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Dishevelled-3 conformation dynamics analyzed by
FRET-based biosensors reveals a key role of casein
kinase 1
Jakub Harnoš1,11, Maria Consuelo Alonso Cañizal 2,3,4, Miroslav Jurásek5,6, Jitender Kumar 5,

Cornelia Holler 7,8, Alexandra Schambony 7,8, Kateřina Hanáková5,6, Ondřej Bernatík1, Zbyněk Zdráhal5,6,

Kristína Gömöryová 1, Tomáš Gybeľ1, Tomasz Witold Radaszkiewicz1, Marek Kravec1, Lukáš Trantírek 5,9,

Jan Ryneš5, Zankruti Dave 1, Ana Iris Fernández-Llamazares 10, Robert Vácha5,6,

Konstantinos Tripsianes 5, Carsten Hoffmann 2,3,4 & Vítězslav Bryja 1,9

Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL

conformational dynamics under native conditions is unknown. To overcome this limitation,

we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach

to study DVL conformation in living cells. Using this single-cell FRET approach, we demon-

strate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are pre-

dominantly open, show more even subcellular localization and more efficient membrane

recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function

in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain

how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the

PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an

experimental tool for DVL conformational sampling in living cells and elucidates the essential

regulatory role of CK1ɛ in DVL conformational dynamics.
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Wnt signaling pathway is one of the signaling pathways,
whose dysfunction or deregulation is linked to devel-
opmental defects, inherited diseases, and many types

of cancer1. Wnt proteins have been shown to activate several Wnt
signaling pathways. The best known Wnt/β-catenin (canonical)
pathway typically controls cell proliferation and differentiation by
the regulation of transcription, whereas other (i.e. non-canonical)
branches typically regulate cell polarity and migration by the
reorganization of cytoskeleton2–4. Wnt signals are transduced via
the membrane receptor Frizzled (FZD) and the intracellular
protein Dishevelled (Dsh in Drosophila, DVL1–3 in humans).
There is a general agreement based on strong genetic evidence in
Drosophila3 and mouse5,6 that DVL protein(s) plays a crucial role
in all major branches of Wnt signaling and serves as a signaling
hub.

All DVL proteins have a conserved architecture consisting of
three well-defined domains: an N-terminal DIX domain
(Dishevelled and Axin), a central PDZ domain (Post-synaptic
Density Protein-95, Disc Large Tumor Suppressor, and Zonula
Occludens-1), and a C-terminal DEP domain (Dishevelled, Egl-
10, and Pleckstrin). Crystal structures of all three isolated DVL
domains are known7–9. The regions linking the three domains
and the long C-terminus (200 aa) are intrinsically disordered2.

DVL molecules can multimerize to form high-order structures
called DVL signalosomes, which are crucial for the subsequent
downstream activation of Wnt/β-catenin signaling10–12. Signa-
losome formation is mediated via head-to-tail multimerization of
DVL’s DIX domains10 (and/or DIX domain of Axin protein11–
13). Recently, dimerization via the DEP domain has also been
reported and it was proposed that DEP–DEP interaction medi-
ated by domain swapping cooperates with DIX-dependent DVL
signalosome formation14.

Several pieces of information suggest that DVL can also
interact intramolecularly. Specifically, it has been shown in vitro
that at least two regions located in the C-terminus of DVL— (i) a
nuclear export signal and (ii) the terminal 7 aa in the C-terminus
of DVL—can interact with the PDZ domain15–17. These reports
suggested that DVL can exist in a closed and open conformation
(s) undergoing multiple structural transitions that control DVL
function. However, there is neither an experimental approach to
study this phenomenon directly nor clear evidence that DVL
exists in multiple conformations in vivo.

In this study we use an experimental system that enables the
analysis of DVL conformational sampling in living mammalian
cells. We design and characterize several biosensors of DVL3
conformation based on fluorescein arsenical hairpin binder
(FlAsH)-based Förster resonance energy transfer (FRET). This
single-cell FRET method allows site-selective detection of protein
conformation dynamics in living cells and has already helped to
decipher various biological problems18–20. FlAsH is a small
organic compound, which recognizes and binds to CCPGCC
tag18. The FlAsH–CCPGCC complex becomes fluorescent and
can be used as an energy acceptor in the FRET pair with ECFP
(enhanced cyan fluorescent protein). The main advantage of the
CCPGCC tag is its size—only 6 aa, which reduces interference
with the biological function of the protein of interest18. Using
FlAsH FRET DVL3 sensors we describe the conformational
dynamics of DVL3 in living cells upon Wnt pathway stimulation
and the key function of Casein kinase 1 ɛ (CK1ɛ) in this process.

Results
Design and generation of the FRET-based DVL3 biosensors.
FlAsH-based FRET represents a powerful technique that allows
monitoring of the protein conformation in biological setups, where
large tags can interfere with protein complex formation and

function18–20. FlAsHmolecule forms a fluorescent complex with a 6
aa long sequence (CCPGCC) that can be shut off by addition of
BAL (British Anti-Lewisite or 2,3-dimercapto-1-propanol)18. The
general scheme of how FlAsH-based FRET works is depicted in
Fig. 1a and in Supplementary Fig. 1a. We designed and generated
four different DVL3 sensors (FlAsH I–IV), which differ in the
position of the CCPGCC tag. Each DVL3 sensor contained the
ECFP tag at the N-terminus and one CCPGCC internal tag, located
in an intrinsically disordered region (IDR) or at the C-terminus of
DVL3. The CCPGCC tags were inserted at the most disordered
region of each IDR predicted in silico using PONDR-FIT tool21 as
shown in Fig. 1b. Biological and signaling properties of all four
DVL3 FlAsH sensors were indistinguishable from wild-type (wt)
ECFP-DVL3 in the following assays (performed in HEK293 DVL1-
2-3−/− cell line22 in order to avoid interaction with endogenous
full-length DVL isoforms): activation of the Wnt/β-catenin pathway
monitored by Dual Luciferase TopFlash/Renilla reporter gene assay
(Supplementary Fig. 1c); CK1ɛ-dependent DVL electrophoretic
mobility shift assay (Supplementary Fig. 1d); and changes of DVL
subcellular localization induced by CK1ε (Supplementary Fig. 1e).
Data are summarized in Fig. 1c.

The ECFP-DVL3 FlAsH I, II, and III (but not IV) sensors
showed robust basal intramolecular FRET measure after BAL
addition (Fig. 1d, left panel), which suggests that the ECFP and
CCPGCC tags are in physical proximity. Since it has been
reported that DVL can undergo intermolecular multimerization
via its DIX and DEP domains10,14, intermolecular FRET among
different DVL3 molecules can also occur. To assess the
intermolecular FRET efficiency, we generated N-terminally HA-
tagged DVL3 FlAsH I–IV constructs without the N-terminal
ECFP tag. Despite the fact that the ECFP and CCPGCC tags
(labeled by FlAsH molecule) showed almost complete co-
localization in dots for all four sensors (Supplementary Fig. 1b),
the intermolecular FRET efficiency was negligible, except FlAsH
III (Fig. 1d, right panel). These results demonstrate that ECFP-
DVL3 FlAsH I, II, and III sensors represent a useful tool for the
analysis of DVL conformation in living cells that is not affected
(FlAsH I, II) or only minimally affected (FlAsH III) by
intermolecular FRET due to the DVL–DVL oligomerization.

CK1ɛ changes intramolecular FRET in DVL3 sensors. As a
result of Wnt pathway activation, DVL is heavily phosphory-
lated23–26. It has been further shown that the major DVL kinase
responsible for Wnt-induced phosphorylation of DVL27–29 is
CK1ɛ. In order to analyze whether and how CK1ε affects DVL3
conformation, we (i) used CK1δ/ε inhibitor PF670462 (refs. 29,30)
to pharmacologically inhibit endogenous CK1ε and (ii) promoted
DVL3 phosphorylation by overexpression of exogenous CK1ε.
Such manipulation of CK1ε activity dramatically affects DVL3
properties such as: (i) CK1ɛ-DVL3-mediated activation of the
Wnt/β-catenin pathway monitored by Dual Luciferase TopFlash/
Renilla reporter gene assay (Fig. 2a); (ii) phosphorylation status of
DVL3 assessed either as a phosphorylation-dependent mobility
shift on SDS-PAGE or as an increased signal for pS643-DVL3
phosphorylation-specific antibody—a well-defined29 target site
for CK1ε (Fig. 2b), and (iii) changes in the subcellular localization
of DVL3 (ref. 31) analyzed by immunofluorescence (Fig. 2c).
These properties were analyzed for all four ECFP-DVL3 FlAsH
sensors (Supplementary Fig. 2a) and were found indistinguishable
from wt FLAG-DVL3 (compare Supplementary Fig. 2a and
Fig. 2a–c). This result shows that neither ECFP nor CCPGCC tag
addition in any of the four sensors affects the biological response
of DVL3 to CK1ε.

