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1 Introduction

In the last decades computer networks became one of the majding blocks
of our society. Large parts of our private and business lifsaaly depend on this
infrastructure for communication, information, and exuofp@ of data. However,
until today the Internet is still driven by algorithms andheologies which have
been developed in the seventies and eighties. The tradits@nvice architecture
in the Internet, e.g., is based on the simple client-serxiaciple. That is, a sin-
gle central unit provides several clients with a servicee Bauthe continuously
increasing number of both users and services in today’sarksyit became time
for a revolutionary rethink of this simple approach.

Step by step, new functionality, which the network inhelsedid not posses, is
added. In large part this is done by establishing overlayois, i.e. logical con-
nections between users on top of the physical network. Sumtay networks are
an enabling technology for user driven applications whidift $he intelligence
from within the network to its edges. The prime example foroaarlay based
application is the direct distribution of files among ena@nsswithout them being
dependent on a company or any other central entity. Whilaerbeginning the
success of overlay networks was mainly driven by peer-tr-(@2p) file-sharing,
the underlying structures are by far not limited to the edfitidistribution of me-
dia content to a large number of customers. They are, e.gd fos distributed
network management or to build a global persistent date stbere each partic-
ipating user contributes some storage and bandwidth.iBRis¢éd Voice-over-IP
platforms like Skype are another good example, as theyat#owmice traffic from
traditional telephone lines to the Internet using overlagorks.
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However, randomly established overlay networks providly anbest effort
service and cannot offer any guarantees or service levebawgnts. Therefore, a
new generation of structured overlay systems based oniliRistd Hash Tables
(DHTSs) is currently investigated in the research communitysuch DHTSs it is
well-defined how the participating users are interconrieeted how messages
are routed in the overlay network. Inspired by this poténtlee first business
models based on overlay architectures have emerged. Ciasfsaart to discover
the advantages of decentralized structured overlay nkswdhey are no longer
dependent on a single central unit nor do they have to inveserver farms
to guarantee the scalability of their systems. Togethehn thibse new systems,
however, new challenges arise as well. Before structureday networks can
successfully be used in a corporate environment, theiopegnce needs to be
understood in detail. The achievable level of performaretenthines in how far
overlay architectures can be used to offer a reliable seraied what service
level agreements can be negotiated. Another problem isstiedt architectures
are highly distributed and therefore appear as a black btixetoperator. Yet an
operator does not want to lose control over his system andsnieebe able to
continuously observe and examine its current state atmenti

1.1 Contribution

The contribution of this monograph is two-fold. First, wealate the perfor-
mance of structured overlay networks under different aspaud thereby illumi-
nate in how far such architectures are able to support cagréele applications.
To enable operators to monitor and understand their degleystem, we sec-
ondly introduce both active as well as passive methods thegahformation
about the current state of the overlay network.

In terms of performance, we deduce an analytical model faktime appli-
cations based on the Chord algorithm. The main goal is togpsaalability for
very large overlay networks to be able to guarantee certaatity of service de-
mands in large peer populations. Furthermore, we evalhatérpact of highly
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probabilistic network delay variations, which also strigrigfluence the duration
of searches. The stability of p2p overlay networks is alfecaééd by the dynamic
behavior of the end user. In this context, we show that thbaiitity to lose the
overlay structure of a Distributed Hash Table (DHT) is nagliggble in all cases.
In particular, we present an analytical expression thabeamsed to calculate the
probability to lose the routing functionality of a DHT givencertain number of
overlay connections. In order to understand the performafistructured over-
lay networks in greater detail, we introduce a discrete esgnulator which is
designed to handle a very large number of peers. We presentadive studies
of the search duration, the overlay stability, and the nesiatce traffic needed to
stabilize the overlay structure. Based on these resultsinweil the weak points
of structured overlay networks and pinpoint their root esus-or each problem
we present an optimization, which eliminates the disachged and makes struc-
tured overlay networks more feasible for business apjidicat

Apart from performance concerns, one of the main reasonstelagommu-
nication carriers are still hesitant to build p2p applioas is the lack of control a
provider has over the running system. The system appeatsdaskebox to its op-
erator such that he does not know anything about the cunanterformance,
or stability of its application. We therefore present anscdss different active
and passive methods to gather information about a runnipgpérlay network.
We develop algorithms to estimate different system aggesgiéke the current
number of peers in the overlay or the distribution of the isestimes of the par-
ticipating peers. The advantage of these methods is thatdperate passively
and solely require information which is locally availabteat peer. The estimates
can also be regarded as a first step toward a self-organizertpg network. That
is, peers can use these estimates to dynamically adapt theemence overhead
to the current situation in the overlay network. Finally, introduce a scalable
approach to actively create a snapshot of a running p2praystee overhead
involved in creating the snapshot is evenly distributechi participating peers
so that each peer has to contribute only a negligible amdub&wedwidth. We
discuss the collected information and the conclusions difa@m it.
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1.2 Qutline

The remainder of this monograph is organized as follows.p&hna2 lays the
foundation for the performance evaluation in the followaigpters. We discuss
the basic concepts behind overlay networks, the differebeéween the individ-
ual approaches as well as the main areas of applicationebiea special focus
is laid upon structured overlay networks, which build theecof this work.

Chapter 3 gives a performance evaluation of structuredaywaetworks under
different aspects. We first highlight the importance of édesng both the func-
tional and the stochastic scalability of such architecufiéis is followed by a
focused survey of current research in this area. To obtairseuinderstanding
of the system performance, the peer distance distribusi@aliculated in a static
overlay network. From this we derive quantiles for the doraof a search, which
can be used by a provider to establish service level agreasmaraddition, we
validate the stability of the overlay by calculating retitiprobabilities to lose the
structure of the overlay in dependence of the peer behali.chapter closes
with an in-depth study of structured overlay networks whicle a special dis-
tance metric. Based on the results, we derive and evalu&tesatit modifications
and improvements to the original algorithm.

Chapter 4 investigates different possibilities of a singger to obtain global
knowledge of important system features. We develop a passaximum like-
lihood estimator for the current peer population and evelibe accuracy of
the estimates in realistic scenarios. This is followed bymmparison of differ-
ent methods to estimate the session time distribution op#récipating peers
based on local information. Thereby, the different aldons are evaluated in
terms of accuracy, responsiveness, and practicabilitgdtiition to the estima-
tion methods, we introduce a scalable algorithm to createapshot of the run-
ning system from a central position. This enables an opetatactively obtain
an accurate and timely picture of its deployed overlay netvand to initiate
appropriate countermeasures if needed. Chapter 5 sungsdhie main findings
gained throughout the course of this work. Based on theserawe conclusions
and give an overview of open issues and possible approachéstire work.



2 Peer-to-Peer Key
Technologies

In general, an overlay network can be described as a virtebark built on
top of one or many already existing networks. In this senser-o-peer (p2p)
networks represent a special subset of decentralizedaygerivhere each partic-
ipating peer simultaneously acts as client and server,dreaked servent con-
cept. Such p2p algorithms are used to provide connectivityrey a large num-
ber of physically distributed peers which share a commaerést, like the desire
for a file. P2p overlay networks support a wide variety of agtlons, whereas
the most common tasks are storage, search, and distritaftioformation and
files. Thereby, the specific p2p protocol determines whiah lzow many over-
lay neighbors a peer maintains connections to, how fretjuémse neighbors
are contacted for maintenance purposes, and which othes wilebe contacted
when searching for information.

In literature as well as in practice numerous different pghigectures and
protocols can be found, which already account for the magot of traffic in
the Internet today [29]. On an abstract level, those archites can roughly be
divided into pure and hybrid overlay networks. While in agpp2p network all
peers are equal and perform exactly the same tasks, thesome dedicated
peers in hybrid networks which are assigned a special fomcth the case of
pure overlay networks, we further distinguish between nuestired and struc-
tured architectures. While peers in an unstructured oyeniaintain connections
to random other overlay peers (cf. Chapter 2.1), a strudtp®p protocol exactly
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defines the relationship among overlay peers (cf. Chap2gr 2.

As the different mechanisms have been designed for diffgrn@mposes, none
of the above described approaches is clearly superior titaf approaches. In
fact, they can be compared by many different metrics likecth&t of a peer to
participate in the network [30] or the number of offered fees like the ability
to perform full text searches [31]. While the most commonligation today is
file sharing, p2p overlays can also be used for other purpid®egermanent dis-
tributed storage [32—34], distributed \VoIP services [BY, 8r distributed network
management [9,18,36]. However, the p2p paradigm shouldlimatly be applied
to all areas of application as in some scenarios the disgalyas might outweigh
the benefits [37,38]. In the following, we give an overviewtod most important
pure p2p architectures with a focus on structured overlaywaorés which form
the core of this thesis. Furthermore, some examples of thytiworks will be
described in Chapter 2.3.

2.1 Unstructured Overlay Networks

The first pure p2p networks did not have any particular stinechs participating
peers maintained random connections to other peers in thagv(cf. Chap-
ter 2.1.1). Obviously those networks are easy to construchérd to disable
since they are fully decentralized and do not offer a singiatpof-failure. The
search for information or stored files is usually done by $fleoding, gossip-
based algorithms, or random walks. While this only requiregry limited per-
node state, it results in very poor search performance aesldot guarantee that
a search query will successfully be resolved, even if theigdénformation does
exist in the network. The scalability of the data discoveryoess is furthermore
limited by the overhead traffic generated during a searctiajfohose networks
are mainly used to protect the anonymity of content prow@ed content seekers
(cf. Chapter 2.1.2).



2.1 Unstructured Overlay Networks

2.1.1 Gnutella: Distributed Search and Flooding

In this section we will focus on Gnutella v0.4 [39] as the mpspular repre-
sentative of pure unstructured overlay networks. Peerataiaiconnections to
random peers in the overlay and the entire protocol is basesihaple messages
which are exchanged between the participating peers. Thetste of such a
message is shown in Table 2.1. Thereby the descriptor ID&d us uniquely

. . Payload Payload
Fields Descriptor ID Descriptor TTL | Hops Length
Byte offset 0...15 16 17 18 19...22

Table 2.1:Structure of a Gnutella message

identify a message in the overlay network and the payloadriesr determines
the kind of message which may be one of the following:

e Ping: Actively discover and probe for other peers in the overlay

e Pong: Response to a ping including address of a connected semdnt a
information about number and total kB of files shared

e Query: Primary search message including the query descriptor

e QueryHit: Response to a query including number of results and how to
obtain them

e Push: Simple mechanism to allow peers behind firewalls to conteilta
file distribution

To join a Gnutella network a peersimply sends a ping message to an arbitrary
peer which is already participating in the overlay netw@k.soon as this peer
answers with a pong message pgés part of the Gnutella overlay. These ping
messages are then repeated periodically and forwardetrteighbors in order

to stabilize the overlay network. Once peefinds out about other peers it is
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fully integrated into the overlay. Searches for contentlaea implemented using
a simple flooding mechanism. Peebroadcasts a search query todtsverlay
neighbors which in turn forward the query message to alt thegrlay neighbors
except the peer they received the message from. Peers wbiehtse desired
content answer with a query hit message which is sent alangetierse path. To
control the overhead generated during query requests apdnses, each query
contains a time-to-live (TTL) counter which is decreasecheime the message
is forwarded. Query messages with a TTL=1 are no longer faled

Query
TTL = 2

%D

Figure 2.1:Flooding in the Gnutella overlay

Figure 2.1 illustrates a search issued by péarsing a TTL value of 3. Af-
ter decreasing the TTL to 2, the search is recursively fatedby peerB and
peerD. Obviously, the main drawbacks of this flood-based seambrithm are
slow, bandwidth intensive, and highly redundant queriegkwm addition can-
not be guaranteed to be successful. Aberer et al. [40] shtlatdhe standard
parameters of Gnutella usingl&l’L = 7 andc = 4 overlay connections lead to

TTL 7
Mauery =2+ Y _c-(c—1)" =2 43" = 26240 (2.1)
1=0 1=0
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messages per query including the responses. Newer vedidhisutella there-
fore introduced the concept of Ultrapeers which is simitathte SuperPeer con-
cept described in Chapter 2.3.3.

2.1.2 Freenet: Anonymity Protection

Freenet [41] is an unstructured overlay which aims at andyyrather than ef-
ficient content distribution. That is, the main goal of theémet overlay is to
assure the anonymity of both the content publishers as wete information
consumers. In particular, the Freenet Project [42] focoseseedom of speech,
resistance to information censorship as well as privacinformation producers,
consumers, and holders.

This is realized by assigning each stored file a Globally Ueiddentifier
(GUID) which is based on three different types of keys. Atfr&eyword Signed
Key (KSK) is derived from a string which is chosen by the uset atended to
describe the file, e.dgext/thesis/binzenhoeferin order to avoid conflicts which
might occur when different users choose the same dese@iptiing for their
files, an additional Signed Subspace Key (SSK) is used tordete the unique
file key. Finally, a Content Hash Key (CHK) is calculated byedily hashing the
content of the corresponding file. A more detailed desaipbf the KSK, the
SSK, and the CHK can be found in [41]. To insert a new file in® dlierlay, a
user calculates both the SSK and the CHK of the file and insgptsinter to the
CHK under the hash value of the SSK, while the file itself isetlaunder the hash
value of the CHK. Other users can then retrieve this inforomatsing a two-step
search approach. At first they calculate the SSK from therg#s@ string in
order to lookup the CHK. In the second step they can then Bdardhe actual
file using the CHK. Thereby, it is still an unsolved problenwhilve searching
user obtains the descriptive string of the file in the firstpldn practice this is
usually done by using other means of distribution like paftifg it on a website.

To avoid the problems of redundant and unscalable floodiregret applies
a steepest-ascent hill-climbing search mechanism. Thetled main idea is to
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forward queries which cannot be answered locally to the piach is believed
to be the closest to a specific target. To this end, a peer aiasna routing table
which, for each overlay neighbor, lists the keys which thegghbor is likely to
hold. Figure 2.2 shows a typical example of a search in therfgteoverlay as
described in [41]. Peer A forwards a search for informatitamesd on Peer D to

Search Path=—m

<#---Return Patheeeee- Q
@ Failed Request %g

Peer F Peer E

Figure 2.2:Searching in the Freenet Overlay

its only overlay neighbor B. Peer B recursively contactsr@seavhich does nei-
ther hold the desired information nor have any further @yerleighbors. Peer C
therefore answers with a request failed message. Peer Bctirgacts its next
overlay neighbor Peer E, which in turn contacts Peer F. Pé&ewfards the query
to Peer B, whereas Peer B detects a loop comparing the uniessage 1D to the
temporary list of open queries which each peer maintaingfpredetermined
period of time. Due to the lack of further overlay neighbd®ser F reports a re-
quest failed message back to Peer E, which forwards the ¢ué&ger D. Finally,
Peer D holds the desired file and returns it back to A via E and®subse-

10
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quent queries are likely to take a similar path to the destinaFreenet applies a
special caching algorithm, where peers on the return patiljostore the most
recently requested files.

The privacy and anonymity of Freenet are mainly achievedbyact that the
peer holding the searched information does not directlfyrepthe originator
but sends the file hop-by-hop via the return path. In factheede involved in
the entire search process does only know its immediate beighThus, no peer
can be sure if it received the query request from the seaygseer itself or from
a forwarding peer nor can it be sure if the next peer is thepieai or merely
another forwarding peer. Furthermore, messages with adipe value of zero
are still forwarded with finite probability in order to mak#acks on the privacy
of Freenet peers more complicated. While the above destritie-net scheme
guarantees the anonymity of authorship and readershgpnittivery well suited
for the exchange of large files. In practice, Freenet is thezerather used for
anonymous communication than for media content distidioutA more recent
version of Freenet [43] further improves the privacy of g&rs by combining its
small-world features with the idea of a Darknet, a small grofipeople trusting
each other.

2.2 Structured P2P Networks

While the first unstructured p2p networks have been createddeaployed by
individual persons or commercial companies, structurga g2hitectures were
proposed within the research community in an effort to eleié the problems
which appeared in unstructured overlay networks. Therdbgtructured p2p al-
gorithms share the same underlying principle. Each pp#tiig peer is assigned
a uniquem-bit identifier, i.e. an integer between 1 a2t which is derived by
hashing a unique feature like the IP-address used by the Tee@naintain the
overlay structure peers then establish connections toitlddsest overlay neigh-
bors according to a special metric defined on their idensifisr the individual

11
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p2p protocol. In addition to this list of neighbors, eachipedso maintains con-
nections to more distant peers which are used as shortctits overlay in order
to guarantee fast searches.

To determine the exact peers at which a specific file is stareitheé over-
lay, files are also hashed into the same identifier space im sweay that their
identifiers intermix with the identifiers of the peers. Thiscept is illustrated in
Figure 2.3 for a typical value of, = 160. The files are then stored at the closest

132.187.106.86 trangia.xml
193.239.248.48

binzenhoefer.xml

peer space object space

hash function

1 13 23 42 2160
identifier space (co-domain of hash function)

Figure 2.3:Assignment of identifiers in a Distributed Hash Table

peer according to the given metric. Due to this hash-basediple structured
p2p networks are often referred to as Distributed Hash $a(@éiTs). As a re-
sult of the structure of such a DHT, it can be guaranteed #eatch queries will
always terminate, either successfully by returning theit#lelf or by sending a
file-not-available message. While DHTs avoid the scalgbitisues of unstruc-
tured p2p networks, they lack the possibility to perform fakt searches and
have to maintain their structure despite of churn, the cootis process of peers
joining and leaving the overlay network at arbitrary timisthe following, we
will give an overview of the most important DHT algorithmsdatheir uses [44].

12
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2.2.1 Chord

The Chord algorithm was introduced in 2001 by Stoica et &] phd became
the most studied structured p2p overlay network. It is bame@ simple ring
structure and describes how new peers join the overlay, eviles are stored,
and how they can be retrieved by other peers.

General Architecture

The general architecture is shown in Figure 2.4 which shawexamplary Chord
ring consisting of seven peers and four files using an idensface withn = 7

bit and thu2™ = 128 possible identifiers. The participating peers are arranged
on a logical ring structure in such a way that their identifiare ascending in a
clockwise direction. The first peer succeeding a pearthis clockwise direction

is called the successarof z, the first peer in a counterclockwise direction is
called the predecessprof z.

Figure 2.4:Chord ring with seven peers and four files
The location of files in the overlay is also well defined by agerrule. All

files whose identifiers fall between the identifier of peend its successarare
stored at pees. In the example, file 42 is stored at peer 48 and file 64 at peer 73

13
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respectively. Note that the identifier circle is based on auww arithmetic and
thus both file 122 and file 1 are stored at peer 2.

Join and Leave Events

To join a Chord-based overlay network, a peaeeds to know an arbitrary peer
which is already participating in the overlay. This is a gahproblem in p2p net-
works and usually solved by either contacting some well kmpeers, retrieving
a list of online peers from a website, or using a central boagpsserver. Peer
can then determine the identifier of the direct successdregbining peee using
the search algorithm of Chord, which will be described laferce peer has the

peer z
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Figure 2.5:Different steps of a join procedure in Chord

contact information of its direct successai starts the join procedure illustrated
in Figure 2.5. At first it notifiess that it is its new predecessor (cf. step 1). As
soon as the old predecesgoof s contactss during the periodic stabilize routine
(cf. step 2), pees will notify p about its new successer(cf. step 3). Peep will
then notify peek that itis its predecessor (cf. step 4), after which peleecomes
fully integrated in the logical ring structure.

In principle, peers leaving the overlay could contact aridrin their overlay
neighbors in a similar way. In practice, however, an overlagwork is likely to
face unfriendly leaves and sudden node failures. To dehlsmich churn behavior
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the Chord algorithm performs some special maintenancénesut

Maintenance of the Overlay Structure

To maintain the logical ring structure of the overlay, eaebrpstores pointers to
the firstr successors in a clockwise direction. Thus, if one of the'peesucces-
sors goes offline, the peer will still know the next- 1 peers on the ring. Fig-
ure 2.6 shows a successorlist of size- 3 for peer 1 in a Chord ring consisting of
16 peers. In order to detect changes in the neighborhoodzpeeiodically con-
tacts its direct predecesspias well as its direct successoeveryi:,, seconds
and performs a stabilize routine. During this stabilizatibe two corresponding
peers reconcile their neighborlists and adapt them acugisdilf a peer does not
respond to a stabilize call, it is removed from the neighibbénd the next peer
is contacted. The default value for the periodic contaarir@l ists:q.» = 30s.

In practice, this simple stabilization algorithm does ndffise to handle high
churn rates and has to be improved accordingly [21]. Oneilgessolution is
to make Chord symmetric and additionally maintain a list @fdecessors [46].
Since it is impossible to avoid all failures a mechanism a8 been proposed to
recover from a loss of the ring structure, which might e.gagn during a mass
exit of a large number of peers. Besides the overlay stracthe availability of
stored files must also be guaranteed. The Chord protoctfl dises not directly
specify any redundancy mechanisms. However, numerousreliff approaches
have been proposed in literature. Ramabhadran et al. [47Datta et al. [48]
give a good overview of redundancy algorithms and additipraompare the
different approaches analytically to show which mechanisrest suited for
which scenario.

Search Algorithm and File Insertion

The entire functionality of the Chord algorithm is based tsrsearch algorithm.
To insert a file a peer searches for the first peer succeedinfilels identifier,
where the file will then be stored. The file can be retrieved theopeers at a
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later point in time using the same search routine. If a pearcbes a specific

finger table 1671 2 successor

#  finger ™, list
o .
f1  1+420=2 14
2 142'=3
ST S D N
f3  1+422=5 13 5
f4  1+423=9
12

O
9
Figure 2.6:Assignment of identifiers and pointers in a Distributed Hashle

identifier, it will forward the query to its successor, whiichturn will forward
the query to its own successor until the search hits the pkihvis responsible
for the searched identifier. Once the responsible peer isffduwill transmit the
answer directly to the originator, i.e. the peer seekingrif@mation. Obviously
this is very inefficient, as a peer nee@$n) messages to complete this kind of
search, where is the current number of peers in the overlay. To improve the
search duration, a peer also maintains a finger table, iigt. @f lpeers called fin-
gers which are used as shortcuts through the ring to spedtbigearch process.
Thereby, the-th entry in a peers finger table contains the identity of trst fieer
that succeeds’s own hash-value by at leagt — 1 on the Chord ring. That is,
peerz with hash valugd, has its fingers aid. + 2° — 1 for i = 1 to m, where
m is the number of bits used for the identifiers. Figure 2.6stllates a simple
example using a Chord-ring consisting of 16 peers. Peer hHaar different
fingers f1 to f4 pointing t@(= 1 +2'71), 3(= 1 + 227 1), 5(= 14+ 2°71), and
9(= 1+ 2*71), respectively. When searching a file, pees now able to send
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the query to its finger, whose hash value most immediatelgegies the hash
value of the searched file. If this finger is not able to ansWwersearch locally, it
forwards the query accordingly. Otherwise, the search ishfed and the finger
directly returns the answer back to the searching pedihis way queries can
be answered usin@(log2(n)) messages. This kind of search is called recursive,
since each peer participating in the search forwards theyqeeursively to its
closest finger. Itis, however, also possible to performatiee queries [49], where
each peer involved in the query reports back to the origmatwell as hybrid
queries [50], where each peer recursively forwards theygaed additionally
sends an acknowledgment back to the originator.

2.2.2 Kademlia

The Kademlia algorithm [51] is another approach to impletremistributed

Hash Table which is based on a structured overlay netwaknétin functional-

ity is to offer participating peers the possibility to st@mall files in the overlay
and to retrieve them at a later point in time. The main diffieeeto the previously
described Chord algorithm is the symmetric relationshifween neighbors in
the Kademlia overlay network, which enables peers to ek@loy messages
exchanged between them for the stabilization of the ovestaycture. While

Kademlia is less well understood than other DHT algorithinbas been suc-
cessfully tested in different deployed applications [, 5

System Description and Routing Table Structure

Kademlia also uses: = 160 bit identifiers for peers and files in the overlay. The
distance between two such identifiers, however, is baselteod®R metric. That
is, given two peers with identifiensandy Kademlia defines the distance between
these two peers as their bitwise exclusive or (XOR),y) = = @ y which is
interpreted as an integer. Most benefits of Kademlia resaih fthe following
properties of the XOR metric:
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e d(z,xz) =0,d(x,y) > 0if x # y: Itis ensured that the distance between
two peers is always positive.

e Vx,y : d(x,y) = d(y,x): This features implies that the connections be-
tween overlay neighbors are symmetric and peers mainlyvenessages
from peers which they also have in their own routing table.

o d(z,y) +d(y,z) > d(z, z): The triangle property holds.

e Vx,A >0 31 y:d(x,y) = A: This unidirectionality ensures that lookups
for the same identifier converge along the same path, regsrdf where
the search is started.

