ju

∗
↑,j

)]
f jh(−E)

}
.

(5.30)

The supercurrent in the left or right superconductor is then given by taking the
integral in Eq. (5.29) over the respective regions.
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5.2 Nonlocal thermoelectric current dominated by An-
dreev processes

5.2.1 The setup and average current

The stage is now set to apply the expression for the average particle contribution to
the current. The setup we have in mind is rather specific, however, we are going to
see why it is chosen this way.

In essence, we want to make use of the fact that the nonlocal pairing can only
happen in the equal-spin channel and thus probe the transmission probabilities.
Doing so by a temperature bias allows us to favor CAR over EC. We choose to
apply the bias to the left of the system and calculate the current in the right lead.
Explicitly, we are going to see that this amounts to realizing equilibrium between
the S regions and the right reservoir, but to keep the left reservoir at a higher
temperature.

The current in the right lead is obtained from Eq. (5.28) by taking x→∞, which
is equivalent to using the asymptotic form of the scattering states in Eq. (5.17b).
Furthermore, we need to include a global sign in order to comply with the convention
that positive current flows out of a reservoir. In the system of interest here, this
amounts to an effective reversal of direction with respect to the current derived in
Eq. (5.28). We obtain

IR = 1
2
e

h

∫ ∞
−∞

dE
[ (

1− |seeRR(E)|2 + |sheRR(E)|2
)
fRe (E)

+
(
−1 + |seeRR(E)|2 − |sheRR(E)|2

)
fRh (−E)

+
(
−|seeRL(E)|2 + |sheRL(E)|2

)
fLe (E)

+
(
|seeRL(E)|2 − |sheRL(E)|2

)
fLh (−E)

]
.

(5.31)

By using the particle-hole symmetry of the scattering coefficients in Eq. (5.19) and
taking E → −E in the terms proportional to f ih(−E), the average current in the
right lead acquires the form

IR = 1
2
e

h

∫ ∞
−∞

dE
[ (

1− |seeRR(E)|2 + |sheRR(E)|2
)
fRe (E)

+
(
−1 + |shhRR(E)|2 − |sehRR(E)|2

)
fRh (E)

+
(
−|seeRL(E)|2 + |sheRL(E)|2

)
fLe (E)

+
(
|shhRL(E)|2 − |sehRL(E)|2

)
fLh (E)

]
.

(5.32)

This is manifestly in the form familiar from the seminal paper by Anantram and
Datta [189]. The first two lines in Eq. (5.32) can be interpreted as the contribu-
tion from electrons and holes injected from the right, while the following lines are
associated with transmission processes from electron and hole injection from the
left.
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More insight can be gained by recalling that due to the unitarity of the scattering
matrix, we have ∑

j,α

|sβαij |2 = 1 and
∑
i,β

|sβαij |2 = 1, (5.33)

from which the explicit relations

|seeLL|2 + |sehLL|2 + |seeLR|+ |sehLR| − 1 = |shhLL|2 + |sheLL|2 + |shhLR|+ |sheLR| − 1 = 0 (5.34)

follow.
Therefore, we can formally add zero to Eq. (5.32) and append the terms∫ ∞

−∞
dE

[(
|seeLL|2 + |sehLL|2 + |seeLR|+ |sehLR| − 1

)
fS

−
(
|shhLL|2 + |sheLL|2 + |shhLR|+ |sheLR| − 1

)
fS
]
,

(5.35)

where we choose fS to be the equilibrium Fermi function in the superconductor, i.e.
fS ≡ f0(E, TS, 0) = fSe = fSh so that electrons and holes obey the same distribution
function. Regrouping the terms inside the sum in Eq. (5.35) gives

−fS
[(

1− |seeLL|2 + |sheLL|2
)

+
(
−|seeLR|+ |sheLR|

)
−
(
1− |shhLL|2 + |sehLL|2

) (
−|shhLR|+ |sehLR|

)]
,

(5.36)

and adding them to Eq. (5.32) finally yields

IR = 1
2
e

h

∫ ∞
−∞

dE
[(

1− |seeRR|2 + |sheRR|2
) (
fRe − fS

)
−
(
1− |shhRR|2 + |sehRR|2

) (
fRh − fS

)
+
(
−|seeRL|2 + |sheRL|2

) (
fLe − fS

)
−
(
−|shhRL|2 + |sehRL|2

) (
fLh − fS

)]
.

(5.37)

By noticing that (f jα − fS)(E) = −(f jᾱ − fS)(−E) and |sαβij (E)| = |sᾱβ̄ij (−E)| due
to particle-hole symmetry, with ᾱ = h, e if α = e, h, the terms for hole injection in
Eq. (5.37) can be folded back onto the terms for electron injection. We thus end up
with

IR = e

h

∫ ∞
−∞

dE
[(

1− |seeRR|2 + |sheRR|2
) (
fRe − fS

)
+
(
−|seeRL|2 + |sheRL|2

) (
fLe − fS

)]
.