To determine how CK1ε influences DVL3 conformation
sampling, we analyzed basal FRET in ECFP-DVL3 FlAsH I-IV
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sensors in: (i) cells treated with the CK1δ/ε inhibitor (PF670462,
10 μM), (ii) control cells possessing active endogenous CK1ε, and
(iii) cells overexpressing CK1ε (Fig. 2d, for intermolecular FRET
efficiency controls see Supplementary Fig. 2b). Changes in CK1ε
levels and activity affected FRET efficiency to a different extent
for each sensor. The most prominent differences were detected
using the FlAsH III sensor, for which the CK1δ/ε inhibitor
consistently increased the FRET efficiency, whereas the CK1ε
overexpression decreased it. These experiments implied that
CK1ε inhibition results in a more compact (i.e. closed)
conformation of DVL3, while CK1ε overexpression leads to a
looser (i.e. open) conformation. In order to dissect

mechanistically how CK1ε affects the DVL conformations
in vivo, we selected DVL3 FlAsH III sensor for a rigorous
investigation.

Identification of DVL3 regions in direct contact with CK1ɛ. As
a next step, we mapped in detail the interaction site(s) of DVL3
and CK1ε, in order to generate DVL3 variants incapable of CK1ε
binding while keeping all structured domains intact. We hypo-
thesized that IDRs significantly contribute to the interaction of
DVL3 and CK1ε. The binding epitopes within IDRs are typically
defined by linear peptide motifs32 that can be rapidly analyzed in
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peptide microarrays. For our purposes, we designed a peptide
microarray (13-meric peptides overlapping by 10 residues) cov-
ering the IDRs of DVL3 (Fig. 3a).

The human DVL3 peptide library also contained phosphory-
lated versions of those peptides, where phosphorylation sites for

CK1ε were previously identified29 (Supplementary Fig. 3). After
incubation with recombinant CK1ε, we discovered three peptide
clusters—named RGCF (aa 339–351), RGPR (aa 611–623), and
FRMA (aa 698–710)—as potential interaction sites with CK1ε
(Fig. 3b). The MS/MS-based analysis of the wild-type DVL3
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overexpressed in HEK293 cells showed that serine residues in
these regions (S350 in RGCF; S611, S612, and S622 in RGPR)
were only negligibly phosphorylated, in contrast to S700 in
FRMA that was found constitutively phosphorylated (Supple-
mentary Fig. 4b). When CK1ε was overexpressed, all residues in
RGCF and RGPR regions were phosphorylated (Supplementary
Fig. 4c, d). Importantly, phosphorylated variants of these peptides
showed negligible interaction with CK1ε in the peptide array
(Supplementary Fig. 4e). The quantification of the in vitro
binding between the peptides corresponding to these regions and
recombinant CK1ε using fluorescence anisotropy (FA) showed
affinities close to 1 µM for all three peptides but negligible
interaction for their phosphorylated variants (Supplementary
Fig. 4a). This suggests that the interaction is phosphorylation-
sensitive and CK1ε is released once the binding epitopes get
phosphorylated.

Deletion of these regions in DVL3 (hereafter referred as DVL3
ΔALL variant) (Fig. 3c) drastically reduced, but not completely
abolished, the interaction with CK1ε as confirmed by coimmu-
noprecipitation and resulted in the diminished phosphorylation
at the CK1ε target site S643 (Fig. 3d–g). Functionally, DVL3
ΔALL failed to activate the downstream Wnt/β-catenin pathway
in the TopFlash reporter assay (Fig. 3h) in HEK293 DVL1-2-3−/−

cells.
Intriguingly, the DVL3-CK1ɛ-binding sites show high

sequence conservation (Fig. 3b, top) and are almost identical in
humans and Xenopus (Fig. 3i). This allowed us to analyze the
functional consequences of these deletions also in vivo. The
activation of the Wnt/β-catenin pathway results in the axis
duplication in Xenopus, which is a well-defined functional Wnt/β-
catenin signaling readout (Fig. 3j, left). First, we injected a dose of
mRNA encoding Dvl3 wild type into the marginal zone of the
ventral blastomeres of the four-cell stage Xenopus laevis embryos
to induce double axis formation (Fig. 3j, right). Not surprisingly,
the xDvl3 ΔALL variant (lacking aa 338–350, 609–619, and
693–705 in xDvl3) showed dramatically reduced capacity to
induce axis duplication both in the presence and absence of
exogenous xCK1ɛ (Fig. 3j, right). Taken together, these data
demonstrate that the identified DVL3 regions represent evolu-
tionary conserved bona fide interaction sites for CK1ɛ, whose
deletion abolishes both CK1ɛ binding and CK1ɛ-dependent
functions of DVL3.

CK1ε is required for the conformational dynamics of DVL3. As
the DVL3 ΔALL variant is incapable of complete interactions
with CK1ɛ, we further examined the role of CK1ε in the con-
formational dynamics of DVL3. Using the FlAsH III sensor as a
template, we generated and analyzed the ECFP-DVL3 FlAsH III
ΔALL variant (Fig. 4a). Conformational dynamics of DVL3 ΔALL
was lost but, interestingly, the FRET efficiency for all three con-
ditions was low—suggesting that DVL3 ΔALL remains in the
open rather than the closed conformation. To further analyze this
phenomenon, we produced CK1ɛ-deficient (CK1ɛ−/−) HEK293
cells using the CRISPR-Cas9 system (Fig. 4b). These cells (Fig. 4b)
failed to respond to Wnt ligands as demonstrated by the lack of
phosphorylation of DVL2 and DVL3, and pS1490-LRP6. DVL3
overexpression in CK1ɛ−/− cells failed to induce Wnt/β-catenin
pathway activation monitored by TopFlash in the absence of
exogenous CK1ɛ (Supplementary Fig. 4f). Importantly, the FRET
efficiency of the DVL3 FlAsH III sensor in CK1ɛ−/− cells was low
and CK1ɛ inhibition was unable to increase it as it did in HEK293
wt cells (Fig. 4c). These data suggest that DVL3 in the absence of
CK1ε remains in an open (and non-phosphorylated) rather than
a closed (and non-phosphorylated) conformation that is observed
when CK1ε is present but inhibited by the CK1δ/ε inhibitor

PF670462. One explanation can be non-specific effects of CK1δ/ε
inhibitor PF670462, unrelated to CK1ε inhibition. To exclude this
possibility, we overexpressed dominant negative (dn) CK1ε
mutant P3, which efficiently binds to DVL3 (ref. 33). The pre-
sence of dnCK1ε as well as wild-type CK1ε in combination with
PF670462 inhibitor resulted in the significantly increased FRET
signal of the DVL3 FlAsH III sensor (Fig. 4d). This confirmed
that in presence of inactive CK1ε, DVL3 adopts a more compact
conformation which is not the case when CK1ε is absent from the
DVL3 complex. In summary with other results, it suggests that
CK1ɛ has a dual role: (i) it retains DVL3 in a compact con-
formation by physical interaction and (ii) triggers a
phosphorylation-induced open conformation of DVL3, when
activated.

C-terminus-PDZ interaction controls conformations of DVL3.
The recent study by Lee et al.16 has proposed that DVL can
switch between open and closed conformations. Using mouse
Dvl1 they demonstrated that the closed conformation results
from the binding of the conserved terminal 7 aa of the C-
terminus (EFFVDIM sequence) to the PDZ domain (for sche-
matics see Fig. 5a). Therefore, we asked whether this interaction
contributes at least partially to the DVL3 conformational
dynamics detected by our FRET sensor. Indeed, DVL3 lacking the
very C-terminal part (the ΔC variant of DVL3 FlAsH III, which
lacks aa 699–716; Supplementary Fig. 5b) showed significantly
lower basal FRET efficiency than wt DVL3 FlAsH III (Fig. 5b).
This suggests that the interaction between the C-terminus and
PDZ may play a role in the conformational sampling of DVL.

Our next question was whether CK1-mediated phosphoryla-
tion in the PDZ domain and the C-terminus contributes to the
conformational dynamics induced by CK1ε. First, we employed
the MS/MS approach to analyze the phosphorylation of DVL3
induced by CK1ε in the PDZ domain of DVL3. Two
phosphorylation sites highly induced by CK1ε were found in
the PDZ domain: S268 and S311 in DVL3 immunoprecipitated
from HEK293 cells (Fig. 5c) as well as in the in vitro purified full-
length DVL3 phosphorylated by recombinant CK1ε in vitro
(Fig. 5d). Furthermore, C-terminal S700 in DVL3 was found to be
constitutively phosphorylated in HEK293 cells, as previously
mentioned (Supplementary Fig. 4b). All three serine residues are
fully conserved (Supplementary Fig. 5a, b). To investigate how the
phosphorylation status of S268 and S311 in the PDZ domain
influences DVL3 conformation, we created ECFP-DVL3 FlAsH
III wt construct that was either non-phosphorylatable (S268A/
S311A) or phosphorylation-mimicking (S268E/S311E). DVL3
FlAsH III S268A/S311A variant showed higher FRET efficiency
indicating the closed conformation, whilst the FRET efficiency of
the DVL3 FlAsH III S268E/S311E variant was lower (Fig. 5e),
suggesting predominantly the open conformation for this variant.
Intriguingly, the FRET efficiency was not significantly affected by
the CK1ε inhibition or CK1ε overexpression in any of these
variants (Fig. 5e).

Altogether, these data suggest that the CK1-induced phos-
phorylation of S268 and S311 can control the conformation of
DVL3. This led us to investigate whether this regulation can be
explained at the atomic level as a result of weaker binding of the
(phosphorylated) C-terminus to the PDZ domain phosphorylated
at S268 and/or S311.

