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Abstract

Optical remote sensing is an important tool in the study of animal behavior

providing ecologists with the means to understand species–environment inter-

actions in combination with animal movement data. However, differences in

spatial and temporal resolution between movement and remote sensing data

limit their direct assimilation. In this context, we built a data-driven framework

to map resource suitability that addresses these differences as well as the limita-

tions of satellite imagery. It combines seasonal composites of multiyear surface

reflectances and optimized presence and absence samples acquired with animal

movement data within a cross-validation modeling scheme. Moreover, it

responds to dynamic, site-specific environmental conditions making it applica-

ble to contrasting landscapes. We tested this framework using five populations

of White Storks (Ciconia ciconia) to model resource suitability related to forag-

ing achieving accuracies from 0.40 to 0.94 for presences and 0.66 to 0.93 for

absences. These results were influenced by the temporal composition of the sea-

sonal reflectances indicated by the lower accuracies associated with higher day

differences in relation to the target dates. Additionally, population differences

in resource selection influenced our results marked by the negative relationship

between the model accuracies and the variability of the surface reflectances

associated with the presence samples. Our modeling approach spatially splits

presences between training and validation. As a result, when these represent dif-

ferent and unique resources, we face a negative bias during validation. Despite

these inaccuracies, our framework offers an important basis to analyze species–
environment interactions. As it standardizes site-dependent behavioral and

environmental characteristics, it can be used in the comparison of intra- and

interspecies environmental requirements and improves the analysis of resource

selection along migratory paths. Moreover, due to its sensitivity to differences

in resource selection, our approach can contribute toward a better understand-

ing of species requirements.

Introduction

Mapping animal resource suitability, which we define as

the potential attractiveness of resources within a habitat

during periodic behaviors such as feeding and resting, is

important for understanding a species’ preference for

specific habitats. Decisions such as ‘where to feed?’ or

‘where to sleep?’ are constrained by different resource

requirements (P�eron et al. 2016; Abrahms et al. 2017),

and the selection of a habitat is dependent on the avail-

ability and distribution of these resources (Street et al.

2017). To map resource suitability, the environmental dri-

vers that motivate animal behavior need to be examined

(Avgar et al. 2013; Dodge et al. 2014; Gibert et al. 2016)

and optical remote sensing has become a popular tool to

achieve this. It provides spatially and temporally explicit
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information on landscape dynamics (Pereira et al. 2013;

Pettorelli et al. 2014) and offers a better understanding of

the environmental covariates that affect behavior.

Translating remote sensing data into indices of resource

suitability requires the identification of areas of suitable

and unsuitable environmental conditions in which the

tracking of animal movement with GPS technologies

becomes relevant. It provides data on individual and col-

lective animal behavior (McClintock et al. 2014) and

offers an insight on a species’ environmental requirements

(Nathan et al. 2008; Recio et al. 2013; Allen and Singh

2016). However, while satellite and movement data are

used in combination extensively, the conceptual differ-

ences in scale (temporal and spatial) between these data

sources have not been addressed objectively (Neumann

et al. 2015) and the value of multispectral information

has been ignored.

The evolution of GPS tracking technologies has allowed

researchers to track animal movements on increasingly

finer temporal scales (minutes, hours) motivating a

demand for environmental data with high temporal reso-

lution. In this context, sensors with a daily acquisition

schedule and a broad spatial coverage such as the moder-

ate resolution imaging spectroradiometer (MODIS) have

become a cornerstone of animal movement analysis, espe-

cially through spectral indices such as the normalized dif-

ference vegetation index (NDVI). Such indices have been

used extensively as proxies for foraging quantity and qual-

ity (Pettorelli et al. 2011; Borowik et al. 2013) and have

been rather successful in explaining migratory movements

between suitable habitats (Rubenstein and Hobson 2004;

Bartlam-Brooks et al. 2013; Shamoun-Baranes et al. 2014;

Van Moorter et al. 2015).