(5.38)
In Eq. (5.38), the first term is due to local reflections of particles injected from
reservoir R, while the second term corresponds to the nonlocal contribution from
transmitted particles, which have been injected from the left. One can readily see
that the current is solely due to nonlocal processes as soon as the right reservoir
is at equilibrium with the superconductors, i.e., TR = TS = T0 and µR = µS =
0. Furthermore, since our objective is a purely thermoelectric effect, we also set
µL = 0 such that there is no voltage bias between the reservoirs. We introduce the
temperature difference θ as the new key variable and parametrize the temperature
of the left reservoir as TL = T0 + θ.
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As a result, the nonlocal current IR = IeeR + IheR can be separated in a normal
part

IeeR = −I0

∫ ∞
−∞

dE
∆0

T eeRL(E) δf(E) (5.39a)

and an Andreev contribution

IheR = I0

∫ ∞
−∞

dE
∆0

T heRL(E) δf(E), (5.39b)

where we define TαβRL = |sαβRL|2 to simplify the notation slightly. Furthermore, we
made the integrand dimensionless by introducing I0 = e∆0/h and the abbreviation
δf(E) = fL

e (E, T0 + θ, 0)− fS(E, T0, 0).
Eq. (5.39b) represents the connection between the thermally induced charge cur-

rent and unconventional superconductivity. To see this, recall Section 4.3.2.2, where
we showed that nonlocal CAR processes are closely related to the spin-polarized,
triplet component of the anomalous Green function. Since the latter can be inter-
preted as a Cooper pair wave function, one can interpret nonlocal CAR events as
a signature of unconventional superconductivity. We are going to explore the con-
sequences for the supercurrent in Section 5.4 and relate the thermoelectric effect to
odd-frequency superconductivity in Section 5.5.

Importantly, δf is odd in energy and thus fulfills

δf(−E) = −δf(E). (5.40)

Note that this is in stark contrast to a voltage bias V between two reservoirs at the
same temperature. Indeed, the difference of Fermi functions in that case would be
even and obey

f0(E, T, V/2)− f0(E, T,−V/2) = f0(−E, T, V/2)− f0(−E, T,−V/2). (5.41)

Note that the terms in Eq. (5.35) are equivalent to contributions which arise by
using the well-known formula from Ref. [189] if a superconducting reservoir with
quasiparticle injection is included. Accordingly, setting the scattering coefficients
into/out of the superconductor to zero is effectively equivalent to the sum rules
Eq. (5.34) and adding zeros as in Eq. (5.35). Strikingly, this means that Eq. (5.38)
holds even in the presence of quasiparticle exchange with the bulk superconductor.
In that case, however, the scattering amplitudes connecting reservoirs L and R would
no longer add up to unity.

5.2.2 Characterization of the effect

The result of the previous section in Eq. (5.39) makes it clear what we are looking
for. Since CAR is typically weaker than EC, the only way to have the Andreev
contribution dominate the normal one is by making CAR more asymmetric than
EC.

Apart from a temperature difference between the leads, there are three crucial
requirements for this peculiar thermoelectric effect: (i) phase difference ϕ 6= nπ,
with n ∈ Z; (ii) base temperature T0 ≈ Tc/2; (iii) an asymmetry in the junction,
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Figure 5.2: Plot of the EC amplitude T eeRL(E) (purple) and CAR amplitude T heRL(E)
(yellow) together with the difference of Fermi functions δf(E) (black) as functions
of energy, where the parameters are set to their standard values given in Fig. 5.1.
Adapted from Ref. [136], copyright (2020) by The American Physical Society.

most easily achieved by unequal widths of the N regions, such that dNL 6= dNR. In
the following, we will first explore the influence of these parameters on the nonlocal
current and state the explanation for it. In the following section, we are going to
provide a detailed derivation for it.

We start by plotting the normal and crossed Andreev transmission probabilities
together with δf in Fig. 5.2 for a representative set of parameters (see caption, these
values will be used throughout the chapter unless explicitly stated otherwise), most
notably ϕ = π/2 and with temperatures T0 = Tc/2 and θ = Tc/2. Just by bare
inspection of the plot we see that the CAR probability is far more asymmetric in
energy. On the relevant energy scale which will mainly contribute to the integral,
set by T and θ, the EC amplitude is close to being symmetric, and we expect the
EC contribution to the nonlocal charge current to be small. In contrast, the CAR
probability has an asymmetry that matches the integration window very well.

We show the resulting nonlocal currents as a function of the temperature gradient
θ in Fig. 5.3 (a), with the other parameters the same as in Fig. 5.2. First, at
θ = 0 the reservoirs are in equilibrium and there is of course no current. Increasing
the temperature difference leads to a finite charge current, which indeed is hugely
dominated by the CAR contribution. While this is true for both θ > 0 and θ < 0,
we are going to restrict the discussion to the former case and positive temperature
differences in the following.

Next, Fig. 5.3 (b) depicts the behavior of the currents in dependence of the
phase difference ϕ. They show a Josephson-like sinusoidal behavior, and strikingly,
the CAR contribution is dominating the charge current for all values of ϕ. The
phase difference is revealed as an ideal parameter to tune the magnitude and sign
of the effect. Note that the currents even vanish for ϕ = nπ with n ∈ Z, such that
the phase difference can be used to switch the effect off entirely.
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Figure 5.3: Plots of the contributions to the nonlocal charge current as a function of
(a) the temperature difference θ, (b) the phase difference across the junction ϕ, (c)
the base temperature T0, and (d) the width of the right intermediate normal region
dNR. Corresponding to the colors in Fig. 5.2, the normal contribution IeeR (Andreev
contribution IheR ) is shown in purple (yellow). The total nonlocal current IR is
represented by the black dashed line. Panels (a)–(c) are adapted from Ref. [136],
copyright (2020) by The American Physical Society.
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Figure 5.4: Schematic depiction of the wave function amplitudes a(i)
α , b

(i)
α , p

(i)
α ,m

(i)
α

at the interfaces across the system. The shaded blue (pink) areas correspond to
the superconducting (ferromagnetic) barriers. Solid green (brown) arrows indicate
rightmoving modes with spin ↑ (leftmoving modes with spin ↓), while solid (dashed)
lines refer to electrons (holes). Adapted from the supplemental material of Ref. [136],
copyright (2020) by The American Physical Society.

