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1. SUMMARY (ZUSAMMENFASSUNG) 

 

1.1. Summary 

Protein interactions as mediated by catalytic or non-catalytic protein domains 

contribute to cellular signal transduction processes by covalent protein modification of or non-

covalent binding to interaction partners. Ena/VASP homology 1 (EVH1) domains are found in 

different signal transduction proteins as N-terminal non-catalytic adaptor modules of ~ 115 amino 

acids sharing a common fold. By targeting their host proteins to subcellular sites of action they are 

involved in several signalling cascades which include protein phosphorylation and cytoskeletal 

reorganisation. In this study, protein interactions of the two EVH1 domain containing proteins 

VASP and Spred2 were studied according to their involvement in different and non-overlapping 

signal transduction pathways of the cell. 

EVH1 domains were first described in the Ena/VASP protein family with the 

Vasodilator-stimulated phosphoprotein VASP being its founding member. As a cytoskeleton-

associated protein VASP not only interacts with different proteins of the actin network but it is also 

a substrate for cAMP- and cGMP-dependent protein kinases. However the full complement of 

protein kinases targeting VASP as their substrate is still unknown. Here we used mouse cardiac 

fibroblast (MCFB) cells in order to study the phosphorylation status of VASP and identify new 

candidate protein kinases involved after serum stimulation of these cells. Using phosphosite-

specific antibodies we found that serum stimulation induces a phosphorylation of VASP at Ser-157 

in a time-dependent manner reaching its maximum after 90 min of stimulation. We developed an 

interaction graph model of possible candidate protein kinases involved. Using a pharmacological 

perturbation analysis with different combinations of specific protein kinase inhibitors and 

activators we excluded any contribution of cGMP-dependent protein kinase and Rho kinases to this 

process and identified a combined action of classical isoforms of PKCs and PKA in serum-

stimulated VASP phosphorylation at Ser-157 positioning PKC upstream of PKA in this signalling 

pathway. We hypothesise that PKC receives an external stimulatory signal upon serum stimulation 

of MCFB cells which is passed either directly or indirectly to PKA which finally phosphorylates 

VASP at Ser-157. 

A new EVH1 domain has been described recently in the Spred proteins (Sprouty 

related proteins containing an EVH1 domain) which are inhibitors of the Ras/Raf/MAP kinase 

pathway. Our laboratory has been involved in the elucidation of the atomic structure of the human 

Spred2 EVH1 domain by protein NMR spectroscopy (PDB 2JP2; 2007). A positively charged 

binding interface of this EVH1 domain suggests an interaction with negatively charged ligands; 
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however no interaction partners of this domain have been described so far. In the second part of 

this study, we used different genetic and biochemical screening methods to search for ligands of 

the Spred2 EVH1 domain. A bacterial two-hybrid system was established using a physically well 

characterized interaction of the VASP EVH1 domain with a panel of its ActA binding peptides as 

positive controls to screen a human brain cDNA expression library at different stringencies for 

candidate Spred2 EVH1 interaction partners. However none of the clones isolated could be 

genetically and physically validated to support Spred2 EVH1 specific interactions. An in-vitro 

screening of a 9-mer phage display peptide library using purified GST-Spred2 EVH1 fusion protein 

was performed together with a Fyn-SH3 fusion protein as a positive control. In contrast to the Fyn-

SH3 domain the majority of phages isolated with the Spred2 EVH1 domain either carried no inserts 

or inserts with stop codons suggesting a highly non-specific interaction of the phage coat protein 

with the latter domain but neither the Fyn-SH3 domain nor the GST moiety. Isolation of a 13-mer 

proline-rich sequence was particularly surprising in this context. In order to address possible 

interactions of the Spred2 EVH1 domain with non-peptidergic ligands protein-lipid interaction 

assays were performed. Quantitative binding studies to purified Spred2 EVH1 using a liposome 

sedimentation assay however excluded any interaction of candidate phospholipids of the 

phosphatidyl inositol phosphate class with the Spred2 EVH1 domain. A natively folded and thus 

binding-competent conformation of the purified proteins used was assessed independently by 1H 

protein NMR spectroscopy. In summary the cumulative evidence of our genetic and biochemical 

screening experiments suggests that the still elusive Spred2 EVH1 ligand(s) may be formed of 

hydrophobic peptide epitopes larger than nine amino acids in size and carrying negative charge(s). 

A phosphorylation of Spred2 EVH1 binding epitopes by a post-translational modification should 

be seriously considered in future experiments.  

 

 

 

 

 

 

 

 

 

 

 



Summary/Zusammenfassung 
 

 
3 

1.2. Zusammenfassung 

Proteininteraktionen, wie sie durch katalytisch oder nicht-katalytisch wirksame 

Proteindomänen vermittelt werden können, spielen eine wesentliche Rolle in zellulären 

Signaltransduktionsprozessen durch die kovalente Modifikation oder nicht-kovalente Bindung von 

Interaktionspartnern. Ena/VASP Homologie 1 (EVH1) Domänen finden sich als N-terminale, 

nicht-katalytische, etwa 115 Aminosäuren große und konserviert gefaltete Adaptormodule in vielen 

verschiedenen Signaltransduktionsproteinen. Indem sie ihre jeweiligen Wirtsproteine an deren 

subzellulärem Wirkort verankern helfen, sind sie an vielen verschiedenen Signalkaskaden wie z.B. 

Proteinphosphorylierungen oder Umbauprozessen des Zytoskeletts beteiligt. In dieser Arbeiten 

wurden Proteininteraktionen der beiden EVH1 domänen-haltigen Proteine VASP and Spred2 

untersucht, die in nicht überlappenden Signaltransduktionswegen der Zelle vorkommen.  

EVH1 Domänen wurden zuerst innerhalb der Ena/VASP-Proteinfamilie 

beschrieben, deren Gründungsmitglied das Vasodilator-stimulierte Phosphoprotein VASP ist. Als 

zytoskelett-assoziiertes Protein wechselwirkt VASP nicht nur mit verschiedenen Aktin-bindenden 

Proteinen, sondern ist auch ein Substrat der cAMP- und cGMP-abhängigen Proteinkinasen. Der 

vollständige Satz jener Proteinkinasen, die VASP als eines ihrer Substrate aufweisen, ist immer 

noch unbekannt. Hier haben wir kardiale Mausfibroblasten (MCFB) Zellen verwendet, um nach 

Serum-Stimulation dieser Zellen den Phosphorylierungsstatus von VASP zu bestimmen und daran 

beteiligte, neue Kandidaten-Proteinkinasen zu identifizieren. Mit Hilfe von 

Phosphorylierungsstellen-spezifischen Antikörpern konnten wir zeigen, dass eine Serum-

Stimulation eine zeitabhängige Phosphorylierung von VASP an Serin 157 induziert, die ein 

Maximum 90 min nach Stimulation erreicht. Wir entwickelten ein Interaktionsgraphen-Modell 

möglicher Kandidaten-Proteinkinasen, die an diesem Prozess beteiligt sein könnten. Mit Hilfe 

pharmakologischer Perturbationsexperimente auf der Grundlage spezifischer Proteinkinase-

Inhibitoren und Aktivatoren konnten wir einerseits eine Beteiligung der löslichen cGMP-

abhängigen Proteinkinase und von Rho-Kinasen an diesem Prozess ausschliessen und anderseits 

die gemeinsame Beteiligung der klassischen Proteinkinase C Isoform(en) und der cAMP-

abhängigen Proteinkinase nachweisen. In diesem Signalweg liegt dabei die Proteinkinase C 

stromaufwärts vor letzterer. Nach unserer Interpretation der Daten wird die PKC nach Serum-

Stimulation der MCFB-Zellen aktiviert und aktiviert ihrerseits direkt oder indirekt die cAMP-

abhängige Proteinkinase, die schliesslich VASP als proximales Substrat am Serin 157 

phosphoryliert. 

Eine neue EVH1 Domäne wurde kürzlich in den Spred Proteinen (Sprouty related 

proteins containing an EVH1 domain) beschrieben, die neue Inhibitoren im Ras/Raf/MAP-Kinase-
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Signalweg darstellen. Unser Labor war an der NMR-gestützten Aufklärung der atomaren Struktur 

der Spred2 EVH1 Domäne beteiligt (PDB 2JP2; 2007). Die positiv geladene Bindungsfurche dieser 

EVH1 Domäne legt eine Interaktion mit anionischen Liganden nahe. Interaktionspartner für diese 

Domäne sind bisher jedoch nicht beschrieben worden. Im zweiten Teil dieser Arbeit verwendeten 

wir verschiedene genetische und biochemische Suchverfahren zur Identifizierung möglicher 

Spred2 EVH1 Liganden. Ein bakterielles Two-Hybrid-System mit der Spred2 EVH1 Domäne als 

Köderprotein wurde dazu etabliert unter Verwendung der physikalisch gut charakterisierten 

Wechselwirkung der VASP EVH1 Domäne mit ihren ActA Bindungspeptiden als eines positiven 

Kontroll-Interaktionspaars und zum verschieden stringenten Durchmustern einer humanen cDNA 

Expressionsgenbank aus Gehirn eingesetzt. Keiner der isolierten Klone ließ sich jedoch genetisch 

oder nach Sequenzierung in Hinblick auf eine Spred2 EVH1 spezifische Wechselwirkung 

validieren. Mittels gereinigtem GST-Spred2 EVH1 Protein wurde daher eine 9-mer Peptid-

Genbank im Phage-Display-Verfahren durchgemustert unter Verwendung eines Fyn-SH3 

Fusionsproteins als positiver Kontrolle. Im Gegensatz zu den Ergebnissen mit letzterer trugen die 

mit der Spred2 EVH1 Domäne isolierten Phagen überwiegend keine Inserts oder solche mit Stop-

Codons, was eine unspezifische Wechselwirkung mit den Phagen-Hüllenproteinen dieser Domäne 

nicht jedoch der Fyn-SH3 Domäne oder des GST-Partners nahelegt. Die Isolierung einer 13-mer 

großen prolin-reichen Bindesequenz war in diesem Zusammenhang besonders überraschend. Um 

eine mögliche Wechselwirkung von Spred2 EVH1 mit nicht-peptidergen Liganden zu untersuchen, 

wurden Protein-Phospholipid-Interaktionsassays durchgeführt. Mittels quantitativer 

Bindungsstudien unter Verwendung der isolierten Domäne konnte eine Interaktion mit Kandidaten-

Phospholipiden aus der Klasse der Phosphatidylinositolphosphate in einem Liposomen-

Sedimentationsassay ausgeschlossen werden. Eine native Faltung und damit prinzipiell 

bindungskompetente Konformation(en) der gereinigten Proteine konnten mittels 1H Protein-NMR-

Spektroskopie sichergestellt werden. Zusammengenommen lassen unsere Experimente vermuten, 

dass es sich bei den noch immer nicht dingfest gemachten Spred2 EVH1 Liganden um hydrophobe, 

negative geladene, mehr als neun Aminosäuren umfassende Peptidepitope handeln könnte. Bei 

deren Identifizierung in zukünftigen Experimenten sollte mit ihrer Phosphorylierung durch post-

translationale Modifikationen gerechnet werden. 
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2. INTRODUCTION 

 

2.1. A portrait of VASP and Spred proteins which share a conserved EVH1 adapter domain 

but are involved in distinct signal transduction pathways 

 

2.1.1. VASP - a cytoskeletal phosphoprotein harboring an EVH1 domain 

 VAsodilator Stimulated Phosphoprotein (VASP) was first characterized by 

Halbrügge and Walter [1] as a major cyclic nucleotide dependent phosphorylated protein in 

platelets and endothelial cells on stimulation with vasodilators. Referring to this observation it has 

been named as “vasodilator stimulated phosphoprotein”. VASP acts as a molecular adaptor 

associated with areas of dynamic membrane activity and is involved in cell adhesion and migration. 

It has binding sites for various proteins and is a well established substrate protein for protein kinase 

A (PKA or cAK) and protein kinase G (PKG or cGK) [2] along with other kinases as found 

recently [3, 4].  

  VASP is the founding member of Ena/VASP protein family comprising actin 

regulatory proteins harboring an N-terminal Ena/VASP homology 1 (EVH1) domain. VASP is 

expressed in almost all mammalian cell types with high levels of expression in platelets, blood 

vessels, spleen, stomach, intestine and lung. VASP is subcellularly highly concentrated at focal 

adhesions and stress fibres. Moreover, VASP localizes at cell-cell contacts of various cultured cells 

and is associated with highly dynamic membrane structures such as the leading edge. In both 

mouse and humans, the coding gene is composed of 13 exons with conserved exon-intron positions 

and the predicted amino acid sequences are 89% identical. The human VASP gene has been 

assigned to chromosome 19q13.2-q13.3, an extended region with homology to mouse chromosome 

7 [5]. 

 

2.1.1.1. Domain organisation 

  Human VASP is a 39 kDa protein containing 380 amino acids and running as a 46 

kDa band in SDS-PAGE. Phosphorylation induced by vasodilator agents in intact cells or 

performed with purified components in-vitro shifts the molecular weight to an apparent molecular 

mass of 50 kDa [6]. VASP shows a tripartite domain organisation. In VASP, the N-terminal 

domain of about 115 amino acids is called Ena/VASP homology 1 domain (EVH1 domain) and the 

C-terminal domain is called Ena/VASP homology 2 domain (EVH2 domain) comprising about 

130-190 amino acids separated by a low complexity regions including a proline-rich central region 



Introduction 

 
6 

of 60 to 90 amino acids in length (Fig.1). VASP harbors three phosphorylation sites at Ser-157, 

Ser-239 and Thr-278 which have been well characterized in-vivo and in-vitro [2, 7]. 
 

PKGPKA

PRR EVH2EVH1 - COOHNH2 -

Ser-157 Ser-239 Thr-278

Binding domain 
for FP4 motifs of 
Vinculin, Zyxin 

and ActA

Binds to Profilin, 
SH3 and WW 

domain proteins

Contains binding sites 
for G- and F-actin and 
also a coiled coil motif 

for tetramerization

PKGPKA

PRR EVH2EVH1 - COOHNH2 -

Ser-157 Ser-239 Thr-278Ser-157 Ser-239 Thr-278

Binding domain 
for FP4 motifs of 
Vinculin, Zyxin 

and ActA

Binds to Profilin, 
SH3 and WW 

domain proteins

Contains binding sites 
for G- and F-actin and 
also a coiled coil motif 

for tetramerization

 
Figure 1: Structural organization of human VASP, localization of phosphorylation sites and overview of binding 
partners. EVH1 domain binds to FP4 motifs, the proline-rich region (PRR) binds with SH3, WW domains and profilin 
and the EVH2 domain binds to G-actin, F-actin and is responsible for tetramerization. VASP is a substrate for both 
PKA and PKG. PKA preferentially phosphorylates Ser-157 and PKG preferentially Ser-239. 
 

The proline-rich central region of VASP contains four copies of a GPPPPP (GP5) 

motif with three of them arranged in tandem. This proline-rich region binds to proteins containing 

Src Homology 3 (SH3) domains [8], WW domains [9] and profilin, an actin binding protein [10-

12]. It is not clear which of these interactions are shared among all members of the Ena/VASP 

family. Profilin undergoes dimerization upon binding to the proline-rich region of VASP and 

promotes actin filament formation [10]. These data support a model of an action of VASP in the 

process of actin filament formation [13-15]. The phosphorylation sites for PKA and PKG in the 

central proline region of VASP do not seem to alter microfilament formation upon their 

phosphorylation. 

The C-terminal EVH2 domain of VASP harbors three conserved blocks viz., a G-

actin binding site, an F-actin binding site and a coiled coil region necessary for tetramerization [16-

19]. The C-terminal oligomerization region of 45 residues is highly conserved and has been 

implicated in the oligomerization of individual members of Ena/VASP family. VASP behaves as 

tetramer and the conserved C-terminal block in the EVH2 domain is necessary and sufficient to 

mediate tetramer formation [16, 17]. The 1.3 Å resolution crystal structure of the tetramerization 
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domain reveals a parallel right-handed coiled-coil structure formed due to a 15-residue repeat in its 

amino acid sequence. Thus full-length tetrameric VASP adopts a ‘‘bouquet-like’’ quarternary 

structure [19]. The EVH2 domain harbors two phosphorylation sites (Ser-239 and Thr-278) which 

are suspected to regulate the functions of this domain [20-22]. Further characteristic functions of 

this domain have to be determined yet even though partial information has been disclosed 

including those on its role in subcellular localization and formation of multimers [11, 23]. 

 

2.1.1.2. VASP EVH1 domain 

  The N-terminal EVH1 domain of Ena/VASP family members is necessary for 

binding of VASP to the focal adhesions [11, 21] at the ventral cell surface by connecting with 

FPPPP proline-rich motifs [24, 25] present in its binding partners vinculin [26], zyxin [27, 28] and 

also in the Listeria actin binding protein, ActA [29, 30] among others. These interactions of the 

EVH1 domain are likely to be important in a number of cellular processes that require regulated 

actin filament assembly [25] and recruitment of Ena/VASP proteins to specific sites within the cell. 

The EVH1 domain structure of Ena/VASP family members has been elucidated both 

by X-ray crystallography [31, 32] and by NMR [24]. The EVH1 domain folds into a seven-

stranded β-barrel with a single C-terminal α-helix thus resembling a fold found in pleckstrin 

homology (PH), phospho tyrosine binding (PTB) and ran-binding domains (RanBD) [31-33]. 

VASP EVH1 domain shares structural homology with the WH1 (WASP homology 1) domain of 

another cytoskeletal protein Wiskott-Aldrich syndrome protein (WASP) and with N-terminal 

EVH1 domain of synaptic scaffold proteins (Homer/Vesl) and Sprouty related EVH1 domain 

containing (Spred) proteins [33] (see Chapter 2.2.2 for details). 

Detailed binding studies showed that the phenylalanine and the first and final proline 

residues in the proline-rich FPXФP motifs (X = any amino acid, Ф = hydrophobic amino acid) of 

VASP EVH1 binding partners are highly conserved which can not be replaced with natural amino 

acids without damaging the binding affinity (see Chapter 2.2.1). Recent substitution studies of 

these conserved residues with non-native amino acid derivatives (peptoide building blocks) may 

open up the way for designing selective modulators of VASP function for biological studies and for 

the development of novel therapeutics for diseases involving pathologically altered cell adhesion or 

cell motility. Well characterized binding partners for the EVH1 domain of VASP which provide 

surface exposed proline-rich motifs to bind specifically are vinculin [34], zyxin [27] and other 

binding partners known so far viz., T-cell signalling Fyn-binding protein/SLP-76-associated protein 

(Fyb/SLAP) [35], the lipoma preferred partner LPP protein [36] and recently found paladin [37]. 

VASP interacts with its EVH1 domain directly with ActA, a bacterial protein from Listeria 
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monocytogenesis required for the recruitment and assembly of host actin filaments around the 

intracellular bacteria [12, 30, 38, 39].  

 

2.1.1.3. Family members 

Ena/VASP proteins are major constituents of signal transduction pathways 

regulating organization of the cytoskeleton. These proteins are a conserved family of actin 

regulatory proteins, which have been implicated in actin based process such as fibroblast migration 

[40], axon guidance and T-cell polarization, phagocytosis, migration of neutrophils and are also 

important for the actin based motility of the intracellular pathogen, Listeria monocytogenesis [12] 

as mentioned above. They localize to highly dynamic areas of actin reorganization, such as the 

leading edge of lamellipodia, the tips of filopodia; adherens type cell matrix, cell–cell junctions and 

other dynamic membrane regions [8, 40]. These regulator proteins of cell motility and actin 

assembly are found in a variety of organisms and cell types [8, 15]. VASP is the founding member 

of Ena/VASP family. Drosophila enabled (Ena), another member of this family, was discovered in 

a genetic screen for extragenic suppressors of Drosophila Abelson tyrosine kinase (D-Abl) mutants 

[41]. Ena has an important role in guiding axonal connections in the central and peripheral nervous 

system and embryonic epithelial morphogenesis of the fly [42, 43]. Later, in addition to Ena, other 

members of this family from vertebrates, namely Mammalian enabled (Mena), and Ena/VASP–like 

(EVL) protein were identified [44, 45]. 

Proteins of the Ena/VASP family are characterized by a common overall domain 

organization consisting of the conserved amino terminal EVH1 and carboxyl terminal EVH2 

domains separated by a less conserved central proline-rich region as explained in Chapter 2.1.1.1 

(see Fig.1) [8, 15, 46]. Mena contains two phosphorylation sites (Ser-236, Tyr-296) the first one is 

equivalent to the first site in VASP (Ser-157), EVL has only this site. Interestingly, Drosophila Ena 

lacks a clear equivalent of this VASP Ser-157 phosphorylation site which is only conserved among 

the vertebrate members of this family [8]. Phosphorylation of Mena and EVL at the position 

equivalent to VASP Ser-157 also induces band shifts in their mobility [15]. 

 

2.1.1.4. Signalling pathways 

All Ena/VASP proteins are well characterized substrates of cAMP and cGMP 

dependent protein kinases (cAK; cGK or PKA; PKG) [7, 45], but these proteins harbor conserved 

and divergent sites for phosphorylation at different regions (see above). VASP harbors three 

phosphorylation sites viz., Ser-157, Ser-239, and Thr-278 and is one of the major substrates for 
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PKA and PKG (Fig.1) [2]. VASP acts thus as a major effector molecule in cyclic nucleotide 

dependent pathway(s) and impacts many cellular functions. 

In VASP, the preferred phosphorylation site for PKA is Ser-157, which leads to the 

above mentioned retardation of VASP mobility during SDS-gel electrophoresis, resulting in an 

apparent shift in molecular weight of VASP from 46 to 50 kDa [2] indicating that this 

phosphorylation may cause a change in structure of the molecule and/or in SDS detergent binding 

to the protein. The preferred site for PKG on VASP is Ser-239 while Thr-278 is a less favoured site 

for both PKA and PKG, but recent studies have shown that Thr-278 is a preferred site for AMP 

activated protein kinase (AMPK) [3]. Phosphorylation of these later two sites does not shift the 

apparent molecular weight of VASP as assayed by SDS-PAGE. To date, the exact functional role 

of any of the three phosphorylation sites is unclear at a mechanistic level. However, a positive 

correlation between phosphorylation of VASP at Ser-157 and the inhibition of fibrinogen receptor 

(integrin αIIbβ3) activity was reported [47]. In endothelial cells, PKG induced-phosphorylation 

resulted in the detachment from focal adhesions of wild type VASP, but not of mutant VASP 

containing Ser/Thr to Ala substitutions at all three phosphorylation sites [20, 48]. It was also 

hypothesized that VASP interacts with mammalian Diaphanous (mDia) protein(s) to regulate the 

cytoskeletal actin dynamics [21, 49]. Also, recent in-vivo and in-vitro studies have proved a role of 

PKC either directly or indirectly in phosphorylation of VASP [4, 50-52] which is in correlation 

with our studies submitted in this thesis. Also, a serine threonine kinase, AMP activated protein 

kinase (AMPK) was shown to be a new kinase activity phosphorylating VASP specifically at Thr-

278 and effecting cell morphology [3]. Work presented in this thesis is focused on elucidating new 

signalling networks involved in regulation of VASP phosphorylation. However open questions still 

concern the molecular mechanisms by which phosphorylation effects Ena/VASP protein’s 

function. 

 

2.1.1.5. Physiological functions  

  VASP is a crucial factor in regulating actin dynamics and associated processes such 

as cell-cell adhesion, platelet function and actin-based motility of both cytopathogenic Listeria and 

its eukaryotic host cells. Although biochemical mechanisms emerged depicting VASP as enhancer 

of actin filament formation at the subcellular level increasing evidences suggest that these proteins 

have inhibitory functions at the cellular level in integrin regulation, cell motility and axon guidance 

[15, 53-55].  

  An important putative function of VASP is to promote actin filament assembly 

which depends on the ability of VASP to recruit the G-actin binding protein, profilin through its 
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GP5 motif to strengthen the binding capacity with G-actin [12]. The G-actin binds to profilin and 

VASP at the leading edge of the cell and results in ruffling and extension of F-actin filaments. The 

control of F-actin assembly could be exerted at the level of availability of free barbed ends through 

nucleation, uncapping or severing by actin depolymerising factor (ADF) and the stabilization of 

VASP-profilin binding. AMPK mediated VASP phosphorylation at Thr-278 reduces F-actin fiber 

assembly and impairs stress fiber formation [3]. The direct interaction of VASP with monomeric 

actin [18, 56] was also suggesting the same and the phosphorylation of VASP would effect this 

interaction by changing the actin binding properties [20]. The effects of VASP deletion/over-

expression on the motile behaviour of living cells [54, 57, 58] and actin based propulsion of 

Listeria [12, 38, 39] has given cumulative evidence for a role of VASP in cell motility. It was 

shown that VASP also seem to compete with capping proteins to bind at the barbed ends [59] and it 

enhances branched actin polymerization when ActA protein is immobilized on beads or Listeria 

[60]. VASP increases the rate of dissociation of the branch junction from immobilized ActA, which 

was found to be the rate–limiting step in the catalytic cycle of site directed filament branching [60]. 

The signalling pathways induced by vasodilators phosphorylate VASP in smooth 

muscles and platelets and are mediated by PKA and PKG [7]. Since both PKA and PKG signalling 

cascades relax smooth muscle cells and inhibit platelet activation [61, 62], it was speculated that 

phosphorylation of VASP by these cascades mediates the respective effects by modulating actin 

filament dynamics and integrin activation. At the same time, it was shown in VASP null mice 

studies that PKG and PKA mediated inhibition of calcium mobilization and granule secretions in 

platelets are independent of VASP [63] and it is a negative modulator of platelet and integrin αIIbβ3 

activation [64]. This suggests that the cellular role of VASP in the mediation of effects of 

vasodilators might be an indirect one. Phosphorylation of Ser-157 in VASP appears to correlate 

with their activity in cell motility [40]. It seems likely that this phosphorylation relieves either intra 

or inter-molecular inhibitory interactions.  

Further, recent research developments are suggesting the role of protein kinase C in 

phosphorylation of VASP, cytoskeletal regulation and focal adhesion induction [4, 51, 52]. This 

interconnectivity can be elucidated by inhibiting growth hormone or serum activated kinases and 

looking at the phosphorylation of VASP. This approach can reveal new signalling networks that 

might contribute to phosphorylation of VASP. 
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2.1.2. Spred - an inhibitor of the Ras/Raf/MAP kinase pathway harboring a new class of 

EVH1 domains 

Spred proteins are recently described Sprouty-related proteins with an EVH1 

domain (Spred) establishing a new class of EVH1 domains. They are membrane-associated 

suppressors of tyrosine kinases and act as negative regulators of the Ras/Raf/MAP kinase pathway 

upon growth factor stimulation. These proteins are involved in regulation of differentiation in 

neuronal cells and myocytes. All members of the Spred protein family contain an N-terminal 

EVH1 domain and a Sprouty-related C-terminal cysteine-rich SPR domain (Fig.2) which is 

responsible for translocation of Spred proteins to the plasma membrane [65].  

To date, three mammalian Spreds are identified: Spred-1, Spred-2 [66], and a third 

isoform discovered through nucleic acid homology, called Spred-3 [67]. All Spred proteins that 

have been described so far localize to the plasma membrane [67]. Recent studies have disclosed the 

localization of Spred-1 and Spred-2 proteins in different organs and cell types which depicts their 

role in tissue development and organisation. Comparison of the mRNA expression profile of Spred 

family members in developing rat lung revealed that expression of Spred was found predominantly 

in mesenchymal cells [68]. The Spred-2 isoform was studied in this thesis determining its EVH1 

domain structure and interacting partners. 

 

2.1.2.1. Domain organisation 

Similar to VASP, Spred proteins also show a tripartite domain organisation albeit 

with different elements harboring besides a conserved N-terminal EVH1 domain, a central c-Kit 

binding domain (KBD) and a C-terminal Sprouty-like cysteine-rich domain (SPR domain) (Fig.2) 

[33, 66, 67]. 

The c-Kit binding domain in the middle part of the Spred proteins consists of about 

50 amino acids first described in Spred. This domain is not related to any previously identified 

tyrosine kinase interaction domain [66]. It has been shown to be responsible for the interaction with 

the receptor tyrosine kinases c-kit and c-fms. Spred-3 with a non-functional KBD and deletion 

mutants of Spred-1 in this region revealed that this internal region is involved but not essential for 

ERK suppression [66, 67, 69]. This raises the question of what the physiological function of this 

domain might be. 

Similar to Sprouty proteins Spred proteins harbor a well conserved cysteine-rich 

SPR domain at the C terminus. In the case of Spred-2, it is required for efficient suppression of 

stem cell factor-induced ERK phosphorylation and suppression of hematopoietic cell development 

[70]. This domain is involved in binding to phosphatidylinositol 4, 5-bisphosphate [71] and for the 
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interaction with Raf1 [72]. A C-terminal deletion mutant of Spred-1 was shown to act as a 

dominant negative form and augments growth factor-induced ERK activation [66, 73]. Spred-2 

with a deletion of the Sprouty domain was unable to suppress ERK activation but similar loss in 

Spred-1 and Eve-3 were still functional in suppressing ERK activation raising a controversial 

discussion [74, 75]. Therefore, future work has to be done, elucidating the physiological function of 

the SPR domain. 
 

EVH1 - COOHNH2 - KBD SPD

c-Kit, c-Fms 
binding domain, 
site for thyrosine 
phosphoryaltion

Raf, caveolin-1 
binding domain, 

domain for 
heterodimerization 
and palmitylation

Unknown 
interaction 

partner

EVH1 - COOHNH2 - KBD SPD

c-Kit, c-Fms 
binding domain, 
site for thyrosine 
phosphoryaltion

Raf, caveolin-1 
binding domain, 

domain for 
heterodimerization 
and palmitylation

Unknown 
interaction 

partner

 
Figure 2: Structural organization of human Spred2 and overview of binding partners. Binding partners for EVH1 
domain is not known yet, c-Kit binding domain (KBD) is a site for thyrosine phosphorylation and binds to c-Kit and c-
Fms domains and the well-conserved cysteine-rich Sprouty-related domain (SPD) binds to Raf, caveolin-1 and is 
responsible for heterodimerization and palmitylation.  
 

2.1.2.2. Spred EVH1 domain 

A new family of proteins also containing a new class of N-terminal EVH1 domains 

was described by Yoshimura and co-workers [66], called Spred protein. EVH1 domains of mouse 

and human Spred are identical, named as the human Spred-1a and mouse Spred-1 EVH1 domains. 

The human Spred-1 EVH1 domain is also very closely related to the other two domains with only 

two conservative mutations in comparison. The human Spred-3 EVH1 domain shows much less 

conservative mutations and an insertion [67]. 

The typical aromatic triad present on the surface of EVH1 domains formed by Arg-

Trp-Phe in case of Spred is certainly an important factor for determining ligand specificity [33] 

(Table.1). The recently determined crystal structure of the Spred1 EVH1 domain from Xenopus 

tropicalis solved to 1.15 Å resolution suggests that dislocation of one of the peptide-binding groove 

beta-strands might narrow the putative ligand binding groove although one end of the groove 

shows structural flexibility. Based on these observations, it was proposed that Spred EVH1 might 

bind peptides that are less proline-rich than other EVH1 domain binding motifs with 

conformational changes indicating an induced fit [76]. The specific binding partner of the Spred 
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EVH1 domain is currently unknown for any of its isoforms although the limited expression 

patterns and non-overlapping functional roles in signal transduction of its host proteins suggest 

specific binding partner different from other EVH1 domain classes. Recently, the NMR structure of 

human Spred2 EVH1 domain which been determined in a collaborative effort of this Institute and 

the Structural Genomic Consortium (SGC), Oxford has been submitted to the PDB database with 

access code 2JP2 and can be accessed from http://www.sgc.ox.ac.uk/ structures/ SPRED2A_2jp2. 

html [77]. 

The EVH1 domains of the three mammalian Spred paralogues are functionally 

interchangeable [67]. Involvement of the Spred EVH1 domain in Raf inhibition was proved by the 

studies in which replacement of the murine Spred1 EVH1 domain with the Wiskott–Aldrich 

syndrome protein (WASP) EVH1 domain was not sufficient to inhibit the MAPK pathway [66]. 

Moreover, Eve-3 consisting only EVH1 domain is potent in inhibiting the MAP kinase pathway 

[75]. However, deletion of the EVH1 domain in Spred-2 (ΔN-Spred-2) was shown to be competent 

to inhibit differentiation of murine haematopoietic cell lines [70]. But, sprouty domain deletion in 

Spred-1 shown negative dominance behaviour in EVH1 domain regulated activities [73]. These 

observations suggest that the different Spred proteins use different mechanisms to induce inhibition 

of the MAPK pathway. 

 

2.1.2.3. Family members 

The Spred proteins can be divided into four members as so far described in the 

literature including three mammalian homologous isoforms Spred-1, Spred-2, Spred-3 and a 

Drosophila founder member AE33. Recently, a splice variant of Spred-3 named Eve-3 was 

identified [75]. All of them bear an N-terminal EVH1 domain and Eve-3 contains merely a single 

EVH1 domain whereas Spred-3 lacks a functional c-Kit binding domain but maintains the 

inhibitory action on Raf suggesting that the KBD is not required for this action [67]. So far, four 

binding partners of Spred proteins were described, namely Raf1, caveolin-1, Ras, and RhoA [66, 

69, 72, 78]. The former two bind to the Spred SPR domain, but the binding property of the latter 

two members with Spred proteins is unknown so far although their signal transduction cascades 

have been studied. The Spred-1 protein interacts with both Ras and Raf, probably through the 

Sprouty domain [66]. Spred-1 is expressed predominantly in adult brain and in some fetal tissues, 

suggesting a role during development [79]. Spred-2 isoform express ubiquitously in adults; 

especially strong expression was seen in neural tissues and different glandular epithelia, but not in 

fetal tissues. Spred-3 isoform was detected only in brain [67, 79], whereas Eve-3 was limited to the 

developing liver [75].  
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2.1.2.4. Signalling pathways 

Spred proteins were first described as suppressors of the Ras/Raf/MAPK signalling 

pathway [66] [80] which regulates proliferation and differentiation of cells in response to 

extracellular signals but they suppress ERK signalling by a different mechanism [81]. Spred 

proteins are potent inhibitors of a wide range of mitogenic stimuli like different growth factors, 

cytokines, and chemokines, but the suppressing effect seems to be restricted to the 

Ras/ERK/MAPK pathway [67, 73, 74, 78, 81] [80]. Endogenous Spred constitutively associates 

with Ras and inhibits the activation of MAPK by suppressing the phosphorylation and activation of 

Raf [66]. This mechanism prevents neither Ras activation nor membrane translocation of Raf, but 

reduces the threshold of growth factor sensitivity for differentiation [66]. In Spred-2–/– 

midgestation mouse embryos, Spred-2 suppresses hematopoietic processes by inhibiting MAPK 

activation [70] and stem cell factor or interleukin-3 stimulation of mature Spred-1–/– bone marrow-

derived mast cells resulted in increased cell proliferation and MAPK activation [73]. Therefore, 

Spred-2 could serve as a negative regulator of embryonic [70] and Spred-1 of mature late phase 

hematopoiesis, respectively [73]. However, the EVH1 domain mediated protein interactions of 

Spred are not yet known which would disclose its role in cell signalling cascades. 

 

2.1.2.5. Physiological functions 

As mentioned above, the knock-out studies uncovered the physiological functions of 

Spred proteins. Spred proteins are not necessary for fertility and development, and young adult 

mice of Spred knock-out are viable and show no apparent abnormalities [82]. However, loss of 

functional Spred-2 protein causes a dwarf phenotype, similar to hypochondroplasia, a common 

form of human dwarfism [82]. In this context, Spred-2 seems to be an important modulator of bone 

morphogenesis by inhibiting the fibroblast growth factor-induced MAPK pathway [82]. Similarly, 

Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness 

without affecting helper T cell differentiation [83]. Recently, Spred-1 and Spred-2 have been 

shown to down regulate cell motility by suppressing activated RhoA induced stress fiber formation 

[78]. Furthermore as already mentioned above, Spreds seem to be important for hematopoiesis. 