However, when looking at movements within a habitat,

a daily scale of analysis is not always adequate because

phenomena like land use management and land cover

change, although relevant for the species, might not be

perceptible at single time steps (St-Louis et al. 2014; Pas-

quarella et al. 2016). Moreover, the choice of an adequate

spatial resolution plays an important role in accurately

representing landscape dynamics and composition (Ju

et al. 2005) and conditions our ability to map species–en-
vironment interactions (Sheeren et al. 2014). Very high-

resolution sensors can turnout detrimental because they

highlight fine-scale phenomena (e.g. single tree shadow-

ing) which are hard to interpret and address automati-

cally (Immitzer et al. 2012). Sensors with a moderate

spatial resolution, like MODIS, on the other hand fail to

describe landscapes that are highly fragmented (Saura

2004; Zhu et al. 2006). Additionally, the choice of spectral

information conditions our ability to assess the composi-

tion of the landscape (Herold et al. 2003; Adam et al.

2010; Selkowitz 2010). The use of multispectral

information is often necessary, and it has been shown to

overcome classification errors (Shirley et al. 2013) and

preserve subtle but ecologically relevant transitions

between land cover classes (St-Louis et al. 2014).

Despite the constraints imposed by satellite imagery,

the status quo of remote sensing in the analysis of fine-

scale movements seems to disregard them. As pointed out

by Neumann (Neumann et al. 2015), many authors fail

to describe the choice of spatial, temporal and spectral

resolutions showing low sensibility for these issues. On

the other hand, the ones that do discuss their data

choices show preference for single time steps of high-

resolution imagery from satellite sensors (Handcock et al.

2009; Boyle et al. 2014) and unmanned aerial vehicle

(UAV) campaigns (Rodr�ıguez et al. 2012; Mulero-

P�azm�any et al. 2015), existing and self-derived data

products like land cover classifications based on medium

resolution sensors such as Landsat (Sawyer and Brashares

2013; Bevanda et al. 2014; Zeller et al. 2017) and very

high-resolution structural data acquired with Light Detec-

tion And Ranging (LiDAR) technologies (Hyde et al.

2006; Clawges et al. 2008; Potts et al. 2014). Yet, the use

of multispectral imagery is limited ignoring the demon-

strated value of continuity missions such as Landsat in

monitoring ecological change (Wulder et al. 2012; Vog-

elmann et al. 2016).

The constraints imposed by satellite sensors are also

relevant when linking remote sensing and movement data

to model animal–environment interactions. Movement

provides relevant information on revisit and avoidance

patterns that can help discriminate relevant and nonrele-

vant resources. However, due to the coarser temporal and

spatial resolutions of remote sensing data, revisits lead to

the pseudo-replication of samples (Hurlbert 1984) and

promotes the use of neighboring pixels for training and

validation which introduces a positive model bias due to

spatial autocorrelation (Dormann et al. 2007). Notwith-

standing, the limitation of satellite imagery is not consid-

ered in current research and model validation with

spatially independent samples is lacking. Common model-

ing approaches that address resource suitability mapping,

such as resource selection functions (Northrup et al.

2013; Squires et al. 2013) and step selection functions

(Panzacchi et al. 2015; Avgar et al. 2016), focus on con-

tinuous movements and disregard the influence of

pseudo-replication and of the spatial autocorrelation of

environmental predictors over model accuracies and over

our ability to validate these models.

Moreover, avoidances can be driven by factors other

than environmental suitability (Ara�ujo and Peterson

2012) such as human-made barriers (Loarie et al. 2009;

Northrup et al. 2016) which are not always perceptible

with remote sensing. As a result, common methods to
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describe unsuitable environmental conditions, such as

random background sampling, can lead to a negative

model bias due to the poor quality of these samples

(Lobo et al. 2010; Iturbide et al. 2015).

Given the limitations of remote sensing in accompany-

ing continuous animal movements, we propose that the

analysis of movement should be disconnected from – and

come second to – the analysis of the environmental con-

ditions that guide it. However, movement data can guide

the modeling of the spatial distribution of relevant envi-

ronmental resources. It helps to identify patterns of occu-

pancy from which we can derive representative samples

that describe preferred environmental conditions. In prac-

tice, this implies translating movement data into a scale

of analysis that is compatible with remote sensing and

that supports the development of a consistent modeling

and validation scheme.

Our goal was to develop a data-driven framework to

map resource suitability that lays the basis for a consistent

analysis of animal movement. Using high-resolution

movement data, we derive representative samples of suit-

able (presences) and unsuitable (absences) environmental

conditions collected at the pixel scale that are sensitive to

local environmental conditions described through remote

sensing. This is then combined with standardized remote

sensing information to model the distribution of relevant

resources using a spatially stratified cross-validation

scheme that addresses the issue of spatial autocorrelation

during validation.

