


To estimate the measurement model parameters as well as the postulated structural
relationship between latent variables, two conceptually different estimation approaches
have been established: covariance-based (CB) estimation (e.g. Jöreskog, 1978) and
variance-based (VB) estimation (e.g. Lohmöller, 1989). CB parameter estimates are
obtained by minimizing a distance measure of the empirical covariance matrix of the
indicators and its theoretical counterpart implied by the model. VB estimators, on the other
hand, use linear combinations of the indicators to build proxies as stand-ins for the
constructs and, subsequently, estimate the model parameters based on these proxies.

Among VB estimators, partial least squares path modeling (PLS) is arguably most
wide-spread. It has been used for research in numerous fields, including strategic
management (e.g. Hair, Sarstedt, Pieper and Ringle, 2012), marketing (e.g. Hair, Sarstedt,
Ringle and Mena, 2012), information systems (e.g. Ringle et al., 2012), tourism research
(e.g. Müller et al., 2018) and internet research (e.g. Chiang and Hsiao, 2015; Yan et al., 2017;
Wu and Li, 2018). For a recent overview of the methodological research on PLS
see Khan et al. (forthcoming).

However, despite its popularity, PLS has been subject to intense debate in recent years
(see e.g. Rigdon et al., 2017, for a recent stocktaking of the debate) that helped show its
limitations. Most notably, PLS is only consistent at large (e.g. Dijkstra, 1981; Schneeweiss,
1993), hence yielding generally inconsistent parameter estimates for common factor
models. In fact, unless all measurement errors are zero in the population, proxies cannot
generally be expected to be a perfect substitute for the underlying common factor. As a
consequence, the probability limit of the estimated correlation between proxies is smaller
than the population correlation between their corresponding common factors. Hence, path
coefficients and factor loadings based on estimated proxy correlations are inconsistent
estimates for their underlying latent variable counterpart (Dijkstra and Henseler, 2015a).

To correct for these shortcomings, consistent partial least squares (PLSc) has been
introduced as an enhancement of PLS that essentially maintains all the advantages of PLS
while yielding consistent and asymptotically normally distributed parameter estimates for
common factor models in line with Wold’s (1975) basic design (Dijkstra, 1981; Dijkstra and
Henseler, 2015a, b). As one of the defining assumptions of the basic design, uncorrelated
measurement errors within and across blocks of indicators are thus necessary in theory for
PLSc to maintain consistency.

Practically, however, there are a number of cases in empirical research in which
uncorrelatedness of measurement errors may not hold (e.g. Gerbing and Anderson, 1984;
Rubio and Gillespie, 1995; Chin et al., 2003; Saris and Aalberts, 2003; Henseler and Chin, 2010;
Brown, 2015). Depending on the magnitude of the unobserved correlation between
measurement errors, the number of indicators and their quality, ignoring measurement error
correlations leads to inconsistent structural parameter estimates and, therefore, to potentially
erroneous conclusions (e.g. Podsakoff et al., 2012; Westfall et al., 2012; Gu et al., 2017).

Different remedies have been proposed to prevent correlated measurement errors through
a careful study design (e.g. MacKenzie and Podsakoff, 2012; Podsakoff et al., 2012). However,
in practice, aspects such as study design, item quality and wording are often beyond the
researchers’ control, essentially leaving modeling approaches as the only alternative. Several
researchers therefore suggest addressing the problem indirectly, e.g., by means of bifactor
models and associated hierarchical reliability indices (e.g. McNeish, 2018). Others propose
explicitly specifying the measurement error correlation structure in the model (e.g. Rubio and
Gillespie, 1995; Brown, 2015, pp. 162–175) – although there is some controversy as to the
conceptual justification of such an approach (e.g. Landis et al., 2009; Hermida, 2015).

Against this background, we follow Sarstedt et al.’s (2014) call for a continuous
improvement of PLS and contribute to the literature by extending PLSc to yield consistent
parameter estimates for population models whose indicator blocks contain a subset of
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correlated measurement errors. Based on an idea outlined in Dijkstra (2013) and mentioned
in Dijkstra and Henseler (2015a), this is achieved by modifying the calculation of the
correction factors as defined by PLSc to include a priori assumptions on the structure of the
within-block measurement error correlations.

The remainder of the paper is structured as follows: Section 2 briefly reviews the PLS
algorithm and its consistent version PLSc. Section 3 presents the methodological
contribution to obtain consistent and asymptotically normally distributed parameter
estimates if within-block measurement error correlation is present. The design and results of
a Monte Carlo simulation to assess the approach are described in Sections 4 and 5. The
paper closes with a discussion and an outline for potential future research in Section 6.

2. PLS path modeling
PLS was developed by Herman O.A. Wold (1975) for the analysis of high-dimensional data
in a low-structure environment but has been extended and modified in recent years to
accommodate a wide variety of analytical needs. PLS, which may be regarded as similar to
generalized canonical correlation analysis, is capable of emulating several of Kettenring’s
(1971) techniques for the canonical correlation analysis of several sets of indicators
(Tenenhaus et al., 2005). In its most developed form, known as PLSc, it may best be
understood as a fully developed SEM approach that includes a global goodness-of-fit test for
linear models and the ability to consistently estimate recursive, non-recursive and non-linear
common factor models (Dijkstra, 2011; Dijkstra and Schermelleh-Engel, 2014; Dijkstra and
Henseler, 2015a, b).