Expression levels of Spred-1 and Spred-2 in human hepatocellular carcinoma tissue were 

frequently decreased compared to non-tumour tissue and their expression levels are inversely 

correlated with the process of invasion and metastasis [84]. Expression of Spred-1 inhibited 

carcinoma cell motility and proliferation in-vivo and in-vitro which is associated with ERK down 

regulation [84]. A specific function of Spred-3 which is expressed exclusively in brain [67] is not 

known yet. Physiological functions of Spred proteins are not completely known due to lack of well 
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characterized interaction partners. Determination of the Spred EVH1 domain binding motifs will 

disclose Spred proteins further regulated physiological functions.  

 

2.2. A classification scheme of EVH1 domains: portrait of a conserved domain family 

Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) 

domains, sometimes referred to as Wiskott–Aldrich syndrome protein homology 1 (WH1) 

domains, are a family of small (~115 residues; ~13 kDa), non-catalytic, protein–protein interaction 

adaptor modules essential for their host proteins in subcellular localisation and connecting to 

various signalling pathways. EVH1 domains occur in single copies located exclusively at the N-

termini of their host proteins (Fig.3). This conserved, unique N-terminal location appears to be a 

characteristic feature of EVH1 domains, which categorizes them clearly apart from structurally 

related domains such as RanBDs, PTB, and PH domains (Fig.3). The EVH1 domains may confer a 

segmental polarity to their host proteins that is required for functional or biogenetic reasons, 

resulting in the topological separation of this exposed terminal adaptor domain from the different 

types of genetically fused effector domains with which they co-exist and lodging a specific binding 

socket for its interaction partners [33]. In all EVH1 domains, a highly conserved cluster of three, 

surface-exposed aromatic side chains forms the recognition triad for their target specific proline-

rich sequence ligands and classified these domains into different classes based on these 

interactions. The predicted phylogenetic evolutionary relationship enlighten that EVH1 domains 

within a class are more related than within the same species suggesting that the homology among 

specific sub-family members reflects similar functional and binding specificities (Fig.3). The 

possible divergence of a common ancestor of EVH1 domains into the different classes would 

probably predate the divergence of the Bilateria.  

EVH1 domains mediate protein–protein interactions in a diverse range of signalling 

cascades, depending on their host protein and site of action [33]. The protein–protein interactions 

mediated by EVH1 domains are highly important for the regulation of signal transduction events, 

re-organization of the actin cytoskeleton, and modulation of actin dynamics and actin-based 

motility. Many EVH1 containing proteins are associated closely with actin-based structures and are 

involved in re-organization of the actin cytoskeleton. EVH1 domains are also present in proteins 

enriched in neuronal tissue, thus implicating them as potential mediators of synaptic plasticity, 

linking them to memory formation and learning.  

 

2.2.1. EVH1 domains recognize proline-rich sequences in their binding partners in a stereo-

specific manner 
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Like Src homology 3, WW and GYF domains and profilin, EVH1 domains 

recognize and bind specifically to core proline-rich motifs (PRMs) in peptides exposed on the 

surfaces of their binding partners [24, 25, 33, 85]. A small PRMs of 4–6 amino acids in the target 

peptides (6-12 amino acids) bind the recognition pocket on the domain surface which is unique for 

each class of EVH1 family due to their characteristic so called aromatic triad formed by three 

surface exposed amino acids (Table.1). Often, the target core PRMs occur in close tandem repeats 

in the sequence of the binding partner which could provide an additional mechanism for increasing 

binding affinity. The binding affinities of the core motifs in isolation are extremely low (Kd values 

in the millimolar range), but are increased to biologically significant levels by the presence of core-

flanking epitopes, which make additional contacts with the domain surface [85]. The three-

dimensional structures of EVH1: peptide complexes reveal the most important features of these 

interactions and explain the origins of specificity, ligand orientation and sequence degeneracy of 

target peptides in the low affinity signalling complexes (for review see [24, 33]). 
 

(a) (b)(a) (b)(a) (b)

 
Figure 3: Occurrence, distribution and phylogenetic classification of EVH1 domains. (a) Domain organisation in 
proteins containing EVH1 domain: The EVH1 domain occur in single copies located exclusively at the N-terminus (b) 
Phylogenetic tree of EVH1, RanBD, PH and PTB domain sequences derived from a structure-based sequence 
alignment with branch lengths indicating sequence similarity. Clustering of sequences on this tree identified four 
distinct classes of EVH1 domains. Source: [33] 
 

In the EVH1: peptide complexes, the surface exposed Trp side chain (Trp23; VASP 

numbering) is usually located at the centre of the aromatic triad and is oriented in a plane almost 

perpendicular to the domain surface. On one or both sides, at approximately 90° to this plane and 

almost parallel to the domain surface, lie the flat rings of either Tyr or Phe side chains [33]. This 

perpendicular arrangement of aromatic rings results in rectangular organized hydrophobic pockets 

on each side of the central Trp, well-suited to the recognition of peptide ligands that adopt 

structures close to that of a left-handed poly proline-II (PP-II) helix [33]. The FPXXP containing 

peptides bound by the Ena/VASP EVH1 domains and the LPPPEP region of the WIP peptide 
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bound by the N-WASP EVH1 domain are good examples of this. The indole proton of the central 

Trp forms a hydrogen bond to one of the backbone carbonyl oxygens in the peptide, which further 

anchors the ligand into place [33, 86]. The side chains of the peptide residues surrounding this 

carbonyl trunk (usually prolines) then pack closely into the rectangular shaped hydrophobic 

pockets on either side of the central Trp side chain. In the Ena/VASP EVH1 domains, Tyr16 and 

Phe79 (VASP numbering) comprise the Trp flanking aromatic residues, and the proline residues P 

(2) and P (5) of the Class 1 EVH1-binding motif FPPPP binds to either side of Trp23 [24, 33]. The 

N-terminal Phe(1) of this sequence makes a further close hydrophobic contact with the domain, 

which is important for anchoring the peptide and for determining the orientation of a highly 

symmetric ligand [85].  

Variations in the geometries of the PRM binding sites give rise to the observed 

differences in ligand preference between the different domain sub-families. Nevertheless, they are 

critically placed and provide sufficient external variation to tailor the different classes of EVH1 

domains to recognize highly specific target sequences [85]. This allows EVH1 domains to be used 

as versatile molecular adaptors by diverse families of host proteins to mediate their localization to 

very different signalling proteins. Recent substitution studies have incorporated peptoid building 

blocks (non-natural amino acids) into binding peptides derived from proline-rich regions and were 

able to substitute the most highly conserved residues without altering the EVH1 binding affinity to 

the corresponding partner [29]. This approach may open up the way for designing selective 

modulators for biological signalling studies and for the development of new therapeutics. 

Interestingly, the PRM-binding interfaces of the EVH1 domains described above have many 

features in common with those of the other protein interaction domains that bind specifically to 

proline-rich sequences viz., SH3, WW, GYF, and UEV domains, as well as the small, actin-

binding, profilin protein. The described stereochemical mechanism for proline-rich peptide 

recognition is therefore not specific to EVH1 domains, but is rather widely used in many different 

types of adaptor modules involved in several signalling pathways [33]. 

 

2.2.2. EVH1 domains are classified into four groups based on similarity of their sequences 

and recognition pattern of their ligands  

EVH1 domain family proteins can be classified by a phylogenetic analysis of 

structural similarities based on their sequence conservation, domain co-occurrence, and ligand 

binding preferences. The EVH1 domains are categorised into four main groups, named after their 

primary host proteins viz., the Ena/VASP class, the Homer/Vesl class, the WASP/N-WASP class, 

and the Spred class. 
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2.2.2.1. Class 1: The Ena/VASP class  

The EVH1 domains were first identified in host proteins comprising of the 

Ena/VASP protein family which includes Drosophila Ena, its mammalian orthologs (VASP, Mena, 

and EVL), C. elegans Unc-34, and Dictyostelium discoideum DdVASP [8, 87] (for more details, 

see Chapter 2.1.1.3). As explained above the domain structure of this class and the characteristic 

aromatic triad formed by the class-specific amino acids Tyr, Trp and Phe specifically recognizes 

the consensus binding motif FPxφP (Table.1) (where φ is a hydrophobic residue) in vinculin [26], 

zyxin [27, 28] the Listeria actin binding protein, ActA [29, 30], the intracellular axon guidance 

receptors in Drosophila and C.elegans, Robo [42] and SAX-3 proteins [88] respectively, the fyn-

binding / SLP-76- associated protein (Fyb-SLAP) [35], the lipoma preferred partner LPP protein 

[36], semaphoring 6A-1 protein (SEMA6A-1) with a zyxin like carboxy terminal domain [89], and 

paladin [37]. Proline residues at positions (2) and (5) (FPPPP) are essential for EVH1 binding and 

the prolines at positions (3) and (4) (FPPPP) are highly variable [85]. Position (3) is completely 

non-specific and could be replaced by almost any other residue, whereas position (4) required a 

hydrophobic residue in order to determine EVH1 binding [24, 31, 32]. 
 

EVH1 class Host 
protein 

3D-structure 
PDB code Aromatic Triad Consensus ligand 

Motif 

VASP 1EGX Tyr16 Trp23 Phe79 FPXXP 
Class 1 

Mena 1EVH Tyr16 Trp23 Phe77 FPXXP 

Class 2 Homer 1DDV Ile16 Trp24 Phe74 TPPXXF 

Class 3 N-WASP 1MKE Ala48 Trp54 Phe104 DLPPPEPYNQT 

Class 4 Spred 2JP2 Arg23 Trp30 Phe88 This study 
 

Table 1: The classification of EVH1 domain family members. Summary of different classes of the EVH1 domain 
family featuring the highly conserved triad of aromatic amino acid residues and specific proline-rich ligand motifs are 
shown in the table (for details see Chapter 2.2.2). The protein database (PDB) code for the respective EVH1 domain’s 
atomic structure is also given here. 
 

2.2.2.2. Class 2: The Homer/Vesl class 

The Homer/Vesl proteins are a family of synaptic scaffolding proteins that are 

constitutively expressed in brain and enriched at excitatory synapses representing the class 2 of 

EVH1 domain family [90]. The domain architecture of the Homer/Vesl family is variable. Homer 1 

contains only an N-terminal EVH1 domain followed by a low complexity region. In contrast, its 

close relative Homer 2 consists of an N-terminal EVH1 domain, a low complexity linker region, 

and a leucine zipper motif at the C-terminus responsible for clustering (Fig.3) [91, 92]. In the 
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Homer/Vesl proteins, Ile replaces Tyr to offer a characteristic aromatic triad (Table.1) which alters 

the structural basis and geometry of the PRM recognition mode from that of Ena/VASP EVH1 

domains, thereby recognising the class 2 specific EVH1-binding motif TPPxxF in a very different 

binding mode [85, 90, 93]. The two consecutive prolines and the terminal Phe of the TPPxxF motif 

make the closest hydrophobic contacts to the Homer EVH1 domain surface, with the exposed 

indole proton of Trp24 (numbering according to VASP) forming a hydrogen bond to the carbonyl 

oxygen of the N-terminal Thr [85, 90, 91, 93, 94].  

The Homer-Vesl proteins show no obvious connection to the actin assembly 

machinery and are found enriched in neuronal tissue. These proteins are proposed to play a role in 

long-term potentiation in excitatory synapses, with implications for memory formation [95]. 

Homer-Vesl EVH1 domains bind selectively to PPxxF containing motifs found in the C-termini of 

group I metabotropic glutamate receptors (mGluRs), inositol-1, 4, 5-trisphosphate receptors 

(IP3Rs), ryanodine receptors (RyRs) and the Shank family proteins [92]. The EVH1 domain of 

Homer 1 also interacts with its own proline-rich motif in the linking region [91]. 

 

2.2.2.3. Class 3: The WASP/N-WASP class  

The WASP/N-WASP family exhibits a more complex domain structure, comprising 

an N-terminal EVH1 domain (sometimes referred to as WH1 domains) [96], a short basic motif, a 

GTPase binding domain (GBD), a proline-rich region, and a C-terminal region containing either a 

verprolin homology (VPH) and cofilin-acidic (CA) domain (WASP) or two tandem VPH domains 

followed by a single CA domain (N-WASP) (Fig.3). The N-terminal EVH1 domain binds 

specifically a proline-rich sequence LPPPEPY in the WASP interacting protein (WIP), CR16 and 

verprolin [96]. The PRM binding triad of N-WASP is most closely related to that of Homer and 

conserved Tyr16 of the Ena/VASP class (equivalent to Ile16 in Homer) is replaced by Ala 48 and 

thus it is no longer part of the peptide binding site. Instead, a groove comprising of Trp54, Phe104 

and Thr106 in the N-WASP EVH1 domain contributes to form an identical aromatic cluster for 

WIP peptide contact (Table.1). In contrast to the other EVH1 domains the N-WASP EVH1 domain 

binds a much longer proline-rich peptide, having a minimum length of 25 residues. It does not bind 

a 10-residue ligand of the Mena EVH1 domain from ActA, which contains a PRM (DFPPPPT) 

very similar to that found in the WIP peptide (DLPPPEP) [30]. It has recently been proved that this 

domain needs multiple recognition motifs for its functional activity [97] and binds to WIP in a 

reverse orientation to that observed in other classes of EVH1 domains [33, 96]. Similar to 

Ena/VASP proteins, the WASP family proteins are closely associated with cytoskeleton regulation. 

They are believed to regulate actin assembly downstream of Cdc42 and phosphatidylinositol 4, 5-
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bisphosphate signalling pathways [98]. Mis-sense mutants in their N-terminal EVH1 domains 

result in the X-linked recessive disorder Wiscott – Aldrich syndrome (WAS), characterized by 

immunodeficiency, eczema, and thrombocytopenia [96]. 

 

2.2.2.4. Class 4: The Spred class  

The Spred proteins possess as mentioned above a domain structure comprising an N-

terminal EVH1 domain, a central c-Kit binding domain (KBD) and a C-terminal cysteine-rich 

Sprouty-related (SPR) domain (Fig.3) [67, 80]. As described in Chapter 2.1.2.2, a characteristic 

aromatic triad (Table.1) is expected to determine the specific ligand preference of this EVH1 

domain class [33]. Binding studies have shown that the Spred EVH1 domain does not bind the 

FPPPP motif recognized by the Ena/VASP EVH1 domains and no binding partner has been 

identified for this EVH1 domain so far. Yet the fairly restricted tissue distribution of some Spred 

isoforms suggests that their binding partners may be significantly different from those of the other 

EVH1 domains. Recently, The SGC group (Oxford) in collaboration with our Institute has solved 

the NMR structure of the human Spred2 EVH1 domain and deposited it in the data base under 

accession code “2JP2”. The study of binding motifs for this new class of EVH1 domains is a part 

of this thesis work. 

 

2.3. Approaches for identification and characterization of interaction partners of protein 

kinases and adaptor proteins 

  The study of protein interactions are vital in understanding how proteins function 

within the cell. The ability to identify and characterize the physical and biological interactions in a 

living cell is essential for developing a detailed system level model of cellular functions [99]. Since 

50 years, after discovering the enigma of phosphorylation, many of the signalling pathways 

involved in the regulation of normal cells were revealed with a major break through in the most 

recent interaction studies [100]. Previously interaction studies were limited to known targets in 

which novel protein partners or kinases were studied with specific drugs like activators and 

inhibitors by using biochemical and pharmacological approaches. Advancements in deciphering of 

the human genome and subsequent proteomics-based protein profiling studies have catalyzed 

resurgence in these interaction studies at a new scale using various new molecular, cellular and 

genetic technologies. Well known protein interaction databases based on different domain 

recognition motifs are now available together with the experimental data for compiling interaction 

data and even predicting unknown signalling interactions in a cell [101]. They are helpful to some 

extent in determining predictive protein interactions and giving models of the signalling network of 
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a specific cell type (Table.1a) [102]. Such databases are DOMINO (http://mint.bio.uniroma2.it/ 

domino/), a database of interactions mediated by protein recognition modules [103], MINT 

(http://mint.bio.uniroma2.it/mint/ ), a Molecular INTeraction database [103] and the DIP database 

(http://dip.doe-mbi.ucla.edu/), which catalogues experimentally determined interactions between 

proteins [104]. The success of exploring global signalling networks of a cell has shifted the 

research focus to an understanding of the system’s level regulation of a biological system creating 

the new discipline of systems biology [105]. Systems biology comprises the study of the 

interactions between the components of biological systems, and how these interactions give rise to 

the function and behaviour of the cellular or even the organismic system. By revealing the 

molecular logic that underlies cellular processes the genomic revolution of sequencing and 

analysing whole genomes has now captured molecular biology into the realm of systems biology 

[106, 107]. Systems biology approaches also promise to improve rational decision making in drug 

discovery [108]. Further more the data driven modelling approaches using mathematical techniques 

like principle component analysis, clustering and partial least squares have addressed the huge 

experimental data of recent cell signalling studies to understand and help to derive algorithmic 

ways of analysis of cell signalling networks [109]. Thus recent advancements in interaction 

analysis strategies are reviewed below in context of our studies performed to determine the 

substrate specificity of new protein kinases for VASP and the identification of interacting peptides 

for the EVH1 domain of Spred proteins. 
 

 
Query string 

 
Spred binding proteins 

AE331/Spred 
(D. 

melanogaster) 
ANGEL1(2,3)[Q9UNK9] 

Spred1 

ANGEL1(5) [Q9UNK9]    KIT(1,4,5)[ P10721];     HRAS(6)[ P01112]; 
ANGEL2(5) [Q5VTE6]                                         RhoA(6)[ P61586]; 

 
                                                                                                                 PPP1CA(1,3,5)[ P62136] 
                                                                                                                Caveolin-1(6)[ Q03135] 

Spred 
(M. musculus)                                            KIT(1)      [ P10721] 

Spred2                                            KIT(1,4,5) [ P10721]     RAS(4,6)[ P01112] 
                                          RhoA(1,4,5,6)[ P61586] 

 

Table: Spred binding proteins as identified by interaction database searches. The table shows a list of potential 
Spred binding candidates as derived from in-silico database and literature searches using Spred protein sequences as 
the query. UniProt ID of the respective hits is given in brackets. The majority of the databases did not provide any 
experimental evidence for the hits listed. The databases in which the hits were identified are given as follows (1)HPRD, 
(2)Biogrid, (3)Mint, (4)String, (5)UniHI, (6)literature search.  
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2.3.1. The role of protein interactions in biological signal transduction networks 

In multicellular organisms, a multitude of different signal transduction processes are 

required for co-ordinating the behaviour of individual cells to support the function of the organism 

as a whole. Signal transduction as a key process refers to any activity by which a cell organises the 

transmission of a signal or stimulus from its receptors to the targets in the cytoplasm and nucleus, 

most often by an ordered sequence of biochemical reactions involving secondary messengers, 

proteins kinases and effector proteins. These signal transduction pathways are governed by an 

intricate web of physical and functional links between protein ligand molecules forming a 

signalling network. The comprehensive description of this network structure is referred to in recent 

days as the “interactome” of a cell [110]. Many disease processes such as diabetes, heart disease, 

autoimmunity and cancer arise from defects in this web of signal transduction pathways, further 

highlighting the critical importance of signal transduction to biology as well as medicine. 

The reception of a signal on the surface of a cell often results in signal transduction 

cascades that include transmembrane and intracellular receptor proteins, protein kinases and 

phosphatases, binding proteins for secondary messengers and many intracellular protein 

interactions of different specificity to downstream effector molecules that finally execute the cell’s 

response [111]. Information from the receptor-ligand complex formed by cell surface receptor and 

external signalling ligand activates those small molecules called secondary messengers which often 

constitute early steps in the signal transduction cascades. The most well-known secondary 

messengers include cyclic AMP and cyclic GMP, NO, calcium ion, inositol 1, 4, 5-trisphosphate 

(IP3), and diacylglycerol (DAG). Second messengers are often free to diffuse to other 

compartments of the cell, such as the nucleus, where they can influence gene expression and other 

processes by amplifying a signal significantly for effective transmission. Many secondary 

messengers elicit responses by activating protein kinases which transfers the γ-phosphate group 

from ATP to specific serine, threonine or tyrosine residues in substrate proteins by the process of 

protein phosphorylation [112]. This signal continues to function until protein phosphatases are 

activated to shut off its transmission to the targets. Protein phosphatases thus play an important role 

in the termination of protein phosphorylation signalling processes by hydrolytically removing the 

specific phosphate groups from the modified proteins. Thereby changes in the concentration of free 

secondary messengers could induce changes in the covalent structures of proteins. In animal cells, 

these cascades are mediated by two types of protein kinases: serine/threonine kinases (which 

phosphorylate serine and threonine amino acid side chains) and tyrosine kinases (which 

phosphorylate tyrosine amino acid side chains). In-vivo phosphorylation patterns thus transmit 

signals among various proteins being either phosphorylated or dephosphorylated resulting in 
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various changes of cellular behaviour. Many of these cascades are studied and modelled as 

phosphorylation networks for a computational, in-silico prediction of unknown substrates for 

different protein kinases [102, 113]. 

Protein-protein interactions are intrinsic to virtually every cellular process with their 

effects mediated by different multi-domain protein complexes. Many of the protein-protein 

interactions involved in signalling networks frequently make use of signalling adaptor proteins 

composed of conserved, non-catalytic, interacting adaptor domains and their cognate binding 

peptide motifs which in turn connect to specific signalling cell surface receptors and their 

downstream effectors [99, 112, 114]. The functional regulation of adaptor proteins is done by 

several mechanisms including intra-molecular interactions, conformational reorganisation, post 

translational modification and co-operative and combinatorial binding reactions where individual 

adaptor domains regulate divergent signalling networks by utilizing distinct combinations of 

binding partners to carry out complex developmental and physiological processes [111, 114]. Thus, 

the domain interacting network could be explicated by considering the modular nature of their host 

proteins [115]. These networks can be viewed as molecular circuits for mediating sensing and 

processing of stimuli. They could detect, amplify, and integrate diverse external signals to generate 

responses such as changes in enzyme activity, gene expression, or ion-channel activity. Specificity 

in protein interactions during signal transduction is regulated by different biochemical mechanism 

like exclusive binding of stimulating factors to the receptor complex, preferred recognition of 

protein kinase substrates and adaptor domain binding peptide motifs [111, 112]. Paradoxically, a 

similar signalling pathway often regulates very different cellular processes, for example the same 

signal and receptor in different cells can promote responses as diverse as proliferation, 

differentiation or death. Conversely, activation of the same signal-transduction component in the 

same cell through different receptors often elicits different cellular responses. We can anticipate 

that similar genetic and molecular studies in flies, worms, and mice will lead to an understanding 

of the interplay between different pathway components and the underlying regulatory principles 

controlling specificity in multicellular organisms. 

One specific group of modular recognition adaptor domains, including SH3, WW 

and EVH1 domains play a crucial role in the assembly and regulation of many intracellular 

signalling complexes by a common proline rich recognition mechanism [116]. The EVH1 domain 

host proteins regulate a large number of transient interactions in events involving actin 

cytoskeleton dynamics [25] or postsynaptic signalling cascades [85] through their proline rich 

specific binding interactions. Knowledge of the molecular determinants of structural and 
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biochemical specificity of these proteins is necessary for a rational understanding of their role in 

signalling cascades.  

Not only protein-protein interaction, but also lipid–protein interactions play a crucial 

role besides maintaining the structure and function of biological membranes where lipid–protein 

interactions are implicated in the assembly, stability and function of membrane proteins [117] 

[118]. Of the known adaptor domain proteins interacting with lipids, Pleckstrin homology (PH) 

domains [119] and Src homology3 domains [120] are well characterised for their lipid interaction 

and show some structural homology with EVH1 domains. Many of the EVH1 family proteins are 

localised to or near the cell membrane and are involved in cytoskeletal signalling cascades, but 

their interaction with negatively charged phospholipids has not been detected so far. The recently 

discovered positively charged surface of Spred EVH1 domains and their unique structure opens up 

the possibility of an interaction with negatively charged biological molecules.  

 

2.3.2. Identification of candidate protein kinases for VASP and elucidation of 

phosphorylation pathways in serum stimulated cells 

The above described information has given a detailed view of how signals are 

transmitted from the cell surface and transduced into changes in cellular behaviour via protein 

kinases and protein interactions. The combination of biochemistry, structural biology and genetics 

has developed different tools like immunodetection studies with polyclonal and monoclonal 

antibodies for phospho and non-phospho forms of the target proteins, NMR studies, transgenic and 

knock out studies which are very helpful in characterizing the functional role of these protein 

molecules in different signalling pathways. Despite the close structural relationship among 

different signalling molecules such as protein kinases, recent studies suggest that activators and 

inhibitors selective for specific subclasses can be designed to activate or block the responses of 

these molecules thus up- or down-regulating these signalling pathways. Such up- and down-

regulation of signalling pathways could be studied by looking at a specific end substrate or target 

molecule participated in that pathway. These activators and inhibitors are thus useful 

pharmacological tools to trace out the order and role of signal transduction molecules in a specific 

pathway. Recently, the development of peptide inhibitors for specific kinase isozymes has been 

started depending on the structural variations of isozymes. Especially, protein kinases are the most 

exploited targets in pharmacological studies due to the key roles of these enzymes in many human 

diseases including cancer [121]. Recently, the in-silico virtual screening of large scale chemical 

databases with different docking procedures for protein kinase inhibitors depicts their demand in 

drug designing [122]. Transgenic methodologies have also provided further evidence for 
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involvement of biological molecules in regulation of signalling pathways. Knock out models are 

thus well known tools for elucidation of signalling pathways. In some cases like studies of VASP, 

even though a knock out model may not show any apparent gross phenotype, there might be 

alterations at the cellular level in the signalling molecule’s recruitment for signal transduction. 

Hence, knock out technology is a valuable approach to elucidate the role of specific molecules in a 

particular signalling pathway complementary to pharmacological and biochemical studies. 

Activation of cyclic nucleotide dependent signalling pathways regulates the 

phosphorylation of VASP via PKA and PKG (see Chapter 2.1.1.4). Inhibition of PKA and PKG 

activity by cyclic AMP and cyclic GMP antagonists thus down regulates the phosphorylation of 

VASP which can be detected by using monoclonal or polyclonal phosphorylation site-specific anti-

VASP antibodies [48, 123]. Furthermore, it is possible to activate cyclic nucleotide dependent 

signalling pathways by adenylyl and guanylyl cyclase activators or agonists thus modulating the 

phosphorylation of VASP. Also, external stimulation of cells by growth hormones or serum 

proteins may interconnect and regulate not only the cyclic nucleotide dependent signalling 

pathways but also other cascades that directly or indirectly phosphorylate VASP by protein kinases 

participating in cytoskeletal regulation and focal adhesion induction. The interconnectivity of these 

pathways can be elucidated by either inhibiting or activating various candidate protein kinases 

including growth hormone or serum activated protein kinases followed by assaying the 

phosphorylation status of VASP.  

As versatile molecular tools for these signalling assays that address the extent and 

function of VASP phosphorylation after different stimuli and activation of specific kinases, specific 

antibodies had been developed. A polyclonal anti-VASP antiserum for detecting phospho and non-

phospho VASP based on the mobility shift from 46 kDa to 50 kDa in SDS gel electrophoresis [6] 

and more specifically, monoclonal antibodies for the individual phosphorylation sites of VASP had 

been raised and characterized previously namely, anti-phospho-Ser-157 VASP (5C6 mAB) and 

anti-phospho-Ser-239 VASP (16C2 mAB) monoclonal antibodies [48, 124]. Immunohistochemical 

experiments are also possible with these mABs to find out the role of these phosphorylation sites in 

localization of VASP to its various binding partners. They are also very useful tools to differentiate 

among PKA and PKG action as assayed by VASP phosphorylation in signal transduction pathways 

known to engage these protein kinases in relation to different stimuli. It is possible with these 

phosphorylation site-specific mABs to trace out the involvement of effective phosphorylation at 

these acceptor sites by various protein kinases which may have direct or indirect actions on VASP 

as a substrate. Genetic tools like site-specific mutations are advanced techniques that can also be 

used to dissect the function of individual phosphorylation sites in VASP. De-phospho mutant 
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VASP proteins consisting of serine substituted by alanine at both phosphorylation sites namely Ser-

157-Ala and Ser-239-Ala are convenient tools to evaluate the function of these VASP 

phosphorylation sites on the cell’s behaviour [3]. Clarification of the complex relationship between 

secondary messengers (especially cyclic nucleotides), protein kinases and cytoskeleton-associated 

proteins (like VASP, WASP and others) may lead to future diagnostic and therapeutic implications 

for haemostasis, cardiovascular diseases and cancer. 

 

2.3.3. Identification of interaction partners for a new EVH1 domain of the Spred2 protein 

A substantial proportion of intracellular signalling pathways and physical interaction 

complexes in a cell are mediated by short peptide binding domains like EVH1 domains and their 

multidomain scaffold, anchoring or adaptor proteins [112]. Many of these non-covalent interactions 

are of relatively low affinity and with a transient impact on signal transduction. Comprehensive 

characterization of their interacting peptides and substrate specificity is critical for understanding 

the mechanisms and signalling networks involved in many cellular functions. 

As described by Fields et al many types of physical, molecular biological and 

genetic screening approaches are available to identify binding partners of a protein or a domain 

[125, 126]. The conventional approaches of protein interaction-motif detection can be distinguished 

into three categories viz., affinity-elution methods, genomic library screening (both in-vivo and in-

vitro) methods and synthetic peptide library screening methods. Of the affinity-elution approaches, 

protein affinity chromatography is a popular method where cell extract proteins are passed over a 

bait protein immobilized to a column matrix and the bound ligands are eluted after washing off 

unbound extract proteins [126]. Immunoprecipitation and tandem affinity purification (TAP)-tag-

based co-precipitation experiments represent further powerful tools to isolate proteins of interest 

and their associated interaction partners from cell extracts using the immobilized N- and C-

terminally tagged bait protein in a batch-type protocol [125, 127, 128]. Prey proteins co-purified by 

these affinity-chromatography based approaches are subsequently identified by immunodetection 

or mass spectrometry. The recent advances in mass spectrometry have allowed the molecular 

characterization of large protein complexes and even an analysis of protein interaction networks on 

a proteomic scale [129]. 

 One of the most commonly used genetic systems today is the two-hybrid system, 

which was originally described by Fields and Song in yeast [130-134]. Two-hybrid systems are 

extremely powerful approaches of detecting protein-protein interactions in-vivo in a heterologous 

host organism. The two-hybrid system approach is mostly employed in yeast or E. coli, though it 

has also been developed for mammalian cells [135]. The modular domain organisation of certain 
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transcription factors forms the genetic basis for two-hybrid systems which use transcriptional 

activity of a reporter gene suitable for screening or selection as a measure of productive protein-

protein interactions. The modular nature of these site specific transcriptional activators consists of a 

DNA binding domain and a transcriptional activation domain which could be fused with bait and 

target proteins to be tested in the genetic system for their interaction [126, 136-139]. We decided to 

use an in-vivo genetic library screening approach based on a bacterial two hybrid system to search 

for the Spred EVH1 domain binding epitopes. The coding sequence of the bait protein, human 

Spred2 EVH1 domain was cloned to a respective plasmid vector to express the recombinant DNA 

binding domain as a fusion protein to genetically screen proteins fused to a transcriptional activator 

domain of RNA polymerase for binding epitopes. Thus selected epitope guides in disclosing the 

interacting protein of the Spred2 EVH1 domain through a genomic sequence blast search. After 

completion of many genome studies for various organisms including human, by application of two-

hybrid systems in yeast or bacteria in-vivo screening of libraries of genes or fragments thereof 

identified recognition motifs which interact with a protein of interest [126, 140-144]. Complete 

protein-protein interactions network thus determined by identification of the domain recognition 

motifs in a given cellular proteome, referred to as the “interactome” would thus be the next 

milestone along a deeper understanding of cellular signalling networks of the cell [145] [110, 146, 

147]. 

 The in-vitro peptide library screening for specific domain interaction based on 

exposing libraries of peptides on the surface of phages is a complementary and orthogonal tool in 

screening for peptide or even antibody binding motifs [148, 149]. Since the last few years, 

advances in molecular biology allowed this phage display technology to dominate even hybridoma 

technology to serve as an advanced tool in antibody engineering [150] [151, 152]. Phage display 

technique uses an in-vitro selection method in which a peptide or protein is genetically fused to a 

coat protein of a bacteriophage resulting in the display of the fused protein on the exterior of the 

phage virion which contains its gene thus providing a link between phenotype and genotype for 

selection of desirable peptides from large collections of variants [153]. The phage display 

screening process occurs in several repetitive cycles of affinity selection and subsequent 

amplification of enriched phage populations by host bacteria. This is opposed to other methods 

described above which comprise only single selection rounds [154]. One of the most advanced 

features of phage display is to make large sized libraries of mutants for a given protein, particularly 

focused to a limited region of the protein so that a small number of amino acid residues can be 

mutated [155, 156]. Despite the relatively large size of libraries that can be constructed by phage 

display, the randomization of more than six residues (≈ 6X107 variants) often already exceeds the 
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ability to construct a complete library with all possible combinations of sequences [157]. Phage 

display libraries screened for peptide binding adaptor domains contain few fixed amino acids, 

which are often indispensable for binding and the rest of the residues is randomized by maintaining 

a number of “degenerated” positions. Completely randomized 9mer peptide phage display libraries 

(X9mer) have gained more popularity for selecting affinity ligand motifs from a set of peptides 

[158]. Phagemids containing one of the genes encoding the fusion capsid protein, beside a 

resistance gene and the large intergenic region of the phage (IR) have all necessary elements for 

DNA replication and packaging required to clone and express proteins/peptides of interest as 

capsid fusion proteins in E. coli (Fig.19) [153]. To display peptides or proteins on viral particles 

using this phagemid system, bacteria have to be infected further with packaging-defective helper 

phages. These helper phages supply an almost complete viral genome in trans, but its large IR 

region is engineered with the DNA-packaging function impaired. In the absence of a helper phage 

the phagemid is propagated as a plasmid. While after infection of the phagemid-harboring E. coli 

cells with them, both the fusion version of a capsid protein from phagemid and the wild type copies 

of all capsid proteins from the helper phages are expressed. Phage assembly of all fusion and wild 

type capsid proteins together thus forms encapsulated phage virion particles which are extruded 

from the host cells and can be harvested for screening. The protein of interest immobilized on a 

solid phase is incubated with this phage display library to allow binding between the protein and 

the appropriate phages by a special in-vitro selection procedure called “bio-Panning” (Fig.20) 

[159]. Phage display has been shown to be a successful tool for selection of short proline rich 

motifs (6-15 amino acids) for peptide binding adaptor domains like SH3 domain, EVH1 domains, 

WW domains and for refining of designed proteins with only a small part of the protein being 

subjected to the evolution at each step [154]. Therefore, phage display peptide library screening 

was used as a second experimental approach for binding epitope identification of the Spred2 EVH1 

domain in the studies submitted by this thesis. 