As a model species, we chose the White Stork (Ciconia

ciconia). This is a species with well-studied habitat require-

ments for which we can define clear assumptions on relevant

resources. In particular, we focused our attention on stops

during out-of-nest movements in an effort to study foraging

behavior. Additionally, while wintering, this species covers

different environments from the Mediterranean to Central

Asia (Flack et al. 2016) allowing us to demonstrate the appli-

cability of standardized and automatized remote sensing

methodologies such as ours across contrasting environ-

ments. We looked at five populations and compared model

accuracies among study sites and their relation to the choice

of environmental conditions described by the spectral vari-

ability in our remote sensing data.

Materials and Methods

Study sites

We considered five study sites spread along a longitudinal

gradient between Western Europe and Central Asia (Fig. 1).

They are located in Don~ana (Spain), Constance (Germany),

Evros Delta (Greece), Ararat (Armenia) and Tashkent

(Uzbekistan), and their size, defined by stork movements,

varies between 361 and 709 km2. According to the MODIS

MCD12Q1 land cover product (Friedl et al. 2010), the

study sites are mostly covered by agriculture (>50%) with a

limited urban cover (<15%). Forest cover is in general small

(<20%) in all study sites but the German site (32%). Water

cover varies between 1 and 10%. Topography is moderate

with elevations ranging between 100 and 500 m and slope

angles varying between 0 and 10�. According to the

K€oppen-Geiger map of climate zones (Peel et al. 2007), the

study sites are located in hot-summer (Spain and Greece)

and warm-summer (Armenia) Mediterranean climates,

warm-summer, humid continental climates (Germany) and

hot, dry-summer continental climates (Uzbekistan).

Mapping resource suitability: training and
validation

We developed a modeling framework to map resource suit-

ability (Fig. 2). Presence–absence data created from White

Stork movement tracks were modeled based on seasonal

composites of Landsat surface reflectances (section 1.2.1) as

environmental predictors using a Random Forest (RF) clas-

sifier (Breiman 2001). Special treatment was given to the

presence/absence sampling process, to ensure the use of

spatially independent sample regions for training and vali-

dation (section 1.2.2) and to optimize the characterization

of background environmental conditions (section 1.2.3).

In a cross-validation scheme, each sample region was

kept for validation once while the remaining ones were

used to fit a model using RF. At each iteration, a random

set of absences was selected for training and another for

validation with the same number of samples as the corre-

sponding set of presences. The total count of true and false

positives from all iterations was used to derive an F1-mea-

sure (J€ager and Benz 2000) estimated as

F1 ¼ 2 � P � R
P þ R

where P is the Precision (ratio of true positives within the

number of predicted values) and R is the Recall (ratio of

true positives within the number of validation samples).

This process was repeated 100 times to account for model

stability. We used the RF implementation of the R package

randomForest (Liaw and Wiener 2002). The final output is

a map of probabilities for the presence class.

Deriving environmental predictors

The White Stork is a predatory bird species that takes

advantage of agricultural activities such as crop harvesting

and grassland grazing to search for prey (Van den Bossche

et al. 2002). Therefore, we opted for Landsat data as it pro-

vides relevant spectral information to discriminate
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agricultural land (L€ow and Duveiller 2014) with a medium

spatial resolution and a stable temporal and spatial global

coverage. As a predictor, we used multitemporal Landsat 5

TM and Landsat 8 OLI surface reflectances provided

through the Earth Resources Observation and Science

(EROS) Center Science Processing Architecture (ESPA)

(United States Geological Survey, 2010). In the context of

agriculture monitoring dense time series can be crucial to

highlight phenological differences of managed land (Dong

et al. 2016) and quantify management intensities (Prish-

chepov et al. 2012). However, the consistency of multitem-

poral methods within and between different environments

depends on regional atmospheric conditions. Persistent

cloud cover leads to an uneven temporal distribution of

Figure 1. Spatial distribution of the study

sites: (1) Constance, Germany; (2) Tashkent,

Uzbekistan; (3) Don~ana, Spain; (4) Evros Delta,

Greece; (5) Ararat, Armenia. The background

was derived with Landsat.

