
ADMM-Type Methods for
Optimization and Generalized Nash

Equilibrium Problems in Hilbert
Spaces

Dissertation zur Erlangung
des naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Eike Alexander Lars Guido Börgens
aus Hilden, Deutschland

Würzburg, 2020

1. Gutachter: Prof. Dr. Christian Kanzow, Julius-Maximilians-Universität Würzburg
2. Gutachter: Prof. Dr. Radu Ioan Boţ, Universität Wien

Abstract
This thesis is concerned with a certain class of algorithms for the solution of
constrained optimization problems and generalized Nash equilibrium problems in
Hilbert spaces. This class of algorithms is inspired by the alternating direction
method of multipliers (ADMM) and eliminates the constraints using an augmented
Lagrangian approach. The alternating direction method consists of splitting the
augmented Lagrangian subproblem into smaller and more easily manageable parts.

Before the algorithms are discussed, a substantial amount of background ma-
terial, including the theory of Banach and Hilbert spaces, fixed-point iterations as
well as convex and monotone set-valued analysis, is presented. Thereafter, certain
optimization problems and generalized Nash equilibrium problems are reformu-
lated and analyzed using variational inequalities and set-valued mappings. The
analysis of the algorithms developed in the course of this thesis is rooted in these
reformulations as variational inequalities and set-valued mappings.

The first algorithms discussed and analyzed are one weakly and one strongly
convergent ADMM-type algorithm for convex, linearly constrained optimization.
By equipping the associated Hilbert space with the correct weighted scalar product,
the analysis of these two methods is accomplished using the proximal point method
and the Halpern method.

The rest of the thesis is concerned with the development and analysis of
ADMM-type algorithms for generalized Nash equilibrium problems that jointly
share a linear equality constraint. The first class of these algorithms is completely
parallelizable and uses a forward-backward idea for the analysis, whereas the sec-
ond class of algorithms can be interpreted as a direct extension of the classical
ADMM-method to generalized Nash equilibrium problems.

At the end of this thesis, the numerical behavior of the discussed algorithms is
demonstrated on a collection of examples.

iii

iv Abstract (Zusammenfassung)

Zusammenfassung
Die vorliegende Arbeit behandelt eine Klasse von Algorithmen zur Lösung restrin-
gierter Optimierungsprobleme und verallgemeinerter Nash-Gleichgewichtsproble-
me in Hilberträumen. Diese Klasse von Algorithmen ist angelehnt an die Alterna-
ting Direction Method of Multipliers (ADMM) und eliminiert die Nebenbedingun-
gen durch einen Augmented-Lagrangian-Ansatz. Im Rahmen dessen wird in der
Alternating Direction Method of Multipliers das jeweilige Augmented-Lagrangian-
Teilproblem in kleinere Teilprobleme aufgespaltet.

Zur Vorbereitung wird eine Vielzahl grundlegender Resultate präsentiert. Dies
beinhaltet entsprechende Ergebnisse aus der Literatur zu der Theorie von Banach-
und Hilberträumen, Fixpunktmethoden sowie konvexer und monotoner mengen-
wertiger Analysis. Im Anschluss werden gewisse Optimierungsprobleme sowie ver-
allgemeinerte Nash-Gleichgewichtsprobleme als Variationsungleichungen und In-
klusionen mit mengenwertigen Operatoren formuliert und analysiert. Die Analysis
der im Rahmen dieser Arbeit entwickelten Algorithmen bezieht sich auf diese Re-
formulierungen als Variationsungleichungen und Inklusionsprobleme.

Zuerst werden ein schwach und ein stark konvergenter paralleler ADMM-
Algorithmus zur Lösung von separablen Optimierungsaufgaben mit linearen
Gleichheitsnebenbedingungen präsentiert und analysiert. Durch die Ausstattung
des zugehörigen Hilbertraums mit dem richtigen gewichteten Skalarprodukt gelingt
die Analyse dieser beiden Methoden mit Hilfe der Proximalpunktmethode und der
Halpern-Methode.

Der Rest der Arbeit beschäftigt sich mit Algorithmen für verallgemeinerte
Nash-Gleichgewichtsprobleme, die gemeinsame lineare Gleichheitsnebenbedingun-
gen besitzen. Die erste Klasse von Algorithmen ist vollständig parallelisierbar und
es wird ein Forward-Backward-Ansatz für die Analyse genutzt. Die zweite Klasse
von Algorithmen kann hingegen als direkte Erweiterung des klassischen ADMM-
Verfahrens auf verallgemeinerte Nash-Gleichgewichtsprobleme aufgefasst werden.

Abschließend wird das Konvergenzverhalten der entwickelten Algorithmen an
einer Sammlung von Beispielen demonstriert.

Acknowledgments

My foremost thanks goes to my supervisor, Prof. Dr. Christian Kanzow, for offering
me a doctoral position and for his consistent mentorship and support throughout
the last years. From the beginning of my studies, I have benefited from his pro-
found knowledge of many areas of applied mathematics, and his uncanny habit of
recognizing connections and similarities between various problems which we have
encountered. In addition, his door has always been open and we have enjoyed a
myriad of fruitful discussions.

At the same time, I want to express my gratitude to Prof. Dr. Radu Ioan Boţ,
who agreed to co-referee this thesis.

In addition, I would like to thank all the members of the Institute of Mathe-
matics at the Julius-Maximilians-Universität Würzburg, in particular Dr. Richard
Greiner, Silke Korbl, Dr. Jens Jordan, Dr. Robert Hartmann, Andreas Seeg,
Dr. Florian Möller, Ursula Radler, Anita Schmid, Patricia Pelz and Susann
Schmitt, who have supported me overcoming all kinds of organizational and tech-
nical challenges throughout the years.

Furthermore, I want to thank my scientific colleagues at the chair of numer-
ical mathematics and optimization. The relaxed, almost family-like atmosphere
at the institute has made my time here very enjoyable. Special thanks go to
Prof. Dr. Daniel Wachsmuth, Dr. Frank Pörner, and Dr. Daniel Steck for their aid
in many questions of functional analysis and optimal control theory. Apart from
this, I would like to specifically mention my colleagues Veronika Karl, Theresa
Lechner, Tobias Geiger, Carolin Natemeyer, and PD Dr. Christian Zillober and
thank them for their camaraderie and friendship during the last years.

For their constant support throughout my studies and life, I also want to express
my gratitude to my family, namely Rainer and Martina Koopmann as well as
Beatrice Börgens.

Finally, I would like to thank my friends for their camaraderie and friendship
throughout my time here, especially Nicolas Braune, Yannik Gleichmann, Tobias
Geiger and Rosina Ziegler, who have helped me develop new perspectives through
extensive discussions. Among these, Rosina Ziegler deserves special mention, as she
spent several days correcting all kinds of typos and grammatical inconsistencies.

v

vi Acknowledgments

Further, I would also like to acknowledge the financial support by the German
Research Foundation (DFG) under the grant number KA 1296/24-1.

Contents

Abbreviations and Notations xi

1 Introduction 1
1.1 The Alternating Direction Method of Multipliers and the Aug-

mented Lagrangian Method . 3
1.2 Splitting Methods for Generalized Nash Equilibrium Problems . . . 6
1.3 Structure of the Thesis . 8

2 Background Material 11
2.1 Hilbert and Banach Space Theory 11

2.1.1 Linear Operators . 12
2.1.2 Weak Convergence . 16
2.1.3 Function Spaces and Partial Differential Equations 18

2.2 Convex Analysis and Notions of Closedness 22
2.3 Fixed-Point Iterations . 26

2.3.1 Notions of Non-Expansiveness 26
2.3.2 Fejér-Monotonicity . 28
2.3.3 Krasnoselsky-Mann Iteration 28
2.3.4 Halpern’s Method . 33

2.4 Monotone Operators . 34
2.5 Zeros of (Maximally) Monotone Operators 38

2.5.1 The Resolvent and the Proximal Point Algorithm 39
2.5.2 The Forward Operator and the Gradient Method 41
2.5.3 The Forward-Backward Operator and Iteration 42
2.5.4 The Forward-Backward-Forward Iteration 44

2.6 Fundamental Inequalities . 45

3 Theory of Optimization and Variational Problems 47
3.1 Separable Linearly Constrained Optimization 48
3.2 Linearly Constrained Generalized Nash Equilibrium Problems . . . 51

3.2.1 Linear Equality Constrained GNEPs 54

vii

viii Contents

3.2.2 Generalization to GNEPs with Conic Constraints 57

4 Regularized Jacobi-type ADMM-Methods for a Class of Separa-
ble Convex Optimization Problems 63
4.1 Regularized Jacobi-type ADMM-Method 64
4.2 Convergence Analysis . 67
4.3 A Strongly Convergent Algorithm 81

5 Regularized Jacobi-type ADMM-Methods for Generalized Nash
Equilibrium Problems 85
5.1 Regularized Jacobi-type ADMM-Method 86

5.1.1 Convergence Analysis Based on the Forward-Backward
Method . 87

5.1.2 Self-Contained Convergence Analysis 93
5.1.3 Application to Conic Constraints 97

5.2 Strongly Convergent Jacobi-type ADMM-Method 99
5.3 Modified Regularized Jacobi-type ADMM-Methods 101

6 Regularized Gauss-Seidel-type ADMM-Methods for Generalized
Nash Equilibrium Problems 105
6.1 Assumptions . 106
6.2 ADMM-Method with Fixed Regularization 107

6.2.1 Statement of the Algorithm 108
6.2.2 Convergence . 109
6.2.3 Necessity of Regularization 117

6.3 ADMM-Method with Adaptive Regularization 119
6.3.1 Statement of the Algorithm 119
6.3.2 Convergence . 121

6.4 Comments . 124

7 Applications 127
7.1 Application to Domain Decomposition 129

7.1.1 Non-Overlapping Domain Decomposition 129
7.1.2 Application of the Optimization Algorithm 132
7.1.3 Estimating the Proximal Constant γ 134
7.1.4 Numerical Results of the Domain Decomposition 136

7.2 Elliptic Optimal Control GNEPs with Accumulated Control Bound 139
7.2.1 Theoretical Considerations 139
7.2.2 Numerical Results . 144

7.3 Elliptic Optimal Control GNEPs with State Bound 147
7.4 Elliptic Optimal Control NEP . 151

Contents ix

7.5 Environmental Differential Games 153
7.6 Finite-Dimensional Examples . 155

7.6.1 Additional Examples of GNEPs 155
7.6.2 l1 Minimization . 157

8 Comments and Outlook 161

x Contents

Abbreviations and Notations

Abbreviations
a.e. almost everywhere
ADMM alternating direction method of multipliers
cf. confirm
e.g. exempli gratia (for example)
etc. et cetera (and so forth)
GNEP generalized Nash equilibrium problem
i.e. id est (that is)
KKT Karush–Kuhn–Tucker conditions
lsc lower semicontinuous
NEP Nash equilibrium problem
PDE partial differential equation

Basic Sets and Relations
N natural numbers (without zero)
N0 natural numbers with zero
R real numbers
(a, b), [a, b] open and closed intervals, respectively
Rn space of n-dimensional real vectors
Rm×n space of m× n matrices
≤ partial ordering on Rn induced by componentwise comparison
⊂ subset (or equal)
⊆ subset with emphasis that it can be equal
(subset and not equal
In identity matrix of dimension n× n
A−1 inverse of a nonsingular square matrix A
AT transpose of a matrix A

Banach Spaces

X, Y Banach spaces

xi

xii Abbreviations and Notation

H a Hilbert space
K a Hilbert space, usually the constraint space
2H power set of H
‖ · ‖X norm on the space X
‖ · ‖ original norm where the space is clear from the context
‖ · ‖Q norm induced by a self-adjoint, strongly monotone, bounded, lin-

ear operator Q
dim(X) dimension of the space X
L(X, Y) space of bounded linear operators between Banach spaces X and

Y
L(X) space of bounded linear operators from the Banach space X to

itself
X∗ dual space of a Banach space X, i.e. X∗ = L(X,R)
‖ · ‖L(X,Y) norm in the space of linear operators L(X, Y)
‖ · ‖X→Y norm in the space of linear operators L(X, Y), alternative nota-

tion
I identity mapping on a Banach space, which is clear from the

context
IX→Y identity or isometric isomorphism from X to Y
A? adjoint of an operator A ∈ L(X, Y)
A∗ Hilbert space adjoint of an operator A ∈ L(H)
〈· | ·〉X∗,X duality pairing of a Banach space
〈· | ·〉H scalar product of a Hilbert space H
〈· | ·〉H×K scalar product of a Hilbert space H×K
〈· | ·〉 original scalar product of a Hilbert space, which is clear from the

context
〈· | ·〉Q scalar product induced by a self-adjoint, strongly monotone,

bounded, linear operator Q
X ↪→ Y embedding between Banach spaces X and Y

X
d
↪→ Y dense embedding between Banach spaces X and Y

Br(x) closed ball with radius r around some point x in a Banach space
{xk}k∈N ⊂ X sequence of vectors in a Banach space X
{ρk}k∈N ⊂ R sequence of scalars
xk → x convergence of a sequence in a Banach space
xk ⇀ x weak convergence of a sequence in a Banach space
φk ⇀∗ φ weak-∗ convergence in the dual of a Banach space
ρk ↘ 0 convergence to zero of a non-negative, scalar sequence {ρk}
xk = O(ρk) Landau symbol for {xk} ⊂ X satisfying ‖xk‖X ≤ Cρk with C > 0
xk = o(ρk) Landau symbol for {xk} ⊂ X satisfying ‖xk‖X ≤ zkρ

k with zk ↓ 0
{xk}k∈I subsequence of {xk}k∈N corresponding to I ⊆ N

Abbreviations and Notation xiii

xk →I x convergence of the subsequence {xk}k∈I to x

Geometry and Set Operations

2A power set a set A
cl(A) closure of a set A in a topological space
int(A) interior of a set A in a topological space
∂A boundary of a set A in a topological space
A◦ polar cone of a set A in a Hilbert space
A⊥ orthogonal complement of a set A in a Hilbert space
A+B Minkowski sum of sets in a Banach space
αA α-multiple of a set in a Banach space, α ∈ R
dC , dist(·, C) distance function to a nonempty set C in a Banach space
ProjC projection onto a nonempty, closed, convex set C in a Hilbert

space

Functions and Derivatives
f : X → Y mapping between Banach spaces X and Y
epigraph(f) epigraph of a function f : X → (−∞,+∞]
dom(f) domain of a function f : X → (−∞,+∞], the set of x ∈ X with

f(x) 6= +∞
f ′ first Fréchet-derivative of f : X → Y
∇f Riesz representative of f ′ for a function f : H → R
∂f convex subdifferential of a function f : H → R
T : H → 2H set-valued mapping between a Hilbert space H and its power set

2H

graph(T) graph of T : H → 2H

dom(T) domain of a maximally monotone operator T : H → 2H

dom(∂f) domain of the maximally monotone operator ∂f
zer(T) set of zeros of T : H → 2H

fix(F) set of fixed points of F : H → H

Function Spaces

Ω domain in Rd

Ω closure of Ω ⊆ Rd

∂Ω boundary of Ω ⊆ Rd

A ⊂⊂ Ω A is compactly contained in Ω
supp(u) the support of a function u : Ω→ R
Lp(Ω) Lebesgue space of p-integrable functions u : Ω→ R, p ∈ [1,∞]
C(Ω) space of bounded, uniformly continuous functions u : Ω→ R

xiv Abbreviations and Notation

Ck(Ω) space of functions u : C(Ω) whose derivatives up to k-th exist
and are in C(Ω)

C∞0 (Ω) space of infinitely differentiable functions u : Ω → R with com-
pact support

Hk(Ω) Sobolev space of functions u : Ω→ R whose weak derivatives up
to k-th order exist and belong to L2(Ω)

Hk
0 (Ω) closure of C∞0 (Ω) in Hk(Ω)

H−1(Ω) dual space of H1
0 (Ω)

∂xi (weak) derivative of a function u : Ω→ R in xi-direction
∇ (weak) gradient operator
∆ Laplace operator
trace(u) trace of a function u ∈ H1(Ω) on the whole boundary ∂Ω
traceΓi,j(u) trace of a function u ∈ H1(Ω) on the boundary part Γi,j ⊂ ∂Ω
∂nu normal derivative of a function u ∈ H1(Ω) with ∆u ∈ L2(Ω)
L2(∂Ω) Lebesgue space of all square-integrable functions on the boundary

of Ω
H1/2(∂Ω) image of H1(Ω) under the trace operator
H−1/2(∂Ω) dual space of H1/2(∂Ω)

Optimization and Nash Problems

x whole primal variable of an optimization problem or GNEP
N number of block components of x or the corresponding number

of players in a GNEP
xi i-th block component of x in an optimization problem
xν , x−ν ν-th player variable and its complement in a GNEP
µ Lagrange multiplier of an optimization problem or GNEP
w aggregate primal-dual variable (x, µ) of an optimization problem

or GNEP
fi part of the objective function of an optimization problem that

only depends on xi, which can be non-smooth
f objective function of an optimization problem and the sum of all

fi
L Lagrange function of an optimization problem or GNEP
Lβ augmented Lagrange function of an optimization problem or

GNEP
θν part of the objective function of player ν in a GNEP that depends

on all players’ variables x
ϕν part of the objective function of player ν in a GNEP that depends

only on the player’s variable xν , which can be non-smooth
ϕ sum of all ϕν ; dependent on the whole primal variable x

Abbreviations and Notation xv

ψ ϕ interpreted as a function that depends on the aggregate pri-
mal-dual variable w = (x, µ)

∂xν subdifferential operator with respect to xν
∇xν partial derivative operator with respect to xν
P̂θ pseudo gradient (∇xνθν)

N
ν=1; dependent on the primal variable x

Pθ pseudo gradient, interpreted as a function that depends on the
aggregate primal-dual variable w = (x, µ)

xvi Abbreviations and Notation

Chapter 1

Introduction

A variety of problems in engineering, economics, physics, statistics, machine learn-
ing, and other practical sciences can be expressed as optimization problems. Often,
their solutions cannot be computed analytically and therefore have to be approxi-
mated. Due to the rise of computers and the associated possibility of automating
these approximations, optimization has emerged as a very fruitful discipline in
mathematics, whereas its roots date back to Fermat, Newton, and Lagrange. The
latter has introduced the concept of Lagrange multipliers, which lies at the heart
of constrained optimization and is used in most associated algorithms, such as
augmented Lagrangian methods, which are explained later in more detail. In
the early days of computers, even relatively high-performance servers often did
not have enough computational capacity to solve certain optimization problems
at once. As a consequence, it was necessary to split these problems into smaller
and easily manageable often even analytically solvable subproblems. These sub-
problems were then solved consecutively, i.e. the information resulting from the
computations regarding the previous subproblem was used to solve the current
subproblem.

Due to the use of the latest information, methods using consecutive splitting
tend to have an advantage over the use of a parallelization approach with respect to
the speed of convergence. Even nowadays it often makes sense to use such consecu-
tive splitting methods, especially when the subproblems can be solved analytically
or much faster than the original problem.

However, in the last two decades large data centers have been established where
many cores or servers are used to compute a solution for one large task. In order
to be able to benefit from this computational power, the (optimization) problem
has to be split up into smaller tasks that can be performed in parallel or even fully
decentralized and distributed among individual workers.

Such methods that split up the problem into smaller subproblems are called
splitting methods, and, as motivated by the above considerations, they have been

1

2 1. Introduction

studied since the rise of computers. This is epitomized by a vast amount of litera-
ture around this topic, including [8, 13,26,51,56,59,85] and many more.

In the mid-1970s R. Glowinski and A. Marrocco [58] as well as D. Gabay and
B. Mercier [55] introduced an algorithm that consecutively splits up the primal
problem tackled in the augmented Lagrangian algorithm into two smaller dimen-
sional subproblems. This algorithm trades today under the name alternating
direction method of multipliers, or ADMM for short, and is elaborated in the next
subsection. The ADMM turned out to be very efficient for convex, separable,
linear equality constrained optimization problems which enabled its successful
application in many areas, including artificial intelligence, internet applications,
computational biology, medicine, finance, marketing, network analysis, and lo-
gistics. The survey paper [26] is dedicated entirely to the study of applications
of the ADMM from a present point of view. After the theory of the standard
ADMM had evolved from the 1970s to the 1990s, new applications gave impetus
to further improve this method and apply ADMM-type methods to more general
problems. Hence, splitting methods, in particular the ADMM, have recently
attracted attention again in the research community and among potential users.

Another fruitful concept in applied mathematics is the notion of non-cooper-
ative N -person games, also known as Nash equilibrium problems (NEPs), which
were initially developed by John F. Nash in the 1950s, see [83]. Over the years,
Nash’s theory has been extended and broadly applied to many fields in biology,
economics and engineering, see for instance [4, 46,53,81,86,87] and the references
therein. Consequently, the demand for numerical methods tackling these kinds of
problems rose. Since Nash and generalized Nash problems are intertwined opti-
mization problems, the optimization theory and certain algorithms were extended
to these problem classes. For an introduction to the theory and algorithmic of
generalized Nash problems, see for example [46].

The structure of these (generalized) Nash problems suggests that a suitable
generalization of the splitting methods described above could yield efficient algo-
rithms, which could serve as tools to solve these kinds of problems. Furthermore,
it is desirable to develop such splitting methods because they tend to resemble the
structure of applications where each player decides on her or his own how to react.

In this thesis, in addition to presenting an ADMM-type parallel splitting
method for optimization, we therefore focus on the application of ADMM-type
methods to generalized Nash problems.

Now, we want to discuss the above described methods and problems in more de-
tail. Therefore we first introduce an optimization problem, to which the ADMM-
type methods are applied, and discuss some literature around this topic. There-
after, we discuss the class of generalized Nash problems this thesis is concerned
with.

1.1. The ADMM and the Augmented Lagrangian Method 3

1.1 The Alternating Direction Method of Multi-
pliers and the Augmented Lagrangian Method

Here we want to discuss the alternating direction method of multipliers in more
detail and for this sake the augmented Lagrangian method as well. To do so, we
consider the general problem

min
x∈H1×···×HN

N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b, xi ∈ Xi (i = 1, . . . , N), (Opt)

where Hi and K are Hilbert spaces, fi : Hi → R are lower semi-continuous, convex
functions, Xi ⊂ Hi are closed convex sets, the Ai are linear operators from Hi to
K, i.e. Ai ∈ L(Hi,K), and b ∈ K is a vector.

For the sake of notational simplicity, we use the abbreviations

H := H1 × · · · × HN , X := X1 × . . .×XN ⊆ H

x :=
(
x1, . . . , xN) ∈ H, f(x) :=

N∑
i=1

fi(xi), Ax :=
N∑
i=1

Aixi.

Canonically, H becomes a Hilbert space with the scalar product 〈x | y〉 :=
〈x1 | y1〉 + · · · + 〈xN | yN〉, the scalar product in the space H × K is defined
analogously. The symbol ‖ · ‖ always denotes the norm induced by the correspond-
ing scalar product (in Hi,H,K, or H×K); the meaning should be clear from the
context.

Using this notation, we can rewrite (Opt) as

min
x

f(x) s.t. Ax = b, x ∈ X . (1.1)

Let

L(x, µ) := f(x) + 〈µ | Ax− b〉,

LA(x, µ) := f(x) + 〈µ | Ax− b〉+
β

2
‖Ax− b‖2

denote the Lagrangian and the augmented Lagrangian of (1.1), respectively, where
β > 0 is the penalty parameter. Then a standard optimization technique for solv-
ing optimization problems of this kind is the augmented Lagrangian or multiplier-
penalty method, in the following abbreviated by ALM. The basic iteration of ALM
applied to (1.1) is given by

xk+1 := arg min
x∈X

LA(x, µk),

µk+1 := µk + β(Axk+1 − b),

4 1. Introduction

provided that a minimum of the augmented Lagrangian exists and can be com-
puted (hopefully) easily, cf. [12, 23,71,84].

Unfortunately, when applied to the separable problem (Opt), the quadratic
term in the augmented Lagrangian destroys the separable structure and, there-
fore, ALM cannot take advantage of the separability in the computation of the
new iterate xk+1. This observation is the main motivation for the alternating
direction method of multipliers, ADMM for short. This method computes the
block components xk+1

i essentially again by minimizing LA(x, µk), but with the
full-dimensional vector x being replaced either by

(
xk1, . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
N

)
or by

(
xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
N

)
, so that the subproblems are minimization

problems in xi alone. More precisely, discarding some constant terms, the former
approach leads to a parallel Jacobi-type ADMM-method with xk+1

i being computed
by

xk+1
i := arg min

xi∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

∥∥Aixi +
∑
l 6=i

Alx
k
l − b

∥∥2
}

(1.2)

for all i = 1, . . . , N , whereas the latter approach yields a consecutive Gauss-Seidel-
type ADMM-method

xk+1
i := arg min

xi∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

∥∥∑
l<i

Alx
k+1
l + Aixi +

∑
l>i

Alx
k
l − b

∥∥2
}
.

(1.3)
Both methods coincide for the case N = 1 and reduce to the standard ALM ap-
proach, whereas the classical ADMM-method, introduced by Glowinski, Marrocco,
Gabay, and Mercier in the manuscripts [55, 58], corresponds to the Gauss-Seidel-
type iteration (1.3) with N = 2 blocks.

Note that the two schemes (1.2) and (1.3) have different properties. The for-
mer is implementable completely in parallel, whereas the latter is not, but uses the
newer information and is therefore often faster convergent in terms of the number
of outer iterations. In any case, both methods have the major advantage that they
can fully exploit the separable structure of (Opt) and often yield small-dimensional
subproblems that are easy to solve (sometimes even analytically). Unfortunately,
however, without any further assumptions, these subproblems might not have solu-
tions, and even if they have, none of the two schemes necessarily converge. In fact,
while there is a satisfactory global convergence theory for the Gauss-Seidel-type
ADMM-scheme for the special case N = 2, see [14, 26, 43], the recent paper [32]
shows that convergence cannot be expected, in general, for N > 2. For the Jacobi-
type scheme the situation is even worse since [63] provides a counterexample for
the case of N = 2 blocks.

It therefore comes with no surprise that there exist a couple of modifications
of the two basic iterations (1.2) and (1.3) in the literature.

1.1. The ADMM and the Augmented Lagrangian Method 5

Concerning the Gauss-Seidel scheme (1.3), there are some noteworthy results
that improve the convergence or yield important insight in the proposed method.
Daniel Gabay showed in [54] that the classical ADMM (forN = 2) is closely related
to the (more general) Douglas-Rachford splitting applied to the dual problem.

In the case N > 2 it was shown in [103] that the convergence of the Gauss-Sei-
del scheme can be retained if N − 2 of the functions are strongly convex, the Ai
have full column rank and β is small enough. An other set of assumptions that
guarantees convergence of the Gauss-Seidel scheme for N > 2 was introduced in
[69]. The manuscripts [64, 65] introduce a reasonable correction of the output of
the Gauss-Seidel scheme (1.3) such that convergence can be proven. Also research
about the convergence of the ADMM in the absence of convexity or non-linear con-
straints was deducted and seems to gain more and more relevance, since it widely
expands the area of applications, see for example [16, 17, 70] and the references
therein.

As already mentioned, the Jacobi-type iteration does not converge in the case
N ≥ 2 without further modification. Therefore it is necessary to modify the
iteration. One approach is to rewrite the classical ADMM in order to obtain a
parallel algorithm with a certain regularization structure. This was investigated
in depth in [43, 60, 66, 108] and is also discussed in Chapter 4. For a further
discussion of suitable modifications of the Jacobi-type scheme we refer the reader
to the discussion in Chapter 4 and to [34,63,101,102,107].

Since our aim is to present a modification of the Jacobi-type iteration in Chap-
ter 4, we concentrate our discussion on this class of methods, some more details
are given in Chapter 4 after an explicit statement of our algorithm.

To the best of our knowledge, the existing literature (see citations above) that
investigates the convergence properties of suitable modifications of the Jacobi-type
scheme (1.2) is exclusively written in the finite-dimensional setting. All methods
that do not regularize the xi-subproblems require the suboperators Ai to be in-
jective (full rank assumption) in order to be well-defined and to get convergence
of the iterates {xk}k∈N, whereas this assumption is not necessarily needed in an
approach that regularizes the subproblems, cf. [2, 34].

The method we present in Chapter 4 is not completely new. In fact, lately we
became aware of the recent publication [34] that considers a parallel multi-block
ADMM scheme which is essentially the same as the algorithm considered here (see
also [101] for a closely related method). Nevertheless, there are some differences
which we think are remarkable. First, we present our method and the correspond-
ing theory in a Hilbert space setting, whereas [34] considers finite-dimensional
problems. Second, we reduce our convergence theory to a standard proximal-point
approach, as opposed to [34] where the authors provide an independent (self-con-
tained) convergence theory. Third, the lower bounds for certain parameters used

6 1. Introduction

here and in [34] seem to be better (smaller) in our theory, which in turn leads to a
superior numerical behavior. Finally, we address certain questions, like weak and
strong convergence and an application in Hilbert spaces, which do not occur in
the finite-dimensional theory.

1.2 Splitting Methods for Generalized Nash Equi-
librium Problems

Building on the foundations of the last section, we now introduce the jointly lin-
early constrained generalized Nash equilibrium problems that were mentioned ear-
lier and this thesis deals mostly with. We further discuss these problems in Sec-
tion 3.2. We consider the generalized Nash equilibrium problem (GNEP) with N
players ν, where the optimization problem of player ν is given by

min
xν∈Hν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
ν=1

Aνxν = b, xν ∈ Xν (GNEP)

or, more generally,

min
xν∈Hν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
ν=1

Bνxν − b ∈ C, xν ∈ Xν (GNEPconic)

for all ν = 1, . . . , N . Here, Hν and K are given Hilbert spaces, ϕν : Hν → R are
proper, convex, and lower semi-continuous functions, θν : H1 × · · · ×HN → R are
continuously Fréchet-differentiable with θν(·, x−ν) being convex for any fixed x−ν ,
Xν ⊂ Hν are non-empty, closed, and convex sets, C is a non-empty, closed, convex
cone, Aν , Bν ∈ L(Hν ,K), and b ∈ K. Following standard notation in Nash games,
we write x = (xν , x−ν), where x−ν subsumes all the remaining block components
xi with i 6= ν. This notation is used to emphasize the particular role played by
the block component xν within the entire vector x and does not mean that the
components of x are re-ordered. In particular, we therefore have x = (xν , x−ν) =(
x1, . . . , xN) and, similarly, (yν , x−ν) = (x1, . . . , xν−1, yν , xν+1, . . . , xN).

There exist many approaches for the numerical solution of GNEPs, and the in-
terested reader is referred to the survey papers [46,50] for more details. However,
these survey papers consider the finite-dimensional case only. Solution methods in
an infinite-dimensional Hilbert space (or Banach space) are still in their infancy.
The ideas from the finite-dimenional setting can sometimes be generalized to the
Hilbert space setting, like the usage of the Nikaido-Isoda function and the applica-
tion of Moreau-Yosida-type methods [67,68]. The augmented Lagrangian methods
from [73,74] may be viewed as extensions of this approach, but they have to solve a

1.2. Splitting Methods for Generalized Nash Equilibrium Problems 7

(standard) Nash equilibrium problem (NEP) in each iteration. Some other meth-
ods operating in an infinite-dimensional context are [25, 39, 40, 75], but none of
them is a splitting-type method and many of them are situated in an optimal
control context.

Splitting-type methods can, in principle, be relatively easily extended to stan-
dard NEPs. For example, the gradient-type method would be

xk+1
ν = ProjXν

(
xkν − tk∇xνθν(x

k)
)

for each ν = 1, . . . , N . Closely related to such gradient methods is the forward-
backward method, which is elaborated later in Section 2.5.3. Therefore we inter-
pret algorithms that are based on the forward-backward scheme as extensions of
the gradient method.

Splitting methods for GNEPs that are based on such forward-backward meth-
ods can be found in [10, 30, 111, 112]. These articles consider splitting-type meth-
ods that are based on forward-backward methods; in [30], the authors focus on
standard NEPs and show afterwards how to solve certain GNEPs under a cocoer-
civity assumption. On the other hand, the closely related algorithms considered in
[10,111,112] (for finite-dimensional problems) are fully distributed, but they use a
strong monotonicity and Lipschitz assumption. Further these algorithms are very
close to the projected gradient method incorporating the constraints and they are
not related to ADMM-methods.

In Chapter 5, we introduce three fully distributed forward-backward based
ADMM-type methods for solving the GNEPs from (GNEP) and (GNEPconic). The
first one turns out to be equivalent to a standard forward-backward method in a
Hilbert space endowed with a different scalar product, and is therefore convergent
under a cocoercivity condition. This equivalence observation then leads to a second
and third method. The second is strongly convergent and the third, at some
extra computational costs, turns out to be weakly convergent under a Lipschitz
and monotonicity assumption; hence no cocoercivity or strong monotonicity of a
certain (pseudo-gradient) mapping is required.

In contrast to these gradient-type or forward-backward methods, another way
to split optimization problems is a (block-)coordinate descent approach, which is
also known under the name alternating minimization, see [11,106], which directly
extends to the Gauss-Seidel-type best response algorithm for NEPs, see e.g. [49,
79,100]. Here the update would be

xk+1
ν = arg min

xν∈Xν
θν(x

k+1
1 , . . . , xk+1

ν−1, xν , x
k
ν−1, . . . , x

k
N)

for each player ν = 1, . . . , N . Its extension to GNEPs is more delicate since then
the feasible set of each player depends on the other players’ variables. A complete

8 1. Introduction

convergence theory for such a method is given in [49] for the class of (finite-dimen-
sional) potential games, but it requires an inner semicontinuity assumption on the
set-valued feasibility map, which is often violated. This indicates that Gauss-Sei-
del-, Jacobi- and other splitting-type methods may work quite well for standard
NEPs, but cause severe trouble for GNEPs. A simple way to overcome this draw-
back is to apply a penalty or multiplier-penalty idea in order to get rid of the joint
constraints. This avoids the inner semicontinuity assumption and naturally leads
to an approach that can be interpreted as a direct extension of the ADMM to
(GNEP).

The aim of Chapter 6 is therefore to investigate the convergence properties
of a direct extension of ADMM for solving GNEPs. However, the application of
ADMM to GNEPs turns out to be significantly more difficult than for standard
optimization problems. In particular, we see later that the direct translation of
ADMM to GNEPs may not converge even for N = 2 players, in contrast to
optimization problems with two blocks. We therefore introduce a regularization
which is also popular in the optimization context with multiple blocks. The overall
method is then well-defined with uniquely determined iterates for arbitrary positive
regularization parameters. In order to prove global convergence results, however,
the regularization parameters need to be sufficiently large, see also Section 1.1 for
related literature on regularization-type approaches.

The paper [99] also presents an approach to solve (finite-dimensional) GNEPs
using a method which is called an ADMM technique by the authors. But their
method is quite different from a direct extension of the classical ADMM algo-
rithm to GNEPs, and convergence is shown under relatively strong assumptions.
Therefore no connection can be drawn to the methods presented in this thesis.

1.3 Structure of the Thesis
This thesis is structured as follows: First, in Chapter 2, we recall the fundamental
definitions and results from functional and convex analysis that are required to
understand the presented methods. In this context, we pay particular attention
to certain closedness and convexity properties in Section 2.2, the crucial notions
of non-expansiveness, Fejér-monotonicity and fixed-point iterations in Section 2.3,
and maximally monotone operators including their properties in Section 2.4. These
maximally monotone operators and their zeros are closely related to certain non-ex-
pansive operators and their fixed points; Section 2.5 is devoted to this connection.
Finally, in Section 2.6, fundamental equalities and inequalities are discussed.

The theory of the above introduced problems (Opt), (GNEP) and (GNEPconic)
is elaborated in Chapter 3, which is based on [20,21]. Therefore, Section 3.1 is de-
voted to the notion of KKT pairs of (Opt) and their relation to certain maximally

1.3. Structure of the Thesis 9

monotone operators. Inspired by this, variational equilibria, KKT-type conditions
and their connection with certain maximally monotone operators of (GNEP) are
discussed, and the relation of (GNEPconic) to (GNEP) is elaborated in Section 3.2.
In addition, it is shown that KKT-type points of (GNEP) are equal to KKT-type
points of a suitable reformulation of (GNEPconic). This enables us to apply algo-
rithms designed for equality constrained problems to conically constrained ones as
well.

In Chapter 4, which is based on [21], a parallel ADMM-type splitting method
for (Opt) is introduced and one strongly convergent modification is presented.
The convergence analysis is heavily based on the theory of maximally monotone
operators and the main method turns out to be a proximal point algorithm in a
certain scalar product.

Based on [20], we present three parallel ADMM-type algorithms for problems
of the structure (GNEP) in Chapter 5. Here, the convergence analysis is based
on forward-backward methods and the averagedness of a certain operator. First,
the basic algorithm that is weakly convergent under a cocoercivity assumption is
presented. This iteration is then modified in order to obtain a strongly convergent
algorithm, again using a cocoercivity assumption. Thereafter, a modification is
presented that is, at extra computational cost, weakly convergent under a Lipschitz
assumption only.

Two Gauss-Seidel-type ADMM-methods for the problem class (GNEP) are
introduced in Chapter 6, which is based on [19]. The first method uses a fixed reg-
ularization parameter, whereas the second increases the regularization parameter
if necessary. Further it is shown that in the proposed methods the regularization
cannot be omitted. The convergence analysis is self-contained and, to the best of
our knowledge, cannot be reduced to a known method.

Finally, in Chapter 7, the methods presented in the Chapters 4, 5 and 6 are
applied to examples, which are mainly drawn from optimal control.

10 1. Introduction

Chapter 2

Background Material

This preliminary chapter establishes some fundamental notions which are indis-
pensable for the remainder of this thesis. Most of the material presented here is
simply a careful collection of results from the literature, structured and presented
in a way which hopefully makes the theory as clear as possible.

The following is an outline of the chapter. In Section 2.1, we present the funda-
mentals of functional analysis, including linear operators, dual spaces, weak and
strong convergence, as well as basic results regarding function spaces and partial
differential equations. Thereafter, elementary convex analysis and closedness prop-
erties are recalled in Section 2.2. The following Section 2.3 is devoted to giving
a recap of the theory of non-expansive mappings, different fixed-point iterations
and also the closely related concept of Fejér-monotonicity. In the ensuing Sec-
tions 2.4 and 2.5, (maximally) monotone operators including their zeros and sums
are introduced and discussed. We see that these zeros are closely linked to fixed
points of certain non-expansive operators, to which the fixed-point iterations are
applied, yielding standard operator splitting methods. At the end of this chapter,
fundamental and useful equalities and inequalities are summarized in Section 2.6.

2.1 Hilbert and Banach Space Theory
In this section, we present basic results of functional analysis. They can be found
in every book on this topic, e.g. in [9, 33,35,97,113] and are not cited explicitly.

It is well known that a Banach space is a complete normed vector space and
a Hilbert space is a Banach space whose norm is induced by a scalar product.
In this thesis, we are exclusively concerned with real Banach and Hilbert spaces.
The symbols H and K always denote real Hilbert spaces. If X is a Banach or
Hilbert space, we denote the norm of an x ∈ X by ‖x‖X . Whenever the norm is
clear from the context, we omit the subscript and write ‖x‖. The scalar product

11

12 2. Background Material

of x, y in a Hilbert space H is denoted by 〈x | y〉H. If the Hilbert space is
clear from the context, the subscript is omitted as well. Using the scalar prod-
uct 〈x | y〉 := 〈x1 | y1〉+ · · ·+ 〈xN | yN〉, the Cartesian product H1× · · · ×HN of
N Hilbert spaces canonically again becomes a Hilbert space.

Suppose that X is a Banach space with two norms ‖ · ‖1 and ‖ · ‖2. These
norms are called equivalent norms if there are constants C, c > 0 such that
c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 holds for all x ∈ X. These two norms induce the same
topology and the same notion of convergence. Therefore, if X endowed with the
norm ‖ · ‖1 is a Banach space, so is X endowed with ‖ · ‖2. Furthermore, we call a
Banach space Y (continuously) embedded in a Banach space X if Y is a subspace
of X and the identity mapping I : Y → X, I(x) = x is continuous. We call the
embedding dense if I(Y) is dense in X. We denote this by Y ↪→ X and Y

d
↪→ X,

respectively.

2.1.1 Linear Operators

Continuous linear operators between Banach or Hilbert spaces are often of interest
and therefore we briefly discuss them in this section. The space of all continuous
linear operators between the Banach spaces X and Y is denoted by L(X, Y), and
in the case Y = X, we define L(X) := L(X,X). This space of linear operators
L(X, Y) between two Banach spaces X, Y is itself a Banach space with the norm

‖A‖L(X,Y) := ‖A‖X→Y := sup
x∈X
x 6=0

‖Ax‖Y
‖x‖X

. (2.1)

Again, the subscript is often omitted. Further, it is easy to see that ‖Ax‖ ≤
‖A‖‖x‖ for all x ∈ X and all A ∈ L(X, Y) holds. It is well known that the
continuity of a linear operator A : X → Y is equivalent to A being bounded, i.e.
there is a constant C > 0 such that ‖Ax‖ ≤ C‖x‖ for all x ∈ X. This, in turn, is
equivalent to the supremum in (2.1) being finite.

The space of all real valued continuous linear functionals L(X,R) of a Banach
space X is called dual space and is denoted by X∗. The application of a µ ∈ X∗
to an x ∈ X is denoted by the duality pairing 〈µ | x〉X∗,X =: µ(x). As opposed
to the duality pairing, the scalar product only carries one or no subscript, i.e. it
is denoted by 〈· | ·〉H or 〈· | ·〉. The dual space (X∗)∗ of the dual space X∗ is
called the bidual space and is denoted by X∗∗. It can be easily seen that every
element x ∈ X induces a functional in X∗∗ by defining 〈x | µ〉X∗∗,X∗ := 〈µ | x〉X∗,X ,
and hence X is continuously embedded in X∗∗. If this (canonical) embedding is
surjective, X is called reflexive.

Given two Banach spaces X, Y , a linear map A : X → Y is called an iso-
morphism if A is bijective, and it is called an isometric isomorphism if A is an

2.1. Hilbert and Banach Space Theory 13

isomorphism and ‖Ax‖Y = ‖x‖X holds for all x ∈ X. The next theorem shows
that a Hilbert space is isometrically isomorph to its dual; therefore it is always
reflexive.

Theorem 2.1 (Riesz representation theorem, [113, Section III.6]). Suppose that
H is a real Hilbert space. For every linear functional f ∈ H∗ there is a uniquely
defined µf ∈ H such that

f(x) = 〈µf | x〉H

for all x ∈ H. Further ‖f‖H∗ = ‖µf‖H. The mapping x 7→ 〈x | ·〉H is an isometric
isomorphism from H onto H∗. In particular, every Hilbert space is reflexive.

If Y is a Banach space and H is a Hilbert space such that Y ↪→ H, it is obvious
that H∗ ↪→ Y ∗. Identifying H with its dual space yields Y ↪→ H ∼= H∗ ↪→ Y ∗,
where (Y,H, Y ∗) is called Gelfand triple. Note that if Y is a Hilbert space as well,
the identification of Y with its dual space Y ∗ is no longer possible in this setting
because the scalar product used is the one from H, but not the one from Y . Hence,
we need to use the duality pairing in Y .

An extension of the Riesz representation theorem is the theorem of Lax-Mil-
gram, which deals with in general not necessarily symmetric bilinear forms.

Theorem 2.2 (Lax-Milgram Theorem, [113, Section III.7]). Let H be a real Hilbert
space and b : H×H → R a bilinear form with the following properties:

(a) There exists a constant c1 > 0 such that |b(x, y)| ≤ c1‖x‖‖y‖ for all x, y ∈ H.
(b) There exists a constant c2 > 0 such that b(x, x) ≥ c2‖x‖2 for all x ∈ H.

Then the mapping Tb(x) := b(x, ·) is a continuous isomorphism from H onto H∗
with ‖Tb‖L(H,H∗) ≤ c1 and ‖T−1

b ‖L(H,H∗) ≤ c−1
2 .

Given a linear operator A ∈ L(X, Y), we define the adjoint operator A? ∈
L(Y ∗, X∗) by 〈µ | Ax〉X∗,X = 〈A?µ | x〉X∗,X for all x ∈ X and all µ ∈ Y .
This adjoint operator can be shown to be uniquely determined and it holds that
‖A‖ = ‖A?‖.

If A is a continuous linear operator that maps a Hilbert space H into it-
self, i.e. A ∈ L(H), then A? ∈ L(H∗). We define the Hilbert space adjoint
A∗ := IH∗→H ◦ A ◦ IH→H∗ , where IH∗→H and IH→H∗ are the isometric isomorphisms
between H and H∗. Note that 〈Ax | x〉H = 〈x | A∗x〉H and thus the adjoint op-
erator and the Hilbert space adjoint only differ in the representation of the dual
space. Therefore all results for the adjoint directly transfer to the Hilbert space
adjoint.

We call a linear operator A ∈ L(X, Y) compact if it maps bounded sets in X to
precompact sets in Y . The adjoint or Hilbert space adjoint of a compact operator
is again compact.

14 2. Background Material

The next theorem is closely related to the Banach closed range theorem, which
is one of the most important results of functional analysis, and it is used to
derive some useful statements about KKT points. A proof can be found in
[35, Thm. 8.11] and all the results are, by dint of the same proof, true for the
Hilbert space adjoint as well, cf. [35, Thm. 8.16].

Theorem 2.3. Let X, Y be two real Banach spaces and A ∈ L(X, Y). Then

{µ ∈ Y ∗ | A?µ = 0} = {µ ∈ Y ∗ | 〈µ | Ax〉Y ∗,Y = 0 ∀x ∈ X},
{x ∈ X | Ax = 0} = {x ∈ X | 〈A?µ | x〉X∗,X = 0 ∀µ ∈ Y ∗}

and

cl
(
{Ax ∈ Y | x ∈ X}

)
= {x ∈ X | 〈λ | x〉X∗,X = 0 for all λ ∈ X∗ such that A?λ = 0}.

In particular, if A? injective, then the range AX = {Ax | x ∈ X} is dense in Y .

If A ∈ L(H) and A = A∗, we call A self-adjoint. The operator norm of a self-adjoint
continuous linear operator A can be equally represented as

‖A‖L(H) = sup
x∈H
x 6=0

|〈Ax|x〉|
‖x‖2

, (2.2)

cf. [33, Thm. 4.10-1].
We call A ∈ L(H) monotone if 〈Ax | x〉 ≥ 0 for all x ∈ H, and if there is

a constant c > 0 such that 〈Ax | x〉 ≥ c‖x‖2 for all x ∈ H, we say that A is
strongly monotone. These notions of monotonicity are special cases of the notions
introduced later in Section 2.4. A strongly monotone, self-adjoint, continuous,
linear operator A ∈ L(H) induces a scalar product

〈x | y〉A := 〈Ax | y〉 (2.3)

and therefore a norm

‖x‖2
A := 〈Ax | x〉. (2.4)

In this thesis the scalar product and norm induced by a self-adjoint, strongly
monotone, continuous, linear operator will be indexed with the operator, i.e. they
are denoted by 〈· | ·〉A and ‖·‖A. Whereas, the original scalar product and original
norm do not carry an index, i.e. they are denoted by 〈· | ·〉 and ‖ · ‖. In the sequel
a self-adjoint, strongly monotone, continuous, linear operator from a Hilbert space
into itself that induces a particular norm, is denoted by Q, therefore the next
lemma is stated with a linear operator Q. The following result summarizes some
properties of self-adjoint and strongly monotone operators in Hilbert spaces.

2.1. Hilbert and Banach Space Theory 15

Lemma 2.4. Let H be a Hilbert space with scalar product 〈· | ·〉, and let Q ∈ L(H)
be self-adjoint and strongly monotone. Then the following statements hold:

(a) The corresponding norms ‖ · ‖ and ‖ · ‖Q, as defined in (2.4), are equivalent,
in particular H endowed with 〈· | ·〉Q is again a Hilbert space.

(b) 〈Q2x | x〉 ≤ ‖Q‖ 〈Qx | x〉 for all x ∈ H.
(c) The inverse Q−1 exists and is also self-adjoint and strongly monotone with

modulus 1/‖Q‖.
(d) ‖x‖2 ≤ ‖Q−1‖ ‖x‖2

Q for all x ∈ H, where ‖x‖Q denotes the norm induced by
the scalar product 〈x | y〉Q := 〈Qx | y〉.

Proof. (a) Since Q is linear, bounded, and strongly monotone, there exists a con-
stant c > 0 such that c‖x‖2 ≤ 〈Qx | x〉 ≤ ‖Qx‖‖x‖ ≤ ‖Q‖‖x‖2. This immediately
yields statement (a).

(b) Let B := Q/‖Q‖. Then we have 〈Bx | x〉 ≥ 0, 〈(I − B)x | x〉 =
‖x‖2 − 〈Bx | x〉 ≥ 0 by the Cauchy-Schwarz inequality, and both B and I−B are
self-adjoint. Since B −B2 = B(I −B)B + (I −B)B(I −B), we therefore obtain

〈(B −B2)x | x〉 = 〈B(I −B)Bx | x〉+ 〈(I −B)B(I −B)x | x〉
= 〈(I −B)Bx | Bx〉+ 〈B(I −B)x | (I −B)x〉 ≥ 0.