The influence of the base temperature T0 at θ = T0/4 fixed is shown in Fig. 5.3
(c). The thermoelectrically produced charge current is largest for T0 close to Tc/2.
Furthermore, only for T0 & Tc/2 does the Andreev contribution dominate. This is
due to the fact that for these temperatures the asymmetry of the CAR amplitude
fits well to the difference of Fermi functions δf . For lower base temperatures, the
maximum and minimum of δf move closer to E = 0 and also pick up the asymmetry
of the EC probability.

Lastly, in Fig. 5.3 (d) we plot the nonlocal charge current as a function of the
width of the right N region dNR. First, note that at dNR = dNL (dashed vertical line)
the Andreev contribution vanishes. Except for a few special points, an asymmetric
choice for dNR leads to a finite Andreev contribution dominating the current. We
also see that increasing dNR suppresses IeeR . This is because a wider N region leads
to denser quasi-bound state resonances and thus more peaks in the normal trans-
mission, which results in an even more pronounced averaging out of the normal
contribution to the current.

5.3 Mechanism of the effect

The previous section clearly shows that an Andreev dominated nonlocal electric cur-
rent can be achieved rather generically for a wide range of parameters. Furthermore,
the phase difference ϕ between the superconductors is an ideal candidate to tune
the effect. In particular, as we have seen it seems as if suppressing the normal con-
tribution is guaranteed as long as the base temperature is large enough so that the
integration window averages over the subgap resonances. In contrast, the nonlocal
Andreev current is very sensitive to the phase difference and the widths of the inter-
mediate normal regions. This suggests that the underlying physics is different. In
this section, we first present an illustrative solution to the scattering problem in our
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SFS-heterostructure which provides some insight into the mechanism. Afterwards,
we show that the constraint from particle-hole symmetry on that solution is enough
to account for almost all signatures discussed in Section 5.2.2.

5.3.1 Solving the scattering problem

The method we employ here is similar to the way we obtained resonance conditions
for bound states by combining scattering matrices for pieces of the full scattering
problem. Note that throughout this section, we use tαβij with i 6= j for transmissions
and rαβii for reflection coefficients in order to make it easier to distinguish them.

We adopt the convention illustrated in Fig. 5.4. within the junction, the ampli-
tudes of modes associated with right-(left-)moving particles and holes are denoted
p

(i)
e/h (m(i)

e/h), where (i) refers to the number of the interface for clarity.
The outmost SN-interfaces connect the modes within the system to the asymp-

totic components corresponding to the incoming and outgoing amplitudes. In line
with previous sections, they are labeled a(i)

e/h and b(i)
e/h, respectively. The full scatter-

ing matrix of the system then relates them according to
b(1)
e

b
(1)
h

b(6)
e

b
(6)
h

 = S


a(1)
e

a
(1)
h

a(6)
e

a
(6)
h

 , (5.42)

with
S =

(
R T ′

T R′

)
(5.43a)

and

R =
(
reeLL rehLL
rheLL rhhLL

)
, R′ =

(
reeRR rehRR
rheRR rhhRR

)
, T =

(
teeRL tehRL
theRL thhRL

)
, T ′ =

(
teeLR tehLR
theLR thhLR

)
.

(5.43b)
In a similar fashion, we can connect the modes within the structure by the

scattering matrices of the individual barriers. In contrast to Chapter 3, however,
we want the scattering coefficients of the individual S and F barriers to not contain
the phase shift due to a translation of the barriers. The solutions to the BdG-
Hamiltonian within the N regions are given by (note that we set µ = 0)

φe+(x) = eiEx


1
0
0
0

 , φe−(x) = e−iEx


0
1
0
0

 , φh−(x) = e−iEx


0
0
1
0

 , φh+(x) = eiEx


0
0
0
1

 ,
(5.44)

where + (−) corresponds to right-(left-)moving electrons (e) or holes (h). Therefore,
we need to build the scattering matrix between interfaces (i) and (i+1) from the so-
lutions φα±(x−x(j)) and φα±(x−x(j+1)), where x(j) is the position of the j-th interface.
Note that this convention also means that the normal regions acquire a scattering
matrix whose elements merely reflect a phase factor describing propagation. This
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factor was contained within the scattering matrix of the barriers in Chapter 3. The
relations between left- and rightmoving modes inside the junction then read

b(1)
e

b
(1)
h

p(2)
e

p
(2)
h

 = SSL


a(1)
e

a
(1)
h

m(2)
e

m
(2)
h

 with SSL =


0 rehSL(11) teeSL(12) 0

rheSL(11) 0 0 thhSL(12)
teeSL(21) 0 0 rehSL(22)

0 thhSL(21) rheSL(22) 0

 ,
(5.45a)

m(2)
e

m
(2)
h

p(3)
e

p
(3)
h

 = SNL


p(2)
e

p
(2)
h

m(3)
e

m
(3)
h

 with SNL =


0 0 teeNL(23) 0
0 0 0 thhNL(23)

teeNL(32) 0 0 0
0 thhNL(32) 0 0

 ,
(5.45b)

m(3)
e

m
(3)
h

p(4)
e

p
(4)
h

 = SF


p(3)
e

p
(3)
h

m(4)
e

m
(4)
h

 with SF =


reeF(33) 0 teeF(34) 0

0 rhhF(33) 0 thhF(34)
teeF(43) 0 reeF(44) 0

0 thhF(43) 0 rhhF(44)