The following section briefly reviews the notation and main aspects of PLS and PLSc as
well as their underlying model setup, known as the basic design.

Consider a model with J latent variables η1, η2,…, ηJwith unit variance related via a set of
structural equations and the existence of corresponding vectors of indicators x1, x2,…, xJ
defined as measurement error-prone manifestations of their respective latent variable:

x j ¼ kjZjþej 8j¼1; . . .; J ; (1)

where the vector of loadings λj contains as many components as there are indicators in xj.
All variables involved are centered at their mean, and all second-order moments are
assumed to exist. The measurement errors εj are assumed to satisfy E(εj|ηj)¼0 such that
the conditional mean of xj is given by kjηj. Furthermore, measurement errors are taken as
mutually uncorrelated within blocks and between blocks such that the within-block
measurement error covariance matrix Hjj � Eðeje0jÞ is diagonal and the measurement error
covariance matrix across blocksHij � Eðeie0jÞ is 0. Based on these assumptions, we have the
following covariance matrices:

Sij � E x ix 0
j

� �
¼ rijkik

0
j; (2)

and:

Sjj � E x jx 0
j

� �
¼ kjk

0
jþHjj; (3)

where ρij is the correlation between latent variables ηi and ηj. The correlation matrix ( ρij) will
generally be positive definite. It can satisfy rank constraints on sub-matrices as induced by
(non-recursive) simultaneous equations for the latent variables (Dijkstra, 1981). In this
paper, we work with recursive systems only, so each equation for a latent variable is a
regression equation.
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2.1 Traditional PLS path modeling
In addition to the setup given above, assume that there are Kj column vectors of
standardized indicator observations of length N denoted by x1j, x2j,…, xKjj. For ease of
notation, all Kj indicators are stacked in the (N×Kj) matrix Xj. In PLS, proxies for each
latent variable are built as the weighted sum of its related indicators. The unknown weight
vector wj is determined in an iterative three-step procedure.

At the outset, initial arbitrary outer weights ŵ 0ð Þ
j are chosen such that the unit

variance condition ŵ 0ð Þ0
j S jjŵ

0ð Þ
j ¼ 1 holds, where the (Kj×Kj) matrix Sjj is a consistent

estimate of the population correlation matrix Rjj [1]. After initialization, the iterative
algorithm begins with Step 1, the outer estimation of ηj is as follows:

ĝ
hð Þ
j ¼ X jŵ

hð Þ
j with ŵ hð Þ0

j S jjŵ
hð Þ
j ¼ 1 8j¼ 1; . . .; J ; (4)

where ĝ
hð Þ
j is the (N× 1) vector of outer estimates and ŵ hð Þ

j the (Kj× 1) estimated
weight vector. The superscript indicates the h-th iteration step. Since outer weights are
scaled, the outer estimates are scaled as well.

Based on the outer estimates from Step 1, so-called inner estimates of latent variable ηj
are computed according to the inner weighting scheme:

~g hð Þ
j ¼

XJ

i 1

e hð Þ
ji ĝ

hð Þ
i ; (5)

where e hð Þ
ji ¼ signðŵ hð Þ0

j S jiŵ
hð Þ
i Þ is the inner weight with plim Sij¼Rij [2]. All inner estimates

~g hð Þ
j are again scaled such that their variance is 1.
In the third step of each iteration, new outer weights are calculated according tomode A.

Formode A, the new estimated outer weights, also known as correlation weights, ŵ hþ 1ð Þ
j are

equal to the coefficients resulting from a sequence of univariate ordinary least squares (OLS)
regressions of Xj on ~g hð Þ

j [3]. As a crucial result of mode A, the following proportionality
relation is obtained:

ŵ hþ 1ð Þ
j p

XJ

i 1

e hð Þ
ij S ijŵ

hð Þ
i with ŵ hþ 1ð Þ0

j S jjŵ
hþ 1ð Þ
j ¼ 1: (6)

New outer weights ŵ hþ 1ð Þ
j are checked for notable changes compared to the outer weights

from the previous iteration step ŵ hð Þ
j . If there is a significant change in the weights, the

algorithm continues by building new outer proxies based on the newly obtained weights;
otherwise, it stops. Assuming that the established model is correct, it can be shown that the
PLS algorithms will converge with a probability tending to one as the sample size increases
(Dijkstra, 1981). For smaller samples and misspecified models, however, convergence may
be an issue (Henseler, 2009). The resulting weights satisfy Equation (6) with all superscripts
removed. Moreover, their probability limits satisfy the same equations, with Sij replaced by
Rij. Thus, the probability limits of the weights obtained by PLS and PLSc can be obtained
by applying them to the population indicator covariance matrix R. Notably, the proof of
numerical and probabilistic convergence does not require that the measurement errors
within blocks are uncorrelated. To see this, it is crucial to note, that the population weights
are unaffected of the precise nature of Rjj. Using the final weights ŵj and taking probability
limits on both sides of Equation (6), we have formulated the following:

plim ŵjpplim
XJ

i 1

eijS ijŵi-wjp
XJ

i 1

eijRijwi ¼
XJ

i 1

eijrijkik
0
jwi; (7)
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where the last equality crucially assumes uncorrelated measurement errors across blocks,
i.e., Hij¼0, but not within blocks of indicators [4].

