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Deutschsprachige

Zusammenfassung

Im Jahr 2000, während des United Nations Millennium Summit, wurden die Mille-

nium Development Goals beschlossen, eine Agenda von acht Zielen bis 2015, von denen

drei einen direkten Fokus auf Gesundheit haben (Sachs and McArthur, 2005; WHO,

2015). Bis 2015 wurden die Ziele nicht vollständig erreicht, trotzdem war der Fortschritt

beachtlich: Weltweit konnten HIV, Tuberkulose und Malaria zurückgedrängt und Kinder-

und Muttersterblichkeit stark gesenkt werden (WHO, 2015). Im Anschluss wurden 2015

die Sustainablity Development Goals beschlossen, welche bis 2030 Gültigkeit haben und

nun aus 17 Zielen, immer noch mit starkem Fokus auf Gesundheit, bestehen.

Einen großen Einfluss auf das Erreichen dieser Ziele hat dabei der Einkauf von

Medikamenten und medizinischen Hilfsgütern, um bei den meist restringierten Budgets

mehr Menschen zu versorgen und durch eine bessere Auswahl der Lieferanten und Her-

steller Lieferungen pünktlich und in angemessener Qualität an ihr Ziel zu bringen. Or-

ganisationen wie die WHO, UNICEF, USAID oder der Global Fund veröffentlichen und

aktualisieren deshalb auch regelmäßig ihre Einkaufsrichtlinien und -prinzipien. Abhängig

von Nachfrage, Budget, Produkt und Herstellern sind Einkäufer mit unterschiedlichen

Problemstellungen konfrontiert, welche jeweils individuelle Lösungen erfordern. Im Un-

terschied zu Einkaufsentscheidungen in der Industrie, zu denen bereits eine breite Palette

an Forschung existiert, sind die Zielsetzungen für humanitäre Organisationen oft anders

(zum Beispiel anstelle von Gewinnmaximierung die Maximierung der Anzahl geimpfter

Menschen). Deshalb untersuche ich in dieser Arbeit drei unterschiedliche, dem Einkauf

zuzuordnende, Problemstellungen aus dem Bereich ”Global Health”.

Der erste Teil, welcher eine gemeinsame Arbeit mit Dr. Alexander Rothkopf und

Prof. Dr. Richard Pibernik entstanden ist, ist durch eine Studie motiviert die Entschei-

dungsträgern zweier Einkaufsorganisationen beim Einkauf von Depot Medroxyproges-

terone Acetate (DMPA), einem länger wirkenden Verhütungsmittel, unterstützen sollte.
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Zum Zeitpunkt der Studie stand den Organisationen nur eine qualifizierter Lieferanten

zur Verfügung. Ein zweiter Zulieferer stand kurz vor der Zulassung. Ziel der Arbeit war

es den Mehrwert des neuen Lieferanten zu quantifizieren und die optimale Aufteilung

der Bestellmengen zwischen beiden Lieferanten zu ermitteln. Hierbei spielt die richtige

Abwägung von Preisen (getrieben durch den Wettbewerb zwischen beiden Lieferanten)

und Risiko (getrieben durch unsichere Lieferzeiten und Ausfallwahrscheinlichkeiten) eine

entscheidende Rolle. In unserer Arbeit zeigen wir wie sich die optimale Aufteilung an-

hand diverser Parameter, wie Lieferzuverlässigkeit, Kosten und Kapazität, verändert,

und untersuchen die Abwägungsentscheidung zwischen Wettbewerb und Risiken.

Im zweiten Teil, der ebenfalls eine gemeinsame Arbeit mit Dr. Alexander Rothkopf

und Prof. Dr. Richard Pibernik ist, untersuchen wir einen innovativen Einkaufsmecha-

nismus den wir ”Postponement Tender” nennen. Das zugrundeliegende Problem ist das

eines Einkäufers, welcher mit der unsicheren Qualität eines neuen Lieferanten konfron-

tiert ist, und der daraus resultierenden Allokationsentscheidung zwischen bestehendem

und neuen Lieferanten. Anstatt alles auf einmal zu vergeben, kann der Einkäufer auch

zuerst einen Teil des Volumens an beide Lieferanten vergeben um die unsichere Qualität

des neuen Lieferanten besser einzuschätzen. Nachdem die Lieferanten die ersten Volu-

mina geliefert haben kann der Einkäufer die Qualität der Lieferanten besser beurteilen

und kauft dann die nachgelagerte Menge vom besseren Lieferanten. Da die Lieferanten

bereits zu Beginn Preise festlegen müssen, kann der Einkäufer durch diesen Mechanis-

mus sowohl durch verbesserten Wettbewerb profitieren als auch von einem niedrigeren

Qualitätsrisiko, da er dabei etwas über die Qualität der Lieferanten lernt. Wir zeigen in

einer detaillierten Analyse wie, abhängig von Einkaufs- und Wettbewerbssituation, die

Aufteilung zwischen dem ersten und dem zweiten Teil erfolgen sollte und unter welchen

Bedingungen der ”Postponement Tender” besser als eine klassische Einzelquellenbeschaf-

fung ist.

Der dritte Teil ist durch den Business Case Kenianischer Apotheken motiviert: diese

können durch die Koordination von Bestellungen niedrigere Einkaufspreise aufgrund

von Mengenrabatten bei Lieferanten erzielen sowie fixe Bestellkosten wie Logistikkosten

teilen. Aufgrund einer Vielzahl von Produkten ist diese Koordination allerdings sehr

komplex und mit einem hohen Aufwand sowie Kosten verbunden. Um diese Hürde

zu überwinden entwickle ich eine neue, datengetriebene Bestellpolitik für mehrperiodis-

che Bestandsmanagementprobleme mit mehreren Produkten und Skaleneffekten in fixen

sowie variablen Bestellkosten. Die entwickelte Politik beruht auf den Prinzipien von

Erneuerungstheorie und Sample Average Approximation. Desweiteren analysiere ich

die Performance dieser Politik anhand realer Daten aus dem zugrundeliegenden Busi-
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ness Case. In einer ersten Auswertung zeigt sich, dass die resultierenden Kosten nah

an denen der theoretisch optimalen Bestellpolitik liegen. Weiter wird gezeigt, dass sich

das Verhältnis zu ex-post optimalen Kosten in Szenarien in denen es keine theoretisch

optimale Bestellpoltik gibt (mehrere Produkte und Mengenrabatte) im selben Rahmen

befindet wie in Szenarien mit optimaler Bestellpolitik. Insgesamt zeigt der entwickelte

Ansatz viel Potential für die Lösung komplexer Bestandsplanungsprobleme.
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Chapter 1

Introduction

In 2000, during the United Nations (UN) Millennium Summit, 147 heads of state adopted

the Millennium Development Goals (MDGs) (Sachs and McArthur, 2005), an agenda

of eight goals to achieve by 2015, of which three focused directly on health (WHO,

2015). By 2015, ”progress on the three health goals and targets [was] considerable.

Globally, the HIV, tuberculosis (TB) and malaria epidemics were ’turned around’, [and]

child mortality and maternal mortality decreased greatly (53% and 44%, respectively,

since 1990), despite falling short of the MDG targets” (WHO, 2015, p. 3). In 2015 the

UN adopted the Sustainability Development Goals (SDGs), now consisting of seventeen

goals, which have a large focus on health-related topics.

To achieve these goals and supply a large number of people with the right medicine

and medical equipment, procurement costs must be kept low because of constrained

budgets. According to Barraclough and Clark, ”given the limited budgets of virtually

all health programs, pharmaceutical procurement costs must be a concern of all policy

makers, senior officials, essential medicines program managers, and procurement staff”

(Management Sciences for Health, 2013, p. 18.5). Initiatives must be sustainable, as

”health care is increasingly expensive [because of] growing population, increasing health

care standards, new medicines offering better therapeutic perspectives, [and] modern

therapeutic techniques requiring more expensive equipment and staff with special train-

ing” (Chisale, M., 2017). Procurement costs can be lowered by, for example, using

economies of scale (e.g., buying large quantities, negotiating long-term procurement

contracts) or introducing more competition between suppliers (e.g., incenting new sup-

pliers to build capacity or using advanced procurement mechanisms). Global health

organizations like the WHO, UNICEF, USAID, and the Global Fund regularly publish

and update their procurement principles. Their efforts have led to the implementation

5



6 CHAPTER 1. INTRODUCTION

of advanced procurement mechanisms like pooled procurement, where individual enti-

ties share information (e.g. about suppliers or products), coordinate their procurement

activities, and procure their supplies together (WHO, 2019). Depending on the demand,

budget, product, and supplier market, each procurement situation can be different, and

buyers face difficulties deciding on the adequate volume allocation, procurement mech-

anism, and order timing. Focusing only on single sourcing and low prices can drive

suppliers out of the market, which can create supply shortages, as UNICEF experienced

in the measles vaccine market in early 2000 (USAID, 2014, p. 49), when suppliers left

the market because of high price pressure. Therefore, procurement organizations want

to incent new suppliers to join the market and build capacity to increase competitive

pressure for existing suppliers, but they must also ensure that these markets stay healthy

and sustainable in terms of supply.

However, a focus on low procurement costs can introduce the potential for uncertain

quality, increased volatility in lead times, and higher default risk, because ”the limited

funds available are frequently spent on ineffective, unnecessary, or even dangerous med-

ications.” (Management Sciences for Health, 2013, p. 16.2). For example, in 2008, after

awarding a contract for supply of an anti-malarial to the lowest bidder, Kenya’s suppliers

often saw stock-outs (Tren et al., 2009). Therefore, work is needed to identify and set

up the right mechanisms, such as the WHO’s Prequalification of Medicines Programme

(FM’t Hoen et al., 2014). Finding the right balance of decreasing procurement costs

(budget utilization) while maintaining a high level of quality and availability (effective

supply) is difficult, as it requires the right volume allocation among available suppliers,

optimal procurement mechanisms, and optimal order timing. To provide decision-makers

and stakeholders in the global health industry with the tools and insights needed to im-

prove access to essential medicines in low-income countries, this thesis considers the

three procurement problems of the right volume allocation among available suppliers,

optimal procurement mechanisms and an optimal order timing using rigorous analytical

and numerical methods of analysis.

The first problem, discussed in Chapter 2, is that of the optimal volume allocation

in procurement. The choice of this problem was motivated by a study whose objective

was to support decision-making at two procurement organizations for the procurement

of Depot Medroxyprogesterone Acetate (DMPA), an injectable contraceptive.1 At the

time of this study, only one supplier that had undergone the costly and lengthy process

of WHO pre-qualification was available to these organizations. However, a new entrant

1This chapter is based on Lauton et al. (2019) and is a joint work with Alexander Rothkopf and
Richard Pibernik.
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supplier was expected to receive WHO qualification within the next year, thus becoming

a viable second source for DMPA procurement. When deciding how to allocate the

procurement volume between the two suppliers, the buyers had to consider the impact

on price as well as risk. Higher allocations to one supplier yield lower prices but expose a

buyer to higher supply risks, while an even allocation will result in lower supply risk but

also reduce competitive pressure, resulting in higher prices. Our research investigates

this single- versus dual-sourcing problem and quantifies in one model the impact of the

procurement volume on competition and risk. To support decision-makers, we develop

a mathematical framework that accounts for the characteristics of donor-funded global

health markets and models the effects of an entrant on purchasing costs and supply

risks. Our in-depth analysis provides insights into how the optimal allocation decision

is affected by various parameters and explores the trade-off between competition and

supply risk. For example, we find that, even if the entrant supplier introduces longer

leads times and a higher default risk, the buyer still benefits from dual sourcing. However,

these risk-diversification benefits depend heavily on the entrant’s in-country registration:

If the buyer can ship the entrant’s product to only a selected number of countries, the

buyer does not benefit from dual sourcing as much as it would if entrant’s product could

be shipped to all supplied countries. We show that the buyer should be interested in

qualifying the entrant’s product in countries with high demand first.

In the second problem, presented in Chapter 3, we2 explore a new tendering mech-

anism called the postponement tender, which can be useful when buyers in the global

health industry want to contract new generics suppliers with uncertain product quality.

The mechanism allows a buyer to postpone part of the procurement volume’s allocation

so the buyer can learn about the unknown quality before allocating the remaining vol-

ume to the best supplier in terms of both price and quality. We develop a mathematical

model to capture the decision-maker’s trade-offs in setting the right split between the

initial volume and the postponed volume. Our analysis shows that a buyer can benefit

from this mechanism more than it can from a single-sourcing format, as it can decrease

the risk of receiving poor quality (in terms of product quality and logistics performance)

and even increase competitive pressure between the suppliers, thereby lowering the pur-

chasing costs. By considering market parameters like the buyer’s size, the suppliers’

value (difference between quality and cost), quality uncertainty, and minimum order

volumes, we derive optimal sourcing strategies for various market structures and explore

how competition is affected by the buyer’s learning about the suppliers’ quality through

the initial volume.

2This chapter is a joint work with Alexander Rothkopf and Richard Pibernik.



8 CHAPTER 1. INTRODUCTION

Chapter 4 considers the repeated procurement problem of pharmacies in Kenya that

have multi-product inventories. Coordinating orders allows pharmacies to achieve lower

procurement prices by using the quantity discounts manufacturers offer and sharing fixed

ordering costs, such as logistics costs. However, coordinating and optimizing orders

for multiple products is complex and costly. To solve the coordinated procurement

problem, also known as the Joint Replenishment Problem (JRP) with quantity discounts,

a novel, data-driven inventory policy using sample-average approximation is proposed.

The inventory policy is developed based on renewal theory and is evaluated using real-

world sales data from Kenyan pharmacies. Multiple benchmarks are used to evaluate the

performance of the approach. First, it is compared to the theoretically optimal policy —

that is, a dynamic-programming policy — in the single-product setting without quantity

discounts to show that the proposed policy results in comparable inventory costs. Second,

the policy is evaluated for the original multi-product setting with quantity discounts and

compared to ex-post optimal costs. The evaluation shows that the policy’s performance

in the multi-product setting is similar to its performance in the single-product setting

(with respect to ex-post optimal costs), suggesting that the proposed policy offers a

promising, data-driven solution to these types of multi-product inventory problems.

The remainder of this thesis is structured as follows. Chapters 2, 3 and 4 analyze

the three aforementioned problems. Chapter 5 draws conclusions from the findings and

provides suggestions for future research. The appendices for Chapters 2, 3, and 4 can

be found in Chapters 6, 7, and 8, respectively.



Chapter 2

The Value of Entrant

Manufacturers:

A Study of Competition and Risk

for Donor-Funded Procurement of

Essential Medicines

Global-health purchasing organizations (POs) want to increase access to essential medicines

in income countries. One way to purchase more medicines with limited funds is to con-

tract with generics manufacturers, thereby increasing competition and lowering prices.

However, many POs fear that these entrants are less reliable than others and increase

supply risks: failure to adhere to lead times and supplier defaults may cause disruptions

that result in unsuccessful medical treatments. The problem can be remedied or at least

reduced if POs have a sound basis for assessing manufacturers. To this end, we develop

a mathematical framework that supports decision-makers in an integrated evaluation

of an entrant’s effect on purchasing costs and supply risks. Our approach accounts for

the characteristics of donor-funded global-health markets and the particular tasks and

specific challenges of POs in these markets. More specifically, our approach enables a

PO to quantify a potential entrant’s value depending on important characteristics of the

incumbent and the entrant manufacturer. We use data from a project for donor-funded

procurement of Depot Medroxyprogesterone Acetate (DMPA) of two large POs. Our

results show the feasibility of our approach for POs, manufacturers, and philanthropic

9
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investors in the global-health domain, and we explore the trade-off between competi-

tion and supply risks and provide insights into how the entrant’s value is affected by

parameters like production costs, capacity, lead time and default risk, and in-country

registration.

2.1 Motivation

Researchers and practitioners have discussed extensively the pros and cons of single-

sourcing and multiple-sourcing with respect to such issues as risk exposure, competition,

production costs and overall purchasing costs. However, most of the academic research

has focused on individual aspects of the single-versus-multiple-sourcing problem. For

instance, researchers have addressed managing a company’s risk exposure (e.g. Tomlin

and Wang, 2005; Tomlin, 2006) and the impact of competition on prices and purchasing

costs (e.g. Perry and Sákovics, 2003; Gong et al., 2012). Addressing these individual

parts of the problem has led to rich and complicated formal analyses that have often

yielded very interesting results from an academic viewpoint, but decision-makers in

practice usually require more comprehensive answers: They want to know how many

manufacturers they should contract, how they should split the procurement volume

among these manufacturers, and what procurement mechanism they should employ in

order to strike an optimal balance between purchasing costs and supply risks.

One domain in which these issues are particularly pertinent is the donor-funded

global-health market, where a significant portion of the procurement of essential medicines

(e.g., medicines to treat malaria, HIV/AIDS, tuberculosis; reproductive health products;

and a variety of vital vaccines) is carried out by global purchasing organizations (POs),

such as the United Nations Children’s Emergency Fund (UNICEF) and the Global Fund

to Fight HIV/AIDS, Tuberculosis, and Malaria. These POs consolidate the demands of

low-income countries, negotiate favorable terms with pharmaceutical manufacturers, and

take an active role in ensuring that the medicines they purchase reach the population.

With few exceptions, these POs are allowed to procure only from manufacturers that un-

dergo for each drug a strict quality assurance process known as ”WHO-Prequalification”

(WHO, 2016) and/or that are accredited by large stringent regulatory authorities like the

US Food and Drug Administration (USFDA). As a result, only one or two manufactur-

ers are pre-qualified, and these are usually branded manufacturers that do not provide

generics.1 In addition, manufacturers must register their products in the low-income

1For example, Pfizer is the only pre-qualified manufacturer for the injectable contraceptive Depot
Medroxyprogesterone Acetate (DMPA), a key reproductive health product; only Bayer and Merck cur-
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countries. The in-country registration and the WHO-prequalification process can be

complex and may take more than a year, depending on the manufacturer’s experience.

Clearly, such monopoly or duopoly situations diminish the POs’ bargaining power,

so they are interested in increasing the number of manufacturers that are pre-qualified

for a particular drug. However, obtaining pre-qualification is difficult, time-consuming,

and costly. When manufacturers apply for pre-qualification, they do not know how

much volume they will be awarded, if any, or whether the qualification process and

any investment in capacity will pay off. What they do know is that the (monopoly)

incumbent has a strong position and is likely to take measures to defend its position—

before, during, and after the new manufacturer’s entry.

The POs and other stakeholders in the global-health domain can incent potential

entrants to pursue pre-qualification and to invest in manufacturing capacity by, for

example, providing financial or management support and/or promising to procure certain

volumes from the entrant. However, whether a PO should undertake such measures raises

the question that lies at the heart of our study: How much value does a new entrant

provide to the PO? Answering this question is not trivial: First of all, the PO needs to

gauge how the entry of a new manufacturer will impact the purchasing prices. Clearly,

prices should decline with increased competitive pressure, however, the ability to lower

prices depends on the differential in costs and capacities between the incumbent and the

entrant(s).

Despite the potential benefits of additional entrants, POs are often hesitant to employ

generics manufacturers, even if they are already pre-qualified or will obtain it in the

future. This reluctance is due primarily to supply risks, which POs often perceive

as being higher than the supply risks of the incumbent (branded) manufacturers that

have an established track-record for delivery performance. The perception of a greater

supply risk for new generics manufacturers has been fueled by a number of incidents

in which manufacturers caused supply disruptions because they did not meet lead-time

expectations, had temporary production/supply outages, lost their pre-qualification, or

defaulted entirely.2

The inability to quantify the effects of a new entrant on purchasing costs, the higher

(perceived) risk, and other hard and soft factors (e.g., higher transaction costs, higher

personal effort, a long-standing relationship with the incumbent) often lead POs to

rently hold pre-qualifications for contraceptive implants, another key reproductive health product; and
only Alkem Laboratories and Rodael Laboratories have pre-qualifications for Zinc Sulfate, which is
important for treating diarrhea (WHO, 2016).

2For example, WHO suspended pre-qualification for manufacturers of yellow fever vaccine (UNICEF
Supply Division, 2013) and a manufacturer of HIV medicines (FM’t Hoen et al., 2014).
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stay with the incumbent manufacturer rather than incenting potential entrants to seek

pre-qualification and entering into purchasing contracts with them. Therefore, potential

entrants, especially generics manufacturers, are even less incented to make the investment

required to enter the donor-funded market.

This problem can be remedied (or at least reduced) only if POs have a sound basis for

assessing a new manufacturer’s value—that is, only if they can evaluate and trade-off the

effects of competition on purchasing costs and the effects in terms of supply risks. The

objective of the research we present in this paper is to provide POs in the global-health

domain with rigorous decision support for such assessments. We propose an approach

that supports an integrated evaluation of an entrant’s effect on purchasing costs and

supply risks depending on the volume split a PO chooses between its suppliers. Our

approach accounts for the characteristics of donor-funded global-health markets and the

particular tasks and specific challenges of POs in these markets. More specifically, our

approach enables a PO to quantify a potential entrant’s value depending on important

characteristics of the incumbent and the entrant manufacturer. We use a case study to

demonstrate our approach’s applicability and to highlight how it can provide effective

decision support for a PO.

Our research contributes to the comparatively new literature stream that seeks to

evaluate competition benefits and supply risks jointly. We present an integrated ap-

proach to evaluating competition benefits and supply risks that depends on how the PO

splits the volume between an incumbent and an entrant manufacturer. Our approach

enables us to determine the optimal volume split and to quantify the value of a potential

new entrant based on that split. The proposed approach is also novel from a method-

ological point of view: We extend the concept of bilateral bargaining to account for

volume splitting. This allows for an adequate representation of the negotiations between

the PO, the incumbent, and the entrant, and enables us to study how alternative volume

splits affect competition.

The remainder of our paper is organized as follows. Section 2.2 introduces the ex-

ample case that motivates our research and develops a set of detailed research ques-

tions to guide our analyses. After a brief literature review in Section 2.3, Section 2.4

provides a formal characterization of the problem the PO faces. More specifically, Sec-

tion 2.4 presents two related sub-models that provide a realistic representation of the

interactions among the PO, the manufacturers (an incumbent and a new generics man-

ufacturer), and the recipient countries. To show the applicability of our approach and

to derive meaningful results for the PO, we implement our mathematical models in a

simulation tool and carry out extensive analyses based on real-world data from several
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sources. The simulation model, our analyses, and insights and recommendations for the

POs are described in Section 2.5.

2.2 Practical Setting and Research Questions

2.2.1 The DMPA Case

We use a case example to develop our approach and to highlight its applicability. In

2015 we carried out a study to support decision-making at two POs, the procurement

divisions of the United Nations Population Fund (UNFPA) and the United States Agency

for International Development (USAID), both of which procure the majority of donor-

funded Depot Medroxyprogesterone Acetate (DMPA), an injectable contraceptive, for

low-income countries. At the time of our study, only one manufacturer, Pfizer, held

the necessary pre-qualification for providing the drug, although it seemed likely that a

generics manufacturer would obtain pre-qualification for DMPA in the near future. To

address the problems associated with an entrant manufacturer and to support the POs in

their procurement decisions regarding DMPA, we analyzed the competition and the risk

effects associated with the new entrant and quantified its value for the PO dependent

on parameters that were not perfectly known to the PO at the time (e.g., the entrant’s

capacity, the cost differential between incumbent and entrant, the entrant’s lead time).

POs are intermediaries that consolidate demand from multiple low-income countries

and negotiate prices and delivery terms with the manufacturer(s) on behalf of the re-

cipient countries. For example, UNFPA consolidates the demand from the sixty-nine

countries that the global-health community deemed to be focus countries for reproduc-

tive health efforts in 2012 (FP2020, 2016). POs also take an active role in coordinating

supply from the manufacturer(s) with demand from individual countries. Therefore, we

can broadly distinguish two main tasks of a PO: negotiation and coordination. Because

these tasks are central to our analysis, we provide a detailed description of the decisions

and the mechanics involved in the negotiation phase and in the coordination phase.

Negotiation phase: Currently, with only one DMPA manufacturer, there is essen-

tially no competitive element to the negotiations between the incumbent manufacturer

and a PO, leaving little room for bargaining. However, this changes when a second man-

ufacturer receives pre-qualification. We conducted interviews with experts in the field

in order to determine how negotiations with two (or more) manufacturers are typically

carried out and reviewed publicly available information on extant award mechanisms in

similar settings. We found that negotiations are usually conducted in multiple rounds
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of bilateral bargaining with the manufacturers: The PO determines, a priori, feasible

options for splitting the volume between the incumbent and the entrant and negotiates

the price in several rounds, during which the PO and the manufacturers exchange price

offers until they reach an agreement. Of course, a manufacturer’s willingness to quote

lower prices depends on its cost structure and the manufacturer’s and its competitor’s

capacities. Section 2.4.1 develops a formal model that captures the dynamics of the

negotiation phase and its outcomes.

Coordination phase: During the contractual period, countries send their orders

to the PO, the PO forwards each order individually to the manufacturers, and the

manufacturers ship the products directly to the countries. The PO’s main task is to

ensure that each (donor-funded) country’s orders reach the manufacturer(s) and that the

products arrive in the countries; that is, the PO keeps track of orders and shipments.

The PO also takes a coordinating role in case of supply shortages, as it knows when

shipments are delayed and when a country is likely to face a supply shortage. Short-term

supply disruptions may occur, for example, because of uncertain lead times, temporary

production outages, and quality problems related to individual batches. Longer-term

supply shortages may be caused, for example, by WHO withdrawing a pre-qualification

or manufacturer’s bankruptcy.

Especially in case of short-term supply disruptions, a PO can use its knowledge about

pipeline inventory (completed orders at the manufacturers’ sites or orders that are en-

route to other countries but are not yet due in these countries) to re-route available

units and avoid shortages.3 With more than one manufacturer, this re-routing increases

in complexity but also increases flexibility, depending on the in-country registration of

the entrant’s product. In-country registration is a pre-requisite for a manufacturer to

be allowed to distribute a pharmaceutical product in a particular country. Typically,

an entrant’s product is not registered in all countries, as doing so is costly and time-

consuming. Section 2.4.2 provides a formal model that captures the dynamics of the

coordination phase and its outcomes.

The outcomes of the negotiation phase and the coordination phase are linked by one

key variable: The volume split between the incumbent and the entrant. The volume

split drives how competition and prices evolve in the negotiation phase and determines

the PO’s exposure to supply risks––in terms of how much the PO may be exposed to

disruptions caused by the manufacturers and the PO’s means to mitigate disruptions’

negative effects through re-routing in the coordination phase.

3Note that the POs do not carry buffer inventory, but only take on a coordinating role to avoid
shortages.
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A PO has a straightforward overall objective to maximize within the constraints of

its budget the number of successful treatments in countries that are eligible for donor

funding. Demand for most of the essential medicines of interest is higher than what can

be procured and supplied with donor funds, so the outcome of the negotiation phase has

a direct impact on the overall objective: The lower the average per-unit price is, the more

patients can be supplied within a given budget. The average per-unit price depends on

how competition evolves between manufacturers, which is largely determined by how a

PO splits the volume and factors like the manufacturers’ production costs and capacity.

In the coordination phase, the POs are responsible for preventing supply shortages

in the recipient countries. For any essential medicine that patients must receive on a

schedule, late deliveries and longer-term disruptions put health outcomes at risk. If

a pharmaceutical product is needed but not available, patients face the adverse con-

sequences of symptoms (e.g., in the case of malaria treatment), multi-drug resistances

(e.g., tuberculosis treatment), or inadequate protection (e.g., for contraceptive pharma-

ceuticals like DMPA). Therefore, in the coordination phase, the PO wants to minimize

the shortages in the recipient countries to achieve the overall objective of maximizing the

number of successful treatments. Section 2.4 formalizes the PO’s overall objective and

shows how the outcomes of the negotiation and coordination phases can be aggregated

into a single performance criterion.

2.2.2 Research Questions

Our research supports a welfare-oriented decision-maker in answering a key question:

How much value does a new generics manufacturer provide to a PO? Loosely speaking,

the entrant provides positive value if it enables the PO to increase the number of suc-

cessful treatments within the PO’s budget. For the time being, we define the entrant’s

value as

Entrant value =
# of successful treatments if incumbent and entrant are available

# of successful treatments if only incumbent is available
− 1.

(2.1)

The entrant value is therefore the percentage increase in successful treatments if the

entrant is available to the PO. We provide a more rigorous formal definition of the

entrant’s value in Section 2.4.

Our analyses show that an entrant’s value is determined by a complex interplay of

different variables and decisions in the negotiation and coordination phases. To clarify

the effects and structure our analysis, we develop corresponding research questions, each
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of which deals with specific concerns of decision-makers when a generics entrant may be

available. Addressing these questions provides a comprehensive picture of the factors

that determine whether an entrant can bring additional value to the PO.

From our presentation in Section 2.1 it is clear that practitioners associate certain

benefits and risks with a generics manufacturer that is entering the DMPA market. On

one hand, they assume that the entrant will have lower production costs and conventional

wisdom suggests that the lower the entrant’s costs, the more competitive pressure he

induces, and the more attractive it is for the PO to allocate larger shares of the total

volume to the entrant. On the other hand, POs expect the entrant to increase supply

risks because of increased uncertainty about lead times. For the PO it is important

to determine how much value the entrant promises and how the PO should split the

procurement volume between the incumbent and the entrant. This leads us to our first

and most fundamental research question. Question 1: What is the value of a lower-

cost, higher-risk entrant and how does this value depend on the volume split?

Additionally, a potential entrant will be careful about investing in production capac-

ity and it is likely that it will not be able to fulfill a PO’s entire demand. While lower

entrant capacity negatively impacts competition, reducing the entrant’s value, it is not

clear how constrained entrant capacity impacts the optimal volume split and how much

the entrant’s value changes in the presence of capacity constraints. Therefore, we ask in

Question 2: What is the value of an entrant with limited capacity and how does this

value depend on the volume split?

An entrant supplier must register its product in the countries that are eligible for

procurement via the PO. Because this is a costly and time-consuming endeavor, the

entrant’s product is not likely to be registered in all of the PO’s recipient countries.

However, a PO’s flexibility in matching manufacturers’ supply with countries’ demands

during the coordination phase depends on the extent to which the entrant’s products

are registered in the recipient countries. Therefore, practitioners are concerned with the

potential impact of limited in-country registration, which motivates our third research

question. Question 3: What is the value of an entrant whose product is not registered

in all recipient countries and how does this value depend on the volume split?

To answer these research questions, we develop in Section 2.4 two interrelated models,

a negotiation model and a coordination model, to determine the optimal volume split

based on the entrant’s characteristics and to derive the entrant’s value. Our analysis in

Section 2.5 builds on an implementation of these two models and is structured along the

lines of our three research questions.
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2.3 Literature

Two streams of research are particularly relevant to our work: research on competition

among manufacturers and research on managing operational drivers of risk, such as

uncertainty regarding lead times and manufacturer defaults. We structure our literature

review according to these two research streams.

Our study considers how manufacturers’ prices behave in a competitive environment.

Perry and Sákovics (2003) and Klotz and Chatterjee (1995) study split-award auctions in

contexts that include entry costs for manufacturers, and both show that, if the number

of manufacturers is fixed, bids increase when the procurement volume is split equally.

These and other papers such as Anton and Yao (1989) and Gong et al. (2012) have in

common that they identify manufacturer bids that are decreasing if the buyer is willing

to allocate more volume to a single manufacturer, which implies a concave cost function

for the buyer, where costs are at a maximum if the buyer splits the procurement volume

evenly. Our setting differs from this extant research, as it is characterized by manufac-

turers with limited capacity such that a single manufacturer typically can not satisfy

the buyer’s entire demand. Ausubel (2004) shows that, in such a setting, manufacturers

have a minimum volume that they are certain to sell, so these units are excluded from

competition because the manufacturers know they can sell them at the buyer’s reserva-

tion price. Therefore, the available production capacity can be viewed as a major driver

of competition.

Important to our study is the theoretical work that addresses bargaining and ne-

gotiations, as we model bilateral negotiations between a buyer and two manufacturers.

Binmore et al. (1986) study a two-person bargaining game in which the players make

alternating offers until they reach an agreement. The authors propose models that incor-

porate either the bargainer’s impatience or their fear of not coming to an agreement and

find that this impatience or fear weakens the bargainer’s position. Horn and Wolinsky

(1988) study a setting that is closely related to ours, where one firm engages multiple

other firms in bilateral negotiations. The authors introduce, as one of the first, a bilateral

Nash bargaining model (also referred to as Nash-in-Nash (Collard-Wexler et al., forth-

coming in 2018; Moellers et al., 2017) or Nash-Nash bargaining (Feng and Lu, 2013)),

where each negotiation between two firms is modeled by a Nash bargaining game, and

disagreement points describe individual utilities in the case of disagreement. They argue

that this approach appropriately describes a negotiation’s outcome with alternating of-

fers which can oftentimes be observed in real-world settings (Horn and Wolinsky, 1988,

p. 411). Feng and Lu (2013) apply the concept of bilateral Nash bargaining in a supply
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chain contracting context and compare it to the outcome of a Stackelberg game. They

suggest that the ”Stackelberg game may not be a sufficient device to predict supply chain

contracting behaviors in reality where bargaining is commonly observed” (Feng and Lu,

2013, p. 661). Our model extends the bilateral bargaining models because we formulate

a bargaining model that accounts for a buyer’s volume allocation decision between two

manufacturers. We also use a new approach to model the bargaining position: Nash bar-

gaining models usually use an abstract parameter that indicates how negotiation power

is distributed between two negotiating parties (see e.g. Heese (2015)). In contrast, we

explicitly account for the effect of a supplier’s production capacity on its bargaining po-

sition, which we use as an implicit measure of bargaining power. Explicitly modeling the

impact of limited capacity is also motivated by Ausubel (2004)’s work, which captures

the minimum shares that a manufacturer is certain to obtain if the competitor’s capacity

is limited.

An extensive body of literature on lead-time uncertainty has emerged. Kouvelis and

Li (2008) consider the effect of lead-time uncertainty on volume-splitting between two

manufacturers. The authors study a replenishment decision under constant demand in

which the buyer has the option, after ordering from a manufacturer with stochastic lead

time, to use a flexible back-up manufacturer if orders arrive late. Their results suggest

that the benefits of dual sourcing are enhanced when lead-time uncertainty is high.

Ramasesh et al. (1991) analyzes the total expected cost of a stochastic lead-time (s,Q)

inventory model with the option of dual sourcing and conclude that, when uncertainty

is high and ordering costs are low, dual-sourcing can be the cost-optimal option. Chiang

and Benton (1994) consider how dual sourcing influences the performance of inventory

models and find that ”except for cases where the ordering costs are high, the lead-time

variability is low, or the customer service level is low, dual sourcing performs better than

single-sourcing” (Chiang and Benton, 1994, p. 609). Kelle and Miller (1990) analyze

how splitting replenishment orders among vendors influences the expected shortage and

suggest that a dual-sourcing policy can improve the service level or reduce the safety

stock for a given service level. Kelle and Miller (2001) find that order-splitting can

reduce the stock-out risk even if one manufacturer is much less reliable.

Considering manufacturer defaults, Yu et al. (2009) analyze a two-stage supply chain

in which a buyer faces price-sensitive demand and can procure goods from a global and

a domestic manufacturer that offer different prices and Bernoulli-distributed disruption

risks. Tomlin and Wang (2005) study unreliable supply chains with multiple products

with Bernoulli-distributed supplier defaults and find that the benefits of dual-sourcing

increase as supply-chain reliability decreases (Tomlin and Wang, 2005, p. 51). Tomlin



2.3. LITERATURE 19

(2006) focuses on a procurement setting in which a buyer has two capacity-constrained

sourcing options: a reliable but expensive manufacturer and an unreliable manufacturer.

Kouvelis and Li (2008), Ramasesh et al. (1991) and Chiang and Benton (1994) state

that the buyer’s objective function is convex in the allocation decision. Moreover, we

can deduce from the findings of all papers on supply risks, that the buyer can benefit

from dual sourcing and that shortage costs are convex in the volume split.