Hence 〈B2x | x〉 ≤ 〈Bx | x〉 for all x ∈ H. Thus (b) follows from the definition of
B.

(c) That Q is continuously invertible can be easily seen with the Lax-Milgram
theorem, Theorem 2.2, and c‖x‖2 ≤ 〈Qx | x〉 ≤ ‖Q‖‖x‖2 for all x ∈ H, since
〈Q· | ·〉 defines a bilinear form. That Q−1 is self-adjoint can be seen through

(Q−1)∗ = Q−1 ⇐⇒ (Q−1)∗x = Q−1x ∀x ∈ H
⇐⇒ (Q−1)∗(Qy) = Q−1(Qy) ∀y ∈ H
⇐⇒ (Q−1)∗Qy = y ∀y ∈ H
⇐⇒ (Q−1)∗Q = I.

This shows (Q−1)∗ = Q−1, by the uniqueness of the inverse.
Now we need to show that Q−1 is strongly monotone. To this end, take an

arbitrary y ∈ H. Applying (b) with x := Qy, we obtain

‖x‖2 = 〈x | x〉 = 〈Qy | Qy〉 = 〈Q2y | y〉 ≤ ‖Q‖〈Qy | y〉 = ‖Q‖〈x | Q−1x〉;

hence Q−1 is strongly monotone with modulus 1/‖Q‖.

16 2. Background Material

(d) Applying (b) to x := Q−1y and using (c) yields

‖x‖2 = 〈x | x〉 = 〈Q−1y | Q−1y〉 = 〈Q−2y | y〉 ≤ ‖Q−1‖〈Q−1y | y〉
= ‖Q−1‖〈x | Qx〉 = ‖Q−1‖〈x | x〉Q = ‖Q−1‖‖x‖2

Q.

Noting that this holds for all x ∈ H gives the desired result.

Note that statement (b) of Lemma 2.4 already holds for monotone operators Q.

An important kind of linear operators is derived through the affine linear approxi-
mation of a function f : X → Y and leads directly to the notion of differentiability.

Definition 2.5 ((Fréchet-)Differentiability). Let X, Y be real Banach spaces. A
function f : X → Y is called (Fréchet-)differentiable in x ∈ X if there is a bounded
linear operator f ′(x) ∈ L(X, Y) such that

f(x+ h) = f(x) + f ′(x)h+ o(‖h‖X)

for all ‖h‖X → 0. If f is differentiable in every x ∈ X, it is called (Fréchet-)
differentiable. If f is differentiable and f ′ is continuous as a map f ′ : X → L(X, Y),
then f is called continuously (Fréchet-)differentiable.

If X = H is a real Hilbert space and f : H → R, then we denote the Riesz
representative of f ′(x) ∈ H∗ by ∇f(x) ∈ H.

2.1.2 Weak Convergence

In the infinite-dimensional context, the notion of norm convergence is often too
strong. Therefore the above discussed continuous linear functionals are used to
define a weaker notion of convergence. Consider a sequence {xk}k∈N ⊂ X in
a Banach space X. We call {xk}k∈N weakly convergent to an x̄ ∈ X if for all
functionals µ ∈ X∗ the duality pair 〈µ | xk〉X∗,X converges (in R) to 〈µ | x̄〉X∗,X and
we denote this by xk ⇀ x̄. A sequence {µk}k∈N ⊂ X∗ is called weak-* convergent
to some µ̄ if for all x ∈ X the sequence 〈µk | x〉X∗,X converges to 〈µ̄ | x〉X∗,X

and we write µk ⇀∗ µ̄. It can be seen easily that weak convergence in X∗ implies
weak-* convergence. In reflexive spaces these two notions coincide. In order to
distinguish the convergence in the norm from the weak convergence, we often call
the former strong convergence. In finite-dimensional Banach spaces the notions of
strong and weak convergence coincide. By the continuity of the elements in X∗,
strong convergence implies weak convergence.

Now the question arises whether the duality pairing or the scalar product has
any convergence properties. This question is answered in the next lemma.

2.1. Hilbert and Banach Space Theory 17

Lemma 2.6. Assume that X is a real Banach space, {xk}k∈N ⊂ X and
{µk}k∈N ⊂ X∗. Further suppose that either xk ⇀ x̄ and µk → µ̄, or xk → x̄
and µk ⇀∗ µ̄. Then

〈µk | xk〉X∗,X → 〈µ̄ | x̄〉X∗,X .

If H is a Hilbert space and {xk}k∈N, {µk}k∈N ⊂ H with xk ⇀ x̄ and µk → µ̄, then

〈µk | xk〉H → 〈µ̄ | x̄〉H.

In finite dimensions any bounded sequence has a convergent subsequence, whereas
this result has to be attenuated in infinite dimensions.

Theorem 2.7. Let X be a reflexive real Banach space and {xk}k∈N ⊂ X a bounded
sequence. Then there is an infinite set I ⊆ N such that {xk}k∈I is weakly conver-
gent.

On the other hand, every weakly convergent sequence is bounded. Whenever
{xk}k∈N converges weakly on a subsequence I ⊆ N to an x̄ ∈ X, we denote this
by xk ⇀I x̄. Analogously, if {µk}k∈N converges weak-* on a subsequence I ⊆ N
to a µ̄ ∈ X∗, we denote this by µk ⇀∗I µ̄.

It is well known that a set C ⊆ X is (topologically) closed if every limit x̄
of a convergent sequence {xk}k∈N ⊂ C lies again in C. We call a set C ⊆ X
weakly sequentially closed if every weak limit x̄ of a weakly convergent sequence
{xk}k∈N ⊂ C lies again in C.

As already mentioned, equivalent norms define the same notion of strong con-
vergence. The next lemma clarifies that even the notions of weak convergence
coincide.

Lemma 2.8. Consider the Banach space X with the norm ‖·‖, and let ‖·‖2 be an
equivalent norm. Let {xk}k∈N be a sequence in X. Then the following statements
are equivalent

(a) xk converges weakly to x̄ in X endowed with the norm ‖ · ‖.
(b) xk converges weakly to x̄ in X endowed with the norm ‖ · ‖2

Proof. Since both norms are equivalent, the same linear functionals are continuous
in X equipped with either ‖ · ‖ or ‖ · ‖2. Thus the notions of weak convergence
coincide.

By the identification of a Hilbert space with its dual, the above definitions and
results also hold true in Hilbert spaces using the scalar product instead of the
duality pairing.

18 2. Background Material

In the sequel, we will often use two different scalar products (and therefore two
different induced norms) for a Hilbert space H×K. In order to be able to apply
the known convergence results of fixed-point methods, it is highly important in
our setting that both strong and weak convergence are identical concepts in both
scalar products. Formally, this is stated in the following result, which is just an
important special case of Lemma 2.8 when the equivalent norm is induced by a
strongly monotone, self-adjoint, continuous, linear operator.

Lemma 2.9. Let H and K be real Hilbert spaces. Consider the Hilbert space H×K
with the usual scalar product 〈· | ·〉 := 〈· | ·〉H+ 〈· | ·〉K, and let 〈· | ·〉Q be defined as
in (2.3) for Q ∈ L(H×K) self-adjoint and strongly monotone. Then the following
statements hold:

(a) The corresponding induced norms ‖ ·‖ and ‖ ·‖Q are equivalent, in particular
H endowed with ‖ · ‖Q is again a Hilbert space.

(b) Weak convergence with respect to 〈· | ·〉 is equivalent to weak convergence
with respect to 〈· | ·〉Q.

Proof. (a) This was already shown in Lemma 2.4(a).

(b) This follows straight from Lemma 2.8 and part (a). Alternatively, let
{xk}k∈N ⊂ H×K be a sequence with weak limit point x̄. Then the statement
follows from

〈xk | y〉Q → 〈x̄ | y〉Q ∀y ⇐⇒ 〈Qxk | y〉 → 〈Qx̄k | y〉 ∀y
⇐⇒ 〈xk | Qy〉 → 〈x̄ | Qy〉 ∀y
⇐⇒ 〈xk | z〉 → 〈x̄ | z〉 ∀z,

where the last two equivalences exploit that Q is self-adjoint and invertible, cf.
Lemma 2.4.

2.1.3 Function Spaces and Partial Differential Equations

After the brief introduction to abstract Banach and Hilbert spaces, it is appro-
priate to introduce Banach and Hilbert spaces that are relevant in practice. As
most of our examples come from an optimal control setting, function spaces are
the most frequently used Banach spaces in this manuscript. The results and def-
initions of this section can be found in every book on this topic, for instance
[1, 27,35,44,104,109]. In order to introduce these function spaces, let Ω ⊂ Rd be
a bounded domain, i.e. a bounded, open, and connected subset of Rd, d ∈ N. By
∂Ω we denote the boundary of Ω, whereas Ω denotes the closure of Ω. If ∂Ω is a
Lipschitz manifold, we call Ω a Lipschitz domain. We call a set Ω0 ⊂ Ω compactly

2.1. Hilbert and Banach Space Theory 19

contained in Ω if Ω0 ⊂ Ω and Ω0 is compact; we write this as Ω0 ⊂⊂ Ω. The
closure of the area where a function u : Ω → R is not equal to zero (Lebesgue
almost everywhere) is called support of u and is denoted by supp(u).

The space of all bounded uniformly continuous functions on a domain Ω ⊂ Rd

is denoted by C(Ω). If equipped with the norm ‖u‖C(Ω) := supx∈Ω |u(x)|, this space
becomes a Banach space. By C∞(Ω) we denote the space of all infinitely many
times differentiable functions from Ω to R, whereas the space of all infinitely many
times differentiable C(Ω) functions whose derivatives are again in C(Ω) is written
as C∞(Ω). The space C∞0 (Ω) is the space of all infinitely many times differentiable
functions u : Ω→ R whose support is compactly contained in Ω.

Further the space of square Lebesgue integrable functions

L2(Ω) :=
{
u : Ω→ R | u is Lebesgue measurable and

∫
Ω

u(x)2dx <∞
}

becomes a Hilbert space if endowed with the scalar product

〈u | v〉L2(Ω) :=

∫
Ω

u(x)v(x)dx.

The above definitions are directly transferable to L2(∂Ω), where the integral has
to be understood in the sense of basic differential geometry.

In many cases the notion of differentiability needs to be weakened. We call a
function u : Ω→ R weakly differentiable if there is a Lebesgue measurable function
v : Ω → Rd such that for every open compactly contained subset Ω0 ⊂⊂ Ω it is
valid that

∑d
i=1

∫
Ω0
|vi| <∞ and∫

Ω

u(x)∂xiϕ(x)dx = −
∫

Ω

vi(x)ϕ(x)dx

for all i = 1, . . . , n and all ϕ ∈ C∞0 (Ω). The function v is called weak gradient and
is denoted by ∇u. In the sequel it is clear from the context whether we talk about
weak or usual gradients, and thus we use the same notation for these notions.

The space of all L2(Ω) functions whose weak gradients belongs to L2(Ω)d is
called H1(Ω), i.e.

H1(Ω) :=
{
u ∈ L2(Ω) | ∇u ∈ L2(Ω)d

}
.

This space becomes a Hilbert space with the scalar product

〈u | v〉H1(Ω) := 〈u | v〉L2(Ω) + 〈∇u | ∇v〉L2(Ω)d (2.5)

=

∫
Ω

(
u(x)v(x) +∇u(x)T∇v(x)

)
dx.

20 2. Background Material

The closure of C∞0 (Ω) in the H1(Ω) norm is denoted by H1
0 (Ω) and is a closed

subspace of H1(Ω). Using the Poincaré inequality, we will later see that the norm
induced by the scalar product

〈u | v〉H1
0 (Ω) := 〈∇u | ∇v〉L2(Ω)d :=

∫
Ω

∇u(x)T∇v(x)dx (2.6)

is equivalent to the norm induced by the scalar product (2.5) in the spaceH1
0 (Ω). If

not stated differently, the space H1
0 (Ω) is always equipped with the scalar product

(2.6) in the sequel. We denote the dual space of H1
0 (Ω) by H−1(Ω), the norm

in H−1(Ω) is the by (2.6) induced dual norm. Further, let Γ ⊂ ∂Ω be an open
boundary part of Ω (in the subspace topology of ∂Ω). We denote the closure of
the set

C∞0,Γ(Ω) :=
{
v ∈ C∞(Ω) ∩H1(Ω) | v = 0 in a neighbourhood of Γ

}
in the H1(Ω) norm by H1

Γ(Ω), which is again a closed subspace of H1(Ω).
As already mentioned, the next theorem reveals a way to define an equivalent

norm on H1
0 (Ω).

Theorem 2.10 (Poincaré Inequality, [27, Thm. 1.5]). Let Ω ⊂ Rd be a Lipschitz
domain contained in a d-dimensional cube with side length c. Then

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω)d = c
(d∑
i=1

‖∂xiu‖2
L2(Ω)

)1/2

(2.7)

for all u ∈ H1
0 (Ω).

Note that in the previous theorem the so-called Poincaré-constant c is estimated
explicitly. There exist many versions of the Poincaré inequality with analogous
statements as in (2.7), also for H1

Γ(Ω) functions and for H1(Ω) functions with∫
Ω
u = 0, see for instance [1, 27, 35,44,109].
The formulation of elliptic partial differential equations ususally contains a

boundary condition, i.e. for a given g ∈ C(∂Ω) a solution y of the partial differential
equation is supposed to satisfy y = g on ∂Ω. Since the boundary of Ω has Lebesgue
measure zero, boundary values are not defined for L2(Ω) functions. The next
theorem shows that H1(Ω) functions can be uniquely extended to the boundary;
thus the requirement of attaining certain boundary values is well defined for these
functions.

Theorem 2.11 (Trace Theorem). Let Ω ⊂ Rd be a Lipschitz domain. Then
there is a unique continuous linear operator trace : H1(Ω) → L2(∂Ω), such that
trace(u) = u|∂Ω holds for all u ∈ C∞(Ω).

2.1. Hilbert and Banach Space Theory 21

It can be shown that the spaces H1
Γ(Ω) and H1

0 (Ω) coincide with the H1(Ω) func-
tions that have trace equal to zero on Γ and ∂Ω, respectively, c.f. [1, 35,44,109].

In Section 7.1, we apply the trace theorem to decompose the domain of a
partial differential equation into smaller parts. A way of estimating the norm of
the linear trace operator on a rectangle is discussed in Lemma 7.3.

Now we want to take a look at the basic theory of partial differential equation
(PDE) theory. Let us consider the Laplace equation

−4y = u in Ω, (2.8a)
y = 0 in ∂Ω, (2.8b)

where u ∈ L2(Ω) and

4y :=
d∑
i=1

∂2

∂xi∂xi
y (2.9)

denotes the Laplace operator. For the definition of the Laplace operator in (2.9)
it is necessary that y is twice differentiable. This differentiability requirement is
often too restrictive. Therefore we reinterpret the Laplace operator based on the
divergence theorem, also known as partial differentiation. In order to operate on
the much weaker space H1(Ω), or a subspace thereof. We define the operator
−4 : H1

0 (Ω)→ H−1(Ω) by

〈−4u | v〉H−1(Ω),H1
0 (Ω) := 〈∇u | ∇v〉L2(Ω)d (2.10)

for all u, v ∈ H1
0 (Ω). Then the Laplace equation (2.8) can be interpreted as an

equation in H−1(Ω) in the following manner: For a given u ∈ H−1(Ω), we have
to find a y ∈ H1

0 (Ω) such that −4y = u holds as an equation in H−1(Ω). Since
L2(Ω) is continuously embedded into H−1(Ω) by u 7→ 〈u | ·〉L2(Ω), the solution
concept for this equation is weaker than the one discussed earlier. In addition,
every twice differentiable solution of this reinterpreted equation satisfies (2.8).
The Lax-Milgram theorem, Theorem 2.2, shows that for every u ∈ H−1(Ω) the
Laplace equation −4y = u has a unique solution y ∈ H1

0 (Ω). We call the mapping
S : H−1(Ω)→ H1

0 (Ω) that maps u ∈ H−1(Ω) to the unique solution of the Laplace
equation y ∈ H1

0 (Ω) the solution operator (of the Laplace equation). The solution
operator S is a continuous linear operator. If Ω ⊂ Rd with d ∈ {1, 2, 3} and
u ∈ L2(Ω), then the solution of the Laplace equation y = Su is even continuous, i.e.
Su ∈ H1

0 (Ω)∩C(Ω), cf. [104]. The Laplace operator and the solution operator are
obviously inverse to each other and they are the isometric isomorphisms between
the spaces H1

0 (Ω) (endowed with the scalar product (2.6)) and H−1(Ω); hence
it holds that ‖ − 4‖H1

0 (Ω)→H−1(Ω) = ‖S‖H−1(Ω)→H1
0 (Ω) = 1. On the other hand,

22 2. Background Material

‖S‖L2(Ω)→H1
0 (Ω) and ‖S‖L2(Ω)→L2(Ω) do not need to be equal to one. An estimation

of the norm of the solution operator S as a mapping from L2(Ω) to H1
0 (Ω) or L2(Ω)

can be found in Section 7.2.
The solvability of more sophisticated partial differential equations can be ex-

amined by applying the Lax-Milgram theorem, stated in Theorem 2.2, however,
the approach is the same as above, see for instance [1, 35, 44] for a more detailed
discussion of PDE theory.

2.2 Convex Analysis and Notions of Closedness
“...the great watershed in optimization isn’t between linearity and non-
linearity, but between convexity and nonconvexity.”

— R. T. Rockafellar [95]

In optimization theory, the notions of closedness and convexity play a very im-
portant role, for example projections onto closed, convex sets always exist, the
necessary optimality conditions are already sufficient for convex problems, and
generalized derivatives can be easily defined. We start our recap of convex anal-
ysis with notions for sets and continue with considering convexity and closedness
properties of functions.

In the following we restrict our considerations to real Hilbert spaces. However,
the extension to real Banach spaces is easily possible, see for example the mono-
graphs [6, 7]. Most of the presented definitions and results can be found in [9] in
a Hilbert space setting or in [6, 7] in a Banach space setting; therefore, we do not
cite these results explicitly.

Let H be a real Hilbert space in this whole section. We call a set C ⊆ H of a
real Hilbert space H weakly sequentially closed if every weak limit of a sequence in
C lies again in C. The set C is called convex if tx+ (1− t)y ∈ C for all x, y ∈ C
and all t ∈ [0, 1]. An elementary separation argument shows that every non-empty,
closed, convex set is weakly sequentially closed. For a non-empty, closed, convex
set C ⊂ H we define the distance function to C as

dC : H → R, dC(x̄) := inf
x∈C
‖x− x̄‖. (2.11)

It is well known that the squared distance function d2
C is continuously differentiable

in Hilbert spaces, cf. [9, Cor. 12.31].

Proposition 2.12 (Projection Theorem, [9, Thm. 3.16]). Let C ⊂ H be a non-
empty, closed, convex subset of a real Hilbert space H. The projection

ProjC(x̄) := arg min
p∈C

1

2
‖p− x̄‖2 (2.12)

2.2. Convex Analysis and Notions of Closedness 23

of x̄ ∈ H onto C is uniquely defined for every x̄ ∈ H and it holds that

p = ProjC(x̄) ⇐⇒
[
p ∈ C and 〈y − p | x̄− p〉 ≤ 0 ∀y ∈ C

]
.

Moreover, we have dC(x̄) = ‖x̄− ProjC(x̄)‖.

A set C ⊂ H is called a cone if tx ∈ C for all t ≥ 0 and all x ∈ C. We define the
polar cone K◦ of a convex cone K as

K◦ := {s ∈ H | 〈s | x〉 ≤ 0 ∀x ∈ K}.

Now we recall the basic definitions of convex and lower semi-continuous functions.
We call a function f : H → (−∞,+∞] convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ H and all t ∈ [0, 1]. Sometimes it is necessary to have a stronger
notion than ordinary convexity at hand. We call f : H → (−∞,+∞] strongly
convex if there is a c > 0 such that

f(tx+ (1− t)y) + t(1− t) c
2
‖x− y‖2 ≤ tf(x) + (1− t)f(y)

for all x, y ∈ H and all t ∈ [0, 1]. Since we want to exclude the trivial function
f ≡ +∞ from our considerations, we call a function f : H → (−∞,+∞] proper if
there is an x ∈ H such that f(x) < +∞.

One of the most important results about convex functions is that local mini-
mizers are actually global ones.

Proposition 2.13. Let H be a real Hilbert space and f : H → (−∞,+∞] is
convex. Then every local minimizer x∗ of f is also a global minimizer and the set
of minimizers is convex.

In order to prove the existence of minimizers of a function f : H → (−∞,+∞], it
is necessary that for any sequence {xk}k∈N ⊂ H that converges (weakly) to some x̄
the inequality lim infk→∞ f(xk) ≥ f(x̄) holds. We call functions with this property
(weakly sequentially) lower semi-continuous.

Definition 2.14. Let H be a real Hilbert space. We call a function
f : H → (−∞,+∞] lower semi-continuous in x̄ if for every sequence xk → x̄,
the inequality lim infk→∞ f(xk) ≥ f(x̄) holds. Further, we want to call
f : H → (−∞,+∞] weakly sequentially lower semi-continuous in x̄ if for ev-
ery sequence xk ⇀ x̄, the inequality lim infk→∞ f(xk) ≥ f(x̄) holds.
We call f : H → (−∞,+∞] (weakly sequentially) lower semi-continuous ((wslsc)
lsc) or (weakly sequentially) closed if it is (weakly sequentially) lower semi-contin-
uous in all x ∈ H.

24 2. Background Material

The next proposition clarifies that for convex functions, it is not necessary to
distinguish between the notions of weak and strong lower semi-continuity.

Proposition 2.15 ([9, Thm. 9.1]). Let H be a real Hilbert space and
f : H → (−∞,+∞] a proper convex function. Then f is weakly sequentially
lower semi-continuous if and only if f is lower semi-continuous.

While we cannot guarantee the existence and uniqueness of minimizers for solely
convex functions, strong convexity yields both.

Proposition 2.16. Let H be a real Hilbert space and let f : H → (−∞,+∞]
be proper, lower semi-continuous, and strongly convex. Then f admits an unique
minimizer.

As already seen, convex functions have a lot of useful properties. One of the
most important ones is that it is easy to define a generalized derivative. The
subdifferential of a convex function f : H → (−∞,+∞] at a point x̄ is defined by

∂f(x̄) :=
{
s ∈ H | f(x)− f(x̄) ≥ 〈s | x− x̄〉 ∀x ∈ X

}
. (2.13)

The elements of ∂f(x) are called subgradients of f at x. For a non-empty, closed,
convex set C, we define the indicator function χC : H → [0,+∞] as

χC(x) :=

{
0 if x ∈ C
+∞ else

.

It can be seen easily that this function is convex. Its subdifferential is called the
normal cone NC(x) := ∂χC(x) and has the representation

NC(x) :=

{{
s ∈ H | 〈s | y − x〉 ≤ 0 ∀y ∈ C

}
if x ∈ C,

∅ if x 6∈ C.
(2.14)

The convex subdifferential and the normal cone can be interpreted as set-valued
mappings, i.e. they are mappings from H to 2H. Whenever we want to emphasize
their interpretation as a mapping, we call them subdifferential map and normal
cone map.

The next theorem explains why the convex subdifferential is of such impor-
tance for convex optimization. Its proof follows straight from the definition of the
subdifferential.

Theorem 2.17 (Fermat’s rule). Let H be a real Hilbert space and
f : H → (−∞,+∞] be convex. Then x∗ is a minimizer of f if and only if
0 ∈ ∂f(x∗).

2.2. Convex Analysis and Notions of Closedness 25

The next proposition shows that the subdifferential is actually a generalized deriva-
tive; it can be seen as a combination of various results from [89].

Proposition 2.18. Let H be a real Hilbert space and f : H → R a continuous
convex function. Then ∂f(x) is non-empty for every x ∈ H. Moreover, f is
Fréchet-differentiable in x ∈ H if and only if the following two properties hold:

(a) ∂f(x) is the singleton {∇f(x)}, and
(b) whenever xk → x in H and dk ∈ ∂f(xk), then dk → ∇f(x).

The last proposition also shows that a convex differentiable function is always
continuously differentiable.

Recall that the domain of a function f : H → (−∞,+∞] is defined as

dom(f) := {x ∈ H | f(x) 6= +∞}, (2.15)

and the domain of the subdifferential is defined as

dom(∂f) := {x ∈ H | ∂f(x) 6= ∅}. (2.16)

The next result shows that the subdifferential is non-empty on the interior of
dom(f).

Proposition 2.19 ([7, Cor. 2.38]). Let H be a real Hilbert space and
f : H → (−∞,+∞] a proper, lower semi-continuous, and convex function. Then

int
(

dom(f)
)
⊂ dom(∂f).

It is well known that the differential of the sum of two differentiable functions
equals the sum of the individual differentials. Under weak assumptions, this can
be extended to subdifferentials.

Proposition 2.20 ([7, Cor. 2.63]). Let H be a real Hilbert space and
f, g : H → (−∞,+∞] two proper, lower semi-continuous, and convex functions.
Suppose that

dom(f) ∩ int
(

dom(g)
)
6= ∅. (2.17)

Then

∂(f + g)(x) = ∂f(x) + ∂g(x) := {sf + sg | sf ∈ ∂f(x), sg ∈ ∂g(x)}

for all x ∈ H.

In particular, (2.17) is satisfied if f, g : H → (−∞,+∞] are proper, convex, lower
semi-continuous, and g is real-valued., i.e. g : H → R. The condition of the above
Proposition 2.20 can be weakened, see [9, 24]. However, the above formulation is
enough for our purposes.

26 2. Background Material

2.3 Fixed-Point Iterations
The Banach fixed-point theorem shows that the fixed-point iteration xk+1 := F (xk)
converges to the unique fixed point if F : X → X is a contraction, where X is a Ba-
nach space. As described in this section, we can expect at least weak convergence
for certain kinds of fixed-point iterations if F is less than a contraction and admits a
fixed point. Since the convergence analysis of these methods heavily depends on the
scalar product, we restrict the following considerations to Hilbert spaces. There-
fore, we assume F to be a self-map of a subset D ⊂ H where H is a real Hilbert
space, i.e. F : D → D. For notational convenience, we often write Fx instead of
F (x) and denote the set of all fixed points by fix(F) := {x ∈ D | x = F (x)}.

2.3.1 Notions of Non-Expansiveness

First it is necessary to introduce some notions that imply the convergence of certain
fixed-point iterations if a fixed point exists.

Definition 2.21. Let H be a real Hilbert space and let D ⊂ H non-empty, closed,
convex. A map F : D → H is called

(a) non-expansive (on D) if

‖F (x)− F (y)‖ ≤ ‖x− y‖ ∀x, y ∈ D,

(b) firmly non-expansive (on D) if

‖F (x)− F (y)‖2 + ‖(I − F)x− (I − F)y‖2 ≤ ‖x− y‖2 ∀x, y ∈ D,

(c) α-averaged (on D) with α ∈ (0, 1) if F is non-expansive and there is a
non-expansive operator R : D → H such that

F = (1− α)I + αR.

Note that, by definition, averaged and firmly non-expansive mappings are in par-
ticular non-expansive. First, we want to see that the fixed-point set of a non-
expansive operator is convex.

Proposition 2.22 ([9, Cor. 4.24]). Let D be a non-empty, closed, convex subset
of a real Hilbert space H and let F : D → H be a non-expansive operator. Then
the set fix(F) := {x ∈ D | x = F (x)} is closed and convex.

The next proposition characterizes firmly non-expansive operators.

Proposition 2.23 ([9, Prop. 4.4]). Let D be a non-empty, closed, convex subset
of a real Hilbert space H and let F : D → H. Then the following statements are
equivalent:

2.3. Fixed-Point Iterations 27

(a) F is firmly non-expansive,

(b) F is 1/2-averaged,

(c) I − F is firmly non-expansive,

(d) 2F − I is non-expansive,

(e) for all x, y ∈ D it holds that ‖Fx− Fy‖2 ≤ 〈Fx− Fy | x− y〉,
(f) for all x, y ∈ D it holds that 0 ≤ 〈Fx− Fy | (I − F)x− (I − F)y〉,
(g) for all x, y ∈ D and all α ∈ [0, 1] it holds that
‖Fx− Fy‖ ≤ ‖α(x− y) + (1− α)(Fx− Fy)‖.

One of the most important examples of a firmly non-expansive operator is the
projection onto a non-empty, closed, convex set.

Example 2.24. Let C be a non-empty, closed, convex subset of a real Hilbert
space H. Then it is well known that the projection of an x ∈ H onto C, defined
as

ProjC(x) := arg min
y∈C

1

2
‖y − x‖2,

is uniquely defined and firmly non-expansive, cf. Proposition 2.12. �

For further examples of (firmly) non-expansive mapping we refer the reader to
Section 2.4 and Chapter 3. The next result is a characterization of averagedness.

Proposition 2.25 ([9, Prop. 4.35]). Let D be a non-empty, closed, convex subset
of a real Hilbert space H, let F : D → H be non-expansive, and let α ∈ (0, 1).
Then the following statements are equivalent:

(a) F is α-averaged,

(b) (1− 1/α)I + (1/α)F is non-expansive,

(c) for all x, y ∈ D it holds that ‖Fx − Fy‖2 ≤ ‖x − y‖2 −
1−α
α
‖(I − F)x− (I − F)y‖2,

(d) for all x, y ∈ D it holds that
‖Fx− Fy‖2 + (1− 2α)‖x− y‖2 ≤ 2(1− α)〈x− y | Fx− Fy〉.

A useful property of averaged mappings, which is of major importance for the
later introduced splitting methods, is that their composition is again an averaged
mapping.

28 2. Background Material

Proposition 2.26 ([9, Prop. 4.44]). Let D be a non-empty, closed, convex subset of
a real Hilbert space H, let α1, α2 ∈ (0, 1). Suppose that F1 : D → D is α1-averaged
and F2 : D → D is α2-averaged. Then F : D → D defined as F := F2 ◦ F1 is
α̃-averaged with

α̃ =
α1 + α2 − 2α1α2

1− α1α2

∈ (0, 1).

The next theorem shows that non-expansive mappings have a certain, very impor-
tant continuity property linking strong convergence in the image space of I − F
and weak convergence in the preimage space.

Theorem 2.27 (Browder’s demi-closedness principle, [9, Thm. 4.27, Cor. 4.28]).
Let D be a non-empty, closed, convex subset of the real Hilbert space H, let
F : D → H be a non-expansive operator, let {xk}k∈N ⊂ D be a sequence in D,
and x̄ ∈ D. Suppose that xk ⇀ x̄ and that (I − F)xk = xk − Fxk → 0. Then x̄ is
a fixed point of F , i.e. x̄ = Fx̄.

2.3.2 Fejér-Monotonicity

Closely linked to the above notions of non-expansiveness is the notion of Fejér-
monotonicity, since the fixed-point iteration of a non-expansive operator can be
shown to be be Fejér-monotone. As Fejér-monotonicity is a property of several
iterations in convex analysis, this notion repeatedly appears in the course of this
thesis.

Definition 2.28 (Fejér-monotonicity). Suppose that S ⊂ H is a non-empty subset
of a Hilbert space H. Then a sequence {xk}k∈N ⊂ H is called Fejér-monotone with
respect to S if the inequality ‖xk+1 − x‖ ≤ ‖xk − x‖ holds for all k ∈ N and all
x ∈ S.

The next result captures an interesting property of Fejér-monotone sequences, see
[9, Thm. 5.33(iv)] for a proof.

Proposition 2.29. Let {xk}k∈N be a sequence in a real Hilbert space H and let S
be a non-empty subset of H such that {xk}k∈N is Fejér-monotone with respect to
S and such that every weak accumulation point of {xk}k∈N belongs to S. Then the
whole sequence converges weakly to a point x̄ ∈ S.

2.3.3 Krasnoselsky-Mann Iteration

Now we return to the initial question under which conditions fixed-point iterations
are convergent. First we review the Krasnoselsky-Mann iteration and consequences

2.3. Fixed-Point Iterations 29

thereof. These iteration types are seen to be weakly convergent. Since it is often
desired that a method is strongly convergent, the Halpern iteration is introduced
afterwards. The classical and well known fixed-point iteration is given by

xk+1 := Fxk. (2.18)

Krasnoselsky and Mann blended in a bit of identity into (2.18) by using the itera-
tion

xk+1 := (1− ρk)xk + ρkFxk ∀k ∈ N (2.19)

and were able to show better convergence properties for this iteration scheme.
In this section, we investigate the (weak) convergence properties of (2.19) for
non-expansive, firmly non-expansive, and α-averaged operators. Whenever it is
possible to choose ρk ≡ 1, we obviously obtain (weak) convergence of the classical
fixed-point iteration (2.18) as well.

As stated in the following theorem the iteration (2.19) converges weakly to a
fixed-point of F if such a fixed-point exists and ρk is chosen appropriately.

Theorem 2.30 (Groetsch’s Theorem, [9, Thm. 5.15]). Let D be a non-empty,
closed, convex subset of a real Hilbert space H and let F : D → D be a non-
expansive operator such that fix(F) 6= ∅. Let {ρk}k∈N ⊂ [0, 1] be a sequence such
that

∑
k∈N ρ

k(1 − ρk) = +∞, and let x0 ∈ D. Then the iterates xk generated by
(2.19) satisfy:

(a) the sequence {xk}k∈N is Fejér-monotone with respect to fix(F),

(b) the sequence {(I − F)xk}k∈N converges strongly to 0,

(c) the sequence {xk}k∈N converges weakly to an element in fix(F).

From the above theorem, the next proposition about the fixed-point itera-
tion applied to averaged operators can easily be derived through rescaling, see
[9, Prop. 5.16].

Proposition 2.31 ([9, Prop. 5.16]). Let H be a real Hilbert space, let α ∈ (0, 1)
and let F : H → H be an α-averaged operator such that fix(F) 6= ∅. Let {ρk}k∈N ⊂
[0, 1/α] be a sequence such that

∑
k∈N ρ

k(1 − αρk) = +∞, and let x0 ∈ H. Then
the iterates xk generated by (2.19) satisfy:

(a) the sequence {xk}k∈N is Fejér-monotone with respect to fix(F),

(b) the sequence {(I − F)xk}k∈N converges strongly to 0,

(c) the sequence {xk}k∈N converges weakly to an element in fix(F).

30 2. Background Material

Since every firmly non-expansive operator is 1/2-averaged, we can apply the last
proposition also to firmly non-expansive operators and obtain the following corol-
lary.

Corollary 2.32. Let H be a real Hilbert space H and let F : H → H be a firmly
non-expansive operator such that fix(F) 6= ∅. Let {ρk}k∈N ⊂ [0, 2] be a sequence
such that

∑
k∈N ρ

k(2− ρk) = +∞, and let x0 ∈ H. Then the iterates xk generated
by (2.19) satisfy:

(a) the sequence {xk}k∈N is Fejér-monotone with respect to fix(F),

(b) the sequence {(I − F)xk}k∈N converges strongly to 0,

(c) the sequence {xk}k∈N converges weakly to an element in fix(F).

In particular, we obtain that the classical fixed-point iteration (2.18) converges
weakly to a fixed point for α-averaged and firmly non-expansive operators if such
a fixed point exists.

The Classical Fixed-Point Iteration in the Inconsistent Case

The above discussion always assumed that a fixed point of F exists. Now we will
investigate how the classical fixed-point iteration (2.18) behaves if we omit this
assumption. These considerations are helpful for investigating how constrained
optimization algorithms behave if there is a minimizer that is no KKT-point. The
analysis, which is summarized in the sequel, is essentially taken from [3,88,91,92].
We also include self-contained proofs because the above references prove different
parts of the desired results and it is quite challenging to gather all the required
manuscripts. We use the notation F kx to denote that F is k-times consecutively
applied to x, i.e F kx := F ◦ · · · ◦ F ◦ Fx.

Lemma 2.33 (Reich and Shafrir). Let H be a real Hilbert space and D ⊆ H non-
empty, closed, and convex. Suppose that F : D → D is firmly non-expansive, and
define xk+1 := F k+1x := Fxk for an arbitrary x0 = x ∈ D. Then

lim
k→∞
‖F k+1x− F kx‖ = lim

k→∞

‖F k+lx− F kx‖
l

= lim
k→∞

‖F kx‖
k

,

for all l ∈ N; in particular the limits exist.

Proof. (1) By using the non-expansiveness of F , we get

0 ≤ ‖F k+lx− F kx‖ ≤ ‖F k+l−1x− F k−1x‖ ≤ · · · ≤ ‖F lx− x‖
≤ ‖F lx− F l−1x‖+ · · ·+ ‖Fx− x‖
≤ l‖Fx− x‖. (2.20)

2.3. Fixed-Point Iterations 31

This shows that the sequence {‖F k+lx−F kx‖/l}k∈N is bounded and monotonically
decreasing for every l ∈ N; thus the limits L := limk→∞ ‖F k+1x − F kx‖ and
Rl := limk→∞ ‖F k+lx − F kx‖ exist. By the non-expansiveness and the triangle
inequality, we obtain Rl ≤ lL for all l ∈ N. Therefore we have to show Rl ≥ lL
for all l ∈ N. To this end we use induction over l ∈ N. The case l = 1 is obvious.
For arbitrary but fixed l ∈ N, we assume that Rj = jL for all j = 1, . . . , l, and we
now consider Rl+1/(l + 1). For this l, let ε > 0 be given; then we can find k0 ∈ N
such that

L− ε <
‖xk+j − xk‖

j
< L+ ε

for all j = 1, . . . , l and k ≥ k0 by the induction hypothesis. Since F is firmly
non-expansive, we also have

‖xk+1 − xk+l+1‖ = ‖Fxk − Fxk+l‖
Prop. 2.23 (g)

≤ 1

2
‖xk − xk+l + xk+1 − xk+l+1‖

≤ 1

2
‖xk − xk+l+1‖+

1

2
‖xk+1 − xk+l‖.

Thus we obtain

‖xk − xk+l+1‖ ≥ 2‖xk+1 − xk+l+1‖ − ‖xk+1 − xk+l‖
> 2l(L− ε)− (l − 1)(L+ ε)

= (l + 1)L− (3l − 1)ε.

This implies the first equality of the claim.
(2) Now we prove the second equality. We see from (2.20), the first equality and
the monotonicity of ‖F k+lx− F kx‖/l in k that

lim
k→∞
‖F k+1x− F kx‖ = lim

k→∞

‖F k+lx− F kx‖
l

≤ ‖F
k+lx− F kx‖

l
≤ ‖F

lx− x‖
l

for all l ∈ N. Since ‖F l+1x − F lx‖ is monotonically decreasing and bounded
from below it is convergent. That the sequence of arithmetic means, also known
as Cesaro-means, converges with the same limit is well known and can be easily
proved. Therefore we get

lim
l→∞
‖F l+1x− F lx‖ = lim

l→∞

1

l

l−1∑
i=0

‖F i+1x− F ix‖ = lim sup
l→∞

1

l

l−1∑
i=0

‖F i+1x− F ix‖.

32 2. Background Material

Thus we see

lim
k→∞
‖F k+1x− F kx‖ ≤ lim inf

l→∞

‖F lx− x‖
l

≤ lim sup
l→∞

‖F lx− x‖
l

≤ lim sup
l→∞

1

l

l−1∑
i=0

‖F i+1x− F ix‖

= lim
l→∞

1

l

l−1∑
i=0

‖F i+1x− F ix‖

= lim
l→∞
‖F l+1x− F lx‖

= lim
k→∞
‖F k+1x− F kx‖.

This implies the second equality.

Now we can prove the next result that will be important in the context of analyzing
the convergence properties if there are no solutions or KKT pairs of an optimization
problem. The analysis heavily depends on results provided by Simeon Reich et al.
Since the proof is split upon [92, Thm. 1], [3, Thm. 2.1], and [91, Prop. 2.1 and
Thm. 2.3], we will also state a complete proof here.

Theorem 2.34 (Pazy, Reich et al.). Suppose that D ⊂ H is a non-empty, closed,
and convex subset of a real Hilbert space H, F : D → D is firmly non-expansive,
x0 ∈ D, and that the sequence {xk}k∈N is generated by the fixed-point iteration
xk+1 = Fxk. Then

‖Fxk − xk‖ k→∞−−−→ inf
x∈D
{‖Fx− x‖}.

Proof. Consider another initial point v0 ∈ D together with its associated sequence
vk = F kv0 for k ∈ N. Using the non-expansiveness of F and the iteration rule, we
then see that

‖vk+2 − vk+1‖ = ‖Fvk+1 − Fvk‖ ≤ ‖vk+1 − vk‖

for all k ∈ N. Applying this inequality and the triangle inequality yields

‖vk+1 − v0‖ ≤ ‖vk+1 − vk‖+ ‖vk − vk−1‖+ · · ·+ ‖v1 − v0‖ ≤ (k + 1)‖Fv0 − v0‖.
(2.21)

Again by the non-expansiveness of F , we obtain

‖xk+1 − vk+1‖ = ‖Fxk − Fvk‖ ≤ ‖xk − vk‖ ≤ · · · ≤ ‖x0 − v0‖.

2.3. Fixed-Point Iterations 33

Therefore, by the triangle inequality it holds that

‖xk+1 − x0‖ ≤ ‖xk+1 − vk+1‖+ ‖x0 − v0‖+ ‖vk+1 − v0‖
≤ 2‖x0 − v0‖+ (k + 1)‖Fv0 − v0‖.

Dividing this by k + 1 and taking into account that for an arbitrary ε > 0, v0 can
be chosen such that ‖Fv0 − v0‖ ≤ infx∈D{‖Fx− x‖}+ ε, we obtain

lim sup
k→∞

∥∥∥∥ xk+1

k + 1

∥∥∥∥ = lim sup
k→∞

∥∥∥∥xk+1 − x0

k + 1

∥∥∥∥ ≤ inf
x∈D
{‖Fx− x‖}.

By Lemma 2.33 and xk+1 = F k+1x, the above lim sup are actual limits and coincide
with limk→∞ ‖xk+1 − xk‖. Further it is obvious that ‖xk+1 − xk‖ = ‖Fxk − xk‖ ≥
infx∈D{‖Fx− x‖}. Thus we have

inf
x∈D
{‖Fx− x‖} ≤ lim

k→∞
‖xk+1 − xk‖

= lim
k→∞

∥∥∥∥ xk+1

k + 1

∥∥∥∥
= lim

k→∞

∥∥∥∥xk+1 − x0

k + 1

∥∥∥∥
≤ inf

x∈D
{‖Fx− x‖}.

This completes the proof.

2.3.4 Halpern’s Method

In the above section we have seen that the fixed-point iterations (2.18) and (2.19)
converge weakly to a fixed point of F under mild conditions. On the other hand,
it is often appreciated to have a strongly convergent algorithm at hand, since
strongly convergent algorithms possess better approximation properties. To this
end, we note that there exist some modifications of the fixed-point iteration (2.19)
that are known to give strongly convergent iterates. One of these modifications
is Halpern’s method, see [61] for the original reference or the discussion in [9]. In
order to describe the simple idea of Halpern’s method, consider first the classical
fixed-point iteration

xk+1 = Fxk (2.22)

that converges weakly if F is firmly non-expansive and has at least one fixed
point, see Corollary 2.32. In order to be able to obtain weak convergence of only

34 2. Background Material

non-expansive operators F , Krasnoselsky and Mann blended a bit of the identity
into (2.22) by using the iteration

xk+1 = ρkxk + (1− ρk)Fxk, (2.23)

where ρk ∈ [0, 1] and
∑∞

k=1 ρ
k(1− ρk) = +∞, see Theorem 2.30. Now the idea of

Halpern was to replace the vector xk from the identity map by a fixed vector x.
Thus Halpern’s iteration is

xk+1 = ρkx+ (1− ρk)Fxk, (2.24)

where the sequence {ρk}k∈N satisfies the conditions

ρk → 0,
∞∑
k=1

ρk = +∞,
∞∑
k=1

|ρk+1 − ρk| <∞, (2.25)

which, in particular, hold for the choice ρk := 1/k. This method is known to
be strongly convergent to the particular solution ProjfixF x. The next theorem
summarizes the convergence properties of (2.24).

Theorem 2.35 (Halpern’s method, [9, Thm. 30.1]). Let D be a non-empty, closed,
convex subset of the real Hilbert space H, let F : D → D be non-expansive such
that fix(F) 6= ∅, let x, x0 ∈ D, and let {ρk}k∈N ⊂ (0, 1) satisfy (2.25). Then the
iterates {xk}k∈N generated by (2.24) converge strongly to the fixed point of F that
is closest to x, i.e. xk → ProjfixF x.

There are other ways than Halpern’s method to modify the fixed-point iteration
such that the iterates of a fixed-point iteration become strongly convergent. Two
of them to be mentioned here are, first, the recently introduced scheme [15],
which was inspired by the Krasnoselsky-Mann, Halpern and proximal-Tikhonov
algorithm iteration, and, second, the well known Haugazeau scheme, see e.g.
[9, Sec. 30.3] and [62] for the original reference, which uses hyperplane projections.

Even though all of the strongly convergent schemes could be used for the ap-
plications discussed in the Chapters 4 and 5, we limit ourselves to using Halpern’s
method since it might be the most convenient one to use.

2.4 Monotone Operators
This section is dedicated to introducing the very general framework of set-valued
mappings, that have certain monotonicity properties. In this section H denotes
always a real Hilbert space. All results and definitions can be found in [9] and

2.4. Monotone Operators 35

therefore will not be cited explicitly; for a Banach space view of this topic see
[6, 7].

The kind of set-valued mappings T that we discuss here maps points from
the Hilbert space H to sets contained in H, i.e. T : H → 2H. If for all x ∈ H
the sets T (x) only contain a single element, we call T single-valued, and write
T : H → H. Thus all the notions defined for set-valued mappings can also be
applied to ordinary (single-valued) functions.

Given a set-valued mapping T : H → 2H from a real Hilbert space H to its
power set 2H, we define the domain of T as

dom(T) := {x ∈ H | T (x) 6= ∅}

and the graph of T as

graph(T) := {(x, u) ∈ H ×H | u ∈ T (x)}.

The inverse T−1 of a set-valued operator T : H → 2H is uniquely defined through
its graph by

graph(T−1) := {(u, x) ∈ H ×H | u ∈ T (x)}. (2.26)

By this definition the inverse always exists, maybe with T−1(u) = ∅. Further it
is necessary to define some arithmetic operations for set-valued operators. Let
T1, T2 : H → 2H, and Q ∈ L(H). Then scalar multiplication with β ∈ R, the effect
of Q, and summation are defined as

βT1(x) := {βu | u ∈ T1(x)},
QT1(x) := {Qu | u ∈ T1(x)},

T1(x) + T2(x) := {u1 + u2 | u1 ∈ T1(x), u2 ∈ T2(x)}.

Definition 2.36. A set-valued mapping T : H → 2H is called monotone if

〈u− v | x− y〉 ≥ 0 ∀(x, u), (y, v) ∈ graph(T).

It is called maximally monotone if it is monotone and there is no monotone oper-
ator T̃ : H → 2H such that graph(T) (graph(T̃).
The set-valued mapping T : H → 2H is called strongly monotone if there is a ρ > 0
such that

〈u− v | x− y〉 ≥ ρ‖x− y‖2 ∀(x, u), (y, v) ∈ graph(T).

Furthermore, we call T : H1 × · · · × HN → 2H1×···×HN strongly monotone with
respect to x−N := (x1, . . . , xN−1) if there is a constant ρ > 0 such that

〈u− v | x− y〉 ≥ ρ‖x−N − y−N‖2 := ρ

N−1∑
ν=1

‖xν − yν‖2 ∀(x, u), (y, v) ∈ graphT.

36 2. Background Material

A single-valued operator T : H → H is called α-cocoercive for some α > 0 if

〈T (x)− T (y) | x− y〉 ≥ α‖T (x)− T (y)‖2.

Note that the definition of strong monotonicity with respect to x−N is weaker than
plain strong monotonicity. This observation will be important in the application of
the method introduced in Chapter 6. Further note that from the Cauchy-Schwarz
inequality we obtain that every α-cocoercive operator is 1/α-Lipschitz continuous.
If T is strongly monotone with modulus ρ and Lipschitz continuous with constant
L, then T is also ρ/L2-cocoercive. On the other hand, cocoercivity does not imply
strong monotonicity. This observation plays an important role in our analysis is
Chapter 5, since a certain operator to be defined later is never strongly monotone
but, under suitable conditions, cocoercive.

The above notions of monotonicity yield a useful characterization of (strong)
convexity.

Proposition 2.37. Let H be a real Hilbert space and f : H → R differentiable.
Then f is (strongly) convex if and only if ∇f is (strongly) monotone.

At first the definition of maximal monotonicity seems to be a bit cumbersome.
Thus the next lemma characterizes maximal monotonicity through the solution of
a variational inequality that might be easier to handle and its proof follows straight
from the original definition.