 ,
(5.45c)

m(4)
e

m
(4)
h

p(5)
e

p
(5)
h

 = SNR


p(4)
e

p
(4)
h

m(5)
e

m
(5)
h

 with SNR =


0 0 teeNR(45) 0
0 0 0 thhNR(45)

teeNR(54) 0 0 0
0 thhNR(54) 0 0

 ,
(5.45d)

m(5)
e

m
(5)
h

b(6)
e

b
(6)
h

 = SSR


p(5)
e

p
(5)
h

a(6)
e

a
(6)
h

 with SSR =


0 rehSR(55) teeSR(56) 0

rheSR(55) 0 0 thhSR(56)
teeSR(65) 0 0 rehSR(66)

0 thhSR(65) rheSR(66) 0

 .
(5.45e)

Note that there are 16 equations in Eqs. (5.45a)–(5.45e) which do not involve
the outgoing amplitudes b(i)

α . These can be used to solve for the coefficients p(i)
α ,

m(i)
α which are then going to be given in terms of a(i)

α . As a last step, one can
plug these solutions back into the four equations in Eqs. (5.45a) and (5.45e) for
the outgoing coefficients b(i)

α . They are then directly given in terms of the incoming
coefficients a(j)

α , such that we can read off the global scattering matrix elements of
S in Eq. (5.42).

The CAR coefficient is given in the form

theRL = t1 + t2
1−Σ = (t1 + t2)

∞∑
n=0
Σn, (5.46)

where we rediscover the self-energies from Fig. 3.12 in Section 3.3.2 given by

Σ = ΣL
1 + ΣR

1 − ΣL
1 ΣR

1 + Σ↑2 + Σ↓2 − Σ↑2Σ↓2 + Σe
3 + Σh

3 (5.47)
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Figure 5.5: Sketch of the contributions to the crossed Andreev reflection coefficient
theRL. The shaded areas and arrows follow the same convention as Fig. 5.4. As ex-
plained in the main text, t1,2 are the lowest order transmissions involving the smallest
possible number of reflections and transmissions through the S and F barriers. The
self-energies ΣL/R

1 , σ↑/↓2 and Σe/h
3 correspond to closed loops within the heterostruc-

tures, closely related to bound states. Figure taken from Ref. [136], copyright (2020)
by The American Physical Society.
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and shown again in Fig. 5.5, together with the two lowest order processes t1 and
t2. Note that we here use a different convention regarding the scattering coefficients
and explicitly keep track of the phases picked up during propagation, such that
the expressions for the self-energies take a slightly different form in terms of the
scattering coefficients in this chapter. However, the result stays the same.

Strikingly, Eq. (5.46) implies a straightforward interpretation of the CAR co-
efficient. It is the sum of two terms t1 and t2 corresponding to the lowest order
processes contributing to CAR (also see Fig. 5.5), with the additional insertion of
all possible closed loops labeled ΣL/R

1 ,Σ↑/↓2 ,Σe/h
3 .

Eq. (5.46) has two important consequences. First, we see that the CAR coeffi-
cient is proportional to the sum of the two lowest order processes, which means that
the transmission probability will depend on the interference of both paths. Second,
the closed loops affect both t1 and t2 in the exact same way, making interference
between the two possible.

5.3.2 Implications for nonlocal currents

One can further analyze the decomposition of the CAR coefficient in order to see
the consequences for the nonlocal charge current.

As a first step, notice that the loops ΣL/R
1 consist of all reflections and all four

modes propagating through NL and NR, respectively. Hence, they should themselves
be particle-hole symmetric and fulfill

ΣL/R
1 (E) =

(
ΣL/R

1 (−E)
)∗
, (5.48a)

or, more specifically

Re
[
ΣL/R

1 (E)
]

= Re
[
ΣL/R

1 (−E)
]
, Im

[
ΣL/R

1 (E)
]

= − Im
[
ΣL/R

1 (−E)
]
. (5.48b)

By the same logic, the terms Σ↑/↓2 and Σe/h
3 should be connected by particle-hole

symmetry among themselves, such that

Σ↑2(E) =
(
Σ↓2(−E)

)∗
, Σe

3(E) =
(
Σh

3(−E)
)∗
, (5.49)

and thus

Re
[
Σ↑2(E)

]
= Re

[
Σ↓2(−E)

]
, Im

[
Σ↑2(E)

]
= − Im

[
Σ↓2(−E)

]
,

Re
[
Σe

3(E)
]

= Re
[
Σh

3(−E)
]
, Im

[
Σe

3(E)
]

= − Im
[
Σh

3(−E)
]
.

(5.50)

As a next step, we define auxiliary complex functions u(E), w(E), z(E) as

u(E) = ΣL
1 (E) + ΣR

1 (E)− ΣL
1 (E)ΣR

1 (E),
w(E) = Σ↑2(E) + Σ↓2(E)− Σ↑2(E)Σ↓2(E),
z(E) = Σe

3(E) + Σh
3(E),

(5.51)

which implies u+ w + z = Σ. Importantly,

u∗(E) = u(−E), w∗(E) = w(−E), z∗(E) = z(−E), (5.52)
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due to Eqs. (5.48) and (5.49). Now Eq. (5.52) directly implies

[Σ(E)]∗ = Σ(−E), (5.53)

from which we immediately see that |Σ| is an even function of E.
To extract information about the full crossed Andreev reflection coefficient, we

bring Eq. (5.46) in the form

theRL = (t1 + t2) 1−Σ∗
1 + |Σ|2 −Σ −Σ∗ , (5.54)

where the denominator d(E) = 1 + |Σ(E)|2 − Σ(E) − (Σ(E))∗ is a real number
with the properties

d∗(E) = d(−E) ⇒ |d(E)|2 = |d(−E)|2. (5.55)

Furthermore, the numerator of the second term in Eq. (5.54), i.e., n(E) = 1 −
(Σ(E))∗, obeys

n∗(E) = n(−E) ⇒ |n(E)|2 = |n(−E)|2. (5.56)

Hence, the modulus of all higher order corrections represented by the term 1/(1 −
Σ) = d/n is an even function of energy. However, since the finite thermoelectric
current is only possible if there is a finite antisymmetric contribution to the CAR
coefficient, Eq. (5.46) implies that the asymmetry must be rooted in the interference
of the two lowest-order paths.