PDZ domain phosphorylation regulates the C-terminus bind-
ing. We performed in silico simulations to investigate the inter-
action between the C-terminal peptide of human DVL3 (aa
709–716) and human DVL3 PDZ (aa 245–338) domain. We
found that the C-terminal peptide binds to the PDZ domain in
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the canonical binding groove (primary binding site34) forming an
antiparallel β-strand with β2-strand of the PDZ domain (Fig. 6a).
Moreover, this interaction extends to the β2–β3 loop, where S268
via its hydroxyl forms a hydrogen bond with the carboxyl group
of E710 (Fig. 6b). β2–β3 Loop has been reported as an additional

binding site in the PDZ domains of several other proteins34–36

but in DVL, such interaction (S268-E710) has not yet been
reported.

To estimate the effect of phosphorylation on peptide binding in
silico, we investigated the interaction between the peptide and the
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DVL3 PDZ with two phosphorylated serines (pS268/pS311),
phosphomimic S268E/S311E, and non-phosphorylatable S268A/
S311A. In all cases, the peptide remained bound to the PDZ
during the entire simulation (500 ns). However, the enthalpic
interaction between the PDZ and the peptide were weaker for
both phosphorylated and the mimetic variant by roughly 20%
when compared to PDZ wt (Fig. 6c, d). In contrast, the alanine
double mutant showed similar interaction strength as wt (Fig. 6e).
The changes to the interaction strength were mostly situated in
proximity to mutated/phosphorylated sites in the β2–β3 loop
with a minor change in the primary carboxyl binding site (see
Fig. 6b). The observed interaction strengths correlate with the
preference of each PDZ mutant for open or closed conformation
observed in the in vivo experiments and provide a candidate
mechanism supporting FRET experimental observations.

In order to address the possible role of DVL3 phosphorylation-
driven regulation involving S268 and S311 in vitro, we performed
NMR structural characterization (Fig. 6f–i). For this purpose, we
exploited the well-characterized PDZ domain of human DVL2
(aa 265–361)14, where S286 and S329 correspond to S268 and
S311 of human DVL3. Investigation of chemical shift differences
revealed that the phosphorylation-mimicking substitutions
(S286E/S329E) do not affect the PDZ fold16 (Supplementary
Fig. 6a–c). Next, we performed NMR titrations with a
phosphorylated (pS700) C-terminal peptide ligand derived from
DVL3 (aa 698–716). The phosphorylation variant was chosen as
the most physiological, since S700 appeared as constitutively
phosphorylated (see Supplementary Fig. 4b). The peak trajec-
tories induced by peptide binding are linear and follow the same
course for both PDZ wt and phosphorylation-mimicking variant

Fig. 6 PDZ phosphorylation regulates the interaction with the DVL C-terminal peptide. a Structure of DVL3 C-terminal peptide (aa 702–716; green) bound
to the PDZ-binding pocket (PDZ domain from DVL3, aa 245–338; in silico ɑ-helices in dark and β-strands in light gray) observed in the in silico simulations.
S268, S311, and C-terminus residue E710 participating in hydrogen bonds (dotted line) are highlighted with a stick model. b The matrix of mean interaction
energy between each residue of PDZ domain aa 245–338 (x-axis) and DVL C-terminal peptide aa 709–716 (y-axis). Strength of the attraction of PDZ wt
and C-terminus is depicted in white-black gradient. c–e The differences in mean interaction energies shown as a difference from wild-type PDZ wt: c PDZ
(S268E/S311E), d PDZ (phospho-S268/phospho-S311), and e PDZ (S268A/S311A) between PDZ mutants. The change in the interactions are depicted in
green (stronger) or red (weaker). Interactions of protein/peptide end caps are also displayed in the matrix. f–i NMR titrations of the DVL2 PDZ wild type
and PDZ phosphomimicking variant (S286E/S329E; corresponding to S268 and S311 in DVL3) with DVL C-terminal peptide. f Overlay of 1H, 15N HSQC
spectra for each titration point. Arrows indicate selected residues that exhibit fast exchange properties on the NMR timescale and gray boxes selected
residues that exhibit intermediate-to-fast exchange properties on the NMR timescale. gMapping of chemical shift perturbations on DVL-peptide (in green)
structure from PDB database (PDB ID: 3CCO). Fast exchange residues colored using a gradient from white to red according to chemical shift perturbation
and intermediate exchange residues that go beyond detection at the end of the titration colored in gray. S286, or E286 substitution, of DVL2 are highlighted
by black arrow. h Binding isotherms for three residues that experience fast exchange during NMR titration. The apparent KD values represent the mean with
the standard deviation for the three cross-peaks analyzed. i Experimental line shapes during the titration for two selected residues that experience
intermediate-to-fast exchange. j SPR sensograms of DVL C-terminal peptide binding to wild type and S286E/S329E PDZ from DVL2 and the corresponding
binding isotherms fitted to a one-site binding model. RU stands for response units, AU for arbitrary units
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indicating a similar binding mode. Of the two serine residues,
only S286 is affected by peptide binding and clearly experiences
larger perturbation than its glutamic acid counterpart (Fig. 6f,
Supplementary Fig. 6d). This is in line with in silico data,
proposing that S286 in DVL2 (corresponding to S268 in DVL3) is
directly involved in contacts with the C-terminal peptide.

Intermediate and intermediate-to-fast exchange peaks corre-
spond to PDZ residues of the binding groove (Fig. 6g). These
residues experience severe line broadening throughout the course
of the ligand titration in PDZ wt when compared to S286E/S329E
variant (Fig. 6i). Fast exchange peaks correspond to residues at
the groove periphery. Their quantitative analysis shows that the
phosphorylation-mimicking variant has a two-fold weaker

affinity for the peptide (Fig. 6h). In principle, the chemical shift
perturbations are larger for PDZ wt, indicating that the
equilibrium is shifted further to the bound state when compared
to the PDZ phosphorylation-mimicking variant (Supplementary
Fig. 6d). As an independent confirmation of this conclusion, we
also performed surface plasmon resonance (SPR) binding
experiments (Fig. 6j). The apparent dissociation constants derived
from SPR are in line with the NMR observations and reported a
two-fold lower peptide affinity for the PDZ phosphorylation-
mimicking variant.

In summary, the biophysical data and the in silico simulations
indicate a phosphorylation-driven mechanism that modulates the
binding of DVL C-terminus to PDZ domain. In combination

a

b

c

e f

d n=3 
(3×100 cells)

n=3–6
(3 – 6×100 cells)

n=4n=3n=11n=11n=4

Recruited
partially 

Non-
recruited

DVL3 DVL3

Recruited 
fully

CK1ε activityVariables
CK1ε-disrupted

binding
CK1ε presence/

absence
DVL3

ΔC-terminus
DVL3

PDZ variants

 N
or

m
al

iz
ed

To
pF

la
sh

/r
en

ill
a 

ra
tio

 N
or

m
al

iz
ed

To
pF

la
sh

/r
en

ill
a 

ra
tio

R
ec

ru
ite

d 
(%

)

Punctae (%) Punctae (%)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

2.0

2.5

3.0

0

50

100
O

bs
er

ve
d 

ph
en

ot
yp

e 
(%

)

0

50

100

O
bs

er
ve

d 

ph
en

ot
yp

e 
(%

)

DVL3

–

– –

+

 CK1ε

ΔA
LL

w
t

w
t

S
26

8A
/

S
31

1A

S
26

8E
/

S
31

1E

–

dn
w

t

–

– c

–

– –

–

w
t

– o

ΔC

–

– –

–

w
t

– o

–

– –

–

w
t

– c

–

–

o

–

– –

–

w
t

w
t

– oc o

w
t

w
t

Closed/open

Cells

CK1ε–/–CK1εwt/wt

**

*

*

**

ns

*

* * **
*

*

*
*

* * **
*

ns

*
ns

DVL3

DAPI

Punctae

DVL3

DAPI

Even

0 20 40 60 80 100
0

20

40

60

80

100

DVL3 wt

DVL3 wt + CK1ε inh.

DVL3 wt + dnCK1ε 

DVL3 wt + dnCK1ε 

DVL3 wt + CK1ε wt

DVL3 wt + CK1ε wt

DVL3 ΔALL

DVL3 ΔC

DVL3 S268A/S311ADVL3 S268E/S311E

DVL3 wt (CK1ε–/– cells)

DVL3 wt (CK1ε–/– cells)

0 20 40 60 80 100
0

1

2

3

DVL3 wt

DVL3 wt + CK1ε inh.

DVL3 ΔALLDVL3 ΔC DVL3 S268A/S311A

DVL3 S268E/S311E

DVL
conformation

Closed
Open

DVL
conformation

Closed
Open

CK1ε inh.

Two categories:

Three categories:

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09651-7 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1804 | https://doi.org/10.1038/s41467-019-09651-7 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


with other results in this study, we propose that such mechanism
contributes to the CK1-dependent control of DVL conforma-
tional changes.