Lemma 2.38. A monotone mapping T : H → 2H is maximally monotone if and
only if every solution (y, v) ∈ H ×H of

〈v − u | y − x〉 ≥ 0 ∀(x, u) ∈ graph(T),

belongs to graph(T).

The discussion of maximally monotone operators is motivated by the following
result, which states that the convex subdifferential mapping and the convex normal
cone mapping are maximally monotone operators.

Proposition 2.39 (Moreau, cf. [6, Thm. 2.8]). Let H be a real Hilbert space. Then
the convex subdifferential mapping x 7→ ∂f(x) of a proper, lower semi-continuous,
and convex function f : H → (−∞,+∞], defined in (2.13), is maximally mono-
tone.

In particular, the normal cone mapping x 7→ NC(x) of a non-empty, closed,
convex set C ⊂ H, defined in (2.14), is also maximally monotone.

Also we observe that the domain of ∂f , as defined in (2.16), coincides with the
domain of the maximally monotone operator ∂f . If f is convex and differentiable,

2.4. Monotone Operators 37

then Proposition 2.18 shows that ∇f is continuous. Proposition 2.37 states that
∇f is monotone, and therefore we obtain from Proposition 2.39 that ∇f is even
maximally monotone. This considerations motivate the hypothesis that every
continuous and monotone operator is maximally monotone, which is verified in
the next proposition.

Proposition 2.40 ([6, Thm. 2.4]). Let H be a real Hilbert space and T : H → H
be monotone and continuous with dom(T) = H. Then T is maximally monotone.

Maximally monotone operators possess a variety of important properties, some of
which are now presented.

Proposition 2.41 ([6, Prop. 2.1]). Let T : H → 2H be maximally monotone then

(a) graph(T) is weak-strong sequentially closed, i.e. if xk ⇀ x̄ and uk ∈ T (xk)
with uk → ū, then ū ∈ T (x̄).

(b) graph(T) is strong-weak sequentially closed, i.e. if xk → x̄ and uk ∈ T (xk)
with uk ⇀ ū, then ū ∈ T (x̄),

(c) T−1 is maximally monotone,

(d) for each x ∈ dom(T) the set T (x) is closed and convex.

Proof. The statements (a) and (b) follow straight from the fact that

〈uk − v | xk − y〉 ≥ 0 ∀(y, v) ∈ graph(T).

The left-hand side of the last inequality converges, hence

〈ū− v | x̄− y〉 ≥ 0 ∀(y, v) ∈ graph(T).

The maximal monotonicity (Lemma 2.38) now implies ū ∈ T (x̄).
The statement (c) is obvious and (d) can be found in [6, Prop. 2.1].

The rest of this section is dedicated to the question under which conditions an
operator T : H → 2H and the sum of maximally monotone operators is again
maximally monotone.

First, we answer this question with regard of the sum of two operators.

Proposition 2.42 ([6, Thm. 2.6]). Let H be a real Hilbert space, T1, T2 : → 2H

maximally monotone with dom(T2) = H. Then T1 + T2 is maximally monotone.

By extending this result to three operators we obtain a theorem that plays a
crucial role in this thesis as, in combination with Proposition 2.41, it will be used
to show that a certain accumulation point is a solution to the problems mentioned
in Chapter 1.

38 2. Background Material

Theorem 2.43. Let H be a real Hilbert space, T1, T2 : H → 2H maximally mono-
tone with dom(T2) = H, and let T3 : H → H with dom(T3) = H be monotone and
continuous. Then T1 + T2 + T3 is maximally monotone.

Proof. Apply Proposition 2.42 two times, taking into account Proposition 2.40.

Recall that the inverse of a self-adjoint, strongly monotone, and linear operatorQ ∈
L(H) exists and is again self-adjoint as well as strongly monotone, cf. Lemma 2.4.
Using the scalar product induced by Q, the “preconditioned” operator Q−1T turns
out to be maximally monotone in the Q-scalar product if T is maximally monotone
in the original scalar product.

Proposition 2.44 ([9, Prop. 20.24]). Let H be a real Hilbert space endowed with
the scalar product 〈· | ·〉, let Q ∈ L(H) be self-adjoint and strongly monotone, and
let T : H → 2H be maximally monotone. Then Q−1T is maximally monotone in
H endowed with the scalar product 〈x | y〉Q := 〈Qx | y〉, which has already been
defined in (2.3).

Proof. This is essentially the result from [9, Prop. 20.24], taking into account part
(c) of Lemma 2.4.

Later the last proposition is of major importance because algorithms for optimiza-
tion problems or GNEPs can be rewritten using the examined transform in order
to see convergence.

The next proposition shows that a single-valued, strongly and maximally mono-
tone operator is a bijection, which can be seen by the Browder–Minty theorem, cf.
[6, Cor. 2.2] or [9, Cor. 21.25], and the strong monotonicity.

Proposition 2.45. Let H be a real Hilbert space and let T : H → H be strongly
and maximally monotone. Then T is a bijection.

Proof. The surjectivity follows from [6, Cor. 2.2] or [9, Cor. 21.25] and the injec-
tivity follows straight from the strong monotonicity.

2.5 Zeros of (Maximally) Monotone Operators
This section deals with several non-expansive mappings that are closely linked to
zeros of maximally monotone operators. From these operators we then obtain
general and well known algorithms. Why zeros of maximally monotone operators
are important can be seen considering a proper, convex, lower semi-continuous
function. For such a function, finding a minimizer is equivalent to finding a zero
of the maximally monotone operator ∂f , see Theorem 2.17. As we see later in
Chapter 3, the optimality conditions for constrained optimization and generalized

2.5. Zeros of (Maximally) Monotone Operators 39

Nash problems can be expressed as zeros of maximally monotone operators. Thus
it is often desired to find a zero of a maximally monotone operator T . We consider
maximally monotone operators in a real Hilbert space H, i.e. T : H → 2H. The
precise formulation of the problem treated in this section is: Find x∗ ∈ H such
that

0 ∈ T (x∗). (2.27)

We denote the set of solutions to the just stated problem (2.27) by zer(T). In
order to solve this problem, we consider particular non-expansive operators that
are connected to zeros of T and their fixed-point iterations. We first take a look
at the resolvent and the forward operator as well as their associated fixed-point
iterations. Based on this, the above root finding problem (2.27) is discussed for
the case that the operator T is the sum of two operators. This leads us to the
forward-backward and the forward-backward-forward operator and the associated
iterations in the Sections 2.5.3 and 2.5.4.

2.5.1 The Resolvent and the Proximal Point Algorithm

We consider the root finding problem (2.27). For β > 0 it holds that

0 ∈ T (x∗) ⇐⇒ x∗ ∈ x∗ + βT (x∗) ⇐⇒ x∗ ∈ (I + βT)−1(x∗), (2.28)

with the usual concept of inversion for set-valued operators, see (2.26). Hence
finding a zero of T is equivalent to finding a fixed point of the operator (I + βT)−1,
called the resolvent.

The next proposition shows that the resolvent is well defined, i.e. for every
x ∈ H there is at least one u ∈ (I + βT)−1x.

Proposition 2.46 (Minty, cf. [9, Thm. 21.1]). Let H be a real Hilbert space
and T : H → 2H monotone. Then T is maximally monotone if and only if
range(I + βT) = H.

Now we will see that there is exactly one u ∈ (I + βT)−1x; thus it is possible to
write u = (I + βT)−1x and the inclusion x∗ ∈ (I + βT)−1x∗ from (2.28) is an
equality. Further it can be shown that the resolvent is maximally monotone and
firmly non-expansive.

Proposition 2.47 ([9, Cor. 23.11]). Let H be a real Hilbert space and T : H → 2H

maximally monotone. Then the resolvent (I + βT)−1 is single-valued, maximally
monotone, and firmly non-expansive.

40 2. Background Material

In the sequel we need the resolvent of the “preconditioned“ operator Q−1T . In
Proposition 2.44 it was stated that Q−1T is maximally monotone in H endowed
with the scalar product 〈Q· | ·〉, whenever Q ∈ L(H) is self-adjoint and strongly
monotone. Applying this result in combination with Proposition 2.47 yields the
next proposition.

Proposition 2.48. Let H be a real Hilbert space, T : H → 2H maximally mono-
tone, and let Q ∈ L(H) be self-adjoint and strongly monotone. Then (I+βQ−1T)−1

is single-valued, maximally monotone, and firmly non-expansive in H endowed with
the scalar product 〈x | y〉Q := 〈Qx | y〉.

Proof. By Proposition 2.44 the operator Q−1T is maximally monotone in H en-
dowed with the scalar product 〈· | ·〉Q. With Proposition 2.47 we obtain the
claim.

In the following example, two special resolvents are considered. First, the resolvent
of the convex subdifferential, introduced in (2.13), turns out to be the well known
proximal operator. Second, the resolvent of the normal cone mapping yields the
projection.

Example 2.49. Let C be closed, convex subset of a real Hilbert space H, let
f : H → (−∞,+∞] be a proper, convex, and lower semi-continuous function, let
β > 0. Using the optimality condition from Theorem 2.17 and Proposition 2.20,
it is easy to see that

(I + β∂f)−1x := arg min
y∈H

(
βf(y) +

1

2
‖y − x‖2

)
=: proxβf (x).

Since the subdifferential of the indicator function is the normal cone, we see

(I + βNC)−1x = ProjC(x).

�

In Proposition 2.48 we have seen that the resolvent is a firmly non-expansive
mapping and from Corollary 2.32 it follows that the fixed-point iteration with a
firmly non-expansive mapping is weakly convergent. This fixed-point iteration is
of major interest and therefore is given the name proximal point algorithm.

Theorem 2.50 (Proximal Point Algorithm). Let H be a real Hilbert space,
T : H → 2H maximally monotone, let β > 0, and let Q ∈ L(H) be self-adjoint
and strongly monotone. Suppose that T has a fixed point. Then the iterates gen-
erated by

xk+1 := (I + βQ−1T)−1xk

2.5. Zeros of (Maximally) Monotone Operators 41

are uniquely defined, converge weakly to a zero of T , and xk+1 − xk → 0. Fur-
ther we get the convergence rates dist2(T (xk), 0) = o(1/k) for k → ∞ and
‖xk+1 − xk‖2 = O(1/k).

Proof. By Proposition 2.48 the iterates xk+1 are uniquely defined and the operator
F := (I+βQ−1T)−1 is firmly non-expansive in the scalar product 〈· | ·〉Q. Choosing
ρk ≡ 1 in Corollary 2.32, we obtain the weak convergence of the iterates xk+1 to a
fixed point of the resolvent (I+βQ−1T)−1 in the space H endowed with the scalar
product 〈· | ·〉Q. Lemma 2.9 shows that the iterates converge weakly in H with
the original scalar product 〈· | ·〉 to a fixed point of the resolvent (I + βQ−1T)−1.
Now we can see, as stated in (2.28), that being a fixed point of (I + βQ−1T)−1

is equivalent to being a zero of T . The assertion about the convergence rate
dist2(T (xk), 0) = o(1/k) follows from [38], which is a recent improvement of a
classical result stated in [29, Prop. 8]. The rate ‖wk − wk+1‖2 = O(1/k) is shown
in [37, Thm. 3.1]. Both convergence results can be applied here because of the
equivalence of the two norms ‖ · ‖ and ‖ · ‖Q.

There are more sophisticated variants of the proximal point algorithm; first, it
is possible to use the Krasnoselsky-Mann iteration (2.19) instead of the classical
fixed-point iteration (2.18). Second, it is possible to vary the parameter β in
every iteration, see [9, Thm. 23.41]. However, the above proximal point method
completely suffices for our purposes.

2.5.2 The Forward Operator and the Gradient Method

Let us again consider the root finding problem (2.27), i.e. find x∗ ∈ H such that
0 ∈ T (x∗) with a single-valued, maximally monotone operator T : H → H, and
let β > 0. In this case we get the equivalences

0 = T (x∗) ⇐⇒ 0 = −βT (x∗) ⇐⇒ x∗ = x∗ − βT (x∗) = (I − βT)x∗. (2.29)

Thus a zero of T is also a fixed point of the operator (I − βT), which we call
forward operator. It is well known that the forward operator is averaged whenever
T is cocoercive and β is sufficient small.

Proposition 2.51 ([9, Prop. 4.39]). Let H be a real Hilbert space, let T : H → H,
let α > 0, and let β ∈ (0, 2α). Then T is α-cocoercive if and only if I − βT is
β/(2α)-averaged.

When the fixed-point iteration (2.18) is applied to the averaged operator F :=
(I − βT), we obtain a certain kind of gradient method that converges since the
forward operator is averaged.

42 2. Background Material

Proposition 2.52 (Gradient method). Let H be a real Hilbert space, x0 ∈ H, let
α > 0, let T : H → H be α-cocoercive, and let β ∈ (0, 2α). Then the iterates
generated by

xk+1 := (I − βT)xk

converge weakly to a zero of T .

Proof. The averagedness of the forward operator was shown in Proposition 2.51.
Now choose ρk ≡ 1 in Proposition 2.31 to obtain the weak convergence of xk to a
fixed point of I − βT . That every fixed point of the forward operator is a zero of
T was shown in (2.29).

Obviously, more sophisticated versions of the gradient method can be obtained
using the Krasnoselsky-Mann iteration (2.19) instead of the classical fixed-point
iteration (2.18). However, the above gradient method is enough for our purposes.

Under certain conditions, the forward operator is even a contraction; this case
is considered next.

Proposition 2.53. Let H be a real Hilbert space. Suppose that the operator
T : H → H is strongly monotone with modulus ρ and Lipschitz continuous with
constant L, and suppose that β ∈ (0, 2ρ/L2). Then the operator I − βT is a con-
traction, i.e. Lipschitz continuous with constant 1+β2L2−2βρ < 1. Furthermore,
the method from Proposition 2.52 converges strongly.

Proof. We see that

‖(I − βT)− (I − βT)y‖2 = ‖(x− y)− β(Tx− Ty)‖2

= ‖x− y‖2 + β2‖Tx− Ty‖2 − 2β〈Tx− Ty | x− y〉
≤ ‖x− y‖2 + β2‖Tx− Ty‖2 − 2βρ‖x− y‖2

≤ ‖x− y‖2 + β2L2‖x− y‖2 − 2βρ‖x− y‖2

= (1 + β2L2 − 2βρ)‖x− y‖2.

It is easy to see that 1 + β2L2 − 2βρ < 1 for β < 2ρ/L2, hence (I − βT) is a
contraction. The proposed strong convergence follows straight from the Banach
fixed-point theorem.

2.5.3 The Forward-Backward Operator and Iteration

In this section, we want to investigate the root finding problem (2.27) for the case
that the operator T : H → 2H is the sum of two operators. We assume that

2.5. Zeros of (Maximally) Monotone Operators 43

T = T1 + T2, where T2 : H → 2H is maximally monotone and T1 : H → H is
single-valued and maximally monotone. For β > 0 we derive the equivalences

0 ∈ T1x
∗ + T2x

∗ ⇐⇒ −T1x
∗ ∈ T2x

∗

⇐⇒ (I − βT1)x∗ ∈ (I + βT2)x∗

⇐⇒ x∗ ∈ (I + βT2)−1(I − βT1)x∗.

Assuming T2 to be maximally monotone implies that the last inclusion is actually
an equality, so we obtain the characterization

0 ∈ T1x
∗ + T2x

∗ ⇐⇒ x∗ = (I + βT2)−1(I − βT1)x∗. (2.30)

The operator (I +βT2)−1(I−βT1) is called the forward-backward operator. Under
the conditions from Section 2.5.2 on T1 and β, the forward operator (I − βT1) is
averaged, further, the resolvent (I + βT2)−1 is firmly non-expansive, and therefore
the forward-backward operator is averaged, cf. Proposition 2.26. This motivates
that we can use the fixed-point iterations from Section 2.3 to find zeros of T1 +T2.
First we quantify the averagedness of the forward-backward operator.

Proposition 2.54. Let T2 : H → 2H be maximally monotone, let T1 : H → H
be single-valued, maximally monotone, and α-cocoercive, let β ∈ (0, 2α). Then
the forward-backward operator (I + βT2)−1(I − βT1) is α̃-averaged with α̃ :=
2α/(4α− β).

Proof. Combine Proposition 2.26, Proposition 2.47, and Proposition 2.51.

The last proposition reveals the conditions under which the forward-backward
operator is averaged, and thus we can now apply the fixed-point iteration (2.18)
or (2.19), which is weakly convergent.

Theorem 2.55 ([9, Thm. 26.14]). Let H be a real Hilbert space, let α > 0, let T1 :
H → H be α-cocoercive, let T2 : H → 2H be maximally monotone, let β ∈ (0, 2α),
and set δ := 2 − β/(2α). Further let {ρk}k∈N ⊂ [0, δ] be a sequence such that∑∞

k=1 ρ
k(δ − ρk) = +∞, and let x0 ∈ H. Suppose that T1 + T2 has a zero. Then

the iterates generated by

x̃k := (I + βT2)−1(I − βT1)xk (2.31a)
xk+1 := xk + ρk(x̃k − xk) (2.31b)

converge weakly to a zero x∗ of T1 +T2 and T1x
k converges strongly to T1x

∗, where
the value T1x

∗ is independent of the individual solution x∗. If T1 or T2 is strongly
monotone, xk converges strongly to the unique zero of T1 + T2.

Proof. The weak convergence follows straight from Proposition 2.31 and Proposi-
tion 2.54. The rest of the proof can be found in [9, Thm. 26.14].

Note that the assumptions made in Theorem 2.55 allow the choice ρk ≡ 1.

44 2. Background Material

2.5.4 The Forward-Backward-Forward Iteration

The second splitting method that we recall is due to Tseng [105], see also [9].
For the application we have in mind, we only restate a simplified version of that
method. The main advantage of Tseng’s approach is that it replaces the cocoer-
civity assumption for T1 by a simpler condition. More precisely, assume that T1 is
Lipschitz continuous with constant 1/α, and let β ∈ (0, α), hence β/α < 1. Then
it is easy to see that I − βT1 is strongly monotone and, therefore, a bijection, cf.
Propositions 2.45 and 2.53. Consequently, we can further rewrite (2.30) as follows:

0 ∈ T1x
∗ + T2x

∗ ⇐⇒ x∗ = (I + βT2)−1(I − βT1)x∗

⇐⇒ (I − βT1)x∗ = (I − βT1)(I + βT2)−1(I − βT1)x∗

⇐⇒ x∗ =
(
(I − βT1)(I + βT2)−1(I − βT1) + βT1

)
x∗.

This motivates the fixed-point iteration

xk+1 =
(
(I − βT1)(I + βT2)−1(I − βT1) + βT1

)
xk,

which can be rewritten as

yk := xk − βT1x
k, (2.32a)

zk := (I + βT2)−1yk, (2.32b)
xk+1 := zk + β(T1x

k − T1z
k). (2.32c)

This justifies the alternative name forward-backward-forward splitting method for
Tseng’s approach.

Provided that T2 is maximally monotone, T1 is monotone and 1/α-Lipschitz
continuous for some α > 0, T1 + T2 is maximally monotone, the parameter β is
taken such that β ∈ (0, α), and assuming that zer(T1 +T2) 6= ∅, one can show that
the sequences {xk}k∈N and {zk}k∈N generated by this forward-backward-forward
scheme converge weakly to a point in zer(T1 + T2). This and further convergence
properties are stated in the next theorem.

Theorem 2.56 (Tseng’s Method, [9, Thm. 26.17]). Let H be a real Hilbert space,
let α > 0, let T1 : H → H be 1/α-Lipschitz continuous, let T2 : H → 2H be
maximally monotone, let β ∈ (0, α), and let x0 ∈ H. Suppose that T1 + T2 has
a zero and is maximally monotone. Let the iterates xk+1, yk, zk be generated by
(2.32). Then the following assertions hold:

(a) {xk − zk}k∈N converges strongly to zero.

(b) {xk}k∈N and {zk}k∈N converge weakly to a point in zer(T1 + T2).

(c) If T1 or T2 is strongly monotone, then {xk}k∈N and {zk}k∈N converge strongly
to the unique point in zer(T1 + T2).

2.6. Fundamental Inequalities 45

2.6 Fundamental Inequalities
Here we recall and derive some basic inequalities that will be used in our subsequent
analysis. To this end, we first restate the well-known Young inequality with ε.

Lemma 2.57 (Young’s Inequality). Suppose that a, b ∈ R. Then

|a · b| ≤ ε

2
a2 +

1

2ε
b2

holds for every ε > 0.

As a consequence of the previous result, we obtain the following estimate.

Lemma 2.58. Let α1, . . . , αN ∈ R. Then(
N∑
i=1

αi

)2

≤ N
N∑
i=1

α2
i .

Proof. Let e := (1, . . . , 1)T and a = (a1, . . . aN)T then the Cauchy-Schwarz inequal-
ity yields (

N∑
i=1

αi

)2

= (eTa)2 ≤ ‖e‖2
RN‖a‖

2
RN = N

N∑
i=1

α2
i .

Lemma 2.58 immediately yields the following inequality.

Lemma 2.59. Let H be a real Hilbert space. For arbitrary a1, . . . , aN ∈ H, it
holds that ∥∥∥∥∥

N∑
i=1

ai

∥∥∥∥∥
2

≤ N
N∑
i=1

‖ai‖2

Proof. We obtain ∥∥∥∥∥
N∑
i=1

ai

∥∥∥∥∥
2

≤

(
N∑
i=1

‖ai‖

)2

≤ N
N∑
i=1

‖ai‖2

from the triangle inequality and Lemma 2.58.

Finally, we restate an identity, which follows directly from expanding ‖w − v‖2.

Lemma 2.60 (Polarization Identity). Let H be a real Hilbert space. For arbitrary
w, v ∈ H, we have

2〈w | v〉 = ‖w‖2 + ‖v‖2 − ‖w − v‖2.

Proof. This is proved by expanding the right-hand side of the equation.

46 2. Background Material

Chapter 3

Theory of Optimization and
Variational Problems

In this chapter, we recall and discuss the problems that this manuscript is con-
cerned with in more depth. As already mentioned in the introduction, these prob-
lems are the separable, convex optimization problem and jointly convex generalized
Nash problem, where the joint constraints are linear equalities. Since the following
chapters require an extensive understanding of these problems, which were first in-
troduced in Chapter 1, we now discuss the associated theory. The theory presented
here is part of the much broader theory of optimization problems or generalized
Nash problems, see for instance [7, 18, 46]. Nevertheless, what we present is tai-
lored precisely to the problems that we design algorithms for. We also link the
optimality conditions of these problems to zeros of certain maximally monotone
operators. This requires the linearity of the constraints (and the separability of
the objective function).

First, in Section 3.1, linearly constrained, separable, convex optimization prob-
lems are discussed and their KKT conditions are linked to the zeros of a maximally
monotone operator. Thereafter, in Section 3.2, generalized Nash equilibrium prob-
lems with linear joint constraints are reviewed, and the notions of variational
equilibria and variational KKT conditions are introduced. Then these variational
KKT conditions are again linked to zeros of a maximally monotone operator. Fur-
thermore, two ways to incorporate linear, conic constraints into this framework
are presented.

47

48 3. Theory of Optimization and Variational Problems

3.1 Separable Linearly Constrained Optimization
In this section, we consider the separable, linearly constrained optimization prob-
lem

min
N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b, xi ∈ Xi (i = 1, . . . , N). (Opt)

Here and throughout this thesis, Hi and K are Hilbert spaces, fi : Hi → R are
lower semi-continuous, convex functions, Xi ⊂ Hi are closed, convex sets, Ai are
linear operators from Hi to K, i.e. Ai ∈ L(Hi,K), and b ∈ K is a vector.

For the sake of notational simplicity, we use again the same abbreviations as
in the introductory Section 1.1:

H := H1 × · · · × HN , X := X1 × . . .×XN ⊆ H

x :=
(
x1, . . . , xN) ∈ H, f(x) :=

N∑
i=1

fi(xi), Ax :=
N∑
i=1

Aixi.
(3.1)

Canonically, H becomes a Hilbert space with the scalar product 〈x | y〉 :=
〈x1 | y1〉 + · · · + 〈xN | yN〉; the scalar product in the space H × K is defined
analogously.

First, we recall the well-known notion of KKT pairs.

Definition 3.1. Let the given assumptions for the problem (Opt) hold. A pair
(x∗, µ∗) ∈ X × K is called a KKT point of (Opt) if it satisfies the following KKT
conditions: 0 ∈ ∂f(x)+A∗µ+NX (x) and 0 = b−Ax, where A∗ : K → H denotes
the Hilbert space adjoint of A.

Note that a KKT point has to be feasible with respect to the abstract constraints
X , whereas they exploit the existence of a multiplier for the equality constraints.
This setting is useful for our ADMM-type method where only the linear constraints
are penalized, whereas the abstract constraints remain unchanged.

Our aim is to compute a KKT point of the optimization problem (Opt). In
many cases, this is equivalent to finding a solution of the minimization problem it-
self. More precisely, the KKT conditions are always sufficient optimality conditions
for convex problems, cf. [18, Prop. 3.3], whereas the necessary part usually requires
some constraint qualifications; for example, b ∈ sriA(X), see [9, Prop. 27.14],
where sri denotes the strong relative interior, see [9, Def. 6.9]. In the finite-
dimensional case, the condition Y ∩ int(X) 6= ∅ would be enough for the KKT
conditions to be necessary optimality conditions, where Y := {x | Ax = b}, cf.
[96, Cor. 28.2.2] for a more detailed discussion. This constraint qualification holds,
in particular, if Xi = Hi for all i = 1, . . . , N .

3.1. Separable Linearly Constrained Optimization 49

In order to rewrite the KKT conditions in a more compact form, let us further
introduce the notation

W := X1 × . . .×XN ×K,
w :=

(
x1, . . . , xN , µ

)
,

f(w) := f(x),

(3.2)

where the last expression simply means that, depending on the argument, we either
view f as a mapping depending on x only, or depending on the full primal-dual
variable w = (x, µ). Therefore, for the corresponding subdifferentials (with respect
to w and x, respectively), depending on the corresponding arguments, we have

∂f(w) =

(
∂f(x)
{0}

)
, (3.3)

since f is independent of µ. Finally, let us define G : H×K → H×K,

G(w) :=


A∗1µ
A∗2µ
...

A∗Nµ

b−
∑N

i=1 Aixi

 . (3.4)

The particular structure of G combined with Proposition 2.40 immediately yields
the following result.

Lemma 3.2. Under the given assumptions for the problem (Opt), the mapping
G as defined in (3.4) satisfies

〈
G(w) − G(w̄) | w − w̄

〉
= 0 for all w, w̄ ∈ W;

in particular, G is a continuous, monotone, and therefore maximally monotone
operator.

The above notation yields the following compact representation of the KKT con-
ditions.

Lemma 3.3. Under the given assumptions for the problem (Opt), the vector pair
w∗ = (x∗, µ∗) ∈ X × K is a KKT point of (Opt) if and only if w∗ ∈ W∗, where
W∗ :=

{
w ∈ H ×K | 0 ∈ ∂f(w) +G(w) +NW(w)

}
.

Proof. The proof follows immediately from the previous definitions, taking into
account that, due to the Cartesian structure of W , we have

NW(w) = NX1(x1)× . . .×NXN (xN)×NK(µ)

and NK(µ) = {0} since K is the entire space. Since NW(w) = ∅ if and only if
w 6∈ W , it follows that w ∈ W = X ×K.

50 3. Theory of Optimization and Variational Problems

Let us define the multifunction

TOpt(w) := ∂f(w) +G(w) +NW(w), (3.5)

whose domain is obviously given by the non-empty set W . Then the set W∗ from
Lemma 3.3 can be expressed as W∗ = {w ∈ W | 0 ∈ TOpt(w)}. This indicates
that the set-valued mapping TOpt plays a central role in our analysis. Its most
important property is formulated in the following result.

Proposition 3.4. Under the given assumptions for the problem (Opt), the set-
valued function TOpt defined in (3.5) is maximally monotone.

Proof. Since G is a continuous, monotone function, in view of Lemma 3.2 and
domG = H×K, it follows that B := G+NW is a maximally monotone operator,
see e.g. Proposition 2.40 and Proposition 2.42. Because X is non-empty, it follows
straight that dom(NW) 6= ∅, and therefore dom(B) 6= ∅. Furthermore, since
f is a real-valued, convex function, it is also known by Proposition 2.39 that
A := ∂f(w) is maximally monotone. Since dom(A) = dom(∂f) = H × K, see
Proposition 2.19 and dom(B) 6= ∅, it follows again from Proposition 2.42 that
TOpt = ∂f +G+NW = A+ B is also maximally monotone.

Another way to verify the maximal monotonicity of TOpt is through the maximal
monotonicity of the convex-concave subdifferential, cf. [2].

As already said, the existence of Lagrange multipliers can only be guaranteed
through a constraint qualification. The next theorem shows that the existence of
an approximating KKT sequence is a necessary optimality condition without the
need for any additional constraint qualification. It is a special case of a result
presented in [22] and it is used later to investigate the convergence properties of
an ADMM-method in the absence of Lagrange multipliers or even solutions.

Theorem 3.5. Suppose that the given assumptions for the problem (Opt) hold
and that the problem (Opt) admits a solution x̄. Then there is a sequence
{(xk, λk)}k∈N ⊂ (H,K) such that

εk1 ∈ ∂f(xk) + A∗λk +NX (xk)

εk2 = Axk − b
xk ∈ X ,

where (εk1, ε
k
2) =: εk → 0 in H×K and xk → x̄.

Proof. Let r > 0 be arbitrary. Since the problem is convex and x̄ is a minimizer
of f , we know that x̄ locally minimizes f on Br(x̄) ∩ {x ∈ X | Ax = b}. This

3.2. Linearly Constrained Generalized Nash Equilibrium Problems 51

localization of the problem is necessary because later in this proof we need certain
iterates to be bounded. For k ∈ N, consider the problem

min
x∈H

f(x) + ‖x− x̄‖2
H + k‖Ax− b‖2

K s.t. x ∈ Br(x̄) ∩ X . (3.6)

We notice that the squared norm and the composition of the squared norm with a
linear function are continuous and convex, and therefore weakly sequentially lower
semi-continuous. Further we assumed f to be convex and lsc, thus it is also weakly
sequentially lower semi-continuous. Hence, the objective function of the above
problem (3.6) is weakly sequentially lower semi-continuous. By the reflexivity of H
we obtain a solution of the problem (3.6). Passing to a subsequence if necessary, we
may assume that xk ⇀ x̂ for some x̂; by the convexity and closedness of Br(x̄)∩X
we see x̂ ∈ Br(x̄) ∩ X . Observe now that

f(xk) + ‖xk − x̄‖2
H + k‖Ax− b‖2 ≤ f(x̄) (3.7)

for all k by the minimizing property of xk. By the weak sequential lower semi-con-
tinuity we see that f(xk) is bounded. Dividing the last equation by k and taking
the limit k → ∞, it follows by the weak sequential lower semi-continuity of the
squared norm that ‖Ax̂ − b‖2

K = 0, i.e. x̂ is feasible. By (3.7), we also obtain
f(x̂) + ‖x̂ − x̄‖2

H ≤ f(x̄). But f(x̄) ≤ f(x̂), hence x̂ = x̄ and (3.7) implies that
xk → x̄. In particular, we have ‖xk − x̄‖H < r for sufficiently large k, and from
(3.6) we obtain with εk1 := −2(xk − x̄)→ 0 that

0 ∈ ∂f(xk)− εk1 + 2kA∗(Ax− b) +NX (xk).

Moreover, define the sequences λk := 2k(Axk − b) and εk2 := Axk − b.

Notice that the sequence {λk}k∈N is possibly unbounded. This is in particular the
case if there is no KKT pair in H×K.

3.2 Linearly Constrained Generalized Nash Equi-
librium Problems

We consider the generalized Nash equilibrium problem (GNEP) with N players ν,
where the optimization problem of player ν is given by

min
xν∈Hν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
ν=1

Aνxν = b, xν ∈ Xν (GNEP)

52 3. Theory of Optimization and Variational Problems

or, more generally,

min
xν∈Hν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
ν=1

Bνxν − b ∈ C, xν ∈ Xν (GNEPconic)

for all ν = 1, . . . , N . Here and throughout this whole thesis, Hν and K are
given Hilbert spaces, ϕν : Hν → R are proper, convex, and lower semi-contin-
uous functions, θν : H1 × · · · × HN → R are continuously Fréchet-differentiable
with θν(·, x−ν) being convex for any fixed x−ν , Xν ⊂ Hν are non-empty, closed,
and convex sets, C is a non-empty, closed, convex cone, Aν , Bν ∈ L(Hν ,K), and
b ∈ K. Following standard notation in Nash games, we write x = (xν , x−ν),
where x−ν subsumes all the remaining block components xi with i 6= ν. This
notation is used to emphasize the particular role played by the block component
xν within the entire vector x and does not mean that the components of x are
re-ordered. In particular, we therefore have x = (xν , x−ν) =

(
x1, . . . , xN) and,

similarly, (yν , x−ν) = (x1, . . . , xν−1, yν , xν+1, . . . , xN).
We assume that the generalized Nash equilibrium problems (GNEP) and

(GNEPconic) have non-empty feasible sets. Since we have explicit constraints Xν ,
there is essentially no loss of generality in assuming that θν and ϕν real-valued for
all ν = 1, . . . , N .

For the sake of notational simplicity, we use the abbreviations

H := H1 × · · · × HN , X := X1 × . . .×XN ⊆ H,

x :=
(
x1, . . . , xN) ∈ H, Ax :=

N∑
ν=1

Aνxν ,

Bx :=
N∑
ν=1

Bνxν , ϕ(x) :=
N∑
ν=1

ϕν(xν),

(3.8a)

and, depending on the problem, we use either

F := {x ∈ X | Ax = b} (3.8b)

for (GNEP) or

F := {x ∈ X | Bx− b ∈ C}, (3.8c)

for (GNEPconic); which F is meant is clear from the context. As above, H becomes
a Hilbert space with the scalar product 〈x | y〉 := 〈x1 | y1〉+ · · ·+ 〈xN | yN〉; the
scalar product in the space H×K is defined analogously. The symbol ‖ · ‖ always
denotes the norm induced by the corresponding scalar product (in Hν ,H,K, or

3.2. Linearly Constrained Generalized Nash Equilibrium Problems 53

H×K); it should be clear from the context which norm is used. We omit indexing
the norms again in order to keep the notation simple.

In this work, we consider a special kind of solution of the problem (GNEP).
To this end, let

Ψ(x, y) :=
N∑
ν=1

(
θν(xν , x−ν) + ϕν(xν)− θν(yν , x−ν)− ϕν(yν)

)
be the Nikaido-Isoda-function of (GNEP). Then x∗ ∈ H is called a normalized
equilibrium or a variational equilibrium of (GNEP) if supy∈F Ψ(x∗, y) = 0. Follow-
ing [46], for example, it is not difficult to see that every variational equilibrium is
a generalized Nash equilibrium of the GNEP.

We also introduce the pseudo-gradient P̂θ : H → H of the functions θν from
(GNEP) as

P̂θ(x) :=

 ∇x1θ1(x1, x−1)
...

∇xN θN(xN , x−N)

 . (3.9)

Further note that the definition of ϕ yields

∂ϕ(x) =

 ∂x1ϕ1(x1)
...

∂xNϕN(xN)

 . (3.10)

If all ϕν are differentiable, we notice that ∂ϕ = ∇ϕ = P̂ϕ.
This notation allows us to extend a known result from finite-dimensional

GNEPs (see, e.g. [46]) to our Hilbert space setting.
Theorem 3.6. Under the given assumptions for the problem (GNEP)
(or (GNEPconic)), it holds that x∗ is a variational equilibrium of (GNEP)
(or (GNEPconic)) if and only if 0 ∈ ∂ϕ(x∗) + P̂θ(x

∗) +NF(x∗).
Proof. By definition, x∗ is a variational equilibrium of (GNEP) (or (GNEPconic))
if and only if supy∈F Ψ(x∗, y) = 0 or, equivalently, if Ψ(x∗, y) ≤ 0 for all y ∈ F . In
turn, this means that x∗ solves the problem

min
y∈F

N∑
ν=1

(
θν(yν , x

∗
−ν) + ϕ(yν)

)
. (3.11)

Since the objective function is convex as a mapping of y, it follows, using the nota-
tion introduced before, that (3.11) is equivalent to 0 ∈ ∂ϕ(x∗) + P̂θ(x

∗) +NF(x∗).

Note that the previous result remains true for more general convex sets F , not
necessarily given as in our framework.

54 3. Theory of Optimization and Variational Problems

3.2.1 Linear Equality Constrained GNEPs

Under certain regularity conditions, we can characterize the normal cone NF(x∗)
from Theorem 3.6. This leads to a particular notion of a KKT point for which we
use the following terminology.

Definition 3.7. Let the given assumptions for problem (GNEP) hold. A pair
(x∗, µ∗) ∈ X × K is called a variational KKT point of (GNEP) if it satisfies the
following KKT-type conditions: 0 ∈ ∂ϕ(x)+P̂θ(x)+A∗µ+NX (x) and 0 = b−Ax.

As in the optimization case, note that a variational KKT point has to be feasible
with respect to the abstract constraints X , whereas it exploits the existence of
a multiplier for the equality constraints. This setting is useful for our ADMM-
type method where only the linear constraints are penalized, whereas the abstract
constraints remain unchanged.

The following result clarifies the relation between variational equilibria and
variational KKT points of problem (GNEP).

Theorem 3.8. Under the given assumptions for the problem (GNEP), the follow-
ing statements hold:

(a) If (x∗, µ∗) ∈ H × K is a variational KKT pair of (GNEP), then x∗ is a
variational equilibrium.

(b) Conversely, assume that A ∈ L(H,K) has closed range, and that
intX ∩ {x ∈ H | Ax = b} 6= ∅. If x∗ ∈ F is a variational equilibrium of
(GNEP), then there exists a multiplier µ∗ such that (x∗, µ∗) ∈ H × K is a
variational KKT pair of (GNEP).

Proof. Recall that F = {x ∈ X | Ax = b} = X ∩ Y with Y := {x | Ax = b}
being the preimage of b under A. Since A is continuous, it follows that Y is closed
and convex. By assumption, X is a closed, convex set as well. Moreover, an
easy calculation shows that NY(x) = Ker(A)⊥ = Range(A∗) ⊇ Range(A∗) for any
x ∈ Y , where we used a result related to the Banach closed range theorem, cf.
Theorem 2.3. Since the inclusion NX (x) + NY(x) ⊆ NF(x) holds for any x ∈ F ,
statement (a) follows from

NX (x∗) + A∗µ∗ ⊆ NX (x∗) + Range(A∗) ⊆ NX (x∗) +NY(x∗) ⊆ NF(x∗)

together with Theorem 3.6. Statement (b) can be verified similarly by noting that,
under the given assumptions, the equality NX (x∗) + NY(x∗) = NF(x∗) holds, cf.
Proposition 2.20, and Range(A∗) is closed by the closed range theorem.

In our subsequent algorithms for the solution of the GNEP from (GNEP), we
compute a variational KKT point. Theorem 3.8 shows that this always yields a

3.2. Linearly Constrained Generalized Nash Equilibrium Problems 55

variational equilibrium, and that this approach is actually equivalent to finding a
variational equilibrium under a certain regularity condition.

In order to rewrite the variational KKT conditions in a more compact form,
let us further introduce the notations

W := X1 × . . .×XN ×K,
w :=

(
x1, . . . , xN , µ

)
,

ψ(w) := ϕ(x),

(3.12)

where the last expression is just a formal re-definition of the mapping ϕ with the
only difference being that ψ is viewed as a function of all variables w, whereas ϕ
depends only on x. Hence

∂ψ(w) =

(
∂ϕ(x)
{0}

)
, (3.13)

where the corresponding subdifferentials are taken with respect to w and x, respec-
tively. Moreover, we define the pseudo-gradient as a mapping of the whole vector
w = (x, µ) by

Pθ(w) :=

(
P̂θ(x)
{0}

)
. (3.14)

Finally, let us define G : H×K → H×K by

G(w) :=


A∗1µ
...

A∗Nµ

b−
∑N

ν=1Aνxν

 , (3.15)

which is the same as in (3.4), only for the problem (GNEP). The particular
structure of G immediately yields again the following result.

Lemma 3.9. Under the given assumptions for the problem (GNEP), the mapping
G as defined in (3.15) satisfies

〈
G(w) − G(w̄) | w − w̄

〉
= 0 for all w, w̄ ∈ W;

in particular, G is a continuous, monotone, and therefore maximally monotone
operator.

The above notation enables a compact representation of the variational KKT con-
ditions.

Lemma 3.10. Under the given assumptions for the problem (GNEP), the vector
pair w∗ = (x∗, µ∗) ∈ H ×K is a variational KKT point of (GNEP) if and only if
w∗ ∈ W∗, where W∗ :=

{
w ∈ H ×K | 0 ∈ ∂ψ(w) + Pθ(w) +G(w) +NW(w)

}
.

56 3. Theory of Optimization and Variational Problems

Proof. The proof follows from the previous definitions, taking into ac-
count that, due to the Cartesian structure of W , we have NW(w) =
NX1(x1)× . . .×NXN (xN)×NK(µ) and NK(µ) = {0} since K is the entire space.
Since NW(w) = ∅ if and only if w 6∈ W , it follows that w ∈ W = X ×K.

Applying the definitions of the normal cone and the convex subdifferential to
the statement of Lemma 3.10, we obtain the following characterization of the
variational KKT points.

Lemma 3.11. Under the given assumptions for the problem (GNEP), the vector
pair w∗ = (x∗, µ∗) ∈ X × K is a variational KKT point of (GNEP) if and only if
there is a g∗ ∈ ∂ψ(w∗) such that

0 ≤
〈
g∗ + Pθ(w

∗) +G(w∗) | w − w∗
〉

for all w ∈ W.

Let us define the multifunctions

T1(w) := Pθ(w), (3.16a)
T2(w) := ∂ψ(w) +G(w) +NW(w) (3.16b)

and
TGNEP (w) := T1(w) + T2(w). (3.16c)

The domains of TGNEP and T2 are obviously given by the non-empty setW , while
the domain of T1 = Pθ is the whole spaceH×K. Then the setW∗ from Lemma 3.10
can be expressed as W∗ = {w ∈ H ×K | 0 ∈ T1(w) + T2(w)}, i.e.

0 ∈ TGNEP (w∗) ⇐⇒ w∗ = (x∗, µ∗) is a KKT point of (GNEP). (3.17)

This indicates that the set-valued mappings T1 and T2 play a central role in our
analysis of algorithms for the problem (GNEP). Their most important properties
are formulated in the following result.

Proposition 3.12. Let the standing assumptions for the problem (GNEP) hold
and suppose that the pseudo-gradient P̂θ : H → H defined in (3.9) is a monotone
mapping. Then the pseudo-gradient Pθ : H × K → H × K as a mapping of the
whole vector defined in (3.14) is monotone. Further the three set-valued functions
TGNEP , T1, and T2 defined in (3.16) are maximally monotone.

Proof. Given that P̂θ is monotone, it follows immediately from the definition that
Pθ is monotone.

Using the fact that Pθ is monotone, continuous, and single-valued, it is maxi-
mally monotone by Proposition 2.40. Since G is a continuous, monotone function

3.2. Linearly Constrained Generalized Nash Equilibrium Problems 57

in view of Lemma 3.9 and domG = H × K, it follows that B := G + NW is a
maximally monotone operator, see e.g. Proposition 2.42. Since the domain of the
operator A := ∂ψ is also equal to the entire space H×K (see Proposition 2.19) and
dom(B) 6= ∅, it follows again from Proposition 2.42 that T2 = ∂ψ+G+NW = A+B
is maximally monotone as well. Similarly, it follows that TGNEP is maximally
monotone from dom(Pθ) = H×K and domT2 6= ∅.

The monotonicity of Pθ or, equivalently, of the pseudo-gradient P̂θ, as required in
the assumptions of Proposition 3.12, is a standard condition used in the context
of GNEPs and typically represents a minimal assumption on the given GNEP in
order to prove the convergence of suitable methods to a solution of the GNEP.

3.2.2 Generalization to GNEPs with Conic Constraints

So far, we only considered GNEPs of the form (GNEP) with joint linear equal-
ity constraints (linear both because of convexity reasons and in order to have a
separable structure). We now want to extend the previous results to the more
general class of GNEPs defined by (GNEPconic) with some non-empty, closed, and
convex cone C. In particular, this scenario allows us to take into account linear
inequalities, a situation that actually occurs in our application in Chapter 7.

The main idea is to transform the GNEP from (GNEPconic) with conical con-
straints to a GNEP with linear equality constraints, and then extend our previous
results to this reformulated problem. To this end, note that the variational KKT
conditions of (GNEPconic) are given by

0 ∈ ∇xνθν(x
∗) + ∂ϕν(x

∗
ν) +B∗νλ

∗ +NXν (x
∗
ν), λ∗ ∈ NC

(N∑
i=1

Bix
∗
i − b

)
for all ν = 1, . . . , N , see [18, Ch. 3.1]. Since C is a convex cone, the latter condition
is equivalent to

N∑
i=1

Bix
∗
i − b ∈ C, λ∗ ∈ C◦,

〈
λ∗ |

N∑
i=1

Bix
∗
i − b

〉
= 0,

where C◦ := {λ ∈ K | 〈λ | s〉 ≤ 0 ∀s ∈ C} denotes the polar cone of C. Under
suitable regularity assumptions, these KKT conditions are necessary and sufficient
optimality conditions.

Next, we want to rewrite problem (GNEPconic) as an equality constrained
GNEP. There are different ways to do this, and in this section, we present two

58 3. Theory of Optimization and Variational Problems

such reformulations that are probably the most natural ones. The first reformula-
tion uses the optimization problems

min
xν∈Xν
sν∈C

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
i=1

Bixi − b−
N∑
i=1

si = 0 (3.18)

for all players ν = 1, . . . , N . The second reformulation uses a GNEP where the
first N − 1 players ν deal with the optimization problems

min
xν∈Xν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
i=1

Bixi − b− s = 0, (3.19a)

whereas the minimization problem of the final player ν = N is given by

min
xN∈XN
s∈C

θN(xN , x−N) + ϕN(xN) s.t.
N∑
i=1

Bixi − b− s = 0. (3.19b)

Hence, the first reformulation (3.18) rewrites the conic constraints as an equality
constraint by splitting the conic condition among all players, whereas the second
reformulation (3.19) uses a slack variable s only for the last player. Note that the
splitting used in the first approach is not unique in general. The precise relation
between the conical constrained GNEP and these two formulations is discussed in
the next two results.

Proposition 3.13. Under the given assumptions for the problem (GNEPconic),
the following statements are equivalent:

(a) x∗ = (x∗1, . . . , x
∗
N) is a generalized Nash equilibrium of (GNEPconic).

(b) (x∗, s∗) = (x∗1, . . . , x
∗
N , s

∗
1, . . . , s

∗
N) is a generalized Nash equilibrium of (3.18)

for some s∗ν ∈ C, ν = 1, . . . , N .
(c) (x∗, s∗) = (x∗1, . . . , x

∗
N , s

∗) is a generalized Nash equilibrium of (3.19) for
some s∗ ∈ C.

Proof. Note that the objective functions of all three GNEPs are identical and
independent of s or sν . Hence, the statement follows by noting that a feasible
point of one GNEP yields a feasible point of the other GNEPs and vice versa.

(a) =⇒ (c): Suppose that x∗ is a generalized Nash equilibrium of (GNEPconic).
Then set s∗ :=

∑
Bix

∗
i − b ∈ C. It follows that (x∗, s∗) is feasible for (3.19).

(c) =⇒ (b): Suppose that (x∗, s∗) is a Nash equilibrium of (3.19). Setting s∗ν = 0
for all ν = 1, . . . , N − 1 and s∗N = s∗ gives a feasible point of (3.18).

(b) =⇒ (a): Since C is a convex cone, it follows that
∑N

i=1 si = N
∑N

i=1(si/N) ∈ C,
which implies statement (a).

3.2. Linearly Constrained Generalized Nash Equilibrium Problems 59

The previous result states that the reformulated GNEPs have the same solu-
tions in the sense of a generalized Nash equilibrium as the original GNEP from
(GNEPconic). The following result shows that the corresponding sets of variational
KKT points are also the same, which is of particular interest for our methods
since they compute variational KKT points. To this end, recall the close rela-
tionship between variational KKT points and variational equilibria described in
Theorem 3.8.

Proposition 3.14. Under the given assumptions for the problem (GNEPconic),
the following statements are equivalent:

(a) (x∗, λ∗) is a variational KKT pair of (GNEPconic).

(b)
(
(x∗, s∗1, . . . , s

∗
N), λ∗

)
is a variational KKT pair of (3.18) for some

s∗ν ∈ C, ν = 1, . . . , N .

(c)
(
(x∗, s∗), λ∗

)
is a variational KKT pair of (3.19) for some s∗ ∈ C.

