Lukas Ifflander

Attack-aware
Security Function Management

ROl

Dissertation, Julius-Maximilians-Universitat Wiirzburg
Fakultat fiir Mathematik und Informatik, 2020

Gutachter: Prof. Dr. Samuel Kounev, JMU Wiirzburg,
Prof. Dr. Nuno Manuel dos Santos Antunes, Universidade de Coimbra

Tag der miindlichen Priifung: 28.01.2021

This document is licensed under the Creative Commons Attribution-
Share Alike 4.0 International License (CC BY-SA 4.0 Int):
http://creativecommons.org/licenses/by-sa/4.0/deed.de

ii

http://creativecommons.org/licenses/by-sa/4.0/deed.de

Abstract

Over the last decades, cybersecurity has become an increasingly important
issue. Between 2019 and 2011 alone, the losses from cyberattacks in the United
States grew by 6217%. At the same time, attacks became not only more inten-
sive but also more and more versatile and diverse. Cybersecurity has become
everyone’s concern. Today, service providers require sophisticated and exten-
sive security infrastructures comprising many security functions dedicated
to various cyberattacks. Still, attacks become more violent to a level where
infrastructures can no longer keep up. Simply scaling up is no longer sufficient.
To address this challenge, in a whitepaper, the Cloud Security Alliance (CSAI)
proposed multiple work packages for security infrastructure, leveraging the
possibilities of Software-defined Networking (SDNI) and Network Function
Virtualization (NEV).

Security functions require a more sophisticated modeling approach than regu-
lar network functions. Notably, the property to drop packets deemed malicious
has a significant impact on Security Service Function Chains (SSFCk)—service
chains consisting of multiple security functions to protect against multiple at-
tack vectors. Under attack, the order of these chains influences the end-to-end
system performance depending on the attack type. Unfortunately, it is hard to
predict the attack composition at system design time. Thus, we make a case
for dynamic attack-aware reordering. Also, we tackle the issues of the
lack of integration between security functions and the surrounding network
infrastructure, the insufficient use of short term frequency boosting, and
the lack of Intrusion Detection and Prevention Systems against database
ransomware attacks.

Current works focus on characterizing the performance of security functions
and their behavior under overload without considering the surrounding in-
frastructure. Other works aim at replacing security functions using network
infrastructure features but do not consider integrating security functions within
the network. Further publications deal with using for security or how
to deal with new vulnerabilities introduced through [SDNI However, they do
not take security function performance into account. NEVlis a popular field
for research dealing with frameworks, benchmarking methods, the combina-
tion with[SDN] and implementing security functions as Virtualized Network

iii

Functions (VNEs). Research in this area brought forth the concept of Service
Function Chains (SECk) that chain multiple network functions after one an-
other. Nevertheless, they still do not consider the specifics of security functions.
The mentioned whitepaper proposes many valuable ideas but leaves their
realization open to others.

This thesis presents solutions to increase the performance of single security

functions using SDN], performance modeling, a framework for attack-aware
SSECIreordering, a solution to make better use of [CPUl frequency boosting, and
an[[DPS|against database ransomware.

iv

Specifically, the primary contributions of this work are:

e We present approaches to dynamically bypass Intrusion Detection Sys-

tems (IDS]) in order to increase their performance without reducing the
security level. To this end, we develop and implement three [SDNl-based
approaches (two dynamic and one static).

We evaluate the proposed approaches regarding security and perfor-
mance and show that they significantly increase the performance com-
pared to an inline without significant security deficits. We show that
using software switches can further increase the performance of the dy-
namic approaches up to a point where they can eliminate any throughput
drawbacks when using the

We design a DDoS Protection System (DPS)) against[TCPISYNI flood at-
tacks in the form of a[VNEF that works inside an [SDN}Fenabled network.
This solution eliminates known scalability and performance drawbacks
of existing solutions for this attack type.

Then, we evaluate this solution showing that it correctly handles the
connection establishment and present solutions for an observed issue.
Next, we evaluate the performance showing that our solution increases
performance up to three times. Parallelization and parameter tuning
yields another 76% performance boost. Based on these findings, we
discuss optimal deployment strategies.

We introduce the idea of attack-aware[SSEC]reordering and explain its im-
pact in a theoretical scenario. Then, we discuss the required information
to perform this process.

We validate our claim of the importance of the order by analyzing
the behavior of single security functions and SSECk. Based on the results,
we conclude that there is a massive impact on the performance up to
three orders of magnitude, and we find contradicting optimal orders

for different workloads. Thus, we demonstrate the need for dynamic
reordering.

Last, we develop a model for regarding traffic composition and
resource demands. We classify the traffic into multiple classes and model
the effect of single security functions on the traffic and their generated
resource demands as functions of the incoming network traffic. Based on
our model, we propose three approaches to determine optimal orders for
reordering.

e We implement a framework for attack-aware [SSEC]reordering based on
this knowledge. The framework places all security functions inside an
SDNFenabled network and reorders them using [SDNI flows.

Our evaluation shows that the framework can enforce all routes as desired.
It correctly adapts to all attacks and returns to the original state after the
attacks cease. We find possible security issues at the moment of reordering
and present solutions to eliminate them.

e Next, we design and implement an approach to load balance servers while
taking into account their ability to go into a state of Central Processing Unit
(CPU)) frequency boost. To this end, the approach collects temperature
information from available hosts and places services on the host that can
attain the boosted mode the longest.

We evaluate this approach and show its effectiveness. For high load
scenarios, the approach increases the overall performance and the per-
formance per watt. Even better results show up for low load workloads,
where not only all performance metrics improve but also the temperatures
and total power consumption decrease.

e Last, we design an[[DPS| protecting against database ransomware attacks
that comprise multiple queries to attain their goal. Our solution models
these attacks using a Colored Petri Net (CPN]).

A proof-of-concept implementation shows that our approach is capable
of detecting attacks without creating false positives for benign scenarios.
Furthermore, our solution creates only a small performance impact.

Our contributions can help to improve the performance of security infras-
tructures. We see multiple application areas from data center operators over
software and hardware developers to security and performance researchers.
Most of the above-listed contributions found use in several research publica-
tions.

Regarding future work, we see the need to better integrate SDNl-enabled
security functions and reordering in data center networks. Future
should discriminate between different traffic types, and security frameworks
should support automatically learning models for security functions. We see
the need to consider energy efficiency when regarding and take
boosting technologies into account when designing performance models as well
as placement, scaling, and deployment strategies. Last, for a faster adaptation
against recent ransomware attacks, we propose machine-assisted learning for
database signatures.

Vi

Zusammenfassung

In den letzten Jahrzehnten wurde Cybersicherheit zu einem immer wichtigeren
Thema. Allein zwischen 2019 und 2011 stiegen die Verluste durch Cyberat-
tacken in den Vereinigten Staaten um 6217%. Gleichzeitig wurden die Angriffe
nicht nur intensiver, sondern auch immer vielseitiger und facettenreicher. Cy-
bersicherheit ist zu einem allgegenwértigen Thema geworden. Heute benétigen
Dienstleistungsanbieter ausgefeilte und umfassende Sicherheitsinfrastrukturen,
die viele Sicherheitsfunktionen fiir verschiedene Cyberattacken umfassen. Den-
noch werden die Angriffe immer heftiger, so dass diese Infrastrukturen nicht
mehr mithalten konnen. Ein einfaches Scale-Up ist nicht mehr ausreichend.
Um dieser Herausforderung zu begegnen, schlug die Cloud Security Alliance
(CSA) in einem Whitepaper mehrere Arbeitspakete fiir Sicherheitsinfrastruk-
turen vor, die die Moglichkeiten des Software-definierten Netzwerks (SDN)
und der Netzwerkfunktionsvirtualisierung (NFV) nutzen.

Sicherheitsfunktionen erfordern einen anspruchsvolleren Model-
lierungsansatz als normale Netzwerkfunktionen. Vor allem die Eigenschaft,
als bosartig erachtete Pakete fallen zu lassen, hat erhebliche Auswirkun-
gen auf Security Service Function Chains (SSFCs) - Dienstketten, die aus
mehreren Sicherheitsfunktionen zum Schutz vor mehreren Angriffsvektoren
bestehen. Bei einem Angriff beeinflusst die Reihenfolge dieser Ketten je
nach Angriffstyp die Gesamtsystemleistung. Leider ist es schwierig, die
Angriffszusammensetzung zur Designzeit vorherzusagen. Daher pladieren
wir fiir eine dynamische, angriffsbewusste Neuordnung der SSFC. Auflerdem
befassen wir uns mit den Problemen der mangelnden Integration zwischen
Sicherheitsfunktionen und der umgebenden Netzwerkinfrastruktur, der
unzureichenden Nutzung der kurzfristigen CPU-Frequenzverstarkung und
des Mangels an Intrusion Detection and Prevention Systems (IDPS) zur
Abwehr von Datenbank-Losegeldangriffen.

Bisherige Arbeiten konzentrieren sich auf die Charakterisierung der Leis-
tungsfihigkeit von Sicherheitsfunktionen und deren Verhalten bei Uberlastung
ohne Beriicksichtigung der umgebenden Infrastruktur. Andere Arbeiten zie-
len darauf ab, Sicherheitsfunktionen unter Verwendung von Merkmalen der
Netzwerkinfrastruktur zu ersetzen, berticksichtigen aber nicht die Integra-
tion von Sicherheitsfunktionen innerhalb des Netzwerks. Weitere Publika-

vii

tionen befassen sich mit der Verwendung von SDN fiir die Sicherheit oder
mit dem Umgang mit neuen, durch SDN eingefiihrten Schwachstellen. Sie
beriicksichtigen jedoch nicht die Leistung von Sicherheitsfunktionen. Die
NFV-Doméne ist ein beliebtes Forschungsgebiet, das sich mit Frameworks,
Benchmarking-Methoden, der Kombination mit SDN und der Implemen-
tierung von Sicherheitsfunktionen als Virtualized Network Functions (VNFs)
befasst. Die Forschung in diesem Bereich brachte das Konzept der Service-
Funktionsketten (SFCs) hervor, die mehrere Netzwerkfunktionen nacheinander
verketten. Dennoch berticksichtigen sie noch immer nicht die Besonderheiten
von Sicherheitsfunktionen. Zu diesem Zweck schlédgt das bereits erwdhnte CSA-
Whitepaper viele wertvolle Ideen vor, ldsst aber deren Realisierung anderen
offen.

In dieser Arbeit werden Losungen zur Steigerung der Leistung einzelner
Sicherheitsfunktionen mittels SDN, Performance Engineering, Modellierung
und ein Rahmenwerk fiir die angriffsbewusste SSFC-Neuordnung, eine Lo-
sung zur besseren Nutzung der CPU-Frequenzsteigerung und ein IDPS gegen
Datenbank-Losegeld.

Im Einzelnen sind die sechs Hauptbeitriage dieser Arbeit:

e Wir stellen Ansétze zur dynamischen Umgehung von Intrusion-Detection-
Systemen (IDS) vor, um deren Leistung zu erh6hen, ohne das Sicherheit-
sniveau zu senken. Zu diesem Zweck entwickeln und implementieren
wir drei SDN-basierte Ansitze (zwei dynamische und einen statischen).

Wir evaluieren sie hinsichtlich Sicherheit und Leistung und zeigen, dass
alle Ansitze die Leistung im Vergleich zu einem Inline-IDS ohne sig-
nifikante Sicherheitsdefizite signifikant steigern. Wir zeigen ferner, dass
die Verwendung von Software-Switches die Leistung der dynamischen
Ansitze weiter steigern kann, bis zu einem Punkt, an dem sie bei der
Verwendung des IDS etwaige Durchsatznachteile beseitigen konnen.

e Wir entwerfen ein DDoS-Schutzsystem (DPS) gegen TCP-SYN-
Flutangriffe in Form eines VNF, das innerhalb eines SDN-fahigen Netzw-
erks funktioniert. Diese Losung eliminiert bekannte Skalierbarkeits- und
Leistungsnachteile bestehender Losungen fiir diesen Angriffstyp.

Dann bewerten wir diese Losung und zeigen, dass sie den
Verbindungsaufbau korrekt handhabt, und préasentieren Losungen fiir
ein beobachtetes Problem. Als nédchstes evaluieren wir die Leistung und
zeigen, dass unsere Losung die Leistung bis zum Dreifachen erhoht.
Durch Parallelisierung und Parameterabstimmung werden weitere 76%

viii

der Leistung erzielt. Auf der Grundlage dieser Ergebnisse diskutieren
wir optimale Einsatzstrategien.

Wir stellen die Idee der angriffsbewussten Neuordnung des SSFC vor
und erldutern deren Auswirkungen anhand eines theoretischen Szenarios.
Dann erértern wir die erforderlichen Informationen zur Durchfiihrung
dieses Prozesses.

Wir validieren unsere Behauptung von der Bedeutung der SSFC-Ordnung,
indem wir das Verhalten einzelner Sicherheitsfunktionen und SSFCs
analysieren. Aus den Ergebnissen schlieffen wir auf eine massive
Auswirkung auf die Leistung bis zu drei Gréfienordnungen, und wir
finden widerspriichliche optimale Auftrage fiir unterschiedliche Arbeits-
belastungen. Damit beweisen wir die Notwendigkeit einer dynamischen
Neuordnung.

Schliefilich entwickeln wir ein Modell fiir den SSFC hinsichtlich der
Verkehrszusammensetzung und des Ressourcenbedarfs. Dazu klassi-
fizieren wir den Datenverkehr in mehrere Klassen und modellieren die
Auswirkungen einzelner Sicherheitsfunktionen auf den Datenverkehr
und die von ihnen erzeugten Ressourcenanforderungen als Funktionen
des eingehenden Netzwerkverkehrs. Auf der Grundlage unseres Modells
schlagen wir drei Ansidtze zur Berechnung der gewiinschten Reihenfolge
fiir die Neuordnung vor.

Auf der Grundlage dieses Wissens implementieren wir einen Rahmen
fiir die angriffsbewusste SSFC-Neuordnung. Das Rahmenwerk platziert
alle Sicherheitsfunktionen innerhalb eines SDN-fdhigen Netzwerks und
ordnet sie mit Hilfe von SDN-Fliissen neu an.

Unsere Auswertung zeigt, dass das Rahmenwerk alle Routen wie gewtin-
scht durchsetzen kann. Es passt sich allen Angriffen korrekt an und kehrt
nach Beendigung der Angriffe in den urspriinglichen Zustand zurtick.
Wir finden mogliche Sicherheitsprobleme zum Zeitpunkt der Neuord-
nung und prasentieren Losungen zu deren Beseitigung.

Als Néachstes entwerfen und implementieren wir einen Ansatz zum Las-
tausgleich von Servern hinsichtlich ihrer Fahigkeit, in einen Zustand der
Frequenzerhohung der Zentraleinheit (CPU) zu gehen. Zu diesem Zweck
sammelt der Ansatz Temperaturinformationen von verftigbaren Hosts
und platziert den Dienst auf dem Host, der den verstarkten Modus am
langsten erreichen kann.

ix

Wir evaluieren diesen Ansatz und zeigen seine Funktionalitdt auf. Fiir
Hochlastszenarien erhoht der Ansatz die Gesamtleistung und steigert die
Leistung pro Watt. Noch bessere Ergebnisse zeigen sich bei Niedriglast-
Workloads, wo sich nicht nur alle Leistungsmetriken verbessern, sondern
auch die Temperaturen und der Gesamtstromverbrauch sinken.

e Zuletzt entwerfen wir ein IDPS, das vor Losegeld-Angriffen auf Daten-
banken schiitzt, die mehrere Abfragen umfassen, um ihr Ziel zu erreichen.

Unsere Losung modelliert diese Angriffe mit einem Colored Petri Net
(CPN).

Eine Proof-of-Concept-Implementierung zeigt, dass unser Ansatz in der
Lage ist, die beobachteten Angriffe zu erkennen, ohne fiir gutartige Szenar-
ien falsch positive Ergebnisse zu erzeugen. Dariiber hinaus erzeugt un-
sere Losung nur eine geringe Auswirkung auf die Leistung.

Unsere Beitrdge konnen dazu beitragen, die Leistungsfahigkeit von Sicher-
heitsinfrastrukturen zu erhhen. Wir sehen vielféltige Anwendungsbereiche,
von Rechenzentrumsbetreibern iiber Software- und Hardwareentwickler bis
hin zu Sicherheits- und Leistungsforschern. Die meisten der oben aufgefiihrten
Beitrdge fanden in mehreren Forschungspublikationen Verwendung.

Was die zukiinftige Arbeit betrifft, so sehen wir die Notwendigkeit, bessere
SDN-fahige Sicherheitsfunktionen und SSFC-Neuordnung in Rechenzentrum-
snetzwerke zu integrieren. Kiinftige SSFC sollten zwischen verschiedenen
Verkehrsarten unterscheiden, und Sicherheitsrahmen sollten automatisch ler-
nende Modelle fiir Sicherheitsfunktionen unterstiitzen. Wir sehen den Be-
darf, bei der Betrachtung von SSFCs die Energieeffizienz zu berticksichti-
gen und bei der Entwicklung von Leistungsmodellen sowie Platzierungs-,
Skalierungs- und Bereitstellungsstrategien CPU-verstarkende Technologien in
Betracht zu ziehen. SchliefSlich schlagen wir fiir eine schnellere Anpassung an
die jiingsten Losegeld-Angriffe maschinengestiitztes Lernen fiir Datenbank-
IDPS-Signaturen vor.

Acknowledgements

This thesis would not have been possible without the help and support of a
significant number of people. I want to thank every one of them.

First, I want to thank my supervisor, Professor Samuel Kounev, without
whom I might never have started my Ph.D. project. We share over five years of
a very constructive and productive relationship that culminated in this thesis.

Next, I want to express my appreciation for four people at my workplace,
who, while not directly involved in my research, made a massive contribution to
my academic success. Professor Wolff von Gudenberg brought me to this chair
and employed me for five years. Without him, I might not have come in the
sight of my advisor. Fritz Kleemann, our administrator, and network manager
was always there to discuss tech issues and allowed me and my colleagues to
carry out our research unhampered. Susanne Stenglin, our secretary, did her
best to keep us out of the jungle of our university’s administration. Martina
Janousch was not just our cleaning lady but also an honorary psychologist for
many of us.

I want to thank my current and former colleagues for many useful inputs
into my research, fruitful discussions, and a marvelous time: Nikolas Herbst,
Christian Krupitzer, Simon Spinner, Piotr Rygielski, Aleksandar Milenkoski,
Jiirgen Walter, J6akim von Kistowski, André Bauer, Simon Eismann, Norbert
Schmitt, Johannes Grohmann, Dennis Kaiser, Veronika Lesch, Marwin Ziifle,
Thomas Prantl, Robert Leppich, Steffan Herrnleben, Lukas Beierlieb, Christoph
Sendner, Christoph Hagen, André Greubel and Alexandra Dmitrienko. Many
of them became my co-authors.

Regarding co-authors, I also received great support from Klaus-Dieter Lange,
and Nishant Rawtani at HPE research, and the same goes for the SPEC RG
security research group of which I want to name Aleksandar Milenkoski, Nuno
Antunes, and Marco Viera.

Many work-packages of my thesis received support from my graduate work-
ers and research assistants. I was lucky to supervise seven Bachelor’s theses by
Hayreddin Ciner, Ala Eddine Ben Yahya, Jan-Philipp Heilmann, Lukas Beierlieb,
Nicolas Fella, Samuel Metzler, and Ariane Geiger and seven Master’s theses
by Xiaofen Liu, Christina Hempfling, Jonathan Stoll, Alexander Leonhardt,
Michael Jobst, Andreas Knapp, and Lukas Beierlieb. Furthermore, I supervised

Xi

two additional teachers’ theses by Rebecca Otto and Katja Frauendorfer and
two practical theses by Christina Hempfling and Lukas Beierlieb. Nicolas Fella
and Marc-Philipp Knechtle supported my work as research assistants.

I also want to attribute my professional and scientific results to the people that
kept my back in my personal life. My parents, Petra and Bernhard Ifflinder, have
always supported me unconditionally throughout every stage of my studies.
My girlfriend, Anja Schmotz, shared many happy moments of success with me
but also helped me through the times when I was not sure if I would succeed
in this project.

I'm grateful for the support I received from the Stiftung der Deutschen
Wirtschaft. Throughout my scholarship, I met many inspiring people and im-
proved myself. Since the sheer list of people would consist of over forty names,
I can only name a few representatives: Mara Hohner and Isabell Osterrieder,
the leaders of our group, Isabella Mantel, our representative in the scholarship
council, and Professor Dominik Burkard and Christoph Hartmann, our persons
of trust.

Last, I want to thank my friends and supporters in my honorary occupa-
tion, the German passenger federation PRO BAHN. Special thanks go out to
our honorary chairman Karl-Peter Naumann, my current and former federal
co-chairs Detlef Neuf3, Anja Schmotz, Andreas Schroder, Simon Bredemeier,
Jorg Bruchertseifer, Stefan Barkleit, and Marcel Drews. The same goes for my
current and former bavarian co-chairs Winfried Karg, Siegfried Weber, Timm
Kretschmar, Jorg Lange, Jorg Schifer, and especially Matthias Wiegner, who
left us far too early. Without these astonishing people (and many others that
would exceed any reasonable space when listed) it would have been impossible
to carry out my positions in parallel to my Ph.D. project.

Xii

Publication List

Peer-Reviewed International Journal Articles

Florian Wamser, Thomas Zinner, Lukas Ifflinder, and Phuoc Tran-Gia. “Demon-
strating the Prospects of Dynamic Application-aware Networking in a Home
Environment”. In: ACM SIGCOMM Computer Communication Review 44.4
(Aug. 2014), pp. 149-150. 1ssn: 0146-4833. por: [10.1145/2740070.2631450

Peer-Reviewed International Conference Contributions

Full Research Papers

Thomas Prantl, Peter Ten, Lukas Ifflander, Alexandra Dmitrenko, Samuel
Kounev, and Christian Krupitzer. “Evaluating the Performance of a State-
of-the-Art Group-oriented Encryption Scheme for Dynamic Groups in an
IoT Scenario”. In: 2020 28th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE,
Nov. 2020, pp. 1-8. por: [10.1109/mascots50786.2020.9285948

Norbert Schmitt, Lukas Ifflinder, André Bauer, and Samuel Kounev. “Online
Power Consumption Estimation for Functions in Cloud Applications”. In:
Proceedings of the 16th IEEE International Conference on Autonomic Computing
(ICAC). Umea, Sweden: IEEE, June 2019. por: 10.1109/icac.2019.00018

Lukas Ifflainder, Christopher Metter, Florian Wamser, Phuoc Tran-Gia, and
Samuel Kounev. “Performance Assessment of Cloud Migrations from Net-
work and Application Point of View”. In: Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering. Mo-
bile Networks and Management. Ed. by Jiankun Hu, Ibrahim Khalil, Zahir
Tari, and Sheng Wen. Vol. MONAMI 2017. Cham: Springer International
Publishing, 2018, pp. 262-276. 1sBN: 978-3-319-90775-8. por: |10.1007/978-3~
319-90775-8_21

Florian Wamser, Lukas Ifflinder, Thomas Zinner, and Phuoc Tran-Gia. “Imple-
menting Application-Aware Resource Allocation on a Home Gateway for the
Example of YouTube”. In: Lecture Notes of the Institute for Computer Sciences,

Xiii

https://doi.org/10.1145/2740070.2631450
https://doi.org/10.1109/mascots50786.2020.9285948
https://doi.org/10.1109/icac.2019.00018
https://doi.org/10.1007/978-3-319-90775-8_21
https://doi.org/10.1007/978-3-319-90775-8_21

Social Informatics and Telecommunications Engineering. Mobile Networks and
Management. Ed. by Ramoén Agitiero, Thomas Zinner, Rossitza Goleva, An-
dreas Timm-Giel, and Phuoc Tran-Gia. Vol. MONAMI 2014. Cham: Springer
International Publishing, 2015, pp. 301-312. 1sBNn: 978-3-319-16292-8. por:
10.1007/978-3-319-16292-8_22

Vision Papers

Lukas Ifflander, Jiirgen Walter, Simon Eismann, and Samuel Kounev. “The
Vision of Self-aware Reordering of Security Network Function Chains”. In:
Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering - ICPE '18. ACM Press, 2018. por: 10.1145/3185768.3186309

Short, Tutorial, Poster and Tool Papers

Thomas Prantl, Peter Ten, Lukas Ifflinder, Stefan Herrnleben, Alexandra
Dmitrenko, Samuel Kounev, and Christian Krupitzer. “Towards a Group En-
cryption Scheme Benchmark: A View on Centralized Schemes with focus on
IoI”. in: 2021 ACM/SPEC International Conference on Performance Engineering
(ICPE).ICPE’21. Apr. 2021

Thomas Prantl, Lukas Ifflinder, Stefan Herrnleben, Simon Engel, Samuel
Kounev, and Christian Krupitzer. “Performance Impact Analysis of Securing
MQTT Using TLS”. in: 2021 ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE). ICPE’21. Apr. 2021

Lukas Ifflainder, Norbert Schmitt, Andreas Knapp, and Samuel Kounev. “Heat-
aware Load Balancing-Is it a Thing?” In: Proceedings of the 11th Symposium on
Software Performance 2020 (SSP’20). Nov. 2020

Lukas Ifflinder, Nishant Rawtani, Hayreddin Ciner, Lukas Beierlieb, Klaus-
Dieter Lange, and Samuel Kounev. “Architecture for a Dynamic Security
Service Function Chain Reordering Framework”. In: 1st IEEE International
Conference on Autonomic Computing and Self-Organizing Systems - ACSOS 2020.
Aug. 2020

Lukas Beierlieb, Lukas Ifflinder, Samuel Kounev, and Aleksandar Milenkoski.
“Towards Testing the Performance Influence of Hypervisor Hypercall Inter-
face Behavior”. In: Proceedings of the 10th Symposium on Software Performance
2019 (SSP’19). Nov. 2019

Lukas Ifflinder, Jonathan Stoll, Nishant Rawtani, Veronika Lesch, Klaus-Dieter
Lange, and Samuel Kounev. “Performance Oriented Dynamic Bypassing
for Intrusion Detection Systems”. In: Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering. ICPE '19. Mumbai, India:

Xiv

https://doi.org/10.1007/978-3-319-16292-8_22
https://doi.org/10.1145/3185768.3186309

ACM, 2019, pp. 159-166. 1sBN: 978-1-4503-6239-9. por: 10.1145/3297663 .
3310313

Lukas Ifflander and Nicolas Fella. “Performance Influence of Security Func-
tion Chain Ordering”. In: Companion of the 2019 ACM/SPEC International
Conference on Performance Engineering. ICPE '19. Mumbai, India: ACM, 2019,
pp- 45—46. 1sBN: 978-1-4503-6286-3. por: 10.1145/3302541.3311965

Christoph Hagen, Alexandra Dmitrienko, Lukas Ifflinder, Michael Jobst,
and Samuel Kounev. “Efficient and Effective Ransomware Detection in
Databases”. In: 34th Annual Computer Security Applications Conference (AC-
SAC). ACM. Dec. 2018. urL: https://se2. informatik.uni-wuerzburg.
de/publications/download/paper/1797.pdf

Lukas Ifflander, Stefan Geifiler, Jiirgen Walter, Lukas Beierlieb, and Samuel
Kounev. “Addressing Shortcomings of Existing DDoS Protection Software
Using Software-Defined Networking”. In: Proceedings of the 9th Symposium
on Software Performance 2018 (SSP’18). Hildesheim, Germany, Nov. 2018

Florian Wamser, Thomas Zinner, Lukas Ifflinder, and Phuoc Tran-Gia. “Demon-
strating the Prospects of Dynamic Application-aware Networking in a Home
Environment”. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
SIGCOMM "14. Chicago, Illinois, USA: ACM Press, 2014, pp. 149-150. 1sBN:
978-1-4503-2836-4. por: 110.1145/2619239.2631450

Peer-Reviewed International Workshop Contributions

Lukas Ifflinder, Nishant Rawtani, Lukas Beierlieb, Nicolas Fella, Klaus-Dieter
Lange, and Samuel Kounev. “Implementing Attack-aware Security Service
Function Chain Reordering”. In: 2020 Workshop on Self-Aware Computing -
SEAC 2020. May 2020

Lukas Beierlieb, Lukas Ifflander, Aleksandar Milenkoski, Charles F. Gongalves,
Nuno Antunes, and Samuel Kounev. “Towards Testing the Software Aging
Behavior of Hypervisor Hypercall Interfaces”. In: 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, Nov.
2019. urL: https://se2.informatik.uni-wuerzburg.de/publications/
download/paper/2013.pdf

Lukas Ifflainder, Alexander Dallmann, Philip-Daniel Beck, and Marianus Ifland.
“PABS-a Programming Assignment Feedback System”. In: Proceedings of the
secod workshop for automated grading of programming exercises (ABP). 2015. URL:
http://ceur-ws.org/Vol-1496/paper5. pdf

XV

https://doi.org/10.1145/3297663.3310313
https://doi.org/10.1145/3297663.3310313
https://doi.org/10.1145/3302541.3311965
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/1797.pdf
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/1797.pdf
https://doi.org/10.1145/2619239.2631450
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/2013.pdf
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/2013.pdf
http://ceur-ws.org/Vol-1496/paper5.pdf

Peer-Reviewed Book Chapters

Lukas Ifflinder and Alexander Dallmann. “Der Grader PABS”. in: Automatische
Bewertung in der Programmierausbildung. Ed. by Oliver J. Bott, Peter Fricke, Uta
Priss, and Michael Striewe. Vol. 6. Digitale Medien in der Hochschullehre.
ELAN e.V. and Waxmann Verlag, 2017. Chap. 15, pp. 241-254

Technical Reports

Lukas Ifflinder, Alexandra Dmitrienko, Christoph Hagen, Michael Jobst, and
Samuel Kounev. Hands Off my Database: Ransomware Detection in Databases
through Dynamic Analysis of Query Sequences. Tech. rep. Universitat Wiirzburg,
July 2019. eprint: 1907.06775. URL: https://arxiv.org/abs/1907.06775

Theses

Lukas Ifflinder. “Performance Assessment of Service Migration Strategies”.
Master Thesis. Am Hubland, Informatikgebdude, 97074 Wiirzburg, Germany:
University of Wiirzburg, Jan. 2016

Lukas Ifflinder and Nils Gageik. “Entwicklung und Evaluierung eines Systems
zur Bestimmung der Orientierung und Position eines Objektes durch inertiale
und magnetische Sensoren”. Bachelor Thesis. University of Wiirzburg, Dec.
2012

XVi

1907.06775
https://arxiv.org/abs/1907.06775

Contents

[Abstract] iii
|Zusammenfassung| vii
|Acknowledgements| xi
[Publication List] xiii
(l__Introduction| 1
L1 Motivationl 1
(1.2 Problem Statementl 2
03 Stateofthe Arfl. 3
[1.4 Research Questions| 4
[L.5 Contributions and Evaluation Summary| 6
L6 ThesisOuflinel 10

|2 Foundations of Network Security and Modern Networking| 11
2.1 Cybersecurity| L. 11
211 TInformationSecurity] 11

212 Benchmarking Security Systems| 12

22 TypesofAttacks|. 15
D21 DenialofService Aftacl [Distil [Denial-ok |

[Service Attacks| o o oo 15
222 Intrusionl. 21

[2.3 State-of-the-art Security Appliances| 22
3.1 Intrusion Detection and Prevention System| 22

2.3.2 BYN[Flood Protection 25

233 Firewallsl 28

[2.4 Software-Defined Networking|. 29
241 General Approach| 29

242 OpenFlow| 31

XVii

Contents

2.5 Network-Function Virtualization| 33
2.5.1 General Approachl 33

252 Challenges|. 34

253 AbstractionLayers| 38

2.6 Architecture of Current Security Systems| 40
.7 Power-saving and Boosting Technologies|. 42
R71 Tntel TurboBoostl, 42

.72 AMD Turbo Core and Precision Boosti 43

[2.7.3 Thermal and Power Management|. 44

2.8 Modeling Formalisms| 46
R8I PetriNets 46

2.82 Colored PetriNetsl 47
B_Related Work] 49
.1 Intrusion Detection System Performance]. 49
istri ial-of- i ionl 52

[3.3 Software-defined Networking and Security| 53
B.3.1 Security for Software-defined Networking]. 53

B.3.2 " Software-defined Networking for Security]. 56
B.4_Network Function Virtualization] 58
3.5 Security Function Chaining| 59
B.6 A Security Plattform for Network Function Virtualization| 62

[4 _Augmenting Single Security Functions using Software-defined Net- |
65
4.1 Dynamic Network Intrusion Detection System Bypassing| 66
@11 Approach| 68

@12 Implementation|. 74

BI3 Evaluation 75

BI14 Discussion] 98

4.2 TCP Handshake Remote Establishment and Dynamic Rerouting |

| using Software-defined Networking| 100
421 Approach] 101

422 TImplementation|. 105

423 Evaluationl 106

424 Discussion|. 0 112

4.2.5 Parallelization and Parameter Tuning| 113

4.3 Summary and Evaluation of Research Questions| 120

[Performance Modeling for Security Service Function Chain Orders| 123

Xviii

Contents

b.l Generalldeal o o oo 125
.2 Effect of the Security Service Function Chain Order| 129
B.21 _Evaluation Environmenfl 131
.22 Single Security Function Performance| 138
b.2.3 " Security Service Function Chain Performance]. 150
b24 Discussionl oo 165

[p.3 Performance Modeling for Reordering Decision|. 168
b.3.1 Modeling Single Security Functions| 168
b.3.2 Modeling Security Service Function Chains 175
.33 Decision-making| 177
.4~ Summary and Evaluation of Research Questions| 180
[6A Framework for Attack-aware Security Service Function Chain |
| Reordering| 183
6.1 Architecturel oo oo 185
[p.1.1 Security Function Wrapper| 185
[6.1.2 Function Chaining Controller] 187
[0-1.3 lAPllRequirements| 190

[6.2 Proof-of-concept Implementation|, 192
ibraries| Lo 192

0.2.2 Security Function Wrapper| 193

6.2.3 Function Chaining Controller| 193

6.2.4 Software-defined Networking Controller] 195

O . . . 196

631 Testbed Environmentl. 196

6.3.2 Manual Reordering| 199
6.3.3 Reaction to Simulated Attacksl. 203
634 Discussion] 208

[6.4 Summary and Evaluation of Research Questions| 210
[l_Heat-aware and CPU Boost-oriented Server Load Rotationl 211
[71 Approach|. Lo 213
[/1.1 Conceptl 213
[71.2 Realization Using Software-defined Networking| 215

7.1.3 Simplified Temperature Model| 220

[7.2 Implementation| 222
3 Evaluation] 223
(731 Evaluation Environmentl 223
[7.32 Functionality] 227
[7.3.3 " Scenario-dependant Behavior] 229

Xix

Contents

[7.3.4 Energy and Performance Impact| 234

[74~ Summary and Evaluation of Research Questions| 237

8 Signature-based Database Ransomware Detection| 239
8.1 Approach|. L o 243
BII AttackScenaricl i 244

8.1.2 Adversary Model| 0 245

[.1.3 System Architecture] 246

[.1.4 Component Interaction|. 251

(8.2 Implementation| 0 0 00 252
821 PluginIntegration] 252

[0.2.2 Component Integration 253

ON| .+ . . . e e 256

8.3.1 lestSetup| o L 256

B32 Effectivenessl. 257

8.3.3 Performance Evaluationl 259

[8.3.4 Security Considerations| 260

B4 Summary and Evaluation of Research Questions| 261
9__Conclusion| 265
Pl Summaryl. 265
P2 Benefitd 270
9.3 FutureWorkl 271

|A" Additional Security Function Configuration for the Evaluation En- |
[_vironment in Section [5,2.1| 275
[Al Additional SnortRules| oo oL 275
[A2 FirewallRules 276
A3 ITHREADSIModifications|. 282
[A.4 [SDNIRules tor Traffic Routing in the Evaluation Environment| . 289
[B_Detailed Result Tables for Section5.2.2 and Section[5.2.3l 295
[B.1 Single FunctionResults|. 295
[B.2" Security Service Function Chain Results| 300

|C Routing Configuration Flows for the Security Service Function |
| Chain Reordering Framework| 305
[[ist of Abbreviations| 311
[Cist of Figures| 317

XX

Contents

[Cist of Algorithms| 321
List of Tables 323
[Cist of Listings| 327
Bibliograp 331

xxi

Chapter 1
Introduction

Introducing this doctoral thesis, we first motivate the objectives of the research
and set the general context. Then, before introducing the current state-of-the-
art, we proceed to present a detailed statement of problems addressed in this
work and show that previous works do not sufficiently address the identified
problems. Building on this, we identify specific goals and research questions.
Next, we summarize the results of this research, which explores these goals.
We also describe how we evaluate these contributions. In the end, we provide
an outline of the thesis.

1.1 Motivation

In recent years, cybersecurity has come to the attention of the general public.
The FBI’s cybercrime report [[Gor20] shows a steadily growing number of re-
ports and reported losses. For the United States of America alone, the losses
grew by 6217% from $485000 000 in 2011 to $3 500000000 in 2019. Similar
reports from Germany’s Federal Office for Information Security [Sch19] and
the British Department for Digital, Culture, Media, and Sport [Dow20]] confirm
this to be a global issue. This growth in the damage that cyberattacks cause cor-
relates with their increase in strength and versatility. Therefore, cybersecurity
has become a dominant issue for businesses as well as personal life.

Today, most IT services run inside cloud environments. Complex security
architectures protect these environments from attacks. The inspection of the
incoming traffic is very compute intensive, and the employed computing re-
sources are not available for the regular cloud operation. In the past, security
systems kept up with their adversaries through the advances in microtech-
nology. However, with the decline of Moore’s Law [[TW17]]—the number of
transistors doubling every two years—and especially the expectation that the
performance would follow the same law, this approach is coming to an end.

On the other hand, the number of Internet of Things (Iol) devices grows
at an exponential rate [Sta20]]. Many of these devices lack when it comes to

Chapter 1: Introduction

security features, and sophisticated update policies are rare. These deficiencies
make [[oTl devices an easy target for cybercriminals who aim to take over the
control of such devices and use them as parts of their botnets to attack online
services [[Ant+17]]

The increasing importance of cybersecurity in combination with the loss
of the ability to counter these threats by replacing the used hardware every
few years creates a motivation to find ways to use the available resources
more efficiently. A major inspiration to this thesis and the accompanying
publications was a position paper by [Mil+16]] envisioning a security
framework that optimizes the use of security functions by converting them into
[VNFk and combining them with[SDNI In this thesis, we develop several of the
functionalities envisioned in this whitepaper.

1.2 Problem Statement

Security functions that protect against attacks add additional complexity for
network architects. Unlike “normal” network functions, security network func-
tions do not just process packets and forward them; they add the complexity
of dropping packets considered as malicious. Furthermore, putting security
functions at a very high load level often creates the undesired behavior of
increasing the number of false positives.

Security network functions often defend only against one or few selected
attacks. No single function can defend against all possible attacks. Thus, espe-
cially for so-called infrastructures chaining multiple network security
functions behind each other—the dropping property creates a new level of
complexity. While changing the order of non-security-related network func-
tions does not impact the performance of the functions at the back of the chain,
for security functions, every packet filtered out at the beginning reduces the
load on the following security functions. As described in the previously men-
tioned reports, recent cyberattacks regularly change their composition and the
used attack vectors. Therefore, it is next to impossible for network designers to
predict at design time what the attack composition will look like throughout
the life time of a security architecture.

In general, we see a lack of mutual adaptation between single security func-
tions, [SSECk, and the interconnecting network infrastructure. Single security
functions often lack features like scalability and statelessness or have to process
packets that—e.g., at a certain point of a connection—are irrelevant but still
create resource demands. [SSECks—Iike non-security-related function chains—
use a fixed order created at design time. Depending on the occurring attack or

1.3 State of the Art

attack mix, malicious packets would proceed through many security functions
that have to process them but do not defend against their attack type. This
detour creates additional unnecessary resource demands. Network infrastruc-
tures that adapt to the occurring attacks and are aware of the behavior of the
deployed security functions could alleviate this issue.

In summary, this thesis addresses two main problems: (i) Many security
functions do not interact well with the surrounding infrastructure. The lack
of integration leads to shortcomings in terms of performance and flexibility.
(ii) design is mainly static and do not adapt to the surrounding
circumstances and the incoming traffic mix. Besides these two main problems,
we also tackle two additional issues: (iii) Cloud architectures rarely use the per-
formance potential from short-term[CPUlfrequency boosting. (iv) Ransomware
attacks—attacks that erase or encrypt data and blackmail the user into paying
for the restoration—against databases become more complex and contain a
series of queries. So far, no matching signature-based security solutions exist.

1.3 State of the Art

Many works focus on characterizing the performance of security functions
like [Sen06}; Sch+03]]. Also, they deal with the mentioned behavior under
overload conditions [DB11]]. However, these works rarely describe approaches
to alleviate the found shortcomings and focus solely on the security functions
themselves without considering the surrounding network.

For Distributed Denial-of-Service (DDoS) protection, more works consider
the surrounding infrastructure. For example, they use stateful SDNIto monitor
the traffic using simple state machines on the switches to detect[DDoSlattacks.
Other works aim at protecting against saturation of the connection between
the data plane and the control plane [Shi+13al]]. Two approaches work on
the protection against Transmission Control Protocol (TCP)) floods. However,
they either inherit the shortcoming of existing solutions [Jak+16]] or provide
insufficient evaluation and no code to reproduce their results [Zhe+18]. In
general, these works aim at replacing existing security functions by SDNJand
not at augmenting them using the

Two categories of works tackle the topic of and security. On the one
hand, the first category deals with security for[SDNI Therefore, they analyze
[SDNI's security challenges in general [[SNS16;|YY15]] and for specific network
operating systems [[YL16]]. The second category, on the other hand, uses
to enhance security. Therefore, they propose multiple solutions to integrate
in[SDNlenabled networks [[Chi+14]], create blocking and diversion rules based

Chapter 1: Introduction

on alerts from security functions [Xin+14]] or use to replace dedicated
security functions entirely [[Yoo+15]. However, these works do not focus on
augmenting the security functions performancewise.

Much research targets the [NFV| domain. Works deal with: (i) NEV]
frameworks [Gal+15]], (ii) methods to benchmark [NFV| frameworks
and [VNEs [Chi+12]], (iii) possibilities that [NFV] offers in combination
with [Lor+17]], or (iv) implementations of network functions as
[VNFEk [Bre+14]]. Further works target the general concept of and dy-
namic service chaining [[Fay+15; Ble+14]]. Still, they do not consider the special
properties of security functions. Works that analyze challenges explicitly state
the intelligent positioning of (security) functions inside a function chain as an
open problem [[Lui+15].

A major inspiration for our work is the[CSA['s “Security Position Paper: Net-
work Function Virtualization” [Mil+16]]. The authors define multiple work
packages and challenges for NEVtenabled security architectures. This work
addresses multiple of their mentioned goals.

To summarize, existing works leave the intelligent placement of security func-
tions inside and the performance-oriented cooperation between security
functions and open. Consequently, we require approaches and solutions
to these problems.

1.4 Research Questions

Based on the previously stated problems and their unsatisfying resolution in the
current state-of-the-art, we formulate multiple research questions. We define
meta-research questions (MRQs) that generalize a problem and specify them in
further detail with multiple concrete research questions (RQs). The numbering
of the meta-research questions corresponds to the respective chapters, and
the numbering of the actual research questions corresponds to the respective
sections. If two or more research questions correspond to the same section, we
append ascending Latin letters.

MRQ 4: How and to what extent can[SDNl help improve the performance of
(security) network functions?

RQ4.1a How can[SDNlbased approaches improve [[DSP

RQ4.1b What effects do bypassing approaches have on the performance
and security of [DSP

RQ4.1c How do adaptive approaches, which perform reconfigurations
at runtime, compare to static approaches?

1.4 Research Questions

RQ4.1d How do different workload levels impact the performance and
security of the SDNFbased approaches?

RQ4.1e Do thelSDNlbased approaches change their behavior when us-
ing hardware or software switches?

RQ4.2a How can [SDNtbased approaches improve [DPSk against TCP
SYN (Synchronization) packet (SYN]) flood attacks?

RQ4.2b What is necessary to make such a solution stateless and inde-
pendently deployable?

RQ4.2c How does such a solution perform compared to existing solu-
tions?

RQ4.2d To what extent can parallelization improve the performance of
such a solution, and how vital is parameter-tuning?

RQ4.2e Which deployment and scaling strategies suit the solution?

MRQ 5: To what extent can we improve security systems by introducing dy-

namic function chain reordering?.

RQ 5.1 What components and capabilities define a Security Service Func-
tion Chaining framework?

RQ 5.2a How do single security functions perform under attack load?

RQ 5.2b What is the impact of the ordering when combining different
security service functions?

RQ 5.3a How to model single security functions for the reordering deci-
sion?

RQ 5.3b How to model security function chains for the reordering deci-
sion?

RQ 5.3c What strategies are suitable for determining a better order?

MRQ 6: How to design a framework for dynamic[SSEC]reordering?

RQ 6.1 How to structure a framework for dynamic function chain re-
ordering?

RQ 6.3a What results does a prototype implementation provide?

RQ 6.3b Do new attack vectors, and other issues arise from dynamic
function chain reordering — and if yes, how can these issues be
addressed?

Chapter 1: Introduction

MRQ 7: Can a CPU boost-oriented heat-aware server load rotation improve
server performance?

RQ7.1a Can[SDNlleverage potential in short-term [CPUl frequency boost
technologies to increase the computing performance of a system?

RQ7.1b How to design an[SDNlbased load-balancing system with such
capabilities?
RQ7.2 What existing solutions are suitable to implement this approach?

RQ7.3a To what extent do different workloads impact the approach (e.g.,
low load and high load)?

RQ7.3b Is it possible to extend this effect for more prolonged periods?

RQ7.3c How is the effect of this solution on the power consumption?

MRQ 8: How to apply signature-based intrusion detection to multi-query
database ransomware attacks?

RQ 8.1a How to model multi-query database ransomware attacks?

RQ 8.1b Which components does a multi-query database [DPS require
and how do they interact?

RQ 8.2 How to integrate a prototype multi-query database [DPSinto a
MySQL server?

RQ 8.3 How does the multi-query database [DPS perform in terms of
security and performance?

1.5 Contributions and Evaluation Summary

This thesis contains six primary contributions. These contributions address the
previously stated research questions.

Contribution 1: Dynamic Network Intrusion Detection System Bypassing
This contribution addresses MRQ4’s RQ4.1a to RQ4.1e. It contains an
approach to dynamically bypass in the phase of a connection when
the configured attacks are unlikely to occur to reduce their resource
demands. To this end, we propose three approaches using Two
of these approaches are dynamic, and one approach follows static
flows. As part of the contribution, we created a demo implementation.

We evaluate the approach regarding security and performance metrics for
different deployment scenarios (using a virtual and a physical switch) as

1.5 Contributions and Evaluation Summary

well as different workloads. We show that our approaches can increase the
performance to a level that matches the performance without an[DSwhile
not creating new security issues. At overload, the performance slightly
drops but remains high. The dynamic approaches profit significantly
from using a software switch instead of a hardware switch, while the
static approach remains at similar levels for both configurations. We
published some of these results in [Iff+19b]].

Contribution 2: TCP Handshake Remote Establishment and Dynamic
Rerouting using Software-defined Networking (THREADS])
In the second contribution, we address MRQ4’s RQ4.2a to RQ4.2e. We de-
velop a novel approach to defend services against[TCPISYN]
floods. This approach uses to create stateless [DPSI[VNEk that take
over the[TCPlhandshake. After a successful handshake, the[SDNFenabled
network sends traffic directly to the service. This contribution eliminates
the issues previous solutions have: (i) statefulness, (ii) the need for all
traffic to run via the security function, or (iii) limited scaling independent
of the service itself.

We validate our approach by testing a Proof-of-Concept (PoCl) imple-
mentation in an evaluation environment and compare it to the widely
used solutions SYNIPROXY and cookies. performs up
to three times faster than existing solutions without parameter tuning.
However, it introduces a significant delay for connections for the first data
packet. We present multiple solutions to this issue. Next, we develop two
parallelization strategies and evaluate them while performing parameter
tuning showing another increase of additional 76%. Last, we analyze
an optimal deployment and scaling strategy for THREADS]| concluding
that it performs best under horizontal scaling with small to medium in-
stances. We presented results for an early stage of the[PoClimplementation
in [Iff+18a]].

Contribution 3: Performance Modeling for Security Service Function
Chain Orders
This contribution concerns MRQb5. At first, we introduce the general
idea behind attack-aware security function chaining. This idea consti-
tutes placing security functions that defend against an occurring attack
early in the to have them drop malicious packets and stop them
from creating resource demands at security functions later in the chain.
We conclude that for this approach to work, we need a central instance,
the so-called Function Chaining Controller (ECC]), that takes care of the

Chapter 1: Introduction

security function’s ordering. This controller requires knowledge about
the traffic passing through the security functions and the number de-
tected of attacks. To this end, security function wrappers co-located with
the security functions report the number of detected attacks at the spe-
cific function to the [ECCl We introduced the vision of this approach
in [Iff+18c]| and [Iff+20al].

We conduct a performance analysis to analyze the effect of the differ-
ent orders. First, we measure the performance of single security
functions and show that they have different behaviors and performance
characteristics under benign and malicious workloads. When combining
the security functions in [SSECk of size two, we note that the performance
is best when putting the function that defends against the current attack
first. The performance difference between the different orders is up to two
orders of magnitude. For different attacks, we show orders that contradict
each other. Thus, no always optimal static order exists. We published
selected results in [IF19]].

Based on these experiences, we create models for single security functions
and security function chains. We model the traffic categorizing it into
traffic classes and map the traffic to constant resource demands per traffic
unit (frame, packet, or segment) as well as dynamic demands depending
on the size of the traffic unit. Every security function affects the traffic
as a function depending on the traffic composition. The model for an
consists of multiple security function models. Traffic that exits one
function continues to the next. Thereby, it is possible to compute the total
resource demand. Last, we discuss three approaches with different levels
of accuracy and varying compute complexity for the decision making
process based on this model. We presented the first iteration of the idea
for this model in [[Iff+18¢].

Contribution 4: A Framework for Attack-aware Security Service Function
Chain Reordering
In this contribution, we address MRQ6. We introduce a framework for
attack-aware dynamic[SSECIreordering that builds on the knowledge from
the previous sections. All security functions of an reside inside an
[SDNFenabled network. A security function wrapper co-located with every
security function reports attacks to the [FCCl Then, the [ECClcomputes
the desired order for the security functions and executes it via the
controller. We presented the communication design of the framework
in [Iff+20b]].

1.5 Contributions and Evaluation Summary

We then developed a[PoClimplementation using a simplified decision-
making algorithm (putting the function with the most registered attacks
first) and a minimal controller tailored to our infrastructure. We
put this framework through simulated attack patterns showing that it
correctly adapts to all attacks and restores the initial state afterward. This
result demonstrates the desired functionality. However, we see rare issues,
where a single packet can jump over a security function during reordering
and propose four possible solutions to this problem. We published our
experiences in [[Iff+20a].

Contribution 5: Heat-aware and [CPUl|Boost-oriented Server Load Rotation
This contribution addresses MRQ7. We present a solution to heat-aware
load balancing, allowing us to maximize the time active spend in
the state of a short-term frequency boost. Therefore, the load balancer
must detect or predict the moment when a server is too hot to stay boosted
and migrate the running service to another server.

We present a solution consisting of two components: (i) a monitoring
component watching the states of all workers, and (ii) anSDNIcontroller
that creates flows based on those observations. Next, we develop aPoCl
implementation and evaluate it. We show the general functionality of
the approach and analyze the impact of our solution, showing that it
performs best when the whole cluster is at lower load levels. For lower
load levels, it is always possible to keep the active server boosted with-
out significant temperature increases. Performancewise we show that
in high-load scenarios, we can increase performance per Watt while re-
ducing the average temperature of the cluster. With a lower load, all
performance metrics improve, the temperature levels drop, and the total
power consumption decreases.

Contribution 6: Signature-based Database Ransomware Detection

This last contribution deals with MRQS8. We propose a new multi-
component signature-based Intrusion Detection and Prevention Sys-
tem ([DPS) named Dynamic Identification of Malicious Query Sequences
(DIMAQS) for relational databases capable of protecting against newer
attacks that no longer consist of a single query but instead of query se-
quences. Therefore, we use a signature comprised of a Colored Petri Net
to model the attack behavior.

We create a[DIMAQS| prototype for MySQL registering as an auditing
plugin with the MySQL server enhanced by multiple triggers for the pro-
tected tables. We evaluate the results for benign and malicious query sets

Chapter 1: Introduction

without any misclassifications. Next, we analyze DIMAQS[s performance
showing that for a benign data set and synthetic benchmarks, it has a
performance impact of below 5%. We published our approach and results
in [Iff+19a]] and [Hag+18§].

Our contributions can assist security infrastructure architects in increasing
their systems’ performance without adding additional computing resources.
Notably, the optimizations for single security functions stand for themselves,
allowing for simple implementation. Security function developers can test their
functions in our evaluation environment for and, thereby, evaluate how
they interact with other security functions and if they pose a possible bottleneck.
designers can learn lessons from using our framework for heat-aware
load balancing to make better use of short-term frequency boosting, and
database operators can use DIMAQS|to secure their systems. Last, researchers
can use our results as a reference to refine modeling and decision making
strategies and expand on our[SSEC| reordering framework.

1.6 Thesis Outline

This thesis comprises multiple chapters. Every chapter—except the first three—
addresses the research questions that match the chapter number.

After this introductory chapter (Chapter|]), we introduce relevant founda-
tions of our research in Chapter 2] We discuss the current state-of-the-art in
Chapter

Next, we present approaches to increase single security function perfor-
mance by using in Chapter[d} This includes dynamic IDPSbypassing in
Sectiond.Jland in Section 4.2l

Then, we discuss the general idea of dynamic reordering, the perfor-
mance impact of the order inside SSECk, and how to model in Chapter
Based on these findings, we present our reordering framework in Chap-
ter 6l

Afterward, we discuss the possibilities of heat-aware load balancing, and
present and evaluate a corresponding framework in Chapter[7] In Chapter(8 we
propose, implement and evaluate DIMAQS| to protect against multi-sequence
database ransomware.

Last, we conclude this thesis and provide an outlook on future work in
Chapter 9]

10

Chapter 2

Foundations of Network Security and
Modern Networking

In this chapter, we introduce the foundation needed for this work. Section
introduces cybersecurity with an introduction to information security and to
benchmarking metrics for security systems. In Section[2.2} we present typical
attack types. Section [2.3| depicts some examples of common state-of-the-art
security appliances. Next, we introduce the technologies of Software-defined
Networking (SDNJ) (Section[2.4]) and Network Function Virtualization (NEV])
(Section[2.5). Section 2.6 presents the architecture of current security systems
and what impact the previously introduced technologies already have. Then
Section [2.7|discusses power-saving and boosting technologies, and Section
introduces two relevant modeling formalisms.

2.1 Cybersecurity

Cybersecurity (also computer security, IT security) deals with protecting com-
puter systems or networks from external threats such as damage or theft of
hardware, software, or data, and the misdirection or interruption of provided
services.

2.1.1 Information Security

A part of cybersecurity is information security. Information security deals
with securing data from manipulation and unauthorized access. The CIA-
triad [[Per15]] proposes three essential concepts for information security (i) con-
fidentiality, (ii) integrity, and (iii) availability. Furthermore, many sources add
(iv) non-repudiation.

Confidentiality In information security, confidentiality “is the property, that
information is not made available or disclosed to unauthorized individu-
als, entities, or processes. [Bec15]]”. Confidentiality is not just a synonym

11

Chapter 2: Foundations of Network Security and Modern Networking

for privacy but is more one of its components. It is the implementation to
ensure that data is not accessible to outsiders.

Integrity Data integrity deals with assuring and maintaining the completeness
and accuracy of data not only at a certain point of time but over the whole
lifetime of data [Bor05]. Thus data is unmodifiable by unauthorized or
undetected means. Two approaches to integrity exist. Either a system
guarantees integrity by storing data in a manner where it can not be
manipulated or introduces mechanisms to detect tampering.

Availability The purpose of information systems is to provide information.
Thus, the system must be able to provide the required data when it is
needed. Therefore, external threats must not impair the availability of a
service. “High Availability Systems” is a collective term for permanently
available systems [[LO09].

Non-repudiation Non-repudiation defines the obligation of a party in a trans-
action to fulfill its commitments. In information security, non-repudiation
also states that neither party can deny having received or having sent
information. [MBO06]]

2.1.2 Benchmarking Security Systems

Benchmarking of security systems usually focuses on their quality (hence
the ability to defend a service) and their performance (hence the maximum
processed quantity).

2.1.2.1 Security Metrics

When benchmarking quality, security appliances must classify packets as ma-
licious or benign. The confusion matrix, as shown in Figure divides the
classified packets into four categories [[Faw06]]:

True Positive (TP) The security appliance classifies a malicious packet as
malicious. This classification is the intended behavior.

False Negative (FN) The security appliance classifies a malicious packet as
benign. This behavior is suboptimal and unintended. Malicious packets
that were incorrectly classified can enter the system and cause damage.

False Positive (FP) The security appliance classifies a benign packet as mali-
cious. This behavior is suboptimal and unintended. Packets that should

12

2.1 Cybersecurity

Classification by
Security Appliance
malicious benign total
True False
malicious | positive || negative | P
TP FN
Packet is
False True
benign | positive || negative |N
FP TN
total P’ N’

Figure 2.1: Confusion matrix for security appliances.

reach a service can not reach the service. Depending on whether the mis-
classification is permanent or not, this can lead to a permanent disruption
of the service.

True Negative (TN) The security appliance classifies a benign packet as be-

nign. This classification is the intended behavior.

Multiple metrics come in to play:

e The false-positive rate, as shown in Equation (2.1)), is the ratio of false
positives (incorrectly labeled benign packets) to the total number of
benign packets. It indicates the percentage of mislabeled benign packets.
The goal is to minimize this metric. The reversed metric, the true-negative

rate, is rarely used.

FP
FPratezi

~ (2.1)

The true-positive rate, as shown in Equation (2.2)), gives the ratio of true
positives (correctly labeled malicious packets) to the total number of
malicious packets. Thus, it indicates what percentage of malicious packets
are correctly labeled. The goal is to maximize this metric. The reversed
metric, the false-negative rate, is rarely used.

TP

TPrate == ? (2.2)

13

Chapter 2: Foundations of Network Security and Modern Networking

14

o The precision, as specified in Equation ([2.3]), gives the ratio between the

number of true positives and the number of all packets classified as
malicious (false positives and true positives). Since P = TP + F'P
precision is just another description of the true-positive rate. Thus, it
gives the percentage of how many classifications are correctly classified.
The goal is to maximize this metric.

TP
precision = TP+ TP (2.3)

The recall, as specified in Equation (2.4), gives the ratio between the
number of true positives an the number of malicious packets in total (true
positives and false negatives). Hence, it gives the percentage of malicious
packets that are correctly classified. The goal again is to maximize the
metric. TP

recall = TP+ FN (24)
The accuracy, as specified in Equation (2.5), gives the overall share of
correctly classified packets. Thus it is specified as the ratio between the
sum of true positives and true negatives (hence, correctly classified files)
and the sum of all malicious and benign packets. Also, security systems

should aim to maximize this metric.

TP+ TN

P+ N (25)

accuracy =

The last standard metric is the so-called F-measure. Equation shows
an inverse correlation between the F-measure and both the inverse preci-
sion as well as the inverse recall. It reaches its maximum (and optimal
value) of 1.00 when both recall and precision reach their maximum. The
F-measure is commonly used to balance between recall and precision.
In most cases, it is challenging to optimize both components. A more
rigorous system with a higher recall (thus, a better detection rate of mali-
cious attacks) often tends to misclassify benign packets. This tendency,
in turn, leads to an increase in false positives and thereby a decrease of
the precision metric.)

1 + 1

precision recall

F:

(2.6)

Last, duplicate classifications are specific to our environment of network
security. In network environments, a network component may retransmit

2.2 Types of Attacks

a packet that it already sent before, e.g., due to congestion. A security
appliance then encounters the packet twice. This behavior increases the
number of alerts as well as the load on the security appliance but has no
impact on the accuracy components.

2.1.2.2 Performance Metrics

Security appliances share their key performance metrics with most other soft-
ware systems [[KLK20].

Throughput defines the amount processable by the system in a time frame.
Standard units are requests per second, MBit per second, packets per
second.

Latency the latency gives the amount of time for a machine to wait for a
response to a request. Latency can be defined for simple round trips
(e.g., ping) but also for more complex computation (e.g., a request from
a webserver). Latency is a common description of this metric for the
network application in this work. However, in performance engineering,
this is also often called the response time.

2.2 Types of Attacks

There is a seemingly infinite number of different attacks. In the following,
we will describe three common types of attacks that we will also later use
when evaluating our various approaches towards more performant security.
First, we introduce Denial-of-Service (DoY) and Distributed Denial-of-Service
(DDoS)) attacks in general in Section and explain the Flood and
Hypertext Transfer Protocol (HTTD) Flood Attacks in more detail. Afterward,
in Section[2.2.2} we focus on intrusion attacks and explain them using examples.

2.2.1 Denial-of-Service Attacks and Distributed Denial-of-Service
Attacks

Denial-of-Service (Do) attacks focus on disrupting the availability of a selected
service. One way is to saturate the service with so many requests that it can
no longer service further benign requests. A particular form of this attack is
finding requests that create an abnormally high load on the service.

In many scenarios, a single client can not saturate a server. Modern cloud
infrastructure offers load balancers in combination with horizontal and vertical

15

Chapter 2: Foundations of Network Security and Modern Networking

scaling algorithms. These features allow service providers to scale the service
and handle high loads easily. Therefore, regular attacks evolved to Dis-
tributed Denial-of-Service (DDoS) attacks. [DDoS attacks still aim at saturating
a service but no longer rely on using a single client to achieve this goal. Instead,
attacks employ a multitude of hosts.

While in the beginning, this meant booking numerous servers or otherwise
acquiring command over them, the spread of broadband networks and the
Internet of Things (IoT]) has offered new possibilities. The number of[[oT]ldevices
rose to 8.3 billion in 2019, and studies expect a further rise up to 21.5 billion
in 2025 [[Lue20]]. Many [oIldevices are not part of infrastructures that feature
automated patching, and therefore, the devices have open vulnerabilities. The
number of known open zero-day vulnerabilities in [[gTl devices is continuously
growing [PHS16]]. These vulnerabilities make it easy for attackers to take
over unpatched devices. With the spread of broadband technologies, these
devices are often connected with fast uplinks and can use this bandwidth
for malicious requests. Recently, botnets like the Mirai botnet comprise up
to 600,000 devices [Kol+17al]. With the continuing growth regarding device
numbers, future botnets might likely be even more massive.

In the following, we will describe two different attacks. The flood
attack targets Transmission Control Protocol ((TCP))’s connection establishment
process while the HTTPIflood aims at flooding a webserver.

2.2.1.1 [SYNI Flood

The flood attack is currently the most common attack [KBG19].
It attacks[TCPf's connection establishment process. To understand this attack,
we first give a course overview of [[CPland the three-way handshake used for
connection establishment. Then we describe the flood by specifying its
attacker and threat model.

Transmission Control Protocol (TCP))

The Transmission Control Protocol (TCD)), as specified in [Pos83al], is a transport
layer protocol (Layer 4 in the Open Systems Interconnection ([OSIl) model) and
represents one of the main protocols in the Internet protocol stack. At first,
[TCPlwas part of the monolithic Transmission Control Program that later split
into[TCPland the Internet Protocol (IP)). Hence, many sources refer to[ITCDP as
TCP/IR

One of the main characteristics of [CPlrelevant for this work is its connection
establishment mechanism in the form of a three-way handshake. Furthermore,

16

2.2 Types of Attacks

Client Server

%
m
%

m

Figure 2.2: [TCP| three-way handshake process.

[TCP ensures reliability, the in-order transmission of information, and error
checking.

The [TCP| Three-Way Handshake:

[MCPlis connection-oriented. Thus, it requires establishing a connection before
transmitting any payload data. Therefore, [ICP| performs a three-way hand-
shake, as depicted in Figure To request a new connection, the client sends
alSYNI (for synchronize) packet to the server. In this packet, the client encodes
a randomly generated sequence number A. [ICD| uses these sequence num-
bers to ensure the correct order of data. Next, the server answers with a TCP
SYN+ACK (Synchronization and Acknowledgment) Packet (SYN+ACK]) (for
synchronize & acknowledged) packet. The server encodes inside the acknowl-
edgment number (i) the next number the server is expecting to receive of A+ 1,
and (ii) its own randomly generated sequence number B. Finally, the client
replies with an TCP ACK (Acknowledgment) packet ([ACK]) (acknowledged)
packet with a sequence number of A + 1 and an acknowledgment number of
B + 1. The completion of these steps concludes the establishment of a new
connection. Further mechanisms provided by [I'CD)} like flow control and con-
gestion control, are omitted here due to not being relevant for the mechanism
proposed in this work.

17

Chapter 2: Foundations of Network Security and Modern Networking
Attacker Model

First, the attacker model describes the circumstances under which it is possible
to launch a flooding [DDoSlattack. In general, an attacker operates using
remote connections and does hence not require physical access to the targeted
machine. The attacker’s goal in this scenario is to disrupt the service and
render it unavailable to legitimate requests, resulting in a denial of service.
A secondary goal is mitigating the detection of a second attack, called the
smokescreen. However, we will omit further details regarding this technique
in this work due to its being out of scope. In general, an attacker requires little
knowledge about the attacked service. The data required to launch such an
attack encompasses only the port the service is listening on, and the public IP
address of the attacked service. The [[Pladdress is easily obtainable through
legitimate ways, such as domain resolution. The port is either publicly known
or discovered through port scanning. An attacker has usually obtained control
over several machines, e.g., through known vulnerabilities, and can use multiple
endpoints to amplify his attack.

Threat Model

Next, we cover the threat model of a typical flood attack. This type of
attack exploits the connection based behavior of the TCPlprotocol by creating a
multitude of semi-established connections, rendering the target host unable
to accept any new, benign connections. Figure[2.3|illustrates this behavior of
an attacker that sends[SYNl packets, which the server answers with[SYN=+ACK]
responses. The final part of the Three-Way-Handshake, the is omitted
by the attacker. This omission leaves the connection in a valid but unfinished
state.

This attack exploits the fact that the ['CPl protocol stores currently opened
connections in so-called Transmission Control Blocks (TCBk). The[ICBlbacklog
has a limited capacity and stores not only fully established connections, but all
connections initiated by at least a[SYN|packet. This property allows an attacker
to send SYNl packets with arbitrary source addresses, thus hiding his identity
and avoiding connection limits. Eventually, an attacker can fill the[TCB|backlog
with malicious, half-established connections, making the server drop new [SYN]
requests instead of creating new connections. Thus, the server is unavailable
for new, benign connections, and a denial of service occurs.

18

2.2 Types of Attacks

Client Server

%

SYN-ACK

Figure 2.3: SYNIflood attack pattern.

Mitigation

Another entity has to take over the connection establishment process to mitigate
SYNIflood attacks. Section describes two conventional approaches: [SYN]
cookies, and SYNIPROXY.

2.2.1.2 [HTTPI Floods

The[HTTPflood attack works on the application layer - Layer 7 in the[OSIimodel.
The attack aims at overwhelming a targeted service with [HTTPIrequests. It is
relatively complex to defend against application-layer attacks. The difficulty
arises from the challenge of distinguishing benign requests from malicious
ones.

Attacker Model

The attacker model shares similarities with the flood attack. Again, the
attacker operates remotely and does not require physical access to the target
machine. The attackers share the goal of achieving a denial of service or miti-
gating the detection of smokescreen attacks. Different from before, the attacker
requires more knowledge about the attacked service. He needs to know how
to structure HTTPIrequests to the service. Thus, the attack requires knowledge
of the arguments for website access or parameters of Representational State
Transfer (REST]) interfaces. The other data required to launch such an attack is
relatively simple to obtain. As described for the flood attack, the attacker

19

Chapter 2: Foundations of Network Security and Modern Networking

can quickly obtain the[Pladdress and port of the service. The attacker is, again,
usually in control of a botnet or a similar infrastructure.

Threat Model

The attacker sends as many [HTTP|requests as possible to the attacked service.
For this purpose, the attacker employs his botnet. There are two types of HTTDI
floods:

HTTPI attack: For this attack, the botnet sends multiple requests to re-
deem images, files, or other data provided by the targeted server. Once
saturating the target’s maximum throughput, the attacker thereby forces
the target to drop additional requests from legitimate traffic sources.
Thereby, denial-of-service occurs.

HTTPI attack: [HTTPIPOST] requests allow the client to submit data,
e.g., for forms on websites. In general, servers have to perform more
complex operations when handling requests. The server must
handle the request and then usually issues an operation to make the
data persistent. To this end, the server stores the data to a database
or some sort of file storage. These operations are relatively intensive.
Thus the attacker can generate a high amount of load with relatively
little bandwidth. Thus, the denial-of-service can occur with a smaller
amount of employed attacking resources. For this attack type, the attacker
requires even more knowledge about the attacked services.

Mitigation

Mitigating application layer attacks is rather complicated. It is not simple to
decide which requests are benign and which ones are malicious. One method
is to implement a challenge to the requesting machine to test for bots, e.g.,
a captcha if automated connections are entirely undesirable. For automated
connections, challenges like JavaScript computational tasks for the attacker
slow down the attack frequency.

For[HTTPIfloods, the use of a Web Application Firewall (WAE) is another al-
ternative. By combining firewalls as described in Section[2.3.3| with a managed
[P address reputation database, security systems can selectively block mali-
cious traffic. Existing approaches to said reputation databases are only semi-
automated and still require constant analysis by engineers. Large providers
can offer[WAH services due to their experience and data gathered from hosting
thousands and millions of sites.

20

2.2 Types of Attacks

2.2.2 Intrusion

While the previous attacks rely on having control over a botnet or a similar
infrastructure, intrusions do not require this ability. However, the attacker
could benefit from the ability to launch a parallel[DDoS attack as a smokescreen.
Instead, single packets or requests trigger a vulnerability. This approach is
similar to attacks that trigger high loads with single or few malicious
requests. Nevertheless, the goal of a attack is to put the service out of
operation while intrusion attacks usually have different goals, e.g., triggering a
remote code execution.

Attacker Model

Again, intrusions like the described attacks are remote attacks. Thus, the
attacker does not need physical access. The attacker must be able to ensure that
his malicious packets reach the attacked service. Furthermore, the attacker must
know what service he is attacking. The [HTTP| flood only needs to know that a
web server is running at a particular IP address and listens on a specified port.
In comparison, for an intrusion attack, it is also necessary to gather information
about the webserver (e.g., Nginx or Apache) and its version. When all this
information is available, the attacker also requires knowledge about an existing
vulnerability for the webserver in its specific version.

There are multiple ways to obtain such vulnerabilities. For older versions,
Common Vulnerabilities and Exposuress (CVEk) provide vulnerabilities pub-
lished by the software vendors. While aim at motivating people into
updating by showing which vulnerabilities no longer occur in newer versions,
they also allow attackers to obtain attack vectors when someone decides not
to upgrade. The attacker could also look for vulnerabilities themselves, e.g.,
by fuzzing the source code of the webserver. Last, a black market exists on the
Internet, providing vulnerabilities in exchange for payment.

Threat Model

With his knowledge, the attacker sends a request or a series of requests to the
service. These packets then trigger an effect that is not desired by the service
provider.

An example is an attack against the Apache web server in combination with
the Oracle WebLogic Apache Connector. An [HTTPI[POST] request with the
content “xxxxxxxxxxxxxxxxxxxx” could trigger a buffer overflow that can lead
to either a denial-of-service or a privilege escalation allowing to access features
that should be protected.

21

Chapter 2: Foundations of Network Security and Modern Networking

Another example - again against the Apache web server - is a cross-site
scripting attack. By calling the JavaScript code alert(document.cookie) , the
attacker tries to execute scripts above his access rights.

In general, most attacks on web servers focus on cross-site scripting, denial-
of-service, and privilege escalations. For other services like, e.g., mail servers
or file servers, other vulnerabilities exist, but intrusions against them follow a
similar pattern.

Mitigation

The obvious way to mitigate intrusion attacks is to patch the software, so the
vulnerability is eliminated. However, in some scenarios, patching, unfortu-
nately, is not an option. Either a patch might not yet exist, or the application
has to undergo critical homologation processes after every patching.

When patching the service is not feasible, it is necessary to prevent harmful
packages from reaching the service. Intrusion Detection Systems (IDS) can
perform this task. We will introduce in Section and also present
signatures to defend against the two attacks mentioned before.

2.3 State-of-the-art Security Appliances

A variety of security appliances protect against the attacks described in Sec-
tion 2.2land many others. State-of-the-art security systems comprise a great
selection of these appliances in various combinations. The following pages in-
troduce Intrusion Detection Systems (Section[2.3.T)),[DDaS protection sys-
tems against the flood attack (Section[2.3.2)) and firewalls (Section[2.3.3)).

2.3.1 Intrusion Detection and Prevention System

Intrusion Detection and Prevention Systems (IDPS]) combine [DS|and Intrusion
Prevention Systems .IDS|can detect attacks [SM07]], and many [DS|provide
additional defense mechanisms. are capable of actively defending against
incoming attacks, and many are deployable in a detection-only mode.

2.3.1.1 Types and Categories

IDS|can detect attacks originating from outside the protected system as well as
local attacks. Therefore, the different monitoring platforms allow classifying
IDS|into network-based, host-based, and hybrid [IDS

22

2.3 State-of-the-art Security Appliances

Intrusion
Detection
Systems
Monitored Attack Detec- Monitoring Deployment
Platform tion Method Method Architecture
— Host-based | Misuse- Real-Time Non-
based distributed
| Network- A | Pollin
based | Anhomaly- & Distributed
based
- Fybrid L Hybrid

Figure 2.4: Categorization of intrusion detection systems.

