
Balance Problems for Integer Circuits and
Separations of Relativized Conjectures on

Incompleteness in Promise Classes

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Titus Dose

aus Braunschweig

Würzburg, 2020

Eingereicht am: 23.07.2020
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr. Christian Glaßer
2. Gutachter: Prof. Dr. Olaf Beyersdorff
Tag der mündlichen Prüfung: 21.01.2021

JESU JUVA

Jegliches menschliche Tun lässt Raum für Verbesserungen. Manchmal ist jedoch gar nicht
leicht, verbesserungsfähige Aspekte auszumachen. Dies trifft auf die umfassende, über fachliche
Aspekte weit hinausreichende Betreuung meines Betreuers Christian Glaßer zu. Explizit erwähnt
sei das Aufspüren und Teilen interessanter und perspektivreicher Fragen, was für die vorliegende
Arbeit ein fundamentaler Beitrag war, und das Ermutigen zu und Vorleben von Hartnäckigkeit
in längeren Misserfolgsphasen. Danke!

Dem Zweitgutachter, Olaf Beyersdorff, danke ich herzlich für sein großzügiges Engagement.
Moreover, I am grateful to my Prague colleague Erfan Khaniki for helpful discussions and

his both friendly and valuable encouragement while proving Theorem 3.3.1.
Die namentlich mir nicht bekannten Gutachter meiner Arbeiten bei diversen Konferenzen

und Journalen haben diese Arbeit signifikant verbessert. Danke!
Meinen Eltern und meinen altsprachlichen Lehrern Wilhelm-Otto Hable und Karl Wagner

danke ich dafür, dass sie mich schon früh engagiert in meinen Interessen gefördert und damit
den Grundstein für meinen fachlichen Werdegang mitgelegt haben.

Der Studienstiftung des deutschen Volkes sei für ein Promotionsstipendium Dank gesagt.
Ein besonderer Dank gilt zuerst und zumeist Angelika und unseren Töchtern Luisa Eliana

und Clara Isabell, aber auch meinen treuen Freunden Christian D. und Lukas Z. sowie meiner
Herkunftsfamilie: Ihnen allen danke ich für ihre unverzichtbare Freundschaft und Unterstützung.

Soli Deo Gloria

Contents

1 Introduction 9

1.1 Introducing Selected Parts of Complexity Theory 9

1.2 The Conjectures . 14

1.3 Integer Circuits . 22

1.4 Outline . 24

1.5 Publications . 24

1.6 Contributions by Coauthors . 25

2 Preliminaries 27

2.1 Basic Mathematical Notations . 27

2.2 Graphs . 29

2.3 Computational Complexity . 29

2.3.1 Turing Machines and Transducers . 29

2.3.2 Complexity Classes and Function Classes 32

2.3.3 Reducibilities and Complete Problems . 34

2.3.4 Proof Systems . 36

2.3.5 Disjoint Pairs . 37

2.3.6 Total Polynomial Search Problems . 38

3 Separating Relativized Conjectures 39

3.1 Basic Definitions and Outline . 39

3.1.1 Conjectures . 39

3.1.2 Some Notions Designed for Building Oracles 40

3.2 DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 41

3.3 DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 53

3.4 NP ∩ coNP and ¬CON Relative to an Oracle . 69

3.5 P 6= NP, ¬CON, and ¬SAT Relative to an Oracle 81

3.6 Summary and Discussion . 88

4 Balance Problems for Integer Circuits 89

4.1 Basic Definitions and Results . 89

4.1.1 Balanced Sets . 89

4.1.2 Integer Circuits and Balance Problems . 91

4.2 Set Difference and Multiplication Lead to Undecidability 94

4.3 Smaller Sets of Operations Lead to Problems in NP 104

4.3.1 Allowing Multiplication Only . 104

4.3.2 The Problems Not Allowing Multiplication 110

4.4 Summary and Discussion . 112

7

8 Contents

Bibliography 115

Index 121

Chapter 1

Introduction

The first three sections of this chapter give an introduction into the topics this thesis is about.
Whereas the first section introduces into computational complexity theory (complexity theory
for short) in general, the next two sections introduce into the two parts this thesis consists of.
These three sections are followed by a brief outline. The last two sections are of rather formal
interest: The fifth section lists the publications this thesis is based on, whereas the sixth section
gives information about contributions of coauthors to results presented in this thesis.

1.1 Introducing Selected Parts of Complexity Theory

What Computational Complexity Theory Is about What are the principal limits of
computers (or of computations in general)? This is probably one of the most natural and fun-
damental questions that can be asked in the field of computer science and the question is much
older than modern computers1. Studying this question led to many precise models of computa-
tion (e.g., Turing machines, λ-calculus, random-access machines, and counter machines), which
basically all were shown to have the same computational power. This suggests that all these
models precisely capture what computability means in an intuitive sense. Before these models
came up and allowed a precise definition of the term “computability”, mathematicians only had
an informal and intuitive understanding of this term, which of course made it impossible to find
answers to the question of principal limits of computations. In contrast, the precise definition
of computability soon led to an (until today) incomplete, but still profound understanding of
the limits of computations. An illustrative example for a problem that is undecidable (i.e.,
unsolvable by computers) is given below.

The nowadays probably most widely used computation model within complexity theory is
the Turing machine invented by Turing in 1936 (cf. [Tur37]). There were other equivalent models
available before, but the Turing machine was the first model to be accepted as a precise model
of computability. The Turing machine is a model for a human who sits in front of a strip
of tape divided into cells, has a pencil and an eraser, and according to a fixed and finite set
of precise rules manipulates the letters on the tape. The person always is in one of finitely
many possible states and follows a fixed set of rules, according to which in each computation
step he/she looks at the current cell, reads the letter on that cell, and then depending on the
current state and the current letter (i) replaces the letter with a new one (possibly the same),
(ii) moves to either the left or the right neighbor cell, and (iii) possibly changes the current
state. Despite its simplicity the model of Turing machines has the same computational power

1Indeed, originally and until the time the field of computability theory was arising, the term “computer” did
not refer to machines, but to humans.

9

10 Chapter 1. Introduction

as modern computers, which justifies that we will use the term Turing machine and algorithm
interchangeably in the following. Even more, there is a single Turing machine that can compute
everything a modern computer can compute: already in 1936 (cf. [Tur37]), Turing was aware of
the fact that there are universal Turing machines, i.e., a single Turing machine that —when given
the code of an arbitrary Turing machine M and some input x— simulates M on input x. This
observation was not only crucial for theoretical computer science, but also for the development
of modern (stored-program) computers. Minsky [Min67] states that the aforementioned paper
by Turing [Tur37] “contains, in essence, the invention of the modern computer and some of the
programming techniques that accompanied it”.

From a more practical point of view, it does not make any difference whether some problem
cannot be solved algorithmically at all or whether it can be solved, but each algorithm requires
billions of years even if we have all computational resources available that we can possibly have
in this universe. Therefore, from this perspective it is more relevant which computational tasks
can be accomplished efficiently and can thus be considered feasible. Putting it more generally,
the question is: what are the computational resources (e.g., running time, memory space, and
randomness) of computational tasks?

Computational complexity theory investigates this topic in a structural way. It summarizes
problems in classes that are defined via upper bounds on the amount of a computational resource
and investigates relations between such classes.

Some Examples Let us consider some classical computational tasks:

1. Given a natural number, is the number prime?

2. Given a natural number, what is its largest prime divisor?

3. Given a graph and a natural number k, does the graph contain a clique of size k?
(Put more vividly, given a number of persons, all pairs of those persons that know each
other, and a number k, are there k persons who pairwise know each other.)

4. Given a graph, which size has its largest clique (or one of its largest cliques in case there
are more than one)?

5. Given a graph, which set of nodes forms the graph’s largest clique (or one of the largest
cliques in case there are more than one)?

6. Given the program of a Turing machine and a natural number x, does the machine’s
computation on input x stop?

The tasks are ordered in ascending difficulty. In accordance with the above remarks, when we
call a task difficult, we do not mean that it is difficult to find an algorithm for it, which is sub-
jective, but that each algorithm for solving the task requires a certain amount of computational
resources, which is objective.

There is a consensus in complexity theory that tasks that can be solved in polynomial running
time are considered feasible, where a computational task can be solved in polynomial time if
there exists a natural number k and an algorithm that solves the task such that when given an
input x of size n (denoted as |x| = n), then it does not require more than nk + k computation
steps.

1.1. Introducing Selected Parts of Complexity Theory 11

Decision and Function Problems There are different types of tasks. The tasks 1, 3, and 6
above are decision problems. Here instead of an algorithm computing some object, an algorithm
that on every input answers “yes” or “no” is required (we will alternatively say in the following
that the algorithm accepts or rejects). Mathematically, we denote such a decision problem as
the set of all “yes”-instances and the computational task is to determine whether an input
belongs to the set or not. Moreover, we say that some algorithm accepts a set A if it accepts on
inputs x ∈ A and rejects otherwise. The remaining of the aforementioned problems are function
problems, i.e., an algorithm is required that on some input x computes some output object y.
Generally, complexity theory rather focuses on decision problems than on function problems
and so does this thesis. Although function problems often seem to be more difficult than their
corresponding decision problems, in many cases they are not.

For instance, consider the problems 3, 4, and 5. Algorithms for task 5 (resp., 4) can be
modified in a simple way such that they solve the task 4 (resp., 3) and only need polynomially
many additional computation steps. More interestingly, the converse implications hold as well:
if we are given an algorithm for task 3, then using binary search, polynomially many calls of the
algorithm for task 3 suffice to determine the size of the largest clique (resp., one of the largest
cliques in case there are more than one). Moreover, if we are given an algorithm for task 4,
iteratively removing edges whose deletion does not decrease the size of the largest clique until
no such edge remains allows us to determine a clique of largest size. In both cases, we only need
polynomially many calls of the algorithms for the respective allegedly more simple tasks. Hence
the best algorithms for the three tasks all have “equivalent” running time, where equivalent
means that the running time of each algorithm is polynomially bounded in the running time of
each of the other two algorithms.

P and NP The two most prominent classes in complexity theory are P, the class of all
feasible decision problems, and NP, the class of all decision problems whose solutions are of at
most polynomial length and can be verified efficiently. The name NP stands for nondeterministic
polynomial time and is derived from a different, but equivalent definition of the class, that we
will discuss later. The question of whether P equals NP is the most prominent and most popular
open problem in theoretical computer science and also one of the most famous open problems in
mathematics at all. It is widely conjectured that P does not equal NP and almost all attempts
to solve the P vs NP problem aim at proving P 6= NP.

NP-Completeness Some researchers [Sip19] claim that since the time in which the question
came up there has only been little progress towards proving one of the assertions P 6= NP and
P = NP, namely only the development of the notion of NP-completeness by Cook [Coo71],
who proved that SAT, the satisfiability problem for propositional formulas, is NP-complete.
This means that SAT ∈ NP and each problem A in NP is reducible to SAT, i.e., there is an
efficiently computable translation function, called reduction, that —generally without finding
answers itself— translates instances of A to instances of SAT that have the same answer. Hence
the fastest algorithm for A has a running time that is polynomially bounded in the running time
of the fastest algorithm for SAT. As moreover, the non-existence of efficient algorithms for SAT
implies P 6= NP, it holds P = NP if and only if there are polynomial-time algorithms for SAT.
This is clear progress: no matter whether P = NP or P 6= NP is to be proven, it suffices to
study (the existence of efficient algorithms for) some NP-complete problem. Put more vividly,
we cannot fail because we considered a wrong problem.

Reconsidering the Examples Let us reconsider the above computational tasks in the light
of the classes and results we have discussed afterwards. Task 6 is the most famous undecidable

12 Chapter 1. Introduction

problem (and thus neither in P nor in NP), i.e., there exists no algorithm that solves this task
[Tur37]. The aforementioned notion of universal Turing machines is central for the proof as it
allows a simple diagonal argument which yields the result. All other problems or their respective
corresponding decision problems are in NP, since the solutions are short and can be efficiently
verified. The question of whether problem 1 is in P was a long-standing open question and finally
was positively answered by Agrawal, Kayal, and Saxena [AKS04] in a breakthrough result. The
decision version of task 2 is neither known to be in P nor to be NP-complete. Thus, if it is in
P, then both P = NP and P 6= NP is still possible. Either all or none of the tasks 3, 4, and 5
have polynomial-time algorithms. Problem 3 is one of Karp’s famous 21 NP-complete problems
[Kar72], which were the first problems to be proven NP-complete. Hence problem 3 is in P if
and only if P = NP.

Promise Problems Generally, in computational complexity theory we refer to the worst-case
complexity when considering the complexity of an algorithm. In practice, however, one is seldom
given random (or even worst) instances of a problem. For example, in many cases it can be
guaranteed that only a proper subset of the domain of all instances occurs.

Let us give a cryptological example. There is not known any efficient algorithm that —when
given an odd prime p and some element x of the multiplicative group F∗p of the field of order p—
determines whether x generates F∗p. However, when being promised that for all inputs (p, x) the
prime p is a safe prime, i.e., (p−1)/2 is also prime, then we can efficiently test whether x generates
F∗p2. This fact is for instance exploited in the Diffie–Hellman–Merkle key exchange.

This motivates the study of so-called promise problems. These are problems where we are
given some predicate, called promise, depending on the input instance and where algorithms are
only required to answer correctly on those inputs that satisfy the promise. In other words and
put more intuitively, the algorithm has been promised that it is only given instances that satisfy
some predicate. In general and in contrast to the above example, this predicate does not need
to be easy to check, which makes the promise problem fundamentally different from deciding
the subset of the original problem that consists of all elements satisfying the promise.

Promise Classes Promise classes are a central object of study in this thesis and should not
be confused with promise problems. The term promise class is an informal term and refers to a
class of computational problems characterized by machines that satisfy some property, usually
expressing a certain way of computation. In general, it is undecidable whether a given machine
has this property. Therefore, it is called promise.

A popular example is the class UP, which was defined by Valiant [Val76]. A set belongs
to UP if and only if it is accepted by a nondeterministic polynomial-time Turing machine that
satisfies the promise “for each input, the computation has at most one accepting path”.

Promise Classes play an important role in computational complexity theory. The classes of
proof systems for certain sets and of disjoint NP- or coNP-pairs, both of which we will discuss
later, are also promise classes.

Canonical Complete Problems The most simple way to see that classes like P or NP
contain complete problems is over canonical complete problems. For example, consider NP.

We first need to explain an alternative way to define this class. Consider some Turing
machine. If we allow this machine in each computation step to split up into two paths which
continue the computation in different states, then we obtain a nondeterministic Turing machine,

2If there are only finitely many Sophie Germain primes (resp., safe primes), then this holds trivially. But it
also holds if —as is widely conjectured— there exist infinitely many Sophie Germain primes (resp., safe primes).

1.1. Introducing Selected Parts of Complexity Theory 13

which is defined to accept if it has at least one accepting path. Now we can characterize NP as the
class of all those problems L for which there exists a nondeterministic algorithm that accepts L
in polynomial time, where a nondeterministic algorithm works in polynomial time if all its paths
have at most polynomial length. The two mentioned variants of defining NP are equivalent for
the following reasons: A nondeterministic polynomial-time algorithm can nondeterministically
generate all possible potential solutions, which are of at most polynomial length, and then verify
or falsify them; conversely, an accepting path of a nondeterministic polynomial-time algorithm
on some input can be seen as a solution for this input: it is of at most polynomial length and
efficiently verifiable.

Without going into detail, we mention that it is not difficult to construct an enumeration
M1,M2, . . . of some nondeterministic Turing machines such that Mi has running time at most
ni + i, for each set A in NP there exist infinitely many i ∈ N+ such that Mi accepts A, and
there is some Turing machine M that on input i and x efficiently simulates Mi on input x
(this is basically obtained by using clocked machines, i.e., we let the machines count their own
computation steps and let them terminate as soon as they have executed a certain number of
steps). Thus the sets accepted by M1,M2, . . . form the class NP. Now consider the problem C =
{(i, x, 0t) | Mi accepts on input x after at most t steps}. By the properties of the enumeration
M1,M2, . . . , this set is in NP. As, moreover, for each set A ∈ NP there exists i such that
Mi accepts A and thus x 7→ (i, x, 0|x|

i+i) shows that A is reducible to C, the problem C is
NP-complete.

Promise Classes and Complete Problems It suggests itself to follow a similar strategy
for promise classes. However, in general this does not work as in many cases we do not know
suitable enumerations of machines that represent the respective classes.

For example, consider the class UP. In order to define canonical complete problems for UP
in the same way as above, we need an enumeration of UP-machines with analogous properties.
In particular, the machines in such an enumeration need to have at most one accepting path on
every input, they need to cover the whole class UP, and there needs to exist a UP-machine that
can efficiently simulate each machine in the enumeration when given its number as part of the
input. It is not known whether all these properties can be realized at the same time.

So for many promise classes it is an interesting area of research to investigate whether they
have complete problems. Such questions will be the central object of study in the first part of
this thesis. In a recent article [Pud17] Pudlák surveys several major conjectures relevant to proof
complexity most of which can —roughly speaking— be stated in the way “the promise class C
does not have complete problems”. Pudlák’s motivation rather comes from proof complexity
and logic and the conjectures can also be formulated in a logical way. We will discuss this
later on a relatively high level. Nevertheless, it is also possible to consider them from a purely
complexity-theoretical point of view, which we will do in most parts of this thesis. The larger
part of this thesis is dedicated to constructing oracles that separate relativized versions of the
aforementioned conjectures and thus finding answers to questions asked by Pudlák [Pud17].

Before we start presenting and discussing the conjectures, we give a brief introduction into
oracles and relativizable proofs.

Oracles and Relativizable Proofs What makes the P vs NP problem so hard to solve?
As for the vast majority of open problems in mathematics, it is of course possible that there is
a short and easily understandable proof for P = NP or P 6= NP such that future generations
of computer scientists will consider P = NP or P 6= NP as a rather simple result. But still,
astonishingly, we can give precise reasons why it has been difficult for us up to now to solve the
problem.

14 Chapter 1. Introduction

Roughly speaking, the reason is that our proof techniques provably fail for the P vs NP
problem. Let us argue more precisely. An oracle is an arbitrary (possibly undecidable) set
that is given to a Turing machine as a black box which the machine can ask arbitrary (many)
questions to and receives the correct answers in one computation step. So when all algorithms are
given an oracle, we may live in a profoundly different world. It can be shown by straightforward
constructions that there are worlds in which P = NP and also worlds in which P 6= NP.

However, except for very less results3, all results in computational complexity theory have
proofs that are based on machine simulations which can be executed the same way when all
machines are given access to some oracle: the simulating machines simply ask the oracles when-
ever the simulated machine does this. Thus most proofs have the property that they can be
easily adapted so that they also work in the presence of an arbitrary oracle. However, as there
are both oracles relative to which P = NP and oracles relative to which P 6= NP, all proofs
for P = NP and all proofs for P 6= NP do not have this property. Hence solving the P vs NP
problem requires fundamentally different proof techniques.

For such reasons it has become common to construct oracles showing that certain results
require techniques radically different from the usual ones. Oracle constructions are often tech-
nical and complicated elaborations, but in turn they give objective and precise reasons for the
difficulty of problems. Even more, they expose the crucial point where our proof techniques fail.

1.2 The Conjectures

In this section we introduce the conjectures central for the first part of this thesis and give an
overview of the results we will obtain.

The conjectures all occur in [Pud17] and their connections are investigated in that same
article. Let us introduce them and the notions which they arise in. We will present these from
a purely complexity-theoretical point of view and afterwards briefly discuss the perspective that
Pudlák has on them. We refer to [Pud13] for many more details and much more background on
the two main conjectures CON and TFNP.

Proof Systems4 The notion of proof systems was introduced by Cook and Reckhow [CR79],
who define a proof system f for a set A to be a total, polynomial-time computable function with
range A. If A equals TAUT, the set of propositional tautologies, then f is a propositional proof
system (pps for short). If f(x) = y, then we call x an f -proof for y.

A proof system f is simulated by a proof system g if there is a polynomial p such that for each
y and each f -proof x for y there exists a g-proof for y of length at most p(|x|). If additionally
there exists a polynomial-time computable function that translates f -proofs into corresponding
g-proofs, then f is P-simulated by g. We call a proof system g (length-)optimal (resp., P-optimal)
if it simulates (resp., P-simulates) each proof system with the same range.

Moreover, a proof system f is said to be polynomially bounded if there is some polynomial
f such that all x have f -proofs of length at most p(|x|). It follows from the definitions that
polynomially bounded proof systems are optimal.

There is a broad range of research on proof systems. In this thesis, however, we mainly
focus on one aspect, namely the question of whether there are optimal (resp., P-optimal) proof

3e.g., PSPACE ⊆ IP and the PCP theorem
4Both this paragraph and the next paragraph on disjoint pairs are in parts closely oriented towards correspond-

ing parts in the paper [DG20], which was written in cooperation with Christian Glaßer. For better readability,
we do without citing this paper explicitly in the two mentioned paragraphs.

1.2. The Conjectures 15

systems for SAT and TAUT (or more general, for NP- and coNP-complete5 problems). This is
reflected by the following conjectures that are crucial for this thesis.

CONN = Optimal pps proof systems for TAUT do not exist.

CON = P-optimal pps proof systems for TAUT do not exist.

SAT = P-optimal proof systems for SAT do not exist.

CON ∨ SAT = CON holds or SAT holds.

A relativizably proven result by Köbler, Messner, and Torán shows that we obtain equivalent
statements if we replace TAUT (resp., SAT) by an arbitrary other coNP-complete (resp., NP-
complete) set. This observation allows us to formulate these conjectures relative to some oracle.

There is a fundamental difference between proof systems for TAUT (or any other coNP-
complete set) and proof systems for SAT (or any other NP-complete sets). By definition, NP-
sets always have short proofs and thus also have polynomially bounded proof systems, which are
optimal as was mentioned above. For that reason, we have not formulated a conjecture SATN.

In the case of SAT, the standard proof system maps (ϕ, a) to ϕ if ϕ is a propositional formula
and a a satisfying assignment of ϕ and otherwise, it maps to an arbitrary fixed satisfiable formula.
Clearly it is polynomially bounded and thus optimal. A concise and comprehensible example
by Pudlák [Pud17] illustrates that if the standard proof system for SAT is even P-optimal, then
factoring (i.e., task 2 in the previous section) is possible in polynomial time: consider the proof
system g for SAT that basically works like the standard proof system for SAT, but maps an
input proposition γn to itself if γn expresses “in a natural way” that n is composite or n is prime
(trivially, for each n, the proposition γn is satisfiable and thus in SAT). For composite n, a proof
of γn in the standard proof system encodes a non-trivial factor of n and thus, if g is P-simulated
by the standard proof system, factoring is possible in polynomial time.

The question of whether optimal or P-optimal pps exist (i.e., whether CON or CONN holds),
was raised by Kraj́ıček and Pudlák [KP89] in the context of the finite consistency problem that
we discuss later and that explains the notations CONN and CON.

Kraj́ıček and Pudlák [KP89] also prove sufficient conditions for the existence of optimal
and P-optimal propositional proof systems: NE = coNE implies ¬CONN and E = NE implies
¬CON, where E (resp., NE) is the class of all problems that are accepted by deterministic (resp.,
nondeterministic) Turing machines in running 2O(n). There exists an oracle [Ver91] relative to
which the converses of these implications do not hold. Köbler, Messner, and Torán [KMT03]
reveal a number of connections to promise classes that we will refer to several times below and
moreover, they prove implications that are similar to and stronger than the above implications
by Kraj́ıček and Pudlák: for EE

df
= DTIME(2O(2n)) and NEE

df
= NTIME(2O(2n)) they show that

(i) NEE∩TALLY ⊆ coNEE implies ¬CONN and (ii) NEE∩TALLY ⊆ EE implies ¬CON. Both
these implications are wrong relative to an oracle [DG19, DG20], relative to which additionally
unions of disjoint NP-complete sets are NP-complete.

Sadowski [Sad02] proves that ¬CONN holds if and only if the class of all easy subsets of
TAUT is uniformly enumerable. Pudlák [Pud96, Pud17] surveys the finite consistency problem,
its connection to propositional proof systems, which will be explained below, and further, related
open questions including the conjectures we list and discuss in the present section. Moreover,
he also draws new connections between these conjectures.

Disjoint Pairs A disjoint NP-pair (resp., coNP-pair) is a pair (A,B) of two disjoint sets
A,B ∈ NP (resp., A,B ∈ coNP). The standard computational task for disjoint pairs is to

5Unless stated differently, when speaking of reducibilities or completeness in this section, then we refer to the
standard polynomial-time many-one reducibility.

16 Chapter 1. Introduction

separate pairs, i.e., to determine which of the sets A and B an input belongs to, where in case
the input is neither in A nor in B an arbitrary answer can be given. If there is a polynomial-
time algorithm for this task, then the pair is called P-separable. Thus in other words, a pair
(A,B) is P-separable if and only if there exists some set S ∈ P with A ⊆ S and B ⊆ S. In
correspondence with the standard computational task for disjoint pairs, the standard reducibility
for disjoint pairs is defined as follows [Raz94]: (A,B) is ≤pp

m -reducible to (C,D) if there is a
total polynomial-time computable function f with f(A) ⊆ C and f(B) ⊆ D.

The notion of disjoint pairs has its origin in public-key cryptography and characterizes
promise problems [EY80, ESY84, GS88]: Given some promise problem, choose A (resp., B)
to be the set of all “yes”-instances (resp., “no”-instances) of the promise problem that satisfy
the promise. Then (A,B) is a disjoint pair and an algorithm separating the pair simultaneously
solves the promise problem. Conversely, given a disjoint pair (A,B), consider the promise prob-
lem that consists of the elements in A and the promise is that the input is in A∪B. Then again,
each algorithm separating the pair also solves the promise problem.

A beautiful example for a disjoint NP-pair that non-trivially is P-separable is the Clique–
Coloring pair, which is due to Pudlák [Pud03]:

C0 = {(G, k) | G is a graph that has a clique of size k}
C1 = {(G, k) | G is a graph that can be colored with k − 1 colors}.

As a clique of size k cannot be colored with k−1 colors, (C0, C1) is a disjoint NP-pair. The pair
is P-separable [Pud03], which can be shown using combinatorial arguments by Lovász [Lov79]
and Tardos [Tar88].

The following questions are two of the most popular open problems regarding disjoint NP-
pairs:

1. Are there P-inseparable disjoint NP-pairs?

2. Does DisjNP, the set of all disjoint NP-pairs, contain ≤pp
m -complete problems?

The answer to the first question is “yes” if secure public-key cryptosystems exist [GS88]. Even,

Selman, and Yacobi [EY80, ESY84] conjecture that every disjoint NP-pair has a separator that
is not ≤p

T-hard for NP, which would imply that public-key cryptosystems that are NP-hard to
crack do not exist.

The statement that the answer to the second question is “no” is one of the already announced
conjectures in Pudlák’s article [Pud17]:

DisjNP = DisjNP does not contain ≤pp
m -complete pairs.

Analogously, it is conjectured that

DisjCoNP = The set of all disjoint coNP-pairs does not contain ≤pp
m -complete elements.

The question of whether DisjNP holds was first asked by Razborov [Raz94] in the context of
propositional proof systems: Razborov defined for every pps a canonical disjoint NP-pair and
showed that the pair is complete if the pps is optimal, i.e., DisjNP⇒ CONN ⇒ CON.

Further investigations on the connection between pps and disjoint pairs can be found in
[Pud03]. In that article, it is in particular shown that the canonical pair of the resolution proof
system is symmetric, i.e., (A,B)≤pp

m (B,A).
Beyersdorff [Bey04, Bey06, Bey07, Bey10] investigates connections between disjoint NP-pairs

and pps, and in particular studies the conjectures DisjNP and CONN. To single out only one

1.2. The Conjectures 17

result, he shows that under reasonable assumptions on some proof system f , the canonical pair
of f is complete for the class DNPP(f) of all disjoint NP-pairs for which the disjointness is
efficiently provable in the proof system f , i.e., there exist meaningful subclasses of DisjNP that
do contain complete pairs [GSZ09].

Several characterizations of DisjNP are given by Glaßer, Selman, and Sengupta [GSS05].
Among these are the uniform enumerability of disjoint NP-pairs and the existence of ≤p

m-
complete functions in NPSV. Glaßer, Selman, and Zhang [GSZ07] prove that the degree struc-
ture of the class of all disjoint NP-pairs and of all canonical disjoint pairs of propositional proof
systems is identical. More precisely, they show that for each disjoint NP-pair there exists some
pps whose canonical pair is equivalent to the former pair. An analogous statement for canonical
pairs of pps and pps does not hold as is illustrated by examples due to Pudlák [Pud03] and
Beyersdorff [Bey06], which show that there are non-equivalent pps with equivalent canonical
disjoint pairs.

Glaßer, Selman, and Zhang [GSZ09] draw a connection between pps, disjoint pairs, and the
neither proven nor disproven hypothesis that unions of two disjoint NP-complete sets are NP-
complete (Hunion for short). According to [DG19, DG20], for each two of the three statements
CONN, DisjNP, and Hunion and each combination of their truth values there exists an appropriate
oracle, except for ¬CONN ∧ DisjNP, which is impossible since DisjNP ⇒ CONN [Raz94] can be
proven in a relativizable way (e.g., see [GSSZ04] for a straightforward and relativizable proof).

Total Polynomial Search Problems A total polynomial search problem (TFNP problem for
short), more commonly known under the name total NP search problem, (i) is represented by a
polynomial p and a binary relation R ∈ P satisfying ∀x∃y

(
|y| ≤ p(|x|)∧(x, y) ∈ R

)
and (ii) is the

following computational task: on input x compute some y with |y| ≤ p(|x|)∧(x, y) ∈ R. In other
words, a total polynomial search problem is the computational task to determine some value of
a nondeterministic multivalued function with values of polynomial length that are polynomially
verifiable and guaranteed to exist [MP91]

A TFNP problem is polynomially many-one reducible to another TFNP problem if the
former can be solved in polynomial time being allowed to ask one query to an oracle that gives
solutions to the latter [JPY88]. TFNP is the class of all total polynomial search problems.

Both the notion of total polynomial search problems and the conjecture

TFNP = TFNP does not contain polynomially many-one complete elements

were raised by Megiddo and Papadimitriou [MP91]. Besides CON, the conjecture TFNP is the
main conjecture in [Pud17].

TFNP can be alternatively defined as the class of all search problems represented by NP-
machines that accept every input where the computational task is —when given an input x—
to find an accepting path of the machine on input x.

We obtain a similar class, denoted as NPMVt, when we collect all multivalued functions that
are computed by NP-machines that accept each input and output some word on each accepting
path. Whereas the TFNP problems have solutions that can be efficiently verified, values of
NPMVt functions might not be verifiable in polynomial time.

Although there is an essential difference in how reductions for NPMVt functions and TFNP
problems are defined, the existence of complete NPMVt functions implies the existence of com-
plete TFNP problems [Pud17]. Hence a result by Beyersdorff, Köbler, and Messner [BKM09]
stating that the existence of P-optimal proof systems for SAT implies the existence of complete
functions in NPMVt can be exploited and —together with the former result— proves

TFNP⇒ SAT.

18 Chapter 1. Introduction

Moreover, both the existence of complete NPMVt functions and the existence of complete TFNP
problems imply the existence of ≤pp

m -complete disjoint coNP-pairs [BKM09, Pud17]. The latter
implication can be also expressed as

DisjCoNP⇒ TFNP.

No Complete Sets in UP and NP ∩ coNP Let us define the last two conjectures we will
consider.

UP = UP does not contain complete problems

NP ∩ coNP = NP ∩ coNP does not contain complete problems

In their aforementioned article [KMT03], entitled “Optimal proof systems imply complete sets for
promise classes”, Köbler, Messner, and Torán prove UP⇒ CON and NP∩ coNP⇒ CON∨ SAT.
Thus besides the conjecture DisjNP, the conjecture UP is another way of strengthening the
conjecture CON. Interestingly and in contrast to the situation for DisjNP, it is not known
whether one of the two possible implications between UP and CONN holds. Corollary 3.2.4
shows that at least one of the two possible implications, namely CONN ⇒ UP, cannot be proven
using solely relativizable proof techniques.

Known Implications Parallel to introducing the conjectures, we have already mentioned the
implications between them that are known to hold. Figure 1.1 gives an overview of these.

DisjNP

CONN UP

CON

CON ∨ SAT

P 6= NP

NP ∩ coNP SAT

TFNP

DisjCoNP

Figure 1.1: The arrows mean implications that are known to hold relative to all oracles.

For reasons of clarity, we recall the references where relativizable proofs of the non-trivial impli-
cations can be found.

� DisjNP⇒ CONN: e.g., see [GSSZ04] for a straightforward, relativizable proof

� UP⇒ CON: [KMT03]

� NP ∩ coNP⇒ CON ∨ SAT: [KMT03]

1.2. The Conjectures 19

� TFNP⇒ SAT: [BKM09, Pud17]; in detail: see [BKM09] for a relativizable proof that ¬SAT
implies the existence of complete NPMVt functions and see [Pud17] for a relativizable proof
that the existence of complete NPMVt functions implies ¬TFNP.

� DisjCoNP⇒ TFNP: [Pud17]

As all proofs are relativizable, we can also interpret the conjectures in Figure 1.1 as the corre-
sponding relativized statements relative to some oracle6.

Finally, let us explain why we focus on the above selection of conjectures. The general
motivation for Pudlák to investigate such conjectures is described in the next paragraph. But
it has already been indicated that there are further conjectures in [Pud17] that have not been
mentioned by us. The reason why we only pick the above conjectures is that Pudlák names them
the “most important uniform conjectures considered in this article”. To be more precise, the
selection of conjectures he names that way has two slight differences from our selection above,
namely:

1. As a further reference point, we also choose the popular (but of course non-uniform)
conjecture CONN, which, however, is never directly addressed in the oracles we construct.

2. We omit the conjecture RFN1
7. In a similar figure as Figure 1.1, Pudlák lists this conjecture

between CON ∨ SAT and P 6= NP, i.e., CON ∨ SAT ⇒ RFN1 ⇒ P 6= NP. Meanwhile,
however, Khaniki [Kha19] has shown CON ∨ SAT ⇔ RFN1, which removes the need of
considering the conjecture separately.

An Alternative View As mentioned before, there are different views of and motivations for
the conjectures we have introduced and their relations. As the first part of this thesis is part
of a working program initiated by Pudlák’s aforementioned article [Pud17], it inherits (part of)
its motivation from Pudlák’s article, which makes it inevitable to discuss Pudlák’s motivation
in this and also other articles.

Pudlák’s article is “motivated by the problem of finding finite versions of classical incomplete-
ness theorems” [Pud17]. Let us explain that through the example of the conjectures CONN and
CON. Both can be characterized as finite versions of incompleteness statements, more precisely
as statements about some sort of finite consistency. Gödel’s second incompleteness theorem,
which implies his first incompleteness theorem, roughly says that each sufficiently strong theory
cannot prove its own consistency. Now we can make the same step as from computability theory
to complexity theory. Instead of absolute provability we can also consider efficient provability
and ask the following questions: which sentences have short proofs, i.e., proofs of lengths at
most polynomial in the length of the sentence? And which sentences have short proofs that can
be efficiently found?

In the words of Pudlák [Pud17]: Let CONT (n) for a finitely axiomatized theory T be a
natural formalization of the statement “there is no derivation of contradiction of length n from
the axioms of T”. Kraj́ıček and Pudlák [KP89] prove that the conjecture CONN is equivalent to
the statement that for every finitely axiomatized theory S there exists some finitely axiomatized
theory T such that there exists no S-proof for CONT (n) of polynomial length in n. So ¬CONN

expresses that a very weak version of Hilbert’s program (to prove the consistency of all mathe-
matical theories) can be realized [Pud96]. Correspondingly, ¬CON is equivalent to the existence

6For the sake of simplicity, we will occasionally refer to these relativized statements as “relativized conjectures”
although this is misunderstandable as these statements have only been conjectured in the unrelativized case.

7For a definition we refer to [Pud17].

20 Chapter 1. Introduction

of a theory S such that for each fixed finitely axiomatized theory T, proofs of CONT (n) in S
can be constructed in polynomial time in n [KP89].

Let us sketch the reason why Pudlák lays emphasis on the above conjectures (and some
more that he additionally investigates in his article). All these conjectures have in common that
they all say something about unprovability: The complexity-theoretical conjectures we have
introduced can be equivalently formulated as statements about unprovability of certain first
order sentences. So they establish a formal connection between computational complexity theory
and the difficulty of proving certain sentences: high computational complexity of a problem
associated with some sentence implies that the sentence is not provable in a weak theory, or
requires a long proof [Pud17]. Gaining a better understanding of such connections and more
fundamentally, of the general connection between logical strength of theories and computational
complexity is what Pudlák is motivated by and “what the field of proof complexity basically is
about” [Pud17].

Proving or disproving any of the aforementioned conjectures seems to be currently out of
reach. Nevertheless, progress in finding further answers to the question of the relationships be-
tween the various conjectures may be possible by the currently available means [Pud17] and this
is a large part of what Pudlák does in his article [Pud17]. He proves further implications men-
tioned above and is particularly interested in finding a general conjecture about incompleteness
and computational complexity that contains all the above conjectures as special cases. This is
his main open problem. An oracle by Khaniki [Kha19] and the oracle constructed in the proof
of Theorem 3.3.1 suggest that none of the above conjectures can be such a conjecture, since
proving it to be one would require non-relativizable proof techniques. We will explain this in
more detail in the next paragraph.

Oracle Separations Pudlák [Pud17] does not only ask for further proofs of implications
between the conjectures, but also suggests to study relativizations of the conjectures. More
explicitly, he asks to “construct oracles that show that relativized conjectures are different or
show they are equivalent for pairs of conjectures presented in this article” [Pud17]. For each
of the oracles we construct in this thesis, there are two of the above conjectures such that
the respective oracle is the first published oracle that separates the two relativized conjectures.
Nevertheless, we understand Pudlák’s working program in the broader sense that for each pair
{A,B} of conjectures both an oracle for A 6⇒ B and an oracle for B 6⇒ A is supposed to be
constructed (independently of whether one of the two oracles has already been constructed).

Figure 1.2 gives an overview of all separations8 that —to our knowledge— are published up
to now. We will discuss them in the following.

Pudlák mentions that the only known separation is a separation of CON and DisjNP in
[GSSZ04]. Indeed, the corresponding oracle even separates CONN and DisjNP. It is not clear
whether Pudlák’s working program also considers P 6= NP as one of the conjectures whose
relativized version is to be separated from others. On the one hand, Pudlák lists it in the figure
of “the most important uniform conjectures considered in this article” [Pud17] and at least he
implicitly conjectures P 6= NP, since this is implied by each of the other conjectures (relative to
all oracles). On the other hand, he does not explicitly introduce the conjecture P 6= NP, and
also does not mention an oracle by Ogiwara and Hemachandra [OH93] that separates P 6= NP

8For the remainder of the section, when speaking of separations we always mean separations of correspond-
ing relativized conjectures, i.e., the construction of oracles relative to which the respective conjectures are not
equivalent.

1.2. The Conjectures 21

DisjNP

CONN UP

CON

CON ∨ SAT

P 6= NP

NP ∩ coNP SAT

TFNP

DisjCoNP
Cor 3.2.4

Cor 3.4.12

Cor 3.3.2

Cor 3.3.2

Cor 3.3.2

[Kh
a19

]

[GSSZ04]

Cor 3.5.11

Figure 1.2: Solid arrows mean implications. A dashed arrow from one conjecture A to another
conjecture B means that there is an oracle X against the implication A⇒ B, which means that
A ∧ ¬B holds relative to X.

from both NP∩coNP and CONN. In a rather straightforward oracle construction we separate the
conjecture P 6= NP from CON∨SAT (see Corollary 3.5.11) and by that, this conjecture has been
considered exhaustively in terms of the requested oracle separations from other conjectures.

Khaniki [Kha19] is the first to address the tasks by Pudlák. He shows two of the conjectures,
namely CON ∨ SAT and RFN1, to be equivalent and constructs two oracles V and W: relative
to V, there exist P-optimal propositional proof systems (i.e., ¬CON holds) but no many-one
complete disjoint coNP-pairs (i.e., DisjCoNP holds), where —as mentioned above— the latter
implies TFNP and SAT [Pud17, BKM09]. Relative to W, there exist no optimal propositional
proof systems (i.e., CONN holds), but each total polynomial search problem has a polynomial-
time solution, where the latter implies ¬SAT relative to all oracles [KM00].Thus in particular, the
relativized versions of the two main conjectures CON and TFNP are independent in the sense that
neither CON⇒ TFNP nor TFNP⇒ CON holds relative to all oracles. This is not only progress
in the working program introduced above, but also answers a separate question by Pudlák, who
explicitly asks for such oracles that show the two main conjectures to be independent.

In this thesis we construct four oracles one of which we have already mentioned. Let us
discuss the three remaining oracles and their properties.

� In Section 3.2 we construct an oracle relative to which DisjNP ∧ NP ∩ coNP ∧ ¬UP. We
later construct an oracle relative to which NP∩coNP∧¬CON, which is a stronger property
than NP ∩ coNP ∧ ¬UP. By DisjNP ∧ ¬UP, the oracle separates each of the conjectures
DisjNP, CONN, and CON from the conjecture UP.

� Regarding the above conjectures, one of the oracles we construct (cf. Section 3.3) extends
the oracle W by Khaniki: relative to it, it does not only hold CONN ∧ ¬SAT, but even
DisjNP∧UP∧NP∩ coNP∧¬SAT (recall DisjNP⇒ CONN relative to all oracles)9. Thus it

9It should be mentioned that relative to W it does not only hold ¬SAT, but also that all TFNP problems

22 Chapter 1. Introduction

proves the new separations of both (i) UP and each conjecture in {SAT,TFNP,DisjCoNP}
and (ii) of NP ∩ coNP and {SAT,TFNP,DisjCoNP} and additionally, it reveals (together
with Khaniki’s oracle V [Kha19]) that DisjNP is independent of each of the conjectures
SAT, TFNP, and DisjCoNP in the following sense: none of the six possible implications
holds relative to all oracles.

Let us emphasize one more interesting aspect: recall that Pudlák’s main open problem is
to find a “general conjecture about incompleteness and computational complexity” from
which the current conjectures follow as special cases [Pud17]. The aforementioned oracle
V by Khaniki [Kha19] and our oracle show that proving one of the current conjectures to
be such a general conjecture requires an unrelativizable proof: the two oracles prove that
for each conjecture A there is one conjecture B that is not implied by A relative to all
oracles.

Figure 1.2 illustrates that the oracle we are discussing yields one of the stronger oracle
results that Pudlák [Pud17] asks for, since DisjNP, UP, and NP ∩ coNP are the strongest
conjectures in their respective branches in Figure 1.2, whereas SAT is the weakest con-
jecture that is not implied by the three other conjectures relative to all oracles. In other
words, in Figure 1.2 all conjectures on the left are known to hold and all others are known
to be wrong relative to the oracle.

� In Section 3.4 we construct the already announced oracle relative to which NP ∩ coNP ∧
¬CON holds. This separates each of the conjectures DisjNP, CONN, and CON from NP ∩
coNP.

1.3 Integer Circuits

The History of Integer Circuits10 Stockmeyer and Meyer [SM73] define and study mem-
bership and equivalence problems for integer expressions, i.e., expressions built up from single
natural numbers —interpreted as singleton sets of natural numbers— by using set operations (∪,

∩,), pairwise addition (+), and pairwise multiplication (·)11. For example, 1 · 1 ∩ 1 describes
the set of primes P.

The membership problem for integer expressions asks whether some given number is con-
tained in the set described by a given integer expression, whereas the equivalence problem for
integer expressions asks whether two given integer expressions describe the same set. Restricting
the set of allowed operations results in problems of different complexities.

Wagner [Wag84] studies a more succinct way to represent such expressions, namely circuits
over sets of natural numbers, also called integer circuits. Each input gate of such a circuit is
labeled with a natural number, the inner gates compute set operations or arithmetic operations
(, ∪, ∩, +, ·). The subsequent circuit computes the set of primes.

1 · ∩

have polynomial-time solutions, which implies relative to all oracles that every optimal proof system for a set in
NP is P-optimal [KM00].The latter assertion implies ¬SAT, since all non-empty sets in NPO for arbitrary O have
optimal proof systems (cf. the paragraph “Proof Systems” in the previous section).

10This paragraph is based on corresponding parts of the introduction of [BBD+17], which were mainly written
by the author.

11Indeed, Stockmeyer and Meyer do not consider problems allowing pairwise multiplication in [SM73].

1.3. Integer Circuits 23

Starting from this circuit, one can use integer circuits to express fundamental number theoretic
questions: thus a circuit describing the set of all twin primes or the set of all Sophie Germain
primes can be constructed (does these circuits compute finite sets?). McKenzie and Wagner
[MW07] construct a circuit C computing a set that contains 0 if and only if the Goldbach
conjecture holds. By storing intermediate results in nodes and reusing them several times,
we can express such questions or conjectures in a more succinct way than when using integer
circuits.

Wagner [Wag84], Yang [Yan01], as well as McKenzie and Wagner [MW07] investigate the
complexity of membership problems for circuits over natural numbers: here, for a given circuit
C, one has to decide whether a given number n belongs to the set described by C. Travers
[Tra06] and Breunig [Bre07] consider membership problems for circuits over integers and positive
integers, respectively. Glaßer et al. [GHR+10] study equivalence problems for circuits over sets
of natural numbers, i.e., the problem of deciding whether two given circuits compute the same
set.

Satisfiability problems for circuits over sets of natural numbers, investigated by Glaßer et
al. [GRTW10], are a generalization of the membership problems investigated by McKenzie and
Wagner [MW07]: the circuits can have unassigned input gates and the question is: given a
circuit C and a natural number b, does there exist an assignment of the unassigned input gates
with natural numbers such that b is contained in the set described by the circuit?

Barth et al. [BBD+20] investigate emptiness problems for integer circuits. Here, for both
circuits with unassigned inputs and circuits without unassigned inputs, the question of whether
an integer circuit computes the empty set (for some/all assignment(s) if the circuits allow unas-
signed inputs) is raised and investigated.

Apart from the mentioned research on circuit problems there has been work on related vari-
ants like functions computed by circuits [PD09] and constraint satisfaction problems (csp) over
natural numbers [GJM17, Dos16]. The constraint satisfaction problems by Glaßer, Jonsson,
and Martin [GJM17] can be considered as conjunctions of equations of integer expressions with
variables standing for singleton sets of natural numbers. Here the question is whether there is
an assignment of the variables such that all equations are satisfied. These constraint satisfaction
problems have the peculiarity that expressions describe sets of integers, whereas variables can
only store singleton sets of natural numbers. The author [Dos16] addresses this and studies con-
straint satisfaction problems over finite subsets of N, consequently replaces the set complement

with the set difference −, and allows the variables to describe arbitrary finite subsets of N.

Our Model and Contributions The definition of the circuits investigated in this paper
follows the definition of previous papers such as [MW07, GHR+10, GRTW10, BBD+20]. Yet
there are some differences:

Our circuit problems are about balanced sets where a finite and non-empty set S ⊆ N
is balanced if |S| = |{0, 1, . . . ,max(S)} − S|. Analogously, S is unbalanced if |S| 6=
|{0, 1, . . . ,max(S)} − S|. That means, the maximum of a set marks the relevant area, and
then we ask whether there are as many elements inside the set as outside of it.

As the notion of balanced sets only makes sense for finite sets, our circuits should solely
compute finite sets. Due to that we replace the commonly used set complement with the set
difference − or the symmetric difference 4.