Once convergence is reached, the resulting stable outer weights ŵj are used to build the
final proxy for the latent variables: ĝj ¼ X jŵj. Finally, factor loadings for each block are
obtained as the OLS solution of a sequence of regressions of Xj on ĝj. Similarly, the path
coefficients are the OLS estimates of the equations postulated by the structural model.

2.2 Consistent PLS
The principal idea of PLS is to build proxies as stand-ins for the latent variables and
subsequently estimate model parameters based on these proxies. Naturally, it cannot be
expected that these stand-ins perfectly reflect the underlying latent variables unless all
measurement errors are assumed to be 0 in the population. As a consequence, the
probability limit of the estimated correlation between proxies is smaller in absolute
value than the population correlation between their corresponding common factors.
Hence, path coefficients and factor loadings based on estimated proxy correlations
are inconsistent estimates for their population counterpart. PLSc addresses this
shortcoming by consistently estimating the composite reliability and subsequently
correcting the correlations among the proxies for attenuation (Cohen et al., 2003).
Provided that each latent variable is connected to at least two indicators, the population
composite reliability of the population proxy Zj as defined in Dijkstra and Henseler (2015b)
is given by:

rA; j :¼ w0
jwj

� �2
Uc2j ; (8)

where cj :¼ k0jSjjkj

q
is the factor that relates population weights wj ¼ plim ŵj to their

corresponding population loadings λj (Dijkstra, 1981; Dijkstra and Henseler, 2015a):

wj ¼
kj

k0jSjjkj

q : (9)

It is crucial to note, that this relationship holds independent of the form of Σjj. To see this,
note that based on Equation (7), the population relation between weights and loadings may
simply be written as wj ¼ c�1

j kj since
PJ

i 1 eijrijk
0
iwi is a scalar.

Using the population normalization condition w0
jSjjwj¼ 1 now yields the population

value cj:

w0
jSjjwj¼ 1; (10)

k0j
cj
Sjj

kj

cj
¼ 1; (11)

c2j ¼ k0jSjjkj : (12)

Consequently, population weights and the proportionality constant cj clearly vary with Rjj,
however, the fundamental relationship given by Equation (7) is unaffected by Rjj
(and therefore also unaffected by potential within-block error correlation).

To obtain the estimated correction factor ĉj, a variety of approaches are
possible (Dijkstra, 2013). Usually, ĉj is chosen for block j such that the squared
Euclidean distance between the off-diagonal elements of the empirical covariance matrix
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Sjj and the matrix ðcjŵjÞ ðcjŵjÞ0 is minimized. In this case, the squared estimated
correction factor is given by:

ĉ2j ¼
ŵ0

j S jj�diag S jj
� �� �

ŵj

ŵ0
j ŵjŵ

0
j�diag ŵjŵ

0
j

� �� �
ŵj

: (13)

Since plim ŵj ¼ wj and plim S jj ¼ Sjj and since the functions involved are continuous, the
probability limit directly follows:

plim ĉ2j ¼
w0

j Rjj�diag Rjj
� �� �

wj

w0
j wjw0

j�diag wjw0
j

� �� �
wj

; (14)

¼ k0jSjjkjþk0jSjjkjU
k0j Hjj�diag Hjj

� �� �
kj

k0j kjk
0
j�diag kjk

0
j

� �� �
kj

: (15)

The numerator of the last term in Equation (15) is 0 when all the measurement errors are
uncorrelated in the population since, in this case, Hjj¼ diag(Hjj). Assuming that Hjj is
indeed a diagonal matrix, the resulting probability limit of the squared estimated correction
factor equals the squared correction factor from Equation (12), i.e., the squared distortion of
the population weights to population loadings. Hence, consistent factor loading estimates
and attenuation-corrected correlations between common factors j and i are readily given by:

k̂j ¼ ĉjŵj and dCor Zj; Zi
� � ¼ ŵ0

jS jiŵi

r̂A;jUr̂A;i
p : (16)

Depending on the underlying structural model, consistent path coefficient estimates may be
obtained by OLS or two-stage least squares using the estimated disattenuated correlation
given above.

3. Correlated measurement errors
As suggested by Equation (15), the consistency of original PLSc was established based on the
assumptions of the basic design, including measurement errors that are uncorrelated across
and within blocks of indicators; i.e., Hjj is indeed a diagonal matrix. In fact, if measurement
errors in the population are correlated within blocks of indicators, then original PLSc using the
correction factor from Equation (13) leads to inconsistent parameter estimates for both factor
loadings and path coefficients, where the magnitude of the inconsistency is positively related
to the strength of the measurement error correlation and negatively affected by the composite
reliability. However, taking into account measurement errors are straightforward provided
that the correlation is confined to be within the indicator blocks.