To construct the Kademlia routing table, the overlay neighlof a peer are
chosen according to the XOR metric. For e@ickl ¢ < 160 a peerx stores a
list of & peers which is calle&-bucket. Thereby, all contacts in thih k-bucket
have a distance betwe@i®°~* < d(z,y) < 297" to peerz according to
the XOR metric.

11...11 160-bit identifier space 00...00
A
[ Y
| bucket 1 I bucket 2 [bucket 3] b4 | b5 |
[2159; Q160] [2158; 2159] [2157; 2158] \
peer identifier = 00...00 [2156; 2157]
ith k-bucket = [2160-; 2160-i+1] [20; 2156

Figure 2.7:Kademlia routing table for peer with id 00...00

Figure 2.7 visualizes this concept for a paewith id, = 0 or 00...00 in bit
notation. The first-bucket containg: peers with a distance betweei® and
2199 to peerz. Note that this bucket covers half of the entire identifiexcgpand
thus about half of all online peers. In general, a peer cans#¥oarbitrary peers
out of all possible peers for each speciibucket. The default solution, however,
is to sort thek-bucket entries by the time of last contact. Whenever a neav pe
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arrives and the correspondihgbucket is full, the least recently seen peer in the
k-bucket is pinged. If this peer answers, the new peer isghsded, otherwise
the old outdated entry is replaced by the new peer. This nmésiinais based on
the assumption that the longer a peer has already been athlenenore likely it
is to stay online in the future.

The remainingk-buckets in Figure 2.7 illustrate the main idea behind the
Kademlia routing table. Buckets which contain peers closgeerz, like buck-
ets 4 and 5 in the example, are used to stabilize the overiagtste, while more
distant buckets, like bucket 1, 2, and 3 in the example, aee as shortcuts to
enable fast and scalable searches in the overlay network.

Lookup Algorithm

To locate specific identifiers Kademlia uses a parallel Ipagorithm. The exact
procedure is depicted in Figure 2.8. When searching, psends out parallel
queries to thex closest peers which it can find in its orbuckets. Each of these
peers then answers with theclosest peers it knows. The searching peer waits for
at leasts peers to answer before it enters the next search step. Intbeges all
newly learned contacts with the already known contacts aodrsively queries
the « closest to the searched identifier.

1 Q
1. send a parallel =

search requests

2. wait
for f replies

Figure 2.8:Parallel lookup process of Kademlia
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This procedure is repeated until a recursion step fails tirmeany contacts
which are closer to the searched id than those already kbaféhis point, thek
closest peers found during the search are directly quesigtié searched file. An
obvious advantage of such parallel queries is that the Isegtcnot be delayed
as long as there are less than- 3 + 1 timeouts per search step.

A newly joining peer may obtain some overlay contacts fronaduitrary peer
already participating in the overlay network and can therfiopm a lookup for
its own id using these contacts as a starting point.

Dynamic System Evolution

To account for the changes in the overlay network, the Kaiderolting table
is dynamically adapted to the current overlay structures ©hdone by splitting
and merging appropriatebuckets according to the changes in the neighborhood
of a peer. An example of the dynamic evolution of the routialglé is given in

a) | k peers |
1 0

b) | k peers [ Kk peers |
1 0

c) kpm

k peers T k peers |

d) | k peers

[ K peers ] 1

Figure 2.9:Dynamic evolution of the routing table

Figure 2.9 for a peer with id = 00...00. The peer initializsgouting table with a
singlek-bucket covering the entire id space, cf. Figure 2.9 a). A the peer
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has more thai overlay neighbors, it splits its routing table into two segiak-
buckets, one bucket containing all peers whose id startsMand another bucket
containing all peers whose id starts with 0, cf. Figure 2.%Hdm this point on,
the only bucket which can be further split is the bucket intaickh the peer's
own id falls. The peer in the example has id = 00...00 and \Wékefore split
the bucket starting with 0 as soon as it contains more thantries. In this case
the bucket would be split into two buckets covering ids wrstdrt with 01 and
00, respectively (cf.Figure 2.9 c¢)). This bucket splittadgorithm is continued as
indicated in Figure 2.9 d) as long as the peer learns new c@nitaits vicinity,
i.e. as long as the overlay is growing in size. As soon as peave the network
and the overlay becomes smaller, split buckets are merggdtbgether. If, e.g.,
the buckets starting with 01 and 00 in Figure 2.9 d) togetbetain less thatk
entries, they are merged in such a way that the routing tagdédooks like in
Figure 2.9 c).

Maintenance of the Overlay Structure

In order to maintain the overlay structure in times of chuhe Kademlia pro-
tocol extracts information from all messages exchangedésst peers. That is,
Kademlia uses all traffic between participating peers ieotd stabilize the rela-
tionship between overlay neighbors. Each time a peer corgaother peer, both
peers check their correspondihghucket and insert the other peer if appropriate.
In addition to this, &-bucket is refreshed as soon as there was no change in this
bucket for at least an hour. To perform such a bucket refeepker simply issues

a search for a random id in the saiducket.

The redundancy of stored files is maintained in a similar Wagally, files are
stored at the: closest peers, which are called the replication group. Kex jin
this replication group did not receive a specific file from tueo peer within the
last 60 minutes, it republishes this file to the entire reglan group. To do so, it
searches for thk closest peers to the file’s identifier and transmits the fikegith
of them. Those peers store the file locally and update thmirs accordingly. If
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a republishing peer itself is no longer among thelosest peers, it deletes the
file from its local storage. In order to avoid that files arerstbforever and to
guarantee that lost files will be recovered, the originallighier of the file must
re-insert the file every 24 hours on default. Depending orafi@ication, longer
intervals or alternative maintenance strategies [54] triighmore appropriate.

2.2.3 Pastry

Pastry [55] is a structured overlay network developed byrdioft Research and
Rice University. It serves as a basis for different kinds pplacations. A typi-
cal example for such an application is PAST [56], which ubesRastry overlay
to provide a global, persistent storage utility. Files oc@tments are hashed and
persistently stored dt well defined overlay peers, from which they can be re-
trieved at a later point in time. SCRIBE [57] is another exéipr an application
which uses Pastry to realize a scalable group communicatistem based on a
distributed publish/subscribe service. Interested pegnssubscribe to a certain
topic by storing their contact information at the Pastryrpsbich is closest to
identifier of the topic.

Architecture of a Pastry Peer

Similar to Chord, Pastry arranges the participating peara oircular identifier
space which ranges from 0 22® — 1. The corresponding 128bit identifiers are
interpreted as a sequence of digits with ba%é such a way thab consecutive
bits represent one digit. Fér= 2 a possible identifier for a peer p could, e.g., be
20132301. To establish the overlay structure, each peetaias connections to
three different kind of neighbors. These neighbors are tsdualild the routing
table, the leaf set, and the neighborhood set as shown imeFRLO.

The routing table of a Pastry peer consists of up[%@ﬂ different rows,
whereas each row ha$ — 1 entries. Thereby, fod < i < | 28| theith row
of the routing table does only contain peers which share tee:fdigits with
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Peer ID 20132301
Routing Table

[ -0-3201231 |[ -1-1203123 || 2 |[ -3-0021331 |
[ 0 || 2-1-301230 ][ 2-2-112302 ][ 2-3-032132 ]
[ 20-0-32102 || 1 || 20-2-31021 |[ 20-3-20132 ]
201-0-3120 |[ 201-1-1302 |[ 201-2-1230 3
2013-0-213 || 2013-1-031 2 2013-3-130
20132-0-22 20132-2-03 3
0 201323-3-2
1
Leaf Set
| Smaller | | Larger |

[ 20132232 || 20132123 ][ 20132330 ][ 20133101 |

20132033 | 20132021 ” 20133213 20133321

Neighborhood Set
20312032 32133213 01202231 11203322

22303121 10232021 33023120 03211320

Figure 2.10:Pastry routing table far = 2 andk = m = 8

the local peer, but differ from it in the+ 1th digit. Figure 2.10 shows the rout-
ing table for peer 20132301 fér = 2 resulting in2%2 — 1 = 3 routing entries
per row. In theith row the:th digit of the local peer is highlighted in gray and
the first digit in which the routing entries differ from thecll peer is shown
between hyphens. Note, that there are possibly many peéch fihinto a par-
ticular row of the routing table. In principle, the local peeay choose its routing
entries randomly from all possible entries. In practiceyéwer, a peer should
prefer physically close peers, i.e. peers to which it has allsphysical delay.
The actual size of the routing table depends on the currenbeuof peers in the
overlay. Assuming uniformly distributed peer identifigtere are approximately
[logosn] occupied rows in the routing table, whetes the current number of
peers in the overlay. The empty entries in the last three nowe example arise
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as there are not enough peers with the corresponding déstartice local peer in
the overlay.

The leaf setis a symmetric list of the numerically closestrpén terms of their
identifiers. That is, each peer maintains an additionabfiét overlay neighbors
which contains th% numerically closest peers with a larger id as well as the
g numerically closest peers with a smaller id as compared @opter’s own
id. This list is used to stabilize the overlay structure aocherform the final
step of a search. Finally, the neighborhood set containst aflin peers which
are physically close to the local node. This list is absdyuitedependent of the
numerical identifiers of the peers and also not used formgusurposes. Typical
values for the Pastry parameters &ire 4 andk = m =2 ork =m =2 - 2°.

Routing in Pastry

The routing process in Pastry is based on the routing tableeiss on the leaf
set of a peer. Figure 2.11 illustrates the routing proceftura peer p which is
searching for an id xyz. At first the peer checks if the seatdtiés covered by
its leaf set. If this is the case, it can forward the query ®ribmerically closest
peer in the leaf set which should be able to answer the quetyz Is not covered
by any peer in the leaf set, peer p forwards the query to a pegyriouting table
whose identifier is at least one digit closer to the targetyidl & compared to
its own id. To reach the searched id as fast as possible, pgesydd choose the
routing entry which has the longest common prefix with thedezd id. In the
rare case that peer p does not find any peer in its routing velhieh shares a
longer matching prefix with the searched id than itself, inbines all peers of
its routing table, its leaf set, and its neighborhood set éntemporary list. From
this list it then chooses a peer which shares at least as Iprefia with the search
id as the local peer itself but is numerically closer to it.

In the construction of its routing table, a Pastry peer peefeers with good
latency. For each row of its routing table, a peer choosegpltlysically closest
peers out of all peers which have a numerical distance fittitagthe correspond-

24



2.2 Structured P2P Networks

search
ID xyz
No
forward to
Xy7z N numerically closer peer

covered by longer prefix
peer in leaf set? in routing table?

Yes Yes

with same prefix

forward to closest forward to peer with

longest common prefix

peer in leaf set

Figure 2.11:Routing procedure of a Pastry peer

ing row. At first, a joining node initializes its routing tabkentries by obtain-
ing adequate entries from other peers. It then periodicaiitacts the peers in
its neighborhood set to obtain and propagate informati@ugphysically close
peers independent of their numerical ids. With these péeamni then exchange
numerically adequate entries to improve its routing tablerms of latency.

The choice of the parametérdetermines a trade-off between the size of the
routing table[log,.n] - (2b — 1) and the average number of hops required for
a search{log,sn]. In the worst case, when many nodes fail simultaneously, the
number of routing steps might be linear in the number of @nfieers. However,
this scenario is unlikely as for this to happen all routindgries of all peers in-
volved in the search process have to fail. From a global mdiview, the delivery
of messages can be guaranteed as long as no peer loses sleaf iset entries
with smaller or larger id simultaneously, i.e. as long as I&mng peers with
consecutive ids fail simultaneously.
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Maintenance of the Overlay Neighbors

The Pastry algorithm is designed for long-lived applicasitike permanent stor-
age or publish/subscribe which are expected to attractpeith relatively long
online times. On these grounds it is assumed that a newlingpipeer p already
knows the contact information of another peer b which isaalyepart of the
overlay and physically close to p. Based on this physicakipnity, peer p can
initialize its own neighborhood set with the neighborhoed af peer b. Peer p
then asks peer b to locate that peer z which is numericaleslto p in the Pas-
try overlay. All peers on the path from b to z additionally oegback to p. Peer p
exploits this information to construct its own routing tably copying the entries
from theith row of the peer contacted in thith step of the search.

Peer failures are handled in different ways, depending arevthey occurred.
If one of the peers in the leaf set of a peer fails, the peer idiately contacts
the peer with the highest or lowest id in its leaf set, depemdin whether the
failed peer had a higher or lower id than the local peer. Inthsks this peer
for its leaf set and updates its own leaf set accordingly.déar in row: of the
routing table fails, the local peer contacts another entrthe same row of the
routing table and asks this peer for an appropriate entno Buch peer is found
the local peer extends its search to further away peersitfinitls an appropriate
replacement. While the neighborhood set is not used in theegs of routing, it
is required to exchange information about physically ngaders. To keep this
set up to date, each member is contacted periodically. |Eagees not respond,
the local replaces this entry by asking other members ofiighiborhood set for
appropriate entries.

2.2.4 Content Addressable Networks (CAN)

Ratnasamy et al. [58] observed that an essential part of 2mbpsed network
is to provide an index for files stored in the overlay. Alglnits which specialize
on storing, retrieving, and deleting files in the overlay énddecome known as
content addressable networks (CANS). In principle, a CANqums the same
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tasks as a distributed hash table. The main difference & @K Ts, however,

is that peers are assigned random coordinates in the oyveitigle files are still
hashed and stored at the closest peer in the overlay.

Overlay Topology and Routing

In CAN peers are located in &dimensional Cartesian coordinate space on a
d-torus. Thereby each peer is responsible for a specific subptne coordinate
space, which is called the zone of the peer. Figure 2.12 showexample of a
2-dimensional CAN overlay which is partitioned into 21 di#ént zones. Note,
that the coordinate space wraps od-gorus, which is not shown in the figure.
To insert a new file into the overlay, it is mapped onto a poinsig a uniform
hash function. Each peer is responsible to store all fileghvhire mapped into

its zone. Other peers can then retrieve a desired file byitacéte peer which
manages the corresponding zone.

neighbor list of peer 1: {2,3,4,6}

6 5
2 1 4
(xy)
vl »
L4

routing path from node 1 to point (x,y)

Figure 2.12:Structure of a two dimensional CAN overlay network
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To enable the routing of messages, each peer maintaineemitat a set of
neighbors in the overlay. Thereby inladimensional space, two nodes are neigh-
bors if their zones overlap along— 1-dimensions and touch each other along
1 dimension. The overlay neighbors of peer 1 in Figure 2.82a13, 4, and 6,
since their zones overlap along one dimension. Note thatfisenot a neighbor
of peer 1, since its zone touches the zone of peer 1 alongnadirdiions but does
not overlap along any dimension. When searching in the ayespace a peer
utilizes its neighbor list. Figure 2.12 shows the routinghpaf peer 1 searching
for a specific point (x,y). To reach this point, the query isutsively forwarded
in a greedy way to the neighbor which is closest to the detitimaNote that in
the case of a failure, e.g. if a neighbor is offline, there andtiple paths leading
through different neighbors which can be used to route tleygio its destina-
tion. As shown in [58] the average path length iaﬁhﬁ ), wheren is the current
number of peers in the overlay.

System Evolution under Churn

Bootstrapping in CAN is done using a simple domain name sy$BNS) based
approach. Each CAN overlay has an associated domain namediv peer p
wants to join the overlay, it performs a DNS lookup of this gdmand retrieves
the address of one ore more bootstrap servers. Peer p thesesha random
point in the coordinate space as its own location and sesfoin¢he peer which
is currently responsible for the corresponding zone. Ihthentacts this peer
and the old zone is split into two new zones. Thereby the oattang which
dimensions a zone is split is predetermined. In a 2-dimeasispace, zones are
first split along the x-axis and then along the y-axis. In FégR.13 the joining
peer 4 randomly chose a point in the zone of peer 3, which s spiit into two
halves managed by peer 3 and peer 4, respectively.

When a peer leaves the overlay network other peers have ¢ooadr the
responsibility for the now unoccupied zone. This is done grgimg appropri-
ate zones. If possible, a single peer merges its zone withitbecupied zone
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the overlay
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the overlay
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Figure 2.13:Maintenance of the CAN overlay network structure

into a new valid zone. Otherwise the neighbor with the sretiltene takes over
the unoccupied zone and temporarily handles both zoneshwhight e.g. be
L-shaped. If necessary a zone-reassignment algorithniggered later. In Fig-
ure 2.13 peer 2 leaves the overlay network and peer 1 subsggtakes over the
old zone of peer 2.

Design Improvements and Open Issues

A general problem of structured overlay networks is thaknity in the overlay
does not directly reflect physical proximity. The main adeaie of CAN is that
it offers different possibilities to consider the physigabximity of peers in the
construction of the overlay. One possible approach [59jas ¢ach peer pings a
set of landmark servers and chooses its position in the CAdllay according
to the measured delays. Another possibility [60] is to cleoosordinates in a
2-dimensional CAN overlay according to the physical lomatof the machine
the software is running on, e.g. by taking the machine’s G&R8dinates. Both
approaches greatly reduce the latency of routing in thelayer

The path length in terms of overlay hops can also be reducagimg more
dimensionsi or by constructing several CAN overlays in parallel, whereach
peer is assigned a different zone in each coordinate spavee\ér, both modi-
fications come at the cost of increased complexity and peg state. Zone over-
loading, where multiple peers are responsible for the same, zlso reduces the
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average path length while simultaneously improving thét falerance, again at
the cost of an increased system complexity.

While CAN gives good theoretic insights into the design afistured overlays
in general, it also raises many questions and problems @tipeaIn contrast to
other overlay topologies, the structure of the CAN overlapehds on the order
in which peers join and leave the network. That is, for a gsetof participating
peers and their corresponding locations in the overlayettaet layout of the
individual zones is not fixed but depends on how the systenvedmver time.
This often results in an unbalanced distribution of zonesiclwbecomes even
more critical when many peers choose a position close to et within a
small area of the overlay. In such a case searches will netttak optimal path
but might already require multiple overlay hops just to ke#we local area.

2.3 Hybrid Architectures

P2p networks which are deployed in a practical environmeanioéen built for
a special purpose. Their architecture typically is a mixtof different concepts
well adapted to the intended use. In general, those netwrakshe subsumed
under the term hybrid approaches.

The most common area of application of such networks is Fisriag or con-
tent distribution, which is usually realized using a twapsé@proach. In the first
step the participating peers locate other peers in the mktwbich offer or are
interested in the same content. In the second step the peeege the exchange
of data among each other by organizing who will download vittwah whom and
when. The basic principle is multiple source download, wHées are divided
into small parts called chunks and peers can issue multiplelbad requests to
different providing peers which serve several downloadeparallel.

In this chapter we briefly describe the basic mechanisms eflay networks
offering a variety of files which are indexed by a central se(ef. Chapter 2.3.1),
as well as of overlays which specialize in the efficient disttion of just one
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single file, cf. Chapter 2.3.2. Since hybrid approaches grfabnot limited to
file-sharing applications, we also discuss SuperPeemdbaszlay networks (cf.
Chapter 2.3.3), which use concepts like NAT-traversal aratlay re-routing to
enable applications like large scale distributed VolPfptats.

2.3.1 Client-Server-based Overlay Architectures

In a client-server based overlay network, peers share andldad files among
each other, while an index of all shared files is compiled astfiduted by one
or possibly more central servers. While Napster [61] wasfitise p2p network
based on this principle, the eDonkey network [62, 63] bectanenore popular
in terms of active users, especially in southern Europe h&g/a in Figure 2.14,

‘ server

I{

.4
Server - E - server
' % chent '\
." Voo
Y V v V

ﬂ<~

‘

client chent client chent client
Figure 2.14:Basic architecture of the eMule network.

an eDonkey client connects to an index server and requesss af lall peers
which already share or are also interested in the same fiegliimt intends to
download. If the index server does not return any or too fewchiag results,
the client may resubmit the same query to another eDonkexiadrver. In the
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eMule network [64], an extension to the original eDonkeywek, the pool of

central servers was replaced by Kad [65], a structured ayerétwork based on
the Kademlia protocol. As soon as the peer has obtained aflisther peers
interested in the same content, it connects to these peérstars to exchange
the desired files as well as further information about whohariag the same
content.

The size of the files shared among the peers usually goes fmme s
megabytes, e.g. for audio files, up to the gigabyte rangefa.gideo files. For
this reason each file is divided into several smaller patlec¢d@hunks, which
again are divided into individual blocks. Figure 2.15 ithages this procedure us-

| chunk 1 | chunk 2 I chunk 3 | | chunk ¢ |
— N —
9500 kB /,/ R <9500 kB
|' blockl | .. | blocks |
" —
180 kB 140 kB

Figure 2.15:eMule file as divided into chunks and blocks.

ing parameters found in the source code of eMule 0.48a [6+4 file is split into
¢ chunks, whereas the first— 1 chunks are of size 9500 kB and the last chunk
contains the remaining part of the file. Each chunk is in tptit B1to b— 1 blocks
of size 180 kB and one block of size 140 kB. This way, a peer do¢$ave to
download the entire file to contribute to the disseminatibihe file but may start
sharing as soon as it obtained the first chunk of the file. Tthissconcept enables
the process of multiple source download where each peer magldad and up-
load different parts of the file from and to multiple peershat $ame time. In this
context, each peer maintains an upload queue, which is lmsadimple credit
system and determines which requesting peer will be serggtd The position
of a peer in this queue is determined by its score, whereasctire is calculated
asscore = (rating - time in queue in seconds)/100. The initial rating of
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a peer is 100 and will be multiplied by a value between 1 andcbdraling to
the peer’s credits as well as by a value between 0.2 and 1eéhday on the file
priority. Thereby credits can be earned by uploading chumklse specific peer.

2.3.2 Content Distribution Networks (CDN)

Content distribution networks are overlay networks whiehestablished in order
to distribute one single file as fast and as efficiently asiptessThe most promi-
nent example is the BitTorrent protocol [66], which dividbe offered file into
256 kB chunks consisting of 16 kB subpieces and then codesirtae exchange
of these chunks among the participating peers. The bagiciplé of BitTorrent
is illustrated in Figure 2.16. At first, each peer interesiea particular file needs

Tracker

Figure 2.16:Basic principle of the BitTorrent overlay network.

to obtain the corresponding .torrent file, usually from a wgebver as shown in
step one of the figure. This .torrent file contains meta-imfation including the
size of the file, the hash values of the individual chunks, theccontact address
of the responsible tracker. The tracker is a central entiticivkeeps track of all
peers currently sharing the same file and which is used byebespo find other
peers to download from, cf. step two in the figure. Note, thatdentral tracker
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does not necessarily have to be a single server. In the {aesbn of BitTorrent
itis, e.g., replaced by a distributed Kademlia network. d@rsas a peer obtained
a list of other overlay peers it joins this so called swarmgtgp three) and starts
to exchange data with the other peers in the swarm.

Thereby, the BitTorrent protocol exactly specifies how tRehange of the
chunks is arranged among the peers. In particular, the cbelektion strategy is
based on the following principles:

e Strict priority: All subpieces of one chunk have to be dovatded before
any subpiece of any other chunk may be downloaded.

e Random first chunk: The first chunk to be downloaded is alwalected
randomly from all possible chunks in order to avoid that revanks are
disseminated slower than popular chunks.

o Rarest first: Apart from the first chunk, a peer always dowaidahe chunk
which it believes to be the rarest in its swarm.

e Endgame mode: The last subpieces of the last missing chunkear
quested from multiple sources simultaneously and then tiaged from
the fastest source. This avoids the problem of starvatioitctwhccurs
when downloading the last subpiece from a slow peer.

o Tit-for-tat: Peers prefer to upload to peers from which theyrently
download or have successfully downloaded from in the pdst Mecha-
nism is closely related to game theory, whereas a peer iefaspload to,
i.e. chokes, all peers per default and only unchokes thass péhich offer
the best download rate. To enable new or more suitable pegiitor im-
prove the dissemination process, optimistic unchokingpiad, where a
random peer is served regardless of its previous contobsiti

While the BitTorrent protocol proved to be scalable and effit[67, 68], it
still has to struggle with an uneven chunk distribution.sTissue is addresses by
Avalanche [69, 70] which applies the concept of network ngdi71] in the field
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of content distribution. With network coding, peers do nager exchange chunks
but linear combinations of chunks along with the randomlgsen coefficients.
As soon as a peer obtains enough linearly independent clwmkinations it can
reconstruct the original file. This way, the rarest chunkbpem is avoided and a
peer no longer has to keep track of the current chunk distoibin the overlay.