Now, as the circuits only work over the domain of finite subsets of N, it suggests itself to also
allow the input gates of a circuit to compute arbitrary finite subsets of N and not only singleton
sets (cf. [Dos16] where the analogous step was made for constraint satisfaction problems).

For such circuits we ask: is there an assignment of the unassigned inputs with arbitrary
finite subsets of N under which the circuit computes a balanced set? This problem is denoted

24 Chapter 1. Introduction

by BC(O) where O ⊆ {∪,∩,−,+, ·} is the set of allowed operations.

The notion of balance is important in computational complexity. It occurs when considering
counting classes [GNW90] like C=L or C=P for instance. There, the question is whether for
some problem A there is a nondeterministic logarithmic-space or polynomial-time machine M
accepting A, where M accepts some input x if and only if the number of accepting paths equals
the number of rejecting paths.

Balance problems for integer circuits are interesting for another reason. To our knowledge,
there exists neither a natural decision problem for integer circuits nor a related constraint sat-
isfaction problem over sets of natural numbers that allows only one arithmetic operation and is
known to be undecidable. In this paper, however, it is shown that BC(−, ·)12 is undecidable.
Moreover, prior to this result, there were only known two problems related to integer circuits
that admit no more than two operations and are known to be undecidable [GJM17, Dos16].
Both of these allow addition and multiplication.

Starting from the undecidable problem BC(−, ·), we also investigate BC(O) for arbitrary
subsets of {−, ·} and precisely characterize the complexity of each such problem. It turns out
that all these problems are in NP. In detail, we show that BC(·) is NL-complete, BC(−) is
NP-complete, and BC(∅) ∈ L.

1.4 Outline

This thesis has a simple structure. Besides the introduction and a preliminary chapter, it consists
of the Chapters 3 and 4. The former deals with the construction of the four aforementioned
oracles, the latter is about balance problems for integer circuits.

Chapter 3 starts with an introductory section, then contains four sections in each of which
we construct one oracle, and finally ends with a brief summary. Each of the four middle sections
basically consists of one fairly extensive and technical proof.

Chapter 4 consists of four sections. Between an introductory and a summarizing section,
we obtain the central results in Sections 4.2 and 4.3. Section 4.2 basically consists of the proof
of this chapter’s main result, the undecidability of the balance problem allowing set difference
and multiplication. Based on this, Section 4.3 asks the question of whether even one of this
operations suffices in order to gain undecidability and answers it negatively.

1.5 Publications

This thesis contains both published results as well as unpublished results (i.e., results only
published in technical reports). The former have appeared in the following refereed conference
proceedings or journals.

[Dos18] T. Dose. Balance problems for integer circuits. In Proceedings of the 43rd Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS
2018), volume 117 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1–5:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[Dos19a] T. Dose. Balance problems for integer circuits. Theor. Comput. Sci., 799:124–
139, 2019.

12Consequently, BC(4,∩, ·) and BC(4,∪, ·) are undecidable as well. Both problems also allow only one arith-
metic operation.

1.6. Contributions by Coauthors 25

[Dos19b] T. Dose. P-optimal proof systems for each non-empty NP-set but no complete
disjoint NP-pairs relative to an oracle. In Proceedings of the 44th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2019),
volume 138 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019.

[Dos20a] T. Dose. An oracle separating conjectures about incompleteness in the finite
domain. Theor. Comput. Sci., 809:466–481, 2020.

[DG20] T. Dose and C. Glaßer. NP-completeness, proof systems, and disjoint NP-pairs.
In Proceedings of the 37th International Symposium on Theoretical Aspects of
Computer Science (STACS 2020), volume 154 of LIPIcs, pages 9:1–9:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[Dos20b] T. Dose. Further oracles separating conjectures about incompleteness in the
finite domain. Theor. Comput. Sci., 847:76–94, 2020.

[Dos18] and [Dos19b] are the conference versions of the journal articles [Dos19a] and [Dos20a].
We recommend to ignore the conference papers and consider the journal articles instead. The
technical report [DG19] is the full version of [DG20].

Let us register which parts of this thesis correspond to which of the above publications.

Section 3.2 Section 3.3 Section 3.4 Section 3.5 Chapter 4

[DG19, DG20] [Dos19b, Dos20a] [Dos20b] [Dos20b] [Dos18, Dos19a]

1.6 Contributions by Coauthors

As the list of publications and the assignment of publications to certain passages suggest, except
for Section 3.2, all results within this thesis are solely due to the author of this thesis. The
results in Section 3.2 were developed by Christian Glaßer in cooperation with the author and
are published in [DG19, DG20]. As has been mentioned, parts of the paragraphs on proof systems
and disjoint pairs in Section 1.2 are closely oriented towards these paper’s introductions, which
were mainly written by Christian Glaßer.

As for the sections of Chapter 3 which no coauthor has contributed to, it must be noted that
these were significantly inspired by the author’s collaboration with Christian Glaßer resulting in
the articles [DG19, DG20]: both notations and outer structure of the proofs as well as several
common proof techniques were introduced to the author by Christian Glaßer when working on
the aforementioned articles.

In a further way, Christian Glaßer has contributed to this thesis by proofreading several
parts and making helpful suggestions.

26 Chapter 1. Introduction

Chapter 2

Preliminaries

This chapter is a whole divided into three parts, one of which basic mathematical notations
inhabit, elementary graph theoretic notions another one, and foundations of computational
complexity theory the third.1

2.1 Basic Mathematical Notations

We denote the set of natural numbers and the set of integers with N = {0, 1, 2, . . . } and Z =
{. . . ,−2,−1, 0, 1, 2, . . . }, respectively. Moreover, we write Q and R for the set of rational and
real numbers, respectively. Note N ⊆ Z ⊆ Q ⊆ R. Z+ and N+ denote the set of positive
integers, Q+ is the set of positive rational numbers, and R+ is the set of positive real numbers.
Z−, Q−, and R− denote the set of negative integers, rationals, and reals, respectively. P is the
set of primes {2, 3, 5, 7, 11, . . . } and P≥n := P ∩ {x ∈ N | x ≥ n} for n ∈ N. For a, b ∈ Z we
define [a, b] (resp., [a, b), (a, b], and (a, b)) to be the finite interval {x ∈ Z | a ≤ x ≤ b} (resp.,
{x ∈ Z | a ≤ x < b}, {x ∈ Z | a < x ≤ b}, and {x ∈ Z | a < x < b}). For two integers a and b
we write a | b if a divides b, i.e., if there exists an integer c such that b = a · c.

The Cartesian product of two sets A and B is denoted by A × B = {(a, b) | a ∈ A, b ∈ B}
and the i-times Cartesian product

A×A× · · · ×A︸ ︷︷ ︸
i times

by Ai. Furthermore, we denote by ∪, ∩, and − the set operations union, intersection, and set
difference, respectively, i.e., A ∪ B = {x | x ∈ A or x ∈ B}, A ∩ B = {x | x ∈ A and x ∈ B},
and A − B = {x ∈ A | x /∈ B}. The symmetric difference is denoted by 4, i.e., A4B =
(A − B) ∪ (B − A). For the complement of a set A relative to some base set U ⊇ A we write
A = U − A. The base set U will always be apparent from the context. P(A) := {S | S ⊆ A}
denotes the power set of a set A and Pfin(A) = {S ∈ P(A) | S finite}. For a finite and non-empty
set A of integers let max(A) (resp., min(A)) denote the maximal (resp., minimal) element of A.
For a finite set A we denote the cardinality of A with |A|.

We extend the arithmetical operations + and · to sets of integers: for A,B ⊆ Z define
A+B := {a+ b | a ∈ A, b ∈ B} and A ·B := {a · b | a ∈ A, b ∈ B}. For sets A1, . . . , An ⊆ Z we
use the notation

∏n
i=1Ai (resp.,

∑n
i=1Ai) for the set A1 ·A2 · · · · ·An (resp., A1 +A2 + · · ·+An).

Note that for i ≥ 2 and A ⊆ Z the term Ai does not denote the set
∏i
j=1A but the i-times

1In the style of Gaius Iulius Caesar, Commentarii de bello Gallico, beginning of Liber I: “Gallia est omnis
divisa in partes tres, quarum unam incolunt Belgae, aliam Aquitani, tertiam qui ipsorum lingua Celtae, nostra
Galli appellantur.”

27

28 Chapter 2. Preliminaries

Cartesian product of A. As the set {1} is the unique neutral element regarding the multiplication
of sets of integers, we let terms like

∏
i∈∅A denote the set {1}.

In this thesis, when speaking of functions we mean partial functions, i.e., a function f can
be formally defined as a triple (A,B,G) where A, B, and G are sets and G ⊆ A×B such that
for all x ∈ A it holds |G ∩ ({x} × B)| ≤ 1. Then f is a function from A to B and denoted as
f : A → B. If A and B are apparent from the context, we may omit them. If for x ∈ A there
exists some y ∈ B with (x, y) ∈ G, then we say that f(x) is defined and let f(x) denote the
unique such y ∈ B. Instead of f(x) = y we may also write x 7→ y if it is apparent from the
context which function we refer to. If for x ∈ A it does not hold that f(x) is defined, then we
say that f(x) is undefined.

The set {x ∈ A | f(x) is defined} is called the domain of f and denoted with dom(f). If
dom(f) = A, then the partial function f is called total. The range ran(f) of a function f is the
set {f(x) | x ∈ A} ⊆ B. Let X ⊆ A and Y ⊆ B. The image of X under f , denoted as f(X), is
defined to be the set {f(x) | x ∈ X} ⊆ B. Moreover, we denote the preimage of Y under f by
f−1(Y), i.e., f−1(Y) = {x ∈ A | f(x) ∈ Y }.

The function f is injective if f(x) 6= f(y) for all distinct x, y ∈ dom(f), f is onto if ran(f) =
B, and f is bijective if it is total, injective and onto. The support supp(f) of a function f : A→ B
with B ⊆ R is the set {x ∈ dom(f) | f(x) 6= 0}. We say that a partial function f is injective
on its support if f(x) 6= f(y) for all distinct x, y ∈ supp(f). If a partial function f is not
defined at point x, then f ∪ {x 7→ y} denotes the extension f ′ of f that at x has value y and
satisfies dom(f ′) = dom(f)∪{x}. For an injective function f : A→ B the inverse function of f ,
denoted as f−1 : B → A, is the unique function from B to A with domain ran(f) that satisfies
f−1(f(x)) = x for all x ∈ dom(f).

The greatest common divisor of positive naturals x and y, i.e., the greatest positive natural
number that divides both x and y, is denoted by gcd(x, y). The logarithm function log denotes
the function N+ → N defined by x 7→ max({k ∈ N | 2k ≤ x}).

√
· denotes the standard square

root function (R+∪{0})→ R, i.e., for y ∈ R+∪{0}, √y is the unique non-negative real number

x with x2 = y. For positive natural numbers n ≥ k we define
(
n
k

)
=
∏k
i=1

n+1−i
i .

We fix the alphabet Σ = {0, 1} and denote the length of a word w ∈ Σ∗ with |w|. Let
Σ≺n = {w ∈ Σ∗ | |w| ≺ n} for ≺∈ {≤, <,=, >,≥}. We use Σn as an abbreviation for Σ=n.
Moreover, Σ[m,n] = {w ∈ Σ∗ | |w| ∈ [m,n]} for m,n ∈ N. The empty word is denoted by ε and
the i-th letter of a word w for 0 ≤ i < |w| is denoted by w(i), i.e., w = w(0)w(1) · · ·w(|w| − 1).
For k ≤ |w| let prk(w) = w(0) · · ·w(k− 1). A word v is a prefix of a word w if there exists some
k ≤ |w| such that v = prk(w). If v is a prefix of w, then we write v v w or w w v. If v v w and
|v| < |w|, then we write v vp w or w wp v.

For each finite set Y ⊆ Σ∗, let `(Y) =
∑

w∈Y |w|.
The quasi-lexicographical order of Σ∗ is the total order ≤⊆ Σ∗ × Σ∗ defined by

u ≤ v ⇔
(
|u| < |v| ∨

(
|u| = |v| ∧ ∃0≤i<|u|

(
u(i) = 0 ∧ v(i) = 1 ∧ ∀0≤j<iu(j) = v(j)

))
∨ u = v

)
.

An ω-word w is a total function N→ Σ.

If A is a set, then A(x) denotes the characteristic function at point x, i.e., A(x) is 1 if x ∈ A,
and 0 otherwise. The semi-characteristic function of A is a function with domain A and range
{1}. Let w0, w1, . . . be the elements of Σ∗ in quasi-lexicographical order, i.e., w0 = ε, w1 = 0,
w2 = 1, and so on. In case A is a set of words, the characteristic sequence of A is defined to be
the ω-word A(w0)A(w1) . . . , i.e., the function N→ {0, 1} mapping i ∈ N to A(wi).

2.2. Graphs 29

2.2 Graphs

In this thesis we are mainly interested in rather specific graphs, namely finite directed acyclic
multigraphs satisfying the property that the indegree of every node is at most 2. Therefore,
some of the following notions are defined less general than usual. For example, we define graphs
to be always finite and we do not differentiate between walks, trails, and paths.

A directed multigraph is a pair (V,E) where V is a finite and non-empty set and E is a finite
subset of V × V × N. For the sake of simplicity, we require that for all directed multigraphs
(V,E) and all (u, v, i) ∈ E with i > 0 it holds (u, v, i − 1) ∈ E. The elements of V are called
nodes, the elements of E are called edges. If E ⊆ V × V × {0}, then the directed multigraph
(V,E) is called a directed graph.

Consider an edge (u, v, i). The node u (resp., v) is the source node (resp., target node) of
the edge (u, v, i) and the edge (u, v, i) is an outgoing (resp., incoming) edge of u (resp., v). For
nodes u, v ∈ V the node u (resp., v) is called a direct predecessor of v (resp., direct successor of
u) if (u, v, 0) ∈ E. Moreover, u (resp., v) is called a predecessor of v (resp., successor of u) if u
is a direct predecessor of v or u is a predecessor of some direct predecessor of v.

Let us define the notion of paths. Let (V,E) be a directed multigraph. A path of length n
for n ∈ N is an element ((u1, v1, i1), . . . , (un, vn, in)) of En such that for all j = 1, . . . , n − 1 it
holds vj = uj+1. This path is called a path from u1 to vn. Note that in particular, () is a path
of length 0 from u to u for all u ∈ V . A path ((u1, v1, i1), . . . , (un, vn, in)) for n ∈ N+ is called a
cycle if u1 = vn. A directed multigraph (V,E) is acyclic if there is no cycle in it.

Let (V,E) be a directed multigraph and u ∈ V . The indegree of the node u is defined to be
|E ∩ (V × {u} × N)|. The outdegree of u is |E ∩ ({u} × V × N)|.

2.3 Computational Complexity

2.3.1 Turing Machines and Transducers

Throughout this thesis we use the standard model of Turing machines: a Turing machine has

� a read-only input tape,

� a constant number of working tapes that are infinite to both sides,

� possibly one write-only output tape with infinite space only to the right side,

� for each tape a head that points at the current cell of the respective tape,

� a finite set of states among which there are an initial state, an accepting state, and a
rejecting state, as well as

� a finite set of rules that in every situation specify the next computation steps (there is not
necessarily only one next computation step).

In the following we briefly sketch the operating principles of Turing machines. For formal
definitions we refer to standard textbooks such as [Pap94] and [AB09].

Computations, Configurations, and Acceptance Behavior Let M be a Turing machine
and x ∈ Σ∗ be some input of M . We denote the computation of M on input x with M(x). The
current situation of M is specified in a configuration of M , i.e., a configuration consists of the
following information: (i) the current state, (ii) the contents of all tapes, and (iii) the current
positions of all heads. The machine M on input x starts in the initial state with x written on

30 Chapter 2. Preliminaries

the input tape, the head of the input tape points at the first symbol of x, all other tapes are
empty, and the head of the output tape (if existent) points at the first cell of the tape. We call
this configuration the initial configuration of M on input x. If the state of a configuration is the
accepting (resp., rejecting) state, then we call the configuration accepting (resp., rejecting). A
configuration is called a stop configuration if it is accepting or rejecting.

A computation path of a computation M(x) is a sequence of configurations with the following
properties:

� The first configuration is the initial configuration of M on input x.

� Each configuration C of the sequence either (i) is a stop configuration not followed by
another configuration or (ii) it is followed by a configuration C ′ such that M can reach C ′

from C in one step.

A computation path is called accepting (resp., rejecting) if it contains an accepting (resp., re-
jecting) configuration. It then follows that the path is finite and the last configuration is
the unique stop configuration of the path. The computation M(x) accepts if there exists at
least one accepting computation path of M on input x. Otherwise, M(x) rejects. We denote
L(M) = {x |M(x) accepts}. We say that a computation terminates if all its computation paths
are finite.

If for each x there is only one computation path of M on input x, then M is called a
deterministic Turing machine. Otherwise, M is called a nondeterministic Turing machine.

A set L ⊆ Σ∗ is called recursively enumerable or computably enumerable if L(M) = L for
some Turing machine M . If there exists a deterministic Turing machine M with L(M) = L such
that for each input x the computation M(x) terminates, then L is called decidable. In that case
we say that that M decides the language L.

Transducers A deterministic Turing machine is called a (Turing) transducer if it additionally
has a write-only output tape (the head of the output tape always points at the first empty
cell and in each step there may be added one symbol to the word currently on the output
tape). Hence a transducer F computes a function and more precisely, it computes a function
f : Σ∗ → Σ∗ if for all inputs x the following holds.

� If f(x) is defined, then the computation of F on input x is accepting and in the (unique)
accepting configuration, the content of the output tape is f(x).

� If f(x) is not defined, then the computation of F on input x is not accepting (i.e., the unique
computation path of F on input x is either infinite or ends with a rejecting configuration).

In particular, L(F) = dom(f).
We identify a transducer F with the function that it computes. Therefore, depending on the

context, F (x) either denotes the computation of F on input x or the output of this computation.
A function f is called computable if there exists a Turing transducer that computes f . Note

that a set L ⊆ Σ∗ is decidable if and only if its characteristic function is computable.

Time and Space Bounds Let s, t : N→ N be total functions and M be an arbitrary k-tape
Turing machine.

� We say that M works in space s if for all x ∈ Σ∗ and all configurations of computation
paths of M on input x, each working tape of M contains at most s(|x|) symbols. Note
that we neither count the symbols on the input tape nor the symbols on the output tape
(if existent).

2.3. Computational Complexity 31

� We say that M works in time t if for all x ∈ Σ∗ each computation path of M on input x
consists of at most t(|x|) configurations.

We say that M is a polynomial-time Turing machine if there exists some i ∈ N+ such that
M works in time n 7→ ni + i. Analogously, we call M a logarithmic-space Turing machine
(resp., polynomial-space Turing machine) if there exists some i ∈ N+ such that M works in
space n 7→ i · log n + i (resp., n 7→ ni + i). A function f is called polynomial-time computable
if there exists a polynomial-time Turing transducer that computes f . Analogously, a function
f is called logarithmic-space computable (resp., polynomial-space computable) if there exists a
logarithmic-space Turing transducer (resp., polynomial-space Turing transducer) that computes
f . An injective function f is called polynomial-time invertible (resp., logarithmic-space invertible)
if its inverse function is polynomial-time computable (resp., logarithmic-space computable).

Identification of Σ∗ and N Throughout this thesis we identify Σ∗ with N via the bijection
Σ∗ → N given by w 7→

∑
i<|w|(1+w(i))2|w|−1−i, which is a variant of the dyadic encoding. Hence

notations, relations, and operations for Σ∗ are transferred to N and vice versa. In particular, |n|
denotes the length of n ∈ N. Note x ≤ y for x, y ∈ N if and only if u ≤ v for the words u and
v that correspond to x and y, respectively. Let A ⊆ Σ∗. Since we identify Σ∗ and N, we may
consider the characteristic function of A as a function N → {0, 1}, which is the characteristic
sequence of A. Thus A(x) denotes both the value of the characteristic function of A at point x
and the x-th letter of the characteristic sequence of A, which are the same.

The identification of Σ∗ and N gives rise to a few ambiguities, which, however, will always
be eliminated by the context. We only give one general rule: always interpret the expressions
0i and 1i for i ≥ 2 over Σ∗.

Oracle Turing Machines An oracle Turing machine is a Turing machine with an additional
write-only tape, the so-called oracle tape, and additional states q?, qy, and qn. The oracle tape
has similar properties as the output tape: it is infinite to the right side and only to this side and
in one computation step one symbol can be appended to the current word on the tape.

Let us explain the operating principles of oracle queries. The oracle Turing machine M is
assigned some O ⊆ Σ∗. In this context we call O an oracle. Whenever the machine enters the
state q?, then until the beginning of the next step the following modifications and only these
have been made:

� If the word currently on the oracle tape is in O, then M switches to the state qy.

� If the word currently on the oracle tape is not in O, then M switches to the state qn.

� The oracle tape is erased and the head points at the leftmost cell of the tape.

Thus roughly speaking, an oracle Turing machine may use some problem as a black box, ask
arbitrary questions to it, and receives correct answers in one step. Let us emphasize that we use
the unrestricted oracle model.2

2Two reasonable and widely used restrictions are:

� Only oracle queries of at most polynomial length are allowed.

� Nondeterministic branches are not allowed unless the oracle tape is empty.

We do without these restrictions, because there is no setting in this thesis in which the restrictions make a
difference. In Chapter 3 only polynomial-time Turing machines have access to oracles. These clearly ask only
queries of at most polynomial length. Forbidding them to branch while writing on the oracle tape makes no
difference, because the machines —in case they are nondeterministic— can instead first nondeterministically
guess the query and then write it on the oracle tape in a deterministic procedure. In Chapter 4 there is only

32 Chapter 2. Preliminaries

If M is an oracle Turing machine and O ⊆ Σ∗, then we denote by MO(x) the computation of
M on input x with oracle O. All notions introduced for Turing machines without oracle access
are analogously defined for oracle Turing machines. In particular, MO(x) accepts if and only
if it has at least one accepting computation path and L(MO) = {x | MO(x) accepts}. Again,
we identify FO for an oracle transducer F with the function the machine computes when given
access to the oracle O and thus the notation FO(x) is ambiguous. Depending on the context,
it refers to the computation of F on input x with access to the oracle O or it denotes this
computation’s output.

Enumerations of Turing Machines Note that there exists a universal Turing machine, i.e.,
a Turing machine that when given an encoding of some Turing machine M and some word x
as input simulates M on input x and needs only polynomial time for each computation step
of M . By this fact and by using clocked Turing machines, we obtain that there exist standard
enumerations of Turing machines having the following properties.

Definition 2.3.1 Let A ⊆ N+ be infinite. A sequence (Mi)i∈A is called a standard enumeration
of nondeterministic, polynomial-time oracle Turing machines if it has the following properties:

1. All Mi are nondeterministic, polynomial-time oracle Turing machines.

2. For all oracles O and all inputs x the computation MO
i (x) stops within |x|i + i steps.

3. For every nondeterministic, polynomial-time oracle Turing machine M there exist in-
finitely many i ∈ N such that for all oracles O it holds L(MO) = L(MO

i).

4. There exists a nondeterministic, polynomial-time oracle Turing machine M such that for
all oracles O and all inputs x it holds that MO(〈i, 0|x|i+i, x〉) nondeterministically simulates
the computation MO

i (x).

Analogously we define standard enumerations of polynomial-time oracle Turing transducers.

Throughout this thesis, we use the following standard enumerations:

� Let M1,M2, . . . be a standard enumeration of nondeterministic polynomial-time oracle
Turing machines.

� Let F1, F2, . . . be a standard enumeration of polynomial time oracle Turing transducers.

2.3.2 Complexity Classes and Function Classes

Since in this thesis we get along with only quite a few complexity classes, we do not define
generic complexity classes first, but instead directly define the relevant classes.

Recall that we identify Σ∗ with N. In the present section we define the classes as sets of
languages, i.e., as subsets of Σ∗, or as classes of functions Σ∗ → Σ∗. Nevertheless, we may
elsewhere consider them as subsets of N or functions N → N. The existence of the pairing
function defined in the next paragraph shows that our definitions also cover problems ⊆ (Σ∗)m

(resp., Nm) and functions (Σ∗)m → (Σ∗)n (resp., Nm → Nn) for m,n ∈ N+.

one situation in which an oracle is used and in this case it is used by a deterministic logarithmic-space Turing
machine, which can only ask queries of at most polynomial length (if it has a super-polynomial computation path,
then this path is infinite and it may generate more than polynomially many symbols on the oracle tape, but it
cannot ask the query) and clearly does bot branch at all.

2.3. Computational Complexity 33

Pairing Function and Encodings of Objects Let 〈·〉 :
⋃
i≥0 Ni → N be an injective,

logarithmic-space computable, logarithmic-space invertible function such that |〈u1, . . . , un〉| =
2(|u1|+ · · ·+ |un|+n). Recall that 〈·〉 can also be considered as a function

⋃
i≥0(Σ∗)i → Σ∗ and

that 〈·〉 is polynomial-time computable and polynomial-time invertible as FL ⊆ FP and L ⊆ P.

Most objects occurring in this thesis are of the following type T , which we define inductively:

� All elements of N and Σ∗ are objects of type T .

� Finite tuples and finite sets of objects of type T are also objects of type T .

Note that T is an ad hoc notation designed only for this paragraph.

As finite sets can always be encoded as tuples (i.e., finite lists), the pairing function defines
an encoding and in particular the length of all objects of type T . Note that thus not each object
has a unique encoding (e.g., for a finite set of cardinality n ∈ N there are 2n ways to encode the
set as a list), but all encodings of a certain object have the same length, which we will denote
by | · |.

Without loss of generality, we may assume that all graphs are objects of type T . Moreover,
all functions mapping from a finite set of objects of type T to another finite set of objects of
type T are of type T themselves. Hence in particular, encodings and lengths of integer circuits
and all other relevant objects occurring in Section 4 are now defined.

Note that we do not define appropriate encodings for all kinds of objects. Due to that and
often just for the sake of simplicity, we may also consider sets of tuples, graphs, or other objects
as members of the below classes.

Logarithmic-Space Classes Define

FL = {f : Σ∗ → Σ∗ | f is total and logarithmic-space computable}
L = {L ⊆ Σ∗ | there is a deterministic logarithmic-space Turing machine that decides L}

NL = {L ⊆ Σ∗ | there is a nondeterministic logarithmic-space Turing machine accepting L}

Note that it is commonly known that FL is closed under function composition, i.e., for all
f, f ′ ∈ FL the function f ◦ f ′ defined by x 7→ f(f ′(x)) is in FL as well.

Polynomial-Time Classes We define

FP = {f : Σ∗ → Σ∗ | f is total and polynomial-time computable}
P = {L ⊆ Σ∗ | there is a deterministic polynomial-time Turing machine that decides L}

UP = {L ⊆ Σ∗ | there is a nondeterministic polynomial-time Turing machine M accepting L
such that for each x ∈ Σ∗, M(x) has at most one accepting path}

NP = {L ⊆ Σ∗ | there is a nondeterministic polynomial-time Turing machine accepting L}

Further Classes Let us define

FPSPACE = {f : Σ∗ → Σ∗ | f is total and polynomial-space computable}
PSPACE = {L ⊆ Σ∗ | there exists a deterministic polynomial-space Turing machine that

decides L}
REC = {L ⊆ Σ∗ | L is decidable}

RE = {L ⊆ Σ∗ | L is computably enumerable}

34 Chapter 2. Preliminaries

There are known a couple of characterizations for RE. We only mention two: (i) RE is the set
of those languages whose semi-characteristic function is computable and (ii) RE is the set of
those languages L for which there exists L′ ∈ REC with L = {x | ∃y∈Σ∗ 〈x, y〉 ∈ L′} (i.e., L is
the projection of a decidable set).

It holds L ⊆ NL ⊆ P ⊆ UP ⊆ NP ⊆ PSPACE ⊆ REC ⊆ RE and FL ⊆ FP ⊆ FPSPACE.
For proofs of the non-trivial inclusions we refer to textbooks such as [Pap94, AB09].

Complement Classes For an arbitrary complexity class C ⊆ P(Σ∗) we define coC = {L ⊆
Σ∗ | L ∈ C}. All the deterministic time and space classes above are closed under complement, i.e.,
for such a class C it holds C = coC. For nondeterministic time and space classes this is not known
in general and for many classes even widely believed not to be true. Nevertheless, a result due to
Immerman [Imm88] and Szelepcsényi [Sze88] yields that a wide range of nondeterministic space
classes is indeed closed under complement. One of these classes is NL, i.e., it holds NL = coNL.

Relativized Complexity Classes Now let us define some of the classes above relative to
an oracle O ⊆ Σ∗. We start again with logarithmic-space classes, which are —apart from this
chapter— only relevant to Chapter 4.

FLO = {f : Σ∗ → Σ∗ | f total, f = FO for a logarithmic-space oracle Turing transducer F}
LO = {L ⊆ Σ∗ | there exists a deterministic logarithmic-space oracle Turing machine M

with L(MO) = L}

Next we define relativized polynomial-time classes.

FPO = {f : Σ∗ → Σ∗ | f total, f = FO for a polynomial-time oracle Turing transducer F}
PO = {L ⊆ Σ∗ | there is a deterministic polynomial-time oracle Turing machine M with

L(MO) = L}
UPO = {L ⊆ Σ∗ | there is a nondeterministic polynomial-time oracle Turing machine M such

that (i) L(MO) = L and (ii) ∀x∈Σ∗M
O(x) has at most one accepting path}

NPO = {L ⊆ Σ∗ | there exists a nondeterministic polynomial-time oracle Turing machine M
with L(MO) = L}

The following inclusions hold relative to all oracles O.

LO ⊆ PO ⊆ UPO ⊆ NPO and FLO ⊆ FPO.

For proofs of the non-trivial of these inclusions we refer to the proofs for the corresponding
unrelativized classes mentioned above. These can all be relativized.

For classes C and C′ we define (coC)O = co(CO) and (C ∩ C′)O = CO ∩ C′O. Moreover, let
CC′ =

⋃
O∈C′ CO. The following proposition basically follows from NL = coNL.

Proposition 2.3.2 LNL = NL.

Finally, note that for every oracle O, the sequence (Mi)i∈N+ represents an enumeration of
the languages in NPO, i.e., NPO = {L(MO

i) | i ∈ N+}. Analogously, FPO = {FOi | i ∈ N+}.

2.3.3 Reducibilities and Complete Problems

Reducibilities We define several reducibilities. Let A,B,O ⊆ Σ∗.

� A is polynomially many-one reducible to B, denoted by A≤p
mB, if there exists f ∈ FP such

that for all x ∈ Σ∗ it holds x ∈ A⇔ f(x) ∈ B.

2.3. Computational Complexity 35

� A is polynomially many-one reducible to B relative to O, denoted by A≤p,O
m B, if there

exists f ∈ FPO such that for all x ∈ Σ∗ it holds x ∈ A⇔ f(x) ∈ B.

� A is logarithmic-space many-one reducible to B, denoted by A≤log
m B, if there exists f ∈ FL

such that for all x ∈ Σ∗ it holds x ∈ A⇔ f(x) ∈ B.

� A is many-one reducible to B, denoted by A ≤m B, if there exists a total and computable
f : Σ∗ → Σ∗ such that for all x ∈ Σ∗ it holds x ∈ A⇔ f(x) ∈ B.

For A,B ⊆ Σ∗ and ≺ denoting one of the reducibilities above we say that A and B are
≺-equivalent if A ≺ B and B ≺ A.

Note that in Section 2.3.5 we define separate reducibilities for disjoint pairs. These can be
seen as generalizations of corresponding reducibilities for problems⊆ Σ∗. Moreover, Section 2.3.6
contains the definition of a further reducibility, namely one for total polynomial search problems.

Hardness and Completeness Let ≺ denote one of the reducibilities above and C be some
complexity class. A is called ≺-hard for C if C ≺ A for all C ∈ C. Moreover, A is called
≺-complete for C if A ∈ C and A is ≺-hard for C.

Some Prominent Problems We first define some variations of the standard graph accessi-
bility problem. For k ∈ N+ define

GAP≥k = {(V,E, s, t) | (V,E) is a directed multigraph, s, t ∈ V , there exist at least k
paths from s to t in (V,E)}

GAP=k = GAP≥k ∩GAP≥k+1.

GAP≥1 is the standard graph accessibility problem for directed multigraphs. It is ≤log
m -complete

for NL. For a proof we refer to [AB09].3 In this thesis, we only need the membership of GAP≥1

in NL. A similar argument as in the mentioned proof in [AB09] shows that also GAP≥k for
arbitrary k ∈ N+ is in NL. By the closure properties of NL, it holds GAP=k ∈ NL for all k ∈ N+

as well.

Let SAT (resp., TAUT) be the set of all satisfiable (resp., tautological) propositional formulas

(encoded in some standard way). SAT (resp., TAUT) is known to be ≤log
m -complete for NP (resp.,

coNP).4 The circuit version of SAT is also ≤log
m -complete for NP and is precisely defined in the

beginning of Section 4.3.2.

Canonical Complete Problems Let O ⊆ Σ∗ and define

CANO = {〈0i, 0t, x〉 | i, t, x ∈ N, i > 0, and MO
i (x) accepts within t steps}.

By the properties of standard enumerations, the problem is in NPO. A simple reduction shows

that CANO is ≤p,O
m -complete for NPO. Then clearly CANO is ≤p,O

m -complete for coNPO.

3Indeed, only the graph accessibility problem for directed graphs is proven to be NL-complete there. However,
the proof also shows that GAP≥1, the accessibility problem for directed multigraphs, is NL-complete.

4For a proof we refer to [Coo71]. Indeed, a simple adaption of Cook’s proof is needed to obtain the ≤log
m -

completeness of SAT for NP.

36 Chapter 2. Preliminaries

2.3.4 Proof Systems

Definition 2.3.3 ([CR79]) A function f ∈ FP is called a proof system for the set ran(f). If
f(x) = y, then we say that x is an f -proof for y. Moreover, f ∈ FP is a propositional proof
system (pps) if ran(f) = TAUT.

Let f and g be total functions. We say that f is simulated by g, denoted by f ≤ g, if there
exists a total function π and a polynomial p such that |π(x)| ≤ p(|x|) and g(π(x)) = f(x) for all
x. Moreover, f is P-simulated by g, denoted by f ≤p g, if there exists a function π ∈ FP such
that g(π(x)) = f(x) for all x.

A function g ∈ FP is called optimal or length-optimal if f ≤ g for all f ∈ FP with ran(f) =
ran(g). A function g ∈ FP is P-optimal if f ≤p g for all f ∈ FP with ran(f) = ran(g).

We define the corresponding relativized notions. For that purpose let O ⊆ Σ∗.

Definition 2.3.4 A function f ∈ FPO is called a proof system for the set ran(f) relative to O.

For f, g ∈ FPO we say that f is PO-simulated by g, denoted by f ≤p,O g, if there exists a
function π ∈ FPO such that g(π(x)) = f(x) for all x.

A function g ∈ FPO is called optimal relative to O or length-optimal relative to O if f ≤ g
for all f ∈ FPO with ran(f) = ran(g). A function g ∈ FPO is PO-optimal if f ≤p,O g for all
f ∈ FPO with ran(f) = ran(g).

Assuming no confusions will arise, a function f ∈ FPO will often just be called a proof system
for ran(f) instead of a proof system for ran(f) relative to O. Analogously, instead of speaking
of optimal proof systems relative to O, we will often simply speak of optimal proof systems.

The following proposition states the relativized version of a relativizably proven result by
Köbler, Messner, and Torán [KMT03].

Proposition 2.3.5 ([KMT03]) 1. For every oracle O, if A has an optimal proof system
relative to O and ∅ 6= B≤p,O

m A, then B has an optimal proof system relative to O.

2. For every oracle O, if A has a PO-optimal proof system and ∅ 6= B≤p,O
m A, then B has a

PO-optimal proof system.

Corollary 2.3.6 1. For every oracle O, if there exists a ≤p,O
m -complete A ∈ NPO (resp.,

A ∈ coNPO) that has optimal proof systems relative to O, then all non-empty sets in NPO

(resp., coNPO) have optimal proof systems relative to O.

2. For every oracle O, if there exists a ≤p,O
m -complete A ∈ NPO (resp., A ∈ coNPO) that

has PO-optimal proof systems, then all non-empty sets in NPO (resp., coNPO) have PO-
optimal proof systems.

Remark 2.3.7 ([DG19]) The notion of propositional proof systems does not have a canonical
relativization. However, in the light of Corollary 2.3.6, it is reasonable to use the subsequent
convention. Let O ⊆ Σ∗.

� There exist optimal propositional proof systems relative to O if and only if there is some
A which is ≤p,O

m -complete for coNPO and has optimal proof systems relative to O.

� There exist PO-optimal propositional proof systems if and only if there is some A which is
≤p,O

m -complete for coNPO and has PO-optimal proof systems.

2.3. Computational Complexity 37

2.3.5 Disjoint Pairs

Unless stated differently, we only define relativized notions in this subsection. However, the
unrelativized notions are obtained if the oracle O is chosen to be say the empty set. In such
cases, for all notations we simply omit the oracle. Let O ⊆ Σ∗.

Definition 2.3.8 If A,B ∈ NPO (resp., A,B ∈ coNPO) with A ∩ B = ∅, then we call (A,B)
a disjoint NPO-pair (resp., disjoint coNPO-pair). The set of all disjoint NP-pairs (resp., coNP-
pairs) is denoted by DisjNPO (resp., DisjCoNPO).

There are several reducibilities for disjoint pairs. In this thesis we only make use of two
different reducibilities: polynomial many-one reducibility and the many-one reducibility allowing
unbounded complexity. We start with the standard polynomial-time many-one reducibility.

Definition 2.3.9 ([Raz94]) Let A,B,C,D ⊆ Σ∗ such that A ∩ B = C ∩ D = ∅. (C,D)
is polynomially many-one reducible to (A,B) relative to O, denoted by (C,D)≤pp,O

m (A,B), if
there exists an f ∈ FPO with f(C) ⊆ A and f(D) ⊆ B. If C = D, then we also write
C≤p,O

m (A,B) instead of (C,D)≤pp,O
m (A,B). If A = B, then we also write (C,D)≤pp,O

m A instead
of (C,D)≤pp,O

m (A,B).

We prefer the notation C≤p,O
m (A,B) to C≤pp,O

m (A,B) as in this case there is no promise involved.

Definition 2.3.10 We say that a disjoint pair (A,B) is ≤pp,O
m -hard (≤pp,O

m -complete) for
DisjNPO if (C,D)≤pp,O

m (A,B) for all (C,D) ∈ DisjNPO (and (A,B) ∈ DisjNPO).

Analogously, a disjoint pair (A,B) is ≤pp,O
m -hard (≤pp,O

m -complete) for DisjCoNPO if
(C,D)≤pp,O

m (A,B) for all (C,D) ∈ DisjCoNPO (and (A,B) ∈ DisjCoNPO).

Moreover, a pair (A,B) is ≤p,O
m -hard for some complexity class C ⊆ P(Σ∗) if C≤p,O

m (A,B)
for every C ∈ C.

The second reducibility we consider is the standard many-one reducibility. Here we only
need the unrelativized notion.

Definition 2.3.11 Let A,B,C,D ⊆ Σ∗ such that A ∩ B = C ∩ D = ∅. (C,D) is many-one
reducible to (A,B), denoted by (C,D) ≤m (A,B), if there exists a computable, total function
f with f(C) ⊆ A and f(D) ⊆ B. If C = D, then we also write C ≤m (A,B) instead of
(C,D) ≤m (A,B). If A = B, then we also write (C,D) ≤m A instead of (C,D) ≤m (A,B).

As this reducibility is a promise reducibility, it would be more consequent to write ≤p
m instead

of ≤m. However, we do not do that in order to avoid confusions.

The following theorem establishes a connection between the notion of proof systems and the
notion of disjoint NP-pairs.

Theorem 2.3.12 ([Raz94]5) Let O ⊆ Σ∗. If there exist optimal pps relative to O, then
DisjNPO has ≤pp,O

m -complete elements.

For a straightforward and relativizable proof of the unrelativized version of this theorem we refer
to [GSSZ04].

5Note that there are contradicting statements on the origin of the unrelativized result in the literature (cf.
[KMT03, GSSZ04, Pud17] for example).

38 Chapter 2. Preliminaries

2.3.6 Total Polynomial Search Problems

Total polynomial search problems (TFNP problems for short) are more commonly known under
the name total NP search problems. Nevertheless, we prefer the former name.

Again we only define the relativized notion and point out that the unrelativized notion is
obtained by choosing the oracle O to be the empty set for instance. Let O ⊆ Σ∗.

Definition 2.3.13 ([MP91]) A total polynomial search problem relative to O is a pair (p,R)
where p is a polynomial and R ∈ PO with (i) ∀x∃y

(
|y| ≤ p(|x|)∧〈x, y〉 ∈ R

)
and (ii) ∀x∀y

(
|y| >

p(|x|)⇒ 〈x, y〉 /∈ R
)
. The computational task is: on input x and having access to the oracle O,

compute some y with |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ R. Let TFNPO be the set of all total polynomial
search problems relative to O.

If the oracle O is apparent from the context, we may speak of TFNP problems instead of TFNP
problems relative to O. Let us sketch two equivalent ways of defining TFNP problems.

First, as mentioned in the introduction, a total polynomial search problem can be also seen as
the following computational task: for a fixed nondeterministic multivalued function with values
of polynomial length that are polynomially verifiable and guaranteed to exist [MP91], determine
on input x some element of the set of all values that the function has at point x.

Second, a total polynomial search problem can be considered as the computational task to
determine on input x an accepting path of the computation M(x) where M is a fixed nondeter-
ministic polynomial-time Turing machine M that accepts Σ∗.

Let us define the standard polynomial-time many-one reducibility for TFNP problems.

Definition 2.3.14 ([JPY88]) A TFNP problem (p,R) is polynomially many-one reducible to
a TFNP problem (q, S) relative to O if there are f, g ∈ FPO such that

∀x∀z
(
S(〈f(x), z〉)⇒ R(x, g(〈x, z〉))

)
.

A TFNP problem is polynomially many-one complete relative to O if all problems in TFNPO are
polynomially many-one reducible to it relative to O. As an abbreviation, we say that TFNPO has
(many-one) complete problems if and only if TFNPO contains an element that is polynomially
many-one complete relative to O.

Roughly speaking, (p,R) is polynomially many-one reducible to (q, S) relative to O if and
only if (p,R) can be solved by a deterministic polynomial-time algorithm with access to the
oracle O that may also ask one oracle query to the problem (q, S) and is given some correct
answer in one step. If we allow not only one but arbitrarily many queries to the problem (q, S),
we obtain a stronger reducibility notion: the polynomial reducibility (cf. e.g. [Pud17]).

As relative to all oracles there are complete TFNP problems with respect to the polynomial
reducibility if and only if there are many-one complete TFNP problems [Pud17, Proposition
4.10]6, we go without defining other reducibilities formally.

Let us finally formulate a connection between complete TFNP problems and both P-optimal
proof systems and complete disjoint coNP-pairs.

Theorem 2.3.15 ([BKM09, Pud17]) Let O ⊆ Σ∗. The following statements hold.

1. If there exists an NPO-complete problem that has PO-optimal proof systems, then TFNPO

contains polynomially many-one complete problems relative to O.

2. If TFNPO contains problems that are polynomially many-one complete relative to O, then
DisjCoNP contains ≤pp,O

m -complete pairs.

6Pudlák [Pud17] mentions that this result is due to Emil Jeřábek and presents a relativizable proof of it.

Chapter 3

Separating Relativized Conjectures

In this chapter we construct oracles. As was mentioned in the introduction of this thesis, these
oracles address several major conjectures listed by Pudlák [Pud17] and make progress in a
working program initiated by him.

In Section 3.1 we formulate these conjectures formally and introduce some notions and
notations useful for constructing oracles. Then in each of the Sections 3.2, 3.3, 3.4, and 3.5
we build one oracle. Finally, in Section 3.6 we present the current state of the art regarding
known oracle separations between the conjectures listed by Pudlák and list questions for further
research.

3.1 Basic Definitions and Outline

In this section we first define the conjectures that are this chapter’s central object of study.
Then some technical notations and results are presented that find use in most of the sections in
this chapter.

3.1.1 Conjectures

Let us define the main conjectures this chapter deals with. These have already been explained
in the introduction, but now all relevant notions have been formally defined, which enables us
to define the conjectures formally. We first define the unrelativized conjectures and then list the
corresponding relativized statements. Assuming the context will resolve any ambiguities, the
names of the unrelativized statements will be used for the corresponding relativized conjectures
as well.

CON := P-optimal propositional proof systems do not exist

SAT := SAT does not have P-optimal proof systems

CONN := Optimal propositional proof systems do not exist

TFNP := TFNP does not contain polynomially many-one complete problems

DisjNP := DisjNP does not contain ≤pp
m -complete pairs

DisjCoNP := DisjCoNP does not contain ≤pp
m -complete pairs

NP ∩ coNP := NP ∩ coNP does not contain ≤p
m-complete problems

UP := UP does not contain ≤p
m-complete problems

CON ∨ SAT := CON or SAT holds

39

40 Chapter 3. Separating Relativized Conjectures

A further important conjecture, indeed the most famous conjecture in computational complexity
theory at all, is P 6= NP, which is also relevant to this chapter, but for which we do not introduce
any other notation. Recall that by Corollary 2.3.6, it holds

CON ⇐⇒ coNP does not contain a ≤p
m-complete set that has P-optimal proof systems

CONN ⇐⇒ coNP does not contain a ≤p
m-complete set that has optimal proof systems

SAT ⇐⇒ NP does not contain a ≤p
m-complete set that has P-optimal proof systems

Let us now list the relativized statements that correspond to the above conjectures. For the
sake of simplicity, we will call them relativized conjectures although this might be misunder-
standable as the statements have only been conjectured in the unrelativized case (i.e., relative
to —for instance— the empty oracle) and for each of these statements there exist oracles relative
to which it does not hold.

Let O be some oracle. We formulate the conjectures relative to O. For most of the conjectures
it is straightforward to relativize them. For the conjectures associated with proof systems we
refer to Corollary 2.3.6 and Remark 2.3.7 for the reasons that lead to the statements below.

CON := PO-optimal propositional proof systems do not exist

SAT := NPO does not contain a ≤p,O
m -complete set having PO-optimal proof systems

CONN := Optimal propositional proof systems relative to O do not exist

TFNP := TFNPO does not contain polynomially many-one complete problems

DisjNP := DisjNPO does not contain ≤pp,O
m -complete pairs

DisjCoNP := DisjCoNPO does not contain ≤pp,O
m -complete pairs

NP ∩ coNP := NPO ∩ coNPO does not contain ≤p,O
m -complete problems

UP := UPO does not contain ≤p,O
m -complete problems

CON ∨ SAT := CON or SAT holds (relative to O)

Furthermore, NP 6= P is relativized as NPO 6= PO. Let us again formulate some characteriza-
tions.

CON ⇐⇒ coNPO does not contain a ≤p,O
m -complete set having PO-optimal proof systems

CONN ⇐⇒ coNP does not contain a ≤p,O
m -complete set having optimal proof systems

3.1.2 Some Notions Designed for Building Oracles

Let us introduce some notions that have proven beneficial for construction oracles. These notions
originate from [DG19].