The next distinction relies on the used attack detection methods. Misuse-
based approaches primarily target singular attacks that are usually carried out
in a single step [[VRB04], exploiting a selected vulnerability. Here, an
uses signatures containing features of an attack for its detection. Anomaly-
based solutions use training techniques to detect when a system diverges from
its normal behavior, which allows detecting multi-phase attacks. These are
attacks where the type and order of the executed actions lead to the exposure
of the system. The single stages can be seemingly friendly activities of which
combination leads to a security violation (e.g., zero-day exploits).

Real-time or event-based intercept an activity before it reaches the tar-
get system inspecting it synchronously to the traffic flow. Polling do not
interrupt the traffic flow but analyze the target activity periodically and are
asynchronous. A primary application for polling[[DS]is host-based intrusion de-
tection [[GRO3]]. True to their asynchronous nature, polling are not suitable
for intrusion prevention.

Non-distributed are deployable at a singular (central) position inside the
system. An alternative is to use a distributed that is spread all over the
system allowing detection of interconnected attacks on multiple non-collocated
targets. Figure[2.4 presents an overview of the different types of [DS|

In this work, we focus on network-based, misused-based, non-distributed,
and real-time [DI

23

Chapter 2: Foundations of Network Security and Modern Networking

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS

— (msg:"SERVER-APACHE Oracle WebLogic Apache Connector buffer
overflow attempt"; flow:to_server,established;
content:"POST"; http_method; content:'"XXXXXXXXXXXXXXXXXXXX'";
depth:100; metadata:policy max-detect-ips drop, service
http; reference:bugtraq,30273; reference:cve,2008-3257;
reference:url,www.oracle.com/technology/deploy/security/
alerts/alert_cve2008-3257.html; classtype:attempted-admin;
51d:18283; rev:6;)

A

Listing 2.1: Signature for the Buffer Overflow Intrusion Attack on Oracle We-
bLogic Apache Connector from Section [2.2.2]

2.3.1.2 Signatures

In the context of[DS] a signature contains the characteristics of attacks against
the system. To enable its detection, an[DSneeds to conduct an in-depth analysis
of the observed behavior via Deep Package Inspection ([DPI). For real-time[IDS]
a high-performing engine is necessary to handle the unpacking of network
traffic down to lower protocol levels. Like anti-virus research, many security
experts and enterprises perform ongoing worldwide analysis of attacks and
attack methods. This constant analysis leads to the regular publication of new
signatures for various operating systems, protocols (e.g.,[ICP} [HTTP)} and File
Transfer Protocol (FIP))) and applications (e.g., Xen, and Apache webserver).
Aside from public signature databases, there are closed signature databases for
a selected community as well as commercial and exclusive signatures collections
from security researchers and corporations.

For the example attacks in Section signatures exist. Listing2.1|shows
a signature to defend against the buffer overflow intrusion attack. The rule
includes that the request must be a request and that the content must
contain "xxxxxxxxxxxxxxxxxxxx.' The signature in Listing[2.2l matches when
“alert(document.cookie)” is included. Both signatures trigger an[PSto drop
the packet. Additionally, the signatures contain information like the
number, a classification, and a website with further informatiorﬂ

!'Unfortunately with the frequent redesigns of websites, these often lead to 404 pages.

24

2.3 State-of-the-art Security Appliances

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

< (msg:"SERVER-APACHE Apache SSI error page cross-site
scripting attempt"; flow:to_server,established;
content:"alert(document.cookie)"; fast_pattern:only;
http_header; metadata:policy max-detect-ips drop, service
http; reference:bugtraq,32476; reference:bugtraq,5847;
reference:cve,2002-0840; reference:cve,2008-5278;
reference:url,packetstormsecurity.com/files/cve/
CVE-2002-0840; classtype:web-application-attack; sid:11687;
rev:21;)

rerrrnrurg

Listing 2.2: Signature for the Cross-site Scripting attack on the Apache Web
Server from Section 2.2.2]

2.3.2 [SYN Flood Protection

In the following, we describe two of the most popular mechanisms to mitigate
DDoS attacks, Cookies as well as [SYNIPROXY. Being readily available
for services running on top of the mainline Linux Kernel makes both of these
solutions widely used.

2.3.2.1 Cookies

As mentioned during the description of the threat model, a flooding
attack exploits the size limitation of the TCP|backlog as a critical resource for
establishing new connections. cookies [[Edd07] are a fully [TCP|standard-
compliant way of eliminating the need for backlog entries related to half-open
connections. In a usual scenario, the backlog stores source and destination
addresses as well as ports, the client’s Initial Sequence Number ([SNI), the
server’s[[SN] and the requested [ICPl options for half-open connections. Storing
these values of half-open connections is necessary to check if a received
packet belongs to previous and SYN+ACK]packets and whether the client
correctly received the server’s[[SNI The idea of cookies is to store this
information not locally, but encode it into the sent packet and
retrieve the information from the response.

Figure[2.5/shows the structure of the[TCP|header with the source and desti-
nation port values determined by the connection parameters. The acknowledg-
ment number must be the client’s sequence number submitted with the

25

Chapter 2: Foundations of Network Security and Modern Networking

0123456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Re- |[c|E|U|A|P|R|S|F Wind si
W[C[R|C[S|S|Y]|I
Offset [served R |E|G|K[H|T|N|N Indow oize
Checksum Urgent Pointer
Options Padding
Figure 2.5: [[CP header.
Bits Content

31to 27 Time counter
26 to 24 Client MSS size
23to0 Hash value of connection properties

Table 2.1: Sequence number composition using [SYNI cookies.

packet incremented by one. The data offset has to describe the size of the header,
and and flags must be enabled. While the window size can con-
tain arbitrary values, it has a significant impact on the connection throughput.
Thus, it should assume a typical value. The remaining header fields contain
checksum calculations. The urgent pointer field can contain arbitrary values,
and its interpretation only occurs for segments with an enabled [URGIflag.

On the one hand, this allows encoding 16 bit of information into it. On
the other hand, this is of no use because the client ignores the data and does
not transmit it back in his packet. The same is true for the padding at
the end of the header. Additionally, it is supposed to consist of zeros. These
limitations leave the sequence number and possibly the[TCPloptions as potential
information storage.

In practice, SYNIcookies use the 32-bit sequence number to store the required
data. There are no regulations for the choice of the [SN|except that it should
increase over time. For security concerns, it also should not be predictable.
Table 2.1 shows the sequence number’s composition when using cookies.

The time counter is used to fulfill the increasing requirement and is calculated

26

2.3 State-of-the-art Security Appliances

by uniz_time > 6 (mod 32), resulting in a 5-bit number increasing every 64
seconds. stands for Maximum Segment Size [Pos83b]] and amounts to
536 bytes by default. The Maximum Segment Size (MSS)) option allows the
choice of differing values. The client uses the options in the SYNlpacket to tell
the server the maximum size of [[CP|segments it wishes to receive. The server
replies with his choice in the SYN+ACK]|response and usually saves the
client’s value in the newly created Because cookies aim at avoiding
local memory consumption, this solution stores the efficiently in the [SN]
by choosing eight[MSS|values together with a 3-bit encoding beforehand. The
chosen is the largest of these values that is still smaller than the client’s
choice.

The previously discussed 8 bits are predictable, so the leftover 24 bits have to
ensure that the sequence number is not inferable by a third party. At the same
time, the server must be able to verify whether the packet is a valid response to a
SYN+ACKl packet or if it is spoofed using the acknowledge number of an[ACK]
packet. Therefore, the server hashes the client’s and server’s IP addresses and
ports, as well as the time counter and a secret number to avoid predictability.
When an[ACK] packet is received, the server calculates the hashes for the last
few values of the time counter. If one of them matches, the server creates a
extracting all the necessary values (addresses, ports, client sequence number,
client MSS)) from the packet. This final step concludes the connection
establishment.

For this mechanism to work, the cookies functionality must run on the
same machine as the protected service. Due to this limitation, cookies
is not scalable independently from the service itself. In cases in which the
service does not require additional resources, but the[SYNIcookies functionality
does, this behavior adds additional overhead to the system. For some services
not designed for scaling, this would generate significant overhead regarding
deployment management.

2.3.2.2 [SYNPROXY

The second solution to mitigate TCPISYNI floods presented is SYNIPROXY, a
Netfilter module [Bro19]]. Netfilter is “a set of hooks inside the Linux kernel
that allows kernel modules to register callback functions with the network
stack” [WAT19]]. When a packet passes a hook, it triggers the execution of all
registered modules. [SYNIPROXY utilizes this functionality to prevent
packets from directly reaching the networking stack, where they would trigger
[TCB allocation and a response. Instead, the module drops the
SYNIpacket. It sends a manually crafted SYN+ACK] packet as if the GYNIwas

27

Chapter 2: Foundations of Network Security and Modern Networking

legitimately handled by the network stack, thereby masking the connection
establishment from the kernel.

Similarly to the previously presented Cookies, [SYNIPROXY stores the
connection state in the packet itself instead of local memory. On arrival of an
[ACK packet, SYNIPROXY checks if the packet belongs to a valid handshake. If
this is the case, from the client perspective, the connection establishment seems
to have successfully concluded. The server, on the other hand, does not yet
know that a connection was requested. Therefore, the SYNIPROXY module has
to impersonate the client and execute a handshake with the server. Thereby;, it
opens the connection in the client’s stead.

While both ends now know about the connection, they cannot directly com-
municate with each other, because the ISN chosen by SYNIPROXY when im-
personating the server is only in 1 out of 23 cases equal to the one the server
chooses in the second handshake. To fix this, SYNIPROXY has to modify the
server’s sequence and the client’s acknowledge numbers in every subsequent
packet.

The synsanity [git18]] module reduces the overhead of intercepting and
modifying every packet by matching the [SNIchoices of the module and the
network stack. Since it cannot influence the [[SNl the kernel will use, the only
way is to predict which number the network stack would use. Synsanity exactly
copies the kernel function and uses the same secret used for calculating [SYN]
Cookie sequence numbers to reach this goal. However, synsanity has become
deprecated in the meanwhile.

SYNIPROXY allows for either co-deployment with the protected applica-
tion or deployment on a separate machine. When opting for co-deployment,
[SYNIPROXY suffers from the same shortcomings as cookies, namely the
inability to scale the mechanism independently of the service. Additionally,
unlike[SYNlcookies, the application is stateful. This property complicates many
processes like, e.g., service migration. When deploying[SYNIPROXY on a sepa-
rate machine, all traffic between the client and the server must pass through the
proxy. This detour creates an additional single point of failure and additional
traffic inside the network that could result in new network bottlenecks.

2.3.3 Firewalls

Oppliger [Opp97]| defines firewalls as “intermediate system|[s] [...] plugged
between the network and the Internet to establish a controlled link, and to erect
an outer security wall or perimeter. The aim of this perimeter is to protect the
network from network-based threats and attacks, and to provide a single choke
point where security and audit can be imposed.”

28

2.4 Software-Defined Networking

The use of network firewalls lies in the idea of moving security away from a
single host and the running applications to dedicated and more manageable
entities. Such network firewalls can work on multiple protocol layers.

Most common firewalls work on the third layer of the [OSI}Stack, also known
as the network layer. Since the main action on this layer is routing, an older
name for Layer 3 firewalls is screening routers. These routers filter the incoming
packets by a set of rules. Whether a packet matches against these rules or not
defines whether it is forwarded. The rules rely on information available in
the packet headers. Thus, they include protocol numbers, source and destina-
tion[Pladdresses, connection flags, and other [Pl options. These features are
open to extensions to similar parameters on the fourth layer, the protocol layer.
These extensions would then include, e.g., port numbers, flags, or TCP option
parameters.

Another type of firewall comprises the so-called proxy servers. These servers
require authentication before the individual services can be accessed. If the
authentication is successful, the proxy forwards packets between the server
and the client. The SYNIPROXY solution shown in Section[2.3.2.2also matches
these criteria (hence, the name).

2.4 Software-Defined Networking

Software-defined Networking (SDNI) takes on the challenges posed by the
increasing number of participants in networks and the associated exponential
increase in cost due to the directly correlated growth in resource demands.
The objective during development was to achieve greater scalability, flexibility,
automation, and independence from hardware manufacturers to reduce capital
as well as operational expenditure.

2.4.1 General Approach

Five principles are fundamental to

The separation of control and data planes divides the switching process into the
control plane, using routing algorithms to decide on packet forwarding and the
data plane technically handling the packet. In conventional switches, this task
is performed by an embedded, performance-optimized chip, which generally
cannot be directly influenced and therefore leads to the exchange of the entire
device for the implementation of new algorithms. allows influencing the
forwarding process from the outside via a software interface to communicate
with the switch changing its behavior at runtime without having to replace the

29

Chapter 2: Foundations of Network Security and Modern Networking

Control Control Control
Module Module Module

Application Control Plane

¢ L\ Northbound API

Control Application Control
Westbound AP| | Module | Control Interface | Module Eastbound API
SDN Network ~ - | Legacy Network
---+-< SDN Network Control Plane - | --+- gacy
Control Plane - - Control Plane

B NN
W% Southbound API <27 | "S.°>
N p :
|
I
|

Legacy

Cloud SDN WAN WAN

Figure 2.6: Overview of [SDN] structure and the corresponding Application
Programming Interfaces (APIs) [Jar+14].

hardware components. Today, the OpenFlow (OF) protocol often serves as an
interface [McK+08], as described below.

The central control instance, also called controller, enables the configuration
and administration of the network. For reasons of availability or load distribu-
tion, it allows for deployment as a physical or virtual replica in the network.

Programmability allows changing the behavior of a switch using software,
enabling the installation from algorithms or other applications from different
manufacturers - independent of the hardware producer. This feature also
allows the applications to operate above the network layer, at the application
level, regardless of the switch model or operating system.

Additionally, protocol independence allows running different network protocols
such as the Ethernet protocol or the [TCP)/[PIstack. In general, it is possible to
use any standardized network protocol.

30

2.4 Software-Defined Networking

Open interfaces are a prerequisite for vendor independence. This necessity is
especially relevant since the communication between the control and data plane
requires open protocols to connect different switch models with manufacturer-
independent controllers.

[SDNIbrings together many areas that are handled separately in traditional
networks via various[APIs. There are four essential[APIk featuring many ways
of implementation as depicted in Figure [2.6| [Jar+14; Opel6al]:

e The Southbound [AP]l connects the control and data plane.

o The Westbound[API allows communication between different control in-
stances of different domains.

e The Northbound[APlis responsible for exchanging information between
the applications and the control plane.

e The Eastbound[AP]l provides a contact surface for non{SDNlcomponents,
such as the Network Management System (NMS)) or other mechanisms
used in legacy systems.

However, the concept of softwarized networks is not limited to[OF and the
[APIs, as mentioned above. Recently, solutions like P4 [[Bos+14]] or Domino
extend the concept of into the control plane by allowing to define the
feature set provided by hardware components programmatically.

2.4.2 OpenFlow

The most prominent protocol used in this context is OpenFlow (OF)) [[Opel6al.
The usage of a standardized interface between the control and data plane
alleviates vendor lock-in. It allows the integration of heterogeneous physical
hardware into networks built using the[SDN|paradigm. [OFroutes and switches
network packets following so-called flows. Flow tables on the controller and
the network devices determine the routing of said flows.

In version 1.3, released in 2012, the following aspects among others are
specified [[Opel2]]:

o Feature Request: A network device provides information about its capabil-
ities (e.g., the number and properties of ports or the queue behavior).

o Flow Tables Configuration: The editing of the flow tables allows for the
deletion and creation of new flows and their characteristics (e.g., time
limits).

31

Chapter 2: Foundations of Network Security and Modern Networking

1 2
- < >
o . (R

‘ ext X‘

Q> 4 N /11001 o
(771111 o]

External int

Network
\ 4

Internal
Infrastructure

Figure 2.7: A small network with two servers and a switch.

Name Match Priority Hard Timeout Actions
StdFlowl Port-In: ext. 100 - Port-Out: 1
StdFlow2 Port-In: 2 100 - Port-Out: 3
StdFlow3 Port-In: 4 100 - Port-Out: int.

Table 2.2: Flow table for network depicted in Figure

e Port Status: can permanently change the behavior of specific ports
(physical ports on the switch).

e Packet In: If no specific behavior for a situation is defined, a new packet
reaching a network device in the control layer triggers this event.

o Packet Out: These messages allow the control layer to send a response
with the determined instruction for the network device.

The protocol, now available in version 1.5.1 [Opel5]], has been extended to
include the possibilities of using (and coordinating) several controllers, and
the capability of configuring the use of different prioritized flow tables and
queues in the switch [[Opel6b].

Flow tables contain flows that apply actions to packets that match specific rules.
Actions can be the forwarding to a port of the switch, but also modifying

32

2.5 Network-Function Virtualization

Layer 2 and Layer 3 properties of packets. In Figure two servers connect to
an OpenFlow switch. That switch then itself also establishes the connection
between the internal infrastructure and the external network. Table[2.2|shows
the rules on the switch. Packets coming from the external port match with
StdFlow] and directly continue to port 1 of the switch. Packets coming from
port 2 match rule StdFlow2 proceed to port 3 and StdFlow3 forwards packets
coming from port 4 to the internal network. This use case is just a simple
example of how [OF can manipulate traffic routing. Matching rules can be more
sophisticated, as it is possible to match with IPv4 / IPv6 addresses and MAC
addresses, source and destination addresses for each, and the EtherType of the
packets. Table2.3]illustrates matching fields and combinations from [[Flo20]].
More match fields are available at [Ext20]], respectively.

Ingress Src. Dst. Ether Src.IP/ Dst.IP/
Port MAC MAC type Snd.IP Tgt.IP
ANY ANY ANY NO NO NO
ANY ANY ANY 8100 NO NO

ANY NO NO 806 Any Snd.IP Any Tgt.IP
ANY ANY ANY 800 Any Src.JP Any Dst.IP
ANY NO NO 800 Any Src.IP Any Dst.IP
ANY ANY ANY 800 Any Src.JP Any Dst.IP
ANY ANY ANY 800 Any Src.IP Any Dst.IP

Table 2.3: Match combinations in[OF 1.3 [Ext20]

2.5 Network-Function Virtualization

2.5.1 General Approach

Network Function Virtualization (NEV]) is a new paradigm for networks.
Typically deployed on proprietary specialized hardware in the past, these
functions are replaceable by software solutions running on commodity hard-
ware [Chi+12]. Typical examples of such functions are switching, routing, load
balancing, and firewalls Network Address Translation (NAT]) [Tay14]].

The implementation of a function is usually referenced as Virtualized Net-
work Function (VNE), as it is commonly deployed inside a Virtual Machine
(VM) to allow for higher flexibility and scalability.

33

Chapter 2: Foundations of Network Security and Modern Networking

Not every function is suitable for conversion into a[VNE The use of opti-
mized processors or Field-Programmable Gate Arrays (FPGAk) can still be
advantageous due to real-time requirements or the need for many resources at
high network speeds [Han+15].

[VNFEs depend on performance in several ways. First, the network adapters
limit the number and speed of available ports. This limitation complicates
replacing larger switches with VNEs. Second, the I/O subsystem between
the network card and the application can affect the performance. Therefore,
many [NEVIsolutions focus on this issue. Third, the resources provided for the
application (e.g., main memory, CPU cache) can become a bottleneck. [NEV]
shares this challenge with common compute applications [NSV16].

Many [NFVlsolutions are usually implemented in conjunction with special-
ized operating systems or drivers to minimize bottlenecks. Mapping the net-
work functions in software separates the data and control layers. This separation
is one of the central goals of SDNI Although both[NEV|and share this sep-
aration, both paradigms still can be distinguished and viewed independently
of each other. In principle, NEVlis also achievable without separation into data
and control layers. However, in combination, can help to simplify the use
of NEVIby improving the availability, integration, and overall performance of a
system.

2.5.2 Challenges

While NFV offers new flexibility, it also poses several challenges. [Haw+14]]
names the seven areas of (i) security, (ii) computing performance, (iii) VNE
interconnection, (iv) portability, (v) operation and management, (vi) co-exis-
tence with legacy networks, and (vii) Carrier-Grad Service Assurance.

2.5.2.1 Security

[NEVlenvironments require security at a level close to existing propriety network
functions. Security is divided into four functional domains to achieve this goal:

(i) Virtualization environment domain (e.g., hypervisors)
(ii) Computing domain
(iii) Infrastructure domain (e.g., networking)

(iv) Application domain

34

2.5 Network-Function Virtualization

The virtualization environment itself can offer several vulnerabilities. For
example, the hypercall handlers show several attack vectors [Mil+14]]. Many
works [[GAV18; Mil+15]] use the hypercall interfaces themselves to inject attacks
or perform robustness testing campaigns. Furthermore, Hypervisors are long-
running software. Therefore, they are prone to software aging and related
bugs [BS14; Mac+12; Mat+12;|PR18]]. These bugs can lead to security issues.
[Haw+14]] proposes isolating the served virtual-machine space by adding
authentication controls to secure access.

The computing domain concerns itself with the actual execution of the[VNEs
code on the physical hardware. Usually, a VNE is not running exclusively
on a machine or Central Processing Unit (CPU|) but instead shares its re-
sources (e.g., memory, storage) with other virtualized appliances. While
[Haw+14]] proposes secured threads, memory erasure before reallocation, and
encrypted data storage, this only ensures a limited level of security. Attacks
like Spectre [Koc+19]], Meltdown [[Lip+18]|, Foreshadow [Bul+18; Bul+19],
and Foreshadow-NG [Wei+19]] showed that widely accepted presumptions on
hardware security require reevaluation. Existing mitigation approaches are
known to result in severe performance losses [[Pro+18]].

In the infrastructure domain, a similar issue arises. Multiple VNFs share
the same logical-networking layer as well as the same Network Interface Card
(NIC)). However, this domain is less challenging than the two previous ones.
Using secure protocols (e.g., Transport Layer Security (ILS]), Secure Shell
(SSH))) eliminates these concerns. When used, they encrypt all data on the[NIC|
and the lower layers. Those protocols are extensively tested, available on most
platforms, and current hardware often has dedicated acceleration components.

The application domain security is no different for VNFk than for classical
devices. The application code implementation must be secure. However, ad-
ditional security features of modern operating systems can even provide an
advantage for NEV]applications.

2.5.2.2 Computing Performance

When replacing specialized hardware with VNFs running on commodity hard-
ware, this can impact the computing performance and the resulting network
metrics (e.g., the packet throughput at a switch). Since increased flexibil-
ity alone has limited usefulness, an [NEV]solution must be able to match the
performance of the replaced system, at least. [Haw+14]] proposes massive
multi-threading for the deployed applications as well as horizontal scaling over
multiple hosts.

35

Chapter 2: Foundations of Network Security and Modern Networking

Further, the authors advocate independent memory structures to avoid
Operating System ([OS]) deadlocks and the implementation of processor affin-
ity techniques (e.g., Streaming Single Instruction Multiple Input (SIMD)) Ex-
tensions (SSEl) and Advanced Vector Extensions (AVX])). Additionally, they
suggest for VNFk to implement their network stack themselves and to have
direct access to input/output interfaces. Various solutions emerged to engage
these issues. Section [2.5.3]introduces two wide-spread solutions, the unikernel
ClickOS and the Data Plane Development Kit (DPDK]).

2.5.2.3 Interconnection

The classical approach is limited to directly connecting two network functions
or going through Layer 2 ([L2)) switches. In an[NEV]environment, there are
different ways to connect the [VNFks:

(i) Both[VNEk run on the same host and are on the same Local Area Network
(LAN)). Thereby, the machines connect to the same virtualized switch.

(ii) The[VNEs run on the same server but are on different LANk. Packets
pass through the first virtualized switch to the host’s [NIC] then to an
external router or switch and back through the host’s[NICl They finally
reach their destination via the virtualized switch of the second [LANI

(iii) Two different servers host the VNEs. Packets from one machine take a
path via a virtualized switch on the first host to its[NICland then to an
external router or switch. From there, they pass to the second host, enter
it via its [NIC] and reach the second [VNFH via another virtualized switch.

These different modes, on the one hand, allow for additional flexibility and
even host part of an[NEV]infrastructure in the cloud and part on-premise. On
the other hand, this complicates network management and adds additional
waypoints for the packets. Therefore, [Haw+14]| suggests evaluating the appli-
cability of Single-Root I/O Virtualization (SR=IOV]). Some [NICk provide this
feature, allowing connecting VMs to the NIC directly, skipping the virtualized
switch. These interfaces then have higher performance then interfaces pro-
vided by the hypervisor. On the other hand, the hypervisor interfaces allow
for more straightforward configuration and VMImigration. The NEVIworkload
and architecture define which approach is best.

2.5.2.4 Portability

Multiple approaches exist to deploy VNFs [Haw+14]]. Each way features
advantages and drawbacks.

36

2.5 Network-Function Virtualization

Deploying directly on bare-metal hardware ensures a predictable mapping
of software instances to hardware and, thereby, predictable performance. The
drawback is sacrificing resource isolation and, thereby, security. Also, the used
software would depend on a particular[OS or hardware.

Deploying the VNEs through a virtualized environment can improve their
portability by ensuring that the VNE has a uniform view on the hardware
resources. This deployment allows for each VNE to run in its preferred oper-
ating system. The [VNFk are unaware of the underlying operating system and
hardware. Furthermore, this approach ensures the resource isolation required
for some of the previous criteria.

The selection of the deployment approach depends on the application sce-
nario and architecture. The more the scenario requires the flexibility added by
[NEV] the more deployment in a virtualized environment becomes preferable.

2.5.2.5 Operation and Management

Flexible usage of NEV/s capabilities requires a powerful orchestration man-
agement system. Similar to[SDN] this system interacts via northbound and
southbound interfaces [Haw+14]]. Northbound interactions allow managing
and accessing the VNFs. Additionally, VNFEs could use them to query for infor-
mation or ask for additional computing resources. Southbound interactions
provide communication with the underlying infrastructure.

For powerful yet straightforward management, the system should allow
interacting with [VNFs in the form of simple drag-and-drop operations. The
systems require the description of both the [VNFs as well as the underlying
infrastructure using standard templates to facilitate this management.

2.5.2.6 Co-Existence with Legacy Networks

Networks rarely transition from full-legacy to full{NEV]architectures in a single
step. Therefore,[NEV|solutions must be able to co-exist with legacy components.
Thus, they should be able to interact with the legacy management systems with
minimal unintended impact on the existing infrastructure. The network for-
warding graph should stay unaffected by the existence of the[VNEk. Lastly, the
transition between legacy network functions and [VNFs must ensure safeguards
against service interruptions and performance impacts [TK13]].

2.5.2.7 Carrier-Grade Service Assurance

Carrier-grade services give certain guarantees for their hardware, software,
and other components to ensure reliability and availability. [NFV] services

37

Chapter 2: Foundations of Network Security and Modern Networking

must provide the same guarantees to replace legacy systems. Therefore, they
must ensure resistance to failure, service continuity, and service assurance.
Mechanisms that automatically reconstitute VNFk after failure events provide
resilience to failure. Redundantly deploying [VNEs ensures service continuity.
Finally, the management system must monitor the network function perfor-
mance and scale up by deploying additional VNFk. This step provides service
assurance [Tal+15]].

2.5.3 Abstraction Layers

As mentioned before, performance is a significant challenge for NEFV]solutions.
This statement is especially true for some compute heavy-applications like
Here a specific challenge arises. When processing packets, this can either
be done in the kernel space or the userspace. Using the kernel space results
on the one hand in a higher performance but, on the other hand, limits the
capabilities to the features provided by kernel-level modules like IPTables
and NfTables [WA19]]. Running the application in user space adds additional
overhead. When packets come in via the NIC] the data is not directly available
to userspace applications. Thus, the system must copy the data to memory
accessible from userspace. Then the userspace application can work on the
data. If the application modifies the data, this triggers another copying process
back into kernel space before the NIC can transmit the modified data.

Since both approaches have their drawbacks, this triggered the development
of abstraction layers to allow for fast interaction between kernel space and
userspace. This section introduces two approaches to this issue; the ClickOS
Operating System and the Data Plane Development Kit (DPDK]).

2.5.3.1 ClickOS

ClickOS [Mar+14] is a Xen-based unikernel platform optimized for middlebox
processing. Therefore, ClickOS overhauls Xen’s Input/Output subsystem.
These subsystems include the back-end switch, virtual net devices, back-, and
front-end drivers. ClickOS is capable of booting a new[VM]in a few milliseconds
and only adds minimal overhead delay to network transmissions.

ClickOS aims at parallelly running a multitude of VNFs on a single host
and still achieve an impressive throughput. Figure 2.8|shows one hundred
virtualized switches running on a single machine. Still, they are capable of
saturating a 10 GBit/s port. For all packet size except for the smallest, two 20
GBit/s ports can still be satisfied.

38

2.5 Network-Function Virtualization

(o]
n

1 10Gb port 2 10Gh ports
10 Gbls s 20 Gbfs -+

]
=)

—
N

._
o

Throughput (Gb/s)

N
T

64 128 256 512 1024
Packet size (bytes)

Figure 2.8: ClickOS throughput running 100 instances on one core [Mar+14].

Increasing the number of parallel instances has little effect on performance.
Figure 2.9 shows the effect of scaling from 20 instances on one host to 100
instances with little impact. This scalability allows implementing complex
function chains.

2.5.3.2 Data Plane Development Kit (DPDK))

The Data Plane Development Kit (DPDK]) (formerly also known as Intel[DPDK])
is a collection of libraries to accelerate packet processing workloads running
on a wide variety of CPU architectures [[DPD20]].

The original ETSINEFV| white paper [[Chi+12]] declared to be a key
enabler technology for the new paradigm. offers libraries for queue
management, network packet buffer management, and memory management.
These allow fast communication between the applications and the underlying
hardware.

Experimentation results confirm [DPDKIs performance claim. [Kou+15]]
shows that[DPDKIcan outperform the classical LibPCAC by a factor of up to
ten. On a system with an Intel Xeon E5-2560 v3, LibPCAP shows saturation
behavior at around 1 GBit/s when performing while can saturate
a 10 GBit/s. This behavior is reproducible when adding which only
degrades[DPDKIs performance by 19%.

39

Chapter 2: Foundations of Network Security and Modern Networking

Il 64-byte [256-byte [11024-byte

) Il 128-byte [512-byte [11472-byte
&
S 613
M
< 4
4
g 3
ﬁ 2

1

0

Number of VMs

Figure 2.9: ClickOS throughput with varying number of instances [Mar+14].

2.6 Architecture of Current Security Systems

Security architectures evolved in multiple steps. Nevertheless, it still is relatively
static.

At first, services directly connected to the Internet without upstream security
appliances. Service designers did not assume a malicious attempt since, at first,
the Internet provided only connections between research facilities.

In the next evolution with the Internet going public, security appliances
appeared between the external network and the services. These appliances
were (and in many cases still are) mainly dedicated devices with specialized
hardware. Thus, they were usually installed in racks and then interconnected
with the network. Employing multiple security appliances was realized by
connecting these devices in a fixed order. Network architects derived this order
by either following white papers from security vendors like Cisco or HPE or by
performing an educated guess. Only in rare cases, approaches to performance
modeling came into play.

The next step was to integrate multiple services into the security infrastruc-
ture. Figure[2.10]shows an infrastructure with multiple services. The firewall
symbol represents security appliances where different colors determine differ-
ent appliance types. Some security appliances are usable by multiple services
(e.g., the first appliances in the depicted chain). The decision of how many
services a single appliance can handle depends on the performance proper-
ties of the appliance. When designing an architecture, architects derive these
values from datasheets. When extending existing architectures, the number
of services per appliance often grows in a trial-and-error pattern until the se-
curity appliance becomes a bottleneck. In this case, it is possible to augment

40

2.6 Architecture of Current Security Systems

\ 4
\ 4
Y

g — —
m| - m| - m| -
\ — [—] [— [%
- — [- | — [mm| - | — [mm|
I I I 1L 1L 1L 1L 1L

\ 4
Y

Figure 2.10: Sample classical security infrastructure.

The firewall symbols represent security appliances. Different colors indicate
different appliances.

the throughput of the exhausted appliance type by adding further instances
(still in many cases by adding a second physical device in a rack). Figure 2.10]
shows this approach with the second appliance for the top and middle service
(both web servers). In many cases, services can not share all elements of the
security infrastructure (as depicted for the third security appliance for the top
web server, the proxy server for the central web server, and the second security
appliance for the mail server).

We call these chains of security appliances (or security functions) Security
Service Function Chains (SSECk) [[Cho+16]]. An Service Function Chain (SEC)
defines the number and order of security appliances in the chain.

The previously described new paradigms also made their impact on security
systems. With the introduction of SDN] security appliances no longer must have
a direct interconnection. Instead, SDNlenabled networks can reroute traffic to
any security appliance instance, including remote instances in other compute-
centers or even in the cloud following the idea of Security as a Service (SECaaS5)).

Combined with the concurrent introduction of NEV] security appliances
no longer need to be specialized hardware components, but instead, generic

41

Chapter 2: Foundations of Network Security and Modern Networking

computing hardware can provide these capabilities. With the virtualization
of resources, this allows quickly scaling security architectures to meet rising
resource demands by adding additional instances when needed. Since most
attack patterns are unpredictable, reactive autoscalers allow adapting when
attacks occur.

Still, the architectures do not yet adapt the order of the used security appli-
ances. Only in some cases, DDoS Protection System ([DPS]) enablement depends
on whether a service exceeds a specified load level. These on-demand security
appliances are placed in the same position in the every time.

2.7 Power-saving and Boosting Technologies

Nowadays, a multitude of hardware manufacturers exists. Chips are not only
used in desktop computers or laptops but also smartphones and tablets. Partic-
ularly for mobile devices, lower power consumption is quite essential, but users
also will not accept a reduction in performance. Therefore, some manufactur-
ers came up with various technologies for increasing the clock speed while
keeping a reasonable energy consumption. An example of mobile phones ist is
Huawei, with its “Graphics Processing Unit (GPU)) Turbo”-technology [[Hual9]],
for example. They promise up to 60% more performance and 35% less power
consumption. However, in this work, we will focus on technologies for desktop
and server [CPUk.

In this section, we first introduce the technologies from the two leading x86
manufacturers: Intel’s Turbo Boost and AMD’s Turbo Core and Precision Boost
technologies. Then, we discuss thermal, and power management approaches
since they correlate with the limits of the aforementioned boosting technologies.
We use the presented technologies and knowledge in Chapter[7|for an approach
to increase performance and reduce the power consumption of servers.

2.7.1 Intel Turbo Boost

The first version of Intel® Turbo Boost Technology was introduced in 2008 and
followed by version 2.0 in 2011. Compared to classical overclocking, the
is still working in the specifications of its Thermal Design Power (TDP]) — the
amount of heat a chip is specified to admit and the cooling system should
dissipate — but can work for a short period with a higher clock speed than
usual. The technology is independent of the [0S and enabled by default. It
can only be disabled in the and only [CPUlbased, not core-based [Int18]].
Between version 1.0 and version 2.0 of the boost technology, the principle of

42

2.7 Power-saving and Boosting Technologies

operation did not change a lot, but it was improved. Figure shows how
the boost works in general.

>
o
c
o
& o - N) o - N ™ o -
2 o © © © o o © o © ©
w s} o <} S s}) <} <} <}
O O O O O O O O O O
All cores operate at the All cores operate at a Few cores may operate at
rated frequency higher frequency even higher frequencies

Figure 2.11: Visualization of turbo boost [Cas09]]

If the[OS requests extra performance, the activates the boost by itself
and delivers higher frequencies on its cores. Since the headroom is dynamic,
the maximum frequency depends on the number of boosted cores. The lower
the number of boosted cores is, the higher the clock speed of the remaining
cores can be. For a specific workload, the heat and energy consumption limit the
time for a[CPUlin boost-state [[Cas09]]. If an[OS now requests more calculation
power, the[CPUl can increase its clock speed by 133.33 MHz steps, depending
on the number of active cores. For example, if only one core needs boost, there
can be two steps at the same time. There are four different so-called C-States
to see whether a core is active or not: C0, C1, C3, and Cé6. CO and C1 describe
active cores while C3 and C6 count as inactive for the Turbo Boost Technology.
The mentioned C-State definition counts for Nehalem-based only [Int08]].

2.7.2 AMD Turbo Core and Precision Boost

Similar to Intel’s Turbo Boost technology, Advanced Micro Devices (AMD]) also
supports automated overclocking of its[CPUk. This technology is called Turbo
Core. The name outlines the main difference between Intel’s and [AMDI's tech-
nologies. While Intel Turbo boost is capable of boosting all cores at the same
time, Turbo Core can only boost some cores [SR18]. While Turbo Boost in-
creases the clock rate inside a range of up to five steps of 133.33 MHz [Ern19],

43

Chapter 2: Foundations of Network Security and Modern Networking

Turbo Core has only one fixed step of 400 MHz or 500 MHz, depending on the
model [Wall9]]. In contrast to Turbo Boost, where some of the cores are
“electrically off” [[Ern19]], Turbo Core just puts the non-boosted cores into a
deep sleep state. For example, the[AMD|Phenom II X" can boost the 400 MHz
only if three of the six cores are in a deep sleep state.

The Turbo Core technology has its advantages but rarely becomes active
in real-world environments. Often, just fewer cores are running. soon
developed a new and better boost technology as a part of their new Zen product
line to alleviate these shortcomings. They call this new technology Precision
Boost. Version 1 of Precision Boost still retained the limitation, that only a
limited number of cores could be in a boosted state. However, Precision Boost
improved in the way that each core can boost independently in varying degrees.
Table 2.4 shows an example provides for their Ryzen™ 5 1600
processors [[Hal19]].

State Clock Rate

Base Clock 3.2 GHz
1-2 boosted cores 3.6 GHz
3-6 boosted cores 3,4 GHz

Table 2.4: Boost states for[AMD| Ryzen™ 5 1600 processors [Hal19]].

Precision Boost’s second version considerably improves upon this individual
boosting. One can imagine a triangle with the corners labeled as “max clock,”
“heat,” and “power” to understand this process. Now let there be a smaller
triangle within that does not intersect any of the corners. With Precision Boost
version 2, the can now boost and increase the inner triangle until it inter-
sects with one of the corners of the outer one [AMD18]]. Figure shows a
simplified representation of Precision Boost version 1 and version 2.

2.7.3 Thermal and Power Management

Thermal and power management of and [GPUk are becoming increasingly
relevant. The benefits of effective power management range from extending
battery life, for example, in portable devices or to lower energy consumption
in computing centers. As modern processors integrate and include more and
more different functional blocks, like and the budgeting of heat
and power is becoming increasingly crucial. As today’s processors combine
and include more and more different functional blocks like and [GPU] it
is getting more and more important to budget heat and power. Traditional

44

2.7 Power-saving and Boosting Technologies

A Simplified View of Boost

----------------- \ \

CPU Core Frequency

Application Threads
=—Precision Boost —Precision Boost 2

Figure 2.12: Simplified visualization of precision boost [AMD18]].

power and heat sink mechanisms involved shutting off or downclocking of
these functional blocks when they were not required since heat is a by-product
of using electricity. However, this saved heat and power are available to other
blocks. Even so, it is very challenging to evaluate the exact use of power, as
different processes involve a varying amount of power and heat production. For
example, an I/O operation requires less energy than a floating-point operation
due to the required transistor logic [[Adv14]]. The term Thermal Design Power
(TDD) describes the maximum heat and power with which a chip can deal.
As described above, it is possible to save power by down-clocking or deep-
sleeping unused cores. When considering the resulting heat, there are different
strategies to deal with it once it appears. One option is to consume less energy
and therefore produce less heat, but that puts impracticable limits on the
processing power. Still, many useful techniques can deal with the heat. Two
types of thermal management exist “active” and “passive” [[FZ14].

Passive strategies include increasing the conductivity of the surrounding
environment. This approach happens to be rather simple and operates at a
lower power cost without any difficulties [FZ14]. For example, mobile phones,
tablets, or thin laptops use passive cooling systems. So-called heat pipes are
a typical example. A heat pipe is a heat transfer device that combines the
principles of both thermal conductivity and phase transition to transfer heat
between two solid interfaces effectively.

Active techniques are more expensive and mostly more extensive. Neverthe-
less, they provide better thermal conduction [FZ14]. Typical examples are the
fans in desktop computers or servers. Often, heat-management solutions both
approaches. For example, many laptops use heat pipes to transport heat from
various components to a cooling block that that an active fan cools itself.

45

Chapter 2: Foundations of Network Security and Modern Networking

2.8 Modeling Formalisms

Modeling behavior signatures requires modeling formalisms. We use Petri
Nets (PNk) and Colored Petri Nets (CPNk) to model attack signatures in

Chapter 8|
2.8.1 Petri Nets

b1

p1 p1
t }@ t }@ t }O
Ok O

Y p2 D2

(a) Transition disabled (b) Transition enabled (¢) Transition fired

Figure 2.13: Demonstration of Petri net execution using a simple example.

Petri Nets (PNk) are a commonly used mathematical modeling language for
the description of distributed systems [[Pet81]] named after their inventor Carl
Adam Petri. They are a class of discrete event dynamic systems offering an exact
mathematical definition of their execution semantics and an extensive mathe-
matical theory above other modeling standards like UML activity diagrams. A
[PNlis a directed bipartite graph, in which nodes represent places and transitions,
while edges, called arcs, connect either a place to a transition or a transition to a
place, but never connect two places or two transitions directly. Transitions are
events in the system, and places are conditions that need to be satisfied for the
transition to fire. Hence,[PNk are also often called place/transition nets.

Places may contain a discrete number of marks called tokens. Transitions
fire if they are enabled, which is achievable by placing enough input tokens on
the input places —i.e., places directly connected to the transition. The value
of the arc defines the number of tokens required per place. Once a transition
tires, it consumes the required number of input tokens from the input places.
The transition results in creating the specified number of output tokens on the
places with arcs from the transition to them (output places).

Figure shows a simple example of a[PNl Circles represent places, bars
are transitions, arrows are arcs, and dots are tokens. The depicted [PN] consists
of three places, one transition, and three arcs. Enabling the transition requires

46

2.8 Modeling Formalisms

three tokens: Two tokens at place p; and one token at place p». In Figure
only one token is available at p;. Regardless of the total count being three
tokens, with only one token on p; the transition is not yet enabled. Adding
another token to p; in Figure satisfies the requirement and thus enables
the transition. When the transition fires, two tokens are subtracted from the
token set at p; as well as one token from p,. At the same time, the transition
adds one token to p3. Figure shows the state after the transition firing.

[PNk are a powerful tool for modeling [[Che+05]] and allow for extensions to
suit various tasks like queuing PNl for performance modeling. In this work, we
use Colored Petri Nets, an extension to ordinary PNl

2.8.2 Colored Petri Nets

D1 " P1 " P1 "

(a) Transition disabled (b) Transition enabled (c¢) Transition fired

Figure 2.14: Colored Petri Net example. In comparison to the regular Petri net
depicted in Figure the number of required places is reduced
from two to one without reducing functionality.

Colored Petri Nets (CPNk) enable support for tokens of different types, also
known as token colors. Places can now contain tokens of multiple colors. Arcs
can define any combination of the colors for the number of input and output
tokens. This addition allows for making Petri nets more compact.

Figure illustrates the reduction in representation complexity by present-
ing al[CPNlderived from the previous example. The places p; and p, depicted in
Figure are now merged into a single place denoted as p;, while tokens are
now assigned different colors: Tokens formerly placed in p; are now black (1)
and those placed in p; are red (2). The transition now requires two black and
one red token instead of requiring two tokens from p; and one from p,. The
overall Figure[2.14)depicts the same process as before. In Figure[2.14a} one black
token is missing for the transition to be enabled. In Figure this token
is added, thus enabling the transition. Finally, in Figure the transition
has fired, subtracting two black and one red token from p; and adding a black
token to ps.

47

Chapter 3
Related Work

Related work comprises multiple categories. First, we introduce works regard-
ing performance, and protection systems sharing commonalities
with our approach. Afterward, we analyze works on security regarding
security for[SDNJas well as applications for security systems. Then, we
present papers dealing with various NEV] topics as well as Security Function
Chaining (SFCing)). Last, we take a look at an article on NEVIsecurity that has
inspired large parts of this work.

3.1 Intrusion Detection System Performance

Related work in the area of performance mostly deals with either the
measurement of [DS performance or the inference of essential factors on the
performance and optimized signatures.

Sen, in her report “Performance Characterization and Improvement of Snort
as an[[DS" [Sen06]], discusses the performance characteristics of Snort as an
and proposes ways to improve its performance by introducing new data
structures. After a description of Snort’s software architecture, she performed
a series of experiments to investigate the effect of the changes on Snort’s perfor-
mance. Like the first experiment, the dependence of packet sizes on bandwidth
was studied by passing packets of different sizes (46, 64, 152, 1000, and 1452
bytes) through Snort one at a time. The results of this experiment showed that
the bandwidth of Snort increased as packet size increased, thereby indicating a
link between the two. However, it showed that although the packet size has a
dependence on the efficiency of Snort, the number of network packets had a
more significant influence on the throughput. A second experiment examined
the impact of the number of signatures on the throughput. It revealed that as
the number of rules supported increased, the throughput decreased. Finally,
the performance of various pattern-matching algorithms, usable for signatures
in Snort, was analyzed. The correlation between the number of packets and

49

Chapter 3: Related Work

packet size on the bandwidth of Snort was a critical aspect that can be taken
from this paper to evaluate a system for Snort’s performance.

Schaelicke et al. also investigated the performance characteristics of Network
Intrusion Detection Systems in their work in [Sch+03]] As with [Sen06]]
they generated packets of varying sizes (64, 512, 1000, and 1452 bytes) and
tested them against a varying number of rules, performing all experiments on
six different hardware configurations. In their experiments, they also differ-
entiated between the header and body signatures, which examined only the
protocol header or the user data, respectively. The tests showed that with larger
packets, more signature rules could be present before observing a significant
packet loss by Snort.

Moreover, from their experiments, it was seen that microprocessor perfor-
mance was not the only criterion for Snort’s performance. Also, the header
signatures exhibited a high processing load, limiting the packets per second.
On the other hand, payload rules scaled with an increase in packet size.

Meng et al., are working in their report “EFM: Enhancing the performance
of signature-based network intrusion detection systems using enhanced filter
mechanism” [MLK14]] towards improving [NIDS by developing an Enhanced
Filter Mechanism mitigating issues such as network packet overload, expensive
signature matching, and high false alarms experienced in large-scale networks.
The proposed solution consists of three major components, namely (i) a con-
text-aware blacklist-based packet filter, (ii) an exclusive signature matching
element, and (iii) a KNN-based false alarm filter. The evaluation of the solution
used three experiments: (i) using a light-weight DARPA dataset, (ii) using a
real data set collected from a Honeypot, and (iii) in a working network environ-
ment. This paper’s “Context-Aware Blacklisting” that worked on blacklisting
IP addresses with the help of a look-up table, and the “Exclusive signature
matching component” that quickly identified a mismatch increased the signa-
ture matching process, thereby increasing performance. The final results
looked promising.

Other publications examined for their behavior under overload con-
ditions. Alhomouda et al. [[Alh+11]] compared the Suricata and the Snort
This paper focused on determining the packet loss at different network
speeds for the two Various trials evaluated the performance of [TCP]
and User Datagram Protocol (UDP)) applications, with the rate of packet loss
being between 0% and 60%. The testbed consisted of three guest operating
systems, namely Linux 2.6, virtual Linux, and FreeBSD, to compare different
operating system conditions. The different chosen operating systems showed
different characteristics for Suricata and Snort concerning the packet loss be-

50

3.1 Intrusion Detection System Performance

haviors. Therefore, the authors concluded that the choice of [NIDS and the
Operating System used should be dependent on the type of traffic and the
targeted network speed required by the network.

Day and Burns [[DB11]], in their work, also examined Suricata and Snort in
an overloaded condition. In contrast to the publication by Alhomouda et al.,
this paper analyzed accuracy, dropped packet rate, system utilization, and
offline speed. This publication identified the metrics that were responsible for
the characterization of the performance under different situations and which
system resources played a role in influencing these characteristics. These met-
rics included packets per second, bytes per second, protocol mix, the number
of unique hosts, the number of new connections per second, the number of
concurrent connections per second, and the alarms to be triggered per second.
To classify these metrics for their performance effects, selected host resources
needed monitoring, namely CPU utilization, memory utilization, network in-
terface throughput, storage, and page file metrics for both Snort and Suricata.
Additionally, for each the number of packets dropped, false negatives,
true negatives, true positives, and the total amount of alarms were also relevant.
Both clearly showed lower accuracy with higher load.

The work of Tjhai et al. confirmed the issue of the high false-negative rate of
Snort [Tjh+08]. The authors were motivated to investigate the false positive
detections more precisely. Under the division into “true alarm rate” and “false
alarm rate,” they analyzed different frequently used signature sets to their false
positive rate. The paper concluded that the high false-positive rate was one
of the future challenges for the development of NIDSl One of the metrics that
illustrated this work accurately was the true and false positive rate.

The work of Chahal and Nagpal in [[CN16]] continued with the problem of
false-positive subordinate rule sets and developed a concept of the generaliza-
tion of signatures. Similar signatures were combined to reduce the number
of signatures to, in turn, reduce false alerts. Less and more primitive signa-
tures decreased the false positives slightly, but the effect was not sufficient to
significantly reduce the error rate.

While all of these works dealt with either improving or evaluating the per-
formance of DS} none of the works applied SDNIto reduce the load, increase
the throughput, and reduce the false-positive rate of existing solutions as
we do in Section 4.1

51

Chapter 3: Related Work

3.2 Distributed Denial-of-Service Attack Protection

Many solutions against attacks exist. In the following, we present a
selection of solutions relying on[NEV]or

Boite et al. present their solution StateSec in [[Boi+17]]. Statesec is a stateful
monitoring solution for in[SDN}enabled networks. Their primary motiva-
tion is that the conventional approach of polling statistics from [SDN|switches is
resource-expensive. Thus, they move responsibilities from the controller
to the switches and use entropy to detect attacks and portscans. For
their approach, they use stateful as described in [Bia+14]]. This approach
allows using a simple finite state machine on the switches for a distributed
detection of [DDoS attacks, Internet Control Message Protocol (ICMP]) floods,
and portscans. This finite state machine performs traffic monitoring and pushes
the gathered information to the controller. The anomaly detection is performed
partly on the switches and the controller. Last, the controller decides whether
to take mitigation actions. The authors evaluate their approach against
and sFlow in a simulated company-wide network. They show that they can
detect attacks all attacks for regular attacks and for harder to detect slow
attacks, 80% of all attacks, and 85% of all attackers.

Efforts such as FRESCO [Shi+13a]] and AvantGuard [Shi+13b]] aim at provid-
ing frameworks for the rapid design of security mechanisms. AVANT-GUARD
targets the challenge of attacks able to saturate the connection between data and
control plane. The paper proposes a modified data plane, such that it proxies
MCPhandshakes and only informs the control plane of finished handshakes.
The implementation runs inside the[OF switches. Unfortunately, the authors do
not give much detail on that information, so that we can only assume that the
required capabilities are limiting the use of most switch models or might even
force the use of software switches. As mentioned in Section 4.2.3|for the TCP
SYN (Synchronization) packet (SYN]) flood, the paper presents an evaluation
at 1000 pps that hardly allows comparison with our approach.

VFence [Jak+16]] is a scalable agent-based approach to detecting and mitigat-
ing[DDoSlattacks in softwarized networks using[TCPlconnection establishment
spoofing, similarly to our approach. However, VFence, similar to SYNPROXY,
has two limitations: (i) the traffic always has to traverse the VNFs, and (ii) the
VNFs are stateful.

Finally, [Zhe+18] provides a mechanism that uses switches to collect
aggregated information and report to a centralized controller. Due to its central-
ized view of the network, the controller can then detect and react to occurring
attacks. This approach, on the one hand, puts additional load on the
controller, and, on the other hand, the controller can not detect certain types of

52

3.3 Software-defined Networking and Security

attacks due to only receiving aggregated data provided by the switches.
The authors state that they are successfully able to detect[SYNIflood attacks
and throttle their flows. Unfortunately, they omitted detailed results due to
page limitations.

3.3 Software-defined Networking and Security

creates what Qiao Yan and F. Richard Yu [[YY15] refer to as “a very
fascinating dilemma.” On the one hand, it offers a wide range of benefits for
security implementation and management. On the other hand, it suffers from
multiple vulnerabilities that make it a target for attacks. Therefore, related
work in[SDNIsecurity comprises two central topics. First, analyzing the security
impact of concepts and technologies and second, implementing (existing)
security solutions inside infrastructures.

3.3.1 Security for Software-defined Networking

SDNl introduces new security challenges. We first present general concerns
and then focus on[DoSl attacks on [SDNI

3.3.1.1 General Concerns

inherits several security challenges from traditional networks. Moreover,
it brings with it new issues as it implements new sets of components, interfaces,
and techniques. The research demonstrated that attack could target each layer
and interface of the stack. Different attacks can affect not only the func-
tioning of the targeted component but also the availability and confidentiality
of the whole network.

Scott-Hayward et al. [SNS16|] presented a detailed analysis of the security
challenges of SDNI They categorized them by type and concerning the
layer/interface affected by each issue/attack. Table lists the seven main
categories of issues and provides several specific examples of the way how
those issues can turn into vulnerabilities. In [[YL16]], more specific experi-
mentation examines two of the most prevalent network operating systems,
namely OpenDaylight (ODL)) [Med+14]] and Open Network Operating Sys-
tem (ONOS|) [Ber+14]. The authors explored the attack surface of [SDNI by
actually attacking each layer of the stack. Figure 3.1 maps used attack vectors
to the architecture to highlight the component and interface affected by
each attack.

53

Chapter 3: Related Work

3)e)g SIOMIBN] JO ANTIGISIA JO oe]
"3'9 ‘AJINdoG N[(JS[PALTWIRISAS

SN N
S SN

S SN

SUIuoISIA0L] 2IN03G JO Yoe]

JUDUIdIOFUS ADI[O]

uondopy anbruyoay, uonyedIULYINY JO o]
‘39 ‘senssjuorjein3yuo))

Surpoor] o[qeL, MO[] YouMmg
POO[UOT}LTUNUWIWO.) YDIMG-IS[[OIIU0])
‘39 ‘eo1Ad9GJORIUR (]

UOTIaSU] S]] Jus[npner]
‘80 ‘suoryeoridd ypasturoaduro)) /snodireA

s3¥de AJIPOIA O} UOT)EIYIPOIA Sy MO
‘80 ‘uoryesyrpoNereq

S S S

(s1sAreury Suruur, 3urssa00i1) A19A00SI(J Ad1[OJ SUTpIemIo]
(seyedyyniIa)) ‘sA9Y]) yuswaSeur A [eRULPAI))

(roymg mduy uo ey PuuRYD) 9pPIG) AI2A0ISI(] S[NY MO[]
‘80 ‘a8exearTerReq

/

/ /
/S /S

‘39 “‘uonyenrddy pajednyusyneun) /pazroyneun
Supydeli I9[[01)U0)/SS300Y IS[[OIU0)) PIZLIOYINeun)
‘39 ‘sse0oy paziioyjneun

19he
eje(q

S0BJISIU] IoAeT] SDBJISIUL
eled-pD pd po-ddy

12he
ddy

pa3ad1e] 10 padRyy 1A NAS

anssy A31mdag

Table 3.1: Categorization of the security issues associated with [SDN]| frame-

works by layer/interface affected [[SNS16]].

54

3.3 Software-defined Networking and Security

Service Chain Interference “ - m System Command Execution :

Northbound API Abuse Resource Exhaustion ,
: Control Message Abuse Application Layer '

_ Northbound APl [

SDN Controller

] . Internal Storage Manipulation '
Packet-In Flooding : Network Operating System X 3
: Control Message Manipulation

System Variable Manipulation : —_— I
Network Topology Poisoning '

, X Control Layer ;

Southbound API

/
/

/

Control Control -
Channel Channel s
v \ .

/,’ ‘\\ : Switch Firmware Control Message Manipulation

o — ittty |
Channel” : Firmware Abuse
Flow Table
SDN Switeh SDN Switch Flow Rule Flooding
: HW SW

| Infrastructure Layer :

Figure 3.1: Overview of misuse and attack vectors against[SDNI [[YL16]].

3.3.1.2 Denial of Service in Software-defined Networking

As shown in Table is one of the leading security issues in In
addition to traditional attacks, the intelligence centralization and vertical
split into three main functional layers (infrastructure, control, and application)
expand the attack surface and inspire attackers to develop new techniques.
Those attacks are classifiable into three categories depending on their target in
the architecture.

Application Layer Denial-of-Service Attacks

Two methods can disrupt regular traffic to and from the application layer. First,
directly targeting an application may consume the resources allocated to it,
and results, therefore, in denial of service. Furthermore, it can affect other
applications since the isolation of applications and resources in[SDN|remains
an issue [[YY15]. Second, the whole layer can be isolated from the control layer
by targeting the Northbound [APIl

55

Chapter 3: Related Work

Control Layer Denial-of-Service Attacks

A denial of service in the Control layer can arise by targeting any of its compo-
nents: (i) the controller, (ii) the Northbound [AP]] (iii) the Southbound [API]
(iv) the Westbound[AP]) or (v) the Eastbound[APIl For instance, forcing differ-
ent applications to generate many conflicting flow rules may lead a controller
to an unpredictable state. Besides, new flows, with no match in the flow table,
requires that the data plane sends a Packet-In event to the controller to ask for
new rules. Generating a large number of distinct flows leads to a large volume
of packet-in events. This attack may, thus, exhaust the system resources of an
SDN controller machine, as well as the channels between switches and the
controller [[Zha+16]].

Infrastructure Layer Denial-of-Service Attacks

In this kind of attack, attackers exploit weaknesses in switches and the
southbound [APIl A typical [OF switch consists of a switching Application
Specific Integrated Circuit ([ASIC]) and an OpenFlow Agent ((OFAl). The first
component is a piece of hardware holding one or more flow tables. Then,
the second is a software agent responsible for the communication with the
controller through the control channel.

As mentioned, the switch needs to install new rules to handle incoming new
flows. In this process, the generates flow requests and sends them to the
controller. In the meanwhile, the switch stores the packets belonging to those
flows and waits for the controller to answer. Generally, the number of flow
requests sent per time unit is limited.

Wang et al. [Wan+14]] demonstrate that hardware switches like HP Procurve
and Pica8 Pronto can only generate less than 1000 requests per second. Over-
whelming this bottleneck saturates the control channel, overloads the memory
of the switch, and forces it to drop legitimate flows.

Moreover, generating fake flows fills the flow tables with useless rules. The
switch keeps those rules as long as the flows are active. Consequently, rules for
normal network flows can not be stored [Sez+13]].

3.3.2 Software-defined Networking for Security

SDN provides multiple opportunities, not only to revisit old security con-
cepts but also to introduce new techniques. As mentioned in [[YY15]], multiple
features can be useful to enhance network resilience. Network-wide
knowledge, cumulated in the controller, facilitates the validation of security

56

3.3 Software-defined Networking and Security

policies. Besides, it enables quick identification and resolution of any con-
flicts [McB+13]]. As a result, consistent security policies can be built and
maintained. Fourth, supports software-based traffic analysis. The latter
opens the door wide for innovative ideas and can employ all kinds of intelligent
algorithms, databases, and any other software tools.

The study by Chi et al. [Chi+14]] presents different concepts on how to
integrate the Snort[[DSinto an[SDNFbased network. Based on the traditional
approach, where a switch mirrors the traffic for the[DSby copying it over to an
additional port, this could also be done in the context using flows. When
an alarm occurs at the [DS| the controller initiates a rule installation on
the switch. The switch then blocks the traffic similar to a firewall. Another
method presented is the implementation of an IDS as a controller application.
The controller-level [DSlinspects the traffic sent to the controller at a Packet-In
event. This co-location makes it possible to forward or reject the traffic directly.
This proposal is resource-intensive and is not recommended by the authors
since the Packet-In event’s purpose does not fit this type of traffic handling. A
third proposal includes a parser that emulates[OSIllayers two to four signatures
using flows. This approach installs said flows only once on the switch to filter
traffic and, thereby, reduce the load on the IDS. Some of the concepts presented
in the study provide feedback between the and the controller. This
concept is also part of the approaches in this thesis.

With[SDNIPS| Xing et al. present a parser [Xin+14]] that uses the information
from alerts about attacks and installs rules in the network from this information.
In their testbed, they use a server with Xen hypervisor, Open vSwitch, and Snort
as to map a network node in a virtual environment. Snort generates a file
in JavaScript Object Notation (JSON]) format for each attack, which is evaluated
by a background process. This process extracts the source and destination
IP address, as well as the source and destination [TCPl ports, from the alarm
to create new rules for this combination on the Open vSwitch. The actions
of the rules are traffic diversion, filtering, and isolation. In the evaluation,
the authors compare the new approach to a traditional network where Snort
operates as an[[DSand reports the alerts to the Linux IPtables firewall. As the
number of [CMP|attacks (in packets per second) increases, the detection rate
of Snort in the traditional approach continuously decreases. At the same time,
for up to 25,000 packets per second still detects over 95% of attacks.
This paper shows the achievable performance gain when transferring [DSto a
software-defined approach. The article does not give exact information about
the type and number of flows that the method installs on the Open vSwitch after
attack detection. An indication of the required [OF version is also missing. This

57

Chapter 3: Related Work

information is essential to be able to quantify the performance requirements
for Open Flow switches, which are necessary to transfer the concept to a native
setup. Apart from the attack detection rate and the CPU utilization of the server,
the authors name no other metrics. They neither measure the delay caused
by and the network throughput, nor do they perform an analysis of
attacks for false positives. Therefore, the evaluation is missing essential metrics
about the performance of the presented approach regarding performance and
security. In parts, the testbed used is similar to the scenarios used for this
thesis (see Section [4.1)). However, the evaluation of the approach in the paper
is incomplete. Although we follow related paths in this work, they differ in the
flow actions and the metrics measured.

Yoon and others have designed and implemented the security functions fire-
wall and as[SDNHbased applications [[Yoo+15]]. A PacketIn event triggers
sending traffic to the controller and processing it by a corresponding ap-
plication. The firewall comprises various security policies, which result in the
forwarding or filtering of traffic. The implemented can read and process
existing Snort signatures. In a discussion, the authors compare the advantages
and disadvantages of the procedures. For this purpose, they paid attention to
compliance with [SDN|paradigms and evaluated and weighted their violations.
Finally, they evaluated the two approaches in different testbeds with different
servers and native switches. Here, the [DS was operated both as an in-line
equivalent and as a passive [DSllike a mirror port in classical networks. For the
evaluation, the choice fell on the byte throughput metric. The implemented
stateful firewall also underwent an examination concerning the delay. Met-
rics regarding attack detection or CPU usage of the controller server were not
measured.

3.4 Network Function Virtualization

Multiple works deal with the NEFV| domain. They either deal with (i) NEVI
frameworks, (ii) methods to benchmark [NEV]frameworks and [VNFs, (iii) the
possibilities that[NEV] offers in combination with[SDN] or (iv) the implementa-
tion of network function as[VNFE.

Regarding the different available frameworks for developing high-
performance virtual network functions, Barbette et al. [BSM15] as well as
Gallemnueller et al. [Gal+15] provide a detailed comparison of various de-
velopment kits and deployment frameworks and present their different fea-
tures. These frameworks, like DPDK] netmap, and PF_RING, provide high-
throughput, low latency network IO by bypassing the network kernel of the

58

3.5 Security Function Chaining

operating system. Also, the recently proposed XDP framework [[Hoi+18]] bases
on the extended Berkeley Packet Filter. It allows the implementation of network
processing functionality directly within the operating system kernel, albeit
with limited processing complexity. Finally, the availability of P4-enabled de-
vices and other Smart NICs allows the offloading of VNF functionality onto
programmable hardware [KV16]. Note, that due to the complexity of the
network function developed in this work, the choice fell on[DPDKlas the devel-
opment framework due to it providing high performance while maintaining
implementation flexibility.

In the context of the performance evaluation of softwarized network func-
tions, [|Chi+12]] provides an extensive list of best practices and caveats and
[Bon+15] and [Lan+15] performed similar performance benchmarks of soft-
warized network functions. Moreover, the authors of [RBR17]] and [|[Cao+15]]
present different frameworks for the performance evaluation of network func-
tions in virtualized environments.

A detailed investigation related to the use cases of SDN and NFV in the
context of network security, as well as the advantages and disadvantages of
these approaches, is presented in the survey by Lorenz et al. [Lor+17]]. Farris
et al. provide an extensive overview of emerging SDN and NFV security
mechanisms in the context of the Internet of Things [[Far+19]|.

Security services are a typical example of traditional network service func-
tions that can benefit from adopting NFV]and dynamic[SFC. First, NEV]offers
additional flexibility and elasticity, thus, allowing to adapt the security func-
tion to attack volume and composition. In select cases, [VNFEk succeed even to
outperform traditional instances. To illustrate, Bremler-Barr et al. [Bre+14]]
extracted the functionality from Snort and converted it into a common
service VNEl The authors validated their approach on a single Snort-based
service in an emulated environment. The tests demonstrate that the
[DPTVNE performed 67% to 86% better than two separate traditional Snort
instances.

3.5 Security Function Chaining

allows enabling [NFV] infrastructures with In this section, we
introduce several approaches to function chaining.
In addition to introducing the possibilities for dynamic [SSECE, also
allows augmenting them with traffic and application awareness [Li+17]].
Many solutions rely on and [NEV] in the context of resiliency.
Bohatei [Fay+15] is a flexible and elastic demonstrating the advantages

59

Chapter 3: Related Work

of these emerging network management paradigms. It consists of an
running on[VMk scaling elastically concerning the volume and composition of
the attack. Bohatei steers suspicious traffic through the defense VMk and, at
the same time, minimizes user-perceived latency and network congestion. The
evaluation proves that this solution can handle attacks of hundreds of Gbps.
It is also able to mitigate multiple dynamic attack strategies successfully. It is
notable that Bohatei also responds to several canonical attacks in less
than one minute.

Blendin et al. state in their position paper [Ble+14]] that while[NEV|“promises
high flexibility and lower costs for network operators at the same time,” the
chaining of network services remains a demanding challenge. This challenge
arises due to frequently changing operator requirements and resources for
new service functions requiring fast deployment and scaling capabilities. A
significant issue is that upon the release of the work, preconfigured service
chains consisting of static configurations were prevalent. Such static rely
on using fixed hardware and software configurations with little to no flexibility.
Thus, the adoption of existing service chains to unsteady requirements needs
a time-intensive and manual reconfiguration. The authors introduce three
available solutions: (i) Network Service Headers, (ii) StEERING, and (iii) SIMPLE.
Using specialized interfaces network service headers allow realizing service
chaining. StEERING relies on Layer 2 header modifications to accomplish a way
of not allowing mapping of packets to users and service chains. Third,
the SIMPLE approach is to correlate packet headers on entering and exiting
the traversed [SECk. This approach is complicated and requires accurate packet
matching. Also, the method only applies to[SECk, where all packets that enter
an[SEC]also exit the The authors then propose an[SDNtbased approach
avoiding packet-based matching. They aim at simplifying the deployment
process to minimize network configuration changes over the deployment by
isolating service instances. The concept for applies [OF and Layer 2
addresses to identify the service instances. Thus, it can map traffic to its user
and service chain using ingress and egress links for reference points. The paper
also includes a proof-of-concept implementation demonstrating its feasibility
and usefulness.

Mohammed et al. present an “SDNl controller for Network-aware Adaptive
Orchestration in Dynamic Service Chaining” [Moh+16]]. Emerging technolo-
gies like and [NEV]introduced new architectural models and techniques
for and the orchestration of application and network services. The
problem presented by the authors is the effective deployment and governance
of such scenarios. The paper’s idea is to offer effective management and or-

60

3.5 Security Function Chaining

chestration mechanisms through an[SDNIcontroller and provide a Northbound
Interface that allows applications to describe their network requirements
without requiring details of low-level implementation. The proposed con-
troller underwent testing using Mininet and various topologies of the network.
Results show the load balancing capabilities during complex traffic chaining
function and that no packets elude elements of the chain when reconfiguring
data transmission routes. However, such a feature also raises the delay and the
total number of messages transmitted in the network. In summary, the paper
introduced an[SDNJIframework that handles and orchestrates[SDNl|applications
efficiently, thus providing a Northbound [AP] for apps to explain their
specifications without having low-level network information.

StEERING [Zha+13] is a system for dynamic routing of traffic through any
middlebox series. The problem the paper addresses is that there are no pro-
tocols available in classic networks for routing traffic through middleboxes.
Providers have no choice but to use low-level and complicated software to
produce the desired chaining, giving network operators the freedom to di-
rect traffic in compliance with consumer granularity and form of traffic. The
proposed framework has four design requirements:

o Efficient routing of traffic by ensuring traffic only passes through a chain
specified by the network operator and without passing through unneces-
sary middleboxes.

e Versatility by simplifying adding or removing service chains, and sup-
porting specific policies for subscribers, applications, and operators.

e Support for a high number of rules and the ability to scale with the growth
of subscribers and applications.

e Enable every form of a middlebox to be implemented independently of
its provider.

In summary, the paper describes a structure within a Software-defined Network
for handling traffic across middleboxes. StEERING’s powerful forwarding and
scalability proved themselves in a prototype implementation, which results in
significant reductions in latency.

In their paper “Dynamic Chaining of Virtual Network Functions in Cloud-
Based Edge Networks” [Cal+15]], Callegati, et al. discuss space and time diver-
sity regarding service chaining. Explicitly, the nature of the control plane
within a cloud-based edge network is studied by looking into the necessary
actions provided in[OF switches to accomplish dynamic service chaining inside
network feature implementations of Layer 2 and Layer 3. The authors define

61

Chapter 3: Related Work

the steps required to achieve network function chaining. The paper introduces
proof-of-concept implementations for dynamic feature chaining utilizing Layer
2 and Layer 3, which demonstrates that dynamic service chaining is possible in
and that[SDNI controller architecture offers possibilities for streamlining.
Numerous Mininet emulations checked the implementations, showing that
dynamic function chaining functions in

Multiple papers state which topics in the area of are still open. These
topics include (i) rule anomalies [Li+18], (ii) intelligent positioning [Lui+15],
(iii) and effective provisioning [Sha+19].

3.6 A Security Plattform for Network Function
Virtualization

Security Function Chaining is a significant component of this work
and essential for complex NEV]security frameworks. The first inspiration for
this work was the “Security Position Paper: Network Function Virtualization”
by Milenkoski et al. [Mil+16]]. This position paper from the Cloud Security
Alliance (CSAJ) is concerned that with the rise of cloud infrastructures, security
risks have risen as well. The document, therefore, discusses security issues
and concerns for NEV]environments. The authors propose six NEV]security
challenges.

(i) Hypervisor dependencies: Currently, the market is dominated by only a
few hypervisor distributors, with many vendors looking to become mar-
ket players. Like their vendor counterparts for the operating system,
these vendors must solve security vulnerabilities in their code. Proactive
patching is critical. Such providers must also understand the underlying
infrastructure, e.g., how packets move within the structure of the network
and different types of encryption.

(ii) Elastic network boundaries: ThroughoutNEV]solutions, the architecture of
the network accommodates many features. The placement of physical
controls depends on their position and the length of the cable. In[NEVI
architecture, these boundaries are vanishing, complicating security issues
because of the unclear boundaries. Traditionally, using Virtualized Local
Area Networks (VLANE) alone does not meet the security requirements
even though physical separation still can be necessary for some uses.

(iii) Dynamic workloads: The benefit of NEV]is its versatility and dynamism.
Traditional models of protection are stagnant and incapable of changing

62

3.6 A Security Plattform for Network Function Virtualization

when network topology shifts to react to requests. Introducing security
services into NEV]architectures often encompasses having to rely on an
overlay model that does not easily coexist across the seller’s borders.

(iv) Service insertion: Since the fabric routes packets that meet configurable cri-
teria intelligently, NEV] promises elastic and transparent networks. Tradi-
tional network managers deploy security controls logically and physically
in-line. With NFYV, there is often no simple insertion point for security
services not already integrated into the hypervisor.

(v) Stateful versus stateless inspection: Today’s networks require redundancy
at the system level and along the network path. This route redundancy
creates asymmetric flows that present challenges to stateful systems that
need to see each packet to provide access controls. During the last decade,
security operations based on the premise that stateful inspection is more
advanced and superior to stateless access controls. NEVImay add addi-
tional complexity where security controls can not handle the asymmetries
created by multiple redundant routes and devices in the network.

(vi) Scalability of available resources: As noted earlier, the appeal of NFV lies in
its ability to do more with fewer data center rack space, electricity, and
cooling. The dedication of cores to workloads and network resources
enables the consolidation of resources. DPI technologies — for example,
next-gen firewalls and TLS decryption — are resource-intensive and do
not always scale without offload functionality. Security controls must be
universal to be effective and often require significant computing resources.

Based on these challenges, they also infer six risks when deploying and
[NEVlin cloud environments: (i) NEFVland hypervisor compatibility, (ii) sys-
tem availability, (iii) SDNlarchitecture, (iv) SDNJimplementation, (v) policy
consistency, and (vi) compatibility with Infrastructure as a Service ([aaS)

On the other hand, they also envision opportunities for an NEV] security
framework. Such a framework can reduce deployment and management re-
sources by using commodity hardware. Moreover, such a framework could
offer additional flexibility regarding (i) on-Demand deployment and scalabil-
ity, (ii) dynamic threat response, (iii) global and realtime view, (iv) flexible
response, and (v) NEFVland enabling software-defined security.

Next, the authors propose a security framework that can adapt the ordering
of its security appliances depending on an incoming attack. They detail an
enterprise-grade architecture for such a framework.

63

Chapter 3: Related Work

This work inspired this thesis. Therefore, on the following pages, we will
propose and evaluate [VNFEs solutions to integrate inside an[SDN}enabled net-
work. Next, we will present our approach to allow the dynamic adaptation of

IGSECk to malicious traffic.

64

Chapter 4

Augmenting Single Security Functions
using Software-defined Networking

The amount of attacks that security functions must take care of grows at a
rapid pace. This growth exceeds the growth of computing resources relative
to their price. Thus, these circumstances force service providers to increase
their spending on hardware or cloud resources for security functions leaving
less budget for the actual service, research, and development or even making
services unprofitable.