Given a presumption on the measurement error correlation structure, define the set of
uncorrelated measurement error pairs as Uj :¼ {(k, m)|θkm; jj¼ 0}, where θkm; jj denotes the
population covariance between the k-th and m-th measurement error of block j. An
immediate extension to original PLSc is to minimize the squared Euclidean distance
between the off-diagonal elements of the empirical covariance matrix Sjj and the matrix
ðcjŵjÞ ðcjŵjÞ0 with respect to cj, including only those elements contained in the set Uj:

ĉ2j ¼ arg min
c2j

X
k;mAUj

skm; jj�c2j ŵkjŵmj

h i2
; (17)
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where ŵkj and ŵmj are the k-th and m-th elements of the weight vector ŵj and skm; jj is the
empirical covariance between the k-th andm-th indicators of block j [5]. Provided that the set
of uncorrelated measurement error pairs is nonempty, minimization yields:

ĉn2j ¼
P

k;mAUj
ŵkjŵmjskm;jjP

k;mAUj
ŵ2
kjŵ

2
mj

: (18)

Because of the continuity of the functions involved, the consistency of the sample moments,
and the fact that the probability limits of the PLS weight vectors, as given in Dijkstra (1981),
are effectively independent of the assumed structure within the blocks, the probability limit
of the estimated adjusted squared correction factor is again equal to k0jSjjkj. Indeed,
replacing the terms in Equation (18) by their population counterparts yields:

plim ĉn2j ¼
P

k;mAUj
wk; jwm; jskm; jjP

k;mAUj
w2
kjw

2
mj

; (19)

¼ k0jSjjkjU

P
k;mAUj

l2kjl
2
mjþ

P
k;mAUj

lkjlmjykm;jjP
k;mAUj

l2kjl
2
mj

; (20)

¼ k0jSjjkj; (21)

where the last term in Equation (20) is one since θkm; jj is 0 by assumption for all elements
contained in Uj. As a consequence, consistent estimates for the attenuation-corrected
correlations between common factors, loadings and path coefficients may be obtained along
the same lines described in the preceding section.

4. Monte Carlo simulation
To assess the efficacy of the modification, a Monte Carlo simulation is conducted.

To this end, six population models are investigated [6]. The baseline population model to
be considered is illustrated in Figure 1. The structural population model contains three
latent variables:

Z2 ¼ γ1Z1þz1; (22)

Z3 ¼ γ2Z1þbZ2þz2; (23)

where γ1¼ 0.6, γ2¼ 0.4, β¼ 0, Var(ζ1)¼ 0.64, Var(ζ2)¼ 0.84, and Cov(η1,ζ1)¼
Cov(η1,ζ2)¼Cov(η2,ζ2)¼Cov(ζ1,ζ2)¼ 0. The structural model remains identical across all
six population models and is similar to structural models typically applied in the literature
(e.g. Paxton et al., 2001; Hwang et al., 2010).

For each population model, the exogenous latent variable η1 and the two endogenous latent
variables η2 and η3 are each connected to three indicators, the minimum requirement for our
approach to be feasible since the additional indicator ensures that Uj≠ | if a correlation
between any two measurement errors is allowed. Factor loadings for η2 and η3 are fixed at
λ12¼ 0.7, λ22¼ 0.85, λ32¼ 0.8 and λ13¼ 0.8, λ23¼ 0.75, λ33¼ 0.8, reflecting average indicator
reliabilities. Furthermore, the first two loadings of η1 are set to λ11¼ 0.65 and λ21¼ 0.8,
respectively. To investigate how different composite reliabilities affect parameter estimates,
both the number of indicators per block and the size of the loadings may be varied. Here, we
chose the latter by varying λ31 within a range of 0.5 to 0.9 in steps of 0.2.
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All measurement errors (εkj) have a mean of 0 and are uncorrelated across and within blocks
except for the first and the second measurement errors of the first indicator block:
y12;11 ¼ 0:360U0:578

p
Ur12;11, where ρ12;11 denotes the correlation between ε11 and ε21. To

assess how the strength of the correlation affects parameter estimates, we include a case
with comparatively low ( ρ12;11¼ 0.1) and high correlation ( ρ12;11¼ 0.6).

The simulation is conducted in the statistical software environment R (R Core Team,
2017). The data sets for each of the six resulting population models (¼ 3 different loading
magnitudes × 2 different measurement error correlations) are drawn according to the
following baseline population indicator correlation matrix using the MASS package
(Venables and Ripley, 2002). Samples of size n¼ 100, 200 and 1,000 are drawn from a
multivariate normal distribution with the mean of each indicator set to 0 and the covariance
matrix displayed in Equation (24):

The number of replications per population model is set to 1,000, resulting in a total of 18,000
data sets (6 population models× 3 sample sizes× 1,000 replications).