Complimentary to phage display biochemical methods which are based on screening 

of chemically synthesised peptide libraries have been utilized extensively to identify binding sites 

or refine recognition motifs of many proteins. SPOT synthesis, the highly parallel chemical 

synthesis of biological molecules on cellulose membranes by position specific application of 

defined building blocks in each synthesis cycle [160, 161], has therefore become a widely used tool 

for studying biological molecular recognition in-vitro. These tests are important tool in biochemical 

identification of the protein-ligand binding interactions and enable to generate an enormous 

sequence diversity of custom peptide libraries for mapping applications. SPOT technology was 

originally developed as a system for easily determining the amino acid sequence of peptide 
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antigens. Peptide sequences corresponding to the specificity of an antibody are identified by 

conventional enzyme linked or autoradiographic detection methods. Such technology has since 

progressed to include a variety of new applications for research in the areas of peptide chemistry, 

molecular biology, cell biology and immunology for studies like protein-protein and protein-

phospholipid interactions, phosphorylation studies, nucleic acid binding and combinatorial peptide 

library screening [162]. Thus, it has been utilized successfully for epitope mapping (also known as 

peptide walking) [27, 30], alanine scanning [163], substitution analysis [24, 30],[164], screening of 

potential peptide ligands derived from genomic sequences [165] or mutational analysis of binding 

domains [166]. Ligand molecules other than peptides like phospholipids are also capable of being 

screened with similar SPOT methods by spotting and immobilizing the target molecules on a solid 

phase membrane. Incubation of the spotted membrane with the protein of interest determines 

complex formation with the interacting molecules and further solid phase studies using fine-

tailored ligand forms reveal the chemical details for binding of these pairs [120]. Experiments like 

the whole interactome scanning experiment (WISE) uses a selective combinatorial approach of 

SPOT scans and phage display screening to reveal all the peptides in a proteome that have the 

potential to bind to any domain of interest [115, 167]. 

The preferred binding motifs for individual domains identified by the methods 

described above can be used to blast genome data for identification of the proteins holding these 

binding sequences. Finally, such information aims at exploring the proteome of a whole organism 

for the candidate binding partners and thus forming network models of multi protein complexes. 

Hence, understanding and identification of specific motifs and the recognition code of individual 

domain classes gives an interactome of the complete signalling network for a cell. As recognition 

motif specificity is an important basis for signal transduction regulation, determination of such 

specific motifs for every adaptor domain is an essential step in finally describing a functional 

global interactome.  
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3. AIM OF THE WORK 

Ena/VASP homology (EVH1) domains are found in different signal-transduction 

proteins as N-terminal non-catalytic, adaptor modules of ~ 115 amino acids sharing a common 

fold. By targeting their host proteins to subcellular sites of action EVH1 domains are involved in 

protein-protein interactions in a diverse range of signalling cascades several of them include 

protein phosphorylation. These interactions takes place through a recognition pocket formed by a 

highly conserved cluster of three surface exposed aromatic side chains in EVH1 domains with 

proline rich specific sequences of the target proteins. 

EVH1 domains were first described in the name giving Ena/VASP protein family 

with the Vasodilator-stimulated phosphoprotein VASP being its founding member. Several EVH1 

binding proteins of VASP have been described being responsible for localisation of VASP to 

different regions of the cytoskeleton including the microfilaments and focal adhesions. As a 

cytoskeleton associated protein VASP has been found to be a substrate of cAMP- and cGMP- 

dependent protein kinases and implemented in regulation of cytoskeletal reorganisation. Besides 

cyclonucleotide dependent protein kinases however many other protein kinases are known to be 

involved in regulation of cytoskeletal remodelling in particular during serum stimulation of cells. 

Using a combined cell biological and pharmacological approach, in the first part of this thesis 

several candidate protein kinases are analysed with regard to their specificity towards VASP as a 

substrate of phosphorylation during serum stimulation of cells. Specifically the following topics 

were addressed: 

 

1. Analysis of the effect of serum stimulation on VASP in terms of its phosphorylation. 

2. Identification of the candidate protein kinases participating in serum stimulated VASP 

phosphorylation and elucidation of their order of action involved in these pathways. 

 

A new EVH1 domain has been described in the recently discovered Spred proteins 

(Sprouty related proteins containing an EVH1 domain) which are membrane-associated 

suppressors of tyrosine kinases and act as proximal negative regulators of the Ras/Raf/MAPK 

signalling pathway. This new EVH1 domain harbours a characteristic recognition pocket different 

from all the other EVH1 domains suggesting binding to unique ligand(s) which have not been 

discovered so far. Using different screening methods in combination with in-vitro binding assays to 

candidate ligands, in the second part of this thesis a search for ligands of the Spred EVH1 domain 

was performed. Specifically, the following topics were addressed: 



Aim of the work 

 
31 

1. Genetic screening of a cDNA expression library using an in-vivo interaction cloning approach 

for candidate sequences harbouring binding peptide motifs of the Spred EVH1 domain  

2. Genetic screening of a phage display library using an in-vitro affinity selection approach for 

oligopeptide binding motifs of the Spred EVH1 domain. 

3. Biochemical screening using in-vitro binding assays for studying the interaction of the Spred 

EVH1 domain with phospholipid candidate ligands.  
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4. MATERIALS AND METHODS 

 

4.1. Materials 

 

4.1.1. Chemicals 

3-AT ……………………………………………………………………….. Sigma, 

8-pCPT-cGMP............................................................................................... Biolog 

Adenine HCL………………………………………………………………. Sigma, 

Antibiotic & Antimycotic solution (100 X)……………………................... Sigma 

Bisindolylmaleimide I (Bis I) ........................................................................Calbiochem 

Bisindolylmaleimide V (Bis V) ..........................…........................................Calbiochem 

Dimethyl Sulfoxide (DMSO)……………………….................................. ...Calbiochem 

Dulbecco’s Modified Eagle Medium (DMEM)............................................. Invitrogen 

Falcon tubes …………………………...…………………………………….BD-biosciences 

Foetal Calf Serum (FCS).................................................................................Biospa 

Forskolin  .................................................................................................…...Calbiochem 

Glutathione Sepharose® 4B matrix.................................................................Amarsham 

GSH................................................................................................................. Amarsham 

H 89................................................................................................................ .Calbiochem 

His drop out supplements…………………………………………………….BD-biosciences 

Insulin-Transferrin Sodium selenate (ITS) growth supplements .....................Sigma 

M9 salts ………………………………………………………………………Q biogen 

PEG....................................................................................................................Fulka 

Phorbol 12-Myristate 13-Acetate (PMA)..........................................................Sigma 

Phosphate Buffer Saline (PBS).........................................................................Biochrome AG 

Ro-31-8220...................................................................................................... Calbiochem 

RPMI 1640 Medium.................................................................................... ….PAN 

Thiamine HCL...................................................................................................Sigma 

Trypsin EDTA...................................................................................................PAN 

Trypsin...............................................................................................................Invitrogen 

Y-27632.......................................................................................................... ..Calbiochem 

   

  All the standard chemicals of highest purity were obtained from Sigma, Calbiochem 

and other chemicals were of analytical grade. 
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4.1.2. Primary antibodies 

Name Antigen Type Origin Supplier Dilution

M4 VASP Polyclonal Rabbit immunoGlobe 
(cat# 0016-05) 1:3000 

5C6 VASP epitope with 
Ser-157P-VASP  Monoclonal Mouse Nanoo tools 

(cat# VASP 5C6) 1:100 

16C2 Ser-239P-VASP 
epitope-KVpSKQE Monoclonal Mouse Nanoo tools     

(cat# VASP 16C2) 1:100 

Anti PKG cGMP dependent 
protein kinase 1α Polyclonal Rabbit -                 1:1500 

Anti GST - Polyclonal Rabbit 
Santa cruz 

biotechnology 
(cat# sc-33613) 

1:5000 

Anti Spred 
EVH1 - Polyclonal Rabbit - 1:5000 

Anti VASP 
EVH1  Polyclonal Rabbit - 1:5000 

Anti λcI 
N-terminal 
polypeptide  
(aa 21–36) 

Polyclonal Rabbit Stratagene 
(Cat#240110) 1:5000 

 

Table 2: Primary antibodies used in the experiments. The information known about recognition motif, type, 
supplier’s details and dilution used in the experiments are described in the table for each primary antibody. 
 

4.1.3. Secondary antibodies 

Name Label Supplier Dilution Detects 

Goat-anti -Rabbit Ig Horse Radish 
Peroxidase 

Amersham 
biosciences 
NA 934V 

1:5000 

M4, anti PKG, 
Anti Spred EVH1, 

Anti VASP 
EVH1, Anti GST, 

AntiλcI 

Goat-anti- Mouse Ig Horse Radish 
Peroxidase 

Amersham 
biosciences 
NA 931V 

1:5000 5C6 and 16C2 

 

Table 3: Secondary antibodies used in the experiments.  
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4.2. Methods 

 

4.2.1. Cell culture 

 

4.2.1.1. Solutions 

Phosphate buffer saline (PBS): 8.19 g/L NaCl, 0.2 g/L KCl, 1.45 g/L Na2HPO4,  0.2 g/L 

KH2PO4, pH 7.4 

Earl’s buffer:  6.8 g/L NaCl, 0.4 g/L KCl, 0.125 g/L NaH2PO4, 1 g/L Glucose, 

0.05 g/L Phenol Red, 2.45 g/L Tris,  pH 7.5 

Sample buffer: 0.062 M Tris HCl (pH= 6.8), 2% (w/v) SDS, 10% (v/v) Glycerol, 10% (v/v) β–

Mercaptoethanol, 0.001% (w/v) Bromophenol Blue  

 

4.2.1.2. Cell lines 

  Wild type Mouse Cardiac Fibroblast Cells (MCFB (+/+)) were used as the biological 

model for all the experiments to look for serum stimulated VASP phosphorylation. Cardiac 

fibroblasts localize at the connecting regions of tissues to organs and blood vessels. These cells 

were preferred as they express high levels of VASP, commonly used for cytoskeletal studies and 

are easy to handle in cell culture laboratory and a well established methodology is available in our 

laboratory [58]. Mouse mesangial cell  lines (+/+) were also used for positive control 

experiments to rule out any cell  specific activity in serum stimulated VASP 

phosphorylation. 

 

4.2.1.3. Isolation of MCFB Cells (+/+)  

  Two months old mice of both sexes were anasthetised with ether. Hearts were 

excised, submerged in cold PBS and cut into pieces (2-3 mm size) with tissue chopper. The pieces 

were washed with Earl buffer and cells were dissociated with 1mg/ml collagenase/dispase for 30 

min at 37˚C in incubator. When the tissue pieces sank in Earl buffer, the tissue pieces that had 

sedimented were discarded and the supernatant containing the isolated cells was taken out and 

spinned down at 800xg for 5 min to isolate cardiac fibroblast cells. The pelleted cells were 

resuspended in DMEM, 10% FCS and transferred to a 25 cm2 culture flask to grow at 37˚C in the 

incubator. Later, the cells were trypsinized for every 3 days, (0.1% Trypsin), counted (CASY®1 

cells counter, Schärfe system, Germany) and transferred to a new flask at a density of 5 x 103 

cells/cm2. After continuous growth of the cells in the same medium for 3 to 4 weeks, the isolated 
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cells from this culture spontaneously became immortalized and then started to grow in 6 cm petri 

dishes with the same nutrient medium [168]. 

 

4.2.1.4. Cell  passage, counting, freezing and storage 

  The cells grow up to 80% confluence in 6-cm dish with DMEM and 

10% FCS within 3 days. Then medium was drained out from the dish and cells 

were washed twice with warm PBS. Then trypsinized by adding 0.1% Trypsin in 

PBS for 3 to 4 min and incubated at 37˚C in incubator until  the cells adopted 

rounded shape. The trypsinized cells were resuspended in DMEM with 10% FCS 

and 1. 5 x 105 cells were replated on 6 cm dishes containing 5 ml of DMEM with 10% FCS. 

Passages from 20 to 40 of this cell line were preferred to use for signal transduction experiments. 

Mouse mesangial cells (+/+) were cultured in 7.5 cm2 cell  culture flask in RPMI 1640 

medium containing 20% FCS, 0.1% ITS growth supplements and 10% antibiotic and 

antimycotic solution (100X). Cell passaging was carried out for mouse mesangial cells also as 

described above with the help of warm PBS-EDTA and Trypsin-EDTA after cells were grown to 

80% confluent. Cells from passages 4 to 10 were preferably used for the experiments because these 

cells showed faster growth during these passages. 

A 100 µL volume of cell suspension was diluted in 10 mL of PBS and counted with 

CASY® 1 cell counter (Schärfe system, Germany) as described by the manufacturer. Trypsinized 

cells were collected in warm DMEM with 10% FCS, then counted and pelleted by centrifugation at 

5000xg for 5 min at room temperature. The pellet was resuspended in freezing medium (DMSO + 

10% FCS) to a final concentration of 106 cells/mL, and aliquoted into 1 mL cryotubes. The aliquots 

were frozen for 48 hours at - 80˚C and then stored in liquid nitrogen. 

 

4.2.1.5. Cell culture experimental set up 

  MCFB cells (+/+) were plated at 1 x 10 4 cells per well in six well plates, and grown 

up to 80% confluent in DMEM containing 10% FCS (Fig.4). Then the medium was drained and 

cells were washed twice with warm PBS to counter the effect of any remaining serum. To these 

cells only DMEM was added and kept for starvation overnight in order to synchronise these cells in 

the same phase of cell cycle. Some of the synchronised quiescent cells were stimulated with 10% 

FCS and/or activators PMA (1 µM) and Forskolin (10 µM) (see Table.6) depending on the 

experimental question to be solved for the respective stimulated signalling pathway’s effect on 

VASP phosphorylation. Synchronised cells were also separately incubated with specific inhibitors 

namely Y-27630 (10 µM), Ro-31-8220 (10 µM), and Bis I (10 µM) and H 89 (10 µM) (see 
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Table.6) for 30 min before stimulating with respective activators either individually or in 

combination (PMA, Forskolin and 10% serum). In all the experiments, after incubating the cells 

with specific activators for respective incubation periods (4 hours for FCS, 8 min for PMA and 30 

min for Forskolin), cells were washed twice with cold PBS and then cell lysates were collected in 

sample buffer containing 10% β-mercaptoethanol with the help of a cell scraper. Overnight starved 

cells without any stimulation were collected as unstimulated controls and Bis V was used as a 

negative control for the inhibition activity of Bis I. DMSO was used as a solubilisation vehicle in 

all the experiments that treat the cells with the above mentioned activators and inhibitors. The 

collected samples were boiled immediately at 100˚C for 5 min and stored at -20˚C. 

 

 

Analysis by immunoblotting 

Harvest the cell lysates 
(Sample buffer + 10 % β - Mercaptoethanol) 

Stimulate with 10% serum 
or/and protein kinase activator(s) 

80% confluent
Overnight starvation to synchronise the cells 

with only DMEM (no FCS)

Seed cells in 6 well plates 
(DMEM + 10% FCS)

Protein kinase  
Inhibitor(s) 30 min 

 

 
Figure 4: Scheme of the general experimental set up used in the cell culture work. MCFB cells (+/+) were grown 
in a six well plate with DMEM and 10% serum until they grow up to 80% confluence. Then the cells were starved for 
overnight using only DMEM medium without FCS for synchronization of cells. These synchronized cells were used 
for the experiments with activation or inhibition of different protein kinases. Before stimulating the cells with serum 
or/and a specific activator, some of the cells were incubated for 30 min with a single protein kinase inhibitor or a 
combination of different ones which are needed to inhibit the corresponding pathways in that experiment. Details are 
given in the figure legends in the results section. After incubation for the respective time period, the cells were lysed in 
sample buffer containing 10% β-mercaptoethanol and boiled for 5 min at 100 °C before storing at -20 °C. These 
samples were used for immunoblotting experiments for detecting VASP phosphorylation. 
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4.2.2. Protein biochemistry 

 

4.2.2.1. Solutions  

Stacking gel buffer: 0.5 M Tris HCl, 0.4% (w/v) SDS (pH 6.8 ) 

Resolving gel buffer: 1.5 M Tris HCl, 0.4% (w/v) SDS (pH 8.8) 

Electrode buffer (1X): 3 g/L Tris base, 14.4 g/L Glycine, 1 g/L SDS 

Sample buffer (2X): 0.062 M Tris HCl (pH= 6.8), 2% (w/v) SDS, 10% (v/v) Glycerol, 10% (v/v) 

β–Mercaptoethanol, 0.001% (w/v) Bromophenol Blue 

Acrylamide 4x solution (mix= 37.5:1): 29.22% Acrylamide, 0.78% Bis-acrylamide 

Transfer Buffer: 25 mM Tris base, 150 mM Glycine, 10% (v/v) Methanol (pH 8.3) 

10% Ammonium per sulfate (APS): 1 gm in 10 mL H2O 

 

4.2.2.2. SDS- polyacrylamide gel electrophoresis (PAGE) 

  Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed using 9% (w/v) polyacrylamide separating gels [169]. Cell lysates collected in sample 

buffer containing 10% β-mercaptoethanol after cell treatment experiments were loaded into the 

slots of the gel and separated with a voltage of 100 volt until the samples reached the resolving gel 

and then separated under 150 volt for the rest of the experiment.  

 

Composition for 9 % SDS poly acrylamide gel electrophoresis:  

Resolving gel (total volume= 8 mL)   Stacking gel (total volume= 3 mL) 

Acrylamide 4x solution..... 3.0 mL   Acrylamide 4x solution…..0.52 mL 

Resolving gel buffer……...2.5 mL  Stacking gel buffer ………1 mL 

 H2O....................................3.7 mL   H2O ……………………...2.48 mL 

TEMED…………………...40 µL  TEMED..............................10 µL 

10% (w/v) APS …………..100 µL   10% (w/v) APS .................40 µL 

 

4.2.2.3. Immunoblotting 

Proteins resolved on SDS–PAGE were transferred to Nitrocellulose transfer 

membrane (PROTRAN BA83; pore size = 0.2 μm) in a Semi Dry Transfer Device (Fast Blot B33, 

Biometra, Germany) by transfer buffer at 260-280 mA current for 1 hour, according to 

manufacturer’s description. After transfer, the membranes were stained with Ponceau solution 

(0.1% (w/v) Ponceau in 5% (v/v) CH3COOH) for 2-3 min and then washed with tap water. 

Ponceau solution would stain all the proteins present on the membrane. So, it could be helpful to 
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confirm the perfect transfer of protein from SDS gels to the membrane. Subsequently, the 

membranes were incubated with blocking solution for one hour (4% (w/v) milk powder in PBS + 

0.025% (v/v) Tween-20 + 0.15% (v/v) Triton X-100). After blocking the non-specific binding sites 

on the membranes, they were incubated with the respective primary antibodies freshly diluted in 

solution containing 4% (w/v) milk powder with PBS (Table.2) for one hour. Membranes were then 

washed 3 times 15 min each with PBS + 0.025% (v/v) Tween-20 + 0.15% (v/v) Triton X-100 and 

incubated for 45 min with the specific secondary antibody (Table.3) diluted at 1:5000 in 4 % (w/v) 

milk with PBS. Then the membranes were again washed twice with PBS + 0.025% (v/v)  Tween-

20 +0.15% (v/v) Triton X-100 for two times 15 min each and then finally with PBS only for 15 

min. The washed membrane was exposed to scientific imaging film (KODAK X-Omat AR film, 

XAR-5) after incubating it in developer solution (Amersham biosciences, Cat# RPN 2106V2) for a 

minute, according to the manufacture’s instructions of the Enhanced Chemiluminescence (ECL) 

method. Developer solution is a highly sensitive chemiluminescent substrate system utilizing a 

novel acridine-based chemistry and horse radish peroxidase, which is tagged with secondary 

antibody, to generate a light signal that is normally detected on exposing the film. 

 

4.2.2.4. Protein expression and purification 

  The GST-Spred EVH1 protein used in this study was expressed and purified from 

the pGEX-4T2-hSpred2 (1-124) construct available in our laboratory. The expression, purification 

and cleaving the GST tag from the Spred2 EVH1 domain was performed as described in [170]. The 

purified GST-Spred2 EVH1 protein and Spred2 EVH1 protein were analysed on SDS gel 

electrophoresis after purification and stored at +4°C. 

 

4.2.2.5. 1H NMR spectroscopy 

  The GST-Spred2 EVH1 protein expressed and purified in our laboratory was tested 

for its biological activity and native folding conformation before using in the interaction studies. A 

100 µM protein sample in PBS was mixed with 1:10 (v/v) ratio of D2O and natively folded 

conformation of the protein was analysed in Bruker XWIN-NMR Spectrophotometer (available at 

FMP, Berlin). 

 

4.2.3. Molecular biology 
The plasmid isolation during this total study was performed by using the mini-prep 

(for small scale), midi-prep (for medium scale) maxi-prep (for large scale) kits supplied by Qiagen 

sample and assay technologies. The volume of o/n culture and procedure was followed as given in 

the product manual. For pBT and pTRG origin plasmids, low-copy number plasmid isolation 
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protocols were employed. The isolated plasmid’s mass determination was done by using 

spectrophotometer (A260) and standard mass rulers on the Agarose gel electrophoresis after 

linearising the plasmid. The standard enzymes supplied by Fermentas life sciences and New 

England Biolabs were used for restriction enzyme digestion analysis and followed their standard 

protocol of enzyme digestion. For cloning experiments, the quick ligation kit provided by New 

England Biolabs was used and the ligation mixtures were performed in 1:3 and 1:5 ratios of vector 

and insert was used.  

 

4.2.4. Bacterial two-hybrid system 

 

4.2.4.1. Solutions 

M9 media additives: Solution I and solution II were prepared separately as shown below by 

mixing the components listed in the order. Solution II was added to solution I to get M9 media 

additives prior to use. 

Solution I: 10 mL of 20% glucose (filter sterilized) 

5 mL of 20 mM adenine HCl (filter sterilized) 

50 mL of 10× His dropout amino acid supplement (autoclaved) 

Solution II: 0.5 mL of 1 M MgSO4 (autoclaved) 

0.5 mL of 1 M Thiamine HCl (filter sterilized) 

0.5 mL of 10 mM ZnSO4 (autoclaved) 

0.5 mL of 100 mM CaCl2 (autoclaved) 

0.5 mL of 50 mM IPTG (filter sterilized) 

10x M9 salts (Qbiogene #3037-032): 112 gm of 10X M9 salts were dissolved in 1 L deionised 

water and autoclaved. 

M9+ His-dropout broth: 50 mL of 10× M9 salts, 67.5 mL M9 media additives and 380 mL of 

sterile deionised water were mixed to prepare M9+ His-dropout Broth. It can be store at 4°C for up 

to one month and brought to room temperature prior to use. 

1 M 3-AT stock solution: 840.8 mg of 3-AT was dissolved in 10 mL of DMSO  

SOB medium: 20.0 gm of tryptone, 5.0 gm of yeast extract and 0.5 gm of NaCl were dissolved in 

deionised water to a final volume of 1 L and sterilized by autoclave. 10 mL of filter-sterilized 1 M 

MgCl2 and 10 mL of filter-sterilized 1 M MgSO4 were added to the autoclaved solution to get 

SOB medium. 

SOC medium: Freshly prepared 2 mL of filter-sterilized 20% (w/v) glucose was added to 98 mL 

of SOB medium (autoclaved) to get SOC medium prior to use. 
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LB agar: 10 g of NaCl, 10 g of tryptone, 5 g of yeast extract and 20 g of agar were dissolved in     

1 L of deionised water and autoclaved to sterilize. Then, poured into plates after adding respective 

antibiotic to the medium.  

 

4.2.4.2. Preparation of different selection medium plates 

The following methods and calculations were used to prepare different types of 

screening medium plates for B2H system experiments. 

Non-selective screening medium (also called as No 3-AT medium) (for 750 mL): 

1. 11.25 gm of Bactoagar added in 570 mL deionised H2O in 1 L flask and autoclaved. 

2. After cooling the agar to 70°C, 75 mL of 10× M9 salts solution was added. 

3. After cooling the agar mixture to 50°C, 101.25 mL of M9 media additives, 0.75 mL of 

Chloramphenicol (25 mg/mL) and 0.75 mL of Tetracycline (12.5 mg/mL) were added and 

poured into petri dishes. The plates were wrapped in aluminium foil and stored in dark place at 

4°C. 

Selective screening medium (also called as 3-AT medium):  

The selective screening medium was prepared as non-selective screening medium. 

After adding both antibiotics, required volume of 1 M 3-AT stock was added to get the desired 

concentration of 3-AT in the screening medium plates and poured into petridishes.  

 

4.2.4.3. The protocol for co-transformation 

1. BacterioMatch II validation reporter strain competent cells (Stratagene, cat # 200192) were 

thawed and gently mixed by tapping the tube. Then, 100 µL aliquots of competent cells were 

prepared in required number of pre-chilled 14 mL BD falcon tubes (one aliquot for each bait 

and target test pair co-transformation reaction). It is critical to use 14 mL BD falcon 

polypropylene round-bottom tubes for this procedure.  

2. 1.7 µL of the β-ME was added to 100 µL aliquot of cells and the tubes were swirled gently. 

3. The tubes were incubated on ice for 10 minutes with swirling for every 2 minutes. 

4. Then respective bait and target plasmid DNA was added to reaction tubes and incubated on ice 

for 30 minutes with gently swirling after the first 15 minutes of incubation. 

5. After incubation, the tubes were swirled gently and heat-pulse shock was given to cells by 

keeping tubes in 42°C water bath for 35 seconds.  

6. Then incubated the tubes on ice for 2 minutes and added 0.9 mL of pre-warmed SOC medium 

to each tube. 



Materials and Methods 

 
41 

7. Incubated tubes at 37 °C with continuous shaking at 225 rpm for 90 minutes and then cells 

were collected by centrifugation at 2000 × g for 10 minutes. 

8. Discarded the supernatant and the cells were washed by resuspending the cells in 1 mL of room 

temperature M9+ His-dropout broth to remove the rich medium. 

9. The cells were collected as described in step.7 and gently discarded the supernatant. Then 

resuspend the cells in a fresh 1 mL volume of M9+ His-dropout broth. 

10. Then incubated the cells at 37°C with shaking at 225 rpm for 2 hours. This allows the cells to 

adapt to growth in minimal medium prior to plating 

11. Plated the co-transformation reaction mixtures on the appropriate non-selective and selective 

screening medium plates with the help of sterile glass beads and incubated at 37°C for colony 

growth. 

 

4.2.4.4. Plating method 

All the plates were brought to the room temperature before plating transformation 

mixture to avoid moisture on the surface of the plates which hinders the bacterial cell growth. A 20 

µL volume of co-transformation reaction mixture without any dilution and 20 µL and 200 µL 

aliquots of 1:100 diluted co-transformation reaction mixtures were plated on non-selective 

screening medium plates in triplicates. A 200 µL volume of co-transformation reaction mixture 

without any dilution was plated on desired concentration of 3-AT medium plates in triplicates. 

 

4.2.4.5. Amplification of cDNA library 

Name of the library: Human brain cDNA expression plasmid library (Stratagene, Cat # 982262) 

Cloning details: Uni-directionally cloned into pTRG Vector at XhoI and EcoRI sites 

Host strain: XL-1 Blue MRF` Kan cell;  

Primary colonies: 1.65 x 106 cfu; estimated titer given by Stratagene: 2.5 x 108 cfu / ml 

The glycerol stock of human brain cDNA expression plasmid library was completely 

thawed on ice and 1:10 dilution aliquot were prepared for 200 µL volume with SOC medium. 

Remaining original library stock was immediately re-frozen for future usage. A pool of 248 µL of 

SOC medium and 2 µL volume of 1:10 diluted cDNA library glycerol stock (≈ 50,000 cfu) was 

plated on each 150 mm LB-tetracycline agar plate and spreaded the mixture evenly over the surface 

of the agar using a sterile glass beads. The number of plates required in the experiment depends on 

the number of colonies to be grown in order to harvest the amount of plasmid required for library 

screening. But it should be at least one time more than the complexity of library so that the 

amplified library plasmid pool consists of total complexity of the cDNA library. We amplified 
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cDNA library by streaking on 50 plates (150 mm plate). The total number of colonies grown on 

these 50 plates would yield nearly 250 µg of cDNA plasmid library which can be isolated using 

maxi-prep plasmid isolation kit (≈ 50,000 colonies/plate and each colony contains nearly 1x105 

cells). The plates were incubated at 30°C for 24 hours. Prolongation of incubation time (up to 30 

hours) could increase the recovery of plasmids containing longer cDNA inserts. 

Gently scraped all of the bacterial clones to one edge of the 150 mm plate by using a 

wide, sterile scraper (may be a sterile cell scraper works out better) and the dense paste was 

transferred from the edge of the plate into the chilled, sterile container having a small amount of 

SOC medium. The amplified library clones from all the plates were pooled into the same sterile 

container by performing the same procedure for all the plates and cells were resuspended by 

pipetting up and down repeatedly with enough SOC medium. The volume of resuspended cells was 

measured and 2 µL, 5 µL volumes of the resuspended amplified library were plated on LB 

Tetracycline plates to estimate the titer of the amplified library (cfu/mL) by incubating them at 

30°C for 24 hours. The cDNA library plasmid DNA was isolated from the pooled bacteria using 

Qiagen maxi-prep kit. The mass of the isolated cDNA library pool was determined by 

spectrophotometer and the cDNA library insert present in the isolated cDNA library pool was 

analyzed by digesting with XhoI and EcoRI enzymes. As the insert is a pool of cDNA library, we 

could observe a smear with different sizes of strands all together after linearising on agarose gel. 

The mass of cDNA library plasmid was also estimated with reference to a mass ruler used on 

agarose gel to cross check the mass estimated from spectrophotometer. 

 

4.2.4.6. Library screening 

Pilot co-transformation experiment was performed to find out the the number of co-

transformation reactions required to cover the complete amplified cDNA library in library 

screening experiment. The recombinant pBT bait vector [i.e. pBT-Spred2 (1-124)] and the pTRG-

cDNA library plasmid were co-transformed into BacterioMatch II screening reporter competent 

cells (Stratagene, Cat # 200190). After evaluating the results from the pilot co-transformation 

experiment, the number of co-transformation reactions to be performed during library screening to 

cover the complete complexity of cDNA library was determined. Then, a large scale cDNA library 

screening was performed by transforming pBT–Spred2 (1-124) and pTRG-cDNA library plasmid 

DNA for those many of 500 µL volume transformation reactions using BacterioMatch II screening 

reporter competent cells. A negative control plasmid pair (pBT–Spred2 (1-124) and pTRG empty 

plasmid) were also co-transformed in the experiment. 
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The following protocol was used to perform co-transformation for large scale library screening: 

1. Pre warmed SOC medium to 42°C. 

2. Required number of aliquots each of 500 µL volume of the BacterioMatch II screening reporter 

competent cells were thawed on ice and gently mixed the cells by tapping the tube. After 

thawing, each 500 µL volume of cells was transferred into pre-chilled 14 mL BD Falcon tubes. 

Note: It is critical to use 14 mL BD Falcon polypropylene round-bottom tubes for this 

procedure.  

3. Added 8.5 µL of the β-ME to each tube and incubated the tubes on ice for 10 minutes by 

swirling for every 2 minutes. 

4. To each tube, 200 ng of the pTRG-cDNA library and 200 ng of pBT-Spred2 (1-124) plasmids 

were added and swirled the tubes gently to mix. Incubated the tubes on ice for 30 minutes by 

swirling the tubes gently after the first 15 minutes of incubation.  

5. After 30 min, swirled the tubes gently again and given heat shock to the reactions at 42°C for 

55 seconds and incubated the tubes on ice for 2 minutes and then 2.5 ml of pre-warmed SOC 

medium (at 42°C) was added to the tubes.  

6. Transferred each of the cell suspensions from each falcon tube into separate 50 mL conical 

bottom tubes for outgrowth and incubated the at 37°C with shaking at 225 RPM for 90 min. 

7. The cells were spun down at 2000 × g for 10 minutes and the supernatant was discarded gently 

by taking care to avoid disturbing the pellet.  

8. In order to remove residual rich medium, the cells were washed twice by resuspending the cells 

in 3 mL of room temperature M9+ His-dropout broth and collected the cells as described in 

step.6. 

9. After washing steps, the cell pellets were resuspended in 1.5 mL of M9+ His-dropout broth and 

incubated at 37°C with shaking at 225 rpm for 2 hours. This allows the cells to adapt growth in 

minimal medium prior to plating.  

10. The adapted outgrowth cultures from step. 9 were pooled together into one tube and swirled the 

tube to mix well. The final reaction volume after pooling all the co-transformation reactions is 

7.5 ml. 

During the adaptation period in step.9, agar plates were labeled and the surface 

moisture was dried. A 100 µL volume of 1:100 dilutions of reaction mixture from step.10 in M9+ 

His d/o broth was plated on 100 mm non-selective screening medium plates (no 3-AT plates) in 

triplicates to determine the co-transformation efficiency as well as the total number of colonies 

screened was determined from these plates. The rest of the reaction pool was plated in 300 µL 

aliquots onto 150 mm 3-AT selective screening medium plates of desired 3-AT concentration for 
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the library screening. For negative control pair, 100 µL of undiluted reaction mixture from step.10 

was plated on non 3-AT and 3-AT plates in triplicates. All the plates were incubated at 37 °C and 

observed colony growth at every 24 hours. The colony growth with different time points was 

noticed to study their difference in behavior. Depending on the need of the experiment, 3-AT 

resistant colonies were replica plated on to higher 3-AT concentration selection medium plates by 

using sterile tooth picks. 

The colonies from the 3-AT screening medium plates were replicated onto dual 

selective screening medium (5 mM 3-AT + Streptomycin) plate and LB-

Tetracycline/Chloramphenicol plate by using sterile tooth picks for secondary screening and colony 

preservation respectively. The positive control co-transformants of pBT-LGF2 / pTRG-Gal11P, 

pBT-VASP / pTRG-ActA (332-344)W plasmid pairs and negative control co-transformants were 

also included on the same plates on the dual selective screening medium to confirm the 

effectiveness of the plates. The plates were incubated at 37°C for 24 hours and then transferred to 

room temperature to incubate for additional 15–18 hrs in a dark location. The growth pattern of the 

colonies was recorded. 

 

4.2.4.7. Physical characterization of dual resistant clones 

  The identified dual resistant colonies from the secondary screening medium were 

further characterized for the target plasmid insert coding sequences by colony PCR and enzyme 

digestion. The replica colony of the positive colony was picked from the maintenance plate and 

dissolved in 25 µL of sterile water by pipetting up and down. Then stirred the tube gently with 

stirrer and cooked for 5 min at 45°C. Then centrifuged the sample at high speed for 2 min and 3 µl 

of the supernatant was used as DNA template in the PCR reaction. The pTRG-Gal11P was used 

positive control in colony PCR. 

Forward primer (5’-3’) = TGGCTGAACAACTGGAAGCT 
  Reverse primer (5’-3’) = ATTCGTCGCCCGCCATAA  
 

PCR reaction mixture (for 20 µL volume): 
Reaction component Volume 

Template DNA = 3 µL 

Forward primer (10 µM) = 0.5 µL 

Reverse primer (10 µM) = 0.5 µL 

dNTP mix (2.5 mM) = 1 µL 

Taq polymerase (New England biolabs) = 0.5 µL 

NEB 10X reaction buffer = 2 µL 

H2O = 12.5 µL 
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PCR programme: 
 

Process Temperature Time Number of cycles 

Initial denaturation 94°C 2 min - 

Denaturation 94°C 30 sec 

Annealing 50°C 30 sec 

Extension 72°C 90 sec 

30 cycles 

End 12°C - - 

 

The amplified PCR reaction product was analysed on 1% agarose gel electrophoresis 

and the colonies having target insert coding sequence in the target plasmid were identified by 

finding the respective amplified product. From such positive colonies, the target plasmid was 

isolated by physically separating from the bait plasmid using antibiotic selection facility. The total 

plasmid was isolated from the positive colony by mini-prep plasmid isolation kit from 2 mL 

overnight cultures. The isolated total plasmid was transformed in to the BacterioMatch II validation 

reporter strain competent cells and co-transformants were plated on LB-tetracycline plates. After 

overnight incubation of the plates at 37°C, the colonies grown were replica plated on to the LB-

Chloramphenicol plate (which selects the cells carrying bait plasmids) and incubated at 37°C for 

overnight. The cells which were grown on LB-tetracycline plates but not on LB-Chloramphenicol 

plates were identified as the colonies carrying only the target plasmid and isolated target plasmid. 

The isolated target plasmid was analysed by enzyme digestion with EcoRI and XhoI and the 

cleaved insert target coding sequences were analysed on 1% agarose gel electrophoresis. The 

positive target plasmids identified from colony PCR were sequenced for further study and also 

used for the panel of genetic assays. 