In Section 2.4.2 we develop a coordination model to capture (short-term) supply

shortages from uncertain supply lead times and manufacturer defaults. Inspired by the

papers that investigate supply risks and volume-splitting, we build a model that accounts

for the PO’s particular coordination tasks. We model a make-to-order system that tracks

the PO’s (virtual) inventory, captures expected mismatches between countries’ demands

and manufacturers’ supplies, and allows for re-routing in case of shortages.

Finally, some researchers merge the economic perspectives of competition and opera-

tional risk to analyze the potential trade-offs in a combined approach, which is similar to

the objective of this paper. For example, Yang et al. (2012) analyze a setting in which

a buyer, who can choose single- or dual-sourcing from two default-prone manufactur-

ers, has incomplete information regarding the manufacturers’ reliability. The authors

show that, because a buyer loses competition benefits through dual sourcing, it may

be inclined to diversify less, even if the manufacturers’ reliability decreases. The au-

thors argue that this effect is driven primarily by asymmetric information about risks.

Babich et al. (2007b) also investigate the buyer’s competition and diversification bene-

fits when the suppliers’ defaults are correlated and show that higher default correlations

increase competition and lower prices and that these benefits can outweigh the reduction

in diversification benefits.

Although they provide insights into the trade-off between competition and supply

risks, these papers do not address the practical issue of volume splitting resulting in

concave procurement costs; that is, the finding that a buyer should favor a winner-

take-all allocation over splitting volume when the buyer considers only procurement

costs. Research on supply risks indicates that volume-splitting typically results in a

diversification benefit – that is, that costs are convex with respect to the split. The

papers that consider both competition and risk propose stylized models that provide

analytically tractable solutions, but in doing so they make simplifying assumptions that

help them avoid the problem of an objective function that could be either convex or

concave. In contrast, our research contributes to the literature by providing a close

representation of the real-world dynamics of the problem, capturing both the convex

nature of risk diversification and the concave nature of competition with respect to the
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volume allocation.

2.4 Model

In Section 2.2.1 we explained that the PO seeks to maximize the number of successful

medical treatments in eligible countries and how the PO’s actions in the negotiation

and coordination phases impact this objective. Now we formalize the PO’s objective

in order to operationalize the entrant’s value. It is more convenient for our analysis to

use as a criterion the number of treatments that were not delivered successfully during

a contractual period instead of the number of successful treatments. Accordingly, we

assume that a PO wants to minimize what we term the total expected shortage for

a contractual period (e.g., one year). Total expected shortage measures the expected

number of treatments that the PO can not deliver either because of an insufficient budget

or because of supply shortages in the country. We denote the total expected shortage by

ξ(α); it depends on the entrant’s share α. The incumbent’s share is therefore (1− α).4

Total expected shortage ξ(α) has two elements: the price-induced shortage (ξp(α))

and the risk-induced shortage (ξr(α)). Loosely speaking price-induced shortage is the

procurement volume that the PO can not buy, because prices are too high. To be more

rigorous, let q be the target volume (measured in treatments) for a particular essential

medicine across all countries that are eligible for donor funding from the PO. The target

volume is exogenous to our model and usually stems from an extensive forecasting effort

of the PO which can include demographic trends, epidemiological developments and

other drivers. Let b denote the PO’s budget for this product. We assume that a PO’s

budget is insufficient to satisfy the target volume at the current (reservation) price r.

The outcome of the negotiation phase is a weighted average per-unit price that the

PO pays per treatment. We denote the weighted average per-unit price by p̄(α). The

price-induced shortage can then be expressed as ξp(α) = q − b
p̄(α) , which captures the

fact that, with a lower weighted average per-unit price p̄(α), the PO can buy more

treatments ( b
p̄(α)) with the same budget b, reducing some of the gap between q and b

p̄(α) .

Adding the risk-induced shortage ξr(α), which we measure as the expected shortage

caused by supply disruptions, dependent on the volume split, gives the total expected

shortage ξ(α). The PO wants to choose α to minimize ξ(α). We denote the minimal

total expected shortage as ξ(α∗).5 The formalization of total expected shortage also

4Table 6.2 in the appendix provides an overview of all variables of the competition and the coordina-
tion model.

5Without loss of generality we assume throughout the paper that if a PO finds that more than one



2.4. MODEL 21

allows us to provide a more rigorous measure of the entrant’s value (see Eq. (2.1)):

w =
ξsole-sourcing − ξ(α∗)

ξsole-sourcing
. (2.2)

The entrant’s value w is the difference between the total expected shortage in case

of sole-sourcing from the incumbent—that is, the product can be sourced only from

the incumbent—and the total expected shortage for the optimal volume split between

the incumbent and the entrant, normalized to the total expected shortage in case of

sole-sourcing. The ratio w captures the relative increase in the number of successful

treatments a PO can expect to achieve if the entrant enters the market and is available

to the PO. Clearly, even if α∗ = 0, the entrant may provide positive value to the PO if

the competitive pressure of the entrant’s presence reduces the incumbent’s price. Note

that in our presentation we differentiate sole-sourcing, which refers to when the entrant

is not available, from single-sourcing, which refers to when the entrant is available and

the PO decides to allocate the entire volume either to the incumbent or the entrant.

To evaluate the entrant’s value w we proceed as follows: we first obtain estimates of

the prices of the incumbent and the entrant depending on α. In the next section we

develop a negotiation model that allows us to estimate these prices for any feasible α.

Note that α represents a relative volume split; the absolute volumes allocated to the

entrant (α b
p̄(α)) and the incumbent ((1 − α) b

p̄(α)) depend on the negotiated prices and

the budget of the PO. They are, thus, an outcome of our negotiation model. Knowing

the absolute volume allocations to the incumbent and the entrant for a specific α allows

us to estimate the associated (expected) risk-induced shortage. In Section 2.4.2 we

introduce a coordination model to evaluate the risk-induced shortage for a given α (and

the associated volume allocations derived from the negotiation model). Hence, we solve

the two interrelated models in a sequential fashion and account for the fact that the

risk-induced shortage (estimated by the coordination model) depends on the outcome

of the negotiation model. Clearly, one can argue that the prices determined in the

negotiation model should already account for the supply risks of the incumbent and the

entrant. From our coordination model, however, it will become clear that these effects

are intricate and can hardly be approximated. Simultaneously solving the competition

and the coordination model is analytically intractable. For this reason, we believe that it

is most appropriate to first calculate the prices and absolute volume allocations without

explicitly considering the supply risk and to use these results to obtain an estimate of

the risk-induced shortage associated with a particular volume split.

split minimizes total expected shortages he chooses the split with the highest allocation to the incumbent.
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2.4.1 Negotiation

In this section we propose a model to capture the PO’s negotiation with the incumbent

(I) and the entrant (E). This model enables us to obtain the weighted average per-unit

price p̄(α) and the price-induced shortage ξp(α) = q − b
p̄(α) for a given split α.

We model the outcome of the negotiation as a bilateral Nash bargaining model be-

tween a PO and two manufacturers. In his seminal work Nash proposed that the result

of a negotiation between two individuals can be modeled as a problem in which the prod-

uct of the two individual utilities are maximized. The two parties seek to increase their

utility by increasing or decreasing the price and in the optimum they reach a mutually

acceptable price (Nash, 1950). The Nash bargaining model can be seen ”as the reduced

form of an appropriate dynamic bargaining model” (Horn and Wolinsky, 1988, p. 411).

A bilateral Nash bargaining model is the extension to a negotiation with multiple parties

such as a PO and multiple manufacturers. Essentially, a bilateral bargaining model cap-

tures the outcome of the underlying negotiation dynamics between a buyer and multiple

suppliers including the impact of competition among these manufacturers (Horn and

Wolinsky, 1988; Feng and Lu, 2013). In our case the bilateral negotiation begins with

the PO announcing the volume allocation he seeks to award to the incumbent and the

entrant, that is the split α. Given this split, the PO conducts a multi-round negotiation

with the manufacturers to minimize price-induced shortage ξp(α) (see Section 2.2.1).

To formulate the Nash bargaining model, we restate the PO’s objective and refer to

it as the PO’s utility: u(α) := −ξp(α) = b/p̄(α) − q, with p̄(α) = αpE(α) + (1 − α)pI(α)

as the weighted per-unit price given a split α. pE(α) is the entrant’s per-unit price

and pI(α) the incumbent’s per-unit price. During the negotiation each manufacturer

j ∈ {I, E} seeks to maximize its individual profit, πj(α) = zj(pj(α) − cj), where cj are

the per-unit production costs and zj is the volume sold to the PO. It is important to note

that because the PO’s budget and the negotiated prices determine how much the PO

procures, the PO’s procurement volume is endogenously determined by the negotiation

outcome, and it differs from the target volume q. While each manufacturer is certain to

receive the announced share α (or 1 − α), the absolute size of the volume allocation to

each manufacturer is determined by the negotiated prices, as lower prices increase the

procurement volume. Therefore, we obtain the incumbent’s procurement volume as

zI = (1− α)
b

p̄(α)
≤ capI , (2.3)

where capI is the production capacity of the incumbent, and the entrant’s procurement
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volume as

zE = α
b

p̄(α)
≤ min[capE , q

IE ], (2.4)

where capE is the entrant’s production capacity. The allocation to the entrant can also

be limited by the target volume qIE = q−qI for countries in which the entrant’s product

is registered.

Before we formulate the bargaining problem, we have to specify the PO’s utility and

the manufacturers’ profits if the negotiation fails. These disagreement points, which

are also referred to as status-quo utilities, serve as reference points for the PO and the

manufacturers (Horn and Wolinsky, 1988). We assume that the previous market price r,

the reservation price, is restored if the negotiation fails and that the manufacturer who

stopped the negotiation becomes the residual claimant of the procurement volume. For

example, if the PO’s negotiation with the entrant fails the PO will procure the entire

volume from the incumbent at a price of r per unit. If the incumbent’s capacity is

not sufficient, that is, capI ≤ b
r , the PO uses the remaining budget to buy units from

the entrant at price r, that is, a volume of b−r·capI
r ≤ min[capE , q

IE ]. To avoid trivial

solutions, we assume that q > b
r , so the PO is not able to fulfill the target volume

at the reservation price given its budget, and capI + capE ≥ q, so the total capacity

is sufficient to fulfill the target volume. Accordingly, the PO’s status-quo utility is

usq = b
r − q, that is, the utility if there are no gains from negotiation. The incumbent’s

status-quo profit is πsqI = (b−min[r·min[capE ,q
IE ],b])+

r (r − cI), and the entrant’s status-quo

profit is πsqE = (b−min[r·capI ,b])+

r (r− cE). Therefore, the status-quo profit of manufacturer

j depends on its competitor’s capacity cap−j . If manufacturer −j’s capacity is sufficient

to supply the PO’s entire volume at the reservation price (i.e., r·cap−j > b) manufacturer

j’s status-quo profit is zero; so it has a weaker bargaining position in the negotiation

because manufacturer −j’s capacity is sufficient to exhaust the PO’s budget at the

reservation price. For smaller capacities of manufacturer −j the status-quo profit of

manufacturer j becomes positive, indicating a stronger bargaining position.

We are now ready to formulate the bilateral bargaining problem, which seeks to

maximize the product of utility/profit functions.
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max
pE(α)

(u(α)− usq)(πE(α)− πsqE ) (2.5)

max
pI(α)

(u(α)− usq)(πI(α)− πsqI ) (2.6)

s.t. πj(α) > πsqj , j ∈ {I, E} (2.7)

u(α) > usq, (2.8)

0 < pj(α) ≤ r, j ∈ {I, E}. (2.9)

Eq. (2.5) models the bilateral negotiation between the PO and the entrant regarding

the entrant’s price. It captures that, for a given split α, the PO and the entrant try

to agree on a price pE(α) that maximizes the product of the utility and profit both

parties receive (compared to the status-quo utility or profit). A higher price increases

the entrant’s profit and a lower price increases the PO’s utility. Similarly, Eq. (2.6)

models the negotiation between the PO and the incumbent. Conditions (2.7), (2.8),

and (2.9) ensure that, if the parties negotiate, all players have positive gains from the

negotiation compared to their status quo utility or profit.

For reasons that become clear later we do not (yet) include that the absolute volume

allocation to each manufacturer must obey the respective capacity constraint given in

Eqs. (2.3) and (2.4).

Proposition 1.

Consider the bilateral bargaining problem given in Eqs. (2.5) to (2.9).

a) The feasible set of utility-profit allocations Aj = {(u(α), πj(α))|0 < pj ≤ r}, j ∈
{I, E}, is convex.

b) The bilateral bargaining problem has a unique solution. p∗E(α) and p∗I(α) are equi-

librium prices if they fulfill the following system of equations:

p∗E(α) = min[r,
2rb(αcE + (1− α)p∗I(α))

α(b(αcE + (1− α)p∗I(α)) + r(b− πsqE ))
− 1− α

α
p∗I(α)], (2.10)

p∗I(α) = min[r,
2rb(αp∗E(α) + (1− α)cI)

(1− α)(b(αp∗E(α) + (1− α)cI) + r(b− πsqI ))
− α

1− α
p∗E(α)],

(2.11)

A prerequisite for applying a Nash-bargaining model is to verify that the solution

space is convex. Proposition 1a confirms that the solution space of our bilateral bargain-

ing problem is a convex set; thus, the solution to the bargaining problem must be located
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on the boundary of this set.6 Proposition 1b shows that unique equilibrium prices exist

for the bilateral bargaining problem. These equilibrium prices represent a negotiation

outcome for a given volume split α at which all players’ utility or profits are balanced.

A deviation from these prices would decrease the utility or profit of one player more

than it would increase another player’s utility or profit. Status-quo utility and profits

directly impact these equilibrium prices because they determine each player’s bargaining

position. Proposition 1 also shows that the PO is not willing to pay a price above the

reservation price.

Constraints (2.3) and (2.4) limit the feasible volume allocations to the interval

α ∈ [
b−capIp∗I (α)

b−capI(p∗I (α)−p∗E(α)) ,
min[capE ,q

IE ]p∗I (α)

b−min[capE ,qIE ](p∗E(α)−p∗I (α))
]. The results presented in Proposi-

tion 1 do not account for these capacity constraints. Because the PO announces a

relative volume share α and the volumes of the entrant and incumbent are endogenous

(see Eqs. (2.3) and (2.4)), the solutions to the bargaining problem stated in Eqs. (2.5)

to (2.9) may be infeasible with respect to the capacity constraints. Explicitly incor-

porating the capacity constraints would, however, lead to undesirable effects: if one

of the capacity constraints was binding, the model would result in higher prices and,

consequently, lower procurement volumes in order to satisfy the capacity constraint.

Thus, the model would adjust the prices to ensure that the solution is feasible with

respect to the capacity constraints. We can show that in these instances it would

never be optimal for the PO to choose the corresponding α. The marginal increase

in the price-induced shortage always exceeds any possible reduction in the risk-induced

shortage for α 6∈ [
b−capIp∗I (α)

b−capI(p∗I (α)−p∗E(α)) ,
min[capE ,q

IE ]p∗I (α)

b−min[capE ,qIE ](p∗E(α)−p∗I (α))
].7 Thus, we deal with

the capacity constraints as follows: we first solve the bargaining model Eqs. (2.5) to

(2.9) without considering Eqs. (2.3) and (2.4) and then omit the solutions for which

α 6∈ [
b−capIp∗I (α)

b−capI(p∗I (α)−p∗E(α)) ,
min[capE ,q

IE ]p∗I (α)

b−min[capE ,qIE ](p∗E(α)−p∗I (α))
].

The equilibrium prices given in Proposition 1 allow us to calculate the price-induced

shortage for a given split

ξp(α) = q − b

αp∗E(α) + (1− α)p∗I(α)
,

for α ∈ [
b− capIp∗I(α)

b− capI(p∗I(α)− p∗E(α))
,

min[capE , q
IE ]p∗I(α)

b−min[capE , qIE ](p∗E(α)− p∗I(α))
].

(2.12)

6The proof of Proposition 1 can be found in the Appendix.
7The price-induced shortage increases at a higher rate in α than the volume of either manufacturer.

The risk-induced shortage, however, can at best decrease by the amount of units allocated to this
manufacturer, even if a manufacturer exhibits no uncertainty with regard to lead times and defaults. A
formal proof of this can be found in the Appendix.
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In the following, we restrict price-induced shortage to be strictly positive because a PO

will not buy more units than its target volume q. This assumption is motivated by our

practical problem of a not-for-profit PO that has limited funding so that for reasonable

outcomes of the negotiation he will never be able to satisfy all of the countries’ demands.

This implies that the prices will not be lower than a certain threshold. To formalize this

restriction, let ĉj denote a lower bound for the manufacturers’ production costs. Then,

cj satisfy the following conditions

cE ≥ ĉE & cI ≥ ĉI such that max
α

{ b

(αp∗E(α) + (1− α)p∗I(α)))

}
≤ q. (2.13)

Based on our bilateral bargaining model, we can obtain the price-induced shortage

(ξp(α)) dependent on the volume split (α), which constitutes the first important ele-

ment for quantifying the entrant’s value. The next section explains how we determine

the second important element, the risk induced shortage (ξr(α)).

2.4.2 Coordination

The PO not only negotiates with the manufacturers on behalf of the recipient countries

but also performs certain tasks to match the manufacturers’ supply with countries’

demands. The following model allows us to approximate the risk-induced shortage ξr(α)

dependent on the volume split α, that is, the entrant’s share of the total procurement

volume. Note, that our model is not intended to optimize the overall system; for example,

we do not intend to propose an alternative, improved inventory policy but to reflect

how the PO would act as an intermediary between the manufacturers and the recipient

countries given the PO’s current operations.

Because the negotiation between the PO and the manufacturers takes place before

the coordination phase, the target volume q is adjusted by the price-induced shortage

ξp(α); that is, the actual procurement volume d(α) referred to in the coordination model

is defined as d(α) = q− ξp(α). Therefore, we only consider the real volume procured by

the PO for determining the risk-induced shortage.

Figure 2.1 illustrates the flows of demand information, orders, and supplies among

the recipient countries, the PO, and the manufacturers during the coordination phase.

In our model, the PO faces two demand streams: one that originates from countries

in which only the incumbent’s product is registered (I-demand stream), and one that

originates from countries in which both the incumbent’s and the entrant’s products

are registered (IE-demand stream). For the latter case, we assume that countries are
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Figure 2.1: Demand, order, and supply information streams in the coordination phase

indifferent to whether they receive shipments from the incumbent or the entrant; that

is, the products are perfect substitutes. Countries’ order sizes and arrival rates are

uncertain. DI
t denotes the random demand on day t ∈ {0, . . . , T} from countries in which

the incumbent’s product is registered, and DIE
t denotes the demand from countries in

which the incumbent’s and the entrant’s products are registered. The planning horizon

T is typically one year or two years, that is, the duration of a contract between the

PO and the manufacturers. Each day t ∈ {0, . . . , T}, the PO observes the demand

realizations DI
t = dIt and transmits to the incumbent a corresponding order realization

OIt = oIt = dIt . By definition, only the incumbent can fulfill demands dIt . For demand

realizations DIE
t =dIEt , the PO has to decide how much to order from the incumbent

and how much to order from the entrant. This decision is driven by the volume split

α that was determined during the negotiation phase. Therefore, the PO has to split

DIE
t =dIEt (t ∈ {0, . . . , T}) in such a way that α is achieved for the overall procurement

volume. Our model accounts for the volume split by assuming that the PO places order

realizations OEt = oEt = α̂dIEt with the entrant, where α̂ = αd
I+dIE

dIE
. Here, dI denotes the

procurement volume from countries in which only the incumbent’s product is registered,

and dIE denotes the procurement volume from countries in which both products are

registered, such that d(α) = dI + dIE . The orders placed with the incumbent are

OIEt = oIEt = (1− α̂)dIEt .

The manufacturers’ lead times are uncertain. Lj (j ∈ {I, E}) denotes the uncertain

lead time for any order the PO places with manufacturer j ∈ {I, E}. In addition,

let τ denote a lead-time threshold after which an order is considered to be short. An

order placed at time t must be fulfilled by t + τ , as any later fulfillment will cause a
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shortage in the recipient country. Because of the lead-time uncertainty, realizations lj

of the uncertain lead time can be smaller (lj ≤ τ) or larger (lj > τ) than the shortage

threshold. Put differently, the supply required to fulfill an order placed in t − τ (and

that becomes short on day t) may materialize before or after t. SIt , SIEt , and SEt denote

the uncertain supplies available at the manufacturer’s site on day t, where SIt and SIEt

represent the uncertain supply from the incumbent for the I-demand stream and the IE-

demand stream, respectively, and SEt represents the uncertain supply from the entrant

for the IE-demand stream.

It is here that the PO’s coordinating role comes into play: If on day t, supply is

less than the orders that are due, the PO can cover the gap by using ”excess” supplies

that became available before t but were not yet needed to fulfill country demands.

This coordination reflects the PO’s re-routing capability. Of course, if excess supplies

from previous days are insufficient to cover the gap, the recipient countries will incur a

shortage.

To model the PO’s ”supply-demand coordination” adequately, we introduce the no-

tion of a virtual inventory (V ), which captures the pipeline inventory that is available at

t+ 1. For example, the virtual inventory for the I-demand stream can be expressed as:

V I
t+1 =

[
V I
t − (OIt−τ −SIt )

]+
for t ∈ {τ, . . . , T −1}. If supply on day t is larger than what

is required to fulfill orders that are due, the excess units are added to the virtual inven-

tory. Then, if supplies from the incumbent on day t are insufficient to satisfy the orders

that are due on this day, the PO can avoid shortages by compensating with supplies

that are held in the virtual inventory. Consequently, the virtual inventory characterizes

how many units are available for re-routing in the I-demand stream on any day t.

The PO may also consider using virtual inventory from the I-demand stream to

avoid shortages in the IE-demand stream. Thus, if shortages on day t occur in the

IE-demand stream and the PO can not avoid all of the shortages with virtual inventory

in the IE-demand stream (i.e., [OIEt−τ (α) − SIEt + OEt−τ (α) − SEt − V IE
t ] > 0), the PO

can use virtual inventory from the I-demand stream to avoid shortages. Of course, this

approach lowers the virtual inventory that is available in the I-demand stream on the

next day t+ 1. Therefore, we refine our formulation of V I
t+1:

V I
t+1 =

[
V I
t − (OIt−τ − SIt )

− [OIEt−τ (α)− SIEt +OEt−τ (α)− SEt − V IE
t ]+

]+
for t ∈ {τ, . . . , T − 1}.

(2.14)

Eq. (2.14) captures the available virtual inventory that the PO can use to avoid shortages

in the I-demand stream on any day t. It is convenient for our exposition also to express
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the residual virtual inventory after the PO has exhausted the virtual inventory to cover

shortages in one demand stream:

RIt =
[
V I
t − (OIt−τ − SIt )

]+
for t ∈ {τ, . . . , T}. (2.15)

Eq. (2.15) expresses the residual virtual inventory in the I-demand stream. Suppose that

orders that are due on day t exceed the supplies on this day, but the available virtual

inventory is sufficient to avoid the shortages (i.e.
[
V I
t − (OIt−τ −SIt )

]
> 0). This residual

virtual inventory RIt is available to the PO to avoid shortages in the IE-demand stream

on day t. Note, that we can simplify Eq. (2.14) by substituting RIt .

Expressions for the virtual inventory V IE
t and the residual virtual inventory RIEt

that correspond to the IE-demand stream follow a similar structure. First, we express

the residual virtual inventory of the IE-demand stream as:

RIEt =
[
V IE
t − (OIEt−τ (α)− SIEt +OEt−τ (α)− SEt )

]+
for t ∈ {τ, . . . , T}. (2.16)

Because of limited in-country registration, the PO can use only the incumbent’s product

for the IE-demand stream to avoid shortages in the I-demand stream. To separate

the units the incumbent produced from those the entrant produced, we introduce the

operator 〈·〉, such that 〈RIEt 〉 captures only the units the incumbent produced and RIEt −
〈RIEt 〉 captures only the units the entrant produced.

Knowing the residual virtual inventory, we can also write the virtual inventory of the

IE-demand stream as

V IE
t+1 = RIEt − 〈RIEt 〉

+
[
〈RIEt 〉 − [OIt−τ − SIt − V I

t ]+
]+

for all t ∈ {τ, . . . , T − 1}.
(2.17)

With Eqs. (2.14)–(2.17) we are now ready to express the PO’s expected risk-induced

shortage:

ξr(α) = E

{
T∑
t=τ

[[
[OIt−τ − SIt ]+ − V I

t

]+ − 〈RIEt 〉]+

+

[[
[OIEt−τ (α)− SIEt +OEt−τ (α)− SEt ]+ − V IE

t

]+ −RIt ]+
}
.

(2.18)

Eq. (2.18) captures the PO’s expected lead-time related shortages during the contrac-
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tual period t ∈ {0, . . . , T}. If on any day t orders that are due in a demand stream

(e.g., the I-demand stream) can not be matched with supplies that arrive, a PO first

avoids shortages by re-routing virtual inventory that is in that demand stream. If this

virtual inventory is insufficient, the PO re-routes residual virtual inventory from the

other demand stream. Any remaining open orders will result in shortages. The sum

of expected (daily) shortages in the I- and the IE-demand stream in the procurement

cycle constitutes the risk-induced shortage ξr(α).

The model in Eqs. (2.14) to (2.18) captures short-term mismatches between coun-

tries’ demands and manufacturers’ supplies, but a PO is also concerned with longer-term

supply outages. To account for such longer-term interruptions, we extend Eqs. (2.14) to

(2.18) of our model. Suppose that, on any given day t, a supply outage of manufacturer j

may occur with probability ρj , resulting in the indicator variable θj,t = 0. The manufac-

turer remains active with probability 1−ρj , so θj,t = 1. We assume that a manufacturer

that defaults at time td will not recover during the remainder of the contractual period

(i.e., θj,t = 0 for t ≥ td), so the probability that a manufacturer defaults during the

contract period is given by Ωj =
∑T

t=1(1 − ρj)
t−1ρj . We substitute the supplies SIt ,

SIEt , and SEt in Eqs. (2.14) to (2.18) with supplies ŜIt , ŜIEt , and ŜEt to account for

manufacturer defaults as follows: If a manufacturer defaults (θj,t = 0), supplies of this

manufacturer will be disrupted for the remainder of the contractual period:

ŜIt := θI,tS
I
t for t ∈ {0, . . . , T}, (2.19)

ŜIEt := θI,tS
IE
t for t ∈ {0, . . . , T}, (2.20)

ŜEt := θE,tS
E
t for t ∈ {0, . . . , T}. (2.21)

If we can obtain an estimate of the distributions of the I-demand and the IE-demand

streams and an estimate of the distributions of the incumbent’s and entrant’s lead times

Lj and default probabilities Ωj , we can use Eq. (2.18) in conjunction with Eqs. (2.14)

to (2.17) and (2.19) to (2.21) to compute the expected risk-induced shortage ξr(α),

dependent on the volume split α. Section 2.5.1 describes how we obtained these estimates

for the DMPA case.

2.5 Analyses and Discussion

In Section 2.4 we formalized the negotiation and coordination phases and showed how

these two models can be used to determine the individual elements ξp(α) and ξr(α) of

the PO’s objective ξ(α) = ξp(α) + ξr(α). To compute the entrant’s value (see Eq. (2.2))
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we must characterize how ξ(α) depends on α and determine the expected overall short-

age ξ(α∗) at the optimal volume split α∗. However, this task is challenging: While Eqs.

(2.10), (2.11), and (2.12) of our negotiation model allow for straightforward computa-

tion of the equilibrium prices and, based thereon, the associated price-induced shortage

depending on α, we cannot obtain a closed-form expression for ξr(α). Eq. (2.18) of our

coordination model provides an expression for the risk-induced shortage ξr(α), but it

is not analytically tractable because of the stochastic nature of the problem and the

complex inter-temporal relationships of the parameters. Moreover, the calculation of

ξr(α) in the coordination model depends on the PO’s procurement volume, which is an

outcome of the negotiation model. Because of these issues, we carried out a numerical

study to evaluate the entrant’s value and answer the research questions stated in Section

2.2.2.

2.5.1 Model Implementation and Input Data

Figure 2.2 shows how we implemented the negotiation model and the coordination model

for our numerical study. Here we explain the individual calculations according to the

sequence in which they are carried out.

1. Computation of price-induced shortages ξp(α): As stated previously, we can use

Eqs. (2.10) and (2.11) to compute the incumbent’s and the entrant’s equilibrium prices,

p∗I(α) and p∗E(α), respectively, for a given split α. Then we can use Eq. (2.12) to compute

the corresponding price-induced shortage ξp(α). We compute ξp(α) for all feasible values

of α, given the relevant input parameters summarized in Figure 2.2.

2. Computation of the order-scaling factor ϕ(α): As explained in Section 2.4.2, the

PO’s overall procurement volume depends on the prices the PO negotiates with the

manufacturers—which, in turn, depend on the volume split α—and can be computed as

d(α) = q − ξp(α). To adequately reflect the PO’s overall demand, we scale the orders

of the recipient countries in our coordination model using an order-scaling factor, which

is calculated as ϕ(α) = 1 − ξp(α)
q . Thus, for each value of α, we use the price-induced

shortage (calculated in step 1) to obtain ϕ(α). As Figure 2.2 shows, the order-scaling

factor is an input to our coordination model.

3. Estimation of the risk-induced shortage ξr(α): To reflect the stochastic nature of

the order lead times and manufacturers’ defaults, we use a simulation approach to obtain

estimates of ξr(α) depending on α. We create countries’ demands within a procurement

cycle (we refer to this as the order book) which the PO translates into orders to the

manufacturers. For each order we draw the corresponding lead-time realization from
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a lead-time distribution. We also draw the realization of a manufacturer’s default at a

specific time within the procurement cycle from a probability distribution. Based on Eq.

(2.18) we account for orders that are satisfied within the shortage threshold, for orders

that avoid shortage through re-routing, and we collect the (realized) supply shortage in

a procurement cycle ξrn(α) for a simulation run n. We repeat this N -times and estimate

the expected risk-induced shortage as ξr(α) = 1
N

∑
n ξ

r
n. This procedure is carried out

for all feasible values of α (see Figure 2.2). We implemented this simulation model using

Microsoft Excel with the add-in @Risk.

4. Calculation of ξ(α) and the entrant value w: Based on the results obtained in Steps

1 and 3, we calculate ξ(α) = ξp(α) + ξr(α) for all feasible values of α and determine the

optimal split α∗ and the entrant value w =
ξsole sourcing−ξ(α∗)

ξsole sourcing
. Note that we calculate the

shortage of sole sourcing as ξsole sourcing = ξpsole sourcing + ξrsole sourcing, where ξpsole sourcing =

q − b
r , which is the outcome of the negotiation if the entrant is not available to the PO,

and ξrsole sourcing = ξr(α = 0).

Figure 2.2: Model inputs, model implementation, and model outputs.

Next, we explain how we obtained estimates of the input parameters in order to es-

tablish a reference case for the aforementioned calculations (see Table 2.1). We rely for

our data estimates on two categories of sources: On the one hand we have access to

well documented data from reports and data bases like lead times for country orders,

order volumes, or past procurement prices. On the other hand, some parameters of our
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model are inherently difficult to estimate. For example, it is difficult to obtain ”reliable”

estimates of the probability that a manufacturer will default, the size of production ca-

pacity and the (variable) production costs. We interviewed industry experts to collect

estimates for these parameters.8 We acknowledge that these experts’ estimates tend to

be subjective and not well grounded, but absent more precise and reliable information

we are not able to come up with a more robust estimate. However, we can explore how

the particular choice of a parameter impacts the PO’s objective of minimizing expected

shortage. We used the following estimates of the relevant parameters to compute the

price-induced shortage ξp(α) (Step 1): We assume the procurement budget (b) is suffi-

cient for buying the yearly procurement volumes for DMPA in 2012 and 2013 (approx.

48, 000, 000 units per year for USAID9) at the current list price of $0.8 per-unit, such that

b = $38, 400, 000. These estimates are based on the annual reports of both POs (RHSC,

2016). Based on recent forecasts (WDI/CF, 2015; CSP/RHSC, 2015), we assume that

the target volume (q) that the PO faces in the reference case increases by approximately

20 percent (compared to 2012/13) yielding a target volume of q = 58, 000, 000 units. We

set the current list price (RHSC, 2016) as the reservation price r = $0.8. For our refer-

ence case we assume that both manufacturers have sufficient production capacity (capj)

to produce the PO’s target volume (capI = capE = 60, 000, 000 units). Our estimate of

the incumbent’s production costs is based on information we obtained from discussions

with manufacturing experts in the field of injectable pharmaceuticals. We estimate the

incumbent’s production costs as cI = $0.66 and assume that the entrant in the reference

case has the same costs as the incumbent.

We used the following estimates of the relevant parameters to compute the risk-

induced shortage ξr(α) (Step 2): We build an order book for the coordination model

that contains the order sizes and order dates for each country, dIt , d
E
t , d

IE
t , which the PO

translates into orders to the manufacturers, oIt , o
E
t , o

IE
t . We use data from the RHInter-

change database (RHInterchange, 2016), which contains 280 entries of order-placement

dates and order volumes on a country-by-country basis for USAID and UNFPA in the

2012/2013 procurement cycle, to create this order book. That is, we use the past or-

ders that, for example, USAID placed at one manufacturer on behalf of the countries

and assume that each order is now split between the incumbent and the entrant ac-

cording to the volume split α. We also scale each individual order by the scaling factor

8We interviewed experts in essential medicines procurement, and pharmaceutical supply chain and
production management experts from the following organizations (in alphabetical order): the Repro-
ductive Health Supplies Coalition, the United States Agency for International Development, the United
Nations Population Fund, and the William-Davidson-Institute.

9We present our results for data of USAID, but the intuition and findings apply to UNFPA as well.
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ϕ(α) = 1 − ξp(α)
q to account for the volume the PO can procure given the outcome of

the negotiation phase.10 Our model offers the possibility to manipulate on a country-

by-country basis in which countries the entrant’s product is registered (in-country reg-

istration). For the reference case we assume that the entrant’s product is registered in

all countries. Table 6.1 in the appendix presents the countries that USAID currently

supplies. Using the RHInterchange database, we also estimate the supply lead time dis-

tribution (Lj) for the incumbent manufacturer via distribution fitting. We found the

Gamma-distribution Γ[2.0995, 24.712] to be a good fit for the lead-time distribution11

and use this distribution to simulate the manufacturers’ lead times, that is, the arrivals

of supplies SIt , S
E
t , S

IE
t . To explore the impact of varying levels of lead-time uncertainty,

we implement two parameters that vary the mean and the standard deviation of our

lead-time distribution. We assume that the entrant has the same type of lead-time dis-

tribution as the incumbent and implement a parameter for mean and standard deviation

to model other lead-time distributions for the entrant. For the reference case we use the

same lead-time distribution estimators for the incumbent and the entrant.12 We also

use the lead-time distribution to estimate the shortage threshold (τ) as the mean lead

time (µj ' 52) plus one standard deviation (σj ' 36). We asked pharmaceutical experts

to assess the probability of longer-term defaults in factories of similar size, technology,

and complexity. Our industry experts estimated this probability as a lower single-digit

percentage. Based on this information, we use an annual default probability (Ωj) of 0.03

(i.e. 3 percent) for our analyses which gives ρj = 0.000081. Table 2.1 summarizes the

parameter values for the negotiation and the coordination model in the reference case.

We sample N = 1, 000 instances13 from the lead-time and the default distribution

to calculate the risk-induced shortage for a given split α ∈ [0, 1]. To quantify the risk-

induced shortage depending on the split, we vary the split in increments of 0.01.

