
Julius-Maximilians-Universität Würzburg
Institut für Informatik

Lehrstuhl für Verteilte Systeme
Prof. Dr. P. Tran-Gia

Performance Analysis of Structured
Overlay Networks

Andreas Binzenhöfer

Würzburger Beiträge zur
Leistungsbewertung Verteilter Systeme

Bericht 01/08

Würzburger Beiträge zur

Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr. P. Tran-Gia
Universität Würzburg
Institut für Informatik
Lehrstuhl für Verteilte Systeme
Am Hubland
D-97074 Würzburg

Tel.: +49-931-888-6630
Fax.: +49-931-888-6632
email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsfähige Vorlage vom Autor.
Gesetzt in LATEX Computer Modern 9pt.

ISSN 1432-8801

Performance Analysis of Structured
Overlay Networks

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius–Maximilians–Universität Würzburg

vorgelegt von

Andreas Binzenhöfer

aus

Würzburg

Würzburg 2008

Eingereicht am: 04.12.2007

bei der Fakultät für Mathematik und Informatik

1. Gutachter: Prof. Dr.-Ing. P. Tran-Gia

2. Gutachter: Prof. Dr.-Ing. J. Eberspächer

3. Gutachter: Prof. N. Wakamiya

Tag der mündlichen Prüfung: 06.02.2008

Acknowledgements

This monograph summarizes five years of research studies, aneverlasting strug-

gle for publications, numerous perceived nervous breakdowns, and above all a

very pleasant time with my colleagues who by now have all become dear friends

of mine. This work would not have been possible if it had not been for them and

a number of other people who all helped and supported me in different ways.

First of all I would like to thank my advisor Prof. Phuoc Tran-Gia who not

only provided me with an excellent opportunity to work in a scientific environ-

ment but did so with great technical as well as interpersonalcommitment. Due

to his untiring efforts I was able to participate in both industrial as well as Eu-

ropean research projects. Beyond that I was also given the opportunity to visit

international conferences and colleagues, which was an invaluable experience I

would not like to have missed. I would also like to express my gratitude to Prof.

Jörg Eberspächer and Prof. Naoki Wakamiya who both acted as reviewers of this

thesis and provided me with valuable comments in discussions at multiple occa-

sions including joint projects, conferences, workshops, and short term visits. I am

also very much obliged to Prof. Dr. Klaus Schilling and Prof.Dr. Dietmar Seipel

for being available as examiners for my disputation. Furthermore, I would like

to thank Markus Fiedler, Ilkka Norros, Masayuki Murata, andKrzysztof Paw-

likowski for providing me the opportunity to visit their research laboratories.

My deepest appreciation goes to our secretary Mrs. Förster who with surpass-

ing patience and dedication makes life a lot easier for us at the department. I

would also like to thank the people at Bosch, Siemens, AOK, and DATEV who

worked together with me over the last five years. From both communication and

i

Acknowledgements

collaboration with them I gained a great deal of experience and never lost track of

the practical aspects of my work. In addition to this I would like to thank Barbara

Emmert, Stefan Mühleck, Björn auf dem Graben, Johannes Dölfel, Markus Weiß

and especially Holger Schnabel, who all completed their diploma thesis under

my supervision and thereby eased my workload.

I also had the privilege of working with amazing colleagues,who were always

generous with their time and expertise. In particular, I’m very much indebted to

Dirk Staehle who has been generous and unstinting with his advise and sugges-

tions. He never got tired of discussing a problem over coffeeand fascinatingly

always came up with a proper solution. In addition to him I also would like to

thank Tobias Hoßfeld, Simon Oechsner, Robert Henjes, and Oliver Rose who all

helped me to solve an important coupon collectors problem. Rastin Pries who

constantly challenged and occasionally outmatched me in a ferocious battle for

the most delicious breakfast. Barbara Staehle who has an unmatched talent to

transform scientific research results into a true piece of art. Michael Menth who

is the living proof that it still pays off to be fair-minded. Rüdiger Martin and

Andreas Mäder who both accompanied me for more than ten yearson my jour-

ney through University. I also greatly benefited from conversations with Daniel

Schlosser, Michael Duelli, Thomas Zinner, Jens Milbrandt,Stefan Köhler, and

Kurt Tutschku. Furthermore, it is a pleasure to acknowledgemy former colleague

Kenji Leibnitz who despite a distance of roughly 9000 km became an even closer

friend during the last years. Among the many researchers I met outside our de-

partment, Gerald Kunzmann became my closest colleague and adear friend.

Special thanks go to my parents Alfred and Margot Binzenhöfer, as well as to

my brother Stefan Binzenhöfer. My family provided me with the necessary means

to adhere to my ideas and plans without ever questioning any of my decisions.

Finally, I would like to offer heartfelt thanks to my wife Stefanie Binzenhöfer.

Throughout the many years we spent together she has always been my help and

strength. Whenever I needed a friend, she was there for me. Whenever I had

doubts, she believed in me. I dedicate this to her.

ii

Contents

1 Introduction 1
1.1 Contribution . 2

1.2 Outline . 4

2 Peer-to-Peer Key Technologies 5
2.1 Unstructured Overlay Networks 6

2.1.1 Gnutella: Distributed Search and Flooding 7

2.1.2 Freenet: Anonymity Protection 9

2.2 Structured P2P Networks . 11

2.2.1 Chord . 13

2.2.2 Kademlia . 17

2.2.3 Pastry . 22

2.2.4 Content Addressable Networks (CAN) 26

2.3 Hybrid Architectures . 30

2.3.1 Client-Server-based Overlay Architectures 31

2.3.2 Content Distribution Networks (CDN) 33

2.3.3 SuperPeer-based Architectures 35

3 Performance Analysis of Structured P2P Networks 39
3.1 Functional and Stochastic Scalability 40

3.2 General Approaches and Related Work 42

3.3 Delay Analysis of Chord-based Overlay Networks 46

3.3.1 Computation of the Peer Distance Distribution47

iii

Contents

3.3.2 Analytical Model of the Search Delay 54

3.3.3 Influence of Stochastic Network Conditions 56

3.4 Evaluation of the Stability of Ring-based Architectures 61

3.4.1 Abstract Mathematical Model 62

3.4.2 Derivation of Realistic Failure Probabilities 66

3.4.3 Validation of the Stability of the Overlay Structure 67

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network . . . 73

3.5.1 Description of the Simulation Environment 74

3.5.2 Improving the Search Efficiency 76

3.5.3 Increasing the Robustness of the Overlay 79

3.5.4 Reducing the Redundancy Overhead 84

4 Modeling the Dynamics of P2P Overlays 91
4.1 Problem Formulation and Related Work 92

4.2 Estimating the Current Peer Population96

4.2.1 Analytical Model . 96

4.2.2 Maximum Likelihood Estimation 102

4.2.3 Accuracy of the Estimate 104

4.3 Assessing the User-Behavior 112

4.3.1 Algorithm to Capture the Fluctuations in the Overlay .. . 112

4.3.2 Analytical Derivation of the Churn Rate 116

4.3.3 Accuracy, Responsiveness, and Practicability 124

4.4 Monitoring a Distributed P2P System at Runtime 132

4.4.1 A Divide and Conquer Approach 133

4.4.2 Analytical Evaluation of the Algorithm 139

4.4.3 Interpretation of the Collected Statistics 144

5 Conclusion 149

Bibliography and References 153

iv

1 Introduction

In the last decades computer networks became one of the majorbuilding blocks

of our society. Large parts of our private and business life already depend on this

infrastructure for communication, information, and exchange of data. However,

until today the Internet is still driven by algorithms and technologies which have

been developed in the seventies and eighties. The traditional service architecture

in the Internet, e.g., is based on the simple client-server principle. That is, a sin-

gle central unit provides several clients with a service. Due to the continuously

increasing number of both users and services in today’s networks, it became time

for a revolutionary rethink of this simple approach.

Step by step, new functionality, which the network inherently did not posses, is

added. In large part this is done by establishing overlay networks, i.e. logical con-

nections between users on top of the physical network. Such overlay networks are

an enabling technology for user driven applications which shift the intelligence

from within the network to its edges. The prime example for anoverlay based

application is the direct distribution of files among end-users without them being

dependent on a company or any other central entity. While in the beginning the

success of overlay networks was mainly driven by peer-to-peer (p2p) file-sharing,

the underlying structures are by far not limited to the efficient distribution of me-

dia content to a large number of customers. They are, e.g., used for distributed

network management or to build a global persistent data store where each partic-

ipating user contributes some storage and bandwidth. Distributed Voice-over-IP

platforms like Skype are another good example, as they relocate voice traffic from

traditional telephone lines to the Internet using overlay networks.

1

1 Introduction

However, randomly established overlay networks provide only a best effort

service and cannot offer any guarantees or service level agreements. Therefore, a

new generation of structured overlay systems based on Distributed Hash Tables

(DHTs) is currently investigated in the research community. In such DHTs it is

well-defined how the participating users are interconnected and how messages

are routed in the overlay network. Inspired by this potential, the first business

models based on overlay architectures have emerged. Companies start to discover

the advantages of decentralized structured overlay networks. They are no longer

dependent on a single central unit nor do they have to invest in server farms

to guarantee the scalability of their systems. Together with those new systems,

however, new challenges arise as well. Before structured overlay networks can

successfully be used in a corporate environment, their performance needs to be

understood in detail. The achievable level of performance determines in how far

overlay architectures can be used to offer a reliable service and what service

level agreements can be negotiated. Another problem is thatsuch architectures

are highly distributed and therefore appear as a black box tothe operator. Yet an

operator does not want to lose control over his system and needs to be able to

continuously observe and examine its current state at runtime.

1.1 Contribution

The contribution of this monograph is two-fold. First, we evaluate the perfor-

mance of structured overlay networks under different aspects and thereby illumi-

nate in how far such architectures are able to support carrier-grade applications.

To enable operators to monitor and understand their deployed system, we sec-

ondly introduce both active as well as passive methods to gather information

about the current state of the overlay network.

In terms of performance, we deduce an analytical model for real-time appli-

cations based on the Chord algorithm. The main goal is to prove scalability for

very large overlay networks to be able to guarantee certain quality of service de-

mands in large peer populations. Furthermore, we evaluate the impact of highly

2

1.1 Contribution

probabilistic network delay variations, which also strongly influence the duration

of searches. The stability of p2p overlay networks is also affected by the dynamic

behavior of the end user. In this context, we show that the probability to lose the

overlay structure of a Distributed Hash Table (DHT) is not negligible in all cases.

In particular, we present an analytical expression that canbe used to calculate the

probability to lose the routing functionality of a DHT givena certain number of

overlay connections. In order to understand the performance of structured over-

lay networks in greater detail, we introduce a discrete event simulator which is

designed to handle a very large number of peers. We present simulative studies

of the search duration, the overlay stability, and the maintenance traffic needed to

stabilize the overlay structure. Based on these results, weunveil the weak points

of structured overlay networks and pinpoint their root causes. For each problem

we present an optimization, which eliminates the disadvantages and makes struc-

tured overlay networks more feasible for business applications.

Apart from performance concerns, one of the main reasons whytelecommu-

nication carriers are still hesitant to build p2p applications is the lack of control a

provider has over the running system. The system appears as ablack box to its op-

erator such that he does not know anything about the current size, performance,

or stability of its application. We therefore present and discuss different active

and passive methods to gather information about a running p2p overlay network.

We develop algorithms to estimate different system aggregates like the current

number of peers in the overlay or the distribution of the session times of the par-

ticipating peers. The advantage of these methods is that they operate passively

and solely require information which is locally available to a peer. The estimates

can also be regarded as a first step toward a self-organizing overlay network. That

is, peers can use these estimates to dynamically adapt the maintenance overhead

to the current situation in the overlay network. Finally, weintroduce a scalable

approach to actively create a snapshot of a running p2p system. The overhead

involved in creating the snapshot is evenly distributed to the participating peers

so that each peer has to contribute only a negligible amount of bandwidth. We

discuss the collected information and the conclusions drawn from it.

3

1 Introduction

1.2 Outline
The remainder of this monograph is organized as follows. Chapter 2 lays the

foundation for the performance evaluation in the followingchapters. We discuss

the basic concepts behind overlay networks, the differences between the individ-

ual approaches as well as the main areas of application. Thereby, a special focus

is laid upon structured overlay networks, which build the core of this work.

Chapter 3 gives a performance evaluation of structured overlay networks under

different aspects. We first highlight the importance of considering both the func-

tional and the stochastic scalability of such architectures. This is followed by a

focused survey of current research in this area. To obtain a first understanding

of the system performance, the peer distance distribution is calculated in a static

overlay network. From this we derive quantiles for the duration of a search, which

can be used by a provider to establish service level agreements. In addition, we

validate the stability of the overlay by calculating realistic probabilities to lose the

structure of the overlay in dependence of the peer behavior.The chapter closes

with an in-depth study of structured overlay networks whichuse a special dis-

tance metric. Based on the results, we derive and evaluate different modifications

and improvements to the original algorithm.

Chapter 4 investigates different possibilities of a singlepeer to obtain global

knowledge of important system features. We develop a passive maximum like-

lihood estimator for the current peer population and evaluate the accuracy of

the estimates in realistic scenarios. This is followed by a comparison of differ-

ent methods to estimate the session time distribution of theparticipating peers

based on local information. Thereby, the different algorithms are evaluated in

terms of accuracy, responsiveness, and practicability. Inaddition to the estima-

tion methods, we introduce a scalable algorithm to create a snapshot of the run-

ning system from a central position. This enables an operator to actively obtain

an accurate and timely picture of its deployed overlay network and to initiate

appropriate countermeasures if needed. Chapter 5 summarizes the main findings

gained throughout the course of this work. Based on these, wedraw conclusions

and give an overview of open issues and possible approaches for future work.

4

2 Peer-to-Peer Key

Technologies

In general, an overlay network can be described as a virtual network built on

top of one or many already existing networks. In this sense, peer-to-peer (p2p)

networks represent a special subset of decentralized overlays, where each partic-

ipating peer simultaneously acts as client and server, the so called servent con-

cept. Such p2p algorithms are used to provide connectivity among a large num-

ber of physically distributed peers which share a common interest, like the desire

for a file. P2p overlay networks support a wide variety of applications, whereas

the most common tasks are storage, search, and distributionof information and

files. Thereby, the specific p2p protocol determines which and how many over-

lay neighbors a peer maintains connections to, how frequently those neighbors

are contacted for maintenance purposes, and which other peers will be contacted

when searching for information.

In literature as well as in practice numerous different p2p architectures and

protocols can be found, which already account for the major part of traffic in

the Internet today [29]. On an abstract level, those architectures can roughly be

divided into pure and hybrid overlay networks. While in a pure p2p network all

peers are equal and perform exactly the same tasks, there aresome dedicated

peers in hybrid networks which are assigned a special function. In the case of

pure overlay networks, we further distinguish between unstructured and struc-

tured architectures. While peers in an unstructured overlay maintain connections

to random other overlay peers (cf. Chapter 2.1), a structured p2p protocol exactly

5

2 Peer-to-Peer Key Technologies

defines the relationship among overlay peers (cf. Chapter 2.2).

As the different mechanisms have been designed for different purposes, none

of the above described approaches is clearly superior to allother approaches. In

fact, they can be compared by many different metrics like thecost of a peer to

participate in the network [30] or the number of offered features like the ability

to perform full text searches [31]. While the most common application today is

file sharing, p2p overlays can also be used for other purposeslike permanent dis-

tributed storage [32–34], distributed VoIP services [17,35], or distributed network

management [9,18,36]. However, the p2p paradigm should notblindly be applied

to all areas of application as in some scenarios the disadvantages might outweigh

the benefits [37,38]. In the following, we give an overview ofthe most important

pure p2p architectures with a focus on structured overlay networks which form

the core of this thesis. Furthermore, some examples of hybrid networks will be

described in Chapter 2.3.

2.1 Unstructured Overlay Networks

The first pure p2p networks did not have any particular structure as participating

peers maintained random connections to other peers in the overlay (cf. Chap-

ter 2.1.1). Obviously those networks are easy to construct but hard to disable

since they are fully decentralized and do not offer a single point-of-failure. The

search for information or stored files is usually done by simple flooding, gossip-

based algorithms, or random walks. While this only requiresa very limited per-

node state, it results in very poor search performance and does not guarantee that

a search query will successfully be resolved, even if the queried information does

exist in the network. The scalability of the data discovery process is furthermore

limited by the overhead traffic generated during a search. Today those networks

are mainly used to protect the anonymity of content providers and content seekers

(cf. Chapter 2.1.2).

6

2.1 Unstructured Overlay Networks

2.1.1 Gnutella: Distributed Search and Flooding

In this section we will focus on Gnutella v0.4 [39] as the mostpopular repre-

sentative of pure unstructured overlay networks. Peers maintain connections toc

random peers in the overlay and the entire protocol is based on simple messages

which are exchanged between the participating peers. The structure of such a

message is shown in Table 2.1. Thereby the descriptor ID is used to uniquely

Fields Descriptor ID
Payload

TTL Hops
Payload

Descriptor Length
Byte offset 0...15 16 17 18 19...22

Table 2.1:Structure of a Gnutella message

identify a message in the overlay network and the payload descriptor determines

the kind of message which may be one of the following:

• Ping: Actively discover and probe for other peers in the overlay

• Pong: Response to a ping including address of a connected servent and

information about number and total kB of files shared

• Query: Primary search message including the query descriptor

• QueryHit: Response to a query including number of results and how to

obtain them

• Push: Simple mechanism to allow peers behind firewalls to contribute to

file distribution

To join a Gnutella network a peerp simply sends a ping message to an arbitrary

peer which is already participating in the overlay network.As soon as this peer

answers with a pong message peerp is part of the Gnutella overlay. These ping

messages are then repeated periodically and forwarded to all neighbors in order

to stabilize the overlay network. Once peerp finds out aboutc other peers it is

7

2 Peer-to-Peer Key Technologies

fully integrated into the overlay. Searches for content arethen implemented using

a simple flooding mechanism. Peerp broadcasts a search query to itsc overlay

neighbors which in turn forward the query message to all their overlay neighbors

except the peer they received the message from. Peers which store the desired

content answer with a query hit message which is sent along the reverse path. To

control the overhead generated during query requests and responses, each query

contains a time-to-live (TTL) counter which is decreased each time the message

is forwarded. Query messages with a TTL=1 are no longer forwarded.

Query
TTL = 3

Query
TTL = 3

Peer C

Peer E

Peer A

Peer B

Peer D

Query
TTL = 2

Query
TTL = 2

Query
TTL = 2

Figure 2.1:Flooding in the Gnutella overlay

Figure 2.1 illustrates a search issued by peerA using a TTL value of 3. Af-

ter decreasing the TTL to 2, the search is recursively forwarded by peerB and

peerD. Obviously, the main drawbacks of this flood-based search algorithm are

slow, bandwidth intensive, and highly redundant queries which in addition can-

not be guaranteed to be successful. Aberer et al. [40] showedthat the standard

parameters of Gnutella using aTTL = 7 andc = 4 overlay connections lead to

Mquery = 2 ·
TTL∑

i=0

c · (c − 1)i = 2 ·
7∑

i=0

4 · 3i = 26240 (2.1)

8

2.1 Unstructured Overlay Networks

messages per query including the responses. Newer versionsof Gnutella there-

fore introduced the concept of Ultrapeers which is similar to the SuperPeer con-

cept described in Chapter 2.3.3.

2.1.2 Freenet: Anonymity Protection

Freenet [41] is an unstructured overlay which aims at anonymity rather than ef-

ficient content distribution. That is, the main goal of the Freenet overlay is to

assure the anonymity of both the content publishers as well as the information

consumers. In particular, the Freenet Project [42] focuseson freedom of speech,

resistance to information censorship as well as privacy forinformation producers,

consumers, and holders.

This is realized by assigning each stored file a Globally Unique Identifier

(GUID) which is based on three different types of keys. At first a Keyword Signed

Key (KSK) is derived from a string which is chosen by the user and intended to

describe the file, e.g.text/thesis/binzenhoefer. In order to avoid conflicts which

might occur when different users choose the same descriptive string for their

files, an additional Signed Subspace Key (SSK) is used to determine the unique

file key. Finally, a Content Hash Key (CHK) is calculated by directly hashing the

content of the corresponding file. A more detailed description of the KSK, the

SSK, and the CHK can be found in [41]. To insert a new file into the overlay, a

user calculates both the SSK and the CHK of the file and insertsa pointer to the

CHK under the hash value of the SSK, while the file itself is stored under the hash

value of the CHK. Other users can then retrieve this information using a two-step

search approach. At first they calculate the SSK from the descriptive string in

order to lookup the CHK. In the second step they can then search for the actual

file using the CHK. Thereby, it is still an unsolved problem how the searching

user obtains the descriptive string of the file in the first place. In practice this is

usually done by using other means of distribution like publishing it on a website.

To avoid the problems of redundant and unscalable flooding, Freenet applies

a steepest-ascent hill-climbing search mechanism. Thereby, the main idea is to

9

2 Peer-to-Peer Key Technologies

forward queries which cannot be answered locally to the peerwhich is believed

to be the closest to a specific target. To this end, a peer maintains a routing table

which, for each overlay neighbor, lists the keys which this neighbor is likely to

hold. Figure 2.2 shows a typical example of a search in the Freenet overlay as

described in [41]. Peer A forwards a search for information stored on Peer D to

Peer A

2

Peer D

Peer C

Peer B

Peer EPeer F

8

1

3

4

5

6
7 91 0

11

12

Search Path
Return Path
Failed Request

Figure 2.2:Searching in the Freenet Overlay

its only overlay neighbor B. Peer B recursively contacts Peer C, which does nei-

ther hold the desired information nor have any further overlay neighbors. Peer C

therefore answers with a request failed message. Peer B thencontacts its next

overlay neighbor Peer E, which in turn contacts Peer F. Peer Fforwards the query

to Peer B, whereas Peer B detects a loop comparing the unique message ID to the

temporary list of open queries which each peer maintains fora predetermined

period of time. Due to the lack of further overlay neighbors,Peer F reports a re-

quest failed message back to Peer E, which forwards the queryto Peer D. Finally,

Peer D holds the desired file and returns it back to A via E and B.As subse-

10

2.2 Structured P2P Networks

quent queries are likely to take a similar path to the destination, Freenet applies a

special caching algorithm, where peers on the return path locally store the most

recently requested files.

The privacy and anonymity of Freenet are mainly achieved by the fact that the

peer holding the searched information does not directly reply to the originator

but sends the file hop-by-hop via the return path. In fact, each node involved in

the entire search process does only know its immediate neighbors. Thus, no peer

can be sure if it received the query request from the searching peer itself or from

a forwarding peer nor can it be sure if the next peer is the recipient or merely

another forwarding peer. Furthermore, messages with a hop-to-live value of zero

are still forwarded with finite probability in order to make attacks on the privacy

of Freenet peers more complicated. While the above described mix-net scheme

guarantees the anonymity of authorship and readership, it is not very well suited

for the exchange of large files. In practice, Freenet is therefore rather used for

anonymous communication than for media content distribution. A more recent

version of Freenet [43] further improves the privacy of its users by combining its

small-world features with the idea of a Darknet, a small group of people trusting

each other.

2.2 Structured P2P Networks

While the first unstructured p2p networks have been created and deployed by

individual persons or commercial companies, structured p2p architectures were

proposed within the research community in an effort to eliminate the problems

which appeared in unstructured overlay networks. Thereby,all structured p2p al-

gorithms share the same underlying principle. Each participating peer is assigned

a uniquem-bit identifier, i.e. an integer between 1 and2m which is derived by

hashing a unique feature like the IP-address used by the peer. To maintain the

overlay structure peers then establish connections to their r closest overlay neigh-

bors according to a special metric defined on their identifiers by the individual

11

2 Peer-to-Peer Key Technologies

p2p protocol. In addition to this list of neighbors, each peer also maintains con-

nections to more distant peers which are used as shortcuts inthe overlay in order

to guarantee fast searches.

To determine the exact peers at which a specific file is stored in the over-

lay, files are also hashed into the same identifier space in such a way that their

identifiers intermix with the identifiers of the peers. This concept is illustrated in

Figure 2.3 for a typical value ofm = 160. The files are then stored at the closest

identifier space (co-domain of hash function)

peer space object space
hash function

132.187.106.86
193.239.248.48

trangia.xml
binzenhoefer.xml

1 2���4213 23

Figure 2.3:Assignment of identifiers in a Distributed Hash Table

peer according to the given metric. Due to this hash-based principle structured

p2p networks are often referred to as Distributed Hash Tables (DHTs). As a re-

sult of the structure of such a DHT, it can be guaranteed that search queries will

always terminate, either successfully by returning the fileitself or by sending a

file-not-available message. While DHTs avoid the scalability issues of unstruc-

tured p2p networks, they lack the possibility to perform full text searches and

have to maintain their structure despite of churn, the continuous process of peers

joining and leaving the overlay network at arbitrary times.In the following, we

will give an overview of the most important DHT algorithms and their uses [44].

12

2.2 Structured P2P Networks

2.2.1 Chord

The Chord algorithm was introduced in 2001 by Stoica et al. [45] and became

the most studied structured p2p overlay network. It is basedon a simple ring

structure and describes how new peers join the overlay, where files are stored,

and how they can be retrieved by other peers.

General Architecture

The general architecture is shown in Figure 2.4 which shows an exemplary Chord

ring consisting of seven peers and four files using an identifier space withm = 7

bit and thus2m = 128 possible identifiers. The participating peers are arranged

on a logical ring structure in such a way that their identifiers are ascending in a

clockwise direction. The first peer succeeding a peerz in this clockwise direction

is called the successors of z, the first peer in a counterclockwise direction is

called the predecessorp of z.

2
14

107

48

30

89

73

1

122

42

64

Figure 2.4:Chord ring with seven peers and four files

The location of files in the overlay is also well defined by a simple rule. All

files whose identifiers fall between the identifier of peerz and its successors are

stored at peers. In the example, file 42 is stored at peer 48 and file 64 at peer 73,

13

2 Peer-to-Peer Key Technologies

respectively. Note that the identifier circle is based on a modulo arithmetic and

thus both file 122 and file 1 are stored at peer 2.

Join and Leave Events

To join a Chord-based overlay network, a peerz needs to know an arbitrary peerx

which is already participating in the overlay. This is a general problem in p2p net-

works and usually solved by either contacting some well known peers, retrieving

a list of online peers from a website, or using a central bootstrap server. Peerx

can then determine the identifier of the direct successor of the joining peerz using

the search algorithm of Chord, which will be described later. Once peerz has the

successor spredecessor p

peer z
1. notify: new
predecessor

4. notify: new
predecessor

2. stabilize()

3. notify: new successor

Figure 2.5:Different steps of a join procedure in Chord

contact information of its direct successors it starts the join procedure illustrated

in Figure 2.5. At first it notifiess that it is its new predecessor (cf. step 1). As

soon as the old predecessorp of s contactss during the periodic stabilize routine

(cf. step 2), peers will notify p about its new successorz (cf. step 3). Peerp will

then notify peerz that it is its predecessor (cf. step 4), after which peerz becomes

fully integrated in the logical ring structure.

In principle, peers leaving the overlay could contact and inform their overlay

neighbors in a similar way. In practice, however, an overlaynetwork is likely to

face unfriendly leaves and sudden node failures. To deal with such churn behavior

14

2.2 Structured P2P Networks

the Chord algorithm performs some special maintenance routines.

Maintenance of the Overlay Structure

To maintain the logical ring structure of the overlay, each peer stores pointers to

the firstr successors in a clockwise direction. Thus, if one of the peer’s r succes-

sors goes offline, the peer will still know the nextr − 1 peers on the ring. Fig-

ure 2.6 shows a successorlist of sizer = 3 for peer 1 in a Chord ring consisting of

16 peers. In order to detect changes in the neighborhood, peer z periodically con-

tacts its direct predecessorp as well as its direct successors everytstab seconds

and performs a stabilize routine. During this stabilization the two corresponding

peers reconcile their neighborlists and adapt them accordingly. If a peer does not

respond to a stabilize call, it is removed from the neighborlist and the next peer

is contacted. The default value for the periodic contact interval iststab = 30s.

In practice, this simple stabilization algorithm does not suffice to handle high

churn rates and has to be improved accordingly [21]. One possible solution is

to make Chord symmetric and additionally maintain a list of predecessors [46].

Since it is impossible to avoid all failures a mechanism [14]has been proposed to

recover from a loss of the ring structure, which might e.g. happen during a mass

exit of a large number of peers. Besides the overlay structure, the availability of

stored files must also be guaranteed. The Chord protocol itself does not directly

specify any redundancy mechanisms. However, numerous different approaches

have been proposed in literature. Ramabhadran et al. [47] and Datta et al. [48]

give a good overview of redundancy algorithms and additionally compare the

different approaches analytically to show which mechanismis best suited for

which scenario.

Search Algorithm and File Insertion

The entire functionality of the Chord algorithm is based on its search algorithm.

To insert a file a peer searches for the first peer succeeding the file’s identifier,

where the file will then be stored. The file can be retrieved by other peers at a

15

2 Peer-to-Peer Key Technologies

later point in time using the same search routine. If a peer searches a specific

1

f4

f3

f2
f1

finger table
finger
f1 1+2�=2
f2 1+2�=3
f3 1+2�=5
f4 1+2�=9

2
3

9

5

6

4

8
7

15

10

16

14

12

13

11

successor
list

Figure 2.6:Assignment of identifiers and pointers in a Distributed HashTable

identifier, it will forward the query to its successor, whichin turn will forward

the query to its own successor until the search hits the peer which is responsible

for the searched identifier. Once the responsible peer is found, it will transmit the

answer directly to the originator, i.e. the peer seeking theinformation. Obviously

this is very inefficient, as a peer needsO(n) messages to complete this kind of

search, wheren is the current number of peers in the overlay. To improve the

search duration, a peer also maintains a finger table, i.e. a list of peers called fin-

gers which are used as shortcuts through the ring to speed up the search process.

