
Fate of Topological States of Matter in the
Presence of External Magnetic Fields

DISSERTATION ZUR ERLANGUNG DES
NATURWISSENSCHAFTLICHEN DOKTORGRADES

DER JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG

vorgelegt von

Jan Frederic Böttcher

aus Bad Soden am Taunus

Würzburg, 2020



Eingereicht am: ...........................................
bei der Fakultät für Physik und Astronomie

1. Gutachter: Prof. Dr. Ewelina M. Hankiewicz
2. Gutachter: ...........................................
3. Gutachter: ...........................................
der Dissertation

Vorsitzende(r): .........................
1. Prüfer: Prof. Dr. Ewelina M. Hankiewicz
2. Prüfer: ...........................................
3. Prüfer: ...........................................
im Promotionskolloquium

Tag des Promotionskolloquiums: ...............

Doktorurkunde ausgehändigt am: ..............



Abstract

The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron
gas by an external magnetic field, paved the way for topological concepts in condensed
matter physics. While the QH effect can for that reason not exist without Landau
levels, there is a plethora of topological phases of matter that can exist even in the
absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum
anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase
are insulating phases of matter that owe their nontrivial topology to an inverted band
structure. The latter results from a strong spin-orbit interaction or, generally, from
strong relativistic corrections. The main objective of this thesis is to explore the fate of
these preexisting topological states of matter, when they are subjected to an external
magnetic field, and analyze their connection to quantum anomalies. In particular, the
realization of the parity anomaly in solid state systems is discussed. Furthermore,
band structure engineering, i.e., changing the quantum well thickness, the strain, and
the material composition, is employed to manipulate and investigate various topological
properties of the prototype TI HgTe.

Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge
channels. But in contrast to the QH phase, it can exist without Landau levels. As
such, the QAH phase is a condensed matter analog of the parity anomaly. We demon-
strate that this connection facilitates a distinction between QH and QAH states in the
presence of a magnetic field. We debunk therefore the widespread belief that these two
topological phases of matter cannot be distinguished, since they are both described by
a Z topological invariant. To be more precise, we demonstrate that the QAH topol-
ogy remains encoded in a peculiar topological quantity, the spectral asymmetry, which
quantifies the differences in the number of states between the conduction and valence
band. Deriving the effective action of QAH insulators in magnetic fields, we show that
the spectral asymmetry is thereby linked to a unique Chern-Simons term which con-
tains the information about the QAH edge states. As a consequence, we reveal that
counterpropagating QH and QAH edge states can emerge when a QAH insulator is



subjected to an external magnetic field. These helical-like states exhibit exotic prop-
erties which make it possible to disentangle QH and QAH phases. Our findings are
of particular importance for paramagnetic TIs in which an external magnetic field is
required to induce the QAH phase.

A byproduct of the band inversion is the formation of additional extrema in the va-
lence band dispersion at large momenta (the ‘camelback’). We develop a numerical
implementation of the 8× 8 Kane model to investigate signatures of the camelback in
(Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-
concentration, we show that the class of topologically nontrivial quantum wells can be
subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the
bulk p-regime, pinning of the chemical potential to the camelback can cause an onset to
QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect
gap TIs, the camelback prevents the observation of QH plateaus in the bulk p-regime up
to large magnetic fields (a few tesla). These findings allowed us to attribute recent ex-
perimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our
discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological
materials which exhibit a camelback feature in their valence band dispersion.

Furthermore, we employ the numerical implementation of the 8 × 8 Kane model to
explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum
wells. The latter exhibit 2D topological surface states at their interfaces which, as
we demonstrate, are very sensitive to the local symmetry of the crystal lattice and
electrostatic gating. We determine the classical cyclotron frequency of surface electrons
and compare our findings with experiments on strained HgTe.
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Zusammenfassung

Der Quanten-Hall (QH) Effekt, welcher in einem zwei-dimensionalen (2D) Elektronen-
gas durch ein externes Magnetfeld erzeugt werden kann, ebnete den Weg für topologi-
sche Konzepte in der Physik der kondensierten Materie. Während der QH Effekt aus
diesem Grund nicht ohne Landau Level existieren kann, gibt es eine Vielzahl von neuar-
tigen topologischen Phasen, die auch in der Abwesenheit von Magnetfeldern existieren
können. Zum Beispiel stellen die Quanten-Spin-Hall (QSH), die Quanten-Anomale-Hall
(QAH) und die drei-dimensionale (3D) topologische Isolator-Phase isolierende, topo-
logische Phasen dar, die Ihre nicht-triviale Topologie einer invertierten Bandstruktur
verdanken. Letztere wird durch eine starke Spin-Bahn Wechselwirkung, oder im Allge-
meinen durch starke relativistische Korrekturen, erzeugt. Das Hauptziel dieser Thesis
ist es dabei das Schicksal dieser bereits bestehenden topologischen Zustände in Ma-
gnetfeldern zu erforschen und deren Verbindungen zu Quantenanomalien aufzuzeigen.
In diesem Zusammenhang werden wir insbesondere die Realisierung der Paritätsan-
omalie in Festkörpersystemen diskutieren. Weitergehend wenden wir Bandstruktur-
Engineering an, d.h. die Veränderung der Quantentrogdicke, der Verspannung und der
Materialkomposition, um die vielfältigen topologischen Eigenschaften des topologischen
Isolators (TIs) HgTe zu manipulieren und zu untersuchen.

Wie die QH Phase, zeichnet sich die QAH Phase durch unidirektional propagierende,
metallische Randkanäle aus. Aber im Vergleich zur QH Phase, kann sie auch ohne Land-
au Level existieren. Die QAH Phase stellt daher ein Kondensierte-Materie-Analogon zur
Paritätsanomalie dar. Wir zeigen, dass diese Verbindung es uns ermöglicht in der Ge-
genwart eines Magnetfelds zwischen QH und QAH Zuständen zu unterscheiden. Damit
widerlegen wir den weitverbreiten Glauben, dass diese zwei topologischen Phasen nicht
unterschieden werden können, da beide durch eine Z topologische Invariante beschrie-
ben sind. Etwas genauer gesagt, zeigen wir, dass die QAH Topologie in einer besonderen
topologischen Invarianten kodiert bleibt, der spektralen Asymmetrie. Diese quantifiziert
die Differenz in der Anzahl von Zuständen in Leitungs- und Valenzbändern. Indem wir
die effektive Wirkung eines QAH Isolators im Magnetfeld herleiten, zeigen wir, dass die
spektrale Asymmetrie dabei mit einem einzigartigen Chern-Simons Term verbunden ist,
welcher die Information über die QAH Randkanäle beinhaltet. Wenn ein QAH Isolator
einem externen Magnetfeld ausgesetzt wird, kann dies zur Bildung von gegenläufigen
QH und QAH Randkanälen führen. Diese helikalartigen Randzustände besitzen exo-



tische Eigenschaften, die es uns ermöglichen QH und QAH Phasen zu unterscheiden.
Unsere Ergebnisse sind insbesondere für paramagnetische TIs von Bedeutung, da für
diese ein externes Magnetfeld von Nöten ist, um die QAH Phase zu induzieren.

Ein Nebenprodukt der Bandinversion ist die Bildung von zusätzlichen Extrema in der
Dispersion des Valenzbands bei großen Impulsen (oft auch als ‘Kamelrücken’ bezeich-
net). Wir entwickeln eine numerische Implementierung des 8× 8 Kane Modells um die
Signaturen des Kamelrückens in (Hg,Mn)Te Quantentrögen zu untersuchen. Indem die
Quantentrogdicke und die Mn-Konzentration variiert wird, zeigen wir, dass die Klasse
von topologisch nicht-trivialen Materialien weiter in direkte und indirekte TIs unterteilt
werden kann. Für direkte TIs mit p-Ladungsträgerdichten, zeigen wir, dass die Anhef-
tung des chemischen Potentials an den Kamelrücken zu einem Beginn von QH-Plateaus
bei ungewöhnlich kleinen Magnetfeldern (zweistelliger mT-Bereich) führen kann. Im
Gegensatz dazu verhindert der Kamelrücken bei indirekten TIs die Beobachtung von
QH Plateaus im p-Bereich bis zu großen Magnetfeldern (einige Tesla). Diese Ergebnisse
erlauben es uns jüngste experimentelle Beobachtungen in (Hg,Mn)Te Quantentrögen
der Existenz des Kamelrückens zuzuschreiben. Obwohl sich unsere Diskussion dabei
auf (Hg,Mn)Te beschränkt, sollte sich unser Modell leicht auch auf andere topologische
Materialien mit einer kamelartigen Struktur im Valenzband übertragen lassen.

Zusätzlich haben wir die numerische Implementierung des 8× 8 Kane Modells verwen-
det, um den Übergang von einer 2D QSH zu einer 3D TI Phase in verspannten HgTe
Quantentrögen zu untersuchen. Diese Halbleitermaterialien zeichnen sich durch 2D to-
pologische Oberflächenzustände an Grenzflächen aus, welche, wie wir zeigen, sehr sen-
sitiv für die lokale Kristallsymmetrie des Gitters und elektrostatische Ladung sind. Wir
bestimmen die klassische Zyklotronfrequenz der Oberflächenelektronen und vergleichen
diese mit experimentellen Messungen an verspannten HgTe Qunatentrögen.
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Introduction

The technological progress of the last century was closely linked to advances in solid
state physics. Especially, the last 50 years have been characterized by an almost expo-
nential technological progress. This is best illustrated by Moore’s law. It shows that
the number of transistor on a microprocessor chip doubles every two years [1]. From
today’s perspective, it is therefore sometimes hard to imagine that the light bulb was
only invented 150 years ago. As miniaturization of electric circuits has become increas-
ingly difficult, technological progress is now close to reach a limit. Nevertheless, recent
developments in condensed matter physics, such as spintronics, quantum computing,
or graphene-based electronics [2, 3], give hope of finding new avenues for technological
progress.

The hunt for novel materials plays, due to their variety of possible applications, a
decisive role in condensed matter physics. For that reason, in 2016, David J. Thouless,
F. Duncan M. Haldane, and J. Michael Kosterlitz have been awarded the Nobel Prize
in physics. Way ahead of their time in the 1970s and 1980s, they explored the role
of topological concepts in understanding the behavior of electrons in exotic states of
matter [4–8]. Topology itself is a branch of mathematics. It deals with classifying
geometrical objects in terms of their properties which do not change under continuous
deformations (stretching, bending, etc.). Such properties are referred to as topological
invariants. For instance, an orange is equivalent to a banana from a topological point
of view as both objects possess the same number of holes. But what has this abstract
concept to do with condensed matter physics?

It was Klaus von Klitzing who discovered in 1980 that the Hall conductivity of a two-
dimensional (2D) electron gas is quantized in units of e2/h when it is subjected to
an external magnetic field [9]. The observed quantization was thereby so precise and
basically independent of the material details, that it had to be based on a fundamental
concept. Indeed, D. J. Thouless realized that the so-called quantum Hall (QH) effect
owes its remarkable precision to topological effects [5]. While the bulk band structure
forms Landau levels (LLs) and becomes insulating by applying an external magnetic
field, the current is governed by metallic unidirectionally propagating (chiral) edge
channels at the material’s boundary. Similar to geometrical objects that can only
possess an integer number of holes, the number of chiral edge channels in the QH
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phase can only change in integer steps. It is a topological invariant. This discovery
constituted in the 1980s a new paradigm in condensed matter physics, as it paved the
way to classify quantum states based on topological concepts [10–12].

However, despite this seminal breakthrough, it took another three decades before topol-
ogy finally became one of the central topics in condensed matter physics. In 2007,
HgTe/(Hg,Cd)Te quantum wells became the first-ever 2D topological insulator (TI) a

which was experimentally realized [15–17]. This 2D TI is characterized by a novel
topological state, the quantum spin Hall (QSH) state, in which time-reversal (TR)
symmetry protects the topological invariant[10, 14]. The nontrivial topology is thereby
connected to an intrinsically inverted band structure b and comes along with a pair of
counterpropagating (helical) edge states which traverse the otherwise insulating bulk
gap. These helical edge states are of great interest for potential spintronic applications
as they are spin polarized and protected from backscattering due to TR symmetry. In
contrast to the QH effect, topological edge states can therefore exist in the QSH phase
even in the absence of a magnetic field.

While at that time it was common belief that topological states of matter are rather
exotic, we now know that more than a quarter of all materials in nature are topologi-
cal [18]. This includes TIs in two and three dimensions [12, 19–29], topological semimet-
als like Dirac and Weyl semimetals [30–35], and topological superconductors [12, 36].
Some materials, like HgTe or Bi-compounds, can be even tuned into various topological
phases by band structure engineering. This means changing the quantum well thick-
ness, applying strain to the crystal structure, or changing the material composition
by alloying it with magnetic or non-magnetic atoms. Just to name some possibilities,
thin layers of HgTe with a quantum well thickness dQW > 6.3 nm are 2D TIs [15, 16],
while applying tensile or compressive strain to bulk HgTe (dQW & 40 nm) leads to a
three-dimensional (3D) TI [19, 28], or to a Dirac/Weyl semimetal c [35]. Furthermore
and most relevant for this thesis is the diluted semiconductor (Hg,Mn)Te which was the
first-ever predicted material to show the quantum anomalous Hall (QAH) effect [21].
This topological phase is characterized by chiral edge channels that can contrary to the
QH phase exist even in the absence of an external magnetic field. This makes the QAH
phase extremely interesting for potential low-energy applications.

The huge interest in topological materials is on the one hand fueled by the prospect of
novel spintronic devices. On the other hand, from a more theoretical point of view, it

aActually, the first theoretical prediction of a 2D TI goes back to C. L. Kane and E. J. Mele in
2005 [13, 14]. They showed that graphene in the presence of spin-orbit interaction becomes a 2D
TI. However, the required bulk band gap was to small to allow experimental verification.

bThe band ordering of an inverted band structure is in reverse compared to the atomic limit. This
means the typical conduction band is energetically below the valence band.

cIf bulk inversion asymmetry (BIA) is neglected, compressively strained HgTe is a Dirac semimetal.
Including the effect of BIA leads then to a transition to a Weyl semimetal phase. However, this
effect is so small in HgTe that it is hard to be experimentally verified.
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is most remarkable that the effective low-energy theories of topological states resemble
at a formal level the Dirac equation. Weyl semimetals, for instance, owe their name to
Weyl fermions, which are solutions of the Dirac equation at zero mass. This implies
that predictions, originally made in the context of particle physics, can be tested in
conventional solid state laboratories. Moreover, these formal similarities allow us to
analyze solid state systems using some of the tools that were originally developed in
high energy physics. For that reason, much effort has been spent in recent years to
identify condensed matter analogs of quantum anomalies [8, 37–41]. Roughly speak-
ing, a quantum anomaly describes the fact that certain classical symmetries cannot
be elevated onto the level of a quantum theory a. In condensed matter physics, such
anomalies are of interest because they are tied to distinct, experimental signatures. A
negative magnetoresistance arises, for instance, because of the axial-anomaly in Weyl
semimetals [30]. Quantum anomalies are also a powerful tool to test effective theories
for consistency. For instance, this concept can be used to prove that chiral edge chan-
nels must accompany the QH effect [42], or that Weyl fermions always come in pairs
(Nielsen-Ninomiya theorem) [43, 44].

About this thesis: Exposing a topological material to an external magnetic field
causes on top of the preexisting topological state b the formation of LLs. One of the
main topics in this thesis is to trace and to identify hallmarks of these preexisting topo-
logical states even in the presence of LLs. In this context, we are mainly concerned
with characteristic transport signatures of 2D topological phases which we describe by
effective Hamiltonians or topological field theories. In particular, we clarify their rela-
tion to quantum anomalies. Furthermore, we investigate various HgTe quantum wells
using band structure engineering, i.e., we analyze their topological properties varying
the quantum well thickness, the material composition, as well as the strain.

We start in Ch. 1 by introducing a few theoretical concepts that are mandatory to
follow the remainder of this thesis. The scientific results are then presented in the
subsequent Chs. 2–4. In this regard, Ch. 2 deals with magnetically doped 2D TIs,
like (Hg,Mn)Te quantum wells c, that exhibit the QAH effect. We clarify that QAH
insulators are condensed matter analogs of the so-called parity anomaly. The latter is
usually known to characterize quantum electrodynamics (QED) in d = 2 + 1 spacetime
dimensions d. The relation to the parity anomaly allows us to show that QAH and QH
phases can coexist and can be experimentally distinguished in magnetic fields, even
though they are both described by the same topological invariant. In Ch. 3, we use the

aQuantum anomalies arise in Dirac-like theories due to their infinite degrees of freedom (Dirac sea).
A more detailed discussion on this subject is presented in Section 1.5.

bPreexisting topology refers to topological effects which are already present without a magnetic field.
cActually, (Hg,Mn)Te is a paramagnetic TI so that a magnetic field is needed to drive the system
from the QSH to the QAH phase. We comment on this in detail in Chapter 2.

dThe notation, 2D and 3D, refers always to spatial dimensions. Spacetime dimensions (spatial dimen-
sions plus one time dimension) are always denoted by, e.g., (2+1)D.
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8× 8 Kane model [45] to show that virtually all 2D TIs and, in particular, (Hg,Mn)Te
quantum wells possess additional maxima at large momenta. These maxima, which are
a byproduct of the inverted band structure, are not captured by low-energy effective
models, which are typically used to describe topological effects that occur in the vicinity
of high symmetry points in the Brillouin zone. We demonstrate that these additional
maxima pin the chemical potential and can as result cause QH plateaus at ultra-low
magnetic fields (tens of mT). While Ch. 3 focuses on thin HgTe quantum wells which
exhibit the QSH or the QAH phase, we study in Ch. 4 the crossover to the 3D TI
phase by increasing the thickness of the quantum well. Various ways to manipulate the
topological 2D surface states are discussed and their properties are compared with the
experiment. In Ch. 5, we summarize the scientific results and present some novel ideas
for future research projects.

All results presented in Chs. 2–4 are largely based on Refs. [P3, P4, P5, P6, P7] which
have been restructured and reorganized for this thesis. However, as we will make clear
throughout this work, we partially adapt some of their content word by word.

Remarks on mathematical notation: We mainly utilize standard time-independent
Hamiltonian approaches, with which the majority of condensed matter physicists seem
to be rather familiar. Nevertheless, whenever it is necessary, we make use of the rela-
tivistic notation. Therein, we use the metric tensor in the west-coast convention, which
in (2+1)D (two space + one time dimension) means, for instance, that the metric reads
gµν = Diag (1 , −1 , −1). Greek indices run over both the time and the spatial compo-
nents a. For instance, an arbitrary relativistic three vector in (2+1)D is denoted by aµ

with µ = 0, 1, 2. In contrast, Latin letters run only over the spatial components, e.g.,
j = 1, 2 for a given 2D space (2D refers only to spatial components). Bold symbols
mark spatial vectors, for instance, x = (x, y)T . It is assumed that the reader is famil-
iar with the Einstein summation convention, meaning that the occurrence of repeated
indices indicate summation:

aµbµ =
2∑

µ=0
aµbµ. (0.1)

aIn Minkowski space, the 0th component is intended exclusively for the time.
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Chapter 1. Introduction to Topological Matter and Topological Field Theories

We establish in this chapter the broader mathematical scope on which this thesis is
based on. Our journey starts in Sec. 1.1 by reviewing the topological classification of
non-interacting, single-particle Hamiltonians in d = 0, 1, 2, and 3 dimensions. A 2D
Chern insulator serves thereby as an exemplary system to familiarize the reader with
the key concepts. Subsequently in Sec. 1.2, we discuss the Landauer-Büttiker formalism
which describes edge dominated transport in the phase coherent regime. Section 1.3
discusses various topological states in 2D more in detail including the QH, the QSH,
and the QAH effect, which are at the center of this thesis. We outline their key ingre-
dients, discuss their experimental realization, and integrate them into the topological
classification scheme. Following, in Sec. 1.4, we turn our attention to (1+1)D Dirac
theories which govern the properties of chiral edge channels at low energies. We ex-
plain the effect of fermion number fractionalization and discuss the first example of a
quantum anomaly. Starting with Sec. 1.5, we show how 2D topological states, such as
the QH phase, can be described by effective topological field theories, or to be more
precise by a Chern-Simons field theory. This sheds further light on the topological
interpretation of the QH family. Finally, Sec. 1.6 reviews the properties of the Dirac
equation in (2+1)D. In particular, it is shown that an odd number of Dirac fermions
must violate parity symmetry in a quantum theory. This unique property, known as
parity anomaly, is characteristic for odd dimensional spacetimes. Its understanding will
be essential to follow the discussion in Ch. 2.

While the underlying idea of this chapter is to outline the most important theoretical
concepts that are necessary for this thesis, I cannot cover here the enormous field
of topological matter and topological field theories completely. For this purpose, I
would like to refer the interested reader to existing reviews on topological insulators
and topological classification [11, 12, 30, 46–48]. For a more in-depth discussion on
topological field theories, we suggest Refs. [49–53].

1.1. Topological matter
This section reviews the topological classification of insulators a in the ten symmetry
classes introduced by Altland and Zirnbauer [54, 55]. The connection between topolog-
ical invariants and experimental signatures is explained. In Sec. 1.1.1, we discuss the
periodic table of noninteracting topological states of matter. This classification is based
on discrete symmetries whose physical meaning is explained in Sec. 1.1.2. Symmetry
conditions for arbitrary single particle Hamiltonians are derived. This introduction fol-
lows thereby closely along the lines of Refs. [10] and [11]. In Sec. 1.1.3, a Chern insulator
serves as an example to explain the important role of topology. Finally, in Sec. 1.1.4,

aThe discussed classification is also applicable for topological superconductors. However, since this
thesis deals exclusively with TIs, we do not comment explicitly about them.
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1.1. Topological matter

the symmetry considerations are generalized to include also external fields.

1.1.1. Topological Classification and Bulk-Boundary
Correspondence

We have already mentioned some examples of topological states in the introduction.
It would be however desirable to have a universal classification scheme for topologi-
cal states of matter, basically, some kind of ‘periodic table’ [56]. In the following, we
review the classification of noninteracting systems which are characterized by an insu-
lating bulk [10]. Further information on classifying interacting topological insulators
or topological semimetals can be found, for instance, in Ref. [11].

The periodic table of topological states of matter can be developed in two steps. In
the first step, arbitrary Hamiltonians are classified into ten different symmetry classes
based on the three generic (discrete) symmetries, namely, TR, particle-hole (PH), and
chiral symmetry. We denote the associated single-particle symmetry operators by T , C,
and S, respectively. An overview is presented in Tab. 1.1. The subdivision into different
symmetry classes arises as follows. First of all, each discrete symmetry may or may
not be present. The absence of a symmetry is indicated in Tab. 1.1 by 0. Secondly, if
a discrete symmetry is present, the square of its corresponding single-particle operator
can take the following values

T 2 = ±1 , C2 = ±1 , and S2 = +1 . (1.1)

In total, there are ten different combinations and, hence, ten different symmetry classes [54,
55].

In the second step, a topological invariant can be assigned to a noninteracting Hamilto-
nian in each symmetry class for every dimension. A topological invariant is a quantity
which is invariant under continuous deformations (homeomorphisms) of its associated
Hamiltonian, which do not close its bulk gap and which preserve all its discrete sym-
metries. Two Hamiltonians are topologically equivalent if they are described by the
same topological invariant. Based on this concept, Schnyder et al. [10] showed that
noninteracting quantum states can be classified by Z, 2Z, or Z2 topological invariants,
as shown in Tab. 1.1. Here, Z refers to all integers, 2Z to all even integers, and Z2 can
take two values, 0 or 1. Note however that topological invariants cannot be defined for
each symmetry class in every dimension.

An important signature of topological materials is the one-to-one correspondence be-
tween their nontrivial bulk topology and gapless, metallic states which can be located
at their interfaces. To understand this concept, suppose that two insulators which
are characterized by a different bulk topology are stacked next to each other. The
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Chapter 1. Introduction to Topological Matter and Topological Field Theories

class T C S 0 1 2 3

A 0 0 0 Z 0 Z 0
AIII 0 0 + 0 Z 0 Z
AI + 0 0 Z 0 0 0
BDI + + + Z2 Z 0 0
D 0 + 0 Z2 Z2 Z 0
DIII - + + 0 Z2 Z2 Z
AII - 0 0 2 Z 0 Z2 Z2

CII - - + 0 2Z 0 Z2

C 0 - 0 0 0 2Z 0
CI + - + 0 0 0 2 Z

Table 1.1.: Periodic table of topological insulators in d = 0, 1, 2 and 3 space dimen-
sions. There are ten different symmetry classes for gapped single-particle Hamiltonians
which can be distinguished based on the three discrete symmetries: time-reversal (T),
particle-hole (C) and chiral (S) symmetry. A ‘0’ denotes the absence of a symmetry,
while ‘±’ imply whether the single-particle symmetry operator squares to ±1. The
topological classes which are highlighted by color are subject of this thesis. From
Ref. [10]. Adapted with permission from APS.

topological invariant changes therefore across their common interface. However, as a
topological invariant can only change if the bulk band gap closes, metallic states must
arise in the bulk gap which are located at this interface a. The relation between these
metallic edge (or surface) states and the bulk topology is commonly referred to as the
bulk-boundary correspondence [12].

At the center of this thesis are the symmetry classes A, D, AII, and DIII in 2D, as
well as the symmetry class AII in 3D. We highlighted these cases in Tab. 1.1. The
symmetry classes A and D in 2D are both linked to a Z topological invariant, the so-
called Chern number, which is characterized by chiral edge channels at the boundary
to a topologically trivial insulator. Typical examples are QH and QAH insulators
which are described in more detail in Sec. 1.3. The symmetry classes DIII and AII
are both connected to a Z2 topological invariant and describe QSH insulators, which
are discussed in Sec. 1.3. Their hallmark is a pair of counterpropagating (helical) edge
channels which are protected from backscattering by TR symmetry. The symmetry
class AII in 3D describes 3D TIs and is characterized by metallic surface states which
exhibit spin-momentum locking.

Before, we shed more light on the topological properties of these materials, we want
to briefly discuss the physical meaning of TR, PH, and chiral symmetry. This list is

aWe give a more sophisticated proof of the bulk-boundary correspondence in Section 1.5.
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1.1. Topological matter

complemented by parity symmetry which is not mandatory for the topological classi-
fication, but which will play an important role in the context of Dirac-like systems in
two spatial dimension (cf. Sec. 1.6).

1.1.2. Discrete symmetries
Our considerations start with a general noninteracting, manyparticle Hamiltonian in
second quantization, which is denoted by

H =
∫
dx Ψ†(x)H (k) Ψ(x) , (1.2)

where Ψ(x) is a fermionic field operator which fulfills the conventional anticommuta-
tion relation {ψ(x), ψ†(x′)} = δ (x− x′), and H(k) is the corresponding single-particle
Hamiltonian. External fields will not be considered until Sec. 1.1.4.

There are two types of symmetry transformations. Those which are described by a
linear and unitary operator, and those which are described by an antilinear and antiu-
nitary operator [57] a. In contrast to unitary operators, antiunitary operators switch
the sign of complex numbers. Regardless of whether a second quantized operator O is
unitary or antiunitary, a system obeys a certain symmetry only if

[H,O] = 0 , (1.3)

where H denotes a general second quantized Hamiltonian as given by Eq. (1.2).

Time-Reversal Symmetry: A system exhibits TR symmetry, if it is invariant un-
der reversing the arrow of time. As a result, TR symmetry changes the propagation
direction of particles:

T : (t,x)→ (−t,x) , and T : k→ −k , (1.4)

where T denotes the TR symmetry transformation. Time-reversal is an antiunitary
operator and acts on a fermionic field operator as

T Ψ(x)T −1 = UTΨ(x) , and T iT −1 = −i , (1.5)

where UT is a unitary matrix. Inserting this into Eq. (1.3) with O = T , we get

H != T HT −1 =
∫
dx T Ψ†(x)T −1T H (k) T −1T Ψ(x)T −1

=
∫
dx Ψ†(x)U †TH

? (−k)UTΨ(x) , (1.6)

aSuppose that a symmetry transformation sends a quantum state |a〉 → |ã〉 and another state |b〉 → |b̃〉.
Such a transformation is a symmetry if it conserves the norm |〈a|b〉| =

∣∣〈ã|b̃〉∣∣. This condition is
fulfilled by the aforementioned two types of operators.
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Chapter 1. Introduction to Topological Matter and Topological Field Theories

where the complex conjugation follows from the antiunitarity of the TR operator. Equa-
tion (1.6) is only fulfilled if the single-particle Hamiltonian H(k) fulfills that

T †H (k)T = H (−k) , (1.7)

where T = UTK is the single-particle operator and K is the operator of complex
conjugation. Note that every eigenstate of a TR symmetric Hamiltonian is at least,
double degenerated. This is known as Kramers theorem [48].

Particle-Hole Symmetry: A system exhibits PH symmetry, if it is invariant under
exchanging all fermionic creation and annihilation operators. This means we exchange
electrons and holes. In second quantization, a PH transformation C is a unitary trans-
formation. It acts on a fermionic field operator in the following way:

CΨ(x)C−1 = U∗CΨ†(x) , and CiC−1 = i , (1.8)

where UC is a unitary matrix. Note that the right-hand side contains the adjoint
spinor which is the defining property of the PH transformation. Inserting Eq. (1.8)
into Eq. (1.3), we end up with the following condition for the single-particle Hamilto-
nian:

C†H (k)C = −H (−k) , (1.9)

where C = UCK. On single-particle level, a PH symmetry operator is therefore an
antiunitary operator. This is in contrast from its definition in second quantizaton where
it acts as a unitary operator a. We highlight this difference as it can sometimes cause
confusion. Physically, we see that a PH transformation switches the sign of energy, and
momentum. For every states with positive energy there must be one corresponding
state with negative energy and opposite momentum.

Chiral Symmetry: A chiral symmetry transformation is defined as the combination
of TR and PH symmetry, S = T · C. As such, it is an antiunitary operator in second
quantization and acts on fermionic field operators as

SΨ(x)S−1 = USΨ†(x) , and SiS−1 = −i , (1.10)

where US is a unitary matrix. Based on this, we can derive a symmetry condition in
first quantization

S†H (k)S = −H (k) , (1.11)

aThis difference arises because, during the derivation of Eq. (1.9), we have to anticommute once the
fermionic spinor Ψ(x) with its corresponding adjoint spinor Ψ†(x)
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1.1. Topological matter

where S = US . A chiral symmetry operator is unitary (antiunitarity) on the level of
first (second) quantization. In contrast, to a PH transformation, a chiral symmetry
transformation reverses only the sign of energy.

Parity Symmetry: The last discrete symmetry, which we want to consider, is par-
ity symmetry. A parity transformation creates basically a spatial mirror image of an
object. This is equivalent to stating that a parity transformation flips the chirality.
In contrast to a rotation, the determinant of its representation yields -1. In 3D, a
parity transformation refers therefore to a transformation which flips all spatial com-
ponents:

P : (t, x, y, z)→ (t,−x,−y,−z) . (1.12)

In 2D, the situation is different since flipping all components would be equivalent to
a rotation (determinant +1). Hence, in a flat world, parity symmetry is defined by
flipping only the x- or the y-component.

Px : (t, x, y)→ (t,−x, y) or Py : (t, x, y)→ (t, x,−y) . (1.13)

For the sake of simplicity, let us focus now on Px in 2D. A fermionic field operator
transforms then under parity as

PxΨ(x, y)P−1
x = UPΨ(−x, y) , (1.14)

where UP is a unitary matrix. A single-particle Hamiltonian obeys parity symmetry if
it holds that:

P †H (kx, ky)P = H (−kx, ky) , (1.15)

where P = UP . We will see later on that for an odd number of Dirac fermions living
in a flat, 2D quantum world, parity symmetry is under no circumstance an appro-
priate symmetry. This is known as parity anomaly. We study this is in detail in
Section 1.6.

1.1.3. Chern insulator

We use a Chern insulator as an example to review topological effects in 2D. This
example is picked since a Chern insulator is a fundamental building block of the low-
energy Hamiltonians of QSH and QAH insulators [cf. Section 1.3]. As such, we employ
many of the following concepts frequently again during the course of this thesis. The
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Chapter 1. Introduction to Topological Matter and Topological Field Theories

corresponding Hamiltonian reads

h(k) =

M − (B +D) k2 Ak+

Ak− −M + (B −D) k2

 , (1.16)

where k2 = k2
x + k2

y, k± = kx ± iky, kx → −i∂x, and ky → −i∂y. Furthermore, M , B,
D, and A are system parameters a. The spectrum is given by

E± (k) = −Dk2 ±
√
A2k2 + (M −Bk2)2 , (1.17)

where ± denotes solutions of the valence and conduction band, respectively. And the
corresponding solutions of the Schrödinger equation are given by:

E+(k) : uk(x) =

M −Bk2 + ε(k)
Ak−

 eikx ,

E−(k) : vk(x) =

M −Bk2 − ε(k)
Ak−

 eikx . (1.18)

For B = D = 0, a Chern insulator matches the 2D Dirac Hamiltonian b, for which the
speed of light is renormalized by the parameter A. Due to this formal similarity, we
refer to the parameter M as the Dirac mass. For M 6= 0, the system is a bulk insulator
with an energy gap of 2M at (kx, ky) = (0, 0) (the Γ point). The parameter B acts as
an additional, momentum dependent mass term and the parameter D introduces an
asymmetry between the effective masses of conduction and valence band.

Let us now classify the Hamiltonian of a Chern insulator in relation to the periodic
table, Tab. 1.1. The single particle Hamiltonian, Eq. (1.16), obeys TR, PH, chiral, and
parity symmetry only if M = B = D = 0. In this case, we find that the unitary part of
the single-particle symmetry operators are determined by [cf. Eqs. (1.7), (1.9),(1.11),
and (1.15)]

UT = −iσy , UC = σx , US = σz , and UP = σy . (1.19)

Introducing either the Dirac mass M or the non-relativistic mass B breaks TR, parity,
and chiral symmetry. A non-zero D parameter breaks PH and chiral symmetry. In the
generic case, where all parameters are nonzero, a Chern insulator falls therefore into
the symmetry class A and is described by a Z topological invariant.

We will now explicitly show that the Z topological invariant is related to the Hall
conductivity σxy and is hence experimentally accessible. To this end, we follow Ref. [58]

aWe require that |D| < |B|. This ensures that the system is an insulator for M 6= 0.
bThe similarities between a 2D Dirac Hamiltonian and a Chern insulator are discussed more in detail
in Sec 1.6.1.
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1.1. Topological matter

Figure 1.1.: The vector d̂(k) describes a mapping from the compact Brillouin zone
T 2 to the unit sphere S2. The (integer) number of times, that the image of d̂(k) covers
the surface of the unit sphere, defines the winding number.

and assume that the chemical potential is placed in the bulk gap so that only the valence
band is filled in the ground state. Although the system is a bulk insulator, it turns out
that σxy can be nonzero due to topological effects. To show this, we impose periodic
boundary conditions in the x- and y-direction:

ψ(x+ Lx, y) = ψ(x, y) and ψ(x, y + Ly) = ψ(x, y) . (1.20)

This compactifies the Brillouin zone by turning it into a torus, as seen in Fig. 1.1. The
Hall conductivity can be now computed using the Kubo formula [48]:

σxy = −e
2

~

∫
BZ

dk
(2π)2 Ω−z (k) , (1.21)

where Ω−z (k) = i (∇k × 〈v(k)|∇k|v(k)〉)z is the z-component of the Berry curvature.
The minus sign in the superscript indicates that only the filled valence band can con-
tribute to the total Hall conductivity. Qi et al. [58] showed that in the case of a Chern
insulator Eq. (1.21) can be recast in the following way,

σxy = −e
2

h

1
4π

∫
BZ

dk d̂(k) ·
(
∂xd̂(k)× ∂yd̂(k)

)
, (1.22)

where d̂(k) = d(k)/ |d(k)| is the normalized d vector. In this form, the topological
nature of the Hall conductivity is most apparent. The vector d̂(k) acts as a mapping
from the compact Brillouin zone T 2 to the unit sphere S2, as illustrated in Fig. 1.1 a.
The integrand in Eq. (1.22) is the Jacobian of this mapping so that the integral yields
4πν, where 4π is the surface area of the unit sphere and ν counts the number of times
the d̂(k) vector covers the surface of the sphere [58]. Since the base space (the torus)
is compact, the surface of the sphere can only be covered an integer number of times

aThe Brillouin zone forms a torus due to the periodic boundary conditions in x- and y-direction. The
mapping d̂(k) : T 2 → S2 is described by the homotopy class π2(S2) = Z, i.e., by a Z topological
invariant.
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Chapter 1. Introduction to Topological Matter and Topological Field Theories

resulting in ν ∈ Z. The Hall conductivity yields therefore σxy = νe2/h. The quantity
ν is a so-called winding or Chern number. It is a Z topological invariant as it can only
change in integer steps. This result clearly agrees with our symmetry considerations
and demonstrates that the Z classification is experimentally accessible.

Let us now calculate the winding number of a Chern insulator explicitly by inserting
the wave function, given by Eq. (1.18) into the Kubo formula [Eq. (1.21)]. It follows
that [59]:

σxy = e2

2h

∫ ∞
0

d(k2) A2 (M +Bk2)
2
[
A2k2 + (M −Bk2)2

] 3
2

= e2

2h [sgn (M) + sgn (B)] , (1.23)

where we used that d(k2) = 2kdk. We have hence found an explicit expression for the
winding (Chern) number:

ν = 1
2 [sgn (M) + sgn (B)] . (1.24)

IfM/B < 0, the Hall conductivity vanishes as ν = 0. The system is topologically trivial
and the associated band ordering is called normal. If the Dirac mass M is continuously
varied, the band gap closes for M = 0 at the Γ point. This marks a topological phase
transition since σxy = ±e2/h for M/B > 0. Since the band ordering gets reversed
during the topological transition, one speaks then of an inverted band structure.

Lattice approach: Within the scope of this thesis, we will frequently map continuum
Hamiltonians on a finite lattice (numerical grid) with the size Lx in the x-direction and
Ly in the y-direction. This allows us to study the properties of the associated edge
states. The mapping procedure is performed by replacing the partial derivatives in
Eq. (1.16) by the discrete (central) finite-difference-method (FDM) a , i.e.,

−i∂xψ(x, y) = −iψ(x+ a, y)− ψ(x− a, y)
2a , (1.26)

−∂2
xψ(x, y) = −ψ(x+ a, y) + ψ(x− a, y)− 2ψ(x, y)

a2 , (1.27)

where a is the lattice constant (grid spacing). The replacement for the y-direction
is performed analogously. The resulting lattice Hamiltonian looks very similar to a

aWe choose the central FDM as it is superior compared to the forward FDM, which is given by

−i∂xψ(x, y) = −iψ(x+ a, y)− ψ(x, y)
a

. (1.25)

The forward FDM has two disadvantages. First of all, the truncation error is O(a), while it is only
O(a2) in the central method. Secondly, the central FDM yields a Hermitian matrix and, therefore,
real eigenvalues. The truncation error in the forward FDM can also become imaginary which is
unphysical.
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1.1. Topological matter

tight-binding Hamiltonian, which is why this method is sometimes also known as tight-
binding method. However, note that the similarities between these two approaches are
only of formal nature, as the underlying lattice in Eqs. (1.26) and (1.27) is not related
to the real crystal lattice.

To understand the implications of this approach, let us first study the bulk properties
by imposing periodic boundary conditions in the x- and y-direction. The discrete
translational symmetry of the cubic lattice implies in addition that ψ(x + a, y) =
exp(ikxa)ψ(x, y) and ψ(x, y + a) = exp(ikya)ψ(x, y). These identities can be used to
simplify Eqs. (1.26) and (1.27) considerably:

−i∂xψ(x, y) = sin(kxa)
a

ψ(x, y) , (1.28)

−∂2
xψ(x, y) = 2− 2 cos(kxa)

a2 ψ(x, y) , (1.29)

The same procedure must be repeated for the derivatives in the y-direction. The
lattice version of a Chern insulator with periodic boundary conditions is therefore
given by

h(k) = σ0ε(k) + σ · d(k) , d(k) =


A sin(kx)
−A sin(ky)

M −B [4− 2 cos(kx)− 2 cos(ky)]

 , (1.30)

where ε(k) = −D [4− 2 cos(kx)− 2 cos(ky)], and we set a = 1. The corresponding
Schrödinger equation has two solutions h(k) |u±(k)〉 = E±(k) |u±(k)〉, where

E± = −D (4− 2 cos(kx)− 2 cos(ky))

±
√
A (sin(kx)2 + sin(ky)2) + [M −B (4− 2 cos(kx)− 2 cos(ky))]2 . (1.31)

This shows that, regardless of the system parameters, the Hamiltonian, (1.30), is
gapped in the full Brillouin zone except for the four high symmetry points meaning at
(kx, ky) = (0, 0), (π, 0), (0, π), and (π, π) for which dx = dy = 0. At these points, the
bulk energy gap closes if

dz = M −B [4− 2 cos(kx)− 2 cos(ky)]
!= 0 . (1.32)

The gap closing depends therefore on the exact values of M and B. Since a topological
invariant can only change if a band gap closing occurs, the Hall conductivity of the full
lattice model can be written as the sum of the individual contributions at each high

15



Chapter 1. Introduction to Topological Matter and Topological Field Theories

symmetry point [48]:

σxy =
3∑
i=0

σ(i)
xy , (1.33)

where σ(i)
xy denotes the contribution at the ith high symmetry point. The total expres-

sion of the Hall conductivity on a cubic lattice is hence given by

σxy = e2

2h [sgn (M) + sgn (B)]− 2 e
2

2h [sgn (M − 4B) + sgn (B)]

+ e2

2h [sgn (M − 8B) + sgn (B)] , (1.34)

where the first term (σ(0)
xy ) is related to the Chern number at the Γ point and matches

the result of our original, continuum model [cf. Eq. (1.16)]. The second and third
term in Eq. (1.34) originate from the additional contributions from the other high
symmetry points. They are as such a result of the numerical approach and have to be
considered as artifacts. This issue is also known as fermion doubling [60]. To avoid any
of these spurious solutions, we must restrict the scope of the FDM to the parameter
regime

|M | < |4B| . (1.35)

In the course of this thesis, we will often compare results for the continuum model with
associated lattice models. This comparison is only valid if Eq. (1.35) is fulfilled.