The two outputs, price-induced and risk-induced shortage, for every (feasible) value

of α ∈ [0, 1], allow us to determine which split minimizes the total shortage and how the

two components individually drive the optimal split. Based on these outputs, we can

compute the entrant’s value w using Eq. (2.2) and show how parameter variations affect

10We could also manipulate the order book country-by-country if a decision-maker were interested in
the effects of specific changes to individual country volumes or the impact of a different order policy.

11Using the Cramér-von Mises goodness-of-fit test for the distribution yields K = 0.0471998, which is
smaller than the critical value of 0.33 for our sample at a 0.01 significance level.

12We tested to determine whether order size and lead times or the lead times over time are correlated
and found no evidence that suggests such correlations.

13We tested different sample sizes and found that a sample size of N = 1, 000 leads to a sufficient
accuracy. We performed 30 runs with sample size N = 1, 000 and found that risk-induced shortage varies
by less than 1% across different simulation runs.
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Parameter PO Incumbent Entrant

Annual procurement budget [$] b 38,400,000 - -

Annual target volume [units] q 58,000,000 - -

Annual production capacity [units] capj - 60,000,000 60,000,000

List price [$] r .8 - -

Unit production costs [$] cj - .66 .66

Order sizes & times oI , oE , oIE - order book order book

Supply lead-time distribution Lj - Γ[2.0995;24.712] Γ[2.0995;24.712]

Shortage threshold [days] τ - 88 88

Entrant in-country registration - - full reg. full reg.

Annual default probability Ωj (ρj) - 0.03 (0.000081) 0.03 (0.000081)

Table 2.1: Parameter values in the reference case

the optimal split and the entrant’s value.

2.5.2 Analysis of the Entrant’s Value

We are now ready to address the key question of our study: how much value does

an entrant provide to a PO? The following analyses are structured along the research

questions introduced in Section 2.2.2, which were motivated by the needs of practitioners

in our DMPA case. As highlighted in the introduction, a PO wants to contract new

generics manufacturers to access lower prices through increased competitive pressure.

This is oftentimes fueled by the assumption that generics manufacturers are able to

produce the same product at lower costs. However, POs are also concerned about

the potential for increased supply risks and are often not sure whether the benefits

of competition outweigh the negative effects of increased supply risks. This trade-off

motivated our first research question (Q.1): What is the value of a lower-cost, higher-

risk entrant and how does this value depend on the volume split? (see Section 2.2.1).

To answer this question Section 2.5.2 compares the entrant’s value in the reference

case—in which all parameters are the same for both manufacturers—to the entrant’s

value in three different scenarios: In Scenario I the entrant has moderately lower unit

costs (cI = .66 > .62 = cE), which is a realistic assumption when new generics man-

ufacturers enter the market. In Scenario II the entrant has not only lower unit costs

but also higher supply risk. In this scenario we assume the same entrant costs as in

Scenario I but a (moderate) 15 percent increase in expected lead time (µE = 1.15µI)

and lead-time variability (σE = 1.15σI). In Scenario III we consider an entrant that

offers lower unit costs, but has substantially higher supply risk (i.e., µE = 1.3µI and

σE = 1.3σI). Table 2.2 summarizes the most important parameters for the reference
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case and the three scenarios and the main results of our analyses in Sections 2.5.2, 2.5.2,

and 2.5.2.

Section 2.5.2 addresses our second research question (Q.2): What is the value of an

entrant with limited capacity and how does this value depend on the volume split? To

answer this question, we reduce the entrant’s production capacity (capE = 25, 000, 000 <

capI = 60, 000, 000) and investigate how the entrant’s value changes across the three sce-

narios that we outlined previously. We calculate the entrant’s value when all parameters

except the capacity are equal and compare it with the entrant’s value in Scenario I (lower

entrant costs), Scenario II (lower entrant costs and moderately higher entrant risk), and

Scenario III (lower entrant costs and substantially higher entrant risk) (see Table 2.2).

In addition we investigate a moderately capacitated entrant (capE = 42, 500, 000) and

compare the results to our previous analyses.

Reference Case Scenario I Scenario II Scenario III

cI = cE = .66,
µI = µE = 52,
σI = σE = 36

cE = .62 cE = .62,
µE = 1.15µI ,
σE = 1.15σI

cE = .62,
µE = 1.3µI ,
σE = 1.3σI

Q.1 lower costs & higher risk
α∗ .50 .95 .77 0

w 40.7 % 51.9 % 41.2 % 38.1 %

Q.2

capE = 25, 000, 000
α∗ .48 .48 .48 .48

w 33.3 % 38.5 % 34.8 % 31.1 %

capE = 42, 500, 000
α∗ .76 .76 .76 .66

w 39.9 % 48.5 % 41.3 % 33.9 %

Q.3 limited registration
α∗ 0 .48 0 0

w 21.7 % 22.3 % 21.7 % 21.7 %

Table 2.2: Comparison of optimal volume split (α∗) and corresponding entrant values
(w) in case the entrant has sufficient capacity (Q.1), in case the entrant has limited
capacity (Q.2), and in case the the entrant’s product is not registered in all countries
(Q.3) for the reference case and Scenarios I, II, and III.

Our introduction (Section 2.1) explained that a new manufacturer must undertake

a significant effort to register its product in different countries. It is unlikely that the

entrant’s product will be registered in all of the PO’s recipient countries and these

missing registrations will likely have an impact on the entrant’s value to the PO. Section

2.5.2 addresses this question (Q.3): What is the value of an entrant whose product is not

registered in all recipient countries and how does this value depend on the volume split?

Our analysis follows the same path as before: We calculate the entrant’s value in the
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reference case but with limited in-country registrations and compare the result to the

entrant’s value in Scenarios I, II, and III.

The Value of a Risky Low Cost Entrant

To determine the value of a risky, low-cost entrant to a PO (Q.1), we first calculate the

total expected shortage (ξ(α) = ξp(α) + ξr(α)) and the entrant’s value for the reference

case, in which all parameters are equal for both manufactures. Figure 2.3a shows that,

in this case, the total shortage exhibits a symmetric triple-v-shape in α with its (global)

minimum at equal shares for both manufacturers (α∗ = 0.5).

(a) Reference case (b) Scenario I

(c) Scenario II (d) Scenario III

Figure 2.3: Total expected shortages (ξp(α) + ξr(α)) depending on the entrant’s share
featuring an entrant with (a) lower unit costs cE = 0.62 < cI = 0.66; (b) lower unit
costs and a 15 percent increase in expected lead time and lead-time standard deviation
µE = 1.15µI , σE = 1.15σI ; (c) lower unit costs and a 30 percent increase in expected
lead time and in lead-time standard deviation µE = 1.3µI , σE = 1.3σI .

The triple-v-shaped curve is the result of the aggregation of price-induced shortage

(see Figure 2.4a) and risk-induced shortage (see Figure 2.4b). In the reference case the

price-induced shortage is symmetric and concave in the entrant’s share and reaches its

minimum if the PO chooses to single-source from either the incumbent or the entrant. In

line with literature on split-awards (for example, Anton and Yao (1989) and Gong et al.

(2012)) any deviation from single-sourcing yields higher average prices and, consequently,
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some level of dual-sourcing inefficiency. Note that price-induced shortage is partitioned

into three regions separating different manufacturer’s incentives to compete. For low

allocations to the entrant (0 ≤ α ≤ α), the entrant provides the reservation price and the

PO benefits from the incumbent providing lower prices (and vice versa for α ≤ α ≤ 1).

For α ≤ α ≤ α the price-induced shortage is almost constant because both suppliers

provide competitive bids and increasing or decreasing the split does not benefit the PO

(see also Figure 6.1 in the appendix). Figure 2.4a also shows that if a manufacturer

(e.g. the entrant) has lower costs it is able to introduce stronger competition for higher

volume splits such that price-induced shortage is lower and a PO prefers to single-source

from the less expensive supplier. Risk-induced shortage is convex in the entrant’s share

because the PO benefits from a diversification effect. In the reference case, in which

both suppliers expose the PO to the same supply risks, a PO should allocate an equal

split between incumbent and entrant. If, for example, the entrant has a higher expected

lead time (µE) and lead-time variability (σE) risk-induced shortage increases and makes

it more attractive to award a higher share to the incumbent.14 However, even an entrant

with very high risk provides the PO with diversification benefits (see dotted line).15

(a) Price-induced shortages (ξp(α)). (b) Risk-induced shortages (ξr(α)).

Figure 2.4: (a) Price-induced shortages (ξp(α)) depending on the entrant’s share for
cE = cI = .66 (solid) and cE = .62 < cI = .66 (dashed), and (b) Risk-induced shortages
(ξr(α)) depending on the entrant’s share for µE = µI and σE = σI (solid), µE = 1.15µI
and σE = 1.15σI (dashed) and µE = 1.3µI and σE = 1.3σI (dotted).

Depending on which individual effect is more powerful, the total shortage can be

14We opt to increase both the mean as well as the standard deviation of the lead time because in
our conversations with practitioners we learned that this is a likely scenario. Of course, we could only
modify one of the parameters. This does not change the directionality of the insights we present here.

15In our analyses we only present the mean risk-induced shortage of N simulation runs. In Figure 6.2
in the appendix we report the standard deviation of risk-induced shortage in the reference case. The plot
shows that the standard deviation drops if the PO dual-sources. This finding is consistent throughout
our analyses. To keep our exposition lean and comprehensive, we refrain from reporting the standard
deviations for our subsequent analyses.
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at a minimum if the PO single-sources (competition effects dominate) or awards an

equal split (risk effects dominate). In the reference case benefits from risk diversification

outperform the benefits from competition. Thus, an equal split leads to the lowest

overall expected shortage and the highest entrant’s value of 40.7 percent in the reference

case. Notably, in the reference case there is always a clear trade-off between price- and

risk-induced shortage for any split; when price-induced shortage increases (decreases)

the risk-induced shortage decreases (increases) (see Figure 2.4 for the individual effects).

We will highlight situations in which this common managerial intuition does not hold

and where there is no longer a strict trade-off.

It is interesting to observe that we can directly link the shape of the total expected

shortage curve to results obtained in Figure 2.4a. The incentive to quote lower prices

in the negotiation phase, which resulted in the three partitions, causes the triple-v-

shaped structure of total expected shortage. Decision-makers should be aware that local

maxima occur for splits α and α. As a result, a PO’s objective function is not robust

against changes in the allocation, and expected shortage can increase significantly if the

PO chooses splits close to α and α. This has an important managerial implication:

the value of the entrant depends heavily on how the PO splits the volume between the

incumbent and the entrant. The PO will experience the maximum entrant value (40.7

percent in our reference case) only if it sets α correctly.

Next, we compare the results of the reference case to Scenario I, where the entrant

has smoderately lower production costs (cE = .62 < cI = .66) but still features the

same risks as those of the incumbent.16 Such a cost advantage will introduce stronger

competition, and a PO should allocate the entire volume to the entrant to minimize

price-induced shortage (see Figure 2.4a). Figure 2.3b shows the total expected shortage

for Scenario I and the entrant’s value in Scenario I. The entrant provides the highest

overall value if the PO allocates almost the entire volume to the entrant (α∗ = 0.95); that

is, the price decrease that results from increased competition offsets almost any increase

in risk-induced shortages that go along with the entrant receiving a higher share. As

a result, even a relatively small cost advantage of approximately 6 percent leads to

substantial increases of the entrant’s value (from w = 40.7% in the reference case to

w = 51.9%; see Table 2.2). However, to reap these benefits of a lower-cost entrant a PO

must choose the correct volume split, which is, in this case, sourcing almost the entire

volume from the entrant.

16Practitioners indicated that the generics supplier will have a production cost advantage over the
incumbent. From our analysis the reader can easily deduce the directional changes to the results if the
incumbent has the production cost advantage.
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Scenario II takes into account decision-maker’s concerns that an entrant that pro-

vides a cost advantage can also be more risky. Figure 2.3c shows that, with moderately

higher entrant risk (σE = 1.15σI and µE = 1.15µI), the PO should choose to allocate

less to the entrant (i.e., α∗ = 0.77). The higher risk has the entrant’s overall value

decline to w = 41.2% (see Table 2.2), but the benefits of risk diversification still com-

pensate for disadvantages of dual-sourcing inefficiency that a PO incurs from choosing

to dual-source. If the entrant exposes the PO to even higher risks, the entrant’s value

declines farther, and it becomes optimal for the PO to source the entire volume from

the incumbent (see Figure 2.3d). It is interesting to note, that, in this case, the entrant

still provides a substantial positive value to a PO (w = 38.1%), even though it is opti-

mal for the PO to single-source from the incumbent. The mere existence of the entrant

introduces competitive pressure and lowers the price-induced shortage compared to that

incurred from sole-sourcing. This result suggests that an entrant always provides value

to a PO, even if the entrant-related risk is substantially higher. Because of this risk

the PO will not allocate volume to the entrant, but the PO benefits from the added

competitive pressure in the negotiation with the incumbent and will experience lower

price-induced shortages. However, it is clear that this benefit may not survive long-term

because it is unlikely that an entrant will maintain the production capacity over a longer

period to compete with the incumbent if the PO does not allocate any volume to the

entrant. Therefore, in its decision to allocate volume, the PO may want to sacrifice some

current benefits (by allocating some volume to the entrant) in order to ensure longer-

term competition and to reduce shortages in future procurement cycles. Although out

of the scope of our analysis, we observe that our approach allows the PO to evaluate the

immediate consequences of deviating from the optimal split α∗ in order to incent the

entrant to compete in future procurement cycles.

The results established in this section answer our first research question (Q.1) by

revealing that a lower-cost entrant provides substantial value to a PO. This holds true

for relatively low cost advantages (in our case we only considered a cost advantage of

approximately 6 percent) and even if the entrant exposes the PO to substantially higher

supply risks. In the latter case the PO should not allocate volume to the entrant, but the

entrant still provides value because it induces the competitive pressure that leads to a

reduction in price-induced shortage. While this effect may not be long-term, it highlights

that, even if the PO does not contract with the entrant, incenting a new entrant may still

be attractive. Another important insight can be derived from our results: the entrant’s

value heavily depends on the PO’s choice of the volume split, as the overall shortage

and the entrant’s value are sensitive to the volume split α and the PO must determine



2.5. ANALYSES AND DISCUSSION 41

and implement the optimal volume split (α∗) in order to gain the most benefit from

the entrant. Our discussions with practitioners in the field revealed that they often use

pre-defined volume splits (e.g., 30 percent for the entrant, 70 percent for the incumbent),

but our results suggest that pre-defined volume splits can have unfavorable outcomes

for the PO. For example, if the PO chooses the 30%/70% instead of the optimal split in

the reference case (α = .5), the entrant’s value drops from w = 40.7% to w = 38.6%.

The Value of a Capacity Constrained Entrant

In the previous section, we assumed that the entrant has sufficient capacity to fulfill the

PO’s entire demand. While this assumption may hold true in other settings, such as

when POs procure a comparatively small volume relative to the overall market volume,

it is unlikely to hold in the domain we address. UNFPA and USAID procure a consid-

erable share of the global market volume, and we cannot assume that an entrant will

immediately install adequate production capacity to fulfill this demand.

Therefore, we seek to answer the question concerning how much value an entrant

with limited capacity provides to a PO (Q.2). We structure our analysis using the same

scenarios with the same parameters as in the previous section. However, we reduce the

production capacity of the entrant to capE = 25, 000, 000 (< capI = 60, 000, 000), which

is only 43 percent of the PO’s target volume q. We obtained this estimate for one of the

potential generics manufacturers that intended to enter the DMPA market in 2015.

Figure 2.5: Price-induced shortages ξp(α) depending on the entrant’s share for varying
entrant’s capacity (capE = 60, 000, 000 (solid), capE = 42, 500, 000 (dashed), and capE =
25, 000, 000 (dotted)).

Figure 2.5 shows that limited capacity has a negative impact on competition because

it lowers the status-quo utility of the capacitated manufacturer. As a result a PO sees

higher price-induced shortages when large shares are allocated to the entrant. A PO
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should therefore single-source from the incumbent to minimize price-induced shortage.

We first calculate the total expected shortage using the reference case’s parameter

values but with limited entrant capacity. Figure 2.6a shows that even if the entrant has

limited capacity, a PO should allocate as much procurement volume to the entrant as

possible. However, the reduced competitive pressure decreases the relative importance

of price-induced shortage and increases the relative importance of risk diversification,

the latter of which has a particularly strong effect when awarding a relatively high share

to the entrant (see Figure 2.6a). Hence, allocating as much as possible to the entrant

is optimal in this setting. Compared to the reference case in Section 2.5.2 the entrant’s

value drops from w = 40.7% to w = 33.3% (see Table 2.2) because of the increase in

price-induced shortage, but the (capacity-constrained) entrant still provides substantial

value to the PO.

(a) Reference case with limited capac-
ity

(b) Scenario I

(c) Scenario II (d) Scenario III

Figure 2.6: Total expected shortages (ξp(α) + ξr(α)) depending on the entrant’s share
for capE = 25, 000, 000 for Scenarios I, II, and III.

The entrant value increases further when the entrant has a cost advantage over the

incumbent (Scenario I). Even if the entrant’s risk increases (Scenarios II and III), the

buyer minimizes total shortages when it allocates the largest possible share to the entrant

(see Figure 2.6d). However, we again observe that the total expected shortage at the

thresholds α and α is highly sensitive to the choice of α. Regarding research question 2
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(a) Reference case with limited capac-
ity

(b) Scenario I

(c) Scenario II (d) Scenario III

Figure 2.7: Total expected shortages (ξp(α) + ξr(α)) depending on the entrant’s share
for capE = 42, 500, 000 for Scenarios I, II, and III.

(Q.2), our results point to substantial differences between the scenarios for an entrant

with sufficient capacity and a strongly capacity-constrained entrant (compare Figure

2.3 and 2.6). Our results confirm that the entrant’s value decreases if its capacity is

limited (see Table 2.2). However, the intricate interplay of risk and costs can result in

drastic changes to the structure of total expected shortage and a PO’s optimal allocation

decision. Decision-makers are intuitively hesitant to allocate volumes to a risky entrant

with lower capacity, but our analysis reveals that POs should consider—employing a

simple allocation rule—to allocate high shares to a highly capacity constrained entrant

because risk-diversification and competition benefits can both work in the PO’s favor.

It is rather intuitive that this also holds in situations in which the entrant’s capacity

is even more constrained. However, when the entrant has higher capacity, the results

gradually converge to those presented in Section 2.5.2, where the entrant has sufficient

capacity. To illustrate this effect, Figure 2.7 shows the total expected shortage for an

entrant with less constrained capacity (i.e., capE = 42, 500, 000 which is 73 percent of

the target volume q). We see that in Scenario III, where the entrant exposes the PO to

substantial supply risks, it is optimal for the PO to allocate less volume to the entrant.

In this setting, there is again a strict trade-off between price-induced and risk-induced
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shortages: while the former decrease (see Figure 2.5), the latter increase (at a higher

rate) in the entrant’s share (see Figure 2.4b).

The Value of an Entrant with Limited In-country Registration

Section 2.5.2 explained that both competition and supply risks can be decisive for the

PO’s optimal split, so they are both important drivers of the entrant’s value. Our re-

sults demonstrated that, depending on the incumbent’s and entrant’s characteristics,

risk-induced (price-induced) shortages may have a stronger effect on the total expected

shortage than price-induced (risk-induced) shortages (see Figure 2.3a). Section 2.5.2

showed how the effect of an entrant’s limited capacity on price-induced shortage can

substantially change the entrant’s value and the optimal volume split. Our discussions

with practitioners revealed that in-country registration can also be a limiting factor, as

in-country registration impacts the PO’s ability to match manufacturers’ supply with

countries’ demands. To explain the value of an entrant with limited in-country registra-

tion, we compare the total shortage in the reference case (where the products of both

manufacturers are registered in all countries) to a case of limited in-country registration

that is based on a set of countries in which the product of the generics manufacturer who

was seeking to enter the market in 2015 were registered (Table 6.1 in the appendix shows

these countries). In this case, the entrant registered its product in ten (of twenty-six)

countries that account for approximately 45 percent of the target volume (dashed line

in Figure 2.8). Figure 2.8 shows that compared to full registration limited in-country

registration increases risk-induced shortage for a given volume split because the PO

has less opportunities to compensate for late shortages. Limited in-country registration

also reduces the feasible allocations a PO can allocate to the entrant. Because lim-

ited in-country registration limits the potential allocations to the entrant it also affects

competition and price-induced shortages.

As before, we calculate total shortage in the reference case, but with limited regis-

tration, and compare the results to those obtained for Scenario I, II, and III. Figure 2.9a

displays the total shortage depending on the entrant’s share for the reference case but

with limited in-country registration. The results indicate that a PO should source the

entire volume from the incumbent, as the entrant’s value amounts to w = 21.7%, which

is substantially lower than in the reference case with unconstrained capacity (where

w = 40.7%) and the reference case with constrained capacity (where w = 33.3%)—

see Table 2.2. The sharp decrease in the entrant’s value is the result of two effects.

First, limited registration has essentially the same impact on competition as constrained
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Figure 2.8: Risk-induced shortage depending on the entrant’s share for full entrant
registration (solid) and limited entrant registration (dashed).

(a) Reference case with limited reg. (b) Scenario I with limited reg.

(c) Scenario II with limited reg. (d) Scenario III with limited reg.

Figure 2.9: Expected shortages (ξp(α) + ξr(α)) depending on the entrant’s volume split
for the case of limited in-country registration.

entrant capacity: It restricts the volume the PO can allocate to the entrant, so the in-

cumbent’s bargaining position improves, which increases the price-induced shortage and

creates a preference for sourcing the entire volume from the incumbent (see Figure 2.5

for the effect of limited capacity on price-induced shortage). Second, limited registration

increases risk-induced shortage for larger allocations to the entrant (Figure 2.8). The

resulting total shortage curve (in Figure 2.9a) indicates that the benefits of competition

from larger shares allocated to the entrant cannot outweigh the increase in the risk-
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induced shortages, so the PO should single-source from the incumbent. In Scenario I

the entrant’s lower costs provides sufficient competitive benefits at high allocations to

the entrant to compensate for the higher risk-induced shortage. In this case, the PO

should source as much volume as possible from the entrant. However, we recognize that

the difference between expected shortage for α = 0 and α = .48 is comparatively small,

and the entrant value is only marginally higher at w = 22.3%. However, it is optimal for

the PO to single-source from the incumbent when the entrant also introduces higher risks

(Scenarios II and III). The entrant’s value then falls back to w = 21.7%. Based on these

results, the answer to our third research question (Q.3) is that an entrant with limited

in-country registration still provides value to the PO, but because limited in-country reg-

istration has a negative effect on both price-induced shortage and risk-induced shortage,

it has negative consequences and leads to a significant decline in the entrant’s value.

The entrant’s in-country registration is an important factor for the PO because it

has a significant effect on the entrant’s value and the entrant itself as it affects the

entrant’s competitive position. Therefore, both benefit from higher levels of in-country

registration. However, registering a product in a country is costly and time-consuming,

so knowing how much additional value registration provides on a country-by-country

basis would be useful. It would allow the entrant to prioritize its registration efforts and

to determine whether it is worthwhile from an economic perspective to pursue registra-

tion in a particular country. Knowing the value of registration in individual countries

can also help the PO in incenting the entrant by, for example, providing financial, po-

litical, or management support for registration in a particular country. Our approach

allows us to provide this information to both the entrant and the PO. Table 2.3 presents

the marginal increase in the entrant’s value (∆w = (wlim+c − wlim)) that is associated

with registration in an additional country (c). Figure 2.10 illustrates the decrease in the

price-induced and risk-induced shortages for registration in individual countries.

Country (c) Mali Afghanistan Haiti Bangladesh Mozambique Pakistan Ethiopia

∆w 0.6% 1.5% 1.8% 2.0% 2.4% 6.9% 7.3%

Table 2.3: Increase in the entrant’s value for selected, additionally registered countries
compared to the limited registrations case.
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Figure 2.10: Reduction in risk-induced and price-induced shortages of selected countries
in which the entrant has not registered its product in the limited registration case.

2.6 Conclusion

Purchasing organizations (POs) in donor-funded global-health markets seek to provide

people in low-income countries with essential medicines, but they struggle with high

demand and insufficient budgets. Generics manufacturer’s entry into these markets

promises lower purchasing prices through increased competition, thereby allowing POs

to supply more people with pharmaceutical products and increasing the number of treat-

ments delivered. However, these entrants may also increase the supply risk because of,

for example, longer lead times or higher default probability, resulting in shortages that

reduce the number of treatments delivered. Therefore, POs are confronted with the

difficult question concerning when a new generics manufacturer’s value is sufficient to

justify receiving a volume allocation, and how much volume should be allocated to it.

To answer these questions, we developed two interrelated models that capture the

specific dynamics of the negotiation phase (in which a PO negotiates with manufacturers)

and the coordination phase (in which a PO seeks to avoid supply-demand mismatches),

and we carried out analyses to clarify the underlying trade-offs between competition and

risk and to determine the entrant’s value under scenarios that are particularly relevant

to practitioners. Our analysis was inspired by a project we conducted for donor-funded

procurement of DMPA through two large POs with the purpose of showing how the

POs should react if a new generics manufacturer becomes available. To capture the

entrant’s value, we defined a welfare-oriented global-health PO’s objective as total ex-

pected shortage, a unit-based measure that is the sum of price-induced and risk-induced

shortage. Price-induced shortage captures the fact that a donor-funded PO does not

focus as much on minimizing procurement costs as it does on treating as many patients

as possible with a given budget. Risk-induced shortage measures the consequences of
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supply disruptions without explicitly assuming shortage costs. This formulation of the

PO’s objective distinguishes our approach from standard commercial approaches that

focus on profit maximization or cost minimization.

In jointly considering price- and risk-effects, we show that a PO’s objective function

can have multiple maxima and minima (for varying splits between incumbent and en-

trant). We identify that a root cause of the multi-modal objective function are changes

in the incentives during the negotiation and show that manufacturers’ costs, capacities,

and in-country registration will impact the position of the local minima and maxima.

These results provide new insights into the intricacies involved in determining the op-

timal volume allocation and maximizing the entrant’s value. They show that the PO’s

outcome is highly sensitive to the volume split, so they suggest that a PO must be careful

when choosing its allocations.

We also contribute to the literature on bargaining models by being the first to incor-

porate the splitting decision into a bilateral bargaining model and to model the impact

of capacity constraints explicitly.

We used various practically relevant settings to investigate how a PO should split

its procurement volume among the manufacturers in order to reap the highest entrant

value. We derived from this analysis several important insights for practitioners. Most

important, we observed that an entrant always provides at least a short-term value

because he introduces competitive pressure, regardless of the entrant’s supply risks.

However, the value depends heavily on the entrant’s characteristics (i.e., costs, capacity,

supply risks and in-country registration), and our analyses shed light on how these

characteristics impact the entrant’s value. In particular, we found that the entrant’s in-

country registrations have a very strong, perhaps the strongest, effect on the entrant’s

value because they reduce competitive pressure and inhibit risk diversification at the

same time. Our results also highlight that the PO will benefit from the entrant only if

it can determine the right volume split. Because the entrant’s value is highly sensitive

to the volume split, the simple rules of thumb (e.g. a 70%/30% split) that we regularly

encounter in practice are often not the most beneficial for the PO.

Our results can serve global-health decision-makers in several ways. First, our find-

ings help to refute simplified assumptions about how competition and risk impact out-

comes. Second, they help to evaluate how changes to important exogenous parameters

(e.g., costs, capacity) that are uncertain or difficult to quantify ex-ante influence compe-

tition and risk and, ultimately, the entrant’s value. Our findings and recommendations

are useful not only for decision-makers in global-health POs but also for other stakehold-

ers (e.g., philanthropic investors, technical advisors) who must determine the value of
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generics manufacturers in donor-funded global-health markets. Finally, generics manu-

facturers that consider joining new markets can use our findings to tailor their offerings

to POs and increase their chances of receiving attractive volume allocations.

Our study has some limitations, the most important of which is that we opted for

an approach that is close to the reality of global-health POs. This choice came with the

necessity to employ a simulation in order to derive meaningful insights and practically

useful recommendations. In addition, our model considers only one incumbent and one

entrant. Although we believe that the general intuition of our results would still hold,

we cannot provide detailed recommendations on, for example, how to split the volume

among an incumbent and two new entrants. Lastly, we do not explicitly account for

quality risks in our study because in most instances global-health procurers buy from

pre-qualified suppliers. Similarly, perishability was not a concern in the settings that

we considered. This may, however not hold in every setting and provides an interesting

avenue for future research.
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Chapter 3

The Postponement Tender and its

Effect on Competition and

Learning

Motivated by procurement challenges faced by global-health buyers like the Global Fund

and the United States Agency for International Development (USAID), this paper ad-

dresses a new tendering mechanism, the postponement tender, that seems to be particu-

larly suitable when a buyer wants to incentivize new suppliers (e.g., generics suppliers)

to bid on a large procurement contract despite the considerable supply risk that re-

sults from not having reliable information about the quality of the new suppliers. The

postponement tender can be considered as a procurement auction in which eligible sup-

pliers bid for an overall volume, receive some initial, partial volume for sure, and may

also win the remaining (postponed) volume, depending on their bids and the quality of

the initial volume they deliver. Our formal and numerical analyses show under which

conditions a postponement tender has greater benefits for a buyer than a traditional

single-sourcing, winner-take-all, format. We find that a postponement tender can lower

purchasing prices by increasing competitive pressure among suppliers while reducing the

buyer’s quality risk. Our analyses allow us to derive optimal postponement policies and

optimal sourcing strategies for market structures that differ in terms of the size of the

buyer, suppliers’ value, and quality uncertainty.

51
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3.1 Introduction

Inducing supply-side competition is a key concern of most buyers in the private and

public sectors because intense competition among suppliers is likely to drive down pur-

chasing prices. Many buyers of specialized goods rely on competitive tendering to stim-

ulate competition among potential suppliers, but the outcome of a tendering process

depends heavily on the number of potential suppliers that participate in the tender. In

the most general terms, we can assume that the intensity of competition increases with

the number of competitors,1 so buyers are typically interested in creating incentives for

potential suppliers to enter the tendering process.

However, in many instances, lowering purchasing prices is not a buyers’ only objec-

tive. Especially when it comes to the procurement of specialized (i.e., non-commoditized)

goods, supplier quality in terms of product quality and delivery service is also of con-

cern because these factors may vary substantially among suppliers. From the buyer’s

perspective, the prices (bids) and quality of the competing suppliers are uncertain at the

beginning of the tendering process. While price uncertainty is resolved by the end of the

process, when competitors’ bids are known to the buyer, uncertainty about different di-

mensions of quality persists. Eventually, the buyer has to evaluate the trade-off between

known supplier prices and uncertain supplier quality. Clearly, it would be beneficial for

the buyer to employ a tendering mechanism that maintains competitive pressure while

reducing the buyer’s uncertainty about suppliers’ quality. In this paper we study such a

mechanism that we term ”postponement tender”.

Our study is motivated by the challenges faced by global-health buyers like the Global

Fund (GF), GAVI, and the United States Agency for International Development (US-

AID), which consolidate demand for life-saving essential medicines (e.g., treatments for

malaria, HIV/AIDS, or tuberculosis, vaccines, or reproductive health products) in low-

income countries, issue tenders and manage the tendering process, negotiate contractual

terms with pharmaceutical manufacturers, and take an active role in ensuring that the

purchased medicines reach the population. These global-health buyers encourage new

generics suppliers to bid on their tenders to increase supply-side competition, bring down

purchasing prices, and ultimately to supply more people in low-income countries with

pharmaceutical products (e.g. USAID, 2014; Gavi, 2016). Despite the potential benefits

of these new generics suppliers, global-health buyers are often hesitant to contract with

them because they fear lower quality in terms of, for example, product quality or de-

1For example, in a first-price auction, the equilibrium bid approaches a bidder’s real valuation (or
cost) as the number of bidders increases (Krishna, 2009, p. 16).
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livery performance. This obstacle to contracting generics suppliers is reinforced by the

lack of reliable information about their quality, as the buyer may have little or no prior

experience with these new suppliers, making it difficult to anticipate their quality (e.g.

Global Drug Facility, 2013, 2014). Consider the GF, who consolidates low- and middle-

income country demand for antimalarial drugs, HIV medications, and tuberculosis drugs

(Global Fund, 2014b, 2017c, 2018). In the past, for example, Artemether combination

therapies for treating Malaria were bought almost exclusively from Novartis who had

undergone WHO pre-qualification and registered its product in the countries procuring

through the GF. In 2009 the GF procured Artemether combination therapies for $29.7

Mil.; approximately 97% of the volume was purchased from Novartis and most of the re-

maining volume from one generics manufacturer (Global Fund, 2017b). The GF wanted

to contract more generics suppliers to spur competition and develop a more diversified

and reliable supply base and established a new tendering procedure. In multiple RFPs

for anti-malarial drugs the GF announced that ”For certain [anti-malaria] products, the

Global Fund may reserve a portion of available volumes for subsequent negotiation with

newly eligible suppliers and with existing [...] Suppliers that can offer products that

become compliant with the Global Fund Quality Assurance Policy [...] after the close of

this RFP” (Global Fund, 2017c, p. 22). Depending on the supply market situation of a

specific treatment regime, the GF would reserve 5% to 30% of the procurement volume to

motivate new suppliers to join. The initial intent of the withheld volume was to provide

an incentive for new suppliers to enter the market and to ensure that the market is not

closed during the entire period of the contract (typically two to three years). Interest-

ingly, the first time they introduced this mechanism in 2014, they already had attracted

more suppliers and a broader supply base for many of their treatments. For example, in

2014 the GF procured Artemether combination therapies for $31.8 Mil. from Novartis

and five generics suppliers with shares between 7% and 33% (Global Fund, 2017b). As

such, it was important to also establish how the withheld volume would be allocated if no

new suppliers join. ”If no new entrants emerge, this volume will be released to existing

[...] Suppliers on a six-monthly basis according to performance”(Global Fund, 2017c, p.

22). The GF considered lead time performance (on time in full, OTIF), and responsive-

ness to new order requests as critical performance criteria—that is, the GF explicitly

analyzed supplier performance during the contract phase and determined which of the

panel suppliers would receive the withheld volumes based on their performance. The GF

found that postponing a certain share of the procurement volume is not only an effective

measure for motivating new suppliers to join their tenders, but also an effective measure

to deal with quality uncertainty, because they were able to assess the quality of new
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(generics) suppliers and to allocate more volume to suppliers with better performance.

Clearly, dealing with quality uncertainty becomes the more important issue as soon

as additional suppliers partake in the tenders, but it is unclear how much of the overall

volume should be reserved for later allocation. In this study we focus on the aforemen-

tioned trade-off between suppliers’ prices and uncertain quality and address the question

concerning if and how much volume should be reserved and allocated later (”postponed”)

when there are new suppliers with uncertain quality. Motivated by the example of the

GF, we propose a new tendering mechanism that we term a ”postponement tender”.

With a postponement tender buyers seek to strike a balance between the benefits of

competition and the quality risks induced by new entrants by withholding a share of

the overall procurement volume and allocating it after they have received additional

information about suppliers’ quality by means of testing (USAID, 2010; UNFPA, 2012,

2015) and evaluating logistics performance (RHInterchange, 2016; European Parliament

Research Service, 2020).

Suppliers bidding in the initial award will consider how likely it is that they can

receive the postponed volume. Since the Global Fund evaluates both performance and

cost, the suppliers will consider the interplay of their own and their competitors’ per-

formance and the respective bids. The postponed volume gives the buyer flexibility

in volume allocation and an additional lever with which to increase competition. Of

course, a buyer may also consider splitting a single tender into multiple consecutive

tenders, learning about suppliers’ quality in the first tender, and using this information

in the subsequent tenders. However, the procurement cycle length is often insufficient

to justify multiple consecutive tenders (e.g., with a duration of one year), especially in

light of the time and money that the buyer and the suppliers must spend conducting

and evaluating the tenders. This paper sheds light on the mechanics and outcomes of

a postponement tender and compares it to a typical single-sourcing arrangement under

which the “winner” receives the entire volume. We abstract from the many other in-

centives that may be introduced through withholding volume and focus on the trade-off

between the buyer’s quality and costs.

