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1 Introduction

In the past two decades, there has been a trend to move from traditional television

to Internet-based video services. With video streaming becoming one of the most

popular applications in the Internet and the current state of the art in media

consumption, quality expectations of consumers are increasing. Low quality

videos are no longer considered acceptable in contrast to some years ago due to

the increased sizes and resolution of devices [24]. If the high expectations of the

users are not met and a video is delivered in poor quality, they often abandon

the service [25]. Therefore, Internet Service Providers (ISPs) and video service

providers are facing the challenge of providing seamless multimedia delivery in

high quality [26]. Currently, during peak hours, video streaming causes almost

58% of the downstream tra�c on the Internet [27]. With higher mobile band-

width, mobile video streaming has also become commonplace. According to the

2019 Cisco Visual Networking Index [28], in 2022 79% of mobile tra�c will be

video tra�c and, according to Ericsson, by 2025 video is forecasted to make up

76% of total Internet tra�c [29]. Ericsson further predicts that in 2024 over 1.4

billion devices will be subscribed to 5G [30], which will o�er a downlink data

rate of 100 Mbit/s in dense urban environments [31].

One of the most important goals of ISPs and video service providers is for

their users to have a high Quality of Experience (QoE). The QoE describes the

degree of delight or annoyance a user experiences when using a service or

application [32]. In video streaming the QoE depends on how seamless a video

is played and whether there are stalling events or quality degradations [33, 34].

These characteristics of a transmitted video are described as the application

layer Quality of Service (QoS) [35]. In general, the QoS is de�ned as "the totality
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1 Introduction

of characteristics of a telecommunications service that bear on its ability to

satisfy stated and implied needs of the user of the service" by the ITU [36]. The

network layer QoS describes the performance of the network and is decisive for

the application layer QoS.

Another goal of service providers is to keep their customers engaged with their

services. User Engagement has a�ective, behavioral, and cognitive aspects [37].

It can be objectively described by di�erent metrics, such as the frequency and the

duration of user interactions with an application [38]. It can also be described

by the user involvement and participation [39]. In video streaming, poor QoS

typically leads to poor User Engagement which leads to users abandoning the

video [25].

In Internet video, typically a bu�er is used to store downloaded video segments

to compensate for network �uctuations. If the bu�er runs empty, stalling occurs.

If the available bandwidth decreases temporarily, the video can still be played out

from the bu�er without interruption. There are di�erent policies and parameters

that determine how large the bu�er is, at what bu�er level to start the video,

and at what bu�er level to resume playout after stalling. These have to be �nely

tuned to achieve the highest QoE for the user. If the bandwidth decreases for a

longer time period, a limited bu�er will deplete and stalling can not be avoided.

An important research question is how to con�gure the bu�er optimally for

di�erent users and situations. In this work, we tackle this question using analytic

models and measurement studies. With HTTP Adaptive Streaming (HAS), the

video players have the capability to adapt the video bit rate at the client side

according to the available network capacity. This way the depletion of the video

bu�er and thus stalling can be avoided. In HAS, the quality in which the video is

played and the number of quality switches also has an impact on the QoE [40–42].

Thus, an important problem is the adaptation of video streaming so that these

parameters are optimized. In a shared WiFi multiple video users share a single

bottleneck link and compete for bandwidth. In such a scenario, it is important that

resources are allocated to users in a way that all can have a similar QoE [43]. In

this work, we therefore investigate the possible fairness gain when moving from

2



1.1 Scienti�c Contribution

network fairness towards application-layer QoS fairness. In mobile scenarios, the

energy and data consumption of the user device are limited resources and they

must be managed besides the QoE. Therefore, it is also necessary, to investigate

solutions, that conserve these resources in mobile devices. But how can resources

be conserved without sacri�cing application layer QoS? As an example for such

a solution, this work presents a new probabilistic adaptation algorithm that uses

abandonment statistics for ts decision making, aiming at minimizing the resource

consumption while maintaining high QoS.

With current protocol developments such as 5G, bandwidths are increasing,

latencies are decreasing and networks are becoming more stable, leading to

higher QoS [44]. This allows for new real time data intensive applications such

as cloud gaming, virtual reality and augmented reality applications to become

feasible on mobile devices which pose completely new research questions. The

high energy consumption of such applications still remains an issue as the energy

capacity of devices is currently not increasing as quickly as the available data

rates. In this work we compare the optimal performance of di�erent strategies

for adaptive 360◦ video streaming.

1.1 Scientific Contribution

Measurement Modeling Simulation Optimization

QoE

Application QoS

Network QoS

User Engagement

[1][3][8][9]
[10][14][20][23]

[17][13]
[7][18]

[2][12]
[21][11]

[16]

[22]

[15]

[5][19]

[4]

[6]

In Chapter 2:
Video Buffer

In Chapter 3:
Adaptation

In Chapter 4:
Resource Efficiency

Not in this thesis

Figure 1.1: Contribution of this work illustrated by a cartography of the research
studies carried out by the author.
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1 Introduction

The following paragraph lists the scienti�c contributions and assigns them to

the methodologies used in this monograph. A classi�cation of these contributions

is given in Figure 1.1. On the horizontal axis, the methodology is depicted while

the vertical axis shows the topic or layer on which we conduct the investigation.

The main topic of this work is the performance evaluation of adaptive video

streaming, which can be tackled from di�erent angles with di�erent methods.

Our investigation includes measurement studies, simulations, optimization tech-

niques, and analytical methods including queueing models. A graphical outline

of this work is given in Figure 1.2.

In the �rst chapter, we investigate the bu�er in which video segments are

stored temporarily until playout to compensate for network �uctuations. As a

�rst contribution, we combine two QoE models with di�erent impact factors to

create a new uni�ed QoE model [4]. We propose anM/M/1 queueing model for

investigating the bu�er in video streaming under various constraints and derive

key performance indicators (KPI) for di�erent situations [4]. For this model we

present results on the impact of the bu�er size and the o�ered load of the network

on the QoE using a new QoE model. Furthermore, we conduct a measurement

study on adaptive streaming in which we investigate the impact of a further

bu�er parameter on the QoE [13, 15]. We extend the queueing model to a more

general M/G/1 model for which we derive the KPIs for three di�erent bu�er

policies [6]. Furthermore, we propose a stalling ratio-based model for the user

engagement in video streaming [6]. This allows us to predict how long users will

engage with content based on stalling.

In the second chapter, we consider ways to optimize the QoS of adaptive

streaming. We model the bu�er of video streaming for a generic bu�er-based

adaptation with a Markov model which allows us to derive key impact factors

for video streaming analytically. Furthermore, we use it to conduct an analysis of

the impact of available quality layers on the stalling rate. As the main part of this

chapter, we present a group of optimization problems for adaptive streaming and

corresponding linear and quadratic programs [8, 3, 10, 14]. In these problems the

goal is to maximize the video quality, fairness and to minimize quality switches

4



1.1 Scienti�c Contribution

Chapter 4: Resource Efficiency Measures in Mobile Video Streaming

Chapter 3: Optimizing Adaptation in Video Streaming

Chapter 2: Video Buffer Parameters

ConclusionMethodologyResearch Question

How should the
buffer be set to

increase QoS, QoE, 
and User 

Engagement?

• Queueing theory
• Simulation
• Measurement

• Queueing theory
• Optimization
• Machine learning

• Measurement
• Queueing theory
• Simulation

To what degree can
the QoS in HAS be

optimized?

What are ways to
conserve resources

during mobile video
streaming?

• Caching currently
not fit for HAS

• User behavior can
be used to save 
resources

• High potential for
optimization

• New challenges:
360° & fairness

• Buffer should be
configured for
specific scenarios

Figure 1.2: Structure of this monograph.
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1 Introduction

and to avoid stalling. We use such a problem to compare the optimal performance

of di�erent approaches to viewport prediction on the QoS in 360◦ video streaming

[20]. The presented programs can be used for the development of new adaptation

heuristics, e.g., by comparing how large the performance gap is compared to the

optimal solution.

In the third chapter, we shift the focus away from the QoS of video streaming

to resource consumption and conservation. We conduct a �eld study with public

WiFi caches from which we measure the typical tra�c mix at WiFi hotspots

[11]. This gives us an indication to what degree tra�c could be cached at WiFi

hotspots. Furthermore, we present the results of a �ve-year study on mobile

users and their viewing habits and behavior [16]. Data on the user behavior can

then be used to improve the resource e�ciency of video streaming. We present a

novel energy and data e�cient adaptation algorithm for mobile networks that

uses abandonment statistics [19]. This means that users can enjoy their videos

for a longer period, before the battery or their mobile data is consumed.

1.2 Outline of this Thesis

The remainder of this monograph is structured as follows. In Chapter 2, we

investigate the bu�er in video streaming. We start with giving an overview on

background and related work on general topics that are discussed throughout

this monograph. Using a queueing model, we �rst analyze how the bu�er size

impacts the QoE. This is done, considering the user preferences regarding stalling.

In a measurement study we observe the impact of changing the maximum bu�er

size on the QoE. Finally, we study three bu�ering strategies using analytical and

numerical methods.

In Chapter 3, we optimize di�erent aspects of adaptive video streaming. At

�rst, we discuss background and publications related to this chapter. We then

present a queueing model for adaptive video streaming to derive key impact

parameters. Furthermore, we use it to determine the impact of the number

of quality representations in which the video is o�ered on stalling. Next, we

6



1.2 Outline of this Thesis

propose various linear and quadratic programs that maximize quality and fairness,

minimize the number of switches and avoid stalling. Finally, we investigate

di�erent approaches to viewport-prediction in 360-degree videos which we also

optimize using linear programming.

In Chapter 4, we look at data- and energy-e�cient mechanisms for mobile

video streaming. As a �rst step, User Engagement and resource e�ciency in

video streaming is discussed. We then analyze the behavior of mobile video users.

We then develop a new data- and energy-e�cient adaptation algorithm that uses

viewer abandonment statistics and adapts to the cellular network technology.

In a comparison with another algorithm we �nd that it is much more resource-

e�cient while similar in terms of QoS. As a third step, we conduct a �eld study

in which we deploy WiFi caches at public locations and investigate the tra�c

mix. We complete this with an analysis of the cache performance.

Chapter 5 summarizes this work and draws conclusions.

7





2 Video Bu�er Parameters

In online video streaming, the bu�er is the client-side memory into which video

segments are downloaded and temporarily stored. It is used for the purpose of

storing data in order to compensate for short-term �uctuations in both down-

loading and video coding. It is used precisely to overcome the instability of the

network in the event of temporary downtime, stagnation or �uctuating issues

throughput. Without the bu�er, network errors would immediately impair the

playback quality, which is not in favor of the user. After downloading, the player

plays a segment from the bu�er. It is removed from the bu�er, and subsequently

the next segment is played. If the segments are played faster than they are down-

loaded, the bu�er runs empty and stalling occurs. As soon as the bu�er is �lled

su�ciently, the playout is resumed. If the bu�er is short, there is a greater risk

that the bu�er runs empty and stalling occurs eventually. If the bu�er is large,

more data is downloaded unnecessarily if the user abandons the video early.

Furthermore, the delay until the video initially starts is greater, if the user must

wait longer to �ll a large bu�er. Therefore, it is important to �nd a balanced

bu�er size that bene�ts the individual user or the speci�c scenario. For example,

an impatient user who is browsing through videos may prefer a short bu�er

for a reduced initial startup delay, while a patient user who watches a long

movie would prefer a larger bu�er to avoid video degradation. The impact that a

degradation has on the QoE does not only depend on the user, but also on the

type of content (e.g., live, video on demand (VOD)), the video content and the

usage scenario.

Most video players use HAS to avoid stalling as long as the lowest bit rate

representation of the video can be played with the current bandwidth. In mobile

9



2 Video Bu�er Parameters

scenarios however, this is often not su�cient. For example, on amazon video

the lowest available video bit rate lies at around 900 kbit/s as of 2020 which is

not available in many regions. Therefore, it makes sense to ignore adaptation

mechanisms when assuming low bandwidth scenarios to simplify the analysis

of video streaming models. In such scenarios our results not only apply to non-

adaptive streaming, but also to HAS. Regarding the QoE in video streaming, we

investigate the impact of the bu�er on three types of impairments: the frequency

of stalling events, the duration of stalling events, and the initial delay. All three

can be controlled through the bu�er to some extent. Furthermore, users have

di�erent viewing habits and consume content in di�erent ways. We note that

video sessions can be divided into three usage scenarios:

Watch Later In this scenario, the user is interested in watching a longer piece

of content such as a movie. For him or her, it is most important, that the video

is transmitted in high quality and without interruptions. In this scenario, we

assume a patient user and it is not necessary that the video starts immediately.

We can solve this issue by having a large bu�er that is �lled slowly with high

quality content. Playback starts as soon as the bu�er is su�ciently �lled, for

example after 5 minutes.

Regular Video Streaming In the default video streaming scenario, the user

wants to watch a video immediately. In this case, a shorter bu�er is required for

a good trade-of between a low initial delay and some stalling.

Video Browsing In a video browsing scenario the user is searching or brows-

ing for a certain piece of content that he or she is interested in. This process can

be within a video platform, across di�erent video platforms or by skipping ahead

within a single video in search for a speci�c scene. Since the user only watches a

few seconds of video content before switching to the next video, a small bu�er

is su�cient. This way, the delay between videos is kept short.

10



QoE-model

Measurement study

Impact of buffer
policies on QoE and 
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User Engagement 
model

Derivation of key
parameters

Derivation of key
parameters

In Section 2.2

In Section 2.3

In Section 2.4

In Section 2.5

Figure 2.1: Structure of the contributions of this chapter.

In this chapter, we investigate video streaming from di�erent perspectives

with the following research question in mind: How does the bu�er a�ect the
application layer QoS and the QoE in HTTP Video Streaming?

We answer this question by conducting performance evaluation using queue-

ing models and with a measurement study using wireless network traces. To

understand the impact of the bu�er better, we focus on the following parameters:

the maximum bu�er size, the bu�er threshold when video playout starts, and

various bu�er policies. For the main performance metric we use a con�gurable

QoE model that is con�gured with user parameters to model the QoE for three

usage scenarios. Furthermore, we consider the play time as a performance metric

for the User Engagement and investigate how it relates to the QoE. The play time

is de�ned as the time that a user spends watching a video before he abandons it.

This chapter is based on content published on di�erent conferences and work-

shops [4, 6, 13, 15]. An overview of the structure of the contributions of this

chapter is given in Figure 2.1. In the next section, we will present related work

on QoS, QoE and User Engagement in HAS. In Section 2.2, we present a multi-

plicative and an additive QoE model that include the length and the duration of
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stalling events and the initial delay, which is based on [4]. Section 2.4 uses these

QoE models to conduct a practical evaluation of the bu�er size in HAS, which is

based on [13] and [15]. We then investigate the impact of bu�er policies on the

QoE and the User Engagement which is based on [6]. Finally, we discuss lessons

learned.