To estimate the underlying population parameters for each data set, two models were
specified. The first model M1 correctly reflects the corresponding underlying population
model in terms of the structural and the measurement model but does not explicitly account

x11 x21 x31 x12 x22 x32 x13 x23 x33

�11 �21 �31 �12 �22 �32 �13 �23 �33

�1 �2

�11 0.65

�21 0.8

�31

�1 �2 �3

�12 0.7

�22 0.85

�32 0.8 �13 0.8

�23 0.75

�33 0.8

�1 0.6 � 0.0

�2 0.4

�12;11

Figure 1.
Baseline population
model
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for the correlation between the measurement errors ε11 and ε21. Here, estimation by
traditional PLSc is expected to yield estimates that systematically deviate from their
corresponding population values. The second model M2 is similar to the first model but
acknowledges the measurement error correlation as present in the population models.
Estimation is performed using our contributed modification. To this end, we use the
MoMpoly function provided by the MoMpoly package (Schuberth et al., 2017), which
implements the procedure as described in this paper [7]. Here, the enhanced procedure is
expected to yield estimates close to the corresponding population parameters. However, this
is likely to come at the cost of a loss in precision, as the calculation of the correction factor
is based on less information. In addition to the estimations based on the simulated data sets,
we retrieve the parameters for each population model using the population covariance
matrix as input. This serves to verify Fisher consistency, i.e., whether a given estimator is in
fact able to yield population parameters if supplied by the population covariance matrix.

To compare the estimates across the different designs, two common quality measures
are considered: the estimated bias and the root mean squared error (RMSE). The bias is
estimated as follows:

dBias ¼ 1
M

XM
i 1

bc i�c
� �

; (25)

where c denotes a generic population parameter and ĉ is its corresponding estimate for a
given model and sample size. The number of elements M is equal to the number of
replications corrected for the number of Heywood cases and outliers [8]. The latter is defined
as all estimates larger than the median ±3 times the interquartile range.

Consistency of our modification is essentially achieved by discarding information. Hence,
finite sample comparisons between modified PLSc and original PLSc should take the
expected trade-off between bias and variability into account. A well-established measure in
this respect is the (estimated) RMSE given by:

dRMSE ¼ 1
M

XM
i 1

bc i�c
� �2

vuut : (26)

The population RMSE essentially combines standard deviation and bias. For an unbiased
estimator, it equals to the standard deviation.

5. Results
Below, we present the results of the simulation study. We report the results for the path
coefficients γ1, γ2 and β and the factor loadings λ21 and λ31 of the indicator block affected by
measurement error correlation. In addition, the share of Heywood cases and the share of
outliers are given for each setup. Omission of the other loadings is justified because the
results for λ11 are virtually identical to those of λ21 and λ31, while the loadings of those
indicator blocks whose measurement errors are assumed to be uncorrelated are by
construction unaffected by the correlated measurement errors of other blocks within the
structural model.

Tables I and II summarize the results. Each major column contains the results
for a given population factor loading λ31 (i.e. 0.5, 0.7, 0.9) spread across two minor
columns representing the varying population measurement error correlation ρ12;11, where
ρ12;11∈{0.1, 0.6}. Each major-minor combination is again split by model (i.e. model M1 and
model M2) to facilitate the comparison.
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λ31¼ 0.5 λ31¼ 0.7 λ31¼ 0.9
ρ12;11¼ 0.1 ρ12;11¼ 0.6 ρ12;11¼ 0.1 ρ12;11¼ 0.6 ρ12;11¼ 0.1 ρ12;11¼ 0.6

n Parameter
M1

( )
M2

(+)
M1

( )
M2

(+)
M1

( )
M2

(+)
M1

( )
M2

(+)
M1

( )
M2

(+)
M1

( )
M2

(+)

100 γ1 0.00 0.01 0.06 0.01 0.00 0.01 0.04 0.00 0.00 0.01 0.01 0.01
100 γ2 0.02 0.05 0.06 0.04 0.02 0.02 0.04 0.00 0.00 0.01 0.02 0.02
100 β 0.02 0.00 0.08 0.00 0.02 0.02 0.07 0.03 0.04 0.01 0.06 0.02
100 λ21 0.01 0.01 0.08 0.02 0.01 0.00 0.06 0.00 0.01 0.00 0.06 0.01
100 λ31 0.01 0.01 0.06 0.01 0.01 0.00 0.06 0.00 0.01 0.01 0.02 0.01
Heywood cases (%) 28.70 34.00 33.30 36.30 27.00 31.20 30.60 27.60 30.50 27.50 46.10 32.80
Outliers (%) 1.96 3.64 3.75 5.81 4.11 2.47 2.59 1.93 2.45 3.45 2.97 2.53
200 γ1 0.01 0.01 0.06 0.01 0.01 0.00 0.04 0.01 0.01 0.00 0.03 0.00
200 γ2 0.01 0.02 0.08 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.03 0.00
200 β 0.02 0.00 0.08 0.01 0.02 0.01 0.06 0.01 0.01 0.01 0.04 0.01
200 λ21 0.02 0.01 0.09 0.00 0.01 0.00 0.07 0.00 0.01 0.00 0.06 0.00
200 λ31 0.01 0.00 0.06 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.03 0.00
Heywood cases (%) 9.00 13.70 14.20 13.20 10.40 8.30 10.10 10.70 12.50 8.00 25.90 10.80
Outliers (%) 0.88 0.81 0.93 0.92 0.67 1.31 0.67 0.78 1.14 0.65 0.27 0.56
1,000 γ1 0.01 0.00 0.07 0.00 0.01 0.00 0.05 0.00 0.01 0.00 0.03 0.00
1,000 γ2 0.02 0.00 0.08 0.00 0.01 0.00 0.06 0.00 0.01 0.00 0.05 0.00
1,000 β 0.02 0.00 0.07 0.00 0.01 0.00 0.05 0.01 0.01 0.00 0.04 0.00
1,000 λ21 0.02 0.00 0.10 0.00 0.01 0.00 0.07 0.00 0.01 0.00 0.05 0.00
1,000 λ31 0.01 0.00 0.06 0.00 0.01 0.00 0.06 0.00 0.01 0.00 0.05 0.00
Heywood cases (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.50 0.10
Outliers (%) 0.30 0.10 0.10 0.30 0.00 0.10 0.40 0.00 0.00 0.00 0.10 0.00
Pop. γ1 0.01 0.00 0.07 0.00 0.01 0.00 0.05 0.00 0.01 0.00 0.03 0.00
Pop. γ2 0.02 0.00 0.08 0.00 0.01 0.00 0.06 0.00 0.01 0.00 0.05 0.00
Pop. β 0.02 0.00 0.07 0.00 0.01 0.00 0.05 0.00 0.01 0.00 0.04 0.00
Pop. λ21 0.02 0.00 0.10 0.00 0.01 0.00 0.07 0.00 0.01 0.00 0.05 0.00
Pop. λ31 0.01 0.00 0.06 0.00 0.01 0.00 0.06 0.00 0.01 0.00 0.05 0.00