Proof. (a) =⇒ (c): Let (x∗, λ∗) be a variational KKT pair of (GNEPconic), and
define s∗ :=

∑N
i=1Bix

∗
i − b. Then

0 ∈ ∇xνθν(x
∗) + ∂ϕν(x

∗) +B∗νλ
∗ +NXν (x

∗
ν)

and

λ∗ ∈ NC
(N∑
i=1

Bix
∗
i − b

)
= NC(s

∗)

for all ν = 1, . . . , N . This can be rewritten as

0 ∈
(
P̂θ(x

∗) + ∂ϕ(x∗)
0

)
+

(
B∗

−I

)
λ∗ +NX×C(x

∗, s∗)

and

N∑
µ=1

Bµx
∗
µ − b− s∗ = 0,

which are exactly the variational KKT conditions of (3.19).

(c) =⇒ (b): Suppose that
(
(x∗, s∗), λ∗

)
is a variational KKT pair of (3.19), and

set s∗1 := . . . := s∗N := 1
N
s∗. Then it is easy to see that

(
(x∗, s∗1, . . . , s

∗
N), λ∗

)
is a

variational KKT pair of (3.18).

60 3. Theory of Optimization and Variational Problems

(b) =⇒ (a): Let
(
(x∗, s∗1, . . . , s

∗
N), λ∗

)
be a KKT pair of (3.18), i.e., it satisfies

0 ∈


P̂θ(x

∗) + ∂ϕ(x∗)
0
...
0

+


B∗

−I
...
−I

λ∗ +NX×C×···×C(x
∗, s∗1, . . . , s

∗
N) (3.20)

and
∑

iBix
∗
i − b −

∑
i s
∗
i = 0. Using (3.20) and NX×C×···×C(x, s1, . . . , sN) =

NX (x)×NC(s1)× · · · ×NC(sN), we therefore obtain λ∗ ∈ NC(s
∗
ν) for all

ν = 1, . . . , N . Hence λ∗ ∈
⋂N
ν=1NC(s

∗
ν) ⊂ NC(

∑N
ν=1 s

∗
ν) = NC(

∑N
ν=1Bνx

∗
ν − b). We

therefore have

0 ∈ P̂θ(x∗) + ∂ϕ(x∗) +B∗λ∗ +NX (x∗) and λ∗ ∈ NC
(N∑
i=1

Bix
∗
i − b

)
,

which are exactly the variational KKT conditions of (GNEPconic).

The previous results allow us to apply our ADMM-type algorithms that are intro-
duced in Chapter 5 and 6 to the more general case of GNEPs with conic constraints.
Formally, the corresponding objective functions, and therefore also the resulting
mapping P̂θ, need to be regarded as functions of (x, s). Note that the latter is
never strongly monotone, even if P̂θ(x) is strongly monotone as a function of x
alone. Fortunately, we only require a cocoercivity assumption in Chapter 5, and
the cocoercivity of P̂θ as a function of x immediately implies the same property of
the operator P̂θ as a function of (x, s). In Chapter 6, we require P̂θ to be strongly
monotone with respect to x−N ; therefore the formulation stated in (3.19) is still
applicable.

Remark 3.15. In the last section, we rewrote the problem (GNEPconic) as an
equality constrained problem of the form (GNEP). In the Chapters 5 and 6, we
develop methods for the problem (GNEP) where an upper estimate for the operator
norms ‖Aν‖ needs to be known. One should be aware that in the preceding section
we changed the operators Bν from problem (GNEPconic) to either an operator
Aν(xν , sν) = Bνxν − sν in the case where we introduced N slack variables, or
Aνxν = Bνxν for ν = 1, . . . , N − 1 and Aν(xν , s) = Bνxν − s in the case where we
introduced one slack variable. In order to estimate the norm of these Aν , we see

3.2. Linearly Constrained Generalized Nash Equilibrium Problems 61

that

‖Aν‖ = sup
(xν ,sν) 6=0

‖Bνuν − sν‖K
‖(xν , sν)‖Hν×K

≤ sup
(xν ,sν) 6=0

‖Bνxν‖K + ‖sν‖K
‖(xν , sν)‖Hν×K

= sup
(xν ,sν) 6=0

(
‖Bνxν‖K

‖(xν , sν)‖Hν×K
+

‖sν‖K
‖(xν , sν)‖Hν×K

)
≤ sup

(xν ,sν) 6=0

(
‖Bνxν‖K

‖(xν , sν)‖Hν×K

)
+ sup

(xν ,sν)6=0

(
‖sν‖K

‖(xν , sν)‖Hν×K

)
= sup

xν 6=0

(
‖Bνxν‖K
‖xν‖Hν

)
+ sup

sν 6=0

(
‖sν‖K
‖sν‖K

)
= ‖Bν‖+ 1

in the first case, or ‖Aν‖ = ‖Bν‖ for ν = 1, . . . , N − 1 and ‖AN‖ ≤ ‖BN‖ + 1 in
the second case. �

62 3. Theory of Optimization and Variational Problems

Chapter 4

Regularized Jacobi-type
ADMM-Methods for a Class of
Separable Convex Optimization
Problems

In this chapter, we introduce and analyze ADMM-type, parallel splitting algo-
rithms for the optimization problem (Opt), which was introduced in Section 1.1
and further discussed in Section 3.1. This chapter is based on the results from [21].
We start with recalling the problem and its assumptions. The problem is given by

min
N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b, xi ∈ Xi (i = 1, . . . , N). (Opt)

As already mentioned in Chapter 3, here and in the whole thesis, Hi and K denote
Hilbert spaces, fi : Hi → R are lower semi-continuous, convex functions, Xi ⊂ Hi

are non-empty, closed, convex sets, Ai ∈ L(Hi,K), and b ∈ K. We assume that the
optimization problem (Opt) has a non-empty feasible set. Note that all functions
fi are supposed to be convex, but none of them has to be strictly or uniformly
convex. Furthermore, no differentiability of fi is required. Since we have explicit
constraints Xi for each mapping fi, there is essentially no loss of generality in
assuming that fi is real-valued for every i = 1, . . . , N . The assumption that the fi
are real-valued can be circumvented by using a technical condition. Moreover, we
do not assume the operators Ai to be injective or surjective, which is a condition
that is often used in finite dimensions where the matrices Ai are assumed to have
full rank.

For the sake of notational simplicity, we use again the canonical abbreviations
from (3.1).

63

64 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

This chapter is organized as follows: Our regularized Jacobi-type
ADMM-method is presented in Section 4.1 together with a more detailed dis-
cussion regarding some of the related algorithms. The corresponding global
convergence analysis is given in Section 4.2. The main idea is to show that, after
a linear transformation, the iterates are equal to the elements of a sequence gener-
ated by a proximal-point method in a suitable Hilbert space. This transformation
is possible for the Jacobi-type iteration and is not directly applicable to the
corresponding Gauss-Seidel-version of our approach. Motivated by the proximal-
point interpretation of our algorithm, which only yields weak convergence of the
iterates unless additional assumptions hold, we present a strongly convergent
Halpern-type modification of the Jacobi-type ADMM-method in Section 4.3.

4.1 Regularized Jacobi-type ADMM-Method
The method we consider in this chapter is the following regularized Jacobi-type
method for solving the optimization problem (Opt).

Algorithm 4.1. (Regularized Jacobi-type ADMM-Method)

(S.0) Choose a starting point (x0, µ0) ∈ X × K, parameters β, γ > 0, and set
k := 0.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For i = 1, . . . , N , compute

xk+1
i := arg min

xi∈Xi

{
fi(xi)+〈µk | Aixi〉+

β

2

(
‖Aixi+

∑
l 6=i

Alx
k
l−b‖2+γ‖xi−xki ‖2

)}
.

(4.1)

(S.3) Define

µk+1 := µk + β

(N∑
l=1

Alx
k+1
l − b

)
. (4.2)

(S.4) Set k ← k + 1, and go to (S.1).

Throughout our convergence analysis, we implicitly assume that Algorithm 4.1
generates an infinite number of iterates. We further note that all subproblems
(4.1) are strongly convex for all i = 1, . . . , N and all iterations k ∈ N. Hence
xk+1 :=

(
xk+1

1 , . . . , xk+1
N

)
is uniquely defined. Note that this is due to the quadratic

regularization term, which does not occur in standard ADMM-methods for two
or more components. These standard ADMM-methods are also Gaussian-type
methods since they use the newer information xk+1

1 , . . . , xk+1
i−1 in the computation

4.1. Regularized Jacobi-type ADMM-Method 65

of xk+1
i in (4.1). For reasons that become clear during our convergence analysis,

we use the above Jacobi-type ADMM-method with its known advantages and
disadvantages.

The main computational overhead in Algorithm 4.1 emerges from solving the
optimization subproblems in (S.2). However, in contrast to the augmented La-
grangian method discussed in Section 1.1, these subproblems are small-dimen-
sional. Moreover, there are several applications where these subproblems can be
solved analytically, in which case each iteration of the algorithm is extremely cheap.

In order to compare our method with some existing ones and to present some
suitable modifications, let us denote the outcome of (S.2) also by x̂ki , i.e.

x̂ki := arg min
xi∈Xi

{
fi(xi)+〈µk | Aixi〉+

β

2

(
‖Aixi+

∑
l 6=i

Alx
k
l−b‖2+γ‖xi−xki ‖2

)}
. (4.3)

Furthermore, if there is no partial regularization, we denote the corresponding
result by

x̃ki := arg min
xi∈Xi

{
fi(xi) + 〈µk | Aixi〉+

β

2

(
‖Aixi +

∑
l 6=i

Alx
k
l − b‖2

)}
. (4.4)

This allows us to make the following comments, where we mainly concentrate on
some modified updates of the iterates xk, but it should be clear that corresponding
updates are then also needed for the multiplier µk.

Remark 4.2. In the following, we discuss some related algorithms from the
existing literature; recall that the convergence proofs of all these methods are
limited to the finite-dimensional case.

(a) The modified Jacobi-type ADMM-method suggested in [63] uses the iteration
xk+1 := xk + αk(x̃

k − xk) for some step size αk > 0. This step size is typically
very small and can be computed by a formula in every iteration or is constant and
explicitly given. We further note that the paper [63] requires all sub-matrices Ai
to be of full column rank.

(b) Motivated by the previous comment, it might also be useful to rewrite Algo-
rithm 4.1 as xk+1 := xk + αk(x̂

k − xk) for some step size 0 < cl ≤ αk ≤ cu < 2,
where cl and cu denote some positive constants. Obviously, Algorithm 4.1 corre-
sponds to the case αk = 1, i.e. we can allow much larger step sizes than [63]. This
does not automatically guarantee faster convergence, especially since we have the
additional regularization term in our method, but indicates that there is some
hope for a superior numerical behavior. We get back to this step size later.

66 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

(c) Recall that Algorithm 4.1 was already analyzed in [34] for the finite-dimensional
case, whereas we deal with the Hilbert space setting and state some further results
(e.g., strong convergence). Our results, based on a very simple technique of proof,
therefore generalize those from [34]. Furthermore, as noted in (b), our approach
also allows under- and overrelaxation of the iterates (xk, µk), whereas the technique
in [34] allows to introduce a step size τ ∈ (0, 2) only for the dual variable µk. The
corresponding µk-update is

µk+1 = µk + τβ
(N∑
i=1

Aix
k+1
i − b

)
.

A simplified condition on the proximal constant γi for the i-th subproblem given
in [34, Lem. 2.2] is

γiI �
(N

2− τ
− 1
)
ATi Ai,

where A � B means that A − B is positive definite. In our approach, it is
also possible to choose the proximal constant separately for every subproblem
or even choose a different equivalent norm for the regularization as in [34], but
the added value would be minimal compared to the notational inconvenience.
Moreover, taking into account that, in the finite-dimensional case, the matrix
N · diag(AT1A1, . . . , A

T
NAN) − ATA is easily seen to be positive semi-definite, it

follows that (N − 1) · diag(AT1A1, . . . , A
T
NAN) � ATA − diag(AT1A1, . . . , A

T
NAN),

where B � C means that B − C is positive semi-definite. Consequently, for
sufficiently large γ we have

0 � γI − (N − 1) · diag(AT1A1, . . . , A
T
NAN)

� γI − (ATA− diag(AT1A1, . . . , A
T
NAN)),

hence the condition from [34, Lem. 2.2] implies our condition on γ that we in-
troduce later in Section 4.2. Taking A as the identity matrix, we see that our
criterion regarding the choice of γ can be indeed significantly weaker.

(d) Another modification of the Jacobi-type iteration is due to [43, 60, 108] and
replaces the update from (4.4) by

x̃ki := arg min
xi∈Xi

{
fi(xi) + 〈µk | Aixi〉

+
β

2

(
‖Aixi +

∑
l 6=i

Alx
k
l − b‖2 + (N − 1)‖Ai(xi − xki)‖2

)}

4.2. Convergence Analysis 67

which can also be re-interpreted as a partial regularization method involving the
matrix Ai in the regularization term, cf. [60, Alg. 8.1], or as an application of the
two function ADMM on a modified problem, see [43, 108]. Theorem 4.1 from [66]
shows that these two different approaches yield the same algorithm. Consequently,
this modification also requires a full rank assumption on each Ai in order to be
well-defined and to get convergence of the iterates xk.

(e) An algorithm introduced in [107] that is also basically parallel uses the scheme

x̂k1 := arg min
x1∈X1

{
f1(x1) + 〈µk | A1x1〉+

β

2

(
‖A1x1 +

∑
l 6=1

Alx
k
l − b‖2

)}
,

µ̂k := µk + β(A1x̂
k
1 +

N∑
l=2

Alx
k
l),

x̂ki := arg min
xi∈Xi

{
fi(xi) + 〈µk | Aixi〉

+
β

2

(
‖Aixi + A1x̂

k
1 +

N∑
l=2
l 6=i

Alx
k
l ‖2 + ‖xi − xki ‖2

Mi

)}

for all i = 2, . . . , N , where theMi are some positive definite matrices that satisfy a
certain condition. The analysis carried out in [107], however, is completely different
from ours and requires, similar to [34], a choice of certain parameters related to
the matrices Mi. �

4.2 Convergence Analysis
The main idea of our convergence analysis is to interpret Algorithm 4.1, after a
simple linear transformation, as a proximal-point method applied to a suitable
inclusion problem in an appropriate Hilbert space.

To this end, let us introduce the linear operator M ∈ L(H) := L(H,H) that
we define by

Mx :=
(N∑
l=1
l 6=i

A∗iAlxl

)N
i=1

=



∑N
l=2A

∗
1Alxl

...∑N
l=1
l 6=i

A∗iAlxl

...∑N−1
l=1 A∗NAlxl


. (4.5)

68 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

In finite dimensions, the representation matrix of M is given by

M := ATA− diag(AT1A1, . . . , A
T
NAN).

Further define Q ∈ L(H×K) by

Q

(
x
µ

)
:=

(
β2(γx−Mx)

µ

)
, (4.6)

where β and γ denote the constants from Algorithm 4.1. In finite dimensions, the
matrix representation of Q is

Q :=

(
β2(γI −M) 0

0 I

)
.

The following simple remark regarding some useful properties of Q plays a crucial
role in our subsequent convergence analysis.

Remark 4.3. Since M from (4.5) is self-adjoint, it follows that Q from (4.6) is
also self-adjoint. Moreover, for all γ > 0 sufficiently large (say γ > ‖M‖), Q
is also strongly monotone. This implies that, in this case, Q is both injective
and surjective. Hence the inverse of Q ∈ L(H × K) exists and is also a linear,
continuous, and self-adjoint operator. �
We first estimate the norm of the operator M since this is required later.

Lemma 4.4. It holds that ‖M‖ ≤ (N − 1) maxν=1,...,N{‖Aν‖2}.
Proof. The definition of M yields

|〈Mx | x〉H| =

∣∣∣∣ N∑
ν=1

〈 N∑
µ=1
µ6=ν

A∗νAµxµ | xν
〉
Hν

∣∣∣∣ ≤ N∑
ν=1

N∑
µ=1
µ 6=ν

|〈A∗νAµxµ | xν〉Hν |

=
N∑
ν=1

N∑
µ=1
µ6=ν

|〈Aµxµ | Aνxν〉K|
Y oung

≤
N∑
ν=1

N∑
µ=1
µ6=ν

1

2

(
‖Aνxν‖2

K + ‖Aµxµ‖2
K
)

=
N∑
ν=1

N − 1

2
‖Aνxν‖2

K +
N∑
ν=1

N∑
µ=1
µ6=ν

1

2
‖Aµxµ‖2

K

=
N∑
ν=1

N − 1

2
‖Aνxν‖2

K +
N∑
ν=1

N − 1

2
‖Aνxν‖2

K

≤ (N − 1)
N∑
ν=1

‖Aν‖2‖xν‖2
Hν ≤ (N − 1) max

ν=1,...,N
{‖Aν‖2}

N∑
ν=1

‖xν‖2
Hν

= (N − 1) max
ν=1,...,N

{‖Aν‖2}‖x‖2
H,

4.2. Convergence Analysis 69

where the subscripts for the underlying operator norms are omitted for the sake
of notational convenience. By (2.2) we have ‖M‖ = supx 6=0

|〈Mx|x〉|
‖x‖2 . We therefore

obtain the desired estimate.

Our next result contains a suitable reformulation for the optimality conditions of
the subproblems stated in (4.1) and (4.2).

Lemma 4.5. Under the given assumptions for the problem (Opt), the vector
wk+1 =

(
xk+1, µk+1

)
computed in (4.1) and (4.2) is equivalently characterized by

the inclusion

0 ∈ β∂f(wk+1) + βG(wk+1) +Q(wk+1 − wk) +NW(wk+1), (4.7)

where G is defined as in (3.4) and Q is defined as in (4.6).

Proof. Using the optimality conditions for the programs (4.1), it follows that xk+1
i

solves these programs if and only if xi = xk+1
i satisfies the optimality condition

0 ∈ ∂xi
(
fi(xi) + 〈µk | Aixi〉+

β

2

(
‖Aixi +

∑
l 6=i

Alx
k
l − b‖2 + γ‖xi − xki ‖2

))
+NXi(xi)

for all i = 1, . . . , N . This is equivalent to saying that there exist elements
gi ∈ ∂fi(xk+1

i) such that

−
(
gi + A∗iµ

k + βA∗i (Aix
k+1
i +

∑
l 6=i

Alx
k
l − b) + βγ(xk+1

i − xki)
)
∈ NXi(xk+1

i)

for all i = 1, . . . , N . By definition of the normal cone, this can be rewritten as〈
gi + A∗iµ

k + βA∗i
(
Aix

k+1
i +

∑
l 6=i

Alx
k
l − b

)
+ βγ(xk+1

i − xki) | xi − xk+1
i

〉
≥ 0

(4.8)

for all xi ∈ Xi and all i = 1, . . . , N . Using µk+1 = µk + β
(∑N

l=1Alx
k+1
l − b

)
, the

last inequality is equivalent to〈
gi + A∗iµ

k+1 + βA∗i
(∑
l 6=i

Al(x
k
l − xk+1

l)
)

+ βγ(xk+1
i − xki) | xi − xk+1

i

〉
≥ 0

for all xi ∈ Xi and all i = 1, . . . , N . Exploiting the definition of M in (4.5), the
Cartesian product structure of the set X , and setting g̃ = (g1, . . . , gN), this can be
rewritten more compactly as〈

g̃ + A∗µk+1 + βM(xk − xk+1) + βγ(xk+1 − xk) | x− xk+1
〉
≥ 0

70 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

for all x ∈ X . Since〈 1

β
(µk+1 − µk) +

(
b−

N∑
i=1

Aix
k+1
i

)
| µ− µk+1

〉
= 0 ∀µ ∈ K

in view of (4.2), the previous two formulas can be rewritten as〈
g +G(wk+1) +

(
β(γI −M) 0

0 1
β
I

)
(wk+1 − wk) | w − wk+1

〉
≥ 0 ∀w ∈ W ,

where g :=
(
g1, . . . , gN , 0

)
. Multiplication with β and taking into account the

definition of Q from (4.6) yields〈
βg + βG(wk+1) +Q(wk+1 − wk) | w − wk+1

〉
≥ 0 ∀w ∈ W .

Using the definition of the normal cone NW , we can express this as

0 ∈ βg + βG(wk+1) +Q(wk+1 − wk) +NW(wk+1).

Since g ∈ ∂f(wk+1), we see that this is equivalent to

0 ∈ β∂f(wk+1) + βG(wk+1) +Q(wk+1 − wk) +NW(wk+1).

This completes the proof.

In the following, we use the previous characterization of stationary points to get
an equivalent procedure for the computation of the iterates wk+1 :=

(
xk+1, µk+1

)
from Algorithm 4.1. To this end, we assume throughout this chapter that Q is
strongly monotone, which is always possible for sufficiently large (and computable)
γ, cf. Remark 4.3.

We obtain the following alternative procedure for the computation of wk+1 from
Algorithm 4.1.

Proposition 4.6. Let the standing assumptions for the problem (Opt) hold
and let TOpt be as defined in (3.5). Assume that Q, defined in (4.6), is self-
adjoint and strongly monotone. Given an iterate wk =

(
xk, µk

)
, the next iterate

wk+1 :=
(
xk+1, µk+1

)
generated by Algorithm 4.1 can equivalently be represented

by the (single-valued) formula

wk+1 :=
(
I + βQ−1TOpt

)−1
wk, (4.9)

where Q−1TOpt and
(
I + βQ−1TOpt

)−1 are maximally monotone and(
I + βQ−1TOpt

)−1 is firmly non-expansive in the Hilbert space H × K endowed
with the scalar product 〈x | y〉Q := 〈Qx | y〉.

4.2. Convergence Analysis 71

Proof. First recall that the iterate wk+1 computed by Algorithm 4.1 is uniquely
defined. Furthermore, due to convexity, they are fully characterized by the op-
timality conditions (4.7) from Lemma 4.5. In order to rewrite these optimality
conditions, recall that NW(wk+1) is a cone, so we have βNW(wk+1) = NW(wk+1).
The definition of the operator TOpt from (3.5) therefore allows us to rewrite the
inclusion from (4.7) as

0 ∈ βTOpt(wk+1) +Q(wk+1 − wk) =
(
Q+ βTOpt

)
(wk+1)−Qwk

⇐⇒ Qwk ∈
(
Q+ βTOpt

)
(wk+1)

⇐⇒ wk ∈
(
I + βQ−1TOpt

)
(wk+1)

⇐⇒ wk+1 ∈
(
I + βQ−1TOpt

)−1
wk.

We claim that the last inclusion is actually an equation, from which we then obtain
the assertion. To this end, recall that TOpt is a maximally monotone operator in
view of Proposition 3.4. That

(
I + βQ−1TOpt

)−1
wk is single-valued as well as the

rest of the claim now follows straight from Proposition 2.48.

Note that Proposition 4.6 uses two different scalar products (and therefore two
different induced norms) for our Hilbert space H × K. In order to be able to
apply the known convergence results of the proximal-point method, it is highly
important in our setting that both strong and weak convergence are identical
concepts in both settings. Formally, this is stated in Lemma 2.9. This result
allows us to re-interpret Algorithm 4.1 as a generalized proximal-point method,
thus it inherits its convergence properties from the known convergence properties
of proximal-point methods.

Theorem 4.7. Let the standing assumptions for the problem (Opt) hold. Suppose
that Q, as defined in (4.6), is self-adjoint, strongly monotone, and that there is
at least one KKT point of the optimization problem (Opt). Then the following
statements hold:

(a) The sequence {wk}k∈N = {(xk, µk)}k∈N generated by Algorithm 4.1 converges
weakly to a KKT point w∞ = (x∞, µ∞) of (Opt), i.e. 0 ∈ TOpt(w∞), where
x∞ is a solution of the optimization problem (Opt).

(b) It holds that ‖wk − wk+1‖2 = O(1/k), in particular, ‖wk − wk+1‖ → 0 for
k →∞.

(c) We have dist2(TOpt(w
k), 0) = o(1/k) for k → ∞ (rate of convergence to

KKT-optimality).

(d) It holds that Axk − b→ 0 for k →∞ and Ax∞ = b (primal feasibility).

(e) It holds that f(xk)→ f ∗ for k →∞, where f ∗ is the optimal function value
of (Opt).

72 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

(f) We have fi(xki)→ fi(x
∞
i) for k →∞, where x∞i denotes the weak limit point

of xki , for all i = 1, . . . , N .

(g) If fi is strongly convex, then xki converges strongly to x∞i for k →∞.

Proof. (a) - (c) In Proposition 4.6 it was shown that the iterates generated by
Algorithm 4.1 can be represented as wk+1 =

(
I+βQ−1TOpt

)−1
wk. By the maximal

monotonicity of TOpt, cf. Proposition 3.4, Theorem 2.50 shows that the iterates
wk+1 = (xk+1, µk+1) converge weakly to a zero w∞ = (x∞, µ∞) of TOpt. Further,
Theorem 2.50 also shows the convergence rate results (b) and (c). By Lemma 3.3,
such zeros of TOpt are KKT points of (Opt). Since w∞ = (x∞, µ∞) is a KKT-pair,
it is well known, or can be seen as in Theorem 3.8, that x∞ is a solution of (Opt).

(d) By definition of µk+1, we have Axk+1 − b = (µk+1 − µk)/β. The first part of
the assertion therefore follows from part (b). The second part follows from the
fact that w∞ = (x∞, µ∞) is a KKT point, see (a).

(e), (f) Statement (e) is a standard result; however, for the sake of completeness
and since it is used to verify assertion (f), we include its proof here.

In view of (a), we may assume that wk ⇀ w∞ for some weak limit point
w∞ = (x∞, µ∞). Furthermore, using (b) and (c), we obtain

‖Aixk+1
i +

∑
l 6=i

Alx
k
l − b‖ ≤ ‖Ai(xk+1

i − xki)‖+ ‖
N∑
l=1

Alx
k
l − b‖

≤ ‖Ai‖‖xk+1
i − xki ‖+ ‖

N∑
l=1

Alx
k
l − b‖ → 0.

Since X is closed and convex, it is weakly sequentially closed, hence x∞ ∈ X .
From x∞, xk+1 ∈ X , (4.8), and the definition of the subdifferential, we obtain

fi(x
∞
i)− fi(xk+1

i) ≥〈
A∗iµ

k + βA∗i
(
Aix

k+1
i +

∑
l 6=i

Alx
k
l − b

)
+ βγ(xk+1

i − xki) | xk+1
i − x∞i

〉
.

Summation for i = 1, . . . , N yields, taking into account that xk+1 − xk → 0,
Aix

k+1
i +

∑
l 6=iAlx

k
l − b→ 0, and the boundedness of x∞ − xk+1,

f(x∞) ≥ f(xk+1) + 〈A∗µk | xk+1 − x∞〉+ εk

= f(xk+1) + 〈µk | Axk+1 − Ax∞〉+ εk

= f(xk+1) + 〈µk | Axk+1 − b〉+ εk

= f(xk+1) + ε̃k,

4.2. Convergence Analysis 73

where εk, ε̃k are certain sequences converging to zero. Since f is lsc, it is also
weakly sequentially lsc, cf. Proposition 2.15, i.e. lim infk→∞ f(xk) ≥ f(x∞), and
we therefore obtain

lim sup
k→∞

f(xk+1) ≤ f(x∞) ≤ lim inf
k→∞

f(xk+1).

Consequently, we have f(xk)→ f(x∞) = f ∗. The last equation holds because x∞
is a minimizer of (Opt). This verifies statement (e). We next exploit that part to
show assertion (f). To this end, first note that (e) together with the lsc property
of all fi implies

f(x∞) =
N∑
l=1

fl(x
∞
l) =

∑
l 6=i

fl(x
∞
l) + fi(x

∞
i)

≤
∑
l 6=i

fl(x
∞
l) + lim inf

k→∞
fi(x

k
i) ≤

N∑
l=1

lim inf
k→∞

fl(x
k
l)

≤ lim inf
k→∞

(N∑
l=1

fl(x
k
l)
)

= lim inf
k→∞

f(xk) = lim
k→∞

f(xk) = f(x∞),

so that equality holds everywhere. In particular, it follows that lim infk→∞ fi(x
k
i) =

fi(x
∞
i). Together with (e), this further implies

lim sup
k→∞

fi(x
k) ≤ lim sup

k→∞

(N∑
l=1

fl(x
k
l)
)

+ lim sup
k→∞

(
−
∑
l 6=i

fl(x
k
l)
)

≤ f(x∞)−
∑
l 6=i

lim inf
k→∞

(
fl(x

k
l)
)

= fi(x
∞
i) = lim inf

k→∞
fi(x

k
i).

This yields fi(xki)→ fi(x
∞
i).

(g) By assertion (c) we have that dist(TOpt(w
k), 0)→ 0. Suppose that fi is strongly

convex. Then there exists a constant νi > 0 such that

fi(yi)− fi(xi) ≥ 〈gi(xi) | yi − xi〉+ νi‖xi − yi‖2,

fi(xi)− fi(yi) ≥ 〈gi(yi) | xi − yi〉+ νi‖xi − yi‖2

for all gi(xi) ∈ ∂fi(xi) and all gi(yi) ∈ ∂fi(yi). Adding these inequalities yields

〈gi(xi)− gi(yi) | xi − yi〉 ≥ 2νi‖xi − yi‖2. (4.10)

Now let us take an element vk ∈ TOpt(w
k) = TOpt(x

k, µk) such that ‖vk − 0‖ ≤
dist(0, TOpt(w

k)) + 1/k for all k ∈ N, which is always possible by definition of

74 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

the distance function. Recalling the definition of the operator TOpt and using the
separability of the function f , we see that this vk has a representation of the form

vk =:



g1(xk1)
...

gi(x
k
i)

...
gN(xkN)

0


+



A∗1µ
k

...
A∗iµ

k

...
A∗Nµ

k

b− Axk


+



s1(xk1)
...

si(x
k
i)

...
sN(xkN)

0


for certain elements si(xki) ∈ NXi(xki) and gi(xki) ∈ ∂fi(xki). In view of assertion (a),
we also have 0 ∈ TOpt(w∞) = TOpt(x

∞, µ∞). Then we obtain from the monotonicity
of the normal cone operators together with (4.10) that〈

vk − 0 |
(
xk − x∞
µk − µ∞

)〉

=
N∑
l=1

〈gl(xkl)− gl(x∞l) | xkl − x∞l 〉+
N∑
l=1

〈A∗l µk − A∗l µ∞ | xkl − x∞l 〉

+
N∑
l=1

〈sl(xkl)− sl(x∞l) | xkl − x∞l 〉+ 〈(b− Axk)− (b− Ax∞) | µk − µ∞〉

≥ 〈gi(xki)− gi(x∞i) | xki − x∞i 〉+ 〈Ax∞ − Axk | µk − µ∞〉
− 〈x∞ − xk | A∗µk − A∗µ∞〉

≥ 2νi‖xki − x∞i ‖2.

Since {vk} converges strongly to zero in view of (d), and {wk} is weakly convergent,
the previous chain of inequalities shows that xki → x∞i (strongly).

Remark 4.8. (a) As already seen in Proposition 4.6, the operator (I +βQ−1T)−1

is firmly non-expansive in a suitable Hilbert space. By the Krasnoselsky-Mann
iteration for firmly non-expansive operators, see Section 2.3.3, we see that many
statements of Theorem 4.7 remain true if we consider the more general iterative
procedure

xk+1 := (1− ρk)xk + ρkx̂k,

µk+1 := (1− ρk)µk + ρkµ̂k,

where x̂k and µ̂k denote the outcome of one iteration of Algorithm 4.1 and
ρk ∈ [0, 2] satisfies

∑∞
k=1 ρ

k(2 − ρk) = ∞. The choice ρk = 1 corresponds to our
algorithm, whereas ρk < 1 and ρk > 1 are often called under- and overrelaxation,

4.2. Convergence Analysis 75

respectively. In view of our limited numerical experience, however, we do not
obtain any benefit by taking ρk 6= 1.

(b) There exist several inexact versions of the proximal-point method in the
literature, see for example [41,48,72,94]. The previous analysis clearly shows that
it is also possible to exploit these inexact proximal-point methods in order to
obtain inexact counterparts of Algorithm 4.1. The corresponding details are left
to the reader.

(c) It requires just a minor change in the above proofs to use a regularization with a
strongly monotone linear operator Ri, i.e. a regularization of the form ‖xi−xki ‖2

Ri
,

as in [28,60,107], instead of the regularization γ‖xi−xki ‖2 in (4.3). However, these
are technical details that do not provide any additional mathematical insight. �
It is not difficult to see that the convergence theory in this section remains valid
as long as the bounded operator Q is self-adjoint and strongly monotone. More
specifically, if Q as defined in (4.6) is derived from another splitting-type scheme,
we obtain the same interpretation as a proximal-point method, and therefore the
method inherits its convergence properties. Unfortunately, Q being self-adjoint
plays a central role here, as shown below in Example 4.9. This means that our
convergence theory cannot be applied to the case where Algorithm 4.1 is replaced
by a corresponding regularized Gauss-Seidel-type ADMM-method because the re-
sulting counterpart of the matrix M (hence also Q) as given in (4.5) is, in general,
not self-adjoint. But Q not being self-adjoint ruins all desired convergence proper-
ties. This is illustrated by the following example in the finite-dimensional setting.

Example 4.9. In order to show that the proximal-point algorithm can only be
applied if the operator Q is self-adjoint, let us define

T :=

0 −1 −1
1 0 −1
1 1 0

 and Q :=

1 1 1
0 1 1
0 0 1

 .

First we notice that T is maximally monotone, cf. Proposition 2.40. Furthermore,
an easy calculation shows that

dTQd =
1

2
(d1 + d2)2 +

1

2
(d2 + d3)2 +

1

2
(d1 + d3)2 > 0

for all d 6= 0; hence Q is positive definite and therefore yields a strongly monotone
operator. However, the matrix Q is not symmetric, so we do not have a self-adjoint
operator here. The proximal-point method is given by

xk+1 =

0 −1 −1
1 0 −1
1 1 0

+

1 1 1
0 1 1
0 0 1

−11 1 1
0 1 1
0 0 1

xk =

 1 1 1
−1 0 0
0 −1 0

xk.

76 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

Further we see that  1 1 1
−1 0 0
0 −1 0

4

=

1 0 0
0 1 0
0 0 1

 ;

hence x4k = x0 for every x0 ∈ R3 and all k ∈ N. Thus, the method does not
converge. �

Convergence in the Inconsistent Case

In the above convergence theory we assumed the existence of a KKT pair and there-
fore in particular of a solution. Now we want to investigate if it is possible to tell
from the behavior of the iterates generated by Algorithm 4.1 whether or not there
exists a solution of the optimization problem (Opt). Further we want to investigate
the behavior in the case where a solution to the problem exists, but it does not
satisfy the KKT conditions. This is often the case in the infinite-dimensional set-
ting, because the desired Lagrange multiplier lies in a weaker space Y ∗ ⊃ K than
the augmentation space K. First, we want to see from the convergence behavior
of Algorithm 4.1, if there is no solution. Thereafter, using additional assumptions,
we deduce convergence results in the case there is a solution which is not a KKT
point.

Even though it is well known that a part of the iterates generated by the
classical ADMM-method or the Douglas-Rachford splitting diverges in the absence
of a solution, see [42], the literature containing a more differentiated analysis of
the behavior of ADMM-type methods in the absence of KKT pairs and solutions
is quite limited and often assumes a quadratic objective function, see [5, 98] and
references therein. To the best of our knowledge, the approach that we present in
this section, using asymptotic KKT sequences from Theorem 3.5, is new. Further,
it seems that convergence properties in the embedding context for ADMM-type
methods were not analyzed before.

In Theorem 3.5 we have shown that if the problem (Opt) admits a minimizer
in H, then there is a sequence in H×K approximating the KKT conditions.

Recall that (x∗, µ∗) ∈ H ×K being a KKT pair is equivalent to (x∗, µ∗) being
a fixed point of the operator (I + βQ−1TOpt)

−1. The next theorem shows that
the operator (I + βQ−1TOpt)

−1 almost admits a fixed point, provided that there
is a solution of the problem (Opt). Notice that we only need a solution but not
necessarily a KKT point.

Theorem 4.10. Let the standing assumptions for the problem (Opt) hold, let TOpt
be defined as in (3.5), and Q ∈ L(H×K) be defined as in (4.6). Suppose that Q is

4.2. Convergence Analysis 77

self-adjoint and strongly monotone. If the problem (Opt) admits a solution, then

inf
w∈X×K

∥∥w − (I + βQ−1TOpt)
−1w

∥∥ = 0.

Proof. Setting wk := (xk, λk) and using Theorem 3.5, we find εk ∈ TOpt(wk) with
εk → 0; thus

εk ∈ TOpt(wk)⇐⇒ wk + βQ−1εk ∈ (I + βQ−1TOpt)w
k

⇐⇒ wk ∈ (I + βQ−1TOpt)
−1(wk + βQ−1εk).

Since the resolvent (I+βQ−1TOpt)
−1 of the maximally monotone operator Q−1TOpt

is uniquely defined, we even have

wk = (I + βQ−1TOpt)
−1(wk + βQ−1εk).

Thus we obtain

‖wk − (I + βQ−1TOpt)
−1wk‖Q

= ‖(I + βQ−1TOpt)
−1(wk + βQ−1εk)− (I + βQ−1TOpt)

−1wk‖Q
≤ ‖(wk + βQ−1εk)− wk‖Q
= ‖βQ−1εk‖Q.

In the inequality, we used the firm non-expansiveness of (I + βQ−1TOpt)
−1, see

Proposition 4.6. Since the standard norm and the norm induced by Q are equiva-
lent (see Lemma 2.9), we obtain from εk → 0 that ‖xk−(I+βQ−1TOpt)

−1xk‖ → 0.
This shows the claim.

Theorem 3.5 shows that if we have a solution, we have a sequence (xk, µk) approx-
imating the KKT conditions. From this we have deduced in Theorem 4.10 that
the operator (I + βQ−1TOpt)

−1 almost admits a fixed point. Now Theorem 2.34
shows that we can expect certain properties of the classical fixed-point iteration.
This together yields the next result about Algorithm 4.1.

Theorem 4.11. Let the standing assumptions for the problem (Opt) hold, and let
the sequence (xk, µk) ∈ H × K be generated by Algorithm 4.1, with γ > 0 chosen
such that Q, defined in (4.6), is strongly monotone and self-adjoint. Then the
following statements hold:

(a) If there is a c > 0 and a subsequence I ⊂ N such that ‖xk+1 − xk‖2
H +

‖µk+1 − µk‖2
K ≥ c for all k ∈ I, then there is no solution of (Opt).

(b) If there is a solution of (Opt), then xk+1−xk → 0 in H and 1
β
(µk+1−µk) =

Axk+1 − b → 0 in K. Further, every weak accumulation point of xk+1 is
feasible.

78 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

Proof. (a) Set F := (I+βQ−1TOpt)
−1 in Theorem 2.34, now Proposition 4.6 shows

that

‖xk+1 − xk‖2
X + ‖µk+1 − µk‖2

K = ‖(xk+1, µk+1)− (xk, µk)‖2
H×K

= ‖wk+1 − wk‖2
H×K

= ‖F (wk)− wk‖2
H×K

→ inf
w∈X×K

‖(I − F)w‖2
H×K. (4.11)

If ‖xk+1 − xk‖2 + ‖µk+1 − µk‖2 ≥ c > 0 on a subsequence, it follows from
the above convergence that infw∈X×K ‖(I − F)w‖2

H×K > 0. Theorem 4.10 shows
that if infw∈X×K ‖(I−F)w‖2 > 0, there is no solution. This implies the first claim.

(b) Further, Theorem 4.10 shows that if there is a solution, then
infw∈X×K ‖(I − F)w‖2 = 0. By (4.11) we see that xk+1 − xk → 0 in H and
µk+1 − µk → 0 in K. Since 1

β
(µk+1 − µk) = Axk+1 − b, we see Axk+1 − b → 0 in

K. Suppose now that xk ⇀I x̄ on a subsequence I ⊂ N. First notice that x̄ ∈ X
because X is closed and convex, thus weakly sequentially closed. By the linearity
of A, we get Axk − b→ Ax̄− b in K, and thus Ax̄− b = 0; thus x̄ is feasible.

Let us stress that in Theorem 4.11 (a) we obtained that there is no solution of
(Opt) if ‖xk+1−xk‖2

H+‖µk+1−µk‖2
K ≥ c on a subsequence, this is a much stronger

result than the non-existence of a KKT pair.

Now we want to investigate the convergence behavior of Algorithm 4.1 if there is a
solution which admits no Lagrange multiplier. As mentioned in the introduction of
this section in many examples from optimal control the desired Lagrange multiplier
lies in a weaker space Y ∗ ⊃ K than the augmentation space K. This is now
illustrated by two examples.

Example 4.12. In almost every example from optimal control, the constraint is
a mapping from some vector space into the Sobolev space H1

0 (Ω) (or a subspace of
this space, for example C(Ω)). Therefore, our above setting requires an augmenta-
tion of the constraint in H1

0 (Ω). However, it is often more convenient to augment
the constraint in the Lebesgue space L2(Ω), because the norm and the projections
can be computed faster. For example, the standard tracking-type problem

min
u∈L2(Ω)
y∈H1

0 (Ω)

‖y − yd‖2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

s.t. −4y = u in Ω

y = 0 in ∂Ω

4.2. Convergence Analysis 79

can be reformulated as

min
u∈L2(Ω)
y∈H1

0 (Ω)

‖y − yd‖2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

s.t. y = Su,

where S denotes the solution operator of the Laplace equation, cf. Section 2.1.3.
This is a constraint in the space H1

0 (Ω); nevertheless, it would be convenient to
augment the constraint in the space L2(Ω), which contains the space H1

0 (Ω). �

In the last example, the spaceH1
0 (Ω) was still a Hilbert space and therefore the aug-

mentation in L2(Ω) was convenient but not necessary. The next example demon-
strates that there might not be any Hilbert space that is suitable for the augmen-
tation. Moreover, there is no reason to expect that a Lagrange multiplier exists.
Hence, any augmented Lagrangian approach needs to make use of embeddings.

Example 4.13. This time, we consider the tracking type problem with state
constraints

min
u∈L2(Ω)
y∈H1

0 (Ω)

‖y − yd‖2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

s.t. −4y = u in Ω

y = 0 in ∂Ω,

y ≤ g,

where g ∈ C(Ω). It is well known that, using the solution operator of the Laplace
equation, cf. Section 2.1.3, this problem can be reformulated as

min
u∈L2(Ω)

‖Su− yd‖2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

s.t. Su ≤ g.

Further, it is known that this constraint, if interpreted as an L2(Ω) constraint,
possesses no interior points, and thus the existence of a Lagrange multiplier cannot
be expected. As usual in optimal control, the constraint is therefore interpreted as
a constraint in the Banach space C(Ω), which is not a Hilbert space but a subspace
of L2(Ω). Under a Slater condition, the existence of a Lagrange multiplier is then
shown in the dual space C(Ω)∗, which is the space of the signed Borel measures
and not a Hilbert space, cf. [104]. Hence, in principle, a Hilbert space method
is not applicable. Nevertheless, in practice, the constraint is augmented in L2(Ω)
while “hoping” for convergence. As we see later, this hope is legitimate in some
cases. If g ∈ C1(Ω) then a analogous reasoning can be carried out using the spaces
H1

0 (Ω) and C1(Ω) instead of L2(Ω) and C(Ω). �

80 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

Let us now proceed from the last two examples to a more general framework for
our considerations, which is described in the following assumption.

Assumption 4.14. In addition to the standing assumptions for the problem
(Opt), we assume the following:

(a) Y is a reflexive Banach space.

(b) The embedding Y ↪→ K ' K∗ ↪→ Y ∗ is continuous and dense.

(c) f : H → R is proper, convex, and lower semi-continuous; in particular,
dom f = H.

(d) The Aν are linear, continuous operators from Hν to Y , and therefore they
are also mappings to K. We denote again Ax =

∑N
ν=1Aνxν .

(e) The vector b is an element of Y .

Even though it might seem strange to assume that the linear operators Aν map into
the more restrictive space Y at first glance, this is actually the right assumption,
since the constraint originally lies in Y and is just interpreted as a Hilbert space
constraint in K. Since we can interpret the mapping A as a map from H to
Y and, by dint of the embedding, also as a map from H to K, we obtain A∗ =
A?◦IK→Y ∗ for the Hilbert space adjoint A∗ : K → H and the Banach space adjoint
A? : Y ∗ → H. For notational convenience, we omit the embeddings IY→K : Y → K
and IK→Y ∗ : K → Y ∗; thus, both µk+1 ∈ K generated by Algorithm 4.1 and its
embedding IK→Y ∗µk+1 ∈ Y ∗ are denoted by µk+1. By virtue of this embedding,
the Hilbert and Banach space adjoint of A can therefore be applied to µk+1.

Using the Theorem 4.11, we can now deduce some convergence properties in
the case where no Lagrange multiplier exists in K.

Theorem 4.15. Suppose that (Opt) admits a solution, and that Assumption 4.14
holds true. Let the sequence (xk, µk) ∈ H×K be generated by Algorithm 4.1, with
γ > 0 chosen such that Q, defined in (4.6), is strongly monotone and self-adjoint.
Then the following statements hold:

(a) Assume that A : H → Y is a compact, bounded, linear operator, and that
there is a subsequence I ⊂ N such that xk+1 ⇀I x̄ and µk+1 ⇀∗I µ̄ in Y ∗.
Then (x̄, µ̄) is a KKT pair in (H, Y ∗).

(b) Assume that f is differentiable, ∇f is weakly sequentially continuous, i.e. it
maps weakly convergent sequences to weakly convergent sequences. Further
assume that A : H → Y is surjective, X = H, and that xk+1 ⇀I x̄ converges
weakly on a subsequence I ⊂ N. Then µk+1 ⇀I µ̄ in Y ∗, where µ̄ is the
unique multiplier such that (x̄, µ̄) is a KKT pair.

4.3. A Strongly Convergent Algorithm 81

Proof. (a) First notice that µk+1 ⇀I µ̄ since Y is reflexive and, therefore, weak and
weak-* convergence coincide. By Theorem 4.11 (b), the accumulation point x̄ is
feasible. From the compactness of A we get the strong convergence Axk+1 − b→I 0
in Y . The compactness of A : H → Y ∗ implies the compactness of the Banach
space adjoint A? : Y ∗ → H, now µk+1 ⇀I µ̄ in Y ∗ implies A?µk+1 →I A?µ̄. As in
the proof of Lemma 4.5, we obtain from the optimality condition of (4.1) that

−A?µk+1 − β(γI −M)(xk+1 − xk) ∈ ∂f(xk+1) +NX (xk+1), (4.12)

where µk+1 ∈ Y ∗ through the embedding stated in Assumption 4.14. The left-hand
side of this inclusion converges (strongly) to −A?µ̄ on the subsequence I since
xk+1 − xk → 0 and A?µk+1 →I A?µ̄. The operators ∂f and NX on the right-hand
side of this inclusion are maximally monotone. Also, we have dom(∂f) = H by
Proposition 2.19, and dom(f) = H. Thus, Proposition 2.42 shows that their sum
∂f + NX is maximally monotone as well. Therefore, the graph of ∂f + NX is
weakly-strongly sequentially closed by Proposition 2.41, and we get

0 ∈ ∂f(x̄) +NX (x̄) + A?µ̄.

Together with Ax̄− b = 0, these are the KKT conditions in H× Y ∗.

(b) Since X = H, we have NX (x̄) = {0}. The weak convergence of xk+1 on the
subsequence I yields ∇f(xk+1) ⇀I ∇f(x̄). The optimality condition (4.12) of
(4.1), which simplifies to

−A?µk+1 − β(γI −M)(xk+1 − xk) = ∇f(xk+1),

the convergence xk+1 − xk → 0 resulting from Theorem 4.11 (b), and the weak
convergence of ∇f(xk+1) on the subsequence I imply the weak convergence of
A?µk+1 on the subsequence I. Now let y ∈ Y be arbitrary. By the surjectivity of
A, there is an x ∈ H such that y = Ax and we see

〈µk+1 | y〉Y ∗,Y = 〈µk+1 | Ax〉Y ∗,Y = 〈A?µk+1 | x〉H.

The right-hand side of this equation converges because of the weak convergence
of A?µk+1 (on the subsequence I); hence µk+1 is weak-* convergent in Y ∗ on the
subsequence I to a limit µ̄ ∈ Y . The reflexivity of Y shows µk+1 ⇀I µ̄. Therefore,
we have ∇f(x̄) + A?µ̄ = 0, and further we see as above that Ax̄ = b. These are
the KKT conditions.

4.3 A Strongly Convergent Algorithm
As shown in the previous Chapter 3, the operator TOpt from (3.5) is maximally
monotone. Hence our Jacobi-type ADMM-method stated in Algorithm 4.1 yields

82 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

weak convergence of the corresponding sequence {wk} since this method can be
interpreted as a proximal-point method in a suitable Hilbert space. We also proved
that the sequence xki generated by Algorithm 4.1 converges strongly if fi is strongly
convex. However, most functions are not strongly convex, and it is often appre-
ciated to have a strongly convergent algorithm at hand since it possesses better
approximation properties. In Section 2.3.4, we provided a detailed description of
a way to obtain strong convergence for a fixed-point iteration of a non-expansive
operator, which was originally discovered by Halpern, see [61].