Bulk-Boundary correspondence: So far, periodic boundary conditions have been
imposed to analyze the bulk topological properties of a Chern insulator on the lattice.
Now, we keep the periodic boundary conditions in the x-direction, but impose hard
wall boundary conditions in the y-direction:

ψ(x, y = ±Ly/2) = 0 . (1.36)

We refer to this case as strip geometry. The ansatz for solving the Schrödinger equation
with the FDM reads therefore ψ(x, y) = exp(ikxx)ψj , where the abbreviation ψ(y =
ja) = ψj was introduced and j ∈ Z denotes the jth lattice point in the y-direction.
Making use of Eqs. (1.26) and (1.27), the lattice Hamiltonian can be written as:

∑
j

Hi,j(kx)ψj = Ei(kx)ψi , (1.37)
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1.1. Topological matter

Figure 1.2.: (a) Spectrum of Eq. (1.37) with M/B > 0 for D = 0 is shown for a strip
geometry. Bulk states are depicted in gray, while states close to the top and bottom
edge are highlighted in red and blue, respectively. Edge states traverse the bulk gap
due to the nontrivial bulk topology. (b) Corresponding strip geometry is schematically
depicted. Arrows indicate the edge states propagating along the boundary.

where Hi,j(kx) = H0(kx)δi,j +H1δi,j−1 +H†1δi−1,j with

H0(kx) =

M − 2(B+D)
a2 [2− cos(kxa)] 1

aA sin(kxa)
1
aA sin(kxa) −M + 2(B−D)

a2 [2− cos(kxa)]

 , (1.38)

and

H1 =

 1
a2 (B +D) 1

2aA

− 1
2aA − 1

a2 (B −D)

 . (1.39)

In this approach, the hard wall boundary conditions are build in by truncating the
matrix at j = ±Ly/(2a). Solving the Schrödinger equation boils therefore down to
numerically diagonalizing at each kx a 2N×2N -dimensional matrix, whereN = Ly/a+1
is the maximal number of lattice points.

For a topologically nontrivial case (M/B > 0) with D = 0, the resulting band structure
is shown in Fig. 1.2(a). The color code depicts the expectation value 〈y〉, i.e, the local-
ization of the wave function in the y-direction; red represents the top edge (y = Ly/2),
blue the bottom edge (y = −Ly/2), and gray the bulk. Figure 1.2(a) demonstrates the
existence of chiral edge states in the bulk gap a. These topological edge states arise
as a consequence of the bulk-boundary correspondence. The number of edge states is
thereby given by |ν|, where ν is given by Eq. (1.24). Their chirality (propagation direc-
tion) is given by sgn (ν). Note that the two edge states cross exactly at E = 0, called
the Dirac point, due to the underlying PH symmetry. The situation is schematically
depicted in Fig. 1.2(b). Similar results were, for example, obtained by König et al. [16]
and Scharf et al. [61].

aRecall that the Fermi velocity vf = ~−1∂E/∂k|k=kf , where kf is the Fermi momentum.
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1.1.4. Symmetries in the presence of an external magnetic
field

In the present discussion we have not yet included an external vector potential A(x).
It can be incorporated in a Hamiltonian or in a field theoretical approach using the
Peierls substitution,

k→ π = k + e

~
A(x) . (1.40)

For instance, a magnetic field B = B⊥ez which points in the z-direction can be incor-
porated in the Landau gauge choosing A = −yB⊥ex. As long as the source of this
external field lies outside of the considered (closed) system, A remains unaffected by
any symmetry operation [57]. In other words, it should not be treated as a quantum
operator. This is the typical scenario in a solid state laboratory. For instance, suppose
we consider a 2D system, the vector potential transforms as

OA(x, y)O−1 = A(x, y) with O = T , C,S (1.41)

PxA(x, y)P−1
x = A(−x, y) , (1.42)

where we assumed that A is time-independent. Only the spatial components transform
under parity symmetry a.

Making use of Eqs. (1.41) and (1.42), it is straightforward to include an external vector
potential in Eqs. (1.7), (1.9), (1.11), and (1.15):

U †TH
∗ [k; A(x)]UT = H [−k; A(x)] , (1.43)

U †CH
∗ [k; A(x)]UC = −H [−k; A(x)] , (1.44)

U †SH [k; A(x)]US = −H [k; A(x)] , (1.45)

U †PH [kx, ky; A(x, y)]UP = H [−kx, ky; A(−x, y)] . (1.46)

These four equations demonstrate that the vector potential A transforms differently
from the momentum k under TR, PH, and parity symmetry. This implies that an exter-
nal magnetic field breaks all discrete symmetries except for the chiral symmetry.

The role of a magnetic field can be also understood within a classical picture. Consider
an electron that propagates with velocity v = vxex in the x-direction in a 2D system.
And the system is subjected to an external magnetic field that points in the out-of-plane
direction (z-direction). Such an electron would feel a Lorentz force, F = −ev × B =

aThe parity symmetry also clearly leaves the magnetic field invariant:

B = ∇x,y ×A(x, y) Px→ B′ = ∇−x,y ×A(−x, y) != B .
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1.2. Landauer-Büttiker formalism

Figure 1.3.: Magnetic field breaks parity and TR symmetry in a 2D system. The
symmetry operation is considered here as an active transformation, i.e., we transform
the physical object but keep the coordinate system invariant. The violation of parity
and TR symmetry is here illustrated in terms of the Lorentz force which is odd under
both symmetry transformations.

evxB⊥ey, pointing in the y-direction. This is schematically illustrated on the left-hand
side of Fig. 1.3. Now, suppose a TR or a parity transformation is applied to the system.
Both transformations clearly result in the reversal of the propagation direction of the
electron (vx → −vx), while they leave the magnetic field invariant. The Lorentz force
changes therefore its sign under TR and parity symmetry, as indicated on the right-
hand side of Fig. 1.3. The physical picture is not invariant which demonstrates that an
external magnetic field breaks TR and parity symmetry.

Finally, let us emphasize that the scenario changes when the vector potential is consid-
ered as an integral part of the closed system. This is for instance the case in (2+1)D
QED [62]. In this case, the vector potential must be considered as a quantum oper-
ator. For instance, A transforms then under parity symmetry via PxAx(x, y)P−1

x =
−Ax(−x, y) and PxAy(x, y)P−1

x = Ay(−x, y). As a result parity symmetry flips the
sign of the magnetic field [50, 62] a. It is a pseudo-scalar in (2+1)D QED.

1.2. Landauer-Büttiker formalism
If we would experimentally determine the Hall conductivity of a single Chern insulator,
we would find that its quantization is basically independent on the impurity concentra-
tion and on the system dimensions b. This astonishing feature can be attributed to the
existence of chiral edges channels [63]. An electron propagating along such a channel
cannot be backscattered. The only possible process for this to happen would involve
chiral edge channels at the opposite side of the sample. Edge dominated transport is
protected by the system size. This is in stark contrast to bulk transport, where impuri-
ties cause scattering which ultimately leads to localization and, therefore, to a decrease

aThis is a special property of a 2D space. In 3D, all three components of A are flipped. Hence, the
magnetic field is invariant even if the vector potential is treated as a quantum operator.

bWe assume that the chemical potential is placed in the bulk gap.
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Figure 1.4.: Schematics of six-terminal Hall bar. A single chiral edge channel is
indicated propagating in clockwise direction.

in conductivity.

The crucial role of edge channels was first revealed by Halperin [64] and Büttiker [63].
In particular, Büttiker developed a very simple and elegant formalism to study coher-
ent transport of edge channels within multi-terminal setups. This approach is known
as the Landauer-Büttiker-formalism [63]. For a six terminal Hall bar, the setup is
schematically depicted in Fig. 1.4. To drive a current through the system, a voltage
difference ∆V = −e(µ1 − µ4) can be applied between contact 1 and 4, where µi is
the local chemical potential in the ith contact. The two contacts serve as source and
drain of the electric current. All other contacts are used as voltage probes. This means
I2 = I3 = I5 = I6 = 0 and I1 = −I4. The total current is conserved

∑6
j=1 Ij = 0.

Under these assumptions, Büttiker showed that the current in the ith contact is given
by [63]

Ii = − e
h

N∑
j=1

[Tijµj − Tjiµi] , (1.47)

where Tij is the transmission probability from the jth to the ith contact and N is
the total number of contacts (here, N = 6). The Hall resistance is defined by RH =
−e(µ2 − µ6)/I1; the longitudinal resistance is given by RL = −e(µ2 − µ3)/I1. In the
following, we assume that transport is only carried between adjacent contacts and
that the system obeys translational invariance in the sense that Ti,j = Ti+1,j+1. The
transmission probabilities in clockwise and anticlockwise direction are then determined
by Ti+1,i = Tc and Ti,i+1 = Ta, respectively. Solving the linear system, given by
Eq. (1.47), leads to the following analytic expressions for the Hall and the longitudinal
resistance [65]:

RH = h

e2
Tc − Ta

T 2
c − TaTc + T 2

a

, (1.48)

RL = h

e2
TcTa

T 3
c + T 3

a

. (1.49)

In the case of a Chern insulator with C = −1 [cf. Fig. 1.2], there is only one edge channel
which propagates in clockwise direction. This implies that Tc = 1 and Ta = 0. A typical
measurement yields therefore RH = h/e2, while RL = 0. There is no longitudinal
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1.3. The quantum Hall family

resistance as backscattering is absent.

The Landauer-Büttiker formalism is a coherent transport formalism. Inelastic scat-
tering events can be only treated in a simplistic fashion by including so called virtual
voltage probes within the calculation. A voltage probe serves as an infinite reservoir.
This means when an electron enters a voltage probe from a perfect edge channel, it
equilibrates to the local chemical potential and loses its phase information. This means
a voltage probe acts similar to an inelastic scattering event [63, 66]. If the channel
length is larger than the inelastic mean free path, we can therefore add virtual voltage
probes in Eq. (1.47) to account for inelastic scattering. However, as long as, only chiral
edge channels exist, inelastic scattering cannot induce any resistance. A perfect quan-
tization which is independent on the exact material properties is therefore a signature
of chiral edge transport.

1.3. The quantum Hall family

We present an overview of topological states of matter in 2D solid state systems includ-
ing the QH, QSH, and QAH phase. Thereby, we work exclusively within a Hamiltonian
approach and discuss in each case characteristic band structure, as well as transport
signatures. The field theoretical description, which complements the understanding of
these topological states, will be developed later on, starting in Sec. 1.5. Here, we start
by reviewing the QH effect in Sec. 1.3.1. Based on our results for a single Chern insula-
tor, we introduce QSH and QAH insulators in Secs. 1.3.2 and 1.3.3, respectively.

1.3.1. Quantum Hall insulator

Probably the best understood topological state of matter is the QH phase. To under-
stand its properties, let us start with a quadratic Hamiltonian in 2D which is subjected
to an external magnetic field:

H = ~2

2m

[(
kx + e

~
Ax(x)

)2
+
(
ky + e

~
Ay(x)

)2
]

= ~2

2m
(
π2
x + π2

y

)
, (1.50)

where πi with i = {x, y} is defined in Eq. (1.40). Analogously to the discussion in
Sec. 1.1.4, we account for the magnetic field in the Landau gauge, A(x) = −yB⊥ex.
This breaks translational invariance in the y-direction and maintains the translational
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Chapter 1. Introduction to Topological Matter and Topological Field Theories

invariance in the x-direction a. As a result, the momentum kx remains a good quantum
number.

The following calculation is similar to solving a simple quantum harmonic oscillator. It
is hence convenient to introduce ladder operators to compute the bulk spectrum:

a = lB⊥√
2~

[sgn (eB⊥)πx − iπy] , a† = lB⊥√
2~

[sgn (eB⊥)πx + iπy] , (1.51)

where lB⊥ =
√
~/|eB⊥| is the magnetic length. Ladder operators fulfill the following

useful identities

a†a |n〉 = n |n〉 , a† |n〉 =
√
n+ 1 |n〉 ,

a |n〉 =
√
n |n− 1〉 , and

[
a, a†

]
= 1 , (1.52)

where n = 0, 1, 2, . . . denotes the nth harmonic oscillator function. Recasting Eq. (1.50)
in terms of ladder operators yields

H = ~ωC
(
a†a+ 1

2

)
, (1.53)

where the cyclotron frequency is denoted by ωc = |eB⊥| /m. Making use of Eq. (1.52),
we see that the eigenvalues of the Schrödinger equation are determined by

En,kx(B⊥) = ~ωc
(
n+ 1

2

)
. (1.54)

Each of these so-called LLs (LL index n) is highly degenerate since the energy does not
depend on kx. In particular, one can show that the LL degeneracy (per area) equals
to [68]

nB⊥ = 1
2πl2B⊥

. (1.55)

The number of filled LLs as a function of the magnetic field is therefore given by the
filling factor

ν = nel
nB⊥

, (1.56)

where nel is the electron density in the associated 2D electron gas. Solving the dif-
ferential equation, one can show that the corresponding wave function is a prod-
uct state of a plane wave in the x-direction and harmonic oscillator states in the

aIt is actually possible to reintroduce a set of magnetic translational operators. They allow the
definition of a magnetic Brillouin zone which is restricted to a smaller area in momentum space,
compared to the Brillouin zone in the absence of a magnetic field. The interested reader finds
further information in Ref. [67].
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y-direction [69]:

ψn,kx(x) = eikxxHn

(
y − ykx
lB⊥

)
e
−(y−ykx)2

/

(
4l2B⊥

)
, (1.57)

where ykx = kxl
2
B⊥

sgn (eB⊥), andHn stands for the nth Hermite polynomial. Note that
there is a one-to-one correspondence between the momentum kx and the localization of
the wave function in the y-direction. The wave functions are centered around ykx and
their width is related to the magnetic length lB⊥ . One should keep these identities in
mind as they are helpful to interpret band structures in magnetic fields.

So far, we have mainly considered a simple quantum mechanical problem. Let us
now turn to the topological interpretation of the QH phase. In this regard, we have
to mention four seminal papers which together yield a comprehensive picture of the
QH effect as a topological state of matter. Thouless, Kohmoto, Nightingale, and den
Nijs [5] showed for the first time using the Kubo formula that, while the longitudinal
conductivity σxx vanishes in the QH phase, the Hall conductivity is quantized with
σxy = −νe2/h a. The subsequent work by Avron, Seiler, and Simon [70], as well as the
work by Kohmoto [67] shed for the first time light on the topological interpretation of
the QH effect. Assuming a non-interacting electron system, they provided proof that
the Hall conductivity is determined by a topological invariant representing the filling
factor ν. The topological invariant is the first Chern number which, in the context of the
QH phase, is often times referred to as the TKKN invariant. The name is a reference to
the four authors of Ref. [5]. A generalization to interacting systems was later given by
Niu, Thouless, and Wu [7]. They showed that the topological interpretation remains
valid even in the presence of manybody interactions and disorder. As such, these
references taken together are compelling evidence that the topological interpretation is
robust and, hence, suitable to describe the experiment. Finally, note that this result can
be also understood from the periodic table, Tab.1.1. The quadratic Hamiltonian breaks
TR, PH, and chiral symmetry in the presence of a magnetic field. Hence, the 2D system
falls into the symmetry class A and is described by a Z topological invariant.

To present a short, intuitive proof that σxy is indeed quantized, we follow Ref. [52].
Assuming that σxx = 0 in the bulk gap, we can write the ith component of the current
as ji = σxyεijEj , where εij is the two-dimensional Levi-Civita symbol and Ej is the jth
component of an applied electric field. Since the continuity equation must be fulfilled,
it follows that

∂ρ

∂t
= −∇j = −σxy (∂xEy − ∂yEx) = σxy

∂B⊥
∂t

, (1.58)

aWe assumed T = 0 K and that the chemical potential is placed in the bulk gap between adjacent
LLs.

23



Chapter 1. Introduction to Topological Matter and Topological Field Theories

Figure 1.5.: Band structure and LL fan for quadratic Hamiltonian, Eq. (1.50), em-
ploying a strip geometry. Band structure is shown for B⊥ = (a) 0 T, (c) +1 T, and (d)
−1 T. (b) LL fan: Evolution of bulk LL energies as function of magnetic field B⊥. At
small magnetic fields, deviations from ideal linear behavior [cf. Eq. (1.54)] is observed
due to finite system size. Color code highlights edge versus bulk localization.

where ρ = −enel is the charge carrier density. We arrive therefore at a very simple
equation for the Hall conductivity, also known as Streda’s relation [71]:

σxy = ∂ρ

∂B⊥
. (1.59)

If ν electron-like LLs are filled, such that ρ = −eνnB⊥ , Streda’s relation yields σxy =
−νe2/h which completes the proof.

The QH effect is from a topological point of view similar to a Chern insulator. Both
are described by a Z topological invariant. This implies that bulk LLs should come
along with chiral edge channels a. Using Eq. (1.27), we can employ the finite-difference-
method to calculate the band structure of Eq. (1.50) for a strip geometry. The results
are shown in Fig. 1.5. The color code highlights analogously to Fig. 1.2 the wave func-
tion localization. The strip geometry breaks translational invariance in the y-direction
which results in the formation of quantum well subbands as observed in Fig. 1.5(a)
for B⊥ = 0. Switching on the magnetic field, we trace in Fig. 1.5(b) the evolution of
the band edge energies at kx = 0 as a function of B⊥. The quantum well confinement

aThe main difference between QH and Chern insulators is that the topology in Chern insulators is
linked to an inverted band structure without LLs.
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induces deviations from a perfectly linear behavior for small B⊥, i.e., if lB⊥ > Ly. In
the opposite limit when lB⊥ < Ly, the LL fan recovers a perfectly linear behavior as
expected from Eq. (1.54)[61]. The full band structure for B⊥ = +1 T and −1 T as a
function of kx is shown in Fig. 1.5(c) and (d), respectively. While flat LLs are observed
for small kx, the band structure starts to cross the band gaps for large kx. These devia-
tions from Eq. (1.54) are a consequence of the finite system size of the strip geometry a.
As the color shows, bands which cross the gaps are strongly localized at the edges of
the strip. They form chiral edge channels [64].

So far, we have discussed transport properties of a QH insulator based on a pure bulk
picture. Let us now analyze these transport properties within the associated edge
picture. To this end, we follow along the lines of Sec. 1.2 and assume that associated
transport measurements would be performed on a six-terminal Hall bar. Furthermore,
we place, as an example, the chemical potential between the n = 1 and the n = 2 LL
in Fig. 1.5(c) (B⊥ = 1 T). In this case, there are two chiral edge channels with positive
(negative) Fermi velocity which are localized at the top (bottom) edge of the strip
geometry (cf. Fig. 1.4) b. The chiral edge channels propagate therefore in clockwise
direction. In comparison in Fig. 1.4, flipping the magnetic field direction results in
flipping the sign of the Fermi velocity for all edge channels. This means they propagate
in anticlockwise direction for negative magnetic fields. Making use of the Landauer-
Büttiker formalism, it should be hence apparent that the transmission probabilities
change for these two examples from Tc = 2 and Ta = 0 at B⊥ = 1 T, to Tc = 0 and
Ta = 2 at B⊥ = −1 T. Inserting this into Eqs. (1.48) and (1.49), it turns out that
the Hall resistance is quantized to sgn (B⊥)h/2e2, while RL = 0 c. We can therefore
comprehensively understand transport in the QH phase by chiral edge channels [63].
Furthermore, we notice that the Hall resistance is an odd function of the magnetic field
in the QH phase. Since in 2D it holds that σxy = R−1

H given that RL = 0, this implies
that

σxy(−B⊥) = −σxy(B⊥) , (1.60)

which is commonly known as the Onsager relation [72, 73].

1.3.2. Quantum spin Hall insulator
In Sec. 1.1.3, we studied in detail the properties of a Chern insulator defined in two
spatial dimensions. We saw that in such models parity and TR symmetry are generically

aIn deriving Eq. (1.57), we implicitly assumed an infinite space. Wave functions are therefore only
required to be square-integrable. Deviations from bulk results are therefore expected when the finite
system size starts to play a role for potential wave functions.

bBy top and bottom edge, we refer to y = Ly/2 and y = −Ly/2, respectively.
cIn 2D, resistance and resistivity have the same units. It holds that ρxy = Rxy and ρxx = RxxW/L,
where L is the length and W is the width of the Hall bar.
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Figure 1.6.: Bulk band structure of HgTe (left) and CdTe (right). Band character is
highlighted. Band ordering between Γ6 and Γ8 bands is in reverse in HgTe compared
to the trivial insulator CdTe. From Ref. [15]. Reprinted with permission from AAAS.

violated. This is because of the mass operators Mσz and Bk2σz which are odd under
parity and TR symmetry. A Chern insulator is therefore described by a Z topological
invariant.

From the periodic table, Tab. 1.1, we know that there are other symmetry classes in
2D which are associated to Z2 topological invariants. The two existing classes DIII
and AII rely both on the presence of TR symmetry. A topological material which
falls into one of these classes is known as quantum spin Hall (QSH) insulator. Its
first theoretical proposal goes back to Kane and Mele [13, 14]. They suggested that,
in graphene, spin-orbit interaction induces the QSH phase by opening a band gap at
the two high symmetry point, K and K ′, of the honeycomb lattice. Unfortunately,
this gap is very small so that temperatures below 10 mK [74] would be required to
actually observe this effect. The first successful proposal of a QSH insulator was made
by B. A. Bernevig, T. L. Hughes, and S.-C. Zhang [15]. They proposed that thin
layers of HgTe/(Hg,Cd)Te quantum wells are characterized by the QSH phase. Their
proposal was verified by König et al. using magneto transport experiments [16, 17].
Nowadays, there is still only a handful of materials which have been identified as QSH
insulators. Most notably are in this regard InAs/GaSb quantum wells [75], WTe2 [76],
and bismuthene on SiC substrate [77]. In particular, the latter material offers the
prospect for realizing a QSH insulator that operates at room temperatures.

As a prototype example, we focus here on HgTe/(Hg,Cd)Te quantum wells. The bulk
band structures of HgTe and CdTe are shown in the vicinity of the Γ-point in Fig. 1.6.
Bulk HgTe is a semimetal which exhibits an inverted band structure. The two p-type
Γ8 bands lie ∼ 300 meV above the s-type Γ6 band, which conventionally represents the
conduction band. The band inversion in HgTe is driven by a large relativistic mass-
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1.3. The quantum Hall family

Figure 1.7.: Evolution of bulk band edge energies of conduction (Ec) and valence (Ev)
band for HgTe/Hg0.3Cd0.7Te quantum wells with (a) dQW < dc and (b) dQW > dc. Evo
stands for the valence band offset between HgTe and (Hg,Cd)Te. Dashed lines indicate
subband levels. From Ref. [15]. Adapted with permission from AAAS.

velocity correction a and spin-orbit interaction [78, 79]. In comparison, bulk CdTe shows
a normal band ordering, in which the Γ6 band is above the two Γ8 bands. A typical
experimental setup consists, for instance, of a HgTe/Hg0.3Cd0.7Te quantum well with
[001] growth direction (z axis) which is grown on a Cd0.96Zn0.04Te substrate [17]. In this
specific configuration, the lattice constants of the adjacent layers roughly match. The
corrections due to strain are therefore almost negligible (for further details see App. A).
Other substrates, like superlattice virtual substrates [80], can be used to manipulate
the band structure further.

The band diagram for the quantum well geometry is schematically shown for two differ-
ent thicknesses in Fig. 1.7(a) and (b). For very thin quantum wells, the band ordering
of the quantum well subbands is in the normal regime, i.e., topologically trivial. This
means the s derived E1 subbands b, are above the p derived heavy-hole H1 subbands
(both are double degenerated because of the spin degree of freedom). If the thickness
exceeds the critical thickness dc = 6.3 nm, the subband order changes and the band
structure enters the inverted regime [16, 17]. Since in HgTe the charge neutrality point
lies between the E1 and H1 subbands, this implies that the system enters the QSH
phase. The explicit evolution of the band edge energies as a function of the quan-
tum well thickness dQW is shown in Fig. 1.8. Higher order HH subbands, indicated
by H(n) increase in energy (with dQW ) due to their negative effective mass. In com-
parison, higher order E(n) subbands decrease in energy due to their positive effective
mass.

To derive now a low energy Hamiltonian, it is sufficient to take only the two E1

aThis term originates from a higher order relativistic correction in the Schrödinger-Pauli equation:√
|p|2 c2 +m2

0c
4 −m0c

2 ≈ |p|
2

2m −
|p|4

8m3c2
+ . . . ,

where the first term is the conventional kinetic term and the second terms denotes the mass-velocity
correction, which is large in HgTe.

bTo be precise, the E1 subband consists of a mixture of |Γ6, 1/2〉 and |Γ8, 1/2〉. Further details are
discussed in Ch. 3.
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Figure 1.8.: Evolution of band edge energies of quantum well subbands as function of
quantum well thickness dQW . The corresponding layer structure is shown in Fig. 1.7.
From Ref. [17]. Reprinted with permission from the Physical Society of Japan.

and the two H1 subbands into account, provided the discussion is limited to thick-
nesses dQW < 8.3 nm. Above this critical thickness, it would be necessary to include
more bands within the model, as other heavy-hole subbands start to additionally cross
the E1 subbands [81]. This low energy model is commonly known as the Bernevig-
Hughes-Zhang (BHZ) model [15]. The Hamiltonian, written in the subband basis
{|E1↑〉 , |H1↑〉 , |E1↓〉 , |H1↓〉}, reads

H(k) =

h (k) 0
0 h∗ (−k)

 , (1.61)

where h(k) denotes a single Chern insulator, defined by Eq. (1.16). In contrast to
a single Chern insulator, the BHZ model obeys TR and parity symmetry even if the
Dirac mass M and the nonrelativistic mass Bk2 are nonzero. This is possible because
both spin blocks are involved in the symmetry transformations a. The corresponding
single-particle symmetry operators read [cf. Eqs. (1.7), (1.9), (1.11), and (1.15)]

T = UTK , UT = −iτy ⊗ σ0 , T 2 = −1 ; (1.62)

Px = UP , UP = τy ⊗ σ0 , P 2
x = 1 . (1.63)

This means a QSH insulator can be simplistically understood as two copies of Chern
insulators which are connected by TR symmetry. The symmetry operators for PH and

aBy spin degree of freedom, we actually refer to the total angular momentum. The two basis states
of the spin up block have both a positive angular momentum quantum number mj , while the two
basis states of of the spin down block have a negative mj . To be precise, the |E1, (↑, ↓)〉 subbands
have mj = ±1/2, respectively, and the |H1, (↑, ↓)〉 subbands have mj = ±3/2, respectively.
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Figure 1.9.: (a) Band structure of QSH insulator described by BHZ model, Eq. (1.61).
The two spin blocks are indicated by color. Spin up (down) is highlighted in red
(blue). A small offset was introduced between the two spin blocks, which are usually
double degenerated due to TR and inversions symmetry. (b) QSH insulator can be
schematically understood as two copies of Chern insulators (CIs) which are connected
by TR symmetry. The two Chern insulators have opposite spin polarizations and
chiralities. The spin is indicated by arrows.

chiral symmetry are given by

C = UCK , UC = τ0 ⊗ σx , C2 = 1 ; (1.64)

S = US , US = τx ⊗ σx , S2 = 1 . (1.65)

Introducing the D-parameter respects TR and parity symmetry, but breaks PH and
chiral symmetry. A QSH insulator falls therefore into the symmetry class DIII if D = 0,
or into the symmetry class AII if D 6= 0 (cf. Tab. 1.1). In either case, the topological
invariant is Z2. Note that although Eq. (1.61) was motivated as the low energy model
of HgTe quantum wells, it applies similarly to other QSH insulators [13, 75].

To analyze the characteristic edge properties of a QSH insulator, let us follow the recipe
introduced in Sec. 1.1.3 to map the Hamiltonian onto a strip geometry. The correspond-
ing band structure is shown in Fig. 1.9(a). A more detailed analysis can be found in
Ref. [61]. Since the system consists of two Chern insulators which are connected by
TR symmetry, we observe that a pair of counterpropagating, spin polarized edge chan-
nels traverse the bulk band gap [15]. These helical edge channels are schematically
illustrated in Fig. 1.9(b). Remarkably, they are protected against elastic backscatter-
ing if the perturbation preserves TR symmetry. This means electrons cannot change
their propagation direction if TV (x)T−1 = V (x), where V (x) describes an arbitrary
time-independent perturbation [82]. They are the key signature of a nontrivial Z2

classification in 2D.

Let us now turn our attention to transport properties of QSH insulators. To this end,
Eq. (1.23) can be employed to show that the total Hall conductivity σxy vanishes in
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the bulk gap:

σxy = σ↑xy + σ↓xy = 0 , (1.66)

where σsxy with s = {↑, ↓} denotes the Hall conductivity of the spin up [h(k)] or the
spin down block [h?(−k)] of Eq. (1.61), respectively. That σxy = 0 is a consequence of
TR symmetry a [48]. Hence, a QSH insulator shares the same Hall conductivity as a
trivial insulator. But it can be distinguished from a trivial insulator by its nontrivial
spin Hall conductivity σSxy in the bulk gap, where [58]

σSxy = σ↑xy − σ↓xy . (1.67)

The spin Hall conductivity yields ±2e2/h in the case of a QSH insulator, while it
vanishes in the case of a trivial insulator.

While Eq. (1.67) is a beautiful theoretical result, it is actually not easy to measure
a spin Hall conductivity experimentally b. But how do we then verify the existence
of QSH insulators? So far, we have focused on the pure bulk conductivity of QSH
insulators. However, in actual experiments, one has to also account for the crucial role
of contacts [84]. In fact, it turns out that QSH insulators have a very clear hallmark
when multiterminal Hall bars are employed. To this end, let us apply the Landauer-
Büttiker formalism for a six terminal set-up, as discussed in Sec. 1.2, to determine
the longitudinal and Hall resistance. Assuming that the transport between contacts is
ballistic and preserves TR symmetry, the transmission probabilities between adjacent
contacts of the helical edge states is given by Ti,i+1 = Ti+1,i = 1 [16, 17]. All other
transmission probabilities vanish. Inserting this into Eqs. (1.48) and (1.49), we find
that while the Hall resistance is zero, the longitudinal resistance RL is quantized to
h/2e2 c. This quantization is characteristic for QSH insulators and has been verified
by König et al. for HgTe quantum wells in the inverted regime [16, 17]. Further
evidence that transport is indeed carried by helical edge channels has been obtained
using nonlocal transport experiments [66]. Note however that this quantization is only
reached for small Hall bars with a few µm length [16, 85, 86]. This limitation is a
consequence of inelastic scattering and TR symmetry breaking perturbations which
can cause deviations from a perfect quantization in large samples. In this regard,
charge puddles were identified as the major source of backscattering [86–88].

aTR symmetry implies that the Berry curvature is an odd function of k. The Hall conductivity, which
is determined by the integral of the Berry curvature over the Brillouin zone must therefore vanish.

bThe spin polarization of the helical edge channels was verified in Ref. [83] using a split gate technique.
cThat RL 6= 0 results from the contact resistance of the voltage probes. A voltage probe populates
edge channels incoherently with equal probability which causes the nonzero resistance [66].
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1.3.3. Quantum anomalous Hall insulator

The conceptual idea of a QAH insulator is to realize a quantized Hall conductivity
similar to the QH phase, but without the necessity of an external magnetic field. This
means in the absence of LLs. The realization of such a topological state would allow
dissipationless chiral edge transport without requiring any symmetry constrains or a
magnetic field a. Its physical realization is therefore of great interest for possible low-
energy electronics.

Because TR symmetry demands that σxy = 0, the key ingredient to realize the QAH
phase is to break TR symmetry. The proof of principal, that such a topological state
exists, dates back to the seminal work by Haldane in 1988 [8]. He showed that a
staggered magnetic flux in graphene can be utilized to break TR symmetry and, to
that end, generate a quantized σxy b. Even though he believed at that time, that his
model was unlikely to be ‘physically realizable’ [8], his idea inspired later work by Liu
et al. [21]. Their proposal was the origin for the intense research into QAH insulators
in condensed matter systems c [90].

Liu et al.’s profound idea was to realize the QAH phase by incorporating magnetic
atoms in the crystal structure of topological insulators. In particular, HgTe alloyed
with a few percent of manganese was proposed as the first solid state realization of the
QAH phase. The low energy physics of this material compound, similarly to HgTe,
is still described by the BHZ model [cf. (1.61)], except for an additional Hamiltonian
which accounts for the magnetization of the Mn atoms d. This Hamiltonian reads

HS =


GE 0 0 0
0 GH 0 0
0 0 −GE 0
0 0 0 −GH

 , (1.68)

whereGE andGH represent the out-of-plane magnetization. IfGE andGH are nonzero,
this Hamiltonian clearly breaks TR symmetry since T †HST = −HS , where T is given
by Eq. (1.62). The magnetization removes the relation between the two spin blocks in
the BHZ model and therefore allows a finite σxy.

More specifically, introducing Eq. (1.68) renormalizes the bulk band gaps of the two

aAs we have pointed out in Sec. 1.3.2, symmetry protected topological phases are fragile. Any per-
turbation that breaks the underlying symmetry introduces a resistance and, therefore, prevents
dissipationless transport. A strong magnetic field is not compatible with typical electronic devices.

bThe staggered potential is constructed such that the net magnetic flux in each unit cell is zero.
cIn 2014, researchers working in the field of quantum optics realized an actual Haldane model with
ultracold fermions using an optical honeycomb lattice [89].

dThe Mn atoms only alter the BHZ parameters. This is discussed in Ch. 3.
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Figure 1.10.: (a) and (b) show transition from QSH to QAH insulator via increasing
the exchange coupling |GE | and |GH |. If GEGH < 0, it is possible to invert the band
structure of only a single spin block. (a) Schematic evolution of band structure. (b)
One pair of the QSH edge states is destroyed during the process. One pair of chiral
edge states characterizes QAH phase. From Ref. [21]. Adapted with permission from
APS.

spin blocks separately:

E↑,↓g = 2M ±GE ∓GH , (1.69)

where± belongs to the spin-up and down block, respectively. As indicated in Fig. 1.10(a)
and (b), the QSH phase merges into the QAH phase when one of the two spin blocks
is driven into the trivial regime. The condition to realize the QAH phase therefore
reads E↑gE↓g < 0 a. If this condition is fulfilled, only one of the two Chern insulators
contributes to the total Hall conductivity resulting in σxy = ±e2/h. As indicated in
Fig. 1.10(c)-(g), this process goes hand in hand with the destruction of the helical edge
channels which merge at the transition point into purely chiral edge channels. Note
that these chiral edge channels originate from the intrinsically inverted band structure
and, thus, exist in the absence of LLs.

aThere is actually a second condition. We have to ensure during the transition that the system remains
a bulk insulator. This amounts to GEGH < 0 [21].
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In the case of (Hg,Mn)Te, there is however a problem with Liu’s argumentation which
we did not mention so far. The magnetization, which is induced by the sp-d exchange
interaction between s and p band electrons with the localized d electrons of Mn, is
in fact paramagnetic [45, 91]. The topological transition, shown in Fig. 1.10, requires
therefore an external magnetic field a. Nonetheless, Liu’s idea applies also to other
topological insulators alloyed with magnetic atoms. But to realize a QAH insulator
without an external magnetic field, a specific material has to be found which exhibits
a ferromagnetic insulating groundstate. This goal was finally achieved by Yu et al.
who predicted that thin films of Bi2Te3, Bi2Se3, or Sb2Te3 doped with Cr or Fe are in
fact QAH insulators in the absence of a magnetic field [22] b. Based on Yu’s proposal,
there were numerous experimental realizations of the QAH effect in (Bi, Sb)2Te3 doped
with chromium [23, 25, 93] or vanadium [24]. In these material compounds, transport
experiments c show a quantization of the QAH plateau with a precision of almost 10
parts-per-million [94, 95]. Finally, let us note that while the mechanism behind the
ferromagnetic ground state was originally explained by the van Vleck mechanism [22],
there has been an intense debate in the literature about its exact mechanism. The
interested reader can find further information on this subject in Refs. [96, 97]. Further
information on the QAH effect can be found in Refs. [90, 92].

1.4. Chiral anomaly and fermion number
fractionalization in (1+1)D

In Sec. 1.4.1, we review some important properties and symmetries of the Dirac equation
in (1+1)D which can be interpreted as the associated low-energy theory of a chiral edge
state. Subsequently in Sec. 1.4.2, we show that the global symmetry of the classical
Dirac theory, which guarantees that the difference in the number of right and left movers
is conserved, cannot be elevated to the associated quantum theory. This will be our first
example of a quantum anomaly. The presented calculations are thereby strongly based
on Refs. [98, 99]. Finally, in Sec. 1.4.3, we discuss fermion number fractionalization
which can result from a spatial dependence of the Dirac mass in (1+1)D. Further
information on this subject can be found in one of the extensive reviews [100–102].

aWe therefore have to disentangle the QAH from the QH effect which is induced additionally by the
magnetic field. This issue will be the starting point for the discussion in Ch. 2.

bThe bulk materials Bi2Te3, Bi2Se3, and Sb2Te3 are all 3D TIs. The low energy physics of their surface
states is described by a Dirac Hamiltonian at each surface. In the thin film limit, the surface states
hybridize which effectively gives rise to a BHZ-like model [22, 92]. The basis states of the associated
low-energy Hamiltonian are therefore, in contrast to (Hg,Mn)Te determined by a combination of
top and bottom surface states.

cThat the transport is indeed carrier by edge channels, as in the QH phase, has been verified by
nonlocal measurements [93].

33



Chapter 1. Introduction to Topological Matter and Topological Field Theories

1.4.1. Dirac equation in (1+1)D

The Lagrangian of a Dirac system in (1+1)D coupled to a U(1) electromagnetic vector
potential Aµ reads

L = ψ̄
(
i /D −m

)
ψ , (1.70)

where /D = /∂ − ie /A, the adjoint spinor ψ̄ = ψ†γ0, and {γµ, γν} = 2gµν with gµν =
gµν = Diag [1 , −1] a. In the following, we use γ0 = σy and γ1 = iσx, implying that
γ5 = γ0γ1 = σz. We focus at first on the case m = 0, before we consider the effects of a
nonzero Dirac mass in Sec. 1.4.3. The massless Dirac Lagrangian is invariant under the
two global U(1) symmetries, ψ → eiφψ and ψ → eiφγ5ψ, where φ denotes a constant
phase. According to Noether’s theorem, these continuous global symmetries imply two
locally conserved currents:

∂µj
µ = ∂tρ+ ∂xjx = 0 with jµ = −eψ̄γµψ , (1.71)

∂µj
µ
5 = ∂tρ5 + ∂xj5,x = 0 with jµ5 = −eψ̄γµγ5ψ . (1.72)

Equations (1.71) and (1.72) imply the conservation of charge Q =
∫
dx j0 and axial

charge Q5 =
∫
dx j0

5 , respectively. While the concept of charge should be clear, let us
recast Eq. (1.70) slightly to shed light on the concept of axial charge. In the massless
limit, we can insert

ψ =

ψR
ψL

 (1.73)

into Eq. (1.70) to see that the Lagrangian decomposes into chiral left and right movers

L = ψ†Ri (D0 +D1)ψR + ψ†Li (D0 −D1)ψL . (1.74)

In the same way, we can recast the two conserved currents to see that

jµ = jµR + jµL with jµi = −eψ̄†i γ
µψi , (1.75)

jµ5 = jµR − j
µ
L with jµ5,i = −eψ̄†i γ

µγ5ψi , (1.76)

where i = {R,L}. Hence, the conservation of Q means that the total number of left
and right movers is fixed, while the conservation of Q5 means that the difference in the
number of left and right movers remains constant. This seems to be a natural result
as left and right movers are decoupled for m = 0. However, we will see now that life
becomes much more complicated when we try to quantize the classical theory.

aWe work in (1+1)D which has one time and one space component. Greek indices run over 0 and 1.
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1.4.2. Chiral (axial) anomaly
We will now elevate the classical Lagrangian to a quantum theory. To this end, we
cross over to the second quantized Hamiltonian that is associated to Eq. (1.74):

H =
∫
dx
[
ψ†R (−i∂x + eAx)ψR − ψ†L (−i∂x + eAx)ψL

]
, (1.77)

where ψi with i = {R,L} denote second quantized field operators and we set A0 = 0 a.
To solve the corresponding Schrödinger equation, we impose antiperiodic boundary
conditions on the fermionic wave functions ψi and periodic boundary conditions on the
vector potential Ax:

ψi(x = 0) = −ψi(x = L) and Ax(x = 0) = Ax(x = L) . (1.78)

Choosing antiperiodic boundary conditions for ψi has the advantage that we eliminate
zero energy solutions. This guarantees a unique definition of the ground state b. Choos-
ing periodic boundary conditions for Ax implies that we can pick the vector potential
to be constant in space c. Note however that we still allow Ax to be a slowly varying
function of time (adiabatic).