Table I.
Estimated bias

λ31¼ 0.5 λ31¼ 0.7 λ31¼ 0.9
ρ12;11¼ 0.1 ρ12;11¼ 0.6 ρ12;11¼ 0.1 ρ12;11¼ 0.6 ρ12;11¼ 0.1 ρ12;11¼ 0.6

n Parameter
M1
( )

M2
(+)

M1
( )

M2
(+)

M1
( )

M2
(+)

M1
( )

M2
(+)

M1
( )

M2
(+)

M1
( )

M2
(+)

100 γ1 0.09 0.10 0.11 0.11 0.09 0.10 0.10 0.10 0.08 0.08 0.08 0.09
100 γ2 0.16 0.20 0.16 0.22 0.17 0.17 0.15 0.17 0.15 0.14 0.14 0.15
100 β 0.17 0.19 0.17 0.20 0.17 0.18 0.17 0.17 0.16 0.15 0.16 0.17
100 λ21 0.09 0.10 0.11 0.10 0.08 0.09 0.09 0.09 0.08 0.08 0.08 0.07
100 λ31 0.12 0.09 0.14 0.10 0.10 0.08 0.11 0.09 0.06 0.05 0.06 0.06

200 γ1 0.07 0.08 0.09 0.08 0.07 0.07 0.08 0.07 0.06 0.06 0.06 0.06
200 γ2 0.12 0.15 0.13 0.15 0.11 0.11 0.12 0.13 0.11 0.11 0.10 0.11
200 β 0.12 0.14 0.13 0.14 0.11 0.11 0.12 0.12 0.11 0.11 0.11 0.11
200 λ21 0.07 0.08 0.11 0.08 0.06 0.07 0.08 0.06 0.05 0.05 0.07 0.05
200 λ31 0.08 0.07 0.11 0.07 0.07 0.06 0.09 0.06 0.04 0.04 0.05 0.04

1,000 γ1 0.03 0.04 0.07 0.04 0.03 0.03 0.06 0.03 0.03 0.03 0.04 0.03
1,000 γ2 0.05 0.06 0.10 0.06 0.05 0.05 0.08 0.05 0.05 0.05 0.06 0.05
1,000 β 0.05 0.06 0.08 0.06 0.05 0.05 0.07 0.05 0.05 0.05 0.06 0.05
1,000 λ21 0.03 0.04 0.10 0.04 0.03 0.03 0.07 0.03 0.02 0.02 0.05 0.02
1,000 λ31 0.04 0.03 0.07 0.03 0.03 0.03 0.07 0.03 0.02 0.02 0.06 0.02

Table II.
Root mean squared
error (RMSE)
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Table I displays the simulation results with respect to the estimated bias. Each row displays
the average deviation of the estimated parameters from their corresponding population values
split by sample size n¼ 100, 200, 1000 (across rows), population and estimated model (across
columns). In the presence of unmodeled measurement error correlation within a block of
indicators, parameter estimates obtained by PLSc using the traditional correction factor
(modelM1) systematically deviate on average from their pre-specified population value, where
the deviation per population model and parameter is stable across sample sizes. This finding
is in line with the fact that original PLSc is indeed unable to retrieve population parameters
when supplied with the corresponding population indicator covariance matrix, as displayed at
the bottom of Table I. Comparing results for a given sample size, the magnitude of the
deviations varies between virtually no bias (e.g. for λ31¼ 0.9 and ρ12;11¼ 0.1) and values of up
to 0.1 (e.g. for λ31¼ 0.5 and ρ12;11¼ 0.6), depending on the strength of the measurement error
correlation ρ12;11 and the size of the population loading λ31. In this respect, the effect of the
strength of the correlation between measurement errors on the estimated bias is most
pronounced with higher error correlations leading to increased deviation.