Having in mind the proximal-point interpretation of our regularized Jacobi-
type ADMM-method from Algorithm 4.1, it is not surprising that the following
algorithm can be understood as a version of Halpern’s method.

Algorithm 4.16. (Halpern-Regularized Jacobi-type ADMM-Method)

(S.0) Choose (x0, µ0), (x, µ) ∈ X ×K, parameters β, γ > 0, set k := 0, and choose
a sequence {ρk}k∈N satisfying

ρk → 0,
∞∑
k=1

ρk = +∞,
∞∑
k=1

|ρk+1 − ρk| <∞.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For i = 1, . . . , N , compute

x̃ki := arg min
xi∈Xi

{
fi(xi)+〈µk | Aixi〉+

β

2

(
‖Aixi+

∑
l 6=i

Alx
k
l −b‖2 +γ‖xi−xki ‖2

)}
.

(4.13)

(S.3) Define

µ̃k := µk + β
(N∑
l=1

Alx
k+1
l − b

)
. (4.14)

(S.4) Set

xk+1 := ρkx+ (1− ρk)x̃k,
µk+1 := ρkµ+ (1− ρk)µ̃k.

(S.5) Set k ← k + 1, and go to (S.1).

The global and strong convergence properties of this method follow immediately
from known results about Halpern’s modification of the standard proximal-point
method and are summarized, for the sake of completeness, in the following result.

4.3. A Strongly Convergent Algorithm 83

Theorem 4.17. Let the standing assumptions for the problem (Opt) hold. Suppose
that Q, defined in (4.6), is self-adjoint and strongly monotone and that there is
at least one KKT point of the optimization problem (Opt). Then the sequence
{wk}k∈N = {(xk, µk)}k∈N generated by Algorithm 4.16 converges strongly to a KKT
point w∞ = (x∞, µ∞) of (Opt).

Proof. The operator F := (I + βQ−1TOpt)
−1 is non-expansive by Proposition 4.6,

as it is the resolvent of a maximally monotone map in the Hilbert space H × K
endowed with the scalar product 〈· | ·〉Q. It was shown in Proposition 4.6 that
the iterates w̃k = (x̃k, µ̃k) generated by (4.13) and (4.14) are equal to the iterates
generated by w̃k := (I + βQ−1TOpt)

−1wk, where TOpt is the maximally monotone
operator defined in (3.5). Thus, the iterates wk+1 = (xk+1, µk+1) generated by
Algorithm 4.16 are equal to the iterates generated by

wk+1 = ρkw + (1− ρk)w̃k = ρkw + (1− ρk)(I + βQ−1TOpt)
−1wk,

where w is a fixed vector and ρk has the properties given in Algorithm 4.16.
But this is the standard Halpern-type iteration for the non-expansive operator
(I + βQ−1TOpt)

−1. The assertion now follows from the convergence properties of
Halpern’s iteration, cf. Theorem 2.35.

The strong convergence of the iterates wk to a KKT point of the optimization
problem (Opt) immediately implies that all the other statements known from
Theorem 4.7, if not superfluous, automatically also hold for Algorithm 4.16 as
well.

Two other strongly convergent ADMM-type algorithms can be derived using
the two alternatives to Halpern’s method already mentioned in Section 2.3.4.
More precisely, these are the Haugazeau’s scheme, see e.g. [9, 62], and the
method described in [15]. Using the firmly non-expansive fixed-point operator
F = (I + βQ−1TOpt)

−1, they can be obtained in a similar way as Algorithm 4.16.

84 4. Jacobi-type ADMM-Methods for Separable Convex Optimization

Chapter 5

Regularized Jacobi-type
ADMM-Methods for Generalized
Nash Equilibrium Problems

In this chapter, we want to introduce a Jacobi-type ADMM-method and modifica-
tions thereof for the problem (GNEP), which was already discussed in Section 3.2.
The convergence analysis presented in this section is based on [20]. We start by
recalling the generalized Nash equilibrium problem (GNEP) with N players ν.
Recall that the optimization problem of player ν is given by

min
xν∈Hν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
ν=1

Aνxν = b, xν ∈ Xν (GNEP)

for all ν = 1, . . . , N , where the symbols are defined as in Section 3.2, i.e.
Hν and K are given Hilbert spaces, ϕν : Hν → R are proper, convex, and
lower semi-continuous functions, θν : H1 × · · · × HN → R are continuously
Fréchet-differentiable with θν(·, x−ν) being convex for any fixed x−ν , Xν ⊂ Hν

are non-empty, closed, and convex sets, Aν ∈ L(Hν ,K), and b ∈ K. As in Sec-
tion 3.2, we write, following standard notation in Nash games, x = (xν , x−ν) and
(yν , x−ν) = (x1, . . . , xν−1, yν , xν+1, . . . , xN). Further, we again use the canonical
abbreviations stated in (3.8).

We assume that the generalized Nash equilibrium problem (GNEP) has a
non-empty feasible set. Since we have explicit constraints Xν , there is essentially
no loss of generality in assuming θν and ϕν are real-valued for all ν = 1, . . . , N .
The assumption that the ϕν are real-valued can be circumvented by using a tech-
nical condition. Moreover, we do not require the operators Aν to be injective or
surjective, which is a condition that is often used for ADMM-type methods in the
finite-dimensional context, where the matrices Aν are assumed to have full rank.

85

86 5. Jacobi-type ADMM-Methods for GNEPs

This chapter is organized as follows. Our basic parallel ADMM-type method
is stated and analyzed in Section 5.1. First, in Section 5.1.1, the convergence anal-
ysis is carried out by applying the convergence theory of the forward-backward
method. Then an alternative, self-contained convergence theory is presented in
Section 5.1.2. Thereafter, in Section 5.1.3, the generalization of the algorithm
to the more general conically constrained problem (GNEPconic) is explained. In
addition, two modifications of the basic approach are investigated. The first mod-
ification, presented in Section 5.2, generates strongly convergent iterates under a
cocoercivity assumption. The second modification, which we discuss in Section 5.3,
requires only a Lipschitz and a monotonicity assumption in order to guarantee con-
vergence.

5.1 Regularized Jacobi-type ADMM-Method
In the following, a regularized Jacobi-type method for the solution of (GNEP) is
investigated. Its basic idea is to augment the joint constraints in order to obtain
a separable structure in the remaining constraints. We then use the ADMM-idea
and interpret the resulting optimization problems of each player as minimization
problems of the variables xν alone. Note that we also use a linearization of the
smooth part θν in our subproblems, which might simplify the solution of the result-
ing subproblems significantly (whereas the possibly nonsmooth term ϕν remains
unchanged). Finally, a proximal term is added to improve the convergence prop-
erties and ensure that the overall method is well-defined.

Algorithm 5.1. (Regularized linearized Jacobi-type ADMM-Method)

(S.0) Choose a starting point (x0, µ0) ∈ X × K, parameters β, γ > 0, and set
k := 0.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For ν = 1, . . . , N , compute

xk+1
ν := arg min

xν∈Xν

{
ϕν(xν) + 〈∇xνθν(x

k
ν , x

k
−ν) | xν − xkν〉Hν + 〈µk | Aνxν〉K

+β
2

(
‖Aνxν +

∑
i 6=ν Aix

k
i − b‖2

K + γ‖xν − xkν‖2
Hν

)}
.

(5.1)

(S.3) Define

µk+1 := µk + β

(N∑
µ=1

Aµx
k+1
µ − b

)
. (5.2)

(S.4) Set k ← k + 1, and go to (S.1).

5.1. Regularized Jacobi-type ADMM-Method 87

Throughout our convergence analysis, we implicitly assume that Algorithm 5.1
generates an infinite number of iterates. We further note that all subproblems (5.1)
are strongly convex for all ν = 1, . . . , N and k ∈ N. Hence xk+1 :=

(
xk+1

1 , . . . , xk+1
N

)
is uniquely defined. This is due to the quadratic regularization term, which does
not occur in standard ADMM methods for two or more components.

The main computational overhead in Algorithm 5.1 results from the solution
of the optimization subproblems in (S.2). However, in contrast to augmented La-
grangian-type methods [73, 74], these subproblems are themselves only optimiza-
tion problems and not Nash equilibrium problems. Moreover, the subproblems
occuring in (S.2) can typically be solved in an efficient way, sometimes even ana-
lytically.

5.1.1 Convergence Analysis Based on the Forward-
Backward Method

We next investigate the convergence properties of Algorithm 5.1. The main idea of
our analysis here is to interpret Algorithm 5.1, after a simple linear transformation,
as a forward-backward splitting method applied to a suitable inclusion problem
in an appropriate Hilbert space. To this end, let us introduce the linear operator
M ∈ L(H) by

Mx :=
(N∑
i=1
i 6=ν

A∗νAixi

)N
ν=1

=


∑N

i=2A
∗
1Aixi

...∑N−1
i=1 A∗NAixi

 . (5.3)

It is not difficult to see that M is self-adjoint. Furthermore, we define
Qβ,γ ∈ L(H×K) by

Qβ,γ

(
x
µ

)
:=

(
β2(γx−Mx)

µ

)
, (5.4)

where β and γ denote the constants from Algorithm 5.1.
The definitions of M and Qβ,γ coincide with the definitions of M and Q from

Chapter 4, see (4.5) and (4.6). We use β and γ as a subscript in order to emphasize
the dependency of these two parameters, as this dependency is more important in
this chapter. Further notice that Remark 4.3 and Lemma 4.4 are still valid. The
next remark, which plays a critical role in our subsequent convergence analysis,
recapitulates these results.

Remark 5.2. Since M from (5.3) is self-adjoint, it follows that Qβ,γ from (5.4)
is also self-adjoint. Moreover, for all γ > 0 sufficiently large (say γ > ‖M‖), Qβ,γ

88 5. Jacobi-type ADMM-Methods for GNEPs

is strongly monotone. This implies that, in this case, Qβ,γ is both injective and
surjective. Hence the inverse of Qβ,γ ∈ L(H×K) exists and is a linear, continuous,
strongly monotone, and self-adjoint operator.
Further we have the estimate ‖M‖ ≤ (N − 1) maxν=1,...,N{‖Aν‖2}. �

A suitable reformulation of the optimality conditions for the subproblems (5.1)
and (5.2) is presented in the next result.

Lemma 5.3. Let the standing assumptions for the problem (GNEP) hold. The
vector wk+1 =

(
xk+1, µk+1

)
computed in (5.1) and (5.2) is characterized by the

equivalent inclusions(
I − βQ−1

β,γPθ
)
wk ∈

(
I + βQ−1

β,γ(∂ψ +G+NW)
)
wk+1 (5.5)

and

0 ∈ ∂ψ(wk+1) + Pθ(w
k) +G(wk+1) +

1

β
Qβ,γ(w

k+1 − wk) +NW(wk+1). (5.6)

Moreover, it is characterized by the following variational inequality: Find
gk+1 ∈ ∂ψ(wk+1) such that〈

gk+1 + Pθ(w
k) +G(wk+1) +

1

β
Qβ,γ(w

k+1 − wk) | w − wk+1
〉
≥ 0 (5.7)

for all w ∈ W. Here we use ∂ψ, Pθ, and G defined in (3.13), (3.14), and (3.15),
respectively.

Proof. Using the optimality conditions for the programs (5.1), it follows that xk+1
ν

solves these programs if and only if xν := xk+1
ν satisfies the optimality conditions

0 ∈ ∂xν
(
ϕν(xν) +

〈
∇xνθν(x

k
ν , x

k
−ν), xν − xkν

〉
Hν

+
〈
µk | Aνxν

〉
K

+β
2

(
‖Aνxν +

∑
i 6=ν Aix

k
i − b‖2

K + γ‖xν − xkν‖2
Hν

))
+NXν (xν)

for all ν = 1, . . . , N . This is equivalent to saying that there exist elements
gν ∈ ∂ϕν(xk+1

ν) such that the vector

−
(
gν +∇xνθν(x

k
ν , x

k
−ν) + A∗νµ

k + βA∗ν(Aνx
k+1
ν +

∑
i 6=ν

Aix
k
i − b) + βγ(xk+1

ν − xkν)
)

belongs to the normal cone NXν (xk+1
ν) for all ν = 1, . . . , N . By definition of the

normal cone, this can be rewritten as〈
gν +∇xνθν(x

k
ν , x

k
−ν) + A∗νµ

k | xν − xk+1
ν

〉
Hν

+
〈
βA∗ν

(
Aνx

k+1
ν +

∑
i 6=ν Aix

k
i − b

)
+ βγ(xk+1

ν − xkν) | xν − xk+1
ν

〉
Hν
≥ 0

5.1. Regularized Jacobi-type ADMM-Method 89

for all xν ∈ Xν and all ν = 1, . . . , N . Using µk+1 = µk + β
(∑N

i=1 Aix
k+1
i − b

)
, cf.

(5.2), the last inequality is equivalent to〈
gν +∇xνθν(x

k
ν , x

k
−ν) | xν − xk+1

ν

〉
Hν

+
〈
A∗νµ

k+1 + βA∗ν
(∑

i 6=ν Ai(x
k
i − xk+1

i)
)

+ βγ(xk+1
ν − xkν) | xν − xk+1

ν

〉
Hν
≥ 0

for all xν ∈ Xν and all ν = 1, . . . , N . Exploiting the definition of M in (5.3),
the Cartesian product structure of the set X , recalling from (3.13) that P̂θ(xk) =
(∇x1θ1(xk), . . . ,∇xN θN(xk)), and setting g̃ = (g1, . . . , gN), this can be rewritten
more compactly as〈

g̃ + P̂θ(x
k) + A∗µk+1 + βM(xk − xk+1) + βγ(xk+1 − xk) | x− xk+1

〉
H
≥ 0

for all x ∈ X . Since〈 1

β
(µk+1 − µk) +

(
b−

N∑
ν=1

Aνx
k+1
ν

)
| µ− µk

〉
K

= 0 ∀µ ∈ K

in view of (5.2), and by setting g := (g̃, 0), the previous two formulas are equivalent
to 〈

g + Pθ(w
k) +G(wk+1) +

1

β
Qβ,γ(w

k+1 − wk) | w − wk+1
〉
≥ 0

for all w ∈ W , which shows the characterization (5.7). Using the definition of the
normal cone NW , we can express this as

0 ∈ g + Pθ(w
k) +G(wk+1) +

1

β
Qβ,γ(w

k+1 − wk) +NW(wk+1).

By definition, we have gν ∈ ∂ϕν(xk+1
ν) for all ν = 1, . . . , N ; hence the last equation

is equivalent to

0 ∈ ∂ψ(wk+1) + Pθ(w
k) +G(wk+1) +

1

β
Qβ,γ(w

k+1 − wk) +NW(wk+1)

⇐⇒ 1

β
Qβ,γw

k − Pθ(wk) ∈ ∂ψ(wk+1) +G(wk+1) +
1

β
Qβ,γw

k+1 +NW(wk+1),

which shows (5.6) and can be rewritten as(
I − βQ−1

β,γPθ
)
(wk) ∈

(
I + βQ−1

β,γ(∂ψ +G+NW)
)
(wk+1).

This shows (5.5) and completes the proof.

90 5. Jacobi-type ADMM-Methods for GNEPs

Based on the previous results and assuming that Qβ,γ is strongly monotone, cf.
Remark 5.2, we obtain the following alternative procedure for the computation
of wk+1 from Algorithm 5.1: Using the operators T1 and T2 from (3.16), we can
rewrite formula (5.5) as

wk+1 ∈
(
I + βQ−1

β,γT2

)−1(
I − βQ−1

β,γT1

)
wk,

which almost looks like a forward-backward method. In fact, if the operator
A := Q−1

β,γT2 would be maximally monotone, we could rewrite this inclusion as
an equation and would obtain the forward-backward iteration

wk+1 =
(
I + βQ−1

β,γT2

)−1(
I − βQ−1

β,γT1

)
wk, (5.8)

which is known to converge provided that the second operator B := Q−1
β,γT1 has

a suitable cocoercivity property. Unfortunately, though the operators T1 and T2

themselves are maximally monotone in view of Proposition 3.12, this property does
not hold, in general, for the operators A = Q−1

β,γT2 and B = Q−1
β,γT1. However, this

problem can be solved easily by using a suitable weighted scalar product.

Proposition 5.4. Let the standing assumptions for the problem (GNEP) hold.
Assume that Qβ,γ from (5.4) is self-adjoint and strongly monotone. Let T1 and T2

be the operators defined in (3.16). Furthermore, consider the Hilbert space H×K
endowed with the scalar product 〈w | z〉Qβ,γ := 〈Qβ,γw | z〉. Then the following
statements hold for this scalar product:

(a) The operator B := Q−1
β,γT1 is maximally monotone and single-valued.

(b) The operator A := Q−1
β,γT2 is maximally monotone.

(c) The operator A+ B is maximally monotone.

Proof. Once we verify statement (b), part (a) follows in the same way. To this
end, recall that T2 is maximally monotone (with respect to the scalar product
〈· | ·〉) in view of Proposition 3.12. Hence βT2 is also maximally monotone. Since
Q−1
β,γ is self-adjoint and strongly monotone, it follows from Proposition 2.44 that

βQ−1
β,γT2 is maximally monotone in the Hilbert space H × K endowed with the

scalar product 〈· | ·〉Qβ,γ . Statement (c) follows directly from Proposition 2.42
since domB = H×K.

Proposition 5.4 implies that the sequence {wk}k∈N generated by Algorithm 5.1 can
be equivalently represented by the forward-backward scheme from (5.8), which is
known to yield weak convergence under suitable assumptions. However, since
we have maximally monotone operators only with respect to the weighted scalar
product introduced in Proposition 5.4, we obtain weak and strong convergence

5.1. Regularized Jacobi-type ADMM-Method 91

with respect to this scalar product and its induced norm only. But this scalar
product is introduced here just for theoretical reasons; one is typically interested in
corresponding convergence results in terms of the given Hilbert space endowed with
the original scalar product. Lemma 2.9 shows that weak and strong convergence in
H with respect to the original scalar product and the one induced by Qβ,γ coincide.
In order to verify convergence, it remains to show that the (forward) operator
B = Q−1

β,γT1 is cocoercive for some modulus α > 0. Then, in principle, the known
convergence properties of the forward-backward splitting method can be applied
for any choice of the step size β from the interval (0, 2α). However, in our case,
the operator B = Q−1

β,γT1 itself depends on β via the linear operator Qβ,γ. This is
actually the reason for not simply denoting this operator by Q, since this depen-
dence is crucial, which therefore causes some additional problems. The following
result discusses the cocoercivity of the operator B, which obviously depends on
corresponding properties of the mapping Pθ.

Lemma 5.5. Let the standing assumptions for the problem (GNEP) hold. Suppose
that Pθ, defined in (3.14), is α-cocoercive in H×K endowed with the scalar product
〈· | ·〉 and Qβ,γ ∈ L(H×K) from (5.4) is a strongly monotone, self-adjoint operator.
Then Q−1

β,γPθ is α/‖Q−1
β,γ‖-cocoercive in H × K endowed with the scalar product

〈· | ·〉Qβ,γ .

Proof. First recall that, for any continuous linear operator Q, the inequality
〈Qw | w〉 ≤ ‖Q‖‖w‖2 holds for all w. We therefore obtain

‖Q−1
β,γPθ(w)−Q−1

β,γPθ(v)‖2
Qβ,γ

=
〈
Qβ,γ

(
Q−1
β,γPθ(w)−Q−1

β,γPθ(v)
)
| Q−1

β,γPθ(w)−Q−1
β,γPθ(v)

〉
=

〈
Pθ(w)− Pθ(v) | Q−1

β,γ

(
Pθ(w)− Pθ(v)

)〉
≤ ‖Q−1

β,γ‖‖Pθ(w)− Pθ(v)‖2.

Hence, the assumed α-cocoercivity of Pθ yields

〈Q−1
β,γPθ(w)−Q−1

β,γPθ(v) | w − v〉Qβ,γ = 〈Pθ(w)− Pθ(v) | w − v〉

≥ α‖Pθ(w)− Pθ(v)‖2 ≥ α

‖Q−1
β,γ‖
‖Q−1

β,γPθ(w)−Q−1
β,γPθ(v)‖2

Qβ,γ
,

and this completes the proof.

Note that the cocoercivity assumption on the operator Pθ is very natural and
follows immediately from the corresponding cocoercivity of the mapping P̂θ. In
particular, this assumption holds if P̂θ is strongly monotone and Lipschitz contin-
uous. On the other hand, it is important to note that the latter condition does
not imply the strong monotonicity of Pθ. In fact, the operator Pθ is never strongly
monotone due to its last component being zero.

92 5. Jacobi-type ADMM-Methods for GNEPs

We finally need to address the problem that the operator B depends on β,
which causes some issues regarding the choice of this step size. However, these are
resolved in the proof of the following main convergence result for Algorithm 5.1.

Theorem 5.6. Let the standing assumptions for the problem (GNEP) hold. Sup-
pose that the operator P̂θ from (3.9) is α-cocoercive in H endowed with the usual
scalar product, and that there is at least one variational KKT point of the Nash
equilibrium problem (GNEP). Assume that the parameters β and γ are chosen
such that β ∈ (0, 2α) and γ ≥ 1

β2 + ‖M‖, where M is defined as in (5.3). Fur-
thermore, let the sequence {wk}k∈N = {(xk, µk)}k∈N be generated by Algorithm 5.1.
Then the following statements hold:

(a) The operator Qβ,γ from (5.4) is self-adjoint and strongly monotone with
‖Q−1

β,γ‖ ≤ 1.

(b) The operator
(
I+βQ−1

β,γT2

)−1(
I−βQ−1

β,γT1

)
is α̃-averaged in H×K endowed

with the scalar product 〈· | ·〉Qβ,γ , where α̃ = 2α/(4α− β).

(c) The sequence {wk}k∈N = {(xk, µk)}k∈N converges weakly to a variational
KKT pair w∗ = (x∗, µ∗).

(d) The sequence {P̂θ(xk)}k∈N converges strongly to the unique value P̂θ(x∗).

(e) If P̂θ is strongly monotone, the sequence {xk}k∈N converges strongly to x∗.

Proof. (a) Since γ > ‖M‖, the strong monotonicity and self-adjointedness follow
from Remark 5.2. Due to γ ≥ 1

β2 + ‖M‖, we have

‖β2(γI −M)x‖H ≥ β2
(
‖γx‖H − ‖Mx‖H

)
≥ β2

(
γ − ‖M‖

)
‖x‖H ≥ ‖x‖H

for all x ∈ H. This yields

1

‖Q−1
β,γ‖2

=
1

supw∈(H×K)\{0}
‖Q−1

β,γw‖2

‖w‖2

= inf
w∈(H×K)\{0}

‖w‖2

‖Q−1
β,γw‖2

= inf
v∈(H×K)\{0}

‖Qβ,γv‖2

‖v‖2

= inf
(x,µ)∈(H×K)\{0}

‖β2(γI −M)x‖2
H + ‖µ‖2

K
‖x‖2

H + ‖µ‖2
K

≥ inf
(x,µ)∈(H×K)\{0}

‖x‖2
H + ‖µ‖2

K
‖x‖2

H + ‖µ‖2
K

= 1, (5.9)

5.1. Regularized Jacobi-type ADMM-Method 93

where we substituted v = Q−1
β,γw. Hence, the choice of γ guarantees that

‖Q−1
β,γ‖ ≤ 1.

(b) We define F :=
(
I+βQ−1

β,γT2

)−1(
I−βQ−1

β,γT1

)
and now prove that this operator

is α̃-averaged with α̃ := 2α/(4α − β) in H × K endowed with the scalar product
〈· | ·〉Qβ,γ . By Proposition 5.4, the operators

A := Q−1
β,γT2

B := Q−1
β,γT1 = Q−1

β,γPθ

are maximally monotone in H × K endowed with the scalar product 〈· | ·〉Qβ,γ ,
and F is therefore single-valued, cf. Section 2.5.3. Lemma 5.5 combined with
(a) shows that B is α-averaged in H × K endowed with 〈· | ·〉Qβ,γ . Since
F :=

(
I + βA

)−1(
I − βB

)
, Proposition 2.54 shows that F is α̃-averaged in H×K

endowed with the scalar product 〈· | ·〉Qβ,γ .

(c) First notice that Pθ : H × K → H × K as defined in (3.14) is α-cocoercive
if P̂θ : H → H as defined in (3.9) is α-cocoercive. Since ‖Q−1

β,γ‖ ≤ 1, it follows
from Lemma 5.5 that Q−1

β,γPθ is α-cocoercive in H × K endowed with the scalar
product 〈· | ·〉Qβ,γ . Statement (c) therefore follows from standard convergence
properties of the forward-backward splitting method, cf. Theorem 2.55, together
with Lemma 2.9.

(d) Since Pθ = (P̂θ, 0), this statement is a consequence of standard results, cf.
Theorem 2.55.

(e) This statement follows directly from (c) and the observation that
‖P̂θ(xk)− P̂θ(x∗)‖H ≥ ρ‖xk − x∗‖H for some ρ > 0, which is a consequence
of the strong monotonicity and the Cauchy-Schwarz inequality.

In practice, the constant γ ≥ 1
β2 +‖M‖ from Theorem 5.6 might be large, but there

also exist examples where this constant is just of moderate size, see Chapter 7 for
an instance.

5.1.2 Self-Contained Convergence Analysis

In the above section we have seen that Algorithm 5.1 can be interpreted as a
forward-backward splitting method, which is exploited in more detail in the se-
quel. Here we present an alternative convergence theorem and its proof, using a
technique that was discovered in the later work [19] of the authors and therefore
was not presented in the underlying manuscript [20]. Since the choice of β > 0 is
arbitrary in this alternative convergence theorem, it is an actual improvement of

94 5. Jacobi-type ADMM-Methods for GNEPs

Theorem 5.6. The reason why the convergence theory leading to Theorem 5.6 is
still presented is that it provides an interesting insight into the method. Moreover,
we use this theory to obtain an algorithm that only needs Lipschitz continuity
rather than cocoercivity and another algorithm that is strongly convergent under
a cocoercivity assumption.

Theorem 5.7. Let the standing assumption for the problem (GNEP) hold. As-
sume that (GNEP) admits a variational KKT point and suppose that the operator
P̂θ from (3.9) is α-cocoercive. Moreover, let γ > 1

2αβ
+‖M‖, where M is the opera-

tor introduced in (5.3). Then the iterates {wk+1}k∈N = {(xk+1, µk+1)}k∈N generated
by Algorithm 5.1 converge weakly to a variational KKT pair of (GNEP). Further
it holds that

xk+1 − xk → 0, µk+1 − µk → 0, and P̂θ(x
k)→ P̂θ(x

∗).

If P̂θ is strongly monotone, then additionally to the above assertions, {xk+1}k∈N
converges strongly.

Proof. For w = (x, µ) ∈ W = H×K, let us define

Rw :=
1

β
Qβ,γ =

(
γβx− βMx

1
β
µ

)
=

(
(γβI − βM)x

1
β
µ

)
,

which can be easily seen to be self-adjoint and strongly monotone under the given
assumptions on γ, and therefore induces a scalar product and norm, which we
denote by 〈· | ·〉R and ‖ · ‖R, respectively. On the other hand, we denote by 〈· | ·〉
and ‖ · ‖ the original scalar product and its induced norm in the spaces H, K and
H × K, respectively. Using the optimality conditions of (5.1) and (5.2), we get
from (5.7) stated in Lemma 5.3 that there is a gk+1 ∈ ∂ψ(wk+1) such that〈

gk+1 + Pθ(w
k) +G(wk+1) +

1

β
Qβ,γ(w

k+1 − wk) | w − wk+1
〉
≥ 0

for all w ∈ W = H × K. Using the above definition of R, this last inequality is
equivalent to〈

gk+1 + Pθ(w
k) +G(wk+1) +R(wk+1 − wk) | w − wk+1

〉
≥ 0 (5.10)

for all w ∈ W . Further, (5.6) from Lemma 5.3 shows that

0 ∈ ∂ψ(wk+1) + Pθ(w
k) +G(wk+1) +R(wk+1 − wk) +NW(wk+1). (5.11)

5.1. Regularized Jacobi-type ADMM-Method 95

Let w∗ = (x∗, µ∗) be an arbitrary KKT pair. Setting w = w∗ in the inequality
(5.10) yields

0 ≤ 〈gk+1 + Pθ(w
k) +G(wk+1) +R(wk+1 − wk) | w∗ − wk+1〉

Lem. 3.11

≤ 〈wk+1 − wk | w∗ − wk+1〉R
+〈gk+1 + Pθ(w

k) +G(wk+1)− (g∗ + Pθ(w
∗) +G(w∗)) | w∗ − wk+1〉

∂ψ,G mon.

≤ 〈wk+1 − wk | w∗ − wk+1〉R + 〈Pθ(wk)− Pθ(w∗) | w∗ − wk+1〉
Pθ=(P̂θ,0)

= 〈wk+1 − wk | w∗ − wk+1〉R + 〈P̂θ(xk)− P̂θ(x∗) | x∗ − xk〉
+〈P̂θ(xk)− P̂θ(x∗) | xk − xk+1〉

P̂θ cocoercive

≤ 〈wk+1 − wk | w∗ − wk+1〉R − α‖P̂θ(xk)− P̂θ(x∗)‖2

+〈P̂θ(xk)− P̂θ(x∗) | xk − xk+1〉
CSI

≤ 〈wk+1 − wk | w∗ − wk+1〉R − α‖P̂θ(xk)− P̂θ(x∗)‖2

+‖P̂θ(xk)− P̂θ(x∗)‖ · ‖xk+1 − xk‖
Y oung

≤ 〈wk+1 − wk | w∗ − wk+1〉R − α‖P̂θ(xk)− P̂θ(x∗)‖2

+
ε

2
‖P̂θ(xk)− P̂θ(x∗)‖2 +

1

2ε
‖xk+1 − xk‖2

= 〈wk+1 − wk | w∗ − wk+1〉R − (α− ε

2
)‖P̂θ(xk)− P̂θ(x∗)‖2

+
1

2ε
‖xk+1 − xk‖2

Lem. 2.60
=

1

2
‖wk − w∗‖2

R −
1

2
‖wk+1 − w∗‖2

R −
1

2
‖wk+1 − wk‖2

R

−(α− ε

2
)‖P̂θ(xk)− P̂θ(x∗)‖2 +

1

2ε
‖xk+1 − xk‖2.

This can be equivalently written as

0 ≤ ‖xk − x∗‖2
γβI−βM +

1

β
‖µk − µ∗‖2

− ‖xk+1 − x∗‖2
γβI−βM −

1

β
‖µk+1 − µ∗‖2

− ‖xk+1 − xk‖2
(γβ−1/ε)I−βM −

1

β
‖µk+1 − µk‖2

− (2α− ε)‖P̂θ(xk)− P̂θ(x∗)‖2.

(5.12)

Since γ > 1
2αβ

+ ‖M‖, we can find ε > 0 such that

α ≥ ε

2

96 5. Jacobi-type ADMM-Methods for GNEPs

and

γβ − 1

ε
− β‖M‖ > 0.

With this ε, the linear operators

(γβ − 1/ε)I − βM, γβI − βM, and R

can easily be seen to be self-adjoint and strongly monotone, and therefore they
induce norms that are equivalent to the original norm, cf. Lemma 2.4. Further,
the factor α− ε/2 is positive. Therefore, (5.12) shows

‖wk+1 − w∗‖2
R = ‖xk+1 − x∗‖2

γβI−βM +
1

β
‖µk+1 − µk‖2

≤ ‖xk − x∗‖2
γβI−βM +

1

β
‖µk − µk‖2

= ‖wk − w∗‖2
R. (5.13)

Hence the sequence {wk+1}k∈N := {(xk+1, µk+1)}k∈N is Fejér-monotone and
bounded in H × K endowed with the scalar product 〈· | ·〉R := 〈R· | ·〉. Thus,
{wk+1}k∈N possesses a weakly convergent subsequence wk+1 ⇀I w̄ = (x̄, µ̄) in
H×K with 〈· | ·〉R, and by Lemma 2.9 we get wk+1 ⇀I w̄ in H×K endowed with
the original scalar product. Since W = X × K is closed and convex as a product
of two closed, convex sets, it is weakly sequentially closed; therefore w̄ ∈ X × K.
Summing (5.12) yields

∑̀
k=0

(
‖xk+1 − xk‖2

(γβ−1/ε)I−βM +
1

β
‖µk+1 − µk‖2 + (α− ε

2
)‖P̂θ(xk)− P̂θ(x∗)‖2

)
≤ ‖x0 − x∗‖2

γβI−βM +
1

β
‖µ0 − µ∗‖2 − ‖xl+1 − x∗‖2

γβI−βM −
1

β
‖µl+1 − µ∗‖2

≤ ‖x0 − x∗‖2
γβI−βM +

1

β
‖µ0 − µ∗‖2,

where the right-hand side of the equation is constant; therefore passing `→∞
shows
∞∑
k=0

(
‖xk+1 − x∗‖2

(γβ−1/ε)I−βM +
1

β
‖µk+1 − µk‖2 + (α− ε

2
)‖P̂θ(xk)− P̂θ(x∗)‖2

)
<∞.

By α− ε/2 > 0, β > 0, and (γβ − 1/ε)I − βM strongly monotone, it holds that

xk+1 − xk → 0, µk+1 − µk → 0, and P̂θ(x
k)→ P̂θ(x

∗).

5.1. Regularized Jacobi-type ADMM-Method 97

inH orK, respectively, endowed with the original scalar product by the equivalence
of norms, cf. Lemma 2.4. Notice that the value of P̂θ(x∗) is independent of the
solution point x∗ due to the cocoercivity assumption. By (5.11), we have

−R(wk+1 − wk)− Pθ(wk) ∈ ∂ψ(wk+1) +G(wk+1) +NW(wk+1)

= (∂ψ +G+NW)wk+1.

Our previous discussion shows that the left-hand side converges strongly to the
unique value Pθ(w∗) = (P̂θ(x

∗), 0), whereas wk+1 ⇀I w̄. Further, the operator
∂ψ + G + NW = T2 is maximally monotone, cf. Proposition 3.12. Thus, by the
strong-weak-sequential closedness of the graph of a maximally monotone operator,
we obtain Pθ(w̄) ∈ (∂ψ +G+NW)w̄. Note that

Pθ(w̄) ∈ (∂ψ +G+NW)w̄

⇐⇒ 0 ∈ (∂ψ + Pθ +G+NW)w̄ = TGNEP (w̄),

where TGNEP was defined in (3.16). Lemma 3.10 and the fact that w̄ ∈ W = X×K
therefore imply that w̄ is a variational KKT point of (GNEP). Thus every
weak cluster point of wk+1 is a zero of TGNEP . Since (5.13) eventually implies
that the sequence {wk}k∈N is Fejér-monotone with respect to the solution set
S := {w ∈ W | 0 ∈ TGNEP (w)} and that every weak cluster point is a variational
KKT point, it follows from Proposition 2.29 that wk+1 ⇀ w̄ in H × K endowed
with 〈· | ·〉R. By Lemma 2.9, it holds that wk+1 ⇀ w̄ in H×K endowed with the
original scalar product.

If the operator P̂θ(xk) is strongly monotone, strong convergence of {xk}k∈N
follows straight from P̂θ(x

k)→ P̂θ(x
∗) and

0← 〈P̂θ(xk)− P̂θ(x∗) | xk+1 − x∗〉 ≥ ρ‖xk+1 − x∗‖2,

where ρ > 0 is the strong monotonicity constant of P̂θ(x∗).

Some further comments on this technique of proof can be found at the end of
Chapter 6.

5.1.3 Application to Conic Constraints

In Section 3.2.2 we have shown that the conically constrained generalized Nash
problem (GNEPconic) can be reformulated as an equality constrained problem of
the form (GNEP), which was done by introducing slack variables sν or s. The
resulting optimization problems that need to be solved in each iteration of Al-
gorithm 5.1 are then minimization problems in the variables (xν , sν) or (xN , s),
respectively. Following the idea of Rockafellar [93], however, it turns out that the

98 5. Jacobi-type ADMM-Methods for GNEPs

minimization with respect to sν (or s) can be carried out exactly so that we have
to solve, once again, minimization problems in xν alone.

We first illustrate this for the subproblems arising from the formulation in
(3.18). The resulting optimization problems consists of computing, for each player
ν = 1, . . . , N , the solution pair

(xk+1
ν , sk+1

ν)

:= arg minxν∈Xν
sν∈C

{
ϕν(xν) + 〈∇xνθν(x

k
ν , x

k
−ν) | xν − xkν〉Hν

+〈λk | Bνxν − sν〉K + β
2
‖Bνxν +

∑
i 6=ν Bix

k
i − b− sν −

∑
i 6=ν s

k
i ‖2
K

+βγ
2
‖xν − xkν‖2

Hν + βγ
2
‖sν − skν‖2

K

}
= arg minxν∈Xν

sν∈C

{
ϕν(xν) + 〈∇xνθν(x

k
ν , x

k
−ν) | xν − xkν〉Hν + βγ

2
‖xν − xkν‖2

Hν

+ βγ
2(γ+1)

‖Bνxν +
∑

i 6=ν Bix
k
i − b−

∑N
i=1 s

k
i + λk

β
‖2
K

+ β
2(γ+1)

‖(γ + 1)sν − (Bνxν +
∑

i 6=ν Bix
k
i − b−

∑
i 6=ν s

k
i + λk

β
+ γskν)‖2

K

}
,

where the second equality follows after some elementary (though lengthy) algebraic
calculations.

This shows that

sk+1
ν := sk+1

ν (xν) = ProjC

(
1

γ + 1

(λk
β

+Bνxν +
∑
i 6=ν

Bix
k
i − b−

∑
i 6=ν

ski + γskν

))
.

Using the squared distance function, we therefore obtain xk+1
ν from

xk+1
ν = arg minxν∈Xν

{
ϕν(xν) + 〈∇xνθν(x

k
ν , x

k
−ν) | xν − xkν〉Hν

+ βγ
2(γ+1)

‖Bνxν +
∑

i 6=ν Bix
k
i − b−

∑N
i=1 s

k
i + λk

β
‖2
K + βγ

2
‖xν − xkν‖2

Hν

+β(γ+1)
2

dist2
C

(
1

γ+1
(Bνxν +

∑
i 6=ν Bix

k
i − b−

∑
i 6=ν s

k
i + λk

β
+ γskν)

)}
for all ν = 1, . . . , N . The corresponding multiplier update becomes

λk+1 = λk + β

(N∑
ν=1

Bνx
k+1
ν − b−

N∑
ν=1

sk+1
ν

)
.

For the reformulation with one slack variable in (3.19), the resulting
xν-subproblems for ν = 1, . . . , N −1 stay essentially the same as in Algorithm 5.1.
The only difference arises for the last player, who has to solve the subproblem

(xk+1
N , sk+1)

:= arg minxN∈XN
s∈C

{
ϕN(xN) + 〈∇xN θN(xkN , x

k
−N) | xN − xkN〉Hν

+〈λk | BNxN − s〉K + βγ
2
‖xN − xkN‖2

Hν + βγ
2
‖s− sk‖2

K

+β
2
‖BNxN +

∑
i 6=N Bix

k
i − b− s‖2

K

}
.

5.2. Strongly Convergent Jacobi-type ADMM-Method 99

Applying the same technique as before yields the following updating formulas:

xk+1
N := arg minxN∈XN

{
ϕN(xN) + 〈∇xN θN(xkN , x

k
−N) | xN − xkN〉Hν

+ βγ
2(γ+1)

‖BNxN +
∑

i 6=N Bix
k
i − b− sk + λk

β
‖2
K + βγ

2
‖xN − xkN‖2

Hν

+β(γ+1)
2

dist2
C

(
1

γ+1
(BNxN +

∑
i 6=N Bix

k
i − b+ λk

β
+ γsk)

)}
,

sk+1 := ProjC

(
1

γ+1

(
λk

β
+ (BNx

k+1
N +

∑
i 6=N Bix

k
i − b) + γsk

))
,

λk+1 := λk + β(
∑N

ν=1Bνx
k+1
ν − b− sk+1).

Note that the projections onto C are often easy to compute; e.g., in finite di-
mensions, C often equals a Cartesian product of intervals like (−∞, 0], where the
projection is simply given by ProjC(y) = min{0, y}. A similar observation holds
for the distance function distC since a corresponding computation of the projection
onto C immediately yields the distance.

Remark 5.8. In order to obtain convergence of Algorithm 5.1, we need to estimate
the constant γ > 1/β2 + ‖M‖ or γ > 1/(2αβ) + ‖M‖, where M is defined in
(5.3). Please be aware that in the last section we changed the operators Bν from
problem (GNEPconic) to either an operator Aν(xν , sν) = Bνxν − sν in the case
where we introduced N slack variables, or Aνxν = Bνxν for ν = 1, . . . , N − 1 and
Aν(xν , s) = Bνxν − s in the case where we introduced one slack variable. Recall
that the operatorM is defined for the equality constrained problem; hence we need
to use the modified operators Aν to compute the operator norm ‖M‖. To do so,
we recall from Remark 3.15 that ‖Aν‖ ≤ ‖Bν‖+1 in the first case, or ‖Aν‖ = ‖Bν‖
for ν = 1, . . . , N − 1 and ‖AN‖ ≤ ‖BN‖ + 1 in the second case. Together with
Lemma 4.4, we obtain ‖M‖ ≤ (N − 1) maxν=1,...,N{(‖Bν‖2 + 1)2}. �

5.2 Strongly Convergent Jacobi-type ADMM-
Method

Motivated by the fact that Algorithm 5.1 turned out to be a forward-backward
splitting method in a suitable Hilbert space, and that the forward-backward split-
ting can be interpreted as a Krasnoselsky-Mann iteration, as outlined in Sec-
tion 2.5.3, it is natural to apply the strongly convergent Halpern method to our
setting in order to obtain strong convergence of the iterates (xk+1, µk+1). This
means that we have to correct the outcome of Algorithm 5.1 in a suitable way.
The details are given in the following algorithm.

100 5. Jacobi-type ADMM-Methods for GNEPs

Algorithm 5.9. (Strongly Convergent Regularized Jacobi-type ADMM-Method)

(S.0) Choose a starting point (x0, µ0), (x, µ) ∈ X × K, parameters β, γ > 0, set
k := 0, and choose a sequence {ρk}k∈N satisfying

ρk → 0,
∞∑
k=1

ρk = +∞,
∞∑
k=1

|ρk+1 − ρk| <∞.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For ν = 1, . . . , N , compute

x̂kν := arg min
xν∈Xν

{
ϕν(xν) + 〈∇xνθν(x

k
ν , x

k
−ν) | xν − xkν〉Hν + 〈µk | Aνxν〉K

+β
2

(
‖Aνxν +

∑
i 6=ν Aix

k
i − b‖2

K + γ‖xν − xkν‖2
Hν

)}
.

(5.14)

(S.3) Define

µ̂k+1 := µk + β
(N∑
ν=1

Aν x̂
k
ν − b

)
. (5.15)

(S.4) Let x̂k :=
(
x̂k1, . . . , x̂

k
N

)
, and compute

xk+1 := ρkx+ (1− ρk)x̂k,
µk+1 := ρkµ+ (1− ρk)µ̂k.

(S.5) Set k ← k + 1, and go to (S.1).

The global and strong convergence properties of this method follow immediately
from known results about Halpern’s modification and Theorem 5.6. They are
summarized in the following result.

Theorem 5.10. Let the standing assumptions for the problem (GNEP) hold. Sup-
pose that the operator P̂θ from (3.9) is α-cocoercive in H endowed with the usual
scalar product, and that there is at least one variational KKT point of the Nash
equilibrium problem (GNEP). Furthermore, assume that the parameters β and γ
are chosen such that β ∈ (0, 2α) and γ ≥ 1

β2 +‖M‖. Then the following statements
hold:

(a) The sequences {wk}k∈N = {(xk, µk)}k∈N and {ŵk}k∈N = {(x̂k, µ̂k)}k∈N
generated by Algorithm 5.9 converge strongly to a variational KKT pair
w∗ = (x∗, µ∗).

(b) The sequence {P̂θ(xk)}k∈N converges strongly to the unique value P̂θ(x∗).

5.3. Modified Regularized Jacobi-type ADMM-Methods 101

Proof. (a) By Theorem 5.6 (a), the operator Qβ,γ from (5.4) is self-adjoint and
strongly monotone with ‖Q−1

β,γ‖ ≤ 1. In Lemma 5.3 and (5.8) we have seen that the
iterates ŵk+1 = (x̂k+1, µ̂k+1) and wk+1 = (xk+1, µk+1) generated by Algorithm 5.9
can be expressed as

ŵk =
(
I + βQ−1

β,γT2

)−1(
I − βQ−1

β,γT1

)
wk,

wk+1 = ρkw + (1− ρk)ŵk,

where w = (x, µ) is chosen in (S.0) of the algorithm. Let us define F :=(
I + βQ−1

β,γT2

)−1(
I−βQ−1

β,γT1

)
. Then Theorem 5.6 (b) shows that F is α̃-averaged

with α̃ := 2α/(4α − β) in H × K endowed with the scalar product 〈· | ·〉Qβ,γ .
In particular, by our assumptions on β and γ, the operator F is non-expansive
in H × K endowed with the scalar product 〈· | ·〉Qβ,γ . The iterates can now be
expressed as

wk+1 = ρkw + (1− ρk)Fwk.

Theorem 2.35 shows the strong convergence of the sequence {wk+1}k∈N =
{(xk+1, µk+1)}k∈N to a fixed point of F in H×K endowed with the scalar product
〈· | ·〉Qβ,γ . The strong convergence in the original norm follows from the equiva-
lence of the norms, cf. Lemma 2.9. Since ρk → 0, we see that wk+1 − ŵk → 0;
therefore {ŵk}k∈N converges strongly to the same limit point. By

0 ∈ T1x
∗ + T2x

∗ ⇐⇒ −T1x
∗ ∈ T2x

∗

⇐⇒ (I − βQ−1
β,γT1)x∗ ∈ (I + βQ−1

β,γT2)x∗

⇐⇒ x∗ ∈ (I + βQ−1
β,γT2)−1(I − βQ−1

β,γT1)x∗

⇐⇒ x∗ = (I + βQ−1
β,γT2)−1(I − βQ−1

β,γT1)x∗,

these fixed points turn out to be zeros of T1 + T2 = TGNEP , and Lemma 3.10
shows that these zeros are variational KKT pairs of (GNEP).

(b) Follows straight from the continuity of P̂θ and (a).

5.3 Modified Regularized Jacobi-type ADMM-
Methods

Another approach, which again is motivated by the fact that Algorithm 5.1 is a
certain type of forward-backward splitting method, consists of applying Tseng’s
method, as outlined in Section 2.5.4, to our setting in order to weaken the cocoerciv-
ity assumption. This means that we have to adjust the outcome of Algorithm 5.1
accordingly. The details are given in the following algorithm.

102 5. Jacobi-type ADMM-Methods for GNEPs

Algorithm 5.11. (Modified Regularized Linearized Jacobi-type ADMM-Method)

(S.0) Choose a starting point (x0, µ0) ∈ X × K, parameters β, γ > 0, and set
k := 0.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For ν = 1, . . . , N , compute

x̂kν := arg min
xν∈Xν

{
ϕν(xν) + 〈∇xνθν(x

k
ν , x

k
−ν) | xν − xkν〉Hν + 〈µk | Aνxν〉K

+β
2

(
‖Aνxν +

∑
i 6=ν Aix

k
i − b‖2

K + γ‖xν − xkν‖2
Hν

)}
.

(5.16)

(S.3) Define

µk+1 := µk + β
(N∑
ν=1

Aν x̂
k
ν − b

)
. (5.17)

(S.4) Let x̂k :=
(
x̂k1, . . . , x̂

k
N

)
, and compute

xk+1 := x̂k + (βγI − βM)−1
(
P̂θ(x

k)− P̂θ(x̂k)
)
. (5.18)

(S.5) Set k ← k + 1, and go to (S.1).

In the following, we show that this algorithm has essentially the same convergence
properties as Algorithm 5.1, requiring a Lipschitz continuity assumption, which is
weaker than the above required cocoercivity assumption. The price we have to pay
is the solution of the linear operator equation (5.18) (with a constant operator,
independent of k). In the finite-dimensional case, this means that we have to solve
a linear system of equations, but, since the matrix is the same for all iterations,
only one (single) matrix decomposition has to be computed, which can then be
reused for all further iterations.

Let us define the two vectors

ŵk+1 :=

(
x̂k

µk+1

)
and wk+1 :=

(
xk+1

µk+1

)
.

Then we see that ŵk+1 corresponds exactly to one iteration of Algorithm 5.1 and
can therefore be viewed as a forward-backward method in a Hilbert space with a
suitably modified scalar product. In order to verify convergence of Algorithm 5.11,
we show that this method may be understood as a Tseng-type splitting method in
the same (modified) Hilbert space. To this end, note that we can indeed compute
wk+1 by the formula

wk+1 := ŵk+1 + β
(
Q−1
β,γPθ(w

k)−Q−1
β,γPθ(ŵ

k+1)
)
. (5.19)

5.3. Modified Regularized Jacobi-type ADMM-Methods 103

To use the general convergence theory for Tseng’s method, we apply his result to
the modified Hilbert space. In particular, this requires Lipschitz continuity. This
task is taken care of in the following result.