2.3.3 SuperPeer-based Architectures

SuperPeer-based overlay architectures have been dedétopa effort to com-

bine the advantages of both the classic client-server appr@nd the p2p
paradigm that all peers should have the same function8&litgh approaches ex-
ploit the fact that in a p2p network not all peers are equalietérogeneous in
many aspects like available bandwidth, offered procegsawger, or their online

session times. That is, peers which are more reliable anddaronore resources
than other peers become SuperPeers and as such act asteasttaes peers. This

Peer

SuperPeer SuperPeer

SuperPeer
Figure 2.17:Example of the SuperPeer architecture.
way, they simultaneously provide the search efficiency @frdralized solution as

well as the robustness to attacks provided by distributehit@ctures. Figure 2.17
shows an example of a SuperPeer-based overlay topologl. EguerPeer acts
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as a server for a number of regular peers, while the Supesfreamselves main-
tain separate connections to each other. Thereby, theameection between the
SuperPeers may be realized in different ways like usinglp faéshed topology,
a structured overlay network, or a simple gossip based fhgogtiechanism. Ac-
cording to a measurement-based analysis [72], the latpgpaph is, e.g, used in
KaZaA [73], a very popular but proprietary SuperPeer-basedlay network.

Depending on the intended purpose of the particular overédyork, its Su-
perPeers will be selected for different reasons. In reaétapplications, Super-
Peers might be chosen based on their latency to other peeits,iwa very re-
strictive environment the number of open ports might be #termnining factor.
In general, there are various design issues to be solvedler to decide which
peers to promote to SuperPeers. The decision might, e.g.abe by a central
control entity or based on a distributed algorithm. If a glbliew of the network
is available, the top: percent of all peers can directly be selected as SuperPeers.
Otherwise peers might promote themselves to SuperPeessdieg on whether
they meet some given requirements or not. Furthermore, uhebar of peers
served by an individual SuperPeer also significantly infbesnthe overall per-
formance of the system. A good overview of how to approachdluiestions is
given in [74].

Aside from file-sharing, SuperPeer-based architecturgs aten be used as
the basis for a variety of other applications. Skype [35],,auses a SuperPeer-
based overlay topology to realize a distributed Voice-dfe(\VoIP) service. In
this context, the SuperPeers are not only used to take ofbtbof the central
index server and to thus provide a scalable service, butfatdoewall traversal
and call re-routing as shown in Figure 2.18. Regular peeishwéire behind a
firewall or Network Address Translation (NAT), like peer Acapeer B in the
figure, are usually not able to open a direct connection th etlter. Therefore a
SuperPeer can be used to establish an indirect commumiadtannel by relay-
ing the packets exchanged between those two peers. Thatiépendent of the
actual routing path on the IP-layer, packets from peer A & Beand vice versa
are re-routed in the overlay network via a SuperPeer. Nb&t this mechanism
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NAT

Firewall

Peer A

SuperPeer

Figure 2.18:0Overlay re-routing in SuperPeer-based network topologies

is not limited to the case of a missing direct connection,hay also be used
if the regular path between two peers is congested while peds still have a
good connection to the SuperPeer. This is another good d&ashphow overlay
architectures can be and already are used to shift theigaetie from the center
to the edge of the network.
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3 Performance Analysis of
Structured P2P Networks

Structured overlay architectures have been proposed irfamn ® resolve the
problems of the classic client-server paradigm. They cffgreater flexibility, are
robust against single points of failure, and most impolyaate scalable in the
sense that each new participant also adds new resourcesrtetthiork. However,
besides these benefits there are also new challenges wiselaama consequence
of the distributed nature of such systems. Their buildiracks (the participating
peers), e.g., are not as reliable as the components of a éifgrmance server. In
spite of the instabilities both the structure of the ovedayvell as the availability
of stored resources must be maintained.

Thus, the performance of such systems has to be analyzed ria detail,
before they can be applied in a corporate environment. Tdoleeta guarantee
certain levels of quality, we need to understand their Braitd derive important
performance measures like failure probabilities or sedathy quantiles. In this
chapter, we will first motivate that in this context not oriyetscalability in terms
of system size, but rather stochastic influences like thaiehof the user can
cause severe problems. This will be followed by an overviéeuorent issues in
the field of structured overlay networks as well as diffegproaches proposed
in literature to solve them.

We provide a detailed mathematical analysis of the lookgegss in Chord,
the most prominent structured p2p algorithm. In particuladerive the peer dis-
tance distribution as well as the search delay distributiatependence of vary-
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ing network conditions. To investigate the influence of bastic user behavior
on the robustness of the system, we show the limits of rirgpth@verlay topolo-
gies by calculating the probability to lose the structuréhefoverlay. Finally, we
evaluate the performance of more complex structures basd¢ioeoXOR metric

by large scale simulation. We reveal the inherent problehssich systems and
propose modifications, which significantly improve theirfpemance.

3.1 Functional and Stochastic Scalability

Today, scalability is the most important performance memalcarrier grade sys-
tem has to withstand. It indicates whether a system is gaingork on a large
scale or not. In general, the question scalability askdf &:solution works for
10 customers, does it also work for hundreds, thousandsgearmaillions of cus-
tomers? So far, scalability mainly referred to the mere siza system. Most
studies were intended to determine if a system at hand dods faogrowing
customer clusters. We summarize this kind of analysis utigeterm functional
scalability. It tells us whether the fundamental logic obéution is scalable.

The mere size of a system, however, is not the only factorringeof scala-
bility a running application has to cope with. There are mamd more system
parameters having a stochastic character. Considerthegstochastic behavior
of customers. There are numerous different random vasatsscribing values
like the inter-arrival time, the mean on-line time, and theiy rate of customers
of large scale systems. In p2p networks this stochastici@hia defined as the
autonomy of the participating peers, i.e., the peers may goileave the sys-
tem arbitrarily. This leads to the requirement to evalu&p plgorithms with
respect to the stochastic on-line behavior, which is surimedrunder the term
"churn" [75]. This unpredictable stochastic behavior & #nd user results in a
highly dynamic evolution of the p2p network and thus has aiant impact on
the functionality of the system [76]. The customer, howgiganot the only factor
introducing probabilistic properties into the system. Aming system also faces
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Functional Scalability Stochastic Scalability

2% nodes
stable stationary
structure

22 nodes

25 nodes

2% nodes
higher churn rate
(joins and leaves)

Figure 3.1:0n the definition of stochastic scalability

stochastic network loads, probabilistic variations irfficaszolumes, and random
transmission delays, to name just a few. Thus, in order teigecstochastic scal-
ability, p2p networks with resilience requirements havéé¢oable to survive in
case of stochastic breakdowns. Stochastic scalabilitpeaanalyzed combining
methods and techniques of both probability theory and peidoce analysis.
Figure 3.1 visualizes the difference between functional stechastic scala-
bility. The functional scalability verifies whether the émvorking logic is ex-
tendable to larger crowds of customers. It mathematicalplyees whether the
functionality of a system, like the search delay in the iatiéd Chord ring, also
works for a large number of customers. Stochastic scatyaliti the other hand
tries to verify whether a system can sustain the stochastiawor of its com-
ponents. It investigates whether a system can cope with dhedaterministic
arrival, departure, and query times of the participatingtamers. With respect
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to our Chord ring example, stochastic scalability raisesghestion whether a
system which can sustain minor churn rates also works undiemee high churn
rates? That is, we want to know how long the average custoasetorstay online
in order to guarantee the functionality of the running syste

In the end a successful system must be scalable in both adnactnd a
stochastic way. Without functional scalability a systenil wollapse under its
own size, without stochastic scalability a system will apie under the random
variations of its components. In the following, our goaltietefore to better un-
derstand the dynamics of large scale overlay networks ssdiractured p2p
systems. If we want to build reliable large scale informatstharing platforms
based on p2p mechanisms we need to master the complexityclofsystems.
Investigating both the functional and the stochastic $ifitg we will be able to
get those systems under control and achieve carrier gradelaility systems in
a resource-efficient but also simple manner.

3.2 General Approaches and Related
Work

Structured p2p networks [45, 51, 55, 58] are often regarded further devel-
opment of unstructured p2p systems. The initial design rofcgired overlays,
however, shows significant scaling and performance prohlémthis context,
Ratnasamy et al. [77] give a good overview of open questiotis field of DHT-
based overlays. Among others, the problems in terms of ifumaitand stochastic
scalability, the heterogeneity of the participating peessvell as the general re-
silience of the overlay structure add up to a new field of o=earch.

There are several different approaches to evaluate therpefce of struc-
tured overlay networks. Loguinov et al. [78] study the rogtperformance, the
diameter, and the degree of different structured p2p alyos using methods
from graph theory. While each architecture is best suitedafparticular sce-
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nario, they propose de Bruijn graphs as a good compromisstfectured p2p
networks. Ramabhadran et al. [47] evaluate the life timeepficated resources
using a simple Markov model which is based on the gambleirsptoblem. The
redundancy is limited by both the total number of replicascivttan be stored
in the network and the repair overhead needed to create mpéiwa®s Due to the
complexity of structured overlays, most studies, howess,based on discrete
event simulators [79], whereas the simulation of largeesp@p networks still
requires appropriate abstractions [80]. As a final stepofpof-concept studies
can also be realized by prototype emulation in a world widébed like Planet-
Lab [81].

In regard to overlay routing, one of the main problems is giakimity in the
overlay does not reflect physical proximity. Jain et al. [8&]died the relative
delay penalty, which is a measure of the additional packktydetroduced by
the overlay, and found a latency stretch that is longer byctfaf two or more
as compared to optimal routing. To address this issue, RityxNeighbor Selec-
tion (PNS), Proximity Route Selection (PRS), and Proxinhigntifier Selection
(PIS) were proposed and evaluated [83]. Dabek et al. [49¥sHahat such la-
tency optimizations can reduce the time required to locatefatch data in the
overlay by a factor of two. Chun et al. [84] present a more gdized model for
neighbor selection and conclude that the choice of neigbdlection algorithms
drives a tradeoff between performance and resilienceackst This effect can be
reduced by including node liveness information [85], wheseh node attempts
to populate its routing table with neighbors which tend tystlive for a long
time

Liben-Nowell et al. [86] analyzed the evolution of contifiyarunning p2p
networks and observed [76] that the rate at which peers joihl@ave the net-
work is the most informative performance measure as it mighse the network
to split, create loopy cycles, or entirely destroy the dtrces of the overlay. To
understand how random departure decisions of end-usex &ffe connectivity
of p2p networks, Leonard et al. [87] used a mathematicalcgmbr to investigate
the general resilience of random graphs to lifetime-baset Hailures and de-

43



3 Performance Analysis of Structured P2P Networks

rived the expected delay before a user is forcefully isdldtem the graph. Li
et al. [88] compared the performance of distributed haskesalinder churn us-
ing discrete event simulations and derived a performanceoss framework for
evaluating DHT design tradeoffs [89].

In the research community, Chord has become the most stattiedithm,
possibly since its ring structure is comparatively easynayze. Kong et al. [90]
derived an analytical framework for characterizing thefgrenance of DHTSs un-
der random failures. They showed that ring-based overleg<dhord as well as
XOR-based topologies like Kademlia are capable of routiry¢onstant fraction
of the network even if there is a non-zero probability of ramchode failures. The
original Chord algorithm, however, lacks numerous feawvlich are inherent
to other structured overlay algorithms. As a consequerereif, numerous work
exists which presents modifications to the original Chogbathm. Mesaros et
al. [46] address Chord’s lack of symmetry by introducing syetric neighbor
lists as well as a symmetric finger table structure. This oves the possibilities
for proximity neighbor selection, increases the resileete node failures, and
decreases the lookup failure rate under churn. While masiiest of DHTs un-
der such churn conditions depend on simulation as the pyimeestigation tool,
Krishnamurthy et al. [91] presented a complete analytizadysof churn using a
master-equation-based approach. From this they derieeftahtion of failed or
incorrect successor and finger pointers for any rate of canchstabilization as
well as any system size. It follows that more maintenanceh@ad must be in-
vested in times of higher churn. Kunzmann et al. [21] evad#lte corresponding
costs to maintain the topology structure of Chord and to kbepouting entries
of the participating peers up to date. They demonstrateédhbanumber of peers
with errors in their list of successors is independent ofgtze of the overlay
ring, but is heavily influenced by the online session duratibpeers. By taking
up the symmetric neighbor lists from [46] and by sendingfiwatiion messages
as soon as a node observes a topology change in its neigladotthe stabiliza-
tion algorithm of Chord was modified to handle high churnsatedependent of
the stabilization algorithm, there still remains a risk o§ihg all successors or
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splitting the overlay into two separate rings. A redirectioechanism [14] was
proposed to deal with such scenarios. It is able to autoaibticecover from a
partitioning of the overlay network.

Mahajan et al. [92] observed that statically configured lawerlead to high
costs in the average case and poor performance under warsexpected con-
ditions. They developed a self-organizing algorithm fost®Rabased systems
which continuously monitors the environment and autoraditi@dapts the main-
tenance overhead to the observed conditions. Castro &3&lfyrther evaluated
the performance of Microsoft's Pastry implementation gdarge scale simula-
tions and injected real traces of node arrivals and depsrtwhich were gained
by measurements in deployed p2p systems. They also suggespt the main-
tenance traffic dynamically since failure rates vary sigaifitly with both daily
and weekly patterns. In the regarded scenarios MSPastrgbiaso provide a re-
liable overlay structure with a maintenance overhead aftflean half a message
per second per node. Lam et al. [94] further developed thesdts by regard-
ing the performance of hypercube-based overlay architestin general. Wang
et al. [95] evaluated the resilience of CAN under failuremgs Markov-chain
based approach for systems with relatively stable size aifdrmly distributed
nodes. Based on their results, they propose to add fingehlmaig to CAN
following the small-world model [96], which significantlynproves the perfor-
mance in terms of the average path length. Wu et al. [97]Ma@liba more general
approach and compared different lookup strategies likersae, iterative, and
parallel queries independent of the DHT architecture. Ritus) they derived de-
sign guidelines for the development of new overlay topasgiZzoels et al. [98]
provided a cost model for hierarchical overlay structurdsctv are composed
of superpeers and leafnodes. This specific overlay striésuespecially inter-
esting for highly heterogeneous environments, where thekerenodes become
leafnodes which use the stronger superpeers as proxies.

Recent studies increasingly deal with the maintenanceptites in structured
overlay networks. In general, there are two popular reducylachemes: simple
replication and erasure coding, where each object is diviict® . differently en-
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coded fragments, whereas amy < n fragments suffice to recreate the original
data. Rodrigues et al. [99] give a good comparison of botkrees. In particular,
they show that in some cases the benefits from coding arestinaitd may not be
worth the additional effort. Bhagwan et al. [100] quantifetstorage overhead
required to deliver a specified level of availability. Theynclude that high avail-
ability under churn is best achieved by applying erasuréngpdhile adding ad-
ditional redundancy in terms of replication to the systemtt®et al. [48] perform
a Markovian time-evolution analysis to compare differeaimtenance strategies
under churn. Assuming exponential online and offline doregj they derive the
probability mass function of the number of replicas avdéddh steady state. Sit
et al. [101] show that reactively creating new replicas ppoading to failures in
the system leads to bandwidth spikes at the peers. Theygdpa@onstantly cre-
ate new replicas according to a user-specified bandwidthitinorder to smooth
the bandwidth usage over time. Finally, Rhea et al. [75]ufisdifferent algo-
rithms to handle churn in a DHT. Experiments in a testbedrenment using
ModelNet as a network emulator showed that it is possibl@fdHT to operate
at churn rates which are higher than those observed in deglp2p systems.

3.3 Delay Analysis of Chord-based
Overlay Networks

So far, in best effort file-sharing systems the search deksy ot really critical
to the end-user since file download time exceeded the pragdéatbkup time of
the files location by magnitudes. In structured p2p netwadnksvever, the time
needed to complete a search for resources stored in thapigthe most impor-
tant performance measure. Real-time applications wittacequality of service
demands, like VoIP telephony, chatting, or instant mesgpgre dependent on
the time needed to find their communication partner. By dediiHT based p2p
algorithms are able to retrieve information stored in arrlayenetwork consist-
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ing of n peers by using)(log,(n)) messages to other peers. This statement,
however, is very vague, since it only tells us the order of mitage of the search
delay and does not provide us with sufficient details on $education statistics.

In addition to the functional scalability in terms of the ®m size, the highly
probabilistic physical link delay also strongly influencé® performance of
searches in such p2p overlay network. As a first step towaalyzing the perfor-
mance of structured p2p networks, we therefore evaluatienghact of the system
size as well as the impact of the network delay variation emctetimes in DHT
based p2p systems [26]. The main goal is to prove functiamhktochastic scal-
ability in very large Chord rings [24], to be able to guarantertain quality of
service demands in large peer populations. The enormouglerity of such
systems makes an evaluation by simulation on packet letieérantractable.
We therefore deduce an analytical performance model foitirae applications
based on the Chord algorithm. While the calculation of themef the search
duration is quite straightforward, the computation of tlumtiles of the search
duration is more complex. The quantiles, however, have goitant impact on
the quality of service experienced by the end user. Makingesplausible as-
sumptions, we therefore derive the entire delay distrisufunction. To capture
the influences of the physical path delay, the impact of nétwelay variation is
taken into consideration as well.

3.3.1 Computation of the Peer Distance

Distribution
The basic idea of the search delay analysis is to first dehigedistribution of
the number of overlay hops it takes to contact random overgys and to then

calculate the delay of the corresponding overlay paths.hafefore use the fol-
lowing random variables:

Tn: describes the delay of a query packet, which is transfdroed one over-
lay peer to another overlay peer
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T4: represents the time needed to transmit the answer frometbe(paving
the answer) back to the originator of the search

T: describes the total search duration from the initial qumgket until the
answer arrives at the searching peer

X indicates how many times a query has to be forwarded umgkithes the
peer having the answeX will be denoted as the peer distance

H: number of overlay hops needed to complete a search, i.autmber of
forwards of the query plus one hop for the transmission ofitiewver

n: size of the Chord-ring

Note, that we distinguish betweéy andT4, as the size (and therefore the
delay) of a search packet and an answer packet may be unddueabnswer
might, e.g., consist of multiple packets containing a detareply to the query.
In the first step, we compute the probability distributiortioé peer distanc&’.
Since according to the Chord algorithm a search is recuysfeevarded to the
closest finger, we are able to calculate the number of hopdedet® reach the
peer, that answers a specific query. From this, we derive rthieapility p; =
P(X = i) that the searched peer is exadtlyops away from the searching peer.
Special Case of Binary Exponential Peer Populations

To provide an overview, we start with Chord rings whose siz& power of 2.
In an overlay network of this specific size= 2%, k = log,(n) is an integer and
each peer hak distinct fingers. Thereby, theth finger of a peer is used for
searches for all peers whose corresponding hash valués fladl region between
[id. + 271 id, 4+ 2° — 1] whereid, is the hash value of peer. This can
be illustrated using the example in Figure 3.2. In this ceintee 4h finger of
peer 1, which is pointing to peer 9, is responsible for alrpdetweer9, 16] =
14241142 —1].

Taking this into account, we construct Table 3.1 consistihfpur columns.
The first column represents the peer distaiceThe second column states the
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Figure 3.2:Finger-table of peer 1 in a 16 peer Chord ring

number of hopsH needed to complete a search. In the cas&Xof= 0 the
searched document is directly stored at the searching pesgarch answered
locally likewise requires 0 hops. To complete a search arevby a peer that
is X > 0 hops away, however, we neéd hops to reach that peer and one ad-
ditional hop to send the answer back to the originator. AdtbgrX + 1 hops
are needed to perform this kind of search. Column 4 finallgdess the random
variableT representing the time needed to complete such searcheslimgad
times the delay of a forwarded query packet plus the timeezkéal transmit the
answer back to the originator.

The probabilityp; = P(X = ) in column 3 is governed by the following
theorem:

Theorem. The probability that the searched peer is exactipps away from the
searching peer in a Chord ring of si2# (and thus with log(2*) = k fingers)
with symmetric search space and uniformly distributed keys

k
pi=P(X =1) = (21',3 (3.1)

Proof. We argue by induction.
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Table 3.1:Peer distance distribution and search time
i L

X X =1) search timel’
('UQQ(”L))

0 0 po = 2 0
('UQQ(”L))

1 2 p1=~— Ta+Tn
(o02(m))

2 3 p2 = —2 Ta+Tn+Tn

. . (lDQQ_(")) B

[ i+1 pi = ~——= Ta+>. TN
~ Getn) log (n)

log,(n) | log,(n) + 1 | pog,(n) = —2 Ta+> 2" TN

Basis:
Fork = 0, in aring with2® = 1 node, there is exactly = ({) node, that is 0

hops away from the only peer Thereforepy = (2—80)

Fork = 1, in aring with2" = 2 nodes, there is exactly = () node, that is 0
hops away from peerand exactlyl = (}) node, that is 1 hop away from peer
Thereforepy = gil) andp; = (2—?
Induction hypothesis:

Assume the theorem is true for< k

Induction step:

Prove the theorem is also true for- 1

To calculate the number of peers that ateops away from a peerin a Chord
ring of size2***, we divide the Chord ring into two parts consisting of thetfirs
2% and the las2* peers respectively. We then calculate the number of peats th
arei hops away from peer in those two parts of the original ring and simply add
those two numbers up.
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First2* nodes: In a Chord ring of siz& ! a peerz hask + 1 fingers. The first
k fingers are responsible for the fieét nodes. By induction hypothesis there are
exactly (¥) peers that are i hops away from pesn this part of the ring.

Last2* nodes: Thék -+ 1)-th finger covers the remainirdf peers in the original
Chord ring. By induction hypothesis there are exaﬁﬂry peers that are m hops
away from the(k + 1)-th finger in this part of the ring. Since tlig + 1)-th finger
is exactly 1 hop away from peer, there are(ifl) peers in this part of the ring
that arei hops away from peer (one hop to reach the finger-peer and 1 hops
to reach the corresponding peer).

Altogether there ar€?) + (,*,) = (*1) peers that are exactiyhops away from

peerz. Since there are**! peers the probability that another peer is exattly
k+1
hops away from peeris p; = Qk—ﬂ)

Conclusion:

Together, the basis and the induction step imply that theréme holds for all pos-
sible cases, i.e., in a Chord ring of size= 2* the probability that the searched
peer is exactly hops away from the searching peeis

()

28

bi =

|

This result is also consistent with [78], where the Gausgéer distance distri-
bution assumed in [45] was shown to actually stem from a biabdistribution.
Arbitrary Number of Peers

So far we considered the special case of a binary expongetigpopulation.
We now extend the model to an arbitrary number of peers uhdesgme assump-
tions made before. In a Chord ring of arbitrary sizeve havek = [log,(n)]
distinct fingers. That is, a Chord ring of this size maintgirst as many different
fingers as a Chord ring of size = 2%, the next largest power of 2. Since we
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are assuming serially numbered peers;tiefinger of a peet still points to the
same peeid. + 2°7* for i = 1 to [log,(n)]. In other words we can compare
Chord rings of arbitrary size to Chord rings of binary exponential size, ex-
cept thatm — n peers are missing between the last finger and the searchéng pe
itself.

