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Abstract

One of the major motivations for the analysis and modeling of time series data

is the forecasting of future outcomes. The use of interval forecasts instead of

point forecasts allows us to incorporate the apparent forecast uncertainty.

When forecasting count time series, one also has to account for the discrete-

ness of the range, which is done by using coherent prediction intervals (PIs)

relying on a count model. We provide a comprehensive performance analysis

of coherent PIs for diverse types of count processes. We also compare them to

approximate PIs that are computed based on a Gaussian approximation. Our

analyses rely on an extensive simulation study. It turns out that the Gaussian

approximations do considerably worse than the coherent PIs. Furthermore,

special characteristics such as overdispersion, zero inflation, or trend clearly

affect the PIs' performance. We conclude by presenting two empirical applica-

tions of PIs for count time series: the demand for blood bags in a hospital and

the number of company liquidations in Germany.
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1 | INTRODUCTION

One of the major motivations for doing a time series
analysis is to enable the forecasting of future outcomes of
the underlying process. Often, this is done by computing
point forecast values, but these might be misleading
because of masking uncertainty and pretending spurious
accuracy. These problems are avoided if computing
interval forecasts instead. Furthermore, a prediction inter-
val (PI) also allows us to prepare different strategies
for the range of possible outcomes implied by the PI
(Chatfield, 1993). There has been much research

regarding PIs for continuous-valued time series; see, for
example, the review articles by Chatfield (1993) and de
Gooijer and Hyndman (2006). In the present work,
however, we are interested in an important class of
discrete-valued time series, namely count time series,
which consist of quantitative observations from the set of
nonnegative integers, N0 = f0,1,…g . Count time series
have attracted the interest of researchers and practi-
tioners over recent years (Weiß, 2018). Several models of
count time series have been proposed in the literature
(see Appendix A for a small selection), and they have
been used in diverse application scenarios ranging from
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health to business (see also Section 4). There have been a
few articles about PIs for common types of count
distribution (without a time aspect); see the review by
Hahn and Nelson (1973) for early works in this field, and
the articles by Wang (2008), Krishnamoorthy and
Peng (2011), and Bejleri and Nandram (2018) for more
recent contributions and references. In view of our later
investigations, it is worth pointing out that many of these
PIs rely on Gaussian approximations of the actual
count distribution, but articles on PIs for count time
series are rare. Lambert (1997) and Mukhopadhyay and
Sathish (2018) developed predictive-likelihood-based PIs
for generalized autoregressive moving-average (ARMA)
models, and data applications were reported by Freeland
and McCabe (2004) and Bejleri and Nandram (2018). The
article by Silva, Pereira, and Silva (2009) proposed a
Bayesian PI for the Poisson integer-valued autoregressive
process of order 1 (abbreviated “INAR(1)”) due to
McKenzie (1985), and it also presented some perfor-
mance analyses. However, a comprehensive study of PI
performance for various types of count processes
ðXtÞt2Z= f…,−1,0,1,…g is yet missing.

Remark 1. Some authors propose another way of
generating “trustworthy” coherent forecasts,
where the outcome of the prediction is the full
forecast distribution; see McCabe and Mar-
tin (2005), Snyder, Ord, and Beaumont (2012)
and Kolassa (2016). This approach can also be
combined with Bayesian forecast methodology, as
demonstrated by McCabe and Martin (2005) for
the aforementioned INAR(1) models. On the one
hand, the full forecast distribution is more infor-
mative than a PI, because it allows to judge, for
example, whether some counts are more likely to
be observed than others. On the other hand, it
may overstrain the practitioner to capture all this
information and to draw appropriate conclusions
from them, whereas the well-established concept
of PIs allows for an intuitive interpretation. So
both forecasting concepts have their pros and
cons, and in this article we focus on coherent
forecasting by PIs.

A comprehensive performance analysis of PIs for
count processes constitutes the first main objective of this
article. In addition, we shall distinguish between PIs that
explicitly rely on a count time series model (these are
referred to as “coherent PIs”) and PIs that build upon
a Gaussian ARMA approximation. The details are
described in Section 2. Notwithstanding the rich litera-
ture on forecasting count processes, ARMA approxima-
tions of count time series are still popular among

practitioners for several reasons. First, if the count values
are large, then Gaussian ARMA models may serve as
suitable approximating models; such approximations
continue to be standard practice (Chintalapudi,
Battineni, & Amenta, 2020). Studies that use ARMA
approximations for high count series rarely, if ever,
come with warnings of their inappropriateness for
low count series, leaving the general practitioner with
the impression of universal application of these approxi-
mations. Second, the reviews of forecasting methods
found in many textbooks and in the literature (e.g.,
Rahardja, 2020) focus exclusively on the continuous-
based methods with no mention of the unique challenges
of integer-based forecasting. Finally, these approxima-
tions are actually encouraged in many software plat-
forms; for example, with Orcale's ARIMA forecasting
within Crystal Ball, there is an option for the user to
round the forecast values (Oracle, 2017, p. 48). Therefore,
as an important second main objective, we compare the
performance of such approximate PIs to the performance
of the coherent PIs. It turns out that the Gaussian
approximations perform substantially worse than the
coherent PIs being based on an exact count model. The
detailed results of our analyses are presented in Section 3.
There, we start with the aforementioned Poisson INAR
(1) model (Section 3.1) as our baseline model, and we
extend the analysis to the following types of data-
generating process (DGP):

• INAR(1) processes with overdispersion and zero infla-
tion (Section 3.2);

• INARCH(1) processes as alternative AR(1)-like count
DGPs (Section 3.3);

• higher order autoregressions within the INAR and
INARCH family (Section 3.4);

• processes of bounded counts from these families
(Section 3.5) — that is, where the range of generated
counts is bounded from above by some given threshold
value n2N;

• nonstationary count processes with seasonality or
trend (Section 3.6).

A brief summary of definition and properties of the
considered count time series models is provided by
Appendix A. Our analyses are illustrated with selected
figures and tables. Further results can be found
in Supporting Information Supplement S as well as at
https://www.hsu-hh.de/mathstat/en/research/projects/
forecastingrisk. Section 4 investigates PIs being computed
for two real-data examples: a count time series regarding
the demand for blood bags in a hospital, and another one
about the daily numbers of company liquidations in Ger-
many. Finally, we conclude in Section 5.
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2 | INTERVAL FORECASTS FOR
COUNT TIME SERIES

2.1 | Coherent and approximate PIs

Given the count time series x1,… , xT up to time T 2
N= f1,2,…g , the aim is to compute a PI ½x∗l , x∗u� for the
count XT+ h to be observed at time T+ h, where h2N
denotes the forecast horizon. Note that it would be more
correct to write ½x∗l,T + h, x

∗
u,T + h� , because the actual PI

depends both on T and on h. But to simplify the reading,
we suppress the subscript “T+ h” in the sequel. The PI
½x∗l , x∗u� is to be computed such that a given coverage level
pcov is ensured:

Pðx∗l ≤XT + h ≤ x∗u jxT ,…,x1Þ≥pcov:

Note that we also have to include the case of exceeding
pcov, because for a discrete random variable (r.v.) one can
usually not meet the intended coverage level exactly. In
our performance analyses in Section 3, we consider
the choice pcov = 0:90 for illustration; that is, the true
coverage should be at least 90%.

Since X1, X2,… is a count process, we are actually
concerned with a finite prediction set; that is, it is possi-
ble to find integers 0≤ xl≤ xu<∞ such that ½x∗l , x∗u�\
N0 = fxl,…,xug . Therefore, from now on, our aim is to
find such integer-valued bounds 0≤ xl≤ xu<∞ with

Pðxl ≤XT + h ≤ xu jxT ,…,x1Þ≥pcov:

These bounds are determined based on the forecast
distribution derived for XT+ hjxT,… , x1. If we uniquely set
xl≡ 0, we refer to the PI as being upper-sided, whereas it
is referred to as two-sided if also xl> 0 is possible.

We compare the performance of coherent PIs (i.e., if a
count model is used for XT+ hjxT,… , x1, either the true or
a fitted one) with that of approximate PIs. The latter are
computed by assuming a Gaussian approximation to the
distribution of XT+ hjxT,… , x1. This distinction and termi-
nology are borrowed from the point forecasting of count
processes; see Freeland and McCabe (2004) and Hom-
burg, Weiß, Alwan, Frahm, and Göb (2019) for further
details. For the approximate PIs, we consider an approxi-
mating Gaussian process Y1, Y2,… Since this is continu-
ously distributed, the PIs can be chosen to meet pcov
exactly; that is, the exceedance of pcov can be avoided
under a Gaussian model assumption. Thus we compute a
corresponding PI ½y∗l , y∗u� for YT+ h, given that yT= xT,… ,
y1 = x1, such that

Pðy∗l ≤YT + h ≤ y∗u jxT ,…,x1Þ = pcov:

Then, we derive the resulting approximate integer-valued
prediction set as fyl,…,yug= ½y∗l , y∗u�\N0 like before. The
integer bounds can be computed as yl =ceilingðy∗l Þ and
yu = floorðy∗uÞ . Note that we have y∗l ≤XT + h ≤ y∗u iff yl≤
XT+ h≤ yu.