Looking across columns for a given measurement error correlation, deviations vary only
marginally, although an increasing reliability – as induced by the higher loadings – slightly
decreases bias overall. These findings are again supported by the parameters obtained
based on the corresponding population covariance matrix shown in the last four rows of
Table I: deviations for all parameters are lowest for estimates based on population models
with a higher composite reliability, i.e., λ31¼ 0.9.

In contrast to Model M1, population model parameters are retrieved when errors are
taken into account along the lines described in Section 3 (model M2). The finite sample
results for model M2 are largely in line with these findings, although small deviations
are found; e.g., with values of 0.04 and 0.05, the estimated bias for path coefficient γ2 is
comparatively high.

For a given parameter, the sign of the deviations is relatively stable across sample sizes,
population model and estimated model. The results show a small but almost consistently
negative deviation for γ1 and γ2, while β, the path coefficient connecting the two endogenous
latent variables η2 and η3, as well as the loadings λ21 and λ31 are uniformly overestimated.

Overall, the difference between M1 and M2 is most pronounced for the estimated loadings,
while deviations for the path coefficients are generally small, with modified PLSc outperforming
original PLSc for large samples sizes and strong measurement error correlation only.

Table II reports the results for the RMSE. Here, the picture is mixed. For medium
(λ31¼ 0.7) and high (λ31¼ 0.9) composite reliability, the RMSE for both loading and path
coefficient estimates is virtually identical for M1 and M2. In contrast to the results in
Table I, the RMSE does not differ systematically with the magnitude of the error correlation.
For λ31¼ 0.5, however, original PLSc is superior to the modified approach in small samples
(n¼ 100, 200). Only for a large sample size and a high composite reliability doesM2 produce
strictly smaller RMSEs compared to the values produced by M1.

Regarding Heywood cases and outliers, no significant difference between M1 and M2 is
visible. While the number of Heywood cases is close to 0 or is 0 for large samples, roughly 300
of the 1,000 replications were discarded for a sample size of n¼ 100. In each instance, Heywood
cases occur because of the loading estimates that are larger than one in absolute value.

6. Discussion and future research
Correlated measurement errors are a common feature in SEM. However, research regarding
issues and potential remedies related to measurement error correlations in the context of VB
estimation is scarce. While prior research papers (e.g. Charles, 2005; Zimmerman, 2007;
Padilla and Veprinsky, 2012; Raykov et al., 2014) have discussed and addressed the issue
of correlated measurement errors in the common factor framework, none of these are
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based on a VB approach like PLS. Against this background, we contribute to the
ongoing development and assessment of VB estimation approaches by filling two gaps in
the literature.

First, this study enhanced PLSc to yield consistent parameter estimates for population
models whose indicator blocks contain a subset of correlated measurement errors – provided
that all correlated errors are accounted for in the estimated model. Since PLS and PLSc are
viable options for estimating interactions and other non-linear relationships between
constructs (e.g. Dijkstra and Henseler, 2011; Dijkstra and Schermelleh-Engel, 2014), our
findings may help in advancing current approaches in this field. Notable examples of this kind
would be the product-indicator approach (Chin et al., 2003) and the orthogonalizing approach
(Henseler and Chin, 2010) – both of which rely on indicators whose errors can safely be
assumed to be correlated for technical reasons. The proposed correction can help to make
these two approaches consistent.

Second, initial evidence on the implications of neglecting measurement error correlation
in PLSc was provided. To this end, a Monte Carlo simulation was conducted to investigate
the average difference between estimated parameters and their respective population
counterpart as well as the RMSE across a range of pre-specified population models for
original and modified PLSc.

For original PLSc, the simulation results showed a generally small yet persistent average
deviation between the estimated parameters and their corresponding population value
(estimated bias) across all population models if measurement error correlation was neglected
in the estimated model (model M1). For our proposed approach (model M2), the average
deviation between the estimated parameters and their corresponding population value was
virtually 0 across all samples sizes, indicating that the procedure works well in finite
samples. These findings were in line with theoretical considerations regarding the
inconsistency of original PLSc when measurement errors within indicator blocks are
ignored. Overall, however, differences were generally rather small. In particular, when
efficiency is considered with respect to the RMSE, M1 and M2 produce virtually identical
results unless both the sample size and the population error correlation are high and the
population composite reliability is low.

Regarding the magnitude of the estimated bias, we found a positive relation with the
strength of the measurement error correlation, while higher composite reliability can be seen
as a catalyst that essentially mitigates the effect of a given neglected measurement error
correlation. The latter is intuitively appealing since an increase in composite reliability
implies a decrease in attenuation of the latent variable correlation. Hence, correction for
attenuation and, by the same token, any inconsistency caused by unmodeled measurement
error correlation becomes less and less influential. Regarding the RMSE, the relation is less
clear, although the RMSE for both the modified approach and original PLSc is higher when
the population measurement error is comparatively high.