Given these requirements, it is straightforward to calculate the spectrum:

E±,n = ± (kn + eAx) , (1.79)

where ± corresponds to right and left chiral movers, respectively, and

kn =
2π(n+ 1

2)
L

with n ∈ Z . (1.80)

The additional factor 1/2 originates from the antiperiodic boundary conditions. The
spectrum for Ax = 0 is shown in Fig. 1.11(a). All states which are filled in the vacuum
are highlighted by blue (right mover) or red (left mover). Let us now trace the evolution
of the spectrum (keeping the occupation of states fixed), while we increase the vector
potential adiabatically from Ax = 0 to Ax = 2π/Le. This specific transformation does
not alter the spectrum, since E+,n → E+,n+1 and E−,n → E−,n−1. During this large
gauge transformation d, each state is exactly mapped onto another adjacent state as
indicated in Fig. (1.11)(b) e. However, since we did not change the occupation of each

aWe use ~ = 1.
bThe ground state (vacuum) is defined by occupying all states below E = 0. Zero energy states pose
a problem as they can be either filled or empty.

cAny space dependent function which is in accordance with the boundary conditions can be gauged
away. A constant potential is therefore the only nontrivial choice for Ax.

dTransformations, that connect two gauge equivalent Hamiltonians and cannot be reduced to the
identity, are called large gauge transformations. Gauge invariance requires invariance under small
and large gauge transformations.

eThe permutation of states which occurs during a large gauge transformation is called spectral flow.
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Figure 1.11.: Schematics of chiral anomaly in (1+1)D QED. Spectrum [E(k)] for two
types of chiral movers with opposite chirality, γ5 = ±1, is shown. Filled right (left)
movers are depicted in blue (red). Empty states are depicted in white. Ground state
is defined in (a) in the absence of any external field and with the same number of filled
right (γ5 = +1) and left (γ5 = −1) movers. (b) Subjecting the system to a vector
potential Ax causes a permutation of states as indicated by arrows. This effectively
reduces the number of left movers while the number of right movers increases, ∆N5 = 2.
The total number of chiral movers is conserved ∆N = 0.

state during this process, we find that there are actually two more right than left movers
(cf. Fig. 1.11). To be precise, this amounts to

∆N5 = ∆NR −∆NL = −1
e

∫
dt dx ∂µj

µ
5 = 2 , (1.81)

∆N = ∆NR + ∆NL = −1
e

∫
dt dx ∂µj

µ
5 = 0 , (1.82)

where ∆N5 = −∆Q5/e is the change in the axial particle number and ∆N = −∆Q/e is
the change in the particle number. More generally, we can write the change of the axial
charge under a large gauge transformation with an arbitrary winding number as

∆N5 =
∫
dt dx

e

2πε
µνFµν , (1.83)

which implies that

∂µj
µ
5 = − e

2

2πε
µνFµν (1.84)

= −e
2

h
εµνFµν . (1.85)

where we reintroduced h in the second line. This highlights a violation of the clas-
sical conservation law for axial charge, Eq. (1.72). Equation (1.84) is also surprising
from a naive physical point of view as the two chiral movers in Eq. (1.77) seem to be
decoupled.

Equation (1.84) describes a so-called chiral (or axial) anomaly. It means that the un-
derlying UA(1) symmetry of our classical theory has been violated on the quantum
level. Quantum anomalies essentially originate from the infinite degrees of freedom of a
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Dirac (or Dirac-like) theory a (there are no anomalies in theories with a finite number of
degrees of freedom [103]). Their origin can essentially be traced back to the unbound-
edness of the Dirac spectrum which causes (unphysical) divergences in many physical
observables, without careful treatment. By this, we mean that divergences must be
removed by the procedure of regularization and renormalization during quantization
to ensure finite results [98] b. There are however cases where such a procedure cannot
be performed without violating any of the underlying classical symmetries. If this is
the case, we speak of a quantum anomaly c. Note that if the classical symmetry is a
continuous symmetry, Noether’s theorem implies that a classical conservation law must
be violated.

In deriving Eq. (1.84), we actually performed a laymen version of renormalization by
computing the change in the (axial) particle number. Doing so, we subtracted the
infinite Dirac sea at Ax = 0 from the final system at Ax = 2π/Le. For our purpose,
this procedure is more than sufficient to focus on the physical essence of the chiral
anomaly. The presented calculation followed thereby along the lines of Refs. [98, 99].
For a more detailed discussion, we would like to refer the interested reader to standard
literature on regularization [49, 98, 99] and, in particular, to the seminal work by
Fujikawa [104, 105].

Finally, let us note that chiral anomalies can only occur in even spacetime dimensions,
such as (1+1)D or (3+1)D, in which the concept of chirality is well-defined d. For
example, the corresponding chiral anomaly in (3+1)D reads [98]

∂µj
µ
5 = e3

16π2 ε
κλµνFκλFµν ∝ E ·B , (1.86)

where E and B denote the electric and magnetic field, respectively. In recent years,
this became a hot topic in condensed matter physics as it was realized that 3D Weyl
semimetals exhibit the chiral anomaly[30]. In this thesis, we mostly concentrate how-
ever on another anomaly, the parity anomaly, which will be discussed in Sec. 1.6.
Nonetheless, the chiral anomaly in (1+1)D will turn out to be crucial to verify the
existence of chiral edge states within a field theoretical approach, see Sec. 1.5.2.

Anomaly cancellation: Quantum anomalies are a vital tool in testing effective field
theories for consistency. For instance, let us assume that we would write down the

aThe concept is very much related to the unique properties of infinite series. A helpful conceptual
understanding can be gained studying the thought experiment known as ‘Hilbert’s Hotel’.

bRoughly speaking, regularization and renormalization allows us to subtract the divergent contribu-
tions from the infinite Dirac sea and, thereby, allow us to define a proper ground state.

cIn fact, which symmetries are violated by regularization can depend on the specific regularization
scheme. However, any regularization scheme should ensure small and large gauge invariance. This
is because a gauge symmetry is more than a symmetry. It actually describes a redundancy in the
theory. If we violate gauge symmetries, particle can be created or destroyed out of nowhere.

dγ5 does not exist in odd spacetime dimensions [50].
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Lagrangian of a single chiral mover in (1+1)D. Following our previous discussion, it
should be apparent that, in this case, the total particle number is not conserved under
large gauge transformation (chiral anomaly). Instead, we would find that

∂µj
µ = − e

2

2hε
µνFµν . (1.87)

If a single chiral mover could actually exist, particles could be created and destroyed
out of nowhere. The resolution of this paradox lies in realizing that in any consistent
theory (in even spacetime dimensions), there has to be the same number of chiral
left and right movers [106]. This allows the anomaly to cancel in total, as the sign
in Eq. (1.87) depends on the chirality of the associated edge channel. In condensed
matter physics, this rule is also known as Nielsen-Ninomiya theorem [43, 44]. In fact,
there is one exception to this rule which we got to know already as bulk-boundary
correspondence: An odd number of chiral movers can exist if their (1+1)D world is
only the boundary of a higher dimensional space. The chiral anomaly is then canceled
by an associated anomaly of the bulk theory. We explain this mechanism in more detail
in Sec. 1.5.2.

1.4.3. Fermion number fractionalization
We start again with the second quantized Hamiltonian of (1+1)D Dirac system. Only
this time, we consider the case Aµ = 0 and m 6= 0:

H =
∫
dx

ψR
ψL

†−i∂x im
−im i∂x

ψR
ψL

 . (1.88)

In the following, our goal is to compute the particle number in the ground state. To
this end, we notice that Eq. (1.88) exhibits a chiral symmetry, as the associated single
particle Hamiltonian anticommutes with σx. This means for every solution with positive
energy, there is exactly one corresponding solution with negative energy (cf. Sec. 1.1.2).
To be precise, the spectrum reads E±(k) = ±

√
m2 + k2. We can expand the field

operators in terms of the corresponding solutions:

ψ(x) =
∑
k

[
bkuk(x) + d†kvk(x)

]
, (1.89)

where uk(x) and vk(x) denote the (two-component) solutions of the Schrödinger equa-
tion for positive and negative energies, respectively. The fermionic operator bk destroys
an electron with momentum k in the conduction band (E+), while dk destroys a hole
with momentum k in the valence band (E−) a. The fermionic operators fulfill the

aAs it is standard procedure, we employed a particle-hole transformation for all states with negative
energy [98].
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conventional anticommutator relations:

{
b†k, bq

}
=
{
d†k, dq

}
= δkq . (1.90)

The ground state is defined by filling all negative energy solutions (empty all holes):

|vac〉 =
∏
k

dk |0〉 . (1.91)

If we naively try to compute the particle number in this ground state via the familiar
expression for the particle number operator, N =

∫
dxψ†(x)ψ(x), we would end up with

an infinite result. This is not acceptable and shows that a careful renormalization is
necessary (as discussed previously). A simple way to renormalize the number operator is
normal ordering [107]. In the case of a Dirac operator, it turns out that normal ordering
is equivalent to antisymmetrization of the particle number operator [100]:

: N : = 1
2

∫
dx
∑
α

[
ψ†α(x), ψα(x)

]
= 1

2
∑
k

([
b†k, bk

]
+
[
dk, d

†
k

])
=
∑
k

[(
b†kbk −

1
2

)
−
(
d†kdk −

1
2

)]
=
∑
k

(
b†kbk − d

†
kdk

)
. (1.92)

Here, we used in the first step the orthonormality of the basis states uk and vk. In
the third line, it is important to notice that the presence of chiral symmetry implies
that the two infinite (separately divergent) sums (

∑
k 1/2) cancel each other. For every

factor 1/2 in the first sum, there is exactly one corresponding term with opposite sign
in the second sum a. Since bk |vac〉 = dk |vac〉 = 0, Eq. (1.92) clearly fulfills that
: N : |vac〉 = 0.

Fermion number fractionalization: Let us now replace the constant mass in Eq. (1.88)
by a soliton profile, m(x) = m tanh x, where m is a constant. A soliton is a time-
independent domain wall that interpolates between ±m at x→ ±∞. Since the Hamil-
tonian still anticommutes in this case with σx, there are continuum solutions with
E±(k) [109, 110]. As before, we label their wave functions by uk and vk

b. How-
ever, in contrast to the previous case with m(x) = const, there is now one additional

aIf there is neither chiral nor PH symmetry, this is no longer the case and calculating the difference
of the two infinite sums becomes more complicated [51, 108].

bWe do not need to determine their exact analytical solution. It is only important that they appear
in pairs. For the exact wave functions, we refer the reader to Ref. [110].
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normalizable solution at E = 0 a. Its wave function reads [102]

φ0(x) = 1√
2

 1
−sgn (m)

 exp
[
−sgn (m)

∫ x

0
dx′m(x′)

]
. (1.93)

This solution is self charge conjugate, i.e., σxφ0 = −sgn (m)φ0. In the literature, this
type of zero energy solution is often dubbed Jackiw-Rebbi solution.

Taking this new solution into account, the field operator becomes

ψ(x) =
∑
k

[
bkuk(x) + d†kvk(x)

]
+ aφ0(x) , (1.94)

where a is a fermionic destruction operator for the zero energy solution. With this
expression, we can again compute the particle number operator [cf. Eq. (1.92)]

N = 1
2

∫
dx
[
ψ†(x), ψ(x)

]
= 1

2
∑
k

([
b†k, bk

]
+
[
dk, d

†
k

])
+ 1

2
[
a†, a

]
=
∑
k

(
b†kbk − d

†
kdk

)
+ a†a− 1

2 . (1.95)

Remarkably, a single factor 1/2 is left over in the final expression. This happens because
the zero energy mode has no partner. As a consequence, the total particle number turns
out to be fractional.

This surprising result was first described in the work by Jackiw and Rebbi [109]. It
triggered a series of important follow-up works due to its counterintuitive nature [111–
114]. In particular, it was shown that a single soliton cannot exist in a finite system
[102, 112]. This is because solitons must come in pairs due to the finite system size,
resulting in an even number of zero energy modes b. As a result, the total number of
fermions is always integral in finite systems.

Finally, let us make a remark concerning the connection between Jackiw-Rebbi solutions
and the edge states of a Chern insulator. Provided that kx = 0, we can easily verify that
the Hamiltonian of a Chern insulator is equivalent to Eq. (1.88), except for the Bk2

term. In this sense, the zero energy modes which we found in Sec. 1.1.3 are conceptually
very similar to Jackiw-Rebbi bound states.

aFor E = 0, the Schrödinger equation becomes ∂xφ0(x) = m(x)σxφ0(x).
bThese pairs can be locally separated which means that fractional fermion numbers can be at least
realized locally [102, 112].
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1.5. Topological field theory
In this section, we will introduce the effective topological field theory of the QH effect,
the Chern-Simons theory. It captures the essential topological features of the QH effect
without relying on its microscopic details. This means it describes the quantization
of the Hall conductivity and the existence of chiral edge states without relying on the
microscopic Schrödinger equation. In contrast to the previous sections, we will therefore
leave the Hamiltonian formalism and work within an effective field theoretical approach.
This section is a corner stone in understanding the effective topological field theory of
topological insulators [52]. In Sec. 1.5.1, the Chern-Simons action is introduced on
a compact domain (no boundaries). Its fundamental connection to the QH effect is
revealed. Thereby, we follow in particular along the lines of Refs. [53] and [50]. In
Sec. 1.5.2, we go one step further and discuss a Chern-Simons theory on a finite domain
with boundaries. It is shown that in order to end up with a consistent theory edge
channels must exist at the boundary. This is the field-theoretical analog of the bulk-
boundary correspondence which we have encountered previously using a Hamiltonian
approach. The line of reasoning in this section is similar to that of Ref. [115]. The
interested reader can find further details and generalization to the fractional QH effect
for instance in Ref. [42, 116–120].

1.5.1. Chern-Simons theory
In (2+1)D, there is a unique type of action which is known as Chern-Simons term:

SCS = k
e2

2h

∫
d3x εµνρaµ(x)∂νaρ(x) , (1.96)

where k is called the Chern-Simons level, εµνρ is the Levi-Civita symbol, and aµ(x) is
a U(1) Abelian electromagnetic vector potential. In the following, we will show that
the Chern-Simons theory captures the topological response of the QH effect which we
have described in Sec. 1.3.1.

In the context of the QH effect, aµ is considered as a small perturbing vector po-
tential, that comes on top of the underlying external vector potential Aµ. The lat-
ter, which gives rise to the QH effect in the first place, is not explicitly considered
within Eq. (1.96). The small perturbing vector potential aµ transforms under parity
symmetry as a0(t,x) → a0(t,x′), a1(t,x) → −a1(t,x′), and a2(t,x) → a2(t,x′) with
x′ = (t,−x, y) a [62]. A Chern-Simons term is hence odd under parity symmetry,
εµνρaµ∂νaρ → −εµνρaµ∂νaρ. In the same fashion, it can be proven that a CS term also
breaks TR symmetry. Hence, Eq. (1.96) breaks analogously to the QH effect parity

aThe small perturbing vector potential aµ, opposed to the background vector potential Aµ, is consid-
ered as a quantum operator. As such, it transform under parity (cf. Sec. 1.1.4).
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and TR symmetry.

To determine the corresponding charge carrier density and the current density, we can
take the functional derivative of the effective action with respect to aλ(x)

jλ(x) = δSCS
δaλ(x)

= k
e2

2h

[∫
d3y εµνρδ(x− y)δ λµ ∂νaρ(y)−

∫
d3y εµνρ∂νaµ(y)δ(x− y)δ λρ

]
= k

e2

h
ελνρ∂νaρ . (1.97)

Here, we applied the product rule in the first step and made use of the properties of
the antisymmetric Levi-Civita symbol in the second step. Let us recast the result in
nonrelativistic notation. The 0th component of the three current determines the charge
carrier density:

j0 = ρ = k
e2

h

(
ε012∂1a2 + ε021∂2a1

)
= −ke

2

h
B⊥ . (1.98)

The remaining two components stand for the current density in x. and y-direction:

ji = −ke
2

h
εijEj with i, j = {x, y} . (1.99)

This looks like the typical, quantized Hall response. But so far, we have not yet shown
that k is actually an integer number.

To complete the proof that a Chern-Simons term serves as the effective field theory
of the QH effect, we have to discuss another important property of a CS term. Its
properties under gauge transformation, aµ → aµ + ∂µω:

SCS → SCS + k
e2

2h

∫
d3x εµνρ (aµ∂ν∂ρω + ∂µω∂νaρ + ∂µω∂ν∂ρω)

= SCS + k
e2

2h

∫
d3x ∂µ (ωεµνρ∂νAρ) . (1.100)

The CS term is only gauge invariant up to a total derivative [62]. In many circum-
stances, such boundary terms can be ignored as the variation vanishes at spatial infinity.
However, there are actually exceptions to this rule and Eq. (1.100) is an example of
this. In particular, let us impose a compact S2 manifold for the two spatial components
and a compact S1 manifold for the time a. The Chern-Simons action transforms then
under a large gauge transformation to [53]

SCS → SCS + 2π~k , (1.101)

aTo be precise, we have to insert a single flux in the unit sphere which is given by 1
2π

∫
S2 F12 = ~

e
.

Further details can be for instance found in Ref. [53].
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which shows that the boundary term is nonzero. This result looks dangerous because
any physically meaningful theory should be invariant under small and large gauge
transformations. However, to be precise, it is the partition function Z = exp(iSCS/~)
for which gauge invariance must hold. This means an effective action has to be only
gauge invariant up to integer multiples of 2π~, restricting k to integer numbers. This
allows us to identify the Chern-Simons level k as the QH filling factor ν, defined in
Eq. (1.56).

1.5.2. Anomaly inflow and bulk-boundary correspondence
So far, we have considered a Chern-Simons action on a sphere, i.e., on a domain without
boundaries. Suppose we restrict now the Chern-Simons action onto a half-space with
x < xedge. More precisely, let us assume a single LL (ν = 1) is occupied for x < xedge

and the other half of the 2D plane describes a vacuum where no current can flow
(ν = 0). This case is schematically illustrated in Fig. 1.12. Looking at Eq. (1.97), let
us assert that the current of the entire system is given by

jµbulk = Θ(−x+ xedge)
e2

h
εµνρ∂νaρ , (1.102)

where we replaced the constant filling factor ν by a soliton-like profile, ν(x) = θ(−x+
xedge). We can easily see that this assertion must be incorrect. Equation (1.102)
cannot describe the entire system, since this would imply that the current conservation
is violated at the edge (the system is not gauge invariant):

∂µj
µ
bulk = e2

h

[
Θ(−x+ xedge)εµνρ∂µ∂νaρ + (∂xΘ(−x+ xedge)) ε1νρ∂νaρ

]
= −δ(−x+ xedge)

e2

h
ε1νρ∂νaρ

= δ(x− xedge)
e2

2hε
αβFαβ (1.103)

= δ(x− xedge)
e2

2hEy , (1.104)

where α, β = {0, 2}, ε02 = −ε20 = 1, and Ey stands for a small electric field in the
y-direction. How does this violation of charge conservation at the edge of the domain
appears? As a response to an electric field in the y-direction, a current is induced in the
x-direction in the half-space x < xedge (cf. Fig. 1.12). However, since we have assumed
that current cannot flow for x > xedge, electrons must disappear at the boundary, which
is the result of Eq. (1.104). This is unphysical a. It seems that we must have missed

aRecall that a Chern-Simons action is only gauge invariant up to a boundary term. On a domain
without boundaries, we fixed this issue by restricting the filling factor to integer values. On a
domain with boundaries, we see that equivalently we must add a local degree of freedom to the
effective theory.
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Figure 1.12.: Anomaly cancellation between bulk and edge theories at x = xedge is
schematically depicted. Single LL with ν = 1 occupies half-space with x < xedge. No
current can flow for x > xedge (vacuum). To ensure charge conservation, a chiral edge
channel must exist at the boundary between these domain.

an important degree of freedom.

To resolve this issue, let us carefully look at Eqs. (1.104) and (1.87). We notice that
the non-conservation of the bulk current matches exactly the chiral anomaly of a single
chiral mover in (1+1)D (living along the line at x = xedge), i.e.:

∂µj
µ
bulk = −∂µjµedge . (1.105)

We can therefore define a physical meaningful theory by extending the effective Chern-
Simons action by the effective action of a (1+1)D Dirac system [42, 120]. The latter
must exist at the boundary of the domain. The current of the full system is then again
conserved:

jµtot = jµbulk + jµedge (1.106)

∂µj
µ
tot = ∂µ

(
jµbulk + jµedge

)
= 0 . (1.107)

The bulk current which is lost at the boundary does not spontaneously disappear. It
just flows from the bulk onto the edge of the system. This process is schematically
depicted in Fig. 1.12.

We have so far considered a semi-infinite space with a single boundary at x = xedge.
Based on this it is now straightforward to generalize the discussion to a finite domain
with boundaries at x = xL and x = xR

a:

ν → ν(x) = 1
2 [θ(x− xL)− θ(x− xR)] . (1.108)

Due to the required anomaly cancellation, one can immediately infer the existence

aThe interested reader can find further information in Ref. [120].
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Figure 1.13.: Anomaly cancellation between bulk and edge theory for single LL.
(1+1)D chiral movers are embedded in higher dimensional space, i.e., (2+1)D bulk.
(a) Ground state is defined by same number of left and right movers and a completely
filled bulk LL. Filled states are depicted in blue, empty states in white. (b) Anomaly
cancellation occurs not directly between (1+1)D chiral movers but, at each edge, be-
tween the respective edge and and bulk theory. Constant electric field pumps carriers
from left to right edge through bulk.

of chiral edge channels at the two edges. The non-conservation of bulk current at
x = {xL, xR} must be locally compensated by the existence of chiral edge channels.
Hence, we can now understand the presence of edge states in the QH effect, which we
encountered previously in Fig. 1.5, in terms of anomaly cancellation.

To shed more light on the conceptual idea, let us study the effect of an electric field
on a single LL. As shown in Fig. 1.13(a), suppose thereby that the system is at first
in equilibrium. The local chemical potential is the same at both edges. We apply
now, analogously to Sec. 1.4.2, an electric field along the x-direction. This causes
the momentum to shift from kx → kx + 2π/L. Making use of the explicit form of
the n = 0 LL wave function ψ0,kx , given by Eq. (1.57), we notice that a shift in kx

is accompanied by a change of the spatial localization of all wave functions in the y-
direction a. More concretely, each wave function is exactly mapped onto its neighboring
state with momentum kx+2π/L b. This process is highlighted by arrows in Fig. 1.13(b).
While apparently the number of filled bulk states did not change during the process,
a single electron was effectively transferred from the left to the right edge. This is in
essence Laughlin’s gauge argument [121] and highlight the crucial role of edge channels
in the QH effect.

In a nutshell, we have found that it is possible to locally circumvent the Nielsen-
Ninomiya theorem (Sec. 1.4.2) by embedding a chiral edge channel within a higher di-
mensional space c. This is also known as Callan-Harvey mechanism [106], which can be
interpreted as the field-theoretical analog of the bulk-boundary correspondence.

aRecall that the wave functions are centered at ykx . Applying an electric field alters kx such that
ykx → ykx+2π/L. Hence, all wave functions are shifted.

bRecall that we assumed periodic boundary conditions in the x-direction resulting in kx = 2πn/L
with n = . . .− 2,−1, 0, 1, 2, . . ..

cThere is an odd number of chiral movers at the boundary of a Chern-Simons action.
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1.6. Parity anomaly
We have shown so far that Dirac theories in even spacetime dimensions exhibit the
chiral anomaly. In this section, we will now focus instead on Dirac theories which
are defined in odd spacetime dimensions. To be more specific, we consider a single
Dirac fermion in (2+1)D. If the Dirac fermion is massless, such a theory obeys parity
symmetry on the classical level. But, as it was pointed out by Redlich [122, 123], the
parity symmetry cannot be maintained on the quantum level as it is in conflict with
gauge invariance. Since a Dirac system in (2+1)D is equivalent to a Chern insulator,
except for the Bk2 term, the parity anomaly implies that a single, massless Chern
insulator cannot exist in (2+1)D. Further consequences of this statement will be the
main topic of Ch. 2. In Sec. 1.6.1, the Dirac Lagrangian is introduced and the analogy
to a Chern insulator is explicitly shown. Following, the parity anomaly is explained
based on the work by Redlich [122].

1.6.1. Dirac equation in (2+1)D
The Lagrangian of a Dirac system in (2+1)D QED coupled to an abelian U(1) electro-
magnetic vector potential Aµ reads

L = ψ̄
(
i /D −m

)
ψ , (1.109)

where /D = /∂ − ie /A, the adjoint spinor ψ̄ = ψ†γ0, and {γµ, γν} = 2gµν with gµν =
gµν = Diag [1 , −1 , −1] a. In the following, we use γ0 = σz, γ1 = iσy, and γ2 = iσx.
Note that we cannot define γ5 for a single Dirac fermion in (2+1)D, since all basis
elements of 2D Hermitian matrices were already employed (all Pauli matrices). The
concept of chirality, which is based on γ5 does not exist in (2+1)D for a single Dirac
fermion.

To see the connection between QED and a Chern insulator, let us derive the second
quantized Hamiltonian associated to Eq. (1.109) b:

HQED =
∫
dx2 ψ†

[
−iψ†γ0γiDi +mγ0

]
ψ (1.110)

=
∫
dx2 ψ†

 m πx + iπy
πx − iπy −m

ψ , (1.111)

where πi with i = {x, y} is given by Eq. (1.40), and ψ(x) denotes a second quan-
tized (two-component) field operator. The QED Hamiltonian is equivalent to a Chern
insulator [Eq. (1.16)] except for the Bk2 term.

aAll Greek indices run over 0, 1 and 2.
bNote that the Hamiltonian is not yet renormalized properly.
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1.6.2. Violation of parity symmetry in (2+1)D

Let us start with a single, massless Dirac fermion which is described by the classical
Lagrangian given by Eq. (1.109) with m = 0. This theory obeys parity and TR sym-
metry [cf. symmetry considerations in Sec. 1.1.3.]. The presented discussion follows
along the lines of Refs. [122] and [123]. To quantize the theory, we use the fermionic
path integral in Minkowski spacetime which for m = 0 reads

Z[A] =
∫
dψ̄dψ exp

[
i
∫
d3x ψ̄ i /Dψ

]
, (1.112)

where the integral is taken over the independent Grassman fields ψ̄ and ψ, which fulfill
that {ψ̄, ψ} = 0. It is now convenient to apply a Wick rotation (analytic continuation
in time) to work in Euclidean spacetime [49]:

x0 = −ix3 , ∂0 = ∂

∂x0 = i ∂

∂x3

γ0 = −iγ3 , A0 = iA3 , (1.113)

so that the metric becomes gµν = −δµν with µ = 1, 2, 3, and all γ-matrices are anti-
Hermitian, i.e., (γµ)† = −γµ. The Dirac operator is form invariant under this transfor-
mation:

i /DM → i /DE , (1.114)

where we added the indices to distinguish between Minkowski (M) and Euclidean
spacetime (E). In the following, we drop however the index E to keep the notation as
simple as possible. The main reason, that the Wick rotation was employed, is that the
Dirac operator /D is now Hermitian and has therefore real eigenvalues λi:

/Dψi = λiψi . (1.115)

The fermionic path integral in Euclidean spacetime is given by

Z[A] =
∫
dψ̄dψ exp

[
−
∫
d3x ψ̄ i /Dψ

]
= det

(
i /D
)
, (1.116)

where we made use of the coordinate transformation ψ′ = i /Dψ to transform the integral
into a Gaussian integral. The latter is then easy to evaluate [51]. The determinant of
the matrix i /D is given by the product of its eigenvalues

Z[A] = det
(
i /D
)

=
∏
i

iλi . (1.117)

As we have not yet regularized the theory, there are still an infinite number of eigen-
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values λi which can be either positive or negative. It is hence impossible to decide
whether Z[A] has a positive or a negative sign [103].

The problematic nature of this ambiguity becomes apparent when we try to define the
fermion determinant to be positive. It turns out that this definition is in conflict with
gauge invariance. As it was shown in Ref. [122, 123], the fermion determinant changes
its sign under large gauge transformations that are characterized by an odd winding
number n

det
(
i /D
)
→ (−1)|n|det

(
i /D
)
. (1.118)

This is because an odd number of eigenvalues cross zero if n is an odd integer number a.
Note that this effect resembles the origin of the chiral anomaly.

In order to restore gauge invariance, a proper regularization scheme has to be chosen.
For instance, we can employ a Pauli-Villars regulator which comes however at the cost
of breaking parity symmetry [62, 122]. In the case of this regularization scheme, we
introduce an additional massive Lagrangian

LPV = χ̄
(
i /D −M

)
χ (1.119)

to our system, where M is the Pauli-Villars mass and χ fulfills a bosonic statistics.
It can be shown that a Pauli-Villars regulator induces a Chern-Simons term in the
effective action Z[A] = exp(iSeff/~), where [122, 123]

Seff = sgn (M) e
2

4h

∫
d3x εµνρAµ∂νAρ + SNA (1.120)

and SNA is a nonanalytic term. The latter is associated with infrared divergences
originating from the massless Dirac fermion [122]. The total effective action, includ-
ing the effect of the Pauli-Villars regulator, is gauge invariant [124] but breaks parity
symmetry.

In fact, this statement is universal. There is no regularization method that preserves
both parity symmetry and gauge invariance for an odd number of Dirac fermions in
(2+1)D. Hence, parity symmetry cannot be maintained on the quantum level for an
odd number of Dirac fermions b. This is the essence of the parity anomaly c. More

aThe detailed proof of Eq. (1.118) is based on the Atiyah-Patodi-Singer index theorem [51] and can
be found in Ref. [122].

bRecall that large gauge invariance cannot be violated in a consistent theory.
cTR symmetry is also violated by the Pauli-Villar regulator. In fact, in (2+1)D, TR and parity
symmetry behave always in the same way. It is therefore also valid to refer to the parity anomaly
as TR anomaly [103].
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generally, it can be shown that large gauge invariance requires that [125]

Nf

2 + k ∈ Z , (1.121)

where Nf is the number of Dirac fermions and k is the Chern-Simons level which must
be introduced during regularization (for example by Pauli-Villars method). In our
case, Nf = 1 and a Chern-Simons term with k = 1/2 is induced by the Pauli-Villar
regulator.

The parity anomaly goes hand in hand with a nonzero vacuum (ground state) current
which arises from the Chern-Simons term. To show this, we can take the functional
derivative of Eq. (1.120) with respect to Aµ to arrive at [cf. Sec. 1.5.1]

jµ = δSeff
δAµ

= sgn (M) e
2

2hε
µνρ∂νAρ . (1.122)

The same result was first obtained by Niemi and Semenoff using a different approach [126].
Hence, the parity anomaly implies the requirement of a nonzero Hall conductivity σxy
even in the absence of a magnetic field. In this sense, the QAH effect can be understood
as the condensed matter analog of the parity anomaly [8].
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Chapter 2. Fate of QAH Effect in Magnetic Fields: The Parity Anomaly

In the course of this thesis, we have come across two 2D topological states of matter,
which are both described by a quantized σxy due to a broken parity and TR symmetry:
The QH and the QAH phase. In the QH phase, we clarified that parity and TR
symmetry are broken by an external out-of-plane magnetic field. As such, the QH
phase relies on the formation of LLs. In comparison, these symmetries are violated
in the QAH phase by the band structure itself [21, 90]. As such, the QAH phase is a
condensed matter analog of the parity anomaly. This means the quantization of σxy
arises even in the absence of LLs [8], as explained in Sec. 1.6 a. Although QH and
QAH phases have therefore different physical origins, they fall into the same symmetry
class b and are both described by a Z-topological invariant [10, 11]. When a QAH
insulator is subjected to an external magnetic field, it is hence natural to ask whether
unique signatures of the QAH phase and, hence, of the parity anomaly persist in the
presence of LLs.

Let us clarify this question: In an analytic calculation, the bulk spectrum of a QAH
insulator consists solely of LLs in the presence of a magnetic field [cf. Eqs. (2.9)
and (2.10)]. As it was pointed out in Sec. 1.5, the bulk-boundary correspondence
demands that each of these LLs is uniquely related to a single, chiral edge state (per
edge) because of the requirement of anomaly cancellation. It is hence a priori not
obvious whether the information of the QAH phase, i.e., the inverted band structure,
can remain encoded in the presence of LLs. Moreover, assuming signatures of the QAH
phase survive in magnetic fields, the question arises whether it can be experimentally
distinguished from the QH phase, which is also characterized by chiral edge channels
and a quantized σxy. These questions are of particular importance for paramagnetic
TIs, such as (Hg,Mn)Te, as a finite magnetic field is required in these materials to
induce the QAH phase [21, 90].

In this chapter, we answer these questions by revealing that the QAH topology re-
mains encoded in the bulk LL spectrum by means of a particular topological quantity,
the spectral asymmetry η [51, 127]. This quantity, which is a signature of the parity
anomaly [108, 128], represents the difference in the number of states between valence
and conduction band. While a QAH insulator is characterized by a nonzero spectral
asymmetry in magnetic fields, a conventional insulator is in contrast always character-
ized by a vanishing η. This connection allows us to differentiate QAH from QH phases
in magnetic fields. In addition, we show that the spectral asymmetry is connected to
unique, experimentally accessible signatures. In that regard, we show that, similar to
the QSH phase, a pair of counterpropagating QH and QAH edge states can emerge in
a QAH insulator in magnetic fields. However, in contrast to the helical edge states of

aTo be precise, the statement of the parity anomaly goes one step further. An odd number of Dirac-like
fermions in (2+1)D can only exist if parity and TR symmetry are broken.

bThis statement is only correct in the absence of PH symmetry.
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QSH insulators, these counterpropagating edge states are not protected by symmetry.
They form a pair of quasi-helical edge states [129]. We analyze the evolution of these
quasi-helical edge states in magnetic field and discuss their transport signatures.

The chapter is structured as follows: We recap in Sec. 2.1 properties of Chern insula-
tors and the BHZ model and clarify their connection to the parity anomaly. Focusing
at first on a Chern insulator, we reveal in Sec. 2.2 a connection between the particle
number operator of a Chern (QAH) insulator and the spectral asymmetry in magnetic
fields. This allows us in Sec. 2.3 to derive a general expression for σxy as a function
of µ and B⊥ via Streda’s formula. In Sec. 2.4, the effective field theory of a QAH
insulator is derived. Using anomaly cancellation, it is shown that the QAH edge states
survive in magnetic fields and can coexist with counterpropagating QH edge states at
certain chemical potentials. The subsequent sections shed further light on the specific
properties of quasi-helical edge states. In Sec. 2.5, it is shown that a unique type of
charge pumping is linked, in increasing magnetic fields, to the survival of the QAH edge
states. In Sec. 2.6, hybridization between the quasi-helical edge states is examined a

and a scenario is proposed, in which transport measurements allow their unambiguous
identification. Finally in Sec. 2.7, the role of the parity anomaly and the spectral asym-
metry is discussed for the BHZ model. Differences between ferro- and paramagnetic TIs
are explained, and experimental consequences are derived. We conclude this chapter
in Sec. 2.8 by providing a summary of our main results.

The results of this chapter have been published in Refs. [P5] and [P6]. Reference [P5] is
copyrighted by the American Physical Society b. This chapter contains revised versions
of these publications, including the associated supplementary materials.

2.1. Introduction and model

Our starting point is the BHZ model [15] (see also Eq. (1.61))

H(k) =

h(k) 0
0 h?(−k)

 , (2.1)

aRecall that they are not protected by symmetry and can therefore hybridize.
bChristian Tutschku and I contributed equally to Ref. [P5]. I performed all calculations regarding the
spectral asymmetry which allowed us to calculate the effective action. Christian Tutschku derived
the effective edge theories, presented in Eqs. (2.71a)–(2.71c). The numerical code in Sec. 2.5 was
developed in close collaboration. Recently, C. Tutschku extended his work on the effective field
theoretical description of QAH insulators. His work has been published in Ref. [P8] (I am a co-
author of this manuscript).
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where both spin blocks are connected by TR and parity symmetry, and each spin block
is determined by a single Chern insulator (see also Eq. 1.16):

h(k) =

M − (B +D)k2 Ak+

Ak− −M + (B −D)k2

 . (2.2)

Using a unitary transformation, it is useful to recast Eq. (2.1) into the following
form:

UH(k)U † = Diag [h(k,M,B) , h(k,−M,−B)] , (2.3)

where U = Diag [σ0 , σy] and the dependence on the parameters M and B was written
out explicitly. Equation (2.3) shows that it is sufficient to obtain analytical results for
a single spin block of the BHZ model. That is because results for the second spin block
can be obtained by replacing

M → −M and B → −B (2.4)

at the end of the calculation. In the following, we focus therefore at first on a single
Chern insulator. Results for the full BHZ model are discussed in Sec. 2.7.

Parity anomaly: A Chern insulator describes a Dirac-like system. This means its
Hamiltonian matches the one of a Dirac fermion in (2+1)D, except for the additional,
non-relativistic mass term B. A Chern insulator is characterized by a broken TR and
parity symmetry by virtue of the Dirac mass M and the non-relativistic mass B. This
comes along with an integer quantized Hall response in the bulk gap, even in the absence
of a magnetic field [cf. Eq. (1.23)] [59]

σxy = e2

2h [sgn (M) + sgn (B)] . (2.5)

In the case that M/B > 0, a Chern insulator is a QAH insulator. And as such, it is a
condensed matter analog of the parity anomaly.

There are several consequences of this connection, which we would like to point out.
The Hall conductivity does not vanish in the limit of M,B → 0±. Instead, it de-
pends on whether the limit is approached from above or below. This is because parity
symmetry must be violated for an odd number of Dirac fermions in (2+1)D. A single,
parity-invariant Chern insulator cannot exist in two (spatial) dimensions. This is the
essence of the parity anomaly, as explained in Sec. 1.6. It means that even if we had
started with a parity symmetric theory (M = B = 0), we would have had to still
break parity symmetry during the computation of σxy [122, 126, 130]. The quantized
Hall conductivity of a Chern insulator can be therefore interpreted as a mandatory
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consequence of the parity anomaly a. There are only two ways to re-establish parity
symmetry and, thereby, cancel the parity anomaly in (2+1)D. We have to either embed
the Chern insulator within a higher dimensional space [in this case, (3+1)D], or we have
to add a second Chern insulator to our effective model [122, 125].

These two mechanisms are very similar to anomaly cancellation for a single chiral
fermion in (1+1)D. Recall that in this case, the anomaly can be either canceled by
another chiral fermion with the opposite chirality (cf. Sec. 1.4.2), or by embedding the
theory in a (2+1)D space (cf. Sec. 1.5.2). However, there is one important difference
between the two cases. While the chiral anomaly must be canceled in a consistent
theory [106], there is no problem in having an effective theory that does not obey
parity symmetry. In other words, the parity anomaly does not need to be canceled
which is why a QAH insulator can exist in nature.

Magnetic field: Similar to the discussion in Sec. 1.3.1, we are now going to consider
the effect of an external, out-of-plane magnetic field B⊥ that is incorporated via the
Peierls substitution in the Landau gauge π = k+eA/~ with A = −yB⊥ex. We impose
periodic boundary conditions in the x-direction and require the wave functions to be
square-integrable in the y-direction. Analytic results for the corresponding bulk LL
energies are then obtained by replacing the canonical momentum operators of Eq. (2.2)
by ladder operators, according to Eq. (1.51). This yields for sgn (eB⊥) > 0 [17]:

h =

M − 2l−2
B⊥

(B +D)
(
a†a+ 1/2

) √
2l−1
B⊥
Aa†

√
2l−1
B⊥
Aa −M + 2l−2

B⊥
(B −D)

(
a†a+ 1/2

) . (2.6)

This allows us to make the following ansatz to solve the corresponding Schrödinger
equation:

|ψ±n6=0,kx〉 =

 f±(n,B⊥) |n, kx〉
g±(n,B⊥) |n− 1, kx〉

 and |ψ±n=0,kx〉 =

|0, kx〉
0

 , (2.7)

where n is the LL index and ψn,kx(x) = 〈x|n, kx〉 is explicitly given by Eq. (1.57);
f±(n,B⊥) and g±(n,Bz) depend on the model parameters, and ± denotes solutions of
the conduction (+) or the valence band (−), respectively. We can proceed analogously
for sgn (eB⊥) < 0 to determine the following ansatz:

|ψ±n6=0,kx〉 =

f±(n,B⊥) |n− 1, kx〉
g±(n,B⊥) |n, kx〉

 and |ψ±n=0,kx〉 =

 0
|0, kx〉

 . (2.8)

Using the appropriate ansatz and employing the properties of the ladder operators,

aRecall that an integer quantized conductivity ensures large gauge invariance of the effective action.
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Chapter 2. Fate of QAH Effect in Magnetic Fields: The Parity Anomaly

Figure 2.1.: (a) Evolution of LL energies, Eq. (2.9) and (2.10), as function of B⊥
with M = −10 meV, B = −685 meVnm2, D = 0, and A = 365 meVnm. The gray area
highlights the bulk gap at B⊥ = 0. B⊥,triv is defined by Eq. (2.33) and marks the point
at which the n = 0 LL crosses E = 0. (b) Solid lines show sketch of LL spectrum at
constant B⊥. All LLs except for the n = 0 LL come in pairs. Mirroring the spectrum at
E = 0, depicted by dashed lines, highlights the asymmetry of the spectrum (introduced
by B⊥). Reprinted from Ref. [P6].

given by Eq. (1.52), we arrive at a general expression for the LL spectrum [17]:

En=0 = sgn (eB⊥)
(
M −B/l2B⊥

)
− D

l2B⊥
, (2.9)

E±n6=0 = −sgn (eB⊥)B + 2nD
l2B⊥

±

√√√√2A2n

l2B⊥
+
(
M − 2nB + sgn (eB⊥)D

l2B⊥

)2

. (2.10)

For an exemplary set of parameters, the LL fan is shown in Fig. 2.1(a).