In our opinion, the best approach to counter this effect is to increase the
efficiency of single security functions and the combination of multiple security
functions. This chapter deals with single functions while Chapter 5/ deals with
multiple security functions inside [SSFCh.

We present a solution to dynamically bypass[[DSJto the end of increasing the
throughput of the system while keeping security metrics at a high level. To this
end, we leverage to reroute the traffic when needed.

Furthermore, we introduce a solution to combat[TCPISYNIflood attacks. By
using and [NEV] we alleviate the shortcomings of existing solutions for
this attack.

Research Questions

In this chapter, we will tackle several research questions. All of the following
research questions are part of the meta-research question MRQ 4: How and to
what extent can [SDNl help improve the performance of (security) network functions?.
The numbering of these research questions maps to the sections of this chapter.
If a section deals with more than one research question, those questions have
their number appended by ascending Latin letters.

RQ4.1a How can[SDNlbased approaches improve Intrusion Detection Sys-
tems?

65

Chapter 4: Augmenting Single Security Functions using [SDN]

RQ4.1b What effects do bypassing approaches have on the performance and
security of Intrusion Detection Systems?

RQ4.1c How do adaptive approaches, which perform reconfigurations at run-
time, compare to static approaches?

RQ4.1d How do different workload levels impact the performance and security
of the[SDNMbased approaches?

RQ4.1e Do the [SDNtbased approaches change their behavior when using
hardware or software switches?

RQ4.2a How can[SDN}based approaches improve DDoS Protection Systems
against[SYNIflood attacks?

RQ4.2b What is necessary to make such a solution stateless and independently
deployable?

RQ4.2c How does such a solution perform compared to existing solutions?

RQ4.2d To what extent grade can parallelization improve the performance of
such a solution, and how vital is parameter-tuning?

RQ4.2e Which deployment and scaling strategies suit the solution?

Chapter Structure

We at first present, implement and evaluate a solution to bypass dy-
namically using in Section Next, we introduce TCP Handshake
Remote Establishment and Dynamic Rerouting using Software-defined Net-
working (THREADS]) — a[DPDKtbased and SDNFenabled security function to
mitigate TCPISYNIflood attacks in Section Last, in Section 4.3 we conclude
the chapter with an analysis of the gathered answers to the previously stated
research questions.

4.1 Dynamic Network Intrusion Detection System
Bypassing

In addition to firewalls, using has become a security standard for data

centers. The constant work of security researchers and the community ensures a

regular surge of new signatures for @to defend against attacks. However, the
use of NIDS|is proving inflexible for cloud solutions, which must react to new

66

4.1 Dynamic Network Intrusion Detection System Bypassing

requirements within the shortest possible time. As and [NFVlsolutions
are increasingly finding their way into data centers, the question arises as to
whether and how active cooperation between these systems and can
contribute to further gains in performance and security.

This section comprises the following contributions to evaluate the potential
of and [NEV] solutions.

We design[SDNbased algorithms for handling network traffic, including the
detection of attacks by the

Adaptive Blacklisting: The traffic of specific (potentially untrusted) protocols
reaches the for a defined time interval. If the traffic of a considered
connection triggers an alarm in this interval, it becomes permanently
redirected via the Other traffic continues without redirection.

Adaptive Whitelisting: Only whitelisted (trusted) protocols pass directly to
the destination. The remaining traffic passes through the If the
traffic from a specific connection does not trigger an alarm after a certain
number of transmitted packets, the traffic of this connection is whitelisted.

Selective Filtering: Incoming traffic of selected protocols is permanently redi-
rected via the and only then forwarded to the original destination.
Outgoing and other incoming traffic usually continue to the destination
without the detour via the

We implement these algorithms as an[SDNFController App. We then perform
multiple experiments inside a testbed environment to measure the performance
and security metrics throughput, successful HT TP requests, TCPlhandshake
duration, request residence time, and detection rate of attacks by the
From these metrics, we derive further security metrics, as described in Sec-
tion2.1.2.11 We evaluate and discuss the results of the measurements and the
computed metrics during the experiments.

The results are promising. The dynamic approaches can remove a majority
of the negative performance impact from the The detection accuracy
remains high within the margin of error to 100% in most scenarios. However,
this only applies when using a software switch. When applying the algorithms
on a hardware switch, this switch reduces the improvements in performance.

Furthermore, the detection rate falls to inferior values, while the other security
metrics stay high. The Selective Filtering shows that, with little effort, a static
solution can improve performance. While it does not reach the performance of
the other approaches, the hardware switch has only a marginal effect on the
performance of Selective Filtering and does not reduce detection accuracy.

67

Chapter 4: Augmenting Single Security Functions using [SDN]

In Section we present the underlying problem and our approach. We
detail the implementation of the approach in Section and evaluate it in
Section Finally, Section discusses the results and concludes this
topic.

4.1.1 Approach

In this section, we describe our approach aiming at increasing perfor-
mance while still maintaining appropriate security metrics. We first describe
why [NIDS| performance can often become a problem. Next, we introduce our
two dynamic algorithms, “Adaptive Blacklisting” and “Adaptive Whitelisting.”
Finally, we present a more straightforward and static (no dynamic insertion
of new rules at runtime) approach “Selective Filtering” to the problem as a
baseline for comparison to our dynamic algorithms.

4.1.1.1 Problem Statement

We introduced in Section[2.3.1} There, we also provide further information
(e.g., classification). In the following, we will use real-time, misuse-based,
and non-distributed A is a software application or a hardware
device that is generally placed inline at a point before entering into an internal
network. A is responsible for monitoring and analyzing the network
packets for any anomalies or to detect malicious behaviors. Based on predefined
rules, the[NIDS|either drops malicious packets or forwards the packets, thereby
protecting the entire internal network. The current implementations of
usually make use of a technique called inspecting the whole network
packet in detail, including headers and body. Previous studies show that the
time required for [DPIldepends on the examined protocol as well as the type
and number of rules/signatures present in the

Consequently, such detailed analyses of the[DPIltechnique require many com-
puting resources, resulting in making them a likely bottleneck in the network
infrastructure. The can turn into a bottleneck, as well, as they require
inline placement before entering a corporate network infrastructure to also act
as Also, studies have shown that under overload conditions, can
experience packet loss, introduce network delays, and thus result in reduced
network bandwidth.

Additionally, under overloaded conditions, employing can resultin a
high number of false-positive alarms making them useless and ineffective in the
network. It is possible to counter these deficiencies by adding multiple
instances and load balancers. However, this is (i) very expensive, since the

68

4.1 Dynamic Network Intrusion Detection System Bypassing

massive performance demand from [DPIlrequires more resources for the [NID:
than for the actual protected service. We later show that for the used ruleset,
it takes twelve [NIDS instances to handle a 1 GBit/s link. Furthermore, (ii) it
can open new vulnerabilities (e.g., in the load balancer). Also, new botnets
are capable even to overload scaling security solutions [Kol+17a]]. Therefore,
alternatives to just adding additional resources need exploration.

Furthermore, attacking hosts launch most of the attacks as fast as possible
so that the host stays in contact with the victim machine for the least amount
of time. A short connection duration allows reducing the chances of an attack
getting detected. This characteristic creates an opportunity to design adaptive
algorithms that make use of such findings to dynamically adjust the routing
of packets either to the or directly to the protected service. These by-
passed packets would not require any computing resources on the[NIDS freeing
resources to analyze the remaining packets.

4.1.1.2 Initial Situation

SDN Ctrl.

Figure 4.1: Traditional Switching: Direct routing from source to sink. [NIDS
inline mode is possible with a single SDNI Flow.

In the initial situation, the network consists of three segments, as shown
in Figure First, an external network (in most cases, the Internet) is the
source for potentially malicious network packets. Next, the security portion of
our network consists of an[SDNlenabled network (represented by a switch),
an[SDN] controller, and the Finally, the third segment is the protected

69

Chapter 4: Augmenting Single Security Functions using [SDN]

internal network. In the default configuration of all components, all traffic is
routed directly between the external network and the internal network. Hence,
the default configuration provides no protection. Resembling the inline deploy-
ment typical for requires a single additional flow. This flow forwards all
packets from the external network to the Then, it forwards the benign
packets received back from the to the internal network.

4.1.1.3 Adaptive Blacklisting

Figure 4.2: Connection establishment via adaptive Blacklisting. The switch
queries new connections for observed traffic types with the con-
troller (Flow 1). The controller creates a new flow forwarding traffic
to the (Flow 2). If no alert occurs for some time, the network
directly forwards traffic to the service host (Flow 3).

Adaptive Blacklisting distinguishes between blacklisted and non-blacklisted
traffic. The principle behind Adaptive Blacklisting is to initially only route those
packets from applications, services, and protocols via the for which the
has configured signatures. Therefore, this approach puts traffic types
with signatures on the blacklist. Blacklisted traffic can, but does not necessarily
have to be, malicious. The does not route traffic for other services via the
and instead forwards it directly to its destination without redirection.
This distinction eliminates the load on the from traffic for which it does
not have any potentially matching signatures.

70

RQ
4.1a

4.1 Dynamic Network Intrusion Detection System Bypassing

In contrast to the existing static blacklisting approaches (e.g., the Selective
Filtering described in Section[4.1.1.5), when using Adaptive Blacklisting, con-
nections are removed from the blacklist once they have not triggered an alarm
for a certain amount of time. When a new connection supported by the
arrives, the system requests for instruction from the controller, as depicted as
Flow 1 in Figure After confirming that the requested connection is indeed
new and not already in the database, the controller creates two flows with
different durations. The first flow forwards the network traffic to the
The figure depicts this flow as Flow 2. This flow has a higher priority but a
shorter lifetime (X). Many attacks have to occur within the first few packets
after establishing a new connection, so that they give an administrator the
least amount of time to detect them or because the vulnerability only occurs
at the beginning of a request. Therefore, once the lifetime of Flow 2 times
out, a second flow (Flow 3), created at the same time as Flow 2, forwards the
traffic directly to the host destination by bypassing the This flow has a
lower priority but a higher lifetime (Y). If the detects attacks in packets
traversing Flow 2 before Flow 2’s lifetime (X) times out, the controller
makes Flow 2 is permanent, and all the traffic from this host will pass through
the without compromising the system.

Our solution allows configuring the lifetime timeouts described before, i.e.,
if to achieve higher security (larger ratio of packets routed via the [NIDS) and
accept lower performance, an administrator could configure longer timeouts.
Lowering the timeout values results in potentially lower security (potential
premature direct routing of malicious packets) and higher performance. Ad-
ditionally, we can configure a timeout for the lifetime of bypassing the
(Flow 3) to be either permanent or temporary. In the permanent mode, once
the rules allowed the source host to bypass the NIDS| its traffic will never pass
through the again. On the contrary, in the temporary mode, the state
from Flow 3 will switch back to Flow 2 to recheck if the connections are still
benign. Having the algorithm run in temporary mode also helps ensure that
the switch clears its flow tables regularly, and does not lead to overflow of flow
tables in the switches. In permanent mode, it is possible to eliminate inactive
rules by setting a soft timeout. A soft timeout removes rules without traffic,
triggering them for more than a configured amount of time). An alternative
— if the protocol supports it — is adding another detection in the controller to
detect a disconnection sequence (e.g.,[ICPfs connection termination [DSC74]).
Hence, we expect this adaptive algorithm to reduce significantly the number
of packets that pass through the NIDS| which, in turn, increases the
performance and keeps the utilization of the host low.

71

Chapter 4: Augmenting Single Security Functions using [SDN]

4.1.1.4 Adaptive Whitelisting

Figure 4.3: Procedure for handling a connection by Adaptive Whitelisting. The
switch queries the controller for non-whitelisted traffic (1). The
controller creates a flow diverting the traffic to the (2) and
then queries the for the observed attacks (3). If recorded
attacks lie below a threshold after a fixed time, the diversion stops.

The fundamental concept behind Adaptive Whitelisting is that unlike the
Adaptive Blacklisting, it does not necessarily require any knowledge about the
configured signatures in the This approach at first routes all the network
traffic except for optional explicitly whitelisted traffic types via the

For every connection, the receiving component initially queries the
controller, which creates a flow via the If, after a preset number o of
packets, the NIDS has raised less than /5 alerts, the traffic becomes whitelisted,
resulting in an additional network rule. The subsequent traffic of the tested
connection no longer passes through the and instead proceeds directly to
its destination. A time limit Z, is configurable after which the whitelisted traffic
needs to undergo inspection again. The number of packets routed through
the in order to work effectively requires empirical studies. The system
requests for instructions from the controller upon arrival of a new connection.
Figure 4.3|depicts that action as Flow 1. Like Adaptive Blacklisting, once the
controller confirms that the requested connection is indeed new and without
a previous entry, it sets up a single flow (Flow 2) with the highest priority
passing all the network traffic through the The controller now

72

4.1 Dynamic Network Intrusion Detection System Bypassing

communicates with the to record the packet characteristics detected
for the newly created connection. The connection between and
controller (Flow 3) in the figure represents this communication between the
controller and

If, after o packets passed via the the controller records that /3
or more packets have triggered alerts, it routes packets from that connection
permanently via the In our configuration 8 = 1, i.e., if even one alert
occurs in the sample space of o packets, this suffices to mark the connection
as malicious. Otherwise, if less than 3 alerts occur, the subsequent network
traffic from this connection passes directly to the host destination by bypassing
the NIDS| via another flow. Like Adaptive Blacklisting, a predefined lifetime is
present until the packets for a connection can bypass the On the expiry
of the lifetime, the switch deletes the rule, and the network traffic for that
connection will pass through the again to prove the connection is still
benign. Also, these timeouts are configurable like those explained for Adaptive
Blacklisting, and a permanent mode is possible as well.

4.1.1.5 Selective Filtering

Figure 4.4: Flows for Selective Filtering for a diversion via the This con-
figuration directly forwards traffic that has no signatures configured
at the to the service host. Traffic with configured signature
has to pass through the

73

Chapter 4: Augmenting Single Security Functions using [SDN]

Unlike Adaptive Blacklisting or Adaptive Whitelisting, Selective Filtering is
not an algorithm but rather a simple SDN}based static solution that helps to
baseline our dynamic approaches. Such static flows, once established on the
switch upon its first connection to the controller, do not change during
operation. The concept of Selective Filtering requires only a few flows reducing
the initial overhead of the SDN}based traffic analysis. In most production
deployments, for optimal performance, most use signatures for a limited
set of applications, protocols, and services. Selective Filtering attempts only to
statically route traffic over the for which protocol or service signatures
are available.

This distinction requires knowledge about which application workload is
running on which host and protected by which[NIDS| For each host server and
application, Selective Filtering adds a flow entry in the switch, which redirects
all incoming traffic to this combination via the The remaining network
traffic continues directly to its destination. Figure 4.4{depicts this approach.

One of the most significant advantages of the Selective Filtering approach is
its simplified deployment. Nevertheless, the can continue to meet its task
of detecting attacks, as potentially malicious traffic passes through the
Due to its simplicity and compactness, Selective Filtering is highly compatible
with other security systems such as firewalls or Demilitarized Zones (DMZk)
without adaptation.

4.1.2 Implementation

We implemented the algorithms presented in Section to allow their eval-
uation. Additionally, we realized a load generator. This section gives a short
overview of the employed technologies.

As the[SDNJcontroller, we use Ryu. Ryu is lightweight, supports basic switch-
ing and [REST] per default, and provides for a simplified extension using simple
Python scripts. We realized every algorithm as a single Ryu module.

The choice for the fell on Snort in version 2.9.9.0. This version does not
support parallel processing and, therefore, setting it under load is feasible with
limited resources. Detected attacks are provided by Snort using its internal
database.

Our experiment controller, written in Java, controls the service host as well as
the client(s), generates the workloads, executes the experiments, and records
its results.

74

4.1 Dynamic Network Intrusion Detection System Bypassing

4.1.3 Evaluation

In this section, we evaluate our approach. First, we describe the used testbed.
Next, we introduce the used metrics, configuration scenarios for the testbed,
and workloads. These sections also contain technical information about the
acquisition of said metrics. Last, we present and assess the measured results.

4.1.3.1 Testbed

q
q
h
Hardware
Switch

134

-3
=
-

Open
vSwitch
Figure 4.5: Testbed used for evaluation comprising benign and malicious traffic

generation (simulating an external network), a [NIDS| the SDNI

enabled hardware and software switches able to send traffic either
to theNIDSl or service host, an[SDNIl controller, and service hosts.

The testbed we used to evaluate the presented approach comprises multiple
servers and one Open Flow-enabled hardware switch, as depicted in Figure
The servers take the roles of simulated clients, load driver, target server, software
switch, and controller with no server covering multiple rules to
prevent side-effects. We used HPE ProLiant DL360 Gen9 servers with an octa-
core Intel Xeon CPU with enabled hyperthreading and 32GB main memory.
Table[d.T|gives detailed information about the servers’ configuration. The choice

75

Chapter 4: Augmenting Single Security Functions using [SDN]

Unit Value
Product HP ProLiant DL360 Gen9
ICPU Intel Xeon E5-2640 v3

Default[CPUl frequency 2.60 GHz
Max [CPUl frequency 3.40 GHz
Min [CPUl frequency 1.20 GHz

Cores (Threads) 8 (16)

Cache (L1/L2/L3) 512 KB/2048 KB/20480 KB

Memory size 32GB (2 x 16 GB) DDR4 Dual Channel
Memory frequency 1.866 GHz

Memory Connection Dual Channel

Storage Model HP VK0800GEFJK 800 GB SSD
Storage Connection SATA III (6GBit/s)

Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 4.1: Hardware specifications describing all servers inside the testbed.

for operating system fell on a 64-bit Linux with kernel version 4.4.0-72 for x86-64
architectures.

The selected switch is an HPE 5130-24G-4SFP+ from the Aruba series. This
switch series has 24 1 Gbit/s and four 10 Gbit/s ports and allows configuration
through a serial console and via It supports [OH versions up to 1.3 as
[SDNl protocols, and its hardware table can contain up to 384 entries. For Snort,
we configured the “Server-Apache rules” from Snort’s “registred rules” set.
This list is available for free to all registered Snort users. From these rules,
we only enabled rule 1111. For the role of the controller, we used the
python-based Ryu controller. All network connections supported a maximal
bandwidth of 1 Gbit/s. An experiment controller connects to all devices via a
separate experiment network. This experiment controller configured the servers
and switches, starts and stops the measurements, monitors the experiment,
and collects the metrics. The target service runs Apache as the webserver
application.

76

4.1 Dynamic Network Intrusion Detection System Bypassing

4.1.3.2 Metrics and Their Acquisition

To evaluate the quality of our approach, we need to measure multiple metrics.
These metrics comprise the throughput, the response time, and the accuracy
of the attack detection. Section [2.1.2.1] gives further information on relevant
metrics.

Network Throughput

A significant metric to assess the performance of web servers and, therefore,
also their protection system, is the achieved throughput. This value measures
the amount of traffic processed by the system.

We make use of the Simple Network Management Protocol (SNMD) to
measure the throughput. This protocol is available on many switches and
[OSk. It provides access to many settings and counters (so-called Object Iden-
tifiers (QOIDk)) of a system. These include the state and capabilities of
the system’s [NICk, the CPU load, and memory usage. Furthermore,
provides access to different counters of the system that contribute toward
determining the throughput. These counters include the number of bytes
received and transmitted through the network, and the number of incoming
and outgoing packets, as well as possible packet errors. The throughput con-
sidered in our paper is the number of incoming and outgoing bytes to the
interfaces and ports involved in an experiment at the switch. For this pur-
pose, we use the[OIDks for incoming (1.3.6.1.2.1.2.2.1.10) and outgoing
(1.3.6.1.2.1.2.2.1.10.16) bytes.

We log SNMP values throughout our experiment. In the course, our logging
solution takes into account the features of the protocol. These features include
such as the irregular updating of counters, failed queries, and the
conversion from absolute to relative values. An example is the number of
incoming and outgoing bytes. In this case, transmits the consecutive,
absolute number of bytes. Computing the throughput requires building delta
values and scaling them according to the time passed.

Number of Sent and Completed [HTTPI Requests

While the throughput represents a network-level perspective, it does not give
much information about service quality. In our case, even a high throughput
could, in theory, result in no requests completed by the server. Thus, we aug-
ment the throughput results with the number of HTTP requests. For these
requests, we differ between sent requests (as explained further on, we use

77

Chapter 4: Augmenting Single Security Functions using [SDN]

different sending strategies for the different workloads), and the requests suc-
cessfully served on time. The difference between both values results from
requests that either failed (e.g., the server denied them), and requests that did
not return successfully before the experiment ended.

These values are simple to compute since the load driver application can
incorporate a counter that increments with every sent[HTTP|request. A second
counter takes care of the successfully returning requests.

[TCP| Handshake Delay

In addition to throughput, the delay is another essential metric in computer
networks. The use of additional components that a network packet needs to
pass through in the network, such as the [NIDS| leads to additional packet
delays. A delay is the amount of time a packet needs from the source to the
destination. For this paper, we use the time taken to establish a[TCPI[Handshake.

In the case of the Adaptive Black- and Whitelisting algorithm, the establish-
ment and start of a connection is a central process. In different steps, different
types of delays arise from the very first to the subsequent packets. For exam-
ple, to identify connections, the first packet is sent to the controller via a
packet-in event. Here the event, as well as the processing and feedback on
the controller, introduce a delay. Besides, there is a possible redirection to the
introducing an additional delay for the packet inspection. Since many
applications use the [TCPl protocol for the use of [NIDS] the case is particularly
interesting in which the resulting delay of an entire [CPlhandshake becomes
visible because it is the prerequisite for a[TCP| connection. The observation of
the time difference of the [TCP handshake also has technical reasons. The time
difference can be determined merely through two timestamps, before and after
the call.

Despite the simple implementation, this approach also has some disadvan-
tages. On the one hand, the measurement is sensitive to influences by schedul-
ing algorithms and their effect on the operating system. Scheduling is used
internally for the administration of the threads on the operating system level
for the context switching of applications. When sending multiple outgoing
packets, the order of packets cannot be guaranteed. On the other hand, this
shortcoming becomes balanced by the duration and repetition of experiments
as the average of the delays approaches the real mean.

Overall, all measurements must use the same measuring method. This
characteristic allows for a uniform calculation of any constant delays. The
method used is also stable against synchronization problems that exist with
other server-spanning methods to determine the delay.

78

4.1 Dynamic Network Intrusion Detection System Bypassing

Request Residence Time

The residence time comprises the complete duration during which a request is
in the systems. Thus, it tracks the request from the connection establishment
to the connection termination. Like the number of [HTTD| requests for the
throughput, the residence time adds a service metric to the network metric
MCPhandshake delay. Since the residence time comprises the handshake, it
has to be at least as large as the handshake delay.

We measure the residence time by storing the timestamp once issuing the
command to send a request. Once the request completes, we again take the
timestamp. The difference between both timestamps equals the residence time.

Attack Detection Rate, False and True Positives, False Negatives

The attack detection rate is the number of attacks detected by Snort during
the experiment. To determine the number, we used the barnyard2-managed
MySQL database on the as the basis to count the number of attacks.

Barnyard? inserts the attacks detected by Snort as an entry in the database.
The difference between the number of database entries at the beginning and end
of the experiment repetition is the number of attacks detected. This approach
can be problematic if some detections by Snort enter into the database after
the experiment due to excessive delay. This effect is statistically significant
when writing entries to the database after the beginning of the subsequent
experiment. However, post-analysis of the database can subsequently reduce
or eliminate such effects.

A problem with the automated analysis of attack detection is the false-positive
and false-negative analysis. Although barnyard2 writes all the packets that
Snort has sent to an alarm entirely, the entries can contain some corrupted data.
This limitation makes it difficult to search the database for patterns. For better
detection of attacks, generated [HTTDl attacks contain the plain text “attack”
(Snort does not have an existing rule to match against this pattern, so it is
neither harmful nor helpful to the other metrics).

In overload situations, our experiments show that this pattern does not work
reliably. As an example, we query the database for regular [HTTP requests.
Filtering by a unique feature that occurs only in harmless[HTTP|requests allows
identifying false positives in the sample unambiguously. The database alone
does not give enough information to determine the number of false negatives.
However, if the attacks do not trigger a vulnerability, we assume false negatives
to be zero.

79

Chapter 4: Augmenting Single Security Functions using [SDN]

Based on the detected attacks, the false and true positives, as well as the false
negatives, we can then compute the precision, recall, and f-measure. Since we
did not measure the true negatives (this would require an excessive amount
of logging resources with little gain in significance), we can not compute the
accuracy.

4.1.3.3 Scenarios

We evaluate our approach in multiple scenarios within the described testbed.
These scenarios include baseline scenarios as well as scenarios testing the
algorithms presented in the approach using hardware and software switches.
Figure shows the used scenarios, as described below.

Scenarios 1a and 1b: Baseline Scenarios

The goal of the reference scenarios is to baseline the setup on the two criteria
of our interest, namely performance and security. Therefore, Scenario 1a base-
lines for maximum performance, whereas Scenario 1b baselines for maximum
security. We use results from these scenarios as the minimum, respectively,
maximum achievable values for the algorithms.

Scenario 1la consists of only a switch as a node between the source and the
destination. Figure depicts this scenario. This scenario forwards traffic
directly from the external network to the service hosts and back. Hence, the
results from this scenario represent the maximum data throughput and the
number of successful [HTTD requests combined with the lowest [TCP| hand-
shake delay and request residence time. The only limit to the network capacity
between the source and the destination is the maximum bandwidth of the
switch.

Additionally, the type of switching method used, such as cut-through and
store and forward, also introduces a switching delay due to port specific queue
behavior. This scenario helps to assert such behaviors precisely. Since no
classification occurs, it is not meaningful to compute security metrics. Notably,
the true-positive rate and the precision would result in having to divide by
zero, since the total number of positive classification in zero. False-positive rate,
recall, and accuracy would always yield zero, and the F-measure would not be
computable since it relies on the precision value. However, when we evaluate
the results, we will simply not state these values since we see little significance
in them.

80

4.1 Dynamic Network Intrusion Detection System Bypassing

(a) Scenario 1a (Unprotected Baseline): Direct connection between source and
sink. Baseline for maximum throughput and no security.

(b) Scenario 1b (Protected Baseline): [NIDS|between source and target. Baseline
for minimum throughput and maximized security.

q

q
h
Hardware
Switch

LLUELLL

(¢) Scenario 2: [SDN}enabled network using a hardware switch.

d
h
vSwitch

(d) Scenario 3: SDNFenabled network using a software switch.

Figure 4.6: Scenarios used for the Evaluation

81

Chapter 4: Augmenting Single Security Functions using [SDN]

Scenario 1b consists of an inline NIDS|between the source and the sink.
Figure [4.6b|shows this configuration. Therefore, all the network traffic is routed
via and examined by the This scenario helps us generate a reference for
the performance of the network with the highest level of security by using a
Here, some of the primary influencing factors to the bandwidth of the
network are the speed of the Ethernet interfaces of the host system as well as
the maximum supported throughput of the that can be achieved based
on scaling the [NIDS's system resources such as and memory.

Further possible limitations include the I/O performance of the overall system
and the operating system used. Thus, the results from this scenario should
represent the lowest data throughput and the number of successful [HTTP|
requests combined with the maximum [TCP| handshake delay and request
residence time. Due to the hard-to-predict likeliness of false positives when
putting Snort at high load, it is hard to predict the resulting security metrics.
However, since Snort tends to false positives rather than false negatives, it is
reasonable to expect a small recall value.

Scenario 2: Hardware Switching

This scenario employs an[SDNlcapable hardware switch in conjunction with an
[SDNIcontroller. Figure[d.6dgives an overview of this setup. The[SDNIcontroller
allows us to manipulate the network’s flow tables at runtime as for the Adaptive
Blacklisting and Whitelisting algorithms described before. The controller also
collects feedback from the [NIDSIs interface to obtain information about the
detected attacks. The connection from the [SDN|Controller to the isona
separate network. Thus, it does not influence the performance of the user data
flow.

This scenario is significant in various ways. Firstly, the type, size, and per-
formance of flow tables vary significantly with different switch models. An
evaluation of how the nature of flow tables affects real applications is, therefore,
particularly interesting. An[OF compatible switch has two types of flow tables:
software and hardware tables. While a dedicated processor processes the en-
tries of the hardware table, the takes over the processing for a software
table. Software tables are, therefore, significantly slower than the hardware
implementations. Even between the hardware tables, there are performance
differences in the priority of flows within a table. If multiple tables are present,
this fact also adds inter-table prioritization.

Secondly, apart from a pure Quality of Service perspective, there
are three other performance criteria for flow tables during runtime: Adding,
modifying, and deleting existing flows in a table. When managing many flows

82

4.1 Dynamic Network Intrusion Detection System Bypassing

(more than 100), adding new flows can take a longer time than when there
are only a few flows (less than 10). Additional delays can result in further
problems, such as the additional triggering of a packet-in event for buffered
packets.

Scenario 3: Software Switching

In the last experimental setup, a software switch, Open vSwitch, is used instead
of a hardware switch that was used in Scenario 2, as shown in Figure In
contrast to a hardware switch, a software switch has entirely different behavior.
The flow capacities and the performance of the device are no longer dependent
on the hardware specifications of the device. Moreover, the separation between
the software and hardware tables vanishes and the complete table has consistent
performance. Additionally, the size of the table is no longer dependent on the
hardware. A more powerful host system leads to faster performance, and
the ability to use commodity hardware guarantees flexibility. We chose this
scenario to assess the performance of this switch VNF in comparison to the
hardware switch.

4.1.3.4 Workloads

We use two different workloads to evaluate the performance and security
properties of our applications. The first workload puts the system under a
constant load while the other workload targets excessive load.

Workload 1: Constant Load

This workload focuses on evaluating the feasibility of our algorithms. Further-
more, it allows concluding the behavior under constant load.

To achieve this constant load, we query the server with [HTTDP|requests. Ex-
actly 170 requests are open at any time. We have chosen this number to ensure
that this load would not exceed the hardware flow table of the employed switch
specified at 384 entries. Once the client receives the completion of a request,
it starts a new one. This limitation ensures that the load P (X) is constant.
Each request consists of an HTTPIPOSTHRequest for a two Mebibytdl] file on
an Apache webserver. This size orients itself at the size of an average web-
site [Stal8]. Additionally, to this benign requests, our load generator starts
five attacks every ten seconds. The [NIDS has signatures configured for these
attacks.

"1 Mebibyte = 1024 Kibibyte = 2?° Byte = 1 048 576 Bit

83

Chapter 4: Augmenting Single Security Functions using [SDN]

Workload 2: Overload

This workload features requests at a rate higher than the maximum capacity of
the system. Thus, we create 60 requests per second (value determined after
the previous testing) and an attack every two seconds. This behavior ensures
that more requests enter the system than leave it. Thus we ensure a = 2 > 1.
The rate of 60 requests per second is about the limit that the service can handle
without a Due to technical limitations of the used library, it is necessary
to cap the limit of simultaneous open requests at 3 000. The other parameters
stay the same as for Workload 1.

4.1.3.5 Performance and Security Results

We execute every workload for every scenario for at least 30 times. Every
execution takes five minutes.

Workload 1: Constant Load

Table shows the results for Workload 1. Furthermore, we have computed
possible derived metrics (as described in Section[2.1.2.1]).

Throughput: Regarding the two baseline scenarios, it becomes evident
that Snort in inline mode results in a significant reduction in throughput. Fig-
ure [4.7] shows that while Scenario la achieves the theoretical maximum of
940 MBit/s [Rygl17]], the routing via the results in a drop to 72 MBit/s
or by 92%. Thus, not using the is 13 times as fast as using the
Scenario 2 shows that all bypassing algorithms increase the throughput in com-
parison to the baseline scenario with inline While Adaptive Blacklisting
and Whitelisting both reach approximately the same results with 434 MBit/s
(Blacklisting) and 427 MBit/s (Whitelisting), the Selective Filtering reaches 573
MBit/s. In Scenario 3, the balance changes. Both adaptive approaches reach the
theoretical maximum throughput of 940, respectively 941 MBit/s (exceeding
the theoretical threshold is related to general inaccuracies when measuring,
e.g., imprecise timers). In comparison, Selective Filtering gains only a minimal
improvement by 15 MBit/s in throughput to a total of 588 MBit/s.

Successful [HTTP| Requests: When regarding the successful [HTTP] re-
quests, the dimensions of the results are similar to the throughput. As seen
in Figure Scenario 1la again presents the maximum of all scenarios with
a total of 17625 requests. Adding the inline in Scenario 1b reduces this

84

RQs
4.1b
4.1c
4.1e

4.1 Dynamic Network Intrusion Detection System Bypassing

Metric Scenario
la 1b 2 (HW Switch) 3 (SW Switch)

Baseline BL WL Filter BL WL Filter
HTTP-Requests’ 17625 1271 9508 9333 10238 16714 16752 10392
Throughput® [MBit/s] - 2.7 109 108 6.5 14.2 14.5 6.6
Throughput® CI +0.1 [MBit/s]
Throughput® [MBit/s] 940 72 434 427 573 941 940 588
Throughput® CI +1 [MBit/s]

Residence Time [ms] 2898 37389 5034 4939 4852 3038 3028 4777
TCP Handshake [ms] 20 4657 451 532 2034 167 211 2015

No. Attacks 150 150 153 150 155 155 155 154
No. Snort Alerts 223 35 39 154 149 149 156
No. Snort Alerts CI 0 +2 +5 +9 +10 +10 +12
True Positives 223 35 39 153 149 149 154

o O O O O

False Positives 0 0 0 1 0 0 2
False Negatives 0 0 0 0 0 0 0
Dupl. Classifactions - 73 0 0 0 0 0 0
Attacks Lost - 0 117 111 1 6 6 0
Precision [%] - 100 100 100 99 100 100 99
Recall [%] - 100 100 100 100 100 100 100
Accuracy [%] Can not be computed due to missing total negatives
F-Measure [%] - 100 100 100 100 100 100 99

Table 4.2: Measurement results and derived metrics for constant load in Work-
load 1. Confidence intervals result either from known measurement
errors or are calculated using inverse Student’s t-distributions with
a = 0.05.

1: Number of successful benign HTTP Requests by the client that
were answered by the server.

2: Traffic from the Client to the Server

3. Traffic from the Server to the Client

85

Chapter 4: Augmenting Single Security Functions using[SDN]

940 mm Non-SDN 941 940
1,000 | 11 == Bla('tkh'stl.ng 11 41 i
(— Whitelisting
. 900 - B Selective Filtering)
= 800 a
o)
= 700 573 588
=
T 600 +1 +1)
- 434 427
450 500 | +1 41
© 400}
<
=300
200 + 72
100 | +1
0 | | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.7: Throughput in MBit/s under constant load in Workload 1.

to a mere 1271 requests. This decrease represents a reduction of 93%. Thus,
the number of successful requests in Scenario 1la is 14 times higher than in
Scenario 1b. Introducing our bypassing algorithms yields similar results as for
the throughput. In Scenario 2, Adaptive Whitelisting can increase the success-
ful requests to 9333, and Adaptive Blacklisting reaches 9 508 requests. Thus,
both adaptive approaches perform within each other’s margin of error since
the confidence intervals overlap. Again, Selective Filtering outperforms both
adaptive approaches in Scenario 2, with a total of 10238 requests. With the
addition of software switching in Scenario 3, both adaptive approaches receive
massive performance boosts. Adaptive Whitelisting yields 16 752 and slightly
outperforms Adaptive Blacklisting yields 16 714 requests.

Nevertheless, this difference is within the margin of error. With this result,
the adaptive approaches get close to the maximum performance baseline es-
tablished from Scenario 1a. Last, Selective Filtering only gains another 154
requests from the software switch resulting in 10 392 requests.

86

4.1 Dynamic Network Intrusion Detection System Bypassing

20,000 - 17625 — Non-SDN 2
2 = Blacklistin 1671416752
£ 18,000 | +0 g
§ [— Whitelisting i1_59 +102
g 16,000 [B Selective Filtering s
-
B 14,000 | |
[_|
E 12,000 |- 9508 9333 10238 10392 |
= +20 +14
% 10,000| 780
g |
g 8,000|
S 6,000
&
E 40001 1271
2 92.000] I

0 | | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.8: Number of successfull requests under constant load in Workload 1.

[TCPl Handshake Duration: Figure[4.9|shows the effect of the various sce-
narios on the[TCPlhandshake duration. With a direct connection in Scenario 1a,
the handshake only takes 20 ms. The addition of the inline NIDS|increases the
delay to 4 657 ms in Scenario 1b. In Scenario 2, we see a significant reduction in
the delay for all bypassing approaches. Unlike the throughput and the number
of successful HT TP requests, dynamic approaches achieve a smaller delay at
451 ms (Blacklisting), respectively, 532 ms (Whitelisting) than the Selective
Filtering at 2034 ms. Another difference to the throughput and the number of
successful [HTTP requests the results for the adaptive approaches no longer lie
within each other’s margin of error. Selective Filtering again only marginally
improves its performance by 19 ms upon adding the software switch in Sce-
nario 3 to 2015 ms. At the same time, the dynamic approaches further improve
more than halving their delay to 167 ms, respectively, to 211 ms.

87

Chapter 4: Augmenting Single Security Functions using[SDN]

|

5.000 |- 4657 [— Non-SDN

’ +7 == Blacklisting
g 4,500 - [I— Whitelisting -
§ 4,000 | Selective Filtering | |
L2
45 3,500 | —
A 3,000 | :
< 9500 | 2034 2015
< +6 +5
'8 2,000 |
(o]
LT 1,500 |
[l
& 1,000 451 53: -

43 * 167
500 20 1o
1 +2
0 | | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.9: [TCP handshake durations in milliseconds under constant load in
Workload 1.

Residence Time: Regarding the residence time, we receive results com-
parable to the [CPlhandshake duration. Since the handshake is part of the
residence time, this behavior is as expected. Sectionshows the results for
the residence time. The handling of the request takes 2898 ms in Scenario 1a
without a Adding the in Scenario 1b increases the residence time
to 37389 ms. This increase equals a factor of thirteen (which is equal to the
reduction in throughput and close to the reduction of handled HTTPrequests).
The use of the adaptive SDN}based algorithms in Scenario 2 significantly re-
duces the residence time by 1996 ms to 5034 ms (Adaptive Blacklisting) and by
1911 ms to 4939 ms (Adaptive Whitelisting). Selective Filtering only performs
slightly better, and its results of 4 852 ms are within the margin of error of Adap-
tive Whitelisting. When using a software switch in Scenario 3, the residence
time further decreases for both adaptive algorithms reaching values of 3 038 ms
(Adaptive Blacklisting) and 3 028 ms (Adaptive Whitelisting). These results

88

4.1 Dynamic Network Intrusion Detection System Bypassing

37389 [— Non-SDN
40,000 - +183 == Blacklisting
(— Whitelisting
35,000 | .
B Selective Filtering

w0

& 30,000 [.
=

£ 25,000 | .
=

Y 20,000 |- i
o
S

'g 15,000 |- i
o~

10,000 5034 4939 4852 4777 |

2898 +26 +£30 +80 30383028 4
5,000 | 1420 +12 i55 1
O | | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.10: Residence time in milliseconds under constant load in Workload 1.

are within each other’s margin of error and close to the performance baseline.
Adaptive Whitelisting in Scenario 3 takes only 4% longer than Scenario 1a to
complete a request. Similar to the previous results, Selective Filtering hardly
profits from the introduction of the software switch and reaches 4777 ms — a
reduction by 75 ms.

Attack Detection Ratio: Figure shows the ratio between the number
of detected attacks and the number of executed attacks. Apparently, without a
Scenario la detected no attacks. Scenario 1b adds the and already
shows around 149%. So, more attacks are detected than are executed. Scenario 3
shows a significant drop in the detection rate for the two dynamic approaches.
Adaptive Blacklisting achieves only a 23% detection rate, and Whitelisting is
only slightly better at 26%. Selective Filtering achieves a detection rate of 99%,
which is within the margin of error to the ideal 100% rate. Using the software
switch in Scenario 5 increases the ratio to 96% for both dynamic approaches

89

Chapter 4: Augmenting Single Security Functions using[SDN]

|
2
g 149 — Non-SDN
- 160 | 10 =3 Blacklisting a
'Eé [I— Whitelisting
g 1401 B Selective Filtering | |
S 120 | 1i062 9% 96 ﬁ—
g L7 47
g 100 p===========--pemmcmmccenb - m o - --q---q--
> | |
o 80
A2
g 60
< 23 0
T a0l +12
c% 0 15
S 20| 0 1
[¢]
[+0
0 T | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.11: Number of detected attacks relative to the expected number under
constant load in Workload 1.

and 101% for Selective Filtering. All three approaches are within the margin
of error of 100%. When examining the attacks in Snort’s database, they all
contain the sequences that should trigger the signatures except for one packet
for Selective Filtering in Scenario 2 and two packets for Selective Filtering in
Scenario 3. Thus, all attacks appear to be correctly detected, but false positives
occur.

Security Metrics: Next, we take a look at the security metrics computed
from the measured values. Despite deviations in the number of detected at-
tacks, all approaches and all scenarios (except of course Scenario 1la, which
does not perform classification) yield a perfect recall. The precision for the
secure baseline and the adaptive approaches also reaches the maximum value.
The Selective Filtering has a very high, yet not perfect, precision. This issue
also results in a reduced F-Measure, at least for Scenario 3. Since the adap-

90

4.1 Dynamic Network Intrusion Detection System Bypassing

tive approaches achieve maximum precision and recall, they also realize the
maximum value for the F-measure.

Workload 2: Overload

RQ Table4.3[shows the results for Workload 2. Furthermore, we have computed
4.1d possible derived metrics (as described in Section[2.1.2.1]). In the following, we
describe these results and the differences to Workload 1.

940 (— Non-SDN
1,000 | 1 (— Blacklisting |
— Whitelisting 833 836
. 900 B Selective Filtering +1 +1)
= 800| =
/m
= 700 |)
g
5 600 | =
o
< 500 | 378 389 |
3 i 335 309 41 +1 |
S 400 +1
e +1
=300
200 | 60
100 |- +1
]
0 | | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.12: Throughput in MBit/s under overload in Workload 2.

Throughput: Figure shows the throughput when the system is in an
overload situation. Throughput in Scenario 1a remains the same as the the-
oretical maximum of 940 MBit/s. In Scenario 1b, throughput drops down to
60 MBit/s, which is 12 MBit/s below the result from Workload 1. This reduction
represents a drop by 94%, making the throughput in Scenario 1a 16 times higher
than in Scenario 1b. For Scenario 2, adding the SDN}tbased algorithms again

91

Chapter 4: Augmenting Single Security Functions using [SDN]

Metric Scenario
1a 1b 2 (HW Switch) 3 (SW Switch)

Baseline BL WL Filter BL WL Filter
HTTP-Requests' 18000 7014 14649 13831 11564 18051 18049 11704
completed on time' 17880 1271 9432 8626 7943 16699 16597 8154
Throughput® [MBit/s] - 2.6 6.7 6.0 5.8 1219 126 5.8
Throughput® CI +0.1 [MBit/s]
Throughput® [MBit/s] 940 60 335 309 378 833 836 389
Throughput® CI +1 [MBit/s]
Residence Time [ms] 1021 106781 23638 24644 39800 9868 11508 39216
TCP Handshake [ms] 208 65457 21118 21908 33466 6961 8720 33032
TCP Handshake / 20 61 89 89 84 71 76 84
Residence Time [%]
No. Attacks 150 22 59 57 44 147 140 47
No. Snort Alerts 0 48 29 31 72 131 130 79
No. Snort Alerts CI 0 0 +9 +8 +68 +8 +16 +61
True Positives 0 48 29 31 52 128 128 57
False Positives 0 0 0 0 20 3 2 22
False Negatives 0 0 0 0 0 0 0 0
Dupl. Classifactions - 26 0 0 8 0 0 10
Attacks Lost - 0 30 28 0 16 10 0
Precision [%] - 100 100 100 72 98 98 72
Recall [%] - 100 100 100 100 100 100 100
Accuracy [%] Can not be computed due to missing total negatives
F-Measure [%] - 100 100 100 84 99 99 84

Table 4.3: Measurement results and derived metrics for overload in Workload 2.
Confidence intervals result either from known measurement errors
or are calculated using inverse Student’s t-distributions with oo =

0.05.

!: Number of benign HTTP Requests sent by the client.

2. Traffic from the Client to the Server
3. Traffic from the Server to the Client

92

4.1 Dynamic Network Intrusion Detection System Bypassing

increases the throughput. With 335 MBit/s, Adaptive Blacklisting outperforms
Adaptive Whitelisting, which increases the throughput to 309 MBit/s. Again
Selective Filtering outperforms both adaptive approaches in Scenario 2 with
378 MBit/s. However, the advantage is smaller than for Workload 1. Also, all
approaches perform worse than in Workload 1 with throughput values reduced
by 99 MBit/s (Adaptive Blacklisting), 125 MBit/s (Adaptive Whitelisting), and
195 MBit/s (Selective Filtering). For Scenario 3, again, the adaptive algorithms
profit most. Both Adaptive Blacklisting and Adaptive Whitelisting provide very
close results with 833 MBit/s and 836 MBit/s. These results equal an increase
of 498 MBit/s (Adaptive Blacklisting) and 527 MBit/s. Like for Workload 1,
Selective Filtering only takes a small profit — here 20 MBit/s — from the addi-
tion of the software switch. Similar to Scenario 2, the results are lower than
for Workload 1 by 108 MBit/s (Adaptive Blacklisting), 104 MBit/s (Adaptive
Whitelisting), and 199 MBit/s (Selective Filtering).

20,000 - 17880 [Non-SDN |
4 +84 — Blacklistin 16699 16597
2 18,000 | &
§ [Whitelisting £255 1143
g 16,000 - B Selective Filtering ; §
-
& 14,000 | -
=
T 12,000 | .
= 9432
% 10,000 | 56 %% soa3 8154
8 +41 +46
S 8,000
° 6,000]|
g
§ 4,000 1271
. 2000] o

0 I I I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.13: Number of successfull requests under overload in Workload 2.

93

Chapter 4: Augmenting Single Security Functions using [SDN]

Successful [HTTPI Requests: Figure shows that the behavior of the
successful request metric is similar to the behavior of the throughput. This
relation also corresponds to a similar observation from Workload 1. Putting
the system in an overload situation increases the number of requests for the
performance baseline in Scenario 1a slightly by 155 to 17 880. Possible causes for
this increase are short-time performance surges by, e.g.,[CPUl frequency boosts.
When adding the[NIDSin Scenario 1b, the number of successful requests stays
the same as for Workload 1 at 1271. The addition of the[SDN}based algorithms
in Scenario 2 increases the number compared to the secure baseline. Adaptive
Blacklisting reaches 9432 and Adaptive Whitelisting 8 626 requests. This re-
duction is a decrease compared to Workload 1 of 76 (Adaptive Blacklisting)
and 707 (Adaptive Whitelisting) requests. Unlike for the throughput in both
workloads and the number of successful requests in Workload 1, Selective
Filtering falls behind the adaptive approaches with only 7943 successful re-
quests — a reduction by 2281 compared to Workload 1. Again, the adaptive
approaches take a substantial profit from the addition of the software switch
in Scenario 3. Adaptive Blacklisting reaches 16 699 and Adaptive Whitelisting
16 597 requests. These are only a small decrease of 15 (Adaptive Blacklisting),
and 155 (Adaptive Whitelisting) requests compared to Workload 1. For Adap-
tive Blacklisting, this is even within the margin of error and equals to 93% of the
performance baseline. Once more, Selective Filtering only marginally profits
from the software switch gaining another 211 requests to a total of 8 154.

[TCP| Handshake Duration: Figure [£.14] presents the results for the TCP]
handshake duration under overload. In general, all values increase compared to
Workload 1. Still, the performance baseline from Scenario 1a yields the lowest
duration at 208 ms (still tenfold the result from Workload 1). In Scenario 1b,
introducing the increases the average handshake duration to 65457 ms
— over a minute. The usage of in Scenario 2 decreases these values to
21118 ms for Adaptive Blacklisting and 21 908 ms for Adaptive Whitelisting.
These results are a massive increase by 20 667 ms for Adaptive Blacklisting and
21376 ms for Adaptive Whitelisting compared to the results from Workload 1.
Like in Workload 1, Selective Filtering falls short of the adaptive approaches in
this metric with 33466 ms - an increase of 31432 ms. As before, the adaptive
algorithms profit from the software switch added in Scenario 3. This addition
takes off another 14 157 ms for Adaptive Blacklisting resulting in 6 961 ms and
13188 ms for Adaptive Whitelisting, resulting in 8 720 ms. While these results
are still a massive increase from Scenario 1a, the adaptive algorithms reduce the
handshake duration by up to 89% compared to Scenario 1b. Selective Filtering

94

4.1 Dynamic Network Intrusion Detection System Bypassing

|

70,000 |- 15;1952 [I— Non-SDN .

65,000 |- _— Blacklisting
g 60,000 | f Whitelis.‘iing. i
£ 55,000 | Selective Filtering | |
§ 50,000 | i
g 45,000 - |
< 35,000 | +458 +10 |
< B
%) 30,000 2111821908
£ 25,000 | oy 4297
E 20,000 |
O 15,000 961 8720

10,000 | +107 =2

5,000 - 208
’ +1
0 T
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.14: [TCP handshake durations in milliseconds under overload in Work-
load 2.

only receives a small boost of 434 ms from the software switch, which is even
within the margin of error from Scenario 2.

Residence Time: As mentioned for Workload 1, the residence time com-
prises the TCPlhandshake duration and therefore exceeds it. Figure shows
the measurement results for the residence time under Workload 2. As before,
the performance baseline in Scenario 1a gives the best result as desired with
1021 ms. This result is 1877 ms lower than for Workload 1. Possible causes for
this behavior might be short-time frequency boosts or batch-processing.
The introduction of the NIDSin Scenario 1b results in an inflation of the resi-
dence time to 106 781 ms — 69 392 ms more than in Workload 1. Once more, in
Scenario 2, the[SDNtbased approaches significantly reduce the residence time.
Adaptive Blacklisting yields 23 638 ms, and Adaptive Whitelisting achieves
24 644 ms. These results are an increase of 18 604 ms for Adaptive Blacklisting

95

Chapter 4: Augmenting Single Security Functions using[SDN]

|
120,000 + 106781 [— Non-SDN |
110,000 | +160 — Blacklisting |-
100.000 |- (— Whitelisting
’ B Selective Filtering
2 90,000 |
& 80,000 | |
£ 70,000 :
E 60,000 | !
%‘5 50,000 | 39800 39216
E 40,000 i +776 :|:1457
23638 24644
30,000 |- +45 +416
20,000 |- 9868 11508
10,000 1021 £73 2o
’ +10
O | | I I
la 1b 2 3
Performance Secure Hardware Software
Baseline Baseline Switching Switching
Scenarios

Figure 4.15: Residence time in milliseconds under overload in Workload 2.

and 19705 ms for Adaptive Whitelisting compared to the results from Work-
load 1. Selective Filtering results in an average residence time of 39 800 ms — an
increase over Workload 1 by 34 948 ms. The software switch again benefits both
adaptive algorithms reducing their residence time by 13770 ms to 9 868 ms for
Adaptive Blacklisting and by 13136 ms to 11 508 ms for Adaptive Whitelisting.
This improvement is still an increase of 6 830 ms for Adaptive Blacklisting and
8480 ms for Adaptive Whitelisting. However, Adaptive Blacklisting can reduce
the residence time to 9% of the residence time for the secure baseline from
Scenario 1b. It is also worth mentioning that in scenarios using the the
share of the[TCPlhandshake duration on the total residence time is significant,
with 61% to 89%.

Attack Detection Ratio: Figure shows the results for the attack de-
tection ratio. In Scenario 1a, no classification occurs. The inline NIDYin Sce-

96

4.1 Dynamic Network Intrusion Detection System Bypassing

300 164

280 - 195 168 |
260 |- 218 +771
240 | +0 8
220 |- :
200 | a
180 | Non-SDN |

.

160 | | Blacklisting
/1
.

140 | Whitelisting
120 | Selective Filtering 89

] S phipely | REELLEE
80 |

60 |
40 |- 0
20 0

0 T T T T
la 1b 2 3

Performance Secure Hardware Software
Baseline Baseline Switching Switching

Ratio Snort Alerts to Number of Attacks in %

Scenarios

Figure 4.16: Number of detected attacks relative to the expected number under
overload in Workload 2.

nario 1b is overloaded and yields 218% or more than twice as much attack
detections than sent attacks. However, these detections are duplicate classifica-
tions. Using the SDNIbased algorithms in Scenario 2 yields 49% for Adaptive
Blacklisting and 54% for Adaptive Whitelisting of attacks detected. This missed
target is mainly due to many attacks — 51% for Adaptive Blacklisting and 49%
for Adaptive Whitelisting — being lost in the network. However, this is unexpect-
edly an improvement of 26% for Adaptive Blacklisting and 28% for Adaptive
Whitelisting compared to Workload 1. Selective Filtering yields a 164% attack
detection rate. This extra 64% contains 45% of false positives and 19% of dupli-
cate classifications. However, these results are highly volatile, reducing their
meaningfulness. Using the software switch in Scenario 3 boosts the detection
rate of Adaptive Blacklisting by 40% to 89% and of Adaptive Whitelisting by
39% to 93%. Adaptive Whitelisting is thereby within the margin of error of

97

Chapter 4: Augmenting Single Security Functions using [SDN]

the goal of 100%. Adaptive Blacklisting accounts for 2% false positives, and
11% lost attacks, and Adaptive Whitelisting has 1% false positives, and 7% lost
attacks. Selective Filtering this time can not only not profit from the software
switch but even has a higher surplus in attack detection by an additional 4%
summing up to 168%. These 68% surplus comprise 47% of false positives and
21% of duplicate classifications.

Security Metrics: Last, we take a look at the security metrics computed
from the measured values. Despite deviations in the number of detected
attacks, all approaches and all scenarios (except of course Scenario 1a, which
does not perform classification) yield a perfect recall. The precision for the
secure baseline, and the adaptive approaches with the hardware switch also
reaches the maximum value. With the software switch, these approaches suffer
a slight loss of 2% in precision. The Selective Filtering has a mediocre, precision
of 72% for both scenarios. This shortcoming also results in a reduced F-Measure
of 84%. Since the adaptive approaches achieve maximum precision and recall
when using the hardware switch, they also realize the maximum value for the
F-measure. The reduced precision also affects the F-measure, reducing it to
99%, when using the software switch. Due to the close results — except for the
Selective Filtering — a figure for the security metrics was omitted.

4.1.4 Discussion

Criterion Approach & Workload

Dynamic Dynamic Selective
Blacklisting Whitelisting Filtering

WL1 WL2 WL1 WL2 WL1 WL2

Hardware Switch

Improved Performance 4 v v v v v
Metrics > 95% v v v 4 v X
Loss Rate < 10% X X X X v v

Software Switch

Improved Performance v/ v/ v
Metrics > 95% v v v
Loss Rate < 10% v X v

ANENEN

v v
v X
v v

Table 4.4: Overview of the results for the used approaches and scenarios.

98

4.1 Dynamic Network Intrusion Detection System Bypassing

The comparison between Scenario 1a and 1b confirms the motivation for
this paper. Adding an inline NIDS|reduces the throughput dramatically and
increases the latency. Furthermore, an inline under high load triggers
more alerts than actual attacks occurred.

Table [4.4] gives an overview of the achieved goals of the [NIDStbypassing
approaches and their fulfillment. As expected, bypassing the [NIDSlincreases
the performance. However, the two dynamic approaches behave differently
than Selective Filtering. While in Scenario 2, they increase the performance
relative to the inline they decrease the rate of detected attacks to about a
fourth of the actual attacks. These are unacceptable security characteristics.

When replacing the hardware switch with a software switch in Scenario 3, the
performance of the adaptive approaches increases even further to the theoretical
throughput maximum and a latency acceptable for a web server. The attack
detection ratio increases as well. The detection of all executed attacks is within
the margin of error, and precision, recall, and F-Measure remain at 99% to
100%.

On further investigation of this behavior, it seems that in some conditions,
the hardware switch starts using the software table. This behavior is unex-
pected since we chose the number of active connections below the hardware
table capacity. The switch becomes significantly slower and frequently does
not react to requests from the controller when using the software table. This
characteristic could explain both the performance and detection impact. When
the installation of the rerouting flows fails or executes incorrectly, traffic could
either be permanently sent via the (reduced performance) or directly to
the service host (no attack detection). Packets for unhandled packet-in events
(e.g., because no flow is present and the controller can not add it due to the
switch not responding) can also become lost in the network.

The results for the Selective Filtering show that bypassing with simple rules
can yield an increased performance compared to inline mode. Especially with-
out overload, Selective Filtering presents good results and can be a simple
solution for small performance issues.

Workload 2 proves that the effect of Snort on performance under overload is
even higher than under normal circumstances. The number of surplus attack
detections also increases.

Again, the dynamic approaches prove their utility by increasing throughput
and reducing latency. In Scenario 2, the detection rate becomes unreliable. Like
in Workload 1, the addition of the virtual switch further increases the detection
rate and the performance.

Again in Workload 2, Selective Filtering improves throughput and latency.

99

Chapter 4: Augmenting Single Security Functions using [SDN]

It also reduces the surplus detections on average, but the high deviation re-
duces the reliability of this observation. The dynamic approaches retain high
precision, accuracy, and F-Measure.

In summary, the two bypassing algorithms show promising results. They
can improve performance up to an extent where the introduction of the
has no impact on performance. Attack detection is within the margin of error to
100% under typical load for both algorithms and under overload for Adaptive
Whitelisting. For the constant load workload, all algorithms, and in the overload
workload, the dynamic algorithms present excellent F-Measure, precision, and
recall metrics. The successful use of both dynamic algorithms depends on the
use of the software switch since their reliability and performance suffer when
using the hardware switch. When using the software switch, the Adaptive
Whitelisting fulfills all requirements.

A limitation is that our framework at the moment allows no direct tracking
of what happens at the hardware switch when it becomes unresponsive in
Scenario 2. Any assertion which flows get redirected and which do not will
require this functionality.

4.2 TCP Handshake Remote Establishment and
Dynamic Rerouting using Software-defined
Networking

In Section [2.2.1.1} we introduced the threat of the flood attack. To counter
this attack in Section and Section we detailed the existing so-
lutions Cookies and SYNIPROXY as state-of-the-art [DPSs. However, as
mentioned, both systems have significant shortcomings. Cookies, on the
one hand, require co-location with the service and can not be scaled indepen-
dently from the service. SYNIPROXY, on the other hand, is stateful and must
forward all traffic after connection establishment.

To alleviate the issues mentioned above, we present[THREADS| (TCP Hand-
shake Remote Establishment and Dynamic Rerouting using Software-defined
Networking), a novel flood mitigation solution using In the follow-
ing, we specify the requirements that lead to our design decisions and describe
our approach.

THREADS needs to address the shortcomings of SYN cookies and SYN-
PROXY specified above. Thus, THREADS needs to be:

(1) stateless,

(2) independently deployable

100

4.2 THREADS

(3) scalable, and

(4) must not require traffic to make a detour after establishing a connection.

4.2.1 Approach

ROQs [THREADS is a stateless service, hosted on a dedicated machine, to realize a

4.2a golution fitting these requirements. Packets have to directly reach this machine

4.2b during connection establishment, while all traffic of established connections
proceeds to the server without passing through the dedicated THREADS ma-
chine.

4.2.1.1 Architecture

THREADS VNF
SDN Controller (— = - - N

—— — — -

SDN-enabled r

Service Host

External Network

Figure 4.17: Minimal network architecture of THREADS

Our approach takes advantage of the functionality to program flows depend-
ing on their source and target provided by SDNI deploys inside an
[SDNFlenabled network as a two-part solution, consisting of a[VNF hosted on a
separate machine as well as a kernel module loaded by the machine hosting the
protected service. Figure [.17/shows the network architecture for THREADS]

deployment.

101

Chapter 4: Augmenting Single Security Functions using [SDN]

Virtualized Network Function

A [VNH separated from the service host handles the entire connection estab-
lishment process and informs the service host after completing a handshake.
Hence, the[VNEF|shields the service host from potentially malicious traffic, while
forwarding legitimate connections after their successful establishment.

Kernel Module at the Service Host

Our kernel module augments the service host with additional capabilities. The
provided extension of the network stack allows the service host to take over
legitimate connections established by the VNEl Furthermore, the service host
is capable of triggering network reconfigurations through the controller,
redirecting packets belonging to established connections, so that packets on
these connections reach their target directly without detouring via the[VNFhost.
At first, we used the VNF to communicate with the controller. However,
the solution using the service host proved more efficient during attack scenarios.

4.2.1.2 Connection Establishment

In the freshly deployed configuration, the data plane starts with three pre-
configured rules:

A) Forwards all traffic from external networks is to the VNE
B) Forwards all traffic from the VNE to the gateway to the external network.

C) Sends all traffic from the VNF addressed to the service host to the service
host.

Thereby, the last rule has a higher priority than the other rules, overriding
the general rule for all traffic from the [VNF
Connection establishment follows the procedure described below:

(1) The client sends a[SYNlpacket to the server.
(2) The data plane diverts the packet to the[VNH (Rule A).

(3) The[VNE generates aSYN-+ACK]packet using the same algorithm as used
in[SYNl cookies and sends this packet back to the client.

(4) The network forwards the packet to the external network (Rule B).

102

4.2 [THREADS

Client VNF Server Network
1 syN
SYN-ACK
ACK

new connection

trigger reconﬁguration

U

Figure 4.18: Connection Establishment Process Using THREADS]

a) If the packet was part of a[SYNIflood attack, the establishment pro-
cess ends here since either the client [Pl will be spoofed or the attack-
ing client will not respond.

b) Else the packet reaches the client.
(5) The client replies with an[ACK] packet.
(6) The network again diverts the packet to the[VNH (Rule A).

(7) The[VNH validates the packet. From the client’s perspective, this
step concludes the connection establishment.

(8) The[VNHsends a so-called [SYNH packet to the server. This packet con-
tains the negotiated values for sequence and acknowledgment numbers,
as well as the other required parameters that define the connection.

(9) The network forwards this packet to the server (Rule C).

(10) The server accepts the packet and starts listening on the specified con-
nection. Furthermore, it notifies the [SDNJ controller to create two new
rules:

D) The switch sends all traffic from the client to the server on the nego-
tiated connection directly to the server.

103

Chapter 4: Augmenting Single Security Functions using [SDN]

E) The switch sends all traffic from the server to the client on the nego-
tiated connection directly to the client.

Rule D requires a higher priority than Rule A.[THREADS|sets the priority
for Rules D and E to the same value for simplification. Both rules have
a soft timeout. If no packets transit the connection for a preset amount
of time, the rules are deleted and would require a new connection es-
tablishment process. An alternative is to delete the rule once the switch
detects a[TCPlconnection termination. This approach is an alternative for
long-living connection with variable data transmissions like[SSHsessions.

(11) The client and server can now exchange data directly without involving

the VNE

Figure gives an overview of the connection establishment process.

4.2.1.3 Requirement Fulfillment

Requirement SYN cookies SYNPROXY [THREADS
Stateless 4 X v
Independently Deployable X v v
Scalable X v v
Direct Routing 4 X v

Table 4.5: Requirement fulfillment of THREADS

Using this approach has many advantages compared to existing solutions and
thus fulfills the previously stated requirements. Separation of the service host
and the protection is possible (req. 2), similar to SYNIPROXY, but established
connections no longer have to pass through the added machine (req. 4) and
instead continue directly to the server. Thus, it eliminates the proxy as a possible
network bottleneck and freeing[CPUlresources at this machine to handle attacks.
The[VNElitself is stateless (req. 1). Combined with the separation of the service
and the protective environment, this property allows adding [VNFE if required.
This goal only requires simple (preferably SDNlbased, e.g., [GK17; |GC18;
QW15])) load balancing solution. Every THREADSIVNF can verify an
packet that is a response to a[SYN+ACKI packet from itself or other THREADS]
[VNFEk. Thus, the protection system becomes independently scalable (req 3.)
without the need to modify the server application, as would be the case with
cookies. Table[4.5|gives an overview of the requirement fulfillment by

104

4.2 [THREADS

4.2.2 Implementation

After detailing the concept of our approach, this section covers the implementa-
tion of the two essential components of THREADS| We first introduce the VNE
implementation and then present the kernel module deployed on the service
host.

4.2.2.1 Virtualized Network Function

We implemented the [VNE in the C language using The Data Plane
Development Kit (DPDK]) is an open-source project designed to accelerate
software packet processing by bypassing the network stack provided by the
Linux kernel. It contains a set of network interface controller drivers as well as
data plane libraries. creates an Environment Abstraction Layer (EAT)
hiding environment specifics. To eliminate interrupt overhead, accesses
devices using polling. Therefore, uses run-to-completion scheduling.
The choice for[DPDKlin comparison to similar solutions fell due to our previous
experience with DPDK, its excellent performance, and its wide adoption. We
presented more information about in Section

Core 0

PMD receive PMD send

NIC

Figure 4.19: General architecture for the THREADSI VNF.

For the proof-of-concept implementation, we use a simple approach, as seen
in Figure The MHREADS [VNH uses a Poll Mode Driver (PMD]) as it
allows for direct access to the configuration of the network devices as well as
their receive and send queues. [THREADS| receives the packets using the
receive [API provided by and processes received packet sequentially.
Finally, THREADS|sends the pending outgoing packets using the[PMDltransmit
(APl

105

Chapter 4: Augmenting Single Security Functions using [SDN]

When processing packets, the[THREADS|VNE replies with a matching
packet. To generate this packet, relies on
the same approach used by[SYNlcookies. On processing[ACK]packets, the VNFI
validates whether the packet matches a previously sent SYN-+ACKI packet. If
this is the case, THREADS sends a[SYNH packet (as described above) with the
required information encoded to the service host.

4.2.2.2 Service Host Kernel Module

The goal of the kernel modification is to allow to remotely open[TCP|connections
for the server with the possibility to tell the kernel which [[SNJit has to use.
Therefore the kernel module replaces the tcp_v4_init_seq kernel function
with a modified version. If the function processes a regular packet, the
behavior stays the same as for the non-modified version. Thus, it generates
a random [[SNJ and sends out a packet. When receiving a GYNH
packet, the function decodes the [SNJand other parameters from this packet.
Next, the modification opens the matching socket and starts listening for data.

Additionally, the module handles the notification of the [SDNJ controller.
Therefore, once a[SYNH packet is received, the module opens a[UDP socket
and sends the required message to the SDN controller.

The choice fell on a kernel module to minimize performance overhead, and
because regular connection establishment also occurs in kernel space.
offers the ability to trigger a faster reconfiguration of the network. If connection
establishment duration is less critical in some use-case that focuses more on
reliability, [TCPl can replace Another alternative would be the controller’s
[RESTlinterface. However, communication with this interface is not only slower
but also more complex and would, in most cases, require to exit the kernel
space.

4.2.3 Evaluation

To validate our approach, we perform experiments to assert that (1) connection
establishment works for our approach, and (2) our approach can handle SYN
flood attacks. To this end, we perform measurements in a dedicated testbed
and present the results of these experiments. Finally, we provide a discussion
of the obtained results.

106

4.2 [THREADS

Unit Value
Product Dell PowerEdge R210 II
CPU Intel Xeon E3-1230 v2

Default[CPUl frequency 3.30 GHz
Max[CPUl frequency 3.70 GHz
Min [CPUl frequency 1.60 GHz

Cores (Threads) 4 (8)

Cache (L1/L2/L3) 64 KB/256 KB/8192 KB

Memory size 16GB (2 x 8 GB) DDR4

Memory frequency 1.600 GHz

Memory Connection Dual Channel

Storage Model HGST Ultrastar A7 K2000 500 GB@7200 rpm
Storage Connection SATA 1II (3GBit/s)

15t NIC 2 Port Broadcom Limited NetXtreme II
(Controller & Backend) BCM5716 Gigabit Ethernet

2nd NIC Intel X520

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 4.6: Hardware specifications of all servers inside the testbed except the

VNE

4.2.3.1 Testbed Description

For the testbed setup, we recreate the architecture from Figure For all
servers, except the THREADSIVNE| we use a four-core (8 threads) Intel Xeon
E3-1230 V2 at 3.30 GHz equipped with 16 GB RAM. Machines of the
same type simulate the external network with a benign client and an attacker.
Table 4.6/ gives additional detail on these machines.

The[VNF runs on a six-core (12 threads) Intel Xeon E5-2420 V2 CPU at 1.90
GHz, also equipped with 16 GB RAM. Table 4.7/ further describes this machine.

A single HPE 5130-24G-4SFP+ Switch from the Aruba series takes the role of
the component in the architecture. It supportslOF 1.3, and its hardware
table can contain up to 384 entries. For the SDN]controller, we used the python-
based Ryu controller. All network connections support a maximal bandwidth

107

Chapter 4: Augmenting Single Security Functions using [SDN]

Unit Value
Product Dell PowerVault NX400
ICPU Intel Xeon E5-2420 v2

Default[CPUl frequency 1.90 GHz
Max[CPUl frequency 1.90 GHz

Min [CPUl frequency 1.20 GHz

Cores (Threads) 6 (12)

Cache (L1/L2/L3) 64 KB/256 KB/12288 KB

Memory size 16GB (2 x 8 GB) DDR4

Memory frequency 1.600 GHz

Memory Connection Dual Channel

Storage Model HGST Ultrastar A7 K2000 500 GB@7200 rpm
RAID RAID 5 with four drives

Storage Connection SATA 1II (3GBit/s)

1t NIC 2 Port Broadcom Limited NetXtreme II
(Controller & Backend) BCM5716 Gigabit Ethernet

2nd NIC Intel X710

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
3 NIC Intel X520

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 4.7: Hardware specifications of the[VNF server in the testbed.

of 10 Gbit/s using Intel X520 controller cards. Furthermore, an experiment
controller connects to all devices via a separate experiment network. An Apache
webserver application runs on the service host. Within the same setup, we
deploy cookies and SYNIPROXY for comparison measurements.

4.2.3.2 Experiments

We perform multiple experiments to assert successful connection establishment
as well as performance under attack.

108

4.2 [THREADS

Connection Establishment

The first experiment aims to validate connection establishment while using
We, therefore, connect to the service host multiple times. We test
for the path of the packets using Wireshark [[Com19]] dumps. We also test the
connections by downloading a 32 MB file form the server.

In a second experiment, we perform 50 HTTP requests and assert the time
until a successful answer is received. [ICP| retransmits packets for which it
has not received an acknowledgment after a predefined amount of time. This
time frame is called the “Retransmission Timer.” It mainly depends on the
round-trip time within the network [[PA00]]. Thus, we measure the time for
the connection establishment for various delays between 0 ms and 250 ms. To
create these artificial delays, we use Linux’s NetEm.

Performance

To evaluate performance, we put the system under the stress of a simulated [SYNI
flood attack. Therefore, the attacker machine creates[SYNl packets with spoofed
addresses using hping3 [San19]]. In this mode, the machine can saturate the
10 Gbit/s link up to its theoretical maximum of 14.88 Mpps (mega packets per
second). We then measure how many packets were answered by the THREADS|
VNE, Cookies, or SYNIPROXY, respectively. We execute this experiment
for one minute per test run and perform at least ten runs per configuration.
For this experiment, we chose to set the NICk queue size to 64 packets, and the
burst size to 32 packets for

Additionally, we performed another experiment to evaluate our capability to
establish benign connections during an attack. Hence, we perform an attack
from one host and try to download a website from a protected apache webserver
50 times from another host. Since we need to track every packet to ensure the
correct functionality of THREADS) the setup for this experiment is limited to
124 kpps.

4.2.3.3 Experiment Results
After detailing the performed measurement studies, this section presents the

obtained measurement results. In the following section, we will then discuss
these results.

109

Chapter 4: Augmenting Single Security Functions using [SDN]

1.8 COTHREADS disabled .
1 THREADS enabled

N
|

* :

1.4 : A

1.2 1

0.8 0.7 .

0.6 - 0.5 |
0.4 0.4

0.4 0.3 0.3 a
0o 03

05 0.2
: 0.1)
0.1
ool oo 0l
O I l:l\ I:I\ T
0 10 50 10

HTTP Request Duration in s

I !
30 0 150 200 250
Network Delay

Figure 4.20: Duration until the first HTTP request is processed.

Connection Establishment

Connection establishment works as expected. As described earlier, the VNE
handles initial connection establishment, and hands successfully established
connections over to the server. The server successfully opens the socket and
listens for data. The Wireshark dumps show that all and
[ACK]packets take the correct route.

We found that the client starts transmitting immediately after sending the
ACK packet. At this point, the installation of the rules D and E (cf. Sec-
tion [4.2.1.2)) might not have completed. This delay leads to the first segment
arriving at the[VNHinstead of the server. Since the[VNE does not listen on that
socket, the[VNHdiscards the segment, and the client must retransmit it. This la-
tency creates an additional delay for the first segment. Our second experiment
analyzes this effect. To this end, we measured the additional delay induced by
for different artificially added latencies between the client and the
switch when downloading a website via[HTTP| Figure shows the
results. It shows that THREADS|adds an extra delay of 0.2 seconds without

110

4.2 [THREADS

delay and up to 1.2 seconds with 250 ms of delay. Wireshark dumps show that
all following segments proceed regularly fashion without additional delays.

Performance

5.05

Throughput in Mpps

1.64
1.64 S
1

I I I
SYN Cookies SYNPROXY THREADS
SYN Flood Defense Solution

Figure 4.21: Performance of Basic[THREADS|/ Implementation

RQ When it comes to performance values, we evaluate the total throughput in

4.2c Mpps as one of the key performance indicators. Furthermore, we compare the
throughput achieved by to values obtained using SYNIPROXY as
well as cookies.

Figure shows the observed values. The y-axis shows the mean through-
put in Mpps, and the x-axis distinguishes the different mechanisms. The
whiskers represent the 95% confidence intervals. The annotations describe the
exact mean value of each bar.

The results show that both cookies and SYNIPROXY perform similarly
with an average throughput of 1.64 Mpps with SYNIPROXY exhibiting slightly
larger confidence intervals. on the other hand, achieves signifi-

111

Chapter 4: Augmenting Single Security Functions using [SDN]

cantly more throughput with an average of 5.05 Mpps while exhibiting small
confidence intervals.