These findings are regarded as initial evidence that – although our approach is
theoretically superior – original PLSc is comparatively robust with respect to
misspecification of the structure of the measurement error correlations within blocks of
indicators. Indeed, some preliminary simulation results by the authors confirm that PLSc
outperforms common CB estimators (including maximum likelihood) in terms of bias if
measurement error correlation within blocks of indicators is neglected. However, a
generalization of these findings requires separate attention.

The observed tendency of PLSc to produce Heywood cases (loadings larger than one in
absolute value), or incorrect signs of regression coefficients in PLS, should be addressed.
We chose the simplest method to demonstrate our modification, but more robust approaches
for estimating the correction factor may be applied. In fact, initial Monte Carlo evidence
confirms that using, e.g., Equation (11) of Dijkstra (2013), does indeed improve the share of
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admissible results by roughly 10 percentage points without affecting any of the results
described above. Whether these findings hold in general, however, is an open question.
Furthermore, we have developed a simple approach – essentially empirically Bayes –where we
use a posterior mean, median or mode that does lie in the appropriate range to address these
issues. The merits of this approach, however, are not yet fully investigated (Dijkstra, 2018).

This study provided initial evidence on the implications of neglecting measurement error
correlation in terms of parameter accuracy. Clearly, this is of limited scope. Future research
should investigate the consequences of our modified approach for model fit. Critics have
repeatedly cautioned against pre-specifying measurement error correlations, claiming that
these correlations often lack a substantive meaning, which would in turn only obfuscate a
meaningful interpretation of the specified model. In fact, for CB estimators such as
maximum likelihood freeing, one or more measurement error correlations naturally leads to
an increase in model fit, as the estimated model-implied covariance matrix is closer to its
empirical counterpart. Similarly, common fit indices based on the distance between the
estimated model-implied and empirical covariance matrix – such as the standardized root
mean squared residual or the geodesic distance – generally indicate a better fit.

The focus of this paper was on within indicator block measurement error correlation only.
In the presence of unmodeled population measurement errors across blocks, the modification
does not yield consistent estimates because the proportionality between weights and loadings
as used to derive the correction factor no longer holds. As a consequence, loadings, reliabilities
and path coefficients pertaining to the blocks affected by measurement error correlation are
generally inconsistent. Strategies to address unmodeled population measurement errors
across blocks within the PLS/PLSc framework are thus needed.

Notes

1. Throughout the iteration, the unit variance condition is maintained by using the scaling factor
ðŵ hð Þ0

j S jjŵ
hð Þ
j Þ� 1=2ð Þ for the outer weights ŵ hð Þ

j in each iteration step h.

2. The inner weight eji defines how the inner estimates are built. Three inner weighting schemes are
common: the centroid, the factorial and the path weighting scheme. For linear structural models,
however, all schemes yield essentially the same results (Noonan and Wold, 1982) and therefore do
not affect our proposed approach. For the purpose of our simulation, we employed the centroid
scheme. For more details on the schemes, see, e.g., Tenenhaus et al. (2005).

3. Only correlation weights are considered, as these were originally used by Dijkstra and Henseler
(2015a) to obtain consistent parameter estimates. However, consistent parameter estimates can be
also obtained from the weights calculated by mode B or mode C (Dijkstra, 1981, Chap. 2 par. 5.2).
Moreover, weights obtained by mode A are generally more stable, since those from mode B
(regression weights) tend to suffer from multicollinearity. For an overview of outer weighting
schemes and their properties, see Dijkstra (1981).

4. In fact, Equation (7) is not tied to using “converged” weights such as those obtained by PLS.
Dijkstra and Schermelleh Engel (2014), for example, discuss what they call “one step” weight
(essentially weight obtained after one iteration). In theory, any weight vector obtained after an
arbitrary number of iterations (converged or not) will satisfy Equation (7).

5. The extension suggested here is not necessarily tied to using the squared Euclidean distance.
As pointed out by Dijkstra (2013), weights could be introduced in Equation (17) to potentially reap
efficiency gains. More generally, functions of ratios may be minimized; however, the solution will
require iterative procedures. In this paper, the simplest approach was chosen to keep the main
focus on our enhancement.

6. To draw a comprehensive picture of each modeling decision’s influence on the results, we
examined numerous alternative setups where we varied, for instance, the number of indicators, the
number of observations, the indicator block whose errors where correlated and the magnitude of
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different loadings. Additionally, as a robustness check, we conducted the simulation using non
normally distributed data as in Dijkstra and Henseler (2015a) and applied all of the alternative
approaches to obtain the correction factor described in Dijkstra (2013). Here, we describe only
those setups that we deem most informative and most general, but note that none of the results of
any other specifications were contrary to the central findings of the paper at hand. The results for
the alternative specifications or the necessary R files to reproduce these can be obtained from the
authors upon request.

7. The MoMpoly package is currently not on the Comprehensive R Archive Network. To replicate the
results, a development version is available upon request.

8. Heywood cases in PLSc may occur for three reasons: the attenuation corrected or uncorrected
estimated covariance matrix between proxies is not semi positive definite; standardized absolute
loading estimates are larger than one; and the PLS algorithm has not converged.
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