Figure 2. Framework to link animal

movement with remote sensing and map

resource suitability.
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spectral information (Yu et al. 2015) and prompts the use

of inadequate temporal information that misrepresents

phenological patterns within a landscape (Zhang et al.

2009). To address this issue, we extended our approach to

consider information from 2011 and 2013 while we

excluded 2012 due to the degradation of Landsat 7 ETM+

and the lack of Landsat 5 TM and Landsat 8 OLI acquisi-

tions. We searched for the best trade-off between consistent

phenological information that highlight land management

practices and a gap-free spatial coverage. The compromise

we propose are three surface reflectance composites that

limit the existence of data gaps due to atmospheric distur-

bances and preserve temporal information on relevant phe-

nological stages (Tigges et al. 2013; Zhao et al. 2016). We

derived seasonal composites based on the spectral bands of

Landsat for the three phenological stages Start of Season

(SoS), Mid of Season (MoS) and End of Season (EoS),

which highlights seeding, growing and harvesting periods.

This reveals differences in management practices allowing

us to distinguish between land that was harvested or grazed

during the observation period. As vegetation phenology

changes regionally (Garonna et al. 2014; Rodriguez-

Galiano et al. 2015), we based these composites on site-

dependent phenological metrics. Additionally, we consider

year-specific phenological information accounting for

annual changes in vegetation growth cycles (Cleland et al.

2007). To derive the seasonal composites, we first built a

mask of cropland pixels identified within the MODIS

MCD12Q1 land cover product. Then, for each composite,

we used this mask to estimate the mean and standard devi-

ation for each of the phenology metrics provided within

the MCD12Q2 product (Zhang et al. 2006) excluding pix-

els with multiple growing stages. Then, we calculated the

temporal difference (in days) between each Landsat acqui-

sition and the mean Day of Year (DoY) of the correspond-

ing seasonal metric (SoS, MoS, EoS) and selected the image

with the smallest day difference filling the remaining areas

by subsequently using the image information from acquisi-

tions with the next smallest day difference. We only consid-

ered acquisitions within one standard deviation from the

mean DoY. The output was a stack of three gap-filled sea-

sonal composites of surface reflectances per study site.

Deriving presence sample regions

To minimize the optimistic bias related to spatial auto-

correlation, we created spatially independent sample

regions of presences that prevented us from splitting

nearby pixels between training and validation (Fig. 3).

We based this analysis on movement data from five

populations of White Storks consisting of a total of 48

juveniles tracked between 26 June 2013 and 15 September

2013 while nesting (https://doi.org/10.5441/001/1.78152p3q).

The data were collected with solar-powered high-resolu-

tion GPS devices with a temporal resolution of 5 minutes

and a standard spatial error of 3.6 m. The temporal cov-

erage of the tracking data per individual ranged from 9 to

75 days and population sizes ranged from six individuals

(Uzbekistan) to a maximum of 13 individuals (Germany).

To derive independent sample regions for training and

validation, we first extracted presence samples for each indi-

vidual related to potential stops during daily movements.

Looking at continuous movements, we sampled when the

distance between consecutive GPS points was lower than

two times the standard error (7.2 m) and the time differ-

ence was greater than two times the temporal resolution

(10 min). Initial tests suggested that these criteria offered a

good compromise accounting for the mobility of the species

while feeding and the time spent within feeding sites. The

samples for each individual were translated to a 30 m reso-

lution mask, aligned with the derived remote sensing data,

to remove duplicates and thus avoid pseudo-replication

effects. Groups of connected pixels which overlapped with

the nests, described here by the locations that were visited

every day, were masked out. Then, we aggregated the pres-

ence samples derived for each individual at the population

level and filtered out groups with less than four samples to

reduce the risk of including false positives related to ephem-

eral events such as soaring flights and GPS anomalies. Addi-

tionally, this step removes pixels representing relevant

resources but which are too small to be distinguished at the

Landsat scale (e.g. household crop fields). Finally, we aggre-

gated sample regions within a radius of 500 m (~17 pixels)

of each other increasing the distance between training and

validation sample. The chosen minimum distance for

Figure 3. Population level presence samples

(left) and its subsequent filtering and relabeling

(right) based on the linear distance among

sample regions. Points of different colors

represent different regions.
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aggregation aimed to maximize the distance between train-

ing and validation samples with a common threshold across

study sites while preserving at least two sample regions.