2.1 Background and Related Work

In this section we discuss related work on video streaming. We start by explaining

how the network QoS has an impact on the application layer QoS which in return

in�uences the user’s QoE. We then describe how adaptation algorithms aim to

solve issues in low bandwidth scenarios by trading o� low impact characteristics

for high impact characteristics.

2.1.1 QoE in Video Streaming

Service providers compete to provide the best QoE for users. The QoE is partic-

ularly important in video streaming. In order to �nd out how the QoE can be

optimized, user studies investigate the impact of video degradation e�ects on

the QoE [45]. Typically, the subjective opinion of users is aggregated to a single

value, such as the Mean Opinion Score (MOS) which is examined in detail in

[46]. However, it is also possible to use quantiles [47], distributions [47, 48] or

the Standard deviation of Opinion Scores [49].

QoE in video streaming is impacted by the application QoS which depends

on the network QoS [45]. In user studies, it was found that stalling has a higher

impact on the QoE than the initial delay of a video [33, 50] or a reduction in the

frame rate [51]. Furthermore, stalling at irregular intervals is worse than periodic

stalling [51]. Another user study determined that the QoE can be improved by

estimating the best initial bit rate of a video [52]. For practical purposes, this is a

great addition for any adaptation heuristic.
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In image processing, quantization is a lossy compression technique where

the data volume of an image is reduced while information is lost. This can

result in artifacts and other distortion e�ects. The degree of saved data and

lost information can be controlled by a quantization parameter. Using subjective

subjective studies, the authors of [53] �nd that users are more sensitive to stalling

than to an increase of a quantization parameter in the video encoder, especially

for lower values of the quantization parameter. In [54], the impact of network

and application parameters on stalling is analyzed. In addition, the impact of

stalling on QoE is investigated in a subjective user study in this section.

According to [55], the transport protocol has an impact on the application

layer QoS. For example, having insu�cient bandwidth may lead to stalling when

using TCP, while it would lead to a quality degradation when using UDP. This is a

reason why most video hosting services transmit their videos via TCP. Even live-

streaming platforms such as Twitch use TCP instead of UDP. A great overview

of QoE in adaptive video streaming is also given in [56].

Models that describe the relation between the QoS and the QoE can be used for

QoE prediction and QoE management. There exist also some multi-factor QoE

models for adaptive streaming. For example, such a model is provided in [57].

The authors propose a model, that includes the initial delay, varying perceptual

quality, and interruptions. The authors of [58] use results from a subjective

study to create an objective model for QoE that accounts for quality variations

and stalling events. A comparison of di�erent QoE models with subjective test

is conducted in [33]. Additive and Multiplicative multi-factor QoE models are

investigated in [59, 60].

The instability metric is also sometimes considered for the evaluation of QoS

in video streaming [61]. It is the fraction of successive chunk requests by a player

in which the requested bit rate does not remain constant. For example, in [61],

it is de�ned as the weighted sum of all switch steps observed within the last

k = 20 seconds divided by the weighted sum of bit rates in the last 20 seconds.

From these works, we conclude that the key impact parameters for QoE in

adaptive video streaming are the video quality, the frequency of layer switches,
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the initial delay, and the frequency and length of stalling events. All these pa-

rameters can be determined easily in the model presented in this chapter.

2.1.2 Adaptive Video Streaming

HAS is the de-facto standard [62] of delivering video contents of prevailing video

platforms in the Internet like YouTube, Net�ix or Amazon Prime. HAS allows the

client to adapt the video bit rate according to the available network bandwidth.

The key idea is to overcome stalling, as the video interruptions have a major

impact on the Quality of Experience [63] compared with quality switches or

initial delays before the video starts to play out [33, 50]. To this end, the video

client measures relevant parameters and requests the next part of the video

in an appropriate bit rate. This selection is done by a heuristic or adaptation

strategy that aims to avoid stalling while playing the video on the highest possible

video quality. Therefore, the video must be available in multiple bit rates, i.e.,

in di�erent quality levels / layers (e.g. di�erent resolutions) and split into small

segments each containing a few seconds of playtime. The number and choice of

layers provided has a signi�cant impact on the user’s satisfaction [64].

For the video quality level decision, the client typically measures the current

bandwidth or the bu�er status. In this context, the adaptation strategy is referred

to as bandwidth-based and bu�er-based strategy, respectively. A large evaluation

of proposed mechanisms can be found in [65], [66], and [67]. An overview on HAS

technology, the prevailing protocols and mechanisms, as well as implementations

are presented in [56].

2.1.3 User Engagement in Video Streaming

The authors of [25] measure QoE-metrics and User Engagement from various

sites, di�erent types of content (short VOD, long VOD, and live video), and also

distinguish other kinds of parameters. Their results show that a high bu�ering

ratio lowers User Engagement, with the impact being stronger for short videos.

Similarly, a high bit rate has a signi�cant impact in the live scenario while it does
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not in VOD. In [68] tra�c during a single live event is measured and the impact

of QoE metrics on User Engagement is analyzed. Their results show that the

bu�ering ratio and the bit rate have a high impact on User Engagement. Further,

they noted that the video play time may depend on various other factors such

as user behavior. A correlation between QoE and User Engagement was also

recognized.

A paper [69] conducted a large-scale measurement study that looked at the

abandonment rate — which can be another appropriate User Engagement metric

— for mobile video streaming. Using data from the study, a model is proposed that

can predict User Engagement in mobile video streaming with a high accuracy

based on network statistics.

In two further publications, [70, 71] the authors measured User Engagement

and video session quality and run machine learning algorithms on it. Through

this e�ort, they highlight the challenges of obtaining a robust video QoE model

from such metrics. In [72] the authors propose a machine learning based model

that uses information on user interactions, such as pausing, seeking, and aban-

donment, during videos to predict important application layer QoS metrics. The

possibility to predict QoS from user interactions shows how important such

information can be for QoE management. The importance of the relationship

between the user behavior and the QoE is also outlined in [73]. In that work,

the authors focus on the impact of user impatience in shared systems and how

waiting times impact the QoE. They �nd that user impact has a great impact

on QoE but little impact on the probability that a user is served. And �nally, a

paper [74] puts viewer behavior in relation to video quality metrics. Of note is

the observation that an increase in the initial delay of a video stream also directly

leads to a higher abandonment rate.

User Engagement can be de�ned in many ways, e.g., time spent on a website,

abandonment rate, interactions, click rate, attention paid, number of comments.

It is interesting from the perspective of the content provider and the service

provider since high User Engagement leads to a higher number of ad views or

sales. For video streaming services, we need an easily measurable, objective
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metric that describes how much content users consume and how willing they are

to view ads. Therefore, we de�ne User Engagement as the play time of a video. An

overview of models for User Engagement metrics for a number of online services

is given in [75]. In addition, users might abandon a service because of stalling,

thereby reducing User Engagement. Using this de�nition, it seems plausible that

video streaming platforms, content providers, or video service providers generate

revenue based on User Engagement making it a critical metric.

2.1.4 QoE Management

So far, all these papers have looked at the signi�cance of speci�c User Engagement

metrics but lack in terms of mapping measured QoS values to a speci�c QoE and

how to facilitate this information for network and QoE management aspects in

light of the future Internet development. The following publications investigate

this from an Internet Service Provider (ISP) point of view.

For an ISP it is generally more di�cult to estimate the video streaming QoE in

its network and may require invasive measures, such as Deep Packet Inspection

(DPI). However, this is possible with the approach suggested in [50] which was

also successfully deployed in the network of a large European mobile operator

[76]. Data gained from such monitoring endeavors can be further utilized, e.g., to

enable �ow-based tra�c management for improving QoE via SDN as presented

in [77].

Once such in�uence factors from all network layers have been collected, they

can be mapped to QoE according to existing QoS-QoE models and relationships.

As this is not without challenges, [78] surveys current research activities on QoE

management with a focus on wireless networks where QoE management has

mostly just been considered in terms of resource scheduling and resource alloca-

tion decisions. Furthermore, the involved technology continuously advances and

introduces new challenges. Such as the migration of services to the cloud [79],

and cloud gaming [80, 81]. Home gateways are also a starting point to optimize

QoE at a small scale. [82] shows that even with just very basic knowledge of the
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user’s service requirements, a signi�cant improvement in QoE can be achieved

through methods such as application prioritization and tra�c shaping.

In contrast, managing QoE based on QoS estimates the user’s QoE with ob-

jective metrics. For example, [83] de�nes a reception ratio as the ratio between

download throughput and video encoding rate. For some ISPs this may already

be su�cient to determine whether stalling occurs or not and how the user reacts

in response. Reference [50] concludes that this ratio cannot be directly related to

the QoE, yet it is still a good indicator if there are problems in the network. Both

[68] and [84] investigate and review di�erent engagement measures and how

they are impacted by QoE metrics.

The problem with many such QoE management approaches is that for some

services the models are not fully understood or there may be further, hidden

in�uence factors which are not captured by the employed methodology, e.g.,

recency e�ects. Additionally, even if the models are well established, e.g. for

HTTP video streaming, it may still be di�cult to measure the related parameters.

Similarly, looking at research e�orts involving video streaming engagement,

often the reasons are unclear why a user stops watching the video. It may stem

from quality issues in the streaming process, but it may very well also just be

that the user lost interest in that particular content.

Many QoE metrics are not directly measurable in an HTTPS environment

since it is di�cult to estimate video quality and stallings from encrypted tra�c.

Only recently, �rst successful attempts have been made to deduce the application

layer QoS and the QoE from encrypted network tra�c [21, 85, 86]. In contrast, the

User Engagement can be measured more easily at large scale. Additionally, the

e�ects of low quality will be directly visible in this User Engagement measures.

Since there seems to be a lot of value in investigating the relation between QoE

and engagement, the aim of this work is to bridge those two �elds together,

preparing the way to combine their advantages in new models.
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2.2 QoE Model for Video Streaming

While an initial delay can be observed in any environment, stalling, which

has the highest impact on the QoE, only occurs in networks with very little

bandwidth. Since we want to focus on these two parameters, we must consider a

low bandwidth scenario in the following. Our model does not include quality

adaptations since these can only occur in networks with su�cient bandwidth.

There exists a QoE model that describes the impact of stalling on the QoE [50]

and a separate model that describes the impact of the initial delay [33]. In this

section, we bring both models together using two di�erent approaches to create

a combined QoE model. This is required to assess the impact of di�erent bu�er

settings.

2.2.1 Stalling QoE Model

The QoE of HTTP streaming depends mostly on the number of stalling events

N and average length L of stalling events. A QoE model combining both key

in�uence factors into a single equation f(L,N) is provided in [50] and found to

follow the IQX hypothesis [60] describing an exponential relationship between

the in�uence factors and QoE. In particular, the model function returns mean

opinion scores (MOS) on an absolute rating scale of 5 points, with 1 indicating

the lowest QoE and 5 the highest QoE.

f(L,N) = 3.5e−(0.15L+0.19)N + 1.50 (2.1)

Due to well-known rating scale e�ects, the model in Equation 2.1 has a lower

bound of 1.50, as users avoid the extremities of the scale called “saturation e�ect”

as is discussed in [87]. In contrast, if the video is not stalling, no degradation is

observed and users rate the impact of stalling as ’imperceptible’, i.e., a value of 5.

It must be noted that the model function in Equation 2.1 is based on subjective

user studies with videos of duration up to T = 30 s. For other video durations,

the normalized number N∗ = N/T of stalling events has to be considered which
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requires to adapt the parameters α = 0.15 and β = 0.19 in Equation 2.1,

respectively.

As the goal of our investigation is the analysis of the impact of di�erent user

pro�les, we parameterize the function in Equation 2.1 with α and β and conduct

a parameter study on their impact. For the sake of simplicity, we normalize

the QoE value to be in the range [0; 1]. As a result, we arrive at Equation 2.2

as parameterized QoE model Q1 to quantify the impact of stalling on QoE for

di�erent user pro�les expressed by α and β. Thereby, the parameter α adjusts

the sensitivity of the user to the total stalling duration L ·N∗, while β quanti�es

the sensitivity of the user to the frequency of stalling events.

Q1(L,N∗) = e−(αL+β)N∗
= e−αLN

∗−βN∗
(2.2)

The model function Q1 in Equation 2.2 has the same form as Equation 2.1 and

follows the IQX hypothesis but allows to investigate di�erent user pro�les.

For example, some users may su�er stronger from interruptions which is then

adjusted by a higher value of β. Thus, a user pro�le is expressed by α and β.

2.2.2 Initial Delay QoE Model

Another impairment on HTTP streaming QoE are initial delays before the video

playout starts. The impact of initial delaysT0 is modeled by the following function

g and the model parameters are obtained from subjective tests [33].

g(T0) = −0.963 log10(T0 + 5.381) + 5 (2.3)

The results in [33] show that the impact of the initial delay is independent

of the video duration which was either 30 s or 60 s in the user tests. Further,

it was observed that users have a clear preference of initial delays instead of

stalling and that service interruptions must be avoided in any case, even at costs

of increased initial delays for �lling up the video bu�ers.
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For the sake of simplicity, we normalize the function in Equation 2.3 yielding

to the QoE model Q2 for initial delays T0, such that Q2 returns values in [0; 1]

and that Q2(0) = 1. The user pro�le is parametrized with γ determining the

impact of initial delays. The constant c = 5.381 is taken from 2.3 de�ning the

shape of the curve. Since the logarithm is not bounded, only positive values are

considered to ensure Q2(T0) ∈ [0; 1].

Q2(T0) = −γ log10 (T0 + c) + γlog10 (c) + 1 (2.4)

2.2.3 Combined QoE Model

For dimensioning the video bu�ers, we are interested in a simple, parameterizable

QoE model which considers both, the impairments due to stalling and due to

initial delays of the video playout. Therefore, we suggest the following model

Q. Since the impact of stalling events clearly dominates the user perception

[33, 50], we consider the following rationale for the combined QoE model. A

user facing an initial delay T0 experiences a QoE value of Q2(T0). If additional

stalling events occur, this will lower the QoE further. Thus, Q2(T0) is the upper

bound of QoE. For N∗ stalling events with an average length L, the QoE will be

further decreased by Q1(L,N∗).

There are now two evident possibilities for realizing the decrease, 1) by multi-

plying the values Q2 and Q1, or 2) by subtracting the values. It is an open issue

in the QoE research community whether to combine multiple QoE degradations

in an additive or multiplicative way [88].

Published in [59], we �nd the combined multiplicative QoE model Q∗ based

on the rationale above yields to Equation 2.5 which again returns values in [0; 1].

Q∗(T0, L,N
∗) = Q1(L,N∗) ·Q2(T0) (2.5)
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Figure 2.2(a) depicts exemplarily QoE
1

depending on the numberN∗ of stalling

events and the initial delay T0 for an average stalling event of L = 2 s. As user

pro�le, we use α = 0.19, β = 0.15, and γ = 0.3. The blue line in Figure 2.2(a)

shows the impact of the initial delay T0 on the QoE when no stalling occurs.