An oracle O ⊆ N is identified with its characteristic sequence O(0)O(1) · · · . A finite word w
describes an oracle that is partially defined and thus also called a partial oracle, i.e., it is only
defined for natural numbers x < |w|. Occasionally, we use w instead of the set {i | w(i) = 1}
and write for example A = w ∪ B where A and B are sets. In particular, for nondeterministic
oracle Turing machines M and deterministic oracle Turing transducers F , the notations Mw(x)
and Fw(x) refer to M{i|w(i)=1}(x) and F {i|w(i)=1}(x) (hence oracle queries that w is not defined
for are answered by “no”). Using w instead of {i | w(i) = 1} additionally allows us to define the
following notion: the computation Mw(x) definitely accepts if it contains an accepting path and
all queries on this path are < |w|. The computation Mw(x) definitely rejects if all paths reject
and all queries are < |w|. We say that the computation Mw(x) is definite if it definitely accepts
or definitely rejects. Similarly, the computation Fw(x) is definite if all its queries are < |w|.

3.2. DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 41

The following lemma is used multiple times in this chapter, which is the reason why it occurs
in this general section. Roughly speaking, it shows that if a partial oracle is defined for some
word, then extending the oracle does not change this word’s membership in the canonical NP-
complete problem. Of course, the analogous holds for the canonical coNP-complete problem,
which is the complement of the canonical NP-complete problem.

Lemma 3.1.1 ([DG19]) For all y ≤ |w| and all v w w it holds (y ∈ CAN v ⇔ y ∈ CANw).

Proof We may assume y = 〈0i, 0t, x〉 for suitable i ∈ N+ and t, x ∈ N, since otherwise,
y /∈ CANw and y /∈ CAN v. For each q that is queried within the first t steps of Mw

i (x) or
Mv
i (x) it holds that |q| ≤ t < |y| and thus q < y. Hence these queries are answered the same

way relative to w and v, showing that Mw
i (x) accepts within t steps if and only if Mv

i (x) accepts
within t steps. 2

3.2 DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle

In this section we construct an oracle O relative to which (i) P = UP and hence UP has ≤p
m-

complete sets, (ii) there exist no ≤pp
m -complete disjoint NP-pairs, and (iii) NP ∩ coNP does

not have ≤p
m-complete sets. The properties (ii) and (iii) can be subsumed under the stronger

statement that relative to the oracle O, DisjNP does not contain pairs that are ≤p
m-hard for

NP ∩ coNP.

This oracle makes some progress in the aforementioned working program initiated by Pudlák
[Pud17]. Its main achievement is that it illustrates that for none of the implications DisjNP ⇒
UP, CONN ⇒ UP, and CON ⇒ UP there exists a relativizable proof. Note that the converse of
the last of the three implications is true relative to all oracles1. Thus in some sense, the conjecture
UP is strictly stronger than the conjecture CON: there does not exist an oracle relative to which
UP ∧ ¬CON, but there does exist an oracle relative to which we have CON ∧ ¬UP.

Additionally, the oracle shows that the implication NP∩coNP⇒ UP cannot be proven using
solely relativizable techniques. This result will be extended in Section 3.4, where we show that
even the weaker implication NP ∩ coNP ⇒ CON requires —in case it holds— non-relativizable
proof techniques.

The following lemma yields a common tool that was already used by Hartmanis and Hema-
spaandra [HH88]. We apply it multiple times in [DG19] and once within this thesis.

Lemma 3.2.1 For all i, j ∈ N+ there exists an n0 ∈ N such that for all n ≥ n0 and all D ⊆ Σ∗

there exist an even x ∈ Σn and an odd y ∈ Σn such that at least one of the following statements
holds.

1. M
D∪{x}
i (0n) rejects

2. M
D∪{y}
j (0n) rejects

3. M
D∪{x,y}
i (0n) and M

D∪{x,y}
j (0n) accept

Proof Assume that the assertion is wrong, i.e., there are i, j ∈ N+ such that for all n0 ∈ N
there is an n ≥ n0 and an oracle D ⊆ Σ∗ such that for all even x ∈ Σn and all odd y ∈ Σn all
three statements are wrong. Fix machines Mi and Mj guaranteed by this assumption.

1A relativizable proof is given in [KMT03].

42 Chapter 3. Separating Relativized Conjectures

Let p be the polynomial α 7→ αi+j + i + j. Note that p limits the running time of Mi and
Mj . Choose n0 such that 22n0−2 > 2n0 · p(n0). Let n ≥ n0 and D ⊆ Σ∗ such that for all even
x ∈ Σn and all odd y ∈ Σn the three statements are wrong.

As the first statement is wrong, for all even x ∈ Σn the computation M
D∪{x}
i (0n) accepts.

Since the second statement is wrong as well, for all odd y ∈ Σn the computation M
D∪{y}
j (0n)

accepts. Consider the set

E ={(x, y) ∈ (Σn)2 | x even, y odd, the least accepting path of M
D∪{x}
i (0n) queries y}∪

{(x, y) ∈ (Σn)2 | x even, y odd, the least accepting path of M
D∪{y}
j (0n) queries x}

Since by the choice of p, the number of oracle queries of each of the machines Mi and Mj is
bounded by p, it holds |E| ≤ 2n · p(n) < 22n−2 = |{x ∈ Σn | x even} × {y ∈ Σn | y odd}|.
Hence there are x ∈ Σn even and y ∈ Σn odd such that (x, y) /∈ E, i.e., the least accepting path

of M
D∪{x}
i (0n) does not query y and the least accepting path of M

D∪{y}
j (0n) does not query

x. Thus M
D∪{x,y}
i (0n) and M

D∪{x,y}
j (0n) both accept, which contradicts the assumption that

statement 3 is wrong. 2

Corollary 3.2.2 For all i, j, r ∈ N+ there exists an n0 ∈ N such that for all n ≥ n0 and all
D ⊆ Σ∗ there exist x ∈ Σn even and y ∈ Σn odd such that at least one of the following statements
holds.

1. F
D∪{x}
r (0n) /∈ L(M

D∪{x}
i)

2. F
D∪{y}
r (0n) /∈ L(M

D∪{y}
j)

3. F
D∪{x,y}
r (0n) ∈ L(M

D∪{x,y}
i) ∩ L(M

D∪{x,y}
j)

Proof The statement follows by applying Lemma 3.2.1 to the machines Ni and Nj that work
as follows: Ni (resp., Nj) first computes Fr(0

n) and then simulates Mi (resp., Mj) on input
Fr(0

n). 2

Now we formulate and prove this section’s main result. Let us remark that the proof adopts
ideas by Baker, Gill, and Solovay [BGS75] and Rackoff [Rac82]. In particular, the way we achieve
PO = UPO is based on ideas in these articles.

Theorem 3.2.3 There exists an oracle O with the following properties.

1. DisjNPO does not have pairs that are ≤p,O
m -hard for NPO ∩ coNPO.

2. PO = UPO.

As an immediate consequence we obtain:

Corollary 3.2.4 The following holds for the oracle O constructed in Theorem 3.2.3.

1. DisjNPO does not have ≤pp,O
m -complete pairs.

2. NPO ∩ coNPO does not have ≤p,O
m -complete sets.

3. UPO has ≤p,O
m -complete sets.

3.2. DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 43

Remark 3.2.5 Without loss of generality, we may assume in the following proof that each
UP-set is accepted by infinitely many UP-machines in the standard enumeration M1,M2, . . . ,
i.e., more precisely, for each oracle D and each A ∈ UPD there are infinitely many i ∈ N+

such that (i) on every input x the computation MD
i (x) has at most one accepting path and (ii)

L(MD
i) = A. Note that typical standard enumerations satisfy this property.

Proof of Theorem 3.2.3 Choose some C ⊆ Σ∗ that is ≤p
m-complete for PSPACE and whose

elements all have odd length. Let e(0) = 2 and e(n+ 1) = 22e(n)
for n ∈ N. Define the following

sets for p ∈ P≥3 and a (possibly partial) oracle D.

ADp = {0e(pk) | k ≥ 1 and there is an even x ∈ D such that |x| = e(pk)} ∪ {0e(pk) | k ≥ 1}

BD
p = {0e(pk) | k ≥ 1 and there is an odd x ∈ D such that |x| = e(pk)}

These sets are clearly in NP. Note that if for each k ≥ 1 it holds

∃ an even x ∈ D ∩ Σe(pk) ⇔ ¬∃ an odd x ∈ D ∩ Σe(pk),

then ADp = BD
p and hence ADp ∈ NPD ∩ coNPD.

Note that throughout this proof we sometimes omit the oracles in the superscript, e.g., we
write NP or Ap instead of NPD or ADp . However, we do not do that in the “actual” proof but
only when roughly explaining ideas in order to convey intuition.

Preview of the Construction On the one hand, the construction tries to prevent that L(Mi)
and L(Mj) for i 6= j are disjoint. If this is not possible, then Mi and Mj inherently accept disjoint
sets. In this case, for a suitable p ∈ P≥3, the construction makes sure that Ap is in NP ∩ coNP
and does not ≤p

m-reduce to (L(Mi), L(Mj)). This prevents the existence of disjoint NP-pairs

that are ≤pp,O
m -hard for NPO ∩ coNPO.

On the other hand, the construction tries to prevent that Mi has the uniqueness property,
i.e., for all x the computation Mi(x) has at most one accepting path. If this is not possible,
then Mi inherently has the uniqueness property, which enables us to show that L(Mi) is in P
relative to the final oracle.

During the oracle construction we maintain a growing collection of properties that we demand
in the further construction. The collection is represented by a function t belonging to the set

T =
{
t : (N+)2 → P≥3 ∪ {0, 1} | dom(t) is finite, ∀x,y∈(N+)2

(
t(x) = t(y) ∈ P≥3

)
⇒ x = y,

and ∀(i,i)∈dom(t) t(i, i) ∈ {0, 1}
}

.

Note that the second of the three conditions can be equivalently expressed by saying that t is
injective on the set {x ∈ (N+)2 | t(x) > 1}. The last condition expresses that only pairs (i, j)
with i 6= j are mapped to some prime, i.e., t−1(P≥3) ⊆ {(i, j) ∈ N+ × N+ | i 6= j}.

An oracle w ∈ Σ∗ is t-valid for some t ∈ T if the following statements hold:

V1: For all (i, j) ∈ dom(t) with i 6= j and t(i, j) = 0 there exists z such that Mw
i (z) and Mw

j (z)
definitely accept.
(meaning: for all extensions of the oracle the pair (L(Mi), L(Mj)) is not a disjoint pair.)

V2: For all odd primes p ∈ ran(t)

1. Awp ∩Bw
p = ∅ and

2. for all k ≥ 1 with ∀z,|z|=e(pk) z < |w| there exists x ∈ w with |x| = e(pk).

44 Chapter 3. Separating Relativized Conjectures

(meaning: relative to the final oracle it holds Ap = Bp)

V3: For all (i, j) ∈ dom(t) with i = j and t(i, i) = 0 there exists z such that Mw
i (z) has at

least two paths that definitely accept.
(meaning: for all extensions of the oracle Mv

i violates the uniqueness property)

V4: If x < |w| and |x| is odd, then x ∈ w ⇔ x ∈ C.
(meaning: w and C coincide for words of odd length)

V5: If x ∈ w and |x| is even, then there exists n ≥ 1 such that |x| = e(n).
(meaning: w does not contain any words of even length except for the words of length
e(n) for some n)

This definition directly implies the following claim.

Claim 3.2.6 Let t, t′ ∈ T such that t′ is an extension of t. If w is t′-valid, then w is t-valid.

Claim 3.2.7 Let t ∈ T and u v v v w be oracles such that u and w are t-valid. Then v is
t-valid.

Proof The statement holds as v inherits the properties V1 and V3 from u and the properties
V2, V4, and V5 from w. 2

Claim 3.2.8 For every t ∈ T and every t-valid partial oracle w there exists b ∈ {0, 1} such that
wb is t-valid. More precisely, for z = |w| the following holds.

1. If |z| is odd, then the partial oracle wC(z) is t-valid.

2. If |z| is even, then the following holds.

(a) If |z| = e(n) for some n ∈ N and there exists no word x ∈ w of length |z|, then w1 is
t-valid.

(b) If (i) for all primes p ∈ ran(t) and all k ∈ N+ it holds z 6= 1e(p
k) or (ii) there exists

a word x ∈ w with |x| = |z|, then w0 is t-valid.

Proof Clearly V1 and V3 are not affected by extending the oracle by one bit.
1. If |z| is odd, then extending the oracle by one bit does not have any influence on both V2

and V5. Moreover, wC(z) trivially satisfies V4.
2. If |z| is even, then w0 and w1 trivially satisfy V4.
Let us prove statement 2a. The oracle w1 clearly satisfies V2.2. Let us assume that z

satisfies the conditions occurring in statement 2a. As there exists no word x ∈ w of length |z|,
w1 satisfies V2.1. As |z| = e(pk), V5 is satisfied by w1 as well. This proves statement 2a.

Finally, we prove statement 2b. Clearly Aw0
p ∩ Bw0

p = ∅ for all odd primes p ∈ dom(t) and
thus w0 satisfies V2.1. Furthermore, w0 trivially satisfies V5. By the requirements made for z
in statement 2b, w0 also satisfies V2.2, which completes the proof of statement 2b. 2

Oracle construction: Let T be an injective enumeration of (N+)2∪{(i, j, r) ∈ (N+)3 | i 6= j}
in an order having the property that for all i, j, r ∈ N+ with i 6= j the pair (i, j) appears earlier
than the triple (i, j, r). The elements of T should be considered as tasks. Note that during the
construction we will delete tasks from T . We proceed stepwise and let each step treat the first
task that still is in the current task list T and afterwards remove this and possibly other tasks
from T .

3.2. DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 45

Let t0 be the unique nowhere defined function in T and w0 = ε, which is t0-valid. Starting
with t = t0 and w = w0, we successively consider the tasks in T and treat a task by extending
the function t and the partial oracle w in an appropriate way: thus we construct a sequence of
partially defined oracles w0 vp w1 vp · · · and a sequence t0, t1, . . . of functions from T such that
for all i the oracle wi is ti-valid and ti+1 is an extension of ti. So for each task we strictly extend
the oracle and are allowed to add more requirements (by extending the “valid function”) that
have to be maintained in the further construction.

The final oracle is O =
⋃
i∈Nwi. It is totally defined, since each step strictly extends the

oracle.
We now describe step s > 0, which starts with some ts−1 ∈ T and a ts−1-valid oracle ws−1

and treats the first task that still is in T choosing an extension ts ∈ T of ts−1 and a ts-valid
ws wp ws−1. Let us recall that each task is immediately deleted from T after it is treated. We
study three cases depending on the form of the task that is treated in step s (it will be argued
later that the construction described in the following is indeed possible).

� task (i, j) with i 6= j: Let t′ = ts−1 ∪ {(i, j) 7→ 0}. If there exists a t′-valid partial oracle
v wp ws−1, then let ws be the minimal such oracle (with respect to the quasi-lexicographical
order of finite words2), let ts = t′, and remove all tasks (i, j, ·) from T . Otherwise, choose
p ∈ P≥3 − ran(ts−1) such that p > |ws−1| and let ts = ts−1 ∪ {(i, j) 7→ p} and ws = wb for
b ∈ {0, 1} such that ws is ts-valid. Note that such a bit b exists by Claim 3.2.8, since ws−1

is ts-valid by the choice of p.
(meaning: force L(MO

i)∩L(MO
j) 6= ∅ if possible; otherwise, choose a suitable prime p and

make sure that Ap = Bp with respect to the final oracle; corresponds to V1 and V2 in the
definition of t-valid)

� task (i, i): Let t′ = ts−1∪{(i, i) 7→ 0}. If there exists a t′-valid partial oracle v wp ws−1, then
let ws be the minimal such oracle and let ts = t′. Otherwise, let ts = ts−1 ∪ {(i, i) 7→ 1}
and ws = wb for b ∈ {0, 1} such that ws is ts-valid. Note that such a bit b exists by
Claim 3.2.8, since ws−1 is ts-valid.
(meaning: destroy the uniqueness property of Mi if possible; otherwise, define ts(i, i) = 1,
which indicates that Mi inherently has the uniqueness property; corresponds to V3 in the
definition of t-valid)

� task (i, j, r) with i 6= j: It holds ts−1(i, j) = p ∈ P≥3 (otherwise, the task (i, j, r) would
have been removed from the task list in the step treating the task (i, j)). Let ts = ts−1

and choose a ts-valid ws wp ws−1 such that for a suitable 0n at least one of the following
two assertions holds.

– 0n ∈ Awsp , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

– 0n ∈ Bws
p , Fwsr (0n) is definite, and Mws

j (Fwsr (0n)) definitely rejects.

(meaning: Fr does not realize a reduction Ap≤p
m(L(Mi), L(Mj)) relative to the final oracle)

Claim 3.2.9 For all s ≥ 1, the construction of ws and ts in step s is possible.

Proof For a contradiction, assume that the statement is wrong and choose the smallest step s
where the claim fails. There are two cases:

1. Step s treats a task (i, j) for i, j ∈ N+: Hence ts−1(i, j) is not defined, since it can only
be defined by the unique treatment of the task (i, j). Therefore, t′ can be defined as specified,

2Recall that this order coincides with the order “≤” for natural numbers when we identify finite words and
natural numbers in the way described in the preliminaries.

46 Chapter 3. Separating Relativized Conjectures

which shows that the construction in step s is possible (cf. the descriptions of the tasks of this
form above).

2. Step s treats a task (i, j, r) with i 6= j: Here ts = ts−1 and ts(i, j) = p ∈ P≥3, since
otherwise, the earlier task (i, j) would have removed (i, j, r). We argue that the choice of the
specified ts-valid ws is possible, which shows that the construction in step s is possible and which
contradicts the assumption.

Choose k large enough such that for n = e(pk)

� it holds n ≥ n0 where n0 is the number that Corollary 3.2.2 guarantees to exist when
applied for the parameters i, j, and r,

� there does not exist a word of length ≥ n which the oracle ws−1 is defined for, and

� e(pk + 1) > (nr + r)i+j + i+ j.

Choose the minimal ts-valid w′ w ws−1 that is defined for all words of length < n and undefined
for all words of length ≥ n (such a partially defined oracle w′ exists by Claim 3.2.8). By
Corollary 3.2.2 applied for i, j, r, n, and D := w′ ∪ C, there exist an even x ∈ Σn and an odd
y ∈ Σn such that at least one of the statements 1–3 in Corollary 3.2.2 holds.

If statement 1 holds, then define ws as the minimal partial oracle wp w′ that satisfies V4,
contains x, and is defined for all words of length ≤ (nr + r)i+j + i + j. Thus in particular,
ws = w′ ∪{x}∪ (C ∩Σ≤(nr+r)i+j+i+j) when interpreting w′ and ws as sets. Let us show that ws
is ts-valid. By e(pk + 1) > (nr + r)i+j + i+ j and ws ∩Σn = {x}, the oracle ws satisfies V2. By
definition, ws satisfies V4 and by |x| = n = e(pk) it satisfies V5. The remaining conditions V1
and V3 are not affected by extending the oracle w′ to ws. Hence ws is ts-valid. Since x ∈ ws,
it holds 0n ∈ Awsp . By statement 1 of Corollary 3.2.2, the computation M

D∪{x}
i (F

D∪{x}
r (0n))

rejects. As ws is defined for all words of length ≤ (nr + r)i+j + i + j and agrees with D ∪ {x}
for all these words, the computation Fwsr (0n) is definite and the computation Mws

i (Fwsr (0n))
definitely rejects.

Thus we have seen that if statement 1 holds, then the construction in step s is possible. For
statement 2 this is shown analogously.

It suffices to prove that statement 3 cannot hold. Otherwise,

FD∪{x,y}r (0n) ∈ L(M
D∪{x,y}
i) ∩ L(M

D∪{x,y}
j).

Consider the step s′ that treats the task (i, j), i.e., s′ is the minimal number for which ts′(i, j) is
defined and it holds ts′ = ts′−1∪{(i, j) 7→ p}. Thus we have s′ ≤ s−1 and ws′−1 vp ws′ v ws−1 v
w′. As w′ is ts-valid, it is ts′−1-valid by Claim 3.2.6. Choose the minimal v wp w′ that satisfies V4,
that contains x and y, and that is defined for all words of length ≤ (nr + r)i+j + i+ j. Hence in
particular, when interpreting w′ and v as sets, we have that v = w′∪{x, y}∪(C∩Σ≤(nr+r)i+j+i+j)
and thus v and D ∪ {x, y} agree on all words of length ≤ (nr + r)i+j + i+ j, which shows that
both Mv

i (F vr (0n)) and Mv
j (F vr (0n)) definitely accept. This proves that if v is ts′−1-valid, then it

is even t′-valid for t′ = ts′−1 ∪ {(i, j) 7→ 0}. Let us show that v is ts′−1-valid (and thus t′-valid).
As e(pk + 1) > (nr + r)i+j + i+ j and p /∈ ran(ts′−1), the oracle v satisfies V2. By definition, v
satisfies V4 and by |x| = |y| = n = e(pk) it satisfies V5. The remaining conditions V1 and V3
are not affected by extending w′ to v. Hence v is ts′−1-valid and thus t′-valid. Therefore, step
s′ defines ts′ = t′, which leads to a contradiction as ts(i, j) = p 6= 0 = t′(i, j) = ts′(i, j). This
shows that statement 3 cannot hold.

Thus we have shown that the choice of a ts-valid ws with the properties required in step s
of the above construction is possible, which contradicts the assumption and finishes the proof
of Claim 3.2.9. 2

3.2. DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 47

Claim 3.2.10 DisjNPO does not contain pairs that are ≤pp,O
m -hard for NPO ∩ coNPO.

Proof Assume there exists a pair (L(MO
i), L(MO

j)) ∈ DisjNPO that is ≤pp,O
m -hard for NPO ∩

coNPO. From L(MO
i) ∩ L(MO

j) = ∅ it follows that for all s there is no z such that Mws
i (z) and

Mws
j (z) definitely accept. Hence ts(i, j) 6= 0 for all s for which ts(i, j) is defined. Let s be the

step that treats the task (i, j). Thus by construction, for all s′ ≥ s it holds ts′(i, j) = p for some
p ∈ P≥3, which by V2 implies AOp = BO

p ∈ NPO ∩ coNPO. Thus by assumption, there exists an

r ∈ N+ such that (AOp , B
O
p)≤pp,O

m (L(MO
i), L(MO

j)) via FOr . Let s′ be the step that treats the
task (i, j, r). This step makes sure that for a suitable 0n at least one of the following statements
holds:

� 0n ∈ Aws′p , F
ws′
r (0n) is definite, and M

ws′
i (F

ws′
r (0n)) definitely rejects.

� 0n ∈ Bws′
p , F

ws′
r (0n) is definite, and M

ws′
j (F

ws′
r (0n)) definitely rejects.

Note that by the definition of the sets A·p and B·p, if 0nA
ws′
p (resp., 0n ∈ Bws′

p), then 0n ∈ Avp
(resp., 0n ∈ Bv

p) for all (finite or infinite) extensions v of ws′ . Thus we obtain that (i) 0n ∈ AOp
and MO

i (FOr (0n)) rejects or (ii) 0n ∈ BO
p and MO

j (FOr (0n)) rejects, which contradicts the choice
of r and completes the proof. 2

The proof of the following claim is based on a proof by Rackoff [Rac82, Theorem 4].

Claim 3.2.11 PO = UPO.

Proof It is known that PO
′ ⊆ UPO

′
for all oracles O′. We prove UPO ⊆ PO. Let L ∈ UPO and

choose i ∈ N+ such that L = L(MO
i) and MO

i has the uniqueness property, i.e., for all x ∈ Σ∗

the computation MO
i (x) has at most one accepting path. Such a number i exists according

to Remark 3.2.5. Moreover, choose the smallest s such that ts(i, i) is defined and note that
ts(i, i) = 1 (otherwise, it would hold ts(i, i) = 0 and thus by construction, MO

i would not have
the uniqueness property).

Let x ∈ Σ∗. If there exists an oracle D such that P is an accepting path of MD
i (x), then we

call P a potential accepting path of Mi(x).
For sets Q,U,W,W ′ ⊆ Σ∗ with W ∪ W ′ ⊆ U and W ∩ W ′ = ∅ we say that P respects

(Q,U,W,W ′) if it answers yes to all questions in C∪Q∪W , no to all questions in W ′, and no to
all questions not in C ∪Q∪U . Note that by the definition of potential accepting paths, queries
in U − (W ∪W ′) are answered consistently on the path P . Moreover, P all (resp., P yes or P no)
denotes the set of all (resp., all positively answered or all negatively answered) queries of P .

Consider the following algorithm that we will prove to decide L.

1. Input: x ∈ Σ∗

2. Let m = |x|.
3. If m < 4, mi + i > 2m, or ws−1 is defined for 0log m:

4. If x ∈ L, then Accept, else Reject.

5. Let n be the unique number with e(n− 1) ≤ log m < e(n).
6. Let Q = {q ∈ O | |q| even and |q| < e(n)}.
7. If n = pk for some k ≥ 1 and some odd prime p ∈ ran(ts−1):
8. Let U = {z ∈ Σ∗ | |z| = e(n) and z odd} and W = W′ = ∅.
9. If SEARCH returns True, then Accept.

10. Let U = {z ∈ Σ∗ | |z| = e(n) and z even} and W = W′ = ∅.
11. If SEARCH returns True, then Accept.

12. Reject.

48 Chapter 3. Separating Relativized Conjectures

13. If n 6= pk for all k ≥ 1 and all odd primes p ∈ ran(ts−1):
14. Let U = {z ∈ Σ∗ | |z| = e(n)} and W = W′ = ∅.
15. If SEARCH returns True, then Accept.

16. Reject.

17. subroutine SEARCH

18. For j = 0 to 4(mi + i):
19. If there is no potential accepting path of Mi(x) respecting (Q, U, W, W′),

then return False, else let P be such a path.
20. For each z ∈ Pall with |z| = e(n):
21. Ask whether z ∈ O.

22. If z ∈ O− U, then return False.

23. If z ∈ O ∩ U, then insert z into W.

24. If z ∈ O ∩ U, then insert z into W′.
25. If P still respects (Q, U, W, W′), then return True.

26. Return False.

Note that the condition m < 4 in line 3 is necessary as for m < 4 there does not exist an
n ∈ N+ with e(n− 1) ≤ logm, which is introduced in line 5.

We argue that the algorithm can be implemented by a polynomial-time oracle Turing machine
with oracle O and observe that it suffices to argue for the lines 6, 7–12, 13–16, and 17–26. So we
consider the algorithm on some input x ∈ Σ∗ of length m ∈ N and assume that the algorithm
does not terminate in line 4, but enters line 6.

Line 6: If this line is executed, then n has been defined and it holds e(n−1) ≤ logm. Recall
that due to V4 and V5 in the definition of t-valid each word in O−C is of length e(j) for some
j. Thus the set Q consists of all words in O that are of length e(j) for some j ∈ [0, n− 1]. From
e(n − 1) ≤ logm we obtain |

⋃n−1
j=0 Σe(j)| ≤

∑n−1
j=0 2e(j) < 2e(n−1)+1 ≤ 2m, which shows that a

polynomial-time oracle Turing machine with oracle O can ask “q ∈ O?” for all q ∈
⋃n−1
j=0 Σe(j)

and thus compute Q.
Lines 7–12 and 13–16: Note that we introduce the set U in the lines 8, 10, and 14 only for

better readability. These sets never have to be computed or stored explicitly, since it can be
easily checked whether some word is in the respective set or not.

Hence it remains to argue for the lines 17–26, i.e., for subroutine SEARCH. Note that all
words whose membership in C, Q, U , W , and W ′ is tested in these lines are of length at most
mi + i (all these words are queried by some potential accepting path P of Mi(x) which is of
length at most mi + i). Thus testing the membership of words in Q, U , W , and W ′ in lines 19,
22, 23, 24, and 25 is possible in polynomial time in m = |x| without oracle access (as for W and
W ′ observe that |W | and |W ′| are bounded by (4(mi+ i)+1) · (mi+ i) throughout the execution
of the algorithm as there are 4(mi+ i)+1 iterations of the loop starting in line 18 and each path
P considered in the loop is of length ≤ mi+i). Due to that and C ∈ PSPACE, we can determine
in polynomial space in |x| without oracle access (whether there exists) a potential accepting path
of Mi(x) that respects (Q,U,W,W ′). As PSPACE ⊆ PC ⊆ PO and FPSPACE ⊆ FPC ⊆ FPO,
the subroutine SEARCH only requires polynomial time in |x| when having access to the oracle
O, which completes the proof of the assertion that the above algorithm can be implemented by
a deterministic polynomial-time oracle Turing machine with access to the oracle O.

Before discussing the question of which language the algorithm accepts, we make some
general observations.

Whenever the algorithm executes some line i ≥ 6, it holds
mi + i ≤ 2m < 22logm+1 ≤ 22e(n)

= e(n+ 1).
(3.1)

3.2. DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 49

Recall that O consists of C and elements of length e(j) for some j ∈ N. Due to that and (3.1)
we obtain the following statement.

Whenever the algorithm executes some line i ≥ 6, it holds
O ∩ Σ≤m

i+i =
(
C ∩ Σ≤m

i+i
)
∪Q ∪

(
O ∩ Σe(n)

)
.

(3.2)

As a last observation, due to the lines 23–24 and the choice of U we have the following.

Throughout the execution of the subroutine SEARCH it always holds
W ∪W ′ ⊆ U ⊆ Σe(n) ∧W ⊆ O ∧W ′ ⊆ O.

(3.3)

Let us now prove that the algorithm indeed accepts L. We start with showing the following
implication: if the algorithm accepts some input x, then x ∈ L. This is true if the algorithm
accepts in line 4. So we now consider the case that it accepts in one of the lines 9, 11, and 15.
Then in the corresponding line the respective call of the subroutine SEARCH returns True. Let
us have a closer look at this call of SEARCH in the following.

Consider the iteration of the loop 18–25 that in line 25 returns True. Hence, when the latter
line is executed, it holds that the current potential accepting path P respects (Q,U,W,W ′). Let
q be some query asked by P and note that thus |q| ≤ mi + i. We study several cases:

� If |q| < e(n), then the answer to q on the path P is (C ∪ Q)(q) (by the definition of
“respects” and (3.3)) and it holds (C ∪Q)(q) = O(q) (by (3.2)).

� If |q| > e(n), then the answer to q on the path P is C(q) (by the definition of “respects”,
Q ⊆ Σ≤e(n−1), and (3.3)) and it holds C(q) = O(q) (by Q ⊆ Σ≤e(n−1) and (3.2)).

� If |q| = e(n) and q ∈W , then the answer to q on the path P is 1 = O(q) (by the definition
of “respects” and (3.3)).

� If |q| = e(n) and q ∈W ′, then the answer to q on the path P is 0 = O(q) (by the definition
of “respects” and (3.3)).

� If |q| = e(n) and q ∈ O − U , then by the definition of “respects” and C ∪ Q ⊆ O, the
answer to q on the path P is 0, which equals O(q).

By the lines 22–24 and since the algorithm returns True in line 25, we have P all∩Σe(n) ⊆W∪W ′∪
(O−U), which shows that the cases (|q| = e(n)∧q ∈ U−(W ∪W ′)) and (|q| = e(n)∧q ∈ O−U)
are impossible (recall that W ∪W ′ ⊆ U by (3.3)). Hence in the aforementioned execution of
line 25, P is an accepting path of MO

i (x), which implies x ∈ L. This shows that if the algorithm
accepts x, then x ∈ L.

It remains to argue that if x ∈ L, then the algorithm accepts x. Let x ∈ L. If the algorithm
on input x terminates in line 4, then the algorithm accepts. Thus we assume from now on that
mi + i ≤ 2m and ws−1 is undefined for all words of length ≥ logm, where the latter and the
choice of n in line 5 imply in particular that ws−1 is undefined for all words of length e(n). We
consider two cases:

Case 1: 4(mi + i) ≥ 2e(n).
Assume that the algorithm does not accept, i.e., it rejects. We show that this leads to a
contradiction. The assumption that the algorithm does not stop in line 4 implies that it stops
in one of the lines 12 or 16. Note that if the algorithm stops in line 12, then 0e(n) /∈ AOp or

0e(n) /∈ BO
p since p ∈ ran(ts−1)∩ P≥3 and hence AOp ∩BO

p = ∅ by V2.1. We have to consider the
following cases.

50 Chapter 3. Separating Relativized Conjectures

Case 1a: The algorithm stops in line 12 and 0e(n) /∈ AOp . Here we continue the argumentation
by choosing U = {z ∈ N | |z| = e(n) and z odd} and having a closer look at the call of SEARCH
in line 9, which returns False.

Case 1b: The algorithm stops in line 12 and 0e(n) /∈ BO
p . Here we continue the argumentation

by choosing U = {z ∈ N | |z| = e(n) and z even} and having a closer look at the call of SEARCH
in line 11, which returns False.

Case 1c: The algorithm stops in line 16. Here we continue the argumentation by choosing
U = {z ∈ N | |z| = e(n)} and having a closer look at the call of SEARCH in line 15, which
returns False.

We argue for the Cases 1a, 1b, and 1c in parallel. Note that in each case it holdsO∩Σe(n) ⊆ U .
As x ∈ L, the computation MO

i (x) has an accepting path P ′. Then P ′ is a potential accepting
path of Mi(x). Let q be an arbitrary query asked on the path P ′. Thus |q| ≤ mi + i. Studying
several cases, we show that P ′ respects (Q,U,W,W ′) whenever we reach line 19.

� If q ∈ C ∪Q ∪W , then by C ∪Q ⊆ O and (3.3), it holds O(q) = 1 and hence the answer
to the query q on path P ′ is 1.

� If q ∈W ′, then (3.3) implies O(q) = 0 and thus the answer to the query q on path P ′ is 0.

� If q /∈ C ∪Q∪U , then by (3.2) and O ∩Σe(n) ⊆ U , it holds O(q) = 0 and thus the answer
to the query q on path P ′ is 0.

Hence the considered call of SEARCH cannot return False in line 19. Moreover, by O∩Σe(n) ⊆ U ,
it cannot return False in line 22. Thus the considered call of SEARCH returns False in line 26.
Then in particular, the loop 18–25 is executed exactly 4(mi + i) + 1 times and in each execution
of the loop 18–25 the value of |W ∪ W ′| is increased by at least 1 (otherwise, the path P
chosen in line 19 still respects (Q,U,W,W ′) in line 25 and the subroutine returns True). Hence,
when reaching line 26 it holds |W ∪ W ′| > 4(mi + i) ≥ 2e(n) = |Σe(n)|, in contradiction to
W ∪W ′ ⊆ Σe(n), which holds according to (3.3).

Case 2: 4(mi + i) < 2e(n).
Define the following predicate.

All potential accepting paths P1, P2 of Mi(x) that respect (Q,U,W,W ′) and
that satisfy P all

1 ∩ (U − (W ∪W ′)) 6= ∅ and P all
2 ∩ (U − (W ∪W ′)) 6= ∅ have a

query from U − (W ∪W ′) in common, i.e., P all
1 ∩ P all

2 ∩ (U − (W ∪W ′)) 6= ∅.
(3.4)

We prove the following assertions.

If n = pk for p ∈ ran(ts−1)∩P≥3 and k ≥ 1, U = {z | |z| = e(n) and z odd}, W ⊆ O∩U ,
W ′ ⊆ O ∩ U , and 4(mi + i) < 2e(n), then (3.4) holds.

(3.5)

If n = pk for p ∈ ran(ts−1)∩P≥3 and k ≥ 1, U = {z | |z| = e(n) and z even}, W ⊆ O∩U ,
W ′ ⊆ O ∩ U , and 4(mi + i) < 2e(n), then (3.4) holds.

(3.6)

If n 6= pk for all p ∈ ran(ts−1) ∩ P≥3 and all k ≥ 1, U = {z | |z| = e(n)}, W ⊆ O ∩ U ,
W ′ ⊆ O ∩ U , and 4(mi + i) < 2e(n), then (3.4) holds.

(3.7)

By symmetry, if suffices to prove (3.5) and (3.7). As (3.7) can be proven in almost the same
way as (3.5) (as a matter of fact, in an even simpler way), it is sufficient to prove (3.5) only.
Suppose there exist potential accepting paths P1, P2 of Mi(x) that respect (Q,U,W,W ′), that
satisfy P all

1 ∩ (U − (W ∪W ′)) 6= ∅ and P all
2 ∩ (U − (W ∪W ′)) 6= ∅, and that do not have a query

from U − (W ∪W ′) in common. We will lead this assumption to a contradiction by proving
that then the construction would have destroyed the uniqueness property of Mi and thus chosen
ts(i, i) to be 0.

3.2. DisjNP, NP ∩ coNP, and ¬UP Relative to an Oracle 51

First observe that by the above assumption, the paths P1 and P2 are distinct.
Let Y = (P yes

1 ∪ P yes
2) ∩ Σ≥e(n) = (P yes

1 ∪ P yes
2) ∩ Σ[e(n),mi+i] and N = (P no

1 ∪ P no
2) ∩

Σ≥e(n) = (P no
1 ∪P no

2)∩Σ[e(n),mi+i]. As P1 and P2 are potential accepting paths of Mi(x) it holds
|N | ≤ `(N) ≤ 2 · (mi + i). As P1 and P2 respect (Q,U,W,W ′), W ⊆ U , and Q ⊆ Σ<e(n), we
have Y ⊆ U ∪ C.

Let us argue for Y ∩ N = ∅. Assume there exists some q ∈ Y ∩ N . Hence |q| ≥ e(n). If
|q| > e(n), then q ∈ Y ⊆ U ∪C implies q ∈ C, which contradicts q ∈ N since both paths respect
(Q,U,W,W ′). So we assume |q| = e(n), which implies q /∈ C. We obtain:

� If q /∈ U , then by Y ⊆ U ∪ C and q /∈ C, we obtain q /∈ Y , a contradiction.

� If q ∈ W , then q /∈ P no
1 and q /∈ P no

2 since both P1 and P2 respect (Q,U,W,W ′). This
contradicts q ∈ N .

� If q ∈ W ′, then q /∈ P yes
1 and q /∈ P yes

2 since both P1 and P2 respect (Q,U,W,W ′). This
contradicts q ∈ Y .

� Assume q ∈ U − (W ∪W ′). As both P1 and P2 are potential accepting paths of Mi(x), it
holds q /∈ P yes

1 ∩P no
1 and q /∈ P yes

2 ∩P no
2 . Due to that and q ∈ Y ∩N it holds q ∈ P yes

1 ∩P no
2

or q ∈ P no
1 ∩ P

yes
2 . Hence P1 and P2 have a query from U − (W ∪W ′) in common, which

contradicts the assumption.

This shows Y ∩N = ∅.
Let u w ws−1 such that u(z) = O(z) for all words z with |z| < e(n) and u is undefined for

all other words (recall that ws−1 is undefined for all words of length e(n) as was observed in the
last paragraph before we start to consider Case 1). Note ws−1 v u v ws′ for a sufficiently large
s′ > s− 1. By construction, ws′ is ts′-valid and thus by Claim 3.2.6, it also is ts−1-valid. Hence
Claim 3.2.7 yields that u is ts−1-valid. Note that it holds u = O ∩ {w ∈ Σ∗ | w < |u|} (i.e., u is
a prefix of O).

Consider the minimal v wp u that satisfies V4, that contains all words in Y , that contains

at least one word from U − N (such a word exists since |N | ≤ 2(mi + i), |U | = 2e(n)−1, and
4(mi + i) < 2e(n), where the latter condition holds by the assumption we have made in the
beginning of Case 2), and that is defined for all words of length ≤ max(mi + i, e(n)). The
non-emptiness of U −N is the reason for the distinction of the Cases 1 and 2.

Let us prove that v is ts−1-valid. The oracle v satisfies V2.1 and V5, since u satisfies V2.1
and V5 and the words of even length in v − u are all in U = {z | |z| = e(n) and z odd} (recall
Y ⊆ U ∪ C). It also satisfies V2.2, since u satisfies V2.2, v contains at least one word from
U −N , and it holds e(n+ 1) > max(mi + i, e(n)) by (3.1). Finally, V1 and V3 are not affected
by extending the oracle. Thus v is ts−1-valid.

We have the following cases for queries q on P1 and P2 and their respective answers:

� If |q| < e(n), then as P1 and P2 respect (Q,U,W,W ′), the answer to the query q on path

P1 or P2 is (C ∪Q)(q)
(3.2)
= O(q) = u(q) = v(q).

� If |q| ≥ e(n) and q ∈ Y , then by the choice of Y and v, the answer is 1 = v(q).

� If |q| ≥ e(n) and q ∈ N , then by the choice of N as well as Y ∩N = ∅, the answer to queries
q on the paths P1 and P2 is 0 at all times. As v ∩N = ∅ (it holds that (i) Y ∩N = ∅ and
(ii) both P1 and P2 respect (Q,U,W,W ′), which implies N ∩ C = ∅), we have v(q) = 0.

This shows that P1 and P2 are two different accepting paths of the computation Mv
i (x). Both

paths are definitely accepting, since v is defined for all words of length ≤ mi + i. Thus v is

52 Chapter 3. Separating Relativized Conjectures

t′-valid for t′ = ts−1 ∪ {(i, i) 7→ 0}. Hence step s defines ts = t′, which contradicts ts(i, i) = 1.
This proves (3.5).

We continue to argue that the algorithm accepts x. For that purpose we study two subcases.
Case 2a: Assume n = pk for some p ∈ ran(ts−1) ∩ P≥3 and k ≥ 1. Then AOp ∩ BO

p = ∅
due to V2.1. Without loss of generality, 0e(n) /∈ AOp (otherwise, 0e(n) /∈ BO

p and it can be
argued symmetrically), i.e., O does not contain an even word of length e(n). Consider the
lines 8 and 9 and the respective call of the subroutine SEARCH. This means U = {z ∈ N |
|z| = e(n) and z odd}. Hence O − U does not contain any words of length e(n) and thus the
aforementioned call of SEARCH does not return False in line 22. Since x ∈ L, there exists an
accepting path P̃ of MO

i (x).

Let us prove next that for all W ⊆ O ∩U and W ′ ⊆ O ∩U the (potential accepting) path P̃
respects (Q,U,W,W ′). Let q ∈ P̃ all, W ⊆ O ∩ U , and W ′ ⊆ O ∩ U .

� If q ∈ C ∪Q ∪W , then the answer to q on P̃ is yes, since P̃ is a path of the computation
MO
i (x) and C ∪Q ∪W ⊆ O.

� If q ∈ W ′, then the answer to q on P̃ is no, since P̃ is a path of the computation MO
i (x)

and W ′ ⊆ O.

� Assume q /∈ C ∪ Q ∪ U . As we observed above that (O − U) ∩ Σe(n) = ∅, we obtain by
(3.2) that O ∩ Σ≤m

i+i ⊆ C ∪Q ∪ U and hence q /∈ O. Thus the answer to q on the path
P̃ is no.

During the execution of SEARCH it always holds that W ⊆ O ∩ U and W ′ ⊆ O ∩ U (cf.
(3.3)). Thus each time we reach line 19 it holds that P̃ is a potential accepting path respecting
(Q,U,W,W ′). Hence in each iteration of the loop 18–25 line 19 does not return False. Let us
consider an arbitrary iteration of the loop. In line 19 some potential accepting path P1 that
respects (Q,U,W,W ′) is chosen.

� If P all
1 ∩ (U − (W ∪ W ′)) = ∅ during the execution of line 19, then P1 still respects

(Q,U,W,W ′) when reaching line 25 and hence SEARCH returns True.

� Otherwise, we have P all
1 ∩ (U − (W ∪W ′)) 6= ∅ during the execution of line 19 and by

(3.5), for each potential accepting path P2 that respects (Q,U,W,W ′) and that satisfies
P all

2 ∩ (U − (W ∪ W ′)) 6= ∅ the paths P1 and P2 have a query ∈ U − (W ∪ W ′) in
common. This query is inserted into W or W ′ in one of the lines 23 and 24, and thus
|P all

2 ∩ (U − (W ∪W ′))| is decreased by at least 1 in in the iteration chosen above.

Therefore, if SEARCH does not return True within mi + i iterations of the loop 18–25, then
after this number of iterations all potential accepting paths P2 that respect (Q,U,W,W ′) satisfy
P all

2 ∩ (U − (W ∪W ′)) = ∅. Moreover, there exists at least one such path, namely P̃ , which is
the reason why the next iteration returns True in line 25. This implies that the loop returns
True within mi + i+ 1 iterations, which shows that the algorithm accepts in line 9.

Case 2b: Assume n 6= pk for all p ∈ ran(ts−1) ∩ P≥3 and all k ≥ 1. Consider the lines 14
and 15 (here U = Σe(n)). Due to the choice of U , the subroutine SEARCH does not return False
in line 22. Since x ∈ L, there exists an accepting path P̃ of MO

i (x).
In a similar, but even simpler way than in Case 2a it can be proven that for all W ⊆ O ∩ U

and W ′ ⊆ O ∩ U the (potential accepting) path P̃ respects (Q,U,W,W ′).
In order to complete the proof that also in the present case the algorithm accepts, it suffices

to copy the corresponding part of the proof in Case 2a and replace (3.5) with (3.7). This
completes the proof of Claim 3.2.11. 2

Now the proof of Theorem 3.2.3 is complete. 2

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 53

3.3 DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle

As the title suggests, in this section we construct an oracle relative to which DisjNP∧UP∧NP∩
coNP∧¬SAT holds. As we have already motivated and discussed this oracle in the introduction,
we only add one more aspect here: among others, the oracle shows that there are no relativizable
proofs for the implication NP∩coNP⇒ SAT. Recently Fabian Egidy, Anton Ehrmanntraut, and
Christian Glaßer [unpublished, private communication] have constructed several oracles among
which there is one illustrating that neither the converse of the aforementioned implication can
be proven solely exploiting relativizable proof techniques, i.e., it holds SAT∧¬NP∩coNP relative
to their oracle3. Thus the conjectures SAT and NP ∩ coNP are independent in the sense that it
does not hold that one of the conjectures implies the other one relative to all oracles.

Theorem 3.3.1 There exists an oracle O such that the following statements hold:

1. DisjNPO does not contain pairs that are ≤p,O
m -hard for UPO ∩ coUPO.

2. Each non-empty L ∈ NPO has PO-optimal proof systems.

3. UPO does not contain ≤p,O
m -complete problems.

This implies the subsequent corollary.

Corollary 3.3.2 There exists an oracle O such that the following statements hold:

1. DisjNPO does not contain ≤pp,O
m -complete pairs.

2. Each non-empty L ∈ NPO has PO-optimal proof systems.

3. UPO does not contain ≤p,O
m -complete problems.

4. NPO ∩ coNPO does not contain ≤p,O
m -complete problems.

Remark 3.3.3 Without loss of generality, we may assume in the following proof that each
UP-set is accepted by infinitely many UP-machines in the standard enumeration M1,M2, . . . ,
i.e., more precisely, for each oracle D and each A ∈ UPD there are infinitely many i ∈ N+

such that (i) on every input x the computation MD
i (x) has at most one accepting path and (ii)

L(MD
i) = A. Note that typical standard enumerations satisfy this property.

Proof of Theorem 3.3.1 Let D be a (possibly partial) oracle, p ∈ P≡3 := P∩{4k+3 | k ∈ N},
and q ∈ P≡1 := P ∩ {4k + 1 | k ∈ N} (note that P≡3 and P≡1 are both infinite sets). We define

ADp := {0pk | k ∈ N+,∃
x∈Σpk

x ∈ D and x odd} ∪ {0pk | k ∈ N+}

BD
p := {0pk | k ∈ N+,∃

x∈Σpk
x ∈ D and x even}

CDq := {0qk | k ∈ N+,∃
x∈Σqk

x ∈ D}

Note that ADp , B
D
p ∈ NPD and ADp = BD

p if |Σpk ∩ D| = 1 for each k ∈ N+. In that case

ADp ∈ UPD ∩ coUPD. Moreover, CDq ∈ UPD if |Σqk ∩D| ≤ 1 for each k ∈ N+.
Note that throughout this proof we sometimes omit the oracles in the superscript, e.g., we

write NP or Ap instead of NPD or ADp . However, we do not do that in the “actual” proof but only
when explaining ideas in a loose way in order to convey the intuition behind the occasionally
rather technical arguments.