 

4.2.5. Phage display technology 

 

4.2.5.1. Solutions 

PBS buffer: 140 mM NaCl, 2.7 mM KCl, 20 mM Na2HPO4, pH = 7.3 

PBS + 0.1% Tween 20: 0.1 mL Tween 20 + 1 litre PBS buffer 

0.1 M Glycin: Dissolved 1.1 gm glycin in 100 mL distilled water and adjusted pH to 2.2 

2 M Tris: Dissolved 24.2 gm Tris HCl in 100 mL distilled water and adjusted pH to 1.1 

20% PEG + 2.5 M NaCl: Dissolved 200 gm PEG (PEG-6000 from Fulka # 81253) and 146 gm 

NaCl in 1 litre distilled water  

2YT medium: Dissolved 31 gm of 2YT cock tail powder (Roth # X966.2) in 1 litre Millipore 

water and autoclaved after adjusting the pH to 7.4. 
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4.2.5.2. Helper phage amplification 

One litre fresh culture of E. coli XL-1 blue MRF´ cells grown up to 0.5 OD600 in 

presence of 1:500 dilution of Tetracycline (10 mg/mL) at 37°C with continuous shaking was 

infected with 100 µL of helper phages (VCSM13 Interference-Resistant Helper Phages, Stratagene, 

cat # 200251) and further incubated for 30 min. After two hours of incubation, 1:333 dilution of 

Kanamycin (35 mg/mL) and 1:500 dilution of Tetracycline (10 mg/mL) were added to suppress the 

un-infected cells and then incubated for overnight at 30°C with continuous shaking. The overnight 

grown turbid culture was centrifuged at 10,000 RPM for 10 min and the supernatant was collected 

in to fresh bottles. The supernatant was incubated with 1/4th its volume of 20% PEG + 2.5 M NaCl 

solution [171] in ice to chill down the solution until a transparent cloudy smear appears due to 

dense phage particles in PEG solution. The chilled dense solution was centrifuged at 10,000 RPM 

for 30 min at 4°C to pellet down the phage particles. The pellet was dissolved in a small volume of 

PBS (3 to 4 mL) and collected into a fresh eppendorf tube. The solution was mixed by pipetting up 

and down to dissolve the pellet uniformly and centrifuged at high speed for 5 min to get rid of the 

cell lysate particles. The supernatant was collected in fresh tubes and added 20% PEG + 2.5 M 

NaCl solution at the rate of 150 µL/1 mL volume of supernatant. Then incubated on ice for 30 min 

and centrifuged to pellet down the particles at high speed for 5 min in table top centrifuge. The 

supernatant was discarded and centrifuged again for few seconds to remove the supernatant 

completely. The pellet was dissolved in PBS in a small volume and centrifuged for 5 min at high 

speed in table top centrifuge. The clear white supernatant is the amplified helper phage solution 

which was collected in a fresh sterile tube and preserved at -20°C by adding 30% (v/v) of the 

sterile 100% glycerol. 

 

4.2.5.3. The protocol for panning 

1. 65 µL of 80% of Glutathione Sepharose® 4B matrix (i.e. ≈ 50 µL) was taken in a fresh 1.5 mL 

eppendorf tube and centrifuged at 3000 RPM for 30 sec by using table top centrifuge 

2. The pellet was dissolved in 1 mL PBS + 0.1 % Tween 20 to wash out ethanol after discarding 

the supernatant very carefully and centrifuged for 5 sec at high speed 

3. Repeated step 2 

4. Repeated step 2 again with only PBS. 

5. The supernatant was removed carefully by leaving few drops to make sure that the pellet was 

not disturbed and thus the volume of slurry at this stage is 50 to 60 µL after removing the 

ethanol. Then, added 60 µL of only PBS to it for preparing 50 % diluted matrix and dissolved 

uniformly which results in 50 % slurry and 50 % PBS in total solution.  
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6. The total slurry was made into two parts of each ≈ 60 µL fresh 1.5 mL eppendorf tubes and 

labelled them as aliquot 1 and aliquot 2 (Aliquot 1 was used for query test and aliquot 2 was 

used for negative control panning). 

7. Added 0.4 mg of GST fusion protein i.e. GST-Spred2 EVH1 to aliquot 1 and 0.25 mg of GST 

alone (as negative control) to aliquot 2.  

8. Both the aliquots were incubated at 4°C for 10 min after vortexing the tubes thoroughly to mix 

protein and matrix uniformly and then centrifuged at 3000 RPM for 30 sec. 

9. The supernatant was discarded carefully and the pellets were washed for 5 times by dissolving 

each time in 1 mL PBS + 0.1% Tween 20 followed by centrifugation to get rid of the unbound 

protein remained in between the beads. 

10. After final wash, the pellets were dissolved in 25 µL of PBS + 0.1 % Tween 20 and the total 

volume would be 50 µL (including 25 µL of matrix with bound protein and 25 µL PBS + 0.1 % 

Tween 20). 10 µL of slurry (i.e. 5 µL of matrix) was collected from each aliquot and prepared 

SDS sample by adding 10 µL of 2X SDS buffer and heating at 100°C for 5 min. This SDS 

sample would be useful to determine whether the protein is bound to the beads to further 

quantify the same. 

11. The remaining matrix slurry volume of both aliquots was increased from 40 µL to 400 µL by 

adding the following components  
 

Component End con / 
proportion 

Final composition 
(for 400 µL) 

Matrix - 40 µL 
BSA (50 mg/mL) 5 mg/ml 40 µL 

PBS + 0.1% Tween 
20 

Half of the final 
volume 200 µL 

PBS Rest of the volume 120 µL 
 

12. 50 µL of M13 phage display X9 library (titre: 2 X 1011 Pfu/ml) was added to each of the 400 

µL of matrix and incubated at 4°C with 360° rotation for overnight. 

13. After overnight incubation, the samples were centrifuged for 30 sec at 3000 RPM in table top 

centrifuge and discarded the supernatant carefully without disturbing pellet. 

14. The pellet was then dissolved in 1 mL PBS + 0.1% Tween 20 and centrifuged for 30 sec at 

3000 RPM in table top centrifuge  

15. Step 14 was repeated for two more times and the pellet was dissolved in 1 mL PBS + 0.1% 

Tween 20 and incubated for 1 hour at room temperature. 

16. steps 13, 14 and 15 were repeated for two more times. 
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17. After final incubation, the solution was centrifuged and supernatant was discarded. The pellet 

was dissolved in only PBS and centrifuged for 30 sec at 3000 RPM in table top centrifuge. The 

supernatant was discarded carefully without disturbing the pellet. 

18. The pellet was dissolved completely in 350 µL of 0.1 M glycin (pH = 2.2) and incubated for 20 

min at room temperature. 

19. Then centrifuged for 30 sec at 3000 RPM at table top centrifuge and collected the supernatant 

in new tube. 

20. 20 µL of 2 M Tris was added to the collected supernatant to neutralize the solution and stored 

at 4°C. This is the eluted bound phages of the respective protein during this panning round. At 

the end of each panning round, we got the elute phages against both query protein and negative 

control (i.e. GST alone) which were titrated to estimate the total number of phages eluted in 

each panning round. 

 

4.2.5.4. Titration of phages 

Titration of phages was performed after every panning round and amplified to 

estimate the titre (pfu/mL) of the phages. The phages to be titrated (either elute phages or amplified 

phages) were diluted by serial dilution method up to desirable dilution by taking 45 µL of fresh 

2YT medium and 5 µL of phages from previous dilution. 50 µL of fresh 0.5 OD600 E. coli XL-1 

blue MRF´ culture was added to the 50 µL volume of all phage dilutions. The cells were incubated 

with phages for infection at 37°C for 10 min and then centrifuged for 3 min at 5000 RPM to pellet 

down the infected cells. Then, 50 µL of the supernatant was discarded and the pellet was dissolved 

in the rest of the supernatant. Each of these infected cells were plated on LB-AMP at 37°C for 

overnight. A control was also made by plating 50 µL of cells without any phage infection. The 

number of colonies grown from every dilution were normalised to one dilution factor and the 

average colony count gives titre value of the phage sample tested. The following formula was used 

to calculate the titre of the phages tested. 

Phage titre (pfu/mL) = Number of colonies X 10X dilution factor X 1000 / 45 

 

4.2.5.5. Enrichment factor  

The enrichment factor was calculated after determining the titre of elutes of GST 

fused protein and GST alone from a panning round. Enrichment factor of a panning round gives the 

rate of the bound phages enriched against the GST fused protein in that round. 

Enrichment factor = Net outcome for GST fusion protein / Net outcome for GST alone 
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(Net outcome = Number of bound phages eluted/ Number of phages given as input in the panning 

round) 

 

4.2.5.6. Amplification 

Amplification was performed with enriched positive phage population given from a 

panning round against GST fusion protein. We used different protocols for the amplification of 

enriched positive phages without loosing the consistency of phage representation.  

Protocol 1: 

1. 2 mL of 0.5 OD600 culture of E. coli XL-1 blue MRF´ was infected with 100 µL of eluates of 

GST fusion protein and incubated at 37°C for 15 min with continuous shaking. 

2. 6 mL of fresh 2YT medium, 3.2 µL Ampicillin (100 mg/mL), and 16 µl of Tetracycline (10 

mg/mL) was added and incubated for one hour at 37°C with continuous shaking.  

3. After incubation, 4.8 µL of Ampicillin (100 mg/mL) was added to increase the specific 

selection for recombinant phage infected cells and incubated for one hour with continuous 

shaking.  

4. After incubation, the cells were super infected with 100 µL of helper phages (VCSM13 

Interference-Resistant Helper Phage from Stratagene, cat # 200251) and incubated at 37°C for 

30 min with continuous shaking. 

5. After incubation, the super infected culture volume was increased to 500 mL by adding fresh 

2YT medium along with 460 µL of Ampicillin (100 mg/mL) and 920 µL of Tetracycline (10 

mg/mL) and incubated for 2 hours at 37°C with continuous shaking. 

6. After incubation, the culture looked turbid due to growth of super infected cells. Then 1: 500 

dilution of Kanamycin (35 mg/mL) was added and incubated overnight with continuous 

shaking at 37°C. The super infected cells do not grow fast and sometimes we do not see any 

turbidity even after many hours of super infections. In such cases, we used 1:1000 dilution of 

Kanamycin (35 mg/mL) and incubated overnight. 

7. The overnight grown turbid culture was centrifuged at 10,000 RPM for 10 min. The 

supernatant was collected and 1/4th of its volume of 20% PEG + 2.5 M NaCl solution was 

added to the supernatant. This was incubated on in ice to harvest the amplified phages at least 

for 2 hours. We observed a transparent cloudy smear due to dense phage particles in PEG 

solution.  

8. After dense solution was centrifuged at 10,000 RPM for 30 min at 4°C to pellet down the phage 

particles. 
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9. The pellet was dissolved in small volume of PBS (≈1.5 mL) uniformly and transferred into a 

fresh eppendorf and centrifuged at high speed for 5 min to get rid of the un-dissolved particles. 

The supernatant was collected in a fresh tube. 

10. 20% PEG + 2.5M NaCl solution was added at the rate of 150 µL/ mL of the supernatant and 

incubated on ice for 30 min. 

11. After incubation, the solution was centrifuged to pellet down the phage particles at high speed 

for 5 min. The supernatant was discarded and centrifuged again for few seconds to discard the 

remnants of the supernatant. 

12. The pellet was dissolved in PBS and centrifuged for 5 min at high speed. The supernatant was 

collected in a fresh tube which is the amplified phage sample and preserved at -20°C by adding 

30% (v/v) of the sterile 100% glycerol. 

13. Amplified phages were titrated to know the titre of the phages amplified in this amplification 

process. 

Protocol 2: 

1. 500 mL fresh culture of E. coli XL-1 blue MRF´ was grown up to 0.5 OD600 in presence of 1: 

500 dilution of Tetracycline (10 mg/mL) and then infected with 100 µL of eluates of GST 

fusion protein. The infected culture was incubated at 37°C for 30 min with continuous shaking. 

2. After incubation, 200 µL Ampicillin (100 mg/mL) and 1 mL of Tetracycline (10 mg/mL) was 

added and incubated for one hour at 37°C with continuous shaking. 

3. After incubation, 300 µL of Ampicillin (100 mg/mL) was added and again incubated for one 

hour with continuous shaking.  

4. After incubation, the cells were super infected with 100 µL of helper phages (Technical name: 

VCSM13 Interference-Resistant Helper Phage from Stratagene, cat # 200251) and 1 mL 

Ampicillin (100 mg/mL), 1 mL of Tetracycline (10 mg/mL) were supplied. Then incubated at 

37°C for 2 hours with continuous shaking. 

5. Rest of the method was same as in protocol 1, from step.6 onwards. 

Protocol 3: 

1. 2 ml fresh culture of E. coli XL-1 blue MRF´ grown up to 0.5 OD600 in presence of 1:500 

dilution of Tetracycline (10 mg/mL) was infected with 100 µL of elute phages of GST fusion 

protein and incubated at room temperature for 15 min without shaking 

2. Then, 6 mL of fresh 2YT medium, 2 µL Ampicillin (100 mg/mL), 8 µL of Tetracycline (10 

mg/mL) were added and incubated for 1 hour at 37°C in a water bath without shaking. 

3. After incubation, 4.8 µL of Ampicillin (100 mg/mL) was added and incubated for 1 hour with 

continuous shaking. 
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4. After incubation, the cells were super infected with 100 µL of helper phages and incubated at 

room temperature for 30 min without shaking. 

5. After incubation, the 8 mL culture of super infected cells was upgraded to 500 mL by fresh 

2YT medium along with 500 µL of Ampicillin (100 mg/mL) and 1 mL of Tetracycline (10 

mg/mL) and incubated for 2 hours at 37°C with continuous shaking. 

6. Rest of the method was same as in protocol 1, from step.6 onwards. 

Protocol 4: 

1. 25 mL fresh culture of E. coli XL-1 blue MRF´ was grown up to 0.5 OD600 in presence of 1: 

500 dilution of Tetracycline (10 mg/mL) was infected with 100 µL of elute phages of GST 

fusion protein and incubated at 37°C for 30 min without shaking. 

2. 100 mL of fresh 2YT medium, 125 µL Ampicillin (100 mg/mL) and 125 µL of Tetracycline 

(10 mg/mL) were then added and incubated at 37°C with continuous shaking until OD600 of the 

culture reaches 0.5. 

3. 100 µL of helper phages was used to super infect and incubated at room temperature for 30 min 

without shaking and then incubated with shaking at 37°C for 30 min. 

4. These cultures were centrifuged and the cells were resuspended in 500 mL of fresh 2YT 

medium, 0.75 mL Ampicillin (100 mg/mL), 1.5 mL of Tetracycline (10 mg/mL) and 1.5 ml 

Kanamycin (35 mg/mL) and grown overnight with continuous shaking at 37°C. 

5. Isolation of amplified phages was performed as described in protocol 1, from step.7 onwards 

 

4.2.5.7. Characterization of phagemids by colony PCR 

Colony PCR was performed to determine the phagemids carrying insert coding 

sequences from the phage population eluted in the panning rounds against query GST fusion 

protein. The respective phage infected cells plated on LB-Ampicillin plates for selecting single 

colonies. Colony PCR was performed to identify the amplified insert coding regions in the 

phagemids. 

1. Single colony was picked by using a sterile yellow tip and dissolved in 15 µL of sterile water 

by pipetting up and down and vortexing. 

2. 5 µL of the cells were collected in a fresh tube for back up.  

3. Rest of the sample was boiled at 100°C for 5 min to lyse the cells and centrifuged at high speed 

for 5 min to pellet down the cell debris. 

4. The supernatant was used as template for colony PCR. 

Forward primer (5’-3’): TACCCTCGTTCCGATGCTG 

 Reverse primer (5’-3’): GCTGAGGCTTGCAGGGAG 
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PCR reaction mixture: 
 

Reaction component Volume 

Template DNA 3 µL 

Forward primer (50 µM) 0.3 µL 

Reverse primer (50 µM) 0.3 µL 

dNTP mix (2.5 mM) 2 µL 

Taq polymerase (New England biolabs) 0.18 µL 

NEB 10X reaction buffer 1.5 µL 

H2O 7.7 µL 

                                                      Total reaction volume = 15 µL 

  

PCR programme: 
 

 Process Temperature Time Number of cycles 

Initial denaturation 94°C 2 min - 

Denaturation 94°C 20 sec 

Annealing 65°C 20 sec 

Extension 72°C 20 sec 

30 cycles 

End 4°C - - 
 

The amplified PCR products were analysed on 2% agarose gel. An empty and recombinant 

phagemids were used as positive and negative control in PCR reaction. Loading both of those 

amplified products together on a 2% agarose gel gives a double band of very low molecular weight 

difference (≈ 50 kDa) which could help us to identify positive and negative phagemids. 

 

4.2.6. Protein-phospholipid interaction assays 

 

4.2.6.1. Solutions 

Washing solution (TBS-T): 10 mM Tris, 150 mM NaCl, 0.1% (v/v) Tween-20, pH 8.0  

Blocking solution (TBS-T + 3% BSA): 3 g fatty acid free BSA + 100 mL TBS-T 

MLV buffer (Liposome buffer): 100 mM NaCl, 10 mM MOPS, pH = 7.2 

LUV buffer (Sucrose buffer): 176 mM sucrose, 10 mM MOPS, pH = 7.2 

 

4.2.6.2. Solid phase overlay assay 

PIP Strip™ membranes (Echelon, cat # P-6001) containing phospholipids spotted 

onto Hybond-C membranes were used for phospholipid membrane screening in solid phase overlay 
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assay to identify Spred2 EVH1-phospholipid interactions. GST-ADAP SH3-N fusion protein was 

used as positive control for phospholipid membrane screening experiments. 

1. Blocking: Blocked the membrane with TBS-T+ 3% BSA solution and gently agitated for one 

hour at room temperature.  

2. Add protein of interest: Discarded blocking solution and incubated the membrane with 10 

μg/mL GST-Spred2 EVH1 fusion protein in fresh blocking solution for overnight at 4 ºC with 

shaking. 

3. Washing: The membrane was washed three times with TBS-T with gentle agitation for 10 min 

each.  

4. Anti-GST antibody: Incubated the membrane for 2 hours at RT with anti-GST polyclonal 

antibody (dil 1:1,000 (v/v)) in blocking solution. 

5. Washing: as in step 3  

6. Anti-rabbit HRP antibody: Incubated the membrane for 1 hour at RT with anti-rabbit IgG-

HRP (dil1:10,000 (v/v)) in blocking solution.  

7. Washing: as in step 3  

8. Detection: The protein bound phospholipids were detected using enhanced chemiluminescence 

(SuperSignal West Pico, PierceIllinois). The membrane was incubated in developer solution 

(solution A = 2 mL and solution B = 50 µL) for few minutes and drained off before exposing the 

membrane in scientific image illuminator which detects the signal and produces an electronic 

image in computer. 

 

4.2.6.3. Preparation of multilamellar vesicles (MLVs) 

The synthetic lipids phosphatidylcholine (PC), phosphatidylserine (PS), which 

contain palmitic and oleic acid esterified at the sn-1 and 2 positions of the glycerol backbone, 

PI(4)P (Cat No. 840045) and PI(4,5)P2 (Cat No. 840046) were purchased from Avanti Polar Lipids. 

PI (3) P, PI (5) P, and PI (3, 5) P2 (Cat No. P-3016, P-5016, P-3516 respectively) were obtained 

from Echelon Inc. To prepare MLVs, PC, PS and different phosphoinositides (PIPs) were dissolved 

in chloroform or chloroform: methanol: water solutions (as per product description by supplier) in 

desired ratios as shown in the Table.4. This was dried on a rotating evaporator to get the require 

liposome composition. Liposomes (4 mM) were prepared in the proportion of 52 mol% PC, 46 

mol% PS and 2 mol% of the mono-PIs or 54 mol % PC, 44 mol % PS and 2 mol% of the bis-PIs 

[172].  

Total volume of vesicle Stock = 1200 µL (Enough for two binding assay experiments) 

End concentration of phospholipid in the liposome vesicle stock = 4 mM 
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 POPC POPS PI(X)P DiC16*   PI(3,5)P2, 
DiC16 

PI(4,5)P2, 
Di 18:1 

Con. Stock (µg/µL) 20 20 1 1 1 
MW 760.1 784 956.96 1080.9 1074.17 

      
POPC:POPS      

Portion (%)/ mol 50.0 % 50.0 %    
Vol. Stock (µL) 91.2 94.1    

Mass (µg) 1824.2 1881.6    
      

POPC:POPS:PI(3)P      
Portion (%)/ mol 52.0% 46.0% 2.0%   
Vol. Stock (µL) 94.8 86.6 91.8   

Mass (µg) 1897.2 1731.0 91.8   
      

POPC:POPS:PI(4)P      
Portion (%)/ mol 52.0% 46.0% 2.0%   
Vol. Stock (µL) 94.9 86.6 96.1   

Mass (µg) 1897.2 1731.1 96.1   
      

POPC:POPS:PI(5)P      
Portion (%)/ mol 52.0% 46.0% 2.0%   
Vol. Stock (µL) 94.9 86.6 91.9   

Mass (µg) 1897.2 1731.1 91.9   
      

POPC:POPS:PI(3,5)P2      
Portion (%)/ mol 54.0% 44.0%  2.0%  
Vol. Stock (µL) 98.5 82.8  103.8  

Mass (µg) 1970.2 1655.8  103.8  
      

POPC:POPS:PI(4,5)P2      
Portion (%)/ mol 54.0% 44.0%   2.0% 
Vol. Stock (µL) 98.5 82.8   103.1 

Mass (µg) 1970.2 1655.8   103.1 
X = monophospho lipids 

Table 4: Composition of the liposome vesicles. The phospholipids of different phosphorylation sites were mixed 
along with the respective amounts as shown in the table to get the 4 mM end vesicle stock concentration. The ratio/ 
mol were calculated to compose the liposomes such that the overall surface charge of the liposome is equilibrated.  
 

1. The phospholipids were dissolved in chloroform or methanol as per the supplier’s description 

to achieve desired concentration and kept on ice. 

2. The glass tubes were washed with methanol and chloroform each two times thoroughly by 

vortexing to rinse the sides perfectly. After washing, few drops of chloroform was added to the 

tube for easy pipetting of phospholipids. 

3. By using glass Hamilton syringe, phospholipids were mixed in the appropriate ratio as shown 

in the table.4 to prepare MLVs 

Note: After mixing the phospholipids together in glass test tube, they should be colourless. If 

phospholipid mixture looks like white cloudy, it can be dissolved further by adding few drops 

methanol further. 
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4. The organic solvents were carefully evaporated by using rotating vacuum pump for 1 hour. The 

evaporation was extended further for few phospholipids when the solvent was not completely 

evaporated. If the evaporation is not taking place at all for any phospholipids in such cases we 

left them over night for evaporation to get rid of solvents completely or used nitrogen stream to 

remove rest of the solvent. 

5. The multi lamellar vesicles were resuspended in 400 µL of LUV buffer and incubated for 30 

min in a dark place at RT by closing the test tubes with parafilm. 

6. Then the volume was split into two equal halves (200 µL each) which is the final required 

amount for one phospholipid-protein sedimentation assay as per our experimental plan (used 

safe lock eppendorf tubes for MLVs). 

7. MLVs were made by passing through five cycles of freezing (liquid nitrogen) and thawing 

(37 °C water bath) and then final round of frozen MLVs were stored at -80°C. 

 

4.2.6.4. Preparation of large unilamellar vesicles (LUVs) 

1. MLVs of required phospholipids were thawed by keeping on ice for few minutes. 

2. During thawing MLVs, mini-extruder (Avantis, cat # 610000) was assembled as per the 

instructions given at http://www.avantilipids.com/ExtruderAssembly.html (Fig.5). Four filter 

supports (Avanti #610014) and one polycarbonate membrane (100 nm diameter, Avanti # 

800309) was used in the mini extruder for our experiments. 

3. Once the MLVs solution is fully thawed the sample was loaded into one of the gas-tight 

Hamilton syringes and carefully placed it into one end of the mini-extruder.  

4. The empty gas-tight syringe was placed into the other end of the mini-extruder. 

Note: Make sure that the empty syringe plunger is set to zero and the syringe will be filled 

automatically as the MLVs are extruded through the membrane.  

5. the plunger of the filled syringe gently pushed until the solution was completely transferred to 

the alternate syringe through the extruder.  

6. The plunger of the alternate syringe was pushed gently to transfer the solution back to the 

original syringe.  

Note: The MLVs suspension should begin to show transparent colour after passing through the 

extruder.  

7. Repeated steps 5 & 6 for 4 times.        

8. Taken care to fill the final extrusion in the alternate syringe (the receiver in the step 5) at the 

end of extrusion to reduce the chances of contamination with larger particles or foreign 

material. 
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Figure 5: The design of mini-extruder. The mini-extruder for the preparation of LUVs is made up of extruder casings 
on both sides and a bi-layer of filter supports to the polycarbonate membrane to support the pressure created during 
extrusion. The content and arrangement of components of the mini-extruder is depicted in this diagram. 
 

9. The filled syringe was removed from the extruder and injected the LUVs solution into a clean 

eppendorf tube.  

10. The extruder was cleaned by passing the LUV buffer for 5 times before using for a new LUVs 

preparation.  

11. The volume of the extruded LUVs was measured and filled with the rest of the volume with 

MLV buffer to get final volume of 1400 µL (it gives nearly 1:8 dilution) to exchange the 

suspension buffer.  

12. The LUVs were centrifuged at 45,000 RPM at 10° C for one hour in Beckman TLA-45 rotor.  

13. The supernatant was discarded by leaving 50 µL in the tube to avoid pellet damage.  

14. The pellet was dissolved in required volume of MLV buffer by considering 50 µL already left 

in the tube to get final phospholipid concentration of 4 mM. 

 

4.2.6.5. Liposome sedimentation assay 

1. Binding assays were performed with 2 μM of ultra purified and natively folded Spred2 EVH1 

protein. The protein was added to LUVs of serial dilutions in a total reaction mixture volume of 

500 µL as shown in the table.5. The ADAP SH3-C protein was used as a positive control for 

protein-phospholipid sedimentation assay. 

2. The binding assay mixtures were incubated at RT in dark place for 30 min. 

3. Then centrifuged at 45,000 RPM for 1 hour at 10° C in ultracentrifuge to sediment the bound 

protein-phospholipid interacting complex. 
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4. The supernatant was removed immediately and protein amount present in the supernatant was 

determined by tryptophan fluorescence emission in a luminescence spectrophotometer. Also, 

the equivalent aliquots of supernatant and pellet samples were analysed by SDS-PAGE to 

detect the protein present in the respective proportions. 

5. The reaction mixture without liposomes (zero concentration reaction mixture) is used as the 

blind value giving the protein concentration maximally to be present in the supernatant if no 

binding at all occurs in other reaction mixtures. 
 

End con of phospholipid (µM) 0 100 300 600 900 1600 

Liposome, LUVs (4 mM) to be 
taken in µL 0 12.5 37.5 75 112.5 200 

MLV buffer (in µL) 490 477.5 452.5 415 377.5 290 

Protein (End con = 2 µM)         
Stock = 0.1 mM 10 µL 10 µL 10 µL 10 µL 10 µL 10 µL 

 

Table 5: The composition of sedimentation assay reaction mixture. The LUVs of different phospholipid 
compositions were incubated with query protein in presence of MLV buffer in the proportions as shown in the table. 
The reactions were performed at different concentrations of liposomes to assay the binding affinity quantitatively 
against the query protein. The reaction mixture without phospholipid would show a base line interaction behaviour 
since one of the interaction partner is missing. This would serve as a negative control in our experiments. 
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5. RESULTS 

 

5.1. Identification of protein kinases participating in serum-stimulated phosphorylation of 

VASP and elucidation of their order of action 

 

5.1.1. Serum treatment of MCFB cells stimulates phosphorylation of VASP at Ser-157 but not 

at Ser-239 

Serum stimulation of cells is known to induce several signalling cascades including 

those involved in regulation of the cytoskeleton. Many protein kinases are serum sensitive and 

effect components of the cytoskeleton. However, not much is known about the role of serum on 

phosphorylation of the cytoskeletal protein, VASP. Hence we have examined the effects of serum 

stimulation on the phosphorylation status of VASP. Overnight starved quiescent Mouse Cardiac 

Fibroblast (MCFB) cells (+/+) were stimulated with 10% serum and assayed in cell lysates for 

alterations in VASP at different time points according to the general experimental scheme as given 

in Chapter 4.2.1.5. Western blot analysis by using polyclonal anti-VASP antiserum M4 after 

protein separation on SDS-PAGE showed that serum stimulation induced phosphorylation of 

VASP as indicated by a shift in apparent molecular weight from 46 kDa to 50 kDa (Fig.6a) which 

was not seen in unstimulated quiescent cells. The M4 antiserum detected also a non-specific 80 

kDa band in western blots which served as a loading control in our experiments. It was found that 

serum stimulation of VASP phosphorylation was time dependent and was prominent as early as 90 

min after serum stimulation (Fig.6b) and persisted even after 10 hours (Fig. 6c). The shift in the 

apparent molecular weight of VASP from 46 kDa to 50 kDa detected by polyclonal M4 antiserum 

indicates a phosphorylation of VASP at Ser-157 [2]. Similar results were seen also in mouse 

mesangial cells (+/+) confirming that the observed activity is not cell specific (Fig.6d). Thus the 

results clearly establish that there is a phosphorylation event occurring at Ser-157 of VASP during 

stimulation of cells by serum. The site specificity of VASP phosphorylation can be determined 

with the use of monoclonal antibodies directed against the three known phosphorylation sites of the 

VASP molecule (see Chapter 2.3.2.3).  

To find out the identity of the VASP phosphorylation sites engaged after serum 

stimulation, lysates of serum stimulated cells were analyzed at different time points for the status of 

individual phosphorylation sites. This was done using monoclonal antibodies 5C6 and 16C2 which 

are specific for the individual phosphorylation sites Ser-157P and Ser-239P on VASP, respectively 

[124]. Western blots with 5C6 and 16C2 showed that serum stimulated VASP phosphorylation 

only at Ser-157 but was not found at Ser-239 (Fig. 7a and b). These experiments confirmed that 
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phosphorylation of VASP induced by serum stimulation was confined to Ser-157. The effect of 

serum stimulation on the regulation of Thr-278, the third phosphorylation site of VASP, could not 

be determined due to a lack of specific antibodies for this site, however recently published research 

articles proposed working antibodies also for this phosphorylation site [3].  

These experimental results show that serum stimulation preferentially induces VASP 

phosphorylation at Ser-157 which causes the shift in molecular weight from 46 kDa to 50 kDa as 

detected by anti-VASP antiserum M4. 
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Figure 6: Serum treatment of cells stimulates VASP phosphorylation. Overnight starved MCFB cells (+/+) were 
stimulated with 10% FCS and VASP phosphorylation was studied at different time periods with an interval of one hour 
(Fig. a and c) and 30 min (Fig. b) each, by immunoblotting using M4-antiserum. Similar experiments were also carried 
out using Mouse mesangial cells (+/+) (Fig. d). In all the blots, 46 kDa and 50 kDa bands represent non-phospho and 
phospho forms of VASP respectively and an upper band at 80 kDa is also recognized by the M4 anti-VASP antiserum, 
which serves as a loading control. Blots shown are representative of four independent experiments. In all blots, C 
represents control samples which are unstimulated cell lysates. 
 

5.1.1.1. An interaction graph model describing serum-stimulated VASP phosphorylation 

forms a conceptual basis for experimental identification of the protein kinases involved 

To summarize the major pathways expected to be involved in serum stimulated 

VASP phosphorylation at Ser-157 a graph model of the interaction network which addresses its 

candidate players and their possible interactions was developed (see Fig.8). This directed 

interaction graph was organized into three major hierarchical layers of protein interactions 

modelled at different resolution (and represented by three different back ground shadow colours in 
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the diagram) that correspond to the major relay stations of the signal transduction cascades under 

study viz., an input signal by external stimulation of the cell, an intermediate processing of the 

signals by signal transduction and signal exchange and finally a targeted output signal as detected 

by a change in the molecular properties of the effector protein VASP. The key players like 

stimulators/receptors, candidate protein kinases, and the substrate protein involved in this signal 

transduction network are represented as nodes. The direct or indirect interaction pathways between 

these nodes either already known or inferred from the literature as described in other biological 

contexts are represented by directed edges (unbroken or broken arrows respectively) in this 

interaction map. The top node at the external layer of this interaction map represents the serum 

added to the cells and is considered here as a collection of unspecified stimuli which by binding to 

an array of cell surface receptors initiate signalling processing. Arrows labelled as a, b, c, d, e, f 

refer to different serum-stimulated intracellular pathways leading to the activation of an 

intermediate network of protein kinases which are represented as nodes in the next layer of 

interaction in our interaction map. These candidate protein kinases do have the propensity to 

downstream phosphorylate VASP (either directly or indirectly as labelled by unbroken or broken 

arrows respectively with numbering 1, 2, 3 and 4 according to the protein kinase specified) or to be 

engaged in phosphorylation reactions among each others (labelled by unbroken arrows with 

apostrophized numbers; for the sake of clarity only nearest-neighbour interactions are shown in the 

diagram). VASP phosphorylation represents the bottom node in the convergent final layer of the 

directed interaction graph. The alphanumerical coding of nodes and edges described here will be 

used throughout the following text while referring to the experimental results in this part of the 

thesis.  

Specifically, stimulation of cells with serum intracellularly activates many 

cytoskeleton-associated protein kinases like MAP kinases (arrow ‘a’ in Fig.8), protein kinases C 

(arrow ‘b’ in Fig.8) or Rho kinases (arrow‘d’ in Fig.8) which are known to play an important role 

in cytoskeletal reorganization. Of these kinases, we hypothesized based on literature knowledge 

that Rho kinases and PKCs may be new candidate protein kinases responsible for mediating serum-

derived signals involved in VASP phosphorylation. Such a phosphorylation event might be either 

the result of a direct interaction with VASP as a proximal substrate for these candidate protein 

kinases or the result of an indirect one involving other protein kinases of the network. Also indirect 

phosphorylation pathways might finally be expected to involve phosphorylation of VASP through 

the cyclic nucleotide dependent protein kinases (PKA and PKG) which are well-known to use 

VASP as one of their direct substrates. Hence PKA and PKG are also considered as member nodes 

of the inter-connecting network layer in our directed interaction graph model. The nodes of the 
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protein kinase network are further labelled in the diagram of Fig.8 by those antagonistic or 

agonistic drugs (specified for the respective kinase and their mode of action on this target) which 

will be used as pharmacological tools to study experimentally the structure of this network in the 

following perturbation experiments with MCFB (+/+) cells. Basically identification of candidate 

protein kinases involved will be achieved by looking at VASP phosphorylation in the presence of 

different combinations of activators or inhibitors complemented by appropriate controls of drug 

specificity. 
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Figure 7: Serum stimulated VASP phosphorylation occurs at Ser-157. In serum stimulated MCFB cells (+/+) after 
different time periods, VASP phosphorylation at Ser-157 (Fig. a) and Ser-239 (Fig. b) was probed using respective 
monoclonal antibodies 5C6 and 16C2. In Fig a and b, C represents unstimulated cell sample and in Fig. b, P represents 
endothelial cells lysates which were used as positive control samples. Blots shown are representative of three 
independent experiments. In Fig. a, an extra band with a molecular weight larger than 50 kDa appeared which 
remained unchanged in intensity during time course of the experiment. Its nature is currently unclear. 
 

5.1.2. Serum activated PKCs, but not Rho kinases are involved in serum stimulated VASP 

phosphorylation at Ser-157 

It is shown above that VASP is phosphorylated at Ser-157 on stimulation of cells by 

serum and we subsequently looked for the type of protein kinases that are involved in this process. 

In general serum stimulation regulates many cytoskeleton-associated protein kinases that are 

responsible in different signalling pathways for cytoskeletal remodelling as shown in the 

interaction network map described above. Of these kinases, PKC and Rho kinases and their 

respective signalling pathways are of great importance in serum-mediated alterations of the cell 

cytoskeleton. VASP is known to participate in such cytoskeletal alterations as a key player. 