Wnt ligands promote open conformation of DVL3. It has been
shown previously that stimulation with Wnt ligands activates
CK1δ/ε that in turn phosphorylate DVL. Wnts from both major
groups—i.e. capable to activate Wnt/β-catenin (i.e. Wnt-3a) or
alternative non-canonical Wnt pathway (i.e. Wnt-5a)—trigger
phosphorylation of DVL that is dependent on CK1δ/ε activity
(Fig. 7a). Thus, we decided to test if/how Wnts change the con-
formation of DVL3. To do this, we generated two stable cell lines
(derived from HEK293 wt and HEK293 DVL1/2/3 triple knock-
out22 cells) utilizing tetracycline-controlled promoter driving
expression of ECFP-DVL3 FlAsH III sensor (Fig. 7b, c). Under
these conditions, the ECFP-DVL3 FlAsH III gets expressed at
levels comparable to endogenous DVL3 (Fig. 7c), and in response
to Wnt stimulation gets phosphorylated—this can be monitored
either as a phosphorylation-dependent shift or by anti-phospho-
S643 antibody (Fig. 7d). Analysis of FRET efficiency in both cell
lines showed that basal FRET efficiency (≈2%) was comparable
with the control conditions analyzed upon transient over-
expression of ECFP-DVL3 FlAsH III (see Figs. 2 and 4).
Importantly, treatment with both Wnt-3a and Wnt-5a resulted in
significantly lower FRET, regardless of the cell line used (Fig. 7e,
f). Altogether, these results show that stimulation with Wnt
ligands changes DVL3 conformation similarly to the over-
expression of CK1ε and suggest that the phosphorylation-driven
conformational switch participates in the mechanism of Wnt-
induced DVL activation.

Open DVL3 is evenly localized and better membrane recruited.
Our analyses of DVL3 conformational dynamics by FRET iden-
tified multiple conditions that promote either open or closed
conformations of DVL3 (see Figs 2, 4 and 5). These conditions/
mutations (schematized in Fig. 8a) include changes in the CK1ε
activity, presence/absence of DVL3 C-terminus, phosphomi-
micking/blocking mutations in the PDZ domain, capacity of
DVL3 to interact with CK1ε, and presence or absence of CK1ε in
cells. Altogether, we could identify five cases associated with open
conformation and three cases associated with closed conforma-
tion. In order to link DVL3 conformational changes with its
biological properties, we decided to perform a systematic corre-
lative analysis. The following conditions were included as closed:
DVL3 wt+ CK1δ/ε inhibitor PF-670642, DVL3 wt+ dnCK1ε,
and DVL3 (S268A/S311A), or open: DVL3 wt+CK1ε wt, DVL3

ΔALL, DVL3 (S268E/S311E), DVL3 ΔC, and DVL3 wt in
CK1ε−/− cells.

First, we analyzed the preferred subcellular localization of
DVL3 (as introduced in Fig. 2c)10,14. As shown in Fig. 8b, the
open variants of DVL3 are significantly more evenly distributed
whereas closed DVL3 is more punctate. Next, we investigated if
DVL3 conformation correlates with the capacity of DVL3 to be
recruited by FZD6, a key Wnt receptor, to the plasma membrane.
For this purpose, we co-expressed FZD6 and analyzed membrane
recruitment of DVL3 in FZD6-positive cells by immunofluores-
cence37. Individual cells were categorized as: not recruited
(Fig. 8b, no DVL3 in the membrane), partially recruited (clear
membrane as well as cytoplasmic localization), and fully recruited
(predominantly plasma membrane localization, Fig. 8c, left). This
analysis showed that closed DVL3 is less efficiently recruited to
the membrane by FZD6, whereas open DVL3 behaves either as a
control or is recruited more efficiently (Fig. 8c). In the last
readout we analyzed the capacity of DVL3 to activate down-
stream Wnt/β-catenin pathway monitored by TopFlash reporter
assay (Fig. 8d). Under all conditions where DVL3 is closed—
DVL3 (S268A/S311A), DVL3 wt+ CK1δ/ε inhibitor, and DVL3
wt+ dnCK1ε—no (or negligible) TopFlash/Renilla activation was
observed. On the other hand, under conditions that favor the
open conformation both activation as well as inhibition of the
Wnt/β-catenin pathway was evident.

Next, we plotted the biological properties of individual open
and closed cases in a single graph (Fig. 8e, f; Supplementary
Fig. 7a). When both subcellular localization and FZD6-induced
membrane recruitment were considered, open and closed
conditions separated from wt DVL3 very clearly (Fig. 8e). Ability
to activate TopFlash was observed only when CK1ε was co-
expressed with wt DVL3. Thus, it seems that CK1ε activity
represents an independent additional factor that controls the
behavior of open DVL3 forms; i.e., open conformation is not
sufficient (although it can be required) for DVL3 to activate
downstream Wnt/β-catenin signaling. Altogether these data
demonstrate a strong correlation between DVL3 conformations
and their ability to be recruited to the receptor complex (FZD6)
or localize evenly in a cell.

In the cell culture model we were unable to dissect the effects
on the non-canonical Wnt/PCP pathway, and as such we turned
into the Xenopus embryo model. Alterations in the Wnt/PCP
pathway activity result in the convergent extension (CE) defects
(Supplementary Fig. 7b, right). In order to avoid any artifacts, we
tested the constitutively open and closed variants of xDvl3 based
on point mutations or small deletions—namely open xDvl3 ΔC
and xDvl3 (S267E/S310E) and closedxDvl3 (S267A/S310A).

Fig. 8 DVL conformations correlate with DVL subcellular localization and membrane recruitment. a Conditions and variants with the defined
conformational state identified by FlAsH-based FRET subjected to analyses in b–d; o indicates open, c indicates closed. b ECFP-tagged DVL3 was
transfected to HEK293 wt cells as indicated. Subcellular localization was analyzed by anti-GFP immunostaining. Based on the pattern of ECFP-DVL3, cells
were classified to have either even or punctate localization (plotted as white dots) of DVL3. Typical examples are shown in the left. Data represent average
from three independent transfections with 100 cells counted in each condition per transfection. Identical control condition is shown several times for better
clarity. c FLAG-tagged DVL3 and FZD6-mCherry were transfected in HEK293 DVL1/2/3−/−, wt, and CK1ε−/− cells as indicated. Subcellular localization
was analyzed by anti-FLAG immunostaining. Based on the membrane localization of FLAG-DVL3, cells were classified to possess DVL3 either non-
recruited, partially recruited, or fully recruited (the sum of partial and full DVL3 recruitment plotted as white dots). Typical examples are shown in the left.
Data represent average from three independent transfections with 100 FZD6-mCherry-positive cells counted in each condition per transfection. Identical
control condition is shown several times for better clarity. d Analysis of the Wnt/β-catenin downstream signaling monitored by Dual Luciferase TopFlash/
Renilla Reporter Assay in HEK293 cells. Data in b–d represent mean ± S.D. and statistical significance in d was analyzed by one-way ANOVA test with
Gaussian distribution and Tukey's post-test. For more details about the statistics used in Fig. 8b and c, please see the appropriate section in Methods (*,
p≤ 0.05; ns, not significant, p > 0.05). e, f Data obtained in b–d were plotted in the 2D graphs. Red color indicates the closed conformation; green indicates
open. Error bars show S.D. for each parameter. % of recruited is a sum of partially recruited and fully recruited in c. DVL variants that are closed form a
distinct population when membrane recruitment and subcellular localization is considered (e) but not when the TopFlash assay is included (f, and
Supplementary Fig. 7a); dn dominant negative
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Phosphorylation sites in the PDZ domain are fully conserved
between human and Xenopus (for alignment see Supplementary
Fig. 5a) and hDVL3 S268/S311 corresponds to xDvl3 S267/S310.
As shown in Supplementary Fig. 7b, open variants of
xDvl3 showed similar potency to induce CE defects as wt xDvl3
with approximately 70–80% embryos displaying CE phenotype,
whereas the closed xDvl3 (S267A/S310A) showed significantly
reduced capacity to induce CE/NT (neural tube) defects with less
than 50% affected embryos. These results correlate strongly with
the capacity of the corresponding human DVL3 variants to be
recruited to the membrane by FZD6 (Fig. 8c).

Discussion
In this study we establish an FlAsH-based single-cell FRET tool
for the investigation of DVL conformations in intact living cells.
Using this approach, we identify a key role of CK1ε, a major DVL
kinase, in controlling DVL conformation in vivo.

The concept of DVL conformational sampling was first
introduced by Jung et al.38. They proposed that the C-terminus of
DVL is a ubiquitin-binding domain that can recognize K63-
linked ubiquitin chains in the DEP domain to yield an inactive,
closed, conformation38. Subsequent studies of Zheng group16,17,
in vitro proposed an alternative open/closed conformational
switch mediated by docking of the C-terminus to the PDZ
domain of DVL. The FlAsH-based FRET DVL3 sensor technique
allows us to identify a key role of phosphorylation in the reg-
ulation of this process. Specifically, we identify two CK1ε-induced
phosphoserine residues (S268 and S311 in human DVL3) in the
PDZ domain whose mutation dramatically interferes with the
DVL3 conformational sampling, and further supports the C-
terminus–PDZ interaction model16,17.

Previously, we have shown28 that efficient interaction of DVL3
and CK1ɛ requires multiple DVL3 regions. The DIX domain is
the only region of DVL3 which seems to be dispensable for high
affinity interaction28. The DEP domain appears to be the most
important structured domain involved in CK1ɛ binding28,39; here
we identify three regions in the IDRs of DVL3 that are involved in
CK1ɛ interactions. DVL3 lacking these three short sequences is
not only inefficient to bind CK1ε but it is also not amenable to
conformational rearrangements. Interestingly, such DVL3 variant
is found counterintuitively in the open conformation. The same
applies when CK1ε is eliminated in the CK1ɛ−/− cell line. This
suggests that CK1ɛ can also have an important scaffolding
function required to retain DVL3 in the closed conformation.
This view is schematized in Fig. 9. Similar function has been
observed for other kinases that regulate biological processes not

only by their catalytic activity but also by their scaffolding
function40. In principle, the requirement for CK1 as a scaffold can
help to elucidate earlier findings shown by genetic experiments in
Drosophila that Wnt/PCP pathway requires CK1ɛ but not its
kinase activity (in contrast to Wnt/β-catenin pathway that
requires both)41.