3Indeed, even DisjCoNP ∧ ¬NP ∩ coNP holds relative to the oracle.

54 Chapter 3. Separating Relativized Conjectures

For i ∈ N+ and x, y ∈ N we write c(i, x, y) := 〈0i, x, 0|x|i+i, 0|x|i+i, y, y〉. Note that |c(i, x, y)|
is even, polynomially bounded in |i|+ |x|+ |y|, and by the properties of the pairing function 〈·〉,

∀i∈N+,x,y∈N |c(i, x, y)| > 4 ·max(|x|i + i, |y|). (3.8)

Claim 3.3.4 ([DG19]) Let w ∈ Σ∗, i ∈ N+, and x ∈ N. If c(i, x, y) ≤ |w| for some y ∈ N,
then the following holds.

1. Fwi (x) is definite and Fwi (x) < |w|.

2. For all v w w, it holds (Fwi (x) ∈ CANw ⇔ Fwi (x) ∈ CAN v).

Proof As the running time of Fwi (x) is bounded by |x|i + i < |c(i, x, y)| < c(i, x, y) ≤ |w|, the
computation Fwi (x) is definite and its output is < |w|. Hence 1 holds. Consider 2. It suffices to
show that CAN v(q) = CANw(q) for all q < |w| and all v w w. This holds by Lemma 3.1.1. 2

Preview of the Construction We sketch some of the basic ideas our construction uses.

1. For all positive and distinct i and j the construction tries to achieve that (L(Mi), L(Mj))
is not a disjoint NP-pair. If this is not possible, then (L(Mi), L(Mj)) inherently is a
disjoint NP-pair. Once we know this, we choose some prime p ∈ P≡3, ensure Ap, Bp ∈ UP,
Ap = Bp, and thus Ap ∈ UP ∩ coUP in the further construction, and diagonalize against
all FP-functions such that Ap is not ≤p

m-reducible to (L(Mi), L(Mj)).

2. For all i ≥ 1 the construction intends to make sure that Fi is not a proof system for CAN .
If this is not possible, then Fi inherently is a proof system for CAN . Then we start to
encode the values of Fi into the oracle, which will allow us to define a proof system that
simulates all others relative to the oracle. However, it is important to also allow encodings
for functions that are not known to be proof systems for CAN yet. Thus the final oracle
will also contain encodings for functions that are not proof systems for CAN .

3. For all i ≥ 1 the construction tries to ensure that Mi is not a UP-machine. In case this is
impossible, we know that Mi inherently is a UP-machine, which enables us to diagonalize
against all FP-functions making sure that Cq for some q ∈ P≡1 that we choose is not
reducible to L(Mi).

During the construction we maintain a growing collection of requirements that is specified
by a partial function belonging to the set

T =
{
t : N+ ∪ (N+)2 → Z | dom(t) is finite, t is injective on its support,

� t(N+) ⊆ {0} ∪ N+

� t({(i, i) | i ∈ N+}) ⊆ {0} ∪ {−q | q ∈ P≡1}

� t({(i, j) ∈ (N+)2 | i 6= j}) ⊆ {0} ∪ {−p | p ∈ P≡3}
}

.

A partial oracle w ∈ Σ∗ is called t-valid for t ∈ T if it satisfies the following requirements.

V1 For all i ∈ N+ and all x, y ∈ N, if c(i, x, y) ∈ w, then Fwi (x) = y ∈ CANw.
(meaning: if the oracle contains the codeword c(i, x, y), then Fwi (x) outputs y and y ∈
CANw; hence c(i, x, y) ∈ w is a proof for y ∈ CANw.)

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 55

V2 For all distinct i, j ∈ N+ with t(i, j) = 0 there exists x such that Mw
i (x) and Mw

j (x)
definitely accept.
(meaning: for every extension of the oracle, (L(Mi), L(Mj)) is not a disjoint NP-pair.)

V3 For all distinct i, j ∈ N+ with t(i, j) = −p for some p ∈ P≡3 and each k ∈ N+ it holds (i)

|Σpk ∩ w| ≤ 1 and (ii) if w is defined for all words of length pk, then |Σpk ∩ w| = 1.
(meaning: if t(i, j) = −p, then ensure Ap, Bp ∈ UP, Ap = Bp, and thus Ap ∈ UP ∩ coUP
relative to the final oracle.)

V4 For all i ∈ N+ with t(i) = 0 there exists x such that Fwi (x) is definite and ∀vww Fwi (x) /∈
CAN v.
(meaning: for every extension of the oracle, Fi is not a proof system for CAN .)

V5 For all i ∈ N+ and x ∈ N with 0<t(i)≤c(i, x, Fwi (x))< |w| it holds c(i, x, Fwi (x)) ∈ w.
(meaning: if t(i) > 0, then from t(i) on, we encode the values of Fi into the oracle.
Note that V5 is not in contradiction to V3 or V7 as |c(·, ·, ·)| is even.)

V6 For all i ∈ N+ with t(i, i) = 0 there exists x such that Mw
i (x) is definite and has two

accepting paths.
(meaning: for every extension of the oracle, Mi is not a UP-machine.)

V7 For all i ∈ N+ with t(i, i) = −q ∈ P≡1 and each k ∈ N+ it holds |Σqk ∩ w| ≤ 1.
(meaning: if t(i, i) = −q, ensure that Cq is in UP.)

The subsequent claim follows directly from the definition of t-valid.

Claim 3.3.5 Let t, t′ ∈ T such that t′ is an extension of t. For all oracles w ∈ Σ∗, if w is
t′-valid, then w is t-valid.

Claim 3.3.6 Let t ∈ T and u, v, w ∈ Σ∗ such that u v v v w and both u and w are t-valid.
Then v is t-valid.

Proof The oracle v satisfies V2, V4, and V6, since u satisfies these conditions. Moreover, v
satisfies V3 and V7 as w satisfies these conditions.

Let i ∈ N+ and x, y ∈ N such that c(i, x, y) ∈ v. Then c(i, x, y) ∈ w and as w is t-valid, we
obtain by V1 that Fwi (x) = y ∈ CANw. Claim 3.3.4 yields that F vi (x) is definite and F vi (x) ∈
CAN v ⇔ F vi (x) ∈ CANw. This yields F vi (x) = Fwi (x) = y and CAN v(y) = CANw(y) = 1.
Thus v satisfies V1.

Now let i ∈ N+ and x ∈ N such that 0 < t(i) ≤ c(i, x, F vi (x)) < |v|. Again, by Claim 3.3.4,
F vi (x) is definite and thus F vi (x) = Fwi (x). As |v| ≤ |w| and w is t-valid, we obtain by V5
that c(i, x, F vi (x)) = c(i, x, Fwi (x)) ∈ w. Since v v w and |v| > c(i, x, F vi (x)), we obtain
c(i, x, F vi (x)) ∈ v, which shows that v satisfies V5. 2

Oracle Construction Let T be an injective enumeration of
⋃3
i=1(N+)i having the property

that for all i, j, r ∈ N+ the pair (i, j) appears earlier than the triple (i, j, r). Each element of⋃3
i=1(N+)i is considered as a task. We treat the tasks in the order specified by T and after

treating a task we remove it and possibly other tasks from T and continue with the next task
that still is in T (i.e., the first task of the current T).

We start with the unique nowhere defined function t0 ∈ T and the unique w0 ∈ Σ∗ with
|w0| = 1 and —when considering w0 as a set— with w0 = ∅ (i.e., w0 = 0 when we consider

56 Chapter 3. Separating Relativized Conjectures

w0 as a word in Σ∗ and w0 = 1 when we consider w0 as a natural number; cf. the paragraph
“Identification of Σ∗ and N” on page 31). Observe that w0 is t0-valid.

Then we begin treating the tasks. For each task we choose an extension of the current
function from T and a (strict) extension of the oracle. This way we define functions t1, t2, . . . in
T such that ti+1 is an extension of ti and partial oracles w0 vp w1 vp w2 vp . . . such that each wi is
ti-valid. So for each task we strictly extend the oracle and are allowed to add more requirements
(by extending the respective ti) that have to be maintained in the further construction.

Finally, we choose O =
⋃∞
i=0wi. Note that O is totally defined, since in each step we strictly

extend the oracle.

We now describe step s > 0, which starts with some ts−1 ∈ T and a ts−1-valid oracle ws−1

and treats the first task that still is in T choosing an extension ts ∈ T of ts−1 and a ts-valid
ws wp ws−1 (it will be argued later that the construction we describe below is indeed possible).
Let us recall that each task is immediately deleted from T after it is treated. We study five
cases depending on the task that is treated in step s.

� task i: Let t′ = ts−1 ∪ {i 7→ 0}. If there exists a t′-valid partial oracle v wp ws−1, then let
ts = t′ and ws be the least t′-valid partial oracle wp ws−1. Otherwise, let ts = ts−1 ∪ {i 7→
|ws−1|} (note that since |w0| = 1 it holds ts(i) = |ws−1| > 04 and that the sufficiently large
choice of ts(i) implies that ws−1 is ts-valid) and choose ws = ws−1b with b ∈ {0, 1} such
that ws is ts-valid.
(meaning: try to ensure that Fi is not a proof system for CAN . If this is impossible,
require that from now on the values of Fi are encoded into the oracle.)

� task (i, j) with i 6= j: Let t′ = ts−1 ∪ {(i, j) 7→ 0}. If there exists a t′-valid partial oracle
v wp ws−1, then let ts = t′, define ws to be the least t′-valid partial oracle wp ws−1, and
delete all tasks (i, j, ·) from T . Otherwise, let z = |ws−1|, choose some p ∈ P≡3 greater
than |z| and all p′ ∈ P≥3 with −p′ ∈ ran(ts−1), let ts = ts−1 ∪ {(i, j) 7→ −p} (note that by
the sufficiently large choice of p, the oracle ws−1 is ts-valid), and choose ws = ws−1b with
b ∈ {0, 1} such that ws is ts-valid.
(meaning: try to ensure that (L(Mi), L(Mj)) is not a disjoint NP-pair. If this is impossible,
then choose a sufficiently large prime p and require that the further construction ensures
Ap, Bp ∈ UP, Ap = Bp, and thus Ap ∈ UP ∩ coUP (cf. V3). The treatment of tasks of the
form (i, j, ·) will make sure that Ap cannot be reduced to (L(Mi), L(Mj)).)

� task (i, j, r) with i 6= j: It holds ts−1(i, j) = −p for a prime p ∈ P≡3, since otherwise, this
task would have been deleted in the treatment of task (i, j). Define ts = ts−1 and choose a
ts-valid ws wp ws−1 such that for some n ∈ N+ at least one of the following two statements
holds:

– ∀vwws 0n ∈ Avp, Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

– ∀vwws 0n ∈ Bv
p , Fwsr (0n) is definite, and Mws

j (Fwsr (0n)) definitely rejects.

(meaning: make sure that Fr does not ≤pp
m -reduce (Ap, Bp) to (L(Mi), L(Mj)). As V3

ensures Ap = Bp relative to the final oracle, Fr does not reduce Ap to (L(Mi), L(Mj)).
Also recall that by V3, it will hold Ap ∈ UP ∩ coUP relative to the final oracle.)

� task (i, i): Let t′ = ts−1 ∪ {(i, i) 7→ 0}. If there exists a t′-valid partial oracle v wp ws−1,
then let ts = t′, define ws to be the least t′-valid partial oracle wp ws−1, and delete all tasks
(i, i, ·) from T . Otherwise, let z = |ws−1|, choose some q ∈ P≡1 greater than both |z| and

4Indeed, this is the reason why we do not start with w0 = ε.

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 57

all p′ ∈ P≥3 with −p′ ∈ ran(ts−1), let ts = ts−1∪{(i, i) 7→ −q} (note that by the sufficiently
large choice of q, the oracle ws−1 is ts-valid), and choose ws = ws−1b with b ∈ {0, 1} such
that ws is ts-valid.
(meaning: try to ensure that Mi is not a UP-machine. If this is impossible, choose a
sufficiently large prime q ∈ P≡1 and require that in the further construction Cq remains a
UP-set (cf. V7). The treatment of tasks of the form (i, i, ·) will make sure that Cq cannot
be reduced to L(Mi).)

� task (i, i, r): It holds ts−1(i, i) = −q for a prime q ∈ P≡1, since otherwise, this task would
have been deleted in the treatment of task (i, i). Define ts = ts−1 and choose a ts-valid
ws wp ws−1 such that for some n ∈ N+ at least one of the following two conditions holds:

– ∀vwws 0n ∈ Cvq , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

– ∀vwws 0n /∈ Cvq , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely accepts.

(meaning: ensure that Fr does not reduce Cq to L(Mi). Recall that by V7, it will hold
Cq ∈ UP relative to the final oracle.)

Observe that the choice of ts guarantees ts ∈ T . We now show that the construction is possible.
For that purpose, we first describe how a valid oracle can be extended by one bit such that it
remains valid.

Claim 3.3.7 Let s ∈ N, w ∈ Σ∗ be ts-valid with w w ws, and z = |w|. Then there exists
b ∈ {0, 1} such that wb is ts-valid. In detail, the following statements hold.

1. If |z| is odd and |z| 6= pk for all p ∈ P≥3 with −p ∈ ran(ts) and all k ∈ N+, then w0 and
w1 are ts-valid.

2. If there exist p ∈ P≡3 with −p ∈ ran(ts) and k ∈ N+ such that |z| = pk, z 6= 1p
k
, and

w ∩ Σpk = ∅, then w0 and w1 are ts-valid.

3. If there exist p ∈ P≡3 with −p ∈ ran(ts) and k ∈ N+ such that z = 1p
k

and w ∩ Σpk = ∅,
then w1 is ts-valid.

4. If there exist q ∈ P≡1 with −q ∈ ran(ts) and k ∈ N+ such that |z| = qk and w ∩ Σqk = ∅,
then w0 and w1 are ts-valid.

5. If z = c(i, x, y) for i ∈ N+ and x, y ∈ N, 0 < ts(i) ≤ z, and Fwi (x) = y, then w1 is ts-valid.

6. If z = c(i, x, y) for i ∈ N+ and x, y ∈ N, Fwi (x) = y ∈ CANw, and at least one of the three
conditions (i) ts(i) undefined, (ii) ts(i) = 0, and (iii) ts(i) > z holds, then w0 and w1 are
ts-valid.

7. In all other cases (i.e., none of the assumptions in 1–6 holds) w0 is ts-valid.

Proof We first show the following assertions.

w0 satisfies V1. (3.9)

If (i) z = c(i, x, y) for i ∈ N+ and x, y ∈ N with Fwi (x) = y ∈ CANw or (ii) z has odd
length, then w1 satisfies V1.

(3.10)

w0 satisfies V5 unless there exist i ∈ N+ and x, y ∈ N such that (i) z = c(i, x, y), (ii)
0 < ts(i), (iii) ts(i) ≤ z, and (iv) Fwi (x) = y.

(3.11)

w1 satisfies V5. (3.12)

58 Chapter 3. Separating Relativized Conjectures

(3.9) and (3.10): Let i′ ∈ N+ and x′, y′ ∈ N such that c(i′, x′, y′) ∈ w. Then, as w is ts-valid,
by V1, Fwi′ (x

′) = y′ ∈ CANw and by Claim 3.3.4, Fwi′ (x
′) is definite and y′ ∈ CAN v for all

v w w. Hence in particular, Fwbi′ (x′) = y′ ∈ CANwb for all b ∈ {0, 1}. This shows (3.9). For
the proof of (3.10) it remains to consider z. In case (ii) w1 satisfies V1 as |z| is odd and each
c(·, ·, ·) has even length. Consider case (i), i.e., z = c(i, x, y) for i ∈ N+ and x, y ∈ N with
Fwi (x) = y ∈ CANw. Then by Claim 3.3.4, Fw1

i (x) = y ∈ CANw1, which shows (3.10).

(3.11) and (3.12): Let i′ ∈ N+ and x′ ∈ N such that 0 < ts(i
′) ≤ c(i′, x′, Fwi′ (x′)) < |w|. Then

by Claim 3.3.4, Fwi′ (x
′) is definite and thus Fwbi′ (x′) = Fwi′ (x

′) for all b ∈ {0, 1}. As w is ts-valid,
it holds c(i′, x′, Fwi′ (x

′)) ∈ w and hence c(i′, x′, Fwbi′ (x′)) ∈ w ⊆ wb for all b ∈ {0, 1}. This shows
(3.12). In order to finish the proof for (3.11), it remains to consider z. Assume z = c(i, x, y) for
some i, x, y ∈ N with i > 0 (otherwise, w0 clearly satisfies V5). If (ii) or (iii) is wrong, then w0
satisfies V5. If (iv) is wrong, then Fwi (x) 6= y. By Claim 3.3.4, this computation is definite and
hence Fw0

i (x) 6= y, which is the reason why w0 satisfies V5. This shows (3.11).

Let us now prove the assertions 1–7 and note that we do not have to consider V2, V4, and
V6 as these conditions are not affected by extending a ts-valid oracle.

1. By (3.9) and (3.10), the oracles w0 and w1 satisfy V1. By (3.11) and (3.12), the oracles w0
and w1 satisfy V5 (for the application of (3.11) recall that each c(i, x, y) has even length
and hence for all i, x, y condition (i) does not hold). V3 and V7 are not affected as |z| 6= pk

for all primes p with −p ∈ ran(ts) and all k > 0.

2. By (3.9), (3.10), (3.11), and (3.12), the oracles w0 and w1 satisfy V1 and V5. As p ∈ P≡3,

V7 is satisfied by w0 and w1. Moreover, w0 satisfies V3 as due to z 6= 1p
k

the oracle w0
is not defined for all words of length pk. Finally, w1 satisfies V3 since Σpk ∩ w = ∅.

3. By (3.10) and (3.12), the oracle w1 satisfies V1 and V5. As p ∈ P≡3, V7 is satisfied by

w1. Moreover, as w ∩ Σpk = ∅, it holds |w1 ∩ Σpk | = 1 and hence w1 satisfies V3.

4. By (3.9), (3.10), (3.11), and (3.12), the oracles w0 and w1 satisfy V1 and V5. As q ∈ P≡1,
the oracles w0 and w1 satisfy V3. Finally, w0 trivially satisfies V7 and w1 satisfies V7 as
w ∩ Σqk = ∅.

5. By (3.12), the oracle w1 satisfies V5. As |z| is even, w1 trivially satisfies V3 and V7.
It remains to argue for V1. For that purpose we show y ∈ CANw. Then (3.10) can be
applied and w1 satisfies V1.
By Claim 3.3.4, Fwi (x) is definite. Assume that for z = |w| it holds z = c(i, x, y) for i ∈ N+

and x, y ∈ N, 0 < ts(i) ≤ z, and Fwi (x) = y /∈ CANw. Let s′ > 0 be the step which treats
the task i (note s′ ≤ s as ts(i) is defined). By Claim 3.3.5, w is ts′−1-valid. Moreover, by
Claim 3.3.4, Fwi (x) /∈ CAN v for all v w w. Thus w is t′-valid for t′ = ts′−1 ∪ {i 7→ 0},
which is why the construction would have chosen ts′ = t′, in contradiction to ts(i) > 0.
Hence y ∈ CANw.

6. By (3.9), (3.10), (3.11), and (3.12), the oracles w0 and w1 satisfy V1 and V5. As |z| is
even, both w0 and w1 satisfy V3 and V7.

7. By (3.9), w0 satisfies V1. Moreover, (3.11) can be applied, since otherwise, there would
exist i, x, y ∈ N with i > 0 such that conditions (i)–(iv) of the assertion (3.11) hold and
then we were in case 5. Hence w0 satisfies V5. Trivially, w0 satisfies V7 and finally, w0
satisfies V3 as the only way w0 could hurt V3 is that z = 1p

k
for some p ∈ P≡3 with

−p ∈ ran(ts) and k > 0 as well as w ∩ Σpk = ∅, but this case is treated in 3.

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 59

This finishes the proof of Claim 3.3.7. 2

In order to show that the above construction is possible, assume that it is not possible and
let s > 0 be the least number such that step s of the construction fails. We prove that this
assumption leads to a contradiction.

If step s treats a task τ ∈ N+ ∪ (N+)2, then ts−1(τ) is not defined, since the value of τ is
defined in the unique treatment of the task τ . If ts(τ) is chosen to be 0, then the construction
clearly is possible. Otherwise, as was mentioned in the description of the construction, the choice
of ts(τ) guarantees that the ts−1-valid oracle ws−1 is even ts-valid. Then Claim 3.3.7 ensures
that there exists a ts-valid ws−1b for some b ∈ {0, 1}. Hence the construction does not fail in
step s, a contradiction.

For the remainder of the proof that the construction above is possible we assume that step s
treats a task (i, j, r) ∈ (N+)3. We treat the cases i = j and i 6= j simultaneously whenever it is
possible. Recall that in the case i = j we work for the diagonalization ensuring that L(Mi) is
not a complete UP-set and in the case i 6= j we work for the diagonalization ensuring that the
pair (L(Mi), L(Mj)) is not hard for UP ∩ coUP (note: as the task (i, j, r) has not been deleted
during the construction, (L(Mi), L(Mj)) is a disjoint NP-pair relative to all ts−1-valid extensions
of ws−1).

In both cases, ts = ts−1 and ts(i, j) = −p for some p ∈ P≥3 (recall p ∈ P≡1 if i = j and
p ∈ P≡3 if i 6= j). Let γ(x) = (xr + r)i+j + i+ j and choose n = pk for some k ∈ N+ such that

22n−2 > 2n+1 · γ(n) (3.13)

and ws−1 is undefined for all words of length ≥ n. Note that by the choice of γ, for each oracle D,
all queries of the computations FDr (0n), MD

i (FDr (0n)), and MD
j (FDr (0n)) are of length ≤ γ(n).

We define u w ws−1 to be the minimal ts-valid partial oracle that is defined for all words of
length < n. Such an oracle exists by Claim 3.3.7.

Moreover, for z ∈ Σn, let uz wp u be the minimal ts-valid partial oracle with uz ∩ Σn = {z}
that is defined for all words of length ≤ γ(n). Such an oracle exists by Claim 3.3.7: first, starting
from u we extend the current oracle bitwise such that (i) it remains ts-valid, (ii) it is defined for
precisely the words of length ≤ n, and (iii) its intersection with Σn equals {z}. This is possible
by (2, 3, and 7) or (4 and 7) of Claim 3.3.7 depending on whether p ∈ P≡3 or p ∈ P≡1. Then by
Claim 3.3.7, the current oracle can be extended bitwise without losing its ts-validity until it is
defined for all words of length ≤ γ(n).

Claim 3.3.8 Let z ∈ Σn.

1. For each α ∈ uz ∩ Σ>n one of the following statements holds.

� α = 1p
′κ

for some p′ ∈ P≡3 with −p′ ∈ ran(ts) and some κ > 0.

� α = c(i′, x, y) for some i′ ∈ N+ and x, y ∈ N with 0 < ts(i
′) ≤ c(i′, x, y), F uzi′ (x) = y,

and y ∈ CAN uz .

2. For all p′ ∈ P≡3 with −p′ ∈ ran(ts) and all κ > 0, if n < p′κ ≤ γ(n), then uz∩Σp′κ = {1p′
κ

}.

Proof

1. Let α ∈ uz ∩ Σ>n. Moreover, let u′ be the prefix of uz that has length α, i.e., α is the
least word that u′ is not defined for. In particular, it holds u′ ∩Σ≤n = uz ∩Σ≤n and thus
u′ ∩ Σn = {z}. As u v u′ v uz and both u and uz are ts-valid, Claim 3.3.6 yields that u′

is also ts-valid.

60 Chapter 3. Separating Relativized Conjectures

Let us apply Claim 3.3.7 to the oracle u′. If one of the cases 1, 2, 4, 6, and 7 can be
applied, then u′0 is ts-valid and can be extended to a ts-valid oracle u′′ with |u′′| = |uz| by
Claim 3.3.7. As u′′ and uz agree on all words < α and α ∈ uz−u′′, we obtain u′′ < uz and
due to u′ v u′′ we know that u′′ ∩ Σn = {z}. This is a contradiction to the choice of uz
(recall that uz is the minimal ts-valid partial oracle that is defined for all words of length
≤ γ(n) and that satisfies uz ∩ Σn = {z}).
Hence none of the cases 1, 2, 4, 6, and 7 of Claim 3.3.7 can be applied, i.e., either (i)
α = 1p

′κ
for some p′ ∈ P≡3 and κ > 0 with −p′ ∈ ran(ts) or (ii) α = c(i′, x, y) for

i′, x, y ∈ N, i′ > 0, and 0 < ts(i
′) ≤ α. In the latter case, as α ∈ uz and uz is ts-valid, we

obtain from V1 that F uzi′ (x) = y ∈ CAN uz .

2. As −p′ ∈ ran(ts), uz is ts-valid, and uz is defined for all words of length p′κ, V3 yields
that there exists β ∈ Σp′κ ∩ uz. Let β be the minimal element of Σp′κ ∩ uz. It suffices to
show β = 1p

′κ
. For a contradiction, we assume β < 1p

′κ
. Let u′ be the prefix of uz that is

defined for exactly the words of length < p′κ. Then u v u′ v uz and both u and uz are
ts-valid. Hence by Claim 3.3.6, the oracle u′ is ts-valid as well.
By Claim 3.3.7, u′ can be extended to a ts-valid oracle u′′ that satisfies |u′′| = |uz| and
u′′ ∩Σp′κ = {1p′

κ

}. Then β ∈ uz −u′′. As the oracles u′′ and uz agree on all words smaller
than β, we have u′′ < uz and u′′ ∩ Σn = {z}, in contradiction to the choice of uz (again,
recall that uz is the minimal ts-valid partial oracle that is defined for all words of length
≤ γ(n) and that satisfies uz ∩ Σn = {z}).

This finishes the proof of Claim 3.3.8. 2

Let us study the case that for some odd (resp., even) z ∈ Σn the computation Muz
i (F uzr (0n))

(resp., Muz
j (F uzr (0n)) if z is even) rejects. Then since uz is defined for all words of length ≤ γ(n),

the aforementioned computation even definitely rejects and the computation F uzr (0n) is definite.
If i 6= j, then p ∈ P≡3 and since z ∈ uz, we have 0n ∈ Avp for all v w uz (resp., 0n ∈ Bv

p for all
v w uz if z is even). Analogously, if i = j, then p ∈ P≡1 and as z ∈ uz, we have 0n ∈ Cvp for
all v w uz. Hence in all these cases we can choose ws = uz and obtain a contradiction to the
assumption that step s of the construction fails in treating the task (i, j, r). Therefore, for the
remainder of the proof that the construction is possible we assume the following:

� For each odd z ∈ Σn the computation Muz
i (F uzr (0n)) definitely accepts.

� For each even z ∈ Σn the computation Muz
j (F uzr (0n)) definitely accepts.

Note that in case i = j we could have also formulated the two conditions equivalently in the
following simpler way: for each z ∈ Σn the computation Muz

i (F uzr (0n)) definitely accepts. Recall,
however, that as far as possible we consider the cases i = j and i 6= j simultaneously.

We will show that this assumption leads to a contradiction, which will ensure that the above
construction is possible.

Let Uz for z ∈ Σn odd (resp., z ∈ Σn even) be the set that consists of all oracle queries of the
computation F uzr (0n) and all oracle queries of the least accepting path of Muz

i (F uzr (0n)) (resp.,
Muz
j (F uzr (0n))). Observe `(Uz) ≤ γ(n). Moreover, define Q0(Uz) = Uz and for m ∈ N,

Qm+1(Uz) =
⋃

i′,x,y∈N,i′>0
c(i′,x,y)∈Qm(Uz)

[
{q | q is queried by F uzi′ (x)}∪

{q | y = 〈0i′′ , 0|x′|i
′′

+i′′ , x′〉 for some i′′ > 0 and x′ ∈ N, Muz
i′′ (x′) has an

accepting path, and q is queried by the least such path}
]
.

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 61

Let Q(Uz) =
⋃
m∈NQm(Uz).

Claim 3.3.9 For all z ∈ Σn, `(Q(Uz)) ≤ 2`(Uz) ≤ 2γ(n) and the length of each word in Q(Uz)
is ≤ γ(n).

Proof We show that for all m ∈ N, `(Qm+1(Uz)) ≤ 1/2 · `(Qm(Uz)). Then
∑κ

m=0
1/2m ≤ 2 for

all κ ∈ N implies `(Q(Uz)) ≤ 2 · `(Uz). Moreover, the second part of the claim follows from
`(Uz) ≤ γ(n) and `(Qm+1(Uz)) ≤ 1/2 · `(Qm(Uz)).

Let m ∈ N and consider an arbitrary element α of Qm(U). If α is not of the form c(i′, x, y)
for i′ ∈ N+ and x, y ∈ N, then α generates no elements in Qm+1(U). Assume α = c(i′, x, y) for
i′ ∈ N+ and x, y ∈ N. The computation F vi′ (x) runs for at most |x|i′ + i′ < |α|/4 steps, where “<”
holds by (3.8). Hence the set of queries Q of F vi′ (x) satisfies `(Q) ≤ |α|/4.

Let us assume y = 〈0i′′ , 0|x′|i
′′

+i′′ , x′〉 for i′′ ∈ N+ and x′ ∈ N (otherwise, the second of the
two sets in the definition of Qm+1(Uz) is empty and does not require further consideration).
Then the computation Mv

i′′(x) runs for less than |x′|i′′ + i′′ < |y| < |α|/4 steps, where again “<”
holds by (3.8). Hence for the set Q of queries of the least accepting path of the computation
Mv
i′′(x) (if such a path exists) we have `(Q) ≤ |α|/4. Consequently,

`(Qm+1(U)) ≤
∑

i′,x,y∈N,i′>0
c(i′,x,y)∈Qm(Uz)

[
`
(
{q | q is queried by F uzi′ (x)}

)︸ ︷︷ ︸
≤|c(i′,x,y)|/4

+

`
(
{q | y = 〈0i′′ , 0|x′|i

′′
+i′′ , x′〉 for some i′′ > 0 and x′ ∈ N,

Muz
i′′ (x′) has an accepting path, and q is queried by

the least such path}
)]︸ ︷︷ ︸
≤|c(i′,x,y)|/4

≤
∑

i′,x,y∈N,i′>0
c(i′,x,y)∈Qm(Uz)

|c(i′,x,y)|/2

≤ `(Qm(Uz))/2,

which finishes the proof of Claim 3.3.9. 2

We now define a similar notion. Let Q′0(Uz) = Uz and for m ∈ N,

Q′m+1(Uz) =
⋃

i′,x,y∈N,i′>0
c(i′,x,y)∈Q′m(Uz)

{q | q is queried by F uzi′ (x)}.

Moreover, define Q′(Uz) =
⋃
m∈NQ

′
m(Uz). By definition Q′m(Uz) ⊆ Qm(Uz) for all m ∈ N and

hence Q′(Uz) ⊆ Q(Uz) ⊆ Σ≤γ(n), where the latter “⊆” holds by Claim 3.3.9.
For z, z′ ∈ Σn we say that z and z′ conflict (resp., strongly conflict) if there is a word

α ∈ Q(Uz)∩Q(Uz′) (resp., α ∈ Q′(Uz)∩Q′(Uz′)) which is in uz4uz′ . In that case, we say z and
z′ (strongly) conflict in α. Note that whenever z and z′ (strongly) conflict in a word α, then
|α| ≥ n, as uz and uz′ are both extensions of u and u is defined for all words of length < n. By
definition, if z and z′ strongly conflict, then z and z′ conflict.

The next four claims are dedicated to the purpose of proving that for each odd z ∈ Σn and
each even z′ ∈ Σn, it holds that z and z′ conflict in a word of length n. Indeed, then z and z′

conflict in one of the words z and z′ as these are the only words of length n in uz ∪ uz′ . Once
we have proven this, we will be able to generate a contradiction that completes the proof that
the oracle construction described above is possible.

62 Chapter 3. Separating Relativized Conjectures

Claim 3.3.10 Let z, z′ ∈ Σn such that z is odd and z′ is even. If z and z′ conflict, then they
conflict in a word of length n.

Proof Let α be the least word in which z and z′ conflict (note that |α| ≤ γ(n) due to α ∈
Q(Uz) ∩ Q(Uz′) and Claim 3.3.9). Then α ∈ uz4uz′ . By symmetry, it suffices to consider the
case α ∈ uz − uz′ . For a contradiction, assume that |α| 6= n, which implies |α| > n as uz w u,
uz′ w u, and u is defined for all words of length < n. Then by Claim 3.3.8, two situations are
possible.

1. If α = 1p
′κ

for p′ ∈ P≡3 with −p′ ∈ ran(ts) and κ > 0, then by Claim 3.3.8.2, α ∈ uz′ , a
contradiction.

2. Here α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < ts(i
′) ≤ c(i′, x, y) and F uzi′ (x) =

y ∈ CAN uz . Then F
uz′
i′ (x) 6= y, since otherwise, by the ts-validity of uz′ and V5, it would

hold α ∈ uz′ . Consequently, F
uz′
i′ (x) 6= F uzi′ (x). Hence there exists a query β that is asked

by both F uzi′ (x) and F
uz′
i′ (x) and that is in uz4uz′ (otherwise, both computations would

output the same word). By definition of Q(Uz) and Q(Uz′), it holds β ∈ Q(Uz) ∩Q(Uz′).
Hence z and z′ conflict in β and |β| ≤ |x|i′ + i′ < |c(i′, x, y)| = |α|, in contradiction to the
assumption that α is the least word which z and z′ conflict in.

In both cases we obtain a contradiction. Thus the proof is complete. 2

We want to show next that for all odd z ∈ Σn and all even z′ ∈ Σn it holds that z and z′

indeed conflict.
Recall that u w ws−1 is the minimal ts-valid partial oracle that is defined for all words of

length < n. Let z ∈ Σn. We say that a partial oracle v w u is consistent with uz relative to
Q(Uz) (resp., relative to Q′(Uz)) if v(q) = uz(q) for all q ∈ Q(Uz) (resp., all q ∈ Q′(Uz)) that v
is defined for (i.e., q < |v|). Note that since v and uz are both extensions of u, it trivially holds
v(q) = uz(q) for all q ∈ Σ<n.

As an abbreviation, whenever we say that v is consistent with uz, then we mean that v is
consistent with uz relative to Q(Uz).

Claim 3.3.11 The following statements hold.

1. Let t = ts′ for some 0 ≤ s′ ≤ s and z, z′ ∈ Σn such that z and z′ do not conflict. For
each t-valid partial oracle v wp u that is defined for exactly the words of length ≤ n and
consistent with both uz and uz′, there exists a t-valid partial oracle v′ wp v that is consistent
with both uz and uz′ and satisfies |v′| = |uz|.

2. Let z ∈ Σn. For each ts-valid partial oracle v wp u that is defined for exactly the words of
length ≤ n and consistent with uz relative to Q′(Uz), there exists a ts-valid partial oracle
v′ wp v that is consistent with uz relative to Q′(Uz) and satisfies |v′| = |uz|.

Note that in the notation of the claim above, v is consistent with uz if and only if for all
q ∈ Q(Uz) ∩ Σn, it holds v(q) = 1 if q = z and v(q) = 0 otherwise. Moreover, recall that
|v′| = |uz| expresses that v′ is defined for exactly the words of length ≤ γ(n).

Proof of Claim 3.3.11 The two statements can be proven in a similar way. Basically, the proof
of the second statement is a simplified version of the proof of the first statement. Nevertheless,
for the sake of completeness, we also give a separate proof for the second statement.

1. Let w w v with |w| < |uz| be t-valid and consistent with uz and uz′ . Moreover, let α = |w|,
i.e., α is the least word that w is not defined for. It suffices to show the following:

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 63

(a) If α = 0p
′κ

for a p′ ∈ P≡3 with −p′ ∈ ran(ts) and κ > 0, then there exists a t-valid
w′ wp w that is defined for exactly the words of length ≤ p′κ and consistent with uz
and uz′ .

Note that in this case |w′| ≤ |uz|, since uz is defined for exactly the words of length
≤ γ(n).

(b) If for all p′ ∈ P≡3 with −p′ ∈ ran(ts) and all κ > 0 the word α is not of length p′κ,
then there exists b ∈ {0, 1} such that wb is t-valid and consistent with uz and uz′ .

(a) Assume α = 0p
′κ

for some p′ ∈ P≡3 with −p′ ∈ ran(ts) and κ > 0. Then we let
w′ wp w be the minimal partial oracle that is defined for all words of length ≤ p′κ

and contains 1p
′κ

, i.e., w′ = w ∪ {1p′
κ

} when interpreting the partial oracles as sets.
As uz ∩ Σp′κ = uz′ ∩ Σp′κ = {1p′

κ

} by Claim 3.3.8.2 (note |α| > n, since α = |w|,
w w v, and v is defined for all words of length ≤ n), we obtain that w′ is consistent
with uz and uz′ . Moreover, if −p′ ∈ ran(t), then w′ is t-valid by Claim 3.3.7.2 and
Claim 3.3.7.3. If −p′ /∈ ran(t), then w′ is t-valid by Claim 3.3.7.1.

(b) Here we study two subcases.

i. Assume that α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < ts(i
′) ≤ α. Let us

first assume that α /∈ Q(Uz) ∪Q(Uz′). Then there exists b ∈ {0, 1} such that wb
is t-valid (cf. Claim 3.3.7) and clearly wb is consistent with uz and uz′ .
From now on we assume α ∈ Q(Uz)∪Q(Uz′). By symmetry, it suffices to consider
the case α ∈ Q(Uz). As all queries q of F uzi′ (x) are in Q(Uz) and satisfy uz(q) =

w(q) due to |q| ≤ |x|i′ + i′ < α, it holds

Fwi′ (x) = F uzi′ (x). (3.14)

We study two cases.

A. If α ∈ uz, then by V1, F uzi′ (x) = y ∈ CAN uz . By (3.14), Fwi′ (x) = y. Let

us show y ∈ CANw: As y ∈ CAN uz , it holds y = 〈0i′′ , 0|x′|i
′′

+i′′ , x′〉 for some
i′′ > 0 and x′ ∈ N, the computation Muz

i′′ (x′) has an accepting path, and
all queries q of the least accepting path of this computation are in Q(Uz)
and thus satisfy uz(q) = w(q) (note |q| ≤ |x′|i′′ + i′′ < |y| < |α|). Hence
Mw
i′′(x

′) accepts and y ∈ CANw. Let us choose b = 1. Note that t(i′) is not
necessarily defined. If t(i′) is defined, then 0 < t(i′) = ts(i

′) ≤ α, we apply
Claim 3.3.7.5, and obtain that wb is t-valid. If t(i′) is undefined, then we
apply Claim 3.3.7.6 and obtain that wb is t-valid. Clearly wb is consistent
with uz. In order to see that wb is consistent with uz′ , it suffices to show(
α ∈ Q(Uz′)⇒ α ∈ uz′

)
. This holds since otherwise, z and z′ conflict.

B. Assume α /∈ uz. Then by V5, F uzi′ (x) 6= y. By (3.14), Fwi′ (x) 6= y. Choose
b = 0. Then by Claim 3.3.7.7, wb is t-valid and clearly wb is consistent with
uz. In order to see that wb is consistent with uz′ , it suffices to argue for α.
If α ∈ Q(Uz′), then α /∈ uz′ as otherwise, z and z′ would conflict.

ii. We now consider the remaining cases, i.e., we may assume

� α is not of length p′κ for all p′ ∈ P≡3 with −p′ ∈ ran(ts) and all κ > 0 and

� α 6= c(i′, x, y) for all i′ ∈ N+ and x, y ∈ N with 0 < ts(i
′) ≤ α.

In this case, it holds α /∈ uz ∪ uz′ by Claim 3.3.8.1. We choose b = 0 and obtain
that wb is consistent with uz and uz′ . Moreover, by Claim 3.3.7, wb is t-valid
(w0 is t-valid unless Claim 3.3.7.3 or Claim 3.3.7.5 is applicable, which is —by
assumption— not the case).

64 Chapter 3. Separating Relativized Conjectures

2. Let w w v with |w| < |uz| be ts-valid and consistent with uz relative to Q′(Uz). Moreover,
let α = |w|. It suffices to show the following:

(a) If α = 0p
′κ

for a p′ ∈ P≡3 with −p′ ∈ ran(ts) and κ > 0, then there exists a ts-valid
w′ wp w that is defined for exactly the words of length ≤ p′κ and consistent with uz
relative to Q′(Uz).

Note that in this case |w′| ≤ |uz|, since uz is defined for exactly the words of length
≤ γ(n).

(b) If for all p′ ∈ P≡3 with −p′ ∈ ran(ts) and all κ > 0 the word α is not of length p′κ,
then there exists b ∈ {0, 1} such that wb is ts-valid and consistent with uz relative to
Q′(Uz).

(a) Assume α = 0p
′κ

for some p′ ∈ P≡3 with −p′ ∈ ran(ts) and κ > 0. Then we let
w′ wp w be the minimal partial oracle that is defined for all words of length ≤ p′κ and

contains 1p
′κ

, i.e., w′ = w ∪ {1p′
κ

} when interpreting the partial oracles as sets. As
uz ∩ Σp′κ = {1p′

κ

} by Claim 3.3.8.2 (note |α| > n, since α = |w|, w w v, and v is
defined for all words of length ≤ n), we obtain that w′ is consistent with uz relative
to Q′(Uz). Moreover, w′ is ts-valid by Claim 3.3.7.2 and Claim 3.3.7.3.

(b) Here we study two subcases.

i. Assume that α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < ts(i
′) ≤ α. Let

us first assume that α /∈ Q′(Uz). Then there exists b ∈ {0, 1} such that wb is
ts-valid (cf. Claim 3.3.7) and clearly wb is consistent with uz relative to Q′(Uz).
From now on we assume α ∈ Q′(Uz). As all queries q of F uzi′ (x) are in Q′(Uz)

and satisfy uz(q) = w(q) due to |q| ≤ |x|i′ + i′ < α, it holds

Fwi′ (x) = F uzi′ (x). (3.15)

We study two cases. If α ∈ uz, then by V1, F uzi′ (x) = y ∈ CAN uz . By (3.15),
Fwi′ (x) = y. Let us choose b = 1. Applying Claim 3.3.7.5, we obtain that wb is
ts-valid. Clearly wb is consistent with uz relative to Q′(Uz).
Assume α /∈ uz. Then by V5, F uzi′ (x) 6= y. By (3.15), Fwi′ (x) 6= y. Choose b = 0.
Then by Claim 3.3.7.7, wb is ts-valid and clearly wb is consistent with uz relative
to Q′(Uz).

ii. We now consider the remaining cases, i.e., we may assume that

� for all p′ ∈ P≡3 with −p′ ∈ ran(ts) and all κ > 0 the number α is not of
length p′κ and

� for all i′ ∈ N+ and x, y ∈ N with 0 < ts(i
′) ≤ α it holds α 6= c(i′, x, y).

In this case, it holds α /∈ uz by Claim 3.3.8.1. We choose b = 0 and obtain
that wb is consistent with uz relative to Q′(Uz). Moreover, by Claim 3.3.7, wb is
ts-valid (wb = w0 is ts-valid unless Claim 3.3.7.3 or Claim 3.3.7.5 is applicable,
which is —by assumption— not the case).

This finishes the proof of Claim 3.3.11. 2

Claim 3.3.12 For all z ∈ Σn it holds z ∈ Q′(Uz).

Proof For a contradiction, assume z /∈ Q′(Uz) for some z ∈ Σn. We study the cases i = j and
i 6= j separately.

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 65

First let us consider the case i 6= j. Here p ∈ P≡3. By symmetry, it suffices to consider
the case that z is odd. Let z′ be the minimal even element of Σn that is not in Q′(Uz). Such
a number z′ exists as 2n−1 > 4γ(n) > 2γ(n) by (3.13), `(Q′(Uz)) ≤ `(Q(Uz)) ≤ 2γ(n) by
Claim 3.3.9, and hence |Q′(Uz)| ≤ `(Q′(Uz)) ≤ 2γ(n) < 2n−1 = |{z′′ ∈ Σn | z′′ even}|. Now
choose v to be the partial oracle that is defined for exactly the words of length ≤ n and that
satisfies v = u ∪ {z′} when the partial oracles are considered as sets. Then v is ts-valid by
Claim 3.3.7.2, Claim 3.3.7.3, and Claim 3.3.7.7. Moreover, as z, z′ /∈ Q′(Uz), the oracle v is
consistent with uz relative to Q′(Uz). Hence we can apply Claim 3.3.11.2 to the oracle v for the
parameter z and obtain a ts-valid partial oracle v′ that is defined for all words of length ≤ γ(n),
satisfies v′ ∩ Σn = {z′}, and is consistent with uz relative to Q′(Uz). Hence v′(q) = uz(q) for
all q ∈ Q′(Uz). By this property and by the fact that Uz ⊆ Q′(Uz) contains all queries asked
by F uzr (0n) and all queries asked by the least accepting path of Muz

i (F uzr (0n)) (such a path
exists by the assumptions made on page 60), it holds that F v

′
r (0n) = F uzr (0n) and that the least

accepting path of Muz
i (F uzr (0n)) is also an accepting path of the computation Mv′

i (F v
′

r (0n)). As
v′ is defined for all words of length ≤ γ(n), the computation Mv′

i (F v
′

r (0n)) definitely accepts. Let
us study two cases depending on whether Mv′

j (F v
′

r (0n)) definitely accepts or definitely rejects
(note that this computation is definite as v′ is defined for all words of length ≤ γ(n)):

� Assume that Mv′
j (F v

′
r (0n)) definitely accepts. Let s′ > 0 be the step that treats the

task (i, j). Hence s′ < s since ts(i, j) is defined. By Claim 3.3.5, the oracle v′ is ts′−1-
valid. Now, as both Mv′

i (F v
′

r (0n)) and Mv′
j (F v

′
r (0n)) definitely accept, v′ is even t′-valid

for t′ = ts′−1 ∪ {(i, j) 7→ 0}. But then the construction would have chosen ts′ = t′, in
contradiction to ts(i, j) 6= 0.

� Assume that Mv′
j (F v

′
r (0n)) definitely rejects. Since v′ is defined for all words of length

≤ γ(n), the computation F v
′

r (0n) is definite. As v′ ∩ Σn = {z′}, it holds 0n ∈ Bṽ
p for all

ṽ w v′. This is a contradiction to the assumption that step s of the construction fails.

As in both cases we obtain a contradiction, the proof for the case i 6= j is complete.

