

R

A
IT

 1

 M
ic

ha
el

 S
tr

oh
m

ei
er

 F
A

R
N

 –
 A

 N
ov

el
 U

AV
 F

lig
ht

 C
on

tr
ol

le
r f

or
 H

ig
hl

y
A

cc
ur

at
e

an
d

Re
lia

bl
e

N
av

ig
at

io
n

Würzburg University Press

Research in Aerospace
Information Technology

This monograph series is published by the Chair
of Aerospace Information Technology (Informatik
VIII) of the University of Würzburg and presents
innovative research regarding avionic systems for
aerospace and terrestrial applications as well as
the technology transfer between both fields.
The main research focus is on the development of
reliable soft- and hardware for embedded appli-
cations that allow the autonomous operation of
unmanned systems in challenging environments.
This includes the development of new technolo-
gies such as wireless communication methods,
distributed sensing and control strategies, sensor
fusion algorithms, novel navigation methods and
concepts for dependable software targeting the
irreducible complexity.
Another research focus is on cooperative tasks
of multi-agent systems, including homogeneous
swarms and arbitrary heterogeneous constella-
tions.
The developed technologies are deployed in nu-
merous real-world applications such as small sa-
tellite systems, distributed sensor networks, un-
manned aerial vehicles for extreme environments
and other experimental platforms.

Herausgeber:
Prof. Dr. Sergio Montenegro

Michael Strohmeier

FARN
A Novel UAV Flight Controller
for Highly Accurate and
Reliable Navigation

R
A

IT
 1

Research in Aerospace
Information Technology

Institut für Informatik
Lehrstuhl für Informationstechnik
für Luft- und Raumfahrt
Prof. Dr. Sergio Montenegro

© Lehrstuhl für Informatik VIII
Informationstechnik für Luft- und Raumfahrt
Julius-Maximilians-Universität Würzburg
Institut für Informatik
Josef-Martin-Weg 52/2
97074 Würzburg

Tel.: +49 931 - 31-81400

L-info8@informatik.uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/
aerospaceinfo/
Alle Rechte vorbehalten.
Würzburg 2021.

Dieses Dokument wird bereitgestellt durch den
Publikationsservice der Universitätsbibliothek
Würzburg.

Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg

Tel.: +49 931 - 31-85906

opus@bibliothek.uni-wuerzburg.de
https://opus.bibliothek.uni-wuerzburg.de

Bild Nordpol: Julian Rothe
Bild Netzdrohnen: Michael Strohmeier

ISSN: 2747-4828

Zitiervorschlag:
Strohmeier, Michael (2021): FARN – A Novel UAV Flight Controller for Highly
Accurate and Reliable Navigation. Research in Aerospace Technology, 1.
DOI: 10.25972/OPUS-22313

JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG

CHAIR OF COMPUTER SCIENCE VIII
AEROSPACE COMPUTER SCIENCE

Dissertation

FARN – A Novel UAV Flight Controller for
Highly Accurate and Reliable Navigation

submitted to the Faculty of
Mathematics and Computer Science

of the University of Würzburg
in fulfillment of the requirements for the degree of

Doctor Rerum Naturalium (Dr. rer. nat.)
by

MICHAEL STROHMEIER

December 2020

Supervisor and first reviewer:
Second reviewer:
Third reviewer:

Prof. Dr. Sergio Montenegro
Prof. Dr. Andreas Nüchter
Prof. Dr. Thomas Gustafsson

iii

“If you do not know where you come from, then you don’t know where you are, and if
you don’t know where you are, then you don’t know where you’re going. And if you don’t
know where you’re going, you’re probably going wrong.”

Sir Terence David John Pratchett
I Shall Wear Midnight

v

Abstract

FARN – A Novel UAV Flight Controller for Highly Accurate and Reliable Navigation

This thesis describes the functional principle of FARN, a novel flight controller for Un-
manned Aerial Vehicles (UAVs) designed for mission scenarios that require highly
accurate and reliable navigation. The required precision is achieved by combining
low-cost inertial sensors and Ultra-Wide Band (UWB) radio ranging with raw and
carrier phase observations from the Global Navigation Satellite System (GNSS). The
flight controller is developed within the scope of this work regarding the mission re-
quirements of two research projects, and successfully applied under real conditions.

FARN includes a GNSS compass that allows a precise heading estimation even
in environments where the conventional heading estimation based on a magnetic
compass is not reliable. The GNSS compass combines the raw observations of two
GNSS receivers with FARN’s real-time capable attitude determination. Thus, espe-
cially the deployment of UAVs in Arctic environments within the project for ROBEX

is possible despite the weak horizontal component of the Earth’s magnetic field.
Additionally, FARN allows centimeter-accurate relative positioning of multiple

UAVs in real-time. This enables precise flight maneuvers within a swarm, but also
the execution of cooperative tasks in which several UAVs have a common goal or
are physically coupled. A drone defense system based on two cooperative drones
that act in a coordinated manner and carry a commonly suspended net to capture
a potentially dangerous drone in mid-air was developed in conjunction with the
project MIDRAS.

Within this thesis, both theoretical and practical aspects are covered regarding
UAV development with an emphasis on the fields of signal processing, guidance
and control, electrical engineering, robotics, computer science, and programming of
embedded systems. Furthermore, this work aims to provide a condensed reference
for further research in the field of UAVs.

The work describes and models the utilized UAV platform, the propulsion sys-
tem, the electronic design, and the utilized sensors. After establishing mathemat-
ical conventions for attitude representation, the actual core of the flight controller,
namely the embedded ego-motion estimation and the principle control architecture
are outlined. Subsequently, based on basic GNSS navigation algorithms, advanced
carrier phase-based methods and their coupling to the ego-motion estimation frame-
work are derived. Additionally, various implementation details and optimization
steps of the system are described. The system is successfully deployed and tested
within the two projects. After a critical examination and evaluation of the developed
system, existing limitations and possible improvements are outlined.

vii

Zusammenfassung

FARN – Eine neue UAV-Flugsteuerung für hochpräzise und zuverlässige Navigation

Diese Arbeit beschreibt das Funktionsprinzip von FARN, einer neuartigen Flugsteue-
rung für unbemannte Luftfahrzeuge (UAVs), die für Missionsszenarien entwickelt
wurde, die eine hochgenaue und zuverlässige Navigation erfordern. Die erfor-
derliche Präzision wird erreicht, indem kostengünstige Inertialsensoren und Ultra-
Breitband (UWB) basierte Funkreichweitenmessungen mit Roh- und Trägerphasen-
beobachtungen des globalen Navigationssatellitensystems (GNSS) kombiniert wer-
den. Die Flugsteuerung wird im Rahmen dieser Arbeit unter Berücksichtigung der
Missionsanforderungen zweier Forschungsprojekte entwickelt und unter realen Be-
dingungen erfolgreich eingesetzt.

FARN verfügt über einen GNSS-Kompass, der eine präzise Schätzung des Steu-
erkurses auch in Umgebungen erlaubt, in denen eine konventionelle Schätzung mit
Hilfe eines Magnetkompasses nicht zuverlässig ist. Der GNSS-Kompass kombiniert
die Messungen von zwei GNSS-Empfängern mit der echtzeitfähigen Lagebestim-
mung von FARN. Damit ist insbesondere der Einsatz von UAVs in arktischen Um-
gebungen im Rahmen des Projektes ROBEX trotz der schwachen horizontalen Kom-
ponente des Erdmagnetfeldes möglich.

Zusätzlich erlaubt FARN eine zentimetergenaue relative Positionierung mehrerer
UAVs in Echtzeit. Dies ermöglicht präzise Flugmanöver innerhalb eines Schwarms,
aber auch die Ausführung kooperativer Aufgaben, bei denen mehrere UAVs ein ge-
meinsames Ziel haben oder physikalisch gekoppelt sind. In Verbindung mit dem
Projekt MIDRAS wurde ein Drohnenabwehrsystem entwickelt, das auf zwei koope-
rativen Drohnen basiert, die koordiniert agieren und ein gemeinsam aufgehängtes
Netz tragen, um eine potenziell gefährliche Drohne in der Luft einzufangen.

Im Rahmen dieser Arbeit werden sowohl theoretische als auch praktische Aspekte
der UAV-Entwicklung behandelt, wobei der Schwerpunkt auf den Bereichen der Si-
gnalverarbeitung, der Navigation und der Steuerung, der Elektrotechnik, der Ro-
botik sowie der Informatik und der Programmierung eingebetteter Systeme liegt.
Darüber hinaus soll diese Arbeit eine zusammengefasste Referenz für die weitere
Drohnenforschung darstellen.

Die Arbeit erläutert und modelliert die verwendete UAV-Plattform, das Antriebs-
system, das elektronische Design und die eingesetzten Sensoren. Nach der Aus-
arbeitung mathematischer Konventionen zur Lagedarstellung, wird der eigentli-
che Kern des Flugreglers erläutert, nämlich die eingebettete Schätzung der Eigen-
bewegung und die prinzipielle Regelungsarchitektur. Anschließend werden, ba-
sierend auf grundlegenden Navigationsalgorithmen, fortgeschrittene trägerphasen-
basierte Methoden und deren Zusammenhang mit der Schätzung der Eigenbewe-
gung abgeleitet. Zusätzlich werden verschiedene Implementierungsdetails und Op-
timierungsschritte des Systems beschrieben. Das System wird innerhalb der bei-
den Projekte erfolgreich verwendet und getestet. Nach einer kritischen Untersu-
chung und Bewertung des entwickelten Systems werden bestehende Einschränkun-
gen und mögliche Verbesserungen aufgezeigt.

ix

Acknowledgements

At this point, I would like to thank everyone who supported me with words and
deeds throughout this work. First of all, I would like to express my uttermost grat-
itude to my dissertation adviser Prof. Dr. Sergio Montenegro for guiding and sup-
porting me with fruitful discussions, plenty of ideas as well as his valuable insights
and critical feedback. Secondly, I would also like to express my deepest thanks to
my second reviewer, Prof. Dr. Andreas Nüchter and to my third reviewer, Prof. Dr.
Thomas Gustafsson, for the quick and careful review of my dissertation and their
support. I would also like to thank Prof. Dr. Reiner Kolla and Prof. Dr. Hakan Kayal
for their contribution to my disputation.

Furthermore, I want to extend my gratitude towards all my colleagues, student
assistants and final thesis candidates, without whose help the work in its present
form would not have been possible. I would like to thank especially Tobias Mikschl
for his support during the first Polar expedition and Julian Rothe for his efforts in
preparation for and during the second expedition as well as his outstanding collab-
oration during MIDRAS. The tireless support of Alexander Hilgarth, Thomas Walter
and Michael Ruffer in the development of the flight controller hardware deserves
special thanks and hence a special mention, too. I would also like to thank Anna
Gonel, without whose help not only organizational tasks would have been impos-
sible for me. My very special thanks go to Lennart Werner, Cedric Liman, Jasper
Zevering and Stefan Beck for their excellent assistance as well as their enthusiastic
and inspiring support. In addition to my current colleagues, I would also like to
thank my former colleague and supervisor Dr. Nils Gageik for his preliminary work
and for his recommendation for this doctoral position.

I would also like to give my gratitude to my parents, Dr. Helmut and Ursula
Strohmeier, and my brother Alexander, who have supported and motivated me all
my life, as well as my grandparents Edgar and Hildegard Nagel, who have always
been a place of peace and recreation when desperately needed. Thank you, Lisa.�♥

Michael Strohmeier
Würzburg, 2020

xi

Contents

Contents xi

1 Introduction 1

1.1 Motivation . 2
1.1.1 Robotic Exploration of Extreme Environments 4
1.1.2 Micro-Drone-Defense System . 6

1.2 Concept . 7
1.3 My Contribution . 11
1.4 Thesis Outline . 14
1.5 Nomenclature . 14

2 Mathematical Modeling of the Physical System 17

2.1 UAV Platform . 18
2.1.1 Frame . 18
2.1.2 Propulsion . 19

2.2 Avionics . 23
2.2.1 Flight Controller . 23
2.2.2 Inertial Measurement Unit . 25
2.2.3 Magnetometer . 37
2.2.4 Barometric Pressure Sensor . 40
2.2.5 Global Navigation Satellite System Receiver 41
2.2.6 Ultra-wideband Transceiver . 42
2.2.7 Remote Control Interfaces . 46
2.2.8 Optional Components . 46

2.3 Payload . 52

3 Ego-motion Estimation and Low-Level Control 55

3.1 Attitude Representation . 55
3.1.1 Rotation Conventions . 55
3.1.2 Tait-Bryan Angles and Rotation Matrices 56
3.1.3 Axis-Angle . 58
3.1.4 Quaternions . 59

3.2 Error-state Kalman Filter . 63
3.2.1 State Estimation . 64
3.2.2 Complementary Sensor Integration 71
3.2.3 Delayed Measurements . 77

3.3 Low-Level Control . 79
3.3.1 Multicopter Modeling . 80
3.3.2 Motor Map . 81
3.3.3 Attitude Control . 83
3.3.4 Position Control . 84

xii

4 Satellite Navigation 89

4.1 Global Navigation Satellite Systems . 89
4.1.1 GPS . 90
4.1.2 GLONASS . 91
4.1.3 Galileo . 92

4.2 Space-Based Augmentation System . 92
4.3 Observables . 93

4.3.1 Code Pseudo-ranges . 93
4.3.2 Carrier Phase Measurement . 94
4.3.3 Doppler Measurement . 95

4.4 Error Sources . 96
4.4.1 Atmospheric Propagation Errors 96
4.4.2 Receiver and Multipath Errors 98
4.4.3 Ephemeris and Satellite Clock Errors 100

4.5 Navigation Techniques . 101
4.5.1 Single Epoch Navigation . 101
4.5.2 Filtered Navigation . 104
4.5.3 Carrier-based Positioning for Short Baselines 107
4.5.4 Precise Point Positioning . 119

5 Implementation 121

5.1 Navigation Applications . 122
5.1.1 GNSS Compass . 122
5.1.2 UWB Augmented RTK Positioning 124

5.2 Real-time Core . 126
5.2.1 Real-Time On-Board Dependable Operating System 128
5.2.2 ESKF Implementation . 129

5.3 Application Core . 131
5.3.1 Robot Operating System . 131
5.3.2 RTKLIB . 132
5.3.3 Third Party . 133

5.4 Inter-core Communication . 134
5.4.1 Low-level Layers . 134
5.4.2 Data Layer . 135

6 Evaluation 139

6.1 Ego-motion Estimation and Control . 139
6.1.1 Long Term Stability . 139
6.1.2 Indoor Flight . 141

6.2 Arctic Environment . 144
6.2.1 Flight in Arctic Environment . 145
6.2.2 RTK Heading Estimation . 146

6.3 RTK Localization . 148
6.3.1 UWB augmented Moving Base 149
6.3.2 Formation Flight . 151

7 Conclusions 155

7.1 System Limitations . 156
7.2 Future Work . 157
7.3 Impact on Teaching . 159

xv

List of Figures

1.1 Early project concepts. 4
1.2 ROBEX mission scenario. 5
1.3 MIDRAS mission scenario. 6
1.4 Concept for the GNSS compass. 7
1.5 Different RTK setups. 8
1.6 FARN system architecture. 9
1.7 Dual-core with shared memory and peripherals. 10

2.1 UAV platform. 17
2.2 CAD model of the UAV platforms. 18
2.3 Carbon fiber inlays for a motor clamp. 18
2.4 Complete propulsion system. 19
2.5 A motor and propeller pair. 19
2.6 Thrust and torque measurement setup. 20
2.7 Step responses and steady state thrust for different PWM duty cycles. . 21
2.8 Raw, average and modeled step response for 75% PWM. 21
2.9 Thrust simulation and real system output for a saw-tooth input signal 22
2.10 Steady state torque for different PWM duty cycles. 22
2.11 Udoo Neo board with custom sensor extension. 23
2.12 Flight controller connectivity. 24
2.13 Tactical-, industrial- and consumer-grade IMUs. 25
2.14 Drone orientations for accelerometer calibration. 27
2.15 Raw, true and calibrated accelerometer readings. 28
2.16 Vibration mitigation using rubber dampers. 29
2.17 Raw and filtered accelerometer data. 29
2.18 Flight controller in the Vötsch VT4002 thermal chamber. 30
2.19 Thermal profile for the LSM9DS1 temperature analysis. 31
2.20 Temperature dependencies of the LSM9DS1. 31
2.21 Thermal isolation and heating of the flight controller mounted LSM9DS1. 32
2.22 Temperature control loop. 32
2.23 Temperature scaling effects for the accelerometer. 33
2.24 Allan deviance according to IEEE Standard 952-1997. 34
2.25 Overlapping Allan deviance for the LSM9DS1 gyroscope. 35
2.26 Overlapping Allan deviance for the LSM9DS1 accelerometer. 36
2.27 Military and consumer grade magnetometer with real size ratio. 37
2.28 Raw and calibrated magnetometer readings. 38
2.29 Magnetic declination map for 2020. 39
2.30 Temperature dependencies of the LSM9DS1 magnetometer. 40
2.31 uBlox GNSS modules. 41
2.32 DecaWave UWB module DWM1000. 42
2.33 Comparison between UWB and narrow-band radio frequency signals. 43
2.34 DS-TWR scheme using two UWB transceivers. 44

2.35 Histogram for 5000 DS-TWR distance measurements. 45
2.36 DS-TWR scheme using a single master and several slave modules. . . 45
2.37 Supported remote controls. 46
2.38 Body fixed positioning sensors. 47
2.39 A part of the OptiTrack Flex 3 motion capture system. 48
2.40 Motion capture system pipeline. 48
2.41 LPS based on UWB anchors and DS-TWR. 49
2.42 UWB vs. OptiTrack positioning system. 49
2.43 Different proximity sensors. 50
2.44 Proximity sensors during a flight over ice and water. 50
2.45 Wireless communication module. 51
2.46 ROBEX payload. 52
2.47 MIDRAS payload. 52

3.1 Active rotation (left) and passive rotation (right) around an angle α. . . 56
3.2 Rotation represented by intrinsic Tait-Bryan angles. 56
3.3 Rotation represented by rotation axis and the rotation angel 58
3.4 Flowchart of the ESKF (one cycle). 64
3.5 ESKF accelerometer integration. 73
3.6 SHOE acceleration detection. 74
3.7 ESKF magnetometer integration. 75
3.8 ESKF Integration of time delayed measurements. 78
3.9 Low-level control concept. 79
3.10 Actuators, displacement vector and control frame for a quad rotor

UAV in H-configuration. 82
3.11 Cascaded attitude controller. 83
3.12 PID controller with output limitation and anti-windup. 83
3.13 Simulated step response roll. 84
3.14 Cascaded vertical control. 84
3.15 Simulated step response vertical control. 85
3.16 Cascaded horizontal controller. 85
3.17 Simulated step response position. 86
3.18 Simulated step response with a simultaneous change in x and y. 86

4.1 The GNSS architecture. 89
4.2 GPS constellation and orbital tracks for 24 hours. 90
4.3 GPS signal modulation using CDMA. 91
4.4 GLONASS constellation and orbital tracks for 24 hours. 91
4.5 Galileo constellation and orbital tracks for 24 hours. 92
4.6 Simultaneous reception of direct and reflected signals. 99
4.7 Ground multipath mitigation through ground plates. 99
4.8 Flowchart of the EKF (one cycle). 104
4.9 Flowchart for carrier-based positioning. 107
4.10 Integer ambiguity for the single difference between two L1 receivers. . 109
4.11 LAMBDA Integer Ambiguity Fixing in 2D. 113

5.1 FARN software framework. 121
5.2 GNSS compass coordinate frames. 122
5.3 GNSS compass task distribution on the i.MX6sX. 123
5.4 Two different position estimation concepts: Fixed and moving base. . . 124
5.5 Task distribution for combined UWB/GNSS positioning on the i.MX6sX.125

5.6 Simplified flowchart of the MAIN-Thread loop. 126
5.7 Scheduling and inter thread communication policies. 127
5.8 Abstraction layers. 128
5.9 ESKF computation speed with different optimizations. 129
5.10 Simplified MATLIB 2.0 class diagram. 129
5.11 ROS communication setup. 131
5.12 GNSS compass application. 132
5.13 Relative positioning application. 132
5.14 Chrony time synchronization. 133
5.15 Abstractions layers for inter-core communication. 134
5.16 Complete communication setup. 135

6.1 Long term attitude estimation and temperature control. 139
6.2 Discrete distribution and Gaussian approximation. 140
6.3 Gyroscope raw data, computed bias and initial estimate. 140
6.4 Flight controller setup for the indoor experiment. 141
6.5 Flight pattern and UAV for the indoor experiment. 141
6.6 State estimation and control in x direction. 142
6.7 State estimation and control in y direction. 143
6.8 State estimation and control in z direction. 143
6.9 Flight controller setup for arctic environment. 144
6.10 Flight experiment at 80◦ north. 145
6.11 Comparison of the different heading estimates 145
6.12 RTK heading: Polarstern track and experiment setup. 146
6.13 GPS availability during RTK heading experiment. 146
6.14 GPS compass heading estimate on Polarstern. 147
6.15 Flight controller setup for RTK positioning. 148
6.16 Flight pattern for moving base experiment. 149
6.17 Position estimates of the moving base experiment. 150
6.18 UWB distance error for the moving base experiment. 150
6.19 Two UAVs catching another drone with a net. 151
6.20 Position estimate of three drones. 152

7.1 Preliminary design flight controller and its companion. 157
7.2 UAV detection and localization. 158
7.3 3D map of the drone laboratory. 158
7.4 UAV teaching platform. 159
7.5 Different multi-rotor UAV platforms. 159

xix

List of Tables

2.1 Identified MN4014 parameters. 22
2.2 Different IMU grades. 25
2.3 Gyroscope bias instability and angular random walk. 35
2.4 Comparison between different gyroscope grades. 35
2.5 Accelerometer bias instability and velocity random walk. 36
2.6 Comparison between different accelerometer grades. 36
2.7 Comparison between different magnetometer grades. 37
2.8 GNSS module comparison. 41
2.9 Comparison between different communication modules. 51

3.1 JPL and Hamilton quaternion conventions. 62
3.2 Variables for the quaternion based ESKF system model. 65
3.3 Observation matrices for directly observable states. 77

4.1 Orbit parameters for different GNSS constellations. 90
4.2 Global average SISRE for different GNSSs. 100
4.3 Comparison between PPP and RTK positioning. 119

5.1 Typical periods and wake-up sources. 127
5.2 ROS nodes required for RTK GNSS applications. 132

6.1 Root mean square errors for attitude estimates. 140

7.1 Flight controller platform comparison. 157

xxi

List of Abbreviations

AI Artificial Intelligence

AUV Autonomous Underwater Vehicle

CDMA Code Division Multiple Access

CNN Convolutional Neural Network

DDR3 Double Data Rate 3

DLR German Aerospace Center

DS-TWR Double-Sided Two-Way Ranging

EKF Extended Kalman Filter

EGNOS European Geostationary Navigation Overlay System

ESA European Space Agency

ESC Electronic Speed Controller

ESKF Error-State Kalman Filter

FDMA Frequency Division Multiple Access

FPU Floating Point Unit

FPV First Person View

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

GNC Guidance, Navigation and Control

I2C Inter-Integrated Circuit

IGS International GNSS Service

ILS Integer Least Square

ILSQE Integer Least Squares with Quadratic Equality

IMU Inertial Measurement Unit

IRNSS Indian Regional Navigation Satellite System

JPL Jet Propulsion Laboratory

LAMBDA Least-Square Ambiguity Decorrelation Adjustment

LOS Line-of-Sight

LPS Local Positioning System

LSE Least Square Estimation

LSQE Least Square with Quadratic Equality

LTE/4G Long Term Evolution/4G

MDS Multi-Dimensional Scaling

MEMS Micro-Electro-Mechanical System

MQX Message Queue eXecutive

NAVSTAR GPS Navigation Satellite Timing and Ranging GPS

NMEA National Marine Electronics Association

NTRIP Networked Transport of RTCM via Internet Protocol

NTP Network Time Protocol

OCRAM On-Chip Random-Access Memory

PCB Printed Circuit Board

PID Proportional-Integral-Derivative Controller

PPP Precise Point Positioning

PPS Pulse Per Second

PWM Pulse-Width-Modulation

QZSS Quasi-Zenith Satellite System

RDC Resource Domain Controller

LED Light-Emitting Diode

RTCM Radio Technical Commission for Maritime Services

RTOS Real-time Operating System

RTK Real-time Kinematic

RMSE Root-Mean-Square Error

ROS Robot Operating System

RODOS Real-time Onboard Dependable Operating System

RPMSG Remote Processor Messaging

SBAS Space-Based Augmentation System

SDRAM Synchronous Dynamic Random-Access Memory

SISRE Signal-in-space Ranging Error

SNR Signal-to-Noise-Ratio

SPI Serial Peripheral Interface

TCM Tightly-Coupled Memory

TDOA Time Difference of Arrival

TOA Time of Arrival

UAV Unmanned Aerial Vehicle

UWB Ultra-Wide Band

VSLAM Visual Simultaneous Localization and Mapping

VTOL Vertical Take-Off and Landing

WAAS Wide Area Augmentation System

Für Opa Ed

1

Chapter 1

Introduction

The main purpose and goal of FARN is to implement a versatile and configurable
flight controller for Unmanned Aerial Vehicles (UAVs) that can be easily adapted
to match different requirements of complex and advanced mission scenarios thus
improving the overall capabilities of autonomous UAVs. Additionally, this thesis
aims to provide a detailed reference work to other drone researchers and enthusi-
asts on advanced UAV algorithms, including low-cost sensor modeling, condition-
ing and calibration, precise navigation and ego-motion estimation together with ro-
bust and reliable UAV control. Both objectives are mainly achieved by directing
advanced satellite navigation methods towards UAV applications, implementing a
multi-sensor fusion framework for reliable pose and twist estimation in hard real-
time as well as by providing detailed insights into the development of different soft-
ware and hardware components of the flight controller.

A distinctive feature of the developed flight controller is hereby the precise real-
time navigation using Global Navigation Satellite System (GNSS) raw and carrier
phase measurements. Centimeter positioning accuracy and precise heading esti-
mates are obtained by combining Real-time Kinematic (RTK) algorithms with other
UAV sensor information, such as Ultra-Wide Band (UWB) radio ranges or Inertial
Measurement Unit (IMU) observations. Therefore, a multi-sensor fusion and ego-
motion estimation framework which is based on an embedded Error-State Kalman
Filter (ESKF) is implemented and deployed at the very core of the flight controller.
Although the flight controller is mainly targeted towards outdoor applications, its
framework allows the easy integration of different positioning systems such as radio-
based Local Positioning Systems (LPSs), Visual Simultaneous Localization and Map-
ping (VSLAM) sensors or optical tracking systems in order to navigate reliably in-
door or in other GNSS denied environments, too, which was already demonstrated
by the author.

The flight controller hardware itself is based on a heterogeneous dual-core ar-
chitecture allowing the simultaneous use of the Real-time Onboard Dependable Op-
erating System (RODOS) and the Robot Operating System (ROS). While RODOS is
used on the smaller core with hard real-time capabilities for timing critical tasks such
as the attitude determination and control of the UAV, ROS runs on top of Ubuntu
on the more powerful core and is used for high level tasks, wireless communication
and interfacing complex sensors. Thereby, the modular approach of both operating
systems allows a software design based on building blocks thus providing a maxi-
mum degree of flexibility and adaptability to different mission specific requirements
and various hardware configurations. Given the publish/subscribe communication
paradigm for asynchronous messaging from both middle-wares, inter-core commu-
nication, and furthermore, the communication between a heterogeneous cluster of
agents within a distributed system of UAVs are possible, too.

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Over the last decade, UAV systems have emerged and established themselves as a
key technology for modern transportation systems, aerial photography as well as
surveillance and surveying tasks. In particular, multi-rotors with Vertical Take-Off
and Landing (VTOL) capabilities, commonly referred to as drones, have been in the
focus of a considerable amount of research and numerous development efforts. As of
today, commercial drone solutions are especially widespread in aerial photography
and surveying tasks.

Typical applications for commercial UAVs include wild life monitoring [1], crops
analysis and agricultural surveying [2, 3], the inspection of buildings and infras-
tructure [4, 5], delivery logistics [6], search and rescue operations [7] as well as the
aerial support of firefighters [8]. A common denominator within the applications
described above is that commercial UAVs are utilized as flying sensor platforms and
are equipped with mission specific payloads. If required, a dedicated single board
computer for payload computations might be used, too. Relying on commercial
flight controllers, the respective scenarios are mostly limited to autonomous GNSS
waypoint flight or manual control with a direct line of sight or a real-time video link
providing a First Person View (FPV) for the UAV operator.

Despite the wide availability of commercial UAV platforms and flight controllers,
highly customized UAVs are still being researched and developed with great ea-
gerness. Comparing publications regarding the development of autonomous UAVs
within the last five years, the following three main research areas can be identified
among others:

UAVs in challenging environments Within this context, challenging UAV envi-
ronments are typically characterized by the fact that a part of the built-in sensors are
unreliable or can not be used for navigation purposes at all. Hereby, the majority
of publications is limited to the UAV deployment in GNSS denied environments
although other sensors can be affected by the environment, too. Originally, the
research of UAVs in GNSS denied environments addressed alternative positioning
methods for indoor applications such as the combination of stereo vision and laser
scans [9], Local Positioning Systems (LPSs) based on UWB radio ranging [10] or nav-
igation approaches using optical flow and a reactive collision avoidance system [11].
More recent studies, however, aim to develop UAVs for underground missions in
humid and dark environments, e.g. in mining applications [12], sewage tunnels [13]
and even for the autonomous inspection of the Fukushima containment vessel [14].
Additionally, there are outdoor scenarios where the GNSS signal reception is heavily
disturbed by surrounding infrastructure or buildings, e.g. in the vicinity of wind-
mills [15] or when flying close to artificial and natural canyons [16]. Surely, the most
extreme and simultaneously most impressive example is NASA’s recently launched
Mars Helicopter Ingenuity which is going to be the first UAV to be deployed on an-
other planet [17]. Comparing the on-board computers for the different navigation
solutions within GNSS denied environments, it can be observed that all approaches
combine a real-time capable flight controller with a dedicated navigation computer.
While the flight controller can be either, commercial or custom-built, dedicated and
application specific algorithms are required for a reliable navigation. The main chal-
lenge within this area is certainly to provide a precise and robust navigation solution
despite the degradation of primary navigation sensors.

1.1. MOTIVATION 3

UAVs for aerial manipulation The second area of increased research interest is the
deployment of UAVs for aerial manipulation. Within this context, aerial manipula-
tion is defined as the interaction of a UAV with its environment. Hereby, the UAV
platforms are typically equipped with one or more manipulators, that can be either
actively controlled or passively suspended from a drone. To the authors knowledge,
except for large area spraying, UAVs for aerial manipulation are not deployed in
commercial applications yet, but are limited to research scenarios. In research, dif-
ferent ways of manipulation are considered: The UAVs can be equipped with robotic
arms for grasping tasks [18–21], with spraying mechanisms for precision agriculture
or spray painting [22, 23] or just carry a cable suspended load [24]. A drone carrying
a net gun in order to intercept other drones in mid-air is described in [25]. For more
examples, the interested reader is referred to very comprehensive reviews of aerial
manipulation in [26] and [27]. The main challenge within aerial manipulation is the
change of the UAV dynamics when interacting with its environment. The applied
control algorithms need to adapt to this change in order to remain stable in flight.
Hence, low-level access and a modification of the applied control algorithms are re-
quired. Additionally, in order to interact with the environment, a precise localization
and environmental perception are required.

Multi-agent systems The third area covers multi-agent systems which includes
the deployment of cooperative UAVs or swarms to complete certain tasks but also
communication methods for distributed systems. Regarding the latter, an emerging
trend are interconnected UAVs using the mobile network, e.g. LTE and 5G [28]. Con-
sidering cooperative UAVs and swarms, free moving agents and physically coupled
systems can be distinguished. The most famous commercial application of a UAV
swarm with free moving agents is Intel’s light show. Using up to 500 custom drones
with ultra bright LEDs, colorful animations can be displayed at the night sky. In
research, however, the fields of application for cooperative UAVs overlap with those
described above. For example, in order to navigate through a canyon, two coop-
erative drones are used: One drone hovers above the canyon using GNSS, while
the second drone is located in the canyon with respect to the first drone using op-
tical markers [16]. Similarly, a popular application for physically coupled systems
is the aerial manipulation. A system of cooperative UAVs that carries a commonly
suspended load is presented in [29]. Despite homogeneous UAV swarms, hetero-
geneous multi agent systems are researched, too, like the autonomous landing of a
UAV on a moving platform [30]. Focusing on the same applications, the challenges
within this area are similar to the two research areas described above. Furthermore,
robust and reliable communication between agents is a key component within multi-
agent systems.

Conclusion To sum up, although there is great amount of commercial flight con-
trollers available, research and development of proprietary navigation and percep-
tion components as well as complex low-level control strategies are still mandatory
in order to deploy UAVs within complex mission scenarios and advanced appli-
cations. Depending on the target application, the augmentation of existing open-
source autopilots might be sufficient while in other cases an adaption of critical
components like the ego-motion estimation and low-level control are required. In
case of the latter, the development of an own flight controller can be beneficial since
it grants full access but even more important a complete understanding of the flight
controller’s core components and their interaction.

4 CHAPTER 1. INTRODUCTION

Mission Scenarios Two different mission scenarios are considered in this work.
The first scenario is addressed by the ROBEX project with focus on robots in extreme
environments. The goal of ROBEX is to develop an autonomous UAV for the de-
ployment in an Arctic environment. The second scenario is developed as a part of
the MIDRAS project which aims to develop a micro drone defense system. Within
MIDRAS, two cooperative UAVs carry a net by means of formation flight in order
to safely capture a potentially harmful drone in mid-air. An early vision for each
mission scenario is depicted in Figure 1.1.

(A) UAV in Arctic Environment. (B) Cooperative UAVs.

FIGURE 1.1: Early project concepts.

1.1.1 Robotic Exploration of Extreme Environments

Within the Helmholtz Alliance "Robotic Exploration of Extreme Environments –
ROBEX", project partners from several institutes involved in space and maritime re-
search aimed to jointly develop technologies for the exploration of highly inaccessi-
ble terrain, such as the deep sea and Arctic regions, as well as the Moon and other
planets.

Among other deployments, a Autonomous Underwater Vehicle (AUV) of the
Alfred Wegener Institute is operated to investigate physical, biological and chemi-
cal processes in the marginal ice zone [31]. Therefore, the AUV is launched from the
research vessel Polarstern close to the ice edge and follows a pre-programmed trajec-
tory. In order to safely deploy the AUV, various characteristics of the ice edge need
to be identified beforehand. This also includes the drift velocity of the ice edge to
due wind, currents and waves. The tracking of the ice edge movement can be done
using GNSS receivers, however, the manual deployment of those tracking devices
is time consuming and dangerous, since for deployment typically a Zodiac needs
to be operated close to the ice edge. Within ROBEX, the manual deployment of the
GNSS trackers was replaced by a semi-autonomous UAV. Apart from tracking the
ice movement, additional light intensity measurements should be carried out on ice
as a reference for the measurements conducted underwater by the AUV. The mis-
sion scenario is illustrated in Figure 1.2.

The complete mission scenario can be divided into three operating phases. First,
the UAV is manually started, flown above a suitable ice floe and landed semi au-
tonomously on ice providing a real-time video link. The semi-autonomous landing
allows an automatic velocity controlled descent, while the pilot keeps control over
the horizontal movement. In the second phase, the UAV rests on the ice floe and
records its current position and velocity as well as the light intensity measurements.
After a certain time, the UAV is commanded to fly back to the ship autonomously.

1.1. MOTIVATION 5

FIGURE 1.2: ROBEX mission scenario.

However, due to the shape of the magnetic field in Polar regions, the weak hor-
izontal component as well as the low resolution of Micro-Electro-Mechanical Sys-
tem (MEMS) magnetometers and magnetic field disturbances in ship vicinity, it is
impossible to rely on a magnetic compass for heading estimation only.

The main challenge within this mission is therefore the reliable navigation in an
Arctic environment which is mandatory for an autonomous flight. Hence, in a chal-
lenging environment like this suffering from a non-uniform magnetic field and a
weak horizontal component of the magnetic field, additional heading information
is required. Within this context, it is important to note that for a flying vehicle in
general, course and heading refer to different directions. Following aviation con-
ventions, the course is the direction of movement as a result of the own propulsion
and superposed environmental effects such as wind. Conversely, the heading refers
to the direction the aerial vehicle is pointing to with respect to the geographical
North. While the UAV course can be estimated from its velocity, the heading is not
observable using a sequence of reference positions only.

Six other methods to obtain a reliable heading estimation apart from using a
magnetic compass are described in [32]. One of them suggests the use of two or
more GNSS receivers rigidly mounted on a single platform. If the GNSS receiver
constellation can be reconstructed accurately enough, it can be used as attitude in-
formation. In case that two single-frequency GNSS receivers are used, the heading
accuracy depends on the distance between the receiver pair, the so called baseline
length [33, 34]. Throughout literature, the baselines range from 1 m for cars up to
40 m or more for aircraft and ships [35–38]. Nevertheless, according to [39], smaller
baselines down to 2–3 times the L1 carrier wavelength (λL1 = 19.05cm) are possible,
too, allowing the use of a GNSS compass on-board of a small UAV. Regarding the
heading accuracy, an upper boundary for the Root-Mean-Square Error (RMSE) is:

ψRMSE ≤
0.5◦

baseline in [m]
(1.1)

In conclusion, this mission scenario requires autonomous flight capabilities such
as automatic landing and waypoint flight, a long range communication without ex-
ternal infrastructure and a GNSS compass instead of a magnetic heading reference
in order to allow a reliable navigation.

6 CHAPTER 1. INTRODUCTION

1.1.2 Micro-Drone-Defense System

As part of the Federal Ministry of Education and Research funded project "Mikro-
Drohnen-Abwehr-System – MIDRAS" (engl. Micro-Drone-Defense System), the Uni-
versity of Wuerzburg and its partners had the goal to enhance existing micro-drone-
defense systems by developing innovative techniques for the detection and the de-
fense of micro drones. The different subsystems developed within this context should
enable both, the detection and the classification of drones, as well as the use of
situation-specific countermeasures.

The MIDRAS mission scenario is sketched in Figure 1.3. Within this scenario,
a certain perimeter around critical infrastructure, e.g. around an airport, must be
protected from unauthorized access by drones. After the initial detection of an ap-
proaching intruder, the exact position and speed is estimated by a combination of
optical, acoustic and radio-based positioning systems which are developed by asso-
ciated project partners. Depending on the risk assessment, various defensive mea-
sures can be initiated. For example, the intruding drone can be disturbed by using
GNSS spoofing techniques or by jamming the remote control radio channel which
typically causes an uncontrolled crash of the intruder. A less invasive countermea-
sure that is developed and described within the context of this work. It is based on
two cooperative drones carrying a net in order to catch a potentially harmful drone
in mid-air and thus safely eliminate the threat.

FIGURE 1.3: MIDRAS mission scenario.

The development of such a system has to face the challenges which are typical
for cooperative UAVs that perform some kind of aerial manipulation. First, since
both UAVs carry a net and thus a commonly suspended load, the relative position-
ing between both UAVs must be very accurate to prevent the individual drones and
hence the entire system from oscillating. Additionally, having two physically cou-
pled drones, the control scheme of the overall system has to be adapted. Second, the
respective control algorithms have to compensate the drone impact into the net and
subsequently the increased weight of the overall system. Therefore, an adaptation
of the control parameters is required online in real-time.

The required centimeter positioning accuracy can be obtained using carrier phase-
based differential GNSS [40]. In order to adapt the respective control algorithms,
however, critical low-level components of the respective flight controller need to be
modified. Hence, a realization of this mission scenario is only possible if an open-
source flight controller is heavily modified or a custom one developed.

1.2. CONCEPT 7

1.2 Concept

To meet the challenges of the two mission scenarios described above, a suitable flight
controller concept needs to be developed. Within ROBEX, a reliable magnetic head-
ing estimation is not possible. Therefore, the magnetic compass has to be replaced
by a GNSS compass. The biggest challenge within MIDRAS is to provide very ac-
curate and precise relative position estimates for each drone in real-time in order to
avoid system oscillations.

GNSS Compass In order to estimate the UAV heading in the presence of a non-
uniform and heavily disturbed magnetic field with a weak horizontal component,
two GNSS antennas should be mounted rigidly on a UAV frame in H-configuration.
The H-configuration allows to keep a maximum distance between both antennas
without relying on additional beams. However, due to the selected configuration,
the estimated heading needs to be corrected by 90 ◦, the offset between the nominal
UAV heading ψ and the GNSS compass direction ψGNSS. The GNSS compass concept
is depicted in Figure 1.4.

A1

A2

N

E

S

W

ψGNSS ψ

FIGURE 1.4: Concept for the GNSS compass.

If the relative position between the two antennas A1 and A2 is estimated accu-
rately enough, a reliable heading solution can be computed based on the baseline
orientation. Since the accuracy of single frequency GNSS receivers and standard
navigation techniques is not high enough, a differential GNSS technique based on
raw and carrier phase observations is applied. This approach is commonly referred
to as Real-time Kinematic (RTK) positioning. Using carrier phase observations and
RTK positioning in the UAV concept shown above with a baseline of 50 cm, a head-
ing determination with a theoretical RMSE of about 1 ◦ is possible according to Equa-
tion 1.1. However, pure RTK approaches applied to UAVs suffer from GNSS signal
lock losses or cycle slips caused by poor receiving conditions, aggressive flight ma-
neuvers or electromagnetic interference from the UAV propulsion system. There-
fore, in this thesis the traditional RTK positioning is coupled with the UAV’s attitude
determination. The GNSS compass provides absolute heading observations that al-
low to correct for gyroscope drift, while the inertial navigation system of the UAV
compensates for poor receiving conditions and stabilizes the system between two
consecutive valid GNSS heading observations.

8 CHAPTER 1. INTRODUCTION

Relative Positioning In order to estimate the relative position between two or
more UAVs with centimeter accuracy at a high rate, carrier phase-based RTK po-
sitioning is combined with the inertial navigation system. In contrast to the GNSS
compass setup, the baseline between moving receivers is not fixed and hence un-
known. This can be compensated for by integrating UWB radio ranging into FARN

which allows to measure the distance between two UAVs in real-time. Consequently,
the radio range observations can be used to augment the RTK positioning. Addi-
tionally, a multi-sensor fusion and ego-motion estimation framework is deployed.
The ego-motion framework estimates the UAV’s pose and twist by merging typical
UAV sensors, like a IMU, a barometric pressure sensor or different proximity sen-
sors, with position and velocity observations from various sensor systems, including
RTK systems, optical tracking setups or VSLAM sensors.

Within the context of carrier phase-based RTK positioning, two different setups
can be considered, namely fixed and moving base scenarios. Both setups can be ad-
ditionally augmented by auxiliary radio range measurements. Figure 1.5 illustrates
the two different scenarios. For applications that require accurate absolute position-
ing, a fixed base station located at a well known position can be used. If only the
relative position between two moving vehicles is required, e.g. between two cooper-
ative drones, or no additional infrastructure is available, one of the vehicles can act
as a moving base.

Base

v1

p1

v2

p2

v2p12

v12

FIGURE 1.5: Different RTK base setups. The fixed base observables
are indicated with solid lines, the moving base setup with dashed

lines. Only relative positions and velocities are observable.

Irrespective of this, the developed positioning system should also function for
the case that UWB range information is not available. In this case, conventional
carrier phase-based RTK positioning is used. The system is realized using a master-
slave architecture, where a single master is used as reference for several slaves. The
master can be a stationary base with a known position or a moving platform that
localizes itself using standard GNSS positioning.

1.2. CONCEPT 9

System Architecture Both navigation concepts should be closely integrated into
the attitude and ego-motion estimation of a suitable flight controller. Therefore, at
the beginning of this work, a suitable platform had to be selected which allowed an
easy integration of the advanced navigation methods as well as a sufficient amount
of autonomous functionalities that are required within the previously described mis-
sion scenarios. Since a custom designed flight controller was already available at
the Chair of Aerospace Information Technology at the University of Wuerzburg, its
functionality was compared to open-source solutions first. The available flight con-
troller was developed within the AQopterI8 project and the doctorate of Dr. Nils
Gageik [41]. It is targeted towards autonomous indoor applications providing a re-
active collision avoidance system. Comparing the available flight controller to open
source projects like ArduPilot [42], the latter provide a wider range of functional-
ity at the expense of a more complex software. However, since neither the custom
developed flight controller nor the open-source solution provided an easy way to
integrate the components and algorithms required for a successful mission at the
time, the development of a new flight controller was considered. Decisive for the
development of an own flight controller was ultimately the desire to use the Real-
time Onboard Dependable Operating System (RODOS) in a terrestrial application.
RODOS is a Real-time Operating System (RTOS) that was originally developed at
the German Aerospace Center (DLR) and is currently maintained by the Chair of
Aerospace Computer Science at the University of Wuerzburg.

A conceptual overview of the different tasks and hardware components of FARN

is shown in Figure 1.6. The ego-motion estimation is at the core of the developed
flight controller. It receives observations from different sensor systems and com-
bines them in a single pose and twist state estimate. This estimate is subsequently
utilized by the low-level control which regulates the UAV motion. Depending on the
real-time requirements, the computational expenses and complexity as well as the
utilized hardware interfaces, all tasks can be grouped into two categories, namely
high- and low-level tasks.

LOW-LEVEL TASKS

HIGH-LEVEL TASKS

EGOMOTION

ESTIMATION

LOW-LEVEL

CONTROL

RADIO RANGING

PREPROCESSING

PREPROCESSING
CALIBRATION &

CONDITIONING

IMU UWB
LOW-LEVEL

SENSORS

REAL-TIME

KINEMATICS

HIGH-LEVEL

CONTROL

GNSS
HIGH-LEVEL

SENSORS

FIGURE 1.6: FARN system architecture. Optional sensors and tasks
are indicated with dashed lines.

10 CHAPTER 1. INTRODUCTION

High-level tasks are tasks that can be described by soft real-time requirements,
high computational effort or sensors that rely on complex hardware interfaces (e.g.
USB) with a high amount of data per measurement. They include high-level control
such as the flight trajectory planning and mission control as well as the process-
ing of sensor data from sensors with comparatively low sample frequencies. High-
level sensor processing includes the computation of RTK GNSS navigation solutions
based on carrier phase observations and raw data as well as high-level communi-
cation or image processing tasks. Both, the GNSS compass as well as the relative
positioning of several UAVs are considered as high-level tasks.

In contrast, low-level tasks need to meet hard real-time requirements in order to
allow the UAV ego-motion estimation and the low-level actuator control at a high
rate. The ego-motion estimation combines measurements obtained in both, hard and
soft real-time, with calibrated and conditioned IMU measurements. The estimates
are provided to the low-level control and different high-level tasks. Low-level sen-
sors are characterized by relatively low data amounts per measurement and compar-
atively high update rates that utilize rather simple interfaces (e.g. SPI, I2C, UART).
Low-level sensor processing with hard real-time constraints includes the process-
ing of IMU measurements, proximity sensors and UWB radio ranging tasks which
require very precise timings.

A heterogeneous dual-core platform is selected as hardware platform as shown
in Figure 1.7. An application core is responsible for high-level tasks, while a real-time
core handles all low-level tasks. The application core runs Ubuntu and the Robot
Operating System (ROS) while the real-time core relies on RODOS. Compared to a
standard approach with two separate processors, this design offers several advan-
tages despite a small form factor. First, both processors share a common clock source
which simplifies time synchronization between both cores since they are subject to
the same clock drift and thermal changes. Second, both processors have access to
shared memory and peripherals. The memory access is controlled during run-time
by a messaging unit while the resource domain controller assigns different interfaces
during boot. Using shared memory a high bandwidth communication between both
cores is possible in real-time. Depending on the UAV configuration and the attached
payload, different interfaces can be assigned to either core.

Shared Memory

Messaging Unit

Application Core Real-Time Core

Resource Domain Controller

Peripherals

IMU GNSS Lidar Radio

FIGURE 1.7: Dual-core with shared memory and peripherals.

1.3. MY CONTRIBUTION 11

1.3 My Contribution

The most important scientific contribution of this work are the different methods
and technologies that are developed for FARN. The RODOS-based flight controller
FARN allows to perform autonomous tasks that require highly accurate and reliable
navigation using carrier phase-based GNSS positioning. In particular, FARN enables
the autonomous flight in Polar regions where the deployment of a MEMS magnetic
compass is not feasibly and, additionally, the relative navigation of several UAVs
within a swarm. In the context of FARN, the following technologies are developed:

Versatile Ego-motion Estimation Framework A reliable ego-motion estimation
is the core and therefore the most important component of every flight controller.
Throughout this work, different state estimation algorithms were developed, imple-
mented, evaluated and continuously improved. Within this development, relatively
simple complementary filters [41], highly efficient quaternion-based attitude esti-
mators [43] and complex state estimators based on Extended Kalman Filters (EKFs)
[44] were investigated. The final estimation framework is based on an Error-State
Kalman Filter (ESKF) and runs in real-time at up to 1 kHz. It allows an easy inte-
gration of various sensor systems like a GNSS compass, different inertial sensors as
well as various external and vehicle mounted positioning systems. The framework
estimates the pose and the twist of the UAV. Furthermore, inertial sensor biases and
magnetic disturbances are estimated and thus can be efficiently compensated for.
Measurement delays of different sensors or sensor systems can be compensated for,
too, by providing a mechanism to integrate time delayed observations. Regarding
the complexity, functionality and performance, the developed ego-motion estima-
tion is on the same level as the state-of-the-art of current open source flight con-
trollers. Within this context, extensive sensor models for low-cost MEMS sensors are
derived and their respective noise characteristics empirically determined.

Modular Control Architecture for Multi-rotors Since the flight controller that was
previously developed at the Chair of Aerospace Information Technology was limited
to position and attitude control only [41], the control architecture is expanded within
this work to allow different levels of control. Therefore, a cascaded control architec-
ture is proposed, developed and implemented that allows a dedicated control of the
UAV’s position, velocity, attitude and its angular rates. The proposed control ar-
chitecture is targeted towards fixed multi-rotor UAVs and can be easily adapted to
match different motor configurations. The implementation of the control architec-
ture has a modular design so that individual levels within the control cascade can be
easily modified or exchanged. The basic principle of the cascaded control approach
can be compared to the state-of-the-art of current open source flight controllers.