The key question is how DVL conformation affects the for-
mation of Wnt signaling complexes. We can show that both Wnt-
3a, which triggers Wnt/β-catenin pathway, and Wnt-5a ligand,
which activates non-canonical Wnt pathway, promote open
conformation of DVL3. Both these ligands activate CK1ε, which
results in a very similar or identical phosphorylation of DVL24. At
the same time, we could correlate open conformations of DVL3
with the efficient FZD6-dependent membrane recruitment of
DVL3. A similar correlation was reported recently using XDsh,
XFz7, and zebrafish embryonal cells17. Based on these facts, we
propose a model where Wnt-induced activation of CK1ε leads to
the phosphorylation of S268/S311 in the PDZ domain and an
open DVL conformation; i.e. open DVL3 then gets more effi-
ciently bound to FZD. The molecular mechanism behind the
more efficient recruitment to FZD-centered receptor complex is
unknown but several candidate mechanisms reported in the lit-
erature can be considered for further testing. First, it is possible
that in a closed conformation (i.e. when the binding groove of
PDZ is occupied by DVL C-terminus), a conserved KTXXXW
motif in the C-termini of FZDs that is capable of direct interac-
tion with the PDZ42,43 domain cannot interact with DVL. Second,
the liberation of the DVL C-terminus in the open conformation
provides a binding interface that can be recognized by proteins
that facilitate receptor complex assembly. Such a candidate In the
non-canonical Wnt pathway could be Ror2, which binds the C-
terminus of DVL and more efficiently recognizes DVL phos-
phorylated by CK1 (ref. 44). Third, our data show that the closed
variants of DVL3 are more punctate whereas open variants are
more evenly distributed. These phenotypes approximate the
multimerization properties of DVL mediated by DIX and DEP
domains10,14. In all our conditions, DVL3 has intact DIX and
DEP domains, which suggests that the conformation itself affects
multimerization and/or biophysical properties of DVL. One can
speculate that closed DVL3 represents an inactive and immobile
pool of DVL whereas open DVL is more mobile. Existing reser-
voirs of inactive or autoinhibited DVL have been proposed
before17,45—for example: DVL-binding protein nucleoredoxin
(NXN) can recognize such a pool and prevent it from
degradation45,46. The key function of CK1 upon activation of
Wnt pathway can then be mobilization of DVL from the inactive
pool to be followed by FZD-mediated events—this distinction is
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in line with earlier findings showing that the action of CK1ε and
FZD on DVL is molecularly distinct29.

Taken together, we provide evidence that Wnts and CK1ε
regulate the conformation of DVL3, and that DVL3 in the open
conformation, induced by these stimuli, is more mobile and more
efficiently recruited to FZD. The FlAsH FRET DVL3 sensor
technique provides the tool for the follow-up studies that can
shed light on the diverse DVL functions at the membrane, in the
centrosome, in the nucleus, and mainly on the regulation of DVL
function in the Wnt/β-catenin and Wnt/PCP signaling pathways.

Methods
Cell culture and transfection and mutagenesis and treatments. HEK293 wild
type (ATCC-CRL-11268), DVL1-2-3−/− (published in ref. 22), ECFP-DVL3 FIII
and CK1ɛ−/− cell lines (both derived from the aforementioned HEK293 wild-type
cells) were grown at 37 °C and 5% (vol/vol) CO2 in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco #41966-029), 10% (vol/vol) fetal bovine serum (Gibco,
#10270), 2 mM L-glutamine (Life Technologies, #25030024), and 1% (vol/vol)
antibiotics (penicillin/streptomycin; Hyclone-Biotech, #SV30010).

For immunofluorescence, cells were seeded (40,000 per well) on 24-well plates
with gelatin-coated coverslips and transfected, as indicated, with 0.1 μg of each
corresponding plasmid (0.3 μg of mCherry-FZD6) for 6 h. For western blotting and
Dual Luciferase TopFlash/Renilla Reporter Assay, cells were seeded (60,000 per
well) directly on 24-well plates with 0.1 μg of each corresponding plasmid (if not
indicated otherwise) for 6 h. For coimmunoprecipitation, cells were seeded (4.4 ×
106) on 10-cm dishes and transfected with 1 μg of each corresponding plasmid. The
next day after seeding, cells were transfected using polyethyleneimine (PEI) in a
stoichiometry of 6 μl of PEI per 1 μg of DNA for 6 h and were harvested 24 h after
transfection. The following plasmids used in HEK293 cells have been described
previously: FLAG-DVL3 wt47, CK1ϵ wt48, mCherry-FZD6 (ref. 37), and dominant-
negative CK1ϵ P3 (ref. 33). The ECFP-DVL3 wt plasmid was made by Gateway
Technology (via LR recombination according to the manufacturer’s instructions;
Thermo Fisher Scientific, #11791020) from the donor plasmid pDONR221 DVL3
(DNASU, #FLH178665.01x) and the destination plasmid pdECFP (LMBP, #4548).
The HA-DVL3 wt plasmid was made by Gateway Technology from the donor
plasmid pDONR221 DVL3 (DNASU, #FLH178665.01x) and the destination
plasmid pcDNA3.1 N-term HA (gift from Erich Nigg).

Mutagenesis reactions were performed using the QuikChange II XL Site-
Directed Mutagenesis Kit following the manufacturer’s instructions (Agilent
Technologies, #200521). All mutations described in this study were verified by
Sanger sequencing. All primers used for the site-directed mutagenesis are listed in
Supplementary Table 1. All plasmids and more detailed information are available
upon request.

Cells were treated as indicated by 10 μM CK1δ/ϵ inhibitor PF-670642 (Santa
Cruz, #sc-204180A) overnight; 1 μM LGK974 Porcupine inhibitor (Stem RD, #974-
02) overnight; 1 µg/ml of tetracycline for 4 h; and by Conditional Media (CM) for
3 h (WB, FlAsH-based FRET approach) or 8 h (TopFlash/Renilla Dual luciferase
assay), which were obtained from the control or Wnt-3a/Wnt-5a stably
overexpressing L-cells mouse cell line (L-Wnt3a; ATCC-CRL-2647 and L426
Wnt5a cells; ATCC-CRL-2814) according to the ATCC instructions.

CRISPR-Cas9 generation of HEK T-REx-293 CK1ε−/− cell line. The sequence of
gRNA targeting CSNK1E gene was chosen according to Broad Institute CRISPRko
designing tool as follows: gRNA (CSNK1E)—AAGTTCTACAAGATGATGCA
(GGG) (SfaNI restriction site indicated, PAM sequence in brackets).

The following plasmids were used for gRNA cloning: pSpCas9(BB)-2A-GFP
(PX458) (Cas9 from S. pyogenes with linked EGFP and cloning backbone for
gRNA, Addgene plasmid #48138)49 and pU6-(BbsI)_CBh-Cas9-T2A-mCherry
(Cas9 from S. pyogenes with linked mCherry and cloning backbone for gRNA,
Addgene plasmid #64324)50.

T-REx-293 cells (Invitrogen) were cultured according to the manufacturer’s
instructions and transfected by Lipofectamine® 2000 DNA Transfection Reagent
(Thermo Fisher Scientific) with #48138 (cloned in gRNA for CSNK1E). Cells were
subsequently subjected to FACS (fluorescence activated cell sorting) where
simultaneously GFP (green fluorescent protein) and mCherry-positive cells were
seeded in 96-well plates in one cell per well format.

Monoclonal cell lines were backed up and subsequently screened by western
blot using CK1ε antibody (Santa Cruz, #sc-6471). For verification and specification
of modification were above-mentioned PCR products cloned into pcDNA3 plasmid
(Invitrogen) and sequenced using CMV forward primer:
CGCAAATGGGCGGTAGGCGTG.

Generation of HEK T-REx-293 ECFP-DVL3 FlAsH III cell lines. cDNA encoding
ECFP-DVL3 FlAsH III was amplified by Pfx50 DNA Polymerase (Thermo Fisher
Scientific, #12355012) using primers containing sequences recognized by HindIII
(forward primer TATAAGCTTatggtgagcaaggg; HindIII site underlined) and XbaI
(reversed primer AATTCTAGAtcacatcacatccacaaa; XbaI site underlined)

restriction enzymes (Thermo Fisher Scientific, #ER0501 and #ER0681), extracted
from gel using GeneJET Gel Extraction Kit (Thermo Fisher Scientific, #K0691) and
ligated into HindIII- and XbaI-linearized pcDNA4/TO (Thermo Fisher Scientific,
#K102001) vector using T4 DNA Ligase (New England Biolabs, #M0202) according
to the manufacturer’s protocol. Then competent E. coli DH5α bacteria were
transformed with ligation mix using standard heat-shock protocol, individual
bacterial colonies were picked, cultured, and plasmid DNA was isolated by Gen-
Elute Plasmid DNA Miniprep Kit (Sigma-Aldrich, #PLN70). Plasmids were
checked by Sanger sequencing (forward sequencing primer ATTGACG-
CAAATGGGCG; reverse GCCTTCCTTGACCCTGGA) for the presence of the
ECFP-DVL3 FlAsH III wt cDNA. Next, T-REx-293 cells (Invitrogen) and their
derivate HEK293 DVL1-2-3−/− cell line22 were transfected with pcDNA-4-TO-
ECFP-DVL3 plasmid using PEI. Twenty-four hour post-transfection culture
medium was changed for the new one supplemented with 200 μg/ml for generation
of stable cell lines. After selection clonal lines were obtained using the serial
dilution method and analyzed by western blot using the GFP/DVL3 antibodies for
the inducible transgene expression by treatment with 1 μg/ml of tetracycline.