Now assume i = j. Here, p ∈ P≡1. Let v be the partial oracle that is defined for exactly the
words of length ≤ n and satisfies v = u when the partial oracles are considered as sets. Then
v is ts-valid by Claim 3.3.7.4 and v is consistent with uz relative to Q′(Uz) as both oracles are
extensions of u, uz ∩Σn = {z}, and z /∈ Q′(Uz). Thus we can apply Claim 3.3.11.2 to the oracle
v for the parameter z. Hence there exists a ts-valid partial oracle v′ that satisfies |v′| = |uz|,
that satisfies v ∩ Σn = ∅, and that is consistent with uz relative to Q′(Uz). The first condition
expresses that v′ is defined for all words of length ≤ γ(n), in particular for all words in Q′(Uz)).
Thus, as v′ is consistent with uz, it holds v′(q) = uz(q) for all q ∈ Q′(Uz). By this property and
the fact that Uz ⊆ Q′(Uz) contains all queries of the computation F uzr (0n) and all queries asked
by the least accepting path of Muz

i (F uzr (0n)) (such a path exists by the assumptions made on
page 60), it holds that F uzr (0n) = F v

′
r (0n) and that the least accepting path of Muz

i (F uzr (0n)) is
also an accepting path of the computation Mv′

i (F v
′

r (0n)). As v′ is defined for all words of length
≤ γ(n), the computations F v

′
r (0n) and Mv′

i (F v
′

r (0n)) are definite. Putting things together, we
have that 0n /∈ C ṽq for all ṽ w v′, F v

′
r (0n) is definite, and Mv′

i (F v
′

r (0n)) definitely accepts, in
contradiction to the assumption that step s of the construction fails. 2

Claim 3.3.13 For all odd z ∈ Σn and all even z′ ∈ Σn, it holds that z and z′ conflict.

Proof Assume there are z odd and z′ even such that z and z′ do not conflict. Then let v wp u
be the minimal partial oracle that is defined for all words of length ≤ n and contains z and

66 Chapter 3. Separating Relativized Conjectures

z′, i.e., interpreting partial oracles as sets it holds v = u ∪ {z, z′}. Let s′ > 0 be the step that
treats the task (i, j). Then s′ < s as ts(i, j) is defined. As ts ∈ T is injective on its support
and ts(i, j) = −p, it holds −p /∈ ran(ts′−1). Therefore, v is ts′−1-valid by Claim 3.3.7.1 (recall
that u is ts′−1-valid by Claim 3.3.5). In order to apply Claim 3.3.11.1 to v for the parameters
z, z′, and s′ − 1, it is sufficient to show that v is consistent with uz (relative to Q(Uz)) and v is
consistent with uz′ (relative to Q(Uz′)). Assume this is not the case. Then due to uz ∩Σn = {z}
and uz′ ∩Σn = {z′} it holds z ∈ Q(Uz′) or z′ ∈ Q(Uz). As by Claim 3.3.12, z ∈ Q′(Uz) ⊆ Q(Uz)
and z′ ∈ Q′(Uz′) ⊆ Q(Uz′), one of the words z and z′ is in Q(Uz) ∩ Q(Uz′). Since uz and uz′

disagree on both z and z′, it holds that z and z′ conflict, a contradiction. Hence Claim 3.3.11.1
can be applied to v for the parameters z, z′, and s′ − 1.

Applying Claim 3.3.11.1, we obtain a ts′−1-valid v′ w v that is defined for all words of
length ≤ γ(n) and is consistent with uz (relative to Q(Uz)) and consistent with uz′ (relative
to Q(Uz′)), i.e., v′(q) = uz(q) for all q ∈ Q(Uz) and v(q) = uz′(q) for all q ∈ Q(Uz′) (recall
Q(Uz)∪Q(Uz′) ⊆ Σ≤γ(n), which is the reason why v′ is defined for all words in Q(Uz)∪Q(Uz′)).
We claim

v′ is t′-valid for t′ = ts′−1 ∪ {(i, j) 7→ 0}. (3.16)

Once (3.16) is proven, we obtain a contradiction as then the construction would have chosen
ts′ = t′, in contradiction to ts(i, j) 6= 0. Then our assumption is wrong and for all odd z ∈ Σn

and all even z′ ∈ Σn, it holds that z and z′ conflict.
It remains to prove (3.16). We study two cases.
Case 1: first we assume i 6= j. In this case it suffices to prove that Mv′

i (F v
′

r (0n)) and
Mv′
j (F v

′
r (0n)) definitely accept. Recall that Muz

i (F uzr (0n)) and M
uz′
j (F

uz′
r (0n)) definitely ac-

cept, v′(q) = uz(q) for all q ∈ Q(Uz), and v′(q) = uz′(q) for all q ∈ Q(Uz′). As all queries
of the computations F uzr (0n) and Muz

i (F uzr (0n)) are in Q(Uz) and all queries of the computa-
tions F

uz′
r (0n) and M

uz′
j (F

uz′
r (0n)) are in Q(Uz′), we obtain that the least accepting paths of

Muz
i (F uzr (0n)) and M

uz′
j (F

uz′
r (0n)) are also accepting paths of the computations Mv′

i (F v
′

r (0n))

and Mv′
j (F v

′
r (0n)). Moreover, the latter computations are definite by the choice of v′. Thus v′

is t′-valid.
Case 2: assume i = j. We have to prove that on some input x the computation Mv′

i (x)
has at least two accepting paths. By Claim 3.3.12, z ∈ Q′(Uz) and z′ ∈ Q′(Uz′). As z and
z′ do not conflict, z and z′ do not strongly conflict and it holds z /∈ Q′(Uz′), which implies
Q′(Uz) 6= Q′(Uz′). Let κ ∈ N be minimal such that Q′κ(Uz) 6= Q′κ(Uz′) and for a contradiction,
assume κ > 0.

Let α ∈ Q′κ(Uz)4Q′κ(Uz′). Without loss of generality, we assume α ∈ Q′κ(Uz) − Q′κ(Uz′).
Then there exist i′, x, y ∈ N with i′ > 0 such that c(i′, x, y) ∈ Q′κ−1(Uz) and F uzi′ (x) asks the
query α. By the choice of κ, it holds Q′κ−1(Uz′) = Q′κ−1(Uz) and thus c(i′, x, y) ∈ Q′κ−1(Uz′).
Hence all queries of F

uz′
i′ (x) are in Q′κ(Uz′). However, α /∈ Q′κ(Uz′) and therefore, α is not asked

by F
uz′
i′ (x). This shows that there is a word β ∈ uz4uz′ asked by both F uzi′ (x) and F

uz′
i′ (x)

(otherwise, the two computations would ask the same queries). But then β ∈ Q′κ(Uz)∩Q′κ(Uz′),
which implies that z and z′ strongly conflict, a contradiction to the assumption that z and z′

do not conflict. Hence κ = 0 and Uz = Q′0(Uz) 6= Q′0(Uz′) = Uz′ .
Recall that Uz (resp., Uz′) is the set that consists of all oracle queries of F uzr (0n) (resp.,

F
uz′
r (0n)) and all oracle queries of the least accepting path P (resp., P ′) of the computation
Muz
i (F uzr (0n)) (resp., M

uz′
i (F

uz′
r (0n))). As uz(q) = v′(q) for all q ∈ Q(Uz) ⊇ Uz and uz′(q) =

v′(q) for all q ∈ Q(Uz′) ⊇ Uz′ , it holds that F v
′

r (0n) = F uzr (0n) = F
uz′
r (0n) and that the paths

P and P ′ are accepting paths of the computation Mv′
i (F v

′
r (0n)). Finally, P and P ′ are distinct

paths, since Uz and Uz′ are distinct sets. This finishes the proof of (3.16) and thus also the proof
of Claim 3.3.13. 2

3.3. DisjNP, UP, NP ∩ coNP, and ¬SAT Relative to an Oracle 67

The remainder of the proof that the construction is possible is based on an idea by Hartmanis
and Hemachandra [HH88]. Consider the set

E = {{z, z′} | z, z′ ∈ Σn, z odd ⇔ z′ even, (z ∈ Q(Uz′) ∨ z′ ∈ Q(Uz))}

⊆
⋃
z∈Σn

{{z, z′} | z′ ∈ Σn, z′ ∈ Q(Uz)}. (3.17)

Let z, z′ ∈ Σn such that (z odd ⇔ z′ even). Then by Claim 3.3.13 and Claim 3.3.10, z and z′

conflict in a word of length n. As uz4uz′ = {z, z′}, this means that they conflict in z or z′.
Hence z ∈ Q(Uz′) or z′ ∈ Q(Uz).

This shows E = {{z, z′} | z, z′ ∈ Σn, z odd ⇔ z′ even} and thus |E| = 22n−2. By Claim 3.3.9,
for each z ∈ Σn it holds |Q(Uz)| ≤ `(Q(Uz)) ≤ 2γ(n). Consequently,

|E|
(3.17)

≤
∑
z∈Σn

|Q(Uz)| ≤ 2n · 2γ(n) = 2n+1 · γ(n)
(3.13)
< 22n−2 = |E|,

a contradiction. Hence the assumption made on page 60 —i.e., the assumption that for each odd
z ∈ Σn and each even z′ ∈ Σn the computations Muz

i (F uzr (0n)) and M
uz′
j (F

uz′
r (0n))) definitely

accept— leads to a contradiction. Thus the assumption that the construction fails in step s
treating the task (i, j, r) is wrong. This shows that the construction described above is possible
and O is well-defined. In order to finish the proof of Theorem 3.3.1, it remains to show that

� DisjNPO does not contain a pair ≤p,O
m -hard for UPO ∩ coUPO,

� each non-empty problem in NPO has a PO-optimal proof system, and

� UPO does not contain a ≤p,O
m -complete problem.

Claim 3.3.14 DisjNPO does not contain a pair that is ≤p,O
m -hard for UPO ∩ coUPO.

Proof Assume the assertion is wrong, i.e., there exist distinct i, j ∈ N+ such that
(L(MO

i), L(MO
j)) ∈ DisjNPO and for every A ∈ UPO ∩ coUPO it holds A≤p,O

m (L(MO
i), L(MO

j)).

From L(MO
i)∩L(MO

j) = ∅ if follows that for all s there does not exist z such that both Mws
i (z)

and Mws
j (z) definitely accept. Hence by V2, there does not exist s with ts(i, j) = 0 and thus

by construction, ts(i, j) = −p for some p ∈ P≡3 and all sufficiently large s. The latter implies

|O∩Σpk | = 1 for all k > 0 (cf. V3), which yields AOp = BO
p and AOp ∈ UPO ∩ coUPO. Thus there

exists r such that AOp ≤
p,O
m (L(MO

i), L(MO
j)) via FOr . Let s be the step that treats task (i, j, r).

This step makes sure that there exists n ∈ N+ such that at least one of the following properties
holds:

� ∀vwws 0n ∈ Avp, Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

� ∀vwws 0n ∈ Bv
p , Fwsr (0n) is definite, and Mws

j (Fwsr (0n)) definitely rejects.

As O(q) = ws(q) for all q that ws is defined for, one of the following two statements holds.

� 0n ∈ AOp and FOr (0n) is rejected by MO
i .

� 0n ∈ BO
p = AOp and FOr (0n) is rejected by MO

j .

This is a contradiction to AOp ≤
p,O
m (L(MO

i), L(MO
j)) via FOr , which completes the proof of

Claim 3.3.14. 2

68 Chapter 3. Separating Relativized Conjectures

Claim 3.3.15 Each non-empty problem in NPO has a PO-optimal proof system.

Proof By Corollary 2.3.6, it suffices to prove that CANO has a PO-optimal proof system.

Let g ∈ FPO be an arbitrary proof system for CANO and a be an arbitrary element of
CANO. Define f to be the following function Σ∗ → Σ∗:

f(z) =

g(z′) if z = 1z′

y if z = 0c(i, x, y) for i ∈ N+, x, y ∈ N, and c(i, x, y) ∈ O
a otherwise

By definition, f ∈ FPO and as g is a proof system for CANO it holds f(Σ∗) ⊇ CANO. We show
f(Σ∗) ⊆ CANO. Let z ∈ Σ∗. Assume z = 0c(i, x, y) for i ∈ N+, x, y ∈ N, and c(i, x, y) ∈ O
(otherwise, clearly f(z) ∈ CANO). Let s be large enough such that ws is defined for c(i, x, y),
i.e., ws(c(i, x, y)) = 1. As ws is ts-valid, we obtain by V1 that y ∈ CANws and by Claim 3.3.4
that y ∈ CAN v for all v w ws. Thus y ∈ CANO, which shows that f is a proof system for
CANO.

It remains to show that each proof system for CANO is PO-simulated by f . Let h be an
arbitrary proof system for CANO. Then there exists i > 0 such that FOi computes h. By
construction, ts(i) > 0 for s being the number of the step that treats the task i. Consider the
following function π : Σ∗ → Σ∗:

π(x) =

{
0c(i, x, FOi (x)) if c(i, x, FOi (x)) ≥ ts(i)
z if c(i, x, FOi (x)) < ts(i) and z is minimal with f(z) = FOi (x)

As f and FOi are proof systems for CANO, for every x there exists z with f(z) = FOi (x). Hence
π is total. Since ts(i) is a constant, π ∈ FPO. It remains to show that f(π(x)) = FOi (x) for all
x ∈ Σ∗. If c(i, x, FOi (x)) < ts(i), it holds f(π(x)) = FOi (x). Otherwise, choose s′ large enough
such that (i) ts′(i) is defined (i.e., ts′(i) = ts(i) > 0) and (ii) ws′ is defined for c(i, x, F

ws′
i (x)).

Then, as ws′ is ts′-valid, V5 yields that c(i, x, F
ws′
i (x)) ∈ ws′ . By Claim 3.3.4, F

ws′
i (x) is definite

and hence FOi (x) = F
ws′
i (x) as well as c(i, x, FOi (x)) ∈ ws′ ⊆ O. Thus f(π(x)) = FOi (x). 2

Claim 3.3.16 UPO does not contain a ≤p,O
m -complete problem.

Proof Assume there exists an UPO-complete problem. Then there exists i > 0 such that
L(MO

i) is ≤p,O
m -complete for UPO. According to Remark 3.3.3 we may assume without loss of

generality that on every input, MO
i has at most one accepting path. Thus there does not exist

s > 0 with ts(i, i) = 0 (cf. V6). Hence by construction, ts(i, i) = −q for some q ∈ P≡1 and all

sufficiently large s. Then |O ∩ Σqk | ≤ 1 for all k > 0 (cf. V7) and consequently, COq ∈ UPO. As

L(MO
i) is complete for UPO, there exists r > 0 such that COq ≤

p,O
m L(MO

i) via FOr . Let s > 0 be
the step that treats the task (i, i, r). By construction, there exists n ∈ N+ such that one of the
following two statements holds:

� ∀vwws 0n ∈ Cvq , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

� ∀vwws 0n /∈ Cvq , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely accepts.

As O and ws agree on all words that ws is defined for, one of the following two conditions holds:

� 0n ∈ COq and MO
i (FOr (0n)) rejects.

3.4. NP ∩ coNP and ¬CON Relative to an Oracle 69

� 0n /∈ COq and MO
i (FOr (0n)) accepts.

This is a contradiction to COq ≤
p,O
m L(MO

i) via FOr , which shows that UPO does not have ≤p,O
m -

complete problems. This completes the proof of Claim 3.3.16. 2

Now the proof of Theorem 3.3.1 is complete. 2

3.4 NP ∩ coNP and ¬CON Relative to an Oracle

In this section we construct another oracle which Pudlák [Pud17] asks for. It proves that the
relativized conjectures CON and NP ∩ coNP are different. Putting it more precisely, it holds
that NP∩ coNP does not contain problems that are hard for UP∩ coUP and that all non-empty
sets in coNP have P-optimal proof systems relative to the oracle. Hence in particular, it holds
NP∩coNP∧¬CON relative to the oracle and this implies that there does not exist a relativizable
proof for the implication NP ∩ coNP⇒ CON.

As Figure 1.2 illustrates, this implies that also the following implications do not admit
relativizable proofs: NP ∩ coNP ⇒ CONN, NP ∩ coNP ⇒ DisjNP, and NP ∩ coNP ⇒ UP,
where an oracle relative to which the last implication does not holds was already known by
Corollary 3.2.4.

For all of the four implications mentioned in the previous paragraphs there recently have been
constructed oracles by Fabian Egidy, Anton Ehrmanntraut, and Christian Glaßer [unpublished,
private communication] that show that also the converse implications cannot be proven using
exclusively relativizable proof techniques.

Finally, as a corollary we obtain that additionally there do not exist NP-complete problems
having P-optimal proof systems relative to the oracle, i.e., we even have a relativized world in
which NP ∩ coNP ∧ SAT ∧ ¬CON holds. However, this does not yield a further new separation
in Pudlák’s research program, since an oracle relative to which SAT∧¬CON was already known
before [Kha19].

Theorem 3.4.1 There exists an oracle O such that the following statements hold:

� NPO ∩ coNPO does not contain problems that are ≤p,O
m -hard for UPO ∩ coUPO.

� CANO
has PO-optimal proof systems.

Proof Let D be a (possibly partial) oracle and p ∈ P≥3. We define

ADp := {0pk | k ∈ N+,∃
x∈Σpk

x ∈ D and x odd} ∪ {0pk | k ∈ N+}

BD
p := {0pk | k ∈ N+,∃

x∈Σpk
x ∈ D and x even}

Note that if |Σpk ∩D| = 1 for each k ∈ N+, then ADp , B
D
p ∈ UPD and ADp = BD

p , which implies

ADp ∈ UPD ∩ coUPD. For all relevant p ∈ P≥3 our construction will ensure that |Σpk ∩ O| = 1
for each k ∈ N+ relative to the final oracle O.

For the sake of simplicity, let us call a pair (Mi,Mj) an NPD ∩ coNPD-machine if L(MD
i) =

L(MD
j). Note that throughout this proof we sometimes omit the oracles in the superscript,

e.g., we write NP or Ap instead of NPD or ADp . However, we do not do that in the “actual”
proof but only when explaining ideas in a loose way in order to convey the intuition behind the
occasionally technical arguments.

70 Chapter 3. Separating Relativized Conjectures

Preview of the Construction We sketch the basic ideas of our construction.

1. For all i > 0 we try to ensure that Fi is not a proof system for CAN relative to the final
oracle. If this is possible, we do not have to consider Fi anymore. If it is not possible,
then Fi inherently is a proof system for CAN . In that case we start to encode the values
of Fi into the oracle. This way we easily obtain a P-optimal proof system for CAN in
the end. Note that it is crucial that we also allow to encode values of functions Fj into
the oracle before we try —as described above— to make sure that these functions are not
proof systems for CAN . Hence the final oracle may also contain encodings of values of
functions that are not proof systems for CAN .

2. Similarly, for each pair (i, j) with i 6= j we first try to make sure that (Mi,Mj) is not
an NP ∩ coNP-machine. If this is possible, then we need not consider the pair (Mi,Mj)
anymore. If it is not possible, then (Mi,Mj) inherently is an NP ∩ coNP-machine. In
this case we choose a prime p and ensure in the further construction that Ap = Bp and
Ap ∈ UP ∩ coUP. Moreover, we diagonalize against all FP-functions Fr in order to make
sure that Fr does not reduce Ap to L(Mi).

For i ∈ N+ and x, y ∈ N we write c(i, x, y) := 〈0i, 0|x|i+i, 0|x|i+i, x, y, y〉. Note that by the
properties of the pairing function 〈·〉, |c(i, x, y)| is even and

∀i∈N+,x,y∈N |c(i, x, y)| > 4 ·max(|x|i + i, |y|). (3.18)

The following claim can be proven in the same way as Claim 3.3.4. The only difference is
that we use a slightly different coding function c here.

Claim 3.4.2 ([DG19]) Let w ∈ Σ∗, i ∈ N+, and x, y ∈ N such that c(i, x, y) ≤ |w|. Then the
following holds.

1. Fwi (x) is definite and Fwi (x) < |w|.

2. For all v w w, it holds (Fwi (x) ∈ CANw ⇔ Fwi (x) ∈ CAN v).

During the construction we maintain a growing collection of requirements that is represented
by a partial function belonging to the set

T =
{
t : (N+)2 → Z | dom(t) is finite, t is injective on its support, and

� t({(i, i) | i ∈ N+}) ⊆ {0} ∪ N+

� t({(i, j) | i, j ∈ N+, i 6= j}) ⊆ {0} ∪ {−p | p ∈ P≥3}
}

.

A partial oracle w ∈ Σ∗ is called t-valid for t ∈ T if it satisfies the following properties.

V1 For all i ∈ N+ and all x, y ∈ N, if c(i, x, y) ∈ w, then Fwi (x) = y and y ∈ CANw.
(meaning: if the oracle contains the codeword c(i, x, y), then Fwi (x) outputs y and y ∈
CANw; hence c(i, x, y) ∈ w is a proof for y ∈ CANw)

V2 For all distinct i, j ∈ N+, if t(i, j) = 0, then there exists x such that (i) Mw
i (x) and Mw

j (x)
definitely accept or (ii) Mw

i (x) and Mw
j (x) definitely reject.

(meaning: for every extension of the oracle, (Mi,Mj) is not an NP ∩ coNP-machine.)

3.4. NP ∩ coNP and ¬CON Relative to an Oracle 71

V3 For all distinct i, j ∈ N+ with t(i, j) = −p for some p ∈ P≥3 and each k ∈ N+, it holds

(i) |Σpk ∩ w| ≤ 1 and

(ii) if w is defined for all words of length pk, then |Σpk ∩ w| ≥ 1.

(meaning: if t(i, j) = −p, then ensure that Ap = Bp and Ap ∈ UP ∩ coUP relative to the
final oracle.)

V4 For all i ∈ N+ with t(i, i) = 0, there exists x such that Fwi (x) is definite and Fwi (x) ∈ CAN v

for all v w w.
(meaning: for every extension of the oracle, Fi is not a proof system for CAN)

V5 For all i ∈ N+ and x ∈ N with 0 < t(i, i) ≤ c(i, x, Fwi (x))< |w|, it holds c(i, x, Fwi (x)) ∈ w.
(meaning: if t(i) > 0, then from t(i) on, we encode Fi into the oracle.
Note that V5 is not in contradiction with V3 as |c(·, ·, ·)| is even.)

The subsequent claim follows directly from the definition of t-valid.

Claim 3.4.3 Let t, t′ ∈ T such that t′ is an extension of t. For all oracles w ∈ Σ∗, if w is
t′-valid, then w is t-valid.

Claim 3.4.4 Let t ∈ T and u, v, w ∈ Σ∗ such that u v v v w and both u and w are t-valid.
Then v is t-valid.

Proof The oracle v satisfies V2 and V4, since u satisfies these conditions. Moreover, v satisfies
V3 as w satisfies these conditions.

Let i ∈ N+ and x, y ∈ N such that c(i, x, y) ∈ v. Then c(i, x, y) ∈ w and as w is t-valid,
we obtain by V1 that Fwi (x) = y ∈ CANw. Claim 3.4.2 yields that F vi (x) is definite and
F vi (x) ∈ CAN v ⇔ F vi (x) ∈ CANw. This yields F vi (x) = Fwi (x) = y ∈ CAN v. Thus v satisfies
V1.

Now let i ∈ N+ and x ∈ N such that 0 < t(i, i) ≤ c(i, x, F vi (x)) < |v|. Again, by Claim 3.4.2,
F vi (x) is definite and thus F vi (x) = Fwi (x). As |v| ≤ |w| and w is t-valid, we obtain by V5
that c(i, x, F vi (x)) = c(i, x, Fwi (x)) ∈ w. Since v v w and |v| > c(i, x, F vi (x)), we obtain
c(i, x, F vi (x)) ∈ v, which shows that v satisfies V5. 2

Oracle construction. Let T be an injective enumeration of (N+)2 ∪ {(i, j, r) ∈ (N+)3 | i 6= j}
having the property that for all i, j, r ∈ N+ with i 6= j the pair (i, j) appears earlier than the
triple (i, j, r). Each element of T stands for a task. We treat the tasks in the order specified by
T and after treating a task we remove it and possibly other tasks from T .

We begin with the unique nowhere defined function t0 ∈ T and the unique w0 ∈ Σ∗ with
|w0| = 1 and —when considering w0 as a set— with w0 = ∅ (i.e., w0 = 0 when we consider
w0 as a word in Σ∗ and w0 = 1 when we consider w0 as a natural number; cf. the paragraph
“Identification of Σ∗ and N” on page 31). Observe that w0 is t0-valid. Then we start treating
the tasks in T . Each task will be treated by (strictly) extending the corresponding oracle wi
to wi+1 and adding further requirements to the respective “valid function” ti in order to obtain
an extension ti+1 of ti. Thus we define partial functions t1, t2, . . . in T and partial oracles
w0 vp w1 vp w2 vp . . . such that each ti+1 is an extension of ti and each wi is ti-valid.

Finally, we choose O =
⋃∞
i=0wi. Thus O is totally defined, since in each step we strictly

extend the oracle.
Let us describe step s > 0, which starts with some ts−1 ∈ T and a ts−1-valid oracle ws−1

and chooses an extension ts ∈ T of ts−1 and a ts-valid ws wp ws−1 (it will be argued later that
the construction described below is indeed possible). Let us recall that each task is immediately
deleted from T after it is treated.

72 Chapter 3. Separating Relativized Conjectures

� task (i, i): Let t′ = ts−1 ∪ {(i, i) 7→ 0}. If there exists a t′-valid v wp ws−1, then let ts = t′

and ws be the least t′-valid, partial oracle wp ws−1. Otherwise, let ts = ts−1 ∪ {(i, i) 7→
|ws−1|}(note that here |ws−1| > 0 since |w0| = 15) and choose b ∈ {0, 1} and ws = ws−1b
such that ws is ts-valid.
(meaning: try to ensure that Fi is not a proof system for CAN . If this is impossible,
require that from now on the values of Fi are encoded into the oracle.)

� task (i, j) with i 6= j: Let t′ = ts−1 ∪ {(i, j) 7→ 0}. If there exists a t′-valid v wp ws−1,
then let ts = t′, define ws to be the least t′-valid, partial oracle wp ws−1, and delete all
tasks (i, j, ·) from T . Otherwise, let z = |ws−1|, choose some p ∈ P≥3 greater than |z| with
−p /∈ ran(ts−1), let ts = ts−1 ∪ {(i, j) 7→ −p}, and choose b ∈ {0, 1} and ws = ws−1b such
that ws is ts-valid.
(meaning: try to ensure that (Mi,Mj) is not an NP∩ coNP-machine. If this is impossible,
then L(Mi) inherently is in NP∩coNP, we choose a sufficiently large prime p, and ensure by
the choice ts(i, j) = −p that relative to the final oracle it holds Ap = Bp and Ap, Bp ∈ UP,
which implies Ap ∈ UP ∩ coUP.)

� task (i, j, r) with i 6= j: It holds ts−1(i, j) = −p for a prime p ∈ P≥3, since otherwise, this
task would have been deleted in the treatment of task (i, j). Define ts = ts−1 and choose
a ts-valid ws wp ws−1 such that there is some n ∈ N+ such that one of the following two
statements holds:

– 0n ∈ Awsp , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

– 0n ∈ Bws
p , Fwsr (0n) is definite, and Mws

j (Fwsr (0n)) definitely rejects.

Note: As ws is defined for all words of length n, the statement 0n ∈ Awsp (resp., 0n ∈ Bws
p)

is equivalent with the statement ∀vwws 0n ∈ Avp (resp., ∀vwws 0n ∈ Bv
p).

(meaning: due to V3 it will hold Ap ∈ UP∩coUP relative to the final oracle. As ts−1(i, j) <

0, it will hold L(MO
i) = L(MO

j) and hence L(MO
i) ∈ NPO. Thus the treatment of the

task (i, j, r) makes sure that Fr does not reduce Ap to L(Mi) relative to the final oracle.)

Observe inductively that each ts is in T . We now show that the construction is possible. For
that purpose, we first describe how a valid oracle can be extended by one bit such that it remains
valid.

Claim 3.4.5 Let s ∈ N and w ∈ Σ∗ be a ts-valid oracle with w w ws. Moreover, let z = |w|.
Then the following statements hold.

1. If |z| is odd and for all p ∈ P≥3 and k ∈ N+ with −p ∈ ran(ts) it holds |z| 6= pk, then w0
and w1 are ts-valid.

2. If there exist p ∈ P≥3 and k ∈ N+ with −p ∈ ran(ts) such that |z| = pk, z 6= 1p
k
, and

w ∩ Σpk = ∅, then w0 and w1 are ts-valid.

3. If there exist p ∈ P≥3 and k ∈ N+ with −p ∈ ran(ts) such that z = 1p
k

and w ∩ Σpk = ∅,
then w1 is ts-valid.

4. If z = c(i, x, Fwi (x)) for i ∈ N+ and x ∈ N and 0 < ts(i, i) ≤ z, then w1 is ts-valid.

5. If z = c(i, x, Fwi (x)) for i ∈ N+ and x ∈ N, at least one of the three conditions (i) ts(i, i)
undefined, (ii) ts(i, i) = 0, and (iii) ts(i, i) > z holds, and Fwi (x) ∈ CANw, then w0 and
w1 are ts-valid.

5Indeed, this is the reason why we do not start with w0 = ε.

3.4. NP ∩ coNP and ¬CON Relative to an Oracle 73

6. In all other cases (i.e., none of the assumptions in 1–5 holds) w0 is ts-valid.

Proof First note that V2 and V4 are not affected by extending the oracle. So we only need to
consider V1, V3, and V5 in the following.

Let us show the following assertions.

w0 satisfies V1. (3.19)

If (i) z = c(i, x, Fwi (x)) for i ∈ N+ and x ∈ N with Fwi (x) ∈ CANw or (ii) z has odd
length, then w1 satisfies V1.

(3.20)

w0 satisfies V5 unless there exist i ∈ N+ and x, y ∈ N such that (i) z = c(i, x, y),
(ii) 0 < ts(i, i) ≤ z, and (iii) Fwi (x) = y.

(3.21)

w1 satisfies V5. (3.22)

(3.19) and (3.20): Let i′ ∈ N+ and x′, y′ ∈ N such that c(i′, x′, y′) ∈ w. Then, as w is
ts-valid, by V1, Fwi′ (x

′) = y′ ∈ CANw and by Claim 3.4.2, Fwi′ (x
′) is definite and y′ ∈ CAN v for

all v w w. Hence in particular, Fwbi′ (x′) = y′ ∈ CANwb for all b ∈ {0, 1}. This shows (3.19).
For the proof of (3.20) it remains to consider z. In case (ii) w1 satisfies V1 as |z| is odd

and c(·, ·, ·) has even length. Consider case (i), i.e., z = c(i, x, Fwi (x)) for i ∈ N+ and x ∈ N
with Fwi (x) ∈ CANw. Then by Claim 3.4.2, Fw1

i (x) = Fwi (x) ∈ CANw1, which shows that w1
satisfies V1 and thus finishes the proof of (3.20).

(3.21) and (3.22): Let i′ ∈ N+ and x′ ∈ N such that 0 < ts(i
′, i′) ≤ c(i′, x′, Fwi′ (x

′)) < |w|.
Then by Claim 3.4.2, Fwi′ (x

′) is definite and thus Fwbi′ (x′) = Fwi′ (x
′) for all b ∈ {0, 1}. As w

is ts-valid, we have c(i′, x′, Fwi′ (x
′)) ∈ w by V5 and hence c(i′, x′, Fwbi′ (x′)) ∈ w ⊆ wb for all

b ∈ {0, 1}. This shows (3.22).
In order to finish the proof of (3.21), it remains to consider z. Assume z = c(i, x, y) for some

i, x, y ∈ N with i > 0 and 0 < ts(i, i) ≤ z (otherwise, w0 satisfies V5). If (iii) is wrong, then
Fwi (x) 6= y. By Claim 3.4.2, this computation is defined and hence Fw0

i (x) 6= y, which proves
that w0 satisfies V5. This shows (3.21).

We now prove the statements 1–6.

1. Observe that w0 and w1 satisfy V3. Moreover, by (3.19) and (3.21), the oracle w0 satisfies
V1 and V5 (recall that the length of each c(·, ·, ·) is even). By (3.20) and (3.22), the oracle
w1 satisfies V1 and V5.

2. By (3.19), (3.20), (3.21), and (3.22), the oracles w0 and w1 satisfy V1 and V5. As z 6= 1p
k

and w satisfies V3, the oracle w0 satisfies V3. As w ∩Σpk = ∅, the oracle w1 satisfies V3.

3. By (3.20) and (3.22), the oracle w1 satisfies V1 and V5. As w ∩ Σpk = ∅, the oracle w1
satisfies V3.

4. As |z| is even, w1 satisfies V3. By (3.22), w1 satisfies V5. It remains to argue that w1
satisfies V1. In order to apply (3.20), which will yield that w1 satisfies V1, it is sufficient
to prove y := Fwi (x) ∈ CANw. For a contradiction assume y ∈ CANw. Let s′ > 0 be the
step that treats the task (i, i). Note s′ ≤ s since ts(i, i) is defined. By Claim 3.4.3, w is
ts′−1-valid. As by Claim 3.4.2 the computation Fwi (x) is definite and y ∈ CAN v for all
v w w, the oracle w is even t-valid for t = ts′−1 ∪ {(i, i) 7→ 0}. But then the construction
would have chosen ts′ = t, in contradiction to ts(i, i) > 0.

5. As |z| is even, w0 and w1 satisfy V3. By (3.19), (3.20), and (3.22), w0 satisfies V1 and w1
satisfies both V1 and V5. Moreover, (3.21) can be applied, since each of the conditions
(i)–(iii) of statement 5 implies that condition (ii) of (3.21) does not hold. Thus w0 satisfies
V5.

74 Chapter 3. Separating Relativized Conjectures

6. By (3.19), w0 satisfies V1. If w0 does not satisfy V3, then there exist p ∈ P≥3 with

−p ∈ ran(ts) and k > 0 such that w ∩ Σpk = ∅ and z = 1p
k
, but this case is covered by

statement 3 of the current claim. If w0 does not satisfy V5, then by (3.21), there exist
i ∈ N+ and x, y ∈ N such that (i) z = c(i, x, y), (ii) 0 < ts(i, i) ≤ z, and (iii) Fwi (x) = y.
This case, however, is covered by statement 4 of the current claim.

This finishes the proof of Claim 3.4.5. 2

In order to show that the above construction is possible, assume that it is not possible and
let s > 0 be the least number for which it fails.

If step s treats a task (i, j) ∈ (N+)2, then ts−1(i, j) is not defined, since the value of the
“valid function” at the point (i, j) is defined in the unique treatment of the task (i, j). Hence
t′ = ts−1 ∪ {(i, j) 7→ 0} is well-defined. If ts is chosen to be t′, then the construction clearly
is possible. Otherwise, due to the sufficiently large choice of ts(i, j), the ts−1-valid oracle ws−1

is even ts-valid and Claim 3.4.5 ensures that there exists a ts-valid ws−1b for some b ∈ {0, 1}.
Hence the construction does not fail in step s, a contradiction.

For the remainder of the proof that the construction above is possible we assume that step s
treats a task (i, j, r) ∈ (N+)3 with i 6= j.

Then ts = ts−1 and ts(i, j) = −p for some p ∈ P≥3 (recall that otherwise, the task (i, j, r)
would have been deleted in the step treating the task (i, j)). Let γ be the polynomial defined
by x 7→ (xr + r)i+j + i+ j and choose k ∈ N+ such that for n = pk it holds

2n−1 > 2 · γ(n) (3.23)

and ws−1 is undefined for all words of length ≥ n. Note that by the choice of γ, for all oracles
D, all oracle queries asked by the computations FDr (0n), MD

i (FDr (0n)), and MD
j (FDr (0n)) are

of length ≤ γ(n).
We define u w ws−1 to be the minimal ts-valid oracle that is defined for all words of length

< n. Such an oracle exists by Claim 3.4.5.
Moreover, for z ∈ Σn, let uz wp u be the minimal ts-valid oracle with uz ∩ Σn = {z} that

is defined for all words of length ≤ γ(n). Such an oracle exists by Claim 3.4.5: first, starting
from u we extend the current oracle bitwise such that (i) it remains ts-valid, (ii) it is defined for
precisely the words of length ≤ n, and (iii) its intersection with Σn equals {z}. This is possible
by 2, 3, and 6 of Claim 3.4.5. Then by Claim 3.4.5, the current oracle can be extended bitwise
without losing its ts-validity until it is defined for all words of length ≤ γ(n).

We define a further oracle v that will be crucial in the following. Let s′ > 0 be the step
that treats the task (i, j). As ts(i, j) is defined, it holds s′ ≤ s. By Claim 3.4.3, the oracle u
is ts′−1-valid. In order to define v, we need the following two properties (3.24) and (3.25). But
first we define ũ to be the minimal partial oracle w u that is defined for all words of length ≤ n,
i.e., ũ = u when considering the oracles as sets. By Claim 3.4.5.1 and as ts′−1 is not defined for
the pair (i, j) and thus −p /∈ ran(ts′−1), we obtain that ũ is ts′−1-valid. Now let w w ũ be a
ts′−1-valid oracle. We say that w satisfies property (3.24) if

for all i′, x ∈ N with i′ > 0, ts(i
′, i′) > 0, and |ũ| ≤ c(i′, x, Fwi′ (x)) < |w|, if Fwi′ (x) ∈

CANw, then c(i′, x, Fwi′ (x)) ∈ w.
(3.24)

Note that by construction, for all i′ > 0, if ts(i
′, i′) > 0, then ts(i

′, i′) ≤ |ũ|. Moreover, w satisfies
property (3.25) if

for all p′ ∈ P≥3 with −p′ ∈ ran(ts), it holds
(i) w ∩ Σp′κ ⊆ {1p′

κ

} for all κ > 0 with n < p′κ and
(ii) w ∩ Σp′κ = {1p′

κ

} for all κ > 0 with n < p′κ and 1p
′κ
< |w|.

(3.25)

3.4. NP ∩ coNP and ¬CON Relative to an Oracle 75

So roughly speaking, a ts′−1-valid oracle w w ũ satisfies properties (3.24) and (3.25) if it contains
possibly all encodings of length > n that we would demand a ts-valid oracle of the same length
to have.

Now we define v wp ũ to be the minimal ts′−1-valid oracle that is defined for all words of length
≤ γ(n) and that satisfies properties (3.24) and (3.25). Let us argue that such an oracle exists.
Clearly ũ satisfies properties (3.24) and (3.25). Hence the second statement of the following
claim shows that v is well-defined.

Claim 3.4.6 1. For all ts′−1-valid oracles w and w′ with ũ v w v w′, if w satisfies prop-
erty (3.24) and w′ does not satisfy property (3.24), then there exists α ∈ [|w|, |w′|) such

that (i) α = c(i′, x, Fw
′

i′ (x)) for i′, x ∈ N with i′ > 0 and ts(i
′, i′) > 0, (ii) Fw

′
i′ (x) ∈ CANw′,

and (iii) α /∈ w′.

2. For each ts′−1-valid oracle w w ũ that satisfies properties (3.24) and (3.25) there exists
b ∈ {0, 1} such that wb is ts′−1-valid and satisfies properties (3.24) and (3.25).

3. Let w w ũ be ts′−1-valid. If w satisfies properties (3.24) and (3.25), then each w′ with
ũ v w′ v w satisfies properties (3.24) and (3.25) as well.

Proof 1. Since w′ does not satisfy property (3.24), there exists α = c(i′, x, Fw
′

i′ (x)) ∈ [|ũ|, |w′|)
for some i′, x ∈ N with i′ > 0 and ts(i

′, i′) > 0 such that Fw
′

i′ (x) ∈ CANw′ and α /∈ w′. For
a contradiction, we assume α < |w|. Then Claim 3.4.2 yields Fwi′ (x) = Fw

′
i′ (x) ∈ CANw. It

follows from α < |w|, w v w′, and α /∈ w′ that α /∈ w, which contradicts the assumption that w
satisfies property (3.24). Hence α ≥ |w|, which proves statement 1.

2. We study several cases depending on α = |w| (i.e., α is the least word that w is not
defined for).

� If α is of the form c(i′, x, Fwi′ (x)) for i′, x ∈ N with i′ > 0 and ts(i
′, i′) > 0 such that

Fwi′ (x) ∈ CANw, then we choose b = 1. The statements 4 and 5 of Claim 3.4.5 state that
the oracle wb is ts′−1-valid (recall that by construction ts(i

′, i′) ≤ |u| ≤ |w| = α and note
that we apply Claim 3.4.5 for the parameter s′ − 1).

� If α has length p′κ for some p′ ∈ P≥3 with −p′ ∈ ran(ts) and κ > 0, then we choose b = 1
if α = 1p

′κ
and b = 0 otherwise. Since w satisfies property (3.25), it holds w ∩ Σp′κ = ∅.

Hence the statements 1, 2, and 3 of Claim 3.4.5 state that the oracle wb is ts′−1-valid
(again, note that we apply Claim 3.4.5 for the parameter s′ − 1).

� In all other cases Claim 3.4.5 guarantees that we can choose b ∈ {0, 1} such that wb is
ts′−1-valid.

By the choice of b, the oracle wb satisfies property (3.25). If wb does not satisfy property (3.24),
then by statement 1 of the current claim, α = c(i′, x, Fwbi′ (x)) for i′, x ∈ N with i′ > 0 and

ts(i
′, i′) > 0, Fwbi′ (x) ∈ CANwb, and α /∈ wb. Claim 3.4.2, however, yields that then Fwi′ (x) =

Fwbi′ (x) ∈ CANw. But then we would have chosen b = 1 above, in contradiction to α /∈ wb.
3. As w′ v w and w satisfies property (3.25), w′ satisfies property (3.25). We argue

that w′ satisfies property (3.24). Let i′, x ∈ N with i′ > 0 and ts(i
′, i′) > 0 such that

|ũ| ≤ c(i′, x, Fw
′

i′ (x)) < |w′| and Fw
′

i′ (x) ∈ CANw′ . As c(i′, x, Fw
′

i′ (x)) < |w′|, Claim 3.4.2 yields
Fwi′ (x) = Fw

′
i′ (x) ∈ CANw. As w satisfies property (3.24), c(i′, x, Fw

′
i′ (x)) ∈ w. Since w′ v w

and c(i′, x, Fw
′

i′ (x)) < |w′|, we obtain c(i′, x, Fw
′

i′ (x)) ∈ w′. Hence w′ satisfies property (3.24).

This finishes the proof of Claim 3.4.6. 2

76 Chapter 3. Separating Relativized Conjectures

Note that v is undefined for all words of length > γ(n): otherwise, Claim 3.4.6.3 would yield
an even smaller ts′−1-valid oracle that is defined for all words of length ≤ γ(n) and that satisfies
properties (3.24) and (3.25), which contradicts our choice of v. Hence it holds |v| = |uz| for all
z ∈ Σn.

Claim 3.4.7 Let w ∈ {v} ∪ {uz | z ∈ Σn}.

1. For each α ∈ w ∩ Σ>n one of the following statements holds.

� α = c(i′, x, Fwi′ (x)) for some i′ ∈ N+ and x ∈ N with 0 < ts(i
′, i′) ≤ α and Fwi′ (x) ∈

CANw.

� α = 1p
′κ

for some p′ ∈ P≥3 with −p′ ∈ ran(ts) and some κ > 0.

2. For all p′ ∈ P≥3 with −p′ ∈ ran(ts) and all κ > 0, if n < p′κ ≤ γ(n), then w∩Σp′κ = {1p′
κ

}.

3. For all z ∈ Σn and all α ∈ uz− v it holds (i) α = z or (ii) |α| > n and α = c(i′, x, F uzi′ (x))
for some i′ ∈ N+ and x ∈ N with 0 < ts(i

′, i′) ≤ c(i′, x, F uzi′ (x)) and F uzi′ (x) ∈ CAN uz .

4. For all z ∈ Σn and all α ∈ v−uz it holds |α| > n and α = c(i′, x, F vi′ (x)) for some i′ ∈ N+

and x ∈ N with 0 < ts(i
′, i′) ≤ c(i′, x, F vi′ (x)) and F vi′ (x) ∈ CAN v.

Proof 1. We first argue for the case w = uz for some z ∈ Σn. Let α ∈ uz ∩Σ>n. Moreover, let
u′ be the prefix of uz that has length α, i.e., α is the least word that u′ is not defined for. In
particular, it holds u′ ∩ Σ≤n = uz ∩ Σ≤n and thus u′ ∩ Σn = {z}. As u v u′ v uz and both u
and uz are ts-valid, Claim 3.4.4 yields that u′ is also ts-valid.

Let us apply Claim 3.4.5 to the oracle u′. If one of the cases 1, 2, 5, and 6 can be applied,
then u′0 is ts-valid and can be extended to a ts-valid oracle u′′ with |u′′| = |uz| by Claim 3.4.5.
As u′′ and uz agree on all words < α and α ∈ uz −u′′, we obtain u′′ < uz and due to u′ v u′′ we
know that u′′∩Σn = {z}. This is a contradiction to the choice of uz (recall that uz is the minimal
ts-valid oracle that is defined for all words of length ≤ γ(n) and that satisfies uz ∩ Σn = {z}).

Hence none of the cases 1, 2, 5, and 6 of Claim 3.4.5 can be applied, i.e., either (i)
Claim 3.4.5.3 or (ii) Claim 3.4.5.4 can be applied. Hence either (i) α = 1p

′κ
for some p′ ∈ P≥3 and

κ > 0 with −p′ ∈ ran(ts) or (ii) α = c(i′, x, F uzi′ (x)) for i′ ∈ N+ and x ∈ N with 0 < ts(i
′, i′) ≤ α.

In the latter case, as α ∈ uz and uz is ts-valid, we obtain from V1 that F uzi′ (x) ∈ CAN uz .

The arguments for the case w = v are similar, yet a little more complicated. Let α ∈ v∩Σ>n.
Moreover, let v′ be the prefix of v that has length α, i.e., α is the least word that v′ is not defined
for. As ũ v v′ v v and both ũ and v are ts′−1-valid, Claim 3.4.4 yields that v′ is also ts′−1-valid.
Moreover, by Claim 3.4.6.3, v′ satisfies properties (3.24) and (3.25).

Let us apply Claim 3.4.5 to the oracle v′ (for the parameter s′ − 1). If one of the cases 1, 2,
5, and 6 can be applied, then v′0 is ts′−1-valid.
First, assume that it does not hold that v′0 satisfies properties (3.24) and (3.25). If v′0 does not
satisfy property (3.25), then α = 1p

′κ
for some p′ ∈ P≥3 with −p′ ∈ ran(ts) and κ > 0. If v′0 does

not satisfy property (3.24), then it holds by Claim 3.4.6.1 that α = c(i′, x, y) for some i′, x, y ∈ N
with i′ > 0 and ts(i

′, i′) > 0. As v is ts′−1-valid and α ∈ v, it holds F vi′ (x) = y ∈ CAN v.
Moreover, by construction, α > |u| ≥ ts(i

′, i′). Hence under the assumption that v′0 does not
satisfy property (3.24) or v′0 does not satisfy property (3.25), we obtain that α is of the form
described in statement 1 of the current claim.
Now we consider the case that v′0 satisfies properties (3.24) and (3.25) and show that this
assumption leads to a contradiction. By iteratively applying Claim 3.4.6.2 we extend v′0 to a
ts′−1-valid oracle v′′ that satisfies |v′′| = |v| and properties (3.24) and (3.25). As v′′ and v agree

3.4. NP ∩ coNP and ¬CON Relative to an Oracle 77

on all words < α, α ∈ v − v′′, and |v| = |v′′|, it holds v′′ < v, in contradiction to the choice of v
(recall that v is the minimal ts′−1-valid oracle wp ũ that is defined for all words of length ≤ γ(n)
and that satisfies properties (3.24) and (3.25)).

In order to finish the proof of statement 1, it remains to consider the cases that Claim 3.4.5.3
or Claim 3.4.5.4 can be applied to v′. This means that either (i) there exist p′ ∈ P≥3 and κ ∈ N+

with −p′ ∈ ran(ts′−1) ⊆ ran(ts) such that α = 1p
′κ

, or (ii) α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N
with 0 < ts′−1(i′, i′) = ts(i

′, i′) ≤ α. In the latter case, as α ∈ v and v is ts′−1-valid, we obtain
from V1 that F vi′ (x) = y ∈ CAN v. This shows that also in this case α is of the form described
in statement 1 of the current claim.