When compared to the the other lines which include stalling, it can be seen that

stalling dominates the impact on QoE, as the di�erences between the curves

with di�erent T0 diminish for more stalling events.
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(a) Multiplicative modelQ∗ from Equation 2.5.
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(b) Additive modelQ+ from Equation 2.6.

Figure 2.2: QoE models combined from Q1 and Q2 for L = 2 s and the user pro�le
α = 0.19, β = 0.15, and γ = 0.3.

ITU-T
2

Recommendation P.1201 proposes an additive QoE model for non-

adaptive HTTP streaming which is referred to as bu�er-related perceptual indi-

cator in the Appendix III [89]. This model follows the same rationale above, start

from the maximum QoE value which is 1 = Q(0, 0, 0), subtract the degradation

1−Q2(T0) stemming from initial delay, and from stalling 1−Q1(L,N∗).

1

For the sake of readability, we present the QoE values in all �gures on the common 5-point MOS

scale by linearly mapping the model values to [1; 5].
2

International Telecommunication Union Telecommunication Standardization Sector
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Then, we arrive at the following additive QoE model Q used in the analysis

[4, 59].

Q+(T0, L,N
∗) = 1− (1−Q1(L,N∗))− (1−Q2(T0))

= Q1(L,N∗) +Q2(T0)− 1 (2.6)

Figure 2.2(b) shows the results for the same parameters as used above, cf. Fig-

ure 2.2(a). It can be seen that the initial delays have now a more severe impact

than for the multiplicative model. Further, the additive model does not follow the

IQX hypothesis anymore. As observed in subjective studies [60, 90] the subjective

sensibility of the QoE is the more sensitive, the higher this experienced quality

is. If the QoE is very high, a small disruption will decrease strongly the QoE.

If the QoE is already low, a further disturbance is not perceived signi�cantly.

The additive model does not respect this relationship anymore. Nevertheless,

we will analyze the video bu�er dimensioning based on the multiplicative and

the additive QoE model, as this allows to di�erentiate the importance of initial

delays on QoE. However, as we will see from the results in the next section, both

QoE models lead to the same conclusions.

For the purpose of simpli�cation, we assume that the impact of α, β on the

QoE and the impact of initial delay are independent of each other. The impact of

the initial delay is according to [33] if no stalling occurs.

2.3 User Preferences and Usage Scenarios

In this section, we try to answer the following research questions:

• Do we need to know the QoE preferences of the user in order to optimize

QoE? E.g., whether a user prefers few long stalling events over many

short stalling events.
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• Do we need to know the user’s behavior or the usage scenario in order to

optimally dimension the video bu�er? E.g., video browsing or whether a

user only watches a few seconds of a video.

We answer these questions by creating an M/M/1 queuing model that simu-

lates an HTTP video streaming player to estimate stalling and initial delay. We

use this model to conduct a mean value analysis for three scenarios regarding

di�erent user parameters and three watching scenarios and map the results to

MOS values by applying the multiplicative QoE model from Section 2.2.

2.3.1 System model

We provide a system model for video playback, in order to study the stalling be-

havior of HTTP video streaming. We consider the playback of a video consisting

of multiple frames. The frames are downloaded in-order and arrive at the client

with rate λ while the playback time is given by the video framerate µ, resulting

in an o�ered load of a = λ
µ

. Here, a quanti�es the available network bandwidth

normalized by the video framerate.

In order to reduce the number of stalling events during playback, the video

player uses a playback bu�er. Video playback stops, if less than q frames are

currently available for playback and is only resumed if the bu�er contains p =

q + d frames. The normalized bu�er size d∗ (in video seconds) relates the bu�er

size d (in frames) to the video framerate µ, i.e. d∗ = d
µ

.

Next, we introduce metrics used to evaluate the in�uence of the playback bu�er

parameter selection. The relative amount of time spent in stalling compared with

the total duration of the playback process including stalling is given by the

stalling ratioR and the number of stalling events normalized by the video length

N∗. For the case of �nite videos, we furthermore consider the stalling duration

L which gives the sum of times spent in stalling states during the complete video

playback.

To derive the key performance metrics, we model the system as aM/M/1/∞
queueing model with pq-policy in Section 2.3.1. This Markov model allows to
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derive the following application layer metrics for video streaming that are rele-

vant to the QoE. The player is assumed to always be in one of two states: playing

or stalling. The average length of a stalling period is given as L. The average

length of a playing period is given as the busy period B. The relative amount of

time spent in stalling compared with the relative amount spent replaying the

video is given as the ratio of bu�ering events R. The number of stalling events

normalized by the video duration is given as the normalized bu�ering ratio N∗.

An overview of the notation is given in Table 3.4. A mean value analysis allows

us to investigate the impact of system parameters in the steady state and also in

the transient phase for the analysis of short (�nite) videos and user aborts.

M/M/1 �eue With pq-Policy

The state of the video playback is characterized by the tuple (i, j), where i ∈
{0, 1} is the playback state of the client, i.e. the video is not played back if i is 0

and the video is played back if i is 1 and j ≥ 0 gives the number of unplayed

frames currently available at the client. Furthermore, we give the probability of

the playback being in state (i, j) as x(i, j). For the general case 0 ≤ q < p We

obtain the following equilibrium state equations.

λx(0, 0) = 0

λx(0, i) = λx(0, i− 1) i ∈ [1, q)

λx(0, q) = λx(0, q − 1) + µx(1, q + 1)

λx(0, i) = λx(0, i− 1) i ∈ (q, p)

(λ+ µ)x(1, q + 1) = µx(1, q + 2)

(λ+ µ)x(1, i) = λx(1, i− 1) + µx(1, i+ 1) i ∈ (q + 1, p)

(λ+ µ)x(1, p) = λ(x(0, p− 1) + x(1, p− 1))

+ µx(1, p+ 1)

(λ+ µ)x(1, i) = λx(1, i− 1) + µx(1, i+ 1) i ∈ (p,+∞)
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Table 2.1: Notion and variables frequently used.

Video and network input parameter
B network data rate (kbps)

V video encoding bitrate (kbps)

λ network bandwidth normalized by mean frame size, i.e. network

frame arrival rate

µ video bitrate normalized by mean frame size, i.e. video frame

rate, with µ > λ
a o�ered load a = λ/µ captures the relative network bandwidth

(normalized by video bitrate)

Player parameter and status variables
X number of frames in video bu�er

Y status of video player; Y = 0 means stalling, Y = 1 means

playing

X(Y, i) probability that the number of frames in video bu�er is i and the

status of the player is Y

p video bu�er threshold when video playout starts (frames), i.e.

X ≥ p⇒ Y = 1
q video bu�er threshold when video playout stalls (frames), i.e.

X ≤ q ⇒ Y = 0; it is 0 ≤ q < p
d bu�er size d = p− q
d∗ bu�er size normalized by video bit rate d∗ = d/µ
K maximum queue size of video bu�er (frames)

Key performance parameters
F stalling frequency (1/s)

N number of stalling events

T video duration

N∗ number of stalling events normalized by video duration

R stalling ratio

L stalling length (s)

Q QoE value
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Figure 2.3: Mean value analysis of video bu�er status evolving over time.

The state probabilities can be obtained analogously to [91].

x(0, i) = 0 i ∈ [0, q)

x(0, i) =
1− a
d

i ∈ [q, p)

x(1, i) =
a(1− ai−q)

d
i ∈ (q, p]

x(1, i) =
aj−p+1(1− ad)

d
i ∈ (p,+∞]

From this we obtain the stalling ratioR as the probability of being in a stalling

state, i.e.

R =

p−1∑
i=0

x(0, i) = 1− a . (2.7)

Mean Value Analysis of Steady State

A mean value analysis of theM/M/1/∞ queueing model with pq-policy is now

conducted which can be derived in order to obtain the duration of stalling events

L and the number of stalling events N∗.
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In Figure 2.3 we see that the initial download begins at t0 and new frames

arrive with rate λ at the client. The number of frames in the bu�er exceeds q

the �rst time at t1. At time t2, the rebu�ering goal p is reached for the �rst time

and playback begins. While the download of new frames continues with rate λ,

frames are played out with rate µ, resulting in a bu�er change with rate λ− µ.

Thus, the number of bu�ered frames reaches q at time t3. This process repeats

which results in an alternating chain of stalling and playback phases.

In this analysis we consider the steady state, i.e. especially neglecting the time

t1 − t0. First, we consider the time required for the bu�er to �ll from q frames

to p frames, i.e. obtaining d frames while no playback is occurring. This time

depicts the average duration L of a single stalling event. This is given as the time

between t1 and t2, and we get

L = t2 − t1 =
p− q
λ

=
d

λ
=
d∗

a
. (2.8)

The average stalling length L only depends on the actual bu�er size d and the

network bandwidth λ. Next, we consider the time required for the number of

frames in the bu�er to decrease from p to q, i.e. the time between t2 and t3,

t3 − t2 = d
µ−λ . Combining these two equations we get the time between two

stalling events as t3 − t1 = (t3 − t2) + (t2 − t1) = µd
(µ−λ)λ

.

The stalling ratio R follows as

R =
t2 − t1
t3 − t1

= 1− a , (2.9)

yielding the same result as in 2.7 in Section 2.3.1.

Finally, we can obtain the number of stalling events normalized by video

duration by analyzing the busy periods of the system. Here, the mean idle period

is given by L = d
λ

.
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2 Video Bu�er Parameters

For the mean busy period B it holds
B

B+L
= 1 − R = a , which yields

B = a
1−a

λ
d

and the normalized number of stalls,

N∗ =
1

B
=
µ− λ
d

=
1− a
d∗

. (2.10)

Equation 2.10 can also be derived by considering N∗ = 1
t3−t2

. While N∗

relates the stalls to the video duration, the stalling frequency F denotes the

number of stalls per time. It holds F = 1
t3−t1

= aN∗ which is also equal to

F = x(0, p− 1)λ to change the player with the state probability x(0, p − 1)

and the network arrival rate λ. However, from an end user’s point of view, the

metric N∗ but not F is of importance.

Beside the network bandwidth λ3

and the video bitrate µ, the number N∗ of

stalling events depends only on the video bu�er size d = p− q, but not on the

concrete values of p and q in the steady state.

2.3.2 QoE Study for Typical User Scenarios

Typical usage scenarios of video streaming services re�ect the following user

behaviors:

• Watch Later,

• Regular Video Streaming,

• Video Browsing.

For these scenarios, the video bu�er size d∗ is optimized concerning QoE and the

impact of the user pro�le (α, β) is analyzed for values close to those obtained in

a user study [50] (α = 0.15, β = 0.2) that represent average users. For the fol-

lowing parameter study, we additionally use values that are arbitrarily deviated

to indicate users with di�erent preferences (α ∈ {0.05, 0.45}, β ∈ {0.05, 0.8}).

3

For the sake of readability, we use the term ’network bandwidth λ’ instead of ’network bandwidth in

terms of frames’ or ’network frame arrival rate’.
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2.3 User Preferences and Usage Scenarios

The in�uence of these parameters on the QoE can be seen in Figure 2.4. The dif-

ference between the steady state (Section 2.3.1) and the �nite case (Section 2.3.1)

is 0.2 points on a 5-point MOS scale for 30 s videos. For the Watch Later and

Regular Video Streaming scenario, we assume longer video durations and can use

the steady state results. In contrast, for Video Browsing short viewing times of

10 s require the �nite case results. For the sake of readability, we transformed

the QoE value linearly to be in the range [0; 1].
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(a) Impact of L on the MOS (N∗ = 2).
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(b) Impact ofN∗
on the MOS (L = 2s).

Figure 2.4: In�uence of user parameters α and β on the MOS based on Equation 2.2.
The solid line represents β = 0.8, the dashed line β = 0.05.

Watch later Scenario

In the ’watch later’ scenario, a user requests a video, but the user does not expect

that the video playout starts immediately. This may be the case for example

when the user wants to watch an HD movie even though the network bandwidth

is low. During that initial delay, the user may do something else, e.g. opening

another web page in a parallel tab in the browser or getting some snacks in the

kitchen. Thus, QoE is not a�ected by initial delays and we only need to consider
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2 Video Bu�er Parameters

Q1 in Equation 2.2. In the steady state, it is L = d/λ and N∗ = µ−λ
d

and we

obtain the following QoE relation in Equation 2.11.

Q1(L,N∗) = e(µ−λ)(α/λ+β/d) = e−α
1−a
a
−β 1−a

d∗ (2.11)

Since the QoE function in Equation 2.11 is strictly monotonically increasing

with the bu�er size d∗, the optimum is achieved for Q+ = lim
d∗→∞

Q1(L,N∗) =

e−α
1−a
a . Thus, the QoE value only depends on the parameter α in the limit.

To see for which bu�er size we are close to the optimum, we consider the

relative di�erence
Q+−Q1(L,N∗)

Q+
when it is less than Ω = 5 %. This is true for

d∗ > −β 1−a
log(1−Ω)

.

For β ∈ {0.05, 0.2}, a small bu�er size of d∗ > 4 s is already enough to

be close to the optimum Q+ for any o�ered network condition a. For users

extremely sensitive to stalling (β = 0.8) bu�er sizes up to 15 s are required.

However, a bu�er of 4 s is su�cient for a relative di�erence to the optimum of

20 %. In general, the larger the bu�er size the better the QoE is in this scenario.

In practice, a bu�er size of 4 s is a good choice.

Default Video Streaming Scenario

In the case of normal streaming, the user wants to watch a video immediately.

In contrast to the ’watch later’ scenario, the initial delay now impacts the QoE

according to Equation 2.6. Figure 2.5 shows QoE depending on the bu�er size for

the streaming scenario and di�erent user pro�les in a network situation a = 0.5

leading to a stalling ratio R = 0.5. Now, QoE optima exist for �nite bu�er size,

if the impact of the initial delay is taken into consideration. We notice that α

does increase the QoE but has no signi�cant impact on the optimal bu�er size. In

contrast, for di�erent β we observe di�erent optima for the bu�er size. Therefore,

we can ignore α when optimizing the bu�er size regarding the QoE. A bu�er

size less than 0.5 s results in a severe loss of QoE for all users. A bu�er size of

2-4 s o�ers a good QoE for the average user and any sensitive user. Increasing
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2.3 User Preferences and Usage Scenarios

the bu�er size further decreases the QoE. In practice, QoE is only marginally

improved if the bu�er is adapted to the user’s speci�c preference (see resulting

optimal QoE values for di�erent β values in Figure 2.5).
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Figure 2.5: Dimensioning of bu�er size in the Streaming Scenario for available
network bandwidth of a = 0.5. Maxima marked as dots mainly depend
on β.