While D 6= 0 breaks the PH symmetry already at B⊥ = 0, it is evident that switching
on the magnetic field breaks the PH symmetry even if D = 0 a. This is on the one hand
reflected by the formation of a single, unpaired n = 0 LL [see Fig. 2.1]. This specific LL
is a hallmark of a Dirac-like Hamiltonian and is located either in the valence (E < 0)
or in the conduction band (E > 0) depending on sgn (eB⊥) sgn

(
M −B/l2B⊥

)
. On

the other hand, although all LLs with n ≥ 1 come in pairs, they are not symmetric
with respect to zero energy. This is because of the non-relativistic mass parameter
B. To be precise, this additional contribution to the asymmetry is proportional to
sgn (eB⊥) sgn (B) [cf. Eq. (2.10)]. This is visualized by a sketch of the bulk LL energies
in Fig. 2.1(b). The asymmetry, which is induced by the magnetic field, has profound
consequences as we will see in the following section.

Zeroth LL: The existence of a single, (pseudo)spin polarized n = 0 LL is characteristic
for Dirac-like systems in (2+1)D [8]. We can better understand its peculiar nature by

aWe presented a detailed symmetry analysis in Sec. 1.1.4.

56



2.1. Introduction and model

recasting Eq. (2.2) in the following form a:

H = −i /D +
{
M +B

[
(∂x + ieAx/~)2 + ∂2

y

]}
σz , (2.11)

where −i /D = −i[(∂x + ieAx/~)σx − ∂yσy]. The first term, −i /D, can be interpreted as
a 2D euclidean Dirac operator [128] b. In the presence of an external vector potential,
such an operator possesses zero modes, i.e., eigenstates φ0 for which −i /Dφ0 = 0. To
be precise, the number of zero modes is given by the Atiyah-Singer index theorem, [51,
108, 131]

ind
(
−i /D

)
=
∫
F = e

h

∫
S
B⊥dS , (2.12)

This means the number of zero modes of the 2D euclidean Dirac operator is given by
the magnetic flux (divided by a unit flux quantum φ0 = h/e). These solutions are
chiral since

{
−i /D, σz

}
= 0. Moreover, they are also eigenstates of the full Hamiltonian

[126, 128, 132], Eq. (2.11), with energy E = E0, given by Eq. (2.9). This explains why
a single, (pseudo)spin polarized LL exist for a (2+1)D Dirac-like system, even though
chirality cannot be defined in (2+1)D, cf. Sec. 1.6.1. We have made this short detour
to emphasize the particular role of the n = 0 LL in a QAH insulator. Its physics is
much richer compared to any conventional LL.

2.1.1. Chern insulator on the lattice - numerical approach:

So far, we have discussed the bulk properties of a QAH insulator in magnetic fields. To
conclude this section, we study the corresponding spectrum for a finite system (strip
geometry). To this end, we impose periodic boundary conditions in the x-direction,
and hard wall boundary conditions in the y-direction. Making use of the numerical
approach, which was developed in Sec. 1.1.3, we focus in the following on an exemplary
QAH insulator with M,B < 0 and D 6= 0. The resulting band structures for B⊥ = 0,
1.5, and 2.5 T are shown in Figs. 2.2(a)–(c), respectively. The color code depicts the
localization of the wave functions.

As a signature of the nontrivial Chern number at B⊥ = 0, chiral edge states traverse
the bulk band gap in Fig. 2.2(a). In comparison to the PH symmetric case (shown in
Fig. 1.2), the Dirac point is shifted away from zero energy and lies at [133]

ED = −MD

B
. (2.13)

aFor simplicity, we consider the case D = 0.
bThe operator matches exactly the one of a (1+1)D Dirac system, cf. Sec. 1.4.1, except that in the
present case, there are two spatial and no time components. Roughly speaking, the momentum kx
plays the same role as the time in a conventional Dirac system.
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Figure 2.2.: We show the band structure of a QAH insulator with M = −25 meV,
B = −1075 meVnm2, D = −900 meVnm2, and A = 365 meVnm for magnetic fields of
(a) B⊥ = 0 T, (b) 1.5 T, and (c) 2.5 T. The color code indicates the localization of the
wave functions. The Dirac point shifts down in energy with increasing magnetic fields,
until it becomes buried in the valence band.

Gradually increasing the magnetic field pushes the QAH edge states into the valence
band, shown in Figs. 2.2(b) and (c). At the same time, flat bulk LLs and associated
QH edge states emerge. Comparing this result to Fig. 1.5, it is apparent that the
spectrum of a conventional QH insulator looks clearly distinct from the one of a QAH
insulator. Above a critical magnetic field, the surviving QAH edge states can coexist
in the valence band with other QH edge states of opposite chirality a, as shown in
Fig. 2.2(c). In particular, below the n = 0 LL a pair of counterpropagating edge states
emerges in the valence band. In contrast to helical edge states, which characterize the
QSH phase, these quasi-helical edge states [129] are not protected by symmetry.

Puzzle: These observations show that although a QAH insulator is described by a
Z-topological invariant in magnetic fields, the spectrum at the edge of the system
can differ significantly from the one of a conventional QH insulator. This finding is
particularly surprising with respect to our discussion in Sec. 1.5. The bulk calculation
shows that the spectrum consists only of LLs which should each be described by a
single Chern-Simons term. As such, each LL should come along with a single chiral
edge channel (per edge). But how is the information about the QAH edge states then
encoded in the LL spectrum? Throughout the remainder of this chapter, we will try to
answer the following questions:

1. How is it possible that the information of the QAH edge states is still encoded in
the spectrum, if it consist only of bulk LLs? In other words, how is the inverted
band structure of a QAH insulator encoded in the bulk LL spectrum?

2. Up to which critical magnetic field can signatures of the QAH topology survive?

3. How can quasi-helical edge states be detected in potential transport experiments?

aQH and QAH edge states at the same edge have opposite group velocities in the valence band.
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2.2. Bulk particle number and spectral
asymmetry in magnetic fields

As a Dirac-like Hamiltonian, a Chern insulator possesses an infinite number of degrees
of freedom. This gives rise to infinities in many physical observables if one naively
tries to calculate expectation values. For instance, the bulk particle number of a Chern
insulator would diverge if the familiar number operator,

N =
∫
dx Ψ†(x)Ψ(x) , (2.14)

is employed. To remove these infinities, proper renormalization schemes must be em-
ployed [see also discussion in Sec. 1.4.3] a.

In Sec. 2.2.1, we derive analytically the renormalized particle number operator for a
Chern insulator which obeys PH symmetry (D = 0) at B⊥ = 0. In the subsequent
Sec. 2.2.2, this derivation is generalized to Chern insulators which exhibit a broken PH
symmetry.

2.2.1. With particle-hole symmetry

In Sec. 1.4.3, we have seen that antisymmetrization is equivalent to normal-ordering
and, as such, an appropriate way to renormalize the number operator of a (1+1)D
Dirac system [107, 134]. In fact, we will show now that antisymmetrization is a proper
renormalization scheme for all Dirac-like systems which obey PH or chiral symmetry.
This means it ensures a vanishing particle number in the bulk gap. To verify this
statement, let us consider the antisymmetrized number operator explicitly b:

N = 1
2

∫
dx

∑
α

[
Ψ†α(x),Ψα(x)

]
, (2.15)

where Ψ(x) is the time-independent field operator (two component spinor) of a Dirac-
like system. If this system obeys PH symmetry, the ground state, which is defined by
filling all states (emptying all holes) in the valence band (E < 0), is invariant under a
PH transformation:

C |vac〉 = |vac〉 , (2.16)

aThe finite-difference-method, which we employ in our numerics, can be also interpreted as a regular-
ization scheme. This is explained in more detail in Sec. 2.6.1.

bWe prove this statement only for PH symmetry. The proof for chiral symmetry follows analogously.
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where C is the PH operator. Recall that a PH transformation acts on fermionic field
operators as [cf. Eq. (1.8)],

CΨ(x)C−1 = U∗CΨ†(x) . (2.17)

This allows us to recast Eq. (2.15) in the following way:

〈vac|N |vac〉 = 〈vac|C−1CNC−1C|vac〉

= 〈vac|12

∫
dx C

∑
α

[
Ψ†α(x),Ψα(x)

]
C−1vac〉

= 〈vac|12

∫
dx

∑
α

[
Ψα(x),Ψ†α(x)

]
vac〉

= −〈vac|N |vac〉 != 0 . (2.18)

The last step follows as the equality 〈vac|N |vac〉 = −〈vac|N |vac〉 can only be fulfilled if
the ground state charge is zero. This concludes the proof: Assuming the system obeys
either PH or chiral symmetry, antisymmetrization is a proper renormalization scheme
for the particle number operator. In particular, antisymmetrization can be therefore
used to renormalize the number operator of a Chern insulator with D = 0.

Bulk particle number operator in finite magnetic fields: We calculate now the
renormalized bulk particle number operator in the presence of LLs. To this end, we use
Eq. (2.15) and expand the associated fermionic field operator in terms of the normalized
LL spinors:

Ψ(x) =
∑
kx,n

bn,kxun,kx(x) +
∑
kx,n

d†n,kxvn,kx(x) , (2.19)

where all operators are normal-ordered with respect to the ground state |vac〉 defined
by µ = 0, i.e.,

bn,kx |vac〉 = dn,kx |vac〉 = 0 . (2.20)

Moreover, un,kx(x) = 〈x|ψ+
n,kx
〉, vn,kx(x) = 〈x|ψ−n,kx〉, and |ψ

±
n,kx
〉 is given by Eq. (2.7)

or (2.8), depending on the magnetic field direction. Note that bn,kx destroys an electron
in the nth conduction band LL, and d†n,kx creates a hole in the nth valence band LL with
momentum kx. Moreover, all fermionic operators fulfill conventional anti-commutation
relations

{
bn,kx , b

†
m,qx

}
= δn,mδkx,qx and

{
dn,kx , d

†
m,qx

}
= δn,mδkx,qx . (2.21)

The n = 0 LL plays a special role. Since it is either part of the valence band or the
conduction band, it contributes either to the first or to the second sum in Eq. (2.19).
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To be more specific, if the n = 0 LL belongs to the valence band (E0 < 0), the first
sum in Eq. (2.19) runs from n = 1 to ∞ and the second sum from n = 0 to ∞. The
situation is vice versa if the n = 0 LL is part of the conduction band.

To determine now the particle number operator explicitly, the field operator Eq. (2.19)
is inserted into Eq. (2.15). This yields

N = 1
2

∑
kx,n

[
b†n,kx , bn,kx

]
+
∑
kx,n

[
dn,kx , d

†
n,kx

]
=
∑
kx,n

(
b†n,kxbn,kx −

1
2

)
−
∑
kx,n

(
d†n,kxdn,kx −

1
2

)

= N0 −
η(B⊥)

2 , (2.22)

where we made use of Eq. (2.21) and

N0 =
∑
kx,n

b†n,kxbn,kx −
∑
kx,n

d†n,kxdn,kx , (2.23)

η(B⊥) =
∑
E>0

1−
∑
E<0

1 =
∑
E

sgn (E) . (2.24)

This shows that the renormalized particle number operator consists of two contribu-
tions: The first term N0 denotes the ‘conventional’ (fermionic) number operator a. It
counts the number of filled and empty states with respect to µ = 0. The second term
η(B⊥) is the so-called spectral asymmetry [127, 128, 134]. It quantifies the difference
in the number of states between valence and conduction band b. For that reason, the
spectral asymmetry vanishes in the presence of PH or chiral symmetry c. However,
if we violate these symmetries by introducing a finite magnetic field, as discussed in
Secs. 1.1.4 and 2.1, η(B⊥) can be nonzero.

To calculate η(B⊥) explicitly, two separately divergent sums must be subtracted from
each other which requires the introduction of a regulator [51]. Here, we make use of a
heat-kernel regulator. This means we replace all summands in Eq. (2.24) according to
[51]:

n 6= 0 : 1→ e−κ|E
±
n | ,

n = 0 : 1→ e−κ|E0| , (2.25)

where κ > 0 ensures the absolute convergence of both sums. The LL energies E0 and

aWe mean by ‘conventional’ that N0 consists only of fermionic operators.
bThe spectral asymmetry is a topological quantity as it is invariant under small, local perturba-
tions [134].

cSuppose the system obeys PH symmetry. Then there is for each positive, a corresponding negative
energy solution, resulting in η(B⊥) = 0. We have proven this statement in general in Eq. (2.18).
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En are given by Eq. (2.9) and Eq. (2.10) with D = 0, respectively. At the end of
the calculation, we will regain η(B⊥) by taking the limit κ → 0+. Employing now
Eq. (2.25) to rewrite Eq. (2.24), we obtain the regularized spectral asymmetry:

ηκ(B⊥) =s sgn
(
M −B/l2B⊥

)∑
kx

e−κ|E0| +
∑

kx,n=1
e−κE

+
n −

∑
kx,n=1

eκE
−
n

=n0

[
s sgn

(
M −B/l2B⊥

)
e−κ|E0| +

∑
n=1

e−κE
+
n −

∑
n=1

eκE
−
n

]
, (2.26)

where the abbreviation s = sgn (eB⊥) was introduced. The first term marks the con-
tribution of the n = 0 LL. Its prefactor determines whether it is part of the valence
(E0 < 0) or the conduction (E0 > 0) band. The second and third term mark the
contribution of all LLs with n ≥ 1. In the second equality, we made use of the
momentum independence of the eigenvalues to extract the LL degeneracy, given by
n0 =

∑
kx 1 = S/(2πl2B⊥) [cf. Eq. (1.55)]. Here, S is the area of the system. To simplify

Eq. (2.26), we Taylor expand the LL energies in the exponents for large n:

E±n = −sB/l2B⊥ ±
2n |B|
l2B⊥

√√√√1 +
M2 + 2nl−2

B⊥
(A2 − 2MB)

4n2B2l−4
B⊥

= −sB/l2B⊥ ±
[

2n |B|
l2B⊥

+ sgn (B)
(
A2

2B −M
)]

+O
(
n−1

)
. (2.27)

Since the heat-kernel regulator affects only large energy (large n) solutions, this ap-
proximation becomes exact for κ→ 0+. Inserting Eq. (2.27) into (2.26) yields a

ηκ(B⊥)
n0

= s sgn
(
M −B/l2B⊥

)
e−κ|E0| + eκ sgn(B)(M−A2/2B)

×
∞∑
n=1

e−2nκ|B|/l2B⊥
[
eκsB/l

2
B⊥ − e−κsB/l

2
B⊥

]
. (2.29)

As the infinite sum represents a geometric series,

∞∑
n=1

e−2nκ|B|/l2B⊥ =
∞∑
n=0

(
e−2κ|B|/l2B⊥

)n
− 1 = 1

1− e−2κ|B|/l2B⊥
− 1 , (2.30)

we can further simplify Eq. (2.29). Proceeding with a Taylor expansion of ηκ(B⊥) for

aIn writing Eq. (2.29), we omitted higher order terms in the exponent which are O(n−1). This step
is justified since these terms are at least O(κ) and, therefore, vanish in the limit κ → 0+ at the
end of the calculation. This statement can be explicitly proven making use of the polygarithm. For
instance, one has to use that

∞∑
n=1

κ

n
e−κcn = −κ log

(
1− e−cκ

)
= O(κ) . (2.28)
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Figure 2.3.: Sketch illustrates schematically evolution of spectral asymmetry η(B⊥),
provided that M,B < 0 and sgn (eB⊥) > 0. With increasing magnetic fields more
and more states are removed from the conduction band and accumulate in the valence
band. This process happens exclusively for nontrivial Chern insulators. Reprinted from
Ref. [P6].

small κ, we finally arrive at

η(B⊥) = lim
κ→0+

ηκ(B⊥)

= n0 sgn (eB⊥)
[
sgn

(
M −B/l2B⊥

)
+ sgn (B)

]
. (2.31)

Since all operators are normal-ordered with respect to µ = 0, this shows that the ground
state (bulk) particle number is solely related to the spectral asymmetry:

〈vac|N |vac〉 = 〈vac|N0|vac〉︸ ︷︷ ︸
=0

− η(B⊥)
2 = −η(B⊥)

2 . (2.32)

Discussion: The spectral asymmetry, given by Eq. (2.31), contains two distinct contri-
butions: Firstly, the asymmetry which arises from the existence of the unpaired n = 0
LL, reflected by sgn (eB⊥) sgn

(
M −B/l2B⊥

)
, and, secondly, from the asymmetry of

all other LLs with n ≥ 1, reflected by sgn (eB⊥) sgn (B). Comparing the Eqs. (2.5)
and (2.31), it is apparent that the spectral asymmetry is a direct consequence of the
intrinsic Chern number and is as such a signature of the parity anomaly. Moreover,
Eq. (2.31) shows that, for a QAH insulator with M,B < 0 and sgn (eB⊥) > 0, increas-
ing the magnetic field is accompanied by an increase in the spectral asymmetry. This
means the magnetic field pushes successively more and more states from the conduction
into the valence band, as schematically illustrated in Fig. 2.3. The spectral asymmetry
acts as if there is effectively one more LL in the valence band a. This process continues
until the n = 0 LL, which traverses the bulk gap for B 6= 0, crosses over into the
conduction band (E0 > 0) at

M −B/l2B⊥,triv
!= 0

aNote that the extra charge in the valence band is not only related to the n = 0 LL.
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→ B⊥,triv = sgn (eB⊥) ~M
eB

. (2.33)

This point is marked for clarity in Fig. 2.1(a). Above this critical field, the two distinct
contributions of η(B⊥) cancel each other, resulting in η(B⊥) = 0. For B⊥ > B⊥,triv,
valence and conduction band contain the same number of states. In contrast, a trivial
Chern insulator (M/B < 0) exhibits η(B⊥) = 0 independent of the magnetic field.
This distinguishes a trivial Chern insulator from a QAH insulator in magnetic fields.
Note however, that we have not yet shown whether the spectral asymmetry is con-
nected to any experimentally accessible quantity. We answer this question starting
with Sec. 2.3.

Relation to QED in (2+1)D: Let us briefly comment on the connection between
these findings and QED in d = 2 + 1 spacetime dimensions. If the same calculation is
repeated for a conventional Dirac system (cf. Sec. 1.6.1), only the unpaired n = 0 LL
would contribute to the spectral asymmetry, resulting in η(B⊥) = n0 sgn (eB⊥) sgn (M)
[108, 122, 126, 128, 132, 135]. In particular, the spectral asymmetry would be in this
case purely linked to the Atiyah-Singer index-theorem [108]. This leaves us with a
fractional ground state charge. In contrast, a QAH insulator, as described by Eq. (2.50)
exhibits an integer-valued ground state charge. The momentum-dependent mass term
B contributes additionally to the spectral asymmetry and acts as if there is an effective
partner of the otherwise unpaired n = 0 LL. The field theoretical aspect of this point
is discussed in detail in Ref. [P8] a.

2.2.2. Without particle-hole symmetry
In the following, we want to include the D-parameter in our model, which breaks PH
symmetry already at B⊥ = 0. One might naively expect that this should alter the
spectral asymmetry, Eq. (2.31), as η(B⊥) measures the asymmetry of the underlying
spectrum. However, this would be in conflict with our statement that η(B⊥) is a signa-
ture of the parity anomaly. The D-parameter breaks neither parity nor TR symmetry
and is from this point of view not expected to appear in the spectral asymmetry. To
resolve this issue, we have to calculate the particle number operator explicitly.

But before we are able to proceed with the calculation in magnetic fields, it is necessary
to properly renormalize the particle number operator. This means the renormalization
procedure must ensure a vanishing ground state charge at B⊥ = 0. From the previous
discussion, it is expected that antisymmetrization should no longer be an appropriate
method since PH symmetry is broken already at B⊥ = 0. Let us check this assertion by
using Eq. (2.15) for the case D 6= 0 at B⊥ = 0. Thereby, we normal-order all fermion
operators with respect to ED = −MD/B, implying that 〈vac|N0|vac〉 = 0, where N0

aThe author of this thesis is a co-author of this manuscript.
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is understood analogously to Eq. (2.23). This specific value is chosen because ED
corresponds to the Dirac point and, hence, to the charge neutrality point of our system
[cf. Eq. (2.13)]. To determine the ground state charge, we are left with computing the
spectral asymmetry:

η(0) =
∑

E>ED

1−
∑

E<ED

1 . (2.34)

The following derivation is very similar to the previous calculation for D = 0. First,
we employ a heat-kernel regulator to subtract the two divergent sums from each other.
This means we replace the summands in Eq. (2.34) according to:

1→ e−κ|E±(k)−ED| , (2.35)

where E±(k) is the spectrum of the Chern insulator at B⊥ = 0, given by Eq. (1.17).
After we substituted the summands in Eq. (2.34), the regularized spectral asymmetry
takes the form:

ηκ(0) =
∑

k
e−κ[E+(k)−ED] −

∑
k

eκ[E−(k)−ED] . (2.36)

It is convenient to replace both sums by integrals in the continuum limit,
∑

k →
S/(2π)2 ∫ dk. Additionally, we Taylor expand the eigenenergies in Eq. (2.36) for large
momenta to simplify the expression further:

E±(k) = −Dk2 ± |B| k2

√
1 + A2k2 − 2BMk2 +M2

B2k4

= ±sgn (B)
(
A2

2B −M
)
− (D ∓ |B|) k2 +O(k−2) . (2.37)

This allows us to recast Eq. (2.36) into conventional Gaussian integrals a,

ηκ(0) = S

(2π)2 e
−κ sgn(B)

(
A2
2B−M

) eκED
∫
R2

dk e−κB−k2 − e−κED
∫
R2

dk e−κB+k2

 , (2.38)

where B± = |B| ±D. After the Gaussian integrals have been evaluated, we perform a
Taylor expansion of the resulting expression for small κ. This yields

ηκ(0) = S

2π
D

B2 −D2

(
1
κ
− A2

2 |B|

)
+O(κ) . (2.39)

aRecall that the heat-kernel regulator in Eq. (2.36) affects only large energy solutions. In writing
Eq. (2.38), we dropped terms in the exponent which are O(k−2) since they vanish in the limit
κ→ 0+ at the end of the calculation.
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The corresponding vacuum charge would be hence given by a

Nvac = 〈vac|N |vac〉 = −1
2 lim
κ→0+

ηκ(0) 6= 0 . (2.40)

From this result, it is apparent that antisymmetrization is no longer equivalent to
normal-ordering. It does not to ensure a vanishing particle number in the bulk gap
for κ → 0+. This issue can be traced back to the PH asymmetry, which breaks the
one-to-one correspondence between terms in the first and the second sum of Eq. (2.34).
As a result, even in the absence of a magnetic field, the two divergent sums do not
longer cancel each other.

Renormalization: However based on Eq. (2.40), we can now define a new, properly
renormalized number operator Ñ . To this end, we subtract the vacuum charge at
B⊥ = 0, Eq. (2.39), from the antisymmetrized number operator:

Ñ = N −Nvac = N0 − lim
κ→0+

[
ηκ(B⊥)− ηκ(0)

2

]
, (2.41)

where ηκ(B⊥ = 0) = ηκ(0). By definition, Eq. (2.41) fulfills the requirement that
〈vac|Ñ |vac〉 = 0 for B⊥ = 0.

Spectral asymmetry in magnetic fields: To be able to make use of Eq. (2.41),
we still have to evaluate η(B⊥) in the presence of LLs. The calculation is very similar
to Sec. 2.2.1, except for the terms that arise from the nonzero D-parameter. The
spectral asymmetry, η(B⊥) =

∑
E>ED

1−
∑
E<ED

1, can be regularized by introducing
the following heat-kernel regulator:

n 6= 0 : 1→ e−κ|E
±
n −ED| ,

n = 0 : 1→ e−κ|E0−ED| , (2.42)

where E0 and En are the LL energies and κ > 0. The regulated spectral asymmetry
reads

ηκ(B⊥)
n0

= s sgn
(
M −B/l2B⊥

)
e−κ|E0−ED| +

∞∑
n=1

e−κ(E
+
n−ED) −

∞∑
n=1

eκ(E
−
n −ED) ,

(2.43)

where s = sgn (eB⊥) and the sum over all momenta was already replaced by the LL
degeneracy

∑
kx = n0. The first term represents the contribution of the n = 0 LL. Its

prefactor matches exactly the one of the PH symmetric system [cf. Eq. (2.26)]. This
is because the critical magnetic field at which the n = 0 LL crosses over from the con-
duction into the valence band, i.e., E0(B⊥) != ED, is independent on the D-parameter.

aThe vacuum state is defined by filling at states up to µ = ED.
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2.3. Magnetotransport - signatures of parity anomaly

It is still given by Eq. (2.33). Analogously to the approximation used in Eq. (2.37), we
Taylor expand the exponents in the latter equation for large n. Equation (2.43) takes
then the form:

ηκ(B⊥)
n0

= s sgn
(
M −B/l2B⊥

)
e−κ|E0−ED| + e

κ sgn(B)
(
M−A2/2B−sD/l2B⊥

)

·
[
e
κ

(
sB/l2B⊥

+ED
)
∞∑
n=1

e−2nκB−/l2B⊥ − e
−κ
(
sB/l2B⊥

+ED
)
∞∑
n=1

e−2nκB+/l2B⊥

]
, (2.44)

where B± = |B| ± D. This result can be recast noting that both sums form geomet-
ric series. After additionally Taylor expanding this result for small κ, we find that
Eq. (2.44) reduces to

ηκ(B⊥) = η(B⊥) + ηκ(0) +O(κ) , (2.45)

where η(B⊥) and ηκ(0) are given by Eq. (2.31) and Eq. (2.39), respectively. Inserting
now Eq. (2.45) into Eq. (2.41) and performing the limit κ → 0+, we obtain the final
result for the renormalized bulk particle number in magnetic fields:

Ñ = N0 −
η(B⊥)

2 , (2.46)

which matches exactly the result of a PH symmetric Chern insulator, cf. Eq. (2.31). The
naive expectation that the D-parameter should contribute to the spectral asymmetry
is therefore wrong. Equation (2.46) shows that η(B⊥) depends only on the parity
breaking mass terms M and B. Physically, this underlines once more that the spectral
asymmetry is a consequence of the parity anomaly and is therefore exclusively related
to parity breaking mass terms.

2.3. Magnetotransport - signatures of parity
anomaly

In the previous section, we have derived a general expression for the particle number
operator in magnetic fields. This enables us now to determine the charge carrier density
for an arbitrary chemical potential µ via

ρ(µ,B⊥) = − e
S
〈µ,B⊥|Ñ |µ,B⊥〉 , (2.47)

where |µ,B⊥〉 defines a many-particle state, for which all states are filled up to the
chemical potential µ, and the particle number operator Ñ is given by Eq. (2.46). Using
Streda’s formula [cf. Eq. (1.59)], this allows us to derive the corresponding expression
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for the Hall conductivity via [71]

σxy(µ,B⊥) = ∂ρ(µ,B⊥)
∂B⊥

. (2.48)

Based on the special form of the number operator, the Hall conductivity can be divided
into two distinct contributions,

σxy(µ,B⊥) = σIxy(B⊥) + σIIxy(µ,B⊥) . (2.49)

We define the first term by its exclusive relation to the spectral asymmetry:

σIxy = e

2S
∂η(B⊥)
∂B⊥

= e2

2h
[
sgn

(
M −B/l2B⊥

)
+ sgn (B)

]
. (2.50)

This quantity is independent of µ as it is a property of the entire spectrum. In compari-
son, σIIxy depends on µ since it comprises all contributions associated to the conventional
number operator N0:

σIIxy = − e
S

∂

∂B⊥
〈µ,B⊥|N0|µ,B⊥〉 . (2.51)

Recall that it is zero in the ground state, since all fermionic operators are normal-
ordered with respect to ED, meaning:

N0 |vac〉 = N0

 ∞∏
n={0,1}

∞∏
kx=−∞

dn,kx |0〉

 = 0 , (2.52)

where n = {0, 1} means that the product starts either at n = 0 or 1, depending on
whether the n = 0 LL is part of the valence or the conduction band, respectively.
Consequently, Eq. (2.51) can be only nonzero for µ 6= ED, and is directly related to the
number of filled, or empty, LLs with respect to ED.

To find a general expression for σIIxy(µ,B⊥), we have to distinguish several cases due to
the special properties of the n = 0 LL. Let us start with M,B < 0 and |B⊥| < B⊥,triv,
implying that the n = 0 LL is filled in the ground state. In that case, the many-particle
state |µ,B⊥〉 with µ < ED and B⊥ > 0 reads

|µ,B⊥〉 =
Nmax(µ)∏
n=0

∞∏
kx=−∞

d†n,kx |vac〉 , (2.53)

where Nmax(µ) gives the number of empty valence band LLs. Inserting this state into
Eq. (2.51), we arrive at

σIIxy = e2

h

[
θ (−µ+ E0) +

∞∑
n=1

θ
(
−µ+ E−n

)]
, (2.54)
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where for the given magnetic field direction E0 = M − (B +D)/l2B⊥ . Taking the same
parameters but choosing µ > ED, the corresponding many-particle state reads

|µ,B⊥〉 =
Nmax(µ)∏
n=1

∞∏
kx=−∞

b†n,kx |vac〉 , (2.55)

where Nmax(µ) is the number of filled conduction band LLs. The associated Hall
conductivity is given by

σIIxy = −e
2

h

∞∑
n=1

θ
(
µ− E+

n

)
. (2.56)

The latter equation does not include the n = 0 LL, since it is already filled in the
ground state for the given set of parameters.

In the next step, we keep the same parameters but flip the sign of the magnetic field,
B⊥ < 0. Most importantly and in contrast to the case B⊥ > 0, the n = 0 LL is now
unoccupied in the ground state. The arbitrary many-particle states with µ 6= ED are
therefore given by

|µ < ED, B⊥〉 =
Nmax(µ)∏
n=1

∞∏
kx=−∞

d†n,kx |vac〉 , (2.57)

|µ > ED, B⊥〉 =
Nmax(µ)∏
n=0

∞∏
kx=−∞

b†n,kx |vac〉 , (2.58)

where one should pay attention to the role of the n = 0 LL. Again, we insert these
equations into Eq. (2.51) and arrive for µ < ED at

σIIxy = −e
2

h

∞∑
n=1

θ
(
−µ+ E−n

)
, (2.59)

and for µ > ED at

σIIxy = e2

h

[
θ (µ− E0) +

∞∑
n=1

θ
(
µ− E+

n

)]
, (2.60)

where E0 = −M + (B−D)/l2B⊥ . These steps must be repeated for all possible signs of
M,B andD, as well as one has to consider the additional cases for which |B⊥| > B⊥,triv.
After a lengthy but straightforward calculation, a general expression for σIIxy can be
finally determined:

σIIxy = σII0 θ
(
|µ̄| −

∣∣∣M −B/l2B⊥ ∣∣∣)+ σIIn

∞∑
n=1

[
θ
(
µ− E+

n

)
− θ

(
−µ+ E−n

)]
, (2.61)
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where µ̄ ≡ µ+D/l2B⊥ and

σII0 = − e
2

2h
[
sgn

(
M −B/l2B⊥

)
+ sgn (eB⊥) sgn (µ̄)

]
, (2.62a)

σIIn = −e
2

h
sgn (eB⊥) . (2.62b)

Discussion: Let us summarize the physical implications which we can derive from
Eqs. (2.50) and (2.61). The first term, σIxy, is connected solely to the spectral asymme-
try and is as such a signature of the parity anomaly. It is only nonzero if the system
is a QAH insulator for B⊥ = 0, i.e., M/B > 0. We probe exclusively σIxy, the ‘QAH
regime’, if the chemical potential is placed within

∣∣∣µ+D/l2B⊥

∣∣∣ ≤ ∣∣∣M −B/l2B⊥∣∣∣ . (2.63)

We refer to this regime as the Dirac mass gap because of its relation to the intrinsic bulk
band gap of a Chern insulator. Given that µ is placed within the Dirac mass gap, the
Hall conductivity is an even function of the magnetic field, i.e., σIxy(−B⊥) = σIxy(B⊥).
This constitutes a violation of the Onsager relation a. Moreover, Eqs. (2.50) and (2.63)
highlight a competition between the bare Dirac mass M and the non-relativistic mass
B. The B-parameter causes a decrease of the Dirac mass gap until it is eventually
closed at B⊥ = B⊥,triv, given by Eq. (2.33), above which σIxy = 0. In comparison, the
D-parameter comes at the same level as the chemical potential and, hence, shifts the
center of the Dirac mass gap in magnetic fields. The difference between the parameters
arises because only M and B break parity symmetry at B⊥ = 0.

The second term in Eq. (2.49), σIIxy, contributes additionally to the total Hall conduc-
tivity only if the chemical potential is placed outside of the Dirac mass gap, so that
extra LLs are filled/emptied with respect to the ground state. In contrast to Eq. (2.50),
each of these contributions is related to a single LL. Their origin is reflected by their
sgn (eB⊥)-dependence, seen in Eq. (2.61). More precisely, for sgn (eB⊥) > 0 every con-
duction band LL contributes −e2/h and every valence band LL +e2/h. The signs come
vice versa when we flip the direction of the magnetic field. Hence, Eq. (2.61) describes
conventional QH physics, generated by the external magnetic field.

aIn a conventional QH phase, the Onsager relation [68] imply that σxy(B⊥) = −σxy(−B⊥), cf.
Eq. (1.60). When we refer to a violation of the Onsager relation, we want to highlight that, in
contrast to a conventional QH phase, the Hall conductivity of a QAH insulator is an even function
of the magnetic field if the chemical potential is placed in the Dirac mass gap, i.e., σxy(B⊥) =
σxy(−B⊥). The Hall conductivity only switches its sign if we flip both the sign of the intrinsic
Chern number, (M,B) → (−M,−B), as well as the sign of the external magnetic field. A QAH
insulator is therefore characterized by

σxy(M,B,B⊥) = −σxy(−M,−B,−B⊥) . (2.64)
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2.4. Effective field theory

In the previous sections, it was found that a QAH insulator, subjected to an exter-
nal magnetic field, is related to a peculiar topological quantity, the spectral asymme-
try η(B⊥). The presented calculations were thereby performed for a domain without
boundaries. Our next goal is to connect these bulk results to the special edge properties
of our system [cf. Sec. 2.1.1]. To this end, we will derive the effective action of a QAH
insulator in magnetic fields and make use of anomaly cancellation to determine the
associated edge states. In the following, we switch to relativistic notation.

Effective action - bulk: If a perturbing external vector potential aµ is applied on
top of the underlying magnetic field B⊥ = ∇×A, the induced current is given by [cf.
Sec. 1.5]:

jµind = σxy(µ,B⊥)εµνρ∂νaρ , (2.65)

where σxy is defined by Eq. (2.49). Recall that j0
ind is the bulk charge density, and j1,2

ind is
the bulk current density in x- and y-direction, respectively. Since jµind = δSbulkeff /δaµ with
Sbulkeff =

∫
d3xLbulkeff , we can deduce the corresponding effective bulk Lagrangian:

Lbulkeff (µ,B⊥) = σxy(µ,B⊥)
2 εµνρaµ∂νaρ , (2.66)

where εµνρ is the Levi-Civita symbol. The effective field theory is a Chern-Simons
theory, which arises in (2+1)D due to a broken TR and parity symmetry [50, 62, 122].
There are two physically different mechanisms in our model that break parity and TR
symmetry and, therefore, give rise to Chern-Simons terms. On the one hand, the mass
terms M and B, and, on other hand, the external magnetic field B⊥. This allows us
to distinguish two types of Chern-Simons terms: The first type, related to Eq. (2.50),
is defined by its exclusive relation to M and B. It is solely related to the spectral
asymmetry η(B⊥) and, hence, to the parity anomaly. This type of Chern-Simons term
is not related to a single LL, but reflects the asymmetry of the entire spectrum. As
such, it does not come along with a Heaviside step function. The second type of Chern-
Simons terms, related to Eq. (2.61), describes conventional QH physics. Each of these
terms is related to a single LL, which is reflected by the Heaviside step functions in
Eq. (2.61).

Effective action - edge: Each Chern-Simons term in Eq. (2.66) must be accompanied
by an associated edge state at the boundary ∂Ω of our system. This field theoretical
analog of the bulk-boundary correspondence can be verified noting, that Chern-Simons
terms, which are defined on a finite domain, are not gauge invariant, cf. Eqs. (1.100)
and (1.101). If our system is only described by Lbulkeff , this non-invariance would mean
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that the induced bulk current, Eq. (2.65), is not conserved at ∂Ω,

∂µj
µ
ind

∣∣
∂Ω
6= 0 . (2.67)

The latter describes a chiral anomaly which must be canceled via the Callan-Harvey
mechanism [cf. Sec. 1.5.2] to ensure a consistent theory [106]. To be precise, we must
cancel the anomaly by enlarging the effective theory by an additional edge degree of
freedom, which we denote by L∂Ω

eff
a. Gauge invariance can be then restored via anomaly

cancellation between edge and bulk[42, 115]:

∂µj
µ
tot = ∂µ

(
jµind + jµ

L
+ jµ

R

)
= 0

→ ∂µj
µ
ind = −∂µjµL/R = σxy(µ,B⊥) δ

(
y − y

L/R

)
ε2νλ∂νaλ , (2.68)

where jµ
L/R

symbolizes currents at the left (yL) and right (yR) edge of the strip ge-
ometry, respectively, which are associated to L∂Ω

eff . Equation (2.68) implies that the
non-conservation of bulk charge at ∂Ω, as a response to aµ, is compensated by a non-
conservation of charge in the corresponding edge theories. An increase of the magnetic
field by ∇× a causes charge accumulation in the bulk, with

j0
ind = σxy(µ,B⊥)∇× a , (2.69)

that is compensated by a charge depletion at the edges. Throughout this process, no
particles are created or destroyed, so that the charge of the entire system (bulk+edge)
remains constant [128].

The effective edge theories, associated to jµL/R, are given by

L∂Ω
eff = LLeff δ (y − yL) + LReff δ (y − yR) , (2.70)

where

LL/Reff = χ† i
(
∂t ∓

h

e2σ
I
xyDx

)
χ (2.71a)

+ ξ†0 i
(
∂t ∓

h

e2σ
II
0 Dx

)
ξ0 Θ

[
|µ̄| −

∣∣∣M −B/l2B⊥∣∣∣] (2.71b)

+
∞∑
n=1
s=±

s ξ†n i
(
∂t ∓

h

e2σ
II
n Dx

)
ξnΘ [s(µ− Esn)] . (2.71c)

Here, L/R corresponds to ∓, respectively, σIxy is given by Eq. (2.50), σII0 by Eq. (2.62a),
and σIIn by Eq. (2.62b); χ (ξn) defines QAH (QH) edge states and Dx = ∂x + ieax/~.
Equation (2.71a) is linked to the spectral asymmetry and characterizes QAH edge

aThis theory is defined in (1+1)D and describes chiral fermions.
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states, persisting in magnetic fields a. The QAH edge states are not bound to a spe-
cific LL (no Heaviside step function) but instead bridge the gap between valence and
conduction band. This finding is in accordance with our band structure calculations,
shown in Figs. 2.2 and 2.4, and explains how the information of the QAH edge states
can persist in magnetic fields. Interestingly, since Eq. (2.71a) is connected to η(B⊥),
charge pumping via anomaly cancellation can occur from the QAH edge states into any
LL. As such, this peculiar type of charge pumping is a signature of the parity anomaly.
It can exist in general until σIxy = 0, i.e., until the Dirac mass gap is eventually closed
at B⊥ = B⊥,triv, given by Eq. (2.33). This is in stark contrast to Eqs. (2.71b) and
(2.71c) which are related to the conventional fermion number operator N0 and, there-
fore, describe QH edge states. Each of these edge states is bound to a single LL, so
that charge flow can only appear between an edge state and its associated LL.

Moreover, Eqs. (2.71a)–(2.71c) shed light on the coexistence of QH and QAH edge
states outside of the Dirac mass gap, that were observed in Fig. 2.2. The QAH edge
states can coexist with QH edge states, as they are not bound by a Heaviside step
function. However, to derive the effective edge theories, we did not include possible
hybridization mechanisms between these coexisting states. Hybridization is in general
not forbidden, since the quasi-helical edge states are not protected by symmetry. For
that reason, QH and QAH edge states can in general hybridize if they exist at the same
energy and momentum. To complete our understanding of the survival of the QAH
edge states in magnetic fields, we will therefore numerically analyze in the next section
charge pumping between the QAH edge states and the bulk LLs. Moreover, we analyze
the survival and the protection of the quasi-helical edge states in detail in Sec. 2.6 using
the finite-difference-method.

2.5. Charge pumping
The aim of this section is to analyze differences in charge pumping between QAH and
QH edge states, discussed so far from a field theoretical perspective, using a numerical
approach. In Sec. 2.5.1, we consider at first an impurity-free system and comment on
elastic and inelastic scattering effects in Sec. 2.5.2.

2.5.1. Numerical approach
We simulate the evolution of the charge distribution as a function of B⊥ by solving
the time-dependent Schrödinger equation. Thereby, we keep the total charge (not
the chemical potential) constant. In particular, we consider a time-dependent vector

aTheir existence requires that M/B > 0. This term is zero for a trivial Chern insulator, for which
M/B < 0.
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potential

A(t) = A(ti) + a(t) with t ∈ [ti = 0, tf ] , (2.72)

where A(ti) is a time-independent, constant vector potential and a(t) = −yB⊥(t)ex is
a time-dependent perturbation with a(ti) = 0.