To explicitly show this, we consider the first term in Eq. (5.54) responsible for
the interference effect. Explicitly, we obtain

t1 + t2 = teeSL(21)t
ee
NL(32)t

hh
NR(54)t

hh
SR(65)

(
reeF(33)t

ee
NL(23)r

he
SL(22)t

hh
NL(32)t

hh
F(43)

+teeF(43)t
ee
NR(54)r

he
SR(55)t

hh
NR(45)r

hh
F(44)

)
.

(5.57)

Taking advantage of the analytical expressions for the coefficients, we can write

thhF(43) = teeF(43), reeF(33) = rhhF(44), rheSR(55) = eiϕ rheSL(22)

teeNL(23) = thhNL(32) = eidNLE, and teeNR(54) = thhNR(45) = eidNRE.
(5.58)

Consequently, we can readily express Eq. (5.57) as

t1 + t2 = teeSL(21)t
ee
NL(32)t

hh
NR(54)t

hh
SR(65)r

ee
F(33)r

he
SL(22)t

ee
NR(54)

(
e2idNLE + e2idNRE+iϕ

)
, (5.59)

which has the form
t1 + t2 = 2|t̃(E)|eiτ(E) cos (Λ/ 2). (5.60)

In Eq. (5.60), we defined the phase difference between the two lowest order paths as

Λ = ϕ+ 2(dNR − dNL)E, (5.61)

as well as included an unimportant global phase τ . The absolute value t̃(E) is even
in energy and thus fulfills |t̃(E)| = |t̃(−E)| due to particle-hole symmetry.
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Putting together the results from Eqs. (5.54)–(5.56) and (5.60), we arrive at the
final expression for the squared modulus of the CAR coefficient, which reads

|theRL|2 = T heRL(E) = γ(E,ϕ) cos2 [ϕ/2 + (dNR − dNL)E] . (5.62)

the function γ(E,ϕ) is even in E and defined as

γ(E,ϕ) = 4|t̃(E,ϕ)|2|n(E,ϕ])|2
|d(E,ϕ)|2 . (5.63)

In conclusion, the antisymmetric contribution to the CAR amplitude is solely due
to the interference of the two paths. The self-energies only lead to a correction which
is even in energy, by influencing the factor γ(E,ϕ). Interestingly, the contribution
to the CAR amplitude which is odd in energy can be extracted using Eq. (5.62) and
reads

T heRL(−E)− T heRL(E) = γ(E,ϕ) sin [2E (dNR − dNL)] sin [ϕ] . (5.64)

The compact relations in Eqs. (5.62) and (5.64) are enough to explain a lot of the
features of the CAR amplitude and the nonlocal current in Fig. 5.3. In particular,
for our standard set of parameters we have ϕ = π/2, dNL = 0.4ξ0, dNL = 0.9ξ0 and
thus dNR − dNL = 0.5ξ0. In Eq. (5.62) the cosine is zero if

ϕ/2 + (dNR − dNL)E = π/2, (5.65)

which happens at E = π/2 ·∆0. Going back to Fig. 5.2, we see that at this energy
the CAR amplitude is indeed suppressed.

5.4 Supercurrent

In the previous sections, we established that a temperature bias can be used to probe
the CAR-amplitude in a heterostructure on the basis of helical edge states. Since
CAR necessarily involves equal-spin triplet pairing, the nonlocal charge current can
be interpreted as resulting from the creation/annihilation of equal-spin Cooper pairs.
However, the current in the right lead itself is a standard charge current carried
by particles. Thus, in this section we are going to explore how the supercurrent
injected/extracted from the S regions is influenced by the thermoelectric effect we
propose.

A good starting point for the discussion of the supercurrent is a setup with the
same parameters as before, but without temperature gradient, i.e., θ = 0. Since in
this case the nonlocal charge current is zero, the supercurrent as a function of the
phase difference ϕ will provide a good baseline to compare to. Furthermore, it is
helpful to consider the influence of the magnetic region as well, since varying the
in-plane strength of the magnetic field m‖ is a way to introduce CAR in a controlled
fashion.

Accordingly, in Fig. 5.6, we show the supercurrent in both SL and SR as a
function of the phase difference for multiple values of m‖, without [(a)] and with
[(b)] a temperature gradient θ = Tc/4. Starting with the θ = 0 case, the supercurrent
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(a) (b)

Figure 5.6: Plot of the phase dependence of the supercurrents ISL (solid lines) and
ISR (dashed lines) for θ = 0 [panel (a)] and θ = Tc/4 [panel (b)]. In both cases, we
show the supercurrents for different values of the magnetic field strength m‖, where
we vary from m‖ = 0 (gray line) to m‖ = 1.5∆0 (purple line) in steps of 0.5∆0. The
stronger the purple in the lines, the higher is the field strength.
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Figure 5.7: The supercurrent in SL and SR regions as a function of the magnetic field
strength m‖ for θ = 0 (blue) and θ = Tc/4 (red). Solid (dashed) lines correspond
to ISL (ISR) as in Fig. 5.8 (a) and (b), respectively. Figure adapted from Ref. [136],
copyright (2020) by The American Physical Society.
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(a) (b)