Video Browsing Scenario

In the case of video browsing, the user watches a video for a short period of

time. This includes cases such as, viewing a short video completely, viewing a

short part of a long video or skipping ahead in a video frequently (thus watching

multiple short parts of a video). Since we know from the previous section that α

and β have a marginal impact on the optimal QoE, we consider only the default

parameters α = 0.15 and β = 0.2 in the following. However, for video browsing,

the impact of the initial delay may be more important for the user. Therefore,
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we consider γ = 0.3 corresponding to Equation 2.3 as well as a delay sensitive

user γ = 0.6.
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Figure 2.6: Dimensioning of bu�ers for Video Browsing users with varying QoE
sensitivity to initial delays (γ = 0.3, 0.6) in two network situations
(a = 0.9, 0.3). Users abort the video after 10 s. Steady state results i.e.
for long videos are indicated by dotted lines

In Figure 2.6, the impact of the bu�er size on the QoE is depicted for the case

that the video is aborted after the �rst 10 s. Multiple local QoE maxima exist

independently of γ, which appear when the number of stalls changes. The results

for the steady state are also included. We observe that the steady state represents

a worst-case bu�er dimensioning, but there is little di�erence between steady

state and the �nite case. However, for larger bu�er sizes, the di�erence between

the local maxima and the steady state increases. Nevertheless, in those cases, the
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initial delay exceeds tens of seconds. So, this scenario cannot be described as

realistic video browsing.

In general, if the exact viewing length of a video was known (e.g. short videos

will be watched completely), the bu�er size could be set so that the QoE lies at

a local maximum which is independent of γ. However, this method can result

in a severe loss of QoE (depending on γ) if the user aborts earlier. In practice, a

bu�er size of 1-2 s is recommended for video browsing. If the bu�er size is set

too large, γ determines again the actual QoE loss.

2.4 Practical Evaluation of QoE

In this section, we conduct a measurement study in which we evaluated the

playback behavior of a HAS video player in real-world scenarios. The goal of

this study is to investigate the impact of bu�er con�gurations on the QoE in a

practical, realistic setting, where adaptation may occur. The Shaka player
4

allows

us to con�gure the bu�er con�guration
5

and the adaptation heuristic
6

, this way

we can compare di�erent bu�er con�gurations. For the purpose of this study

we left the adaptation heuristic at its default setting. The bandwidth conditions,

that the players face, are mobile scenarios, which were recorded in everyday

commuting situations, using di�erent means of transport. To investigate the

impact on the end user, we map the found application layer QoS measures

to a MOS using our QoE model from Section 2.2. Furthermore, we introduce

a maximum bu�er size, whereas previously the bu�er was considered to be

unlimited. This has the advantage of less wasted tra�c if a user abandons the

video early.

4h�ps://github.com/google/shaka-player
5h�ps://shaka-player-demo.appspot.com/docs/api/tutorial-network-and-bu�ering-config.html
6h�ps://shaka-player-demo.appspot.com/docs/api/shaka.extern.html#.AbrConfiguration
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2 Video Bu�er Parameters

2.4.1 Methodology

We developed a setup that allows us to test HTML video players under prede�ned

bandwidth conditions, while monitoring their behavior. In these experiments, we

used the Shaka player v.2.0.1 for HAS. In the following, we describe the elements

of our setup.

The client can be an arbitrary device running a recent web browser that is

able to run the video player. In our experiments this is a Firefox 50 browser on a

machine running Ubuntu 16.04. It could also be changed to any other device, for

example a smart phone, to investigate whether the players behave di�erently on

other device types.

The experiment is controlled by the ‘Control server’, which provides the web

page for the client with the video player and collects the results. In case of the

Shaka player, the video is hosted using a local video server. With the YouTube

player, we had to use YouTube as video source. Because of this, we had two

di�erently encoded versions of the same video. This is further described in

Section 2.4.1.

The bandwidth is controlled by bandwidth traces, which re�ect real-world

scenarios. These were provided by Riiser et al. using a notebook and a 3G modem

for measuring download speed, and a GPS module for localization [92]. The

team investigated bandwidth rates on di�erent mobile travel situations. During

the measurements, �les were downloaded via HTTP constantly. As this is the

same technique used by adaptive video streaming the same behavior would be

experienced by a video streaming client. The bandwidth traces re�ect situations

as they are typical for commuting, using di�erent ways of transportation (Bus,

car, ferry, metro, tram, and train). We focus on mobile scenarios, because in these

the bandwidth is varying, while in stationary situations, there is often more

bandwidth available, which also has a lower variation over time. Numbers about

the bandwidth scenarios can be found in Table 2.2. These bandwidth traces are
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2.4 Practical Evaluation of QoE

reproduced using tc7

which con�gures the packet scheduler of the Linux kernel

of a dedicated Linux machine.

Table 2.2: Mean and standard deviation of the bandwidth traces.

scenario mean standard deviation

Bus 244.7 kB/s 164.1 kB/s
Car 67.3 kB/s 90.8 kB/s

Ferry 161.0 kB/s 146.2 kB/s
Metro 72.1 kB/s 74.5 kB/s
Train 134.2 kB/s 119.4 kB/s
Tram 100.4 kB/s 62.4 kB/s

The video players use di�erent video sources. While the video source of the

Shaka player can be con�gured arbitrarily, the YouTube player can only play

videos from YouTube. As a result, we had to use di�erent test videos. The video for

the Shaka player was provided by a local web server. The YouTube player fetched

a video directly from YouTube. Because this relies on an Internet connection,

during the experiments the Internet connectivity was continuously monitored

to detect impairments.

Both video players used the same test movie with a length of 9 min 54 s, but

in a di�erent encoding and di�erent representation layers. While the video for

the Shaka player comes with three quality levels (Average data rate 79.99 kB/s,

178.60 kB/s, 482.69 kB/s), the YouTube video has seven quality levels (Average

data rate 13.41 kB/s, 30.17 kB/s, 40.70 kB/s, 80.08 kB/s, 150.60 kB/s, and

268.72 kB/s). This means the YouTube player has a lower minimum and maxi-

mum bandwidth and more possibilities to adapt the video quality to the current

available bandwidth.

The mode of operation is as follows: the bandwidth traces of one scenario

are in�nitely repeated by the bandwidth limiter. At the same time, the video

playback is repeated continuously, so that it starts at di�erent positions of the

7h�p://manpages.ubuntu.com/manpages/xenial/en/man8/tc.8.html
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2 Video Bu�er Parameters

bandwidth traces. Using the players’ API, every second the current playback

status, the bu�er level, and video quality are recorded, which are then sent to the

control server after a video playback has �nished. Additionally, this is also done

whenever a stalling or adaptation event occurs. This way, we obtain a precise

history of the players’ behavior.

2.4.2 Measurement Results

The Shaka player allows to con�gure the bu�er, so that we could compare its

behavior. A bu�er con�guration consists of two settings: the maximum bu�er

size, which determines the maximum length of video in the bu�er, and the bu�er

size p, which is the minimum amount of video in the bu�er required to resume

playback after a stalling event, e.g., in Section 2.3.1 the maximum bu�er size

was in�nite and for the bu�er size values of d∗ ∈]0 s 10 s] were analyzed. As all

experiments are run in real-time, we limited the number of bu�er con�gurations

to four:

• Maximum bu�er size 10 s, bu�er size of 2 s, which is the default con�gu-

ration of the Shaka player

• Maximum bu�er size 90 s, bu�er size of 10 s

• Maximum bu�er size 180 s, bu�er size of 10 s

• Maximum bu�er size 180 s, bu�er size of 20 s

In Figure 2.7, the number of adaptation events per bandwidth and bu�er

con�guration is plotted. An adaptation event means that the player changes

the playback quality thus selects another representation layer. The number of

adaptation events clearly di�er between the di�erent bandwidth traces. The

bandwidth scenarios with the highest numbers of adaptation events are ‘Bus’,

‘Ferry’, and ‘Train’ with a median number of adaptation events between �ve

and six, respectively three and four, and two in case of ‘Train’. Those bandwidth

scenarios are the three with the highest average bandwidth, and play a signi�cant

share of the video in medium quality, while in all other scenarios nearly all the
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Figure 2.7: Shaka player: adaptation events

time the lowest quality is played. As it can be expected, with unlimited bandwidth,

always one single adaptation event occurs, when the player switches from the

initial quality to the highest representation layer. It is notable, that the bu�er

con�guration has no in�uence on the number of adaptation events.

Figure 2.8 shows the distribution of the resolutions, in which the video was

played. In case of unlimited bandwidth, most of the time the video was played

at maximum quality. When the bandwidth was limited, the highest quality was

never played, most time the lowest quality was selected. Only in the scenarios

‘Bus’, ‘Ferry’, and ‘Train’ the medium quality was played for a signi�cant time. It

can be assumed, that only in these scenarios the bandwidth was high enough,

see Table 2.2. In scenarios with low average bandwidth, like ‘tram’ and ‘metro’,

only the lowest quality was played, while in case of unlimited bandwidth, after

an initial quality switch, only the highest quality was played. It can be stated,

that the bu�er con�guration does not in�uence the played quality. Therefore,

the resolution and the number of quality switches are not considered any further,

the QoE evaluation focuses on the stalling events and the initial waiting time.

Next, we take a look at the stalling events. Figure 2.9(a) shows their number,

while Figure 2.9(b) shows their duration. It can be seen, that in all cases, where the
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Figure 2.8: Shaka player: played resolution

bandwidth was limited, the lower the bu�er size was set, the more stalling events

occurred. Especially in the con�guration with the smallest bu�er, in median

there were many of stalling events. Compared with the lowest con�guration,

there is a huge improvement using the maximum bu�er size of ten seconds and

the 90 s bu�er size. Whereas, there is no signi�cant reduction of the number

of stalling events between a bu�er size of ten and 20 seconds and a maximum

bu�er size of 180 s. In the case of unlimited bandwidth, no stalling occurred.

When looking at the duration of the stalling events, it can be found that the

median length of the stalling events was signi�cantly longer with a higher bu�er

size. The exception in the ‘Metro’ scenario and the 20 second bu�er size can be

explained by the methodology, where the video starts at arbitrary positions of

the bandwidth traces. In this case, the variance is much higher than the cases

with a smaller bu�er and a lower bu�er size.

For an overall evaluation, where both the initial waiting and the stalling

are considered, these two models have to be combined. To do so, there are

di�erent methods, which were presented in Section 2.2, namely the additive and
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(a) number of stalling events (b) duration of stalling events

Figure 2.9: Shaka Player: stalling events.
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(a) additive model
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(b) multiplicative model

Figure 2.10: Shaka Player: combined QoE using the additive and the multiplicative
model.

the multiplicative model. In Figure 2.10(a) the MOS of the di�erent scenarios

and bu�er con�guration ratings are combined using the additive model. The

multiplicative model is used in Figure 2.10(b). For simplicity, we weigh initial

waiting and stalling the same. In practice, this has to be adapted to the use case.

If users tend to browse more, skip large parts in the videos and abandon the

playback, the initial waiting time is more important, while when users select a

video and watch it for a longer time, the e�ect of stalling becomes more important.

In most bandwidth scenarios, the bu�er con�guration with a 10 s bu�er size

and a maximum bu�er size of 180 s has the best MOS rating. Only in the ‘bus’

scenario, which has the highest average bandwidth, the con�guration with the
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smallest maximum bu�er size (10 s) has a slightly better rating, because in this

speci�c scenario the initial waiting time lowers the high rating of the stalling

events, because in this scenario only little stalling occurs. This evaluation using

the QoE also matches the results of previous evaluations in [13], where the

playback statistics were manually interpreted. This shows, that the QoE model

can be used in practice for evaluation of adaptive video streaming. The automatic

interpretation and reduction of complex statistics to a single MOS value allows

it to include QoE evaluation and monitoring into practical scenarios.

2.5 Bu�er Policies

This section aims to study the relationship between User Engagement and the

QoE in on-demand video streaming and how these metrics are a�ected by dif-

ferent bu�er policies. We conduct this investigation via a queuing model that

describes the video player behavior in terms of stalling periods for arbitrary

network conditions and video characteristics. The results are mapped to QoE

according to our QoE model. Further, we propose a model for User Engagement

that is established by �tting existing measurement results. Based on this model,

we analyze the correlation between QoE and User Engagement numerically. In

addition, we compare three video bu�er policies analytically and in a trace-driven

simulation.

2.5.1 User Engagement Model

User Engagements describes the activity or attention of users in a system. As

described in Section 4.1.1, for video streaming we restrict the de�nition of the

User Engagement to the average amount of time U (in minutes) users watch

a video, including stalling events. In [25], several data sets were collected and

analyzed. In Figure 2.11 we take a closer look at one of their data sets: LvodA

which contains long VoD clips with a length of about 35 min to 60 min. In each

data point users with the same ratio of bu�ering events are related to an average
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Figure 2.11: Fitting based on the bu�ering ratio R. Data taken from [25].

play time. We �tted a nonlinear curve to these data points in least-squares sense

using MATLAB, which provides us with a �tting function

U(R) = 4.2712 · e−0.5435·R + 25.9000 · e−0.0339·R
(2.12)

This function maps the ratio of bu�ering events R to the average play time

in minutes. For the �tting, we chose a double exponential decay since this is

commonly used for describing spontaneous human behavior (e.g. in [93]). The

Pearson correlation coe�cient for this �t is 0.996 (Spearman 0.997). The RMSE

is 0.659 min (normalized RMSE 0.092 min). This indicates that the �t is very

accurate.
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2.5.2 Impact of Bu�er Policies on QoS and QoE

In this section we present an analytical approach to calculating key QoS parame-

ters for the player model described in 2.3.1. A detailed mean value analysis of

the steady state was derived in Section 2.3.1 for an M/M/1 model leading to

the following QoE model

Q(L,N∗) = 3.5 · e−(α 1−a
a

+β 1−a
d∗ ).

In the following, we extend this model to an M/G/1 model for three bu�er

policies: the D-policy, the n-policy, and the T-policy. In [94], the authors derive

the distributions and the means of the busy and idle periods of queuing models

for these three policies. In the following, we adapt these results for HTTP video

streaming for the case of a generally distributed service process. For the sake of

clarity, when variables for speci�c policies are discussed, they have the policy

name as their index, e.g., for the D-policy, we use the notation LD, BD, N
∗
D

instead of L,B,N∗.

M/G/1 with D-policy

With a D-policy, the idle period ends if the sum of the service times of the units

in the queue amounts to D. For the speci�c case of video streaming, this policy

means that stalling ends after the data in the bu�er amounts to a certain play

time D. This policy guarantees that the length of the busy period is at least D.

For the D-policy, it is

E[LD] =
1

λ
(M(D) + 1)

with M(D) being the renewal process of D,

E[BD] =
M(D) + 1

µ− λ ,
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E[N∗D] =
1

BD
=

µ− λ
M(D) + 1

.

It follows

Q(LD, N
∗
D) = 3.5 · e−(λ−µ)(α

λ
+ β
M(D)+1

)
+ 1.5.

If we assume the bu�er size d does not change during a video session, then

M(D) = d − 1 is constant as well. Thus L = LD and N∗ = N∗D are equal

for M/M/1 and M/G/1 with D-policy. Therefore, Q(L,N∗) = Q(LD, N
∗
D)

is equal for both models.