In the other experiment, THREADS|was able to establish all benign connec-
tions, even at the maximum attack load for this experiment. The attack load
did not affect the connection establishment duration.

4.2.4 Discussion

In this section, we present a brief discussion regarding the obtained results and
compare the values to similar work from the area.

4.2.4.1 Connection Establishment

Our evaluation has shown that can perform regular connection
establishment. However, the second experiment shows that adds a
delay to the transmission of the first segment. Since the retransmission timer
depends on the round trip time, this effect increases when adding additional
delay. This behavior, in some situations, can prove harmful to performance for
latency-critical applications. However, [TCPlis a protocol primarily chosen for
its reliability. Many applications are not that time-critical for the first packet,
as long as the overall process duration does not significantly increase. For
example, a Google study shows that the average page load time for mobile
webpages is over eight seconds [[An17]]. Even if the timing is a critical issue,
there are three possible solutions.

a) The[VNF could forward received packets to the server for a short amount
of time until the rule installment completes. However, either the
[VNF must forward all packets that are neither or
without distinction, or this modification would make the [VNE stateful.

b) The switch can use an additional flow to delay packets that are neither
SYN] SYN=+ACK] or[ACKIif there is no specific rule configured for these
packets.

¢) The third solution is to use the server’s regular [TCP| connection estab-
lishment under normal circumstances. The server triggers [THREADS]
to be enabled once the backlog at the server reaches a pre-configured
threshold. In an attack situation, the small extra delay is more acceptable
than under normal circumstances.

112

4.2 [THREADS

4.2.4.2 Performance

MHREADS shows the capability to handle up to three times as many connection
requests as cookies and [SYNIPROXY. Thus, it is capable of defending
against more massive and more violent attacks using the same amount of
resources. So far, we can only speculate that this performance increase is
partially due to[DPDKTIs low overhead and hardware acceleration from the Intel
network cards. Furthermore, we have shown that[THREADS] can establish new
benign connections during attacks.

Unfortunately, it was not possible to directly compare our approach to the
competing approaches from [[Zhe+18] and AVANT-GUARD from [[Shi+13b].
Both approaches do not provide artifacts to re-implement their solutions. How-
ever, while [[Zhe+18]] only provides evaluation regarding SYN Flood detection
[Shi+13b]] provides some performance evaluation. Their experiments show
that AVANT-GUARD has a response time impact of 1.86% in idle mode and
2.1% with a Flood of 1000 pps. Since our approach shows a performance
in Mpps, and we evaluated benign connections for up to 124 kpps of attack
load, it would be frivolous to interpolate over three to four orders of magnitude.
Thus, as we have shown that can perform in the range of Mpps,
we can not draw any conclusion from the underlying data regarding whether
AVANT-GUARD can or cannot perform at this level as well.

4.2.5 Parallelization and Parameter Tuning

So far, we only deployed a single-core version of Furthermore,
only underwent benchmarks using a default configuration. This
section introduces two parallelization approaches for (i) locked
access to the queues, and (ii) a ringbuffer distribution. Furthermore, we take
a look at parameters that are common to all approaches as well as approach-
specific parameters. Finally, we perform a parameter study for both approaches
using a two factor ANOVA.

4.2.5.1 Joint Parameters

Both approaches have joint parameters that can be modified. The first parameter
is the queue size inside the network card. This size determines how many packets
can reside in the cache before dropping further packets. The next parameter is
the [NICTs burst size. This parameter determines the number of packets sent at
once. Next, mbuf_pool_size determines the size of [DPDKI's message buffer. This
parameter is of interest because [DPDKIs documentation suggests setting it to a

113

Chapter 4: Augmenting Single Security Functions using [SDN]

value of n = (29 — 1) where ¢ is an arbitrary value. We want to evaluate the
gain in following this rule. Finally, we modify the core count.

4.2.5.2 Locked Access

Core 0 Core 1 s Core n

acquire

acquire and
and send

receive
PMD rec;k AD send

NIC

Figure 4.22: Locked Access Multi-threading

Parameter Values
queue size 64, 2048
burst size 4,32
mbuf_pool_size 8191, 9192
core count 2,4,8,12

Table 4.8: Variation for Locked Access

The first solution extends the basic approach while adding only minimal
additional complexity. We introduce simple locks (true/false-semaphores) to
allow multiple cores for packet processing so that only one core at a time can
access the receive or the send queue. Figure shows this architecture.

Each thread now goes repeatedly through the following steps:

1) Lock the receive queue

114

4.2 [THREADS

2) Receive burst from the queue
3) Unlock receive queue

4) Process packets

5) Lock send queue

6) Send computed packets

7) Unlock the send queue

If a lock is currently not unlocked when trying to lock, the thread waits for it
to unlock. When multiple threads are waiting for a lock to unlock, the waiting
threads get the lock in an fashion. Table 4.8|shows the variations used in
the parameter study for the locked access.

4.2.5.3 Ringbuffer Distribution

Parameters Values
queue size 64,2048
ringbuffer size 32,512
burst size 4,32
mbuf_pool_size 8191, 9192
core count 2,3,4,10

Table 4.9: Variation for Ringbuffer Access

A more sophisticated approach is to use a ringbuffer instead of the locking
mechanism, as described above. The idea behind this approach is to prevent
locking overhead. To achieve this goal, we add a dedicated receiving and
sending core for the respective queue. The receiving core takes packets from
the receive queue and stores them on the receiving ringbuffer. The processing
cores can then take the packets from the receiving ringbuffer. These cores then
place processed packets on the sending ringbuffer. The sending core takes
the packets from the sending ringbuffer and transmits them. All operations
on the ringbuffer are designed to be atomic and therefore require no locking.
Figure shows the architecture using the ringbulffer.

For this approach, we vary the size of the ringbuffer, and the number of
packets taken and written per access.

Table 4.9|shows the variations used in the parameter study for the ringbuffer
distribution.

115

Chapter 4: Augmenting Single Security Functions using [SDN]

Processing Processing Processing
Core 0 Core 1 Coren

dequeue enqueue

enqueue dequeue

RX Core TX Core
PMD rec;k AD send
NIC

Figure 4.23: Ringbuffer Distribution for Multi-threading

4.2.5.4 Parameter Study

In the following, we present the results obtained during a parameter study RQ

regarding the two previously described mechanisms. In both cases, we present
the baseline measurements of 5.05 Mpps, as shown in Section as well as

the optimal and worst parameter combination.

Locked Access

First, we evaluate the Locked Access mechanism and identify its key perfor-
mance parameters. To this end, we perform multiple measurement studies
combining the different parameters presented in Table For brevity reasons,
we omit the detailed results of each of the parameter studies. We instead present
the results for both the best as well as the worst parameter combination. We
also compare both to the baseline measurement presented before. Figure

depicts this comparison.

116

4.2d

4.2 [THREADS

10 8.8 N

8—4 1
o 8| h
=
& 478
S5 6l |
£ 5.05
5D
g
£ 4f 1
= -

2 | —

O ! ! !

worst baseline optimal

THREADS Locking Configuration

Figure 4.24: Performance Effect of THREADS| Configuration Using Locked Ac-
cess

The figure, again, shows the mean throughput in Mpps along the y-axis
and the different scenarios along the x-axis. The whiskers represent the 95%
confidence intervals. The baseline measurement represents the single-core
scenario presented before.

Applying eight cores, a mbuf_pool_size of 8191, a burst size of 32, and a
queue size of 64 results in the worst performance. The achieved performance at
4.78 £1.46 Mpps, on average, even underperforms the single-threaded solution.
The highest observed performance gain occurs when using four parallel cores, a
mbuf_pool_size of 8191, a burst size of 4, and a queue size of 2048. The achieved
performance at 8.88 + 0.48 Mpps is significantly faster than the single-threaded
baseline and outperforms the worst-case performance by a factor of almost
two. These results show that the configuration is essential, and sub-optimal
configurations can lead to worse performance than single-threaded operation.

Evaluating the various parameter combinations has shown that the queue
size has a significant impact on the performance since the larger queue size

117

Chapter 4: Augmenting Single Security Functions using [SDN]

leads to performance increases of up to 21%. The NIC’s burst size also has a
significant impact, with the smaller burst size increasing performance by up
to 11% compared to the larger burst size. The mbuf_pool_size parameter has
no significant impact as the difference in all cases is below 1% and does not
reach the threshold for significance. Similarly, increasing the core count only
results in performance gains for up to four parallel cores. Increasing the core
count even further does not yield performance gains and even reduces the
performance in some cases.

Ringbuffer Distribution

10 .

8.
F 7 |
= 6.75
3 6| |
£ 5.05
2 3.84
2
2 4] i
= .

2 [|

0 T ! !

worst baseline optimal

THREADS Ringbuffer Configuration

Figure 4.25: Performance Effect of [HREADS Configuration Using Ringbuffer
Distribution

Benchmarking the ringbuffer mechanism detailed before leads to similar
observations.

The worst-case performance occurs when using ten cores, a mbuf_pool_-
size of 8192, a[NIClburst size of 4, and a queue size of 2048. In this scenario,
we configured the ringbuffer to have a size of 32 and a burst size of 1. The

118

RQ
4.2e

4.2 [THREADS

achieved performance at 3.84 & 0.64 Mpps, on average, underperforms the
single-threaded solution once more.

The best performance shows when using four parallel worker cores (6 total
cores due to RX and TX core), a mbuf_pool_size of 8191, a burst size of 4,
and a queue size of 64. We configured the ringbuffer to hold 512 packets and
feature a burst size of 32. The achieved performance at 6.75 £ 0.01 Mpps is
significantly higher than the single-threaded baseline and outperforms the
worst-case performance.

Figure shows the differences between baseline, worst-case configuration,
and optimal configuration. Similar to the locked access, it shows that the
configuration is essential, and sub-optimal configurations can lead to worse
performance compared to single-threaded operation. Here, the performance
degradation of the worst configuration is even more substantial compared to
the locked access solution.

Investigating the impact of single parameters has shown that the influence of
the queue size falls below the threshold of significance, with only an average
advantage of 2% for the smaller ringbuffer size. The same can be said for the
ring size, as the higher value on average has a non-significant advantage of 2%.
The impact of the[NIC|burst size and the mbuf_pool_size is also negligible (0%).
The ring burst size, on the other hand, has a significant impact as selecting
the higher size value results in a performance boost of 31% on average. The
optimal average core count in this scenario is two active cores, but the advantage
over four cores is within the limits of significance. For higher core counts, the
performance decreases.

4.2.5.5 Multi-threading Performance and Scaling

We have introduced two approaches to multi-threading for the
implementation. Figure shows that both approaches offer an increase in
performance compared to the single-threaded baseline. However, the speedup
is limited. For the locking approach, a speed increase of 64% occurs when using
four cores. The ringbuffer approach only yields a speedup of 34% when using
six cores. However, with the locking approach, a single instance
with four cores can tackle an attack that can flood a connection for more than
half of the theoretical limit of a 10G network.

In general, does not scale well vertically (adding additional [CPU]
cores). For deployment in real environments, it is, therefore, advisable to
use small or medium instances and deploy multiple instances of
instead of using large instances. These instances can be easily load-balanced
since is stateless.

119

Chapter 4: Augmenting Single Security Functions using [SDN]

10r 8.8 l

2 i
2@ 81 _
< 6.75
ER i
iy 5.05
5D
5
Z af 1
=

2 i

0 !]]

baseline ringbuffer locking

THREADS Multithreading Mode

Figure 4.26: Comparison of different multi-threading approaches implemented

for THREADS

4.3 Summary and Evaluation of Research Questions

In this chapter, we presented two approaches to increase the performance of
single security functions inside a network using[SDNl These solutions included
a bypassing solution for and a state-less mitigation solution for TCPISYNI
flood attacks.

RQ4.1a How can [SDNIbased approaches improve Intrusion Detection
Systems?

In general, allows us to use dynamic or static rules to redirect traffic
based on its properties. require a significant amount of computing re-
sources for each packet they inspect. Furthermore, a high load level can lead to
wrongly classifying incoming data units as either false positives or neg-
atives. Thus, can improve the performance and security metrics of
by redirecting irrelevant data away from it and, thereby, relieving it from this
load.

120

4.3 Summary and Evaluation of Research Questions

RQ4.1b What effects do bypassing approaches have on the performance
and security of Intrusion Detection Systems?

Compared to an inline [DS all static and adaptive bypassing approaches in-
crease throughput and the number of successful [HTTP|requests. Furthermore,
they reduce the latency, residence time, the number of double classifications,
and the lost packets. None of the approaches leads to false-negative classifica-
tions, but, in some cases, can increase the number of false positives.

RQ4.1c How do adaptive approaches, which perform reconfigurations at
runtime, compare to static approaches?

When considering their optimal configuration, the adaptive approaches
have better performance metrics than the compared static approach. In these
configurations, the adaptive approaches can even match the throughput per-
formance of a system without the [DS, albeit with higher latencies. The static
approach has a lower number of lost packets, but, on the other hand, generates
a higher number of false positives. However, the performance of the adaptive
approaches largely depends on the employed switch (see also RQ4.e).

RQ4.1d How do different workload levels impact the performance and
security of the[SDNIbased approaches?

Increasing the workload beyond the level the system can handle without
inducing a queuing or dropping behavior impacts the performance. Overall,
throughput decreases, latencies and the number of false positives grow, and the
system can no longer handle all requests successfully. In general, all previously
state qualitative observations stay true. Nevertheless, the scale of these obser-
vations change. An especially noteworthy change is the decrease in precision
for the static approach. In general, the[SDNHbased approaches suffer less from
the overload situation than an inline

RQ4.1e Do the[SDNtbased approaches change their behavior when using
hardware or software switches?

We found that the performance of the adaptive approaches strongly depends
on the used switch type. When using a software switch instead of a hardware
switch, this can more than double the throughput. While the traditional security
metrics are hardly affected, the number of lost attacks is severely reduced —
especially in non-overload situations. In comparison, the static approach does
neither profit nor suffer from changing the switch type.

121

Chapter 4: Augmenting Single Security Functions using [SDN]

RQ4.2a How can[SDNlbased approaches improve DDoS Protection Sys-
tems against[SYNI flood attacks?

SDNI can counter shortcomings of existing [DPSlsolutions against [SYNIflood
attacks. These shortcomings include the absence of independent scalability or

the need for all traffic to pass through the security function even after connection
establishment. By using[SDN] it is possible to create a state-less DPSIVNEl

RQ4.2b What is necessary to make such a solution stateless and indepen-
dently deployable?

Our solution THREADS requires two components inside an [SDNlenabled
network: (i) a stateless VN taking care of the TCPlhandshake and forwards
successful handshakes to the protected service, and (ii) a modification to the
service to the protected service to accept connections from the[VNFland instruct
the controller to stop directing packets of this connection via the VNF.

RQ4.2c¢ How does such a solution perform compared to existing solutions?

THREADS performs up to three times as fast as the existing solutions without
parameter tuning. However, it introduces a significant delay for connections
for the first data packet. We presented multiple solutions to this issue.

RQ4.2d To what extent can parallelization improve the performance of
such a solution, and how vital is parameter-tuning?

We presented two parallelization approaches: (i) a locking approach with
semaphores for the send and receive queues, and (ii) a ring buffer. These
approaches show that they can improve the performance relative to the non-
parallel and non-optimized baseline by another 76%. The more straightforward
locking approach outperforms the ringbuffer approach and requires fewer cores
at its optimal configuration than the ringbuffer. As a result of this, parameter-
tuning is very important, since poorly configured parallel deployments of
MHREADS produce a performance below the single-threaded baseline.

RQ4.2e Which deployment and scaling strategies suit the solution?

does not scale very well vertically with optimal performance at
four (locking) and six (ringbuffer) cores. Thus, for deployment in more exten-
sive infrastructures or cloud environments, we suggest focussing horizontal
scaling using many small or medium instances. Since is stateless,
load-balancing between the instances is easily attainable.

122

Chapter 5

Performance Modeling for Security
Service Function Chain Orders

Today’s network attacks rely on massive bot networks. Their attacking power
raises as the number of online devices rapidly grows in times of the[loIl The
ending of Moore’s Law [[TW17]] (promising doubling computing resources
every two years) limits the opportunity to throw in additional resources to
tight attacks. Moreover, booking additional resources on demand is very costly,
also considering that the owners of bot networks do not have to pay for their
attack resources.

Information systems that provide services via the Internet offer various attack
vectors. We presented common attack types in Section[2.2] For each type of
network attack, there are dedicated security functions to defend the system
against that attack. For example, a firewall fights [HTTP| floods, and
like (see Section [4.2)) can mitigate floods. Multiple security
functions together comprise to protect systems against a set of several
attack types. Section [2.6/shows an example of SSECk.

For most systems, a direct correlation between consumed resources and
the number of processed packages exists. In contrast, security functions (and
therefore[SSECE) stand out, as they (i) behave differently under various traf-
fic conditions (package characteristics and overload situations [TL12]]), and
(ii) drop packets deemed as malicious reducing the load on subsequent security
functions.

Security systems can be taken out of service by attacks — when in a subopti-
mal configuration — long before purposefully utilizing all available resources.
As an example, we illustrate this by a chain of two security functions, a firewall,
and a We assume that each security function can handle a throughput of
100 MBit/s while accurately filtering malicious packages. The described system
is now the target of a attack on a port not filtered by the firewall. The
total traffic rate is 1 GBit/s, and 90% of traffic is malicious. The throughput and

123

Chapter 5: Performance Modeling for[SSEC] Orders

required resources of the for this attack highly depend on the security
functions’ order.

If we put the firewall first, there would be no filtering, and all packets proceed
to the next stage. Consequently, ten instances of each security function type
would be required to handle all traffic. These resource requirements sum up to
a total of 20 instances. Otherwise, if we place the in front, the first layer
would still require ten instances, but the would drop the malicious 90%
of traffic before reaching the second layer. Instead of ten instances, a single
tirewall instance can handle the remaining 10% percent of traffic. The use of a
total of eleven instances makes it possible to survive the attack, which means
a 45% reduction in the resources required compared to bringing a firewall
forward. Another attack could be on a port blocked by the firewall. Then the
placement of the firewall in front of the inverts the efficiency discrepancy.
While dropping rates might differ for different security functions and traffic
compositions, our illustrative example demonstrates potential efficiency gains
when tailoring the order to the incoming traffic.

While a traffic-aware reordering would provide benefits, today’s operation
of [SSECE relies on a static order of security functions. We propose a self-aware
approach to automatically reorder security functions based on incoming traffic
to address this deficiency. Therefore, the security functions report detected at-
tacks to a central instance, the Function Chaining Controller (ECC]). We model
the behavior of different security function types and configurations based on
measurements as well as different traffic types for attacks, benign workloads,
and combinations of them. Based on these models, we then infer a configu-
ration tailored to incoming traffic, which can be instantiated by dynamically
reordering the

The benefit of our approach is to improve the efficiency of traffic processing
inside the This improvement results in an increased throughput to
resources ratio. Since overload situations are avoided or at least mitigated, we
additionally expect a reduction of the false-positive and false-negative rate.
Finally, the chances of the security system being permanently disabled due to
an attack shrink.

Research Questions

In this chapter, we tackle several research questions. All of the following
research questions are part of the meta-research question MRQ 5: To what extent
can we improve security systems by introducing dynamic function chain reordering?.
The numbering of these research questions maps to the sections of this chapter.

124

5.1 General Idea

If a section deals with more than one research question, those questions have
their number appended by ascending Latin letters.

RQ 5.1 What components and capabilities define a Security Service Function
Chaining framework?

RQ 5.2a How do single security functions perform under attack load?

RQ 5.2b What is the impact of the ordering when combining different security
service functions?

RQ 5.3a How to model single security functions for the reordering decision?
RQ 5.3b How to model security function chains for the reordering decision?

RQ 5.3c What strategies are suitable for determining a better order?

Chapter Structure

To answer these research questions, we first present the general idea behind dy-
namic function chain reordering in more detail and sketch a coarse architecture
in Section 5.1} Next, in Section 5.2} we analyze the effect of security function or-
dering by first analyzing the performance of single security functions and then
moving on to combinations of security functions. Then, Section discusses
decision making regarding the desired ordering, and we conclude the chapter
in Section 5.4 — including an analysis of the gathered answers to the research
questions.

5.1 General Idea

>

&

s

Figure 5.1: Classic architecture of security systems.

As described in Section 2.6 different services have a different set of security
functions that defends them against attacks from an external network. Figure[5.T]
shows an example with three different security functions forming an[SSFCl In
most current security architectures, those are hard-wired or — if using
for interconnection — interconnected using a fixed order.

125

Chapter 5: Performance Modeling for[SSEC] Orders

In the following, we make four assumptions:
e A security function can defend against precisely one class of attacks.

e The attack classes associated with different security functions are mutu-
ally exclusive.

e Security functions drop packets deemed malicious.

e Traffic — benign and malicious — passing through a security function
creates a resource demand.

Figure [5.2 presents multiple configurations of the setup from Figure
under different types of load. Figure shows the setup under standard load
without an attack occurring. In this scenario, the order is not relevant. All
packets are benign and, therefore, have to pass through all security functions
in the Reordering the functions would not change the resource demand
generated by the benign packets.

In Figure an attack occurs from the external networks. The attack
corresponds to the attack class against which the blue security function defends.
With the initial configuration, the traffic passes through all security functions in
the Thus, it creates resource demands at every step until the last security
function stops it. This order would require scaling the white and red security
functions as well as the blue security function, to handle the load. Changing
the order of the red and white security function would not affect the resource
demands since all traffic would still pass through both security functions.

In Figure the blue security function moves up to the middle of the
Thus, the attacks belonging to the blue attack class must only pass through
the white security function until the blue security function discards them. The
malicious traffic, therefore, creates resource demands at the white and blue
security functions but not at the red function. If scaling is necessary, it would
only apply to the white and blue security functions. Switching the red and
white security functions can have an impact on the total resource demand. If
one of the two security functions has a higher resource demand per processed
packet, placing this function at the back of the [SSECI would reduce the total
resource demand compared to the reversed order.

Finally, in Figure the blue security function is at the front of the
This order leads to the first security function dropping all malicious
traffic immediately. Thus, traffic does not pass on to the white and red security
functions and only creates resource demands at the blue security function.
Therefore, potential scaling as a reaction to the attack is only necessary for the
blue security function. The ordering of the white and red security functions is

126

5.1 General Idea

D
D

_ | | — — | —) | —[— [— [
1| 1 C

(a) Example setup at regular operation with a benign load. All security functions
perform at the green level.

Y

Dl =2 T

(b) Example setup under attack. Attacks are of blue attack class. All security functions
are stressed because malicious traffic passes through all security functions.

&
1@3
=
=D
|

Y
Y
D

=2 EE Do, D

(c) A partially reordered setup under attack. Attacks are of blue attack class. Only
the white and blue security functions are stressed because the blue function drops
malicious traffic before it reaches the red security function.

Y

D

o8 BERE B SES
\("‘_)'L B HuE o

Y

ﬁu

(d) Fully reordered setup under attack. Attacks are of blue attack class. Only the blue
security function is stressed because the blue security function drops malicious
traffic before it reaches the other security functions.

Figure 5.2: The example setup under different load patterns with and without
reordering including load levels per security function.

127

Chapter 5: Performance Modeling for[SSEC] Orders

Ordering red white blue total

rel. no of rel. noof rel. noof noof
load inst. load inst. load inst. inst.

red — white —blue 1000% 10 500% 5 667% 7 22

red — blue — white 1000% 10 667% 7 25% 1 18
white —red —blue 500% 5 1000% 10 667% 7 22
white —blue —red 500% 5 667% 7 50% 1 13
blue — red — white 667% 7 50% 1 25% 1 9
blue — white —red 667% 7 25% 1 50% 1 9

Table 5.1: Example calculation of the resource demands (in instances) for dif-
ferent[SSEC| orders. Throughput per instance: red 100 MBit/s, blue
150 MBit/s, white 200 MBits/s. The load profile is 950 MBit/s of
malicious traffic matching the blue security function and 50 MBit/s
of benign traffic.

not relevant for the total resource demand since the malicious traffic does not
reach these two security functions, and all benign traffic passes through both
security functions.

We calculate the resource demand of the six possible permutations of the
example to illustrate the impact of the order. We assume three ex-
ample security functions. One instance of the red security function can handle
100 MBit/s, one instance of the white security function can handle 200 MBit/s,
and one instance of the blue security function can handle 150 MBit/s. As a
sample workload, we assume 50 MBit/s of benign traffic and 950 MBit/s of
malicious traffic. We calculate the relative load to one instance of each secu-
rity function, the number of required security function instances per security
function, and the total number of required instances.

Table 5.1{shows the computed results. The results for the example provide
that optimal configurations (in this case, two exist) can reduce the total number
of required instances from 22 to 9 or by 59%. It also confirms our previous
statements regarding the order of the security functions that do not defend
against the occurring attack.

In practice, attacks more and more occur in conjunction with other attacks.
Mainly attacks frequently serve as a so-called smokescreen attack to hide
other attacks like intrusions. Thus, in many cases, malicious traffic comprises a
mix of attacks. To assert the optimal order for such a mix again requires
a computation like in Table A significant difference for attack mixes is that

128

RQ
5.1

5.2 Effect of the Security Service Function Chain Order

the order of all security functions in the [SSEC|becomes essential. Unlike in the
previous example, only one optimal configuration remains.

Function Chaining Controller: The gathering of the required information
to approximate the traffic composition, the modeling, and decision for the
ordering of the[SSFC] and the enforcement of the desired ordering require an
entity taking up these responsibilities. This entity we call the Function Chaining
Controller (FCQ).

Figure[5.3|shows a coarse description of the[FCC(l's operation. The [FCCl con-
nects to the security functions and the service host to access their performance
statistics. Based on this information, the [FCCl decides whether a reconfigu-
ration is beneficial. At first, in Figure no attack occurs. Therefore, no
reconfiguration is necessary.

Once an attack occurs, as seen in Figure the FCCldeducts the compo-
sition of the malicious traffic from the available information. Based on this
composition, the [FCC|computes the optimal order for the The [FCC| then
enforces that ordering.

Once the reordering completes (Figure[5.3d), the[FCCl continues monitoring
the traffic. Every time the approximated composition of the malicious traffic
changes, the [FCClcomputes whether another reconfiguration is necessary or
not.

We design the[FCClas a self-aware system. Thus it implements the self-aware
LRA-M loop, as shown in Figure Based on its state and phenomena (e.g.,
data about the security functions’ states) comprise empirical observations. The
[ECCluses these observations to learn and reason in combination with a model
to achieve its goal (highest throughput with the least amount of resources).
Based on this reasoning, the ECClacts (enforcing a new order for the [SSEC]).

5.2 Effect of the Security Service Function Chain Order

In the introduction to this chapter and the previous section, we claimed that
the order of security functions inside the influences its performance. In
this section, we evaluate security functions and with different security
function orders to assert our claim. At first, in Section we present the
used evaluation environment. We then measure the performance of three
different security functions under benign and malicious traffic in a standalone
deployment in Section The measured security functions are a firewall,
a[DPS, and an[[DS In Section[5.2.3] we put these security functions in
consisting of two such functions and vary their order. Last, in Section we

129

Chapter 5: Performance Modeling for[SSFQ Orders

@_,

Function
Chaining
Controller

(a) Normal operation. The[FCCJconnects to the service hosts and the security functions
to gather information.

Chaining 3. Enforce Order

Controller

2. Compute
Optimal Order
1. Collect Data
Function w

(b) An attack occurs. The[FC detects the attack based on the available information.
It then computes the optimal ordering and enforces ist.

> ’
<1" =
Continues to
Collect Data

(c) After applying the new ordering, the [FCC] continues monitoring the system to
decide whether further reordering is necessary.

Function
Chaining
Controller

Figure 5.3: Workflow for the Function Chaining Controller from normal opera-
tion over the attack occurrence to the reordering execution.

130

5.2 Effect of the Security Service Function Chain Order

Goals

w
Y

N

(self, environment, goals,...)

Models

Reason e Act s

—
|
|
|
Empirical Observations f
i
|

SELF *

a
Phenomena Actions

(environment, other systems, humans,...)

Figure 5.4: Self-aware LRA-M (Learn, Reason and Act based on Models)
Loop [Kou+17].

discuss the results and the conclusions that we must consider for modeling and
decision making in Section[5.3]and incorporate into the reordering framework
in Chapter [}

5.2.1 Evaluation Environment

We designed a testbed that can incorporate benign and malicious workloads
to evaluate security function performance, using single security functions and
composite with modifiable security function orders and different server
applications. Figure 5.5[shows the architecture of that testbed.

5.2.1.1 Hardware Components

We use a total of six physical servers to incorporate this setup. These take the
roles of (i) a client and attacker, (ii) an application server (the protected appli-
cation), (iii) a DDoS Protection System (DPS)), (iv) a firewall, (v) an Intrusion
Detection and Prevention System ([DPS)), and (vi) an SDN, Experiment, and
Function Chaining Controller.

131

Chapter 5: Performance Modeling for[SSFQ Orders

25 SW1 2
| 2}
-/
Client / Attacker Server
R —
25 27
GERED s
J
26 52 28 (1777177 o]
SDN- & Experiment DPS
Controller & FCC

25
Xsw3

25
swil{ T 1)

27

26

(177717 o
(771111 o]
(177717 o
(777717 o

Firewall
2 27 P . Data Network
ort Numbel: at Swm;h 10 GBit/s
(port further away is outgoing port)
Controller Network
1 GBit/s

Figure 5.5: Evaluation setup for different security functions and [SSFC| order-
ings.

132

5.2 Effect of the Security Service Function Chain Order

Unit Value
Product Dell PowerEdge R210 II
CPU Intel Xeon E3-1230 v2

Default[CPUl frequency 3.30 GHz
Max[CPUl frequency 3.70 GHz
Min [CPUl frequency 1.60 GHz

Cores (Threads) 4 (8)

Cache (L1/L2/L3) 64 KB/256 KB/8192 KB

Memory size 16GB (2 x 8 GB) DDR4

Memory frequency 1.600 GHz

Memory Connection Dual Channel

Storage Model HGST Ultrastar A7 K2000 500 GB@7200 rpm
Storage Connection SATA 1II (3GBit/s)

15t NIC 2 Port Broadcom Limited NetXtreme II
(Controller & Backend) BCM5716 Gigabit Ethernet

2nd NIC Intel X520

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 5.2: Hardware specifications for all servers inside the evaluation envi-
ronment

For all servers, we use a four-core (8 threads) Intel Xeon E3-1230 V2
at 3.30 GHz equipped with 16 GB RAM. The machines connect to a backend
network (e.g., for downloading software packets) and the controller network
(controlling experiments, gathering data) using a Broadcom 1 Gb/s controller.
Additionally, all servers — except the controller — also connect to a 10 GBit/s
network using Intel 10 GBit/s cards. Servers running pass-through applications
like the and the firewall connect to this network using two ports. The
client & attacker machine is serving two roles and, therefore, also uses one link
for each role. Table 5.2 gives additional detail on these machines.

Two standard non-programmable 1 GBit/s HPE ProCurve 3500y1-24G
switches provide the connectivity for the backend and controller network.
Four HPE 5130 24G 4SFP+ EI SDN switches span the network for the experi-
mentation data. Since these switches only have four 10 GBit/s network ports

133

Chapter 5: Performance Modeling for[SSEC] Orders

(numbers 25 through 28), we require four of them to interconnect all servers,
as shown in Figure The switches provide enough backplane switching
capacity to ensure that this setup does not become a bottleneck. Figure
shows which cable connects to which 10 GBit/s port on the switches to facilitate
the reproducibility of this setup All 1 GBit/s links use Cat 6a copper cables,
and all 10GBit/s links use fiber-optic cables.

5.2.1.2 Software Components

Traffic Generator (Benign): On the first 10 GBit/s interface of the client
& attacker server, we generate benign [HTTP traffic. For this purpose, we use
[HTTP Load Generator [KDK18]['} HTTP Load Generator can generate HTTT]
loads. The tool supports constant load levels, as well as varying load intensities.
It is possible to manually configure these levels or retrieve them from a tool like
LIMBO [Kis+17]]. Furthermore, the traffic generator supports the integration
of power meter devices. [HTTDl load generator comprises two components:
a director and a generator. The director component controls one or multiple
generator components and directs when they send packets. The generator
component performs the actual packet generation. We deploy the director
component on the experiment controller host and the generator component on
the client & attacker server.

Traffic Generator (Malicious): We use the second 10 GBit/s interface of
the client & attacker server to create malicious packets. On it, we create
and floods using Cisco’s Trex [Sys20]| generator. Trex is an open-
source stateful and stateless traffic generator. For the chosen attacks, we do not
require the stateful generation and, therefore, use only the stateless mode. Trex
uses the to create high-volume loads. [DPDKlbinds the whole interface
to the program. Therefore, the benign [HTTP traffic needs to use a different
interface. To generate HTTPfloods, we employ BoNeSi [[Gol18]] — a BotNet
Simulator. BoNeSi can create high-volume [HTTP floods by emulating spoofed
IP addresses.

Intrusion Detection and Prevention System: The[[DPShost runs the Snort
in version 2.9.7. Snort is a popular, open-source developed by Cisco
and also is the foundation of Cisco’s commercial solutions. Snort uses
both 10 GBit/s interfaces, one for the incoming, and one for the outgoing traffic.

lavailable at https://github.com/joakimkistowski/HTTP-Load-Generator

134

https://github.com/joakimkistowski/HTTP-Load-Generator

5.2 Effect of the Security Service Function Chain Order

For the measurements, we extended the standard Snort Community signatures
by several rules. Those are available in Appendix

Firewall: Like the the Firewall uses one interface for incoming and
one for outgoing traffic. We interconnect both interfaces using a Linux bridge,
and Netfilter/iptables rules accomplish the packet filtering. The used rules are
available in Appendix

DDoS Protection System (DPS)): As a[DPS, we use a modified version of
The main difference to the version presented in Section [4.2)is that
the VNHis in charge of issuing network modifications at the controller.
Also, we made some further modifications to this application. In the following
lines, we give a summary of this version of For more information
about architecture, consult Section comprises
two components. A[DPDKlapplication attached to a single 10 GBit/s interface
is handling incoming packets. It forwards successful [[CPl handshakes to a
Python application via a named pipe that is generating the needed calls to
the Controller. A few changes to the original version were necessary to
deliver more predictable performance. First, we send all packets that reach the
erroneously back on the same interface instead of dropping them. This
forwarding is necessary because the required network change after a successful
handshake is too slow (see also the experimentation results in Section[4.2.3.3))
and, therefore, some of the early data packets reach the instead of the
protected service. Second, the[TCPlpackets generated by the[DPDKlapplication
did not honor the TCP options set by the sender/receiver. Especially setting
an explicit[MSSlimproved the system’s performance drastically. Appendix
shows these modifications.

Protected Service: The target server runs TeaStore. “The TeaStore is a
micro-service reference and test application to be used in benchmarks and tests.
The TeaStore emulates a basic web store for automatically generated, tea and
tea supplies. As it is primarily a test application, it features Ul elements for
database generation and service resetting in addition to the store itself. The
TeaStore is a distributed micro-service application featuring five distinct services
plus a registry. Each service may be replicated without limit and deployed
on separate devices as desired. Services communicate using REST and using
the Netflix Ribbon client-side load balancer. Each service also comes in a pre-
instrumented variant that uses Kieker to provide detailed information about
the TeaStore’s actions and behavior. [Kis+18]]” A small kernel modification to

135

Chapter 5: Performance Modeling for[SSEC] Orders

THREADS|, We

the underlying apache web server is necessary to work with
applied the modification to version 4.4 of the Linux kernel.

SDN Controller: We use Ryu 4.15-0 as the [SDNI controller. Its
ryu.app.ofctl_rest module provides a REST-based interface for deploying
flows.

Monitoring and Metrics Collection The testbed measures and records the
following metrics from various sources:

e CPU usage of each server in various states: user, iowait, softirq, system

Total number of sent benign [HTTD| requests

Number of successful benign [HTTPl requests

Average[[CMPllatency between sender and receiver

[CMP] packet loss between sender and receiver
Average [TCPISYN]latency

e [TCPISYN] packet loss

Telegraf’s [Inf20b]] inputs. cpu plugin [Inf20c] collects[CPUlusage statistics
and sends them to an InfluxDB [Inf20a]] running on the experiment controller.
It reports the usage of the[CPUlin various states, of whom user, system, iowait,
and softirgq are of interest. We use Grafana [[Lab20]] to visualize the gathered
data. We use a moving average of 10 seconds to help to interpret the data. The
client and attacker machine sends a load of z[HTTPIrequests and an attack of
intensity y to the receiver for a time ¢ to measure the usage of a certain
chain/attack combination. The unit for the intensity is MBit/s for SYN] [UDP}
and floods, and requests per second for the HTTP! flood.

Telegraf’s inputs .mem plugin [Inf20d]] collects the memory usage. Processing
and interpretation of memory usage follow the approach for usage.

The [HTTD traffic generator reports the number of total and successful re-
quests during the run. We store the output in a file and analyze it afterward.

The ping command allows measuring the latency and packet loss between
the sender and receiver. We run an attack of intensity « for a time ¢ and continue
pinging during that time.

We measure the latency and packet loss using the hping3 [San20]]
command. Hping3 sends a[TCPISYNIrequest and measures he time until the
corresponding answer arrives. To determine this value, we run an
attack of intensity « for a time ¢.

136

5.2 Effect of the Security Service Function Chain Order

clone git repository (adapt directory to your wishes)
git clone gitQ@github.com:bladewing/SSFC_testbed.git

< /tmp/dynamic-chaining

cd /tmp/dynamic-chaining

instantiate the vagrant machines - this can take some time
vagrant up

ssh to the controller machine
vagrant ssh master

Listing 5.1: Script to bring up all virtual machines in the environment and ssh
to the controller machine.

go to the shared folder containing the ansible scripts
the folder /vargrant holds the git repository
cd /vagrant/ansible

make the bootstraping script runnable
chmod +x bootstrap_ansible.sh

install required packages
./bootstrap_ansible.sh

run the ansible playbook
ansible-playbook -i hosts-vagrant-master playbook.yml

Listing 5.2: Script to deploy all required services, tools, etc. on all machines
using ansible from the controller machine.

137

Chapter 5: Performance Modeling for[SSEC] Orders

5.2.1.3 Deployment

We provide the configuration files for our setup for download at https://
github.com/bladewing/SSFC_testbed. Since most people do not have the
exact switching and benchmarking hardware, like the one we use, we provide
a fully virtualized environment to deploy our solution, where we replace the
four hardware switches with a single Open vSwitch instance.

To use the environment, a user must install Vagrant [Has20]]. We tested all
of our scripts with Vagrant 2.2.7.

Listing [5.1| shows how to bring up all required virtual machines, including
the virtualized network. In the last step, we connect to the controller[VMl Next,
Listing 5.2 bootstraps ansible on the controller machine and then deploys all
required services and tools to the various machines in the testbed. After these
steps, all machines are ready, and we can start running experiments.

Chain ~ Average ICMP Packet Average SYN SYN packet

response loss response loss
Direct 0.191ms 0% 4.5ms 0%
Firewall 0.343ms 0% 3.8ms 0%
DPS 0.194ms 0% 4.7ms 0%
IDPS 0.340ms 0% 4.4ms 0%

Table 5.3: Latency and packet loss for single security functions with a benign
workload.

5.2.2 Single Security Function Performance

Before evaluating the impact of [SSEC| ordering on performance, it is necessary
to evaluate the single security functions. With this knowledge, we can then
assert the impact of the [SSFCk ordering.

5.2.2.1 Benign Workloads

At first, it is necessary to build a baseline of how the security functions behave
under benign load. It is possible to make statements on the differences in
behavior under attack using that information.

138

https://github.com/bladewing/SSFC_testbed
https://github.com/bladewing/SSFC_testbed

Successful Requests

1,400,000

1,200,000 |-

1,000,000 |

800,000
600,000
400,000

200,000

5.2 Effect of the Security Service Function Chain Order

0

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500
Requests per Second

Figure 5.6: Successful requests without any security functions.

139

Chapter 5: Performance Modeling for[SSEC] Orders

Baseline without a Security Function

We require a baseline that establishes a realistic maximum performance that
is attainable by the service host. To this end, we query the service host with a
varying benign load. Thereby, we determine the maximum amount of [HTTD|
requests per second the service can handle.

Figure 5.6 visualizes the results for this experiment. Table B.1|lists the values
for the figure. The results show that the service scales linearly and beginning
with 16 000 requests per second the number of successful requests stalls. There
is even a small decrease in throughput afterward. This decrease is probably
attributable to, e.g., queuing, swapping, and context switching effects. At that
point, the target service has reached its limit. Since the two servers directly
connect to the same switch, the first data row in Table shows very low
latency and no packet loss. These results serve as a baseline for evaluating how
the appliances impact the latency and data loss.

1,400,000 |-
1,200,000 |-
2
§ 1,000,000 |-
g
& 800,000 |
2
@
£ 600,000
=]
wn
400,000 |-
200,000 |- —— Direct | |
—#— Fjrewall
| | | | | | | |

075 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500

Requests per Second

Figure 5.7: Successful requests with only a firewall enabled.

140

5.2 Effect of the Security Service Function Chain Order

Firewall

We repeat the same experiment as for the direct connection with a firewall
between the client and the service host. In the evaluation environment (Fig-
ure , this means adding the rules that route traffic from the client to
the server via SW2, SW3, and the firewall connected to SW3. Table[A.]lists the
necessary [SDN]rules for all involved switches.

Figure [5.7] visualizes the results for the firewall (values from Table [B.2)).
Regarding the results, the firewall has little effect on the number of successful
requests. Again, the number grows linearly with the workload up to 16 000
requests per second, and then stalls out and slowly drops when in overload.
As Table[5.3|shows, the firewall has a small impact on the [CMPlresponse. A
significant factor in this increase is the routing via three different switches. The
[SYNIresponse even drops slightly.

250,000

200,000 |

150,000

100,000

Successful Requests

50,000 - —— Direct | |

—— DPS

0 e ! ! ! ! ! ! ! ! ! ! !
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

Requests per Second

Figure 5.8: Successful requests with only a[DPS|enabled.

141

Chapter 5: Performance Modeling for[SSEC] Orders

DDoS Protection System (DPS])

Again, we repeat the experiment with a[DPSbetween the client and the service
host. In the evaluation environment (Figure[5.5), this means adding the
rules that route traffic from the client to the server via SW2, and the con-
nected to SW2. Table[A.2|lists the necessary SDNlrules for all involved switches.
Figure 5.8 shows the results for the (values from Table[B.4). Regarding
the results, the[DPShas a significant effect on the number of successful requests.
In the beginning, the number grows linearly. Nevertheless, unlike the direct
connection and the firewall, the limit is reached at 3 000 requests per second,
and then stalls out and drops significantly when in overload. For higher loads,
the throughput zigzags afterward but does not exceed its previous maximum.
As Tablep.3|shows, the has almost no impact on the [CMP]response when
comparing to the direct connection. This effect is attributable to only one
necessary hop. The SYNIresponse slightly increases. We expected such a small
increase since the [DPS performs additional actions during [SYNlhandshakes,
including a complex computation (see Cookies in Section[2.3.2.T)).

250,000 |- .

£ 200,000 |- .
g
o
&

= 150,000 | |
2
B
s

< 100,000 |- .
n

50,000 —— Direct | |

—— IDPS
0 & | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

Requests per Second

Figure 5.9: Successful requests with only an[[DPSlenabled.

142

RQ
5.2a

5.2 Effect of the Security Service Function Chain Order

Intrusion Detection and Prevention System (IDPS)

We performed the last iteration of our benign experiment using an be-
tween the client and the service host. In the evaluation environment (Figure ,
this means adding the rules that route traffic from the client to the server
via SW2, SW3, and the connected to SW3. Table lists the necessary
rules for all involved switches.

Figure 5.9/ shows the results for the (values from Table[B.5)). Regard-
ing the results, the has a significant effect on the number of successful
requests. Until its peak, the [DPS/ behaves similarly to the The number
of handled requests grows linearly. Like the [DPS)] the reaches its limit at
3000 requests per second, and then stalls out and drops significantly when in
overload. Unlike the the performance does not zigzag back up but stays
low. As Table[5.3|shows, the[[DPShas some impact on the response. The
visible increase is similar to the increase in the latencies for the firewall. This
similarity strengthens the assumption that the number of hops is significant.
Like the firewall, the requires two hops from the client as well as to the
service host. The response time does not change significantly.

5.2.2.2 Malicious Workloads

Evaluating the performance of the service and the various security functions
under benign workloads gives a reliable performance baseline for comparison
with attack workload scenarios. In this section, we put the various functions
under attack (attacks are matching the function that defends against them)
using malicious workloads and evaluate their performance.

Firewall (UDP| Flood)

As a first benchmark for the firewall, we perform a flood attack. The
firewall rules (see Listing block all received [UDP traffic, and the
rules from Table take care of diverting the traffic via the firewall. We scale
the[UDPIflood attack in steps of 500 MBit/s up to 5000 MBit/s. To assert the[QoS|
for the benign packets, we perform 2 000 benign [HTTP|requests per second for
one minute. We measure metrics — other than the throughput — at 500 MBit/s
flood strength.

We visualize the results for the successful [HTTDP requests under the
flood in Figure using the data from Table [B.6| Up until 500 MBit/s both
the direct and the protected system perform at peak efficiency. From thereon,
for both systems, the number of successful requests drops. The firewall’s
throughput drops faster than the unprotected system’s throughput. At the

143

Chapter 5: Performance Modeling for[SSFQ Orders

120’000 —— Direct
—=— Firewall

100,000 |-

80,000 |

60,000 |

Successful Requests

40,000 |-

20,000 |

0 | | | | | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

UDP Flood strength in MBit/s

Figure 5.10: Successful requests during a[UDPI flood attack with direct connec-
tion or only the firewall enabled.

144

5.2 Effect of the Security Service Function Chain Order

worst point, the firewall can only serve 3.6% of requests, and the unprotected
system manages only 5.0%.

Chain Average ICMP Packet Average SYN SYN packet

response loss response loss
Direct 0.679ms 0% 4.2ms 0%
Firewall 0.229ms 0% 4.2ms 0%

Table 5.4: Latency and packet loss during a[UDPIflood with and without the
tirewall enabled.

For the other metrics, as seen in Table 5.4} we observe that the response
is not affected by the protection. However, when using the firewall, the [CMP]
response is reduced by two thirds. A factor to this might be that the server does
not have to handle the [UDP|requests and can focus on other requests from the
client.

Firewall (HTTP Flood)

As the other benchmark for the firewall, we perform an [HTTD flood attack.
Section gives more details on this attack type. The firewall blocks[HTTDI
requests from malicious sources (see Listing[A.2]). We continue to use the
rules from Table[A.T|for diverting the traffic via the firewall. We scale the HTTDI
flood attack in steps of 1000 requests per second up to 14000 requests per
second. Again, we perform 2 000 benign [HTTP| requests per second for one
minute to assert the performance for benign workloads. We measure metrics —
other than the throughput — at a flood strength of 5000 requests per second.

Figure shows the successful requests during the [HTTD| attack using
the data from Table The firewall-protected system always stays at peak
efficiency. However, the unprotected system can hold this state only up to 1000
requests per second and then is no longer able to perform all requests. After
a first steep drop at 2 000 requests per seconds, the throughput continues to
drop until it flattens out at 14.9% of handled requests from an attacking load of
10000 requests per second and above.

Table[5.5/shows that the firewall increases the[CMPlresponse time. A possible
factor here is the additional hops to the firewall.

145

Chapter 5: Performance Modeling for[SSEC] Orders

120,000 |- -

100,000 |- 7

80,000 | 7

60,000 | -

Successful Requests

40,000 | 7

20,000 |- |—s— Direct =
—=— Fjrewall

O | | | | | | | |
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

HTTP Flood strength in requests per second

Figure 5.11: Successful requests during an[HTTPIflood attack with direct con-
nection or only the firewall enabled.

Chain Average ICMP Packet

response loss
Direct 0.154ms 0%
Firewall 0.266ms 0%

Table 5.5: Latency and packet loss during an [HTTP| flood with and without
the firewall enabled.

146

5.2 Effect of the Security Service Function Chain Order

DDoS Protection System (DPS]) (SYN Flood)

We perform a[SYN|Flood attack (for the concept of this attack see Section[2.2.1.1))
to assert the performance of the[DPSunder a malicious workload. The rules
from Table redirect the traffic via the For each run, the amount of
SYN packets is increased by 500 Mbit/s, up to 6 500 Mbit/s. We generate a
load of 2000 benign HTTP requests per second for one minute to evaluate the
successful requests during a flood. We measure metrics other than the
successful requests at 5000 MBit/s attack load.

120,000 7

100,000 -

80,000 -

60,000 | 7

Successful Requests

40,000 |- 7

20,000 - |—— Direct |
—— DPS

0 | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

SYN Flood strength in MBit/s

Figure 5.12: Successful requests during a[SYNIflood attack with direct connec-
tion or only the[DPS|enabled.

Figure shows the throughput results with and without the enabled
(values from Table[B.§)). The unprotected service operates at peak efficiency
for up to 2000 MBit/s, but from 2 500 MBit/s on, it is no longer able to handle
all benign requests. At 3000 MBit/s, the service drops to around 12,3% of
successful requests. With the enabled, full throughput is possible until
5500 MBit/s (2.75 times the load the direct service can handle). After that
point, the number of successful requests drops. However, that drop is less steep

147

Chapter 5: Performance Modeling for[SSEC] Orders

than for the direct service, and even at 6 500 MBit/s, the[DPSlprotected system
still completes around 2.5 times as many requests as the unprotected system.

Chain Average ICMP Packet Average SYN SYN packet

response loss response loss
Direct 0.108ms 0% 3.9ms 0%
[DPS 0.146ms 0% 1.1ms 0%

Table 5.6: Latency and packet loss during a flood with and without the
[DPSenabled.

When taking a look at further stats presented in Table the effect of the
[DPSlis a slight increase in the [CMP|response time. However, the[SYNlresponse
is much faster with the[DPS enabled than for the unprotected service (reduced
by 71,8%).

Intrusion Detection and Prevention System (IDPS)) (Intrusion Flood)

The last attack is an intrusion flood. Section explains the working of this
attack type. To create the flood, we use[UDP packets containing a signature that
matches the rules from Appendix The rules from Table[A 3|take
care of diverting the traffic via the We perform the intrusion flood for up
to 5000 MBit/s scaling in steps of 500 MBit/s. We measure further metrics at
an attacking load of 1000 MBit/s.

As seen in Figure (with data from Table [B.9)), both configurations keep
peak efficiency only until 500 MBit/s. Afterward, for both configurations, the
throughput drops significantly. The throughput drops faster for [DPS|than for
the unprotected system. For higher loads, both systems drop to 5%.

Chain Average ICMP Packet Average SYN SYN packet

response loss response loss
Direct 3.973ms 0% 8.5ms 0%
IDPS 35ms 32% 39ms 11%

Table 5.7: Latency and packet loss during an intrusion flood with and without
the [DPS|enabled.

148

5.2 Effect of the Security Service Function Chain Order

120,000

100,000 |-

80,000 |

60,000 |-

Successful Requests

40,000 |-

20,000 |

0 | | | | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

Intrusion Flood strength in MBit/s

Figure 5.13: Successful requests during an intrusion flood attack with direct
connection or only the [DPS enabled.

149

Chapter 5: Performance Modeling for[SSEC] Orders

Table [5.7|shows a massive increase by one order of magnitude for the
response time when using the [DPSl The[SYNIresponse time quadruples. Also,
the packet loss rates grow from 0% to 32% (ICMP)) and 11% (SYN]). This effect
fits the patterns we analyzed when optimizing an[DSin Section 4.1}

It is worth mentioning that the intrusion flood is also a flood since
it uses packets as a matter of transport. Thus, the performance of the
unprotected service correlates with its flood performance. Hence, it is
little surprise that both floods have a similar impact on the service.

5.2.3 Security Service Function Chain Performance

After evaluating the single security functions in the previous section, we now
proceed to combinations of security functions. Therefore, we use the same
attacks as before and combine pairs of security functions for each attack and
switch their ordering for comparison.

The scope of these experiments is not limited to evaluate the impact on
Quality of Experience (QoE]) relevant metrics (throughput, latencies, and pack-
age loss) but also includes the load for an approximation on the resulting
computing resource demands. Therefore, we measured the load through-
out the experiment and for the variousSSEC|orders. We not only record the load
during the experiment but also during the ramp-up and ramp-down phases.
Three load metrics are relevant for our experiments:

user Mode: This load level tells us the amount of the time the processor is
spending running user-space processes. A user-space program is any
process that does not belong to the kernel. Most programs associated
with the desktop are all user space processes. For most applications, the
should spend the majority of its time running user space processes.

system Mode: This metric describes the sum of time for which the[CPUlhas
been operating the kernel. The Linux kernel manages both the processes
and the system resources. If no user-space process wants anything from
the system, such as when it has to assign resources, execute any [[/O op-
erations, or fork new child processes, the kernel operates. The scheduler
that decides which operation will operate next is an integral part of the
kernel. The amount of time spent in the kernel should be as low as possi-
ble. However, some applications partially or wholly run in system mode.
Examples for this behavior are the filter modules used by firewalls.

softirq Mode: This statistic shows the amount of time spent on handling
software interrupts. While hardware interrupts come from various pe-

150

RQ
5.2b

5.2 Effect of the Security Service Function Chain Order

ripherals like disks and network interfaces, software interrupts come
from processes running on the system. Hardware interrupts cause the
to interrupt (hence the name) its current task and first handle the
interrupt. A software interrupt occurs at the kernel level, not at the
level.

We measure the load levels for the and the firewall. The uses
busy-waiting (not using sleep) to reduce latency and, therefore, always runs
at 100% load. On the charts on the following pages, a load of 0.5 would mean
that one thread spends 50% of its time in this state. The maximum for
our setup is 8.0 (four cores with two threads each). If the load exceeds this
value, the system is overbooked. The is running single-threaded. Thus,
it enters an overloaded state at a load level of more than one. In select cases,
we specify loads in percent instead of the notation described above. There are
some issues when comparing load levels. While it is safe to compare very high
load levels, at low levels, frequency scaling approaches might come into
play. Thus, a load at 0.6 might be a load at the maximum or the minimum [CPUl
clock rate. In our testbed, the minim clock rate is at 43% of the maximum clock
rate. Therefore, we can only use the upper and lower boundary statements.
E.g., for our[CPUs, a load of 4.0 equals at most 50% and at least 21.5% (50% of
the 43%) of the supported load.

5.2.3.1 [UDPI Flood

The first attack to benchmark [SSEC] orders is the flood attack. The device
that protects against this attack is the firewall. Thus we use the firewall rules
from before (see Listing to block all received traffic. Again, we scale
the flood attack in steps of 500 MBit/s up to 5000 MBit/s. As before, we
perform 2 000 benign [HTTP requests per second for one minute to assert the
for the benign packets. We measure metrics — other than the throughput
— at 500 MBit/s flood strength.

Firewall «+—

We compare two orders: (i) [DPS— Firewall, and (ii) Firewall —
To enforce these orders, we use the rules from Table It is
notable that the reordering between the two security functions only requires
the modification of the flow tables of a single switch (Sw2).

Figure shows the performance of both orders using data from
Table Without an attack, both orders can perform all requests.
Already at only 500 MBit/s, the performance of the [DPS— Firewall SSEClorder

151

Chapter 5: Performance Modeling for[SSFQ Orders

120,000 —*— IDPS — Firewall
—=— Fjrewall — IDPS

100,000 |-

80,000 |

60,000 |

Successful Requests

40,000 |-

20,000 |

0 |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

UDP Flood strength in MBit/s

Figure 5.14: Successful requests during an[UDP|flood attack with the firewall
and the[[DPS enabled in different orders.

152

5.2 Effect of the Security Service Function Chain Order

drops by 98% to 2 720 successful requests per second while the Firewall —[DPS|
order only loses 7%. From thereon, the performance of the [DPStheaded
chain stays below 3 500 requests per second. In contrast, the firewall-headed
chain only step-by-step loses performance, and only at 4 000 requests falls below
the other order’s limit. In general, the Firewall —[DPS[SSEC] order at
any load level has a higher rate of successful requests per second than the
[DPS— Firewall chain.

Chain Average ICMP Packet Average SYN SYN packet
response loss response loss

IDPY — Firewall 350ms 27% 636ms 18%

Firewall —[IDPS 0.355ms 0% 4.4ms 0%

Table 5.8: Latency and packet loss during a[UDPIflood with the [DPS|and the
tirewall enabled in different SSEC]| orders.

Table [5.8 confirms these findings of better performance when putting the
firewall first. The [DPS|— Firewall order results in almost a thousandfold
of the [CMPIresponse time of the other chain and two orders of magnitude
increase in the response. This chain also creates a massive packet loss
compared to no loss for the firewall-headed order.

Considering the load in Figure shows that the load on the
in user and system state is significantly smaller for the Firewall —[IDPS|SSEC]
order. As described before, the overloads at a load level higher than 1.0.
The user load fulfills that criterion. Thus, the also is a bottleneck in the
Firewall — chain. Furthermore, a significant softirq load is present for
the [DPStheaded chain. Also, the load continues long after the attack
termination, leading to the assumption that some packets still reside in the
[DPSfs internal queue. We confirmed that assumption using Wireshark. The
tirewall, on the other hand, does not encounter significant user and system
state. However, the firewall creates much load in the softirq mode. The load is
below the maximum of 8.0 for both [SSEC] orders. This observation leads to the
assumption that the [DPS/hinders the firewall. When putting the firewall first,
the load peaks higher than for the other [SSEC|order. This effect is attributable
to the higher throughput through the firewall in this scenario. Albeit, the load
stays on longer, when putting the first. The [DPS's queuing behavior
causes the packets to arrive later and more continuously at the firewall.

153

Chapter 5: Performance Modeling for[SSFQ Orders

Firewall IDPS
[> \ [->
IDPS / Firewall

(a) CPU load in user state.

Firewall IDPS
> -->
IDPS FIGVE

(b) CPU load in system state.

IDPS
B >

Firewall \ —
Firewall

==
IDPS

(¢) CPU load in softirq state.

Figure 5.15: CPU load on the (3) and firewall (4) during a[UDP flood
with different orders.

154

5.2 Effect of the Security Service Function Chain Order

5.2.3.2 [HTTPI Flood

The second benchmark is an[HTTP flood attack. Section 2.2.1.2| describes this
attack type. The firewall is the defending security function and blocks HTTP|
requests from the malicious sources (see Listing[A.2]). As for the standalone
firewall, we scale the [HTTDI flood attack in steps of 1000 requests per second
up to 14 000 requests per second. Once more, we perform 2 000 benign [HTTP
requests per second for one minute to assert the performance for benign work-
loads. As before, we measure metrics — other than the throughput — at 5000
requests per second flood strength.

Firewall «+—

We compare the same orders as for the [UDP flood attack:
(i) MDPS— Firewall, and (ii) Firewall — We continue to use the
rules from Table introduced for the flood for diverging the
traffic via the and firewall and vice-versa.

120,000 |-

100,000

80,000

IDPS — Firewall
Firewall — IDPS

60,000

Successful Requests

40,000

20,000 |- 7

0 | | | | | | | |
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

HTTP Flood strength in Requests/s

Figure 5.16: Successful requests during an[HTTP|flood attack with the firewall
and the [DPS enabled in different[SSEC| orders.

155

Chapter 5: Performance Modeling for[SSEC] Orders

Figure presents the throughput results by visualizing the data from
Table[B.11} As for the[UDPlflood, bothSSEClorders handle the benign workload
and a small attack load of 1000 requests per second well. At higher attack
load levels, the number of successful benign requests drops for the [DPS—
Firewall SSEC] order. It continues to drop with higher load, and form 10000
requests onwards settles above 20000 successful requests. Meanwhile, the
Firewall —[DPS| chain is hardly affected by the attack load and remains close
to the maximum attainable level and always stays significantly above the other
order’s level.

Chain Average ICMP response Packet loss
Firewall —[IDPS 0.390ms 0%
IDPS|— Firewall 0.403ms 0%

Table 5.9: Latency and packet loss during an HTTP flood with the firewall and
the[DPS enabled in different[SSEC] orders.

Table shows further metrics for the two orders. Unlike for the flood,
the [DPS— Firewall[SSEC|order does not generate a massive increase in latency
or a packet loss. Thus, considering these values, both orders perform
similarly.

Figure[5.17shows the different[CPUlload levels for both[SSEClorders and both
appliances. Again, the mainly creates user and system load. Here, both
orders behave very similarly. In both cases, the reaches a load of 1.0
most of the time — thus, again suggesting it is the bottleneck. However, when
putting the first, we observe a load peak at the beginning, suggesting an
overload situation. The firewall creates a relatively small softirq load (below
0.8) at the beginning of the attack in both scenarios. For the other states and
the rest of the time, it remains at shallow load levels. This behavior suggests
massive reserves of the firewall for higher load levels.

Firewall +—

Within our setup, it was not possible to find a suitable [HTTP| flood generator
for measuring the performance of the Firewall — chains. HTTP| Load
Generator proved unsuitable for generating [HTTPlfloods because it does not
handle failing connections well. We used BoNeSi for the Firewall —
measurements, but it caused unresolvable issues in combination with the
Hence no measurements for theses chains are available.

156

5.2 Effect of the Security Service Function Chain Order

IDPS Firewall

> -—
Firewall IDPS

(a) CPU load in user state.

IDPS Firewall
-> >
Firewall IDPS

Firewall

-—->
IDPS

(¢) CPU load in softirq state.

Figure 5.17: CPU load on the (3) and firewall (4) during an[HTTPflood
with the and the firewall enabled in different orders.

157

Chapter 5: Performance Modeling for[SSEC] Orders

5.2.3.3 Flood

As a third benchmark, we perform a[SYN|Flood attack (for more information on
this attack see Section [2.2.1.1]). The [DPSlis the defending security function. For
each run, we increase the flood strength by 500 MBit/s, up to 6 500 MBit/s.
We generate a load of 2000 benign HTTP requests per second for one minute
to evaluate the successful requests during a flood. We measure metrics
other than the successful requests at 5000 MBit/s attack load.

DPS| +— IDPSI

We first compare the following twolSSEClorders: (i) [DPS—[IDPS, and (ii) IDPS]
— [DPS We use the SDNlrules from Table for both [SSFC| orders. Again,
only a reconfiguration at SW2 is necessary.

120,000 |-

100,000 |-

80,000 |

60,000 |

—— IDPS — DPS
—=— DPS— IDPS

Successful Requests

40,000 |

20,000

0 | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

SYN Flood strength in requests per second

Figure 5.18: Successful requests during a[SYNlflood attack with the [DPS and
the [DPS|enabled in different/[SSFC] orders.

Figure visualizes the successful benign requests (data from Table|B.12]).

Without attack, both configurations work at peak performance. From 500 re-
quests on, the results for the [DPS|—[DPS chain drop and reach their minimum

158

5.2 Effect of the Security Service Function Chain Order

of around 4 000 successful requests (a 97% drop) already at only 1000 requests
per second. For higher load levels, the results vary only slightly but do nei-
ther improve nor deteriorate. In contrast, the [DPS—[IDPS chain keeps up full
throughput until 3500 requests per second. From thereon, the results slowly
drop almost linearly. At the maximum load in our experiment, this chain still
serves 76 719 requests or 62%.

Chain Average ICMP Packet Average SYN SYN packet
response loss response loss

[DPY—[DPS 0.285ms 0% 0.9ms 0%

IDPS— [DPS 223ms 26% 233ms 36%

Table 5.10: Latency and packet loss during a[SYNIflood with the[DPS|and the
[DPS enabled in different[SSEC] orders.

When we look at the other metrics, as presented in Table vast differences
become visible. The — order increases both response times
by three orders of magnitude. Also, it introduces significant packet losses at
26% ([CMP)) and 36% (SYNI). These losses do not appear for the [DPS—[DPS
order.

Figure illustrates the load for the during attacks for both
orders. As stated before, the load for the always remains at 1.0 due to
busy-waiting. Therefore, the figure does not show it. The load in user state
for the [DPSis close to 1.0 for the [DPS— [DPSISSEC| order but very small for
the reversed order. Similarly, with the put first, the system load
exceeds the [DPY's 1.0 limit and even the 8.0 limit of the used machine. This
high load level indicates a massive overload situation. When reversing the
order, no significant load is present. For the [DPStheaded chain,
there is a medium load up to around 0.25 in the softirq state. No such load is
present for the reversed order. In general, the DPS— [DPSISSEC] order
almost eliminates all load on the

+— Firewall

For this attack, we benchmark two more orders: (i) [DPS— Firewall, and
(ii) Firewall — We use the rules from Table for both orders.
Once more, only a reconfiguration at SW2 is necessary.

Figure presents the number of successful requests for both orders
based on the data from Table Both orders keep an optimal success rate

159

Chapter 5: Performance Modeling for[SSFQ Orders

(a) CPU load in user state.

(¢) CPU load in softirq state in percent.

Figure 5.19: CPU load on the [DPS|during a[SYNlflood with the[DPS and the
IDPSenabled in different[SSEC] orders.

160

5.2 Effect of the Security Service Function Chain Order

120,000 |- .
100,000 | .
®
3
§~ 80,000 |- |
o~
< 60,000 |
n
)
O
& 40,000 | .
20,000 - |—*— Firewall — DPS -

—=— DPS — Firewall

0 | | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

SYN Flood strength in MBit/s

Figure 5.20: Successful requests during a[SYNIflood attack with the [DPS and
the firewall enabled in different orders.

161

Chapter 5: Performance Modeling for[SSEC] Orders

until 2000 MBit/s. After that, the firewall-headed order slowly drops
to around 100 000 successful requests at 3000 MBit/s and then suddenly at
once drops bellow 40 000 successful requests at 3500 MBit/s. Then again at
4000 MBit/s slightly drops below 30000 successful requests where it stays
until 5000 MBit/s. Then, it drops again to only 10881 successful requests at
5500 MBit/s. At 6000 MBit/s, it further drops to 3 688 then stays at a similar
level. The [DPS— Firewall order continues at maximum performance
until 3000 MBit/s. Then, it continuously drops but stays significantly above
the inverse chain’s performance to 44 803 successful requests at 6 500 MBit/s
(14.7 times the result for the inverse order).

Chain Average ICMP Packet Average SYN SYN packet
response loss response loss

[DPY— Firewall 0.288ms 0% 1.0ms 0%

Firewall —[DPS 0.242ms 0% 4.5ms 0%

Table 5.11: Latency and packet loss during a[SYNIflood with the[DPS and the
firewall enabled in different[SSEC] orders.

Table 5. 11lshows further metrics for both orders. The results are a little more
diverse than for the previous attacks and combinations. The Firewall —[DPS|
[SSECl order offers a faster [CMPlresponse while the[DPS— Firewall order
yields a faster response. The relative difference for the response is
more substantial than for the [CMP|response. Both configurations do not yield
any packet losses.

Figure shows the load for the firewall (the once more not
shown due to busy-waiting). The Firewall —[DPSISSFClorder impacts the load
during the attack. The background load (e.g., operations or filesystem
journaling) in the user and system states is forced out by the actual load by
the firewall application. This application load appears in the softirq level,
where the spends 100% of its time. When reversing the order, no
noticeable load shows in the softirq state, and the background loads remain
in the user and system state. Thus, this order eliminates all load on the
firewall.

5.2.3.4 Intrusion Flood

The fourth and last attack is an intrusion flood. We give additional information
on this attack in Section We use [UDP packets containing a signature that

162

5.2 Effect of the Security Service Function Chain Order

Firewall DPS
— -—-=
DPS Firewall

Firewall
>
DPS

(b) CPU load in system state.

Firewall| DPS
-> —=
DPS Firewall

21:04 21:06 21:08 21:10 21:12 2114

(¢) CPU load in softirq state.

Figure 5.21: CPU load on the firewall during a[SYNIflood with the and
the firewall enabled in differentSSFCl orders.

163

Chapter 5: Performance Modeling for[SSEC] Orders

matches the [DPS|rules from Appendix to create the flood. We perform
the intrusion flood for up to 5000 MBit/s scaling in steps of 500 MBit/s. We
measure further metrics at an attacking load of 1000 MBit/s.

Firewall «<—— [IDPS

We compare two [SSEC] orders: (i) [DPS— Firewall, and (ii) Firewall — [DPSI
We once more use the SDNJrules from Table [A.4] introduced for the [UDP] flood
for diverging the traffic via the [DPSland firewall and vice-versa.

120,000 —— IDPS— Firewall | |

—=— Fjrewall — IDPS

100,000

80,000

60,000

Successful Requests

40,000 |-

20,000 |-

0 | | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

Intrusion Flood strength in MBit/s

Figure 5.22: Successful requests during an intrusion flood attack with the fire-
wall and the [[DPS enabled in different[SSEC| orders.

Figure shows (using the data from Table the number of successful
requests for both chain orders. Both orders can fully satisfy with only the
benign workload enabled. However, already at a flood strength of 500 MBit/s,
the Firewall —[IDPS| chain drops to 31 732 successful requests. At 1000 MBit/s
flood strength, this chain further drops to 7 238 successful requests and from
thereon stays at similar or lower levels. The reverse chain’s performance drops
later, starting at 1 000 MBit/s with a drop to 43 442 MBit/s. It then continues
to fall slowly and finally aligns with the firewall-headed chains throughput at

164

5.2 Effect of the Security Service Function Chain Order

4000 MBit/s. Between the beginning of attacks at 500 MBit/s and the alignment,
the [DPS|— Firewall SSEC] order outperforms the other chain.

Chain Average ICMP Packet Average SYN SYN packet
response loss response loss

IDPS— Firewall 36ms 30% 37ms 34%

Firewall —[IDPS 16ms 0% 17.9ms 0%

Table 5.12: Latency and packet loss during an[DS/flood with the [DPSland the
tirewall enabled in different[SSEC] orders.

Looking at the further metrics in Table[5.12) with the previous impressions
in mind yields an unexpected result. Notably, the [DPS— Firewall order
doubles the response time compared to its counterpart. It also introduces a
packet loss rate of about one-third of packets. This result surprises, since the
higher throughput of the [DPStheaded chain, did not hint at this behavior.
However, this shows that a way of getting higher throughput might lie in
accepting packet losses.

Figure[5.23|shows thelCPUlusage during the experiments. Putting the firewall
first creates user and system load for both systems. While the firewall is not in
an extremely high load situation, the is in overload. Changing the
order results in taking away the load from the firewall and the system load
from the [DPS|but heavily overloads the The firewall spends most of its
time the softirq state, when it is first in the chain. However, when the
heads the chain, only a small peak appears at the beginning of the experiment.

5.2.4 Discussion

Section shows that even under benign workloads, the different security
functions perform with significant differences. While the firewall can protect
a service without reducing the throughput, the and the reach their
limits far before the protected service. Also, both systems (the [DPS/more than
than the [DPS]) show that their performance can further drop when the load
increases after reaching their peak performance. The probable cause for the
only significant impact on the latency between the client and the service is the
number of necessary hops. Also, the slightly increases the response
time.

When adding the attacks in Section[5.2.2.2} other patterns emerge. Protecting
the service against a flood reduces the throughput while only yielding a

165

Chapter 5: Performance Modeling for[SSFQ Orders

Firewall / IDPS

- > - >
IDPS Firewall

(a) CPU load in user state.

Firewall | IDPS
. >
IDPS ___ Firewall

IDPS
>
Firewall

(¢) CPU load in softirq state.

Figure 5.23: CPU load on the[[DPS| (3) and the firewall (4) during an intrusion
flood with the and the firewall enabled in different orders.

166

5.2 Effect of the Security Service Function Chain Order

small improvement in [CMPlresponse time. This behavior shows that adding
security functions that protect against vulnerabilities that are not present (the
server does not listen to [JDP| packets) can harm performance. The same
firewall can massively increase performance when protecting against the “right”
attack — in this case, an [HTTP|flood with only a small cost in [CMPlresponse
time. A similar behavior presents itself when protecting against a flood
with the While the firewall can perform faster than our attack generator,
the extends the point where the throughput caves in by almost a factor
of three. Unlike the and the firewall that protect against[DoS|attacks, the
[DPSlprotects against intrusion attacks. For this protection, and, therefore,
a massive amount of computing resources is necessary. Thus, as expected, the
reduces the system’s total performance.

The single function workloads show massive differences between the func-
tions under benign as well as malicious loads. Thus, even without regarding
the ordering, these differences require significant considerations when coming
to scaling and placement.

Section [5.2.3] confirms our assumption that the order of security functions
inside an has a significant impact on performance. When consid-
ering the throughput, we see different behaviors when comparing different
attacks. Those behaviors share one commonality: placing the security function
that defends against the attack first yields the most successful benign requests.
In some cases, the order significantly prolongs the load level at which
performance drops and slows the drop. Still, at some point, both [SSEC| orders
converge to similar results. This convergence is the case for the flood and
the intrusion flood attacks. The results for the flood converge slower than
before and are still at high multitudes of the inverse orders performance
when we reach the limit of our attack generator.

Additionally, the flood also shows that the second function in the chain
is relevant and yields better performance when using the firewall rather than
the The most significant difference is visible for the HTTP|flood attack.
Putting the firewall first consistently yields optimal performance, while the
inverse order drops.

When analyzing further statistics, like [CMPland response times and
the respective packet loss, we observe that in many cases (UDPIflood and
flood for and [DPS)), the order with the higher throughput yields the
better metrics. For the HTTD flood and the flood for firewall and
only smaller differences occur. Last, for the intrusion flood, the order with the
higher throughput is also the order with the worse other metrics.

The ordering also affects the [CPUlload on the security function servers. In

167

Chapter 5: Performance Modeling for[SSEC] Orders

general, the order with the throughput yields the lower load level — once more
except for intrusion flood, where the load rises. For all scenarios, this
change of order removes or reduces the load level on the non-defending security
function.