Although there are many protein kinases activated during serum stimulation, we focused our 

experiments initially on Rho kinase and PKC in view of the fact that only these kinases might have 

some indirect interactions with VASP. Both of these kinases and VASP for instance are known to 

participate in focal adhesion formation. These kinases might mediate direct or indirect 

phosphorylation of VASP during serum stimulation although VASP has so far been known to be 
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phosphorylated by cyclic nucleotide-dependent kinases only while studying other conditions of 

cellular stimulation. 
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Figure 8: Representation of an interaction graph model compiling possible pathways involved in serum 
stimulated VASP phosphorylation. In the above interaction graph, the following notation was used: arrows labelled 
as a, b, c, d, e, f consider different serum stimulation pathways leading to an activation of the respective kinases. 
Possible pathways down-stream of serum activated PKC, PKA, PKG and Rho kinase are represented by arrows 
labelled with numbers 1, 2, 3 and 4 (and apostrophes) respectively. The same nomenclature was used throughout the 
whole text of this thesis. A set of activator (green) and inhibitor (red) shown at each node are used to modulate the 
respective kinase activity experimentally. 

 

We first tested for an involvement of PKCs and Rho kinases in serum stimulated 

VASP phosphorylation by treating quiescent cells with Ro-31-8220 (10 µM) and Y-27632 (10 

µM), inhibitors of PKCs and Rho kinases respectively (see Table.6), prior to the stimulation with 
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serum according to the general experimental scheme shown in Chapter 4.2.1.5. The samples were 

analyzed by western blot using M4 antiserum. The results were shown in Fig. 9a. Control lanes 1 

and 2 show the unstimulated and serum stimulated samples respectively and thus support the 

phosphorylation of VASP at Ser-157 in this experiment. In the same western blot, in presence of 

the PKC inhibitor (see pathways [1], [1´], [1´´] in Fig.8) there was no phosphorylation of VASP 

upon serum stimulation as seen in lane 4, while with the Rho kinase inhibitor (see pathways [4], 

[4´], [4´´] in Fig.8) VASP phosphorylation still occurred at Ser-157 as seen in lane 3. In presence 

of both inhibitors together lane 5 shows a result which is in line with the results observed in lane 3 

and 4. Taken together these experiments suggest that PKCs mediates serum stimulated VASP 

phosphorylation, but Rho kinases do not. According to the interaction map presented in Fig.8, PKC 

may mediate this process either by a pathway [1] or by the other possible pathways using further 

the intermediate protein kinases PKA or PKG labelled as [1’+2] or [1´´+3] in Fig.8 resulting 

finally in the phosphorylation of VASP at Ser-157. Insensitivity of VASP phosphorylation to the 

action of the Rho kinase inhibitor Y-27632 suggests that pathways [4], [4´] and [4´´] are not 

involved in serum stimulated VASP phosphorylation. The detailed role of PKC in phosphorylation 

of VASP during serum stimulation however can not be elucidated from this type of experiments 

and will be addressed later on. 

To confirm the specificity of the inhibitors used, positive control experiments were 

done to determine whether these substances might unspecifically interrupt known cyclic 

nucleotide-dependent protein kinase mediated signalling pathways that induce VASP 

phosphorylation. In principle the inhibitors used that have been described to inhibit PKC and Rho 

kinase might also interact with the activity of other protein kinases like PKA and PKG which are 

known to phosphorylate VASP independently of serum stimulation. To address this question, the 

quiescent cells were incubated with the above mentioned inhibitors at the same concentration for 

30 min and then stimulated with an adenylate cyclase activator which finally activates PKA 

(Forskolin) or a PKG specific activator (8-pCPT-cGMP). The cell lysates were analyzed by 

western blot using M4 antiserum and assayed for phosphorylation of VASP.  The results showed 

VASP phosphorylation by treatment of the cells with PKA and PKG activators also in the presence 

of each of the inhibitors as it was observed without inhibitors (compare lanes 3 and 4 with lane 2 in 

Fig.9b. Data are not shown for PKG activity). These data rule out that the inhibitors of PKC and 

Rho kinase are unspecifically interrupting PKA- and PKG-mediated signalling pathways leading to 

VASP phosphorylation and thus suggest that they act according to their described specificity also 

under the experimental conditions used here. 
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Compound Activity Concentration 
used Reference 

Y-27632 
A highly potent, cell-permeable and 
selective inhibitor of Rho-associated 

protein kinases (Ki = 140 nM) 
10 μM [173] 

Ro-31-8220 Competitive and selective inhibitor of 
protein kinase C (IC50 = 10 nM) 10 μM [174] 

Bis I 
Acts as a competitive inhibitor for the 

ATP-binding site of PKC 
(Ki = 10 nM) 

10 μM [175] 

Bis V 
Negative control compound for protein 

kinase C inhibition studies 
(IC50 > 100 mM) 

10 μM [176] 

H89 
A highly selective cell-permeable potent 
inhibitor of protein kinase A   (Ki = 48 

nM) 
10 μM [177, 178] 

PMA 

Activator of protein kinase C in- vivo 
and in-vitro at nM concentrations.  

Also inhibitor of PKC during long-term 
treatment. 

1 μM [179, 180] 

Forskolin 

Activator adenylate cyclase resulting in 
increased cAMP levels  and activation 

of PKA 
(EC50 = 4 mM) 

10 μM [177] 

 

Table 6: Drugs used in the pharmacological perturbation experiments. Both activators (shown in green colour) 
and inhibitors (shown in red colour) used in this work are listed here. Their mode of action and the concentrations of 
the compounds used in the experiments are listed in the table. 
  

5.1.3. PKA, but not PKG is required for serum stimulated phosphorylation of VASP at Ser-

157 

The above experiments have shown that VASP is phosphorylated at Ser-157 on 

serum stimulation and that in this phosphorylation PKC is involved. It is therefore necessary to 

further elucidate if PKC mediated VASP phosphorylation after serum stimulation is dependent on 

other well known protein kinases which have already been found to phosphorylate VASP in a well 

defined manner (see interaction graph model in Fig.8). In general, PKA and PKG are major protein 

kinases linking cyclic nucleotide-dependent signal transduction with the cytoskeleton. Even though 

PKG preferentially phosphorylates VASP at Ser-239, it can also phosphorylate Ser-157 (see 

Chapter 2.1.1.4) [2]. As serum stimulation via PKC also mediates phosphorylation of Ser-157 on 

VASP, it became an important issue to determine whether PKC phosphorylates VASP at Ser-157 

without any involvement of PKA and PKG (see pathway [1]) or whether its effect depends on PKA 

or PKG either directly or indirectly (see pathways [1´+ 2] and [2´+ 1] or [1´´+ 3] and [3´+ 1] in 

the interaction network model summarized in Fig.8). 
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Figure 9: The protein kinase C inhibitor but not the Rho kinase inhibitor is inhibiting serum stimulated VASP 
phosphorylation. In Fig. a, shows phosphorylation of VASP detected with M4 antiserum in lysates of MCFB cells 
(+/+) incubated with Ro-31-8220 (10 μM), a protein kinase C inhibitor or Y-27632 (10 μM), a Rho kinase inhibitor or 
both for 30 min prior to serum stimulation for 3 hours. In Fig. b, shows the extent of VASP phosphorylation after 
incubating cells for 30 min with inhibitors Ro-31-8220 (10 μM) or Y-27632 (10 μM) followed by activation with 
Forskolin (10 μM), an adenylate cyclase activator that activates PKA, for 10 min. In all the blots, 46 kDa and 50 kDa 
bands represent the non-phospho and phospho forms of VASP respectively and the upper band of 80 kDa which is also 
recognized by the M4 anti-VASP antiserum serves as a loading control. Lane 1 in both blots represent unstimulated 
control cell sample. Blots shown are representative of three independent experiments. 
 

Firstly to examine the role of PKA in the serum stimulated VASP phosphorylation 

at Ser-157, the overnight starved cells were incubated with H89 at a concentration of 10 μM, an 

inhibitor of PKA prior to stimulation with serum. Western blot analysis with M4 antiserum as 

shown in Fig. 10a did not show phosphorylation of VASP at Ser-157 in the presence of H89 (10 

μM) after serum stimulation as seen in lane 6. The same observation was made in lane 4 in the 

presence of the PKC inhibitor, Ro-31-8220 but not in lane 3 in presence of the Rho kinase 

inhibitor, Y-27632 which was already observed in chapter 5.1.2. In lane 5, inhibition of serum 
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stimulated VASP phosphorylation at Ser-157 in presence of both Ro-31-8220 and Y-27632 

together is only due to the activity of Ro-31-8220, according to the results seen in lane 3 and 4 and 

also lanes 3 and 4 in Fig 9a. Lane 1 and 2 show unstimulated and serum stimulated controls 

without and with phosphorylation of VASP at Ser-157 respectively. These results show that serum 

stimulated VASP phosphorylation at Ser-157 is mediated by both PKC and PKA. It suggests 

particularly that PKA is involved in serum stimulated VASP phosphorylation at Ser-157 and that 

this might happen by either pathways [1’+2] or [2’+1] as depicted in Fig.8. However we suspect 

the former pathway to be the most probable one because PKA is well known to directly 

phosphorylate VASP preferentially at Ser-157 (see Fig.1). To establish the sequence of action of 

these two protein kinases this signalling pathway will be elucidated in further detail later on (see 

Chapters 5.1.6). 
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Figure 10: (a) PKA is involved in serum stimulated VASP phosphorylation at Ser-157. MCFB cells (+/+) were 
incubated with Ro-31-8220 (10 μM), a protein kinase C inhibitor, H89 (10 μM), a PKA inhibitor and Y-27632 (10 
μM), a Rho kinase inhibitor for 30 min prior to serum stimulation of 3 hours and blotted for VASP phosphorylation 
with M4 antiserum. In the blot, 46 kDa and 50 kDa bands represent non-phospho and phospho forms of VASP 
respectively and the upper band of 80 kDa which is also recognized by the M4 anti-VASP antiserum serves as a 
loading control. Lane 1 represents unstimulated control. (b) MCFB (+/+) cells lack PKG. The presence of PKG in 
MCFB (+/+) cells was examined by immunoblotting cell lysates (which are collected without any further treatments or 
starvation) with anti PKG antibody. Sodium nitro prusside (SNP) stimulated blood platelet samples which are rich in 
PKG were used as positive control for this experiment. M in the diagram represents protein molecular weight ladder 
and the thick band in the marker near 80 kDa is due to cross-reactivity with the anti-PKG antiserum. The blots shown 
are representative of three independent experiments. 
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It is known that use of an inhibitor for a single protein kinase can also affect other 

protein kinases within the same cell due to its limited specificity. H89 is known to inhibit many 

protein kinases including PKG depending on the concentration used [177]. This will be addressed 

in the following experiments. A reason for this unspecific mode of action is that a major group of 

protein kinase inhibitors are developed on the basis of their competitive inhibitory activity against 

the common substrate of all protein kinases that is ATP. The inhibitory activity of an antagonist for 

a specific protein kinase in an individual cell line is also highly concentration dependent. Therefore 

it is not possible in general to predict the activity spectrum of a given inhibitor type such as H89. In 

preliminary experiments, we have tried to inhibit PKA with other inhibitors which are more 

specific for PKA than H89 and which are cAMP-antagonist. All these inhibitors (for example Rp-

8-Br-cAMPS) were found to be unable to inhibit PKA in our cell lines even at very high 

concentrations or using different batch stocks. We also failed to observe their inhibitory action in 

combination with different types of PKA activators (Forskolin, 8-Br-cAMPS and BIMPS, data not 

shown here). A reason might be that MCFB cells (+/+) might have become impermeable for these 

compounds or that they might have lost their ability to reach their target sites of action. Hence we 

will use compound H89 in further experiments only together with appropriate positive controls to 

make sure that a specific protein kinase inhibition with this drug is observed in every case under 

study. 

 

The above results suggested that serum stimulated VASP phosphorylation at Ser-

157 mediated by PKC involves of another cytoskeleton-associated protein kinase that is PKA. In 

general, PKA and PKG are both major protein kinases linking cyclic nucleotide-dependent signal 

transduction with the cytoskeleton. After we found an involvement of Ser-157 and PKA in serum 

stimulated VASP phosphorylation, it is therefore necessary to examine a possible participation of 

PKG in this process. Even though PKG preferentially phosphorylates VASP at Ser-239, it can also 

phosphorylate at Ser-157 [2]. Moreover the inhibitor used to inhibit PKA in the previous 

experiments can in principle also inhibit PKG. So, the VASP phosphorylation inhibited by H89 in 

the previous experiments might also be due to PKG. Furthermore, it was recently found that there 

is an active interaction between PKC and PKG [181]. All these observations suggest that serum 

stimulation could have been mediated in principle by PKG rather than PKA to result in 

phosphorylation of VASP at Ser-157 (i.e. via pathways [1’’+ 3] or [3´+1] as depicted in Fig.8). To 

address a role of PKG in the serum stimulated VASP phosphorylation, experiments were 

conducted by stimulating overnight starved quiescent cells with serum in the presence of a PKG 

inhibitor (Rp-8-Br-cGMPS). However these experiments had shown no alteration in VASP 
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phosphorylation at Ser-157 after serum stimulation (data not shown). Results from the literature 

suggest that MCFB (+/+) cells may lack PKG [182] which led us to examine the PKG levels in 

these cells directly. Western blots of cell lysates with anti PKG antibody didn’t detect any PKG 

protein (Fig.10b). SNP stimulated platelet samples used as a positive control in this western blot 

showed the expected expression of PKG in this cell type and thus support the activity of the 

antibody used. As there is no detectable PKG level in MCFB (+/+) cells and as there was no 

influence detectable of a PKG inhibitor on serum stimulated VASP phosphorylation, these results 

strongly suggest that serum stimulated VASP phosphorylation is independent of PKG in MCFB 

cells (+/+). Moreover results from a blot with 16C2 antibody (with specificity for VASP phospho-

Ser-239) against serum stimulated cell lysates (Fig.7b) further support this conclusion. 

In summary, these results suggest that along with PKC, PKA but not PKG is 

involved in serum stimulated VASP phosphorylation at Ser-157 and that this might happen by the 

sequential pathways [1’+2] or [2’+1] of the protein kinase network model depicted in Fig.8. 

However according to this model, it could also be possible that PKA and PKC may regulate the 

activity of VASP independently each other. Nevertheless based on known data we suspect the 

former pathway to be the most probable one because PKA is well known to directly phosphorylate 

VASP preferentially at Ser-157 (see Chapter 2.1.1.4 and Fig.8). To establish the sequence of action 

of these two protein kinases the signalling pathway was elucidated further in detail.  

 

5.1.4. Serum stimulated PKCs involved in VASP phosphorylation are members of the Bis I 

sensitive and phorbol ester regulated classical isoforms of protein kinase C  

PKC comprises different isozyme forms and each isozyme is expressed in different 

cell types with a different mode of specific activity [183] [184]. The inhibitor used in the above 

experiments (Ro-31-8220) to inhibit PKC activity is not specific enough to discriminate among 

PKC isozymes individually. An important question therefore is to find out the responsible isozyme 

class of PKC that is involved in serum stimulated VASP phosphorylation at Ser-157. It can be done 

by using isozyme class-specific inhibitors which are commercially available (see Table.6). So 

called classical isoforms of PKC, which are also phorbol ester sensitive, participate in cytoskeletal 

reorganization and serum mediated protein kinase activities [185] [179]. Hence we searched for a 

role of classical isozymes of PKC in serum stimulated VASP phosphorylation by using specific 

inhibitors for this class of PKC, which are generally accepted in the literature and proven to be 

potent inhibitors.  
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Figure 11: Serum stimulated VASP phosphorylation is sensitive to inhibition activity of Bis I and phorbol ester 
treatment. (a) MCFB cells (+/+) were incubated with different concentration of Bis I, an inhibitor of classical protein 
kinase C isozymes, for 30 min prior to serum stimulation for 3 hours and blotted for VASP phosphorylation with M4 
antibody. (b) MCFB cells (+/+) were stimulated with PMA, an activator of classical protein kinase C isozymes, for 
different time periods and blotted for VASP phosphorylation with M4 antibody. (c) MCFB (+/+) cells were also 
stimulated with PMA either alone or prior to stimulation with 10% serum (3 hours) or 10 μM Forskolin (10 min), an 
activator of adenylate cyclase and thus PKA. DMSO was used as vehicle for PMA and thus substituted for PMA in 
positive control experiments. In all the blots, 46 kDa and 50 kDa bands represent non-phospho and phospho forms of 
VASP respectively and the upper band of 80 kDa which is also recognized by the M4 anti-VASP antiserum serves as a 
loading control. In Fig. a, lane 1 and 2 represent unstimulated and stimulated positive controls respectively. In Fig. b, 
US represent an unstimulated control cell sample. Blots shown are representative of three independent experiments. 
 

The experiments were carried out with Bis I, a potent classical PKC isoform 

inhibitor [175], and Bis V [176] which is an inactive version thereof serving as a negative control 
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for inhibition of PKC by this class of drugs. Overnight starved quiescent cells were incubated with 

these two types of inhibitors at different concentrations (1 μM, 5 μM, 10 μM, 20 μM) for 30 min 

and then stimulated with 10% serum according to the general experimental scheme as given in 

chapter 4.2.1.5. The cell lysates analyzed by western blotting with M4 antibody showed that the 

presence of the classical PKC inhibitor, Bis I inhibited the serum stimulated VASP 

phosphorylation at Ser-157 in a concentration dependent manner (shown in Fig. 11a). Lane 1 

shows no VASP phosphorylation at Ser-157 in unstimulated cells but lane 2 does due to serum 

stimulation. Treatment of cells by low concentrations of Bis I did not show a prominent inhibition 

of VASP phosphorylation (in lanes 3 and 4 in Fig.11a). However, 10 μM and 20 μM 

concentrations of Bis I applied to these cells and assayed in lanes 5 and 6 respectively showed a 

prominent inhibition of serum stimulated VASP phosphorylation at Ser-157. From this experiment 

it could be deduced that a concentration of 10 μM of Bis I is optimal in MCFB (+/+) cells to 

interrupt the activity of PKC as assayed by their phosphorylation of VASP (Fig.11a). Moreover 

there was no inhibition of VASP phosphorylation in samples stimulated with serum after 

incubating for 30 min with the corresponding inactive Bis derivative, Bis V, which serves as the 

required negative control compound to asses the specificity of PKC inhibition (data not shown). 

These results show that Bis I sensitive classical isozymes of PKC are among the participants in 

serum stimulated VASP phosphorylation at Ser-157 and these data  further support the results 

obtained with the general PKC inhibitor Ro-31-8220 (see Fig.9a and 10a). 

If the classical isoforms of the PKC are participating in serum stimulated VASP 

phosphorylation, then this pathway(s) should also respond to the effects of phorbol ester activity 

due to the phorbol ester sensitivity of this class of isoforms. Phorbol esters have a characteristic 

mode of regulating activity of PKCs and are highly time dependent in their action spectrum: they 

not only activate PKC for short time intervals but also inhibit the activity of PKC on the longer run 

upon translocation of PKCs to the membrane [185]. Incubation of cells with phorbol esters for 

longer time periods thus down regulates the activity of PKC [186]. Given the involvement of PKC 

in serum induced VASP phosphorylation it should also be affected upon modulation of PKCs with 

phorbol esters. Overnight starved quiescent cells were therefore stimulated with PMA, a well 

known phorbol ester compound, and samples were collected at every two minutes to find out the 

time course of PKC activation and down-regulation. Western blots with M4 antibody showed that 

there is VASP phosphorylation up to 8 min after phorbol ester stimulation and at later time points 

no further increase of VASP phosphorylation was seen (Fig.11b), possibly indicating a down 

regulation of PKC activity by phorbol ester treatment  (data not shown for time periods after 10 

min). It is interesting to note here that VASP phosphorylation occurred nearly after 90 min of 
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serum stimulation (Fig.6b), but an activation of PKC directly with PMA induced VASP 

phosphorylation as early as after 2 min with this activity not further extending beyond 8 min after 

PMA addition. The different time course might be due to differences in the lag time of the signal 

transduction cascades depending on a more proximal or distal activation of the PKC enzymes. 

However these kinetic aspects have not been studied further in this work. 

The above result (Fig.11b) suggests that down-regulation of PKC by phorbol esters 

may have inhibited phosphorylation of VASP. But, for this interpretation, it has to be confirmed 

that the down regulation of the VASP phosphorylating protein kinase activity by phorbol ester 

long-term treatment is indeed only due to PKC but not PKA which is also involved in the serum 

stimulated VASP phosphorylation as shown above in Fig.10a. We therefore performed a control 

experiment in such a way to down regulate the activity of PKC by phorbol ester long-term 

treatment (i.e. more than 8 min) during the activation of PKA via Forskolin which activates 

adenylyl cyclase. In a six well plate, the cells were incubated with PMA for more than 8 min and 

they were then stimulated with either serum (10%) or Forskolin (10 μM).  If the phorbol ester 

would not affect PKA activity, then we would expect a prospective activity of this protein kinase 

i.e. a VASP phosphorylation in Forskolin stimulated cells pre-incubated with PMA. However no 

VASP phosphorylation would be expected in serum stimulated cells during phorbol ester long-term 

treatment as PKC activity is down regulated and the process is dependent of PKC as shown above 

in the results of Fig.11a and b. Cell lysate samples stimulated with either serum or Forskolin were 

used as positive controls in this experiment which are both known to induce VASP 

phosphorylation at Ser-157 as shown in lanes 2 and 3 respectively in Fig.11c and also in the 

previous experiments. The experimental results in Fig. 11c clearly show that there is an inhibition 

of VASP phosphorylation at Ser-157 after phorbol ester long-term treatment as shown in lanes 4 

and 5 either with or without serum stimulation respectively (compare lanes 5 and 4 with lane 2). 

But there is phosphorylation of VASP at Ser-157 after Forskolin treatment in the presence of 

phorbol ester long-term treatment as seen in lane 6. Result in lane 3 show that the vehicle substance 

DMSO does not affect Forskolin stimulation and lane 1 shows the activity of the vehicle (DMSO) 

alone which does not induce phosphorylation of VASP at Ser-157 in the cell line under study. The 

absence of VASP phosphorylation at Ser-157 was observed in lanes 4 and 5 is thus due to the 

phorbol ester (PMA) long-term treatment which finally inactivates PKC. VASP phosphorylation at 

Ser-157 as observed in lane 6 due to a Forskolin treatment after long-term application of PMA 

suggests that the phorbol ester seems to be specific for PKC and is not affecting the PKA mediated 

signalling pathway leading to phosphorylation of VASP at Ser-157. Most important these results 

gave a first cue that PKA activity might act downstream to PKC and therefore PKC inhibition did 
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not oppose an activation of PKA by Forskolin. However, a sequential order of activity as suggested 

from these results has to be further substantiated by using combinations of activators and inhibitors 

as described in the following paragraph (see Chapter 5.1.5).  

In summary, the results of the last three chapters have shown that PKA and Bis I 

sensitive, phorbol ester regulated classical isozymes of PKC are the major cytoskeleton associated 

protein kinases involved in serum stimulated VASP phosphorylation at Ser-157. The combined 

evidence rules out all the other possible pathways involving either PKG or Rho kinases shown in 

the interaction network model of Fig.8. However the experimental evidence obtained so far does 

not allow to conclusively decide between pathways [1’+2], [2’+1] or [1+2] of this model (Fig.8) 

i.e. the order of involvement of PKA and PKC in either a serial or parallel organisation of the 

pathway in serum-stimulated VASP phosphorylation at Ser-157 is still unresolved at this stage of 

the study. In signal transduction research, it is usually only a first step to identify the participating 

biological molecules in a pathway and it is finally important to find out the order of action of these 

biological players in the pathway under study.  

 

5.1.5. Serum stimulated VASP phosphorylation is mediated by a sequential action of classical 

PKC isoforms and PKA 

  From the above results, it has been shown that PKC and PKA are mediating serum 

stimulated VASP phosphorylation. To resolve the order of these participating protein kinases in the 

signalling cascade, it will be necessary to determine the output reaction i.e. VASP phosphorylation 

at Ser-157 in response to simultaneous activations and inhibitions of these protein kinases using 

informative combinations of specific activators and inhibitors during serum stimulation of cells 

(Fig.8). In principle serum stimulation could lead to VASP phosphorylation via PKA and PKC 

either by a parallel or a serial action of these protein kinases (see pathways [1+2] in comparison to 

pathways [1´+2] or [2´+1] in Fig.8 of our interaction network model). A sequential order of PKA 

and PKC action in serum stimulated VASP phosphorylation was determined by using in 

independent experiments instead of serum the specific activators of PKA or PKC, Forskolin or 

PMA in combination with the inhibitors H89 or Bis I which are specific for these protein kinases 

(see Fig.8 for target sites and mode of action of these drugs). Bis V was again used as an inactive 

derivative to control the specificity of inhibition of Bis I in case of PKC (see Table.6). Overnight 

starved quiescent MCFB cells (+/+) were therefore pre-incubated with the inhibitors H89 (10 µM) 

or Bis I (or Bis V) (10 μM) either separately or together in a six well plate for 30 min and then 

stimulated in separate experiments either with serum (10%) (Fig.12a), or the adenylyl cyclase 

activator Forskolin (10 μM) (Fig. 12b) or the PKC activator PMA (1 μM) (Fig.12c) as described in 
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chapter 4.2.1.5 and Fig.4 The general experimental protocol in the combination of the inhibitors 

and activators used in these three independent experiments (labelled as a,b,c) is further summarized 

in the schemes above the gel sections of Fig.12. 
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Figure 12: Serum activated PKC passes a signal to PKA to phosphorylate VASP at Ser-157. MCFB cells (+/+) 
were incubated with Bis I (10 μM), a PKC inhibitor and/or H89 (10 μM), a PKA inhibitor for 30 min prior to 
stimulation with serum (10%) (Fig. a) or Forskolin (10 μM), an activator of adenylyl cyclases thus activates PKA (Fig. 
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b) or PMA (1 μM), a PKC activator (Fig. c) for 3 hours, 10 min and 8 min respectively. Bis V is a negative specificity 
control for PKC inhibition. The samples were blotted for VASP phosphorylation with M4 antibody. In all the blots, 46 
kDa and 50 kDa bands represent non-phospho and phospho forms of VASP respectively and the upper band of 80 kDa 
recognized by the M4 anti-VASP antiserum serves as a loading control. Lane 1 in all the three blots represents 
unstimulated control. Blots shown were representative of three independent experiments. 
 

Upon serum stimulation, lane 1 in Fig. 12a represents the unstimulated control 

showing no VASP phosphorylation and in lane 2 there is VASP phosphorylation observed at Ser-

157 as expected. Lane 3 and 4 show partial inhibition of this serum stimulated VASP 

phosphorylation in the presence of either Bis I or H89. In the presence of Bis I and H89 together, 

lane 5 shows a prominent inhibition of serum stimulated VASP phosphorylation (see lanes 3 and 4 

in comparison to lane 5). Bis V treatment did not effect VASP phosphorylation (see lane 6) and 

thus supports the specificity of Bis I on PKC. These results show that while there is only a partial 

inhibition of serum stimulated VASP phosphorylation by Bis I or H89 when applied separately, a 

prominent inhibition of serum stimulated VASP phosphorylation is observed in the presence of Bis 

I and H89 together. Although from these results it cannot be safely conclude whether PKC and 

PKA act in serum stimulated VASP phosphorylation either in series (see pathways [1´+ 2] or 

[2´+1] in Fig.8) or in parallel (see pathways [1+2] in Fig.8), the data clearly further supports the 

combined involvement of PKC and PKA in this process. Experiments have therefore been carried 

out by using directly instead of serum as a stimulator, activators of PKC or PKA in combination 

with the corresponding inhibitors of these protein kinases to further test the structure of this 

pathway. 

The results of VASP phosphorylation in the presence of the adenylyl cyclase 

activator Forskolin and the different inhibitor combinations are shown in the western blot analysis 

of Fig. 12b using M4 antibody. Lane 1 of Fig.12b shows almost no VASP phosphorylation without 

any Forskolin treatment whereas Forskolin treatment induced prominent VASP phosphorylation at 

Ser-157 in the cells (see lane 2). In lane 3, addition of the PKC inhibitor, Bis I did not interrupt the 

Forskolin activity i.e. VASP phosphorylation upon PKA activation. However in lane 4, the PKA 

inhibitor H89 inhibited this activity as seen by the more prominent appearance of the 46 kDa 

dephospho Ser-157 VASP band in this lane compared to lane 2. This inhibition of Forskolin 

activated PKA activity by H89 is an expected experimental result because both the drugs exert 

opposite effects on the same target (see Table.6 and node ‘PKA’ in Fig 8). Bis I treatment alone 

was found to have no influence on Forskolin stimulated VASP phosphorylation at Ser-157 (lane 3). 

Treatment of cells together with Bis I and H89 results in lane 5 in a more prominent loss of 

Forskolin stimulated VASP phosphorylation at Ser-157 as compared to H89 mediated inhibition 

alone (lane 4). In general, the activity of both inhibitors applied together (lane 5) was expected to 

be similar to the activity of H89 alone (lane 4) because the PKC inhibitor Bis I does not interfere 
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with PKA activity as proved by using Bis V (lane 6). The prominent inhibition of Forskolin 

stimulated VASP phosphorylation in the presence of both Bis I and H89 compared to the activity 

of each one alone was thus an unexpected finding. We have within our experimental limits 

currently no explanation for the enhanced combined action of both inhibitors together. However, 

the insensitivity of Forskolin stimulated VASP phosphorylation at Ser-157 to Bis I alone (lane 3) 

suggests that PKC does not seems to be involved in direct VASP phosphorylation which is 

probably mediated by PKA upon the applied Forskolin stimulation. These data are also in line with 

the experiments described above which showed a Forskolin stimulated VASP phosphorylation at 

Ser-157 being undisturbed by a long term treatment of PMA that will also finally inactivate PKC 

(see Chapter 5.1.4). These data therefore suggests that the possible pathway numbered as [2´+1] in 

our interaction network model of Fig.8 could probably be ruled out.  

Further support for this interpretation is given in the following experiment where the 

results of VASP phosphorylation in the presence of the short term PKC activator PMA and 

different inhibitor combinations are shown in a western blot analysis of Fig. 12c. Lane 1 again 

represents the unstimulated control and lane 2 shows the expected PMA stimulated VASP 

phosphorylation by short-term activation of PKC. Lane 3 and 4 show the inhibition of PMA 

induced VASP phosphorylation in the presence of the inhibitors Bis I or H89 respectively. 

Inhibition of PMA stimulated VASP phosphorylation by Bis I as observed in lane 3 is an expected 

experimental result because also these drugs exert opposite effects on the same target in this case 

PKC (see Table.6 and Fig.8). Most important the PKA inhibitor H89 was found to inhibit the PMA 

stimulation of VASP phosphorylation as it was mediated by PKC (see lane 4). VASP 

phosphorylation after PMA stimulation in presence of both inhibitors Bis I and H89 together is 

completely suppressed. Activity of Bis V in lane 6 again shows the specific inhibitory activity of 

Bis I on PKC also under these experimental conditions. Taken together the experimental results in 

particular the inhibition of PMA activity by H89 in lane 4 suggest that phosphorylation of VASP at 

Ser-157 by PKC seems to be mediated by PKA. This interpretation explains H89 mediated 

inhibition of PMA stimulated VASP phosphorylation at Ser-157 by blocking the PKA activity after 

upstream activity of PKC. It therefore further supports the pathway structure [1’+2] of our 

interaction network model as depicted in Fig.8. This organisation of the pathway states the most 

probable order of events during phosphorylation of VASP by a combined and sequential action of 

PKC and PKA. 

Summarizing the cumulative evidence from the experiments shown in Fig. 12, the 

data suggest that serum stimulated VASP phosphorylation in MCFB cells depends on serial activity 

of PKC and PKA in that order. The inhibitory activity of H89 against PMA stimulated VASP 
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phosphorylation supports an upstream position of PKC to that of PKA in this signalling pathway. 

This interpretation also fully explains the observed inability of Bis I to interrupt Forskolin 

stimulated VASP phosphorylation while using the complementary combination of inhibitors and 

activators. It is also in line with the observation that a long term treatment of cells with PMA does 

not perturb the Forskolin induced VASP phosphorylation. In conclusion, we suggest within the 

limits of the available experimental data that upon serum stimulation of MCFB cells (+/+) cells, a 

classical isoform of PKC receives an external stimulatory signal which is then passed to PKA to 

phosphorylate VASP at Ser-157. According to our data PKA is thus positioned downstream of 

PKC in the pathway under study and located most proximal to its substrate VASP giving a pathway 

structure of serum stimulated VASP phosphorylation as: serum → PKC → PKA → VASP at Ser-

157 (represented as [b+1’+2] in our interaction network model of Fig.8. The internal regulation of 

PKA in this signalling cascade has not been addressed here; so it is still unclear if it depends on a 

cAMP activation or an unknown signal message received indirectly from PKC. 
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5.2. In search for binding epitopes of the Spred2 EVH1 domain: Genetic screening of a cDNA 

expression library using a bacterial two-hybrid system  

 

5.2.1. Motivation for the experimental approach chosen 

The Spred2 EVH1 domain is a member of a new class of EVH1 domains which has 

initially been described in the recently discovered Spred proteins. Its atomic structure has recently 

been determined by NMR spectroscopy in a close collaboration with Linda J. Ball (SGC Oxford 

and FMP Berlin) and our Institute based on the purification of isotopically labelled protein samples 

after recombinant expression in E. coli. The Spred2 EVH1 structure shows the typical fold of an 

EVH1 domain with several unique features among them a characteristic putative binding cleft 

region containing a subfamily-specific triad of surface exposed amino acid residues which by 

homology are expected to be involved in ligand binding. Based on these structural data an 

interaction of the Spred2 EVH1 domain with unique ligand(s) probably comprising short linear 

peptide epitopes is expected. 

Expression and purification of a natively folded Spred2 EVH1 domain in 

Escherichia coli suitable for structure determination by NMR spectroscopy prompted us to take 

further advantage of this host. We therefore decided to use a bacterial two-hybrid selection protocol 

in E. coli to carry out an interaction cloning approach for the identification of candidate peptide 

binding partner(s) of the Spred2 EVH1 domain. 