At the initial time ti, the system is described by the solutions of the initial Schrödinger
equation a:

H(ti) |ψj,kx(ti)〉 = Ej,kx(ti) |ψj,kx(ti)〉 , (2.73)

where the subscript j labels the jth subband. For t > ti, the perturbation is switched
on and each initially occupied state, with j ≤ jmax and k ≤ kmax, evolves under unitary
time evolution to b

|ψj,kx(t)〉 = U(t, ti) |ψj,kx(ti)〉 , (2.74)

where U(t, ti) is the time-evolution operator. The quantities jmax and kmax are de-
termined by the initial chemical potential µ, which defines the ground state. To be
precise, we compute the time-evolution of the eigenstates using an iterative procedure,
numerically:

|ψj,kx(t+ ∆t)〉 = e−iH(t)∆t/~ |ψj,kx(t)〉

= U(t+ ∆t, t) |ψj,kx(t)〉 , (2.75)

where ∆t has to be chosen sufficiently small to ensure convergence. Linearly increasing
the magnetic field B⊥(t) with time, we can trace the occupation of states in each
instantaneous spectrum, defined by the time-independent Schrödinger equation (t only
parametrizes the Hamiltonian)

H(t) |φi,kx(t)〉 = Ei,kx(t) |φi,kx(t)〉 . (2.76)

The occupation probability of an instantaneous eigenstate |φi,kx(t)〉 is determined by

Pi,kx(t) =
jmax∑
j=0
|〈ψj,kx(t)|φi,kx(t)〉|2 . (2.77)

To differentiate charge pumping in the QAH and in the QH phase, we compare two

aWe assume a strip geometry and solve the Schrödinger equation numerically by employing the finite-
difference-method.

bDue to translational symmetry in the x-direction, the Hamiltonian and its corresponding Hilbert
space are given by a direct sum, H(t) =

⊕
kx
Hkx (t). The numerical simulations can be carried out

separately on each Hilbert subspace Hkx .
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2.5. Charge pumping

Figure 2.4.: Band structure of QAH insulator (solid black lines) with the same
parameters as in Fig. 2.2 at (a) B⊥ = 0 T, (b) 1.5 T, and (c) 2.5 T. χ(L/R) and
ξ(L/R) depict QAH and QH edge states at the left and right boundary. (a) Spectrum
at half filling with chiral QAH edge states traversing the bulk gap. (a)–(c) Evolution of
the spectrum and its filling with increasing B⊥, where empty/filled states are marked
in blue/red. (d) Analogous analysis for an initially filled conduction band LL. From
Ref. [P5]. Reprinted with permission from APS.

different initial cases (t = ti):

(I) In the QAH phase, we take A(ti) = 0. The ground state is defined by filling all
states up to the Dirac point, µ = ED.

(II) In the QH phase, a constant background vector potential A(ti) = −yB⊥,0ex must
be applied to induce LLs. The ground state is defined by filling only a single LL.

These initial scenarios are depicted in Figs. 2.4(a) and (d), respectively.

Discussion: Let us now analyze the numerical results, starting with the QAH phase
under initial condition (I). Increasing B⊥(t) linearly with time, the occupation of the
eigenstates and the induced charge carrier density,

j0
ind(x, t) = −e nind(x, t) , (2.78)

evolve as shown in Figs. 2.4(a)–(c) and Fig. 2.5(a). Here,

nind(x, t) =
∑
i,kx

Pi,kx(t) |φi,kx(x, t)|2 − nback , (2.79)

where nback is a constant background charge which is chosen such that nind(x, ti) = 0.
Starting from a flat (zero) charge density distribution, an increase of B⊥(t) causes a
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Figure 2.5.: (a) Induced particle density nind as a function of the magnetic field,
corresponding to Figs. 2.4(a)–(c). An increase of B⊥ causes charge depletion (blue) at
the edges and charge accumulation (red) in the bulk. Inset compares the induced bulk
particle number Nind(t) =

∫
dxnind(x, t) between the QAH (red) and the QH phase

(green). (b) Schematic illustration of charge flow: Increasing magnetic field causes
charge accumulation in the bulk. For B⊥ > B⊥,scat, relaxation processes can take place
causing charge flow in opposite direction, cf. Sec. 2.5.2. (a) From Ref. [P5]. Reprinted
with permission from APS.

net charge flow from the QAH edge states (charge depletion) into all valence band
LLs (charge accumulation), cf. Fig. 2.5(b) a. Since our system is a bulk insulator,
this redistribution of charges is driven by polarization effects. This means all occupied
wave functions shift as a function of the magnetic field their spectral weight, giving
effectively rise to the charge redistribution shown in Fig. 2.5(a). During this process,
all valence band LLs, including the n = 0 LL, remain filled. As illustrated in the inset
of Fig. 2.5(a), this causes a linear increase of the bulk charge with B⊥. The numerical
result matches therefore exactly our analytical result, given by Eq.(2.69), which was
derived based on anomaly cancellation. Since this type of pumping is bound to the
existence of the QAH edge states, it can in general exist for B⊥ < B⊥,triv, given by
Eq. (2.33).

The described scenario resembles Laughlin’s gauge argument with the exception that
we have considered here a time-dependent magnetic field. In Laughlin’s case, a constant
electric field is applied along the x-direction, so that charge is effectively pumped from
one edge to the other through the insulating bulk. In our case, the time-dependent
magnetic field causes an azimuthal electric field b that causes charge inflow from the
edges into the insulating bulk, as illustrated in Fig. 2.5(b).

In contrast, our results for the QH phase under initial condition (II) are shown in
Fig. 2.4(d) and in the inset of Fig. 2.5(a). In agreement with our field-theoretical
approach, we find that the bulk charge originates purely from the associated QH edge

aAssuming the system is topologically nontrivial, the direction of charge flow depends on the sign of
σIxy and on the magnetic field direction. Here, we focus on the case M,B < 0 and sgn (eB⊥) > 0.

bThis follows from Maxwell’s third equation, ∇×E = −∂B/∂t.
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states, implying a saturation of the charge accumulation already for small magnetic
fields a. As a consequence, our numerical results confirm that the QAH edge states are
related to a distinct Chern-Simons term which is not only connected to a single LL but
to the collection of all LLs.

Limitations: The numerical results presented in this section are independent of the
time scale tf in which B⊥(t) is ramped up, provided that tminf � tf � tmaxf . The
lower bound prevents excitations across bulk gaps Eg and is therefore determined by
tminf ≡ ~/Eg ∼ 10−13 s. If the Dirac point is below the n = 0 LL, the upper bound
comes from the requirement to overcome hybridization gaps ∆hyb forming between the
QAH edge states and bulk LLs. As long as these hybridization gaps are finite size
gaps b, as it is the case in Fig. 2.4(a)–(c), tmaxf ∝ ∆−1

hyb tends to infinity. A detailed
discussion on the hybridization between the QAH edge states and the n = 0 LL is
presented in Sec. 2.6.2.

2.5.2. Transport signature at constant density
So far, an ideal system without impurities has been considered, for which the total
charge remains constant. We will now discuss the effect of disorder on charge pumping
in the QAH phase. In the following, we distinguish two particular regimes: The Dirac
point is above, or below the n = 0 LL. To gain an analytic expression for the corre-
sponding, critical magnetic field, we can employ the analytic result by Zhou et al. [133].
They showed that the QAH edge states evolve in magnetic fields as:

Eedge(kx, B⊥) = ED − µBgeffB⊥ ± ~vxkx , (2.80)

where geff ≈ m0vxLy/~ is an effective g-factor c and vx = A
√

(B2 −D2)/B2/~ is the
edge state velocity. The Dirac point enters the valence band therefore at the critical
field B⊥,scat which is given by

Eedge(0, B⊥,scat)
!= E0(B⊥,scat)

→ B⊥,scat = M(B +D)
B(B +D) e~ −

e
2Bvx~Ly

∝ 1
Ly

. (2.81)

For B⊥ < B⊥,scat, when the Dirac point is above the n = 0 LL, the system is in its
ground state. This means scattering cannot cause relaxation of the induced bulk charge
and, hence, disorder cannot affect the results of Figs. 2.4(b) and 2.5(a). The hallmark
of this regime is a quantized Hall plateau, given by σIxy, whose length scales with

aThe local chemical potential quickly drops towards the energy of the bulk LL. If it reaches the bulk
LL, charge pumping breaks down.

bFinite size gaps are exponentially suppressed by the system size, i.e., ∆hyb ∝ e−λLy , where λ > 0.
cThe approximation is valid for Ly � λ1,2, where λ1,2 are related to the decay length scales of the
QAH edge states [133].
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I II III

QAH Phase: QH Phase
No Scattering

Scattering between 

n=0LL

n=1LL
Dirac point

QH & QAH edge states

Left Edge
Scattering

Right Edge
Scattering

Figure 2.6.: Schematic evolution of σxy for a QAH insulator in magnetic fields in the
presence of disorder at constant (zero) total charge. The insets illustrate schematically
the underlying band structure according to Fig. 2.4(a)–(c) (same color code). In re-
gion II, scattering processes between counterpropagating QH ξ(L/R) (red) and QAH
χ(L/R) (blue) edge states allow for momentum and energy relaxation. From Ref. [P5].
Reprinted with permission from APS.

B⊥,scat ∼ L−1
y , as depicted by region I in Fig. 2.6. For B⊥ > B⊥,scat, when the Dirac

point is below the n = 0 LL, the system is driven into a state with no common chemical
potential. Its signature is a selective population of states (charge inversion), as shown in
Fig. 2.4(c). This charge inversion is protected by momentum conservation, since direct
relaxation processes, such as spontaneous emission, are exponentially suppressed by the
spatial localization of the wave functions. However, since realistic systems are rather
imperfect, in(elastic) scattering events between occupied QH and unoccupied QAH edge
states facilitate momentum and energy relaxation, as indicated by region II in Fig. 2.6.
As a result, the charge inversion relaxes due to the presence of disorder eventually,
until a common chemical potential has set in. In this new ground state, coexisting,
counterpropagating QAH and QH edge states dominate the magnetotransport. This
means at constant carrier density, we expect a length-dependent transition from a
quantized plateau with σIxy to a regime, which is governed by quasi-helical edge states.
In Sec. 2.6.3, we will show that in this peculiar regime deviations from a perfectly
quantized Hall plateau can arise from scattering between QH and QAH edge states.
This is indicated by the wiggly line in Fig. 2.6. Ultimately for B⊥ > B⊥,triv, when the
Dirac mass gap is closed by the magnetic field [cf. Eq. (2.63)], σxy vanishes exactly as
indicated by region III in Fig. 2.6.

2.6. Coexistent QH and QAH edge states
In the course of this chapter, we have identified signatures of the QAH effect in the
presence of LLs. In particular, it was demonstrated that the Hall conductivity in
the Dirac mass gap is an even function of the magnetic field, σxy(−B⊥) = σxy(B⊥)
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(violation of Onsager relation). Moreover, we explained why, outside of the Dirac mass
gap, QAH edge states can coexist with counterpropagating QH edge states. While
these quasi-helical edge states can in general exist until the Dirac mass gap is closed
in magnetic fields [cf. Eq. (2.33)], we have not yet studied their parameter dependence
nor their transport signatures in detail.

In this section, we complement our understanding of QAH insulators in magnetic fields
by examining its edge properties in detail. First, the violation of the Onsager relation
within the Dirac mass gap is explained in terms of the survival of the QAH edge
state. Subsequently in Sec. 2.6.2, we analyze hybridization of the quasi-helical edge
states outside of the Dirac mass gap. Finally in Sec. 2.6.3, we consider a toy model to
demonstrate that quasi-helical edge states can entail unique transport signatures.

2.6.1. Transport in the Dirac mass gap - edge perspective
To analyze now the behavior of the topological edge states in magnetic fields in detail,
we use once more the finite-difference-method to map the Hamiltonian of a Chern in-
sulator [Eq. (2.2)] on a lattice. This procedure introduces a hard cut-off in momentum
space with kmax ∼ a−1, where a is the lattice constant, i.e., the lattice acts as the
necessary regulator [136]. In comparison to the continuum theory, this guarantees a
finite number of degrees of freedom, so that no further regularization, like employing
a heat-kernel, is needed to determine physical observables like the charge or the Hall
conductivity. Note that physical observables should not depend on the chosen reg-
ularization/renormalization scheme. This means we should reproduce here the same
results as in Sec. 2.2. The advantage of the numerical approach is that it is much
simpler to determine the explicit edge spectrum. In comparison, the advantage of the
(analytic) heat-kernel approach is that it allowed us to gain a much deeper inside into
the regularization procedure. To this end, we were able to show how the information of
the QAH effect remains encoded in the bulk LL spectrum. Together, both approaches
complement each other and allow us to gain a comprehensive understanding of the
QAH effect in magnetic fields.

Let us now focus on a QAH insulator with M,B < 0. In particular, we computed
the spectra of a QAH insulator for B⊥ = 0, 1, and −1 T, shown in Figs. 2.7(a)–(c),
respectively. The color code reflects the spatial wave function localization in the y-
direction. Wave functions that are localized in the bulk (edge) are depicted in gray
(red). As it was explained in Sec. 2.1.1, the Dirac point is located in the bulk gap
for B⊥ = 0. An increase of the magnetic field pushes the QAH edge states and,
associated, the Dirac point into the valence or into the conduction band, depending
on whether sgn (eB⊥) is greater or lesser than zero. It is apparent that for the given
system parameters and independent of the magnetic field direction, edge states traverse
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Figure 2.7.: LL spectrum of Chern insulator withM = −10 meV, B = −685 meV nm2,
D = −600 meV nm2, and A = 365 meV nm mapped on a lattice with Ly = 500 nm, and
a = 1 nm for a magnetic field of (a) 0 T, (b) 1 T, and (c) −1 T. Color code displays
the wave function localization. Edge (bulk) states are depicted in red (gray). The
blue shaded area marks the Dirac mass gap [Eq. (2.63)] characterized by σxy(−B⊥) =
σxy(B⊥), where Chern numbers are explicitly shown. In (c), dashed line indicates
evolution of QAH edge states in the conduction band before hybridizing with bulk
states. (d) Sketch of conventional six-terminal Hall bar. In (e) and (f), probability
density of two wave functions is depicted corresponding to point A (green dot) and B
(gray dot) in the spectrum shown in (b) and (c), respectively. Sign of Fermi velocity is
highlighted. Reprinted from Ref. [P6].

the Dirac mass gap [cf. Eq. (2.63)], which is marked by the blue area in Figs. 2.7(a)–
(c) a. As shown in Sec. 2.4, these edge states are uniquely related to σIxy, Eq. (2.50),
since this is the only term which can contribute within the Dirac mass gap. Ergo,
these states are descendants of the QAH edge states and exist only if M/B > 0 and
B⊥ < B⊥,triv.

The QAH edge states can continue to exist outside of the Dirac mass gap, since they
are not bound by a Heaviside step function [cf. discussion below Eq. (2.70)]. This
is clearly observed for positive magnetic fields as shown in Fig. 2.7(b), where quasi-
helical QH and QAH edge states coexist in the valence band. However, there is no
clear signature of QAH edge states outside of the Dirac mass gap for negative magnetic
fields, as shown in Fig. 2.7(c). In the latter case, this is because the QAH edge states are
strongly hybridized with conduction band states. The reason for this will be explained
in detail in the next section. To schematically illustrate the hybridization process, we
indicated the QAH edge states before hybridizing with QH states by dashed lines in
Fig. 2.7(c).

Let us now focus at first on the signatures of the QAH edge states within the Dirac

aRecall that the Dirac mass gap signifies the regime where the Hall conductivity is an even function
of the magnetic field.
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mass gap. In this regime, QH edge states cannot exist [see Eqs. (2.50) and (2.61)] so
that the QAH edge states are protected from hybridization. In particular, we focus on
how the violation of the Onsager relation, σxy(−B⊥) = σxy(B⊥), is connected to the
QAH edge states. To this end, the wave functions for two selected points are shown in
Figs. 2.7(e) and (f), corresponding to the two marked points in Figs. 2.7(b) and (c), for
the two magnetic field configurations. Point A marks a QAH edge state inside of the
Dirac mas gap, while point B marks a conventional QH edge state outside of the Dirac
mass gap. For B⊥ > 0, edge states with positive momenta are localized at the top
edge (y = Ly/2) of our stripe geometry [Fig. 2.7(e)], while they localize at the bottom
edge (y = −Ly/2) for B⊥ < 0 [Fig. 2.7(f)]. Flipping the magnetic field direction results
therefore in changing the spatial localization of edge states at given kx.

Transport in Dirac mass gap: The associated Hall resistance RH can be now
computed employing the Landauer-Büttiker formalism, as explained in Sec. 1.2. For
a six terminal set-up, schematically depicted in Fig. 2.7(d), it follows that [see also
Eq. (1.48)]:

RH = h

e2
Tc − Ta

T 2
c − TaTc + T 2

a

, (2.82)

where Tc = Ti+1←i is the transmission probability in clockwise direction, i.e., from the
ith to the (i+1)th contact; Ta = Ti←i+1 is the transmission probability in anticlockwise
direction. We consider first the QAH case in which the chemical potential is placed at
the point A in Fig. 2.7(b). Since the Fermi velocity vx = ~−1∂E/∂kx is positive for
kx > 0 and the wave function is located at the top edge of our stripe geometry, there
is only one chiral edge channel propagating clockwise along the edges of the Hall bar.
This amounts to Tc = 1 and Ta = 0 resulting in RH = h/e2.

In comparison, placing the chemical potential at the point A in Fig. 2.7(c), the wave
function of the QAH edge state for kx > 0 is located at the bottom edge and exhibits
a negative Fermi velocity, i.e., both, the edge localization and the Fermi velocity flip
sign for B⊥ → −B⊥. The two effects combined yield again a clockwise propagating
edge state which exhibits the same transmission probabilities and, hence, the same Hall
resistance RH = h/e2, as the QAH edge state in Fig. 2.7(b). This originates from the
fact that, in both cases, the same QAH edge state is probed whose chirality is defined
by the intrinsic Chern number, Eq. (2.5), and not by the magnetic field. As a result,
the Hall conductivity in the Dirac mass gap is an even function of the magnetic field
and, therefore, violates the Onsager relation (cf. to discussion in Sec. 2.3). This holds
as long as QAH edge states are allowed to bridge this gap, i.e., for B⊥ < B⊥,triv and
M/B > 0. We highlighted the connection to the QAH effect, since one might naively
conclude, by looking at Fig. 2.7(c), that no signature of the QAH effect survived in
magnetic fields.
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This clearly differentiates QAH edge states from QH edge states, that are induced by
the external magnetic field outside of the Dirac mass gap. While QH edge states also
change their spatial localization, their Fermi velocity remains the same for B⊥ → −B⊥.
As a result, the transmission probability of each QH edge state in the conduction band
changes from (Tc, Ta) = (1, 0) to (0, 1) for B⊥ → −B⊥ and their contribution to the
total Hall resistance [Eq. (2.82)] changes from +h/e2 to −h/e2. The signs are opposite
for valence band LLs, where the Hall resistance changes from −h/e2 to +h/e2.

2.6.2. Role of broken particle-hole symmetry
We now turn the focus to properties of the QAH edge states outside of the Dirac
mass gap. In particular, we clarify why, in this regime for the given set of parameters,
QAH edge states are only clearly visible for B⊥ > 0 [Fig. 2.7(b)] and not for B⊥ < 0
[Fig. 2.7(c)]. Let us first start with the case of positive magnetic fields.

As we have stressed earlier, QAH edge states can hybridize with QH states outside
of the Dirac mass gap, since they are not protected by symmetry. The crossing (up
to finite size gaps) between the QAH edge states and the n = 0 LL, as it is observed
in Fig. 2.8(a) at kcross, is instead protected by differently localized wave functions
[Fig. 2.8(c)]. This situation is however not generic as a comparison with a Chern
insulator with smaller D-parameter shows [see avoided crossings in Fig. 2.8(b)]. To
analyze this process quantitatively, we plot in Fig. 2.8(d) at B⊥ = 1 T the hybridization
gap ∆hyb of the QAH edge states and the n = 0 LL as a function of D for various Dirac
masses M . The numerical results show that increasing the absolute value of M and
D increases the regime in which ∆hyb drops to zero (numerical resolution: ±0.1 meV).
This means that a strong PH asymmetry protects the edge states from hybridizing with
bulk LLs. In the following, we label the critical magnetic field above which ∆hyb 6= 0,
i.e., a hybridization gap starts to form, by B⊥,hyb.

Physically, the behavior of B⊥,hyb in Fig. 2.8(d) can be understood noting that this
critical field is basically determined by the parameter dependence of kcross. This is
because kcross is intimately linked to the wave function overlap of QAH edge states
and QH states. We can derive an analytic expression for kcross based on the energetic
position of the n = 0 LL and the dispersion of the QAH edge states in magnetic fields,
given by given by Eq. (2.9) and (2.80), respectively:

E0(B⊥) = Eedge(kcross, B⊥)

→ kcross = ± 1
~vx

[
E0(B⊥) + µBgeffB⊥ − ED

]
. (2.83)

Hybridization is almost absent if |kcross| � kmax (∆hyb ≈ 0), where 2kmax = Ly |eB⊥| /~
is the maximal width of a bulk LL. This is due to the fact that the QAH edge states
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Figure 2.8.: Effect of D-parameter on band structure of Chern insulator for M =
−15 meV, A = 365 meVnm, B = −685 meVnm2, (a) D = −600 meVnm2, and (b)
−300 meVnm2 at B⊥ = 1 T. (Anti)crossing at kcross between QAH edge state and
n = 0 LL is marked by green circle. (c) Probability density of wave functions at
crossing point in (a) between QAH edge state (green) and Gaussian wave function of
n = 0 LL (gray). The Gaussian wave function is centered at y ≈ 145 nm. The distance
between the centers of the wave functions is given by d. (d) Hybridization gap between
QAH edge state and n = 0 LL as function of D-parameter for various Dirac masses
M . The numerical resolution determining the gap is ∆E = ±0.1 meV. Reprinted from
Ref. [P6].

are exponentially localized at the edges, while the Gaussian wave functions of the QH
states are each centered at ykx = l2B⊥kx and have a standard deviation of σ =

√
2lB⊥

[cf. Eq. (1.57)]. The wave functions are shown exemplary in Fig. 2.8(c) for the marked
crossing point in Fig. 2.8(a).

A hybridization gap ∆hyb starts to form only if the distance d between the wave function
centers gets of the order of the standard deviation σ, i.e., if d < dcrit = cσ. Here,
c > 0 is a fitting parameter which can be adjusted to gain good agreement with the
numerical results (typically, c ∼ 1). Assuming that the center of the QAH edge state
lies approximately at the sample edge, the distance between the wave function centers
is roughly given by d = L/2− ykx . Hybridization takes therefore place for

kcross > l−2
B⊥

(L/2− cσ) ≡ khyb . (2.84)

An expression for the corresponding critical magnetic field is found by solving

E0(B⊥,hyb) = Eedge(khyb, B⊥,hyb) (2.85)
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Figure 2.9.: Evolution of B⊥,hyb as function of D-parameter for (a) positive and
(b) negative magnetic fields with M = −10,−15,−20, and −25 meV [see plot legend in
(a)]. B⊥,hyb increases with increasing absolute value ofM andD. The fitting parameter
c = 1.5 (see text for further discussion). Reprinted from Ref. [P6].

Figure 2.10.: Band structures of Chern insulator for small, negative magnetic fields
of (a) −25 mT and (b) −50 mT are shown. QAH edge states are pushed into the
conduction band, where they strongly hybridize with bulk bands. Dashed line marks
energy of Dirac point for B⊥ = 0. For a better visibility, the energy range is limited
from E = 0 to 20 meV. Reprinted from Ref. [P6].

for B⊥,hyb, but we refrain here from showing the full analytic expression as it is very
long and cumbersome. Instead to gain some insight in the parameter dependence of
B⊥,hyb, we Taylor expand the analytical expression up to first order in D, resulting
in

B⊥,hyb ≈ B0

(
sgn (eB⊥) + 2cA

B
√

2MB + c2A2
D

)
, (2.86)

where

B0 = ~
eB2

[
MB + cA

(
cA−

√
c2A2 + 2MB

)]
. (2.87)

The exact analytic behavior of B⊥,hyb(D) for positive and negative magnetic fields is
shown in Fig. 2.9(a) and (b), respectively.

Discussion: Taken together, Eq. (2.86) and Fig. 2.9 show that, for B⊥ > 0, the
absolute value of B⊥,hyb increases when D approaches B, i.e., a strong PH asymme-
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Figure 2.11.: Band structure of trivial Chern insulator for (a) B⊥ = 0 T, (b) 1 T, and
(c) −1 T. Same parameters as in Fig. 2.7 are used except for M = +15 meV. A trivial
edge state is observed in (a) which does not traverse the Dirac mass gap. By virtue
of the trivial topology, there are no edge states in the Dirac mass gap (blue regime) in
magnetic fields. Reprinted from Ref. [P6].

try protects the edge channels from hybridization. This is in contrast to the case of
negative magnetic fields, where a strong PH asymmetry causes already at very small
magnetic fields (∼ mT) a strong hybridization of QH and QAH edge states. This is
in accordance with the band structure calculations presented in Fig. 2.10, which show
that already magnetic fields of B⊥ < −25 mT are sufficient to push the Dirac point
into the conduction band and to cause large hybridization gaps. We can therefore at-
tribute the difference in the appearance of the QAH edge states in Fig. 2.7(b) and (c)
at B⊥ = ±1 T to a strong PH asymmetry.

Let us finally reiterate that this does not affect any signatures of the QAH edge states
within the Dirac mass gap, where they remain to be protected from hybridization.
However, strong hybridization gaps between the QAH edge state and the n = 0 LL
should make it more difficult to observe signatures of coexistent edge states in the
experiment. This includes the charge pumping, discussed in Sec. 2.5, which will be
limited to B⊥ < B⊥,hyb, if hybridization gaps start to appear a. Note however that in
real 2D TIs, which are described at low energies by the BHZ model, like (Hg,Mn)Te [15]
or InAs/GaSb bilayers [20], numerical deviations from the predicted form of ∆hyb might
occur due to the natural limitations of the model. In particular, deviations can arise
from employing the low-energy BHZ model and assuming an impurity-free system. Both
assumptions can affect the explicit form of the wave functions, the position of the Dirac
point [137] and, hence, alter the hybridization of QH and QAH edge states. It has been
also argued that the use of hard wall boundary condition can cause additional spurious
solutions which might affect the position of the Dirac point [138, 139]. The latter
effect must be further studied in the future. Independent of the detailed microscopics,
Eq. (2.50) shows that the critical magnetic field, above which a hybridization gap
ultimately must start to form, is given by B⊥,triv [Eq. (2.33)]. This is due to the fact
that QAH edge states are then no longer allowed to traverse the Dirac mass gap.

aThis does not affect regime I in Fig. 2.6, where the Dirac point has not yet crossed any bulk LL.
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We conclude this section by comparing our findings with a topologically trivial Chern
insulator (M/B < 0) with D 6= 0. In this case, the Hall conductivity σxy is solely
determined by σIIxy, since the two contributions to the spectral asymmetry cancel each
other, resulting in σIxy = 0 [see Eqs. given by Eq. (2.50) and (2.61)]. Even though
the system is of trivial topology, edge states, depicted in red, can exist outside of the
Dirac mass gap for B⊥ = 0, as shown in Fig. 2.11(a). This paradoxical extension of edge
states to the topologically trivial regime can be explained by an emergent, approximate
chiral symmetry, provided that the PH symmetry is broken at B⊥ = 0 [140]. But in
stark contrast to QAH edge states, trivial edge states can never enter the Dirac mass
gap, even for B⊥ 6= 0 [cf. Fig. 2.7 and 2.11].

2.6.3. Transport of coexistent QH and QAH edge states
The appearance of counterpropagating QH and QAH edge channels, that are not pro-
tected by symmetry (quasi-helical), is a unique feature of QAH insulators in magnetic
fields. In particular, this feature differentiates a QAH insulator from a conventional QH
phase. The latter is characterized by unidirectionally propagating edge channels. The
goal of this section is to show in a proof of concept that transport, governed by quasi-
helical edge states, can appear very similar to the one of helical-edge channels in a ‘clean
system’, while they can have unique transport signatures in a ‘dirty system’.

Let us start from the analytic expressions for the Hall and longitudinal resistance which
were derived in Sec. 1.2 based on the Landauer-Büttiker approach [see also Eqs. (1.48)
and (1.49)]:

RH = h

e2
Tc − Ta

T 2
c − TaTc + T 2

a

, (2.88)

RL = h

e2
TcTa

T 3
c + T 3

a

, (2.89)

where Tc (Ta) is the transmission probability between adjacent contacts on a typical
Hall bar in clockwise (anti-clockwise) direction. In Fig. 2.12, we map out the full
parameter space for Hall and longitudinal resistance for Tc, Ta ≤ 1. In the case that
Tc = Ta = 1, we reach the characteristic values of the QSH phase, where RH = 0 and
RL = h/2e2 [17]. In the case that Tc = 1 and Ta = 0 (or, Tc = 0 and Ta = 1), the
transport signature is equivalent to the one of a single chiral mode in the QH phase.
As our system contains two counterpropagating edge channels which are not protected
by symmetry, realistic transmission probabilities can deviate from these limiting cases.
Nevertheless, note that resistance values in the vicinity of the contour lines, depicted
in Fig. 2.12, can be still close to quantized values for a large range of parameters. In
addition, Fig. 2.12(b) demonstrates that small deviations from the symmetric case (i.e.,
from Tc = Ta) cause large deviations from RH = 0, if Tc, Ta � 1.
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Figure 2.12.: We map out the full phase space for (a) longitudinal and (b) (transverse)
Hall resistance with T12, T21 ≤ 1. The underlying six-terminal Hall bar is schematically
depicted in the inset of (a). Current flows between contact 1 and 4. The color code
highlights the absolute value of resistance with white indicating that the resistance
is out of scale. Contour lines highlight in (a) RL = 0.5, 1, 1.5, 2, 2.5, 3 and in (b)
RH = 0, 1, 2, 3 (given in units of h/e2). From Ref. [P5]. Reprinted with permission
from APS.

Let us now investigate QH and QAH edge states in more detail. We assume at first
that the mean-free path lm of the quasi-helical edge channels is long compared to the
distance between adjacent contacts L (‘clean system’) a . The transmission probabilities
are then roughly given by Tc = Ta = 1. This means quasi-helical edge states can have
similar transport features as QSH edge states if lm � L.

In the opposite limit when L > lm, even point-like impurities contribute to backscatter-
ing since quasi-helical edge states are not protected by symmetry. Due to the required
unitarity of the S-matrix, we find in this case that Tc = Ta < 1, which both tend to
zero in the large system limit. However, any small difference between the two sides
of the Hall bar can cause slight deviations from a perfect quantization, as indicated
schematically by the noisy plateau Fig. 2.6.

Another very prominent source for backscattering are charge puddles [87] constituting
a major, if not the dominant, source for backscattering in HgTe based 2D TIs [86] b.
Here, we want to focus however on large samples, where L > n

−1/2
p and np is the puddle

density [87]. In this limit, Väyrynen et al. [87] showed that the bulk conductivity cannot
be neglected if the system size exceeds the leakage length L? = 1/σBρe. Here, σB is
the bulk conductivity and ρe is the edge resistivity.

If L > L?, the top and bottom edge can be connected via puddle-to-puddle hopping.

aQH and QAH edge states possess different wave function localizations and (pseudo)spin polarizations.
This might suppress scattering even if the system contains impurities. For a detailed understanding,
a microscopic model is however required.

bThe characteristic value of RL = h/2e2 in the QSH phase has been therefore only achieved in micro-
structured Hall bars.
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Figure 2.13.: Schematic two-terminal set-up, where counterpropagating QH and QAH
edge states are depicted by red and black arrows, respectively. The triangle indicates
a scatterer with scattering matrix S that partially transmits particles coherently and
partially scatters particles into a fictitious contact (wiggly line) with chemical potential
µp. The fictitious contact models an inelastisc scattering event connecting top and
bottom edge. In (a), we consider a toy model with a single charge puddles whereas
(b) generalizes the situation to the case of N charge puddles. In (a), incoming ai and
outgoing bi scattering states are labeled for the top edge. From Ref. [P5]. Reprinted
with permission from APS.

To gain a better understanding of this situation, we study a toy model using the
Landauer-Büttiker approach. Here, the top and bottom edge are (for the sake of
simplicity) connected via a single charge puddle a. This situation is schematically
depicted in Fig. 2.13(a). The scattering from the edge states onto the charge puddle
can be described by the following S-matrix:

S =


r11 t12 t13

t21 r22 t23

t31 t32 r33

 , (2.90)

where tij and rij denote transmission and reflection amplitudes from the jth incoming
to the ith outgoing scattering state, respectively. For the top edge, scattering states
are labeled according to Fig. 2.13(a). For the bottom edge, we assume the same type
of scatterer but QH and QAH edge states switch their propagation direction. This
model describes partially coherent transmission [141] of QH and QAH edge states (t12

and t21), where only a fraction of the current is transmitted onto the charge puddle
(t31 and t32). Since charge puddles act like inelastic scatterers [cf. Sec. 1.2, they cause
dephasing and can be therefore modeled as fictious voltage probes [63].

Since QH and QAH edge states have different spin character and wave function local-
ization b, the QH-to-puddle tunneling probability (|t32|2) can differ from the QAH-to-
puddle tunneling probability (|t31|2). The latter should be related to the respective wave
function overlaps. The exact values should depend on the band character and the spatial
location of the specific charge puddle. We start with a toy model to prove the possibil-
ity of asymmetric transmission probabilities Tij . Choosing r11 = r22 = t32 = t13 = 0,

aIn a realistic model, an electron would need to hop multiple times between adjacent puddles to reach
the other edge.

bThis difference is connected to their different physical origin. QH edge states are induced by the
magnetic field, while QAH edge states are related to the inverted band structure.
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unitarity of the S-matrix requires that

TQH = 1, TQAH + Tp = 1, Rp + Tp = 1 , (2.91)

where TQAH = |t21|2, TQH = |t12|2, Tp = |t31|2 = |t23|2, and Rp = |r33|2. Importantly,
Tp denotes the transmission probability from the chiral QH edge state to the charge
puddle. Without loss of generality, we take µ1 > µ2 and µ2 = 0. The current into the
puddle is therefore given by

Ip = − e
h

[(2− 2Rp)µp − Tp µ1] . (2.92)

With Ip = 0, it follows that µp = µ1/2. The current which flows along the top edge
into contact 2 is given by

I2 = − e
h

(TQAH µ1 + Tp µp) (2.93)

= − e
h

(1− Tp/2)µ1 . (2.94)

We can identify 1− Tp/2 as an effective transmission coefficient between contact 1 and
2, i.e., T21. Since T12 = TQH = 1 and T21 < 1 for Tp 6= 0, we showed the possibility
of having asymmetric transmission coefficients when top and bottom edge states are
connected via puddle-to-puddle hopping.

As Tp is in general a small number, it is interesting to look at the case of many charge
puddles. This situation is schematically illustrated in Fig. 2.13(b). Following an anal-
ogous calculation, it is straightforward to generalize Eq. (2.94) to the situation of N
puddles:

I2 = − e
h

2− Tp
2 + (N − 1)Tp

µ1 . (2.95)

In conclusion, this shows that, for L > L?, it is possible to find peculiar values for
RH and RL in magnetotransport experiments, if transport is governed by quasi-helical
edge states. Intriguingly, it is even possible to measure Hall resistance values that
are close to quantized values. The presented toy model serves as a proof-of-principle.
This means that the microscopic scaling behavior in realistic samples may deviate from
the analytic form shown in Eq. (2.95). The presented model was motivated by recent
experiments on (Hg,Mn)Te quantum wells in the group by Laurens W. Molenkamp.
In these specific systems, (noisy) QH plateaus were observed in a regime in which
quasi-helical edge states should determine the transport behavior. The latter results
are going to be published in the future.
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2.7. Signatures of parity anomaly in para- and
ferromagnetic TIs

So far, we have focused on a single Chern insulator in magnetic fields. We now go back
to a QSH insulator that is described by the full BHZ model. To this end, we reintroduce
the spin index to distinguish the two spin blocks of Eq. (2.1). Employing Eq. (2.4),
we see that η↓ (B⊥) = −η↑ (B⊥), where η↑ (B⊥) ≡ η(B⊥) is given by Eq. (2.31). The
spectral asymmetry in the QSH phase is therefore determined by

ηBHZ(B⊥) = η↑ (B⊥) + η↓ (B⊥) = 0 . (2.96)

This is accompanied by a vanishing Hall conductivity σxy in the Dirac mass gap:

σIxy = σIxy,↑ + σIxy,↓ , (2.97)

where, according to Eq. (2.50),

σIxy,s = ± e
2

2h
[
sgn

(
M −B/l2B⊥

)
+ sgn (B)

]
. (2.98)

Here, s = ↑, ↓ corresponds to ±, respectively. The QSH phase is characterized by
σIxy = 0 due to the underlying parity and TR symmetry at B⊥ = 0. Nonetheless, we
can consider the odd combination of both spin blocks

ηSBHZ(B⊥) = η↑ (B⊥)− η↓ (B⊥) (2.99)

to distinguish this state from a trivial insulator. A similar idea was discussed in Ref. [37]
for Dirac fermions which do not come with a Bk2 term. Equation (2.99) is nonzero
for M/B > 0 and B⊥ < B⊥,triv, where B⊥,triv is given by Eq. (2.33). This concept is
clearly related to the nontrivial spin Hall conductivity of a QSH insulator [58]:

σSxy = σIxy,↑ − σIxy,↓ , (2.100)

which we encountered in Sec. 1.3.2. The latter takes on quantized values in the ballistic
regime if M/B > 0 [142]. This relation highlights the fact that the nontrivial spin Hall
conductivity of a QSH insulator can be also interpreted in the language of the parity
anomaly [37], since it is related to the topological quantity ηSBHZ . For B⊥ > B⊥,triv,
Eq. (2.99) drops to zero corresponding to the point at which the spectral asymmetry
of each spin block vanishes. Notably, B⊥,triv coincides exactly with the critical field,
at which the two spin polarized n = 0 LLs cross [61]. This demonstrates that the
information about the band inversion is not only contained in the full BHZ model, but
in each individual Chern insulator.
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Figure 2.14.: Landau level spectrum of BHZ model without Zeeman or exchange in-
teraction terms for (a) B⊥ = 1 T and (b) −1 T. The color code distinguishes between
the spin up (orange) and the spin down (green) block. Model parameters are the same
as in Fig. 2.7. The Dirac mass gap (blue shaded area) is characterized by counterprop-
agating edge states. The spectrum is invariant under B⊥ → −B⊥ with the exception
that the spin up and down block interchange their role. Reprinted from Ref. [P6].

For completeness, we show in Figs. 2.14(a) and (b) the spectra of a QSH insulator for
magnetic fields of 1 T and −1 T, respectively. The spectra are calculated using the
finite-difference-method to determine the eigenvalues of Eq. (2.1) in magnetic fields.
The color code marks the two spin blocks. A pair (per edge) of counterpropagating edge
states traverses the Dirac mass gap (blue area), which is a hallmark of the underlying
QSH topology [17, 142] a. Comparing Figs. 2.14(a) and (b), we see that the spectrum
remains unaltered for B⊥ → −B⊥, with the exception that the spin up and down
block interchange their role. This effect can be understood noting that reversing the
magnetic field direction is equivalent to a parity transformation, as both processes
effectively flip the sign of M and B and, therefore, interchange the two spin blocks
[cf. to Eqs. (2.9) and (2.10)]. This result also explains the salient asymmetry between
the appearance of the QAH edge states for the two spin directions. In Fig. 2.14(a),
the strong PH asymmetry protects the QAH edge states of the spin-up block from
hybridization, while it causes hybridization gaps for the spin-down block already at very
small, positive magnetic fields. As observed in Fig. 2.14(b), the situation is reversed,
when we flip the magnetic field direction [cf. to discussion in Sec. 2.6.2].

Let us now introduce additionally a Zeeman or an exchange term of the following
form Hs = σ0 ⊗ τz g(B⊥), given in the basis of Eq. (2.3). This term can be easily
incorporated by replacing in our results M →M ± g(B⊥) for the spin up (+) and spin
down block (−), respectively. The two contributions to the total Hall conductivity,
which are exclusively determined by the spectral asymmetry in the Dirac mass gap, are

aNote that in the QSH effect both edge states in the Dirac mass gap are related to the intrinsic
topology. The counterpropagating (‘helical’) edge states possess the same wave functions except for
a different spin polarization. This is different from quasi-helical QH and QAH edge states which
arise from different physical mechanisms outside of the Dirac mass gap. Quasi-helical edge states
share neither the same band character, nor the same spatial localization.
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Figure 2.15.: Sketch of σIxy is shown for (a) ferromagnetic, and (b) paramagnetic
exchange interaction (Zeeman term) as function of external magnetic field B⊥ at a
constant chemical potential (placed within the Dirac mass gap). (a) Sign of σIxy is
determined by polarization direction of magnetic domains (g0) of the ferromagnet which
is here supposed to follow a hysteresis. Signs of g0 are indicated. The Hall conductivity
can switch its sign at the coercive field Bc. (b) In the case of a paramagnet, a finite
magnetic field B⊥,QAH is needed to overcome the Dirac mass gap of one of the two
spin blocks, resulting in a nonzero σIxy. We assumed for this paramagnetic case that
g0 > 0. In both cases, the Hall conductivity vanishes at B⊥ > B⊥,triv, where ηBHZ = 0.
Reprinted from Ref. [P6].

therefore given by [cf. Eq. (2.98)]

σIxy,s = ± e
2

2h
[
sgn

(
M ± g(B⊥)−B/l2B⊥

)
+ sgn (B)

]
, (2.101)

where s = ↑, ↓ corresponds to ±, respectively. The particular importance of exchange
and Zeeman terms arises from the fact, that they can both drive a 2D TI from the QSH
to the QAH phase, as explained in Sec. 1.3.3. In the following, we are going to compare
two cases: Firstly, Hs describes a ferromagnetic exchange interaction, and, secondly,
Hs describes a paramagnetic exchange or, equivalently, a Zeeman interaction a.