Lemma 5.12. Suppose that Pθ from (3.14) is 1/α-Lipschitz continuous in H×K
endowed with the scalar product 〈· | ·〉, and that Qβ,γ ∈ L(H × K) is a strongly
monotone, self-adjoint operator. Then Q−1

β,γPθ is ‖Q
−1
β,γ‖/α-Lipschitz continuous in

H×K endowed with the scalar product 〈· | ·〉Qβ,γ .

Proof. Applying Lemma 2.4 (d) with Q := Qβ,γ implies

‖Q−1
β,γPθ(w)−Q−1

β,γPθ(v)‖2
Qβ,γ

=
〈
Qβ,γ

(
Q−1
β,γPθ(w)−Q−1

β,γPθ(v)
)
| Q−1

β,γPθ(w)−Q−1
β,γPθ(v)

〉
=

〈
Pθ(w)− Pθ(v) | Q−1

β,γ

(
Pθ(w)− Pθ(v)

)〉
≤ ‖Q−1

β,γ‖‖Pθ(w)− Pθ(v)‖2

≤
‖Q−1

β,γ‖
α2

‖w − v‖2 ≤
‖Q−1

β,γ‖2

α2
‖w − v‖2

Qβ,γ
.

This completes the proof.

As in the case where Pθ needs to be cocoercive, we again have the problem that
the operator B = Q−1

β,γP̂θ itself depends on β. However, as already discussed in
Section 5.1, we can resolve this problem by selecting γ accordingly.

Theorem 5.13. Let Qβ,γ ∈ L(H × K) be as defined in (5.4). Suppose that P̂θ
from (3.9) is 1/α-Lipschitz continuous and monotone in H endowed with the usual
scalar product, and that there is at least one variational KKT point of the Nash
equilibrium problem (GNEP). Choose β ∈ (0, α) and take γ ≥ 1

β2 + ‖M‖. Then
the following statements hold:

(a) Qβ,γ is self-adjoint and strongly monotone.

(b) The sequences {wk}k∈ N = {(xk, µk)}k∈N and {ŵk}k∈N = {(x̂k, µk+1)}k∈N
generated by Algorithm 5.11 converge weakly to a variational KKT pair
(x∗, µ∗).

Proof. Since γ > ‖M‖, assertion (a) follows from Remark 5.2. To verify statement
(b), first note that Pθ : H × K → H × K (from (3.14)) is also 1/α-Lipschitz
continuous since P̂θ : H → H is 1/α-Lipschitz continuous (with respect to the given
norm). Using γ ≥ 1

β2 +‖M‖, we notice that Theorem 5.6 (a) is valid; thus we have
‖Q−1

β,γ‖ ≤ 1. Lemma 5.12 therefore yields that Q−1
β,γPθ is 1/α-Lipschitz continuous

in H × K endowed with the scalar product 〈· | ·〉Qβ,γ . From Proposition 5.4,

104 5. Jacobi-type ADMM-Methods for GNEPs

we see that Q−1
β,γTGNEP , Q

−1
β,γT1, Q−1

β,γT2, where TGNEP , T1, T2 are defined as in
(3.16), are maximally monotone in (H × K, 〈· | ·〉Qβ,γ). Further, (5.19) together
with Lemma 5.3 and (5.8) shows that (5.16) and (5.17) from Algorithm 5.11 can
jointly be interpreted as a forward-backward-forward splitting in H×K endowed
with the scalar product 〈· | ·〉Qβ,γ . Thus, the standard convergence result for
Tseng’s splitting method (from, e.g., Theorem 2.56) together with Lemma 2.9
yields statement (b).

Chapter 6

Regularized Gauss-Seidel-type
ADMM-Methods for Generalized
Nash Equilibrium Problems

In this chapter, we introduce two Gauss-Seidel-type ADMM-methods for the prob-
lem (GNEP) discussed in Section 3.2. The first one uses a fixed penalty parameter,
whereas the second one increases the penalty parameter if necessary and therefore
it can be expected to converge faster than the first method. The convergence anal-
ysis presented here is based on [19]. We start again by recalling the generalized
Nash equilibrium problem (GNEP) with N players ν. Recall that the optimization
problem of player ν is given by

min
xν∈Hν

θν(xν , x−ν) + ϕν(xν) s.t.
N∑
ν=1

Aνxν = b, xν ∈ Xν (GNEP)

for all ν = 1, . . . , N , where the symbols are defined as in Section 3.2, i.e.
Hν and K are given Hilbert spaces, ϕν : Hν → R are proper, convex, and
lower semi-continuous functions, θν : H1 × · · · × HN → R are continuously
Fréchet-differentiable with θν(·, x−ν) being convex for any fixed x−ν , Xν ⊂ Hν

are non-empty, closed, and convex sets, Aν ∈ L(Hν ,K), and b ∈ K. As in Sec-
tion 3.2, we write, following standard notation in Nash games, x = (xν , x−ν) and
(yν , x−ν) = (x1, . . . , xν−1, yν , xν+1, . . . , xN). Further, we again use the canonical
abbreviations defined in (3.8).

We assume again that the generalized Nash equilibrium problem (GNEP) has
a non-empty feasible set. Since we have explicit constraints Xν , there is essentially
no loss of generality in assuming that θν and ϕν are real-valued for all ν = 1, . . . , N .
The assumption that the ϕν are real-valued can be circumvented by using a tech-
nical condition. Again, we do not require the operators Aν to be injective or
surjective.

105

106 6. Gauss-Seidel-type ADMM-Methods for GNEPs

This chapter is organized as follows. Section 6.1 states the assumptions un-
der which global convergence results are shown in the subsequent sections. Our
first ADMM-type method with fixed regularization parameters is introduced in
Section 6.2, which also contains the main convergence result as well as a class of
examples showing that regularization is necessary already for N = 2 players, and
that the regularization parameters have to be sufficiently large (for any N ≥ 2). A
modified ADMM-type method using an updating technique for the regularization
parameter together with the corresponding convergence analysis is presented in
Section 6.3. We close this chapter with some comments concerning other related
methods in Section 6.4.

6.1 Assumptions
In this section, we state and discuss the assumptions of the current chapter. In
addition, we compare them with those usually made in splitting-type methods.
Our aim is to directly extend the well-known alternating direction method of mul-
tipliers for optimization problems to generalized Nash equilibrium problems with
shared constraints. As we want to deal with more than two players, we cannot ex-
pect to deal with weaker conditions than those known for the multi-block ADMM,
i.e. the ADMM with more than two functions, for finite-dimensional optimization
problems. In [32], it is shown that the multi-block ADMM is not necessarily con-
vergent when there are more than two (only convex) functions involved. On the
other hand, the recent paper [103] shows that the multi-block ADMM is convergent
if all except two functions are strongly convex.

In our generalized Nash equilibrium setting, this tells us that it is not enough
to require ∂ϕ + P̂θ from (3.14) to be monotone, but that we need ∂ϕ + P̂θ to be
strongly monotone with respect to a certain part of the variable x = (x1, . . . , xN).
In fact, we require ∂ϕ+ P̂θ to be strongly monotone in all except one variable, i.e.
in one variable more than in [103]. Taking into account that our class of problems
is far more general and difficult to deal with, we believe that this condition is
sufficiently weak.

In contrast to the multi-block ADMM, the objective functions of our players
also depend on the strategies of the other players. In order to have more control
over the consecutive iterates, we also need a certain Lipschitz continuity condition
on the gradient of the players’ objective functions. The Lipschitz condition ap-
plied here is weaker than the Lipschitz assumption that is typically used in the
convergence analysis of first-order methods since we assume the Lipschitz conti-
nuity to hold only with respect to certain input variables. Hence both our strong
monotonicity condition and our Lipschitz condition are weaker than the standard
assumptions used in the context of splitting methods.

6.2. ADMM-Method with Fixed Regularization 107

A precise statement of our assumptions follows.

Assumption 6.1. (U) For all ν = 1, . . . , N , let Aν ∈ L(Hν ,K), b ∈ K,
ϕν : Hν → R be proper, lower semi-continuous, convex, domϕν = Hν ,
θν(·, x−ν) convex, and continuously Fréchet-differentiable with the deriva-
tive being continuous with respect to all variables x := (x1, . . . , xN). Let
Xν be non-empty, closed, and convex, and let F := {x ∈ X | Ax = b} be
non-empty.

(S) Let P̂θ and ∂ϕ be defined as in (3.9) and (3.10), respectively. Suppose that
∂ϕ + P̂θ is monotone in x and strongly monotone in x−N := (x1, . . . , xN−1),
i.e. there exists ρ > 0 such that for all x, y ∈ H and all gx ∈ ∂ϕ(x), gy ∈ ∂ϕ(y)
we have〈(

gx + P̂θ(x)
)
−
(
gy + P̂θ(y)

)
| x− y

〉
≥ ρ‖x−N − y−N‖2

= ρ
N−1∑
ν=1

‖xν − yν‖2.

(L) Assume that ∇xνθν is Lipschitz continuous in the last N − ν components,
i.e. there is an Lν > 0 such that

‖∇xνθν(x1, . . . , xν , yν+1, . . . , yN)−∇xνθν(x1, . . ., xν , xν+1, . . . , xN)‖2

≤ L2
ν

N∑
i=ν+1

‖xi − yi‖2

(6.1)

for all ν = 1, . . . , N − 1.

Assumption 6.1 (S) gives us the opportunity to treat problems that are strongly
monotone in N − 1 components only. This allows us to deal with conic and
inequality constraints by means of the approach described in Section 3.2.2.

For notational convenience, let us define

Cν := max
i=ν+1,...,N

‖A∗νAi‖2. (6.2)

6.2 ADMM-Method with Fixed Regularization
This section is devoted to a regularized ADMM-method for solving the problem
(GNEP). The method presented here uses a fixed regularization parameter. A
modification that includes an update of the regularization parameter is discussed

108 6. Gauss-Seidel-type ADMM-Methods for GNEPs

in the subsequent section. The precise statement of the algorithm is given in Sec-
tion 6.2.1, whereas its global convergence is analyzed in Section 6.2.2. Finally,
Section 6.2.3 contains a brief discussion regarding the necessity of the regulariza-
tion. In particular, we show that the regularization is (in general) necessary even
in the case of just two players.

6.2.1 Statement of the Algorithm

The following regularized alternating direction method of multipliers for the solu-
tion of (GNEP) is investigated in this section. Its basic idea is to augment the joint
constraints in order to obtain a separable structure in the remaining constraints
(xν ∈ Xν). We then use the direct extension of the ADMM and view the resulting
optimization problems of each player as minimization problems of the variables xν
alone. A proximal term is added to improve the convergence properties.

Algorithm 6.2. (ADMM-Method with Fixed Regularization)

(S.0) Choose a starting point (x0, µ0) ∈ X × K, parameters β > 0, γν > 0 for all
ν = 1, . . . , N , and set k := 0.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2) For ν = 1, . . . , N , compute

xk+1
ν := arg min

xν∈Xν

{
ϕν(xν) + θν(x

k+1
1 , . . . , xk+1

ν−1, xν , x
k
ν+1, . . . , x

k
N)

+〈µk | Aνxν〉K + γν
2
‖xν − xkν‖2

Hν

+β
2
‖Aνxν +

∑ν−1
i=1 Aix

k+1
i +

∑N
i=ν+1Aix

k
i − b‖2

K

}
.

(6.3a)

(S.3) Define

µk+1 := µk + β

(N∑
ν=1

Aνx
k+1
ν − b

)
. (6.3b)

(S.4) Set k ← k + 1, and go to (S.1).

We note that every subproblem (6.3a) is strongly convex for all ν and all itera-
tions k. Hence, all iterates xk+1 :=

(
xk+1

1 , . . . , xk+1
N

)
are well-defined and uniquely

determined. Throughout our convergence analysis, we implicitly assume that Al-
gorithm 6.2 generates an infinite number of iterates.

The main computational overhead in Algorithm 6.2 stems from solving the op-
timization subproblems in (S.2). However, in contrast to, for example, augmented
Lagrangian-type methods [73, 74], these subproblems are only optimization prob-
lems and not Nash equilibrium problems. Moreover, the subproblems occuring in
(S.2) can typically be solved in an efficient way, sometimes even analytically.

6.2. ADMM-Method with Fixed Regularization 109

6.2.2 Convergence

In this section, we analyze the convergence of Algorithm 6.2 under Assumption 6.1.
To keep the notation reasonably simple, we make extensive use of the abbreviations
introduced in (3.12)-(3.15) (recall that w = (x, µ)). Moreover, it is convenient to
define the auxiliary vectors

x̂ν,k := (xk+1
1 , . . . , xk+1

ν , xkν+1, . . . , x
k
N) for ν = 1, . . . N ; (6.4)

in particular, it holds that x̂N,k = xk+1.
We begin our analysis with two simple results.

Lemma 6.3. Suppose that Assumption 6.1 (U) and (S) hold, and let w∗ = (x∗, µ∗)
be a variational KKT point of (GNEP). Then

〈g + Pθ(w) +G(w) + s | w − w∗〉
≥ 〈g + Pθ(w) +G(w) | w − w∗〉
≥ ρ‖x−N − x∗−N‖2

holds for all x ∈ X , µ ∈ K, g ∈ ∂ψ(w), and s ∈ NW(w), where, again, w = (x, µ)
and ψ is defined in (3.13).

Proof. The first inequality follows from s ∈ NW(w), which implies 〈s | w − w∗〉 ≥ 0.
In order to verify the second inequality, first note that the assumed strong mono-
tonicity of ∂ϕ+ P̂θ with respect to x−N together with Lemma 3.9 yields〈

g + Pθ(w) +G(w)−
(
g∗ + Pθ(w

∗) +G(w∗)
)
| w − w∗

〉
≥ ρ‖x−N − x∗−N‖2

for all g∗ ∈ ∂ψ(w∗) and g ∈ ∂ψ(w). Now, in view of Lemma 3.11, there exists
a particular element g∗ ∈ ∂ψ(w∗) corresponding to the variational KKT pair w∗
such that 〈g∗ + Pθ(w

∗) +G(w∗) | w−w∗〉 ≥ 0 holds for all w ∈ W . By combining
this with the previous inequality for this particular g∗, the statement follows.

The second preliminary result is concerned with the partial uniqueness of a varia-
tional KKT pair.

Lemma 6.4. Suppose that Assumption 6.1 (U) and (S) hold, and let w∗ = (x∗, µ∗)
and w̄ = (x̄, µ̄) be two variational KKT points of (GNEP). Then x∗−N = x̄−N .

Proof. By Definition 3.7 of a variational KKT point, we see that there exist
ḡ ∈ ∂ψ(w̄) and s̄ ∈ NW(w̄) such that 0 = ḡ+Pθ(w̄) +G(w̄) + s̄. Using Lemma 6.3
and the fact that w∗ is a variational KKT pair, we therefore obtain

0 = 〈0 | w̄ − w∗〉 = 〈ḡ + Pθ(w̄) +G(w̄) + s̄ | w̄ − w∗〉 ≥ ρ‖x̄−N − x∗−N‖2,

hence x̄−N = x∗−N .

110 6. Gauss-Seidel-type ADMM-Methods for GNEPs

In order to formulate the optimality conditions of (6.3) as a suitable inclusion, we
introduce two linear operators QN , RN ∈ L(H×K). The first operator

QN(w) := QN(x, µ) :=


γ1x1
...

γNxN
1
β
µ

 (6.5)

represents the regularization. It is easy to see that QN is self-adjoint and strongly
monotone for all γν > 0 and β > 0. The second operator is given by

RN(w) :=



0 −βA∗1A2 −βA∗1AN 0
0 0 −βA∗2A3 . . . −βA∗2AN 0
...

...
0 −βA∗N−1AN 0
0 0 . . . 0 0
0 0 . . . 0 0


w. (6.6)

These two operators allow the following formulation of the subproblems from (6.3)
as a generalized equation.

Lemma 6.5. Under Assumption 6.1 (U), the iteration (6.3) is equivalent to finding
wk+1 ∈ H ×K such that

0 ∈ TGNEP (wk+1) +QN(wk+1 − wk) +RN(wk+1 − wk)

+


∇x1θ1(x̂1,k)−∇x1θ1(xk+1)

...
∇xN−1

θN−1(x̂N−1,k)−∇xN−1
θN−1(xk+1)

0
0

 ,
(6.7)

where TGNEP is the set-valued operator defined in (3.16).

Proof. First note that, due to the Cartesian structure ofW , we have NW(wk+1) =
NX1(xk+1

1) × · · · × NXN (xk+1
N) × NK(µk+1). Furthermore, using the sum rule for

the convex subdifferential, cf. Proposition 2.20 (which can be applied because of
Assumption 6.1 (U)), as well as the definitions of x̂ν,k and µk+1, the optimality

6.2. ADMM-Method with Fixed Regularization 111

conditions of the convex optimization problem (6.3a) can be written as

0 ∈ ∂xνϕν(x
k+1
ν) +∇xνθν(x̂

ν,k) + A∗νµ
k + βA∗ν(Ax̂

ν,k − b)
+γν(x

k+1
ν − xkν) +NXν (x

k+1
ν)

= ∂xνϕν(x
k+1
ν) +∇xνθν(x̂

ν,k) + A∗νµ
k+1 − β

N∑
i=ν+1

A∗νAi(x
k+1
i − xki)

+γν(x
k+1
ν − xkν) +NXν (x

k+1
ν)

=
[
∂xνϕν(x

k+1
ν) +∇xνθν(x

k+1) + A∗νµ
k+1 +NXν (x

k+1
ν)

]
+
[
γν(x

k+1
ν − xkν)

]
+
[
− β

N∑
i=ν+1

A∗νAi(x
k+1
i − xki)

]
+
[
∇xνθν(x̂

ν,k)−∇xνθν(x
k+1)

]
for all ν = 1, . . . , N . It is easy to see that the terms in brackets correspond to the
ν-th row of the operator on the right-hand side of (6.7) (for ν = N , we exploited
the fact that x̂N,k = xk+1).

The last row of (6.7) results from the updating rule (6.3b), which can be
rewritten as

0 =
1

β
(µk+1 − µk)−

(
N∑
ν=1

Aνx
k+1
ν − b

)
,

which, in turn, is equivalent to

0 ∈
[
− Axk+1 + b+NK(µk+1)

]
+
[1

β

(
µk+1 − µk

)]
+
[
0
]

+
[
0
]
,

since NK(µk+1) = {0}. This completes the proof.

Using the definitions of the operator TGNEP and the normal cone, Lemma 6.5
immediately yields the following result.

Lemma 6.6. Under the Assumption 6.1 (U), the iteration (6.3) is equivalent to
finding wk+1 := (xk+1

1 , . . . , xk+1
N , µk+1) and gk+1 ∈ ∂ψ(wk+1), with ψ from (3.13),

such that〈
gk+1 + Pθ(w

k+1) +G(wk+1) +QN(wk+1 − wk) | w − wk+1
〉

+
N−1∑
ν=1

〈∇xνθν(x̂
ν,k)−∇xνθν(x

k+1) | xν − xk+1
ν 〉

−β
N−1∑
ν=1

N∑
i=ν+1

〈A∗νAi(xk+1
i − xki) | xν − xk+1

ν 〉 ≥ 0 ∀w ∈ W .

(6.8)

112 6. Gauss-Seidel-type ADMM-Methods for GNEPs

The previous results enable us to prove our main global convergence theorem.

Theorem 6.7. Assume that problem (GNEP) admits a variational KKT point,
and that Assumption 6.1 holds. Further suppose that γ1 > 0 and

γν >
1

ρ

ν−1∑
i=1

L2
i +

1

ρ
β2

ν−1∑
i=1

Ci(N − i) for all ν = 2, . . . , N, (6.9)

where Lν and Cν are defined in (6.1) and (6.2), respectively. Then the iterates
{wk+1}k∈N generated by Algorithm 6.2 converge weakly to a variational KKT pair
(x∗1, . . . , x

∗
N , µ

∗) of (GNEP). Furthermore, {xk+1
−N }k∈N converges strongly to x∗−N .

Before proving this theorem, let us add some comments. The first regularization
parameter γ1 can be chosen as an arbitrary positive constant. On the other hand,
the remaining regularization parameters have to satisfy condition (6.9), which
implies, in particular, that γ2 < γ3 < . . . < γN , i.e. the lower bounds get more and
more restrictive. Large values of these regularization parameters typically slow
down the convergence. We therefore present a modification of Algorithm 6.2 with
an adaptive update rule for these regularization parameters to avoid unnecessarily
large values of these parameters in the next section. Since the convergence theory
for this adapted version depends on the convergence result for Algorithm 6.2, we
have to investigate the properties of Algorithm 6.2 first.

Let us briefly discuss the special case of N = 2 players in Theorem 6.7. As-
sumption 6.1 then requires ∂ϕ+ P̂θ to be strongly monotone in x1 only, and ∇x1θ1

to be Lipschitz continuous in the second component x2. Both conditions are sig-
nificantly weaker than the usual assumption of P̂θ being strongly monotone and
Lipschitz continuous. The conditions regarding the regularization parameters are
γ1 > 0 and γ2 >

1
ρ

(
L2

1 + β2‖A∗1A2‖
)
. Then we obtain that {(xk+1

1 , xk+1
2 , µk+1)}k∈N

converges weakly to a solution and that {xk+1
1 }k∈N even converges strongly.

Since the Algorithms 5.1 and 6.8 are closely related and the proofs of Theo-
rem 5.7 and Theorem 6.7 use a similar technique, we have to be aware of the fact
that the regularization factor in Algorithm 5.1 is βγ, whereas, we use the factor γ
in Algorithm 6.8. This is just a minor change made for notational convenience.
However, it must be taken into consideration when comparing the conditions stated
in the Theorems 5.6, 5.7, and 6.7.

Proof of Theorem 6.7. First recall that the linear operator QN from (6.5)
is self-adjoint and strongly monotone. Hence it induces a scalar product
〈x | y〉QN := 〈x | QNy〉 in the Hilbert space H×K.

Throughout this proof, the norm induced by this scalar product is denoted by
‖ · ‖QN while we are omitting the index for the original scalar product and the
original norm.

6.2. ADMM-Method with Fixed Regularization 113

Using Lemma 6.3, we obtain

〈gk+1 + Pθ(w
k+1) +G(wk+1) | wk+1 − w∗〉 ≥ ρ‖xk+1

−N − x
∗
−N‖2 (6.10)

for an arbitrary gk+1 ∈ ∂ψ(wk+1). Setting w = w∗ in (6.8), applying the
Cauchy-Schwarz inequality (CSI), and using Young’s inequality twice, the first
time with some ε > 0 and the second time with some δ > 0 (at this stage of
the proof, δ, ε > 0 are arbitrary; however, later these values will be specified in a
suitable way), we obtain

0
Lem. 6.6

≤
〈
gk+1 + Pθ(w

k+1) +G(wk+1) +QN(wk+1 − wk) | w∗ − wk+1
〉

+
N−1∑
ν=1

〈∇xνθν(x̂
ν,k)−∇xνθν(x

k+1) | x∗ν − xk+1
ν 〉

−β
N−1∑
ν=1

N∑
i=ν+1

〈A∗νAi(xk+1
i − xki) | x∗ν − xk+1

ν 〉

(6.10)
≤ 〈wk+1 − wk | w∗ − wk+1〉QN − ρ‖xk+1

−N − x
∗
−N‖2

+
N−1∑
ν=1

〈∇xνθν(x̂
ν,k)−∇xνθν(x

k+1) | x∗ν − xk+1
ν 〉

−β
N−1∑
ν=1

〈 N∑
i=ν+1

A∗νAi(x
k+1
i − xki) | x∗ν − xk+1

ν

〉
CSI

≤ 〈wk+1 − wk | w∗ − wk+1〉QN − ρ‖xk+1
−N − x

∗
−N‖2

+
N−1∑
ν=1

∥∥∇xνθν(x̂
ν,k)−∇xνθν(x

k+1)
∥∥ · ‖xk+1

ν − x∗ν‖

+β
N−1∑
ν=1

∥∥∥ N∑
i=ν+1

A∗νAi(x
k+1
i − xki)

∥∥∥ · ‖xk+1
ν − x∗ν‖

Y oung

≤ 〈wk+1 − wk | w∗ − wk+1〉QN − ρ‖xk+1
−N − x

∗
−N‖2

+
N−1∑
ν=1

(ε
2
‖∇xνθν(x̂

ν,k)−∇xνθν(x
k+1)‖2 +

1

2ε
‖xk+1

ν − x∗ν‖2
)

+
N−1∑
ν=1

(β2δ

2

∥∥∥ N∑
i=ν+1

A∗νAi(x
k+1
i − xki)

∥∥∥2

+
1

2δ
‖xk+1

ν − x∗ν‖2
)

114 6. Gauss-Seidel-type ADMM-Methods for GNEPs

(6.1)
≤ 〈wk+1 − wk | w∗ − wk+1〉QN − ρ‖xk+1

−N − x
∗
−N‖2

+
N−1∑
ν=1

ε

2
L2
ν

N∑
i=ν+1

‖xk+1
i − xki ‖2 +

1

2ε
‖xk+1
−N − x

∗
−N‖2

+
N−1∑
ν=1

β2δ

2

∥∥∥ N∑
i=ν+1

A∗νAi(x
k+1
i − xki)

∥∥∥2

+
1

2δ
‖xk+1
−N − x

∗
−N‖2

Lem. 2.59

≤ 〈wk+1 − wk | w∗ − wk+1〉QN − ρ‖xk+1
−N − x

∗
−N‖2

+
N−1∑
ν=1

ε

2
L2
ν

N∑
i=ν+1

‖xk+1
i − xki ‖2 +

1

2ε
‖xk+1
−N − x

∗
−N‖2

+
N−1∑
ν=1

β2δ(N − ν)

2

N∑
i=ν+1

∥∥A∗νAi∥∥2∥∥xk+1
i − xki

∥∥2
+

1

2δ
‖xk+1
−N − x

∗
−N‖2

= 〈wk+1 − wk | w∗ − wk+1〉QN −
(
ρ− 1

2ε
− 1

2δ

)
‖xk+1
−N − x

∗
−N‖2

+
N−1∑
ν=1

N∑
i=ν+1

(ε
2
L2
ν +

β2δ(N − ν)

2

∥∥A∗νAi∥∥2
)
‖xk+1

i − xki ‖2

(6.2)
≤ 〈wk+1 − wk | w∗ − wk+1〉QN −

(
ρ− 1

2ε
− 1

2δ

)
‖xk+1
−N − x

∗
−N‖2

+
1

2

N−1∑
ν=1

N∑
i=ν+1

(
εL2

ν + β2δCν(N − ν)
)
‖xk+1

i − xki ‖2

= −〈wk+1 − wk | wk+1 − w∗〉QN −
(
ρ− 1

2ε
− 1

2δ

)
‖xk+1
−N − x

∗
−N‖2

+
1

2

N∑
ν=2

‖xk+1
ν − xkν‖2 ·

ν−1∑
i=1

(
εL2

i + β2δCi(N − i)
)

Lem. 2.60
=

1

2
‖wk − w∗‖2

QN
− 1

2
‖wk+1 − wk‖2

QN
− 1

2
‖wk+1 − w∗‖2

QN

−
(
ρ− 1

2ε
− 1

2δ

)
‖xk+1
−N − x

∗
−N‖2

+
1

2

N∑
ν=2

‖xk+1
ν − xkν‖2 ·

ν−1∑
i=1

(
εL2

i + β2δCi(N − i)
)
,

where the penultimate equality follows from an elementary reordering of the cor-
responding terms.

6.2. ADMM-Method with Fixed Regularization 115

Multiplying this inequality by two, using the definition of QN , and exploiting the
block structure of w = (x, µ) = (x1, x−1, µ), we therefore obtain

‖wk+1 − w∗‖2
QN

+
(
2ρ− 1

ε
− 1

δ

)
‖xk+1
−N − x

∗
−N‖2 +

1

β
‖µk+1 − µk‖2 + γ1‖xk+1

1 − xk1‖2

+
N∑
ν=2

‖xk+1
ν − xkν‖2 ·

(
γν − ε

ν−1∑
i=1

L2
i − δβ2

ν−1∑
i=1

Ci(N − i)

)
≤ ‖wk − w∗‖2

QN
.

(6.11)

Assumption (6.9) now guarantees that we can find suitable ε, δ ∈ (1
ρ
,∞) such that

γ̂ν :=

(
γν − ε

ν−1∑
i=1

L2
i − δβ2

ν−1∑
i=1

Ci(N − i)

)
> 0 for all ν = 2, . . . , N.

For the sake of completeness, let us also define γ̂1 := γ1 > 0. Note that the choice
of δ and ε implies

ρ̂ := 2ρ− 1

ε
− 1

δ
> 0.

With these positive scalars, we can reformulate (6.11) as

‖wk+1 − w∗‖2
QN

+ ρ̂‖xk+1
−N − x

∗
−N‖2 +

1

β
‖µk+1 − µk‖2 +

N∑
ν=1

γ̂ν‖xk+1
ν − xkν‖2

≤ ‖wk − w∗‖2
QN
.

(6.12)

Summation of (6.12) for k = 0, 1, . . . , ` yields

∑̀
k=0

(
ρ̂‖xk+1

−N − x
∗
−N‖2 +

1

β
‖µk+1 − µk‖2 +

N∑
ν=1

γ̂ν‖xk+1
ν − xkν‖2

)
≤ ‖w0 − w∗‖2

QN
.

Taking the limit `→∞, we therefore obtain ‖µk+1−µk‖ → 0, ‖xk+1
ν −xkν‖ → 0 for

all ν = 1, . . . , N , and ‖xk+1
−N − x∗−N‖ → 0. Hence wk+1 −wk → 0 and xk+1

−N → x∗−N ,
which is the second part of our claim. It therefore remains to be shown that
{xkN}k∈N and {µk}k∈N are weakly convergent, and that the weak limit is a solution.

In view of (6.12), the sequence {wk+1}k∈N is bounded; thus it has a weakly
convergent subsequence wk+1 ⇀I w̄. The fact that wk+1 − wk → 0 then also
implies wk ⇀I w̄. Since W = X × K is closed and convex as a product of two

116 6. Gauss-Seidel-type ADMM-Methods for GNEPs

closed convex sets it is weak sequentially closed, and therefore w̄ ∈ X ×K. By the
assumed Lipschitz continuity of ∇xνθν in the last N − ν components, we obtain

‖∇xνθν(x̂
ν,k)−∇xνθν(x

k+1)‖2 ≤ L2
ν

N∑
i=ν+1

‖xk+1
i − xki ‖2 → 0. (6.13)

Let us define

∆k :=

QN(wk+1 − wk) +RN(wk+1 − wk) +


∇x1θ1(x̂1,k)−∇x1θ1(xk+1)

...
∇xN−1

θN−1(x̂N−1,k)−∇xN−1
θN−1(xk+1)

0
0

 ,

which converges to zero as a consequence of wk+1 − wk → 0 and (6.13). Recall
from Lemma 6.5 that the optimality conditions of the subproblems from (6.3) can
now be rewritten as

−∆k ∈ TGNEP (wk+1),

where TGNEP denotes the operator from (3.16). Our previous discussion shows
that the left-hand side converges strongly to zero, whereas wk+1 ⇀I w̄. Thus,
by the strong-weak-sequential closedness of the graph of a maximally monotone
operator and the maximal monotonicity of TGNEP , cf. Proposition 3.12, we obtain
0 ∈ TGNEP (w̄). Lemma 3.10, (3.17), and w̄ ∈ W = X × K therefore imply
that w̄ is a variational KKT point of (GNEP). Since (6.12) implies that the
sequence {wk}k∈N is Fejér-monotone with respect to the solution set and that
every cluster point is a variational KKT point, it follows from Proposition 2.29
that wk+1 ⇀ w̄.

One natural question that now naturally arises is how the above proof differs from
the proof of standard ADMM-methods. All proofs of all kinds of ADMM-meth-
ods and related proximal methods make use of the optimality conditions of the
xν-subproblems. In these optimality conditions, the (generalized) derivative of the
objective function only depends on the new iterate xk+1, which is due to the separa-
ble structure of the objective function. In our method, the (generalized) derivative
of the ν-th player’s objective function ϕν + θν depends in parts on the current it-
erate xk+1 and other parts still depend on the old iterate xk, i.e. the generalized
derivative in the optimality condition is∇xνθν(x

k+1
1 , . . . , xk+1

ν−1, x
k+1
ν , xkν−1, . . . , x

k
n)+

∂xνϕν(x
k+1
ν), see the proof of Lemma 6.5. This situation requires special care,

6.2. ADMM-Method with Fixed Regularization 117

which is provided in the above proof. Comparing proofs, our method seems to be
more closely related to the forward-backward method than the standard ADMM,
see [31] and Chapter 5. The manuscript [31] uses a related technique to prove con-
vergence of a certain kind of forward-backward method. Furthermore, the method
presented in Chapter 5 was shown to be equivalent to a forward-backward method
in a weighted scalar product, and a stronger convergence theorem was proved in
Section 5.1.2 using a techniques that is related to the one applied above. The above
considerations are supported by the fact that we solve a non-symmetric variational
inequality, i.e. in the finite-dimensional case the derivative of P̂θ is a non-symmetric
matrix. Therefore, there exists no associated optimization problem.

6.2.3 Necessity of Regularization

Taking into account the situation of the standard ADMM-method for optimization
problems, one might expect that (a) no regularization is necessary for GNEPs with
N = 2 players, and (b) arbitrary (possibly small) regularization parameters γν > 0
are sufficient for the global convergence of GNEPs with N ≥ 3 players. The subse-
quent discussion shows that none of these statements hold. Hence a regularization
is also necessary for two players, and the corresponding regularization parameters
have to be sufficiently large. This shows that the GNEP is a significantly more
difficult class of problems than optimization problems. Altogether, this justifies
that one cannot expect to prove a much stronger convergence result than the one
given in Theorem 6.7.

In order to verify the above statements, let us consider the finite-dimensional
GNEP

min
x1∈Rn1

1

2
xT1U11x1 + xT1U12x2

min
x2∈Rn2

1

2
xT2U22x2 + xT2U21x1

s.t. A1x1 + A2x2 = 0

with N = 2 players. Since both objective functions are quadratic, the correspond-
ing subproblems (6.3) are simple quadratic programs, and hence their optimality
conditions result in a linear system of equations. In fact, an elementary calculation
shows that the corresponding updating scheme from Lemma 6.5 boils down to the
matrix iterationxk+1

1

xk+1
2

µk+1

 =

U11 + γ1I −βA∗1A2 A∗1
U21 U22 + γ2I A∗2
−A1 −A2

1
β
I

−1γ1I −U12 − βA∗1A2 0
0 γ2I 0
0 0 1

β
I


︸ ︷︷ ︸

=:M

xk1xk2
µk

 .

Standard results on splitting methods guarantee that this iteration converges, for
all starting points, to a solution if and only if ρ(M) < 1, where ρ(M) denotes the

118 6. Gauss-Seidel-type ADMM-Methods for GNEPs

spectral radius of M . In other words, for ρ(M) ≥ 1, there exist starting points
such that the above matrix iteration does not converge to a solution. Hence, in the
following, we only have to compute the spectral radius for a particular instance of
the above GNEP (note that a similar reasoning was also used in [32] in order to
verify that the standard ADMM-method is not necessarily convergent for finite-
dimensional optimization problems with more than two blocks).

To be more specific, let us take U11 = 1, U12 = −10, U21 = 10, and U22 = 1.
Then it is easy to see that P̂θ is strongly monotone with modulus ρ = 1 and
Lipschitz continuous with constant L = 11. In particular, this implies that As-
sumption 6.1 holds. Let us further choose A1 = (1, 0)T , A2 = (0, 1)T , β = 1,
and γ1 = 0.01. Then the spectral radius of M depends on the parameter γ2. Us-
ing a simple program, we can compute this spectral radius for different values of
γ2. The corresponding result is shown in Figure 6.1 which shows that ρ(M) < 1
holds for values of γ2 larger than (approximately) 32.1, whereas for all values of γ2

less than 32.1, the spectral radius is larger than one. This example clearly shows
that a regularization is necessary for two-player games, and convergence cannot
be expected, in general, for arbitrary γν > 0.

We close this section by noting that our theoretical lower bound for γ2 from
(6.9) yields γ2 > 100 since L1 = 10 and A∗1A2 = 0 in our case. Hence our theoretical
lower bound is not sharp, though also not a too rough overestimate.

0 20 40 60 80 100 120

γ
2

0

5

10

15

20

25

30

s
p

e
c
tr

a
l
ra

d
iu

s

Figure 6.1: The spectral radius of the iteration matrix plotted against γ2. The red
cross indicates where the value drops below one.

6.3. ADMM-Method with Adaptive Regularization 119

6.3 ADMM-Method with Adaptive Regularization
Theorem 6.7 proves convergence of Algorithm 6.2 for all sufficiently large regular-
ization parameters γν . As the counterexample from Section 6.2.3 shows, one cannot
expect convergence if these regularization parameters are not large enough. On the
other hand, the same counterexample also indicates that the theoretical bounds
from (6.9) are not sharp. Moreover, numerical tests indicate that Algorithm 6.2
often converges for significantly smaller regularization parameters. Since smaller
regularization parameters typically lead to faster convergence, this topic plays a
crucial role for the practical solution of GNEPs by ADMM-type methods.

In Section 6.3.1, we therefore present a modification of Algorithm 6.2 that uses
an adaptive update rule for the regularization parameter. Its convergence, which is
heavily based on the results from the previous section, is discussed in Section 6.3.2.

6.3.1 Statement of the Algorithm

The following method is a modification of Algorithm 6.2 that replaces the fixed
regularization parameters by an adaptive updating procedure. In addition, it in-
cludes a second acceptance criterion for the new iterate that might also be satisfied
for some small values of the regularization parameter. For a concise formulation
of this modified algorithm, let us introduce the abbreviation

rk :=
N−1∑
ν=1

∥∥∥gkν +∇xνθν(x
k) +A∗νµ

k + skν

∥∥∥2

+ ‖γk−1(xkN −xk−1
N)‖2 +

∥∥∥ N∑
ν=1

Aνx
k
ν − b

∥∥∥2

,

(6.14)
for every k, with arbitrary elements gkν ∈ ∂xνϕν(xk) and skν ∈ NXν (xk), see below
for a discussion. To keep the notation simple, we also assume that all players take
the same regularization parameter at each step, i.e. γk1 = · · · = γkN =: γk.

Algorithm 6.8. (ADMM-Method with Adaptive Regularization)

(S.0) Choose a starting point (x0, µ0) ∈ X × K, parameters α ∈ (0, 1), β > 0,
γ0 > 0, τ > 0, κ ∈ N ∪ {0}, Υ > 0 satisfying (6.9), and set k := 0.

(S.1) If a suitable termination criterion is satisfied: STOP.

(S.2a) For ν = 1, . . . , N , compute

xk+1
ν := arg min

xν∈Xν

{
ϕν(xν) + θν(x

k+1
1 , . . . , xk+1

ν−1, xν , x
k
ν+1, . . . , x

k
N)

+〈µk | Aνxν〉K + γk

2
‖xν − xkν‖2

Hν

+β
2
‖Aνxν +

∑ν−1
i=1 Aix

k+1
i +

∑N
i=ν+1Aix

k
i − b‖2

K

}
.

(6.15a)

120 6. Gauss-Seidel-type ADMM-Methods for GNEPs

(S.2b) For all ν = 1, . . . , N −1, compute gk+1
ν ∈ ∂xνϕν(xk+1) and sk+1

ν ∈ NXν (xk+1).

(S.3) Define

µk+1 := µk + β

(N∑
ν=1

Aνx
k+1
ν − b

)
. (6.15b)

(S.4) If γk ≥ Υ, or γk was increased at least once during the last κ iterations, or if

rk+1 ≤ αrk (with rk defined in (6.14)) (6.16)

set γk+1 := γk

else
set γk+1 := γk + τ .

(S.5) Set k ← k + 1, and go to (S.1).

Notice that the main steps (6.15a) and (6.15b) of this algorithm are the same as
(6.3a) and (6.3b) of Algorithm 6.2. Thus Lemma 6.3, Lemma 6.5, and Lemma 6.6
still hold. The idea of the method is to start the iteration with a small γ0 and to
increase this regularization parameter only if this is really necessary. Note that an
estimate Υ for the lower bounds stated in (6.9) is still required, but not in such
a crucial way as in Algorithm 6.2 where the corresponding lower bound directly
influences the size of the regularization parameters, whereas here we can also
choose a rough overestimate for Υ and still deal with relatively small regularization
parameters.

This is due to the third acceptance criterion used in (S.4), which is a sufficient
decrease condition that implies that there exists a sequence {εk+1}k∈N ⊂ H × K
such that εk+1 → 0 and εk+1 ∈ TGNEP (wk+1). Essentially, (6.16) is a linear
convergence condition whose satisfaction can reasonably be expected since our
problem satisfies a strong convexity condition, and splitting-type algorithms are
often linearly convergent under a strong convexity/monotonicity assumption.

The second acceptance condition states that the regularization parameter γk is
not increased if γk was increased within the last κ iterations. This is motivated by
our numerical experience, which shows that after the regularization parameter γk
was increased, the method needs a couple of iterations to get back to its normal
convergence behavior. Something similar can be observed in standard ADMM-
methods, i.e. in the beginning of the iteration, the method often fails to decrease
the KKT conditions that are related to the quantity rk from (6.14); this relation
will now be specified.

In order to understand the definition of rk used in the sufficient decrease con-
dition (6.16), note that rk+1 represents the squared norm of the variational KKT
conditions of the problem (GNEP), except the player N , see Definition 3.7. The
only term that needs some explanation is the difference γk(xk+1

N − xkN) occurring

6.3. ADMM-Method with Adaptive Regularization 121

in rk+1. We claim that this term represents the first-order optimality condition
of (6.15a) for player ν = N (this is why the first term in the definition of rk+1 is
a sum from ν = 1 to N − 1 only). In order to see this, note that the optimality
condition is given by

0 = gk+1
N +∇xN θN(xk+1) + A∗Nµ

k + γk(xk+1
N − xkN) + βA∗N(Axk+1 − b) + sk+1

N

for suitable elements gk+1
N ∈ ∂xNϕN(xk+1) and sk+1

N ∈ NXN (xk+1). Using the
definition (6.15b) of µk+1, we therefore obtain

γk(xkN − xk+1
N) = gk+1

N +∇xN θN(xk+1) + A∗Nµ
k + βA∗N(Axk+1 − b) + sk+1

N

= gk+1
N +∇xN θN(xk+1) + A∗Nµ

k+1 + sk+1
N , (6.17)

which explains our definition of rk.
Note that, for all other players ν = 1, . . . , N − 1, Algorithm 6.8 requires the

computation of arbitrary elements gk+1
ν ∈ ∂xνϕν(x

k+1) and sk+1
ν ∈ NXν (x

k+1).
Apart from the fact that ϕν might be differentiable or the set Xν might be the
entire space, so that these elements are uniquely defined, these elements do not
need to be those particular ones that occur in the optimality conditions of the
corresponding optimization problem of player ν. These subgradients are used in
our method only in the sufficient decrease condition, and there we can work with
arbitrary elements. From our numerical experience, however, good choices of gk+1

ν

and sk+1
ν can be obtained through the subproblem solver of (6.15a).

Finally, let us note that we decided to use the update γk+1 := γk + τ for our
algorithm. Alternatively, we could have chosen the update γk+1 := τγk for some
τ > 1, but our choice keeps γk smaller and seems to work quite well in numerical
experiments.

6.3.2 Convergence

The global convergence of Algorithm 6.8 is heavily based on the known global
convergence of Algorithm 6.2. Basically, we just have to verify that the additional
decrease condition (6.16) does not destroy the global convergence properties stated
in Theorem 6.7. To this end, let us take a closer look at Algorithm 6.2. The
sequence {γk} is monotonically increasing. Moreover, the update γk+1 = γk + τ
can occur only finitely many times due to the test γk ≥ Υ in (S.4). Hence it is clear
that {γk}k∈N eventually stays fixed. For the convergence analysis, we can therefore
assume that γk is a constant sequence, say γk = γ > 0 for all k sufficiently large.

Taking this into account, there are two possible situations: Either γ ≥ Υ or
γ < Υ. In the first case, we are precisely in the situation of the previous section,
and convergence follows from Theorem 6.7. Hence it remains to consider the
second case, i.e. γ < Υ, which means that the sufficient decrease condition (6.16)

122 6. Gauss-Seidel-type ADMM-Methods for GNEPs

is satisfied for all sufficiently large k. This situation is discussed separately in the
following result.

Proposition 6.9. Suppose that (GNEP) admits a variational KKT point, that
the sequence {wk+1}k∈N = {(xk+1, µk+1)}k∈N is generated by Algorithm 6.8, that
Assumption 6.1 holds, and that there is a k0 ∈ N such that (6.16) holds for all
k ≥ k0. Then the sequence {wk+1}k∈N converges strongly to a variational KKT
point of (GNEP).

Proof. The proof is divided into four parts: In the first two parts, we prove that
{µk+1}k∈N and {xk+1

N }k∈N are Cauchy sequences and, therefore, (strongly) conver-
gent. We use this in part three to conclude that the sequence {xk+1

−N }k∈N is strongly
convergent. Finally, in part four we show that every limit point of the sequence
{wk+1}k∈N is a variational equilibrium of (GNEP). Throughout this proof, we
denote by w∗ = (x∗, µ∗) an arbitrary variational KKT pair, whose x∗−N -part is
unique due to Lemma 6.4.
Part 1: First notice that

√
α ∈ (0, 1). Taking the square root of (6.16), we

inductively obtain(N−1∑
ν=1

‖gk+1
ν +∇xνθν(x

k+1) + A∗νµ
k+1 + sk+1

ν ‖2

+‖γk(xk+1
N − xkN)‖2 + ‖Axk+1 − b‖2

)1/2

≤ . . . ≤ αk/2r (6.18)

where r :=
√
r1 with r1 defined in (6.14); note that r is essentially a constant (just

depending on x1 and x0). Summation yields
∞∑
k=1

‖Axk+1 − b‖

≤
∞∑
k=1

(N−1∑
ν=1

‖gk+1
ν +∇xνθν(x

k+1) + A∗νµ
k+1 + sk+1

ν ‖2

+ ‖γk(xk+1
N − xkN)‖2 + ‖Axk+1 − b‖2

)1/2

≤ r
∞∑
k=1

√
α
k

=
r

1−
√
α
. (6.19)

Hence (6.15b) implies
∞∑
k=1

‖µk+1 − µk‖ = β
∞∑
k=1

‖Axk+1 − b‖ ≤ β
r

1−
√
α
.

6.3. ADMM-Method with Adaptive Regularization 123

Consequently, the triangle inequality shows that {µk}k∈N is a Cauchy sequence
and, therefore, convergent to some element µ̄.
Part 2: Similar to the derivation of (6.19), we obtain from (6.18) that

∞∑
k=1

γk‖xk+1
N − xkN‖ ≤ · · · ≤

r

1−
√
α
.

Since {γk}k∈N is eventually constant, this implies that {xkN}k∈N is a Cauchy se-
quence, thus convergent to some element x̄N .
Part 3: Note that (6.16) or (6.18) together with (6.17) and the previous parts
imply

gk+1 + Pθ(w
k+1) +G(wk+1) + sk+1 → 0 (6.20)

where gk+1 := (gk+1
1 , . . . , gk+1

N , 0) ∈ ∂ψ(wk+1) and sk+1 := (sk+1
1 , . . . , sk+1

N , 0) ∈
NW(wk+1) are chosen as in (S.2b) or, for ν = N , given by (6.17). Assume now
that there is a subsequence I and some c > 0 such that ‖xk+1

−N − x∗−N‖ ≥ c > 0

for all k ∈ I. Then (6.20), Lemma 6.3, and the boundedness of {xk+1
N }k∈N and

{µk+1}k∈N imply

ρ‖xk+1
−N − x

∗
−N‖ ≤

〈gk+1 + Pθ(w
k+1) +G(wk+1) + sk+1 | wk+1 − w∗〉
‖xk+1
−N − x∗−N‖

→I 0.

Therefore ‖xk+1
−N − x∗−N‖ →I 0, which contradicts the assumption. Hence

xk+1
−N → x∗−N (recall that the x∗−N -part is unique for all variational KKT points).

Part 4: We have already shown that xk+1
−N → x∗−N , x

k+1
N → x̄N , and µk+1 → µ̄.

It remains to verify that w̄ := ((x∗−N , x̄N), µ̄) is a variational KKT pair. By the
strong convergence of the block components, we have wk+1 − wk → 0. There-
fore Assumption 6.1 (L) yields

‖∇xνθν(x̂
ν,k)−∇xνθν(x

k+1)‖2 ≤ L2
ν

N∑
i=ν+1

‖xk+1
i − xki ‖2 → 0.