 

5.2.2. Introduction to the bacterial two-hybrid system and overview of the experimental 

procedure 

A variety of E. coli two-hybrid systems have been described in the literature which 

utilize components of various well-characterized bacterial genetic systems as suitable reporters for 

bait and target protein interactions [136, 187].  For our studies in search of Spred2 EVH1 domain 

binding epitopes, we established the bacterial two-hybrid screening system developed by Joung et 

al [137, 188]. In this genetic method, detection of an in-vivo interaction of a bait and target protein 

is based on transcriptional activation of a bicistronic reporter gene cassette comprised of the yeast 

imidazoleglycerolphosphate dehydratase (HIS3) gene [189] and a bacterial aminoglycoside 3′-

adenyltransferase (aadA) gene [190] which is located on an F′ episome in a hisB mutated E. coli 

strain (Fig.13) [137, 189, 191]. The promoter of this reporter gene cassette is a modified lac 

promoter and contains a single λOR2 operator replacing its endogenous cAMP receptor protein 

(CRP) binding site [188, 192]. Bait and target proteins are expressed separately from two 

compatible expression plasmids. The protein of interest (the bait, represented as X in Fig.13) is 
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fused C-terminally to the dimerization domain of bacteriophage λ cI repressor protein (237 amino 

acids) which tethers to the λOR2 operator via its DNA binding domain (Fig.13). The target proteins 

(represented as Y in Fig.13) are individually fused to the N-terminal domain of the α-subunit of 

RNA polymerase. They are encoded by a cDNA expression plasmid library which is used in the 

search for unknown binding epitopes. When the bait and target hybrid protein encoded by separate 

bait (pBT) and target (pTRG) expression plasmids interact, the λcI-bait hybrid protein at the λOR2 

operator specifically recruits and stabilizes the α-N target hybrid protein at the weak lac promoter 

[192-194] thereby inducing transcription of the downstream HIS3 and aadA reporter genes by RNA 

polymerase (Fig.13) [137]. The magnitude of this transcriptional activation correlates with the 

strength of the interaction between the two chimeric proteins expressed [133]. Expression of the 

yeast HIS3 gene will complement in an auxotrophic E. coli host strain its deficiency of the 

homologous hisB gene and thus allows growth on selective histidine free media even in the 

presence of low concentrations of a competitive inhibitor of the HIS3 enzyme, 3-amino-1, 2, 4-

triazole (3-AT) [189]. The aadA gene confers streptomycin resistance to the cells for further 

selection of any positive protein interactions [190]. This sophisticated bacterial two-hybrid system 

thus allows positive selection by increasing 3-AT concentrations of bacterial clones that exhibit a 

productive interaction between co-expressed bait and target fusion proteins. It offers the ability for 

rapid analysis of gene expression libraries larger than 108 cfu due to the high transformation rate 

possible with highly competent E. coli cells. Expression plasmids for the Spred2 EVH1 and the 

VASP EVH1 domain are constructed and absence of self-activation by these chimeric proteins 

alone is assayed to make sure that transcriptional activation does not take place in the B2H system 

without a productive protein interaction. Before screening a cDNA expression library, it is also 

necessary to calibrate the B2H system with known types of protein interactions for the range of 

required selection intensities by determining the reporter gene expression levels compatible with 

growth in the presence of 3-AT. Therefore, we used as a positive control the VASP EVH1 domain 

in combination with a set of different binding peptides derived from the ActA protein of Listeria 

monocytogenes viz., a wild type peptide and its tighter and non binding mutant peptides [24]. 

These interactions were used to establish and to calibrate the B2H genetic system for detection of 

low affinity target interactions of a well-known adaptor protein domain. A thermodynamic study of 

in-vitro binding of the VASP EVH1 domain with these ActA peptides in our laboratory had 

obtained binding constants (Kd) ranging from 19 to 214 µM for different truncated versions of the 

ActA ligand [24]. In E. coli, this value would correspond to cellular concentrations of 20,000 to 

200,000 molecules per bacterial cell and expression of these levels should be achievable with the 

expression plasmids employed in the B2H system. The dimerization domain of the yeast 
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transcriptional activator Gal4 (referred to as LGF2) and a domain derived from a mutant form of 

the Gal11 protein called Gal11P have been shown to interact strongly in yeast [195-197] and E. coli 

[138]. Hence, this well characterised interaction pair is considered as a further positive control pair 

of the B2H system. After establishing suitable 3-AT selection conditions for detection of low 

affinity EVH1-ligand interactions, a cDNA expression library is screened under these conditions 

for interacting partners of the Spred2 EVH1 domain. The cDNA expression library is derived from 

brain tissue since Spred proteins are known to be expressed predominantly in this and other neural 

tissues [79]. Hence, we had chosen a human brain cDNA library cloned uni-directionally into the 

expression target vector pTRG to represent brain-specific proteins as α-N fusions (Fig.13) for a 

screen of binding epitopes of the Spred2 EVH1 domain. The library screening against this query 

protein is initially based on HIS3 gene transcriptional activation followed by a secondary screening 

based on aadA gene transcriptional activity. A collection of colonies obtained after dual selection is 

physically characterised by colony PCR with primers flanking the cloning sites of the target 

plasmid. Target plasmids were then isolated after genetic and physical separation from the Spred2 

EVH1 bait plasmid for further characterization. These target plasmids should contain putative 

Spred2 EVH1 interaction partners among an unknown fraction of false positive isolates. Individual 

target plasmids from this collection were therefore further characterized after retransformation with 

appropriate bait plasmids by three different types of genetic assays in order to asses (1) their 3-AT 

resistant phenotype, (2) their potential for Spred2 EVH1 independent self activation and (3) their 

interaction specificity to the Spred2 EVH1 domain (Fig.18). After co-transformation of each target 

plasmid isolate with either (1) the Spred2 EVH1 bait, (2) an empty bait or (3) a non-cognate EVH1 

bait plasmid the doubly transformed clones were compared with respect to their plating efficiency 

(PE) in the presence of 3-AT. PE determines the fraction of 3-AT resistant colonies among the total 

co-transformed colonies and correlates with the interaction strength at a defined selection 

stringency for each fusion protein pair [198]. It is calculated by counting the cfu on selective 

screening medium vs. non-selective screening medium normalized to the DNA amount applied for 

transformation. Sequencing of positive target plasmids obtained from these genetic assays would 

reveal consensus motifs of the peptides interacting with the Spred2 EVH1 domain. 
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Figure 13: An overview of bacterial two-hybrid system. A dimeric λcI-bait protein (shown as ‘X’) interacts with a 
RNA polymerase (RNAP) α-subunit-target protein (shown as ‘Y’) containing bait binding epitope at  a λOR2 operator, 
thereby recruiting RNAP to the adjacent promoter that directs expression of a HIS3 and aad reporter gene cassette. The 
bait and target fusion proteins are encoded on two compatible expression plasmids (pBT and pTRG), while the reporter 
gene cassette is located on an F′ episome. 
 

5.2.3. Construction of bait and target expression plasmids and establishment of the bacterial 

two-hybrid system for detection of EVH1 ligand interactions 

  The DNA sequences encoding Spred2 (1-124) and VASP (1-115) i.e. the Spred2 

EVH1 and the VASP EVH1 domains respectively were cloned into the appropriate multiple 

cloning sites of pBT vector by ligation of the respective amplified PCR fragments with the suitable 

sticky ends giving the bait plasmids pBT-Spred2 (1-124) and pBT-VASP (1-115) respectively 

(Table.7). Synthetic codon usage optimized oligonucleotides encoding the wild type ActA peptide 

332SFEFPPPPTEDEL344 and its tighter and non-binding mutants 332SFEWPPPPTEDEL344 and 

332SFEAPPPPTEDEL344 were cloned into the pTRG vector giving the target plasmids pTRG-
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ActA(332-344)F, pTRG-ActA(332-344)W and pTRG-ActA(332-344)A respectively (Table.7). The 

commercially available plasmids pBT-LGF2 and pTRG-Gal11P expressing the LGF2 and Gal11P 

interaction pair were used as a further positive control. All constructs were sequenced to verify the 

insert coding sequence and its in-frame fusion to the acceptor ORFs. These plasmids were purified 

in high mass yields for experimental use.  
 

λcI-Gal4LGF2pBT

αN-Gal11PGal11PpTRG

αN-SFEAPPPPTEDELActA [332SFEAPPPPTEDEL344]pTRG

αN-SFEWPPPPTEDELActA [332SFEWPPPPTEDEL344]pTRG

αN-SFEFPPPPTEDELActA [332SFEFPPPPTEDEL344]pTRG

λcI-VASP EVH1Human VASP (1-124)pBT

λcI-Spred2 EVH1Human Spred2 (1-124)pBT

Expressed fusion 
product Insert coding sequencePlasmid

λcI-Gal4LGF2pBT

αN-Gal11PGal11PpTRG

αN-SFEAPPPPTEDELActA [332SFEAPPPPTEDEL344]pTRG

αN-SFEWPPPPTEDELActA [332SFEWPPPPTEDEL344]pTRG

αN-SFEFPPPPTEDELActA [332SFEFPPPPTEDEL344]pTRG

λcI-VASP EVH1Human VASP (1-124)pBT

λcI-Spred2 EVH1Human Spred2 (1-124)pBT

Expressed fusion 
product Insert coding sequencePlasmid

 
Table 7: Plasmid constructs used in B2H screening experiments. The coding sequences for query bait Spred2 
EVH1 and positive control bait VASP EVH1 domain were cloned into the pBT vector to express λcI-bait fusion 
proteins. The coding sequences of different ActA peptides were cloned into pTRG target vector to express the α-N 
RNA polymerase fusion peptides. The pBT and pTRG vectors carrying insert coding for LGF2 and Gal11P respectively 
were used to express the respective fusion proteins as a further positive interaction control pair. 
 

In order to establish selection conditions of the B2H genetic system for a detection 

of low affinity interactions of EVH1 domains the bait and target plasmid pairs pBT-VASP (1-115) 

/ pTRG-ActA (332-344)F, pBT-VASP (1-115) / pTRG-ActA (332-344)W, pBT-VASP (1-115) / 

pTRG-ActA (332-344)A were co-transformed into competent cells of the E. coli XL1-Blue hisB 

MRF′ Kanr strain. Co-transformants were analysed for 3-AT resistant colony growth by plating on 

selective screening medium containing increasing concentrations of 3-AT viz., 0 mM, 0.25 mM, 

0.5 mM, 1.0 mM, 2.0 mM, 3.0 mM, 4.0 mM and 5.0 mM. Colony growth was observed at 3-AT 

concentrations up to 5 mM for co-transformants of pBT-VASP (1-115) with the pTRG-plasmids 

encoding the cognate ActA peptides i.e. ActA (332-344)F and ActA (332-344)W (Fig. 14). The 

non-binding mutant peptide ActA (332-344)A failed to support such growth even at the lowest 3-

AT concentration tested. The yeast LGF2 and Gal11P interaction pair used as a further positive 

control showed a similar 3-AT resistance phenotype but plated at a five fold higher plating 

efficiency due to their more robust interaction behaviour (Fig. 14).  

Expression levels of λcI-VASP EVH1 and λcI-Spred2 EVH1 were analysed 

immunologically in western blots with an anti-λcI polyclonal antibody. This antibody however 
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could not detect an expression of λcI-VASP EVH1 and λcI-Spred2 EVH1 fusion proteins even 

after using different minimal and rich media and various host strains. Yet, the anti-λcI antibody 

activity was confirmed by the λcI-LGF2 positive control. No EVH1 antiserum was available for an 

independent detection of the fusion proteins. It was concluded that although the expression levels 

of the EVH1 fusion proteins were below the detection limit of the anti-λcI antibody their local 

intracellular concentrations were nevertheless high enough to be detected genetically as assayed by 

transcriptional activation of the reporter gene cassette.  
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Figure 14: Establishment of B2H system for EVH1 domain interactions. Plating efficiency (percentage of cfu per 
ng of transformed plasmid) at increasing concentrations of 3-AT for co-transformants expressing appropriate fusion 
proteins either VASP EVH1 and two different ActA peptides (332SFEFPPPPTEDEL344 ( ) or 
332SFEWPPPPTEDEL344 ( )) or a pair of robustly interacting yeast proteins (LGF2 and Gal11p( )) is shown here. 
These data show the utility of the bacterial two-hybrid system for in-vivo detection of interactions between an EVH1 
domain and its binding peptides that have previously [24] been well-characterized in-vitro. 
 

 As a further test the potential for partner-independent self activation of each of the 

recombinant constructs was studied by transforming into the E. coli XL1-Blue hisB MRF′ Kanr 

reporter strain the recombinant plasmid encoding the chimeric protein together with its empty 

partner plasmid (pBT-X / pTRG empty plasmid; pBT empty plasmid / pTRG-Y) and assaying for 

colony growth on 3-AT selective and non-selective medium. Colony growth on non-selective 3-AT 

free medium plates confirmed that co-transformation of both bait and target plasmid confers double 

antibiotic resistance to the host cell to allow its growth in the presence of both antibiotics. No 

colony growth was observed on 3-AT selection plates showing the incapability of chimeric protein 
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alone to activate HIS3 gene transcription and thus confirming the lack of self activation for each of 

these genetic elements. 

In summary, the data from these experiments clearly demonstrate that an interaction 

of an EVH1 domain with its cognate binding motif which has been well-characterized in-vitro [24, 

29] could be successfully recorded in-vivo in a heterologous bacterial expression system which 

utilizes transcriptional activation of a reporter gene cassette to monitor these interactions. 

Specifically the data provide evidence that in the B2H system an EVH1 domain and its ligand can 

be co-expressed at levels sufficiently high to detect their physical interaction inside the bacterial 

cell with a genetic assay. We concluded that concentrations at and above 1 mM 3-AT are suitable 

selection pressures for detection of EVH1 domain-peptide interactions and the B2H system of 

Joung et al. should be a suitable interaction cloning system for identification of unknown EVH1 

domain-peptide interactions. 

 

5.2.4. Human brain cDNA library screening for candidate sequences harbouring binding 

epitopes of the Spred2 EVH1 domain and their physical and genetic characterization 

  A commercially available pTRG expression plasmid library of human brain cDNA 

in E. coli XL1-Blue MRF′ Kanr with an average insert size 1.08 kb and 1.65x106 cfu of primary 

clones was screened for candidate sequences harbouring binding epitopes of the Spred2 EVH1 

domain. Therefore the plasmid pool was isolated after amplification of the library without 

distortion of its sequence complexity and used for co-transformation with pBT-Spred2 (1-124) 

(Fig.15). Small scale pilot co-transformation experiments of pBT-Spred2 (1-124) and the pTRG 

clone pool from the amplified plasmid library into E. coli XL1-Blue MRF´ Kanr reporter strain 

were performed to determine the scale of transformation reactions required to fully cover the 

library’s sequence complexity for a comprehensive search of Spred2 EVH1 binding proteins.  

Two primary screenings of the library co-transformed with pBT-Spred2 (1-124) 

were performed at a selection stringency of 1 mM and 5 mM 3-AT. Colonies were grown on 

selective histidine-free medium containing 3-AT. Co-transformants were also plated on non-

selective 3-AT free medium to determine the co-transformation efficiency. Large number of 

colonies was obtained at the low stringency screen. Replica plating of several of these colonies 

under higher initial selection stringencies viz., 3 mM and 5 mM 3-AT again showed 3-AT resistant 

growth and did not lower the number of isolates significantly. Another library screening performed 

at higher initial selection stringency i.e. 5 mM 3-AT gave 291 colonies which were collected 

during the incubation at successive time periods of appearance i.e. early, intermediate and late 

appearing colonies. However the later result was not only due to an increased selection intensity, as 
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control transformations done in parallel revealed an unexpectedly low competence state of cell 

preparations used in this second experiment. 
 

1. EcoR I      2. Xho I       3. EcoR I + Xho I

4254 bp

M     1      2       3     M     1      2      3      M     1   2      3     M

1. EcoR I      2. Xho I       3. EcoR I + Xho I

4254 bp

M     1      2       3     M     1      2      3      M     1   2      3     M

 
Figure 15: Amplification and characterization of the human brain cDNA expression library. A 150 mm LB-
tetracycline plate of the amplified cDNA plasmid library after 48 hours of incubation at 37°C is shown here. The 
isolated pool of amplified clones is shown on a 1% agarose gel after single or double digestion with EcoRI and XhoI. 
The expression plasmids are shown at three different concentrations to identify the insert pool in the double digested 
samples (shown as lane ‘3’ in each set of concentration) showing its broad molecular size distribution. (‘M’ is 
molecular weight markers) 
 

The 3-AT resistant colonies selected in the primary screenings at 1 mM and 5 mM 

3-AT were further analysed by a secondary screening using a dual selection pressure i.e. 5 mM 3-

AT together with streptomycin (12.5 µg/ml) in histidine-free minimal medium. Replica plating of 

colonies from the primary library screenings again showed growth on this dual selection medium 

and no further differentiation of these clones with respect to their growth phenotype was possible 

with this strategy (Fig.16). Colonies with the positive control plasmid pairs pBT-VASP (1-115) / 

pTRG-ActA(332-344)F, pBT-VASP (1-115) / pTRG-ActA(332-344)W and pBT-LGF2 / pTRG-

Gal11P were used throughout this protocol and confirmed the efficiency of the dual selection. 

Colonies which arose at different time points of incubation (early, intermediate and late) in the 5 

mM primary screening showed no difference in growth behaviour in this secondary screening. 

Therefore, the secondary screening experiment was not found to be helpful in further selection of 

isolates obtained from primary screenings at 1 mM and 5 mM 3-AT. Physical characterization of 

20 dual resistant colonies from each library screening by colony PCR and restriction enzyme 

digestion analysis of their isolated target plasmids showed the expected heterogeneity in the insert 

size distribution with a molecular size range from 500 bp to 2000 bp indicating the clonal origin of 

each isolate (Fig. 17).  

Isolated target plasmids were further subjected to a genetic screening by a panel of 

genetic assay (Fig.18). Individual target plasmids of this clone collection were investigated against 
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a panel of bait expression plasmids to test linkage of the 3-AT resistance phenotype to the isolated 

plasmid, its EVH1 specificity of interaction and the absence of transcriptional self-activation by the 

target alone. Each target plasmid was co-transformed with pBT-Spred2 (1-124), pBT-VASP (1-

115) and an empty pBT plasmid into the E. coli XL1-Blue MRF′ Kanr reporter strain and analysed 

quantitatively for 3-AT resistant growth by determining its plating efficiency (PE value). If the 

growth phenotype is linked to the isolated target plasmid, the same phenotype should be observed 

after co-transformation of the target plasmid with pBT-Spred2 (1-124). Co-transformants of the 

same target plasmid with either the VASP EVH1 bait plasmid or an empty bait plasmid should not 

exhibit any 3-AT resistance phenotype above background if the target clone is specific for the 

Spred2 EVH1 domain and did not show any self activation. The plasmids pBT-LGF2 / pTRG-

Gal11P and pBT-VASP (1-115) / pTRG-ActA(332-344)F were used as positive control pairs in this 

experiment and the empty pBT / pTRG-Gal11P plasmid combination was used to determine the 

background PE value in this experiment. The bait plasmid encoding the Spred2 EVH1 domain 

together with either a target plasmid expressing Gal11P or the ActA (332-344)F peptide were used 

as non-cognate interaction pairs to determine the PE values of non-specific interactions. 
 

VASP EVH1 +
ActA (332-344)F

VASP EVH1 +
ActA (332-344)W Gal 4 + Gal 11P 

VASP EVH1 +  
ActA (332-344)A

VASP EVH1 +
ActA (332-344)F

VASP EVH1 +
ActA (332-344)W Gal 4 + Gal 11P 

VASP EVH1 +  
ActA (332-344)A

 
Figure 16: Secondary screening of primary isolates from cDNA library screening. Dual resistant colonies were 
obtained after replica plating on secondary screening minimal medium of the 3-AT resistant clones from the primary 
library screening. EVH1 control interacting pairs pBT-VASP EVH1 / pTRG-ActA(332-344)F and pBT-VASP EVH1 / 
pTRG-ActA(332-344)W, system positive control pair pBT-Gal4 / pTRG-Gal11P and the negative interacting pair pBT-
VASP-EVH1 / pTRG-ActA (332-344)A were also spotted on the same plate. 
 

The number of co-transformants (cfu) obtained per µg of DNA on non-selective 3-AT free 

screening medium and the number of 3-AT resistant colonies on selective screening medium were 
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determined to asses the efficiency of co-transformation (XFE) and the plating efficiency (PE). The 

latter is considered as a measure of the interaction strength between an interaction partner pair and 

was estimated by calculating the percentage of co-transformants able to grow on 5 mM 3-AT 

plates. PE values determined for each of the 20 target plasmid isolates should enable us to identify 
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Figure 17: Physical characterization of plasmid target isolates from the cDNA library screening. The expression 
target plasmids of dual resistant colonies from secondary library screening were physically characterized by enzyme 
digestion (Fig. a) after separation from the bait plasmid and colony PCR (Fig. b) using the primers flanking insert 
cloning sites. In Fig. a and b, the expected heterogeneity in the insert size distribution is seen after 1% agarose gel 
electrophoresis. In fig a and b, ‘M’ represents the molecular weight marker. 
 

by these genetic assays candidates for the Spred2 EVH1 binding proteins in this clone collection 

and give a first estimate of the false positive rate inherent to the experiment. A plasmid pair 

encoding interaction partners with a very high interaction strength should achieve nearly maximal 

PE values i.e. almost every co-transformed colony will also grow in the presence of 3-AT. A non-

interacting pair should give a background PE value ideally not larger than 0.1% while a plasmid 

pair of intermediate interaction strength could achieve any PE value in between this range. Due to 

its low binding affinity, an EVH1-ligand pair is expected to give PE values in the lower range but 

significantly above background as it has been determined for the positive control pair of the VASP 

EVH1 mediated interaction. This experiment should therefore identify among the dual resistant 

clone collection candidate target plasmids capable of specific interaction with the Spred2 EVH1 

domain which will be analysed by sequencing (Table.8). The empty pBT / pTRG-Gal11P plasmid 
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pair had scored at a background value of 0.5% and the pBT-LGF2 and pTRG-Gal11P plasmid pair 

which served as a positive control achieved PE values of 57% which is nearly 100 fold above the 

background. The pBT-VASP (1-115) / pTRG-ActA(332-344)F plasmid pair serving as a EVH1 

interaction control scored at 9.2% which is nearly 5 fold below the maximal activity and thus 

nearly 20 fold above the background. None of the pTRG isolates showed evidence for 

transcriptional self activation. However none of the 3-AT resistant pTRG isolates showed Spred2 

EVH1 specific PE values in a range similar to that observed for the VASP EVH1 domain. Only 

one out of 10 pTRG isolates (pTRG-II-4 in Table.8) showed a PE value sufficiently above the 

background and with a Spred2 EVH1 specific interaction. However it encodes an out-of-frame 

fragment of NADH dehydrogenase. All of the other dual resistant target plasmids were also 

sequenced and they did not show any in-frame inserts. 
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Figure 18: Validation of target plasmid isolates from library screenings by three different genetic assays.  
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5.2.5. Summary 

  The B2H system successfully recorded the physically well characterised interactions 

of the VASP EVH1 domain with its ligands by a dose-dependent 3-AT resistant growth of the 

respective clones which were used as positive controls throughout the experiments. Screenings of a 

human brain cDNA expression plasmid library for Spred2 EVH1 ligands performed at two 

different selection stringencies did not detect Spred2 EVH1 specific interactions among the clones 

characterized and thus seems to be completely dominated by false-positive isolates. These isolates 

which were identified as positives after the primary and secondary screenings did not show PE 

values significantly above background and carry target peptide sequences with stop codons. The 

panel of genetic assays developed in the context of validating candidate clones was found to be 

efficient and useful in assaying isolates of the library screening. The PE values of the target 

plasmid isolates clearly indicate them as false positives since the PE values of the linkage assay are 

in the same low range as those observed for the non-cognate interactions. Therefore it is not clear if 

the bacterial two-hybrid experiments had been performed at selection stringencies either too low or 

already too high for a detection of Spred2 EVH1 specific interactions as of course no data are 

available on binding affinities of this domain. Binding to this domain might well occur at affinities 

much lower then those known for VASP EVH1 class 1 ligands in which case it would be almost 

impossible to detect such interaction strengths in a B2H screen as shown by our experimental 

results. Searching a cDNA library with its large insert sizes for small candidate binding epitopes of 

an EVH1 domain might be particularly challenging due to the presence of the large background 

sequence information which is unrelated to the targets searched for. A biased or incorrect folding 

of host proteins upon heterologous expression in a bacterial cell might be another possible reason 

for missing any domain-specific interactions in this in-vivo interaction cloning approach (i.e. its 

suspected false-negative rate). Controlled in-vitro affinity selection with the purified and natively 

folded protein domain for short peptide target epitopes exposed on phage particles would be an 

alternative approach for detecting Spred2 EVH1 binding epitopes. Therefore a phage display 

library screening experiment was performed. 
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Target plasmid          Bait plasmid PE value Genetic assay

pTRG-Gal11p pBT 0.5 % (-) control

pTRG-Gal11p pBT-LGF2 57 % (+) control

pTRG-ActA (332-344)F pBT-VASP EVH1 9.2 % (+) control

pTRG-Gal11p pBT-Spred2 EVH1 0.9 % S

pTRG-ActA (332-344)F pBT-Spred2 EVH1 0 % S

pTRG-I-2 pBT-Spred2 EVH1 0.3 % L

pTRG-I-2 pBT-VASP EVH1 1.5 % S

pTRG-I-4 pBT-Spred2 EVH1 1.0 % L

pTRG-I-4 pBT-VASP EVH1 1.0 % S

pTRG-II-1* pBT-Spred2 EVH1 0.6 % L

pTRG-II-1* pBT-VASP EVH1 0.4 % S

pTRG-II-4§ pBT-Spred2 EVH1 2.4 % L

pTRG-II-4§ pBT-VASP EVH1 0.9 % S

pTRG-II-5& pBT-Spred2 EVH1 0.8 % L

pTRG-II-5& pBT-VASP EVH1 0.3 % S

pTRG-II-6 pBT-Spred2 EVH1 2.0 % L

pTRG-II-6 pBT-VASP EVH1 2.4 % S

pTRG-II-7 pBT-Spred2 EVH1 1.4 % L

pTRG-II-7 pBT-VASP EVH1 2.8 % S

pTRG-II-12 pBT-Spred2 EVH1 0.4 % L

pTRG-II-12 pBT-VASP EVH1 0.7 % S

pTRG-II-18 pBT-Spred2 EVH1 0.7 % L

pTRG-II-18 pBT-VASP EVH1 1.9 % S

pTRG-II-25 pBT-Spred2 EVH1 0.4 % L

pTRG-II-25 pBT-VASP EVH1 0.9 % S

No target clone shows transcriptional self-activation (0.01 % < PE < 0.5 %)
* in-frame insert, §, & out-of-frame insert

 
Table 8: Summary of genetic assays on target plasmid isolates to determine the linkage to growth phenotype [L] 
and EVH1 specificity of interaction [S]. Target plasmids from dual resistant clones of library screenings were 
isolated after physically separation from bait plasmid and assayed by a panel of genetic assays as shown in Fig. 18. In 
these assays, the interaction strength was determined quantitatively as the plating efficiency values (PE). No target 
isolates shown transcriptional self-activation (data not shown). pTRG-Gal11P / pBT-LGF2 and pTRG-ActA (332-344)F 
/ pBT-VASP EVH1 plasmid pair were used as positive control. pTRG-Gal11P / pBT empty plasmid was used as 
negative control interaction pair. 
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5.3. In search for binding epitopes of the Spred2 EVH1 domain: Genetic screening using a 

phage display library  

 

5.3.1. Motivation for the experimental approach chosen 

  The identification of candidate sequences encoding Spred2 EVH1 binding proteins 

based on a cDNA expression library screening by the bacterial two-hybrid system of Chapter 5.2 

was only of limited success despite the proper use of a control panel of interaction clones and the 

careful calibration of selection conditions. The results obtained were dominated by a unexpectedly 

high false-positive rate with a complete missing of any Spred2 EVH1 specific clones isolated as 

assayed by a set of genetic tests performed on random selections of these primary isolates in 

conjunction with a sequence characterization of their inserts. Based on our knowledge of EVH1 

domain-ligand interactions (see Chapter 2.2) one possible explanation for these negative findings 

might be related to the rather small target sizes of the expected Spred2 EVH1 binding epitopes 

which have to be identified in the highly complex sequence space spanned by a cDNA expression 

library. Any discrimination of sequence stretches coding for such small candidate binding epitopes 

among these large collections of naturally occurring cDNA sequences would thus be expected to be 

very demanding due to the presence of the large background sequence information unrelated to the 

targets. A further biological problem to cope with by any in-vivo interaction cloning approach 

might be based on the limited accessibility to the domain of interest of the candidate binding 

epitopes which could be due to a biased or incorrect folding of their host proteins upon 

heterologous expression in a bacterial cell. 

  In recent years, phage display technology has evolved into a powerful and 

independent research tool providing several advantages to define natural protein-protein 

interactions and to delineate ligand binding motifs for different adaptor domains (see Chapter 

2.3.3) [199] [200]. In contrast to B2H system technology which operates as an in-vivo binding 

assay between heterologously expressed proteins, phage display allows for an in-vitro screening of 

peptide libraries of restricted target sizes which are displayed on the surface of individual phage 

particles. This set-up provides not only a direct physical link between the expressed target peptides 

and their encoded genetic information in the viral genomes but also facilitates target accessibility to 

the bait protein. Libraries displayed on the phage virion surface however are repertoires of mostly 

non-natural peptide sequences which are generated by randomization to cover a comprehensive set 

of sequence combinations. It was successfully applied to identify peptide ligands for a number of 

SH3 domains and discovered first insights into the molecular determinants of SH3 domain affinity 

and selectivity [201]. Furthermore, recent studies have demonstrated the utility of this approach in 
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identifying the specificity profiles for proline rich motifs (PRM) of PDZ domains from phage 

display peptide libraries [154]. It is well-known from the other EVH1 domain classes that they bind 

to short proline rich epitopes. Expression and display of such short target peptides on phage virions 

not only restricts the target size but also favourably limits the sequence space complexity compared 

to the situation in a B2H system. An important feature of phage display is that conditions can be 

designed for screening of phage with either modest (Kd as high as 500 µM) or high (Kd as low as 5 

pM) affinity for the target [202]. Therefore, phage display library screening was considered as a 

complementary and independent experimental approach for identification of Spred2 EVH1 binding 

epitopes which are in general expected to interact with low affinity. However in-vitro screening of 

such phage display peptide libraries by affinity selection requires a purified and biologically active 

bait protein. Heterologous expression of the bait domain as a fusion protein is thus a prerequisite 

for possible identification of its binding epitopes provided the protein is natively folded and 

biologically active in order to retain its binding region in a binding competent state to interact with 

target epitopes. The Spred2 EVH1 domain fused to a GST tag was successfully expressed and 

purified in our laboratory from E. coli in a physical state suitable for NMR structure determination 

of this domain. The purified Spred2 EVH1 protein has thus proven to be properly folded and is 

therefore expected to be in a biologically active conformation (Fig.24). Hence, the GST fused 

Spred2 EVH1 domain prepared according to these protocols was used for a phage display peptide 

library screening to search for its binding epitopes. Since the peptides displayed on phage virions 

may interact with different possible target regions available on the bait protein’s surface including 

the fusion partner, appropriate control proteins have to be used in order to assess the specificity of 

interaction. Screening of phages populations are therefore controlled by using suitable negative and 

positive controls to monitor the enrichment of phage variants interacting with the Spred2 EVH1 

protein.  

 

5.3.2. Introduction to phage display technology and overview of the experimental procedure 

Several phages are described in the literature for use as vectors with phage display 

experiments including filamentous phage M13 as well as the icosahedral phages such as T4 and 

T7. Most of the protein engineering tools using phage display are developed for filamentous phage 

M13. The native M13 phage particles are of thin, cylindrical shape, usually 930 nm long and 6–7 

nm in diameter with a single stranded DNA genome (6,400 nucleotides in length) encoding 11 

genes, of which five codes for the coat proteins. The major coat protein pVIII present in almost 

2,700 copies is responsible for encapsulating the phage DNA. The distal end of the phage particle 

is capped by five copies each of pVII and pIX and the proximal end contains four to five copies of 
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each of pVI and pIII [148, 153](Fig.19). Upon infection of E .coli cells possessing F-pili, the 

single-stranded genome of M13 first replicates to a double-stranded form which serves as a 

template for production of viral proteins and single-stranded DNA progeny. The single stranded 

DNA eventually is extruded from the host cell through the inner membrane and is encapsulated by 

the five coat proteins residing in the outer membrane during the release [153] [148]. pIII and pVIII 

are most commonly used to display peptides/domains/proteins or even libraries of antibodies [149]. 

The repertoire of peptides expressed as N-terminal fusion partners to the phage coat protein is 

based on a viral gene library constructed in a phagemid vector system which enables screening of 

large collections of phage variants for the target of interest (Fig.19). Display of peptides on the 

major coat protein pVIII offers high copy numbers of target sequences for high throughput 

screening, though only short peptides of length up to 9 amino acids could be displayed using this 

fusion partner [158].  
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Figure 19: Overview of the phage display system. Peptides are displayed using plasmid based “phagemid” vectors 
that contain a gene encoding only one of the phage’s capsid proteins (gene VIII as shown in figure), an Ampicillin 
resistance gene and Ff origin to allow production of single-stranded vector DNA for subsequent encapsidation into 
phage particles. The gene of the peptide to be displayed (shown as (xxx)n in figure) is cloned into the phagemid to fuse 
it N-terminally to the capsid protein. When E. coli cells containing the phagemid are infected with helper virus which 
lack package capability, wild type phage proteins from the helper phage genome as well as a small amount of fusion 
protein encoded by the phagemid are expressed and the phagemid DNA get packaged into viral particles that display 
both wild-type and fusion capsid proteins. 
 

Although there are several different potential variations of the phage display 

approach, many investigators have used cloning systems in which the DNA sequences encoding 
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the coat protein target-peptide fusions are carried within a plasmid or phagemid that also contains a 

filamentous phage origin of DNA replication (Fig.19). Consequently, when permissive E. coli 

strains containing these plasmids/phagemids are later infected with helper phages supplying the 

other native phage proteins, the resulting phagemid constructs are efficiently packaged into phage 

particles (see Chapter 2.3.3). Protocols for affinity selection of phages on the basis of their 

specificity and affinity for the bait protein are focused on screening to progressively enriched 

phage variants. A basic affinity selection protocol for phage binding requires immobilization of the 

purified and biologically active bait protein via its tag to a matrix, addition of the phage variants, 

washing away those variants that did not bind to the bait, elution of the bound phages and their 

amplification by infection of host bacteria for subsequent rounds of selection. This process of 

selection of phages by binding, washing and elution on an immobilized bait protein is called 

‘panning’. For immobilization of the bait protein, there are a variety of assay formats and a number 

of commercially available supports including suspended resins or beads. After immobilization of 

the bait to the support, the remaining sites on the support are generally blocked with unrelated 

proteins such as BSA or powdered milk. Bound phage variants are eluted from immobilized bait in 

general by simply reducing pH followed by a neutralization step. Each cycle of binding, washing 

and elution then results in a subpopulation of phages being enriched for interaction with the bait at 

the expense of those variants which bind with decreased affinity. As enrichment of binding-

competent phages increases in the course of selection, its stringency could be increased. By using 

multiple washing steps and increased washing times, phages encoding binding peptides with lower 

dissociation rate constants can be selected. Thus, even relatively rare binding phage variants can 

finally be rescued from large library repertoires by the combination of in-vitro affinity selection 

and in-vivo amplification. An identical selection procedure against the tag alone which is used to 

immobilize the bait protein serves as a negative control and any enrichment of phages against this 

fusion protein or the matrix is considered as a background signal. A well-characterised adaptor 

domain whose interacting target peptides have already been characterized by using the same library 

serves as a positive control to monitor panning rounds, washing and eluting procedures. After each 

panning round, the titers (pfu) of the phage variants eluted from either the bait protein or the tag 

moiety alone are determined by infection of E. coli to calculate an enrichment factor achieved in 

each panning round. The enrichment factor for a bait protein is the pfu ratio of the phages eluted 

from that protein to the phages eluted from the tag moiety alone. As enrichment of phages binding 

to the bait protein is expected to increase in successive panning rounds, the enrichment factor 

should also increase depicting a specific interaction of the bait protein with its cognate target 

peptides. Specific target binding and successful phage propagation in a phage display screening are 
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thus tracked by monitoring the enrichment factor and its final saturation. After several rounds of 

selection the eluted phage populations are cloned into single plaques for further physical analysis 

of phagemids encoding individual target peptides. 
 

 Receptor-Coated
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 Phage

Elute Bound
Phage

Repeat the panning with eluted phages
Phage display library
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Figure 20: Affinity selection by phage display methodology. The most commonly used selection method in phage 
display is affinity based and is usually referred to as “panning”. Typically the query protein is immobilized on a solid 
support and the phage display library is then incubated with the support to allow binding between the immobilized 
query protein and the appropriate phages. Unbound phages are then removed by washing steps. Elution of the 
specifically bound phages can be accomplished by brief incubation at low pH. This process is repeated using the same 
query protein with the eluted phages for further rounds of selection to enrich more specifically bound phages. 
 