Thereby, thei-th entry in a peers finger table contains the identity of the first peer

that succeedsz’s own hash-value by at least2i − 1 on the Chord ring. That is,

peerz with hash valueidz has its fingers atidz + 2i − 1 for i = 1 to m, where

m is the number of bits used for the identifiers. Figure 2.6 illustrates a simple

example using a Chord-ring consisting of 16 peers. Peer 1 hasa four different

fingers f1 to f4 pointing to2(= 1 + 21−1), 3(= 1 + 22−1), 5(= 1 + 23−1), and

9(= 1 + 24−1), respectively. When searching a file, peerz is now able to send

16

2.2 Structured P2P Networks

the query to its finger, whose hash value most immediately precedes the hash

value of the searched file. If this finger is not able to answer the search locally, it

forwards the query accordingly. Otherwise, the search is finished and the finger

directly returns the answer back to the searching peerz. This way queries can

be answered usingO(log2(n)) messages. This kind of search is called recursive,

since each peer participating in the search forwards the query recursively to its

closest finger. It is, however, also possible to perform iterative queries [49], where

each peer involved in the query reports back to the originator, as well as hybrid

queries [50], where each peer recursively forwards the query and additionally

sends an acknowledgment back to the originator.

2.2.2 Kademlia

The Kademlia algorithm [51] is another approach to implement a Distributed

Hash Table which is based on a structured overlay network. Its main functional-

ity is to offer participating peers the possibility to storesmall files in the overlay

and to retrieve them at a later point in time. The main difference to the previously

described Chord algorithm is the symmetric relationship between neighbors in

the Kademlia overlay network, which enables peers to exploit any messages

exchanged between them for the stabilization of the overlaystructure. While

Kademlia is less well understood than other DHT algorithms,it has been suc-

cessfully tested in different deployed applications [52,53].

System Description and Routing Table Structure

Kademlia also usesm = 160 bit identifiers for peers and files in the overlay. The

distance between two such identifiers, however, is based on the XOR metric. That

is, given two peers with identifiersx andy Kademlia defines the distance between

these two peers as their bitwise exclusive or (XOR),d(x, y) = x ⊕ y which is

interpreted as an integer. Most benefits of Kademlia result from the following

properties of the XOR metric:

17

2 Peer-to-Peer Key Technologies

• d(x, x) = 0, d(x, y) > 0 if x 6= y: It is ensured that the distance between

two peers is always positive.

• ∀x, y : d(x, y) = d(y, x): This features implies that the connections be-

tween overlay neighbors are symmetric and peers mainly receive messages

from peers which they also have in their own routing table.

• d(x, y) + d(y, z) ≥ d(x, z): The triangle property holds.

• ∀x,∆ > 0 ∃1 y: d(x, y) = ∆: This unidirectionality ensures that lookups

for the same identifier converge along the same path, regardless of where

the search is started.

To construct the Kademlia routing table, the overlay neighbors of a peer are

chosen according to the XOR metric. For each0 ≤ i < 160 a peerx stores a

list of k peers which is calledk-bucket. Thereby, all contacts in theith k-bucket

have a distance between2160−i ≤ d(x, y) < 2160−i+1 to peerx according to

the XOR metric.

11…11 00…00160-bit identifier space

[2��	; 2�
�[[2���; 2��	[[2��
; 2���[
[2��
; 2��
[

[2�; 2��
[bucket 1 bucket 2 b5bucket 3 b4

peer identifier = 00…00
i-th k-bucket = [2�
���; 2�
�����[

Figure 2.7:Kademlia routing table for peer with id 00...00

Figure 2.7 visualizes this concept for a peerx with idx = 0 or 00...00 in bit

notation. The firstk-bucket containsk peers with a distance between2159 and

2160 to peerx. Note that this bucket covers half of the entire identifier space and

thus about half of all online peers. In general, a peer can choosek arbitrary peers

out of all possible peers for each specifick-bucket. The default solution, however,

is to sort thek-bucket entries by the time of last contact. Whenever a new peer

18

2.2 Structured P2P Networks

arrives and the correspondingk-bucket is full, the least recently seen peer in the

k-bucket is pinged. If this peer answers, the new peer is disregarded, otherwise

the old outdated entry is replaced by the new peer. This mechanism is based on

the assumption that the longer a peer has already been online, the more likely it

is to stay online in the future.

The remainingk-buckets in Figure 2.7 illustrate the main idea behind the

Kademlia routing table. Buckets which contain peers close to peerx, like buck-

ets 4 and 5 in the example, are used to stabilize the overlay structure, while more

distant buckets, like bucket 1, 2, and 3 in the example, are used as shortcuts to

enable fast and scalable searches in the overlay network.

Lookup Algorithm

To locate specific identifiers Kademlia uses a parallel lookup algorithm. The exact

procedure is depicted in Figure 2.8. When searching, peerz sends outα parallel

queries to theα closest peers which it can find in its ownk-buckets. Each of these

peers then answers with thek closest peers it knows. The searching peer waits for

at leastβ peers to answer before it enters the next search step. It thenmerges all

newly learned contacts with the already known contacts and recursively queries

theα closest to the searched identifier.

1. send α parallel
search requests

1

2
α

1
β

2. wait
for β replies

peer z

Figure 2.8:Parallel lookup process of Kademlia

19

2 Peer-to-Peer Key Technologies

This procedure is repeated until a recursion step fails to return any contacts

which are closer to the searched id than those already learned. At this point, thek

closest peers found during the search are directly queried for the searched file. An

obvious advantage of such parallel queries is that the search will not be delayed

as long as there are less thanα − β + 1 timeouts per search step.

A newly joining peer may obtain some overlay contacts from anarbitrary peer

already participating in the overlay network and can then perform a lookup for

its own id using these contacts as a starting point.

Dynamic System Evolution

To account for the changes in the overlay network, the Kademlia routing table

is dynamically adapted to the current overlay structure. This is done by splitting

and merging appropriatek-buckets according to the changes in the neighborhood

of a peer. An example of the dynamic evolution of the routing table is given in

k peersa)

������ � �����01
d)

01
1k peers k peers k peers

0c)

k peers k peers
01

b)

01
1k peers

k peers
0

Figure 2.9:Dynamic evolution of the routing table

Figure 2.9 for a peer with id = 00...00. The peer initializes its routing table with a

singlek-bucket covering the entire id space, cf. Figure 2.9 a). As soon as the peer

20

2.2 Structured P2P Networks

has more thank overlay neighbors, it splits its routing table into two separatek-

buckets, one bucket containing all peers whose id starts with 1 and another bucket

containing all peers whose id starts with 0, cf. Figure 2.9 b). From this point on,

the only bucket which can be further split is the bucket into which the peer’s

own id falls. The peer in the example has id = 00...00 and will therefore split

the bucket starting with 0 as soon as it contains more thank entries. In this case

the bucket would be split into two buckets covering ids whichstart with 01 and

00, respectively (cf.Figure 2.9 c)). This bucket splittingalgorithm is continued as

indicated in Figure 2.9 d) as long as the peer learns new contacts in its vicinity,

i.e. as long as the overlay is growing in size. As soon as peersleave the network

and the overlay becomes smaller, split buckets are merged back together. If, e.g.,

the buckets starting with 01 and 00 in Figure 2.9 d) together contain less thank

entries, they are merged in such a way that the routing table again looks like in

Figure 2.9 c).

Maintenance of the Overlay Structure

In order to maintain the overlay structure in times of churn,the Kademlia pro-

tocol extracts information from all messages exchanged between peers. That is,

Kademlia uses all traffic between participating peers in order to stabilize the rela-

tionship between overlay neighbors. Each time a peer contacts another peer, both

peers check their correspondingk-bucket and insert the other peer if appropriate.

In addition to this, ak-bucket is refreshed as soon as there was no change in this

bucket for at least an hour. To perform such a bucket refresh,a peer simply issues

a search for a random id in the samek-bucket.

The redundancy of stored files is maintained in a similar way.Initially, files are

stored at thek closest peers, which are called the replication group. If a peer in

this replication group did not receive a specific file from another peer within the

last 60 minutes, it republishes this file to the entire replication group. To do so, it

searches for thek closest peers to the file’s identifier and transmits the file toeach

of them. Those peers store the file locally and update their timers accordingly. If

21

2 Peer-to-Peer Key Technologies

a republishing peer itself is no longer among thek closest peers, it deletes the

file from its local storage. In order to avoid that files are stored forever and to

guarantee that lost files will be recovered, the original publisher of the file must

re-insert the file every 24 hours on default. Depending on theapplication, longer

intervals or alternative maintenance strategies [54] might be more appropriate.

2.2.3 Pastry

Pastry [55] is a structured overlay network developed by Microsoft Research and

Rice University. It serves as a basis for different kinds of applications. A typi-

cal example for such an application is PAST [56], which uses the Pastry overlay

to provide a global, persistent storage utility. Files or documents are hashed and

persistently stored atk well defined overlay peers, from which they can be re-

trieved at a later point in time. SCRIBE [57] is another example for an application

which uses Pastry to realize a scalable group communicationsystem based on a

distributed publish/subscribe service. Interested peerscan subscribe to a certain

topic by storing their contact information at the Pastry peer which is closest to

identifier of the topic.

Architecture of a Pastry Peer

Similar to Chord, Pastry arranges the participating peers on a circular identifier

space which ranges from 0 to2128 − 1. The corresponding 128bit identifiers are

interpreted as a sequence of digits with base2b in such a way thatb consecutive

bits represent one digit. Forb = 2 a possible identifier for a peer p could, e.g., be

20132301. To establish the overlay structure, each peer maintains connections to

three different kind of neighbors. These neighbors are usedto build the routing

table, the leaf set, and the neighborhood set as shown in Figure 2.10.

The routing table of a Pastry peer consists of up to
⌊

128
b

⌋
different rows,

whereas each row has2b − 1 entries. Thereby, for0 ≤ i <
⌊

128
b

⌋
the ith row

of the routing table does only contain peers which share the first i digits with

22

2.2 Structured P2P Networks���������� ���������� � ����������� ���������� ���������� �������������������� � ���������� �������������������� ���������� ���������� ����������� ���������� � �������������������� ���������� �� ������������������� �������� �������� ���������������� �������� �������� ���������������� �������� �������� ���������������� �������� �������� ��������

���� �� !"# #!"$%&'()* +,-.�
/�,0 1�'12,..�� /,�*��3�(*4-%�4%%5 1�'

Figure 2.10:Pastry routing table forb = 2 andk = m = 8

the local peer, but differ from it in thei + 1th digit. Figure 2.10 shows the rout-

ing table for peer 20132301 forb = 2 resulting in22 − 1 = 3 routing entries

per row. In theith row theith digit of the local peer is highlighted in gray and

the first digit in which the routing entries differ from the local peer is shown

between hyphens. Note, that there are possibly many peers which fit into a par-

ticular row of the routing table. In principle, the local peer may choose its routing

entries randomly from all possible entries. In practice, however, a peer should

prefer physically close peers, i.e. peers to which it has a small physical delay.

The actual size of the routing table depends on the current number of peers in the

overlay. Assuming uniformly distributed peer identifiers,there are approximately

⌈log2bn⌉ occupied rows in the routing table, wheren is the current number of

peers in the overlay. The empty entries in the last three rowsin the example arise

23

2 Peer-to-Peer Key Technologies

as there are not enough peers with the corresponding distance to the local peer in

the overlay.

The leaf set is a symmetric list of the numerically closest peers in terms of their

identifiers. That is, each peer maintains an additional listof k overlay neighbors

which contains thek
2

numerically closest peers with a larger id as well as the
k
2

numerically closest peers with a smaller id as compared to the peer’s own

id. This list is used to stabilize the overlay structure and to perform the final

step of a search. Finally, the neighborhood set contains a list of m peers which

are physically close to the local node. This list is absolutely independent of the

numerical identifiers of the peers and also not used for routing purposes. Typical

values for the Pastry parameters areb = 4 andk = m = 2b or k = m = 2 · 2b.

Routing in Pastry

The routing process in Pastry is based on the routing table aswell as on the leaf

set of a peer. Figure 2.11 illustrates the routing procedurefor a peer p which is

searching for an id xyz. At first the peer checks if the searched id is covered by

its leaf set. If this is the case, it can forward the query to the numerically closest

peer in the leaf set which should be able to answer the query. If xyz is not covered

by any peer in the leaf set, peer p forwards the query to a peer in its routing table

whose identifier is at least one digit closer to the target id xyz as compared to

its own id. To reach the searched id as fast as possible, peer pshould choose the

routing entry which has the longest common prefix with the searched id. In the

rare case that peer p does not find any peer in its routing tablewhich shares a

longer matching prefix with the searched id than itself, it combines all peers of

its routing table, its leaf set, and its neighborhood set into a temporary list. From

this list it then chooses a peer which shares at least as long aprefix with the search

id as the local peer itself but is numerically closer to it.

In the construction of its routing table, a Pastry peer prefers peers with good

latency. For each row of its routing table, a peer chooses thephysically closest

peers out of all peers which have a numerical distance fittinginto the correspond-

24

2.2 Structured P2P Networks

6778 9:;<=>?@78 687A:B:? 8>C;:?@ ;DE=7F
G7D8H<IJ BKL

A>89D8M ;>?CN78:HD ==K H=>G78 67789:;< GDN7 687A:BBKLH>O787M EK6778 :? =7DA G7;FA>89D8M ;> H=>G7G;6778 :? =7DA G7; A>89D8M ;> 6778 9:;<=>?@7G; H>NN>? 687A:BP7G
Q> Q>P7G

Figure 2.11:Routing procedure of a Pastry peer

ing row. At first, a joining node initializes its routing table entries by obtain-

ing adequate entries from other peers. It then periodicallycontacts the peers in

its neighborhood set to obtain and propagate information about physically close

peers independent of their numerical ids. With these peers it can then exchange

numerically adequate entries to improve its routing table in terms of latency.

The choice of the parameterb determines a trade-off between the size of the

routing table⌈log2bn⌉ ·
(
2b − 1

)
and the average number of hops required for

a search⌈log2bn⌉. In the worst case, when many nodes fail simultaneously, the

number of routing steps might be linear in the number of online peers. However,

this scenario is unlikely as for this to happen all routing entries of all peers in-

volved in the search process have to fail. From a global pointof view, the delivery

of messages can be guaranteed as long as no peer loses all of its leaf set entries

with smaller or larger id simultaneously, i.e. as long as less than k
2

peers with

consecutive ids fail simultaneously.

25

2 Peer-to-Peer Key Technologies

Maintenance of the Overlay Neighbors

The Pastry algorithm is designed for long-lived applications like permanent stor-

age or publish/subscribe which are expected to attract peers with relatively long

online times. On these grounds it is assumed that a newly joining peer p already

knows the contact information of another peer b which is already part of the

overlay and physically close to p. Based on this physical proximity, peer p can

initialize its own neighborhood set with the neighborhood set of peer b. Peer p

then asks peer b to locate that peer z which is numerically closest to p in the Pas-

try overlay. All peers on the path from b to z additionally report back to p. Peer p

exploits this information to construct its own routing table by copying the entries

from theith row of the peer contacted in theith step of the search.

Peer failures are handled in different ways, depending on where they occurred.

If one of the peers in the leaf set of a peer fails, the peer immediately contacts

the peer with the highest or lowest id in its leaf set, depending on whether the

failed peer had a higher or lower id than the local peer. It then asks this peer

for its leaf set and updates its own leaf set accordingly. If apeer in rowi of the

routing table fails, the local peer contacts another entry in the same row of the

routing table and asks this peer for an appropriate entry. Ifno such peer is found

the local peer extends its search to further away peers untilit finds an appropriate

replacement. While the neighborhood set is not used in the process of routing, it

is required to exchange information about physically nearby peers. To keep this

set up to date, each member is contacted periodically. If a peer does not respond,

the local replaces this entry by asking other members of its neighborhood set for

appropriate entries.

2.2.4 Content Addressable Networks (CAN)

Ratnasamy et al. [58] observed that an essential part of any p2p-based network

is to provide an index for files stored in the overlay. Algorithms which specialize

on storing, retrieving, and deleting files in the overlay have become known as

content addressable networks (CANs). In principle, a CAN performs the same

26

2.2 Structured P2P Networks

tasks as a distributed hash table. The main difference to other DHTs, however,

is that peers are assigned random coordinates in the overlay, while files are still

hashed and stored at the closest peer in the overlay.

Overlay Topology and Routing

In CAN peers are located in ad-dimensional Cartesian coordinate space on a

d-torus. Thereby each peer is responsible for a specific subpart of the coordinate

space, which is called the zone of the peer. Figure 2.12 showsan example of a

2-dimensional CAN overlay which is partitioned into 21 different zones. Note,

that the coordinate space wraps on ad-torus, which is not shown in the figure.

To insert a new file into the overlay, it is mapped onto a point Pusing a uniform

hash function. Each peer is responsible to store all files which are mapped into

its zone. Other peers can then retrieve a desired file by locating the peer which

manages the corresponding zone.

1

6 5

2 4

3

routing path from node 1 to point (x,y)

(x,y)

neighbor list of peer 1: {2,3,4,6}

Figure 2.12:Structure of a two dimensional CAN overlay network

27

2 Peer-to-Peer Key Technologies

To enable the routing of messages, each peer maintains pointers to a set of

neighbors in the overlay. Thereby in ad-dimensional space, two nodes are neigh-

bors if their zones overlap alongd − 1-dimensions and touch each other along

1 dimension. The overlay neighbors of peer 1 in Figure 2.12 are 2, 3, 4, and 6,

since their zones overlap along one dimension. Note that peer 5 is not a neighbor

of peer 1, since its zone touches the zone of peer 1 along all dimensions but does

not overlap along any dimension. When searching in the overlay space a peer

utilizes its neighbor list. Figure 2.12 shows the routing path of peer 1 searching

for a specific point (x,y). To reach this point, the query is recursively forwarded

in a greedy way to the neighbor which is closest to the destination. Note that in

the case of a failure, e.g. if a neighbor is offline, there are multiple paths leading

through different neighbors which can be used to route the query to its destina-

tion. As shown in [58] the average path length is inO(n
1
d), wheren is the current

number of peers in the overlay.

System Evolution under Churn

Bootstrapping in CAN is done using a simple domain name system (DNS) based

approach. Each CAN overlay has an associated domain name. Ifa new peer p

wants to join the overlay, it performs a DNS lookup of this domain and retrieves

the address of one ore more bootstrap servers. Peer p then chooses a random

point in the coordinate space as its own location and searches for the peer which

is currently responsible for the corresponding zone. It then contacts this peer

and the old zone is split into two new zones. Thereby the orderalong which

dimensions a zone is split is predetermined. In a 2-dimensional space, zones are

first split along the x-axis and then along the y-axis. In Figure 2.13 the joining

peer 4 randomly chose a point in the zone of peer 3, which is thus split into two

halves managed by peer 3 and peer 4, respectively.

When a peer leaves the overlay network other peers have to take over the

responsibility for the now unoccupied zone. This is done by merging appropri-

ate zones. If possible, a single peer merges its zone with theunoccupied zone

28

2.2 Structured P2P Networks

3

2

peer 4 joins
the overlay

1peer 2 leaves
the overlay

Figure 2.13:Maintenance of the CAN overlay network structure

into a new valid zone. Otherwise the neighbor with the smallest zone takes over

the unoccupied zone and temporarily handles both zones, which might e.g. be

L-shaped. If necessary a zone-reassignment algorithm is triggered later. In Fig-

ure 2.13 peer 2 leaves the overlay network and peer 1 subsequently takes over the

old zone of peer 2.

Design Improvements and Open Issues

A general problem of structured overlay networks is that proximity in the overlay

does not directly reflect physical proximity. The main advantage of CAN is that

it offers different possibilities to consider the physicalproximity of peers in the

construction of the overlay. One possible approach [59] is that each peer pings a

set of landmark servers and chooses its position in the CAN overlay according

to the measured delays. Another possibility [60] is to choose coordinates in a

2-dimensional CAN overlay according to the physical location of the machine

the software is running on, e.g. by taking the machine’s GPS coordinates. Both

approaches greatly reduce the latency of routing in the overlay.

The path length in terms of overlay hops can also be reduced byusing more

dimensionsd or by constructing several CAN overlays in parallel, whereas each

peer is assigned a different zone in each coordinate space. However, both modi-

fications come at the cost of increased complexity and per node state. Zone over-

loading, where multiple peers are responsible for the same zone, also reduces the

29

2 Peer-to-Peer Key Technologies

average path length while simultaneously improving the fault tolerance, again at

the cost of an increased system complexity.

While CAN gives good theoretic insights into the design of structured overlays

in general, it also raises many questions and problems in practice. In contrast to

other overlay topologies, the structure of the CAN overlay depends on the order

in which peers join and leave the network. That is, for a givenset of participating

peers and their corresponding locations in the overlay, theexact layout of the

individual zones is not fixed but depends on how the system evolved over time.

This often results in an unbalanced distribution of zones, which becomes even

more critical when many peers choose a position close to eachother within a

small area of the overlay. In such a case searches will not take the optimal path

but might already require multiple overlay hops just to leave the local area.

2.3 Hybrid Architectures

P2p networks which are deployed in a practical environment are often built for

a special purpose. Their architecture typically is a mixture of different concepts

well adapted to the intended use. In general, those networkscan be subsumed

under the term hybrid approaches.

The most common area of application of such networks is file-sharing or con-

tent distribution, which is usually realized using a two step approach. In the first

step the participating peers locate other peers in the network which offer or are

interested in the same content. In the second step the peers manage the exchange

of data among each other by organizing who will download whatfrom whom and

when. The basic principle is multiple source download, where files are divided

into small parts called chunks and peers can issue multiple download requests to

different providing peers which serve several downloadersin parallel.

In this chapter we briefly describe the basic mechanisms of overlay networks

offering a variety of files which are indexed by a central server (cf. Chapter 2.3.1),

as well as of overlays which specialize in the efficient distribution of just one

30

2.3 Hybrid Architectures

single file, cf. Chapter 2.3.2. Since hybrid approaches are by far not limited to

file-sharing applications, we also discuss SuperPeer-based overlay networks (cf.

Chapter 2.3.3), which use concepts like NAT-traversal and overlay re-routing to

enable applications like large scale distributed VoIP platforms.

2.3.1 Client-Server-based Overlay Architectures

In a client-server based overlay network, peers share and download files among

each other, while an index of all shared files is compiled and distributed by one

or possibly more central servers. While Napster [61] was thefirst p2p network

based on this principle, the eDonkey network [62, 63] becamefar more popular

in terms of active users, especially in southern Europe. As shown in Figure 2.14,

client

server

client clientclientclientclient

server server

Figure 2.14:Basic architecture of the eMule network.

an eDonkey client connects to an index server and requests a list of all peers

which already share or are also interested in the same files the client intends to

download. If the index server does not return any or too few matching results,

the client may resubmit the same query to another eDonkey index server. In the

31

2 Peer-to-Peer Key Technologies

eMule network [64], an extension to the original eDonkey network, the pool of

central servers was replaced by Kad [65], a structured overlay network based on

the Kademlia protocol. As soon as the peer has obtained a listof other peers

interested in the same content, it connects to these peers and starts to exchange

the desired files as well as further information about who is sharing the same

content.

The size of the files shared among the peers usually goes from some

megabytes, e.g. for audio files, up to the gigabyte range, e.g. for video files. For

this reason each file is divided into several smaller parts called chunks, which

again are divided into individual blocks. Figure 2.15 illustrates this procedure us-

chunk 1 chunk 2 chunk c…chunk 3

block 1 … block b

9500 kB < 9500 kB

180 kB 140 kB

Figure 2.15:eMule file as divided into chunks and blocks.

ing parameters found in the source code of eMule 0.48a [64]. The file is split into

c chunks, whereas the firstc − 1 chunks are of size 9500 kB and the last chunk

contains the remaining part of the file. Each chunk is in turn split into b−1 blocks

of size 180 kB and one block of size 140 kB. This way, a peer doesnot have to

download the entire file to contribute to the dissemination of the file but may start

sharing as soon as it obtained the first chunk of the file. Thus,this concept enables

the process of multiple source download where each peer may download and up-

load different parts of the file from and to multiple peers at the same time. In this

context, each peer maintains an upload queue, which is basedon a simple credit

system and determines which requesting peer will be served next. The position

of a peer in this queue is determined by its score, whereas thescore is calculated

asscore = (rating · time in queue in seconds)/100. The initial rating of

32

2.3 Hybrid Architectures

a peer is 100 and will be multiplied by a value between 1 and 10 according to

the peer’s credits as well as by a value between 0.2 and 1.8 depending on the file

priority. Thereby credits can be earned by uploading chunksto the specific peer.

2.3.2 Content Distribution Networks (CDN)

Content distribution networks are overlay networks which are established in order

to distribute one single file as fast and as efficiently as possible. The most promi-

nent example is the BitTorrent protocol [66], which dividesthe offered file into

256 kB chunks consisting of 16 kB subpieces and then coordinates the exchange

of these chunks among the participating peers. The basic principle of BitTorrent

is illustrated in Figure 2.16. At first, each peer interestedin a particular file needs

1.
2.

Swarm

TrackerWeb
Server

Peer p

3.

Figure 2.16:Basic principle of the BitTorrent overlay network.

to obtain the corresponding .torrent file, usually from a webserver as shown in

step one of the figure. This .torrent file contains meta-information including the

size of the file, the hash values of the individual chunks, andthe contact address

of the responsible tracker. The tracker is a central entity which keeps track of all

peers currently sharing the same file and which is used by the peers to find other

peers to download from, cf. step two in the figure. Note, that the central tracker

33

2 Peer-to-Peer Key Technologies

does not necessarily have to be a single server. In the latestversion of BitTorrent

it is, e.g., replaced by a distributed Kademlia network. As soon as a peer obtained

a list of other overlay peers it joins this so called swarm (cf. step three) and starts

to exchange data with the other peers in the swarm.

Thereby, the BitTorrent protocol exactly specifies how the exchange of the

chunks is arranged among the peers. In particular, the chunkselection strategy is

based on the following principles:

• Strict priority: All subpieces of one chunk have to be downloaded before

any subpiece of any other chunk may be downloaded.

• Random first chunk: The first chunk to be downloaded is always selected

randomly from all possible chunks in order to avoid that rarechunks are

disseminated slower than popular chunks.

• Rarest first: Apart from the first chunk, a peer always downloads the chunk

which it believes to be the rarest in its swarm.

• Endgame mode: The last subpieces of the last missing chunk are re-

quested from multiple sources simultaneously and then downloaded from

the fastest source. This avoids the problem of starvation which occurs

when downloading the last subpiece from a slow peer.

• Tit-for-tat: Peers prefer to upload to peers from which theycurrently

download or have successfully downloaded from in the past. This mecha-

nism is closely related to game theory, whereas a peer refuses to upload to,

i.e. chokes, all peers per default and only unchokes those peers which offer

the best download rate. To enable new or more suitable peers to join or im-

prove the dissemination process, optimistic unchoking is applied, where a

random peer is served regardless of its previous contributions.

While the BitTorrent protocol proved to be scalable and efficient [67, 68], it

still has to struggle with an uneven chunk distribution. This issue is addresses by

Avalanche [69,70] which applies the concept of network coding [71] in the field

34

2.3 Hybrid Architectures

of content distribution. With network coding, peers do no longer exchange chunks

but linear combinations of chunks along with the randomly chosen coefficients.

As soon as a peer obtains enough linearly independent chunk combinations it can

reconstruct the original file. This way, the rarest chunk problem is avoided and a

peer no longer has to keep track of the current chunk distribution in the overlay.

2.3.3 SuperPeer-based Architectures

SuperPeer-based overlay architectures have been developed in an effort to com-

bine the advantages of both the classic client-server approach and the p2p

paradigm that all peers should have the same functionality.Such approaches ex-

ploit the fact that in a p2p network not all peers are equal butheterogeneous in

many aspects like available bandwidth, offered processingpower, or their online

session times. That is, peers which are more reliable and provide more resources

than other peers become SuperPeers and as such act as serversto other peers. This

SuperPeer

Peer

Peer
Peer

Peer

Peer

Peer

Peer

Peer

PeerSuperPeer SuperPeer

Figure 2.17:Example of the SuperPeer architecture.

way, they simultaneously provide the search efficiency of a centralized solution as

well as the robustness to attacks provided by distributed architectures. Figure 2.17

shows an example of a SuperPeer-based overlay topology. Each SuperPeer acts

35

2 Peer-to-Peer Key Technologies

as a server for a number of regular peers, while the SuperPeers themselves main-

tain separate connections to each other. Thereby, the interconnection between the

SuperPeers may be realized in different ways like using a fully meshed topology,

a structured overlay network, or a simple gossip based flooding mechanism. Ac-

cording to a measurement-based analysis [72], the latter approach is, e.g, used in

KaZaA [73], a very popular but proprietary SuperPeer-basedoverlay network.

Depending on the intended purpose of the particular overlaynetwork, its Su-

perPeers will be selected for different reasons. In real-time applications, Super-

Peers might be chosen based on their latency to other peers, while in a very re-

strictive environment the number of open ports might be the determining factor.

In general, there are various design issues to be solved in order to decide which

peers to promote to SuperPeers. The decision might, e.g, be made by a central

control entity or based on a distributed algorithm. If a global view of the network

is available, the topx percent of all peers can directly be selected as SuperPeers.

Otherwise peers might promote themselves to SuperPeers depending on whether

they meet some given requirements or not. Furthermore, the number of peers

served by an individual SuperPeer also significantly influences the overall per-

formance of the system. A good overview of how to approach these questions is

given in [74].

Aside from file-sharing, SuperPeer-based architectures may also be used as

the basis for a variety of other applications. Skype [35], e.g., uses a SuperPeer-

based overlay topology to realize a distributed Voice-over-IP (VoIP) service. In

this context, the SuperPeers are not only used to take off theload of the central

index server and to thus provide a scalable service, but alsofor firewall traversal

and call re-routing as shown in Figure 2.18. Regular peers which are behind a

firewall or Network Address Translation (NAT), like peer A and peer B in the

figure, are usually not able to open a direct connection to each other. Therefore a

SuperPeer can be used to establish an indirect communication channel by relay-

ing the packets exchanged between those two peers. That is, independent of the

actual routing path on the IP-layer, packets from peer A to peer B and vice versa

are re-routed in the overlay network via a SuperPeer. Note, that this mechanism

36

2.3 Hybrid Architectures

SuperPeer

Peer A Peer B

Firewall NAT

Figure 2.18:Overlay re-routing in SuperPeer-based network topologies.

is not limited to the case of a missing direct connection, butmay also be used

if the regular path between two peers is congested while bothpeers still have a

good connection to the SuperPeer. This is another good example of how overlay

architectures can be and already are used to shift the intelligence from the center

to the edge of the network.