Ferromagnetic TI: Let us first consider the ferromagnetic case, where the magneti-
zation g(B⊥) follows a hysteresis. For our model, we assume that g(B⊥) ≡ g0 remains
constant for a given polarization direction of the magnetic domains. This holds until
the external magnetic field exceeds the coercive field Bc of the ferromagnet. Above this
threshold, the magnetic domains can flip their polarization direction to align with the
external magnetic field. At B⊥ = 0, we assume that the system is in the QAH phase,
i.e., (M + g0)(M − g0) < 0 [21]. This condition, which was explained in Sec. (1.3.3),
guarantees that only one of the two spin blocks is topologically nontrivial. The conduc-
tivity in the Dirac mass gap is hence determined solely by the magnetization direction,
σIxy = sgn (g0) e2/h. Applying an external magnetic field, Eqs. (2.97) and (2.101) show
that the Hall conductivity at constant µ follows in quantized steps the magnetic hystere-
sis (g0). This statement remains valid as long as the orbital contribution in Eq. (2.101),
the B/l2B⊥ term, is small compared to the magnetization. More precisely, σIxy drops to

aIn a realistic material, a Zeeman term will always come on top of the either paramagnetic or ferro-
magnetic exchange interaction.
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zero, when the term B/l2B⊥ exceeds the effective Dirac mass, M ± g0, at B⊥ > B⊥,triv,
where

M ± g0 −B/l2B⊥,triv
!= 0

→ B⊥,triv = sgn (eB⊥) ~
e

max
(
M ± g0
B

)
. (2.102)

Ultimately, the orbital contribution drives both spin blocks into the trivial regime. The
behavior of σIxy as a function of B⊥ at constant µ is schematically shown in Fig. 2.15(a),
where we assume that Bc < B⊥,triv. Since σIxy follows the magnetic hysteresis, the Hall
conductivity is an even function of the magnetic field for B⊥ < Bc. This represents
a violation of the Onsager relation (compare to discussion in Sec. 2.3). The peculiar
behavior of σIxy is encoded in a nonzero spectral asymmetry ηBHZ , which only drops
to zero for B⊥ > B⊥,triv. As we have stated previously, this is a signature of the QAH
effect in magnetic field and is as such a consequence of the parity anomaly.

Finally, note that in this scenario, the Dirac mass gap is defined by [cf. Eq. (2.63)]

∣∣∣µ+D/l2B⊥

∣∣∣ ≤ min
∣∣∣M ± g0 −B/l2B⊥

∣∣∣ . (2.103)

In comparison to the case of a single Chern insulator, the minimum is required to
ensure that the chemical potential is placed within the Dirac mass gap of both spin
blocks.

To analyze the role of the QAH edge states in the ferromagnetic case for B⊥ < Bc,
we show exemplary the band structure of a QAH insulator with g0 > 0 in Fig. 2.16(a)
and (b) for B⊥ = 1 T and −1 T, respectively. For the given system parameters and
independent of the magnetic field direction, only the spin down (green) block is in the
inverted regime. This is reflected by the existence of only spin down QAH edge states
in the Dirac mass gap (blue area). It hence follows that σxy(−B⊥) = σxy(B⊥). Due to
the strong PH asymmetry, the appearance of the QAH edge states outside of the Dirac
mass gap changes with the magnetic field direction.

Paramagnetic TI: Let us now turn to the (second) paramagnetic case. For simplicity,
we assume that g(B⊥) = g0B⊥, although one should bare in mind that a paramagnetic
exchange interaction is actually determined by a Brillouin function [21]. Since we are
here interested in a qualitative discussion, this approximation allows us to write down
analytic results. In comparison to the ferromagnetic case, the system is in the QSH
phase, i.e., σIxy = 0 at B⊥ = 0 [cf. Fig. 2.15(b)]. Applying now an external magnetic
field breaks the symmetry between the two spin blocks. Their Dirac mass gaps close
at two different critical magnetic fields, i.e., B⊥,triv,↑ 6= B⊥,triv,↓. Ultimately, the QAH
phase is induced when one of the two spin blocks becomes trivial. From Eq. (2.101),
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Figure 2.16.: Landau level spectrum of BHZ model in the presence of a (a)–(b) ferro-
magnetic, or (c)–(d) paramagnetic exchange interaction, where in (a) and (c) B⊥ = 1 T,
and in (b) and (d) B⊥ = −1 T. The color codes marks the spin up (orange) and spin
down (green) block. We employed the following set of parameters: M = −1 meV,
B = −685 meV nm2, D = −600 meV nm2, and A = 365 meV nm. (a)–(b) In the fer-
romagnetic case, we use g(B⊥) = g0 with g0 = 9 meV. (c)–(d) In the paramagnetic
case, we use g(B⊥) = g0B⊥ with g0 = 9 meV/T. For this specific set of parameters,
the paramagnetic magnetization matches the ferromagnetic one at B⊥ = 1 T. The blue
regime marks the Dirac mass gap, i.e., the QAH regime. Chern numbers are indicated.
Reprinted from Ref. [P6].

we see that this is the case if

(
M + g(B⊥)−B/l2B⊥

) (
M − g(B⊥)−B/l2B⊥

)
< 0 . (2.104)

In comparison to Ref. [21], this generalizes the condition for the QAH effect to finite
external magnetic fields. Equation (2.104) is fulfilled for |B⊥| > B⊥,QAH , where

B⊥,QAH = min [B⊥,triv,↑, B⊥,triv,↓] (2.105)

= min
[

M

sgn (eB⊥)Be/~∓ g0

]
. (2.106)

In this regime, the Hall conductivity is given by σIxy = sgn (g0) sgn (eB⊥) e2/h, assuming
a constant chemical potential within the Dirac mass gap. The sgn (eB⊥) dependence
results from the fact that, depending on the magnetic field direction, either σIxy,↑ or σIxy,↓
is nonzero. Paramagnetic TI do not violate therefore the Onsager relation even though
each spin block can exhibit the parity anomaly. We can understand this effect also in
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terms of band structure calculations. As an example, we show in Fig. 2.16(c) and (d)
the band structures for B⊥ = 1 T and −1 T, respectively. Depending on sgn (eB⊥), the
QAH edge states of either the spin up (orange) or down (green) block traverse the Dirac
mass gap. Recall that their chirality is determined by their intrinsic Chern number and
not by the magnetic field. Although the Onsager relation is therefore not violated, the
survival of the QAH edge states in the Dirac mass gap is still apparent.

Ultimately, when the magnetic field is increased further, the system becomes a trivial
insulator when the Dirac mass gap of the remaining, second spin block is closed at [cf.
Eq. (2.101)]

B⊥,triv = max [B⊥,triv,↑, B⊥,triv,↓] (2.107)

= max
(

M

sgn (eB⊥)Be/~∓ g0

)
. (2.108)

Above this threshold, the Hall conductivity drops to zero a. As sketched in Fig. 2.15(b),
the Hall conductivity (at constant µ) evolves therefore from 0 to ±e2/h, and again to
0 with increasing |B⊥|. This so-called reentrant behavior of σxy [143] is hence encoded
in the spectral asymmetry and can be interpreted as a representative of the parity
anomaly.

2.8. Summary
In this chapter, we showed that the QAH effect persists in magnetic fields and can
be differentiated from a conventional QH effect due to a peculiar topological quantity,
the spectral asymmetry, given by Eq. (2.31). The latter is a consequence of the par-
ity anomaly. We demonstrated that the spectral asymmetry consists of two separate
contributions: The first one is connected to the n = 0 LL, which is the only LL that
lacks a partner b. The second contribution stems from the asymmetry of all other LLs.
Combined, the spectral asymmetry acts as if there is effectively an additional LL in
magnetic fields. In Secs. 2.3 and 2.4, we showed that this ‘effective LL’ comprises the
information of the QAH effect and, in particular, of the QAH edge states in magnetic
fields. Interestingly, we were able to connect the coexistence of the QH and the QAH
effect to the appearance of counterpropagating QH and QAH edge states. In compar-
ison to helical edge states that characterize the QSH phase, these quasi-helical edge
states are not protected by symmetry.

In the remainder of this chapter, we analyzed the properties of these counterpropagating
QH and QAH edge states in magnetic fields in detail. In Sec. 2.5, it was shown that,

aThe statement holds provided that the non-relativistic mass in Eq. (2.107) dominates in the large
B⊥-limit, |B/l2B⊥ | > |g0|.

bThe statement is made with respect to a single, topologically nontrivial Chern insulator.
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if the total charge of the system is kept constant, the survival of the QAH edge states
is connected to a unique type of charge pumping (via anomaly cancellation) from the
QAH edge states into all valence band LLs. This effect highlighted once more that QAH
edge states are indeed connected to the asymmetry of the entire spectrum and not to
a single LL. Based on this result, we additionally predicted that, as a function of the
magnetic field, a length dependent transition should occur from the charge pumping
regime to a regime which is dominated by quasi-helical edge states. In Sec. 2.6.3, a toy
model was presented to examine the transport signatures within this regime. Finally,
in Sec. 2.7, we discussed signatures of the spectral asymmetry and, hence, of the parity
anomaly in para- and ferromagnetic TIs which are described by the BHZ model.
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Chapter 3. Emergent QH Effect in 2D Topological Insulators

In the previous chapter, we have investigated the fate of 2D topological states of matter
in the presence of external magnetic fields by means of the BHZ model. The advan-
tage of using this low energy model is that it allows us to study topological effects
analytically. However, its scope regarding the actual band structure of TIs is limited
to small energies and small momenta. This means in particular that the BHZ model
cannot account for additional extrema in the valence band at large momenta (known
as ‘camelback’), which typically arise as a consequence of hybridization between the
subbands in an inverted band structure [75, 81, 143]. To investigate these features, one
has to work instead with higher-energy models such as the 14 × 14 or the 8 × 8 Kane
model [144]. The latter is conveniently used to describe narrow-gap or inverted band
structure semiconductors in the vicinity of the Γ-point a [45, 145].

In this chapter, we use the 8 × 8 Kane model to explore the band structure of HgTe
quantum wells alloyed with a few percent of Mn-atoms. The incorporation of Mn in
the crystal structure has thereby two important consequences: Firstly, the localized d-
electrons of Mn give rise to a paramagnetic exchange interaction [45, 91]. As discussed
in the previous chapter, this effect is of particular interest as it can drive a topolog-
ical material from the QSH into the QAH phase when Mn is magnetized [21]. Here
however, we will mainly focus on small magnetic fields where the (Hg,Mn)Te quantum
wells are still in the ‘QSH phase’. The second effect of incorporating Mn is that it
renormalizes the bulk band gap [91, 146]. As we will show in this chapter, this shifts
the topological transition point to larger quantum well thicknesses dQW with increas-
ing Mn-concentration. In addition, it alters the height of the camelback maxima with
respect to the energy of the valence band edge. The latter has important consequences
when small magnetic fields are applied to the quantum well.

More specifically, we show that the interplay between the exchange interaction of the
Mn-atoms and the camelback, which is associated to a Van-Hove-like singularity [very
large density of states (DOS)], leads to rich LL structures. In direct gap TIs, when the
chemical potential is in the bulk p-regime, the camelback pins the chemical potential
below the valence band edge and, thereby, induces an onset to a series of QH plateaus
with ν = −3,−2,−1 at ultra-low magnetic fields (tens of mT). In contrast, in indirect
gap TIs, the camelback pins the chemical potential above the valence band edge pre-
venting an onset to QH plateaus up to large magnetic fields (a few tesla). In addition,
in direct gap TIs, the pinning mechanism enables us to shift the onset fields of QH
plateaus to even smaller magnetic fields by applying an in-plane magnetic field.

This chapter is divided into two main parts. The first part discusses the implementation
of the 8× 8 Kane model in the numerics. In this regard, Sec. 3.1 introduces the Kane

aThe BHZ model is derived from the 8× 8 Kane model using perturbation theory [15]. Extensions of
the BHZ model have been also discussed in the literature [81]. A simple extension which includes
the H2 band is presented in App. B.

98



model, while Sec. 3.2 outlines how the Kane model can be implemented in the numerics
in the absence of an external magnetic field. Subsequently in Sec. 3.3, we extend the
numerics to account for external out-of-plane and in-plane magnetic fields, including
explicitly the effect of Zeeman and exchange coupling terms. In the second part of
this chapter, we employ our numerics to characterize the band structure of (Hg,Mn)Te
quantum wells focusing in particular on the role of the camelback. In Sec. 3.4, the phase
space of (Hg,Mn)Te quantum wells is presented and, in Sec. 3.5, transport signatures
of direct and indirect gap TIs are discussed in magnetic fields, when the chemical
potential is in the p-doped regime. Thereby, we consider explicitly the role of an in-
plane magnetic field, as well as of bulk inversion asymmetry (BIA) terms. In Sec. 3.6,
we describe for completeness a different type of emergent QH effect that occurs also
in (Hg,Mn)Te quantum wells, when the chemical potential is located in the bulk gap
regime. In Sec. 3.7, we conclude this chapter and present an outlook.

Our theoretical model has been motivated by experiments on (Hg,Mn)Te quantum
wells which were performed by Saquib Shamim with the help of A. Budewitz and
P. Shekhar. Both the experimental results, as well as the theoretical results, which will
be presented in this chapter, have been published in Ref. [P7] a. This chapter contains
in parts a revised version of this manuscript, including the associated supplementary
materials.

aS. Shamim, W. Beugeling, and I contributed equally to this work. I developed the numerical code
for confining the 8× 8 Kane Hamiltonian in the z-direction, which was used to compute the band
structure and the LL fans of (Hg,Mn)Te quantum wells. Wouter Beugeling extended this code
to allow for confinement in two directions (project name: kdotpy). His results are presented in
Ref. [P7] and are briefly summarized in Sec. 3.6. W. Beugeling and I discussed and developed
the implementation of Mn-atoms, as well as the introduction of an in-plane magnetic field in close
collaboration. S. Shamim performed all measurements, which motivated this theoretical work,
and analyzed the experimental data (with help of A. Budewitz and P. Shekhar). His results are
summarized in Sec. 3.4.1. All authors contributed equally to the interpretation of the results.
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Chapter 3. Emergent QH Effect in 2D Topological Insulators

3.1. Narrow gap or inverted gap semiconductors -
The Kane model

Bulk semiconductors with a small band gap or an inverted band structure are described
in the vicinity of the Γ-point by the 8× 8 Kane model. This includes compound semi-
conductors like (Hg,Cd)Te, or (Hg,Mn)Te which are considered in this thesis. These
materials crystallize in the zincblende structure, whose symmetry is described by the
point group Td. In comparison to the diamond structure (point group Oh), which
typically describes elemental semiconductors from the 4th main group, the zincblende
structure lacks inversion symmetry [147], i.e., Oh = Td ⊗ I, where I denotes inversion
symmetry [144].

The Kane model, which includes bands from the conduction and valence band, is de-
rived based on the k ·p-method using quasi-degenerate perturbation theory [145, 147].
In the absence of an external magnetic field, we can distinguish three terms in the full
Kane model:

H = HK(kx, ky, kz) +HB(kx, ky, kz) +HS . (3.1)

Here, HK is the part of the Kane model which preserves inversion symmetry. HB is
the BIA Hamiltonian which includes all bulk terms that break inversion symmetry.
And HS is the so-called Pikus-Bir Hamiltonian that allows us to consider the effect
of strain [148]. The Hamiltonians HK , HB, and HS are reviewed and discussed in
Secs. 3.1.1, 3.1.2, and 3.1.3, respectively.

3.1.1. The 8-band Kane model
The 8 × 8 Kane model is typically written in the basis of the following set of Bloch
functions [145]:

|Γ6,+
1
2〉 = |S, ↑〉 ,

|Γ6,−
1
2〉 = |S, ↓〉 ,

|Γ8,+
3
2〉 = |HH, ↑〉 = 1√

2
|X + iY, ↑〉 ,

|Γ8,+
1
2〉 = |LH, ↑〉 = 1√

6
(|X + iY, ↓〉 − 2 |Z, ↑〉) ,

|Γ8,−
1
2〉 = |LH, ↓〉 = − 1√

6
(|X− iY, ↑〉+ 2 |Z, ↓〉) ,

|Γ8,−
3
2〉 = |HH, ↓〉 = − 1√

2
|X− iY, ↓〉 ,

|Γ7,+
1
2〉 = |SO, ↑〉 = 1√

3
(|X + iY, ↓〉+ |Z, ↑〉) ,
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3.1. Narrow gap or inverted gap semiconductors - The Kane model

|Γ7,−
1
2〉 = |SO, ↓〉 = 1√

3
(|X− iY, ↑〉 − |Z, ↓〉) . (3.2)

In the case of a topologically nontrivial narrow-gap semiconductor, the two |Γ6,±1/2〉
bands form the s-like conduction band, while the |Γ8,±3/2〉, |Γ8,±1/2〉, and |Γ7,±1/2〉
bands, which respectively denote the p-like heavy-hole, light-hole, and split-off band,
form the valence band. This is different from inverted semiconductors like HgTe, where
the Γ8 bands are above the Γ6 bands [cf. Fig. 1.6]. Written in this basis, the (inversion
symmetric) Kane Hamiltonian reads [45, 145, 147]

HK =



T 0 − 1√
2Pk+

√
2
3Pkz

1√
6Pk− 0 − 1√

3Pkz − 1√
3Pk−

0 T 0 − 1√
6Pk+

√
2
3Pkz

1√
2Pk− −

1√
3Pk+

1√
3Pkz

− 1√
2k−P 0 U + V −S̄− R 0 1√

2 S̄− −
√

2R√
2
3kzP − 1√

6k−P −S̄†− U − V C R
√

2V −
√

3
2 S̃−

1√
6k+P

√
2
3kzP R† C† U − V S̄†+ −

√
3
2 S̃+ −

√
2V

0 1√
2k+P 0 R† S̄+ U + V

√
2R† 1√

2 S̄+

− 1√
3kzP − 1√

3k−P
1√
2 S̄
†
−

√
2V −

√
3
2 S̃
†
+
√

2R U −∆ C

− 1√
3k+P

1√
3kzP −

√
2R† −

√
3
2 S̃
†
− −

√
2V 1√

2 S̄
†
+ C† U −∆



, (3.3)

where

k2
‖ = k2

x + k2
y , k± = kx ± iky,

T = Ec + ~2

2m0

[
(2F + 1) k2

‖ + kz (2F + 1) kz
]
,

U = Ev −
~2

2m0

(
γ1k

2
‖ + kzγ1kz

)
,

V = − ~2

2m0

(
γ2k

2
‖ − 2kzγ2kz

)
, (3.4)

R = − ~2

2m0

√
3
(
µk2

+ − γ̄k2
−

)
,

S̄± = − ~2

2m0

√
3k± ({γ3, kz}+ [κ, kz]) ,

S̃± = − ~2

2m0

√
3k±

(
{γ3, kz} −

1
3 [κ, kz]

)
,

C = ~2

m0
k− [κ, kz] .

Here, Ec and Ev denote the conduction and valence band edge energies, respectively,
∆ is the energy offset of the Γ7 split-off bands, and we introduced the abbreviations
µ = (γ3 − γ2)/2 and γ̄ = (γ3 + γ2)/2. The Kane parameters F , γ1,2,3, and κ are
material specific parameters that are related to the effective masses of each band.
We present an overview of these parameters for (Hg,Mn)Te and (Hg,Cd)Te in App. A.
Throughout this chapter, we focus on (Hg,Mn)Te / (Hg,Cd)Te quantum well geometries
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Chapter 3. Emergent QH Effect in 2D Topological Insulators

Figure 3.1.: Schematic layer stack of (Hg,Mn)Te/(Hg,Cd)Te quantum wells. In
typical experimental setups, Hg0.32Cd0.68Te is used as the barrier material. The well
and the barrier thickness dQW and dB are indicated, respectively. The growth direction
points in the z-direction.

as shown in Fig. 3.1 with growth direction [001] (z-axis). The band edge energies and
the Kane parameters depend therefore exclusively on the growth direction z of the
quantum well geometry. Their functional dependence can be described by the following
expression:

γ(z) = γW

[
θ

(
z + dQW

2

)
− θ

(
z − dQW

2

)]
+ γB

[
θ

(
−dQW2 − z

)
+ θ

(
z − dQW

2

)]
,

(3.5)

where Θ is the Heaviside step function, γ(z) is a representative of an arbitrary Kane
parameter (or band edge energy), γW is the parameter in the well, γB is the parameter
in the barrier, and dQW is the width of the well material in z-direction.

The Kane Hamiltonian HK exhibits a spherical symmetry if we would set µ = 0 [144,
149]. However, since µ is typically quite small, it can be considered as a perturbation.
In the so-called axial approximation, we set µ = 0 which reestablishes a full in-plane
rotational (cylindrical) symmetry [150], i.e., the bulk spectrum is fully symmetric in
the kx–ky–plane, E(kx, ky, kz)→ E(k‖, kz).

Hermiticity: It is worth noting that the operator ordering in Eq. (3.3) is not ac-
cidental. It is mandatory to ensure hermiticity of the Kane Hamiltonian due to the
z-dependence of the effective masses (γ1, γ2, . . .). To understand the basic principle,
let us consider the following two operators, H1 = kzγ(z)kz and H2 = γ(z)k2

z . As can
be easily verified, H1 describes a hermitian Hamiltonian,

〈φ2|H1φ1〉 = −〈φ2|∂zγ(z)∂zφ1〉 = 〈γ(z)∂zφ2|∂zφ1〉

= −〈∂zγ(z)∂zφ2|φ1〉 = 〈H1φ2|φ1〉 , (3.6)

where |φ1〉 and |φ2〉 denote two arbitrary test states. In contrast, the operator H2 is
clearly not hermitian:

〈φ2|H2φ1〉 = −〈γ(z)φ2|∂2
z |φ1〉 = 〈k2

zγ(z)φ2|φ1〉 6= 〈H2φ2|φ1〉 . (3.7)
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3.1. Narrow gap or inverted gap semiconductors - The Kane model

3.1.2. Bulk inversion asymmetry

In a semiconductor with inversion symmetry (point group Oh), that is also invariant
under TR, all bands are double degenerate (consequence of TR and inversion symme-
try a) [144]. Since the point group Td lacks inversion symmetry, the double degener-
acy is lifted in all materials which crystallize in the zincblende structure. The BIA
Hamiltonian, which describes this effect, is given by (up to linear order in momen-
tum) [144, 147]

HB = C



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1

2 k+ kz
−
√

3
2 k−

1
2
√

2k+
1√
2kz

0 0 −1
2 k− 0

√
3

2 k+ −kz 0 −
√

3
2
√

2 k+

0 0 kz
√

3
2 k− 0 −1

2 k+
√

3
2
√

2k− 0
0 0 −

√
3

2 k+ −kz −1
2 k− 0 kz√

2
−1

2
√

2k−

0 0 1
2
√

2k− 0
√

3
2
√

2k+
kz√

2 0 0
0 0 1√

2kz
−
√

3
2
√

2 k− 0 −1
2
√

2k+ 0 0



, (3.8)

where C is a material specific parameter [151]. As BIA is typically quite small in HgTe,
we will neglect its effect in most calculations (error is ∼ 1 meV). Nonetheless, we will
briefly comment on its explicit role in Secs. 3.5.2.

3.1.3. Pikus-Bir-Hamiltonian

In a typical experiment, the quantum well geometry that is shown in Fig. 3.1 is pseudo-
morphically grown on a substrate, like (Hg,Cd)Te or (Cd,Zn)Te [80] (see also App. A).
This means that the crystal structure of the well material gets strained, since it must
adopt to the equilibrium lattice constant of the substrate. The strength of the strain
is determined by the following ratio:

εS = aSub − aW
aW

, (3.9)

where aSub is the equilibrium lattice constant of the substrate and aW is the equilibrium
lattice constant of the well material. The effect of strain can be included via the Pikus-

aThe inversion symmetry operator (x→ −x) reads

I = Diag
(
1 1 −1 −1 −1 −1 −1 −1

)
.

The (block diagonal) TR symmetry operators reads

T = i Diag
(
σy σx ⊗ σy σy

)
K ,

where K denotes the operator of complex conjugation.

103



Chapter 3. Emergent QH Effect in 2D Topological Insulators

Bir Hamiltonian [148, 152]

HS =



Tε 0 0 0 0 0 0 0
0 Tε 0 0 0 0 0 0
0 0 Uε + Vε Sε Rε 0 − 1√

2Sε −
√

2Rε
0 0 S†ε Uε − Vε 0 Rε

√
2Vε

√
3
2Sε

0 0 R†ε 0 Uε − Vε −Sε
√

3
2S
†
ε −

√
2Vε

0 0 0 R†ε −S†ε Uε + Vε
√

2R†ε − 1√
2S
†
ε

0 0 − 1√
2S
†
ε

√
2Vε

√
3
2Sε

√
2Rε Uε 0

0 0 −
√

2R†ε
√

3
2S
†
ε −

√
2Vε − 1√

2Sε 0 Uε



, (3.10)

where Tε = C (εxx + εyy + εzz), Uε = aS (εxx + εyy + εzz), Vε = 1
2b (εxx + εyy − 2εzz),

Sε = −d (εxz − iεyz), and Rε = −
√

3
2 b (εxx − εyy) + i dεxy. The strain parameters C, aS ,

b, and d are material parameters. An overview of some specific values for the compound
materials, that are considered here, are listed in App. A. The rank-2 tensor ε describes
the deformation of the coordinates due to strain:

xi =
∑
j

(δij + εij) xj . (3.11)

If the quantum well is grown on a [001]-oriented substrate, this causes a biaxial strain
in the x–y–plane that relaxes in the z-direction. According to Ref. [152], the strain
tensor is in this specific case given by:

εxx = εyy = εS , εzz = −2C12
C11

εS (3.12)

εij = 0 for i 6= j ,

where εS is given by Eq. (3.9), and the material parameters C12 and C11 are given in
App. A.

3.2. Finite-difference-method

To compute the band structure of a quantum well geometry, shown schematically in
Fig. 3.1, we impose periodic boundary conditions in the x- and y-direction, and hard
wall boundary conditions in the z-direction:

ψ(x, y, z) = ψ(x+ Lx, y, z) = ψ(x, y + Ly, z) ,

ψ(x, y,−Lz/2) = ψ(x, y, Lz/2) = 0 , (3.13)
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3.2. Finite-difference-method

where Lx and Ly is the width of the quantum well in x- and y-direction, respectively,
Lz = dQW + 2dB is the width of the quantum well in the z-direction. Here, dQW and
dB are the thickness of the well, and the barrier layers, respectively. Note that the
requirement of hard wall boundary conditions in the z-direction is natural, as the wave
functions in the well decay exponentially in the insulating barrier layers. Using the
ansatz,

ψ(x) = ei(kxx+kyy)φ(z) , (3.14)

where φ(z) is an eight component spinor, we can employ the FDM to solve the cor-
responding Schrödinger equation. Due to the translational symmetry in the x- and
y-direction, we can replace all spatial derivatives of the form ∂i or ∂2

i with i = x, y

according to Eqs. (1.28) and (1.29). We are therefore left with mapping the Kane
Hamiltonian onto a lattice in the z-direction:

φ(z) → φ(z = ja) ≡ φj ,

γ(z) → γ(z = ja) ≡ γj , (3.15)

where a is the lattice constant, j labels the jth lattice site, and γ is representative for
an arbitrary Kane parameter or a band edge energy. Furthermore, we replace in the nu-
merics the Heaviside functions in γ(z) by their corresponding analytic approximations
[cf. Eq. (3.5)]:

θ(z)→ θδ(z = ja) = 1
2

[
1 + tanh

(
ja

δ

)]
, (3.16)

where θ(z) = limδ→0+ θδ(z) a. The discretized Kane Hamiltonian is then given by a
8N × 8N -dimensional matrix, where Lz = (N − 1)a and N is the number of lattice
sites.

In comparison to Sec. 1.1.3, where we employed the FDM to compute the spectrum of
a Chern insulator, we deal in the present case with z-dependent effective masses. In
particular, there are three types of terms in Eq. (3.3), that require further considerations
regarding their numerical implementation:

1. kzγ(z)kz 2. {γ(z), kz} 3. [γ(z), kz] . (3.17)

We will now discuss the FDM for these three terms in detail. To simplify the notation,
we consider only a one-component Hamiltonian. A generalization to the full Kane
model is straightforward.

1. Diagonal term - quadratic in momentum: The first type of terms appear

aWe must choose δ sufficiently small to ensure convergence of the numerical results.
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exclusively on the diagonal of Eq. (3.3). Suppose we would perform the product rule for
this term, before we apply the finite-difference-method. This would yield the discretized
expression

kzγ(z)kzφ(z) = −∂zγ(z)∂zφ(z)

= − [∂zγ(z)] ∂zφ(z)− γ(z)∂2
zφ(z)

FDM→ − 1
4a2 (γj+1 − γj−1) (φj+1 − φj−1)− 1

a2γj (φj+1 + φj−1 − 2φj)

≡
∑
j

Hjiφi , (3.18)

where, in the third line, we replaced the continuum functions and their derivatives
according to Eqs. (1.26), (1.27), and (3.15). We have,

Hji = 2
a2γj for i = j ,

Hji = − 1
a2

(
γj+1 − γj−1

4 + γj

)
for i = j + 1 , (3.19)

Hji = 1
a2

(
γj+1 − γj−1

4 − γj
)

for i = j − 1 .

All other elements of Hji are zero. Unfortunately, the resulting matrix is clearly not
Hermitian. This means by naively applying the FDM in this manner, one could generate
eigenvalues that contain an imaginary part.

To resolve this issue, there is a simple fix how to discretize such operators correctly [153].
Instead of employing first the product rule in Eq. (3.18), we directly replace the outer
derivative by the FDM. This yields:

−∂zγ(z)∂zφ(z) FDM→ − 1
2a
[
γ(z + a) ∂zφ(z)|z+a − γ(z − a) ∂zφ(z)|z−a

]
= − 1

4a2 [γj+1 (φj+2 − φj)− γj−1 (φj − φj−2)]

2a→a→ − 1
a2

[
γj+ 1

2
(φj+1 − φj)− γj− 1

2
(φj − φj−1)

]
≡
∑
j

Hjiφi , (3.20)

where the only nonzero matrix elements are

Hji = 1
a2

(
γj+ 1

2
+ γj− 1

2

)
for i = j ,

Hji = − 1
a2γj+ 1

2
for i = j + 1 , (3.21)

Hji = − 1
a2γj− 1

2
for i = j − 1 .

This alternative discretization procedure yields an Hermitian matrixHij and, therefore,
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real eigenvalues. Equation (3.20) is hence the proper way to discretize terms of the form
kzγ(z)kz in the Kane Hamiltonian.

2. Anticommutator - linear in momentum: This type of terms appear in the
Kane Hamiltonian on the off-diagonal (matrix elements: S̄± and S̃±). To derive an
Hermitian lattice representation, one has to follow the following steps:

{γ(z),−i∂z}φ(z) = −iγ(z) [∂zφ(z)]− i∂z [γ(z)φ(z)]
FDM→ −iγj

φj+1 − φj−1
2a − iγj+1φj+1 − γj−1φj−1

2a
= −i

2a [(γj + γj+1)φj+1 − (γj + γj−1)φj−1]

≡
∑
i

Hjiφi , (3.22)

where the only nonzero matrix elements are

Hji = 0 for i = j ,

Hji = −i
2a (γj + γj+1) for i = j + 1 , (3.23)

Hji = i
2a (γj + γj−1) for i = j − 1 .

Note that in the second line of Eq. (3.22), we have replaced the second term directly
by the FDM before evaluating the product rule. Like the terms of type 1, this is
crucial to ensure hermiticity of the lattice Hamiltonian. If instead we would have
first evaluated the product rule, the resulting lattice Hamiltonian would not have been
Hermitian.

3. Commutator - linear in momentum: The last type of terms, which we have to
consider, appear on the off-diagonal of the Kane Hamiltonian (matrix elements: S̄±, S̃±,
and C). For this type of term, we can safely perform the product rule directly:

[γ(z), kz]φ(z) = i [∂zγ(z)]φ(z)

→ i
2a (γj+1 − γj−1)φj

≡
∑
i

Hjiφi , (3.24)

where the only nonzero matrix elements are given by

Hji = i
2a (γj+1 − γj−1) for i = j ,

Hji = 0 for i = j + 1 , (3.25)

Hji = 0 for i = j − 1 .
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The resulting matrix is anti-Hermitian. This is because the considered operator,
[γ(z), kz], is also anti-Hermitian. In the full Kane Hamiltonian, terms of this type
appear always off-diagonally in conjugate pairs, like 0 [κ, kz]

[κ, kz]† 0

 . (3.26)

This observation establishes the hermiticity of the full Kane Hamiltonian.

3.2.1. BenDaniel–Duke boundary condition

The careful reader might have noticed that we have bypassed an explicit discussion
of the boundary conditions at the interfaces between the well and the barrier layers.
This is because these boundary conditions are actually hard-coded in the FDM. Let
us explain why this is the case.

Usually, if the Schrödinger equation is solved for a step potential, the continuity of the
wave function and its first derivative must be required at the interface. However, this
is no longer the case when a Hamiltonian with a z-dependent mass is considered:

H = kzγ(z)kz , (3.27)

where γ(z) = γ0Θ(z). While the wave function must be still continuous at the boundary,
φ(z = 0+) = φ(z = 0−), it can be shown that this no longer applies for its first
derivative:

lim
ε→0+

∫ +ε

−ε
dz [∂zγ(z)∂zφ(z) + Eφ(z)] != 0

→ γ(0−) ∂zφ(z)|z=0− = γ(0+) ∂zφ(z)|z=0+ , (3.28)

where contributions from the second term, Eφ(z), have vanished in the limit ε → 0+

because of the required continuity of the wave function. Equation 3.28 shows that
the derivative of the wave function changes proportional to the ratio of the effective
masses at the two sides of the interface. This is known as BenDaniel - Duke boundary
condition [154].

Let us now show that this boundary condition is naturally fulfilled by applying the
FDM. Employing Eq. (3.20) yields the following discretized Schrödinger equation:

− 1
a2

[
γj+ 1

2
(φj+1 − φj)− γj− 1

2
(φj − φj−1)

]
= Eφj . (3.29)

If this equation is multiplied by a and all terms O(a) are dropped, the Schrödinger
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Figure 3.2.: Schematics of six terminal Hall bar that lies in the x–y–plane. The total
magnetic field B is applied within the x–z–plane. The angle ϕ marks the angle between
the z-axis and B.

equation at the interface j = 0 takes the form

γ 1
2

φ1 − φ0
a

= γ− 1
2

φ0 − φ−1
a

. (3.30)

This is the discretized version of the BenDaniel - Duke boundary conditions, Eq. (3.28)
[153]. We have therefore shown that the FDM fulfills the correct boundary conditions
at the interface between well and barrier.

3.3. External magnetic field and magnetization in
the Kane model

In this section, we discuss the implementation of an external magnetic field in the 8-
band Kane model. The external magnetic field configuration, that we will consider
throughout this chapter, is given by

B =
(
B‖ 0 B⊥

)T
= Btot

(
sinϕ 0 cosϕ

)T
, (3.31)

which is depicted schematically in Fig. 3.2. The effect of an out-of-plane magnetic field
B⊥ is twofold. Firstly, it gives rise to the formation of LLs due to the orbital effect
(Peierls substitution), and, secondly, it induces a nonzero Zeeman and a paramagnetic
exchange interaction term. The latter arises from the localized magnetic moments of
the Mn-atoms [45, 91]. With respect to the in-plane magnetic field, we assume that it
only induces a Zeeman and an exchange interaction term, while the orbital effect of B‖
is neglected. This assumption is based on the fact that the magnetic length in-plane
is much larger than the quantum well width for the considered range of magnetic field
values, i.e., lB‖ � dQW , where lB‖ =

√
~/
∣∣∣eB‖∣∣∣ a.

This section is organized as follows: In Sec. 3.3.1, we discuss how to implement the
orbital effect of the magnetic field in the (inversion symmetric) Kane Hamiltonian,

aWe consider typically quantum wells with dQW ∼ 10 nm and lB‖ > 25 nm, so that lB‖ � dQW . This
is certainly not true for the out-of-plane magnetic field since Lx, Ly � dQW .
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HK . The implementation of Zeeman and exchange interaction terms is discussed in
Secs. 3.3.2 and 3.3.3, respectively. Finally in Sec. 3.3.4, we incorporate BIA terms into
our model.

3.3.1. Orbital effect of out-of-plane magnetic field
The orbital effect of the external out-of-plane magnetic field gives rise to the formation
of LLs and is incorporated into the Kane model via the Peierls substitution, given by
Eq. (1.40), in the Landau gauge A = −yB⊥ex. Since the vector potential does not
affect the explicit form of the wave functions in the z-direction, the bulk LL spectrum
can be computed analogously to the discussion in Secs. 1.3.1 and 2.1. This means
the canonical momentum operators in the x- and y-direction are replaced by magnetic
ladder operators according to Eq. (1.51).

Working in the axial, approximation, the matrix structure of the (inversion symmetric)
Kane Hamiltonian, HK(a, a†, kz), yields the following set of LL spinors [45]

|φn(z)〉 =
(
f

(n)
1 |n〉 f

(n)
2 |n+ 1〉 f

(n)
3 |n− 1〉 f

(n)
4 |n〉

f
(n)
5 |n+ 1〉 f

(n)
6 |n+ 2〉 f

(n)
7 |n〉 f

(n)
8 |n+ 1〉

)T
, (3.32)

for n ≥ 1, and three distinct LL spinors for n ≤ 0, given by:

|φn(z)〉 =



(
f

(0)
1 |0〉 f (0)

2 |1〉 0 f (0)
4 |0〉 f (0)

5 |1〉 f (0)
6 |2〉 f (0)

7 |0〉 f (0)
8 |1〉

)T
for n = 0(

0 f (−1)
2 |0〉 0 0 f (−1)

5 |0〉 f (−1)
6 |1〉 0 f (−1)

8 |0〉
)T

for n = −1(
0 0 0 0 0 f (−2)

6 |0〉 0 0
)T

for n = −2 ,

(3.33)

where f (n)
i is the z-dependent wave function of the nth LL with orbital component i =

1, . . . , 8, enumerating the eight basis functions of the Kane model [cf. Eq. (3.2)].

To check whether the inversion symmetric Kane Hamiltonian H = HK +HS is indeed
diagonal in the basis formed by Eqs. (3.32) and (3.33), let us recast a general wave
function as

|φn(z)〉 = A(n)F (z) , (3.34)

where

A(n) = Diag
(
|n〉 |n+ 1〉 |n− 1〉 |n〉 |n+ 1〉 |n+ 2〉 |n〉 |n+ 1〉

)
, (3.35)

F (z) =
(
f

(n)
1 f

(n)
2 f

(n)
3 f

(n)
4 f

(n)
5 f

(n)
6 f

(n)
7 f

(n)
8

)T
. (3.36)
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Acting from the left on the Schrödinger equation with A†(m), we arrive at

A†(m)
[
HK

(
a, a†, kz

)
+HS

]
|φn(z)〉 = EA†(m) |φn(z)〉

→ A†(m)
[
HK

(
a, a†, kz

)
+HS

]
A(n)F (z) = EA†(m)A(n)F (z)

→ [HK(n, kz) +HS ] δm,nF (z) = Eδm,nF (z) , (3.37)

which shows that the Hamiltonian is diagonal in the LL basis.

Implementation: Solving the Schrödinger equation in the presence of B⊥ boils there-
fore down to mapping the Hamiltonian HK(n, kz)+HS via the FDM on a lattice in the
z-direction. The LL spectrum can be computed by numerically diagonalizing for each
LL index n an 8N×8N dimensional matrix. It is worth noting that we work here in the
axial approximation because it enables us to treat the LL index n as a good quantum
number. This is because terms that break the axial symmetry couple pairs of LLs with
the LL indices n and n+ 4 [45]. Thus, working in the axial approximation reduces the
numerical effort substantially, while the approximation error remains typically quite
small (≈ 1 meV).

3.3.2. Zeeman interaction
A Zeeman interaction consists of an orbital angular momentum and a spin contribution.
In total, the Zeeman Hamiltonian reads [144]

HS = µB

(
κ′(z)L + gS

2 σ
)

B , (3.38)

where L = (Lx, Ly, Lz) is the orbital angular momentum operator, σ = (σx, σy, σz) is
the spin operator, gS ≈ 2 is the gyromagnetic ratio, and κ′(z) is a material specific
coupling constant, that depends on the growth direction z of the quantum well.

The appropriate Zeeman Hamiltonian in the Kane model is derived projecting Eq. (3.38)
into the eight dimensional basis given by Eq. (3.2). As an example, let us calculate two
components of the Zeeman Hamiltonian explicitly:

(Hz)11 = 〈S↑|HS |S↑〉 = µBB⊥ 〈S↑|σz|S↑〉 = µBB⊥ , (3.39)

(Hz)44 = 〈LH↑|HS |LH↑〉 = µBB⊥ 〈LH↑|κ′Lz + σz|LH↑〉

= µBB⊥
1
3
(
κ′ + 1

)
, (3.40)

where we used that |S, ↑〉 = |0, 1
2〉 and |LH, ↑〉 =

√
2
3 |0,

1
2〉 +

√
1
3 |1,−

1
2〉

a. All other
components follow analogously, resulting in the following Hamiltonian [144]:

aThe two components of |ml,ms〉 denote the eigenvalues of Lz and Sz, respectively.
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Hz(B‖, B⊥) = µB



B⊥ B‖ 0 0
B‖ −B⊥ 0 0
0 0 −3κB⊥ −

√
3κB‖

0 0 −
√

3κB‖ −κB⊥
0 0 0 −2κB‖
0 0 0 0
0 0

√
3
2(1 + κ)B‖ −

√
2(1 + κ)B⊥

0 0 0 1+κ√
2 B‖

0 0 0 0
0 0 0 0
0 0

√
3
2(1 + κ)B‖ 0

−2κB‖ 0 −
√

2(1 + κ)B⊥ 1+κ√
2 B‖

κB⊥ −
√

3κB‖ −1+κ√
2 B‖ −

√
2(1 + κ)B⊥

−
√

3κB‖ 3κB⊥ 0 −
√

3
2(1 + κ)B‖

−1+κ√
2 B‖ 0 −(1 + 2κ)B⊥ −(1 + 2κ)B‖

−
√

2(κ+ 1)B⊥−
√

3
2(1 + κ)B‖ −(1 + 2κ)B‖ (1 + 2κ)B⊥



, (3.41)

where κ = −(κ′ + 1)/3.