Figure 3.3:Finger-table of peer 1 in a 12 peer Chord ring

Figure 3.3 illustrates this issue for a Chord ring of size T2 figure resem-
bles Figure 3.2 insofar as searches for peers 1 to 8 origtaii peer 1 still
require the same number of hops. The only difference is tigdlietst finger point-
ing to peer 9 is now covering less peers and is thus resperfsibless searches.
On account of this, we divide a Chord ring of arbitrary siz®itwo parts to cal-
culate the peer distance distributidh Thereby, the first part consists of the first
2#=1 peers, while the second part includes the remaining peerjunction
with the preceding theorem we conclude the following camil calculating the
number f (i) of peers in a Chord ring of arbitrary sizethat are: hops away
from the searching peet

Corollary. The numberf, (i) of peers in a chord ring of arbitrary size (and
therefore with[log, (n)] distinct fingers) that aré hops away from the searching
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3.3 Delay Analysis of Chord-based Overlay Networks

peer is:

*), if n =2k
fn(i) = (3.2)
(*7) 4 faiopa (i = 1), if 2571 < < 2k

The corollary exploits the fact that there are no change$énstructure of
the first2*~! peers compared to an independent Chord ring of 3tzé and
recursively calculates the hops needed for searches cbbgréhe last finger.
Note that in the recursive calculation we have to subtraettmp needed to reach
the responsible finger. Finally to getin the arbitrary casef,, () will be divided
by n:

10 (33)

n

Note that the theorem as well as the corollary both rely onastract model
which is based on serially numbered peer ids. That is, in acChing of sizen
the peer ids are numberéd2, ..., n, such that peer numberhasid. = z. Ina
real Chord ring of size:, identifier space siz& = 27, and equally distributed
peers, however, peer numbehas

idz:1+(zfl)'[ﬁ—‘

n
In this case the assumption that the fingers of peer numbeg directly pointing
to peers number
14270 i=1,..,k (3.4)

is no longer obvious. Instead, according to the Chord algarithe fingers of
peer numbet are pointing to the first peers, whose ids are directly sutinge
14 277% b =1,...,5 on the Chord ring, respectively. That is, the fingers are
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pointing to peers number, where
. N J—b .
zp=min{z:1+(xz—-1)-|—|>14+2""} b=1,...,7 (3.5)
n
In the special case of binary exponential peer populatiors2” it follows that

J .
2y = min{z: 1+ (z—1)- ;—k >1427% (3.6)

= min{z:z > 1+ Qk_b} 3.7)

Sincer has to be an integer the fingers of pgare thus pointing to peers number
1+28=% b =1, ..., k, which are exactly the same peers as in Equation 3.4 where
the peer ids were numbered serially. In the special case=ef2* the proof can
thus be extended to non-contiguous peer ids.

3.3.2 Analytical Model of the Search Delay

As a result of the last section we now know the peer distansgildlition X.
From this we derive the length in hops of the path a particsgarch-query takes
through the network. We also know the probability that a search takes ex-
actly this path. Using these basic relations we can competdistribution of the
search delay as a function of the network delay charadtrigtirst, the basic
relations in our model are illustrated followed by the direomputation of the
mean and the variation of the search duration.

The phase diagram of the search delay is depicted in Figdrel8e search
starts at the left side of the figure. A particular paih chosen with probability;
where phase consists of network transmissiongy to forward the query to the
closest known finger and one network transmis&ianto send the answer back
to the searching peer. Again note, that we distinguish bet@&, andT'4 as the
size and therefore the delay of the answer might be significiarger then the
simple search request itself.

54



3.3 Delay Analysis of Chord-based Overlay Networks

Figure 3.4:Phase diagram of the search duration

By means of the phase diagram, the generating function, lad.daplace-
Transform respectively can be derived to cope with the casksorete-time or
continuous-time network transfer delay. The generatimgtion of the search
delay is accordingly:

k
X(2) =po+ Y pi- Xa(2)  Xi(2) (3.8)
=1
and the Laplace-Transform:
k

O(s) =po+ Y pi- Dals) i (s) (3.9)

i=1

The mean and the coefficient of variation of the search dedayatso directly
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be calculated as such:

E[T] = épi -E[T|k = i] (3.10)
= Zklpi (E[Ta] +i- (E[TN])) (3.11)
E[T?] = Zklpi - E[T?|k = i] (3.12)
= zk: pi- (VAR[T4] +i- VAR[Ty] (3.13)
+ gszl[TA] +i- E[Tn])?) (3.14)
and
&= % (3.15)

3.3.3 Influence of Stochastic Network Conditions

In this section we present numerical results to illustrbge dependency of the
search duration on the stochastic variation of the netwanksfer delay and to
give insight into the functional scalability of Chord-bdsmverlay networks. First,
we will show the mean and the coefficient of variation (CoV)toé search du-
ration. Subsequently, the shape of the search delay distibfunction will be
discussed, followed by the quantile analysis, i.e. the aptgrthata percent of
searches will need less thaseconds.

Regarding the results in this section, the delay is assumed to be identical
to the delayT’4. To unify the following parametric study the del@y; is further
modeled by means of a two-parameter negative-binomia#ijriduted random
variable. If not stated otherwise, the coefficient of vaoiaicr, of T is set to
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3.3 Delay Analysis of Chord-based Overlay Networks

1 and the mea®[Tv] of T'x is set to 50ms, since 50ms is the value assumed
in the original Chord Paper [45]. Furthermore, we divide dbgained results by
E[T~] where appropriate to obtain more general conclusions.

©

~

[o2]

Mean search delay / E[TN]

0 2000 4000 6000 8000 10000
Chord size n

Figure 3.5:Impact of the Chord size on the mean search delay

Figure 3.5 shows the mean search delay as a function of ta@fthe Chord
ring. We can observe that the search delay rapidly increstsg®aller values of
n, but stays moderate for very large peer populations. Theecisrnot strictly
monotonically increasing as expected since a small deereas be seen when
the population: just exceeds a binary exponential valie This effect can be
explained as follows: Once the size of the population ciosise next power of
2, the finger table of each peer grows by one entry accordingtassumptions.
Thus, the mean search duration slightly decreases at tinis po

The coefficient of variatiomr of the search dela¥ is depicted in Figure 3.6
as a function of the peer population, for different transiois delay coefficients
of variation. The variation of the search duration increaséh cr,, , the coef-
ficient of variation of a single overlay hop. However, it degses as the Chord
size increases, due to the increasing number of hops needtedér Chord pop-
ulations. That is, the variance of the overall search domas reduced due to the
increasing number of convolutions of overlay hops.
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Figure 3.6:Search delay variation as a function of the peer population

This effect is also illustrated in Figure 3.7, where the aejeacy ofcr oncry
is analyzed. Again it can be seen thatis smaller tharer,, , as the convolution
of multiple overlay hops reduces the coefficient of variatid the overal search
duration. The size of the Chord population itself has a coatpeely small effect
oncry .
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Figure 3.7:Dependency ofr oncr,
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In Figures 3.8 and 3.9 we study the dependence of the ensirébdition func-
tion of the search delay on the network latency variatipp and the peer pop-
ulation n, respectively. The size of the peer population in Figurei8.8et to
10° peers. As expected, the probability that a search takestdngreases to-
gether with the coefficient of variation of the network latgrer, . The curves
in Figure 3.8 intersect as they share the same nigf@iy] but have different
coefficients of variatiomr,, .

107 c;=\05\ 1 \15 2

0 10 20 20 50 60

30
VE[T,]
Figure 3.8:Distribution function of the search delay

Figure 3.9 proves the scalability of the search delay. Byeasing the size of
the Chord ring from10® peers to10° peers the search delay distribution does
not escalate exponentially but increases by a linear fatt@ chosen values of
n correspond approximately to current file sharing netwoiks the eDonkey
network [62].

Figures 3.10 and 3.11 depict the quantile of the search delay Figure 3.10
different quantiles for the search delay are taken as a maesntor example
the curve with the 99%-quantile indicates that 99 perceiseafch durations lie
below that curve. For a peer population of, e.g., n=3000 ip&eent of all cases
the search delay is less then roughly 15 times the averag®riefatency. It can
be seen that the curves indicate bounds of the search dédiay)) van be used for
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n=10° 10* 10° 10° |
25 30 35

0 5 10 15 20
VE[T,]

Figure 3.9:Distribution function of the search delay

dimensioning purposes, e.g., to know the quality of seririca search process
with real-time constraints like looking at a phone diregtaaking into account
the patience of the users. Compared to the mean of the sealeshtte quantiles
of the search delay are on a significantly higher level. 8tdlsearch delay scales
in an analogous manner for the search delay quantiles.

25

0.9999-quantile
20r

15 0.99-quantile 1
10 0.95—-quantile |
5 /-//m_ean/__’_‘

% 2000 4000 6000 8000 10000
Chord size n

Search delay bound / E[TN]

Figure 3.10:Search delay quantiles
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Figure 3.11 depicts the 99%-quantile of the search delajnagith the coef-
ficient of variation ofT'y as a parameter. There are five vertical linea=512,
256, 128, 64, and 32 to point out the previously mentionedlasons atn = 2¢.
The largetcr,, we chose, i.e. the more variation there is in the networkygléhe
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Figure 3.11:Influence of the CoV of v on the search delay quantiles

larger is the 99%-quantile of the search duration. It isefa@e more difficult to
guaranty Service Level Agreements in networks with largdayvariation. Time
outs, e.g. have to be set to higher values accordingly.

3.4 Evaluation of the Stability of
Ring-based Architectures

The analysis in the last section represents a first step idatalthe functional
scalability in terms of the system size as well as the stdzhssalability in terms
of network delay variation. However, the stability of sttuwred overlay networks
is also strongly affected by the dynamic behavior of the esef i20]. When
many peers leave the network simultaneously, the overlaybaaplit into sev-
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eral disjoint networks or even collapse entirely. In casswith an inconsistent
overlay state, successful searches can no longer be geadaznd it might even
not be possible to reestablish a stable overlay networknadageneral analysis
of the evolution of such systems can be found in [76] and [ItBthis section, we
concentrate on ring-based overlay networks and analyzevdlyethey preserve
reachability and stability of the overlay network. The #igbof such systems
depends on the number of overlay connections a peer mantairtontrast to
previous studies [45] we show that the probability to losedberlay structure of
a ring-based DHT is not negligible in all cases. In particulge present an ana-
lytical expression that can be used to calculate the préitatu lose the routing
functionality of a DHT given a certain number of overlay centions. We are
able to evaluate the consequences of maintaining too matgodiew overlay
connections in a running system. The analysis can also lietasompute the
actually necessary number of overlay connections to gteeaa stable overlay
network.

3.4.1 Abstract Mathematical Model

In general, a p2p overlay network is connected if there gx@gbute from every
peer to every other peer. In ring-based overlay structiniesg achieved by each
peer storing pointers to the firstsuccessors on the ring, i.e. pointers to the first
r peers that follow the peer in a clockwise direction on theg.rifhus, if one

of the peer’sr successors goes offline, the peer will still know the next 1
peers on the ring. If a peer, however, loses all-iguccessors, the ring will be
disconnected. According to previous studies [45] the cotiviey of a Chord
ring can be obtained with high probability as longras- Q(log,(n)), wheren

is the current number of peers in the ring. In this contex,rtatwork is assumed
to stay connected, even if every peer fails with probabifityThe proof relies
on the fact that even though every individual peer fails witbbability 1, it

is very unlikely that allO(log,(n)) successors of a peer fail at the same time.
The conclusion that thus all peers stay connected with highgbility, however,

62



3.4 Evaluation of the Stability of Ring-based Architectire

misses a subtle point. Although a local disconnection (qeeific peer loses all
its successors) might be very unlikely, one can not draw trelasion that a
global disconnection (at least one peer in the overlay lafiéts successors) is
very unlikely as well. To gain a better understanding of ghibtle but important
point, we introduce some definitions:

® praqi: probability that a node fails

e pia(r): probability that a specific node loses all itsuccessors and gets
locally disconnected

e pga(n,r,praa): probability of a global disconnection, i.e. the probaili
that at least one peer gets locally disconnected in a netabsize n,
where each node knowssuccessors and each node fails with probability

Pfail

The probability for a local disconnection can then easilghleulated as
pua(r) = p?aib (3.16)

Obviously, the more successors a peer has, the less likgétstlocally discon-

nected. Since, in general, peers maintain a successof $igieo- = O(log,(n)),

a local disconnection is less likely in larger networks. ger, based on this
observation alone, we can not conclude that the probalafity global discon-

nection is comparably small as well. The more nodes theraénatiee overlay

network, the higher the probability that at least one of thgats locally discon-

nected. In other words, there is a trade-off between thesentechanisms. On
the one hand, the larger the overlay ring becomes, the mooessors are main-
tained by a peer, resulting in a smaller probability for aalatisconnection. On
the other hand, the larger the overlay ring becomes, the peees run the risk
of getting locally disconnected, resulting in a higher @ioitity for a global dis-

connection.
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To estimate the stability of a ring-based overlay structwe=need to calculate
the probabilitypyq(n, 7, pra:) Of @ global disconnection, i.e. the probability that
at least once or more contiguous peers fail on the ring. As an approximatie
neglect the ring structure of the overlay network and imedfre overlay peers
arranged in an ascending row as shown in Figure 3.12. Wed¢igaiprobability

1 r-1 r n
e KU O O e O O

Figure 3.12:Then peers of a Chord ring arranged in an ascending row.

pra(z, 7, Prau) that at least once or more contiguous peers fail in such a row
of = peers. Moreover, we can assume a random distribution afrés) since
the hash function distributes peers equally in the ident#figace and physical
proximity therefore does not reflect overlay proximity. Foe sake of simplicity,
we use the short notatign.q(z) instead ofp.q(z, r, prai) Where appropriate.
Obviously, the probability that or more peers fail in a row of less tharpeers

is zero, as indicated by the dotted peers in Figure 3.12. Ifovesider the same
probability in a row of exactly- peers, all peers have to fail accordingly. The
corresponding equations are:

Pra(2, 7, prair) =0 if v <7 (3.17)

Pra(T, 7, Dfait) = P1a(T) = Dfau ifz=r. (3.18)
In case ofr > r we obtain:
pra(z) = pra(z — 1) + (1 = pra(z —r = 1)) - (1 = prair) - pra(r). (3.19)
The probabilityp,.4 is defined recursively. To calculage, (), we take the prob-
ability p-q(z — 1) that there was at least one local disconnection in thefirst.

peers and add the probability that the first local disconoeaiccurs at peer.
The second term of this sum is best explained using Figu® JHere are two
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1 X=-r-1 x=r X
@] B & &
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1- Pra (X_r _1) 1- P Pua (r)

Figure 3.13:Probability, that the first local disconnection occurs arpe

requirements in order that the first local disconnectioruceexactly at peet.
First of all, there must not be a local disconnection in th&t fir— » — 1 peers as
indicated by the box in Figure 3.13. Secondly, peef » must not fail, while all
of the lastr peers have to fail to cause the disconnection at peer

According to Equations 3.17 and 3.18, the first local diseation can occur
at peerr. Thus, there are stilt — 1 peers that could experience a local discon-
nection but are not accounted for in our equation. To imptbeeaccuracy of our
approximation, we add — 1 peers at the end of the row as shown in Fig 3.14.
Thus, there ares peers in a row o + r — 1 peers that can experience a lo-

1 r- 1 r n n+r-1
e 0 O~-0 O O -0
— _/
—
n peers

Figure 3.14:The firstr — 1 peers are added to the end of the row.

cal disconnection. The resulting approximation for thebaituility of a global
disconnection in a Chord ring of sizeis:

Pga(, 7, Drait) & pra(n +1 — 1,7, prair). (3.20)
The reason for the approximation is that we neglect the fingtire of the over-
lay network. In fact the probability is slightly overestitad since the — 1 peers

we added at the end of the row are obviously correlated witiithtr — 1 peers
in the row. That is, there are some failure patterns in thierlasl recursion steps
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that have already been taken into account before and aredhunged twice. Note
that the formula is not limited to the special case of

r = [log,(n)].

In fact, we are able to evaluate the consequences of usingrg® or too small
values forr, i.e. of using more or less than lggr) successors.

3.4.2 Derivation of Realistic Failure Probabilities

In the previous section we were simply assuming valuep foy;, the probability
that a node fails. In practice, however, there is not muclsesém saying a node
fails with a certain probability, without specifying a cesponding time frame. To
guarantee overlay stability, a peer refreshes its succéisseveryi,.,, seconds
by periodically calling astabilize()procedure. Thistabilize()function takes care
that a peer’s successor list is up to date by merging its list the list of its clos-
est successor. Thus, a peer gets locally disconnecteaiffitdlknown successors
go offline between twatabilize()calls. Therefore, one should consider the prob-
ability that a peer fails within this periodic update intaninstead of assuming
some arbitrary values fqryq;.

On account of this, we regatfl,,,, the average online time of a peer in sec-

onds. Assuming that the online time is exponentially distiéd with\,, = Ei
it follows that

A(t) =1 —e tont (3.21)

is the distribution function of the online time of a singleepeDue to the mem-
oryless property of the exponential distribution the piolity that a peer goes
offline within ¢,:,, seconds is:

Pfail = A(t.stab) - P(A S tstub)~ (322)
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Note that the probability that a peer goes offline and onligairawithin ¢.:.s
seconds is neglected in this context. We can then usefhisin Equation 3.20
to calculate the probability of a global disconnection wvith.;,, seconds. The
probability of a global disconnection increases with thenbar of stabilize()
calls. The longer the overlay ring exists, the greater tlubgibility of a global
disconnection within its lifetime becomes. The probapilit:(n, ) that a ring
of sizen gets globally disconnected sometime withistabilize()calls can be
calculated as follows:

pit(nv Z) =1- (1 - pgd("L 7ﬂvpfail))i' (323)

Note, that in the context of peer lifetimes heavy-tailedritistions are more
resilient than those with light-tailed (e.g., exponentdistributions [87].

3.4.3 Validation of the Stability of the Overlay
Structure

In this section we concentrate on the evaluation of Chorel,nlost prominent
structured p2p overlay network. The results regarding todlpm of a discon-
nection, however, are valid for any ring-based overlay petwAt first we have
a closer look at the probability of a local disconnectiorgufe 3.15 illustrates
the probability of a local disconnection (cf. Equation 3.a@ainst the overlay
size for three different failure probabilities of a peereTtumber of successors
is thereby set tdlog, (n)]. As expected the probability of a local disconnection
strongly decreases with the size of the overlay networks Thiobviously due
to the fact that a peer maintains more successors in largeore and is thus
less likely to be disconnected. Note that in a ring of size- 10° and a failure
probability ofpfqi = % we have a very low probability of a local disconnection
of about10~¢.

To show that based on these facts alone, we can not derivg boweprobabil-
ity for a global disconnection as well, we calculate the piulity of a global dis-
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Figure 3.15:Probability of a local disconnection for different valug9g,;

connection fom . = 1. Figure 3.16 shows this probability (cf. Equation 3.20)
for networks of sizex = 2*, where each peer maintains a successor list of size
r = log,(n) = k. The probability of a global disconnection does indeed de-
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Figure 3.16:Global disconnection probability in the special case Qf,; = %

crease with the size of the overlay network. However, it dossapproach zero
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but asymptotically reaches a probability of about 40 percgdmwhen every node
fails with probabilityps.:; = 3 and every peer maintains a successor list of size
r = log, (n) Chord does not stay connected with very high probabilitydeis
disconnected with a probability of roughly 40 percent.

To confirm this result we simulated the probability of a gloti&connection
by generating snapshots of rings of a specific size and cduhtepercentage
of those rings that did not get disconnected after 50 perokall peers failed.
The simulations were repeated until the confidence intetvatame smaller than
0.001. For smaller values of the results obtained by our analysis are slightly
above the simulated values as the analysis does not takénthstructure into
account. The error becomes negligible for overlay sizeseho= 100.

In practice, however, a failure probability pf.:; = % is obviously too pes-
simistic. To obtain realistic values for.;; we evaluate Equation 3.22 for differ-
ent average online times of a peer and different values:@f. Figure 3.17 shows
that even if the average peer only stays online for 10 minamessuccessor lists
are only refreshed every 60 seconds, the probability th&tea fails within this
frame of time is still less than 10 percent.

0.1

0.08

t__=15s, 30s, 45s, 60s
stab

pfalil

% 50 100 150 200
Average online time Eon [min]

Figure 3.17Failure probabilities in dependency of the average onliime t

In the following analysis we therefore concentratepgn;;= 0.1, 0.05, and

69



3 Performance Analysis of Structured P2P Networks

0.01. Figure 3.18 illustrates that a global disconnectsovery unlikely for these
values ofps.,;. Even for a peer failure probability of 10 percent, a Chordyri
of size10® will be globally disconnected with a probability of less the)~*2.
The staircase shape of the curve arises from the fact thagtlthidés done for
arbitraryn and corresponding successor lists of size: [log,(n)]. So when-
ever the overlay size crosses a power of two, each peer starts to maintain one
additional successor in its successor list. Thereforeptbbability of a discon-
nection abruptly decreases whenever a power of two is erdedicthen slightly
increases until the next power of two, since the probabiifty local disconnec-
tion stays the same, but there are more peers that can getdéstted and cause
a global disconnection.

Pga(n.tog,(MUipg,)

4 8 10 12
Overlay size n G

Figure 3.18:Probability of a global disconnection wittiog, (n)] successors.

So far, the results relied on a dynamic adaptation of the gizepeers suc-
cessor list. In practice, however, it is more common to chapfixed successor
list size a priori. Figure 3.19 illustrates the probabiliiya global disconnection
for fixed successor list sizes of 3, 6, and 9. The failure podiba of a peer is
set topsqss = 0.01. As we can see, the probability of a disconnection increases
with the overlay size but scales very well to larger netwoMsreover, the or-
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Figure 3.19:mpact of a fixed number of successors on the global discaiomec

der of magnitude of the probability of a global disconnettian be adjusted by
choosing the corresponding successor list size. Obvipledg than[log,(n)]
neighbors are sufficient to guarantee a stable ring when w@n@s a realistic
failure probability ofpsq:; = 0.01.
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Figure 3.20:Global disconnection probability for different succeskstrsizes.
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To illustrate the effects of extremely high failure probaigis we plot the
probability of a global disconnection against the numbesuafcessors. In Fig-
ure 3.20 we show the results for a peer failure probability;; = % and three
different ring sizes: = 2°, 2'°, and2'®. The vertical black dotted lines repre-
sent the suggested successor list $lag,(n)]. Again, the suggested number of
successors results in a disconnection probability of abbytercent. To guaran-
tee a global disconnection probability close to zero in éxiample, a peer has to
maintain a successor list of sizldg, (n)] 4+ 7 or more.

Note that so far we calculated disconnection probabilitiéhin one single
stabilize()period. However, the probability of a global disconnectinoreases
over time. The longer the Chord ring exists, the greater tiobability that it
gets disconnected within its lifetime. Figure 3.21 plots ginobability that a ring
gets disconnected sometime withistabilize()calls against the number efa-
bilize() calls for different global disconnection probabilitied. Equation 3.23).
Assuming astabilize()period of lengthts;., = 30 secondsg - 10* stabilize()
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Figure 3.21:Probability of a global disconnection aftestabilize() calls

calls roughly correspond to one month. Thus, the probgtittiat a Chord ring
gets disconnected sometime within the first month of itsitife is by magnitudes
greater than the same probability within one sirgjbilize()period.
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3.5 Simulative Evaluation of a
Carrier-Grade Kademlia Network

Most scientific studies as well as our analysis in the ladi@econcentrate on
Chord or other ring-based overlay structures. This is drlybdue to the fact that
even though all DHTs share the same basic principle, thestingture is by far

the most easy to analyze. The majority of actually deployestlay networks,

however, make use of the more complex Kademlia protocol [5t¢places the
server in the latest eMule modifications and is used as alliged tracker in the
original BitTorrent as well as in the Azureus client [52].€Tkatter continuously
attracts more than one million simultaneous users worlcewizespite all this

there are only few scientific papers evaluating the perfogaaf the Kademlia
algorithm. In [89] and [90] the performance of different DiIgorithms includ-

ing Kademlia is evaluated and compared. Modifications tpsttfheterogeneous
peers are introduced in [102]. Finally in [103] an analydishe lookup perfor-

mance of Kad, the Kademlia-based DHT used in eMule, is giVée. authors

examine the impact of routing table accuracy on efficienay emnsistency of
the lookup operation and propose adequate improvements.