Dual luciferase TopFlash/Renilla Reporter Assay. Cells were transfected 24 h
after seeding with 0.1 μg of Super8X TopFlash construct, 0.1 μg of Renilla luciferase
construct, and 0.1 μg of corresponding plasmids per well for 6 h in a 24-well plate.
As for the ECFP-DVL3 FIII wt stable cell lines, transfection was followed by 4 h
induction of tetracycline (1 µg/ml) and 8 h treatment of CM:DMEM (1:1 ratio). For
performing this assay, Promega Dual Luciferase assay kit (Promega, #E1910) was
used according to the manufacturer’s instructions. Luminescence was measured by
a Hidex Bioscan Plate Chameleon Luminometer. Results are depicted as the ratio of
TopFlash and Renilla signal (TopFlash fold induction), which was normalized for
each experiment to certain control column (normalized TopFlash fold induction).
Data were analyzed by MS Excel 2007 and GraphPad Prism 6 and results were
shown as the means ± S.D. (number of experiments indicated ad hoc).

Western blot and sample preparation. Coimmunoprecipitation protocol was
used modified from Bryja et al.29 DMEM was removed after 24 h, cells were washed
by phosphate-buffered saline (PBS) and 1 ml of cold NP40-based lysis buffer (50
mM Tris buffer, pH 7.4; 300 mM NaCl; 1 mM EDTA; 0.5 % NP40) supplemented
with 1× protease inhibitors (Roche Applied Science, #11836145001), 0.1 mM DTT
and 1× phosphatase inhibitors (Calbiochem, #524625) was used per one 10-cm
dish. The lysate was collected after 15 min of lysis on 4 °C and was cleared by
centrifugation at 16.1 r.c.f. for 30 min. Samples with the antibody (1.25 µg of
antibody per sample) were incubated on carousel overnight. In the morning, 30 µL
of G protein-Sepharose beads (GE Healthcare, #17-0618-05)—previously blocked
overnight in NP40-based lysis buffer supplemented with 5% bovine serum albumin
(BSA) and in the morning equilibrated in BSA-free complete NP40-based lysis
buffer—were then added to samples. After 4 h of incubation on carousel, samples
were washed four times, 40 µL of 2× Laemmli buffer were added, and samples were
boiled. The antibody used for immunoprecipitation was anti-CK1ɛ (BD Bios-
ciences, #610445).

Blot and sample preparation were performed as previously described51 and
developed using chemiluminescence documentation system FusionSL (Vilber-
Lourmat). The antibodies used were: anti-FLAG M2 (1:1000; Sigma-Aldrich,
#F1804), anti-FLAG (1:1000; Sigma-Aldrich, #F7425), anti-DVL3 (1:1000; Santa
Cruz, #sc-8027), anti-DVL3 (1:1000; Cell Signaling, #cs-3218S), anti-DVL2
(1:1000; Cell Signaling, #cs-3216S), anti-CK1ɛ (1:500; BD Biosciences, #610445),
anti-CK1ɛ (1:500; Santa Cruz, #sc-6471), anti-GFP (1:2000; Fitzgerald, #20R-GR-
011), anti-LRP6 pS1490 (1:250; Cell Signaling, #cs-2568), anti-tubulin (1:2000;
Sigma-Aldrich, #T6199), anti-DVL3 phospho S643 (ref. 29) (1:1000), and anti-
DVL3 phospho S697 (ref. 52) (1:1000). All relevant uncropped blots are available in
the Source Data file.

Immunofluorescence. Cells were seeded on gelatin-coated coverslips in 24-well
plates and were transfected the next day. Cells were fixed 24 h later in fresh 4%
paraformaldehyde, permeabilized with 0.5% Triton X-100, blocked with PBS/BSA/
Triton/Azide buffer (PBTA) [3% (wt/vol) BSA, 0.25% Triton, 0.01% NaN3] for 1 h,
and incubated overnight with primary antibodies (in dilution 1:500) in PBTA at
4 °C. The next day, the coverslips were washed in PBS and incubated with sec-
ondary antibodies conjugated to Alexa Fluor 488 (Invitrogen A11001) or/and
Alexa Fluor 594 (Invitrogen A11058) (all in dilution 1:1000), washed with PBS [in
case of samples containing FLAG-DVL3 WT and derived variants stained with
DAPI (1:5000)], and all coverslips were mounted on microscopic slides. Cells were
then visualized on an Olympus IX51 fluorescent microscope using ×40 air or ×100
oil objectives and/or an Olympus Fluoview 500 confocal laser scanning microscope
IX71 using ×100 oil objective. One hundred positive cells per experiment (n= 3)
were analyzed and scored according to their phenotype into two/three categories
(punctae/even); or non-recruited/partially/fully recruited for FZD6-dependent
recruitment of DVL3. The antibodies used were as follows: anti-FLAG M2 (Sigma-
Aldrich, #F1804), anti-DVL3 (Santa Cruz, #sc-8027), anti-CK1ɛ (Santa Cruz, #sc-
6471), anti-RFP (Chromotek, #5h9) and anti-GFP (Fitzgerald, #20R-GR-011).
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Xenopus laevis embryos. The work with Xenopus laevis was carried out according
to the German animal use and care law (Das Tierschutzgesetz) and approved by the
local authorities and committees (animal care and housing approval: I/39/EE006,
Veterinäramt Erlangen; animal experiments approval: 54-2532.2-8/08, German
state administration Bavaria/Regierung von Mittelfranken). The generation and
cultivation of Xenopus embryos was done in accordance with general protocols and
staged after the normal table of Niewkoop and Faber (1994)53.

RNA for microinjection was synthesized from plasmids pCS2 myc-xDvl3
(ref. 54), pCS2 myc-xDvl3 ΔALL (lacking sequence corresponding to aa 338–350,
609–619, and 693–705 in xDvl3), pCS2 xDvl3 (S267A/S310A), pCS2 xDvl3 (S267E/
S310E), pCS2 xDvl3 ΔC, and pCS2 xCK1ε55, respectively, using the mMessage
mMachine Kit (Ambion). Embryos were injected at the four-cell stage either into
the two ventral blastomeres for testing the constructs' ability to induce a secondary
body axis. Injection amounts of synthetic RNA were 500 pg for myc-xDvl3 wild
type and the myc-xDvl3 ΔALL variant, and 150 pg for xCK1ε RNA. For the
analysis of morphogenetic defects, four-cell stage embryos were injected into the
two dorsal blastomeres with 100 pg myc-xDvl3 RNA and the corresponding variant
RNAs. After injection, the embryos were cultivated until they reached stage 26,
fixed, and analyzed for axis duplication or morphogenetic defects, respectively.

FlAsH-based FRET. HEK293 cells were seeded onto round 24-mm coverslips,
which were previously placed in six-well plates and coated with 200 μl of poly-D-
lysine (1 mg/ml) for 20 min. Cells were transfected 16–18 h later using Effectene
(Qiagen), according to the manufacturer’s instructions. DMEM was replaced 6 h
later and the analysis was done 24 h after transfection. As for the ECFP-DVL3 FIII
stable cell lines: next day after seeding, protein expression was induced by 4 h
treatment of tetracycline (1 µg/ml), which was followed by 3 h treatment of CM:
DMEM (1:1 ratio).

FlAsH labeling of the DVL3 FlAsH sensors was performed as previously
described18,19. In summary, transfected cells were washed once with Hank’s
Balanced Salt Solution (HBSS) containing 1.8 g/l glucose and then incubated at
37 °C for 1 h with HBSS supplemented with 500 nM FlAsH; 12.5 μM 1,2-
ethanedithiol (EDT); and corresponding inhibitors. In order to reduce non-specific
labeling, cells were then rinsed once with HBSS and incubated for 10 min with
HBSS containing 250 µM EDT and corresponding inhibitors. Last, cells were
washed twice with HBSS and maintained in DMEM medium with corresponding
inhibitors (for the ECFP stable cells —CM:DMEM (1:1 ratio)).

Fluorescence imaging was performed as previously described18,56. To determine
the FRET efficiency of the DVL3 FlAsH sensors, coverslips with the cells were
mounted using an Attofluor holder (Molecular Probes) and placed on a Zeiss
inverted microscope (Axiovert200), equipped with ×63 oil objective lens and a
dual-emission photometric system (Till Photonics). Cells were excited at 436 ±
10 nm using a frequency of 10 Hz with 40 ms illumination time out of a total of
100 ms. Emission of ECFP (480 ± 20 nm) and FlAsH (535 ± 15 nm), and the FRET
ratio (FlAsH/ECFP) were monitored simultaneously. Fluorescence signals were
detected by photodiodes and digitalized using an analog-digital converter (Digidata
1440A; Axon Instruments)18,56. Fluorescence intensities data were acquired using
Clampex software (Axon Instruments). During measurements, cells were
maintained in imaging buffer; 5 mM of 2,3-dimercapto-1-propanol (also called
British anti-Lewisite—BAL) was added to the cells approximately 40 s after the
recording started. Recovery of ECFP fluorescence was monitored over time and
FRET efficiency was calculated as described here18,57. One independent experiment
represents approximately 4–6 repeats (i.e. single-cell FRET signals) for each
condition.