2.2 | Computation of interval forecasts

For the sake of readability, in this and the next section,
we suppress the time dependence of the r.v. X to be fore-
casted (and again of the integer-valued bounds 0≤ xl≤ xu
of the PI). The DGP behind X depends on some parame-
ters the true values of which are summarized in the
parameter vector θ. If forecasting based on a fitted model,
we denote the corresponding estimate by θ̂. Analogously,
the parameter values of the Gaussian approximation are
denoted by ϑ, the corresponding estimate by ϑ̂.

Example 1. The first type of DGP to be considered in
Section 3 is the Poisson INAR(1) processðXtÞZ pro-
posed by McKenzie (1985); see Appendix A for
details. The Poi-INAR(1) DGP is fully specified by
fixing the parameter values of θ= ðμ, αÞ: Because of
the Poisson's equidispersion property, the variance
σ2 has to equal the mean μ in this case. Since this
limitation is often violated in practice, we shall also
consider INAR(1) processes having innovations
from a negative binomial (NB) or zero-inflated
Poisson (ZIP) distribution; see Section 3.2. Then,
the observations exhibit overdispersion (i.e., σ2 > μ),
and we have to include a third parameter in θ. We
use the dispersion ratio I = σ2=μ for this purpose.

A continuous counterpart to the INAR(1) model is
given by the Gaussian AR(1) model:

Yt−μY = ϕðYt−1−μY Þ+ εt with i:i:d: εt �Nð0,σ2εÞ: ð1Þ

It is often used by practitioners to approximate INAR
(1)-like count models because of the similar auto-
correlation structure. The Gau-AR(1) model is fully
specified if the values of the marginal mean μY, the
variance σ2Y , and the autocorrelation parameter ϕ
have been fixed; that is, ϑ= ðμY ,σ2Y ,ϕÞ.

An upper-sided coherent PI for a target coverage level
pcov is determined by setting xl =0 and xu equal to the
pcov-quantile of the forecast distribution for X; that
is, xu =min u2N0 jPθ̂ðX ≤ uÞ≥pcov

� �
. For the upper-sided

approximate PI, we also set the lower bound yl =0 .
Then, we first compute y∗u as the pcov-quantile of the
Gaussian approximate forecast distribution. The resulting
integer-valued approximate upper bound yu follows as
yu = floorðy∗uÞ ; that is, the integer r.v. X exceeds y∗u iff it
exceeds yu. At this point, let us recall that the quantiles
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for a continuously distributed r.v. can be chosen such
that they meet the intended quantile level exactly. For a
discrete r.v., however, the computed quantiles usually
exceed the nominal quantile level. This discreteness
effect has to be kept in mind also when determining a
discrete two-sided PI.

The two-sided coherent PI for a target coverage level
pcov is determined by the following algorithm:

1. First, compute the largest integer L2N0 such that
Pθ̂ðX <LÞ≤ 1−pcov.

2. Then, for all l=0,…,L, compute the smallest integer u
= u(l) such that Pθ̂ðl≤X ≤ uÞ≥1−pcov.

3. Among the L+ 1 resulting PIs, choose the one(s) hav-
ing minimal length.

4. If there exist several PIs [xl,i, xu,i] of minimal length,
then choose [xl, xu] as the one with greatest coverage:

Pθ̂ X 2 ½xl,xu�ð Þ =maxi Pθ̂ X 2 ½xl,i, xu,i�ð Þ:

This algorithm also allows for intervals with xl =0
(so actually upper-sided intervals) if they happen to be
the optimal choice in the sense of the algorithm. Note
that because of the discreteness, even if the true values of
the model parameters would be known, it is usually not
possible to meet pcov exactly. Therefore, the algorithm
also allows to exceed pcov but ensures a PI of minimal
length (step 3). The motivation behind the step 4 (if it
comes into effect at all) is to choose the greatest coverage
“for the same price.”

The two-sided approximate PI is again computed
based on a Gaussian approximation. Assuming a Gauss-
ian model, in turn, the common approach is to determine
the PI's limits such that pcov is reached exactly. So, we
first compute y∗l as the Gaussian 1−pcov

2 -quantile, and y∗u as
the 1+ pcov

2 -quantile. Then, we define the integer-valued
approximate bounds by yl =ceilingðy∗l Þ and yu = floorðy∗uÞ,
as explained at the end of Section 2.1.

Example 2. Let us continue Example 1. The h-step-ahead
conditional forecast distribution of the INAR(1)
process can be computed based on the convolution
of the binomial distribution with the innovations'
distribution; see Appendix A for details. In the
particular case of the Poi-INAR(1) model, it becomes

PðXT + h = xjXT = xTÞ

=
Xminfx,xTg

s=0

xT
s

� �
ðαhÞsð1−αhÞxT −s

�e
−μð1−αhÞ

ðx−sÞ! μð1−αhÞ� �x−s
:

ð2Þ

If approximating the Poi-INAR(1) by the Gau-AR
(1) process, the h-step-ahead conditional distribu-
tion is computed via

YT + hjYT = yT
� N αhyT + μY ð1−αhÞ, σ2Y ð1−α2hÞ� �

:
ð3Þ

In Section 3, we assume the model parameters to be
unknown, so they are estimated for both the true
model (Equation (2)) and the approximate model
(Equation (3)). We use Yule–Walker estimation for
this purpose, and the approximating Gauss model
is directly fitted to the count data. In Supporting
Information Supplement S.1, we also consider the
known-parameter case to extract the pure effect of
discreteness on the PIs' performance.

When working on our two major objectives — the
performance analysis of coherent PIs for count processes
as well as the comparison to the performance of approxi-
mate PIs — it turned out that the main findings can
already be derived for the case of the forecast horizon
being h=1. Therefore, in view of a concise presentation,
we restrict the main article to the choice h=1: In
Supporting Information Supplement S.4, however, we
also provide some results regarding the forecast horizon
h> 1 for completeness.

2.3 | Performance evaluation of interval
forecasts

To analyze the performance of the computed PIs, and
thus to get an idea about the effect of approximation
and/or estimation error, we consider several performance
metrics. For every approximate or estimated model, we
compute the true coverage for each PI [xl, xu] — that is,
the true probability of X falling into that interval. The
interval [xl, xu] satisfies the given coverage requirement if
Pθ X 2 ½xl, xu�ð Þ≥pcov.

Related to these coverages, we define several “overall
performance metrics.” Let 1ðAÞ denote the indicator
function, taking the value 1 if A holds true, and 0 other-
wise. For a given scenario (later, we shall be more precise
about the actual meaning of “scenario”), we determine
the set of all simulated coverage values, say {c1, c2,…},
and compute the following sample statistics:

• the “shortfall rate” — that is, the proportion of cover-
ages not satisfying the coverage requirement (relative
frequencies of ci< pcov; computed as the mean of all
1ðci < pcovÞ);
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• the “average shortfall” — that is, the average amount
of falling below pcov (the mean of ci− pcov given that ci
< pcov — that is, the mean of all ðci−pcovÞ1ðci < pcovÞ
divided by the mean of all 1ðci < pcovÞ);

• the “average exceedance” — that is, the average
amount of exceeding pcov (computed as the mean of all
ðci−pcovÞ1ðci > pcovÞ divided by the mean of all
1ðci > pcovÞ);

• the sample standard deviation among all ci.

The first two performance metrics are considered
most important, because we do not want to have any PI
violating the coverage requirement. We therefore aim at
a shortfall rate being zero, and if there are shortfalls the
average about these shortfalls should be close to zero. But
it would also be nice to meet the nominal coverage as
close as possible; that is, the average exceedance should
also be close to zero. Finally, if the standard deviation
among all ci equaled zero, this would imply that all inter-
vals have exactly the same coverage value; that is, we
would have a stable coverage performance within the
considered scenario. We have to recall, however, that for
discrete count data it is usually impossible to meet the
given coverage requirement exactly, so a certain extent of
exceedance and variation among the realized coverages is
natural. Modifying the parametrization of the given DGP,
also the set of attainable coverage values will change.
Thus, at least except for some artificial scenarios, both
the average exceedance and the standard deviation will
be truly positive. Such discreteness effects are studied in
more detail in Supporting Information Supplement S.1.

The above performance metrics (being related to the
true coverage) are considered as most important for prac-
tice. Therefore, the analyses presented in the main article
focus on these metrics. Nevertheless, we also computed a
few further performance metrics, namely the interval
length as well as an asymmetry measure for two-sided
PIs. The obtained results are briefly discussed in
Supporting Information Supplements S.2 and S.3, respec-
tively. Another option for performance evaluation would
be to use the “interval score” proposed by Gneiting and
Raftery (2007).

3 | PERFORMANCE OF INTERVAL
FORECASTS

For each parameter combination of (θ, T) (out of >20,000
such combinations), and for the forecast horizon h=1
(the case h> 1 is briefly discussed in Supporting Informa-
tion Supplement S.4), we simulated 1,000 count time
series. So, altogether, more than 20 million count time
series were simulated and analyzed, which was only

possible by the intensive use of parallel computing. The
relevant (true or approximate) model was fitted to the
data, and the interval forecasts were computed based on
the latest observations in each time series. Then, we eval-
uated their performances using the metrics presented in
Section 2.3 (see Supplements S.2 and S.3 for a discussion
of additional performance metrics). Having 1,000 replica-
tions per (θ, T), the standard error is <0.01 for each cov-
erage value. The choice of DGPs and their
parametrizations was made as in Homburg et al. (2019),
who studied the performance of point forecasts.