GNSS Compass for UAVs Within the ROBEX project, a GNSS compass is devel-
oped and integrated into the FARN’s navigation system to allow a reliable head-
ing determination in Arctic environment. A commercial low-cost Global Position-
ing System (GPS) heading system developed by ANAVS was evaluated within this
project but could not be deployed successfully in flight due to the high dynamic
flight characteristics of the UAV [45]. Since the development of this feature exceeded
the state-of-the-art of available flight controllers at the time, existing approaches in
literature are briefly discussed, before the solution developed within the context of
this thesis is outlined.

12 CHAPTER 1. INTRODUCTION

Already in the early 1990s, research on GPS-based attitude determination for
aircraft was successfully deployed in flight [46, 47] and established expensive multi-
frequency GNSS receivers as the state-of-the-art solution. However, the upcoming
of inexpensive MEMS sensors and the growing demand for smaller and lightweight
platforms for various tasks encouraged the development of less expensive GNSS
attitude determination systems.

A popular method combining low-cost MEMS IMUs and multiple GNSS re-
ceivers employs tight-coupling, meaning that a single Extended Kalman Filter (EKF)
is utilized for attitude estimation based on double differenced carrier phase obser-
vations [48–51]. Using the double differences technique, an unknown integer am-
biguity needs to be determined which can be done using different methods. While
approaches with a two antenna configuration rely mostly on the Least-squares AM-
Biguity Decorrelation Adjustment (LAMBDA) [52], additional angular constraints
are introduced on platforms with three or four antennas in order to reduce the
integer search space. Using the latter constellation, a complete attitude estima-
tion is possible. While the tightly-coupled approach promises RMSEs of less than
0.25◦/baseline in [m] [49], existing solutions are limited to update-rates of 100 Hz in
real-time implementations or post-processing using MATLAB due to the high com-
putational load.

A promising loosely-coupled approach is presented in [53], where a-priori base-
line information is used as a so called soft baseline constraint in order to improve
the float approximation of the integer ambiguity. The baseline estimate based on
LAMBDA fixed integer ambiguities is subsequently used to update the heading esti-
mation of the UAV. One advantage of the loosely-coupled approach is the possibility
of running two separate state estimators simultaneously. A hard-real time state esti-
mator can keep track of the attitude throughout aggressive flight maneuvers , while
the GNSS observations can be processed using synchronized attitude estimates at a
much lower frequency.

Within this work, an attitude estimation framework based on single-frequency
GNSS observations and double differences is loosely-coupled to the developed ESKF
for ego-motion estimation. In contrast to solution presented in [53], in addition to
soft baseline constraints so-called hard baseline constraints are added in order to
improve and validate the integer fixing step using LAMBDA. Additionally, the pro-
posed solution requires low-cost components only. The developed GNSS compass
can estimate the current UAV heading at up to 10 Hz which is fast enough to esti-
mate the gyroscope drift within the ESKF reliably. The ESKF provides the current
UAV heading at up to 1 kHz.

UWB Augmented Relative GNSS Positioning Within MIDRAS, a precise relative
navigation scheme for physically coupled UAVs using carrier phase-based position-
ing is developed and integrated into FARN. Similar to the GNSS compass, precise
positioning using UWB augmented carrier phase-based GNSS positioning exceeds
the current state-of-the-art of UAV flight controllers. Hence, existing research ap-
proaches are briefly discussed before the developed solution is described, too.

The basic setup for a simple carrier phase-based relative positioning system is
described in [40]. The main required components are GNSS receivers that provide
raw and carrier phase observations from the base and the moving platform, a com-
munication link and a system that runs the carrier phase-based positioning algo-
rithm, e.g. a ground station PC. The vast majority of studies on carrier phase-based

1.3. MY CONTRIBUTION 13

UAV relative positioning rely on fixed base stations and ambiguity resolution us-
ing LAMBDA [54–58]. A carrier phase-based positioning system that does not rely
on integer ambiguity resolution is presented in [59]. Here, the authors propose a
method applying a real-time sliding-window estimator that tightly integrates differ-
ential GPS and IMU observations.

However, with the increasing popularity of low-cost UWB modules, several au-
thors have considered possible ways of combining UWB and GNSS on small flying
platforms. In [60] a complementary architecture for a multi agent system consist-
ing of UWB and GNSS in case of GNSS outages is proposed. GNSS code observa-
tions and IMU measurements are fused in a tightly-coupled approach, while carrier
phase observations are used to estimate the relative distance between UAVs and to
calibrate the range radios. If a GNSS outage occurs, partial outages can be recovered
using the GNSS enabled UAVs as tie-down points/anchors and allowing to estimate
the position of the UAVs with GNSS outage using UWB radio ranging.

Another approach for the relative positioning of two aircraft flying in a close
formation is based on a three stage filter algorithm. The first of the three stages
is a tightly-coupled absolute positioning filter using GPS and IMU observations.
Next, UWB radio ranging distances and double differences of carrier phase obser-
vations are collected from both aircraft. In the final step, the integer ambiguities are
fixed using LAMBDA [61, 62]. The actual UWB/GPS fusion is done by applying
soft-baseline constraints using the UWB distance estimate and a pseudo observa-
tion based on the difference between the absolute position estimates from stage one.
Other non-UAV targeted applications, implement UWB augmented GNSS naviga-
tion systems in a similar manner [63–65]. In these publications, the principle idea is
to utilize a network of UWB transceivers and gather additional range information
that can be used as complementary filter data or RTK baseline constraint, too.

The approach developed within this work aims to be as modular as possible in
order to be deployed within different scenarios. All agents that are part of the rela-
tive positioning scheme as well as the fixed base station are equipped with UWB
transceivers. Using Double-Sided Two-Way Ranging (DS-TWR) the relative dis-
tances between the transceivers are estimated. The gathered UWB range information
is used as baseline constraint for the ambiguity resolution during the float estimation
as well as during the integer fixing step. In contrast to [61, 62], additional pseudo
measurements are renounced, due to low precision and the high inaccuracies of ab-
solute code based position estimates.

RODOS Framework Extensions Within this work, additional functionalities are
added to the RODOS software framework. The mathematical library of RODOS
was extended to include arbitrary matrix and vector sizes. Using generic data types,
platform specific features such as an integrated single precision Floating Point Unit
(FPU) as well as operations requiring higher accuracy can be efficiently implemented.
Moreover, a reliable message interface is developed that allows high bandwidth real-
time communication between the two system cores using shared memory. There-
fore, a common data layer based on the publish/subscribe paradigm which is used
by both operating systems is implemented. Furthermore, the embedded real-time
operating system RODOS is ported to run as a guest on top of the Message Queue
eXecutive (MQX) operating system. Additionally, several low-level drivers required
for the various sensors used within this work are added. The implemented drivers
range from simple interface drivers to complex measurement schemes like the UWB
ranging that requires precise timing and an efficient hardware usage.

14 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

This thesis is divided into seven chapters. Chapter 2 describes the UAV hardware,
including its frame, the propulsion system as well as the avionic system that was
developed within this thesis. Moreover, calibration schemes and extended sensor
models are derived for the different sensor types that can be interfaced with the
flight controller. The described UAV frame is utilized within the ROBEX and MIDRAS

projects and the respective payload configurations are described at the end of this
chapter. The ego-motion estimation framework is introduced in Chapter 3. Af-
ter establishing the mathematical framework for rotations and reviewing common
practice on concepts for attitude representation, the Error-State Kalman Filter equa-
tions are derived. Subsequently, the further utilization of the estimated system states
within the proposed control architecture is described. Chapter 4 provides the theo-
retical background required to develop the GNSS compass and the UWB augmented
carrier phase-based positioning scheme. After a short overview and introduction to
GNSS in general, measurement models, error sources and basic navigation tech-
niques are described. Based on the mathematical concepts introduced within the
previous sections, advanced GNSS navigation methods are outlined with emphasis
on carrier phase-based positioning using short baselines and respective constraints.
Chapter 5 provides insights into various implementation aspects, like the advanced
GNSS navigation applications, different software frameworks, the utilized operating
systems, implemented scheduling schemes, algorithmic optimizations and the com-
munication mechanism between different system levels. In Chapter 6, the developed
system is evaluated with focus on the ego-motion estimation framework, the control
architecture as well as the advanced navigation methods developed within the con-
text of ROBEX and MIDRAS. Finally in Chapter 7, comprehensive conclusions and
an outlook for future system improvements are presented.

1.5 Nomenclature

Throughout this thesis scalars are written as non-bold characters, e.g. s or S. Vectors
are represented by bold lowercase letters, such as v, while matrices are bold upper-
case letters, like a rotation matrix R. Coordinate frames are defined with capital
cursive letters, e.g. the body frame B and the navigation frame N . A vector in the
body frame is written as vB , while an active rotation from the navigation to the body
frame is expressed by RNB .

17

Chapter 2

Mathematical Modeling
of the Physical System

The development process of the flight controller software and avionics requires a
robust UAV platform for testing and evaluation. Furthermore, the UAV platform
should be suited for the application scenarios described in Section 1.1. The UAV
used within this work is shown in Figure 2.1. In general, the proposed UAV can be
divided into three subsystems: The UAV platform, the avionics and the payload.

FIGURE 2.1: UAV platform.

The UAV platform described in Section 2.1 comprises the UAV frame, the power
source as well as the propulsion system and should be designed with respect to
mission-specific requirements. Payload requirements are a key factor for the plat-
form design. The avionic subsystem is described in Section 2.2 and includes the elec-
tronic components and software that are required to control the UAV. The avionic
subsystem follows a generic and modular design that allows a quick and easy adap-
tion for various missions. In addition to a minimal and mandatory sensor suite, op-
tional sensors can be added to the avionic system. These sensors can be mounted on
the drone platform itself or are set up externally. The payload can be self-sufficient or
linked to the system avionics and exposes significant variations in size and weight.
Two payload configurations are given in Section 2.3.

18 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.1 UAV Platform

The platform was originally designed in cooperation with the Alfred Wegener In-
stitute for Polar and Marine Research for the use in Arctic environments together
with a GNSS compass [66–68]. Because of its large payload capabilities, it was later
adapted for and used within other missions and applications [69, 70]. The platform
itself can be divided into the mechanical frame and the propulsion subsystem which
are explained below.

2.1.1 Frame

A quad-rotor frame with a footprint of 50 cm× 50 cm in H-configuration is con-
structed out of carbon fiber tubes and 3D printed clamps. The H-configuration al-
lows mounting the two GNSS antennas required for a GNSS compass at the point of
intersection of the transverse beam and each of the two motor arms. Hence, no ad-
ditional beams are required while still having a sufficiently large distance between
the two antennas. The computer models of the UAV platform in two different con-
figurations are shown in Figure 2.2.

(A) Dual antenna config. (B) Single antenna config.

FIGURE 2.2: CAD model of the UAV platforms.

The dual antenna configuration is used if a GNSS compass is required, while oth-
erwise the single antenna configuration is sufficient. In both configurations, a cover
may be used to protect the required avionics and the electronic speed controllers,
allowing to fly at moderate conditions and light rain.

The clamps are 3D printed using a Markforged MARK TWO [71] that allows
reinforcing 3D printed objects with carbon fiber inlays. The additional carbon fiber
inlays for a motor mounting clamp are exemplified in Figure 2.3.

FIGURE 2.3: Carbon fiber inlays for a motor clamp.

2.1. UAV PLATFORM 19

For system modeling and simulation purposes, the mass properties and the mo-
ment of inertia for the single antenna configuration depicted in Figure 2.2 with two
batteries can be estimated using the 3D computer model as:

Icm ≈

0.11 0 0
0 0.18 0
0 0 0.26

[
kg ·m2] and m ≈ 4.1 kg (2.1)

2.1.2 Propulsion

The propulsion subsystem can be divided into four components as shown in Figure
2.4: The power supply, the Electronic Speed Controllers (ESCs) and the brushless
motor with a propeller. The selection of each component is optimized for a long
flight time and non-aggressive flight maneuvers.

Propulsion System

ESCESCESCESC
MotorMotorMotorMotor

PropellerPropellerPropellerPropeller
Battery

Flight Controller

PWM

FIGURE 2.4: Complete propulsion system.

Power Supply For power supply, two 6S Hacker TopFuel Eco-X LiPo batteries [72]
with a capacity of 5000 mAh and a maximum discharging C-rate of 20 are used in
parallel. A single battery with its 3D printed housing weighs mB = 750 g. The
batteries are used to power the propulsion system, the avionics as well as payload
if it does not have an independent power supply. Voltage converters are integrated
into the avionics or added accordingly if required by the payload.

Electronic Speed Controllers The T-Motor 45 A 600 Hz controllers are used as ESCs
[73]. They run the SimonK firmware allowing Pulse-Width-Modulation (PWM) con-
trol signals with a low time of at least 5 microseconds [74]. The maximum load is
60 A for not more than 10 s.

Brushless Motors T-Motor MN4014 400KV brushless motors are used together
with 15-inch carbon fiber propellers [73]. This motor propeller combination allows a
theoretical combined thrust of 10 kg for four motors. Optionally, 17-inch propellers
can be mounted for higher payloads at a combined thrust of 12 kg, however the
flight time is reduced.

ei

Ωi

FIGURE 2.5: A motor and propeller pair.

20 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

For simulation purposes, the propulsion system needs to be modeled. Model
identification is done with MATLAB. Given a certain control PWM signal uPWM,i, the
system model should produce the same thrust fi(ui) and torque output τi(ui) as the
real combination of ESC, motor and propeller. For simplification, the power supply
is assumed to be constant at 22.2 V. A more general model should include battery
discharging, too. The relation between the PWM control signal and the generated
thrust as well as the relation between the control signal and the generated torque are
approximated using second order polynomials. The time delay caused by the ESC
control loop and the motor inertia are approximated by combining a PT1-element
and a dead-band, where the PT1-element is characterized by a proportional output
with a first order signal delay. The propulsion system model for a single motor can
be written as:

fi(ui) = fT(ui) · ei (2.2)

τi(ui) = −sgn(Ωi) fτ(ui) · ei (2.3)

where ei is the vector of thrust and Ωi is the rotational rate generated from the motor
i as can be seen in Figure 2.5. The functions fT(ui) and fτ(ui) are second order
polynomials describing the thrust and torque generated for a certain ESC motor
command ui, respectively, and are given by:

f•(ui) = a• · u2
i + b• · ui (2.4)

with unknown parameters a• and b• that need to be identified for the thrust and
torque model, respectively, e.g. • ∈ {T, τ}. The relation between ui and uPWM,i in the
time domain is described by:

Tτ u̇i(t) + ui(t) = uPWM,i(t− Td) (2.5)

where Td and Tτ are time constants that need to be identified. Having established
the principle model, a series of measurements are conducted using the thrust and
torque measurement setup shown in Figure 2.6.

FIGURE 2.6: Thrust and torque measurement setup [75].

2.1. UAV PLATFORM 21

Thrust Two different experiments are conducted to obtain the propulsion thrust
model. In both experiments, the motor is mounted vertically to reduce ground ef-
fects. Over a rotary joint, two crossbeams and a scale, the generated thrust can be
measured.

For the first experiment, the motor is commanded from resting state to a cer-
tain PWM duty cycle. The maximum thrust at the steady state for each PWM duty
cycle is recorded and used for the second order polynomial fit. The different step re-
sponses as well as the polynomial fit are shown in Figure 2.7. The error bars consider
crossbeam and scale errors of the setup.

Time [s]
-1 -0.5 0 0.5 1 1.5 2 2.5 3

T
h
ru
st

[N
]

0

10

20

30

PWM DC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ru
st

[N
]

0

10

20

30

FIGURE 2.7: Step responses and steady state thrust for different PWM
duty cycles.

In the second experiment, the propulsion system dynamics are analyzed. There-
fore, the motor is commanded ten times to a PWM duty cycle of 75%. The mea-
surements are combined to an average step response. The step response is modeled
according to Equation (2.5) where the time constants are identified using MATLAB

and the ident toolbox. The raw, average and modeled step response are shown in
Figure 2.8. The estimated model parameters are summarized in Table 2.1.

Time [s]
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
h
ru
st

[N
]

0

5

10

15

20

FIGURE 2.8: Raw (grey), average (black) and modeled (red) step re-
sponses for 75% PWM.

22 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

The propulsion system model is verified by comparing the system output with
real system observations. A saw-tooth signal is used as input. The input signal as
well as the real and the modeled system output are shown in Figure 2.9.

Time [s]
0 10 20 30 40 50 60 70 80

D
C

[%
]

0

50

100

Time [s]
0 10 20 30 40 50 60 70 80

F
o
rc
e
[N

]

0

10

20

FIGURE 2.9: Thrust simulation (red) and real system (grey) output for
a saw-tooth input signal (top).

Torque The torque second order polynomial is obtained in a similar way as the
thrust model, while the system delay is assumed to be identical. The motor is
mounted vertically again, but this time on a rotary platform. Using a flexible cross-
beam connected to the rotary platform, the force generated through the counter ro-
tation of the rotary platform can be measured. The respective torque is simply the
product of the observed force and the crossbeam length. The steady-state torque is
measured for different PWM duty cycles and a second order polynomial fit is ob-
tained. The fitted model is shown in Figure 2.10, while the identified parameters are
listed in Table 2.1. A system verification similar to the thrust model could not be
carried out due to the low sample rate of the scale used for the experiments.

PWM DC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
rq
u
e
[N

m
]

0

0.2

0.4

0.6

FIGURE 2.10: Steady state torque for different PWM duty cycles.

Parameter Tτ Td aT bT aτ bτ

MN4014 0.321 -0.503 19.17 7.90 0.43 0.14

TABLE 2.1: Identified MN4014 parameters.

2.2. AVIONICS 23

2.2 Avionics

The avionic subsystem can be divided into the flight controller, mandatory and op-
tional sensors as well as interfaces. The flight controller is the main processing unit
of the UAV and hence responsible for low-level sensor interfacing as well as the
Guidance, Navigation and Control (GNC) of the UAV. The mandatory sensor suite
includes inertial and environmental sensors together with radio receivers and trans-
mitters that are able to obtain information about the UAV’s ego-motion. Optional
sensors can be interfaced with the developed flight controller and provide addi-
tional or complementary navigation information. Optional wireless communication
devices can be used, too, to extend the drones’ communication range if required.

2.2.1 Flight Controller

The flight controller is based on the Udoo Neo board from SECO [76] and extended
using a custom made sensor carrier board. The two credit-card sized flight controller
boards are shown in Figure 2.11.

FIGURE 2.11: Udoo Neo board with custom sensor extension.

The Udoo Neo board hosts the i.MX6 SoloX consumer grade application proces-
sor MCIMX6X4EVM10AB with a heterogeneous dual-core from NXP [77]. The het-
erogeneous dual-core consists of an application core, a ARM Cortex-A9 at 1 GHz,
and a real-time core, a ARM Cortex-M4 at 200 MHz with a single precision FPU. The
application core can access 1 GB Double Data Rate 3 (DDR3) Synchronous Dynamic
Random-Access Memory (SDRAM). The real-time core has 64 kB Tightly-Coupled
Memory (TCM) and can additionally access 128 kB On-Chip Random-Access Mem-
ory (OCRAM) as well as a part of the application core’s SDRAM. The shared part
of the SDRAM is used for inter-core communication. Additionally, DC-DC convert-
ers from 12 V to 5 V and to 3.3 V, an on-board IMU and a magnetometer as well as
a WiFi and Bluetooth chip are integrated onto the Udoo Neo board. Various Gen-
eral Purpose Input/Outputs (GPIOs), low-level interfaces such as Inter-Integrated
Circuit (I2C) and Serial Peripheral Interface (SPI) as well as an analog camera inter-
face can be easily accessed using the respective sockets or pin headers. High-level
sensors can be accessed using the USB interface.

24 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

A custom designed extension board is mounted on top of the Udoo Neo board as
a breakout shield using the pin headers. The extension board houses an additional
DC-DC converter for up to 30 V input, the sensor suite required for the UAV’s GNC
system as well as interfaces for additional sensors and payloads. Eight PWM inter-
faces allow to control ESCs or other servo motors if required. The mandatory sensor
suite includes another IMU, a magnetometer, a barometric pressure sensor, a UWB
transceiver, two GNSS receivers and an input voltage monitor circuit. Each sensor
has its own electrically switchable voltage regulator providing a very stable supply.
A multi color status Light-Emitting Diode (LED), a user button and dedicated serial
ports for both cores might be used for debugging purposes. Advanced debugging
options, e.g. single instruction stepping and single register access, are possible but
due to the heterogeneous architecture difficult to set up [78].

A flight controller connectivity diagram is shown in Figure 2.12. Components
and interfaces depicted with solid frames are required or integrated into the exten-
sion board, while dashed components can be connected through the appropriate
interfaces if required. The real-time core is connected to low-level devices that re-
quire a high sample rate, have strict timing constraints, are critical for a successful
UAV flight or have simple interfaces. The real-time core is responsible for the ac-
tuator control. The application core handles the wireless communication as well as
computational expensive tasks. It is interfaced with high-level sensors and payloads
as well as sensors with a high data rate, such as raw data GNSS receivers. However,
the respective interfaces are not strictly tied to each core, but can be configured ac-
cording to the user requirements using the Resource Domain Controller (RDC). Both
cores communicate using a messaging unit with hardware interrupts and access to
the shared SDRAM. The inter-core communication is described in detail in Section
5.4. The remain of this section describes the mandatory and optional sensors for the
UAV GNC in detail. Payload examples from real missions are described in the next
section.

i.MX 6 SoloX

SPII2C PWM USB SPI

Real-Time Core

ARM Cortex-M4F

Application Core

ARM Cortex-A9

Accelerometer

Gyroscope

Ultra Wide Band

Module

Magnetometer

Barometer

Battery

Monitor

Proximity

Sensor

Payload

Payload

Sensor

Wireless Interface

GNSS Receiver

Payload

GNSS ReceiverWiFi

External

Sensors

Remote

UARTSDIO

UART ADC

Servo

ESCESCESCESC

FIGURE 2.12: Flight controller connectivity: Mandatory (solid) and
optional components (dashed).

2.2. AVIONICS 25

2.2.2 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is the primary source for ego-motion estima-
tion of any UAV. Traditionally, a IMU is a device that combines a 3D accelerometer
with a 3D gyroscope. However, since the popularity gain of MEMS, it is quite com-
mon to include a 3D magnetometer into the same chip, too, in order to compensate
for the gyroscope drift around its nadir axis. This section addresses only traditional
IMUs although the developed flight controller relies on the ST LSM9DS1, a IMU
with an integrated magnetometer [79]. Magnetometers are described separately in
the section hereafter.

In order to understand the different error sources for IMUs, generic measure-
ment models are derived for the accelerometer and the gyroscope in Section 2.2.2.1.
Some of these measurement errors can be mitigated using different calibration tech-
niques as described in Section 2.2.2.2. Other errors are caused by vibrations and
can be reduced using appropriate software filters or mechanical countermeasures as
described in Section 2.2.2.3. Based on the noise characteristics, the applicable tem-
perature range and dependencies as well as the manufacturing process of MEMS
IMUs, three different sensor grades can be distinguished: Tactical/Military-grade,
industrial-grade or consumer-grade. Examples of each sensor grade are shown in
Figure 2.13.

(A) ADIS16495 [80] (B) XSensMTi-100 [81] (C) LSM9DS1

FIGURE 2.13: Tactical-, industrial- and consumer-grade IMUs.

High-end MEMS sensors have excellent noise characteristics, wide temperature
ranges and compensate for thermal dependencies. In contrast, consumer grade sen-
sors are produced in large quantities and are therefore quite cheap as indicated in
Table 2.2. Military- or industrial-grade IMUs are typically temperature calibrated or
regulated, while consumer-grade IMUs need to compensate for temperature effects
explicitly. The temperature effects on the LSM9DS1 are addressed in Section 2.2.2.4.
While the noise parameters, namely the bias stability and the sensor random walk,
are typically given in the respective data sheet for high-end IMUs, these parame-
ters have to be determined experimentally for low-cost MEMS IMUs. The noise and
sensor characteristics for the three different sensor grades as well as the process of
estimating the noise parameters are described in Section 2.2.2.5.

Device ADIS16495 XSensMTi-100 LSM9DS1

Grade military industrial consumer
Type Acc, Gyro Acc, Gyro, Mag Acc, Gyro, Mag
Price 2380 e 1776 e 5 e

TABLE 2.2: Different IMU grades.

26 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.2.2.1 IMU Measurement Modeling

IMUs, especially low-cost consumer grade IMUs, suffer from scaling and axis mis-
alignment errors. A detailed error model for the accelerometer and the gyroscope
measurements are derived in [82].

Accelerometer The accelerometer model is given by:

aB,raw = Ta

(

aB,true −RNB⊤gN
)

+ ab + aw (2.6)

ȧb = abw (2.7)

where aB,raw is the accelerometer raw measurement in the IMU body frame, Ta ∈
R3×3 is the gain and misalignment error matrix, aB,true is the true acceleration act-
ing on the IMU, RNB⊤gN is the Earth’s gravity vector in the body frame, ab is the
accelerometer bias and aw, abw are Gaussian measurement noise and accelerometer
bias instability, respectively. If vibrations act on the sensor, they are modeled by the
truly observed acceleration, too. If the observation of these vibrations is not desired,
appropriate countermeasures need to be considered.

Gyroscope The gyroscope is modeled by:

ωB,raw = TωωB,true + T×
(

aB,true −RNB⊤gN
)

+ωb +ωw (2.8)

ω̇b = ωbw (2.9)

where ωB,raw is the gyroscope raw measurement in the IMU body frame, Tω ∈ R3×3

is the gain and misalignment error matrix, ωB,true is the true angular rate acting on
the IMU, T× ∈ R3×3 is transformation matrix describing the gyroscope’s acceler-
ation sensitivity, ωb is the gyroscope bias and ωw, ωbw are Gaussian measurement
noise and gyroscope bias instability, respectively.

2.2.2.2 IMU Calibration

The gain and misalignment error matrices Ta and Tω can be estimated using cali-
bration methods as described in [83, 84]. However, relying on external tools, such
as robotic arms or optical tracking systems, both calibration approaches are limited
to specific IMU setups and do not consider axis misalignment errors due to IMU
mounting on the UAV frame itself.

For both approaches, the cross sensor effect T× is considered to be small and
mostly mitigated by factory calibration. Requiring a generic in field calibration of
UAV mounted IMUs, a different calibration scheme is described within this work.
Instead of calibrating the inertial sensors, the sensors used for complementary at-
titude correction are calibrated. For the roll and pitch attitude correction, the ac-
celerometer which observes the Earth’s gravitational field can be used. Depending
on the application scenario, the yaw angle can be corrected using a magnetometer, a
GNSS compass or optical reference systems that provide attitude information. The
gyroscope calibration coefficients Tω and T× are neglected, however, it is assumed
that dynamic gyroscope bias estimates within the ego-motion estimation framework
of this work are able to compensate for the scaling and misalignment errors of Equa-
tion (2.8).

2.2. AVIONICS 27

Accelerometer The accelerometer calibration method is based on the work done in
[85, 86]. The applied method allows a fast in field calibration of UAV mounted IMUs
without the need of an expensive or external reference systems. However, a circular
bubble level might be used to improve the calibration. In order to calibrate the ac-
celerometer axis misalignment, the UAV is rotated into six different orientations as
indicated in Figure 2.14 while raw accelerometer measurements are collected. The
temperature is assumed to be constant throughout calibration and the bias instabil-
ity is neglected for the calibration time.

(A) x-up (B) y-up (C) z-up (D) x-down (E) y-down (F) z-down

FIGURE 2.14: Drone orientations for accelerometer calibration.

For each orientation, a nominal axis of the UAV is pointing in parallel to the
Earth’s gravity vector, three times in the same and three times in the opposite direc-
tion. The raw data is collected over n samples for each orientation and averaged:

ḡ• =
1
n

n

∑
i=0

g•(i) (2.10)

where • ∈ {x+, y+, z+, x−, y−, z−} indicates one of the six directions. The obtained
measurements are stacked together as:

ḡraw =
[
ḡx+ ḡy+ ḡz+ ḡx− ḡy− ḡz−

]
∈ R

3×6 (2.11)

where the indices denote the axis that is parallel to the Earth’s gravity vector and
their superscripts indicate their respective direction. The collected data is compared
to the combined expected gravity vectors:

gtrue =
[
−I3×3 I3×3

]
(2.12)

Since the UAV is kept stationary during the six calibration orientations, except
the Earth’s gravity vector no additional force is acting on the UAV, meaning that
aB,true = 0. Based on Equation (2.6), six independent equations can be obtained.
With this system of equations, the gain and error matrix Ta can be calculated, assum-
ing that the measurement noise aw is canceled out using a sufficiently big enough
sample size n and that the bias remains constant throughout the calibration time, i.e.
awb = 0. The accelerometer bias ab can be approximated as:

ab =
1
6
ḡraw · 16×1 (2.13)

The overdetermined equation system based on Equation (2.6) can be written as:

ḡraw = Ta (−gtrue) + ab · 11×6 (2.14)

28 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

The system of equations can be solved using singular value decomposition [87]:

M = U · Σ · V ⊤

= (ḡraw − ab · 11×6) · (−gtrue)
⊤

(2.15)

where U ∈ R3×3 and V ∈ R3×3 are orthonormal matrices and Σ ∈ R3×3 is a rect-
angular diagonal matrix. The gain and misalignment error matrix Ta is then given
by:

Ta = U · V (2.16)

Figure 2.15 shows the raw values ḡraw, true reference direction as well as the
calibrated result T⊤a (ḡraw − ab · 11×6) in the six directions. In the example below the
corresponding Tait-Bryan correction angles around the x, y and z axis are−0.4◦, 4.5◦

and 0.2◦, respectively.

1

Accx [g]

0

-1-1Accy [g]

0

1

1.5

1

0.5

0

-0.5

-1

-1.5

A
cc

z
[g
]

Raw
True
Calib

FIGURE 2.15: Raw, true and calibrated accelerometer readings.

Gyroscope As previously mentioned, no explicit gyroscope calibration is performed.
Instead, it is assumed that the gyroscope errors can be compensated using an dy-
namically adjusted bias estimation. The dynamic bias estimation is realized using
complementary sensors in the ego-motion estimation framework described in Sec-
tion 3.2. However, the initial bias needs to be estimated just before take off. There-
fore, the gyroscope readings for 1 second at the according data output rate are aver-
aged.

ωb,0 =
1
n

n

∑
i=0

ωB,raw (2.17)

It is important that the UAV does not move during this time. If this requirement can
not be met, e.g. take off on a moving platform, the initial bias is set to zero. A take off
is prohibited until the bias is estimated correctly using the ego-motion framework.

2.2. AVIONICS 29

2.2.2.3 Vibration Filtering

Imbalances of the rotating parts, such as the rotor and the propellers, cause vibra-
tions that are observed by the accelerometer. Consequently, the accelerometer raw
measurements are superimposed by vibrations and thus deteriorated. It is therefore
necessary to mitigate the vibration effects. In [88], the frequency response of a UAV
is analyzed dynamically and notch filters are applied to filter the detected noise fre-
quencies. In [89], extensive frame modeling and noise analysis are carried out. In
order to dampen the disturbances the authors suggest a combination of physical
and software counter measures. In this work, the problem is addressed by com-
bining mechanical and software based filter approaches, too. The disturbances are
mitigated in a physical way using suitable vibration damping counter measures as
well as signal preprocessing steps in form of digital signal filters, that eliminate the
remaining vibrations.

Figure 2.16 illustrates the mechanical vibration damping, while Figure 2.17 shows
the time and frequency signal of a single accelerometer axis during a UAV hover
flight as raw data and with different filters applied.

FIGURE 2.16: Vibration mitigation using rubber dampers.

Time [s]
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

A
cc

[g
]

-0.4

-0.2

0

0.2

0.4
Raw
Notch
Butter

Frequency [Hz]
0 10 20 30 40 50 60 70 80 90 100

P
1
(f
)

0

0.02

0.04 Raw
Notch
Butter

FIGURE 2.17: Raw and filtered accelerometer data: A second order
notch filter and a second order Butterworth filter are compared in

time (top) and frequency domain (bottom).

30 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

Despite of mounting the accelerometer using vibration dampers, noise frequency
peaks in the raw signal at approximately 82 Hz can be still observed. The raw mea-
surements are compared to the output of a second order notch filter and a second
order Butterworth filter. As indicated in [88], notch filters allow to single out nar-
row frequency bands without introducing a phase delay. However, inspecting the
frequency plot in Figure 2.17, a rather wide frequency band of approximately 10 Hz
needs to be filtered out. The notch filter is therefore centered at 82 Hz and has a
rather wide bandwidth of 20.5 Hz. The Butterworth filter uses a cut-off frequency of
60 Hz. Phase delay and damping characteristics for signals below 50 Hz are similar
for both filters. However, since higher frequencies are eliminated using the low-pass
filter, too, and since the phase delay is small for low-order Butterworth filters, it is
the filter of choice. Additionally, there is no need for multiple narrow bandwidth
filters, since the disturbances are concentrated around a single frequency peak.

2.2.2.4 IMU Temperature Dependencies

As MEMS sensors are silicon based, their measurement characteristics vary with
temperature. Their zero measurement offset is affected mostly by changes in tem-
perature and is different for various MEMS devices of the same type, especially for
devices using low-cost consumer grade manufacturing. Scaling factors and hence
non-orthogonality vary significantly with temperature, too [90]. Traditionally, tem-
perature dependencies for low-cost MEMS are mitigated by modeling the sensor
behavior in climate or thermal chambers as shown in Figure 2.18.

FIGURE 2.18: Flight controller in the Vötsch VT4002 thermal cham-
ber.

While static experiments are simple and sufficient for bias estimation, scale fac-
tors and non-orthogonalities demand different and very time consuming approaches.
The calibration procedure described for accelerometers applied at different temper-
atures can be used to estimate temperature dependencies of accelerometer scale fac-
tors and non-orthogonalities. In order to estimate gyroscope scale factors, a cali-
brated rotation table within the thermal chamber and a series of rotational experi-
ments at different temperatures and orientations is required. The complex relation
between temperature and bias, scale error and non-orthogonalities can be described

2.2. AVIONICS 31

in different ways. A popular method relies on thermal models expressed as poly-
nomial functions [91, 92]. The polynomial correction functions are easy to obtain in
terms of curve fitting, however they do not necessarily cope with non-linearities well
enough. A more robust, but also more complex approach applies neural networks
for the compensation of temperature related errors [93–95].

In order to analyze the temperature dependencies of the LSM9DS1 IMU utilized
in this work, the flight controller is placed inside a Vötsch VT4002 thermal chamber
[96]. Power is provided using the jack plugs which are integrated into the thermal
chamber, while a wireless communication link is used to log the sensor’s raw data.
The thermal chamber is controlled using the Vötsch serial interface and a simple
Python script running on a RaspberryPi.

The orientation of the flight controller remains unchanged while the temperature
is varied according to the plot shown in Figure 2.19. The temperature is measured
using the IMU’s temperature sensor directly. The thermal chamber is commanded
to cool down from room temperature to -20◦C and then to heat up to 35◦C. The
observed temperature is slightly higher, due to a temperature offset.

Time [s]
0 500 1000 1500 2000 2500 3000

T
em

p
[◦
C
]

-20

0

20

40

FIGURE 2.19: Thermal profile for the LSM9DS1 temperature analysis.

The raw data from the sensor is recorded and shown in Figure 2.20. The gyro-
scope temperature bias dependencies could be well approximated using low-order
polynomials. However, the accelerometer measurements display different tempera-
ture dependencies, depending on whether the device is in the cooling or the heating
phase of the temperature cycle in Figure 2.19. For the z-axis measurement, the influ-
ence of temperature dependent scaling errors can be clearly observed, too.

Temp [◦C]
-20 -10 0 10 20 30 40

G
y
ro

[◦
/
s]

-4

-2

0

2

4
x
y
z

Temp [◦C]
-20 -10 0 10 20 30 40

A
cc

[g
]

-0.02

0

0.02 x
y
z

FIGURE 2.20: Temperature dependencies of the LSM9DS1.

32 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

Experiments conducted with several flight controllers yielded different thermal
calibration parameters for each individual MEMS sensor. Similar to the conclusion
made in [94], the implications of these experiments are that extensive thermal cali-
brations have to be performed for each flight controller separately. In order to per-
form a calibration procedure as described in [95], collecting the required data for a
single sensor suite takes almost 4 days. Because of the exorbitant amount of time re-
quired for a single flight controller temperature calibration, an electric temperature
stabilization instead of an algorithmic temperature compensation is implemented.

The temperature stabilization is realized using a network of resistors that is inte-
grated into the flight controller. The heating network is located on the bottom side
of the PCB, directly beneath the LSM9DS1 and has a heating power of a little more
than 1 W. Using PCB through holes and PCB cut outs, a local and controlled heat
transfer is possible as shown in Figure 2.21.

(A) RGB image (B) Thermal Image

FIGURE 2.21: Thermal isolation and heating of the flight controller
mounted LSM9DS1.

The heating network is used to keep the temperature of the IMU at a fixed level
above the surrounding temperature. The exact temperature should be selected ac-
cording to the flight environment and the expected temperatures, since the heating
power is limited. As a rule of thumb, 10 ◦C above the ambient temperature are easy
to obtain and more than sufficient. The calibration procedure described in Section
2.2.2.2 should be carried out at the same temperature level.

The closed-loop thermal control is sketched in Figure 2.22. The duty cycle of a
PWM signal is adjusted using a simple Proportional-Integral-Derivative Controller
(PID), controlling the current flow through the resistor network. The resulting tem-
perature is observed using the built-in thermometer of the LSM9DS1.

PID Switch

Resistor
Network

Thermometer

∆T PWM

T

−

Tdes +

FIGURE 2.22: Temperature control loop.

2.2. AVIONICS 33

Figure 2.23 shows the stability of the thermal control for Tdes = 40◦. Although the
temperature control is very stable and the temperature fluctuations remain within
the range of 0.2 ◦C, temperature depended scaling effects of the accelerometer are
still present. However, the fluctuations caused by the temperature dependent scal-
ing effect are limited to a few mg, allowing to consider them as measurement noise
for simplification.

Time [s]
0 20 40 60 80 100 120 140

T
em

p
[◦
C
]

39.9

40

40.1

Time [s]
0 20 40 60 80 100 120 140

A
cc

[g
]

×10−3

-4

-2

0

2
x
y
z

FIGURE 2.23: Temperature scaling effects for the accelerometer.

2.2.2.5 IMU Noise Modeling

There are many parameters describing the quality of different sensors allowing com-
parability. The maximum sample rate, the applicable measurement range as well
as the measurement resolution are well known and typical quantities that allow to
compare different sensor capabilities. However, the bias instability and the random
walk are by far more important indicators for inertial sensors like accelerometers
and gyroscopes since they rely on integration in order to obtain a valid navigation
solution [97].

Bias Instability Inertial sensors have a zero output offset, a so called bias. The bias
depends among others on temperature fluctuations and flicker noise in the electron-
ics and is therefore not constant. The bias instability describes how much the bias
changes over time. The lower the bias instability, the fewer the bias will change and
therefore indicates a higher quality inertial sensor. The unit of the bias instability is
expressed in the same domain as the bias itself, e.g. [◦/s] for a gyroscope and

[
m/s2

]

for an accelerometer.

Random Walk The random walk describes the error that arises from the temporal
integration of an inertial sensor. The Angular Random Walk (ARW) describes the an-
gular error from the temporal integration of a gyroscope, while the Velocity Random
Walk (VRW) describes the velocity error after integrating accelerometer readings. In
other words, the random walk characterizes the noise of an inertial sensor in terms
of its integral error. The random walk is typically expressed as noise density, hence

the ARW is given in
[
◦/s/

√
Hz
]

and the VRW
[

m/s2/
√

Hz
]

.

34 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

Since traditional low-cost MEMS sensor state estimation relies on precise esti-
mates of system uncertainties, modeling those uncertainties is crucial. The bias in-
stability as well as the random walk indicate how reliable the pose estimation based
on pure temporal integration is. Consequently, both parameters need to be known
if the integration error should be assessed by the ego-motion framework. Typically,
high quality MEMS sensors provide information about bias instability and its noise
density or random walk in their data sheet, however, for low-cost sensors these pa-
rameters have to be determined experimentally. The most practicable way to deter-
mine the bias instability and the random walk for a specific sensor is defined in the
IEEE Standard 952-1997 [98].

The method proposed in the standard utilizes the so called Allan variance model
which is originally a analysis technique designed for characterizing the frequency
stability of clocks. The technique can be applied to any signal to determine the char-
acter of the underlying noise processes. The Allan variance is computed by dividing
a long sequence of measurement raw data y into bins of a certain length τ. Next, the
average ay(τ)i

is computed for each bin i . The Allen variance is then calculated as:

AVAR(τ) =
1

2(n− 1)

n−1

∑
i=0

(

ay(τ)i+1 − ay(τ)i

)2
(2.18)

where n is the total number of bins for the fixed averaging time τ. The noise charac-
teristics can be determined by plotting different averaging times τ against the Allen
deviance on a log-log scale. The Allen deviance is simple given by:

ADEV(τ) =
√

AVAR(τ) (2.19)

Different noise characteristics can be read directly from the Allen deviance a
graph as illustrated in Figure 2.24, such as the bias instability and the random walk.
The relation between the Allan deviance and this noise parameters is explained in
detail in [98]. White noise appears on the Allan deviance plot with a negative slope
of 0.5. The random walk is obtained by fitting a straight line with the same slope to
the graph and reading its value for τ = 1. The bias instability is the flat part of the
Allen deviance graph and can be approximated by the minimum value of the graph.

Averaging Time

A
ll
a
n

D
ev

ia
n
ce

Slope=
-1

Q
uant. N

oise

1
R
at

e
R
am

p

0.5

Rate

Ran
do

m

W
alk

0

Bias Instability

Sinusoidal

Correlated

Noise

-0.5AngleRandomW
alk

FIGURE 2.24: Allan deviance according to IEEE Standard 952-1997.

2.2. AVIONICS 35

Gyroscope The noise characteristics for the gyroscope are calculated using a slightly
modified approach. First, the sample data is recorded at a fixed room temperature
with 952 Hz for approximately 3.5 hours resulting in over 12 million data points for
each axis. Subsequently, the overlapping Allan deviance (OADEV) σy(τ) is calcu-
lated. The OADEV follows the definition of the standard ADEV but allows overlap-
ping bins and hence gives a better, more stable result. Next, the obtained OADEV
graph is approximated by fitting primitives kτµ with the respective slope µ as de-
picted in Figure 2.24. The fitted slopes are then combined to the final deviance Στµ.
The calculations are done in MATLAB using the AVAR tool [99].

The result for the LSM9DS1 gyroscope is shown in Figure 2.25 and the corre-
sponding noise characteristics for each axis are listed in Table 2.3. Table 2.4 com-
pares average bias instability and angular random walk from the three LSM9DS1
axes with the values given for the previously mentioned sensor grades.

τ [s]
10−2 10−1 100 101 102 103 104

O
A
D
E
V

[d
eg
/
s]

10−3

10−2

10−1

σy(τ)
kτµ

Στ
µ

FIGURE 2.25: Overlapping Allan deviance for the LSM9DS1 gyro-
scope: x-axis (black), y-axis (grey), z-axis (light-grey).

Gyroscope Axis x y z mean

Bias Instability [◦/h] 27 29 19 25

Angular Random Walk
[
◦/
√

h
]

0.68 0.70 0.53 0.64

TABLE 2.3: Gyroscope bias instability and angular random walk.

Device ADIS16495 XSens MTi-100 LSM9DS1

Grade military industrial consumer
Sample Rate [kHz] 4.25 10 0.952
Max. Range [◦/s] ±2000 ±1000 ±2000
ADC Resolution [bit] 32 16 16
Bias Instability [◦/h] 0.8 10 25

ARW
[
◦/
√

h
]

0.09 0.30 0.64

TABLE 2.4: Comparison between different gyroscope grades.

36 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

Accelerometer The accelerometer noise characteristics are determined analogously
to the gyroscope. The accelerometer raw data is collected simultaneously to the gy-
roscope data at a common data output rate of 952 Hz.

The result for the LSM9DS1 accelerometer is shown in Figure 2.26 and the cor-
responding noise characteristics for each axis are listed in Table 2.5. The overlap-
ping Allen deviation plot for the z-axis shows a correlated noise bump that results
most likely from temperature dependent scaling effects despite temperature stabi-
lization. Table 2.7 compares average bias instability and velocity random walk from
the three accelerometer axes with the values given for the previously mentioned
sensor grades.

τ [s]
10−2 10−1 100 101 102 103 104

O
A
D
E
V

[g
]

10−5

10−4

10−3

σy(τ)
kτµ

Στ
µ

FIGURE 2.26: Overlapping Allan deviance for the LSM9DS1 ac-
celerometer: x-axis (black), y-axis (grey), z-axis (light-grey).

Accelerometer Axis x y z mean

Bias Instability [µg] 45 38 81 55

Velocity Random Walk
[

m/s/
√

h
]

0.046 0.040 0.064 0.050

TABLE 2.5: Accelerometer bias instability and velocity random walk.

Device ADIS16495 XSens MTi-100 LSM9DS1

Grade military industrial consumer
Sample Rate [kHz] 4.25 10 0.952
Range [g] ±8 ±20 ±16
Resolution [bit] 32 16 16
Bias Stability [µg] 3.2 15 55

VRW
[

m/s/
√

h
]

0.008 0.032 0.050

TABLE 2.6: Comparison between different accelerometer grades.

2.2. AVIONICS 37

2.2.3 Magnetometer

The magnetometer is typically used to compensate drift caused by the gyroscope
integration around the UAV’s nadir axis. Since magnetometers provide absolute
measurements, temporal integration is not required and the sensor’s random walk
therefore not of interest. Its noise density, however, as well as its measurement sen-
sitivity allow to compare and select a suitable sensor for targeted environments, e.g.
an environment with a weak horizontal magnetic field component in Polar regions.

Traditional consumer grade MEMS magnetometers are based on the Hall effect,
while the latest generation utilizes magnetic inductance, elevating their measure-
ment characteristics to military grade at a simultaneously low price. Both sensor
types are shown in Figure 2.27. While the traditional Hall sensors come in a single
die with a very small form factor, magnetometers based on magnetic inductance rely
on three separate coils for each axis and an additional logic chip. The measurement
characteristics of two different sensor are compared in Table 2.7. The main benefit of
the military grade RM3100 is the low sensor noise which, in theory, allows the sensor
to be used at high latitudes where the horizontal component of the magnetic field is
comparatively small. Unfortunately, the RM3100 is a relatively new sensor and was
therefore not considered during the latest iteration of the flight controller. Currently,
the magnetometer integrated into the LSM9DS1 is used as magnetic reference.

(A) RM3100 [100] (B) LSM9DS1

FIGURE 2.27: Military and consumer grade magnetometer with real
size ratio.

Device RM3100 LSM9DS1

Grade military consumer
Principle Magnetic Inductance Hall Effect
Sample Rate [Hz] 147 80
Sensitivity [nT] 13 14
Noise [nT] 15 750
Price 20 e 5 e

TABLE 2.7: Comparison between different magnetometer grades.

Similar to the IMU, the magnetometer is described in detail within this section.
After introducing the measurement model in Section 2.2.3.1, a suitable in field cal-
ibration technique is described in Section 2.2.3.2. Subsequently, Section 2.2.3.3 de-
scribes the magnetic declination as an additional error source that needs to be com-
pensated for if the magnetometer is used as a magnetic compass. Lastly, the temper-
ature dependencies of the magnetometer are analyzed in Section 2.2.3.4.

38 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.2.3.1 Measurement Modeling

The magnetometer measurement model can be expressed in a similar way as the
IMU models and reads:

mB,raw = Tm

(

RNB⊤mN ,true +mhard

)

+md +mw (2.20)

where mB,raw is the magnetometer raw measurement in the IMU body frame, Tm ∈
R3×3 is a symmetric matrix modeling the soft-iron effects that deforms the mag-
netic field readings, RNB⊤mN ,true is the true magnetic field observed in the body
frame, mhard is the hard-iron offset, md are magnetic disturbances and mw is Gaus-
sian measurement noise. The hard-iron effect results from permanently magnetized
ferromagnetic components in vicinity of the magnetometer and includes additional
zero field offsets. In contrast, soft-iron effects are caused by a magnetic field in-
duced by the geomagnetic field onto non-magnetized ferromagnetic components.
Different gain factors along the magnetometer axes, as well as non-orthogonalities
between the axes are also modeled by the soft-iron effect [101].

2.2.3.2 Magnetic Calibration

For the magnetic calibration, the hard- and soft-iron effects need to be eliminated.
Similar to the IMU calibration, the calibration method for the magnetometer should
be applicable in field and hence independent of external tools. The magnetometer
calibration method used in this work is based on [101]. Figure 2.28 shows the raw
data ellipsoid as well as the corrected data for a single magnetometer calibration.

Magx[mG]

0.6

0.4

0.2

-0.2

0

-0.4-1

Magy [mG]

-0.5
0

0.2

0.4

-0.2

-0.4

-0.6

0

M
a
g
z
[m

G
]

Raw
Calib

FIGURE 2.28: Raw and calibrated magnetometer readings.

The calibration data is collected by rotating the UAV platform with mounted
magnetometer randomly around all principle axes. In order to guarantee a uniform
distribution of the collected sample points, an iterative thinning algorithm is applied
according to [42]. The thinning algorithm calculates the distance between adjacent
points for each sample and eliminates it from the sample set if the calculated distance
is smaller than the minimum distance between two points for a regular polyhedron
with triangular faces consisting of the same number of samples. The remaining,
uniformly distributed samples are approximated with an ellipsoid using the method

2.2. AVIONICS 39

introduced in [102]. The ellipsoid is described in terms of its center ce, the three radii
re and the respective radii direction vectors as a matrix Ee =

[
ex ey ez

]
∈ R3×3.