Peptide array and other peptide reagents. The peptide library comprised of
peptides (13-mer peptides, 10 residue-overlap) with sequences derived from the
IDRs of DVL3. This peptide library comprised a set of non-phosphorylated pep-
tides and a set of phosphorylated peptides, in which the phospho groups were
located at those residues corresponding to the previously identified CK1ε’s phos-
phorylation pattern29 (Supplementary Fig. 3). The designed peptide library was
generated by JPT Peptide Technologies GmbH (Berlin, Germany) in an array
format, wherein the peptides were immobilized on a glass slide.

In each experiment, two glass slides were used: one was as blank and another
was screened with the recombinant CK1ε. Both slides were blocked by treatment
with SmartBlock solution (Candor Bioscience, #113125) for 1 h at 30 °C. Then, one
slide was incubated overnight with 10 μg/ml of the recombinant human CK1ε
(MyBioSource, #MBS964562) in SmartBlock solution at 4 °C and the second one
with SmartBlock solution only. The next day, both slides were washed in TBS
buffer (4 × 10 min, RT) and then incubated with 1 μg/ml of the primary anti-CK1
antibody in SmartBlock solution for 1 h at 30 °C. The slides were subsequently
washed again in TBS buffer (4 × 10 min, RT), followed by incubation with 1 μg/ml
of secondary fluorescent antibodies in SmartBlock solution for 45 min at 30 °C, and
subsequent washing in TBS buffer (4 × 10 min, RT) and in water (4 × 10 min, RT).
To remove the excess of water, the slides were spinned down using a swing rotor
(1200 r.c.f. for 2 min, RT, slides placed in 50 ml falcons). Binding of CK1ε to the
peptides was detected by reading the fluorescence intensity of the peptide spots. In
these experiments, the primary anti-CK1ε antibodies used were from Santa Cruz
Biotechnology (#sc-6471) and from BD Biosciences (#610445), and the secondary
antibodies used were: Alexa Fluor 594 Goat Anti-Mouse IgG2a (γ2a) (Invitrogen,

#A-21135) and Alexa Fluor 594 Donkey Anti-Goat IgG (H+ L) (Invitrogen, #A-
11058). The slide data were analyzed using the PepSlide Analyzer software
(Sicasys).

In each experiment, the signal intensity from each peptide on the experimental
set of two slides (i.e. the one used as blank and the one screened with CK1ε) was
normalized to 0–100%, where the 100% value corresponded to the strongest signal
detected for one of the peptide spots within the CK1ε-screened slide. The
intensities measured for the peptide spots on the control slide—which was
incubated with the detection antibodies only—were then subtracted from the
intensities measured for the corresponding peptide spots on the CK1ε-screened
slide. Each experiment was repeated 2–3 times (2–3 technical replicates per
experiment) using the same anti-CK1ε antibody and average values for each
antibody were added up and plotted in the graph. The signals with the highest
intensity involving at least four consecutive peptides were considered as a putative
CK1ε-binding site. The signals shown in the graph (Fig. 3b) correspond to the non-
phosphorylated peptides and their numbering is arbitrary.

The peptides used in the fluorescent polarization (FA) binding assays were
synthesized at Pepscan B.V. (Lelystad, Netherlands). The sequences of these
peptides (indicated in Supplementary Fig. 4a) were amidated at their C-termini,
and their N-termini were acylated with 6-aminocaproic acid (Ahx) modified with
fluorescein isothiocyanate (FITC). The peptides used in the NMR/SPR studies were
purchased from KareBay Biochem, Inc. (New Jersey, USA). The peptides for the
NMR/SPR studies contained no terminal modifications.

Fluorescence anisotropy. Data were recorded at 37 °C using Tecan Infinite F500
(Tecan Systems, Germany). FITC-labeled peptides were dissolved in DMSO and
added to 384-well plates (Corning) to a total volume of 20 μl (peptide final con-
centration was 50 nM). Incubation with recombinant His-tagged human CK1ε
(MyBioSource, #MBS964562) was performed for 30 min at 37 °C. Then, fluores-
cence intensities were collected simultaneously by detection at 535/590 and 485/
535 nm excitation/emission wavelengths, respectively, followed by adjustment to
the blank controls.

Mass spectrometry. Samples were loaded onto SDS-PAGE gels, separated, and
fixed with acetic acid in methanol, stained with Coomasie brilliant blue for 1 h and
partially destained. Corresponding 1-D bands were excised. After destaining, the
proteins in gel pieces were incubated with 10 mM DTT at 56 °C for 45 min. After
removal of DTT excess samples were incubated with 55 mM IAA at room tem-
perature in darkness for 30 min, then alkylation solution was removed, and gel
pieces were hydrated for 45 min at 4 °C in digestion solution (5 ng/µl trypsin,
sequencing grade, Promega, Fitchburg, Wisconsin, USA, in 25 mM AB).
The trypsin digestion proceeded for 2 h at 37 °C on Thermomixer (750 r.p.m.;
Eppendorf, Hamburg, Germany). Subsequently, the tryptic digests were subse-
quently cleaved by chymotrypsin (5 ng/µl, sequencing grade, Roche, Basel,
Switzerland, in 25 mM AB) for 2 h at 37 °C. Digested peptides were extracted from
gels using 50% ACN solution with 2.5% formic acid and concentrated in a
speedVac concentrator (Eppendorf, Hamburg, Germany). The aliquot (1/10) of
concentrated sample was transferred to LC-MS vial with already added poly-
ethylene glycol (PEG; final concentration 0.001%)58 and directly analyzed by LC-
MS/MS for protein identification.

The rest of the sample was used for phosphopeptide analysis. Sample was
diluted with acidified acetonitrile solution (80% ACN, 2% FA). Phosphopeptides
were enriched using Pierce Magnetic Titanium Dioxide Phosphopeptide
Enrichment Kit (Thermo Scientific, Waltham, Massachusetts, USA) according to
the manufacturer's protocol and eluted into LC-MS vial with already added PEG
(final concentration 0.001%). Eluates were concentrated under vacuum and then
dissolved in water and 0.6 μl of 5% FA to get 12 μl of peptide solution before LC-
MS/MS analysis.

LC-MS/MS analyses of peptide mixture were done using the RSLCnano system
connected to an Orbitrap Elite hybrid spectrometer (Thermo Fisher Scientific) with
ABIRD (Active Background Ion Reduction Device; ESI Source Solutions) and
Digital PicoView 550 (New Objective) ion source (tip rinsing by 50% acetonitrile
with 0.1% formic acid) installed. Prior to LC separation, tryptic digests were online
concentrated and desalted using trapping column (100 μm× 30 mm) filled with
3.5-μm X-Bridge BEH 130 C18 sorbent (Waters). After washing of trapping
column with 0.1% FA, the peptides were eluted (flow 300 nl/min) from the
trapping column onto Acclaim Pepmap100 C18 column (3 µm particles, 75 μm×
500 mm; Thermo Fisher Scientific) by 65 min long gradient. Mobile phase A (0.1%
FA in water) and mobile phase B (0.1% FA in 80% acetonitrile) were used in both
cases. The gradient elution started at 1% of mobile phase B and increased from 1%
to 56% during the first 50 min (30% in the 35th and 56% in 50th min), then
increased linearly to 80% of mobile phase B in the next 5 min and remained at this
state for the next 10 min. Equilibration of the trapping column and the column was
done prior to sample injection to sample loop. The analytical column outlet was
directly connected to the Digital PicoView 550 ion source.

MS data were acquired in a data-dependent strategy selecting up to top six
precursors based on precursor abundance in the survey scan (350–2000 m/z). The
resolution of the survey scan was 60,000 (400m/z) with a target value of 1 × 106

ions, one microscan, and maximum injection time of 200 ms. High-resolution
(resolution 15,000 at 400 m/z) HCD MS/MS spectra were acquired with a target
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value of 50,000. Normalized collision energy was 32% for HCD spectra. The
maximum injection time for MS/MS was 500 ms. Dynamic exclusion was enabled
for 45 s after one MS/MS spectra acquisition and early expiration was disabled. The
isolation window for MS/MS fragmentation was set to 2 m/z.

The analysis of the mass spectrometric RAW data files was carried out using the
Proteome Discoverer software (Thermo Fisher Scientific; version 1.4) with in-
house Mascot (Matrixscience; version 2.4.1) search engine utilization. MS/MS ion
searches were done against in-house database containing expected protein of
interest with additional sequences from cRAP database (downloaded from http://
www.thegpm.org/crap/). Mass tolerance for peptides and MS/MS fragments were 7
ppm and 0.03 Da, respectively. Oxidation of methionine, deamidation (N, Q), and
phosphorylation (S, T, Y) as optional modification, carbamidomethylation of C as
fixed modification, and three enzyme miss cleavages were set for all searches. The
phosphoRS feature was used for phosphorylation localization.