The main benefit of this mechanism is the learning effect, that is, the buyer’s op-

portunity to learn about the suppliers’ quality from the initial volume and then to use

this information in making an informed decision about to which supplier to award the

postponed volume. Even without considering competition, the effect of learning is inter-

esting: the buyer has a larger opportunity to inspect the delivered products and learn

about the suppliers when awarding larger initial volumes. A large initial volume, how-

ever, implies a small postponed volume, which impacts how much the buyer benefits
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from learning. That is, there is a trade-off between the amount of learning and the

benefits of learning.

The postponed volume also has a pronounced effect on competition. Intuitively, a

larger postponed volume should increase competition and lower prices. After the buyer

publishes the relevant tender documents, the suppliers know that the buyer has to award

some of the initial volume to each of the suppliers under consideration, or else she cannot

learn about quality. This implies that suppliers will compete primarily for the larger

postponed volume, incenting them to submit lower bids. However, as we will show,

this intuition is not universally true, as the interaction between learning effects and

competition effects is complex.

We study how the learning and competition effects jointly impact the outcome of a

postponement tender for a buyer that faces an incumbent supplier with known quality

and an entrant with uncertain quality, and contrast that outcome to the outcome of a

single-sourcing arrangement. In so doing, we address two interrelated questions that are

of particular importance to buyers: (1) Under what conditions should a postponement

tender be preferred to single-sourcing? (2) If it is optimal to employ a postponement

tender, how much volume should be postponed?

We identify relevant conditions for the design of a postponement tender and consider

four distinct market scenarios that are characterized by different types of buyers (large vs.

small) and different types of supply market structures (homogeneous vs. heterogeneous

suppliers). Large buyers (e.g., the GF, GAVI, or UNICEF’s supply division) consolidate

the demand of many recipient countries and therefore have large procurement volumes,

as evidenced by the example of Artemether combination therapies bought by the GF.

Smaller buyers are, for example, governmental procurers of low-income countries with

smaller populations and social marketing and relief organizations that operate decen-

tralized procurement departments in certain countries or regions (e.g., Marie Stopes

International). We use the suppliers’ values to characterize the supply market structure;

loosely speaking, the supplier value is the difference between expected quality and cost

of a supplier (see Section 3.3. for a formal definition) that the buyer considers when

awarding the postponed volume. The buyer faces homogeneous suppliers when both the

incumbent and the entrant have very similar values, which is likely the case when both

are either branded manufacturers or generics manufacturers. In contrast, the buyer faces

heterogeneous suppliers when the incumbent’s and the entrant’s values differ, which may,

for example, be the case when the incumbent is a branded manufacturer and the entrant

is a generics manufacturer.

To answer our two research questions, we first formalize the learning and competition
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effects of the postponement tender for the case of two suppliers, an incumbent and an

entrant, in individual models and study their structural properties (Section 3.3.1 and

Section 3.3.2). In particular, we characterize separately the postponement quantities

that maximize the buyer’s expected a priori quality and the buyer’s expected costs. In

Section 3.3.3 we address the overall problem of determining the postponement quantity

that maximizes the buyer’s expected utility—that is, the difference between the expected

a priori quality and the expected procurement costs. Based on analytical and numer-

ical analyses we find two surprising results: (1) a postponement tender should always

be preferred over a single-sourcing auction format when suppliers are heterogeneous in

terms of their values, (2) the buyer should exclusively pursue either a ”learning strategy”

by choosing the postponed volume that maximizes her expected a priori quality, or a

”competition strategy” by choosing the postponed volume that minimizes her expected

procurement costs (i.e., one of the two solutions established in Sections 3.3.1 and 3.3.2).

The reason for why a postponement tender should be preferred in most cases is that it

induces an additional element of competition. While competition is usually seen only

as the pressure that emerges from another supplier lowering his price, we can show that

under a postponement tender a supplier may lower his bid even if the competitor does

not, as the mere threat of losing the postponed volume after the buyer learns about the

entrant’s quality introduces competitive pressure. We are also able to identify the con-

ditions under which it is optimal to pursue a learning or a competition strategy, and we

find that the choice of the optimal strategy depends on the overall procurement volume

and suppliers’ values. We use our formal and numerical results and insights to derive

managerial implications, especially for buyers in the global-health domain, and tie the

postponement strategies to the types of buyers and the supply market structure (Sec-

tion 3.4). For example, our results show that a large buyer should pursue a competition

strategy if she faces heterogeneous suppliers and should only opt for a learning strategy

when suppliers are homogeneous and quality uncertainty is high.

While our study of the postponement tender was motivated by our work with global-

health procurement organizations, we believe that the postponement tender can be em-

ployed successfully in various other settings. The postponement tender appears to be

particularly relevant in cases where the supply base is weak and the quality of some

of the suppliers is uncertain. Clearly, this is the case for new product introductions in

which new suppliers are following the innovator. However, products that have been in

the market for a long time might also be good candidates for the postponement ten-

der. For example, during the COVID-19 pandemic, the United States and the European

Union faced shortages of critical medicines, medical devices, and personal protective
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equipment. In some of theses cases the reason for the shortage was that supply is heav-

ily concentrated and only produced by one or two manufacturers in Asia. As a result,

countries are considering, among other things, to contract new suppliers to diversify the

supply base (European Parliament Research Service, 2020), which may expose procurers

to uncertain quality and making a postponement tender a relevant option.

3.2 Literature

The postponement tender strikes a balance between purchasing costs that are driven

largely by competition between suppliers and the quality risks faced by the buyer by

postponing the decision to allocate a portion of the procurement volume. The idea

to postpone a decision and acquire more information has been used in other contexts,

for example, to delay product differentiation and observe more accurate demand signals

(Lee and Tang, 1997; Swaminathan and Tayur, 1998; Swaminathan and Lee, 2003), or to

postpone pricing decisions (Van Mieghem and Dada, 1999). The way the postponement

tender is structured makes it a specific form of an auction in which the suppliers bid

for a known overall volume, but are aware of the fact, that they may receive only an

initial volume, and may or may not—–depending on their bids but also on the quality

of their initial volume–—win the postponed volume. Therefore, our work is related to

procurement auctions, more specifically: procurement auctions with uncertainty about

suppliers’ quality. However, the postponement tender can also be viewed in light of

the single-sourcing vs. dual/multiple-sourcing problem that has received considerable

attention in research and among practitioners (see Minner (2003) and Snyder et al. (2016)

for reviews). In fact, the postponement tender can be considered a hybrid mechanism

that combines elements of both single- and dual-sourcing. If volume postponement is

feasible, the buyer has a dual-sourcing option, as described by Yang et al. (2012). For

an initial volume that is greater than zero but lower than the total volume, the buyer

dual-sources the initial volume, learns about the suppliers’ quality, and single-sources the

postponed volume. If the buyer chooses to postpone the entire volume (i.e., the initial

volume is zero), the postponement tender “collapses” into a single-sourcing, winner-

take-all mechanism in which there is no learning and the supplier with the highest

expected value receives the entire procurement volume. The buyer could also choose

an initial volume that equals the overall procurement volume–—that is, the postponed

volume is zero. Then the postponement tender would collapse into a pure dual-sourcing

arrangement. Although we allow for this outcome in our analysis, it is an inferior

solution, at least in our setting: From Anton and Yao (1989) we know that, in general
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terms, a “split award” (i.e., a dual-sourcing arrangement) leads to lower competition

among suppliers and higher prices than a winner-take-all auction in which one supplier

receives the entire volume. Under pure dual-sourcing, the buyer does not benefit in the

tender from any learning effects–—she can learn about the quality of the suppliers, but

does not benefit from this information in the current tender because she has already

allocated the entire procurement volume among the two suppliers. In practice, other

reasons may justify dual-sourcing: Gong et al. (2012) show that dual-sourcing can lead

to lower bids of the suppliers when suppliers can invest into cost reductions. Chaturvedi

et al. (2014) show that splitting the procurement volume may also be beneficial in a

multi-period setting with qualification costs, as a split award helps to maintain a certain

supply base. The strongest arguments for choosing a “pure” dual-sourcing arrangement

instead of a hybrid postponement tender come from the literature on the management

of supply risks and disruptions. A large number of papers have addressed the benefits of

multiple-sourcing and derived optimal procurement policies in the presence of a multiple

or dual-sourcing option and supply disruption risks (e.g., Tomlin and Wang (2005);

Tomlin (2006); Dada et al. (2007); Federgruen and Yang (2008); Babich et al. (2007a)).

Broadly speaking, these papers showed that the benefit of dual-sourcing comes from risk

diversification and/or the possibility that one supplier will compensate for the shortfalls

of another. However, as Yang et al. (2012) and Qi et al. (2015) pointed out, these

papers did not account for competition among suppliers but typically assumed “that

suppliers’ prices and reliability are exogenous” (Qi et al., 2015, p. 91). Yang et al. (2012)

consider a setting in which the buyer has a dual-sourcing option in the presence of supply

risks and competition among suppliers. The buyer may choose to order from only one

supplier, using a winner-take-all strategy, or from both suppliers, using a diversification

strategy. The authors find a trade-off similar to that we assumed with regard to our

postponement tender, that the more the buyer favors a winner-take-all strategy, the

greater the competition benefits and the lower the diversification benefits, and vice

versa. Apart from the fact that Yang et al. (2012) consider the disruption risk, modelled

as a random yield with either zero or one, and our study’s addressing quality risks in

more general terms, the paper differs in their objective of solving for the buyer’s optimal

procurement contract, consisting of an order quantity and fixed and variable payments.

In contrast, we model the postponement tender as a specific auction format.

Other papers also address dual-sourcing in the presence of supply uncertainty and

competition. Qi et al. (2015) study a buyer’s dual-sourcing decision under uncertain

demand and unreliable supply of two suppliers. Kumar et al. (2018) employ Bertrand

competition ”between two price-setting retailers and analyze how pricing can be used as
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an important lever under supply disruptions” (Kumar et al., 2018, p. 536). They also

provide a good overview of the relevant literature. Our work is particularly relevant to

the humanitarian sector where sourcing is a key challenge because of long and uncertain

lead times (Komrska et al., 2013), quality issues, uncertain financing (Natarajan and

Swaminathan, 2014), or constrained budgets (Taylor and Xiao, 2014). Recently, Lau-

ton et al. (2019) proposed a framework with which to evaluate the trade-off between

competition and supply risks and show under which conditions a new entrant supplier

can provide value to a buyer in the global-health domain. To capture competition be-

tween a buyer and two suppliers, the authors propose a Nash-in-Nash bargaining model

that allows them to derive equilibrium prices. The supply risk in their model pertains

to lead-time uncertainty. Lauton et al. (2019) show that splitting the volume between

an incumbent and an entrant to balance competition and risk is difficult because pur-

chasing costs are concave in the volume split, that is, dual-sourcing reduces competitive

pressure, and risk-related costs are convex, as dual-sourcing reduces risk exposure. As

a result, overall procurement cost can have multiple optima, and identifying the overall

cost minimum is difficult. Iakovou et al. (2014) study different sourcing strategies in hu-

manitarian supply chains and find that dual sourcing can significantly reduce disruption

costs in exchange for some premium that needs to be paid.

The research presented in this paper differs from the contributions above in a number

of ways. First, we do not consider the “classical” questions concerning whether to single-

source or dual-source and how much to allocate to the suppliers. Our postponement

tender is structurally different in that it splits the procurement volume across time,

allows for learning depending on how the volume is split, and incorporates elements of

both single- and dual-sourcing. Simply speaking, we do not consider how to split the

entire procurement volume across two or more suppliers so much as how to split the

volume into an initial volume and a postponed volume. To the best of our knowledge,

research has not addressed this type of mechanism, which appears to be attractive to

practitioners. Second, how we consider the concept of (supply) risk differs from the

aforementioned research. The literature on dual-sourcing focuses on specific supply-

disruption risks, but we assume that the buyer faces multiple risks in terms of, for

example, product quality and delivery performance and assume that we can consolidate

these uncertain non-price attributes into a single quality measure. This approach is in

line with previous literature, for example, Engelbrecht-Wiggans and Katok (2007) and

Fugger et al. (2015). In our model, the buyer has beliefs about suppliers’ quality at the

beginning of the tender and can learn (i.e., update her beliefs) after having received and

inspected the initial volume. The way in which we model the buyer’s learning is similar
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to the ”Bayesian model of supply learning” proposed by Tomlin (2009).

We draw from the literature on procurement auctions to incorporate the competition

element into our model. The postponement tender features a setting in which a buyer

wants suppliers to compete and, after the buyer learns about the suppliers’ quality,

decides who will receive the postponed volume. Therefore, the supplier with the lowest

price does not necessarily win the postponed volume because the buyer considers price

and quality, and the winner of the postponed volume will only be announced later in the

process after the buyer updated her beliefs about the suppliers’ quality. Therefore, the

postponement tender is structurally similar to a buyer-determined auction, which Jap

(2002) defines as an auction in which “the buyer commits to select one winner among

the bidders, but selection may occur on any basis other than price” (Jap, 2002, p. 508).

Engelbrecht-Wiggans and Katok (2007) compare the buyer-determined auction format

to a solely price-based format, where the buyer ignores uncertain non-price attributes

in the final evaluation. Katok and Wambach (2008) analyze the effects of supplier

collusion in buyer-determined auctions. Wan et al. (2012) consider a setting in which an

entrant’s qualification is unknown, and the buyer must decide whether the entrant should

be screened prior to the auction. Santamaria (2015) compares the buyer-determined

auction to the well-established scoring auction and identifies settings in which one or

the other format may yield more benefit for the buyer. Because our setting is similar to

that considered by Katok and Wambach (2008) and Santamaria (2015), we adopt their

dynamic open-bid auction format to analyze a buyer-determined auction setting and to

model the competition between the two suppliers.

We integrate the Bayesian updating model into this auction format to model the

effect of the buyer’s learning on suppliers’ competition. Therefore, a key methodological

contribution of our paper is our development of an integrated model of learning and

competition that allows us to study how learning impacts competition between suppliers

and the outcome for the buyer in the setting of a postponement tender. Next, we first

introduce and analyze the learning model and the competition model independently. We

then develop and study the integrated model.

3.3 The model

Our model addresses the procurement problem of a buyer (she) who faces a demand

of M units for a fully divisible good that can be sourced from an incumbent supplier

(i) and a new generics supplier, to which we refer as the entrant (e). The buyer bases

her procurement decision not only on the procurement costs, but also takes into account
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non-price attributes like product quality and delivery performance. In line with previous

literature (e.g., Engelbrecht-Wiggans and Katok (2007) and Fugger et al. (2015)), we

assume that the buyer can consolidate these non-price attributes into a single quantifiable

measure, to which we refer as the supplier’s quality. We also assume that the buyer has

a longstanding relationship with the incumbent and knows the incumbent’s quality. We

denote the incumbent’s (deterministic) quality by qi. In contrast, the entrant is new to

the market, and we assume that the buyer has incomplete information about its quality.

We model the entrant’s uncertain quality as a random variable Qe with probability

density function f and distribution function F .

The buyer uses a procurement mechanism, the postponement tender, with which the

buyer splits the procurement volume M into an initial volume and a postponed volume.

After the buyer announces the allocation between initial and postponed volume, the

suppliers bid prices at which they are willing to sell their products. The buyer dual-

sources the initial volume from both suppliers, so both receive some share of the initial

volume. After the buyer has received and inspected the initial volumes, she updates

her beliefs about the entrant’s quality and single-sources the postponed volume from

the supplier that maximizes the buyer’s expected utility (the difference between the

supplier’s expected quality and his bid).

We denote the postponed share of the entire volume M by dp ∈ [0, 1]. Thus, the

volume of the initial award is (1−dp)M , and the postponed volume is dpM . Essentially,

for dp < 1, the buyer employs a postponement tender, and for dp = 1, she employs

single-sourcing. We assume that the initial volume (1 − dp)M is split equally between

the two suppliers into di = de =
1−dp

2 M . In practice, a buyer may consider splitting the

initial volume unequally between the suppliers to increase learning effects, for example.

Section 7.1.3 in the Appendix investigates the impact of an unequal initial volume split

and shows that our results do not change structurally.

Figure 3.1 summarizes the timing of events in our model. First, at time t0, the

buyer announces the overall procurement volume M and the postponed volume dpM .

The suppliers then bid for the entire contract, so their price bids apply to both the

initial volume and the postponed volume, although they cannot be sure that they will

be awarded the postponed volume. We denote the outcome of this bidding process, that

is, the terminal bids of the incumbent and the entrant, by bTj (dp) (j ∈ {i, e}). The

terminal bids depend on dp. When suppliers bid for the overall contract, they assess

the “value” of the initial volume
1−dp

2 M and the postponed volume dpM and their

probability of winning the latter. Section 3.3.2 details the bidding process and specifies

how the terminal bids depend on the postponed volume.
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Figure 3.1: Timing of events

After the terminal bids are placed, the suppliers deliver their initial volumes
1−dp

2 M .

At time t1, the buyer observes the entrant’s quality. We denote by q̂e the fraction of

the entrant’s share
1−dp

2 M that is of acceptable quality. Based on this observation,

the buyer updates her prior information Qe about the entrant’s quality. We denote by

Qposte (q̂e, dp) the buyer’s updated quality information. The number of units the buyer

observes determines her ability to learn about the entrant’s quality such that, the larger

the initial volume, the more units the buyer can inspect and the more accurate the

quality signal will become (Berry, 2006). Thus, Qposte (q̂e, dp) depends on q̂e and dp.

Section 3.3.1 specifies how we model the buyer’s updating/learning.

Our model allows for two interpretations of the procurement volume M . As sug-

gested in our previous description, M can simply represent the total number of units the

buyer intends to procure. Under this interpretation each unit’s quality can be observed

individually by the buyer and provides unique information about a supplier’s quality.

More generally, M can also be interpreted as the number of learning opportunities a

buyer has, for example, the number of orders or individual lots a buyer receives.2 It

is reasonable to assume that, in this case, the buyer inspects each individual order she

receives—she samples a number of units from each order, evaluates their quality and

infers the supplier’s quality for the order.3

At time t2, after updating the quality information about the entrant, the buyer deter-

mines the incumbent’s score qi− bTi and the entrant’s (expected) score E[Qposte (q̂e, dp)]−
bTe , and awards the postponed volume to the supplier with the higher score. In line with

the literature on scoring auctions we assume that costs are measured on the same scale

2In the Procurement Performance Indicators Guide the USAID describes ”supplier performance” as
either the ”Percentage of orders in compliance with the contract criteria” or the ”Percentage of orders
delivered on time”. USAID (2013)

3For this interpretation we have to assume that each order provides the same amount of information.
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as quality and that costs never exceed quality (Engelbrecht-Wiggans and Katok, 2007;

Santamaria, 2015; Haruvy and Katok, 2013). We formalize this later in Section 3.3.2.

The overall process, as depicted in Figure 3.1, makes clear that the buyer’s key decision

pertains to setting the postponed volume dp at time t0. Both the terminal bids of the

suppliers and the expected (overall) quality depend on dp, which the buyer announces

before the suppliers place their bids. We assume a risk-neutral buyer who wants to

choose the postponed volume dp that will maximize her expected utility E[U(dp)], that

is, the difference between the expected quality of the M units she purchases and the

corresponding purchasing costs. Therefore, the buyer’s problem can be stated as:

max
0≤dp≤1

E[U(dp)] = (1− dp)M ·
(
qi
2 + E[Qe]

2

)
+ dpM ·

∫ 1

0
f(q̂e)Vq(q̂e, dp)dq̂e︸ ︷︷ ︸

Expected Quality

− ((1− dp)M ·
(
bTi
2 + bTe

2

)
+ dpM ·

∫ 1

0
f(q̂e)Vc(q̂e, dp)dq̂e︸ ︷︷ ︸

Expected Costs

)

where Vq(q̂e, dp) =

qi, for qi − bTi > q̄poste (q̂e, dp)− bTe
q̄poste (q̂e, dp), for qi − bTi < q̄poste (q̂e, dp)− bTe

and Vc(q̂e, dp) =

bTi , for qi − bTi > q̄poste (q̂e, dp)− bTe
bTe , for qi − bTi < q̄poste (q̂e, dp)− bTe

.

(3.1)

q̂e in Eq. (3.1) denotes the entrant’s quality that the buyer observed from the initial

volume. Vc(.) and Vq(.) denote the price and expected quality per unit of the postponed

volume, both depending on the realization of entrant quality in the initial volume. At

the beginning of the process t0, when the buyer sets dp, this observation is uncertain;

the buyer knows its realization q̂e only after receiving and inspecting the entrant’s initial

volume.

Eq. (3.1) provides a relatively straightforward characterization of the buyer’s prob-

lem. However, it entails an intricate interplay of competition and learning effects—both

the expected quality and the expected costs depend on the buyer’s learning, which is de-

pendent on the postponed volume—that is difficult to disentangle, making it difficult for

the buyer to determine her optimal postponed volume dp. To shed light on this interplay

we first analyze the two elements of the buyer’s expected utility separately: in Section

3.3.1 we focus on the expected quality, study how the buyer benefits from learning about

the entrant’s quality based on the buyer’s choice of the postponed volume dp, and de-



64 CHAPTER 3. THE POSTPONEMENT TENDER

termine the postponed volume that maximizes the buyer’s expected a priori quality. In

Section 3.3.2 we study the terminal bids of the incumbent and the entrant and how these

depend on the buyer’s choice of the postponed volume dp. In this section we also derive

the postponed volume that minimizes the buyer’s expected procurement costs. Section

3.3.3 uses these results to characterize the buyer’s optimal postponement decision and

find a surprising result: it is optimal for the buyer to pursue either a learning strategy

and choose the quality-maximizing postponed volume (established in Section 3.3.1), or

to pursue a competition strategy and to choose the cost-minimizing postponed volume

(established in Section 3.3.2).

3.3.1 Buyer’s learning and the quality-maximizing postponement vol-

ume

The buyer is uncertain about the entrant’s product quality with regard to both the initial

volume and the postponed volume. However, we assume that the buyer can learn from

the quality the entrant provides in the initial award. To model the buyer’s learning, we

use a Bayesian updating approach that is similar to that of Tomlin (2009). Our model

differs from Tomlin (2009)’s approach in that we assume the number of units observed by

the buyer to be endogenous. Simply put, in our model, learning depends on the buyer’s

postponement decision. We model the uncertain product quality as a Bernoulli random

variable. Suppose that each unit of the initial volume 1
2(1 − dp)M the buyer receives

from the entrant is acceptable (ρe = 1) with probability Qe ∈ [0, 1], and is unacceptable

(ρe = 0) with probability (1 − Qe), where Qe is drawn from a probability distribution

with probability density function f and distribution function F .

We assume that the entrant’s quality follows a Beta-distribution Beta(α, β). Thus,

f(qe) =
Γ(α+ β)

Γ(α)Γ(β)
(qe)

α−1(1− qe)β−1.

We choose the Beta-distribution because it is particularly suitable for modeling product

quality and quality updating. It can represent a wide range of distributions, including

the uniform distribution Beta(α = 1, β = 1) and bell-shaped distributions. It also

has a bounded support on [0, 1], which corresponds well to our notion of uncertain

quality. Moreover, the Beta-distribution has a specific property, which is convenient

for our purposes, as it allows us to model Bayesian updating because it is a conjugate

prior for the entrant’s updated quality distribution. That is, if the prior distribution

is a Beta(α, β)-distribution, and one conducts a single Bernoulli trial, the posterior



3.3. THE MODEL 65

distribution is Beta(α+ 1, β)-distributed if the trial was successful, and Beta(α, β + 1)-

distributed if the trial was unsuccessful (e.g. Press, 1989; Zhu and Lu, 2004; Tomlin,

2009).

Proposition 2.

Define q̄e := E[Qe]. Suppose the buyer observes 1
2(1− dp)M units from the entrant, and

a fraction q̂e ∈ [0, 1] is of acceptable quality (i.e., ρe = 1).

a) Let Qposte denote the posterior distribution of the entrant’s quality.

Qposte ∼Beta(α+ q̂e
1
2(1− dp)M,β + (1− q̂e)1

2(1− dp)M)).

b) Let q̄poste (q̂e, dp) := E[Qposte ] denote the posterior mean quality of the entrant.

q̄poste (q̂e, dp) =
α+ q̂e

1
2(1− dp)M

α+ β + 1
2(1− dp)M

. (3.2)

c) Let E
[
∆(dp)

]
:= |q̄poste (q̂e, dp)− q̄e| denote the buyer’s expected learning. E

[
∆(dp)

]
is concave and decreasing in dp, and increasing in M .

All proofs are relegated to appendix II.

Proposition 2 characterizes the buyer’s posterior distribution of the entrant’s quality

and the buyer’s expected learning after observing the entrant’s initial delivery. From part

b) we can see how the observed quality q̂e and the entrant’s initial volume 1
2(1− dp)M

determine the buyer’s posterior mean of the entrant’s quality: q̂e adjusts the mean, and
1
2(1 − dp)M weighs this adjustment. This has an immediate impact on how much the

buyer can expect to learn from the entrant’s initial volume. As part c) of Proposition

1 states, the buyer’s expected learning decreases at an increasing rate as the postponed

volume dp increases. Put differently, a buyer’s expected learning is increasing in the

initial volume of the entrant (1 − dp) at a decreasing rate. Larger postponed volumes

lead to smaller weights on the adjustment of the mean and, as a consequence, to smaller

differences between the prior mean q̄e and the posterior mean q̄poste (q̂e, dp). In addition,

expected learning is increasing in M because of a similar rationale: if M increases for a

given postponed volume dp, the initially observed volume
1−dp

2 M increases, so the buyer

expects to learn more, resulting in a stronger update of the entrant’s (prior) quality.

Obviously, the buyer can maximize expected learning by not postponing any volume,

that is, when dp = 0. However, the buyer will not enjoy any benefits from learning about

the entrant’s quality because she has already awarded the entire procurement volume

M . Only if the buyer postpones at least some of the volume, such that 0 < dp < 1,
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will she benefit from learning. The buyer will be unable to learn if she opts for single-

sourcing and postpones the entire volume. Therefore, we can conjecture that, while

expected learning decreases with the postponed volume (see Proposition 2c), the benefits

of learning increase in the postponed volume, as long as the buyer does not postpone the

entire volume. To shed more light on the interplay of the two effects (expected learning

vs. benefits of learning), we study how the buyer should set the postponed volume

to maximize her expected a priori quality. In this case the buyer solves the following

problem which results directly from Eq. (3.1):

max
0≤dp≤1

E[Q(dp)] =(1− dp)M ·
(
qi
2 + E[Qe]

2

)
+ dpM ·

∫ 1

0
f(q̂e)Vq(q̂e, dp)dq̂e

where Vq(q̂e, dp) =

qi, for qi > q̄poste (q̂e, dp)

q̄poste (q̂e, dp), for qi < q̄poste (q̂e, dp)
.

(3.3)

Proposition 3.

Assume Qe ∼ Beta(1, 1) and q̄e = qi. Define dQp := argmax{E[Q(dp)]}.

a) E[Q(dp)] is concave in dp.

b) dQp = 1
1+ 2√

4+M

> 1
2 and is strictly increasing in M .

The results presented in Proposition 3 exemplify our conjecture: expected quality has

a minimum at dp = 1 and dp = 0, where the buyer either has no opportunity to learn

or cannot benefit from learning. (See Figure 3.2, for an illustration of how E[Q(dp)]

depends on dp.) For 0 < dp ≤ dQp , the expected quality increases as more volume is

postponed; that is, the additional benefit of learning overcompensates for the decrease

in expected learning. Recall that expected learning is decreasing in dp at an increasing

rate (Proposition 1c). Beyond dQp , the decrease in expected learning is so strong that

it offsets any benefits from learning –— the buyer learns too little to achieve a higher

expected quality —– so expected quality decreases in dp for dQp < dp ≤ 1.

From part b) of Proposition 3, we see that dQp is increasing in the overall procurement

volume M because, as M increases, the same absolute number of units can be observed

at lower levels of dp, which makes it more attractive to postpone a larger share, at least

from a quality perspective.

We now turn to the question of how differences in the a priori (expected) quality

between incumbent and entrant affect learning and expected quality. More precisely, we

explore whether our previous results change for q̄e 6= qi.
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Figure 3.2: Expected quality dependent on dp: Qe ∼ Beta(1, 1) (uniform, solid),
Beta(2, 2) (symmetric bell-shaped, dashed), Beta(2, 5) (asymmetric bell-shaped, dot-
ted) and q̄e = qi, M = 25.

Proposition 4.

Assume Qe ∼ Beta(1, 1) and qi 6= q̄e. Let d̃p =
M−8∆q−2M∆q

M(1−2∆q)
and ∆q := |qi − q̄e|.

a) E[Q(dp)] is strictly increasing in dp for d̃p ≤ dp ≤ 1.

b) d̃p is strictly decreasing in ∆q.

Figure 3.3 shows that the shape of E[Q(dp)] changes if the entrant’s a priori expected

quality and the incumbent’s known quality differ. As the figure shows, the curve is no

longer fully concave but has an increasing part and a concave part (as in Figure 3.2),

as well as a local minimum, after which it is strictly increasing for d̃p ≤ dp ≤ 1. For

d̃p ≤ dp ≤ 1, the buyer experiences the same learning effects as before, but does not

benefit from learning at these small initial volumes: after updating, the buyer expects

the quality of the entrant q̄poste always to remain below the incumbent’s known quality

qi. Therefore, at these values of dp, the buyer always expects to allocate the postponed

volume to the incumbent. As a consequence, each additional unit of postponed volume

increases the buyer’s expected quality by a constant 1
2(qi − q̄e) > 0. Thus, for dp ≥ d̃p,

the expected quality is linearly increasing in dp, as stated in Proposition 4a.

The results presented in Proposition 4b suggest that, for an increasing difference

∆q in the a priori quality, d̃p decreases and the region of postponed volumes in which

the buyer does not benefit from learning increases. Figure 3.3 illustrates this effect

for increasing ∆q. We observe that, for high ∆q, the expected quality can even be

monotonically increasing in dp, suggesting that expected quality is maximized at dp = 1

(i.e., when the buyer single-sources from the supplier with the higher a priori quality).

Our analysis shows that the effect of learning on expected quality is non-linear and is

determined by the trade-off between a learning effect and the benefits of learning. Since
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Figure 3.3: Expected quality dependent on dp for Qe ∼ Beta(1, 1), q̄e = 0.5 6= qi and
M = 25. ∆q = 0.1 (solid), ∆q = 0.15 (dashed) and ∆q = 0.2 (dotted). Vertical arrows
depict d̃p.

both effects have an inverse relationship with the postponed volume, we can identify a

dp that maximizes the buyer’s expected quality. The impact of the postponed volume

on the expected quality depends on the quality risk of the entrant. Higher upside risks

–— that is, higher probabilities for high positive differences in quality in conjunction

with the ability to learn about the entrant’s quality —– increase the positive impact

that postponement can have on the expected quality. While the buyer always benefits

from postponement if quality is the same, this is not the case for qi 6= q̄e. For high

quality differences the buyer does not enjoy benefits of learning when choosing very

large postponed volumes. Under these circumstances, it may be more attractive for a

buyer to single-source (dp = 1) and to forgo any potential learning effects.

3.3.2 Competition and the cost-minimizing postponement volume

The previous section focused on expected quality and how it is impacted by the post-

ponement tender. From a quality perspective, the optimal dp depends on a number

of factors, such as the difference between the entrant’s expected quality and the in-

cumbent’s quality, its prior distribution, and the overall procurement volume, but our

analysis and discussion of expected learning vs. the benefits of learning point to rather

high values of dp and, in certain instances, even to single-sourcing (dp = 1). Intuition

suggests that competitive pressure will increase at higher levels of postponed volume

and that the incumbent’s and the entrant’s (terminal) bids will decrease as dp increases.

To determine whether and when this intuition holds true, in this section we introduce a

competition model that reflects the negotiation process between the buyer and the two

suppliers and that allows us to analyze how the terminal bids bTi (dp) and bTe (dp) depend

on dp. With this we will be able to characterize the postponement volume that mini-
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mizes the buyer’s expected costs. We will see in Section 3.3.3 that this is an important

ingredient for determining the optimal solution to Eq. (3.1). Therefore, in this section

we will focus our analysis on the terminal bids and the buyer’s expected costs in Eq.

(3.1). For notational ease we omit the functional dependence of the terminal bids on dp

and write bTj instead.

The choice of our competition model is guided by the current practice of global-health

procurers. Procurers of essential medicines for low- and low-middle-income countries are

typically large institutional buyers like the Global Fund or UNICEF, smaller governmen-

tal buyers, and locally active relief organizations. In most instances, these buyers conduct

bilateral negotiations with their suppliers. For example, in our motivating case of the

Global Fund’s tender of anti-malaria drugs, the Global Fund announced its intention to

conduct negotiations with each supplier (Global Fund, 2017c) in a multi-round process

during which suppliers would meet bilaterally with the buyer and adjust their bids in a

descending auction, where suppliers consecutively submit price quotes publicly. Because

of its close resemblance to the real-world negotiation process, we base our competition

model on a descending auction format similar to that proposed by Santamaria (2015)4,

although our approach differs from that of the typical descending auction format in that

we incorporate the buyer’s ability to learn about the entrant’s quality after the buyer

receives the initial volume.

To keep matters simple, we assume that the incumbent and the entrant both have the

same prior Qe about the entrant’s quality, are aware of the buyer’s updating mechanism,

and will incorporate the buyer’s update into their bidding strategies. This assumption

is justified if the entrant is a new supplier who has not yet had the opportunity to

observe his own quality in a large-scale production process, so he does not have better

information about his own quality than the buyer and the incumbent do.

Let cj ∈ [0, 1] denote the marginal production costs of supplier j ∈ {i, e}. For now,

we assume that the buyer knows these costs. (In the Appendix in Section 7.1.2 discusses

the implications of relaxing this assumption.) The suppliers submit bids bti and bte in

multiple rounds t = 0, ..., T . The buyer will contract a supplier only if the supplier

provides a positive value (in expectation); therefore, the auction starts at b0i = qi and

b0e = q̄e, the buyer’s reservation prices. To avoid trivial solutions we assume that qi ≥ ci
and q̄e ≥ ce. In each bidding round t > 0, a supplier observes the competitor’s bid from

the previous round t−1 and decides whether to lower his own bid by an increment δ > 0

4The descending auction format is also widely used and well established in other procurement domains
(Elmaghraby (2007)).
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or to stop bidding.5 We define T as the round in which both suppliers stop decreasing

their bids and the auction terminates. Our objective is to characterize the terminal bids

bTi and bTe depending on dp.

We begin by characterizing the incentives of the incumbent to lower his bid. In

bidding round t ∈ {1, . . . , T} the incumbent has an incentive to lower his bid bt−1
i by δ

if the lowered bid increases the incumbent’s expected profit:

E[Profit of stopping at bt−1
i ] < E[Profit of lowering bt−1

i by δ] (3.4)

⇔

Profit initial volume (current bid)︷ ︸︸ ︷
(bt−1
i − ci)

1− dp
2

M +

Expected profit postponed volume (current bid)︷ ︸︸ ︷
(bt−1
i − ci)dpMP [qi − bt−1

i > q̄poste (Q̂e, dp)− bt−1
e ]

< (bt−1
i − δ − ci)

1− dp
2

M︸ ︷︷ ︸
Profit initial volume (lower bid)

+ (bt−1
i − δ − ci)dpMP [qi − (bt−1

i − δ) > q̄poste (Q̂e, dp)− bt−1
e ]︸ ︷︷ ︸

Expected profit postponed volume (lower bid)

(3.5)

Eq. (3.5) compares the incumbent’s expected profit from stopping at the current bid

bt−1
i with the expected profit when lowering the bid bt−1

i by δ. The total expected profit

is the sum of the (deterministic) profit earned with the initial volume and the expected

profit associated with the postponed volume. The latter is determined by the probability

of winning the postponed volume P [·], which the incumbent will win only if his score

(qi − bt−1
i ) is larger than the entrant’s expected score (q̄poste (Q̂e, dp)− bt−1

e ), which is the

difference between the posterior mean and the entrant’s bid. Note that because P [·]
depends on the posterior mean q̄poste (Q̂e, dp), the incumbent explicitly accounts for the

buyer’s learning. Lowering the bid by δ has two consequences for the incumbent: his

margin will decrease and his probability of winning the postponed volume will increase.