Thus, we have shown that the order has a significant effect on the
throughput, and also other metrics and the load. For the selected attack
combinations, we have also found that there is no optimal [SSEC| order for all
attacks. While for HTTDP and floods, the firewall performs best before
the [DPS the reversed chain is superior during an intrusion flood. In general,
putting the security function dedicated to protecting against the current attack
first, yields the best results. Therefore, we require different orders de-
pending on the current attack state of the system. This finding confirms our
claim that dynamic reordering can improve the performance of SSFCk.
We will follow the realization of this concept in the following sections.

5.3 Performance Modeling for Reordering Decision

In the previous parts of this chapter, we focused on the general idea of dynamic
[SSECIreordering and the impact of the order on the performance. Here,
we will further focus on how to come to a precise model and a reasonable
decision-making approach — especially for more complex systems. This model
can later be an input to a dynamic reordering framework.

First, we take a look at how to model single security functions based on the
incoming traffic. We then use this knowledge and combine multiple security
function models into an[SSECImodel. Last, we discuss approaches to decision-
making.

5.3.1 Modeling Single Security Functions

We model individual functions depending on the traffic they process. Therefore,
we first need a traffic model that models benign and malicious traffic classes.

5.3.1.1 Modeling Traffic

As shown in Section 5.2} different security functions show a different behavior
to different types of traffic. Thus, we need a model that, on the one hand, takes
benign traffic into account and, on the other hand, considers the various attack
types. To this end, our model of the arrival rate must consider the content (e.g.,
relevant for used by an[[DPS)) and the composition of the traffic. Therefore,
we model the traffic as different workload classes. For every workload class,

168

RQ
5.3a

5.3 Performance Modeling for Reordering Decision

we record the rate of packets and the bandwidth used by this class. For the
security functions, we benchmarked in Section 5.2 this would constitute at least
the following workload classes:

(1) Benign requests and unprotected attacks: In our setup, this represents
the benign [HTTP| queries, the [CMP| timing packets, and the [TCPISYN]
requests from the client to the server. While this is sufficient for modeling
the security function performance, modeling an entire system, including
the security service functions and the compute services might require
dividing this class into multiple sub-classes. Also, we summarize all
malicious packets, we do not have a security function for, in this class,
since there is no way of discerning them from the benign packets.

(2) [UDPI packets: Since we do not use benign [UDDP| packets, they are an un-
wanted workload class. In a more complex scenario with [UDP|servers,
there would be a separation by port.

(3) Malicious requests: We consider all[SYNIrequests that do not follow
up with a complete connection establishment, as malicious. This simplifi-
cation might lead to a few misclassifications, but these are a) to the safe
side, and b) failed connection establishments that are not intended by
the client still create load on the or fill the servers buffer without the

(4) Malicious [HTTPI requests: This class contains all[HTTPrequests that do
not target a valid port or Uniform Resource Identifier (URI).

(5) Intrusion packets: All packets that match the [DPSrules and would cause
harm at the server if not filtered out belong to this class.

For our modeling, we, therefore, have five workload classes with two pieces
of information per class. We model the traffic composition for the link from
the external network to the first security function, every connection between
security functions, and the link from the last security function to the protected
system. Section[5.3.2]shows how to derive the values at each of those points.

5.3.1.2 Security Function Modeling

With a model for the traffic, it is possible to model the behavior of the single
security functions. We propose to apply architectural performance models to
model security functions. Architectural models capture the semantics, allowing
for a plain view on the security functions, in contrast to low-level stochastic

169

Chapter 5: Performance Modeling for[SSEC] Orders

formalisms. We model each security function as a software component. How-
ever, we also offer simplified approaches to model security functions. It is
necessary to model three aspects: (i) the effect of the security functions on the
traffic composition, (ii) the performance behavior of the security function, and
(iii) tertiary effects like packet-loss.

Modeling the Effect on Traffic Composition

Based on the distribution of the input traffic of a security appliance, the cor-
responding output traffic can be derived. We define the distribution of the
input/output traffic as P, /o, (t;) with i € [1,n] for n different types of traffic.

Exemplary, a security function which drops all packets of the traffic type &
the output traffic looks as follows:

Pin(ti)/(1 — Pip(tg)) fori#k

. 5.1
0 fori: =k (5-1)

Pout(ti) - {

Figure shows the behavior of such a security function that drops a single
class of packets — visualized regarding the bandwidth.

For our example with the functions from Section [5.2|and the traffic types
described above, for the firewall k = 2V k = 4, for[DPS k = 3, and the
k = 5. As seen, a security function can match more than one traffic type.

The current model assumes that a function eliminates all malicious traffic of
one or more traffic types. This model does not yet take other behavior (e.g., false
positives) into account. We discuss that, along with further tertiary factors.

Modeling the Performance of the Security Function

For the function, the most precise modeling solution would be to use a full-
blown model of the software component to model the function’s performance
behavior. Such models usually base on the functions source code or are ex-
tracted by heavy black-box testing. However, often neither the source code is
available nor the time and resources to perform extensive black-box testing.
Still, even when such a model is not possible, we see a minimal model for a
security function, as shown in Figure

The depicted model shows the security function as a software component
of type SecurityFunction. This component has a behavior description that
contains a BranchAction, and this BranchAction contains a default behavior
description and a description for at least one traffic class. Equation is such
a BranchAction for the behavior regarding the traffic.

170

5.3 Performance Modeling for Reordering Decision

Bandwidth Share in %

Traffic Class

. 4

Security Function
Defending Against Class 4

Bandwidth Share in %

1 2 3 5
Traffic Class

Figure 5.24: Sample model for a security function defending against malicious
traffic of class four in a five class model.

171

Chapter 5: Performance Modeling for[SSEC] Orders

SecurityFunction =]
/ Behavior Description \
(BranchAction \

Default Behavior Behavior Description for
Description Traffic Type X

. /

Figure 5.25: Model for a single security function.

As expected, our security functions usually have different behavior for the
traffic types against which they defend. However, they can also have diverging
reactions to other classes. Furthermore, the behavior for the class that the
functions protect against can have various subbranches.

Example: Toillustrate, we describe the branch actions for the security func-
tions evaluated and used in Section 5.2 regarding the five different traffic types
before.

Firewall:

e The firewall analyzes the headers of all [Pl packets. This analysis
creates a resource demand per packet. The resource demand is
equal for all packets since the firewall only considers the fix-sized
[P headers.

e The firewall discards [UDD| packets (Traffic Class 2). They do not
create additional resource demand. The same is true for further
non{I'CP| packets (e.g., the benign [CMP]|packets from Traffic Class
1).

e For all [TCP| packets a further distinction is necessary (here, our
firewall is capable of working on [OSI| Layer 4 — the protocol layer):

— For all[TCPlsegments, the firewall inspects the segment’s header.
This inspection again creates additional resource demand per
segment. If the header contains the wrong [TCP| destination
port, the firewall drops the segment (Traffic Class 4). Still, this
resource demand is constant per segment.

172

5.3 Performance Modeling for Reordering Decision

— For packets addressed to the correct port on the protected server
again another distinction becomes necessary (thus, we have an
OS] Layer 7 — application layer — firewall):

+ The firewall checks the [HTTP| request for blocked [URIk.
This check creates a resource demand to parse the resource
passed in the[HTTPrequest. This validation can take longer
for longer [URTs. However, this aspect is relatively small and,
we, therefore, assume the resource demand as constant per

HTTPlrequest.

DPS

e The[DPSapplication listens to[TCPlsegments. Therefore, we assume
no resource demand for other traffic types (e.g.,[UDPlpackets from
Traffic Class 2, and [CMPl packets from Traffic Class 1).

e For[TCPlsegments, the [DPS/makes a distinction based on enabled
SYNI and [ACK] flags. This distinction creates a constant resource
demand per[TCPlsegment.

— If none or both of the flags are enabled, the packet does not
concern the and it passes through and creates no addi-
tional resource demand (e.g., the first packets of established
connections from Workload Class 1).

- If only the[SYNIflag is enabled, the[SYN/handling computes the
sequence number and replies with a[SYN+ACKIpacket. These
steps create a constant load per segment with the [SYN]flag.

— If only the[ACKlflag is enabled, the [DPS|validates the sequence
number. This step creates a constant resource demand.

* If the sequence number is invalid, the [DPS drops the seg-
ment creating no further resource demand.

* If it matches, the DPS notifies the server, which in turn in-
forms the controller. Thus, this step creates a constant
resource demand per segment at (i) the itself, (ii) the
server, and (iii) the SDNIcontroller.

IDPS]

o The[[DPSstep-by-step checks incoming traffic against its rules. For
every level, this creates per rule a constant resource demand per
frame/packet/segment.

173

Chapter 5: Performance Modeling for[SSEC] Orders

— If a file matches all header conditions for at least one rule, the
performs on the packet’s body. Thus, it creates a
dynamic resource demand, depending on the packet size. The
correlation between packet size depends on the pattern types.
For simple patterns, a linear correlation is likely, while more
generic patterns can even cause an exponential correlation.

For these devices, we have found two general types of resource demand
generation. The first type is a constant demand created per unit (e.g., frame,
packet, segment, request). The second type creates a demand correlating to
the size of the unit with different correlation types. A specialty is with the
that creates additional resource demand on the server and the controller.
Since we only model the security functions, we ignore this effect for now.

With these types, it is possible to get a relatively accurate model consisting
of a single function through running measurements with a simplified ANOVA
approach, always modifying only one parameter until successfully deriving a
complete model of the security function.

Modeling Tertiary Factors

There are additional factors that can increase the accuracy of the model in
certain situations. These factors do not correlate directly with single packets or
the traffic distribution but instead with the state of the security appliance.

Queuing Behavior: Some security appliances (e.g., the [DPS) have a charac-
teristic queuing behavior. Thereby, this may delay the resource demand
— on the current and following functions — and also traffic.

False Positives and False Negatives: Not all security functions (e.g., an[DPS
based on anomaly detection) by default are save from having false pos-
itives and false negatives. An accurate model should account for these.
False positives result in a reduction of traffic classes the system does
not protect against, while false negatives have the opposite effect. Some
packets of the traffic class — that the security function defends against —
remain after the traffic leaves the function.

Drop Rate: Some security functions can — in certain situations — undesir-
ably drop packets. Such a drop rate, as well as the resulting necessary
retransmissions (at least for the benign packets), impact the system, and
the model should consider them.

174

RQ
5.3b

5.3 Performance Modeling for Reordering Decision

Overload Behavior: Under very high load levels, some security functions
change their behavior. This effect especially impacts the three factors
listed above and requires separate modeling.

Short Term Frequency Scaling: For short terms using [CPUl frequency
scaling can counter the issues caused by an overload. The modeling of the
overload behavior should account for this functionality and implement a
delay for the overload effect.

5.3.2 Modeling Security Service Function Chains

Based on the previously presented model for single security functions, it is
possible to model the whole security function chain. Therefore, we model the
chain by putting the functions one after the other and feeding the output of the
previous function to the next.

5.3.2.1 Modeling Traffic Composition Throughout the Security Function
Chain

When starting with the input traffic, the traffic results from putting it through
one function after the other. Figure[5.26|shows such a development of the traffic
for the function described above. For illustration, we use a simplified model
without tertiary factors. The traffic starts with a distribution over all traffic
types. At every security function, this function removes one or more traffic
classes. Thereby, the share of the other classes increases. This process repeats
itself at every security function until only the benign traffic remains.

This combination allows a full model of the chain when knowing the compo-
sition at the startup. However, most of the time, this composition is unknown.
Still, it is possible to compute this composition using reports from the secu-
rity function about occurring attacks. We present an implementation for this
reporting in Chapter [|

At the server, the traffic wholly consists of benign packets. The switch before
the server (respectively in a more complex system, the switches before the
servers) can report the number of packets and the bandwidth of benign traffic
using, e.g., With the reported attack composition from the last security
the appliances in the chain, we add an equal amount of packets and bandwidth
with the equivalent share in the traffic composition.

Again, this step repeats at every security function. After the inverse process-
ing through the first security function, the result is the incoming traffic.

In some experiments, we realized, this approach yields a smaller total band-
width than actually present at the input link. This effect is due to unmodeled

175

Chapter 5: Performance Modeling for[SSEC] Orders

Bandwidth Share in %

Bandwidth Share in %

30

25

20 f

15

10 |

100

80

60

40

20

1

2 3 4
Traffic Class

5

1

2 3 4
Traffic Class

5

Firewall

=)

IDPS

40

30

20

10

Bandwidth Share in %

>~ (@)
@) o

Bandwidth Share in %
[\
(@=)

1

2 3 4 5
Traffic Class

DPS '

1

2 3 4 5
Traffic Class

Figure 5.26: Exemyplary development of the traffic composition over the course

176

of a security service function chain.

RQ
5.3¢

5.3 Performance Modeling for Reordering Decision

tertiary factors, as described before. A simple fix is to scale the traffic with-
out changing its relative composition. We, therefore, propose to scale the total
bandwidth and number of packets to the number reported by the[SNMPlswitch,
respectively, switches before the respective security function.

5.3.2.2 Calculating Total Resource Demand for the Security Service
Function Chain

With the knowledge of the traffic composition at every step of the and
the resource demand model for every single security function, we can compute
the required resource demand.

We put the traffic composition at every stage through the resource demand
model of its security function. This calculation yields the resource demand per
function. The sum of the single resource demands is the total resource demand.

The unique resource demands help to decide upon necessary scaling (es-
pecially, since we have corrected for dropped packets using the data from the
switches) and co-placement. Through the correction, resource demands more
extensive than the provided resources can occur. This knowledge can facilitate
scaling according to these demands. If the sum of demands for functions that
follow in the are below the resources, it allows placing these functions
on the same server to reduce the number of required virtual or physical in-
stances and remove network latency due to additional hops (which Section[5.2.2]
indicates as a significant factor).

5.3.3 Decision-making

Based on the introduced models, it is now possible to make decisions. During
attacks, a dynamic reordering framework has to decide in which order to
place the security functions inside the chain to achieve optimal performance.
We present three approaches on how to compute the order for the security
functions:

(i) complete calculation of all permutations of the chain,
(ii) front to back placement of the optimal security functions, and
(iii) security function swapping.

These approaches have different advantages and disadvantages and suit differ-
ent use-cases depending on the complexity, the required accuracy, response
time, and the available compute resources.

177

Chapter 5: Performance Modeling for[SSEC] Orders

5.3.3.1 Complete Calculation of All Chain Permutations

The first approach is the most straightforward and accurate. The[FCClcomputes
every possible permutation of the security function chain. For each of these
permutations, we feed the current traffic composition (gathered as shown before
from the network switches and the security function reports) through a model
of that permutation. For all these orders, the models yield the resource
demand. The order with the lowest resource demand is the optimal [SSEC]
order. Based on the resource demand, it is also possible to calculate how many
instances of a security function are necessary.

Since we calculate all permutations, this approach is guaranteed to yield the
order with the optimal (modeled) performance. However, this approach
can be very compute-intensive. The number of permutations P of n different
security functions results from the following Equation (5.2)):

Pn)=n-(n—1)-(n—2)-...-1=nl! (5.2)

While for our examples of three security functions, only six permutations exist,
four security functions already increase this to 24 permutations. The number of
permutations grows faster than an exponential function. With this knowledge,
it is possible to approximate the amount of computing steps C for n security
function as follows in Equation ([5.3)):

Cn)=nn-(n—1)-(n—=2)-...-1)=nl-neO(n!) (5.3)

For a sophisticated security system with a multitude of security functions, the
exploration space explodes. This growth leads to a massive need for computing
resources and increases the possible reaction time to changes in the attack
composition.

5.3.3.2 Front to Back Placement of the Optimal Functions

In contrast to the first approach, the second does not fully compute all per-
mutations. Instead, the [FCC|builds the order from front to back. In the
first step, the EC(Japplies the stand-alone model of every security function
on the incoming traffic (as derived by the model). The security function with
the smallest resource demand in this model then takes its place as the first
security function in the chain. Next, we use the traffic after passing through
this function and model it for every security function except for the already
used function. The approach continues until having placed all functions in the
chain.

178

5.3 Performance Modeling for Reordering Decision

This solution reduces the complexity of the calculation since it no longer
calculates all permutations — in fact, it only computes the final order entirely.
It is possible to approximate the number of computing steps C' for n security
function as follows in Equation ([5.4)):

C’(n):n+(n—1)+(n—2)+...+16(’)(n2) (5.4)

Thereby, the runtime shrinks from a more than exponential growth to quadratic
growth. This shrink is a massive reduction and allows us to compute more
complex[SSECk. However, still in some cases, a faster reaction is necessary, or
computing resources for the [ECClare rare. Also, the approach yields a good
order but can not guarantee that a different order might be more efficient.

5.3.3.3 Security Function Swapping

Unlike the first two, the latter approach does not recompute the entire chain.
Instead, it calculates the effect of swapping two functions. Therefore, it ran-
domly selects two functions to swap and models the system with and without
swapping these functions. If swapping reduces the resource demand, the [FCC]
orders to swap them.

This solution further reduces the complexity of its invocation. It calculates
only two full chains. The number of computing steps C' for n security function
per iterations results from the following Equation (5.5):

C(n)=2ne€0O(n). (5.5)

This reduction allows a constant and fast reconfiguration. However, the recon-
figurations are only step-wise. A full reordering of the chain can take multiple
steps.

Also, the approach behaves like a simple hill-climbing algorithm. Thus, it
can reach a local performance maximum and stop. In contrast, still, a better
global maximum might be available (e.g., when doing a single reordering,
that decreases performance, this can open another reordering, with a more
significant benefit). Further, the selection of the functions to be swapped is non-
trivial. A random approach is inefficient, and the algorithm could benefit from
taking factors like the position in the chain and the current resource demand
into account. Here, a heuristic study could improve this approach.

5.3.3.4 Overview

We introduced three approaches to decision-making and reordering. They have
different characteristics, as shown in Table As expected, reducing the run

179

Chapter 5: Performance Modeling for[SSEC] Orders

Approach Optimal Order Full Reordering Runtime
Guaranteed Performed

Complete Calculation v v O (n!)

Front-to-Back X v O (n?)

Swapping X X O (n)

Table 5.13: Comparison of the suggested decision-making approaches.

time of the calculation also removes quality features like a guaranteed optimal
order or a full reordering. Depending on the use-case, a system architect will
have to weigh these factors and decide which best suits the desired use-case.
Furthermore, the approaches could combine, e.g., the swapping approach could
run continuously while performing the full calculation in longer intervals.

5.4 Summary and Evaluation of Research Questions

In this chapter, we introduced the concept of attack-aware dynamic Security
Service Function Chain reordering. This concept incorporates changing the
order of [SSECk to optimize them to most efficiently counter attacks.

RQ 5.1: What components and capabilities does a Security Service Function
Chaining framework require?

At first, we described the general idea. The main component is the Function
Chaining Controller (ECC). It gathers information to model the security sys-
tems state, uses this information to compute the desired configuration, and
enforces the order.

RQ 5.2a: How do single security functions perform under attack load?

Next, we developed an evaluation environment for individual security func-
tions and [SSFCk. When benchmarking single security functions, we found dif-
ferent types of behavior. While for some attacks, the use of a security function
eliminates all performance impacts from the attack, for other attacks, it merely
reduces the effect. For the third type of attack, using the security function even
reduces the system’s performance compared to not using the function.

180

5.4 Summary and Evaluation of Research Questions

RQ 5.2b: What is the impact of the ordering when combining different
security service functions?

For every tested combination, the order has a significant impact on the sys-
tem’s performance. In general, putting the function — that defends against the
attack — first, yields better performance. The difference can make up two or
more orders of magnitude. For different attacks (e.g.,[HTTPlflood vs. intrusion
flood), we found orders that contradict each other. Thus, there is no order that
is optimal for every attack.

RQ 5.3a: How to model single security functions for the reordering deci-
sion?

We model the traffic categorizing it into traffic classes, where benign traffic
and every attack type each forms a class. Every security function affects the
traffic as a function depending on the traffic composition. Also, depending on
the traffic composition is the resource demand of the security functions. We
map the traffic to constant resource demands per traffic unit (frame, packet, or
segment) as well as dynamic demands depending on the size of the traffic unit.

RQ 5.3b: How to model security function chains for the reordering deci-
sion?

The model for an[SSEC] consists of multiple security function models. Traffic
that exits one function continues to the next. Thereby, it is possible to compute
the total resource demand. We use this model backward to derive the incoming
traffic composition from the traffic that enters the server and the attack reports
from the security functions. Last, we introduced a correction to modeling errors
using the data from the used switches.

RQ 5.3c: What strategies are suitable for determining a better order?

Last, we introduced three approaches to deciding for new security function
orders: (i) a complete calculation of all chain permutations, (ii) front to back
placement of the optimal functions, and (iii) security function swapping. We
discussed the advantages and disadvantages of every solution and associated
them with corresponding use-cases.

181

Chapter 6

A Framework for Attack-aware Security
Service Function Chain Reordering

In the previous chapter, we first sketched out the general idea of attack-aware
dynamic reordering. The next section confirmed our claim that the or-
dering of security functions is relevant to the performance. We also found
contradicting orders for different attacks leading to the need for dynamic re-
ordering. Afterward, we introduced modeling formalisms for single security
function and and how to use them for decision making. In this chap-
ter, we present an architecture for an attack-aware dynamic reordering
framework and provide a proof of concept implementation. We then evaluate
this implementation and its capabilities and discuss the results and further
challenges that arise from them.

Research Questions

In this chapter, we tackle several research questions. All of the following
research questions are part of the meta-research question MRQ 6: How to
design a framework for dynamic[SSEC|reordering?. The numbering of these research
questions maps to the sections of this chapter. If a section deals with more
than one research question, those questions have their number appended by
ascending Latin letters.

RQ 6.1 How to structure a framework for dynamic function chain reordering?
RQ 6.3a What results does a prototype implementation provide?

RQ 6.3b Do new attack vectors, and other issues arise from dynamic function
chain reordering — and if yes, how can these issues be addressed?

183

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

SDN-enabled
Network

X

)

Protected
External Network Service
Enforce
I New
Order
|
1
1
IL I I I I 1 | IL I 1L I 1L 1 |
Il 11 Il Il U Il JL U JL
SDN -] -] [-] Security
Controller — — — Functions
I I I I I I I I I

Security
Function :
Wrapper :

Require Reordering

Ve o o o oo oo oo oo o

Function
Chaining
Controller

Figure 6.1: Components of the attack-aware [SSECl reordering framework.

184

RQ
6.1

6.1 Architecture

6.1 Architecture

The attack-aware reordering framework consists of multiple components.
Figure 6.1/ gives an overview of these components. As a backbone, a generic
[SDN}enabled network connects the external network and the service protected
by our security system. Thus, all relevant security functions connect to that
network as well. We deploy so-called security function wrappers alongside
the security functions to gather metrics about them and their attack and report
them to the [FCCl The [ECC| collects data from the wrappers and optionally
other sources. It forms a decision whether another ordering is better, based
on the gathered security function data. If it deems that a reordering would
improve performance, it sends the new ordering the controller. The
controller then enforces the new order inside the [SDN}enabled network. On
the following pages, we give further detail on the security function wrapper,
the[FCC] and the requirements for their communication [APIl

6.1.1 Security Function Wrapper

The security function wrapper is a program running on the security function
hosts and communicating with the[FCCl It is responsible for registering the
security function at the[ECC] delete it on graceful shutdowns, keep a connection
to the FCC to allow the management of security functions through the [FCC|
and finally offer an interface for the security function to report detected attacks
to the [ECClover the wrapper.

Figure6.2|illustrates the communication between the security function wrap-
per and the [FCClduring start-up and shut down. At first, the security function
wrapper validates and loads its configuration. If everything is loaded correctly,
it sends a registration to the ECClwith the group (the type of security function,
e.g., firewall, or[DPY) and Media Access Control (MAC]) address of the
security function. The[FCCJthen checks whether the security function is already
registered. If this is not the case, the [FCCladds the new function to its internal
data structure and generates a unique token and ID and sends them back to the
security function wrapper. If the data structure already contains the security
function — e.g., when performing a hard reset on the security function server,
the [FCCl retrieves the corresponding token and ID and sends it to the security
function wrapper with a notification that it already registered before. If the
token already expired, the [FC(] generates a new token instead of using the
expired one. Next, the security function wrapper starts its keep-alive thread
and enters its main loop (see below for both loops). If the wrapper catches a
SIGTERM signal from the operating system, it shuts down the keep-alive thread.

185

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

Wrapper FCC

[] validate configuration

<777\

register
alt) New Security Function
add security function
P
__sendtokenandID __ | |

Oth [Shutdown]

stop keep-alive thread

<777\

delete

remove security function

response

Figure 6.2: Start and Shutdown behavior of the security function wrapper and
the communication with the [FCCl

186

6.1 Architecture

Then, it sends a delete message to the[FCC| which removes the security function
from its internal data structure and then confirms the deletion to the security
function wrapper. After receiving this confirmation, the security function
wrapper terminates.

Wrapper FCC

.

loopJ [Keep-alive Thread]

send keep-alive

validate

P

send new token

Figure 6.3: Keep-alive communication between the security function wrapper

and the[FCC

In the keep-alive loop, as shown in Figure the security function wrapper
periodically sends a keep-alive message to the FCCl The [FCC] validates this
message and sends an updated token back to the security appliance. The
security function wrapper then uses the updated token for further reports.

In the main loop, as seen in Figure (6.4} the security function wrapper waits for
attack reports from the security function. It then validates these reports (e.g., a
machine on a 1GBit/s interface could not report a valid attack with a strength
of 5 GBit/s). When this validation succeeds, the security function wrapper
forwards it to the [FCCl Depending on the reporting mode of the security
appliance, it is also possible to collect attack reports, accumulate them, and
then send the condensed data in a fixed interval. The [ECCl validates the report
from the security function wrapper and updates its internal list of occurring
attacks. It then acknowledges the alert to the security function wrapper.

6.1.2 Function Chaining Controller

The [ECCl runs in a central location reachable from all security functions. A
webpage showing attack statistics, the current and standard configuration is
part of the [ECCl Additionally, the webpage contains a form to change the

187

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

Wrapper FCC

.

loop] [Main Thread]

validate attack report

__
alert

A 4

update attack list

- |
response

Figure 6.4: Communication between the security function wrapper and the
[FECC for attack reporting.

routing configuration manually based on the available groups of security func-
tions. The controller needs to handle the requests from the wrapper instance,
namely registration, delete requests, attack alerts, and keep-alive requests, as
shown before. The [ECCImust keep a list of the security function groups and
their respective attack rate to calculate the new optimal routing configuration
reactively. After calculating the new routing configuration, the EC(sends it
to the controller, which then applies it to the switches and, therefore, the
network.

Figure[6.5 visualizes the interaction between the[FCCland the controller
as well as between the controller and the switches comprising the
enabled network. During the start of the controller, it validates its configuration
file. This validation is important because the configuration lists all available
groups of security functions and the standard routing configuration. After
the validation of the configuration file, the routing function starts in a new
thread. This thread periodically checks whether a new routing configuration
can perform better based on a decision algorithm (for approaches to decision-
making check Section[5.3)). In this section, we use a simplified approach putting
the security function group with the most attacks at the front. If a new routing
configuration is necessary, the ECClsends it to the controller. Next, the
controller creates the flow from the transmitted routing configuration.

188

FCC

SDN

6.1 Architecture

validate configuration

€ — — —

start main thread

€ — — =

Switch

loopJ [Main Thread]

New routing

configuration
generate flows
éiii
send flows
L
response
P
response

update current configuration
and reset attack list

apply flows

P

Figure 6.5: Interaction between the [FCC], the[SDNFcontroller and the switches
for reordering.

189

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

The controller sends the generated rules to the respective switches which
apply them. If the switches applied the new routing configuration successfully,
they send a response to the controller, who, in turn, forwards it to the
[ECCl After successfully changing the routing configuration, the [ECCl changes
the stored current configuration to the new routing configuration and resets
the reported attacks.

6.1.3 [API Requirements

As shown before, the security function wrapper and the [ECCl communicate
and exchange data. This communication requires a predefined [APIl As is the
standard for modern[APIks, we encode all information using the [SON]|format.
Each message uses a unique type of key for determining the message type.
Our framework uses four types of messages for communication between the
security function wrapper and the [FCC] as described in the following.
REGISTER

Registration requests contain the following three additional keys:
group: the group of the security function (e.g., firewall, [DPS] [DPS])

hw_addr: the[MAC]address of the interface connecting the security function
to the switch

misc: placeholder for other usages (e.g., debug information) or future features

The response message for registration requests contains the token to validate
future requests and an ID for the Security Appliance generated by the Function
Chaining Controller.

KEEP-ALIVE

Keep-alive messages periodically trigger the [FCClto renew the security func-
tion wrapper’s token for the messages it sends to the[FCCl They contain four
additional keys:

name: the ID of the security function
group: the group of the security function

hw_addr: the[MAC]address of the interface connecting the security function
to the switch

190

6.1 Architecture

misc: placeholder for other usages (e.g., debug information) or future features
The ID is essential for the [ECCJto determine if the security function wrapper al-
ready registered with[FCClby checking the list of designated security functions

for the ID and verify that the group and MAC|address match. The response
message contains a renewed token.

ATTACK

The wrapper sends attack requests to the[FC(C| containing an attack rate. The
[FCCl determines from this rate possible new routing configurations. The attack
requests include five additional keys:
name: the ID of the security function

group: the group of the security function

hw_addr: the[MAC|address of the interface connecting the security function
to the switch

rate: the attack rate — depending on the attack in attacks per second or MBit/s
misc: placeholder for other usages (e.g., debug information) or future features

The security function determines the attack rate. All additional information is
required to verify that the security function is authorized to send attack reports.

DELETE

When the wrapper terminates gracefully, it sends a delete message to the [FCCl
In addition to the message type, these delete messages contain two more keys:

name: the ID of the security function

misc: placeholder for other usages (e.g., debug information) or future features

With the previously described fields, the [ECClreceives all required informa-
tion. We give further information about the [APIlintegration on the following

pages.

191

Chapter 6: A Framework for Attack-aware[SSEC] Reordering
6.2 Proof-of-concept Implementation

The complete framework uses Python 3. We chose Python because it is simple
to learn, offers useful libraries for [REST] interfaces, and [HTTP| requests and
does not require compilation allowing for unhindered modification. In this
section, we first take a look at the used libraries and move on to the security
function wrapper and [FCClimplementations. Then, we also introduce a small
controller, which we use for the evaluation.

We provide the source code for the security function wrapper at https:
//github.com/bladewing/SecurityFunctionWrapper, for the[FCClat https:
//github.com/bladewing/FunctionChainingController| and for the
controller at https://github.com/bladewing/SDN-Controller.

6.2.1 Libraries

We use four non-standard Python libraries: Flask [[Ron20], PyJWT [Pad20],
requests [[Rei20]], and netifaces [Hou20]].

Flask is a lightweight Web Server Gateway Interface (WSGII) web application
framework designed with simplicity as well as scalability for sophisticated
applications in mind. It started as a simple wrapper and is now one of the most
used Python web application frameworks. It uses the Jinja templating engine
and the Werkzeug[WSGIllibrary.

Request gives itself the slogan “HTTP for humans” and describes itself as
“A simple, yet elegant [HTTP library.” It allows sending [HTTD}/1.1 requests
through it. Thus, it removes the need to configure the query strings to Uniform
Resource Locators (URLE) manually.

PyJWT implements [SON| Web Token (JWT]). “JTSON| Web Token (JWT)) is a

compact, [JRI}safe means of representing claims to be transferred between two
parties. The claims in a[JWT]are encoded as a[J[SON]object that is used as the
payload of a[J[SON|Web Signature (JWS) structure or as the plaintext of a[J[SON|
Web Encryption (JWE]) structure, enabling the claims to be digitally signed
or integrity protected with a Message Authentication Code (MACH) and/or
encrypted.” [JBS15]

The netifaces packet is a networking abstraction. It takes care of the underly-
ing networking management tools and allows an independent standardized
interface to access network information. We use this packet to get the [Pland
addresses of the underlying machines.

192

https://github.com/bladewing/SecurityFunctionWrapper
https://github.com/bladewing/SecurityFunctionWrapper
https://github.com/bladewing/FunctionChainingController
https://github.com/bladewing/FunctionChainingController
https://github.com/bladewing/SDN-Controller

6.2 Proof-of-concept Implementation

6.2.2 Security Function Wrapper

The wrapper is a Flask application. The main tasks of the security wrapper are
to forward security function attack reports to the [FCCl After validating the
wrapper configuration file, the security function wrapper sends a query for
registration to the [ECC] which answers it with a token. The [ECC]later uses this
token to validate requests from the security function wrapper.

The wrapper implements the following [URIt

/attack: The security function sends its attack reports to this[URI] as described
in the[APIlrequirements. The wrapper then forwards the incoming attack
report to the[FCC) as described in the AP

In the course of this thesis, we developed implementations for the IPTables
firewall [[Hem20]] and the Snort [[Fel20]. The supports
attack reporting by default.

Following the registration, the keepalive method starts in a separate thread.
It contains a loop where every TIMEOUT minutes, where TIMEOUT is config-
urable in the configuration file, it sends a keep-alive message to the [FCC| The
wrapper will not start if the [FCClis not available on the configured [URLl Note
that the TIMEOUT in the configuration file of the wrapper and the FCClshould
be the same. Otherwise, synchronization problems can appear. PyJWT supports
the use of 1eeway=X, meaning that there is a margin of X seconds where tokens
still count as valid if the expiration time is within the margin. This margin is
essential as there may be connectivity issues between the wrapper and the [FCCl
When the wrapper catches a SIGTERM signal from the operating system, it
shuts down the keep-alive thread and sends a delete message to the [FCCl

6.2.3 Function Chaining Controller

The [FCis in its core a Flask application, and [FCC has a log file where it logs
everything to make debugging easier. The [FCCl provides the following [URTs:

/: This[URIlis the controller’'s homepage. It is not responsible for handling[AP]]
requests. It gives an overview over (i) the current attack count, (ii) the
list of available security function groups, and (iii) their respective attack
counter. Additionally, in the Configurations section, the homepage shows
the configured standard ordering and the currently active configuration
below it. This side-by-side presentation allows the user to see changes in
the configuration, e.g., when the system has adapted to attacks. Finally,

193

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

the Change current configuration section allows changing the current con-
figuration manually. Therefore it is possible to select distinct groups and
apply them using the Change Configuration button.

/handle_data: The event triggered when pressing the Change Configuration
button in the homepage, sends the selected configuration to this [URIl
Here, the [FC(] validates it and sends it to the Controller. If the
request is successful, a page appears with the new configuration and the
response code of the Controller. On failure, the ECClloads a page
showing the reason why applying the configuration was not possible, the
configuration that was invalid, and the current configuration to help spot
mistakes.

/register: This[URIprocesses incoming registration requests of security func-
tion wrapper instances. It validates these requests via a[[WT|and, if valid,
adds the security function to the security function manager. The response
message to the security function wrapper contains a token for future
communications and the ID of the newly added security function. If a
security function is already present, e.g., after a restart of the security
function’s host machine, the [FCClreplies with the existing ID and token
upon receiving a new register request for such a service. A shared secret
guarantees that incoming register requests can only originate from the
authentic wrappers and ensures securing access against attacks.

/keep-alive: The /keep-alive[URIlvalidates keep-alive messages from secu-
rity function wrapper instances using [WT| After a successful request
validation, the [FECCl checks if the security function already has registered.
If meeting both criteria, the security function wrapper receives a new
token as a response. Else, it gets an error message.

/alert: This[URIis relevant for the ECClto find the optimum routing config-
uration. If a security function detects an attack, it sends the attack rate
to the FC(via its security function wrapper. This [URI then updates the
attack counts of the respective security function.

/delete: When gracefully shutting down a security function wrapper instance,
that instance sends a delete message to the[FCCl If the request is valid, the
[ECClremoves the security function from the security function manager.

/secapps: This[URI prints the IDs of all registered security functions.

/routing: The[FCClmanages a list with all security function groups and their
attack count, called ATTACK_LIST. The management function runs in a

194

6.2 Proof-of-concept Implementation

thread with a loop, checking for new configurations every TIMEOUT min-
utes. TIMEOUT is configurable in the configuration file of the FCCl The
[ECClsorts ATTACK_LIST by the attack count in descending order. Within
the proof-of-concept implementation, the ECC|sends this ordered list to
the controller, as described below.

Other methods with self-explanatory names handle some tasks of the [URI5.

6.2.4 Software-defined Networking Controller

In general, this framework supports every controller offering a [RESTI[APT
for flow modification. To ensure the absence of side effects from the
controller, we implemented a minimalistic controller ourselves. To this
end, for this proof-of-concept evaluation and the following evaluation, we limit
our framework to the use with Open vSwitch. This Controller consists of
two Flask applications: the actual controller and a switch wrapper running on
the Open vSwitch machines. The[SDNIController gets a list of security function
groups, generates flows for the passed configuration, and forwards those flows
to the switch wrappers, which execute the necessary ovs-ofctl commands,
and, therefore, apply the new settings. Note that the process of generating flows
is dependant on the implementation in the differentSDN|Controllers according
to the documentation of their RESTI[APIl In the following, we describe how the
controller generates its flows.

Generating Flows

The simple[SDNI controller uses a template for flow creation with the following
match fields and actions:

Match fields

hard_timeout=TIMEOUT: The flow’s hard timeout is TIMEOUT seconds. After
this time, the flow expires, and the switch removes it from its flow table.

priority=X: This field sets the priority of the created flow. The priority of
the flows used for reordering should exceed the priority of the standard
configuration (simple MACHbased switching) as the matching rule with
the highest priority applies to a packet.

di_type=ETH_TYPE: This field contains the EtherType of the packets that
the flows should match. E.g., 020800 for [P packets or 020806 for Address
Resolution Protocol (ARP)) packets.

195

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

in_port=X: A flow only applies to packets coming from port X.

dl_src=00:00:00:00:00:0X: The flow only applies if the [MAC] address
matches the one listed in this match field.

textttnw__src=10.0.0.1: The flow only applies to packets that have the same
[Pv4 source address as listed in this match field.

nw_dst=10.0.0.2: The flow only applies to packets that have the same IPv4
destination address as listed in this match field.

Actions fields

mod_dl_src:00:00:00:00:0Y: Modifies the MAC address of the packets be-
fore forwarding them.

output:Y: Forwards the packet to port Y.

With this template, the only fields changing are in_port, d1_src, mod_dl_-
src, and output. For example, it allows routing the traffic from EXT to INT via
a[VNF on port 2 of the Open vSwitch in Listing

Matching packets on the [Pv4 source address and address is sufficient
to have distinct flows.

6.3 Evaluation

6.3.1 Testbed Environment

Figure|6.6/gives an overview of the used testbed. For the evaluation, we used
four servers named C39, C45, C48, and C49. Each server has an Intel Xeon
CPU E5-2640 v3 clocking at 2.60GHz with eight dedicated cores and 32GB
RAM. Table 6.1 gives more detail on the server specifications and also shows
that all servers and the spawned virtual machines use minimal Ubuntu 16.04
as an operating system. Minimal Ubuntu is a regular Ubuntu stripped of
all command-line convenience features to reduce the image size, installation
duration, and the number of required security updates (only installed software
requires patching). However, if needed, all those features can be installed
using Ubuntu’s package management. Kernel Virtual Machine (KVM)) is the
hypervisor that spawns all needed [VMk.

C39 and C48 are hosts for additional virtual machines. Every server and
switch is on the 192.168.66.0/24 subnet (see Table[6.2). The security function
wrapper runs on each virtual security function, and the [FCC] runs on C45

196

RQ
6.3a

6.3 Evaluation

Incoming from Sender, forward to VNF on port 2

hard_timeout=300,

priority=100,

dl_type=0x0800,

in_port=EXT,

dl_src=SENDER_MAC,

nw_src=SENDER,

nw_dst=RECEIVER,
actions=mod_dl_src:00:00:00:00:00:02, output:2

Incoming from second port of VNF, forward to INT

hard_timeout=300,

priority=100,

dl_type=0x0800,

in_port=3,

dl_src=00:00:00:00:00:02,

nw_src=SENDER,

nw_dst=RECEIVER,
actions=mod_dl_src:RECEIVER_MAC, output:INT

Listing 6.1: Example flow configuration for the [SDNI controller.

197

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

[']

C45 |

: t : : $: Al
Security {2y Security () Security | i 4
Function : { J: Function i E Function ; 1 1
Wrapper {53! Wrapper { = | Wrapper | s | |
! [! ! 1 FCC | 1
! I ! § w——— I ! 8 ——— I
| N === g) Y W= : :
Fw =§ = =§ = | IDPS
I [M 1 I n | R —
1 r———slRlr===8] ;
1 [1 1 1 1
[—— s\ - [Q—— - '
_____ - PS -
1 1 | 1 m
: ' 4415 : ! ' N
I 3 |
1 ! [X) . , 1 1
! ! swcas ! ! ! !
1 1] SDN
! | |controlier! I
| SR 7 | S - J | 1
Sender Receiver | |
ca9 \ / s | - == =-
1 3
2
Z J

SW C49

C49

Figure 6.6: Testbed for the dynamic function reordering framework.

Unit Value
Product HP ProLiant DL360 Gen9
Intel Xeon E5-2640 v3

Default frequency 2.60 GHz
Max frequency 3.40 GHz
Min frequency 1.20 GHz

Cores (Threads) 8 (16)

Cache (L1/L2/L3) 512 KB/2048 KB/20480 KB

Memory size 32GB (2 x 16 GB) DDR4 Dual Channel
Memory frequency 1.866 GHz

Memory Connection Dual Channel

Storage Model HP VKO0800GEFJK 800 GB SSD
Storage Connection SATA 1II (6GBit/s)

Operating System minimal Ubuntu 16.04.2 LTS (x86-64)
Kernel 4.4.0-68

Table 6.1: Specification for all physical servers (C39, C45, C48, C49) in the
testbed, as seen in Figure|6.6]

198

6.3 Evaluation

together with the Controller. The Sender, FW, and DDoS all run on
C39, in combination with an Open vSwitch instance as a bridge between host
and guests. Next, the [VMk IPS and Receiver run on €48 alongside an Open
vSwitch instance as a bridge as well. The Open vSwitch on C49 connects the
Open vSwitches from C39 and C48. It forwards every packet coming from
C39 to C48 and back. Under this setup, incoming traffic from the sender to
the receiver passes through all three switches. All three[VMs FW, DDoS, and
IPS have two [NICk each, where one [NIClhandles incoming traffic which, after
processing the packets, it leaves the security function via the other NICI

Name Host IPv4 Ports MAC

Sender C39 192.168.66.200 6 52:54:00:91:60:4d
Receiver (C48 192.168.66.201 3 52:54:00:93:cd:2d
Firewall C39 192.168.66.100 7,8 52:54:00:09:38:52
DPS C39 192.168.66.101 9,10 52:54:00:d3:db:f1
IDPS C48 192.168.66.102 4,5 52:54:00:e3:6f:ac

Table 6.2: Network information of virtual machines in the testbed from Fig-

ure @

6.3.2 Manual Reordering
Experiment Description

We test all six routing orders possible for the three security functions. Therefore,
we created an automated to test these routing configurations in the network
based on the standard configuration. The order of the permutations is not
relevant. After starting the system and registering the Security Appliances,
the Sender sends an[[CMD| echo request to the Receiver with the IP addresses
192.168.66.200 and 192.168.66.201, respectively. Next, we started tcpdump
with the following arguments on each security function:

timeout 65 tcpdump -i brO -w DPS-expl icmp

Tepdump must log the traffic for 60 seconds — the duration of the script. Thus,
we added timeout 65 to have a margin of 5 seconds. Next follows the -i br0
argument. Tcpdump only listens on packets on the br0 interface. The -w DDOS-
expl argument describes the output file for the dump. Here, the target file is

199

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

DPS-expl. On the other security functions, we replace DPS with IDPS or FW.
The last argument, icmp, allows us to filter the packets on the interface for[[CMD|
messages and eliminate, e.g., controller traffic.

In summary, the command above logs [CMDP] traffic coming to the specified
interface for a specified amount of time and writes it into a file. Additionally,
the simple controller saves the generated flows for each switch before
sending them to the switches. The script iterates through all valid permutations
of the standard configuration to show that the generated flows are correct. This
automatic permutation allows reusing the script for with more than
three security functions.

Example of Flow Creation

(1) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=6,
dl_src=52:54:00:91:60:4d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:7

(2) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=8,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:9

(3) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=10,
dl_src=52:54:00:d3:db:f1,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:1

Listing 6.2: Flows for the Open vSwitch running on C39 for the first routing
change.

Listing [6.2] shows the flows the controller generated to change the
routing configuration. As illustrated in Figure the first rule matches the
in_port, address, and [[Pv4 source address of the Sender. The destination
[Pv4 address is the address of the Receiver. Every [Pl packet, coming from the
Sender and having the Receiver as its goal, triggers a match from this flow. The
actions ensure that the switch modifies the source address of the packet
to the firewall’sIMAC]address and forwards all packets to port 7 (see Table[6.2).
Looking at the second flow, every [Pl packet coming from port 8 with the source
address of the firewall triggers this flow forwarding it port 9. Both NICk

200

6.3 Evaluation

of the firewall connect to the switch on ports 7 and 8, respectively. The first
two flows forward incoming traffic from the Sender to the firewall. Before
forwarding the packets to port 9, the switch again modifies the source
address of the packets to the[MACladdress of the[DPSlvirtual machine. Looking
at the last flow shows that it forwards every packet coming from port 10, and
with the source address of the[DPS|virtual machine proceeds to port 1
while also changing the source address to the address of the
virtual machine. In summary, the switch on C39 routes all packets first to the
firewall VM| then to the [DPS[VM] and finally out on port 1 with the source
address of the [DPSIVMI Next, they pass via the Open VSwitch on C49
to C48.

(1) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:4

(2) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=5,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:3

Listing 6.3: Flows for the Open vSwitch running on €48 for the first routing
change.

Listing [6.3]illustrates the continuation of flows from before coming from €39
on C48. The first flow matches every [P packet coming from in_port 1 with
the source address of the [DPSIIVMl and forwards it to the respective
port. The first flow has a little overhead due to once more rewriting the source
address to the address of the [DPS|IVM] which could be optimized.
Lastly, the second flow matches every packet coming from the [DPSIVM] port
and address and forwards them to their destination: the Receiver. It is
important to note that in its current state, we did not yet optimize the creation
of the flows to remove redundant flows, offering room for improvement in the
future.

Results

Figure Visualizes all changes in the ordering configuration during the au-
tomated experiment. The graph visualizes the recorded packets from the

201

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

R
R 4
A 4
z @
10
J18pi0 Bunnoy

Spu02as

-sda

-md

- sdai

Landscape graph of a TCPDUMP of [CMPIrequests sent from the

Sender to the Receiver

Figure 6.7

202

6.3 Evaluation

tepdumps showing the order of security function each packet. On the x-axis
(beware of the graph’s 90-degree rotation, you can find the time of the experi-
ment, and on thy y-axis, we depict the security functions. Circles (first security
function, the packet passes through)squares (second security function), and
triangles (third security function) mark the routing order. For the case that a
packet traverses more than three functions, the charts indicate this with colored
diamonds. Black vertical lines show the time when the script applied a new
permutation of the default routing configuration. The first section (before the
first vertical line) shows that the packets traverse through the [DPSIVM] next
through the firewall VMl and lastly through the [DPSIVMI This order is the
default configuration of the network. After applying the first new routing con-
figuration, the packets now traverse through the firewall VMl first, then through
the[DPSIVM], and lastly throughIDPS|VML The first new routing configuration
matches the configuration from Listing[6.2]and Listing[6.3} showing that the
packets traverse through the security function in the desired order.

Moreover, Figure|6.7|shows that our framework applies every permutation
of the default configuration correctly. As seen, it is possible to traverse through
more security functions than there are in the network. This issue is a result of
changing the routing configuration while traffic passes through the system. The
following packets go through the desired function chain. The gray and black
diamonds in the graph show the packets that traversed through more security
functions than configured because a new routing configuration went into effect
during the [CMPlrequests. Although packet loss is theoretically possible, it
does not occur, and even then, new routing configurations are applied instantly.
Also, while theoretically possible, no attack completely skipped a security
function.

6.3.3 Reaction to Simulated Attacks
Experiment Description

This experiment analyzes the [FCCls attack-awareness. Thus, it validates
whether the [FCC correctly changes the routing configuration based on the
attacks reported by the security functions. The previous section showed that
the framework created all generated flows correctly and applied them suc-
cessfully to change the routing configuration of the network. As described
in Section 5.1} the main idea that led to the development of the framework is
to change the routing configuration dynamically. As described in Section
and [6.2} the security functions report detected attacks to the co-located security
function wrapper instance, which then reports it to the[FCCl We simulate at-

203

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

tacks on each virtual machine, to show that the attack reporting works and the
routing configuration changes depending on the attack reports. The simulated
security functions send attack reports with a changing probability of 2 - 1075,
4-1075,and 6 - 1079 every millisecond. We configured a threshold of 100 in the
[FECCl Only if the attack count exceeds this threshold, the [FCCl calculates and -
if necessary — applies a new routing configuration. Additionally, we define an
imminent threshold, which is three times as large as the regular threshold. The
[FCC checks for new routing configurations every five minutes, but every ten
seconds, the [FCC|checks if the reported attacks of a security function group
exceed the imminent threshold. In that case, it immediately recomputes the
routing configuration and applies it if it has changed. We selected these values
to prove our proof-of-concept implementation.

Routing order
non 1y M o1

O‘I Ilollol llQ'lO'I II
] 19, ”9,0 = 2

gt
A3

fy o 1

(I o o w
[T A q h ? q L p ﬂ “ ? q !

DPS - co0doodsodsoddodd

' '
160 170

seconds

Figure 6.8: Change of routing configuration from [DPS-Firewall{IDPS to
Firewall{IDPSHDPS

204

6.3 Evaluation

Experiment Results

IDPS - DDQDDQDI;\QDI;\DDI;\DDI;\IJQI;HQIO oq-Q,ocpq,c:o-q,o 290 o-q.o oq

Routing order
o 1
@2
A3

FW-

DPS -

1
1
1
I [l ' [l [l l
670 680 690 700 710
seconds

Figure 6.9: Change of routing configuration from Firewall{IDPSHDPS|to [DPS
Firewall{DPS|

We selected four instances during this experiment, where the routing con-
figuration changes. Visualizing the complete experiment in one graph yields
unreadable results. Therefore, we show only parts of the graph in the time-
frame of 40 seconds around changes of the routing configuration to illustrate
the functionality tested in the experiment.

Figure 6.8)illustrates the imminent attack functionality. The first modification
of the routing configuration occurs at almost 3 minutes into the experiment.
The routing order changes from [DPS}FirewalHIDPSl to Firewal IDPSHDPS| This
change could not originate from the regular check as it occurs before the five-

205

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

minute mark. Listing[C.T|and Listing [C.2)list the corresponding flows for the
Open VSwitch instances on €39 and C48.

Figure[6.9illustrates the regular functionality of the FCC. The routing config-
uration takes effect approximately 12 minutes after the start of the experiment.
The routing order changes from Firewal[{IDPSHDPS| to [DPS}HFirewall{DPSl List-
ing and Listing list the corresponding flows for the Open VSwitch
instances on €39 and C48. Here, it becomes visible that for one ping, the pack-
ets did not traverse every security function, posing a potential security risk. We
provide possible solutions to this issue in the discussion.

Ps: qacqacqaceacaecsagodesacsaccacgacgqacqag

Routing order
o 1
@2
A3

FW -

DPS -

l l II l l
870 880 890 900 910
seconds

Figure 6.10: Change of routing configuration from [DPS}HFirewall{DPS to [DPS
[DPSHFirewall

Figure shows that the framework applied the new routing configuration
approximately 15 minutes after the start of the experiment due to an imminent

206

6.3 Evaluation

attack on the IPS. The routing changes from [DPS}Firewall{DPS] to
Firewall. Although was already the first instance the traffic traverses
through, the reported more attacks than the firewall and thus moved
ahead of the firewall. Listing[C.5/and Listing [C.¢]list the corresponding flows
for the Open VSwitch instances on C39 and C48.

IDPS -

Routing order

||I 'l| o 1

QUﬁDPQDQHDQHDPHPQHP. —

|:|"I I"I A3

FW -

DPS - D\di\di\di\jﬂD\j\jD\j\jd\ﬂld oo'd'o c'vd'clyo'd'o od'o o-d'd oo'd

| | \ \
1370 1380 1390 1400 1410
seconds

Figure 6.11: Change of routing configuration from [DPSHDPSFirewall to
Firewall{IDPS

Figure shows a routing configuration applied approximately 23 minutes
after the start of the experiment. The routing changes from [DPSHDPS}Firewall
to [DPS}Firewal{IDPSl DDoS and FW reported more attacks than the IPS, re-
sulting in the corresponding configuration. Listing|C.7jand Listing[C.8]list the
corresponding flows for the Open VSwitch instances on €39 and C48.

The Function Chaining Controller resets the configuration to the standard

207

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

configuration if reported attacks of all security functions are below the config-
ured threshold. This reset to default allows users to select a default configura-
tion that best fits the average attack on the system.

6.3.4 Discussion
Functionality

In summary, the developed framework is working as expected. Small issues
like packet loss may occur during the application of new routing configurations.
The generation of routes and their application works as desired. We also showed
that the framework is indeed attack-aware and successfully changes the routing
configuration of the network based on the reported attacks from the security
functions. After attacks fade out, the framework switches back to the default
configuration.

Security Issues During Reconfiguration

As shown before, three undesired scenarios can occur during reconfiguration:

(i) Packets get dropped because the framework has not installed the required
flow yet. This packet loss requires retransmission.

(ii) Packets traverse one or more security functions more than once. E.g.,
in a chain with three functions, if a packet currently resides in the third
function and a reconfiguration puts the third function first, the packet
again has to traverse the former first and second function.

(iii) Packets do not traverse through all required security functions. E.g.,
when using a chain with three functions, a packet residing in the first
function continues directly to the receiver, if a reordering puts the former
first function last. Thus, the packet skips the former second and third
functions.

The first and second issues only pose and concerns. Retransmis-
sions (if supported by the protocol) take additional time. Similarly, passing
through more security functions increases the time the packets spend in the
SSEC1 However, the third issue is relevant to security. If packets can skip se-
curity functions, single malicious packets can reach the receiver. This issue is
of little concern for flood attacks, but for intrusions, a single packet might be
enough to trigger a vulnerability and cause a severe security breach.

To avoid this issue, we propose several solutions:

208

RQ
6.3b

6.3 Evaluation

e A straightforward solution would be to have a second set of security
functions. Reconfigurations would then use this second set for the
Once all packets clear the security functions in the first chain, those
functions become the functions, the next reconfiguration can use. Many
security systems have hot spares to ensure the availability component of
security. Therefore, for these systems, this solution is simple to implement
and has no overhead. As a beneficial side-effect, this option also fixes the
first and second issues.

e A second option is to model the stay of packets inside the security function
by adding short-lived flows with artificial delays that ensure that no
packets are inside the functions when executing the reordering. However,
this requires detailed knowledge of all security functions inside the chain,
especially regarding their queuing behavior. While precise modeling is
possible using existing performance engineering tools (e.g., [SWK16]]),
when the source code is available, black-box models are more complicated
to attain and less precise. This approach does not fix the first and second
issues.

e The third concept is to force the security functions to drop all packets
before executing the reordering. This solution fixes the second and third
problems but moves the affected packets and others to the first issue.

e The fourth option is to use the options field in the [Plheader. We create a
counter field in the options. For every reconfiguration, the[SDN]controller
increments this counter. The inbound switch has a rule that modifies
incoming packet headers to contain the current counter value. The flows
match against this header field and the current counter. Older flows
expire after some time (either by removing them manually with a clean-
up routine inside the controller or using soft timeouts. The main
limitation of this approach is that many hardware switches do not support
matching against this field. However, newer hardware switches and
software switches in general support matching against this field.

Depending on the use-case, the security system architecture, the employed
switches, and the used security functions, there are different optimal solutions.
We have not yet implemented these solutions but will do so in the future. For
the proof-of-concept, the presented implementation is sufficient.

209

Chapter 6: A Framework for Attack-aware[SSEC] Reordering

6.4 Summary and Evaluation of Research Questions

In this chapter, we introduced a framework for attack-aware dynamic Security
Service Function Chain reordering.

RQ 6.1: How to structure a framework for dynamic function chain reorder-
ing?

All security functions reside inside an [SDNlenabled network. A security
function wrapper co-located with every security function reports attacks at these
functions via a separate management network to the [FCC| The [FCClcomputes
the desired order for the security functions and submits it to the[SDNJcontroller,
which enforces the order by creating the necessary flows on the switches.

RQ 6.3a: What results does a proof-of-concept implementation provide?

We developed a proof-of-concept implementation using a simplified decision
algorithm for ordering decisions and a minimal controller tailored to our
infrastructure. The framework shows that it can enforce all possible orders.
We also put the framework through simulated attack patterns. The framework
successfully adapted to all attacks and — after the attacks ceased — successfully
restored the default configuration afterward. Thus this proved the desired
functionality.

RQ 6.3b: Do new attack vectors, and other issues arise from dynamic
function chain reordering — and if yes, how can these issues be addressed?

An issue occurs that during reordering, packets can drop or pass through
a function twice. These effects are undesirable but not a security issue. More
significant is the third issue: during reordering, a packet can skip functions. We
proposed four options to combat this issue: (i) using a spare set of security func-
tions, (ii) modeling the stay of packets inside the security functions, (iii) force
the functions to drop enqueued packets, and (iv) using the options field in the
[P header. The optimal solution depends on the existing infrastructure and
use-case.

210

Chapter 7

Heat-aware and CPU Boost-oriented
Server Load Rotation

Modern processors can exceed their designed clock rate for short time frames.
Starting with Intel’s Turbo Boost technology in 2008, these capabilities have
evolved, and competing[CPUlmanufacturers have adopted these technologies.
At first, the idea was to increase only the clock rate of a single CPU core. A
few years later, Intel extended Turbo Boost by additional variation levels. With
many [CPUk having more than two cores, it was sensible to create intermediary
steps between boosting one core to maximum clock rate and having all cores
running at the base clock rate. In addition to continually boosting a single
core or few cores, Intel added the capability to exceed a CPU’s thermal budget
temporarily. Thus, it is possible to exceed the base clock rate for all cores for a
limited amount of time. The deployed cooling solution determines this amount.
Once exceeding a certain temperature threshold, the dynamic boost is disabled.
This boost can be between around 20% (for servers) and over 100% (for ultra
low power[CPUk, e.g., Intel’s Core Y-Series). Section gives more information
about Turbo Boost, its competitors, and thermal management.

Many works dealing with software performance see the turbo boost (similar
to HyperThreading) as an unwelcome and unpredictable interference to their
performance models and disable this feature. While this is a sensible choice
to validate the applicability of performance models, it limits their real-life
applicability since most servers in their default configuration come with Turbo
Boost enabled in the Basic Input/Output System (BIOS), and only a few hosting
providers allow to change that.

Instead of seeing the [CPUlboost as a nuisance, in this chapter, we work on
harvesting its potential. Imagine an infrastructure with several homogenous
compute nodes. On each of these nodes, an application is running, consuming
around 60% of that nodes compute resources. We assume optimal consolidation
for each of these applications. Now we want to add a single application that
would require 50% of the resources of one of our hosts. Within the existing

211

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

possibilities, we would have to boot up another host machine (or violate an
SLA on purpose).

As we have learned about how [CPUlboosting technologies allow for a server
to have around 20% higher clock rate than usual. Thus, on a boosted server, we
could deploy the new application as long as the boost stays active. Unfortu-
nately, the boost does not stay up indefinitely. This limitation brings us to the
idea of heat-aware load balancing. When a host drops out of boost (or even
better, when predicted to drop out of boost), we migrate the application to the
host expected to stay boosted for the longest possible time. We continue this
process as long as more resources are required than available.

We expect this approach to provide a constant boost in large environments
where there is always a boostable server available. For smaller environments,
this approach could help to quickly deploy the application and then later
migrate it to a newly booted additional host. The contributions of our work are
(i) an approach to heat-aware load balancing, (ii) a prototype implementation
using software-defined networking, and (iii) the evaluation of the prototype’s
functionality and utility.

Research Questions

In this chapter, we will tackle several research questions. All of the following
research questions are part of the meta-research question MRQ 7: Can a CPU
boost-oriented heat-aware server load rotation improve server performance?. The
numbering of these research questions maps to the sections of this chapter. If a
section deals with more than one research question, those questions have their
number appended by ascending Latin letters.

RQ7.1a Can[SDNlleverage potential in short-term [CPUl frequency boost tech-
nologies to increase the computing performance of a system?

RQ7.1b How to design an[SDNtbased load-balancing system with such capa-
bilities?

RQ7.2 What existing solutions are suitable to implement this approach?

RQ7.3a To what extent do different workloads impact the approach (e.g., low
load and high load)?

RQ7.3b Is it possible to extend this effect for more prolonged periods?

RQ7.3c How is the effect of this solution on power consumption?

212

RQ
7.1a

7.1 Approach

Structure

In the remainder of this chapter, we first describe our approach in Section[7.1}
Next, we detail our proof-of-concept implementation of said approach describ-
ing the components and the implementation of the algorithm in Section
We evaluate this implementation in Section [7.3]including a description of the
evaluation environment, the validation of the desired functionality, the re-
sulting behavior on real hardware, and a comparison to a system without
heat-aware load balancing regarding performance and power consumption.
Last, we summarize the chapter and answer the previously stated research
questions.

7.1 Approach

[CPUl boosting technologies allow for a short-time overclocking. For servers,
this headway is around 20% of the [CPUl's base clock. In this section, we first
present the concept. Next, we discuss how to realize this approach using [SDNI
Last, we take a peek at a simplified model for decision making.

7.1.1 Concept

Our approach follows the idea of having an application, always running on a
boosted server. Figure[7.I|shows an exemplary behavior for a set of four servers.
We assume that either the application alone creates enough load to trigger the
server going into boost mode or that the server already has a high enough load
that the new application can only fit when boosting the frequency.

We deploy a new application on the first host in Figure This activity
leads to the host’s[CPUlswitching to boost mode in Figure[7.1b| The boost mode
results in a higher creation of heat than the cooling solution can transport away.
Thus, after some time, the thermal budget of the is exhausted (shown by
the server turning red), and the leaves its boost mode in Figure We
simultaneously move the application to the next server to keep it on a machine
at an elevated clock rate. Thus, this target server now enters its boosted state
(Figure [7.1d)). Again, at some point, the server exits its boosted state, and
we move the application to the next server (Figure [7.1¢]). During the time
the application spent on the second server, the first server cools down a little
(represented by the server turning orange). The process repeats with boosting
(Figure , moving the fourth and last server, and the first and second server
again cooling down (Figure[7.1g]), and again with boosting it (Figure [7.1h]). As
shown by the heat icon in the figures, the accumulated heat level on the hosts

213

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

% [
1 71 241
L ’B L ’B 77
74 7712 5554i om g 1
Y77} 77 17 Y7
/) ’E i/ ’E I/ ’B L ’E L L
8 7 8
77 77 7
(a) Deployment of new (b) Server enters boost (c) Server exits boost
service on first server. mode. mode. Service moves
to second server.
F1rt0s o)
7 g i |
: i i+
S TR >
s 7 i 2
; : 7] 7 i7s] 7

4

7

JJJ3
777597]
7771

(d) Second server enters

(e) Server exits boost

(f) Server enters boost

boost mode. mode. Service moves mode.
to the third server.
o
1
/)
o
ol ;;;4§ e e iii4i —2=
L /1 L L
i3m 77,3/ 730
77177 7777] 111547 o]
rm 777 o] 77

(g) Server exits boost
mode. Service moves
to the fourth server.

(h) Server enters boost
mode.

(i) Server exits boost
mode. Service moves
to the first server.

Figure 7.1: Overview of a full rotation using heat-aware load balancing.

214

7.1 Approach

diminishes after exiting boost state and relinquishing the application to another
host. At some point, the first host again is capable of going into boost state
(represented by it turning green again). When the last host leaves its boost
state, we assume that the first host is again ready to boost (Figure [7.1i)). Thus,
the application again moves to the first host. From thereon, it again continues
through the rotation.

7.1.2 Realization Using Software-defined Networking

RQ For the implementation of the heat-aware load balancing, we propose to use

7.1b We introduced in Section allows for the dynamic mod-
ification of network packets. Here, we use to change the destination of
requests to a service based on the machine’s temperature and ability to go into
or stay in boosted mode.

Therefore, we make a list of computing machines known as workers. Our
application runs on each of these machines and listens to the active port. The
application does not require a significant amount of resources when running
without receiving queries.

We demonstrate the algorithm for our approach on an example of one client
and multiple servers. Figures[7.2]to[7.3|show the infrastructure for this example.

We define a default worker (here Server 1). The client always addresses
this worker. When sending a request to the worker, this request reaches the
[SDNI-enabled switch, as seen in Figure[7.2a] This switch requests a rule to create
an flow from the controller. If, since the system start, the default
worker has not gone into a state, where it is no longer able to boost, the new
rules forward the packet to the default worker. Thus, no modification to the
packet is necessary. The worker services the request and sends a reply to the
client. Figure[7.2a|shows the route of this reply. As seen, The reply already uses
the correct addresses. Thus, the switch just forwards it to the client. As long
as the server is not too hot to boost, this pattern continues. So far, the process
does not differ from how the system would behave without an [SDNlswitch.

Figureshows the behavior, once the default worker has reached its thermal
capacity limit and is no longer able to maintain boost mode. Still, the client
addresses requests to the main machine. However, now, the switch receives a
rule to forward the packet to the coolest server (here Server 2) from the
controller. Without modification, the new server would decline the packet,
since its destination[MAC|and [Pladdresses do not match the server’s addresses.
Therefore, the received rule also contains instructions for the switch to rewrite
the packet’s header, so that it contains the new server’s [Pland addresses,
as shown in fig. Now, the server accepts the request, services it, and sends

215

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

/=—=\

Client
(IP-S / MAC-S)

SDN-enabled
Switch

SRC IP:

SRC MAC:

DST IP:

DST MAC:

IP-S
MAC-S
IP-A
MAC-A

“F |

(a) Packet behavior from client to server.

Client
(IP-S / MAC-S)

SRC IP: IP-S
SRC MAC: MAC-S
DST IP: IP-A
DST MAC: MAC-A
SRC IP: IP-A
SRC MAC: MAC-A
DST IP: IP-S
DST MAC: MAC-S

SDN-enabled
Switch

SRC IP:

SRC MAC:

DST IP:

DST MAC:

IP-A
MAC-A
IP-S
MAC-S

“F |

(b) Packet behavior from server to client.

Name:

MAC:

Name:

MAC:

Name:

MAC:

Name:

MAC:

Name:

MAC:

Name:

MAC:

Server 1
IP-A
MAC-A

Server 2
IP-B
MAC-B

Server 3
IP-C
MAC-C

Server 1
IP-A
MAC-A

Server 2
IP-B
MAC-B

Server 3
IP-C
MAC-C

Figure 7.2: Behavior of the SDNlenabled network without hot servers.

216

7.1 Approach

Name: Server 1
IP: IP-A
MAC: MAC-A

SRC IP: IP-S SRC IP: IP-S
Name: Server 2
| [SRCMAC: MAC-S T |ISRcMAC: MAC-s P B
DST IP: IP-A DST IP: IP-B MAC: MAG-B
DSTMAC: MAC-a| SDN-enabled| perpac. macs
Client Switeh

(IP-S / MAC-S)

Name: Server 3
IP: IP-C
MAC: MAC-C

Name: Server 1
IP: IP-A
MAC: MAC-A

SRC IP; IP-A SRC IP: IP-B
Name: Server 2
| (SRCMAC: MAC-A { | JSRCMAC: MAC-B P IPB
DST IP; IP-S p——— DST IP: IP-S MAC: MAC-B
N DSTMAC: MAC-S -enable DST MAC: MAC-S
. Switch
Client
(IP-S / MAC-S)

Name: Server 3
IP: IP-C
MAC: MAC-C

(b) Packet behavior from server to client.

Figure 7.3: Behavior of the SDNlenabled network after the first server is to hot
to go into boosted mode.

217

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

a reply. As seen in Figure the switch forwards this reply to the client.
Again, without the modification, the client would discard the reply, since it
comes from a server that it never contacted. So, again, the switch rewrites
the packet to contain the source[Pland addresses from the main worker.
Thus, the client accepts the reply. Further replies continue to the second server
until it falls out of boost mode. Then, a new rule forwards the packet to the
new coolest server.

To realize this approach, we use three algorithms: (i) an initialization script
creating the static rules, (ii) a periodic monitoring script updating the desired
target server, and (iii) an event-triggered script creating the dynamic rules.

Algorithm 7.1: Creating server to client rules on system initialization.

Data: List of workers, mainWorker, client

1 foreach worker € workers do
2 create new [SDNIflow on the switch with
3 matching;:
4 matching:
5 inPort = worker.connectedSwitchPort,
6 ethernetType = 0x800, /* TCP */
7 sourcelP = worker.IP
8 sourceMAC = worker MAC ;
9 actions:
10 setFields:
11 destinationIP <« client.IP
12 destinationMAC <« client. MAC
13 sourcelP + mainWorker.IP
14 sourceMAC <+ mainWorker MAC;
15 output:
16 L port = client.connectedSwitchPort;

Algorithm [7.1] presents the initialization script. For each server, it creates a
rule that forwards [ITCPl packets from the server to the client. Additionally, the
rule replaces the and [[Pladdresses of any worker with the ones of the
default worker. Thus, a client would perceive all replies by the other servers as
replies from the default worker. These rules constitute the reverse paths only
used by the servers’ replies and not the answers to the client. Thus, these rules
can be static. Static rules also have the advantage that they allow for a server to

218

7.1 Approach

finish active queued requests still when it is no longer the active server for the
load balancer. Therefore, the initial script can create the rules, and no dynamic
resource-consuming and latency-generating solutions is necessary.

Algorithm 7.2: Monitoring loop.

Data: List of workers, mainWorker
Result: activeWorker

1 boostReady < true;

2 counter + 5;

3 while true do

4 | while boostReady and counter > 0 do

5 if current server isBoosted then
6 L boostReady « false;
7 counter = counter - 1;
8 sleep for 1 second;
9 while current server is boosted do
10 | sleep for 1 second;
11 activeWorker <+ coolestWorker;

The monitoring algorithm, shown in Algorithm [7.2) runs permanently. It
starts with the currently active worker. If this worker is not boosting when first
entering the loop, it sleeps for five seconds or until the server is boosted. If,
after that time, the server is still not boosted, the system checks if a cooler server
is available. Suppose this is the case, the active worker switches to this server,
and the loop restarts. If the server is boosting, the loop waits until the server
exits this state. Once this happens, the coolest server becomes the active worker.
Thus, once a server enters boost mode, the algorithm maxes out the possible
performance from this mode until the server’s thermal budget is exhausted.
When no server is in boost mode, the algorithm selects the coolest server for
new requests to ensure minimized cooling requirements.

The final algorithm is the PacketIn handler, as seen in Algorithm The
controller calls this handler every time the switch receives the packet
and has no existing rule that matches it. Because the switch has permanent
rules for all packets from the servers, only packets from the client can trigger
this function. Now, the controller creates a new rule for the switch. This
rule matches all packets from the client (regarding the incoming port on the
switch, and the [and addresses) and rewrites the packets, so that
their destination [Pland addresses match the target server selected by

219

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

Algorithm 7.3: PacketIn handler.
Data: currentWorker, client

1 create new flow on the switch with

2 timeout < ruleTimeout ; /* from config */
3 matching:

4 matching:

5 inPort = client.connectedSwitchPort,

6 ethernetType = 0x800, /* TCP */
7 sourcelP = client.IP

8 sourceMAC = client. MAC ;

9 actions:

10 setFields:

11 destinationIP + currentWorker.IP

12 destinationMAC <+ currentWorker. MAC

13 output:

14 L port = currentWorker.connectedSwitchPort;

the monitoring component. Last, the rule outputs the packet to the port, to
which the server connects. This new rule has a configurable timeout. Packets
from the client continue to the selected server for this preset amount of time.
After the timeout expires, the algorithm reruns, allowing for an update of the
target server. An alternative would be not to create a rule but decide every
time a packet from the client arrives. However, this creates overhead at the
controller and latency for every packet. Therefore, a rule with a timeout
allows for a configurable compromise between update frequency (and the time
between the end of boost mode and the system’s reaction) and performance
metrics like latency.

7.1.3 Simplified Temperature Model

We previously used the term coolest server. We will evaluate our proof-of-
concept implementation in Section [7.3|using homogenous servers. Therefore,
their behavior when heating up as well as cooling down is similar, and just tak-
ing the coolest server is sufficient. However, for a more complex heterogeneous
infrastructure, this solution might not be enough, since the coolest server might
not be the server, that can maintain the boost mode for the longest time.

220

7.1 Approach

While state-of-the-art literature provides powerful cooling models from the
level of chips up to complete racks or data centers [Bre+20|] they require an
excessive amount of information from the heat conductivity of the cooler
over the temperature of the inlets to the temperatures in neighboring servers
or around the data center. Acquiring this information is often not feasible
(e.g., consumers often just book a few height units in a data center and do not
know about the neighboring servers) or very complex. Thus, we present a very
simplified model for heterogeneous environments.

We describe the point at which the[CPUlgoes out of boost mode as Evoost_max
regarding energy and as Tjoost maz regarding temperature. Since, as described
before, energy models are very complex, we focus on the temperature. The
point T3,s. marks the baseline to which the temperature can drop when the load-
balanced service does not run on that specific server. The current temperature 7',
therefore, varies between the base temperature and the maximum temperature
plus a tolerance (ATipierance), since the migration of the service to the next
server might have a delay. Equation ([7.1]) shows this relation.

Tbase S T S Tboost_max + ATvtolerance (71)

For simplification, assume a linear behavior when cooling and boosting.
It possible to derive increase in temperature per second when boosting
(ATpoosting) and the decrease when cooling (AT¢ooling) by performing some
simple experiments on the used servers by timing the time the boosted system
takes to go from Tygse 10 Thoost maz- Since the boost is active, when the server
is at maximum load, a differentiation for multiple load levels is not required.
This simplification leads to Equation showing a formula to extrapolate
the temperature if the system would go into boost mode or be left cooling.

