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Abstract Background: Melanoma is the most dangerous type of skin cancer but is curable if

detected early. Recent publications demonstrated that artificial intelligence is capable in clas-

sifying images of benign nevi and melanoma with dermatologist-level precision. However, a

statistically significant improvement compared with dermatologist classification has not been

reported to date.

Methods: For this comparative study, 4204 biopsy-proven images of melanoma and nevi (1:1)

were used for the training of a convolutional neural network (CNN). New techniques of deep

learning were integrated. For the experiment, an additional 804 biopsy-proven dermoscopic

images of melanoma and nevi (1:1) were randomly presented to dermatologists of nine

German university hospitals, who evaluated the quality of each image and stated their
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recommended treatment (19,296 recommendations in total). Three McNemar’s tests

comparing the results of the CNN’s test runs in terms of sensitivity, specificity and overall cor-

rectness were predefined as the main outcomes.

Findings: The respective sensitivity and specificity of lesion classification by the dermatologists

were 67.2% (95% confidence interval [CI]: 62.6%e71.7%) and 62.2% (95% CI: 57.6%e66.9%).

In comparison, the trained CNN achieved a higher sensitivity of 82.3% (95% CI: 78.3%

e85.7%) and a higher specificity of 77.9% (95% CI: 73.8%e81.8%). The three McNemar’s tests

in 2 � 2 tables all reached a significance level of p < 0.001. This significance level was sustained

for both subgroups.

Interpretation: For the first time, automated dermoscopic melanoma image classification was

shown to be significantly superior to both junior and board-certified dermatologists

(p < 0.001).

ª 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

Melanoma is accountable for the most skin cancer-
erelated deaths, and early detection is the most relevant

prognostic factor for survival [1]. In Western countries,

melanoma is primarily detected via dermoscopy. How-

ever, the sensitivity of dermoscopic melanoma detection

is mostly less than 80% for dermatologists in routine

clinical settings [2]. Thus, new diagnostic tools that assist

the dermatologists’ diagnosis should be developed,

evaluated and optimised.
Recent studies in digital skin diagnosis have used

convolutional neural networks (CNNs) to classify im-

ages of melanoma and nevi with accuracies comparable

with those achieved by dermatologists [3e5]. When

training their algorithms, the prior studies used large

numbers of images confirmed by consensus decisions.

When using images confirmed in this manner, there is a

high risk that the CNN will learn the decision-making
process of dermatologists, including all possible mis-

judgements. In contrast, the purpose of this study was to

demonstrate the first systematic outperformance of

(board-certified) dermatologists by training our CNN

with biopsy-verified images exclusively and using new

techniques of enhanced deep learning.
2. Methods

2.1. Study design

This comparative study was conducted from 20th

September 2018 (design of the study) to 20th February

2019 (completion of data analysis). The completion of

the anonymous electronic questionnaires was under-

taken from 5th December 2018 to 18th December 2018.
The inclusion of dermatologists was conducted via

randomly assigned links to the department directors of 9

university hospitals who would send two questionnaires

to their employed dermatologists via the official
university e-mail accounts. Ethical approval was waived

by the Ethics Committee of the University of Heidelberg

owing to the anonymity of the survey and the derma-

tologic images.

2.2. Training of the CNN

We used a pretrained [6] ResNet50 CNN [7]. To adapt
the CNN for the classification of our test set, 4204 open-

source and biopsy-proven images (1:1 Z melanoma:-

nevi) from the International Skin Imaging Collabora-

tion image archive were used; this number of images is

two times fewer than that used in prior studies [8]. For

evaluation of the CNN, a test set of 804 biopsy-proven

test images (melanoma:nevi Z 1:1) was generated,

which was separate from the training set.
In contrast to existing works on melanoma classifi-

cation, we used additional state-of-the-art training

techniques:

1. Differential learning rates, rather than the same learning

rate for all layers [9].

2. Reduction of the learning rate based on a cosine function

[17].

3. Stochastic gradient descent with restart, to avoid local

minima [17].

For more technical details, please see Appendix 1.