Selecting absences

We developed a data-driven approach to select absences

based on the environmental dissimilarity of background

pixels in comparison with presences sample regions,

derived in section 1.2.2. To achieve this, we first collected

4000 random background samples which were, together

with the presences, used to collect surface reflectance data

from the stack of seasonal composites, derived in section

1.2.1 and evaluated with a principal components analysis

(PCA). We reduced the output to p principal components

(PCs) where p corresponds to the number of PCs with

eigenvalues greater than 1 (Kaiser 1960). For each PC, we

estimated the median and median absolute deviation

(MAD) of the variance for each sample region and esti-

mated the difference from the median for each background

sample. At each sample region, we selected background

samples where the difference from the median was greater

than the MAD. The final set of samples corresponds to the

unique observations that were selected n times at each PC

where n is the number of regions. These samples are

adjusted to local environmental conditions through the

MAD criteria which value is directly related to the higher

(e.g. mixed crops) or lower (e.g. single crop) spectral vari-

ability of the reference sample regions.

Sample homogeneity

Differences in resource selection are influenced by the

availability and distribution of resources and can occur

within the same population (Street et al. 2017). Because

our modeling approach splits spatially independent sam-

ple regions in training and validation, it becomes suscep-

tible to this issue. Differences in resource selection can

lead to the separation of contrasting environmental infor-

mation between training and validation resulting in

unstable models. To understand the variability of model

accuracies within each study site, we supported our mod-

eling approach with a sample homogeneity test that looks

at the variability within the Landsat surface reflectance

composites as a proxy for environmental complexity. For

each region, we compared its distribution against the dis-

tribution of the remaining samples (as done when build-

ing a predictive model) and derived an absolute score of

similarity (z-scores) based on a Z-test, calculated as

Z ¼ ðx0p1 � x0p2Þffiffiffiffiffiffiffiffiffiffiffiffi
r2p1r

2
p2

q

where p1 corresponds to the samples of the region under

evaluation and p2 corresponds to the remaining samples. x0

and r correspond to mean and standard deviation of the

sample distributions. We expected that the accuracies of our

models would be higher and more stable as the choice of

environmental conditions became more homogeneous. This

test extends the PCA described above and used its first PC

which accounts for most of the variance in our data. Finally,

to compare the samples among study sites, we summarized

our results by estimating the mean of all z-scores weighted by

the number of samples of each sample region. We expected

that study sites, where sample regions that represent a larger

proportion of the total amount of samples have contrasting

environmental attributes, will have lower accuracies.

Results

Seasonal compositing

The mean DoY for the reference cropland pixels used to

select compositing dates varied between 57 and 154 for

the SoS, 122 and 206 for the MoS and 162 and 242 for

the EoS. The standard deviation varied between 23 and

30 days. The mean DoY differences were well below the

recorded standard deviation (Fig. 4) with a maximum of

10 days. On average, the differences were higher for the

SoS (5 days) followed by the EoS (3 days) and the MoS

(2 days). Spain had the highest mean difference for the

SoS (10 days) and the EoS (5 days) while Uzbekistan had

the highest difference for the MoS (8 days). Among all

composites, Germany had the best results with a maxi-

mum mean DoY difference of 2 days while Uzbekistan

had the worst results with a minimum mean difference of

4 days.

Seasonal composites for all study sites were composed

of data from 2011 and 2013 (Fig. 5). The SoS composites

were fully composed of surface reflectances of 2011 while

the MoS also integrated data from 2013 except for Ger-

many. For the EoS, Armenia and Greece used 33% and

20% of data from 2011, respectively.

Sampling

The number of presence samples varied across populations.

Three of the five study sites (Greece, Spain and Uzbekistan)

had between 295 and 334 samples, and the two remaining

ones (Armenia and Germany) had more than 1500 samples.

The number of sample regions varied between 5 (Spain)

and 20 (Germany) and showed a disproportional distribu-

tion of samples. The smallest sample regions represented 1-

2% of the total amount of samples in each study site while

the largest regions reached more than 50%. Armenia had

the largest percentage of samples within a single region
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(71%) followed by Spain (64%), Germany (44%), Greece

(31%) and Uzbekistan (29%). The number of absences var-

ied between 1453 (Spain) and 3558 (Germany) and were

selected using three PC for all study sites with the exception

of Spain which required four.