The fitted ellipsoid can be used to simply calculate the calibration parameters as:

mhard = ce (2.21)

Tm = Ee

[

min (re)diag (re)
−1
]

Ee
⊤ (2.22)

2.2.3.3 Magnetic Declination

If the magnetometer is used as an angular reference, e.g. as a magnetic compass,
the magnetic declination is added as an additional error term and needs to be com-
pensated for. The magnetic declination ∆ψDecl is the misdirection of every magnetic
compass and describes the angular difference between the magnetic and geographic
pole for a certain location. If the magnetometer location is known, the magnetic dec-
lination can be calculated using the World Magnetic Model [103]. In Germany, the
declination is relatively small and approximately between 2 ◦ and 4 ◦. This changes
drastically for high latitudes as can be seen in Figure 2.29. The north heading pseudo
measurement ψN based on a magnetometer observation can be described as:

ψN = atan2
(

mB,rawy,mB,rawx

)

− ∆ψDecl (2.23)

kj

kj

90

70
60
50

40

30

20

10

0

-10

90

80

70

60

50

40

30

20

10

0

0
-10

-20

-30

-40

80
70

60

50

40

30

20

10

-1
0

-2
0

-3
0

-4
0

-5
0

-6
0

-7
0

-8
0

20

10

-10
-20

0

80

-20

20

10

-2
0

-5
0

-60

-70

-80-90-50

90

0

0

-1
0

10

0

-20

-30

-40

-70
-90

10

75°N

60°N

45°N

30°N

15°N

0°

15°S

30°S

45°S

60°S

75°S

75°N

60°N

45°N

30°N

15°N

0°

15°S

30°S

45°S

60°S

75°S

180°135°E90°E45°E0°45°W90°W135°W180°

180°135°E90°E45°E0°45°W90°W135°W180°

Map developed by NOAA/NCEI and CIRES
https://ngdc.noaa.gov/geomag/WMM
Published December 2019

US/UK World Magnetic Model - Epoch 2020.0
Main Field Declination (D)

Zero (agonic) line
Negative (west)
Positive (east)

Main Field
Declination (D) Position of Dip Poleskj

Contour interval: 2 degrees
Miller Cylindrical Projection

FIGURE 2.29: Magnetic declination map for 2020 [103]. The green
line indicates a declination of zero degrees, while a red and a blue

line indicate a positive and a negative declination, respectively.

40 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.2.3.4 Temperature Dependencies

Similar to the IMU, MEMS magnetometers using the Hall effect are silicon based,
too. Although temperature dependencies are present, the topic of thermal magne-
tometer dependencies and their compensation is often neglected in literature. The
temperature dependencies of the magnetometer are analyzed using the same ther-
mal chamber and setup as described in Section 2.2.2.4. The results are shown in
Figure 2.30. The temperature decencies can be eliminated by applying the previ-
ously described calibration procedure at different temperatures levels. To obtain a
calibration model for temperatures in between the different calibration levels, a lin-
ear approximation can be used. However, since the magnetometer is integrated into
the LSM9DS1, its temperature is stabilized, too and hence no additional temperature
compensation is required.

Temp [◦C]
-20 -10 0 10 20 30 40

M
a
g
[m

G
]

-0.1

0

0.1 x
y
z

FIGURE 2.30: Temperature dependencies of the LSM9DS1 magne-
tometer.

2.2.4 Barometric Pressure Sensor

The Bosch BMP388 [104] digital barometric pressure sensor is used as an altitude ref-
erence and connected to the real-time Cortex-M4 over I2C. The design of the sensor
was specifically targeted towards drone applications. Temperature dependencies
of the barometric pressure measurements are compensated using the built-in ther-
mometer. The relation between the pressure ph and the altitude h itself is given by
the barometric height formula:

ph = pr

(

1− Γ0 · h
Tr

) gM
RΓ0

(2.24)

where pr and Tr are the pressure and the temperature at the reference altitude, re-
spectively, Γ0 = 0.0065 K/m is the temperature lapse rate within the Troposphere,
g = 9.80665 m/s2 is the Earth’s gravity constant, M = 0.0289644 kg/mol is the molar
mass of the Earth’s air and R = 8.3144598 J/(mol · K) is the universal gas constant.
Solving Equation (2.24) for the altitude h, the altitude can be calculated with respect
to the pressure and the temperature at the reference height. The maximum sam-
ple rate is 200 Hz with a measurement noise of approximately 1.2 Pa which equals a
noise level of 10 cm. The barometer measurements ybaro are simply modeled as:

ybaro = hbaro,true + hw (2.25)

where hbaro,true is the true altitude with respect to the utilized reference and hw is
white Gaussian noise with a standard deviation of σbaro = 10 cm.

2.2. AVIONICS 41

2.2.5 Global Navigation Satellite System Receiver

Two precision timing single frequency uBlox NEO-M8T GNSS receivers are inte-
grated into the flight controller. They are connected to the application processor
using a dedicated UART interface each. While for the positioning of a UAV a single
GNSS receiver is sufficient, the use of two receivers allows to implement a GNSS
heading reference, a so-called GNSS compass. The GNSS measurements models can
be simplified to:

p = ptrue + pw (2.26)

v = vtrue + vw (2.27)

θ = θtrue + θw (2.28)

where p and v are the observed position and velocity, respectively, and θ is the ob-
served heading computed by the GNSS compass. The observations’ real values are
indicated with the subscript true, while additive noise terms are labeled with the
subscript w. The noise quantity of each observation depends on the receiver grade,
the utilized number of GNSS frequencies as well as the applied navigation tech-
nique. For reference, three different GNSS receiver grades from uBlox are shown in
Figure 2.31 and their characteristics compared in Table 2.8.

(A) ZED-F9P [105] (B) NEO-M8T [106] (C) SAM-M8Q [107]

FIGURE 2.31: uBlox GNSS modules: High precision dual-frequency
module ZED-F9P, timing module NEO-M8T and small scale GNSS

module with integrated antenna SAM-M8Q.

Device ZED-F9P NEO-M8T SAM-M8Q

Frequencies L1 & L2 L1 L1
Grade professional professional consumer
Price 176 e 80 e 22 e

Raw Data yes yes no
Antenna ANN-MB-00 [108] TW2990 [109] integrated
Footprint [mm2] 17.0 × 22.0 12.2 × 16.0 15.5 × 15.5

TABLE 2.8: GNSS module comparison.

The uBlox SAM-M8Q is a consumer grade GNSS receiver with integrated an-
tenna. It provides a navigation solution with standard GNSS accuracy to the user
at 10 Hz. In contrast to the consumer grade receiver, the two professional grade re-
ceivers provide a complete navigation solution with standard GNSS precision but
additionally raw observations in the shape of code- and carrier-observations as well
as Doppler shift measurements. The NEO-M8T outputs its data at 10 Hz, while the

42 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

ZED-F9P provides new measurements and navigation solutions at 20 Hz. Both re-
ceivers require external antennas. Their raw observations can be used to compute
precise navigation solutions using differential GNSS techniques such as RTK (Sec-
tion 4.5.3) and Precise Point Positioning (PPP) (Section 4.5.4). Being one of the key
components within this work, the Global Navigation Satellite System and its observ-
ables as well as standard and advanced navigation techniques are described in de-
tail in Chapter 4. Using the NEO-M8T, an external processor is required to compute
advanced navigation techniques. In contrast, some RTK functionalities are already
integrated into the ZED-F9P. Despite of being the inferior receiver, the NEO-M8T is
used within this work for the following reasons:

1. The NEO-M8T is a trade-off between an affordable and a high-end professional
GNSS receiver, combining a reasonable price and high accuracy raw data mea-
surements

2. The NEO-M8T was used at an early stage of this work and therefore the ac-
quired knowledge base was rather extensive by the time the ZED-F9P was
publicly released in 2019

3. The external implementation of the advanced navigation algorithms allows to
integrate complementary sensors for a more robust navigation solution

Although a single frequency receiver is used, the methods described within this
work are without any exception valid for multi frequency GNSS receivers. Hence,
the integration of the superior ZED-F9P is something that should be addressed in
the next hardware iteration of the flight controller.

2.2.6 Ultra-wideband Transceiver

Traditionally designed for short-range low-energy high-bandwidth communication,
Ultra-Wide Band (UWB) radio technology emerged as a very popular local posi-
tioning system solution in warehouse and industrial applications since well over a
decade. With the availability of cost efficient and miniaturized UWB transceivers,
the interest in research at public institutions and universities has also increased.
Hereby, low-cost and reliable indoor navigation using small UAVs is one of the most
researched topics [110–115]. In this section, the fundamentals of UWB technology
are briefly recapped before describing Double-Sided Two-Way Ranging (DS-TWR),
a Time of Arrival (TOA)-based UWB ranging technique, and introducing a UWB
distance measurement model. The DecaWave DWM1000 module [116], as shown in
Figure 2.32, is connected to the real-time Cortex-M4 using a dedicated SPI interface.

FIGURE 2.32: DecaWave UWB module DWM1000 [116].

2.2. AVIONICS 43

2.2.6.1 UWB Radio Signal Characteristics

The idea of UWB radio communication is derived directly from the Shannon-Hartley
theorem, describing the channel capacity C in [bits/s] of a radio signal with additive
white Gaussian noise N as:

C = B · log
(

1 +
S

N

)

(2.29)

where B is the signal bandwidth in [Hz] and S is the signal transmission power.
The ratio of signal transmission power to received signal noise power is commonly
referred to as signal-to-noise ratio (SNR) in [dB]. Analyzing Equation (2.29), it is
obvious that low-power radio communication with a large channel capacity can be
achieved by increasing the signal bandwidth. In contrast to traditional radio fre-
quency technology with a single frequency carrier wave, UWB radio technology
relies on a wide frequency spectrum for transmission in order to implement a short-
range low-energy high-bandwidth communication link. Specifically, a UWB radio
is defined as an antenna transmission where the emitted signal bandwidth is least
500 MHz or the fractional bandwidth is greater than 0.2 of the arithmetic center fre-
quency [117]. A traditional, frequency modulated radio signal is compared to a
UWB signal with bi-phase modulation in Figure 2.33 below. Additionally, differ-
ent frequency bands of standardized narrow-band and UWB signals as well as their
respective transmission power are depicted.

time

f [GHz]

am
p
li
tu
d
e

p
ow

er

802.11g

L1 GNSS

UWB

802.11a

UWB

1.5 2.4 3.1 4.8 5.5 6.0 10.6

FIGURE 2.33: Comparison between UWB (dark) and narrow-band
radio frequency signals (bright).

The UWB radio was originally referred to as pulse radio, since the wide fre-
quency spectrum of a UWB radio has the temporal representation of pulse. The
pulse shape of UWB signals can be used for time stamping message transmissions
and hence the time of message reception with a high precision. If the time of trans-
mission and reception are known with respect to a common time base, the distance
between the transmitter and the receiver can be calculated, if the signal propagation
time of the respective medium is known.

The DWM1000 module provides four different center frequencies (3.5 GHz, 4.0
GHz, 4.5 GHz and 6.5 GHz) with different spectral pulse widths ranging from 499.2 MHz
to up to 1331.2 MHz [116]. Throughout this work, channel number seven with a cen-
ter frequency of 6489.6 MHz and a nominal bandwidth of 1081.6 MHz is used.

44 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.2.6.2 UWB Radio Ranging

Depending on the specific application and the UWB anchor network constellation,
different ranging techniques are used, such as Time Difference of Arrival (TDOA)
and Time of Arrival (TOA). While TDOA approaches allow for a high scalability and
high update rates, precise clock synchronization between UWB network anchors is
required [118]. In contrast to this, TOA approaches such as Double-Sided Two-Way
Ranging (DS-TWR) eliminate the need for precise clock synchronization at the cost
of additional ranging messages, resulting in lower update rates. In this work, the
distances between two UWB modules are obtained using Double-Sided Two-Way
Ranging. Figure 2.34 illustrates a complete ranging sequence for two transceivers.

Poll

Poll Resp

Resp Final

Final

Master

Slave

time

tr1 ta1

ta2
tr2

t t t

time stamp

FIGURE 2.34: DS-TWR scheme using two UWB transceivers based on
[119].

Each message contains a pulse signal that is used to mark the exact transmission
time of the message. The DS-TWR is initiated by the master transmitting a poll
message to the slave. The slave detects the time of the pulse signal using its own
clock and responses with a second message after a fixed time delay ta2 . Once the
master detects the arrival time of the pulse of the second message, the first round
trip time tr1 can be calculated. After a fixed delay ta1 , a final message is sent from the
master. Besides the timing pulse, this final message contains the calculated round
trip time tr1 and the delay time ta1 . Once the final message is received at the slave,
the second round trip time tr2 can be calculated. The propagation time t can be
calculated according to [119] as:

t =
tr1 · tr2 − ta1 · ta2

tr1 + tr2 + ta1 + ta2

(2.30)

Using the time of flight t and the speed of light in air cair, the range dUWB between
the transceivers can be calculated as:

dUWB = t · cair (2.31)

Figure 6.18 shows a histogram for 5000 range errors using DS-TWR. Based on
the histogram, the raw distance measurements dUWB,raw are assumed to have addi-
tive noise with zero-mean. The standard deviation is found to be σUWB ≈ 25.7mm.
In addition to the additive noise, a measurement offset can be observed. This bias
is caused by small variations in the manufacturing process of the antenna and can

2.2. AVIONICS 45

Ranging Error [mm]
-10 -5 0 5 10

FIGURE 2.35: Histogram for 5000 DS-TWR distance measurements.

be determined using the calibration method described in [120]. Hence, the full mea-
surement model for UWB modules using DS-TWR is given as:

dUWB,raw = dtrue + db + dw (2.32)

where dtrue is the true distance, db is the bias caused by the antenna delay and dw is
Gaussian noise with dw ∼ N

{
0, σ2

UWB

}
.

Figure 2.36 illustrates the ranging scheme in case of multiple slaves. All slaves
are idle until a polling message is received. After reception, each slaves prepares
to send a response message after a respective delay tXa2 for each slave X. Here,
the delay is a distinct multiple of tAa2 , e.g. tBa2 = 2 · tAa2 . The master distributes
the measured round trip and local response times in a single final message. The
propagation times tA and tB as well as the respective distances can be calculated
according to the Equations (2.30) and (2.31).

Poll

Poll RespA

RespA Final

Final

Poll RespB

RespB

Final

Master

Slave A

Slave B

time

tAr1 tAa1

tAa2
tAr2

tA tA tA

tBr1 tBa1

tBa2
tBr2

tB tB tB

FIGURE 2.36: DS-TWR scheme using a single master and several
slave modules based on [119].

46 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.2.7 Remote Control Interfaces

Communication Interface The Udoo Neo board is equipped with Texas Instru-
ments WL1831 module [121] to provide WiFi and Bluetooth connectivity. An ex-
ternal 2.4 GHz antenna can be used instead of the on-board micro strip antenna to
enhance performance and reliability. WiFi is used as primary interface for ground
station communication.

Remote Control Interface The flight controller provides a serial interface for com-
mercial remote control receivers supporting the Spektrum 1024/2048 protocol [122]
and the SBUS standard [123]. The Spektrum protocol is exclusively used by Spek-
trum remote controllers. The SBUS standard is used by a wide range of remote
control vendors such as Futaba, Frsky and DJI. The two systems that are currently
used with the developed flight controller are shown in Figure 2.37. The Spektrum
DX8 transmits control inputs using eight channels on a wideband direct-sequence
modulated 2.4 GHz signal [124].The DJI Air unit uses the 5.7 GHz band for transmit-
ting remote control signals, a real-time video feed and on-screen display telemetry
[125].

(A) Spektrum DX8 [124] (B) DJI Air Unit [125]

FIGURE 2.37: Supported remote controls.

Additional Interfaces Other interfaces on the flight controller expansion board are
exposed using Molex connectors, giving access to an additional 3.3 V SPI interface,
a 3.3 V and a 5 V I2C interface, a full UART with hardware flow-control as well as
to two ADC channels. Depending on the user requirements and the connected pe-
riphery, each interface can be used with either the real-time or the application core.
Serial debugging ports for both cores are also exposed.

2.2.8 Optional Components

As previously mentioned, a number of additional interfaces is available for connect-
ing optional sensors or communication devices that are not mandatory for the flight
controller functionality. In GNSS denied environments, additional positioning sen-
sors are required. Different positioning sensors and systems that can be interfaced
with the flight controller are described in Section 2.2.8.1. For an autonomous landing
in an unknown environment, additional proximity sensors that are able to detect the
relative height of the UAV might be required. Two proximity sensor examples that
were used with this flight controller are introduced in Section 2.2.8.2. For long range
missions or missions in remote locations, additional communication interfaces are
required. The optional communication interfaces are described in Section 2.2.8.3.

2.2. AVIONICS 47

2.2.8.1 Positioning Sensors and Systems

Positioning sensors and systems can be grouped depending on their frame of ref-
erence into body frame fixed and external frame referenced components. They are
typically based on optical measurements, however, radio-based positioning systems,
e.g. using a network of UWB anchors and different radio ranging techniques, in-
crease in popularity.

Body Frame Fixed Sensors Both body fixed sensors introduced here provide ego-
motion estimations using image processing techniques. They are both depicted in
Figure 2.38. The sensors are suitable for unknown environments, e.g. autonomous
flight trough an unknown building, since they are independent of external infras-
tructure. However, as both sensors rely on optical measurements, sufficiently good
lighting is a basic requirement for the use of either of the sensors.

(A) ADNS3080 (B) Intel T265 [126]

FIGURE 2.38: Body fixed positioning sensors.

The ADNS3080 is an optical mouse sensor that measures translational 2D pixel
displacement at 2 kHz in the body frame ∆pB using optical flow [127]. Adjusting
its optical configuration, the sensor can be used on-board a UAV. A detailed sensor
description and system evaluation is given in [128]. The sensor is connected via SPI
and is typically mounted on the UAV platform facing downwards with its principle
image axes aligned to the body frame axes. For a known height and a fixed optical
setup, the pixel displacement per frame can be converted into a velocity measure-
ment using a height depended scaling factor γ(z). The current UAV attitude repre-
sented by the rotation matrix RNB needs to be corrected for, too. The resulting 2D
velocity measurements vB,xy(z) can be modeled with additive white Gaussian noise
as ∆pw,ADNS:

vB,xy(z) = R⊤NBγ(z) (∆pB,true + ∆pw,ADNS) (2.33)

The Intel RealSense T265 is a visual SLAM sensor using a stereo camera setup
and can be interfaced using the USB port of the flight controller. In contrast to the
optical flow sensor, the T265 provides a full pose estimation, namely its attitude and
a 3D position, rather than just information about the sensor displacement [126]. A
USB 3 port is required to transfer the pose estimation and the raw images, simultane-
ously. The maximum sample rate for pose estimation is 200 Hz. The pose estimation
is relative to a starting point and can be modeled using additive white Gaussian
noise pw,T265 and qw,T265, too:

pB = pB,true + pw,T265 (2.34)

qB = qB,true + qw,T265 (2.35)

48 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

External Frame Sensors Different external positioning systems can be used with
the developed flight controller. This section describes two systems that were already
used together with the flight controller. However, the flight controller is not limited
to those system and other external positioning systems with similar measurement
models can be used, too.

The first system is the OptiTrack Flex 3 commercial motion capture system [129].
It is installed in the flight hall of the Aerospace Computer Science department of the
University of Wuerzburg and consists of 16 external infrared light emitting cameras.
Two cameras and a camera hub are shown in Figure 2.39.

FIGURE 2.39: A part of the OptiTrack Flex 3 motion capture system.

Figure 2.40 shows the motion capture system pipeline. The OptiTrack motion
capture software runs on a Windows PC and streams the pose of each detected rigid
body i over a local network. The stream is captured by the UAV ground station and
the position of the respective UAV is transmitted wirelessly to the flight controller.

CameraCameraCameraCameraCamera
Motion Mocap
Windows PC

Ground Station
Linux PC

images

USB 2.0

[pi, qi] , i ∈ N
LAN

[pj , qj]

WiFi

FIGURE 2.40: Motion capture system pipeline.

The setup covers an area of about 6 m×8 m up to a height of approximately 6 m.
Infrared light reflecting markers are mounted on the UAV. The marker positions
are computed in the 2D image of each camera and used to calculate the 3D position
in overlapping images using triangulation. If several markers are rigidly mounted
on a platform, its attitude can be estimated, too. The full pose estimation data in
the navigation frame N is provided at up to 100 Hz. It provides a position accuracy
of 1 cm and an angular error of less than 1◦. Modeling the observation errors as
additive white Gaussian noise, the measurement equations read:

pN = pN ,true + pw,OptiTrack (2.36)

qN = qN ,true + qw,OptiTrack (2.37)

The optical tracking system is mostly used for system verification and the de-
velopment of new algorithms, where a precise and absolute reference is required.
In particular the ego-motion estimation framework of this work (Section 3.2) was
verified and evaluated using the motion capture system.

Another possibility is a Local Positioning System (LPS) based on the UWB rang-
ing scheme introduced in Section 2.2.6. The LPS approach implemented within this

2.2. AVIONICS 49

work is fully described in [130] and briefly summarized here. A network of UWB
anchors can be randomly deployed under the constraint that at least one anchor is
not on the same plane as the others. Based on the ranging information between the
fixed anchors a local coordinate frame is constructed. Distance measurements be-
tween each anchor and a UWB transceiver on the UAV are collected sequentially.
Using the known anchor positions as well as the obtained ranging information, the
UAV position can be estimated using Multi-Dimensional Scaling (MDS). The posi-
tion estimation is performed in real time on the UAV. Figure 2.41 shows a LPS with
four fixed anchors and a mobile UWB tag mounted on the UAV.

FIGURE 2.41: LPS based on UWB anchors and DS-TWR.

For reference, both positioning systems are compared in Figure 2.42. Clearly,
the motion capture system has a better accuracy than the UWB based positioning.
However, due to the mobile use and simple system setup as well as the compar-
atively low system price, the UWB-based positioning system provides a valuable
alternative. The 3D position accuracy of the UWB localization system is approxi-
mately 10 cm. The position observations can be be modeled with Equation (2.36)
and a correspondingly adapted noise term pw,UWB.

0

1

2

3

4

x
[m

]

-1

0

1

2

3

y
[m

]

0 50 100 150 200 250
0

0.5

1

1.5

2

z
[m

]

Time [s]

FIGURE 2.42: UWB (black) vs. OptiTrack (grey) positioning system.

50 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.2.8.2 Proximity Sensors

In general, proximity sensors are able to detect nearby objects or obstacles without
physical contact by emitting a signal and analyzing the signal return. Depending on
the type of the emitted signal, acoustic, electro-optic and radar sensors are distin-
guished. Each signal has different characteristics regarding its propagation time and
direction as well as material depended surface reflection. Acoustic signals travel at
the speed of sound in the respective medium and are reflected by rigid materials
and water. Electro-optic signals travel at the speed of light in the respective medium
and are not necessarily reflected by glass or materials with a shiny surface, since
the amount of reflection depends on signal’s incident angle. Radar signals have the
same propagation speed as light and are strongly reflected by metal, however, re-
flections of other materials can be detected, too. The transmission cones of acoustic
and radar signals are wide compared to electro-optical signals. A general proximity
sensor model for the distance dB with additive noise dw is given by:

dB =

{

dB,true + dw for a reflective surface

nan for a non-reflective surface
(2.38)

As of today, radar sensors require extensive electronics and software for signal
processing and interpretation and are therefore targeted towards very specific tasks.
In contrast, acoustic and electro-optical sensors are comparatively easy to use and
integrate. Figure 2.43 shows an electro-optic and an acoustic sensor that can be in-
terfaced over I2C with FARN for autonomous landing. The electro-optic Lidar-Lite
has a range 40 m and an accuracy of 1 cm at up to 500 Hz [131]. The acoustic SRF-02
uses ultra-sound and has a range 5 m and an accuracy of 2 cm [132].

(A) Lidar-Lite v3 [131] (B) SRF02 [132]

FIGURE 2.43: Different proximity sensors.

Figure 2.44 shows the readings of both proximity sensors during a flight over
a mixture of ice and water during the Arctic expedition PS93.2. The Lidar-Lite is
configured to detect weak reflections, too, allowing to detect the water surface.

Time [s]
0 5 10 15 20 25 30 35 40 45 50

H
ei
g
h
t
[c
m
]

0

50

100

150

200

250

300
SRF02
LidarLite

FIGURE 2.44: Proximity sensors during a flight over ice and water.

2.2. AVIONICS 51

2.2.8.3 Wireless Interfaces

As previously stated, the main communication link is provided by the WL1831 WiFi
module. However, depending on the specific mission, it might be required to ex-
tend the flight controller’s communication capabilities. Due to its range limitations,
WiFi is not suitable for long range communication. If appropriate infrastructure is
available, Long Term Evolution/4G (LTE/4G) mobile technology can be a profitable
alternative. In remote areas with little or no infrastructure at all, such as Arctic envi-
ronments, independent long range communication techniques are required. While
LTE/4G provides excellent data rates and an acceptable latency, traditional point-
to-point long range communication suffers low data rates. Figure 2.45 shows two
communication modules that were already used together with the flight controller.

(A) DWM-222 [133] (B) AMB8636.

FIGURE 2.45: Wireless communication module.

The DLink DWM-222 is a LTE/4G module that can be interfaced over USB. Up-
and down-link data rates are comparable to WiFi with a slightly higher latency
which in turn depends on the respective network constellation. Additional network-
ing infrastructure or services like a VPN-tunnel, a server or dynamic DNS might be
required, too.

The Amber Wireless AMB8636 is simply connected over UART. The radio signal
is modulated using Gaussian Frequency Shift Keying (GFSK) at 868 MHz [134]. The
half duplex communication link has a maximum data of 50 kbit/s bridging a dis-
tance of almost 14 km. Its latency is range dependent but typically limited to a few
milliseconds. Due to the low data rate, the communication load needs to be reduced
to essential telemetry and only necessary telecommands.

The communication properties of all three devices are summarized and com-
pared in Table 2.9.

Device WL1831 DWM-222 AMB8636

RF Technology WiFi LTE GFSK 868 MHz
Duplex full full half
Stand-alone yes no yes
Latency [ms] ≤ 100 ≤ 250 n.a.
Up-link [Mbit/s] 80 150

0.05
Down-link [Mbit/s] 80 50
Range [km] ≤ 0.5 n.a. ≤ 14

TABLE 2.9: Comparison between different communication modules.

52 CHAPTER 2. MATHEMATICAL MODELING OF THE PHYSICAL SYSTEM

2.3 Payload

The UAV platform and the flight controller described in this Chapter were success-
fully used in several real-world applications. This section outlines the UAV config-
uration as well as the added payload for the two projects ROBEX and MIDRAS.

ROBEX Within the ROBEX project, the dual antenna UAV platform was deployed
allowing to use a GNSS compass. The UAV was equipped with both, the acoustic
and the electro-optic proximity sensor for autonomous landing on ice as well as the
long range 868 MHz communication module. As pilot supporting payload, the UAV
was equipped with two cameras: A FLIR Lepton thermal camera [135] for ice floe
detection and a RGB tilt FPV-camera for remote operation. As a scientific payload,
a SeaBird Photo-synthetically Active Radiation (PAR) sensor was interfaced with
the flight controller to record reference data for the AUV. Figure 2.46 shows the
complete UAV setup as well as a thermal image recorded at an ice edge.

(A) Sensor suite. (B) Ice edge detection

FIGURE 2.46: ROBEX payload.

MIDRAS In contrast, for the MIDRAS project the single antenna configuration was
deployed. Only the electro-optic proximity sensor and the WiFi communication link
were used. Within MIDRAS, two cooperative UAVs carried a net together. As addi-
tional payload, each of the two UAVs was equipped with a load cell to measure net
impacts as well as a net detachment mechanism. The full configuration is shown in
Figure 2.47.

FIGURE 2.47: MIDRAS payload.

55

Chapter 3

Ego-motion Estimation and
Low-Level Control

This chapter describes the mathematical concepts and algorithms that are deployed
within FARN for ego-motion estimation and low-level control of a UAV.

Throughout literature, various attitude representations are used for UAVs, how-
ever, the mathematical background of the respective operators is not always clearly
defined and a common source for errors. Therefore, within this chapter the mathe-
matical background as well as different conventions regarding attitude representa-
tion are introduced in Section 3.1. Based on those mathematical concepts, the core of
the developed flight controller, namely the ego-motion estimation framework which
builds upon an Error-State Kalman Filter (ESKF) and the implemented control archi-
tecture are derived in Section 3.2 and 3.3, respectively.

3.1 Attitude Representation

In the area of autonomous robotics, knowing the robot’s state precisely, especially its
pose and twist, at any given time is fundamentally important for autonomous oper-
ations. Particularly for flying robots and especially in case of underactuated systems
like quadrotor UAVs, knowing the robot’s attitude is essential since by changing the
attitude of a quadrotor, the remaining three translational degrees of freedom are af-
fected. Generally, the attitude of a rigid body in 3D is represented by a rotation from
a reference frame to a frame that is fixed to the rigid body.

Since there are many different ways to describe a rotation, this section establishes
their mathematical background by clarifying necessary rotation conventions such as
the difference between active and passive rotations and by presenting the algebraic
concepts of different rotation representations, namely Tait-Bryan angles and rota-
tion matrices, angle axis as well as quaternions. For an in depth comprehension of
rotations and attitude representation, the reader is referred to [136–138].

3.1.1 Rotation Conventions

A common source for errors dealing with rotations arises from the careless use of
rotational conventions, such as the handedness of the coordinate frames and the
difference between active and passive rotations. Given a right handed reference co-
ordinate frame and a vector v, a rotational transformation around an angle α should
be applied.

The transformation can be applied in two ways illustrated in Figure 3.1. De-
pending on whether the vector v is rotated about the angle α, or whether the vector
is described from within another target coordinate frame that is obtained by rotating

56 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

about α in the opposite direction, an active or a passive rotation should be consid-
ered, respectively. In both cases, the resulting vectors v′ are numerically identical,
however, they are described from within different frames. Active rotations in right
handed coordinate frames that rotate a vector from a reference frame R to a target
frame T will be indicated as RRT , it holds:

RRT (α) = (RRT)
−1(−α) = RT R(−α) (3.1)

x

y

v

v′

x

y

v,v′

y′

x′

α
α

FIGURE 3.1: Active rotation (left) and passive rotation (right) around
an angle α. The sign of α changes depending on the type of rotation.

3.1.2 Tait-Bryan Angles and Rotation Matrices

The most common way to describe the orientation of a local frame with respect to a
global frame is by the means of three subsequent rotations. Depending on whether
the axis of rotation is local or global frame fixed, intrinsic and extrinsic rotations are
distinguished, respectively. Any rotation sequence expressed by intrinsic rotations
can be equivalently transformed into an extrinsic sequence.

xG

yG

zG

x′

y′

xL, x
′′

yL

zL

ψ θ

φ

FIGURE 3.2: Rotation represented by intrinsic Tait-Bryan angles fol-
lowing a z-y′-x′′ sequence. Note that ψ is negative in this case.

In avionic applications, Tait-Bryan angles are commonly used to describe the orien-
tation of a plane or a drone. The intrinsic rotation angles around the z, y′ and x′′ axis
are generally known as yaw ψ, pitch θ and roll φ. In this rotation sequence, interme-
diate axes are indicated by an additional super-scripted dash, meaning that y′ is the
new intermediate local frame y axis after the first rotation and x′′ is the new x axis
after the second rotation and therefore equivalent to the local frame axis xL. Figure
3.2 shows the intrinsic rotation sequence z-y′-x′′.

3.1. ATTITUDE REPRESENTATION 57

The intrinsic rotation sequence z-y′-x′′ is equal to the extrinsic sequence x-y-z. The
individual extrinsic rotations can be written as:

Rx(φ) =

1 0 0
0 cos φ − sin φ
0 sin φ cos φ

 (3.2)

Ry(θ) =

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (3.3)

Rz(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (3.4)

Concatenating these three rotations according to the x-y-z sequence yields an ac-
tive rotation that allows to rotate any vector given in the global frame. Given the x
axis directional vector eGx

in the global frame we can calculate the x axis directional
vector in the local frame eLx

as follows:

eLx
= RGLeGx

= R(ψ, θ, φ)eGx

= Rz(ψ)Ry(θ)Rx(φ)eGx

=

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 eGx

(3.5)

In order to describe a vector given in the local frame vL with respect to the global
frame, a passive rotation is applied:

vG = (RLG)
−1

vL
= RGLvL

(3.6)

A drawback of Tait-Bryan angles as rotation representation is the so called gimbal
lock. A gimbal lock occurs if the rotation angle around the pitch axis is equal to
±π

2 . In this case, a rotational degree of freedom is lost. Given the complete rotation
matrix, it is impossible to recover the original yaw ψ and roll φ angles:

R(ψ, π
2 , φ) = Rz(ψ)Ry(

π
2)Rx(φ)

=

0 sφcψ − cφsψ cφcψ + sφsψ

0 sφsψ + cφcψ cφsψ − sφcψ

−1 0 0

=

0 sin(φ− ψ) cos(φ− ψ)
0 cos(φ− ψ) − sin(φ− ψ)
−1 0 0

(3.7)

58 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

3.1.3 Axis-Angle

An alternative rotation representation that overcomes the problem of the gimbal lock
is called axis-angle and is illustrated in Figure 3.3. The rotation is described by the
means of a principle rotation vector and the rotation angle.

xG

yG

zG

xL

yL

zL

e

θ

FIGURE 3.3: Rotation represented by rotation axis e and the rotation
angel θ.

The axis-angle θ consists of unit vector e indicating the principal axis of rotation and
an angle θ:

θ ,
(
θ e

)
=

θ

ex

ey

ez

 (3.8)

Given a specific orientation represented by rotation matrix R based on the rotation
matrix form of Tait-Bryan angles, the equivalent axis-angle can be calculated as:

e =
1

2 sin(θ)

R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2

θ = arccos
(

Tr(R)− 1
2

)

(3.9)

where Tr(R) is the trace of R and Ri,j is the element in row i, column j. A vector in
the global frame v can be rotated with the Rodrigues’ rotation formula:

v′ = cos θ (v) + sin θ (e× v) + (1− cos θ) (e ◦ v) e (3.10)

The main limitation of the axis angle representation is that subsequent rotations can
not be computed without an additional conversion to another rotation representa-
tion such as Tait-Bryan angles or rotation matrices. Therefore, although the axis
angle representation is very intuitive and comes with a reduction of free parame-
ters compared to the Tait-Bryan angles and rotation matrices, it is not suitable for
tracking the orientation of a UAV due to the increased computational load.

3.1. ATTITUDE REPRESENTATION 59

3.1.4 Quaternions

A third way to describe rotations mathematically is the use of quaternions. A quater-
nion is a hyper complex number of rank four and can be represented in the following
way:

q = q0 + q1i + q2j + q3k (3.11)

where q ∈ H, {q0, q1, q2, q3} ∈ R and {i, j, k} ∈ C are complex numbers defined as:

i2 = j2 = k2 = ijk = −1 (3.12)

Another, commonly used representation considers the first part of the quaternion as
a scalar, while the complex part is expressed as a vector:

q ,

[
q0
qv

]

=

q0
q1
q2
q3

 (3.13)

3.1.4.1 Quaternion Properties

Next, some important properties of quaternions are outlined. The product of two
quaternions p and q is given by the Hamilton product:

p⊗ q =

[
p0q0 − p⊤v qv

p0qv + q0pv + pv × qv

]

=

p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 + p2q3 − p3q2

p0q2 − p1q3 + p2q0 + p3q1

p0q3 + p1q2 − p2q1 + p3q0

(3.14)

which can be also expressed as a matrix multiplication:

p⊗ q =
[
p
]

L
q =

p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

q0

q1

q2

q3

(3.15)

It is important to note that the quaternion product is in the general case non-commutative:

p⊗ q 6= q ⊗ p (3.16)

However, the quaternion product is associative:

(p⊗ q)⊗ r = p⊗ (q ⊗ r) (3.17)

The multiplicative identity is defined as:

q1 =

[
1
0v

]

(3.18)

which translates to an identity matrix for the quaternion product:
[
q1
]

L
= I4×4 (3.19)

60 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

In order to describe valid rotations in 3D space, unit quaternions have to be used.
Unit quaternions are all quaternions with unity norm. The norm of a quaternion
follows the definition of complex numbers and is given by:

‖q‖ =
√

q0
2 + q1

2 + q2
2 + q3

2 (3.20)

The complex conjugate of a quaternion is defined by:

q∗ =
[

q0

−qv

]

(3.21)

which yields:

q ⊗ q∗ =
[

‖q‖2

0v

]

(3.22)

The inverse of a quaternion q−1 is given by:

q−1 =
q∗

‖q‖2 (3.23)

For unity quaternions, meaning that ‖q‖ = 1, the inverse is equivalent to the com-
plex conjugate quaternion:

q−1 = q∗ (3.24)

3.1.4.2 Quaternion Rotations

Unit quaternions can not only be used to describe rotations or the orientation of an
object, moreover, they can also be used to rotate a vector v given in 3D space:

[
0
v′

]

= q ⊗
[

0
v

]

⊗ q∗ (3.25)

Using Equations 3.14 and 3.25 the relation between quaternions and rotation matri-
ces can be derived:

R{q}=

q0
2+q1

2−q2
2−q3

2 2(q1q2−q0q3) 2(q0q2+q1q3)
2(q1q2+q0q3) q0

2−q1
2+q2

2−q3
2 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q0q1+q2q3) q0
2−q1

2−q2
2+q3

2

 (3.26)

In contrast to the axis angle representation, a sequence of intrinsic rotations using
quaternions can be simply written as the product of the individual rotations:

qAC = qAB ⊗ qBC (3.27)

which can be directly converted to the rotation matrix representation as:

RAC = R{qac} = R{qAB ⊗ qBC} = R{qAB}R{qBC} = RABRBC (3.28)

3.1. ATTITUDE REPRESENTATION 61

3.1.4.3 Conversion to Tait-Bryan Angles

For a more convenient way to interpret quaternions, they can be converted to Tait-
Bryan angles using the following equation:

φ
θ
ψ

 =

atan2
(
2 (q0q1 + q2q3) , 1− 2

(
q1

2 + q2
2
))

asin (2 (q0q2 − q1q3))
atan2

(
2 (q0q3 + q1q2) , 1− 2

(
q2

2 + q3
2
))

 (3.29)

Given a set of Tait-Bryan angles, we can construct a valid unit quaternion with:

q =

cφ/2cθ/2cψ/2 + sψ/2sθ/2sψ/2

sφ/2cθ/2cψ/2 − cψ/2sθ/2sψ/2

cφ/2sθ/2cψ/2 + sψ/2cθ/2sψ/2

cφ/2cθ/2sψ/2 − sψ/2sθ/2cψ/2

(3.30)

3.1.4.4 Conversion to Axis Angle

Similar, quaternions can be converted to the axis angle representation. For q0 6= ±1,
we can calculate the axis e and the angle θ with:

θ = 2 arccos (q0) (3.31)

e =
1

√

1− q2
0

q1

q2

q3

 (3.32)

For the case that q0 = ±1, the rotation angle θ is zero and the rotation axis can be
chosen arbitrarily. In order to convert an axis angle pair to a quaternion we can use
the following relation:

q {θ} = q {θ, e} =

cos
(

θ

2

)

sin
(

θ

2

)

e

(3.33)

3.1.4.5 Quaternion Derivative

The derivative of a quaternion can be obtained from the differential coefficient:

dq(t)

dt
= lim

∆t→0

q(t + ∆t)− q(t)

∆t
(3.34)

Assuming that there is a local angular perturbation that can be described by an axis-
angle ∆θL = ∆θ · u, we can express the quaternion disturbance ∆qL using Equation
3.33 and the small angle approximation with sin(x) ≈ x and cos(x) ≈ 1:

∆qL , lim
∆θL→0

q {∆θL} ≈
[

1
1
2 ∆θL

]

(3.35)

62 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

The angular perturbation can be described in terms of a local angular rate ∆ωL:

∆ωL ,
dθL
dt

= lim
∆t→0

∆θL
∆t

(3.36)

Developing Equation 3.34 using the definition for small angle disturbances we get
the quaternion derivative as:

q̇ , lim
∆t→0

q(t + ∆t)− q(t)

∆t

= lim
∆t→0

q(t)⊗ ∆qL − q(t)

∆t

= lim
∆t→0

q(t)⊗ (∆qL − q1)

∆t

= lim
∆t→0

q(t)⊗
([

1
1
2 ∆θL

]

−
[

1
0

])

∆t

= lim
∆t→0

q(t)⊗
[

0
1
2 ∆t ·ωL

]

∆t

=
1
2
q(t)⊗

[
0
ωL

]

(3.37)

3.1.4.6 Quaternion Conventions in this Work

Solà emphasizes the importance of choosing and clarifying quaternion conventions
[139]. Throughout literature, different conventions are used but not always clarified.
In total, there are twelve different ways to define quaternions which can be broken
down to four main choices.

1. Quaternion component order

2. Handedness (left/right)

3. Rotation of frame (passive) or vector (active)

4. Direction of rotation operation (Local-to-Global/Global-to-Local)

The two most common choices are Hamilton and from the Jet Propulsion Laboratory
(JPL) shown in Table 3.1. Within this work the passive Hamilton convention is used.

Convention JPL Hamilton

Component order (qv, q0) (q0, qv)
Handedness Left-handed Right-handed
Rotation passive passive
Right-to-left products Global-to-Local Local-to-Global

q , qLG q , qGL
vL = q ⊗ vG ⊗ q∗ vG = q ⊗ vL ⊗ q∗

TABLE 3.1: JPL and Hamilton quaternion conventions.

3.2. ERROR-STATE KALMAN FILTER 63

3.2 Error-state Kalman Filter

Having established different ways of representing the UAV’s orientation, the actual
attitude determination within the context of the ego-motion estimation framework
of the developed flight controller is described next. The goal of the ego-motion es-
timation is to determine the UAV’s system state by the means of sensor fusion. The
full system state includes the UAV’s orientation and angular rates around each prin-
ciple axis as well as its 3D position and velocity in space.

This section describes the core component of the ego-motion estimation frame-
work: An Error-State Kalman Filter (ESKF) based on [139] which is significantly
extended within this work. The extended ESKF includes a compensation mecha-
nism for magnetic disturbances, a method to include delayed measurements as well
as detailed measurement models for the integration of complementary sensor data.

The idea of a ESKF is to estimate the error δx̂ of the current state estimate x̂ using
a Kalman Filter rather than the state itself. The current state is estimated by integrat-
ing inertial measurements and accumulated errors are corrected for with external
measurements at a much lower data rate. Sometimes the ESKF approach is referred
to as the indirect form of a EKF [140], while a traditional EKF is referred to as the
direct form [141]. Comparing traditional EKF formulations with the ESKF approach,
several strong advantages can be observed [142, 143]:

1. The separation between the inertial sensor integration and the actual Kalman
Filter allows to update the state estimate independently and even in the ab-
sence of new external measurements.

2. As a consequence, non-linearities due to high dynamics are handled by iner-
tial system propagation, while slowly varying system errors can be estimated
using linearized models.

3. Furthermore, since the error dynamics are slow compared to the system dy-
namics, external sensors can operate at a much lower frequency than the in-
ertial ones. In the absence of new measurements, pure inertial navigation can
be used as temporary fall back solution up to a couple of minutes [143], how-
ever the quality depends highly on the navigation grade of the utilized inertial
sensors.

Estimating errors only, the ESKF system states will always be close to zero giving a
number of additional advantages:

4. Traditional EKF implementations rely on quaternions for attitude representa-
tion, in order to avoid singularities due to gimbal lock. Since attitude error
angles are always small, a gimbal lock is avoided and hence there is no need
for quaternions, thus reducing the ESKF system state by one.

5. Another benefit is that small angle approximations and other assumptions
made during linearization are always valid because the error state is close to
zero. Similarly, the system Jacobians are easy and fast to compute since higher
order terms are very small and can be therefore neglected.

64 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

3.2.1 State Estimation

The work flow for a single ESKF iteration is shown in Figure 3.4. In the ESKF, high
frequency IMU data is used as system input u and integrated into the nominal state
estimate x̂ using a system of non-linear propagation functions fx,k and the best state
estimate that is available at discrete time k. The nominal state estimate neglects
noise terms and model imperfections which are described by the uncertainty term
v. Since those uncertainties are neglected, possible errors δx accumulate during the
system state propagation and hence need to be corrected for. The accumulated errors
are estimated as δx̂ using the ESKF. Based on the system propagation equations
fx,k, the system of error state propagation equations fδx,k can be derived. The ESKF
predicts the error state noise covariance matrix P based on the current state estimate
and the noise characteristics of the system input covariance matrix Qi. The error
state noise covariance matrix P is corrected once complementary sensor data y is
available. Typically, complementary sensor data (e.g. GNSS, vision, magnetometer)
is acquired at a frequency that is lower than the data rate of the inertial sensors used
for the state propagation. For attitude determination, however, the accelerometer
can be used to correct for roll and pitch error estimates, too. Similar to a regular
EKF, a measurement prediction ẑ is made based on the latest state estimate and
compared to the real measurement. By predicting the innovation covariance S based
on the measurement noise covariance R and the current error state covariance P , the
Kalman Filter gain K can be calculated and used to estimate the current error state.
The error state is injected into the current state estimate and reset to zero during the
next filter iteration. The error state’s covariance matrix is updated in order to reflect
this reset.

True State

xt,k

Input

um,k+1

State Estimate

x̂k|k

Reset Error Estimate

δx̂k|k = 0
Error Covariance

P k|k

Evaluation of Jacobians

Fδx,k =
∂fδx,k(x,u)

∂δx

∣
∣
∣
∣
x=x̂k+1|k

Hk+1 =
∂hk(x)

∂x

∣
∣
∣
∣
x=x̂k+1|k

State Transition

xk+1 = fk (xk,um,k+1) + vk+1

State Propagation

x̂k+1|k = fx,k

(
x̂k|k,um,k+1

)

Error Prediciton

δx̂k+1|k =

Fδx,k

(
x̂k|k,um,k+1

)
· δx̂k|k

Error Prediciton Covariance

P k+1|k = Fδx,kP k|kF
⊤
δx,k

+FiQikF
⊤
i

Measurement Prediction

ŷk+1|k = hk+1

(
x̂k+1|k

)

Residual Covariance

Sk+1 = Rk+1+
Hk+1P k+1|kH

⊤
k+1

Measurement

yk+1 = hk+1 (xk+1) +wk+1

Measurement Residual

ẑk+1 = yk+1 − ŷk+1|k

Filter Gain

Kk+1 = P k+1|kH
⊤
k+1S

−1

k+1

State Correction

x̂k+1|k+1 =
x̂k+1|k ⊕ δx̂k+1|k+1

Updated Error Estimate

δx̂k+1|k+1 = Kk+1ẑk+1

Updated State Covariance

P k+1|k+1 = P k+1|k

−Kk+1Sk+1K
⊤
k+1

Uncertainty

vk+1

Noise

wk+1

FIGURE 3.4: Flowchart of the ESKF for one cycle. The steps indicated
with dashed boxes can be omitted.

3.2. ERROR-STATE KALMAN FILTER 65

3.2.1.1 System Kinematics in Continuous Time

Next, the system kinematics in continuous time for a quaternion based ESKF are
derived. Based on this, the system kinematics in discrete time are developed after-
wards. The kinematics are based on the work done by [139]. However, in this filter
approach, the gravity vector is assumed to be constant and magnetic disturbances
are added to the error state. The magnetic disturbances are used to estimate local
magnetic fields that superpose the Earth’s magnetic field and therefore cause errors
during the heading estimation. Table 3.2 lists all variables of the ESKF and indicates
whether they are obtained in the body fixed frame B or the navigation frame N .
Biases and local disturbances are always with respect to the B frame.

True Nominal Error Measured Noise

Full State xt x δx

Position pN ,t pN δpN
Velocity vN ,t vN δvN
Quaternion qNB,t qNB δqNB
Rotation Matrix RNB,t RNB δRNB
Euler Angle δθNB

Accelerometer Bias ab,t ab δab abw

Gyroscope Bias ωb,t ωb δωb ωbw

Magnetic Disturbance md,t md δmd mdw

Acceleration aB,t aB,m aw

Angular Rate ωB,t ωB,m ωw

Magnetic Field mB,t mB,m mw

Gravity Vector gN

TABLE 3.2: Variables for the quaternion based ESKF system model.

True State If the true acceleration and the true angular rate of a body are perfectly
known, the current position, attitude and velocity of the body can be derived by
simply integrating the inertial data. Therefore, the true kinematics in continuous
time can therefore be written as:

ṗN ,t = vN ,t (3.38.1)

v̇N ,t = aN ,t (3.38.2)

q̇NB,t =
1
2
qNB,t ⊗

[
0

ωB,t

]

(3.38.3)

ȧb,t = abw (3.38.4)

ω̇b,t = ωbw (3.38.5)

ṁd,t = mdw (3.38.6)

where the quaternion derivative q̇NB,t is given by Equation (3.37) for a quaternion
that encodes the rotation from the navigation frameN to the body B and an angular
velocity given in the body frame ωB,t.