2.3. Comparison with dermatologists

The test set images were sent to dermatologists from

nine German university hospitals via six randomly

assigned electronic questionnaires, each containing 134

images of different skin lesions. The dermatologists were

informed about the composition of the images
(1:1 Z melanoma/nevi) and were asked to both check

the quality of the images and decide to either biopsy/

treat the lesion or reassure the patient. No incentives

were offered for participation; however, the

http://creativecommons.org/licenses/by-nc-nd/4.0/
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dermatologists were encouraged to test their knowledge.

In total, the six questionnaires were completed 144 times

(19,296 images were evaluated); 52 questionnaires were

filled out by board-certified dermatologists (evaluation

of 6968 images), and 92, junior dermatologists (evalua-

tion of 12,328 images); each dermatologist was provided

a maximum of two questionnaires. Each of the 804 in-

dividual images was evaluated by an average of 21.3
dermatologists (medianZ 21; standard deviationZ 4.8;

range Z 4e31). Only images with at least ‘sufficient’

image quality, as rated by the participating dermatolo-

gists, were included in this study. In this study, we

consider the image quality to be sufficient if the corre-

sponding image is rated as ‘excellent’, ‘good’, or ‘suffi-

cient’. We excluded 11.1% of the answers owing to poor

image quality as determined by the participating der-
matologists. To ensure fair comparisons between the

results determined by dermatologists and those deter-

mined by the CNN, we conducted 144 runs of the CNN;

each test set of each CNN run corresponded exactly to

the images rated as ‘sufficient’ by the dermatologists. A

sample was regarded as a melanoma diagnosis by the

CNN if the average melanoma probability from all runs

was �50%. Equally, a sample was regarded as a mela-
noma diagnosis by the dermatologists if the majority

selected that classification. Fig. 1 shows example images

of skin lesions assigned to different classes by the der-

matologists and the CNN.

2.4. Statistical analysis

To quantitatively evaluate the quality of the CNN

classification and the performance of the dermatologists,

images with known class labels were used to compare

the class label assigned by the classifier with the actual

class (as determined by biopsy).

Sensitivity and specificity were calculated separately
for the summary decisions of the CNN and the derma-

tologists; exact binomial 95% confidence intervals (CIs)

were calculated for sensitivity and specificity. Both

sensitivity and specificity are statistical values that

depend on the same configurable parameter, namely, the

cut-off value. In a binary classification problem, this

scalar value determines from which output value of the

CNN the input is assigned to which class. The default
value is normally 0.5, but can be adjusted to the

respective question. If this parameter is lowered, the

sensitivity increases and the specificity decreases and

vice versa. The receiver operating characteristic (ROC)

curve visualises this relationship. Sensitivity,

specificity and overall rates of correct classifications

(primary end-point) were compared statistically using

three separate two-sided McNemar’s tests in 2 � 2 ta-
bles. For the comparison of overall correctness, a joint

2 � 2 table was generated, which included all samples

(melanoma and nevi) and showed the numbers of sam-

ples where none, one or both methods produced a
correct diagnosis. The significance level was set at

alpha Z 5%. Sample size considerations can be found in

Appendix.

All analyses were programmed via a Jupyter Note-

book in Python.
3. Results

The confusion matrices of melanoma and nevi classifi-

cations in the test set are shown in Fig. 2.

The sensitivity and specificity for classification by the

dermatologists were 67.2% (95% CI: 62.6e71.1%) and

62.2% (95% CI: 57.6e66.9%), respectively. The board-

certified dermatologists achieved a sensitivity and spec-
ificity of 63.2% (95% CI: 58.7e68.1%) and 65.2% (95%

CI: 60.5e69.8%), respectively. In contrast, the classifi-

cation results of the junior physicians showed a higher

sensitivity of 68.9% (95% CI: 64.4e73.4%), whereby the

specificity with 58% (95% CI: 53.1e62.8%) is lower. The

trained CNN achieved a sensitivity of 82.3% (95% CI:

78.3e85.7%) and specificity of 77.9% (95% CI:

73.8e81.8%).
Fig. 3 shows the average ROC curve of the CNN.