Like all structured p2p networks, Kademlia has explicitseh designed to
scale to a large number of peers in the overlay. Thereforadakscalability
issue is not in terms of system size but in terms of churn [TBat is, the fre-
quency at which peers join and leave the system has sigrifiaaore influence
on its robustness and stability than the mere size of theesyéself. In this
section we therefore uncover the problems caused by chutrslaow how to
avoid them [13]. In particular, we study the search duratiba overlay stability,
and the required maintenance traffic. We will then desciileewteak points we
discovered and pinpoint their root causes. For each problerwill present an
optimization, which eliminates the disadvantages and si#laglemlia a proto-
col more feasible for business applications. Even thoughatorithms will be
explained in the context of Kademlia, they are by no meartsiceed to this pro-
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tocol. Especially the downlist and the Betarepublish maigms can easily be
applied to other DHTSs like Pastry, CAN, or Chord.

3.5.1 Description of the Simulation Environment

Discrete event simulation is a powerful tool to gain insigito complex pro-
cesses at the desired level of abstraction. There exista@2p simulators in lit-
erature, a good overview and comparison is given in [79]. i@, each of these
simulators comes with its disadvantages such as littlefiéyj poor or no docu-
mentation, implementation errors, no extensibility, ossitig features, but most
importantly the lack of scalability. In order to make the slation of large scale
p2p systems more feasible, we therefore developed our ovwiaion environ-
ment (cf. Figure 3.22) as well as different implementatiechniques [11, 12].
The global user behavior is described in a special sourcadifgy our own script

Source Traffic » Global » Kademlia »

File Generator Ev.ent: Simulator og *re
File

Seed—»» Log File

Figure 3.22:Sketch of the simulation environment

language. That is, the source file contains an abstractiggsorof all global
events like joins, leaves, or searches which are indepérafethe underlying
p2p network. The simple lingin 500 1Q e.g., denotes that 500 peers should
join the overlay network at intervals of 10 seconds. Thditrafenerator trans-
lates this description into actual events which can thendeel @s input for the
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simulation of different protocols. This makes it easy to pane the performance
of different DHT protocols in a given scenario. It is furthesre also possible to
extract the global events from an emulation or prototypelys@and re-simulate
the scenario to validate the accuracy of the simulation.

In order to evaluate the different performance aspects deKdia, we imple-
mented a discrete event simulator in ANSI-C according tatberithms in [51].
That is, for eacld < i < 160 a peer keeps a bucket &fpeers of distance
betweer2!5°~% and2'%°~**! from itself according to the XOR metric. Thereby
the routing table is adapted dynamically. That is, each p&gts with one sin-
gle bucket covering the entire address space and recyrsipéits the bucket
containing the peer’s own ID as soon as this bucket holds itiauek entries.
When many peers leave the system, Kademlia merges the pondiag buck-
ets accordingly. Furthermore, a peer is able to insert deotsninto the overlay
network. To guarantee their availability, each of theseudwents is stored at the
k closest peers to the document’s ID. If the document was mefved from an-
other peer fofT’,., minutes, the corresponding peer republishes the document,
i.e. it sends the document to the remaining 1 peers of the replication group.
When searching for a document a peer recursively senddqdagaéries to the
« closest peers it knows. The next recursion begins as sodregeer received
[ answers. This guarantees that a searching peer will onlyntore timeout if
a — B+ 1 peers do not answer within one specific search step. If ntatdstth-
erwise, we use the default paramet&fs, = 60 minutes,oo = 3,3 = 2, and
k = 20.

To model end user behavior, we randomly chose join and lesar@®for each
peer. To be comparable to other studies in literature a gags &nline and of-
fline for an exponentially distributed time interval with @em ofE,,, andE, s ¢
respectively. When online, the peer issues a search @&gpy.., minutes, where
the time between two searches is also exponentially digerib Using different
distributions mainly changes the quantitative but not thelitative statements.
In each simulation we use a total of 40000 peers, which weddorbe suffi-
ciently large to capture all important effects regarding tiverlay size, and set
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E,, = E,sy, resulting in an average overlay size of 20000 peers. Tease
the credibility of our results [104], we include the 95 perceonfidence intervals
where appropriate.

3.5.2 Improving the Search Efficiency

The success and duration of a search for a document heapiéndeon the cor-
rectness of a peer’s pointers to other peers, i.e. on theaagss of the peer’s
routing table. In Kademlia the most crucial pointers ares¢hto itsk closest
neighbors in the overlay. We measure the correctness dof fiwaters using two
different variables:

e P States how many of its curreit closest neighbors a peer actually
holds in its k-buckets.

e P,: Represents the number of correct peers out oktblesest neighbors,
which a peer actually returns when asked for.

Ideally a peer would not only know but also return all ofiitseighbors. However,
our simulations show that the standard implementation olidfaia has problems
with P.. We setk = 20 and simulated the above described network for different
churn rates. Figure 3.23 illustratéy and P, in dependence of the churn rate.
The mean online/offline time of a peer was variied betweenntD180 minutes.
Even though on average a peer knows almost all its neighiirslpse to 20),

it returns significantly less valid entries when queridd @s low as 13). The
shorter a peer stays online on average, the less valid peeretarned during
a search. The problem can be tracked down to the fact thag #rerstill many
pointers to offline peers in the corresponding k-bucket efgker. The reason
is that there is no effective mechanism to get rid of out-dldducket entries.
Offline entries are only eliminated (or moved to the cache) fieer runs into a
timeout while trying to contact an offline peer. A peer whideritifies an offline
node, however, keeps that information to itself. Thus, ihé unlikely that a
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Figure 3.23:P, andP, in dependence of the churn rate

node returns offline contacts as it has very limited postéslto detect offline
nodes. As a result more timeouts occur and searches taker|tran necessary.
Another problem is that searches are also getting more umats; which has
negative effects not only on the success of a search but alsleeoredundancy
of the stored documents. The reason is that due to the imtaearch results
documents will be republished to less thapeers or to the wrong peers.

Solution - Downlists The primary reason for the above mentioned problem is
that so far only searching peers are able to detect offlinesiobhe main idea
of our solution to this problem is that a searching peer, Wwhiiscovers offline
entries while performing a search, should share this infdion with appropriate
other peers. To do so, a peer maintains a downlist consisfiali peers which it
discovered to be offline during its last search. At the endhefdearch the corre-
sponding entries of this downlist are sent to all peers whie those entries to
the searching peer during its search. These peers thenesisave the received
offline entries from their own k-buckets. This mechanisnpbkeb get rid of of-
fline entries by propagating locally gained information toare it is needed. With
each search offline nodes will be eliminated.
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The improved stability of the overlay is obviously bought thye additional
bandwidth needed to send the downlists. From a logical mdintew, however,
it does require more overhead to keep the overlay stable ingleer churn rates.
In this sense, the additional overhead traffic caused byisgmbwnlists is self-
organizing as it automatically adapts to the current chata.rThe more churn
there is in the system, the more downlists are sent.

It should also be mentioned, that without appropriate sgcarrangements
a sophisticated attacker could misuse the downlist alyoriio exclude a target
node by claiming in its downlist that this specific node hadeyoffline. How-
ever, this problem can be minimized by only removing thosgesownhich were
actually given to the searching node during a search oriaddity by verifying
the offline status using a ping message. One could also apslydr reputation
based mechanism to exclude malicious nodes.

Effect on Search EfficiencyTo compare the downlist modification to the stan-
dard implementation we again simulated a scenario with @@@@rs on average
and calculated the 95 percent confidence intervals. Fig2& [oves, that the
downlist modification has the desired effect Bn, the number of correctly re-
turned neighbors. Using downlists bath and P. stay close to the desired value
of 20, almost independent of the current churn rate. Thavisy in times of high
churn the stability of the overlay can be guaranteed.

This improved correctness of the overlay stability alsodpssitive influence
on the search efficiency. In Figure 3.24 we plot the averagatidm of a search
against the average online/offline time of a peer. In thigexdran overlay hop
was modeled using an exponentially distributed randoraiségiwith a mean of
80 ms. Both curves show the same general behavior. The langeer stays on-
line on average, the shorter is the duration of a search. Hawespecially in
times of high churn, the downlist modification (lower curg@nificantly outper-
forms the standard implementation. The main reason is thaverage a peer
runs into more timeouts using the standard implementatierit queries more
offline peers during a search. The effects on the maintenavedead will be
discussed in Section 3.5.4.
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Figure 3.24:Influence of the downlist modification on the search efficjenc

3.5.3 Increasing the Robustness of the Overlay

When peers join and leave the overlay network, the neighbontgrs of a peer
have to be updated accordingly. As mentioned above, the ldwmodification
greatly improves the correctness of thelosest neighbors of a peer. To under-
stand this effect in more detail, we have a closer look at glsisimulation run.
We consider a mean online/offline time of 60 minutes and anagesof 20000
peers for both the standard implementation and the dowmbistification.

Figure 3.25 illustrates the distribution @%, and P, in both scenarios. As
can be seen in the left part of the figure, almost all peers ke than 17
of their 20 closest neighbors using the standard implertientaHowever, the
number of correctly returned pedps is significantly smaller for most peers. This
problem is greatly reduced by the downlist modification astmaseen in the right
part of the figure. In this case, the number of known and thebauraf returned
peers are almost equal to each other. Yet, there are stik sars, which do
not know all of their 20 closest neighbors. This is in part tuéhe churn in the
overlay network. However, simulations without churn proeluesults, which are
comparable to those shown in the right part of Figure 3.2% Gdwse of this
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Figure 3.25:P, andP. for the original version and the downlist modification

problem can be summarized as follows: It be the k-bucket of peer p, which
includes the ID of peer p itself anfl; the brother ofB,, in the binary tree whose
leaves represent the k-buckets as shown in Figure 3.26. atwording to the
Kademlia algorithm buckeB,, is the only bucket which will be split. However,
if only e < k of the actuak closest contacts fall into this bucket, ther= k£ — e
of these contacts theoretically belong into its brotBer

cannot be spli

contains peer p f

Figure 3.26:B, and its brotheB; in the Kademlia routing table
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Now, if this bucket is full it cannot be split. Thus, if some thie v contacts
are not already in the bucket, it is very unlikely that therpe@l insert them
into its buckets. The reason is, that a new contact will bpled in case the
least recently seen entry &f; responds to a ping message. Since in a scenario
without churn all peers always answer to ping messages, ostacts will never
be inserted intd3;, even though they might be among thelosest neighbors of
the peer. In the original paper it is suggested to split &mttid buckets in which
the peer’s own ID does not reside in order to avoid this probldowever, this has
two major drawbacks. At first, itis a very complex processichlis vulnerable to
implementation errors. Secondly, it involves a great déaldalitional overhead
caused by bucket refreshes and other maintenance routing® next section,
we therefore develop a simple solution, which does not reqany additional
overhead.

Solution - Force+# As stated above, it is possible, that a peer does not know
all of its k& closest neighbors, even in times of no churn. To solve thoblpm,
we need to find a way to force a peer to always accept peersdietpmto B;
in case they are amongst #tsclosest neighbors. Suppose a node receives a new
contact, which is among its closest neighbors and which fits into the already
full bucket B;. So far, the new contact would have been dropped in caseake le
recently seen entry oB; responded to a ping message. Compared to this, the
Forcex modification ensures that such a contact will automatidadlyinserted
into the bucket. In order to decide which of the old contacii ve replaced,
one could keep sending ping messages and remove the firstyteen does not
respond. However, this again involves additional overhieéerms of bandwidth.
A faster and passive way is to put all entriesi)f, which are not among the
closest peers into a ligtand drop the peer which is the least useful. This could
be the peer which is most likely to be offline or the peer whieb the greatest
distance according to the XOR metric.

In our implementation, we decided to consider a mixture efilfactors. Each
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of the entries: of list [ is assigned a specific score
Se = te + de (324)

and the one with the highest score will be dropped. Therghyg, intended to be
a measure for the likelihood of peeto be offline andi. for the distance of peer
e to peerp. The exact values of. andd. are obtained by taking the index of
the position of the corresponding peer in the list, as if iswarted ascending by
the time most recently seen or by the peer’s distance, régplgcThat is, ife is
the most recently seen peer (= 1) and has the third closest distance to peer
(de = 3) itis assigned a score 6f = 4.

Effect on Stability We investigated the impact of the Forkenodification on
the stability of the overlay network in various simulatioits scenarios without
churn, all peers finally know and return all of théiclosest neighbors. The cor-
responding figures show lines parallel to the x-axis at aevaltk = 20. It is
therefore more interesting to regard the overlay stahilitsing churn phases.
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Figure 3.27:Effect of Forcek under churn

In Figure 3.27, we plot the average online time of a peer ag#ire number of
known and returned neighbors using the same simulatiorasoess before. The
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two lower curves correspond to our previous results usiegdibwnlist modifi-
cation. The two upper curves represent the Féroeedification in combination
with the downlist modification. It can be seen that the Fdtcalgorithm also
improves the stability of the overlay in times of churn. Vhthe appearance of
the curves is similar, there are more neighbors known (diole$) and returned
(dashed lines) as compared to using only the downlist madiific. Even if a
peer stays online for only 10 minutes on average, it will kradyout 19.9 out of

20 neighbors and return more than 19.8 correct entries. Byawing the correct-
ness of the neighbors, the Forkenodification also increases the search success
rate and the redundancy of stored documents.

To investigate the overlay stability in more critical sceos, we simulated a
mass exit where 90% of all peers left the overlay at a randoma tiithin an in-
terval ofx minutes. Figure 3.28 shows that even if 90% of all peers |edthén
10 minutes, our modified Kademlia algorithm still knows aatlrns about half
of its k closest neighbors. Moreover, shortly after the mass egittlerlay re-
covers again, whereas all peers correctly know and retlirof gheir k& closest
neighbors.
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Interval in which 90% of all peers left [min]
Figure 3.28:0Overlay stability after a mass exit

So far, we showed how to improve the efficiency and the stglafithe over-
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lay, but did not yet consider the maintenance traffic caugeithé Kademlia al-
gorithm. The next section will study the bandwidth requitsda peer running
the standard Kademlia protocol and the additional overlwdiic caused by our
modifications.

3.5.4 Reducing the Redundancy Overhead

The bandwidth required to maintain a stable overlay and sarthe persistence
of stored documents directly reflects the costs for a peemtticipate in the
network. We simulated a network with 20000 peers on averageracorded
the average number of packets per second sent by a peer whiées ionline.
Figure 3.29 illustrates the average traffic per peer in dégece of the average
online time of a peer. In addition to the total traffic, the figalso shows its three
main components, the join, the republish, and the dowmbdfic.

Total traffic

Republish
traffic

Join traffic

Downlist traffic

Sent packets per peer per second

0 50 100 150 200
Average online time [min]

Figure 3.29:Maintenance traffic of a peer split into its components

SinceE;.qrch, the average time between two searches of a peer, was set to 15
minutes, the search traffic per peer per second can be negjliecthis scenario
and is thus not shown in the figure. The same is true for théidredused by
bucket refreshes, since a specific bucket is only refregtieids not been used
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for an entire hour. The Forcke-algorithm is performed locally and does thus also
not produce any additional overhead.

It can be seen in the figure that the downlist traffic autoraflli@dapts itself
to the current churn rate. The more frequently the peersgnihleave the sys-
tem, the more downlist traffic is produced by a peer on averaggeneral, the
small amount of bandwidth needed to distribute the dowsnissalso easily com-
pensated by the improved stability of the overlay. The mppnt of the traffic
is caused when joining the network and republishing docusnéhis obvious
that the average amount of join traffic per peer per seconeases if a peer
stays online for a shorter period of time. The join traffic manand should not
be avoided as it is necessary for a peer to make itself knowemvithjoins the
network. Moreover, the join traffic already shows a selfamiging behavior. The
more churn there is in the system, the more joins there a@ahand the more
overhead is produced to compensate the problems caused bum.

At first, the run of the curve representing the republishfitafeems to be
counter-intuitive. The less churn there is in the systemntiore republish traffic
is sent by a peer on average. However, the reason becomesispifione takes
into account that the longer a peer stays online on averagenore likely it gets
that there are republish events. In fact, the probability ghpeer stays online for
longer than 60 minutes given the corresponding averagaetitheE,,,, resem-
bles the run of the republish curve. The reason why the tatalent of republish
traffic exceeds the remaining traffic so significantly is dfes: Each document
is stored at thé closest nodes to its ID, the so called replication group.drm
pensate for nodes leaving the network, each peer sendsc¢hendat to all other
peers of the replication group if it has not received the doent from any other
peer forT,., = 60 minutes. The idea behind this republish mechanism is that
one peer republishes the document and all other peers hesetgpublish timers
accordingly. Since the republishing peer sends the docutoeall peers of the
replication group simultaneously, the peers reset theieits at approximately
the same time. The next time the first peer starts to repubiisldocument, it
has to search for the corresponding replication group beifocan redistribute
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the document. However, during this search the republisarsraf the other peers
are likely to run out and they will start to republish the do@nt as well. For
this reason, a document might get republished by up peers instead of just
one single peer, resulting in unnecessary overhead traffis. problem of syn-
chronization is already mentioned in the original papethinfollowing section,
we present a solution, which greatly reduces the republisthead and which is
also resistant against churn.

Solution - BetarepublishThe synchronization problem of the republish pro-
cess arises if all peers of a replication group have appratdiy the same time
stamp for the next republish event. At first this seems to Hikelp. However,
each time a peer republishes a document all other peers ofplieation group
receive this document at approximately the same time anthasesynchronized
again. The main idea to avoid this problem is to assure thakeaks use differ-
ent time stamps. To achieve this, each peer chooses its tamgpsandomly in
the interval[T;.., — x, Trep + ] instead of exactly aftef’.., = 60 minutes.
Let I,.., be the random variable describing the time stamp of the mgxblish
event. Then we wani,., to be distributed in such a way, that only few peers
start republishing at the beginning of the interval and tfedbability to republish
increases toward the end of the interval. This can, e.g.cbieeed by setting:

[rep = (Trep - -T) + 22 Ipeta (325)

wherel.:, IS a random variable with density

—t _ ifo<t<1
ibeta(t) = ¢ VI70B(20:5) (3.26)
0 otherwise
and B (a, B) is the beta function, defined by
1
B(a, ) = / Tt =) e (3.27)
0
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Thereby2 - z, the length of the interval in which the peers will start thei
republish process, should be small compare@,tg but still significantly larger
than the duration of a search. Figure 3.30 shows the pratyatiéinsity function
of I,.¢, for different values ofc. All peers will set their time stamps somewhere

15
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Figure 3.30:PDF ofI,., for different values of:

in the interval[60 — z, 60 + z]. The probability for a peer to set its time stamp is
still very low at the beginning of the interval. It then asdersignificantly toward
the end of the interval. In the case Bf., = 60 minutes,z = 2 minutes is a
reasonable choice, since it offers a long period of time witbw probability of
republish events. This way, the republish traffic will bengfigantly reduced as it
becomes very likely that only one or a few peers actuallyt ategpublish process.
Again, note that a peer does only republish a document ifstria received it
from another peer fdf’.., = 60 minutes.

Effect on Overhead In this section we will have a look at the influence of
the Betarepublish modification on the average amount ofhiegfutraffic sent
by a peer. Figure 3.31 shows the average number of repuldiskers per peer
per second in dependence of the average online time. We certiaresults for
simulations using the standard implementation, our tweiptes modifications,
and all modifications including Betarepublish. First of &tle average republish
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Figure 3.31:Maintenance traffic caused by republish processes

traffic of a peer is increased by using the downlist modifaatiThe reason is
that using the standard implementation there are more effizdes in thek-
buckets during times of churn. Thus, documents are refdaligo less peers,
which reduces the republish traffic but also the redundanape system. The
additional traffic introduced by the downlist modificatiom therefore used to
improve the availability of documents.

The Betarepublish modification is applied in an effort to imiize the traffic
necessary to achieve this availability. The figure showsBlesarepublish indeed
reduces the amount of required republish traffic signifigaiithe Betarepublish
traffic lies well beneath the standard implementation asd &akes slower with
an increasing average online time. Note that the Betareguiriodification does
only avoid redundant traffic. It is still able to guarantee game redundancy,
stability, and functionality. Figure 3.32 shows how theuegd republish traffic
influences the total traffic for the three regarded versidi&oemlia (Standard,
downlists and Forcé; all modifications). At first, it can be seen that the use of
downlists increases the total traffic as compared to thelatdnimplementation.
Again, this is desired overhead as it greatly helps to irs@dhe robustness, the
stability, and the redundancy of the overlay in an autonseay.
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Figure 3.32:Total maintenance traffic in dependence of the churn rate

By adding the Betarepublish modification, the total trafficignificantly re-
duced and no longer dominated by the republish traffic. Wthigeaverage main-
tenance traffic sent by a peer in the standard implementatibrally increases
when there is less movement in the overlay network, it finalpws a self-
organizing behavior when using all modifications. The ldasre there is in the
system, the less maintenance traffic is generated to keegvénkay network up
to date. That is, the amount of bandwidth invested to keemvteelay running
automatically adapts itself to the current conditions i threrlay.
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4 Modeling the Dynamics of
P2P Overlays

In contrast to the classic client-server architecturerlayenetworks have to cope
with highly dynamic components in their system. In order @imtain the struc-
ture of the overlay under such conditions they have to appby@priate counter-
measures. In particular, they may adjust parameters ligenttimber of overlay
connections to other peers or the frequency at which thelyamge information
about the current overlay status with those peers. The aptimount of such
maintenance overhead directly depends on the current &ile overlay as well
as the current online/offline behavior of the participatpegrs. While insuffi-
cient overhead may lead to loss of the overlay structure #imdately to a break
down of the entire system, too much overhead results in aeagssary waste of
available resources. In practice, the maintenance ovérimestructured overlay
networks is set to a fixed value which is dimensioned for theeeted worst case.
In this chapter, we take the first step toward a self-orgagizoncept for over-
lay networks as illustrated in Figure 4.1. The main problarthis context is that
to a single peer the remaining system essentially appearslask box. We there-
fore introduce and discuss different models to estimatetineent conditions in
the overlay, like churn or the system size, based on infdomathich is locally
available to a peer. These estimates can then be used by topssculate the
probability of a loss of the overlay stability, as e.g. shawiChapter 3.4. From
this it can then derive optimal parameters to adapt the ewaamtce overhead ac-
cordingly. Furthermore, the fact that the current statugelsas the performance
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Overlay Network
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Figure 4.1:Self-organization concept for overlay networks

and the stability of a deployed overlay system are inheyantknown, is one of
the main reasons why telecommunication carriers are sitant to build dis-
tributed applications based on structured overlay netsidBlesides our passive
estimation algorithms, we therefore also present an éntirevel and scalable
approach to actively create a snapshot of a deployed oveefayork. Using our
algorithm, a provider can then either monitor the entirg¢esysor just survey a
specific part of the system.

4.1 Problem Formulation and Related
Work

Structured p2p overlay networks have been designed to sdtiiehe number
of participating peers. The real issue concerning suchlayeretworks there-
fore lies in the management and maintenance of their dighitibustness, and
redundancy. Blake and Rodrigues [37] showed that the reddlsitity problem

can be found in the service bandwidth needed to maintainndahcy and sta-
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bility in dynamic overlay networks. However, especiallytirese dynamic net-
works it is most important to know the current churn rate all asthe current

size of the network to be able to adjust the maintenance eesied to obtain
redundancy and stability. Therefore Mahajan et al. [92pstigated the trade-
off between high maintenance cost and poor stability in dyinanetworks. The

results show that it is crucial to adapt parameters dyndiyicehe authors in-

troduce an estimator for the size of Pastry based netwdrscan in some way
be extended to other networks like CAN or Chord. Howevergheas no math-
ematical treatment on the quality of the estimator nor amyfidence intervals
for the obtained results. Moreover since the estimator wiasapily designed for

Pastry networks, it does not exploit additional charastes that are typical for
other overlay structures like Chord rings.