T AT, ing — i
T (1) :{ (t1) + ATpoosting - (t2 —t1) when boosting (72)

T (t1) + ATeooling - (t2 —t1) ~ when cooling

In a heterogeneous environment, servers have different values for Tjse,
Thoost_mazr DT boosting and ATooring. With these values known, an algorithm can
now calculate which server can maintain a boost for the most extended amount
of time. Furthermore, a more complex sophisticated could even predict the
number of switches between servers for different orders. This prediction could
lead to unintuitive decisions, where the server that could stay in a boosted state
the longest does not yet become active to cool down further.

221

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

7.2 Implementation

We provide a proof of concept implementation. Additionally, we provide
ansible scripts to deploy the application.

Components

Our application has multiple components that interact: (i) a central monitoring
component, (ii) distributed worker-side monitoring components, (iii) an SDN]
controller, and (iv) an[SDNlenabled switch.

While the worker-side components must run on the worker machines, the
other components can run on a single machine or spread over multiple ma-
chines.

Central Monitoring

The central monitoring component collects data from the worker machines.
For this task, our choice fell to InfluxDB [Inf20al]. Chronograph visualizes the
recorded data. We provide pre-defined dashboards for the visualization of the
relevant data for our approach.

Worker-side Monitoring

To collect information regarding [CPUl frequency and temperature from the
worker machines, we use Telegraf [Inf20b]].

Controller

We use Ryu as an[SDNI controller. Ryu is lightweight, supports basic switching
and [REST] per default, and provides for a simplified extension using simple
Python scripts. We realized the rule-settings algorithms (Algorithm [7.1/and
Algorithm as a Ryu module using Algorithm runs in parallel
outside of Ryu since it is not directly involved when setting SDN]rules.

SDNJ Switch

In general, any[OF-1.3 compatible switch should suffice for our approach. How-
ever, many vendors do not provide the level of support for [OH features that
they claim. To ensure full[OF compliance, we use Open vSwitch.

222

RQ
7.2

7.3 Evaluation

7.3 Evaluation

In this section, we evaluate the previously introduced proof-of-concept imple-
mentation. We first introduce the evaluation environment in its virtual and
physical variants. This environment description contains information about
the service and client software used for load generation. Next we validate the
general functionality of our approach using the virtual evaluation environment.
We then take a look at the behavior of the solution with varying workloads
and load levels. Last, we assess the impact, heat-aware load balancing has on
energy and performance of the load-balanced service.

7.3.1 Evaluation Environment

We use two different evaluation environments. Therefore, we first introduce
the common aspects an then the specifics of both testbeds.

Composition

We evaluate our proof-of-concept implementation in an environment consisting
of five servers and a switch. The servers act as (i) a client, (ii) an[SDNIcontroller
(that also takes over the role of an experiment controller), and (iii) three service
hosts. They interconnect with the switch as shown in Figure

Service
Vs Host
1
Crient
P AT
Switch
f__] Service
1 i><1, Host
i 2
< > e N
Service
SDN Controller - Host
3

Figure 7.4: Connection scheme for both the virtual and physical testbed.

223

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

Load Driver

We use the LU Workload — a workload that creates heavy[CPUlload from matrix
computations. It computes the lower- and upper-triangular forms of a matrix
A, which means A;, Ay = A. The LU factorization’s runtime for a Matrix A of
size n x n is O (n®) and its space requirement for data is O (n?).

LU’s mechanism is similar to Gaussian elimination. One variable is elimi-
nated each step by subtracting lines from each other. This process makes the LU
workload a intensive procedure. In addition to the regular entry-by-entry
computation, there is also a “blocked” version computing blocks to increase
performance [|[CGS07]]. Since we intend to create a load and not reduce the load
per computation, we use the regular version.

We deploy the LU workload in the version from SPEC SERT [LT19] reim-
plemented in BUNGEE [Her+15|]. Therefore, we deploy one instance of the
BUNGEE LU worklet on every service host.

[HTTP| Load Generator [KDK18] generates requests to the worklets. The
director runs on the experiment controller, and the actual load generator runs
on the client. We use[HTTP| Load Generator’s configuration file to configure
the size of the matrix for the LU worklet and the frequency of the requests.

Switch

We use OpenVSwitch for both testbeds. The main reason is OpenVSwitch’s
excellent compliance with the[OF standard. OpenVSwitch runs on ananother
server (or[VMlin the case of the virtual testbed).

7.3.1.1 Virtual Testbed

To assert the basic functionality, we use a virtual testbed spawned by Va-
grant [Has20]]. Virtual machines replace all servers shown in Figure[7.4, and
the switch and run on the host described in Table[Z.1]

An issue with our approach in the virtual environment is, that — depending
on the hypervisor —[VMk do either not have data from temperature sensors
or all show the host’s temperature. Therefore, we introduce a small script that
writes “fake” temperature values into our InfluxDB. It integrates with the load-
balancing algorithm. When a service host is the active worker, its temperature
increases by a configured value per second, and otherwise, it decreases by
another configured value per second without going below a minimum value.

224

7.3 Evaluation

Unit Value
Product HP ProLiant DL360 Gen9
ICPU Intel Xeon E5-2640 v3

Default[CPUl frequency 2.60 GHz
Max [CPUl frequency 3.40 GHz
Min [CPU] frequency 1.20 GHz

Cores (Threads) 8 (16)

Cache (L1/L2/L3) 512 KB/2048 KB/20480 KB

Memory size 32GB (2 x 16 GB) DDR4 Dual Channel
Memory frequency 1.866 GHz

Memory Connection Dual Channel

Storage Model HP VKO0800GEFJK 800 GB SSD
Storage Connection SATA 1II (6GBit/s)

Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 7.1: Specifications for the VMl host.

7.3.1.2 Physical Testbed

For the evaluation of the impact and the real-wold behavior, we require a
physical testbed. This testbed realizes the network shown in Figure[7.4| The
connections between the client, the service hosts, and the switch are 10 GBit/s
links while the connection between the switch and the controller is a
1 GBit/s link.

We use standard DELL servers for the client, controller, and the worker
machines, as specified in Table There are no modifications to the operating
system and kernel. It is noteworthy that the second service host resides directly
between the first and second service hosts in the rack.

For the switch, we use another DELL server with the specifications from
Table The default OpenVSwitch implementation is sufficient since compute
power is the limiting resource and not network throughput.

The workers” power supply runs via a Yokogawa power meter to measure
the power consumed by the workers. The idle power for all three machines
together is 98.19 W or on average 32.73 W per machine.

225

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

Unit Value
Product Dell PowerEdge R210 II
CPU Intel Xeon E3-1230 v2

Default[CPUl frequency 3.30 GHz
Max [CPUl frequency 3.70 GHz

Min [CPUl frequency 1.60 GHz

Cores (Threads) 4 (8)

Cache (L1/L2/L3) 64 KB/256 KB/8192 KB

Memory size 16GB (2 x 8 GB) DDR4

Memory frequency 1.600 GHz

Memory Connection Dual Channel

Storage Model HGST Ultrastar A7 K2000 500 GB@7200 rpm
Storage Connection SATA 1II (3GBit/s)

15t NIC 2 Port Broadcom Limited NetXtreme II
(Controller & Backend) BCM5716 Gigabit Ethernet

2nd NIC Intel X520

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 7.2: Specifications for the client, the[SDNIcontroller, and the workers.

7.3.1.3 Application Scenarios

We use three different workload-frequency combinations for the LU worklet
and the[HTTPlload generator.

We measured the the duration, a request to the LU workload takes on the
workers in the physical testbed with turbo boost disabled in the These
results allow to establish a baseline for what the servers can handle. Thereby,
we found the results shown in Table

In the following we present the results for three scenarios — using a simplified
ANOVA approach. We modify the frequency as well as the matrix size. Table[7.5]
shows the selected scenarios. In any case, we set a ten second timeout for the
flows.

226

7.3 Evaluation

Unit Value

Product Dell PowerVault NX400

CPU Intel Xeon E5-2420 v2

Default[CPUl frequency 1.90 GHz

Max [CPUl frequency 1.90 GHz

Min [CPU] frequency 1.20 GHz

Cores (Threads) 6 (12)

Cache (L1/L2/L3) 64 KB/256 KB/12288 KB

Memory size 16GB (2 x 8 GB) DDR4

Memory frequency 1.600 GHz

Memory Connection Dual Channel

Storage Model HGST Ultrastar A7 K2000 500 GB@7200 rpm
RAID RAID 5 with four drives

Storage Connection SATA 1I (3GBit/s)

15t NIC 2 Port Broadcom Limited NetXtreme II
(Controller & Backend) BCMb5716 Gigabit Ethernet

20 NIC Intel X710

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
3™ NIC Intel X520

(Experiments) 10-Gigabit SFI/SFP+ Network Connection
Operating System Ubuntu 18.04.3 LTS (x86-64)

Kernel 4.4.0-72

Table 7.3: Specifications for the switch.

7.3.2 Functionality

Regarding the functionality of the load-balancing implementation, it is neces-
sary, to assert, that (i) a change of the active worker occurs when desired, (ii) all
packets reach their correct host, (iii) the switch carries out all packet header
modifications correctly, (iv) the servers process all packets correctly, (v) no
retransmissions occur, and (vi) the client reviews the replies to all requests and

views them as successful.

We execute multiple requests in the virtual environment to assure these
aspects of functionality and log their results. Also, we capture all packets on
the interfaces of the client, the service hosts, and the switch. Last, we create

227

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

Matrix Size Duration [s]

800 1
1200 5
1400 10
1950 30

Table 7.4: Duration per LU request for a given matrix size on the physical
testbed.

Scenario Matrix Size Requests per Second

A 1200 2
B 1200 1
C 800 2

Table 7.5: Scenarios used for evaluation.

verbose output at the SDNI controller.

Change of Current Worker

When the “fake” temperature of the current worker exceeds the value from
which the algorithm no longer considers it as boosted, after the expiration of the
current flow rule, the controller’s debug output shows that the controller
correctly creates a new flow to the now coolest server.

Correct Switching

The packet captures show that after the change to a new service host occurs,
the packets correctly reach this service host. Also, no new packets reach the
previous worker. Still, as desired, the replies from the previous worker(s) to
requests unprocessed before the switch correctly reach the client.

Valid Modification of Packet Headers

The dumps show correctly modified headers when the packets pass through
the switch. Notably, they contain the correct destination[[Pland addresses
for packets from the client to the service hosts and the correct source addresses
for packets from the service hosts to the client. Furthermore, all checksums are
valid.

228

RQs
7.3a
7.3b

7.3 Evaluation

Correct Processing of Requests

Since the target addresses of packets reaching the service hosts match their
addresses, the hosts accept the requests. They process all requests and send
the correct reply.

Absence of Retransmissions
The dumps show that no request retransmission occurs. Since [HTTP Load
Generator uses[TCP) this means, that, also, no packet losses occurred.

Reply Acceptance by the Client

The client receives the correct replies to all sent requests. However, the replies
are not always in the same order as the requests. This behavior is typical for
load-balancing approaches and not an issue.

Overall Functionality

The experiments show that the proof-of-concept implementation meets all
desired functionality requirements. Thus, it meets its functionality goals.

7.3.3 Scenario-dependant Behavior

On the physical testbed, we enable our algorithm on the controller. We
then execute the workloads described in Section[7.3.1.3] We measure the temper-
ature and the maximum [CPUl frequency over all cores per server at a time. The
maximum frequency over all cores Fiore maq results from the following
Equation ([7.3)):

Fcoreimaz (t) = max (FCOT670 (t)) FCO’I’671 <t> yooe 7Fco7'ei7 (t)) (73)

Scenario Requests[%]
successful failed remaining
A 45.7 6.3 48.0
B 88.9 0.5 9.6
C 100 0.0 0.0

Table 7.6: Result of the requests after experiment termination.

229

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

—— Server A —— Server B Server C
N 3500 1 LA A G s A DMIH s A AR
=
£
= 3000 A
(9]
C
g
3 2500 -
(0]
- |
51 M " Il
‘llJl N DY ol
1500 T T T T T T T
0 100 200 300 400 500 600
(a) Scenario A
—— Server A —— Server B Server C
N 3500 - ﬂ-llh"_r’.lul-. 1| VO ST PR TV T (R
=
£
= 3000 A
(0]
C
()
3 2500 A
(9]
fra
> 2000+ |l s : fly
&_]i (N Jr
Seantilal L) /\llu vl
1500 T T T T T T T T T
0 100 200 300 400 500 600 700 800
(b) Scenario B
—— Server A —— Server B Server C
Y mrry
2 3500 L RUBULIBIVL A T“F ™
s
< 3000 1 L]
> |
o
c
g
3 2500 - ‘
g
o] LI b LA TR L
5 P Iy uh\,'fu,ﬂ " w." II,H;H. SR »f-
PATY . DIVIPTR O . SRV N R TR W M A
1500 T T T T T T T T
0 100 200 300 400 500 600 700

(¢) Scenario C

Figure 7.5: Highest core frequency during the experiment.

230

7.3 Evaluation

—— Server A —— Server B Server C
70.0

SRS

[e)]

~

(6]
!

)]

u

o
1

Temperature [°C]
[e)] (o))
o N
o wn

57.5 1 ==
6 160 260 3(I)0 460 560 660
(a) Scenario A
—— Server A —— Server B Server C
70.0
67.5 1

Temperature [°C]
()] [¢)] [¢)]
o N (6]
o u o
£
N\
=
7
%

57541
(I) 160 2(I)0 3(IJO 4(I)0 560 660 760 8(I)0
(b) Scenario B
—— Server A —— Server B Server C
70.0
67.5

)]

u

o
1

Temperature [°C]
[e)] (o))
o N
o wn

ﬁ@%@@m{\%{x\ﬂvﬂﬂyg@)Q§

100 200 300 400 500 600 700

Ty

(¢) Scenario C

Figure 7.6: Temperature during the experiment.

231

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

For each scenario, we measure and present these values for the time of the
experiment. Figures[7.5to[7.6] visualize these results. The visualizations also
show a short time before and after the experiments. Thus, they include the ramp-
up and the ramp-down phases, including the processing of remaining queued
packets. At the end of the experiment, we inspect the log from [HTTP| Load
Generator. From there, we take the number of total requests, successful requests,
failed requests (e.g., the unexpected closure of an active [TCP|connection), and
requests not processed until the end of the experiment. Table[7.6/shows the
normalized results for all three scenarios.

7.3.3.1 Scenario A: Five Second Workload Every Half Second

In Scenario A, we create requests, which usually would take five seconds to
process with turbo boost disabled, every half second. This load results in an
overbooking of one server by a factor of ten and for the available three servers
of factor 3.3. Thus, the workload significantly exceeds the server’s capacity.

As seen in Figure most of the time, at least two servers are in an active
state. Thus, our original idea of only one active service host does not apply in
this scenario. Since the servers stay in an active state for a longer time, they
only maintain a boosted state of above 3 500 MHz for a short time and spend
most of their active time at their maximum non-boosted frequency.

Figure shows the temperature over all servers. This temperature rises
significantly throughout the experiment with only short dips that, with few
exceptions, always end up higher than the previous ones. The servers reach
temperatures of over 68 degrees.

The first row in Table|7.6|shows that at the end of the experiment, multiple
requests remain unanswered. Thus, they still reside in the servers’ queues.
Still, while the servers should have been only able to process around 30% of the
requests, they accomplished 45.7%, which suggests an impact of the heat-aware
load-balancing, which we will discuss in Section m

7.3.3.2 Scenario B: Five Second Workload Every Second

Section showed, that the idea of cooling servers back down only works
to a limited extent when heavily overbooking said servers. Thus, in Scenario B,
we half the request frequency to one per second. The requests themselves stay
as before. So, the number of requests would overbook a single non-boosted
server by a factor of five and three servers by a factor of 1.7.

Figure shows that the servers more frequently alternate between active
and passive states. Most of the time, at least one server and sometimes even

232

7.3 Evaluation

two servers are in passive mode. However, this scenario still does not realize
the idea of having exactly one active server. Also, the time spent by the server
in boost-mode when active significantly increases compared to Scenario A.

Figure explains this fact by an overall lower temperature by over two
degrees. The servers seem to reach a temperature limit that they do not exceed
afterward. However, the temperature still significantly increases relative to the
idle state.

The second row in Table|7.6|shows that a much higher number of requests
received successful replies. It is of little surprise that the shares of successful
requests nearly doubles when halving their frequency. Also, the failed share
massively decreases, but still, almost ten percent of requests remain in the
queue. Since the servers together without boost would only process 60% of the
requests, these results again suggest a positive impact on performance.

7.3.3.3 Scenario C: One Second Workload Every Half Second

In Sections[7.3.3.1]to[7.3.3.2] we analyzed scenarios that heavily overbook the
cluster. In this scenario, we analyze a workload that does not overbook the
whole infrastructure. We send a request that without boost would take one
second every half second. So, while this overbooks a single server by a factor of
two, it only uses two-thirds of the capacity from the three servers put together.

Figure shows the servers almost perfectly alternating between their
active states. Most of the time, one server is active, and the other two are
in passive mode. Furthermore, the active servers spend all of their time in
a boosted state. While the servers can not maintain the highest boost-level
of 3700 MHz all the time, during the remainder, intermediary boost levels
are active. Thus, this scenario accurately characterizes our initial idea of one
active server for the application. It is noteworthy that Server B, located between
Server A and Server C, has a little less active time. A possible reason is the heat
from the neighboring servers.

In Figure the temperature of all machines remains at a low level and
never exceeds 62 degrees. The graphs show not only a lower temperature but
also that the temperature behaves similarly to the frequencies and the
hosts alternate regarding the highest and lowest points.

The last row in Table 7.6 shows that all requests completed. This result is the
expected behavior since the cluster is not overbooked. Thus, for this scenario,
throughput is not a very relevant metric, and a basic load-balancing algorithm
would have achieved the same result.

233

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

7.3.4 Energy and Performance Impact

In the previous section, we analyzed the behavior of the algorithm. When
taking a look at the number of successful requests during these experiments,
they suggest a positive impact of heat-aware load balancing on the performance
— here throughput. In this section, we take a closer look at performance metrics
and also the energy consumption of the machines during the experiments. We
repeat the experiments from Scenario B and Scenario C. We perform them
once without load balancing on a single server and once with load balancing
enabled. We measure (i) the response time, (ii) the number of sent, received,
and lost requests, (iii) the maximum, and average temperature, (iv) the average
maximum and the averagel[CPUlfrequency, and (v) the average combined power
consumption of all servers. The term average maximum frequency is not
entirely self-explanatory. It results from (i) measuring the[CPUlfrequency of all
servers over time as three vectors, (ii) for every point in time taking the highest
frequency, one of the active servers has and storing them into a single vector,
(iii) computing the average of this vector. Since in our experiments, always at
least one server is under load, this value indicates the average boost-frequency.
For the power consumption and the frequency, we also provide the standard
deviation. Here, this is no metric for the accuracy of our measurement but
shows to what extent the metrics vary throughout the experiment. For example,
the frequent use of turbo boost leads to a higher standard deviation.

7.3.4.1 High Load Scenario

Table[7.7)shows the measured metrics for the high load scenario. The heat-aware
load balancing reduces the average response time by 80.2% — a significant
reduction. While a tripling of the resources leads the assumption of a reduction
by two thirds, the heat-aware approach yielded an even more massive reduction.
The relative share of successful requests more than doubled (+136.8%) — as
expected from the added resources — and no requests fail anymore.

The maximum temperatures of all three hosts are significantly lower (be-
tween 4.41 K and 4.89 K) than the one of the single machine. This effect in-
creases when looking at the average temperature, which is between 6.03 K and
6.42 K below the single-server setup. These reduced temperatures contribute
to extending the servers’ live.

Since temperature correlates to the frequency, it is of little surprise, that
also the average frequency is lower for the load-balanced setup. However,
the average maximum frequency for the load-balanced setup exceeds the
one from the single-machine setup.

234

RQ
7.3¢

7.3 Evaluation

Metric Heat-aware Load Balancing

disabled enabled
Server A B C A
@ response time[s] 4.62 22.25 1}
requests
se?lt/ received /lost 630/599/0 630/253/32 o/ 1/
Max temperature[°C] 65.40 65.12 64.90 69.81 1
@ temperature[°C] 62.83 62.56 62.54 68.86 l
@ CPU freq[MHz] 3007 2980 3057 3504 1l
@ max CPU freq[MHz] 3594 3524 0
o max CPU freq 178.37 58.92 0
@ power consumption[W] 191.23 151.39 1
o Power consumption[W] 2417 3.73 0
A power consumption[W] +93.04 +53,20 1
A power consumption| % | +94.76 +54,18 1

1: lower values are better; 1 higher values are better.

Table 7.7: Comparison switched and non-switched with five second workload.

This metric indicates that a longer time (almost half of the time), a servers is
in boost-mode. When using three servers to perform a workload that heavily
overbooks a single machine, it yields a higher power consumption than for one
machine. Nevertheless, the increase in power compared to the idle state is less
than double the increase from using only one server, yielding a better ratio
between additional successful requests and extra energy consumption.

Since the heat-aware load balancing relies on the usage of turbo boost, the
standard deviation of [CPUl frequency and power consumption is significantly
higher. The differences between the servers likely depend on their placement
in the rack.

In summary, the heat-aware load balancing increases performance and re-
duces the average and maximum temperatures of the employed servers. At
the same time, the power consumption grows slower than the number of used
additional compute resources would suggest.

7.3.4.2 Low Load Scenario

This scenario diverges from the previous one, as seen by the number of suc-
cessful requests in Table|7.8|for the single-machine setup. The single machine

235

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

Metric Heat-aware Load Balancing

disabled enabled
Server A B C A
@ response time|[s] 0.85 1.83 i}
requests
segt/received/lost 1310/1310/0 1310/1304/6 o/ 1/ 1
Max temperature[°C]| 6199 61.13 61.35 69.76 1
@ temperature[°C] 59.29 58.81 59.13 65.96 1
@ CPU freq[MHz] 2460 2148 2334 3518.44 l
@ max CPU freq[MHz| 3670 3580 1
o max CPU freq 23.47 70.97 0
@ power consumption[W] 135.54 147.98 1
o Power consumption[W] 591 6.59 0
A power consumption|[W] +37.35 +49.79 1
A power consumption[%] +38.03 +50.71 i}

1: lower values are better; 1 higher values are better.

Table 7.8: Comparison switched and non-switched with one second workload.

is almost capable of servicing all requests limiting the expectable performance
increase from load-balancing.

However, the load-balancing still cuts the response time by 54.6% and elimi-
nates the remaining failed requests, so that all requests terminate successfully.
The reduction of the maximum temperature lies between 6.83 K and 7.15 K and
is more significant than in the previous scenario. Also, the average temperature
drops by between 6.83 K and 7.15 K (precisely the same level as the maximum
temperature).

The averagelCPUlfrequency decreases linked to the temperature, for the load-
balanced scenario. On the other hand, the average maximum [CPU] frequency
reaches 3 670 MHz for the load-balanced setup. Thus, it is 90 MHz higher than
for the single machine. This result confirms the observation from Figure
that at least one is always in a boosted state but sometimes not at the
highest boost level.

Astounding is the result of the power consumption. The Turbo boost is
known to increase power consumption significantly. Nevertheless, the average
power consumption decreases. Thus, using three servers creates less extra
power consumption relative to active standby than using one server. While
this result is not intuitive, we still found a possible explanation: The reduced

236

7.4 Summary and Evaluation of Research Questions

temperature leads to a reduced fan activity. We measured standard server
fans and found them to draw around 10 W at the maximum level. Therefore,
we assume that, while the boost when a server consumes more power, the
reduction in required fan-power in the pauses between active phases more than
outweighs this increase.

In total, the heat-aware load balancing leads to better performance metrics,
lower temperatures, and reduced power consumption. Thus, the application for
low-load scenarios has no drawbacks, as long as the other servers are already
available, e.g., for use as hot spares.

7.4 Summary and Evaluation of Research Questions

In this chapter, we presented a solution for heat-aware load balancing. This
solution allows us to maximize the time active [CPUk spend in the state of a
short-term frequency boost.

RQ?7.1a Can[SDNlleverage potential in short-term [CPUl frequency boost
technologies to increase the computing performance of a system?

A heat-aware load balancer must detect the moment, a server falls out of its
boost mode and then move the service to the next server. This load balancing
allows to increase the amount of time, the service spends on boosted servers.
Thereby, the performance of the service can increase.

RQ7.1b How to design an[SDNlbased load-balancing system with such
capabilities?

The solution consists of two main components inside an[SDNlenabled net-
work. A monitoring component watches the states of all workers and collects
information on their capability to go into boost mode. The controller
then uses this information to decide on which server to position the service.
Therefore, the SDNFenabled network carries flow rules that modify packets
so that to a client, multiple servers appear as one server by modifying [Pland
addresses in the packet headers.

RQ7.2 What existing solutions are suitable to implement this approach?

The InfluxDB database can provide significant parts of the monitoring com-
ponents. The Ryu controller is extendable to take over the part of the
decision-making controller. Then, a single script can link both components
together.

237

Chapter 7: Heat-aware and CPU Boost-oriented Server Load Rotation

RQ?7.3a To what extent do different workloads impact the approach (e.g.,
low load and high load)?

When the load is higher, more systems at the same time are active. This
correlation leads to an increase in average and maximum temperature. Hot
systems can not enter a boosted state. Thus, the higher the load, the less time
the systems in total spend in a boosted state.

RQ7.3b Is it possible to extend this effect for more prolonged periods?

For higher loads, the temperature increases over time since the cool-down
periods are too short. Thus, at some time, the systems are no longer able to
enter the boosted state. It is possible to extend the time, where the boost works,
by either increasing the cooling or adding more service hosts. However, for
lower loads, the cool-down periods are sufficient, and the approach would
work indefinitely.

RQ7.3c How is the effect of this solution on power consumption?

In a high-load scenario, the heat-aware load balancing significantly increases
the system’s power consumption. Nevertheless, the relative increase is lower
than the relative performance gain. Surprising results came from the low load
scenario, where heat-aware load balancing not only improves the performance
metrics and decreases the temperature levels but also reduces the total power
consumption. We assume that this reduction originates from reduced fan speed,
outweighing the increase from the use of turbo boost.

238

Chapter 8

Signature-based Database
Ransomware Detection

In today’s era of digital transformation, data has become more critical than
ever before. The amount of data we produce daily is astonishing — every day,
hundreds of millions of people are taking photos, make videos, and exchange
messages. Furthermore, data is not only an asset for users nowadays, However
it has also become the global key component of digitization and transformation
of today’s businesses globally. Enterprises collect data on consumer preferences,
purchases, and trends and use them to optimize their business models and
strategies. Given such trends, the importance of database security is hard to
overestimate — the rapid growth of the data volume stored in the databases of
service providers, in cloud environments and enterprise data centers, as well
as their increasing importance, make them attractive attack targets.

Traditionally, attacks on data have aimed to undermine confidentiality and
authenticity. More recently, however, attacks against the availability of data,
services, and users have become common as well — modern attackers deploy
ransomware, malicious software that encrypts data and holds the decryption
key until the victim pays a ransom.

They still claim the ransom pretending to have encrypted the data. The
financial loss from ransomware is significant — it reached 5 billion USD in 2017,
and predictions see it hit 11.5 billion by 2019 [Mor17]].

While the first ransomware attacks targeted client platforms (information
stored in users’ files), recently, such attacks leaped to server-side databases that
store, accumulate, and process (big) data. In January 2017, an attack called
MongoDB Apocalypse [[Cim17c;/Cim17d]] hit tens of thousands of MongoDB
servers, followed by a second attack wave targeting MySQL servers [[Ziv17]].
Since then, server-side ransomware attacks spread to a wide range of server
technologies, including ElasticSearch [|[Cim17e]], Cassandra [[Cim17a]], Hadoop
and CouchDB [[Cim17b]].

239

Chapter 8: Signature-based Database Ransomuware Detection

The typical attack scenario of server-side ransomware observed so far is as
follows: First, an attacker gains remote privileged access to the database through
the exploitation of configuration vulnerabilities such as the usage of default
passwords H Once connected, they execute commands for data enumeration
(e.g., to learn names of databases and tables hosted), then drop (delete) data
and insert the ransom message with instructions on how to pay the ransom.
Remarkably, in contrast to client-side ransomware, the new attack form wipes
the data without making any plaintext or encrypted copy, e.g., acting as a wiper.
This strategy has, on the one hand, more dramatic implications for the victim,
since the data is unrecoverable even when paying the ransom. On the other
hand, the attack is stealthier without requiring intensive and easily detectable
operations. Such operations include bulk encryption or massive data copying.
Furthermore, the attack requires no backchannel to the attacker needed (e.g.,
for delivering the decryption key or recovered data) that could allow to trace
them back.

While server-side ransomware is more recent, and to this day, less widespread
than client-side ransomware, there are reasons why the situation might change
quite soon. First, enterprises can afford to pay higher ransoms than private
users. As a comparison, the typical ransom amount for regular users lies in the
range of a few hundred dollars. However, businesses can pay much more — for
instance, in a recent attack, a Los Angeles Hospital paid USD 17 000 ransom to
attackers [|[CS16]].

Second, in recent years, researchers and antivirus companies developed coun-
termeasures against client-side ransomware. However, to date, no solutions
exist against ransomware targeting database servers. This lack of protection
makes databases easy attack targets.

Note that there is evidence that even though server-side ransomware is a
wiper, some desperate victims paid the ransom, nonetheless. We identified
that two known ransomware addresses involved in MySQL attacks [Ziv17]]
received 0.6 BTC (equivalent to 3 payments). For the attacks against Mon-
goDB, we identified a total of 160 ransom payments to the addresses collected
in [[Cim17c], totaling in 26.35 BTC. Moreover, the survey reveals that even
production systems lack sufficient protection by strong passwords and sensible
backup strategy: Among 123 surveyed ransom victims, only 11% had recent
backups, and 8% paid the ransom.

!Note that default passwords and other configuration errors are prevalent real-world problems.
For instance, Mirai botnet [[Ant+17]] used similar vulnerabilities to take over more than
600,000 IoT devices arond the globe.

240

The survey also reveals that even production systems lack protection by
strong passwords and sensible backup strategies.

Existing anti-ransomware solutions aim at the detection of client-side ran-
somware only. They follow two dominant strategies: Signature-based detec-
tion of malicious binaries and runtime monitoring and behavioral analysis
for anomaly detection. The first one builds upon the detection of malicious
binaries and is typically used by antivirus vendors, while the second strat-
egy originates from research papers [[Con+16; Con+17} Kol+17b}|Sca+16]]. It
relies on runtime monitoring of file accesses and the detection of malicious
activity based on heuristics, such as access to multiple files, their modification,
and renaming. Unfortunately, both strategies do not apply to the Since in the
server-side ransomware attack scenario, an attacker connects to the database
remotely, there is no malicious binary on the platform that could be detected.
Furthermore, monitoring at the file system level for abnormal activity is not
adequate either since there is no direct correlation between an attacker’s activity
and file access patterns.

Password-based authentication suffers from problems such as weak user-
chosen passwords, password reuse, and phishing. Nonetheless, despite over 30
years of research on better authentication methods [[Atc87]], passwords prevail
due to usability reasons. Most database systems (e.g., MySQL, MongoDB,
ElasticSearch, Cassandra, Hadoop, CouchDB) use password-based authentica-
tion. Hence, we consider secure user authentication as an orthogonal problem
and aim to design a solution that preserves compatibility to systems in use.
Moreover, even given more robust authentication methods, attackers still have
other attack techniques in hand, which enable them to gain privileged access,
such as exploitation of privilege escalation vulnerabilities in MySQL state-
ments [|Gol17]].

Unfortunately, such solutions do not make transparent if they are limited to
the analysis of individual queries and their expressions or do also consider at-
tacks using query sequences. Note that the detection of server-side ransomware
would require an analysis of query sequences. For instance, it would be neces-
sary to detect the combination of the individual queries to list and drop a table,
as well as the insertion of a ransom message (i.e., giving instructions on how to
pay the ransom). Using only rule-based methods to detect ransom messages
will produce a high number of false positives, as content might include trigger
words such as BTC or a Bitcoin address. Moreover, these solutions concentrate
on the analysis of queries within user sessions in order to detect behavioral
anomalies, so malicious queries spread over multiple connections might evade
detection.

241

Chapter 8: Signature-based Database Ransomuware Detection

In this chapter, we aim to improve the security of database systems and
propose Dynamic Identification of Malicious Query Sequences (DIMAQS)), a
signature-based intrusion detection tool that can detect sequences of malicious
queries. Generally, the tool is not limited to ransomware detection. It can
potentially be applied to the detection of other attack classes as long as they
rely on malicious sequences of queries (e.g., advanced SQL injections aiming
at removing code execution [[Dzu(09]]). However, motivated by the rise of
server-side ransomware, we apply it to this problem. We make the following
contributions:

We provide the design and implementation of DIMAQS)] a framework that
can detect sequences of malicious queries. To keep track of queries and to
perform detection, our solution leverages to model the series of events
used in attacks and to match them to known malicious patterns. Our system de-
sign exhibits several novel techniques (dynamic creation of colors, merging of
tokens, and token expiration) to reduce the complexity of the system represen-
tation and achieve better performance. Our framework performs system-wide
monitoring and, as such, can detect malicious sequences injected through sev-
eral user sessions and interleaved with benign queries. This quite exciting
feature eliminates the most apparent evasion strategies. Our implementation
targets MySQL, one of the most popular database management systems, and
imposes only a very moderate performance overhead under 5%. We realize
our solution in the form of a MySQL plugin that is easily installable on existing
MySQL servers, thus preserving compatibility with legacy software.

We apply DIMAQS] to the challenging problem of server-side ransomware.
To make detection of such attacks possible, we analyze previously observed
attacks and extract their distinctive properties that provide a basis for attack
detection. We then evaluate the effectiveness and practicality of our solution
using three data sets: Malicious data set recorded by us, and benign query sets
from a publication management system and a MediaWiki server. The results
demonstrate the high efficiency of our approach with no false negatives or false
positives.

Upon attack detection, our tool makes a temporary backup of information
erased by an attacker and notifies a database administrator. If true positive, an
administrator can restore all the data without paying a ransom to an attacker.
If false positives, backup is simply deleted after some pre-defined amount of
time. We evaluate the effectiveness of our tool and report promising results.

242

8.1 Approach

Research Questions

In this chapter, we tackle several research questions. All of the following
research questions are part of the meta-research question MRQ 8: How to apply
signature-based intrusion detection to multi-query database ransomware attacks? The
numbering of these research questions maps to the sections of this chapter. If a
section deals with more than one research question, those questions have their
number appended by ascending Latin letters.

RQ 8.1a How to model multi-query database ransomware attacks?

RQ 8.1b Which components does a multi-query database [DPS|require and
how do they interact?

RQ 8.2 How to integrate a prototype multi-query database[IDPSlinto a MySQL
server?

RQ 8.3 How does the multi-query database [DPS perform in terms of security
and performance?

Chapter Structure

The remainder of this chapter is structured as follows. In Section[8.1} we present
the system design of DIMAQS] In Section|[8.2} we reveal the details of our proto-
type implementation. Next, Section [8.3|discusses prototype evaluation results.
In this section, we discuss the evaluation results. Section [8.4|summarizes the
section and answers the previously stated research questions.

8.1 Approach

[DIMAQYS] is the first system that aims at the detection of multi-query ran-
somware attacks in databases. In a nutshell, it represents an intrusion detection
system that leverages knowledge about the attack pattern (or signature) and
performs real-time system monitoring and pattern matching to detect intrusion
attempts. For pattern matching, we leverage a to encode the system states
and their transitions inside the color information to detect when the system
transitions to the state associated with the attack description.

The usage of PNk and is a known technique for pattern matching, and
their application to intrusion detection problems was the topic in previous
works [[HP03} KS94]]. However, typical application scenarios of [CPNlbased

243

Chapter 8: Signature-based Database Ransomuware Detection

intrusion detection systems target other environments, e.g., networks [[VHO02]]
and operating systems [[Axe00]].

The application of PNk for intrusion detection in databases was only con-
sidered by Hu et al. [HP03]]. They aimed at the detection of anomalies of any
sort, not specific to ransomware. However, they use uncolored PNk and leverage
them to model benign states of a database system rather than attack states.
Hence, their solution requires a training phase to gain knowledge about the
underlying data structure as well as about benign data update patterns. In
contrast, our system does not require similar training. Moreover, their work
is theoretical. Hence, they did not provide any implementation or evaluation
results with which to compare.

In our work, we aim to fill the gap and address the problem of ransomware
attacks targeting databases. As such, we investigate the applicability of
for ransomware attack detection in databases. We observe that databases are
complex systems and modeling their state regarding dependency relationships
and update patterns, as, e.g., done in [[HP03]], may lead to overly complex
system representations (for large and complex databases) and non-trivial over-
head. Hence, we tackle the problem differently and choose to model malicious
query sequences — an approach which results in a much simpler system rep-
resentation, and independence from the structure of the underlying data and
update patterns.

Our approach is system-centric and allows for the detection of attacks that
span over multiple sessions or multiple user accounts. We also develop several
novel techniques that even further to simplify the system representation, namely
(i) dynamic color creation (creating an infinite color space), (ii) token merging
and duplication, and (iii) token expiration making the use of [CPNl practical.

The remaining part of this section is structured as follows: We first describe
a typical ransomware attack scenario (Section . Next, we present our
adversary model (Section[8.1.2)), followed by the system architecture descrip-
tion (Section[8.1.3)). Finally, we show the interaction of the system components
when handling incoming queries (Section[8.1.4)).

8.1.1 Attack Scenario

Our attack scenario originates from an analysis of a large-scale ransomware
attack targeting MySQL servers that took place in February 2017 [[Ziv17]]. The
attacker performs the attack remotely by connecting to the database using a
[TCP| connection.

Once connected, an attacker gains root access through, e.g., brute-forcing the
‘root’ password of the database. Next, they enumerate the data in the database

244

8.1 Approach

through the retrieval of the list of the databases present. After that, the attacker
creates a new table with an arbitrary name (e.g., the table with the name
‘WARNING’), either in a new database (e.g., named ‘PLEASE_READ") or in
an already existing database. This table includes a ransom message containing
a contact e-mail address as well as payment instructions to a bitcoin address.
Finally, the attacker deletes (drops) the databases on the server and disconnects
from: it.

The scenario above describes the attack steps recorded in real-world attacks.
Additionally, we accept that attack steps can deviate from this scenario: For
instance, an attacker could first perform the database deletion and only after
that insert the ransom message. Also, attackers may use arbitrary names
for databases and tables and arbitrary patterns for the ransom message. We,
however, assume that the attacker demands payments in cryptocurrency (such
as Bitcoin or Ethereum) since they provide at least some level of anonymity
in contrast to more traditional payment methods that involve banksﬂ We also
assume that an attacker continues to wipe data and does not aim to keep any
data copies, since this would slow down the attack significantly. Also, it would
require storage on the attacker’s side and a communication channel between
the victim and the attacker, which demands additional resources and increases
the chances of exposure. We also assume an attacker does not perform on-site
database encryption since we did not identify any standard SQL commands
that allow him to do so.

8.1.2 Adversary Model

We make the following assumptions about the goal and the capabilities of
the attacker. The attacker’s goal is to destroy the available data and claim the
ransom. We assume the remote attacker who is accessing the server over the
Internet has no physical access to it. The software running on the server is
trusted, i.e., the attacker has no malicious software installed on the system.
However, the attacker has full access to the network and can communicate with
the Database Management System (DBMS) without any restrictions. Further-
more, we assume an attacker with administrator-level privileges to the
This assumption often becomes true in practice since the problem of weak or
reused passwords [IWS04] is well known and not satisfactory solved for over
decades.

For instance, findings show that most of the MySQL servers had no root
password set due to using an insecure default configuration [[Oral8]]. Alterna-

?Since banks are obliged to follow "know your customer" policy.

245

Chapter 8: Signature-based Database Ransomuware Detection

tively, an attacker might exploit a security vulnerability like [|[Gol17]] to gain
administrator privileges for the database.

We, however, do not assume administrator privileges of the attacker to the
operating system. Also, we leave attacks are out of our attacker model
since an attacker with administrator privileges to [DBMS| can always cause a
denial of service, e.g., through the creation of fake databases or tables and
exhausting the DBMS's memory. The attacker wants to perform a hit-and-run
attack without considering other services and ways of communication.

8.1.3 System Architecture

Figure [8.1| shows the [DIMAQS| system architecture. [DIMAQS| comprises six
components: (i) monitoring, (ii) classifier, (iii) security policy, (iv) incident
resolution, (v) notifier, (vi) query rewriter, and (vii) controller. The monitoring
and query rewriter components use the query parser embedded in the database
server. Hence, the figure shows them as belonging to both,[DIMAQS|plugin and
the database server. In the following, we describe the role of every component
in more detail.

8.1.3.1 Monitoring

The monitoring component monitors all incoming queries for potentially ma-
licious query sequences. Note that this module monitors all queries arriving
through different connections, not specific to user sessions. Notifications on
the occurrence of incoming queries result from the database server’s audit
functionality.

8.1.3.2 Classifier

The classifier component processes the incoming queries and produces a verdict
whether a query is benign or malicious. For the classification, [DIMAQS uses
a to which we added multiple extensions. The token colors allow us to
attach runtime information to the tokens, such as timestamps, table names, and
modified cell values. Since such token colors are dynamic and unbounded,
conventional PNk would be unable to represent all the possible states. This
information also provides additional information to the[DIMAQS|administrator
in the case of an incident’]

*Note that[DIMAQS|administrator and database administrator are different entities

246

RQ
8.1b

8.1 Approach

777

'Database !
1 Server 1
3 1) 3 1
| ! |
“| Monitoring [------------cf------------y Query
\ Rewriter \
3 A (10) A) :
‘ 7 l
| (11) (‘
- © |
: Controller Incident i
1 5 < Resolution |
| A (9) 3
| (3) (5) (8) |
: Y Y :
| Security B (4) . . i
3 Policy < Classifier Notifier |

Plugin

Figure 8.1: System architecture of DIMAQS| Dark grey boxes are components
provided by the database, light grey boxes are components that in-
terface between[DIMAQS|and the database, and white boxes belong

to DIMAQS] itself.

Extensions to [CPNE

For our purposes, we extend with three new features:

The first is the dynamic creation of colors for storing information inside the
tokens. This extension extends the space of possible token colors to infinity
and allows us to encode any serialized information inside of a token.

The second extension is the ability to merge tokens that are identical except for
their timestamps. This extension improves performance and does not impede
classification accuracy.

The third extension allows for token expiration. Since each place in the

247

Chapter 8: Signature-based Database Ransomuware Detection

can have timeout information, this feature allows us to limit the time
window of analyzed query sequences. It is highly unlikely that a malicious
query sequence spawns over a long period (e.g., multiple days), since this
increases the risk of detection and complicates the attack (the database can
change considerably over time). Abundant or absent timeouts can additionally
result in a higher false-positive rate since, eventually, all transitions might be
triggered by unrelated queries. The timeout threshold is, therefore, a security
parameter, which enables a trade-off between effectiveness and false alerts. In
real-world attacks observed so far, attackers did not stretch malicious query
sequences over long periods. Hence, even short timeouts (1-2 minutes) would
work well against them. Attackers might increase the attack time window
to avoid detection. However, the longer they stay connected, the higher the
burden for them (since the attacks are not generally automated), and the higher
the risk of being uncovered.

8.1.3.3 Security Policy

The security policy component holds information about patterns of malicious
query sequences (or attack signatures). The configuration represents it in
our system — it describes the[CPN['s places, place actions, transitions, transition
actions, transition conditions, and arcs.

All places and transitions are named, and the arcs are each weighted with a
value of one token. Each place can be assigned several place actions executed
upon[CPNltransitions to the corresponding place. Transitions are used to check
for the execution of a (next) step in a malicious query sequence. They become
active when every source place contains at least one token. Each transition is

assigned one transition action, representing conditions for incoming queries.

For instance, they may specify the query type (e.g., query that lists tables)
and the actual content of the query (such as a table name or a typical ransom
message).

A transition may also have an arbitrary number of transition conditions that
are used to evaluate the token data from the source place against the query
values. Our policy includes only one transition condition, ensuring ransom
message insertion into a previously created or modified table.

We depict the CPN that was tailored to the observed attacks configured
according to our security policy in Figure[8.2} Table[8.I]shows the place actions
executed after putting a token on the place.

Transitions fire when an action occurs that is specified as malicious by the
security policy component. Note, that no single action alone is enough to transit
the[CPNJto the "attack detected" state. Typically, the sequence of actions would

248

RQ
8.1a

8.1 Approach

Createpg Tabcreated

Initialy Listpp Delpp

MSgInserted

Initialsy

Initials Notifyadmin

()

LiStCOl COlListed MOdTab ObjDel Always

Figure 8.2: The used to classify database transactions. All arcs are
weighted with a value of one token.
States: Initial,: initial states; List,: objects listed, T'abcyeqted: table
created; Objp,;: object (database or table) deleted; M SG yserted:
ransom message inserted; Noti fysdmin: notification sent
Transitions: Listpp: list databases; Listr.p: list tables; Listcy
list columns; Createrqpe: create table; Dropr,u.: drop table;
Modi fypape: modify table; Insertyss,: insert ransom message

Place Description
DBristed Rewriting
Tabyisted Rewriting
Colr;isted Rewriting
TabCreated Trigger creation
Obj pe Create backup

Notifyagmin Create notification

Table 8.1: Configured actions for the places inside the[CPNlin Figure(8.2l When
a token reaches a place, the specified action can be executed.

249

Chapter 8: Signature-based Database Ransomuware Detection

be required, and their execution requires a specific order (defined by the
configuration) to reach the state that corresponds to attack detection.

The policy is easily adaptable to include new attack signatures by modifying
the While reconfiguration is a manual process, it is not cumbersome and
can be accomplished in a reasonable amount of timeﬁ

8.1.3.4 Incident Resolution

When an event in the classifier component issues an action, an action must
be carried out by the incident resolution module. Possible actions are “cre-
ate backup,” “rewriting,” and “create notification.” The incident resolution
performs the rewriting of malicious queries as well as creates backups.

Create Backup Action

Whenever the system detects a potential attack, the incident component will
move the database, or the table dropped by an attacker to a safe place instead of
deleting it. The backup copy is invisible to users (and, hence, from the attacker).
Thus, an attacker cannot drop it again or even identify that such a backup exists.
The incident resolution uses a “rewriting” action to hide backed-up tables and
databases from users. While performing such a move, the incident resolution
renames the protected tables to avoid name collisions.

Rewriting Action
Rewriting actions rewrite queries to exclude tables and databases created by
[DIMAQS| The query rewriter component performs these actions.

Notification action

Notification actions are used by the incident resolution component whenever
there is a need to notify an administrator about a detected attack. The Notifier
component performs this notification, as described below.

8.1.3.5 Notifier

The notifier component informs about security incidents by sending an email
to the DIMAQS| administrator. The administrator information (e.g., email
address) is defined in a configuration file. The gathered information relevant to

*Our estimate is 30 min.

250

8.1 Approach

the incident is attached to the notification so that the administrator can evaluate
the incident and respond accordingly (e.g., restore the deleted table).

8.1.3.6 Query Rewriter

The query rewriter component rewrites queries to exclude tables and databases
created by [DIMAQS| from query results. For a ‘rewriting” action, the query
rewriter receives the name of the table and, if applicable, the name of the
database from the incident resolution component. If the queries are nested,
the query rewriter extracts them into sub-queries, rewriting each sub-query
separately. For instance, a query dropping a table will be rewritten to move the
table to safe storage space. This operation happens without any indication to
the attacker. Additionally, it rewrites statements that list tables and databases
to exclude the hidden information from query results.

8.1.3.7 Controller

The controller component connects all other DIMAQS|system segments. It is
the central element that orchestrates the processing of incoming queries by
other components, e.g., through the invocation of the classifier component to
classify the query as malicious or benign, or the incident resolution component
to initiate incident resolution upon attack detection.

8.1.4 Component Interaction

Figure 8.1|depicts the interaction between the components during query pro-
cessing. The database server first receives the query and then notifies the
monitoring module (1). If the monitoring module raises an alert for a poten-
tially malicious query type, the controller is notified (2). The controller then
forwards the suspicious query to the classifier (3) for evaluation. The classifier
is configured using the security policy from the security policy (4) and returns
the classification result to the controller (5). There are two possible outcomes:
the query’s classification is either benign or malicious. In the former case, the
controller terminates its actions, and the server executes the query as-is (10).
In the latter case, the query is considered malicious, and the controller calls the
incident resolution (6), which in turn backs up dropped tables and rewrites
the malicious query using the query rewriter (7). It then invokes the notifier
to inform the administrator about an incident (8) and presents the supplied
information. The controller then receives the rewritten “disarmed” query from
the incident resolution (9). The database server then executes the query (10).

251

Chapter 8: Signature-based Database Ransomuware Detection

The controller informs the monitoring component when additional objects need
observation (11), e.g., when a query creates new tables.

8.2 Implementation

[DIMAQS]s design is generic and applies to different database technologies. For
the sake of illustration, we have chosen to prototype it for MySQL servers — our
implementation is realized as a MySQL plugin compatible with MySQL server
versions 5.7.x. To function, DIMAQS]| requires our own [PNInet implementation
library libPetri as well as the mysqlservices library provided by the MySQL
server. We chose the C++11 language for DIMAQS] since it is the default
language for MySQL plugins. [DIMAQS] consists of 4 908 Lines of Code (LoC),
while libPetri results in 1008 LoCl

8.2.1 Plugin Integration

The plugin is loaded during MySQL server startup and registers itself as an
auditing plugin. The MySQL server plugin interface provides multiple notifi-
cations [[Oral8]] for the following useful events:

e MYSQL_AUDIT_CONNECTION_CLASS,

e MYSQL_AUDIT_CONNECTION_CONNECT,

e MYSQL_AUDIT_CONNECTION_DISCONNECT,
e MYSQL_AUDIT_PARSE_CLASS, ”

e MYSQL_AUDIT_PARSE_POSTPARSE.

Notifications of the MYSQL_AUDIT_PARSE_CLASS class provide an event of a
single to-be-executed query. Queries, however, could also be nested.

Per default, the MySQL server does not provide any event that returns the
atomic values of database elements affected by INSERT, UPDATE, and DELETE
queries. These queries are typical for the use in attacks like mimicry, e.g., for
the insertion of ransom messages. To allow us to access the atomic values, we
create triggers. We generate “before INSERT/UPDATE” triggers for every table.
In these triggers, we execute a user-defined function. This function forwards
the values affected by the queries to the controller for evaluation.

As detailed in the MySQL trigger syntax [[Oral8]], a trigger becomes associ-
ated with a table named tbl_name. This name must refer to a permanent table,
which means that a trigger does not apply to a temporary table or a view. This
limitation does not affect our solution since it is unlikely that an attacker would
attack data stored in temporary tables.

252

RQ
8.2

8.2 Implementation

8.2.2 Component Integration

In the following, we detail the implementation of DIMAQS modules.

Monitoring

Additional triggers are required to access information that is not transpar-
ent to the DIMAQS plugin when using MySQL's audit features. The trigger
creation occurs when loading the plugin, and existing triggers are recreated
after server startup since the database structure might have changed. Trig-
ger creation within so-called “stored procedures” or “stored functions,” the
conventional concepts supported by the MySQL server is not possible. Due
to this limitation, the creation must be within the plugin code. The function
dimags_plugin_init () performs the creation of the additional triggers and
runs directly after the initialization of the server and before entering the lis-
tening state. dimags_plugin_init () creates a trigger for every non-virtual
database. Virtual databases are databases that contain read-only views rather
than base tables and have no database files associated with them. Hence, the
protection of virtual databases is not necessary.

The INSERT and UPDATE triggers call eval_value (). Several values are passed
to that function, namely (i) schema name, (ii) table name, and (iii) new column
values. Using this structure, we can identify inserted /updated values.

Classifier

The classifier is implemented using our library libPetri. libPetri is a C++ library
implementing the functionality of colored Petri nets. It includes dynamic color-
ing, token timeout, and token merging features mentioned in Section[8.1.3.2}
Since libPetri has been developed explicitly for DIMAQS) it carries no additional
feature overhead. Thus, libPetri contains all necessary functionality within
1008 of LoC.

libPetri keeps track of all active transitions. Since all our arcs in the classifier
are weighted with the value one as seen in Figure active transitions have
tokens on all input places. If the to-be-classified query matches the action
attributed to an active transition that transition fires. When transferring a token
to a place with an associated action, that action executes with the corresponding
parameters. Until completion of these actions, the classifier does not accept
additional queries.

253

Chapter 8: Signature-based Database Ransomuware Detection

Security Policy

The security policy is a database that contains tables holding the information
about the actions that can fire transitions (e.g., the regular expression for de-
tecting the ransom message) and the places with their associated actions. The
classifier processes this information on startup and during classification.

Incident Resolution

The incident resolution backs up dropped databases and deleted values. The
renaming of databases is not trivial due to MySQL limitations. MySQL
added a command to carry out a database renaming called ‘RENAME DATABASE
<database_name>’ However, this command was only active through a
few minor releases before its discontinuation. The simplest way to re-
name a database is to move its tables to another database. Each moved
table requires the recreation of the affected triggers. Table renaming fol-
lows the following schema: “<storagespace>.<object prefix>_<dbname>_-
<tablename>_<timestamp>" where storagespace being a preconfigured vari-
able of DIMAQS| The function renameTable() performs this renaming. If a
database drop occurs, renameDatabase () calls the renameTable() for every
table.

For backup actions, a 'DROP DATABASE <db_name>" does not require
rewriting. However, before executing, renameTable or renameDatabase is executed
to back up the database tables.

Notifier
The notifier sends an email with all transmitted information about the suspected

attack to the administrator. The administrator’s address can be configured
inside the database or in a configuration file.

Query Rewriter
The rewriter component rewrites a query by adding a WHERE/AND condition

to hide sensitive information or rewrites it entirely, e.g., for backup operations.
Table[8.2)lists the commands that require rewriting.

254

%Sbewtp, PIT LON VINFHDS LOF[90
YSbewp, 31T LON VINFHDS LDA[IO
%Sbewp, 31T LON VINIHOS LDA[IO
J%Sbewp, 31T LON VINTHOS LDA[dO
%sSbewnp, 3317 LON VINHHDS LDH[40O
./ %Sbewrp/o,, G317 LON HNVN 3114
,%Sbewtp, I17 LON 9d

,%Sbewp, 31T LON HNVN VINFHDS
,%Sbewp, 31T LON HNVN VINFHDS
,%Sbewp, 31T LON VINFHOS 314VL
%sSbewp, 31T LON VINFHDS d14V.L
%sSbewp/, 1T LON HNVN 3111

8.2 Implementation

,%Sbewp, 1T LON NVN VINIHOS

o[qey Aq Areuruunssyrem Y20 9[qey ewayds aouewrioydd WO LD TS
9[qey Aq Arewwunssyrem o1 9[qey ewayds aouewroydd WO LD THS
adesn"xopur Aq Areuwruuns”sjrem” Ol a[qe} eweyds_aoueurioydd IO LA T1AS
sa[pueya7qe) ewayds souewrofrad INOMA IDATAS

ad Ay Aq Teqor3~Areuruunss3oalqoewayds eouewriojrad INON IDHTHS
saoue)SUT oYy ewayds~soueurrojrod IO IDATAS

qp-{bsAw WO LOATIS

S9[qe) eWLaDS UoeUuLIojur INOW IDATIS

BJRWBDS BUISYDS UOeuLIoful JNOYA IDATAS

suonnred-ewayps uonewIopur NON LI 14S

a8esn uwnjoo~ Aoy eurayds uoneuLIofur NOYA IDATAS

So[y eWRYOS uoneULIONUl O LOHTIS

SUWN[0d WSS~ uonewtIojut NONA IDATHS

,%Sbewnp, 1T LON owreu d[qerre), SHTIVIIVA MOHS
papasu jou SunrImar SNINN'10D MOHS

%Sbewp, $IT LON 28311, SYADONIL MOHS
poposu jou Sugumar SHT19V.L MOHS

\%sbewtp, 31T LON ,osedqeieq, SHSVAVIVA MOHS
o[qrssod Sunumar ou SNION1d MOHS

ANV | FHM puewwo)

Table 8.2: Rewriting WHERE/AND performed by DIMAQS]

255

Chapter 8: Signature-based Database Ransomuware Detection

Controller

The controller is implemented using the visitor design pattern. This visitor
extracts the nested statements from inside to outside. It then forwards each
extracted query to the classifier.

8.3 Evaluation

In this section, we describe our test setup and evaluate our implementation
with regards to effectiveness and performance. We conclude by discussing
security considerations.

8.3.1 Test Setup

For the evaluation, we first define the used testbed and data sets.

8.3.1.1 Testbed

Unit Value
Product HP ProLiant DL360 Gen9
CPU] Intel Xeon E5-2640 v3

Default[CPUl frequency 2.60 GHz
Max [CPUl frequency 3.40 GHz
Min [CPUl frequency 1.20 GHz

Cores (Threads) 8 (16)

Cache (L1/L2/L3) 512 KB/2048 KB/20480 KB

Memory size 32GB (2 x 16 GB) DDR4 Dual Channel
Memory frequency 1.866 GHz

Memory Connection Dual Channel

Storage Model HP VKO0800GEFJK 800 GB SSD
Storage Connection SATA III (6GBit/s)

Operating System Ubuntu 16.04.4 LTS (x86-64)

Kernel 4.4.0-121

Table 8.3: The server used for evaluating DIMAQS

To execute performance and security tests, we use the following setup. For
the database server, we use an HPE ProLiant DL360 Gen9 server. The server

256

RQ
8.3

8.3 Evaluation

is equipped with a single 8-core Haswell generation Xeon E5-2640 CPU with
a base clock of 2.60 GHz and a turbo clock of 3,40 GHz and packaged with a
total of 20 MB of cache. Simultaneous multithreading is enabled, allowing the
execution of 16 threads in parallel. Table|8.3|gives additional information. To
provide a DBMS to evaluate against, we install and run MySQL server 5.7.22
on this server.

All tests are executed directly on this server. Thus, the network is not a
limiting factor for the benchmarks. Due to the performance of the server, we
expect the resources consumed by the client running in parallel to the server to
be negligible. Their performance influence is, therefore, not evaluated in this
work.

8.3.1.2 Data Sets

We employ three data sets during our evaluation. The first set (malicious set)
includes malicious query sequences, which we generated ourselves using infor-
mation about real-world attacks collected at [Ziv17]]. Our resulting query set
contains query sequence permutations with an expected malicious classifica-
tion, as well as their possible permutations (since an attacker may execute them
in arbitrary order). The full test set contains 13485 tests. Each test contains
nine queries. The first five queries of each test are to set up two databases and a
table at the beginning of the experiment and remove them at the end. Relevant
to the detection are four queries: (i) listing all databases, (ii) creating a table,
(iii) inserting a ransom message into this table, and (iv) dropping a table or
database. Therefore, the set performs 53 940 queries in total.

The second set (Bibspace set) is from the publication management system
Bibspace [Ryg18]], which was gathered over 40 days from the 13t of April 2018
to the 22" of May 2018 and contained a total of 52 085 queries. Among them,
24430 are CREATE_TABLE_IF_NOT_EXISTS queries, 8 357 INSERT queries, and
38 DROP_TABLE_IF_EXISTS queries.

The third query set (MediaWiki set) is from a locally run MediaWiki [Med18]|
with the Semantic MediaWiki [lsem18]] plugin enabled, collected for 50 days from
the 3" of April 2018 to the 22nd of May 2018. Containing 2 514 764 queries, it in-
cludes 69 261 INSERT statements, 29 830 CREATE_TEMPORARY_TABLE statements,
and 29797 DROP_TEMPORARY_TABLE statements.

8.3.2 Effectiveness

In the following, we evaluate the precision of the classifier module. Thus, we
evaluate whether a wrongful classification of benign queries as malicious (false

257

Chapter 8: Signature-based Database Ransomuware Detection

positives) or malicious query sequences as benign (false negatives) occurs.

8.3.2.1 Security Policy

The execution policy for the classifier is as described in Section Our
policy is quite generic in the sense that we do not look for specific table or
database names, but instead detect the removal or renaming of any table or
database. However, we are looking for a specific pattern of the ransom message.
We search for the occurrence of a BTC or Bitcoin string inside the inserted
message since attackers until now requested ransom in Bitcoinﬂ We used
the regular expression "(\d* [.1) {0, 1}\d+\s*(BTC|Bitcoin)’ (case insensi-
tive). The matching expressions are, e.g., 5 BIC|Bitcoin, .5 BTC|Bitcoin, 20.1
btc|Bitcoin.

8.3.2.2 False Negatives

To test for false negatives, we used the attack set described in Section
After processing all the queries from the data set by our [CPN] we achieved a
100% attack detection rate and received no false-negative result. This result
confirms that our [CPNl correctly models each attack from our malicious data
set.

8.3.2.3 False Positives

To test for false positives, we choose to use the Bibspace set and the MediaWiki
set. The sets contain a total of 2566 849 benign queries. The classifier performs
the classification of every set. Afterward, the classifier state shows, if DIMAQS|
wrongfully detected attacks and how many false detections occurred. If tokens
reach place N in the classifier, their number represents raised alerts. For this
evaluation, we disable the token timeout to increase the potential for false
positives.

Table 8.4 shows the population of the after running all the queries
from the Bibspace set through the classifier. No token has reached the state IV,
which would have triggered an alert to the administrator. Next, the classifier
processed the queries of the MediaWiki set. Table 8.4/ also shows the state of
the after classification. Again, no token has reached the state NV, and no
ransom attack was detected, which is a favorable result.

>Our policy can be trivially extended to detect ransom messages requesting payments in other
cryptocurrencies.

258

8.3 Evaluation

Position Query Set
Bibspace MediaWiki

Initialy 1 1
Initialsy 1 1
Initials 1 1
DBListed 2 7
TabListed 2 5
Colristed 0 1
TabCreated 24 0
Obj€CtDeleted 0 0
NOtifyAdmin 0 0

Table 8.4: [CPNJstate after execution of query sets.

8.3.3 Performance Evaluation

To evaluate the performance of the DIMAQS] plugin, we used two data sets:
The MediaWiki set described in Section and the synthetic benchmark sys-
bench [Kop18]]. We use sysbench 0.4.12 with 16 active threads. We performed
three performance benchmarks: (i) without the plugin as a baseline measure,
(ii) operating on a newly initialized [PN] and (iii) with a fully occupied PNl
initialized with tokens in each state. The sysbench benchmarks were run for
60 seconds per iteration, while the MediaWiki set was classified entirely every
time. We performed each benchmark for over 50 iterations. Table |8.5(shows
the resulting measurements (database transactions per second). We report
average values with standard deviation and confidence intervals (5% quantile
calculated using an inversed Student’s t-distribution). Figure 8.3 visualizes
these results.

The results show that the usage of the DIMAQS| plugin results in perfor-
mance degradation of about 5 % for sysbench. There is no substantial differ-
ence whether the is only initialized or entirely populated (overlapping
confidence intervals). This marginal difference suggests that the overhead is
not a result of querying the but from analyzing and parsing the queries
themselves. For the MediaWiki set, performance degradation is about 2% for the
initialized and 4% for an entirely populated net. This time, the influence
of the set population has a more significant impact.

Our proof-of-concept prototype is not yet optimized for performance. Neither
[DIMAQS| nor libPetri has received extensive profiling for potential bottlenecks.

259

Chapter 8: Signature-based Database Ransomuware Detection

Test Transactions relative to
per second baseline [%]

mean stdev conf. int mean stdev conf. int.
sysbench
disabled 9245 28 +9 100.0 0.3 +0.1
initialized 8806 30 +11 95.3 0.3 +0.1
full 8823 19 +7 95.4 0.2 +0.0
MediaWiki
disabled 2008 5 +2 100 0.2 +0.1
initialize 1971 7 +2 98.2 0.3 +0.1
full 1930 6 +13 96.1 2.9 +0.3

Table 8.5: Performance without the plugin (disabled), with the enabled plugin
(initialized), and with tokens in each[PN]state (full).

Also, no compiler optimizations were enabled. Thus, performance improve-
ments are likely possible.

8.3.4 Security Considerations

In the following, we discuss two potential attack scenarios against DIMAQS]|
itself and show how our system defends itself against them.

Disabling

An attacker may try to disable[DIMAQS|to avoid detection. However, such a
scenario would not be successful since administrative privileges to the database
are insufficient to perform this task. One would need to have administrative
privileges to the file system to manipulate corresponding config files. As an
additional burden, it is also non-trivial for an attacker to detect that the system
runs under DIMAQS]| observation because the query rewriter component of
[DIMAQS]| rewrites the queries in such a way that it excludes information about

[DIMAQS] from the results.

[DIMAQS] Trigger Removal

Another possible attack vector is specific to the MySQL implementation, which
uses triggers. An attacker may attempt to delete triggers, which are used to
deliver additional information to the DIMAQS plugin.

260

8.4 Summary and Evaluation of Research Questions

1 1

100 | 00 00 98.2 N

o\o 80 [|
=
B

's 60 [|
5D
5
2
<

= 40 |

20 B sysbench | |

m MediaWiki
0
disabled initialized all active
plugin state

Figure 8.3: Performance influence of [DIMAQS for sysbench and MediaWiki.
Values are normalized to the respective value for the disabled plu-
gin.

To defend against this attack vector, [DIMAQS| detects the removal of
[DIMAQS}specific triggers. Their absence becomes obvious whenever the plu-
gin does not receive information about atomic values affected by the queries.

Upon detection, DIMAQS]| generates a notification for the[DIMAQS|administra-
tor and backups all the databases and tables affected by subsequent queries.

8.4 Summary and Evaluation of Research Questions
In this chapter, we presented a database [DPS against ransomware attacks
consisting of multiple queries. We implemented this solution for MySQL

servers and evaluated the resulting prototype regarding performance and
security.

261

Chapter 8: Signature-based Database Ransomuware Detection

RQ 8.1a How to model multi-query database ransomware attacks?

We found that Colored Petri Nets (CPNk) are a suitable formalism to model
database ransomware that uses multiple queries. Regular Petri Nets (PNk) are
sufficient to model the attacks themselves to detect if an attack occurs. We were
able to encode information regarding the course of the attack, by leveraging
the token colors from as an information carrier. We use places inside
the to model the state of the system and the progress of the attacker.
Transactions model every step that brings an attacker closer to his goal.

RQ 8.1b Which components does a multi-query database [DPSrequire and
how do they interact?

Our solution Dynamic Identification of Malicious Query Sequences
(DIMAQS)) consists of multiple components. We require a controller, a classi-
fier with a security policy — which includes the aforementioned and an
incident resolution that uses a notifier and a query rewriter. An additional mon-
itoring component informs the system about incoming queries ready for pro-
cessing. While the monitoring component and the query rewriter are MySQL
specific, the remaining components are generalized.

RQ 8.2 How to integrate a prototype multi-query database [DPS| into a
MySQL server?

The plugin integrates by registering as an auditing plugin upon the MySQL
server’s star-up for multiple events. To access additional atomic informa-
tion that is not provided by the plugin interface, DIMAQS| uses “before
INSERT/UPDATE” triggers for every table. When a query adds/removes tables,

[DIMAQS|adapts its trigger sets.

RQ 8.3 How does the multi-query database [DPS perform in terms of secu-
rity and performance?

We tested DIMAQS| with two benign production datasets and a malicious
dataset constructed from all permutation of known MySQL ransom attacks.
[DIMAQS]| processed the malicious set without any false negatives and benign
sets without false positives. We then evaluated [DIMAQSf performance using

262

8.4 Summary and Evaluation of Research Questions

a benign dataset and a synthetic benchmark. The results show that DIMAQS|
only has a small performance impact of — in the worst case — below 5%. We
also discussed potential security issues and how we hardened [DIMAQS|against
these vulnerabilities. Thus,[DIMAQS]is a ready-to-use plugin with only a small
performance impact that reliably performs its task as a database

263

Chapter 9

Conclusion

In this chapter, we conclude this thesis and provide a summary of its contribu-
tions. It also discusses the benefits of our work and gives an overview of the
potential for future work.

9.1 Summary

This thesis addresses two main issues: (i) Many security functions do not in-
teract well with the surrounding infrastructure. This absence of integration leads

to shortcomings regarding performance and flexibility. We address this issue by

developing three SDNtbased algorithms that bypass for packets that are

not relevant to the or that can not be malicious at the current state of

attack. Furthermore, we design a flood using and NFV] that

increases performance compared to existing solutions and eliminates existing

statefulness and scaling issues. (ii) [SSECk design is mainly static, and [SSECk do

not adapt to the surrounding circumstances and the incoming traffic mix. For this is-
sue, we first present the general idea of attack-aware [SSEC] reordering and then

perform performance measurements and modeling for a better understanding

of SSECIbehavior. With this knowledge, we then create a framework to realize

our idea. Besides the two main issues, we also tackle two additional problems:
(iii) Cloud architectures rarely use the performance potential from short term
frequency boosting. We design an approach for heat-aware load balancing that
aims at keeping active to address this issue. (iv) Ransomware attacks —
attacks that erase or encrypt data and blackmail the user into paying for the restoration

— against databases become more complex and contain a series of queries. So far, no
matching signature-based security solutions exist. We address this final issue by de-
signing a signature-based database that can detect multi-query database
ransomware. Specifically, the primary contributions presented in this thesis
are:

265

Chapter 9: Conclusion

Contribution 1: Dynamic Network Intrusion Detection System
Bypassing

This thesis presents an SDNtbased approach to bypass network [DPS|for pack-
ets that are unlikely to contain attacks that the could detect. We, there-
fore, propose two dynamic[SDNlbased algorithms (one blacklisting and one
whitelisting approach) and, for comparison, a solution using static flows
for selective filtering. The blacklisting algorithm and the selective filtering ap-
proach require knowledge about the and its rules, while the whitelisting
approach does not require yet benefits from this knowledge.

We present an evaluation environment to assess our approaches and test them
for constant load and in an overload scenario as well as when using hardware
and software switches. All approaches increase the performance compared to a
non-augmented inline [DPS while keeping excellent security metrics. Notably,
no false-negative classifications occur. Thus, no malicious packets reach their
destination. The static approach shows an approximately constant performance
when using the hardware switch and the software switch. Both dynamic
approaches show significantly better performance when using the software
switch. Then, the dynamic approaches achieve the same throughput as a
system without an[DPSl for a constant load (around 13 times the performance
of the inline [DPS]) and 88.6% of it for overload.

In summary, the whitelisting performs best of all approaches in combination
with the software switch. There, it matches the requirements of significantly
improved performance, all security metrics above 95%, and less than 10% of
all attacks lost in the network and not classified. Thus, the solution is working,
yields a significant improvement, and is deployable without knowledge about
the configuration.

Contribution 2: TCP Handshake Remote Establishment and
Dynamic Rerouting using Software-defined

Networking (THREADS))

Next, we develop a novel to defend against [TCPIISYNI flood
attacks. flood take over the [TCPlhandshake to protect services. Un-
like previous solutions that lack in at least one category, is stateless,
independently deployable, scalable, and does not require packets to run via it
after connection establishment. We implement our approach as a[VNF using
This [VNF handles connection establishment and creates if successful
rules to forward the packets to the server directly. On the server-side,
requires a modified Linux kernel.

266

9.1 Summary

Next, we evaluate in a dedicated evaluation environment. We
show thatTHREADS|correctly handles connection establishment. However, the
network often loses the first packets after establishing a connection because they
still reach the[VNFinstead of the server. We present three solutions to this issue,
depending on whether it is acceptable that the server may receive packets for
which no connection establishment succeeded or whether should
be always-on or just in case of an attack. Then, we compare THREADS] perfor-
mance against the existing popular solutions Cookies and SYNIPROXY
showing a performance increase by 208% without any optimizations.

Still, we aim at further increasing the performance and perform paralleliza-
tion and parameter tuning. Therefore, we develop two parallelization strategies:
(i) a locked access to the NICT's send and receive queues, and (ii) a ringbuffer.
For these strategies, we specify four (locked access), respectively, five (ring-
buffer) parameters to tune. We find that the performance of the locking ap-
proach with optimal parameters is best and yields another 76% of performance
over the single-threaded non-optimized version. In summary, the performance
of THREADSlis 5.4 times as high as for existing solutions and is close to max
out the theoretical limit of a 10 Gb/s link while running on older server hard-
ware. The results also show that scales well for a small number of
cores but does not profit from an extreme core count. Therefore, we suggest
horizontal scaling using small to medium instances.

Contribution 3: Performance Engineering and Modeling for Security
Service Function Chain Orders

Next, we introduce the idea of attack-aware reordering. This idea fol-
lows the vision to always position the security functions inside an[SSEC]in the
optimal order for the current attack composition. Security functions have the
added complexity that unlike other network functions, they also drop traffic
categorized as malicious. Thus, traffic dropped at the SSECTs beginning does
not reach the security functions further along the chain and, also, does not
create resource demands for them. While for a single attack, the simple answer
would be to just place the matching security function first, for more complicated
composite attacks that require multiple security functions that have different
performance characteristics, the choice is not as simple. We, therefore, propose
to use a model for the to optimize its order. An instance called the [ECC|
collects attack statistics from the security functions and decides the optimal
order based on this model.

We perform measurements to prove our claim that the ordering is relevant
during attacks. First, we ‘show for an example firewall, and that

267

Chapter 9: Conclusion

they have significantly different performance characteristics even for benign
traffic, which mainly appear in the throughput they can handle. Under the
specified attacks, we show that the performance of the service increases when
using systems that protect against attacks while securing against software
vulnerabilities even decreases performance. Furthermore, protecting against
attacks that are irrelevant to the service can also hamper the overall performance.
When putting the security functions in[SSECE of size two, we find that putting
the defending function first always yields better throughput and, in most cases,
also better latency and drop rate. This advantage can be up to three orders of
magnitude.

Furthermore, better orders also reduce the total load on the employed
servers. At this point, we conclude that the order inside an[SSEClis essential to
its performance. Also, optimal orders for different attacks contradict each other,
which makes a case to adapt the order always to have optimal performance
dynamically.