3.1 | Poi-INAR(1) DGP

Here, and in subsequent sections, we use a lean type of
“boxplot” for the visual performance analysis, showing
the 10%, 25%, 50%, 75%, and 90% quantiles of the 1,000
simulated true coverages per scenario. In each of these
“modified boxplots,” the median is represented by a black
square, and the lower and upper quartiles are connected
by a thick gray line. The 10% and 90% quantiles, in turn,
are connected by a thin black line. Note that because of
the discreteness of count data, it may happen that some
(or even all) of these quantiles agree with each other (also
see Supporting Information Supplement S.1). Thus some
types of lines might sometimes not be visible.

Figures 1 and 2 show boxplots of the true coverages of
the upper-sided and two-sided PIs, respectively, for a
given choice of (α, T). The boxplots refer to different
choices of μ: each boxplot comprises the coverages
resulting from 1,000 simulated Poi-INAR(1) time series
under estimation uncertainty, and these boxplots are
plotted against the mean μ. The last observation xT, as it
is used for computing the PI, is chosen as the respective
last observation of each simulated time series.

In the respective top row of Figures 1 and 2, referring
to the coherent PIs, we observe that only a few boxplots
violate the dotted line corresponding to the nominal cov-
erage pcov = 0:90; that is, despite estimation uncertainty,
only a small fraction of PIs does not satisfy the given cov-
erage requirement. This differs considerably from the
case of approximate PIs (respective bottom row of Fig-
ures 1 and 2), which show that a large fraction of inter-
vals has a coverage <pcov. Furthermore, the variation
among the actually attained coverages is much larger in
the case of approximate PIs. So there is not only a high
risk of obtaining less coverage than required if using an
approximate PI, but there is also much more uncertainty
about the actual true coverage. It can also be seen that an
increased amount of autocorrelation causes more varia-
tion in the coverage values. Regarding the marginal mean
μ, we observe that the boxplots for the coherent PIs are
closer to pcov for μ≥ 4 than for μ< 4, both for the
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one- and two-sided cases. Thus strong exceedances of pcov
mainly occur for low counts. For the approximate PIs, an
analogous distinction holds with respect to the variation
among the coverages, but the fraction of intervals violat-
ing the coverage requirement does not seem to improve
with increasing μ.

At this point, let us have a look at the overall perfor-
mance metrics introduced in Section 2.3. For a Poi-INAR
(1) DGP, these are computed by fixing (α, T) and by
applying the respective sample statistic to the coverages
resulting from all values of μ and all simulation runs. For
example, the top left plot in Figure 1, where
ðα,TÞ= ð0:33,250Þ, relies on 121 different values of μ, and
on 1,000 simulations for each μ, that is, on altogether
121,000 simulated coverages. If one now computes the
fraction of those 121,000 coverages being <pcov, one
obtains the number ≈0.0906, as shown in part (a) of
Table 1. To make it simple, one number in Tables 1 and 2
always corresponds to one plot.

Part (a) in Tables 1 and 2 shows that the approxi-
mate PIs lead to a large shortfall rate, and this rate does
not improve with increasing sample size. This differs
from the case of coherent PIs, where this fraction
clearly tends towards 0 for increasing T. Also, the aver-
age shortfall values in part (b) are much larger in abso-
lute value for the approximate than for the coherent
PIs. Thus the coherent PIs lead to increasingly less
severe shortfalls than the approximate ones. On the
other hand, the upper-sided coherent PIs in particular
show a stronger average exceedance of the target cover-
age pcov than the approximate PIs do (see also
Figure 1), so they tend to be more conservative. In the
two-sided case (see part (c) in Table 2), the average
exceedances are quite similar for both types of
PI. Finally, the standard deviations in part (d) of
Tables 1 and 2 are always much larger for the approxi-
mate than for the coherent PIs, so there is more uncer-
tainty regarding the actual coverage level.

FIGURE 1 True coverage of coherent (top row) and approximate (bottom row) upper-sided 90% PIs against μ, DGP Poi-INAR(1) with

different α, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated coverages
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Let us draw up a first interim balance. If accounting
for the discrete nature of count data while constructing a
PI, recall the algorithm in Section 2.2, the PI is

determined to get a coverage being ≥ pcov. For a Poi-
INAR(1) DGP, it turned out that the estimation uncer-
tainty causes violations of this coverage requirement only

FIGURE 2 True coverage of coherent (top row) and approximate (bottom row) two-sided 90% PIs against μ, DGP Poi-INAR(1) with

different α, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated coverages

TABLE 1 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) upper-sided 90%

PIs, DGP Poi-INAR(1) with different (α, T) and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1610 0.5428 0.1315 0.5119 0.0702 0.4483 −0.0233 −0.0438 −0.0235 −0.0251 −0.0248 −0.0611

250 0.0906 0.5496 0.0780 0.5140 0.0511 0.4518 −0.0120 −0.0312 −0.0125 −0.0143 −0.0007 −0.0453

2,500 0.0280 0.5530 0.0259 0.5186 0.0210 0.4569 −0.0036 −0.0257 −0.0040 −0.0150 −0.0050 −0.0389

(c) Average exceedance (d) Standard deviation

75 0.0376 0.0264 0.0422 0.0297 0.0564 0.0384 0.0305 0.0468 0.0312 0.0529 0.0313 0.0644

250 0.0340 0.0205 0.0379 0.0241 0.0498 0.0329 0.0218 0.0335 0.0232 0.0387 0.0257 0.0486

2,500 0.0316 0.0176 0.0352 0.0214 0.0455 0.0308 0.0177 0.0273 0.0193 0.0318 0.0226 0.0424
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very rarely. If, in contrast, treating the count data as
being normally distributed, the corresponding procedure
for computing PIs leads to frequent and strong shortfalls
of pcov. Furthermore, the variation among the realized
coverages is much larger than in the coherent case, so
the reliability of the approximate PIs is rather low. Hence
the approximate PIs have a considerably worse perfor-
mance than the coherent ones in the case of a Poi-INAR
(1) DGP.

3.2 | INAR(1) DGPs with overdispersion

In this section, we still consider INAR(1) DGPs, but now
having either NB- or ZIP-distributed innovations (instead
of Poisson ones as in Section 3.1; see also Appendix A).
Thus the DGPs now exhibit overdispersion instead of
equidispersion. The parameters of both DGPs were cho-
sen such that the observations have the same dispersion
ratio I = σ2=μ: Despite this unique extent of over-
dispersion, there is a fundamental difference between the
NB- and ZIP-INAR(1) DGPs: While the NB-distribution
causes a “regular” type of overdispersion (PMF flattened
compared to the Poi-distribution), the ZIP's over-
dispersion is caused by an isolated additional point mass
in zero. The illustrative results presented here show a dis-
persion ratio of I =2:4 (similar to the data example pres-
ented in Section 4.1); that is, the variance is more than
twice the mean (strong dispersion).

If computing coherent PIs based on a fitted NB- or
ZIP-INAR(1) model, respectively, the results in Tables 3–6
do not show a notable difference between NB versus
ZIP. But compared to the Poisson case in Tables 1 and 2,
we see a clear increase in the shortfall rates; see part (a).
Also the average shortfall is often increased, especially
for α≤ 0.55; see part (b). Thus the additional

overdispersion as well as the additional parameter to be
estimated lead to increased estimation uncertainty, which
deteriorates the performance of the coherent PIs. Increas-
ing the sample size T, in turn, clearly improves the
performance.

The performance of the Gauss approximations is not
only affected by the extent, but also by the type of over-
dispersion. For the NB-DGP with its “regular
overdispersion,” the corresponding Gauss approximation
does clearly better than the one for the Poi-DGP. Espe-
cially in the two-sided case (Table 4 vs. Table 2), the
shortfall rates and standard deviations are lower if apply-
ing the Gauss approximationto the NB-DGP rather than
to the Poi-DGP. Interestingly, the two-sided NB-
approximate PIs are often superior to the coherent ones
in terms of the shortfall rate (but worse regarding the
standard deviation), whereas the upper-sidedNB-
approximate PIs perform clearly worse than their coher-
ent counterparts (Table 3). In contrast, the average
exceedance of the two-sided NB-approximate PIs is much
larger than in the coherent case. The overfulfillment of
the confidence requirement by the two-sided NB-
approximate PIs is caused by the fact that the Gaussian
approximation's forecast distribution tends to exhibit
more dispersion than the NB-INAR(1)'s one for strong
overdispersion (such as I =2:4); see Supporting Informa-
tion Supplement S.2 for more details. As a consequence,
the two-sided approximate PIs are chosen too large, caus-
ing less shortfall but more intense exceedance, as
observed in Table 4 (as well as in Figure 4 below).