M/G/1 with n-policy

With the n-policy, the idle period ends if n = d∗ · µ bytes are in the queue. For

the n-policy, it is

E[Ln] =
n

λ
=
d∗

a
,

E[Bn] = n · 1

µ(1− a)
=

d∗

1− a ,

E[N∗n] =
1

Bn
=

1− a
d∗

.

Since E[Ln] and E[Nn] are equal for M/M/1 and M/G/1 with n-policy,

Q(L,N∗) = Q(Ln, N
∗
n) is also equal for both models.

M/G/1 with T-policy

With the T-policy, when an idle period starts, a timer is started. If the timer

reaches T , the systems verify whether a unit arrived during the idle period. If

it did arrive, the busy period is started. Otherwise, the timer is restarted. The

probability that no unit arrives during the idle period T is e−λT . If we can assume

e−λT = 0, this policy guarantees that the length of each stalling period is exactly

T . For the T-policy, it is
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E[LT ] =
T

1− e−λT ,

E[BT ] =
λT

(1− e−λT )(µ− λ)
,

E[N∗T ] =
1

BT
=

(1− e−λT )(µ− λ)

λT
.

It follows

Q(LT , N
∗
T ) = 3.5 · e(1− 1

α
)(α+β 1−e−λT

T
) + 1.5.

If we can assume e−λT = 0 and choose T = d∗

a
this leads to Q(LT , N

∗
T ) =

Q(L,N∗). In Figure 2.12 we see that the impact of the policies is small for

T = d∗. Consequently, the service process has no impact on the QoE under

the assumption of a Markovian arrival process. This means that only the mean

and not the variance of the video bit rate matters for the QoE, assuming an

M/G/1-model. This result was also observed in simulation results that will be

presented in Section 4.3.2.

2.5.3 Analytic Results

This section takes a closer look at the relation between QoE and User Engagement

by discussing analytic results for the queueing model described in 2.3.1. In

addition, we look at the simulation of the download of a real video in a real

network and compare it with the analytic results.

First, we focus on the D-policy as it re�ects current video player implementa-

tions of HTTP streaming, and investigate the impact of reception rate (i.e. o�ered

load) and di�erent bu�er sizes on QoE and User Engagement. Later, in Section

2.5.4, we compare the di�erent policies in terms of QoE and User Engagement.

Figure 2.13 shows how the o�ered load (or ratio between network bit rate and

video bitrate) a is related to the MOS value and the play time for di�erent bu�er

sizes d∗ (e.g. a value a = 0.5 means that the bandwidth is half of the video bit

rate). We notice that increasing the o�ered load a leads to an increasing average
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Figure 2.12: Di�erence between T-policy and D-policy if T = d∗ is chosen. The
n-policy is omitted for the sake of clarity.

MOS and User Engagement. It should be noted that MOS values lower than 2.5

are not considered acceptable by most users [95]. In addition, we see that an

increasing bu�er size leads to higher MOS with the optimum being reached at

Q+ = lim
d∗→∞

Q(L,N∗) = e−α
1−a
a as shown in [4]. In contrast, the bu�er size

does not have an impact on the User Engagement. A large di�erence between

QoE and User Engagement is that for a < 0.4 the MOS is 1.5 and does not

change while increase the play time is noticeable. This is because the QoE model

that we use is based on short video clips while the user engagement model is

based on long videos. User Engagement has been observed to be lower for shorter

videos [74].

Next, we investigate how the QoE value is related to the User Engagement.

In Figure 2.14 we calculated the User Engagement and the QoE for various
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Figure 2.13: QoE value in anM/G/1 system. The o�ered load quanti�es the ratio
between average network bandwidth and video bit rate.

o�ered loads. We observe that an increase in QoE always leads to an increase

in User Engagement. Since our model for User Engagement does not take the

bu�er into account, more research is necessary in order to identify its impact.

Furthermore, we notice that for very low QoE values, it is di�cult to estimate

the User Engagement as users may react di�erently in such scenarios.

The Pearson correlation coe�cient is 0.981 (Spearman 0.994). A larger bu�er

leads to a higher mean play time for the same QoE. This can be explained by

the fact that an increase in bu�er size leads to an increase in QoE, but not to

an increase in mean play time. This means that users will abort videos much

earlier if the QoE is low. Therefore, it is critical to ensure a high QoE if User

Engagement is to be maximized.
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Figure 2.14: User Engagement in relation to the QoE in an M/G/1 system for
d = 2, 10, 30 according to Equation 2.12 in Section 2.5.1.

2.5.4 Simulation Results

In order to compare our analytic results with measurement results, we simulated

replaying a real video using a real network trace that was recorded in [96]. For

this simulation we chose the video “Tears of Steel” in a low spatial resolution

(320 × 180). It is a 12 min short movie with a variable bit rate. The network

trace was recorded by downloading a large �le via HTTP using a UMTS stick

while driving on a highway. The resulting trace has a strongly �uctuating bit

rate. In total, we used 30 di�erent tra�c patterns that were created by adding

a temporal shift to the original tra�c pattern in [97]. We simulated di�erent

network capacities by adjusting the video bit rate, resulting in various o�ered

loads a.
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Figure 2.15: Relation between MOS and o�ered load a for three bu�er policies. Simu-
lation results for real video and real tra�c pattern (black) and analytical
results forM/G/1-model (blue). Policies have little impact on MOS.

In our simulation, video frames are downloaded with a rate that is based on

the e�ective network capacity and the size of the video frame in a best e�ort

manner. Video frames are replayed at a constant rate of 24 frames per second

until the video ends. If a stalling event occurs, it is resolved according to the

given bu�er policy. The simulator is implemented in MATLAB and is available

online
8

.

In the following, we compare the simulation results to the analytic results.

Figure 2.15 shows the impact of the o�ered load a on the MOS for the n-policy,

the D-policy and the T-policy. It is clearly visible that the policy does not impact

the QoE value signi�cantly. In addition, the real traces lead to a higher QoE

8

https://github.com/ChristianMoldovan/HAS-Simulator
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Figure 2.16: Relation between play time and o�ered load a for the three bu�er
policies. Simulation results for real video and real tra�c pattern (black)
and analytical results forM/G/1-model (blue). Policies have no impact
on play time.

than the M/G/1 model. This is mainly due to video speci�c attributes, i.e. the

distribution of frame sizes. Nevertheless, we consider a generally independent

distribution for the frame sizes in videos. While more advanced models may lead

to more realistic results, they cannot be solved analytically.

In Figure 2.16 we investigate how the bu�er policies impact the User Engage-

ment that was calculated based on the rate of bu�ering events R according to

Equation 2.12 in Section 2.5.1. The main observation is that the policies have

almost no impact on the mean play time. This means that since the T-policy does

not require any information from the player, it provides a solid alternative to the
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other policies. This is particularly the case if hiding such information becomes a

common practice in the future.

2.6 Lessons Learned

In this chapter, we investigated how di�erent bu�er dimensions impact the

application layer QoS, the QoE and the User ngagement.

The rebu�ering goal determines the degree to which the bu�er must be �lled

before playback begins at the start of the video or after a stalling event. Thus, this

parameter impacts the initial delay, the length of stalling events and the duration

of playback events. To describe its impact on the QoE, we describe how a uni�ed

QoE model for the initial delay and stalling can be created. To evaluate the impact

of the rebu�ering goal, we de�ne an M/M/1 model and conduct a parameter

study where we investigate three typical video streaming scenarios. We modeled

user preferences with parameters in the QoE model and found that they only

have a minor impact on the optimal bu�er settings. They can thus be ignored

for practical purposes. However, the viewing scenario should be considered. In

particular, it has to be di�erentiated if the user is video browsing (recommended

bu�er size 1-2 s) or watching video immediately or later (4 s).

We then conduct a measurement study where we use vehicular traces to

evaluate the real-world behavior of di�erent bu�er con�gurations. For this, we

use the shaka player since it allows modi�cations to the bu�er. In this study,

we investigate the impact of the bu�er size and the maximum bu�er size on

application layer QoS and QoE. We see that increasing the bu�er above a certain

size does not increase the played video quality. In contrast, more data can be

wasted if the bu�er is large, in particular if the available bandwidth is very high.

Therefore, we recommend to strictly limit the bu�er size if the bandwidth is

much higher than the video bit rate.

In order to identify how the User Engagement is impacted by such factors, we

�nd a good �t between the bu�ering ratio and the time spent watching videos.

Next, we investigate three policies that can control when the video is resumed
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after a stalling event. For this we extend the M/M/1 model for the video player

to an M/G/1 model and prove that the QoE and User Engagement is equal in

both models for all bu�er policies. In a simulation we compare these results for

the steady state with results for a 12 min movie that is watched with a network

trace recorded in a mobile scenario. We �nd that the di�erences in the results

of the Markov model and the simulation are small, so that the M/G/1 model

describes the real behavior su�ciently well. Furthermore, we show that there is

a strong correlation between the QoE and User Engagement.
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Streaming

A current challenge of video service providers is the delivery of content in high

quality while avoiding stalling events. It is well known that stalling events and

the video encoding bit rate, i.e. the video resolution, have a signi�cant impact on

the acceptance rate and the QoE [98]. Therefore, it is important for the service

provider to develop a sophisticated adaptation logic which can prevent stalling

events even when faced with congested links during after-work hours or unstable

Internet connections, such as cellular access. Even though HAS can avoid stalling

in most cases, a high number of quality switches may also have a negative impact

on the QoE [40, 99]. Very frequent adaptation events lead to an ever-changing

image quality in the video, which is tough on the user’s eye. Therefore, we want

to keep the number of quality changes or switches as low as possible while

providing high playback quality. A very passive adaptation strategy plays the

video on a lower quality in order to keep the number of switches at a minimum.

While some users may prefer watching a video with a high average quality with

many switches over low quality with few switches, there is little research on the

trade-o� between quality and switches.

A great deal of research has focused on the QoE-driven design of adaptation

algorithms, with the goal to deliver video content at high quality levels while

avoiding stalling, long initial delays, and frequent quality switches. Faced with

the question of how to benchmark the performance of HAS adaptation algorithms

compared to a theoretical QoE optimum, the authors in [97] propose problem

formulations to compute the theoretical optimum for both single- and multi-
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user scenarios. Their addressed multi-user scenario assumes users concurrently

watching and downloading the same video over a shared bottleneck link.

In this chapter, the overall research questions that we tackle can be formulated

as follows: To what degree can the QoS be optimized in HAS? An overview of the

QoS parameters that we investigate and the methods that we apply to reach this

goal is given in Figure 3.1. As a �rst step, we want to �nd out how the number

of quality levels impacts the QoS of HAS in a network with high bandwidth

variation. For this purpose, we present a queueing model for a generic bu�er

based adaptive bit rate scheme that we use to determine the state probabilities

from which we derive key performance indicators. Next, we want to determine

how much room for optimization there is with current adaptation algorithms.

Thus, we compare an adaptation algorithm which was deployed by YouTube

with a heuristic and two optimal approaches in terms of QoS. Furthermore, we

analyze the trade-o� between average video quality and quality switches with

regard to a weighting parameter. For this purpose, we use a quadratic program,

that optimizes adaptation in video streaming towards higher quality and fewer

quality switches. This is done with respect for the user’s individual preference

for these two QoE impact factors. We conduct a user-centric analysis of fairness

for several simultaneous HAS clients. We answer the following questions: (1)

To what extent are stalling and the video quality a�ected when video streaming

clients share a network bottleneck? (2) Is the simultaneous playback of multiple

adaptive video players fair in terms of QoE? To answer these questions, we

conduct a measurement study where multiple users, who share a bottleneck,

are watching videos at the same time over a long period. We focus on QUIC,

since it is used in Chromium / Chrome which is the most spread web browser.

In this study, we observe situations where clients are treated unfairly. Our next

goal is to provide the means for benchmarking such solutions in the context of

multiple users accessing Video on Demand content while sharing a bottleneck

link. For that purpose, we propose a quadratic problem formulation to compute

the theoretical optimum in terms of adaptation strategies and corresponding

segment downloads across multiple users under given bandwidth constraints. By
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aiming to maximize both service quality and fairness, we quantify and compare

the impact of di�erent fairness objectives (bandwidth fairness, pattern fairness,

and session fairness) on resulting quality and achieved QoE fairness. Based

on conducted simulations and parameter studies, our results demonstrate the

bene�ts of optimizing for session fairness as compared with other approaches.

Furthermore, we propose three linear programs that use three approaches for

viewport prediction in 360◦ videos. The three approaches consist of statistics-

based viewport prediction, linear extrapolation of the current user’s viewport,

and a neural network that learns typical head movement patterns for speci�c

videos by training with other user’s viewports. Based on which approach is used,

di�erent information is needed from the network, the user and the video service

provider. The proposed application-aware and network-aware linear programs

optimize the video resolution and the number of resolution changes.

The remainder of this chapter is based on content that has been published

in [8, 3, 9, 10, 14, 20] and is structured as follows. First, we discuss background

and related work on adaptation strategies. Next, we propose a generic queueing

model for bu�er based adaptive streaming. In the next section, we investigate by

how much YouTube could improve its quality optimally using an optimization

problem. In Section 3.4, we extend this problem to analyze the trade-o� between

quality and switches. We then turn towards the aspect of fairness in adaptive

streaming and investigate the performance of the QUIC protocol in a scenario

with multiple concurrent YouTube players that share a bottleneck. In Section 3.5,

we propose an optimal solution for such a scenario under various fairness aspects.

Section 3.6 discusses how di�erent approaches to viewport prediction can be

used for the optimization of 360◦ video streaming. Finally, we discuss lessons

learned in Section 3.7.
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Figure 3.1: Contributions of this chapter by with QoS parameters and methodologies.
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3.1 Background and Related Work

3.1.1 Modeling Video Streaming

There are many di�erent approaches that are suitable to conduct a performance

evaluation in video streaming. An overview of a selection of important references

is given in Table 3.1.[62] uses two models that assume steady-state for Net�ix

videos. In their �rst model, they assume constant segment durations, while their

second, idealized model assumes in�nitesimal segment durations, so that bit

rate adaptation can be applied continuously. [61] uses an epoch-based model

for multiple players where each player chooses a new bit rate at the start of a

new epoch. A similar scenario is investigated in [100], where a Markov model is

presented that is used to evaluate sharing policies for network-assisted HTTP

adaptive streaming. [101] uses a Markov model to investigate the in�uence of

user behavior in cellular networks on the bu�er starvation in video streaming.

Burger et al. [102] models the video bu�er as a GI/GI/1 queue with pq-policy

using discrete time analysis. They use this model to study stochastic properties

of the bu�er level distribution and to evaluate the impact of network and video

bitrate dynamics on the video QoE. Another approach is to determine the optimal

adaptation strategy using a linear program. Such programs are used in [103] for

the optimal rate allocation for video streaming in wireless networks with user

dynamics. In [3], a linear program uses context information to avoid stalling in a

tunnel scenario.

Control theory is another approach that works well with live streaming [104]

and in cases of varying bandwidth [105]. In [106], the authors use a control

theory model for adaptive video streaming to assess the optimally reachable QoE.