Next, we develop a modeling formalism for [SSECk. To this end, we first
model single security functions. A security function changes the composition
of the incoming traffic. Thus, we categorize the traffic into multiple traffic
classes comprising one class per attack type and another class for benign traffic
and unmatched attacks. We then describe the effect of a security function as
a function on these traffic classes. Following the composition, the resource
demand also results from the traffic classes. Each packet, depending on the
class, creates a fixed resource demand per frame, packet, or segment. Also, for
some security functions, the resource demand depends on the size of the data
unit. Multiple of these security function models form an Security Function
Chaining Controller (SFCC]) model where the output traffic from one function
is the input traffic of the next function — until only the benign or unmatched
packets remain — and the total resource demand results from the sum of all
single functions. Knowledge about the traffic volume reaching the server and
the number of attacks at each step of the chain allows computing the original
incoming traffic’s composition. Based on this composition and the models, the
[ECC| can compute the desired order. We provide three approaches for
order adaptation with complexity between factorial and linear differing in their
guarantee of an optimal order as well as full and partial reordering.

Contribution 4: A Framework for Attack-aware Security Service
Function Chain Reordering

Having laid out and validated the idea of attack-aware [SSEC] reordering before,
we create a framework that realizes this idea using[SDNL All security functions

268

9.1 Summary

of an[SSFEC]reside inside anSDNlenabled network. A security function wrapper
co-located with every security function reports attacks to the[FCCl Then, the
[ECC] computes the desired order for the security functions and executes it
via the controller. We propose an authentication and communication
interface that enables this interaction and provide a Proof-of-Concept (PoCl)
implementation. For this [PoCk implementation, we also provide a minimal
controller.

We test our [PoCl inside a testbed. First, we prove the correct ordering by
permuting through all possible orders and validate the correct route via the
security functions. Then, putting the framework under simulated attacks, we
show that the framework correctly adapts to all attacks as desired and — after
the attacks subside — it returns to the initial state. Three issues can occur
during reordering: (i) packets drop, (ii) packets pass through a function twice,
or (iii) packets skip a function. While the first two issues are undesirable
yet without security impact, the third issue could result in malicious packets
reaching the service. We propose four different solutions depending on the
use-case to alleviate these issues.

Contribution 5: Heat-aware and [CPU| Boost-oriented Server Load
Rotation

Applications often make little use of short term frequency boost technolo-
gies like Intel’s TurboBoost. We present a solution to heat-aware load balancing,
allowing to alleviate this issue and maximize the time, active spend in the
state of a short-term frequency boost. Therefore, a load balancer must detect
or predict the moment when a server is too hot to stay boosted and migrate
the running service to another server. We present and implement a solution
consisting of two components: (i) a monitoring component watching the states
of all workers, and (ii) an controller that creates flows based on those
observations. This solution works in a way that multiple servers appear as a
single server to the client by modifying[IPland addresses in the packet
headers.

We evaluate our implementation in an evaluation environment. We show the
general functionality of the approach and analyze the impact of our solution,
showing that it performs best when the whole cluster is at lower load levels.
Still, it increases the time spent in a boosted state even for higher load scenarios.
For lower load levels, it is always possible to keep the active server boosted
without significant temperature increases. Performance-wise we show that in
high-load scenarios, we can increase performance per additional Watt (relative
to idle mode) by 35% while reducing the average temperature of the cluster and

269

Chapter 9: Conclusion

the maximum temperature of each server. With a lower load, all performance
metrics improve, the temperature levels drop below 60 degrees, and the total
power consumption decreases, thereby increasing performance per additional
Watt by 41%. We attribute this behavior partially to the reduced fan activity.

Contribution 6: Signature-based Database Ransomware Detection

In the final contribution, we propose a new multi-component signature-based
Intrusion Detection and Prevention System ([DPS])) named [DIMAQS|for rela-
tional databases capable of protecting against newer attacks that no longer
consist of a single query but instead query sequences. It contains the following
components: (i) controller, (ii) monitoring, (iii) security policy, (iv) classifier,
(v) incident resolution, (vi) notifier, and (vii) query rewriter. We use a sig-
nature comprised of a to model the complex attack behavior. This
models the stages of the attack as places and the queries as transactions. A
specialty of our solution is that it creates backups to roll back malicious actions
and hides them and its existence by rewriting incoming queries.

We create our prototype [DIMAQS| for MySQL registering as an auditing
plugin with the MySQL server enhanced by multiple triggers for the protected
tables. Then, we evaluate the results for benign and malicious query sets with-
out any misclassifications. Next, we analyze DIMAQS][s performance showing
that for a benign data set and synthetic benchmarks, it has a performance im-
pact of below 5%. Last, we discuss potential security issues and explain how
we hardened [DIMAQS]|against these vulnerabilities.

0.2 Benefits

The work in this thesis benefits multiple groups of people. Among others, data-
center and service operators, software, and hardware developers benefit from
the contributions introduced in this thesis. We see the following significant
benefits of our work:

e Our dynamic bypassing approach is of benefit for data-center operators,
security software developers, and researchers. Data-center operators are
the primary target group of our solution and can directly employ it to
increase performance. Thereby, they can reduce costs or improve
service quality. Security software developers can use our approach as an
inspiration for further bypassing approaches, and security researchers
gain a new solution against which to compare their approaches.

270

9.3 Future Work

e Our[THREADSIDPS|also is of benefit to the same groups. Cloud providers
can use it due to its direct applicability to increase the flexibility and scala-
bility of their[DPSlinfrastructure. Security software developers receive an
inspiration to incorporate into their approaches, and security researchers
receive a new tool against which to test and to develop attacks. Last, we
hope to contribute to the open-source community by making the SYNH-
packets from THREADS an adopted standard.

e The performance engineering and model for[SSECk and the framework for
attack-aware reordering lay the groundwork for further research in
this field. The current solution already can augment existing data-center
structures and is available to cloud providers. In general, the concept
of attack-awareness can change how security infrastructures work and
significantly reduce costs while at the same time increasing the service
quality.

e Our approach to better utilize short term[CPUlfrequency boosting is ready-
to-use for service providers. It can increase performance while reducing
temperature levels and, in some scenarios, power consumption. Also, for
hardware developers, we create a new use case for which to optimize
their boost technologies. Last, we hope to motivate researchers in the
area of performance to no longer see frequency boosting as an annoying
nuisance to disable for more stable results but as an opportunity for better
performance to exploit.

e Last,[DIMAQS]is a fully functional signature-based database usable
by every service provider. It allows for an efficient way to protect against
known ransomware attacks without requiring complex models of the
desired behavior or complex runtime machine learning.

9.3 Future Work

Our contributions in this thesis lay the ground for future work. We see several
potential directions to follow and challenges to address in the future:

Integration of SDN}enabled Security in Data Center Networks

In this work, we showed the impact of SDNlaugmented single security func-
tions and the value of reordering using [SDNI While these contributions
have a clear benefit in themselves, their contribution within each other remains a
complex challenge. Systems like [Ber+14]] and OpenDaylight [Med+14]]

271

Chapter 9: Conclusion

contribute to the simple deployment of NEFV]and Still, they fail to sophis-
ticated complex strategies without them having to know about each other
and explicitly interact. Here, we see the potential for further research with the
goal of a declarative solution in mind, that allows independent development of
[SSECImanagement tools and SDN}enabled stand-alone security functions.

Traffic-dependent [SSFCks

We developed a solution for attack-aware reordering and already defined
traffic classes for different attacks. We propose to develop a more fine-grained
classification approach regarding traffic type (e.g., protocol) but also other
factors like regional origin using GeolP. Then, our system can determine an op-
timal order for groups of those types or each type. Depending on the resources,
we propose to either employ a dedicated [SSECl for every traffic class group or
to use the same security functions for all classes and enforce different orders
with class-dependent[SDN] flows at every step of the chain. We expect that this
distinction can further improve the system’s overall performance, especially
when defending against composite attacks that attack the system on multiple
vectors.

Automated Model-learning for Security Functions

We use manually developed models to model security functions and [SSECk.
While this is acceptable for scientific works and small-scale infrastructures,
for more extensive infrastructures, operators do often have neither the time
nor the knowledge to model all possible attacks. We, therefore, propose an
automated approach that — at times where the system operates under benign
conditions — sends attacks through the network or via single functions and
learns (e.g., by regression learning) the effect of the functions on the traffic
composition and the generated resource demands. The system should regularly
repeat these steps until reaching the desired accuracy. In a second step, the
system should detect when security functions change (e.g., when upgrading
a function’s software stack or when adding new signatures to an [DPS]) and
validate that the previously created models still fit.

Consideration of Energy-Efficiency in [SSFCs

So far, we mainly considered the throughput as the primary metric for [SSFC]
performance while also discussing latency and packet loss. We also took a brief
look at the impact on the [CPUlload. While reducing the resource demands and

272

9.3 Future Work

the number of required security function instances is a generally reasonable
guide-line, we also found that sometimes load balancing across multiple servers
can reduce power consumption. Thus, we propose to perform energy-efficiency
research on[SSECE and incorporate the results into our security function models
and as a factor for deriving the optimal SSEClorder. We also predict that having
power models and results that show an efficiency impact of attack-aware
reordering would further motivate data-center operators to adopt this approach
and researchers to contribute to it.

Introduction of [CPU| Frequency Boosting in Performance Models,
Placement, Scaling and Deployment Strategies

We showed the potential that lies in the usage of short-term frequency
boosting. So far, performance modeling researchers preferred to turn off this
feature to attain a higher model accuracy. While from a research point of view,
this approach is valid, it hampers the real-world application of these models.
Therefore, we strongly urge researchers in this area to further work on accurate
modeling of the boosting process. Similarly, we suggest augmenting placement
and deployment strategies with boost-awareness. As we showed, especially
in low-load scenarios, hot spares that are part of rotations can even reduce
power consumption. Thus deployment and scaling strategies should include
this effect before scaling up or down. Since the location of the boosted server is
relevant (e.g., the temperature of neighboring servers, cooling infrastructure, or
various heat capacity), placement strategies should also consider these factors
when deciding on which servers to place a service.

Machine-assisted Learning for Database Signatures

Our database that protects against multi-query ransomware attacks re-
quires signatures to detect attacks. So far, we created these signatures manually.
We propose a machine-assisted learning approach where a database operator
or a security researcher can mark a set of queries that constitute an attack.
Then, the algorithm would derive a (or an alternative formalism that best
matches the attack) from the branded queries. The more sets of attacks are
available to the algorithm, the better it can refine the model and reduce false
positives and false negatives. This learning would us allow to generalize our
approach further and adapt it to further attacks.

273

Appendix A

Additional Security Function
Configuration for the Evaluation
Environment in Section 5.2.1]

A.1 Additional Snort Rules

drop udp $EXTERNAL_NET any -> $EXTERNAL_NET 31335
(msg: "Unexpected pen is detected"; content:"HELLO";
classtype:attempted-dos; sid:232; rev:5;)

(msg:"Lennart Poettering detected"; content:"systemd";
classtype:attempted-dos; sid:232; rev:5;)

Listing A.1: Additional signatures for the [DPS used in Sectionm [Fel18]].

275

Appendix A: Additional Service Function Configurations

A.2 Firewall Rules

#!/bin/bash

iptables script
author Christina Hempfling
date 2017-09-28

IPTABLES="/sbin/iptables"

o CHAINS --—————————————————————-
all packets to chain VALID are logged and accepted
$IPTABLES -N VALID

$IPTABLES -I VALID -j LOG --log-prefix "NewConnection "
$IPTABLES -A VALID -j ACCEPT

all packets in the following chains are logged and dropped
table for spoofed IP addresses

$IPTABLES -N SPOOF

$IPTABLES -I SPOOF -j LOG --log-prefix "ATTACKIPSPOOFING "
$IPTABLES -A SPOOF -j DROP

invalid packets

$IPTABLES -N INVAL

$IPTABLES -I INVAL -j LOG --log-prefix "ATTACKINVALIDPACKET "
$IPTABLES -A INVAL -j DROP

table for ICMP packets
$IPTABLES -N LOGICMP
$IPTABLES -I LOGICMP -j LOG --log-prefix "ATTACKICMP "

$IPTABLES -A LOGICMP -j DROP

$IPTABLES -N LOGIT

$IPTABLES -I LOGIT -m limit --1limit 3/s -j VALID

$IPTABLES -A LOGIT -j LOG --log-prefix "ATTACKECHOREQUEST "
$IPTABLES -A LOGIT -j DROP

table for udp
$IPTABLES -N UDPFL0OOD

276

A.2 Firewall Rules

#$IPTABLES -I UDPFLOOD -m limit --limit 30/s -j VALID
$IPTABLES -A UDPFLOOD -j LOG --log-prefix "ATTACKUDPFLOOD "
$IPTABLES -A UDPFLOOD -j DROP

table for fragmented packets

$IPTABLES -N FRAG

$IPTABLES -I FRAG -j LOG --log-prefix "ATTACKFRAGMENTEDPACKET "
$IPTABLES -A FRAG -j DROP

table for portscanning attempts

$IPTABLES -N PORTSCAN

$IPTABLES -I PORTSCAN -j LOG --log-prefix "ATTACKPORTSCAN "
$IPTABLES —-A PORTSCAN -j DROP

table for SSH brute force

$IPTABLES -N SSHBRUTE

$IPTABLES -I SSHBRUTE -j LOG --log-prefix
— "ATTACKSSHBRUTEFORCE "

$IPTABLES -A SSHBRUTE -j DROP

table for SYN floods

$IPTABLES -N SYNFLOOD

$IPTABLES -A SYNFLOOD -m limit --limit 10/s --limit-burst 3 -j
— VALID

$IPTABLES -I SYNFLOOD -j LOG --log-prefix "ATTACKSYNFLOOD "
$IPTABLES -A SYNFLOOD -j DROP

—— RULES

b T #

- loopback interface
b T #

Allow loopback interface to do anything.
$IPTABLES -A INPUT -i lo -j VALID
$IPTABLES -A OUTPUT -o lo -j VALID

R Sorososoosooeess e e s e ees FRAGMENTED packets

Force fragments check:

Packets with incoming fragments are to be dropped. This
— attack results in a Linux server panic and causes data
— loss.

277

Appendix A: Additional Service Function Configurations

$IPTABLES -A INPUT -f -j FRAG

Allow ping but limit to $LIMIT

$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 17 -j LOGICMP
$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 13 -j LOGICMP
$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 8 -j LOGIT
#$IPTABLES -A INPUT -p icmp -m conntrack --ctstate ESTABLISHED
— $LIMITICMP -j VALID

$IPTABLES -A OUTPUT -p icmp -m icmp --icmp-type 8 -j VALID
$IPTABLES -A OUTPUT -p icmp -m conntrack --ctstate ESTABLISHED
— —j VALID

$TPTABLES -A INPUT -p icmp -j LOGIT

$TPTABLES —-A INPUT -p udp —-j UDPFLOOD
$TPTABLES —-A FORWARD -p udp -j UDPFLOOD

- #

$IPTABLES -A OUTPUT -p tcp -m tcp —--dport 22 -j VALID

protection from SSH brute force

TCP packets coming in and trying to establish an SSH

— connection will be marked as SSH. The source of the packet
< 1s regarded.

$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -m conntrack

— ——ctstate NEW -m recent --set -—-name SSH --rsource

If a packet attempting to establish an SSH connection comes,
— and it's the fourth packet to come from the same source in
— thirty seconds, it is rejected.

$IPTABLES -A INPUT -p tcp -m tcp —--dport 22 -m recent —--rcheck
— —-seconds 30 --hitcount 4 --rttl --name SSH --rsource -j

— REJECT --reject-with tcp-reset

If an SSH connection packet comes in, and it's the third

— attempt from the same guy in thirty seconds, log it and

< 1immediately dropped.

278

A.2 Firewall Rules

$IPTABLES -A INPUT -p tcp -m tcp —-—dport 22 -m recent —--rcheck
— -—-seconds 30 --hitcount 3 --rttl --name SSH --rsource -j

— SSHBRUTE

#Any SSH packet not stopped so far is accepted

$IPTABLES -A INPUT -p tcp -m tcp —--dport 22 -j VALID

I SYN floods

$IPTABLES -A INPUT -p tcp --syn -m conntrack --ctstate NEW -—j
— SYNFLOOD

I e port scanning

protection against port scanning
$IPTABLES -A INPUT -p tcp —-—tcp-flags SYN,ACK,FIN,RST RST -j
— PORTSCAN

SYN + RST scan

$IPTABLES -A INPUT -p tcp —--tcp-flags SYN,RST SYN,RST -j
— PORTSCAN

$IPTABLES -A FORWARD -p tcp --tcp-flags SYN,RST SYN,RST -j
— PORTSCAN

SYN + FIN scan

$IPTABLES -A INPUT -p tcp —-—tcp-flags SYN,FIN SYN,FIN -j
— PORTSCAN

$IPTABLES -A FORWARD -p tcp --tcp-flags SYN,FIN SYN,FIN -j
— PORTSCAN

FIN + URG + PSH scan

$IPTABLES -A INPUT -p tcp ——tcp-flags ALL FIN,URG,PSH -j
— PORTSCAN

$IPTABLES -A FORWARD -p tcp --tcp-flags ALL FIN,URG,PSH -j
— PORTSCAN

ALL scan

$TPTABLES -A INPUT -p tcp --tcp-flags ALL ALL -j PORTSCAN
$TPTABLES -A FORWARD -p tcp --tcp-flags ALL ALL -j PORTSCAN

279

Appendix A: Additional Service Function Configurations

null scan
$IPTABLES -A INPUT -p tcp --tcp-flags ALL NONE -j PORTSCAN
$IPTABLES -A FORWARD -p tcp ——tcp-flags ALL NONE -j PORTSCAN

FIN stealth scan
$IPTABLES -A INPUT -p tcp ——tcp-flags ALL FIN -j PORTSCAN
$IPTABLES -A FORWARD -p tcp -—tcp—flags ALL FIN -j PORTSCAN

xmas

$IPTABLES -A INPUT -p tcp --tcp-flags ALL
— URG,ACK,PSH,RST,SYN,FIN -j PORTSCAN
$IPTABLES -A FORWARD -p tcp —-tcp-flags ALL
— URG,ACK,PSH,RST,SYN,FIN -j PORTSCAN

Spoofing and bad address attacks try to fool the server and
— claim that packets had come from local addresses/the local
— network.

The following IPs and network addresses are know to open this
— kind of attack:

Incoming source IP address is your servers IP address. Bad

— incoming address from following ranges:

VALID for communication with controller

$IPTABLES -A INPUT -s 10.0.2.15/24 -j VALID
#$IPTABLES -A INPUT -s 10.0.0.0/8 -j SPOOF
#$IPTABLES -A INPUT -s 10.0.0.0/8 -j SPOOF
$IPTABLES -A INPUT -s 172.16.0.0/12 -j SPOOF
#$IPTABLES -A INPUT -s 192.168.0.0/16 -j SPOOF
$IPTABLES -A INPUT -s 224.0.0.0/4 -j SPOOF
$IPTABLES -A INPUT -s 240.0.0.0/4 -j SPOOF
$IPTABLES -A INPUT -s 255.255.255.255 -j SPOOF
$IPTABLES -A INPUT -s 127.0.0.0/8 ! -i lo -j SPOOF
$IPTABLES -A INPUT -s 0.0.0.0/8 -j SPOOF
$IPTABLES -A INPUT -s 169.254.0.0/16 -j SPOOF
$IPTABLES -A INPUT -s 100.64.0.0/10 -j SPOOF
$IPTABLES -A INPUT -s 192.0.2.0/24 -j SPOOF

280

A.2 Firewall Rules

Packets leaving the network should never have the following
— destination IP addresses

$IPTABLES -A INPUT -d 0.0.0.0/8 -j SPOOF

#$IPTABLES -A INPUT -d 10.0.0.0/8 -j SPOOF

$IPTABLES -A INPUT -d 224.0.0.0/4 -j SPOOF

$IPTABLES -A INPUT -d 240.0.0.0/4 -j SPOOF

$IPTABLES -A INPUT -d 255.255.255.255 -j SPOOF

— connections--———————————————- #

Allow incoming connections related to existing allowed

— connections, drop invalid packets.

$IPTABLES -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED
— —Jj VALID

$IPTABLES -A INPUT -m conntrack --ctstate INVALID -j INVAL

Allow outgoing connections EXCEPT invalid
$IPTABLES -A OUTPUT -m conntrack --ctstate ESTABLISHED,RELATED
— —Jj VALID

accept all other packets
$IPTABLES -A INPUT -j VALID
$IPTABLES -A FORWARD -j VALID
$IPTABLES -A OUTPUT -j VALID

Listing A.2: Rules used by the firewall in Section || .

281

Appendix A: Additional Service Function Configurations

A.3 [THREADS Modifications

diff --git a/dpdkapp/main.c b/dpdkapp/main.c
index 2e77cd9..d1971de 100644

--- a/dpdkapp/main.c

+++ b/dpdkapp/main.c

@@ -31,6 +31,7 @@

#define TCP_FLAG_SYN 0x02
#define TCP_FLAG_ACK 0x10
+#define TCP_FLAG_PSH 0x08

static const struct rte_eth_conf port_conf= {
.rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }

@@ -118,16 +119,54 @@ static inline int process_packets

(struct rte_mbuf **bufs, int size) {
uint8_t tcp_h_len = (tcp_h->data_off & 0xf0) >> 2;
if (packet_len - (ip_h_len + tcp_h_len) == 0) {

resp = process_ack_packet (bufs[i]);
= if (resp != NULL)

+ if (resp != NULL){
bufs[resp_i++] = resp;
+ }
}
- else {
= rte_pktmbuf_free(bufs([i]);
- }
- }
= else {

= rte_pktmbuf_free(bufs[i]);

// PSH ACK slipped through
else if (tcp_h->tcp_flags == (TCP_FLAG_PSH
TCP_FLAG_ACK)) {
bufs[resp_i++] = bufs[i];

+ + + + — 4+ + 4+

// ACK from server slipped through

282

A.3 [THREADSI Modifications

i else if (tcp_h->tcp_flags == TCP_FLAG_ACK
&& mac_addr_equal (ether_h->s_addr, server_mac_addr)) {
bufs[resp_i++] = bufs[i];

}
else {

bufs[resp_i++] = bufs[i];

// From client

if (mac_addr_equal (ether_h->d_addr,
server_mac_addr)) {

//exit(tcp_h->tcp_flags);

+ + + + + + + 4+

}

// From server
else if (mac_addr_equal(ether_h->s_addr,
server_mac_addr)) {

+ + + + +

+ //exit (100 + tcp_h->tcp_flags);

+ +

+

+ +

+

+

+// else {

+// if (mac_addr_equal (ether_h->d_addr,
server_mac_addr)) {

+//

+// if (tcp_h->tcp_flags == TCP_FLAG_ACK) {
+// exit(6);

+// } else if (tcp_h->tcp_flags ==
TCP_FLAG_SYN) {

+// exit(99);

+// } else if (tcp_h->tcp_flags ==

(TCP_FLAG_PSH |
TCP_FLAG_ACK)) {

+// exit (200);

+// }

+// exit(tcp_h->tcp_flags);
+//

283

Appendix A: Additional Service Function Configurations

Y } else {
+// exit (4);
+// }
+// }

}

int nb_on_ring = rte_ring mp_enqueue_burst(ring_tx,
(void *const *)bufs, resp_i, NULL);

@@ -292,5 +331,8 @@ int main(int argc, char *argv[])
}

rte_eal_remote_launch(tx_core_main, NULL, 1);
+
+ printf ("Foo");
+

return rx_core main();

}
diff --git a/dpdkapp/packetprocessing.c
b/dpdkapp/packetprocessing.c
index a6ec040..5£449d3 100644
—-—- a/dpdkapp/packetprocessing.c
+++ b/dpdkapp/packetprocessing.c
@@ -59,8 +59,8 @@ struct rte_mbuf
xprocess_syn_packet (struct rte_mbuf *mbuf)
ip_h->version_ihl = 0x45;
/* no DSCP or ECN x*/
ip_h->type_of_service = 0;
= /* IP header = 20 bytes, TCP header = 20 bytes,
no payload -> 40 bytes */
= ip_h->total_length = rte_cpu_to_be_16(40);

+ /* IP header = 20 bytes, TCP header = 20 bytes,
+ 4 byte options, no payload -> 44 bytes */
+ ip_h->total_length = rte_cpu_to_be_16(52); // TODO

/* ignore packet id and fragment offset*/
ip_h->packet_id = O;
ip_h->fragment_offset = O;
@@ -84,18 +84,47 @@ struct rte_mbuf
*process_syn_packet (struct rte_mbuf *mbuf)
tcp_h->recv_ack = rte_cpu_to_be_32

284

A.3 [THREADSI Modifications

(rte_be_to_cpu_32(tcp_h->sent_seq) + 1);
/* set SYN cookie ISN */
tcp_h->sent_seq = rte_cpu_to_be_32(isn);
— /* no options, so data_offset /
TCP header length is 20 bytes / 4 bytes =
5 (higher 4 bytes) */
= tcp_h->data_off= 0x50;
+ /* 4 byte options, so data_offset
/ TCP header length is 24 bytes /
4 bytes = 6 (higher 4 bytes) */
+ tcp_h->data_off= 0x80; // TODO
/* set SYN and ACK flag */
tcp_h->tcp_flags = 0x12;
/* Maximum receive window */
tcp_h->rx_win = Oxffff;

tcp_h->rx_win = rte_cpu_to_be_16(28960) ;

/*TCP option MSS*/

uint8_t *options = tcp_h+1;
*options = 2;

options++;

*options = 4;

options++;

*options = 5;

options++;

*options = 0xb4;

options++;

/*TCP option sackOK + nop + nop*/
*options = 4;

options++;

*options = 2;

options++;

*options = 1;

options++;

*options = 1;

+ + F + + F + F o+ F o+ F o+ o+ + o+

/*TCP window scalingx/

285

Appendix A: Additional Service Function Configurations

options++;
*options = 3;
options++;
*options = 3;
options++;
*options = 7;
options++;
*options = 1;

+ + + + + + + 4+

/* MBUF DATA */
mbuf->nb_segs = 1;
- mbuf->pkt_len = 54;
= mbuf->data_len = 54;
+ mbuf->pkt_len = 66; //TODO
+ mbuf->data_len = 66; //TODO

/* checksums */
ip_h->hdr_checksum = O;
@@ -155,8 +184,8 @@ struct rte_mbuf
xprocess_ack_packet (struct rte_mbuf *mbuf)
ip_h->version_ihl = 0x45;
/* no DSCP or ECN */
ip_h->type_of_service = 0;

- /* IP header = 20 bytes, TCP header = 20 bytes,

4 bytes of payload -> 44 bytes */

- ip_h->total_length = rte_cpu_to_be_16(44);

+ /* IP header = 20 bytes, TCP header

20 bytes,

bytes of payload -> 44 bytes + 4 byte MSS

2 sackOK +

nop + 3 windows scaling + 1 nop*/

ip_h->total_length = rte_cpu_to_be_16(56);

/* ignore packet id and fragment offset*/

ip_h->packet_id = O;

ip_h->fragment_offset = O;

@@ -172,12 +201,46 @@ struct rte_mbuf

xprocess_ack_packet (struct rte_mbuf *mbuf)
tcp_h->sent_seq = rte_cpu_to_be_32
(rte_be_to_cpu_32(tcp_h->sent_seq) - 1);

+ N+

286

A.3 [THREADSI Modifications

/* SYN packet has nothing to ack, set
to zero */
tcp_h->recv_ack = 0;
- /* no options, so data_offset (TCP header
length)
is 20 bytes / 4 bytes = 5 (higher 4 bytes) x/
= tcp_h->data_off= 0x50;

+ /* no options, so data_offset (TCP header
length)

is 20 bytes / 4 bytes = 5 (higher 4 bytes) */

// TODO

A tcp_h->data_off= 0x80;

/* set SYN flag */
tcp_h->tcp_flags = 0x02;
/* Maximum receive window */
tcp_h->rx_win = Oxffff;
tcp_h->rx_win = rte_cpu_to_be_16(29200) ;

uint8_t *options = payload;
/*TCP option MSS*/
*options = 2;

options++;

*options = 4;

options++;

*options = 5;

options++;

*options = 0Oxb4;

options++;

/*TCP option sackOK + nop + nop*/
*options = 4;

options++;
*options = 2;
options++;
*options = 1;
options++;

*options = 1;

+ + F + + F + F o+ F o+ F o+ o+ + o+

287

Appendix A: Additional Service Function Configurations

/*TCP window scaling*/
options++;

*options = 3;
options++;

*options = 3;
options++;

*options = 7;
options++;
*options = 1;

+ + + + + + + + o+ o+ + o+

payload+=3; //T0ODO

/* PAYLOAD */
/* write isn the server should use (4 bytes)
in the payload */
@@ -193,8 +256,8 @@ struct rte_mbuf
xprocess_ack_packet (struct rte_mbuf *mbuf)

/* MBUF DATA */
mbuf->nb_segs = 1;
- mbuf->pkt_len = 58;
= mbuf->data_len = 58;
1 mbuf->pkt_len = 70; // TODO
+ mbuf->data_len = 70; // TODO

Listing A.3: Modifications to [THREADS| for the evaluation environment in

Section .

288

A.4 [SDNIRules for Traffic Routing in the Evaluation Environment

A.4 Rules for Traffic Routing in the Evaluation

Environment
Name Match Actions
Client - SW2 Port-In: 25 Port-Out: 27
SW2 — Service Port-In: 27 Port-Out: 26
Service — Client Port-In: 26 Port-Out: 25
(a) BDNIrules at Sw1.
Name Match Actions
SW1 - SW4 Port-In: 25 Port-Out: 28
SW4 - SW1 Port-In: 28 Port-Out: 25
(b) GDNIrules at SW2.
Name Match Actions
SW2 — Firewall Port-In: 25 Port-Out: 26
Firewall - SW2 Port-In: 27 Port-Out: 25
(c) GDNIrules at Sw4.

Table A.1: SDNIrules for routing traffic via the firewall only.

Name Match Actions
Client - SW2 Port-In: 25 Port-Out: 27
SW2 — Service Port-In: 27 Port-Out: 26
Service — Client Port-In: 26 Port-Out: 25
(a) BDNIrules at Sw1.
Name Match Actions
SW1 — [DPSY Port-In: 25 Port-Out: 27
DPS - SW1 Port-In: 27 Port-Out: 25
(b) BDNJrules at Sw2.

Table A.2: [SDNIrules for routing traffic via the [DPS only.

289

Appendix A: Additional Service Function Configurations

Name Match Actions
Client - SW2 Port-In: 25 Port-Out: 27
SW2 — Service Port-In: 27 Port-Out: 26
Service — Client Port-In: 26 Port-Out: 25
(a) BDNIrules at Swi.
Name Match Actions
SW1 - SW3 Port-In: 25 Port-Out: 26
SW3 - SWI1 Port-In: 26 Port-Out: 25
(b) EDNIrules at Sw2.
Name Match Actions
SW2 — [DPS Port-In: 25 Port-Out: 26
TDPS - SW2 Port-In: 27 Port-Out: 25
(c) EDNIrules at SW3.

Table A.3:[SDNIrules for routing traffic via the [DPS only.

290

A.4 [SDNIRules for Traffic Routing in the Evaluation Environment

Name Match Actions
Client - SW2 Port-In: 25 Port-Out: 27
SW2 — Service Port-In: 27 Port-Out: 26
Service — Client Port-In: 26 Port-Out: 25
(a) BDNJrules at Swi.
Name Match Actions
— Firewall
SW1 - SW3 Port-In: 25 Port-Out: 26
SW3 - SW1 Port-In: 26 Port-Out: 28
SW3 - SW1 Port-In: 28 Port-Out: 25
Firewall — IDPS|
SW1 - SW3 Port-In: 25 Port-Out: 28
SW3 - SW1 Port-In: 28 Port-Out: 26
SW3 - SW1 Port-In: 26 Port-Out: 25
(b) BDNIrules at Sw2.
Name Match Actions
SW2 — [DPS Port-In: 25 Port-Out: 26
TDPS - SW2 Port-In: 27 Port-Out: 25
(c)BDNIrules at SW3.
Name Match Actions
SW2 — Firewall Port-In: 25 Port-Out: 26
Firewall - SW2 Port-In: 27 Port-Out: 25
(d) BDNJrules at Sw4.

Table A.4:[SDNIirules for routing traffic via the [DPS/and then the firewall and
vice-versa.

291

Appendix A: Additional Service Function Configurations

Name Match Actions
Client - SW2 Port-In: 25 Port-Out: 27
SW2 — Service Port-In: 27 Port-Out: 26
Service — Client Port-In: 26 Port-Out: 25
(a) BDNIrules at Swi.
Name Match Actions
—
SW1 — DPS Port-In: 25 Port-Out: 27
DPS - SW3 Port-In: 27 Port-Out: 26
SW3 - SW1 Port-In: 26 Port-Out: 25
IDPS| — [DPS|
SW1 - SW3 Port-In: 25 Port-Out: 26
SW3 — DPS Port-In: 26 Port-Out: 27
DPS - SW1 Port-In: 27 Port-Out: 25
(b) EDNlrules at SW2.
Name Match Actions
SW2 — [[DPS Port-In: 25 Port-Out: 26
1DPS - SW2 Port-In: 27 Port-Out: 25
(c¢) GDNlrules at Sw3.

Table A.5: [SDNl rules for routing traffic via the [DPS/and then the [DPS and
vice-versa.

292

A.4 [SDNIRules for Traffic Routing in the Evaluation Environment

Name Match Actions
Client - SW2 Port-In: 25 Port-Out: 27
SW2 — Service Port-In: 27 Port-Out: 26
Service — Client Port-In: 26 Port-Out: 25
(a) BDNIrules at Swi.
Name Match Actions
— Firewall
SW1 — DPS Port-In: 25 Port-Out: 27
DPS - SW4 Port-In: 27 Port-Out: 28
SW4 - SW1 Port-In: 28 Port-Out: 25
Firewall —
SW1 - SW4 Port-In: 25 Port-Out: 28
SW4 — DPS Port-In: 28 Port-Out: 27
DPS - SW1 Port-In: 27 Port-Out: 25
(b) EDNlrules at SW2.
Name Match Actions
SW2 — Firewall Port-In: 25 Port-Out: 26
Firewall - SW2 Port-In: 27 Port-Out: 25
(c¢) GDNIrules at Sw4.

Table A.6: [SDNlrules for routing traffic via the[DPSland then the firewall and
vice-versa.

293

Appendix B

Detailed Result Tables for
Section 5.2.2] and Section

B.1 Single Function Results

Requests per Second Successful Requests Error
0 0 +0
2,000 186,000 +£3,603
4,000 356,000 £7,107
6,000 534,000 £3,592
8,000 712,000 £6,115
10,000 879,914 £1,491
12,000 1,068,000 419,436
14,000 1,245,933 +19,293
16,000 1,398,098 414,589
18,000 1,364,232 +4,316
20,000 1,322,815 2,123
22,000 1,336,232 £3,720

Table B.1: Successful requests without any security functions as shown in Fig-

ure @

295

Appendix B: Detailed Security Function Configuration Results

Requests per Second Successful Requests Error
0 0 +0
2,000 176,000 +£3,603
4,000 352,000 £7,107
6,000 522,000 £3,592
8,000 712,000 +6,115
10,000 870,000 £1,491
12,000 1,056,000 +£19,436
14,000 1,217,962 +19,293
16,000 1,352,155 +£14,589
18,000 1,336,748 £4,316
20,000 1,309,150 +2,123
22,000 1,277,991 43,720

Table B.2: Successful requests without only the firewall enabled as shown in

Figure[5.7]
Requests per Second Successful Requests Error
0 0 +0
500 44,000 £3,603
1,000 88,985 £7,107
1,500 133,474 +£3,592
2,000 177,853 +6,115
2,500 222,490 41,491
3,000 258,982 £19,436
3,500 216,988 £19,293
4,000 174,466 +14,589
4,500 249,901 £4,316
5,000 198,138 £2,123
5,500 259,112 £3,720

Table B.3: Caption

Table B.4: Successful requests with only the [DPS enabled as shown in Fig-

ure @

296

B.1 Single Function Results

Requests per Second Successful Requests Error
0 0 +0

1,000 88,987 £3,603

2,000 177,187 £7,107

3,000 265,183 43,592

4,000 236,769 £6,115

5,000 145,966 £1,491

6,000 154,919 +19,436

Table B.5: Successful requests without only the [DPS enabled as shown in

Figure[5.9
[UDPI flood Successful Results
strength in Direct Firewall

MBit/s Result Error Result Error

0 122,000 =+£1.870 122,000 =+1,674

500 124,000 +4 126,000 +1,907
1,000 112,204 +482 82,985 4458
1,500 54,289 +£592 30,974 +371
2,000 27,825 4242 16,223 48
2,500 16,832 £216 12,137 +85
3,000 12,689 £464 9,057 £142
3,500 9,544 £398 8213 +211
4,000 6,122 £298 3,637 +8
4500 6,697 £179 4,296 +104
5000 6,201 1428 5820 +£216

Table B.6: Successful requests during a[UDP| flood attack with direct connec-
tion or only the firewall enabled as shown in Figure[5.10}

297

Appendix B: Detailed Security Function Configuration Results

HTTPI flood Successful Results
strength in Direct Firewall
Requests/s Result Error Result Error

0 120,000 +£84 120,000 £952
1,000 120,000 =+2,268 120,000 £268
2,000 83,830 £1,278 120,000 +£523
3,000 80,000 +230 120,000 £772
4,000 77,769 +£520 120,000 +£999
5,000 72,000 £277 120,000 £792
6,000 60,000 =+£2,024 120,000 +£719
7,000 50,000 +£2,492 118,000 =£2,303
8,000 40,000 =£1,536 118,000 +634
9,000 32,000 =£1,316 120,000 42,131

10,000 17,978 +608 120,000 =+£1,018
11,000 19,796 £752 120,000 =+£1,404
12,000 17,372 +666 120,000 =+£1,394
13,000 17,877 +581 120,000 £531
14,000 17,877 +£658 120,000 +£558

Table B.7: Successful requests during an [HTTP flood attack with direct con-
nection or only the firewall enabled as shown in Figure 5.11]

298

B.1 Single Function Results

SYNI flood Successful Results

strength in Direct
MBit/s Result Error Result Error
0 120,000 +352 119,872 41,029
500 120,000 +1,217 119,872 42,277
1,000 120,000 41,939 119,907 +1,588
1,500 119,994 +£1,128 119,905 +£1,243
2,000 117,861 41,570 117,902 +334
2,000 112,258 +526 117,883 41,049
3,000 14,472 +368 117,884 +£3,133
3,500 13,619 4650 119,882 42,379
4,000 13,715 +201 116,277 =+1,731
4,500 12,645 +228 117,245 43,002
5,000 14,473 +331 115471 +£2,878
5500 13,620 £541 116,621 +£3,150
6,000 13,716 +551 67,239 +414
6,500 12,646 +74 33,049 41,436

Table B.8: Successful requests during alSYNIflood attack with direct connection
or only the[DPSenabled as shown in Figure 5.12}

Intrusion flood

Successful Results

strength in Direct
MBit/s Result Error Result Error
0 124,000 +5819 122,000 4261
500 124,000 +2,611 124,000 45,322
1,000 84,003 43,660 47,955 41,470
1,500 38,362 +84 23,664 +£1,000
2,000 25,521 +562 15,558 +630
2,500 15,358 +437 9,184 +158
3000 12,921 +611 7,141 4266
3,500 8,953 +216 7,620 +21
4,000 7,152 +139 1,490 +30
4,500 7,801 +375 5,283 +94
5,000 6,163 +104 9,183 +61

Table B.9: Successful requests during an intrusion flood attack with direct

connection or only the [DPS|enabled as shown in Figure

299

Appendix B: Detailed Security Function Configuration Results

B.2 Security Service Function Chain Results

UPD flood Successful Results
strength in IDPS — Firewall =~ Firewall — IDPS
MBit/s Result Error Result Error

0 124,000 =£2,130 123,333 =£1,812

500 2,720 +129 115,275 +£1,840
1,000 2,489 +41 63,457 £1,878
1,500 1,154 +45 20,950 £740
2,000 980 £40 9,979 £209
2,500 2,315 £35 9,371 £168
3,000 1,314 +£55 4,130 £70
3,500 1,656 +14 4,227 +145
4,000 2,292 +47 2,646 +102
4,500 1,002 £15 3,700 +119
5,000 3,347 +53 4,073 +115

Table B.10: Successful requests during a[UDPIflood attack with the IDPSland
the firewall enabled as shown in Figure[5.14]

300

B.2 Security Service Function Chain Results

HTTP flood Successful Results
strengthin IDPS — Firewall = Firewall — IDPS
Requests/s Result Error Result Error

0 118,000 42,207 112,387 +905
1,000 112,009 =£3,269 113,763 4280
2,000 92,082 44,566 107,721 =+1,916
3,000 94,233 £870 109,991 +417
4,000 77,352 £307 114,247 £2,036
5000 56,863 42,118 111,315 1,253
6,000 54,136 £680 109,976 1,420
7,000 36,865 1,830 112,019 +£2,009
8,000 33217 £571 115,568 1,307
9,000 28,185 +£443 111,134 +521

10,000 25,146 41,042 113,224 2,000
11,000 24,341 £792 106,761 +862
12,000 23,634 £120 112,586 +30
13,000 28,179 125 113,224 +404
14,000 24,341 +10 115,369 1,256

Table B.11: Successful requests during an [HTTP flood attack with the [DPS
and the firewall enabled as shown in Figure[5.16]

301

Appendix B: Detailed Security Function Configuration Results

SYN flood Successful Results
strength in DPS — IDPS IDPS — DPS
MBit/s Result Error Result Error

0 121,992 41,743 123,968 41,848

500 123,952 +998 11,560 +17
1,000 123,487 =+£1,795 4,319 +22
1,500 123,901 1,966 3,989 +£125
2,000 123,908 +£317 4,039 +128
2,500 123,897 +689 4,029 +143
3,000 123,882 £251 4,347 +100
3,500 121,870 =£3,558 4,131 +127
4,000 113,662 43,352 3,960 £113
4,500 106,433 £2,449 3,831 +66
5,000 103,728 =£4,063 4,180 +154
5,500 94,168 =£3,363 4,227 +205
6,000 80,695 +£2,823 4,008 +46
6,500 76,719 =£2,348 3,855 +191

Table B.12: Successful requests during a[SYNl flood attack with the [DPS|and
the [DPS|enabled as shown in Figure

302

B.2 Security Service Function Chain Results

SYN flood Successful Results
strengthin Firewall — DPS DPS — Firewall
MBit/s Result Error Result Error

0 121,062 £173 121,985 +£2.311
500 121,942 4280 123,914 +565
1,000 121,914 =£1,351 123,930 1,442
1,500 121,893 £1,201 123,928 +1,975
2,000 121,877 £2,015 123,775 +£1,112
2,500 106,412 +£1,320 121,919 4199
3,000 100,685 41,516 121,882 =+1,813
3,500 36,508 £322 115849 4476
4,000 28,113 41,108 111,361 1,908
4,500 27,914 £249 94,793 2,804
5000 27,241 +347 90,077 +708
5500 10,881 +420 72,374 938
6,000 3,688 £170 51,749 +£2,548
6,500 3,042 £34 44,803 +2,133

Table B.13: Successful requests during a [SYNI flood attack with the firewall
and the[DPS enabled as shown in Figure[5.20}

Intrusion flood Successful Results
strength in IDPS — Firewall ~Firewall — IDPS
MBit/s Result Error Result Error

0 124,000 +657 122,000 +603

500 124,000 £307 31,732 £373
1,000 43,442 £353 7,238 +44
1,500 21,089 +£536 95,004 +0
2,000 14,911 +56 4,862 £95
2,500 10,089 +63 1,273 £16
3,000 5,257 +7 2,344 +24
3,500 5,476 158 1,564 +2
4,000 5,670 £260 6,748 +88
4,500 2,475 +54 7,007 +24
5,000 5,224 X174 7,267 +41

Table B.14: Successful requests during an intrusion flood attack with the [DPS]
and the firewall enabled as shown in Figure 5.22}

303

Appendix C

Routing Configuration Flows for the
Security Service Function Chain
Reordering Framework

(1) hard_timeout=300,priority=100,dl_type=0x0800,in_port=6,
dl_src=52:54:00:91:60:4d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:7

(2) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=8,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:1

(3) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:d3:db:f1,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:9

(4) hard_timeout=300,priority=100,dl_type=0x0800,in_port=10,
dl_src=52:54:00:d3:db:f1,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:1

Listing C.1: Flows for the Firewall{IDPSHDPS| configuration for the switch on
C39.

305

Appendix C: Routing Configuration Flows for the[SSEC| Reordering Framework

¢Y)

(2)

(3

hard_timeout=300,priority=100,dl_type=0x0800,in_port=1,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:4
hard_timeout=300,priority=100,dl_type=0x0800,in_port=5,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:1
hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:93:cd:2d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:3

Listing C.2: Flows for the Firewall{IDPSHDPS| configuration for the switch on

¢)

(2)

(3

(4)

C48.

hard_timeout=300,priority=100,d1l_type=0x0800,in_port=6,
dl_src=52:54:00:91:60:4d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:1
hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:7
hard_timeout=300,priority=100,d1_type=0x0800,in_port=8,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:9
hard_timeout=300,priority=100,d1_type=0x0800,in_port=10,
dl_src=52:54:00:d3:db:f1,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:1

Listing C.3: Flows for the [DPSFirewall{DPSl configuration for the switch on

306

C39.

(1) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:4

(2) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=5,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:1

(3) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:93:cd:2d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:3

Listing C.4: Flows for the [DPSFirewall{DPS configuration for the switch on
C48.

(1) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=6,
dl_src=52:54:00:91:60:4d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:1

(2) hard_timeout=300,priority=100,dl_type=0x0800,in_port=1,
dl_src=52:54:00:d3:db:f1,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:9

(3) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=10,
dl_src=52:54:00:d3:db:fl,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:7

(4) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=8,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:1

Listing C.5: Flows for the [DPSHDPSHFirewall configuration for the switch on
C39.

307

Appendix C: Routing Configuration Flows for the[SSEC| Reordering Framework

¢Y)

(2)

(3

hard_timeout=300,priority=100,dl_type=0x0800,in_port=1,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:4
hard_timeout=300,priority=100,dl_type=0x0800,in_port=5,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:1
hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:93:cd:2d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:3

Listing C.6: Flows for the [DPSHDPSFirewall configuration for the switch on

¢)

(2)

(3

(4)

C48.

hard_timeout=300,priority=100,d1l_type=0x0800,in_port=6,
dl_src=52:54:00:91:60:4d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:1
hard_timeout=300,priority=100,d1l_type=0x0800,in_port=1,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:7
hard_timeout=300,priority=100,d1_type=0x0800,in_port=8,
dl_src=52:54:00:09:38:52,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:d3:db:f1,
output:9
hard_timeout=300,priority=100,d1_type=0x0800,in_port=10,
dl_src=52:54:00:d3:db:f1,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:1

Listing C.7: Flows for the [DPSFirewall{DPSl configuration for the switch on

308

C39.

(1) hard_timeout=300,priority=100,dl_type=0x0800,in_port=1,
dl _src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:e3:6f:ac,
output:4

(2) hard_timeout=300,priority=100,d1l_type=0x0800,in_port=5,
dl_src=52:54:00:e3:6f:ac,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:09:38:52,
output:1

(3) hard_timeout=300,priority=100,dl_type=0x0800,in_port=1,
dl_src=52:54:00:93:cd:2d,nw_src=192.168.66.200,
nw_dst=192.168.66.201,actions=mod_dl_src:52:54:00:93:cd:2d,
output:3

Listing C.8: Flows for the [DPS-Firewall{DPS| configuration for the switch on
C48.

309

List of Abbreviations

ACK
AMD
API
ARP
ASIC
AVX
BIOS
CPN
CPU
CSA
CVE
DB
DBMS
DMz
DPDK
DDoS
DIMAQS
DoS
DPI
DPS

TCP ACK (Acknowledgment) packet
Advanced Micro Devices

Application Programming Interface
Address Resolution Protocol
Application Specific Integrated Circuit
Advanced Vector Extensions

Basic Input/Output System

Colored Petri Net

Central Processing Unit

Cloud Security Alliance

Common Vulnerabilities and Exposures
Database

Database Management System
Demilitarized Zone

Data Plane Development Kit
Distributed Denial-of-Service

Dynamic Identification of Malicious Query Sequences
Denial-of-Service

Deep Package Inspection

DDoS Protection System

311

List of Abbreviations

EAL
FCC
FCFS
FPGA
FTP
GET
GPU
HTTP
TIaaS
ICMP
IDPS
IDS
IoT

IP
IPS
ISN
I/0
JSON
JWE
JWS
JWT
KVM
L2

LAN

312

Environment Abstraction Layer
Function Chaining Controller
First Come First Serve
Field-Programmable Gate Array
File Transfer Protocol

HTTP request to require data from an HTTP server
Graphics Processing Unit
Hypertext Transfer Protocol
Infrastructure as a Service
Internet Control Message Protocol
Intrusion Detection and Prevention System
Intrusion Detection System
Internet of Things

Internet Protocol

Intrusion Prevention System
Initial Sequence Number
Input/Output

JavaScript Object Notation
JSON|Web Encryption

TSON]|Web Signature

JSON]Web Token

Kernel Virtual Machine

Layer 2

Local Area Network

LoC
MAC
MAC*
MSS
NAT
NFV
NIC
NIDS
NMS
ODL
ONOS
OF
OFA
OID
oS
OSI
PMD
PN
PoC
POST

QoS
REST
SDN

List of Abbreviations

Lines of Code

Media Access Control

Message Authentication Code
Maximum Segment Size
Network Address Translation
Network Function Virtualization
Network Interface Card

Network Intrusion Detection System
Network Management System
OpenDaylight

Open Network Operating System
OpenFlow

OpenFlow Agent

Object Identifier

Operating System

Open Systems Interconnection
Poll Mode Driver

Petri Net

Proof-of-Concept

HTTP request to submit data so an HTTP server (e.g., via a
form)

Quality of Experience
Quality of Service
Representational State Transfer

Software-defined Networking

313

List of Abbreviations

SECaaS
SFC
SSFC
SFCing
SSFCing
SFCC
SIMD
SNMP
SoC
SR-IOV
SSE
SSH
SYN
SYN+ACK

TCB
TCP
TDP

THREADS

TLS
UDP
URI
URL
URG

314

Security as a Service

Service Function Chain

Security Service Function Chain
Security Function Chaining

Security Service Function Chaining
Security Function Chaining Controller
Single Instruction Multiple Input
Simple Network Management Protocol
System on Chip

Single-Root I/O Virtualization
Streaming Extensions

Secure Shell

TCP SYN (Synchronization) packet

TCP SYN+ACK (Synchronization and Acknowledgment)
Packet

Transmission Control Block
Transmission Control Protocol
Thermal Design Power

TCP Handshake Remote Establishment and Dynamic
Rerouting using Software-defined Networking

Transport Layer Security
User Datagram Protocol
Uniform Resource Identifier
Uniform Resource Locator

TCP Urgent Flag

VLAN
VM
VNF
WAF
WSGI

List of Abbreviations

Virtualized Local Area Network
Virtual Machine

Virtualized Network Function
Web Application Firewall

Web Server Gateway Interface

315

List of Figures

2.1 Confusion matrix for security appliances,| 13
.2 MCPthree-way handshake process] 17
2.3 BYNflood attack pattern]. 19
2.4 Categorization of intrusion detection systems| 23
.............................. 26

2.6 Overview of SDN]structure and the corresponding|APls,| 30
2.7 A small network with two servers and a switch] 32
2.8 ClickOS throughput running 100 instances on one core, 39
2.9 ClickOS throughput with varying number of instances] 40
.10 Sample classical security infrastructure| 41
isualization of turboboost] oo oL 43

[2.12 Simplified visualization of precision boost.| 45
.13 Demonstration of Petri net execution using a simple example] . 46
.14 Colored Petri Netexample]. 47
[3.1 Overview of misuse and attack vectors againstSDNI|. 55
4.1 Traditional Switching| 69
42 Connection establishment via Adaptive Blacklisting]| 70
(4.3 Connection establishment via Adaptive Whitelisting] 72
.4 Connection establishment via Selective Filtering| 73
45 Testbedsetup| oo oo 75
A6 _Scenarios used for the Evaluation] - . . . « -« o o v oo v 81
4.7 Throughput in MBit/s under constant load in Workload 1. . . . 86
4.8 Number of successfull requests under constant load in Workload 1| 87
4.9 TMCPhandshake duration in Workload 1. 88
E10 Resid e il : : Toad i Workload T] 89
@.11 Number of detected attacks in Workload 1. 90
4.12 Throughput in MBit/s under overload in Workload 2.| 91
4.13 Number of successfull requests under overload in Workload 2.| . 93
E14 andshake duration in Workload 2| 95

317

List of Figures

4.16 Number of detected attacks in Workload 2. 97
4.17 Minimal network architecture of THREADSI 101
{4.18 Connection Establishment Process Using IHREADS|. 103
4.19 General architecture for the[THREADSIVNE] 105
{4.20 Duration until the first HT'TP request is processed.| 110
.21 Performance of Basic THREADS Implementation|. 111
.22 Locked Access Multi-threading 114
{4.23 Ringbuffer Distribution for Multi-threading| 116
.24 Locked access performanceeffect|. 117
.25 Ringbuffer performanceeffect| 118
.26 Comparison of multi-threading approaches| 120
.1 Classic architecture of security systems.| 125
.2 Example setup under varying load with and without reordering.|127
............................. 130

5.4 Selt-aware LRA-M (Learn, Reason and Act based on Models) |
| Loopp|. 131
.5 Evaluation setup forlS5FCk.|o 132
[0.6 Successful requests without any security functions| 139
[p.7 Successful requests with only a firewall enabled.| 140
0.8 Successful requests with only alDPSenabled.| 141
.9 Successful requests with only anlIDPSlenabled.|. 142

5.10 Success rate for[UDPIflood with firewalll. 144

318

List of Figures

.20 Successtul requests during alSYN|flood attack with thelDFSland |

.............. 161

[5.21 CPU load on the firewall during alSYNIflood with the[IDPS/and |

[the firewall enabled in differentSSFClorders] 163

[0.22 Successtul requests during an intrusion flood attack with the |

[firewall and the[DPSlenabled in differentSSFClorders) 164
(.23 CPU load on thellDP5/(3) and the firewall (4) during an intru-

[orders) 166

[5.24 Sample model for a security function detending against mali- |

[cious traffic of class four in a five class model] 171

.25 Model for a single security function,| 172

b.26 Exemyplary development of the traffic composition over the |

| course of a security service function chain.| 176

0.1 Components of the attack-aware[SSFC|reordering framework.| . 184
6.2 Security function wrapper start and shutdown behavior] 186
6.3 Keep-alive communication between the security function wrap- |

| perand thelFCCl| 187

[6.4 Communication between the security function wrapper and the |

| [FECfor attack reporting.| 188
[6.5 Interaction between the [FCC| the SDNFcontroller and the |
[switches for reordering.| 189
[p.6 Testbed for the dynamic function reordering framework] 198
6.7 Landscape graph of a TCPDUMP of [CMPrequests sent from |
[the Sender tothe Receiver] 202
[0.8 Change of routing configuration from [DPS-FirewalldIDPS to |

irewallIDPSHDPS| 204

(6.9 Change of routing configuration from FirewallHIDPSHDPS to |
[TDPStFirewallDPS 205
[6.10 Change of routing configuration from [[DPSFFirewalliDPS to |
[ODPSIDPSHFirewalll 206
[6.11 Change of routing configuration from [[DPSHDPSHFirewall to |
| DPStFirewalldIDPS oo oo 207

. verview of a full rotation using heat-aware load balancing| . .

71 O t a full g h load bal g 214
[Z2__Behavior of the SDNFenabled network without hot servers] . . . 216
73 Behavior of theBDNFenabled network after the firsi 1 l

| hot to go into boosted mode.|. 000 217
[7.4 Connection scheme for both the virtual and physical testbed]| . . 223

319

List of Figures

[7.5 Highest core frequency during the experiment|. 230
[7.6 Temperature during the experiment] 231
[8.1 System architecture of DIMAQS|. 247

ificationlCPNIl L 249

[8.3 Performance intluence ot [DIMAQS| for sysbench and MediaWiki.[261

320

List of Algorithms

[7.1 Creating server to client rules on system initialization| 218
[72 MonitoringToop] 219
[Z3 Packetlnhandler] 220

321

List of Tables

2.1 Sequence number composition using SYNlcookies.|. 26
[2.2 Flow table for network depicted in Figure[2.7] 32
2.3 ExamplelOF match combinations,. 33

[2.4 Boost states for[AMDIRyzen™ 5 1600 processors.|. 44
[3.1 Categorization of SDNFassociated security issues.| 54
.1 Hardware specifications| 76
4.2 Measurement results for Workload 1} 85
4.3 Measurement results for Workload 1] 92
4.4 Overview of the results for the used approaches and scenarios.|. 98
4.5 Requirement fulfillment of THREADS|. 104
.6 Hardware Specifications of non{VNLE|servers in the testbed.. . . 107
.7 Hardware specitications of the[VNLE server in the testbed|. . . . 108
4.8 Variation for Locked Accessl 114
4.9 Variation for Ringbuffer Access| 115
.1 Example calculation of resulting resource demands.| 128
[p.2 Hardware specifications for all servers inside the evaluation |

[environment Lo 133
[p.3 Latency and packet loss for single security functions with a be- |

| nignworkload.|. oo oo oo 138
.4 Latency and packet loss during alUDP|tlood with and without |
[thefirewallenabled) 145
.5 Latency and packet loss during anlH T TP flood with and without |

irewallenabled] 146

.6 Latency and packet loss during alSYNIflood with and without |
........................... 148

p.7 Latency and packet loss during an intrusion flood with and |

ithout thel[DPSlenabled) 148

323

List of Tables

.8 Latency and packet loss during alUDP|tlood with thellDP5/and |
[the firewall enabled in differentSSFClorders] 153
[0.9 Latency and packet loss during an HT'TP tlood with the firewall |

.......... 156

.10 Latency and packet loss during alSYN/tlood with the [DPS/and |

in differentSSFClorders). 159

.11 Latency and packet loss during al5YNIflood with the[DPSand |

i in differentlSSEClorders) 162

.12 Latency and packet loss during an[IDS flood with the[DPS/and |
[the firewall enabled in different[SSFClorders] 165
[0.13 Comparison of the suggested decision-making approaches.|. . . 180
[6.1 Specification for all physical servers (C39, C45, C48, C49) in the |

| testbed, as seen in Figurelo.6l| 198
2 N it - rvirtual ines in the testbed T l

[Figurel6.6|. 199
[7.1 Specifications for theVMlhost| 225
[7.2 Specifications for the client, the[SDNI controller, and the workers.|226
[7.3 Specifications for the switch.[. 227
[7.4 Duration per LU request for a given matrix size on the physical |

[testbed) 228
[Z.5__Scenarios used for evaluation. 00 228
[7.6 Result of the requests after experiment termination,| 229
[7.7 Comparison switched and non-switched with tive second work- |
L Joad). 235
[7.8 Comparison switched and non-switched with one second work- |

[foadl. 236

[8.1 Configured actions for the places inside the(CPNlin Figure|8.2} |
| When a token reaches a place, the specified action can be executed 249

.2 Rewriting / performed by [DIMAQS| 255
(8.3 The server used for evaluatingDIMAQS)| 256
[8.4 ICPNlstate after execution of querysets.| 259

[8.5 Performance without the plugin (disabled), with the enabled |
| plugin (initialized), and with tokens in each[PN[state (full)] . . 260

[A.1 [5DNlrules for routing traffic via the firewallonly|. 289
[A.2 [SDNIrules for routing traffic via the[DPSonly|. 289
[A.3 [SDNIrules for routing traffic via the[[DPSonly| 290

324

List of Tables

[A.4 [5SDNIrules for routing traffic via thellDI’Sland then the firewall |

[and vice-versal. L Lo oo 291
[A.5 [5DNrules for routing trattic via thelDPSand then thellDPS/and |

[VICe-VeISa) 292
[A.6 [SDNlrules for routing traffic via thelDPS/and then the firewall |

[and vice-versal. L oL L oo 293
[B.1 Successful requests without any security functions as shown in |
igureB.6ll 295

[B.2™ Successful requests without only the firewall enabled as shown |
[inFigurep.7[. 296
B3 Caption|. 296
[B.4 Successful requests with only the[DPSenabled as shown in Fig- |

L urePsll ..o Lo 296
[B.5 Successtul requests without only the[lDPS/enabled as shown in |
[FigurePS 297
B.6 Successful requests during alUDPI flood attack with direct con- |
nection or only the firewall enabled as shown in Figure5.10]| . . 297

B.7 Successful requests during an [HTTP flood attack with direct |

| connection or only the firewall enabled as shown in Figure[5.11]] 298
[B.8" Successful requests during alSYNIflood attack with direct con- |

| nection or only the[DPS enabled as shown in Figure5.12]] 299
[B.9 Successful requests during an intrusion flood attack with direct |
connection or only the[[DPSenabled as shown in Figure5.13]]. . 299

[B-10 Successful requests during a [UDPI flood attack with the |
[and the firewall enabled as shown in Figure 5. 14 300
[B.1T Successful requests during an[HTTPflood attack with the [DPS |

| and the firewall enabled as shown in Figure .16 301
[B.12 Successful requests during alSYNIflood attack with the[DPSand |

| the enabled as shown in Figurep.18] 302
[B.13 Successful requests during alSYNIflood attack with the firewall |
[andthe enabled as shown in Figurep.20] 303
[B.14 Successful requests during an intrusion flood attack with the |

| and the firewall enabled as shown in Figure5.22]] 303

325

List of Listings

2.1 Signature for the Buffer Overflow Intrusion Attack on Oracle |
| WebLogic Apache Connector from SectionR.2.2]. 24

[2.2 Signature for the Cross-site Scripting attack on the Apache Web |

....................... 25

.1 Script to bring up all virtual machines in the environment and |
L sshto the control inef 137
.2 Script to deploy all required services, tools, etc. on all machines |

| using ansible from the controller machine|. 137
6.1 Example flow configuration for the[SDNIcontroller| 197
(6.2 Flows tor the Open vSwitch running on C39 for the first routing |

| change| 200
(6.3 Flows tor the Open vSwitch running on C48 for the first routing |

| change| L 201
[A.1 Additional signatures for thel[DPSused in Section 5.2.1||[Fel18].| 275
IA.2 Rules used by the firewall in Section|[5.2.1/ [Hem17]].| 281
A3 Modificat TEREADS for O Tuat : 0 |

| Section5.2.1f[[Fell18].| 288
|C.1 Flows for the Firewall{IDPSHDPS configuration for the switch on |
I 6 305
|C.2 Flows for the Firewall{IDPSHDPS configuration for the switch on |
| CASS . e 306
|C.3 Flows for thellDPSFFirewalliDPS configuration for the switch on |
I 1 306
(C.4 Flows for thellDPSFFirewallHDPS configuration tor the switch on |
[C48] ... 307
|C.5 Flows for thelDPSHDPS-Firewall configuration for the switch on |
I 1 307

327

List of Listings

|C.6 Flows for thellDPSHDPSHFirewall configuration for the switch on

| (48]

|C.7 _Flows for thellDPSrFirewalliDPS|configuration for the switch on

| (39

|C.8 Flows for the[lDPSHFirewalldDPS|configuration for the switch on

| (45

328

List of Listings

329

Bibliography

[Adv14]

[Alh+11]

[AMD18]

[An17]

[Ant+17]

[Atc87]

[Axe00]

Advanced Micro Devices, Inc. Advanced Power Management Helps
Bring Improved Performance to Highly Integrated X86 Processors.
White Paper. Advanced Micro Devices, Inc., 2014 (see page .

Adeeb Alhomoud, Rashid Munir, Jules Pagna Disso, Irfan Awan,
and A. Al-Dhelaan. “Performance Evaluation Study of Intru-
sion Detection Systems”. In: Procedia Computer Science 5 (2011),
pp- 173-180. por:[10.1016/j . procs.2011.07.024 (see page[50)).

AMD. 2nd Gen AMD Ryzen™ Processors: XFR 2 and Precision
Boost 2. [Online; accessed 24. Jan. 2019]. Apr. 2018. urL: https:
/ /wwu . youtube . com/watch?v=426hLGoXDbM (see pages[44} {5)).

Daniel An. Find Out How You Stack Up to New Industry Bench-
marks for Mobile Page Speed. Research rep. Google, Feb. 2017. Urt:
https://think . storage . googleapis . com/docs /mobile ~
page-speed-new-industry-benchmarks.pdf (see page|(112]).

Manos Antonakakis et al. “Understanding the Mirai Botnet”. In:

USENIX Security Symposium. 2017. urL: https://www.usenix|
org/system/files/conference/usenixsecurityl7/secl7~

antonakakis.pdf| (see pages 2} [240]).

M. Atchley. Recommendations for Security Policy for All Net-
worked Computers St Lbl. 1987. urL: https : / / cloudfront |
escholarship . org / dist / prd / content / qt00j5f3bv /
qt00;j5£3bv. pdf| (see page 241)).

Stefan Axelsson. Intrusion Detection Systems: A Survey and Taxon-
omy. Tech. rep. Department of Computer Engineering, Chalmers
University of Technology, Goteborg, Sweden, 2000. URL: http:
/ /neuro . bstu.by/ai/To-dom/My_research/Paper-0-
again/For - research/D-mining / Anomaly - D/ Intrusion
detection/taxonomy .pdf| (see page .

331

https://doi.org/10.1016/j.procs.2011.07.024
https://www.youtube.com/watch?v=426hLGoXDbM
https://www.youtube.com/watch?v=426hLGoXDbM
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt00j5f3bv/qt00j5f3bv.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt00j5f3bv/qt00j5f3bv.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt00j5f3bv/qt00j5f3bv.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Intrusion-detection/taxonomy.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Intrusion-detection/taxonomy.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Intrusion-detection/taxonomy.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Intrusion-detection/taxonomy.pdf

Bibliography

[BS14]

[BSM15]

[Becl5]

[Bei+19a]

[Bei+19b]

[Ber+14]

[Bia+14]

332

Subhashree Barada and Santosh Kumar Swain. “A Survey Re-
port on Software Aging and Rejuvenation Studies in Virtualized
Environment”. In: International Journal of Computer Science &
Engineering Technology (IJCSET) 5.5 (2014), pp. 541-546. URrL:
http://www.ijcset.com/docs/IJCSET14-05-05-132. pdf

(see page [35)).

Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast
Userspace Packet Processing”. In: 2015 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS).
IEEE. IEEE, May 2015, pp. 5-16. por: 10 . 1109/ ancs . 2015 |
7110116 (see page[58)).

K. Beckers. Pattern and Security Requirements. Springer Interna-
tional Publishing, 2015. por: |10 . 1007 /978-3-319- 16664 - 3.
URL: https://books . google .de/books?id=DvdICAAAQBAJ&
pg=PA100&redir_esc=y#v=onepage&q&f=false (see page .

Lukas Beierlieb, Lukas Ifflinder, Samuel Kounev, and Aleksan-
dar Milenkoski. “Towards Testing the Performance Influence of
Hypervisor Hypercall Interface Behavior”. In: Proceedings of the
10th Symposium on Software Performance 2019 (SSP’19). Nov. 2019
(see page[xiv)).

Lukas Beierlieb, Lukas Ifflinder, Aleksandar Milenkoski, Charles
F. Gongalves, Nuno Antunes, and Samuel Kounev. “Towards
Testing the Software Aging Behavior of Hypervisor Hyper-
call Interfaces”. In: 2019 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISSREW). IEEE, Nov.
2019. urL: https://se2. informatik . uni - wuerzburg . de/
publications/download/paper/2013.pdf| (see page xv]).

Pankaj Berde et al. “"ONOS: Towards an Open, Distributed SDN
OS”. In: Proceedings of the third workshop on Hot topics in software
defined networking - HotSDN "14. ACM Press, 2014. por: |10. 1145/

2620728 .2620744 (see pages 53] 271)).

Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo
Cascone. “OpenState: Programming Platform-independent
Stateful OpenFlow Applications Inside the Switch”. In: ACM
SIGCOMM Computer Communication Review 44.2 (Apr. 2014),
pp. 44-51. por:[10.1145/2602204. 2602211/ (see page 52).

http://www.ijcset.com/docs/IJCSET14-05-05-132.pdf
https://doi.org/10.1109/ancs.2015.7110116
https://doi.org/10.1109/ancs.2015.7110116
https://doi.org/10.1007/978-3-319-16664-3
https://books.google.de/books?id=DvdICAAAQBAJ&pg=PA100&redir_esc=y#v=onepage&q&f=false
https://books.google.de/books?id=DvdICAAAQBAJ&pg=PA100&redir_esc=y#v=onepage&q&f=false
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/2013.pdf
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/2013.pdf
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2602204.2602211

[Ble+14]

[Boi+17]

[Bon+15]

[Bor05]

[Bos+14]

[Bre+20]

[Bre+14]

Bibliography

Jeremias Blendin, Julius Riickert, Nicolai Leymann, Georg
Schyguda, and David Hausheer. “Position Paper: Software-
Defined Network Service Chaining”. In: 2014 Third European
Workshop on Software Defined Networks. IEEE. IEEE, Sept. 2014,
pp- 109-114. por:[10.1109/ewsdn. 2014. 14 (see pages 4} [60)).

Julien Boite, Pierre-Alexis Nardin, Filippo Rebecchi, Mathieu
Bouet, and Vania Conan. “StateSec: Stateful Monitoring for
DDoS Protection in Software-defined Networks”. In: 2017 IEEE
Conference on Network Softwarization (NetSoft). IEEE, July 2017.
por:[10.1109/netsoft.2017.8004113 (see page52).

Roberto Bonafiglia, Ivano Cerrato, Francesco Ciaccia, Mario Ne-
mirovsky, and Fulvio Risso. “Assessing the Performance of Virtu-
alization Technologies for NFV: A Preliminary Benchmarking”.
In: 2015 Fourth European Workshop on Software Defined Networks.
IEEE. IEEE, Sept. 2015, pp. 67-72. por:[10.1109/ewsdn.2015.63

(see page[59).

J. Efrim Boritz. “IS practitioners’ views on core concepts of in-
formation integrity”. In: International Journal of Accounting In-
formation Systems 6.4 (Dec. 2005), pp. 260-279. por: 10.1016/j .
accinf.2005.07.001/ (see page[12).

Pat Bosshart et al. “P4: Programming Protocol-independent
Packet Processors”. In: ACM SIGCOMM Computer Communi-
cation Review 44.3 (July 2014), pp. 87-95. por: 10.1145/2656877 |
2656890 (see page [B1)).

Thomas J. Breen, Ed J. Walsh, Jeff Punch, Amip J. Shah, and
Cullen E. Bash. “From Chip to Cooling Tower Data Center Model-
ing: Part I Influence of Server Inlet Temperature and Temperature
Rise across Cabinet”. In: 2010 12th IEEE Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electronic Systems.
IEEE, June 2020, pp. 2-5. por:[10.1109/ITHERM. 2010.5501421
(see page[221)).

Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Ko-
ral. “Deep Packet Inspection as a Service”. In: Proceedings of the
10th ACM International on Conference on emerging Networking Ex-
periments and Technologies - CONEXT "14. ACM Press, 2014. por:
10.1145/2674005.2674984 (see pages[4}[59).

333

https://doi.org/10.1109/ewsdn.2014.14
https://doi.org/10.1109/netsoft.2017.8004113
https://doi.org/10.1109/ewsdn.2015.63
https://doi.org/10.1016/j.accinf.2005.07.001
https://doi.org/10.1016/j.accinf.2005.07.001
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/ITHERM.2010.5501421
https://doi.org/10.1145/2674005.2674984

Bibliography

[Bro19]

[Bul+18]

[Bul+19]

[Cal+15]

[Cao+15]

[Cas09]

[CN16]

334

Jesper Brouer. Mitigate TCP SYN Flood Attacks with Red Hat En-
terprise Linux 7 Beta. [Online; accessed 11. Nov. 2019]. Nov. 2019.
URL: https://www.redhat.com/en/blog/mitigate-tcp-syn-
flood-attacks-red-hat-enterprise-1linux-7-beta (see
page[27).

Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-order Execution”. In: 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018. Ed. by William Enck and Adri-
enne Porter Felt. USENIX Association, 2018, pp. 991-1008. UrL:
https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck (see page35)).

Jo Van Bulck et al. “Breaking Virtual Memory Protection and
the SGX Ecosystem with Foreshadow”. In: IEEE Micro 39.3 (May
2019), pp. 66-74. por:[10.1109/MM. 2019.2910104 (see page 35)).

Franco Callegati, Walter Cerroni, Chiara Contoli, and Giuliano
Santandrea. “Implementing Dynamic Chaining of Virtual Net-
work Functions in OpenStack P latform”. In: 2015 17th Interna-
tional Conference on Transparent Optical Networks (ICTON). IEEE.
IEEE, July 2015, pp. 1-4. por: 10. 1109/icton . 2015 . 7193561
(see pagel61)).

Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena.
“NFV-VITAL: A Framework for Characterizing the Performance
of Virtual Network Functions”. In: 2015 IEEE Conference on Net-
work Function Virtualization and Software Defined Network (NFV-
SDN). IEEE. IEEE, Nov. 2015, pp. 93-99. por: 10 . 1109 /nfv -
sdn.2015.7387412 (see page[59).

J. Casazza. First the Tick, Now the Tock: Intel Microarchitecture (Ne-
halem). Intel® Xeon® processor 3500 and 5500 series Intel® Mi-
croarchitecture. White Paper. Intel Cooperation, 2009. urL: https:
//www.intel . com/content/dam/doc/white-paper/intel~
microarchitecture-white-paper.pdf (see page.