Sensitivity, specificity and overall rates of correct

classifications were compared statistically using three

separate (two-sided) McNemar’s tests in 2 � 2 tables.

For the comparison of overall correctness (primary

objective), a joint 2 � 2 table was generated, which

included all samples (melanoma and nevi) and showed

the numbers of samples where none, one or both
methods produced a correct diagnosis. Two additional

tables were created showing only melanoma and only

nevi, respectively, and sensitivity and specificity were

calculated and compared based on these tables (sec-

ondary objective). The significance level was set at

alpha Z 5%. The CNN (trained exclusively with open-

source images) outperformed our sample of dermatol-

ogists (p < 0.001). If board-certified dermatologists and
junior physicians were considered separately in the sta-

tistical test, the CNN also showed a significant out-

performance for both cases (McNemar’s p < 0.001). The

secondary classification results regarding both sensi-

tivity and specificity showed a p-value <0.001.
4. Discussion

For the first time, automated dermoscopic melanoma

image classification was shown to be significantly supe-

rior to both junior and board-certified dermatologists

(p < 0.001).

Past studies used nonebiopsy-verified images for

training and would often calculate the overall perfor-
mance on the basis of the sensitivities and specificities of

the individual dermatologists or not disclose the

composition of images but train their CNN with this

exact composition [8]. These points were addressed by



Fig. 1. Example images from the test set that were classified differently by the majority of dermatologists and the convolutional neural

network (CNN).
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our design; majority decisions on images and the rating

of quality of all the test set images enable a high reli-

ability on the answers and minimise the impact of

redundancy [10]. The use of biopsy-verified images
exclusively allowed systematic outperformance of de-

cisions made by board-certified dermatologists. The

composition of the images was disclosed to the derma-

tologists before answering the survey.
Moreover, the present study is the first conducting

not only one dedicated training and test run but also the

same number of test runs as performed by the derma-

tologists. To allow the reproducibility of our results and
enable other groups to compare their algorithms, we

provide the test set, the underlying ground truth per

image and the majority answers per image for public use

(Appendix 2).



Fig. 3. Mean receiver operating characteristic (ROC) curve of the convo

results of dermatologists differentiated by years of experience in der

Physicians with less professional experience show a slightly higher sensi

therefore tend to classify a skin lesion as melanoma to avoid leaving a

nevi are classified more precisely, resulting in a higher specificity. CNN

Fig. 2. Confusion matrices on the test set for melanoma and nevi

classification. The overall result is listed, as well as the results of the

board-certified dermatologists and the junior physicians. On the left

side, the classification results (n Z nevi, m Z melanoma) of der-

matologists and the CNN for the 402 biopsy-proven melanoma are

shown. If the entirety of the dermatologists in the survey is consid-

ered, 237 melanomas are classified correctly, 38 melanomas are

misclassified as nevi by both classifiers. Ninety-four melanomas are

detected by the CNN, with dermatologists misclassifying these skin

lesions as nevi. Thirty-three melanomas are correctly classified by

the majority of dermatologists, whereby these skin lesions are not

detected as melanoma by the CNN. The other matrices should be

read in the same way. CNN, convolutional neural network.
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Past research conducted by the authors consists of (a)

a melanoma classification benchmark for both clinical

and dermatoscopic images together with the sensitivity

and specificity of 157 German dermatologists [11], (b) a

CNN trained on the basis of dermoscopic images but

tested with the benchmark of clinical images [12] and (c)

a (non-systematic) outperformance of 136 of 157 of the

dermatologists for dermoscopic images [13]. In all pre-
ceding publications, nonebiopsy-verified images were

used for training. In addition, our sample size calcula-

tion revealed that the test set used in the previously

published benchmark consisting of only 20 melanomas

and 80 nevi is too small to demonstrate systematic

outperformance with high external validity [11]. There-

fore, the test set in this work consists of 402 melanomas

and 402 nevi.
The diagnostic performance of dermatologists was

lower than that typically found in past research

owing to the fact that all images in our test set were

biopsy verified (and therefore all suspicious of

melanoma).