A very simple passive estimator for the size of butterfly bag2p overlay
networks is introduced by Malkhi et al. in [105]. Most apprhas to estimate
the overlay size, however, rely on active probing of the oekwA distributed
algorithm is presented by Horowitz et al. [106], where anitéaithl logical ring
among existing nodes is maintained and nodes exchangesttigirates upon ar-
rival and departure. Bawa et al. [107] estimate the size akg® overlay net-
works by actively sending samples to other nodes and evadu#te answer
statistics. Jelasity et al. [108] solve the same problemguai method which is
based on the information flow through a peer and which heaépends on the
assumption of independence between the individual samipileslly, Kostoulas
et al. [109] combine an active as well as a passive methoditoas the system
size in a tool called PeerCounter. The active algorithmagsea gossip through
the network, where each peer marks its distance in termspd from the ini-
tiator. The passive algorithm is based on the density of #eepin the identifier
space. Current size estimators either lack a mathematsaligtion, need addi-
tional overhead to actively probe the network or do not expllh properties of
ring based overlay structures. In Chapter 4.2 we theref@semt a mathemati-
cal substantiated estimator, which is well adapted to tbegnties of the Chord
algorithm.
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Besides the mere size of the system, churn is an even moreleommb-
lem in structured overlay networks [24, 110]. Stutzbachl €tld1] showed that
churn plays a crucial role in the design, operation, anduatadn of p2p systems.
Krishnamurthy et al. [91] further characterized churn amahfd that it can be of
different types, all of which should be studied in detaileTdoncept of temporary
and permanent churn was presented by Tati et al. [112], whathto temporary
unavailability and permanent loss of resources, respagtiRhea et al. [75] eval-
uated different DHT implementations on an emulated networkconcluded that
without proper modifications current overlay structuresrea handle realistic
churn rates. Subsequently, Godfrey et al. [113] showed Wiate it is possible
to minimize churn (e.g. by selecting a uniform-random replaent whenever an
overlay neighbor fails), one cannot entirely avoid it. Zhgaet al. [114] discuss
and compare different algorithms to minimize the node faildetection time
in distributed overlay networks. They conclude that algpnis which share in-
formation in times of node failures improve the detectiondiat the cost of an
increased control overhead.

The actual user behavior in a real system heavily dependseokirid of ser-
vice being offered. In this context, Gummadi et al. [29] skdwhat p2p users
behave essentially different from web users. For a typitadtiaring application,
they found a median session time of only 2.4 minutes and a @&ttentile of
28.25 minutes for sessions during which a peer was actie#igving files. Their
findings for large requests, however, showed that less tBgredcent are com-
pleted in an hour, 50 percent take more than a day, and néaggrzent of users
are willing to wait a week for their downloads to complete.dk@bnally, Bhag-
wan et al. [110] argue that availability is not well-model®da single-parameter
distribution, but instead is at least a combination of twoetivarying distribu-
tions. This is supported by the observation that failuresatary significantly
with both daily and weekly patterns and that the failure fatepen systems is
more than an order of magnitude higher than in a corporatiecemaent [93]. To
be able to compare the performance of different selectiategties for overlay
neighbors, Godfrey et al. [113] present a definition of chwhich reflects the
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global number of changes within a time interyxsd:

1 |Ui—1 © Ui
=% Zn:« [T, |}
TherebyU; is the set of online nodes which are in use afterithehange and
is the symmetric set difference. While the definition is vesgful in simulations
which possess a global view on the system, it cannot be usexh l®stimator
which can only rely on local information. A simple method &iimate churn in
a deployed system was introduced by Ghinita et al. [115] lotitewaluated in
detail.

In general, the problem of monitoring an overlay networkrira central loca-
tion is far from being solved. Sing et al. [116] give a goodrei@v of different
approaches to monitor and debug distributed systems. @ibrés aim at using
overlays for decentralized network management [117]. @Gtah [118] describe
how to efficiently monitor all paths in a network using an dagrtopology. Lim
etal. [119] also use a distributed structure to monitor IR$§land end-to-end ser-
vice quality. Renesse et al. [120] introduce Astrolabe \arlay network specif-
ically designed to monitor and report the dynamically cliagpgtate of a collec-
tion of distributed resources. This approach is furtheeeaed to a distributed in-
formation management system which aggregates informatitarge-scale net-
worked systems by Yalagandula et al. [36]. Tang et al. [12&ppse to cluster
overlay nodes based on their geographic location for aggjregand delivering
events with the minimum latency and cost. However, none efathbove mecha-
nisms implicitly monitors the status of the overlay its@tutzbach et al. [122]
introduce a crawling-based approach to query Gnuteladtigtworks, which is
limited to unstructured overlays. While structured ovgslanay be queried peer
by peer from a central position, like e.g. in the CoMon proj&23], the approach
does clearly not scale to larger networks. In Chapter 4 wekier, we exploit the
special features of structured p2p overlays and presenttaelg novel and scal-
able approach to create a snapshot of a deployed overlapretw
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4.2 Estimating the Current Peer
Population

In a structured overlay network, each peer maintains pariter well defined
peers in the overlay in order to maintain the stability artibsiness of the over-
lay structure. According to [45] the stability of a Chordgican be obtained with
high probability as long as = Q(log,(n)), wheren is the current peer popu-
lation of the Chord ring. In practice a peer either has to skabe parameter
large enough to be able to handle the maximum possible ri@gosihas to adapt
r on the fly. Choosing a large constant valuerfoesults in high maintenance cost
in the majority of cases, or insufficient stability in largban expected overlay
networks. To autonomically adapt the size of its neighbotbr = Q(log, (n))

a single peer needs to know the current size of the overlayanktit is partic-
ipating in. In the following we therefore introduce an estor for the current
sizen of a Chord ring based on local information like the peer'sent neigh-
borlist [22]. A participating peer can then use this estartatadjust the size of
its neighborlist to the current size of the overlay netwdilkis way, the peer uses
the optimal amount of maintenance overhead to guarantedke siverlay given
the current size of the network.

4.2.1 Analytical Model

The analytical framework of our model is based on both a pemrtcessor- and
fingerlist. At first we have a closer look at the identifier spéself. We assume
that a total ofr peers share the identifier space of lendjtk= 2™ and that, by the
hash function, the positioS(z) of every peer is distributed uniformly in the
identifier space. Accordingly, every identifier is occup®da peer with proba-
bility p = n/N. LetI(z) = S(z + 1) — S(z) be the random variable describing
the length of the interval between peeand peer: + 1, i.e. the distance between
two neighboring peers as illustrated in Figure 4.2. We assancollision-free
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I

/—j%
peer z peer z+1
0 2m-1

n

Figure 4.2:The random variablé describes the length of the interval between two peers.

hash function, i.e. each peer has a unique identifier. Furifteus assume that
without loss of generality peerhas identifier 0, i.eS(z) = 0. Then, the proba-
bility that another peer sits on position 1(is— 1) /(N — 1) as there remain — 1
peers forN — 1 free identifiers. The probability’(z + 1,7) thatS(z + 1) = ¢ is

P(z+1,i):(lf;:11> (17;:12»4 (4.1)
(1_ NTi_lerl) ' (Xf_flz) (4.2)
a) A e

The first approximation is justified as >> 1 and N >> . The second
approximation is justified as on average- % >> 1. Thus, we can conclude
that the intervall(z) between a peer and its direct neighbor is approximately
geometric with parameter.

1(z) ~ geom(p) wherep = le (4.4)

We validate this approximation by generating 10000 snapséfaandom Chord
rings with 1000, 10000, and 100000 peers in an identifier espdicsize2'°°.
Peerz has identifiel0. We evaluate the distance to pee# 1 and refer to this
distance as interval 1, which is equal?¢z + 1) — S(z). Figure 4.3 compares the
simulated distribution to the theoretical geometric dlisttion. Since the curves
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match exactly when plotted on a linear scale we use a logdalg sConsidering
the magnitude of the interval sizes and probabilities, thengetric distribution
and the simulated distribution are almost identical. Thieeding in the simulated
curve comes from the limited amount of values that we gaimfifoe simulations.

Interval 1
---Geom(N,p)
—44
> 10
% RingSize = 10*
S ~_n
° RingSize = 10°
&0
-48
10 - -
1042 1044 1046
Interval

Figure 4.3:Interval 1 is well-approximated by the geometric distribaot

Ideally, peerz does not only know its direct neighbor but the next=
[log,(n)] neighbors and can calculate the distances between themprobe
ability that the location of peer + 2 is directly after peee + 1 is

n—2
N (SG+D=5E) (4.5)

as there are — 2 unknown peers and
(N —=(S(z+1) = 5(2))) (4.6)

free identifiers remaining. Consequently, from pe&r point of view interval
I(z + 1) depends on intervdl(z). However, we can argue again that due to the
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large size of the identifier space

n—2

N—(S(z+1) = 5(2))

n
NN =P (4.7)

Thus, the intervals between alheighbors of Peer are iid and we introduce the
random variabld for an arbitrary interval between two neighbored peers.

In Figure 4.4 we validate this approximation by means of tn@wlative dis-
tribution function (CDF) of intervall and intervalr, i.e. the interval between
the last two successors. We can see that the curves for lietlidts match very
well with the geometric distribution independent of thegrsize. The simulated
curves start with a probability dfe — 4 as we generated 10000 snapshots. Note
that the distribution of 99% of the intervals (CDFle — 2) coincides with the
geometric distribution.

10
RingSize = 10°
107}
L # oinagive = 103
a RingSize = 10
(@]
107
G Interval 1
sl Interval r
RingSize = 10* ---Geom(N,p)
100
1035 1040 1045 1050

Interval

Figure 4.4:Interval 1 and Interval r follow a geometric distribution.
The main idea of our algorithm is to estimate the paramet#ithe geometric
distribution of . We denote the estimated valuepofsp. From this we can then

conclude that
n=p-2". (4.8)
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To be able to estimafewe need to obtain realizations bfwhich can be gathered
by looking at our neighborlist.

L b I
Figure 4.5:Realizations of the random variatle

As shown in Figure 4.5 the intervals between a peeitamediate successors
can be regarded adifferent realizations of the random varialdleMore realiza-
tions of I can be found if we have a closer look at a peer’s fingerlist. #slieen
shown in [45] onlyO(log,(n)) of those log(m) fingers are actually different,
i.e. are actually pointing to different peers. This is dug®fact, that especially
the first fingers tend to coincide with a peer’s successofflisé interesting fact
concerning our estimator, however, is that the actual jeosdf thei-th finger on
the ring is different from its theoretical positiad, + 271,

Figure 4.6:Distance between theoretical and actual position of-thefiinger.

Figure 4.6 illustrates this issue in detail. The figure shtiwee exemplary
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fingers for a peer pointing toid. + 2™ 2, id, + 2™~ 2, andid. + 2™ ! re-
spectively. As we can see the actual positions of the fingersgé , F», andF;
are different to the fingers theoretical positions. Thigatise, however, can be
interpreted as another realization of the geometricaltyriliuted random vari-
able’.

As stated above we already know that the length of the intdrsween a
finger F; and the previous peer on the ring is geometrically distadulf we
now choose a random point in this interval, due to the meressyproperty of
the geometric distribution, the interval between the thdoal position of the
finger and the actual finger is as well geometrically distéduwith the same
parametep as illustrated in Figure 4.7.

theoretical finger position

geom(p)
—O< '

¥
geoin(p) ¥

i

Figure 4.7:Memoryless property of the geometric distribution.

Again, we validate this assumption by means of the snapst®tsed above.
Figure 4.8 compares the distances of the theoretical anglgftger positions
to the geometric distribution. We consider only those fisghat don't coincide
with the successorlist. The figure shows the geometricibigton with regard to
three different ring sizes. Each of these distribution®ispared to the simulated
distributions of each finger. Note that there are more sitedlaurves for the
ring with 10000 peers than with 1000 peers, as there are nistiad fingers in
larger rings as stated above. Again the plot is presentedagiag scale, since
the curves are effectively identical on a linear scale. Byanseof the geometric
distribution of the finger intervals, we obtain another~ log, (n) realizations of
I from a peer's fingertable, leaving us with a totalcf r ¢ different realizations
of the random variablé.
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Figure 4.8:The interval between actual finger position and theorefinger po-
sition is geometric.

4.2.2 Maximum Likelihood Estimation

The main goal of this section is to introduce an estimattor the current size of

a Chord ring. This estimator can then be used to dynamicdjlysathe estimated
necessary sizé = log, () of a peer’s successorlist. Since the estimator is based
on a peers successor- and fingerlist and those lists in taradjusted according
to the estimator, we assume that to get started, a peer feedatbout the current
size of the Chord ring by its immediate successor when firstreng the net-
work. In this section we show how to estimate the parametsrthe geometric
distribution of I using a maximum-likelihood estimator (MLE). The MLE is used
since we already know that the random variable geometrically distributed but
the parametep is still unknown. The basis for the MLE is a likelihood furani
L(p) which is defined as follows:

L(p) = fo(I) fp(I2) - - - fp(15), (4.9)

102



4.2 Estimating the Current Peer Population

wheref, (I) is the probability mass function with parameteand; is the number
of observations made. The MLEof the unknown value op is then defined to
be the value that maximizes the likelihood functib(p). That is,

L(p) > L(p) (4.10)

for all possible values gs. In our case we have

fo)=@1-p)p (4.11)

and
r4r

Lip) = (1 —p)Zimt Ti . prtrs, (4.12)
As has been shown in [124] in this case the MLE can be comp&ted a

1

-_— (4.13)
[(7" + rf) +1

p=
wherel (r +7;) is the sample mean. Wifhwe can then estimate the current size
n = p - 2™ of the Chord ring. Finallyz will be used to determine the number of
successors the peer is going to maintain. The size of thesseclist will be set
to
7= [log2(n)] . (4.14)

An obvious advantage of this approach is that the size ofubeessor-list is not
as sensitive to errors as the estimated size of the Chordtself. That is due
to the fact that the size of the successor list is logarithafhiacdependent on the
size of the Chord ring. In practice a peer is going to use tiisnator to set the
size of its successor-list as follows. When first enterirg @hord ring, a peer
learns the current size of the Chord ring from its direct hbags and adjusts the
size of its successor-list accordingly. Afterwards it pditally uses the MLEp
to estimate the current size of the Chord ring and dynanyiealbpts the size of
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its successor-list. The disadvantage is that so far we ¢anake any statement
of how good the MLEp estimates the actual size of the ring. Therefore we build
confidence intervals f@s. The100(1—«) confidence interval [124] fgpis given
by

ptzi_a M, (4.15)

2 r+ry

wherez;_g (for 0 < a < 1) is the upperl — 3 critical point for a standard
normal random variable.

However, the consequences of underestimating the reat wdlp are by far
more severe than the consequences of overestimating theataa of p. The
main reason for this is that a successor-list which is toollshas a negative
effect on the stability of the Chord ring. A successor-listiet is too large, on
the other hand, only results in some additional overheadiifamize the danger
of underestimating we use the upper limit of the confidence interval to estimate

_ N 2(1=p)\ om
n+:<p+zl_g %)2 . (4.16)

Thisn; is then used to calculate the size of the successor-list as
74 = [log2(ny)] (4.17)

Again, we round up to minimize the probability of underesttmg the real value
of r. The next section summarizes how the estimator performs actual Chord
implementation.

4.2.3 Accuracy of the Estimate

In this section we show the results obtained by our simutatitf not stated other-
wise, each snapshot of our simulations is done by unifor@gipgn peers into
the identifier space of lengti™. Then the distances between the firsbnsecu-
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tive peers are calculated and given as input to our estimatoregard different
ring sizes to see how the estimator scales to larger netwbtkshermore, we
evaluate the difference between the upper and lower limihefestimator and
study the influence of the corresponding confidence levalsglitionally, we in-
vestigate how accurate the estimator and its upper bourabéedo estimate the
actually required number of successors. Finally we studyirifiluence of churn
by varying the number of successors a peer maintains.

To see how accurate our estimatoapproaches the current ring size we gen-
erated 10000 snapshots of a specific ring sizé/e then set the number of suc-
cessors to the ideal value= [log,(n)] and compared the estimated ring sizes
to the actual ring size. Figure 4.9 shows the results of gnukitions for a given
ring size of 10000 and a successorlist of size 14. As can beisethe figure,

4

3% 10 ‘ ‘
==-= Actual ring size
25 Estimated ring size
R 2
»
[}
c
T 1.5
0.5 - - -
0 2000 4000 6000 8000 10000
Snapshot

Figure 4.9:10000 estimates of the ring size as compared to the actuslizi

our estimatom is well in the right order of magnitude and roughly oscilkates-
tween0.5n and2n. Depending on the range of application, however, under- or
overestimating might be crucial to the performance of thaliegtion on top of
the estimator.

In Figure 4.10, we therefore compare the lower botindand the upper bound
n4 of our estimator to the actual ring size, again using 100@siots of a ring
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of size 10000. The confidence level in this example is set #.9bhe lower

----- Actual ring size

Upper bound

Ring size
N

il WIIWI; &‘MWHH ‘\llw‘w\ W i ||<‘\,|W\ i

_Lower bound ‘ ‘
2000 4000 6000 8000 10000
Snapshot

Figure 4.10:The lower and upper bound of the estimator with a confidened le
of 95% as compared to the actual ring size

boundn_ of the estimator stays beneath the actual size of the rinlg Righ
probability, whereas the upper bound ranges betweand2n to 3n, underesti-
mating the real value of at times.

To analyze the probability that the lower bound overestsnand the upper
bound underestimates the actual ring size we plot the sasriadshots in Fig-
ure 4.11. The Figure shows the normalized results obtaimetthé estimator and
its lower and upper bounds for three different ring sizesaiA@ confidence level
of 95% is used. The part of the upper bound beneath the datteddpresents
the number of times the upper bound underestimates thel aictyaize, the part
of the lower bound above the dotted line the number of timeddtver bound
overestimates the actual ring size, respectively. Notettieamedian of the esti-
mator itself approximately intersects with the actual sige as indicated by the
vertical line. This justifies our assumption that the randamableT is approx-
imately geometric since the median of an estimator basedactlg geometric
intervals would exactly intersect with the actual ring size

Another important fact which can be derived from the figuréhigt we over-
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Figure 4.11:Sorted estimates gained by the estimator.

and underestimate the actual ring size less significantlgrger networks. This
is of course due to the fact that we use more neighbors indagorks. The
primary reason, however, lies in the fact, that a peer alsat@e distinct fingers
and thus more uncorrelated realizationd @fi larger networks. Note that the tiny
spikes in the graphs of the lower and upper bound arise siecenly sorted the
estimator itself and plotted the corresponding upper aweidounds.

As can be seen in Figure 4.12 the lower and upper bound of tivaater
can be fine tuned by adjusting the confidence level. The cordaevel in this
example was varied between 50% and 99%. The higher we setttiielence
level, the more the curves of the upper and lower bound dwtiyafrom the
estimator. This means that the higher we choose the conédenel, the less
frequently we will under- and overestimate the actual rirmp.sHowever, the
drawback of a high confidence level is that the estimateseotiiper and lower
bound get less precise. The trade-off between overlayligyadnnd maintenance
overhead can thus be fine tuned by means of the confidence level

The most obvious application of the estimator is the dynaadigptation of a
peers successorlist. Since a peer ideally maintains & kgtieast: = [log,(n)]
neighbors the estimate in this case does only depend Ibgacidlly on the esti-
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Figure 4.12:iInfluence of the confidence level on the upper and lower bound.

mate ofn. As itis more critical to underestimate than to overestanhe required
number of successors, we will concentrate on the estimatbita upper bound
in the following. Since we additionally round the estimatethe upper bound

7 = [log, (n)1,

we set the confidence level to moderate 95% in the remaindkisadection. Fig-
ures 4.13 and 4.14 show the estimated number of requiredbaig in a network
of size10* and10°. In Figure 4.13 the actually required number of neighbors is
14 = (IogQ(104)]. The regular estimator provides the correct number of neigh
bors in over 80% of all cases. However, in almost 20% of thpsimats the esti-
mator would set the size of the successorlist to 13, one pssithan needed. In
order to minimize the danger of underestimating the requi@nber of succes-
sors, one should therefore use the number of neighborsastinby the upper
bound. While the upper bound does almost never underestimahe current
example, it tends to overestimate more frequently thandbelar estimator.

In a ring of sizel0® (see Figure 4.14) the upper bound overestimates the re-
quired number of neighbors by 1 in over 60% of all cases. larreit never
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Figure 4.13:Estimated required neighbors for upper bound and regulanai®r.

understimates the actually required number of succesBhesregular estimator
on the other hand again underestimates the actual valuettewagh only in very
few cases. Note that in about 90% of all cases the regulanatii meets the
actually required number of neighbors. Given the fact thatupper bound only
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Figure 4.14:Comparison of upper bound and regular estimatot @rpeers.
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slightly overestimates the desired number of neighborsswggest to prefer the
upper bound to the regular estimator in critical appliaadio

So far the results presented in this section were based ddehkenumber of
neighbors in the given networks. To see how the estimatdéoas when relying
on an unideal number of neighbors, we again simulate 1008@s$ts for a ring
of size10* and evaluate the estimator and its upper bound based orssocists
of different size. Thereby the number of successors usetpas fo the estimator
ranges between 1 and 20 successors. The actually requinetenof neighbors
in this example is again 14. Figure 4.15 shows the resultesponding to the
regular estimator. The bars represent the results obtaéipeding 1 to 20 neigh-
bors. The darker the color, the more neighbors have beenasétbut to the
estimator. Obviously, the more neighbors the estimatoreon, the better the

Il 1 neighbor
Il 20 neighbors
0.8
go 6 actually required
3 neighbors=14
g
& 0.4r
0.2

%2_ 13 14 15 16 17
Estimated number of necessary neighbors

Figure 4.15:Results obtained by using 1 to 20 neighborsifat peers.

obtained results become. That is, the more realizatiodsa# can give as an in-
put to the estimator, the more precisely it calculates theadly required number
of neighbors and the less often it over- and underestimatses/alue. Still the
estimator underestimates the actual value, even in theof@&eneighbors.

For comparison, the results obtained by the upper boundusnensrized in
Figure 4.16. The bars increase and decrease more rapidiythiabars in the
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4.2 Estimating the Current Peer Population

last figure. That is due to the fact that, the more realizatiofiY we obtain, the
smaller the confidence interval is going to be. Thus the uppend will con-

verge to the estimator. Having a closer look at the Figurealse notice that the
probability that the upper bound underestimates the requiumber of neigh-
bors is negligible but not entirely zero. Obviously, thiseispecially noticeable

1
I 1 neighbor
Il 20 neighbors
0.8
206 actually required
- neighbors=14
5
g 0.4
0.2

%2 ) 13 14 15 16 17
Estimated number of necessary neighbors

Figure 4.16:The upper bound is more sensitive to the number of neighbars t
the regular estimator

for small successorlists, since a small successorlistraésans fewer realizations
of 1. Moreover sincel3 = log,(8192) all estimated values af < 8913 will
result in an underestimation of Thus, the estimator can not fully take advan-
tage of the mathematical round step. Note that, indeperafettite size of the
successorlist, the upper bound is able to rely on the remimof I gained by
its fingerlist. Thus, it supplies an applicable estimatehef tequired number of
neighbors independent of the number of successors useduwds in

111



4 Modeling the Dynamics of P2P Overlays

4.3 Assessing the User-Behavior

The dynamic behavior of the users causes fluctuations invaday network
which lead to inconsistencies, lost messages, and ultiyn@ie decreased user-
perceived quality. As a consequence, structured overtgyrithms require more
maintenance traffic when the churn rate is high. However,mg2porks operate
without a centralized control unit and each peer has onlynédd view of the
entire network, usually not being aware of the current clrata in the network.
Thus, a peer should be able to estimate the churn rate frolintived information
that is available and autonomously react to high churntis by increasing the
maintenance traffic.

In this chapter, we propose a fully distributed algorithmgeers to assess the
behavior of the user and estimate the churn rate by exchgungé@asurement ob-
servations among neighbors [7]. The overlay network itsalised as a memory
for the estimate while each online peer contributes to gaateasurements of
the estimator. The advantage of this method is that it opsiaassively, i.e. there
are no additional entities required to monitor online aniliref periods of the
peers and the generated overhead is negligible.