37

2 Peer-to-Peer Key Technologies

38

3 Performance Analysis of

Structured P2P Networks

Structured overlay architectures have been proposed in an effort to resolve the

problems of the classic client-server paradigm. They offera greater flexibility, are

robust against single points of failure, and most importantly are scalable in the

sense that each new participant also adds new resources to the network. However,

besides these benefits there are also new challenges which arise as a consequence

of the distributed nature of such systems. Their building blocks (the participating

peers), e.g., are not as reliable as the components of a high performance server. In

spite of the instabilities both the structure of the overlayas well as the availability

of stored resources must be maintained.

Thus, the performance of such systems has to be analyzed in more detail,

before they can be applied in a corporate environment. To be able to guarantee

certain levels of quality, we need to understand their limits and derive important

performance measures like failure probabilities or searchdelay quantiles. In this

chapter, we will first motivate that in this context not only the scalability in terms

of system size, but rather stochastic influences like the behavior of the user can

cause severe problems. This will be followed by an overview of current issues in

the field of structured overlay networks as well as differentapproaches proposed

in literature to solve them.

We provide a detailed mathematical analysis of the lookup process in Chord,

the most prominent structured p2p algorithm. In particularwe derive the peer dis-

tance distribution as well as the search delay distributionin dependence of vary-

39

3 Performance Analysis of Structured P2P Networks

ing network conditions. To investigate the influence of stochastic user behavior

on the robustness of the system, we show the limits of ring-based overlay topolo-

gies by calculating the probability to lose the structure ofthe overlay. Finally, we

evaluate the performance of more complex structures based on the XOR metric

by large scale simulation. We reveal the inherent problems of such systems and

propose modifications, which significantly improve their performance.

3.1 Functional and Stochastic Scalability

Today, scalability is the most important performance measure a carrier grade sys-

tem has to withstand. It indicates whether a system is going to work on a large

scale or not. In general, the question scalability asks, is:If a solution works for

10 customers, does it also work for hundreds, thousands, or even millions of cus-

tomers? So far, scalability mainly referred to the mere sizeof a system. Most

studies were intended to determine if a system at hand does work for growing

customer clusters. We summarize this kind of analysis underthe term functional

scalability. It tells us whether the fundamental logic of a solution is scalable.

The mere size of a system, however, is not the only factor in terms of scala-

bility a running application has to cope with. There are moreand more system

parameters having a stochastic character. Consider, e.g.,the stochastic behavior

of customers. There are numerous different random variables describing values

like the inter-arrival time, the mean on-line time, and the query rate of customers

of large scale systems. In p2p networks this stochastic behavior is defined as the

autonomy of the participating peers, i.e., the peers may join or leave the sys-

tem arbitrarily. This leads to the requirement to evaluate p2p algorithms with

respect to the stochastic on-line behavior, which is summarized under the term

"churn" [75]. This unpredictable stochastic behavior of the end user results in a

highly dynamic evolution of the p2p network and thus has a significant impact on

the functionality of the system [76]. The customer, however, is not the only factor

introducing probabilistic properties into the system. A running system also faces

40

3.1 Functional and Stochastic Scalability

Functional Scalability Stochastic Scalability

22 nodes

25 nodes

24 nodes
stable stationary
structure

24 nodes
higher churn rate
(joins and leaves)

Figure 3.1:On the definition of stochastic scalability

stochastic network loads, probabilistic variations in traffic volumes, and random

transmission delays, to name just a few. Thus, in order to provide stochastic scal-

ability, p2p networks with resilience requirements have tobe able to survive in

case of stochastic breakdowns. Stochastic scalability canbe analyzed combining

methods and techniques of both probability theory and performance analysis.

Figure 3.1 visualizes the difference between functional and stochastic scala-

bility. The functional scalability verifies whether the interworking logic is ex-

tendable to larger crowds of customers. It mathematically analyzes whether the

functionality of a system, like the search delay in the indicated Chord ring, also

works for a large number of customers. Stochastic scalability on the other hand

tries to verify whether a system can sustain the stochastic behavior of its com-

ponents. It investigates whether a system can cope with the non-deterministic

arrival, departure, and query times of the participating customers. With respect

41

3 Performance Analysis of Structured P2P Networks

to our Chord ring example, stochastic scalability raises the question whether a

system which can sustain minor churn rates also works under extreme high churn

rates? That is, we want to know how long the average customer has to stay online

in order to guarantee the functionality of the running system.

In the end a successful system must be scalable in both a functional and a

stochastic way. Without functional scalability a system will collapse under its

own size, without stochastic scalability a system will collapse under the random

variations of its components. In the following, our goal is therefore to better un-

derstand the dynamics of large scale overlay networks such as structured p2p

systems. If we want to build reliable large scale information sharing platforms

based on p2p mechanisms we need to master the complexity of such systems.

Investigating both the functional and the stochastic scalability, we will be able to

get those systems under control and achieve carrier grade availability systems in

a resource-efficient but also simple manner.

3.2 General Approaches and Related

Work

Structured p2p networks [45, 51, 55, 58] are often regarded as a further devel-

opment of unstructured p2p systems. The initial design of structured overlays,

however, shows significant scaling and performance problems. In this context,

Ratnasamy et al. [77] give a good overview of open questions in the field of DHT-

based overlays. Among others, the problems in terms of functional and stochastic

scalability, the heterogeneity of the participating peersas well as the general re-

silience of the overlay structure add up to a new field of open research.

There are several different approaches to evaluate the performance of struc-

tured overlay networks. Loguinov et al. [78] study the routing performance, the

diameter, and the degree of different structured p2p algorithms using methods

from graph theory. While each architecture is best suited for a particular sce-

42

3.2 General Approaches and Related Work

nario, they propose de Bruijn graphs as a good compromise forstructured p2p

networks. Ramabhadran et al. [47] evaluate the life time of replicated resources

using a simple Markov model which is based on the gambler’s ruin problem. The

redundancy is limited by both the total number of replicas which can be stored

in the network and the repair overhead needed to create new replicas. Due to the

complexity of structured overlays, most studies, however,are based on discrete

event simulators [79], whereas the simulation of large scale p2p networks still

requires appropriate abstractions [80]. As a final step, proof-of-concept studies

can also be realized by prototype emulation in a world wide testbed like Planet-

Lab [81].

In regard to overlay routing, one of the main problems is thatproximity in the

overlay does not reflect physical proximity. Jain et al. [82]studied the relative

delay penalty, which is a measure of the additional packet delay introduced by

the overlay, and found a latency stretch that is longer by a factor of two or more

as compared to optimal routing. To address this issue, Proximity Neighbor Selec-

tion (PNS), Proximity Route Selection (PRS), and ProximityIdentifier Selection

(PIS) were proposed and evaluated [83]. Dabek et al. [49] showed that such la-

tency optimizations can reduce the time required to locate and fetch data in the

overlay by a factor of two. Chun et al. [84] present a more generalized model for

neighbor selection and conclude that the choice of neighborselection algorithms

drives a tradeoff between performance and resilience to attacks. This effect can be

reduced by including node liveness information [85], whereeach node attempts

to populate its routing table with neighbors which tend to stay alive for a long

time

Liben-Nowell et al. [86] analyzed the evolution of continually running p2p

networks and observed [76] that the rate at which peers join and leave the net-

work is the most informative performance measure as it mightcause the network

to split, create loopy cycles, or entirely destroy the structure of the overlay. To

understand how random departure decisions of end-users affect the connectivity

of p2p networks, Leonard et al. [87] used a mathematical approach to investigate

the general resilience of random graphs to lifetime-based node failures and de-

43

3 Performance Analysis of Structured P2P Networks

rived the expected delay before a user is forcefully isolated from the graph. Li

et al. [88] compared the performance of distributed hash tables under churn us-

ing discrete event simulations and derived a performance vs. cost framework for

evaluating DHT design tradeoffs [89].

In the research community, Chord has become the most studiedalgorithm,

possibly since its ring structure is comparatively easy to analyze. Kong et al. [90]

derived an analytical framework for characterizing the performance of DHTs un-

der random failures. They showed that ring-based overlays like Chord as well as

XOR-based topologies like Kademlia are capable of routing to a constant fraction

of the network even if there is a non-zero probability of random node failures. The

original Chord algorithm, however, lacks numerous features which are inherent

to other structured overlay algorithms. As a consequence thereof, numerous work

exists which presents modifications to the original Chord algorithm. Mesaros et

al. [46] address Chord’s lack of symmetry by introducing symmetric neighbor

lists as well as a symmetric finger table structure. This improves the possibilities

for proximity neighbor selection, increases the resilience to node failures, and

decreases the lookup failure rate under churn. While most studies of DHTs un-

der such churn conditions depend on simulation as the primary investigation tool,

Krishnamurthy et al. [91] presented a complete analytical study of churn using a

master-equation-based approach. From this they derived the fraction of failed or

incorrect successor and finger pointers for any rate of churnand stabilization as

well as any system size. It follows that more maintenance overhead must be in-

vested in times of higher churn. Kunzmann et al. [21] evaluated the corresponding

costs to maintain the topology structure of Chord and to keepthe routing entries

of the participating peers up to date. They demonstrated that the number of peers

with errors in their list of successors is independent of thesize of the overlay

ring, but is heavily influenced by the online session duration of peers. By taking

up the symmetric neighbor lists from [46] and by sending notification messages

as soon as a node observes a topology change in its neighborhood, the stabiliza-

tion algorithm of Chord was modified to handle high churn rates. Independent of

the stabilization algorithm, there still remains a risk of losing all successors or

44

3.2 General Approaches and Related Work

splitting the overlay into two separate rings. A redirection mechanism [14] was

proposed to deal with such scenarios. It is able to automatically recover from a

partitioning of the overlay network.

Mahajan et al. [92] observed that statically configured overlays lead to high

costs in the average case and poor performance under worse than expected con-

ditions. They developed a self-organizing algorithm for Pastry-based systems

which continuously monitors the environment and automatically adapts the main-

tenance overhead to the observed conditions. Castro et al. [93] further evaluated

the performance of Microsoft’s Pastry implementation using large scale simula-

tions and injected real traces of node arrivals and departures which were gained

by measurements in deployed p2p systems. They also suggest to adapt the main-

tenance traffic dynamically since failure rates vary significantly with both daily

and weekly patterns. In the regarded scenarios MSPastry wasable to provide a re-

liable overlay structure with a maintenance overhead of less than half a message

per second per node. Lam et al. [94] further developed these results by regard-

ing the performance of hypercube-based overlay architectures in general. Wang

et al. [95] evaluated the resilience of CAN under failures using a Markov-chain

based approach for systems with relatively stable size and uniformly distributed

nodes. Based on their results, they propose to add finger neighbors to CAN

following the small-world model [96], which significantly improves the perfor-

mance in terms of the average path length. Wu et al. [97] followed a more general

approach and compared different lookup strategies like recursive, iterative, and

parallel queries independent of the DHT architecture. Fromthis, they derived de-

sign guidelines for the development of new overlay topologies. Zoels et al. [98]

provided a cost model for hierarchical overlay structures which are composed

of superpeers and leafnodes. This specific overlay structure is especially inter-

esting for highly heterogeneous environments, where the weaker nodes become

leafnodes which use the stronger superpeers as proxies.

Recent studies increasingly deal with the maintenance of replicas in structured

overlay networks. In general, there are two popular redundancy schemes: simple

replication and erasure coding, where each object is divided inton differently en-

45

3 Performance Analysis of Structured P2P Networks

coded fragments, whereas anym < n fragments suffice to recreate the original

data. Rodrigues et al. [99] give a good comparison of both schemes. In particular,

they show that in some cases the benefits from coding are limited and may not be

worth the additional effort. Bhagwan et al. [100] quantify the storage overhead

required to deliver a specified level of availability. They conclude that high avail-

ability under churn is best achieved by applying erasure coding while adding ad-

ditional redundancy in terms of replication to the system. Datta et al. [48] perform

a Markovian time-evolution analysis to compare different maintenance strategies

under churn. Assuming exponential online and offline durations, they derive the

probability mass function of the number of replicas available in steady state. Sit

et al. [101] show that reactively creating new replicas by responding to failures in

the system leads to bandwidth spikes at the peers. They propose to constantly cre-

ate new replicas according to a user-specified bandwidth limit in order to smooth

the bandwidth usage over time. Finally, Rhea et al. [75] discuss different algo-

rithms to handle churn in a DHT. Experiments in a testbed environment using

ModelNet as a network emulator showed that it is possible fora DHT to operate

at churn rates which are higher than those observed in deployed p2p systems.

3.3 Delay Analysis of Chord-based

Overlay Networks

So far, in best effort file-sharing systems the search delay was not really critical

to the end-user since file download time exceeded the preceding lookup time of

the files location by magnitudes. In structured p2p networks, however, the time

needed to complete a search for resources stored in the overlay is the most impor-

tant performance measure. Real-time applications with certain quality of service

demands, like VoIP telephony, chatting, or instant messaging are dependent on

the time needed to find their communication partner. By design, DHT based p2p

algorithms are able to retrieve information stored in an overlay network consist-

46

3.3 Delay Analysis of Chord-based Overlay Networks

ing of n peers by usingO(log2(n)) messages to other peers. This statement,

however, is very vague, since it only tells us the order of magnitude of the search

delay and does not provide us with sufficient details on search duration statistics.

In addition to the functional scalability in terms of the system size, the highly

probabilistic physical link delay also strongly influencesthe performance of

searches in such p2p overlay network. As a first step toward analyzing the perfor-

mance of structured p2p networks, we therefore evaluate theimpact of the system

size as well as the impact of the network delay variation on search times in DHT

based p2p systems [26]. The main goal is to prove functional and stochastic scal-

ability in very large Chord rings [24], to be able to guarantee certain quality of

service demands in large peer populations. The enormous complexity of such

systems makes an evaluation by simulation on packet level rather intractable.

We therefore deduce an analytical performance model for real-time applications

based on the Chord algorithm. While the calculation of the mean of the search

duration is quite straightforward, the computation of the quantiles of the search

duration is more complex. The quantiles, however, have an important impact on

the quality of service experienced by the end user. Making some plausible as-

sumptions, we therefore derive the entire delay distribution function. To capture

the influences of the physical path delay, the impact of network delay variation is

taken into consideration as well.

3.3.1 Computation of the Peer Distance

Distribution

The basic idea of the search delay analysis is to first derive the distribution of

the number of overlay hops it takes to contact random overlaypeers and to then

calculate the delay of the corresponding overlay paths. We therefore use the fol-

lowing random variables:

TN : describes the delay of a query packet, which is transferredfrom one over-

lay peer to another overlay peer

47

3 Performance Analysis of Structured P2P Networks

TA: represents the time needed to transmit the answer from the peer (having

the answer) back to the originator of the search

T : describes the total search duration from the initial querypacket until the

answer arrives at the searching peer

X: indicates how many times a query has to be forwarded until itreaches the

peer having the answer.X will be denoted as the peer distance

H : number of overlay hops needed to complete a search, i.e. thenumber of

forwards of the query plus one hop for the transmission of theanswer

n: size of the Chord-ring

Note, that we distinguish betweenTN andTA, as the size (and therefore the

delay) of a search packet and an answer packet may be unequal.The answer

might, e.g., consist of multiple packets containing a detailed reply to the query.

In the first step, we compute the probability distribution ofthe peer distanceX.

Since according to the Chord algorithm a search is recursively forwarded to the

closest finger, we are able to calculate the number of hops needed to reach the

peer, that answers a specific query. From this, we derive the probability pi =

P (X = i) that the searched peer is exactlyi hops away from the searching peer.

Special Case of Binary Exponential Peer Populations

To provide an overview, we start with Chord rings whose size is a power of 2.

In an overlay network of this specific sizen = 2k, k = log2(n) is an integer and

each peer hask distinct fingers. Thereby, thei-th finger of a peerz is used for

searches for all peers whose corresponding hash values fallin the region between

[idz + 2i−1, idz + 2i − 1] where idz is the hash value of peerz. This can

be illustrated using the example in Figure 3.2. In this context the 4th finger of

peer 1, which is pointing to peer 9, is responsible for all peers between[9, 16] =

[1 + 24−1, 1 + 24 − 1].

Taking this into account, we construct Table 3.1 consistingof four columns.

The first column represents the peer distanceX. The second column states the

48

3.3 Delay Analysis of Chord-based Overlay Networks

1

9

13

15
 3

11
 7

5

4

2

6

8
10

12

14

16

Figure 3.2:Finger-table of peer 1 in a 16 peer Chord ring

number of hopsH needed to complete a search. In the case ofX = 0 the

searched document is directly stored at the searching peer.A search answered

locally likewise requires 0 hops. To complete a search answered by a peer that

is X > 0 hops away, however, we needX hops to reach that peer and one ad-

ditional hop to send the answer back to the originator. AltogetherX + 1 hops

are needed to perform this kind of search. Column 4 finally describes the random

variableT representing the time needed to complete such searches by adding X

times the delay of a forwarded query packet plus the time needed to transmit the

answer back to the originator.

The probabilitypi = P (X = i) in column 3 is governed by the following

theorem:

Theorem. The probability that the searched peer is exactlyi hops away from the

searching peer in a Chord ring of size2k (and thus with log2(2
k) = k fingers)

with symmetric search space and uniformly distributed keysis

pi = P (X = i) =

(
k

i

)

2k
(3.1)

Proof. We argue by induction.

49

3 Performance Analysis of Structured P2P Networks

Table 3.1:Peer distance distribution and search time
X H P (X = i) search timeT

0 0 p0 =
(log2(n)

0)
n

0

1 2 p1 =
(log2(n)

1)
n

TA + TN

2 3 p2 =
(log2(n)

2)
n

TA + TN + TN

...
...

...
...

i i+1 pi =
(log2(n)

i)
n

TA +
∑i

x=1 TN

log2(n) log2(n) + 1 plog2(n) =
(log2(n)

log2(n))
n

TA +
∑log2(n)

x=1 TN

Basis:

For k = 0, in a ring with20 = 1 node, there is exactly1 =
(
0
0

)
node, that is 0

hops away from the only peerz. Thereforep0 =
(00)
20 .

For k = 1, in a ring with21 = 2 nodes, there is exactly1 =
(
1
0

)
node, that is 0

hops away from peerz and exactly1 =
(
1
1

)
node, that is 1 hop away from peerz.

Thereforep0 =
(10)
21 andp1 =

(11)
21 .

Induction hypothesis:

Assume the theorem is true fory ≤ k

Induction step:

Prove the theorem is also true fork + 1

To calculate the number of peers that arei hops away from a peerz in a Chord

ring of size2k+1, we divide the Chord ring into two parts consisting of the first

2k and the last2k peers respectively. We then calculate the number of peers that

arei hops away from peerz in those two parts of the original ring and simply add

those two numbers up.

50

3.3 Delay Analysis of Chord-based Overlay Networks

First2k nodes: In a Chord ring of size2k+1 a peerz hask + 1 fingers. The first

k fingers are responsible for the first2k nodes. By induction hypothesis there are

exactly
(

k

i

)
peers that are i hops away from peerz in this part of the ring.

Last2k nodes: The(k+1)-th finger covers the remaining2k peers in the original

Chord ring. By induction hypothesis there are exactly
(

k

m

)
peers that are m hops

away from the(k+1)-th finger in this part of the ring. Since the(k+1)-th finger

is exactly 1 hop away from peerz, there are
(

k

i−1

)
peers in this part of the ring

that arei hops away from peerz (one hop to reach the finger-peer andi− 1 hops

to reach the corresponding peer).

Altogether there are
(

k

i

)
+
(

k

i−1

)
=
(

k+1
i

)
peers that are exactlyi hops away from

peerz. Since there are2k+1 peers the probability that another peer is exactlyi

hops away from peerz is pi =
(k+1

i)
2k+1 .

Conclusion:

Together, the basis and the induction step imply that the theorem holds for all pos-

sible cases, i.e., in a Chord ring of sizen = 2k the probability that the searched

peer is exactlyi hops away from the searching peerz is

pi =

(
k

i

)

2k
.

This result is also consistent with [78], where the Gaussianpeer distance distri-

bution assumed in [45] was shown to actually stem from a binomial distribution.

Arbitrary Number of Peers

So far we considered the special case of a binary exponentialpeer population.

We now extend the model to an arbitrary number of peers under the same assump-

tions made before. In a Chord ring of arbitrary sizen we havek = ⌈log2(n)⌉
distinct fingers. That is, a Chord ring of this size maintainsjust as many different

fingers as a Chord ring of sizem = 2k, the next largest power of 2. Since we

51

3 Performance Analysis of Structured P2P Networks

are assuming serially numbered peers, thei-th finger of a peerz still points to the

same peeridz + 2i−1 for i = 1 to ⌈log2(n)⌉. In other words we can compare

Chord rings of arbitrary sizen to Chord rings of binary exponential sizem, ex-

cept thatm − n peers are missing between the last finger and the searching peer

itself.

1

9

3
11

7

5

4

2

6
8

10

12

Figure 3.3:Finger-table of peer 1 in a 12 peer Chord ring

Figure 3.3 illustrates this issue for a Chord ring of size 12.The figure resem-

bles Figure 3.2 insofar as searches for peers 1 to 8 originating at peer 1 still

require the same number of hops. The only difference is that the last finger point-

ing to peer 9 is now covering less peers and is thus responsible for less searches.

On account of this, we divide a Chord ring of arbitrary size into two parts to cal-

culate the peer distance distributionX. Thereby, the first part consists of the first

2k−1 peers, while the second part includes the remaining peers. In conjunction

with the preceding theorem we conclude the following corollary, calculating the

numberfn(i) of peers in a Chord ring of arbitrary sizen that arei hops away

from the searching peerz:

Corollary. The numberfn(i) of peers in a chord ring of arbitrary sizen (and

therefore with⌈log2(n)⌉ distinct fingers) that arei hops away from the searching

52

3.3 Delay Analysis of Chord-based Overlay Networks

peer is:

fn(i) =






(
k

i

)
, if n = 2k

(
k−1

i

)
+ fn−2k−1 (i − 1), if 2k−1 < n < 2k

(3.2)

The corollary exploits the fact that there are no changes in the structure of

the first2k−1 peers compared to an independent Chord ring of size2k−1 and

recursively calculates the hops needed for searches covered by the last finger.

Note that in the recursive calculation we have to subtract one hop needed to reach

the responsible finger. Finally to getpi in the arbitrary case,fn(i) will be divided

by n:

pi =
fn(i)

n
(3.3)

Note that the theorem as well as the corollary both rely on an abstract model

which is based on serially numbered peer ids. That is, in a Chord ring of sizen

the peer ids are numbered1, 2, ..., n, such that peer numberz hasidz = z. In a

real Chord ring of sizen, identifier space sizeN = 2j , and equally distributed

peers, however, peer numberz has

idz = 1 + (z − 1) ·
⌈

N

n

⌉

In this case the assumption that the fingers of peer number1 are directly pointing

to peers number

1 + 2i−1, i = 1, ..., k (3.4)

is no longer obvious. Instead, according to the Chord algorithm the fingers of

peer number1 are pointing to the first peers, whose ids are directly succeeding

1 + 2j−b, b = 1, ..., j on the Chord ring, respectively. That is, the fingers are

53

3 Performance Analysis of Structured P2P Networks

pointing to peers numberzb where

zb = min{x : 1 + (x − 1) ·
⌈

N

n

⌉
≥ 1 + 2j−b}, b = 1, ..., j (3.5)

In the special case of binary exponential peer populationsn = 2k it follows that

zb = min{x : 1 + (x − 1) · 2j

2k
≥ 1 + 2j−b} (3.6)

= min{x : x ≥ 1 + 2k−b} (3.7)

Sincex has to be an integer the fingers of peer1 are thus pointing to peers number

1+2k−b, b = 1, ..., k, which are exactly the same peers as in Equation 3.4 where

the peer ids were numbered serially. In the special case ofn = 2k the proof can

thus be extended to non-contiguous peer ids.

3.3.2 Analytical Model of the Search Delay

As a result of the last section we now know the peer distance distributionX.

From this we derive the length in hops of the path a particularsearch-query takes

through the network. We also know the probabilitypi that a search takes ex-

actly this path. Using these basic relations we can compute the distribution of the

search delay as a function of the network delay characteristics. First, the basic

relations in our model are illustrated followed by the direct computation of the

mean and the variation of the search duration.

The phase diagram of the search delay is depicted in Figure 3.4. The search

starts at the left side of the figure. A particular pathi is chosen with probabilitypi

where phasei consists ofi network transmissionsTN to forward the query to the

closest known finger and one network transmissionTA to send the answer back

to the searching peer. Again note, that we distinguish betweenTN andTA as the

size and therefore the delay of the answer might be significantly larger then the

simple search request itself.

54

3.3 Delay Analysis of Chord-based Overlay Networks

T
N
T
N

T
N
T
N

T
N
T
N

T
N
T
N
 T
N
T
N
T
N
T
N

T
N
T
N

T
N
T
N

T
N
T
N

T
A
T
A

T
A
T
A

T
A
T
A

T
A
T
A

p
1

p
0

p
2

p
i

p
k

i
-
times

k
-
times

Figure 3.4:Phase diagram of the search durationT

By means of the phase diagram, the generating function, and the Laplace-

Transform respectively can be derived to cope with the case of discrete-time or

continuous-time network transfer delay. The generating function of the search

delay is accordingly:

X(z) = p0 +

k∑

i=1

pi · XA(z) · Xi
N (z) (3.8)

and the Laplace-Transform:

Φ(s) = p0 +
k∑

i=1

pi · ΦA(s) · Φi
N (s) (3.9)

The mean and the coefficient of variation of the search delay can also directly

55

3 Performance Analysis of Structured P2P Networks

be calculated as such:

E[T] =

k∑

i=1

pi · E[T |k = i] (3.10)

=
k∑

i=1

pi · (E[TA] + i · (E[TN])) (3.11)

E[T 2] =
k∑

i=1

pi · E[T 2|k = i] (3.12)

=

k∑

i=1

pi · (V AR[TA] + i · V AR[TN] (3.13)

+ (E[TA] + i · E[TN])2) (3.14)

and

c2
T =

E[T 2] − E[T]2

E[T]2
(3.15)

3.3.3 Influence of Stochastic Network Conditions

In this section we present numerical results to illustrate the dependency of the

search duration on the stochastic variation of the network transfer delay and to

give insight into the functional scalability of Chord-based overlay networks. First,

we will show the mean and the coefficient of variation (CoV) ofthe search du-

ration. Subsequently, the shape of the search delay distribution function will be

discussed, followed by the quantile analysis, i.e. the guaranty thatα percent of

searches will need less thant seconds.

Regarding the results in this section, the delayTN is assumed to be identical

to the delayTA. To unify the following parametric study the delayTN is further

modeled by means of a two-parameter negative-binomially distributed random

variable. If not stated otherwise, the coefficient of variation cTN
of TN is set to

56

3.3 Delay Analysis of Chord-based Overlay Networks

1 and the meanE[TN] of TN is set to 50ms, since 50ms is the value assumed

in the original Chord Paper [45]. Furthermore, we divide theobtained results by

E[TN] where appropriate to obtain more general conclusions.

0 2000 4000 6000 8000 10000
1

2

3

4

5

6

7

8

Chord size n

M
ea

n
se

ar
ch

 d
el

ay
 /

E
[T

N
]

Figure 3.5:Impact of the Chord size on the mean search delay

Figure 3.5 shows the mean search delay as a function of the size of the Chord

ring. We can observe that the search delay rapidly increasesat smaller values of

n, but stays moderate for very large peer populations. The curve is not strictly

monotonically increasing as expected since a small decrease can be seen when

the populationn just exceeds a binary exponential value2i. This effect can be

explained as follows: Once the size of the population crosses the next power of

2, the finger table of each peer grows by one entry according toour assumptions.

Thus, the mean search duration slightly decreases at this point.

The coefficient of variationcT of the search delayT is depicted in Figure 3.6

as a function of the peer population, for different transmission delay coefficients

of variation. The variation of the search duration increases with cTN
, the coef-

ficient of variation of a single overlay hop. However, it decreases as the Chord

size increases, due to the increasing number of hops needed in larger Chord pop-

ulations. That is, the variance of the overall search duration is reduced due to the

increasing number of convolutions of overlay hops.

57

3 Performance Analysis of Structured P2P Networks

0 200 400 600 800
0

0.5

1

1.5

2

Chord size n

S
ea

rc
h

D
el

ay
 C

oV
 c

T
c

T
N

=

2

1.5

1
0.5

Figure 3.6:Search delay variation as a function of the peer population

This effect is also illustrated in Figure 3.7, where the dependency ofcT oncTN

is analyzed. Again it can be seen thatcT is smaller thancTN
, as the convolution

of multiple overlay hops reduces the coefficient of variation of the overal search

duration. The size of the Chord population itself has a comparatively small effect

on cTN
.

0 0.5 1 1.5 2 2.5 3 3.5
0.2

0.4

0.6

0.8

1

1.2

Coefficient of variation of T
N

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
of

 T

n=
103

104

105

106

Figure 3.7:Dependency ofcT on cTN

58

3.3 Delay Analysis of Chord-based Overlay Networks

In Figures 3.8 and 3.9 we study the dependence of the entire distribution func-

tion of the search delay on the network latency variationcTN
and the peer pop-

ulation n, respectively. The size of the peer population in Figure 3.8is set to

105 peers. As expected, the probability that a search takes longer increases to-

gether with the coefficient of variation of the network latency cTN
. The curves

in Figure 3.8 intersect as they share the same meanE[TN] but have different

coefficients of variationcTN
.

0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

t/E[T
N

]

P
(T

>
t)

c
T

N

= 0.5 1 1.5 2

Figure 3.8:Distribution function of the search delay

Figure 3.9 proves the scalability of the search delay. By increasing the size of

the Chord ring from103 peers to106 peers the search delay distribution does

not escalate exponentially but increases by a linear factor. The chosen values of

n correspond approximately to current file sharing networks like the eDonkey

network [62].