Our findings add to a growing body of literature

demonstrating that in modern CNN architectures, large

numbers of images are not needed for training to ach-
ieve high accuracies for classification but rather the

quality of the training data is important [14]. In com-

puter vision, this is mostly attributable to enhanced data

extraction features of modern CNNs. Recent research

indicates that CNNs are also capable of enhancing the

precision of histopathological melanoma diagnoses and

may predict a nevis’ oncologic transformation [18e21].

In our reader study, the sensitivity of junior physi-
cians is higher than that of more experienced colleagues,

whereas the specificity is substantially lower, which are

both confirmatory to our recently published benchmark

[11]. The authors hypothesise that the higher sensitivity

is mainly due to the fact that in case of doubt, the junior
lutional neural network (red): the dots represent the average group

moscopy (left panel) and the position in hierarchy (right panel).

tivity than their more experienced colleagues. In case of doubt, they

malignant case untreated. With increasing professional experience,

, convolutional neural network.
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physicians classify lesions as malignant rather than

benign to not miss any melanoma owing to less clinical

experience and confidence.
4.1. Limitations

The main limitation of this study is the lack of clinical

information on the images, which has however shown to

improve the answers of dermatologists only slightly [4]

and thus would be unlikely to preclude significance. In

addition, it should be mentioned that the decision of the

developed algorithm is binary and thus does not reflect

clinical practice with many options to take into account

for the differential diagnosis. As a consequence, the use
of current binary melanoma classification algorithms

should be regarded as an assisting tool for dermatolo-

gists that may improve accuracy but not as a replace-

ment for independent diagnoses without a supervising

dermatologist. In addition, the setting of the investiga-

tion does not reflect clinical practice in which one may

ask questions to the patient and which allows careful

palpation of the skin lesion as additional diagnostic in-
formation (i.e. how soft/hard a lesion feels). The clinical

routine may not be reflected by a study conducted in

front of the computer. However, the most important

diagnostic aspect for clinicians in dermoscopy is visual.

Another limitation may be that we chose a ratio of

1:1 (melanoma:nevi) in the test set for statistical reasons,

which does not reflect clinical practice. Accordingly, not

disclosing the ratio to the participating dermatologists
could have led to a systematic bias. However, we made

sure that all participants were informed of this ratio

before answering the survey (reading about the ratio was

mandatory before starting to answer the questionnaire),

and thus, the likelihood of this ratio to have an impact

on the reader study is reduced.

The images used in the test set were all biopsy veri-

fied; however, they were not verified by an independent
pathology review panel, which would have improved the

underlying ground truth [15].

The diagnostic performance of dermatologists was

lower than that typically found in past research owing to

the fact that all images in our test set were biopsy veri-

fied (and therefore all suspicious of melanoma) [16].
4.2. External validity of the algorithm

The classifier’s performance was established on a test-set

disjunct from the training and validation set. However,

the test images originated from the same overall dataset

which was used for training (ISIC), thus raising concern

about the classifier’s ability to generalise on a truly
external test set (i.e. a set of images where a subset was

not used for training/validation). A valid concern as

factors intrinsic to the training dataset (e.g. type of

dermatoscope, lighting or pre-processing) could be
picked up during training and result in the network

better classifying images sharing these intrinsic factors.

In a preliminary study, a binary-classification CNN

(naevus vs melanoma), trained on ISIC images, showed

good performance on an ISIC test set but performed

worse on an external test set from the PH2 dermoscopic

image database [22]. Using just 100 images from the

external test set for fine-tuning the CNN (training of the
last fully-connected layers), sufficed to completely

restore performance.

This specific limitation needs further investigation

evaluating points such as

1) whether this is a general phenomenon or occurred due to

overtraining on ISIC,

2) is fine-tuning an option for every external set and

3) is there a transferable fine-tuning procedure?

5. Conclusions

Our findings suggest that artificial intelligence algo-

rithms may successfully assist dermatologists with mel-

anoma detection in clinical practice, which needs to be

carefully evaluated in prospective clinical trials. Future

research should test our results in a clinical setting with

patients at hand. We suggest implementation after the

clinical diagnosis is made by the dermatologist to avoid

bias.
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