The incumbent will decrease his bid by δ if the net effect on the expected profit is positive.

The entrant’s condition for lowering his bid bt−1
e by δ follows the same rationale and can

5We assume that the suppliers strictly follow the descending auction format, do not collude as in
Fugger et al. (2015), and do not consider economic implications beyond the current tender.
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be expressed as:

E[Profit of stopping at bt−1
e ] < E[Profit of lowering bt−1

e by δ]⇔ (3.6)

Profit initial volume (current bid)︷ ︸︸ ︷
(bt−1
e − ce)

1− dp
2

M +

Expected profit postponed volume (lower bid)︷ ︸︸ ︷
(bt−1
e − ce)dpMP [q̄poste (Q̂e, dp)− bt−1

e > qi − bt−1
i ]

< (bt−1
e − δ − ce)

1− dp
2

M︸ ︷︷ ︸
Profit initial volume (lower bid)

+ (bt−1
e − δ − ce)dpMP [q̄poste (Q̂e, dp)− (bt−1

e − δ) > qi − bt−1
i ]︸ ︷︷ ︸

Expected profit postponed volume (lower bid)

(3.7)

Proposition 5.

Let P (bt−1
i |dp) := P [qi − bt−1

i > q̄poste (Q̂e, dp) − bt−1
e ] denote the incumbent’s probability

of winning the postponed volume with a bid bt−1
i and let P (bt−1

e |dp) := P (q̄poste (Q̂e, dp)−
bt−1
e ) > qi − bt−1

i ] denote the entrant’s probability of winning the postponed volume with

a bid bt−1
e . Supplier j ∈ {i, e} lowers his bid bt−1

j by δ in round t ∈ {1, . . . , T} if and

only if

bt−1
j − cj > δ

1
2

1−dp
dp

+ P (bt−1
j − δ|dp)

P (bt−1
j − δ|dp)− P (bt−1

j |dp)︸ ︷︷ ︸
supplier’s markup := θtj

, for 0 < dp ≤ 1, t ∈ {1, . . . , T}. (3.8)

Proposition 5 presents the condition under which a supplier will lower his bid in round

t. The supplier will lower his bid by δ if his (per unit) margin (bt−1
j − cj) in the previous

round t−1 is larger than what we term the “markup” (θtj) for round t. Otherwise he stops

bidding. The markup in Eq. (3.8) features two interrelated elements: First, a supplier’s

decision to lower his bid depends on the relative size of the postponed volume
1−dp
dp

.

Larger postponed volumes dp result in low ratios of
1−dp
dp

, which, ceteris paribus, lead

to lower markups. We refer to this as a volume incentive. Second, a supplier evaluates

the probability of winning the postponed volume when lowering the bid (P (bt−1
j − δ|dp))

and evaluates how lowering the bid improves his probability of winning the postponed

volume (P (bt−1
j − δ|dp) − P (bt−1

j |dp)). These probabilities depend on dp through the

buyer’s learning process: As shown in Proposition 2, the buyer’s posterior mean is a

function of dp, but since we do not know the direction in which the buyer will update

her prior, there is no unidirectional relationship between the probabilities P [.] and dp.

Thus, ceteris paribus, a low probability and/or a large improvement in the probability

of winning the postponed volume result in a low markup. We refer to this as the as
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risk incentive. A high volume incentive and a high risk incentive lead to low markups,

making it more attractive for a supplier to lower his bid.

Proposition 5 provides insight into a supplier’s decision to lower his bid in a specific

bidding round t, but we are more interested in the auction’s outcome, that is, in the

terminal bids bTj . A supplier stops lowering his bid if the current margin is equal to or

below the markup; that is, in bidding round t = T − 1, the bidding condition in Eq.

(3.8) is no longer fulfilled (bT−1
j − cj ≤ θTj ), which leads to a terminal bid bTj = bT−1

j

and a terminal markup θTj . The buyer pays a premium bTj − cj on top of the supplier’s

marginal cost cj . For δ → 0, this premium is equal to the markup θTj , so it is dependent

on the volume and the risk incentive that the buyer sets by choosing a particular dp.

From the terminal bid bTj and the terminal markup θTj , we can also infer the terminal

probability of winning the postponed volume P (bTj |dp) for a given dp, which will play an

important role in our later analyses.

We now analyze how the suppliers’ terminal bids depend on the postponed volume.

We term the difference between the a priori (expected) quality and the costs of the

suppliers as the “supplier value” and denote it by vi = qi−ci and ve = q̄e−ce, respectively.

As in our analysis in Section 3.3.1, we begin by presenting the results for homogeneous

suppliers, that is, suppliers’ with the same values (vi = ve). Thereafter, we study how

the terminal bids change when suppliers are heterogeneous (i.e., when vi 6= ve).

Proposition 6.

Assume Qe ∼ Beta(1, 1) and vi = ve.

a) There exists a threshold level dp. For dp ≤ dp suppliers never lower their bids so

that bTi = qi and bTe = q̄e.

b) For dp > dp terminal bids bTi and bTe are strictly decreasing in dp.

c) dp is strictly decreasing in vj, j ∈ {i, e}, and strictly increasing in M .

Proposition 6 characterizes the incumbent’s and the entrant’s terminal bids when

both suppliers have the same value, that is, when vi = ve. (See Figure 3.4 for an

illustration.) The results presented in Proposition 6a suggest that both suppliers will

bid their respective reservation prices bTi = qi and bTe = q̄e and will not lower their

bids for postponed volumes below a threshold dp. For postponed volumes below this

threshold, the volume incentive and the risk incentive are low, resulting in a markup in

the first bidding round that is so high that even in the first round the bidding conditions

in Eq. (3.5) and Eq. (3.7) are not fulfilled. Only a postponed volume above the threshold
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(dp < dp) provides sufficient volume and risk incentives; at these levels of dp, the bidding

conditions in Eq. (3.5) and Eq. (3.7) are met, and both suppliers lower their bids. Because

the volume and the risk incentive both increase in dp, terminal bids are strictly decreasing

in dp.

According to part c) of Proposition 6, the threshold dp is decreasing in the supplier’s

values vj , suggesting that suppliers with higher values will start to lower their bids at

lower postponed volumes dp. This effect of vj becomes clear if we consider the condition

in Eq. (3.8) in the first bidding round (t = 1): A supplier will start to quote bids below

the reservation price if the supplier’s value exceeds the markup in the first bidding round,

that is, b0j − cj = E[qj ]− cj = vj ≥ θ1
j . We show in our proof of Proposition 6 that θ1

j is

strictly decreasing in dp, so if the left-hand side of the bidding condition increases, the

threshold of dp, at which the supplier starts to lower his bid, decreases. Proposition 6c

also indicates that the lower threshold dpj increases in M . A larger M enables a buyer

to learn more (for a given postponed volume dp) because the buyer can observe more

units. (See Proposition 2c.) The increase in expected learning decreases the probability

of a supplier’s winning the postponed volume in the bidding condition in Eq. (3.8) for

a given dp; that is, a supplier’s lowering his bid by δ does not increase the probability

of winning the postponed volume as much as it would for a lower M . For a higher M ,

suppliers will start quoting lower bids only for higher postponed volumes.

Proposition 6 suggests that a buyer can expect decreasing bids if she chooses a

postponed volume that provides suppliers with sufficient economic incentives to lower

their bids. Competition will be the strongest for dp = 1, that is, if the buyer chooses

single-sourcing, which is in line with previous research (e.g., Perry and Sákovics (2003)

and Gong et al. (2012), who also find that suppliers provide the lowest bid in case of

single-sourcing). However, a buyer must carefully choose the postponed volume so as

not to undercut the threshold dp; if the buyer postpones too little volume, she will not

benefit from competition and will be left paying reservation prices.

Corollary 1 follows from Proposition 6 and establishes first results for suppliers whose

values vj differ.

Corollary 1.

djp < d−jp if vj > v−j.

Suppliers whose values differ will start lowering their bids at different levels of dp.

Because djp is decreasing in vj (see Proposition 6c), supplier j, with the higher value

vj > v−j , has a lower threshold djp than his competitor, supplier −j, has. Proposition 7

complements these results and characterizes how suppliers will bid for postponed volumes
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Figure 3.4: Terminal bids (bTj ) of incumbent (black) and entrant (gray) depending on
the postponed volume (dp) for Qe ∼ Beta(1, 1), qi = 0.8, qe = 0.5, vi = ve = 0.4, and
M = 25.

djp < dp ≤ 1 if their values vj differ. To ensure analytical tractability for the case of

different supplier values, we assume, in Proposition 7 that supplier −j has a value of

zero and supplier j has a value greater than zero. This can be considered an extreme

case of heterogeneous suppliers in which only one supplier can extract a positive margin.

Proposition 7.

Assume Qe ∼ Beta(1, 1) and vj > v−j = 0, j ∈ {i, e}.

a) There exists a threshold level d
j
p with djp < d

j
p < 1. For djp < dp ≤ d

j
p, b

T
j is strictly

decreasing in dp while for d
j
p < dp ≤ 1, bTj is strictly increasing in dp. b

T
−j = E[q−j ]

for 0 ≤ dp ≤ 1.

b) The threshold d
j
p is strictly decreasing in vj and strictly increasing in M .

Considering our previous results in Corollary 1 and the results established in Propo-

sition 7a, we can characterize how the bids of suppliers with different values vj depend

on the postponed volume dp. Figure 3.5 provides an illustration. For values below their

individual (lower) thresholds djp, both suppliers will bid their reservation prices; the sup-

plier with the positive value will lower his bids at postponed volumes higher than djp but

only up to the upper threshold d
j
p. For d

j
p < dp ≤ 1, the terminal bid of this supplier

increases as dp increases. The bids of the supplier with a value of zero are independent of

dp, as he will always quote his reservation price. Because our previous analysis suggested

that the volume incentive lowers the supplier’s markup and makes it more attractive to

bid more aggressively for larger postponed volumes, it seems counterintuitive that the

bids of the supplier with a positive value will increase for larger postponed volumes.

However, for d
j
p < dp ≤ 1, the risk incentive works in the opposite direction and offsets
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the effect of the volume incentive on the markup. Eq. (3.5) showed that the supplier will

lower his bid by δ if the increase in the probability of winning the postponed volume leads

to a higher expected profit than the profit the supplier expects if he remains with his

previous bid. We know that the probability of winning the postponed volume depends

on the incumbent’s score (qi − bTi ) and the entrant’s expected score (q̄poste (q̂e, dp)− bTe ),

after the buyer’s update of the entrant’s quality. Assume, without loss of generality, that

vi > 0 and ve = 0. The entrant will bid his reservation price bTe = q̄e, and if the entrant

delivers perfect quality in the initial volume 1
2(1− dp)M , that is, if the realization of Q̂e

is 1, the entrant’s maximum score is qposte (q̂e = 1, dp) − qe (see Proposition 2). There

exists a bid (denoted by bGi ) that guarantees the incumbent wins the postponed volume

after the buyer learns the entrant’s quality:

qi − bGi = qposte (q̂e = 1, dp)− qe (3.9)

⇒ bGi = qi + qe − qposte (q̂e = 1, dp). (3.10)

Because P (bGi |dp) = 1, the incumbent will never quote a price lower than bGi , so bGi
can be considered a natural lower bound on the incumbent’s bid, which is dependent on

dp. The bid bGi increases in dp because, as more volume is postponed, the buyer learns

less from the initial volume because the difference between q̂e and qposte decreases, such

that, for very high values of dp, b
G
i approaches qi, the incumbent’s reservation price.

The upper threshold d
i
p can be interpreted as the postponed volume after which

the risk incentive offsets the reduction in the markup that results from the volume

incentive. For the case of uniform quality (Figure 3.5), this is the postponed volume at

which the incumbent bids bGi . Thus, the incumbent’s terminal bid bTi intersects with bGi ,

P (bGi |dp) = 1, and it is not attractive for the incumbent to lower his bid any farther.

The results presented in Proposition 7b indicate that, similar to the lower threshold, the

upper threshold d
i
p decreases in the supplier’s value vi and increases in the procurement

volume M . The rationale here is similar to the rationale we presented for the lower

threshold: an increasing value impacts the bidding condition in Eq. (3.8) and allows a

supplier to bid lower for a given dp. Thus, the bids drop faster as dp increases, and the

bidding function has a larger negative slope. An increase in the incumbent’s value can

be the result of a higher quality qi or lower costs ci. Clearly, a lower cost does not impact

the bid that guarantees the supplier will win the postponed volume (see Eq. (3.10)). An

increase in the quality qi leads to a proportional increase of the bid bGi that guarantees

the incumbent will win the postponed volume. As a result, an increase in the value

lowers d
i
p, and a supplier begins to increase his bid at lower postponed volumes. Because
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the buyer’s expected learning increases in the volume M (see Proposition 1c), the bid

that guarantees the supplier will win the postponed volume decreases (see Eq. (3.10)),

so d
i
p increases as the procurement volume M increases.

It is interesting to observe that djp and d
j
p prescribe a “competition interval” that

is predominantly determined by the suppliers’ values vj and the procurement volume

M . The benefits of competition are not strictly increasing in the postponed volume;

instead, the buyer can expect to see decreasing prices only if the buyer chooses a dp that

is within the competition interval, that is for djp < dp < d
j
p. Contrary to intuition, the

buyer inhibits competition if she chooses high postponed volumes (dp > d
j
p) since single-

sourcing under these conditions will not lead to the lowest bids from both suppliers. The

competition interval shifts to the left (i.e., to lower levels of dp) if the supplier’s value vj

increases and the benefits of postponement in terms of competition materialize at lower

levels of dp. At the same time, the negative effects of choosing a dp that is too high come

into effect at lower levels of dp.

Figure 3.5: Terminal bids (bTj ) of incumbent (black) and entrant (gray), depending
on postponed volume (dp) for qi = 0.8, ci = 0.1, Qe ∼ Beta(1, 1), vi > ve = 0 and
M = 25. The dashed line represents the bid bGi that guarantees the incumbent will win
the postponed volume.

To ensure analytical tractability, we assumed that one supplier has a positive value

and one has a value of zero. Of course, the question arises concerning whether our

results from Proposition 7 change if both suppliers have a positive (but different) value.

We cannot provide analytical proof, but we can show numerically that our structural

insights continue to hold, even if v−j > 0 for j ∈ {i, e}. (see Appendix 7.1.1)

Section 3.3.1 addressed how a buyer should set the postponed volume to maximize

expected quality. Similarly, we now want to determine how the buyer should set the

postponed volume in order to minimize her expected procurement costs. A buyer who

seeks to minimize the expected procurement costs without considering the expected
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quality solves the following problem, which is directly based on Eq. (3.1):

min
0≤dp≤1

E[C(dp)] =(1− dp)M ·
(
bTi
2 + bTe

2

)
+ dpM ·

∫ 1

0
f(q̂e)Vc(q̂e, dp)dq̂e

where Vc(q̂e, dp) =

bTi , for qi − bTi > q̄poste (q̂e, dp)− bTe
bTe , for qi − bTi < q̄poste (q̂e, dp)− bTe

.

(3.11)

Proposition 8.

Assume Qe ∼ Beta(1, 1) and qi = q̄e. Define dCp := argmin{E[C(dp)]}.

a) dCp = 1 for vj = v−j , j ∈ {i, e},

b) dCp = d
j
p for vj > v−j = 0, j ∈ {i, e}.

Our prior results showed that bids from suppliers with equal values are minimal at

dp = 1. As any deviation from dp = 1 yields higher bids from each supplier, the buyer

should postpone the full procurement volume and single-source, to minimize expected

procurement costs. From Proposition 7 we know that, for vj > v−j = 0, supplier j’s

bid is minimal at d
j
p. Because supplier −j’s bid is constant in dp, the buyer minimizes

expected procurement costs by postponing dp = d
j
p. The results, stated in Proposition

8, confirm this intuition. While we can not derive expressions of the terminal bids for

the case vj 6= v−j > 0, and therefore can not determine dQp analytically for this general

case, further numerical analyses indicate that the results of Proposition 8 continue to

hold when the suppliers’ value is positive but differs (vj 6= v−j > 0) and for different

probability distributions (see section 3.3.3 where we show that our findings also hold in

the general case).

In summary, our analysis shows that a buyer should set the postponed volume care-

fully, as a competition interval exists for each supplier and only for postponed volumes

within this interval can a buyer expect the suppliers to compete. If the buyer chooses

a postponed volume that is too low, the suppliers have no incentive to place bids below

their reservation prices, and the buyer will not benefit from competition. Likewise, if

the buyer chooses a postponed volume that is higher than the upper bound of the com-

petition interval, the supplier with the higher value will take into consideration that the

buyer can learn about the entrant’s quality, giving the higher-value supplier an incentive

to increase his bids. Only in the case of homogeneous suppliers the buyer should opt

for single-sourcing and choose a postponed volume of dp = 1 in order to maximize com-

petition. Our results show that the suppliers’ values determine the size and position of

the competition interval: If suppliers are largely homogeneous in terms of their values, a
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buyer will see strong price drops in a fairly large interval of postponed volumes, and the

interval in which prices increase will be comparatively small; however, if suppliers are

heterogeneous in terms of their values, the competition interval will be comparatively

small. Therefore, the buyer must set the postponed volume to the right level or risk the

benefits it could gain from the competition between the incumbent and the entrant.

In the pharmaceutical industry, generics suppliers (entrants) can often produce drugs

with a similar (expected) quality at a much lower cost than incumbents can, so hetero-

geneous supplier value is not the exception but a common phenomenon in this particular

domain. Therefore, the buyer must understand the competitive dynamics, the competi-

tion interval, and how to set the postponed volume to benefit from competition between

the suppliers. The supplier’s value is directly determined by his costs, which we assume

to be known to the buyer. We made this assumption in order to obtain analytically

tractable results for the terminal bids. However, it is more realistic to assume that the

buyer may lack precise information about the suppliers’ costs. We explore the impact

of uncertain costs in Appendix 7.1.2 and find that this uncertainty does not change the

structure of our results.

Our results provide useful insights for both management and theory. The results

presented in Proposition 7 suggest that, for some postponed volumes, a supplier with

positive value quotes bids below the reservation price, even if his competitor does not

lower his bid to increase the probability of winning the postponed volume. Thus, the

postponed volume provides a competitive lever for a buyer even if one supplier is not a

competitive threat. Competition is often seen only as the pressure that emerges from

another supplier’s lowering his price, but with a postponement tender a supplier may

lower his bid even if the competitor does not, as the mere threat of losing the postponed

volume after the buyer learns about the entrant’s quality introduces competitive pressure

that persists even if one supplier has no room to lower his bid. As this effect is driven by

the buyer’s learning, it is affected by our simplifying assumption that the initial volume

is split symmetrically. In Appendix 7.1.3 we discuss how this assumption impacts our

result and show that relaxing this assumption does not change our results structurally.

However, we do observe that an asymmetric initial volume split provides the buyer

with an additional lever to impact learning and competition. This finding is structurally

related to research on buyer-determined or non-binding auctions, where suppliers face the

uncertainty that the buyer will set and reveal the evaluation criteria only after bidding

has concluded. For example, Engelbrecht-Wiggans and Katok (2007) explain that, in

many mechanisms that are employed in practice, the buyer does not commit to awarding

the contract to the lowest bidder but reserves the right to evaluate other criteria after
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bidding has concluded. The uncertainty about the buyer’s evaluation and final decision

may incent suppliers to quote lower bids because they want to increase their chances of

winning the auction. However, a buyer not clarifying the evaluation criteria can be seen

as non-transparent and may even foster misconduct (Fugger et al., 2015). In contrast to

traditional buyer-determined auctions, in our mechanism the evaluation criteria are set

before the suppliers enter the negotiations, so the uncertainty stems only from their not

knowing whether they will receive the postponed volume. Therefore, even without being

vague about how suppliers are evaluated and volumes are awarded, the postponement

tender equips the buyer with a lever to induce competitive pressure, even if one supplier

is not very competitive.

3.3.3 The buyer’s optimal strategy

Sections 3.3.1 and 3.3.2 addressed how the choice of dp impacts the buyer’s expected

quality and procurement costs and explained two characteristic values of dp: the quality

maximizing dQp and the cost minimizing dCp . This section explains how the buyer should

choose the postponed volume dp to maximize her expected utility, as stated in Eq. (3.1).

While we can write separate expressions for the expected quality and the expected

costs depending on the postponed volume (see Eq. (3.1)), it is clear that both are

interrelated in a non-trivial way because the bids depend on the (expected) quality

of both suppliers, and the choice of the supplier depends on both the bids and the

(expected) quality. For this reason, it is difficult to determine the optimal postponed

quantity d∗p that maximizes the buyer’s expected utility. We are, however, able to derive

the optimal postponed volume for the case of homogeneous suppliers.

Proposition 9.

Let Qe ∼ Beta(1, 1) and vj = v−j ≥ 0. Define d∗p := argmax{E[U(dp)]}.

d∗p =

d
Q
p < dp for vj ≤ v(M) = 1

2 −
−8+3M+4

√
4+M

8M

dCp = 1 else
. (3.12)

The result presented in Proposition 9 suggests that in the case of homogeneous

suppliers it is optimal for the buyer to choose the postponed volume dQp that maximizes

her expected quality or the volume dCp that minimizes her expected procurement costs.

Therefore, when vj = v−j the buyer should either pursue a “learning strategy” or a

“competition strategy” when setting dp. From Proposition 8 we know that when the

buyer faces homogeneous suppliers (vj = v−j), single-sourcing (i.e., dCp = 1) minimizes
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(a) vi = ve = 0.1 and d∗p = dCp .
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(b) vi = ve = 0.05 and d∗p = dQp .

Figure 3.6: Suppliers’ bids, expected quality, expected cost and expected utility for
M = 25 and Qe ∼ Beta(1, 1).

the expected procurement costs. As stated in Proposition 9, it is optimal for the buyer

to single-source if the suppliers’ values vj exceed the threshold v(M), and to choose the

quality-maximizing postponed volume dQp if the suppliers’ values are equal or below this

threshold. The threshold is determined by the procurement volume M , so whether the

buyer should opt for a learning or a competition strategy depends on a trade-off between

suppliers’ values and the purchasing volume. As Proposition 6 shows, higher supplier

values lead to stronger competition and larger differences between the terminal bids and

the reservation price, making the competition strategy more attractive. On the other

hand, as we saw in Section 3.3.1, larger procurement volumes M increase the buyer’s

benefits from learning, making it more attractive to opt for a learning strategy and to

dual-source and postpone some part of the procurement volume. However, this trade-off

is not as straightforward as it may seem, as the procurement volume M not only has a

direct impact on the buyer’s learning, but also affects competition (Proposition 6). The

threshold v(M) represents a tight bound on the suppliers’ values that increases in M at

a decreasing rate and converges to 0.125 for M →∞. Thus, our results suggest that, if

the suppliers’ values are not very low, a buyer should single-source to reap the benefits
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of competition, and should only opt for the postponement tender when suppliers’ values

are very low.

It is interesting to observe that—at least in the case of homogeneous suppliers—a

buyer should always choose between the two local optima dQp and dCp when trading-off

the benefits of learning and competition, and pursue either a learning or a competition

strategy. That is, a mixed learning and competition strategy is never optimal under

these conditions. This dichotomy is a direct result of the interaction between learning

and competition effects. To illustrate these effects, Figure 3.6 plots the suppliers’ bids,

expected quality and costs, and the expected utility, for homogeneous suppliers with

values above (a) and below (b) the threshold v(M). In interval I (dp < dp) there is no

competition and the expected utility is only driven by the expected quality as a result

of the learning effect, leading to a local maximum of the expected utility at dQp . In

interval II (dp > dp) competition takes place and suppliers lower their bids. In Section

3.2 we saw that the suppliers’ bids are driven by a volume incentive and a risk incentive

and that in this interval both incentives lead to expected costs that are monotonically

decreasing in dp (see our discussion in conjunction with Proposition 6). Interestingly, as

the results in Proposition 9 suggest, the cost decrease in interval II always offsets the

decrease in expected quality—that is, the (negative) slope of the expected cost curve is

larger than the (negative) slope of the expected quality curve and, as a consequence, the

expected utility is strictly increasing in Interval II (Eq. (7.80) in the proof of Proposition

8 formalizes this property). The underlying reason for this result is that, taken together,

the two effects—namely the volume incentive (a larger postponed volume is at stake) and

the risk incentive (a larger postponed volume reduces the buyer’s learning and allows the

suppliers to have more impact on the outcome with their bids)—always have a stronger

impact on expected costs than the reduced learning has on expected quality, which leads

to a strictly increasing expected utility in Interval II. Therefore, the buyer’s expected

utility has a second local optimum at dCp = 1 and it is optimal for the buyer to choose

either dQp and pursue a learning strategy (for vj < v(M)), or to choose dCp and pursue a

competition strategy (for vj > v(M)). At supplier values vj = v(M) both local optima

lead to the same expected utility for the buyer.

Of course, we want to find out whether this surprising result also extends to the

case of heterogeneous suppliers (vj 6= v−j). However, as we discussed in Section 3.2, we

cannot derive analytical expressions for dCp when vj 6= v−j > 0 and we can therefore

not provide an analytical expression for the optimal postponement volume d∗p. We can,

however, evaluate Eq. (3.1) numerically and derive the optimal postponement volume

for the general case vj 6= v−j . We carried out an extensive numerical study in which
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we determined dQp , dCp and d∗p for different supplier values vi and ve and procurement

volumes M for various quality distributions Qe ∼ Beta(a, b) with a = b ≥ 1. More

specifically, we varied vi and ve between 0 and 1 (in steps of 0.05) and M between 1

and 1000 (in increasing steps). A description of our evaluation procedure is provided in

Appendix III.

The results of our numerical study suggest that the main results of Proposition 9

also hold for any combination of vj 6= v−j and M : it is always optimal to either choose

dQp and to pursue a learning strategy, or to choose dCp and to pursue a competition

strategy, and the optimal postponed volume d∗p depends on both the suppliers’ values vi

and ve and the procurement volume M ; it is never optimal to choose a mixed strategy

with dQp < dp < dCp or dCp < dp < dQp . We draw on our discussion of the results for

homogeneous suppliers in Figure 3.6 to explain why this surprising result also holds true

for heterogeneous suppliers. Figure 3.7 plots the suppliers’ bids, the expected quality

and costs and the buyer’s expected utility for suppliers with unequal values. Figure

3.7a considers a case where the incumbent’s quality is lower than the entrant’s expected

quality and Figure 3.7b a case where the entrant’s expected quality is higher than the

quality of the incumbent. In both instances the competition strategy is optimal, i.e.

d∗p = dCp = dp.

In Interval I (dp < dip), we observe the same effects as in the case of homogeneous

suppliers shown in Figure 3.6: the bids and the expected costs are constant because

there is no competition and the expected quality and the expected utility is concave

and increasing in dp with a local optimum at dQp . In Interval II (dip ≤ dp ≤ d
e
p), a

buyer experiences decreasing expected quality as the incumbent is more likely to win the

postponed volume and learning benefits decrease. The expected costs decrease because

the incumbent’s bid, and (for higher values of dp) also the entrant’s bid are decreasing in

the postponed volume dp. This behavior is again driven by the the volume and the risk

incentive and we find the same structure as in the homogeneous supplier case: the two

effects lead to strictly decreasing bids and therefore strictly decreasing expected costs

that offset any negative changes in expected quality—hence, the buyer’s expected utility

is strictly increasing in Interval II. The main difference to the homogeneous case is

that for heterogeneous suppliers it is not optimal to single source, i.e., to choose dp = 1

(see Proposition 8), which is why we have a third interval that did not exist in Figure

3.6. In Interval III (dp > d
i
p), expected costs increase, because the incumbent’s bid

is increasing. Proposition 6 showed that in this interval the incumbent bids such that

he is guaranteed to win the postponed volume. Because the incumbent is guaranteed

to win, the buyer does not benefit from learning and, as dp approaches a value of one,
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(b) qi = 0.55 > q̄e.

Figure 3.7: Suppliers’ bids, expected quality, expected cost and expected utility for
vi = 0.4, ve = 0.05, M = 25 and Qe ∼ Beta(1, 1).

the expected quality approaches the expected costs. At dp = 1 the buyer does not

learn (the initial volume is zero) and the incumbent only needs to decrease his bid

infinitesimally below his reservation price (i.e., his quality) minus the entrant’s value

(i.e., his margin) to win the postponed volume. The expected quality is increasing when

the incumbent’s quality is higher than the entrant’s expected quality, and decreasing

when the incumbents quality is lower, because with increasing postponed volume more

volume is allocated to the incumbent, as he is guaranteed to win. As a consequence, the

buyer’s expected utility is decreasing at postponed volumes d
i
p < dp ≤ 1 and there is a

second local optimum at dCp = d
i
p.

The same holds true for instances in which the learning strategy is optimal, i.e.

d∗p = dQp . In Figure 3.8 we illustrate such an instance similar to Figure 3.7: Figure

3.8a considers a case where the incumbent’s quality is lower than the entrant’s expected

quality and Figure 3.8b a case where the entrant’s expected quality is lower than the

quality of the incumbent. As before, expected costs are constant in Interval I, because

there is no competition and expected quality is concave due to the buyer’s learning.

Supplier values are lower than in Figure 3.7 and competition starts at a higher postponed
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(b) qi = 0.55 > q̄e.

Figure 3.8: Suppliers’ bids, expected quality, expected cost and expected utility for
vi = 0.1, ve = 0.025, M = 25 and Qe ∼ Beta(1, 1).

volume, resulting in a local optimum of expected utility at dQp in Interval I. In Interval

II we can again see that expected costs are strictly decreasing and, as before, the

decrease in the expected costs is stronger than the decrease in the expected quality—

the buyer’s expected utility is therefore strictly increasing in this interval. In Interval

III the incumbent again increases his bid, which leads to increasing expected costs and

decreasing expected utility. As a result we again observe a second local optimum of the

expected utility at dCp = d
e
p, just as in Figure 3.7. In this instance, however, the effect

of competition is lower because of the low supplier values, which is why the buyer’s

expected utility is maximized at dQp and not dCp , and the buyer should pursue a learning

strategy. Summarizing our discussion of the six different cases depicted in Figures 7, 8

and 9, we find that the buyer’s expected utility always has two local optima (dQp and

dCp ) and that this shape of the expected utility function is induced by a) constant bids

and concave expected quality in interval I, where the first local optimum (dQp ) occurs,

b) a strictly increasing expected utility in Interval II where both the incumbent and the

entrant compete strongly for the postponed volume and, c) decreasing expected utility

in interval III (for dp > dCp in case of heterogeneous suppliers) where the incumbent
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is guaranteed to win the postponed volume. Although we can only prove this property

of the expected utility function for the case of homogeneous suppliers, our numerical

analyses show that this property also holds for heterogeneous suppliers, independent of

the suppliers’ values and the procurement volume, and also holds for various relevant

quality distributions.
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Figure 3.9: Optimal solutions (red: d∗p = dQp , blue: d∗p = dCp , green: d∗p = dCp = 1)
dependent on supplier values vi and ve for different procurement volumes M .

Until now we explained why the results of Proposition 9 extend to the case of hetero-

geneous suppliers, and provided more insights into how expected quality and expected

costs are intertwined and why there is no potential optimum between dQp and dCp . Now

we focus on explaining when it is optimal to choose a learning or a competition strategy.

Figure 3.9 shows the optimal strategy depending on vi and ve for low, medium, and high

values of the procurement volume M and also highlights when the competition strategy

coincides with single sourcing (dCp = 1). The results are in line with those of Proposition

8 for homogeneous suppliers and we observe a similar interplay between the procurement

volume M and the supplier values vi and ve: As in the case of homogeneous suppliers, the

procurement volume appears to establish an upper bound on the supplier values below

which it is optimal to pursue a learning strategy. At very low volumes (e.g., M = 10)

it is only optimal to pursue a learning strategy when both suppliers have very low (but
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unequal) values. As M increases, a learning strategy is optimal even under higher and

unequal supplier values. The results are rather intuitive and suggest that a learning

strategy is attractive if suppliers are heterogeneous and exhibit low to moderate values

and, at the same time, the procurement volumes are not very low. The buyer benefits

less from learning when the suppliers are very similar in terms of their value or when

the procurement volume is low (see our discussion in conjunction with Proposition 9).

Our numerical results also show that single-sourcing is only optimal when suppliers are

homogeneous and that a buyer facing heterogeneous suppliers should not single-source,

even if it is optimal for her to pursue a competition strategy. These numerical results

are in line with and extend the formal results established in Proposition 8. Proposition 8

showed that single-sourcing (dp = dCp = 1) minimizes the expected costs when suppliers

are homogeneous, and that the postponement tender (with dCp < 1) minimizes the ex-

pected costs for a special case of heterogeneous suppliers (vj > v−j = 0). As illustrated

in Figure 3.9, our numerical results indicate that this is generally true. Whenever sup-

pliers are heterogeneous and it is optimal to choose a competition strategy, the buyer

should not single-source, but should employ the postponement tender to induce addi-

tional competition. This as an interesting and counter-intuitive finding because, contrary

to managerial wisdom, we see that single-sourcing can inhibit competition compared to

dual sourcing—at least if dual sourcing comes in the form of a postponement tender.

3.4 Managerial Implications

The main objective of our study is to determine under which conditions it is optimal for

a buyer to employ a postponement tender instead of single-sourcing and how much to

postpone. In the previous sections we carried out a formal analysis to determine how

learning and competition affect the buyer’s outcome and to characterize—both formally

and numerically—the buyer’s optimal postponement tender. This section addresses how

the results of our analyses can be used to help decision-makers in practice.

The discussion of the results presented in Proposition 9 and the numerical results in

Section 3.3.3 highlighted that the buyer should choose either a learning or a competition

strategy, and that the optimal choice depends on the procurement volume M and the

values of the suppliers vj , j ∈ {i, e}. In many cases, the procurement volume M is closely

related to a particular type of buyer and its size. Section 3.3 explained that M can be

interpreted as the number of learning opportunities, such as the number of orders or units

a buyer procures. Thus, we can generally distinguish two types of buyers: Institutional

buyers like the Global Fund and UNICEF’s supply division that consolidate the demand
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of many recipient countries, and smaller procurers like governmental buyers of low-

income countries with smaller populations, and social marketing and relief organizations

that operate decentralized procurement departments in certain countries or regions (e.g.,

Marie Stopes International). Institutional buyers usually have ample opportunities to

learn because of their large procurement volumes and high numbers of orders. For

example, USAID and UNFPA procure Depot-medroxyprogesterone acetate and place

30-90 orders per year (RHInterchange, 2016)). The smaller buyers typically have fewer

learning opportunities because they have smaller procurement volumes and place fewer

orders. Therefore, we assume that M is usually indicative of the buyer’s size.

Global-health buyers encounter different supply market structures that are associated

with specific (expected) supplier values vj . Typically, the incumbent is a multi-national,

branded manufacturer that supplies comparatively high quality at a comparatively high

price. If the entrant is also a branded manufacturer, both suppliers will likely have

similar expected quality and cost structures and will provide similar value to the buyer

(i.e., ve = vi). We refer to this case as homogeneous suppliers. However, the entrant can

also be a generics manufacturer that is focused on efficient operations and low overhead

cost (for marketing and R&D), so its costs are often considerably lower than those of

a branded manufacturer. Whether being a generics manufacturer makes the entrant

have lower or higher value depends on the expected quality relative to the incumbent’s

quality. In general, two situations can occur: The buyer may expect the entrant to

provide a similar (or even higher) quality as that of the incumbent, in which case the

entrant’s expected value is likely to be higher than that of the incumbent. There may

also be cases in which the buyer expects the entrant’s quality to be lower than that of

the incumbent, such that vi > ve. We refer to the case of a higher or lower value as the

heterogeneous suppliers case. Summarizing this discussion, we can broadly identify four

scenarios with respect to the size of the buyer (high or low M) and the supply market

structure (homogeneous or heterogeneous vj , j ∈ {i, e}).