Regarding the ZIP-INAR(1) DGP, the Gaussian
approximation performs particularly badly for the upper-
sided PIs (Table 5), and the shortfall rates notably
increase with increasing T. The two-sided approximate
PIs, although not having such extremely large shortfall
rates, perform worse than the coherent PIs with respect

TABLE 2 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP Poi-INAR(1) with different (α, T) and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1646 0.4724 0.1582 0.4860 0.0997 0.4597 −0.0180 −0.0409 −0.0201 −0.0458 −0.0276 −0.0533

250 0.0833 0.4200 0.1019 0.4603 0.0909 0.4453 −0.0088 −0.0299 −0.0109 −0.0366 −0.0173 −0.0440

2,500 0.0231 0.3875 0.0353 0.4555 0.0397 0.4441 −0.0025 −0.0260 −0.0032 −0.0335 −0.0060 −0.0409

(c) Average exceedance (d) Standard deviation

75 0.0279 0.0322 0.0347 0.0352 0.0515 0.0396 0.0249 0.0465 0.0280 0.0521 0.0329 0.0601

250 0.0262 0.0284 0.0306 0.0319 0.0420 0.0367 0.0188 0.0367 0.0212 0.0438 0.0263 0.0515

2,500 0.0252 0.0265 0.0277 0.0303 0.0350 0.0355 0.0164 0.0332 0.0176 0.0407 0.0205 0.0487
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TABLE 4 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP NB-INAR(1) with different (α, T), dispersion ratio I =2:4, and forecast horizon h=1, computed from all simulation runs for all

levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.3806 0.2609 0.3587 0.2582 0.2533 0.2060 −0.0253 −0.0294 −0.0246 −0.0324 −0.0277 −0.0370

250 0.2312 0.1306 0.2204 0.1446 0.1874 0.1277 −0.0117 −0.0168 −0.0116 −0.0204 −0.0150 −0.0231

2,500 0.0657 0.0524 0.0692 0.0809 0.0730 0.0742 −0.0035 −0.0135 −0.0033 −0.0171 −0.0047 −0.0185

(c) Average exceedance (d) Standard deviation

75 0.0242 0.0334 0.0253 0.0352 0.0305 0.0395 0.0308 0.0353 0.0314 0.0391 0.0368 0.0463

250 0.0193 0.0296 0.0199 0.0313 0.0241 0.0355 0.0175 0.0219 0.0177 0.0247 0.0211 0.0281

2,500 0.0159 0.0283 0.0166 0.0300 0.0190 0.0341 0.0102 0.0149 0.0105 0.0183 0.0123 0.0205

TABLE 3 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) upper-sided 90%

PIs, DGP NB-INAR(1) with different (α, T), dispersion ratio I =2:4, and forecast horizon h=1, computed from all simulation runs for all

levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.3270 0.5589 0.3206 0.5069 0.2441 0.3420 −0.0256 −0.0358 −0.0257 −0.0366 −0.0289 −0.0395

250 0.2046 0.5628 0.1993 0.4837 0.1645 0.2738 −0.0125 −0.0212 −0.0123 −0.0208 −0.0148 −0.0208

2,500 0.0625 0.5888 0.0640 0.4698 0.0565 0.1990 −0.0038 −0.0130 −0.0034 −0.0121 −0.0045 −0.0100

(c) Average exceedance (d) Standard deviation

75 0.0265 0.0217 0.0271 0.0242 0.0316 0.0307 0.0315 0.0390 0.0330 0.0437 0.0391 0.0539

250 0.0210 0.0145 0.0216 0.0174 0.0257 0.0249 0.0183 0.0235 0.0184 0.0253 0.0214 0.0294

2,500 0.0173 0.0096 0.0183 0.0131 0.0217 0.0214 0.0105 0.0141 0.0110 0.0160 0.0129 0.0184

TABLE 5 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) upper-sided 90%

PIs, DGP ZIP-INAR(1) with different (α, T), dispersion ratio I =2:4, and forecast horizon h=1, computed from all simulation runs for all

levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.2584 0.5859 0.2779 0.6791 0.3066 0.6461 −0.0285 −0.0445 −0.0292 −0.0475 −0.0311 −0.0455

250 0.1517 0.6086 0.1619 0.7490 0.1936 0.7250 −0.0142 −0.0313 −0.0143 −0.0337 −0.0175 −0.0337

2,500 0.0475 0.6267 0.0505 0.8036 0.0622 0.7861 −0.0041 −0.0249 −0.0041 −0.0272 −0.0055 −0.0288

(c) Average exceedance (d) Standard deviation

75 0.0335 0.0262 0.0333 0.0236 0.0313 0.0222 0.0348 0.0465 0.0356 0.0475 0.0372 0.0496

250 0.0281 0.0190 0.0278 0.0154 0.0264 0.0176 0.0213 0.0321 0.0216 0.0308 0.0233 0.0319

2,500 0.0249 0.0144 0.0246 0.0100 0.0229 0.0171 0.0140 0.0248 0.0139 0.0222 0.0136 0.0253
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to all types of performance metric in Table 6. This differ-
ence in performance between NB and ZIP is also illus-
trated by Figures 3 and 4. Furthermore, it can be seen
that the actual mean μ has a strong effect on the
performance of the approximate PIs. In the ZIP-case, for
example, the shortfall is particularly large for μ≤ 8
(upper-sided) or μ≤ 4 (two-sided), respectively.

Compared to our conclusions in Section 3.1, we note
a strong effect of overdispersion on the PIs' performance
(see also Supporting Information Supplements S.2 and
S.3 for a further discussion). The coherent PIs show more
frequent shortfalls because of the additional uncertainty.
However, the effect on the approximate PIs is even stron-
ger and very different, depending on the actual type of
overdispersion. The PIs' performance for the ZIP-DGP

with its isolated point mass in zero deteriorates severely
with respect to all performance criteria. For the two-sided
PIs in the NB-case (if the extent of overdispersion is suffi-
ciently large), we may also observe an overfulfillment of
the coverage requirement; that is, the approximate PIs
are chosen unnecessarily large, thus leading to strong
exceedances of pcov.

3.3 | Poi-INARCH(1) DGP

The INAR(1) model considered in Sections 3.1 and 3.2 is
probably the most well-known model for count time
series. Its basic idea (see also Appendix A.1 for further
details) is to directly adapt the basic AR(1) recursion to

FIGURE 3 True coverage of approximate upper-sided 90% PIs against μ, for DGPs Poi-INAR(1), NB-INAR(1), and ZIP-INAR(1) (from

left to right) with α=0:55, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated coverages, dispersion ratio I = σ2=μ

equals either 1 (Poi) or 2.4 (NB, ZIP)

TABLE 6 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP ZIP-INAR(1) with different (α, T), dispersion ratio I =2:4, and forecast horizon h=1, computed from all simulation runs for all

levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.3110 0.3405 0.2921 0.3401 0.2791 0.3851 −0.0280 −0.0374 −0.0255 −0.0340 −0.0296 −0.0337

250 0.1695 0.2510 0.1642 0.2685 0.1817 0.3665 −0.0125 −0.0223 −0.0119 −0.0227 −0.0163 −0.0228

2,500 0.0477 0.2023 0.0462 0.2226 0.0638 0.3473 −0.0033 −0.0151 −0.0033 −0.0185 −0.0049 −0.0189

(c) Average exceedance (d) Standard deviation

75 0.0298 0.0386 0.0290 0.0355 0.0293 0.0307 0.0345 0.0450 0.0321 0.0418 0.0356 0.0422

250 0.0251 0.0350 0.0243 0.0313 0.0238 0.0243 0.0200 0.0322 0.0191 0.0309 0.0214 0.0287

2,500 0.0227 0.0335 0.0215 0.0292 0.0202 0.0209 0.0135 0.0270 0.0128 0.0265 0.0121 0.0239
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the count-data case by replacing the involved multiplica-
tion by an integer-valued substitute, the binomial thin-
ning operation. This, however, is (by far) not the only
thinning-based approach in the literature; see
Weiß (2018) for a brief survey. Alternative thinning oper-
ations (and corresponding time series models) can be
constructed by using nonbinomial distributions instead.
A popular example is given by the so-called “negative-
binomial thinning operation” (and the resulting
“NGINAR(1) model”) proposed by Risti�c, Bakouch, and
Nasti�c (2009), which is based on a conditional NB-distri-
bution. Although using a different thinning operation,
the required computations for obtaining PIs are similar
to the INAR(1) case, we just have to modify the formula
for the transition probabilities in Appendix A.1. The Poi-
INARCH(1) model considered in this section, which is

another common choice in practice for AR(1)-like count
DGPs, might also be understood as being a thinning-
based model, by using a “Poisson thinning” operation.
But it is more appropriate to classify it as a regression
model, as done in Appendix A.2.

In our analyses, it turned out that the upper- and
two-sided PIs perform nearly the same for this type of
DGP (in analogy to the Poi-INAR(1) case presented in
Section 3.1). Therefore, we restrict the following discus-
sion to the two-sided case. In Table 7, we observe clearly
more variation in the coverage values (see part (d)) as
well as more frequent and more severe shortfalls (see
parts (a,b)) for the approximate PIs than for the coherent
ones. In contrast to the Poi-INAR(1) DGP in Section 3.1
(see Table 2), the coherent PIs of the Poi-INARCH
(1) DGP show a more stable performance if increasing α.