Figure 5.8: Plot of the supercurrent in the left superconductor SL (a) and the
right superconductor SR (b) as a function of the temperature difference between
the reservoirs θ and for different values of the in-plane magnetic field m‖. We vary
from m‖ = 0 (gray line) to m‖ = 1.5∆0 (purple line) in steps of 0.5∆0 and the field
strength increases with the intensity of purple.

is clearly sinusoidal and opposite in both S regions, which is the expected Josephson-
like current-phase relation. The magnetic field suppresses the supercurrent slightly,
which is due to the fact that the F region induces normal scattering processes.
The picture changes completely for a finite thermal bias. While the supercurrent
without magnetic field is roughly the same, its amplitude is greatly enhanced if a
ferromagnet is present and grows with the in-plane field. Interestingly, upon turning
on the temperature gradient the sign of the current switches, if the magnetic field
is large enough. To illustrate this last point better, we show the supercurrents as a
function of the in-plane field strength m‖ for θ = 0 and θ = Tc/4 in Fig. 5.7, where
we fix the phase difference ϕ = π/2.

Lastly, in order to emphasize that the temperature gradient indeed drives a
supercurrent, in Fig. 5.8 we show ISL,SR as a function of θ for different values of
m‖ and again at ϕ = π/2. Evidently, it is the interplay of a thermal bias and the
presence of a ferromagnet what leads to a drastic change of the supercurrent.

The behavior of the supercurrent presented in this section serves as evidence
that the Cooper pairs involved in the nonlocal CAR processes influence the current
in the superconducting contacts. There is a strong influence of the magnetic field,
which opens up the possibility for CAR itself as well as the interference in the first
place. This hints at the interpretation that a temperature difference indeed drives
spin-polarized Cooper pairs and consequently induces the supercurrent.

5.5 Thermoelectricity as a signature of odd-frequency
superconductivity

We close this chapter by making a connection from the thermoelectric effect to the
classification of nonlocal pairing amplitudes discussed in Chapter 4. The idea is
actually very simple: since the thermally generated nonlocal current relies on the
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CAR amplitude having a contribution which is odd in energy, it is only natural to
ask whether there is a connection with nonlocal odd-frequency pairing. This has
been explored in a quantum dot setting in Ref. [190].

To address this point, we make use of the analytical expression for the nonlocal
pairings in Eq. (4.76). Adding even- and odd-frequency contributions straightfor-
wardly yields

f+,+(xR, xL, E) + f−,+(xR, xL, E) = 1
ivF

eiµ(xL+xR) e−iE(xL−xR) sehRL(E). (5.66)

Note that the notation for the scattering coefficients in the present chapter differs
from Chapter 4, and recall that sehRL(E) is the CAR coefficient associated with a hole
from the left being transmitted as an electron into the right lead. In the language
of Chapter 4, this corresponds to the coefficient te2 associated with scattering state
2.

Solving for the transmission coefficient, we can bring Eq. (5.66) in the form

sehRL(E) = ivF e−iµ(xL+xR) eiE(xL−xR) (f+,+(xR, xL, E) + f−,+(xR, xL, E)) . (5.67)

We note that due to particle hole symmetry, this coefficient is related to the
CAR process of an electron from the left being transmitted as a hole via sehRL(E) =[
sheRL(−E)

]∗
. Hence, we can rephrase Eq. (5.67) in terms of the scattering coefficient

sheRL(E), which is more in line with the rest of the chapter. We find[
sheRL(E)

]∗
= ivF e−iµ(xL+xR) e−iE(xL−xR) (−f+,+(xR, xL, E) + f−,+(xR, xL, E)) ,

(5.68)
where we used the even- and oddness in energy of the pairing amplitudes.

Eq. (5.68) has immediate consequences for our discussion of the nonlocal current,
since the absolute square of it reads

|sheRL(E)|2 = |f+,+(xR, xL, E)|2 + |f−,+(xR, xL, E)|2

−2 Re [(f+,+(xR, xL, E))∗ f−,+(xR, xL, E)] .
(5.69)

The first two terms are trivially even and thus do not contribute to the thermoelectric
current. Crucially, however, if there is both a finite even- and a finite odd-frequency
pairing amplitude, the third term is odd in energy and thus results in a finite nonlocal
charge current in the presence of a temperature bias. In conclusion, a nonlocal
Andreev current generated by a temperature gradient is a smoking gun signature
for coexisting ETO and OTE pairing.
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6
Conclusion

A common feature of topological phases of matter as a part of modern condensed
matter physics and the scope of this thesis is the enormous amount of connec-
tions they have to other branches of physics, or even other scientific fields. More
specifically, the Kitaev chain discussed in Chapter 2, for instance, is a deceptively
simple toy model which can be analyzed with rather simple tools. However, the
identification of topologically distinct phases and the appearance of bound states
at interfaces are at the heart of the study of topological systems, which, in turn,
is one of the most active research areas in physics today. From there, topology as
a subfield of mathematics is right around the corner, and the bulk-boundary corre-
spondence is deeply related to field theory and mathematics in the form of index
theorems. Furthermore, quite generally the quest for topological systems and mate-
rials is unthinkable without materials science, chemistry, and engineering. Physical
realizations of the Kitaev chain are no exception, and close collaboration between
both theoretical and experimental physicists and experts from the aforementioned
disciplines is paramount for the progress made in condensed matter physics in re-
cent years. Lastly, the potential use of Majorana fermions in quantum computation
opened up a whole new connection to basic quantum mechanics, quantum informa-
tion, and indirectly also to theoretical computer science. All these relations make
for an incredibly versatile and fascinating research environment.