Figures 3.10 and 3.11 depict the quantile of the search delayT . In Figure 3.10

different quantiles for the search delay are taken as a parameter. For example

the curve with the 99%-quantile indicates that 99 percent ofsearch durations lie

below that curve. For a peer population of, e.g., n=3000 in 99percent of all cases

the search delay is less then roughly 15 times the average network latency. It can

be seen that the curves indicate bounds of the search delay, which can be used for

59

3 Performance Analysis of Structured P2P Networks

0 5 10 15 20 25 30 35

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t/E[T
N

]

P
(T

>
t)

n= 103 104 105 106

Figure 3.9:Distribution function of the search delay

dimensioning purposes, e.g., to know the quality of servicein a search process

with real-time constraints like looking at a phone directory, taking into account

the patience of the users. Compared to the mean of the search delay the quantiles

of the search delay are on a significantly higher level. Stillthe search delay scales

in an analogous manner for the search delay quantiles.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

Chord size n

S
ea

rc
h

de
la

y
bo

un
d

/ E
[T

N
]

0.9999−quantile

0.99−quantile

0.95−quantile

mean

Figure 3.10:Search delay quantiles

60

3.4 Evaluation of the Stability of Ring-based Architectures

Figure 3.11 depicts the 99%-quantile of the search delay, again with the coef-

ficient of variation ofTN as a parameter. There are five vertical lines atn=512,

256, 128, 64, and 32 to point out the previously mentioned oscillations atn = 2i.

The largercTN
we chose, i.e. the more variation there is in the network delay, the

0 200 400 600 800 1000
0

5

10

15

20

25

Chord size n

S
ea

rc
h

de
la

y
bo

un
d

/ E
[T

N
]

c
T

N

= 2

c
T

N

= 1

c
T

N

= 0.5

Figure 3.11:Influence of the CoV ofTN on the search delay quantiles

larger is the 99%-quantile of the search duration. It is therefore more difficult to

guaranty Service Level Agreements in networks with larger delay variation. Time

outs, e.g. have to be set to higher values accordingly.

3.4 Evaluation of the Stability of

Ring-based Architectures

The analysis in the last section represents a first step to validate the functional

scalability in terms of the system size as well as the stochastic scalability in terms

of network delay variation. However, the stability of structured overlay networks

is also strongly affected by the dynamic behavior of the end user [20]. When

many peers leave the network simultaneously, the overlay may be split into sev-

61

3 Performance Analysis of Structured P2P Networks

eral disjoint networks or even collapse entirely. In case ofsuch an inconsistent

overlay state, successful searches can no longer be guaranteed and it might even

not be possible to reestablish a stable overlay network again. A general analysis

of the evolution of such systems can be found in [76] and [75].In this section, we

concentrate on ring-based overlay networks and analyze theway they preserve

reachability and stability of the overlay network. The stability of such systems

depends on the number of overlay connections a peer maintains. In contrast to

previous studies [45] we show that the probability to lose the overlay structure of

a ring-based DHT is not negligible in all cases. In particular, we present an ana-

lytical expression that can be used to calculate the probability to lose the routing

functionality of a DHT given a certain number of overlay connections. We are

able to evaluate the consequences of maintaining too many ortoo few overlay

connections in a running system. The analysis can also be used to compute the

actually necessary number of overlay connections to guarantee a stable overlay

network.

3.4.1 Abstract Mathematical Model

In general, a p2p overlay network is connected if there exists a route from every

peer to every other peer. In ring-based overlay structures this is achieved by each

peer storing pointers to the firstr successors on the ring, i.e. pointers to the first

r peers that follow the peer in a clockwise direction on the ring. Thus, if one

of the peer’sr successors goes offline, the peer will still know the nextr − 1

peers on the ring. If a peer, however, loses all itsr successors, the ring will be

disconnected. According to previous studies [45] the connectivity of a Chord

ring can be obtained with high probability as long asr = Ω(log2(n)), wheren

is the current number of peers in the ring. In this context, the network is assumed

to stay connected, even if every peer fails with probability1
2
. The proof relies

on the fact that even though every individual peer fails withprobability 1
2
, it

is very unlikely that allO(log2(n)) successors of a peer fail at the same time.

The conclusion that thus all peers stay connected with high probability, however,

62

3.4 Evaluation of the Stability of Ring-based Architectures

misses a subtle point. Although a local disconnection (one specific peer loses all

its successors) might be very unlikely, one can not draw the conclusion that a

global disconnection (at least one peer in the overlay losesall its successors) is

very unlikely as well. To gain a better understanding of thissubtle but important

point, we introduce some definitions:

• pfail: probability that a node fails

• pld(r): probability that a specific node loses all itsr successors and gets

locally disconnected

• pgd(n, r, pfail): probability of a global disconnection, i.e. the probability

that at least one peer gets locally disconnected in a networkof size n,

where each node knowsr successors and each node fails with probability

pfail

The probability for a local disconnection can then easily becalculated as

pld(r) = pr
fail. (3.16)

Obviously, the more successors a peer has, the less likely itgets locally discon-

nected. Since, in general, peers maintain a successor list of sizer = O(log2(n)),

a local disconnection is less likely in larger networks. However, based on this

observation alone, we can not conclude that the probabilityof a global discon-

nection is comparably small as well. The more nodes there arein the overlay

network, the higher the probability that at least one of themgets locally discon-

nected. In other words, there is a trade-off between these two mechanisms. On

the one hand, the larger the overlay ring becomes, the more successors are main-

tained by a peer, resulting in a smaller probability for a local disconnection. On

the other hand, the larger the overlay ring becomes, the morepeers run the risk

of getting locally disconnected, resulting in a higher probability for a global dis-

connection.

63

3 Performance Analysis of Structured P2P Networks

To estimate the stability of a ring-based overlay structure, we need to calculate

the probabilitypgd(n, r, pfail) of a global disconnection, i.e. the probability that

at least oncer or more contiguous peers fail on the ring. As an approximation we

neglect the ring structure of the overlay network and imagine the overlay peers

arranged in an ascending row as shown in Figure 3.12. We regard the probability

11 rr nnr - 1r - 1

Figure 3.12:Then peers of a Chord ring arranged in an ascending row.

prd(x, r, pfail) that at least oncer or more contiguous peers fail in such a row

of x peers. Moreover, we can assume a random distribution of failures, since

the hash function distributes peers equally in the identifier space and physical

proximity therefore does not reflect overlay proximity. Forthe sake of simplicity,

we use the short notationprd(x) instead ofprd(x, r, pfail) where appropriate.

Obviously, the probability thatr or more peers fail in a row of less thanr peers

is zero, as indicated by the dotted peers in Figure 3.12. If weconsider the same

probability in a row of exactlyr peers, all peers have to fail accordingly. The

corresponding equations are:

prd(x, r, pfail) = 0 if x < r (3.17)

prd(x, r, pfail) = pld(r) = pr
fail if x = r. (3.18)

In case ofx > r we obtain:

prd(x) = prd(x − 1) + (1 − prd(x − r − 1)) · (1 − pfail) · pld(r). (3.19)

The probabilityprd is defined recursively. To calculateprd(x), we take the prob-

ability prd(x−1) that there was at least one local disconnection in the firstx−1

peers and add the probability that the first local disconnection occurs at peerx.

The second term of this sum is best explained using Figure 3.13. There are two

64

3.4 Evaluation of the Stability of Ring-based Architectures

)1(1 −−− rxprd failp−1)(rpld

1−− rx1 xrx−

Figure 3.13:Probability, that the first local disconnection occurs at peerx.

requirements in order that the first local disconnection occurs exactly at peerx.

First of all, there must not be a local disconnection in the firstx− r − 1 peers as

indicated by the box in Figure 3.13. Secondly, peerx − r must not fail, while all

of the lastr peers have to fail to cause the disconnection at peerx.

According to Equations 3.17 and 3.18, the first local disconnection can occur

at peerr. Thus, there are stillr − 1 peers that could experience a local discon-

nection but are not accounted for in our equation. To improvethe accuracy of our

approximation, we addr − 1 peers at the end of the row as shown in Fig 3.14.

Thus, there aren peers in a row ofn + r − 1 peers that can experience a lo-

11 rr nnr - 1r - 1 n + r - 1

n peers

Figure 3.14:The firstr − 1 peers are added to the end of the row.

cal disconnection. The resulting approximation for the probability of a global

disconnection in a Chord ring of sizen is:

pgd(n, r, pfail) ≈ prd(n + r − 1, r, pfail). (3.20)

The reason for the approximation is that we neglect the ring structure of the over-

lay network. In fact the probability is slightly overestimated since ther− 1 peers

we added at the end of the row are obviously correlated with the firstr − 1 peers

in the row. That is, there are some failure patterns in the last r−1 recursion steps

65

3 Performance Analysis of Structured P2P Networks

that have already been taken into account before and are thuscounted twice. Note

that the formula is not limited to the special case of

r = ⌈log2(n)⌉.

In fact, we are able to evaluate the consequences of using toolarge or too small

values forr, i.e. of using more or less than log2(n) successors.

3.4.2 Derivation of Realistic Failure Probabilities

In the previous section we were simply assuming values forpfail, the probability

that a node fails. In practice, however, there is not much sense in saying a node

fails with a certain probability, without specifying a corresponding time frame. To

guarantee overlay stability, a peer refreshes its successor list everytstab seconds

by periodically calling astabilize()procedure. Thisstabilize()function takes care

that a peer’s successor list is up to date by merging its list with the list of its clos-

est successor. Thus, a peer gets locally disconnected if allof its known successors

go offline between twostabilize()calls. Therefore, one should consider the prob-

ability that a peer fails within this periodic update interval instead of assuming

some arbitrary values forpfail.

On account of this, we regardEon, the average online time of a peer in sec-

onds. Assuming that the online time is exponentially distributed withλon = 1
Eon

it follows that

A(t) = 1 − e−λont (3.21)

is the distribution function of the online time of a single peer. Due to the mem-

oryless property of the exponential distribution the probability that a peer goes

offline within tstab seconds is:

pfail = A(tstab) = P (A ≤ tstab). (3.22)

66

3.4 Evaluation of the Stability of Ring-based Architectures

Note that the probability that a peer goes offline and online again within tstab

seconds is neglected in this context. We can then use thispfail in Equation 3.20

to calculate the probability of a global disconnection within tstab seconds. The

probability of a global disconnection increases with the number of stabilize()

calls. The longer the overlay ring exists, the greater the probability of a global

disconnection within its lifetime becomes. The probability pit(n, i) that a ring

of sizen gets globally disconnected sometime withini stabilize()calls can be

calculated as follows:

pit(n, i) = 1 − (1 − pgd(n, r, pfail))
i. (3.23)

Note, that in the context of peer lifetimes heavy-tailed distributions are more

resilient than those with light-tailed (e.g., exponential) distributions [87].

3.4.3 Validation of the Stability of the Overlay

Structure

In this section we concentrate on the evaluation of Chord, the most prominent

structured p2p overlay network. The results regarding the problem of a discon-

nection, however, are valid for any ring-based overlay network. At first we have

a closer look at the probability of a local disconnection. Figure 3.15 illustrates

the probability of a local disconnection (cf. Equation 3.16) against the overlay

size for three different failure probabilities of a peer. The number of successors

is thereby set to⌈log2(n)⌉. As expected the probability of a local disconnection

strongly decreases with the size of the overlay network. This is obviously due

to the fact that a peer maintains more successors in larger networks and is thus

less likely to be disconnected. Note that in a ring of sizen = 106 and a failure

probability ofpfail = 1
2

we have a very low probability of a local disconnection

of about10−6.

To show that based on these facts alone, we can not derive a very low probabil-

ity for a global disconnection as well, we calculate the probability of a global dis-

67

3 Performance Analysis of Structured P2P Networks

10
1

10
2

10
3

10
4

10
5

10
610

−40

10
−30

10
−20

10
−10

10
0

Overlay size n

p ld
(

lo
g 2(n

)
)

p
fail

= 0.5

p
fail

= 0.1

p
fail

= 0.01

Figure 3.15:Probability of a local disconnection for different values of pfail

connection forpfail = 1
2
. Figure 3.16 shows this probability (cf. Equation 3.20)

for networks of sizen = 2k, where each peer maintains a successor list of size

r = log2(n) = k. The probability of a global disconnection does indeed de-

10
0

10
1

10
2

10
3

10
4

10
5

10
60.35

0.4

0.45

0.5

0.55

0.6

Overlay size n

p gd
(2

k ,k
,0

.5
)

Simulation
Analysis

Figure 3.16:Global disconnection probability in the special case ofpfail = 1
2
.

crease with the size of the overlay network. However, it doesnot approach zero

68

3.4 Evaluation of the Stability of Ring-based Architectures

but asymptotically reaches a probability of about 40 percent. So when every node

fails with probabilitypfail = 1
2

and every peer maintains a successor list of size

r = log2(n) Chord does not stay connected with very high probability butgets

disconnected with a probability of roughly 40 percent.

To confirm this result we simulated the probability of a global disconnection

by generating snapshots of rings of a specific size and counted the percentage

of those rings that did not get disconnected after 50 percentof all peers failed.

The simulations were repeated until the confidence intervals became smaller than

0.001. For smaller values ofn the results obtained by our analysis are slightly

above the simulated values as the analysis does not take the ring structure into

account. The error becomes negligible for overlay sizes above n = 100.

In practice, however, a failure probability ofpfail = 1
2

is obviously too pes-

simistic. To obtain realistic values forpfail we evaluate Equation 3.22 for differ-

ent average online times of a peer and different values oftstab. Figure 3.17 shows

that even if the average peer only stays online for 10 minutesand successor lists

are only refreshed every 60 seconds, the probability that a peer fails within this

frame of time is still less than 10 percent.

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

Average online time E
on

 [min]

p fa
il t

stab
 = 15s, 30s, 45s, 60s

Figure 3.17:Failure probabilities in dependency of the average online time

In the following analysis we therefore concentrate onpfail= 0.1, 0.05, and

69

3 Performance Analysis of Structured P2P Networks

0.01. Figure 3.18 illustrates that a global disconnection is very unlikely for these

values ofpfail. Even for a peer failure probability of 10 percent, a Chord ring

of size105 will be globally disconnected with a probability of less than 10−12.

The staircase shape of the curve arises from the fact that theplot is done for

arbitraryn and corresponding successor lists of sizer = ⌈log2(n)⌉. So when-

ever the overlay sizen crosses a power of two, each peer starts to maintain one

additional successor in its successor list. Therefore, theprobability of a discon-

nection abruptly decreases whenever a power of two is exceeded. It then slightly

increases until the next power of two, since the probabilityof a local disconnec-

tion stays the same, but there are more peers that can get disconnected and cause

a global disconnection.

0 2 4 6 8 10 12
x 10

4

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

Overlay size n

p gd
(n

,
lo

g 2(n
)

,p
fa

il) p
fail

= 0.1

p
fail

= 0.5

p
fail

= 0.01

Figure 3.18:Probability of a global disconnection with⌈log2(n)⌉ successors.

So far, the results relied on a dynamic adaptation of the sizeof a peers suc-

cessor list. In practice, however, it is more common to choose a fixed successor

list size a priori. Figure 3.19 illustrates the probabilityof a global disconnection

for fixed successor list sizes of 3, 6, and 9. The failure probability of a peer is

set topfail = 0.01. As we can see, the probability of a disconnection increases

with the overlay size but scales very well to larger networks. Moreover, the or-

70

3.4 Evaluation of the Stability of Ring-based Architectures

0 2 4 6 8 10 12
x 10

4

10
−20

10
−15

10
−10

10
−5

10
0

Overlay size n

p gd
(n

,r
,0

.0
1)

r = 3

r = 6

r = 9

Figure 3.19:Impact of a fixed number of successors on the global disconnection.

der of magnitude of the probability of a global disconnection can be adjusted by

choosing the corresponding successor list size. Obviously, less than⌈log2(n)⌉
neighbors are sufficient to guarantee a stable ring when we assume a realistic

failure probability ofpfail = 0.01.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of successors r

p gd
(n

,r
,0

.5
)

n = 25 n = 210 n = 215

Figure 3.20:Global disconnection probability for different successorlist sizes.

71

3 Performance Analysis of Structured P2P Networks

To illustrate the effects of extremely high failure probabilities we plot the

probability of a global disconnection against the number ofsuccessorsr. In Fig-

ure 3.20 we show the results for a peer failure probabilitypfail = 1
2

and three

different ring sizesn = 25, 210, and215. The vertical black dotted lines repre-

sent the suggested successor list size⌈log2(n)⌉. Again, the suggested number of

successors results in a disconnection probability of about40 percent. To guaran-

tee a global disconnection probability close to zero in thisexample, a peer has to

maintain a successor list of size⌈log2(n)⌉ + 7 or more.

Note that so far we calculated disconnection probabilitieswithin one single

stabilize()period. However, the probability of a global disconnectionincreases

over time. The longer the Chord ring exists, the greater the probability that it

gets disconnected within its lifetime. Figure 3.21 plots the probability that a ring

gets disconnected sometime withini stabilize()calls against the number ofsta-

bilize() calls for different global disconnection probabilities (cf. Equation 3.23).

Assuming astabilize()period of lengthtstab = 30 seconds,8 · 104 stabilize()

0 2 4 6 8
x 10

4

10
−15

10
−10

10
−5

10
0

Number of stabilize() calls

G
lo

ba
l d

is
co

nn
ec

tio
n

pr
ob

ab
ili

ty

p
gd

 = 10−5

p
gd

 = 10−10

p
gd

 = 10−15

Figure 3.21:Probability of a global disconnection afteri stabilize() calls

calls roughly correspond to one month. Thus, the probability that a Chord ring

gets disconnected sometime within the first month of its lifetime is by magnitudes

greater than the same probability within one singlestabilize()period.

72

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

3.5 Simulative Evaluation of a

Carrier-Grade Kademlia Network

Most scientific studies as well as our analysis in the last section concentrate on

Chord or other ring-based overlay structures. This is probably due to the fact that

even though all DHTs share the same basic principle, the ring-structure is by far

the most easy to analyze. The majority of actually deployed overlay networks,

however, make use of the more complex Kademlia protocol [51]. It replaces the

server in the latest eMule modifications and is used as a distributed tracker in the

original BitTorrent as well as in the Azureus client [52]. The latter continuously

attracts more than one million simultaneous users world wide. Despite all this

there are only few scientific papers evaluating the performance of the Kademlia

algorithm. In [89] and [90] the performance of different DHTalgorithms includ-

ing Kademlia is evaluated and compared. Modifications to support heterogeneous

peers are introduced in [102]. Finally in [103] an analysis of the lookup perfor-

mance of Kad, the Kademlia-based DHT used in eMule, is given.The authors

examine the impact of routing table accuracy on efficiency and consistency of

the lookup operation and propose adequate improvements.

Like all structured p2p networks, Kademlia has explicitly been designed to

scale to a large number of peers in the overlay. Therefore thereal scalability

issue is not in terms of system size but in terms of churn [75].That is, the fre-

quency at which peers join and leave the system has significantly more influence

on its robustness and stability than the mere size of the system itself. In this

section we therefore uncover the problems caused by churn and show how to

avoid them [13]. In particular, we study the search duration, the overlay stability,

and the required maintenance traffic. We will then describe the weak points we

discovered and pinpoint their root causes. For each problemwe will present an

optimization, which eliminates the disadvantages and makes Kademlia a proto-

col more feasible for business applications. Even though the algorithms will be

explained in the context of Kademlia, they are by no means restricted to this pro-

73

3 Performance Analysis of Structured P2P Networks

tocol. Especially the downlist and the Betarepublish mechanisms can easily be

applied to other DHTs like Pastry, CAN, or Chord.

3.5.1 Description of the Simulation Environment

Discrete event simulation is a powerful tool to gain insightinto complex pro-

cesses at the desired level of abstraction. There exist several p2p simulators in lit-

erature, a good overview and comparison is given in [79]. However, each of these

simulators comes with its disadvantages such as little flexibility, poor or no docu-

mentation, implementation errors, no extensibility, or missing features, but most

importantly the lack of scalability. In order to make the simulation of large scale

p2p systems more feasible, we therefore developed our own simulation environ-

ment (cf. Figure 3.22) as well as different implementation techniques [11, 12].

The global user behavior is described in a special source fileusing our own script

RSTUVWXYZW [U\]]YVŴ_WU\̀ SU ẐSa\ZbcW_̀XYZW d\eWfZY\RYfTZ\̀ SUgShXYZWijSUeRYfTZ\̀SU
bfTZ\̀ YS_ RWWe

RWWe gShXYZWRWWe
Figure 3.22:Sketch of the simulation environment

language. That is, the source file contains an abstract description of all global

events like joins, leaves, or searches which are independent of the underlying

p2p network. The simple linejoin 500 10, e.g., denotes that 500 peers should

join the overlay network at intervals of 10 seconds. The traffic generator trans-

lates this description into actual events which can then be used as input for the

74

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

simulation of different protocols. This makes it easy to compare the performance

of different DHT protocols in a given scenario. It is furthermore also possible to

extract the global events from an emulation or prototype study and re-simulate

the scenario to validate the accuracy of the simulation.

In order to evaluate the different performance aspects of Kademlia, we imple-

mented a discrete event simulator in ANSI-C according to thealgorithms in [51].

That is, for each0 ≤ i < 160 a peer keeps a bucket ofk peers of distance

between2160−i and2160−i+1 from itself according to the XOR metric. Thereby

the routing table is adapted dynamically. That is, each peerstarts with one sin-

gle bucket covering the entire address space and recursively splits the bucket

containing the peer’s own ID as soon as this bucket holds morethank entries.

When many peers leave the system, Kademlia merges the corresponding buck-

ets accordingly. Furthermore, a peer is able to insert documents into the overlay

network. To guarantee their availability, each of these documents is stored at the

k closest peers to the document’s ID. If the document was not received from an-

other peer forTrep minutes, the corresponding peer republishes the document,

i.e. it sends the document to the remainingk − 1 peers of the replication group.

When searching for a document a peer recursively sends parallel queries to the

α closest peers it knows. The next recursion begins as soon as the peer received

β answers. This guarantees that a searching peer will only runinto a timeout if

α − β + 1 peers do not answer within one specific search step. If not stated oth-

erwise, we use the default parametersTrep = 60 minutes,α = 3, β = 2, and

k = 20.

To model end user behavior, we randomly chose join and leave events for each

peer. To be comparable to other studies in literature a peer stays online and of-

fline for an exponentially distributed time interval with a mean ofEon andEoff

respectively. When online, the peer issues a search everyEsearch minutes, where

the time between two searches is also exponentially distributed. Using different

distributions mainly changes the quantitative but not the qualitative statements.

In each simulation we use a total of 40000 peers, which we found to be suffi-

ciently large to capture all important effects regarding the overlay size, and set

75

3 Performance Analysis of Structured P2P Networks

Eon = Eoff , resulting in an average overlay size of 20000 peers. To increase

the credibility of our results [104], we include the 95 percent confidence intervals

where appropriate.

3.5.2 Improving the Search Efficiency

The success and duration of a search for a document heavily depend on the cor-

rectness of a peer’s pointers to other peers, i.e. on the correctness of the peer’s

routing table. In Kademlia the most crucial pointers are those to itsk closest

neighbors in the overlay. We measure the correctness of these pointers using two

different variables:

• Ph: States how many of its currentk closest neighbors a peer actually

holds in its k-buckets.

• Pr: Represents the number of correct peers out of thek closest neighbors,

which a peer actually returns when asked for.

Ideally a peer would not only know but also return all of itsk neighbors. However,

our simulations show that the standard implementation of Kademlia has problems

with Pr. We setk = 20 and simulated the above described network for different

churn rates. Figure 3.23 illustratesPh andPr in dependence of the churn rate.

The mean online/offline time of a peer was variied between 10 and 180 minutes.

Even though on average a peer knows almost all its neighbors (Ph close to 20),

it returns significantly less valid entries when queried (Pr as low as 13). The

shorter a peer stays online on average, the less valid peers are returned during

a search. The problem can be tracked down to the fact that there are still many

pointers to offline peers in the corresponding k-bucket of the peer. The reason

is that there is no effective mechanism to get rid of out-dated k-bucket entries.

Offline entries are only eliminated (or moved to the cache) ifa peer runs into a

timeout while trying to contact an offline peer. A peer which identifies an offline

node, however, keeps that information to itself. Thus, it isnot unlikely that a

76

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

0 50 100 150 200
12

14

16

18

20

Average online time [min]

N
um

be
r

of
 e

nt
rie

s

Downlist modification

Standard
implementation

P
h

P
r

Figure 3.23:Ph andPr in dependence of the churn rate

node returns offline contacts as it has very limited possibilities to detect offline

nodes. As a result more timeouts occur and searches take longer than necessary.

Another problem is that searches are also getting more inaccurate, which has

negative effects not only on the success of a search but also on the redundancy

of the stored documents. The reason is that due to the incorrect search results

documents will be republished to less thank peers or to the wrong peers.

Solution - DownlistsThe primary reason for the above mentioned problem is

that so far only searching peers are able to detect offline nodes. The main idea

of our solution to this problem is that a searching peer, which discovers offline

entries while performing a search, should share this information with appropriate

other peers. To do so, a peer maintains a downlist consistingof all peers which it

discovered to be offline during its last search. At the end of the search the corre-

sponding entries of this downlist are sent to all peers whichgave those entries to

the searching peer during its search. These peers then also remove the received

offline entries from their own k-buckets. This mechanism helps to get rid of of-

fline entries by propagating locally gained information to where it is needed. With

each search offline nodes will be eliminated.

77

3 Performance Analysis of Structured P2P Networks

The improved stability of the overlay is obviously bought bythe additional

bandwidth needed to send the downlists. From a logical pointof view, however,

it does require more overhead to keep the overlay stable under higher churn rates.

In this sense, the additional overhead traffic caused by sending downlists is self-

organizing as it automatically adapts to the current churn rate. The more churn

there is in the system, the more downlists are sent.

It should also be mentioned, that without appropriate security arrangements

a sophisticated attacker could misuse the downlist algorithm to exclude a target

node by claiming in its downlist that this specific node had gone offline. How-

ever, this problem can be minimized by only removing those nodes which were

actually given to the searching node during a search or additionally by verifying

the offline status using a ping message. One could also apply trust or reputation

based mechanism to exclude malicious nodes.

Effect on Search EfficiencyTo compare the downlist modification to the stan-

dard implementation we again simulated a scenario with 20000 peers on average

and calculated the 95 percent confidence intervals. Figure 3.23 proves, that the

downlist modification has the desired effect onPr, the number of correctly re-

turned neighbors. Using downlists bothPh andPr stay close to the desired value

of 20, almost independent of the current churn rate. That is,even in times of high

churn the stability of the overlay can be guaranteed.

This improved correctness of the overlay stability also hasa positive influence

on the search efficiency. In Figure 3.24 we plot the average duration of a search

against the average online/offline time of a peer. In this context an overlay hop

was modeled using an exponentially distributed random variable with a mean of

80 ms. Both curves show the same general behavior. The longera peer stays on-

line on average, the shorter is the duration of a search. However, especially in

times of high churn, the downlist modification (lower curve)significantly outper-

forms the standard implementation. The main reason is that on average a peer

runs into more timeouts using the standard implementation,as it queries more

offline peers during a search. The effects on the maintenanceoverhead will be

discussed in Section 3.5.4.

78

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

0 50 100 150 200
300

400

500

600

700

800

900

Average online time [min]

A
ve

ra
ge

 s
ea

rc
h

tim
e

[m
s]

Downlist
modification

Standard
implementation

Figure 3.24:Influence of the downlist modification on the search efficiency

3.5.3 Increasing the Robustness of the Overlay

When peers join and leave the overlay network, the neighbor pointers of a peer

have to be updated accordingly. As mentioned above, the downlist modification

greatly improves the correctness of thek closest neighbors of a peer. To under-

stand this effect in more detail, we have a closer look at a single simulation run.

We consider a mean online/offline time of 60 minutes and an average of 20000

peers for both the standard implementation and the downlistmodification.

Figure 3.25 illustrates the distribution ofPh and Pr in both scenarios. As

can be seen in the left part of the figure, almost all peers knowmore than 17

of their 20 closest neighbors using the standard implementation. However, the

number of correctly returned peersPr is significantly smaller for most peers. This

problem is greatly reduced by the downlist modification as can be seen in the right

part of the figure. In this case, the number of known and the number of returned

peers are almost equal to each other. Yet, there are still some peers, which do

not know all of their 20 closest neighbors. This is in part dueto the churn in the

overlay network. However, simulations without churn produce results, which are

comparable to those shown in the right part of Figure 3.25. The cause of this

79

3 Performance Analysis of Structured P2P Networks

10 20
0

5k

10k

15k

number of entries

nu
m

be
r

of
 p

ee
rs

Standard
Implementation

P
h

P
r

10 20
0

5k

10k

15k

number of entries
nu

m
be

r
of

 p
ee

rs

Downlists

P
h

P
r

Figure 3.25:Ph andPr for the original version and the downlist modification

problem can be summarized as follows: LetBp be the k-bucket of peer p, which

includes the ID of peer p itself andBp̄ the brother ofBp in the binary tree whose

leaves represent the k-buckets as shown in Figure 3.26. Thenaccording to the

Kademlia algorithm bucketBp is the only bucket which will be split. However,

if only e < k of the actualk closest contacts fall into this bucket, thenv = k − e

of these contacts theoretically belong into its brotherBp̄.

contains peer p
BpBpBp

cannot be split

Figure 3.26:Bp and its brotherBp̄ in the Kademlia routing table

80

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

Now, if this bucket is full it cannot be split. Thus, if some ofthe v contacts

are not already in the bucket, it is very unlikely that the peer will insert them

into its buckets. The reason is, that a new contact will be dropped in case the

least recently seen entry ofBp̄ responds to a ping message. Since in a scenario

without churn all peers always answer to ping messages, new contacts will never

be inserted intoBp̄, even though they might be among thek closest neighbors of

the peer. In the original paper it is suggested to split additional buckets in which

the peer’s own ID does not reside in order to avoid this problem. However, this has

two major drawbacks. At first, it is a very complex process, which is vulnerable to

implementation errors. Secondly, it involves a great deal of additional overhead

caused by bucket refreshes and other maintenance routines.In the next section,

we therefore develop a simple solution, which does not require any additional

overhead.

Solution - Force-k As stated above, it is possible, that a peer does not know

all of its k closest neighbors, even in times of no churn. To solve this problem,

we need to find a way to force a peer to always accept peers belonging intoBp̄

in case they are amongst itsk closest neighbors. Suppose a node receives a new

contact, which is among itsk closest neighbors and which fits into the already

full bucketBp̄. So far, the new contact would have been dropped in case the least

recently seen entry ofBp̄ responded to a ping message. Compared to this, the

Force-k modification ensures that such a contact will automaticallybe inserted

into the bucket. In order to decide which of the old contacts will be replaced,

one could keep sending ping messages and remove the first peer, which does not

respond. However, this again involves additional overheadin terms of bandwidth.