TABLE 7 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP Poi-INARCH(1) with different (α, T) and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1411 0.4802 0.1445 0.4668 0.1540 0.4340 −0.0188 −0.0415 −0.0213 −0.0564 −0.0271 −0.0918

250 0.0652 0.4300 0.0669 0.4220 0.0792 0.4127 −0.0089 −0.0314 −0.0098 −0.0480 −0.0117 −0.0883

2,500 0.0180 0.3981 0.0177 0.4026 0.0265 0.4016 −0.0027 −0.0280 −0.0026 −0.0449 −0.0030 −0.0834

(c) Average exceedance (d) Standard deviation

75 0.0264 0.0357 0.0273 0.0459 0.0318 0.0642 0.0240 0.0493 0.0264 0.0649 0.0334 0.0954

250 0.0260 0.0326 0.0266 0.0435 0.0294 0.0638 0.0177 0.0407 0.0193 0.0568 0.0233 0.0918

2,500 0.0250 0.0305 0.0253 0.0420 0.0282 0.0631 0.0158 0.0369 0.0166 0.0539 0.0196 0.0878

FIGURE 4 True coverage of approximate two-sided 90% PIs against μ, for DGPs Poi-INAR(1), NB-INAR(1), and ZIP-INAR(1) (from left

to right) with α=0:55, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated coverages, dispersion ratio I = σ2=μ

equals either 1 (Poi) or 2.4 (NB, ZIP)
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However, we can neither observe a uniquely better nor a
worse performance if comparing these two models.

This differs from the case of approximate PIs, which
perform clearly worse for the Poi-INARCH(1) DGP:
Although the shortfall rate tends to be lower than for the
Poi-INAR(1) DGP, the comparison of Tables 2 and 7
shows more extreme average shortfall and exceedance
values as well as a notable increase in standard deviation
among the coverage values; see also Figure 5. This dis-
crepancy becomes more severe for increasing autocorre-
lation. Therefore, the use of approximate PIs must be
discouraged even more for the Poi-INARCH(1) DGP than
for the Poi-INAR(1) DGP, whereas the coherent PIs per-
form quite similarly for both types of DGP.

3.4 | Higher-order Poi-INAR and
Poi-INARCH DGPs

To examine the effect of a higher AR-order on the PIs'
performance, we consider the Poi-INAR(2) and Poi-
INARCH(2) DGP in this section; see Appendix A for
details. They are extensions of the Poi-INAR(1) DGP dis-
cussed in Section 3.1 and the Poi-INARCH(1) DGP of
Section 3.3, respectively. These second-order models are
approximated by their corresponding continuous coun-
terpart, the Gau-AR(2) model. Both types of PI are com-
puted based on the last two observations xT, xT − 1, and
these are chosen as the respective last observations of
each simulated time series. For comparability with the
first-order DGPs, we fixed the lag-1 ACF at the same
levels of α as in the previous section; that is, ρð1Þ= α .
Then, we considered different choices of α2 and com-
puted α1 = αð1−α2Þ. The subsequent discussion is limited

to the case of two-sided PIs, as the upper-sided PIs per-
form quite similarly.

While the increased AR order has no clear effect on
the performance of the coherent PIs, the performance of
the approximate PIs is adversely affected by an increase
in the additional AR parameter α2, causing more extreme
average shortfall and standard deviation values. For this
reason, we display the results for α2 = 0:45, the largest α2-
value in our simulations. Looking at Tables 8 and 9, the
approximate PIs of the second-order DGPs exhibit a more
extreme deviation from pcov than the coherent PIs do
with respect to all performance metrics: The shortfall
rates are increased, shortfall and exceedance are more
extreme on average, and the standard deviations are
increased.

If we compare the coherent PIs' metrics of the Poi-
INAR(2) DGP in Table 8 with those of the Poi-INAR
(1) DGP in Table 2, more estimation uncertainty due to
the additional parameter may be noticed in places, but
disappears quickly with a growing sample size T. The
increase in model order does not seem to impair the per-
formance of the coherent PIs. For high autocorrelation,
the second-order model even produces less and less
extreme shortfall than the Poi-INAR(1) model. The
approximate PIs of the Poi-INAR(2) DGP, in contrast,
show a severe deterioration in their performance with
growing autocorrelation parameter α, or with growing α2.
Both shortfall and exceedance become more extreme on
average, and also the standard deviation among the cov-
erages increases. For example, the average shortfall for
α=0:8 and T =250 in Table 8 is (in absolute value)
almost twice as large as in the Poi-INAR(1) case in
Table 2, and average exceedance as well as standard devi-
ation are increased by more than 50%.

FIGURE 5 True coverage of coherent (left two plots) and approximate (right two plots) two-sided 90% PIs against μ, Poi-INARCH

(1) DGP versus Poi-INAR(1) DGP with α=0:55, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated coverages
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If comparing the metrics of the Poi-INARCH(2) DGP
in Table 9 to those of Poi-INARCH(1) in Table 7, we
notice a deterioration in most metrics for the approxi-
mate as well as the coherent PIs. In the coherent case,
the additional estimation uncertainty causes, for exam-
ple, a notable increase in both shortfall rate and average
shortfall. With an increasing sample size T, though, this
effect is damped and the metrics of the second-order
model approach those in Table 7. However, this is not
the case for the approximate PIs. These exhibit a greater
extent of shortfall and exceedance, and more standard
deviation among the coverage values.

To sum up, an increased AR-order for the count
DGPs has a small but inconsistent effect on the perfor-
mance of the coherent PIs. While the performance might
even improve for Poi-INAR DGPs (especially if highly
autocorrelated), we note a certain deterioration for Poi-
INARCH DGPs. This is plausible in view of the different
data-generating mechanisms behind these families; see
also remark 4.1.7 in Weiß (2018): The INAR family tends

to produce runs of certain count values, which is obvi-
ously advantageous for forecasting purposes, whereas
INARCH DGPs tend to vivid fluctuations. For the
approximate PIs, in contrast, the effect of an increased
AR-order is quite homogeneous across the different
model families: The performance becomes considerably
worse with respect to both shortfalls and exceedances.
Thus we can only reaffirm our advice of Sections 3.1 and
3.3 to not use approximate PIs for Poi-INAR and
INARCH DGPs.

3.5 | DGPs for bounded counts

Our performance analyses also cover the case where the
generated count time series have the bounded range {0,
… , n} with a given n2N. As the bounded-counts counter-
part to the Poi-INAR(1) and INARCH(1) model, respec-
tively, we consider the BinAR(1) and BinARCH(1) model
as described in Appendix A. Note that the bounded

TABLE 8 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP Poi-INAR(2) with different (α, T), α2 = 0:45, and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1495 0.4780 0.1431 0.4850 0.1429 0.4632 −0.0220 −0.0512 −0.0237 −0.0609 −0.0339 −0.0856

250 0.0882 0.4355 0.0788 0.4469 0.0750 0.4307 −0.0110 −0.0414 −0.0109 −0.0524 −0.0120 −0.0809

2,500 0.0294 0.4175 0.0258 0.4336 0.0287 0.4176 −0.0031 −0.0379 −0.0032 −0.0500 −0.0035 −0.0798

(c) Average exceedance (d) Standard deviation

75 0.0334 0.0381 0.0357 0.0452 0.0424 0.0588 0.0288 0.0574 0.0307 0.0678 0.0391 0.0912

250 0.0296 0.0349 0.0314 0.0433 0.0364 0.0589 0.0211 0.0484 0.0221 0.0601 0.0262 0.0856

2,500 0.0268 0.0336 0.0288 0.0422 0.0322 0.0588 0.0178 0.0452 0.0190 0.0578 0.0227 0.0838

TABLE 9 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP Poi-INARCH(2) with different (α, T), α2 = 0:45, and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1830 0.4725 0.1964 0.4681 0.2281 0.4460 −0.0256 −0.0564 −0.0293 −0.0701 −0.0357 −0.1023

250 0.0915 0.4303 0.0954 0.4250 0.1110 0.4011 −0.0123 −0.0480 −0.0128 −0.0628 −0.0156 −0.0999

2,500 0.0254 0.4114 0.0264 0.4072 0.0300 0.3804 −0.0033 −0.0453 −0.0035 −0.0609 −0.0049 −0.0997

(c) Average exceedance (d) Standard deviation

75 0.0279 0.0451 0.0294 0.0528 0.0356 0.0671 0.0299 0.0644 0.0340 0.0772 0.0438 0.1046

250 0.0265 0.0427 0.0276 0.0511 0.0328 0.0674 0.0203 0.0569 0.0216 0.0703 0.0281 0.0998

2,500 0.0255 0.0418 0.0265 0.0503 0.0305 0.0671 0.0166 0.0543 0.0176 0.0683 0.0229 0.0985

HOMBURG ET AL. 615



counts' mean μ now also depends on the actual value for
the upper bound n: If π= β=ð1−αÞ 2 ð0,1Þ denotes the
“success” probability, then μ= n π. In our simulations,
we have chosen the success probability either as π=0:15
(“rare event”) or as π=0:45 (nearly symmetric marginal
distribution). But in contrast to the previous analyses, it
is now not possible to choose arbitrary mean levels μ> 0.
Instead, we increased the integer-valued upper bound
n by increments of 1, leading to μ= n π. As a result, the
summarized performance metrics are not directly compa-
rable with the previous ones, and they are also not
between π=0:15 and π=0:45.