Since {γk}k∈N is eventually constant, we can use the linear operators defined in
(6.5) and (6.6) to obtain that

∆k :=

QN(wk+1 − wk) +RN(wk+1 − wk) +


∇x1θ1(x̂1,k)−∇x1θ1(xk+1)

...
∇xN−1

θN−1(x̂N−1,k)−∇xN−1
θN−1(xk+1)

0
0



124 6. Gauss-Seidel-type ADMM-Methods for GNEPs

converges to zero. In view of Lemma 6.5, we have −∆k ∈ TGNEP (wk+1). Using the
strong-weak sequential closedness (thus also strong-strong sequential closedness)
of the graph of a maximally monotone operator and exploiting Proposition 3.12,
we obtain 0 ∈ TGNEP (w̄). Hence w̄ = ((x∗−N , x̄N), µ̄) is a variational KKT pair,
see (3.17) or Lemma 3.10.

Combining Theorem 6.7 and Proposition 6.9, we obtain from the discussion at the
beginning of this section the following convergence result for Algorithm 6.8.

Theorem 6.10. Assume that problem (GNEP) admits a variational KKT point
and that Assumption 6.1 holds. Further suppose that

Υ >
1

ρ

N−1∑
i=1

L2
i +

1

ρ
β2

N−1∑
i=1

Ci(N − i), (6.21)

where Lν and Cν are defined in (6.1) and (6.2), respectively. Then the iterates
{wk+1}k∈N generated by Algorithm 6.8 converge weakly to a variational KKT point
w∗ of (GNEP). Furthermore, {xk+1

−N }k∈N converges strongly to x∗−N .

6.4 Comments
In this chapter and the previous Chapter 5 we presented methods for solving lin-
early constrained generalized Nash equilibrium problems. These methods were mo-
tivated by the very popular alternating direction method of multipliers (ADMM)
for the solution of optimization problems that possess a certain structure. The
convergence rate of ADMM methods is usually slow, but they can often be applied
to large-scale problems since they typically have to solve only small-dimensional
optimization problems at each iteration.

There are several possible modifications of Algorithms 5.1, 6.2, and 6.8 that
might be of interest of their own. For example, the following changes of steps (5.1),
(6.3a), or (6.15a) might be investigated in a way similar to the analysis given in
this chapter and in Section 5.1.2:

• A linearized Gauss-Seidel-ADMM-type modification

xk+1
ν := arg min

xν∈Xν

{
〈∇xνθν(x

k+1
1 , . . . , xk+1

ν−1, x
k
ν , x

k
ν+1, . . . , x

k
N) | xν − xkν〉

+ϕν(xν) + 〈µk | Aνxν〉K + γν
2
‖xν − xkν‖2

Hν

+β
2
‖Aνxν +

∑ν−1
i=1 Aix

k+1
i +

∑N
i=ν+1Aix

k
i − b‖2

K

}
.

This method differs from (6.3a) by replacing the function θν by its
(Gauss-Seidel-) linearization; hence the subproblems to be solved at each
iteration become even simpler.

6.4. Comments 125

• A linearized Gauss-Seidel-Jacobi-ADMM-type modification

xk+1
ν := arg min

xν∈Xν

{
ϕν(xν) + 〈∇xνθν(x

k) | xν − xkν〉

+〈µk | Aνxν〉K + γν
2
‖xν − xkν‖2

Hν

+β
2
‖Aνxν +

∑ν−1
i=1 Aix

k+1
i +

∑N
i=ν+1Aix

k
i − b‖2

K

}
.

This method differs from the previous one by using the old iterate xk in the
linearization of θν , whereas the penalty term includes the new information
xk+1
i for all i = 1, . . . , ν − 1.

• The Jacobi-ADMM-type modification

xk+1
ν := arg min

xν∈Xν

{
ϕν(xν) + θν(xν , x

k
−N) + 〈µk | Aνxν〉K

+β
2
‖Aνxν +

N∑
i=1
i 6=ν

Aix
k
i − b‖2

K + γν
2
‖xν − xkν‖2

Hν

}
.

This update rule corresponds to (6.3a) except that xk+1
i is replaced every-

where by xki for i = 1, . . . , ν − 1, leading to a method that is fully parallel.

We believe that it is possible to extend our convergence theory to the above mod-
ifications, but leave the details for our future research.

126 6. Gauss-Seidel-type ADMM-Methods for GNEPs

Chapter 7

Applications

This chapter presents some applications and numerical results where the algo-
rithms stated in Chapters 4, 5, and 6 are applicable. Since we can expect the
numerical behavior of the modified methods described in Sections 4.3, 5.2, and
5.3 to be equal to the one of the initially introduced Algorithms 4.1 and 5.1,
and because Algorithm 6.8 converges usually much faster than Algorithm 6.2, we
concentrate on Algorithms 4.1, 5.1, and 6.8. The aim is to demonstrate the con-
vergence behavior of the above-mentioned methods and see that the ADMM-type
approach sometimes terminates after a suprisingly small number of iterations de-
spite the fact that the global convergence rate of ADMM-like schemes is usually
not that fast.

Since our examples include (linear) inequality constraints, let us first note that
we can also handle problems like (GNEPconic). In fact, using a slack variable, it was
already noted in Chapter 3 that it is possible to reformulate these problems using
slack variables so that they fit into our framework described in (GNEP). This
allows the application of our methods also to problems of the form (GNEPconic).

If not stated differently, we stop the applied algorithms as soon as the value of

rk :=
N∑
ν=1

∥∥∥gkν +∇xνθν(x
k) + A∗νµ

k + skν

∥∥∥2

+
∥∥∥ N∑
ν=1

Aνx
k
ν − b

∥∥∥2

,

with arbitrary elements gkν ∈ ∂xνϕν(xk) and sν ∈ NXν (xkν), is less than 10−8, which
corresponds to the variational KKT conditions being satisfied up to an accuracy
of 10−4 in the H×K-norm. For optimization problems the same criterion is used
by choosing θν ≡ 0 and gν ∈ ∂xνfν(x

k
ν) for all ν = 1, . . . , N . Notice that, in

general, this termination criterion is not guaranteed to work due to the fact that
the subgradients sk and gk, which occur in the definition of rk, are taken arbitrarily
and might not be the correct ones that imply that rk tends to zero. On the other
hand, if rk converges to zero, this is clearly an indication that we are close to a

127

128 7. Applications

(variational) KKT point. In our numerical experiments, we did not observe any
difficulties with this termination criterion.

If not stated differently, the ADMM-subproblems (4.1), (5.1), and (6.15a) were
solved using the MATLAB® function fmincon, with the gradient and Hessian user
supplied. The OptimalityTolerance and ConstraintTolerance were left on the
default values 10−6.

In order to choose the penalty parameter β required for Algorithms 4.1 and 5.1,
and 6.8, there are some considerations to be made. First, we need to recognize
that there are two quantities included in the condition rk ≤ ε. The first one is
basically the first order optimality condition of player ν

‖gkν +∇xνθν(x
k) + A∗νµ

k + skν

∥∥∥2

,

and the second one is the feasibility of the iterates∥∥∥ N∑
ν=1

Axk+1 − b
∥∥∥2

;

both should be zero in a KKT pair (x∗, µ∗). If we choose β large, we see in the
numerical behavior of all presented methods that the feasibility decreases fast, but
the first order optimality condition stays quite long high. This occurs because the
update of the Lagrange multiplier µk+1 is very small as a consequence of the small
constraint. Also, the large penalty parameter β increases the suitable regulariza-
tion in Algorithms 4.1 and 5.1. This, however, can lead to slower convergence of
the primal optimality condition because the step size in the primal variable xk+1

is penalized, which can slow down the convergence speed further. On the other
hand, if β is chosen small, the first order optimality condition decreases faster
and the constraint stays large for a relatively long time. Hence, it is necessary
to strike a balance between these three effects, and we see by dint of noting the
connection of larger β and larger regularization that, in general, a good choice of
β for Algorithms 4.1 and 5.1 might be smaller than for Algorithm 6.8.

Further, it is well known that some constraints are harder to satisfy than oth-
ers. Thus, it is reasonable to choose the penalty parameter β larger for difficult
constraints and smaller for easier ones. If not stated differently, in the case that
the augmented constraints only consist of identities, we therefore choose β = 1
in all the algorithms. If the augmented constraint is more difficult than summing
parts of the xν , we choose β = 10 in Algorithm 4.1, β = 10 in Algorithm 5.1,
and β = 1000 in Algorithm 6.8. In Algorithm 6.8, the parameters γ0 := 0.1,
α := 0.99999, τ := 1, and κ = 10 are chosen. Finally, we initialize the algorithms
using the starting point (x0, µ0) := (0, 0).

This Chapter is organized as follows. We first present all infinite-dimensional
examples, and in the end we also investigate some finite-dimensional ones. We

7.1. Application to Domain Decomposition 129

begin, in Section 7.1, with an infinite-dimensional optimization problem of splitting
a partial differential equation into smaller and more easily manageable ones by
a domain decomposition approach. Algorithm 4.1 is applied to this problem.
Thereafter, in Sections 7.2 and 7.3, we discuss two infinite-dimensional elliptic
control GNEPs that are actually potential games and therefore can be reduced
to an optimization problem. To these problems, all the presented algorithms can
be applied. Then, in Section 7.4, Algorithm 4.1 is applied to an elliptic control
Nash equilibrium problem that is a potential game but does not possess a shared
constraint and therefore is not a GNEP. Another infinite-dimensional GNEP is
discussed in Section 7.5, and Algorithms 5.1 and 6.8 are applied. We close with
some finite-dimensional examples in Section 7.6. First, in Section 7.6.1, some
finite-dimensional GNEPs and their numerical results for Algorithms 5.1 and 6.8
are presented. Thereafter, in Section 7.6.2, Algorithm 4.1 is compared to other
Jacobi-type ADMM-methods using the l1-minimization problem.

7.1 Application to Domain Decomposition
Domain decomposition is a technique for the solution of boundary value prob-
lems that splits the given domain into smaller ones. Prominent examples are the
methods by Schwarz, which, for certain problems, were shown to be equivalent
to an augmented Lagrangian method applied to the corresponding optimization
problem, see [57, 80]. Here, we follow a similar idea and show how our regular-
ized Jacobi-type ADMM-methods from Chapter 4 can be used to obtain suitable
domain decomposition methods. The central idea is described in Section 7.1.1.
An explicit realization of our method and its application to a particular instance
are discussed in Section 7.1.2, whereas we compute a suitable lower bound for the
choice of our regularization parameter γ from Algorithm 4.1 in Section 7.1.3.

7.1.1 Non-Overlapping Domain Decomposition

In this subsection, we follow [2] to decompose the domain of a partial differential
equation (PDE). For example, Figure 7.1 shows how the unit square can be de-
composed into four different squares. Although we describe the idea of the domain
decomposition method in a general context, we often refer to this particular ex-
ample for its explicit realization. This way, we are able to avoid some technical
notation; moreover, the central idea can be explained much better for this special
setting.

130 7. Applications

Ω1 Ω2

Ω3Ω4

Γ1,2

Γ2,3

Γ3,4

Γ4,1 (1
2
, 1

2
)

Figure 7.1: The unit square Ω decomposed into four squares Ωi.

Let us consider the problem of solving the Laplace equation

−∆y(x) = u(x) ∀x ∈ Ω, y(x) = 0 ∀x ∈ ∂Ω,

where Ω is a bounded, convex Lipschitz domain in Rd and u ∈ L2(Ω). Then the
associated weak formulation is

〈∇y | ∇v〉L2(Ω) = 〈u | v〉L2(Ω) ∀v ∈ H1
0 (Ω). (7.1)

The existence of a weak solution follows from the Lax-Milgram theorem, cf. Sec-
tion 2.1.3. Moreover, it is well known that solving (7.1) is equivalent to finding a
solution of the optimization problem

min
y∈H1

0 (Ω)

{1

2
〈∇y | ∇y〉L2(Ω) − 〈u | y〉L2(Ω)

}
. (7.2)

Now let us decompose our domain Ω into N disjoint, convex Lipschitz subdomains
Ωi such that Ω = Ω1 ∪̇ . . . ∪̇ ΩN . We equip H1

0 with the standard H1-norm, which
implies that there exist unique solutions of the subproblems even on subdomains
Ωi that are in the interior of Ω. Note that this is not true for the methods from
[2,80] where the subdomains are required to have a non-empty intersection with the
boundary of Ω, since the underlying PDE’s are Robin boundary value problems.
This difficulty can also be circumvented for the method from [2] by using the
H1-norm instead of the H1

0 -norm. Nevertheless, even in this case, this method is
not (at least not directly) capable of handling more than two subdomains (with
guaranteed convergence). Furthermore, we stress that the main idea of domain
decomposition is to deal with smaller subproblems in a parallel way. This is totally
reflected by our approach, whereas [2] is a sequential method.

7.1. Application to Domain Decomposition 131

Unfortunately, describing the main idea in a concise way, requires a tech-
nical overhead; in particular, we have to define some appropriate index sets.
To this end, let J denote the set of all pairs (i, j) such that ∂Ωi ∩ ∂Ωj does
not have vanishing d − 1-dimensional measure; thus, in Figure 7.1, we have
J = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 1), (3, 2), (4, 2), (1, 4)}, whereas, e.g., the pairs
(1, 3) and (2, 4) do not belong to J . Further, we denote by Jo a subset of J that
does not contain permutations where the small index "o" stands for ordered; thus,
we choose Jo = {(1, 2), (2, 3), (3, 4), (4, 1)}. Now let us define Γi,j = ∂Ωi ∩ ∂Ωj for
all (i, j) ∈ J and Γi = ∂Ω∩ ∂Ωi. We denote by H1

Γi
(Ωi) the H1(Ωi) functions with

trace equal to zero on Γi.
In the following, we distinguish between the trace operators traceΓi,j and

traceΓj,i . The former is defined on the subdomain Ωi with assigned values on
the boundary Γi,j, whereas the latter denotes the trace operator defined on the
subdomain Ωj with assigned values on the (same) boundary Γj,i = Γi,j.

Remark 7.1. By partial integration, it can be seen easily that

y ∈ H1
0 (Ω)

⇐⇒
(
yi ∈ H1

Γi
(Ωi) ∀i = 1, . . . , N and traceΓi,j(yi) = traceΓj,i(yj) ∀(i, j) ∈ Jo

)
;

furthermore, it holds that u ∈ L2(Ω) if and only if ui ∈ L2(Ωi) for all i = 1, . . . , N ,
where ui denotes the restriction of the given mapping u on Ωi. �

Hence (7.2) can be written as

min
yi∈H1

Γi
(Ωi)

i=1,...,N

{ N∑
i=1

(1

2
〈∇yi | ∇yi〉L2(Ωi) − 〈ui | yi〉L2(Ωi)

)}
s.t. traceΓi,j(yi) = traceΓj,i(yj) ∀(i, j) ∈ Jo. (7.3)

Since the trace operator is linear and continuous, this optimization problem is
exactly of the form (Opt); therefore, we can apply Algorithm 4.1 or 4.16 to (7.3).
Using the notation introduced in (Opt), we have for i = 1, . . . , N that

• Xi = Hi = H1
Γi

(Ωi),

• K =
∏

(i,j)∈Jo L
2(Γi,j),

• fi : Xi → R where fi(yi) := 1
2
〈∇yi | ∇yi〉L2(Ωi) − 〈ui | yi〉L2(Ωi),

• Ai : Xi → K corresponds to the linear trace constraints stated in (7.3).

132 7. Applications

The latter is somewhat technical to describe in general, but for the particular
domain from Figure 7.1, it is easy to see that the corresponding Ai’s are given by

A1 =


traceΓ1,2

0
0

− traceΓ1,4

 , A2 =


− traceΓ2,1

traceΓ2,3

0
0

 ,

A3 =


0

− traceΓ3,2

traceΓ3,4

0

 , A4 =


0
0

− traceΓ4,3

traceΓ4,1

 . (7.4)

We will later need these definitions to estimate the proximal constant γ. Further, it
is easy to see that the subproblems in Algorithms 4.1 and 4.16 consist of solving a
PDE on the subdomains Ωi in every step, or, in a finite element context, of solving
N lower-dimensional linear systems of equations. The corresponding details for
the particular domain illustrated in Figure 7.1 are given in the next section.

Remark 7.2. If ∂Ωi∩∂Ω has (d−1)-dimensional measure larger than zero for all i,
then the Poincaré-inequality implies that all functions fi are strongly convex. Con-
sequently, the corresponding iterates generated by the application of Algorithm 4.1
to the domain decomposition converge strongly in view of Theorem 4.7 (g). �

7.1.2 Application of the Optimization Algorithm

Now we want to apply Algorithm 4.1 to problem (7.3) for the domain displayed in
Figure 7.1. Similar considerations hold for the application of Algorithm 4.16; the
corresponding details are left to the reader.

The constraints in (7.3) are equivalent to traceΓi,j yi−traceΓj,i yj = 0. Following
standard notation in the field of applied analysis, we omit the trace operator and
identify yi on the boundary with its trace; thus, the corresponding constraint is
yi−yj = 0 on Γi,j. Consequently, the subproblems resulting from the four domains
are:

yk+1
1 = arg min

y1∈H1
Γ1

(Ω1)

{(
1

2
〈∇y1 | ∇y1〉L2(Ω1) − 〈u1 | y1〉L2(Ω1)

)
+ 〈µk1,2 | y1〉L2(Γ1,2) − 〈µk4,1 | y1〉L2(Γ4,1)

+
β

2

(
‖y1 − yk2‖2

L2(Γ1,2) + ‖y1 − yk4‖2
L2(Γ4,1)

)
+
βγ

2
‖y1 − yk1‖2

H1
Γ1

(Ω1)

}
,

7.1. Application to Domain Decomposition 133

yk+1
2 = arg min

y2∈H1
Γ2

(Ω2)

{(
1

2
〈∇y2 | ∇y2〉L2(Ω2) − 〈u2 | y2〉L2(Ω2)

)
+ 〈µk2,3 | y2〉L2(Γ2,3) − 〈µk1,2 | y2〉L2(Γ1,2)

+
β

2

(
‖y2 − yk1‖2

L2(Γ1,2) + ‖y2 − yk3‖2
L2(Γ2,3)

)
+
βγ

2
‖y3 − yk3‖2

H1
Γ2

(Ω2)

}
,

yk+1
3 = arg min

y3∈H1
Γ3

(Ω3)

{(
1

2
〈∇y3 | ∇y3〉L2(Ω3) − 〈u3 | y3〉L2(Ω3)

)
+ 〈µk3,4 | y3〉L2(Γ3,4) − 〈µk2,3 | y3〉L2(Γ2,3)

+
β

2

(
‖y3 − yk2‖2

L2(Γ2,3) + ‖y3 − yk4‖2
L2(Γ3,4)

)
+
βγ

2
‖y3 − yk3‖2

H1
Γ3

(Ω3)

}
,

yk+1
4 = arg min

y4∈H1
Γ4

(Ω4)

{(
1

2
〈∇y4 | ∇y4〉L2(Ω4) − 〈u4 | y4〉L2(Ω4)

)
+ 〈µk4,1 | y4〉L2(Γ4,1) − 〈µk3,4 | y4〉L2(Γ3,4)

+
β

2

(
‖y4 − yk3‖2

L2(Γ3,4) + ‖y4 − yk1‖2
L2(Γ4,1)

)
+
βγ

2
‖y3 − yk3‖2

H1
Γ4

(Ω4)

}
,

and the multiplier update is

µk+1
1,2 = µk1,2 + β(yk+1

1 − yk+1
2), µk+1

2,3 = µk2,3 + β(yk+1
2 − yk+1

3),

µk+1
3,4 = µk3,4 + β(yk+1

3 − yk+1
4), µk+1

4,1 = µk4,1 + β(yk+1
4 − yk+1

1),

where the equalities hold in the boundary spaces L2(Γi,j) for (i, j) ∈ Jo.
Using the sign vector defined by

αi,j =

{
+1 if (i, j) ∈ Jo = {(1, 2), (2, 3), (3, 4), (4, 1)}
−1 if (i, j) ∈ J \ Jo = {(2, 1), (3, 2), (4, 3), (1, 4)}

,

we can rewrite these subproblems more compactly as

yk+1
i = arg min

yi∈H1
Γi

(Ωi)

{(
1

2
〈∇yi | ∇yi〉L2(Ωi) − 〈ui | yi〉L2(Ωi)

)
+

∑
j:(i,j)∈J

αi,j〈µki,j | yi〉L2(Γi,j)

+
β

2

∑
j:(i,j)∈J

‖yi − ykj ‖2
L2(Γi,j)

+
βγ

2
‖yi − yki ‖2

H1
Γi

(Ωi)

}
(7.5)

134 7. Applications

for all i = 1, . . . , 4. The associated multiplier update is

µk+1
i,j = µki,j + β(αi,jy

k+1
i + αj,iy

k+1
i) ∀(i, j) ∈ Jo µk+1

i,j = µk+1
j,i (7.6)

in L2(Γi,j).
The optimality conditions of (7.5) are necessary and sufficient since the sub-

problems are strongly convex. These optimality conditions are given by

〈∇yk+1
i ,∇vi〉L2(Ωi) +

∑
j:(i,j)∈J

αi,j〈µki,j | vi〉L2(Γi,j) + β
∑

j:(i,j)∈J

〈yk+1
i − ykj | vi〉L2(Γi,j)

+βγ〈yk+1
i − yki | vi〉L2(Ωi) + βγ〈∇yk+1

i −∇yki | ∇vi〉L2(Ωi) = 〈ui | vi〉L2(Ωi)

(7.7)

for all vi ∈ H1
Γi

(Ωi), i = 1, . . . , 4. This is the weak formulation of the PDE

−(1 + βγ)4yi + βγyi = u+ βγyki − βγ 4 yki in Ωi

βyi + (1 + βγ)∂yi
ni

= βykj + βγ
∂yki
ni
− αi,jµki,j in Γi,j ∀j : (i, j) ∈ J

yi = 0 in ∂Ω ∩ ∂Ωi,
(7.8)

where ni denotes the outer normal of Ωi, i = 1, . . . , 4. The strong convexity
of the subproblems shows that these partial differential equations admit unique
solutions even if the partial domain Ωi does not have any common boundary with
the full domain Ω. Thus, Algorithms 4.1 and 4.16 basically consist of solving the
(uniquely determined) PDEs (7.7) or (7.8), respectively, and thereafter updating
the Lagrange multiplier µ as stated in (7.6).

7.1.3 Estimating the Proximal Constant γ

Now we want to figure out how to choose the constant γ in Algorithms 4.1 and 4.16
for the problem (7.3) on the domain displayed in Figure 7.1. Thus, we have to
estimate the operator norm of M , defined in (4.5). To this end, we first state
a lemma that estimates the operator norm of the trace operator that maps to a
certain boundary part.

Lemma 7.3. Suppose Ωi ⊂ R2 is a rectangle with side lengths L1 and L2, i.e. only
through rotation and translation, it can be taken to a form (0, L1)×(0, L2). Suppose
that Γ is a side of Ωi with length L2. Then ‖ traceΓ ‖2

H1(Ω)→L2(Γ) ≤
(
L1 + 1

L1

)
.

Proof. To prove this lemma, we follow [78, Thm. A.4]. Now first suppose that
v ∈ C1([0, L]); with L > 0, hence v(x) = v(y) +

∫ x
y
v′(s)ds, and therefore

|v(x)| ≤ |v(y)|+
∫ L

0

|v′(s)|ds ≤ |v(y)|+ L
1
2‖v′‖L2(0,L) ∀x, y ∈ [0, L].

7.1. Application to Domain Decomposition 135

Squaring both sides, integrating with respect to y, and using Young’s inequality
with ε = L2, we obtain

Lv(x)2 ≤ (L2 + 1)‖v‖2
L2(0,L) + (L2 + 1)‖v′‖2

L2(0,L)

or, equivalently,

v(x)2 ≤
(
L+

1

L

)
‖v‖2

L2(0,L) +
(
L+

1

L

)
‖v′‖2

L2(0,L). (7.9)

Now suppose that y ∈ C1(Ωi), and w.l.o.g. let Γ = {0} × (0, L2) ⊂ ∂Ωi be one
boundary of Ωi. We obtain by (7.9) that

y(0, x2)2 ≤
(
L1 +

1

L1

) ∫ L1

0

y(x1, x2)2dx1 +
(
L1 +

1

L1

) ∫ L1

0

∂1y(x1, x2)2dx1.

Integrating this equation with respect to x2, we obtain

‖ traceΓ y‖2
L2(Γ) = ‖y‖2

L2(Γ) =

∫ L2

0

y(0, x2)2dx2

≤
(
L1 +

1

L1

)
‖y‖2

L2(Ωi)
+
(
L1 +

1

L1

)
‖∇y‖2

L2(Ωi)

=
(
1 +

1

L1

)
‖y‖2

H1(Ωi)
.

The claim follows from the density of C1(Ωi) in H1(Ωi) and from the fact that
rotation and translation do not change the operator norm.

Lemma 7.4. For our example domain displayed in Figure 7.1 we obtain
‖M‖ < 5.7, where M is defined as in (4.5).

Proof. We see from (7.4) and 〈A∗iAjxj | yi〉 = 〈Ajxj | Aiyi〉 that
A∗1A2 = − trace∗Γ1,2

traceΓ2,1 , A∗2A1 = − trace∗Γ2,1
traceΓ1,2 ,

A∗1A4 = − trace∗Γ1,4
traceΓ4,1 , A∗4A1 = − trace∗Γ4,1

traceΓ1,4 ,

A∗2A3 = − trace∗Γ2,3
traceΓ3,2 , A∗3A2 = − trace∗Γ3,2

traceΓ2,3 ,

A∗3A4 = − trace∗Γ3,4
traceΓ4,3 , A∗3A4 = − trace∗Γ3,4

traceΓ4,3 ,

A∗1A3 = 0, A∗3A1 = 0, A∗2A4 = 0, A∗4A2 = 0.

With this we further notice that

‖Mx‖2 =

∥∥∥∥∥
(4∑

l=1
l 6=i

A∗iAlxl

)4

i=1

∥∥∥∥∥
2

H

≤ ‖A∗2A1x1‖2 + ‖A∗4A1x1‖2 + ‖A∗1A2x2‖2 + ‖A∗3A2x2‖2

+ ‖A∗2A3x3‖2 + ‖A∗4A3x3‖2 + ‖A∗1A4x4‖2 + ‖A∗3A4x4‖2

≤ 8 · max
(i,j)∈Jo

{‖ traceΓi,j ‖2}‖x‖2;

136 7. Applications

hence, with the last lemma and L = 0.5, we obtain ‖M‖ ≤
√

8 · 5/2 =
√

20 < 5.7.

The previous result gives us an estimate of the constant γ appearing in Algo-
rithms 4.1 and 4.16 since it is required that γ > ‖M‖.

7.1.4 Numerical Results of the Domain Decomposition

We implemented the domain decomposition algorithm described in Section 7.1.1
with Python and the FEniCS program package, version 2017.1, see
https://fenicsproject.org/. We used the test example

−∆y = −6 in Ω, y(x) = 1 + x2
1 + 2x2

2 ∀x ∈ ∂Ω, (7.10)

whose exact solution is given by y(x) = 1 +x2
1 + 2x2

2, cf. [77]. The theory from Sec-
tion 7.1.1 applies with standard arguments also to arbitrary Dirichlet conditions in
H1/2(∂Ω); thus, (7.10) is covered by our theory. Motivated by the discussion in Sec-
tion 7.1.3, we chose γ = 5.7 and β = 1 as the parameters in our explicit implemen-
tation of Algorithm 4.1. As a termination criterion, we used ‖yk+1

i − yki ‖2
L2(Ωi)

≤ ε

and ‖yk+1
i − yk+1

j ‖L2(Γi,j) ≤ ε, where the L2-norm is the approximate L2-norm pro-
vided by FEniCS. We are aware that in the first criterion the H1-norm would be
better, but this norm is quite difficult to compute in FEniCS.

We made some experiments with different mesh sizes and different ε; the cor-
responding results are summarized in Table 7.1. The results indicate that the
number of iterations is (almost) independent of the mesh size. Moreover, taking
into account the dimension of the discretized problem, the number of iterations is
relatively small for all test problem instances. Finally, the last column in Table 7.1
shows that the exact error, which is not used as a termination criterion in our im-
plementation since usually the exact solution is unknown, is surprisingly small for
a method whose local rate of convergence is (in general) sublinear.

To visualize the solution process, we also present some images of approximate
solutions generated by the regularized Jacobi-type ADMM-method from Algo-
rithm 4.1, see Figures 7.2–7.4. These figures correspond to three different choices
of ε and show the computed solution for a mesh size whose biggest edge length is
always the same and around 0.013.

https://fenicsproject.org/

7.1. Application to Domain Decomposition 137

Table 7.1: Some results of the regularized Jacobi-type ADMM-method from Algo-
rithm 4.1 with different choices of the termination parameter ε and different mesh
sizes for each fixed ε.

ε largest edge in mesh number of iterations =: k ‖yk − yexact‖L2(Ω)

0.01 0.042 28 2.5 · 10−3

0.01 0.025 28 2.3 · 10−3

0.01 0.013 28 2.3 · 10−3

0.01 0.0042 28 2.3 · 10−3

0.01 0.0013 28 2.3 · 10−3

0.001 0.042 63 4.2 · 10−4

0.001 0.025 62 1.8 · 10−4

0.001 0.013 63 1.1 · 10−4

0.001 0.0042 64 9.4 · 10−5

0.001 0.0013 64 9.3 · 10−5

0.0001 0.042 289 3.9 · 10−4

0.0001 0.025 250 1.2 · 10−4

0.0001 0.013 284 3.2 · 10−5

0.0001 0.0042 302 6.6 · 10−6

0.0001 0.0013 308 3.9 · 10−6

Figure 7.2: Plot of solution with ε = 0.1, number of iterations 5,
‖y5 − yexact‖L2(Ω) = 0.047. There are strong edges between the solutions on the
subdomains.

138 7. Applications

Figure 7.3: Plot of solution with ε = 0.01, number of iterations 28,
‖y28 − yexact‖L2(Ω) = 0.0023. The edges between the solutions on the subdomains
are still clearly visible.

Figure 7.4: Plot of solution with ε = 0.001, number of iterations 63,
‖y63 − yexact‖L2(Ω) = 1.1 · 10−4. If we zoom in, we can still see a small inaccuracy
in the middle of the right edge. This inaccuracy is still there for a finer grid, but
it disappears when smaller values are chosen for ε.

7.2. Elliptic Optimal Control GNEPs with Accumulated Control Bound 139

7.2 Elliptic Optimal Control GNEPs with Accu-
mulated Control Bound

As an example, we now discuss a class of GNEPs that is closely related to those
previously used in [67, 73, 74], where different solution methods are considered.
Our aim is to verify that this example satisfies the requirements that guarantee
convergence of our solution methods introduced in Chapters 5 and 6. Further we
show that this particular GNEP class is equivalent to an optimization problem
and that the algorithms from Chapter 4 can be applied.

In order to describe the example, we slightly change our notation in this sec-
tion to be consistent with the standard notation used in the optimal control set-
ting. The players’ strategies xν ∈ Xν are now called the controls and denoted
by uν ∈ L2(Ω), Ω being a suitable domain in Rd. The so-called state variable
y ∈ H1

0 (Ω) is the solution of an elliptic partial differential equation that depends
on the players’ strategies u = (u1, . . . , uN) ∈ L2(Ω)N . We then consider the opti-
mal control generalized Nash problem

min
uν∈L2(Ω)
y∈H1

0 (Ω)

{1

2
‖y(uν , u−ν)− ydν‖2

L2(Ω) +
αν
2
‖uν‖2

L2(Ω)

}
(7.11a)

s.t. −4y =
∑N

ν=1 uν in Ω,
y = 0 in ∂Ω,

uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω,∑N
ν=1 uν(x) ≤ ψ(x) f.a.a. x ∈ Ω

(7.11b)

with a sufficiently smooth domain Ω. Hence, we have a tracking-type objective
function for each player ν = 1, . . . , N , pointwise lower and upper bounds on the
controls uν , and an additional upper bound on the sum of controls

∑N
ν=1 uν .

7.2.1 Theoretical Considerations

It is desired to apply the algorithms from Chapters 4, 5, and 6 to the problem
(7.11). Before we can do this, we have to investigate the problem in more detail.
For the algorithms from Chapter 4, the problem (7.11) has to be transformed into
the form of (Opt), and for the algorithms from Chapters 5 and 6 it is necessary
to check the assumptions made in Theorems 5.6, 5.7, and 6.10. We start with the
reformulation as an optimization problem (Opt).

Reformulation as an Optimization Problem

In order to apply Algorithm 4.1, we have to show that problem (7.11) is equivalent
to an optimization problem of the form (Opt), i.e. that it is a potential game of

140 7. Applications

a certain form. By rewriting (7.11) as a variational inequality, it can be seen as
in [68, Prop. 3.10] that finding a variational equilibrium of (7.11) is equivalent to
solving the optimization problem

min
u1,...,uN∈L2(Ω)

y∈H1
0 (Ω)

{
1

2
‖y‖2

L2(Ω) +
N∑
ν=1

(αν
2
‖uν‖2

L2(Ω) − 〈ydν | Sνuν〉L2(Ω)

)}
(7.12a)

s.t. −4y =
∑N

ν=1 uν in Ω,
y = 0 in ∂Ω,∑N

ν=1 uν ≤ ψ(x) f.a.a. x ∈ Ω,
uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω,

(7.12b)

where Sνuν denotes the weak solution of

−4z = uν in Ω,

z = 0 in ∂Ω.

Thus, Sν ∈ L(L2(Ω), H1
0 (Ω)) is the solution operator of the Laplace equation from

Section 2.1.3. Taking u1, . . . , uN and y as variables, this problem has a separable
structure as needed for Algorithm 4.1, where the linear constraints are

N∑
ν=1

uν ≤ ψ in Ω,

−4y =
N∑
ν=1

uν in Ω,

y = 0 in ∂Ω.

Since the space Hi from (Opt) is chosen to be L2(Ω), we note that the Hilbert-
triple H1

0 (Ω) ↪→ L2(Ω) ∼= L2(Ω)∗ ↪→ H−1(Ω) is used implicitly. Taking into
account the Hilbert-triple, we interpret the operators Sν as maps from L2(Ω) to
H1

0 (Ω).
Let us first note that we have already discussed that the operator Sν and

−4 are isometric isomorphisms between the spaces H1
0 (Ω) and H−1(Ω); thus,

‖ −4‖H1
0 (Ω)→H−1(Ω) = 1 = ‖S‖H−1(Ω)→H1

0 (Ω), but the norm of Sν as a map from
L2(Ω) to H1

0 (Ω) or L2(Ω) to L2(Ω), is not necessarily equal to one.
In view of the theory presented in Chapters 4, 5, and 6, in particular the

definition of the operatorM stated in (4.5) or (5.3), we have to find upper estimates
of ‖Sν‖L2(Ω)→L2(Ω) and ‖Sν‖L2(Ω)→H1

0 (Ω).

7.2. Elliptic Optimal Control GNEPs with Accumulated Control Bound 141

Proposition 7.5. Suppose that the domain Ω ⊂ Rd is contained in a cube with
edges of length c > 0. Then the solution operator Sν : L2(Ω)→ H1

0 (Ω) of

〈∇yν | ∇vν〉L2(Ω) = 〈uν | vν〉 ∀vν ∈ H1
0 (Ω) (7.13)

satisfies ‖Sν‖L2(Ω)→L2(Ω) ≤ c2 and ‖Sν‖L2(Ω)→H1
0 (Ω) ≤ c.

Proof. We omit the index ν in this proof. The definition of c together with the
Poincaré inequality from, e.g., Theorem 2.10 implies that ‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω)

for all u ∈ H1
0 (Ω). We therefore obtain

1

c2
‖Su‖2

L2(Ω) ≤ ‖∇Su‖2
L2(Ω) = 〈∇Su | ∇Su〉L2(Ω) = 〈u | Su〉L2(Ω)

≤ ‖u‖L2(Ω)‖Su‖L2(Ω),

from which we get

‖S‖L2(Ω)→L2(Ω) = sup
u6=0

‖Su‖L2(Ω)

‖u‖L2(Ω)

≤ c2,

which is the first of our assertions. Further, we obtain again with the Poincaré
inequality

‖Su‖2
H1

0 (Ω) = ‖∇Su‖2
L2(Ω) = 〈∇Su | ∇Su〉L2(Ω) = 〈u | Su〉L2(Ω)

≤ ‖u‖L2(Ω)‖Su‖L2(Ω) ≤ c‖u‖L2(Ω)‖∇Su‖L2(Ω)

= c‖u‖L2(Ω)‖Su‖H1
0 (Ω),

from which we get

‖S‖L2(Ω)→H1
0 (Ω) = sup

u6=0

‖Su‖H1
0 (Ω)

‖u‖L2(Ω)

≤ c,

which is the second of our assertions.

Verification of Cocoercivity and Strong Monotonicity

Now we put the problem (7.11) in the form (GNEPconic) and check the assumptions
that are needed for the convergence of the algorithms from Chapters 5 and 6. Using
the control-to-state-map

S : L2(Ω)N → H1
0 (Ω) ∩ C(Ω), u 7→ y, Su =

N∑
ν=1

Sνuν ,

142 7. Applications

where the last expression uses the linearity of the solution mapping S, we can
rewrite (7.11) as

min
uν∈L2(Ω)

{1

2

∥∥ N∑
ν=1

Sνuν − ydν
∥∥2

L2(Ω)
+
αν
2
‖uν‖2

L2(Ω)

}
s.t. uν ∈ [uaν , u

b
ν],

N∑
ν=1

uν ≤ ψ,

(7.14)

and therefore obtain a GNEP of the form (GNEPconic) by taking

θν(u) =
1

2

∥∥ N∑
ν=1

Sνuν − ydν
∥∥2

L2(Ω)
, ϕν(uν) =

αν
2
‖uν‖2

L2(Ω),

Xν =
{
uν ∈ L2(Ω) | uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω

}
,

Bν = Id, b = ψ.

Our aim is to show that the resulting operator P̂θ is α-cocoercive for a suitable
α > 0. To this end, note that the subsequent analysis makes use of the Gelfand
triple H1

0 (Ω) ⊂ L2(Ω) ∼= L2(Ω)∗ ⊂ H−1(Ω), where we identify the Hilbert space
L2(Ω) with its dual. Moreover, recall that Su and Sνuν are elements of H1

0 (Ω),
but we often view them as elements of the space L2(Ω). Formally, this means that
we often consider the mappings I ◦ S and I ◦ Sν , where I := IH1

0→L2 denotes the
canonical embedding of H1

0 (Ω) into L2(Ω). For notational convenience, we follow
the standard convention and omit writing the mapping I everywhere.

Proposition 7.6. For the problem (7.11) the in (3.9) defined operator
P̂θ : L2(Ω)N → L2(Ω)N is α-cocoercive with

α :=
1

N
min

ν=1,...,N

{ 1

‖Sν‖2
L2(Ω)→L2(Ω)

}
,

where Sν : L2(Ω)→ L2(Ω) is the solution operator of (7.13).

Proof. By an elementary calculation, see [73, Lem. 6.2], we obtain

〈P̂θ(u)− P̂θ(v) | u− v〉L2(Ω)N = ‖Su− Sv‖2
L2(Ω).

7.2. Elliptic Optimal Control GNEPs with Accumulated Control Bound 143

Since ‖S∗νSu‖ ≤ ‖S∗ν‖ ‖Su‖, and thus ‖S∗νSu‖/‖S∗ν‖ ≤ ‖Su‖, we therefore obtain

〈P̂θ(u)− P̂θ(v) | u− v〉L2(Ω)N = ‖Su− Sv‖2
L2(Ω)

=
1

N

N∑
ν=1

‖Su− ydν − (Sv − ydν)‖2
L2(Ω)

≥ 1

N

N∑
ν=1

1

‖S∗ν‖2

∥∥S∗ν(Su− ydν)− S∗ν(Sv − ydν)∥∥2

L2(Ω)

=
1

N

N∑
ν=1

1

‖Sν‖2

∥∥[P̂θ(u)− P̂θ(v)
]
ν

∥∥2

L2(Ω)

≥ 1

N
min

ν=1,...,N

{
1

‖Sν‖2

}∥∥P̂θ(u)− P̂θ(v)
∥∥2

L2(Ω)N
,

which is precisely the statement.

Summarizing the previous results, we finally obtain the α-cocoercivity of the oper-
ator P̂θ with a computable constant α; thus, Algorithms 5.1 and 5.9 are applicable.

Theorem 7.7. Suppose that Ω ⊂ Rd is contained in a cube with side length c > 0.
Then the operator P̂θ : L2(Ω)N → L2(Ω)N for the problem (7.11), as defined in
(3.9), is α-cocoercive with α := 1

Nc4
.

Proof. The statement follows immediately from Propositions 7.5 and 7.6 .

The next theorem shows that Algorithms 6.2 and 6.8 are also applicable.

Theorem 7.8 ([73, Lem. 6.2]). Suppose that Ω ⊂ Rd is contained in a cube with
side length c > 0. Then the operator ∂ϕ+ P̂θ for the problem (7.11), as defined in
(3.9) and (3.10), is ρ-strongly monotone with ρ = minν=1,...,N αν, where the αν are
the Tikhonov parameters from (7.11).

Proof. This follows straight from Theorem 7.7 and

N∑
ν=1

〈
∇uν

(αν
2
‖uν‖2

L2(Ω)

)
−∇vν

(αν
2
‖vν‖2

L2(Ω)

)
| uν − vν

〉
=

N∑
ν=1

αν‖uν − vν‖2
L2(Ω)

≥ ρ‖u− v‖2
L2(Ω)N ,

for all u = (u1, . . . , uN), v = (v1, . . . , vN) ∈ L2(Ω)N .

144 7. Applications

7.2.2 Numerical Results

Using N = 4 and Ω = (0, 1)2 as in our numerical example below, we can choose
c = 1 in Theorem 7.7 and then obtain the α-cocoercivity of P̂θ with α = 1/4 from
Theorem 7.7. From this cocoercivity, we obtain the Lipschitz continuity of P̂θ.
The strong monotonicity of ∂ϕ+ P̂θ was derived in Theorem 7.8.

The norm of the operator M , defined in (4.5) and (5.3), is important for the
application of Algorithm 4.1 and Algorithm 5.1. We estimated the norm of this
operator M for conic constraints in Remark 3.15 and Remark 5.8. Regarding
Algorithm 5.1, this operator norm is required for estimating the right choice of the
regularization constant γ from Theorem 5.6 or Theorem 5.7. By Remark 5.8, we
obtain ‖M‖ ≤ 4(N − 1) = 12. Thus, we have all constants that are necessary for
applying Algorithm 5.1.

As we have seen above, the problem discussed in this section is equivalent
to a separable optimization problem in the variables (y, x1, . . . , xN), i.e. we have
introduced the additional dummy “player” in the variable y. Both the PDE con-
straint and the inequality

∑
uν ≤ ψ will be augmented. Therefore, we obtain

‖M‖ ≤ 4 ·N = 16 for the application of Algorithm 4.1.
As already mentioned, an exact estimate of the value Υ, which corresponds

to the maximal γk in Algorithm 6.8, is not of such importance because the
value of γk usually stays way below this maximal Υ. Therefore, we choose
Υ = 1.1 · 3 · (1 + β2N)/minν=1,...,N(αν).

We implemented the elliptic optimal control GNEP presented above in
MATLAB®, with N = 4, Ω = (0, 1)2, αν = 1 for all ν = 1, . . . , 4,

ydν(x) = 103 max

(
0, 4
(1

4
−max

(
|x1 − z1

ν |, |x2 − z2
ν |
)))

,

where z1 = (0.25, 0.75, 0.25, 0.75) and z2 = (0.25, 0.25, 0.75, 0.75), and the box
constraints [uaν(x), ubν(x)] = [−1, 1] for all ν = 1, . . . , N . We present results for the
two choices

ψ1(x) :=
3

2

(
cos
(

5
√

(x1 − 0.5)2 + (x2 − 0.5)2
)

+ 1

)
and

ψ2(x) := 3

(
cos
(

5
√

(x1 − 0.5)2 + (x2 − 0.5)2
)

+ 1

)
.

Recall that, in Section 3.2.2, we presented two different ways to rewrite problem
(GNEPconic) as an equality constrained problem either by inserting N slack vari-
ables, see (3.18), or by using a single slack variable, see (3.19). We call these
two different approaches A. (3.18) and A. (3.19). However, due to the strong
monotonicity assumption of Algorithm 6.8, only A. (3.19) is applicable for this

7.2. Elliptic Optimal Control GNEPs with Accumulated Control Bound 145

algorithm. In order to keep the presentation simple, A. (3.19) is also used in
Algorithm 4.1.

Figure 7.5: Desired states y1
d, . . . , y

4
d and bounds ψ1, ψ2.

The numerical results for different discretization widths are given in Tables 7.2
and 7.3.

Note that in Algorithm 6.8, the value of γk was not increased once for ψ1. This
led to a very small number of iterations until the termination criterion was satis-
fied. However, for ψ2, the value of γk was increased for the discretization widths
16 and 64; this led to a higher number of iterations. A possible explanation can be
seen from the solution, especially by looking at the pictures of the corresponding
Lagrange multipliers. Figure 7.6 indicates that the Lagrange multiplier for ψ1 is in
L2(Ω), whereas Figure 7.7 allows the interpretation that, for ψ2, the optimal multi-
plier seems to belong to a measure space only. Comparing Algorithms 5.1 and 6.8,
the iteration count for the Gauss-Seidel-type Algorithm 6.8 is smaller than the
iteration number of the Jacobi-type Algorithm 5.1, at least when both algorithms
are applied with one slack variable, i.e. A. (3.19) is used. This is most likely due to
the fact that the Gauss-Seidel scheme uses the newest information to compute the
player’s iterate xk+1

ν , as well as the possibility of a smaller regularization, which is
due to the increase of the regularization during the iteration.

The iteration numbers for the parallel (GNEP-) Algorithm 5.1 are smaller than
the iteration numbers for the parallel optimization Algorithm 4.1. A possible ex-
planation is that in the optimization Algorithm 4.1, there is no other way than
augmenting the inequality constraint as well as the PDE constraint; however, in
Algorithm 5.1, which is tailored for GNEPs, only the shared inequality constraint
has to be augmented. This could lead to a smaller iteration number, since the

146 7. Applications

constraint is easier to satisfy. Further, the optimization in Algorithm 4.1 is car-
ried out in the variables (y, x1, . . . , x4). This is one variable more than used in
Algorithms 5.1 and 6.8. This could also lead to a higher iteration number.

In Chapter 3, two approaches of handling conic constraints were presented.
The first, A. (3.18), used N slack variables, whereas the second, A. (3.19), only
used one. Even if the approach with more slack variables can sometimes keep the
number of iterations lower, the approach from (3.19) is superior to (3.18) taking
into account that the subproblems are harder to solve.

Table 7.2: Number of iterations for the elliptic optimal control GNEP (7.11) with
ψ1 until the KKT conditions are satisfied with accuracy 10−4.

Discretization 16 32 64
Iterations of Alg. 4.1, β = 10, γ = 17.6 1604 1610 1619
Iterations of Alg. 5.1 with A. (3.18), β = 1, γ = 15.4 146 146 147
Iterations of Alg. 5.1 with A. (3.19), β = 1, γ = 15.4 146 146 147
Iterations of Alg. 6.8, β = 1 16 16 16
Final γ in Alg. 6.8 0.1 0.1 0.1

Figure 7.6: The controls u1, . . . , u4, their sum, and the Lagrange multiplier for the
problem with ψ1.

7.3. Elliptic Optimal Control GNEPs with State Bound 147

Table 7.3: Number of iterations for the elliptic optimal control GNEP (7.11) with
ψ2 until the KKT conditions are satisfied with accuracy 10−4.

Discretization 16 32 64
Iterations of Alg. 4.1, β = 10, γ = 17.6 1529 1535 1550
Iterations of Alg. 5.1 with A. (3.18), β = 1, γ = 15.4 142 142 182
Iterations of Alg. 5.1 with A. (3.19), β = 1, γ = 15.4 275 276 287
Iterations of Alg. 6.8, β = 1 55 43 215
Final γ in Alg. 6.8 3.1 0.1 13.1

Figure 7.7: The controls u1, . . . , u4, their sum, and the Lagrange multiplier for the
problem with ψ2.

7.3 Elliptic Optimal Control GNEPs with State
Bound

Here, we discuss a class of examples that is closely related to the one in Section 7.2.
We replace the constraint

∑
uν ≤ ψ on the controls by a more involving constraint

on the state y ≥ ψ; this class of examples was previously used and discussed in
[67,73,74], where different solution methods were considered.