Phage display peptide library screening for Spred2 EVH1 binding epitopes has been 

carried out by using a 9mer peptide library fused N-terminally to the major capsid protein, pVIII of 

M13 (Fig.19). It was donated by Dr. Cesareni’s group [158]. As the majority of the EVH1 domain 

family members are known to bind short epitopes containing proline-rich motifs of 4–6 amino 

acids long (see Chapter 2.2), this 9mer randomised library was expected by us to be suitable for 

determining peptide motif epitopes even for a new class of the EVH1 family such as the Spred2 

EVH1 domain. The same library has already been used successfully in determining the short target 

epitopes for one of the SH3 domains [203].  

 

5.3.3. Preparation and characterization of the bait fusion protein and its controls 

The GST-fused Spred2 EVH1 domain was used for phage display library screening 

experiments. It was expressed from the recombinant pGEX-4T-2-hSpred2 EVH1 (1-124) plasmid 

in E. coli BL-21 cells in 2 X YT medium after induction with IPTG. The expressed fusion protein 

was isolated from the harvested cell lysates by GSH affinity column chromatography and further 

purified by gel filtration chromatography on a Sephadex 75® column through FPLC. The protein 

obtained after each chromatography step was analysed by SDS-gel electrophoresis (Fig.21). The 

protocols used for expression and purification of GST-Spred2 EVH1 were the same as used for 

preparation of isotopically labelled samples utilized in NMR structure determination of domain 
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(Fig.24). The natively folded conformation of freshly expressed GST-Spred2 EVH1 domain fusion 

protein was assayed by 1H NMR spectroscopy after treating the protein sample with D2O in 1:10 

ratio (v/v). The NMR spectrum confirmed that the sample of GST fusion protein used as bait in the 

phage display library screenings was natively folded and is expected thus to be biologically active 

(Fig.21). Target binding regions required for the interaction with a ligand should therefore be 

exposed on the surface of the bait protein. GST fused Fyn-SH3 domain and the GST moiety alone 

were expressed, purified and certified for their biologically active form according to the protocol 

used in Dr. C. Freund’s laboratory. They were used as positive and negative control proteins 

respectively during phage display library screening experiments with the Spred2 EVH1 domain. 

The GST-Fyn-SH3 fusion protein had already been successfully screened with the same M13 

X9mer peptide library [204] and it could thus be used as a well-defined positive control protein to 

monitor the panning rounds also against the GST-Spred2 EVH1 domain in our experiments. 

GST-Spred2 EVH1

36 kDa
45 kDa

GST-Spred2 EVH1

36 kDa
45 kDa

GST-Spred2 EVH1

36 kDa
45 kDa

GST-Spred2 EVH1

36 kDa
45 kDa

 
Figure 21: Isolation and characterization of the bait fusion protein. The 1H NMR spectrum shows the natively 
folded conformation of freshly purified GST-Spred2 EVH1 domain fusion protein which is expected thus to be 
biologically active in the experiments. Inset figure: A 10% SDS gel electrophoresis showing GST-Spred2 EVH1 
purified consecutively by GSH-affinity column chromatography and gel filtration chromatography on a Sephadex 75® 
column through FPLC after expression and harvest from cell lysates. The protein was loaded after serial dilution and 
shows the expected molecular weight. 
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5.3.4. M13 phage display peptide library screening for binding epitopes of the Spred2 EVH1 

domain and physical characterization of phagemids from the isolated phage variants 

The GST-Spred2 EVH1 fusion protein had been immobilised to GSH-Sepharose 

beads and panning was performed by using the M13 X9mer peptide library in order to select phage 

variants expressing its binding epitopes [156]. GST fused Fyn-SH3 domain [204] and GST alone 

were used aside as appropriate positive and negative control protein respectively. Phages eluted 

after binding from each round of panning were used for a successive round against the same query 

protein after their amplification by infection of E .coli along with the packaging-defective helper 

phages (Fig.20). After each panning round, titers (pfu) of phages bound to the GST-Spred2 EVH1 

and the GST-Fyn-SH3 fusion proteins were determined to estimate the enrichment factor achieved 

for the domain of interest (see Chapter.4.2.5). Three successive panning rounds were performed for 

the GST-Spred2 EVH1 domain in our phage display screening experiments.  
 

 

Enrichment factor Panning 
round GST-Fyn-SH3 

(Positive control)
GST-Spred2 EVH1 

(Bait protein) 
1 0.4 820 
2 300 500 
3 5 x 103 1 x 104 
4 2 x 104 -  

Table 9: Enrichment factors achieved during phage display experiments. Enrichment factor for GST-Fyn-SH3 
protein used as a positive control and GST-Spred2 EVH1 protein used as bait are shown until different rounds of 
panning against M13 X9mer phage display library. 

 

In general as described above, the first round of panning would enrich very low 

numbers of specifically bound phages against any protein of interest due to the highly diverse 

peptide repertoire of the phage library. This value should increase in the next rounds of panning if 

specifically bound phages could be enriched further by eliminating non-binding and non-

specifically binding phages. The positive control protein GST-Fyn-SH3 showed a continuous 

increase in enrichment for bound phages with every round of panning until saturation. The first 

round showed an enrichment factor of 0.4 and then 300 in the second round of panning. Finally, it 

has reached almost a saturation value after four rounds (5x103 in third and 2x104 in fourth round of 

panning) indicating a domain-specific peptide interaction (See second column in Table. 9). These 

results demonstrate a successful performance of the phage display screening experiment according 

to the protocols used. In contrast, the GST-Spred2 EVH1 domain fusion protein showed an 

abnormally high enrichment factor i.e. 820 for bound phages against the same M13 X9mer peptide 
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library already in the first round of panning suggesting highly non-specific interactions. The next 

panning round for this domain showed a slightly decreased enrichment factor i.e. 500 which is 

however in the same range as observed for the positive control protein at this stage of the 

experiment (See third row in Table.9). Unexpectedly, the third round of panning against the GST-

Spred2 EVH1 domain fusion protein achieved a high enrichment factor of 1x104 which is in the 

same saturation range as observed for the GST-Fyn-SH3 protein (Table.9). Similar panning rounds 

of the eluate phages from the bait protein of interest against the GST moiety alone showed a 

declining enrichment in successive steps indicating that neither the GST tag nor the matrix 

unspecifically bind phages of the library used here. Phages eluted from the other two bait proteins 

are then physically characterised. 
 

(a) GST-Fyn SH3, after 3rd round

(b) GST-Spred2 EVH1, after 3rd round

M C

Positive
Negative

Query phagemids

Query phagemidsM C

Positive
Negative

(a) GST-Fyn SH3, after 3rd round

(b) GST-Spred2 EVH1, after 3rd round

M C

Positive
Negative

Query phagemids

Query phagemidsM C

Positive
Negative

 
Figure 22: Physical characterization of isolated phagemids. Inserts of the phagemids of the elute phages after the 
third round of panning were amplified by colony PCR after infecting E. coli cells and the products were analysed on a 
1% agarose gel. In lane ‘C’ of both Fig. a and b, upper band with nearly 50 bp higher molecular weight than the lower 
band represents an amplified product of a positive recombinant phagemid carrying an insert and lower band represents 
negative phagemids without any inserts. All the phagemids of phages selected against GST-Fyn SH3 protein (Fig. a)  
showed inserts of the expected size as shown in lane ‘C’ where as majority of the phagemids of phages selected against 
GST-Spred2 EVH1 protein were devoid of any inserts (Fig. b). 
 

Therefore eluted phages after the third round of panning against both proteins were 

analysed by colony PCR of single plaques which amplifies the phagemid insert regions of 

individual isolates in order to identify phagemids with inserts encoding binding motifs. Bacteria 

infected with the eluted phage population were grown on LB-amp plates and plaques were used to 

perform colony PCR with primers flanking the insert cloning sites of the phagemid (see Chapter 

4.2.5). PCR products of these phagemid isolates were analysed on a 2% agarose gel to differentiate 
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by a slightly higher molecular weight those isolates carrying inserts from empty phagemids without 

any insert. The molecular mass difference between the PCR products of a recombinant vs. an 

empty phagemid is less than 50 base pairs due to the short insert sizes which nevertheless can be 

well differentiated on a 2% agarose gel. Insert-harbouring positive phagemid isolates recognised on 

the agarose gel were then further characterised by sequence analysis of their inserts. 
 

Clone 3:   M L S F A A E G E F D A L * T L R H Q-----------D P A K A A 
Clone 8:   M L S F A A E G E F K P G T P A P * T -----------D P A K A A 
Clone 19: M L S F A A E G E F R T S L S H G Y T ---------- D P A S I L R A 
Clone 25: M L S F A A E G E F G A R P V P P P P V G S S D P A K A A 
Clone 34: M L S F A A E G E F P * P T A R I A P ------------ D P A K A A *
Clone 37: M L S F A A E G E F * D Q A A C S V T -----------D P A K A A 
Clone 40: M L S F A A E G E F * ----------------------------------D P A K A A *
Clone 43: M L S F A A E G E F * ----------------------------------D P A K A A *
Clone 44: M L S F A A E G E F Q N * N A G R F M ----------D P A K A A 
Clone 48: M L S F A A E G E F * * P A V S H L R------------- D P A K A A 
Clone 49: M L S F A A E G E F L P K * P K A H L------------D P A K A 

 
Figure 23: Sequence alignment of insert coding sequences of the positive phagemid isolates. The recombinant 
phagemids recognised as positives in the colony PCR were isolated and their inserts were sequenced. Sequence 
alignment of this region is shown in the figure. The amino acids shown in bold gave insert coding sequences of 
recombinant phagemids and * represents the position of stop codons.  

 

All the phagemid isolates obtained from a sample of eluted phages of the third round 

of panning against the GST-Fyn-SH3 domain showed a higher molecular weight than an empty 

control phagemid in this colony PCR amplification (Fig.22a). This result indicates a successful 

enrichment achieved in the panning with this query protein and is in line with the titration results 

described above. Colony PCR of clones obtained from phages of the third round of panning against 

the GST-Spred2 EVH1 protein however shows that the majority of their phagemids (90%) did not 

contain any insert to express a peptide (Fig.22b). Recombinant phagemids from colonies of the 

remaining 10% of insert-contained phages form the third round eluates against the Spred2 EVH1 

domain were then isolated, sequenced and analysed for their insert coding sequences. The sequence 

results of this subpopulation showed an assortment of recombinant phagemids carrying either stop 

codons or short peptide encoding sequences or even empty phagemids (Fig.23). Two positive 

phagemids with inserts having a continuous ORF without a stop codon were found among nine 

negative clones (see clone 19 and 25 in Fig.23). Surprisingly one of them contained a larger than 

9mer insert and shows a 13mer proline-rich sequence. The other phagemid with continuous ORF 

contained an unrelated sequence that exhibits no proline-rich peptide motif. Isolation of a 13mer 

sequence selected in this phage display peptide screening was unexpected given that the library 
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was initially constructed to expresses 9mer peptides. No further similar sequences to support this 

ligand motif could be enriched in our phage display library screening for Spred2 EVH1 binding 

epitopes. 

 

5.3.5. Summary 

The phage display screening experiment for Spred2 EVH1 binding epitopes was not 

very informative and revealed unexpected results. When compared to the positive control screening 

experiment using the GST-Fyn SH3 protein, the highly non-specific performance of the former 

screening was evident. Positive phage enrichment seems not to be possible for the Spred2 EVH1 

domain due to the high number of phages obviously interacting non-specifically with this domain. 

The majority of phages isolated against the Spred2 EVH1 domain surprisingly either carried no 

insert or inserts with stop codons suggesting a dramatic lack of specificity in the interactions with 

this domain compared to the Fyn-SH3 domain and the GST moiety alone. The results obtained 

seem to suggest that the pVIII major coat protein is not an inert scaffold protein with respect to the 

Spred2 EVH1 protein and its N-terminal fragments might already display sticky epitopes that 

interact with the Spred2 EVH1 domain. No such behaviour is observed for the Fyn SH3 domain or 

GST alone. However, detection of a 13mer proline rich sequence from the Spred2 EVH1 screen 

was particularly surprising in this context as it might have been possible only if there was a 

sufficiently strong interaction of the Spred2 EVH1 domain with this target peptide leading to its 

selection. Even though the phage display peptide library screening experiment did not perform in 

the expected manner for the Spred2 EVH1 domain, this 13mer sequence identified in the screen 

might be helpful as an initial cue for further analysis by SPOT scan and amino acid substitution 

assays. Taken the results obtained from screening of an in-vivo expression library and an in-vitro 

peptide display library seriously, our working hypothesis on the peptidergic nature of a Spred2 

EVH1 ligand might be questioned. Non-peptidergic interactions were therefore considered for this 

domain in further experiments as already described in other adaptor domains of the SH3 class [120, 

205].  
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5.4. In search for binding epitopes of the Spred2 EVH1 domain: Biochemical screening using 

in-vitro binding assays for non-peptidergic interactions 

 

5.4.1. Motivation of the experimental approach chosen 

  Two interaction cloning strategies employing a bacterial two-hybrid and a phage 

display system has been used in the course of this work for binding epitope identification of the 

Spred2 EVH1 domain. Both approaches were based on the assumption that Spred EVH1 ligands 

will form peptidergic epitopes. The two-hybrid system utilizes in-vivo co-expression of the Spred2 

EVH1 domain from a low copy number expression plasmid vector together with a target cDNA 

expression library under conditions of growth indicative of a productive protein interaction. The 

phage display system in contrast relies on in-vitro interaction of the purified and natively folded 

Spred2 EVH1 protein with a repertoire of short peptides exposed on the surface of phage particles 

followed by enrichment of interacting phages from these display libraries. Both approaches were 

shown in our experiments to be capable of detecting domain: peptide interactions successfully in 

appropriate controls run in parallel. However the experimental results of both the bacterial two-

hybrid and the phage display library screens for Spred2 EVH1 binding epitopes were found to be 

dominated by false-positive isolates precluding a reliable identification of candidate clones 

although probably for different biological reasons. The inability to find Spred2 EVH1 ligands with 

these genetic techniques has therefore cast some doubt on the underlying assumption that a Spred2 

EVH1 ligand will form a peptide. Analysis of the newly available NMR structure of the Spred2 

EVH1 domain (accession number “2JP2” and Fig.24) revealed an unusual surface charge 

distribution showing patches of pronounced positive charge distribution in the putative binding 

cleft region which is not observed in the other EVH1 classes (Fig.24). We therefore considered an 

interaction of this domain with a negatively charged ligand probably of non-peptidergic nature to 

counterbalance this unique charge pattern. Some non-EVH1 adaptor domains like the C-terminal 

SH3-C domain of the Adhesion and degranulation-promoting adapter protein (ADAP) [120], PDZ 

domains of syntenin-1 and syntenin-2 [206], the PH domain of phospholipase C-δ1 [207] also 

showed a positive surface charge distribution and were found experimentally to interact with 

phospholipid molecules. We therefore studied a possible interaction of the Spred2 EVH1 domain 

with several types of phospholipids using biochemical in-vitro binding assays. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

 

Figure 24: NMR structure of the hSpred2 EVH1 domain. The NMR structure of human Spred2 EVH1 domain has 
been resolved recently and submitted under the accession number “2JP2” by SGC (Oxford) in collaboration with our 
Institute. Fig. a shows a back view, Fig b, c and d show the front view of the domain highlighting its binding surface. 
The domain is composed of a C-terminal α-helix and seven β-sheets. The binding groove for accommodating the still 
unknown ligands is seen in the front view. Electrostatic surface potential revealed patches of positive surface charge in 
the binding groove shown in blue colour in Fig. c. Distribution of surface hydrophobicity as shown in Fig. d points to 
an involvement of hydrophobic residues in the organisation of this ligand binding site. Hydrophobic patches are shown 
in yellow and hydrophilic patches are shown in green colour coding in Fig. d. 
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5.4.2. Introduction to protein-phospholipid binding assays and overview of the experimental 

procedure 

Protein: phospholipid binding assays were performed in our study in a solid phase 

overlay format or a liquid phase binding format. The solid phase overlay assay is carried out by 

using a GST fusion construct of the Spred2 EVH1 domain binding to a solid phase membrane 

carrying different types of pre-spotted phospholipids [208] (Fig.25a), hence it is also considered as 

a SPOT test. This assay can determine not only the type of phospholipids but also the 

phosphorylation pattern of their isomers involved in interaction with a protein module of interest. 

Membrane-bound protein molecules interacting with a specific phospholipid are detected 

immunologically after blocking non-specific binding sites by an anti-GST primary antibody 

followed by HRP tagged secondary antibody and a chemiluminescence signal. The N-terminal SH3 

domain of human ADAP protein fused to a GST tag (GST-ADAP SH3-N) was used as a negative 

control in our phospholipid overlay experiments since it is known to be inactive to the array of 

phospholipids analysed here. 
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Figure 25: Protein:phospholipid solid phase overlay experiment. (a) Scheme depicting a membrane strip with 
different phospholipids spotted on it. (b) Such membrane was incubated with GST-Spred2 EVH1 protein and the 
bounded protein was detected by immunoblotting with a primary antibody against GST. The Spred2 EVH1 showed 
interaction with phosphatidyl inositol phosphorylated preferably at its 3’, 4’ and 5’ sites. ADAP SH3-N protein used as 
negative control had shown no interaction with the same phospholipids. 
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Another assay format for studying protein:phospholipid interactions is available in 

liquid phase by a liposome sedimentation assay. Liposomes are artificially generated spherical 

vesicles dispersed in aqueous phase that consist of an aqueous core enclosed by one or more 

amphiphilic layers of the phospholipid to be tested along with phosphatidylcholine (PC) and 

phosphatidylserine (PS) to mimic plasma membrane’s lipid composition. Liposomes can vary in 

charge and size depending on the method of preparation and the composition of the lipids used. 

There are different types based on their size viz., multi-lamellar vesicles (MLV, size range 0.1–5.0 

µm), small uni-lamellar vesicles (SUV, size range 0.02–0.05 µm) and large uni-lamellar vesicles 

(LUV, size range from 0.06 µm). Protein: phospholipid interaction studies using liposomes have 

been performed to reveal biological relevant interactions like those of the ADAP SH3-C domain 

with phosphatidyl inositol phosphates in a mixture of phosphatidylcholine (PC)/phosphatidylserine 

(PS) [205] [120, 172]. This assay analyses in a quantitative manner binding of a biologically active 

bait protein in solution to different concentrations of liposomes containing a small fraction of a test 

phospholipid. Free unbound and phospholipid-bound protein fractions are separated by differential 

centrifugation of the reaction mixture into a liposome-free supernatant and the liposome-containing 

pellet respectively (Fig.26). Unbound protein remaining in the supernatant is detected by its 

tryptophan fluorescence or by SDS gel electrophoresis of equivalent amounts of pellet and 

supernatant fractions. A reaction mixture without liposomes but the same amount of bait protein as 

in the binding reactions is used as the blind value giving the protein concentration maximally to be 

present in the supernatant if no binding at all occurs. Natively folded bait protein without any 

fusion tag is required in a mono-disperse preparation for these experiments and Spred2 EVH1 

protein was prepared accordingly. The C-terminal SH3 domain of human ADAP protein (ADAP 

SH3-C) which is known to interact with phosphatidyl inositol phosphorylated at 3, 4 and 5 sites 

was used as a positive control in our experiment [120, 205]. Not only due to the quantitative 

information obtained from it but also due to the physical state of its binding substrates the liposome 

sedimentation assay is considered as a more sensitive and less error-prone assay format compared 

to the semi-quantitative overlay assay which can at best only provide initial evidence for binding.  

 

5.4.3. Preparation and characterization of the Spred2 EVH1 domain and the control proteins 

The Spred2 EVH1 domain was used either as a GST- fusion protein or alone for the 

phospholipid interaction experiments. The GST-Spred2 EVH1 domain fusion protein was 

expressed and purified from the pGEX- 4T-2-hSpred2 (1-124) recombinant plasmid in E. coli BL-

21 cells as described in Chapter. 5.3.3. The natively folded conformation of freshly expressed 

GST-Spred2 EVH1 domain fusion protein was assayed by 1H NMR spectroscopy after treating the 
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protein sample with D2O in 1:10 ratio (v/v). The NMR spectrum confirmed that the sample of GST 

fusion protein used as bait in the phospholipid overlay assay was natively folded and is expected 

thus to be biologically active (Fig.21). For the liposome sedimentation assay, Spred2 EVH1 protein 

was prepared by digesting the GST-Spred2 EVH1 fusion protein with Thrombin to cleave-off the 

GST tag and further purified by Sephadex 75® column chromatography through FPLC. The 

purified protein samples were verified by SDS gel electrophoresis and spectrophotometry to 

determine purity, molecular size and concentration. The control GST-ADAP SH3-N and ADAP 

SH3-C proteins were prepared in Dr. C. Freund’s laboratory according to their standard expression 

protocols. 
 

Differential 
centrifugation

Pellet = Protein bound to liposome

Supernatant = Unbound protein

= Liposome = Protein

Differential 
centrifugation

Pellet = Protein bound to liposome

Supernatant = Unbound protein

= Liposome = Protein
 

Figure 26: Protein:phospholipid liposome sedimentation assay. A quantitative protein-phospholipid interaction 
assay was performed by liposome sedimentation assay. The artificially prepared liposomes of test phospholipid at 
different concentrations are incubated with constant amount the query protein and the free unbound and phospholipid-
bound protein are separated by differential centrifugation of the binding reaction mixture. Unbound protein remaining 
in the supernatant is detected by its tryptophan fluorescence or by SDS gel electrophoresis of equivalent amounts of 
pellet and supernatant fractions.  
 

5.4.4. Biochemical screening for phospholipid interactions of the Spred2 EVH1 domain 

Phospholipid overlay experiments were performed using the purified GST-Spred2 

EVH1 fusion protein and fifteen different phospholipids immobilized on a membrane strip 

(Fig.25a). The GST- ADAP SH3-N was used as a negative control. The results show an interaction 

of the Spred2 EVH1 domain at decreasing intensity with the spots of phosphatidyl inositol 5-

phosphate [PtdIns(5)P], phosphatidyl inositol 3-phosphate [PtdIns(3)P], and phosphatidyl inositol 

4-phosphate [PtdIns(4)P] (Fig.25b). The abundant cell membrane phospholipids, 

phosphatidylcholine (PC) and phosphatidylserine (PS), which are known to interact with other 

adaptor domains, did not interact with the Spred2 EVH1 domain. The negative control protein did 

not show interaction with any of the fifteen phospholipids spotted on the membrane (Fig.25b).  
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The results obtained with these phospholipids immobilised on a membrane were 

further analysed by using the liposome sedimentation assay which supplies the binding substrates 

under more native conditions. Large uni-lamellar vesicles were therefore prepared of those test 

phospholipids observed to interact in the overlay assay together with PC and PS in a composition 

similar to that found in the plasma membrane while taking care to equalise the total negative 

charge of different vesicle preparations. Increasing concentrations (100 µM to 1200 µM) of 

vesicles were incubated with a fixed concentration (2 µM) of Spred2 EVH1 protein and the ADAP 

SH3-C was used as a positive control in this experiment. A liposome-free solution of these proteins 

served as a concentration standard. 
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Figure 27: Results of the liposome sedimentation assay for the Spred2 EVH1 domain. (a) Percentage of unbound 
protein present in the supernatant fraction after differential centrifugation of phospholipid-protein binding reaction 
mixture was calculated by considering the unbound protein present in the negative control (liposome-free) as the 
maximal protein concentration present in the binding reaction and values are plotted in the graph against increasing 
liposome vesicle concentration for each phospholipid. Values higher than 100% are the experimental errors occurring 
during spectrophotometric measurement and pipetting steps. (b) The protein amount present in the pellet and 
supernatant after differential centrifugation of a binding reaction of Spred2 EVH1 and PtdIns(3)P were analysed by 
SDS gel electrophoresis. Positive control protein ADAP SH3-C had shown specific interaction with the phospholipid 
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(Fig. a) and was detected in the pellet fraction after differential centrifugation (Fig. b). In the similar assay, the Spred2 
EVH1 domain was detected in the supernatant due to a  lack of interaction with respective phospholipids (Fig. b). 
 

The liposome sedimentation assay for ADAP SH3-C showed a dose-dependent 

interaction with vesicles of PtdIns(3)P, PtdIns(5)P and PtdIns(3,5)P2 phospholipids as revealed by 

differential centrifugation (Fig.27a). Phosphatidyl inositol mono-phosphates PtdIns(3)P and 

PtdIns(5)P completely bound protein even at the lowest concentration (100 µM) studied thus 

depicting the high binding affinity of ADAP SH3-C. The phosphatidyl inositol bis-phosphate 

PtdIns(4, 5)P2 showed a concentration corresponding to half-maximal binding which was three 

times higher (300 µM) than  that observed for the mono-phosphates (Fig.27a). The qualitatively 

similar results were observed by SDS gel electrophoresis with the protein found in the pellet 

fraction after differential centrifugation (Fig.27b). These data obtained with the positive control 

protein showed the correct preparation of vesicles and the proper performance of the assay which 

was therefore used with the unknown protein. However, the liposome sedimentation assay for the 

Spred2 EVH1 domain did not show any interaction with vesicles containing PtdIns(3)P, 

PtdIns(4)P, PtdIns(5)P, PtdIns(3,5)P2 and PtdIns(4,5)P2 even at the highest concentration tested (up 

to 1200 µM) (Fig.27a). No difference in binding was observed compared to the carrier 

phospholipids PC and PS, used in the preparation of the liposomes (Fig.27a). The amount of 

protein detected in the supernatant fractions after differential centrifugation of these binding 

reactions was almost the same independently of the concentrations of liposomes used and did not 

differ from that of the liposome-free control reactions. Similar results were observed by SDS gel 

electrophoresis of pellet and supernatant fractions (Fig.27b). Taken together these results with the 

liposome sedimentation assay are at variance with the initial observations for binding of the Spred2 

EVH1 domain obtained from the overlay experiments.  

 

5.4.5. Summary 

Two different biochemical assays were performed to study the interaction of the 

Spred2 EVH1 domain with several phospholipids including phosphatidyl inositol phosphates. 

Whereas in a solid phase overlay assay an interaction was observed with immobilized PtdIns(3)P, 

PtdIns(4)P and PtdIns(5)P, no such interaction could be detected when these lipids and their bis-

phosphate derivates PtdIns(3,5)P2 and PtdIns(4,5)P2 were supplied in solution as vesicular 

preparations to study Spred2 EVH1 binding activity in a quantitative manner by a liposome 

sedimentation assay. The later assay format was considered to be a more sensitive and less error-

prone one compared to the more qualitative overlay assay. Due to its physiological conditions 

supporting protein lipid interactions we therefore consider the liposome sedimentation assay to 
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supply the more reliable data and conclude that the Spred2 EVH1 domain does not interact in 

solution with vesicles containing in a small mole fraction PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, 

PtdIns(3,5)P2 and PtdIns(4,5)P2 as individual test lipids (Table.10). 
 

Phospholipid Protein Interaction 
PtdIns(3)P ADAP SH3-C Positive 
PtdIns(5)P ADAP SH3-C Positive 

PtdIns(3,5)P2 ADAP SH3-C Positive 
PtdIns(3)P Spred2 EVH1 Negative 
PtdIns(4)P Spred2 EVH1 Negative 
PtdIns(5)P Spred2 EVH1 Negative 

PtdIns(3,5)P2 Spred2 EVH1 Negative 
PtdIns(4,5)P2 Spred2 EVH1 Negative 

PC:PS Spred2 EVH1 Negative 
 
Table 6: Summary of phospholipid interaction experiments. Different types of phospholipids with different 
phosphorylation sites were tested against control domain (ADAP hSH3C) and query domain (Spred2 EVH1) for 
protein-phospholipid interactions by the liposome sedimentation assay and the results are shown in the table. 
 

In summary neither a peptide nor a phospholipid of the chemical classes studied here 

could be identified as a ligand of the Spred2 EVH1 domain. Experiments for ligand identification 

were done by genetically screening a cDNA expression library and a phage display library or by 

biochemically screening several phospholipid binding candidates. In each of these experimental 

approaches appropriate sets of positive and negative controls were used to asses their proper 

experimental performance. Biological consequences of these results with regard to the nature of the 

still elusive Spred2 EVH1 ligand(s) and its probable complementarity to a Spred2 EVH1 

interaction interface described recently at an atomic scale will be addressed in the Discussion 

section.
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6. DISCUSSION 

 

6.1. Protein interactions of the EVH1 domain containing proteins VASP and Spred2 

Protein interactions are of central importance for virtually every process in a living 

cell by mediating signals from the exterior to the inside of the cell. A protein may either interact 

with another protein just to modify it covalently (like a protein kinase adding enzymatically a 

phosphate group to a target protein) or proteins might interact only non-covalently to form part of a 

protein complex (like a modulator or suppressor protein interacting with its binding partner). 

During covalent modifications such as phosphorylation, phosphate groups are transferred to 

effector proteins under the control of secondary messengers to alter their binding activities whereas 

non-covalent interactions regulate the signal-dependent formation of protein complexes between 

interacting molecules. However, both covalent modification and non-covalent binding contribute to 

the signal transduction processes that trigger events inside the cell. The EVH1 domains are such 

protein-protein interaction adaptor modules essential for connecting their host proteins to various 

signalling pathways. In our study, protein interactions of the two EVH1 domain host proteins 

VASP and Spred2 were studied according to their involvement in different signal transduction 

pathways. EVH1 domains hold a unique binding pocket for their peptide epitopes and so far, the 

VASP EVH1 domain and its binding partners were well studied. Since VASP localizes as part of 

the actin cytoskeleton, it interacts specifically with different actin network proteins and also acts as 

a substrate for covalent modifications by PKA and PKG. The signalling pathways of many 

candidate protein kinases which could be involved in phosphorylation of VASP are not yet 

analysed. A majority of these signalling pathways can be triggered by stimulation of the cell with 

serum and therefore candidate protein kinases involved in phosphorylation of VASP during serum 

stimulation are disclosed in this study (see below). An entirely new class of the EVH1 domain 

family, consisting of the Spred2 EVH1 domain, carries a characteristic putative binding cleft region 

containing a subfamily specific triad of surface exposed aromatic amino acid residues which by 

homology are expected to bind unique sequences of its unknown peptide ligand(s) via non-covalent 

protein-protein interactions. The search for these unknown binding epitopes for the Spred2 EVH1 

domain was therefore performed as a part of our study addressing protein interactions of two EVH1 

domain containing proteins. The results from these interaction studies are discussed here with 

regard to the elucidation of candidate protein kinases involved in serum stimulated VASP 

phosphorylation and the identification of binding epitopes for the Spred2 EVH1 domain. 

The different signalling pathways leading to a possible phosphorylation of VASP 

during serum stimulation were predicted from literature knowledge and summarized into an 
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interaction network graph model forming the theoretical basis of our study (Fig.8). The external 

stimulation, the expected mediators of the external signal and the target substrates of the network 

including the final destiny were categorised into three hierarchical levels to model the process. The 

key players of each layer were represented as nodes in the interaction graph. The biochemical role 

of multiple nodes in this interaction network graph model was assessed experimentally by using 

different immunological tools and a pharmacological perturbation analysis in a well-defined cell 

line model. After treating the cells with pharmacological drugs acting as either activators or 

inhibitors of the target nodes in the interaction graph that represent different candidate protein 

kinases, the phosphorylation of VASP at its specific phosphorylation sites was studied by using 

phosphosite-specific antibodies for VASP as molecular probes. By mapping the results of the 

perturbation analysis into the interaction network graph model, un-affected nodes could thus be 

excluded and a subnet of the interaction graph was subsequently developed to model those 

candidate protein kinases involved either directly or indirectly in the phosphorylation of VASP 

during serum stimulation of the cells. 

The search for the unknown binding epitopes for the Spred2 EVH1 domain was 

performed by independent and complementary genetic and biochemical approaches using a cDNA 

or a peptide library together with libraries of candidate compounds. Two genetic interaction 

cloning strategies employing a bacterial two-hybrid and a phage display system were used for 

binding epitope identification of the recombinantly expressed Spred2 EVH1 domain. The atomic 

structure of this domain was recently solved by protein NMR spectroscopy. It revealed patches of 

positive surface charges on its putative binding pocket and thus raised the issue of interactions with 

negatively charged ligand molecules. Hence, we also searched for Spred2 EVH1 domain 

interactions with a panel of phospholipid candidate ligands. This study of two EVH1 domain 

containing proteins therefore covers both techniques and biological concepts for pathway 

elucidation in complete interaction networks and for an identification of direct binding partners of a 

single protein in such networks. However due to the different cellular function of VASP and 

Spred2 the networks studied belong to different and non-overlapping signal transduction pathways 

of the cell. 

 

6.1.1. Deciphering the serum stimulated VASP phosphorylation at Ser-157 

A number of proteins such as VASP, vinculin, talin, α-actin are associated with focal 

adhesions at the intracellular face of the plasma membrane [209]. In a functional cytoskeleton, all 

these molecules are forming complex connective networks with interactions at different levels 

either directly or indirectly. Earlier studies have shown that VASP binds to F-actin and co-localize 
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with stress fibres, focal contacts and highly dynamic membrane structures. It is a known fact that 

VASP is a major substrate for PKA and PKG, which phosphorylate VASP at Ser-157, Ser-239 and 

Ser-278 [2] and few recent research articles described PKC and AMP-activated protein kinase to 

phosphorylate VASP too [3, 4].  

From our study, we made the observation utilizing a serum starvation and 

stimulation protocol of mouse cardiac fibroblast (+/+) and mouse mesangial cells that VASP is 

phosphorylated at Ser-157 on stimulation of these cells as detected in cell lysates by electrophoretic 

mobility shifts and phosphorylation site-specific monoclonal antibodies (Fig.6 and 7). As this 

conditional phosphorylation had been observed in two different cell lines, this response is 

considered not to be a cell specific activity. VASP phosphorylation at Ser-157 by serum induced 

cell stimulation is a time dependent process whose kinetics was determined with a prominent 

activity nearly 90 min after treatment of starved cells with serum. It persists at a steady state level 

even after 10 hours. These observations clearly establish that serum stimulation induces VASP 

phosphorylation at Ser-157 in a time dependent manner after a lag time of 90 min. 

Generally, upon stimulation of cells with serum many protein kinases like MAP 

kinases, Rho kinases and PKC are activated which regulate cytoskeletal reorganisation in the cell. 

Of these three kinases, Rho kinase and PKC are known to interact with the actin cytoskeleton and 

focal adhesions where VASP also interacts with. An important isoform of Rho kinase, ROCK, 

mediates intracellular serum responses to the cytoskeleton by finally inhibiting actin polymerisation 

in a treadmilling process where VASP is also known to have a prominent role [210]. PKC is also 

one of the major protein kinases known to regulate focal adhesions and actin cytoskeleton 

contractions during serum stimulation [209]. Since these biological molecules show some overlap in 

activity and regulation with regard to serum response, we have investigated a possible role of these 

two protein kinases in the observed phosphorylation of VASP at Ser-157 during serum stimulation 

of cells. Based on published data of these and other protein kinases, an interaction network graph 

model of signalling pathways possibly phosphorylating VASP during serum stimulation was 

developed as described in Chapters 5.1.1 and 6.1 (Fig.8) with individual pathways numbered for 

convenient reference. In this network, the direct interaction between different nodes is in general not 

known and therefore we represent such interactions as multiple arrow lines keeping in mind that 

there might be further mediators involved in these signal passages. In our experimental work we 

have looked for a role of these target nodes in terms of VASP phosphorylation as shown in the 

network graph and internal mediators were not searched for in our study. Combinatorial treatment 

with activators and inhibitors of different target nodes of the network allows us in defined 

perturbation experiments to determine the key players involved in this cascade. A major issue which 
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needs to be carefully addressed in such type of experiments is the specificity profile of the 

pharmacological substances used to target the proteins of interest. Most of the protein kinase 

inhibitors have been developed based on competitive activity either against the secondary 

messengers that regulate the protein kinases or their common substrate ATP. The inhibitors 

developed for a particular kinase can therefore disturb the activity of several other protein kinases 

either partially or completely in a chosen concentration range due to their isomeric chemical 

structure. Similarly activation of one protein kinase by its respective activator should in general not 

interfere with other protein kinases since this response pattern would misguide results obtained by 

activating the targeted signalling pathway. To overcome such experimental limitations in the 

chemical dissection of an unknown signalling cascade, careful control experiments that complement 

the pharmacological approach are necessary and have been performed here. 