It turns out that both the coherent and the approxi-
mate PIs for the BinAR(1) DGP show a very similar per-
formance as in the Poi-INAR(1) case. In particular, the

approximate PIs again perform considerably worse than
the coherent ones. The rare-event case π=0:15 is even
more similar to the Poisson case than the near-to-
symmetry case π=0:45, which is not surprising in view
of the Poisson limit theorem. If going from π=0:15 to
π=0:45 , the overall shortfall rates usually increase
slightly. But the most striking pattern is a more pro-
nounced effect of the discreteness (both for the coherent
and the approximate PIs). This is illustrated by Figure 6,
which refers to the two-sided intervals for α=0:55 and
sample size T =250.

Also for the BinARCH(1) model, the coherent PIs per-
form way better than their approximations. Comparing
Figure 7 to Figure 6, we notice that the coherent PIs of
the BinARCH(1) DGP tend to show less and less extreme

FIGURE 6 True coverage of coherent (“BinAR(1)”) and approximate (“Gau-AR(1)”) two-sided 90% PIs against μ, DGP BinAR(1) with

π=0:15 (left block) or π=0:45 (right block), α=0:55, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated coverages

FIGURE 7 True coverage of coherent (“BinARCH(1)”) and approximate (“Gau-AR(1)”) two-sided 90% PIs against μ, DGP BinARCH

(1) with π=0:15 (left block) or π=0:45 (right block), α=0:55, sample size T =250, and forecast horizon h=1. Boxplots for 1,000 simulated

coverages

616 HOMBURG ET AL.



shortfall. This is confirmed if comparing the metrics in
Tables 10 and 11, where it can also be seen that the aver-
age exceedance as well as standard deviation values are
lower for the BinARCH(1) DGP. In case of a nearly sym-
metric marginal distribution (π=0:45 ), no major differ-
ence between the performance of the approximate PIs
can be noticed. For π=0:15 , however, the performance
of the BinARCH(1)'s approximate PIs becomes consider-
ably worse, analogously to the Poi-INARCH(1) case in
Section 3.3. This deterioration manifests itself in terms of
increased values of the average shortfall, the exceedance,
and the standard deviation, especially for large α.

To recapitulate the bounded-counts case, the conclu-
sions of Sections 3.1 and 3.3 for the two types of Poi-DGP
apply in an analogous manner also to the respective Bin-
DGPs, especially if being concerned with rare events. For
nearly symmetrically distributed counts, however, we
have a stronger discreteness pattern; that is, small
changes in DGP parametrization might cause large
changes in performance. In any case, the approximate

PIs show a considerably worse shortfall behavior than
the coherent PIs, and for the BinARCH(1) DGP, also the
exceedance is worse. So we strongly advise against using
approximate PIs for bounded-count DGPs.

3.6 | Nonstationary DGPs

The models considered in Sections 3.1–3.5 are suitable
for stationary count time series. In practice, however, one
is sometimes concerned with the forecasting of non-
stationary count time series, which exhibit seasonality,
trend, or other forms of nonstationarity. Again, there are
many options of how to model nonstationary count time
series. Motivated by the data example in Section 4.2, we
examine the case of the ll-Poi-AR(1) DGP as our final
simulation experiment, which can be equipped with sea-
sonality or trend (see Appendix A.2 for further informa-
tion). But models exist also for more sophisticated forms
of nonstationarity, such as the random-environment

TABLE 11 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP BinARCH(1) with π=0:15, different (α, T), and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1446 0.5231 0.1533 0.5104 0.1716 0.4802 −0.0139 −0.0361 −0.0147 −0.0419 −0.0194 −0.0584

250 0.0654 0.4825 0.0667 0.4766 0.0707 0.4679 −0.0062 −0.0241 −0.0062 −0.0321 −0.0073 −0.0515

2,500 0.0175 0.4540 0.0172 0.4552 0.0173 0.4666 −0.0014 −0.0190 −0.0016 −0.0278 −0.0019 −0.0496

(c) Average exceedance (d) Standard deviation

75 0.0192 0.0273 0.0199 0.0335 0.0219 0.0479 0.0186 0.0410 0.0202 0.0486 0.0255 0.0673

250 0.0192 0.0228 0.0198 0.0300 0.0212 0.0462 0.0145 0.0304 0.0154 0.0400 0.0177 0.0604

2,500 0.0192 0.0203 0.0197 0.0286 0.0207 0.0455 0.0133 0.0259 0.0142 0.0367 0.0157 0.0586

TABLE 10 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP BinAR(1) with π=0:15, different (α, T), and forecast horizon h=1, computed from all simulation runs for all levels of μ

α= 0:33 α= 0:55 α= 0:8 α= 0:33 α= 0:55 α= 0:8

T Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

(a) Shortfall rate (b) Average shortfall

75 0.1834 0.5220 0.1734 0.5126 0.1190 0.4679 −0.0153 −0.0356 −0.0201 −0.0380 −0.0283 −0.0429

250 0.0979 0.4818 0.1158 0.4770 0.1142 0.4501 −0.0073 −0.0236 −0.0106 −0.0264 −0.0174 −0.0318

2,500 0.0295 0.4527 0.0396 0.4562 0.0516 0.4432 −0.0020 −0.0178 −0.0032 −0.0213 −0.0056 −0.0281

(c) Average exceedance (d) Standard deviation

75 0.0225 0.0256 0.0300 0.0274 0.0482 0.0311 0.0211 0.0397 0.0260 0.0425 0.0335 0.0482

250 0.0210 0.0207 0.0255 0.0228 0.0371 0.0268 0.0158 0.0287 0.0188 0.0318 0.0255 0.0375

2,500 0.0199 0.0183 0.0222 0.0207 0.0289 0.0249 0.0137 0.0237 0.0148 0.0274 0.0178 0.0344
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INAR models dating back to Nasti�c, Laketa, and
Risti�c (2016). The ll-Poi-AR(1) model is approximated by
the Gaussian regression model with ARMA innovations
(Brockwell & Davis, 2016), which reduces to the ordinary
ARMA model in the absence of seasonality and trend,
and which has a linear trend and harmonic oscillation
like the considered ll-Poi-AR(1) model. Since, now, the
mean varies over time we no longer evaluate our simula-
tion results by plots against the mean, but present tabu-
lated values for selected scenarios. Thus Table 12 shows
the averaged performance metrics of 1,000 simulated
two-sided PIs for a representative parameter setting
(γ0 = 1, T =250, α 2 {0.33, 0.55, 0.8}). The columns of the

table are now labeled by the trend parameter γ1, and the
rows by the seasonality parameters (γ2, γ3).

Table 12 shows that the increase in trend (γ1) or sea-
sonality (γ2, γ3) generally causes the coherent PIs to fall
short more often (see part (a)) and more severely (see
part (b)). Seasonality also causes more variation of the
coverage values (see part (d)), while increasing trend does
not have such an effect. But, as can be seen from the sup-
plementary simulation results, all performance metrics
improve with increasing T, and also with increasing
intercept γ0. In particular, the average exceedance
reduces with increasing γ0, which is in line with the effect
of a growing mean μ in the previous sections.

TABLE 12 Performance metrics based on true coverages of coherent (columns “Coh”) or approximate (columns “Gau”) two-sided 90%

PIs, DGP ll-Poi-AR(1) with γ0 = 1, T =250, different (γ1, γ2, γ3), different α, and forecast horizon h=1, computed from 1,000 simulation runs

per scenario

γ1 = 0 γ1 = 0:001 γ1 = 0:002 γ1 = 0 γ1 = 0:001 γ1 = 0:002

(γ2, γ3) Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

α=0:33

(a) Shortfall rate (b) Average shortfall

(0, 0) 0.0910 0.4410 0.1200 0.6430 0.1530 0.8600 −0.0080 −0.0351 −0.0123 −0.0427 −0.0108 −0.0555

(0.1, 0.2) 0.1080 0.4220 0.1420 0.5740 0.1680 0.7240 −0.0170 −0.0545 −0.0185 −0.0623 −0.0161 −0.0781

(0.2, 0.6) 0.1210 0.4280 0.1300 0.5000 0.1750 0.5740 −0.0135 −0.0816 −0.0196 −0.1028 −0.0150 −0.1070

(c) Average exceedance (d) Standard deviation

(0, 0) 0.0357 0.0465 0.0266 0.0261 0.0291 0.0259 0.0206 0.0461 0.0198 0.0462 0.0189 0.0462

(0.1, 0.2) 0.0342 0.0475 0.0295 0.0385 0.0269 0.0307 0.0248 0.0596 0.0240 0.0620 0.0212 0.0661

(0.2, 0.6) 0.0358 0.0574 0.0319 0.0549 0.0269 0.0534 0.0249 0.0785 0.0248 0.0911 0.0230 0.0965

α=0:55

(a) Shortfall rate (b) Average shortfall

(0, 0) 0.0360 0.3460 0.0730 0.6120 0.1330 0.7590 −0.0198 −0.0556 −0.0097 −0.0589 −0.0134 −0.0687

(0.1, 0.2) 0.0970 0.4450 0.1370 0.5370 0.1230 0.6650 −0.0161 −0.0642 −0.0173 −0.0779 −0.0140 −0.0807