A faster and passive way is to put all entries ofBp̄, which are not among thek

closest peers into a listl and drop the peer which is the least useful. This could

be the peer which is most likely to be offline or the peer which has the greatest

distance according to the XOR metric.

In our implementation, we decided to consider a mixture of both factors. Each

81

3 Performance Analysis of Structured P2P Networks

of the entriese of list l is assigned a specific score

se = te + de (3.24)

and the one with the highest score will be dropped. Thereby,te is intended to be

a measure for the likelihood of peere to be offline andde for the distance of peer

e to peerp. The exact values ofte andde are obtained by taking the index of

the position of the corresponding peer in the list, as if it was sorted ascending by

the time most recently seen or by the peer’s distance, respectively. That is, ife is

the most recently seen peer (te = 1) and has the third closest distance to peerp

(de = 3) it is assigned a score ofse = 4.

Effect on Stability We investigated the impact of the Force-k modification on

the stability of the overlay network in various simulations. In scenarios without

churn, all peers finally know and return all of theirk closest neighbors. The cor-

responding figures show lines parallel to the x-axis at a value of k = 20. It is

therefore more interesting to regard the overlay stabilityduring churn phases.

0 50 100 150 200
19.6

19.7

19.8

19.9

20

Average online time [min]

N
um

be
r

of
 e

nt
rie

s

Downlist and Force−k
modification

Downlist
modification only

P
h

P
r

Figure 3.27:Effect of Force-k under churn

In Figure 3.27, we plot the average online time of a peer against the number of

known and returned neighbors using the same simulation scenario as before. The

82

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

two lower curves correspond to our previous results using the downlist modifi-

cation. The two upper curves represent the Force-k modification in combination

with the downlist modification. It can be seen that the Force-k algorithm also

improves the stability of the overlay in times of churn. While the appearance of

the curves is similar, there are more neighbors known (solidlines) and returned

(dashed lines) as compared to using only the downlist modification. Even if a

peer stays online for only 10 minutes on average, it will knowabout 19.9 out of

20 neighbors and return more than 19.8 correct entries. By improving the correct-

ness of the neighbors, the Force-k modification also increases the search success

rate and the redundancy of stored documents.

To investigate the overlay stability in more critical scenarios, we simulated a

mass exit where 90% of all peers left the overlay at a random time within an in-

terval ofx minutes. Figure 3.28 shows that even if 90% of all peers leavewithin

10 minutes, our modified Kademlia algorithm still knows and returns about half

of its k closest neighbors. Moreover, shortly after the mass exit the overlay re-

covers again, whereas all peers correctly know and return all of their k closest

neighbors.

20 40 60 80
8

10

12

14

16

18

20

Interval in which 90% of all peers left [min]

N
um

be
r

of
 e

nt
rie

s

directly after
mass exit

15 minutes after
mass exit

P
h

P
r

Figure 3.28:Overlay stability after a mass exit

So far, we showed how to improve the efficiency and the stability of the over-

83

3 Performance Analysis of Structured P2P Networks

lay, but did not yet consider the maintenance traffic caused by the Kademlia al-

gorithm. The next section will study the bandwidth requiredby a peer running

the standard Kademlia protocol and the additional overheadtraffic caused by our

modifications.

3.5.4 Reducing the Redundancy Overhead

The bandwidth required to maintain a stable overlay and to ensure the persistence

of stored documents directly reflects the costs for a peer to participate in the

network. We simulated a network with 20000 peers on average and recorded

the average number of packets per second sent by a peer while it was online.

Figure 3.29 illustrates the average traffic per peer in dependence of the average

online time of a peer. In addition to the total traffic, the figure also shows its three

main components, the join, the republish, and the downlist traffic.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Downlist traffic

Join traffic

Republish
traffic

Total traffic

Figure 3.29:Maintenance traffic of a peer split into its components

SinceEsearch, the average time between two searches of a peer, was set to 15

minutes, the search traffic per peer per second can be neglected in this scenario

and is thus not shown in the figure. The same is true for the traffic caused by

bucket refreshes, since a specific bucket is only refreshed if it has not been used

84

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

for an entire hour. The Force-k algorithm is performed locally and does thus also

not produce any additional overhead.

It can be seen in the figure that the downlist traffic automatically adapts itself

to the current churn rate. The more frequently the peers joinand leave the sys-

tem, the more downlist traffic is produced by a peer on average. In general, the

small amount of bandwidth needed to distribute the downlists is also easily com-

pensated by the improved stability of the overlay. The majorpart of the traffic

is caused when joining the network and republishing documents. It is obvious

that the average amount of join traffic per peer per second increases if a peer

stays online for a shorter period of time. The join traffic cannot and should not

be avoided as it is necessary for a peer to make itself known when it joins the

network. Moreover, the join traffic already shows a self-organizing behavior. The

more churn there is in the system, the more joins there are in total and the more

overhead is produced to compensate the problems caused by the churn.

At first, the run of the curve representing the republish traffic seems to be

counter-intuitive. The less churn there is in the system, the more republish traffic

is sent by a peer on average. However, the reason becomes obvious, if one takes

into account that the longer a peer stays online on average, the more likely it gets

that there are republish events. In fact, the probability that a peer stays online for

longer than 60 minutes given the corresponding average online timeEon, resem-

bles the run of the republish curve. The reason why the total amount of republish

traffic exceeds the remaining traffic so significantly is as follows: Each document

is stored at thek closest nodes to its ID, the so called replication group. To com-

pensate for nodes leaving the network, each peer sends the document to all other

peers of the replication group if it has not received the document from any other

peer forTrep = 60 minutes. The idea behind this republish mechanism is that

one peer republishes the document and all other peers reset their republish timers

accordingly. Since the republishing peer sends the document to all peers of the

replication group simultaneously, the peers reset their timers at approximately

the same time. The next time the first peer starts to republishthe document, it

has to search for the corresponding replication group before it can redistribute

85

3 Performance Analysis of Structured P2P Networks

the document. However, during this search the republish timers of the other peers

are likely to run out and they will start to republish the document as well. For

this reason, a document might get republished by up tok peers instead of just

one single peer, resulting in unnecessary overhead traffic.This problem of syn-

chronization is already mentioned in the original paper. Inthe following section,

we present a solution, which greatly reduces the republish overhead and which is

also resistant against churn.

Solution - BetarepublishThe synchronization problem of the republish pro-

cess arises if all peers of a replication group have approximately the same time

stamp for the next republish event. At first this seems to be unlikely. However,

each time a peer republishes a document all other peers of thereplication group

receive this document at approximately the same time and arethus synchronized

again. The main idea to avoid this problem is to assure that all peers use differ-

ent time stamps. To achieve this, each peer chooses its time stamp randomly in

the interval[Trep − x, Trep + x] instead of exactly afterTrep = 60 minutes.

Let Irep be the random variable describing the time stamp of the next republish

event. Then we wantIrep to be distributed in such a way, that only few peers

start republishing at the beginning of the interval and the probability to republish

increases toward the end of the interval. This can, e.g., be achieved by setting:

Irep = (Trep − x) + 2 · x · Ibeta (3.25)

whereIbeta is a random variable with density

ibeta(t) =

{
t√

(1−t)·B(2,0.5)
if 0 < t < 1

0 otherwise
(3.26)

andB (α, β) is the beta function, defined by

B (α, β) =

∫ 1

0

tα−1 (1 − t)β−1 dt (3.27)

86

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

Thereby2 · x, the length of the interval in which the peers will start their

republish process, should be small compared toTrep but still significantly larger

than the duration of a search. Figure 3.30 shows the probability density function

of Irep for different values ofx. All peers will set their time stamps somewhere

58 59 60 61 62
0

0.5

1

1.5

2

Time stamp of next republish event [min]

P
D

F

x = 0.5 x = 1 x = 2

Figure 3.30:PDF ofIrep for different values ofx

in the interval[60 − x, 60 + x]. The probability for a peer to set its time stamp is

still very low at the beginning of the interval. It then ascends significantly toward

the end of the interval. In the case ofTrep = 60 minutes,x = 2 minutes is a

reasonable choice, since it offers a long period of time witha low probability of

republish events. This way, the republish traffic will be significantly reduced as it

becomes very likely that only one or a few peers actually start a republish process.

Again, note that a peer does only republish a document if it has not received it

from another peer forTrep = 60 minutes.

Effect on Overhead In this section we will have a look at the influence of

the Betarepublish modification on the average amount of republish traffic sent

by a peer. Figure 3.31 shows the average number of republish packets per peer

per second in dependence of the average online time. We compare the results for

simulations using the standard implementation, our two previous modifications,

and all modifications including Betarepublish. First of all, the average republish

87

3 Performance Analysis of Structured P2P Networks

0 50 100 150 200
0

0.5

1

1.5

2

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Downlist and Force−k
modification

Standard
implementation

Betarepublish modification

Figure 3.31:Maintenance traffic caused by republish processes

traffic of a peer is increased by using the downlist modification. The reason is

that using the standard implementation there are more offline nodes in thek-

buckets during times of churn. Thus, documents are republished to less peers,

which reduces the republish traffic but also the redundancy in the system. The

additional traffic introduced by the downlist modification is therefore used to

improve the availability of documents.

The Betarepublish modification is applied in an effort to minimize the traffic

necessary to achieve this availability. The figure shows that Betarepublish indeed

reduces the amount of required republish traffic significantly. The Betarepublish

traffic lies well beneath the standard implementation and also rises slower with

an increasing average online time. Note that the Betarepublish modification does

only avoid redundant traffic. It is still able to guarantee the same redundancy,

stability, and functionality. Figure 3.32 shows how the reduced republish traffic

influences the total traffic for the three regarded versions of Kademlia (Standard,

downlists and Force-k, all modifications). At first, it can be seen that the use of

downlists increases the total traffic as compared to the standard implementation.

Again, this is desired overhead as it greatly helps to increase the robustness, the

stability, and the redundancy of the overlay in an autonomous way.

88

3.5 Simulative Evaluation of a Carrier-Grade Kademlia Network

0 50 100 150 200
1

1.5

2

2.5

3

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Downlist and Force−k
modification

Standard
implementation

Betarepublish modification

Figure 3.32:Total maintenance traffic in dependence of the churn rate

By adding the Betarepublish modification, the total traffic is significantly re-

duced and no longer dominated by the republish traffic. Whilethe average main-

tenance traffic sent by a peer in the standard implementationactually increases

when there is less movement in the overlay network, it finallyshows a self-

organizing behavior when using all modifications. The less churn there is in the

system, the less maintenance traffic is generated to keep theoverlay network up

to date. That is, the amount of bandwidth invested to keep theoverlay running

automatically adapts itself to the current conditions in the overlay.

89

3 Performance Analysis of Structured P2P Networks

90

4 Modeling the Dynamics of

P2P Overlays

In contrast to the classic client-server architecture, overlay networks have to cope

with highly dynamic components in their system. In order to maintain the struc-

ture of the overlay under such conditions they have to apply appropriate counter-

measures. In particular, they may adjust parameters like the number of overlay

connections to other peers or the frequency at which they exchange information

about the current overlay status with those peers. The optimal amount of such

maintenance overhead directly depends on the current size of the overlay as well

as the current online/offline behavior of the participatingpeers. While insuffi-

cient overhead may lead to loss of the overlay structure and ultimately to a break

down of the entire system, too much overhead results in an unnecessary waste of

available resources. In practice, the maintenance overhead in structured overlay

networks is set to a fixed value which is dimensioned for the expected worst case.

In this chapter, we take the first step toward a self-organizing concept for over-

lay networks as illustrated in Figure 4.1. The main problem in this context is that

to a single peer the remaining system essentially appears asa black box. We there-

fore introduce and discuss different models to estimate thecurrent conditions in

the overlay, like churn or the system size, based on information which is locally

available to a peer. These estimates can then be used by a peerto calculate the

probability of a loss of the overlay stability, as e.g. shownin Chapter 3.4. From

this it can then derive optimal parameters to adapt the maintenance overhead ac-

cordingly. Furthermore, the fact that the current status aswell as the performance

91

4 Modeling the Dynamics of P2P Overlays

1. Estimate current
overlay conditions

2. Derive optimal
parameters

3. Adjust
parameters

Overlay Network

Figure 4.1:Self-organization concept for overlay networks

and the stability of a deployed overlay system are inherently unknown, is one of

the main reasons why telecommunication carriers are still hesitant to build dis-

tributed applications based on structured overlay networks. Besides our passive

estimation algorithms, we therefore also present an entirely novel and scalable

approach to actively create a snapshot of a deployed overlaynetwork. Using our

algorithm, a provider can then either monitor the entire system or just survey a

specific part of the system.

4.1 Problem Formulation and Related

Work

Structured p2p overlay networks have been designed to scalewith the number

of participating peers. The real issue concerning such overlay networks there-

fore lies in the management and maintenance of their stability, robustness, and

redundancy. Blake and Rodrigues [37] showed that the real scalability problem

can be found in the service bandwidth needed to maintain redundancy and sta-

92

4.1 Problem Formulation and Related Work

bility in dynamic overlay networks. However, especially inthese dynamic net-

works it is most important to know the current churn rate as well as the current

size of the network to be able to adjust the maintenance cost needed to obtain

redundancy and stability. Therefore Mahajan et al. [92] investigated the trade-

off between high maintenance cost and poor stability in dynamic networks. The

results show that it is crucial to adapt parameters dynamically. The authors in-

troduce an estimator for the size of Pastry based networks, that can in some way

be extended to other networks like CAN or Chord. However, there was no math-

ematical treatment on the quality of the estimator nor any confidence intervals

for the obtained results. Moreover since the estimator was primarily designed for

Pastry networks, it does not exploit additional characteristics that are typical for

other overlay structures like Chord rings.

A very simple passive estimator for the size of butterfly based p2p overlay

networks is introduced by Malkhi et al. in [105]. Most approaches to estimate

the overlay size, however, rely on active probing of the network. A distributed

algorithm is presented by Horowitz et al. [106], where an additional logical ring

among existing nodes is maintained and nodes exchange theirestimates upon ar-

rival and departure. Bawa et al. [107] estimate the size of general overlay net-

works by actively sending samples to other nodes and evaluating the answer

statistics. Jelasity et al. [108] solve the same problem using a method which is

based on the information flow through a peer and which heavilydepends on the

assumption of independence between the individual samples. Finally, Kostoulas

et al. [109] combine an active as well as a passive method to estimate the system

size in a tool called PeerCounter. The active algorithm spreads a gossip through

the network, where each peer marks its distance in terms of hops from the ini-

tiator. The passive algorithm is based on the density of the peers in the identifier

space. Current size estimators either lack a mathematical description, need addi-

tional overhead to actively probe the network or do not exploit all properties of

ring based overlay structures. In Chapter 4.2 we therefore present a mathemati-

cal substantiated estimator, which is well adapted to the properties of the Chord

algorithm.

93

4 Modeling the Dynamics of P2P Overlays

Besides the mere size of the system, churn is an even more complex prob-

lem in structured overlay networks [24, 110]. Stutzbach et al. [111] showed that

churn plays a crucial role in the design, operation, and evaluation of p2p systems.

Krishnamurthy et al. [91] further characterized churn and found that it can be of

different types, all of which should be studied in detail. The concept of temporary

and permanent churn was presented by Tati et al. [112], whichlead to temporary

unavailability and permanent loss of resources, respectively. Rhea et al. [75] eval-

uated different DHT implementations on an emulated networkand concluded that

without proper modifications current overlay structures cannot handle realistic

churn rates. Subsequently, Godfrey et al. [113] showed that, while it is possible

to minimize churn (e.g. by selecting a uniform-random replacement whenever an

overlay neighbor fails), one cannot entirely avoid it. Zhuang et al. [114] discuss

and compare different algorithms to minimize the node failure detection time

in distributed overlay networks. They conclude that algorithms which share in-

formation in times of node failures improve the detection time at the cost of an

increased control overhead.

The actual user behavior in a real system heavily depends on the kind of ser-

vice being offered. In this context, Gummadi et al. [29] showed that p2p users

behave essentially different from web users. For a typical filesharing application,

they found a median session time of only 2.4 minutes and a 90thpercentile of

28.25 minutes for sessions during which a peer was actively retrieving files. Their

findings for large requests, however, showed that less than 10 percent are com-

pleted in an hour, 50 percent take more than a day, and nearly 20 percent of users

are willing to wait a week for their downloads to complete. Additionally, Bhag-

wan et al. [110] argue that availability is not well-modeledby a single-parameter

distribution, but instead is at least a combination of two time-varying distribu-

tions. This is supported by the observation that failure rates vary significantly

with both daily and weekly patterns and that the failure ratein open systems is

more than an order of magnitude higher than in a corporate environment [93]. To

be able to compare the performance of different selection strategies for overlay

neighbors, Godfrey et al. [113] present a definition of churnwhich reflects the

94

4.1 Problem Formulation and Related Work

global number of changes within a time interval∆t:

C =
1

∆t
·
∑

events i

|Ui−1 ⊖ Ui|
max{|Ui−1|, |Ui|}

.

TherebyUi is the set of online nodes which are in use after theith change and⊖
is the symmetric set difference. While the definition is veryuseful in simulations

which possess a global view on the system, it cannot be used byan estimator

which can only rely on local information. A simple method to estimate churn in

a deployed system was introduced by Ghinita et al. [115] but not evaluated in

detail.

In general, the problem of monitoring an overlay network from a central loca-

tion is far from being solved. Sing et al. [116] give a good overview of different

approaches to monitor and debug distributed systems. Otherworks aim at using

overlays for decentralized network management [117]. Chenet al. [118] describe

how to efficiently monitor all paths in a network using an overlay topology. Lim

et al. [119] also use a distributed structure to monitor IP flows and end-to-end ser-

vice quality. Renesse et al. [120] introduce Astrolabe, an overlay network specif-

ically designed to monitor and report the dynamically changing state of a collec-

tion of distributed resources. This approach is further extended to a distributed in-

formation management system which aggregates informationin large-scale net-

worked systems by Yalagandula et al. [36]. Tang et al. [121] propose to cluster

overlay nodes based on their geographic location for aggregating and delivering

events with the minimum latency and cost. However, none of the above mecha-

nisms implicitly monitors the status of the overlay itself.Stutzbach et al. [122]

introduce a crawling-based approach to query Gnutella-like networks, which is

limited to unstructured overlays. While structured overlays may be queried peer

by peer from a central position, like e.g. in the CoMon project [123], the approach

does clearly not scale to larger networks. In Chapter 4.4, however, we exploit the

special features of structured p2p overlays and present an entirely novel and scal-

able approach to create a snapshot of a deployed overlay network.

95

4 Modeling the Dynamics of P2P Overlays

4.2 Estimating the Current Peer

Population

In a structured overlay network, each peer maintains pointers to r well defined

peers in the overlay in order to maintain the stability and robustness of the over-

lay structure. According to [45] the stability of a Chord ring can be obtained with

high probability as long asr = Ω(log2(n)), wheren is the current peer popu-

lation of the Chord ring. In practice a peer either has to choose the parameterr

large enough to be able to handle the maximum possible ring size or has to adapt

r on the fly. Choosing a large constant value forr results in high maintenance cost

in the majority of cases, or insufficient stability in largerthan expected overlay

networks. To autonomically adapt the size of its neighborlist tor = Ω(log2(n))

a single peer needs to know the current size of the overlay network it is partic-

ipating in. In the following we therefore introduce an estimator for the current

sizen of a Chord ring based on local information like the peer’s current neigh-

borlist [22]. A participating peer can then use this estimate to adjust the size of

its neighborlist to the current size of the overlay network.This way, the peer uses

the optimal amount of maintenance overhead to guarantee a stable overlay given

the current size of the network.

4.2.1 Analytical Model

The analytical framework of our model is based on both a peer’s successor- and

fingerlist. At first we have a closer look at the identifier space itself. We assume

that a total ofn peers share the identifier space of lengthN = 2m and that, by the

hash function, the positionS(z) of every peerz is distributed uniformly in the

identifier space. Accordingly, every identifier is occupiedby a peer with proba-

bility p = n/N . Let I(z) = S(z + 1)− S(z) be the random variable describing

the length of the interval between peerz and peerz +1, i.e. the distance between

two neighboring peers as illustrated in Figure 4.2. We assume a collision-free

96

4.2 Estimating the Current Peer Population

0 2m-1
n

I

peer z peer z + 1

Figure 4.2:The random variableI describes the length of the interval between two peers.

hash function, i.e. each peer has a unique identifier. Further, let us assume that

without loss of generality peerz has identifier 0, i.e.S(z) = 0. Then, the proba-

bility that another peer sits on position 1 is(n−1)/(N−1) as there remainn−1

peers forN − 1 free identifiers. The probabilityP (z + 1, i) thatS(z + 1) = i is

P (z + 1, i) =

(
1 − n − 1

N − 1

)(
1 − n − 1

N − 2

)
· · · (4.1)

· · ·
(

1 − n − 1

N − i + 1

)
·
(

n − 1

N − i

)
(4.2)

≈
(
1 − n

2m

)i−1

· n

2m
≈
(
1 − n

2m

)i

· n

2m
. (4.3)

The first approximation is justified asn >> 1 and N >> i. The second

approximation is justified as on averagei = N
n

>> 1. Thus, we can conclude

that the intervalI(z) between a peer and its direct neighbor is approximately

geometric with parameterp:

I(z) ∼ geom(p) wherep =
n

2m
. (4.4)

We validate this approximation by generating 10000 snapshots of random Chord

rings with 1000, 10000, and 100000 peers in an identifier space of size2160.

Peerz has identifier0. We evaluate the distance to peerz + 1 and refer to this

distance as interval 1, which is equal toS(z+1)−S(z). Figure 4.3 compares the

simulated distribution to the theoretical geometric distribution. Since the curves

97

4 Modeling the Dynamics of P2P Overlays

match exactly when plotted on a linear scale we use a log-log scale. Considering

the magnitude of the interval sizes and probabilities, the geometric distribution

and the simulated distribution are almost identical. The dithering in the simulated

curve comes from the limited amount of values that we gain from the simulations.

10
42

10
44

10
4610

−48

10
−46

10
−44

10
−42

Interval

P
ro

ba
bi

lit
y

Interval 1
Geom(N,p)

RingSize = 103

RingSize = 104

RingSize = 105

Figure 4.3:Interval 1 is well-approximated by the geometric distribution.

Ideally, peerz does not only know its direct neighbor but the nextr =

⌈log2(n)⌉ neighbors and can calculate the distances between them. Theprob-

ability that the location of peerz + 2 is directly after peerz + 1 is

n − 2

N − (S(z + 1) − S(z))
(4.5)

as there aren − 2 unknown peers and

(N − (S(z + 1) − S(z))) (4.6)

free identifiers remaining. Consequently, from peerz’s point of view interval

I(z + 1) depends on intervalI(z). However, we can argue again that due to the

98

4.2 Estimating the Current Peer Population

large size of the identifier space

n − 2

N − (S(z + 1) − S(z))
≈ n

N
= p. (4.7)

Thus, the intervals between allr neighbors of Peerz are iid and we introduce the

random variableI for an arbitrary interval between two neighbored peers.

In Figure 4.4 we validate this approximation by means of the cumulative dis-

tribution function (CDF) of interval1 and intervalr, i.e. the interval between

the last two successors. We can see that the curves for both intervals match very

well with the geometric distribution independent of the ring size. The simulated

curves start with a probability of1e − 4 as we generated 10000 snapshots. Note

that the distribution of 99% of the intervals (CDF≥ 1e − 2) coincides with the

geometric distribution.

10
35

10
40

10
45

10
5010

−6

10
−4

10
−2

10
0

Interval

C
D

F

Interval 1
Interval r
Geom(N,p)

RingSize = 103

RingSize = 104

RingSize = 105

Figure 4.4:Interval 1 and Interval r follow a geometric distribution.

The main idea of our algorithm is to estimate the parameterp of the geometric

distribution ofI . We denote the estimated value ofp asp̂. From this we can then

conclude that

n̂ = p̂ · 2m. (4.8)

99

4 Modeling the Dynamics of P2P Overlays

To be able to estimatep we need to obtain realizations ofI , which can be gathered

by looking at our neighborlist.

IrI1 I2

Figure 4.5:Realizations of the random variableI .

As shown in Figure 4.5 the intervals between a peer’sr immediate successors

can be regarded asr different realizations of the random variableI . More realiza-

tions ofI can be found if we have a closer look at a peer’s fingerlist. As has been

shown in [45] onlyO(log2(n)) of those log2(m) fingers are actually different,

i.e. are actually pointing to different peers. This is due tothe fact, that especially

the first fingers tend to coincide with a peer’s successorlist. The interesting fact

concerning our estimator, however, is that the actual position of thei-th finger on

the ring is different from its theoretical positionidz + 2i−1.

idz

F3

F1

F2
idz+2m-1

idz+2m-2

idz+2m-3

Ir+1

Ir+2

Ir+rf

Figure 4.6:Distance between theoretical and actual position of thei-th finger.

Figure 4.6 illustrates this issue in detail. The figure showsthree exemplary

100

4.2 Estimating the Current Peer Population

fingers for a peerz pointing toidz + 2m−3, idz + 2m−2, andidz + 2m−1 re-

spectively. As we can see the actual positions of the finger peersF1, F2, andF3

are different to the fingers theoretical positions. This distance, however, can be

interpreted as another realization of the geometrically distributed random vari-

ableI .

As stated above we already know that the length of the interval between a

finger Fi and the previous peer on the ring is geometrically distributed. If we

now choose a random point in this interval, due to the memoryless property of

the geometric distribution, the interval between the theoretical position of the

finger and the actual finger is as well geometrically distributed with the same

parameterp as illustrated in Figure 4.7.

Fkgeom(p)

geom(p)

theoretical finger position

Figure 4.7:Memoryless property of the geometric distribution.

Again, we validate this assumption by means of the snapshotswe used above.

Figure 4.8 compares the distances of the theoretical and actual finger positions

to the geometric distribution. We consider only those fingers that don’t coincide

with the successorlist. The figure shows the geometric distribution with regard to

three different ring sizes. Each of these distributions is compared to the simulated

distributions of each finger. Note that there are more simulated curves for the

ring with 10000 peers than with 1000 peers, as there are more distinct fingers in

larger rings as stated above. Again the plot is presented on alog-log scale, since

the curves are effectively identical on a linear scale. By means of the geometric

distribution of the finger intervals, we obtain anotherrf ≈ log2(n) realizations of

I from a peer’s fingertable, leaving us with a total ofr + rf different realizations

of the random variableI .

101

4 Modeling the Dynamics of P2P Overlays

10
35

10
40

10
45

10
5010

−6

10
−4

10
−2

10
0

Interval

C
D

F RingSize = 103

RingSize = 104

RingSize = 105

Figure 4.8:The interval between actual finger position and theoreticalfinger po-
sition is geometric.

4.2.2 Maximum Likelihood Estimation

The main goal of this section is to introduce an estimatorn̂ for the current size of

a Chord ring. This estimator can then be used to dynamically adjust the estimated

necessary sizêr = log2(n̂) of a peer’s successorlist. Since the estimator is based

on a peers successor- and fingerlist and those lists in turn are adjusted according

to the estimator, we assume that to get started, a peer is notified about the current

size of the Chord ring by its immediate successor when first entering the net-

work. In this section we show how to estimate the parameterp of the geometric

distribution ofI using a maximum-likelihood estimator (MLE). The MLE is used

since we already know that the random variableI is geometrically distributed but

the parameterp is still unknown. The basis for the MLE is a likelihood function

L(p) which is defined as follows:

L(p) = fp(I1)fp(I2) · · · fp(Ij), (4.9)

102

4.2 Estimating the Current Peer Population

wherefp(I) is the probability mass function with parameterp andj is the number

of observations made. The MLÊp of the unknown value ofp is then defined to

be the value that maximizes the likelihood functionL(p). That is,

L(p̂) ≥ L(p) (4.10)

for all possible values ofp. In our case we have

fp(I) = (1 − p)I · p (4.11)

and

L(p) = (1 − p)
∑r+rf

i=1 Ii · pr+rf . (4.12)

As has been shown in [124] in this case the MLE can be computed as

p̂ =
1

I(r + rf) + 1
, (4.13)

whereI(r+rf) is the sample mean. Witĥp we can then estimate the current size

n̂ = p̂ · 2m of the Chord ring. Finallŷn will be used to determine the number of

successors the peer is going to maintain. The size of the successor-list will be set

to

r̂ = ⌈log2(n̂)⌉ . (4.14)

An obvious advantage of this approach is that the size of the successor-list is not

as sensitive to errors as the estimated size of the Chord ringitself. That is due

to the fact that the size of the successor list is logarithmically dependent on the

size of the Chord ring. In practice a peer is going to use this estimator to set the

size of its successor-list as follows. When first entering the Chord ring, a peer

learns the current size of the Chord ring from its direct neighbors and adjusts the

size of its successor-list accordingly. Afterwards it periodically uses the MLÊp

to estimate the current size of the Chord ring and dynamically adapts the size of

103

4 Modeling the Dynamics of P2P Overlays

its successor-list. The disadvantage is that so far we cannot make any statement

of how good the MLÊp estimates the actual size of the ring. Therefore we build

confidence intervals for̂p. The100(1−α) confidence interval [124] for̂p is given

by

p̂ ± z1− α
2

√
p̂2(1 − p̂)

r + rf

, (4.15)

wherez1− α
2

(for 0 < α < 1) is the upper1 − α
2

critical point for a standard

normal random variable.

However, the consequences of underestimating the real value of p are by far

more severe than the consequences of overestimating the real value of p. The

main reason for this is that a successor-list which is too small has a negative

effect on the stability of the Chord ring. A successor-list which is too large, on

the other hand, only results in some additional overhead. Tominimize the danger

of underestimatingn we use the upper limit of the confidence interval to estimate

n:

n̂+ =

(
p̂ + z1− α

2

√
p̂2(1 − p̂)

r + rf

)
2m. (4.16)

This n̂+ is then used to calculate the sizer̂+ of the successor-list as

r̂+ = ⌈log2(n̂+)⌉ (4.17)

Again, we round up to minimize the probability of underestimating the real value

of r. The next section summarizes how the estimator performs in an actual Chord

implementation.