Furthermore, they propose an adaptation algorithm that is based on throughput

as well as the bu�er state. The authors of [107] investigate Akamai’s adaptive

streaming system and model the playout bu�er as a control system. The paper

[108] is an early work that uses control theory to model the video bu�er as a

single server queue with constant service rate. The performance of adaptive video

streaming can also be described with �ow-level models [109]. These approaches
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usually aim at improving the QoE or key performance indicators of QoE such as

the impact of the chunk duration in mobile networks.

Table 3.1: Models of HTTP Adaptive Streaming

reference goal / scenario approach

[62] video streaming user study

[61] multiple user scenario epoch based model

[100] cooperative policies for streaming Markov model

[101] in�uence of user behavior on bu�er Markov model

[110][111][109] impact of network on app. QoS �ow level model

[112] heterogenous tra�c and stability �ow level model

[113] chunk duration �ow level model

[105] QoE under time-varying bandwidth control theory

[106] throughput-based adaptation control theory

[104] optimal QoE in live streaming control theory

[107] Akamai’s adaptive streaming control theory

[108] model for video bu�er control theory

[103] multi-user rate allocation linear program

[114] quality, switches linear program

[97] quality, switches, multi-user linear program

In [97, 115], Hoßfeld et al. conclude that avoiding stallings is the �rst priority

when optimizing a HAS service for user experience. The second and third priority

are the average video quality shown to the user and minimizing the number of

switches and the amplitude of the switches. In [116], Nam et al. conduct a large

scale study on YouTube and con�rm the high (harmful) impact of re-bu�erings

and quality switches on the user’s QoE. Further related work in the area of HAS

QoE and on HAS in general can be found in [56].
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Figure 3.2: Measurement study of YouTube stalling characteristics [55] compared
with an analytical M/M/1 model [4]. The variable d describes the amount
of video content that must be downloaded before the video resumes
playback after a stalling event.

In [98], Casas et al. conclude that the ratio between video bit rate and down-

link bandwidth signi�cantly in�uences YouTube’s adaptation. They show that

YouTube’s adaptation is not robust in bottle-necked scenarios. Yao et al. show in

[117] that the iOS YouTube player uses overlapping segments to smoothen the

playback. Rao et al. [118] and Ito et al. [119] evaluate YouTube’s tra�c pattern

during video playback. They show a dependency of the behavior on the viewing

device. In [120], Añorga et al. show that YouTube uses a large playout bu�er of

13 s to 40 s and therefore can only adapt slowly to changing bandwidth condi-

tions. In [121], Alcock et al. describe YouTube’s initial burst phase in detail. They

show that 32 s of playback time in a low quality level is transferred to the client

as fast as possible before the transfer is throttled. We account this for a major
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Figure 3.3: Example request schedule from one of the experiment runs [125]. From
30 s to 90 s overlaps can be observed where low quality (144p) is replaced
by higher quality levels (240p, 360p and 480p).

source of redundant tra�c as the low quality level is replaced later by higher

quality segments. In [122], Mansy et al. evaluate YouTube’s adaptation behavior

in terms of redundant tra�c, playback behavior and bandwidth utilization. In

a wireless scenario with one video and one bandwidth pattern they quantify

the redundant tra�c to 16%. They also show that the adaptation strategies of

other content providers behave in a similar way. Lui et al. [123] conclude that

YouTube’s bu�er level on mobile devices is based on the amount of data bu�ered,

not on the amount of playback seconds. They observe redundant tra�c when

segments at the beginning of the video are re-downloaded and quantify the

redundancy to 15%. In [124], the authors identify additional redundant tra�c on

the transport layer of YouTube in a mobile scenario. They quantify the redundant

tra�c to 35% due to frequent termination of TCP connections and in-�ight

packets.
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Figure 3.3 shows a request schedule for one of the experiment runs. The x-axis

shows the request video interval in playback time, e.g. the �rst 16 s of the video.

The y-axis shows the time of request based on the experiment time, with 0

being the time the �rst HTTP GET request was sent to the server. At �rst, the

player requests one minute of the lowest quality level. Then, 20 seconds into

the experiment, the player revises its previously made decision, discards two

of the low quality segments (i.e. 30 s of playback time) and starts to download

a higher quality level instead. The shaded areas in the �gure illustrate where

lower quality segments were discarded. The �gure illustrates that in this video

view out of 105 s of video, approximately 60 s were available in more than one

quality level at the player. As is shown in a previous study [125], this is not an

isolated incident but happens on a regular basis.

3.1.2 Optimization of HAS

HAS can also be formulated as an optimization problem, e.g., with linear or

quadratic programming. The �rst quadratic program that solved adaptive stream-

ing was presented in [114]. In a �rst step the optimal quality is determined that

is reachable without stalling. In a second step, the number of quality switches

is minimized while playing at the optimal quality and while avoiding stalling.

This program was extended in [97] to include multiple viewers who watch the

same video at the same time. In this chapter we present many extensions to

these programs that also take into account fairness and context or consider new

scenarios such as 360° video streaming.

3.1.3 Fair Video Streaming

In a system where scarce resource must be shared, fairness is always a concern.

While each player has its own requirements and internal status like throughput

and bu�er level, it only has a limited view of the whole situation. It is not aware

of neither the overall network situation nor other players, but only knows its own

status, in particular the video qualities it is able to select, the bu�er level, and the
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speed with it downloads further segments. So, every player makes its own choice

depending on its own view of the situation. As a result, one player may choose

to play a high quality, while other players decide to switch to a lower quality,

resulting in an unfairness between players or stalling events as the available

bandwidth is overestimated. An enhancement for adaptive video streaming called

‘SAND’ was standardized [126], which allows direct communication between

server and the video player and thus allows arrangements between these parties.

In general solutions that use TCP (such as [127]) perform very well in terms of

fairness, while non-UDP based protocols (such as QUIC) have di�culties with

multiple players in highly varying networks. An adaptation algorithm presented

in [128] tries to eliminate these scalability issues by creating coalitions between

players that participate in a collaborative game.

This problem of multiple video players sharing a bottleneck link is enhanced

by the mode of operation of HAS and the bu�ers that are used. For example,

two players are playing di�erent videos simultaneously. Now one player �nishes

playing, so the other player can use the full bandwidth, increase the video quality,

and �ll its bu�er. If the �rst video player at the end of the video now starts

to play another video, it has a serious disadvantage: �rst, the link is already

saturated, it has no knowledge about the bandwidth of the link, and its bu�er

is empty, so that it cannot compensate bandwidth �uctuations. This issue was

investigated previously in [129], where in practical experiments the behavior of

a simple adaptive video streaming player was investigated. There, it was already

found that multiple video players in�uence each other, resulting in instability

of the playback. As a main problem the on-o� behavior of video players was

identi�ed, as HAS players can only estimate the available bandwidth during

download. Six di�erent HAS clients are compared in [130] in a HAS experiment

testbed. The study focuses on the adaptation logic, the throughput estimation,

and the fairness in a scenario with multiple players. Their evaluation shows that

YouTube behaves sel�sh in a competition with Net�ix and Vimeo players and

obtains more bandwidth due to its UDP-based transport. Our work di�ers from

this work by focusing on challenging mobile scenarios with high throughput
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variations. In contrast to [130], we rely on real network traces. Furthermore, we

have a deeper investigation of the fairness, where we �nd a signi�cant di�erence

between players during runs.

Mitigations for this problem can be either taken on server-side, like proposed in

[131] or in the network, for example with OpenFlow [132]. But both approaches

enhance the complexity of the video streaming setup. One advantage of HAS is

that the adaptation logic works on client-side, so that the server can be completely

stateless, so that is well-suited for Content Delivery Networks (CDNs). So, the

appropriate would be to modify the adaptation logic accordingly, like done in

[61].

In a measurement study, [133] compare QUIC and TCP when transferring

data over the same bottleneck link at the same time. In their study, they use

various emulated network conditions, desktop and mobile clients, and multi-

ple historical versions of QUIC. They use web browsing and YouTube video

streaming as test applications. Similar to us, they use a very long video. They

�nd that QUIC consumes almost twice the bandwidth than all other TCP �ows

combined. Furthermore, they claim that two clients that use QUIC are fair to

each other within the same system which di�ers from the results for YouTube

video streaming. However, they do not study multiple QUIC �ows in detail. The

authors of [134] also investigate the behavior of QUIC and TCP with multiple

users that share the same bottleneck link. They investigate the QoE performance

and the QoE fairness of three DASH algorithms within a testbed environment.

In addition to their testbed, they conduct experiments in the public Internet

with background tra�c. For their experiments they use a 5 min video. Similar

to our study, their clients start with a small time o�set. Their results show that

a system with multiple TCP DASH clients is more resilient than a system with

QUIC DASH clients when competing for tra�c.

Jain’s fairness index is a popular fairness index for QoS [135] that determines

the ratio between the square of the mean and the mean of the squares for a set

of values. However, it is only suitable for measures on a ratio scales [43], i.e.

an interval scale with a true zero point. Resources are allocated according to
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max-min fairness among users if a user only receives more resources when no

other user will su�er and obtain less [43]. A rather novel fairness index for QoE

has been presented in Hoßfeld et al. [136]. Hoßfeld’s fairness index is de�ned

via the ratio between the observed standard deviation of QoE values and the

maximal possible standard deviation F = 1− σ/σmax which makes it suitable

for any interval scales. In Section 4.3.2 we use this index to quantify fairness

from a user-centric point of view for quality layers that serve as QoE indicators.

A detailed discussion of QoS and QoE fairness is provided in [43] focusing on the

notion of fairness in shared environments and in networking, as well as fairness

from the user’s perspective.

3.1.4 360-Degree Video Streaming

With the advent of VR, 360
◦

videos have become more popular during the last

years. A 360
◦

video, also called omnidirectional video or spherical video, is a

video where every angle is recorded at the same time using an omnidirectional

camera. In VR applications, such videos are typically viewed on an HMD. For

example, they can be applied to increase immersion in panoramic videos or for

the rehabilitation of cognitive and motor abilities [137]. Although 360
◦

videos

currently make out a small ratio of total videos, VR is one of the most trending

Internet applications, such that 360
◦

video streaming tra�c will signi�cantly

increase.

Figure 3.4: Viewport of an HMD on an equirectangularly formatted 360◦ video. The
viewer only sees a subset of all tiles at any point in time.
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Current video platforms always stream the whole video in the same visual

quality, although in the case of 360
◦

videos only a small share of the total video,

the so-called viewport, is watched at any point in time by the user, compare

Figure 3.4. To reduce the data consumption of 360
◦

video streaming, approaches

have been developed to predict which viewport the user will watch. If the view-

port can be predicted accurately, it is su�cient to stream it in high visual quality

while the remaining tiles can be transmitted in a lower quality, as they are less

likely to be watched. However, an accurate viewport prediction is only possible

if the video consists of short video segments [138], which leads to high segment

overhead. A segment length of 2 seconds is suggested in [139] as a good trade-o�

between segment overhead and head movement prediction accuracy. A descrip-

tion of the basic principles of adaptive tile-based streaming of omnidirectional

video services over HTTP, available encoding options, and evaluations with

respect to bit rate overhead, bandwidth requirements, and quality aspects can be

found in [140]. To predict the performance of 360
◦

videos in terms of application

layer QoS and QoE the authors of [141] propose PERCEIVE, a method which

uses machine learning techniques.

Several works relied on viewport prediction in the context of 360
◦

video

streaming. The authors of [142] developed a framework for 360
◦

videos that uses

35% less data while providing similar quality in slow viewport movement sce-

narios. First viewport-adaptive streaming algorithms were presented in [143] and

[144]. The authors of [145] used a trajectory-based approach which groups past

users that have a similar viewing trajectory and create a model of the viewport

evolution over time for the identi�ed groups. This model is used at prediction

time for new users. The authors of [146] proposed a heatmap-based model and a

trajectory-based model for viewport prediction. Each user received a weight that

determines the importance of his viewports for the �nal contribution. The au-

thors showed that using other user’s information increases the performance over

only using the current user’s information. A similar trajectory-based prediction

scheme and an adaptation algorithm for VR videos were presented in [147]. In

[148], it was suggested to investigate head movement prediction extracted from
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the feedback of previous users. A 360
◦

head movement data set from 59 users was

provided in [149]. The authors of [150] used a probabilistic model of viewport

prediction to reduce side e�ects caused by wrong head movement prediction.

Their approach signi�cantly reduced stalling with small bu�ers. In addition,

they provided an optimization problem that minimizes quality distortions and

spatial quality variance. A �rst approach to using neural networks for viewport

prediction was presented in [151]. They leveraged content- and sensor-related

features for the prediction. To verify their approach, they conducted a user study

with 25 viewers who watched ten 360
◦

videos. Their approach consumes less

bandwidth and has a shorter initial delay than other approaches. In [152], a

viewport prediction model was presented that is based on a convolutional neural

network (CNN). In addition, they presented a trajectory prediction model which

is based on an RNN. The RNN was combined with a correlation �lter-based

viewport tracker that adds content awareness to increase the performance of the

prediction. An approach that relies on learning contextual bandits to predict the

viewport for 360
◦

videos is presented in [153]. While other approaches follow

the behavior of the current user, the authors of [154] believe that user behavior

is hardly predictable and is mainly correlated to moving objects in the video.

With this idea in mind, they develop a motion tracking algorithm that identi�es

representative moving objects. The authors of [155] separated video segments

into two tiers: the basic whole video tier and the viewport tier. The whole video

tier can be downloaded early and can be stored in the bu�er while the viewport

tier is downloaded on demand to enhance the current viewport.

3.2 �eueing Model for Bu�er-Based HAS

In this chapter, we �rst present a novel queuing model for bu�er-based video

streaming adaptation that allows us to determine the state probabilities of the

bu�er and to derive key performance indicators. We chose to model this problem

with a queueing model since it allows us to model the dynamic characteristics of

network tra�c. The state of the player is modeled with a two-dimensional Markov
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chain for variable segment durations. The states of this queue are de�ned by the

number of segments that are in the bu�er and the layer of the video segment

that is currently being downloaded. Using this model, we answer the question

how the number of quality layers impacts the frequency of stalling events.

The arrival rate or download rate of the segments depends on the size of the

segments and the bandwidth of the client. It determines with which rate the

bu�er is �lled. If segments are replayed faster than they are downloaded, then the

bu�er is reduced. In a video player that does not employ adaptive mechanisms

the bu�er is depleted and the video stalls. In adaptive videos streaming, the video

will request segment that are downloaded in a lower quality which leads to much

fewer stalling events. Since segments are then downloaded in a lower bit rate,

segments arrive at a higher rate. For our model, we assume that segment arrivals

follow a Markovian arrival process.

The length (i.e. duration) of video segments determines how often adaptation

can be done. Net�ix segments have a constant duration of 4 seconds [62] and

YouTube segments have constant duration of about 5 seconds. On the other

hand, it is possible to use variable length segments for adaptation instead of

�xed length. For example, it could be possible to use I-frames for adaptation.