(0.2, 0.6) 0.0910 0.4020 0.1190 0.4800 0.1770 0.5530 −0.0141 −0.0889 −0.0185 −0.1030 −0.0163 −0.1187

(c) Average exceedance (d) Standard deviation

(0, 0) 0.0340 0.0441 0.0285 0.0435 0.0285 0.0383 0.0238 0.0580 0.0166 0.0639 0.0195 0.0663

(0.1, 0.2) 0.0333 0.0526 0.0312 0.0435 0.0274 0.0406 0.0245 .0688 0.0243 0.0752 0.0201 0.0752

(0.2, 0.6) 0.0346 0.0588 0.0313 0.0560 0.0281 0.0541 0.0233 0.0840 0.0242 0.0934 0.0233 0.1049

α=0:80

(a) Shortfall rate (b) Average shortfall

(0, 0) 0.0050 0.3610 0.1440 0.5800 0.0640 0.5830 −0.0349 −0.0793 −0.0129 −0.0764 −0.0121 −0.1064

(0.1, 0.2) 0.0930 0.3980 0.0960 0.5290 0.1080 0.5930 −0.0187 −0.0850 −0.0181 −0.0936 −0.0154 −0.0995

(0.2, 0.6) 0.1070 0.3710 0.0990 0.4890 0.1210 0.5370 −0.0168 −0.1084 −0.0183 −0.1195 −0.0184 −0.1275

(c) Average exceedance (d) Standard deviation

(0, 0) 0.0253 0.0509 0.0348 0.0581 0.0289 0.0449 0.0180 0.0759 0.0253 0.0815 0.0182 0.0919

(0.1, 0.2) 0.0368 0.0596 0.0302 0.0555 0.0271 0.0501 0.0247 0.0834 0.0227 0.0922 0.0217 0.0953

(0.2, 0.6) 0.0369 0.0646 0.0320 0.0599 0.0290 0.0585 0.0264 0.0990 0.0244 0.1090 0.0240 0.1170
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While all these effects of trend or seasonality are quite
moderate regarding the coherent PIs, they lead to severe
deterioration of the approximate PIs' performance.
Increasing trend strongly affects the shortfall perfor-
mance according to parts (a,b) — for example, with
shortfall rates up to 86%. Increasing seasonality leads
to heavily increased average shortfalls and standard
deviations (see parts (b,d)). Therefore, the use of
approximate models for computing integer-valued PIs
has to be discouraged also if being concerned with
nonstationary DGPs.

4 | EMPIRICAL INVESTIGATIONS

In this section, we analyze the performance of PIs for two
real-data examples of count time series: the stationary
demand counts data in Section 4.1 and the nonstationary
liquidation counts data in Section 4.2.

4.1 | Demand for RBC O+ transfusion
blood bags

Our first data application refers to the daily demand for
RBC O+ transfusion blood bags in a regional hospital in
southeastern Wisconsin between June 2009 and January
2010. The data set was originally published by Alwan,
Xu, Yao, and Yue (2016) and further analyzed by Alwan
and Weiß (2017). The full time series is of length 240 and
does not exhibit any indications of nonstationarity. It has
an AR(1)-like ACF and exhibits a strong degree of over-
dispersion. Therefore, Alwan and Weiß (2017) used the
NB-INAR(1) model for these data. Since we want to use
the data for illustrating PI computations, we split the full
data into a training sample, which consists of the first
T =150 observations, and into a test sample consisting of
the remaining observations xT+ 1,… , xT+ 90. The latter

are used for computing out-of-sample forecasts. But let us
start with the training data x1,… , xT. They have the sam-
ple mean 3.047, variance 7.575 (overdispersion by factor
≈ 2.49), and an AR(1)-like ACF with lag-1 value 0.288.
As in Alwan and Weiß (2017), we use the NB-INAR
(1) model for the data (recall Section 3.2), and consider a
Gau-AR(1) model for approximation. Based on both
models, we compute the one-step-ahead PIs (pcov = 0:90),
and we compare them, among others, to the actual out-
comes xt. The PIs constitute in-sample forecasts for
t=2,…,T , and out-of-sample forecasts for
t=T +1,…,T +90. For illustration, Figure 8 shows a plot
of the obtained upper-sided PIs, which can be interpreted
as expressing some kind of worst-case prediction of the
demand for blood bags. For readability, the upper limits
of the PIs were shifted upwards by 0.2 units (coherent PI)
and 0.4 units (approximate PI), respectively. It can be
seen that the coherent PIs' upper limits are never smaller
than the approximate PIs' ones.

Table 13 summarizes some performance results for
the in-sample PIs. Let us first look at the realized in-
sample coverage rates — that is, at the fraction of obser-
vations x2,… , xT falling within their actual PI. For the
coherent PIs, these rates are 0.899 (upper-sided) and
0.906 (two-sided), so the coverage requirement pcov = 0:90
is almost perfectly met in both cases. For the approximate
PIs, however, we observe a divergent performance. The
approximate upper-sided PIs lead to the rate 0.866, which
falls considerably short of pcov. The approximate two-
sided PIs, in contrast, have the rate 0.919, which exceeds
both pcov and the corresponding rate of the coherent PIs
(0.906). Analogous conclusions can be drawn from the
average failures shown in Table 13, and also from the
out-of-sample results, although some differences are less
pronounced there. Thus the upper-sided approximate PIs
tend to be too short (see also Figure 8), whereas the
two-sided ones tend to be too large. This contradictory
behavior appears plausible in view of our findings in

FIGURE 8 Plot of upper-sided in-sample and out-of-sample PIs for demand counts data
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Section 3.2, where we observed an analogous discrepancy
for NB-INAR(1) DGPs with dispersion ratio I =2:4
(in our data, we have Î ≈ 2:49).

Certainly, we do not know the true model behind the
demand count time series, but let us take the fitted
coherent model as the benchmark. The approximate
upper-sided PIs differ from the coherent ones in 39% of
all cases (in-sample and out-of-sample), and according to

the fitted NB-INAR(1) model we would always be con-
cerned with a shortfall case (see also Figure 8). The
approximate two-sided PIs differ from the coherent ones
in 59% of all cases, but now these deviations would
mainly be classified as exceedances with respect to the
fitted NB-INAR(1) model (41% agreement, 58% exceed-
ance, 1% shortfall).

4.2 | Company liquidations in Germany

The Federal Gazette (Bundesanzeiger; https://www.
bundesanzeiger.de) is the central platform of the German
Federal Ministry of Justice, where business disclosures
such as liquidation announcements are published
(among other things). We focus on the number of com-
pany liquidations among general commercial partner-
ships and limited partnerships (“GmbH & Co. KG”) per
working day in Germany. The data used for model fitting
are from the period June 1, 2007, to September 30, 2019.
The time series has a length of T =3157 working days.
The time series plot in Figure 9 shows clear signs of
seasonality and trend, so it appears reasonable to use log-
linear regression models (Appendix A.2) for these data.
The analysis of the periodogram in Figure 9 implies the
inclusion of harmonic terms for annual, semiannual and
quarterly seasonality (periods 256, 128, and 64, respec-
tively). Further data analyses showed the need also to
include a linear and quadratic trend in t as well as an
AR(1) component. Owing to the strong overdispersion, a
conditional NB distribution has to be used — that is, alto-
gether an ll-NB-AR(1) model following XtjXt−1,…�
NB 1, n

Mt + n

� �
(see Appendix A.2). As in Section 3.6, we

approximate this model by a Gaussian regression model
with AR(1) innovations, including the same trend and
harmonic components as the coherent model. It has to be
noted, however, that the fitted ll-NB-AR(1) model is not
a perfect choice for the data. A residual analysis indicates
that the inclusion of further harmonic and autoregressive

FIGURE 9 Time series plot of liquidation counts data, and detail of periodogram
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TABLE 13 Performance of in-sample and out-of-sample PIs

for demand counts data (Section 4.1)

In-sample forecasting Coh Gau

Upper-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½0,xu�Þ

0.899 0.866

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ

0.268 0.342

Two-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½xl,xu�Þ

0.906 0.919

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ+ jxt−xlj1ðxt < xlÞ

0.262 0.208

Out-of-sample forecasting Coh Gau

Upper-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½0,xu�Þ

0.933 0.933

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ

0.156 0.178

Two-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½xl,xu�Þ

0.922 0.933

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ+ jxt−xlj1ðxt < xlÞ

0.167 0.122



terms is advisable for improving the model. But for illus-
trative purposes, we want to keep the model manageable.

Besides an in-sample forecasting of the data x2,… , xT,
we also do an out-of-sample forecasting again, by taking
further liquidations data XT+ 1,… , XT+ 89 for the period
October 1, 2019, to January 31, 2020, from the Federal
Gazette. The determined coherent and approximate PIs
are then compared to the respective realizations xt. It
turns out that the coherent two-sided PIs reduce to

upper-sided PIs without exception, whereas we have
about 18% (44%) of truly two-sided approximate PIs for
the in-sample (out-of-sample) period. In Figure 10, we
show the upper-sided PIs for both periods for illustration,
where the plotted upper limits are again shifted upwards
for readability.