4.2.3 Accuracy of the Estimate

In this section we show the results obtained by our simulations. If not stated other-

wise, each snapshot of our simulations is done by uniformly placingn peers into

the identifier space of length2m. Then the distances between the firstr consecu-

104

4.2 Estimating the Current Peer Population

tive peers are calculated and given as input to our estimator. We regard different

ring sizes to see how the estimator scales to larger networks. Furthermore, we

evaluate the difference between the upper and lower limit ofthe estimator and

study the influence of the corresponding confidence levels. Additionally, we in-

vestigate how accurate the estimator and its upper bound areable to estimate the

actually required number of successors. Finally we study the influence of churn

by varying the number of successors a peer maintains.

To see how accurate our estimatorn̂ approaches the current ring size we gen-

erated 10000 snapshots of a specific ring sizen. We then set the number of suc-

cessors to the ideal valuer = ⌈log2(n)⌉ and compared the estimated ring sizes

to the actual ring size. Figure 4.9 shows the results of our simulations for a given

ring size of 10000 and a successorlist of size 14. As can be seen in the figure,

0 2000 4000 6000 8000 10000
0.5

1

1.5

2

2.5

3x 10
4

Snapshot

R
in

g
si

ze

Actual ring size

Estimated ring size

Figure 4.9:10000 estimates of the ring size as compared to the actual ringsize

our estimator̂n is well in the right order of magnitude and roughly oscillates be-

tween0.5n and2n. Depending on the range of application, however, under- or

overestimating might be crucial to the performance of the application on top of

the estimator.

In Figure 4.10, we therefore compare the lower boundn̂− and the upper bound

n̂+ of our estimator to the actual ring size, again using 10000 snapshots of a ring

105

4 Modeling the Dynamics of P2P Overlays

of size 10000. The confidence level in this example is set to 95%. The lower

0 2000 4000 6000 8000 10000
0

1

2

3

4x 10
4

Snapshot

R
in

g
si

ze

Actual ring size

Upper bound

Lower bound

Figure 4.10:The lower and upper bound of the estimator with a confidence level
of 95% as compared to the actual ring size

bound n̂− of the estimator stays beneath the actual size of the ring with high

probability, whereas the upper bound ranges betweenn and2n to 3n, underesti-

mating the real value ofn at times.

To analyze the probability that the lower bound overestimates and the upper

bound underestimates the actual ring size we plot the sortedsnapshots in Fig-

ure 4.11. The Figure shows the normalized results obtained for the estimator and

its lower and upper bounds for three different ring sizes. Again a confidence level

of 95% is used. The part of the upper bound beneath the dotted line represents

the number of times the upper bound underestimates the actual ring size, the part

of the lower bound above the dotted line the number of times the lower bound

overestimates the actual ring size, respectively. Note that the median of the esti-

mator itself approximately intersects with the actual ringsize as indicated by the

vertical line. This justifies our assumption that the randomvariableI is approx-

imately geometric since the median of an estimator based on exactly geometric

intervals would exactly intersect with the actual ring size.

Another important fact which can be derived from the figure isthat we over-

106

4.2 Estimating the Current Peer Population

0 2000 4000 6000 8000 10000
0.5

1

1.5

2

Snapshots (estimator sorted)

N
or

m
al

iz
ed

 e
st

im
at

ed
 r

in
gs

iz
e

1000
10000
100000

lower bound

estimator

upper bound

Figure 4.11:Sorted estimates gained by the estimator.

and underestimate the actual ring size less significantly inlarger networks. This

is of course due to the fact that we use more neighbors in larger networks. The

primary reason, however, lies in the fact, that a peer also has more distinct fingers

and thus more uncorrelated realizations ofI in larger networks. Note that the tiny

spikes in the graphs of the lower and upper bound arise since we only sorted the

estimator itself and plotted the corresponding upper and lower bounds.

As can be seen in Figure 4.12 the lower and upper bound of the estimator

can be fine tuned by adjusting the confidence level. The confidence level in this

example was varied between 50% and 99%. The higher we set the confidence

level, the more the curves of the upper and lower bound drift away from the

estimator. This means that the higher we choose the confidence level, the less

frequently we will under- and overestimate the actual ring size. However, the

drawback of a high confidence level is that the estimates of the upper and lower

bound get less precise. The trade-off between overlay stability and maintenance

overhead can thus be fine tuned by means of the confidence level.

The most obvious application of the estimator is the dynamicadaptation of a

peers successorlist. Since a peer ideally maintains a list of at leastr = ⌈log2(n)⌉
neighbors the estimate in this case does only depend logarithmically on the esti-

107

4 Modeling the Dynamics of P2P Overlays

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

Snapshots (estimator sorted)

N
or

m
al

iz
ed

 e
st

im
at

ed
 r

in
gs

iz
e

upper bound

lower bound

conf. level 50%
conf. level 75%
conf. level 90%
conf. level 95%
conf. level 99%
Estimator

Figure 4.12:Influence of the confidence level on the upper and lower bound.

mate ofn. As it is more critical to underestimate than to overestimate the required

number of successors, we will concentrate on the estimator and its upper bound

in the following. Since we additionally round the estimate for the upper bound

r̂+ = ⌈log2(n̂+)⌉ ,

we set the confidence level to moderate 95% in the remainder ofthis section. Fig-

ures 4.13 and 4.14 show the estimated number of required neighbors in a network

of size104 and105. In Figure 4.13 the actually required number of neighbors is

14 =
⌈
log2(10

4)
⌉
. The regular estimator provides the correct number of neigh-

bors in over 80% of all cases. However, in almost 20% of the snapshots the esti-

mator would set the size of the successorlist to 13, one peer less than needed. In

order to minimize the danger of underestimating the required number of succes-

sors, one should therefore use the number of neighbors estimated by the upper

bound. While the upper bound does almost never underestimate in the current

example, it tends to overestimate more frequently than the regular estimator.

In a ring of size105 (see Figure 4.14) the upper bound overestimates the re-

quired number of neighbors by 1 in over 60% of all cases. In return it never

108

4.2 Estimating the Current Peer Population

12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

Estimated required neighbors

P
ro

ba
bi

lit
y

actually required
 neighbors=14

upper bound
estimator

Figure 4.13:Estimated required neighbors for upper bound and regular estimator.

understimates the actually required number of successors.The regular estimator

on the other hand again underestimates the actual value, even though only in very

few cases. Note that in about 90% of all cases the regular estimator meets the

actually required number of neighbors. Given the fact that the upper bound only

15 16 17 18 19 20 21
0

0.2

0.4

0.6

0.8

1

Estimated required neighbors

P
ro

ba
bi

lit
y

actually required
 neighbors=17

upper bound
estimator

Figure 4.14:Comparison of upper bound and regular estimator for105 peers.

109

4 Modeling the Dynamics of P2P Overlays

slightly overestimates the desired number of neighbors, wesuggest to prefer the

upper bound to the regular estimator in critical applications.

So far the results presented in this section were based on theideal number of

neighbors in the given networks. To see how the estimator performs when relying

on an unideal number of neighbors, we again simulate 10000 snapshots for a ring

of size104 and evaluate the estimator and its upper bound based on successorlists

of different size. Thereby the number of successors used as input to the estimator

ranges between 1 and 20 successors. The actually required number of neighbors

in this example is again 14. Figure 4.15 shows the results corresponding to the

regular estimator. The bars represent the results obtainedby using 1 to 20 neigh-

bors. The darker the color, the more neighbors have been usedas input to the

estimator. Obviously, the more neighbors the estimator canrely on, the better the

12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

Estimated number of necessary neighbors

P
ro

ba
bi

lit
y

actually required
 neighbors=14

1 neighbor
20 neighbors

Figure 4.15:Results obtained by using 1 to 20 neighbors for104 peers.

obtained results become. That is, the more realizations ofI we can give as an in-

put to the estimator, the more precisely it calculates the actually required number

of neighbors and the less often it over- and underestimates this value. Still the

estimator underestimates the actual value, even in the caseof 20 neighbors.

For comparison, the results obtained by the upper bound are summarized in

Figure 4.16. The bars increase and decrease more rapidly than the bars in the

110

4.2 Estimating the Current Peer Population

last figure. That is due to the fact that, the more realizations of I we obtain, the

smaller the confidence interval is going to be. Thus the upperbound will con-

verge to the estimator. Having a closer look at the Figure, wealso notice that the

probability that the upper bound underestimates the required number of neigh-

bors is negligible but not entirely zero. Obviously, this isespecially noticeable

12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

Estimated number of necessary neighbors

P
ro

ba
bi

lit
y

actually required
 neighbors=14

1 neighbor
20 neighbors

Figure 4.16:The upper bound is more sensitive to the number of neighbors than
the regular estimator

for small successorlists, since a small successorlist alsomeans fewer realizations

of I . Moreover since13 = log2(8192) all estimated values ofn < 8913 will

result in an underestimation ofr. Thus, the estimator can not fully take advan-

tage of the mathematical round step. Note that, independentof the size of the

successorlist, the upper bound is able to rely on the realizations of I gained by

its fingerlist. Thus, it supplies an applicable estimate of the required number of

neighbors independent of the number of successors used as input.

111

4 Modeling the Dynamics of P2P Overlays

4.3 Assessing the User-Behavior

The dynamic behavior of the users causes fluctuations in the overlay network

which lead to inconsistencies, lost messages, and ultimately to a decreased user-

perceived quality. As a consequence, structured overlay algorithms require more

maintenance traffic when the churn rate is high. However, p2pnetworks operate

without a centralized control unit and each peer has only a limited view of the

entire network, usually not being aware of the current churnrate in the network.

Thus, a peer should be able to estimate the churn rate from thelimited information

that is available and autonomously react to high churn situations by increasing the

maintenance traffic.

In this chapter, we propose a fully distributed algorithm for peers to assess the

behavior of the user and estimate the churn rate by exchanging measurement ob-

servations among neighbors [7]. The overlay network itselfis used as a memory

for the estimate while each online peer contributes to updated measurements of

the estimator. The advantage of this method is that it operates passively, i.e. there

are no additional entities required to monitor online and offline periods of the

peers and the generated overhead is negligible.

4.3.1 Algorithm to Capture the Fluctuations in the

Overlay

In general, a good estimator for the churn in the system must in some way cap-

ture the fluctuations in the overlay structure and then deduce an estimate for the

churn rate from these observations. Thereby, we must take into account that an

individual peer does not have any global knowledge about thestate of the system

but has to rely on a very limited view of the network. In structured p2p networks,

each peer has periodic contact to a specific number of overlayneighbors, like the

successorsin Chord, thek-bucket entriesin Kademlia, or theleafsin Pastry. The

basic principle of our estimator is to monitor the changes inthis neighbor list and

use them to derive the current churn rate. Thereby, we model the behavior of a

112

4.3 Assessing the User-Behavior

Toff

Ton Toff

ToffToff

Toff

TonTon

TonTon
peer 1

peer n

.

.

.

Figure 4.17:Ton andToff describe the online and offline times of then peers.

peer using two random variablesTon andToff which describe the duration of an

online session and an offline session as shown in Figure 4.17.

We assume that each online peerp stores pointers toc well defined overlay

neighbors (or contacts) which are specified by the individual DHT protocols. To

deal with stale entries and to maintain the structure of the overlay, peerp periodi-

cally contacts a special subset of its neighbors everytstab seconds and runs an

appropriate stabilization algorithm. This corresponds, e.g., to bucket refreshes in

Kademlia or the stabilization with the direct successor in Chord. At each of these

stabilization instants the peer synchronizes its neighborlist with those of its con-

tacts. The main idea of our estimator is to monitor the changes in the neighbor

list and thereby collect different realizations of the random variablesTon andToff.

That is, a peerp observes the online and offline session times of its overlay neigh-

bors. Thereby,obs(i) is the value of theith observation made by the peer and

time(i) is the time at which the observation was made. The observation history

is stored in a list which contains up tokmax entries. Furthermore, a peer stores

the time stampstp
on andtp

off which correspond to the time peerp itself joined or

departed from the overlay, respectively.

The join rate is the less important one of the two components of churn. The

shorter a peer stays offline on average (i.e. the smallerE[Toff]) the higher is the

join rate. To obtain realizations ofToff, a peer stores the timetoff when it last

went offline. The next time it goes online it calculates the duration of its offline

session asnow − toff and sends this value to itsc overlay neighbors. Figure 4.18

visualizes this concept. Note that the information can be piggybacked on other

113

4 Modeling the Dynamics of P2P Overlays

p

n1 n2 n3 c

Toff = now - toff

Figure 4.18:Peerp rejoins the network and sends its offline duration to itsc
neighbors

protocol messages to avoid unnecessary overhead.

Since failed nodes can no longer inform their overlay neighbors about their

online duration, we are not in the position to directly obtain realizations ofTon.

That is why we are looking for another passive way to collect realizations which

is still independent of the applied DHT protocol. In a DHT system, a peerp peri-

odically contacts at least one neighbors to stabilize the overlay structure (cf.

Step 1 in Figure 4.19). In Chord this would be the direct successor in a clockwise

Figure 4.19:Peerp only monitors its direct neighbors but distributes its obser-
vations

direction, in Kademlia the closest peer according to the XOR-metric. If, during

one of its stabilization calls,p notices thats has gone offline (cf. Step 2 in Fig-

ure 4.19), it calculates the duration of the online session of peers asnow − ts
on,

wherets
on is the time when peers went online. Peerp then distributes this obser-

114

4.3 Assessing the User-Behavior

vation to all its overlay neighbors as shown in Step 3 in Figure 4.19. If the DHT

applies some kind of peer down alert mechanism [75,93], the information could

also be piggybacked on the corresponding notify messages.

An obvious problem of this approach is that peerp does not always naturally

know ts
on, the time when peers went online. This is for example true ifp went

online afters or if s became the successor ofp due to churn in the network. For

this reason each peers memorizes the timets
on when it went online and sends this

information to its new predecessor whenever it stabilizes with a new peer. To cope

with the problem of asynchronous clocks it sends its currentonline timenow −
ts

on. This way the error is in the order of magnitude of a network transmission and

thus negligible in comparison to the online time of a peer. The advantage of this

method to collect realizations ofTon is that it only requires regular contact to one

single neighbor.

When a peer joins the network, it first needs to obtain some observations before

it can make a meaningful estimate of the churn rate. The problem is that the

lifetime of the peer is in the same order of magnitude as the lifetime of its overlay

neighbors. Thus, it is unlikely, that the peer is able to makeenough observations

during its lifetime. Therefore, we use the overlay network as a memory of already

obtained observations to maintain them beyond the lifetimeof the peer. If a new

peer joins the overlay it downloads the current list of observations from its direct

successor. This way the observations persist in the overlayand a new peer can

already start with a useful estimate which reflects the current churn rate in the

network.

Another way to maintain the persistence of the observationsis to invest more

overhead by periodically contacting a number of peers instead of just one. Maha-

jan et al. [92] present an algorithm which relies on the fact that a peerp continu-

ously observesc overlay neighbors as shown in Figure 4.20. Such a peer should

on average observe one failure every

∆t =
1

c
· E[Ton] (4.18)

115

4 Modeling the Dynamics of P2P Overlays

n1 n2 n3 cp

periodic contact

peer
leaving

peer
leaving

Figure 4.20:Peerp periodically monitors the changes in its overlay neighborhood

seconds. Thus, if peerp observesk failures within a time period of∆t seconds,

the mean online time of a peer can be estimated as:

Ê[Ton] =
c · ∆t

k
=

c · (time(k) − time(1))

k
(4.19)

wheretime(i) is the time of theith observed node failure. In addition to the pe-

riodic contact toc neighbors, the algorithm also has to struggle with the problem

of obtaining enough observations during the lifetime of thepeer. A possible so-

lution to the problem is to piggyback the current estimate onprotocol messages

and to set the own estimate to the median of the estimates received from other

nodes in the overlay [93].

4.3.2 Analytical Derivation of the Churn Rate

In this section we discuss the possibilities of a peer to deduce the current churn

rate from the observations it has made. We will use the following notation: For a

random variableX, we denotex(t) as the probability density function,X(t) as

the cumulative density function, andE[X] as the mean. Estimated values will be

marked using a hat as in̂E[X], which describes an estimate for the mean ofX.

Once a peer has obtained a list of observationsobs(i), i = 1, . . . , k of the

random variablesTon andToff, it needs a mechanism to derive an estimate of the

116

4.3 Assessing the User-Behavior

current churn rate based on its a priori knowledge. If it cannot make any reason-

able assumptions about the distribution of the random variable, it has to rely on

robust estimates like the empirical mean and the empirical standard deviation.

Ê[Ton] =
1

k
·

k∑

i=1

obs(i) (4.20)

σ̂(Ton) =

√√√√ 1

k − 1

k∑

i=1

(
obs(i) − Ê[Ton]

)2

. (4.21)

To evaluate the accuracy of the estimate we can construct the100(1 − α)

percent confidence interval for the estimated mean ofTon as

u(k, α) = Ê[Ton] + tk−1,1− α
2
· σ̂(Ton)√

k
(4.22)

l(k, α) = Ê[Ton] − tk−1,1− α
2
· σ̂(Ton)√

k
, (4.23)

wheretk−1,1− α
2

is the1− α
2

critical point of thet distribution withk−1 degrees

of freedom. Depending on the intended purpose of the estimator, it might be

crucial that the estimator does not over- or underestimate the actual value too

often. In such a case, the upper and the lower bound of the confidence interval

can themselves be used as estimates, as already discussed inChapter 4.2.3.

While the mean gives a first idea about the churn in the system,the main pur-

pose is to use the estimate to self-tune the parameters of theDHT or to calculate

the probability of certain events. This usually requires knowledge of the entire

distribution or at least of some important quantiles. For example, to calculate

the probability that an overlay neighbor will no longer be reachable at the next

stabilization instant, we need to know the probability thatthis contact will stay

online for less thantstab additional seconds. In general, this probability depends

on how often the peer itself already stabilized with this neighbor. In particular,

the probabilitypi that an overlay neighbor will no longer be reachable at theith

117

4 Modeling the Dynamics of P2P Overlays

stabilization instant can be calculated as follows:

pi = P (Ton,r < i · tstab|Ton,r > (i − 1) · tstab) (4.24)

=
P ((i − 1) · tstab < Ton,r < i · tstab)

P (Ton,r > (i − 1) · tstab)
, (4.25)

whereTon,r describes the forward recurrence time for the random variable Ton. In

case of exponentially distributed online timesTon,r = Ton and the above equation

can be simplified to:

pi =

(
1 − e−λon·i·tstab

)
−
(
1 − e−λon·(i−1)·tstab

)

1 − (1 − e−λon·(i−1)·tstab)
(4.26)

= 1 − e−λon·tstab = p . (4.27)

Thus, for exponentially distributed online timespi = p for all i and an unbiased

point estimator for this probability is given by Equation 4.28.

p̂ = P̂ (Ton < tstab)

=
1

k

∣∣∣
{

T i
on : T i

on < tstab for i = 1, 2, ..., k
}∣∣∣ . (4.28)

The100(1−α) confidence interval for̂p can be calculated using the following

bounds:

u(k, α) = p̂ + z1− α
2
·
√

p̂(1 − p̂)

k
(4.29)

l(k, α) = p̂ − z1− α
2
·
√

p̂(1 − p̂)

k
, (4.30)

wherez1− α
2

is the1 − α
2

critical point for a standard normal random variable.

In case over- or underestimating has serious consequences for the applied ap-

plication, the limits of the confidence interval can again beused as estimates

118

4.3 Assessing the User-Behavior

themselves.

In some cases an application requires knowledge of the entire distribution

function of the online time of the peers. If the type of distribution is known a pri-

ori, the peer can use the corresponding Maximum Likelihood Estimator (MLE)

to estimate the corresponding parameters of the distribution. In the most often

assumed case of an exponential distribution, the MLE is known to be the sam-

ple mean. For other typical distributions like the log-normal distribution Log-

N(µ, σ2) the MLE becomes more complicated, but can usually still be calculated

using the information collected by the peer:

µ̂ =
1

k
·

k∑

i=1

ln (obs(i)) (4.31)

σ̂ =

[∑k

i=1 (ln (obs(i)) − µ)2

k

] 1
2

. (4.32)

However, there is always the danger of assuming an incorrectdistribution

which would lead to correspondingly distorted results. A possibility to reduce

this risk is to perform a hypothesis test [125] to verify thatthe type of distri-

bution is actually the assumed one and only use an MLE if the test delivers a

positive result. In general, however, the actual type of distribution is not known

or a superposition of multiple distributions. In this case,a peer has to rely on an

estimate of the quantiles [126] of the online distribution.Let T 1
on, T

2
on, ..., T

k
on be

thek observations in the history of a peer and letT
(1)
on , T

(2)
on , ..., T

(k)
on be the or-

dered statistic, in such a way thatT
(1)
on < T

(2)
on < ... < T

(k)
on . These sorted values

of Ton can then be taken as the0.5
k

, 1.5
k

, ..., k−0.5
k

quantiles of the distribution of

the online time. Quantiles for probabilities between0.5
k

and k−0.5
k

can be com-

puted using linear interpolation, while the minimum or maximum values ofTon

are assigned to quantiles for probabilities outside that range.

The accuracy of the estimates heavily depends onk. The more observations

a peer maintains in its history, the more accurate the estimate is going to be.

119

4 Modeling the Dynamics of P2P Overlays

Ton

Ton Ton

Ton TonTon

TonTon

peer p

neighbor c
.

.

.

neighbor 1

neighbor 2

Figure 4.21:Observations made by peerp during its lifetime

However, if the overlay network is not used as a memory for already made ob-

servations, a joining peer has to rely on its own observations. Therefore, it can

either observe one specific peer and send the result to itsc overlay neighbors or

directly observec peers itself. Figure 4.21 shows the online period of a peerp and

thec overlay neighbors it observes during its lifetime. In the figure we assume a

perfect stabilization algorithm. That is, an overlay neighbor which went offline is

immediately replaced by another overlay peer.

To analyze the expected size of the history of a peer, we regard the random

variableX which describes the number of observations a peer makes during its

lifetime. This number corresponds to the number of leave events in Figure 4.21.

It can be computed as

P (X = i) =

∫
∞

0

ton(t) · P (X = i|Ton = t) dt (4.33)

whereton(t) is the probability density function ofTon. In the case of exponentially

distributed online times, this can be written as

P (X = i) =

∫
∞

0

λe−λt · (cλt)i

i!
· e−cλt dt (4.34)

120

4.3 Assessing the User-Behavior

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Observations k

P
D

F

Simulation
Analysis

Figure 4.22:Expected number of observations forc = 40

since the number of departures in a fixed interval of lengtht is Poisson distributed

with c · λ. The equation can be simplified to

P (X = i) =
ciλi+1

i!

∫
∞

0

ti · e−(c+1)λt dt

P (X = i) =
ciλi+1

i!

i!

(λ · (c + 1))i+1

=
ci

(c + 1)i+1
.

(4.35)

To compare this theoretical approximation to practical values, we simulated an

overlay network withTon = 300s, tstab = 30s, andc = 40. The maximum size

of the history was set tokmax = 100. Figure 4.22 shows the probability density

function of X for both the analysis and the simulation. It can be seen that the

analysis matches the simulation very well except for the twopeaks at the left and

the right of the figure. The peak at 100 clearly results from the maximum size

of the history. That is, in the simulation all probabilitiesfor P (X > 100) are

added toP (X = 100). The peak at 0 arises from the fact that while the analysis

121

4 Modeling the Dynamics of P2P Overlays

immediately takes offline peers into account, the first stabilization instant in the

simulation occurs 30 seconds after the peer joined the network. Thus, all peers

which stay online for less than 30 seconds, can never make an observation.

While so far we studied the accuracy of an estimator, it is also interesting to

analyze how fast an estimator reacts to changes in the globalchurn rate. The more

observations a peer makes per time unit, the faster it can react to such changes.

This can be measured by looking atT leave
obs , the time between two observed leave

events, orT join
obs , the time between two observed join events. In general, the col-

lection of observations shows a self-organizing behavior.The more churn there

is in the system, the more observations will be collected pertime unit. If a peer

monitors only its direct neighbor and shares its observations withc overlay neigh-

bors, the next observation is made as soon as one ofc + 1 monitored peers goes

offline. Thus, the distribution ofT leave
obs can be calculated as the minimum ofc+1

forward recurrence times ofTon. Due to the memoryless property, the forward re-

currence time of an exponentially distributed online timeTon is also exponentially

distributed with the same parameters. In this case the distribution of T leave
obs can

be calculated as shown below.

P
(
T leave

obs < t
)

= 1 −
c+1∏

1

P (Ton ≥ t) = 1 − e−(c+1)λt (4.36)

If the distribution is not known, we can still easily computethe mean ofT join
obs

andT leave
obs . Each node which joins the network calculates its own offlinetime

and additionally sends this observation to itsc contacts.

E
[
T join

obs

]
=

E[Toff]

c + 1
(4.37)

The calculation is slightly more complicated forT leave
obs since the time when a

peer actually observes that another peer is offline differs from the actual time the

node left the overlay. Assuming that overlay neighbors are updated everytstab

122

4.3 Assessing the User-Behavior

5 10 15 20 25 30

4

6

8

10

12

14

16

18

Elapsed simulation time [h]

E
st

im
at

ed
 E

[T
on

] [
m

in
]

Simulation
Analysis

Figure 4.23:Response time forc = 10 andkmax = 100

seconds, the average error is

ǫon =
tstab

2
. (4.38)

Thus, the mean ofT leave
obs can be calculated as

E
[
T leave

obs

]
=

E[Ton] + ǫon

c + 1
. (4.39)

The above considerations can be used to approximate the expected time it

takes the estimator to respond to a global change of the churnrate. When the

mean online time of the peers changes fromEold[Ton] to Enew[Ton], we approx-

imate the expected response timeE[R] by the time needed to collectkmax new

observations.

E[R] = Eold[Ton,r] +
kmax

c + 1
· (Enew[Ton] + ǫon) (4.40)

Figure 4.23 compares the analytical response time to that obtained from a

123

4 Modeling the Dynamics of P2P Overlays

simulation run. In the simulation we setkmax = 100, c = 10, tstab = 30s and

changedE[Ton] from 10min to 5min to 15min and back to 10min after8.33h,

16.66h, and25h of simulation time, respectively. The simulated curve shows the

mean of the estimatedE[Ton] values of all peers, which were online at the corre-

sponding time. The error bars represent the interquartile range, i.e. the difference

between the third and first quartiles, as a measure of statistical dispersion. It can

be seen that the estimator is able to capture the changes in the churn rate and that

the time it takes to adjust to the new value complies with the analysis. Note that,

due to the stabilization period of 30 seconds, the estimatedvalues lieǫon = 15s

above the actual value.

The response time can be improved by maintaining more overlay neighbors or

by giving less weight to older values in the history. This can, e.g., be achieved by

using an exponential weighted moving average [127], which applies weighting

factors which decrease exponentially:

Êk[Ton] = α · obs(i) + (1 − α) · Êk−1[Ton] . (4.41)

Thereby, the smoothing factorα determines the weight given to the latest obser-

vation.

4.3.3 Accuracy, Responsiveness, and

Practicability

In the following evaluation, unless stated otherwise, we will always consider that

the online and offline times of the users are exponentially distributed with mean

E[Ton] andE[Toff], respectively. The default stabilization interval iststab = 30s

and the size of the neighbor list isc = 20. We will further assume that there are

40000 initial peers and thatE[Ton] = E[Toff], resulting in an average of 20000

online peers at a time. Although our estimator yields results for both online and

offline time, we will concentrate on estimating the online timeTon, since this is

usually a more important parameter for the system performance. The estimation

124

4.3 Assessing the User-Behavior

of Toff can be calculated in an analogous way.

Proof of Concept

The main purpose of this section is to show that the theoreticconcept of the pro-

posed estimator as described in Section 4.3.1 does work equally well in practice.

We focus on Chord since it is the currently most studied structured overlay ar-

chitecture. To model the stabilization algorithm, a peer synchronizes its neighbor

list everytstab = 30s with its direct successor. When a peer notices that another

peer is offline, it notifies the peers in its neighbor list, piggybacking the observed

online time in these messages. We furthermore consider a symmetric neighbor

list, i.e. the number of peers in the successor list is the same as that of the prede-

cessor list. This improves the stability of the Chord overlay and provides a better

comparability of the result to symmetric overlays like Kademlia.

0 200 400 600 800
400

500

600

700

800

+ Estimator (avg)

Estimate number

E
st

im
at

ed
 E

[T
on

] [
s]

Estimator (iot)o

Figure 4.24:Snapshot of mean online time obtained from avg and iot estimation

Figure 4.24 plots the estimated values forE[Ton] obtained by two different

estimation methods. The green crosses, denoted byavg, show the mean of the

observed values as given by Equation 4.20. The red circles, denoted byiot, are

based on the mean time between two observations according toEquation 4.39.

125

4 Modeling the Dynamics of P2P Overlays

The figure was created by picking 900 random peers leaving theoverlay and cal-

culating their estimates based on both estimation methods.We can see that both

methods perform quite well, as the estimated values clusteraround the actual av-

erageTon of 600s. In general theavg method always provides a robust estimate.

Theiot method, however, heavily depends on the implementation specifics of the

stabilization routine. In our simulation experiments we doassume an idealized

stabilization routine, neglecting packet loss and other (network) errors. In a real

implementation the neighbor list can still contain wrong oroffline entries after

stabilization. In such a case the updates may be sent to less thanc contacts. If

a peer, however, assumes thatc other peers contribute with their estimated val-

ues, it will receive too few estimates and heavily underestimate the actual churn

rate using theiot method. Thus, while in theory it can be considered as a good

method, it is in fact not very suitable in practice.

0 200 400 600 800
300

400

500

600

700

800

900

1000

Estimate number

E
st

im
at

ed
 E

[T
on

] [
s]

Upper Bound

Lower Bound

Figure 4.25:Estimates of upper and lower 99% confidence levels

In practice, too high or too low estimates might have critical consequences in

terms of performance or even functionality, which is similar to the problematic in

Chapter 4.2. In such a case it should be avoided that the estimator underestimates

or overestimates the actual churn rate. This can be achievedby using the upper or

lower bound of a specified confidence level instead of the estimated value itself.

126

4.3 Assessing the User-Behavior

Figure 4.25 shows the upper and lower bounds of the 99% confidence interval

for the mean according to Equation 4.22 and Equation 4.23, respectively. As ex-

pected, the upper bound overestimates the actual value, while the lower bound

underestimates it. The frequency at which the upper bound underestimates or the

lower bound overestimates the actual value can be influencedby the confidence

level. The higher the confidence level is chosen, the smalleris the probability for

this to happen at the cost of more innacurate values.