This Hamiltonian is only diagonal in the LL basis and, therefore, compatible with
the axial approximation, if B‖ = 0. This can be easily verified by projecting the
Hamiltonian Hz into the basis formed by Eqs. (3.32) and (3.33):

Hmn
z (B‖, B⊥) ≡ A†(m)Hz(B‖, B⊥)A(n)

= Hz(0, B⊥)δmn + µBB‖
(
hzδm,n+1 + h†zδm+1,n

)
, (3.42)

where, for n ≥ 1,

hz =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −

√
3κ 0 0

√
3
2(1 + κ) 0

0 0 0 0 −2κ 0 0 1+κ√
2

0 0 0 0 0 −
√

3κ 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1+κ√

2 0 0 −(1 + 2κ)

0 0 0 0 0 −
√

3
2(1 + κ) 0 0



. (3.43)

The corresponding matrix hz for n,m ≤ 0 is the same except that some of the matrix
entries must be set to zero. This is because in these cases some of the components of
the LL spinors are zero, cf. Eq. (3.33). For instance, let us consider the case m = 1
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and n = 0. In this case, all matrix entries of Eq. (3.43) in the 3rd column must be
set to zero because the |HH, ↑〉-component in the LL spinor |φ0(z)〉 is zero. The other
special cases follow analogously.

Implementation: If B‖ = 0, the Zeeman Hamiltonian can be easily incorporated in
our lattice approach since the LL index n is still a good quantum number. However,
given that B‖ 6= 0, determining the LL spectrum implies that an 8Nmax × 8Nmax–
dimensional matrix must be mapped onto the lattice in the z-direction, where Nmax

is the maximal number of LLs that shall be considered in the numerics. Determining
the spectrum implies therefore that in total an 8NmaxN × 8NmaxN–dimensional ma-
trix must be diagonalized. The resulting wave function is a superposition of all LL
spinors

|Ψ(z)〉 =
Nmax∑
n=−2

an |φn(z)〉 , (3.44)

where an is the expansion coefficient which is determined by diagonalizing the matrix.
Calculating the LL spectrum with a nonzero in-plane magnetic field costs therefore
much more computational power compared to the case that B points solely in the
z-direction.

3.3.3. Exchange interaction
The exchange interaction between the s- and p-band electrons and the localized 3d5

electrons of the Mn-atoms a is described by a Heisenberg-type interaction[91]:

Hex = −
∑
Ri

Jsp−d (x−Ri)σSi , (3.45)

where Jsp−d (x−Ri) is the coupling constant between the magnetic moments of the
band electrons at position x and the localized magnetic moments of the ith Mn-atom
at position Ri. Si stands for the spin operator of the ith Mn-atom and σ is the spin
operator of the band electrons. According to Ref. [45, 91], we employ in the following
the mean-field approximation, as well as the virtual crystal approximation in order to
simplify Eq. (3.45). We apply these approximations as we could otherwise only solve a
system with a few grid points.

In the mean-field approximation, the spin operator Si is replaced by the averaged spin
operator 〈S〉, given by

〈S〉 = −S0B 5
2

[ 5gMnµBBtot
2kB (T + T0)

] B
|B| , (3.46)

aThe electron configuration of Mn-atom is [Ar]3d54s2, i.e., it has a half-filled d-shell.
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where gMn = 2 is the g-factor of Mn, S0 = 5/2 is the total spin quantum number of
a Mn-atom, T0 = 2.6 K accounts for a small antiferromagnetic coupling between the
Mn-atoms, and B 5

2
is a Brillouin-function, that is defined by:

B 5
2
(x) = 6

5 coth
(6

5x
)
− 1

5 coth
(1

5x
)
. (3.47)

In the virtual crystal approximation, we make use of the fact that a band electron
(Bloch wave function) is an extended state and ‘sees’ as such a large number of Mn-
atoms. This allows us to replace Jsp−d(x−Ri) by yJsp−d(x−R), where R labels the
lattice sites of the crystal structure and y denotes the Mn-concentration.

After applying the mean-field and the virtual-crystal approximation, the Heisenberg-
type interaction becomes

Hex = −yσ 〈S〉
∑
R
Jsp−d (x−R) , (3.48)

where the sum runs now over all lattice sites. To finally derive the mean-field exchange
interaction Hamiltonian for the Kane model, Eq. (3.48) must be projected into the
eight dimensional basis given by Eq. (3.2) [45, 144]:

Hex(B‖, B⊥) =



3αAz 3αAx 0 0
3αAx −3αAz 0 0

0 0 3βAz
√

3βAx
0 0

√
3βAx βAz

0 0 0 2βAx
0 0 0 0
0 0

√
6βAx −2

√
2βAz

0 0 0
√

2βAx

0 0 0 0
0 0 0 0
0 0

√
6βAx 0

2βAx 0 −2
√

2βAz
√

2βAx
−βAz

√
3βAx −

√
2βAx −2

√
2βAz√

3βAx −3βAz 0 −
√

6βAx
−
√

2βAx 0 −βAz −βAx
−2
√

2βAz −
√

6βAx −βAx βAz


, (3.49)

where Ai = −y 〈Si〉 /6 with i = x, y, α = 〈S|
∑

R Jsp−d (x−R) |S〉 is the exchange
integral between s- and d-electrons, and β = 〈X|

∑
R Jsp−d (x−R) |X〉 is the exchange

integral between p- and d-electrons. The material specific values for the exchange
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integrals α and β are taken from literature, α = 0.4 eV and β = −0.6 eV [21].

Like the Zeeman term, the exchange interaction Hamiltonian is only diagonal in the
axial symmetric basis, given by Eqs. (3.32) and (3.33), if B‖ = 0. To be precise,
projecting the exchange Hamiltonian in the LL basis gives

Hmn
ex (B‖, B⊥) = A†(m)Hex(B‖, B⊥)A(n)

= Hex(0, B⊥)δmn +Ax
(
hexδm,n+1 + h†exδm+1,n

)
, (3.50)

where, for n,m ≥ 1,

hex,‖ =



0 3α 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0

√
3β 0 0

√
6β 0

0 0 0 0 2β 0 0
√

2β
0 0 0 0 0

√
3β 0 0

0 0 0 0 0 0 0 0
0 0 0 0 −

√
2β 0 0 −β

0 0 0 0 0 −
√

6β 0 0


. (3.51)

The special cases for which n,m ≤ 0 follow analogously to the discussion below
Eq. (3.43). Its implementation in the numerics is also analogous to the implemen-
tation of a Zeeman Hamiltonian (see Sec. 3.3.2).

3.3.4. Bulk inversion asymmetry

Incorporating the BIA Hamiltonian, given by Eq. (3.8), breaks the axial symmetry
already at Btot = 0. To study the consequences in the presence of LLs, let us project
the BIA Hamiltonian into the LL basis

Hmn
B (B⊥) = A†(m)HB(a, a†, kz)A(n)

= hB(n, kz)δm+2,n + h†B(n, kz)δm−2,n , (3.52)
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where the ladder operators were introduced according to Eq. (1.51). For n ≥ 1,

hB(n, kz) = C



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 −
√

2(n−1)
lB⊥

0 0 0 0 0

0 0 kz
√

3n√
2lB⊥

0 0
√

3n
2lB⊥

0

0 0 −
√

3n√
2lB⊥

−kz −
√
n+1√
2lB⊥

0 kz√
2 −

√
n+1

2lB⊥
0 0

√
n−1

2lB⊥
0 0 0 0 0

0 0 kz√
2 −

√
3n

2lB⊥
0 0 0 0



. (3.53)

The matrix hBIA(n) for n ≤ 0 is the same as Eq. (3.53) except that all matrix elements,
which depend on the LL index n, must be set to zero if the corresponding radicals would
become imaginary numbers.

Equation (3.52) shows that a BIA Hamiltonian couples states |φn(z)〉 with n and n±2.
Thus, in the presence of BIA, a linear combination of LL spinors is an appropriate
ansatz for the Kane Hamiltonian in magnetic fields:

|ΨE(z)〉 =
Nmax∑
n=−1

a2n |φ2n(z)〉 , (3.54)

|ΨO(z)〉 =
Nmax∑
n=−1

a2n+1 |φ2n+1(z)〉 . (3.55)

As a result, |Ψ(z)〉 decomposes into an even and odd subspace labeled by E and O, re-
spectively, since there is no coupling between LLs with even and odd LL indices n. This
allows us to compute the LL spectrum in the even and odd subspace separately.

3.4. Band structure of (Hg,Mn)Te
We are now in the position to explore the landscape of 2D Hg1−yMnyTe/Hg0.68Cd0.32Te
quantum wells varying the quantum well thickness dQW and the Mn-concentration
using the discretized 8×8 Kane model a. Here, we take Cd0.96Zn0.04Te as the substrate
material which is included according to Sec. 3.1.3. To this end, we performed a large
number of band structure calculations with different quantum well thicknesses, 5 <

dQW [nm] < 13, and Mn-concentrations, 0 < y [%] < 4. An overview of the topological
landscape is presented in Fig. 3.3(a). The band structure of (Hg,Mn)Te quantum wells
can be classified by two characteristic features: (i) the band ordering at the Γ-point

aHere, we do not make use of the axial approximation but neglect BIA terms. All band structures
are shown along the line kx = ±ky, where the camelback maxima occur.

116



3.4. Band structure of (Hg,Mn)Te

-

-

-

Figure 3.3.: Evolution of band structure for (Hg,Mn)Te quantum wells with various
Mn concentrations and thicknesses dQW . (a) Phase space obtained from 8 × 8 Kane
model. The solid red line indicates the transition from trivial (white) to topologically
nontrivial (red) regime. Along this line, the E1 (electron-like) and the H1 (heavy-
hole-like) subbands get inverted. The dotted line indicates the direct- to indirect-gap
transition. In (b) and (c), the band structure of (Hg,Mn)Te quantum wells are explicitly
shown for two sample configurations: (Dev 1, direct gap) 11 nm and 2.4% Mn and
(Dev 2, indirect gap) 11 nm with 1.2%, where H2 marks the second heavy-hole-like
subband. Dashed lines mark band structure maxima. Reprinted from Ref. [P7].

and (ii) the energetic difference between the additional maxima in the band structure
at large momenta (camelback maxima) and the valence band edge.

The first feature, the band ordering at Γ, determines the topology of the quantum well.
As already discussed in Sec. 1.3.2, the compound semiconductor HgTe is topologically
trivial for dQW < 6.3 nm and enters the topologically nontrivial regime for dQW >

6.3 nm, for which the E1 subbands lie energetically below the H1 subbands [16, 17].
When Mn-atoms are additionally incorporated in the crystal structure, we find that an
increase of the Mn-concentration shifts the topological transition to larger quantum well
thicknesses, as inferred from Fig. 3.3(a). This effect is caused by the renormalization
of the band edge energies due to the Mn-atoms [cf. App. A]. For even larger dQW ,
the E1subbands a, also cross higher-order subbands like the H2 and H3 subbands. For
clarity, these crossings are not indicated in the landscape since they do not change the
topology of the semiconductor.

The second feature, the energetic difference between the camelback maxima and the
valence band edge, marked in Fig. 3.3(b) and (c), determines whether the system is a
direct or an indirect gap TI. The transition between these two regimes is indicated by
the dashed line in Fig. 3.3(a). The camelback derives its significance from the fact that it
is associated to a Van-Hove-like singularity. By this, we mean that the DOS is extremely

aThe subband naming is explained in Sec. 1.3.2.
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large at the camelback due to its large effective mass. In typical experiments, where
the carrier density in the quantum well is controlled by an external gate voltage, this
Van-Hove-like singularity pins the chemical potential and makes it difficult to shift the
chemical potential into the valence band. In direct gap TIs, the chemical potential gets
therefore pinned below the valence band edge, such that, additional to the carriers at the
camelback maxima, mobile carriers close to the Γ-point can contribute to transport (p ≈
2×109 cm−2). In contrast, in indirect gap TIs, the chemical potential gets pinned above
the valence band edge which means that only carriers close to the camelback maximum
(with a large effective mass) contribute to transport. This essential difference between
direct and indirect gap TIs will have important consequences for magnetotransport
experiments as we will demonstrate in Sec. 3.5.

In the further course of this chapter, we focus on two specific, topologically nontrivial
quantum well devices, labeled by Dev 1 and Dev 2. Dev 1 is a direct gap TI with
dQW = 11.0 nm and y = 2.4% Mn, while Dev 2 is an indirect gap TI with the same
thickness but with y = 1.2% Mn. Their respective band structures are shown in
Fig. 3.3(b) and (c). Note that we consider confinement only in the z-direction, so
that we do not see traces of helical edge states in the bulk gap in the theoretical
analysis a.

3.4.1. Experimental characterization of (Hg,Mn)Te
quantum wells

The two devices Dev 1 and Dev 2 (Hall bars) have been experimentally characterized
by S. Shamim (with help of A. Budewitz and P. Shekhar) for various magnetic field
configurations and carrier densities. The latter can be tuned by applying a gate voltage
V ?
g to the quantum well. Here, we will briefly summarize their main experimental

findings [P7], as they motivated our theoretical model which will be presented in the
following.

Dev 1: Let us at first focus on the direct gap TI Dev 1, which exhibits the QSH phase
at Btot = 0. Its longitudinal resistance Rxx(V ?

g ), which is shown in Fig. 3.4(a), exhibits
a maximal resistance when the chemical potential is placed in the bulk gap. Note that
the resistance peak is much higher than the characteristic QSH value of Rxx = h/2e2

due to the large dimensions of the device, l = 600µm and w = 200µm (cf. to discussion
in Sec. 1.3.2) [85, 88, 155]. The chemical potential reaches the bulk p-regime for V ?

g .

−0.5 V (valence band) and the bulk n-regime for V ?
g & 0.5 V (conduction band). From

an Arrhenius plot of conductance as a function of temperature, the bulk gap of Dev 1
was experimentally estimated to be≈ 4.6 meV, which is in very good agreement with the

aTo observe edges states, hard wall boundary conditions would need to be imposed in the x- or y-
direction. The latter calculation has been performed by W. Beugeling. His results can be found in
Ref. [P7] and are summarized in Sec. 3.6.
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Figure 3.4.: Experimental characterization of Dev 1 (dQW =11 nm, 2.4% Mn). (a)
Longitudinal resistance Rxx as function of V ?

g . (b) Magnetic field dependence of Rxy
for various V ?

g highlighted in (a) by gray shaded area. Inset schematically shows band
structure of Dev 1 and position of chemical potential µ. (c) LL fan shows differential
conductivity dσxy/dV ?

g , where blue marks QH plateaus and yellow indicates transitions
between adjacent plateaus. The corresponding QH filling factors ν are highlighted by
white numbers. (d) The ν = −1 plateau extends up to very large B⊥. Figures show
experimental data and are reprinted from Ref. [P7].

theoretical value of 4 meV, cf. Fig. 3.3(b). This agreement demonstrates the accuracy
of the employed 8× 8 Kane model.

To further characterize the device in the presence of magnetic fields, we focus now on
the case for which the chemical potential is placed in the bulk p-regime a. Here, the
main experimental findings are:

1. An onset to a series of QH plateaus ranging from ν = −5 to −1 is observed
at ultra-low magnetic fields of 20–30 mT for a wide range of gate voltages V ?

g

[Figs. 3.4(b) and (c)].

2. These ‘emergent’ QH plateaus show a strong in-plane magnetic field dependence.
The larger B‖, the smaller is the onset field B⊥ to the QH plateaus [Fig. 3.5].

3. The ν = −1 plateau extends up to exceptionally large magnetic fields (a few
tesla) [Fig. 3.4(d)].

The emergence of QH plateaus at such ultra-low magnetic fields is usually not expected.
This is because typical high-mobility 2D systems exhibit a metal to insulator transitions
below a critical density of ∼ 1 − 2 × 1010 cm−2 [156] preventing an observation of QH

aThe n-regime behaves like a conventional 2D electron gas and is thus not of particular interest.
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Figure 3.5.: Effect of in-plane magnetic field on QH plateaus for Dev 1. In both
plots, transverse resistance Rxy is shown as a function of the out-of-plane component
of the magnetic field B⊥ for various in-plane magnetic field values, B‖ = Btot sin(ϕ) at
(a) V ?

g = −0.6 V and (b) −1.2 V. The associated experimental setup is schematically
depicted in Fig. 3.2. Figures show experimental data and are reprinted from Ref. [P7].

plateaus at such low magnetic fields. In addition, the onset fields of conventional LLs do
not depend on the in-plane magnetic field B‖, since the QH filling factor ν = n/nB⊥ [see
also Eq. (1.56)] depends only on the carrier density n and the out-of-plane component
of the magnetic field B⊥.

Finally, note that a magnetic field of a few tens of mT, corresponding to a spin po-
larization 〈Sz〉 ∼ 0.1 [cf. Eq. (3.46)], can only close a gap of ≈ 1 meV a. Since the
topological bulk gap is a factor of ∼ 5 larger than this theoretical estimate, it is un-
likely that the magnetic field is sufficient to drive the (Hg,Mn)Te quantum wells into
the QAH phase. In comparison to the previous chapter, we therefore do not expect to
find signatures of coexistent QH and QAH states at such low magnetic fields.

Dev 2: In comparison, magnetotransport experiments on Dev 2 do not show an early
onset of QH plateaus (see supplementary material of Ref. [P7]). Instead, QH plateaus
are in this case only observed for B⊥ & 4 T, when the chemical potential is placed in
the bulk p-regime. In general, the experiment shows an early onset to QH plateaus in
the bulk p-regime only for direct gap TIs, i.e., left of the direct-to-indirect transition
(dashed line) in Fig. 3.3(a).

Bulk gap regime: We have focused so far on the experimental characterization of
(Hg,Mn)Te quantum wells in the bulk p-regime [cf. Fig. 3.4(a)]. The bulk gap regime
has been also analyzed experimentally by S. Shamim and has been theoretically de-
scribed by W. Beugeling. In a nutshell, the bulk gap regime exhibits, similar to the
p-regime, an early onset to a ν = −1 QH plateau (∼ 50 mT). But, in contrast to the
p-regime, its onset value is independent of the in-plane magnetic field. In addition,
QH plateaus with filling factor ν = −2,−3, . . . are not observed. Further details of this

aThis approximation is based on Eq. (2.104) and takes the combined effect of exchange interaction,
Zeeman effect, and an additional orbital contribution into account.
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3.5. Emergent QH effect in the bulk p-regime

particular regime are discussed in Ref. [P7] and the theoretical findings of W. Beugeling
are briefly summarized in Sec. 3.6. Note that the emphasis of this chapter lies however
on the bulk p-regime.

3.5. Emergent QH effect in the bulk p-regime

In this section, we compute the bulk LL spectrum of (Hg,Mn)Te quantum wells using
the 8× 8 Kane model for various magnetic field configurations. Our goal is to compare
signatures of direct and indirect gap TIs in the bulk p-regime in magnetic fields to
derive an interpretation for the peculiar experimental findings, that we have described
in Sec. 3.4.1. In that regard, we will shed light on the important role of the camelback
when LLs form.

To gain a simplistic understanding of the LL physics associated to the camelback, we
start in Sec. 3.5.1 studying a toy Hamiltonian that mimics the camelback dispersion.
Results for Dev 1 and Dev 2, that are based on the full 8×8 Kane model, are presented
in Secs. 3.5.2 and 3.5.3, respectively.

3.5.1. Toy model

To develop a simplistic understanding of the formation of LLs in the valence band of
(Hg,Mn)Te quantum wells, let us consider the following toy model Hamiltonian (no
spin degree of freedom):

H(k) = αk2 + βk4 + γk6 , (3.56)

where k2 = k2
x + k2

y and α, β, and γ are parameters that can be tuned to implement
different types of camelback. In particular, we are interested in the two cases, where
the camelback maximum is either slightly below or above the valence band edge, as
exemplary shown in Fig. 3.6(a) and (c), respectively. Therein, the dashed lines indicate
the various extrema of the bulk band structure.

The LL spectrum of Eq. (3.56) can be easily calculated by replacing all momentum
operators by ladder operators according to:

k2j →
(

2
l2B⊥

)j (
a†a+ 1

2

)j
, (3.57)

where j = 1, 2, 3 . . ., and a is a conventional magnetic ladder operator. Making use of
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Figure 3.6.: Formation of LLs for simple toy Hamiltonian, given by Eq. (3.56),
for different shapes of the camelback. In (a) and (b), the band structure and the
corresponding LL fan are shown for a direct gapped semiconductor with a pronounced
camelback. The parameters are α = −120 meV nm2, β = 560 meV nm4, and γ =
−700 meV nm6. In (c) and (d), the band structure and the LL fan are depicted for an
indirect gapped semiconductor with α = 40 meV nm2, β = −250 meV nm4, and γ = 0.
The arrows point in the direction of increasing n. The dashed lines mark all extrema
of the band structures.

Eq. (1.52), we derive the following expression for the LL spectrum

En(B⊥) = 2
l2B⊥

(
n+ 1

2

)[
α+ 2β

l2B⊥

(
n+ 1

2

)
+ 4γ
l4B⊥

(
n+ 1

2

)2
]
. (3.58)

In Figs. 3.6(b) and (d), the LL spectra are explicitly shown corresponding to the band
structures in Figs. 3.6(a) and (c), respectively. It is apparent that there is a one-to-
one correspondence between the band structure at B⊥ = 0 and the evolution of LLs
in magnetic fields. Each LL describes the same curve shape (as a function of B⊥) as
the band structure at B⊥ = 0 (with the same extrema), except that the slope of each
curve increases with increasing LL index n. This means the larger n, the smaller is the
magnetic field at which a LL exhibits its maxima. With this basic rule in mind, it will
be straightforward to understand the formation of LLs in (Hg,Mn)Te quantum wells in
the following.

3.5.2. Direct gap topological insulators
Employing the discretized Kane model in the axial approximation and neglecting BIA
terms (cf. Sec. 3.3.1), we have computed the LL spectrum of Dev 1 as a function of the
external out-of-plane magnetic field B⊥ (i.e., B‖ = 0) at temperature T = 0 K. The
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Figure 3.7.: Evolution of bulk LL energies as function of magnetic field B⊥ for
Dev 1 (direct band gap) for a maximal B⊥ of (a) 4 T, and (b) 200 mT [red shaded
area in (a)]. Color code indicates orbital character. Corresponding plot legend is
shown in (b). Dashed lines depict evolution of chemical potential as function of B⊥ at
constant hole densities: p = 0.05× 1011 cm−2 (orange), p = 0.2× 1011 cm−2 (red), and
p = 2× 1011 cm−2 (green). Numbers indicate the QH filling factors ν. In (b), the black
solid line extrapolates height of camelback to B⊥ = 0; ∆E is the energetic difference
between the valence band edge and the camelback. Reprinted from Ref. [P7].

effect of Zeeman and exchange coupling is taken into account according to Secs. 3.3.2
and 3.3.3. The corresponding LL fan is shown for a magnetic field range of 0 to 4 T in
Fig. 3.7(a). To highlight the regime at which emergent QH plateaus are observed in the
experiment, Fig. 3.7(b) shows an excerpt of the same LL fan in a magnetic field range
from 0 to 200 mT a. For clarity, the QH filling factor ν, which is related to the Hall
conductivity via σxy = νe2/h, is indicated in the LL fan. The latter can be computed
by means of Streda’s relation, Eq. (1.59).

In Fig. 3.7, the color code, which represents the orbital character of the respective
wave functions, clearly shows that Dev 1 exhibits an inverted band structure. The
E1subband, which consists of a mixture of S- and LH-character (brown color, E ≈
−50 meV), lies at B⊥ = 0 energetically below the HH-like H1 subband (blue, E ≈
−45 meV). The characteristic LL crossing of an inverted band structure [17, 61] occurs
for this specific sample at B⊥ ≈ 3 T. Whereas the conduction band looks quite con-
ventional, the appearance of the valence band is dominated by a very dense collection
of LLs. Based on our experience from the toy model [see Fig. 3.6(b)], it is apparent
that these LLs can be attributed to the camelback. In particular, we see in Fig. 3.7(b)
that the upper edge of the camelback extrapolates against E ≈ −54 meV for B⊥ = 0
(black line), which agrees with the camelback maximum of the corresponding band
structure at B⊥ = 0, cf. Fig. 3.3(b). It is worth noting that below B⊥ < 70 mT, LLs
with small LL indices (n = −2,−1, . . .), resulting from highly mobile carriers at small
k, can coexist at the same energy with higher LLs (n ∼ 500–1000), stemming from the

aWhile for calculating Fig. 3.7(a) only the first 300 LLs were considered, Fig. 3.7(b) is based on the
first 1000 LLs.
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Figure 3.8.: Analogously to Fig. 3.7(b), bulk LL energies are shown for Dev 1 employ-
ing different types of representations including LL broadening. (a) Energy as function
of B⊥ plot, where color code indicates DOS, dn/dE. White implies that the DOS is
out-of-scale. The orange and red curves correspond to a chemical potential with den-
sities p = 5 × 109 cm−2 and 2 × 1010 cm−2, respectively. The inset shows a zoom of
the lowest LLs without broadening. (b) Different representation of the same LL fan:
y-axis shows carrier density and color code highlights dσxy/dn. The shaded area at low
magnetic fields marks a regime below the computation limit. In both plots, numbers
indicate the QH filling factors ν. Reprinted from Ref. [P7].

camelback.

LL broadening: So far, we have not yet included disorder in our model which should
give rise to LL broadening [64, 69]. To account for this effect, we assume in the following
that the DOS D(E) of each LL is broadened to a Gaussian shape [45]:

D (E) = 1
2πl2B⊥

Nmax∑
n=−2

1√
2πσ2

exp
(
−(E − En)2

2σ2

)
, (3.59)

where the summation runs over all LLs with energy En, Nmax is the maximal number
of LLs which we consider in the numerics, and σ determines the width of the LL broad-
ening. Here, we take σ = σ0

√
B⊥/B0 with σ0 = 0.85 meV and B0 = 1 T [45].

Low-magnetic-field features: In Fig. 3.8(a), we show the same LL fan as in Fig. 3.7(b)
except that LL broadening is explicitly taken into account, and that only the regime
in the vicinity of the camelback is shown (bulk p-regime). The color code represents
the DOS, i.e., blue indicates the absence of states, yellow indicates a LL (or two LLs
which are close to each other), and white implies that the DOS is out-of-scale. To be
more precise, the white area below E < −52 meV in Fig. 3.8(a) implies that the DOS is
∼ 400 times larger than in a single LL, i.e., the dense collection of LLs stemming from
the camelback is associated to a Van-Hove-like singularity in the valence band.

An important consequence of the Van-Hove-like singularity is the pinning of the chem-
ical potential µ to the edge of the camelback in the bulk p-regime. This is because any
small decrease of the chemical potential would result in a large increase of the p-density
if the chemical potential is at the edge of the camelback. To highlight this fact, the
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evolution of µ as a function of B⊥ is shown for two exemplary cases in Figs. 3.7(b)
and 3.8(a) at constant p-density. As a result of this pinning mechanism, the chemical
potential crosses LLs with small LL indices, originating from states close to the va-
lence band edge, already at very small B⊥ (tens of mT). This differentiates (Hg,Mn)Te
quantum wells from a conventional 2D electron gas, where µ crosses LLs with small LL
indices only at much larger magnetic fields. For instance at p = 2×1010 cm−2, an onset
to the ν = −1 QH plateau is usually expected to occur not before B⊥ ≈ 1 T [estimate
is based on Eq. (1.56)].

To investigate the evolution of the Hall conductivity σxy(B⊥) at constant carrier density,
we show in Fig. 3.8(b) the same LL fan as in Fig. 3.8(a) with the only difference that
the carrier density is taken as the y-axis and that the color code represents dσxy/dn,
where n is the carrier density. Here, it is assumed that only extended states, located
in the center of each broadened LL, can give rise to a change in σxy a. Since n ∼ V ?

g ,
this form of depicting a LL fan is analogous to the experimental results presented in
Fig. 3.4(c). Figure 3.8(b) reveals that the Van-Hove-like singularity stemming from the
camelback is responsible for an early onset of QH plateaus with ν = −3,−2,−1 for a
large range of p-densities. This means we can attribute the experimentally observed
early onsets of QH plateaus in the bulk p-regime, shown in Fig. 3.4(c), to pinning of
the chemical potential to the camelback.

Another consequence of the pinning mechanism is that all observed QH plateaus in the
p-regime are very sensitive to the energetic difference ∆E of the valence band edge and
the maximum of the camelback at B⊥ = 0 [marked in Fig. 3.7(b)]: The onset fields of
the QH plateaus decreases as ∆E decreases. This results from the fact that the upper
edge of the camelback in magnetic fields extrapolates to the camelback at B⊥ = 0.
Consequently, we expect that any (Hg,Mn)Te TI with a direct gap and close to the
direct-indirect-gap transition [dashed line in Fig. 3.3(a)] exhibits a similar characteristic
behavior in the p-regime.

Finally, note that despite the macroscopic occupation of bulk states near the camel-
back, the bulk conduction should remain suppressed at low temperatures, because bulk
carriers are localized by disorder. Indeed, the higher Landau plateaus are well resolved
in experiments at 20mK, but they are not robust against increased temperatures, see
supplementary material in Ref. [P7]. This finding is further supported by the fact that
the theoretically calculated density of the highly mobile carriers lying above the camel-
back in Fig. 3.3(b) (p ≈ 2× 109 cm−2) agrees well with the experimentally determined
mobile p-carrier density of ∼ 2–3× 109 cm−2 for the entire range of V ?

g
b.

aRecall that extended states exist exclusively in the center of each broadened LL, while states in the
tails of the Gaussian-shaped DOS are localized. A QH transition is observed whenever the chemical
potential crosses extended states [69].

bIn the experiment, the p-carrier density has been extracted from a Drude fit at low fields B⊥ < 20 mT.
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Figure 3.9.: Analogously to Fig. 3.8, bulk LL energies are shown for Dev 1 employing
different types of representations including LL broadening (same color code). However,
in comparison to Fig. 3.8, this figure focuses on the large B⊥ behavior. Red and green
curves correspond to a chemical potential with hole densities p = 2 × 1010 cm−2 and
2× 1011 cm−2, respectively. Reprinted from Ref. [P7].

High-magnetic-field features: To study also the high-field features of Dev 1, we
show further results in Fig. 3.9. Due to pinning of the chemical potential to the camel-
back, we find that the ν = −1 QH plateau in the bulk p-regime can extend up to
very large B⊥. This is in good agreement with the observation of an exceptional long
ν = −1 QH plateau in the experiment, shown in Fig. 3.4(d). Moreover, it is apparent
that the camelback manifests itself as a large asymmetry between n- and p-densities.
The latter is also typically observed in the experiment.

Role of in-plane magnetic field: While the onset fields of QH plateaus in a con-
ventional 2D electron gas depend only on the out-of-plane component of the magnetic
field B⊥, the experiment shows that QH plateaus in the p-regime of direct gap TIs
are very sensitive to the applied in-plane magnetic field B‖ (cf. Fig. 3.5). To explain
this dependency, we include now the effect of an in-plane magnetic field in our band
structure calculations according to Secs. 3.3.2 and 3.3.3.

Let us at first consider the effect of an in-plane magnetic field at constant B⊥ on the
band structure, neglecting the orbital effect of B⊥ (i.e., without Peierls substitution).
The resulting spectrum is shown in Fig. 3.10(a). We find that an in-plane magnetic
field does not alter the band structure close to k = 0 significantly, while the height of
the camelback is very sensitive to B‖ and increases for larger ϕ [defined in Eq. (3.31)].
Assuming that the chemical potential is pinned to the camelback, the resulting decrease
of ∆E entails lower onset fields for the QH plateaus in the bulk p-regime. This can be
especially seen from comparing the onset field B⊥,on to the ν = −1 plateau in Figs. 3.7
and 3.10(b). Thus, the observed in-plane field dependence in the experiment can be
attributed to pinning of the chemical potential to the camelback.

Note that the difference between the k = 0 and the camelback regime is connected to
the interplay between the exchange coupling and the variation in orbital character of
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Figure 3.10.: Study of the role of in-plane magnetic field B‖. (a) At constant B⊥ =
150 mT, effect of B‖ on the band structure is shown neglecting orbital effect of B⊥.
Blue and orange lines depict band structure with ϕ = 0◦ and 60◦ [angle is defined in
Eq. (3.31)], respectively. ∆E decreases with increasing ϕ. (b) Landau level fan for
ϕ = 60◦, i.e., including the effect of B‖. QH filling factors ν are indicated by numbers.
Dashed line extrapolates edge of camelback against B⊥ = 0. B⊥,on marks critical field
at which onset to ν = −1 plateau can be observed. (a) Reprinted from Ref. [P7].

the band structure as a function of momentum. A strong in-plane field dependence of
the camelback can therefore only exist in Mn-doped samples a.

Role of bulk inversion asymmetry: Although our theoretical pinning model agrees
qualitatively well with the experiment for p-densities, there is a minor difference be-
tween theory and experiment on the quantitative level. In particular, the theory points
to a broad ν = −3 and a very narrow ν = −2 QH plateau at low magnetic fields,
whereas, in the experiment, ν = −2 is the most visible QH plateau, cf. Figs. 3.4(c)
and 3.8. In the numerics, the even-odd difference arises since all valence band LLs with
small n come in almost-degenerate (small gap) pairs suggesting that only odd plateaus
with ν = −1,−3,−5 should be nicely visible. Each of these pairs is linked to two
different LLs with LL indices n and n+ 2.

This discrepancy may be resolved by considering a perturbation that couples and,
therefore, splits these LL pairs, thus leading to an increased width of all even plateaus
(ν = −2,−4). Bulk inversion asymmetry, which has been neglected so far, is a possible
candidate: In linear approximation, the BIA Hamiltonian couples states with n to n+2,
as we have shown in Sec. 3.1.2 b . Let us therefore include now the effect of BIA in our
LL calculations, explicitly.

Figure 3.11(a) shows that the energetic distance ∆E between the valence band edge
and the camelback maximum is reduced by including BIA. This is because BIA lifts
the degeneracy of the bands for large momenta, while the energy of the valence band

aThe effect of Zeeman terms is in this magnetic field range more than order of magnitude smaller
than the effect of exchange coupling and can be therefore neglected.

bRemoving the axial approximation, which we employed to calculate the LL fan, would result in a
coupling between LLs with n and n+ 4, cf. Sec. 3.3.1. This means neglecting terms that break the
axial symmetry cannot be the source for the discrepancy between theory and experiment.
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Figure 3.11.: Role of BIA for Dev 1. (a) Including BIA lifts the degeneracy already at
B⊥ = 0, causing a decrease of ∆E. Blue and orange lines correspond to BIA parameters
C = 0 and −1.9 meV nm, respectively [cf. Eq. (3.8)]. (b) LL fan is shown for the case
with BIA, where numbers indicate QH filling factors ν. The camelback crosses LLs
with small LL indices at even smaller magnetic fields. B⊥,on marks the critical field at
which onset to ν = −1 plateau can be observed. Dashed line extrapolates camelback
against B⊥ = 0. Note that the ν = −2 QH plateau is well resolved. Reprinted from
Ref. [P7].

at kx = ky = 0 is hardly affected. The decrease of ∆E is also reflected by the LL fan
shown in Fig. 3.11(b), i.e., the camelback maximum crosses LLs with small LL indices
even at smaller magnetic fields compared to the case without BIA, shown in Fig. 3.7.
Moreover, since BIA couples LL with n and n + 2, we find that the ν = −2 plateau
becomes clearly visible.

The presented results can only serve as a proof of principle that BIA explains the small
discrepancy between theory and experiment. This is because we do not know exact
BIA parameters for (Hg,Mn)Te quantum wells. For a better quantitative estimate, an
in-depth investigation into BIA in (Hg,Mn)Te would be necessary, which substantially
goes beyond the scope of this work. For the presented results in Fig. 3.11, we have
assumed BIA parameters that are similar to the ones of bulk HgTe [151].

3.5.3. Indirect gap topological insulators
Further evidence in favor of the pinning mechanism can be gained by comparing theory
and experiment for other device configurations. For Dev 2, which is an indirect gap TI
unlike Dev 1, the experiment shows an onset to QH plateaus in the p-regime only for
B⊥ & 4 T.

To study pinning to the camelback also for this device configuration, we provide LL
fans for Dev 2 in Fig. 3.12. Because of the indirect gap, the camelback penetrates
into the QSH regime which is enclosed by the two characteristic LLs of an inverted
band structure which cross at about 6.5 T. Thus, LLs with small LL indices n are
covered completely by the camelback, preventing the early onset of the ν = −1 plateau.
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Figure 3.12.: Evolution of bulk LL energies as function of B⊥ for Dev 2 (indirect
TI). (a) LL fan without LL broadening. Color code indicates orbital character (see
plot legend). B⊥,on marks the critical field at which onset to ν = −1 plateau can be
observed. It is instructive to compare this figure to Fig. 3.6(d). (b) Analogous figure
including LL broadening. Color code indicates DOS, dn/dE. In both figures, numbers
indicate QH filling factors ν. The red and green curves correspond to a chemical
potential with hole densities p = 2 × 1010 cm−2 and 2 × 1011 cm−2, respectively. For
p-densities, the chemical potential remains pinned to the ν = 0 QH plateaus up to large
magnetic fields. Reprinted from Ref. [P7].

The numerics demonstrate that the chemical potential is instead pinned to the ν = 0
plateau. From these theoretical results, an onset to the ν = −1 QH plateau is expected
to emerge at about 3–4 T, where the camelback separates from the QSH regime a. This
number shows good agreement with the experimental value, highlighting once again
the accuracy of the pinning model.

Since Dev 2 has an indirect gap, we can conclude that an onset to QH plateaus at
ultra-low magnetic fields is a hallmark of direct gap TIs close to the direct-indirect
transition line, cf. dashed line in Fig. 3.3(a). This also highlights the crucial role of
Mn in tuning the band structure and in realizing the emergent QH phenomena, since
the two devices have the same thickness and differ only in Mn concentration.

3.6. Emergent QH effect in QSH regime
So far, we have focused on describing the early onset of QH plateaus in the bulk p-
regime. When the chemical potential is instead in the bulk gap regime (for direct
gap TIs), another type of emergent QH effect at ultra-low magnetic fields (≈ 50 mT)
with ν = −1 has been observed in the experiment on (Hg,Mn)Te quantum wells (cf.
Sec. 3.4.1) [P7]. In contrast to the bulk p-regime, this emergent QH effect is inde-
pendent of the in-plane magnetic field and, thus, does not arise due to pinning of the
chemical potential to the camelback. To analyze this regime, W. Beugeling extended
the implementation of the 8 × 8 Kane model, described in Sec. 3.2, to account not

aWe therefore do not show in detail the low-field regime (B⊥ < 200 mT) for Dev 2.
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Figure 3.13.: Band structure of Dev 1 calculated for confinement in y- and z-direction
for (a) B⊥ = 0 and (b) 100 mT. The width of the device in y-direction is Ly = 500 nm.
Color code indicates wave function localization in the y-direction, as depicted by plot
legend in (a). Numbers in (b) indicate QH filling factors ν. Computation was performed
by W. Beugeling employing the kdotpy program. Reprinted from Ref. [P7].

only for confinement in the z-direction, but also for confinement in the y-direction. For
completeness, we will here briefly summarize his main findings.

Similar to our calculations for the BHZ model in Ch. 2, imposing additionally hard wall
boundary conditions in the y-direction within the 8 × 8 Kane model allows to study
the topological edge channels. However, as the typical size of the n × n dimensional
lattice matrix reaches already for samples with a width of Ly = 500 nm values of almost
n ≈ 2× 106, the numerical computation becomes quite heavy.

Figures 3.13(a) and (b) show the band structure of Dev 1 for B⊥ = 0 and 100 mT,
respectively. The color code depicts the wave localization in the y-direction. At B⊥ = 0,
where the system is in the QSH phase, it is apparent that QSH edge states traverse
the bulk band gap (red and blue states; double degenerate). With increasing magnetic
fields, the QSH edge states split: One of the QSH edge states moves up, while the other
one moves down in energy. Figure 3.13(b) reveals that only the QSH edge states which
are pushed into the conduction bands remain clearly visible, since they are protected
from hybridizing with bulk bands due to a different wave function localization. In
comparison, the second pair of QSH edge states which are pushed into the valence
band hybridize strongly with the bulk bands and, thus, disappear. The presented
results are very similar to our findings in Ch. 2, with the difference that, in the 8 × 8
Kane model, only the QSH edge states with spin-down character remain clearly visible.
In contrast, within the BHZ model, we found that the QSH edge states of the spin-up
block are protected from hybridizing with bulk bands. While the quantitative picture is
therefore slightly different, the general observation described in Ch. 2 is still valid. This
means topological edge channels survive in the presence of an external magnetic field, as
they are protected from hybridizing with bulk bands. We believe that the discrepancy
between the two models is connected to the occurrence of spurious solutions [138, 139],
as mentioned in Sec. 2.6.2. Nonetheless, we are still working on understanding this
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point in more detail.