On the other hand, for a beginning master or PhD student this richness could
sometimes be confusing and overwhelming. This was the target audience I had in
mind while writing this thesis, and therefore my goal was to make it accessible by
explaining the content in a quite detailed manner, rather than including as many
different aspects as possible. This is especially true of Chapters 3–5, which roughly
correspond to results of my own research.

Chapter 3 contains a detailed account of the Bogoliubov-de Gennes description
of superconducting hybrids at the helical edge, including the solutions of the Hamil-
tonian, the treatment in scattering theory, and the formation of bound states. The
connection of even small details in the formulas to the deep context of the underlying
physics is fascinating me, which I hope the chapter conveys.

In Chapter 4, we touch upon superconductivity as a classic topic of condensed
matter physics for basically the last century. However, through advances in nano-

118



Chapter 6. Conclusion

technology and the proximity effect, physicists today have a wide range of tools
available to create and study novel superconducting systems. Of course, this includes
the edge states of quantum spin Hall insulators, which we identify to be an ideal
candidate for unconventional superconductivity.

Picking up on one of the main results of Chapter 4 about the nature of nonlocal
anomalous correlations, we discuss a potential device turning a temperature gradi-
ent into an electric current dominated by crossed Andreev reflection in Chapter 5.
Not only does this connect to unconventional triplet and odd-frequency supercon-
ductivity, but it also provides an entry point into the interesting field of quantum
thermodynamics.

As a final remark, I would like to point towards natural extensions of the mate-
rial presented in this thesis. First, including interactions in one-dimensional systems
is often both necessary and immensely interesting, and helical edge states of QSHI
are no exception. Experimentally, there is growing evidence of interaction effects in
edge states of both HgTe/CdTe quantum wells and in bismuthene [36,37,191]. The-
oretically, upon introducing interactions Majorana bound states at the helical edge
can generalize to parafermions [192–196], which show even more exotic exchange
statistics and also hold potential for quantum computation [51, 197, 198]. However,
in order to work towards utilizing parafermions in devices, a crucial first step would
be to find strong experimental signatures for them.

Secondly, advances in nanotechnology have boosted the field of quantum ther-
modynamics, which we alluded to in Chapter 5. In the quest of developing powerful
and efficient quantum technology, QSHI edge states provide an interesting platform
for further research. While there have been efforts to study their utility for heat en-
gines or refrigerators [199–203], a more recent development is the so-called thermal
shot noise, or delta-T noise, i.e., current fluctuations for a temperature bias. Exper-
imental evidence has been reported in Refs. [204,205], while theoretical work started
to appear on tunnel junctions [206] and fractional quantum Hall edge states [207].
Remarkably, in Ref. [207] the authors argue that thermal shot noise is a unique tool
to study effects beyond the single-particle picture, i.e., due to interactions or exotic
exchange statistics. Hence, not only are helical edge states an interesting platform
for quantum thermodynamics, maybe quantum thermodynamics, in turn, provides
a way to access the remarkable interaction effects possible in such systems. As far-
fetched as it seems, it would provide a great deal of satisfaction and happiness to
me if someone, someday, follows this path and ties those loose ends together.
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A
Helical edge states basics

In this appendix, we provide detailed expressions for the solutions of the BdG-
Hamiltonian. As in the main text, we focus on the cases of a normal, free helical edge
without magnetism or superconductivity, as well as superconducting and magnetic
regions.

For completeness, we repeat the BdG-Hamiltonian here. Using the spinor Ψ(x) =
(ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x))T, it reads

H = 1
2

∫
dxΨ(x)†HBdG Ψ(x). (A.1)

The BdG-Hamiltonian can be composed as

HBdG = H0 +H∆ +Hm, (A.2)

where
H0 = vFp̂ τ̂3 ⊗ σ̂3 − µ τ̂3 ⊗ σ̂0 (A.3)

describes the free helical edge,

H∆ = [∆1 τ̂1 + ∆2 τ̂2]⊗ σ̂0 = [∆ cosϕ τ̂1 + ∆ sinϕ τ̂2]⊗ σ̂0 (A.4)

accounts for the proximity induced superconducting order, and

Hm = τ̂0 ⊗m(x) · σ̂ = τ̂0 ⊗
[
m‖ cosλ σ̂1 +m‖ sin λ σ̂2 +mz σ̂3

]
(A.5)

describes the effect of the magnetic field.
In the following, we set ~ = vF = 1. In normal regions, we model the system

with the BdG-Hamiltonian H0. Its eigenstates read

φN
e+ = eikex φe+, φN

e− = e−ikex φe−, φN
h− = e−ikhx φh−, φN

h+ = eikhx φh+,

(A.6)

with the vectors

φe+ = (1, 0, 0, 0)T, φe− = (0, 1, 0, 0)T, φh− = (0, 0, 1, 0)T, φh+ = (0, 0, 0, 1)T,
(A.7)
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and the momenta
ke/h = E ± µ. (A.8)

The subscript e (h) refers to electrons (holes), whereas + (−) indicates rightmovers
(leftmovers). Notice that the rightmovers correspond to spin ↑ field operators in the
spinor Ψ(x).

Within the superconducting regions, the BdG-Hamiltonian is given by H0 +H∆.
The structure of the eigenstates is more complicated, since we need to distinguish
energies above (|E| > 0) and below (|E| < ∆) the gap. Note that ∆ > 0 is the
modulus of the pairing potential.

It is helpful to introduce the function

ΩS(E,∆) =


√
E2 −∆2 E > ∆

i
√

∆2 − E2 |E| < ∆
−
√
E2 −∆2 E < −∆.