4.3.1 Algorithm to Capture the Fluctuations in the
Overlay

In general, a good estimator for the churn in the system nmusbime way cap-
ture the fluctuations in the overlay structure and then deducestimate for the
churn rate from these observations. Thereby, we must takeagtount that an
individual peer does not have any global knowledge aboustéte of the system
but has to rely on a very limited view of the network. In stired p2p networks,
each peer has periodic contact to a specific number of ovedmhbors, like the
successori Chord, thek-bucket entriesn Kademlia, or thdeafsin Pastry. The

basic principle of our estimator is to monitor the changdsisineighbor list and
use them to derive the current churn rate. Thereby, we mbddbe¢havior of a
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Figure 4.1715, andTy describe the online and offline times of thepeers.

peer using two random variabld%, and 7o which describe the duration of an
online session and an offline session as shown in Figure 4.17.

We assume that each online peestores pointers te well defined overlay
neighbors (or contacts) which are specified by the indidi@4T protocols. To
deal with stale entries and to maintain the structure of teelay, peep periodi-
cally contacts a special subset of its neighbors every, seconds and runs an
appropriate stabilization algorithm. This correspondg,, o bucket refreshes in
Kademlia or the stabilization with the direct successori@. At each of these
stabilization instants the peer synchronizes its neighsowith those of its con-
tacts. The main idea of our estimator is to monitor the chargehe neighbor
list and thereby collect different realizations of the ramdvariables 5, and 7oy
That is, a peep observes the online and offline session times of its overdyh
bors. Therebypbs(7) is the value of theth observation made by the peer and
time(1) is the time at which the observation was made. The obsenvhtgtory
is stored in a list which contains up 19,4, entries. Furthermore, a peer stores
the time stampsg5, and¢%; which correspond to the time pegiitself joined or
departed from the overlay, respectively.

The join rate is the less important one of the two componehthorn. The
shorter a peer stays offline on average (i.e. the smal[&ksq]) the higher is the
join rate. To obtain realizations df, a peer stores the timgg when it last
went offline. The next time it goes online it calculates theation of its offline
session asow — torr and sends this value to itoverlay neighbors. Figure 4.18
visualizes this concept. Note that the information can lggylacked on other
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Tofr= now - togr

Figure 4.18:Peerp rejoins the network and sends its offline duration tocits
neighbors

protocol messages to avoid unnecessary overhead.

Since failed nodes can no longer inform their overlay netgbabout their
online duration, we are not in the position to directly obtegalizations oflon.
That is why we are looking for another passive way to colleatizations which
is stillindependent of the applied DHT protocol. In a DHT t&yms, a peep peri-
odically contacts at least one neighboto stabilize the overlay structure (cf.
Step 1 in Figure 4.19). In Chord this would be the direct sssoein a clockwise

1. periodic stabilize N 2. detect offline peer
Lpo¥p

/

7 3. notify neighbors

Figure 4.19:Peerp only monitors its direct neighbor but distributes its obser-
vations

direction, in Kademlia the closest peer according to the X@&ric. If, during
one of its stabilization callg; notices thats has gone offline (cf. Step 2 in Fig-
ure 4.19), it calculates the duration of the online sessfgreers asnow — tg,,
wheretg, is the time when peer went online. Peep then distributes this obser-
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4.3 Assessing the User-Behavior

vation to all its overlay neighbors as shown in Step 3 in Fegud 9. If the DHT
applies some kind of peer down alert mechanism [75, 93],rtfegration could
also be piggybacked on the corresponding notify messages.

An obvious problem of this approach is that ppatoes not always naturally
know ¢35, the time when pees went online. This is for example true jif went
online afters or if s became the successorptiue to churn in the network. For
this reason each peememorizes the timé&, when it went online and sends this
information to its new predecessor whenever it stabiliziéds new peer. To cope
with the problem of asynchronous clocks it sends its curoatine timenow —
ton- This way the error is in the order of magnitude of a netwoakismission and
thus negligible in comparison to the online time of a peee @tlvantage of this
method to collect realizations @k, is that it only requires regular contact to one
single neighbor.

When a peer joins the network, it first needs to obtain somereatons before
it can make a meaningful estimate of the churn rate. The pnobt that the
lifetime of the peer is in the same order of magnitude as fhérie of its overlay
neighbors. Thus, it is unlikely, that the peer is able to makeugh observations
during its lifetime. Therefore, we use the overlay netwaslaanemory of already
obtained observations to maintain them beyond the lifetfitbe peer. If a new
peer joins the overlay it downloads the current list of obagons from its direct
successor. This way the observations persist in the ovaridya new peer can
already start with a useful estimate which reflects the ourchurn rate in the
network.

Another way to maintain the persistence of the observai®tsinvest more
overhead by periodically contacting a number of peers aubté just one. Maha-
jan et al. [92] present an algorithm which relies on the fhat &« peep continu-
ously observesg overlay neighbors as shown in Figure 4.20. Such a peer should
on average observe one failure every

At = % . E[Tor] (4.18)
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peer peer
leaving leaving
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£Lbeoe
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Figure 4.20:Peem periodically monitors the changes in its overlay neighboth
seconds. Thus, if peerobserves: failures within a time period of\t seconds,
the mean online time of a peer can be estimated as:

BT = c ~kAt _c (time(k)kf time(1)) (4.19)

wheretime(i) is the time of theth observed node failure. In addition to the pe-
riodic contact ta- neighbors, the algorithm also has to struggle with the bl
of obtaining enough observations during the lifetime of pleer. A possible so-
lution to the problem is to piggyback the current estimatgmiocol messages
and to set the own estimate to the median of the estimateweddeom other
nodes in the overlay [93].

4.3.2 Analytical Derivation of the Churn Rate

In this section we discuss the possibilities of a peer to dedbe current churn

rate from the observations it has made. We will use the fotigmotation: For a

random variableX, we denotex(¢) as the probability density functiodk (¢) as

the cumulative density function, ardd[ X ] as the mean. Estimated values will be

marked using a hat as jﬁ[X], which describes an estimate for the mearXof
Once a peer has obtained a list of observatiahs:),: = 1,...,k of the

random variable§5,n and Ty, it needs a mechanism to derive an estimate of the

116
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current churn rate based on its a priori knowledge. If it canmake any reason-
able assumptions about the distribution of the random btgjdt has to rely on
robust estimates like the empirical mean and the empirteabisrd deviation.

E[Ton) =

obs(i) (4.20)

k
=1

i

ﬁ i <Ob8(’i) - E[Tan])2 . (421)

i=1

o(Ton) =

_— ol

To evaluate the accuracy of the estimate we can constructOb@ — «)
percent confidence interval for the estimated medf,pbs

b o) = Bl 4101y - T2 (4.22)
1k ) = B{f] — 1105 - 22 (4.23)

wheret;_; 1_ g is thel — 5 critical point of thet distribution withk — 1 degrees
of freedom. Depending on the intended purpose of the esiimiatmight be
crucial that the estimator does not over- or underestinfaeattual value too
often. In such a case, the upper and the lower bound of thedemi interval
can themselves be used as estimates, as already discusdesapier 4.2.3.
While the mean gives a first idea about the churn in the systermain pur-
pose is to use the estimate to self-tune the parameters BHfieor to calculate
the probability of certain events. This usually requireswledge of the entire
distribution or at least of some important quantiles. Foaregle, to calculate
the probability that an overlay neighbor will no longer baakable at the next
stabilization instant, we need to know the probability tthés contact will stay
online for less thanm,.., additional seconds. In general, this probability depends
on how often the peer itself already stabilized with thisghéor. In particular,
the probabilityp; that an overlay neighbor will no longer be reachable atithe
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stabilization instant can be calculated as follows:

Pi = P (Ton,r <t- tstub|TOn,r > ('L - 1) . tstub) (424)

_ P ((’L - 1) ctstab < Ton,r <1 tstub)
P (Ton,T > (Z - 1) : tstab)

, (4.25)

whereTy, - describes the forward recurrence time for the random viarigh. In
case of exponentially distributed online tiniBg . = Ton and the above equation
can be simplified to:

(1 — e Aon i+ tbfab) _ <1 _ e*/\U'rL'(i*l)‘tstab)
1— (1 — e Pon (=D-tstan)
L1 o Pemteran — . 4.27)

pi= (4.26)

Thus, for exponentially distributed online timgs= p for all : and an unbiased
point estimator for this probability is given by Equatior24.
p =P (Ton < tstas)
1

=% Hchn LTy < totap fOTi=1,2, k}‘ . (4.28)

The100(1 — «) confidence interval fop can be calculated using the following

bounds:
1 —
u(k,0) =p+21-g - \/ (4.29)

1—
W(k,0) =p— 25 - % (4.30)
Wherezl_% is thel — 3 critical point for a standard normal random variable.
In case over- or underestimating has serious consequeacéisef applied ap-

plication, the limits of the confidence interval can againused as estimates
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themselves.

In some cases an application requires knowledge of theeeditstribution
function of the online time of the peers. If the type of distiion is known a pri-
ori, the peer can use the corresponding Maximum Likelihostintator (MLE)
to estimate the corresponding parameters of the distoibutn the most often
assumed case of an exponential distribution, the MLE is kntwbe the sam-
ple mean. For other typical distributions like the log-nafrdistribution Log-
N(u, o) the MLE becomes more complicated, but can usually stilldleutated
using the information collected by the peer:

k
% Z In (0bs(i (4.31)

S5 (In (obs(i)) — ) ] ?

5= i . (4.32)

=)
I

However, there is always the danger of assuming an incodisttibution
which would lead to correspondingly distorted results. Agbility to reduce
this risk is to perform a hypothesis test [125] to verify thia¢ type of distri-
bution is actually the assumed one and only use an MLE if thedelivers a
positive result. In general, however, the actual type dffriligtion is not known
or a superposition of multiple distributions. In this caageer has to rely on an
estimate of the quantiles [126] of the online distributibet 7%, 72, ..., T&, be
the k observations in the history of a peer and]é,t” o(nQ), oy TS be the or-
dered statistic, in such a way thah < 742 < T These sorted values
of Ton can then be taken as g, L2, ..., 1“ k°'5 quantlles of the distribution of
the online time. Quantiles for probabilities betwe®h and =22 can be com-
puted using linear interpolation, while the minimum or nmaxim values offo,
are assigned to quantiles for probabilities outside thagea

The accuracy of the estimates heavily depend&.ofihe more observations
a peer maintains in its history, the more accurate the estiisagoing to be.
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Figure 4.21:0Observations made by peeduring its lifetime

However, if the overlay network is not used as a memory faeaaly made ob-
servations, a joining peer has to rely on its own observatidimerefore, it can
either observe one specific peer and send the result taitsrlay neighbors or
directly observe: peers itself. Figure 4.21 shows the online period of a peerd
the c overlay neighbors it observes during its lifetime. In thaifggwe assume a
perfect stabilization algorithm. That is, an overlay néighwhich went offline is
immediately replaced by another overlay peer.

To analyze the expected size of the history of a peer, we detfp@r random
variable X which describes the number of observations a peer makesgitsi
lifetime. This number corresponds to the number of leavatsvia Figure 4.21.
It can be computed as

P(X =)= /Ooo ton(t) - P (X = i[Ton = 1) dt (4.33)

whereton(t) is the probability density function dfon. In the case of exponentially
distributed online times, this can be written as

P(X:i):/ e X D ey, (4.34)
0

il

120



4.3 Assessing the User-Behavior

0.03

— Simulation
= Analysis

0.0254
0.02]
L
0 0.015¢
o
0.01p

0.005¢

20 40 60 80 100
Number of Observations k

Figure 4.22:Expected number of observations foe 40

since the number of departures in a fixed interval of lengglPoisson distributed
with ¢ - A. The equation can be simplified to

iyitl oo
P(X =)= c );' / fi o (etDAE gy
PoJo

AL !
P(X =i) = :
X =) == cr™m
T (e 1)

(4.35)

To compare this theoretical approximation to practicalieal we simulated an
overlay network withTon = 3008, tstap = 30S, ande = 40. The maximum size
of the history was set th,,.. = 100. Figure 4.22 shows the probability density
function of X for both the analysis and the simulation. It can be seen Heat t
analysis matches the simulation very well except for thepeaks at the left and
the right of the figure. The peak at 100 clearly results from taximum size
of the history. That is, in the simulation all probabilitits P(X > 100) are
added toP(X = 100). The peak at 0 arises from the fact that while the analysis
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immediately takes offline peers into account, the first $ittion instant in the
simulation occurs 30 seconds after the peer joined the mktWawus, all peers
which stay online for less than 30 seconds, can never makbsanation.

While so far we studied the accuracy of an estimator, it i aiteresting to
analyze how fast an estimator reacts to changes in the gtbbah rate. The more
observations a peer makes per time unit, the faster it can r@such changes.
This can be measured by lookingZ2 ¢, the time between two observed leave
events, oﬂ“jlf;", the time between two observed join events. In general,dhe ¢
lection of observations shows a self-organizing behavibe more churn there
is in the system, the more observations will be collectedtipsee unit. If a peer
monitors only its direct neighbor and shares its obsermatwithc overlay neigh-
bors, the next observation is made as soon as onetof monitored peers goes
offline. Thus, the distribution df'2*¢ can be calculated as the minimunmeef 1
forward recurrence times dk,. Due to the memoryless property, the forward re-
currence time of an exponentially distributed online tifagis also exponentially
distributed with the same parameters. In this case thaldision of 7£2V¢ can

O
be calculated as shown below.

c+1
P (Tigg”e < t) =1 -J[P(Tmzt) =1+ (4.36)
1
If the distribution is not known, we can still easily comptite mean off 7'
andT!¢ev¢. Each node which joins the network calculates its own offtine
and additionally sends this observation todtsontacts.
E[Toﬁ]

join] __
BT =207 (4.37)

The calculation is slightly more complicated f6f;2*¢ since the time when a

peer actually observes that another peer is offline diffens the actual time the
node left the overlay. Assuming that overlay neighbors @eated every .,
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Figure 4.23:Response time far = 10 andk,q. = 100

seconds, the average error is

— (4.38)
2
Thus, the mean df£2v¢ can be calculated as
E[Téigve] _ E[TOH] —+ €on ] (439)

c+1

The above considerations can be used to approximate thetegpgme it
takes the estimator to respond to a global change of the dfaten When the
mean online time of the peers changes ftBYiq[Ton] 10 Enew[Ton], We approx-

imate the expected response tifigR] by the time needed to colle&t,... new
observations.

kmaax
E[R] = EOld[TOn,r] + c+1 . (Enew [Ton] + Eon) (440)

Figure 4.23 compares the analytical response time to thairsd from a
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simulation run. In the simulation we skt,.. = 100, ¢ = 10, tstqr = 30s and
changedE[T,n] from 10min to 5min to 15min and back to 10min afteB3h,
16.66h, and25h of simulation time, respectively. The simulated curvevehthe
mean of the estimateH |75 values of all peers, which were online at the corre-
sponding time. The error bars represent the interquastige;, i.e. the difference
between the third and first quartiles, as a measure of &tatigispersion. It can
be seen that the estimator is able to capture the changes ¢htinn rate and that
the time it takes to adjust to the new value complies with theyssis. Note that,
due to the stabilization period of 30 seconds, the estimeatees liecon = 15s
above the actual value.

The response time can be improved by maintaining more gvedighbors or
by giving less weight to older values in the history. This,aag., be achieved by
using an exponential weighted moving average [127], whigblias weighting
factors which decrease exponentially:

Ex[Ton) = - 0bs(i) + (1 — @) - Ey_1[Ton] - (4.41)

Thereby, the smoothing facter determines the weight given to the latest obser-
vation.

4.3.3 Accuracy, Responsiveness, and
Practicability

In the following evaluation, unless stated otherwise, witalivays consider that
the online and offline times of the users are exponentialiyrihuted with mean
E[Ton) and E[Tor], respectively. The default stabilization intervatis., = 30s
and the size of the neighbor listés= 20. We will further assume that there are
40000 initial peers and thadt[Ton] = E[Tor], resulting in an average of 20000
online peers at a time. Although our estimator yields resfat both online and
offline time, we will concentrate on estimating the onlimaeiT,n, since this is
usually a more important parameter for the system perfocmarhe estimation
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of Toi can be calculated in an analogous way.

Proof of Concept

The main purpose of this section is to show that the theoceticept of the pro-
posed estimator as described in Section 4.3.1 does worllygua! in practice.

We focus on Chord since it is the currently most studied stred overlay ar-
chitecture. To model the stabilization algorithm, a peercsyonizes its neighbor

list everyts:qr = 30s with its direct successor. When a peer notices that another
peer is offline, it notifies the peers in its neighbor list,gigacking the observed
online time in these messages. We furthermore consider ansyic neighbor

list, i.e. the number of peers in the successor list is theesasrthat of the prede-
cessor list. This improves the stability of the Chord owedad provides a better
comparability of the result to symmetric overlays like Kadia.
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Figure 4.24:Snapshot of mean online time obtained from avg and iot esibma

Figure 4.24 plots the estimated values #7150 obtained by two different
estimation methods. The green crosses, denoteavgyshow the mean of the
observed values as given by Equation 4.20. The red circtemtdd byiot, are
based on the mean time between two observations accordiguation 4.39.
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The figure was created by picking 900 random peers leavingubeay and cal-
culating their estimates based on both estimation methwdsan see that both
methods perform quite well, as the estimated values clastemd the actual av-
erag€lon of 600s. In general thavg method always provides a robust estimate.
Theiot method, however, heavily depends on the implementatiocifsggeof the
stabilization routine. In our simulation experiments weadsume an idealized
stabilization routine, neglecting packet loss and othetwork) errors. In a real
implementation the neighbor list can still contain wrongofftine entries after
stabilization. In such a case the updates may be sent tohasg tontacts. If

a peer, however, assumes thaither peers contribute with their estimated val-
ues, it will receive too few estimates and heavily undenesté the actual churn
rate using theot method. Thus, while in theory it can be considered as a good
method, it is in fact not very suitable in practice.
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900-'.__ . T, U
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4007+ X R
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Figure 4.25:Estimates of upper and lower 99% confidence levels

In practice, too high or too low estimates might have critemmsequences in
terms of performance or even functionality, which is simitathe problematic in
Chapter 4.2. In such a case it should be avoided that theatstimnderestimates
or overestimates the actual churn rate. This can be achimvasing the upper or
lower bound of a specified confidence level instead of theneséid value itself.
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Figure 4.25 shows the upper and lower bounds of the 99% caowfdmterval

for the mean according to Equation 4.22 and Equation 4.2pectively. As ex-

pected, the upper bound overestimates the actual valuég thiei lower bound

underestimates it. The frequency at which the upper bouddnestimates or the
lower bound overestimates the actual value can be influelmgéle confidence
level. The higher the confidence level is chosen, the smaltée probability for

this to happen at the cost of more innacurate values.

Accuracy of the Estimator

In this section we evaluate how the accuracy of the estimatmats depends on
different parameters. The key parameter we focus on is tied if the observa-
tion history, i.e., the number of samples that are used taiolthe estimate.

1200

—Mean estimated E[Ton] value

=
o
o
o

---Actual E[T_] value
on

800r

600r

400

Estimated value for E[Ton] [s]

200 50 100 150 200
Number of observations in history

Figure 4.26:nfluence of the history sizie on the estimation accuracy

In order to show the influence &fon the accuracy of the estimate, we perform
several simulation runs in which we vary the skzef the history and for each
examine the estimatefl[Ton] values from 10000 peers. The mean of these esti-
mated values is shown in Figure 4.26. The error bars in thediggpresent the
sampled standard deviation obtained from the 10000 essn&irst of all, we
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can recognize that the method is robust for estimating thenmes the mean es-
timatedE[T5,n] value corresponds to the actual mean value of 600s. Furthierm
increasing the history size greatly improves the accurétiyeestimate in terms
of a smaller standard deviation. The accuracy improvedyheaponentially with
k. However, increasing the history size to a too large valwvabk = 100 does
not significantly improve the accuracy while it will lead tskwer responsive-
ness of the estimator as shown in the next paragraph.

In the next step we take a closer look at the trade-off betveeenracy and
responsiveness in dependence of the size of the historykpress accuracy, we
regard the deviation from the actual value in percent. Ini@aear, we consider
how much the 97.5% and 2.5% quantiles of the estimated vddased ork
observations differ from the actual value in percent. Thiglotted as the dotted
blue curves in Figure 4.27 using the lgfaxis. As in the previous figure, it can be
recognized that an increase in the history size results ire mccurate estimates.
The quantiles confirm the exponential dependenck.on
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Figure 4.27:Trade-off between accuracy and responsiveness

An increased accuracy, however, comes at the drawback otiregithe re-
sponsiveness of the estimator. Responsiveness is defirtbe &ime it takes to
collect k fresh results when there is a change in the global churn Itateex-
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pressed in multiples of[T,n] and approximated by Equation 4.40. The respon-
siveness increases linearly withas can be seen in the green solid curves of
Figure 4.27 using thg-axis on the right. The slope of the curve is determined by
the number of overlay neighbors. The more neighbors thexgla more results
are obtained per time unit and the faster the estimatorggac¢he change in the
churn rate. The study shows that depending on the applicatiquirements, a
trade-off can be made between a higher accuracy and a fasfmnsiveness by
changing the number of considered observations.

Responsiveness of the Estimator

Responsiveness is a measure for the time it takes our estitoaeact to changes
of the global churn rate of the network. It mainly depends loe humber of
overlay contacts which share their observations, but ig eiluenced by the
absolute churn rate itself. The higher the churn rate isythee results can be
collected within the same time period.

In order to provide a more comprehensive study of the respamsss of the
estimator and to validate our analytical approximation qué&ion 4.40, we per-
form simulation runs with different churn rates and meagheetime between
two successive observations. Obviously, the smaller thier-iobservation time
is, the faster our method will react to changes of the chura rehis is shown
in Figure 4.28. For different churn rates BT, = 300s, 600s, and 900s, the
inter-observation time is depicted as a function of the nemalb overlay contacts.
The dashed lines are the results obtained by the approximafi. Equation 4.40.
It can be seen that the inter-observation time decreasesierpally and that the
analytical curves match well with those obtained by simatet. However, we
can also recognize that a greater number than 20 neighbaos iecessarily jus-
tified due to the small improvement in responsiveness antiter overhead in
maintaining those neighbors. Note, that the responsigeals® depends on the
quality of the stabilization algorithm. If a simple algdmin is used, the neighbor
lists might be inaccurate, which in turn results in a loss pdates and thus a
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higher inter-observation time.
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Figure 4.28:Responsiveness to different churn rates

To show how the inter-observation time translates into tea response time
and how the estimator behaves during these reaction phasesmulated a net-
work where the mean online time of all peers was globally gednfrom the
initial value of 300s to 900s after a simulation time of 250aies.

15

on

=
o

¢ =10, 20, 30, 40

Estimated E[T_ ] [min]

250 300 350 400
Elapsed simulation time [min]

Figure 4.29:Reaction to change in global churn rate

130



4.3 Assessing the User-Behavior

In Figure 4.29 each data point shows the average of the astiid7on) val-
ues of all online peers at the same time instant. The figunealies that the
estimates react differently to the change of the globalmchate. Again the more
neighbors there are, the faster the estimator approachesthchurn rate. While
the increase is nearly linear for= 10, there is not much difference between the
curves forc = 20, 30, and 40 neighbors. Thus, using a too large number of
overlay contacts is not justified due to the additional ogarh Using 20 overlay
neighbors, as e.g. suggested in Kademlia, is thereforesamahle choice.

Practicability and Implementation Aspects

In practice, the estimate of the churn rate will be used t&amdptively tune
maintenance algorithms of the p2p network, e.g. the statitin of the over-
lay structure and the control of the replication of storedwtoents. Therefore,
it would be desirable that all peers obtain equal estimaligegan order to de-
rive similar input parameters to these algorithms. Sinaepooposed estimation
method is entirely distributed and each peer calculateswtsestimate from lo-
cal measurements, different peers also tend to obtairreliffeestimation results.
However, most maintenance algorithms are performed betwl@éect overlay
neighbors of the DHT.

Since these direct overlay neighbors also exchange theisuned observa-
tions, their churn estimates derived from this data are e&egeto be highly cor-
related. To quantify the degree of this correlation, we taoglobal snapshot
during the simulation and had a closer look at the estim&tB6@0 consecutive
peers on the Chord ring. We then investigated the correlbitween these peers
by applying methods from time series analysis. Figure 4&flads the autocor-
relation over the number of neighbors. Thexis represents the different lags
which in our case corresponds to theh overlay neighbor. If: is positive, this
corresponds to the-th successor on the ring, whereas a negative value repsesen
the |z|-th predecessor. The figure shows that the estimates of sapeéndeed
highly correlated among neighboring peers. The curvesHerdifferent num-
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Autocorrelation
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Figure 4.30:Autocorrelation of estimates over neighboring peers

bersc of overlay neighbors among which the measurement valuesxarenged
show that the correlation extends to at leageighbors in both directions of the
ring. Note that due to our symmetric neighbor lists a value ef 10 overlay
neighbors means that the peer maintains 5 neighbors in abtidns of the
ring.