Below the QSH regime in Fig. 3.13(b) (green shaded area), which is characterized by
counterpropagating QSH edge channels such that ν = 0, the presence of a single chiral
edge channel per edge points to a ν = −1 QH regime (yellow shaded area). As stated in
Sec. 3.4.1, this regime is not related to the QAH effect as the magnetization is not yet
sufficient to close the Dirac mass gap [cf. Eq. (2.104)]. Since this edge state is however
directly connected to the QSH edge states, the emergence of this ν = −1 plateau at
such low magnetic fields is related to the preexistence of the QSH phase. Furthermore
in Ref. [P7], it is shown that this peculiar regime is not affected by an in-plane magnetic
field. The latter confirms that the yellow shaded area in Fig. 3.13(b) is related to the
observed ν = −1 QH plateau in the experiment on (Hg,Mn)Te quantum wells. The
respective results are discussed in more detail in Ref. [P7].

3.7. Summary and Discussion
In this chapter, we have demonstrated that the experimentally observed, emergent
QH effect in (Hg,Mn)Te quantum wells at ultra-low magnetic fields (∼20–30 mT) in
the bulk p-regime can be attributed to the camelback in direct gap TIs. The latter
causes pinning of the chemical potential when the carrier density is tuned into the
bulk p-regime. Moreover, we have shown that the camelback prevents the emergence
of QH plateaus for indirect gap TIs, where the chemical potential remains pinned to
the ν = 0 plateau up to large magnetic fields (a few tesla). Further support for this
pinning picture was gained by exploring the influence of an in-plane magnetic field on
the camelback in direct gap TIs. Here, we found in agreement with the experiment that
increasing the in-plane magnetic field reduces the onset fields at which QH plateaus
can emerge in the bulk p-regime.

To the best of our knowledge, QH plateaus have never been reported to occur at
such low magnetic fields. This makes a direct gap (Hg,Mn)Te quantum well an ideal
candidate to realize chiral Majorana fermions. The latter have been proposed to exist
in chiral topological superconductors which can be realized by proximitzing a chiral
edge channel with an s-wave superconductor [157]. In comparison, in typical QAH
insulators, like Cr-doped Bi-compounds, the large magnetization (on the order of a few
tesla) makes it difficult to induce superconductivity. Furthermore, as the occurrence of
the camelback is a byproduct of the band inversion, we expect that our findings could
apply likewise to other 2D topological materials, such as WTe2 or InAs/GaSb quantum
wells.

With respect to our previous chapter, it is natural ask whether signatures of the QAH
effect have been observed in (Hg,Mn)Te quantum wells. While we have focused here
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on transport signatures in the bulk p-regime for small magnetic fields, for which the
QAH effect does not occur, recent experiments by S. Shamim et al. seem to show
signatures of counterpropagating QH and QAH edges states at larger magnetic fields.
As we have explained in Ch. 2, the observation of such quasi-helical edge states would
be an indication for the coexistence of QH and QAH phases in magnetic fields. Our
research on this subject is however still ongoing.
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Band structure engineering gives the opportunity to access various topological phases
selectively by modifying different material properties, such as the layer thickness (con-
finement), the strain, or the material composition. The 8 × 8 Kane model, whose
numerical implementation was discussed in the previous chapter, allows us to study all
these effects within a single model. In particular, it enables us to study the crossover
from 2D to 3D by continuously increasing the quantum well thickness dQW . In this re-
spect, a particularly interesting material is HgTe, as it can be experimentally produced
with a very high crystal quality [17, 28]. In the thin-film (2D) limit, HgTe exhibits
the QSH phase when dQW > 6.3 nm [15, 17]. For larger quantum well thicknesses, a
crossover emerges to the 3D regime where (unstrained) HgTe is a semimetal. To be
precise, at charge neutrality, the Fermi level lies in this case at the fourfold degenerate
touching point between the four Γ8-bands (see Fig. 1.6). The latter is protected by the
lattice symmetries of the zincblende structure [19].

To drive HgTe into the 3D TI phase [19, 28], this fourfold degeneracy must be lifted by
imposing uniaxial (tensile) strain to the crystal lattice, which opens a bulk gap at the
Γ-point [148, 158]. The 3D TI phase is characterized by metallic 2D topological surface
states (TSS), which are localized at the interfaces to topologically trivial materials (this
includes vacuum) [159]. Although it seems to be well-established that in HgTe the Dirac
points of the TSS are buried in the HH-like valence band, various values for their precise
energetic position have been reported in the literature [28, 35, 160–162].

In this chapter, we investigate the 2D to 3D crossover in HgTe quantum wells and
analyze various properties of their TSS. We show that the 2D to 3D crossover oc-
curs continuously without exhibiting any oscillations between topologically trivial and
nontrivial regimes which are predicted to occur in Bi-based TIs [163, 164]. In the 3D
limit, we demonstrate that the positions of the Dirac points can be manipulated by
including an additional surface term at the interface between the quantum well and
the barrier layers. The latter arises due to a lowering of the crystal symmetry at the
interface [165]. By adjusting the value of this interface term, we demonstrate that the
Dirac points can be shifted closer to the valence band edge such that their energetic
position can be matched with ab-initio calculations [35, 160, 161] and angle-resolved
photoemission spectroscopy (ARPES) measurements [28, 166]. Furthermore, in the
spirit of Ref. [P2], we make use of effective Hartree potentials to account for electro-
static charging of the TSS due to an externally applied gate voltage. By means of
these effective Hartree potentials, we show that the Dirac points can be shifted into
the bulk band gap, so that it becomes feasible to probe also the hole-part of the 2D
Dirac cones. The latter is usually not easily accessible due to the buried Dirac points
of HgTe. Finally, we determine the cyclotron frequency of surface electrons, and reveal
a strong electron-hole asymmetry in the effective masses of the TSS. The latter may
explain the observed large electron-hole asymmetry in the experiments by Jost et al.
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which is observed in the thermopower between surface electrons and holes [P4].

This chapter is structured as follows: In Sec. 4.1, we analyze the crossover from 2D
to 3D in HgTe quantum wells. In Sec. 4.2, we discuss various ways to manipulate the
position of the Dirac points and determine the effective masses of surface electrons and
holes. Based on these calculations, we determine the cyclotron frequency of surface
electrons and compare them with experimental measurements on strained HgTe. In
Sec. 4.3, we summarize our findings.

The results in Sec. 4.2 have been published in Refs. [P4] and [P3] a, which are copy-
righted by the PNAS and Nature Publishing Group, respectively. The following chapter
focuses on the band structure calculations which I have performed in order to under-
stand some of the experimental signatures. This chapter contains small excerpts of
these manuscripts.

4.1. 2D to 3D crossover
So far, in Ch. 3, we have focused on 2D materials for which quantum confinement causes
a large level spacing between adjacent subbands. To study the 2D to 3D crossover, we
have computed the band structure for a large number of quantum well devices with
quantum well thicknesses ranging from dQW = 4 to 30 nm (step size: ∆dQW = 0.1 nm)
using the 8× 8 Kane model (for the numerical implementation, see Secs. 3.1 and 3.2).
In the following, we focus in particular on HgTe/Hg0.7Cd0.3Te quantum wells with a
Cd0.96Zn0.04Te substrate. The latter introduces a small strain in the crystal structure
of HgTe which removes the fourfold degeneracy of the Γ8 bands at Γ b. For this setup,
we show in Fig. 4.1(b) the evolution of the band edge energies of the quantum well
subbands, where the color code indicates the orbital character. This figure is similar to
Fig. 1.7 with the difference that, in order to investigate the crossover to the 3D regime,
we consider here quantum wells with a well thickness of up to 30 nm.

Let us start the discussion in the 2D regime. As we have pointed out previously,
HgTe enters the 2D QSH regime after the crossing of the E1 and H1 subbands, i.e.,
for dQW > dc = 6.3 nm [15, 17]. For clarity, we have highlighted the QSH regime in
Fig. 4.1(b) by a gray shading and indicated the evolution of the charge neutrality point
by a dashed line. Since with a further increase of dQW no other quantum well subbands
cross the Fermi level [dashed line in Fig. 4.1(b)], the system remains in the QSH phase
as long as the bulk gap between the H1 and H2 subbands remains open. As the bulk
gap decreases with increasing dQW , the QSH phase is destroyed for dQW & 25 nm.

aI am a co-author of both publications. I provided band structure calculations and helped in analyzing
some of the experimental results.

bThe lattice mismatch between HgTe and Cd0.96Zn0.04Te amounts to εS ≈ 0.0007 [see Eq. (3.9) and
App. A] causing the opening of a bulk gap of ∆E ≈ 5 meV at Γ [cf. Eqs. (3.3) and (3.10)].
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Figure 4.1.: 2D to 3D crossover as function of quantum well thickness dQW . (a)
Schematic layer stack of HgTe/Hg0.3Cd0.7Te quantum well with well thickness dQW .
(b) Evolution of band edge energies of quantum well subbands as function of dQW . QSH
regime is marked by a grading shading. Dashed line indicates evolution of chemical
potential at charge neutrality. ED marks the Dirac points which are buried deep in the
valence band. Color code indicates the orbital character as depicted in the plot legend.

Figure 4.1 in particular demonstrates that the 2D to 3D crossover in HgTe quantum
wells occurs continuously without exhibiting oscillations between topologically trivial
and nontrivial regimes, which are predicted for Bi-based TIs [163, 164]. The latter
would require multiple crossings between the E1 and H1 subbands.

Another important observation in Fig. 4.1(b) is that the E1 and L1 subbands behave
differently compared to all other E(n > 1) and L(n > 1) subbands in the large system
limit. The E(n > 1) subbands, which constitute the LH-like conduction band, converge
against E = Ev + Uε − Vε ≈ 2.5 meV. The L(n > 1) subbands, which constitute the
S-like valence band, converge against E = Ec + Tε ≈ −305 meV (out of plot range).
Here, the conduction band edge energy Ec and the valence band edge energy Ev are
defined below Eq. (3.3), and the strain related parameters Tε, Uε, and Vε are defined in
Eq. (3.10) [see also App. A]. In comparison, the E1 and L1 subbands converge against
an energy of ED ≈ −95 meV for large dQW . To understand the exceptional behavior
of these subbands, we can study their wave function localization in the z-direction. In
this respect, we find that their wave functions are strongly localized at the interfaces
between HgTe and Hg0.7Cd0.3Te (decay length ≈ 3 nm). As a result, we can identify
the E1 and L1 states as TSS which form due to the band inversion of the Γ6 and Γ8

bands in HgTe [cf. Fig. 4.2(b); note however that in this figure a CdTe substrate was
used]. The increase of the gap between the E1 and L1 subbands with decreasing dQW
can be therefore understood as a consequence of hybridization between the top and
bottom TSS a. Thus, the energy ED marks the Dirac points which are in the present
case buried deep in the HH-like valence band. It is worth noting that the formation
of these surface states is independent on whether HgTe is a bulk insulator (strained)
or a semimetal (unstrained), since they originate from the band inversion and exist

aFor a discussion of hybridization between TSS in the thin film limit see Ref. [12].
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Figure 4.2.: (a) Band structure of 3D TI (HgTe/Hg0.7Cd0.3Te quantum well with a
CdTe substrate) for a quantum well thickness of dQW = 50 nm. The color code depicts
the orbital character [legend, see Fig. 4.1(b)]. Topological surface states (TSS) cross
the bulk band gap which is indicated by the red shaded area. The Dirac points ED are
highlighted by a dashed line. Probability distribution of top and bottom TSS at (b)
kx = 0 and E = ED, as well as (c) kx = 0.15 nm−1 and E = 17 meV.

therefore independent of the strain. Signatures of the TSS have been therefore also
observed in the Dirac semimetal phase (requires compressive strain), even though the
system is not a 3D TI [35] a.

Band structure of 3D TI: For completeness, we show in Fig. 4.2(a) the band struc-
ture of a dQW = 50 nm thick HgTe quantum well, where we chose CdTe as the substrate
material. Due to the larger lattice mismatch between HgTe and CdTe compared to a
Cd0.96Zn0.04Te substrate (i.e., εS = 0.003), this amounts to a strain induced band gap
of Eg ≈ 22 meV b. For clarity, we highlighted the bulk gap by a red shading and
marked the position of the Dirac points ED by a dashed line. Although we cannot
continuously trace the evolution of the TSS in the valence band due to hybridization
with the HH-like subbands (see also Ref. [162]), we see that the TSS reappear in the
bulk band gap, as required by topology. The wave functions of the TSS at the Dirac
points and in the bulk gap for finite kx are shown in Fig. 4.2(b) and (c), respectively.
Note that the decay length of the TSS in the bulk gap at finite kx is much larger than
at the Γ-point due to the strong hybridization with the HH subbands (decay length
≈ 15–20 nm). In the experiment, signatures of the two decoupled top and bottom TSS
are therefore only observed for quantum well devices with dQW > 40 nm [28, 80].

aThe difference between the TSS in the 3D TI phase and the ‘TSS’ in the Dirac semimetal phase is
that only in the former case TSS can be probed without any additional residual bulk conductance.

bThe gap in Fig. 4.2(a) is slightly larger due to additional contributions which result from the quantum
confinement at a well thickness of dQW = 50 nm.
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4.2. Manipulating topological surface states
Since TSS are strongly localized at the interfaces between HgTe and Hg0.7Cd0.3Te,
the position of the Dirac points ED is strongly affected by the local environment at
their interfaces. For instance, if we replace the barrier materials (here, Hg0.7Cd0.3Te)
by vacuum, it is found that the energy of the Dirac points decreases by more than
150 meV [162]. However, although our presented band structure calculations take the
barriers explicitly into account, we find that the Dirac points ED are located much
deeper in energy as suggested by ARPES measurements [28, 166] and ab-initio cal-
culations [35, 160, 161]. We will show in this section that this discrepancy may be
explained by a reduced point group symmetry at the interfaces between HgTe and
(Hg,Cd)Te [165], which we have yet to account for in our model.

In Sec. 4.2.1, we incorporate an additional surface term in our Kane model that results
from the reduced point group symmetry at the interface, and study its affect on the
position of the Dirac points. For the presented system, we determine the cyclotron
frequency of the surface electrons and compare our findings with experimental mea-
surements. In Sec. 4.2.2, we show how the Dirac points can be further modified by
applying an external gate voltage due to charging of the TSS. Note that the presented
results are based on an earlier version of our k ·p code, in which we have neglected the
contributions of the Γ7 bands (this means we work with the 6× 6 Kane model). In the
3D limit, this approximation is justified as the orbital contribution of the Γ7 bands in
the vicinity of the bulk band gap is typically less than 5% [150].

4.2.1. HH–LH coupling at interfaces
Bulk HgTe and CdTe crystallize both in the zincblende structure and are therefore
described by the point group TD. The latter consists of 24 group elements. However, if
two different zincblende semiconductors, like HgTe and Hg0.7Cd0.3Te, are brought into
contact, Ivchenko et al. [165] showed that the lattice symmetry reduces at their interface
to the point group C2v

a. In comparison to the point group Td, C2v consists only of
four group elements: the identity, a twofold rotational symmetry C2, and two-mirror
planes (110) and (11̄0). Since a Hamiltonian which describes this heterostructure must
be invariant under all symmetry operations of the point group, the symmetry reduction
at the interface gives rise to an additional (local) term in the Kane Hamiltonian (we
focus on the valence band part of the Kane Hamiltonian, i.e., Γ8

b) [165] :

Hsur =
2∑
j=1

CΓ8δ(z − zj) {Jx, Jy} , (4.1)

aThis statement holds provided that HgTe and Hg0.7Cd0.3Te share a common Te-atom at the interface.
bThe symmetry reduction allows also to couple S- and HH-bands, but this hybridization does not
affect the energetic position of the Dirac points strongly.
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where CΓ8 is a material specific parameter, δ is the Dirac delta function, as well as z1

and z2 denote the positions of the top and bottom interfaces between the barrier and
well materials, respectively, i.e., ±dQW /2. Jx and Jy are the total angular momentum
matrices of spin 3/2, which are given by

Jx = 1
2


0
√

3 0 0
√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

 , Jy = i
2


0 −

√
3 0 0

√
3 0 −2 0

0 2 0 −
√

3
0 0

√
3 0

 . (4.2)

Note that Eq. (4.1) couples HH and LH bands even if kx = ky = 0.

We can easily show that this Hamiltonian is allowed by symmetry by determining the
matrix representations of all four group elements of C2v, which should commute with
Hsur. As a mirror symmetry can be constructed by a rotation followed by an inversion,
we find for the Γ8 representation that

E = I4 , C2 = e−iJzπ ,

R1 = −e−iJz π2 e−iJxπ , R2 = −e−iJz π2 e−iJyπ , (4.3)

where Jz is a total angular momentum matrix of spin 3/2

Jz = 1
2 Diag

(
3 1 −1 −3

)
. (4.4)

Here, E, C2, R1, and R2 denote the identity (I4 is the four dimensional identity ma-
trix), the twofold rotational symmetry, and the two mirror symmetries, respectively.
The minus sign in R1 and R2 originates from spatial inversion, cf. Sec. 3.1. All four
unitary matrices commute with Hsur, which verifies that the latter is allowed by sym-
metry.

We can now adjust the value of CΓ8 in Eq. (4.1) to study its effect on the band structure.
In that regard, Fig. 4.3 shows that we can shift the Dirac points ED much closer to
the valence band edge [cf. to Fig. 4.2(a)], so that the position of the Dirac points
ED becomes comparable to the one of ab-initio calculations [35, 160, 161] and ARPES
measurements [28, 166].

Cyclotron frequency: Analyzing the cyclotron frequency provides an inside into the
band structure of semiconductors. Assuming that the chemical potential µ is located in
the bulk band gap, as indicated by the green line in Fig. 4.3(a), we can determine the
cyclotron frequency Ωc of the 2D surface electrons by the following relation [68]:

Ωc/B⊥ = 2πe
~2

∂E(kx)
∂A

, (4.5)
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Figure 4.3.: (a) Band structure of 58 nm thick HgTe/Hg0.3Cd0.7Te 3D TI is calculated
using 6 × 6 Kane model (CdTe substrate). The HH-LH coupling, given by Eq. (4.1),
is adjusted to CΓ8 = −1.7 eV. TSS are highlighted by red (double degenerate); dashed
line sketches evolution of TSS neglecting hybridization to heavy-hole bands. Dirac
points lie at ED ≈ −40 meV (dashed line). Chemical potential µ is indicated by green
line. (b) Cyclotron frequency Ωc/B⊥ as function of external gate voltage (experimental
data). From Ref. [P3]. Reprinted with permission from the Nature Publishing Group.

where B⊥ is the external out-of-plane magnetic field, E(kx) denotes the energy disper-
sion, and A is the area that is enclosed by the wave vector kx. We calculate for the
TSS a cyclotron frequency of Ωc/B⊥ ≈ 35 cm−1/T. The latter agrees extremely well
with the experimentally determined value for surface electrons, shown in Fig. 4.3(b).
Note that the latter is almost independent on the applied gate voltage Vg as long as
the Dirac points remain buried in the valence band.

4.2.2. Gating of topological surface states

Transport measurements on the 3D TI HgTe have unambiguously demonstrated surface
dominated transport for a large range of gate voltages [28, P2, P4]. The latter can be
adjusted to modify the carrier densities on the top and bottom TSS. In particular, it
has been shown in Ref. [P4] that tuning the gate voltage allows to alter the Dirac points
ED such that also the surface holes can be probed in magnetotransport experiments,
i.e., the Dirac point can be shifted into the conduction band (or at least into the bulk
band gap).

To model the effect of the external gate voltage in our 6 × 6 Kane model, we employ
effective Hartree potentials that are constructed in the spirit of the Dirac screening
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Figure 4.4.: Band structure of 104 nm thick strained HgTe quantum well sandwiched
in between Hg0.3Cd0.7Te barrier layers based on 6 × 6 Kane model for two different
carrier densities (CdTe substrate). Top (bottom) TSS are highlighted in red (blue).
Chemical potential µ is indicated by dashed line. (a) Dirac point is buried in the valence
band. (b) Dirac point is buried in the conduction band. From Ref. [P4]. Reprinted
with permission from the PNAS.

model, which has been proposed in Ref. [162, P2] a. This phenomenological approach is
motivated by the disagreement between self-consistent Hartree calculations [P1] and the
experimentally observed surface dominated QHE for a large range of gate voltages [P2].
Effective Hartree potentials exhibit peaks at the interfaces, whereas they decay quickly
into the bulk [cf. Fig. 4(d) in Ref. [P2]]. For that reason, they allow us to primarily
dope the Dirac surface states from the n- to the p-regime, while the structure of the
bulk bands remains only weakly affected.

In Fig. 4.4, we show the band structure for two effective Hartree potentials, where the
TSS are highlighted by color. As in Sec. 4.2.1, we have here likewise included the local
HH-LH coupling term in the Kane model which stems from the reduced point group
symmetry at the interfaces, Eq. (4.1) b. In Fig. 4.4(a), the effective Hartree potential is
chosen such that the Dirac point is buried in the valence bands. The carrier density on
the top and bottom TSS is given by n1 = 3.33× 1011 cm−2 and n2 = 2.65× 1011 cm−2,
respectively, which corresponds to a gate voltage of Vg = +1 V in the experiments by
Jost et al. [P4]. In comparison, in Fig. 4.4(b), the effective Hartree potential is chosen
such that the Dirac point is buried in the conduction band. The hole carrier density on
the top and bottom TSS is given by p1 = p2 = 2.58×1011 cm−2, corresponding to a gate
voltage of Vg = −3 V. Analyzing the curvature of the TSS in the bulk band gap, we find
that their dispersion relations deviate strongly from an ordinary linear behavior which
is typically observed in Bi-based 3D TIs [12, 167]. We attribute these deviations to a
strong coupling between the TSS and the HH subbands. From the dispersion relations
in Fig. 4.4(a) and (b), we obtain an effective mass of me ≈ 0.02m0 for surface electrons

aThe effective Hartree potentials are constructed assuming different dielectric constants for the bulk
and the surfaces of the 3D TI.

bNote that without this interface term, additional massive Volkov-Pankratov states [35], that arise
from the Hartree potential, would cross the bulk band gap before the Dirac points ED can reach
this regime.
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and mh ≈ 0.11m0 for surface holes, where m0 is the free electron mass. Thus, we find
that the dispersion relation of the 2D Dirac cone is strongly asymmetric for electrons
and holes due to hybridization of the TSS with the HH subbands. This observation
was used in Ref. [P4] to explain the salient asymmetry in the measured thermopower
Sxx, also known as the Seebeck effect (the voltage difference that arises when a thermal
gradient is applied along the sample).

4.3. Summary
Based on the 8×8 Kane model, whose numerical implementation was discussed in Ch. 3,
we have analyzed in this chapter for HgTe the transition from a 2D QSH insulator to
a 3D TI by changing the quantum well thickness dQW . In addition, we discussed two
possible ways to manipulate the position of the Dirac points ED. We demonstrated
that the 2D to 3D crossover occurs smoothly without exhibiting oscillations between
topologically trivial and nontrivial regimes which are predicted for Bi-based TIs [163,
164]. We showed that an additional surface term in the Kane model, which couples HH
and LH bands due to a reduced point group symmetry at the interface between the
well (HgTe) and the barrier material (Hg0.3Cd0.7Te), modifies the position of the Dirac
points. Intriguingly, it is thus possible to adjust the position of the Dirac points such
that they become comparable with the one of ab-initio calculations [35, 160, 161] and
ARPES measurements [28, 166]. Considering additional surface potentials (effective
Hartree potentials) that arise from the electrostatic charging of the TSS (gating), we
furthermore showed that the Dirac points can be shifted into the conduction band.
This allowed us to reveal a strong electron-hole asymmetry in the dispersion relation
between surface electrons and holes. The latter are usually not easily accessible due to
the buried Dirac point in HgTe [28].

In collaboration with Dziom et al. [P3] and Jost et al. [P4], we have compared these
theoretical findings to actual experiments on HgTe. In this respect, we have found an
excellent agreement for the cyclotron frequency of surface electrons and attributed the
observed asymmetry in the thermopower between surface electrons and holes in the
experiment to the asymmetry in their effective masses.
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5.
Conclusion and Outlook

The last 15 years have been characterized by tremendous progress in predicting and
realizing novel topological phases of matter in solid state systems. While it was com-
mon belief that topology is something rather exotic, we now know that a quarter of all
materials in nature are topological [18]. This rapid progress has heavily profited from
topological classification schemes, which classify topological states of matter based on
discrete symmetries [11]. Furthermore, low-energy models, like the Bernevig-Hughes-
Zhang (BHZ) model, have proven to be a powerful tool to investigate topological prop-
erties analytically. This thesis contributes to the vast field of topology by exploring
the fate of topological states of matter in the presence of external magnetic fields and
investigating their relation to quantum anomalies. In addition, we developed a nu-
merical implementation of the 8× 8 Kane model to study the landscape of (Hg,Mn)Te
quantum wells by varying the quantum well thickness, the material composition, as well
as the strain. By avoiding the use of low-energy models, we were able to reveal some
unexpected signatures of topological materials in magnetic fields which are connected
to their characteristic band dispersion at large momenta.

In Ch. 2, we investigated the effect of an external out-of-plane magnetic field on the
quantum anomalous Hall (QAH) phase. Similar to the quantum Hall (QH) phase which
can be induced by a magnetic field, the QAH phase is described by a Z topological
invariant. But in contrast to the QH phase, the QAH phase derives its nontrivial
topology from an inverted band structure without Landau levels (LLs) and is as such a
condensed matter analog of the parity anomaly. Although the topological classification
suggests that these two topological states of matter cannot be distinguished, as they
are both described by a Z topological invariant, we showed that QH and QAH phases
can coexist and can be disentangled by virtue of the parity anomaly. In this respect,
we demonstrated that the QAH topology remains encoded in a peculiar topological
quantity, the spectral asymmetry η. Deriving the effective action of a QAH insulator,
we demonstrated that while each QH edge state is related to a single LL, the QAH edge
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state is encoded in the asymmetry of the entire LL spectrum (i.e., η). The latter acts
effectively as if there is an additional ‘LL’ in magnetic fields (mathematically speaking,
the QAH edge state is related to a peculiar Chern-Simons term in the effective action).
As a result of the survival of the QAH phase, we revealed that counterpropagating QH
and QAH edge states can emerge in QAH insulators. We analyzed the behavior of
these quasi-helical edge states a and found some exotic magnetotransport signatures:
First, we demonstrated a peculiar type of charge pumping from the QAH edge states
into all valence band LLs with increasing magnetic field. Second, we studied a toy
model to show that, when quasi-helical edge states are coupled to a small residual
bulk conductivity, which can for example arise due to a large charge puddle density,
exotic values can emerge for the longitudinal and transverse resistance. The latter is
possible due to the different band character and the different localization length of
the two counterpropagating edge states. We closed this chapter by exploring in more
detail signatures of the parity anomaly (spectral asymmetry) in para- and ferromagnetic
topological insulators (TIs). For ferromagnetic TIs, we showed that the key signature
of the QAH phase in magnetic fields (at constant chemical potential) is a hysteresis-
like behavior of the Hall conductivity. While this feature has been already confirmed
experimentally [24], we showed that it is limited to a regime where the magnetization
of the ferromagnet dominates over the external (orbital) field. When the orbital part
of the magnetic field starts to dominate, we predicted a sudden drop of σxy to zero.
The experimental observation of this prediction is so far outstanding. In the case of
paramagnetic TIs, we demonstrated that the Hall conductivity follows a reentrant like
behavior. This means a transition with increasing magnetic fields from 0 to ±e2/h back
to 0. We showed that both signatures are encoded in the spectral asymmetry and are
as such a representative of the parity anomaly.

In the presented calculations, we have assumed so far that the temperature T = 0 K.
In a future study, it would be thus very instructive to extend the spectral asymmetry
calculation to finite temperatures. My collaborator C. Tutschku is already proceeding
in that direction. Another assumption, that we have made to keep the derivation of the
spectral asymmetry analytically manageable, is that we have neglected Rashba spin-
orbit interaction [168] and bulk inversion asymmetry terms [17]. As both terms cannot
cause a topological transition b, I do not expect that these terms should contribute
to the spectral asymmetry. Nonetheless, a rigorous proof of this statement is still
outstanding. Regarding the QAH edge state, it is interesting to study the effect of
the boundary conditions in more detail. So far, we have assumed hard-wall boundary
conditions in one of the spatial directions. But recently, it was argued that these
boundary conditions can result in spurious solutions which can affect the energetic

aBy quasi-helical, we mean that the edge states are counterpropagating but not protected by time-
reversal symmetry.

bThey do not break time-reversal symmetry.
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position of the QAH edge states [138, 139]. In this regard, it will be interesting in a
future study to play with the boundary conditions and investigate their influence on
the coexistence of QH and QAH edge states.

Motivated by the experimental observation of emergent QH plateaus in (Hg,Mn)Te
quantum wells at magnetic fields as low as 20–30 mT, we developed in Ch. 3 a nu-
merical implementation of the 8× 8 Kane model. The latter allowed us to investigate
(Hg,Mn)Te/(Hg,Cd)Te quantum wells for a large range of quantum well thicknesses and
Mn-concentrations. The advantage of using the 8× 8 Kane model instead of the BHZ
model is that it captures the additional maxima in the valence band dispersion at large
momenta (the ‘camelback’). These maxima arise from an inverted band structure and
are as such a byproduct of the nontrivial band structure topology. We demonstrated
that these maxima, which represent a Van-Hove-like-singularity, pin the chemical po-
tential and lead to rich LL structures in magnetic fields. In general, it is found that
the landscape of topologically nontrivial TIs can be further subdivided into direct and
indirect gap TIs. In direct gap TIs, pinning of the chemical potential to the camel-
back can cause an onset to QH plateaus at exceptionally small magnetic fields (tens of
mT). In comparison, in indirect gap TIs, the camelback prevents the observation of QH
plateaus up to large magnetic fields (a few tesla). Furthermore, we showed that the
paramagnetic exchange interaction, resulting from the localized d-electrons of the Mn
atoms, offer the possibility to further reduce the onset fields by applying an in-plane
magnetic field. All in all, our theoretical results allowed us to attribute the experi-
mentally observed onset of QH plateaus at exceptionally small magnetic fields to the
camelback.

An onset of QH plateaus in the mT-regime clearly opens the door for a wide range
of possible applications: For instance, it has been proposed that a chiral edge channel
proximitized with an s-wave superconductor is a possible setup to realize chiral Majo-
rana fermions [157]. Since a small magnetization is crucial to induce superconductivity,
an onset in the mT-regime is clearly desired. In contrast, in typical QAH insulators
like Cr doped Bi-compounds, the large magnetization (a few tesla) poses a challenge
for superconductivity. Another direction for future works involves an extension of our
analysis to other 2D TIs, such as InAs/GaSb [75] quantum wells or WTe2 [76]. Finally,
let us comment on the relation between the results of Ch. 2 and 3. Clearly, (Hg,Mn)Te
quantum wells are a prototype paramagnetic TI for which we expect to find signatures
of quasi-helical QH and QAH edge states. The experiments, which have been presented
in Ch. 3, focus however on carrier densities in the bulk p-regime and at ultra-low mag-
netic fields, for which the QAH effect cannot be induced. More recent experiments (in
the group of Laurens W. Molenkamp) on (Hg,Mn)Te quantum wells at larger magnetic
fields seem to confirm our prediction of quasi-helical edge transport. However, as the
research on this subject is currently ongoing, it might be too early to draw any final
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conclusions.

In Ch. 4, we extended our work from Ch. 3 studying the 2D to 3D crossover in HgTe
quantum wells by increasing the quantum well thickness. We found that the crossover
occurs thereby without exhibiting oscillations between topologically trivial and non-
trivial regimes, which are predicted to occur in Bi-based TIs [163]. In the large system
limit, we showed that the Dirac point is buried deep in the heavy hole like valence
band and is formed by the E1 and L1 subbands. By considering additional terms in
the Kane Hamiltonian that result from a reduced point group symmetry at the interface
between well and barrier material, we showed that the Dirac point can be shifted closer
to the valence band edge in agreement with ab-initio calculations [35, 160, 161] and
ARPES measurements [28, 166]. In addition, we modeled the electrostatic charging of
the topological surface states by effective Hartree potentials to shift the Dirac point
from the valence into the conduction band. The cyclotron frequency was determined
for the surface electrons, which showed an excellent agreement with the experiment.
The latter confirms the accuracy of our k · p approach.

In the presented model, we tried to estimate the strength of the additional surface terms
by comparing our results from the Kane model with ab-initio calculations and ARPES
measurements. At the present stage, it is however not clear whether other terms exist
in the Kane model which would additionally modify the position of the Dirac point.
In the future, it would be interesting to perform an exhaustive symmetry analysis to
identify all terms that manipulate the position of the Dirac point and perform detailed
calculations of the electrostatics in these materials.
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A.
Kane parameters for various
compound semiconductors

The bulk band structure parameters of HgTe, CdTe, and MnTe, employed in Ch. 3,
are listed in Tab. A.1. Since MnTe does not crystallize in the zincblende structure
[91], parameters for MnTe are obtained by extrapolating data for Hg1−xMnxTe, which
are known for x < 0.2 [146], against x = 1. This approximation is justified since we
consider only cases for which x ≤ 0.04. According to Ref. [91, 146], incorporating small
fractions of Mn-atoms alters mainly the band gap Eg and the lattice constant a of
HgTe, while all other parameters remain almost unaffected b. We therefore take the
same parameters for MnTe as for HgTe, except for a and Eg, cf. Tab. A.1.

a [nm] Eg [eV] ∆ [eV] P [eVnm] F γ1 γ2 γ3 κ

HgTe 0.6462 −0.303 1.08 0.846 0 4.1 0.5 1.3 −0.4
CdTe 0.6482 1.606 0.91 0.846 −0.09 1.47 −0.28 0.03 −1.31
MnTe 0.6349 4.423 1.08 0.846 0 4.1 0.5 1.3 −0.4

Table A.1.: List of bulk band structure parameters [Kane parameters, cf. Eq. (3.3)]
for various compound semiconductors. Parameters for HgTe and CdTe are taken from
Ref. [150], parameters for MnTe are adapted from Refs. [91, 146].

A.1. Kane parameters for (Hg,Cd)Te
Let us first focus on the compound semiconductor Hg1−xCdxTe, for which x can be
continuously tuned from x = 0 to 1, since the materials crystallize in the zincblende
structure for all x. The discussion follows along the lines of Ref. [150]. The va-
lence band offset (see Fig. 1.7) between bulk HgTe and bulk CdTe is given by Evo =

bW. Beugeling performed the data interpolation.
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Ev(HgTe)− Ev(CdTe) = 0.57 eV [169]. We assume that the valence band edge energy
Ev of Hg1−xCdxTe interpolates linearly with x

Ev(x) = −Evo x , (A.1)

i.e., we fix the energy reference with respect to Ev(0) = Ev(HgTe) ≡ 0 meV. The band
gap evolves according to [170]

Eg(x) = EHgTe
g (1− x) + ECdTe

g x− 0.132x(1− x) eV , (A.2)

where EHgTe
g and ECdTe

g denote the bulk band gap of HgTe and CdTe, respectively
(see Tab. A.1). For the remaining Kane parameters, except for the lattice constant, we
assume that they linearly interpolate with the Cd-concentration x. The lattice constant
of Hg1−xCdxTe is modeled according to Ref. [171]:

aHgCdTe(x) = aHgTe +
(
0.0009x+ 0.0017x2 − 0.0006x3

)
nm , (A.3)

where aHgTe and aCdTe is the equilibrium lattice constant of bulk HgTe and CdTe,
respectively (see Tab. A.1).

A.2. Kane parameters for (Hg,Mn)Te

For small fractions of Mn, Hg1−xMnxTe crystallizes in the zincblende structure [172].
We assume that the bulk band gap interpolates linearly with the Mn-concentration:

EHgMnTe
g = EHgTe

g +
(
EMnTe
g − EHgTe

g

)
x . (A.4)

For the valence band edge energy Ev and the conduction band edge energy Ec, we
model the influence of Mn-atoms as:

EHgMnTe
v (x) = −αEvo x , (A.5)

EHgMnTe
c (x) = EHgMnTe

g (x) + EHgMnTe
v (x) , (A.6)

where α = (EMnTe
g −EHgTe

g )/(ECdTe
g −EHgTe

g ). The lattice constant of Hg1−xMnxTe is
given by [91]:

aHgMnTe(x) = aHgTe − 0.01131x nm . (A.7)
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A.3. Strain parameters

A.3. Strain parameters
In the experiment, (Hg,Mn)Te / (Hg,Cd)Te quantum wells are pseudomorphically
grown on different substrate materials. This yields a lattice mismatch for the well
material, which is given by [see also Eq. (3.9)]

εS = aSub − aW
aW

, (A.8)

where aSub is the equilibrium lattice constant of the substrate and aW is the equilibrium
lattice constant of the well material. For the well material, we focus on (Hg,Mn)Te
whose lattice constant is given by Eq. (A.7). For the substrate, we consider either
(Hg,Cd)Te, for which the lattice constant is given by Eq. (A.3), or Cd(1− x)ZnxTe for
which the lattice constant is given by [173]:

aCdZnTe(x) = aCdTe − 0.0378x nm , (A.9)

where aCdTe is the lattice constant of bulk CdTe. Adjusting the Zn-concentration to
x ≈ 0.04 allows to lattice match the substrate to bulk HgTe. As explained in Sec. 3.1.3,
strain is included in the Kane model via the Pikus-Bir Hamiltonian, Eq. (3.10). The
associated bulk parameters are listed in Tab. A.2.

C [eV] aS [eV] b [eV] d [eV] C11 [GPa] C12 [GPa]

HgTe −3.83 0 −1.50 −2.08 53.6 36.6
CdTe −4.06 −0.7 −1.17 −3.20 53.6 37.0

Table A.2.: Pikus-Bir strain parameters, Eq. (3.10), taken from Ref. [150]. For
(Hg,Mn)Te, we assume the same parameters as for bulk HgTe.
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B.
Limitations and extensions of

Bernevig-Hughes-Zhang model

The BHZ model is derived from the 8×8 Kane model based on quasi-degenerate pertur-
bation theory (also known as Löwdin perturbation theory) [15]. The latter subdivides
the space of all quantum well subbands into two weakly coupled classes: Class A con-
tains only those states for which the interaction is supposed to be computed exactly,
while states in class B are taken into account perturbatively up to the desired order
[144, 152]. For instance, in the case of the BHZ model, class A consists of the four basis
states |E1, ↑〉, |H1, ↑〉, |E1, ↓〉, and |H1, ↓〉 (cf. Sec. 1.3.2).

As a perturbative model, the scope of the BHZ model is limited to small energies and
small momenta. In particular, it does not account for the camelback at large mo-
menta [cf. Ch. 3]. Its scope can be however improved by including more quantum
well subbands within the class A. The most simple extension of the BHZ model con-
tains therefore additionally to the usual BHZ basis states the two H2 subbands. The
Hamiltonian of this extended BHZ model is given by [81]:

H6×6(k) =

h3×3(k) 0
0 h?3×3(−k)

 , (B.1)

where

h3×3(k) = CI3 +


M − (B +D)k2 Ak+ Rk2

−

Ak− −M + (B −D)k2 0
Rk2

+ 0 ∆−BH2k
2

 . (B.2)

Equation (B.1) is thereby written in the basis |E1, ↑〉, |H1, ↑〉, |H2, ↑〉, |E1, ↓〉, |H1, ↓〉,
and |H2, ↓〉; ∆ denotes the energetic position of the H2-subband, BH2 describes its
effective mass, R describes the coupling between the H2 and E1 subbands, and C

denotes an energetic offset (I3 is the three dimensional identity matrix).
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Figure B.1.: Bulk band structure of extended BHZ model for a (a) direct and (b)
an indirect semiconductor. The parameters in (a) are given by M = −10 meV,
B = −1000 meV nm2, D = −800 meV nm2, A = 365 meV nm, ∆ = −30 meV,
BH2 = −100 meV nm2, R = 1500 meV nm2, and C = 0 meV. The parameters in (b) are
given by M = −15 meV, B = −1000 meV nm2, D = −800 meV nm2, A = 365 meV nm,
∆ = 0 meV, BH2 = −100 meV nm2, R = 3000 meV nm2, and C = 0 meV. The band
ordering of the E1, H1, and H2 subbands are indicated.

Figure B.2.: Comparison between 8×8 Kane model (blue line) for a Hg0.976Mn0.024Te
quantum well with dQW = 11 nm (compare Ch. 3) and extended BHZ model (red
line) with M = −2 meV, B = −640 meV nm2, D = −560 meV nm2, A = 365 meV nm,
∆ = −21 meV, BH2 = −100 meV nm2, R = 4000 meV nm2, and C = −48 meV. The
extended BHZ parameters are optimized with respect to the height of all extrema of
the 8× 8 Kane model.

The advantage of using this extended BHZ model is that it allows us to describe the
band structure of direct and indirect gap semiconductors as shown in Fig. B.1. Nonethe-
less, deviations from the full 8 × 8 Kane model are expected due to the perturbative
nature of this model. For completeness, we compare therefore in Fig. B.2 the disper-
sion of the full Kane model with the extended BHZ model. While the extended BHZ
model does clearly a better job than the conventional (four-band) BHZ model in de-
scribing the camelback, there are still strong deviations with respect to the position of
the extrema and the curvature of the valence bands (parameters are optimized with
respect to the height of the extrema). Despite being computationally more heavy, it
is therefore sometimes advisable to work with the full 8 × 8 Kane model, when very
accurate results are desired.
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