In the following sections we develop insights into the buyer’s optimal postponement

tender. These insights augment the results we derived in Section 3.3.3 by providing

a more nuanced interpretation of the optimal postponement tender and deriving rele-

vant managerial implications and recommendations. Finally, we discuss the managerial

implications for these settings.
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3.4.1 Optimal postponement for combinations of M and vj

Figure 3.10 plots a buyer’s optimal postponed volume d∗p for three values of M depending

on the expected entrant’s value ve and a fixed incumbent’s value vi and uniform entrant

quality (Qe ∼ Beta(1, 1)). Based on the results shown in Figure 3.10, we can identify the

strategies developed in Section 3.3.3. When a small buyer faces heterogeneous suppliers

with very low expected values (ve < vi), this buyer should choose a learning strategy.

(We showed in Proposition 4 that dQp is constant in vj , which is reflected by the results

presented in Figure 3.10.) The benefits of learning outweigh the benefits of competition,

and the buyer should choose d∗p = dQp if the entrant has a (net) disadvantage in terms

of cost and quality. This disadvantage can occur when the supplier is either a branded

manufacturer with similar quality but higher manufacturing costs or a generics manu-

facturer with comparatively low expected quality. In our example, it is optimal for the

buyer to postpone approximately 65 percent of the volume.
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Figure 3.10: Optimal postponement d∗p dependent on ve for vi = 0.05 and Qe ∼
Beta(1, 1) for procurement volumes M = 10 (solid), M = 50 (dashed) and M = 90
(dotted).

When suppliers are homogeneous (i.e., they have very similar expected values ve ≈
vi), it is best for the small buyer to rely on a competition strategy with single-sourcing

(d∗p = dCp = 1). In this instance, the small buyer should not use a postponement tender.

This is in line with the results of Proposition 9.

If suppliers are heterogeneous and the entrant has a higher expected value than the

incumbent does (ve >> vi), small buyers should still rely on a competition strategy.

However, if feasible, they should postpone most of the procurement volume and award

only a small initial volume (d∗p = dCp < 1). Here we observe the impact of learning on

competition that emerges from the results of our discussion in Section 3.3.

For example, if the entrant is a generics manufacturer that is expected to have com-
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paratively low production costs and quality similar to that of the incumbent, the buyer

should exploit the benefits of competition. However, this conclusion does not suggest

that single-sourcing is optimal; because of the effect that learning has on competition,

the buyer benefits more from competition if the buyer initially awards a relatively small

share of the volume and postpones the remaining quantity. Therefore, it is optimal for

the buyer to opt for dual sourcing with a small initial award and a large postponed vol-

ume. In practice, it may not always be feasible to award small initial volumes. Appendix

7.1.4 discusses how a minimum initial volume impacts the buyer’s optimal strategy.

The results are structurally the same for larger buyers, although their large pro-

curement volumes make it more attractive to pursue a learning strategy even when the

entrant promises (moderately) higher value than the incumbent does, that is, when sup-

pliers are heterogeneous. Compared to smaller buyers’ learning strategy, the fraction

of the postponed volume should be higher for large buyers (≥ 80% in our example), a

result that is in line with the results presented in Proposition 4.

If the entrant has substantially higher value than the incumbent, the buyer should

pursue a competition strategy with a small initial volume and high postponed volumes,

as shown in Figure 3.10 (e.g., for M = 90 and d∗p just below 1). Once again, the reason

for this outcome is the effect of learning on competition, which results in high postponed

volumes when the competition strategy outperforms the learning strategy. (See our

discussion in conjunction with Proposition 7.)

The high postponed volumes prompt a different managerial interpretation: If the

buyer sets a high postponed volume, the initial volume must be small, so the postpone-

ment tender can be seen as a single-sourcing strategy with test lots from the suppliers.

After evaluating the test lots, the buyer awards almost the entire procurement volume

to the supplier with the higher value. Requiring test lots is common practice in phar-

maceutical procurement when a buyer has little information about the quality of a new

supplier. However, in the context of our mechanism, the proposed strategy differs from

what is usually observed in practice, where buyers require test lots during the supplier-

vetting process, that is, before suppliers compete (e.g. (USAID, 2016, p.5)). In the

postponement tender, the suppliers have to quote a price before they provide the test

lots, when they do not know how the buyer will evaluate their quality in comparison

to their competitor’s quality. This situation leads to additional competition because

suppliers do not know whether they will be awarded the majority of the volume. In

our mechanism, then, the buyer has an additional benefit when test lots are provided

after the bidding process is completed. Of course, such a strategy is not feasible in all

practical settings, as the buyer may be forced to award minimum initial volumes when
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opting for a postponement tender. We analyzed the impact of minimum initial volumes

in a section in the the appendix (see Appendix 7.1.4). We show how these situations

affect our structural insights and shape our managerial implications.

3.4.2 The impact of prior information

Until now we have assumed that entrants’ quality is uniformly distributed (Qe ∼ Beta(1, 1)).

A uniform distribution represents a situation in which the buyer has very little informa-

tion about the entrant’s quality and all possible realizations are estimated to be equally

likely. However, in reality, a buyer’s a-priori information about suppliers’ quality can

vary substantially. When a buyer faces an entrant with which she has no experience and

which is new to the market, the buyer has little information about the supplier’s quality,

and the buyer’s uncertainty about the entrant’s quality is likely to be high. In this

situation, the uniform quality distribution is appropriate to represent the buyer’s prior

information. On the other hand, a buyer may have access to accurate information about

the supplier’s quality if the buyer has had prior contracts with the supplier for other

products. Some buyers in the global-health domain also demand that suppliers undergo

a strict quality-assurance process (e.g., the WHO-Prequalification and/or accreditation

by a stringent regulatory authority like the US Food and Drug Administration (UNFPA,

2015; USAID, 2016; Global Fund, 2017a)). Prequalification and/or accreditation by a

regulatory authority provide a strong signal of quality. In the context of our model, these

conditions suggest prior quality distributions with lower dispersions and lower standard

deviations. To explore how the optimal strategy is impacted by the buyer’s having more

prior information, we use a Beta(α, β) distribution with parameters α, β > 1.

Figure 3.11 shows the buyer’s optimal postponed volume d∗p for different levels of

prior information (i.e., different quality distributions Beta(α, β)). If prior information

increases –— that is, if the coefficient of variation of the entrant’s quality distribution

decreases –— there are fewer instances in which the buyer should pursue a learning

strategy because the benefit from learning the entrant’s quality decreases. (Recall our

discussion in conjunction with Figure 3.3.)

The results presented in Figures 3.11a, 3.11b, and 3.11c highlight this effect: for all

types of buyers, it becomes more attractive to pursue a competition strategy than to

pursue a learning strategy. If the amount of prior information increases (i.e., the CV

decreases), a buyer who faces heterogeneous suppliers should postpone less volume and

allocate higher initial volumes, so it becomes less attractive to require test lots. The

reason for this effect lies in the impact of learning on competition, as the buyer needs
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Figure 3.11: Optimal d∗p depending on ve for vi = 0.05 and M = 10 (solid), M = 50
(dashed), and M = 90 (dotted).

higher initial volumes to learn and impact competition. Hence, decreasing uncertainty

decreases the value of a learning strategy, and all types of buyers should use a learning

strategy if suppliers are expected to provide low value and little competition. However,

in markets where suppliers are expected to be competitive, a buyer should still award

initial volumes to use the effect of learning on competition, and should increase these

initial volumes if uncertainty about quality decreases. Compared to our reference case

with high prior uncertainty there are fewer cases in which buyers should postpone almost

all volume to maximize expected utility.

Having analyzed the dimensions of the problem and what affects the optimal post-

ponement decision, we can populate the market structure matrix (Figure 3.12). Our

analyses show that the main strategy for small buyers and homogeneous suppliers should

be a competition strategy. The same holds true for both small and large buyers and

heterogeneous suppliers (vi < ve), where the optimal strategy is always a competition

strategy with learning. For large buyers that face homogeneous suppliers, the optimal

decision depends primarily on the level of uncertainty about quality. If the buyer has

little prior information about the entrant’s quality, she should focus on learning and

implement a learning strategy, where she awards a large initial volume to both suppliers.
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However, if the buyer has some information about the entrant’s quality, she should forgo

learning and opt for a competition strategy to increase competitive pressure during the

bidding stage and maximize expected utility.

Figure 3.12: Market scenarios and optimal procurement strategies

3.5 Conclusion

This research addresses a new procurement mechanism, the postponement tender. With

a postponement tender, the buyer allocates initial volumes to eligible suppliers, observes

the delivered quality, updates her beliefs about the suppliers’ quality, and then allocates

the postponed volume to the supplier with the higher value. To induce competition,

the buyer lets the suppliers bid before any volumes are allocated. This paper addresses

two main questions: (1) Under what conditions is it optimal to prefer a postponement

tender over single-sourcing? and (2) if it is optimal to employ a postponement tender,

how much volume should be postponed? Based on our analytical and numerical analyses

we find two surprising results: A postponement tender should always be preferred over a

single-sourcing auction format when suppliers are heterogeneous in terms of their values,

and the buyer should exclusively pursue either a ”learning strategy” or a ”competition

strategy”. The reason why in most cases a postponement tender should be preferred is

that it induces an additional element of competition.

We are also able to identify the conditions under which it is optimal to pursue a

learning or a competition strategy, and we find that the choice of the optimal strategy

depends on the overall procurement volume and suppliers’ values. We use our formal and

numerical results and insights to derive managerial implications, especially for buyers
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in the global-health domain, and tie the postponement strategies to the types of buyers

and the supply market structure.

To derive meaningful analytical results, we focused on certain elements of the prob-

lem, but ignored a number of incentive effects of the postponement tender. As high-

lighted in the introduction, the postponement tender not only strikes a balance between

costs and uncertain quality, but may also incentivize new suppliers to enter the tender-

ing process and to increase competitive pressure. This is an additional benefit of the

postponement tender that we did not account for in our analysis. Moreover, suppliers

may have an incentive to provide better quality in the initial volume to increase their

chances of winning the postponed volume. Intuitively, larger postponed volumes should

increase a supplier’s incentive to invest into better quality control in the initial volume

because the upside potential increases. However, a large postponed volume may lower

suppliers’ incentives to develop an appropriate production capacity for use with a smaller

initial volume. We perceive a more extensive analysis of the incentive effects of a post-

ponement tender to be an important and promising avenue for future research. Another

aspect is our assumption of quality uncertainty. We have made the assumption that the

buyer and both the incumbent and the entrant all share the same prior belief about the

entrant’s quality. However, it is reasonable to assume that the entrant might have a

better prior for quality than the buyer and the incumbent. This information asymmetry

could yield additional interesting implications for competition and could ultimately in-

fluence the buyers optimal postponement decision. Furthermore, we chose a descending

auction to model the competition between the suppliers, which is likely very close to

what we observe in practice. However, the choice of the auction format could actually

be an additional lever for the buyer to influence competition, and a different format

could ultimately provide better results for the buyer in terms of utility. Hence, it would

be interesting to explore how different competition formats impact competition and the

buyer’s optimal choice. All of these avenues and their implications on the incentives and

their effect on the postponement tender can potentially be addressed by future research.
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Chapter 4

A Data-Driven Inventory Policy

for Multi-Period, Multi-Product

Inventory Planning Problems

This paper proposes a novel approach to dealing with multi-period and multi-product

inventory problems, also known as joint replenishment problems, using sample average

approximation. The approach is based on renewal theory and is motivated by the work

of Çetinkaya and Lee (2000). Using real-world sales data from Kenyan pharmacies, the

study shows that this approach can result in low inventory costs.

4.1 Introduction

Multi-period inventory problems have attracted a steady stream of research interest be-

cause it is difficult to find optimal inventory policies under generalized assumptions. In

addition, in many inventory settings, multiple products must be managed simultane-

ously: they require joint optimization so they can share fixed ordering (or set-up) costs

and quantity discounts offered by suppliers. This type of problem is also referred to as

the Joint Replenishment Problem (JRP).

This paper uses the business setting of Maisha Meds1, a Kenyan point-of-sale ap-

plication provider for pharmacies and clinics, which provided historical sales data for

this study. Imagine the inventory-management problem of a privately owned pharmacy:

multiple products with random, non-stationary demand that can be correlated in time

1https://maishameds.org/
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and between products must be ordered recurrently, with the potential to pool orders

to reduce fixed costs and use suppliers’ quantity discounts (based on order volume or

invoice value). Using generalized assumptions would make it difficult to find the optimal

replenishment policy, but there is a wide array of approaches to finding near-optimal

policies. An approach that has gained attention is the (s, c, S) policy, a can-order policy

introduced by Balintfy (1964) that features can- and must-order levels for each product.

However, this type of policy class ”is not the optimal coordinated replenishment policy

class” (Liu and Yuan, 2000, p. 491). To make the problem manageable, most research

makes simplifying assumptions, such as deterministic demand (Goyal (1974), Wildeman

et al. (1997), Viswanathan (2002), Cha and Moon (2005), Zhang (2009)) or Poisson

distributed demand (Atkins and Iyogun (1988), Viswanathan (1997), Çetinkaya and Lee

(2000)). However, the true demand distribution is often unknown, and it is difficult

to estimate demand distributions, let alone demand correlations (auto-correlation, as

well as correlations between products), adding a new layer of difficulty to the problem.

Therefore, data-driven inventory policies, such as the data-driven Newsvendor (Bertsi-

mas and Thiele, 2005, 2006), have been used frequently because they do not require

any particular type of demand distribution but find optimal decisions directly using the

available data.

This paper proposes a novel data-driven inventory-management approach to the

JRP using Sample Average Approximation (SAA) and real-world data. A first step

compares the approach for the single-product setting without quantity discounts to the

optimal dynamic-programming policy and the ex-post optimal policy. The dynamic-

programming policy is theoretically optimal, so it serves as a first indicator of how well

the proposed approach performs in a simple setting, while the ex-post optimal policy

serves as a benchmark to make the results comparable in more complex settings. Then

the approach is evaluated for the more complex multi-product setting with quantity

discounts. As there is no theoretically optimal policy for this setting, the approach’s

performance is compared only to the ex-post optimal policy. Results show that the gap

to optimality increases only slightly when one moves from the single-product setting to

the multi-product setting with quantity discounts, despite the increased complexity of the

planning problem. Combined with the finding that the proposed policy’s performance is

not far off the dynamic programming policy’s performance in the single-product setting,

this result suggests that the proposed approach works well in a multi-product setting

with quantity discounts.

The rest of the paper is organized as follows. Section 4.2 presents a discussion

of the related literature, while section 4.3 establishes the model for the single- and
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multi-product settings. In section 4.4 the proposed approach is analyzed using real-

world data—first for the single-product setting to show that the approach is suitable

for managing the underlying problem (Section 4.4.2) and then for the more complex

multi-product setting (Section 4.4.3). Section 4.5 concludes and offers suggestions for

future research on the evaluation, development, and application of the approach.

4.2 Relevant Literature

Multi-period inventory problems can be separated into problems with fixed costs and

problems without fixed costs. While the optimal policy for the latter is usually an

order-up-to policy, where in each period the inventory is replenished, such is not the

case for the former, as the replenishment itself is costly, so the inventory should not

necessarily be replenished each period. Scarf (1959) was the first to show that, in a single-

product setting with a multi-period inventory with fixed order costs and independently

distributed demand, an (S, s)- type policy is optimal, as it consists of an order-up-to point

and a reorder level, and the inventory is replenished only if it falls below the reorder

level. See Zipkin (2000) for a good overview of the classic single-product inventory

problem. Research has recently started to focus on more data-driven approaches, where

the inventory planner does not know the demand distribution but uses historical demand

to find a solution. Ban (2019) introduced an SAA version of Scarf’s inventory policy

and showed that it is asymptotically optimal. I use Ban’s policy later as a benchmark

for the single-product setting.

The planning problem becomes significantly more difficult to solve when multiple

products are managed simultaneously because scale economies in fixed-order costs and

quantity discounts provide the potential for costs savings but also add complexity. The

multi-product inventory problem is generally referred to as the JRP. Goyal (1974), Wilde-

man et al. (1997), Viswanathan (2002), Cha and Moon (2005) and Zhang (2009) studied

the JRP under deterministic demand to find the optimal solution to the inventory prob-

lem using efficient algorithms and heuristics. Stochastic demand increases the difficulty

of finding (optimal) inventory policies, as the deterministic problem itself is difficult to

solve efficiently. Balintfy (1964) introduced a can-order policy, where each product has a

must-order and a can-order level and is replenished at the can-order level only if another

product is replenished at the same time. Atkins and Iyogun (1988) proposed a periodic

replenishment policy, where products are replenished in fixed cycles, and showed that

their approach can lower costs compared to the class of can-order policies. Viswanathan

(1997) extended their suggested policy by adding individual and independent periodic re-
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view policies for each product and showed that doing so improves the results. Çetinkaya

and Lee (2000) considered a similar problem in a vendor-managed inventory and pro-

posed to model the inventory process as a stationary renewal process, where the expected

time between two consecutive replenishments is a replenishment cycle. The present pa-

per proposes an inventory policy that is based on their idea of minimizing the expected

costs of the replenishment cycle but differs in considering only the next replenishment

cycle, not a stationary one.

Although these policies are intuitive and perform well, they share the assumption

that demand is stationary and Poisson-distributed, which is often not the case in prac-

tical settings, where demand is often not stationary and the true demand distribution is

unknown. The current study contributes to the literature by proposing a novel approach

that can deal with non-stationarity and does not have to assume a demand distribution,

as it is a data-driven approach, where sample data can be used to calculate the optimal

decisions for the inventory problem. Turgut et al. (2018) also considered a data-driven

approach to optimize can-order inventory policies using mixed-integer linear program-

ming, but they differed from the setting analyzed here in that they considered a different

inventory process with a backroom effect and did not allow for quantity discounts.

This paper combines a renewal-theory view of the inventory process with SSA to es-

timate the expected inventory costs and find inventory decisions. Existing research that

seeks to solve (joint) inventory management problems using sample-based approaches in-

stead of parametric probability distributions has shown multiple advantages of sampling-

based policies. Because it is often difficult to work with demand distributions, which

may be either unknown or too complex, Levi et al. (2007, p. 821) contended that ”a

sampling-driven algorithmic framework is very attractive, both in practice and theory”

and acknowledged that solving the SAA counterparts for stochastic multi-period prob-

lems is difficult, so they proposed a dynamic programming (DP) framework. Akçay and

Xu (2004) considered a two-stage assemble-to-order inventory system and used a stochas-

tic integer program to develop base-stock and component allocation policies. They also

used an SAA approach to optimize their base-stock problem and showed that it outper-

forms related approaches. While they recognized, in general, their policy is not optimal

for their problem, they found that it ”has been adopted in analysis and practice due to

its simple structure and easy implementation” (Akçay and Xu, 2004, p. 102).

The next section establishes modelling choices and derives a data-driven inventory

policy for multi-period inventory problems in single- and multi-product settings. Section

4.4 provides a brief numerical evaluation of this novel inventory policy using a real-world

data set, first for the single-product setting, for which an optimal benchmark exists
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(Section 4.4.2), and then for the more complex multi-product setting with quantity

discounts (Section 4.4.3).

4.3 Model

The general multi-period, multi-product inventory planning problem considered in this

analysis requires definition. The term multi-product is used here synonymously with JRP,

a more commonly used term. Define Iit as the inventory level of product i ∈ {1, . . . , I}
in period t ∈ {1, . . . , T}. For each unit held in period t, with Iit > 0, a holding cost of

h ≥ 0 per unit and period is incurred. If there are outstanding orders (i.e. Iit < 0), a

back-order cost b ≥ 0 per unit and period is incurred. At the beginning of a period t the

inventory can be replenished with an order Qit ≥ 0. If an order is placed (i.e. Qit > 0),

fixed order cost k(Qt) ≥ 0 and variable order costs pi(Qt) ≥ 0 are incurred, where Qt

is a vector representing the order quantities for all products i ∈ {1, . . . , I}, and pi(Q) is

the volume-dependent purchasing cost function. The purchase price of product i may be

affected by the total amount of all products ordered because manufacturers may grant

quantity discounts for larger orders. k(Q) is the fixed cost function, which depends on

all orders in one period, because there can be economies of scale if multiple orders are

placed simultaneously. After the replenishment decision Qit in period t has been made,

random demand Di
t ∼ F it is realized, and the inventory level of the following period

is calculated as Iit+1 = Iit + Qit − Di
t. Define Ii0 = 0 as the starting inventory. The

multi-period, multi-product inventory planning problem can then be formulated as

min
Qt≥0

EDi

[ T∑
t=1

I∑
i=1

(p(Qt)Q
i
t + k(Qt) + (Iit)

+h+ (−Iit)+b)

]
(4.1)

s.t. Ii0 = 0, i ∈ {1, . . . , I}, (4.2)

Iit = Iit−1 +Qit −Di
t, t ∈ {1, . . . , T}, i ∈ {1, . . . , I}. (4.3)

Determining the optimal orders Qit for each product i ∈ {1, . . . , I} and period t ∈
{1, . . . , T} is obviously difficult. Even if the random variables Di

t are assumed to be

independently distributed in time and between products, the literature has not provided

closed-form solutions for this inventory problem. If demand is correlated between periods

and/or between products, the difficulty of this multi-period, multi-product inventory-

planning problem increases sharply. In addition, the joint distribution function of de-

mand is often unknown and is difficult to estimate.

To solve this problem, this study proposes a novel data-driven inventory policy that
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is motivated by the renewal theory approach of Çetinkaya and Lee (2000). This ap-

proach considers a (stationary) inventory process as a renewal process whose costs can

be minimized by minimizing the expected average costs. A renewal cycle is the time

between two consecutive inventory replenishments, and average costs are calculated as

the cost of one replenishment cycle divided by the length of the cycle. Under general

assumptions, the inventory process is not stationary, so the proposed approach estimates

only the expected costs of the next replenishment cycle. Because the approach makes no

assumption about how demand is distributed, future costs are estimated using historic

demand samples and sample average approximation (SAA). Similar to Çetinkaya and

Lee (2000), the assumption here is that the inventory uses a reorder-point, order-up-to

policy. (See, e.g., (Scarf, 1959)). In the following the average replenishment cycle costs

for the single product inventory is estimated, which is in itself a novel approach. Later,

this formulation is extended to the multi-product setting.

Assume that problem (4.1) is reduced to the single-product setting (i.e. I = 1). The

superscript i is kept to make the exposition more tractable. No assumptions are made

about how the demand Di
t in period t is distributed; instead, it is assumed that there are

n demand samples ∆i,j , j ∈ {1, . . . , n},. Each demand sample consists of the historical

demand of one selling season with T periods of demand, ∆i,j = {δi,j1 , . . . , δi,jT }. In period

t the length of the next replenishment cycle τ i,jt for demand sample j is assumed to be

the number of periods until the next replenishment is triggered, using a reorder point

Rit. The starting inventory for this cycle, starting in period t, is assumed to be the

order-up-to level Sit ≥ Iit . If Sit > Iit , an order of size Qit = Sit − Iit is placed, and if

Sit = Iit , no order is placed. The case Sit < Iit does not make sense in this setting, as it

is assumed that inventory can not be thrown away.

Using this structure results in the sample average costs of the replenishment cycle

(starting in period t with inventory level Iit) for a reorder-point Rit and an order-up-to

level Sit ≥ Iit as:

Cit(R
i
t, S

i
t) =

1

n

n∑
j=1

ci,jt (Rit, S
i
t)

τ i,jt (Rit, S
i
t)
, (4.4)

where τ i,jt (Rit, S
i
t) is the length of the replenishment cycle for the demand sample j,

and ci,jt (Rit, S
i
t) are the associated costs if the inventory is replenished up to level Sit in

the current period t and a new order is expected to be placed as soon as the inventory

reaches Rit. Both the length of the replenishment cycle and costs are functions of reorder

level Rit and order-up-to level Sit . The length of the replenishment cycle for sample j
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can be calculated as:

τ i,jt (Rit, S
i
t) = max

[
inf{u :

t+u∑
l=t

δi,jl ≥ S
i
t −Rit}, T

]
− t+ 1, (4.5)

which is the minimum number of periods until aggregate demand is equal to or larger

than the difference between order-up-to point Sit and reorder point Rit, which is the

period in which the next order would be triggered for the policy (Rit, S
i
t). Given the

replenishment cycle length τ i,jt (Rit, S
i
t), it is now possible to calculate the replenishment

cycle costs ci,jt (Rit, S
i
t), which consist of multiple cost factors that will be established

individually. First, holding costs H i,j
t (Rit, S

i
t) are:

H i,j
t (Rit, S

i
t) = h

τ i,jt (Rit,S
i
t)∑

l=t

(Sit −
l∑

m=t

δi,jm )+. (4.6)

Similarly, backlogging costs Bi,j
t (Rit, S

i
t) can be calculated as:

Bi,j
t (Rit, S

i
t) = b

τ i,jt (Rit,S
i
t)∑

l=t

(

l∑
m=t

δi,jm − Sit)+. (4.7)

The purchasing costs depend on Qit, the number of units ordered, and p(Q), the pur-

chasing cost function. As it is assumed that the inventory is replenished up to the level

Sit if Sit > Iit , the order size Qi,jt (Sit) depends only on the order-up-to level Sit and the

inventory level Iit , so it is independent of the reorder point, and the demand sample:

Qi,jt (Sit) =

Sit − Iit , , Sit ≥ Iit ,

0, Sit < Iit .
(4.8)

The purchasing costs P i,jt (Sit) can then be calculated as:

P i,jt (Sit) = p(Qi,jt (Sit))Q
i,j
t (Sit). (4.9)

Similarly, the fixed ordering costs are paid only if Sit > Iit , which yields the fixed ordering

costs of:

Ki,j
t (Sit) =

k, Sit > Iit ,

0, Sit = Iit .
(4.10)
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Therefore, the sum of the holding, backlogging, purchasing and fixed ordering costs

yields the replenishment cycle costs in period t for sample j as:

ci,jt (Rit, S
i
t) =H i,j

t (Rit, S
i
t) +Bi,j

t (Rit, S
i
t) + P i,jt (Sit) +Ki,j

t (Sit). (4.11)

Now that all of the relevant costs have been established, the average cycle costs (4.4) can

be calculated, and the minimization problem for the single-product problem in period

t ∈ {1, . . . , T} with inventory level Iit is:

min
(Rit,S

i
t)
Cit(R

i
t, S

i
t) =

1

n

n∑
j=1

ci,jt (Rit, S
i
t)

τ i,jt (Rit, S
i
t)
, (4.12)

s.t. Sit ≥ Rit, (4.13)

Sit ≥ Iit . (4.14)

In each period t the minimization problem (4.12) is solved, and if the optimal order-up-

to level Sit is larger than the current inventory level Iit , an order is triggered and the

inventory is replenished up to Sit ; otherwise, no order is placed. Before analyzing the

performance of this multi-period, single-product inventory policy, we must first establish

the extended policy for the multi-product setting. However, as section 4.4 shows, the

single-product policy performs well.

In the multi-product setting, each product i is defined by its inventory level Iit in

period t, an order-up-to point Sit and a reorder-point Rit. Similar to expression (4.4), we

consider the sample average costs of the replenishment cycle starting in period t as

Ct(Rt,St) =
1

n

n∑
j=1

I∑
i=1

ci,jt (Rit,St)

τ i,jt (Rit, S
i
t)

(4.15)

where Rt and St are the vector representations of all inventories’ reorder points and

order-up-to levels for period t. The lengths of the individual cycles τ i,jt (Rit, S
i
t) are the

same as in (4.5), while the cycle costs ci,jt (Rit,St) per product depend on all order-up-to

levels.

Similar to the single-product case, each cost component is first established indi-

vidually. Inventory holding costs and back-order costs are equivalent to those of the
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single-product model and can be calculated as:

Hi
t(R

i
t, S

i
t) = h

τ jt (Rit,S
i
t)∑

l=t

(Sit −
l∑

m=t

δi,j)+, (4.16)

and

Bj
t (R

i
t, S

i
t) = b

τ jt (Rit,S
i
t)∑

l=t

(
l∑

m=t

δi,j − Sit)+. (4.17)

Purchasing costs now depend on the total volume ordered for all inventories that have

order-up-to levels larger than their respective inventory levels. Hence, the total number

of units ordered is:

Qj
t (St) =

I∑
i=1

Qi,jt (Sit), (4.18)

where the order quantity function from the single-product setting is used, resulting in

purchasing costs of

Pi,j
t (St) = p(Qj

t (St))Q
i,j
t (Sit) (4.19)

for product i. Finally, fixed ordering costs depend on how these costs can be split among

multiple products if more than one order is triggered. Therefore, assume that there is

a function Kj
t (St) that defines the amount of fixed ordering costs incurred for each

product. For example, if no scale economies are possible, Kj
t (St) would be equal to k

if Sit > Iit and equal to 0 for Sit = Iit . The sum of the holding, backlogging, purchasing

and fixed ordering costs gives us the approximated replenishment cycle costs in period

t as:

ci,jt (Rit,St) =Hi,j
t (Rit, S

i
t) + Bi,j

t (Rit, S
i
t) + Pi,j

t (St) + Ki,j
t (St). (4.20)

Now that we have formulated the approximated cost function for individual inventories,

we can formulate the minimization problem for the multi-product problem in period
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t ∈ {1, . . . , T} as

min
(Rt,St)

Ct(Rt,St) =
1

n

n∑
j=1

I∑
i=1

ci,jt (Rit,St)

τ i,jt (Rit, S
i
t)
, (4.21)

s.t. Sit ≥ Rit, i ∈ {1, . . . , I}, (4.22)

Sit ≥ Iit , i ∈ {1, . . . , I}. (4.23)

As in the single-product setting, in each period t the minimization problem (4.21) is

solved, and the inventory of each product i is replenished if the cost-minimizing Sit

is larger than the product’s inventory Iit . Now that the inventory policies for both

the single- and multi-product settings are established, the next section presents a brief

analysis of the performance of these policies for the Maisha Meds data set. The costs of

these policies are compared to the ex-post optimal costs under deterministic planning

and, when possible, to other benchmark policies.

4.4 Analysis

In this section the performance of the proposed inventory policy, referred to in this article

as the renewal theory (RT) policy, is evaluated for the single- and multi-product settings

in a real-world application using a data set provided by Maisha Meds. Section 4.4.1

explains the structure of the data and describes how it is used for the numerical eval-

uation of the inventory policy. Section 4.4.2 evaluates the RT policy’s performance for

the single-product setting, and Section 4.4.3 extends the analysis to the multi-product

setting. This procedure reveals the applicability of the RT policy in a simple setting for

which there is a theoretically optimal benchmark, Ban (2019)’s data-driven DP policy,

which is based on Scarf (1959)’s fundamental work, to which this article refers as the DP

policy. However, there is no extension to this approach for the multi-product setting,

and no theoretically optimal policy in general, so the ex-post optimal (EPO) policy, the

inventory policy that minimizes costs if demand is known ex-ante (i.e., under determin-

istic planning) is used as a second benchmark. The EPO policy can also be evaluated for

the multi-product setting, making possible a comparison of the RT policy and the EPO

policy in the multi-product setting and in the single-product setting. If the difference

between RT and EPO policy is stable between the single- and multi-product settings,

and the RT policy’s performance is close to that of the DP policy in the single-product

setting, the RT policy is likely to be a suitable approach to dealing with these types of

inventory problems.
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4.4.1 Evaluation Procedure

The first benchmark is the data-driven DP approach that Ban (2019) proposed, a sample-

average approximation version of the original dynamic programming inventory model

that Scarf (1959) introduced. This approach in particular provides a perfect benchmark,

as it uses the same input data and, under the assumption that demand in each period

is independently distributed, is the theoretically optimal policy for the single-product

setting. The second benchmark is the EPO policy, which is implemented using linear

programming. (See the appendix in Chapter 4 for the formal model of the EPO policy

and Ban (2019)’s paper for details of the DP policy.) All numerical evaluations are

implemented and executed in R.

A data set that contains daily sales of multiple products from multiple pharmacies

between January 2017 and October 2018 (22 months of daily sales) is used for the

numerical evaluation. The planning period is assumed to be a thirty-one-day month

(i.e., T = 31). The data set is split into a training set that consists of sixteen months

and a test set of six months. Each month corresponds to one demand sample with T

= 31 consecutive days of demand values. The inventory decisions are calculated using

only samples from the training data, and inventory costs are evaluated for the test data.

The evaluated data contain 100 pairs of products, so 200 instances are evaluated for

the single-product setting (each product individually) and 100 instances are evaluated

for the multi-product setting (each product pair individually). The average inventory

cost for each setting and policy (RT, DP, and EPO) is then calculated as follows: For

each product (or product pair in the multi-product setting), the inventory process and

the corresponding costs are calculated based on the respective policy for each sample

from the test data. A policy’s average inventory cost is then calculated as the average

inventory cost of all evaluated products (or product pairs) for all test data samples.

Average costs of policy x ∈ {RT,DP,EPO} are defined as Cx.

4.4.2 Single-Product Setting

For the single-product setting, the inventory policies are evaluated for a number of

parameter settings. Holding costs, back-order costs, and fixed order costs will be varied

as h ∈ {0.05, 0.1, 0.15}, b ∈ {1, 1.5, 2}, and k ∈ {50, 75, 100}, respectively. The variable

order costs will be fixed at p = 0.5 because the impact of p changes with the changes in

the other parameters. For the single-product setting, variable order costs do not change

with the order quantity because the DP policy is defined only for constant order costs.

This assumption is relaxed for the multi-product setting. Table 4.1 shows all of the
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evaluated parameter constellations and their numerical results. The costs of the EPO

policy are not sensitive to changes in b because the policy plans deterministically, so it

can avoid back orders.
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Figure 4.1: Inventory processes of RT policy (solid), DP policy (dashed) and the EPO
policy (dotted) for a randomly selected product and sample from the data set.

The RT policy is expected to perform, on average, worse than the DP policy. The DP

policy is theoretically the optimal policy if demand is independently distributed between

periods, so no other policy can be expected to result in lower average costs. In addition,

the RT policy is derived by assuming that the inventory process is a renewal process,

so it will not be as efficient in a finite-horizon setting as it will be in an infinite-horizon

setting. The assumption of time independence also has a major impact on how the

RT policy uses the available data compared to how the DP policy does so: While the

RT policy uses the time-series structure of the data samples as they are and considers

each data sample individually (yielding n samples), the DP policy considers all possible

combinations of each period’s data sample (yielding all nT combinations of samples).

Thus, the RT policy is supposedly more likely to suffer from small data sets than the

DP policy is, especially if the demand correlation between periods is small. Figure 4.1

shows an example of the RT policy, the DP policy and the EPO policy for the inventory

processes over time for a randomly selected product from the data set.