Model validation

Mean model accuracies ranged from 0.40 to 0.91 for pres-

ences and 0.66 to 0.91 for absences (Fig. 6). The highest

accuracies for both classes were found in Germany while

the lowest were found in Uzbekistan. Comparably to

Uzbekistan, Spain had relatively low performances with

mean values of 0.48 and 0.68 for presences and absences,

respectively. In both study sites, the amplitude of the

accuracies was larger than 0.2 for presences and about 0.1

for absences. For the study sites with mean accuracies

above 0.7 in both classes (Armenia, Germany and

Greece), the interclass amplitudes were below 0.1. Despite

the differences in accuracies, a visual inspection of the

resource suitability maps revealed a good compromise in

distinguishing between managed and nonmanaged land

while remaining sensitive to differences in agricultural

practices (Fig. 7).

Figure 4. Mean difference in days from the

target day of the year for presences in each

seasonal composite and within each study site.

SoS, Start of Season; MoS, Mid of Season;

EoS, End of Season.

Figure 5. Distribution of presences per year

for the Start of Season (SoS), Mid of Season

(MoS) and End of Season (EoS) within each

study site.

Figure 6. Variability of the F1-measure for

presences and absences within each study site.
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Sample homogeneity

The mean z-scores were inversely proportional to the mean

F1-scores. Germany had the lowest mean z-score (0.35) fol-

lowed by Greece (0.60), Armenia (0.44), Spain (1.00) and

Uzbekistan (1.10). The Z-test showed that more than 50%

of presence sample regions had an absolute z-score below

or equal to 1 in all test cases. In this category, Armenia,

Germany and Greece were the most similar (> 90%) fol-

lowed by Spain (71%) and Uzbekistan (67%). Higher per-

centages of samples with higher z-scores seemed to be

related to an increase in the variability of model accuracies

as well as to a poorer performance for presences when com-

pared to absences and seem to suggest differences in the

choice of environmental resources as described by Figure 8.

Discussion

We modeled resource suitability related to foraging for

five study sites that reflect the range of occupancy of the

White Stork during breeding. For both presences and

absences, we achieved high accuracies for Germany, with

a F1-measure above 0.90 and relatively high accuracies

(>0.75) for Greece and Armenia. However, for Spain and

Uzbekistan, the performances were poor despite reason-

able suitability maps. This can be explained by the spec-

tral variability between presences. Our sample

homogeneity test revealed that the mean z-scores for each

study site were inversely proportional to the mean

F1-measures.

This negative relationship between z-scores and mean

F1 values can be owed to the temporal composition of

the seasonal reflectances. The integration of multiyear

information did not have an influence on the perfor-

mance of the models. In fact, Germany required the most

data from 2011 to fill data gaps. However, the German

test site – which had the highest accuracies – showed the

lowest DoY difference for the SoS followed by Greece and

Armenia. On the contrary, Spain and Uzbekistan had the

highest DoY differences for all temporal windows. The

Figure 7. On the left, the distribution of presences over the MoS composite for example sites in Armenia (top), Germany (center) and Greece

(bottom). On the right, the resource suitability probability maps. The maps reveal their ability to distinguish managed land as well as the

differences within it.
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highest difference for the SoS being found in Spain which

had the lowest accuracies. This supports other studies

which suggested the importance of early spring acquisi-

tions to describe differences in vegetation growth (Tigges

et al. 2013) and distinguish agricultural management

practices (Prishchepov et al. 2012). However, acquiring

adequate temporal information is not always possible due

to persistent cloud cover. To tackle this issue, recent

developments in the fusion of Landsat and Sentinel-2

(Masek et al. 2015), currently provided by USGS (United

States Geological Survey, 2017), should be explored.

Additionally, a visual assessment of the results sug-

gested these differences in accuracy are related to the

intrapopulation variations in resource selection, an obser-

vation highlighted in other studies (van Toor et al. 2011;

Slaght et al. 2013; Federspiel et al. 2017; Street et al.