66 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

For real IMUs however, measurement errors that can not be mitigated by cali-
bration need to be considered, too. Today, modern inertial navigation modules pro-
vide integrated magnetometer readings in addition to acceleration and angular rate
measurements. Based on the detailed measurement models in Section 2.2, simpli-
fied measurement models after calibration for a IMU and a magnetometer can be
derived as:

aB,m = RNB,t
⊤ (aN ,t − gN) + ab,t + aw (3.39)

ωB,m = ωB,t +ωb,t +ωw (3.40)

mB,m = RNB,t
⊤ (mN ,t) +md,t +mw (3.41)

where the rotation matrix is derived from the quaternion according to Equation
(3.26) RNB,t , R {qNB,t}. Solving Equation (3.39) and (3.40) for the true values
and substituting it back into the system of Equations (3.38) the kinematic system
yields:

ṗN ,t = vN ,t (3.42.1)

v̇N ,t = RNB,t (aB,m − ab,t − aw) + gN (3.42.2)

q̇NB,t =
1
2
qNB,t ⊗

[
0

(ωB,m −ωb,t −ωw)

]

(3.42.3)

ȧb,t = abw (3.42.4)

ω̇b,t = ωbw (3.42.5)

ṁd,t = mdw (3.42.6)

which can be written as the true system state xt, noisy system input um and white
Gaussian noise v:

xt =

pN ,t

vN ,t

qNB,t

ab,t

ωb,t

md,t

um =

[
aB,m

ωB,m

]

v =

aw

ωw

abw

ωbw

mdw

(3.43)

We can rewrite the kinematic system in terms of a system of functions f :

ẋt = f (xt,um) + v (3.44)

In order to utilize the advantages of the ESKF approach, the system given with
the Equations in (3.42) has to be reformulated in terms of nominal and error system
state. The true system state xt is therefore split into the nominal system state x and
its errors state δx as xt = x⊕ δx, where ⊕ denotes a generic composition and is
given by:

xt = x⊕ δx =

pN + δpN
vN + δvN

qNB ⊗ δqNB
ab + δab

ωb + δωb

md + δmd

(3.45)

3.2. ERROR-STATE KALMAN FILTER 67

For local disturbance error angles δθNB close to zero, the local quaternion pertur-
bation δqNB can be obtained by using the small angle approximation according to
Equation (3.35) as:

δqNB ≈
[

1
1
2

δθNB

]

(3.46)

The nominal state and the reduced error state with the minimal number of parame-
ters required for attitude representation can be written as:

x =

pN
vN
qNB
ab

ωb

md

∈ R
19×1 δx =

δpN
δvN

δθNB
δab

δωb

δmd

∈ R
18×1 (3.47)

Nominal State Using the representation in Equation (3.47), the true system kine-
matics in Equations (3.42) can be split into the nominal state kinematics and lin-
earized error state kinematics. Since noise and other perturbations are handled by
the error state kinematics, the nominal state kinematics are simply derived as:

ṗN = vN (3.48.1)

v̇N = RNB (aB,m − ab) + gN (3.48.2)

q̇NB =
1
2
qNB ⊗

[
0

(ωB,m −ωb)

]

(3.48.3)

ȧb = 0 (3.48.4)

ω̇b = 0 (3.48.5)

ṁd = 0 (3.48.6)

Error State The linearized error dynamics are derived in [139], where second order
terms for the velocity and angular error dynamics are neglected based on the small
error state assumptions:

˙δpN = δv (3.49.1)
˙δvN = −RNB [aB,m − ab]× δθ−RNBδab −RNBaw (3.49.2)

˙δθNB = − [wB,m −wb]× δθ− δωb −ωw (3.49.3)
˙δab = abw (3.49.4)
˙δωb = ωbw (3.49.5)
˙δmd = mdw (3.49.6)

where the [•]× describes the skew operator that produces the cross-product matrix
for a given vector v:

[v]× ,

0 −vz vy

vz 0 −vx

−vy vx 0

 (3.50)

68 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

3.2.1.2 System Kinematics in Discrete Time

The previously stated system kinematics in continuous time need to be discretized,
in order to be applied to discrete time steps and measurements. The error state
and the nominal system state can be considered separately. In order to improve the
readability of the discrete kinematic equations, frame designations will be neglected
hereafter, however, the introduced frames remain valid. The discrete true state xt,k

at time k can be written as:

xt,k = xk ⊕ δxk (3.51)

Nominal State As aforementioned above, one advantage of the ESKF is that the
nominal system state kinematics given by the Equations in (3.48) are free of noise
and disturbances. We can introduce a propagation function for the discrete nominal
state with:

xk+1 = fx,k (xk,um,k+1) (3.52)

Since fx,k is noise and disturbance free, standard numeric integration methods
can be applied to propagate the nominal state estimate over time. Throughout liter-
ature, the Euler and the midpoint method are most commonly used, since they offer
sufficient accuracy and simultaneously low computational complexity at high prop-
agation rates [83, 144–146]. Higher order integration methods, like Runge-Kutta
methods are also popular [147, 148]. Using the Euler method and assuming that the
derivative remains constant between two consecutive measurements, the discrete
nominal state kinematics are given by:

pk+1 = pk + vk∆t +
1
2
[R (am,k+1 − ab,k) + g]∆t2 (3.53.1)

vk+1 = vk + [R (am,k+1 − ab,k) + g]∆t (3.53.2)

qk+1 = q ⊗ q {(ωm,k+1 −ωb,k)∆t} (3.53.3)

ab,k+1 = ab,k (3.53.4)

ωb,k+1 = ωb,k (3.53.5)

md,k+1 = md,k (3.53.6)

where ∆t is the time between samples k and k + 1 and q {ω∆t} is the quaternion
obtained using Equation (3.33) and integrating the angular rate ω using Euler’s
method:

q {ω∆t} =

cos
‖ω‖∆t

2
ω

‖ω‖ sin
‖ω‖∆t

2

(3.54)

3.2. ERROR-STATE KALMAN FILTER 69

Error State The error state models the system uncertainties such as noise and dis-
turbances as stochastic signals. Since the integration of stochastic signals results in
random pulses, the discrete error state model derived from the Equations in (3.49)
reads:

δpk+1 = δpk + δvk∆t (3.55.1)

δvk+1 = δvk +
(
−R [am,k+1 − ab,k]× δθk −Rδab,k

)
∆t + vi (3.55.2)

δθk+1 = R⊤ {(ωm,k+1 −ωb,k)∆t} δθk − δωb,k∆t + θi (3.55.3)

δab,k+1 = δab,k + ai (3.55.4)

δωb,k+1 = δωb,k +ωi (3.55.5)

δmd,k+1 = δmd,k +mi (3.55.6)

where vi, θi, ai, ωi and mi are the random impulses applied to the according er-
ror states and R {ω∆t} can be obtained using Equations (3.26) and (3.33) and the
following relationship:

R {ω∆t} = R {q {ω∆t}} (3.56)

The impulses are modeled by white Gaussian noise with zero mean. For a Gaussian
distributed random variable x with mean µ and a distribution that can be described
with the covariance matrix Σ we write:

x ∼ N {µ, Σ} (3.57)

Their respective covariance matrices are obtained by integrating the covariances of
the respective noise signals over the sample time ∆t:

vi ∼ N {0,Vi} , with Vi = σ2
aw

∆t2I3×3 (3.58)

θi ∼ N {0, Θi} , with Θi = σ2
ωw

∆t2I3×3 (3.59)

ai ∼ N {0,Ai} , with Ai = σ2
abw

∆tI3×3 (3.60)

ωi ∼ N {0, Ωi} , with Ωi = σ2
ωbw

∆tI3×3 (3.61)

mi ∼ N {0,Mi} , with Mi = σ2
mdw

∆tI3×3 (3.62)

where σaw is the velocity random walk and σabw
is the bias instability of the ac-

celerometer and σωw is the angular random walk and σωbw
is the bias instability of the

gyroscope. σmdw
describes the expected deviation of magnetic field measurements

due to electro magnetic disturbances detected in the vicinity of the magnetometer,
e.g. UAV motor current. Random walk and bias instability can be determined exper-
imentally or are given in the IMU datasheet, while the influence of electro-magnetic
disturbances are application dependent and have to be determined experimentally.

The sensor characteristics required for the implementation of the presented sen-
sor fusion approach are derived in Section 2.2.2.1.

70 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

Error State Jacobian and Perturbation The error state Jacobian and the perturba-
tion matrix can be obtained by inspecting the discrete error kinematics. Subdividing
each equation into deterministic and stochastic parts, we can rearrange and pack the
Equations in (3.55) as:

δxk+1 = fδx,k (xk, δxk,um,k+1, i)

= δxk ·
∂fδx,k

∂δx

∣
∣
∣
∣
x,um

︸ ︷︷ ︸

Fδx,k(xk ,um,k+1)

+i · ∂fδx,k

∂i

∣
∣
∣
∣
x,um

︸ ︷︷ ︸

Fi

(3.63)

where i is a vector containing all perturbation impulses:

i =
[
vi θi ai ωi mi

]⊤ ∈ R
15×1 (3.64)

The system transition matrix Fδx,k is the Jacobian of fδx,k with respect to the error
state vector δx evaluated at the latest nominal state estimation x̂k+1|k and the current
measurements um,k+1. It is given by:

Fδx,k =
∂fδx,k (xk, δxk,um,k+1, i)

∂δx

∣
∣
∣
∣
x=x̂k+1|k ,um=um,k+1

(3.65)

=

I I∆t 0 0 0 0 0
0 I −R [am,k+1 − ab,k]× ∆t −R∆t 0 I∆t 0

0 0 R⊤ {(ωm,k+1 −ωb,k)∆t} 0 −I∆t 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I

x=x̂k+1|k

The perturbation matrix Fi is the Jacobian of fδx,k with respect to the perturbation
vector i and given by:

Fi =
∂fδx,k (xk, δxk,um,k+1, i)

∂i
(3.66)

=

0 0 0 0 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

The ESKF prediction equation are then given as:

δx̂k+1|k = Fδx,k
(
x̂k+1|k,um,k+1

)
· δx̂k|k (3.67)

Pk+1|k = Fδx,kPk|kF
⊤
δx,k + FiQiF

⊤
i (3.68)

where P is the covariance matrix of the error state estimate δx̂ with δx ∼ N {δx̂,P }
and Qi is the covariance matrix of the perturbation impulses:

Qi = diag (Vi, Θi,Ai, Ωi,Mi) (3.69)

3.2. ERROR-STATE KALMAN FILTER 71

3.2.2 Complementary Sensor Integration

The error states can be observed once a complementary sensor measurement ar-
rives. Typically, the complementary sensor is sampled at a lower rate than the ESKF
nominal state is propagated using inertial measurements. Common complementary
observations include GNSS measurements, barometric height readings, proximity
sensor distances, visual ego-motion estimations or odometry data. However, for
attitude estimation, the Earth gravity vector observed by an accelerometer as well
as magnetic field measurements can be used as complementary source, too. Simi-
lar to a standard EKF, the measurement is predicted based on some linear or non-
linear function h that depends on the system state x and has additive Gaussian noise
w ∼ N {0,R}. The measurement prediction y is the given by:

y = h (xt) +w (3.70)

In order to process the ESKF covariance matrices correctly, the measurement Ja-
cobian H with respect to the error state δx needs to be computed. It can be devel-
oped using the chain rule for partial derivatives:

H ,
∂h(x)

∂δx

∣
∣
∣
∣
x=x̂k+1|k

=
∂h(x)

∂xt

∣
∣
∣
∣
x=x̂k+1|k

︸ ︷︷ ︸

Hx

· ∂xt

∂δx

∣
∣
∣
∣
x=x̂k+1|k

︸ ︷︷ ︸

Xδx

(3.71)

The Jacobian matrix Hx depends on the measurement equation only and can be
derived in the same way as for a regular EKF. Xδx is derived in [139] as:

Xδx =
∂ (x⊕ δx)

∂δx

∣
∣
∣
∣
x=x̂k+1|k

(3.72)

=

∂(p+δp)
∂δp

0 0 0 0 0

0
∂(v+δv)

∂δv
0 0 0 0

0 0
∂(q⊗δq)

∂δq
0 0 0

0 0 0
∂(ab+δab)

∂δab
0 0

0 0 0 0
∂(ωb+δωb)

∂δωb
0

0 0 0 0 0
∂(mb+δmb)

∂δmb

x=x̂k+1|k

=

I6×6 0 0
0 Qδθ 0
0 0 I9×9

x=x̂k+1|k

72 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

where Qδθ is derived using the chain rule and the small error angle assumption from

Equation (3.35) with δq →
[

1
1
2 δθ

]

:

Qδθ =
∂ (q ⊗ δq)

∂δθ

∣
∣
∣
∣
q=q̂k+1|k

=
∂ ([q]L δq)

∂δq

∣
∣
∣
∣
q=q̂k+1|k

· ∂δq

∂δθ

∣
∣
∣
∣
δθ=0

=
[
q̂k+1|k

]

L
· 1

2

0 0 0
1 0 0
0 1 0
0 0 1

(3.73)

Once the Jacobian is evaluated, the ESKF follows the standard EKF equations. Hence,
the measurement residual ẑ and the innovation covariance S are given with:

ẑk+1 = yk+1 − h
(
x̂k+1|k

)
(3.74)

Sk+1 = Rk+1 +Hk+1Pk+1|kH
⊤
k+1 (3.75)

where Rk+1 is the covariance describing Gaussian properties of the measurement
yk+1. The Kalman filter gain K is calculated as:

Kk+1 = Pk+1|kH
⊤
k+1S

−1
k+1 (3.76)

Using the Kalman filter gain, the error state δx̂k+1|k+1 and its covariance matrix
Pk+1|k+1 can be updated:

δx̂k+1|k+1 = Kk+1ẑk+1 (3.77)

Pk+1|k+1 = (I −KH)Pk+1|k (3.78)

The covariance update in Equation (3.78) is known to suffer poor numerical stability.
Throughout literature, the Joseph form is the preferred update method, however,
computationally quite expensive. Therefore, the covariance update is done using
a symmetric update form and an additional measure proposed in [149] to ensure
that the covariance matrix remains symmetric and positive despite the influence of
numerical inaccuracies:

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
⊤
k+1 (3.79)

Pk+1|k+1 ←
1
2

(

Pk+1|k+1 +P⊤k+1|k+1

)

(3.80)

In the final step, the estimated error states need to be injected into the nominal filter
state. This can be done using the appropriate compositions from Equation (3.51):

x̂k+1|k+1 = x̂k+1|k ⊕ δx̂k+1|k+1 (3.81)

After the injection, the error state estimate is reset to zero. Strictly speaking, its
covariance matrix needs to be updated accordingly in order to reflect the reset step.
However, as noted by [139], the correction factor depends on the small angle error
δθ only and thus can be neglected in major cases.

3.2. ERROR-STATE KALMAN FILTER 73

3.2.2.1 Accelerometer

The accelerometer can be used as complementary sensor to compensate for the gy-
roscope drift around the roll and pitch axis. The raw accelerometer measurements
are processed as depicted in Figure 3.5.

■▼❯ ❆①✐s ❆❧✐❣♥♠❡♥t ❊❙❑❋ Pr♦♣❛❣❛t✐♦♥

❊❙❑❋ ❯♣❞❛t❡

aB,raw ãB,m aB,m

ãB,m

aN ,t
?
= 0

FIGURE 3.5: ESKF accelerometer integration.

First, the axis misalignment error of the IMU is corrected according to the calibra-
tion algorithm in Section 2.2.2.2. For the ESKF propagation in Equation (3.53), noise
caused by vibrations are mitigated using mechanical damping and a low-pass filter
as described in Section 2.2.2.3. Finally, for the ESKF attitude update, an algorithm
decides whether the UAV is accelerated by another force than the Earth gravitation.
If no other force is acting on the UAV, the accelerometer can be used update the
attitude.

Conditioning The accelerometer raw measurements have to be analyzed to detect
whether another force despite the Earth’s gravity is acting upon the UAV or not.
Since the accelerometer measurements are noisy, the simplest method is to observe
the current UAV velocity estimate. If the velocity is close to zero or remains constant
within certain thresholds, the accelerometer measurement can be used for the atti-
tude update. However, in cases where no external position or velocity reference is
available, this approach fails since the velocity estimate without complementary cor-
rections is drifting and unreliable. A similar problem occurs in pedestrian tracking
applications, where zero-velocity conditions have to be detected. Skog et al. evalu-
ate different zero velocity detection algorithms in [150] and conclude that the stance
hypothesis optimal detector (SHOE) outperforms other approaches. As mentioned
in [151], the SHOE detector can be used to detect whether the UAV is accelerating,
too, and is given by:

1
W

n+W−1

∑
k=n

1
σ2

a

∥
∥
∥
∥
aB,m(k)− g

āB,m,n

‖āB,m,n‖

∥
∥
∥
∥

2

+
1

σ2
ω
‖ωB,m,k‖2

< γ (3.82)

where W is a parameter describing the window size, σ2
a and σ2

ω are used to tune a
weighing ratio between the gyroscope and the accelerometer measurements, g is the
gravity constant, γ is the detection threshold and āB,m,n is the accelerometer sample
mean over W samples:

āB,m,n =
1

W

n+W−1

∑
k=n

aB,m(k) (3.83)

74 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

If the Equation (3.82) holds true, the UAV is considered to be in non-accelerating
mode. The results of the SHOE detector are shown in Figure 3.6 for a UAV flight .

Time [s]
30 40 50 60 70 80 90 100 110 120 130

‖
A
cc
‖
[g
]

0

2

4

Time [s]
30 40 50 60 70 80 90 100 110 120 130

‖
V
el
‖
[m

/
s]

0

1

2

3

FIGURE 3.6: SHOE acceleration detection: W=10, σ2
a=σ2

ω, γ=25 and
a 200 Hz sample rate. The upper plot shows the absolute acceleration
and the lower plot the UAV speed. A gray background indicates a

non-accelerating state detected by SHOE.

ESKF Integration Assuming that no other forces act on the UAV so that aN ,t = 0,
the measurement model for the accelerometer attitude update based on Equation
(3.39) reads:

yg = ãB,m = hg (x) + aw

= −RNB⊤gN + ab + aw

(3.84)

If only the gravitational force is acting upon the UAV with gN =
[
0 0 1

]⊤
and

Equation (3.26), the measurement Jacobian can be evaluated by:

Hg =
∂hg (x)

∂x

∣
∣
∣
∣
x=x̂k+1|k

=

[

03×6
∂hg (x)

∂qNB

∂hg (x)

∂ab
03×6

]

x=x̂k+1|k

=

[

03×6

∂
(

−R {qNB}⊤ gN
)

∂qNB
I3×3 03×6

]

x=x̂k+1|k

(3.85)

where the remaining partial derivative can be written as:

∂
(

−R {qNB}⊤ gN
)

∂qNB
= 2

q2 −q3 q0 −q1

−q1 −q0 −q3 −q2

−q0 q1 q2 −q3

 (3.86)

3.2. ERROR-STATE KALMAN FILTER 75

3.2.2.2 Magnetometer

The magnetometer can be used for attitude correction, too. The yaw bias and electro-
magnetic disturbance can be estimated under the assumption that the external mag-
netic field mN is known for the current location in the navigation frame, e.g. the
Earth’s magnetic field is measured before take-off and remains approximately con-
stant throughout the flight. Errors and misdirection are estimated using the world
magnetic model [103]. Constant magnetic disturbances close to the magnetometer
are removed by calibration as described in Section 2.2.3.2.

▼❛❣♥❡t♦♠❡t❡r ▼❛❣♥❡t✐❝ ❈❛❧✐❜r❛t✐♦♥

❲♦r❧❞ ▼❛❣♥❡t✐❝ ▼♦❞❡❧

❊❙❑❋ ❯♣❞❛t❡
mB,raw mB,m

mN

FIGURE 3.7: ESKF magnetometer integration.

The measurement model can be derived from Equation (3.41) as:

ym = hm (x) +mw

= RNB⊤mN +md +mw

(3.87)

The magnetometer measurement Jacobian is then given by:

Hm =
∂hm (x)

∂x

∣
∣
∣
∣
x=x̂k+1|k

=

[

03×6
∂hm (x)

∂qNB
03×6

∂hm (x)

∂md

]

x=x̂k+1|k

=

[

03×6

∂
(

R {qNB}⊤mN
)

∂qNB
03×6 I3×3

]

x=x̂k+1|k

(3.88)

where the quaternion Jacobian can be evaluated with mN =
[
mn me md

]⊤
as:

∂
(

R{qNB}⊤mN
)

∂qNB
=2

1 0 0 0
0 0 0 1
0 0 −1 0

[qNB]
⊤
L

mn 0 −md me

0 mn me md

−md me −mn 0
me md 0 −mn

(3.89)

76 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

3.2.2.3 Independent Tait-Bryan

If an additional Tait-Bryan reference is available, providing independent yaw, roll or
pitch observations, it can be integrated into the ESKF, too, although the attitude is
represented using quaternions. Direct Tait-Bryan observations can be provided for
example by a GNSS attitude determination system, a sun sensor or an optical track-
ing system. The respective attitude Tait-Bryan angle T ∈ {φ, θ, ψ} can be predicted
by extracting the required information from the estimated quaternion as:

yT = hT (x) + Tw

= T {qNB}+ Tw

(3.90)

where Tw is additive Gaussian noise with variance σ2
T and zero mean and the respec-

tive attitude information can be obtained from the quaternion using the relations
from Equation (3.29):

φ {qNB} = atan2
(

2 (q0q1 + q2q3)
︸ ︷︷ ︸

φy

, 1− 2
(
q1

2 + q2
2)

︸ ︷︷ ︸

φx

)
(3.91)

θ {qNB} = asin
(

2 (q0q2 − q1q3)
︸ ︷︷ ︸

θx

)
(3.92)

ψ {qNB} = atan2
(

2 (q0q3 + q1q2)
︸ ︷︷ ︸

ψy

, 1− 2
(
q2

2 + q3
2)

︸ ︷︷ ︸

ψx

)
(3.93)

The respective measurement Jacobians can be calculated with:

HT =
∂hT (x)

∂x

∣
∣
∣
∣
x=x̂k+1|k

=

[

01×6
∂ (T {qNB})

∂qNB
01×9

]

x=x̂k+1|k

(3.94)

where the partial derivatives can be written as:

∂ (φ {qNB})
∂qNB

=
2

φ2
x + φ2

y

q1φx

2q2φy + q0φx

2q3φy + q4φx

q3φx

⊤

(3.95)

∂ (θ {qNB})
∂qNB

=
2

√

1− θ2
x

q2

−q3

q0

−q1

⊤

(3.96)

∂ (ψ {qNB})
∂qNB

=
2

ψ2
x + ψ2

y

q3ψx

q2ψx

2q2ψy + q1ψx

2q3ψy + q0ψx

⊤

(3.97)

3.2. ERROR-STATE KALMAN FILTER 77

3.2.2.4 Direct State Observations

System states that can be directly observed, such as the position, relative height mea-
surements, the velocity or the attitude represented by a quaternion can be integrated
into the ESKF directly. It is important to note, that the measurements should be
transformed to the respective frame of reference of the ESKF. Position and velocity
observations are typically obtained by optical systems, such as an optical tracking
or visual odometry systems, or by radio ranging methods based on GNSS or UWB.
Direct quaternion observations can be provided using optical systems, too. The mea-
surement equation reads simply:

yx̂ = Hx̂ (x) + σw (3.98)

where the entry of the respective state parameter in the observation matrix Hx̂ ∈
Rn×19 is equal to one and n is the number of parameters that are directly observed.
Common observation matrices are given in Table 3.3. The respective covariance ma-
trices need to reflect the uncertainties of the applied reference system. It is assumed
that all measurements have white Gaussian noise.

Position Relative Height Velocity Quaternion

yx̂ yp ∈ R3 y∆z ∈ R yv ∈ R3 yq ∈ R4

H
[
I3×3 03×16

] [
01×2 1 01×16

] [
03×3 I3×3 03×13

] [
04×6 I4×4 04×9

]

TABLE 3.3: Observation matrices for directly observable states.

3.2.3 Delayed Measurements

The integration of real world complementary sensors is often linked to the time de-
layed availability of their measurements. Complex processing, such as visual pose
estimation or the calculation of a carrier phase-based GNSS solutions, require time
and cause a delay that needs to be compensated for in the sensor fusion algorithm.
Additional delays resulting from the message transfer between an external process-
ing system and the platform running the actual ESKF algorithm need to be con-
sidered, too. For direct EKF formulations, delayed measurements are extrapolated
in time based on past and present state estimates [152, 153]. In this case, the error
caused by extrapolation is compensated for by propagating and correcting state co-
variance estimates allowing to compute an optimal Kalman gain. For error based
EKFs, the error state is augmented by means of stochastic cloning, in order to esti-
mate propagation errors during the time delay. Hereby, the true time of the relative
state measurement is indicated by a hardware signal in order to clone the corre-
sponding error state [145].

The idea of extrapolating predictions from the direct filter approach is transferred
to indirect filters. As hardware signals indicating new measurements are not avail-
able for all sensor types, a time horizon is introduced in form of a state history con-
taining previously corrected system state estimates x̂k|k instead. Since in the indirect
ESKF approach, the accuracies of the state estimates are unknown, instead of extrap-
olating the delayed measurements, they are compared to previous state estimates.
Therefore, previous estimates are stored in the state history and are matched in time
if new delayed measurements are received. Under the assumption that both, the
error dynamics and the measurement delays are small, no further corrections are

78 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

required. In case of large measurement delays or very high error dynamics, addi-
tional delay uncertainty needs be considered, too. This should be done by increasing
the observation uncertainty matrix R accordingly, or by estimating the uncertainty
of the state propagation during the delay. Figure 3.8 illustrates the implemented
approach.

t✐♠❡s k − 2 k − 1 k k + 1

▼❡❛s✉r❡♠❡♥ts y

❊❙❑❋ ❯♣❞❛t❡ x̂

FIGURE 3.8: ESKF Integration of time delayed measurements. Iner-
tial measurements (), stored system states () and complementary

measurements ().

Inertial measurements () are used to propagate the ESKF state x̂ at every time
step k. In the depicted example, only every second state estimate is stored in the
state history, indicated by (). Depending on the available system memory, the fil-
ter propagation rate and the expected time delay, the history size n and resolution
r should be chosen suitably. A complementary sensor provides a measurement ()
that is received between the propagation times k and k + 1. The true observed state,
however, lies in the past. Based on the time stamp of the complementary measure-
ment tyd

, the state estimate x̂s|s that is stored in the history and has a time stamp tx̂s|s
that closest is determined:

x̂s|s = arg min
s∈H

[∥
∥
∥tx̂s|s − tyd

∥
∥
∥

2
]

(3.99)

where H = {k, k− r, k− 2r, . . . , k− nr}. The delayed measurement is processed at
time k, after the error state prediction. The time delayed measurement residual ẑk+1

based on the delayed measurement yd is then given by:

ẑk+1 = yd − h
(
x̂s|s
)

(3.100)

3.3. LOW-LEVEL CONTROL 79

3.3 Low-Level Control

Having established the ego-motion estimation algorithm, the low-level control of the
proposed flight controller is described next. The goal of the low-level controller is
to guarantee a stable and smooth UAV movement despite disturbances and system
uncertainties, allowing the UAV to precisely follow high-level commands. The high-
level commands are a subset of different system inputs, depending on the respective
UAV task. Here, the high level inputs range from 3D positions p =

[
x y z

]
and 3D

velocities v =
[
vx vy vz

]
to absolute attitude angles

[
ψ θ φ

]
or angular turning

rates ωB . The concept is presented in Figure 3.9.

Horizontal Control

Vertical Control

Attitude Control MotorMap UAV

SensorsESKF

Low-Level Control

x, y, vx, vyz, vz ψ, θ, φ,ωB

uPWM

yx̂

FIGURE 3.9: Low-level control concept.

In order to allow the low-level control scheme to be easily adapted for different
multi rotor designs, a modular and cascaded control architecture is implemented.
For each input domain and its respective degree of freedom, different controllers are
utilized and cascaded if appropriate. The outputs of the final control stage for each
rotational degree of freedom are merged using an explicit UAV propulsion model
described by a so called motor map. The motor map is derived from the Newton-
Euler kinematic equations of a rigid body applied to the geometry of a specific multi
rotor. It should be noted, that the control architecture depicted above is limited
to traditional, under-actuated multi rotors where the horizontal movement is con-
trolled by the UAV’s attitude. To be more specific, the complete control scheme
applies only to UAV platforms with fixed rotor axes that are parallel and where
gyroscopic torques cancel each other out. This is the case for any platform with
a symmetric motor configuration where an equal amount of clockwise and counter-
clockwise rotors is used and the rotor axes point upwards. Nevertheless, the attitude
control scheme can be applied to the UAV platforms with arbitrary rotor directions
and tilting rotors, too. For the translational control, however, the control scheme has
to be adapted.

The remainder of this Chapter describes each controller of the cascaded approach
illustrated in Figure 3.9, namely the attitude, horizontal and vertical control. Section
3.3.1 introduces the general multi rotor model and Section 3.3.2 derives the motor
map for a quadcopter UAV in H-configuration. Sections 3.3.3 and 3.3.4 provide de-
tailed insights and simulation results for the attitude and the position control, re-
spectively.

80 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

3.3.1 Multicopter Modeling

A general multi rotor model can be derived using the Newton-Euler kinematics for
rigid bodies. The total forces fC ∈ R3 and torques τC ∈ R3 acting on the multi rotor
platform within a control reference frame C can be described as:

[
fC
τC

]

=

[
mI3×3 0

0 Icm

] [
aC
ω̇C

]

+

[
0

ωC × IcmωC

]

(3.101)

where aC ∈ R3 are the linear accelerations and ωC ∈ R3 are the angular rates in the
control frame, m ∈ R+ is the mass of the UAV and Icm ∈ R3×3 moment of inertia.
For any arbitrary multi rotor configuration with N fixed rotors that are displaced
from the center of gravity by a displacement vector lC,i, the sum of the generated
forces and torques can be expressed as:

[
fC
τC

]

=

N

∑
i=1

fi(ui)

N

∑
i=1

lC,i × fi(ui) + τi(ui)

(3.102)

where fi(ui) models the thrust and τi(ui) models the torque for a certain control
input ui. The thrust and torque vector generated by each motor for a specific control
command uPWM,i can be modeled as described in Section 2.1.2. Gyroscopic torques
are considered to be small and are therefore neglected due to the low combined
inertia of the motor/rotor pair and the fact that they are almost canceled out for
multi rotors with fixed, parallel thrust vectors and an equal amount of left and right
spinning rotors. Especially for tilt-rotor applications, however, gyroscopic torques
should be considered.

Setting the general Newton-Euler approach equals to Equation (3.102) and solv-
ing for the linear and angular accelerations yields the complete multi rotor model
as:

[
aC
ω̇C

]

=

1
m

N

∑
i=1

fT(ui) · ei

I−1
cm

(
N

∑
i=1

lC,i × fT(ui) · ei − sgn(Ωi) fτ(ui) · ei

)

−
[

0
I−1

cm (ωC × IcmωC)

]

(3.103)

Equation (3.103), the discrete kinematics derived in Equation (3.53), the propul-
sion model derived in Section 2.1.2 as well as the mass properties of the utilized
UAV platform in Section 2.1 can be used to model the complete UAV dynamics in
MATLAB Simulink. The model is used to evaluate the proposed control architecture.
The plots presented in the following sections result from this model.

3.3. LOW-LEVEL CONTROL 81

3.3.2 Motor Map

The motor map or mixing matrix is used to map the forces and torques required
by the respective controllers to the UAV geometry. The motor map can be obtained
from Equation (3.102), however a simplified quadratic relation between motor con-
trol signal ui and the thrust fT(ui) and torque fτ(ui) generated by each motor is
assumed:

fT(ui) ≈ aTu2
i (3.104)

fτ(ui) ≈ aτu2
i (3.105)

Using the two simplifications above and neglecting the gyroscopic torques of Equa-
tion (3.102), the UAV kinematics can be expressed as the product of an allocation
matrix A and the squared control signals u2 [154]:

[
fC
τC

]

≈

N

∑
i=1

aTu2
i ei

N

∑
i=1

(
lC,i × aTu2

i ei + aτu2
i ei

)

=

[
. . . aTei . . .
. . . lC,i × aTei + aτei . . .

]

︸ ︷︷ ︸

Allocation matrix A

·

...
u2

i
...

︸ ︷︷ ︸

u2

(3.106)

The allocation matrix A ∈ R6×N describes the influence of each of the N ac-
tuators on the respective degree of freedom. If A has not full row rank, the UAV
platform is under-actuated. The motor map M is defined as the inverse operation
of the allocation matrix. However, since A is generally not a square matrix, the corre-
sponding motor map M can be calculated using the pseudo-inverse of A assuming
that the columns of A are linearly independent:

M =
(

A⊤A
)−1

A⊤ (3.107)

In the following, the derivation of a valid motor map is exemplified for a quad ro-
tor in H-configuration with a control frame of reference C as depicted in Figure 3.10.
The center of gravity distance vectors for each actuator lC,i and the motor rotational
axes ei are given as:

lC,1 =

lx

−ly

0

 , lC,2 =

−lx

−ly

0

 , lC,3 =

−lx

ly

0

 , lC,4 =

lx

ly

0

 (3.108)

e1 = e2 = e3 = e4 =

0
0
1

 (3.109)

82 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

xC

yC

zC

e1

e2

e3

e4
2‖lC‖

2‖lC‖
Ω1

Ω2

Ω3

Ω4

ψ

φ

θ

FIGURE 3.10: Actuators, displacement vector and control frame for a
quad rotor UAV in H-configuration.

Using Equation (3.106), the allocation matrix A4H can be derived as:

A4H =

0 0 0 0
0 0 0 0
aT aT aT aT

−aT ly −aT ly aT ly aT ly

−aT lx aT lx aT lx −aT lx

−aτ aτ −aτ aτ

(3.110)

The pseudo-inverse of A4H gives the motor map M4H as:

M4H =

0 0
1

4aT
− 1

4aT ly
− 1

4aT lx
− 1

4aτ

0 0
1

4aT
− 1

4aT ly

1
4aT lx

1
4aτ

0 0
1

4aT

1
4aT ly

1
4aT lx

− 1
4aτ

0 0
1

4aT

1
4aT ly

− 1
4aT lx

1
4aτ

(3.111)

The control outputs can be modified in such a way that the constants of Equation

(3.111) are already included into the required thrust and torques, e.g. fz
!
= 4aTuth.

Thus, we obtain the very familiar control law as:

uPWM = M4H

[
fC
τC

]

=

uPWM,1

uPWM,2

uPWM,3

uPWM,4

=

uth − uτx − uτy − uτz

uth − uτx + uτy + uτz

uth + uτx + uτy − uτz

uth + uτx − uτy + uτz

(3.112)

3.3. LOW-LEVEL CONTROL 83

3.3.3 Attitude Control

For each rotational degree of freedom, two cascaded controllers are used. The cas-
cade for a single rotational degree of freedom is shown in Figure 3.11.

PID / PID / MotorMap UAV

ESKFquat2euler Sensors

αr
+

ωα,r

+ uτ uPWM

y

ωα

−

q

α

−

Attitude Control

FIGURE 3.11: Cascaded attitude controller.

Each controller used within the cascade builds upon a generic Proportional-
Integral-Derivative Controller (PID) with output limitations and anti-windup. For
reference, the generic PID controller is shown in Figure 3.12. References and obser-
vations are given in the control frame of reference.

kp

kd

ki

d
dt

∫

kw

r
+

y

−

e
+

+

+

+

us
u

− +

ew

+

PID /

FIGURE 3.12: PID controller with output limitation and anti-windup.

The discrete integral is calculated using the trapezoidal rule, while the discrete
time derivative is based on a low-pass filtered differential coefficient, if the respec-
tive derivative is not estimated by the ESKF, e.g. the angular acceleration:

∫ t

t−∆t
e(t)dt ≈ ∆t · e(t− ∆t) + e(t)

2
(3.113)

de(t)

dt
≈ γ

de(t− ∆t)

dt
+ (1− γ)

e(t)− e(t− ∆t)

∆t
(3.114)

where γ ∈ [0; 1] is a smoothing parameter and ∆t is the sampling time. Since the
remain follows the standard approach for discrete PID controllers, the interested
reader is referred to standard literature for details such as [155, 156].

84 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

The inner controller regulates the angular velocity ωα for the respective degree
of freedom while the outer controller adjusts the angular velocity of reference ωα,r

according to the current angular error αe = αr − α. The inner controller calculates
the required control torque around each axis uτ that is forwarded to the motor map
which in turn controls the actuators in order to provide the necessary torque. The
integral gain of the inner control loop should be non-zero in order to compensate for
center of gravity displacements and propulsion related differences, e.g. manufac-
turing differences, effects of aging as well as blade flapping. As an example for the
control behavior of the cascaded attitude control, the roll step response for a step of
25◦ is shown in the figure below.

t [s]
0 1 2 3 4 5

φ
[◦
]

-10

0

10

20

30

t [s]
0 1 2 3 4 5

ω
x
[◦
/
s]

-10

0

10

20

30

FIGURE 3.13: Simulated step response roll.

One advantage of the cascaded approach is that the outer controller can be by-
passed by commanding a desired angular velocity directly, allowing an easy im-
plementation of an ACRO/rate mode. Another advantage is the simplified tuning
process. Once the inner control loop is able to keep track of a commanded angular
velocity, the trade-off between a faster and a more robust response can be simply
adjusted by adapting the outer proportional gain.

3.3.4 Position Control

Due to the under actuated nature of traditional multi rotor platforms, the position
control is split into a vertical and horizontal control components.

3.3.4.1 Vertical Control

Similar to the attitude control, the vertical control is a cascade of two output limited
PID controllers as shown in Figure 3.14.

PID / PID / nav2body MotorMap UAV

ESKF Sensors

zr
+

vz,r

+ uth +

u0, um

+

uPWM

y

vz

−

z

−

Vertical Control

FIGURE 3.14: Cascaded vertical control.

3.3. LOW-LEVEL CONTROL 85

For the vertical control, references and observations are given in the navigation
frame. The outer loop establishes the reference speed vr for the inner control loop
and the maximum desired vertical speed can be controlled by the outer loop limits.
The inner controller calculates the required thrust command uth to achieve the de-
sired speed. Two constants u0 and um are added to the controller output in order
to keep the rotors spinning at all time and to compensate for the UAV weight, re-
spectively. The overall thrust needs to be converted to the control frame of reference
in order to compensate for pitch and roll rotations. The advantages of the cascaded
approach compared to a single height control loop are similar to the cascaded atti-
tude control. The vertical speed has its own control loop, meaning that the outer
controller can be bypassed if commanding the UAV in a velocity mode is desired.
Again, tuning the aggression of the cascade is simply done by the proportional gain
of the outer loop. Additional speed limitations allow to implement a controlled and
very smooth flight behavior as shown for a simulated takeoff in Figure 3.15.

t [s]
0 5 10

z
[m

]

-2

0

2

4

6

t [s]
0 5 10

v
z
[m

/
s]

-0.5

0

0.5

1

1.5

FIGURE 3.15: Simulated step response vertical control.

The UAV takes off slowly increasing its vertical speed until the limit set by the
outer loop of 1 m/s is reached. Getting closer to the desired height of 5 m, the refer-
ence velocity is decreased and the UAV decelerates.

3.3.4.2 Horizontal Control

Since the horizontal movement of the under actuated system under consideration
is linked to a change in the orientation, the horizontal control is a cascade of four
generic PID controllers as depicted in Figure 3.16. The first stage of the cascade con-
trol determines the reference velocity, the second stage the reference roll and pitch
angle which are subsequently used by the attitude control. Since references and ob-
servations are given in the navigation frame, the output of the velocity controller
needs to be converted to the control frame. Hence, external disturbances, such as
wind, can be compensated for by the integral part of the velocity control, while body
fixed disturbances are compensated for by the attitude control.

PID / PID / nav2body Att.Ctrl MotorMap UAV

ESKF Sensors

pr
+

vr

+ αr uτ uPWM

y

v

−

p

−
ω, q

Horizontal Control

FIGURE 3.16: Cascaded horizontal controller.

86 CHAPTER 3. EGO-MOTION ESTIMATION AND LOW-LEVEL CONTROL

Reference signals as well as the simulated behavior of each cascade for a sin-
gle direction step input are shown in Figure 3.17. The same benefits arise for the
cascaded horizontal control as for the other cascaded approaches.

t [s]
0 5 10 15 20

x
[m

]

-10

0

10

20

30

t [s]
0 5 10 15 20

v
x
[m

/
s]

-1

0

1

2

3

t [s]
0 5 10 15 20

θ
[◦
]

-5

0

5

10

t [s]
0 5 10 15 20

ω
y
[◦
/
s]

-10

0

10

20

FIGURE 3.17: Simulated step response position.

It should be noted that the limitation of the reference velocity of the first stage of
the cascade is dynamically adjusted according to the direction and the distance d of
the reference position:

vx,lim = vlim ·
∆x

d
and vy,lim = vlim ·

∆y

d
(3.115)

The different flight paths for a velocity limit with and without directional adjust-
ment are shown in Figure 3.18.

x [m]
0 5 10 15 20

y
[m

]

0

5

10

t [s]
0 10 20 30 40

v
[m

/
s]

0

1

2

3

4

FIGURE 3.18: Simulated step response in with a simultaneous change
in x and y. The solid line indicates the flight path with and the dashed

line without adjusted velocity limitations.

89

Chapter 4

Satellite Navigation

This chapter introduces satellite navigation principles that are utilized within this
thesis. The goal of satellite based navigation systems is to provide 3D position-
ing and timing services using satellite transmitted radio signals and passive re-
ceivers. Depending on their signal coverage and functionality, satellite navigation
systems can be categorized into three different groups: Global Navigation Satellite
System (GNSS), Regional Navigation Satellite Systems and Space-Based Augmen-
tation System (SBAS). Current GNSSs are described in Section 4.1 and SBASs are
described in Section 4.2. Existing Regional Navigation Satellite Systems such as the
Japanese Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation
Satellite System (IRNSS) are not considered within this work. Section 4.3 presents
GNSS observables and introduces their respective mathematical models. Different
error sources of the respective observables are discussed in Section 4.4. In Section
4.5, different approaches for GNSS-based positioning as well as their benefits and
limitations are described. The information presented within this Chapter is mainly
based on [157–162]. For an in depth introduction, the interested reader is referred to
the respective sources.

4.1 Global Navigation Satellite Systems

Global Navigation Satellite System (GNSS) is the collective term for satellite based
navigation systems that provide global navigation services. All satellite systems
share a common architecture consisting of three main components shown in Figure
4.1: the space segment, the control segment and the user segment.

FIGURE 4.1: The GNSS architecture.

90 CHAPTER 4. SATELLITE NAVIGATION

The space segment refers to the satellite constellation of each system that broad-
casts radio signals on multiple carrier frequencies. The radio signals transmit rang-
ing information and navigation data for each satellite. The transmitting satellite can
be identified by using different channel access methods. A second communication
channel allows the satellites to receive data uploaded from the control segment.

The control segment is a network of monitoring, control and uplink stations lo-
cated on Earth. It provides orbital information to the space segment, functionality
for satellite maintaining and station keeping as well as correction and calibration
parameters to counteract different error sources.

The user segment can be loosely defined as different GNSS signal receivers. De-
pending on their application and precision requirements, receivers can be divided
into different categories. High-cost multi-frequency receivers with sub-centimeter
accuracy are used in military and avionic applications, while consumer grade re-
ceivers rely on single-frequency signals with an inaccuracy of a few meters.

By the time of writing, three GNSSs are fully operational: The American Global
Positioning System (GPS), the Russian Global’naya Navigatsionnaya Sputnikovaya
Sistema (GLONASS) and the European Galileo system. The Chinese BeiDou (Com-
pass) system is expected to be operational by 2020 but not considered in this work.
Each of those systems provides free of charge open services to all users as well as
restricted services that are only available to authorized users.

Constellation
Nominal
Number of
Satellites

Operational
Number of
Satellites

Number of
Planes

Period
Orbits per
Sidereal Day

Inclination Radius

GPS 24 31 6 11 hr 58 min 2 55◦ 26,580 km
GLONASS 24 24 3 11 hr 15 min 2.125 64.8◦ 25,500 km
Galileo 27 22 3 14 hr 5 min 1.7 56◦ 29,620 km

TABLE 4.1: Orbit parameters for different GNSS constellations.

4.1.1 GPS

The Navigation Satellite Timing and Ranging GPS (NAVSTAR GPS), or simply GPS,
was originally developed as a military navigation system by the U.S. government.
The development started in 1978 and full operational capability was obtained in
1994. The GPS orbit parameters are listed in Table 4.1 and the 24 hour tracks for all
currently operating GPS satellites are visualized in Figure 4.2.

FIGURE 4.2: GPS constellation and orbital tracks for 24 hours.

4.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 91

Ten different navigation signals are broadcast across three frequency bands (L1:
1, 575.42 MHz, L2: 1, 227.60 MHz, L5: 1, 176.45 MHz). Code Division Multiple
Access (CDMA) is used for signal separation and illustrated in Figure 4.3. For
CDMA, the navigation data is multiplied with a pseudo-random spreading code
(PRN-Code) that is unique to each transmitter and known to the receivers. The
mixed signal is than modulated onto the according carrier wave signal. The codes
used for CDMA can be grouped into coarse acquisition code (C/A-code), encrypted
precision code (P(Y)-code), civil codes (CM- & CL-code) and military code (M-code).
In addition to the ranging navigation messages, ephemeris information expressed
as 16 quasi-Keplerian orbit parameters, satellite clock calibration data, the almanac
data for up to 32 satellites as well as the Klobuchar ionosphere propagation delay
correction model for single-frequency users are transmitted.

Signal

Data

PRN-Code

Carrier

FIGURE 4.3: GPS signal modulation using CDMA.

4.1.2 GLONASS

Simultaneously to the development of the American GPS in the mid-1970s, Rus-
sia started to develop its own navigation system, the Global’naya Navigatsionnaya
Sputnikovaya Sistema (GLONASS). GLONASS achieved full operational capabil-
ity in 1995 and provides civil as well as military signals. The GLONASS orbit pa-
rameters are listed in Table 4.1 and the 24 hour tracks for all currently operating
GLONASS satellites are visualized in Figure 4.4. In contrast to GPS, GLONASS re-
lied for signal separation initially on Frequency Division Multiple Access (FDMA)
only, however, within the course of the modernization program starting in 2011,
CDMA signals were added. The original FDMA signals are broadcast on 14 chan-
nels ranging from 1, 598.0625+ 0.5625i MHz in the L1 band and 1, 246.9375+ 0.4375i
MHz in the L2 band, with i ∈ [0, 13].

FIGURE 4.4: GLONASS constellation and orbital tracks for 24 hours.

92 CHAPTER 4. SATELLITE NAVIGATION

4.1.3 Galileo

The development of the European GNSS Galileo was initiated in 1999 by the Eu-
ropean Union and the European Space Agency. Full operational capability with 26
satellites was achieved in 2016. Galileo provides an open service (OS) available to
all users and a public regulated service (PRS) reserved for emergency and security
services as well as the military. The Galileo orbit parameters are listed in Table 4.1
and the 24 hour tracks for all currently operating Galileo satellites are visualized in
Figure 4.5. In contrast to GLONASS, Galileo was specifically designed to be used
alongside GPS rather than instead of it. The ten navigation signals broadcasted by
Galileo use three different frequency bands E1, E5 and E6 as well as CDMA. The
E5 signal uses a modified Binary Offset Carrier modulation with a 15 MHz offset,
resulting in an E5a and an E5b signal (E1: 1, 575.42 MHz, E5a: 1, 176.43 MHz, E5b:
1, 207.14 MHz, E6: 1, 278.75 MHz). The Galileo E1 and the GPS L1 band as well as
the Galileo E5a and the GPS L5 band use identical frequencies.

FIGURE 4.5: Galileo constellation and orbital tracks for 24 hours.

4.2 Space-Based Augmentation System

The Space-Based Augmentation System (SBAS) is a GNSS augmentation system that
provides regional differential corrections and integrity alerts using geostationary
satellites. Each SBAS uses a network of monitor stations across its coverage area
to estimate clock and ephemeris corrections for each satellite as well as coefficients
for the ionospheric model. The correction data is spread using a common signal with
a unique PRN-code in the L1 frequency band. In total there are six SBASs currently
under active development or already fully functional. The North-American Wide
Area Augmentation System (WAAS) was the first SBAS and gained full operational
capability in 2000, while the European equivalent European Geostationary Naviga-
tion Overlay System (EGNOS) broadcasts correction data since 2006. Both systems
broadcast only GPS correction data, however, additional corrections for Galileo us-
ing EGNOS are under consideration. Other SBASs exist for Japan, India, Russia and
China but are not relevant within this work.

4.3. OBSERVABLES 93

4.3 Observables

The typical GNSS user equipment consists of four components: The antenna, the
receiver, the ranging processor and the navigation processor.

The antennas have a peak sensitivity close to the carrier frequency of the desired
signals. Without phase center calibration, the navigation solution is not necessarily
valid for the physical center of the antenna but rather its electrical phase center. In
contrast to hand-held devices with highly integrated antennas and receiver front
ends, cables are used on vehicles between the antenna and the receiver front end
to allow an optimal antenna placement. A common-mode lag is introduced on the
incoming signal by the cable which is in the same magnitude as the receiver clock
offset and therefore not considered separately.

The receiver digitizes the incoming signal and forwards its measurements to the
ranging processor. Depending on the quality of the reference oscillator controlling
the receiver, different receiver categories are distinguished. In low-cost applications,
temperature-compensated crystal oscillators (TCXO) with a clock drift of a few hun-
dred milliseconds per day are used. Advanced high precision receivers, on the other
hand, rely on oven-controlled crystal oscillators (OCXO) or atomic clocks.

The ranging processor provides three primary raw measurements, namely the
pseudo-range, the pseudo-range rate or Doppler measurement and the carrier phase
measurement. The pseudo-range is obtained by correlating the received GNSS sig-
nal with a receiver generated code, the Doppler shift can be directly measured and
allows to calculate the pseudo-range rate while the carrier phase is measured by
shifting the receiver-generated phase to track the received phase.

Finally, the raw measurements are processed using a navigation processor. State
of the art uBlox GNSS modules provide the functionalities of combined receiver,
ranging and navigation processor. Moreover, modules from the uBlox timing series
allow to access the ranging processors raw measurements and process them using
advanced navigation algorithms, such as carrier phase-based or precise point posi-
tioning. The GNSS observables are modeled and discussed in the following sections
with reference to [161, 162].

4.3.1 Code Pseudo-ranges

The code pseudo-range is an approximation for the distance between a navigation
satellite and a GNSS receiver. It is calculated using the Time of Arrival (TOA) at
the receiver tr of a particular radio signal feature that has a transmission time ts

estimated by the transmitter. The error-prone pseudo-range Ps
r,i(t) is then given by:

Ps
r,i(t) = (tr − ts) c (4.1)

where the superscript s indicates the transmitting satellite, the subscript r the uti-
lized receiver, the subscript i the carrier frequency band and c the speed of light.
For a known satellite position rs (ts) = (xs, ys, zs) and a receiver position rr (tr) =
(xr, yr, zr) both given in the ECEF frame, the geometric range ρs

P,r,i between a satellite
s and a receiver r in the ECI frame can be expressed as:

ρs
r,i (tr, ts) = ‖rs (ts)− rr (tr)‖+

ωe

c
(xsyr − ysxr) (4.2)

where ωe is the rotational speed of the Earth and the additive term is called Sagnac
effect [163]. The accuracy of the pseudo-range measurement is affected by a number

94 CHAPTER 4. SATELLITE NAVIGATION

of errors caused by the transmitter, the receiver and by the transmitting media. It
can therefore be expressed as the sum of the geometric satellite-receiver range and
different error terms as:

Ps
r,i(tr) = ρs

r,i (tr, ts) + Is
r,i + Ts

r + dms
r,i + c [dr,i (tr) + ds

i (t
s)]

+ c [dtr (tr)− dts (ts)] + ǫs
P,r,i

(4.3)

where the different terms are:

Ps
r,i code observation for satellite s, receiver r and frequency band i [m]

ρs
r,i geometrical distance between receiver r and satellite s [m]

tr TOA time at the receiver [s]
ts transmission time at the satellite [s]
Is
r,i frequency depended ionospheric delay [m]

Ts
r tropospheric delay [m]

dms
r,i code multipath error [m]

dr,i, ds
i , receiver and satellite instrumental delays [s]

c speed of light [m/s]
dtr, dts receiver and satellite clock errors [s]
ǫs

P,r,i unmodeled code errors [m]

The atmospheric effects on the signal are described by the correction terms I and
T for the ionosphere and the troposphere, respectively. The term dm models multi-
path errors that are introduced by signal replicas due to reflections. The clock errors
dt and the instrumental delays d are satellite and receiver hardware depended.