The results in Table 4.1 show that the average costs CRT of the RT policy are higher

than the average costs CDP of the DP policy, which supports the intuition that the DP is

theoretically optimal. However, when the policies’ gap to optimality, ∆RT = CRT /CEPO

and ∆DP = CDP /CEPO, are compared, the difference, ∆RT−DP = ∆RT −∆DP , ranges

between -2.92 and 27.01 percent, depending on the cost parameters, with an average
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Policy Evaluation Single Product

(h, b, k) CRT ∆RT CDP ∆DP CEPO ∆RT−DP
(0.05, 1, 50) 380.80 51.32 % 345.70 37.37 % 251.66 13.95 %

(0.05, 1.5, 50) 396.03 57.37 % 360.14 43.11 % 251.66 14.26 %
(0.05, 2, 50) 415.19 64.98 % 375.56 49.23 % 251.66 15.75 %
(0.05, 1, 75) 415.97 44.24 % 391.87 35.89 % 288.38 8.35 %

(0.05, 1.5, 75) 436.90 51.50 % 404.33 40.21 % 288.38 11.29 %
(0.05, 2, 75) 454.84 57.72 % 417.94 44.93 % 288.38 12.79 %

(0.05, 1, 100) 454.24 40.98 % 435.17 35.06 % 322.21 5.92 %
(0.05, 1.5, 100) 474.93 47.40 % 447.16 38.78 % 322.21 8.62 %

(0.05, 2, 100) 491.91 52.67 % 459.02 42.46 % 322.21 10.21 %
(0.1, 1, 50) 432.66 52.24 % 406.68 43.10 % 284.19 9.14 %

(0.1, 1.5, 50) 483.29 70.06 % 427.98 50.60 % 284.19 19.46 %
(0.1, 2, 50) 510.85 79.76 % 447.17 57.35 % 284.19 22.41 %
(0.1, 1, 75) 478.38 45.16 % 465.48 41.24 % 329.56 3.92 %

(0.1, 1.5, 75) 532.46 61.57 % 485.96 47.46 % 329.56 14.11 %
(0.1, 2, 75) 553.35 67.91 % 501.65 52.22 % 329.56 15.69 %

(0.1, 1, 100) 521.26 40.75 % 516.89 39.57 % 370.35 1.18 %
(0.1, 1.5, 100) 573.36 54.82 % 535.34 44.55 % 370.35 10.27 %

(0.1, 2, 100) 593.81 60.34 % 548.96 48.23 % 370.35 12.11 %
(0.15, 1, 50) 471.51 53.33 % 448.86 45.96 % 307.52 7.37 %

(0.15, 1.5, 50) 520.29 69.19 % 470.22 52.91 % 307.52 16.28 %
(0.15, 2, 50) 576.90 87.60 % 493.85 60.59 % 307.52 27.01 %
(0.15, 1, 75) 519.19 44.30 % 515.02 43.14 % 359.81 1.16 %

(0.15, 1.5, 75) 573.33 59.34 % 536.98 49.24 % 359.81 10.10 %
(0.15, 2, 75) 625.26 73.78 % 557.60 54.97 % 359.81 18.81 %

(0.15, 1, 100) 564.47 38.99 % 576.31 41.91 % 406.11 -2.92 %
(0.15, 1.5, 100) 620.60 52.82 % 594.94 46.50 % 406.11 6.32 %

(0.15, 2, 100) 673.59 65.86 % 617.11 51.96 % 406.11 13.90 %

∅ 11.39 %

Table 4.1: Numerical results for the single-product setting.

difference of 11.39 percent. Although the amount of data evaluated does not make

these results statistically significant, they still show that our suggested approach does

perform well compared to the theoretically optimal DP policy, with even one instance

of lower average costs for the RT policy. Figure 4.2 visualizes the difference in relative

costs between the RT and the DP policies. For this setting, the difference decreases

in fixed order costs, increases in back-order costs and either increases or decreases in

holding costs, depending on the holding costs. Increasing back-order costs creates more

uncertainty because stock-outs are punished more heavily. Therefore, a policy that can
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Figure 4.2: Difference in relative performance ∆RT−DP for the single-product setting
depending on b for different values of k.

deal with uncertainty better will likely result in lower average inventory costs.

As mentioned earlier, one main difference between the RT and the DP policy is

how historical data evaluated: While for the DP policy it is always assumed that there

is no correlation between the various periods’ demands –— demand does not have to

be stationary, but it is assumed to be i.i.d . –— so the available data’s time series

structure is ignored, and the RT policy uses the demand samples with their implied

timely structure. Therefore, the DP approach considers the potential combinations of

demands in different periods from different demand samples, while the RT approach

considers each time series of demands in each demand sample individually. Practically

speaking, the DP policy solution uses the same amount of available data but considers

more combinations of periodic demands, so it considers nT possible demand samples

instead of only n. The DP policy cannot assume correlated demands between each

period, but the RT policy can relax this assumption by, for example, considering all nT

possible demand samples or generating demand samples based on certain probabilities.

With respect to the data used in this analysis, the correlation between consecutive days

is low —– the mean auto-correlation coefficient is 0.0153 –— and no obvious correlation

between the auto-correlation and the performance of the RT policy compared to the DP

policy could be identified.

In summary, this first brief analysis of the RT policy in the single-product setting

shows that the approach performs well and is not too far away from the theoretically

optimal DP policy in terms of costs. While this brief analysis does not explain the

intricacies in the difference between RT policy and DP policy, it shows that the RT can

be a suitable approach to this type of inventory problem. Future research may consider

analyzing the influence of, for example, sample size, demand correlation, and length of

planning period on the RT policy’s performance.
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4.4.3 Multi-Product Setting

While the RT policy delivers satisfactory results in the single-product setting,whether

its results are equally satisfactory in the multi-product setting remains in question.

As multiple inventories are managed simultaneously, this problem is complex so, to

keep the analysis simple, in each instance the inventory of two products is managed

simultaneously. The fixed order cost function is defined as:

Ki,j
t (St) =

1
I k, if Sit > Iit for any i ∈ {1, . . . , I},

0, else,
(4.24)

such that fixed order costs k are incurred if an order for either product is placed (and

these costs are shared between all products i ∈ {1, . . . , I}), and no fixed order costs are

incurred if no order is placed. The purchasing cost function is defined as:

p(q) =

p, q < θ,

(1− ε)p, q ≥ θ,
(4.25)

with θ as the order quantity threshold at which the discount ε ≥ 0 is triggered. To keep

the analysis simple, the discount ε ∈ {0, 0.1, 0.2, 0.3}, the threshold θ ∈ {50, 75, 100}
and the holding cost h ∈ {0.05, 0.1, 0.15} are varied, while the remaining parameters are

fixed at b = 1, k = 50, and p = 0.5, respectively.
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Figure 4.3: Exemplary inventory processes of a two-product inventory (solid line: prod-
uct 1, dotted line: product 2) over time for a randomly selected product pair.
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Figure 4.3 shows as an example, for randomly selected products from the data set,

how the inventories of two products develop over the course of one planning period

(31 days), for the RT policy (Figure 4.3a) and the EPO policy (Figure 4.3b). As in

the single-product setting, the EPO policy avoids shortages and orders just the right

amount. In addition, the orders for both products are synchronized, so fixed costs are

shared for each replenishment and quantity discounts can be utilized. In comparison,

the RT policy does not plan deterministically, resulting in shortages as well as excess

inventory. Replenishments are aligned in three out of four replenishments, and there is

one individual order.
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Figure 4.4: Average costs of the RT policy for the multi-product setting.

Table 4.2 contains the results of the evaluation for the data set. The relative gap to

optimality ∆RT of the RT policy varies between 54.51 percent and 61.16 percent, which is

only slightly higher than the gap in similar settings in the single-product setting (compare

the results in Table 4.1). When the base settings without quantity discounts (ε = 0)

are compared, the RT policy’s relative gap to optimality in the multi-product setting

increases by only 3.19 percent, 6.57 percent, and 8.7 percent, respectively, compared

to the single-product setting. Acknowledging that, because of the problem’s higher

dimensionality it becomes significantly more difficult to solve (which is why there is

no go-to benchmark), the RT policy performs well. In the setting without quantity

discounts, the inventory costs for the two products can be reduced compared to the

individually managed products only if orders are synchronized, as only then can the

fixed ordering costs be shared. This results in average costs of 720.07 per product pair

(for h = 0.05), which is an average of 720.07/2 = 360.035 per product. In the single-

product analysis, the average inventory costs CRT per product were 380.80 for the same

setting, which is approximately 5.77 percent higher. When the possibility of quantity

discounts are added (ε > 0 and θ > 0), the average costs CRT are decreasing in the
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Policy Evaluation Multi Product

(ε, θ) CRT ∆RT CEPO
h = 0.05

(0, 100) 720.07 54.51 % 461.08
(0.1, 100) 689.51 55.62 % 434.83
(0.2, 100) 664.30 56.62 % 408.30
(0.3, 100) 635.47 58.72 % 381.62
(0.1, 75) 688.89 55.84 % 434.19
(0.2, 75) 663.13 57.12 % 407.17
(0.3, 75) 633.79 59.23 % 380.04
(0.1, 50) 688.37 55.96 % 433.73
(0.2, 50) 661.92 57.25 % 406.35
(0.3, 50) 631.98 59.22 % 378.95

h = 0.1

(0, 100) 872.52 58.81 % 518.67
(0.1, 100) 839.82 59.30 % 493.58
(0.2, 100) 805.66 59.80 % 468.07
(0.3, 100) 774.82 61.17 % 442.28
(0.1, 75) 838.69 59.38 % 492.56
(0.2, 75) 803.27 59.94 % 466.19
(0.3, 75) 770.78 61.16% 439.64
(0.1, 50) 837.81 59.59 % 491.61
(0.2, 50) 801.78 60.49 % 464.45
(0.3, 50) 768.54 61.95 % 437.23

h = 0.15

(0, 100) 995.48 62.03 % 559.58
(0.1, 100) 965.24 62.57 % 535.50
(0.2, 100) 935.94 63.55 % 510.81
(0.3, 100) 904.49 64.63 % 485.76
(0.1, 75) 963.94 62.67 % 534.18
(0.2, 75) 933.25 63.73 % 508.39
(0.3, 75) 900.05 64.79 % 482.36
(0.1, 50) 962.81 62.94 % 532.80
(0.2, 50) 931.19 64.22 % 505.91
(0.3, 50) 897.41 65.67 % 478.94

Table 4.2: Numerical results for the multi-product setting.

discount ε and increasing in the discount threshold θ, confirming that the policy uses

economies of scale that are due to fixed order costs and quantity discounts (Figure 4.4).

Furthermore, it is interesting to note that the relative gap to optimality slightly increases

in the discount factor ε, which is intuitive: as the potential quantity discount increases,
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it becomes more important to coordinate the orders of different inventories. While this

coordination is complex for a stochastic inventory policy, the EPO policy does always

achieve the lowest possible inventory costs, so the gap between stochastic and ex-post

optimal policies is expected to increase in ε.

In summary, the RT policy’s relative gap to optimality ∆RT in the multi-product

setting increases only slightly compared to the results in the single-product setting (com-

pare tables 4.1 and 4.2); that the RT policy’s costs are close to those of the DP policy in

the single-product setting suggests that the RT policy’s costs are close to the (unknown)

theoretically optimal policy for the multi-product setting. Besides confirming that the

policy uses economies of scale in both fixed order costs and quantity discounts, this

evaluation shows that the RT policy might be a suitable approach to managing multi-

product inventory problems. However, further analyses are needed to confirm these early

results.

4.5 Conclusion

This paper proposes a novel data-driven approach, referred to as the RT policy, to

dealing with multi-period inventory problems, also known as JRPs. A first analysis

using real-world data shows that the proposed model performs well. In fact, for simple

settings with single-product replenishment and no quantity discounts, the model’s costs

are close to the costs of the theoretically optimal approach. For complex multi-product

settings (JRPs) with quantity discounts, where optimal policies cannot be derived using

general assumptions, the performance is still similar to EPO costs under deterministic

planning, which suggests that the policy performs well in complex settings.

The first analyses of the RT policy look promising and lead to several avenues for

future research. First, the policy could be extended to include lead time, which would

improve its applicability. This extension could easily be made by including the time an

order takes until it arrives into the replenishment cycle. Second, the amount of data

and how the policy handles data samples (in sequence) affect the expected costs, so a

more rigorous analysis with either a simulation or more data is necessary to confirm the

policy’s performance. Furthermore, for the multi-product setting this study compared

the policy only to the EPO policy, but identifying the most significant (data-driven)

approaches for this setting and comparing their performance to that of the RT policy is

important. With respect to real-world applications, a study that combines the RT policy

with forecasting tools like machine learning models would be useful. The weighted SAA

Bertsimas and Kallus (2018) introduced could be naturally suited to such as study.
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Conclusion

To reach global health goals like the SDGs the global health industry must make the most

out of limited funds and healthcare budgets by decreasing procurement costs so they can

increase the supply of essential medicines and medical equipment. However, a focus on

costs can introduce additional risks, such as poor product quality and supply shortages,

because low-cost suppliers often do not fulfill all the requirements of sustainable, high-

quality production, so already tight budgets might be ”wasted on products of unknown

quality with potentially devastating effects for public health” (FM’t Hoen et al., 2014,

p. 22). A profound understanding of the various drivers of risk and competition can

help decision-makers to optimize their allocation of procurement volumes, set the right

incentives via procurement mechanisms, and determine the optimal order timing. The

three articles in this thesis explore and analyze decision problems in these three areas

to provide the insights and tools needed to improve decision-making in global health

procurement.

Chapter 2 analyzes how a buyer should allocate procurement volumes between an

incumbent supplier and a new-entrant supplier when lead times are uncertain, when the

entrant may not be registered in all eligible countries, and when production capacities

are limited. The chapter shows how the entrant’s value to the buyer changes depending

on several assumptions. The buyer’s objective function can have multiple local max-

ima and minima, which renders the process of making the optimal decision intricate,

so simple rules of thumb (e.g., a 70/30% split) that are regularly used in practice may

not be the best way to solve these types of procurement problems. From a methodolog-

ical standpoint, we contribute to the literature on bargaining models by incorporating

dual sourcing into a bilateral bargaining model with capacity constraints. However, our

results have some limitations, as we rely on simulation to keep our results practically

113
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relevant. While this approach helped us incorporate more aspects of the actual problem,

from a scientific standpoint it limits our findings’ general applicability. Therefore, we

suggest that future research develop a closed-form model to derive generalizable findings.

In Chapter 3 we analyzed a procurement mechanism called the postponement tender,

which allows a buyer to postpone part of the volume allocation so the buyer can learn

about the suppliers’ uncertain quality before allocating the rest of the volume. In this

mechanism, the suppliers’ bid their prices, and the buyer allocates initial volumes to

them. Then, after the suppliers have delivered the initial volume, the buyer observes the

suppliers’ quality and allocates the postponed volume to the supplier with the higher

value (based on quality and price). Our analysis shows that a buyer can benefit from

this mechanism more than it can from simple single-sourcing and shows how the buyer

should set the initial and postponed volume optimally based on the procurement vol-

ume, the supplier’s costs, and the quality uncertainty. Using a postponement tender,

the buyer can induce competition and learn about uncertain quality, and substantially

improve its procurement outcome. In our research we analyze the postponement tender

and compare its performance to single sourcing. Future research could compare the

postponement tender to other procurement formats, such as repeated tenders and (re-

peated) negotiations, to shed more light on the question concerning which procurement

mechanism a buyer should use in which procurement situation.

The third problem, considered in Chapter 4, is the Joint Replenishment Problem

(JRP) with quantity discounts, an inventory-management problem in which multiple

inventories of multiple products are ordered on a recurrent basis. Economies of scale

in both fixed and variable order costs can be used by coordinating orders for multiple

products. We developed novel, data-driven inventory policy using sample average ap-

proximation that reduces the complexity of the underlying coordination problem. A

first numerical evaluation using real-world data from Kenyan pharmacies showed that,

in the single-product setting, the policy’s costs are similar to the costs of the theoret-

ically optimal policy. In the complex multi-product setting, where no optimal policies

are known, the policy still yields lower costs than the ex-post optimal costs. The results

presented are promising, but additional research is needed to clarify the applicability

and performance of this approach. This data-driven policy could also be combined with

a machine-learning methodology to improve the approach’s performance by adding fore-

casting techniques to the inventory policy.
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Appendix to Chapter 2

Figures

Figure 6.1: Equilibrium prices p∗E(α) (solid) and p∗I(α) (dashed) depending on the en-
trant’s share (α) in the reference case.
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Figure 6.2: Risk-induced shortage (solid) and corresponding standard deviation depend-
ing on the entrant’s share for the reference case.

Tables

Country (c) Full Reg. Lim. Reg.

Afghanistan x

Angola x

Bangladesh x

Benin x

Burkina Faso x x

DR Congo x

Ethiopia x

Guinea x

Haiti x

Jordan x

Kenya x x

Liberia x

Madagascar x x

Malawi x x

Mali x

Mozambique x

Nepal x x

Nigeria x x

Pakistan x

Rwanda x

Senegal x x

Sierra Leone x

Tanzania x x

Togo x

Uganda x x

Zambia x x

Table 6.1: Entrant’s registered countries in case of full registration and limited registra-
tion for USAID.
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Variable Description

α, α̂ volume split (in percent) allocated to entrant and adjusted volume split

b PO’s procurement budget

capj (absolute) production capacity of manufacturer j ∈ {I, E}
cj , ĉj production costs of manufacturer j ∈ {I, E}, and lower boundary of costs

d(α), dI , dIE actual procurement volume, actual procurement volume from countries where only the incumbent (I) or
incumbent and entrant (IE) are registered

DI
t , DIE

t , dIt , dIEt (random) demand at time t from countries where only the incumbent (I) or incumbent and entrant (IE)

are registered; corresponding realizations: dIt , dIEt

Lj , lj (random) supply lead time from manufacturer j ∈ {I, E}, corresponding realization

OI
t , OIE

t (α), OE
t (α) (random) order at time t for countries where only the incumbent (I) is registered, for countries where

both manufacturers (IE) are registered and are send to the incumbent, and for countries where both
manufacturers are registered and are send to the entrant (E)

pj(α) per-unit price of manufacturer j ∈ {I, E}
p(α) weighted average per-unit price

πj(α), π
sq
j profit and status-quo profit of manufacturer j ∈ {I, E}

q, qI , qIE target volume, target volume of countries where only the incumbent (I) is registered, and target volume
of countries where incumbent and entrant (IE) are registered

r reservation price

RI
t , RIE

t (random) residual virtual inventory for countries where only the incumbent (I) is registered, or where both
manufacturers (IE) are registered

SI
t , SIE

t , SE
t (random) supply at time t send from the incumbent to countries where only the incumbent (I) is registered,

or send from the incumbent to countries where both manufacturers (IE) are registered, or send from the
entrant (E) to countries where both manufacturers are registered

T planning horizon

τ shortage threshold

u(α), usq utility and status-quo utility of PO

V I
t , V IE

t (random) virtual inventory for countries where only the incumbent (I) is registered, or where both manu-
facturers (IE) are registered

w value of the entrant

ξ(α), ξp(α), ξr(α) total shortage, price-induced shortages, and (expected) risk-induced shortage

zj (absolute) volume procured from manufacturer j ∈ {I, E}

Table 6.2: List of important variables for the competition and the coordination model
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Chapter 7

Appendix to Chapter 3

7.1 Appendix I

7.1.1 Further Numerical Analyses

Figure 7.1 plots the terminal bids depending on dp for suppliers’ different (positive)

values. The bids of the supplier with the higher value are in line with our previous

results, as the threshold djp of that supplier is, in each instance, lower than the threshold

of the other supplier. In addition, the bids decrease for djp < dp < d
j
p and increase for

d
j
p < dp ≤ 1. For djp < dp < d−jp , supplier j lowers his bid to increase his chances of

winning the postponed volume without having to consider changes in supplier −j’s bid.

Notably, from d−jp on, supplier j’s bid decreases at a higher rate because when dp > d−jp ,

supplier j’s probability of winning the postponed volume decreases as supplier j starts

to lower his bids and has to bid more aggressively to increase his expected profit (Eq.

(3.5)).

More interesting are the bids of the supplier with the lower value, for whom we

assumed v−j = 0 in Proposition 7. For 0 < dp < d
j
p, this supplier’s bids depend on dp,

as predicted by Proposition 6, but his bids continue to decrease for d
j
p < dp ≤ 1; that

is, in contrast to the bids of the supplier with the higher value, the supplier with the

lower value does not submit higher bids for high values of dp. To understand supplier

−j’s rationale first note that he still seeks to increase his probability of winning the

postponed volume, even at P (bt−1
−j |dp) = 0, as long as his expected profit from lowering

his bid increases (see Eq. (3.7)). But, because supplier j has a larger value he can always

outbid supplier −j who at some point stops bidding because the bidding condition in

Eq. (3.8) is no longer fulfilled. The increasing volume incentive results in supplier −j’s
decreasing his bid for dp > d

j
p. Thus, supplier −j still lowers his bid in an (unsuccessful)

127
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(a) vi = 0.6, ve = 0.05. (b) vi = 0.6, ve = 0.2.

(c) vi = 0.6, ve = 0.35. (d) vi = 0.6, ve = 0.5.

Figure 7.1: Terminal bids (bTj ) of incumbent (black) and entrant (gray) depending on
postponed volume (dp) for vi 6= ve, Qe ∼ Beta(1, 1), q̄e = 0.5, qi = 0.8 and M = 25.

attempt to increase the probability that he will win the (higher) postponed volume.

For dp > d
j
p, supplier −j’s bid decreases at a lower rate because he does not have to

consider the decreasing bids of supplier j in calculating the probability that he will win

the postponed volume.

In line with findings from Proposition 6, Figure 7.1 shows that increasing the value

v−j reduces supplier −j’s lower threshold d−jp . Also, decreasing vj decreases the upper

threshold d
j
p, which is intuitive because as supplier −j provides a lower value, his com-

petitor j can lower his bid and be guaranteed to win the postponed volume for lower dp.

A comparison of Figures 7.1a through 7.1d shows that the region d−jp < dp < d
j
p, where

a buyer can expect strong competition, increases as supplier −j’s value grows closer to

the higher value of supplier j, and as v−j increases, the region in which a buyer observes

increasing bids from supplier j decreases. This result suggests that a buyer should prefer

suppliers with similar values because then she can benefit from lower prices for larger
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ranges of postponed volumes.

(a) vi = 0.6, ve = 0.05. (b) vi = 0.6, ve = 0.2.

(c) vi = 0.6, ve = 0.35. (d) vi = 0.6, ve = 0.5.

Figure 7.2: Expected costs (E[C(dp)]) depending on postponed volume (dp) for vi 6= ve,
Qe ∼ Beta(1, 1), q̄e = 0.5, qi = 0.8 and M = 25.

7.1.2 Extension I: Uncertain costs

We have assumed that the buyer knows the suppliers’ production costs ci and ce. Al-

though this assumption may hold when the buyer has accurate estimates of the suppliers’

cost structures, buyers often lack this information. Do our previous results hold when

the buyer does not have perfect information about the suppliers’ costs? Clearly, such

cost uncertainty does not impact the results presented in Section 3.3.1, as what the

buyer learns about the entrant’s quality is independent of the entrant’s costs. However,

uncertainty about costs does affect the incumbent’s terminal bids because the bidding

condition in Eq. (3.8) is directly impacted by the costs of supplier j. Loosely speaking,

supplier j’s margin (LHS of Eq. (3.8)) becomes a random variable, and its realization

depends on supplier j’s true costs. Because the suppliers’ bids are interrelated, the

terminal bids are also random variables, and their distributions depend on the joint dis-

tribution of both suppliers’ costs. Because we assume a risk-neutral buyer, it is sufficient

to characterize how the expected terminal bids depend on dp (similar to Proposition 7 for
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(a) vi = 0.6, ve = 0.05. (b) vi = 0.6, ve = 0.2.

(c) vi = 0.6, ve = 0.35. (d) vi = 0.6, ve = 0.5.

Figure 7.3: Expected costs (E[C(dp)]) depending on postponed volume (dp) for vi 6= ve,
Qe ∼ Beta(2, 2), q̄e = 0.5, qi = 0.8 and M = 25.

the case of known costs), but such characterization can be achieved only under highly

restrictive and not very realistic assumptions about the suppliers’ cost distributions.

More general and realistic assumptions about these distributions render our model ana-

lytically intractable. Despite these challenges, we want to determine how uncertain costs

impact competition and the buyer’s optimal postponement decision, so we proceed as

follows: First, we assume a simple cost distribution that allows us to obtain structural

results that correspond to Proposition 7. Then we explain how the expected terminal

bids can be determined numerically under realistic assumptions about the suppliers’ cost

distributions. Based on a numerical example, we show that, even under more realistic

assumptions, we obtain structural results that are similar to those in Section 3.3.2. The

optimal postponement decision can be determined in a similar fashion as described in

Section 3.3.3.

Proposition 10.

Assume that suppliers’ costs Cj, j ∈ {i, e}, are random variables distributed according to

a discrete distribution such that with probability p we observe the case Ce = c′e = qe and

Ci = c′i < qi, and with probability 1−p we observe the case ce = c′e < qe and ci = c′i = qi.
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Then E[bTi ] = pbTi (dp, ci < qi, ce = qe) + (1 − p)qi and E[bTe ] = pqe + (1 − p)bTe (dp, ci =

qi, ce < qe).

a) There exists a threshold level d
j
p, j ∈ {i, e}, with djp < d

j
p < 1. For djp < dp ≤ d

j
p,

E[bTj ] is strictly decreasing in dp while for d
j
p < dp ≤ 1, E[bTj ] is strictly increasing

in dp.

b) The threshold d
j
p is strictly decreasing in vj and strictly increasing in M .

Proposition 10 considers only two potential realizations of the uncertain suppliers’

costs with corresponding probabilities p and 1−p. As a result, bTj can have two outcomes,

where the expected terminal bids E[bTj ] are computed as their weighted sums.

The results presented in Proposition 10 are similar to those established in Proposition

7 for known costs. Suppliers do not lower their bids for postponed volumes up to a

threshold level djp and reduce their bids up to the threshold level d
j
p. The only difference

from our previous results is that now the bids of both suppliers can be increasing in

the postponed volume above the threshold d
j
p because the expected terminal bids are

weighted averages of all possible outcomes for the realizations of the costs Ci and Ce.

For each supplier, there is one instance, (vj > 0 and v−j = 0), in which the supplier’s

bid is increasing for high postponed volumes d
j
p < dp ≤ 1, while in the other instance,

vj = 0 and v−j > 0, the supplier’s bid is constant. Because the expected bid is simply

a weighted average, both suppliers’ expected bids are increasing for high postponed

volumes.

Of course, the question arises concerning whether these results also hold if we make

less restrictive and more realistic assumptions about the buyer’s information on the

suppliers’ costs. In many practical instances, a buyer has access to some information

about the suppliers’ cost structures that allows the buyer to specify a lower bound cj

and an upper bound cj of the costs of supplier j and some distribution f(cj) with

non-negative support [cj , cj ].
1 In this case, the calculation of the supplier j’s expected

terminal bids becomes more complex:

E[bTj ] =

∫ cj

cj

∫ c−j

c−j

bTj (dp, cj , c−j)f(cj)f(c−j)dcjdc−j for j ∈ {i, e}. (7.1)

Thus, any combination of the two suppliers’ cost realizations yields a specific terminal

bid, and these terminal bids are weighted with the corresponding joint probability. While

we provide no analytical solutions to Eq. (7.1), the underlying logic remains the same as

1Absent more accurate information, we could assume that Cj ∼ U(cj , cj).
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that for Proposition 10, and we can evaluate Eq. (7.1) numerically. Figure 7.4 plots the

expected terminal bids, depending on dp, for different cases of uniform costs (from highly

unequal expected supplier values in Figure 7.4a to equal expected values in Figure 7.4d).

Comparing these numerical results to the results in Figure 7.1 shows that, structurally,

suppliers’ (expected) terminal bids are the same as they are when their costs are known.

For low postponed volumes, neither supplier lowers its bid, but higher postponed volumes

provide sufficient incentive to lower the bids, and there exists an upper threshold past

which a supplier’s bid can increase because he anticipates the buyer’s quality-updating

process and expects to win the contract. Whether the bid increases for high postponed

volumes is determined by the weighting of the number of instances, similar to our simple

example above.

These analyses indicate that our structural insights continue to hold when the buyer

faces uncertainty about the suppliers’ costs. As a result, the rationale that underlies

the optimal postponement tender that we presented in Section 3.3.3 remains the same:

On the one hand, the buyer can choose a learning strategy and postpone dQp , an option

that remains unchanged because it is not affected by cost uncertainty; on the other

hand, the buyer can choose a competition strategy and postpone a high volume dC
′

p

that corresponds to the cost minimum (similar to dCp in Proposition 8). Although we

cannot provide a formal characterization of the buyer’s optimal solution, the intuition

remains the same as that presented in conjunction with Proposition 9: The size of the

procurement volume M and the (expected) supplier values E[vj ] determine whether the

learning strategy or the competition strategy is optimal. Thus, when the suppliers’

costs are uncertain and the buyer can specify a cost distribution, she can still rely on

our model to determine the optimal postponement tender numerically.

7.1.3 Extension II: Unequal initial volume shares

We have assumed that the buyer allocates the initial volume (1− dp)M equally between

the incumbent and the entrant, but a buyer may be interested in allocating unequal

volume shares. This section shows that increasing or decreasing the initial volume share

awarded to the entrant does not change the results of our analysis structurally and that

increasing the initial volume share of the entrant impacts our results in the same way

that increasing M does.

Suppose the buyer allocates γ(1 − dp)M units of the initial volume to the entrant

and (1− γ)(1− dp)M units to the incumbent, with γ ∈ [0; 1]. That is, γ > 0.5 indicates

that the entrant receives a larger share of the initial volume. We first investigate how
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(a) E[vi] = 0.4, E[ve] = 0.1,
Ci ∼ U [0.2, 0.6], Ce ∼ U [0.3, 0.5].

(b) E[vi] = 0.4, E[ve] = 0.2,
Ci ∼ U [0.2, 0.6], Ce ∼ U [0.2, 0.4].

(c) E[vi] = 0.4, E[ve] = 0.3,
Ci ∼ U [0.2, 0.6], Ce ∼ U [0.1, 0.3].

(d) E[vi] = 0.4, E[ve] = 0.4,
Ci ∼ U [0.2, 0.6], Ce ∼ U [0, 0.2].

Figure 7.4: Expected Terminal bids (E[bTj ]) of incumbent (black) and entrant (gray)
depending on postponed volume (dp) for uniformly distributed costs, Qe ∼ Beta(1, 1),

q̄e = 0.5, qi = 0.8 and M = 25.

the initial volume share impacts the buyer’s learning and then the impact of the share

on competition. To better understand the impact on the buyer’s learning, recall the

posterior distribution of the entrant’s quality, derived in Proposition 2, modified for

unequal initial shares:

Qposte ∼ Beta(α+ q̂eγ(1− dp)M,β + (1− q̂e)γ(1− dp)M). (7.2)

Eq. (7.2) shows that, if the buyer allocates more of the initial volume to the entrant (i.e.,

γ > 0.5), learning increases and the buyer can make a more accurate estimate of the

entrant’s quality distribution than it could if it allocated an equal share (and vice versa

if she allocates less to the entrant). This effect is structurally the same as increasing

M (see our discussion of Proposition 2): observing more initial volume results in higher

learning.

The effect of unequal initial volume shares on competition is more difficult to explain.

We begin by formulating the bidding conditions, modified for unequal shares. For the
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incumbent the condition is:

bt−1
i − ci > δ

(1− γ)
1−dp
dp

+ P (bt−1
i − δ|dp)

P (bt−1
i − δ|dp)− P (bt−1

i |dp)︸ ︷︷ ︸
incumbent’s markup := θti

, for 0 < dp ≤ 1, t ∈ {1, . . . , T}, (7.3)

and the entrant’s condition is

bt−1
e − ce > δ

γ
1−dp
dp

+ P (bt−1
e − δ|dp)

P (bt−1
e − δ|dp)− P (bt−1

e |dp)︸ ︷︷ ︸
entrant’s markup := θte

, for 0 < dp ≤ 1, t ∈ {1, . . . , T}. (7.4)

In conjunction with Proposition 5, we referred to the relative size of the postponed

volume
1−dp
dp

as the volume incentive and the probabilities of winning (i.e., P (·)-terms)

as the risk incentive. Clearly, splitting the initial volume allocation affects both the

volume incentive and the risk incentive in the suppliers’ bidding conditions. The effect

on the volume incentive tends to be intuitive: a supplier’s incentive to decrease his bid

decreases if he receives a larger share of the initial volume. For example, if the entrant

receives the larger share (i.e., γ > 0.5), the entrant’s markup increases (see Eq. (7.4))

because the first term in the numerator increases in the initial volume share, and if

the incumbent receives the smaller share (1 − γ), his markup decreases (see Eq. (7.3)),

increasing his incentive to quote lower bids.

The effect of unequal initial volume shares on the risk incentive is more difficult

to explain. Similar to our discussions regarding the risk incentive in conjunction with

Proposition 5, we cannot tie changes in γ directly to the risk incentive. However, we know

that the risk incentive, represented by the probabilities of winning the postponed volume

P (·) in the bidding conditions, is connected to the buyer’s learning. As we explained,

increasing (decreasing) the initial volume share increases (decreases) the buyer’s learning,

similar to increasing or decreasing M , because both have the same impact on the updated

quality distribution in Eq. (7.2). Therefore, we conclude that a higher (lower) share of

the initial volume allocated to the entrant has the same structural impact on the risk

incentive as a higher (lower) M ; that is, the findings in Proposition 6 and Proposition 7

also apply to increasing values of γ: the lower threshold djp and the upper threshold d
j
p of

both suppliers are strictly increasing if the entrant receives a higher share of the initial

volume. The competition interval for which suppliers decrease their bids decreases with

the entrant’s share of the initial volume γ. Figure 7.5, which shows numerical results for

various initial volume shares, confirms this intuition: For large shares γ allocated to the
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entrant, the interval in which suppliers decrease their bids decreases.

In summary, the initial split, whether even or uneven, does not change the structure

of our results. (Compare Figure 7.5 to the results in Section 3.3.2.) However, the initial

split does provide the buyer with a second lever with which to impact learning and

competition.

Figure 7.5: Terminal bids bTi (black) and bTe (gray) for vi = 0.3 > ve = 0.1, M = 10 and
Qe ∼ Beta(1, 1). γ = 0.1 (solid), γ = 0.5 (dashed) and γ = 0.9 (dotted).

7.1.4 Extension III: Minimum initial volumes

Our results have shown that, especially for large buyers, it may be attractive to award

small initial volumes (basically test lots) and to postpone almost the entire procurement

volume. However, in practice, doing so may not be feasible. Practitioners who employ

mechanisms similar to a postponement tender award larger initial volumes (e.g., Global

Fund (2014a)) than the small initial volumes suggested by our approach, perhaps to

incent the entrant to make a substantial capacity investment. Small initial volumes and

the risk of not winning the postponed volume may prevent the entrant from investing in

increasing his capacity. Another important reason for a buyer’s being hesitant to award

test lots emerged from our discussions with global-health experts, who indicated that

suppliers may have an incentive to supply high-quality lab-produced test lots that have

no relationship with the quality of the remaining volume that is produced on a larger

scale. To avoid these issues, the buyer may be inclined to choose a relatively high initial

volume. In this section, we assume that the buyer can determine a minimum initial

volume that ensures that the entrant and incumbent partake in the tender and do not

provide test lots whose quality is not matched in the postponed volume. We include

the minimum initial volume as a constraint in our model and study its impact on the
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optimal strategy.

Let omin ≤M denote the initial volume each supplier must receive, such that 1
2(1−

dp)M ≥ omin. In this case, the buyer’s feasible postponed volumes are restricted to

dp ∈ [0; 1 − 2ominM ] ∪ {1}, where dp ∈ [0; 1 − 2ominM ] is the interval that satisfies the

minimum initial volume condition, and dp = 1 is the single-sourcing case in which one

supplier always receives at least the minimum initial volume omin, and the other supplier

receives no allocation.

Figure 3.10 shows how a minimum initial volume changes the buyer’s optimal sourc-

ing strategies. Because the minimum initial volume restricts the buyer’s postponement

options, the optimal strategy is now strictly divided into the three possible strategies:

while the learning strategy (dQp ) and the single-sourcing strategy (dCp = 1) derived in

Section 3.3.3 do not change, the competition strategy with a high postponement volume

(dCp < 1) is affected by the restriction on the initial volume (for M = 50 and M = 90

there exists no single-sourcing optimum, because ve > vi for all cases where d∗p = dCp ).