As in Section 7.2, to be consistent with the standard notation used in the
optimal control setting, we slightly change our notation in this section in order
to describe the example. Again, the players’ strategies xν ∈ Xν are now called
the controls and denoted by uν ∈ L2(Ω), Ω being a suitable and sufficiently
smooth domain in Rd. The so-called state variable y ∈ H1

0 (Ω) is the solution

148 7. Applications

of an elliptic partial differential equation that depends on the players’ strategies
u = (u1, . . . , uN) ∈ L2(Ω)N . We then consider the optimal control generalized
Nash problem

min
uν∈L2(Ω)

{1

2
‖y(uν , u−ν)− ydν‖2

L2(Ω) +
αν
2
‖uν‖2

L2(Ω)

}
(7.15a)

s.t. −4y =
∑N

ν=1 uν in Ω,
y = 0 in ∂Ω,

uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω,
y(x) ≥ ψ(x) f.a.a. x ∈ Ω.

(7.15b)

Hence, we have a tracking-type objective function for each player ν = 1, . . . , N ,
pointwise lower and upper bounds on the controls uν , and an additional upper
bound on the state.

Again, let Sνuν denote the solution of

−4z = uν in Ω,

z = 0 in ∂Ω,

and let S denote the all-player-control-to-state-map

S : L2(Ω)N → H1
0 (Ω) ∩ C(Ω), u 7→ y, Su =

N∑
ν=1

Sνuν .

The linearity of the solution mapping of the Laplace equation shows that Su is
the solution of −4y = u =

∑
uν in Ω and y = 0 in ∂Ω. Thus, we can rewrite

(7.15) as

min
uν∈L2(Ω)

{1

2

∥∥ N∑
ν=1

Sνuν − ydν
∥∥2

L2(Ω)
+
αν
2
‖uν‖2

L2(Ω)

}
(7.16a)

s.t. uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω,∑N
ν=1 Sνuν ≥ ψ(x) f.a.a. x ∈ Ω,

(7.16b)

and therefore obtain a GNEP of the form (GNEPconic) by taking

θν(u) =
1

2

∥∥ N∑
ν=1

Sνuν − ydν
∥∥2

L2(Ω)
, ϕν(uν) =

αν
2
‖uν‖2

L2(Ω),

Xν =
{
uν ∈ L2(Ω) | uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω

}
,

Bν = Sν , b = ψ.

Note, that ϕν , θν and P̂θ are the same as in Section 7.2, and therefore the above
discussed results Proposition 7.5 to Theorem 7.8 still hold true, i.e. the operators

7.3. Elliptic Optimal Control GNEPs with State Bound 149

P̂θ and ∂ϕ + P̂θ are cocoercive and strongly monotone, respectively. If Ω is a
cube with edges of length c, then, in Proposition 7.5, the operator-norm of Sν
was estimated. By Remark 5.8, we therefore obtain ‖M‖ ≤ 4(N − 1) = 12 if
Ω = (0, 1)2 for the application of Algorithm 5.1.

For Algorithm 6.8 we choose Υ = 1.1((N − 1) + 3β2N)/min(αν).
As in Section 7.2, we also see that the GNEP (7.15) is equivalent to the opti-

mization problem

min
u1,...,uN∈L2(Ω)

y∈H1
0 (Ω)

{
1

2
‖y‖2

L2(Ω) +
N∑
ν=1

{αν
2
‖uν‖2

L2(Ω) − 〈ydν | Sνuν〉L2(Ω)

}}
(7.17a)

s.t. −4y =
∑N

ν=1 uν in Ω,
y = 0 in ∂Ω,
y ≥ ψ(x) f.a.a. x ∈ Ω,

uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω.

(7.17b)

Here, the constraint y ≥ ψ can be implemented as a box constraint for the variable
y. Thus, the augmented constraint is just −4y =

∑
uν or y =

∑
Sνuν in the

corresponding norm. By Lemma 4.4 and Proposition 7.5, we therefore obtain
‖M‖ ≤ N if Ω = (0, 1)2 for the application of Algorithm 4.1.

We implemented the elliptic optimal control GNEP presented above with the
same functions and parameters as [67,73,74] in MATLAB®, i.e.N = 4, Ω = (0, 1)2,
α = (2.8859, 4.3374, 2.5921, 3.9481), and uaν = −12, ubν = 12 for all ν = 1, . . . , 4.
Further we choose

yd1 = ξ1 − ξ4, yd2 = ξ2 − ξ3, yd3 = ξ3 − ξ2, yd4 = ξ4 − ξ1 (7.18)

where

ξi(x) = 103 max

(
0, 4
(1

4
−max

(
|x1 − z1

i |, |x2 − z2
i |
)))

and z1 = (0.25, 0.75, 0.25, 0.75), z2 = (0.25, 0.25, 0.75, 0.75). The constraint func-
tion is

ψ(x) :=

(
cos
(

5
√

(x1 − 0.5)2 + (x2 − 0.5)2
)

+ 0.1

)
.

The desired states of the players ν = 1, . . . , 4 are plotted in Figure 7.8.

150 7. Applications

Figure 7.8: Desired states y1
d, . . . , y

4
d and state bound ψ.

The numerical results for different algorithms and discretization widths are
given in Table 7.4. Here, almost everything already said in Section 7.2.2 about
the convergence behavior of Algorithms 4.1, 5.1, and 6.8 and the two approaches
A. (3.18) and A. (3.19) could be repeated. Only the convergence behavior of
Algorithm 4.1 changes a bit because now the state bound y ≥ ψ was implemented
as a box constraint, keeping the iteration number lower than the iteration number
of Algorithm 5.1.

Also note that, for this example, there was no need to increase γk at any
iteration of Algorithm 6.8, which kept the total number of iterations very small
for essentially all levels of discretization.

Table 7.4: Number of iterations for the elliptic optimal control GNEP (7.15) until
the KKT conditions are satisfied with accuracy 10−4.

Discretization 16 32 64
Iterations of Alg. 4.1, β = 10, γ = 4.4 330 1012 4303
Iterations of Alg. 5.1 with A. (3.18), β = 10, γ = 13.42 818 2660 7420
Iterations of Alg. 5.1 with A. (3.19), β = 10, γ = 13.42 824 2670 7456
Iterations of Alg. 6.8, β = 1000 95 95 95
Final γ in Alg. 6.8 0.1 0.1 0.1

7.4. Elliptic Optimal Control NEP 151

Figure 7.9: Plot of the controls u1, . . . , u4 and the state y; the last two figures dis-
play the Lagrange multiplier λ, once in the space H1

0 (Ω), corresponding to our algo-
rithms, and once in (the isomorphic space) H−1(Ω), which corresponds to the mul-
tiplier if Algorithms 5.1 and 6.8 would have been applied to the H−1(Ω)-setting),
for the problem with the state constraint y ≥ ψ.

7.4 Elliptic Optimal Control NEP
The elliptic control GNEPs from Sections 7.2 and 7.3 were reformulated as an
optimization problem in order to illustrate the convergence behavior of the opti-
mization algorithm from Chapter 4. Omitting the constraints

∑
uν ≤ ψ or y ≥ ψ

in the problems (7.11) or (7.15), respectively, leads to the problem

min
uν∈L2(Ω)

{1

2
‖y(uν , u−ν)− ydν‖2

L2(Ω) +
αν
2
‖uν‖2

L2(Ω)

}
(7.19a)

s.t. −4y =
∑N

ν=1 uν in Ω,
y = 0 in ∂Ω,

uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω.
(7.19b)

However, this is now a Nash problem and not a GNEP; therefore, an application
of the algorithms designed for GNEPs is not appropriate. As seen in Section 7.2.1,

152 7. Applications

this Nash problem can be reformulated into the linearly constrained optimization
problem

min
u1,...,uN∈L2(Ω)

y∈H1
0 (Ω)

{
1

2
‖y‖2

L2(Ω) +
N∑
ν=1

{αν
2
‖uν‖2

L2(Ω) − 〈ydν | Sνuν〉L2(Ω)

}}
(7.20a)

s.t. −4y =
∑N

ν=1 uν in Ω,
y = 0 in ∂Ω,

uν(x) ∈ [uaν(x), ubν(x)] f.a.a. x ∈ Ω.
(7.20b)

Therefore, this example is well suited to demonstrate the convergence behavior of
the optimization algorithm from Chapter 4.

We use the control constraints uaν ≡ −2 and ubν ≡ 2, and take β = 10 as our
penalty parameter. The other input data stay the same as in Section 7.3. The
iteration counts for different discretization widths are displayed in Table 7.5, and
the solutions are plotted in Figure 7.10.

Table 7.5: Number of iterations of Algorithm 4.1 for (7.20) until the KKT condi-
tions are satisfied with accuracy 10−4, where β = 10 and γ = 4.4. "Discretization"
denotes the number of nodes of the discretization mesh in each dimension.

Discretization 16 32 64
Iterations, β = 10 176 175 175

Figure 7.10: Plot of the controls u1, . . . , u4, the state y, and the Lagrange multiplier
λ; the last two figures display the Lagrange multiplier λ.

7.5. Environmental Differential Games 153

7.5 Environmental Differential Games
Another infinite-dimensional GNEP results from a class of differential games,
which are quite popular in the literature, cf. [52, 53,90]. We use a modification of
an example from [73], where a more detailed discussion can be found. The only
modification we made is that we changed some constants. The problem of player
ν is given by

min
uν∈L2(0,1),yν∈H1(0,1)

∫ 1

0

[
qν
(
uν(t), yν(t)

)
+ rν

(
y1(t), . . . , yN(t)

)]
dt

s.t.
N∑
µ=1

eµyµ(t) ≤ ψ(t), (7.21a)

uν(t) ∈ [0, umaxν (t)], (7.21b)
ẏν(t) + bνyν(t) = uν(t), (7.21c)
yν(0) = y0

ν . (7.21d)

We choose N = 2,

qν
(
uν(t), yν(t)

)
=
a1

2
yν(t)

2 +
a2

2
uν(t)

2, rν
(
y1(t), . . . , yN(t)

)
=

−c · yν(t)∑N
i=1 yi(t) + d

,

and the constants a1 = 0.1, a2 = 0.5, b1 = 0.2, b2 = 0.5, c = 1.5, e1 = 2, e2 = 1,
d = 1, y0

1 = 0, y0
2 = 1, umax1 (t) = umax2 (t) = +∞, as well as the mapping

ψ(t) =


1.01 if t ∈ [0, 1/3],

1.00 if t ∈ (1/3, 2/3],

0.99 if t ∈ (2/3, 1].

To satisfy the constraints (7.21c) and (7.21d), we use an affine linear solution oper-
ator S such that Suν = yν , as in Section 7.2. The box constraints (7.21b) represent
our set Xν , while (7.21a) is enforced through the augmented Lagrangian approach.
Some involving but easy computations show that the problem is Lipschitz contin-
uous and strongly monotone in u.

To estimate the constant γ from Algorithm 5.1, we first recognize that y0
2 = 1

and u1(t), u2(t) ≥ 0 imply that we never divide by zero in the definition of rν .
Regarding the constants α and ‖M‖, we take α = a2/(c · d), ‖M‖ = 1.8.

The numerical results for this example, using different discretization levels of
this differential game, are summarized in Table 7.6. Recalling that the regulariza-
tion parameter γk generated by Algorithm 6.8 must be divided by β in order to
compare it with the regularization parameter γ used in Algorithm 5.1, cf. page 112,

154 7. Applications

the final value of γk generated by Algorithm 6.8 is still quite small. The difference
in the iteration count of the application of Algorithm 6.8 with 128 discretization
points and the other levels of discretization can be explained by the fact that
the final regularization parameter is 2.1 for the 128 discretization width and 1.1
for the others. This demonstrates very well that the approach of increasing the
regularization parameter can sustainably reduce the number of iterations. The
corresponding solutions are depicted in Figure 7.11.

Table 7.6: Number of iterations for the elliptic optimal control GNEP (7.21) until
the KKT conditions are satisfied with accuracy 10−4.

Discretization 128 256 512 1024 2048
Its. of Alg. 5.1, A. (3.18), β = 10, γ = 1.867 641 642 642 643 645
Its. of Alg. 5.1, A. (3.19), β = 10, γ = 1.867 621 622 622 621 621
Its. of Alg. 6.8, β = 1000 595 358 358 359 359
Final γ in Alg. 6.8 2.1 1.1 1.1 1.1 1.1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

u
1

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

u
2

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

y
1

0 0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

y
2

0 0.2 0.4 0.6 0.8 1

0.97

0.98

0.99

1

1.01

Constraint

0 0.2 0.4 0.6 0.8 1

-20

0

20

40

60

λ

Figure 7.11: Optimal controls u1, u2, optimal states y1, y2, satisfaction of the con-
straint, and Lagrange multiplier for the environmental differential game.

7.6. Finite-Dimensional Examples 155

7.6 Finite-Dimensional Examples
In this section, we demonstrate the convergence behavior of the presented meth-
ods on some finite-dimensional examples. First, we state some finite-dimensional
GNEP examples and apply Algorithms 5.1 and 6.8 to them. Thereafter, a compar-
ison of different Jacobi-type methods is conducted on the l1-minimization problem.

7.6.1 Additional Examples of GNEPs

Here, we consider some finite-dimensional GNEP examples taken from the litera-
ture. Since we sometimes modify them slightly to fit within our framework, we
restate these examples explicitly. Note that we take ϕν ≡ 0 for all ν in these
examples.

Example 7.9. The first example is taken from [45]. There are two players ν,
and each is in charge of a single one-dimensional decision variable xν ∈ R. The
problems of these two players are given by

minx1∈R (x1 − 1)2 minx2∈R (x2 − 1
2
)2

s.t. x1 + x2 ≤ 1 s.t. x1 + x2 ≤ 1.

While there is only one variational Nash equilibrium (3/4, 1/4), the set of all
generalized Nash equilibria for this example is {(α, 1− α) | α ∈ [1/2, 1]}. For this
example, we choose β = 1 and γ = 5.5 in Algorithm 5.1, and β = 1, Υ = 1000 in
Algorithm 6.8.

�

Example 7.10. The second GNEP is taken from [47, 82] and also con-
sists of two players. The first one controls the two-dimensional variable
x1 = (x1,1, x1,2)T =: (y1, y2)T ∈ R2, whereas the second player controls a one-
dimensional variable x2 =: y3 ∈ R. The optimization problem of the first player is

miny1,y2 y2
1 + y1y2 + y2

2 + (y1 + y2)y3 − 25y1 − 38y2

s.t. y1, y2 ≥ 0,

y1 + 2y2 − y3 ≤ 14,

3y1 + 2y2 + y3 ≤ 30,

and the optimization problem of the second player is

miny3 y2
3 + (y1 + y2)y3 − 25y3

s.t. y3 ≥ 0,

y1 + 2y2 − y3 ≤ 14,

3y1 + 2y2 + y3 ≤ 30.

156 7. Applications

The set of all Nash equilibria is given by {(α, 11 − α, 8 − α) | α ∈ [0, 2]}, where
(0, 11, 8) is a normalized Nash equilibrium. For this example, we choose β = 1 and
γ = 30.8 in Algorithm 5.1, and β = 1, Υ = 1000 in Algorithm 6.8. �

Example 7.11. The third example is a modification of the duopoly model from
[76]. The N = 2 players ν have control of the one-dimensional variable xν ∈ R,
representing their production of a given product. Their objective functions, repre-
senting the profit, are given by

θν(xν , x−ν) = xν
(
ρ(x1 + x2) + λ− d

)
, ν = 1, 2.

The production capacity of each player is limited by the individual constraints
xν ∈ [0, 10]. Furthermore, both players share a resource constraint given by
x1 + x2 ≤ r. We choose d = 20, λ = 4, ρ = 1, and r = 9. For this example,
we choose β = 1 and γ = 9.43 in Algorithm 5.1, and β = 1, Υ = 1000 in Algo-
rithm 6.8. �

Example 7.12. The fourth example is a modification of the electric demand
response management example from [110]. We haveN = 5 players, each controlling
a one-dimensional variable xν ∈ R, representing their energy consumption. The
objective function of player ν is

θν(xν , x−ν) = a(xν − cν)2 +
(
b

N∑
µ=1

xµ + p
)
xν .

Because of environmental concerns or supply shortages, the total energy con-
sumption has to be smaller than a certain bound r, i.e.,

∑N
µ=1 xµ ≤ r. Fur-

ther, the players are in a certain way stubborn and want their energy consump-
tion to be in an interval around cν ; for simplicity, we say that we have the
box constraint xν ∈ [0.8cν , 1.2cν]. The implementation uses the parameters
a = 1, b = 0.04, p = 5, r = 250, and cν = 50 + 5(ν − 1) for ν = 1, . . . , 5.
For this example, we choose β = 1 and γ = 12.5 in Algorithm 5.1, and β = 1,
Υ = 1000 in Algorithm 6.8. �

The numerical results obtained from Algorithm 5.1 and Algorithm 6.8 are sum-
marized in Table 7.7. Note that the algorithms are applied to these problems by
taking ϕν ≡ 0 for all examples. To this end, the corresponding cocoercivity modu-
lus α is computed by the maximal and minimal eigenvalues of the symmetric part
of the constant (maximally monotone) matrix (P̂)′. Then, we choose β = 1 and
γ = 1.1(1/(2αβ) + ‖M‖), where ‖M‖ is approximately the maximal eigenvalue of
the symmetric, positive definite matrixM . Since all the constraints are considered
easy, β = 1 was chosen.

7.6. Finite-Dimensional Examples 157

Table 7.7: Number of iterations for the elliptic optimal control GNEP (7.11) with
ψ2 until the KKT conditions are satisfied with accuracy 10−4.

Example 7.9 7.10 7.11 7.12
Iterations of Alg. 5.1 with A. (3.18) 25 279 35 75
Iterations of Alg. 5.1 with A. (3.19) 25 279 67 70
Iterations of Alg. 6.8 14 19 23 56
Final γ in Alg. 6.8 0.1 0.1 0.1 3.1

7.6.2 l1 Minimization

One of the most used test problems for separable, convex algorithms is the class
of l1 minimization problems. Among this class of problems, we chose the basis
pursuit problem to compare the different Jacobi-type ADMM-methods outlined in
Remark 4.2 with each other. Hence, we consider the optimization problem

min
x∈Rn
‖x‖1 s.t. Ax = b,

where A ∈ Rm×n. Thus, we are able to split our problem into n one-dimensional
problems whose solutions can be computed analytically, see [63, Section 7.4.1].

We use the technique of performance profiles for benchmarking optimization
algorithms as introduced in [36]. Let us explain this technique a bit: We have
a set of test problems P and apply different solvers from a set of solvers S to
them. Let the number of iterations that the solver s ∈ S needs for the problem
p ∈ P is denoted by tp,s. If the solver s ∈ S does not solve the problem after a
maximal iteration count, set tp,s =∞. Define the performance ratio of solver s to
the problem p by

rp,s =
tp,s

min{tp,s̃ | s̃ ∈ S}
.

The performance ratio of the solver s ∈ S is now

ρs(τ) =
1

|P |
size

{
p ∈ P | rp,s ≤ τ

}
.

That means ρs(τ) describes the number of test problems that the method s solves
with a maximum of τ ·min{tp,s | s ∈ S} iterations.

The test problem set that was used in our numerical test is the SPEAR collec-
tion from http://wwwopt.mathematik.tu-darmstadt.de/spear/ that provides
us also with the exact solution xexact. In order to keep the overall computational
time of the comparison within acceptable bounds, we only used those test prob-
lems whose number of columns was smaller than 3000. As a termination criterion

http://wwwopt.mathematik.tu-darmstadt.de/spear/

158 7. Applications

we took ‖xk − xexact‖∞ ≤ 10−4, and the problem was considered not solved if the
algorithm required more than one million iterations.

Our comparison includes the following algorithms:

1. The regularized Jacobi-type ADMM-method from Algorithm 4.1 with param-
eters β = 0.002 and γ = 1.1 ·‖ATA−diag(ATA)‖∞, where ‖A‖∞ denotes the
maximum absolute row sum of the current matrix A from the test problem
set.

2. The ATi Ai-norm regularized Jacobi-type ADMM as described in Re-
mark 4.2 (d) using the parameter β = 0.003.

3. The Jacobi-type ADMM as described in Remark 4.2 (a), with step size
α = 1.999 · (1−

√
N
N+1

) as suggested in [63], where N denotes the number
of columns of the matrix A. The penalty parameter β was chosen to be
β = 0.2.

4. The twisted ADMM described in Remark 4.2 (e), with penalty parame-
ter β = 0.0001 and proximal constant γ = 1.1 · (max{diag(ATA)} −
min{diag(ATA)}), as suggested in [107].

5. The regularized Jacobi-type ADMM-method from [34] that is equal to the
one from Algorithm 4.1 except for the choice of the proximal constant γ and
a step size τ in the dual variable, as already discussed in Remark 4.2 (c). We
choose the parameters β = 0.003, τ = 0.7, and γi = 1.1 · (N

2−τ − 1)ATi Ai.

6. The Jacobi-type ADMM as described in Remark 4.2 (a), but this time with
the step size strategy

α = 1 · ‖w
k − ŵk‖2

G + 2(µk − µ̂k)T (A(xk − x̂k))
‖wk − ŵk‖2

G

introduced in [63] and the penalty parameter β = 0.06.

The above choices of the parameters are either motivated by the corresponding
theory or based on some preliminary numerical experiments to get an optimal
behavior for each of the algorithms investigated here.

The amount of work per iteration for the first five methods is essentially the
same. Hence, the performance profile presented in Figure 7.12 based on the iter-
ation count gives a good idea of the relative performance of each of these meth-
ods. The reason for using the iteration count and not the computation time is
that we implemented the algorithms in MATLAB® and CPU times provided by
MATLAB® seem to be somewhat unreliable.

In Figure 7.12, Algorithm 4.1 has by far the best performance among all Ja-
cobi-type ADMM-methods considered here. The criteria for the choice of γ in

7.6. Finite-Dimensional Examples 159

the twisted ADMM-method from [107] and the regularized Jacobi ADMM from
[34] seem to be more restrictive and therefore lead to slower convergence of the
corresponding algorithms. Furthermore, since all test problems have a relatively
high dimension with N ≥ 1024, it follows that the regularization method involving
the ATi Ai term yields a very high proximal constant γ, which leads to the poor
behavior of this method; this disadvantage may vanish for problems with smaller
dimensions. The Jacobi ADMM with constant step size has such a poor numerical
behavior, since it has only a very small step size when the number of subproblems
is high.

Figure 7.12: Performance profile for the first five Jacobi-type ADMM-methods.

For the second performance profile in Figure 7.13, we also include the sixth
method mentioned above. The comparison is again based on the iteration count;
however, in this case one should take into account that each iteration of the sixth
method, which needs to compute a certain step size at each iteration, is (at least)
twice as expensive as all the other methods. Nevertheless, Figure 7.13 indicates
that this step size rule makes this method more efficient, even more than Algo-
rithm 4.1. On the other hand, even though Algorithm 4.1 works quite well, it was
not our intention to create the fastest method, but to show that certain regularized
Jacobi-type ADMM-methods can be interpreted as a proximal-point method.

160 7. Applications

Figure 7.13: Performance profile for all six Jacobi-type ADMM-methods, the sixth
method being (at least) twice as expensive per iteration as all other methods.

Chapter 8

Comments and Outlook

The results presented in the preceding chapters provide a fairly comprehensive
picture of alternating direction methods of multipliers for generalized Nash equi-
librium problems in Hilbert spaces, as well as some insight into ADMM-methods
for linearly constrained optimization. By construction, these approaches do not
converge fast, but since they have to solve only small-dimensional optimization
problems at each iteration, they can usually be applied to large instances. In
this chapter, we conclude the thesis by summarizing the main results, highlighting
some essential assumptions, and discussing possible topics of future research.

Constrained Optimization
In Chapter 3, we showed that the KKT conditions of a convex, separable, linearly
equality constrained optimization problem can be transformed into an equivalent
formulation using maximally monotone operators. The main results regarding this
reformulation are stated in Lemma 3.3 and Proposition 3.4. This reformulation
was then exploited in Chapter 4, where two regularized Jacobi-type ADMM-meth-
ods for optimization were presented and analyzed. The two algorithms are, on the
one hand, the weakly convergent Algorithm 4.1, which is equivalent to a proxi-
mal-point method in a certain scalar product and, on the other hand, the strongly
convergent Algorithm 4.16, which can be interpreted as a particular realization of
Halpern’s method. The main results concerning these algorithms are their respec-
tive convergence theorems, i.e. Theorems 4.7 and 4.17. The corresponding proofs
of convergence are based on the proximal-point method or its modification intro-
duced by Halpern. Even though we have shown by means of an example that our
proximal-point interpretation might not converge for non-symmetric matrices Q,
the convergence of the regularized Gauss-Seidel alternating direction method for

161

162 8. Comments and Outlook

N > 2 remains an open question. The current technique of proof is not applicable
in this setting, so that further research on this issue is necessary.

Generalized Nash Problems
In Chapter 3, we also discussed the solution concept of variational equilibria and
variational KKT pairs for generalized Nash equilibrium problems. Inspired by
the results for optimization problems, the variational KKT conditions were equiv-
alently rewritten as an inclusion problem with maximally monotone operators,
and as a variational inequality. These results are stated in Lemmas 3.10 and 3.11
as well as in Proposition 3.12. Further, it was discussed how to incorporate lin-
ear inclusion constraints in the framework of linear equality constraints. These
reformulations with maximally monotone operators and variational inequalities
were then used to derive ADMM-type algorithms for linearly equality constrained
GNEPs in the Chapters 5 and 6.

In Chapter 5, we presented three new methods for solving linearly constrained
generalized Nash equilibrium problems, which were inspired by the alternating
direction method of multipliers. The first method is the basic regularized Jacobi-
type ADMM-method as stated in Algorithm 5.1. The weak convergence of this
method under a cocoercivity assumption was shown through a reinterpretation as a
forward-backward splitting in Theorem 5.6 and, in addition, a self-contained proof
was presented in Section 5.1.2. The second and third method were then based on
the forward-backward interpretation of this basic regularized Jacobi-type ADMM-
method. The second one is the strongly convergent modification described in Sec-
tion 5.2, where the convergence theory is based on a reinterpretation as Halpern’s
method. This modification still requires a cocoercivity assumption, as can be seen
in Theorem 5.10, which is the convergence theorem of this method. The third
method, Algorithm 5.11, is again weakly convergent; however, it requires only
a Lipschitz continuity assumption, which is weaker than cocoercivity. All three
methods are fully distributed (Jacobi-like).

An alternative would be to replace the Jacobi-decomposition in Algorithm 5.1
by a Gauss-Seidel approach. This Gauss-Seidel approach typically converges faster,
but so far we have not been able to develop a splitting-type interpretation of this
approach. However, we gave a convergence theory for this approach in Chap-
ter 6. In this Chapter 6, we presented two more new methods for solving linearly
constrained generalized Nash equilibrium problems. Both methods require strong
monotonicity and Lipschitz continuity in all but one block-component and regu-
larize the resulting subproblems. It was shown in Section 6.2.3 that this regular-
ization is necessary for guaranteed convergence. The first method, presented in
Algorithm 6.2, keeps the regularization parameters constant and above the the-

8. Comments and Outlook 163

oretical bound needed for convergence, see Theorem 6.7. The second method,
Algorithm 6.8, is based on the fact that, in many cases, a smaller regularization
parameter than the theoretical worst case estimate is sufficient for convergence.
Therefore, the regularization parameter is increased only if a certain convergence
measure does not indicate convergence. Using the strong monotonicity, conver-
gence was also shown in this case, see Theorem 6.10. In the numerical application,
this increasing regularization proved very efficient; therefore, more research should
be conducted on the application of this technique in other algorithms that use regu-
larization. An application of ADMM-methods to potential games seems promising
as well; however, this is left for further research.

Final Comments
It is the author’s hope that the theory and practical results presented throughout
this thesis will prove useful to other researchers and users. Moreover, the author
hopes that his contribution to the research on ADMM- and splitting-type meth-
ods facilitates and enhances further research on these methods as well as their
application to several optimization-related problems.

164 8. Comments and Outlook

Bibliography

[1] R. A. Adams and J. J. F. Fournier. Sobolev Spaces, volume 140 of Pure and
Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam,
second edition, 2003.

[2] H. Attouch and M. Soueycatt. Augmented Lagrangian and proximal alter-
nating direction methods of multipliers in Hilbert spaces. Applications to
games, PDE’s and control. Pac. J. Optim., 5(1):17–37, 2009.

[3] J. B. Baillon, R. E. Bruck, and S. Reich. On the asymptotic behavior of
nonexpansive mappings and semigroups in Banach spaces. Houston J. Math.,
4(1):1–9, 1978.

[4] X. J. Ban, M. Dessouky, J.-S. Pang, and R. Fan. A general equilibrium
model for transportation systems with e-hailing services and flow congestion.
Transportation Research Part B: Methodological, 129:273–304, 2019.

[5] G. Banjac, P. Goulart, B. Stellato, and S. Boyd. Infeasibility detection in
the alternating direction method of multipliers for convex optimization. J.
Optim. Theory Appl., 183(2):490–519, 2019.

[6] V. Barbu. Nonlinear Differential Equations of Monotone Types in Banach
Spaces. Springer Monographs in Mathematics. Springer, New York, 2010.

[7] V. Barbu and T. Precupanu. Convexity and Optimization in Banach Spaces.
Springer Monographs in Mathematics. Springer, Dordrecht, fourth edition,
2012.

[8] H. H. Bauschke, R. S. Burachik, and D. R. Luke, editors. Splitting Algo-
rithms, Modern Operator Theory, and Applications. Springer, Cham, 2019.

[9] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Op-
erator Theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de
Mathématiques de la SMC. Springer, Cham, second edition, 2017.

165

166 BIBLIOGRAPHY

[10] G. Belgioioso and S. Grammatico. Projected-gradient algorithms for gen-
eralized equilibrium seeking in aggregative games are preconditioned for-
ward-backward methods. In 2018 European Control Conference (ECC),
pages 2188–2193, June 2018.

[11] D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, Bel-
mont, MA, 2015.

[12] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,
third edition, 2016.

[13] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Belmont, MA, 2014. Originally pub-
lished by Prentice-Hall, Inc. in 1989. Includes corrections (1997).

[14] R. I. Boţ, E. R. Csetnek, and S. Banert. Fixing and extending some recent
results on the ADMM algorithm. to appear in Numerical Algorithms.

[15] R. I. Boţ, E. R. Csetnek, and D. Meier. Inducing strong convergence into
the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces.
Optim. Methods Softw., 34(3):489–514, 2019.

[16] R. I. Boţ, E. R. Csetnek, and D.-K. Nguyen. A proximal minimization algo-
rithm for structured nonconvex and nonsmooth problems. SIAM J. Optim.,
29(2):1300–1329, 2019.

[17] R. I. Boţ and D.-K. Nguyen. The proximal alternating direction method of
multipliers in the nonconvex setting: convergence analysis and rates. Math.
Oper. Res., 54(2):682–712, 2020.

[18] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Prob-
lems. Springer Series in Operations Research. Springer-Verlag, New York,
2000.

[19] E. Börgens and C. Kanzow. ADMM-type methods for generalized Nash
equilibrium problems in Hilbert spaces. to appear in SIAM J. Optim.

[20] E. Börgens and C. Kanzow. A distributed regularized Jacobi-type ADMM-
method for generalized Nash equilibrium problems in Hilbert spaces. Numer.
Funct. Anal. Optim., 39(12):1316–1349, 2018.

[21] E. Börgens and C. Kanzow. Regularized Jacobi-type ADMM-methods for a
class of separable convex optimization problems in Hilbert spaces. Comput.
Optim. Appl., 73(3):755–790, 2019.

BIBLIOGRAPHY 167

[22] E. Börgens, C. Kanzow, P. Mehlitz, and G. Wachsmuth. New constraint qual-
ifications for optimization problems in Banach spaces based on asymptotic
KKT conditions. SIAM J. Optim., 30(4):2956–2982, 2020.

[23] E. Börgens, C. Kanzow, and D. Steck. Local and global analysis of multiplier
methods for constrained optimization in Banach spaces. SIAM J. Control
Optim., 57(6):3694–3722, 2019.

[24] J. M. Borwein and Q. J. Zhu. Techniques of Variational Analysis, vol-
ume 20 of CMS Books in Mathematics/Ouvrages de Mathématiques de la
SMC. Springer-Verlag, New York, 2005.

[25] A. Borzì and C. Kanzow. Formulation and numerical solution of Nash equi-
librium multiobjective elliptic control problems. SIAM J. Control Optim.,
51(1):718–744, 2013.

[26] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method of
multipliers. Found. Trends Machine Learning, 3(1):1–122, 2011.

[27] D. Braess. Finite Elements, Theory, Fast Solvers, and Applications in Elas-
ticity Theory. Cambridge University Press, Cambridge, third edition, 2007.

[28] K. Bredies and H. Sun. A proximal point analysis of the preconditioned
alternating direction method of multipliers. J. Optim. Theory Appl.,
173(3):878–907, 2017.

[29] H. Brézis and P.-L. Lions. Produits infinis de résolvantes. Israel J. Math.,
29(4):329–345, 1978.

[30] L. M. Briceño-Arias and P. L. Combettes. Monotone operator methods
for Nash equilibria in non-potential games. In Computational and Analyt-
ical Mathematics, volume 50 of Springer Proc. Math. Stat., pages 143–159.
Springer, New York, 2013.

[31] L. M. Briceño-Arias and D. Davis. Forward-backward-half forward algorithm
for solving monotone inclusions. SIAM J. Optim., 28(4):2839–2871, 2018.

[32] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM
for multi-block convex minimization problems is not necessarily convergent.
Math. Program., 155(1-2, Ser. A):57–79, 2016.

[33] P. G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications.
SIAM, Philadelphia, PA, 2013.

168 BIBLIOGRAPHY

[34] W. Deng, M.-J. Lai, Z. Peng, and W. Yin. Parallel multi-block ADMM with
o(1/k) convergence. J. Sci. Comput., 71(2):712–736, 2017.

[35] M. Dobrowolski. Angewandte Funktionalanalysis: Funktionalanalysis,
Sobolev-Räume und Elliptische Differentialgleichungen. Springer-Verlag,
Berlin-Heidelberg, 2010.

[36] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

[37] Y. Dong. The proximal point algorithm revisited. J. Optim. Theory Appl.,
161(2):478–489, 2014.

[38] Y. Dong. Comments on “The proximal point algorithm revisited”. J. Optim.
Theory Appl., 166(1):343–349, 2015.

[39] A. Dreves. A Nash equilibrium approach for multiobjective optimal con-
trol problems with elliptic partial differential equations. Control Cybernet.,
45(4):457–482, 2016.

[40] A. Dreves and J. Gwinner. Jointly convex generalized Nash equilib-
ria and elliptic multiobjective optimal control. J. Optim. Theory Appl.,
168(3):1065–1086, 2016.

[41] J. Eckstein. Approximate iterations in Bregman-function-based proximal
algorithms. Math. Program., 83(1, Ser. A):113–123, 1998.

[42] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators. Math.
Program., 55(3, Ser. A):293–318, 1992.

[43] J. Eckstein and W. Yao. Understanding the convergence of the alternating
direction method of multipliers: theoretical and computational perspectives.
Pac. J. Optim., 11(4):619–644, 2015.

[44] L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, second
edition, 2010.

[45] F. Facchinei, A. Fischer, and V. Piccialli. Generalized Nash equilibrium
problems and Newton methods. Math. Program., 117(1-2, Ser. B):163–194,
2009.

[46] F. Facchinei and C. Kanzow. Generalized Nash equilibrium problems. Ann.
Oper. Res., 175:177–211, 2010.

BIBLIOGRAPHY 169

[47] F. Facchinei and C. Kanzow. Penalty methods for the solution of generalized
Nash equilibrium problems. SIAM J. Optim., 20(5):2228–2253, 2010.

[48] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and
Complementarity Problems. Vol. II. Springer-Verlag, New York, 2003.

[49] F. Facchinei, V. Piccialli, and M. Sciandrone. Decomposition algorithms for
generalized potential games. Comput. Optim. Appl., 50(2):237–262, 2011.

[50] A. Fischer, M. Herrich, and K. Schönefeld. Generalized Nash equilib-
rium problems - recent advances and challenges. Pesquisa Operacional,
34(3):521–558, 2014.

[51] M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications
to the Numerical Solution of Boundary Value Problems, volume 15 of Studies
in Mathematics and its Applications. North-Holland Publishing Co., Ams-
terdam, 1983. Translated from the French by B. Hunt and D. C. Spicer.

[52] A. Friedman. Differential Games. Wiley-Interscience, New York-London,
1971.

[53] T. L. Friesz. Dynamic Optimization and Differential Games, volume 135
of International Series in Operations Research & Management Science.
Springer Science & Business Media, 2010.

[54] D. Gabay. Applications of the method of multipliers to variational inequali-
ties. In M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods,
volume 15 of Studies in Mathematics and its Applications, chapter 9, pages
299–331. North-Holland Publishing Co., Amsterdam, 1983.

[55] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear vari-
ational problems via finite-element approximations. Comput. Math. Appl.,
2:17 – 40, 1976.

[56] R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting
Methods in Nonlinear Mechanics, volume 9 of SIAM Studies in Applied
Mathematics. SIAM, Philadelphia, PA, 1989.

[57] R. Glowinski and P. Le Tallec. Augmented Lagrangian interpretation of the
nonoverlapping Schwarz alternating method. In Third International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations
(Houston, TX, 1989), pages 224–231. SIAM, Philadelphia, PA, 1990.

170 BIBLIOGRAPHY

[58] R. Glowinski and A. Marrocco. Sur l’approximation, par éléments fi-
nis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de
problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge Anal. Numér., 9(R-2):41–76, 1975.

[59] R. Glowinski, S. J. Osher, and W. Yin, editors. Splitting Methods in Com-
munication, Imaging, Science, and Engineering. Scientific Computation.
Springer, Cham, 2016.

[60] G. Gu, B. He, and X. Yuan. Customized proximal point algorithms for lin-
early constrained convex minimization and saddle-point problems: a unified
approach. Comput. Optim. Appl., 59(1-2):135–161, 2014.

[61] B. Halpern. Fixed points of nonexpanding maps. Bull. Amer. Math. Soc.,
73:957–961, 1967.

[62] Y. Haugazeau. Sur les inéquations variationnelles et la minimisation de
fonctionnelles convexes. Thèse de Doctorat, Université de Paris, 1968.

[63] B. He, L. Hou, and X. Yuan. On full Jacobian decomposition of the aug-
mented Lagrangian method for separable convex programming. SIAM J.
Optim., 25(4):2274–2312, 2015.

[64] B. He, M. Tao, and X. Yuan. Alternating direction method with Gaus-
sian back substitution for separable convex programming. SIAM J. Optim.,
22(2):313–340, 2012.

[65] B. He, M. Tao, and X. Yuan. Convergence rate analysis for the alternating
direction method of multipliers with a substitution procedure for separable
convex programming. Math. Oper. Res., 42(3):662–691, 2017.

[66] B. He, H.-K. Xu, and X. Yuan. On the proximal Jacobian decomposition
of ALM for multiple-block separable convex minimization problems and its
relationship to ADMM. J. Sci. Comput., 66(3):1204–1217, 2016.

[67] M. Hintermüller and T. Surowiec. A PDE-constrained generalized Nash
equilibrium problem with pointwise control and state constraints. Pac. J.
Optim., 9(2):251–273, 2013.

[68] M. Hintermüller, T. Surowiec, and A. Kämmler. Generalized Nash equilib-
rium problems in Banach spaces: theory, Nikaido-Isoda-based path-following
methods, and applications. SIAM J. Optim., 25(3):1826–1856, 2015.

BIBLIOGRAPHY 171

[69] M. Hong and Z.-Q. Luo. On the linear convergence of the alternating di-
rection method of multipliers. Math. Program., 162(1-2, Ser. A):165–199,
2017.

[70] M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems. SIAM
J. Optim., 26(1):337–364, 2016.

[71] K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Prob-
lems and Applications, volume 15 of Advances in Design and Control. SIAM,
Philadelphia, PA, 2008.

[72] A. Iusem and R. G. Otero. Erratum: “Inexact versions of proximal point
and augmented Lagrangian algorithms in Banach spaces”. Numer. Funct.
Anal. Optim., 23(1-2):227–228, 2002.

[73] C. Kanzow, V. Karl, D. Steck, and D. Wachsmuth. The multiplier-penalty
method for generalized Nash equilibrium problems in Banach spaces. SIAM
J. Optim., 29(1):767–793, 2019.

[74] C. Kanzow and D. Steck. Augmented Lagrangian methods for the solution of
generalized Nash equilibrium problems. SIAM J. Optim., 26(4):2034–2058,
2016.

[75] C. Kanzow and D. Steck. Quasi-variational inequalities in Banach
spaces: theory and augmented Lagrangian methods. SIAM J. Optim.,
29(4):3174–3200, 2019.

[76] J. B. Krawczyk and S. Uryasev. Relaxation algorithms to find nash equilibria
with economic applications. Environ. Model Assess.

[77] H. P. Langtangen and A. Logg. Solving PDEs in Python: The FEniCS Tu-
torial I, volume 3 of Simula SpringerBriefs on Computing. Springer, Cham,
2016.

[78] S. Larsson and V. Thomée. Partial Differential Equations with Numeri-
cal Methods, volume 45 of Texts in Applied Mathematics. Springer-Verlag,
Berlin, 2009. Paperback reprint of the 2003 edition.

[79] J. Lei, U. V. Shanbhag, J.-S. Pang, and S. Sen. On synchronous, asyn-
chronous, and randomized best-response schemes for stochastic nash games.
Math. Oper. Res., 45(1):157–190, 2020.

172 BIBLIOGRAPHY

[80] P.-L. Lions. On the Schwarz alternating method. III. A variant for nonover-
lapping subdomains. In Third International Symposium on Domain Decom-
position Methods for Partial Differential Equations (Houston, TX, 1989),
pages 202–223. SIAM, Philadelphia, PA, 1990.

[81] R. Ma, X. Ban, J.-S. Pang, and H. X. Liu. Submission to the DTA2012
special issue: Convergence of time discretization schemes for continuous-time
dynamic network loading models. Netw. Spat. Econ., 15(3):419–441, 2015.

[82] K. Nabetani. Variational inequality approaches to generalized Nash equilib-
rium problems. Master’s thesis, Department of Applied Mathematics and
Physics, Kyoto University, February 2008.

[83] J. F. Nash, Jr. Non-Cooperative Games. ProQuest LLC, Ann Arbor, MI,
1950. Thesis (Ph.D.)–Princeton University.

[84] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New
York, 1999.

[85] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for
optimal control. IEEE Trans. Control Syst. Technol.

[86] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,
Cambridge, MA, 1994.

[87] L. Pavel. Game Theory for Control of Optical Networks. Static & Dy-
namic Game Theory: Foundations & Applications. Birkhäuser/Springer,
New York, 2012.

[88] A. Pazy. Asymptotic behavior of contractions in Hilbert space. Israel J.
Math., 9:235–240, 1971.

[89] R. R. Phelps. Convex Functions, Monotone Operators and Differentiabil-
ity, volume 1364 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
second edition, 1993.

[90] K. M. Ramachandran and C. P. Tsokos. Stochastic Differential Games,
Theory and Applications. Atlantis Press, Paris, 2012.

[91] S. Reich. Asymptotic behavior of contractions in Banach spaces. J. Math.
Anal. Appl., 44, 1973.

[92] S. Reich and I. Shafrir. The asymptotic behavior of firmly nonexpansive
mappings. Proc. Amer. Math. Soc., 101(2):246–250, 1987.

BIBLIOGRAPHY 173

[93] R. T. Rockafellar. The multiplier method of Hestenes and Powell applied to
convex programming. J. Optim. Theory Appl., 12:555–562, 1973.

[94] R. T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM J. Control Optim., 14(5):877–898, 1976.

[95] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Rev.,
35(2):183–238, 1993.

[96] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics.
Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original,
Princeton Paperbacks.

[97] W. Rudin. Functional Analysis. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.

[98] E. K. Ryu, Y. Liu, and W. Yin. Douglas-Rachford splitting and ADMM
for pathological convex optimization. Comput. Optim. Appl., 74(3):747–778,
2019.

[99] F. Salehisadaghiani and L. Pavel. Generalized Nash equilibrium prob-
lem by the alternating direction method of multipliers. arXiv preprint
arXiv:1703.08509, 2017.

[100] U. V. Shanbhag, J.-S. Pang, and S. Sen. Inexact best-response schemes for
stochastic nash games: Linear convergence and iteration complexity analysis.
In 55th Conference on Decision and Control (CDC), pages 3591–3596. IEEE,
2016.

[101] M. Tao. Some parallel splitting methods for separable convex programming
with the O(1

t
) convergence rate. Pac. J. Optim., 10(2):359–384, 2014.

[102] M. Tao and X. Yuan. An inexact parallel splitting augmented Lagrangian
method for monotone variational inequalities with separable structures.
Comput. Optim. Appl., 52(2):439–461, 2012.

[103] M. Tao and X. Yuan. Convergence analysis of the direct extension of ADMM
for multiple-block separable convex minimization. Adv. Comput. Math.,
44(3):773–813, 2018.

[104] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory,
Methods and Applications, volume 112 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2010. Translated from the
2005 German original by Jürgen Sprekels.

174 BIBLIOGRAPHY

[105] P. Tseng. A modified forward-backward splitting method for maximal mono-
tone mappings. SIAM J. Control Optim., 38(2):431–446, 2000.

[106] P. Tseng. Convergence of a block coordinate descent method for nondiffer-
entiable minimization. J. Optim. Theory Appl., 109(3):475–494, 2001.

[107] J. J. Wang and W. Song. An algorithm twisted from generalized ADMM for
multi-block separable convex minimization models. J. Comput. Appl. Math.,
309:342–358, 2017.

[108] X. Wang, M. Hong, S. Ma, and Z.-Q. Luo. Solving multiple-block separable
convex minimization problems using two-block alternating direction method
of multipliers. Pac. J. Optim., 11(4):645–667, 2015.

[109] J. Wloka. Partial differential equations. Cambridge University Press, Cam-
bridge, 1987. Translated from the German by C. B. Thomas and M. J.
Thomas.

[110] M. Ye and G. Hu. Game design and analysis for price-based demand re-
sponse: An aggregate game approach. IEEE Trans. Cybern., 47(3):720–730,
2017.

[111] P. Yi and L. Pavel. A distributed primal-dual algorithm for computation
of generalized nash equilibria via operator splitting methods. In 56th Con-
ference on Decision and Control (CDC), pages 3841–3846. IEEE, December
2017.

[112] P. Yi and L. Pavel. An operator splitting approach for distributed generalized
Nash equilibria computation. Automatica J. IFAC, 102:111–121, 2019.

[113] K. Yosida. Functional Analysis. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the sixth (1980) edition.

	Contents
	Abbreviations and Notations
	Introduction
	The Alternating Direction Method of Multipliers and the Augmented Lagrangian Method
	Splitting Methods for Generalized Nash Equilibrium Problems
	Structure of the Thesis

	Background Material
	Hilbert and Banach Space Theory
	Linear Operators
	Weak Convergence
	Function Spaces and Partial Differential Equations

	Convex Analysis and Notions of Closedness
	Fixed-Point Iterations
	Notions of Non-Expansiveness
	Fejér-Monotonicity
	Krasnoselsky-Mann Iteration
	Halpern's Method

	Monotone Operators
	Zeros of (Maximally) Monotone Operators
	The Resolvent and the Proximal Point Algorithm
	The Forward Operator and the Gradient Method
	The Forward-Backward Operator and Iteration
	The Forward-Backward-Forward Iteration

	Fundamental Inequalities

	Theory of Optimization and Variational Problems
	Separable Linearly Constrained Optimization
	Linearly Constrained Generalized Nash Equilibrium Problems
	Linear Equality Constrained GNEPs
	Generalization to GNEPs with Conic Constraints

	Regularized Jacobi-type ADMM-Methods for a Class of Separable Convex Optimization Problems
	Regularized Jacobi-type ADMM-Method
	Convergence Analysis
	A Strongly Convergent Algorithm

	Regularized Jacobi-type ADMM-Methods for Generalized Nash Equilibrium Problems
	Regularized Jacobi-type ADMM-Method
	Convergence Analysis Based on the Forward-Backward Method
	Self-Contained Convergence Analysis
	Application to Conic Constraints

	Strongly Convergent Jacobi-type ADMM-Method
	Modified Regularized Jacobi-type ADMM-Methods

	Regularized Gauss-Seidel-type ADMM-Methods for Generalized Nash Equilibrium Problems
	Assumptions
	ADMM-Method with Fixed Regularization
	Statement of the Algorithm
	Convergence
	Necessity of Regularization

	ADMM-Method with Adaptive Regularization
	Statement of the Algorithm
	Convergence

	Comments

	Applications
	Application to Domain Decomposition
	Non-Overlapping Domain Decomposition
	Application of the Optimization Algorithm
	Estimating the Proximal Constant
	Numerical Results of the Domain Decomposition

	Elliptic Optimal Control GNEPs with Accumulated Control Bound
	Theoretical Considerations
	Numerical Results

	Elliptic Optimal Control GNEPs with State Bound
	Elliptic Optimal Control NEP
	Environmental Differential Games
	Finite-Dimensional Examples
	Additional Examples of GNEPs
	l1 Minimization

	Comments and Outlook
	References