4.3.2 Carrier Phase Measurement

The carrier phase measurement is a “measurement on the beat frequency between the
received carrier of the satellite signal and a receiver-generated reference frequency [164]” .
The carrier phase measurement ϕs

r,i can be modeled as:

ϕs
r,i = ϕr,i (tr)− ϕs

i (t
s) + Ns

r,i + ǫϕ,r,i

= [f · (tr + dtr (tr)− t0) + ϕr,i (t0)]

− [f · (ts + dts (ts)− t0) + ϕs
i (t0)] + Ns

r,i + ǫs
ϕ,r,i

=
c

λi
(tr − ts) +

c

λi
[dtr(tr)− dts (ts)]

+ [ϕr,i (t0)− ϕs
i (t0)] + Ns

r,i + ǫs
ϕ,r,i

(4.4)

with the following terms:

ϕr,i phase of the receiver’s local oscillator at frequency band i [cycles]
ϕs

i phase of transmitted signal at frequency band i [cycles]
tr TOA time at the receiver [s]
ts transmission time at the satellite [s]
Ns

r,i carrier phase integer ambiguity [cycles]
f carrier frequency [Hz]
dtr, dts receiver and satellite clock errors [s]
t0 reference time for phase synchronization [s]
ǫs

ϕ,r,i unmodeled phase errors [cycles]
λi carrier wavelength at frequency band i [m]

4.3. OBSERVABLES 95

If the carrier phase measurement is given in meters, it is referred to as phase-range
measurement. The carrier phase measurement can be simply converted by multi-
plying with the carrier wavelength λi:

Φs
r,i(tr) = λi ϕ

s
r,i

= c (tr − ts) + c [dtr(tr)− dts (ts)]

+ λi [ϕr,i (t0)− ϕs
i (t0)] + λiN

s
r,i + λiǫ

s
ϕ,r,i

(4.5)

Similar to the pseudo-range in Equation (4.1), the term c (tr − ts) is error prone in
case of phase-range measurements, too. A more detailed model for the phase-range
Φs

r,i(tr) is therefore given by:

Φs
r,i(tr) = ρs

r,i (tr, ts)− Is
r,i + Ts

r + δms
r,i + c [δr,i(tr) + δs

i (t
s)]

+ c [dtr(tr)− dts (ts)] + λi [ϕr,i (t0)− ϕs
i (t0)] + λiN

s
r,i + ǫs

Φ,r,i

(4.6)

where the different terms are given as:

Φs
r,i phase range observation for satellite s, receiver r and frequency band i [m]

ρs
r,i geometrical distance between receiver r and satellite s [m]

Is
r,i frequency depended ionospheric delay [m]

Ts
r tropospheric delay [m]

δms
r,i carrier multipath error [m]

δr,i, δs
i carrier receiver and satellite instrumental delays [s]

dtr, dts receiver and satellite clock errors [s]
λi carrier wavelength at frequency band i [m]
ϕ phase of generated carrier signal [cycles]
t0 reference time for phase synchronization [s]
Ns

r,i carrier phase integer ambiguity [cycles]
ǫs

Φ,r,i unmodeled phase errors [m]

The error terms are similar to the pseudo-range model in Equation (4.3). Since
the ionosphere is a dispersive media, the ionospheric delay has different signs for
phase-range and pseudo-range measurements. A radio wave propagating through
the ionosphere experiences a propagation delay and a phase advance [165]. An ad-
ditional parameter in the phase-range model is the carrier phase integer ambiguity
Ns

r,i which describes the unknown number of complete carrier phase cycles between
signal transmission and phase measurement. The integer ambiguity Ns

r,i and the ini-
tial phases of the satellite ϕs

f (t0) and the receiver ϕr,i (t0) can be condensed as the
carrier phase bias:

Bs
r,i = ϕr,i (t0)− ϕs

i (t0) + Ns
r,i (4.7)

4.3.3 Doppler Measurement

The Doppler-shift measurement is byproduct obtained from the receiver’s carrier
tracking loop. The phase change caused by the relative motion between satellite
and receiver is predicted during the tracking process and used to adjust the carrier
tracking loop. The frequency observed at the receiver fr is given by:

fr =

(
c + vr

c + vs

)

f s (4.8)

96 CHAPTER 4. SATELLITE NAVIGATION

where vr and vs are the speeds of the receiver and the satellite, respectively, c is the
speed of light and f s is the carrier wave frequency generated by the satellite s. Since
the receiver and satellite speed are small compared to the speed of the carrier wave,
the Doppler-shift f s

D,r can be approximated by:

∆ f s
D,r ≈ − f s ∂ (tr − ts)

∂t
(4.9)

The Doppler-shift can be used to estimate the pseudo-range rate:

Ṗs
r,i ≈ −λi∆ f s

D,r (4.10)

4.4 Error Sources

The navigation signal is distorted by different errors which can be categorized by
their origin. Possible error sources are atmospheric effects, the receiver hardware
and signal reflections close to the receiver hardware as well as the satellite clock
and its orbit. Depending on the applied navigation technique, the utilized receiver
hardware and its environment, different error sources can be eliminated using dif-
ferential techniques or are small enough to be neglected. Hereinafter, the different
error sources are explained and it is shown how the errors can be mitigated within
the special context of precise low-cost navigation for UAVs. The GNSS errors are
modeled and discussed in the following sections with reference to [157].

4.4.1 Atmospheric Propagation Errors

The satellite transmitted radio signal is disturbed by particles in the atmosphere of
the Earth. Signal refraction occurs especially in the troposphere and the ionosphere.
The length of the signal path through the atmosphere varies, depending on the satel-
lite elevation. The relation between the satellite elevation θs

r and the introduced de-
lay by the troposphere Ts

r is approximated by:

Ts
r ∝

√

1−
(

cos θs
r

1.001

)2

(4.11)

For the ionosphere, the influence on the signal delay Is
r,i based on the satellite

elevation is roughly described by the following relationship:

Is
r,i ∝

√

1−
(

R cos θs
r

R + hi

)2

(4.12)

where R is the average Earth radius and hi is the mean ionospheric height, about 350
km. From Equations (4.11) and (4.12) it can be seen, that a lower satellite elevation
results in a larger error term. This is due to the longer signal path through the re-
spective atmospheric layer and therefore larger signal refraction. To counteract large
delays caused by low satellite elevations, satellites with an elevation below a certain
threshold are typically excluded from the navigation solution using an elevation
mask. Depending on the application, a suitable elevation mask is applied taking the
satellite Signal-to-Noise-Ratios (SNRs) and their elevation angles into account. In
order to remove the remaining delay terms added by troposphere and ionosphere,
different models are established to estimate the respective error magnitudes.

4.4. ERROR SOURCES 97

4.4.1.1 Troposphere

The troposphere is the lowest layer of the Earth’s atmosphere and extends to a height
of about 15 km. For signals at GNSS frequencies, the troposphere is non-dispersive
and causes a modulation and phase delay, compared to the free space propagation
of a signal. 90% of the actual tropospheric delay is caused by dry gases and is rela-
tively stable. The remaining delay is due to water vapor and varies considerably. A
rather accurate model to describe the influence of the troposphere was introduced
by Saastamoinen [166, 167]:

Ts
r =

0.002277
sin θs

r

[

p +

(
1255

T

)

e− tan2
(π

2
− θs

r

)]

(4.13)

where p is the total pressure [hPa], T is the absolute temperature of the air [K] and e
is the partial pressure of the water vapor [hPa]. The three variables can be calculated
using the standard atmospheric model with:

p = 1013.25 ·
(
1− 2.2557 · 10−5h

)5.2568
(4.14)

T = 15.0− 6.5 · 10−3h + 273.15 (4.15)

e = 6.108 · exp
(

17.15T − 4684.0
T − 38.45

)

· hrel

100
(4.16)

where h is the geodetic height above the mean sea level and hrel is the relative hu-
midity [%]. If SBAS information is available, more precise tropospheric models can
be used [168]. The typical tropospheric range error for satellite at zenith is about
2.5 m.

4.4.1.2 Ionosphere

The ionosphere is a layer of the Earth’s atmosphere that extends from 60 km to up to
1000 km and consists mostly of ionized gases and free electrons. Since the ionization
is caused by solar radiation, the amount of ionized gases depends on the time of
day and the solar cycle. In contrast to the troposphere, the ionosphere is a disper-
sive medium at GNSS frequencies that causes a group delay and a phase advance.
This code-carrier divergence is indicated with different signs for the error term Is

r,i in
Equation (4.3) and (4.6).

In case of single frequency GNSS receiver, the ionospheric delay needs to be es-
timated. Similar to the tropospheric error, different models can be applied in or-
der to estimate the ionospheric delay. The Klobuchar model assumes a single thin
layer at 350 km height and estimates the ionospheric delay depending on the carrier
frequency and the location-dependent total electron content along the signal path
through the ionosphere [169]. The delay can be approximated by:

Is
r,i ≈

40.3
f 2
i

sTEC (4.17)

where fi is the carrier signal frequency and sTEC is the slant total electron content
[1016e−/m2] which describes the “number of free electrons in a column through the iono-
sphere with a cross-sectional area of one square meter [170]”. The parameters required to
calculate the sTEC according to the Klobuchar model are broadcast by GPS. While
there are no corrections for ionospheric errors broadcast by GLONASS, the Galileo
system transmits parameters required for the NeQuick-G model. NeQuick-G is an

98 CHAPTER 4. SATELLITE NAVIGATION

adaption by European Space Agency (ESA) of the original NeQuick model intro-
duced by Di Gionvanni and Radicella [171]. According to [172], both, the Klobuchar
and the NeQuich-G model get comparable performance in the position domain and
reduce the ionospheric RMSE of about 50%.

Dual- or multi-frequency receivers, on the other hand, can eliminate the effect of
the ionosphere through a linear combination (LC) of pseudo-range and and range-
phase measurements:

Ps
r,LC =

f 2
1 · Ps

r,1 − f 2
2 · Ps

r,2

f 2
1 − f 2

2

(4.18)

Φs
r,LC =

f 2
1 ·Φs

r,1 − f 2
2 ·Φs

r,2

f 2
1 − f 2

2

(4.19)

Using the ionosphere-free combination, first order error terms are canceled out,
however, higher order terms with an error range of up to a few centimeters are not
considered [173, 174]. If scintillations are present, the ionosphere-free linear combi-
nation of L1 and L2 phase residuals can reach up to 2-3 meters [175].

For low-cost single-frequency receivers in a differential GNSS setup with a short
baseline length (< 10 km) between rover and base-station, it is assumed that the
GNSS signals travel approximately along the same path through the Earth’s atmo-
sphere to both receivers. The tropospheric and ionospheric effects are therefore al-
most eliminated using double-differences. The double-difference approach is intro-
duced in Section 4.5.3.

4.4.2 Receiver and Multipath Errors

Another error source is the user hardware itself and its operational environment.
Low-cost user equipment for embedded applications with single frequency receivers
suffers from poor signal quality and high thermal noise resulting in inaccuracies of
up to several meters, while high-end geodetic receivers allow for millimeter posi-
tioning. Despite the utilized hardware, signal reflections caused by the receiver sur-
rounding environment, such as nearby buildings, trees or mountains, considerably
impair the quality of the navigation solution.

4.4.2.1 Receiver Errors

All GNSS receivers introduce error terms due to clock offsets dtr, frequency de-
pendent instrumental delays dr,i and signal transmission lags caused by antenna-
receiver cables. In practice, the signal transmission lag from the cable is so small,
that it can not be distinguished from the clock offset itself. For a fixed carrier-wave
frequency, clock offsets and instrumental delays can be eliminated by comparing
the TOA of signals from two satellites with known transmission times. However,
GLONASS uses FDMA to make the signals from individual satellites distinguish-
able. Therefore, additional frequency dependent instrumental delays between dif-
ferent satellite channels, so-called inter-frequency biases need to be considered[176].

Low-cost GNSS receivers, such as receivers with temperature-compensated crys-
tal oscillators (TCXO), suffer from frequency drifts and thermal noise. Typically, long
term errors and drift are compensated for by the navigation processor [157, 160].
Thermal noise needs to be addressed by stochastic means. Based on the utilized
antenna grade, the physical center and the phase center do not necessarily coincide

4.4. ERROR SOURCES 99

and might therefore, depending on the user requirements, demand a calibration of
the phase center offset.

4.4.2.2 Multipath Errors

Multipath errors are caused by the simultaneous reception of a signal directly trans-
mitted from the satellite to the receiver and signals which have been reflected by the
presence of surrounding objects as shown in Figure 4.6.

FIGURE 4.6: Simultaneous reception of direct and reflected signals.

The simultaneous reception of both, direct and reflected signals, causes an error
in the tracking loop of the receiver hardware. Both, code and carrier phase observa-
tion are affected by multipath. The error caused by code multipath ranges typically
between 1 and 5 meters, while the carrier phase multipath error is usually just a few
centimeters. Within this work, it is assumed that signal reflections from buildings
and trees are negligible for UAVs in typical open sky scenarios. One way to limit the
multipath error is to physically shield the signal reflections due to ground proxim-
ity. According to [177], for low-cost antennas, this can be easily achieved by using
ground plates as shown in Figure 4.7. However, multipath mitigation is not limited
to shielding reflected signals and optimizing antenna characteristics. Another ap-
proach exploits the temporal correlation of the code multipath in order to estimate
the error [178].

(A) UAV with GNSS compass. (B) UAV with single GNSS receiver.

FIGURE 4.7: Ground multipath mitigation through ground plates.

100 CHAPTER 4. SATELLITE NAVIGATION

4.4.3 Ephemeris and Satellite Clock Errors

In addition to the errors caused by the signal propagation through various layers
of the atmosphere, the receiving unit and signal reflections by surrounding objects,
the precision used to describe characteristics of the transmitting satellites is another
error source. Both, the ephemeris data describing the satellite orbit as well as the esti-
mated satellite clock inaccuracies introduce additional errors. For applications with
standard precision requirements, orbit and clock error corrections are broadcast by
the space segment of each GNSS as part of the navigation message. The combined
error due to satellite broadcast orbit and clock errors is called Signal-in-space Rang-
ing Error (SISRE) [179]. Table 4.2 lists the global average SISRE for different GNSSs.

Constellation GPS GLONASS Galileo

SISRE [m] 0.7± 0.02 1.9± 0.1 1.6± 0.3

TABLE 4.2: Global average Signal-in-space Ranging Error for differ-
ent Global Navigation Satellite Systems [180].

4.4.3.1 Ephemeris Errors

The precision of the satellite orbit determination is limited by insufficient knowledge
of the forces acting on the spacecraft, such as the solar radiation pressure, errors of
the gravitational field model and uncertainties about the initial state [181]. Stan-
dard precision ephemeris data is broadcast by each GNSS satellite, while precise
orbit data is provided by International GNSS Service (IGS) centers. GPS and Galileo
broadcast the orbital parameters as a set of 16 quasi-Keplerian elements, while the
GLONASS navigation message contains the initial spacecraft position and velocity
as well as gravitational effects caused by the Moon and the Sun. For each GNSS, the
satellite orbits are tracked from Earth and the respective ephemeris data is periodi-
cally updated so that the broadcast navigation messages are usually valid for up to
one hour. Precise orbit data is distributed using the Networked Transport of RTCM
via Internet Protocol (NTRIP) [182], a protocol for streaming GNSS correction data
specified by the Radio Technical Commission for Maritime Services (RTCM) [183].

4.4.3.2 Satellite Clock Errors

Although the atomic clocks of GNSS satellites are very accurate, relativistic effects,
clock drift and offset need to be compensated for. Therefore, the GNSS satellite clock
error dts can be modeled as:

dts(t) = d̃t
s
(t) + ∆rel(t) (4.20)

where d̃t
s
(t) is a polynomial function describing the clock offset based on broadcast

parameters or precise clock error estimates provided by IGS centers and ∆rel(t) is
a small relativistic correction [184]. In case of GPS or Galileo, a second order poly-
nomial function is used to model the clock offset, while for GLONASS only a first
order polynomial is considered. Broadcast clock errors provide an accuracy in the
order of nanoseconds, while IGS services provide an accuracy at the order of 100
picoseconds.

4.5. NAVIGATION TECHNIQUES 101

4.5 Navigation Techniques

Depending on the required accuracy and precision of the final GNSS navigation so-
lution, the utilized GNSS receivers and the available budget, different navigation
techniques can be applied. Almost all state of the art consumer-grade GNSS re-
ceivers offer single epoch positioning algorithms (Section 4.5.1) and filtered naviga-
tion solutions (Section 4.5.2). More advanced, still near-consumer-grade hardware
provides raw measurement data to allow the use of carrier phase observables in or-
der to apply RTK GNSS algorithms with centimeter level accuracy (Section 4.5.3).
Most recent GNSS receivers implement RTK solution directly. In case of multi-band
GNSS receivers, PPP can be applied in order to combine several GNSS refinement
techniques yielding near-survey-grade results (Section 4.5.4).

4.5.1 Single Epoch Navigation

The single epoch navigation solution performs a weighted non-linear Least Square
Estimation (LSE) on an epoch-by-epoch basis. The non-linear LSE is solved using
the Levenberg-Marquardt method [87]. Assuming an initial state x̂0 a solution for
the non-linear LSE can be found by iteratively converging the following expression:

x̂j+1 = x̂j +
(

H⊤WH
)−1

H⊤W
(
y − h(x̂j)

)
(4.21)

where x̂j is the state estimate at iteration j, y is the observation vector, h(x̂j) is the
measurement equation based on the current state estimate, W is a measurement
weighing matrix and H is the Jacobian of the measurement equation. Formally, the
solution x̂ of the non-linear LSE is defined as:

x̂ = lim
j→∞

x̂j (4.22)

If code pseudo-ranges and Doppler-shift observables are available, both, the re-
ceiver position and its velocity as well as the clock offset and drift rate can be esti-
mated.

4.5.1.1 Position and Clock Offset Estimation

The receiver position as well as the receiver clock offset can be estimated using the
code pseudo-range observation. From Equation (4.2) and (4.3), the measurement
model for single epoch code-based positioning can be derived. For the sake of sim-
plicity, only single frequency band observations are considered since the underlying
principles can easily be extended and applied to a multi-band scenario. The fre-
quency band indicating subscript i is therefore dropped. If the instrumental delays
ds and dr are assumed to be constant for a certain carrier wave frequency band i, they
can be corrected or estimated together with the clock errors dts and dtr, respectively.
Furthermore, if the code multipath error dms

r and the other unmodeled code errors
ǫs

P,r are assumed to be small, and if the satellite positions rs as well as their clock
errors dts are known, the unknown, remaining parameters are the receiver position
rr and the receiver clock error cdtr. The unknown system state xr at epoch k can be
described as:

xr,k =
[
r⊤r cdtr

]⊤
(4.23)

102 CHAPTER 4. SATELLITE NAVIGATION

The initial state estimate x̂r,1,0 for the first epoch can be set to zero, while for subse-
quent state estimates the previous solution can be used as initial state:

x̂r,k+1,j=0 = lim
j→∞

x̂r,k,j (4.24)

Since there are four unknown system parameters from Equation (4.23), at least four
observations and therefore four valid satellites are necessary. The measurement vec-
tor yr for the code pseudo-range observations at the receiver r from m satellites is
given as:

yr =
[
Ps1

r Ps2
r Ps3

r . . . Psm
r

]⊤
(4.25)

The simplified measurement equation can be derived from the code pseudo-range
observation model in Equation (4.3) and taking into account the assumptions made
beforehand:

hr(xr) =

ρs1
r + Is1

r + Ts1
r + c (dtr − dts1)

ρs2
r + Is2

r + Ts2
r + c (dtr − dts2)

ρs3
r + Is3

r + Ts3
r + c (dtr − dts3)

...
ρsm

r + Ism
r + Tsm

r + c (dtr − dtsm)

(4.26)

The error terms caused by the ionosphere Is
r and the troposphere Ts

r need to be esti-
mated and corrected for using an appropriate approach as described in Section 4.4.
The measurement Jacobian of hr(x) is obtained using the geometric range model in
Equation (4.2) and neglecting the Sagnac effect correction terms:

Hr =
∂hr(xr)

∂xr

∣
∣
∣
∣
∣
xr=x̂r,j

=

−es1
r
⊤ 1

−es2
r
⊤ 1

−es3
r
⊤ 1

...
...

−esm
r
⊤ 1

xr=x̂r,j

(4.27)

where es
r is the satellite Line-of-Sight (LOS) vector given by:

es
r =

rs (ts)− rr (tr)

‖rs (ts)− rr (tr)‖
(4.28)

The measurement weighing matrix Wr is given as:

Wr = diag
(

σ2
P

s1
r

, σ2
P

s2
r

, σ2
P

s3
r

, . . . , σ2
Psm

r

)

(4.29)

where σPs
r

is the standard deviation [m] for each observation of a specific satellite
s, which depends on the satellite system FGNSS, the satellite elevation θs

r , the re-
ceived Signal-to-Noise-Ratio (SNR) C/N0, the accuracy of the models used for iono-
spheric σ2

iono and tropospheric σ2
tropo corrections as well as the standard deviation of

the ephemeris and satellite clock error σ2
eph:

σ2
Ps

r
≈ f (FGNSS, θs

r , C/N0) + σ2
iono + σ2

tropo + σ2
eph (4.30)

4.5. NAVIGATION TECHNIQUES 103

4.5.1.2 Velocity and Clock Drift Estimation

The receiver velocity and clock drift can be estimated in a similar manner as the
position and the receiver clock offset, if Doppler-Shift measurements are available.
The unknown state xv at epoch k is given as:

xv,k =
[
v⊤r cḋtr

]⊤
(4.31)

where vr is the receiver velocity in ECEF and cḋtr is the receiver clock drift. Just
like before, the initial state estimate for the first epoch can be set to zero, while for
subsequent state estimates the previous solution can be used as initial state. The
pseudo-range rate measurement vector yv can be obtained from the Doppler-Shift
measurements and using Equation (4.10). For m observations, it is given as:

yv =
[
Ṗs1

r Ṗs2
r Ṗs3

r . . . Ṗsm
r

]⊤

= −λ1
[
∆ f s1

D,r ∆ f s2
D,r ∆ f s3

D,r . . . ∆ f sm
D,r

]⊤
(4.32)

The measurement equation hv(xv) can be obtained by deriving the pseudo-range
measurement model using the assumption that there is no change in the ionospheric
and tropospheric error between subsequent epochs. The measurement equation is
then given as:

hv(xv) =

ρ̇s1
r + c

(

ḋtr − ḋt
s1
)

ρ̇s2
r + c

(

ḋtr − ḋt
s2
)

ρ̇s3
r + c

(

ḋtr − ḋt
s3
)

...

ρ̇sm
r + c

(

ḋtr − ḋt
sm
)

(4.33)

where ρ̇s
r is the geometric range-rate between receiver and satellite, given by:

ρ̇s
r = es

r
⊤ (vs − vr) +

ωe

c

(

vs
yxr + ysvx,r − vs

xyr − xsvy,r

)

(4.34)

Similar to the single epoch positioning, the measurement Jacobian Hv can be calcu-
lated as:

Hv =
∂hv(xv)

∂xv

∣
∣
∣
∣
∣
xv=x̂v,j

=

−es1
r
⊤ 1

−es2
r
⊤ 1

−es3
r
⊤ 1

...
...

−esm
r
⊤ 1

xv=x̂v,j

(4.35)

The weighing matrix Wv can be modeled as :

Wv = diag
(

σ2
Ṗ

s1
r

, σ2
Ṗ

s2
r

, σ2
Ṗ

s3
r

, . . . , σ2
Ṗsm

r

)

(4.36)

where σṖs
r

is the standard deviation [m] for each range-rate observation of a specific
satellite s and depends on the satellite system FGNSS, the satellite elevation θs

r and
the received Signal-to-Noise-Ratio (SNR) C/N0.

104 CHAPTER 4. SATELLITE NAVIGATION

4.5.2 Filtered Navigation

The position and velocity estimates from previous epochs can be used to predict
the navigation solution at the next epoch. Prior information about the clock offset
and clock drift rate are also included into the prediction. The current pseudo-range
and pseudo-range rate observation are then used to correct the predicted navigation
solution. In most GNSS user equipment, a Kalman Filter based state estimator is ap-
plied to obtain a filtered navigation solution. The main advantage of a filtered navi-
gation solution is the smoothing of measurement noise and the possibility to main-
tain a navigation solution even under limited satellite signal availability for a short
period of time. The fundamentals of a Kalman Filter are not discussed within this
context, however, the reader is referred to [185] for a detailed introduction. Figure
4.8 summarizes the Kalman Filter framework for the state estimation of non-linear
systems, hence an Extended Kalman Filter.

True State

xk

Input

uk+1

State Estimate

x̂k|k

State Covariance

P k|k

Evaluation of Jacobians

Fk =
∂fk(x,u)

∂x

∣
∣
∣
∣
x=x̂k|k

Hk+1 =
∂hk+1(x)

∂x

∣
∣
∣
∣
x=x̂k+1|k

State Transition

xk+1 =
fk (xk,uk+1) + vk+1

State Prediction

x̂k+1|k = fk

(
x̂k|k,uk+1

)
State Prediction Covariance

P k+1|k = F kP k|kF
⊤
k +Qk

Measurement Prediction

ŷk+1|k = hk+1

(
x̂k+1|k

)
Residual Covariance

Sk+1 = Rk+1+ Hk+1P k+1|kH
⊤
k+1

Measurement

yk+1 = hk+1 (xk+1) +wk+1

Measurement Residual

zk+1 = yk+1 − ŷk+1|k

Filter Gain

Kk+1 = P k+1|kH
⊤
k+1S

−1

k+1

Updated State Estimate

x̂k+1|k+1 = x̂k+1|k +Kk+1zk+1

Updated State Covariance

P k+1|k+1 = P k+1|k −Kk+1Sk+1K
⊤
k+1

Uncertainty

vk+1

Noise
wk+1

FIGURE 4.8: Flowchart of the EKF for one cycle [185].

The system state for a filtered navigation solution without the integration of iner-
tial measurements can be simply obtained by stacking the single epoch estimations
from Equation (4.23) and (4.31) together. This yields the true system state x at epoch
k as:

xk =
[

x⊤r,k x⊤v,k

]⊤

=
[
r⊤r cdtr v⊤r cḋtr

]⊤

(4.37)

4.5. NAVIGATION TECHNIQUES 105

Assuming a constant velocity model and a system input of zero, the system prop-
agation function fk (xk,uk) in the ECEF frame is derived as:

xk+1 = fk (xk,uk)

= fk (xk, 0)

=

rr + ∆t · vr

cdtr + ∆t · cḋtr

vr

cḋtr

(4.38)

where ∆t is the sampling time between two consecutive GNSS measurements. The
Jacobian of the propagation function is then simply given by:

Fk =
∂fk(x)

∂x

∣
∣
∣
∣
∣
x=x̂k|k

=

[
I I∆t
0 I

]

(4.39)

The measurement vector is the combination of pseudo-range and pseudo-range rate
observations:

yk =
[

y⊤r,k y⊤v,k

]⊤

=
[
Ps1

r Ps2
r . . . Psm

r Ṗs1
r Ṗs2

r . . . Ṗsm
r

]⊤

(4.40)

Therefore, the measurement equation is given by Equations (4.26) and (4.33) and
reads:

hk+1 (x) =

ρs1
r + Is1

r + Ts1
r + c (dtr − dts1)

ρs2
r + Is2

r + Ts2
r + c (dtr − dts2)

ρs3
r + Is3

r + Ts3
r + c (dtr − dts3)

...
ρsm

r + Ism
r + Tsm

r + c (dtr − dtsm)

ρ̇s1
r + c

(

ḋtr − ḋt
s1
)

ρ̇s2
r + c

(

ḋtr − ḋt
s2
)

ρ̇s3
r + c

(

ḋtr − ḋt
s3
)

...

ρ̇sm
r + c

(

ḋtr − ḋt
sm
)

x=x̂k+1|k

(4.41)

where again ρ̇s
P,r is the geometric range-rate between receiver and satellite and given

by Equation (4.34). According to [160], a position error of 1 meter relates to a velocity
error of approximately 5 · 10−5ms−2. The dependence of pseudo-range rates on po-
sition is therefore quite weak and the ∂ρ̇s

P,r/∂rr terms can be consequently neglected.

106 CHAPTER 4. SATELLITE NAVIGATION

Hence, the Jacobian of the measurement equation can be simplified to:

Hk+1 =
∂hk+1(x)

∂x

∣
∣
∣
∣
x=x̂k+1|k

=

∂ρs
r

∂rr
1 0 0

∂ρ̇s
P,r

∂rr
0

∂ρ̇s
P,r

∂vr
1

x=x̂k+1|k

=

∂ρs
r

∂rr
1 0 0

0 0
∂ρ̇s

P,r

∂vr
1

x=x̂k+1|k

=

[−Es
r 1 0 0

0 0 −Es
r 1

]

x=x̂k+1|k

(4.42)

where Es
r is the collection of all LOS vectors between the receiver and the observed

satellites:

Es
r =

[

e
s1
r
⊤

e
s2
r
⊤

e
s3
r
⊤ . . . esm

r
⊤
]⊤

(4.43)

The main sources of increased uncertainty during the state propagation are changes
in velocity due to user motion and the random walk of the receiver clock. There is
also some additional phase noise on the clock offset [160]. In general, however, the
system noise v(k) is inherently context-dependent. For small propagation intervals,
the system noise covariance matrix Q can be simplified to:

Q =

03×3 0 0 0
0 σ2

dtr
0 0

0 0 Qr 0
0 0 0 σ2

ḋtr

(4.44)

where σ2
dtr

and σ2
ḋtr

are noise parameters that quantify the crystal accuracy and stabil-
ity, while Qr is a context-dependent noise matrix, reflecting dynamics of the receiver
mounted platform:

Qr = CELdiag
(
σ2

rh
, σ2

rh
, σ2

rv

)
C⊤EL (4.45)

where σrh
and σrv are the horizontal and vertical standard deviations of the receiver

platform velocity in a local frame, respectively, and CEL is the transformation from
the local frame to ECEF. While a pedestrian and a car experience different horizon-
tal accelerations, they are both limited in their vertical movements. In contrast to
that, a UAV can be subjected to high vertical accelerations. The measurement noise
w(k) can be quantified similar to the weighing matrices of the single epoch solution
in Equation (4.29) and (4.36). The measurement noise covariance matrix R can be
written as:

R = diag
(

σ2
P

s1
r

, σ2
P

s2
r

, σ2
P

s3
r

, . . . , σ2
Psm

r
, σ2

Ṗ
s1
r

, σ2
Ṗ

s2
r

, . . . , σ2
Ṗsm

r

)

(4.46)

4.5. NAVIGATION TECHNIQUES 107

4.5.3 Carrier-based Positioning for Short Baselines

If pseudo-range measurements are compared with the measurements made at a pre-
surveyed location, slowly varying errors, such as the ephemeris prediction errors,
satellite clock errors as well as ionospheric and tropospheric errors can be calibrated
out. For applications where the reference station and the user are relatively close
to each other, the accuracy of the code-based differential GNSS is limited by code
tracking and multipath errors. Since carrier phase tracking is less noisy and ex-
hibits smaller multipath disturbance, centimeter accuracy is attainable if relative
carrier-based positioning techniques are applied [160]. Within the context of car-
rier phase-based positioning, Real-time Kinematic (RTK) describes differential GNSS
techniques that are applicable in real-time for traditional setups and moving base-
lines. Within moving baseline setups, neither the reference station nor the user re-
ceiver need to be stationary. Consequently, RTK algorithms can be used in order to
implement GNSS-based attitude determination systems. The most popular RTK ap-
proach is based on the double-differences, a technique that compares pseudo-range
and carrier phase observations between different receivers and satellites in order to
eliminate slowly varying error sources. The flowchart in Figure 4.9 shows the typical
steps for RTK carrier-based positioning.

❙✐♥❣❧❡ ❉✐✛❡r❡♥❝❡s

❇❡t✇❡❡♥ ❘❡❝❡✐✈❡rs

P s

r12
✱ Φs

r12

❉♦✉❜❧❡ ❉✐✛❡r❡♥❝❡s

❇❡t✇❡❡♥ ❙❛t❡❧❧✐t❡s

P
sij
r12

✱ Φ
sij
r12

✱ i 6= j

❊①t❡♥❞❡❞ ❑❛❧♠❛♥ ❋✐❧t❡r

❋❧♦❛t ❙♦❧✉t✐♦♥

❙♦❢t ❇❛s❡❧✐♥❡

❈♦♥str❛✐♥ts

❆♠❜✐❣✉✐t② ❍♦❧❞

Ps❡✉❞♦ ▼❡❛s✉r❡♠❡♥t

■♥t❡❣❡r ❆♠❜✐❣✉✐t② ❋✐①✐♥❣

▲❆▼❇❉❆

■♥t❡❣❡r ❆♠❜✐❣✉✐t②

❈❛♥❞✐❞❛t❡ ❊✈❛❧✉❛t✐♦♥

❍❛r❞ ❇❛s❡❧✐♥❡

❈♦♥str❛✐♥ts

❘❡❧❛t✐✈❡ P♦s✐t✐♦♥

❇❡t✇❡❡♥ ❘❡❝❡✐✈❡rs

❈❛rr✐❡r✲P❤❛s❡ Φ
s

r1
,Φs

r2
❛♥❞

Ps❡✉❞♦r❛♥❣❡ P s

r1
, P s

r2

FIGURE 4.9: Flowchart for Carrier-based positioning with optional
baseline constraints and integer ambiguity hold.

After the pseudo-range and carrier phase raw observations for a group of satel-
lites s from different receivers r1 and r2 are obtained, the single-differences between
receivers (see Section 4.5.3.1) and subsequently, the double-differences between re-
ceivers and satellites are computed (Section 4.5.3.2). Since carrier phase observations
are ambiguous (see Equation (4.4)), the double-differenced carrier phase observa-
tions remain ambiguous, too. The ambiguities need to be resolved, in order to obtain
the desired centimeter position accuracy. The integer ambiguity resolution is done
in three steps. First, the integer ambiguities are estimated by determining a float
solution using a EKF integrating the double-differenced pseudo-range and carrier

108 CHAPTER 4. SATELLITE NAVIGATION

phase observations. The EKF float estimation is described in Section 4.5.3.3. Next, a
search for a suitable combination of integer values based on the float ambiguities is
executed (Section 4.5.3.4). In the final step, the candidate sets of integer ambiguities
returned by the search are evaluated. If a suitable set of integers is found, the fixed
ambiguities are used to correct the relative position between the two receivers. Con-
versely, if the integer ambiguities could not have been fixed correctly, the relative
position is estimated based on the float solution of the integer ambiguities. Optional
pseudo measurements (Section 4.5.3.5) and different baseline constraints (Section
4.5.3.6 and 4.5.3.7) can be utilized in order to include additional a priori knowledge
about the baseline geometry allowing a more robust and faster determination of the
double-differenced integer ambiguities.

4.5.3.1 Single Differences

Single difference models can be obtained by differencing observations from two dif-
ferent sources. These sources include different receivers, satellites, frequencies and
epochs. An exhaustive analysis of these different models is presented in [161]. In the
presented approach, the single difference is formed by differencing the observations
between L1 single frequency receivers r1 and r2 for a common reference satellite s:

Ps
r12
(tr) = Ps

r2
(tr2)− Ps

r1
(tr1)

= ρs
r2
(tr2 , ts)− ρs

r1
(tr1 , ts)

+ Is
r2
− Is

r1
+ Ts

r2
− Ts

r1
+ dms

r2
− dms

r1

+ c [dr2 (tr2) + ds (ts)]− c [dr1 (tr1) + ds (ts)]

+ c [dtr2 (tr2)− dts (ts)]− c [dtr1 (tr1)− dts (ts)]

+ ǫs
P,r2
− ǫs

P,r1

(4.47)

Φs
r12
(tr) = Φs

r2
(tr2)−Φs

r1
(tr1)

= ρs
r2
(tr2 , ts)− ρs

r1
(tr1 , ts)

− Is
r2
+ Is

r1
+ Ts

r2
− Ts

r1
+ δms

r2
− δms

r1

+ c [δr2 (tr2) + δs (ts)]− c [δr1 (tr1) + δs (ts)]

+ c [dtr2 (tr2)− dts (ts)]− c [dtr1 (tr1)− dts (ts)]

+ λ1 [ϕr2 (t0)− ϕs (t0)]− λ1 [ϕr1 (t0)− ϕs (t0)]

+ λ1Ns
r2
− λ1Ns

r1
+ ǫs

Φ,r2
− ǫs

Φ,r1

(4.48)

Using single differences, the satellite instrumental delays ds (ts) and δs (ts), the
satellite clock error dts (ts) as well as the satellite phase offset ϕs (t0) is eliminated.
For very short baselines (< 10 km), the ionospheric and tropospheric signal path
are almost identical and causing their errors to be almost canceled out [162, 186].
Assuming Is

r2
= Is

r1
and Ts

r2
= Ts

r1
and lumping the remaining terms together, the

single difference model reads:

Ps
r12

= ρs
r12

+ dms
r12

+ cdr12 + cdtr12 + ǫs
P,r12

(4.49)

Φs
r12

= ρs
r12

+ δms
r12

+ cδr12 + cdtr12 (4.50)

+ λ1ϕr12 (t0) + λ1Ns
r12

+ ǫs
Φ,r12

4.5. NAVIGATION TECHNIQUES 109

where the subscript r12 indicates the difference between the two receivers:

•r12 = •r2 − •r1 (4.51)

Besides the relative clock errors cdtr12 and relative instrumental delays dr12 and
cδr12 , the initial relative receiver phase offset ϕr12 (t0) and the single difference integer
ambiguity Nr12 remain unknown. The single difference integer ambiguity is depicted
in Figure 4.10. Due to the short baseline assumptions, the LOS vectors are assumed
to be identical:

es
r1
≈ es

r2
(4.52)

Baseline b

esr1

esr1 ≈ esr2

esr2

λ
1N s

r
12

Φ s
r
12

λ
1 = 19.05 cm

Receiver 1 Receiver 2

FIGURE 4.10: Integer ambiguity Ns
r12

for the single difference between
two L1 receivers, where es

r are the Line-of-Sight (LOS) vectors be-
tween the receivers and the satellite, Φs

r12
the phase-range difference

between both receivers and λ1 the L1 wavelength.

4.5.3.2 Double Differences

The goal of forming double differences is to eliminate the remaining receiver de-
pended errors. The receiver clock errors and instrumental delays from Equation
(4.49) and (4.50) are identical for satellite signals at the same frequency. In contrast,
since GLONASS uses FDMA, so called inter channel biases need to be considered
and removed beforehand [187]. For modern GNSS receivers that are designed for
differential carrier phase-based positioning, it can be assumed that the local signal
replicas are in phase, and hence that the relative receiver phase offset ϕr12 (t0) is can-
celed out [162]. The double difference model for a satellite pair i, j reads:

P
sij
r12 =

[

P
sj
r2 − P

sj
r1

]

−
[
Psi

r2
− Psi

r1

]
(4.53)

= ρ
sj
r12 − ρsi

r12
+ dm

sj
r12 − dmsi

r12
+ ǫ

sj

P,r12
− ǫsi

P,r12

Φ
sij
r12 =

[

Φ
sj
r2 −Φ

sj
r1

]

−
[
Φsi

r2
−Φsi

r1

]
(4.54)

= ρ
sj
r12 − ρsi

r12
+ δm

sj
r12 − δmsi

r12

+ λ1

[

N
sj
r12 − Nsi

r12

]

+ ǫ
sj

Φ,r12
− ǫsi

Φ,r12

110 CHAPTER 4. SATELLITE NAVIGATION

Since the multipath error depends on the relative geometry between receiver,
satellite and environment, it cannot be mitigated using double differences [162, 178].
Lumping the remaining terms together and assuming that the multipath error is
small enough to be neglected for UAVs, the final double difference model is:

P
sij
r12 = ρ

sij
r12 + ǫ

sij

P,r12
(4.55)

Φ
sij
r12 = ρ

sij
r12 + λ1N

sij
r12 + ǫ

sij

Φ,r12
(4.56)

4.5.3.3 EKF Formulation

Theoretically, it is possible to compute the navigation solutions for all possible in-
teger ambiguity combinations within the search area and then selecting the most
consistent. However, in practice, this is not feasible due to the high computational
load caused by the evaluation of over a million possible solutions [160]. In practical
applications, the integer ambiguities N si

r12 are first approximated as floating numbers
N̂

si
r12 using an Extended Kalman Filter (EKF). In order to avoid hand-over handling

problems if the reference satellite is changed, single instead of double differenced
ambiguities are estimated [157]. The unknown system state vector for single fre-
quency receivers at epoch k can be then written as:

xk =
[

r⊤r1,k v⊤r1,k N̂
si
r12

⊤
]⊤

=
[

r⊤r1,k v⊤r1,k N̂s1
r12 N̂s2

r12 N̂s3
r12 . . . N̂sm

r12

]⊤

(4.57)

where rr1,k and vr1,k are the receiver position and velocity of r1 in the ECEF frame,
respectively, and N̂

si
r12 are the single differenced float ambiguities. In this case, the

receiver r2 is considered as reference station that can be both, stationary or moving.
The system state can be propagated using a constant velocity model with zero input.
The system transition is then given by:

x̂k+1|k = F x̂k|k

=

I3×3 I3×3∆t 0
0 I3×3 0
0 0 Im×m

 x̂k|k

(4.58)

where ∆t is the time between two consecutive GNSS observations. The measure-
ment vector y(k) is composed of the double differenced pseudo-range and carrier
phase-range observations with respect to a fixed reference satellite j:

yk =

[

P
sj
r12

Φ
sj
r12

]

(4.59)

For a measurement vector with satellite j = 1 as reference, the observation can be
written as:

P s1
r12

=
[
Ps12

r12 Ps13
r12 Ps14

r12 . . . Ps1m
r12

]⊤
(4.60)

Φ
s1
r12

=
[
Φ

s12
r12 Φ

s13
r12 Φ

s14
r12 . . . Φ

s1m
r12

]⊤
(4.61)

4.5. NAVIGATION TECHNIQUES 111

Using the double difference model in Equation (4.55) and (4.56), the measurement
model hk+1 can be derived as:

hk+1(x) =
[
hP ,k+1(x)

⊤ hΦ,k+1(x)
⊤]⊤ (4.62)

where hP ,k+1 and hΦ,k+1 for the reference satellite j = 1 can be written as:

hP ,k+1(x) =

ρs12
r12

ρs13
r12

ρs14
r12
...

ρs1m
r12

, hΦ,k+1(x) =

ρs12
r12 + λ1

(
Ns2

r12 − Ns1
r12

)

ρs13
r12 + λ1

(
Ns3

r12 − Ns1
r12

)

ρs14
r12 + λ1

(
Ns4

r12 − Ns1
r12

)

...
ρs1m

r12 + λ1
(

Nsm
r12 − Ns1

r12

)

(4.63)

The measurement Jacobian Hk+1 can be derived as:

Hk+1 =
∂hk+1(x)

∂x

∣
∣
∣
∣

x=x̂k+1|k

=

[−DE 0 0
−DE 0 λ1D

]

x=x̂k+1|k

(4.64)

where D ∈ R(m−1)×m is the single differencing matrix given as:

D =

−1 1 0 . . . 0
−1 0 1 . . . 0

...
...

...
. . .

...
−1 0 0 . . . 1

(4.65)

and E is the stacked vector of all LOS vectors:

E =
[

e
s1
r
⊤

e
s2
r
⊤ . . . esm

r
⊤
]⊤

(4.66)

Similar to the filtered navigation solution, the main source of increased uncer-
tainty during the state propagation are changes in velocity due to user motion. The
system noise covariance matrix Q for m satellites is hence given by:

Q =

03×3 0 0
0 Qr 0
0 0 0(m−1)×(m−1)

 (4.67)

where Qr follows the definition in Equation (4.45). The measurement covariance
matrix R depends on the double differenced noise of the raw observations:

R =

[
DRPD

⊤ 0

0 DRΦD
⊤

]⊤
(4.68)

where RP and RΦ are given by the raw observation errors σ2
Ps

r
and σ2

Φs
r

as:

RP = 2 · diag
(

σ2
P

s1
r

, σ2
P

s2
r

, σ2
P

s3
r

, . . . , σ2
Psm

r

)

(4.69)

RΦ = 2 · diag
(

σ2
Φ

s1
r

, σ2
Φ

s2
r

, σ2
Φ

s3
r

, . . . , σ2
Φ

sm
r

)

(4.70)

112 CHAPTER 4. SATELLITE NAVIGATION

4.5.3.4 Ambiguity Fixing

In order to estimate the integer ambiguities of the double difference model in Equa-
tion (4.56), the EKF state and state covariance estimates need to be transformed from
single differences to double differences:

x̂′k+1|k+1 = Gx̂k+1|k+1 (4.71)

=
[
r̂⊤r1

v̂⊤r1
N̂⊤

]⊤

P ′k+1|k+1 = GPk+1|k+1G
⊤ (4.72)

=

[
QP̂ QN̂P̂

QP̂N̂ QN̂

]⊤

where G is the single to double difference transformation matrix and given as:

G =

[
I6×6 0
0 D

]

(4.73)

Given the double differenced float ambiguities N̂ ∈ R(m−1) and their respective
covariance matrix QN̂ ∈ R(m−1)×(m−1), the integer ambiguities N̆ ∈ Z(m−1) can be
obtained by solving a Integer Least Square (ILS) problem expressed as:

N̆ = arg min
N∈Z(m−1)

[(
N̂ − N

)⊤
QN̂

−1 (N̂ − N
)]

= arg min
N∈Z(m−1)

[∥
∥N̂ − N

∥
∥

2
QN̂

]

(4.74)

where the following notation is used:

(•)⊤Q−1 (•) = ‖•‖2
Q (4.75)

Next, an integer search is conducted to find a solution for the above problem. The
search space can be defined by introducing a properly chosen constant χ2:

{

N ∈ Z
(m−1) |

∥
∥N̂ − N

∥
∥

2
QN̂
≤ χ2

}

(4.76)

ILS problems are known to be NP-hard. While integer rounding schemes are
rather simple but time consuming, fixing integer ambiguities efficiently turns out
to be quite complex and a non-trivial problem. With the Least-Square Ambiguity
Decorrelation Adjustment (LAMBDA) approach, a well-known integer fixing strat-
egy was introduced in [52, 188].

LAMBDA addresses the ILS problem in two steps: The problem reduction and
the actual search. The search space reduction is conducted in order to allow a
more efficient search. Its goal is to transform the highly elongated and correlated
covariance matrix QN̂ and the respective float ambiguities using the so-called Z-
transformation in such a way that the least-square integer estimation becomes trivial
and hence more efficient. The utilized Z-transformations are required to be integer
and volume preserving in order to successfully decorrelate the integer ambiguities.

4.5. NAVIGATION TECHNIQUES 113

The Z-transformation is defined as:

z = Z⊤N , ẑ = Z⊤N̂ , Qẑ = Z⊤QN̂Z (4.77)

where Z ∈ Z(m−1)×(m−1) and |det (Z)| = 1. Using the above transformation, the
original ILS problem is transferred to a new one:

z̆ = arg min
z∈Z(m−1)

[

‖ẑ − z‖2
Qẑ

]

(4.78)

In order to find a suitable Z-transformation with the above characteristics, L⊤DL-
factorizations of QN̂ and Qẑ need to be considered:

QN̂ = L⊤DL, Qẑ = Z⊤L⊤DLZ = L̄⊤D̄L̄ (4.79)

In the LAMBDA method, the Z-transformation is constructed by a sequence of
integer Gauss transformations and permutations in such a way that Qẑ is as diag-
onal as possible and hence, the new covariance therefore decorrelated. Addition-
ally, the diagonal entries of D̄ are sorted in a decreasing order. For a more detailed
description of the approach, the reader is referred to [189]. A modified version of
LAMBDA (MLAMBDA) identified the integer Gauss transformations and permuta-
tions as the most time consuming step and proposed a faster way to compute the
L⊤DL-factorization of Qẑ by the use of symmetric pivoting and decorrelating the
parameters by a combination of greedy selections and lazy transformations [190].
Figure 4.11 illustrates the highly correlated covariance ellipsoid for QN̂ , the decorre-
lated covariance ellipsoid for Qẑ as well as the initial float ambiguities N̂ and their
integer fixes N̆ for a simple two dimensional problem.

FIGURE 4.11: LAMBDA Integer Ambiguity Fixing for QN̂ ∈ R2×2:
Highly correlated covariance ellipsoid for QN̂ (dashed), decorrelated
covariance ellipsoid for Qẑ (solid), float ambiguities N̂ (o) and fixed

ambiguities N̆ (+).