Therefore, the optimal strategy is to either to single-source or to postpone a volume

such that the initial volumes are equal to the minimum initial volume omin. This has a

distinctive effect on the optimal strategy for both small buyers and large buyers. The

results in Figure 7.6b show that a small supplier should choose to single-source when

the minimum initial volume increases; the explanation for this effect is that, as omin

grows, the volume that can be postponed (i.e., M − 2 ∗ omin) declines, either making it

less attractive to postpone because the learning effects are low (Figures 7.6a and 7.6b)

or rendering postponement infeasible (Figures 7.6b and 7.6c). The minimum initial vol-

ume has the opposite effect on larger buyers’ optimal strategy, as larger minimum initial

volumes (Figures 7.6c and 7.6d) do not allow the buyer to choose dp close to 1 (see

Figure 7.6a). At a certain minimum initial volume, a larger postponed volume should

always be chosen, regardless of differences in suppliers’ values (Figure 7.6d). The effect

of the minimum initial volume on larger buyers’ optimal strategy is driven by the large

learning opportunities that are associated with a large M .

Clearly, the effect of a minimal initial volume on the optimal strategy differs with

the buyer’s size, which seems counter-intuitive. A comparison of Figures 7.6a and 7.6d

reveals that the effect of the minimum initial volume for small buyers is opposite the

effect for large buyers. At first glance, one would assume that a large buyer should switch

from low initial volumes (i.e., test lots) to single-sourcing because a low initial volume

represents only a small deviation from the optimal postponed volume d∗p. However,

in doing so, the buyer would forego all learning benefits and her overall utility would

decrease sharply. Because of the high volume of the large supplier the learning benefits
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are so strong that it is optimal to deviate substantially from the optimal (unconstrained)

postponed volume and to choose instead a comparatively low postponed volume than to

single source. By contrast, a small buyer can afford to forego the benefits of learning,

which are comparatively low because of her small volume. Instead of offering an initial

volume, then, the small buyer should exploit the benefits of competition and opt for

single-sourcing. From a managerial point of view, this finding means that a minimum

initial volume, which restricts the action space, effectively reverses the optimal strategies

for the different types of buyers, and decision-makers should be careful when facing these

restrictions in allocating volume.
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(b) Minimum initial volumes omin = 1.
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(c) Minimum initial volumes omin = 2.
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Large buyer switches to dual-sourcing with postponement

(d) Minimum initial volumes omin = 5.

Figure 7.6: Optimal postponement d∗p dependent on ve for vi = 0.05, Qe ∼ Beta(1, 1)
and procurement volumes M = 10 (solid), M = 50 (dashed) and M = 90 (dotted).
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7.2 Appendix II

Proof of Proposition 2

The result in a) follows directly from the characteristics of the Beta-distribution. If

one conducts a single Bernoulli trial with a prior distribution Beta(α, β) and this trial

is successful, the resulting (posterior) Beta-distribution is Beta(α + 1, β) and if the

trial is unsuccessful the resulting (posterior) Beta-distribution is Beta(α, β + 1) (Gupta

and Nadarajah (2004); Tomlin (2009); Zhu and Lu (2004)). In our case the buyer

observes q̂e
1
2(1 − dp)M successful trials and (1 − q̂e)1

2(1 − dp)M unsuccessful trials; as

a result the posterior distribution of the entrant’s quality is distributed according to

Qposte ∼Beta(α + q̂e
1
2(1 − dp)M,β + (1 − q̂e)1

2(1 − dp)M)). The result in b) follows by

calculating the expected posterior quality using the probability distribution from a):

q̄poste (q̂e, dp) =
α+q̂e

1
2 (1−dp)M

α+β+
1
2 (1−dp)M

. (7.5)

We defined in Proposition 2 c) expected learning as

E[∆(dp)] := E[|q̄poste (Q̂e, dp)− q̄e|] =

∫ 1

0
|q̄poste (q̂e, dp)− q̄e|f(q̂e) dq̂e. (7.6)

with f(qe) ∼ Beta(α, β) being the a priori quality density function. Because

∂q̄poste (q̂e,dp)
∂q̂e

=
M(1−dp)

2(α+β)+M(1−dp) > 0, (7.7)

q̄poste (q̂e, dp) is strictly increasing in q̂e for dp < 1. Using the fact that q̄poste (q̂e, dp) is

continuous in q̂e and q̄poste (q̄e, dp) = q̄e, we can write (7.6) as

E[|q̄poste (Q̂e, dp)− q̄e|] =

∫ q̄e

0
(q̄e − q̄poste (q̂e, dp))f(q̂e) dq̂e +

∫ 1

q̄e

(q̄poste (q̂e, dp)− q̄e)f(q̂e) dq̂e

=

∫ q̄e

0
(q̄e −

α+q̂e
1−dp

2
M

α+β+
1−dp

2
M

)f(q̂e) dq̂e +

∫ 1

q̄e

(
α+q̂e

1−dp
2

M

α+β+
1−dp

2
M
− q̄e)f(q̂e) dq̂e

Differentiation of E[|qposte (q̂e, dp)− q̄e|] w.r.t. dp yields:

∂E[∆(dp)]
∂dp

= −
∫ q̄e

0

2M(α−(α+β)q̂e)
(2(α+β)+M(1−dp))2 f(q̂e) dq̂e +

∫ 1

q̄e

2M(α−(α+β)q̂e)
(2(α+β)+M(1−dp))2 f(q̂e) dq̂e (7.8)
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The first term evaluates realizations 0 < q̂e < q̄e and is negative because α−(α+β)q̂e > 0

for q̂e <
α

α+β = q̄e, and the second term (evaluating realizations q̄e < q̂e < 1) is also

negative because α− (α+β)q̂e < 0 for q̂e >
α

α+β = q̄e. Therefore both terms in Eq. (7.8)

are negative and
∂E[∆(dp)]

∂dp
< 0 (strictly decreasing).

The second derivative of E[|q̄poste (Q̂e, dp)− q̄e|] w.r.t. dp:

∂2E[∆(dp)]
∂2dp

= −
∫ q̄e

0

4M2(α−(α+β)q̂e)
(2(α+β)+M(1−dp))3 f(q̂e) dq̂e +

∫ 1

q̄e

4M2(α−(α+β)q̂e)
(2(α+β)+M(1−dp))3 f(q̂e) dq̂e (7.9)

For the same reason as before, both terms in Eq. (7.9) are negative and
∂2E[∆(dp)]

∂2dp
< 0

(concave). From the above the result in Proposition 2c follows: E[|q̄poste (Q̂e, dp)− q̄e|] is

concave decreasing in dp.

Differentiation of E[|qposte (q̂e, dp)− q̄e|] w.r.t. M yields:

∂E[∆(dp)]
∂M =

∫ q̄e

0

2(1−dp)(α−(α+β)q̂e)
(2(α+β)+M(1−dp))2 f(q̂e) dq̂e −

∫ 1

q̄e

2(1−dp)(α−(α+β)q̂e)
(2(α+β)+M(1−dp))2 f(q̂e) dq̂e (7.10)

For the same reason as in Eq. (7.8) and (7.9) both terms in Eq. (7.10) are positive.

Therefore,
∂E[∆(dp)]

∂M > 0 (strictly increasing) and
∂2E[∆(dp)]
∂2dM

> 0 (convex). From the

above the result in Proposition 2c follows: E[|q̄poste (Q̂e, dp)− q̄e|] is concave increasing in

M .

Proof of Proposition 3

In the following we assume that Qe ∼ Beta(1, 1). We defined Eq. (3.3) as:

E[Q(dp)] =(1− dp)M ·
(
qi
2 + E[Qe]

2

)
+ dpM ·

∫ 1

0
f(q̂e)Vq(q̂e, dp)dq̂e

where Vq(q̂e, dp) =

qi, for qi > q̄poste (q̂e, dp)

q̄poste (q̂e, dp), for qi < q̄poste (q̂e, dp)
.

(7.11)

The proof of Proposition 2c shows that qposte (q̂e, dp) is strictly increasing in q̂e. This

indicates that there exists a unique quality observation x∗ ∈ [0, 1] such that

max{qposte (q̂e, dp), qi} =

q
post
e (q̂e, dp) q̂e ≥ x∗

qi q̂e < x∗
. (7.12)
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Solving qposte (x∗, dp)
!

= qi results in x∗ =
(4+(1−dp)M)qi−2

(1−dp)M and we obtain

E[Q(dp)] = (1− dp)(1
2qi + 1

2 q̄e)M

+ dpM

(∫ x∗

0
qif(q̂e) dq̂e +

∫ 1

x∗
qposte (q̂e, dp)f(q̂e) dq̂e

)
.

(7.13)

With qi = q̄e it holds that x∗ = qe (if suppliers are a priori equal, they are a posteriori

equal if the update equals qi) and Eq. (7.13) is reduced to

E[Q(dp)] = (1− dp)q̄eM + dpM

(∫ q̄e

0
q̄ef(q̂e) dq̂e +

∫ 1

q̄e

q̄poste (q̂e, dp)f(q̂e) dq̂e

)
(7.14)

With Qe ∼ Beta(1, 1) (that is quality is uniformly distributed on the interval [0, 1]) we

know q̄e = 1
2 and f(qe) = 1. This yields

E[Q(dp)] = (1− dp)1
2M + dpM

(∫ 1
2

0

1
2 dq̂e +

∫ 1

1
2

q̄poste (q̂e, dp) dq̂e

)
(7.15)

=
M(16+(1−dp)(4+dp)M)

32+8(1−dp)M . (7.16)

Differentiation of Eq. (7.16) w.r.t. dp yields

∂E[Q(dp)]
∂dp

=
M2(4+M+dp(−8+(−2+dp)M))

8(4+M(1−dp))2

!
= 0↔ dQp = 1

1+
2√

4+M

∂2E[Q(dp)]
∂d2
p

= − M2(4+M)
(4+(1−dp)M)3 < 0.

Therefore the expected quality E[Q(dp)] in Eq. (7.11) is concave with a maximum at dQp .

Differentiation of dQp w.r.t. M yields

∂dQp
∂M = 1√

4+M(2+
√

4+M)2 > 0 (7.17)

Proof of Proposition 4

Assume that Qe ∼ Beta(1, 1) and qi 6= qe = 1
2 . Our proof builds on the following

observation: we know from our prior analyses that large postponed volumes only allow

the buyer to learn little about the entrant’s quality. If the a prior quality between

incumbent and entrant differs there are cases of large postponed volumes in which the
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buyer will never receive a sufficiently strong update to change the allocation decision.

First, we are interested in identifying the postponed volume d̃p that separates the interval

where the buyer will never change her allocation decision from the interval where she

may change her allocation decision. To do so, we have to separate the case where the

incumbent has a priori a higher quality than the entrant from the case where the entrant

as (a priori) a higher quality than the incumbent. Second, once we have identified d̃p we

will characterize the buyer’s expected quality depending on dp.

There exists a postponed volume d̃p ∈ [0, 1] such that

max{qposte (q̂e, dp), qi}dp>d̃p =

q
post
e (q̂e, dp), ∀q̂e ∈ [0, 1] for qe > qi

qi, ∀q̂e ∈ [0, 1] for qe < qi
. (7.18)

To characterize d̃p we want to identify the postponed volume where even the worst (best)

update does not change the allocation decision. That is d̃p is the solution to

qposte (q̂e = 0, d̃p)
!

= qi → d̃p = M−8(qe−qi)−2M(qe−qi)
M(1−2(qe−qi))

for qe > qi (7.19)

and

qposte (q̂e = 1, d̃p)
!

= qi → d̃p = M−8(qi−qe)−2M(qi−qe)
M(1−2(qi−qe))

for qe < qi. (7.20)

Therefore, there exists an interval dp ∈ (d̃p, 1] for which the posteriori quality of the

entrant is either always lower or always higher than the incumbent’s quality, and the

buyer will always choose to allocate the postponed volume to the a priori better supplier

despite the outcome of learning. With this information we can write the expected quality

from Eq. (7.11) as

E[Q(dp)]dp>d̃p =

(1− dp)(1
2qi + 1

2 q̄e)M + dpMqe, for qe > qi

(1− dp)(1
2qi + 1

2 q̄e)M + dpMqi, for qe < qi
(7.21)

and differentiation w.r.t. dp yields

∂E[Q(dp)]dp>d̃p
∂dp

=

1
2(q̄e − qi)M, for qe > qi

1
2(qi − q̄e)M, for qe < qi

, (7.22)

which is positive in both cases. Hence E[Q(dp)] is strictly increasing in dp for dp > d̃p.
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To simplify our presentation we define ∆q = |qe − qi| and we can write d̃p as

d̃p =
M−8∆q−2M∆q

M(1−2qe)
for qe 6= qi (7.23)

and differentiation w.r.t. ∆q yields

∂d̃p
∂∆q

= − 8
M(1−2∆q)2 < 0. (7.24)

Proof of Proposition 5

The bidding condition in Proposition 5 follows from algebraic manipulation of inequality

(3.5) and (3.7).

Proof of Proposition 6

Assume that Qe ∼ Beta(1, 1) and ve = vi. It is further reasonable to assume that vj > δ,

j ∈ {i, e}.
a) We want to find dp for which both suppliers start to lower their bids. The proba-

bility for the incumbent to win the postponed volume, given bids bt−1
i and bt−1

e in bidding

round t− 1, can be calculated as

P [qi − bt−1
i > qposte − bt−1

e ] = P [qi − bt−1
i + bt−1

e > qposte ] (7.25)

= P [qi − bt−1
i + bt−1

e >
1+q̂e

1−dp
2 M

2+
1−dp

2 M
] (7.26)

= P [
(qi−bt−1

i +bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

> q̂e] (7.27)

= F (
(qi−bt−1

i +bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

), (7.28)

where F (qe) ∼ Beta(1, 1). The probability for the entrant to win the postponed volume

is therefore simply

P [qposte − bt−1
e > qi − bt−1

i ] = 1− P [qi − bt−1
i > qposte − bt−1

e ] (7.29)

= 1− F (
(qi−bt−1

i +bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

). (7.30)
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With these probabilities we can calculate the markups θt−1
i and θt−1

e from Proposition

5:

θt−1
i = δ

1
2

1−dp
dp

+F (
(qi−(bt−1

i −δ)+bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

)

F (
(qi−(bt−1

i −δ)+bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

)−F (
(qi−bt−1

i +bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

)

(7.31)

and

θt−1
e = δ

1
2

1−dp
dp

+(1−F (
(qi−(bt−1

i −δ)+bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

))

(1−F (
(qi−(bt−1

i −δ)+bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

))−(1−F (
(qi−bt−1

i +bt−1
e )(2+

1−dp
2 M)−1

1−dp
2 M

))

(7.32)

At time t = 0 suppliers bids are equal to the reservation prices, hence, b0i = qi and

b0e = qe. With these starting bids, we can calculate the bidding condition (3.8) for both

suppliers in the first round (t = 1):

vi = qi − ci > δ +
(1−dp)M

2dp(4+(1−dp)M)︸ ︷︷ ︸
θ1
i

(7.33)

and

ve = 1
2 − ce > δ +

(1−dp)M
2dp(4+(1−dp)M)︸ ︷︷ ︸

θ1
e

(7.34)

We observe that θ1
i = θ1

e = θ1
j . Because vi = ve both suppliers start to lower their bid

for the same dp. To show that dp ∈ (0; 1] we observe

∂θ1
j

∂dp
= − M(4+(1−dp)2M)

2d2
p(4+M(1−dp))2 < 0, (7.35)

that is markups are both strictly decreasing in dp. As vj are constant there can only

exists one dp ∈ (0; 1]. It is simple to show that limdp→0+ θj = ∞ and limdp→1− θj = δ;

therefore dp always exists in (0; 1] if vj > δ. In summation suppliers decrease their bids

below the reservation price for dp < dp < 1, and for dp ≤ dp suppliers do not lower their

bids.

b) We want to find the terminal bids of the incumbent and the entrant for dp > dp.
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In the proof of Proposition 6a we show that both suppliers start to lower their bids at

the same dp and the markups at the start of the auction (t = 0) are the same for the

incumbent and the entrant (θ1
i = θ1

e). The difference between the bids at the start of

the auction is b0e− b0i = qe− qi. Because suppliers’ values are equal, i.e. vi = ve, the left-

hand side of both suppliers’ bidding condition (3.8) is equal. Therefore, after suppliers

lowered their bid by δ in the second round, the difference in bids is still b1e− b1i = qe− qi.
Plugging this difference into the incumbent’s and entrant’s markups (7.31) and (7.32)

gives us the markups at the second bidding round:

θ2
i = δ +

(1−dp)M
2dp(4+(1−dp)M)︸ ︷︷ ︸

θ1
i

(7.36)

and

θ2
e = δ +

(1−dp)M
2dp(4+(1−dp)M)︸ ︷︷ ︸

θ1
e

. (7.37)

Clearly, because the difference in bids remains the same, the markups for both suppliers

are still the same (θ2
i = θ2

e) and the suppliers have the same incentive to bid down.

Additionally, the left hand side of the bidding conditions (3.8) is also the same for both

suppliers after they have lowered their bid by δ (vi−δ = ve−δ for vi = ve). Hence, in the

case of equal values, in each round both suppliers have the same incentive to decrease

their bids by δ, i.e. the difference in bids for equal values stays the same over the course

of the auction. Therefore, it holds that bt−1
e −bt−1

i = b0e−b0i = qe−qi ∀t ∈ {1, . . . , T} and

we can calculate the terminal bids by solving the bidding conditions for each supplier

for the terminal bid bTj such that

bT−1
i − ci

!
= δ +

(1−dp)M
2dp(4+(1−dp)M)︸ ︷︷ ︸

θTi

(7.38)

and

bT−1
e − ce

!
= δ +

(1−dp)M
2dp(4+(1−dp)M)︸ ︷︷ ︸

θTe

. (7.39)

Therefore, suppliers stop to lower their bid in round T and bTj = bT−1
j . Solving Eq.
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(7.38) and (7.39) gives us the terminal bids

bTi = ci + δ +
1−dp
2dp

M
4+M(1−dp) (7.40)

bTe = ce + δ +
M(1−dp)

2dp(4+M(1−dp)) . (7.41)

To show that these are decreasing in dp we differentiate w.r.t. dp:

∂bTi
∂dp

= ∂bTe
∂dp

= − M(4+M(1−dp)2)
2d2
p(4+M(1−dp)2)

< 0. (7.42)

c) In the proof for Proposition 6a we show that the left hand side (vj) of the sup-

pliers’ bidding condition in Eq. (3.8) is constant, and the right hand side (θ1
j ) is strictly

decreasing in dp. We argued that if θ1
j is smaller than the right hand side the suppliers

start to lower their bids and referred to this intersection point as dp. It is straightforward

to see that dp decreases in vj .

To show that dp is increasing in M we differentiate θ1
j w.r.t. M :

∂θ1
j

∂M =
2(1−dp)

dp(4+M(1−dp))2 > 0, (7.43)

hence, θj is strictly increasing in M and the intersection point dp between vj and θ1
j is

increasing in M .

Proof of Corollary 1

This follows directly from Proposition 6a. If vj > v−j , j ∈ {i, e}, the left-hand side of

supplier j’s bidding condition in the first round is larger than that of supplier −j (see

Eq. (7.33) and (7.34)). Hence, supplier j will start to bid down for a smaller dp than

supplier −j. While the decrease of supplier j’s bid will change supplier −j’s right-hand

side of the bidding condition (θt−j), because there exists a λ > 0 such that vj + λ = v−j ,

there also exists an ε > 0 such that djp + ε = d−jp . In other words we can always find an

ε > 0 such that supplier j will lower his bid by δ while supplier will not.

Proof of Proposition 7

a) Without loss of generality we assume that vi > ve = 0. The entrant e has no margin

and therefore can not lower his bid, hence, bTe = q̄e ∀dp ∈ [0; 1].

We insert bTe = q̄e into i’s bidding condition and get the condition for the terminal
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bid bTi of the incumbent as

bTi = ci + δ

1−dp
2dp

+
(qi−b

T
i +q̄e+δ)(2+

1−dp
2 M)−1

1−dp
2 M

(qi−bTi +q̄e+δ)(2+
1−dp

2 M)−1

1−dp
2 M

−
(qi−bTi +q̄e)(2+

1−dp
2 M)−1

1−dp
2 M

. (7.44)

Solving for bTi yields

bTi =
M−2Md2

p(δ+qi+ci)+dp(−M+2(4+M)δ+2(4+M)ci+2(4+M)qi)

4dp(4+M(1−dp)) := bxi (7.45)

Differentiation with respect to dp yields

∂bxi
∂dp

= − M(4+M(1−dp)2)
4d2
p(4+M(1−dp))2 < 0, (7.46)

hence, bxi is strictly decreasing in dp. However, bxi from Eq. (7.45) may not be the

terminal bid for all dp ∈ [dip; 1] because the incumbent will stop lowering his bid if his

probability of winning the postponed volume is 1. In Eq. (3.10) we defined the bid that

guarantees the incumbent to win the postponed volume as bGi = qi+qe−q
post
e (q̂e = 1, dp).

If bxi < bGi for dp ∈ [d
i
p; 1], the incumbent will bid bTi = bGi for dp > d

i
p, because quoting

bGi ensures that he wins the postponed volume and he has no incentive to bid below bGi .

∂bGi
∂dp

= 2M
(4+(1−dp)M)2 > 0, (7.47)

shows that bGi is strictly increasing in dp. b
x
i is decreasing in dp. There exists a d

i
p ∈ [dip; 1]

for which bxi = bGi : because limdp→1− b
G
i = qi and limdp→1− b

x
i = qi+ci

2 , it holds that

bGi > bxi for dp = 1. Additionally, bTi = qi for dp < dip, therefore there exists a d
i
p ∈ [dip; 1]

such that bTi = bGi . Therefore

bTi =


qi for 0 ≤ dp ≤ dip
bxi for dip < dp ≤ d

i
p

bGi for d
i
p < dp ≤ 1

. (7.48)

The proof for ve > vi = 0 follows the same logic, however, bGe = qposte (q̂e = 0, dp). It is

simple to show that limdp→1− b
G
e = qe and bGe is strictly increasing in dp, which results

in the same argument as above.

b) In the proof of Proposition 7a we have shown that d
j
p is characterized as the

intersection point of bTj and bGj . The proof for Proposition 7b follows the same path as
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the proof of Proposition 6c. We show how bTj and bGj depend on vj and M . First, vj

depends on qj and cj , therefore we differentiate w.r.t. to qj and cj :

∂bTj
∂qj

= 1
2 > 0,

∂bGj
∂qj

= 1 > 0, (7.49)

∂bTj
∂cj

= 1
2 > 0,

∂bGj
∂cj

= 0. (7.50)

So bTj and bGj are both strictly increasing in qj , and bGi is increasing at a strictly higher

rate, therefore, the intersection point d
j
p is strictly decreasing in qj , i.e. strictly decreasing

in vj (vj is strictly decreasing in qj). Second, bTj is strictly increasing in cj and bGj is

constant, hence, the intersection point is strictly increasing in cj and therefore strictly

decreasing in vj (vj is strictly decreasing in cj). Next we differentiate bTj and bGj w.r.t.

M :

∂bTj
∂M = 1

dp

1−dp
(4+M(1−dp))2 > 0 (7.51)

∂bGj
∂M = −2

1−dp
(4+M(1−dp))2 < 0. (7.52)

So bTj is strictly increasing in M , while bGj is strictly decreasing in M , therefore the

intersection point d
j
p is strictly increasing in M .

Proof of Proposition 8

Proposition 8 directly follows from Propositions 6 and 7. For vi = ve bids are strictly

decreasing for dp > dp and therefore procurement costs for the buyer are at a minimum

for dp = 1. For vj > v−j = 0 supplier −j’s bid is constant and supplier j’s bid is minimal

for dp = d
j
p, hence, the buyer minimizes procurement costs for dp = d

j
p.

Proof of Proposition 9

Assume that Qe ∼ Beta(1, 1). With the assumption of vi = ve both bids are decreasing

for dp > dp (see Proposition 6a). The terminal bids are (assuming that δ → 0)

bTj =

E[qj ] dp < dp

cj +
1−dp
2dp

M
4+M(1−dp) dp ≥ dp

(7.53)
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With this we can characterize the optimization problem (3.1). For dp ≤ dp we get:

E[U(dp)] =M

(
(1− dp)

(
qi−bTi

2 + q̄e−bTe
2

)
+ dp

∫ 1

0
f(q̂e)V (q̂e, dp)dq̂e

)
(7.54)

=M

(
(1− dp)

(
qi−qi

2 + q̄e−q̄e
2

)
+ dp

∫ 1

0
f(q̂e)V (q̂e, dp)dq̂e

)

where V (q̂e, dp) = max

{
qi − qi, q̄poste (q̂e, dp)− q̄e

}
.

(7.55)

With q̄poste (q̂e, dp) from Proposition 2 simplification yields

M

(
(1− dp)

(
qi−qi

2 + q̄e−q̄e
2

)
+ dp

∫ 1

0
f(q̂e)V (q̂e, dp)dq̂e

)
(7.56)

=M

(
dp(

∫ 1
2

0
f(q̂e)(qi − qi)dq̂e +

∫ 1

1
2

f(q̂e)(q̄
post
e (q̂e, dp)− q̄e)dq̂e)

)
(7.57)

=M

(
dp

∫ 1

1
2

f(q̂e)(q̄
post
e (q̂e, dp)− q̄e)dq̂e

)
(7.58)

=M

(
dp(

∫ 1

1
2

q̄poste (q̂e, dp)dq̂e − q̄e
∫ 1

1
2

1dq̂e)

)
(7.59)

=M

(
dp(

∫ 1

1
2

1+q̂e
1
2 (1−dp)M

2+
1
2 (1−dp)M

dq̂e − q̄e(1−
1

2
))

)
(7.60)

=M

(
dp([

q̂e+q̂2
e

1
2 (1−dp)M

2+
1
2 (1−dp)M

]11
2

− q̄e(1− 1
2))

)
(7.61)

=M

(
dp((

1+12 1
2 (1−dp)M

2+
1
2 (1−dp)M

−
1
2 +

1
2

2 1
2 (1−dp)M

2+
1
2 (1−dp)M

)− q̄e(1− 1
2))

)
(7.62)

=M

(
dp((

1
2 +

3
8 (1−dp)M

2+
1
2 (1−dp)M

)− 1
2

1
2)

)
(7.63)

=M

(
dp((

1
2 +

3
8 (1−dp)M

2+
1
2 (1−dp)M

)− 1
4)

)
(7.64)

=
(1−dp)dpM2

32−8(1−dp)M (7.65)

which is concave because

∂2E[U(dp)]
∂2dp

= − M2(4+M)
(4+(1−dp)M)3 < 0 (7.66)
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and is maximized at

∂E[U(dp)]
∂dp

=
M2(4+M−2(4+M)dp+Md2

p)

8(4+M(1−dp))2

!
= 0⇒ dp = 1

1+ 2√
4+M

= dQp . (7.67)

For dp ≥ dp we obtain

E[U(dp)] =M

(
(1− dp)

(
qi−bTi

2 +
1
2−b

T
e

2

)

+ dp

∫ 1

0
f(q̂e)V (q̂e, dp)dq̂e

)

where V (q̂e, dp) = max

{
qi − bTi , q̄poste (q̂e, dp)− bTe

}
.

(7.68)

First, we need to look at V (q̂e, dp) and find a q̂e such that qi − bTi > q̄poste (q̂e, dp) − bTe
(which means we find cases for which the incumbent wins the postponed volume (and

vice versa)). Because of vi = ve it is easy to see that q̂e <
1
2 . With this simplification of
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Eq. (7.68) yields

E[U(dp)] =M

(
(1− dp)

(
qi−bTi

2 +
1
2−b

T
e

2

)
+ (7.69)

dp(

∫ 1
2

0
f(q̂e)(qi − bTi )dq̂e +

∫ 1

1
2

f(q̂e)(q̄
post
e (q̂e, dp)− bTe )dq̂e)

)
(7.70)

=M

(
(1− dp)

(
qi−bTi

2 +
1
2−b

T
e

2

)
+ (7.71)

dp((
1
2 − 0)(qi − bTi ) +

∫ 1

1
2

f(q̂e)(q̄
post
e (q̂e, dp)− bTe )dq̂e)

)
(7.72)

=M

(
(1− dp)

(
qi−bTi

2 +
1
2−b

T
e

2

)
+ (7.73)

dp((
1
2 − 0)(qi − bTi ) +

∫ 1

1
2

(
1+

1−dp
2 q̂e

2+
1−dp

2

− bTe )dq̂e)

)
(7.74)

=M

(
(1− dp)

(
qi−bTi

2 +
1
2−b

T
e

2

)
+ (7.75)

dp((
1
2 − 0)(qi − bTi )− bTe

∫ 1

1
2

1dq̂e +
1−dp

2 M

2+
1−dp

2 M

∫ 1

1
2

q̂edq̂e)

)
(7.76)

=M

(
(1− dp)

(
qi−bTi

2 +
1
2−b

T
e

2

)
+ dp(

1
2(qi − bTi ) (7.77)

− (1− 1
2)bTe + (12 − (1

2)2)(1
2

1−dp
2 M

2+
1−dp

2 M
)

)
. (7.78)

With the definition of bTj from (7.53) in the appendix, simplification results in

E[U(dp)] =
M(16(2cj−1)+(1−dp)(4−dp(4−8cj+dp))M)

8dp(4+M(1−dp)) . (7.79)

Differentiation w.r.t. dp yields

∂E[U(dp)]
∂dp

=
M2(4(4+d2

p(1−dp))+(1−dp)2(4+d2
p)M)

8d2
p(4+M(1−dp))2 > 0, (7.80)

hence, E[U(dp)] is strictly increasing in dp > dp and therefore there exist a local maximum

for dp ≥ dp at dp = 1. In summary, for vi = ve E[U(dp)] is concave for 0 ≤ dp ≤ dp with

a local maximum at dp = 1
1+ 2√

4+M

= dQp , and strictly increasing for dp > dp with a local

maximum at dp = 1 = dCp .
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To calculate the global maximum we need to compare the expected utilities of the

local maxima E[U(dQp )] and E[U(dCp )]

E[U(dQp )] = 1
8(8 +M − 4

√
4 +M) (7.81)

E[U(dCp )] = 1
2(M − 2cjM) (7.82)

Comparison of both utilities yields

E[U(dQp )] ≥ E[U(dCp )] (7.83)

⇔ cj ≥ −8+3M+4
√

4+M
8M (7.84)

⇔ 1
2 − vj ≥

−8+3M+4
√

4+M
8M (7.85)

⇔ vj ≤ 1
2 −

−8+3M+4
√

4+M
8M (7.86)

Proof of Proposition 10

This proof directly follows from the results of Proposition 7. Consider the incumbent’s

expected terminal bid E[bTi ]: with probability p we are in the case vi > ve = 0 and in

this case bTi is strictly decreasing in dp for dip < dp ≤ d
i
p and strictly increasing in dp for

d
i
p < dp ≤ 1. With probability 1 − p we have vi = 0 and bTi = qi, hence, bTi is constant

in dp. Because E[bTi ] = pbTi,vi>ve=0 + (1 − p)bTi,vi=0, for 0 < p < 1 the expected terminal

bid E[bTi ] is strictly decreasing in dp for dip < dp ≤ d
i
p and strictly increasing in dp for

d
i
p < dp ≤ 1. The proof for the entrant’s expected terminal bid can be reproduced by

using equivalent arguments.

7.3 Appendix III

In this section we explain how we compute the numerical results presented in Section

3.3.3 and 3.4. We evaluate Eq. (3.1) for a given set of parameters vi = qi − ci, ve =

q̄e − ce, M and entrant quality distribution Qe ∼ Beta(α, β) (α = β > 0), and a given

postponed volume dp. Because the terminal bids derived in Section 3.3.2 can not be

directly computed, the numerical evaluation is defined by a multiple step process: 1)

compute terminal bids, 2) compute expected utility, quality and costs, 3) identify the

global maxima and minima for expected utility, quality and costs:

1. For each dp ∈ [0, 0.01, . . . , 0.99, 1]:
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Initialize supplier bids b0j = E[qj ] and compute the terminal bids bTj by following

the definition given in Proposition 5.

2. Compute Expected Utility E[U(dp)], Expected Quality (:= E[Q(dp)]) and Expected

Costs (:= E[C(dp)]) as defined by Eq. (3.1), for the terminal bids bTj for each

dp ∈ [0, 0.01, . . . , 0.99, 1].

3. Calculate d∗p = argmax{E[U(dp)]}, dQp = argmax{E[Q(dp)]} and dCp = argmin{E[C(dp)]}.



Chapter 8

Appendix to Chapter 4

The mixed integer linear program for the single-product setting as defined in Section 4.4

can be formulated as follows:

min

T∑
t=1

Ith+Btb+Otk +Qtp (8.1)

s.t. I0 = 0 (8.2)

It = It−1 +Qt − δt, t ∈ {1, . . . , T} (8.3)

Bt ≥ −It, t ∈ {1, . . . , T} (8.4)

Bt ≥ 0, t ∈ {1, . . . , T} (8.5)

Ot ∈ 0, 1, t ∈ {1, . . . , T} (8.6)

OtM −Qt ≥ 0, t ∈ {1, . . . , T} (8.7)

It is the inventory level in period t, Bt are the backorders in period t, Ot is a binary

variable indicating whether or not an order in period t is placed and Qt is the size of

the order in period t. Constraint (8.2) sets the starting inventory as zero, and (8.3)

establishes the logic how inventory is carried over from period t − 1 to t. Constraints

(8.4) and (8.5) are a linear representation of the constraint Bt = max[0,−It] for the

backorders in period t. The binary variable for an order in period t is defined in (8.6),

and constraint (8.7) makes sure that an order in period t is only positive if Ot = 1.

The mixed integer linear program for the multi-product setting as defined in Section

153
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4.4 can be formulated as follows:

min

T∑
t=1

Oltk +Oht k +
I∑
i=1

Iith+Bi
tb+Qi,ht p+Qi,lt (1− ε)p (8.8)

s.t. Ii0 = 0, i ∈ {1, . . . , I} (8.9)

Iit = Iit−1 +Qi,ht +Qi,lt − dit, t ∈ {1, . . . , T}, i ∈ {1, . . . , I} (8.10)

Bi
t ≥ −Iit , t ∈ {1, . . . , T}, i ∈ {1, . . . , I} (8.11)

Bi
t ≥ 0, t ∈ {1, . . . , T}, i ∈ {1, . . . , I} (8.12)

Oht ∈ {0, 1}, t ∈ {1, . . . , T} (8.13)

Olt ∈ {0, 1}, t ∈ {1, . . . , T} (8.14)

OhtM −Q
i,h
t ≥ 0, t ∈ {1, . . . , T}, i ∈ {1, . . . , I} (8.15)

OltM −Q
i,l
t ≥ 0, t ∈ {1, . . . , T}, i ∈ {1, . . . , I} (8.16)∑I

i=1Q
i,l
t − θOlt ≥ 0, t ∈ {1, . . . , T}, i ∈ {1, . . . , I} (8.17)

Iit is the inventory level of product i in period t, Bi
t are the backorders in period t, Oht

is a binary variable indicating whether or not a high cost order in period t is placed and

Qi,ht is the size of the order in period t for product i. Olt is a binary variable indicating

whether or not a low cost order in period t is placed and Qi,lt is the size of the order in

period t for product i. Constraint (8.9) sets the starting inventory as zero, and (8.10)

establishes the logic of how inventory is carried over from period t− 1 to t. Constraints

(8.11) and (8.12) are a linear representation of the constraint Bi
t = max[0,−It] for the

backorders in period t. The binary variable for a high cost order in period t is defined

in (8.14), and constraint (8.15) makes sure that an order in period t is only positive if

Oht = 1. The binary variable for a low cost order in period t is defined in (8.13), and

constraints (8.16) and (8.17) make sure that this order in period t is only positive if

Olt = 1 and is equal to or larger than the threshold θ.