This would be possible, as long as an I-frame exists at the same position in both

quality representations.

We use four throughput settings from 0.5 Mbit/s to 5 Mbit/s. For comparison,

one can look at the Net�ix ISP Speed Index for US as of February 2020. The Net�ix

ISP Speed Index is the average bit rate of Net�ix content for ’Prime Time’ with

cellular networks being exempted from the measurements
1

. The highest average

bit rate that was measured was 4.73 Mbit/s and the lowest 3.49 Mbit/s.

In HTTP adaptive streaming, videos are available in a given number or layers

with di�erent bit rates. However, not all available layers may be selected by the

adaptation strategy. E.g., a 4k resolution can only be requested by selecting it

manually on YouTube. In the data set that we use for the YouTube study provided

in [156], all videos were requested in at least 5 quality levels which is why we

1

https://ispspeedindex.net�ix.com/about/
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limit the investigation to these �ve levels. YouTube uses 2–6 quality levels [52]

while Net�ix uses 12–15.

The switching threshold of a bu�er based adaptation strategy determines at

which bu�er thresholds di�erent quality levels are requested. Thresholds that

are close to each other lead to frequent quality switches which impacts the

QoE negatively. A study of current video streaming platforms and adaptation

algorithms is conducted in [52]. On YouTube the initial bit rate/quality depends

on the size of the player window, while on Net�ix it depends on the country.

In a user study, it was found, that the QoE can be improved by selecting an

appropriate initial bit rate [52]. For our model, we assume that it always starts

on the lowest layer. In contrast, all of our analysis assumes steady state, so the

initial layer has no impact on our analytical results.

3.2.1 Model Assumptions and Limitations

Sieber et al. [156] observed that YouTube requests multiple segments at once

and later may re-download segments in a higher resolution if there is enough

bandwidth available. While this leads to redundant tra�c, the viewing experience

is greatly increased in a high bandwidth scenario. We model a speci�c bu�er

based strategy, which does not allow to download segments more than once. In

addition, our model represents a purely bu�er based algorithm. For the steady

state, the bu�er is the only parameter that needs to be observed according to

[62]. Furthermore, our proposed model always starts on the lowest layer and

does not skip layers, even if enough bandwidth is available. For the steady state,

this is not a problem, but for practical implementation users might be impatient

and would prefer to enjoy the �rst minute of a movie in HD if enough bandwidth

is provided. In many deployed adaptive video players, during the initial loading

of the video, bandwidth-based adaptation is used to quickly reach the highest

quality layer that can be replayed with the given bandwidth, as is also proposed

in [62]. This also includes that our model does not consider quality switches that
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skip a layer, i.e., it can only choose either the next lower layer of the next higher

layer.

3.2.2 Model Description

We model the bu�er of the video player as a Markov queueing model as depicted

in Figure 3.5. A video consists of segments. Each segment of the video is played

in one of m layers. Segments arrive at the bu�er with rate λi. Segments are

removed (i.e. replayed) from the bu�er with rate µ. When a segment of layer i is

currently being downloaded, we say that the bu�er is on layer i. Thus, the state

of the system is de�ned by the number of Segments in the queue and by the layer

on which the next segment is downloaded. E.g. the state (0, 1) means that there

is currently one segment in the bu�er (which is currently being replayed) and

a segment from the lowest quality layer is currently being downloaded. If the

number of Segments contained in the bu�er surpasses ui, while the bu�er is on

layer i, then the bu�er state switches from i to i+ 1. If the number of Segments

contained in the bu�er underpasses li, while the bu�er is on layer i, the layer i

segment that is currently being downloaded will be discarded and instead the

same segment will be downloaded on layer i − 1. This means that the bu�er

state switches from i to i− 1. There is a �nite number of layers. The maximum

number of segments is n on layer m. From this de�nition, the equations of the

Markov model can be derived for the steady state, see Figure 3.1.
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Figure 3.5: Markov chain for a bu�er-based adaptation strategy of video streaming
with three quality levels and thresholds l1 = 0; l2 = 2; l3 = 4;u1 =
5;u2 = 8;u3 = 10. All transitions from right to left happen with rate
µ.

Table 3.2: Notations and Variables

parameter description

λi mean rate of segment arrivals while downloading a layer i
segment

µ mean rate of segment departures

i quality layer of the segment that will arrive next, i.e. that

is currently being downloaded

mmax total number of quality levels

m number of segments contained in the bu�er/queue

n maximum number of segments that reside in the bu�er

simultaneously

li lower adaptation threshold for layer i: if less than li seg-

ments are in the bu�er switch from layer i to layer i− 1.

l1 is de�ned as 0.

ui upper adaptation threshold for layer i: if more than ui seg-

ments are in the bu�er switch from layer i to layer i+ 1. It

is um = n.

x(i, j) state probability that j frames are in the bu�er and that the

last quality level that was downloaded is quality level i
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λ1x(0, 0) = µx(0, 1)

λix(i, j − 1) + µx(i, j + 1) = λix(i, j) + µx(i, j)

for i ∈ [0,m− 1], j ∈ [1, n− 1] r {li, li+1 − 1, ui, ui−1 + 1}
λix(i, li+1 − 1) + µx(i, li+1 + 1) = λix(i, li+1) + µx(i, li+1) + µx(i+ 1, li+1 + 1) for i ∈ [0,m− 2]

λix(i, ui − 1) = λix(i, ui) + µx(i, ui) for i ∈ [0,m− 2]

µx(i, li + 2) = λix(i, li + 1) + µx(i, li + 1) for i ∈ [1,m− 1]

λix(i, ui−1 + 1) + µx(i, ui−1 + 1) = λi−1x(i− 1, ui−1) + λix(i, ui−1) + µx(i, ui−1 + 2) for i ∈ [1,m− 1]

λmx(m,n− 1) = µx(m,n)

Σmi=0Σnj=0x(i, j) = 1

Stationary Equations 3.1: Equations for the stationary distribution of theM/M/1 Markov model for bu�er-based
adaptive streaming.
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3.2.3 Derivation of Key Impact Parameters

In the following, we determine the key impact parameters of the Markov chain.

The state (0, 0) is the only state in which no segments are currently in the bu�er.

Stalling cannot occur on any other layer since we model the current layer as the

quality layer that is currently being downloaded. Thus, the ratio of stalling events

is given by R = x(0, 0), i.e. the probability of being in state (0, 0). Frequency

of stalling events is given by N = x(0, 1) · µ, i.e. the frequency of reaching

state (0, 0). The duration of stalling events is L = 1
λ1

. The duration of stalling

events is equal to the initial delay since both only occur in state (0, 0). The rate

of switching from a layer i to a higher layer i + 1 is Si,up = x(i, ui) · λi for

i ∈ [1,m− 1]. Conversely, the rate of switching from a layer i to a lower layer

i− 1 is Si,down = x(i, li) · µi for i ∈ [2,m]. Thus, the total rate of switching

from one layer to another is given as

S =

m−2∑
i=0

Si,up +

m−1∑
i=1

Si,down (3.2)

=

m−2∑
i=0

x(i, ui) · λi +

m−1∑
i=1

x(i, li) · µi (3.3)

= λ1 + µm +

m−2∑
i=1

x(i, ui) · λi + x(i, li) · µi. (3.4)

A layer i segment is downloaded with rate

νi =

ui∑
j=li

x(i, j) · λi. (3.5)

Therefore, the mean layer on which a video is downloaded/replayed is given by

X =

∑m−1
i=0 i · νi∑m−1
i=0 νi

. (3.6)
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The mean bit rate on which the video is played BR is based on the mean bit

rate of each layer BRi as follows

BR =

∑m−1
i=0 BRi · νi∑m−1

i=0 νi
. (3.7)

3.2.4 Impact of Layer Distribution on Stalling
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Figure 3.6: Impact of number of layers on the number of stalling events per hour for
four typical throughput scenarios. Maximum bu�er size was set to 90
segments (corresponding to 180 seconds)

In this section we investigate the impact of the number of layers on the number

of stalling events. For this, we consider up to 20 quality layers. We set the lower

switching thresholds to li = {0, 4, 8, 12, ...} segments and the upper threshold

to ui = {10, 16, 22, 28, ...} segments. The highest thresholds were set to 90

segments so that we always have the same maximum bu�er. Segments have an
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average duration of 2 seconds. As bit rates of the quality layers, we use values

between 0.1 Mbit/s and 5.0 Mbit/s on a logarithmic scale.

In Figure 3.6, we observe that stalling events only occur for network bitrates

below 1 Mbit/s. Furthermore, we notice that a high number of layers leads to a

much lower number of stalling events. In a low throughput scenario, 10 instead

of 2 layers reduce the stalling frequency by over 70%. However, the number of

layers does not have an impact on the mean played bit rate. The downside of a

high number of layers is the increased data that needs to be stored at the video

hosting provider and the increased encoding e�ort.

3.3 Optimization Potential from Elimination of
Redundant Tra�ic

Next, we take a closer look at the behavior of the adaptation logic of common

video players. In previous work [125] it was shown that an adaptation logic that

was used by YouTube focuses strictly on the user, at the expense of network

e�ciency. In particular, we observed that the YouTube player sometimes dis-

carded its currently bu�ered content to re-download it in a higher quality level.

In this way, the player can increase the average quality level shown to the user.

However, the overall e�ciency decreases as the previously downloaded segments

are discarded. At the example of an experimental data set, we analyze how much

the used adaptation algorithm can be optimized. Even if we completely avoid

stalling events, a higher mean video quality is achievable in most cases. Further,

it is possible to reduce the number of resolution switches and start the video

after a shorter initial delay.

The evaluation in this work is based on an experimental data set with over

10.000 video views of about 30 di�erent videos. The videos were played in a

testbed where the connection was throttled to {0.4, 0.5, . . . 3.0 Mbps}. A proxy

was used to decrypt the HTTPS connection. The data set and testbed is described

in detail in [125, 157] and the experimental data set is freely available online at

74



3.3 Optimization Potential from Elimination of Redundant Tra�c

[158]. Over 70 QoE-relevant metrics such as average quality level, cumulative

stalling times and number of quality switches were collected.

3.3.1 Methodology

In this section we discuss the two approaches we use to evaluate the observed

adaptation from the experimental data set. This �rst approach is based on re-

gression and uses previously observed video sessions to create an estimation on

how much non-redundant tra�c relates to a speci�c average playback quality.

This has the advantage of being fast, scalable and not computationally expensive.

Furthermore, as it is based on actual observed data, it captures the dynamics

of the deployed system. We use this estimation then to calculate the maximum

achievable average quality level based on the total amount of downloaded Bytes

in a playback session. The second approach is uses an integer linear program (ILP)

formulation. For this optimization problem we take the actual video segment

sizes, the observed bandwidth and cumulative stalling times from the experi-

mental data set as an input. This gives us the optimal adaptation considering

the stalling times. In a second step, we remove the cumulative stalling times and

force the optimization problem to instantly play the video.

Heuristic Approach

To describe the heuristic, we �rst have to de�ne redundant tra�c. The redundant

tra�c ratio is de�ned as in the subsequent equation, where BT is the total

amount of data downloaded during the playback session and B is the sum of the

segments’ sizes shown to the user.

ρ =
BT −B

B
(3.8)

The heuristic approach uses isotonic regression [159] to deduce a video-

dependent relationship between the data shown to the user and the resulting

average quality level based on previously recorded playback sessions. This gives
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Figure 3.7: Isotonic regression result showing the relationship between Bytes shown
to the user B and resulting average playback quality for video
vbLLqaa9ksw. 336 video views are used in this regression.

an estimate of how much non-redundant data is necessary to reach a certain

quality level. Furthermore, it allows us to estimate the di�erence in terms of

average quality between two di�erent amounts of data. The advantage of the

approach is, as previously described, that it captures the dynamics of the overall

system as it is based on actual observations.

Let φ(B) be the functional relationship between the quality level φ and the

Bytes B. Figure 3.7 illustrates the function φ for one of the videos in the data set.

The x-axis gives the amount of Bytes B played back by the player. The y-axis

gives the resulting average playback quality. Each (brown) dot represents one

playback session. The connected (black) dots are the isotonic regression result.

Multiple observations can be made from the �gure. First, a speci�c amount of

played bytes can result in di�erent average quality levels at the end. This is due

to the combinatorial problem which arises due to the di�erent quality levels and
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bit rate variations inside a quality level. Second, there is a jump at 20 MB from

0.7 to 1.1 average quality level of unknown origin. Third, there are outliers, e.g.

at 27 MB, where signi�cant more data does not increase the average quality

level.

Based on φ we determine the loss in average quality level, or possible gain,

due to the redundant tra�c as:

φ(BT )− φ(B) (3.9)

This is the di�erence between the average quality level we could have reached

with the total Bytes downloaded in the session (φ(BT )) and the average quality

level based on the Bytes shown to the user φ(B).

Optimal Adaptation

In order to determine how much potential there is for optimization, we use a

modi�ed version of an ILP provided in [114]. The solution to the ILP will return

an optimal adaptation with respect to available bandwidth, video segment sizes,

and cumulative stalling times.

A given video is available in r resolutions and consists of n segments, i.e. each

segment can be played in exactly one resolution. Furthermore, each segment i

that is played in resolution j has a size Sij . We assume that all segments have

the same duration τ and are downloaded in order. The total data that has been

downloaded at the point in time t is V (t). Before a segment can be played, it has

to be downloaded. This means there is a deadline Di until which the segment

must be downloaded to avoid stalling. Since there is an initial delay T0 before

the �rst segment can be played, according to [97] the deadline is

Di = T0 + i · τ. (3.10)
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The goal is to optimize the downloading process so that the video may be

played with the highest average resolution. This leads us to an ILP which is a

special case of OP1 from [114] and Optimization Problem 2 from [97].

maximize

n∑
i=1

rmax∑
j=1

jxij

subject to xij ∈ {0, 1}
rmax∑
j=1

xij = 1, ∀i = 1, . . . , n

k∑
i=1

rmax∑
j=1

Sijxij ≤ V (Dk), ∀k = 1, . . . , n.

This is a Multiple-Choice Nested Knapsack Problem which is NP-hard. How-

ever, there exist polynomial time algorithms that return an approximation for

the optimal solution that is su�ciently good for most practical purposes. The

ILP was implemented in Gurobi
2

in MATLAB.

Data Sets

In total, there are four data sets used in this evaluation as listed in Table 3.3.

The three data sets starting from the second are calculated based on the �rst

(experimental) data set.

First, we have the initial observations which shall serve as the baseline in

the following analysis. These measurements were originally recorded in [125]

where the measurement methodology and measurement set-up is described in

more detail: 35 videos ×27 bandwidth values ×15 replications. Four quality

level representations were observed: 144p, 240p, 360p, 480p. In the following,

2

http://www.gurobi.com/
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Table 3.3: Overview of the data sets used in Section 3.3.2.

Data Set Identi�er Description

Measurements

from [125]

measurement The experimental data set

recorded in a testbed.

Heuristic esti-

mation

heuristic The heuristic estimation which

gives us the possible gain with-

out redundant tra�c.