114 CHAPTER 4. SATELLITE NAVIGATION

Once a suitable Z-transformation is obtained, a discrete search is performed by
applying a sequential conditional least-square estimation. The new search space is
defined by:

{

z ∈ Z
(m−1) | ‖ẑ − z‖2

Qẑ
≤ χ2

}

(4.80)

Another optimization introduced by MLAMBDA allows a dynamic shrinking
of the search space during the search process [190]. The integer sets estimated in
the new search space can be transformed back to the original ILS problem using
the inverse Z-transformation. Typically, LAMBDA computes several integer sets
N̆i, which allows to evaluate the computed sets based on additional criteria. The
simplest candidate set evaluation method compares the ratio between be best N̆1

and the second best N̆2 integer estimate:

R =

∥
∥N̂ − N̆2

∥
∥

2
QN̂

∥
∥N̂ − N̆1

∥
∥

2
QN̂

> Rthres (4.81)

If the ratio exceeds a certain threshold Rthres, the integer ambiguities are assumed to
be fixed correctly. Another candidate evaluation criteria considers additional base-
line constraints and is introduced in Section 4.5.3.7. The fixed baseline solution can
be computed by correcting the float estimate:

[
r̆r1

v̆r1

]

=

[
r̂r1

v̂r1

]

+QP̂N̂QN̂

(
N̂ − N̆

)
(4.82)

4.5.3.5 Pseudo Measurements

Pseudo measurements can be introduced to reduce the EKF convergence time and
to correct the EKF state estimates once the integer ambiguities are resolved correctly.
The float state estimates are forced towards the fixed integer solution. A pseudo
measurement vector consists therefore of the fixed double differenced integer ambi-
guities:

yN̆ = N̆ s1
r12

=
[
N̆s12

r12 N̆s13
r12 N̆s14

r12 . . . N̆s1m
r12

]⊤
(4.83)

The measurement prediction is based on the current float estimates and constructed
using the double difference matrix D:

hN̆,k+1 = HN̆,k+1x̂k+1|k
=
[
0 D

]
x̂k+1|k

(4.84)

Using the measurement noise covariance matrix, the weight of the pseudo measure-
ments can be adjusted:

RN̆ = diag
(
σ2

c , σ2
c , σ2

c , . . .
)

(4.85)

4.5. NAVIGATION TECHNIQUES 115

4.5.3.6 Soft Baseline Constraints

Soft baseline constraints, are baseline constraints that use a priori information about
the baseline configuration as an additional pseudo measurement during the float
estimation step. Their purpose is to increase the accuracy and stability of the float
estimates. Depending on the available information about the baseline configuration,
either the baseline length or a vector describing the complete baseline can be used in
this step. The baseline length and the baseline vector pseudo measurement can be
used simultaneously or independently.

Baseline Length The baseline length constraint is described in [157]. The addi-
tional pseudo measurement is simply given by a length observation of the baseline:

yL = lbaseline (4.86)

The baseline length is measured with a known observation accuracy:

RL = σ2
L (4.87)

The measurement prediction is obtained from the current rover position float esti-
mate r̂r1 and the known base position rr2 , respectively:

hL,k+1 = |r̂r1 − rr2 | (4.88)

The measurement Jacobian is then given by:

HL,k+1 =
r̂r1 − rr2

|r̂r1 − rr2 |
(4.89)

For very short baselines, e.g. a UAV mounted GNSS compass, non-linearities might
arise due to the rotation of the complete platform. According to [157], iterative
pseudo measurement updates can be applied in order to cope with the non-linearities.
The information about the baseline length can be simply measured in the case of a
moving baseline configuration, where the rover and the base are mounted on a com-
mon platform and move together. In case of a fixed base station, the additional
information can be obtained by other radio ranging techniques.

Baseline Vector The baseline vector constraint is an extension of the baseline length
constraint for the case that the full baseline configuration is known. The approach is
described in [45, 53]. The pseudo measurement is given by an externally observed
or known baseline vector bL given in a local frame L:

yb = CELbL (4.90)

where CEL is a rotation of the baseline vector from the local frame to the frame used
by the underlying EKF, typically the ECEF frame. Similar, the accuracy of the a
priori known baseline vector needs to be transformed into the according navigation
frame of the EKF:

Rbv = CEL

σ2
bvx

0 0
0 σ2

bvy
0

0 0 σ2
bvz

C⊤EL (4.91)

116 CHAPTER 4. SATELLITE NAVIGATION

where σbvi
is the measurement accuracy in the according axis i in the local frame.

The measurement prediction is then simply given by:

hbv,k+1 = r̂r1 − rr2 (4.92)

And its Jacobian reads:

Hbv,k+1 = I3×3 (4.93)

In case of a UAV mounted GNSS compass, the movement of the a priori measured
baseline vector can be additionally tracked by inertial sensors.

4.5.3.7 Hard Baseline Constraints

Hard baseline constraints, are baseline constraints that are applied during the in-
teger ambiguity fixing step. Throughout literature, different approaches for hard
baseline constrains are considered [191–194]. The various approaches depend on
the available amount of a priori information and suggest different optimizations to
increase the efficiency of hard baseline constraints. Similar to the soft baseline con-
straints, the constraints can be limited to the baseline length or a vector describing
the baseline. Additional information derived from the baseline vector, such as the
baseline heading and inclination angle, can be used as constraints, too [191]. The
baseline constraint LAMBDA approach described here is limited to a priori knowl-
edge about the baseline length and the baseline vector and builds upon the work
done in [194].

In case of moving base scenarios, e.g. GNSS compass applications, the velocity is
not part of the navigation solution, since only the relative position of the rover with
respect to the base station is required. The reduced system state is then given by:

x̂′k+1|k+1 = Gx̂k+1|k+1 (4.94)

=
[
r̂⊤r1

N̂⊤
]⊤

P ′k+1|k+1 = GPk+1|k+1G
⊤ (4.95)

=

[
QR̂ QN̂R̂

QR̂N̂ QN̂

]⊤

where G is the single to double difference transformation matrix and given as:

G =

[
I3×3 03×m

0(m−1)×3 D

]

(4.96)

In general, the baseline vector can be be estimated using the float estimates of the
rover position r̂r1 and the known position of the base rr2 by:

b̂(N̂) = r̂r1 − rr2 (4.97)

The accuracy of the float baseline estimation can be calculated using the covariance
matrices from Equation (4.95):

Qb̂(N̂) = QR̂ −QR̂N̂QN̂
−1QN̂R̂ (4.98)

4.5. NAVIGATION TECHNIQUES 117

For a candidate set of integer ambiguities, the accordingly corrected baseline can be
obtained similar to Equation (4.82):

b̂(N) = b̂(N̂) +QR̂N̂QN̂

(
N̂ − N

)
(4.99)

A straight forward and rather simple approach, is applying an additional validation
step during the integer ambiguity fixing by constraining the baseline length or vector
for each candidate set:

∣
∣b̂(N)− lbaseline

∣
∣ ≤ ∆lbaseline (4.100)

∥
∥b̂(N)−CELbL

∥
∥

2
I
≤ ‖CEL∆bL‖2

I (4.101)

with suitable values for ∆lbaseline and ∆bL. For all ambiguity candidates the base-
line b̂(N) is calculated and compared to the according threshold. If the computed
baseline does not fall within a tolerable region, the integer candidate N is rejected.
However, this simple method is computational expensive, since the baseline has to
be computed and evaluated for each candidate.

BC-LAMBDA The baseline constrained LAMBDA method extends the ILS prob-
lem in Equation (4.74) to meet additional constraints given by a priori information
about the baseline configuration:

N̆ = arg min
N∈Z(m−1),b∈R3

[
∥
∥N̂ − N

∥
∥

2
QN̂

+
∥
∥b̂(N)− b

∥
∥

2
Q

b̂(N)

]

(4.102)

subject to:

‖b‖2
I = l2

baseline

This problem is commonly referred to as Integer Least Squares with Quadratic Equal-
ity (ILSQE). In [194], it is shown that the ILSQE can be rewritten as:

N̆ = arg min
N∈Z(m−1)

[
∥
∥N̂ − N

∥
∥

2
QN̂

+
∥
∥b̂(N)− b̆(N)

∥
∥

2
Q

b̂(N)

]

(4.103)

where b̆(N) is the constrained baseline vector and defined as:

b̆(N) = arg min
b∈R3,‖b‖2

I=l2
baseline

[
∥
∥b̂(N)− b

∥
∥

2
Q

b̂(N)

]

(4.104)

Since there is no analytic solution for Equation (4.103), it has to be solved using
an efficient search method. The ambiguity search space can be defined as:

{

N ∈ Z
(m−1) |

∥
∥N̂ − N

∥
∥

2
QN̂

+
∥
∥b̂(N)− b̆(N)

∥
∥

2
Q

b̂(N)
≤ χ2

}

(4.105)

where χ2 is a properly chosen constant. Choosing χ2 is not trivial and discussed
in detail in [194]. In order to keep the search space as small as possible, but still
reasonably big, χ2 is initially chosen to be equal to χ2

ILS, which equals:

χ2
ILS =

∥
∥N̂ −NILS

∥
∥

2
QN̂

(4.106)

118 CHAPTER 4. SATELLITE NAVIGATION

where NILS is the solution from the LAMBDA method for the original ILS problem.
If the search space with χ2 = χ2

ILS does not contain a solution for Equation (4.103),
the search space is incremented by χ2

ILS. The actual search is then performed in two
steps. First, all integer vectors that satisfy the unconstrained ILS problem for the
current search space are collected. In the next step, all integer vectors that satisfy the
inequality from Equation (4.105) are collected:

∥
∥b̂(N)− b̆(N)

∥
∥

2
Q

b̂(N)
≤ χ2 −

∥
∥N̂ − N

∥
∥

2
QN̂

(4.107)

As a result for the ILSQE problem, the integer vector that minimizes Equation (4.103)
is selected. The cost of each integer candidate set can be computed by:

ω(N) =
∥
∥N̂ − N

∥
∥

2
QN̂

+
∥
∥b̂(N)− b̆(N)

∥
∥

2
Q

b̂(N)
(4.108)

In order to find a ILSQE solution the constrained baseline vector b̆(N) has to
be computed, which is computationally expensive. The computation of b̆(N) and
therefore the Least Square with Quadratic Equality (LSQE) problem given by Equa-
tion (4.104) can be done using a LSQE solver as described in [195] or by using or-
thogonal projection as done in [194]. In order to speed up the computation of the
ILSQE solution, a lower boundary for the left hand side of the inequality in Equa-
tion (4.107) is introduced, that is way more efficient to be evaluated. It can be shown
that the following is a valid lower boundary:

(∥
∥b̂(N)

∥
∥− lbaseline

)2

λmax
≤
∥
∥b̂(N)− b̆(N)

∥
∥

2
Q

b̂(N)
≤ χ2 −

∥
∥N̂ − N

∥
∥

2
QN̂

(4.109)

where λmax is the largest eigenvalue of Qb̂(N). Only if this lower boundary hold true,

the computation of b̆(N) is required. The complete baseline constrained LAMDBA
search can be summarized as follows:

Algorithm 4.1 BC-LAMBDA

Require: Float estimates N̂ , b̂(N̂) and their covariances QR̂,QN̂ ,QR̂N̂

Compute Qb̂(N)
Compute λmax as the largest eigenvalue of Qb̂(N)
Compute the unconstrained ILS solution NILS

Set initial search space as χ2
1 =

∥
∥N̂ −NILS

∥
∥

2
QN̂

Create an empty set of integer candidates Ω = {}
while Ω is empty do

for all N such that
∥
∥N̂ −N

∥
∥

2
QN̂
≤ χ2

k do

Compute b̂(N)

if
(‖b̂(N)‖−lbaseline)

2

λmax
≤ χ2 −

∥
∥N̂ − N

∥
∥

2
QN̂

then

Compute b̆(N)
Compute ω(N) and add N to Ω

end if

end for

Increase search space χ2
k+1 = χ2

k + χ2
1

end while

select candidate set N with smallest ω(N)

4.5. NAVIGATION TECHNIQUES 119

4.5.4 Precise Point Positioning

Precise Point Positioning (PPP) is a class of positioning techniques that allows decime-
ter precision in real-time absolute positioning applications if a internet connection is
available. Pure PPP approaches suffer from a rather long convergence time of about
20 minutes [196]. PPP provides high precision and accuracy for absolute positions,
whereas RTK methods deliver focus on the relative position between base and rover.
PPP combines dual-frequency ionosphere delay calibration and carrier smoothing
of pseudo-ranges with precise orbit data and clock error corrections. In general, the
PPP observation model for the ionosphere-free linear combination of GNSS obser-
vations(see Equation (4.18) and (4.19)) at two different satellite frequencies can be
expressed as:

Ps
r,LC = ρs

r + c (dtr (tr)− dts (ts)) + Ts
r + ǫs

P,r (4.110)

Φs
r,LC = ρs

r + c (dtr (tr)− dts (ts)) + Ts
r (4.111)

+ Bs
r,LC + dΦs

r,LC + ǫs
Φ,r

where Bs
r,LC is the linear combination of two carrier phase biases (see Equation (4.7))

and dΦs
r,LC is the linear combination of two carrier phase correction terms. Although,

the carrier phase correction terms can be neglected for short baseline applications in
RTK setups and differential approaches, they need to be considered for PPP. The cor-
rection terms described in [157] model the phase center offset variation from satellite
and receiver antennas as well as Earth tidal effects.

While PPP was originally developed for post-processing and is most commonly
used in within those applications [160], modern PPP approaches acquire the correc-
tion data in quasi real-time over the internet. The precise correction data is provided
by the International GNSS Service (IGS) or other GNSS analysis centers [197]. Ta-
ble 4.3 lists the main characteristics and differences between RTK- and PPP-based
approaches. Both approaches are able to provide a high precision real-time naviga-
tion solution. While RTK benefits from short warm-up periods (convergence time),
centimeter accuracy and can operate with low-cost single frequency receivers only,
PPP can operate as standalone without the need of an additional reference station.
Another drawback of PPP is the required internet connectivity which is not always
available. In [198], combined RTK and PPP approaches are described to merge the
benefits of both methods.

Technique
Number of
Frequencies

Warm-Up
Time

Real-Time
Receiver
Infrastructure

Positioning Precision

RTK 1 ≤ 2 min yes Link to Base relative centimeter
PPP 2+ ≈ 20 min yes Internet absolute sub-decimeter

TABLE 4.3: Comparison between PPP and RTK positioning.

Since low-cost single frequency GNSS receivers are used within this work, PPP
approaches are not discussed in detail, but rather just mentioned for the sake of
completeness.

121

Chapter 5

Implementation

This chapter focuses on important implementation aspects of the previously intro-
duced methods. For this purpose, details of the developed GNSS navigation appli-
cations for ROBEX and MIDRAS are presented in Section 5.1. The subsequent sections
explain selected features of the software framework on which the developed flight
controller FARN is based. The software framework can be split into three parts: The
software running on the real-time core Cortex-M4 in Section 5.2, the software run-
ning on the application core Cortex-A9 in Section 5.3 and the software required for
inter-core communication in Section 5.4. Figure 5.1 illustrates all software compo-
nents.

CORTEX-M4

CORTEX-A9

SDRAM

RPMSG - LITE

MESSAGE

BUFFERS

TWO-WAY

RANGING

UWB

MAIN THREAD

ESKF

MATLIB 2.0

CASCADED

CONTROL

IMU

SENSOR

THREADS

LOW-LEVEL

DRIVERS

LOW-LEVEL

SENSORS

3RD PARTYOPENAMP

ROS RTKLIB

GNSS
HIGH-LEVEL

SENSORS

HIGH-LEVEL

DRIVERS

MESSAGING UNIT

FIGURE 5.1: FARN software framework. Solid boxes indicate stan-
dalone modules, while round corners indicate libraries. 3rd party
libraries or libraries that are only slightly modified have no filling.

Optional components have dashed frames.

122 CHAPTER 5. IMPLEMENTATION

5.1 Navigation Applications

In the following, implementation details of the two advanced navigation applica-
tions that have been implemented for FARN are described. The first application
is a GNSS compass suitable for autonomous UAVs and was developed within the
ROBEX project in order to determine a robust and reliable heading solution in an
Arctic environment. The second application describes a UWB augmented RTK posi-
tioning approach that was researched with the aim of positioning two UAVs relative
to each other as precisely as possible within MIDRAS.

5.1.1 GNSS Compass

The GNSS compass combines ESKF attitude estimates, with GNSS code and car-
rier phase observations in order to determine a reliable heading without requiring a
magnetic compass. If precise orbit data is available over NTRIP, it can be integrated
into the GNSS compass application, too.

Using two GNSS antennas A1 and A2 rigidly mounted on the UAV frame at a
distance d, the heading and pitch information of the GNSS baseline can be observed.
The baseline pitch corresponds to the UAV roll, however, since gravity vector obser-
vations by the accelerometer are more accurate, they are the preferred reference for
the corresponding UAV roll updates within the ESKF. The setup with the respective
frames is shown in Figure 5.2.

d

xB

yB

zB

xA2

yA2

zA2

xA1

yA1

zA1

xN

yN

zN

FIGURE 5.2: GNSS compass coordinate frames.

Due to the high computational load for carrier phase-based positioning and the
strict hard real-time constraints for a UAV flight controller, a loosely-coupled ap-
proach is implemented according to Figure 5.3. The computational expensive tasks
run on the Cortex-A9 at 10 Hz. The actual real-time ESKF attitude estimation runs
on the Cortex-M4 with up to 952 Hz which is the maximum IMU sample rate.

5.1. NAVIGATION APPLICATIONS 123

CORTEX-M4

CORTEX-A9

SDRAM

ESKF

IMU

RTK GNSS

COMPASS

GNSS 1 GNSS 2NTRIP

P s
A1

, Φs
A1

P s
A2

, Φs
A2

ψGNSS qNB

yIMU

FIGURE 5.3: GNSS compass task distribution on the i.MX6sX.

The baseline vector in the local A1-frame is then simply given by:

bA1 =

0
d
0

 (5.1)

Using the current attitude quaternion estimate qNB describing the rotation from the
navigation frame N to the body fixed frame B, the baseline can be expressed with
respect to N -frame. In this case the N -frame follows the North-East-Down (NED)
convention. Since the antenna frames and the B-frame are congruent, it holds:

bN = R {qNB} bA1 (5.2)

Given raw observation from both antennas P s
(A1,A2)

and Φ
s
(A1,A2)

for code and carrier
observations,respectively, the float baseline solution can be calculated as described
in Section 4.5.3, whereA1 is considered as moving base andA2 as rover. The baseline
estimate in the NED-frame can be used as both, soft baseline vector constraint as well
as hard baseline constraint during the integer fixing step.

Additionally to the hard baseline constraint, an extra validation step is added
after integer fixing to prevent wrong fixes to be used in the ESKF. The validation
step is introduced as:

‖b̆N (N)− bN ‖ ≤ τ (5.3)

where τ is a threshold parameter describing the accuracy of the baseline vector a-
priori information. Using the fixed baseline b̆N (N) estimate in the NED-frame, the
GNSS UAV heading ψGNSS can be calculated and integrated into the ESKF state es-
timate directly using the independent Tait-Bryan yaw update described in Section
3.2.2.3. ψGNSS is given by:

ψGNSS = atan2
(
−b̆N ,x(N), b̆N ,y(N)

)
(5.4)

124 CHAPTER 5. IMPLEMENTATION

Hereby, it is important to note that ψGNSS describes the GNSS baseline heading ro-
tated by 90 degrees to match the UAV orientation. All steps necessary for the GNSS
compass are summarized in the RTK GNSS Compass algorithm below:

Algorithm 5.1 RTK GNSS Compass

Require: Code P s
(A1,A2)

and carrier Φ
s
(A1,A2)

raw observations, UAV attitude qNB
Compute baseline vector in NED-frame bN
Compute float estimates N̂ , b̂(N̂) and their covariances
Apply soft baseline constraints using bN
Compute BC-LAMBDA solution b̆N (N) in NED-frame using bN
if ‖b̆N (N)− bN ‖ ≤ τ then

Compute heading ψGNSS from b̆N (N)
ESKF yaw update

end if

5.1.2 UWB Augmented RTK Positioning

The UWB augmented RTK positioning combines carrier phase-based GNSS obser-
vations and radio range information obtained with DS-TWR described in Section
2.2.6.2 in order to estimate the relative position between two agents. Depending on
the scenario, either a fixed base station B or a moving base, e.g. the UAV masterM,
can be used as GNSS reference. Both scenarios and the respective frames are shown
in Figure 5.4.

xB yB

zB

xM

yM

zM

xS

yS

zS

FIGURE 5.4: Two different position estimation concepts: Fixed and
moving base. The waves indicate the augmented UWB radio ranging,

for a fixed base and a moving base in blue and red, respectively.

5.1. NAVIGATION APPLICATIONS 125

Similar to the GNSS compass, the tasks for are distributed among the flight
controller processing cores according to their real-time requirements and compu-
tational load. Figure 5.5 illustrates the task distribution and how the different com-
ponents interact. Again, the computationally expensive RTK algorithms are run on
the Cortex-A9. Conversely, the attitude estimation and UWB ranging using DS-TWR
are considered as hard real-time and therefore handled by the Cortex-M4. While the
actual computational load for DS-TWR is low compared to operations performed
by the 19-state ESKF, timing constraints are more strict. As a direct consequence
of this, a counter intuitive allocation of the respective thread priorities is required.
In order to meet the hard real-time requirements for DS-TWR, the thread running
the UWB communication needs a higher priority than the most critical task of the
flight-controller, namely the attitude estimation and control.

CORTEX-M4

CORTEX-A9

SDRAM

ESKF

UWB AUGMENTED

RTK GNSS

TWO-WAY

RANGING

IMU UWB

COPTER GNSSBASE GNSS NTRIP

yIMU

P s
C , Φs

CP s
B, Φs

B

dUWB

p,v

FIGURE 5.5: Task distribution for combined UWB/GNSS positioning
on the i.MX6sX.

The ranging information obtained from DS-TWR can be used as baseline length
constraint directly according to the algorithms in Section 4.5.3. The verification
threshold τ should include UWB ranging inaccuracies and the quality of the UWB
antenna delay calibration. The combined UWB/GNSS localization steps are sum-
marized in Algorithm 5.2 below.

Algorithm 5.2 UWB RTK

Require: GNSS code P s
(r,b) and carrier Φ

s
(r,b) raw observations for rover and base

Compute relative distance d using DS-TWR
Compute float estimates N̂ , b̂(N̂) and their covariances
Apply soft baseline constraints using dUWB

Compute BC-LAMBDA solution N , b̆(N)
if
∣
∣‖b̆(N)‖ − dUWB

∣
∣ ≤ τ then

ESKF position update
end if

126 CHAPTER 5. IMPLEMENTATION

5.2 Real-time Core

The real-time core implements the actual flight controller application. The main task
of this application is the ego-motion estimation and control of the UAV making it the
most critical software component of the whole system that needs to be very reliable.
In addition to that, the real-time core handles sensors with low-level interfaces, high
update rates or hard real-time requirements.

Traditionally, flight controller applications are implemented using a classic soft-
ware design with a constantly running main loop [41]. Within this main loop a more
or less fixed scheduling scheme is used to sequentially poll different sensors and
communication interfaces. While this software approach is very robust and predic-
tive, maintaining as well as adding new functionality requires explicit knowledge
about hardware operations and fault probabilities as well as sensor and operation
specific timing requirements. In contrast, the flight controller application in this
work implements an event-based software design based on the RTOS RODOS which
is described in Section 5.2.1. Using a RTOS, the flight controller application can be
designed in a modular way, allowing an easy integration of various sensor types as
well as a high degree of mission specific adoptions and specializations.

The proposed software architecture tries to combine the benefits of an event-
based software design using a RTOS with the robustness of the classic flight con-
troller approach. This is achieved by dividing the flight controller application into
several threads where a single thread, namely the MAIN-Thread, is able to entirely
control the UAV. The MAIN-Thread is responsible for the ego-motion estimation
and the control of the UAV at a preferably high frequency. It is designed follow-
ing the classical software architecture for flight controllers with a single while-loop
performing typical flight controller tasks. The different tasks are roughly outlined in
Figure 5.6 which include: the acquisition of IMU data, the collecting and processing
of data and telecommands from other threads, the current state estimation and state
machine propagation as well as the actuator control. The current ego-motion esti-
mation is the most CPU-intensive computation step and therefore highly optimized.
Implementation details of the ego-motion estimation are described in Section 5.2.2.
A single loop iteration without additional sensor data from other threads takes less
than 1 ms resulting in a theoretical loop rate of 1 kHz.

Resume

Read IMU

Update ESKF

Sensor Data?

Telecommand?

Update
State Machine

UAV Control

Send Telemetry

Suspend

no

yes

yes

no

every 1ms
or new IMU data

FIGURE 5.6: Simplified flowchart of the MAIN-Thread loop.

5.2. REAL-TIME CORE 127

The other threads handle the communication with the different sensors and inter-
faces described in Chapter 2 as well as the communication with the application core.
Depending on their timing requirements and characteristics, the remaining threads
are prioritized. Scheduling policies as well as the main inter-thread communication
mechanism are sketched in Figure 5.7.

p
ri

or
it
y

Sensor C

Sensor B

Sensor A

Buffer

Main

UWB

Gateway

time [ms]0 5 10 15 20 25

FIGURE 5.7: Scheduling and inter thread communication policies.

The MAIN-Thread has the longest execution time and can only be interrupted
by Gateway or Ultra-Wide Band (UWB) events. The inter-core communication gate-
way is called periodically every second or if the reception of a new message is in-
dicated by a Messaging Unit (MU) interrupt. For active ranging, the UWB-Thread
is called every 200 ms initiating a new ranging sequence. For passive ranging, the
UWB-Thread is resumed if the reception of a new message is indicated by a UWB
module interrupt. Other sensor and communication threads can be either called
periodically or resumed if new data is received or a new measurement available.
Typical thread periods and wake-up events are listed in Table 5.1. The information
gathered by each thread is shared to the MAIN-Thread using message buffers. The
MAIN-Thread collects all available information from the respective buffers and up-
dates the ego-motion estimate and its internal state machine accordingly. Since the
MAIN-Thread frequency is high, the jitter and delay caused by the message buffer
are small and can therefore be neglected. Since all update steps in the ego-motion
state estimation algorithm can occur following a fixed update scheme, complex re-
source protection and management for the ego-motion estimation is not necessary.
In a pure event-based approach, the access to the ego-motion estimation framework
should be treated as any other resource access and hence protected by semaphores.

Thread Period [ms] Wake-up Source

MAIN 1-5 Gyro GPIO
Barometer 33 GPIO
LidarLite 10 n.a.
Battery Monitor 100 n.a.
Remote Control 25 UART RX
Gateway 1000 MU RX
DecaWave 200 RX GPIO

TABLE 5.1: Typical periods and wake-up sources.

128 CHAPTER 5. IMPLEMENTATION

5.2.1 Real-Time On-Board Dependable Operating System

The Cortex-M4 real-time core uses the Real-time Onboard Dependable Operating
System (RODOS), a RTOS that was designed for embedded systems and application
domains demanding high dependability [199, 200]. RODOS was originally devel-
oped at the German Aerospace Center (DLR) and is currently maintained and ac-
tively developed by the Aerospace Computer Science department of the University
of Wuerzburg. It offers real-time priority controlled preemptive multi-threading as
can be seen by the scheduling scheme in Figure 5.7. RODOS can run on specific
hardware directly or as guest on top of other host operating systems.

For FARN on the i.MX 6 SoloX processor, RODOS was ported to run on top
of NXP’s MQX RTOS [201]. Similar to RODOS, MQX provides a multi-tasking
kernel with a preemptive priority based scheduling, inter-process communication
and synchronization mechanisms as well as IO-drivers and hardware abstraction.
MQX builds upon processor and board specific libraries from the chip manufacturer
NXP. The different abstraction layers underneath the flight controller application are
shown for reference in Figure 5.8.

RODOS

MQX

CORTEX-M4

Flight Controller Application

API

HAL

Scheduler

Threads

Semaphores

API

IO-Drivers
Real-Time

Kernel

NXP Processor and Board Support Packages

CPU & FPU Timer Memory

UART I2C SPI

FIGURE 5.8: Abstraction layers.

One benefit of RODOS is its great portability to other platforms allowing to eas-
ily migrate the flight controller software to different UAV platforms. The flight con-
troller application can run on any RODOS platform with according peripheral in-
terfaces and drivers. In the context of this work, many UAV prototypes were de-
veloped and successfully flown using different flight controller boards based on the
Cortex-M4 family from STMicroelectronics (STM32F4) [202]. Having a single core
only, micro-controllers from the STM32F4 family offer a reduced system complexity
compared to the i.MX 6 SoloX. However, the heterogeneous i.MX 6 SoloX processor
is preferred for flight controller applications that implement real-time RTK process-
ing and require a high bandwidth data exchange between both cores.

5.2. REAL-TIME CORE 129

5.2.2 ESKF Implementation

The execution time of a single iteration of the flight controllers MAIN-Thread de-
pends mostly on the efficiency of the Error-State Kalman Filter (ESKF) implemen-
tation. In order to maximize the computation speed of a ESKF iteration, different
optimization steps are taken. If the accuracy is secondary, arithmetic operations on
the Cortex-M4 should be performed using the built-in hardware FPU and single
precision floats only. In fact, the computation of double precision operations is more
efficient using CPU software emulation than on a single precision FPU [203]. Despite
the use of the Cortex-M4 hardware FPU and compiler optimization flags for specific
ESKF functions, additional optimization steps can be considered. This section de-
scribes the ESKF implementation in detail. The computation speed for a single filter
propagation step of a naive implementation is compared to two implementations
with a different degree of optimization in Figure 5.9.

-mfloat-abi=hard & sparse optimization

-mfloat-abi=hard

-mfloat-abi=soft

time [ms]0 1 2 3 4 5 6 7 8 9

FIGURE 5.9: ESKF computation speed with different optimizations.

5.2.2.1 MATLIB 2.0

The RODOS support libraries include MATLIB, a lightweight and efficient library
for commonly used mathematical operations in robotic, avionic and satellite appli-
cations. The RODOS MATLIB is extended within this work to include generic matrix
and vector sizes for arbitrary data types and floating point precisions. At the same
time, the API of the updated MATLIB 2.0 library remains compatible with its previ-
ous version. The class diagram in Figure 5.10 outlines class dependencies between
the old API (gray) and the newly added generic classes (white).

Matrix

r : TYPE[ROW, COL]

+ invert() : Matrix<ROW,COL,TYPE>
+ trace() : TYPE
+ determinant() : TYPE
+ transpose() : Matrix<COL,ROW,TYPE>
. . .

ROW, COL, TYPE

Matrix3D

+ toQuaternion() : Quaternion<double>
+ toYPR() : YPR<double>
+ rotationX(double angle) : void
. . .

Vector

+ Vector(Vector3D) : Vector<3,double>
+ dot() : TYPE
+ getLen() : TYPE
+ normalize() : Vector<ROW, TYPE>
. . .

ROW, TYPE

Vector3D

x : double
y : double
z : double

+ Vector(Vector<3,double>) : Vector3D
+ qRotate(Quaternion<double>) : Vector3D
+ mRotate(Matrix3D<double>) : Vector3D
+ normalize() : Vector3D
. . .

«Implicit casting»«bind»
<ROW → 3, COL → 3, TYPE → double>

«bind»
<COL → 1>

1

FIGURE 5.10: Simplified MATLIB 2.0 class diagram.

130 CHAPTER 5. IMPLEMENTATION

The MATLIB 2.0 implements different representations of rotations following the
definitions in Section 3.1. Additional functions, such as the computation of the ma-
trix inverse as well as the matrix trace and its determinant are added, too, according
to the suggestions and implementation hints found in [204]. The ESKF implemen-
tation builds upon the MATLIB 2.0 library using generic matrix sizes with single
precision floating point arithmetic.

5.2.2.2 Matrix Optimization

Examining the ESKF equations introduced in Chapter 3, it is noticeable that the
different measurement Jacobian matrices H as well as the system transition ma-
trix Fδx,k are sparse matrices with several entries that are equal to one and expose
therefore a huge potential for optimization. Additionally, the covariance matrix P is
symmetric. As an example, only non-zero elements of Fδx,k from Equation (3.65) are
indicated with � below:

Fδx,k =

� �
� �
� �
� ������
� ������
�������
��� �
��� �
��� �

�
�
�
�
�
�
�
�
�

The code for sparse matrix optimized operations is generated using MATLAB’s
symbolic toolbox. Symbolic representations of each sparse matrix as well as the
system covariance matrix P are obtained and the respective ESKF equations are
evaluated in MATLAB. A simple bash script is used to convert the symbolic MATLAB

output to MATLIB 2.0 compatible C++ code. As an example, let’s consider the sparse
transition matrix F and the system state covariances P . The covariance propagation
without system noise can be written as:

Pk+1 = F ·Pk · F⊤

The MATLIB implementation and part of the optimized code are shown below.

1 Matrix<18,18,float> P, F; // Sparse matrices

2 // Matlib 2.0 implementation

3 P = F * P * F.transpose(); // Time complexity O(n^3)

4 // Optimized code

5 // Time complexity O(m*n), m is number of entries!=0, m>n

6 FP.r[0][0] = P.r[0][0] + F.r[0][3] * P.r[3][0];

7 FP.r[0][1] = P.r[0][1] + F.r[0][3] * P.r[3][1];

8 FP.r[0][2] = P.r[0][2] + F.r[0][3] * P.r[3][2];

9 ...

10 P.r[0][0] = FP.r[0][0] + FP.r[0][3]*(F.r[0][3]);

11 P.r[0][1] = FP.r[0][1] + FP.r[0][4]*(F.r[1][4]);

12 P.r[0][2] = FP.r[0][2] + FP.r[0][5]*(F.r[2][5]);

13 ...

LISTING 5.1: Covariance Propagation.

5.3. APPLICATION CORE 131

5.3 Application Core

The application core runs mission specific and computationally expensive tasks with
soft real-time requirements. It uses the open-source operating system Ubuntu based
on the Linux-kernel 4.1 [205] with custom extensions for enhanced inter-core com-
munication and a custom device tree. The different tasks on the application core are
implemented using the Robot Operating System (ROS) and are described in Section
5.3.1. Precise carrier phase-based GNSS positioning is implemented based upon the
RTKLIB which is outlined in Section 5.3.2. Other important third-party software that
is used is discussed briefly in Section 5.3.3.

5.3.1 Robot Operating System

The application core software is based on the open-source Robot Operating Sys-
tem (ROS), to be more precise, the Kinetic version [206]. In contradiction to its name,
ROS is not an operating system in the traditional sense, but rather a meta-operating
system that implements a communication layer allowing collaboration within a het-
erogeneous computer cluster. Despite, ROS also provides typical operating system
services such as hardware abstraction, low-level device control and inter-process
messaging. ROS includes additionally a great number of software libraries imple-
menting commonly used robotic applications such as path planning, obstacle avoid-
ance, machine perception, localization and mapping as well as data visualization.

The ROS communication layer implements a simple IP-based publish-subscribe
mechanism allowing to easily setup the communication between a UAV swarm and
a ground station. Each application task that provides or requires data from other
tasks is run as a separate ROS node that publishes or subscribes to a specific topic.
Topic origins are identified using automatic namespaces based on the respective ma-
chine’s host name. The complete communication setup is sketched in Figure 5.11.
The roscore node runs on a drone in order to allow operations without base. The
drone running roscore is referred to as master and provides a wireless access point.
The ROS nodes are indicated with circles, the gray circle implements the real-time
core communication gateway described in Section 5.4.

MASTER

192.168.10.1

SLAVE

192.168.10.2

BASE

192.168.10.100

core

T1

G T2

G

T3

T4

T5 T6

FIGURE 5.11: ROS communication setup.

132 CHAPTER 5. IMPLEMENTATION

5.3.2 RTKLIB

The RTKLIB [207] is the core of the precise carrier phase-based GNSS positioning.
The library implements a great part of the navigation algorithms described in Section
4, in particular the standard GNSS EKF and the simple carrier phased-based posi-
tioning without any constraints. Within this work, the RTKLIB is extended to include
the different baseline constraint techniques described in Sections 4.5.3.6 and 4.5.3.7.
The ROS nodes compass and relpos wrap the RTKLIB server and implement the
advanced navigation applications described in Section 5.1.1 and 5.1.2, respectively.

The respective ROS nodes as well as their communication dependencies are out-
lined for the GNSS compass application and the relative UAV swarm positioning
in the two figures below. The topics and nodes are summarized in Table 5.2. The
namespace of each topic indicated by the first tag describes the source host of the
respective topic.

compass

RTKLIB
gatewayublox

ntrip

/master/heading

/master/telemetry

/base/ntrip

/master/raw gnss1

/master/raw gnss2

FIGURE 5.12: GNSS compass application.

relpos

RTKLIB
gatewayublox

ublox ntrip

/master/relpos

/master/telemetry

/base/ntrip/ref/raw gnss

/master/raw gnss

FIGURE 5.13: Relative positioning application.

Node Function publish Description

compass GNSS compass /heading GNSS heading solution
relpos relative positioning /relpos relative position solution
gateway inter-core communication /telemetry UAV state & sensors
ublox read GNSS sensor /raw_gnss∗ GNSS raw data
ntrip provide correction data /ntrip correction data

TABLE 5.2: ROS nodes required for RTK GNSS applications.

5.3. APPLICATION CORE 133

5.3.3 Third Party

In addition to the RTKLIB, other third part software is used on the application core.
The software is mostly but not strictly limited to drivers supporting sensors that are
interfaced with the application core directly, e.g. a ROS node for the FLIR Lepton
thermal camera [208] or the Intel RealSense library and ROS wrapper for the Visual-
SLAM system T265 [209]. It should be noted that both drivers need to be targeted
and compiled for the i.MX 6SoloX platform specifically. Having only a USB 2 port,
the T265 is limited to the navigation data output only, while streaming the raw im-
ages is not supported. In addition to driver libraries, the World Magnetic Model is
used to compensate for magnetic declination and CHRONY for multi platform clock
synchronization.

World Magnetic Model The World Magnetic Model [210] is integrated into the
ROS RTKLIB wrapper. It computes and outputs the magnetic declination for a given
location. For the case that the GNSS compass is used together with a magnetic com-
pass, the magnetic declination is corrected for directly within the GNSS compass
algorithm by applying a declination corrected baseline constraint.

CHRONY CHRONY [211] implements the Network Time Protocol (NTP) and can
synchronize the respective system clock to different time sources, e.g. NTP servers
and GNSS receivers using National Marine Electronics Association (NMEA) sen-
tences or providing a Pulse Per Second (PPS) interface. To provide an accurate and
synchronized time across all platforms, the clock referencing hierarchy according to
Figure 5.14 is implemented.

Master

Slave

Base

GNSS

GNSS

Server

NTP

NTP

NTP
PPS

NMEA

PPS

NMEA

FIGURE 5.14: Chrony time synchronization.

All drones are synchronized to their respective GNSS receiver. The master is con-
figured as a local NTP server providing time information for all clients connected to
its access point. If the drones are used in a GNSS denied environment and a internet
connection is available, additionally public NTP servers can be included. The esti-
mated clock error between the different platforms if GNSS is available is below 2 µs,
while the accuracy drops to a few milliseconds otherwise.

134 CHAPTER 5. IMPLEMENTATION

5.4 Inter-core Communication

Inter-core communication of heterogeneous multi core processors is commonly real-
ized using shared memory. Both operating systems, ROS on the application core and
the embedded RODOS on the real-time core, use a publish/subscribe mechanism for
inter process communication. Therefore, the goal is to implement a inter-core com-
munication using shared memory that allows to easily share information between
different processes running on the different cores.

The proposed communication implementation can be divided into four different
layers roughly following the OSI model as shown in Figure 5.15: The physical layer,
the media access control layer, the transport layer and the data layer. The function
of each layer as well as its implementation is described separately in the following
sections. The three low-level layers are implemented according to the Remote Pro-
cessor Messaging (RPMSG) standard [212, 213]. The top communication layer was
developed within this work.

Messages

rosserial

console

RPMSG

virtio: virtqueue, vring

Shared Memory, Inter-core interrupts

Data Layer

Transport Layer

MAC Layer

Physical Layer

FIGURE 5.15: Abstractions layers for inter-core communication.

5.4.1 Low-level Layers

A great part of the low-level layers is distributed as a part of the Linux kernel or
available within NXP’s RPMSG-Lite implementation for small MCUs [214]. The
physical layer was adapted to match the flight controllers memory layout on both
cores. The MAC and the transport layer are part of the Linux kernel, but needed to
be ported for the real-time core to RODOS on MQX.

Physical Layer The physical layer represents the shared memory and the inter-
core Messaging Unit. Using the Linux device tree, part of the available SDRAM is
reserved for inter-core communication. The reserved memory section is indicated to
the real-time core in the according linker script. The Messaging Unit is responsible
for signalizing the end of a shared SDRAM write access from one core by triggering
an interrupt at the other core.

MAC Layer The media access control layer is implemented using virtio, an ab-
straction layer for devices on paravirtualized platforms [215]. The core of virtio
provides virtqueue, a transport abstraction, and vring, a transport implementa-
tion. The vring implementation is based on a single-writer single-reader circular
buffer allowing to realize a simple single core-to-core communication without the
need for additional synchronization mechanisms.

5.4. INTER-CORE COMMUNICATION 135

Transport Layer The transport layer is implemented using RPMSG.
The Linux implementation is based on OpenAMP [213]. The OpenAMP RPMSG

implementation allows to create a single communication channel Y between two
cores with multiple endpoints X. The endpoints are exposed to the user space as
/dev/rpmsg_eptX.Y using the Linux sysfs interface for RPMSGs [216].

The RODOS on MQX implementation is based upon NXP’s RPMSG-Lite [214].
Here, the RPMSG-Lite communication interface is integrated into the RODOS hard-
ware abstraction layer. A channel endpoint can be created and used like any other
interface in RODOS as shown in the example below:

1 // message buffers

2 char buffer[MAX_LEN];

3 const char message[] = {"Hello World\n"};

4
5 // RPMSG Interface

6 RODOS::HAL_RPMSG ept(RPMSG_IDX1); // RPMSG endpoint 1

7 ept.init();

8 // writing

9 ept.write(message, sizeof(message));

10 // reading

11 if(ept.isDataReady()){

12 size_t rec = ept.read(buffer, MAX_LEN);

13 }

LISTING 5.2: RODOS HAL RPMSG example.

5.4.2 Data Layer

The data layer implementation uses two different RPMSG endpoints. The first end-
point is simply used unidirectionally in order to display debug and notification mes-
sages using the RODOS built-in PRINTF function. The second endpoint is used
for bidirectional messaging between RODOS threads and ROS nodes. Therefore,
the ROS package rosserial [217] transmitting ROS serialized messages over a
character device, e.g. a serial port or a network socket, is adapted to work with
RPMSG endpoints. On the RODOS side, rosserial can be used directly or with
the RODOS gateway mechanisms. The complete communication setup is summa-
rized in Figure 5.16. It should be noted, that the developed RODOS rosserial

port can be used with other interfaces, too, e.g. UART or WiFi UDP.

CORTEX-A9 CORTEX-M4

ros::node

ros::rosserial

OpenAMP

/dev/rpmsg2.1

RPMSG-Lite

ros::rosserial RODOS::ROS Gateway

RODOS::Thread

RODOS::Thread

0
channel 1

ept 2

ept 1

PRINTF

RODOS::HAL RPMSG

ros::publish

ros::subscribe

ros::publish

ros::subscribe
RODOS::publish

RODOS::subscribe

ros::publish

ros::subscribe

FIGURE 5.16: Complete communication setup.

136 CHAPTER 5. IMPLEMENTATION

For reference, an example usage of the ROS-RODOS gateway is shown below.
For the corresponding ROS implementation on Linux, no changes from the standard
approach are required.

1 #include "rodos.h"

2 #include "ros_gateway.h"

3 #include "ros.h"

4 #include "std_msgs/Float64.h" // serialized ROS Message Type

5
6 ros::NodeHandle nh; // from ros::rosserial

7 RODOS::HAL_RPMSG ept(RPMSG_IDX1); // RPMSG endpoint 1

8 ROS_Gateway ros_gw(&ept, &nh); // Gateway between ROS <-> RODOS

9
10 // ROS_Topics inherit from RODOS::Topic

11 // The ROS_Topics use the ROS datatype std_msgs::Float64

12 // The first parameter is used as RODOS message ID

13 // The second parameter is used for ROS message advertising/subscribing

14 ROS_Topic<std_msgs::Float64> in_test_T (100, "ros_rodos_topic");

15 ROS_Topic<std_msgs::Float64> out_test_T (101, "rodos_ros_topic");

16
17 // ROS Topic Subscriber

18 static CommBuffer<std_msgs::Float64> in_test_buffer;

19 static Subscriber sub01(in_test_T, in_test_buffer, "GatewayTest");

20
21 class Gateway_Test: public Thread {

22 public:

23 Gateway_Test() : Thread("GatewayTest") {}

24
25 void init() {

26 ept.init();

27 ros_gw.init();

28 ros_gw.addPublisher(&out_test_T);

29 ros_gw.addSubscriber(&in_test_T);

30 }

31
32 void run() {

33 std_msgs::Float64 msg;

34 TIME_LOOP(0, 10 * MILLISECONDS){

35 // receive a ROS Message with RODOS mechanism

36 if(in_test_buffer.getOnlyIfNewData(msg)){

37 // Output on RPMSG endpoint 2

38 PRINTF("Got data: %lf\n", msg.data);

39 msg.data -= 1.0;

40 }

41 // publish a ROS Message with RODOS mechanism

42 out_test_T.publish();

43 }

44 }

45 } gateway_test;

LISTING 5.3: Gateway RODOS example.

139

Chapter 6

Evaluation

In this chapter, the performance of key components of the developed flight con-
troller, namely its ego-motion estimation framework as well as the implemented
control algorithms are evaluated. Since the flight controller development was tar-
geted towards specific mission scenarios within the ROBEX and the MIDRAS projects,
mission critical flight controller components are analyzed separately. Hereby, the
focus is particularly on the performance of the GNSS compass in an Arctic environ-
ment along with the precise UAV navigation using different RTK setups.

6.1 Ego-motion Estimation and Control

The ego-motion estimation and control frameworks are evaluated within two differ-
ent experiments. First, the long term stability of the attitude estimation is inspected.
Next, the performance of the full state estimation is compared indoor to an opti-
cal tracking system. Simultaneously, the control behavior of the cascaded control
architecture is assessed.

6.1.1 Long Term Stability

In order to proof the long term stability of the implemented ESKF for ego-motion
estimation, temperature stabilized IMU raw data is collected for more than 12 hours
at 200 Hz. For each sensor and each axis, more than 10 million samples are recorded
within this long term experiment. The estimated angles are shown together with the
IMU temperature in Figure 6.1.

0 2 4 6 8 10 12 14

A
tt
it
u
d
e
[◦
]

-2

-1

0

1

2
yaw
pitch
roll

Time [h]
0 2 4 6 8 10 12 14

T
em

p
er
a
tu
re

[◦
]

44

44.5

45

45.5

46

FIGURE 6.1: Long term attitude estimation and temperature control.

140 CHAPTER 6. EVALUATION

The attitude estimate is calculated offline using the embedded ESKF implemen-
tation. The required covariances, random walk parameters and bias instabilities are
obtained as described in Section 2.2.2.5.

While the yaw estimate error fluctuates between ±1◦, both, the absolute pitch
and roll errors remain well below ±0.25◦. The implemented temperature control
keeps the IMU temperature stable at 45◦C. Inspecting the discrete attitude error
probability distribution given in Figure 6.2 below, the attitude estimates can be de-
scribed by a Gaussian distribution. Their respective RMSEs are listed in Table 6.1.
The higher RMSE of the yaw axis is caused by noisy magnetometer readings. De-
spite the temperature control, a gyroscope bias change can be observed by compar-
ing the ESKF bias estimate to the initial bias guess in Figure 6.3.

∆ψ[◦]
-1 0 1

P
ro
b
a
b
il
it
y
[%

]

0

0.1

0.2

0.3

0.4

∆θ[◦]
-0.5 0 0.5
0

0.1

0.2

0.3

0.4

∆φ[◦]
-0.5 0 0.5
0

0.1

0.2

0.3

0.4

FIGURE 6.2: Discrete distribution and Gaussian approximation.

Yaw ψ Pitch θ Roll φ

RMSE 0.37◦ 0.06◦ 0.08◦

TABLE 6.1: Root mean square errors for attitude estimates.

0 2 4 6 8 10 12 14

ω
z
[◦
/
s
]

-2

-1

0

1
raw
bias
bias0

0 2 4 6 8 10 12 14

ω
y
[◦
/
s
]

2

3

4

5

Time [h]
0 2 4 6 8 10 12 14

ω
x
[◦
/
s
]

4

5

6

7

FIGURE 6.3: Gyroscope raw data, computed bias and initial estimate.

6.1. EGO-MOTION ESTIMATION AND CONTROL 141

Since there are neither position nor velocity measurements available, their ESKF
estimates suffer from significant drift caused by the integration of the noisy IMU
measurements. Nevertheless, the experiment proofs the ESKF long term stability
and its reliability. The estimated attitude RMSEs should be considered as a lower
boundary, since in flight vibrations cause additional noise terms, especially for the
roll and pitch estimates.

6.1.2 Indoor Flight

Next, the complete ego-motion estimation framework and the control architecture
are evaluated. For state estimation, the IMU and the magnetometer, the barometer
as well as the position estimates of the Intel RealSense T265 are used. Figure 6.4
summarizes the flight controller setup for this experiment. The estimated pose is
compared to data captured using the optical tracking system described in Section
2.2.8.1. The UAV is manually started and commanded to follow a house-like pattern
and land afterwards. The flight pattern and the drone are shown in Figure 6.5.

i.MX 6 SoloX

SPII2C PWM USB SPI

Real-Time Core

ARM Cortex-M4F

Application Core

ARM Cortex-A9

Accelerometer

Gyroscope

Ultra Wide Band

Module

Magnetometer

Barometer

Battery

Monitor

Payload

Payload

Intel T265

Wireless Interface

WiFi

OptiTrack

Remote

SDIO

UART

Servo

ESCESCESCESC

FIGURE 6.4: Flight controller setup for the indoor experiment.

y[m]
-1 -0.5 0 0.5 1

x
[m

]

-1

-0.5

0

0.5

1

1.5

FIGURE 6.5: Flight pattern and UAV for the indoor experiment.

142 CHAPTER 6. EVALUATION

Since the tracking system does not provide velocity information, the velocity is
derived from the optical position observations. Hence the reference velocity pro-
vides a rather low accuracy. Additionally, the attitude estimation relies heavily
on the marker geometry. Due to limited mounting possibilities, the markers are
mounted very close to each other which causes inaccuracies in the attitude refer-
ence tracking, too. Nevertheless, the optical tracking system is a reliable reference
evaluating the ego-motion estimation.

Figures 6.6, 6.7 and 6.8 show the estimated motion in x, y and z direction, re-
spectively. The estimated motion is compared to the optical tracking reference. The
respective inputs for the cascaded control are also shown.

The estimated positions agree well with the position observations from the op-
tical tracking system. The average error is below 6 cm with a maximum error of
22.5 cm. It should be noted that neither possible rotational offsets between the two
positioning system nor the scaling errors are compensated for. The velocity observa-
tions of both systems, the ego-motion estimation framework and the optical tracking
system are also in close agreement. Major derivations are caused by the rather sim-
ple velocity estimation from the optical tracking system. The attitude observations
of optical tracking system are clearly more noisy than the ESKF estimated attitude.
Nevertheless, the estimated attitudes coincide with each other, especially for larger
tilting maneuvers.