Ayushi Chahal and Ritu Nagpal. “Performance of Snort on
Darpa Dataset and Different False Alert Reduction Techniques”.
In: 3rd International Conference on Electrical, Electronics, Engineer-
ing Trends, Communication, Optimization and Sciences (EEECOS).
2016. urL: https : / / pdfs . semanticscholar . org / 9634 /
2f678949bcae3beabda3cfafeb0d0abel1d32. pdf (see page.

https://www.redhat.com/en/blog/mitigate-tcp-syn-flood-attacks-red-hat-enterprise-linux-7-beta
https://www.redhat.com/en/blog/mitigate-tcp-syn-flood-attacks-red-hat-enterprise-linux-7-beta
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/MM.2019.2910104
https://doi.org/10.1109/icton.2015.7193561
https://doi.org/10.1109/nfv-sdn.2015.7387412
https://doi.org/10.1109/nfv-sdn.2015.7387412
https://www.intel.com/content/dam/doc/white-paper/intel-microarchitecture-white-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-microarchitecture-white-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-microarchitecture-white-paper.pdf
https://pdfs.semanticscholar.org/9634/2f678949bcae35eabda3cfafeb0d0abe1d32.pdf
https://pdfs.semanticscholar.org/9634/2f678949bcae35eabda3cfafeb0d0abe1d32.pdf

[Che+05]

[Chi+14]

[Chi+12]

[Cho+16]

[Cim17a]

[Cim17Db]

[Cim17c]

Bibliography

H. Chen, L. Amodeo, F. Chu, and K. Labadi. “Modeling and Per-
formance Evaluation of Supply Chains Using Batch Determinis-
tic and Stochastic Petri Nets”. In: IEEE Transactions on Automation
Science and Engineering (T-ASE) 2.2 (Apr. 2005), pp. 132-144. 1ssn:
1545-5955. por:[10.1109/tase . 2005 . 844537 (see page.

Po-Wen Chi, Chien-Ting Kuo, He-Ming Ruan, Shih-Jen Chen,
and Chin-Laung Lei. “An AMI Threat Detection Mechanism
Based on SDN Networks”. In: Eighth International Conference
on Emerging Security Information, Systems and Technologies (SE-
CUWARE 2014). IARIA, Nov. 2014. urL: https : / / www |
thinkmind.org/download.php?articleid=securware_2014_
9_30_30142| (see pages[3,[57).

Margaret Chiosi et al. Network Functions Virtualization (NFV'), an
Introduction, Benefits, Enablers, Challenges & Call for Action. SDN
and OpenFlow World Congress, Darmstadt, Germany. White
paper. 2012. urL: http://portal.etsi.org/NFV/NFV_White_
Paper . pdf| (see pages [B9).

Li-Der Chou, Chia-Wei Tseng, Yu-Ki Huang, Kuo-Chung Chen,
Tsung-Fu Ou, and Chia-Kuan Yen. “A Security Service on-
demand Architecture in SDN”. In: 2016 International Conference
on Information and Communication Technology Convergence (ICTC).
IEEE, Oct. 2016, pp. 287-291. por1: 10.1109/ictc.2016.7763487
(see page[dT)).

Catalin Cimpanu. A Benevolent Hacker Is Warning Owners of
Unsecured Cassandra Databases. Jan. 2017. urL: https : / /www .
bleepingcomputer . com / news / security / a - benevolent -
hacker - is — warning - owners — of — unsecured - cassandra -

databases/ (see page[239).

Catalin Cimpanu. Database Ransom Attacks Hit CouchDB and
Hadoop Servers. Jan. 2017. urL: https: //www.bleepingcomputer.
com / news / security / database - ransom - attacks - hit ~
couchdb-and-hadoop-servers/| (see page[239).

Catalin Cimpanu. Massive Wave of MongoDB Ransom Attacks
Makes 26,000 New Victims. Feb. 2017. urL: https : / / www .
bleepingcomputer . com/news/security/massive-wave-of ~
mongodb-ransom-attacks-makes-26-000-new-victims/ (see

pages 239} 240).

335

https://doi.org/10.1109/tase.2005.844537
https://www.thinkmind.org/download.php?articleid=securware_2014_9_30_30142
https://www.thinkmind.org/download.php?articleid=securware_2014_9_30_30142
https://www.thinkmind.org/download.php?articleid=securware_2014_9_30_30142
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://doi.org/10.1109/ictc.2016.7763487
https://www.bleepingcomputer.com/news/security/a-benevolent-hacker-is-warning-owners-of-unsecured-cassandra-databases/
https://www.bleepingcomputer.com/news/security/a-benevolent-hacker-is-warning-owners-of-unsecured-cassandra-databases/
https://www.bleepingcomputer.com/news/security/a-benevolent-hacker-is-warning-owners-of-unsecured-cassandra-databases/
https://www.bleepingcomputer.com/news/security/a-benevolent-hacker-is-warning-owners-of-unsecured-cassandra-databases/
https://www.bleepingcomputer.com/news/security/database-ransom-attacks-hit-couchdb-and-hadoop-servers/
https://www.bleepingcomputer.com/news/security/database-ransom-attacks-hit-couchdb-and-hadoop-servers/
https://www.bleepingcomputer.com/news/security/database-ransom-attacks-hit-couchdb-and-hadoop-servers/
https://www.bleepingcomputer.com/news/security/massive-wave-of-mongodb-ransom-attacks-makes-26-000-new-victims/
https://www.bleepingcomputer.com/news/security/massive-wave-of-mongodb-ransom-attacks-makes-26-000-new-victims/
https://www.bleepingcomputer.com/news/security/massive-wave-of-mongodb-ransom-attacks-makes-26-000-new-victims/

Bibliography

[Cim17d]

[Cim17e]

[Com19]

[Con+17]

[Con+16]

[CS16]

[CGS07]

[DSC74]

336

Catalin Cimpanu. MongoDB Apocalypse: Professional Ransomware
Group Gets Involved, Infections Reach 28K Servers. Jan. 2017. urL:
https : / / www . bleepingcomputer . com / news / security /
mongodb — apocalypse - professional - ransomware - group -
gets - involved - infections - reach - 28k - servers/ (see
page[239).

Catalin Cimpanu. MongoDB Hijackers Move on to ElasticSearch
Servers. Jan. 2017. urL: https : / / wuw . bleepingcomputer |
com / news / security / mongodb - hijackers - move - on - to ~

elasticsearch-servers/ (see page[239)).

Gerald Combs. Wireshark - Go Deep. [Online; accessed 15. Jun.
2019]. June 2019. urL: https : / / www . wireshark . orgl (see
page[109).

Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro,
Giulio De Pasquale, Alessandro Barenghi, Stefano Zanero, and
Federico Maggi. “ShieldFS: The Last Word in Ransomware Re-
silient Filesystems”. In: Black Hat USA. 2017. URL: https://wuw.
blackhat.com/docs/us-17/wednesday/us-17-Continella~
ShieldFS - The - Last - Word - In - Ransomware - Resilient —
Filesystems-wp.pdf| (see page[241)).

Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro,
Giulio De Pasquale, Alessandro Barenghi, Stefano Zanero, and
Federico Maggi. “ShieldFS: A Self-healing, Ransomware-aware
Filesystem”. In: Proceedings of the 32nd Annual Conference on Com-
puter Security Applications. ACM. ACM, Dec. 2016. por:|10. 1145/
2991079.2991110 (see page [241]).

Stacy Cowley and Liam Stack. “Los Angeles Hospital Pays Hack-
ers USD 17,000 After Attack”. In: The New York Times (Feb. 2016).
1ssN: 0362-4331. UrL: https://www.nytimes . com/2016/02/
19/business/los-angeles-hospital-pays-hackers-17000~
after-attack.html| (see page[240)).

David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel
Computer Architecture: A Hardware/Software Approach. Kaufmann,
2007 (see page[224)).

Y. Dalal, C. Sunshine, and V. Cerf. Specification of Internet Trans-

mission Control Program. en. Tech. rep. Dec. 1974. URL: https :
//tools.ietf.org/html/rfc675 (visited on 03/10/2020) (see

page[71).

https://www.bleepingcomputer.com/news/security/mongodb-apocalypse-professional-ransomware-group-gets-involved-infections-reach-28k-servers/
https://www.bleepingcomputer.com/news/security/mongodb-apocalypse-professional-ransomware-group-gets-involved-infections-reach-28k-servers/
https://www.bleepingcomputer.com/news/security/mongodb-apocalypse-professional-ransomware-group-gets-involved-infections-reach-28k-servers/
https://www.bleepingcomputer.com/news/security/mongodb-hijackers-move-on-to-elasticsearch-servers/
https://www.bleepingcomputer.com/news/security/mongodb-hijackers-move-on-to-elasticsearch-servers/
https://www.bleepingcomputer.com/news/security/mongodb-hijackers-move-on-to-elasticsearch-servers/
https://www.wireshark.org
https://www.blackhat.com/docs/us-17/wednesday/us-17-Continella-ShieldFS-The-Last-Word-In-Ransomware-Resilient-Filesystems-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Continella-ShieldFS-The-Last-Word-In-Ransomware-Resilient-Filesystems-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Continella-ShieldFS-The-Last-Word-In-Ransomware-Resilient-Filesystems-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Continella-ShieldFS-The-Last-Word-In-Ransomware-Resilient-Filesystems-wp.pdf
https://doi.org/10.1145/2991079.2991110
https://doi.org/10.1145/2991079.2991110
https://www.nytimes.com/2016/02/19/business/los-angeles-hospital-pays-hackers-17000-after-attack.html
https://www.nytimes.com/2016/02/19/business/los-angeles-hospital-pays-hackers-17000-after-attack.html
https://www.nytimes.com/2016/02/19/business/los-angeles-hospital-pays-hackers-17000-after-attack.html
https://tools.ietf.org/html/rfc675
https://tools.ietf.org/html/rfc675

[DB11]

[Dow20]

[DPD20]

[Dzu09]

[Edd07]

[Ern19]

[Ext20]

[Far+19]

[Faw06 |

Bibliography

David Day and Benjamin Burns. “A Performance Analysis of
Snort and Suricata Network Intrusion Detection and Preven-
tion Engines”. In: 2011. urL: https : //www . thinkmind . org/
download . php ? articleid=icds _2011_7 _40 _90007 (see
pages[3, p1).

Oliver James Dowden. Cyber Security Breaches Survey 2020. Tech.
rep. [Online; accessed 11. Jul. 2020]. Department for Digital,
Culture, Media and Sport, Mar. 2020. urL: https://www.gov |
uk /government /publications/cyber-security-breaches-
survey-2020/cyber-security-breaches-survey-2020 (see
page[l).

DPDK. DPDK Framework. [Online; accessed 27. Jan. 2020]. Jan.
2020. urc: https://www.dpdk. orgl (see page[39).

Muhaimin Dzulfakar. “Advanced MySQL Exploitation”. In:
Black Hat USA. 2009. urL: https : / / www . blackhat . com /
presentations/bh-usa-09/DZULFAKAR/BHUSA09-Dzulfakar-
MySQLExploit-SLIDES.pdf (see page [242)).

W. Eddy. TCP SYN Flooding Attacks and Common Mitigations.
RFC 4987. RFC Editor, Aug. 2007. por: 10.17487/rfc4987. URL:
https://tools.ietf.org/html/rfc4987 (see page[25).

N. Ernst. Turbo-Core ist nicht gleich Turbo-Boost - Test: Phenom II X6
1090T - AMD holt mit 6-Kerner auf - Golem.de. [Online; accessed 24.
Jan. 2019]. Jan. 2019. urL: https://www.golem.de/1004/74709~
3.html| (see pages [43] [44)).

Extreme Networks Inc. OpenFlow Table Match Conditions. [Online;
accessed 23. Jan. 2020]. Jan. 2020. urt: https://documentation!
extremenetworks . com/ OpenFlow/EXOS _All /OpenFlow/c _
OpenFlow-match-conditions.shtml (see page[33).

Ivan Farris, Tarik Taleb, Yacine Khettab, and Jaeseung Song. “A
Survey on Emerging SDN and NFV Security Mechanisms for
IoT Systems”. In: IEEE Communications Surveys & Tutorials 21.1
(2019), pp. 812-837. por: 10. 1109/ comst . 2018. 2862350 (see
page[59).

Tom Fawcett. “An introduction to ROC analysis”. In: Pattern
Recognition Letters 27.8 (June 2006), pp. 861-874. por: 10.1016/
j.patrec.2005.10.010 (see page[12)).

337

https://www.thinkmind.org/download.php?articleid=icds_2011_7_40_90007
https://www.thinkmind.org/download.php?articleid=icds_2011_7_40_90007
https://www.gov.uk/government/publications/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://www.gov.uk/government/publications/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://www.gov.uk/government/publications/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://www.dpdk.org
https://www.blackhat.com/presentations/bh-usa-09/DZULFAKAR/BHUSA09-Dzulfakar-MySQLExploit-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/DZULFAKAR/BHUSA09-Dzulfakar-MySQLExploit-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/DZULFAKAR/BHUSA09-Dzulfakar-MySQLExploit-SLIDES.pdf
https://doi.org/10.17487/rfc4987
https://tools.ietf.org/html/rfc4987
https://www.golem.de/1004/74709-3.html
https://www.golem.de/1004/74709-3.html
https://documentation.extremenetworks.com/OpenFlow/EXOS_All/OpenFlow/c_OpenFlow-match-conditions.shtml
https://documentation.extremenetworks.com/OpenFlow/EXOS_All/OpenFlow/c_OpenFlow-match-conditions.shtml
https://documentation.extremenetworks.com/OpenFlow/EXOS_All/OpenFlow/c_OpenFlow-match-conditions.shtml
https://doi.org/10.1109/comst.2018.2862350
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010

Bibliography

[Fay+15]

[Fell8]

[Fel20]

[Flo20]

[FZ14]

[Gal+15]

[GRO3]

[git18]

338

Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bai-
ley. “Bohatei: Flexible and Elastic DDoS Defense”. In: Proceedings
of the 24th USENIX Conference on Security Symposium. SEC’15.
Washington, D.C.: USENIX Association, 2015, pp. 817-832. por:
10.5555/2831143.2831195) (see pages 4 [59).

Nicolas Fella. “Performance Evaluation of Security Network
Function Reordering”. Bachelor Thesis. Am Hubland, In-
formatikgebdaude, 97074 Wiirzburg, Germany: University of

Wiirzburg, Dec. 2018 (see pages B27).

Nicolas Fella. Attack Reader — Small tool that reads snort alerts from
a unix socket and notifies the wrapper about alerts. [Online; accessed
21. Apr. 2020]. Apr. 2020. urL: https://gitlab2.informatik!
uni-wuerzburg.de/descartes/nfv-security/attackreader
(see page[193).

Flowgrammable. SDN, OpenFlow, Message Layer, Match Flow-
grammable. [Online; accessed 23. Jan. 2020]. Jan. 2020. UrL: http:
/ / flowgrammable . org / sdn / OpenFlow / message - layer /
match/#tab_ofp_1_3 (see page .

K. Fox and A. Zaidi. “Considerations for System Power Manage-
ment and Thermal Options Using i.MX 6 Series Processors”. In:
Freescale Technology Forum. [Online; Accessed 26. Jan. 2019]. Apr.
2014. urL: http://cache.freescale.com/files/training/
doc/ftf/2014/FTF-SDS-F0167. pdf| (see page [5)).

Sebastian Gallenmuller, Paul Emmerich, Florian Wohlfart,
Daniel Raumer, and Georg Carle. “Comparison of Frameworks
for High-performance Packet I0”. In: 2015 ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems
(ANCS). IEEE Computer Society. IEEE, May 2015, pp. 29-38. por:
10.1109/ancs.2015.7110118| (see pages[4}, [58).

Tal Garfinkel and Mendel Rosenblum. “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection”. In: Proceed-
ings of the Network and Distributed Systems Security Symposium.
2003, pp. 191-206. UrRL: http://citeseerx . ist . psu.edu/
viewdoc/summary?doi=10.1.1.11.8367 (see page[23).

github. synsanity. [Online; accessed 11. Nov. 2019]. June 2018.
URL: https://github.com/github/synsanity (see page[28]).

https://doi.org/10.5555/2831143.2831195
https://gitlab2.informatik.uni-wuerzburg.de/descartes/nfv-security/attackreader
https://gitlab2.informatik.uni-wuerzburg.de/descartes/nfv-security/attackreader
http://flowgrammable.org/sdn/OpenFlow/message-layer/match/#tab_ofp_1_3
http://flowgrammable.org/sdn/OpenFlow/message-layer/match/#tab_ofp_1_3
http://flowgrammable.org/sdn/OpenFlow/message-layer/match/#tab_ofp_1_3
http://cache.freescale.com/files/training/doc/ftf/2014/FTF-SDS-F0167.pdf
http://cache.freescale.com/files/training/doc/ftf/2014/FTF-SDS-F0167.pdf
https://doi.org/10.1109/ancs.2015.7110118
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.8367
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.8367
https://github.com/github/synsanity

[Gol18]

[Gol17]

[GAV18]

[Gor20]

[GK17]

[GC18]

[Hag+18]

[Hal19]

Bibliography

Markus Goldstein. bonesi. [Online; accessed 3. Apr. 2020]. Dec.
2018. urL: https : / / github . com / markus - go / bonesi (see
page[134).

Dawid Golunski. MySQL-Exploit-Remote-Root-Code-Execution-
Privesc-CVE-2016-6662. [Online; accessed 20. Jan. 2019]. May
2017. urL: https://legalhackers . com/advisories/MySQL~
Exploit-Remote-Root-Code-Execution-Privesc-CVE-2016-

6662.html (see pages 246]).

Charles F. Gongalves, Nuno Antunes, and Marco Vieira. “Eval-
uating the Applicability of Robustness Testing in Virtualized
Environments”. In: 2018 Eighth Latin-American Symposium on
Dependable Computing (LADC). IEEE, Oct. 2018, pp. 161-166. por:
10.1109/1adc.2018.00027 (see page[35).

Matt Gorham. 2019 Internet Crime Report. Tech. rep. Federal Bu-
reau of Ivestigation, Feb. 2020. urL: https://pdf . ic3. gov/
2019_IC3Report.pdf| (see pageI]).

Kannan Govindarajan and Vivekanandan Suresh Kumar. “An In-
telligent Load Balancer for Software-defined Networking (SDN)
Based Cloud Infrastructure”. In: 2017 Second International Con-
ference on Electrical, Computer and Communication Technologies
(ICECCT).IEEE, Feb. 2017. por:|10.1109/icecct .2017.8117881
(see page[104)).

Oleg Yur’evich Guzev and Ivan Vladimirovich Chizhov. “SDN
Load Balancing for Secure Metrics”. In: Systems and Means of
Informatics (Mar. 2018). por: 10 . 14357 /08696527180110) (see
page[104).

Christoph Hagen, Alexandra Dmitrienko, Lukas Ifflinder,
Michael Jobst, and Samuel Kounev. “Efficient and Effective
Ransomware Detection in Databases”. In: 34th Annual Com-
puter Security Applications Conference (ACSAC). ACM. Dec. 2018.
URL: https : / / se2 . informatik . uni - wuerzburg . de /
publications/download/paper/1797.pdf (see pages .

R. Hallock. Gaming: Understanding Precision Boost 2 in AMD Com-
munity. [Online; accessed 24. Jan. 2019]. Jan. 2019. UrL: https
//community .amd . com/community/gaming/blog/2017/11/

27/asdasd (see page[44)).

339

https://github.com/markus-go/bonesi
https://legalhackers.com/advisories/MySQL-Exploit-Remote-Root-Code-Execution-Privesc-CVE-2016-6662.html
https://legalhackers.com/advisories/MySQL-Exploit-Remote-Root-Code-Execution-Privesc-CVE-2016-6662.html
https://legalhackers.com/advisories/MySQL-Exploit-Remote-Root-Code-Execution-Privesc-CVE-2016-6662.html
https://doi.org/10.1109/ladc.2018.00027
https://pdf.ic3.gov/2019_IC3Report.pdf
https://pdf.ic3.gov/2019_IC3Report.pdf
https://doi.org/10.1109/icecct.2017.8117881
https://doi.org/10.14357/08696527180110
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/1797.pdf
https://se2.informatik.uni-wuerzburg.de/publications/download/paper/1797.pdf
https://community.amd.com/community/gaming/blog/2017/11/27/asdasd
https://community.amd.com/community/gaming/blog/2017/11/27/asdasd
https://community.amd.com/community/gaming/blog/2017/11/27/asdasd

Bibliography

[Han+15]

[Has20]

[Haw+14]

[Hem17]

[Hem20]

[Her+15]

[Hoi+18]

[Hou20]

340

Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee.
“Network Function Virtualization: Challenges and Opportuni-
ties for Innovations”. In: IEEE Communications Magazine 53.2
(Feb. 2015), pp. 90-97. 1ssN: 0163-6804. por: 10.1109/mcom. 2015,

7045396 (see page[34)).
HashiCorp. Vagrant. Apr. 2020. urL: https://www.vagrantup.

com/| (see pages 224).

Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Ra-
sool Asal. “NFV: State of the Art, Challenges, and Implemen-
tation in Next Generation Mobile Networks (vepc)”. In: IEEE
Network 28.6 (Nov. 2014), pp. 18-26. 1ssn: 1558-156X. por: [10 |
1109/mnet .2014.6963800) (see pages [34{37).

Christina Hempfling. “A Packet-Filtering Firewall for Cloud
Computing”. Project Thesis. Am Hubland, Informatikgebdude,
97074 Wiirzburg, Germany: University of Wiirzburg, Sept. 2017

(see pages 327).
Christina Hempfling. Fire Guardian of the Cloud. [Online; accessed
21. Apr. 2020]. Apr. 2020. urL: https://gitlab2.informatik!

uni-wuerzburg.de/descartes/nfv-security/FireGuardian
(see page[193).

Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and
Henning Groenda. “BUNGEE: An Elasticity Benchmark for Self-
Adaptive IaaS Cloud Environments”. In: Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2015). Acceptance rate: 29%.
Firenze, Italy: IEEE, May 2015. por: 10.1109/seams . 2015. 23
(see page[224).

Toke Hoiland-Jergensen, Jesper Dangaard Brouer, Daniel Bork-
mann, John Fastabend, Tom Herbert, David Ahern, and David
Miller. “The eXpress Data Path: Fast Programmable Packet Pro-
cessing in the Operating System Kernel”. In: Proceedings of the
14th International Conference on emerging Networking EXperiments
and Technologies - CONEXT '18. ACM. ACM Press, 2018, pp. 54-66.
por:|10.1145/3281411.3281443| (see page.

Alastair Houghton. netifaces. [Online; accessed 21. Apr. 2020].
Apr. 2020. urL: https://pypi.org/project/netifaces (see

page[192).

https://doi.org/10.1109/mcom.2015.7045396
https://doi.org/10.1109/mcom.2015.7045396
https://www.vagrantup.com/
https://www.vagrantup.com/
https://doi.org/10.1109/mnet.2014.6963800
https://doi.org/10.1109/mnet.2014.6963800
https://gitlab2.informatik.uni-wuerzburg.de/descartes/nfv-security/FireGuardian
https://gitlab2.informatik.uni-wuerzburg.de/descartes/nfv-security/FireGuardian
https://doi.org/10.1109/seams.2015.23
https://doi.org/10.1145/3281411.3281443
https://pypi.org/project/netifaces

[HP03]

[Hual9]

[1££16]

[ID17]

[Iff+15]

[Iff+19a]

[IF19]

[1G12]

Bibliography

Yi Hu and B. Panda. “Identification of Malicious Transactions
in Database Systems”. In: International Database Engineering and
Applications Symposium (IDEAS). IEEE Comput. Soc, 2003. por:
10.1109/ideas.2003. 1214946 (see pages[243} 244)).

Huawei Inc. GPU Turbo - Crazy Fast and Power Saving - Honor
(Global). [Online; accessed 5. Jan. 2019]. Huawei. Jan. 2019. urt:
https://www.hihonor.com/global/GPU-Turbo (see page[42]).

Lukas Ifflander. “Performance Assessment of Service Migration
Strategies”. Master Thesis. Am Hubland, Informatikgebdude,
97074 Wiirzburg, Germany: University of Wiirzburg, Jan. 2016
(see page [xvi)).

Lukas Ifflinder and Alexander Dallmann. “Der Grader PABS”.
In: Automatische Bewertung in der Programmierausbildung. Ed. by
Oliver]. Bott, Peter Fricke, Uta Priss, and Michael Striewe. Vol. 6.
Digitale Medien in der Hochschullehre. ELAN e.V. and Wax-
mann Verlag, 2017. Chap. 15, pp. 241-254 (see page [xvi]).

Lukas Ifflander, Alexander Dallmann, Philip-Daniel Beck, and
Marianus Ifland. “PABS-a Programming Assignment Feedback
System”. In: Proceedings of the secod workshop for automated grading
of programming exercises (ABP). 2015. urL: http://ceur-ws .
org/Vol-1496/paper5. pdf (see page[xv]).

Lukas Ifflinder, Alexandra Dmitrienko, Christoph Hagen,
Michael Jobst, and Samuel Kounev. Hands Off my Database: Ran-
somware Detection in Databases through Dynamic Analysis of Query
Sequences. Tech. rep. Universitdt Wiirzburg, July 2019. eprint:
1907 .06775. URL: https://arxiv.org/abs/1907.06775 (see
pages .

Lukas Ifflinder and Nicolas Fella. “Performance Influence of
Security Function Chain Ordering”. In: Companion of the 2019
ACM/SPEC International Conference on Performance Engineering.
ICPE "19. Mumbeai, India: ACM, 2019, pp. 45-46. por: 10.1145/
3302541.3311965 (see pages [xv}[§)).

Lukas Ifflainder and Nils Gageik. “Entwicklung und Evaluierung
eines Systems zur Bestimmung der Orientierung und Position

eines Objektes durch inertiale und magnetische Sensoren”. Bach-
elor Thesis. University of Wiirzburg, Dec. 2012 (see page [xvi]).

341

https://doi.org/10.1109/ideas.2003.1214946
https://www.hihonor.com/global/GPU-Turbo
http://ceur-ws.org/Vol-1496/paper5.pdf
http://ceur-ws.org/Vol-1496/paper5.pdf
1907.06775
https://arxiv.org/abs/1907.06775
https://doi.org/10.1145/3302541.3311965
https://doi.org/10.1145/3302541.3311965

Bibliography

[Iff+18a]

[1f+18b]

[Iff+20a]

[Iff+20b]

[Iff+20c]

[Iff+19b]

342

Lukas Ifflinder, Stefan Geifiler, Jiirgen Walter, Lukas Beierlieb,
and Samuel Kounev. “Addressing Shortcomings of Existing
DDoS Protection Software Using Software-Defined Network-
ing”. In: Proceedings of the 9th Symposium on Software Performance
2018 (SSP’18). Hildesheim, Germany, Nov. 2018 (see pages [xv}
7).

Lukas Ifflander, Christopher Metter, Florian Wamser, Phuoc
Tran-Gia, and Samuel Kounev. “Performance Assessment of
Cloud Migrations from Network and Application Point of View”.
In: Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering. Mobile Networks and
Management. Ed. by Jiankun Hu, Ibrahim Khalil, Zahir Tari, and
Sheng Wen. Vol. MONAMI 2017. Cham: Springer International
Publishing, 2018, pp. 262-276. por: 10.1007/978-3-319-90775~
8_21| (see page xiii)).

Lukas Ifflainder, Nishant Rawtani, Lukas Beierlieb, Nicolas Fella,
Klaus-Dieter Lange, and Samuel Kounev. “Implementing Attack-
aware Security Service Function Chain Reordering”. In: 2020
Workshop on Self-Aware Computing - SEAC 2020. May 2020 (see
pages o).

Lukas Ifflinder, Nishant Rawtani, Hayreddin Ciner, Lukas Beier-
lieb, Klaus-Dieter Lange, and Samuel Kounev. “Architecture for
a Dynamic Security Service Function Chain Reordering Frame-
work”. In: 1st IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems - ACSOS 2020. Aug. 2020 (see
pages .

Lukas Ifflander, Norbert Schmitt, Andreas Knapp, and Samuel
Kounev. “Heat-aware Load Balancing-Is it a Thing?” In: Proceed-
ings of the 11th Symposium on Software Performance 2020 (SSP’20).
Nov. 2020 (see page[xiv)).

Lukas Ifflinder, Jonathan Stoll, Nishant Rawtani, Veronika Lesch,
Klaus-Dieter Lange, and Samuel Kounev. “Performance Ori-
ented Dynamic Bypassing for Intrusion Detection Systems”. In:
Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering. ICPE "19. Mumbai, India: ACM, 2019,
pp. 159-166. por: 10.1145/3297663. 3310313 (see pages[xiv}[7).

https://doi.org/10.1007/978-3-319-90775-8_21
https://doi.org/10.1007/978-3-319-90775-8_21
https://doi.org/10.1145/3297663.3310313

[Iff+18c]

[Inf20a]

[Inf20b]

[Inf20c]

[Inf20d]

[Int08]

[Int18]

[TWS04]

[Jak+16]

Bibliography

Lukas Ifflainder, Jiirgen Walter, Simon Eismann, and Samuel
Kounev. “The Vision of Self-aware Reordering of Security Net-
work Function Chains”. In: Companion of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering - ICPE "18. ACM
Press, 2018. por:[10.1145/3185768. 3186309 (see pages [xiv} [§)).

InfluxData. InfluxDB. [Online; accessed 15-December-2018].
Apr. 2020. urL: https : //www . influxdata . com/ products /
influxdb-overview/|(see pages 222)).

InfluxData. Telegraf. [Online; accessed 15-December-2018]. Apr.
2020. urL: https : / / www . influxdata . com/ time - series ~

platform/telegraf/ (see pages 222)).

InfluxData. Telegraf Plugin: CPU. [Online; accessed 15-December-
2018]. Apr. 2020. urL: https : // github . com/ influxdata/
telegraf/tree/master/plugins/inputs/cpu (see page[I36]).

InfluxData. Telegraf Plugin: MEM. [Online; accessed 15-
December-2018]. Apr. 2020. urL: https : / / github . com /
influxdata/telegraf/tree/master/plugins/inputs/mem

(see page|[136)).
Intel. Intel Turbo Boost Technology in IntelCore Microarchitecture
(Nehalem) Based Processors. White Paper. 2008 (see page [43)).

Intel. Frequently Asked Questions for Intel Turbo Boost Technology.
[Online; accessed 2. Dec. 2018]. Intel. Nov. 2018. urL: https :
//www.intel.com/content/www/us/en/support/articles/
000007359/ processors/intel-core-processors.html (see
page{2).

Blake Ives, Kenneth R. Walsh, and Helmut Schneider. “The
Domino Effect of Password Reuse”. In: Communications of the
ACM 47.4 (Apr. 2004), pp. 75-78. por: 10.1145/975817 . 975820
(see page[245).

A. H. M. Jakaria, Wei Yang, Bahman Rashidi, Carol Fung, and
M. Ashiqur Rahman. “VFence: A Defense Against Distributed
Denial of Service Attacks Using Network Function Virtualiza-
tion”. In: 2016 IEEE 40th Annual Computer Software and Appli-
cations Conference (COMPSAC). Vol. 2. IEEE. IEEE, June 2016,
pp. 431-436. por:[10. 1109/ compsac . 2016. 219 (see pages[3}[52).

343

https://doi.org/10.1145/3185768.3186309
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cpu
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cpu
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/mem
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/mem
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://doi.org/10.1145/975817.975820
https://doi.org/10.1109/compsac.2016.219

Bibliography

[Jar+14]

[JBS15]

[KV16]

[KDK18]

[Kis+18]

[Kis+17]

[Koc+19]

[Kol+17a]

344

Michael Jarschel, Thomas Zinner, Tobias Hossfeld, Phuoc Tran-
Gia, and Wolfgang Kellerer. “Interfaces, Attributes, and Use
Cases: A Compass for SDN”. In: IEEE Communications Maga-
zine 52.6 (June 2014), pp. 210-217. por: 10.1109/mcom . 2014 .

6829966 (see pages 30} B1)).

M. Jones,]J. Bradley, and N. Sakimura. [SON Web Token (JWT).
RFC 7519. http://wuw.rfc-editor.org/rfc/rfc7519. txt.
RFC Editor, May 2015. urL: http://www.rfc-editor.org/rfc/

rfc7519.txt (see page|192)).

Jakub Kicinski and Nicolaas Viljoen. “eBPF Hardware Offload to
SmartNICs: cls bpf and XDP”. In: Proceedings of netdev 1 (2016).
URL: https://www.netronome . com/m/documents/eBPF _HW _
OFFLOAD_HNiMne8_2_.pdf (see page[59).

Joakim von Kistowski, Maximilian Deffner, and Samuel Kounev.
“Run-Time Prediction of Power Consumption for Component
Deployments”. In: 2018 IEEE International Conference on Auto-
nomic Computing (ICAC). IEEE, Sept. 2018. por: 10.1109/icac!.

2018.00025 (see pages 224)).

Jéakim von Kistowski, Simon Eismann, Norbert Schmitt, André
Bauer, Johannes Grohmann, and Samuel Kounev. “TeaStore: A
Micro-Service Reference Application for Benchmarking, Model-
ing and Resource Management Research”. In: Proceedings of the
26th IEEE International Symposium on the Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems. MASCOTS
’18. Milwaukee, WI, USA, Sept. 2018 (see page[135).

J6éakim von Kistowski, Nikolas Herbst, Samuel Kounev, Hen-
ning Groenda, Christian Stier, and Sebastian Lehrig. “Modeling
and Extracting Load Intensity Profiles”. In: ACM Transactions
on Autonomous and Adaptive Systems (TAAS) 11.4 (Jan. 2017),
pp- 1-28. 1ssN: 1556-4665. por: 10 . 1145 /3019596. URL: http :
//doi.acm.org/10.1145/3019596| (see page[134)).

P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execu-
tion”. In: Proc. IEEE Symp. Security and Privacy (SP). May 2019,
pp- 1-19. por:10.1109/SP.2019.00002 (see page 35).

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou,
and Jeffrey Voas. “DDoS in the Iol: Mirai and Other Botnets”.
In: Computer 50.7 (2017), pp. 80-84. por: 10.1109/mc.2017.201

(see pages[16} [69)).

https://doi.org/10.1109/mcom.2014.6829966
https://doi.org/10.1109/mcom.2014.6829966
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
https://www.netronome.com/m/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://www.netronome.com/m/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://doi.org/10.1109/icac.2018.00025
https://doi.org/10.1109/icac.2018.00025
https://doi.org/10.1145/3019596
http://doi.acm.org/10.1145/3019596
http://doi.acm.org/10.1145/3019596
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/mc.2017.201

[Kol+17b]

[Kop18]

[KLK20]

[Kou+17]

[Kou+15]

[KS94]

[KBG19]

[Lab20]

[LT19]

Bibliography

Eugene Kolodenker, William Koch, Gianluca Stringhini, and
Manuel Egele. “PayBreak: Defense Against Cryptographic Ran-
somware”. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. ACM, Apr. 2017. por:
10.1145/3052973.3053035 (see page 241)).

Alexey Kopytov. akopytov/sysbench. [Online; accessed 1. Jun.
2018]. June 2018. urL: https : / / github . com / akopytov /

sysbench/ (see page[259)).

Samuel Kounev, Klaus-Dieter Lange, and Jéakim von Kistowski.
Systems Benchmarking. For Scientists and Engineers. 1st ed. Springer
International Publishing, 2020. por: 10 . 1007 /978 - 3 - 030 ~
41705-5 (see page[15)).

Samuel Kounev et al. “The Notion of Self-Aware Computing”.
In: Self-Aware Computing Systems. Ed. by Samuel Kounev, Jeffrey
O. Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu. Berlin
Heidelberg, Germany: Springer Verlag, 2017. urL: https://www.
springer.com/de/book/9783319474724 (see page[131]).

Michail-Alexandros Kourtis et al. “Enhancing VNF Performance
by Exploiting SR-IOV and DPDK Packet Processing Accelera-
tion”. In: 2015 IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN). IEEE, Nov. 2015. por:
10.1109/nfv-sdn.2015.7387409 (see page[39).

Sandeep Kumar and Eugene H. Spafford. A Pattern Matching
Model for Misuse Intrusion Detection. Tech. rep. Purdue University,
1994. urL: https://docs.lib.purdue.edu/cgi/viewcontent .
cgi?article=2169&context=cstech (see page.

Oleg Kupreev, Ekaterina Badovskaya, and Gutnikov Gutnikov.
DDoS attacks in Q2 2019. Tech. rep. Kaspersky Labs, Aug. 2019.
URL: https://securelist.com/ddos-report-q2-2019/91934

(see page|[16)).
Grafana Labs. Grafana: The Open Observability Platform. Apr. 2020.
URL: https://grafana.com/|(see page[136)).

Klaus-Dieter Lange and Michael G. Tricker. Server Efficiency
Rating Tool (SERT) Design Document 2.0.3. Tech. rep. Standard
Performance Evaluation Corporation (SPEC), Nov. 2019 (see

page[224)).

345

https://doi.org/10.1145/3052973.3053035
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1007/978-3-030-41705-5
https://www.springer.com/de/book/9783319474724
https://www.springer.com/de/book/9783319474724
https://doi.org/10.1109/nfv-sdn.2015.7387409
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2169&context=cstech
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2169&context=cstech
https://securelist.com/ddos-report-q2-2019/91934
https://grafana.com/

Bibliography

[Lan+15]

[Li+17]

[Li+18]

[Lip+18]

[Lor+17]

[LO09]

[Lue20]

[Lui+15]

346

Stanislav Lange et al. “Performance Benchmarking of a Software-
Based LTE SGW”. In: 2015 11th International Conference on Network
and Service Management (CNSM). IEEE, Nov. 2015, pp. 378-383.
por:[10.1109/cnsm. 2015.7367386/ (see page[59).

Guanglei Li, Huachun Zhou, Guanwen Li, and Bohao Feng.
“Application-aware and Dynamic Security Function Chaining
for Mobile Networks”. In: J. Internet Serv. Inf. Secur. 7 (2017),
pp. 21-34. por: 10.22667/JISIS.2017.11.30.021/(see page[59).

Guanwen Li, Huachun Zhou, Bohao Feng, Guanglei Li, Hongke
Zhang, and Teng Hu. “Rule Anomaly-Free Mechanism of Se-
curity Function Chaining in 5G”. In: IEEE Access 6 (2018),
pp- 13653-13662. por: |10 . 1109/ access . 2018 . 2810834 (see
page[62).

Moritz Lipp et al. “Meltdown”. In: arxiv (Jan. 2018). arXiv: http:
//arxiv.org/abs/1801.01207v1 [cs.CR]. urL: http://arxiv,
org/pdf/1801.01207v1 (see page 35).

Claas Lorenz et al. “An SDN/NFV-Enabled Enterprise Net-
work Architecture Offering Fine-Grained Security Policy En-
forcement”. In: IEEE Communications Magazine 55.3 (Mar. 2017),
pp. 217-223. por:[10.1109/mcom. 2017 . 16004 14cm (see pages [}

59).
G. Loukas and G. Oke. “Protection Against Denial of Service

Attacks: A Survey”. In: The Computer Journal 53.7 (Aug. 2009),
pp- 1020-1037. por:|10.1093/comjnl/bxp078 (see page[12)).

Knud Lasse Lueth. State of the IoT 2018: Number of IoT devices now
at 7B - Market accelerating. [Online; accessed 31. Jan. 2020]. Jan.
2020. urL: https://iot-analytics.com/state-of-the-iot~
update-ql-q2-2018-number-of-iot-devices-now-7b (see
pagelL6).

Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana
Salete Buriol, Marinho Pilla Barcellos, and Luciano Paschoal Gas-
pary. “Piecing Together the NFV Provisioning Puzzle: Efficient
Placement and Chaining of Virtual Network Functions”. In: 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, May 2015. por: 10.1109/inm.2015.7140281

(see pages[4} [62)).

https://doi.org/10.1109/cnsm.2015.7367386
https://doi.org/10.22667/JISIS.2017.11.30.021
https://doi.org/10.1109/access.2018.2810834
https://arxiv.org/abs/http://arxiv.org/abs/1801.01207v1
https://arxiv.org/abs/http://arxiv.org/abs/1801.01207v1
http://arxiv.org/pdf/1801.01207v1
http://arxiv.org/pdf/1801.01207v1
https://doi.org/10.1109/mcom.2017.1600414cm
https://doi.org/10.1093/comjnl/bxp078
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
https://doi.org/10.1109/inm.2015.7140281

[Mac+12]

[Mar+14]

[Mat+12]

[McB+13]

[MBO6]

[McK+08]

[Med18]

[Med+14]

Bibliography

Fumio Machida, Jianwen Xiang, Kumiko Tadano, and Yoshiharu
Maeno. “Aging-related Bugs in Cloud Computing Software”.
In: 2012 IEEE 23rd International Symposium on Software Reliability
Engineering Workshops (Nov. 2012), pp. 287-292. por:|10.1109/
ISSREW.2012.97 (see page[35).

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir
Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici.
“Clickos and the Art of Network Function Virtualization”. In: Pro-
ceedings of the 11th USENIX Conference on Networked Systems De-
sign and Implementation. NSDI'14. Seattle, WA: USENIX Associa-
tion, 2014, pp. 459-473. urL: https://www.usenix.org/system/
files/conference/nsdil4/nsdil4-paper-martins.pdf| (see
pages B8A0).

Rubens Matos, Jean Araujo, Vandi Alves, and Paulo Maciel.
“Characterization of Software Aging Effects in Elastic Storage
Mechanisms for Private Clouds”. In: 2012 IEEE 23rd Interna-
tional Symposium on Software Reliability Engineering Workshops
(Nov. 2012), pp. 293-298. por: 10.1109/ISSREW.2012. 82| (see
page[35)).

M. McBride, M. Cohn, S. Deshpande, M. Kaushik, M. Mathews,
and S. Nathan. “SDN security considerations in the data center”.
In: Open Networking Foundation-ONF SOLUTION BRIEF (2013),
pp- 15-16 (see page[57).

C. McCarthy and Hossein Bidgoli. “Digital Libraries: Security
and Preservation Considerations”. In: Handbook of Information
Security, Key Concepts, Infrastructure, Standards, and Protocols. John
Wiley & Sons, 2006, pp. 49-76 (see page[12).

Nick McKeown et al. “OpenFlow: Enabling Innovation in Cam-
pus Networks”. In: ACM SIGCOMM Computer Communication
Review 38.2 (2008), pp. 69-74. por: 10.1145/1355734.1355746
(see page[30]).

MediaWiki. MediaWiki/de — MediaWiki, The Free Wiki Engine.
[Online; accessed 4-June-2018]. 2018. urL: https : / / www |
mediawiki.org (see page[257)).

Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. “Open-
Daylight: Towards a Model-Driven SDN Controller architecture”.
In: Proceeding of IEEE International Symposium on a World of Wire-

347

https://doi.org/10.1109/ISSREW.2012.97
https://doi.org/10.1109/ISSREW.2012.97
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
https://doi.org/10.1109/ISSREW.2012.82
https://doi.org/10.1145/1355734.1355746
https://www.mediawiki.org
https://www.mediawiki.org

Bibliography

[MLK14]

[Mil+14]

[Mil+15]

[Mil+16]

[Moh+16]

[Morl17]

348

less, Mobile and Multimedia Networks 2014. IEEE, June 2014. por:
10.1109/wowmom.2014.6918985 (see pages 53} 271]).

Weizhi Meng, Wenjuan Li, and Lam-For Kwok. “EFM: Enhanc-
ing the Performance of Signature-based Network Intrusion De-
tection Systems Using Enhanced Filter Mechanism”. In: Com-
puters & Security 43 (2014), pp. 189-204. por: 10.1016/j.cose|
2014.02.006 (see page[50)).

Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco
Vieira, and Samuel Kounev. “Experience Report: An Analysis
of Hypercall Handler Vulnerabilities”. In: 2014 IEEE 25th Inter-
national Symposium on Software Reliability Engineering. IEEE, Nov.
2014, pp. 100-111. por:10.1109/issre.2014.24 (see page[35).

Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco
Vieira, Samuel Kounev, Alberto Avritzer, and Matthias Luft.
“Evaluation of Intrusion Detection Systems in Virtualized En-
vironments Using Attack Injection”. In: Research in Attacks, In-
trusions, and Defenses. Springer International Publishing, 2015,
pp- 471-492. por: 10 . 1007 /978 -3 - 319 - 26362 -5 _ 22| (see
page[39).

Aleksandar Milenkoski et al. Security Position Paper: Network
Function Virtualization. Published by Cloud Security Alliance
(CSA) - Virtualization Working Group. Mar. 2016. URL: https:
/ / cloudsecurityalliance . org / download / security -
position-paper-network-function-virtualization/| (see

pages 2, 4 [62).

A. A. Mohammed, Molka Gharbaoui, Barbara Martini, Federica
Paganelli, and Piero Castoldi. “SDN Controller for Network-
aware Adaptive Orchestration in Dynamic Service Chaining”. In:
2016 IEEE NetSoft Conference and Workshops (NetSoft). IEEE. IEEE,
June 2016, pp. 126-130. por: 10.1109/netsoft.2016.7502458
(see pagel60]).

Steve Morgan. Cybersecurity Business Report. Ransomware Dam-
age Costs predicted to hit USD 11.5B by 2019. 2017. UrL: https :
/ / www . csoonline . com / article / 3237674 / ransomware ~
damage — costs - predicted-to-hit-115b-by-2019 . html

(see page[239)).

https://doi.org/10.1109/wowmom.2014.6918985
https://doi.org/10.1016/j.cose.2014.02.006
https://doi.org/10.1016/j.cose.2014.02.006
https://doi.org/10.1109/issre.2014.24
https://doi.org/10.1007/978-3-319-26362-5_22
https://cloudsecurityalliance.org/download/security-position-paper-network-function-virtualization/
https://cloudsecurityalliance.org/download/security-position-paper-network-function-virtualization/
https://cloudsecurityalliance.org/download/security-position-paper-network-function-virtualization/
https://doi.org/10.1109/netsoft.2016.7502458
https://www.csoonline.com/article/3237674/ransomware-damage-costs-predicted-to-hit-115b-by-2019.html
https://www.csoonline.com/article/3237674/ransomware-damage-costs-predicted-to-hit-115b-by-2019.html
https://www.csoonline.com/article/3237674/ransomware-damage-costs-predicted-to-hit-115b-by-2019.html

[NSV16]

[Opel2]

[Opel5]

[Opeléa]

[Opeléb]

[Opp97]

[Oral8]

[Pad20]

[PHS16]

Bibliography

Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru.
“NFVPerf: Online performance monitoring and bottleneck de-
tection for NFV”. In: 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). IEEE,
Nov. 2016, pp. 154-160. por: 10.1109/nfv-sdn.2016.7919491
(see page[34)).

Open Networking Foundation. OpenFlow Switch Specification,
Version 1.3.0. June 2012. urL: https://www . opennetworking |
org / images / stories / downloads / sdn - resources / onf ~
specifications/OpenFlow/OpenFlow-spec-v1.3.0.pdf|(see
page[31).

Open Networking Foundation. OpenFlow Switch Specification,
Version 1.5.1. 2015. urL: https : / / www . opennetworking |
org / images / stories / downloads / sdn - resources / onf ~
specifications/OpenFlow/OpenFlow-switch-v1.5.1.pdf
(see page[32)).

Open Networking Foundation. Impact of SDN and NFV on
OSS/BSS - ONF Solution Brief. Mar. 2016. URL: https : / /www |
opennetworking . org / images / stories / downloads / sdn ~
resources/solution-briefs/sb-08S-BSS.pdf (see page31)).

Open Networking Foundation. OpenFlow Message Layer. 2016.
URL: http://flowgrammable . org/sdn/OpenFlow/message ~
layer/| (see page[32)).

Rolf Oppliger. “Internet Security: Firewalls and Beyond”. In:
Communications of the ACM 40.5 (May 1997), pp. 92-102. por:
10.1145/253769.253802 (see page[28).

Oracle Corporation. MySQL 5.7 Manual. Oracle Corporation.
2018. UrL: https://dev.mysql.com/doc/refman/5.7/en (see
pages 245, 252).

Jose Padilla. PyJWT. [Online; accessed 21. Apr. 2020]. Apr. 2020.
URL: https://pypi.org/project/PyJWT (see page[192)).

Kartik Palani, Emily Holt, and Sean Smith. “Invisible and For-
gotten: Zero-day Blooms in the IoI”. In: 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops). IEEE, Mar. 2016. por: 10 . 1109/ percomw |
2016.7457163 (see page|[16)).

349

https://doi.org/10.1109/nfv-sdn.2016.7919491
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/OpenFlow/OpenFlow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/OpenFlow/OpenFlow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/OpenFlow/OpenFlow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/OpenFlow/OpenFlow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/OpenFlow/OpenFlow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/OpenFlow/OpenFlow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-OSS-BSS.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-OSS-BSS.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-OSS-BSS.pdf
http://flowgrammable.org/sdn/OpenFlow/message-layer/
http://flowgrammable.org/sdn/OpenFlow/message-layer/
https://doi.org/10.1145/253769.253802
https://dev.mysql.com/doc/refman/5.7/en
https://pypi.org/project/PyJWT
https://doi.org/10.1109/percomw.2016.7457163
https://doi.org/10.1109/percomw.2016.7457163

Bibliography

[PA0O]

[Per15]

[Pet81]

[PR18]

[Pos83a]

[Pos83b]

[Pra+21a]

[Pra+20]

350

V. Paxson and M. Allman. Computing TCP’s Retransmission Timer.
RFC 2988. RFC Editor, Nov. 2000. por: 10.17487/rfc2988 (see

page[I09).

Chad Perrin. “The CIA Triad”. In: TechRepublic (July 2015). URL:
https://www.techrepublic.com/blog/it-security/the~
cia-triad (see page|[IT]).

James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, 1981 (see page [46)).

Roberto Pietrantuono and Stefano Russo. “Software Aging and
Rejuvenation in the Cloud: A Literature Review”. In: 2018 IEEE
International Symposium on Software Reliability Engineering Work-
shops (ISSREW). IEEE, Oct. 2018, pp. 257-263. por: [10. 1109/
issrew.2018.00016 (see page[35).

J. Postel. TCP maximum segment size and related topics. RFC 879.
http://www.rfc-editor.org/rfc/rfc879.txt. RFC Editor,
Nov. 1983. por: 10 . 17487 / r£c0879. UrL: http://www . rfc~
editor.org/rfc/rfc879.txt (see page[l6)).

J. Postel. TCP maximum segment size and related topics. RFC 879.
http://wuw.rfc-editor.org/rfc/rfc879.txt. RFC Editor,
Nov. 1983. por: 10 . 17487 / r£c0879. URL: http: //www.rfc~
editor.org/rfc/rfc879.txt (see page[27).

Thomas Prantl, Lukas Ifflinder, Stefan Herrnleben, Simon Engel,
Samuel Kounev, and Christian Krupitzer. “Performance Impact
Analysis of Securing MQTT Using TLS”. In: 2021 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE). ICPE’21.
Apr. 2021 (see page[xiv)).

Thomas Prantl, Peter Ten, Lukas Ifflander, Alexandra Dmitrenko,
Samuel Kounev, and Christian Krupitzer. “Evaluating the Perfor-
mance of a State-of-the-Art Group-oriented Encryption Scheme
for Dynamic Groups in an IoT Scenario”. In: 2020 28th Interna-
tional Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). IEEE, Nov.
2020, pp- 1-8. por:|10.1109/mascots50786.2020.9285948| (see

page iii).

https://doi.org/10.17487/rfc2988
https://www.techrepublic.com/blog/it-security/the-cia-triad
https://www.techrepublic.com/blog/it-security/the-cia-triad
https://doi.org/10.1109/issrew.2018.00016
https://doi.org/10.1109/issrew.2018.00016
http://www.rfc-editor.org/rfc/rfc879.txt
https://doi.org/10.17487/rfc0879
http://www.rfc-editor.org/rfc/rfc879.txt
http://www.rfc-editor.org/rfc/rfc879.txt
http://www.rfc-editor.org/rfc/rfc879.txt
https://doi.org/10.17487/rfc0879
http://www.rfc-editor.org/rfc/rfc879.txt
http://www.rfc-editor.org/rfc/rfc879.txt
https://doi.org/10.1109/mascots50786.2020.9285948

[Pra+21b]

[Pro+18]

[QW15]

[Rei20]

[Ron20]

[RBR17]

[Rygl7]

[Ryg18]

[San19]

[San20]

Bibliography

Thomas Prantl, Peter Ten, Lukas Ifflinder, Stefan Herrnleben,
Alexandra Dmitrenko, Samuel Kounev, and Christian Krupitzer.
“Towards a Group Encryption Scheme Benchmark: A View on
Centralized Schemes with focus on IoI”. In: 2021 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE). ICPE"21.
Apr. 2021 (see page[xiv)).

Andrew Prout et al. “Measuring the Impact of Spectre and Melt-
down”. In: 2018 IEEE High Performance extreme Computing Con-
ference (HPEC). IEEE, Sept. 2018, pp. 1-5. por: 10.1109/hpec.
2018.8547554 (see page [35)).

Mao Qilin and Shen Weikang. “A Load Balancing Method Based
on SDN”. In: 2015 Seventh International Conference on Measuring
Technology and Mechatronics Automation. IEEE, June 2015. por:
10.1109/icmtma.2015. 13 (see page[104)).

Kenneth Reitz. requests. [Online; accessed 21. Apr. 2020]. Apr.
2020. urL: https : / / pypi . org / project / requests (see
page[192).

Armin Ronacher. Flask. [Online; accessed 21. Apr. 2020]. Apr.
2020. urL: https://pypi.org/project/Flask (see page[192)).

Raphael Vicente Rosa, Claudio Bertoldo, and Christian Esteve
Rothenberg. “Take Your VNF to the Gym: A Testing Framework
for Automated NFV Performance Benchmarking”. In: IEEE Com-
munications Magazine 55.9 (2017), pp. 110-117. por: 10. 1109/
mcom.2017.1700127| (see page[59).

Piotr Rygielski. “Flexible Modeling of Data Center Networks for
Capacity Management”. PhD thesis. University of Wiirzburg,

Germany, Mar. 2017. urL: https: //opus . bibliothek . uni-
wuerzburg . de/frontdoor/index/index/docId/ 14623 (see

page[84).

Piotr Rygielski. vikin91/BibSpace. [Online; accessed 31. May
2018].May 2018. urL: https://github.com/vikin91/BibSpace
(see page [257)).

Salvatore Sanfilippo. Hping - Active Network Security Tool. [Online;
accessed 15. Jun. 2019]. June 2019. urL: http://www.hping.org

(see page|109)).
Salvatore Sanfilippo. Hping3. Apr. 2020. urL: http://www.hping.
org/hping3.html (see page|[136]).

351

https://doi.org/10.1109/hpec.2018.8547554
https://doi.org/10.1109/hpec.2018.8547554
https://doi.org/10.1109/icmtma.2015.13
https://pypi.org/project/requests
https://pypi.org/project/Flask
https://doi.org/10.1109/mcom.2017.1700127
https://doi.org/10.1109/mcom.2017.1700127
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/14623
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/14623
https://github.com/vikin91/BibSpace
http://www.hping.org
http://www.hping.org/hping3.html
http://www.hping.org/hping3.html

Bibliography

[Sca+16]

[SMO7]

[Sch+03]

[SR18]

[Sch+19]

[Sch19]

[SNS16]

[sem18]

[Sen06 |

352

Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin R. B.
Butler. “CryptoLock (and Drop It): Stopping Ransomware At-
tacks on User Data”. In: 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS). IEEE, June 2016. por:
10.1109/icdcs.2016.46 (see page[241]).

Karen Scarfone and Peter Mell. Guide to Intrusion Detection and
Prevention Systems (IDPS). Tech. rep. NIST Special Publication
900-94. 2007. por:|10.6028/nist . sp.800-94 (see page[22)).

Lambert Schaelicke, Thomas Slabach, Branden Moore, and Curt
Freeland. “Characterizing the Performance of Network Intrusion
Detection Sensors”. In: International Workshop on Recent Advances
in Intrusion Detection. Springer. 2003, pp. 155-172. por:|10.1007/
978-3-540-45248-5_9) (see pages[3,[50).

P. Schmid and A. Roos. AMD: Turbo CORE - CORE Or Boost?
AMD'’s And Intel’s Turbo Features Dissected. July 2018. URL: https :
/ /www . tomshardware . com/ reviews/turbo - boost - turbo -
core-six-core, 2690-2.html| (see page[43)).

Norbert Schmitt, Lukas Ifflinder, André Bauer, and Samuel
Kounev. “Online Power Consumption Estimation for Functions
in Cloud Applications”. In: Proceedings of the 16th IEEE Interna-
tional Conference on Autonomic Computing (ICAC). Umea, Sweden:
IEEE, June 2019. por:[10.1109/icac.2019.00018 (see page xiii]).

Arne Schonbohm. Die Lage der IT-Sicherheit in Deutschland 2019.
Tech. rep. Bundesamt fiir Sicherheit in der Informationstechnik,
Oct. 2019 (see pagell)).

Sandra Scott-Hayward, Sriram Natarajan, and Sakir Sezer. “A
Survey of Security in Software Defined Networks”. In: IEEE
Communications Surveys & Tutorials 18.1 (2016), pp. 623-654. por:
10.1109/comst.2015.2453114 (see pages[3,[53} [54).

semantic-mediawiki.org. Semantic MediaWiki. [Online; accessed
4-June-2018]. 2018. urL: https://www . semantic-mediawiki |
org/| (see page[257)).

Soumya Sen. “Performance Characterization & Improvement
of Snort As an IDS”. In: Bell Labs Report (2006). urL: http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1,

720.2007&rep=repl&type=pdf| (see pages B0).

https://doi.org/10.1109/icdcs.2016.46
https://doi.org/10.6028/nist.sp.800-94
https://doi.org/10.1007/978-3-540-45248-5_9
https://doi.org/10.1007/978-3-540-45248-5_9
https://www.tomshardware.com/reviews/turbo-boost-turbo-core-six-core,2690-2.html
https://www.tomshardware.com/reviews/turbo-boost-turbo-core-six-core,2690-2.html
https://www.tomshardware.com/reviews/turbo-boost-turbo-core-six-core,2690-2.html
https://doi.org/10.1109/icac.2019.00018
https://doi.org/10.1109/comst.2015.2453114
https://www.semantic-mediawiki.org/
https://www.semantic-mediawiki.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.720.2007&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.720.2007&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.720.2007&rep=rep1&type=pdf

[Sez+13]

[Sha+19]

[Shi+13a]

[Shi+13b]

[SWK16]

[Stal8]

[Sta20]

[Sys20]

Bibliography

Sakir Sezer et al. “Are we ready for SDN? Implementation chal-
lenges for software-defined networks”. In: IEEE Communications
Magazine 51.7 (July 2013), pp. 36—43. por:|10.1109/mcom. 2013}
6553676 (see page [56)).

Alireza Shameli-Sendi, Yosr Jarraya, Makan Pourzandi, and Mo-
hamed Cheriet. “Efficient Provisioning of Security Service Func-
tion Chaining Using Network Security Defense Patterns”. In:
IEEE Transactions on Services Computing 12.4 (July 2019), pp. 534-
549. por:[10.1109/tsc.2016.2616867 (see page [62)).

Seungwon Shin, Phillip A. Porras, Vinod Yegneswaran, Martin
W. Fong, Guofei Gu, and Mabry Tyson. “FRESCO: Modular
Composable Security Services for Software-Defined Networks.”
In: NDSS. The Internet Society, 2013, pp. 1-16. urL: http://dblp.
uni-trier.de/db/conf/ndss/ndss2013.html#ShinPYFGT13
(see pages[3} [52)).

Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei
Gu. “AVANT-GUARD: Scalable and Vigilant Switch Flow Man-
agement in Software-defined Networks”. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security - CCS "13. ACM. ACM Press, 2013, pp. 413-424. por:
10.1145/2508859.2516684 (see pages[52} [T13)).

Simon Spinner, Jiirgen Walter, and Samuel Kounev. “A Refer-
ence Architecture for Online Performance Model Extraction in
Virtualized Environments”. In: Proceedings of the 2016 Workshop
on Challenges in Performance Methods for Software Development
(WOSP-C’16) co-located with 7th ACM/SPEC International Confer-
ence on Performance Engineering (ICPE 2016). Delft, the Nether-
lands: ACM Press, Mar. 2016. por: |[10.1145/2859889 . 2859893
(see page[209).

Wired Staff. The Average Webpage Is Now the Size of the Original
Doom. Mar. 2018. urL: https : //www . wired . com/2016/04/
average-webpage-now-size-original-doom (see page.
Statista. Internet of Things Units Installed Base by Category 2014-
2020. [Online; accessed 11. Jul. 2020]. Feb. 2020. urL: https :
//www . statista . com/statistics /370350 / internet - of +
things-installed-base-by-category (see pagel[l).

Cisco Systems. TRex. [Online; accessed 3. Apr. 2020]. Mar. 2020.
URL: https://trex-tgn.cisco.com (see page|134).

353

https://doi.org/10.1109/mcom.2013.6553676
https://doi.org/10.1109/mcom.2013.6553676
https://doi.org/10.1109/tsc.2016.2616867
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#ShinPYFGT13
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#ShinPYFGT13
https://doi.org/10.1145/2508859.2516684
https://doi.org/10.1145/2859889.2859893
https://www.wired.com/2016/04/average-webpage-now-size-original-doom
https://www.wired.com/2016/04/average-webpage-now-size-original-doom
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category
https://trex-tgn.cisco.com

Bibliography

[Tal+15]

[TK13]

[Tay14]

[TW17]

[TL12]

[Tjh-+08]

[VHO02]

[VRBO4]

354

T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Kara-
giannis, and T. Magedanz. “Ease: EPC As a Service to Ease Mo-
bile Core Network Deployment Over Cloud”. In: IEEE Network
29.2 (Mar. 2015), pp. 78-88. 1ssN: 1558-156X. por:|10.1109/MNET .
2015.7064907 (see page 38)).

T. Taleb and A. Ksentini. “Follow Me Cloud: Interworking Fed-
erated Clouds and Distributed Mobile Networks”. In: IEEE Net-
work 27.5 (Sept. 2013), pp. 12-19. 1ssn: 1558-156X. por:10.1109/
MNET.2013.6616110 (see page [37)).

Martin Taylor. A Guide to NFV and SDN. White Paper, Online.
2014. urL: http://wuw.metaswitch.com/download-guide-to~

nfv-sdn (see page[33).
Thomas N. Theis and H.-S. Philip Wong. “The End of Moore’s

Law: A New Beginning for Information Technology”. In: Com-
puting in Science & Engineering 19.2 (Mar. 2017), pp. 41-50. por:

10.1109/mcse . 2017 .29 (see pages|I} [123).

Siwnart Thian-ngam and Mayuree Lertwatechakul. “False Posi-
tive Decrement for Snort Intrusion Detection”. In: Engineering
and Applied Science Research 36.3 (3 June 2012), pp. 251-259. URL:
https://phOl.tci-thaijo.org/index.php/easr/article/
view/1767 (visited on 03/24/2020) (see page[123).

Gina C. Tjhai, Maria Papadaki, S. M. Furnell, and Nathan L.
Clarke. “Investigating the Problem of Ids False Alarms: An Ex-
perimental Study Using Snort”. In: IFIP International Information
Security Conference. Springer. 2008, pp. 253-267. por: 10.1007/
978-0-387-09699-5_17 .pdf (see page .

Theuns Verwoerd and Ray Hunt. “Intrusion Detection Tech-
niques and Approaches”. In: Computer Communications 25.15
(Sept. 2002), pp. 1356-1365. por: 10 . 1016/ s0140 - 3664 (02)

00037-3 (see page [244]).

Giovanni Vigna, William Robertson, and Davide Balzarotti.
“Testing Network-based Intrusion Detection Signatures Using
Mutant Exploits”. In: Proceedings of the 11th ACM conference on
Computer and communications security - CCS 04. ACM. ACM Press,
2004, pp. 21-30. por: 10.1145/1030083. 1030088 (see page[23)).

https://doi.org/10.1109/MNET.2015.7064907
https://doi.org/10.1109/MNET.2015.7064907
https://doi.org/10.1109/MNET.2013.6616110
https://doi.org/10.1109/MNET.2013.6616110
http://www.metaswitch.com/download-guide-to-nfv-sdn
http://www.metaswitch.com/download-guide-to-nfv-sdn
https://doi.org/10.1109/mcse.2017.29
https://ph01.tci-thaijo.org/index.php/easr/article/view/1767
https://ph01.tci-thaijo.org/index.php/easr/article/view/1767
https://doi.org/10.1007/978-0-387-09699-5_17.pdf
https://doi.org/10.1007/978-0-387-09699-5_17.pdf
https://doi.org/10.1016/s0140-3664(02)00037-3
https://doi.org/10.1016/s0140-3664(02)00037-3
https://doi.org/10.1145/1030083.1030088

[Wal19]

[Wam+15]

[Wam+14a]

[Wam+14b]

[Wan+14]

[Wei+19]

[WA19]

Bibliography

J. Walrath. AMD’s Turbo Core Technology | PC Perspective. [Online;
accessed 24. Jan. 2019]. Jan. 2019. urL: https : //www . pcper |
com/reviews /Processors / AMDs - Turbo - Core - Technology

(see page [44)).

Florian Wamser, Lukas Ifflinder, Thomas Zinner, and Phuoc
Tran-Gia. “Implementing Application-Aware Resource Alloca-
tion on a Home Gateway for the Example of YouTube”. In: Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. Mobile Networks and Manage-
ment. Ed. by Ramoén Agtiero, Thomas Zinner, Rossitza Goleva,
Andreas Timm-Giel, and Phuoc Tran-Gia. Vol. MONAMI 2014.
Cham: Springer International Publishing, 2015, pp. 301-312. por:
10.1007/978-3-319-16292-8_22 (see page.

Florian Wamser, Thomas Zinner, Lukas Ifflinder, and
Phuoc Tran-Gia. “Demonstrating the Prospects of Dynamic
Application-aware Networking in a Home Environment”. In:
Proceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM
"14. Chicago, Illinois, USA: ACM Press, 2014, pp. 149-150. por:
10.1145/2619239.2631450 (see page .

Florian Wamser, Thomas Zinner, Lukas Ifflinder, and
Phuoc Tran-Gia. “Demonstrating the Prospects of Dy-
namic Application-aware Networking in a Home Envi-
ronment”. In: ACM SIGCOMM Computer Communication
Review 44.4 (Aug. 2014), pp. 149-150. 1ssn: 0146-4833. por:
10.1145/2740070.2631450| (see page.

An Wang, Yang Guo, Fang Hao, T. V. Lakshman, and Songqing
Chen. “Scotch: Elastically Scaling up SDN Control-Plane using
vSwitch based Overlay”. In: Proceedings of the 10th ACM Interna-
tional on Conference on emerging Networking Experiments and Tech-
nologies - CONEXT '14. ACM Press, 2014. por:|10.1145/2674005.
2675002 (see page [56)).

Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-order Execution. Tech. rep. KU
Leuven, 2019. urL: https://lirias.kuleuven.be/retrieve/

515917 (see page [35)).

Harald Welte and Pablo Neira Ayuso. Netfilter Project Homepage -
the Netfilter.org Project. [Online; accessed 26. Jan. 2020]. Dec. 2019.
URL: https://netfilter.org (see pages[27}[38).

355

https://www.pcper.com/reviews/Processors/AMDs-Turbo-Core-Technology
https://www.pcper.com/reviews/Processors/AMDs-Turbo-Core-Technology
https://doi.org/10.1007/978-3-319-16292-8_22
https://doi.org/10.1145/2619239.2631450
https://doi.org/10.1145/2740070.2631450
https://doi.org/10.1145/2674005.2675002
https://doi.org/10.1145/2674005.2675002
https://lirias.kuleuven.be/retrieve/515917
https://lirias.kuleuven.be/retrieve/515917
https://netfilter.org

Bibliography

[Xin+14]

[YY15]

[YL16]

[Yoo+15]

[Zha+16]

[Zha+13]

[Zhe+18]

[Ziv17]

356

Tianyi Xing, Zhengyang Xiong, Dijiang Huang, and Deep Medhi.
“SDNIPS: Enabling Software-Defined Networking Based Intru-
sion Prevention System in Clouds”. In: 10th International Con-
ference on Network and Service Management (CNSM) and Work-
shop. IEEE, Nov. 2014. por: 10.1109/cnsm.2014.7014181. URL:
http://www.cnsm-conf.org/2014/proceedings/pdf /47 (see
pages [, 57)).

Qiao Yan and F. Richard Yu. “Distributed Denial of Service At-
tacks in Software-defined Networking with Cloud Computing”.
In: IEEE Communications Magazine 53.4 (Apr. 2015), pp. 52-59.

por:[10.1109/mcom.2015.7081075 (see pages[3} (53}, [55] 56).

Ch Yoon and S. Lee. “Attacking SDN Infrastructure: Are We
Ready for the Next-gen Networking”. In: BlackHat-USA-2016
(2016), pp. 17-18 (see pages[3}[53} [55).

Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang,
Seungwon Shin, and Zonghua Zhang. “Enabling Security Func-
tions with SDN: A Feasibility Study”. In: Computer Networks.
Vol. 85. Elsevier BV, July 2015, pp. 19-35. por: |10 . 1016/ j .
comnet.2015.05.005 (see pages 4 58)).

Peng Zhang, Huanzhao Wang, Chengchen Hu, and Chuang Lin.
“On Denial of Service Attacks in Software Defined Networks”.
In: IEEE Network 30.6 (Nov. 2016), pp. 28-33. por: 10.1109/mnet |
2016.1600109nm (see page [56)).

Ying Zhang et al. “StEERING: A Software-defined Networking
for Inline Service Chaining”. In: 2013 21st IEEE International
Conference on Network Protocols (ICNP). IEEE. IEEE, Oct. 2013,
pp. 1-10. por:[10.1109/icnp.2013. 6733615 (see page[61)).

Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David K. Y. Yau,
and Jianping Wu. “Realtime DDoS Defense Using COTS SDN
Switches via Adaptive Correlation Analysis”. In: IEEE Trans-
actions on Information Forensics and Security 13.7 (July 2018),
pp. 1838-1853. por: 10.1109/TIFS.2018.2805600 (see pages[3}
52, IT3).

Ofri Ziv. 0.2 BTIC strikes back, now attacking MySQL databases.
GuardiCore. Feb. 2017. urL: https: //www . guardicore . com/
2017/02/0-2-btc-strikes-back-now-attacking-mysql +

databases| (see pages[239] [240] 244] 257)).

https://doi.org/10.1109/cnsm.2014.7014181
http://www.cnsm-conf.org/2014/proceedings/pdf/47
https://doi.org/10.1109/mcom.2015.7081075
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1109/mnet.2016.1600109nm
https://doi.org/10.1109/mnet.2016.1600109nm
https://doi.org/10.1109/icnp.2013.6733615
https://doi.org/10.1109/TIFS.2018.2805600
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases
https://www.guardicore.com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases

	Abstract
	Zusammenfassung
	Acknowledgements
	Publication List
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Research Questions
	Contributions and Evaluation Summary
	Thesis Outline

	Foundations of Network Security and Modern Networking
	Cybersecurity
	Information Security
	Benchmarking Security Systems

	Types of Attacks
	Denial-of-Service Attacks and Distributed Denial-of-Service Attacks
	Intrusion

	State-of-the-art Security Appliances
	Intrusion Detection and Prevention System
	SYN Flood Protection
	Firewalls

	Software-Defined Networking
	General Approach
	OpenFlow

	Network-Function Virtualization
	General Approach
	Challenges
	Abstraction Layers

	Architecture of Current Security Systems
	Power-saving and Boosting Technologies
	Intel Turbo Boost
	AMD Turbo Core and Precision Boost
	Thermal and Power Management

	Modeling Formalisms
	Petri Nets
	Colored Petri Nets

	Related Work
	Intrusion Detection System Performance
	Distributed Denial-of-Service Attack Protection
	Software-defined Networking and Security
	Security for Software-defined Networking
	Software-defined Networking for Security

	Network Function Virtualization
	Security Function Chaining
	A Security Plattform for Network Function Virtualization

	Augmenting Single Security Functions using Software-defined Networking
	Dynamic Network Intrusion Detection System Bypassing
	Approach
	Implementation
	Evaluation
	Discussion

	TCP Handshake Remote Establishment and Dynamic Rerouting using Software-defined Networking
	Approach
	Implementation
	Evaluation
	Discussion
	Parallelization and Parameter Tuning

	Summary and Evaluation of Research Questions

	Performance Modeling for Security Service Function Chain Orders
	General Idea
	Effect of the Security Service Function Chain Order
	Evaluation Environment
	Single Security Function Performance
	Security Service Function Chain Performance
	Discussion

	Performance Modeling for Reordering Decision
	Modeling Single Security Functions
	Modeling Security Service Function Chains
	Decision-making

	Summary and Evaluation of Research Questions

	A Framework for Attack-aware Security Service Function Chain Reordering
	Architecture
	Security Function Wrapper
	Function Chaining Controller
	API Requirements

	Proof-of-concept Implementation
	Libraries
	Security Function Wrapper
	Function Chaining Controller
	Software-defined Networking Controller

	Evaluation
	Testbed Environment
	Manual Reordering
	Reaction to Simulated Attacks
	Discussion

	Summary and Evaluation of Research Questions

	Heat-aware and CPU Boost-oriented Server Load Rotation
	Approach
	Concept
	Realization Using Software-defined Networking
	Simplified Temperature Model

	Implementation
	Evaluation
	Evaluation Environment
	Functionality
	Scenario-dependant Behavior
	Energy and Performance Impact

	Summary and Evaluation of Research Questions

	Signature-based Database Ransomware Detection
	Approach
	Attack Scenario
	Adversary Model
	System Architecture
	Component Interaction

	Implementation
	Plugin Integration
	Component Integration

	Evaluation
	Test Setup
	Effectiveness
	Performance Evaluation
	Security Considerations

	Summary and Evaluation of Research Questions

	Conclusion
	Summary
	Benefits
	Future Work

	Additional Security Function Configuration for the Evaluation Environment in Section 5.2.1
	Additional Snort Rules
	Firewall Rules
	THREADS Modifications
	SDN Rules for Traffic Routing in the Evaluation Environment

	Detailed Result Tables for Section 5.2.2 and Section 5.2.3
	Single Function Results
	Security Service Function Chain Results

	Routing Configuration Flows for the Security Service Function Chain Reordering Framework
	List of Abbreviations
	List of Figures
	List of Algorithms
	List of Tables
	List of Listings
	Bibliography