(A.9)

In the main text, we furthermore abbreviate
√

∆2 − E2 ≡ Ω (A.10)

for energies below the gap.
The eigenstates of the BdG-Hamiltonian are then given by (we drop the argu-

ments of ΩS for brevity)

χS
e+ = ei(ΩS+µ)x χe+, χS

e− = e−i(ΩS+µ)x χe−,

χS
h− = e−i(ΩS−µ)x χh−, χS

h+ = ei(ΩS−µ)x χh+,
(A.11)

with the vectors

χe+ = 1
N

(
e−iϕ(E + ΩS), 0,∆, 0

)T
, χe− = 1

N

(
0, e−iϕ(E + ΩS), 0,∆

)T

χh− = 1
N

(
e−iϕ∆, 0, (E + ΩS), 0

)T
, χh+ = 1

N

(
0, e−iϕ∆, 0, (E + ΩS)

)T
.

(A.12)
The normalization is given by N =

√
|E + ΩS|2 + ∆2. Note that the modes χS

e+/h+
are rightmovers above the gap, and below the gap become evanescent modes decaying
for growing x. Accordingly, the modes χS

e−/h− are leftmovers above the gap and turn
into evanescent waves decaying towards decreasing x. To make sure that this is true
for positive as well as negative energies, the difference in sign between the first and
third line in Eq. (A.9) is crucial.

A more convenient way of writing the eigenstates in superconducting regions is
made possible by the identities

earccoshx = x±
√
x2 − 1 for x ≷ ±1. (A.13a)

and
ei arccosx = x+ i

√
1− x2 for |1| < 1. (A.13b)

Observe that the square roots appearing in Eq. (A.13) match the definition of
ΩS(E,∆) in Eq. (A.9).
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Thus, above the gap the vectors χe/h± of the eigenstates within superconducting
regions can be written as

χe+ = 1
N ′

(
e−iϕ eA(E), 0, 1, 0

)T
, χe− = 1

N ′

(
0, e−iϕ eA(E), 0, 1

)T

χh− = 1
N ′

(
e−iϕe−A(E), 0, 1, 0

)T
, χh+ = 1

N ′

(
0, e−iϕe−A(E), 0, 1

)T
,

(A.14)

where we abbreviate A(E) = arccosh(E/∆). The normalization factor reads N ′ =√
1 + e2A(E).

Below the gap, we find

χe+ = 1√
2
(
e−iϕ eiη(E), 0, 1, 0

)T
, χe− = 1√

2
(
0, e−iϕ eiη(E), 0, 1

)T

χh− = 1√
2
(
e−iϕe−iη(E), 0, 1, 0

)T
, χh+ = 1√

2
(
0, e−iϕe−iη(E), 0, 1

)T
,

(A.15)

with the shorthand η(E) = arccos(E/∆). This is the form used in the main text to
derive Andreev reflection coefficients below the gap.

The eigenstates in F regions described by the BdG-Hamiltonian H0 + Hm are
very similar in structure to the ones in S regions. However, note that we need to
distinguish electron- and hole-blocks, because they differ in their sign in front of the
chemical potential. We define

ΩF,e(E,m‖) =


√

(E + µ)2 −∆2 E + µ > ∆
i
√

∆2 − (E + µ)2 |E + µ| < ∆
−
√

(E + µ)2 −∆2 E + µ < −∆
(A.16a)

and

ΩF,h(E,m‖) =


√

(E − µ)2 −∆2 E − µ > ∆
i
√

∆2 − (E − µ)2 |E − µ| < ∆
−
√

(E − µ)2 −∆2 E − µ < −∆,
(A.16b)

with the shorthands √
∆2 − (E ± µ)2 ≡ κe/h (A.17)

used in the main text.
The eigenstates are then found to be

ζF
e+ = eiΩF,ex−mzx ζe+, ζF

e− = e−iΩFx−mzx ζe−,

ζF
h− = e−iΩF,hx+mzx ζh−, ζF

h+ = eiΩF,hx+mzx ζh+
(A.18)

with the vectors

ζe+ = 1
Me

(
e−iλ(E + µ+ ΩF,e),m‖, 0, 0

)T
,

ζe− = 1
Me

(
e−iλm‖, (E + µ+ ΩF,e), 0, 0

)T
,

ζh− = 1
Mh

(
0, 0, e−iϕ(E − µ+ ΩF,h),m‖

)T
,

ζh+ = 1
Mh

(
0, 0, e−iϕm‖, (E − µ+ ΩF,h)

)T
.

(A.19)
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The normalization factors are Me/h =
√
|E + µ+ ΩmF,e/h|2 +m2

‖.

Following the same procedure as in the S regions, the square roots can be replaced
by exponentials. Above the gap we have the vectors

ζe+ = 1
M ′

e

(
e−iλ eBe(E), 1, 0, 0

)T
, ζe− = 1

M ′
e

(
e−iλ e−Be(E), 1, 0, 0

)T

ζh− = 1
Mh

(
0, 0, e−iϕ eBh(E), 1

)T
, ζh+ = 1

Mh

(
0, 0, e−iϕ e−B(E), 1

)T
(A.20)

with Be/h(E) = arccosh(E±µ)
m‖

) and M ′
e/h =

√
1 + e2Be/h .

Below the gap, the vectors can be written in the form

ζe+ = 1√
2
(
e−iλ eiρe(E), 1, 0, 0

)T
, ζe− = 1√

2
(
e−iλ e−iρe(E), 1, 0, 0

)T

ζh− = 1√
2
(
0, 0, e−iϕ eiρh(E), 1

)T
, ζh+ = 1√

2
(
0, 0, e−iϕ e−iρ(E), 1

)T
(A.21)

where ρe/h(E) = arccos(E±µ
m‖

). As with the eigenstates in the S regions, Eq. (A.21)
is the form we use in the main text.
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