Quantitative information was assessed and manually validated in Skyline
software (Skyline daily 3.1.1.8884).

Numerical data and statistics. As for numerical data, mean ± S.D. (or median ±
interquartile range, respectively) are shown as depicted. No pairing one-way
ANOVA test with Gaussian distribution (with Tukey's post-test) was used for
comparison of more than two samples; for two-column statistics in Figs. 3e, g and
5b, unpaired two-tailed Student's t-test was used (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤
0.001, ****, p ≤ 0.0001; ns, not significant, p > 0.05).

Data on frequency of puncta vs. even (Fig. 8b) were analyzed using Generalized
Linear Mixed Model (GLMM) with binomial distribution of dependent variable,
treatment as fixed effect, and experiment as random effect variable, since data
within the experiments are not independent. In case of evaluation of DVL-
membrane recruitment results (Fig. 8c), the GLMM with multinomial distribution
was used. Results were presented as odds ratios (OR) with 95% confidence
intervals. Data were analyzed in R software. All numerical data were analyzed by
MS Excel 2007 and arranged in the graphs using GraphPad Prism 6 software.

Multiple sequence alignment. The multiple sequence alignment of selected
sequences was performed by ClustalW algorithm. Output alignment was refined
manually using the BioEdit v7.0.1 sequence editor.

Protein expression and purification. The PDZ domain of human DVL2 wild type
(aa 265–361) and phosphorylation-mimicking variant S286E+ S329E were cloned
into pET vector containing an N-terminal His6-tag and a lipoyl domain separated
by a Tobacco Etch Virus (TEV) protease digestion site from the N-terminus of the
inserts. Both proteins were expressed at high yields in E. coli BL21 (DE3) strain
(New England Biolabs, #C2527I). For the NMR studies, 13C- and 15N-labeled
proteins were prepared by growing cells in minimal medium supplemented with
15NH4Cl (1 g/l) and 13C6 glucose (2 g/l) as the sole nitrogen and carbon sources,
respectively. Cells were grown at 37 °C to an OD600 of approximately 0.8 and
protein expression was induced with 0.5 mM IPTG. Cells were lysed by sonication
and centrifuged at 15,000g. Three purification steps were used for both proteins:
Ni-NTA chromatography followed by overnight TEV cleavage to remove the N-
terminal His6-tag and the lipoyl domain, ion exchange chromatography, and size
exclusion chromatography. Finally, the untagged PDZ domain wild type or
phosphorylation-mimicking variant was concentrated and exchanged to buffer for
NMR or binding experiments containing 20 mM HEPES (pH 6.8) and 50 mM KCl.
Human CK1ε (aa 1–294) was also cloned into a pET vector and purified using
three purification steps as described for the PDZ domain.

Full-length DVL3 used as a substrate in the kinase assay was produced as
follows: Twin-Strep-tag N-terminally tagged DVL3 was expressed in HEK293 cells
using transient transfection. Cells were harvested 48 h post-transfection,
resuspended in a lysis buffer (50 mM Tris, 150 mM NaCl, 10 mM KCl, 10%
glycerol, pH 8) with cocktail of protease inhibitors (#11836145001, Roche) and
0.2% NP40 (#74385, Sigma). The mixture was incubated for 20 min on ice and cell
lysis was enhanced by sonication. Cell lysate was cleared by centrifugation at
100,000g for 45 min at 4 °C and supernatant was loaded on Strep-Tactin Superflow
high capacity column (#2-1237-001, IBA) equilibrated in the lysis buffer. The
column was washed in lysis buffer and the protein was eluted using lysis buffer
supplemented with 3 mM desthiobiotin. Eluted proteins were concentrated to 1
mg/ml using protein concentrators (#88516; Thermo Fisher Scientific), flash frozen
in liquid nitrogen, and aliquots were stored at −80 °C.

In vitro kinase assay. Full-length DVL3 protein and CK1ε kinase were dialyzed
into phosphorylation buffer (50 mM sodium phosphate, pH 6.5, 50 mM KCl, 10
mM MgCl2, 1 mM DTT, 1 mM EDTA). In each reaction, DVL3 and CK1ε were
mixed in 2:1 ratio (containing ~0.5 μM DVL3, ~0.25 μM CK1ε kinase, and 1 mM
ATP), and incubated at 25 °C for 16 h. Samples were subsequently analyzed by
SDS-PAGE and mass spectrometry.

NMR spectroscopy. A 4D HC(CC-TOCSY(CO))NH and a 4D 13C, 15N edited
HMQC-NOESY-HSQC experiments were recorded at CEITEC Josef Dadok

National NMR Centre on a 700MHz Bruker Avance III spectrometers equipped
with 1H/13C/15N TCI cryogenic probe head with z-axis gradients. 4D spectra were
processed with SSA package59 and analyzed with SPARKY. Chemical shift
assignments were obtained automatically using 4D-CHAINS60 and checked
manually. NMR titrations were performed in series of 1H, 15N HSQC spectra using
100 μM of 15N-labeled protein (wild type or phosphorylation-mimicking variant)
and increasing amounts of C-terminal DVL peptide (pS700) consisted of aa
698–716 from DVL3 (stock concentration of 800 μM). Steady-state15N-1H Nuclear
Overhauser Effect values were measured under a steady-state condition with a 30 s
interscan relaxation delay. Reference spectra and the spectra measured under
steady-state conditions were measured in an interleaved manner.

Surface plasmon resonance. SPR experiments were performed on a Biacore T200
instrument (GE Healthare). The wild type and phosphorylation-mimicking variant
of PDZ from DVL2 were immobilized on carboxy-methylated dextran matrix
(CM5 chip S Series) using amino coupling. Non-reacted groups were blocked by 1
M ethanolamine. The blank channel was modified by NHS/EDC activation and
subsequently blocked by ethanolamine. The C-terminal DVL peptide (aa 698–716
from DVL3; pS700) was injected at increasing concentrations and long enough to
reach steady state. SPR responses were measured and corrected for the response of
the blank. Data points were collected from each binding sensogram before the end
of the injection (equilibrium) and the dissociation constants were estimated by
fitting the response at equilibrium versus the C-terminal peptide concentration
using the following equation: Req= C*Rmax/(KD+ C), where Req is the binding
level in Response Units at different C-terminal peptide concentrations (C), Rmax the
response at saturation (fitted), and KD the apparent dissociation constant (fitted).

In silico simulation methodology. All simulations were done in Gromacs
5.1.2 simulation package61. Each simulation contained a PDZ domain in a salt
solution of 150 mM NaCl. The initial structure of wild-type PDZ domain (aa
245–338) from DVL3 was constructed by homology modeling using MODELLER
v9.11 (refs. 62,63). As a template we used crystal structure of human DVL2 (PDB
ID: 2REY) which share 96.28% sequence identity. Missing loops and one missing
residue at C-terminus were added via MODELLER64. Quality of seven generated
models was evaluated based on DOPE and GA341 score and the best structure has
been selected for further use in molecular dynamics. Mutation of serine residues
S268 and S311 to either glutamic acid (E) or phosphoserine were done with
MODELLER. The initial structure of C-terminal peptide bound to PDZ domain
was taken from the Coarse-Grained simulation using PLUM parameterization65,
where a position of the C-terminal peptide was sampled around the whole PDZ
domain and most probable configuration was chosen as a starting structure.

We employed all-atom force field amber99sb-ILDN66 with phosphoserine
parameters67 in explicit TIP3P68 water model. Robert Best’s correction for
disordered proteins/regions was applied by scaling van der Waals interactions
between water oxygen and protein with factor 1.1 (ref. 69). All systems were
solvated in ~10,000 water molecules placed in a cubic box, where the protein is
surrounded by at least 1.3 nm from the box side. Protonation state of all residues
was chosen according to neutral pH= 7 with histidine H324 neutral. If not stated
otherwise, all proteins were capped at C-terminus by an acetyl group and at N-
terminus by N-methyl to remove artificial charge introduced at protein ends.

All simulations were performed for at least 300 ns with 2 fs time step. The
systems were kept in NPT ensemble at 309.15 K. Temperature was controlled using
a velocity-rescaling thermostat70 with a coupling constant of 0.1 ps applied
separately to solvent and protein. The pressure was hold at 1 bar via an isotropic
Parrinello–Rahman barostat71,72, with coupling time 2 ps. Cut-off distance for
direct space electrostatic and van der Waals interactions was set to 1 nm. Long-
range electrostatic contribution was evaluated by using the particle-mesh Ewald
summation method73,74, with a maximal distance between FFT grid points of 0.12
nm and fourth interpolation order. All covalent bonds of hydrogen atoms were
constrained with LINCS algorithm75. All systems were simulated using periodic
boundary conditions.

The mean enthalpic energy contribution for each amino acid pair was
calculated from the sum of the Lennard–Jones and Coulombic contributions for
the whole residue including both backbone and side-chain atoms. Averages were
taken from the whole 500 ns long production dynamics.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file. The source data underlying Figs. 1d, 2a, c, d, 3e, g–h, j,
4a, c, d, 5b–e, 6h, j, 7e, f, 8b–d and Supplementary Figs 1c, e, 2a, b, 4a–d, f, 7b are
provided as a Source Data file. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE76 partner repository with
the dataset identifier PXD013085. Figures were deposited in figshare depository
possessing the identifier DOI 10.6084/m9.figshare.7856168
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