2. The statement is true in case w = v as v satisfies property (3.25). Let us argue for the
case w = uz for some z ∈ Σn. Let p′ and κ have the properties mentioned in statement 2. As
−p′ ∈ ran(ts), uz is ts-valid, and uz is defined for all words of length p′κ, V3 yields that there
exists β ∈ Σp′κ ∩ uz. Let β be the minimal element of Σp′κ ∩ uz. It suffices to show β = 1p

′κ
.

For a contradiction, we assume β < 1p
′κ

. Let u′ be the prefix of uz that is defined for exactly
the words < β. Then u v u′ v uz and both u and uz are ts-valid. Hence by Claim 3.4.4, the
oracle u′ is ts-valid as well.

By Claim 3.4.5, u′ can be extended to a ts-valid oracle u′′ that satisfies |u′′| = |uz| and
u′′∩Σp′κ = {1p′

κ

} (the latter property can be achieved by iteratively applying Claim 3.4.5.2 and
then applying Claim 3.4.5.3 once when extending the respective oracle for the words of length
p′κ). Then β ∈ uz−u′′. As the oracles u′′ and uz agree on all words < β and it holds |u′′| = |uz|,
we have u′′ < uz and u′′ ∩ Σn = {z}, in contradiction to the choice of uz (again, recall that uz
is the minimal ts-valid oracle that is defined for all words of length ≤ γ(n) and that satisfies
uz ∩ Σn = {z}).

3. Recall that u is defined for exactly the words of length < n. By uz w u, v w ũ w u, and
uz ∩Σn = {z}, either α = z or |α| > n. Thus statements 1 and 2 of the present claim complete
the proof of statement 3.

4. The fact that uz w u, v w ũ w u, and ũ ∩ Σn = ∅ yields |α| > n. Thus statements 1 and
2 of the present claim complete the proof of statement 4.

This finishes the proof of Claim 3.4.7. 2

Let us study the case that both computations Mv
i (F vr (0n)) and Mv

j (F vr (0n)) reject. Then
they even definitely reject as v is defined for all words of length ≤ γ(n). For the same reason
the computation F vr (0n) is definite. But then v is not only ts′−1-valid but also t-valid for
t = ts′−1 ∪ {(i, j) 7→ 0} and the construction would have chosen ts′ = t, in contradiction to
ts(i, j) = −p < 0. Hence one of the computations Mv

i (F vr (0n)) and Mv
j (F vr (0n)) accepts and by

the (sufficiently long) choice of v even definitely accepts. By symmetry, it suffices to consider
the case that Mv

i (F vr (0n)) definitely accepts.
Let U be the set that consists of all oracle queries of F vr (0n) and all oracle queries of the

least accepting path of Mv
i (F vr (0n)). Observe `(U) ≤ γ(n). Moreover, define Q0(U) = U and

for m ∈ N,

Qm+1(U) =
⋃

i′,x,y∈N,i′>0
c(i′,x,y)∈Qm(U)

[
{q | q is queried by F vi′ (x)}∪

{q | y = 〈0i′′ , 0|x′|i
′′

+i′′ , x′〉 for some i′′ > 0 and x′ ∈ N, Mv
i′′(x

′) has an accepting

path, and q is queried on the least such path}
]
.

Let Q(U) =
⋃
m∈NQm(U).

78 Chapter 3. Separating Relativized Conjectures

Claim 3.4.8 `(Q(U)) ≤ 2γ(n) and the length of each word in Q(U) is ≤ γ(n).

Proof We show that for all m ∈ N, `(Qm+1(U)) ≤ 1/2 · `(Qm(U)). Then
∑κ

m=0
1/2m ≤ 2 for

all κ ∈ N implies `(Q(U)) ≤ 2 · `(U) ≤ 2γ(n). Moreover, from `(U) ≤ γ(n) and `(Qm+1(U)) ≤
1/2 · `(Qm(U)) the second part of the claim follows.

Let m ∈ N and consider an arbitrary element α of Qm(U). If α is not of the form c(i′, x, y)
for i′ ∈ N+ and x, y ∈ N, then α generates no elements in Qm+1(U). Assume α = c(i′, x, y) for
i′ ∈ N+ and x, y ∈ N. The computation F vi′ (x) runs for at most |x|i′ + i′ < |α|/4 steps, where “<”
holds by (3.18). Hence the set of queries Q of F vi′ (x) satisfies `(Q) ≤ |α|/4.

If y is not of the form 〈0i′′ , 0|x′|i
′′

+i′′ , x′〉 for i′′ ∈ N+ and x′ ∈ N, then α does not gen-
erate any further elements in Qm+1(U) than the queries asked by F vi′ (x). Let us assume

y = 〈0i′′ , 0|x′|i
′′

+i′′ , x′〉 for some i′′ ∈ N+ and some x′ ∈ N. Then the computation Mv
i′′(x)

runs for less than |y| < |α|/4 steps, where again “<” holds by (3.18). Hence, for the set Q of
queries of the least accepting path of the computation Mv

i′′(x) (if such a path exists) we have
`(Q) ≤ |α|/4.

Consequently,

`(Qm+1(U)) ≤
∑

i′,x,y∈N,i′>0
c(i′,x,y)∈Qm(U)

[
`
(
{q | q is queried by F vi′ (x)}

)︸ ︷︷ ︸
≤|c(i′,x,y)|/4

+

`
(
{q | y = 〈0i′′ , 0|x′|i

′′
+i′′ , x′〉 for some i′′ > 0 and x′ ∈ N, Mv

i′′(x
′)

has an accepting path, and q is queried on the least such

path}
)]︸ ︷︷ ︸

≤|c(i′,x,y)|/4

≤
∑

i′,x,y∈N,i′>0
c(i′,x,y)∈Qm(U)

|c(i′,x,y)|/2 ≤ `(Qm(U))/2,

which finishes the proof of Claim 3.4.8. 2

For z even we say that uz and v conflict if there exists α ∈ Q(U) with α ∈ uz4v. In that
case we say that uz and v conflict in α. As uz w u and v w ũ w u, either uz and v conflict in a
word of length ≥ n or they do not conflict at all.

Claim 3.4.9 For all even z ∈ Σn, if v and uz conflict, then they conflict in z.

Proof Let z ∈ Σn be even such that uz and v conflict. By Claim 3.4.7.3 and Claim 3.4.7.4, it
is sufficient to show that v and uz conflict in a word of length n.

As v and uz are both extensions of u, uz and v do not conflict in a word of length < n. Let
α ∈ Q(U) be the least word of length > n that uz and v conflict in (if such a word does not
exist, then uz and v only conflict in words of length n). As α ∈ v4uz, it suffices to study the
following two cases.

� Assume α ∈ uz−v. By Claim 3.4.7.3, it holds α = c(i′, x, y) for some i′ ∈ N+ and x, y ∈ N
with 0 < ts(i

′, i′) ≤ c(i′, x, F uzi′ (x)) and F uzi′ (x) = y ∈ CAN uz .

First assume F vi′ (x) 6= y. Then there is some query q of F vi′ (x) that is in v4uz (otherwise,
F uzi′ (x) and F vi′ (x) would output the same value). As v and uz agree on all words of length

< n, it holds |q| ≥ n. Since |q| ≤ |x|i′ + i′ < |c(i′, x, y)| = |α| and α is the least word of
length > n that v and uz conflict in, it holds |q| = n. By α ∈ Q(U) and the definition of
Q(U), it holds q ∈ Q(U). Hence v and uz conflict in a word of length n.

3.4. NP ∩ coNP and ¬CON Relative to an Oracle 79

Now assume F vi′ (x) = y. As α /∈ v and v satisfies property (3.24), it holds y /∈ CAN v. As

y ∈ CAN v, y is of the form 〈0i′′ , 0|x′|i
′′
, x′〉 for some i′′ > 0 and x′ ∈ N. It follows from

y ∈ CAN v that the computation Mv
i′′(x

′) has an accepting path. By the definition of Q(U),
all queries q that are asked on the least such path are in Q(U). However, y ∈ CAN uz

yields that there is some query q on the least accepting path of Mv
i′′(x

′) that is in v4uz
(otherwise, Muz

i′′ (x′) would accept as well). As v and uz agree on all words of length < n,

it holds |q| ≥ n. Since |q| ≤ |x′|i′′ + i′′ < |y| < |c(i′, x, y)| = |α| and α is the least word of
length > n that v and uz conflict in, it holds |q| = n. Hence v and uz conflict in a word
of length n.

� Assume α ∈ v − uz. By Claim 3.4.7.4, it holds α = c(i′, x, F vi′ (x)) for some i′ ∈ N+

and x ∈ N with 0 < ts(i
′, i′) ≤ c(i′, x, F vi′ (x)) and F vi′ (x) ∈ CAN v. If F uzi′ (x) = F vi′ (x),

then by V5, we have α ∈ uz, a contradiction. Hence F uzi′ (x) 6= F vi′ (x). Then there is
some query q of F vi′ (x) that is in v4uz (otherwise, F uzi′ (x) and F vi′ (x) would output the
same value). As v and uz agree on all words of length < n, it holds |q| ≥ n. Since
|q| ≤ |x|i′ + i′ < |c(i′, x, F vi′ (x))| = |α| and α is the least word of length > n that v and uz
conflict in, it holds |q| = n. By α ∈ Q(U) and the definition of Q(U), it holds q ∈ Q(U).
Hence v and uz conflict in a word of length n.

In both cases v and uz conflict in a word of length n. This finishes the proof of Claim 3.4.9. 2

By Claim 3.4.8 and (3.23), |Q(U)| ≤ `(Q(U)) ≤ 2γ(n) < 2n−1 = |{z ∈ Σn | z even}|. Hence
there exists an even z ∈ Σn with z /∈ Q(U). Consequently, v and uz do not conflict in z. Then
by Claim 3.4.9, v and uz do not conflict at all.

As all queries of F vr (0n) and all queries of the least accepting path of Mv
i (F vr (0n)) are in

U ⊆ Q(U), v and uz agree on all these queries, and uz is defined for all words of length ≤ γ(n),
it holds that F uzr (0n) = F vr (0n) is definite and that Muz

i (F uzr (0n)) definitely accepts. Note that
since uz is defined for all words of length ≤ γ(n), the computation Muz

j (F uzr (0n)) is definite as
well. We study two cases depending on whether this computation accepts or rejects.

� First consider the case that Muz
j (F uzr (0n)) definitely rejects. As z is even, 0n ∈ Buz

p and
clearly 0n ∈ Bw

p for all w w uz. This, however, contradicts the assumption that step s of
the construction treating the task (i, j, r) is not possible.

� Next we consider the case that Muz
j (F uzr (0n)) definitely accepts. Then both Muz

i (F uzr (0n))
and Muz

j (F uzr (0n)) definitely accept. As uz is ts′−1-valid by Claim 3.4.3, we obtain that
uz is even t-valid for t = ts′−1∪{(i, j) 7→ 0}. But then the construction would have chosen
ts′ = t, in contradiction to ts(i, j) = −p < 0.

As in both cases we obtain a contradiction, the construction described above is possible. It
remains to show that relative to the final oracle O, there exist PO-optimal proof systems for

CANO and NPO ∩ coNPO does not contain problems that are ≤p,O
m -hard for UPO ∩ coUPO.

Claim 3.4.10 CANO has PO-optimal proof systems.

Proof Let g ∈ FPO be an arbitrary proof system for CANO and a be an arbitrary element of

CANO. Define f to be the following function Σ∗ → Σ∗:

f(z) =

g(z′) if z = 1z′

y if z = 0c(i, x, y) for i ∈ N+, x, y ∈ N, and c(i, x, y) ∈ O
a otherwise.

80 Chapter 3. Separating Relativized Conjectures

By definition, f ∈ FPO and as g is a proof system for CANO it holds f(Σ∗) ⊇ CANO. We show

f(Σ∗) ⊆ CANO. Let z ∈ Σ∗. Assume z = 0c(i, x, y) for i ∈ N+, x, y ∈ N, and c(i, x, y) ∈ O
(otherwise, clearly f(z) ∈ CANO). For each large enough s it holds that ws is defined for
c(i, x, y), i.e. ws(c(i, x, y)) = 1, and as ws is ts-valid, we obtain by V1 that f(z) = y ∈ CANws

and by Claim 3.4.2 that y ∈ CAN v for all v w ws. This shows that f is a proof system for

CANO.

It remains to show that each proof system for CANO is PO-simulated by f . Let h be an

arbitrary proof system for CANO. Then there exists i > 0 such that FOi computes h. By
construction, ts(i, i) > 0 for s being the number of the step that treats the task (i, i). Consider
the following function π : Σ∗ → Σ∗:

π(x) =

{
0c(i, x, FOi (x)) if c(i, x, FOi (x)) ≥ ts(i, i)
z if c(i, x, FOi (x)) < ts(i, i) and z is minimal with f(z) = FOi (x)

As f and FOi are proof systems for CANO, for every x there exists z with f(z) = FOi (x). Hence
π is total. Since ts(i, i) is a constant, π ∈ FPO. It remains to show that f(π(x)) = FOi (x) for
all x ∈ Σ∗. If c(i, x, FOi (x)) < ts(i, i), this holds. Otherwise, choose s′ large enough such that
(i) s′ ≥ s (i.e., ts′(i, i) = ts(i, i) > 0) and (ii) ws′ is defined for c(i, x, F

ws′
i (x)). Then, as ws′

is ts′-valid, V5 yields that c(i, x, F
ws′
i (x)) ∈ ws′ . By Claim 3.4.2, F

ws′
i (x) is definite and hence

FOi (x) = F
ws′
i (x) as well as c(i, x, FOi (x)) ∈ ws′ ⊆ O. Hence f(π(x)) = f(0c(i, x, FOi (x))) =

FOi (x). 2

Claim 3.4.11 NPO ∩ coNPO does not contain problems that are ≤p,O
m -hard for UPO ∩ coUPO.

Proof Assume the assertion is wrong, i.e., there exist distinct i, j ∈ N+ such that
L(MO

i), L(MO
j) ∈ NPO with L(MO

i) = L(MO
j) and for every A ∈ UPO ∩ coUPO it holds

A≤p,O
m L(MO

i). From L(MO
i) = L(MO

j) if follows that for all s there does not exist z such that
(i) both Mws

i (z) and Mws
j (z) definitely accept or (ii) both Mws

i (z) and Mws
j (z) definitely reject.

Hence by V2, there does not exist s with ts(i, j) = 0 and thus by construction, ts(i, j) = −p for

some p ∈ P≥3 and all sufficiently large s. The latter implies |O ∩Σpk | = 1 for all k > 0 (cf. V3),

which yields AOp = BO
p and AOp , B

O
p ∈ UPO, i.e., AOp ∈ UPO ∩ coUPO. Thus there exists r such

that AOp ≤
p,O
m L(MO

i) via FOr . Let s be the step that treats task (i, j, r). This step makes sure
that there exists n ∈ N+ such that at least one of the following properties holds:

� ∀w̃wws 0n ∈ Aw̃p , Fwsr (0n) is definite, and Mws
i (Fwsr (0n)) definitely rejects.

� ∀w̃wws 0n ∈ Bw̃
p , Fwsr (0n) is definite, and Mws

j (Fwsr (0n)) definitely rejects.

As O(q) = ws(q) for all q that ws is defined for, one of the following two statements holds.

� 0n ∈ AOp and FOr (0n) /∈ L(MO
i).

� 0n ∈ BO
p = AOp and FOr (0n) /∈ L(MO

j) = L(MO
i).

This is a contradiction to AOp ≤
p,O
m L(MO

i) via FOr , which completes the proof of Claim 3.4.11. 2

This finishes the proof of Theorem 3.4.1. 2

3.5. P 6= NP, ¬CON, and ¬SAT Relative to an Oracle 81

Corollary 3.4.12 There exists an oracle O with the following properties:

1. NPO ∩ coNPO does not contain ≤p,O
m -complete problems.

2. UPO ∩ coUPO does not contain ≤p,O
m -complete problems.

3. Each non-empty set in coNPO has PO-optimal proof systems.

4. There do not exist problems that are ≤p,O
m -complete for NPO and have PO-optimal proof

systems.

Proof Statements 1, 2, and 3 follow from Theorem 3.4.1 and Corollary 2.3.6. Köbler, Messner,
and Torán [KMT03, Theorem 4.1] show that if both NP and coNP contain ≤p

m-complete sets
that have P-optimal proof systems, then NP ∩ coNP has ≤p

m-complete sets. Their proof is
relativizable, i.e., if both coNPO and NPO contain ≤p,O

m -complete sets that have PO-optimal
proof systems, then NPO ∩ coNPO has ≤p,O

m -complete elements. Thus statement 3 and the
negation of statement 4 imply that statement 1 does not hold. This proves statement 4. 2

3.5 P 6= NP, ¬CON, and ¬SAT Relative to an Oracle

In this section we construct an oracle relative to which P 6= NP and there exist P-optimal proof
systems for both all non-empty sets in NP and all non-empty sets in coNP, which separates the
(relativized) conjectures P 6= NP and CON∨ SAT. This oracle construction is the least complex
among all oracles we construct in this thesis.

Theorem 3.5.1 There exists an oracle O relative to which the following statements hold:

� PO 6= NPO

� CANO has PO-optimal proof systems.

� CANO has PO-optimal proof systems.

Proof We define c(i, x, y) = 〈0i, 0|x|i+i, x, y〉. Let D be a (possibly partial) oracle and define

AD = {0n | ∃y∈Σn0y ∈ D}.

We will construct the oracle such that AO ∈ NPO − PO for the final oracle O. Note that
throughout this proof we sometimes omit the oracles in the superscript, e.g., we write NP or
A instead of NPD or AD. However, we do not do that in the “actual” proof but only when
explaining ideas in a loose way in order to give the reader some intuition.

Let us briefly sketch the idea of our construction.

Preview of the Construction For each Fi we first try to ensure that Fi does not compute a
proof system for CAN (resp., CAN). If this is impossible, then Fi inherently computes a proof
system for CAN (resp., CAN). In that case we start to encode the values of Fi into the oracle
so that Fi can be P-simulated by some proof system for CAN (resp., CAN) that we will define
later and finally show to be P-optimal.

Moreover, we diagonalize against all Pi so that A is not in P relative to the final oracle.
The following claim can be proven in the same way as Claim 3.3.4. The only difference is

that we use a slightly different coding function c here.

82 Chapter 3. Separating Relativized Conjectures

Claim 3.5.2 ([DG19]) Let w ∈ Σ∗, i ∈ N+, and x, y ∈ N such that c(i, x, y) ≤ |w|. Then the
following holds.

1. Fwi (x) is definite and Fwi (x) < |w|.

2. For all v w w,
(
Fwi (x) ∈ CANw ⇔ Fwi (x) ∈ CAN v

)
.

During the construction we maintain a collection of requirements, which is represented by
a function in T := {t : {0, 1} × N+ → N | t has a finite domain}. Let t ∈ T . A partial oracle
w ∈ Σ∗ is called t-valid if it satisfies the following properties.

V1 For all i ∈ N+,

1. if 10c(i, x, y) ∈ w for some x, y ∈ N, then Fwi (x) = y ∈ CANw.

2. if 11c(i, x, y) ∈ w for some x, y ∈ N, then Fwi (x) = y ∈ CANw.

(meaning: if the oracle contains the codeword 1bc(i, x, y) for b = 0 (resp., b = 1), then
Fwi (x) outputs y and y ∈ CANw (resp., y ∈ CANw); hence 1bc(i, x, y) ∈ w is a proof for
y ∈ CANw (resp., y ∈ CANw).)

V2 For all i ∈ N+, if t(0, i) = 0, then there exists x such that Fwi (x) is definite and Fwi (x) /∈
CAN v for all v w w.
(meaning: for every extension of the current oracle, Fi is not a proof system for CAN .)

V3 For all i ∈ N+, if t(0, i) > 0, then for all x ∈ N with t(0, i) ≤ 10c(i, x, Fwi (x)) < |w|, it
holds 10c(i, x, Fwi (x)) ∈ w.
(meaning: if t(0, i) > 0, then from t(0, i) on, we encode the values of Fi into the oracle.)

V4 For all i ∈ N+, if t(1, i) = 0, then there exists x such that Fwi (x) is definite and Fwi (x) /∈
CAN v for all v w w.
(meaning: for every extension of the current oracle, Fi is not a proof system for CAN .)

V5 For all i ∈ N+, if t(1, i) > 0, then for all x ∈ N with t(1, i) ≤ 11c(i, x, Fwi (x)) < |w|, it
holds 11c(i, x, Fwi (x)) ∈ w.
(meaning: if t(1, i) > 0, then from t(1, i) on, we encode the values of Fi into the oracle.)

This definition directly implies the following claim.

Claim 3.5.3 Let t, t′ ∈ T such that t′ is an extension of t. If w ∈ Σ∗ is t′-valid, then w is
t-valid.

Claim 3.5.4 Let t ∈ T and u, v, w ∈ Σ∗ so that u v v v w. If u and w are t-valid, then v is
t-valid.

Proof The oracle v satisfies V2 and V4, since u satisfies V2 and V4 and u v v.
Let us argue for V1. Let 10c(i, x, y) ∈ v for i ∈ N+ and x, y ∈ N. Then 10c(i, x, y) ∈ w and

as w is t-valid, it holds by V1 that Fwi (x) = y ∈ CANw. By Claim 3.5.2, F vi (x) = Fwi (x) = y
and CAN v(y) = CANw(y) = 1. Analogously, 11c(i, x, y) ∈ v for i ∈ N+ and x, y ∈ N implies
F vi (x) = y ∈ CAN v. Thus v satisfies V1.

It remains to prove that v satisfies V3 and V5. We argue for these properties in parallel. Let
i ∈ N+, x ∈ N, and b ∈ {0, 1} such that 0 < t(b, i) ≤ 1bc(i, x, F vi (x)) < |v|. Then by Claim 3.5.2,
F vi (x) = Fwi (x). As w is t-valid, we obtain by V3 or by V5 that 1bc(i, x, Fwi (x)) ∈ w. Since
1bc(i, x, F vi (x)) < |v| and v v w, we have 1bc(i, x, F vi (x)) = 1bc(i, x, Fwi (x)) ∈ v, which shows
that v satisfies V3 and V5. 2

3.5. P 6= NP, ¬CON, and ¬SAT Relative to an Oracle 83

Oracle construction. Let T : N → {0, 1, 2} × N+ be a bijection. Each value T (s) for some
s ∈ N stands for a task. We treat the tasks in the order specified by T . We start with the unique
nowhere defined function t0 in T and the t0-valid oracle w0 = ε. Then we define functions
t1, t2, . . . in T such that ti+1 is an extension of ti and partial oracles w0 vp w1 vp w2 vp . . . such
that each wi is ti-valid. Finally, we choose O =

⋃∞
i=0wi (note that O is totally defined, since in

each step we strictly extend the oracle). We describe step s > 0, which starts with a ts−1-valid
oracle ws−1 and extends it to a ts-valid ws wp ws−1 depending on T (s). We will argue later that
the construction is possible.

� task (0, i) for i ∈ N+: Let t′ = ts−1 ∪ {(0, i) 7→ 0}. If there exists some t′-valid v wp ws−1,
then let ts = t′ and define ws = v for the least t′-valid v wp ws−1. Otherwise, let ts =
ts−1 ∪ {(0, i) 7→ max(1, |ws−1|)} and choose b ∈ {0, 1} and ws = ws−1b such that ws is
ts-valid.

� task (1, i) for i ∈ N+: Let t′ = ts−1 ∪ {(1, i) 7→ 0}. If there exists some t′-valid v wp ws−1,
then let ts = t′ and define ws = v for the least t′-valid v wp ws−1. Otherwise, let ts =
ts−1 ∪ {(1, i) 7→ max(1, |ws−1|)} and choose b ∈ {0, 1} and ws = ws−1b such that ws is
ts-valid.

� task (2, i) for i ∈ N+: Let ts = ts−1 and chose ws wp ws−1 such that there exists some
n ∈ N such that ws is defined for all words of length ni + i and the following equivalence
holds:

0n ∈ Aws ⇔ Pwsi (0n) rejects.

(meaning: we ensure that Pi does not accept A relative to the final oracle.)

Claim 3.5.5 Let s ≥ 0, w w ws be ts-valid, and z = |w|.

1. If z = 10c(i, x, Fwi (x)) for some i, x ∈ N with i > 0 and 0 < ts(0, i) ≤ z, then w1 is
ts-valid.

2. If z = 11c(i, x, Fwi (x)) for some i, x ∈ N with i > 0 and 0 < ts(1, i) ≤ z, then w1 is
ts-valid.

3. If there exist n ∈ N and y ∈ Σn such that z = 0y, then w0 and w1 are ts-valid.

4. In all other cases (i.e., none of the assumptions in 1–3 holds) w0 is ts-valid.

Proof First observe that V2 and V4 are not affected by extending the oracle. Moreover, by
Claim 3.5.2 and as w satisfies V1, V3, and V5, it holds that the oracle wb for b ∈ {0, 1} satisfies

(A) V1.1 if
[
b = 1 ∧ ∃i,x,y∈N,i>0 z = 10c(i, x, y) ∧ ¬(Fwi (x) = y ∈ CANw)

]
does not hold.

(B) V1.2 if
[
b = 1 ∧ ∃i,x,y∈N,i>0 z = 11c(i, x, y) ∧ ¬(Fwi (x) = y ∈ CANw)

]
does not hold.

(C) V3 if
[
b = 0 ∧ ∃i,x∈N,i>0 z = 10c(i, x, Fwi (x)) ∧ 0 < ts(0, i) ≤ z

]
does not hold.

(D) V5 if
[
b = 0 ∧ ∃i,x∈N,i>0 z = 11c(i, x, Fwi (x)) ∧ 0 < ts(1, i) ≤ z

]
does not hold.

This proves statement 3. Let us argue for statement 4. According to (A) and (B) w0 satisfies
V1. If w0 does not satisfy V3 (resp., V5), then according to (C) (resp., (D)) it holds z =
10c(i, x, Fwi (x)) (resp., z = 11c(i, x, Fwi (x))) for some i, x ∈ N with i > 0 and 0 < ts(0, i) ≤ z
(resp., 0 < ts(1, i) ≤ z). However, this case is covered by statement 1 (resp., statement 2), which
completes the proof of statement 4.

84 Chapter 3. Separating Relativized Conjectures

Let us consider statement 1. By (C) and (D), it suffices to argue for V1. By (B), the oracle
w1 satisfies V1.2. By (A), it is sufficient to show Fwi (x) ∈ CANw. For a contradiction assume
Fwi (x) /∈ CANw. Let s′ > 0 be the step with T (s′) = (0, i). Then s′ ≤ s as ts(0, i) is defined. By
Claim 3.5.3, the oracle w is ts′−1-valid and by Claim 3.5.2, Fwi (x) is definite and Fwi (x) /∈ CAN v

for all v w w. Hence w is even t-valid for t = ts′−1 ∪ {(0, i) 7→ 0} . But then the construction
would have chosen ts′ = t, in contradiction to ts(0, i) > 0.

Statement 2 can be proven analogously. 2

We now show that the described construction is possible: for a contradiction, assume that it
is not. Hence there exists a minimal s > 0 such that step s fails. Note that then the construction
still defines a ts−1-valid partial oracle ws−1 ∈ Σ∗.

Assume that in step s some task (a, i) for a ∈ {0, 1} and i ∈ N+ is treated. Then ts−1(a, i)
is not defined as this value is defined in the unique treatment of the task (a, i). Thus t′ =
ts−1 ∪ {(a, i) 7→ 0} is well defined. Moreover, if there exists a t′-valid oracle v wp ws−1, then
step s is clearly possible. Otherwise, by the (sufficiently large) choice of ts(a, i), the oracle ws−1

is even ts-valid and by Claim 3.5.5, there exists b ∈ {0, 1} such that the oracle ws = ws−1b is ts-
valid. Hence if some task (a, i) for a ∈ {0, 1} is treated in step s, then we obtain a contradiction.

From now on we assume that step s treats some task (2, i) for i > 0. Thus ts = ts−1 and we
need to show that there exist some ts-valid ws wp ws−1 and some n ∈ N such that ws is defined
for all words of length ni + i and

0n ∈ Aws ⇔ Pwsi (0n) rejects.

Choose n large enough such that 2n > 2 · (ni + i). Let u0 w ws−1 be the minimal ts-valid
oracle that is defined for all words of length ≤ n. Such an oracle exists by Claim 3.5.5. Moreover,
let u w u0 be the minimal ts-valid oracle that is defined for all words of length ≤ ni+ i. Such an
oracle exists by Claim 3.5.5 and it holds by Claim 3.5.5.3 that u ∩ 0Σn = ∅. If P ui (0n) accepts,
then it definitely accepts by the choice of u and since 0n /∈ Av for all v w u (note that u is
defined for all words of length n + 1), the oracle u is t′-valid for t′ = ts−1 ∪ {(2, i) 7→ 0} and
hence step s of the construction is possible, a contradiction to our assumption.

From now on we assume that P ui (0n) rejects. Let U be the set of those oracle queries of
P ui (0n) whose length is ≥ n+ 1. We define Q0(U) = U and for m ∈ N

Qm+1(U) :=
⋃

j∈N+,x,y∈N,
{10c(j,x,y),11c(j,x,y)}∩Qm(U)6=∅

{q ∈ Σ≥n+1 | q is queried by F uj (x)}.

Moreover, define Q(U) =
⋃
m∈NQm(U).

Claim 3.5.6 `(Q(U)) ≤ 2 · (ni + i).

Proof By definition of Q0(U) it holds `(Q0(U)) ≤ ni + i. We show that for all m ∈ N it holds
`(Qm+1(U)) ≤ `(Qm(U))/2. Then for all m ∈ N it holds `(Qm(U)) ≤ `(Q0(U))/2m and thus

`
(m⋃
k=0

Qk(U)
)
≤ `(Q0(U)) ·

m∑
k=0

1/2k ≤ (ni + i) · 1− 1/2m+1

1/2
< 2 · (ni + i),

which shows `(Q(U)) ≤ 2 · (ni + i).
It remains to show that for all m ∈ N it holds `(Qm+1(U)) ≤ `(Qm(U))/2. Let α ∈ Qm(U).

If α is not of the form 10c(j, x, y) or 11c(j, x, y), then it generates no elements in Qm+1(U).
Assume α = 1bc(j, x, y) for b ∈ {0, 1}, j ∈ N+, and x, y ∈ N. Then all queries of F uj (x) are

3.5. P 6= NP, ¬CON, and ¬SAT Relative to an Oracle 85

added into Qm+1(U). The computation time of F uj (x) and thus also the sum of the lengths of

all queries asked by that computation is bounded by |x|j + j ≤ |c(j,x,y)|/2 (cf. the definition of
c(·, ·, ·) and the definition of the pairing function). Hence

`(Qm+1(U)) = `

(⋃
j∈N+,x,y∈N,

{10c(j,x,y),11c(j,x,y)}∩Qm(U)6=∅

{q ∈ Σ≥n+1 | q is queried by F uj (x)}
)

≤
∑

j∈N+,x,y∈N,
{10c(j,x,y),11c(j,x,y)}∩Qm(U)6=∅

`
(
{q ∈ Σ≥n+1 | q is queried by F uj (x)}

)︸ ︷︷ ︸
≤|c(j,x,y)|/2

≤ 1/2 ·
∑

j∈N+,x,y∈N,
{10c(j,x,y),11c(j,x,y)}∩Qm(U)6=∅

|c(j, x, y)| ≤ `(Qm(U))/2,

which finishes the proof. 2

By the choice of n, it holds |Q(U)| ≤ `(Q(U)) ≤ 2 · (ni + i) < 2n. Hence there exists some
α ∈ 0Σn that is not in Q(U). Let u′ be the minimal ts-valid oracle w u0 that is defined for all
words ≤ 01n and that satisfies u′ ∩ 0Σn = {α}. Such an oracle exists by Claim 3.5.5.3.

Claim 3.5.7 There exists a ts-valid oracle v wp u′ that is defined for all words of length ni + i
and satisfies v(q) = u(q) for all q ∈ Q(U).

Proof As α /∈ Q(U) it holds u′(q) = u(q) for all q ∈ Q(U) that u′ is defined for. Moreover,
observe that as w w u′ wp u0, u w u0, and u0 is defined for all words of length ≤ n, it holds

∀q∈Σ≤n w(q) = u(q). (3.26)

It suffices to show the following:

For each ts-valid partial oracle w w u′ with w(q) = u(q) for all q ∈ Q(U)
that w is defined for, there exists b ∈ {0, 1} such that wb is ts-valid and
wb(q) = u(q) for all q ∈ Q(U) that wb is defined for.

(3.27)

Let some w ∈ Σ∗ with the properties of (3.27) be given. Moreover, let z = |w|, i.e., z is the least
word that w is not defined for. We proceed in analogy to the cases of Claim 3.5.5.

1. If Claim 3.5.5.1 (resp., Claim 3.5.5.2) can be applied to w, then we choose b = 1 and
obtain that wb is ts-valid. In the present case there exist a = 0 (resp., a = 1), j ∈ N+,
and x, y ∈ N such that z = 1ac(j, x, Fwj (x)) and 0 < ts(a, j) ≤ z.

It remains to prove z ∈ Q(U) ⇒ z ∈ u. If z ∈ Q(U), then all queries of length ≥ n + 1
of the computation F uj (x) are in Q(U). For each such query q it holds |q| ≤ |x|j + j <
|c(j, x, F uj (x))| < z = |w| and thus by assumption, w(q) = u(q). By that and (3.26),
F uj (x) = Fwj (x). As u is ts-valid and 0 < ts(a, j) ≤ z = 1ac(j, x, F uj (x)), we obtain by
V3/V5 (depending on the value of a) that z = 1ac(j, x, F uj (x)) ∈ u.

2. If Claim 3.5.5.3 can be applied to w, then we choose b = u(z) = 0 (recall the definition of
u for u(z) = 0) and obtain that wb is ts-valid. By the definition of b, it holds wb(q) = u(q)
for all q ∈ Q(u) that wb is defined for.

86 Chapter 3. Separating Relativized Conjectures

3. If Claim 3.5.5.4 can be applied to w, then we choose b = 0 and obtain that wb is ts-valid.
Note that in this case z ∈ 1Σ∗.

It remains to show that z ∈ Q(U) ⇒ z /∈ u. For a contradiction assume z ∈ Q(U) ∩ u.
Let u′′ be the prefix of u that is defined for exactly the words < z. As ws−1 v u′′ v u and
both ws−1 and u are ts-valid, u′′ is ts-valid as well (cf. Claim 3.5.4).

� Assume Claim 3.5.5.1 or Claim 3.5.5.2 is applicable to u′′, thus z = 1ac(j, x, F u
′′

j (x))
for a ∈ {0, 1}, j ∈ N+, and x ∈ N with 0 < ts(a, j) ≤ z. By Claim 3.5.2,
F uj (x) = F u

′′
j (x), which implies F uj (x) 6= Fwj (x) (otherwise, Fwj (x) = F u

′′
j (x) and

either Claim 3.5.5.1 or Claim 3.5.5.2 can be applied to w, contradicting the assump-
tion that Claim 3.5.5.4 can be applied to w). Hence there is some query q ∈ u4w
that is asked by both computations F uj (x) and Fwj (x) (otherwise, the two compu-
tations would output the same value). Note that q ∈ Q(U) or |q| ≤ n, since (i)
z = 1ac(j, x, F u

′′
j (x)) ∈ Q(U) by assumption and (ii) q is queried by the computation

F uj (x). As |q| ≤ |x|j + j < |c(j, x, F uj (x))| < c(j, x, F uj (x)) = z, the oracle w is defined
for q and thus by assumption and (3.26), w(q) = u(q), a contradiction.

� Now assume that neither Claim 3.5.5.1 nor Claim 3.5.5.2 can be applied to u′′. Then,
as z ∈ 1Σ∗, Claim 3.5.5.4 is applicable to u′′ and u′′0 is ts-valid. By Claim 3.5.5,
u′′0 can be extended to a ts-valid oracle ũ defined for exactly the words of length
≤ ni + i. As u and ũ agree on all words < z and ũ(z) = 0 < 1 = u(z), it holds ũ < u,
a contradiction to the choice of u.

In both cases we obtain a contradiction. Hence u(q) = w0(q) for all q ∈ Q(U) that w0 is
defined for.

In all cases (3.27) holds. This completes the proof of Claim 3.5.7. 2

Recall that in the case we are currently studying the computation P ui (0n) rejects. Let v
be the oracle whose existence is postulated by Claim 3.5.7. Since all queries of P ui (0n) are in
U ⊆ Q(U) and by Claim 3.5.7, u and v agree on all these queries, the computation P vi (0n)
rejects as well. Moreover, this computation is definite as v is defined for all words of length
ni + i. However, as α ∈ v, we obtain 0n ∈ Av′ for all v′ w v, which is a contradiction to the
assumption that the construction fails in step s treating the task (2, i).

We now have seen that the construction described above is possible. It remains to prove:

� NPO 6= PO,

� CANO has PO-optimal proof systems, and

� CANO has PO-optimal proof systems.

This is shown in the next three claims.

Claim 3.5.8 NPO 6= PO.

Proof Assume NPO = PO. Then there exists i > 0 such that L(POi) = AO. Let s be the
step with T (s) = (2, i). By construction, there exists some n ∈ N such that ws is defined for all
words of length ni + i and it holds

(
0n ∈ Aws ⇔ Pwsi (0n) rejects

)
. As ws is defined for all words

of length ni + i, it holds Aws(0n) = Av(0n) for all v w ws and Pwsi (0n) definitely rejects. Hence
0n ∈ AO if and only if POi (0n) rejects, which contradicts L(POi) = AO. Thus NPO 6= PO. 2

3.6. Summary and Discussion 87

Claim 3.5.9 CANO has PO-optimal proof systems.

Proof Let g be a proof system for CANO and a ∈ CANO. Define

f(z) =

y if z = 010c(i, x, y) and 10c(i, x, y) ∈ O for i ∈ N+ and x, y ∈ N
g(y) if z = 1y

a otherwise

Then f ∈ FPO and f(N) ⊇ CANO as g is a proof system for CANO. We show f(N) ⊆ CANO.
As g is a proof system for CANO and a ∈ CANO, it suffices to show f(z) ∈ CANO for
z = 010c(i, x, y) with 10c(i, x, y) ∈ O, i ∈ N+, and x, y ∈ N. Let s be large enough such that
ws is defined for 10c(i, x, y). Then by V1 and Claim 3.5.2, y ∈ CAN v for all v w ws. It follows
f(z) = y ∈ CANO and thus f is a proof system for CANO.

In order to show that f is PO-optimal, let h be an arbitrary proof system for CANO. Then
there exists i ∈ N+ such that FOi computes h. Let s be the step with T (0, i) = s. It holds
ts(0, i) > 0 (otherwise, by V2 there exists x such that Fwi (x) is definite and Fwi (x) /∈ CAN v for
all v w w, which would imply that FOi is not a proof system for CANO). Define

π(x) =

{
010c(i, x, FOi (x)) if 10c(i, x, FOi (x)) ≥ ts(0, i)
z if 10c(i, x, FOi (x)) < ts(0, i) and z is minimal with f(z) = FOi (x)

π is total as f and FOi are proof systems for CANO and thus for each x there exists z with f(z) =
FOi (x). Moreover, since ts(0, i) is a constant, π ∈ FPO. It remains to show FOi (x) = f(π(x))
for all x. For all x with 10c(i, x, FOi (x)) < ts(0, i) this clearly holds. Assume 10c(i, x, FOi (x)) ≥
ts(0, i). Choose s′ ≥ s large enough such that ws′ is defined for 10c(i, x, FOi (x)) and F

ws′
i (x) is

definite. Hence F
ws′
i (x) = FOi (x). Then by V3, 10c(i, x, FOi (x)) = 10c(i, x, F

ws′
i (x)) ∈ ws′ ⊆ O

and thus f(π(x)) = f(010c(i, x, FOi (x))) = FOi (x). 2

The following claim can be proven in an analogous way.

Claim 3.5.10 CANO has PO-optimal proof systems.

This completes the proof of Theorem 3.5.1. 2

Corollary 3.5.11 There exists an oracle O relative to which the following statements hold:

1. PO 6= NPO

2. Each non-empty set in NPO has PO-optimal proof systems.

3. Each non-empty set in coNPO has PO-optimal proof systems.

Proof The statement follows from Theorem 3.5.1 and Corollary 2.3.6. 2

88 Chapter 3. Separating Relativized Conjectures

DisjNP

CONN UP

CON

CON ∨ SAT

P 6= NP

NP ∩ coNP SAT

TFNP

DisjCoNP
Cor.

3.2.4

Cor 3.4.12

Cor. 3.3.2

Cor. 3.3.2

Cor. 3.3.2

[Kh
a19

]

[GSSZ04] EEG

EEG
EE
G

Cor 3.5.11

Figure 3.1: Solid arrows mean implications. A dashed arrow from one conjecture A to another
conjecture B means that there is an oracle X against the implication A⇒ B, which means A∧¬B
relative to X. EEG stands for unpublished results by Fabian Egidy, Anton Ehrmanntraut, and
Christian Glaßer.

3.6 Summary and Discussion

Taking also into account the aforementioned unpublished results by Fabian Egidy, Anton
Ehrmanntraut, and Christian Glaßer, Figure 3.1 illustrates the current situation regarding the
known implications and oracle separation between the conjectures introduced at the beginning of
the present chapter. Thus in contrast to Figure 1.2, Figure 3.1 contains not only the published,
but also the unpublished results we are aware of.

So for most pairs (A,B) of conjectures from Figure 3.1 we either know a relativizable proof
for the implication A ⇒ B or know that there is an oracle relative to which A ∧ ¬B. This
would hold for all pairs (A,B) of conjectures if three more oracles with the below properties
were constructed:

1. UP ∧ ¬CONN

2. SAT ∧ ¬TFNP

3. TFNP ∧ ¬DisjCoNP.

Therefore, we are interested in the following question: Do oracles with these properties exist?

Chapter 4

Balance Problems for Integer
Circuits

In this chapter we introduce balance problems for integer circuits. After defining the notion of
balanced sets and the notion of integer circuits in Section 4.1, we prove this chapter’s main result,
the undecidability of the balance problem which allows both set difference and multiplication,
in Section 4.2. Having obtained this undecidability result when the set of allowed operations
O equals {−, ·}, it suggests itself to ask whether even a proper subset of O suffices to gain
undecidability. Therefore, Section 4.3 considers the two problems allowing only one operation,
either multiplication or set difference. For the sake of completeness, in the same section we also
consider the simple balance problem which does not allow any operations and thus obtain a
precise classification of the computational complexity of the three balance problems admitting
some O′ (O as the set of allowed operations. Each of these problems turns out to be ≤log

m -
complete for one of the classes L, NL, and NP. Section 4.4 concludes this chapter with a brief
summary and discussion of the results.

4.1 Basic Definitions and Results

This section defines the concepts the present chapter is based on: the notion of balanced sets
and the notion of integer circuits. Moreover, some simple results are obtained.

4.1.1 Balanced Sets

In this subsection we define the notion of balance, show that the test of whether some input set
is balanced can be performed by a deterministic logarithmic-space Turing machine, and make
some technical observations that follow from the definition of balanced sets.

A finite and non-empty set S ⊆ N is balanced (resp., unbalanced) if |S| = |{0, 1, . . . ,max(S)}−
S| (resp., |S| 6= |{0, 1, . . . ,max(S)} − S|). Intuitively speaking, max(S) defines the universe
{0, 1, . . . ,max(S)} and then S is balanced if it contains the same number of elements as its
complement. Note that the notion of balanced and unbalanced sets only makes sense if there
is some maximum element defining the universe. Hence the empty set is neither balanced nor
unbalanced. The following lemma follows directly from the definition.

Lemma 4.1.1 Let S ∈ Pfin(N) be balanced. Then S 6= ∅, max(S) is odd, and |S| = (max(S)+1)/2.

Moreover, we say that S 6= ∅ is subbalanced if |S| < (max(S)+1)/2. This means that S contains
less than half of the elements in the universe {0, 1, . . . ,max(S)}.

89

90 Chapter 4. Balance Problems for Integer Circuits

Let us observe that it is possible for a deterministic logarithmic-space Turing machine to
test whether some input set is balanced or not. Define BAL = {S ∈ Pfin(N) | S is balanced}.
We want to prove BAL ∈ L and show an even stronger result, which we will need in Section 4.3.
For that purpose we introduce a more general problem. For a finite and non-empty set M let
BALM = {S ∈ Pfin(N) |M · S is balanced}.

Proposition 4.1.2 For all M ∈ Pfin(N), BALM ∈ L. In particular, BAL ∈ L.

Proof The second statement follows from the first as BAL = BAL{1}. Assume M 6= ∅ ∧ µ :=
max(M) > 0 (otherwise, BALM = ∅ ∈ L). The following algorithm decides BALM when given
a finite set S ⊆ N as input, where we assume S 6= ∅∧ σ := max(S) > 0 (otherwise, S /∈ BALM).

1. If σ < 5, then accept if S ∈ BALM and reject otherwise.

2. Let n = `(S) and c = 0. Reject if 2 · (log n+ 1) < |σ|.

3. For α = 0, 1, . . . , µ · σ: if there exists (m, s) ∈M × S with ms = α, then increment c.

4. If 2c = µ · σ + 1, then accept. Otherwise, reject.

If step 3 is executed, then |σ| ≤ 2 log n+ 2 and thus |µ · σ| is logarithmically bounded in |S|.
Hence the algorithm can be implemented by a deterministic logarithmic-space Turing machine.

Let us now show that the algorithm accepts if and only if S ∈ BALM . This clearly holds if
the algorithm terminates in step 1. If the algorithm rejects in step 2, then σ ≥ 5 (cf. step 1)

and 2(log n+ 1) < |σ|, where the latter implies 2logn+1 <
√

2|σ|. It follows

|M · S| ≤ µ · |S − {0}|+ 1 ≤ µn+ 1 ≤ µ(n+ 1) ≤ µ2logn+1 < µ ·
√

2|σ| ≤ µ ·
√
σ + 1 ≤ µ · σ/2,

which shows that M · S is subbalanced. If step 4 is executed, then c = |M · S| during the
execution of this step and thus the algorithm accepts or rejects correctly. 2

Let us continue with a technical lemma that directly builds on the definition of balanced
sets and will be applied several times.

Lemma 4.1.3 The following statements hold.

1. For K ∈ Pfin(N) with κ := max(K) ≥ 3 it holds |K ·K ·K| < κ3/2.

2. For all M,K ∈ Pfin(N) with max(K) ≥ 2, the set M ·K ·K ·K is not balanced.

Proof 1. Due to K ·K ·K ⊆ {0} ∪ {i · j · k | 1 ≤ i ≤ j ≤ k ≤ κ} it holds

|K ·K ·K| ≤ 1 +
∣∣{(i, j, k) | 1 ≤ i ≤ j ≤ k ≤ κ}

∣∣
≤ 1 +

∣∣{(i, j, k) | 1 ≤ i = j = k ≤ κ}
∣∣+
∣∣{(i, j, k) | 1 ≤ i = j < k ≤ κ}

∣∣
+
∣∣{(i, j, k) | 1 ≤ i < j = k ≤ κ}

∣∣+
∣∣{(i, j, k) | 1 ≤ i < j < k ≤ κ}

∣∣
≤ 1 + κ+

(
κ

2

)
+

(
κ

2

)
+

(
κ

3

)
=
κ3 + 3κ2 + 2κ+ 6

6
<
κ3

2
.