2017). On the one hand, dealing with the sampling of

presences on a population scale made us more flexible. It

helped us to carefully remove samples of dubious quality

and identify locations representative of the preferences of

the species. On the other hand, however, differences in

resource selection introduce a negative bias during the

validation. Understanding these differences and their rela-

tion to the distribution and availability of resources

would have supported us in better delineating our study

sites by separating between subpopulations. To achieve

this, knowing the land cover dependencies of the

observed behavior can be useful. Due to the lack of con-

sistent high-resolution land cover information for all

study sites, we did not pursue this issue further as we

could not address it consistently. However, we suggest

that further research is needed and that new methods are

required to derive environmental- and behavior-driven

study sites based on small-scale movements extending on

recent work on large-scale movement segmentation (van

Toor et al. 2016). Moreover, due to the sensitivity of our

methodology to this issue, we proposed it could poten-

tially be used to track these differences.

Figure 8. On top map, the relation between the location of the nests and the presence samples in Spain over a RGB composite of SWIR1, NIR

and green bands for the SoS. On the bottom left, presences occur over a natural wetland (bright green) within the protected area of the Don~ana

national park. On the upper right, samples appear mostly over managed wetlands (purple) occupied by rice fields (Instituto Geogr�afico Nacional,

2005). On the bottom map, the resource suitability prediction for Spain. The results seem to accurately map the different environments visited by

the individuals discriminating wetlands and rice fields with high probabilities (P > 0.5). Agricultural land which is not irrigated permanently, forest,

urban areas and standing water received low probabilities (P < 0.5).
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A main weakness of our study relates to the sampling of

presences as it was based on empirically derived parame-

ters. Such parameters are species dependent making it hard

to automatize this process, unlike the processing of remote

sensing data. As a consequence, we believe further research

is required in order to extend this sampling approach to a

larger group of species. However, we highlight the impor-

tance of this development in building a consistent cross-

validation scheme. While the use of independent samples

for validating remote sensing-based resource suitability

models is not new (Squires et al. 2013; Thurfjell et al.

2014), its current application does not consider the dis-

tance between training and validation samples ignoring the

spatial autocorrelation associated with satellite data (Wul-

der and Boots 1998). Our sampling approach addresses this

issue allowing us to derive spatially independent samples

that can be split between training and validation and effec-

tively validate predictive models.

In addition, we built a sample selection approach to

describe background environmental conditions that is

sensitive to the particularities of each study site. Random

sampling is a common approach to achieve this, and it

has been shown to lead to higher model accuracies when

increasing the number of samples (Barbet-Massin et al.

2012). However, when resources are abundant – as hap-

pens within our study sites – this leads predictive models

to overfit to the training data due to the spectral similar-

ity between presences and absences. We avoid overfitting

by extending this approach and removing background

samples that share similar traits with the presences. Addi-

tionally, our approach preserves samples along the edges

of the distribution of presences – as well as extreme val-

ues – which, as suggested by other authors (Foody 2004;

Hansen 2012), are essential for a better delineation of the

spectral attributes and boundaries of the target classes.

While our framework can be improved, we propose an

efficient approach to link movement and remote sensing

that addresses an important knowledge gap. The use of

remote sensing in movement ecology is common but, as

pointed by a recent review paper (Neumann et al. 2015),

its application is not up to par with state-of-the-art

knowledge. Current studies fail to account for the limita-

tions of satellite data when modeling species environment

interactions and disregard the spatial, temporal and spec-

tral dependencies of the environmental processes that

affect animal movement. To build this link, we sacrifice

the fine temporal resolution of our movement data. But in

doing so, we effectively translate it into patterns of occu-

pancy that are compatible with the scale of analysis of

remote sensing. As a consequence, this methodology does

not provide a means for the direct analysis of movement

but rather a basis upon which such analysis can be

developed.

We suggest that studies on path and resource selection

can profit from our framework. Through the consistent

mapping of resource suitability, we describe the spatial

distribution and aggregation of resources better and

understand the influence of these factors on animal deci-

sion making. Moreover, due to its standardization, our

approach can be used in regional and global applications

that take full advantage of animal movement databases

such as Movebank (Wikelski and Kays 2007) and conti-

nuity missions such as Landsat. Our framework provides

a basis for a consistent comparison of intra- and inter-

species resource requirements across different landscapes

and can help improve the analysis of fine-scale resource

selection along migratory paths.
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