Detailed performance analyses are summarized in
Table 14. The in-sample coverage rate of the coherent PIs
exceeds pcov, whereas the out-of-sample one falls short of
pcov. The latter is commonly observed in empirical studies
(see section 6 in Chatfield, 1993) and often caused by
modeling issues. Therefore, a refinement of the coherent
model seems advisable for future forecasting applications;
see also the above discussion. But here our aim is to ana-
lyze the differences between coherent and approximate
forecasting, so we continue with the current model fits.
The coverage rates of the approximate PIs are always
lower than those of the coherent ones, which is particu-
larly problematic for the out-of-sample forecasts. This is
supported by the right-hand part of Figure 10, where the
upper limits of the approximate PIs appear to be too low
between T+ 40 and T+ 89. Also, the average failure rates
are larger for the approximate PIs throughout. If taking
the fitted ll-NB-AR(1) model as the benchmark, then a
large fraction of the computed approximate PIs is classi-
fied as suffering from shortfall, namely about 38% (54%) of
the upper-sided PIs for the in-sample (out-of-sample)
period, and 22% (45%) of the two-sided PIs. So, again, we
note that the approximate Gaussian approach leads to con-
siderably different inference from the coherent approach.

5 | CONCLUSIONS

We analyzed the performance of coherent PIs for various
types of count processes. For the Poisson and binomial
DGPs, the coherent PIs rarely fall short of the actual cov-
erage requirement, and exceedances thereof are mitigated

TABLE 14 Performance of in-sample and out-of-sample PIs

for liquidation counts data (Section 4.2)

In-sample forecasting Coh Gau

Upper-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½0,xu�Þ

0.934 0.906

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ

0.128 0.194

Two-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½xl,xu�Þ

0.934 0.931

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ+ jxt−xlj1ðxt < xlÞ

0.128 0.138

Out-of-sample forecasting Coh Gau

Upper-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½0,xu�Þ

0.820 0.775

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ

0.438 0.685

Two-sided PIs

Coverage rate — i.e., mean of
1ðxt 2 ½xl,xu�Þ

0.820 0.708

Average failure — i.e., mean of
jxt−xuj1ðxt > xuÞ+ jxt−xlj1ðxt < xlÞ

0.438 0.674

FIGURE 10 Plot of upper-sided in-sample and out-of-sample PIs for liquidation counts data
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with increasing mean μ. However, increased dispersion
of the DGP, resulting either from overdispersed distribu-
tions such as the negative binomial one, or from higher
order INARCH processes, deteriorate the PIs' perfor-
mance. The same occurs in the presence of seasonality
and trend. But the performance of PIs is always consider-
ably worse if these are computed based on a Gaussian
approximation of the actual DGP. To some part, this is
caused by the different way of constructing PIs for
continuous data rather than for discrete data, which gen-
erally results in a strong shortfall tendency of the approx-
imate PIs. But besides this systematic difference, we also
observed that extraordinary features such as over-
dispersion, zero inflation, and trend have more
drastic effects on the approximate PIs than on the
coherent ones.

At this point, let us also have a look at the findings of
Homburg et al. (2019) regarding point forecasts for count
processes. For the central point forecasts (conditional
median), Homburg et al. observed that the coherent point
forecasts are almost unaffected by estimation error.
Approximate point forecasts perform considerably worse
but at least improve with increasing mean or decreased
autocorrelation. This differs from our findings regarding
PIs for count processes. In fact, there are more analogies
to the performance of the noncentral point forecasts in
Homburg et al., which is plausible as the PIs also rely on
outer quantiles. Although Homburg et al. used a rather
different (risk-related) performance criterion, they also
note a visible effect of the estimation uncertainty even on
the coherent forecasts, and in particular a much worse
performance of the approximate forecasts throughout. So
we must clearly confirm their overall conclusion that
“the practice of discretizing Gaussian ARIMA forecasts
for count time series is strongly discouraged.”

For future research, one should try to develop
approaches for incorporating the apparent estimation
uncertainty into the forecasting procedure. Also the
approach of Remark 1, where the full forecast distribu-
tion is computed as the predictor, deserves further atten-
tion. A comprehensive performance study as well as a
comparison to approximate methods appear to be impor-
tant for evaluating the practicality of this approach.
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APPENDIX A: SUMMARY OF CONSIDERED
COUNT DGPS

In what follows, we summarize those count time series
models which were used as a DGP in our numerical and
simulation studies. These models belong to either the
group of thinning-based models or the group of regres-
sion models. The respective definition and relevant prop-
erties are briefly listed below. More details and references
on these and further count time series models can be
found in the book by Weiß (2018).

A.1 | Thinning-based models

The considered thinning-based models have an AR-like
data-generating mechanism, where the AR model's mul-
tiplications are substituted by the integer-valued random
operation of binomial thinning: for α 2 (0, 1) and a count
r.v. X, it is defined by requiring α ∘ XjX �Bin(X, α). The
following models assume that all thinnings are executed
independently of each other, and independently of the
innovations as well as of past observations.

INAR(1) model: Model recursion Xt = α ∘Xt−1 + ϵt,
where innovations (ϵt) are independent and identically
distributed (i.i.d.) count r.v.s with μϵ =E and variance σ2ϵ :
=var.
Mean μ=E, variance σ2 = var, and autocorrelation func-
tion (ACF) ρðkÞ=corr, respectively, are given by

μ=
μϵ

1−α
, σ2 =

σ2ϵ + αμϵ
1−α2

, and ρðkÞ= αk:

Constitutes a Markov chain with transition probabilities

pðxjxTÞ = pðXT +1 = xjXT = xTÞ
=
Pminfx,xTg

s=0
xT
s

� �
αsð1−αÞxT −s �Pðϵt = x−sÞ:

Referred to as Poi-, NB-, or ZIP-INAR(1) model, respec-
tively, if ϵt follows Poisson, negative binomial, or zero-
inflated Poisson distribution.
INAR(2) model: Model recursion Xt = α1 ∘ tXt−1 +
α2 ∘ tXt−2 + ϵt with α1 + α2 < 1, constitutes a second-order
Markov process with transition probabilities

pðxjxT ,xT−1Þ=
Pminfx,xTg

j1 = 0

Pminfx−xT ,xT−1g
j2 = 0

xT
j1

� 	
α j1
1 ð1−α1ÞxT − j1 � xT−1

j2

� 	

α j2
2 ð1−α2ÞxT−1− j2 �Pðϵt = x− j1− j2Þ:

ACF satisfies ρð1Þ= α1=ð1−α2Þ, and ρðkÞ= α1ρðk−1Þ
+ α2ρðk−2Þ for k≥ 2.
BinAR(1) model for bounded range {0,… , n} with some
n2N.
Let π 2 (0, 1) and α2 max − π

1−π ,−
1−π
π

� �
,1


 �
, and define

β : = πð1−αÞ and γ : = β+ α: Then BinAR(1) model
recursion

Xt = γ ∘Xt−1 + β∘ðn−Xt−1Þwith X0 �Binðn,πÞ:

Constitutes a Markov chain with marginal distribution
Bin(n, π), and with ACF ρðkÞ= αk . The transition proba-
bilities are

pðxjxTÞ =
Pminðx,xT Þ

m=maxð0,x+ xT −nÞ
xT
m

� � n−xT
x−m

� �
γmð1−γÞxT −mβx−mð1−βÞn−xT +m−x:

A.2 | Regression models

We consider the AR-type INARCH models (integer-
valued autoregressive conditional heteroskedasticity) as
well as the log-linear Poisson AR(1) model (ll-Poi-AR
(1) model).

Poi-INARCH(1) model: Model recursion XtjXt− 1,… �
Poi(β + αXt− 1) with β > 0 and α 2 (0, 1). Mean, variance,
and ACF, respectively, are given by

μ=
β

1−α
, σ2 =

μ

1−α2
, and ρðkÞ= αk:

Constitutes a Markov chain with transition probabilities

pðxjxTÞ = expð−β−αxTÞ ðβ+ αxTÞx
x!

:
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Poi-INARCH(2) model: Model recursion XtjXt− 1,… �
Poi(β + α1Xt− 1 + α2Xt− 2) with α1 + α2 < 1. ACF like for
INAR(2) model, transition probabilities

pðxjxT ,xT−1Þ =expð−β−α1xT−α2xT−1Þ
ðβ+ α1xT + α2xT−1Þx

x!
:

BinARCH(1) model: Model recursion XtjXt−1,…�
Bin n,β+ αXt−1

n


 �
with β, β+ α 2 (0, 1). Transition

probabilities

pðxjxTÞ = n
x

� �
β+ α

xT
n

� �x
1−β−α

xT
n

� �n−x
:

ll-Poi-AR(1) model with linear trend and harmonic
oscillation (period p, angular frequency ω=2π=p). Model
recursion XtjXt− 1,… � Poi(Mt) with

lnMt = γ0 + γ1 t+ γ2cosðωtÞ+ γ3 sinðωtÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{= : lnμt

+ α1 lnðXt−1 + 1Þ− lnðμt−1 + 1Þð Þ:

Additional dispersion can be incorporated by using a con-
ditional NB distribution: the ll-NB-AR(1) model relies
on the recursion XtjXt−1,…� NB 1, n

Mt +n

� �
, where the

parameter n controls the dispersion level.
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