Accuracy of the Estimator

In this section we evaluate how the accuracy of the estimatedresults depends on

different parameters. The key parameter we focus on is the sizek of the observa-

tion history, i.e., the number of samples that are used to obtain the estimate.

0 50 100 150 200
200

400

600

800

1000

1200

Number of observations in history

E
st

im
at

ed
 v

al
ue

 fo
r

E
[T

on
] [

s]

Mean estimated E[T
on

] value

Actual E[T
on

] value

Figure 4.26:Influence of the history sizek on the estimation accuracy

In order to show the influence ofk on the accuracy of the estimate, we perform

several simulation runs in which we vary the sizek of the history and for eachk

examine the estimatedE[Ton] values from 10000 peers. The mean of these esti-

mated values is shown in Figure 4.26. The error bars in the figure represent the

sampled standard deviation obtained from the 10000 estimates. First of all, we

127

4 Modeling the Dynamics of P2P Overlays

can recognize that the method is robust for estimating the mean, as the mean es-

timatedE[Ton] value corresponds to the actual mean value of 600s. Furthermore,

increasing the history size greatly improves the accuracy of the estimate in terms

of a smaller standard deviation. The accuracy improves nearly exponentially with

k. However, increasing the history size to a too large value abovek = 100 does

not significantly improve the accuracy while it will lead to aslower responsive-

ness of the estimator as shown in the next paragraph.

In the next step we take a closer look at the trade-off betweenaccuracy and

responsiveness in dependence of the size of the history. To express accuracy, we

regard the deviation from the actual value in percent. In particular, we consider

how much the 97.5% and 2.5% quantiles of the estimated valuesbased onk

observations differ from the actual value in percent. This is plotted as the dotted

blue curves in Figure 4.27 using the lefty-axis. As in the previous figure, it can be

recognized that an increase in the history size results in more accurate estimates.

The quantiles confirm the exponential dependence onk.

0 20 40 60 80 100
−200

−100

0

100

200

300

D
ev

ia
tio

n
fr

om
 a

ct
ua

l v
al

ue
 in

 p
er

ce
nt

Number of observations k

0.975 quantile

0.025 quantile

0

1

2

3

4

5
R

es
po

ns
e

tim
e

in
 m

ul
tip

le
s

of
 E

[T
on

]

20 neighbors
40 neighbors

Figure 4.27:Trade-off between accuracy and responsiveness

An increased accuracy, however, comes at the drawback of reducing the re-

sponsiveness of the estimator. Responsiveness is defined asthe time it takes to

collect k fresh results when there is a change in the global churn rate.It is ex-

128

4.3 Assessing the User-Behavior

pressed in multiples ofE[Ton] and approximated by Equation 4.40. The respon-

siveness increases linearly withk as can be seen in the green solid curves of

Figure 4.27 using they-axis on the right. The slope of the curve is determined by

the number of overlay neighbors. The more neighbors there are, the more results

are obtained per time unit and the faster the estimator reacts to the change in the

churn rate. The study shows that depending on the application requirements, a

trade-off can be made between a higher accuracy and a faster responsiveness by

changing the number of considered observations.

Responsiveness of the Estimator

Responsiveness is a measure for the time it takes our estimator to react to changes

of the global churn rate of the network. It mainly depends on the number of

overlay contacts which share their observations, but is also influenced by the

absolute churn rate itself. The higher the churn rate is, themore results can be

collected within the same time period.

In order to provide a more comprehensive study of the responsiveness of the

estimator and to validate our analytical approximation in Equation 4.40, we per-

form simulation runs with different churn rates and measurethe time between

two successive observations. Obviously, the smaller this inter-observation time

is, the faster our method will react to changes of the churn rate. This is shown

in Figure 4.28. For different churn rates ofE[Ton] = 300s, 600s, and 900s, the

inter-observation time is depicted as a function of the number of overlay contacts.

The dashed lines are the results obtained by the approximation, cf. Equation 4.40.

It can be seen that the inter-observation time decreases exponentially and that the

analytical curves match well with those obtained by simulations. However, we

can also recognize that a greater number than 20 neighbors isnot necessarily jus-

tified due to the small improvement in responsiveness and thehigher overhead in

maintaining those neighbors. Note, that the responsiveness also depends on the

quality of the stabilization algorithm. If a simple algorithm is used, the neighbor

lists might be inaccurate, which in turn results in a loss of updates and thus a

129

4 Modeling the Dynamics of P2P Overlays

higher inter-observation time.

10 20 30 40 50
0

20

40

60

80

100

120

140

160

Number of overlay contacts

In
te

r−
ob

se
rv

at
io

n−
tim

e
[s

]

E[T
on

] = 900s

E[T
on

] = 600s

E[T
on

] = 300s

Analysis

Figure 4.28:Responsiveness to different churn rates

To show how the inter-observation time translates into the actual response time

and how the estimator behaves during these reaction phases,we simulated a net-

work where the mean online time of all peers was globally changed from the

initial value of 300s to 900s after a simulation time of 250 minutes.

250 300 350 400
5

10

15

c = 10, 20, 30, 40

Elapsed simulation time [min]

E
st

im
at

ed
 E

[T
on

] [
m

in
]

Figure 4.29:Reaction to change in global churn rate

130

4.3 Assessing the User-Behavior

In Figure 4.29 each data point shows the average of the estimatedE[Ton] val-

ues of all online peers at the same time instant. The figure visualizes that the

estimates react differently to the change of the global churn rate. Again the more

neighbors there are, the faster the estimator approaches the new churn rate. While

the increase is nearly linear forc = 10, there is not much difference between the

curves forc = 20, 30, and 40 neighbors. Thus, using a too large number of

overlay contacts is not justified due to the additional overhead. Using 20 overlay

neighbors, as e.g. suggested in Kademlia, is therefore a reasonable choice.

Practicability and Implementation Aspects

In practice, the estimate of the churn rate will be used to self-adaptively tune

maintenance algorithms of the p2p network, e.g. the stabilization of the over-

lay structure and the control of the replication of stored documents. Therefore,

it would be desirable that all peers obtain equal estimate values in order to de-

rive similar input parameters to these algorithms. Since our proposed estimation

method is entirely distributed and each peer calculates itsown estimate from lo-

cal measurements, different peers also tend to obtain different estimation results.

However, most maintenance algorithms are performed between direct overlay

neighbors of the DHT.

Since these direct overlay neighbors also exchange their measured observa-

tions, their churn estimates derived from this data are expected to be highly cor-

related. To quantify the degree of this correlation, we tooka global snapshot

during the simulation and had a closer look at the estimates of 5000 consecutive

peers on the Chord ring. We then investigated the correlation between these peers

by applying methods from time series analysis. Figure 4.30 depicts the autocor-

relation over the number of neighbors. Thex-axis represents the different lagsx,

which in our case corresponds to thex-th overlay neighbor. Ifx is positive, this

corresponds to thex-th successor on the ring, whereas a negative value represents

the |x|-th predecessor. The figure shows that the estimates of a peerare indeed

highly correlated among neighboring peers. The curves for the different num-

131

4 Modeling the Dynamics of P2P Overlays

−50 −40 −30 −20 −10 0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

c = 10, 20, 30, 40

Neighbor

A
ut

oc
or

re
la

tio
n

Figure 4.30:Autocorrelation of estimates over neighboring peers

bersc of overlay neighbors among which the measurement values areexchanged

show that the correlation extends to at leastc neighbors in both directions of the

ring. Note that due to our symmetric neighbor lists a value ofc = 10 overlay

neighbors means that the peer maintains 5 neighbors in both directions of the

ring.

4.4 Monitoring a Distributed P2P System

at Runtime

In the previous chapters we discussed the possibilities of an individual peer to

estimate important system parameters. While this creates agreat basis for self-

organizing maintenance algorithms, overlay service providers are interested in

more complex information about the entire network. In particular, they do not

want to lose control over their applications, but rather need to know what their

system looks like right now and where problems occur at the moment. However,

the decentralized nature of structured overlay networks makes it hard to find a

132

4.4 Monitoring a Distributed P2P System at Runtime

scalable way to gather information about the running systemat a central unit.

In this chapter, we therefore exploit the special features of structured p2p over-

lays and present a novel and scalable approach [4, 15] to create a snapshot of a

running Chord-based network. On basis of the gathered information, it is, e.g.

possible to take appropriate action to relieve a hotspot or to pinpoint the cause of

a loss of the overlay ring structure. The overhead involved in creating the snap-

shot is evenly distributed to the participating peers so that each peer only has to

contribute a negligible amount of bandwidth. Most importantly, the snapshot al-

gorithm is very easy to use for a provider. It only takes one parameter to adjust the

trade-off between duration of the snapshot and bandwidth needed at the central

unit which collects the measurements.

4.4.1 A Divide and Conquer Approach

Our algorithm to create a snapshot of a running Chord system is based on a very

simple two step approach. In step one, the overlay is recursively divided into

subparts of a predefined size. In step two, the desired measurement is done for

each of these subparts and sent back to a central collecting point (CP). In the

following, we describe both steps in detail.

Step 1: Divide Overlay into Subparts

The algorithmsnapshot(Rs, Re, Smin, CP) divides a specific region of the over-

lay into subparts. This function is called at an arbitrary peerp with idp. The peer

then tries to divide the region fromRs = idp to Re into contiguous subparts

using its fingers. The exact procedure is illustrated in Figure 4.31. In this exam-

ple peerp has four fingersf1 to f4. It sends a request to the finger closest toRe

within [Rs; Re]. At first, fingerf4 is disregarded since it does not fall into the

region betweenRs andRe (cf. a). This makesf3 the closest finger toRe in our

example. If this finger does not respond to the request, as illustrated by the bolt

(cf. b), it is removed from the peer’s finger list and the peer tries to contact the

133

4 Modeling the Dynamics of P2P Overlays

f1

f2
f3

s pR id=

eR

minsR S+

f4

ˆ
sR=a b

c

d

Figure 4.31:Visualization of the algorithm.

next closest fingerf2 (cf. c). If this finger acknowledges the request, peerp recur-

sively tries to divide the region fromRs = idp to R̂e = idf2 −1 into contiguous

subparts. Fingerf2 partitions the region from̂Rs = idf2 to Re accordingly.

As soon as a peer does not know any more fingers in the region between the

currentRs and the currentRe, the recursion is stopped. The peer changes into

step two of the algorithm and starts a measurement of this specific region. In this

context, the parameterSmin can be used to determine the minimum size of the

regions, which will be measured in step two. Taking into account Smin, a peer

will already start the measurement if it does not know any more fingers in the

region between the currentRs + Smin and the currentRe. In this case fingerf1

would be disregarded, as illustrated by the dotted line (cf.d in Figure 4.31), since

it points into the minimum measurement region. ParameterSmin is designed

to adjust the trade off between the duration of the snapshot and the bandwidth

needed at the collecting point. The larger the regions, the longer the measurement

will take. The smaller the regions, the more results are sentback to the CP.

A detailed technical description of the procedure is given in Algorithm 1. Peer

p will contact the closest finger toRe until it does not know any more fingers

in betweenRs + Smin andRe. If so, it changes into step two and starts a mea-

134

4.4 Monitoring a Distributed P2P System at Runtime

surement of this region calling countingtoken(idp , Re, Smin, CP , result) at the

local peer.

Algorithm 1
The snapshot algorithm (first callRs = idp)

snapshot(Rs, Re, Smin, CP)
send acknowledgment to the sender of the request
idfm = max({idf |idf ∈ fingerlist∧ idf < Re})
while idfm > Rs + Smin do

send snapshot(idfm, Re, Smin, CP) request to peeridfm

if acknowledgment fromidfm then
call snapshot(idp, idfm − 1, Smin, CP) at local peer
return //exit the function

else
removeidfm from fingerlist
idfm = max({idf |idf ∈ fingerlist∧ idf < Re})

end if
end while
Ŝ = Re−Rs⌈

Re−Rs
Smin

⌉ //explanation see step two

call countingtoken(idp , Re, Smin, CP , ∅) at local peer

Step 2: Measure a Specific Subpart

The basic idea behind the measurement of a specific subpart from Rs to Re is

very simple. The first peer creates a token, adds its local statistics, and passes

the token to its immediate successor. The successor proceeds recursively until

the first peer with anid > Re is reached. This peer sends the token back to the

collecting point, whose IP is given in the parameter CP.

Ideally, each of the regions measured in step two would be of size Smin as

specified by the user. The problem, however, is that the region from Rs to Re is

slightly larger thanSmin according to step one of the algorithm. In fact, if the

responsible peer did not know enough fingers, the region might even be signifi-

cantly larger thanSmin. The solution to this problem is to introduce checkpoints

135

4 Modeling the Dynamics of P2P Overlays

lmnopqorpmsto
sR eR

minS

minŜ

result

minS

minŜ minŜ

checkpoint

checkpointcheckpoint

checkpoint

result
final
result

result result final
result

(id space)

Figure 4.32:Results are sent back to theCP after each checkpoint

with a distance ofSmin in the corresponding region. Results are sent to theCP

every time the token passes a checkpoint instead of sending only one answer at

the end of the region. This is illustrated in the upper part ofFigure 4.32. The

counting token is started atRs. The first peer behind each checkpoint sends a

result back to theCP as illustrated by the large solid arrows. The finalresult

is still sent by the first peer withid > Re.

A drawback of this solution is that the checkpoints might notbe equally dis-

tributed in the region. In particular, the last two checkpoints might be very close

to each other. We therefore recalculate the positions of thecheckpoints according

to the following equation:

Ŝmin =
Re − Rs⌈

Re−Rs

Smin

⌉ . (4.42)

The new checkpoints can be seen in the lower part of Figure 4.32. The number

of checkpoints remains the same, while their positions are moved in such a way,

that the results are now sent at equal distance.

As can be seen at the end of Algorithm 1, the recalculation ofSmin is already

136

4.4 Monitoring a Distributed P2P System at Runtime

Algorithm 2
The countingtoken algorithm (first callRs = idp)

countingtoken(Rs , Re, Smin, CP , result)
send acknowledgment to the sender of the request
if Rs ≤ idp ≤ Re then

if idp > Rs + Smin then
sendresult to CP
result = 0
Rs = Rs + Smin

end if
add local measurement toresult
ids = id of direct successor
while truedo

send countingtoken(Rs , Re, Smin, CP , result) request to direct succes-
sorids

if acknowledgmentthen
break

else
removeids from successor list
ids = id of new direct successor

end if
end while

else
sendresult to CP

end if

done in the first step, just before the counting token is started. A detailed de-

scription of the counting token mechanism is given in Algorithm 2. If a peerp

receives a counting token it makes sure that its identifier isstill within the mea-

sured region, i.e.Rs ≤ idp ≤ Re . If not, it sends aresult back to theCP and

stops the token. Otherwise it adds its local measurement to the token and tries to

pass the token to its immediate successor. If it is the first peer behind one of the

checkpoints, it sends an intermediate result back to theCP and resets the token.

137

4 Modeling the Dynamics of P2P Overlays

Collect Statistics

Generally speaking, there are two different kinds of statistics, which can be col-

lected using the counting tokens. Either a simple mean valueor a more detailed

histogram. In the first case the counting token memorizes twovariables,Va for

the accumulated value andVn for the number of values. Each peer receiving the

counting token adds its measured value toVa and increasesVn by one. The sam-

ple mean can then be calculated at theCP as
∑

Va∑
Vn

. In case of a histogram, the

counting token maintains a specific number of bins and their corresponding lim-

its. Each peer simply increases the bin matching its measured value by one. If the

measured value is outside the limits of the bins it simply increases the first or the

last bin respectively.

There are numerous things that can be measured using the above mentioned

methods. Table 4.1 summarizes some exemplary statistics and the kind of infor-

mation which can be gained from them. The most obvious application is to count

the number of hops for each counting token. On the one hand, this is a direct

measure for the size of the overlay network. On the other hand, it also shows the

distribution of the identifiers in the identifier space. To gain information about the

Table 4.1:Possible statistics gathered during a snapshot
Statistic Information gained

Number of hops per token Size of the network
Distribution of the identifiers

Mean search delay Performance of the algorithm
Sender== predecessor? Overlay stability

Number of timeouts per token Churn rate
Number of resources per peer Fairness of the algorithm
Number of searches answered User behavior
Bandwidth used per time unit Maintenance overhead

Missing resources Data integrity

performance of the Chord algorithm, the mean search delay ora histogram for

the search time distribution can be calculated and comparedto expected values.

138

4.4 Monitoring a Distributed P2P System at Runtime

Furthermore, Chord’s stability can only be guaranteed as long as the successor

and predecessor pointers of the individual peers match eachother correspond-

ingly. This invariant can be checked by counting the percentage of hops, where

the sender of the counting token did not match the predecessor of the receiving

peer. Additionally, the number of timeouts per token can be used to measure the

current churn rate in the overlay network. The more churn there is, the more time-

outs are going to occur due to outdated successor pointers. Similarly, the number

of resources stored at each peer is a sign of the fairness of the Chord algorithm.

The number of searches answered at each peer can likewise be used to get an idea

of the search behavior of the end users. Finally, a peer can keep track of the num-

ber of missing resources to verify the integrity of the stored data. This can, e.g.,

be done counting the number of search requests which could not be answered by

the peer.

All of the above statistics can be collected periodically tosurvey the time de-

pendent status of the overlay. Note, that it is also possibleto monitor a specific

part of the overlay network by settingRs andRe accordingly. This can, e.g., be

helpful if there are problems in a certain region of the overlay network and the

operator needs to verify that his countermeasures have beensuccessful.

4.4.2 Analytical Evaluation of the Algorithm

To analyze the performance of our algorithm, we have a closerlook at different

performance measures. At first, we will regard the overhead produced during the

generation of a snapshot. Then, we will estimate the duration of a snapshot as

well as the temporal distribution of the token arrival timesat theCP . Finally,

we will discuss the probability to lose tokens while creating a snapshot of the

running system.

139

4 Modeling the Dynamics of P2P Overlays

Required Bandwidth at the Monitor Station

The snapshot algorithm takes only one single parameter,Smin. It directly de-

termines the number of areasNr into which the Chord ring is divided during a

snapshot:

Nr =

⌈
Sid

Smin

⌉
. (4.43)

Independent of the current size of the overlay network at least one result per

region is sent back to theCP . Step one of the snapshot algorithm yields the

following bounds forNc, the number of counting tokens sent to theCP :

2 ·
⌈

Sid

Smin

⌉
≥ Nc ≥

⌈
Sid

Smin

⌉
. (4.44)

The inequation can be explained as follows: According to thesecond step of

the algorithm, a counting token sends an intermediate result everyŜmin and an

additional result at the end of the region. Obviously, this way, at least on result

is sent per region. In the worst case, however, the region is slightly larger than

the originalSmin in which case an intermediate checkpoint is created and the

number of tokens is thus doubled.

As can be seen in Equation 4.43,Smin can be used to adjust the trade-off

between the duration of a snapshot and the number of tokens, which arrive at

theCP . The largerSmin, the more hops per counting token are needed and the

longer the snapshot will take. The smallerSmin, the less hops per counting token

are needed but the more tokens arrive at theCP in total.

Duration of a Snapshot

The duration of a snapshot does not only depend onSmin, but also on the current

churn rate and the exact implementation of the Chord algorithm. To be able to

calculate an estimate of the duration of a snapshot, we assume a scenario without

any peers joining or leaving the network. In this case, the duration of step one, the

140

4.4 Monitoring a Distributed P2P System at Runtime

signaling step, can be estimated as follows. The last region, in which a counting

token will be started is the one directly following the initiating peer. This is due

to the fact, that the initiating peer will start its countingtoken no sooner than it di-

vided the ring into separate regions. Before it starts the counting token, it contacts

its fingers until the first finger is closer to itself thanSmin. The initiating peer has

at mostlog2(n) fingers and each of the fingers sends an acknowledgment, before

the peer can go on with the algorithm. IfTO is the random variable describing

the duration of one overlay hop, then the duration of step oneof the algorithm is

at most

Dstep1 = 2 · log2(n) · E[TO] . (4.45)

In the worst the initiating peer does not have any fingers and directly sends

the counting token in step two. This would taken · E[TO], but is very unlikely

to happen. An easy solution to this problem would be to pass the responsibility

of dividing the ring to the direct successor in case the counting token region

becomes too large. In general, if there aren peers in the overlay, there are roughly

Pr =
n · Smin

Sid

(4.46)

peers per region. Furthermore, in the worst caseSmin is slightly larger than a

power of two and the region covered by a counting token may become almost

twice as large asSmin. Therefore a good estimate for the duration of the counting

step of the algorithm is:

Dstep2 = 2 · Pr · E[TO]. (4.47)

This results in the following total duration of a snapshot:

D =

(
log2(n) +

n · Smin

Sid

)
· 2 · E[TO]. (4.48)

141

4 Modeling the Dynamics of P2P Overlays

Token Arrival Time Distribution

To get a rough estimate for the distribution of the arrival times of the counting

tokens at theCP , we consider the special case where the size of the overlayn =

2g is a power of two andSmin is such thatNr = 2h with h < g. Furthermore,

we assume that the individual peers are placed at equal distances on the ring.

In this caseh = log2(Nr) is the number of overlay hops it takes until the first

counting token is started during a snapshot [4]. Similarly,it takes2 · h hops until

the last counting token is started according to our assumptions. The probability

pi that a counting token is started after exactlyi hops fori = h, h + 1, ..., 2 · h
can be calculated as:

pi =

(
h

i − h

)

∑2·h
x=h

(
h

x − h

) . (4.49)

The signaling step thus takesi overlay hops with probabilitypi and is followed

by Pr hops of the counting token and the final hop to report the result back to the

CP . To validate this analytical result, we simulated a Chord ring of sizen = 215

with Smin = 29 assuming exponentially distributed overlay hops with a mean of

80 ms. Figure 4.33 shows the numerically approximated PDF ofthe token arrival

times at theCP . Obviously, the simulation and the analysis match very welland

the binomial distribution of the duration of step one can be recognized. So far,

in the analysis each peer has a finger at an exact distance ofSmin. In reality,

however, the finger would sit at a slightly different position, which again would

result in an additional checkpoint at the middle of the region. If we consider this

in our analysis we obtain an intermediate result in the middle of the measurement

region (c.f. checkpoints in the figure). The first rise of the PDF represents the

intermediate results sent back to theCP at the checkpoint. The second rise still

represents the regular results at the end of the region.

142

4.4 Monitoring a Distributed P2P System at Runtime

2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6x 10
−4

Arrival time [ms]

P
D

F

AnalysisSimulation

Checkpoints

Figure 4.33:Probability density function of the token arrival time

Lost Tokens

As in all token based algorithms, there is a certain probability of losing a token or

a signaling message. In our case, this is especially true during high churn phases.

However, the loss of a token only results in a loss of the measurements of the

corresponding region. Additionally, the probability to lose a token is very small,

since there are only two scenarios which result in the loss ofa token. First, if

a peer goes offline while it still waits for the timeout of a signaling messages.

Second, if a peer goes offline while it still waits for the timeout of a counting

token message. Again both scenarios only involve the loss ofthe measurements

of the corresponding region of the ring. In both cases the probability for the loss

of the region is

ploss = P (Ar ≤ timeout) (4.50)

whereAr is the random variable describing the forward recurrence time of the

session duration of a peer andtimeout is the value of a timeout in the overlay

network.

143

4 Modeling the Dynamics of P2P Overlays

4.4.3 Interpretation of the Collected Statistics

The results in this section were obtained using our ANSI-C simulator, which in-

corporates a detailed yet slightly modified Chord implementation. A good de-

scription of the general simulation model can be found in [21]. In this work

an overlay hop is modeled using an exponentially distributed random variable

with a mean of 80ms. The results considering churn are generated using peers

which stay online and offline for an exponentially distributed period of time with

a mean as indicated in the corresponding description of the figures. The parameter

0 10 20 30 40 50 60
0

50

100

150

200

Arrival time [s]

N
um

be
r

of
 r

es
ul

ts
 p

er
 5

00
m

s

100 Areas

1000 Areas

Figure 4.34:Arrival times of the results.

Nr =
⌈

Sid

Smin

⌉
influences the duration of the snapshot as well as the number of

results arriving at the central collecting point. Figure 4.34 shows the distribution

of the arrival times of the results in an overlay of 40000 peers usingNr = 1000

andNr = 100 areas in times of no churn. Obviously, the more areas the overlay

is divided into, the faster the snapshot is completed. Whilethe snapshot using

1000 areas was finished after about ten seconds, the snapshotwith 100 areas took

about one minute. In exchange the latter snapshot produces significantly smaller

bandwidth spikes at the CP. The two elevations of the second histogram corre-

spond to the intermediate results (first elevation) and the final results at the end

144

4.4 Monitoring a Distributed P2P System at Runtime

of the measured subpart (second elevation).

100 200 300 400 500 600
0

200

400

600

800

1000

1200

Number of areas

N
um

be
r

of
 r

es
ul

ts

10000 peers
20000 peers

y = x

y = 2⋅x

Figure 4.35:Number of results received at theCP .

A more detailed analysis of the influence ofNr can be found in Figure 4.35,

which shows the number of results received at theCP in dependence ofNr . Ac-

cording to Equation 4.44, the number of counting tokens sentto theCP , is lim-

ited by2·Nr > Nc ≥ Nr. The straight lines in the figure show the corresponding

limits. The solid and dotted curves represent the results obtained for 20000 and

10000 peers, respectively. The number of results sent to theCP is within the cal-

culated limits and independent of the overlay size. The curves roughly resemble

the shape of a staircase, whereas the steps are located at powers of two. This is

due to the fact that the closerNr gets to a power of two, the smaller is the region

covered by the average counting token and the more results arrive at theCP .

The distribution of the arrival times of the results is also influenced by the

current size of the network. The larger the network, the morepeers are within

one region. However, the more peers are within one region, the more hops each

counting token has to make, before it can send its results back to the CP. Fig-

ure 4.36 shows the token arrival time distribution for threedifferent overlay sizes

of 10000, 20000, and 40000 peers, respectively. We did not generate any churn

in this scenario and setNr = 512 areas. As expected, the larger the overlay net-

145

4 Modeling the Dynamics of P2P Overlays

work, the longer the snapshot is going to take. However, the curves are not only

shifted to the right, but also differ in shape. This can againbe explained by the

increasing number of hops per counting token.

0 2 4 6 8 10
0

20

40

60

80

100

120

Arrival time [s]

N
um

be
r

of
 r

es
ul

ts
 p

er
 2

00
m

s

40000 peers

20000 peers

10000 peers

Figure 4.36:Arrival times of the results at theCP .

As mentioned above, the average counting token sends two results back to the

CP, whereas the checkpoints are equally spaced. Thus, the final result takes twice

as many hops as the intermediate result. In a network of 10000peers there are

approximately 20 peers in each of the 512 regions. The intermediate results are

therefore sent after about 10 hops, the final results after about 20 hops, respec-

tively. The two corresponding elevations in the histogram overlap in such a way,

that they build a single elevation. In a network of 40000 peers, however, there are

approximately 78 peers in each of the 512 regions. The intermediate results are

therefore sent after about 39 hops, the final results after about 78 hops, respec-

tively. The difference between these two numbers is large enough to account for

the two elevations of the histogram in the foreground of Figure 4.36.

To measure the influence of churn on the stability of the overlay network, we

regard the number of timeouts which occur during a snapshot as well as the fre-

quency at which the predecessor pointer of a peer’s successor does not match the

peer itself. Figure 4.37 plots the relative frequency of timeouts and pointer fail-

146

4.4 Monitoring a Distributed P2P System at Runtime

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Mean online/offline time [min]

P
ro

ba
bi

lit
y

10000 peers
20000 peers
40000 peers

Timeouts

Pointer failures

Figure 4.37:Relative frequency of timeouts and pointer failures.

ures against the mean online/offline time of a peer. The smaller the online/offline

time of a peer, the more churn is in the system.

The results represent the mean of several simulation runs, whereas the error

bars show the 95 percent confidence intervals. The relatively small percentage

of both timeouts and failures is to some extent implementation specific. More

interesting, however, is the exponential rise of the curvesunder higher churn

rates. The shape of both curves is independent of the size of the overlay and

only affected by the current churn rate. The curve can therefore be used to map

the frequency of timeouts or failures measured in a running system to a specific

churn rate.

147

4 Modeling the Dynamics of P2P Overlays

148

5 Conclusion

The size and complexity of current computer networks call for new functionality

which was not a part of their initial design. Structured overlay networks are a

means to provide the necessary corrections on top of the actual network. Such

overlay mechanisms are highly flexible and designed to scalewith the system

size. However, little is known about the performance of structured overlay net-

works in a productive environment.

In this monograph, we analyzed such systems in more detail. In particular, we

computed the entire distribution function of the search delay as seen from a user

issuing a search query. We provided numerical results to illustrate the dependence

of the search duration on the variation of the network transmission delay. In this

context, the analysis provides an insight into the quantiles of the search delay

which can be used for dimensioning purposes. Both the mean search duration as

well as the search delay quantiles were shown to scale logarithmically with the

size of the system. Thus, we observed that the the real issue of structured overlay

networks is the dynamic behavior of the participating peers. We therefore ana-

lyzed the stability of ring-based overlay networks in more detail. In contrast to

previous work we showed that the probability to lose the overlay structure is not

negligible in all scenarios. For realistic use cases we derived an equation to cal-

culate failure probabilities in dependence of the average online time of a peer and

showed that in such scenarios stability can be guaranteed with very high prob-

ability. From this we concluded that maintenance overhead should be adapted

dynamically. The more movement there is in the overlay, the more maintenance

overhead should be applied.

149

5 Conclusion

To understand the performance of the originally proposed structured overlay

networks in more detail, we developed a discrete event simulator and pinpointed

the weak points in their algorithms. Using Kademlia as an example, we proposed

different modifications to the original algorithm to enhance the performance, the

redundancy, and the robustness of structured overlay networks. In particular, we

developed improved mechanisms to maintain the structure ofthe overlay as well

as the redundancy of stored documents. Our new implementation requires less

maintenance traffic while offering an improved overall performance.

In great parts our performance analysis as well as many modifications pro-

posed in literature rely on knowledge of system parameters like the current over-

lay size or the distribution of the peer session duration. Additionally, an operator

of a deployed overlay network needs to be able to continuously monitor and

evaluate these parameters. Such system characteristics, however, are inherently

unknown in a heavily distributed overlay network. We therefore introduced and

evaluated different methods to capture system parameters at runtime. In partic-

ular, we developed a passive estimator for the current size of the system which

exploits the special features of structured overlay networks. The resulting esti-

mates are in the right order of magnitude which is sufficient in practical scenar-

ios where usually the logarithm of the system size is needed.Additionally, we

showed how to calculate confidence intervals whose endpoints can be used as

independent estimates depending on whether it is more critical to overestimate or

to underestimate the actual value.