 

Inhibitory targeting of the two nodes “Rho kinase” and “PKC” in the interaction 

network graph model by the drugs Y-27632 and Ro-31-8220 respectively had shown that only 

PKC but not Rho kinase participates in phosphorylation of VASP at Ser-157 upon stimulation of 

cells with serum (Fig.9a). These data thus rule out any pathways mediated by Rho kinase in this 

process i.e. those pathways numbered as [4, 4´, 4´´] in our interaction network model (Fig. 8). 

However due to their specificity profile these inhibitors may also interrupt the activity of those 

nodes (PKA and PKG) of the interaction network which are already known from literature data to 

phosphorylate VASP at Ser-157 by cyclic nucleotide dependent pathways. Hence, we examined the 

activity of the PKC and Rho kinase inhibitors used here with regard to their sensitivity towards 

PKA and PKG. We found that these inhibitors are not unspecifically interrupting a PKA and PKG 

mediated VASP phosphorylation (Fig.9b) and our data therefore suggests that these inhibitors act 

specifically to only inhibit the addressed target nodes under the experimental conditions used here. 

This data proved a role of PKC in phosphorylation of VASP at Ser-157 upon stimulation of cells 

with serum and we therefore studied its function in more detail. 

It is known from the literature that activation of PKC with phorbol ester induces 

focal adhesions and cell contraction due to remodelling in the cell cytoskeleton [211]. The phorbol 

ester activates only classical isoforms of PKC that regulate the activity of the cytoskeleton. Hence, 

we asked whether classical isoforms of PKC mediate serum stimulated VASP phosphorylation. 

Activity of these phorbol ester sensitive classical isoforms could be inhibited specifically by using 

the compound Bis I [175]. An optimal concentration (10 μM) of Bis I was found to prominently 

inhibit serum stimulated VASP phosphorylation at Ser-157 under the experimental conditions used 

(Fig.11a) demonstrating that Bis I sensitive classical isoforms of PKC are involved. We then 
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looked at the effect of the phorbol ester PMA on VASP phosphorylation. Our experimental results 

showed that PMA phorbol ester stimulation which activates classical isoforms of PKC induced 

VASP phosphorylation (Fig.11b). It is well known from the literature that phorbol ester treatment 

initially up-regulates PKC activity followed in the long run by its down regulation due to a 

translocation of PKC to the cell membrane [185]. Upon phorbol ester treatment, VASP 

phosphorylation showed a similar temporal pattern of activation and inactivation as that reported 

for activated PKC alone upon PMA stimulation. There is a transient phosphorylation of VASP at 

Ser-157 after 2 min of PMA stimulation which persisted no longer than 8 min after stimulation 

probably due to a down regulation of PKC activity by the phorbol ester (Fig.11b).  

Since classical PKC isoforms were identified to mediate serum stimulated VASP 

phosphorylation at Ser-157, it was necessary to elucidate if this signalling cascade is also 

dependent on the well known protein kinases PKA and PKG which have already been found to 

phosphorylate VASP (See interaction graph model in Fig.8) under different experimental 

conditions. In consecutive experiments, we therefore looked at a role of PKA and PKG in VASP 

phosphorylation at Ser-157 upon stimulation of cells with serum. The PKG inhibitor Rp-8-Br-

cGMPS used in our experiments was not observed to disturb serum stimulated VASP 

phosphorylation at Ser-157 and it was subsequently found based on immunological detection that 

MCFB cells (+/+) even lack PKG (Fig.10b). Hence, we concluded that PKG most probably has no 

role in serum stimulated VASP phosphorylation at Ser-157. This result is in line with our 

observations showing an absence of phosphorylation of VASP at Ser-239 during serum 

stimulation, which is the preferable site for PKG in this substrate (Fig.7b). These data is in 

accordance with previously published ones for the same cell line [182]. With this information at 

hand, it was possible to experimentally exclude the involvement of a further node and its associated 

pathway (numbered as [3] of our interaction network graph model in Fig.8) i.e. PKG was shown 

not be involved in serum stimulated VASP phosphorylation at Ser-157. A similarly designed 

experiment with H89 used as inhibitor of PKA showed a clear-cut inhibition of serum stimulated 

VASP phosphorylation at Ser-157 (Fig.10a). This result suggests a role for PKA in serum 

stimulated VASP phosphorylation at Ser-157. H89 can also inhibit PKG [177] but this is clearly 

not of concern here as our cells lack this enzyme. Our experiments showed that H89 can be used as 

a PKA-specific inhibitor in MCFB cells (+/+) at an optimal concentration of 10 µM. Furthermore 

these results are consistent with previous data obtained under different conditions of cellular 

stimulation identifying Ser-157 of VASP as the phosphorylation site preferred by PKA (see Fig.1). 

So far after excluding any involvement of Rho kinases and PKG, our experimental 

results have identified PKC and PKA as major protein kinases participating in VASP 
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phosphorylation at Ser-157 upon stimulation of MCFB cells (+/+) with serum. This 

phosphorylation at VASP Ser-157 by a combined action of PKC and PKA seems to utilize a 

signalling pathway which is clearly different from that of a PKA induced VASP phosphorylation at 

the same site under different stimulatory conditions. The data obtained on the two candidate protein 

kinases involved left us however with the question how PKA mediated VASP phosphorylation at 

Ser-157 upon serum stimulation relates to the serum-induced signalling cascade mediated by PKC 

upon phosphorylation of the same site of the VASP molecule. Control experiments with regard to 

specificity have also identified Bis I and PMA as useful tools for modulating in intact cells the 

activity of PKC by either inhibition or activation. Similar control experiments showed that for 

modulating the PKA activity the drugs H89 and Forskolin could be used in experiments with intact 

cells for either directly inhibiting or indirectly activating this enzyme. Summarizing the data 

obtained we therefore came up with a reduced model of the possible interaction network pathways 

as shown in Fig.28a with PKA and PKC identified as the main nodes together with the set of 

inhibitors and activators targeting each of them. The model is still ambiguous with regard to PKC 

and PKA participating in either a serial or a parallel order of action with regard to VASP 

phosphorylation in serum-stimulated cells. However with the characterized tools available it was 

now further elucidated experimentally by a combinatorial in-vivo modulation of the network target 

nodes involved in serum stimulated VASP phosphorylation i.e. a simultaneous activation and 

inhibition of these protein kinases. Specifically experiments using various drug combinations were 

therefore designed to activate either PKC or PKA instead by serum stimulation with their 

respective activators (PMA or Forskolin) in the presence of the protein kinase inhibitors (Bis I or 

H89) targeting either the same or the alternative node of the network. 

Using a combination of Bis I and Forskolin together we found that the PKC specific 

inhibitor Bis I did not inhibit VASP phosphorylation at Ser-157 during Forskolin stimulation of the 

collateral node which activates the adenylyl cyclase and thus PKA (Fig.12b). The complementary 

experiment was performed with activation of PKC by short term treatment with PMA in the 

presence of the PKA inhibitor H89. VASP phosphorylation was found to be inhibited under these 

conditions (Fig. 12c). Taken together these results strongly suggest that the signalling pathway is 

not organised in the direction from PKA to PKC but instead PKA seems to participate in the 

process of VASP phosphorylation after initial stimulation of PKC. Thus the pathway numbered 

[e+2´+1] in the reduced model as shown in Fig.1a could be excluded experimentally and the data 

are compatible with a pathway organization summarized as [b+1’+2] in the model. The 

insensitivity of Forskolin stimulated VASP phosphorylation to a PKC inhibitor and the successful 

inhibition of PMA stimulated VASP phosphorylation by a PKA inhibitor is fully explained by the
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Figure 28: Final model of the signalling pathways contributing to serum stimulated VASP phosphorylation. Possible pathways for serum stimulated VASP phosphorylation 
involving the protein kinases PKC and PKA are shown in Fig. a of this experimentally reduced version of our interaction graph model. Pathways given with unbroken lines show 
direct interactions. The pathways involving PKC and PKA (with pathway numbers [1] and [2]) were further analysed experimentally by a combinatorial use of specific activators 
and inhibitors of these protein kinases to elucidate their order of action. The results of these experiments are summarized in the model of Fig. b. Cumulative data suggest that PKC 
acts upstream of PKA in serum stimulated VASP phosphorylation at Ser-157. 
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proposed pathway in the final model of Fig.28b with PKC acting upstream of PKA. Additional 

support was observed in the following experiment. After down regulation of PKC by phorbol ester 

long term treatment, Forskolin treated cells showed undisturbed phosphorylation of VASP at Ser-

157 as mediated by PKA (Fig.11c) emphasing again the proposed pathway organisation. Moreover, 

the interpretation of our experimental results given here is also in line with information from the 

literature showing that it is PKA that prefers Ser-157 as a phosphorylation site on VASP [2](see 

Fig.1). However it is still not yet understood how PKC and PKA interact under these conditions 

and how a signal is mediated between these two kinases. In particular the internal regulation of 

PKA after receiving the signal from PKC during serum stimulation either by secondary messengers 

or any other regulator to phosphorylate VASP at Ser-157 is not settled from the experimental 

results presented here. Some published studies are supporting directly and indirectly that PKC and 

PKA can interact during various signal transduction processes [212, 213]. PKC has been shown to 

activate many other cytoskeletal proteins including associated protein kinases during its activity. It 

is known to modulate focal adhesions and stress fibres through numerous mechanisms. The α 

isoform of PKC is translocated to focal adhesions upon activation of the fibronectin receptor, αIIbβ3 

after stimulation by serum or growth factors, and it is reported that PKC phosphorylates focal 

adhesion proteins such as vinculin and talin [214, 215]. Additionally, PKC modulates the cellular 

cytoskeleton through the regulation of intermediate filaments and stress-fiber related proteins, 

including vimentin, CPI-17, myosin light chain kinase, tau protein and numerous others [215]. It is 

still a matter of debate how PKC exerts its influence on VASP. Recent published data supplied 

preliminary information from different cell models that PMA activation of PKC induces VASP 

phosphorylation either directly [4, 52] or indirectly by activating PKG [216]. However this type of 

interaction can be excluded in MCFB cells (+/+) since they lack PKG. These discrepancies in 

signalling pathway organisation seem to be due to cell type or organism specific expression 

patterns of signalling networks.  

In conclusion based on our experimental results and literature information, we 

hypothesize that PKC receives an external stimulatory signal upon serum stimulation of MCFB 

(+/+) cells which is passed either directly or indirectly to PKA which finally phosphorylates VASP 

at Ser-157. PKA is thus positioned downstream of PKC in serum stimulated phosphorylation of 

VASP and is probably located most proximal to its substrate VASP giving the following pathway: 

serum stimulation →→ PKC → → PKA → phospho Ser-157 VASP as shown in the final model of 

Fig.28b.  
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6.1.2. Identification of unknown binding epitopes for a new class of EVH1 domains 

In a cell, modular proteins involved in signal transduction utilize a limited number 

of highly conserved, non-catalytic, ‘adaptor’ domains to mediate their non-covalent interactions 

during the formation of transient, multi-protein signalling complexes [99]. Such adaptor domains 

recognise surface-exposed sites on their binding partners such as proline-rich-, phosphorylated- or 

C-terminal motifs. For example, domain families namely EVH1, SH3, GYF, UEV and WW 

domains and the single domain protein profilin are known to recognise highly conserved clusters of 

proline rich motifs (PRM)[86]. Further, some of the modular domains (mostly in apoptotic 

signalling proteins) undergo homo- or heterotypic domain-domain interactions rather than binding 

short peptide motifs [99]. Sometimes, certain cytoskeletal modular domains like the pleckstrin 

homology (PH) or SH3 domains bind to different phosphorylated head groups of phospholipids 

[99, 120]. 

The EVH1 domains regulate their interactions via a unique recognition pocket 

exposed on their surface due to a set of three aromatic amino acids which bind to peptides that are 

usually 6-13 amino acids long and contain proline-rich motifs of 4-6 amino acids. The recently 

discovered Spred proteins harbour a new class of EVH1 domains at their N-terminus whose atomic 

structure was recently been determined by NMR spectroscopy [33]. The atomic structure of the 

domain revealed patches of positive surface charge in its putative binding cleft region and thus 

suggests interactions with negatively charged ligand molecules. Since the Spred2 EVH1 domain is 

expected to bind unique ligand(s), search for its binding epitopes had been performed in our study.   

As protein-protein interactions are so important there are a multitude of high-

throughput methods available to detect them [126]. Each of the approaches has its own strengths 

and weaknesses, especially with regard to the sensitivity and specificity of the method. These 

approaches may for instance select clones that have an apparently positive readout phenotype but 

that when further analysed are not of physiological relevance. Such clones are usually referred to as 

“false-positives” [217]. In some cases, expected interacting clones may escape from a library 

screening which are then referred to as “false-negatives”. In general a high sensitivity of a method 

used suggests that many of the interactions that occur in reality can be detected by the screen 

giving a low false-negative rate while a high specificity approach indicates a low false-positive rate 

with most of the interactions detected by the screen actually occurring in reality [218]. Detection of 

protein interactions is complicated by the fact that protein themselves are chemically distinct 

entities with differing charges, numerous secondary and tertiary structural folds that may include a 

wide variety of post translational modifications. Selection of a method suitable to detect an 
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interaction depends on the protein for which the interactions are to be screened and several 

methods are available as already described in Chapter 2.3.  

The majority of protein-protein (peptidergic) interaction studies were done by in-

vivo two-hybrid systems and in-vitro bacterial-based phage display methods [219]. Since few 

years, these methods have been scaled up in screening entire complements of proteins or peptides 

in large library formats. The in-vivo two-hybrid systems have been well-established in yeast and 

their more advanced developments allowed biologists to test inference about the functional aspects 

of entire protein networks [139]. Over the past few years, analogous to the embodiment of the yeast 

two-hybrid systems, similar genetic assays were developed in E. coli to facilitate a more rapid 

analysis of even larger libraries due to the higher transformation efficiency and faster growth rate 

of this organism [136, 137]. A bacterial two-hybrid (B2H) system thus offers a number of 

potentially significant advantages over analogous yeast based two-hybrid methods in identifying 

and characterizing protein-protein interactions from large scale cDNA expression libraries [137, 

187]. In particular, it does not require a nuclear localisation of the interaction partner or any export 

of proteins to the cell membranes and it is possible to study proteins that are toxic to yeast [137]. 

Furthermore, an E. coli based two-hybrid screening reduces the chance that the host harbours any 

closely related homologues of an interacting partner. The in-vitro selection technique of phage 

display in contrast enables small protein fragments with desired properties with respect to binding 

of a target protein to be identified from large collections of peptide variants displayed on the 

surface of filamentous phages such as M13. Since phage M13 is a non-lytic phage which can be 

produced in high titres and secreted from the infected bacterial host cell without their killing or 

lysis, it also greatly simplifies phage purification steps and thus peptide identification by DNA 

sequencing of the isolated clones. 

After considering different approaches for detection of peptidergic interactions, two 

interaction cloning approaches employing a bacterial two-hybrid and a M13 phage display system 

were used in our study for in-vivo screening of a cDNA library and in-vitro screening of a M13 

9mer peptide library respectively to search for the unknown binding epitopes of the Spred2 EVH1 

domain. These two genetic technologies are considered as orthogonal i.e. independent and 

complementary approaches suitable for a detection of protein interactions solely based on the 

assumption that Spred2 EVH1 ligands are of peptidergic nature. The B2H screening system used in 

our studies was based on a HIS3 gene reporter system developed by Joung et al [137, 188] whereas 

the peptides displayed on the surface of phage are fused N-terminally to the major capsid protein, 

pVIII of phage M13 [158]. Both genetic systems had to be established in our study for Spred2 

EVH1 binding interactions using well-characterized positive controls to survey experimental 
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conditions most likely to detect unknown EVH1 domain interactions. Based on those experimental 

conditions and guided by the control experiments performed in parallel, the search for binding 

epitopes of the Spred2 EVH1 domain was performed by us. 

The B2H system was first of all established for a physically well characterized 

VASP EVH1 and ActA peptide interaction pair [24] which was used as a tool to calibrate the 

system for the genetic detection of low affinity interactions which are characteristic of EVH1 

domains. The HIS3 based B2H system offers the advantage to be easily regulated at different 

selection stringency levels by varying the concentration of 3-AT as the selection agent. This results 

in a 3-AT dose-dependent growth of resistant clones as reflected in their differential plating 

efficiency. Recombinantly expressed ActA peptides with different binding strengths as determined 

in-vitro against the VASP EVH1 domain [24] were used as target peptides in doubly transformed 

bacterial cells also expressing the latter protein. 3-AT resistant growth indicating VASP EVH1 and 

ActA peptide in-vivo interaction was observed for those clones expressing a wild type ActA 

peptide 332SFEFPPPPTEDEL344 or its tighter binding mutant 332SFEWPPPPTEDEL344 at 3-AT 

concentrations even up to 5 mM (Fig.14). The non-binding mutant peptide 332SFEAPPPPTEDEL344  

as observed from in-vitro data [24] failed to support 3-AT resistant growth of the reporter strain 

even at the lowest concentrations tested. These experimental results clearly showed to us that the 

B2H system records successfully in-vivo an interaction of an EVH1 domain with its cognate 

binding motif which has already been well-characterized in-vitro at the structural and energetic 

level [24, 29]. We thus expect the B2H system of Joung et al. to be a suitable tool for the genetic 

identification of unknown peptide binding epitopes of the Spred2 EVH1 domain.  

A human brain cDNA expression plasmid library was then chosen for a binding 

epitope screen by the B2H system since the Spred protein is known to be ubiquitously expressed in 

brain and neural tissues [79]. The cDNA library screening performed at a selection stringency of 1 

mM 3-AT using a λcI fusion protein with the Spred2 EVH1 domain as the bait gave thousands of 

3-AT resistant colonies. A further library screening was therefore performed by increasing the 

selection stringency to 5 mM 3-AT. This higher selection stringency tremendously reduced the 

population of 3-AT resistant colonies. However, replica plating of 3-AT resistant colonies to a 

secondary screening medium and thus selection based on transcriptional activation of the aadA 

gene which is located downstream of HIS3 reporter gene and responsible for Streptomycin 

resistance could not further differentiate among colonies. Target plasmid isolates from resistant 

colonies of both screenings were physically characterized showing that these plasmids carry insert 

target fragments (Fig.17). Inserts selected by the Spred2 EVH1 domain from the cDNA library 

showed a heterogeneous molecular weight distribution demonstrating clonal heterogeneity of the 
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isolates obtained. Positive target plasmid isolates were then further validated genetically by a panel 

of genetic assays designed to asses (a) their potential for transcriptional self-activation in the 

absence of the bait plasmid (b) the linkage of the growth phenotype to the target plasmid isolated 

and (c) Spred2 EVH1 specificity of interaction by comparison against a VASP EVH1 bait plasmid 

(Fig.18). Positive and negative interaction control plasmid pairs were used in this panel of genetic 

assays during validation of the target plasmid isolates. The 3-AT resistant growth phenotype 

observed in these assays were analysed quantitatively by determining the plating efficiency (PE) of 

the clones and thus comparing these with the panel of interaction control pairs. PE values are 

expected to directly correlate to the interaction strength at a defined selection stringency for a 

fusion protein pair tested [198]. None of the target isolates showed self activation by expression of 

a 3-AT resistant phenotype in the absence of the bait plasmid. Surprisingly the majority of the 

positive target isolates assayed in these genetic assays scored at PE values not higher than the 

background value corresponding to a non-specific interaction with a query domain (Table.8). 

Sequence analysis of those few positive candidates of target isolates showing PE values similar to 

that of the VASP EVH1 and ActA interaction pair revealed however that they were not carrying in-

frame coding sequences for expression of target peptides which would interact with the Spred2 

EVH1 domain. Overall, screenings by the B2H system of a human brain cDNA expression plasmid 

library performed at two different selection stringencies for binding epitopes of the Spred2 EVH1 

domain did not detect any Spred2 EVH1 specific interactions. The library screening experiments 

performed under these experimental conditions seemed to be completely dominated by false-

positive isolates. 

Although two-hybrid methods are generally considered to be highly sensitive in 

particular to detect domain-mediated interactions [139], our experimental results showed its 

reduced specificity in search for Spred2 EVH1 ligands leading to high numbers of false positives. 

The selection stringencies used might thus be either too low or too high for the detection of Spred2 

EVH1 domain specific interactions. Of course no data about its binding affinities are available to 

evaluate these alternatives. If the selection stringency used here is above the threshold level for 

Spred2 EVH1 domain interactions, high false-negative rates are expected in these experiments and 

vice-versa with false-positive isolates. For an unknown interaction pair it is impossible to predict 

threshold selection stringency. Based on the structural information revealed from X-ray 

crystallography [76] and the NMR-spectroscopy of the Spred2 EVH1 domain (accession number 

“2JP2” and Fig.24), it was speculated that the domain might bind its ligands at affinities lower than 

those known for other EVH1 ligands. If this expectation is true then according to our results it 

would be difficult to detect such interaction strengths in a B2H based screen. If however Spred2 
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EVH1 ligand interactions occur at higher affinities than the well characterized EVH1 class 1 

interactions probably due to binding of extended epitopes similar to those described for the WASP 

EVH1 class 3 ligands (see Chapter.2.2.2.3) [33], selection stringencies as applied in our library 

screenings are not expected to be high enough to screen for such interactions.  

Several retrospective analyses of published protein-protein interaction data obtained 

at a genomic scale, mainly in yeast, have shown that the actual results deviate strongly from the 

gold standards of optimal specificity and selectivity and normally show unexpectedly high levels of 

false-positive and false-negative rates [142]. Binding epitope discovery can be viewed as “a needle 

in a haystack” problem [220] that is small target sizes of the expected Spred2 EVH1 binding 

epitopes are to be identified in a highly complex sequence space spanned in our case by a 

collection of large cDNA fragments as represented in an expression library. Discrimination of 

sequence stretches coding for such small binding epitopes against a huge background by cDNA 

sequences is thus a challenging problem. Another biological problem to cope with by any in-vivo 

interaction cloning approach using heterologously expressed proteins might be based on the limited 

accessibility of candidate binding epitopes. This could be due to a biased or incorrect folding of 

their host proteins upon heterologous expression in a bacterial cell. Furthermore heterologous 

eukaryotic protein expressions in a prokaryotic host cell might not accomplish the required post-

translational modification which might be a necessary factor supporting the interaction. By 

considering a posteriori all these complications in principle inherent to a B2H system, we expected 

that screening of target peptide libraries under in-vitro conditions using a purified bait protein 

would be an alternative approach to identify the Spred2 EVH1 domain binding epitopes. 

An in-vitro screening of repertoires of non-natural short target peptides exposed on 

the surface of phage virions seems to be superior for a precise target access and the corresponding 

affinity selection for Spred2 EVH1 binding epitopes. Thus, a phage display library screening for 

Spred2 EVH1 ligands of a M13 X9mer peptide library displayed N-terminally to the pVIII major 

capsid protein was performed by using purified, natively folded GST-Spred2 EVH1 protein as 

assessed by NMR spectroscopy. A GST-Fyn SH3 protein was used as a positive control for this 

library screening since its binding epitope has already been determined by screening the same 

phage display library which is used in our study [203]. Hence, this positive control domain would 

help us to calibrate the screening conditions for the GST-Spred2 EVH1 protein. Progressive 

enrichment of a positively interacting phage population with immobilized bait protein was 

calculated as a series of enrichment factors in each round of panning. For the positive control 

protein the enrichment factor reached saturation after four rounds of panning against this domain in 

our experiments. As observed by colony PCR, the phage populations enriched consists entirely of 
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phage particles with inserts coding for the expected size of the specific target peptide (Fig 22a). 

This result demonstrates a successful establishment of the experimental protocol for a phage 

display screening. In contrast, similar panning with the same library using the GST-Spred2 EVH1 

protein revealed an irregular enrichment during successive rounds (Table.9). Analysis of phages by 

colony PCR after infecting to E. coli cells showed that the majority of the isolates did not carry any 

inserts and thus will not express any target peptides fused to and displayed with the capsid protein. 

Sequencing of those small sample set of insert containing phages identified a population mainly 

containing stop codons. Only two isolates harbor in-frame ORF fusions, one of which contains a 

13mer proline-rich sequence. The significance of this observation is however unclear not only in 

the context of the non-specific overall performance of the phage display library screening 

experiment with the Spred2 EVH1 domain but also in light of the fact that the library used had 

been constructed for 9-mer insert sizes. Selection of phages containing in majority either no inserts 

or even stop codons suggests that already an N-terminal fragment of the pVIII major coat protein 

might display sticky epitopes that non-specifically interact with the Spred2 EVH1 but not with the 

Fyn SH3 domain. Therefore the phage display peptide library screening for identification of 

binding epitopes for the Spred2 EVH1 domain was of only limited over-all success despite the 

isolation of a promising candidate binding clone. Several factors could have been responsible for 

the non-specific performance of our phage display screening experiments. A partial occlusion of 

the Spred2 EVH1 binding surfaces by the GST moiety of the fusion construct should be 

considered. Although an alternative small fusion tag would be preferably such as a hexahistidine 

peptide, increased binding affinity of phages to a Ni-NTA matrix compared to a GSH-Sepharose 

matrix should be considered in view of artefacts which could arise by selection of Ni+2 binding 

phages [157]. Since the phage display assay involves in-vitro affinity selection, the system can 

obviously not support any post-translational modifications. Finally the Spred2 EVH1 domain might 

be too sticky for a phage M13 based screening approach. 

In general, EVH1 domains bind to proline-rich core motifs of 3-6 amino acids 

present in the binding epitope of target peptides. Further affinity- and specificity-increasing 

interactions are then formed between additional domain regions and 'core-flanking' peptide 

residues [85]. For this reason, we had used a 9mer peptide phage display library based on the 

expectation that binding epitopes for the Spred2 EVH1 domain are similar to those of the VASP 

EVH1 domain (see Chapter 2.2.2.1). However the Spred2 EVH1 domain does not seem to be able 

to bind with sufficient affinity to our phage display 9mer peptide library thus probably suggesting a 

requirement for still larger epitope sizes in a more stable ligand binding. The isolation of a 13mer 

proline-rich sequence by the Spred2 EVH1 domain from a 9mer library might suggest a preference 
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of this domain for 13mer peptides probably containing several core-flanking residues. But such 

larger peptide sequences could probably not be enriched in large amounts from this library due to 

its construction based which was based on short peptides. A single 13mer proline-rich isolate alone 

is certainly not enough to determine the binding specificity of the Spred2 EVH1 domain. However, 

we consider this 13mer proline-rich peptide as a first cue which could be followed up by further 

screening experiments like SPOT scans to identify in detail the Spred2 EVH1 domain binding 

motif. 

The inability to find Spred2 EVH1 ligands so far not only with a B2H system but 

also by phage display library screening experiments raised doubts about a peptidergic nature of the 

ligand. It was therefore necessary to consider additionally a non-peptidergic nature of the still 

elusive binding ligand. The atomic structure of the Spred2 EVH1 domain showed patches of 

positive surface charge in the region of the expected binding epitope recognition site which are not 

observed in any of other EVH1 classes whose structures have been determined so far (Fig.24). It is 

already known from adaptor domains like pleckstrin homology (PH) or SH3 domains that 

positively charged surface regions bind to negatively charged phosphorylated phospholipids of 

different composition [99, 120]. To assess binding interactions of the Spred2 EVH1 domain with 

candidate phospholipids, solid phase overlay and liquid phase sedimentation assays were 

performed in the course of this study. The N-terminal and C-terminal SH3 domains of the ADAP 

protein were used as negative and positive controls respectively in our experiments to follow up 

their performance. As a prerequisite a natively folded conformation of the bait protein is required 

for assaying its interaction. Hence, the bait protein independent of the GST moiety was analysed by 
1H NMR and found to be actively folded in the protein preparations used. 

Protein-phospholipid solid phase overlay assays performed against natively folded 

Spred2 EVH1 protein with membrane strips carrying 15 different, biologically active, pre-spotted 

phospholipids showed a positive interaction of decreasing apparent binding intensity with 

phosphatidyl inositol 5-phosphate [PtdIns(5)P], phosphatidyl inositol 3-phosphate [PtdIns(3)P], 

and phosphatidyl inositol 4-phosphate [PtdIns(4)P] (Fig.25). Further analysis however of these 

binding activities by liquid phase sedimentation assay of the phospholipids including their bis-

phosphates phosphatidyl inositol 3,5-bisphosphate [PtdIns(3,5)P2] and phosphatidyl inositol 4,5-

bisphosphate [PtdIns(4,5)P2] did not show any interactions of the Spred2 EVH1 domain with 

liposomal vesicles of up to 1.2 mM concentration (Fig.27). In contrast, the positive control domain 

showed a strong interaction even at the lowest concentrations tested for the expected phospholipids 

and thus confirmed the correct preparation of liposomes and its handling. The reason for a different 

interaction behaviour of a protein in two different assay formats against the same set of 
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phospholipids is currently unclear. Of the two tests performed, the solid phase overlay assay is 

considered to be at best a semi-quantitative one whereas the more sensitive liquid phase 

sedimentation assay is a truly quantitative assay performed at different lipid concentrations. It thus 

permits determination of affinities in dose dependent experiment with a low error rate in terms of 

binding specificity. The interactions detected in the solid phase overlay assay are considered 

therefore as false positives without biological relevance and are probably due to non-specific 

electrostatic interactions between a positively charged protein molecule and the negatively charged 

phospholipids spotted on the membrane. Such interactions will be excluded in the liquid phase 

sedimentation assay where different concentrations of liposomes are incubated with the protein 

assaying after separating unbound protein for its physical contact in liquid phase. Since the 

technically more reliable liquid phase sedimentation assay did not show any interaction of the 

phospholipids tested with the Spred2 EVH1 domain, we concluded from this study that the Spred2 

EVH1 domain does not interact with the negatively charged phospholipids tested despite its 

positive surface charge. These results seem to exclude a non-peptidergic nature of the ligand for the 

Spred2 EVH1 domain at least with regard to the common classes of phospholipids analysed here. 

 

6.2. Conclusions and open questions 

In the first part of our study, the protein kinases involved in the serum stimulated 

VASP phosphorylation in MCFB cells (+/+) are identified as classical isoforms of PKCs and PKA. 

However the nature of an exchange of signals from PKC to PKA remains unclear; a direct 

interaction or any further mediators could be involved. The signal transmitted between these two 

molecules might be based on a low-molecular activator to be identified. It was not possible to 

address this question from the experimental setup of our study. It will also be necessary to study 

the newly detected signalling pathway in different cell models using further pharmacological 

compounds. A major limitation of any signal transduction study based on perturbation analysis is 

the choice of the appropriate pharmacological drugs since their specificity is often highly 

dependent on the biological context. If the signalling pathway detected in our study is of a more 

general nature, it should be reproducible in other biological models of cellular serum stimulation. 

We have proved so far this signalling process in two different cell models i.e. mouse cardiac 

fibroblast cells and mouse mesangial cells. Although we have performed our experiments with 

properly designed experimental controls, there is always a need to retest a pathway in future 

experiments whenever any new pharmacological drugs to target it may arise. 

In the second part of our study, the cumulative evidence suggests to us a peptidergic 

nature of negatively charged Spred2 EVH1 ligands since a phospholipid mediated interaction to 
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this domain seems highly unlikely. In principle a peptidergic binding epitope of an adaptor domain 

or a receptor could form one of the following types: it could be a short or extended, linear or 

conformational, continuous or discontinuous, post-translationally modified or unmodified peptide 

sequence with or without any cofactor requirement. Although an in-vivo B2H and an in-vitro phage 

display system offer a wide range of library screening formats, they will not detect any post-

translationally modified ligands including phosphorylated recognition motifs. Eukaryotic proteins 

studied in E. coli based library screenings are expected to lack co-factors or post-translational 

modifications which however could occur in yeast for determining potential interactions [134]. In 

general proteins can be altered by a diverse set of post-translational modifications that include 

phosphorylation, methylation, acetylation, ubiquitylation and hydroxylation [221]. A post-

translational modification attached to one amino acid can antagonise or favour the ability of 

adjacent residues to recruit a binding partner. Some modular domains like SH2, PTB, WW or 14-3-

3 domains recognise target core motifs containing phosphorylated residues [99, 221]. Due to the 

pronounced positive surface charge of the Spred2 EVH1 domain as revealed by its atomic 

structure, hydrophobic phosphopeptide binding motifs would be attractive candidates to think of in 

next steps of a study. Considering tools like phosphopeptide SPOT scans or yeast two-hybrid 

systems which may identify interactions of the Spred2 EVH1 domain with post-translationally 

modified epitopes would be an attractive option for future experiments. 
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8. Abbreviations      
 
3-AT   3-amino-1, 2, 4-triazole 

8pCPT-cGMP  8-(para-Chlorophenylthio) guanosine-3’,5’-cyclic monoposphate 

aadA    Aminoglycoside 3`adenyltransferase 

Abl    Ableson tyrosine kinase 

AC    Adenylate cyclase 

ADAP   adhesion- and degranulation-promoting adaptor protein) 

AMPK   AMP activated protein kinase 

APS    Amonium persulfate 

Arp 2/3   Actin related protein 2/3 complex 

ATP    Adenosine triphosphate 

B2H system  Bacterial two-hybrid system 

Bis I    Bisindolylmaleimide I 

Bis V    Bisindolylmaleimide V 

DMEM   Dulbecco’s Modified Eagle Medium 

DMSO   Dimethyl Sulfoxide 

ECL    Enhanced chemoluminiscence 

EDTA    Ethylendiamine tetraacetic acid 

EGF    Epithelial growth factor 

EVH1    Ena/VASP homology 1 

EVH2    Ena/VASP homology 2 

EVL    Ena/VASP–like 

F-actin   Filamentous actin 

FCS    Foetal Calf Serum 

Fyb/SLAP   Fyn binding protein/SLP76 associated protein 

G-actin   Globular actin (monomeric actin) 

IP3    Inositol-1,4,5-triphosphate 

IPTG    Isopropyl-β-D-Thiogalacto(pyrano)side 

KBD   c-Kit binding domain 

LPA    Lysophosphatidic acid 

LPP   Lipoma preferred partner 

MAP Kinase   Myosin activated protein kinase 

MARCKS   Myrostylated alanine-rich C-kinase substrate 

MCFB   Mouse cardiac fibroblast 
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Mena    Mammalian enabled 

MINT   Molecular INTeraction database 

MLC    Myosin light chain 

MLCK   Myosin light chain kinase 

NMR   Nuclear magnetic resonance 

PBS    Phosphate buffered saline 

PC   phosphatidylcholine 

PEG   Poly ethylene glycol 

PKA    Protein kinase A 

PKC    Protein kinase C 

PKG    Protein kinase G 

PMA    Phorbol 12-Myristate 13-Acetate 

PRM   Proline rich motif 

PRR    Proline rich region 

PS   phosphatidylserine 

PtdIns(3)P  phosphatidyl inositol 3-phosphate 

PtdIns(5)P  phosphatidyl inositol 5-phosphate 

RACKS   Receptor for activated C-kinases 

Robo    Roundabout 

Rp-8-Br-cAMPS  8- Bromoadenosine- 3', 5'- cyclic monophosphorothioate, Rp-isomer 

SDS    Sodium dodecyl sulphate 

SEMA6A-1   semaphoring 6A-1 protein 

SGC   Structural genomic consortium 

SH3    Src homology domain 3 

SNP    Sodium nitro prusside 

SPR    Sprouty related 

Spred   Sprouty related with an EVH1 domain 

SRE    Serum Response Element 

SRF    Serum Response Factor 

TEMED   N,N,N’,N’-tetramethylendiamine 

VASP    Vasodilator Stimulated phosphoprotein 

WASP   Wiskott Aldrich Syndrome protein 

WH1    WASP homology 1 
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