2. If M = ∅ and M = {0}, it holds that M · K · K · K = M is not balanced. Assume
max(M) ≥ 1. If max(K) = 2, then M ·K ·K ·K has an even maximum and thus is unbalanced by
Lemma 4.1.1. If max(K) ≥ 3, then the first statement of the present lemma yields |M ·K ·K ·K| ≤
|(M − {0}) ·

∏3
i=1(K ∪ {0})| < max(M)·max(K)3/2 and thus M ·K ·K ·K is unbalanced. 2

4.1. Basic Definitions and Results 91

4.1.2 Integer Circuits and Balance Problems

As in the present chapter we consider the computational complexity of balance problems with
respect to the logarithmic-space many-one reducibility ≤log

m , it is convenient to ensure that
the test of whether some input tuple is a valid circuit can be performed by a deterministic
logarithmic-space Turing machine. Hence when defining the concept of integer circuits we will
keep an eye on this issue, which has already been taken care of in articles such as [GHR+10,
GRTW10, BBD+17, BBD+20]. Therefore, we only need to follow these papers making minor
adaptions, namely introducing gates for the set difference and the symmetric difference instead
of the set complement and allowing input gates to compute arbitrary finite subsets of N and not
only singleton sets.

Definition of Circuits Barth et al. [BBD+20] differentiate between completely and partially
assigned circuits. As in this thesis we restrict ourselves to partially assigned circuits, we define
circuits in general as partially assigned circuits.1

A circuit C is a triple (V,E, gC) where (V,E) is a directed acyclic multigraph, gC is a
designated vertex in V , and the vertex set V ⊆ N is topologically ordered, i.e., for all vertices
u, v ∈ V with u < v there is no edge from v to u. Recall that according to Section 2.2 the
multigraph (V,E) is finite, non-empty, and not necessarily connected.

Let us explain why we require that circuits have topologically ordered vertex sets. The test of
whether some directed multigraph is acyclic is not known to be logarithmic-space computable.
However, it is straightforward to construct a deterministic logarithmic-space Turing machine
which tests whether some directed multigraph has a topologically ordered vertex set. Moreover,
each directed multigraph with topologically ordered vertex set is acyclic. Thus a deterministic
logarithmic-space Turing machine is able to check whether some input tuple is a circuit. Hence
when presenting algorithms for circuits we may always assume that the input tuple is a valid
circuit.

Without loss of generality, it may be assumed that V = {1, . . . , r} for some r ∈ N (otherwise,
renumber the circuit, which is possible in logarithmic space).

In the context of circuits, the terms “node” and “gate” are used synonymously. A gate with
indegree 0 is called an input gate (resp., input node), all other nodes are inner gates (resp., inner
nodes), and the designated gate gC is also called an output gate (resp., output node).

Let O ⊆ {4,−,∪,∩,+, ·}. An O-circuit (or circuit for short if O is apparent from the
context) is a quintuple C = (V,E, gC , α, β) satisfying the following five properties.

� (V,E, gC) is a circuit which satisfies the property that each node has indegree 0 or 2.

� The labeling function α is a total function V → O ∪ Pfin(N) ∪ {�}.

� Each node with indegree 0 has a label from Pfin(N) or from {�}.

� Nodes with indegree 2 have labels from O.

� The order function β is a total function E → {l, r} satisfying the property that for each
node u with indegree 2 (i.e., each inner node) it holds β(e) 6= β(e′) for the two incoming
edges e and e′ of u.

Thus for each gate with indegree 2 the order function tells us which is the left and which is the
right direct predecessor (note that left and right direct predecessor may be equal). Clearly the

1In parts this paragraph and also the next two paragraphs, entitled as “The Set Computed by a Circuit” and
“Basic Constructions”, orientate themselves by corresponding paragraphs from our paper [BBD+20].

92 Chapter 4. Balance Problems for Integer Circuits

order function is only relevant for nodes u with α(u) = −. In particular, if − /∈ O, we may go
without an order function.

Let us say a few words on the encoding of O-circuits. The set of edges is encoded as a list
and we accept those lists as part of an encoding of a given circuit in which for each inner node
u ∈ V the incoming edge e of u with β(e) = l occurs earlier than the incoming edge e′ of u with
β(e′) = r. Thus the order function β is implicitly contained in the list of edges and the encoding
of a circuit does not contain an explicit representation of the order function β. Moreover, the
objects in {4,−,∪,∩,+, ·,�} are encoded by words of length 3. Thus recalling the paragraph
about encodings in Section 2.3.2, we observe that now an encoding of O-circuits is defined and
all possible encodings of a certain O-circuit have the same length.
O-circuits are also called integer circuits or partially assigned O-circuits. Input gates labeled

with an element of Pfin(N) are assigned input gates (resp., assigned input nodes), whereas input
gates labeled with � are called unassigned input gates (resp., unassigned input nodes). For
⊕ ∈ O we call an inner gate v with α(v) = ⊕ a ⊕-gate (resp., ⊕-node).

If g is a gate with α(g) = ⊕ ∈ O, the (not necessarily distinct) nodes g1 and g2 are the
source nodes of the two incoming edges e1 and e2 of g, and the two equations β(e1) = l and
β(e2) = r hold, then we write g = g1⊕ g2. Note that it is important to consider the order of the
operands if and only if ⊕ = −.

Observe that there exists a straightforward deterministic logarithmic-space algorithm that
decides whether an input tuple is a valid O-circuit.

The Set Computed by a Circuit For an O-circuit C with unassigned input gates g1 <
· · · < gn and X1, . . . , Xn ∈ Pfin(N), let C(X1, . . . , Xn) be the integer circuit that arises from C
by modifying the labeling function α such that gi 7→ Xi for every 1 ≤ i ≤ n.

For an O-circuit C = (V,E, gC , α, β) without unassigned input gates we inductively define
the set I(g;C) computed by a gate g ∈ V :

I(g;C) =

{
α(g) if g has indegree 0,

I(g′, C)⊕ I(g′′, C) if g = g′ ⊕ g′′ for some ⊕ ∈ O.

The set computed by the circuit is denoted by I(C) and defined to be the set computed by the
output gate I(gC ;C).

We use the following abbreviations assuming no confusions will arise: for an integer circuit C
without unassigned input gates and a gate g of C we write g or I(g) for I(g;C) if C is apparent
from the context; moreover, we write C for I(C).

Basic Constructions for O-Circuits We often construct or modify circuits successively.
For that purpose we introduce some modes of speaking. Let C = (V,E, gC , α, β) and C ′ =
(V ′, E′, gC′ , α

′, β′) be O circuits.
By saying that we add (or insert) C ′ into C we mean that we unify the circuits and let gC be

the new circuit’s output gate, i.e., we first renumber the nodes of C ′ such that V ′ is disjoint to V
and then create the new circuit (V ∪V ′, E∪E′, gC , α′′, β′′) with α′′ : V ∪V ′ → O∪{�}∪Pfin(N)
given by x 7→ α(x) for x ∈ V and x 7→ α′(x) for x ∈ V ′ and β′′ : E ∪ E′ → {l, r} defined
analogously. We denote the circuit obtained this way by C = (V,E, gC , α, β) as well. Note that
this operation can be performed by a deterministic logarithmic-space Turing machine.

Moreover, we use the self-explaining phrase “add (resp., insert or introduce) nodes (and
edges) into C such that there is a gate g = F (g1, . . . , gn)” where g1, . . . , gn are gates in C and
F is an expression built up from the gates given as arguments, the operations from O, and
parentheses. Instead of this, we may also use the less precise phrase “add (resp., insert or

4.1. Basic Definitions and Results 93

introduce) a node g = F (g1, . . . , gn) (into C)” even though there might be more than one node
to add in order to obtain such a node.

Example As an example, consider the following circuit

1,�

2, {0}

3,−

4, {2}

5, · 6,−

l

r
l

l

r
r

where each node is given by its number and its label and node 6 is the unique output gate. Node
1 is an unassigned input node, which is marked by the symbol �. Observe that the output gate
computes the set {1} if and only if I(3;C) is a set of the form {20, 21, 22, . . . , 2r} for some r ∈ N
(a more general statement will be proven later in detail).

The Main Problems Now we define the problems this chapter focuses on.

Definition 4.1.4 Let O ⊆ {4,−,∪,∩,+, ·} and define

BC(O) = {C | C is an O-circuit with n ∈ N unassigned inputs and there exist
X1, . . . , Xn ∈ Pfin(N) such that I(C(X1, . . . , Xn)) is balanced}.

Moreover, for an O-circuit C with n ∈ N unassigned input gates we call X1, . . . , Xn ∈ Pfin(N) an
assignment (for C). Furthermore, an assignment for a circuit is called balancing if the circuit
is balanced under this assignment.

Note that formally BC(O) must be defined as a set of words or natural numbers. Nevertheless,
as has been announced before, we ignore this technical detail here. Moreover, note that we will
use shortcuts like BC(−, ·) instead of BC({−, ·}).

The following proposition holds as by definition, BC(O) is a projection of a decidable set.

Proposition 4.1.5 For O ⊆ {4,−,∪,∩,+, ·} it holds BC(O) ∈ RE.

In this thesis we focus for the most part on the problems BC(O) for O ⊆ {−, ·}. In order to

prove BC(·) to be ≤log
m -hard for NL, we will make use of the following problem investigated by

McKenzie and Wagner [MW07], which they show to be ≤log
m -complete for NL.2

MC(∩) = {(C, b) | C is an {∩}-circuit whose inputs are all assigned and have labels
from {X ⊆ N | |X| = 1}, b ∈ I(C)}.

The following lemma follows from Definition 4.1.4.

Lemma 4.1.6 For O ⊆ O′ it holds BC(O)≤log
m BC(O′).

Therefore, each lower (resp., upper) bound for a problem BC(O) implies the same lower (resp.,
upper) bound for all problems BC(O′) with O′ ⊇ O (resp., O′ ⊆ O).

2We define the problem within the notions and notations we have introduced above and which are not precisely
the same as those of McKenzie and Wagner. Nevertheless, the NL-completeness of the problem MC(∩) (defined
the way we do it) with respect to ≤log

m follows from their paper.

94 Chapter 4. Balance Problems for Integer Circuits

4.2 Set Difference and Multiplication Lead to Undecidability

In this section we prove this chapter’s main result: the undecidability of BC(−, ·). As a trivial
corollary we obtain that BC(4,∪, ·) and BC(4,∩, ·) are undecidable as well. Indeed, all these
problems are even ≤m-complete for RE.

We briefly introduce the notion of multivariate polynomials. Let x1, x2, . . . be fixed symbols,
which we call indeterminates in the context of multivariate polynomials.

For m, a1, . . . , am ∈ N+, n ∈ N, and di,j ∈ N for i = 1, . . . ,m and j = 1, . . . , n we call

p =
m∑
i=1

ai ·
n∏
j=1

x
di,j
j

a multivariate polynomial. We also write p(x1, . . . , xn) for the multivariate polynomial p. Each

ai ·
∏n
j=1 x

di,j
j is called a multivariate monomial. We identify each multivariate polynomial∑m

i=1 ai ·
∏n
j=1 x

di,j
j with the multivariate polynomial

∑m
i=1 ai ·

∏n+1
j=1 x

di,j
j if di,n+1 = 0 for all

i. Hence for the above polynomial p we may also write p(x1, . . . , xr) where r is an arbitrary
natural number ≥ n. Regarding the encoding the multivariate polynomial p can be considered
as the tuple

(n, a1, , d1,1, . . . , d1,n, a2, d2,1, . . . , d2,n, . . . , am, dm,1, . . . , dm,n)

where we choose n = max({j | ∃i∈{1,...,m} di,j > 0}) (so roughly speaking, we ignore redun-
dant variables, which only occur with exponent 0). For the encoding of tuples we refer to the
paragraph about encodings in Section 2.3.2.

For each m ≥ n a multivariate polynomial p(x1, . . . , xn) induces a function Nm → N defined
by (a1, . . . , am) 7→ p(a1, . . . , am) where p(a1, . . . , am) is the natural number that we obtain when
replacing in p each occurrence of xi with ai and evaluating the expression generated this way over
N. In the context of functions we call the indeterminates variables. We identify a multivariate
polynomial with its induced functions and hence we may use the terms “indeterminate” and
“variable” interchangeably.

An equation p(x1, . . . , xn) = q(x1, . . . , xn) for multivariate polynomials p(x1, . . . , xn) and
q(x1, . . . , xn) is called a Diophantine equation and (a1, . . . , an) ∈ Nn is a solution of the Dio-
phantine equation if p(a1, . . . , an) = q(a1, . . . , an).3 According to the Matiyasevich-Robinson-
Davis-Putnam theorem [Mat70, DPR61] the problem of determining whether there is a solution
for a given Diophantine equation is RE-complete with respect to ≤m. It can be derived by
standard arguments that the following problem is ≤m-complete for RE as well.

DE = {(p, q) | p(x1, . . . , xn) and q(x1, . . . , xn) for some n ∈ N+ are multivariate polynomials,
∃a1,...,an∈N+ p(a1, . . . , an) = q(a1, . . . , an)}.

Reducing this problem to BC(−, ·) will prove the following theorem.

Theorem 4.2.1 BC(−, ·) is ≤m-complete for RE.

The remainder of this section is almost completely dedicated to the purpose of proving this
theorem. The proof consists of several lemmas.

3Note that the problem of determining whether a Diophantine equation has a solution is known to be ≤log
m -

equivalent to the corresponding problem when Diophantine equations and their solutions are defined over the set
of integers instead of the set of natural numbers. The reduction ≤log

m follows from Lagrange’s four-square theorem
and the opposite reduction can be shown by replacing each integer variable with the difference of two “natural
variables”, expanding, and moving negative monomials to the opposite side.

4.2. Set Difference and Multiplication Lead to Undecidability 95

For the sake of brevity, we make use of intersection gates but note that A ∩ B is just an
abbreviation for A−(A−B). Further abbreviated notations are A−

⋃n
i=1Bi for (. . . ((A−B1)−

B2)− . . .)−Bn and A−(
⋃n
i=1Bi−{1}) for (. . . ((A−(B1−{1}))−(B2−{1}))−· · ·−(Bn−{1}).

In order to prove Theorem 4.2.1, we define a slightly different version of the problem BC(−, ·),
which can be ≤m-reduced to the original version.

Definition 4.2.2 For O ⊆ {4,−,∪,∩,+, ·} we define the following problem.

BC′(O) =
{

(C,Q) | C = (V,E, gc, α, β) is an O-circuit, ran(α) ⊆ Pfin(N+) ∪ O ∪ {�}, Q ⊆ V ,
∃X1,...,Xn∈Pfin(N+)

(
C(X1, . . . , Xn) is balanced ∧∀K∈Q I(K;C(X1, . . . , Xn)) = {1}

)}
For the sake of simplicity, instances of BC′(O) are called O-circuits as well.

So the differences from BC(O) basically are that the assigned inputs of a circuit compute sets that
do not contain 0 and that we not only require the existence of some balancing assignment, but
the existence of a balancing assignment under which two additional requirements are satisfied,
namely (i) all assigned inputs compute sets not containing 0 and (ii) the nodes in the designated
set of vertices all compute {1}.

Lemma 4.2.3 For {−, ·} ⊆ O ⊆ {4,−,∪,∩,+, ·} it holds BC′(O) ≤m BC(O).

Proof We described the required reduction function. Let C be a partially assigned O-circuit
with n ∈ N unassigned input gates and an output node gC . Let Q be a subset of the nodes of
C. Without loss of generality, we assume that gC is not an input node of the circuit (otherwise,
introduce new nodes and edges such that there is a new output o = gC · {1}) and that 0 /∈ α(g)
for all assigned input gates g (otherwise, (C,Q) /∈ BC′(O) and we can map (C,Q) to some fixed
circuit that is not in BC(O)). Our reduction has to address (i) the nodes in Q and (ii) the
fact that for the membership in BC′(O) we only care about assignments X1, . . . , Xn ∈ Pfin(N+).
Starting with the circuit C, we build a new circuit as follows and denote this modified circuit
with C ′:

1. For each unassigned input node g:

(a) Add a node g′ = g − {0}.
(b) Except for the edge from g to g′, let all outgoing edges of g start in g′ instead.

2. Insert nodes and edges such that there is a new output node gC′ = gC ·
∏
K∈Q

(
K ·K ·K

)
.

It remains to show that (C,Q) ∈ BC′(O) if and only if C ′ ∈ BC(O).
Assume (C,Q) ∈ BC′(O) and choose an assignment X1 . . . , Xn ∈ Pfin(N+) such that in the

circuit C(X1, . . . , Xn), the set gC is balanced and K = {1} for all K ∈ Q. Let us consider the
circuits C(X1, . . . , Xn) and C ′(X1, . . . , Xn). Note that except for the unique assigned input gate
in C ′ that computes {0}, there is no gate in one of the two circuits that computes a set containing
0. In particular, g′ = g for each unassigned input g. Hence all nodes in the circuit C ′ that are
also contained in C compute the same set in both circuits C(X1, . . . , Xn) and C ′(X1, . . . , Xn).
Therefore, gC′ = gC is balanced.

Conversely, let C ′ be balanced under some assignment X1, . . . , Xn ∈ Pfin(N). As steps 1a
and 1b “replace” each unassigned input g with a node computing g − {0}, we may assume that
X1, . . . , Xn ∈ Pfin(N+) and thus every gate in C ′(X1, . . . , Xn) computes a set in Pfin(N+). Let
us consider the circuits C(X1, . . . , Xn) and C ′(X1, . . . , Xn). As g = g′ for all unassigned inputs

96 Chapter 4. Balance Problems for Integer Circuits

g in C ′(X1, . . . , Xn), all nodes contained in the circuit C(X1, . . . , Xn) compute the same set in
both circuits C(X1, . . . , Xn) and C ′(X1, . . . , Xn), which is the reason why in the following the
set computed by some gate g may be denoted by g without specifying which of the two circuits
we refer to. Recall that gC′ = gC ·

∏
K∈QK

3 is balanced. Therefore, if K = {1} for all K ∈ Q,
then gC = gC′ is balanced (in both circuits), and hence (C,Q) ∈ BC′(O).

For a contradiction, assume K 6= {1} for some K ∈ Q. If K = ∅, then gC′ = ∅, which
contradicts the fact that gC′ is balanced. Hence K 6= ∅ and as furthermore 0 /∈ K and K 6= {1},
we have max(K) ≥ 2. By construction, gC′ = M ·K ·K ·K for some M ∈ Pfin(N). Thus the
second statement of Lemma 4.1.3 yields that gC′ is unbalanced, a contradiction. 2

Let O = {−, ·} for the remainder of this section unless stated differently. In order to prove
Theorem 4.2.1, we introduce certain O-circuits which will be used extensively as components
of circuits expressing Diophantine equations. Recall that pairs (C,Q) for an O-circuit C and a
subset Q of the nodes of C are also called O-circuits (cf. Definition 4.2.2).

Lemma 4.2.4 Let n ∈ N+. For every n-element set P = {p1, . . . , pn} ⊆ P there is an O-circuit
(CP , QP) that contains gates g1,P , . . . , gn,P satisfying the following properties:

1. For every assignment with values from Pfin(N+)(
∀K∈QP K = {1}

)
⇒ ∃m∈N ∀i=1,...,n gi,P = {1, pi, . . . , pmi }.

2. For each m ∈ N there is an assignment with values from Pfin(N+) under which gi,P =
{1, pi, . . . , pmi } for all i and K = {1} for all K ∈ QP .

Proof We construct (CP , QP) as follows:

� For each p ∈ P insert an input gate Xp and gates hp = Xp − (Xp · {p}) and h′p =
({1, p} ·Xp)− (Xp − {1}). For all p ∈ P put hp into QP .

� Similarly, for each i ∈ {1, . . . , n − 1} and k = pi · pi+1 insert an input gate Xk and gates
hk = Xk − (Xk · {k}) and h′k = ({1, k} ·Xk)− (Xk − {1}). Add all nodes hk into QP .

� For each i ∈ {1, . . . , n− 1} and k = pi · pi+1 add a node γk = h′k −
(
(h′pi ·h

′
pi+1

)−{1}
)

and
insert it into QP .

� Denote gi,P = Xpi .

For formal reasons choose an arbitrary gate as output gate. However, the circuits constructed
in this proof will only be used as components of other circuits which have output gates outside
of these components. Therefore, it is irrelevant which node we choose as output node. We now
argue that the two assertions of the present lemma are satisfied.

1. Choose an arbitrary assignment with values from Pfin(N+) and consider the circuit under
this assignment. Then no gate in the circuit computes a set containing 0. Assume K = {1} for
all K ∈ QP . Then in particular, for α ∈ {p1, . . . , pn, p1 · p2, p2 · p3, . . . , pn−1 · pn},

Xα −Xα · {α} = {1} (4.1)

and 1 ∈ Xα.
Assume there is some β ∈ Xα such that β is not a power of α. Let β be minimal with that

property. As β 6= 0, there are κ ∈ N and α′ ≥ 2 with β = ακ · α′ and α - α′. Due to (4.1) we
obtain β ∈ Xα · {α} and thus α | β. If κ = 0, we have β = α′ and thus α | α′, a contradiction.

4.2. Set Difference and Multiplication Lead to Undecidability 97

If κ > 0, then we obtain from β ∈ Xα · {α} that ακ−1 · α′ ∈ Xα, which is a contradiction to the
choice of β. Thus Xα only contains powers of α.

Now choose κ ∈ N with ακ ∈ Xα. Then ακ = 1 or —in case κ > 0— due to (4.1) we have
ακ ∈ Xα · {α} and thus ακ−1 ∈ Xα. Hence each Xα is of the form {1, α, . . . , αmα} for some
mα ∈ N. As a consequence, h′α = {1, αmα+1}.

Let k = pi · pi+1 for some i. As γk = {1}, we obtain

kmk+1 = pmk+1
i · pmk+1

i+1 ∈
(
{1, pmpi+1

i } · {1, p
mpi+1+1

i+1 }
)
,

which yields mk = mpi = mpi+1 . Thus there exists m such that for each i ∈ {1, . . . , n} it holds
gi,P = {1, pi, . . . , pmi }.

2. Let m ∈ N and choose the assignment with Xα = {1, α, . . . , αm} for α ∈ {p1, . . . , pn, p1 ·
p2, p2 · p3, . . . , pn−1 · pn}. Consider the circuit under this assignment and observe that hα = {1}
and h′α = {1, αm+1} for all α. Consequently, for k = pipi+1 with 1 ≤ i ≤ n− 1 it holds

γk = {1, pm+1
i · pm+1

i+1 } − {p
m+1
i , pm+1

i+1 , p
m+1
i · pm+1

i+1 } = {1},

which proves the second statement. 2

Building upon this construction we extend these circuits and obtain the following lemma.

Lemma 4.2.5 Let n ∈ N+. For every n-element set P = {p1, . . . , pn} ⊆ P there is an O-circuit
(CP , QP) with gates g0

P , g
1
P , . . . , g

n
P satisfying the following properties:

1. For each assignment with values from Pfin(N+) it holds

∀K∈QP K = {1} ⇒ for all i = 0, . . . , n it holds that 1 ∈ giP , |giP | = |g1
P |i,

and all prime divisors of numbers in giP are in P .

2. For each m ∈ N+ there is an assignment with values from Pfin(N+) under which for all
i = 1, . . . ,m, (i) |giP | = mi, (ii) 1 ∈ giP , (iii) all prime divisors of numbers in giP are in
P , and (iv) K = {1} for all K ∈ QP .

Proof Let (C ′P , Q
′
P) and g1,P , . . . , gn,P satisfy the properties specified in Lemma 4.2.4. Add

nodes g0
P , g

1
P , . . . , g

n
P such that g0

P = {1} and giP = gi−1
P · gi,P for i = 1, . . . , n. We call the circuit

obtained this way (CP , QP) (for formal reasons an arbitrary gate can be chosen as output gate;
however, the circuits constructed in this proof will only be used as components of other circuits
with output gates outside of these components).

Consider the circuit CP under an arbitrary assignment under which there exists m ∈ N+

such that for all i = 1, . . . , n it holds gi,P = {1, pi, . . . , pm−1
i }. For g0

P = {1}, trivially 1 ∈ g0
P ,

|g0
P | = |g1

P |0, and the numbers in g0
P do not have any prime divisors at all. A simple induction

shows that for all i = 1, . . . , n, (i) all prime divisors of numbers in giP are in {p1, . . . , pi}, (ii)
|giP | = |g

i−1
P | · |gi,P | = |g1

P |i = mi, and (iii) 1 ∈ giP .
Thus the first statement follows from ∀K∈QP K = {1} and Lemma 4.2.4.1 and the second

statement is implied by Lemma 4.2.4.2. 2

By Lemma 4.2.3, it suffices to show the reduction DE ≤m BC′(−, ·) in order to prove The-
orem 4.2.1. Instead of showing this reduction directly we define an intermediate problem, the
cardinality circuit problem

CC = {(C,Q, s, t) | C = (V,E, gC , α, β) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V , and there exists
an assignment with values from Pfin(N+) under which (i) |s| = |t| and
(ii) K = {1} for all K ∈ Q}.

98 Chapter 4. Balance Problems for Integer Circuits

For the sake of simplicity, tuples (C,Q, s, t) are also called {−, ·}-circuits. In the following we
do not only reduce DE to CC but we reduce it in a way such that the reduction function solely
maps to circuits with some additional properties. The class SC of these circuits is defined as
follows:

SC = {(C,Q, s, t) | C = (V,E, gC , α, β) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V , under all
assignments with values from Pfin(N+) it holds: if ∀K∈Q K = {1}, then

1. |s| ≥ |t|,

2. 1 ∈ s ∩ t, and

3. all prime divisors of numbers in s ∪ t are greater than 3}.

In order to prove Theorem 4.2.1, we show

(i) (DE ,DE) ≤m (CC ∩ SC, CC ∩ SC) and

(ii) (CC ∩ SC, CC ∩ SC) ≤m (BC′(−, ·),BC′(−, ·)).

The function composition of the two reduction functions yields a reduction DE ≤m BC′(−, ·).

Lemma 4.2.6 (DE ,DE) ≤m (CC ∩ SC, CC ∩ SC).

Proof We present an algorithm that accomplishes the required reduction.
Let q(x1, . . . , xn) and q′(x1, . . . , xn) be multivariate polynomials. Then for all y1, . . . , yn ∈

N+, it holds

q(y1, . . . , yn) = q′(y1, . . . , yn)⇔ q(y1, . . . , yn)2 + q′(y1, . . . , yn)2 = 2 · q(y1, . . . , yn) · q′(y1, . . . , yn)

and
q(y1, . . . , yn)2 + q′(y1, . . . , yn)2 ≥ 2 · q(y1, . . . , yn) · q′(y1, . . . , yn).

Therefore, we may assume that the algorithm is given multivariate polynomials q(x1, . . . , xn)
and q′(x1, . . . , xn) as inputs which satisfy

∀y1,...,yn∈N+ q(y1, . . . , yn) ≥ q′(y1, . . . , yn). (4.2)

Let m,m′, a1, . . . , am, a
′
1, . . . , a

′
m′ ∈ N+ and di,j , d

′
κ,j ∈ N for i = 1, . . . ,m, κ = 1, . . . ,m′, and

j = 1, . . . , n such that

q(x1, . . . , xn) =
m∑
i=1

ai ·
n∏
j=1

x
di,j
j and q′(x1, . . . , xn) =

m′∑
i=1

a′i

n∏
j=1

x
d′i,j
j .

Moreover, for j = 1, . . . , n define ej = max({d1,j , . . . , dm,j , d
′
1,j , . . . , d

′
m′,j}), i.e., ej denotes the

maximal exponent of the variable xj occurring in a monomial of q or q′.
We now successively build up the output circuit (C,Q, zq, zq′) and initially let C = Q = ∅

(the nodes zq and zq′ will be introduced in the following algorithm).

1. For each variable xj , choose an ej-element set Pj = {pj,1, . . . , pj,ej} ⊆ P>3 such that
Pj ∩ Pj′ = ∅ for j 6= j′, insert a circuit (CPj , QPj) having the properties specified in
Lemma 4.2.5 into C, and insert the nodes of QPj into Q.

We make use of the notation of Lemma 4.2.5, in particular, we refer to the nodes
g0
Pj
, . . . , g

ej
Pj

.

Intuition: the cardinality of giPj is supposed to describe the value of xij.

4.2. Set Difference and Multiplication Lead to Undecidability 99

2. (a) Choose a prime π > 3 not used before and insert gates such that for all i = 1, . . . ,m

there is a gate hi = {1, π, . . . , πai−1} ·
∏n
j=1 g

di,j
Pj

.

Intuition: the cardinality of hi describes the value of the i-th monomial of q.

(b) For i = 1, . . . ,m choose a prime πi > 3 not used before and insert a node h′i =
({1, πi} · hi)−

(
hi − {1}

)
.

Intuition: as addition is supposed to be expressed by union, we need to make sure that
the sets standing for distinct monomials are (almost) disjoint. Still, for a technical
reason we have to keep 1 in each set. So the idea is to let h′i consist of 1 and a copy
of hi multiplied with an additional prime factor.

(c) For i = 1, . . . ,m add an unassigned input node zq. Finally, add m + 1 nodes zq −(⋃m
i=1 h

′
i − {1}

)
and h′i − (zq − {1}) for i = 1, . . . ,m and insert all these nodes into

Q.

Intuition: zq describes the value of the polynomial q + 1 as it is the union of the h′i
(for i = 1, . . . ,m).

3. Do the same as in step 2 but for q′. In particular, an unassigned input node zq′ is added.

4. Return (C,Q, zq, zq′).

First, observe that the function (q, q′) 7→ (C,Q, zq, zq′) is computable. In order to show

(q, q′) ∈ DE ⇒ (C,Q, zq, zq′) ∈ CC ∩ SC and (q, q′) /∈ DE ⇒ (C,Q, zq, zq′) ∈ CC ∩ SC,

we make the following central observations.

Claim 4.2.7 1. For all y1, . . . , yn ∈ N+ there is an assignment of the unassigned inputs of
C with values from Pfin(N+) under which ∀K∈Q K = {1} and ∀j=1,...,n |g1

Pj
| = yj.

2. If under some assignment with values from Pfin(N+) it holds ∀K∈Q K = {1}, then under
this assignment (i) 1 ∈ zq ∩ zq′ ∩

⋂n
j=1 g

1
Pj

, (ii) |zq| = 1 + q(|g1
P1
|, . . . , |g1

Pn
|), (iii) |zq′ | =

1 + q′(|g1
P1
|, . . . , |g1

Pn
|), and (iv) all prime divisors of numbers in zq ∪ zq′ are > 3.

Proof 1. According to Lemma 4.2.5.2 the unassigned inputs of the circuits (CPj , QPj) can be
assigned with sets from Pfin(N+) such that

� K = {1} for all K ∈ QPj and

� for each j ∈ {1, . . . , n} and each i ∈ {0, . . . , ej} it holds |giPj | = yij and 1 ∈ giPj .

Note that although we have not defined the assignment completely yet, the sets computed
by the gates h′1, . . . , h

′
m are already fixed. Now extend this assignment such that zq is assigned

with the set
⋃m
i=1 h

′
i and observe that under the (now completely specified) assignment it holds

∀i=1,...,m 1 ∈ hi and thus ∀i=1,...,m 1 ∈ h′i.
We have already seen that K = {1} for all such nodes K which the algorithm adds into Q in

step 1. Moreover, by the assignment of zq and ∀i=1,...,m 1 ∈ h′i, all nodes added into Q in step 2c
compute {1}. The analogous holds for the nodes inserted into Q in step 3. This completes the
proof of the first statement.

2. We focus on the statements for the gate zq. Consider the circuit under an assignment
with values from Pfin(N+) such that K = {1} for all K ∈ Q. Then 1 ∈ zq,

∀i=1,...,m 1 ∈ h′i, (4.3)

100 Chapter 4. Balance Problems for Integer Circuits

and

zq =
m⋃
i=1

h′i (4.4)

as zq −
(⋃m

i=1 h
′
i − {1}

)
= {1} and h′i − (zq − {1}) = {1} for i = 1, . . . ,m.

Moreover, according to Lemma 4.2.5.1 for each j = 1, . . . , n and every i = 0, . . . , ej it holds
that 1 ∈ giPj , |g

i
Pj
| = |g1

Pj
|i, and all prime divisors of numbers in giPj are in Pj . As Pj ∩ Pj′ = ∅

for j 6= j′ and the prime π > 3 chosen in step 2a is not contained in the set
⋃n
j=1 Pj , we obtain

∀i=1,...,m |hi| = ai ·
n∏
j=1

|g1
Pj |

di,j (4.5)

and that for i = 1, . . . ,m all prime divisors of numbers in hi are in {π} ∪
⋃n
j=1 Pj . Hence by

(4.3) and because all primes πi chosen in step 2b are not contained in {π} ∪
⋃n
j=1 Pj , we obtain

∀i=1,...,m h′i = {πi} · hi ∪ {1}. (4.6)

By that, ∀i 6=i′ πi 6= πi′ , and as the primes πi are not contained in {π} ∪
⋃n
j=1 Pj , it holds

∀i 6=i′ h′i ∩ h′i′ = {1}. (4.7)

Hence

|zq|
(4.4)
=

∣∣∣ m⋃
i=1

h′i

∣∣∣ (4.7)
= 1 +

m∑
i=1

(|h′i| − 1)
(4.6)
= 1 +

m∑
i=1

|hi|
(4.5)
= 1 +

m∑
i=1

ai ·
n∏
j=1

|g1
Pj |

di,j

= 1 + q(|g1
P1
|, . . . , |g1

Pn |).

We have seen above that for i = 1, . . . ,m all prime divisors of numbers in hi are in {π} ∪⋃n
j=1 Pj ⊆ P>3. Together with ∀i=1,...,m πi > 3, (4.6) and (4.4) this yields that all prime divisors

of numbers in zq are > 3 as well.
Now we have proven the statements for the gate zq. The proof of the corresponding state-

ments for zq′ is analogous. This finishes the proof of Claim 4.2.7. 2

Claim 4.2.8 1. If (q, q′) ∈ DE, then (C,Q, zq, zq′) ∈ CC ∩ SC.

2. If (q, q′) /∈ DE, then (C,Q, zq, zq′) ∈ CC ∩ SC.

Proof Observe that (C,Q, zq, zq′) ∈ SC by (4.2) and Claim 4.2.7.2. Hence it remains to show
(i) (q, q′) ∈ DE ⇒ (C,Q, zq, zq′) ∈ CC and (ii) (q, q′) /∈ DE ⇒ (C,Q, zq, zq′) ∈ CC.

Let us argue for (i). Assume (q, q′) ∈ DE . Then there are y1, . . . , yn ∈ N+ with
q(y1, . . . , yn) = q′(y1, . . . , yn). Claim 4.2.7.1 yields that there is an assignment of the unassigned
inputs of C with values from Pfin(N+) under which ∀K∈QK = {1} and ∀j=1,...,n |g1

Pj
| = yj . By

Claim 4.2.7.2, under this assignment

|zq| = 1+q(|g1
P1
|, . . . , |g1

Pn |) = 1+q(y1, . . . , yn) = 1+q′(y1, . . . , yn) = 1+q′(|g1
P1
|, . . . , |g1

Pn |) = |zq′ |,

which shows (C,Q, zq, zq′) ∈ CC.
Now we argue for (ii) and prove the contraposition. Assume (C,Q, zq, zq′) ∈ CC. Then

there is an assignment of the unassigned inputs of C with values from Pfin(N+) under which
∀K∈QK = {1} and |zq| = |zq′ |. By Claim 4.2.7.2, under this assignment

q(|g1
P1
|, . . . , |g1

Pn |) = |zq| − 1 = |zq′ | − 1 = q′(|g1
P1
|, . . . , |g1

Pn |)

4.2. Set Difference and Multiplication Lead to Undecidability 101

and 1 ∈ g1
Pj

for all j = 1, . . . , n, which yields |g1
Pj
| ∈ N+ for all j = 1, . . . , n. Thus (q, q′) ∈ DE ,

which finishes the proof of Claim 4.2.8. 2

This finishes the proof of Lemma 4.2.6. 2

Let us now prove the second reduction.

Lemma 4.2.9 (CC ∩ SC, CC ∩ SC) ≤m (BC′(−, ·),BC′(−, ·)).

Proof The following algorithm computes the reduction function. The comments in italics are
supposed to give intuition.

1. Let a circuit (C,Q, s, t) be given. We construct a circuit (C ′, Q′) by successively updating
the given circuit. So we start with C ′ = C and Q′ = Q and use C ′ and Q′ as program
variables.

2. Add new unassigned input gates X and X ′. Insert the following nodes into C ′ and add
them into Q′:

{1, 2} · s− (X − {1}), (4.8)

{1, 2} · t− (X − {1}), (4.9)

{1, 2} · (X − s)−
(
(X ′ ∪ (X − s))− {1}

)
, (4.10)

X ′ − {2} · (X − s). (4.11)

The basic idea is as follows: X is supposed to be an interval with X ⊇ s∪ t and max(X) >
max(s∪ t) and X ′ is supposed to be the set {1}∪{2} · (X− s), which implies X ′ ∩ t = {1},
since t does not contain any even numbers. Then as |s| ≥ |t|, the set X ′∪t = {2}·(X−s)∪t
contains max(X′)/2 + |t| − |s| ≤ max(X′)/2 elements and thus is subbalanced. But if |s| = |t|,
then X ′∪t is almost balanced. Adding the element max(X ′)+1 would make the set balanced.
Such an element is generated in the next step.

3. Let p1 = 2 and p2 = 3. Add a circuit (C{p1,p2}, Q{p1,p2}) according to Lemma 4.2.4. Insert
all nodes of Q{p1,p2} into Q′. Add a node g =

(
g2,{p1,p2} · {1, 3}

)
− (g2,{p1,p2} − {1}).

Now g consists of 1 and some power of 3. If X, X ′, and g have been chosen such that
X = {1, 2, . . . , (max(g)−1)/2} ⊇ {1, 2} · (s ∪ t) and X ′ = {1} ∪ {2} · (X − s) and moreover,
it holds |s| = |t|, then X ′ ∪ t ∪ g is balanced. Otherwise, the set is subbalanced or has an
even maximum. So the set X ′ ∪ t ∪ g has the desired properties and in the next step we
introduce a new unassigned output node which is supposed to compute this set.

4. Add a new unassigned input node O. Then introduce the following four nodes into C ′ also
add them to Q′:

O −
((
X ′ ∪ t ∪ g

)
− {1}

)
, (4.12)

X ′ − (O − {1}), (4.13)

t− (O − {1}), (4.14)

g − (O − {1}). (4.15)

5. Modify C ′ such that O is the output node of C ′. Return (C ′, Q′).

In order to finish the proof of Lemma 4.2.9, it remains to prove (C,Q, s, t) ∈ CC ∩ SC ⇔
(C ′, Q′) ∈ BC′(−, ·). We split this statement into two claims.

102 Chapter 4. Balance Problems for Integer Circuits

Claim 4.2.10 If (C,Q, s, t) ∈ CC ∩ SC, then (C ′, Q′) ∈ BC′(−, ·).

Proof Let (C,Q, s, t) ∈ CC ∩ SC. As (C,Q, s, t) ∈ CC, there is some assignment with values
from Pfin(N+) under which |s| = |t| and K = {1} for all K ∈ Q. Let us consider C under this
assignment. (C,Q, s, t) ∈ SC yields that 1 ∈ s ∩ t and all prime divisors of numbers in s ∪ t are
> 3. Now consider the circuit C ′ under the same assignment and extend this assignment in the
following way such that the unassigned inputs of C{p1,p2}, X, X ′, and O are assigned with an
element of Pfin(N+):

� Assign the unassigned inputs of C{p1,p2} with values from Pfin(N+) such that (i) g2,{p1,p2} =
{1, 3, 32, . . . , 3m−1} for m ∈ N+ minimal with 4 ·max(s ∪ t) < 3m and (ii) K = {1} for all
K ∈ Q{p1,p2}. Such an assignment exists by Lemma 4.2.4.2.

� X = {x | 1 ≤ x ≤ (3m−1)/2}.

� X ′ = {1} ∪ {2} · (X − s).

� O = X ′ ∪ t∪ g =
(
{2} · (X − s)

)
∪ t∪{3m}. For the second equation note g = {1, 3m} and

recall that 1 ∈ t was observed above.

Now the assignment is defined for all unassigned inputs of C ′ and for the remainder of the proof
of the present claim we consider the circuit under this assignment.

In order to see that K = {1} for all K ∈ Q′, it suffices to consider the nodes added into Q′ in
steps 2 and 4 as the nodes added into Q′ in step 3 compute {1} by the choice of the unassigned
inputs of C{p1,p2}. So we have to prove that the nodes in (4.8), (4.9), (4.10), (4.11), (4.12),
(4.13), (4.14), and (4.15) all compute {1}.

By the choice of m and by 1 ∈ s∩ t, it holds max(X) = (3m−1)/2 ≥ 2 ·max(s∪ t) > max(s∪ t),
which shows that the nodes defined in (4.8) and (4.9) compute {1},

max(X ′) = 2 ·max(X), (4.16)

and
max(O) = max(g) = 3m. (4.17)

The choice of X ′ immediately implies that the node defined in (4.11) computes {1}. It holds
{1, 2} · (X − s)−

(
(X ′ ∪ (X − s))−{1}

)
= {1, 2} · (X − s)−

(
({1, 2} · (X − s))−{1}

)
= {1} and

hence the node defined in (4.10) also computes {1}.
The nodes defined in (4.12), (4.13), (4.14), and (4.15) compute {1} by the choice of the

assignment (in particular, recall 1 ∈ O ∩X ′ ∩ t ∩ g). Thus K = {1} for all K ∈ Q′.

Recall that t contains only such numbers whose prime divisors are > 3 and that max(s) ≤
max(X). Hence the three sets {2}·(X−s), t, and {3m} are pairwise disjoint and it holds s ⊆ X.
Thus

|O| = |{2} · (X − s)|+ |t|+ 1 = max(X)− |s|+ |t|+ 1 = max(X) + 1
(4.16)

=
max(X ′)

2
+ 1

(4.17)
=

max(O) + 1

2

So O is balanced. Together with the above observation that K = {1} for all K ∈ Q′ this shows
(C ′, Q′) ∈ BC′(−, ·), which completes the proof of Claim 4.2.10. 2

Claim 4.2.11 If (C,Q, s, t) ∈ CC ∩ SC, then (C ′, Q′) ∈ BC′(−, ·).

4.2. Set Difference and Multiplication Lead to Undecidability 103

Proof For a contradiction, assume that (C,Q, s, t) ∈ CC ∩ SC and (C ′, Q′) ∈ BC′(−, ·). Then
there is an assignment of the unassigned inputs of C ′ with values from Pfin(N+) under which O
is balanced and all K ∈ Q′ satisfy K = {1}. For the remainder of the proof let us consider C ′

under this assignment and C under the restriction of this assignment to the unassigned inputs
of C. As C ′ can be considered as an expanded version of C, each gate in C computes the same
set in both circuits C and C ′. Hence for each gate g that is in one of the two circuits C and C ′,
we may write g for the set computed by g without specifying which of the two circuits we refer
to.

Since the nodes defined in (4.8) and (4.9) compute {1}, we obtain 1 ∈ s and X ⊇
(
{1, 2} ·

s ∪ {1, 2} · t
)
− {1}. As the node defined in (4.10) also computes {1}, it even holds X ⊇

{1, 2} · s ∪ {1, 2} · t. In particular,
s ∪ t ⊆ X (4.18)

and 1 ≤ max(s) < 2 ·max(s) ≤ max(X). Due to that inequality and {1, 2} · (X − s) −
(
(X ′ ∪

(X − s)) − {1}
)

= {1} (cf. (4.10)) it holds 2 ·max(X) = 2 ·max(X − s) ∈ X ′. Since the node
defined in (4.11) computes {1}, we obtain X ′ ⊆ {1} ∪ {2} · (X − s). In particular,

max(X ′) = 2 ·max(X). (4.19)

The fact that the nodes defined in (4.12), (4.13), (4.14), and (4.15) all compute {1} implies
1 ∈ O ∩ X ′ ∩ t ∩ g and O = X ′ ∪ t ∪ g. Furthermore, as by construction Q{p1,p2} ⊆ Q′ and
thus K = {1} for all K ∈ Q{p1,p2}, Lemma 4.2.4.1 yields that g2,{p1,p2} = {1, 3, 32, . . . , 3m−1} for
some m ∈ N+ and thus g = {1, 3m}. Because of that, X ′ ⊆ {1} ∪ {2} · (X − s), and 1 ∈ t, it
holds that

O = X ′ ∪ t ∪ g ⊆
(
{2} · (X − s)

)
∪ t ∪ {3m}. (4.20)

As O is balanced, Lemma 4.1.1 implies that max(O) is odd. As by (4.19) the maximum of
X ′ is even,

max(O) > max(X ′). (4.21)

As (C,Q, s, t) ∈ SC and K = {1} for all K ∈ Q, it holds |s| ≥ |t|. Hence as —by assumption—
(C,Q, s, t) /∈ CC but K = {1} for all K ∈ Q, it even holds

|s| > |t|. (4.22)

Putting things together, we obtain

|O|
(4.20)

≤ |X − s|+ |t|+ 1
(4.18)

= max(X)− |s|+ |t|+ 1
(4.22)
< max(X) + 1

(4.19)
=

max(X ′) + 2

2

(4.21)

≤ max(O) + 1

2
,

which contradicts the assumption that O is balanced and thus completes the proof of
Claim 4.2.11. 2

This completes the proof of Lemma 4.2.9. 2

As has been announced before, we now can easily prove Theorem 4.2.1, which is the present
section’s main result and states that the problem BC(−, ·) is ≤m-complete for the set RE of all
computably enumerable problems.
Proof of Theorem 4.2.1 The Lemmas 4.2.6 and 4.2.9 show that

(DE ,DE) ≤m (CC ∩ SC, CC ∩ SC) ≤m (BC′(−, ·),BC′(−, ·)),

104 Chapter 4. Balance Problems for Integer Circuits

i.e., DE ≤m BC′(−, ·). As BC′(−, ·) ≤m BC(−, ·) by Lemma 4.2.3, we obtain DE ≤m BC(−, ·).
Thus BC(−, ·) is ≤m-hard for RE. Moreover, Proposition 4.1.5 yields BC(−, ·) ∈ RE. 2

In the following we apply this result for circuits disallowing set difference but allowing sym-
metric difference. In these circuits all operations are commutative, which is the reason why such
circuits get along without order functions specifying for each inner node which is the left and
which is the right direct predecessor. Hence such circuits can be defined as quadruples instead
of quintuples.

Corollary 4.2.12 BC(4,∩, ·) and BC(4,∪, ·) are ≤m-complete for RE.

Proof The two problems are in RE according to Proposition 4.1.5. Thus by Theorem 4.2.1, it
suffices to show BC(−, ·) ≤m BC(4,∩, ·) and BC(−, ·) ≤m BC(4,∪, ·). These assertions hold
as A−B = (A4B) ∩A = (A ∪B)4B for arbitrary A,B ⊆ N. 2

This shows that even if set difference, the only non-symmetric operation, is disallowed, one
arithmetic operation is still sufficient to gain undecidability.