To be able to assess and to quantify the user behavior, we provided a defini-

tion of churn, the continuous process of peers joining and leaving the overlay

network. From this we derived an algorithm to estimate the current churn in the

system based on the changes a peer observes in its list of overlay neighbors. Both

analytical and simulation results showed that the estimator is able to capture the

current churn in the system. The accuracy, the required overhead, and the respon-

siveness to changes can be adjusted by the number of observations considered in

the estimation process and by the number of overlay neighbors which share the

results. In parameter studies, we investigated the corresponding trade-offs and

150

deduced values which are suitable for practical purposes.

For an operator such passive estimates are not sufficient to understand the

system as a whole. He rather depends on the possibility to perform active mea-

surements of all values which he is interested in. We therefore also introduced

an entirely distributed and scalable algorithm to monitor astructured overlay net-

work at runtime. Thereby, the load generated to create the snapshot of the system

is evenly distributed among the peers of the overlay. The algorithm itself is easy

to configure as it only requires one single parameter to determine the trade-off

between the duration of the snapshot and the bandwidth required at the central

collection point. We performed a mathematical analysis of the basic algorithm

and provided a simulative study considering realistic userbehavior. The algo-

rithm is resistant to dynamic user behavior and provides a very accurate picture

of the system.

In the course of this monograph we showed that structured overlay networks

are a powerful tool to overcome the problems which are inherent to todays com-

puter networks. They offer an easy way to add new functionality to a network

which itself would be hard to modify. Thereby, the results ofthis work can be

seen as a first step towards a self-organizing overlay system. Using our estima-

tion methods a peer is able to automatically derive the inputnecessary to evaluate

the current system performance. Based on the results the peer can then dynami-

cally adapt important system parameters like the number of overlay connections

it maintains to other peers. Based on our findings we come to the conclusion that

overlay networks are by far not limited to best effort file-sharing or content dis-

tribution services. In fact they are already successfully being used in applications

like distributed VoIP telephone services or distributed data storages. Another very

promising approach is distributed network management, where structured over-

lay networks can be set up to connect, coordinate, and managedistributed mea-

surement points as we have shown in [18, 25]. Those networks can then be used

to pinpoint the root causes of network problems [16] or to perform distributed

end-to-end measurements [9].

151

5 Conclusion

152

Bibliography of the Author

— Book Chapters —

[1] A. Binzenhöfer and T. Hoßfeld, “Warum Panini Fußballalben auch In-

formatikern Spaß machen,” inFußball eine Wissenschaft für sich(H.-

G. Weigand, ed.), pp. 181–192, Verlag Königshausen & Neumann, April

2006.

— Journals —

[2] T. Hoßfeld and A. Binzenhöfer, “Analysis of Skype VoIP Traffic in UMTS:

End-to-End QoS and QoE Measurements,”Computer Networks, vol. 51,

no. 19, 2007.

[3] A. Binzenhöfer, H. Schnabel, and P. Tran-Gia, “Methods for Performance

Improvement of Kademlia-based Overlay Networks,”it - Information

Technology (Methods and Applications of Informatics and Information

Technology), vol. 49, pp. 280–288, May 2007.

[4] A. Binzenhöfer, G. Kunzmann, and R. Henjes, “Design and Analysis of

a Scalable Algorithm to Monitor Chord-based P2P Systems at Runtime,”

Concurrency and Computation: Practice and Experience - Special Issue

on HotP2P 06, August 2007.

153

Bibliography and References

— Conference Papers —

[5] D. Schlosser, A. Binzenhöfer, and B. Staehle, “Performance Comparison

of Windows-based Thin-Client Architectures,” inAustralasian Telecom-

munication Networks and Applications Conference 2007, (Christchurch,

New Zealand), December 2007.

[6] B. Emmert, A. Binzenhöfer, D. Schlosser, and M. Weiß, “Source Traffic

Characterization for Thin-Client Based Office Applications,” in 13th EU-

NICE Open European Summer School and IFIP TC6.6 Workshop on De-

pendable and Adaptable Networks and Services, (University of Twente,

the Netherlands), July 2007.

[7] A. Binzenhöfer and K. Leibnitz, “Estimating Churn in Structured P2P

Networks,” in 20th International Teletraffic Congress (ITC20), (Ottawa,

Canada), June 2007.

[8] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann, “Efficient Simu-

lation of Large-Scale P2P Networks: Packet-level vs. Flow-level Simula-

tions,” in 2nd Workshop on the Use of P2P, GRID and Agents for the De-

velopment of Content Networks (UPGRADE-CN’07) in conjunction with

the 16th IEEE HPDC, (Monterey Bay, California, USA), May 2007.

[9] A. Binzenhöfer, D. Schlosser, K. Tutschku, and M. Fiedler, “An Auto-

nomic Approach to Verify End-to-End Communication Quality,” in 10th

IFIP-IEEE International Symposium on Integrated Network Management

(IM 2007), (Munich, Germany), May 2007.

[10] I. Norros, V. Pehkonen, H. Reittu, A. Binzenhöfer, and K. Tutschku, “Re-

lying on Randomness - PlanetLab Experiments with Distributed File-

Sharing Protocols,” in3rd EURO-NGI Conference on Next Generation

Internet Networks (NGI 2007), (Trondheim, Norway), May 2007.

154

[11] A. Binzenhöfer, T. Hoßfeld, G. Kunzmann, and K. Eger, “Efficient Simu-

lation of Large-Scale P2P Networks: Compact Data Structures,” in Work-

shop on Modeling, Simulation, and Optimization of Peer-to-peer environ-

ments (MSOP2P) in conjunction with Euromicro (PDP 2007), (Naples,

Italy), February 2007.

[12] G. Kunzmann, R. Nagel, T. Hoßfeld, A. Binzenhöfer, and K. Eger, “Effi-

cient Simulation of Large-Scale P2P Networks: Modeling Network Trans-

mission Times,” inWorkshop on Modeling, Simulation, and Optimization

of Peer-to-peer environments (MSOP2P) in conjunction withEuromicro

(PDP 2007), (Naples, Italy), February 2007.

[13] A. Binzenhöfer and H. Schnabel, “Improving the Performance and Ro-

bustness of Kademlia-based Overlay Networks,” inKommunikation in

Verteilten Systemen (KiVS) 2007, (Bern, Switzerland), February 2007.

[14] G. Kunzmann and A. Binzenhöfer, “Autonomically Improving the Secu-

rity and Robustness of Structured P2P Overlays,” inInternational Con-

ference on Systems and Networks Communications. ICSNC 2006, (Tahiti,

French Polynesia), November 2006.

[15] A. Binzenhöfer, G. Kunzmann, and R. Henjes, “A ScalableAlgorithm to

Monitor Chord-based P2P Systems at Runtime,” inThird International

Workshop on Hot Topics in Peer-to-Peer Systems (Hot-P2P) inconjunction

with the IEEE International Parallel & Distributed Processing Symposium

(IPDPS 2006), (Rhodes Island, Greece), April 2006.

[16] B. Emmert and A. Binzenhöfer, “Efficient Link Failure Detection and Lo-

calization using P2P-Overlay Networks,” inThe First International Work-

shop on Dependable and Sustainable Peer-to-Peer Systems inconjunction

with The First International Conference on Availability, Reliability and

Security, (Vienna University of Technology, Austria), April 2006.

155

Bibliography and References

[17] T. Hoßfeld, A. Binzenhöfer, M. Fiedler, and K. Tutschku, “Measurement

and Analysis of Skype VoIP Traffic in 3G UMTS Systems,” in4th Inter-

national Workshop on Internet Performance, Simulation, Monitoring and

Measurement (IPS-MoMe 2006), (Salzburg, Austria), February 2006.

[18] A. Binzenhöfer, K. Tutschku, B. auf dem Graben, M. Fiedler, and P. Arlos,

“A P2P-based Framework for Distributed Network Management,” in New

Trends in Network Architectures and Services, LNCS 3883, (Loveno di

Menaggio, Como, Italy), May 2006.

[19] M. Fiedler, K. Tutschku, S. Chevul, L. Isaksson, and A. Binzenhöfer, “The

Throughput Utility Function: Assessing Network Impact on Mobile Ser-

vices,” inNew Trends in Network Architectures and Services, LNCS 3883,

(Loveno di Menaggio, Como, Italy), May 2006.

[20] A. Binzenhöfer, D. Staehle, and R. Henjes, “On the Stability of Chord-

based P2P Systems,” inGLOBECOM 2005, (St. Louis, MO, USA),

November 2005.

[21] G. Kunzmann, A. Binzenhöfer, and R. Henjes, “Analyzingand Modifying

Chord’s Stabilization Algorithm to Handle High Churn Rates,” in MICC

& ICON 2005, (Kuala Lumpur, Malaysia), November 2005.

[22] A. Binzenhöfer, D. Staehle, and R. Henjes, “On the Fly Estimation of

the Peer Population in a Chord-based P2P System,” in19th International

Teletraffic Congress (ITC19), (Beijing, China), September 2005.

[23] M. Fiedler, S. Chevul, O. Radtke, K. Tutschku, and A. Binzenhöfer, “The

Network Utility Function: A Practicable Concept for Assessing Network

Impact on Distributed Services,” in19th International Teletraffic Congress

(ITC19), (Beijing, China), September 2005.

[24] P. Tran-Gia and A. Binzenhöfer, “On the Stochastic Scalability of Infor-

mation Sharing Platforms,” in2005 Tyrrhenian International Workshop on

Digital Communications, (Sorrento, Italy), July 2005.

156

[25] A. Binzenhöfer, K. Tutschku, and B. auf dem Graben, “DNA: A p2p-

based Framework for Distributed Network Management,” inPeer-to-Peer-

Systeme und -Anwendungen, GI/ITG-Workshop in Kooperationmit KiVS

2005, (Kaiserslautern, Germany), March 2005.

[26] A. Binzenhöfer and P. Tran-Gia, “Delay Analysis of a Chord-based Peer-

to-Peer File-Sharing System,” inATNAC 2004, (Sydney, Australia), De-

cember 2004.

[27] A. Binzenhöfer and K. Tutschku, “Auswirkungen der Virtualisierung auf

Transparenz und Fehlerdiagnose in lokalen Netzen,” in15. GI - Fachta-

gung der Fachgruppe BIK, (Jülich, Germany), November 2003.

[28] S. Köhler and A. Binzenhöfer, “MPLS Traffic Engineeringin OSPF Net-

works - A combined Approach,” in18th International Teletraffic Congress

(ITC18), (Berlin, Germany), September 2003.

General References

[29] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and

J. Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-Peer

File-Sharing Workload,” in19th ACM Symposium on Operating Systems

Principles (SOSP ’03), (Bolton Landing, NY, USA), October 2003.

[30] N. Christin and J. Chuang, “A Cost-based Analysis of Overlay Routing

Geometries,” inIEEE INFOCOM’05, (Miami, FL, USA), March 2005.

[31] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper, “Performance of

Full Text Search in Structured and Unstructured Peer-to-Peer Systems,” in

25th Conference on Computer Communications (IEEE INFOCOM 2006),

(Barcelona, Spain), April 2006.

157

Bibliography and References

[32] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and

B. Zhao, “OceanStore: An Architecture for Global-scale Persistent Stor-

age,”SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

[33] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly Durable, De-

centralized Storage Despite Massive Correlated Failures,” in Proceedings

of the 2ndt USENIX Symposium on Networked Systems Design andImple-

mentation (NSDI ’05), (Boston, MA, USA), May 2005.

[34] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total

Recall: System Support for Automated Availability Management,” in 1st

USENIX Symposium on Networked Systems Design and Implementation

(NSDI ’04), (San Francisco, CA, USA), March 2004.

[35] “The Skype Application.” URL: http://www.skype.com/.

[36] P. Yalagandula and M. Dahlin, “A Scalable Distributed Information Man-

agement System,” inSIGCOMM ’04, (Portland, USA), August 2004.

[37] C. Blake and R. Rodrigues, “High Availability, Scalable Storage, Dynamic

Peer Networks: Pick Two,” in9th Workshop on Hot Topics in Operating

Systems (HotOS-IX), (Lihue, Hawaii), May 2003.

[38] K. Leibnitz, T. Hoßfeld, N. Wakamiya, and M. Murata, “Peer-to-Peer

vs. Client/Server: Reliability and Efficiency of a Content Distribution

Service,” in 20th International Teletraffic Congress (ITC20), (Ottawa,

Canada), June 2007.

[39] “The Gnutella Website.” URL: http://www.gnutella.com.

[40] K. Aberer and M. Hauswirth, “An Overview on Peer-to-Peer Informa-

tion Systems,” inWorkshop on Distributed Data and Structures (WDAS),

(Paris, France), March 2002.

158

[41] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distributed

Anonymous Information Storage and Retrieval System,” inInternational

Workshop on Designing Privacy Enhancing Technologies, (Berkeley, CA,

USA), January 2001.

[42] “The Freenet Project.” URL: http://freenetproject.org/.

[43] O. Sandberg, “Distributed Routing in Small-World Networks,” in 8th

Workshop on Algorithm Engineering and Experiments (ALENEX06), (Mi-

ami, FL, USA), January 2006.

[44] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,

I. Stoica, and H. Yu, “OpenDHT: A Public DHT Service and its Uses,”

ACM SIGCOMM Computer Communications Review, vol. 35, pp. 73–84,

October 2005.

[45] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-

tions,” in ACM SIGCOMM 2001, (San Diego, CA, USA), August 2001.

[46] V. Mesaros, B. Carton, and P. Van Roy, “S-Chord: Using Symmetry to Im-

prove Lookup Efficiency in Chord,” inInternational Conference on Par-

allel and Distributed Processing Techniques and Applications PDPTA’03,

(Las Vegas, NV, USA), June 2003.

[47] S. Ramabhadran and J. Pasquale, “Analysis of Long-Running Replicated

Systems,” in25th Annual Conference on Computer Communications (IN-

FOCOM), (Barcelona, Spain), April 2006.

[48] A. Datta and K. Aberer, “Internet-Scale Storage Systems under Churn -

A Study of the Steady-State using Markov Models,” in6th IEEE Interna-

tional Conference on Peer-to-Peer Computing (P2P 2006), (Cambridge,

UK), September 2006.

159

Bibliography and References

[49] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, andR. Morris, “De-

signing a DHT for Low Latency and High Throughput,” in1st USENIX

Symposium on Networked Systems Design and Implementation (NSDI

’04), (San Francisco, CA, USA), March 2004.

[50] G. Kunzmann, “Iterative or Recursive Routing? Hybrid!,” in KIVS,

Kurzbeiträge und Workshop der 14. GI/ITG- Fachtagung in Kaiser-

slautern, vol. P-61 ofLecture Notes in Informatics (LNI), March 2005.

[51] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information

System Based on the XOR Metric,” in1st International Workshop on Peer-

to-Peer Systems (IPTPS 02), (MIT Faculty Club, Cambridge, MA, USA),

March 2002.

[52] “The Azureus Client.” URL: http://azureus.sourceforge.net/.

[53] M. Steiner, E. W. Biersack, and T. Ennajjary, “ActivelyMonitoring

Peers in KAD,” in6th International Workshop on Peer-to-Peer Systems,

IPTPS07, (Bellevue, USA), February 2007.

[54] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,

F. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient Replica Mainte-

nance for Distributed Storage Systems,” in3rd USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’06), (San Jose,

CA, USA), May 2006.

[55] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Lo-

cation and Routing for Large-Scale Peer-to-Peer Systems,”in IFIP/ACM

International Conference on Distributed Systems Platforms (Middleware),

(Heidelberg, Germany), November 2001.

[56] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent Peer-to-

Peer Storage Utility,” inEighth Workshop on Hot Topics in Operating Sys-

tems, HOTOS, (Elmenau, Germany), May 2001.

160

[57] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe:

A Large-Scale and Decentralized Application-level Multicast Infrastruc-

ture,” IEEE Journal on Selected Areas in Communication (JSAC), vol. 20,

pp. 1489–1499, October 2002.

[58] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

Scalable Content-Addressable Network,” inACM SIGCOMM 2001, (San

Diego, CA, USA), August 2001.

[59] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Topologically-

Aware Overlay Construction and Server Selection,” inINFOCOM, (New

York, NY, USA), June 2002.

[60] S. Oechsner, T. Hoßfeld, K. Tutschku, and F.-U. Andersen, “Supporting

Vertical Handover by a Self-Organizing Multi-DimensionalP2P Overlay,”

in IEEE 63rd Vehicular Technology Conference, (Melbourne, Australia),

May 2006.

[61] “Napster.” URL: http://www.napster.com.

[62] O. Heckmann and A. Bock, “The eDonkey 2000 Protocol,” Tech. Rep.

KOM-TR-08-2002, Multimedia Communications Lab, Darmstadt Univer-

sity of Technology, December 2002.

[63] T. Hoßfeld, K. Leibnitz, R. Pries, K. Tutschku, P. Tran-Gia, and K. Paw-

likowski, “Information Diffusion in eDonkey Filesharing Networks,” in

ATNAC, (Sydney, Australia), December 2004.

[64] “The Emule Project.” URL: http://www.emule-project.net/.

[65] R. Brunner, “A Performance Evaluation of the Kad-Protocol,” Master’s

thesis, University of Mannheim, Germany and Institut Eurecom, Sophia-

Antipolis, France, November 2006.

161

Bibliography and References

[66] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on

Economics of Peer-to-Peer Systems, (Berkeley, CA, USA), June 2003.

[67] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measurements,

Analysis, and Modeling of BitTorrent-like Systems,” inACM/SIGCOMM

Internet Measurement Conference (IMC-05), (Berkeley, CA, USA), Octo-

ber 2005.

[68] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent P2P File-

sharing System: Measurements and Analysis,” in4th International Work-

shop on Peer-to-Peer Systems (IPTPS 05), (Ithaca, NY, USA), February

2005.

[69] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive View of a Live

Network Coding P2P System,” in6th ACM SIGCOMM on Internet mea-

surement (IMC06), (Rio de Janeriro, Brazil), October 2006.

[70] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy ofa P2P Content

Distribution System with Network Coding,” inIPTPS 2006, (Santa Bar-

bara, CA, USA), February 2006.

[71] C. Fragouli, J.-Y. L. Boudec, and J. Widmer, “Network Coding: An Instant

Primer,” ACM SIGCOMM Computer Communications Review, vol. 36,

pp. 63–68, January 2006.

[72] J. Liang, R. Kumar, and K. W. Ross, “The FastTrack Overlay: A Measure-

ment Study,”Computer Networks Journal, vol. 50, pp. 842–858, April

2006.

[73] “The KaZaA Client.” URL: http://www.kazaa.com/.

[74] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Network,” in

19th International Conference on Data Engineering, (Bangalore, India),

March 2003.

162

[75] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in

a DHT,” in 2004 USENIX Annual Technical Conference, (Boston, MA,

USA), June 2004.

[76] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Observations on the

Dynamic Evolution of Peer-to-Peer Networks,” in1st International Work-

shop on Peer-to-Peer Systems (IPTPS 02), (Cambridge, MA, USA), March

2002.

[77] S. Ratnasamy, I. Stoica, and S. Shenker, “Routing Algorithms for DHTs:

Some Open Questions,” inIPTPS ’01: Revised Papers from the First In-

ternational Workshop on Peer-to-Peer Systems, LNCS 2429, (Cambridge,

MA, USA), May 2002.

[78] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-theoretic Analy-

sis of Structured Peer-to-Peer Systems: Routing Distancesand Fault Re-

silience,” inSIGCOMM 03, (Karlsruhe, Germany), August 2003.

[79] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai, “A Survey of

Peer-to-Peer Network Simulators,” inSeventh Annual Postgraduate Sym-

posium, (Liverpool, UK), June 2006.

[80] T. Hoßfeld, A. Binzenhöfer, D. Schlosser, K. Eger, J. Oberender, I. Dedin-

ski, and G. Kunzmann, “Towards Efficient Simulation of LargeScale P2P

Networks,” Tech. Rep. 371, University of Würzburg, October2005.

[81] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.Wawrzoniak,

and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage

Services,”ACM SIGCOMM Computer Communication Review, vol. 33,

July 2003.

[82] S. Jain, R. Mahajan, and D. Wetherall, “A Study of the Performance Po-

tential of DHT-based Overlays,” inUSENIX Symposium on Internet Tech-

nologies and Systems, (Seattle, WA, USA), March 2003.

163

Bibliography and References

[83] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and

I. Stoica, “The Impact of DHT Routing Geometry on Resilienceand Prox-

imity,” in ACM SIGCOMM 2003, (Karlsruhe, Germany), August 2003.

[84] B.-G. Chun, J. Kubiatowicz, and B. Y. Zhao, “Impact of Neighbor Selec-

tion on Performance and Resilience of Structured P2P Networks,” in 4th

International Workshop on Peer-to-Peer Systems (IPTPS 05), (Ithaca, NY,

USA), February 2005.

[85] Y. Zhu and X. Yang, “Implications of Neighbor Selectionon DHT Over-

lays,” in IEEE International Symposium on Modeling, Analysis and Sim-

ulation of Computer and Telecommunication Systems (MASCOTS’06),

(Monterey, CA, USA), September 2006.

[86] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the Evo-

lution of Peer-to-Peer Systems,” inACM PODC, (Monterey, CA, USA),

July 2002.

[87] D. Leonard, V. Rai, and D. Loguinov, “On Lifetime-basedNode Fail-

ure and Stochastic Resilience of Decentralized Peer-to-Peer Networks,” in

ACM SIGMETRICS International Conference on Measurement and Mod-

eling of Computer Systems(SIGMETRICS ’05), (Banff, Alberta, Canada),

June 2005.

[88] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A Perfor-

mance vs. Cost Framework for Evaluating DHT Design Tradeoffs under

Churn,” in24th Infocom, (Miami, FL, USA), March 2005.

[89] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Comparing

the Performance of Distributed Hash Tables Under Churn,” in3rd Inter-

national Workshop on Peer-to-Peer Systems (IPTPS 04), (San Diego, CA,

USA), February 2004.

164

[90] J. S. Kong, J. S. A. Bridgewater, and V. P. Roychowdhury,“A General

Framework for Scalability and Performance Analysis of DHT Routing

Systems,” inInternational Conference on Dependable Systems and Net-

works (DSN’06), (Philadelphia, PA, USA), June 2006.

[91] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi, “A Statistical

Theory of Chord under Churn,” in4th International Workshop on Peer-to-

Peer Systems (IPTPS 05), (Ithaca, NY, USA), February 2005.

[92] R. Mahajan, M. Castro, and A. Rowstron, “Controlling the Cost of Reli-

ability in Peer-to-Peer Overlays,” in2nd International Workshop on Peer-

to-Peer Systems (IPTPS 03), (Berkeley, CA, USA), February 2003.

[93] M. Castro, M. Costa, and A. Rowstron, “Performance and Dependabil-

ity of Structured Peer-to-Peer Overlays,” inInternational Conference on

Dependable Systems and Networks (DSN’04), (Washington, DC, USA),

IEEE Computer Society, 2004.

[94] S. S. Lam and H. Liu, “Failure Recovery for Structured P2P Networks:

Protocol Design and Performance under Churn,”Computer Networks,

vol. 50, pp. 3083–3104, November 2006.

[95] S. Wang, D. Xuan, and W. Zhao, “On Resilience of Structured Peer-to-

Peer Systems,” inIEEE Globecom, (San Francisco, CA, USA), December

2003.

[96] S. Wang, D. Xuan, and W. Zhao, “Analyzing and Enhancing the Resilience

of Structured Peer-to-Peer Systems,”Journal of Parallel and Distributed

Computing, vol. 65, pp. 207–219, February 2005.

[97] D. Wu, Y. Tian, and K.-W. Ng, “Analytical Study on Improving DHT

Lookup Performance under Churn,” in6th IEEE International Confer-

ence on Peer-to-Peer Computing (P2P 2006), (Cambridge, UK), Septem-

ber 2006.

165

Bibliography and References

[98] S. Zoels, Z. Despotovic, and W. Kellerer, “Cost-Based Analysis of Hier-

archical DHT Design,” in6th IEEE International Conference on Peer-to-

Peer Computing (P2P 2006), (Cambridge, UK), September 2006.

[99] R. Rodrigues and B. Liskov, “High Availability in DHTs:Erasure Coding

vs. Replication,” in4th International Workshop on Peer-to-Peer Systems

(IPTPS 05), (Ithaca, New York, USA), February 2005.

[100] R. Bhagwan, D. Moore, S. Savage, and G. Voelker, “Replication Strategies

for Highly Available Peer-to-Peer Storage,” inInternational Workshop on

Future Directions in Distributed Computing (FuDiCo), (Bertinoro, Italy),

June 2002.

[101] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon,

F. Kaashoek, R. Morris, and J. Kubiatowicz, “Proactive Replication for

Data Durability,” in5th International Workshop on Peer-to-Peer Systems

(IPTPS 06), (Santa Barbara, CA, USA), February 2006.

[102] Y. Kadobayashi, “Achieving Heterogeneity and Fairness in Kademlia,” in

IEEE/IPSJ International Workshop on Peer-to-Peer Internetworking co-

located with Symposium on Applications and the Internet (SAINT2004),

(Tokyo, Japan), January 2004.

[103] D. Stutzbach and R. Rejaie, “Improving Lookup Performance over a

Widely-Deployed DHT,” inIEEE INFOCOM 2006, (Barcelona, Spain),

April 2006.

[104] K. Pawlikowski, H.-D. Jeong, and J.-S. R. Lee, “On Credibility of Simu-

lation Studies Of Telecommunication Networks,”IEEE Communications

Magazine, pp. 132–139, January 2002.

[105] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A Scalable and Dynamic

Emulation of the Butterfly,” inTwenty-first Annual Symposium on Princi-

ples of Distributed Computing (PODC 02), (Monterey, CA, USA), July

2002.

166

[106] K. Horowitz and D. Malkhi, “Estimating Network Size from Local Infor-

mation,” The Information Processing Letters Journal, vol. 88, pp. 237–

243, December 2003.

[107] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating Ag-

gregates on a Peer-to-Peer Network.” Technical Report, Dept. of Computer

Science, Stanford University, April 2003.

[108] M. Jelasity and M. Preuss, “On Obtaining Global Information in a Peer-to-

Peer Fully Distributed Environment,” in8th International Euro-Par Con-

ference on Parallel Processing, (London, UK), August 2002.

[109] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers, “Decen-

tralized Schemes for Size Estimation in Large and Dynamic Groups,” in

4th IEEE International Symposium on Network Computing and Applica-

tions (NCA ’05), (Washington, DC, USA), July 2005.

[110] R. Bhagwan, S. Savage, and G. Voelker, “UnderstandingAvailability,” in

2nd International Workshop on Peer-to-Peer Systems (IPTPS03), (Berke-

ley, CA, USA), February 2003.

[111] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer Net-

works,” in 6th ACM SIGCOMM on Internet Measurement (IMC 06), (Rio

de Janeriro, Brazil), October 2006.

[112] K. Tati and G. M. Voelker, “On Object Maintenance in Peer-to-Peer Sys-

tems,” inIPTPS06, (Santa Barbara, CA, USA), February 2006.

[113] P. B. Goedfrey, S. Shenker, and I. Stoica, “MinimizingChurn in Dis-

tributed Systems,” inACM SIGCOMM, (Pisa, Italy), September 2006.

[114] S. Q. Zhuang, D. Geels, I. Stoica, and R. H. Katz, “On Failure Detec-

tion Algorithms in Overlay Networks,” inIEEE INFOCOM, (Miami, FL,

USA), March 2005.

167

Bibliography and References

[115] G. Ghinita and Y. Teo, “An Adaptive Stabilization Framework for Dis-

tributed Hash Tables,” in21st International Parallel & Distributed Pro-

cessing Symposium (IPDPS), (Rhodes Island, Greece), April 2006.

[116] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel, “Using Queries for

Distributed Monitoring and Forensics,”ACM SIGOPS Operating Systems

Review, vol. 40, pp. 389–402, October 2006.

[117] M. Zhang, C. Zhang, V. S. Pai, L. L. Peterson, and R. Y. Wang, “Planet-

Seer: Internet Path Failure Monitoring and Characterization in Wide-Area

Services,” in6th Symposium on Operating System Design and Implemen-

tation (OSDI 2004), (San Francisco, CA, USA), December 2004.

[118] Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An Algebraic Approach to

Practical and Scalable Overlay Network Monitoring,” inSIGCOMM ’04,

(Portland, Oregon, USA), August 2004.

[119] K.-S. Lim and R. Stadler, “Real-time Views of Network Traffic Using De-

centralized Management,” in9th IFIP/IEEE International Symposium on

Integrated Network Management (IM 2005), (Nice, France), May 2005.

[120] R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe:A Robust and

Scalable Technology for Distributed System Monitoring, Management,

and Data Mining,”ACM Transactions on Computer Systems (TOCS),

vol. 21, pp. 164–206, May 2003.

[121] Y. Tang, E. Al-Shaer, and B. Zhang, “Toward Globally Optimal Event

Monitoring & Aggregation for Large-scale Overlay Networks,” in

IEEE/IFIP Integrated Management (IM’2007), (Munich, Germany), May

2007.

[122] D. Stutzbach and R. Rejaie, “Capturing Accurate Snapshots of the

Gnutella Network.,” inINFOCOM 2005, (Miami, FL, USA), March 2005.

168

[123] “The CoMon Project.” URL: http://codeen.cs.princeton.edu/comon/.

[124] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis.

McGraw-Hill Higher Education, 3rd ed., 1999.

[125] M. A. Stephens, “EDF Statistics for Goodness of Fit andSome Compar-

isons,” inJournal of the American Statistical Association, vol. 69, pp. 730–

739, 1974.

[126] E. J. Chen and W. D. Kelton, “Quantile and Histogram Estimation,” in

33nd Conference on Winter Simulation (WSC ’01), (Arlington, Virginia,

USA), December 2001.

[127] J. F. Kurose and K. W. Ross,Computer Networking A Top-Down Approach

Featuring the Internet. Addison Wesley Longman Inc., 2005.

169

Bibliography and References

170

ISSN 1432-8801