4.4 Monitoring a Distributed P2P System
at Runtime

In the previous chapters we discussed the possibilitiesrahdividual peer to
estimate important system parameters. While this creatgea basis for self-
organizing maintenance algorithms, overlay service plend are interested in
more complex information about the entire network. In mattr, they do not
want to lose control over their applications, but ratherdhtseknow what their
system looks like right now and where problems occur at thenerd. However,
the decentralized nature of structured overlay networkkesit hard to find a

132



4.4 Monitoring a Distributed P2P System at Runtime

scalable way to gather information about the running systeancentral unit.

In this chapter, we therefore exploit the special featufesractured p2p over-
lays and present a novel and scalable approach [4, 15] ttecaesnapshot of a
running Chord-based network. On basis of the gatherednrdtion, it is, e.g.
possible to take appropriate action to relieve a hotspat pirtpoint the cause of
a loss of the overlay ring structure. The overhead involvedréating the snap-
shot is evenly distributed to the participating peers so ¢aah peer only has to
contribute a negligible amount of bandwidth. Most impottgrthe snapshot al-
gorithm is very easy to use for a provider. It only takes orrapeeter to adjust the
trade-off between duration of the snapshot and bandwidtdex at the central
unit which collects the measurements.

4.4.1 A Divide and Conquer Approach

Our algorithm to create a snapshot of a running Chord systdrased on a very
simple two step approach. In step one, the overlay is realysiivided into
subparts of a predefined size. In step two, the desired nm&asat is done for
each of these subparts and sent back to a central colleating (@' P). In the
following, we describe both steps in detail.

Step 1: Divide Overlay into Subparts

The algorithmsnapshotRs, R, Smin, C P) divides a specific region of the over-
lay into subparts. This function is called at an arbitrargmewith id,. The peer
then tries to divide the region froR, = id, to R. into contiguous subparts
using its fingers. The exact procedure is illustrated in Figu31. In this exam-
ple peerp has four fingergf; to fa. It sends a request to the finger closeskto
within [Rs; Re]. At first, finger f4 is disregarded since it does not fall into the
region betweerR, and R. (cf. a). This makegs the closest finger t&. in our
example. If this finger does not respond to the request, @tridited by the bolt
(cf. b), it is removed from the peer’s finger list and the pe#stto contact the
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a

A
f, R
Figure 4.31.Visualization of the algorithm.

next closest fingef- (cf. c). If this finger acknowledges the request, pesgcur-
sively tries to divide the region fromRs = id, to R. = idy, — 1 into contiguous
subparts. Fingef. partitions the region fronk, = idy, to R. accordingly.

As soon as a peer does not know any more fingers in the regioreéetthe
currentR, and the curren., the recursion is stopped. The peer changes into
step two of the algorithm and starts a measurement of thgfgpeegion. In this
context, the parametet.,.;, can be used to determine the minimum size of the
regions, which will be measured in step two. Taking into attd,,..,, a peer
will already start the measurement if it does not know anyenforgers in the
region between the curref; + S...» and the currenR.. In this case fingey:
would be disregarded, as illustrated by the dotted lined@f.Figure 4.31), since
it points into the minimum measurement region. Param#tgy,, is designed
to adjust the trade off between the duration of the snapsidtize bandwidth
needed at the collecting point. The larger the regions cahgdr the measurement
will take. The smaller the regions, the more results are Isack to the CP.

A detailed technical description of the procedure is giveAlgorithm 1. Peer
p will contact the closest finger t&. until it does not know any more fingers
in betweenR; + Sm.i» and Re.. If so, it changes into step two and starts a mea-
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surement of this region calling countingtokéf)(, Re, Smin, C' P, result) at the
local peer.

Algorithm 1
The snapshot algorithm (first calls = id))

snapshotRs, Re, Smin, CP)
send acknowledgment to the sender of the request
idgm = max({idy|id; € fingerlistAidy < Re})
while idfm > Rs + Smin dO
send snapshai(s,,, Re, Smin, C'P) request to peeid s,
if acknowledgment fronids,,, then
call snapshoi(,, ids,, — 1, Smin, CP) at local peer
return //exit the function
else
removeidy., from fingerlist
idgm = max({idy|id; € fingerlistA idy < R.})
end if
end while
S = % /lexplanation see step two

Smin

call countingtokenid,,, Re, Smin, C P, 0) at local peer

Step 2: Measure a Specific Subpart

The basic idea behind the measurement of a specific subpartAy; to R. is
very simple. The first peer creates a token, adds its locattta, and passes
the token to its immediate successor. The successor p®ceedrsively until

the first peer with arid > R. is reached. This peer sends the token back to the
collecting point, whose IP is given in the parameter CP.

Ideally, each of the regions measured in step two would bézef%,.;, as
specified by the user. The problem, however, is that the nefgomm R, to R, is
slightly larger thanS,,;,, according to step one of the algorithm. In fact, if the
responsible peer did not know enough fingers, the region neigdn be signifi-
cantly larger tharb.,.... The solution to this problem is to introduce checkpoints
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Figure 4.32:Results are sent back to theP after each checkpoint

with a distance 05, in the corresponding region. Results are sent tatie
every time the token passes a checkpoint instead of sendiggne answer at
the end of the region. This is illustrated in the upper parFigjure 4.32. The
counting token is started &,. The first peer behind each checkpoint sends a
result back to theC P as illustrated by the large solid arrows. The finabulit
is still sent by the first peer withd > R..

A drawback of this solution is that the checkpoints might betequally dis-
tributed in the region. In particular, the last two checkpsimight be very close
to each other. We therefore recalculate the positions aflteekpoints according
to the following equation:

ral Re _ Rs
Smin = .
Re—Rs
’V Smin “

The new checkpoints can be seen in the lower part of Figui2 Z18e number
of checkpoints remains the same, while their positions areethin such a way,
that the results are now sent at equal distance.

(4.42)

As can be seen at the end of Algorithm 1, the recalculatia$i,gf, is already
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Algorithm 2
The countingtoken algorithm (first calts = id,)

countingtokenRs, Re, Smin, CP, result)
send acknowledgment to the sender of the request
if Rs <1idp < Re then
if id, > Rs 4 Smin then
sendresult to CP
result =0
Rs - Rs + szn
end if
add local measurement tesult
ids = id of direct successor
while truedo
send countingtoke®®{s, R., Smin, C' P, result) request to direct succes-
SOrids
if acknowledgmenthen
break
else
removeids from successor list
ids = id of new direct successor
end if
end while
else
sendresult to CP
end if

done in the first step, just before the counting token is exarf detailed de-
scription of the counting token mechanism is given in Alguor 2. If a peep
receives a counting token it makes sure that its identifistiliswithin the mea-
sured region, i.eRs < id, < R. . If not, it sends a-esult back to theC'P and
stops the token. Otherwise it adds its local measuremehgttoken and tries to
pass the token to its immediate successor. If it is the first pehind one of the
checkpoints, it sends an intermediate result back t@’tReand resets the token.
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Collect Statistics

Generally speaking, there are two different kinds of siaiswhich can be col-
lected using the counting tokens. Either a simple mean v@l@emore detailed
histogram. In the first case the counting token memorizesvawiables,V, for

the accumulated value aid, for the number of values. Each peer receiving the
counting token adds its measured valu&jaand increases;, by one. The sam-
ple mean can then be calculated at €h2 as % “j” In case of a histogram, the
counting token maintains a specific number of bins and tleeiesponding lim-
its. Each peer simply increases the bin matching its medsalee by one. If the
measured value is outside the limits of the bins it simply@ases the first or the
last bin respectively.

There are numerous things that can be measured using the atentioned
methods. Table 4.1 summarizes some exemplary statistictharkind of infor-
mation which can be gained from them. The most obvious agiptdic is to count
the number of hops for each counting token. On the one haigljstta direct
measure for the size of the overlay network. On the other hiaatso shows the
distribution of the identifiers in the identifier space. Tagaformation about the

Table 4.1:Possible statistics gathered during a snapshot

| Statistic | Information gained |
Number of hops per token Size of the network
Distribution of the identifiers
Mean search delay Performance of the algorithm
Sender== predecessor? Overlay stability
Number of timeouts per token Churn rate
Number of resources per pe¢r Fairness of the algorithm
Number of searches answered User behavior
Bandwidth used per time uni Maintenance overhead
Missing resources Data integrity

performance of the Chord algorithm, the mean search delayhistogram for
the search time distribution can be calculated and comparegpected values.
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Furthermore, Chord’s stability can only be guaranteed ag ks the successor
and predecessor pointers of the individual peers match ethehn correspond-
ingly. This invariant can be checked by counting the peagatof hops, where
the sender of the counting token did not match the predece$sbe receiving
peer. Additionally, the number of timeouts per token can $dito measure the
current churn rate in the overlay network. The more churrethg the more time-
outs are going to occur due to outdated successor poinietgay, the number
of resources stored at each peer is a sign of the fairnesg étbrd algorithm.
The number of searches answered at each peer can likewisethéoget an idea
of the search behavior of the end users. Finally, a peer agmtkack of the num-
ber of missing resources to verify the integrity of the stdata. This can, e.g.,
be done counting the number of search requests which cotilserenswered by
the peer.

All of the above statistics can be collected periodicallgtiovey the time de-
pendent status of the overlay. Note, that it is also posshlaonitor a specific
part of the overlay network by settin@, and R. accordingly. This can, e.g., be
helpful if there are problems in a certain region of the cueretwork and the
operator needs to verify that his countermeasures havedueeessful.

4.4.2 Analytical Evaluation of the Algorithm

To analyze the performance of our algorithm, we have a closér at different
performance measures. At first, we will regard the overheadyzed during the
generation of a snapshot. Then, we will estimate the duraifoa snapshot as
well as the temporal distribution of the token arrival tinssthe C' P. Finally,
we will discuss the probability to lose tokens while cregtan snapshot of the
running system.
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Required Bandwidth at the Monitor Station

The snapshot algorithm takes only one single param#tgyy, . It directly de-
termines the number of are@&. into which the Chord ring is divided during a
snapshot:

| Sia
N, = {—Smmw . (4.43)

Independent of the current size of the overlay network adtleae result per
region is sent back to thé'P. Step one of the snapshot algorithm yields the
following bounds forN., the number of counting tokens sent to tHé:

2-[5iﬂ2N62[5iﬂ. (4.44)

The inequation can be explained as follows: According todéeond step of
the algorithm, a counting token sends an intermediatetresaty@nm and an
additional result at the end of the region. Obviously, thas/wat least on result
is sent per region. In the worst case, however, the regioligistly larger than
the original S,,.i», in which case an intermediate checkpoint is created and the
number of tokens is thus doubled.

As can be seen in Equation 4.48,,;, can be used to adjust the trade-off
between the duration of a snapshot and the number of tokdrishwarrive at
the CP. The largerS,.:., the more hops per counting token are needed and the
longer the snapshot will take. The smalt&y,..., the less hops per counting token
are needed but the more tokens arrive atdtiein total.

Duration of a Snapshot

The duration of a snapshot does not only depend,qn,, but also on the current
churn rate and the exact implementation of the Chord alyoritTo be able to
calculate an estimate of the duration of a snapshot, we asalgoenario without
any peers joining or leaving the network. In this case, thratiton of step one, the
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signaling step, can be estimated as follows. The last regionhich a counting
token will be started is the one directly following the iatihg peer. This is due
to the fact, that the initiating peer will start its countitadgen no sooner than it di-
vided the ring into separate regions. Before it starts thumting token, it contacts
its fingers until the first finger is closer to itself th&p,:,,. The initiating peer has
at mostlog, (n) fingers and each of the fingers sends an acknowledgmentgebefor
the peer can go on with the algorithm. 7% is the random variable describing
the duration of one overlay hop, then the duration of stepddrtkee algorithm is
at most

Dgtep1 =2 -logy(n) - E[To] . (4.45)

In the worst the initiating peer does not have any fingers aretity sends
the counting token in step two. This would take E[To], but is very unlikely
to happen. An easy solution to this problem would be to passabponsibility
of dividing the ring to the direct successor in case the dagntoken region
becomes too large. In general, if there angeers in the overlay, there are roughly

n - Smin
P = 5. (4.46)
peers per region. Furthermore, in the worst c8sg, is slightly larger than a
power of two and the region covered by a counting token maprecalmost
twice as large a$,... . Therefore a good estimate for the duration of the counting
step of the algorithm is:

Dstep2 =2 Pr . E[TO] (447)

This results in the following total duration of a snapshot:

D= <log2 (n) + S ) -2 E[To]. (4.48)
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Token Arrival Time Distribution

To get a rough estimate for the distribution of the arrivaids of the counting
tokens at the” P, we consider the special case where the size of the overiay
29 is a power of two andb,:», is such thatV,. = 2" with b < g. Furthermore,
we assume that the individual peers are placed at equahdédan the ring.

In this caseh = log, (V) is the number of overlay hops it takes until the first
counting token is started during a snapshot [4]. Simildrbakes2 - h hops until
the last counting token is started according to our assamgtiThe probability
p; that a counting token is started after exadtlyops fori = h,h +1,...,2- h
can be calculated as:

(4.49)

The signaling step thus takésverlay hops with probability; and is followed
by P. hops of the counting token and the final hop to report the résigk to the
CP. To validate this analytical result, we simulated a Chong of sizen = 2'°
with S,.:, = 2° assuming exponentially distributed overlay hops with amafa
80 ms. Figure 4.33 shows the numerically approximated PDReofoken arrival
times at the”' P. Obviously, the simulation and the analysis match very aedl
the binomial distribution of the duration of step one can éeognized. So far,
in the analysis each peer has a finger at an exact distanég,f In reality,
however, the finger would sit at a slightly different positievhich again would
result in an additional checkpoint at the middle of the ragibwe consider this
in our analysis we obtain an intermediate result in the neiddthe measurement
region (c.f. checkpoints in the figure). The first rise of tHaFPrepresents the
intermediate results sent back to #hé at the checkpoint. The second rise still
represents the regular results at the end of the region.
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Figure 4.33:Probability density function of the token arrival time

Lost Tokens

As in all token based algorithms, there is a certain probigiaf losing a token or
a signaling message. In our case, this is especially triaglhigh churn phases.
However, the loss of a token only results in a loss of the measents of the
corresponding region. Additionally, the probability teséa token is very small,
since there are only two scenarios which result in the loss wiken. First, if
a peer goes offline while it still waits for the timeout of arsding messages.
Second, if a peer goes offline while it still waits for the tioué of a counting
token message. Again both scenarios only involve the lofiseomeasurements
of the corresponding region of the ring. In both cases thealiity for the loss
of the region is

Dloss = P(Ar < timeout) (4.50)

where A, is the random variable describing the forward recurrenoe of the
session duration of a peer andneout is the value of a timeout in the overlay
network.
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4.4.3 Interpretation of the Collected Statistics

The results in this section were obtained using our ANSIfutitor, which in-
corporates a detailed yet slightly modified Chord impleragah. A good de-
scription of the general simulation model can be found in].[24 this work
an overlay hop is modeled using an exponentially distrithutendom variable
with a mean of 80ms. The results considering churn are gEtkersing peers
which stay online and offline for an exponentially distrigdiperiod of time with
amean as indicated in the corresponding description ofgbeds. The parameter

200

150¢
<«—1000 Areas

1000

50f 100 Areas

Number of results per 500ms

0 10 20 30 40 50 60
Arrival time [s]

Figure 4.34Arrival times of the results.

min

results arriving at the central collecting point. Figurd#4shows the distribution
of the arrival times of the results in an overlay of 40000 pegsing/N,, = 1000
and N, = 100 areas in times of no churn. Obviously, the more areas thdayver
is divided into, the faster the snapshot is completed. Wiéesnapshot using
1000 areas was finished after about ten seconds, the snapgh00 areas took
about one minute. In exchange the latter snapshot prodigrigficantly smaller
bandwidth spikes at the CP. The two elevations of the sec@tdgnam corre-
spond to the intermediate results (first elevation) and tied fiesults at the end

N, = [SSM influences the duration of the snapshot as well as the nuniber o
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of the measured subpart (second elevation).
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Figure 4.35:Number of results received at theP.

A more detailed analysis of the influence §f. can be found in Figure 4.35,
which shows the number of results received at@tfe in dependence aWw,.. Ac-
cording to Equation 4.44, the number of counting tokens setite C'P, is lim-
ited by2- N, > N. > N,. The straight lines in the figure show the corresponding
limits. The solid and dotted curves represent the resulisgioéd for 20000 and
10000 peers, respectively. The number of results sent t0'thés within the cal-
culated limits and independent of the overlay size. Theexiroughly resemble
the shape of a staircase, whereas the steps are located exspafviwo. This is
due to the fact that the closé¥, gets to a power of two, the smaller is the region
covered by the average counting token and the more restilts at theC P.

The distribution of the arrival times of the results is alsflienced by the
current size of the network. The larger the network, the npers are within
one region. However, the more peers are within one regi@nbre hops each
counting token has to make, before it can send its results teathe CP. Fig-
ure 4.36 shows the token arrival time distribution for thdé&erent overlay sizes
of 10000, 20000, and 40000 peers, respectively. We did notrgée any churn
in this scenario and sé¥,, = 512 areas. As expected, the larger the overlay net-
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work, the longer the snapshot is going to take. However, timees are not only
shifted to the right, but also differ in shape. This can admrexplained by the
increasing number of hops per counting token.
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Figure 4.36:Arrival times of the results at thé P.

As mentioned above, the average counting token sends twitsdsck to the
CP, whereas the checkpoints are equally spaced. Thus, #hecfsult takes twice
as many hops as the intermediate result. In a network of 1p@ees there are
approximately 20 peers in each of the 512 regions. The irgdiae results are
therefore sent after about 10 hops, the final results aftenta®?0 hops, respec-
tively. The two corresponding elevations in the histogramrtap in such a way,
that they build a single elevation. In a network of 40000 pglkowever, there are
approximately 78 peers in each of the 512 regions. The irgdiae results are
therefore sent after about 39 hops, the final results aftental8 hops, respec-
tively. The difference between these two numbers is largeigim to account for
the two elevations of the histogram in the foreground of Fégi36.

To measure the influence of churn on the stability of the ayenletwork, we
regard the number of timeouts which occur during a snapshatedl as the fre-
guency at which the predecessor pointer of a peer’s suacgses not match the
peer itself. Figure 4.37 plots the relative frequency ofetimts and pointer fail-
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Figure 4.37:Relative frequency of timeouts and pointer failures.

ures against the mean online/offline time of a peer. The smilé online/offline
time of a peer, the more churn is in the system.

The results represent the mean of several simulation runesreas the error
bars show the 95 percent confidence intervals. The relgtsmill percentage
of both timeouts and failures is to some extent implemerttasipecific. More
interesting, however, is the exponential rise of the cunweder higher churn
rates. The shape of both curves is independent of the sizkeobverlay and
only affected by the current churn rate. The curve can theedfe used to map
the frequency of timeouts or failures measured in a runnysgesn to a specific
churn rate.

147



4 Modeling the Dynamics of P2P Overlays

148



5 Conclusion

The size and complexity of current computer networks calhiw functionality
which was not a part of their initial design. Structured dagmetworks are a
means to provide the necessary corrections on top of thalawttwork. Such
overlay mechanisms are highly flexible and designed to sedfethe system
size. However, little is known about the performance ofcttited overlay net-
works in a productive environment.

In this monograph, we analyzed such systems in more deighrticular, we
computed the entire distribution function of the searcltaglels seen from a user
issuing a search query. We provided numerical resultsustithte the dependence
of the search duration on the variation of the network tréssion delay. In this
context, the analysis provides an insight into the quasiilethe search delay
which can be used for dimensioning purposes. Both the meanlsduration as
well as the search delay quantiles were shown to scale thgadally with the
size of the system. Thus, we observed that the the real iSstiriotured overlay
networks is the dynamic behavior of the participating pe®fs therefore ana-
lyzed the stability of ring-based overlay networks in moegadl. In contrast to
previous work we showed that the probability to lose the layestructure is not
negligible in all scenarios. For realistic use cases wevddran equation to cal-
culate failure probabilities in dependence of the averadje@time of a peer and
showed that in such scenarios stability can be guarantegdvetiy high prob-
ability. From this we concluded that maintenance overhdemils be adapted
dynamically. The more movement there is in the overlay, teenmaintenance
overhead should be applied.
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5 Conclusion

To understand the performance of the originally proposattstred overlay
networks in more detail, we developed a discrete event sitmuand pinpointed
the weak points in their algorithms. Using Kademlia as amgx{a, we proposed
different modifications to the original algorithm to enharthe performance, the
redundancy, and the robustness of structured overlay nietwim particular, we
developed improved mechanisms to maintain the structutteeodverlay as well
as the redundancy of stored documents. Our new implementegfjuires less
maintenance traffic while offering an improved overall penfiance.

In great parts our performance analysis as well as many roatidns pro-
posed in literature rely on knowledge of system parameilezstie current over-
lay size or the distribution of the peer session duratiordif\ahally, an operator
of a deployed overlay network needs to be able to continyomminitor and
evaluate these parameters. Such system characterisiigsydr, are inherently
unknown in a heavily distributed overlay network. We therefintroduced and
evaluated different methods to capture system parameteusitime. In partic-
ular, we developed a passive estimator for the current gitleeosystem which
exploits the special features of structured overlay netaiofhe resulting esti-
mates are in the right order of magnitude which is sufficiarpractical scenar-
ios where usually the logarithm of the system size is needdditionally, we
showed how to calculate confidence intervals whose endpasm be used as
independent estimates depending on whether it is morealrit overestimate or
to underestimate the actual value.

To be able to assess and to quantify the user behavior, wédptba defini-
tion of churn, the continuous process of peers joining aaditg the overlay
network. From this we derived an algorithm to estimate theecu churn in the
system based on the changes a peer observes in its list tdywneighbors. Both
analytical and simulation results showed that the estinmatable to capture the
current churn in the system. The accuracy, the requirecheeer, and the respon-
siveness to changes can be adjusted by the number of oligesvadnsidered in
the estimation process and by the number of overlay neighlvbich share the
results. In parameter studies, we investigated the carneipg trade-offs and
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deduced values which are suitable for practical purposes.

For an operator such passive estimates are not sufficiemderstand the
system as a whole. He rather depends on the possibility forpeactive mea-
surements of all values which he is interested in. We theeeftso introduced
an entirely distributed and scalable algorithm to monitstractured overlay net-
work at runtime. Thereby, the load generated to create tyestot of the system
is evenly distributed among the peers of the overlay. Therdhgn itself is easy
to configure as it only requires one single parameter to aeter the trade-off
between the duration of the snapshot and the bandwidthreshat the central
collection point. We performed a mathematical analysishefasic algorithm
and provided a simulative study considering realistic usghravior. The algo-
rithm is resistant to dynamic user behavior and providesra &ecurate picture
of the system.

In the course of this monograph we showed that structuredayvaetworks
are a powerful tool to overcome the problems which are inttémetodays com-
puter networks. They offer an easy way to add new functionédi a network
which itself would be hard to modify. Thereby, the resultslas work can be
seen as a first step towards a self-organizing overlay systising our estima-
tion methods a peer is able to automatically derive the inpaessary to evaluate
the current system performance. Based on the results theae¢hen dynami-
cally adapt important system parameters like the numbevefl@y connections
it maintains to other peers. Based on our findings we comeetodhclusion that
overlay networks are by far not limited to best effort fileashg or content dis-
tribution services. In fact they are already successfudind used in applications
like distributed VoIP telephone services or distributethddiorages. Another very
promising approach is distributed network managementyevheuctured over-
lay networks can be set up to connect, coordinate, and matisiguted mea-
surement points as we have shown in [18, 25]. Those netwankshen be used
to pinpoint the root causes of network problems [16] or tdfqren distributed
end-to-end measurements [9].
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