4.3 Smaller Sets of Operations Lead to Problems in NP

Having proven BC(−, ·) to be undecidable, the obvious question is whether even a proper subset
of {−, ·} suffices to gain undecidability. So we investigate the computational complexity of the
problems BC(·) and BC(−) and for the sake of completeness, we also consider the almost trivial
problem BC(∅), whose membership in L follows from Proposition 4.1.2 as in each ∅-circuit the
output node is an input node. Thus in this section we study all problems BC(O) for O ({−, ·}
and it turns out that they are all in NP. More precisely, each of the problems is shown to be
≤log

m -complete for one of the classes L, NL, and NP.

4.3.1 Allowing Multiplication Only

This subsection’s purpose is to prove the NL-completeness of BC(·). First, we use theorems
by Ford [For08a, For08b] and Koukoulopoulos [Kou14] in order to show that A · B for sets
A and B with sufficiently large maxima is subbalanced. Second, this result is exploited by a
nondeterministic logarithmic-space algorithm which accepts BC(·). Finally, we prove the ≤log

m -
hardness of the problem for NL, which is a straightforward corollary of a result by McKenzie
and Wagner [MW07].

In order to make use of the mentioned results by Ford and Koukoulopoulos, we introduce
some notation.

Definition 4.3.1 Define A : N+ × N+ → N via

(N1, N2) 7→
∣∣{n1 · n2 | n1 ≤ N1, n2 ≤ N2, n1, n2 ∈ N+}

∣∣.
Moreover, we define a function H : N+ ×Q×Q→ N via

(x, y, z) 7→
∣∣{n ∈ N+ | n ≤ x,∃d∈N+,d|n such that y < d ≤ z}

∣∣.
In other words and put more illustratively, A(N1, N2) counts the numbers in the two-dimensional
multiplication table with side lengths N1 and N2, where the side lengths are allowed to be
different.

The following theorem formulates two statements. The first is a special case of a re-
sult by Koukoulopoulos [Kou14, Theorem 1.1]. Furthermore, Koukoulopoulos [Kou14] cites

4.3. Smaller Sets of Operations Lead to Problems in NP 105

Ford [For08a, For08b] for a further theorem which contains the second statement as a special
case and can be found in the aforementioned article by Koukoulopoulos [Kou14, Theorem 1.2].
Note that Koukoulopoulos and Ford indeed prove significantly stronger results than we make use
of here. In particular, we only formulate the results for the two-dimensional multiplication table,
whereas [Kou14] contains analogous results for the k-dimensional table for arbitrary k ≥ 2.

Theorem 4.3.2 ([For08a, For08b, Kou14]) There exist k1, k2 ∈ N+ and 3 ≤ µ1, µ2 ∈ N
such that the following statements hold.

1. For all natural numbers N1 and N2 with µ1 ≤ N1 ≤ N2,

A(N1, N2) ≤ k1 ·H(N1 ·N2, N1/2, N1).

2. For all natural numbers µ2 ≤ x ∈ N and µ2 ≤ y ∈ Q with 4y2 ≤ x,

H(x, y, 2y) ≤ k2 ·
x

(log y)
1− 1+log log 2

log 2 (log log y)3/2
.

The following corollary basically formulates that the product of two sets with sufficiently big
maxima is subbalanced. It is not difficult to see that this corollary (and indeed even a signifi-
cantly stronger result) is implied by Theorem 4.3.2.

Corollary 4.3.3 There exists µ ∈ N such that for all sets A,B ∈ Pfin(N) with µ ≤ max(A) and
µ ≤ max(B) the following holds:

1. A ·B is subbalanced.

2. For all M ∈ Pfin(N) the set A ·B ·M is not balanced.

Proof Let k1, µ1, k2, and µ2 be the numbers guaranteed by Theorem 4.3.2. Choose µ ≥
max(k1, µ1, k2, µ2) minimal with the property that log log(µ/2) ≥ 3k1k2. Let A,B,M ∈ Pfin(N)
with α := max(A) ≥ µ and β := max(B) ≥ µ.

1. Without loss of generality, α ≤ β. Then statement 1 of Theorem 4.3.2 implies that
|A · B| ≤ 1 + A(α, β) ≤ 1 + k1 ·H(α · β, α/2, α). The fact that α ≤ β yields 4 · (α/2)2 ≤ α · β
and thus Theorem 4.3.2.2 can be applied to H(α · β, α/2, α), which yields

|A ·B| ≤ 1 + k1k2 ·
α · β

(log α
2)

1− 1+log log 2
log 2 (log log α

2)3/2

µ≤α, log log(µ/2)≥3k1k2

≤ 1 +
αβ

3
<
αβ

2
.

2. If M ∈ {∅, {0}}, then A · B ·M = M is not balanced. If max(M) ≥ 1, then by the first
statement of the present theorem, |A·B·M | ≤ |(A∪{0})·B·(M−{0})| ≤ |(A∪{0})·B|·max(M) <
(αβ·max(M))/2 and thus A ·B ·M is subbalanced. 2

Having built the foundation, let us now turn to the problem BC(·), which we show to be

≤log
m -complete for NL. We prove membership and hardness in two separate theorems and start

with the more complicated result.

Theorem 4.3.4 BC(·) ∈ NL.

106 Chapter 4. Balance Problems for Integer Circuits

Proof Let us start with the definition of the following auxiliary problem.

Θ =
{

(A, r) | A ⊆
(
Pfin(N)−{∅, {0}}

)
×{1, 2} finite, ∀S∈Pfin(N) (S, 1) ∈ A⇒ (S, 2) /∈ A,

r ∈ [0, 3], Ξ =
∏

(S,i)∈A
∏i
j=1 S, and one of the following conditions holds:

� Ξ is balanced.

� r ≥ 1 and Ξ ∪ {0} is balanced.

� r ≥ 2 and ∃F∈Pfin(N) Ξ · F · F is balanced.

� r = 3 and ∃F∈Pfin(N) Ξ · F is balanced.
}

.

For reasons of clarity and comprehensibility we proceed in two steps. First, we show that there
is an f ∈ FLNL such that C ∈ BC(·)⇔ f(C) ∈ Θ for all {·}-circuits C. Second, we show Θ ∈ L.

Claim 4.3.5 There is an f ∈ FLNL such that C ∈ BC(·)⇔ f(C) ∈ Θ for every {·}-circuit C.

Proof Let N /∈ Θ be fixed and let f be the function computed by the following algorithm,
in which we use A, r, and iM for certain M ∈ Pfin(N) as program variables, where A and r
are global variables initialized with ∅ and 0, respectively. The algorithm is given access to the
oracles GAP≥k and GAP=k for k ∈ {1, 2, 3}, which are all in NL (cf. Section 2.3.3).4

1. Input: a {·}-circuit C = (V,E, gC , α, β).

2. If ∃g∈V α(g) ∈ {∅, {0}} ∧ (V,E, g, gC) ∈ GAP≥1, then return N .

3. If ∃g∈V with α(g) = {0, 1} and (V,E, g, gC) ∈ GAP≥1, then let A = A ∪ {({0, 1}, 1)}.

4. For each M ∈ Pfin(N) with max(M) ≥ 2 and α(g) = M for some assigned input gate g:

(a) Let iM = 0. For each assigned input gate g with α(g) = M :

i. If (V,E, g, gC) ∈ GAP=1 and iM < 3, then iM = iM + 1.

ii. If (V,E, g, gC) ∈ GAP=2 and iM < 3, then iM = iM + 2.

iii. If (V,E, g, gC) ∈ GAP≥3, then iM = 3.

(b) If iM ≥ 3, return N .

(c) If iM ∈ {1, 2}, then let A = A ∪ {(M, iM)}.

5. For each unassigned input gate g do the following:

(a) If (V,E, g, gC) ∈ GAP≥3 and r < 1, then r = 1.

(b) If (V,E, g, gC) ∈ GAP=2 and r < 2, then r = 2.

(c) If (V,E, g, gC) ∈ GAP=1, then r = 3.

6. Return (A, r)

4More formally, we could view the six sets as subsets of N and use the following set as oracle

2⋃
k=0

(
{6x + 2k | x ∈ GAP≥k+1} ∪ {6x + 2k + 1 | x ∈ GAP=k+1}

)
.

4.3. Smaller Sets of Operations Lead to Problems in NP 107

When given access to the aforementioned oracles, the algorithm can be implemented by a
deterministic logarithmic-space Turing machine. It remains to show C ∈ BC(·)⇔ f(C) ∈ Θ for
all {·}-circuits C.

Let C = (V,E, gC , α, β) be a {·}-circuit with k ∈ N assigned input gates g1 < · · · < gk and
n ∈ N unassigned input gates h1 < · · · < hn.

For two arbitrary gates g and h of C let ig,h denote the number of paths from g to h. Recall
that by definition

∏0
i=1A = {1} for all A ∈ Pfin(N) and observe that by a simple induction,

∀X1,...,Xn∈Pfin(N)∀h∈V I(h;C(X1, . . . , Xn))) =

k∏
j=1

igj ,h∏
j′=1

gj ·
n∏
j=1

ihj,h∏
j′=1

Xj . (4.23)

Recall that as the set computed by an assigned input g is independent of the assignment, it
holds I(g;C(X)) = α(g) for all X ∈ Pfin(N)n and by convention, we just write g for this set.

As an abbreviation, for an arbitrary gate g we write ig for ig,gC . Note that each input gate
not having any path to the output gate gC neither has any influence on the above algorithm’s
output nor on the circuit’s membership in BC(·). Therefore, we may assume that for each input
gate there exists some path to gC , i.e.,

∀j∈{1,...,k} igj > 0 ∧ ∀j∈{1,...,n} ihj > 0. (4.24)

If the algorithm returns N in step 2, then there is an assigned input gate g with α(g) ∈
{∅, {0}} that is connected to the output and thus under every assignment it holds that gC =
g ∈ {∅, {0}} is not balanced. Hence C /∈ BC(·). If the algorithm returns N in step 4b, then
according to step 4a there is a set K ∈ Pfin(N) with max(K) ≥ 2 such that there are at least 3
paths from assigned inputs g with α(g) = K to the output gC . Then by (4.23), it holds under
every assignment X ∈ Pfin(N)n that gC = M ·K ·K ·K for some M ∈ Pfin(N). But then the
second statement of Lemma 4.1.3 yields that gC is not balanced and hence C /∈ BC(·). Thus, if
the algorithm terminates in step 2 or step 4b, then C ∈ BC(·)⇔ f(C) ∈ Θ.

Consequently, for the remainder of the proof of the present claim we consider the case that
the algorithm terminates in step 6. Let (A, r) denote the return value of the algorithm on input
C. Observe that then A is a finite subset of

(
Pfin(N)− {∅, {0}}

)
× {1, 2}, r ∈ [0, 3], and for all

S ∈ Pfin(N) it holds (S, 1) ∈ A ⇒ (S, 2) /∈ A. Hence from now on we only need to consider the
four bullet points in the definition of Θ in order to determine whether (A, r) ∈ Θ. Let

B =
{

(S, i) ∈ Pfin(N)× N+ | i =
∑

j∈{1,...,k}, α(gj)=S

igj

}
.

In other words, B consists of those pairs (S, i) for which there exists some assigned input gate
gj that computes S (note that by (4.24), there exists a path from gj to the output gate) and i
equals the number of paths from assigned inputs computing S to the output gate gC . The first
equation below holds by the definition of B, whereas the second equation still has to be proven.

k∏
j=1

igj∏
j′=1

gj =
∏

(S,i)∈B

i∏
i′=1

S =
∏

(S,i)∈A

i∏
i′=1

S. (4.25)

Let us now argue for the second equation in (4.25). Since the algorithm does not terminate in
step 2, it holds B ∩ T = ∅ for T = {∅, {0}} × N and thus B ∩ T = A ∩ T . As the algorithm
does not terminate in step 4b, it holds for all (S, i) ∈ B that

(
max(S) ≥ 2 ⇒ i ≤ 2

)
. Due to

that and steps 4a and 4c, we have B ∩T ′ = A∩T ′ for T ′ =
(
Pfin(N)−{∅, {0}, {1}, {0, 1}}

)
×N.

108 Chapter 4. Balance Problems for Integer Circuits

Therefore, it remains to consider the pairs in T ′′ = {{1}, {0, 1}} × N. The pairs in {{1}} × N
can be ignored. The algorithm either adds ({0, 1}, 1) or no set from T ′′ at all into A and step 3
ensures that ({0, 1}, 1) ∈ A if and only if there exists i > 0 with ({0, 1}, i) ∈ B, which finishes
the proof of the second equation in (4.25).

Let us denote the set described by the three expressions in (4.25) with Ξ. By (4.23),

∀X1,...,Xn∈Pfin(N) I(gC ;C(X1, . . . , Xn)) = Ξ ·
n∏
j=1

ihj∏
j′=1

Xj

and hence it remains to prove that

(
∃X1,...,Xn∈Pfin(N) Ξ ·

n∏
j=1

ihj∏
j′=1

Xj is balanced
)
⇔ (A, r) ∈ Θ. (4.26)

“⇒”: Assume there exist X1, . . . , Xn ∈ Pfin(N) under which Ξ ·
∏n
j=1

∏ihj
j′=1Xj is balanced.

By statement 2 of Lemma 4.1.3,

¬∃j∈{1,...,n}
(

max(Xj) ≥ 2 ∧ ihj ≥ 3
)

(4.27)

By (4.24), it suffices to study the following cases.

� n = 0: In this case, Ξ is balanced and hence (A, r) ∈ Θ.

� n > 0 ∧ ∀j∈{1,...,n} ihj ≥ 3: Here, r = 1. (4.27) yields ∀j∈{1,...,n} max(Xj) ≤ 1 and as

Ξ ·
∏n
j=1

∏ihj
j′=1Xj is balanced, even ∀j∈{1,...,n} max(Xj) = 1. Hence Ξ ·

∏n
j=1

∏ihj
j′=1Xj ∈

{Ξ,Ξ ∪ {0}} and thus one of the sets Ξ and Ξ ∪ {0} is balanced, which shows (A, r) ∈ Θ.

� n > 0∧∀j∈{1,...,n} ihj ≥ 2∧∃j∈{1,...,n} ihj = 2: In this case r = 2. Let F =
∏n
j=1Xj . Then

F · F =
∏n
j=1

∏2
j′=1Xj =

∏n
j=1

∏ihj
j′=1Xj , where the second equation holds as 2 ≤ ihj for

all j and by (4.27), for all j ∈ {1, . . . , n} with ihj > 2 we have max(Xj) ≤ 1 and thus∏2
j′=1Xj =

∏ihj
j′=1Xj . Thus Ξ·F ·F = Ξ·

∏n
j=1

∏ihj
j′=1Xj is balanced and hence (A, r) ∈ Θ.

� n > 0 ∧ ∃j∈{1,...,n} ihj = 1. Here, r = 3. For F =
∏n
j=1

∏ihj
j′=1Xj the set Ξ · F =

Ξ ·
∏n
j=1

∏ihj
j′=1Xj is balanced and hence (A, r) ∈ Θ.

“⇐”: Assume (A, r) ∈ Θ.
If r = 0, then Ξ is balanced and n = 0 (if n > 0, then due to (4.24) the algorithm returns a

value r > 0). Thus the left-hand side of (4.26) is satisfied.
If r = 1, then Ξ or Ξ ∪ {0} is balanced, n ≥ 1, and ihj ≥ 3 for all j = 1, . . . , n (if some

ihj is < 3, then due to (4.24) the algorithm returns a value r > 1). If Ξ is balanced, then we
choose Xj = {1} for all j = 1, . . . , n. If Ξ is not balanced, then Ξ ∪ {0} is balanced and we let

Xj = {0, 1} for all j = 1, . . . , n. Then Ξ ·
∏n
j=1

∏ihj
j′=1Xj is balanced.

If r = 2, then there exists F ∈ Pfin(N) such that Ξ · F · F is balanced and there is some

j ∈ {1, . . . , n} with ihj = 2. Let Xj = F and Xj′ = {1} for all j′ 6= j. Then Ξ ·
∏n
j=1

∏ihj
j′=1Xj =

Ξ · F · F is balanced.
If r = 3, then there exists F ∈ Pfin(N) such that Ξ · F is balanced and there is some j ∈

{1, . . . , n} with ihj = 1. Let Xj = F and Xj′ = {1} for all j′ 6= j. Then Ξ·
∏n
j=1

∏ihj
j′=1Xj = Ξ·F

is balanced. This shows (4.26) and finishes the proof of Claim 4.3.5. 2

4.3. Smaller Sets of Operations Lead to Problems in NP 109

Claim 4.3.6 Θ ∈ L.

Proof Let µ be as specified in Corollary 4.3.3, i.e., for all A,B,M ∈ Pfin(N) with µ ≤ max(A)∧
µ ≤ max(B) the set A ·B ·M is not balanced. We show that the following algorithm accepts Θ.

1. Input: a pair (A, r) such that A ⊆
(
Pfin(N) − {∅, {0}}

)
× {1, 2} is finite, r ∈ {0, 1, 2, 3},

and (S, 1) ∈ A⇒ (S, 2) /∈ A for all S ∈ Pfin(N) (if the pair is not of this form, reject).

2. If there are distinct (S, iS), (T, iT) ∈ A with max(S) ≥ µ and max(T) ≥ µ, then reject. If
there is some (S, i) ∈ A with max(S) ≥ µ and i = 2, then reject.

3. If A ⊆ P({0, . . . , µ})× {1, 2}, then accept if (A, r) ∈ Θ and reject otherwise.

4. If the algorithm executes this step, then there is exactly one pair (S, i) ∈ A with max(S) ≥ µ
and for this pair i = 1 (otherwise, the algorithm would have rejected in step 2 or step 3).

(a) Compute the set M =
∏

(T,i)∈A−{(S,1)}
∏i
j=1 T .

(b) If (i) S ∈ BALM or (ii) r = 1 ∧ S ∪ {0} ∈ BALM , then accept.

(c) For all F ∈ P([0, µ]): accept if (i) r = 2∧S ∈ BALM ·F ·F or (ii) r = 3∧S ∈ BALM ·F .

(d) Reject.

Logarithmic space is clearly sufficient for the first two steps. In step 3, the test whether
(A, r) ∈ Θ is only done if A is of constant size and thus logarithmic space suffices again. The fact
that the sets M , M ∪{0}, M ·F ·F , and M ·F in step 4 are of constant size and Proposition 4.1.2
yield that step 4 can be implemented by a deterministic logarithmic-space Turing machine.

We show that on input (A, r),if the algorithm accepts, then (A, r) ∈ Θ, and if it rejects, then
(A, r) /∈ Θ. We study cases depending on the step the algorithm terminates in.

Step 1: If the algorithm rejects in this step, then by definition (A, r) /∈ Θ. Step 2: If the
algorithm rejects in this step, then (A, r) /∈ Θ by Corollary 4.3.3.2. Step 3: Here the algorithm
clearly accepts and rejects correctly.

Step 4: Let us assume that the algorithm terminates in this step. As argued above, due to
steps 2 and 3, there is precisely one pair (S, i) ∈ A with max(S) ≥ µ and for this pair i = 1. By
definition of Θ, if the algorithm accepts in step 4b or in some iteration of the loop in step 4c, then
(A, r) ∈ Θ. Now study the case that the algorithm rejects in step 4d and for a contradiction,
assume (A, r) ∈ Θ. If r < 2, then S ·M or S ·M∪{0} is balanced, which contradicts the fact that
the algorithm does not accept in step 4b. So r ∈ {2, 3} and there exists some F ∈ Pfin(N) such
that M ·S ·F or M ·S ·F ·F is balanced. However, as the algorithm does not accept in step 4c,
it holds max(F) > µ, in contradiction to Corollary 4.3.3.2, which implies that if max(F) > µ,
then M · S · F and M · S · F · F are not balanced. This finishes the proof of Claim 4.3.6. 2

Claim 4.3.5 and Claim 4.3.6 yield an LNL-algorithm for BC(·). As LNL = NL according to
Proposition 2.3.2, the proof of Theorem 4.3.4 is complete. 2

Theorem 4.3.7 BC(·) is ≤log
m -hard for NL.

Proof Recall that McKenzie and Wagner [MW07] prove the problem MC(∩) to be≤log
m -complete

for NL. The following deterministic logarithmic-space algorithm shows MC(∩)≤log
m BC(·).

Assume we are given as input a pair (C, b) where C = (V,E, gC , α, β) is a {∩}-circuit with
(assigned) inputs g1 < · · · < gn for n ∈ N+ and b ∈ N. Let α′ : V 7→ Pfin(N) ∪ {·} be the total

110 Chapter 4. Balance Problems for Integer Circuits

function that maps each inner gate to ·, each input gate g with b /∈ α(g) to {0}, and each input
gate with b ∈ α(g) to {1}. Return C ′ = (V,E, gC , α

′, β).
Note ∀g∈V I(g;C ′) ∈ {{0}, {1}}. An induction shows ∀g∈V b ∈ I(g, C)⇔ I(g, C ′) = {1}. 2

Corollary 4.3.8 BC(·) is ≤log
m -complete for NL.

Proof The assertion follows from Theorems 4.3.4 and 4.3.7. 2

4.3.2 The Problems Not Allowing Multiplication

We consider the two remaining problems and prove that BC(−) is ≤log
m -complete for NP and

BC(∅) is in L (and thus trivially ≤log
m -complete for L).

In order to show that BC(−) is ≤log
m -hard for NP, we first define the circuit satisfiability

problem CSAT, which is the circuit version of SAT. For this purpose we define Boolean circuits.
The definition is similar to the definition of integer circuits.

A Boolean circuit C is a quadruple (V,E, gC , α) with the following properties:

� (V,E, gC) is a circuit such that each node has indegree at most 2.

� α : V → {�,¬,∧,∨} is a total function.

� For each node u with indegree 0 it holds α(u) = �.

� For each node u with indegree 1 it holds α(u) = ¬. Such nodes are called ¬-gates.

� For each node u with indegree 2 it holds α(u) ∈ {∧,∨}. Such nodes are called ∧-gates and
∨-gates, respectively.

Note that we get along without assigned input gates, because these can be simulated by g ∧ ¬g
and g ∨ ¬g for an unassigned input g.

Let g1 < · · · < gn for n ∈ N+ be the input gates of a Boolean circuit C = (V,E, gC , α).
Inductively, we define for each assignment a = (a1, . . . , an) ∈ {0, 1}n and for each gate g which
of the values in {0, 1} the gate g computes:

Ia(g;C) =

ai if g = gi for some i ∈ {1, . . . , n}
1− Ia(g′;C) if α(g) = ¬ and g′ is the direct predecessor of g

min
(
Ia(g

′;C), Ia(g
′′;C)

)
if α(g) = ∧ and the nodes g′ and g′′ are the
source nodes of the two incoming edges of g

max
(
Ia(g

′;C), Ia(g
′′;C)

)
if α(g) = ∨ and the nodes g′ and g′′ are the
source nodes of the two incoming edges of g

Note that the nodes g′ and g′′ in this definition are not necessarily distinct. Define

CSAT = {C | C = (V,E, gC , α) is a Boolean circuit with n input gates for some n ∈ N+,
∃a1,...,an∈{0,1} Ia1,...,an(gC ;C) = 1}.

CSAT is known to be ≤log
m -complete for NP (proving the membership is straightforward, the

hardness can be obtained by a simple reduction from SAT for example). Regarding the encoding,
similar conventions as we have introduced for O-circuits result in a precise definition of the length
of a Boolean circuit.

4.3. Smaller Sets of Operations Lead to Problems in NP 111

Theorem 4.3.9 BC(−) is ≤log
m -hard for NP.

Proof The following algorithm yields a reduction from CSAT to BC(−).

1. Input: a Boolean circuit C.

2. We successively transform C into an integer circuit C ′. First introduce a new assigned
input gate computing {1}. Then for each inner gate g make the following modifications:

� If g is a ¬-gate with g′ as the direct predecessor, then change the label of g to − and
add one edge such that g = {1} − g′.

� If g is a ∧-gate such that g′ and g′′ are the (not necessarily distinct) source nodes of the
two incoming edges of g, then change the label of g to −, delete the two edges from g′

and g′′ to g, and add two nodes and six edges so that g =
(
{1}−({1}−g′)

)
−({1}−g′′).

� If g is a ∨-gate such that g′ and g′′ are the (not necessarily distinct) source nodes of
the two incoming edges of g, then change the label of g to −, delete the two edges from
g′ and g′′ to g, and add two nodes and six edges so that g = {1} −

(
({1} − g′)− g′′

)
.

3. Return C ′.

Observe that the function defined by this algorithm is logarithmic-space computable.
Let us show C ∈ CSAT⇔ C ′ ∈ BC(−). This equivalence holds if gC is an input. From now

on assume that gC is not an input gate. Note that both circuits C and C ′ have the same n ∈ N+

unassigned input nodes. Let V denote the set of nodes of C and V ′ denote the set of nodes of
C ′. Note V ⊆ V ′. We obtain inductively that

∀a1,...,an∈{0,1},A1,...,An∈Pfin(N),
∀i∈{1,...,n} (ai=1⇔1∈Ai)

∀g∈V
(
Ia1,...,an(g;C) = 1⇔ 1 ∈ I(g;C ′(A1, . . . , An))

)
.

Together with the observation that I(g;C ′(A1, . . . , An)) ⊆ {1} for each assignment A1, . . . , An ∈
Pfin(N) and each inner gate g ∈ V this implies C ∈ CSAT⇔ C ′ ∈ BC(−). 2

Theorem 4.3.10 BC(−) ∈ NP.

Proof We sketch an NP-algorithm that accepts BC(−).

1. Input: a {−}-circuit C with output node gC and labeling function α.

2. Starting from gC , go upwards in the circuit always taking the left direct predecessor.
Denote the input gate finally reached with g.

3. If g is assigned, then:
guess an assignment of the unassigned input gates with values from P(α(g)) and accept if
the output set is balanced under this assignment, otherwise, reject.

4. Note that now g is unassigned. Let M be the union of all sets computed by assigned
input gates and let m ∈ N be the least number greater than all numbers in M . Guess an
assignment such that I(g) = {m} and each unassigned input either computes {m} or ∅. If
under this assignment gC contains m, then accept.

5. Guess an assignment of the unassigned inputs such that each of them computes a set ⊆M .
In case gC is balanced, accept. Otherwise, reject.

112 Chapter 4. Balance Problems for Integer Circuits

Claim 4.3.11 If the algorithm accepts, then C ∈ BC(−).

Proof If the algorithm accepts in step 3, then clearly C ∈ BC(−). If it accepts in step 4, then
there is an assignment that maps each unassigned input either to {m} or to ∅ such that m is in
the output set. Now change this assignment such that the sets mapped to {m} are now mapped
to {m+1,m+2, . . . , 2m+1}. As no assigned input computes a set that contains a number ≥ m,
it holds gC ⊇ {m+ 1,m+ 2, . . . , 2m+ 1} under the described assignment. By the choice of g, it
can be shown inductively that under every assignment it holds h ⊇ g for each successor h of g,
particularly for h = gC . Thus gC = g = {m + 1,m + 2, . . . , 2m + 1} under the aforementioned
assignment and hence C ∈ BC(−). Trivially, if C is accepted in step 5, then C ∈ BC(−). 2

Claim 4.3.12 If the algorithm rejects, then C /∈ BC(−).

Proof If the algorithm rejects, then this happens in step 3 or step 5. We argue for the first case.
Here g is an assigned input gate. As argued above, under every assignment it holds gC ⊆ g.
Hence it suffices to consider assignments that map all unassigned inputs to subsets of α(g). As
the algorithm rejects, gC is not balanced under all these assignments and thus C /∈ BC(−).

It remains to argue for the case where the algorithm rejects in step 5. In this case, g is an
unassigned input and as the algorithm does not accept in step 4, there exists no assignment
under which the circuit’s output set contains a number /∈ M . Hence it is sufficient to consider
assignments that solely map to subsets of M . As the algorithm rejects, none of these assignments
yields a balanced output set and hence there exists no assignment at all under which the output
set is balanced. Therefore, C /∈ BC(−). 2

The observation that the algorithm can be computed in polynomial time by a nondeterministic
Turing machine completes the proof. 2

Corollary 4.3.13 BC(−) is ≤log
m -complete for NP.

Proof The assertion follows from Theorem 4.3.9 and Theorem 4.3.10. 2

Theorem 4.3.14 BC(∅) ∈ L.

Proof Let C be an ∅-circuit. Then the output node is an input node. If the output node is
unassigned, then C ∈ BC(∅). Otherwise, C ∈ BC(∅) if and only if the set computed by the
output node is balanced. Thus by Proposition 4.1.2, the proof is complete. 2

4.4 Summary and Discussion

The following table summarizes our results, namely the lower and upper bounds for the com-
plexity of BC(O) with O ⊆ {−, ·}. As each problem /∈ {∅, ∅} trivially is ≤log

m -hard for L, it is
not necessary to prove the mentioned lower bound for BC(∅).

BC(O) for O = ≤log
m -hard for contained in

∅ L L, Theorem 4.3.14

{−} NP, Theorem 4.3.9 NP, Theorem 4.3.10

{·} NL, Theorem 4.3.7 NL, Theorem 4.3.4

{·,−} undecidable, Theorem 4.2.1

4.4. Summary and Discussion 113

To our knowledge, in contrast to all results from previous papers on complexity issues con-
cerning decision problems for integer circuits (e.g., [MW07, Tra06, Bre07, GHR+10, GRTW10,
BBD+20]) or related constraint satisfaction problems ([GJM17, Dos16]), a problem admitting
only one arithmetic operation is shown to be undecidable. Beginning with this problem, namely
BC(−, ·), the problems BC(O) for O ⊆ {−, ·} are systematically investigated and for each of
these problems the computational complexity is precisely characterized. It turns out that de-
creasing the size of the set of allowed operations yields problems that are in NP. In particular,
all these problems are ≤log

m -complete for one of the classes L, NL, and NP.
As a side effect, we obtain as a corollary of our main result, the undecidability of BC(−, ·),

that the problems BC(4,∪, ·) and BC(4,∪, ·) are undecidable as well.
As the complexity of the four problems is precisely characterized, this chapter is a complete

unit in some sense. Nevertheless, there arise new questions from our results:

1. Is there a set O ⊆ {−,∪,∩} such that BC(O ∪ {+}) is undecidable?

2. BC(4, ·) ∈ REC?

114 Chapter 4. Balance Problems for Integer Circuits

Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics,
160:781–793, 2004.

[BBD+17] D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau. Emptiness
problems for integer circuits. In Proceedings of the 42nd International Symposium
on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of
LIPIcs, pages 33:1–33:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[BBD+20] D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau. Emptiness
problems for integer circuits. Theor. Comput. Sci., 824–825:11–35, 2020.

[Bey04] O. Beyersdorff. Representable disjoint NP-pairs. In Proceedings of the 24th Interna-
tional Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2004), volume 3328 of Lecture Notes in Computer Science, pages
122–134. Springer, 2004.

[Bey06] O. Beyersdorff. Disjoint NP-pairs from propositional proof systems. In Proceedings
of the Third International Conference on Theory and Applications of Models of
Computation, volume 3959 of Lecture Notes in Computer Science, pages 236–247.
Springer, 2006.

[Bey07] O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer
Science, 377(1-3):93–109, 2007.

[Bey10] O. Beyersdorff. The deduction theorem for strong propositional proof systems. The-
ory of Computing Systems, 47(1):162–178, 2010.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP problem. SIAM
Journal on Computing, 4:431–442, 1975.

[BKM09] O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the
existence of optimal proof systems. Theor. Comput. Sci., 410(38-40):3839–3855,
2009.

[Bre07] H. Breunig. The complexity of membership problems for circuits over sets of positive
numbers. In Proceedings of the 16th International Symposium on Fundamentals
of Computation Theory (FCT 2007), volume 4639 of Lecture Notes in Computer
Science, pages 125–136. Springer, 2007.

115

116 Bibliography

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC 1971), pages 151–158.
ACM, 1971.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

[DG19] T. Dose and C. Glaßer. NP-completeness, proof systems, and disjoint NP-pairs.
Electron. Colloquium Comput. Complex., 26:50, 2019.

[DG20] T. Dose and C. Glaßer. NP-completeness, proof systems, and disjoint NP-pairs.
In Proceedings of the 37th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2020), volume 154 of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2020.

[Dos16] T. Dose. Complexity of constraint satisfaction problems over finite subsets of natural
numbers. In Proceedings of the 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz International
Proceedings in Informatics, pages 32:1–32:13. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016.

[Dos18] T. Dose. Balance problems for integer circuits. In Proceedings of the 43rd Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 2018),
volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–
5:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[Dos19a] T. Dose. Balance problems for integer circuits. Theor. Comput. Sci., 799:124–139,
2019.

[Dos19b] T. Dose. P-optimal proof systems for each non-empty NP-set but no complete dis-
joint NP-pairs relative to an oracle. In Proceedings of the 44th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2019), volume
138 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019.

[Dos20a] T. Dose. an oracle separating conjectures about incompleteness in the finite domain.
Theor. Comput. Sci., 809:466–481, 2020.

[Dos20b] T. Dose. further oracles separating conjectures about incompleteness in the finite
domain. Theor. Comput. Sci., 847:76–94, 2020.

[DPR61] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential
Diophantine equations. Annals of Mathematics, 74(2):425–436, 1961.

[ESY84] S. Even, A. L. Selman, and J. Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61:159–173, 1984.

[EY80] S. Even and Y. Yacobi. Cryptocomplexity and NP-completeness. In Proceedings
of the 7th International Colloquium on Automata, Languages and Programming
(ICALP 1980), volume 85 of Lecture Notes in Computer Science, pages 195–207.
Springer, 1980.

[For08a] K. Ford. Integers with a divisor in (y, 2y]. In Anatomy of integers, volume 46 of
CRM Proc. and Lect. Notes, pages 65–81. Amer. Math. Soc., Providence, RI, 2008.

Bibliography 117

[For08b] K. Ford. The distribution of integers with a divisor in a given interval. Annals of
Math. (2), 168:367–433, 2008.

[GHR+10] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equivalence
problems for circuits over sets of natural numbers. Theory of Computing Systems,
46(1):80–103, 2010.

[GJM17] C. Glaßer, P. Jonsson, and B. Martin. Circuit satisfiability and constraint satisfac-
tion around Skolem Arithmetic. Theor. Comput. Sci., 703:18–36, 2017.

[GNW90] T. Gundermann, N. A. Nasser, and G. Wechsung. A survey on counting classes. In
Proceedings of the Fifth Annual Structure in Complexity Theory Conference, pages
140–153. IEEE Computer Society, 1990.

[GRTW10] C. Glaßer, C. Reitwießner, S. D. Travers, and M. Waldherr. Satisfiability of algebraic
circuits over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394–
1403, 2010.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17(2):309–335, 1988.

[GSS05] C. Glaßer, A. L. Selman, and S. Sengupta. Reductions between disjoint NP-pairs.
Information and Computation, 200:247–267, 2005.

[GSSZ04] C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM
Journal on Computing, 33(6):1369–1416, 2004.

[GSZ07] C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of propositional
proof systems. Theoretical Computer Science, 370:60–73, 2007.

[GSZ09] C. Glaßer, A. L. Selman, and L. Zhang. The informational content of canoni-
cal disjoint NP-pairs. International Journal of Foundations of Computer Science,
20(3):501–522, 2009.

[HH88] J. Hartmanis and L. A. Hemachandra. Complexity classes without machines: On
complete languages for UP. Theor. Comput. Sci., 58:129–142, 1988.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput., 17(5):935–938, 1988.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
J. Comput. Syst. Sci., 37(1):79–100, 1988.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Proceedings of a Symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972.

[Kha19] E. Khaniki. New relations and separations of conjectures about incompleteness in
the finite domain. arXiv e-prints, page arXiv:1904.01362, Apr 2019.

118 Bibliography

[KM00] J. Köbler and J. Messner. Is the standard proof system for SAT p-optimal? In Pro-
ceedings of the 20th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2000), volume 1974 of Lecture Notes in Computer
Science, pages 361–372. Springer, 2000.

[KMT03] J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for
promise classes. Information and Computation, 184(1):71–92, 2003.

[Kou14] D. Koukoulopoulos. On the number of integers in a generalized multiplication table.
Journal für die reine und angewandte Mathematik, 689:33–99, 2014.

[KP89] J. Kraj́ıček and P. Pudlák. Propositional proof systems, the consistency of first order
theories and the complexity of computations. Journal of Symbolic Logic, 54:1063–
1079, 1989.

[Lov79] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, 25(1):1–7, 1979.

[Mat70] Y. V. Matiyasevich. Enumerable sets are diophantine. Doklady Akad. Nauk SSSR,
191:279–282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.

[Min67] M. L. Minsky. Computation: Finite and Infinite Machines. Automatic Computation.
Prentice–Hall, 1967.

[MP91] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

[MW07] P. McKenzie and K. W. Wagner. The complexity of membership problems for
circuits over sets of natural numbers. Computational Complexity, 16(3):211–244,
2007.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure properties.
Journal of Computer and System Sciences, 46:295–325, 1993.

[Pap94] C. H. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[PD09] I. Pratt-Hartmann and I. Düntsch. Functions definable by arithmetic circuits. In
Proceedings of the 5th Conference on Computability in Europe (CiE 2009), volume
5635 of Lecture Notes in Computer Science, pages 409–418. Springer, 2009.

[Pud96] P. Pudlák. On the lengths of proofs of consistency. In Collegium Logicum, pages
65–86. Springer Vienna, 1996.

[Pud03] P. Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer
Science, 295:323–339, 2003.

[Pud13] P. Pudlák. Logical Foundations of Mathematics and Computational Complexity - A
Gentle Introduction. Springer monographs in mathematics. Springer, 2013.

[Pud17] P. Pudlák. Incompleteness in the finite domain. The Bulletin of Symbolic Logic,
23(4):405–441, 2017.

[Rac82] C. Rackoff. Relativized questions involving probabilistic algorithms. Journal of the
ACM, 29:261–268, 1982.

Bibliography 119

[Raz94] A. A. Razborov. On provably disjoint NP-pairs. Electronic Colloquium on Compu-
tational Complexity (ECCC), 1(6), 1994.

[Sad02] Z. Sadowski. On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

[Sip19] M. F. Sipser. Adventures in complexity. http://www.fields.utoronto.ca/video-
archive/2019/05/2774-20374, 2019. Accessed: 2020-06-30.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Proceedings of the 5th Annual ACM Symposium on Theory
of Computing (STOC 1973), pages 1–9. ACM, 1973.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Inf., 26(3):279–284, 1988.

[Tar88] E. Tardos. The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica, 8(1):141–142, 1988.

[Tra06] S. D. Travers. The complexity of membership problems for circuits over sets of
integers. Theoretical Computer Science, 369(1-3):211–229, 2006.

[Tur37] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1937.

[Val76] L. G. Valiant. Relative complexity of checking and evaluation. Information Pro-
cessing Letters, 5:20–23, 1976.

[Ver91] O. V. Verbitskii. Optimal algorithms for coNP-sets and the EXP =? NEXP problem.
Mathematical notes of the Academy of Sciences of the USSR, 50(2):796–801, Aug
1991.

[Wag84] K. W. Wagner. The complexity of problems concerning graphs with regularities (ex-
tended abstract). In Proceedings of the International Symposium on Mathematical
Foundations of Computer Science (MFCS 1984), pages 544–552, 1984.

[Yan01] K. Yang. Integer circuit evaluation is pspace-complete. J. Comput. Syst. Sci.,
63(2):288–303, 2001.

120 Bibliography

Index

[a, b] (closed finite interval), 27

[a, b) (half-open finite interval), 27

(a, b] (half-open finite interval), 27

(a, b) (open finite interval), 27(
n
k

)
, 28√
· (square root function), 28

|A| (cardinality of a finite set), 27

|n| (length of a natural number n), 31

|w| (length of a word), 28

A4B (symmetric difference of sets), 27

A+B (addition of sets of integers), 27

A−B (set difference), 27

A ∩B (intersection of sets), 27

A ·B (multiplication of sets of integers), 27

A ∪B (union of sets), 27

A×B (Cartesian product), 27

A (complement of a set), 27

CANO, 35

CON, 39

CONN, 39

CON ∨ SAT, 39

DisjCoNP, 39

DisjCoNP, 37

DisjCoNPO, 37

DisjNP, 39

DisjNP, 37

DisjNPO, 37

F (x) (computation of a transducer or its return
value), 30

FO(x) (computation of oracle Transducer F or
its return value), 32

Fw(x), 40

GAP=k, 35

GAP≥k, 35

I(C), 92

I(g;C), 92

L(M) (language accepted by a Turing ma-
chine), 30

L(MO) (language accepted by an oracle Turing
machine), 32

M(x) (computation of a Turing machine), 29

MO(x) (computation of an oracle Turing ma-
chine), 32

Mw(x), 40

N, 27

N+, 27

NP ∩ coNP, 39

ω-word, 28

P, 27

P(A) (power set of a set), 27

P≥n, 27

Pfin(A) (set of finite subsets), 27

Q, 27

Q+, 27

Q−, 27

R, 27

R+, 27

R−, 27

SAT, 39

SAT, 35

Σ (alphabet), 28

TAUT, 35

TFNP, 39

UP, 39

Z, 27

Z+, 27

Z−, 27

a | b (a divides b), 27

ε (empty word), 28

f ∪ {x 7→ y}, 28

gcd(x, y) (greatest common divisor), 28

`(Y) (sum of lengths of words in a set), 28

log x (logarithm function), 28

max(A) (maximum of A), 27

min(A) (minimum of A), 27

prk(w) (prefix of length k), 28

Σ≤n, 28

Σn, 28

v v w (prefix of a word), 28

w(i) (i-th letter of a word), 28

acyclic, 29

121

122 Index

addition of sets, 27
alphabet, 28

balanced, 89
binomial coefficient, 28
Boolean circuit, 110

cardinality, 27
Cartesian product, 27
characteristic function, 28
characteristic sequence, 28
circuit, 91

Boolean circuit, 110
gate, 91

assigned input, 92
inner, 91
input, 91
output, 91
unassigned input, 92

I(C), 92
I(g;C), 92
integer circuit, 92
O-circuit, 91

labeling function, 91
order function, 91

partially assigned circuit, 92
complement class, 34
complement of a set, 27
complete, 35
complexity class

complement class, 34
L, 33
LO, 34
NL, 33
NLO, 34
NP, 33
NPO, 34
P, 33
PO, 34
PSPACE, 33
RE, 33
REC, 33
UP, 33
UPO, 34

computable, 30
logarithmic-space, 31
polynomial-space, 31
polynomial-time, 31

computably enumerable, 30
conjecture, 39

CON, 39
CONN, 39
CON ∨ SAT, 39
SAT, 39
DisjCoNP, 39
DisjNP, 39
NP ∩ coNP, 39
TFNP, 39
UP, 39

cycle, 29

decidable, 30
definite, 40
definitely accepting, 40
definitely rejecting, 40
Diffe–Hellman–Merkle key exchange, 12
Diophantine equation, 94
direct predecessor, 29
direct successor, 29
directed graph, 29
directed multigraph, 29
disjoint pair, 37

complete, 37
DisjCoNP, 37
DisjCoNPO, 37
DisjNP, 37
DisjNPO, 37
disjoint coNP-pair, 37
disjoint NP-pair, 37
hard, 37
hard for C, 37

divides, 27

edge, 29
empty word, 28
encodings, 33

of integer circuits, 92
of multivariate polynomials, 94

enumeration
standard enumeration of nondeterminis-

tic polynomial-time oracle Turing ma-
chines, 32

standard enumeration of polynomial-time
oracle Turing transducers, 32

function, 28√
· (square root function), 28

f ∪ {x 7→ y}, 28
bijective, 28
composition, 33

Index 123

computable, 30
logarithmic-space, 31
polynomial-space, 31
polynomial-time, 31

domain, 28
gcd(x, y) (greatest common divisor), 28
image, 28
injective, 28
injective on support, 28
inverse, 28
logarithmic-space invertible, 31
log x (logarithm function), 28
onto, 28
partial, 28
polynomial-time invertible, 31
preimage, 28
range, 28
support, 28
total, 28

function class
FL, 33
FLO, 34
FP, 33
FPO, 34
FPSPACE, 33

graph
acyclic, 29
direct predecessor, 29
direct successor, 29
directed graph, 29
directed multigraph, 29
edge, 29

incoming, 29
outgoing, 29

indegree, 29
node, 29

source node, 29
target node, 29

outdegree, 29
path, 29

cycle, 29
predecessor, 29
successor, 29

graph accessibility problem, 35
greatest common divisor, 28

hard, 35

Immerman-Szelepcsényi theorem, 34

incoming edge, 29
indegree, 29
indeterminate, 94
integer circuit, 92
intersection of sets, 27
interval

closed, 27
half-open, 27
open, 27

inverse function, 28

length-optimal, 36
length-optimal relative to O, 36
logarithm function, 28
logarithmic-space computable, 31
logarithmic-space invertible, 31

Matiyasevich-Robinson-Davis-Putnam thm, 94
multiplication of sets, 27
multivariate monomial, 94
multivariate polynomial, 94

node, 29

optimal, 36
optimal relative to O, 36
oracle, 31

partial, 40
outdegree, 29
outgoing edge, 29

P-optimal, 36
PO-optimal, 36
P-simulates, 36
PO-simulates, 36
pairing function, 33
partial function, 28
partial oracle, 40
partially assigned circuit, 92
path, 29
polynomial-space computable, 31
polynomial-time computable, 31
polynomial-time invertible, 31
power set, 27
P(A), 27
Pfin(A), 27

predecessor, 29
prefix, 28
problem

Bal, 90

124 Index

BALM , 90
BC(O), 93
BC′(O), 95
CANO, 35
CC, 97
complete, 35
computably enumerable, 30
CSAT, 110
DE , 94
decidable, 30
GAP=k, 35
GAP≥k, 35
hard, 35
MC(∩), 93
recursively enumerable, 30
SAT, 35
SC, 98
TAUT, 35
TFNP, 38
TFNPO, 38

proof system, 36
length-optimal, 36
length-optimal relative to O, 36
optimal, 36
optimal relative to O, 36
P-optimal, 36
PO-optimal, 36
P-simulates, 36
PO-simulates, 36
propositional proof system, 36

PO-optimal, 36
relative to O, 36

proof systems
simulates, 36

quasi-lexicographical order, 28

recursively enumerable, 30
reducibility
≤m, 34, 37
≤log

m , 34
≤p

m, 34, 37
≤p,O

m , 34, 37
≤pp

m , 37
≤pp,O

m , 37
equivalent, 35
pol. many-one reducibility (TFNP), 38

safe prime, 12
semi-characteristic function, 28

set difference, 27

simulates, 36

Sophie Germain prime, 12

source node, 29

square root function, 28

standard enumeration, 32

subbalanced, 89

successor, 29

symmetric difference, 27

target node, 29

topologically ordered, 91

total NP search problem, 38

total polynomial search problem, 38

complete, 38

relative to O, 38

TFNP, 38

TFNPO, 38

Turing machine, 29

computation, 29

accepts, 30

path, 30

rejects, 30

terminates, 30

configuration, 29

accepting, 30

initial, 30

rejecting, 30

stop, 30

deterministic, 30

decides, 30

L(M), 30

logarithmic space, 31

nondeterministic, 30

oracle Turing machine, 31

L(MO), 32

computation, 32

definite, 40

definitely accepts, 40

definitely rejects, 40

polynomial space, 31

polynomial time, 31

Turing transducer, 30

works in space s, 31

works in time t, 31

unbalanced, 89

union of sets, 27

uniqueness property, 43

Index 125

word
v v w (prefix of a word), 28
ε (empty word), 28
`(Y) (sum of lengths of words in a set), 28
length, 28
ω-word, 28
prefix, 28
prk(w), 28
quasi-lexicographical order, 28
Σ≤n, 28
Σn, 28
w(i), 28