0 20 40 60 80 100 120

x
[m

]

-2

0

2
ref
est
set

0 20 40 60 80 100 120

v
x
[m

/
s
]

-1

0

1

0 20 40 60 80 100 120

θ
[◦
]

-10

0

10

Time [s]
0 20 40 60 80 100 120

ω
y
[◦
/
s
]

-50

0

50

FIGURE 6.6: State estimation and control in x direction.

6.1. EGO-MOTION ESTIMATION AND CONTROL 143

The real world control behavior corresponds very well to the system behavior ob-
served in the simulation in Section 3.3. For the horizontal control, it can be observed
that the controller cascades have a more aggressive response towards the most inner
cascade which controls the rotational speed. This allows for a very precise horizon-
tal control without significant position overshoot. The experiment proves that both
subsystems, the ego-motion estimation framework and the implemented control ar-
chitecture, perform very well.

0 20 40 60 80 100 120

y
[m

]

-2

0

2

ref
est
set

0 20 40 60 80 100 120

v
y
[m

/
s
]

-1

0

1

0 20 40 60 80 100 120

φ
[◦
]

-10

0

10

Time [s]
0 20 40 60 80 100 120

ω
x
[◦
/
s
]

-50

0

50

FIGURE 6.7: State estimation and control in y direction.

0 20 40 60 80 100 120

z
[m

]

-1

0

1

2
ref
est
set

Time [s]
0 20 40 60 80 100 120

v z
[m

/
s]

-1

-0.5

0

0.5

1

FIGURE 6.8: State estimation and control in z direction.

144 CHAPTER 6. EVALUATION

6.2 Arctic Environment

In summer 2017, the functionality of the first version of the flight controller was
tested in Arctic environment as part of the Polarstern cruise PS 108 within the final
project demonstration of ROBEX. One limitation of this earlier version of the flight
controller was the exclusive use of GPS signals only. The full UAV flight controller
configuration is shown in Figure 6.9.

i.MX 6 SoloX

SPII2C PWM USB SPI

Real-Time Core

ARM Cortex-M4F

Application Core

ARM Cortex-A9

Accelerometer

Gyroscope

Ultra Wide Band

Module

Magnetometer

Barometer

Battery

Monitor

Lidar

IR Camera

Payload

Sensor

868 MHz

GPS Receiver

PAR Sensor

GPS ReceiverWiFi

Polarstern

Remote

UARTSDIO

UART ADC

Tilt Camera

ESCESCESCESC

FIGURE 6.9: Flight controller setup for arctic environment.

The low satellite elevation at high latitudes, signal reflections and severe multi-
path in ship vicinity degraded the available GPS raw observations significantly. For
this reason, and because the GPS compass algorithm at the time applied soft base-
line constraints only, the selected navigation algorithm did not compute a reliable
solution near Polarstern.

In order to evaluate the different navigation systems regardless of the difficulties
caused in the vicinity of the research vessel, flight experiments should have been
conducted on suitable ice floes at approximately 80◦ North. Unfortunately, only
one set of experiments could be performed on ice due to the limited availability of
suitable ice floes. In this set of experiments the UAV was manually controlled and
all data recorded. Within a later off-line analysis, both, the GPS compass and the
traditional magnetic compass were evaluated with respect to their reliability and
hence their suitability for autonomous flight in Arctic environments. The results are
shown in Section 6.2.1. In order to compensate for the lack of flight time on ice,
another experiment was conducted on board of Polarstern with the goal to evaluate
and further improve the GPS compass algorithm. The experiment and its results are
described in Section 6.2.2.

All remaining auxiliary and payload subsystems, such as the battery monitor,
the barometric pressure sensor, the distance Lidar and the camera systems as well
as the PAR sensor were evaluated in manual flights on ice and in the proximity
of Polarstern’s helipad. Since these subsystems worked very well and exactly as
expected from the experiments performed before the actual mission, they will not
be discussed in detail here.

6.2. ARCTIC ENVIRONMENT 145

6.2.1 Flight in Arctic Environment

In order to demonstrate the navigation capabilities of the developed flight controller
and therefore the GPS compass in Arctic environment, a flight was conducted on
an ice floe. Since the UAV electronics got accidentally damaged by swirling ice and
snow from a nearby landing helicopter, only a single flight could be performed on
ice. Figure 6.10 shows the UAV in air at 80◦ North during the flight experiment.

FIGURE 6.10: Flight experiment at 80◦ north.

During flight, the magnetic compass was used for heading estimation and the
UAV was commanded to hold its position. All sensor raw observations were recorded
for later analysis. Figure 6.11 compares the filtered magnetic heading and the raw
estimate, with the GPS compass solution and integrated gyro rates. It can be seen,
that the UAV drifted around yaw. The presented GPS solution applies the algorithm
described in Section 5.1.1. The analysis shows, that the magnetic heading estimates
at 80◦ North are too noisy and the horizontal component is way too weak to estimate
a correct heading and therefore to fly autonomously. In contrast, the GPS heading is
in close agreement with the orientation change approximated by the gyroscope.

0 20 40 60 80 100 120 140 160 180 200 220

ψ
m
a
g
[◦
]

-120

-100

-80

-60
mag
est
gyro

Time [s]
0 20 40 60 80 100 120 140 160 180 200 220

ψ
G
P
S
[◦
]

-120

-100

-80

-60
GPS
gyro

FIGURE 6.11: Comparison of the different heading estimates: Mag-
netic compass (top) and GPS compass (bottom).

146 CHAPTER 6. EVALUATION

6.2.2 RTK Heading Estimation

Within the second experiment during PS 108, the UAV was placed on board of Po-
larstern in such a way, that the vessels heading could be used as reference for the
heading estimated by the GPS compass. Polarstern followed a predefined course in
the shape of an eight in order to expose the GPS heading system to a wide range
of satellite-ship constellations to generate different satellite visibility and multi-path
scenarios. Figure 6.12 shows the eight track and the UAV setup on Polarstern. The
satellite visibility during the experiment is shown in Figure 6.13. Although 16 differ-
ent satellites were visible during the experiment, due to the low elevation and poor
SNR, on average only 9 satellites could be used for the GPS heading estimation. The
GPS heading is estimated according to approach described in Section 5.1.1.

FIGURE 6.12: RTK heading: Polarstern track and experiment setup.

FIGURE 6.13: GPS availability during RTK heading experiment.

6.2. ARCTIC ENVIRONMENT 147

The upper part of Figure 6.14 compares the coupled ESKF GPS heading estimate
with the Polarstern heading reference. Additionally, a heading solution based on
integrated gyroscope measurements and the initial gyroscope bias estimate is cal-
culated and plotted, too. It should be noted that the utilized flight controller ver-
sion did not provide a IMU temperature stabilization and was therefore subjected
to rather big and rapid bias changes. The lower part of Figure 6.14 plots the differ-
ence between the observed Polarstern heading and the coupled ESKF GPS compass
solution and additionally the difference between the Polarstern heading and a stan-
dalone GPS compass.

The final difference between the pure gyroscope integration estimate and the
Polarstern reference heading is more than 100◦. In contrast to that, the coupled ESKF
GPS compass solution using both, soft and hard baseline constraints allows to keep
a valid heading estimate for more than 80 minutes with an RMSE of 0.8◦. The RMSE
can be compared to commercial single frequency multi GNSS solutions that allow
an accuracy of 0.5◦/m for a given baseline length in meters. The absolute maximum
error is found to be 3.6◦. The coupled ESKF GPS compass solution can be provided
at up to 500 Hz in real-time on the developed flight controller platform. The GPS
raw measurements are processed at a maximum rate of 10 Hz.

The heading accuracy obtained within this experiment is already good enough
for an autonomous UAV flight in an Arctic environment. The experiment confirms
that the proposed attitude estimation algorithm works well enough at high latitudes
under poor receiving conditions using a single constellation only and therefore pro-
vides a reliable solution for low-cost real-time navigation in environments with de-
graded, disturbed or weak magnetic fields. Undoubtedly, making use of multiple
GNSS constellations, the accuracy of the GNSS compass can be further improved.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ψ
[◦
]

0

50

100

150

200

250

300

350

400
ref

est

gyro

Time [h]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

∆
ψ

[◦
]

-10

0

10
raw
est

FIGURE 6.14: GPS compass heading estimate on Polarstern.

148 CHAPTER 6. EVALUATION

6.3 RTK Localization

The developed UAV flight controller allows precise navigation using different RTK
setups. As described in Section 5.1.2, in principle, a distinction is made between the
RTK setups with a fixed base and those with a moving reference station. Using a
fixed reference station at a well known position, very accurate and absolute UAV
velocity estimates can be computed. Conversely, in the case of a moving base setup,
only relative position and velocity estimates are computed. Therefore, additional
absolute velocity estimates are required in order to utilize the developed control
algorithm. The relative position estimation is useful if a fixed base station can not
be deployed, e.g. on a ship or if the UAV is supposed to land on another moving
platform. Both RTK setups can be augmented with auxiliary location systems, e.g.
UWB ranging.

Within this Section, two different RTK experiments are described. First, the mov-
ing base approach is compared to a static base setup whereby the moving base setup
is augmented by additional UWB measurements in Section 6.3.1. In the second ex-
periment described in Section 6.3.2, a UAV swarm is located using a fixed RTK ref-
erence station. Using the precise localization and navigation a cooperative swarm
task is completed.

For both experiments a similar UAV core setup is used, with some differences in
the respective payload configuration. Figure 6.15 shows the different UAV config-
urations. As primary sensors in both setups, a single frequency GNSS receiver and
a MEMS IMU are used. The different payloads are indicated with dashed boxes:
The Ultra-Wide Band module for the augmented radio ranging (gray) and the ad-
ditional payload components within micro-drone defense system MIDRAS (white).
The flight controller is connected wirelessly to a base station. The base station is
equipped with the same hardware as the UAV and provides raw GNSS carrier ob-
servations in real-time.

i.MX 6 SoloX

SPII2C PWM USB SPI

Real-Time Core

ARM Cortex-M4F

Application Core

ARM Cortex-A9

Accelerometer

Gyroscope

Ultra Wide Band

Module

Magnetometer

Barometer

Battery

Monitor

Lidar

IR Camera

Payload

Sensor

868 MHz

GNSS Receiver

Load Cell

WiFi

Base

Remote

Ultra Wide Band

Module
GNSS Receiver

UARTSDIO

UART ADC

Net Servo

ESCESCESCESC

FIGURE 6.15: Flight controller setup for RTK positioning.

6.3. RTK LOCALIZATION 149

6.3.1 UWB augmented Moving Base

In order to demonstrate the moving base ego-motion estimation and to evaluate
UWB-based GNSS augmentation, a UAV equipped with the developed flight con-
troller and a single GNSS receiver is manually started and subsequently commanded
to follow a house like pattern as shown in Figure 6.16. The reference station utilizes
the exact same hardware as the UAV and its location is indicated in the Figure below,
too. Both systems are equipped with a UWB transceiver for radio ranging.

The actual flight is performed using a static base setup. The raw observation
are recorded and used afterwards to compute a moving base solution with auxiliary
UWB range measurements off-line.

Longitude [◦]
9.9753 9.9754 9.9755 9.9756 9.9757 9.9758

L
a
ti
tu
d
e
[◦
]

49.7838

49.7838

49.7839

49.7839

49.7840

49.784

FIGURE 6.16: Flight pattern for moving base experiment.

In the off-line analysis, a ground truth estimate is compared with two different
moving base solutions. One moving base solution is computed using only GNSS ob-
servations, while the other solution includes UWB measured radio ranges between
the base and the UAV according to the algorithm described in Section 5.1.2.

As ground truth, a off-line calculated fixed base solution making use of all avail-
able navigation and correction data is utilized. Both moving base solutions are com-
puted using a cold start, meaning that the navigation data for a given satellite needs
to be acquired by the respective receiver first. Since this experiment should demon-
strate the impact of UWB augmentation on a moving base setup, the roles of base
and UAV are reversed. Therefore, the moving base solution uses the fixed reference
station as a rover, while the UAV acts as the moving base.

Figure 6.17 compares the position estimates of the different approaches. The
fixed base solution is indicated as FB, while the two moving base solutions are ab-
breviated by MB and additionally labeled in the case of the UWB augmented solu-
tion. The lower plot in Figure 6.17 indicates the solution quality of the combined
UWB GNSS approach.

150 CHAPTER 6. EVALUATION

0 20 40 60 80 100 120 140 160 180 200

x
[m

]

-5

0

5

10
FB

MB+UWB

MB

0 20 40 60 80 100 120 140 160 180 200

y
[m

]

-5

0

5

0 20 40 60 80 100 120 140 160 180 200

z
[m

]

-5

0

5

Time [s]
0 20 40 60 80 100 120 140 160 180 200

None
Fix

Float

FIGURE 6.17: Position estimates of the moving base experiment.

Comparing the three position estimates, there are no significant differences re-
garding the position accuracy once an initial fix is obtained. However, considering
the two moving base solution the initial fix is obtained 6 seconds faster using UWB
augmentation. Inspecting the solution quality plot at the bottom, it can be seen that
the UWB augmented system has difficulties obtaining a valid RTK fix after landing.
The invalid fix is caused by the uneven UWB antenna radiation pattern which is not
considered during the transceiver calibration and hence not compensated for. This
becomes more evident, looking at the estimated UAV ranging error in Figure 6.18.
While the ranging error is close to zero before take-off, an error of approximately
20 cm can be observed after landing. Inspecting the y position before and after the
flight, the directional UWB ranging error is obvious.

Time [s]
0 20 40 60 80 100 120 140 160 180 200

∆
d
[m

]

-0.5

0

0.5

FIGURE 6.18: UWB distance error for the moving base experiment.

In summary, this experiment leads to the conclusion that a combined moving
base UWB GNSS approach offers advantages during initialization or after a fix loss,
if the used hardware is precisely calibrated. In practice, however, the effort required
to correctly calibrate the UWB range errors outweighs the performance gain by far.

6.3. RTK LOCALIZATION 151

6.3.2 Formation Flight

The formation flight is performed as part of the final demonstration of the MIDRAS

project. Three UAVs, each equipped with the developed flight controller, are lo-
cated in real-time using the implemented RTK architecture and ego-motion estima-
tion framework. Hereby, two of the drones perform a cooperative task carrying a net
in order to autonomously catch the third UAV in mid-air as shown in Figure 6.19.
The third drone is manually started and commanded to hold its current position.
Once the target drone is in place, the other two drones take off, turn towards the
target drone and catch it autonomously. After a successful catch, the target drone is
transported to a predefined location and dropped together with the net.

FIGURE 6.19: Two UAVs catching another drone with a net.

To guarantee a stable flight of the cooperative drones, the control architecture of
the two drones needs to be slightly adapted to the mission specific requirements.
However, the core of the cascaded control architecture remains the same. Therefore,
two changes are applied to the standard control approach. Although the control
adaptions are not part of this work, they are briefly introduced to demonstrate the
flexibility of the implemented control architecture.

First, an additional distance controller is integrated using super position. The
distance controller adjusts the desired velocity of the two cooperative drones de-
pending on their currently observed distance. The desired correction is simply added
as an offset to the velocity controller. Details are described in [69].

Additionally, an adaptive vertical speed controller is implemented in order to
compensate for the extra weight and forces during and after the drone impact into
the net. The adaptive controller can be simply integrated by replacing the standard
PID speed controller at the most inner cascade of the vertical control. The adaptive
controller used in this setup is explained in detail in [218].

152 CHAPTER 6. EVALUATION

Figure 6.20 shows the position estimate of each drone during the experiment as
well as the relative distance between the two cooperative drones. Two characteristic
moments are marked in the plot: The X marks the time of the drone catch, while
the O marks the dropping of the target drone together with the net. Since there
was no more accurate way to determine the position of the three drones simultane-
ously based on a different measurement technique available to our department at
the time, no qualitative evaluation can take place at this point. Nevertheless, the rel-
ative distance between the two drones could be used as an indicator for the overall
performance of the system. It should be noted that since the actual distance between
the two systems depends heavily on the implementation of the distance controller,
the significance of this indicator is limited. The lower plot indicates that the drones
are able to keep the commanded distance of 4 m throughout the entire flight with a
maximum deviation of roughly 35 cm.

0 50 100 150

x
[m

]

-10

0

10

20

30
Master
Slave
Target

0 50 100 150

y
[m

]

-15

-10

-5

0

5

0 50 100 150

z
[m

]

-5

0

5

10

Time [s]
0 50 100 150

d
[m

]

3

4

5

FIGURE 6.20: Position estimate of three drones.

Although a qualitative evaluation of the experiment is not possible, it demon-
strates nevertheless the high accuracy of the implemented navigation system and its
capability to be used in complex tasks for a swarm of cooperative drones.

155

Chapter 7

Conclusions

This work describes the development of FARN, a novel flight controller for multi-
rotor Unmanned Aerial Vehicles (UAVs) that integrates precise Real-time Kinematic
(RTK) navigation techniques. As a computational platform, a heterogeneous dual
core processor is used, consisting of a real-time capable Cortex-M4 micro processing
unit and a Cortex-A9 application processor. The developed software framework is
based on the Real-time Onboard Dependable Operating System (RODOS) and the
Robot Operating System (ROS) for the two processing cores, respectively. High-
bandwidth real-time communication between the two processors is implemented
using shared memory and a common message interface based on the publish/-
subscribe messaging pattern. A 19-state quaternion-based Error-State Kalman Fil-
ter (ESKF) is used to estimate the UAV’s ego-motion, namely the UAV’s position,
velocity, attitudes and angular rates. Additionally, the filter estimates inertial sen-
sor biases as well as magnetic disturbances, too. The proposed cascaded control
allows a dedicated control of the UAV’s position, its velocity, attitude and angular
rates. Hereby, the modular software architecture makes it possible to easily mod-
ify or completely replace different control levels. Carrier phase-based GNSS meth-
ods are deployed in order to compute very precise navigation solutions. Within the
ROBEX project, the flight controller is equipped with a GPS compass and successfully
tested in Arctic environment where a precise heading determination is possible de-
spite the weak horizontal component of the Earth’s magnetic field. Furthermore,
an Ultra-Wide Band (UWB) augmented Real-time Kinematic positioning scheme is
developed in the context of the MIDRAS project. Within this project, two cooper-
ative UAVs, each equipped with the developed flight controller, are able to carry a
commonly suspended net in order to catch a potentially dangerous drone in mid-air.

Despite the successful deployment of the flight controller in both targeted mis-
sion scenarios, different system limitations were identified. The respective limita-
tions are considered with regard to both, past and future mission scenarios and are
critically discussed in Section 7.1.

Subsequently, possible solutions with regard to future developments in the con-
text of upcoming projects in order to overcome the identified system limitations are
pointed out in Section 7.2. In addition, possible future applications are outlined.

The developed flight controller was not only used within the intended mission
scenarios, but also within teaching and final theses at the Chair of Aerospace Com-
puter Science. Therefore, this work concludes with Section 7.3 describing a small
multi-rotor UAV setup used for teaching and by providing a short reference to se-
lected final theses that utilize the software framework of the developed flight con-
troller on different UAV platforms.

156 CHAPTER 7. CONCLUSIONS

7.1 System Limitations

The developed flight controller and its carrier phase-based GNSS positioning meth-
ods work very reliably and provide a solid basis for future mission scenarios and
research. However, two major system limitations have been identified and should
be addressed in future software and hardware iterations.

First of all, the proposed UWB augmented RTK positioning approach provides
only limited benefits at open sky conditions compared to standard RTK position-
ing. Although in theory there is no doubt that the combination of UWB and GNSS
measurements is quite advantageous, the practical results shed a different light on
this topic. As already discussed in Section 6.3.1, the ranging accuracy of the uti-
lized UWB transceiver depends heavily on the performed UWB transceiver calibra-
tion. Especially the calibration of directional antenna characteristics is very exten-
sive and requires a high effort. However, high UWB ranging accuracy and preci-
sion are mandatory to reliably resolve integer ambiguities using hard baseline con-
straints. The combination of high ranging noise and hard baseline constraints can
cause wrong ambiguity fixes and thus degrade the overall navigation solution. In
case of cycle slips or a GNSS signal lock loss however, the integration of additional
ranging information might accelerate the ambiguity resolution. Within the context
of the MIDRAS project and the associated experiments it has been shown that po-
sitioning based exclusively on standard RTK methods is sufficient. In summary, it
can be said that the rather small benefits of UWB augmented RTK positioning in
this particular application do not justify the high calibration effort. However, within
environments that suffer from poor GNSS signal reception, the proposed UWB aug-
mentation might improve the integer fixing significantly and hence be worth it.

The lack of computational power of the application core that has been identi-
fied as the second limitation. While the application processor is fast enough for
the tasks that were considered during the design phase, namely the GNSS compass
application and the real-time relative positioning using carrier phase-based GNSS
observations, there is only limited computational power available for other tasks.
Nevertheless, the GNSS compass is also an application that could benefit from more
computational power. Regarding the GNSS compass at high latitudes, especially in
ship vicinity signal reflections and hence multi-path errors are a major concern. Since
the current GNSS compass does not estimate multi-path errors, even hard baseline
constrained solutions expose a rather high RMSE. Although the current heading ac-
curacy is good enough to fly autonomously at Arctic environments, results with a
higher precision could be achieved by using multi constellation and multi frequency
GNSS, tight sensor coupling and by estimating additional multi-path errors. How-
ever, these improvements come at the cost of a higher computational effort and can
be therefore not achieved on the current platform. Within MIDRAS, the process-
ing of multi constellation GNSS measurements results in long processing times that
introduce an artificial measurement delay for the ESKF measurement updates. As
a direct consequence, the mechanism to integrate delayed measurements into the
ESKF had to be developed. With regard to the requirements in future projects that
demand a reliable navigation in GNSS denied environments or the deployment of
artificial intelligence in the form of neural networks for various on-board tasks, the
available computation power on the current hardware platform will most likely be
not sufficient.

7.2. FUTURE WORK 157

7.2 Future Work

Because scientific progress is built on failure, future work should always aim to
solve current problems and limitations. Having identified the limited computational
power as the strongest limitation of the current flight controller version, this prob-
lem should be addressed first within future work. In fact, the next hardware plat-
form is already under active development. With the availability of light weight and
cost efficient embedded Artificial Intelligence (AI) computation platforms, the focus
shifted towards a stand alone flight controller platform that can be easily interfaced
with NVIDIA’s embedded AI systems. The stand alone flight controller platform is
currently designed and includes next generation inertial, magnetic and barometric
pressure sensors. Furthermore, two optional dual-frequency GNSS receivers can be
added to the flight controller using available board-to-board connectors. Figure 7.1
shows a preliminary PCB design and its respective NVIDIA companion.

(A) Preliminary PCB design. (B) Jetson Xavier NX [219].

FIGURE 7.1: Preliminary design flight controller and its companion.

Two NVIDIA Jetson developer kits with a small footprint are compared to the
current Udoo Neo board in Table 7.1. All platforms offer additionally low-level in-
terfaces such as I2C, SPI and UART. In case of the NVIDIA platforms, a dedicated
real-time micro processor for attitude estimation and control is required. Conse-
quently, the advantages of a heterogeneous processor such as the shared memory in-
terface, the versatile interface configuration and the clock synchronization between
the cores are lost and hence must be explicitly compensated for. However, because
of NVIDIA’s larger developer community, development times can be significantly
reduced compared to small and exotic platforms like the Udoo Neo.

Device Jetson Nano [220] Jetson Xavier NX [219] Udoo Neo

CPU 4× 1.4 GHz 2× 1.9 GHz 1× 1 GHz
4× 1.4 GHz

RAM 4 GB 8 GB 1 GB
GPU 128 CUDA cores 384 CUDA cores 0

48 Tensor cores
Footprint 100 mm × 80 mm 103 mm × 90.5 mm 89 mm × 59 mm
Weight 140 g 175 g 60 g
Interfaces USB 3.0 USB 3.0, WiFi USB 2.0, WiFi
max. Power 10 W 15 W < 2 W
Price 109 € 429 € 65 €

TABLE 7.1: Flight controller platform comparison.

158 CHAPTER 7. CONCLUSIONS

With regard to future projects, the new flight controller allows to apply advanced
image processing techniques and Convolutional Neural Network (CNN) inference
on-board the UAV in real-time. In combination with suitable sensors, this platform
can be used to create 3D environment maps, localize itself using VSLAM algorithms,
perform active path planning or implement a reactive collision avoidance system.

A possible application has been already developed and evaluated within a Bach-
elor’s thesis [221] supervised by the author. In order to support the drone catching
system developed within MIDRAS with real-time position and velocity information
of the target drone, a real-time embedded visual detection and localization system
for UAVs is utilized. The system uses the Intel RealSense D435i, an active RGB-D
sensor. A CNN is used to detect a UAV in a RGB image in real-time on the Jetson
Nano platform. Once the UAV is detected, it can be localized using the depth in-
formation if it is close enough to the sensor. Figure 7.2 shows a detected UAV at a
distance of 1.5 m and the respective depth map.

(A) RGB (B) Depth

FIGURE 7.2: UAV detection and localization.

Within GNSS denied environments, for example indoor applications, a combi-
nation of a visual odometry sensor, e.g. the Intel RealSense T265, and an active
depth sensor, e.g. the Intel RealSense D435i, can be used to create a 3D map for au-
tonomous navigation and path planning. This topic is currently researched by the
author and preliminary results are shown in Figure 7.3.

FIGURE 7.3: 3D map of the drone laboratory.

7.3. IMPACT ON TEACHING 159

7.3 Impact on Teaching

Despite the fact that the developed flight controller is targeted towards research ap-
plications, it is also used by the author as a teaching platform within lectures and
exercises and as a software base within supervised final theses. Using RODOS, the
software framework can be deployed on other hardware platforms developed at the
Chair of Aerospace Computer Science, e.g. the SKITH modules. The SKITH mod-
ules are small modular electronic boards that were developed for a wireless satellite
technology demonstrator [222]. The main board is equipped with a UWB transceiver
and a Cortex-M4 micro processor. Additionally, it provides board-to-board connec-
tors that allow to easily extended its functionality using specialized add-on boards.
The developed add-on boards include basic UAV sensors, like a GPS receiver, a IMU
and a barometer, as well as PWM interfaces and a WiFi communication module. Us-
ing the stacked SKITH boards and the flight controller software framework, a small
UAV platform was designed for teaching purposes. The UAV is shown in Figure
7.4. The platform is mounted in a cardanic suspension and used to teach different
aspects of UAV programming to students, such as low-level sensor interfacing, basic
attitude estimation schemes and control strategies.

FIGURE 7.4: UAV teaching platform.

Furthermore, the developed flight controller was used in supervised final thesis
projects. Within those projects, the flight controller was deployed as a software base
for different multi-rotor UAV designs and additionally as an evaluation platform for
advanced sensor fusion concepts [223] and adaptive control strategies [224]. Three
different UAV designs are shown in Figure 7.5.

(A) Bi-Copter [75]. (B) Coaxial-Copter [225]. (C) Penta-Copter [226].

FIGURE 7.5: Different multi-rotor UAV platforms.

161

Bibliography

[1] J.C. Hodgson, S.M. Baylis, R. Mott, A. Herrod, and R.H. Clarke. “Precision
Wildlife Monitoring using Unmanned Aerial Vehicles”. In: Scientific reports 6.1
(2016), pp. 1–7. DOI: 10.1038/srep22574.

[2] J.A. Paredes, J. González, C. Saito, and A. Flores. “Multispectral Imaging Sys-
tem with UAV Integration Capabilities for Crop Analysis”. In: 2017 First IEEE In-
ternational Symposium of Geoscience and Remote Sensing (GRSS-CHILE). IEEE.
2017, pp. 1–4. DOI: 10.1109/GRSS-CHILE.2017.7996009.

[3] M.P. Christiansen, M. Stigaard Laursen, R. Nyholm Jørgensen, S. Skovsen,
and R. Gislum. “Designing and Testing a UAV Mapping System for Agricultural
Field Surveying”. In: Sensors 17.12 (2017), p. 2703. DOI: 10.3390/s17122703.

[4] D. Mader, R. Blaskow, P. Westfeld, and C. Weller. “Potential of UAV-based Laser
Scanner and Multispecteal Camera Data in Building Inspection”. In: International
Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 41
(2016). DOI: 10.5194/isprs-archives-XLI-B1-1135-2016.

[5] S. Sharif Mansouri, C. Kanellakis, E. Fresk, D. Kominiak, and G. Nikolakopou-
los. “Cooperative UAVs a Tool for Aerial Inspection of the Aging Infrastructure”. In:
Field and Service Robotics. Springer. 2018, pp. 177–189. DOI: 10.1007/978-
3-319-67361-5_12.

[6] DHL Trend Research. Unmanned Aerial Vehicles in Logistics- A DHL perspec-
tive on implications and use cases for the logistics industry. Accessed: 2020-09-29.
2014. URL: https://www.dhl.de/content/dam/dhlde/images/
ueber_uns/content/dhl_trend_report_uav.pdf.

[7] H. Surmann, R. Worst, T. Buschmann, A. Leinweber, A. Schmitz, G. Senkowski,
and N. Goddemeier. “Integration of UAVs in Urban Search and Rescue Mis-
sions”. In: 2019 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE. 2019, pp. 203–209.

[8] H.A. Lauterbach, C.B. Koch, R. Hess, D. Eck, K. Schilling, and A. Nüchter.
“The Eins3D project—Instantaneous UAV-Based 3D Mapping for Search and Res-
cue Applications”. In: 2019 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR). IEEE. 2019, pp. 1–6. DOI: 10.1109/SSRR.2019.
8848972.

[9] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Lynne Grixa,
F. Ruess, M. Suppa, and D. Burschka. “Toward a Fully Autonomous UAV: Re-
search Platform for Indoor and Outdoor Urban Search and Rescue”. In: IEEE robotics
& automation magazine 19.3 (2012), pp. 46–56. DOI: 10.1109/MRA.2012.
2206473.

[10] J. Tiemann, F. Schweikowski, and C. Wietfeld. “Design of an UWB Indoor-
positioning System for UAV Navigation in GNSS-denied Environments”. In: 2015
International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE.
2015, pp. 1–7. DOI: 10.1109/IPIN.2015.7346960.

https://doi.org/10.1038/srep22574
https://doi.org/10.1109/GRSS-CHILE.2017.7996009
https://doi.org/10.3390/s17122703
https://doi.org/10.5194/isprs-archives-XLI-B1-1135-2016
https://doi.org/10.1007/978-3-319-67361-5_12
https://doi.org/10.1007/978-3-319-67361-5_12
https://www.dhl.de/content/dam/dhlde/images/ueber_uns/content/dhl_trend_report_uav.pdf
https://www.dhl.de/content/dam/dhlde/images/ueber_uns/content/dhl_trend_report_uav.pdf
https://doi.org/10.1109/SSRR.2019.8848972
https://doi.org/10.1109/SSRR.2019.8848972
https://doi.org/10.1109/MRA.2012.2206473
https://doi.org/10.1109/MRA.2012.2206473
https://doi.org/10.1109/IPIN.2015.7346960

162 BIBLIOGRAPHY

[11] N. Gageik, P. Benz, and S. Montenegro. “Obstacle Detection and Collision Avoid-
ance for a UAV with Complementary Low-cost Sensors”. In: IEEE Access 3 (2015),
pp. 599–609. DOI: 10.1109/ACCESS.2015.2432455.

[12] D. Kominiak, S. Sharif Mansouri, C. Kanellakis, and G. Nikolakopoulos. “MAV
Development Towards Navigation in Unknown and Dark Mining Tunnels”. In:
arXiv preprint (2020). arXiv: 2005.14433.

[13] F. Chataigner, P. Cavestany, M. Soler, C. Rizzo, J.-P. Gonzalez, C. Bosch, J. Gib-
ert, A. Torrente, R. Gomez, and D. Serrano. “ARSI: An Aerial Robot for Sewer
Inspection”. In: Advances in Robotics Research: From Lab to Market. Springer,
2020, pp. 249–274. DOI: 10.1007/978-3-030-22327-4_12.

[14] D. Thakur, G. Loianno, L. Jarin-Lipschitz, A. Zhou, and V. Kumar. “Autonomous
Inspection of a Containment Vessel using a Micro Aerial Vehicle”. In: 2019 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE.
2019, pp. 1–7. DOI: 10.1109/SSRR.2019.8848936.

[15] C. Kanellakis, E. Fresk, S. Sharif Mansouri, D. Kominiak, and G. Nikolakopou-
los. “Autonomous Visual Inspection of Large-scale Infrastructures using Aerial Robots”.
In: arXiv preprint (2019). arXiv: 1901.05510.

[16] L. Jospin, A. Stoven-Dubois, and D.A. Cucci. “Photometric Long-Range Posi-
tioning of LED Targets for Cooperative Navigation in UAVs”. In: Drones 3.3 (2019),
p. 69. DOI: 10.3390/drones3030069.

[17] B. Balaram, T. Canham, C. Duncan, H. F Grip, W. Johnson, J. Maki, A. Quon,
R. Stern, and D. Zhu. “Mars Helicopter Technology Demonstrator”. In: 2018 AIAA
Atmospheric Flight Mechanics Conference. 2018, p. 0023. DOI: 10.2514/6.
2018-0023.

[18] G. Heredia, A.E. Jimenez-Cano, I. Sanchez, D. Llorente, V. Vega, J. Braga, J.A.
Acosta, and A. Ollero. “Control of a Multirotor Outdoor Aerial Manipulator”. In:
2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE.
2014, pp. 3417–3422. DOI: 10.1109/IROS.2014.6943038.

[19] M. Fumagalli, R. Naldi, A. Macchelli, F. Forte, A.Q.L. Keemink, S. Stramigioli,
R. Carloni, and L. Marconi. “Developing an Aerial Manipulator Prototype: Phys-
ical Interaction with the Environment”. In: IEEE robotics & automation magazine
21.3 (2014), pp. 41–50. DOI: 10.1109/MRA.2013.2287454.

[20] D. Wuthier, D. Kominiak, E. Fresk, and G. Nikolakopoulos. “A geometric pulling
force controller for aerial robotic workers”. In: IFAC-PapersOnLine 50.1 (2017),
pp. 10287–10292. DOI: 10.1016/j.ifacol.2017.08.1487.

[21] C. Korpela, M. Orsag, and P. Oh. “Towards Valve Turning using a Dual-arm
Aerial Manipulator”. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2014, pp. 3411–3416. DOI: 10.1109/IROS.2014.
6943037.

[22] B. Dai, Y. He, F. Gu, L. Yang, J. Han, and W. Xu. “A Vision-based Autonomous
Aerial Spray System for Precision Agriculture”. In: 2017 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO). IEEE. 2017, pp. 507–513. DOI: 10.
1109/ROBIO.2017.8324467.

[23] A.S. Vempati, M. Kamel, N. Stilinovic, Q. Zhang, D. Reusser, I. Sa, J. Nieto, R.
Siegwart, and P. Beardsley. “Paintcopter: An Autonomous UAV for Spray Paint-
ing on Three-dimensional Surfaces”. In: IEEE Robotics and Automation Letters 3.4
(2018), pp. 2862–2869. DOI: 10.1109/LRA.2018.2846278.

https://doi.org/10.1109/ACCESS.2015.2432455
https://arxiv.org/abs/2005.14433
https://doi.org/10.1007/978-3-030-22327-4_12
https://doi.org/10.1109/SSRR.2019.8848936
https://arxiv.org/abs/1901.05510
https://doi.org/10.3390/drones3030069
https://doi.org/10.2514/6.2018-0023
https://doi.org/10.2514/6.2018-0023
https://doi.org/10.1109/IROS.2014.6943038
https://doi.org/10.1109/MRA.2013.2287454
https://doi.org/10.1016/j.ifacol.2017.08.1487
https://doi.org/10.1109/IROS.2014.6943037
https://doi.org/10.1109/IROS.2014.6943037
https://doi.org/10.1109/ROBIO.2017.8324467
https://doi.org/10.1109/ROBIO.2017.8324467
https://doi.org/10.1109/LRA.2018.2846278

BIBLIOGRAPHY 163

[24] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza. “Fast
Trajectory Optimization for Agile Quadrotor Maneuvers with a Cable-suspended
Payload”. In: (2017). DOI: 10.5167/uzh-138923.

[25] M.R. Aagaah, E.M. Ficanha, and N. Mahmoudian. “Drone having drone-catching
feature”. Pat. US Patent 10,005,556. 2018.

[26] F. Ruggiero, V. Lippiello, and A. Ollero. “Aerial Manipulation: A Literature Re-
view”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 1957–1964. DOI:
10.1109/LRA.2018.2808541.

[27] A. Mohiuddin, T. Taha, Y.H. Zweiri, and D. Gan. “A Survey of Single and Multi-
UAV Aerial Manipulation”. In: Unmanned Systems 8.2 (2020), pp. 119–147. DOI:
10.1142/S2301385020500089.

[28] B. Li, Z. Fei, and Y. Zhang. “UAV Communications for 5G and Beyond: Re-
cent Advances and Future Trends”. In: IEEE Internet of Things Journal 6.2 (2018),
pp. 2241–2263. DOI: 10.1109/JIOT.2018.2887086.

[29] K. Sreenath and V. Kumar. “Dynamics, Control and Planning for Cooperative
Manipulation of Payloads Suspended by Cables from Multiple Quadrotor Robots”.
In: Robotics: Science and Systems (2013). DOI: 10.15607/RSS.2013.IX.011.

[30] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza.
“Vision-based Autonomous Quadrotor Landing on a Moving Platform”. In: 2017
IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR).
IEEE. 2017, pp. 200–207. DOI: 10.1109/SSRR.2017.8088164.

[31] T. Wulff. “Physics and Ecology in the Marginal Ice Zone of the Fram Strait–a
Robotic Approach”.
HDL:10013/epic.48899. PhD thesis. University of Bremen, 2016.

[32] K. Gade. “The Seven Ways to Find Heading”. In: The Journal of Navigation 69.5
(2016), pp. 955–970. DOI: 10.1017/S0373463316000096.

[33] A. Consoli, J. Ayadi, G. Bianchi, S. Pluchino, F. Piazza, R. Baddour, et al.
“A Multi-Antenna Approach for UAV’s Attitude Determination”. In: 2015 IEEE
Metrology for Aerospace (MetroAeroSpace). 2015, pp. 401–405. DOI: 10.1109/
MetroAeroSpace.2015.7180690.

[34] J. Reis, J. Sanguino, and A. Rodrigues. “Baseline Influence on Single-frequency
GPS Precise Heading Estimation”. In: Wireless Personal Communications 64.1 (2012),
pp. 185–196. DOI: 10.1007/s11277-012-0525-6.

[35] B.A. King and E.B. Cooper. “Comparison of Ship’s Heading Determined from an
Array of GPS Antennas with Heading from Conventional Gyrocompass Measure-
ments”. In: Deep Sea Research Part I: Oceanographic Research Papers 40.11-12
(1993), pp. 2207–2216. DOI: 10.1016/0967-0637(93)90099-O.

[36] G. Lachapelle, M. E. Cannon, G. Lu, and B. Loncarevic. “Shipborne GPS Atti-
tude Determination During MMST-93”. In: IEEE Journal of Oceanic Engineering
21.1 (1996), pp. 100–104. ISSN: 0364-9059. DOI: 10.1109/48.485206.

[37] P.J.G. Teunissen, G. Giorgi, and P.J. Buist. “Testing of a new Single-Frequency
GNSS Carrier Phase Attitude Determination Method: Land, Ship and Aircraft Ex-
periments”. In: GPS Solutions 15.1 (2011), pp. 15–28. ISSN: 1521-1886. DOI: 10.
1007/s10291-010-0164-x.

[38] P. Henkel and C. Günther. “Attitude Determination with Low-cost GPS/INS”. In:
Proceedings of the 26-th ION GNSS+, Nashville (2013), pp. 2015–2023. ION-ID:
11368.

https://doi.org/10.5167/uzh-138923
https://doi.org/10.1109/LRA.2018.2808541
https://doi.org/10.1142/S2301385020500089
https://doi.org/10.1109/JIOT.2018.2887086
https://doi.org/10.15607/RSS.2013.IX.011
https://doi.org/10.1109/SSRR.2017.8088164
https://hdl.handle.net/10013/epic.48899
https://doi.org/10.1017/S0373463316000096
https://doi.org/10.1109/MetroAeroSpace.2015.7180690
https://doi.org/10.1109/MetroAeroSpace.2015.7180690
https://doi.org/10.1007/s11277-012-0525-6
https://doi.org/10.1016/0967-0637(93)90099-O
https://doi.org/10.1109/48.485206
https://doi.org/10.1007/s10291-010-0164-x
https://doi.org/10.1007/s10291-010-0164-x
https://www.ion.org/publications/abstract.cfm?articleID=11368

164 BIBLIOGRAPHY

[39] R.C. Hayward, D. Gebre-Egziabher, M. Schwall, J.D. Powell, and J. Wilson.
“Inertially Aided GPS Based Attitude Heading Reference System (AHRS) for Gen-
eral Aviation Aircraft”. In: (1997), pp. 1415–1424. ION-ID: 2848.

[40] W. Stempfhuber and M. Buchholz. “A Precise, Low-cost RTK GNSS System for
UAV Applications”. In: Proc. of Unmanned Aerial Vehicle in Geomatics, ISPRS
(2011). DOI: 10.5194/isprsarchives-XXXVIII-1-C22-289-2011.

[41] N. Gageik. “Autonome Quadrokopter zur Innenraumerkundung: AQopterI8, For-
schung und Entwicklung”. PhD thesis. 2015. URN: urn:nbn:de:bvb:20-
opus-130240.

[42] Ardupilot. Ardupilot. Accessed: 2020-03-13. URL: http://www.ardupilot
.org/.

[43] S.O.H. Madgwick, A.J.L. Harrison, and R. Vaidyanathan. “Estimation of IMU
and MARG Orientation using a Gradient Descent Algorithm”. In: 2011 IEEE in-
ternational conference on rehabilitation robotics. IEEE. 2011, pp. 1–7. DOI: 10.
1109/ICORR.2011.5975346.

[44] A.M. Sabatini. “Quaternion-Based Extended Kalman Filter for Determining Ori-
entation by Inertial and Magnetic Sensing”. In: IEEE transactions on Biomedical
Engineering 53.7 (2006), pp. 1346–1356. DOI: 10.1109/TBME.2006.875664.

[45] M. Strohmeier and S. Montenegro. “Coupled GPS/MEMS IMU Attitude Deter-
mination of Small UAVs with COTS”. In: Electronics 6.1 (2017). DOI: 10.3390/
electronics6010015.

[46] F. Graas and M. Braasch. “GPS Interferometric Attitude and Heading Determi-
nation: Initial Flight Test Results”. In: Navigation 38.4 (1991), pp. 297–316. DOI:
10.1002/j.2161-4296.1991.tb01864.x.

[47] C.E. Cohen, B.W. Parkinson, and B.D. McNally. “Flight Tests of Attitude Deter-
mination using GPS Compared Against an Inertial Navigation Unit”. In: Naviga-
tion 41.1 (1994), pp. 83–97. DOI: 10.1002/j.2161-4296.1994.tb02323.
x.

[48] R. Hirokawa and T. Ebinuma. “A Low-cost Tightly Coupled GPS/INS for Small
UAVs Augmented with Multiple GPS Aantennas”. In: Navigation 56.1 (2009),
pp. 35–44. DOI: 10.1002/j.2161-4296.2009.tb00442.x.

[49] P. Henkel and M. Iafrancesco. “Tightly Coupled Position and Attitude Determina-
tion with Two Low-cost GNSS Receivers”. In: 2014 11th International Symposium
on Wireless Communications Systems (ISWCS). IEEE. 2014, pp. 895–900. DOI:
10.1109/ISWCS.2014.6933480.

[50] G. Falco, M. Campo-Cossío Gutiérrez, E.P. Serna, F. Zacchello, and S. Bories.
“Low-cost Real-time Tightly-Coupled GNSS/INS Navigation System Based on Carrier-
phase Double-differences for UAV Applications”. In: 812 (2014), p. 841857.

[51] M.L. Sollie, T.H. Bryne, and T.A. Johansen. “Pose Estimation of UAVs Based on
INS Aided by Two Independent Low-cost GNSS Receivers”. In: 2019 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2019, pp. 1425–1435.
DOI: 10.1109/ICUAS.2019.8797746.

[52] P.J.G. Teunissen. “Least-squares Estimation of the Integer GPS Ambiguities”. In:
Invited lecture, section IV theory and methodology, IAG general meeting, Beijing,
China. 1993.

https://www.ion.org/publications/abstract.cfm?articleID=2848
https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-289-2011
http://www.nbn-resolving.org/urn:nbn:de:bvb:20-opus-130240
http://www.nbn-resolving.org/urn:nbn:de:bvb:20-opus-130240
http://www.ardupilot.org/
http://www.ardupilot.org/
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1109/TBME.2006.875664
https://doi.org/10.3390/electronics6010015
https://doi.org/10.3390/electronics6010015
https://doi.org/10.1002/j.2161-4296.1991.tb01864.x
https://doi.org/10.1002/j.2161-4296.1994.tb02323.x
https://doi.org/10.1002/j.2161-4296.1994.tb02323.x
https://doi.org/10.1002/j.2161-4296.2009.tb00442.x
https://doi.org/10.1109/ISWCS.2014.6933480
https://doi.org/10.1109/ICUAS.2019.8797746

BIBLIOGRAPHY 165

[53] C. Eling, L. Klingbeil, and H. Kuhlmann. “Real-time Single-frequency GPS/
MEMS-IMU Attitude Determination of Lightweight UAVs”. In: Sensors 15.10
(2015). DOI: 10.3390/s151026212.

[54] L. Bing, M. Qing-Hao, X. Fei, W. Jia-Ying, and S. Biao. “Development of an
on-board single-frequency GNSS RTK system for MAVs”. In: 2015 34th Chinese
Control Conference (CCC). IEEE. 2015, pp. 6005–6010. DOI: 10.1109/ChiCC.
2015.7260579.

[55] K. Klausen, J.B. Moe, J.C. van den Hoorn, A. Gomola, T.I. Fossen, and T.A.
Johansen. “Coordinated Control Concept for Recovery of a Fixed-wing UAV on a
Ship using a Net Carried by Multirotor UAVs”. In: 2016 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE. 2016, pp. 964–973. DOI: 10.
1109/ICUAS.2016.7502640.

[56] K. Klausen, T.I. Fossen, and T.A. Johansen. “Autonomous Recovery of a Fixed-
wing UAV using a Net Suspended by Two Multirotor UAVs”. In: Journal of Field
Robotics 35.5 (2018), pp. 717–731. DOI: 10.1002/rob.21772.

[57] S. Tansuriyong, M. Kyan, K. Numata, S. Taira, and T. Anezaki. “Verification
experiment for drone charging station using RTK-GPS”. In: 2017 International
Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). 2017,
pp. 229–232. DOI: 10.1109/ICIIBMS.2017.8279762.

[58] S. Låte. “A Vertical Stack Approach to Cooperative Drone Lifting”. MA thesis.
NTNU, 2018.

[59] S. Zhao, Y. Chen, and J.A. Farrell. “High-precision Vehicle Navigation in Ur-
ban Environments using an MEMS IMU and Single-frequency GPS Receiver”. In:
IEEE transactions on intelligent transportation systems 17.10 (2016), pp. 2854–
2867. DOI: 10.1109/TITS.2016.2529000.

[60] J. Huff, A. Schultz, and M.U. de Haag. “Assured Relative and Absolute Naviga-
tion of a Swarm of Small UAS”. In: 2017 IEEE/AIAA 36th Digital Avionics Sys-
tems Conference (DASC). IEEE. 2017, pp. 1–10. DOI: 10.1109/DASC.2017.
8102070.

[61] J.N. Gross, Y. Gu, and B. Dewberry. “Tightly-coupled GPS/UWB-ranging for
Relative Navigation During Formation Flight”. In: Proc. 27th Int. Techn. Meeting
ION Satellite Division. 2014, pp. 1698–1708. ION-ID: 12556.

[62] J.N. Gross, Y. Gu, and M.B. Rhudy. “Robust UAV Relative Navigation with
DGPS, INS, and Peer-to-peer Radio Ranging”. In: IEEE Transactions on Automa-
tion Science and Engineering 12.3 (2015), pp. 935–944. DOI: 10.1109/TASE.
2014.2383357.

[63] D.S. Chiu and K.P. O’Keefe. “Seamless Outdoor-to-indoor Pedestrian Navigation
using GPS and UWB”. In: Proceedings of the 21st International Technical Meet-
ing of the Satellite Division of the Institute of Navigation (ION GNSS 2008), The
Institute of Navigation. Vol. 1. 2008, pp. 322–333. ION-ID: 8165.

[64] G. MacGougan, K. O’Keefe, and D. Chiu. “Multiple UWB Range Assisted GPS
RTK in Hostile Environments”. In: ION GNSS. 2008, pp. 3020–3035. ION-ID:
8208.

[65] J. Wang, Y. Gao, Z. Li, X. Meng, and C.M. Hancock. “A Tightly-Coupled GP-
S/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communi-
cation”. In: Sensors 16.7 (2016), p. 944. DOI: 10.3390/s16070944.

https://doi.org/10.3390/s151026212
https://doi.org/10.1109/ChiCC.2015.7260579
https://doi.org/10.1109/ChiCC.2015.7260579
https://doi.org/10.1109/ICUAS.2016.7502640
https://doi.org/10.1109/ICUAS.2016.7502640
https://doi.org/10.1002/rob.21772
https://doi.org/10.1109/ICIIBMS.2017.8279762
https://doi.org/10.1109/TITS.2016.2529000
https://doi.org/10.1109/DASC.2017.8102070
https://doi.org/10.1109/DASC.2017.8102070
https://www.ion.org/publications/abstract.cfm?articleID=12556
https://doi.org/10.1109/TASE.2014.2383357
https://doi.org/10.1109/TASE.2014.2383357
https://www.ion.org/publications/abstract.cfm?articleID=8165
https://www.ion.org/publications/abstract.cfm?articleID=8208
https://doi.org/10.3390/s16070944

166 BIBLIOGRAPHY

[66] F. Wenzhöfer, T. Wulff, S. Floegel, S. Sommer, and C. Waldmann. “ROBEX-
Innovative Robotic Technologies for Ocean Observations, a Deep-sea Demonstration
Mission”. In: OCEANS 2016 MTS/IEEE Monterey. IEEE. 2016, pp. 1–8. DOI:
10.1109/OCEANS.2016.7761215.

[67] T. Wulff, S. Lehmenhecker, J. Hagemann, M. Busack, S. Tippenhauer, M. Stroh-
meier, and J. Rothe. Revealing Physical and Ecological Dynamics at an Ice Edge -
a Robotic Approach.
HDL:10013/epic.fad984e3-bb78-4d36-bc91-501c9c6d64d3. Polar 2018, Davos,
Switzerland, 2018.

[68] S. Tippenhauer, T. Wulff, S. Lehmenhecker, M. Strohmeier, T. Mikschl, and
S. Montenegro. Observing the Arctic with Autonomous Robots.
HDL:10013/epic.50909. EGU General Assembly, 2017.

[69] J. Rothe, M. Strohmeier, and S. Montenegro. “A Concept for Catching Drones
with a Net Carried by Cooperative UAVs”. In: 2019 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR). 2019, pp. 126–132. DOI: 10.
1109/SSRR.2019.8848973.

[70] T. Pavlenko, M. Schütz, M. Vossiek, T. Walter, and S. Montenegro. “Wire-
less Local Positioning System for Controlled UAV Landing in GNSS-Denied En-
vironment”. In: 2019 IEEE 5th International Workshop on Metrology for AeroSpace
(MetroAeroSpace). IEEE. 2019, pp. 171–175. DOI: 10.1109/MetroAeroSpac
e.2019.8869587.

[71] Markforged. Markforged - 3D Printers. Accessed: 2020-05-29. URL: https://
markforged.com/.

[72] Hacker. Hacker - Brushless Motors. Accessed: 2020-05-29. URL: https://www
.hacker-motor-shop.com/Akkus-und-Akkuzubehoer/Akkusuche

/TF-ECO-X-5000-6S-MTAG.htm?SessionId=&a=article&ProdNr=

95000631&p=11452.

[73] T-Motor. T-Motor - The Safer Propulsion System. Accessed: 2020-05-29. URL:
http://uav-en.tmotor.com/.

[74] S. Kirby. Open Source Firmware for ATmega-based Brushless ESCs. Accessed:
2020-05-29. URL: https://github.com/sim-/tgy.

[75] L. Werner. “Design and Modeling of a Bi-Copter”. B.Sc. Thesis. University of
Wuerzburg, 2018.

[76] SECO SPA. Udoo Neo. Accessed: 2020-06-04. URL: https://www.udoo.
org/udoo-neo/.

[77] NXP. MCIMX6X4EVM10AB. Accessed: 2020-06-04. URL: https://www.
nxp.com/part/MCIMX6X4EVM10AB#/.

[78] NXP Community. i.MX6 SoloX Debugging. Accessed: 2020-06-04. URL: http
s://community.nxp.com/thread/350148.

[79] ST Microelectronics. LSM9DS1 - iNEMO inertial module. Accessed: 2020-04-22.
URL: https://www.st.com/en/mems-and-sensors/lsm9ds1.html.

[80] Analog Devices. Tactical Grade Inertial Measurement Unit with Industry’s Lowest
SWaP+C. Accessed: 2020-04-21. 2017. URL: https://www.analog.com/
media/en/news- marketing- collateral/product- highlight/

Tactical-Grade-IMU.pdf.

https://doi.org/10.1109/OCEANS.2016.7761215
http://hdl.handle.net/10013/epic.fad984e3-bb78-4d36-bc91-501c9c6d64d3
http://hdl.handle.net/10013/epic.50909
https://doi.org/10.1109/SSRR.2019.8848973
https://doi.org/10.1109/SSRR.2019.8848973
https://doi.org/10.1109/MetroAeroSpace.2019.8869587
https://doi.org/10.1109/MetroAeroSpace.2019.8869587
https://markforged.com/
https://markforged.com/
https://www.hacker-motor-shop.com/Akkus-und-Akkuzubehoer/Akkusuche/TF-ECO-X-5000-6S-MTAG.htm?SessionId=&a=article&ProdNr=95000631&p=11452
https://www.hacker-motor-shop.com/Akkus-und-Akkuzubehoer/Akkusuche/TF-ECO-X-5000-6S-MTAG.htm?SessionId=&a=article&ProdNr=95000631&p=11452
https://www.hacker-motor-shop.com/Akkus-und-Akkuzubehoer/Akkusuche/TF-ECO-X-5000-6S-MTAG.htm?SessionId=&a=article&ProdNr=95000631&p=11452
https://www.hacker-motor-shop.com/Akkus-und-Akkuzubehoer/Akkusuche/TF-ECO-X-5000-6S-MTAG.htm?SessionId=&a=article&ProdNr=95000631&p=11452
http://uav-en.tmotor.com/
https://github.com/sim-/tgy
https://www.udoo.org/udoo-neo/
https://www.udoo.org/udoo-neo/
https://www.nxp.com/part/MCIMX6X4EVM10AB#/
https://www.nxp.com/part/MCIMX6X4EVM10AB#/
https://community.nxp.com/thread/350148
https://community.nxp.com/thread/350148
https://www.st.com/en/mems-and-sensors/lsm9ds1.html
https://www.analog.com/media/en/news-marketing-collateral/product-highlight/Tactical-Grade-IMU.pdf
https://www.analog.com/media/en/news-marketing-collateral/product-highlight/Tactical-Grade-IMU.pdf
https://www.analog.com/media/en/news-marketing-collateral/product-highlight/Tactical-Grade-IMU.pdf

BIBLIOGRAPHY 167

[81] A. Vydhyanathan, G. Bellusci, H. Luinge, and P. Slycke. The Next Generation
Xsens Motion Trackers for Industrial Applications. Tech. rep. Xsens: Enschede,
The Netherlands, 2015.

[82] M. Li, X. Yu H.and Zheng, and A.I. Mourikis. “High-fidelity Sensor Modeling
and Self-calibration in Vision-aided Inertial Navigation”. In: 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 409–416.
DOI: 10.1109/ICRA.2014.6906889.

[83] E. Fresk, G. Nikolakopoulos, and T. Gustafsson. “A Generalized Reduced-Com-
plexity Inertial Navigation System for Unmanned Aerial Vehicles”. In: IEEE Trans-
actions on Control Systems Technology 25.1 (2017), pp. 192–207. ISSN: 2374-0159.
DOI: 10.1109/TCST.2016.2542022.

[84] I. Frosio, F. Pedersini, and N.A. Borghese. “Autocalibration of MEMS Accelerom-
eters”. In: IEEE Transactions on Instrumentation and Measurement 58.6 (2008),
pp. 2034–2041. DOI: 10.1109/TIM.2008.2006137.

[85] M. Pedley. “High Precision Calibration of a Three-axis Accelerometer”. In: Freescale
Semiconductor Application Note 1 (2013). URL: https://www.nxp.com/
docs/en/application-note/AN4399.pdf.

[86] J.F. Zhang, J.P. Bai, J.B. Wu, J. Zeng, and X.S. Lai. “Fast Field Calibration of
MEMS-based IMU for Quadrotor’s Applications”. In: Sensors & Transducers 151.4
(2013), p. 1.

[87] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006. DOI: 10.
1007/978-0-387-40065-5.

[88] E. Fresk and G. Nikolakopoulos. “Frame Induced Vibration Estimation and At-
tenuation Scheme on a Multirotor Helicopter”. In: 53rd IEEE conference on decision
and control. IEEE. 2014, pp. 5698–5703. DOI: 10.1109/CDC.2014.7040281.

[89] Z. Li, M. Lao, S.K. Phang, M.R.A. Hamid, K.Z. Tang, and F. Lin. “Develop-
ment and Design Methodology of an Anti-Vibration System on Micro-UAVs”. In:
International Micro Air Vehicle Conference and Flight Competition (IMAV). 2017,
pp. 223–228.

[90] X. Niu, Y. Li, H. Zhang, Q. Wang, and Y. Ban. “Fast Thermal Calibration of Low-
grade Inertial Sensors and Inertial Measurement Units”. In: Sensors 13.9 (2013),
pp. 12192–12217. DOI: 10.3390/s130912192.

[91] P. Aggarwal, Z. Syed, X. Niu, and N. El-Sheimy. “Cost-effective Testing and
Calibration of Low Cost MEMS Sensors for Integrated Positioning, Navigation and
Mapping Systems”. In: Proceedings of XIII FIG Conference. 2006, pp. 8–13.

[92] G. Liu, F. Yang, X. Bao, and T. Jiang. “Robust Optimization of a MEMS Ac-
celerometer Considering Temperature Variations”. In: Sensors 15.3 (2015), pp. 6342–
6359. DOI: 10.3390/s150306342.

[93] D. Xia, S. Chen, S. Wang, and H. Li. “Microgyroscope Temperature Effects and
Compensation-control Methods”. In: Sensors 9.10 (2009), pp. 8349–8376. DOI:
10.3390/s91008349.

[94] J.-K. Shiau, C.-X. Huang, M.-Y. Chang, et al. “Noise Characteristics of MEMS
Gyro’s Null Dift and Temperature Compensation”. In: Journal of Applied Science
and engineering 15.3 (2012), pp. 239–246. DOI: 10.6180/jase.2012.15.3.
04.

https://doi.org/10.1109/ICRA.2014.6906889
https://doi.org/10.1109/TCST.2016.2542022
https://doi.org/10.1109/TIM.2008.2006137
https://www.nxp.com/docs/en/application-note/AN4399.pdf
https://www.nxp.com/docs/en/application-note/AN4399.pdf
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1109/CDC.2014.7040281
https://doi.org/10.3390/s130912192
https://doi.org/10.3390/s150306342
https://doi.org/10.3390/s91008349
https://doi.org/10.6180/jase.2012.15.3.04
https://doi.org/10.6180/jase.2012.15.3.04

168 BIBLIOGRAPHY

[95] G. Araghi et al. “Temperature Compensation Model of MEMS Inertial Sensors
Based on Neural network”. In: 2018 IEEE/ION Position, Location and Navigation
Symposium (PLANS). IEEE. 2018, pp. 301–309. DOI: 10.1109/PLANS.2018.
8373395.

[96] Vötsch Industrietechnik. Temperature Test Chamber VT 4002. Accessed: 2020-
04-22. URL: http://lampx.tugraz.at/~hadley/num/ch9/instrume
nts/VT4002/VT4002_climate_chamber.pdf.

[97] O.J. Woodman. An Introduction to Inertial Navigation. Tech. rep. University of
Cambridge, Computer Laboratory, 2007. DOI: 10.1119/1.3081061.

[98] “IEEE Standard Specification Format Guide and Test Procedure for Single-Axis In-
terferometric Fiber Optic Gyros”. In: IEEE Std 952-1997 (1998), pp. 1–84.

[99] E. Ogier. AVAR. MATLAB Central File Exchange. 2020. URL: https://www.
mathworks.com/matlabcentral/fileexchange/55765-avar.

[100] PNICorp. RM3100 Geomagnetic Sensor. Accessed: 2020-06-10. URL: https:
//www.pnicorp.com/rm3100/.

[101] T. Ozyagcilar. “Calibrating an Ecompass in the Presence of Hard and Soft-iron
Interference”. In: Freescale Semiconductor Application Note (2012), pp. 1–17. URL:
https://www.nxp.com/docs/en/application-note/AN4246.pdf.

[102] P. Yury. Ellipsoid Fit. https://www.mathworks.com/matlabcentral/
fileexchange/24693-ellipsoid-fit. Accessed: 2020-03-13.

[103] A. Chulliat, S. Macmillan, P. Alken, C. Beggan, M. Nair, B. Hamilton, A.
Woods, V. Ridley, S. Maus, and . Thomson. “The US/UK World Magnetic Model
for 2015-2020”. In: (2015). URL: https://geomag.bgs.ac.uk/document
s/WMM2015_Report.pdf.

[104] Bosch Sensortec. BMP388 - Digital Pressure Sensor. Accessed: 2020-04-22. URL:
https://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/pressure-sensors-bmp388.html.

[105] uBlox. ZED-F9P high precision GNSS module. Accessed: 2020-04-22. URL: htt
ps://www.u-blox.com/en/product/zed-f9p-module.

[106] uBlox. NEO/LEA-M8T concurrent GNSS timing modules. Accessed: 2020-04-22.
URL: https://www.u-blox.com/en/product/neolea-m8t-series.

[107] uBlox. MAX-M8Q Small GNSS module. Accessed: 2020-04-22. URL: https:
//www.u-blox.com/en/product/max-m8-series?lang=de.

[108] uBlox. ANN-MB series - Multi-band, high precision GNSS antennas. Accessed:
2020-04-22. URL: https://www.u-blox.com/en/product/ann-mb-
series.

[109] Tallysman. TW2920 Single Band Antenna with L-Band. Accessed: 2020-04-22.
URL: https://www.tallysman.com/product/tw2920- single-
band-antenna-with-l-band/.

[110] M.W. Mueller, M. Hamer, and R. D’Andrea. “Fusing Ultra-wideband Range
Measurements with Accelerometers and Rate Gyroscopes for Quadrocopter State
Estimation”. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2015, pp. 1730–1736. DOI: 10.1109/ICRA.2015.7139421.

[111] A. Ledergerber, M. Hamer, and R. D’Andrea. “A Robot Self-localization System
using One-way Ultra-wideband Communication”. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 3131–3137.
DOI: 10.1109/IROS.2015.7353810.

https://doi.org/10.1109/PLANS.2018.8373395
https://doi.org/10.1109/PLANS.2018.8373395
http://lampx.tugraz.at/~hadley/num/ch9/instruments/VT4002/VT4002_climate_chamber.pdf
http://lampx.tugraz.at/~hadley/num/ch9/instruments/VT4002/VT4002_climate_chamber.pdf
https://doi.org/10.1119/1.3081061
https://www.mathworks.com/matlabcentral/fileexchange/55765-avar
https://www.mathworks.com/matlabcentral/fileexchange/55765-avar
https://www.pnicorp.com/rm3100/
https://www.pnicorp.com/rm3100/
https://www.nxp.com/docs/en/application-note/AN4246.pdf
https://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit
https://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit
https://geomag.bgs.ac.uk/documents/WMM2015_Report.pdf
https://geomag.bgs.ac.uk/documents/WMM2015_Report.pdf
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/pressure-sensors-bmp388.html
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/pressure-sensors-bmp388.html
https://www.u-blox.com/en/product/zed-f9p-module
https://www.u-blox.com/en/product/zed-f9p-module
https://www.u-blox.com/en/product/neolea-m8t-series
https://www.u-blox.com/en/product/max-m8-series?lang=de
https://www.u-blox.com/en/product/max-m8-series?lang=de
https://www.u-blox.com/en/product/ann-mb-series
https://www.u-blox.com/en/product/ann-mb-series
https://www.tallysman.com/product/tw2920-single-band-antenna-with-l-band/
https://www.tallysman.com/product/tw2920-single-band-antenna-with-l-band/
https://doi.org/10.1109/ICRA.2015.7139421
https://doi.org/10.1109/IROS.2015.7353810

BIBLIOGRAPHY 169

[112] K. Hausman, S. Weiss, R. Brockers, L. Matthies, and G.S. Sukhatme. “Self-
calibrating multi-sensor fusion with probabilistic measurement validation for seam-
less sensor switching on a UAV”. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 4289–4296. DOI: 10.1109/ICRA.
2016.7487626.

[113] J. Tiemann and C. Wietfeld. “Scalable and Precise Multi-UAV Indoor Navigation
using TDOA-based UWB Localization”. In: 2017 International Conference on In-
door Positioning and Indoor Navigation (IPIN). IEEE. 2017, pp. 1–7. DOI: 10.
1109/IPIN.2017.8115937.

[114] W. Shule, C. Martínez Almansa, J. Pena Queralta, Z. Zou, and T. Wester-
lund. “UWB-Based Localization for Multi-UAV Systems and Collaborative Hetero-
geneous Multi-Robot Systems: a Survey”. In: arXiv preprint (2020). arXiv: 2004.
08174.

[115] J.P. Queralta, C. Martínez Almansa, F. Schiano, D. Floreano, and T. Wester-
lund. “UWB-based system for UAV Localization in GNSS-Denied Environments:
Characterization and Dataset”. In: arXiv preprint (2020). arXiv: 2003.04380.

[116] DecaWave. DWM1000 Module. Accessed: 2020-04-22. URL: https://www.
decawave.com/product/dwm1000-module/.

[117] Radiocommunication International Telecommunication Union. Characteristics
of ultra-wideband technology. online. 2006. URL: http://www.itu.int/
dms_pubrec/itu-r/rec/sm/R-REC-SM.1755-0-200605-I!!PDF-

E.pdf.

[118] J. Tiemann, F. Eckermann, and C. Wietfeld. “Multi-user Interference and Wire-
less Clock Synchronization in TDOA-based UWB Localization”. In: 2016 Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE. 2016,
pp. 1–6. DOI: 10.1109/IPIN.2016.7743696.

[119] Decawave. DW1000 User Manual-How to Use, Configure and Program the DWM
1000 UWB Transceiver. Tech. rep. Decawave Limited, 2017. URL: https://
www.decawave.com/sites/default/files/resources/dw1000_

user_manual_2.11.pdf.

[120] Decawave. Antenna Delay Calibration of DW1000-based Products and Systems.
Tech. rep. Decawave Limited, 2018. URL: http://www.decawave.com.

[121] Texas Instruments. WiLink 8 industrial Wi-Fi, Bluetooth & Bluetooth Smart (Low
energy) module. 2016. URL: https://www.ti.com/product/WL1831MOD.

[122] Horizon Hobby. “Specification for Spektrum Remote Receiver Interfacing”. In:
(2016). URL: https : / / www . spektrumrc . com / ProdInfo / Files /
Remote%20Receiver%20Interfacing%20Rev%20A.pdf.

[123] M. Faessler. SBUS Protocol. Github. 2018. URL: https://github.com/
uzh-rpg/rpg_quadrotor_control/wiki/SBUS-Protocol.

[124] Spektrum. DX8 G2 System with AR8010T Receiver Mode 2. Accessed: 2020-04-
21. URL: https://www.spektrumrc.com/Products/Default.aspx?
ProdId=SPM8015.

[125] DJI. DJI FPV-System. URL: https://www.dji.com/de/fpv/info.

[126] Intel RealSene Technology. Intel RealSense Tracking Camera. Accessed: 2020-
04-22. URL: https://www.intelrealsense.com/tracking-camera-
t265/.

https://doi.org/10.1109/ICRA.2016.7487626
https://doi.org/10.1109/ICRA.2016.7487626
https://doi.org/10.1109/IPIN.2017.8115937
https://doi.org/10.1109/IPIN.2017.8115937
https://arxiv.org/abs/2004.08174
https://arxiv.org/abs/2004.08174
https://arxiv.org/abs/2003.04380
https://www.decawave.com/product/dwm1000-module/
https://www.decawave.com/product/dwm1000-module/
http://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1755-0-200605-I!!PDF-E.pdf
http://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1755-0-200605-I!!PDF-E.pdf
http://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1755-0-200605-I!!PDF-E.pdf
https://doi.org/10.1109/IPIN.2016.7743696
https://www.decawave.com/sites/default/files/resources/dw1000_user_manual_2.11.pdf
https://www.decawave.com/sites/default/files/resources/dw1000_user_manual_2.11.pdf
https://www.decawave.com/sites/default/files/resources/dw1000_user_manual_2.11.pdf
http://www.decawave.com
https://www.ti.com/product/WL1831MOD
https://www.spektrumrc.com/ProdInfo/Files/Remote%20Receiver%20Interfacing%20Rev%20A.pdf
https://www.spektrumrc.com/ProdInfo/Files/Remote%20Receiver%20Interfacing%20Rev%20A.pdf
https://github.com/uzh-rpg/rpg_quadrotor_control/wiki/SBUS-Protocol
https://github.com/uzh-rpg/rpg_quadrotor_control/wiki/SBUS-Protocol
https://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM8015
https://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM8015
https://www.dji.com/de/fpv/info
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/

170 BIBLIOGRAPHY

[127] Avago Technologies. ADNS-3080 High-Performance Optical Mouse Sensor. Ac-
cessed: 2020-04-22. URL: http : / / www . farnell . com / datasheets /
1931324.pdf.

[128] N. Gageik, M. Strohmeier, and S. Montenegro. “An Autonomous UAV with an
Optical Flow Sensor for Positioning and Navigation”. In: International Journal of
Advanced Robotic Systems 10.10 (2013), p. 341. DOI: 10.5772/56813.

[129] OptiTrack. Flex 3. Accessed: 2020-04-22. URL: https://optitrack.com/
products/flex-3/.

[130] M. Strohmeier, T. Walter, J. Rothe, and S. Montenegro. “Ultra-wideband based
pose estimation for small unmanned aerial vehicles”. In: IEEE Access 6 (2018). DOI:
10.1109/ACCESS.2018.2873571.

[131] Garmin. Lidar Lite v3 Operation Manual and Technical Specifications. Accessed:
2020-04-22. URL: https://buy.garmin.com/de-DE/DE/p/557294.

[132] Robot Electronics. SRF02 Ultrasonic range finder - Technical Specification. Ac-
cessed: 2020-04-22. URL: https://www.robot-electronics.co.uk/
htm/srf02tech.htm.

[133] D-Link. DWM-222 4G LTE USB Adapter. Accessed: 2020-04-22. URL: https:
//eu.dlink.com/de/de/products/dwm-222-4g-lte-usb-adapte

r.

[134] AMBER wireless GmbH. Manual AMB8636. Accessed: 2020-04-22. URL: htt
p://www.farnell.com/datasheets/1898782.pdf.

[135] FLIR. FLIR LEPTON Engineering Datasheet. Accessed: 2020-04-22. URL: http
s://www.flir.de/products/lepton/.

[136] J.B. Kuipers et al. Quaternions and Rotation Sequences. Vol. 66. Princeton uni-
versity press Princeton, 1999. DOI: 10.2307/3621452.

[137] M. D. Shuster. “A Survey of Attitude Representations”. In: Navigation 8.9 (1993),
pp. 439–517. DOI: 10.2514/6.2012-4422.

[138] J. Diebel. “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors”. In: Matrix 58.15-16 (2006), pp. 1–35.

[139] J. Sola. “Quaternion Kinematics for the Error-state Kalman Filter”. In: arXiv preprint
(2017). arXiv: 1711.02508.

[140] N. Trawny and S.I. Roumeliotis. Indirect Kalman Filter for 3D Attitude Estima-
tion. Tech. rep. University of Minnesota, Dept. of Comp. Sci. & Eng., 2005.

[141] H. Qi and J.B. Moore. “Direct Kalman Filtering Approach for GPS/INS Integra-
tion”. In: IEEE Transactions on Aerospace and Electronic Systems 38.2 (2002),
pp. 687–693. ISSN: 2371-9877. DOI: 10.1109/TAES.2002.1008998.

[142] V. Madyastha, V. Ravindra, S. Mallikarjunan, and A. Goyal. “Extended Kalman
Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation”. In: AIAA
Guidance, Navigation, and Control Conference. 2011, p. 6615. DOI: 10.2514/6.
2011-6615.

[143] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. “Circumventing Dynamic
Modeling: Evaluation of the Error-state Kalman Filter Applied to Mobile Robot Lo-
calization”. In: Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No. 99CH36288C). Vol. 2. IEEE. 1999, pp. 1656–1663. DOI:
10.1109/ROBOT.1999.772597.

http://www.farnell.com/datasheets/1931324.pdf
http://www.farnell.com/datasheets/1931324.pdf
https://doi.org/10.5772/56813
https://optitrack.com/products/flex-3/
https://optitrack.com/products/flex-3/
https://doi.org/10.1109/ACCESS.2018.2873571
https://buy.garmin.com/de-DE/DE/p/557294
https://www.robot-electronics.co.uk/htm/srf02tech.htm
https://www.robot-electronics.co.uk/htm/srf02tech.htm
https://eu.dlink.com/de/de/products/dwm-222-4g-lte-usb-adapter
https://eu.dlink.com/de/de/products/dwm-222-4g-lte-usb-adapter
https://eu.dlink.com/de/de/products/dwm-222-4g-lte-usb-adapter
http://www.farnell.com/datasheets/1898782.pdf
http://www.farnell.com/datasheets/1898782.pdf
https://www.flir.de/products/lepton/
https://www.flir.de/products/lepton/
https://doi.org/10.2307/3621452
https://doi.org/10.2514/6.2012-4422
https://arxiv.org/abs/1711.02508
https://doi.org/10.1109/TAES.2002.1008998
https://doi.org/10.2514/6.2011-6615
https://doi.org/10.2514/6.2011-6615
https://doi.org/10.1109/ROBOT.1999.772597

BIBLIOGRAPHY 171

[144] A. R. Jiménez, F. Seco, J. C. Prieto, and J. Guevara. “Indoor Pedestrian Naviga-
tion using an INS/EKF Framework for Yaw Drift reduction and a Foot-Mounted
IMU”. In: 2010 7th Workshop on Positioning, Navigation and Communication.
2010, pp. 135–143. DOI: 10.1109/WPNC.2010.5649300.

[145] K. Schmid, F. Ruess, M. Suppa, and D. Burschka. “State Estimation for Highly
Dynamic Flying Systems using Key Frame Odometry with Varying Time Delays”.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2012, pp. 2997–3004. DOI: 10.1109/IROS.2012.6385969.

[146] A. Widy and K. T. Woo. “Robust Attitude Estimation Method for Underwater
Vehicles with External and Internal Magnetic Noise Rejection using Adaptive In-
direct Kalman Filter”. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2017, pp. 2595–2600. DOI: 10.1109/IROS.2017.
8206082.

[147] Y. S. Suh. “Orientation Estimation Using a Quaternion-Based Indirect Kalman Fil-
ter With Adaptive Estimation of External Acceleration”. In: IEEE Transactions on
Instrumentation and Measurement 59.12 (2010), pp. 3296–3305. ISSN: 1557-9662.
DOI: 10.1109/TIM.2010.2047157.

[148] A.I. Mourikis and S.I. Roumeliotis. “A Multi-State Constraint Kalman Filter for
Vision-Aided Inertial Navigation”. In: Proceedings 2007 IEEE International Con-
ference on Robotics and Automation. IEEE. 2007, pp. 3565–3572. DOI: 10.1109/
ROBOT.2007.364024.

[149] S. Lynen, M.W. Achtelik, S. Weiss, M.a Chli, and . Siegwart. “A Robust and
Modular Multi-sensor Fusion Approach Applied to MAV Navigation”. In: 2013
IEEE/RSJ international conference on intelligent robots and systems. IEEE. 2013,
pp. 3923–3929. DOI: 10.1109/IROS.2013.6696917.

[150] I. Skog, J.-O. Nilsson, and P. Händel. “Evaluation of Zero-velocity Detectors for
Foot-mounted Inertial Navigation Systems”. In: 2010 International Conference on
Indoor Positioning and Indoor Navigation. IEEE. 2010, pp. 1–6. DOI: 10.1109/
IPIN.2010.5646936.

[151] R. Munguía and A. Grau. “A Practical Method for Implementing an Attitude and
Heading Reference System”. In: International Journal of Advanced Robotic Systems
11.4 (2014), p. 62. DOI: 10.5772/58463.

[152] H.L. Alexander. “State Estimation for Distributed Systems with Sensing Delay”.
In: Data Structures and Target Classification. Vol. 1470. International Society for
Optics and Photonics. 1991, pp. 103–111. DOI: 10.1117/12.44843.

[153] T. Dall Larsen, N.A. Andersen, O. Ravn, and N. Kjølstad Poulsen. “Incorpora-
tion of Time Delayed Measurements in a Discrete-time Kalman Filter”. In: Proceed-
ings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171).
Vol. 4. IEEE. 1998, pp. 3972–3977. DOI: 10.1109/CDC.1998.761918.

[154] D. Kotarski and J. Kasać. “Generalized Control Allocation Scheme for Multirotor
Type of UAVs”. In: Drones-Applications. IntechOpen, 2018. DOI: 10.5772/
intechopen.73006.

[155] M.A. Johnson and M.H. Moradi. PID control. Springer, 2005. ISBN: 978-1-
84628-148-8.

[156] A. Visioli. Practical PID control. Springer Science & Business Media, 2006.
ISBN: 978-1-84628-586-8.

https://doi.org/10.1109/WPNC.2010.5649300
https://doi.org/10.1109/IROS.2012.6385969
https://doi.org/10.1109/IROS.2017.8206082
https://doi.org/10.1109/IROS.2017.8206082
https://doi.org/10.1109/TIM.2010.2047157
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/IROS.2013.6696917
https://doi.org/10.1109/IPIN.2010.5646936
https://doi.org/10.1109/IPIN.2010.5646936
https://doi.org/10.5772/58463
https://doi.org/10.1117/12.44843
https://doi.org/10.1109/CDC.1998.761918
https://doi.org/10.5772/intechopen.73006
https://doi.org/10.5772/intechopen.73006

172 BIBLIOGRAPHY

[157] T. Takasu and A. Yasuda. “Development of the Low-cost RTK-GPS Receiver with
an Open Source Program Package RTKLIB”. In: International Symposium on GP-
S/GNSS. International Convention Center Jeju Korea. 2009, pp. 4–6.

[158] G. Xu and Y. Xu. GPS: Theory, Algorithms and Applications. Springer, 2016. DOI:
10.1007/978-3-540-72715-6.

[159] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS–Global Naviga-
tion Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, 2007. DOI:
10.1007/978-3-211-73017-1.

[160] P.D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems. Artech house, 2013. ISBN: 978-1-60807-005-3.

[161] P.J.G. Teunissen and A. Kleusberg. GPS for Geodesy. Springer, 2012. DOI: 10.
1007/978-3-642-72011-6.

[162] G. Giorgi and P.J.G. Teunissen. “GNSS Carrier Phase-based Attitude Determi-
nation”. In: Recent Advances in Aircraft Technology. InTech, 2012, pp. 193–220.
DOI: 10.5772/38381.

[163] E.J. Post. “Sagnac Effect”. In: Reviews of Modern Physics 39.2 (1967), p. 475. DOI:
10.1103/RevModPhys.39.475.

[164] G. Strang and K. Borre. Linear Algebra, Geodesy and GPS. Siam, 1997. ISBN:
978-0961408862.

[165] M.M. Hoque and N. Jakowski. “Ionospheric Propagation Effects on GNSS Signals
and New Correction Approaches”. In: Global Navigation Satellite Systems: Signal,
Theory and Applications (2012), pp. 381–405. DOI: 10.5772/30090.

[166] J. Saastamoinen. “Atmospheric Correction for the Troposphere and Stratosphere in
Radio Ranging Satellites”. In: The Use of Artificial Satellites for Geodesy 15 (1972),
pp. 247–251. DOI: 10.1029/GM015p0247.

[167] M. Bevis, S. Businger, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, and
R. H. Ware. “GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Wa-
ter”. In: Journal of applied meteorology 33.3 (1994), pp. 379–386. DOI: 10.1175/
1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

[168] J. Paul Collins. “Assessment and Development of a Tropospheric Delay Model for
Aircraft Users of the Global Positioning System”. MA thesis. 1999.

[169] J.A. Klobuchar. “Ionospheric time-delay algorithm for single-frequency GPS users”.
In: IEEE Transactions on Aerospace and Electronic Systems 3 (1987), pp. 325–331.
DOI: 10.1109/TAES.1987.310829.

[170] J. Van Sickle. GPS for Land Surveyors. CRC Press, 2015. ISBN: 978-1-46658-310-
8.

[171] G. Di Giovanni and S. M. Radicella. “An analytical model of the electron density
profile in the ionosphere”. In: Advances in Space Research 10.11 (1990), pp. 27–30.
DOI: 10.1016/0273-1177(90)90301-F.

[172] A. Angrisano, S. Gaglione, C. Gioia, M. Massaro, and S. Troisi. “Benefit of
the NeQuick Galileo Version in GNSS Single-Point Positioning”. In: International
Journal of Navigation and Observation (2013). DOI: 10.1155/2013/302947.

[173] S. Kedar, G.A. Hajj, B.D. Wilson, and M.B. Heflin. “The Effect of the Second
Order GPS Ionospheric Correction on Receiver Positions”. In: Geophysical Research
Letters 30.16 (2003). DOI: 10.1029/2003GL017639.

https://doi.org/10.1007/978-3-540-72715-6
https://doi.org/10.1007/978-3-211-73017-1
https://doi.org/10.1007/978-3-642-72011-6
https://doi.org/10.1007/978-3-642-72011-6
https://doi.org/10.5772/38381
https://doi.org/10.1103/RevModPhys.39.475
https://doi.org/10.5772/30090
https://doi.org/10.1029/GM015p0247
https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
https://doi.org/10.1109/TAES.1987.310829
https://doi.org/10.1016/0273-1177(90)90301-F
https://doi.org/10.1155/2013/302947
https://doi.org/10.1029/2003GL017639

BIBLIOGRAPHY 173

[174] M. Fritsche, R. Dietrich, C. Knöfel, A. Rülke, S. Vey, M. Rothacher, and P.
Steigenberger. “Impact of Higher-order Ionospheric Terms on GPS Estimates”. In:
Geophysical research letters 32.23 (2005). DOI: 10.1029/2005GL024342.

[175] C.S. Carrano, K.M. Groves, W.J. McNeil, and P.H. Doherty. “Direct Measure-
ment of the Residual in the Ionosphere-free Linear Combination During Scintilla-
tion”. In: Proceedings of the 2013 Institute of Navigation ION NTM meeting, San
Diego, CA. 2013. ION-ID: 10893.

[176] N. Reussner and L. Wanninger. “GLONASS Inter-frequency Biases and Their
Effects on RTK and PPP Carrier-phase Ambiguity Resolution”. In: Proceedings of
ION GNSS. 2011, pp. 712–716. ION-ID: 9632.

[177] uBlox. “Achieving Centimeter Level Performance with Low Cost Antennas”. In:
uBlox White Paper (2016). URL: https://www.u-blox.com/en/downloa
ds#tab-white-papers.

[178] P. Henkel and A. Sperl. “Real-time Kinematic Positioning for Unmanned Air Vehi-
cles”. In: 2016 IEEE Aerospace Conference. IEEE. 2016, pp. 1–7. DOI: 10.1109/
AERO.2016.7500933.

[179] O. Montenbruck, P. Steigenberger, and A. Hauschild. “Multi-GNSS Signal-in-
space Range Error Assessment–Methodology and Results”. In: Advances in Space
Research 61.12 (2018), pp. 3020–3038. DOI: 10.1016/j.asr.2018.03.041.

[180] O. Montenbruck, P. Steigenberger, and A. Hauschild. “Broadcast Versus Precise
Ephemerides: A Multi-GNSS Perspective”. In: GPS solutions 19.2 (2015), pp. 321–
333. DOI: 10.1007/s10291-014-0390-8.

[181] O. L. Colombo. “Ephemeris Errors of GPS Satellites”. In: Bulletin géodésique 60.1
(1986), pp. 64–84. DOI: 10.1007/BF02519355.

[182] G. Weber, D. Dettmering, and H. Gebhard. “Networked Transport of RTCM via
Internet Protocol (NTRIP)”. In: A Window on the Future of Geodesy. Springer,
2005, pp. 60–64. DOI: 10.1007/3-540-27432-4_11.

[183] Radio Technical Commission for Maritime Services. Accessed: 2020-10-01. URL:
https://www.rtcm.org/.

[184] N. Ashby. “Relativity in the Global Positioning System”. In: Living Reviews in
relativity 6.1 (2003), p. 1. DOI: 10.12942/lrr-2003-1.

[185] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to
Tracking and Navigation: Theory, Algorithms and Software. John Wiley & Sons,
2004. DOI: 10.1002/0471221279.

[186] T. Takasu and A. Yasuda. “Kalman-filter-based Integer Ambiguity Resolution Strat-
egy for Long-baseline RTK with Ionosphere and Troposphere Estimation”. In: Pro-
ceedings of the ION GNSS. 2010, pp. 161–171. ION-ID: 9143.

[187] L. Wanninger. “Carrier-phase Inter-frequency Biases of GLONASS Receivers”. In:
Journal of Geodesy 86.2 (2012), pp. 139–148. DOI: 10.1007/s00190-011-
0502-y.

[188] P.J.G. Teunissen. “The Least-squares Ambiguity Decorrelation Adjustment: A Method
for Fast GPS Integer Ambiguity Estimation”. In: Journal of Geodesy 70 (1995),
pp. 65–82. DOI: 10.1007/BF00863419.

[189] P. De Jonge, C. Tiberius, et al. The LAMBDA Methods for Integer Ambiguity
Estimation: Implementation Aspects. Vol. 12. Publications of the Delft Geodetic
Computing Centre, 1996.

https://doi.org/10.1029/2005GL024342
https://www.ion.org/publications/abstract.cfm?articleID=10893
https://www.ion.org/publications/abstract.cfm?articleID=9632
https://www.u-blox.com/en/downloads#tab-white-papers
https://www.u-blox.com/en/downloads#tab-white-papers
https://doi.org/10.1109/AERO.2016.7500933
https://doi.org/10.1109/AERO.2016.7500933
https://doi.org/10.1016/j.asr.2018.03.041
https://doi.org/10.1007/s10291-014-0390-8
https://doi.org/10.1007/BF02519355
https://doi.org/10.1007/3-540-27432-4_11
https://www.rtcm.org/
https://doi.org/10.12942/lrr-2003-1
https://doi.org/10.1002/0471221279
https://www.ion.org/publications/abstract.cfm?articleID=9143
https://doi.org/10.1007/s00190-011-0502-y
https://doi.org/10.1007/s00190-011-0502-y
https://doi.org/10.1007/BF00863419

174 BIBLIOGRAPHY

[190] X.-W. Chang, X. Yang, and T. Zhou. “MLAMBDA: A Modified LAMBDA Method
for Integer Least-squares Estimation”. In: Journal of Geodesy 79.9 (2005), pp. 552–
565. DOI: 10.1007/s00190-005-0004-x.

[191] A. Gong, X. Zhao, C. Pang, R. Duan, and Y. Wang. “GNSS Single Frequency,
Single Epoch Reliable Attitude Determination Method with Baseline Vector Con-
straint”. In: Sensors 15.12 (2015), pp. 30093–30103. DOI: 10.3390/s151229774.

[192] C. Park and P.J.G. Teunissen. “A New Carrier Phase Ambiguity Estimation for
GNSS Attitude Determination Systems”. In: Proceedings of international GPS/GNSS
symposium, Tokyo. Vol. 8. 2003.

[193] P. Buist. “The Baseline Constrained LAMBDA Method for Single Epoch, Single
Frequency Attitude Determination Applications”. In: Proceedings of the 20th Inter-
national Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GNSS 2007). 2001, pp. 2962–2973. ION-ID: 7647.

[194] C. Park and P.J.G. Teunissen. “Integer Least Squares with Quadratic Equality
Constraints and its Application to GNSS Attitude Determination Systems”. In: In-
ternational Journal of Control, Automation and Systems 7.4 (2009), pp. 566–576.
DOI: 10.1007/s12555-009-0408-0.

[195] G.H. Golub and C.F. Van Loan. Matrix Computations. Vol. 3. JHU press, 2012.
ISBN: 978-0-94653-600-9.

[196] S. Bisnath and Y. Gao. “Precise Point Positioning”. In: GPS World 20.4 (2009),
pp. 43–50.

[197] J. Kouba. A Guide to Using International GNSS Service (IGS) Products. 2009.

[198] P.J.G. Teunissen and A. Khodabandeh. “Review and Principles of PPP-RTK Meth-
ods”. In: Journal of Geodesy 89.3 (2015), pp. 217–240. DOI: 10.1007/s00190-
014-0771-3.

[199] University of Wuerzburg - Informatics 8. RODOS Embedded Operating System.
gitlab. URL: https://gitlab.com/rodos.

[200] Wikipedia. Rodos (operating system). URL: https://en.wikipedia.org/
wiki/Rodos_%28operating_system%29.

[201] NXP. MQX Software Solutions. URL: https://www.nxp.com/design/
software/embedded-software/mqx-software-solutions:MQX_

HOME.

[202] STMicroelectronics. STM32F4 Series. URL: https://www.st.com/en/
microcontrollers-microprocessors/stm32f4-series.html.

[203] ARM Technical Support Knowledge Articles. How do I get the best performance
when compiling floating point code for Cortex-M4F? 2011. URL: http://info
center.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/

ka15451.html.

[204] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes
3rd edition: The Art of Scientific Computing. 2007.

[205] UdooBoard. Linux Kernel Udoo Neo. 2018. URL: https://github.com/
fmntf/linux_kernel/tree/4.1.15_2.x-udoo.

[206] ROS. ROS- Kinetic. 2016. URL: http://wiki.ros.org/kinetic.

[207] T. Takasu. RTKLIB: An Open Source Program Package for GNSS Positioning.
Tech. rep. 2013.

https://doi.org/10.1007/s00190-005-0004-x
https://doi.org/10.3390/s151229774
https://www.ion.org/publications/abstract.cfm?articleID=7647
https://doi.org/10.1007/s12555-009-0408-0
https://doi.org/10.1007/s00190-014-0771-3
https://doi.org/10.1007/s00190-014-0771-3
https://gitlab.com/rodos
https://en.wikipedia.org/wiki/Rodos_%28operating_system%29
https://en.wikipedia.org/wiki/Rodos_%28operating_system%29
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions:MQX_HOME
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions:MQX_HOME
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions:MQX_HOME
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15451.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15451.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15451.html
https://github.com/fmntf/linux_kernel/tree/4.1.15_2.x-udoo
https://github.com/fmntf/linux_kernel/tree/4.1.15_2.x-udoo
http://wiki.ros.org/kinetic

BIBLIOGRAPHY 175

[208] K. Panayiotou and A. Triantafyllidiss. ROS Package to interfere with Flir-Lepton
LWIR sensor. 2015. URL: https://github.com/angetria/flir_lepto
n.

[209] Intel RealSense Technology. 2018. URL: https://github.com/IntelRea
lSense/librealsense.

[210] National Centers for Environmental Information. The World Magnetic Model
and Associated Software. 2019. URL: https://www.ngdc.noaa.gov/geoma
g/WMM/soft.shtml.

[211] Chrony. Chrony Introduction. 2019. URL: https://chrony.tuxfamily.
org/.

[212] NXP Semiconductors. RPMsg-Lite User’s Guide. Github. 2016. URL: https:
//nxpmicro.github.io/rpmsg-lite/index.html.

[213] OpenAMP. OpeOpen project. URL: https://www.openampproject.org/.

[214] NXP Semiconductors. RPMsg implementation for small MCUs. Github. 2017.
URL: https://github.com/NXPmicro/rpmsg-lite.

[215] R. Russell. “VIRTIO: Towards a De-facto Standard for Virtual I/O Devices”. In:
ACM SIGOPS Operating Systems Review 42.5 (2008), pp. 95–103. DOI: 10 .
1145/1400097.1400108.

[216] NXP Semiconductors. Linux sysfs interface for RPMsg. Github. 2016. URL: htt
ps://github.com/NXPmicro/rpmsg-sysfs.

[217] M. Ferguson. A ROS client library for small, embedded devices, such as Arduino.
Github. URL: https://github.com/ros-drivers/rosserial.

[218] J. Rothe, J. Zevering, M. Strohmeier, and S. Montenegro. “A Modified Model
Reference Adaptive Controller (M-MRAC) Using an Updated MIT-Rule for the Al-
titude of a UAV”. In: Electronics 9.7 (2020), p. 1104. DOI: 10.3390/electron
ics9071104.

[219] NVIDIA. Jetson Xavier NX. Accessed: 2020-08-22. URL: https://www.nv
idia.com/de- de/autonomous- machines/embedded- systems/

jetson-xavier-nx/.

[220] NVIDIA. Jetson Nano. Accessed: 2020-08-22. URL: https://www.nvidia.
com/de-de/autonomous-machines/embedded-systems/jetson-

nano/.

[221] C. Liman. “Real-Time Embedded Visual Detection and Tracking of UAVs”. B.Sc.
Thesis. University of Wuerzburg, 2020.

[222] T. Mikschl, T. Walter, and S. Montenegro. “SKITH - The Wireless Satellite”. In:
4S Symposium. Sorrento, Italy, 2018. URL: https://atpi.eventsair.
com/QuickEventWebsitePortal/4s2018/4s.

[223] S. Beck. “Komplementäre Positionsbestimmung durch GNSS und UWB für koop-
erative UAVs”. M.Sc. Thesis. University of Wuerzburg, 2019.

[224] J.T. Zevering. “Adaptive Altitude Controller for a Quadrocopter”. B.Sc. Thesis.
University of Wuerzburg, 2018.

[225] L. Grütter. “Design und Implementierung eines Tailsitters”. B.Sc. Thesis. Univer-
sity of Wuerzburg, 2016.

[226] P. Lenski. “Design, Construction and Operation of a Pentacopter”. M.Sc. Thesis.
University of Wuerzburg, 2017.

https://github.com/angetria/flir_lepton
https://github.com/angetria/flir_lepton
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://www.ngdc.noaa.gov/geomag/WMM/soft.shtml
https://www.ngdc.noaa.gov/geomag/WMM/soft.shtml
https://chrony.tuxfamily.org/
https://chrony.tuxfamily.org/
https://nxpmicro.github.io/rpmsg-lite/index.html
https://nxpmicro.github.io/rpmsg-lite/index.html
https://www.openampproject.org/
https://github.com/NXPmicro/rpmsg-lite
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://github.com/NXPmicro/rpmsg-sysfs
https://github.com/NXPmicro/rpmsg-sysfs
https://github.com/ros-drivers/rosserial
https://doi.org/10.3390/electronics9071104
https://doi.org/10.3390/electronics9071104
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-nano/
https://atpi.eventsair.com/QuickEventWebsitePortal/4s2018/4s
https://atpi.eventsair.com/QuickEventWebsitePortal/4s2018/4s

R

A
IT

 1

 M
ic

ha
el

 S
tr

oh
m

ei
er

 F
A

R
N

 –
 A

 N
ov

el
 U

AV
 F

lig
ht

 C
on

tr
ol

le
r f

or
 H

ig
hl

y
A

cc
ur

at
e

an
d

Re
lia

bl
e

N
av

ig
at

io
n

Würzburg University Press

Research in Aerospace
Information Technology

This monograph series is published by the Chair
of Aerospace Information Technology (Informatik
VIII) of the University of Würzburg and presents
innovative research regarding avionic systems for
aerospace and terrestrial applications as well as
the technology transfer between both fields.
The main research focus is on the development of
reliable soft- and hardware for embedded appli-
cations that allow the autonomous operation of
unmanned systems in challenging environments.
This includes the development of new technolo-
gies such as wireless communication methods,
distributed sensing and control strategies, sensor
fusion algorithms, novel navigation methods and
concepts for dependable software targeting the
irreducible complexity.
Another research focus is on cooperative tasks
of multi-agent systems, including homogeneous
swarms and arbitrary heterogeneous constella-
tions.
The developed technologies are deployed in nu-
merous real-world applications such as small sa-
tellite systems, distributed sensor networks, un-
manned aerial vehicles for extreme environments
and other experimental platforms.

Herausgeber:
Prof. Dr. Sergio Montenegro

Michael Strohmeier

FARN
A Novel UAV Flight Controller
for Highly Accurate and
Reliable Navigation

R
A

IT
 1

Research in Aerospace
Information Technology

Institut für Informatik
Lehrstuhl für Informationstechnik
für Luft- und Raumfahrt
Prof. Dr. Sergio Montenegro

© Lehrstuhl für Informatik VIII
Informationstechnik für Luft- und Raumfahrt
Julius-Maximilians-Universität Würzburg
Institut für Informatik
Josef-Martin-Weg 52/2
97074 Würzburg

Tel.: +49 931 - 31-81400

L-info8@informatik.uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/
aerospaceinfo/
Alle Rechte vorbehalten.
Würzburg 2021.

Dieses Dokument wird bereitgestellt durch den
Publikationsservice der Universitätsbibliothek
Würzburg.

Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg

Tel.: +49 931 - 31-85906

opus@bibliothek.uni-wuerzburg.de
https://opus.bibliothek.uni-wuerzburg.de

Bild Nordpol: Julian Rothe
Bild Netzdrohnen: Michael Strohmeier

ISSN: 2747-4828

Zitiervorschlag:
Strohmeier, Michael (2021): FARN – A Novel UAV Flight Controller for Highly
Accurate and Reliable Navigation. Research in Aerospace Technology, 1.
DOI: 10.25972/OPUS-22313

	Contents
	Introduction
	Motivation
	Robotic Exploration of Extreme Environments
	Micro-Drone-Defense System

	Concept
	My Contribution
	Thesis Outline
	Nomenclature

	Mathematical Modeling of the Physical System
	UAV Platform
	Frame
	Propulsion

	Avionics
	Flight Controller
	Inertial Measurement Unit
	Magnetometer
	Barometric Pressure Sensor
	Global Navigation Satellite System Receiver
	Ultra-wideband Transceiver
	Remote Control Interfaces
	Optional Components

	Payload

	Ego-motion Estimation and Low-Level Control
	Attitude Representation
	Rotation Conventions
	Tait-Bryan Angles and Rotation Matrices
	Axis-Angle
	Quaternions

	Error-state Kalman Filter
	State Estimation
	Complementary Sensor Integration
	Delayed Measurements

	Low-Level Control
	Multicopter Modeling
	Motor Map
	Attitude Control
	Position Control

	Satellite Navigation
	Global Navigation Satellite Systems
	GPS
	GLONASS
	Galileo

	Space-Based Augmentation System
	Observables
	Code Pseudo-ranges
	Carrier Phase Measurement
	Doppler Measurement

	Error Sources
	Atmospheric Propagation Errors
	Receiver and Multipath Errors
	Ephemeris and Satellite Clock Errors

	Navigation Techniques
	Single Epoch Navigation
	Filtered Navigation
	Carrier-based Positioning for Short Baselines
	Precise Point Positioning

	Implementation
	Navigation Applications
	GNSS Compass
	UWB Augmented RTK Positioning

	Real-time Core
	Real-Time On-Board Dependable Operating System
	ESKF Implementation

	Application Core
	Robot Operating System
	Rtklib
	Third Party

	Inter-core Communication
	Low-level Layers
	Data Layer

	Evaluation
	Ego-motion Estimation and Control
	Long Term Stability
	Indoor Flight

	Arctic Environment
	Flight in Arctic Environment
	RTK Heading Estimation

	RTK Localization
	UWB augmented Moving Base
	Formation Flight

	Conclusions
	System Limitations
	Future Work
	Impact on Teaching