Optimization

with stalling

opt (prebu�ering) The ILP solition with stalling

times.

Opimtization

without stalling

opt (instant play) The ILP solution without

stalling times.

we refer to these video quality levels as 0, 1, 2, 3. Please note that stalling events

did occur in 56% of these runs.

Based on this data set, we used the heuristic approach described in 3.3.1 to

estimate the average resolution that is reachable if there was no redundant tra�c,

i.e. when no video segment is downloaded multiple times. Please note that it was

assumed that the same amount of stalling would occur.

As a new contribution, we use the optimization problem, described in Section

3.3.1 to exactly calculate the highest mean resolution that was optimally obtain-

able. As a second step, the number of switches is minimized as �rst proposed

in [114]. For both steps, we limit the execution time of the Gurobi Optimizer

to 1 s in order to process the complete data in a timely manner. Increasing the

execution will most likely lead to slightly better values than presented in the

following. For this two-step approach, we consider the same video �les, the same

duration of the viewing session and the same average network throughput as was

used in the baseline scenario to make it comparable. However, instead of having

stalling events interrupt the replaying process, we add an initial delay to the

replaying process. The duration of this delay is equal to the sum of the observed

stalling events. This leads to the same duration of the viewing session and the
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same replay time and the same amount of data that was totally downloaded. In

the following, we refer to this scenario as opt (prebu�ering).

Lastly, we present a data set that is obtained in the same fashion as opt (pre-
bu�ering) with one major di�erence: the video starts to play immediately after

the �rst segment has been downloaded. To achieve this, we consider the exact

same network throughput as in the baseline scenario, while having a shorter

session duration since the stalling times are omitted. This means that the amount

of data that is downloaded in this case is lower than in the baseline scenario. In

the following, we refer to this scenario as opt (instant play).

3.3.2 Results

In this section, we present our results on how much YouTube’s current adaptation

algorithm could be improved. As key metrics, we analyze the average quality,

the frequency of stalling events, the frequency of quality switches and the initial

delay of the video playback. As a �rst step, we discuss how the video quality and

stalling events are related to each other in the experimental data set.

Next, we discuss the potential gain in average quality as estimated by the

heuristic and the two optimization problem formulations. Figure 3.8 displays the

distribution of the di�erence between the observed mean video quality and the

optimally achievable mean video quality. We observe that about 30 percent of

runs are already at maximum quality and can therefore not be improved. The

data set opt (prebu�ering) leads to the highest mean quality. However, the results

for the three data sets are very close to each other, e.g. the median of all three

data sets is within 0.15 of a quality of each other.

If we take Figure 3.9(a) into consideration, it becomes clear that this minor

di�erence in quality comes at a price: opt (instant play) demonstrates that it would

have been possible to avoid stalling and a high initial delay in 93 percent of cases

while increasing the quality in 30 percent of cases. While opt (prebu�ering) shows

that the mean quality could have been increased by adding an initial delay, the

improvement is not particularly high. Lastly, while the heuristic leads to a worse
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Figure 3.8: Distribution of the di�erence between the observed mean video quality
and the optimally achievable mean video quality according to the opti-
mization problem from Section 3.3.1 and the heuristic from [125].
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result than opt (prebu�ering), it has the advantage of being a less complex problem.

This might outweigh the slightly better performance for practical purposes.
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(a) Distribution of the initial delay for the two op-

timization data sets.
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(b) Switches per minute for the heuristic and the

optimization. Very similar results for both optimiza-

tion data sets.

Figure 3.9: Investigation of optimal adaptation.

Finally, Figure 3.9(b) shows the number of quality switches per minute. Here,

both data sets that were created with the optimization approach lead to very

similar results, which is why we only present the results for opt (instant play).
Whereas the number of switches is not of signi�cant importance to the QoE

in video streaming according to [56], continuous video quality switches lead

to a low QoE [160]. The heuristic approach and the optimization both lead to

less than 2 switches per minute in more than 80 percent of cases which are

acceptable values. However, the two-step approach for the optimization leads to

some very high switching frequencies that might be problematic. This is because

the two-step approach puts very high value on the optimization of the quality

level and very little emphasis on the number of switches. Luckily, this problem

can easily be averted by using a slightly di�erent approach: In [9], a method is

proposed that combines both steps into one, allowing the number of switches to

be emphasized higher at a negligibly low cost of quality.
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3.4 The Trade-O� Between �ality and Switches

In the next section, we investigate the trade-o� between average video quality

and quality switches with regard to a weighting parameter. For this purpose, we

use a quadratic program that optimizes adaptation in video streaming towards

higher quality and fewer quality switches. This is done with respect for the users

individual preference for these two QoE impact factors. Our research question

can be formulated as follows. What is the trade-of between the average quality of
a video and the number of quality switches in adaptive video streaming?

We demonstrate the optimization of the adaptation with a real mobile goodput

trace and 41 di�erent YouTube videos. Various user preferences for the adaptation

are respected by conducting a parameter study for the adaptation aggressiveness

parameterα that de�nes how frequently the player may switch to another quality.

We then investigate the resulting optimal adaptation paths and evaluate key QoE

indicators, such as the switching frequency, the average video quality and the

bu�er level.

3.4.1 Problem Formulation

In the following, we present an exact formulation of the problem that we want

to optimize in this Section. Consider a video that consists of n segments. Each

segment i is downloaded in exactly one of r quality layers. In order to play a

video without stalling, each segment i must be downloaded before its deadline

Di. The data that is available from the initial video request at a point in time t

is de�ned as V (t). The initial startup delay is �xed to 5 s in the evaluation, i.e.

V (0) equals the sum of the goodput of the �rst 5 s. The size of segment i on

layer j is Sij and is given in Byte. If two consecutive segments are downloaded

on di�erent layers, the viewer experiences a quality switch. In order to maximize

the viewers quality of experience, we want to increase the mean quality and

reduce the number of quality switches. The importance of these two parameters

is set as α ∈ [0, 1]. Higher values for α indicate that it is more important to

avoid quality switches than to increase the average quality. Di�erent users have

83



3 Optimizing Adaptation in Video Streaming

di�erent preferences in this regard and thus di�erent values for α. If a segment i

is downloaded on layer j, then we de�ne xij := 1, otherwise xij := 0.

The goal is to decide, on which quality layer we must download each segment

in order to maximize the weighted sum of mean quality and the number of quality

switches while avoiding stalling. This optimization problem can be formulated

as a quadratic program as follows.

maximize

r∑
j=1

(
α

nr

n∑
i=1

jxij −
1− α

2(n− 1)

n−1∑
i=1

(xij − xi+1,j)
2

)
(3.11)

subject to

r∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (3.12)

xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , r} (3.13)

k∑
i=1

r∑
j=1

Sijxij ≤ V (Dk) ∀k ∈ {1, . . . , n} (3.14)

The objective function (Equation 3.11) maximizes the weighted sum of the

mean quality and the number of quality switches. In order to receive values

between 0 and 1, we normalize the mean quality by the maximum quality r, we

normalize the switches by the highest possible number of switches n− 1 and we

add the factor 1/2 to the quadratic term since it increases by 2 with every switch.

Constraint 3.12 and 3.13 ensure that each segment is download in exactly one

quality. Constraint 3.14 ensures that each segment k is downloaded before its

deadline Dk while not more data than V (Dk) is downloaded.

Further constraints can be added to such a problem based on the scenario. For

example, in a mobile scenario, where a sudden loss of connectivity could occur,

we could de�ne a set of coverage zones Qzone, where the bandwidth is set to 0.

A blind spot (l,m) starts at segment l and ends at m. In order to avoid video

stalling in the blind spot, the video needs to be downloaded up until segment
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m. This can be expressed by adding the following constraint to the quadratic

program:

m∑
i=1

∆Sixi ≤ ∆V (Dl), ∀(l,m) ∈ Qzone.

3.4.2 Evaluation

Under the assumption that the player does not do breaks in between segment

downloads and that the player bu�er is unlimited, the following holds true. An

aggressive switching behavior results in a high average quality, high number

of switches and a low average bu�er level. A conservative switching behavior

decreases the average quality, decreases the number of switches and increases the

average bu�er level in the player. From this it follows, that the main objectives

of a QoE-aware streaming player, i.e. to increase the average quality, to decrease

the number of switches and to avoid stalling by keeping the bu�er level high, are

contradictory. The main question of the evaluation is: Can we keep the average
quality high while at the same time reduce the number of switches and increase the
average bu�er level?

For the evaluation, we use a challenging mobile scenario that was recorded in

[96]. The original trace is scaled to a mean of 0.33 Mbps, 0.67 Mbps and 1.34 Mbps,

while keeping the coe�cient of variation the same (0.38). We denote the resulting

three patterns as low, medium and high. Furthermore, we de�ne seven shifted

versions of the patterns where we move the starting point forward and append

the skipped goodput samples to the end of the patterns. The starting timestamps

are {0 s, 120 s, ..., 720 s}. Thus, we use in total 7 · 3 = 21 goodput patterns in

the evaluation for each video sequence. We use 41 videos that represent the

content-mix of YouTube videos. Based on the downloaded video �les, we split

the videos in segments with a duration of 5 seconds and use the segment sizes as

input for the optimization. For details about the video selection process we refer

the reader to a previous study [125] where the same videos were used.
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Figure 3.10: Adaptation path for three di�erent values of α for the example video
CRZbG73SX3s, medium goodput pattern and a starting timestamp of 0 s.
� denotes the average quality. An increase in α increases the switches
and the quality. From α = 0.5 to α = 1.0 the increase in quality
is only 0.01 quality levels, while the switching frequency increases
dramatically.

In the following we �rst discuss the in�uence of the α parameter by example.

Figure 3.10 illustrates the adaptation path for three di�erent values of α for the

video CRZbG73SX3s under the medium tra�c pattern and a starting timestamp

of 0 s. � denotes the average quality of the playback. It can be observed that for

α = 0 the adaptation path is very conservative as there are zero quality switches

and quality level 3 is selected from start until the end of the playback. Forα = 0.5,

the number of switches increases to �ve and the average quality to 3.29 as the

adaptation path is able to show for three periods during the playback a higher

quality level. For α = 1, the adaptation path is very aggressive with 32 quality

switches, i.e. about 3.5 per minute, and one period where even quality level 5 is

selected. However, the average quality increase is marginal with 0.01 compared
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Figure 3.11: Impact ofα for on the playout of video CRZbG73SX3s using the medium
goodput pattern.

with �ve switches for α = 0.5. It follows that in this example the α parameter is

able to adjust the aggressiveness of the adaptation path. Furthermore, we see that

a high number of switches is not necessarily helpful in increasing the average

quality.

Observations for example video CRZbG73SX3s

Next, we illustrate the relationship between the choice of α and the average and

maximum bu�er level by example. Figure 3.11(a) shows the average and maxi-

mum bu�er level in seconds for video CRZbG73SX3s for the medium goodput

pattern. The average bu�er level is the time-dependent average over the bu�er

level values observed during the playback. The maximum is the highest bu�er

level observed during playback.

Two major observations can be made from the �gure. First, the bu�er level

decreases for more aggressive values of α. For a conservative choice of alpha,

e.g. α = 0.05, the bu�er level is on average about 53 s and maximum 100 s. For

an aggressive choice, e.g. α = 1.0, the bu�er level is only 17 s on average and a
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maximum of 40 s is observed. The second major observation is the fact that the

bu�er level on average is around 40 s, for the conservative switching behavior as

well as more aggressive values up to α = 0.6. Larger bu�er levels reduce the risk

of stalling events due to wrong adaptation decisions. From this it follows that an

adaptation logic can prefer higher average quality and still keep a comfortable

bu�er level during playback.

Subsequently, we take a look at the tradeo� between the average quality and

the switching frequency as the median of the di�erent starting timestamps for

the video CRZbG73SX3s for the medium goodput pattern. Figure 3.11(b) shows

the average playback quality (left axis) and the switching frequency (right axis)

for di�erent values of α.

For α ≤ 0.07, the number of switches is zero and the average playback quality

is 3.0, as also observed in Figure 3.10. For values of α between 0.07 and 0.55,

the switching frequency increases to 0.1 switches per minute and the quality

increases rapidly to 3.28. The di�erence in average quality compared to Figure

3.10 is due to the fact that we consider here all starting timestamps of the goodput

pattern, while Figure 3.10 shows only one particular. Starting from α = 0.6 to

α = 0.94, the switching frequency increases up to 0.8 switches per minute,

while the average quality stagnates at around 3.31. If α is further increased, the

switching rate increases rapidly up to 4.2 switches per minute while the average

quality only increases marginally to 3.32. This example is in line with the previous

observations that a more aggressive switching frequency does not necessarily

bene�t the average playback quality. In contrary, the experience of the user is

diminished by frequent quality switches while on average the playback quality

cannot be increased by the frequent switches.

Observations for all videos

Next, we evaluate the following question by looking at the whole set of videos.

What is the maximum achievable gain in terms of average playback quality when
using an aggressive switching strategy compared with a conservative one? Figure

3.12 presents the di�erence in switches rate and di�erence in average playback

88



3.4 The Trade-O� Between Quality and Switches

0.0 2.5 5.0
Difference in Switches [m−1]

0.0

0.5

1.0

1.5

D
iff

er
en

ce
in

A
vg

.Q
ua

lit
y

high

low
medium

(a) α = 0.01

0.0 2.5 5.0
Difference in Switches [m−1]

0.0

0.5

1.0

1.5

D
iff

er
en

ce
in

A
vg

.Q
ua

lit
y

high

low
medium

(b) α = 0.1

Figure 3.12: Di�erence in average quality and switching rate between α = 1.0 and
α = {0.01, 0.1} for the three goodput patterns low, medium and high.
The shaded areas denote the two-dimensional standard deviation of the
samples.

quality between α = 0.01 and α = 1.0 (Fig. 3.12(a)) and between α = 0.1

and α = 1.0 (Fig. 3.12(b)) for the three goodput patterns over all 41 videos.

The shaded areas denote the 2 dimensional standard deviation of the samples.

The dots represent the mean of the samples. Multiple conclusions can be drawn

from this �gure. First, the lowest gain in quality can be observed for the high

goodput pattern. This is due to the fact that there are many videos in the set

where the high goodput pattern o�ers enough tra�c volume to download always

the highest quality level. There are no switches needed for those videos. Second,

the mean of the low goodput pattern reaches 4.6m−1
switching rate and a

di�erence of 0.8 quality level for α = 0.01. This means that on average in a low

goodput scenario you can improve the average quality level by 0.8 by aggressively

switching the quality level on average every 13 s. Third, the di�erence in average

quality drops considerable when comparing α = 0.1 with α = 1.0. For example,
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the maximum achievable gain for the low goodput pattern drops from 0.8 to

about 0.4. Consequently, from the user’s perspective there is only a small gain in

switching with a higher aggressiveness than α = 0.1.

3.4.3 Discussion

At �rst, we discuss the methodology and we propose a modi�cation of an existing

optimization formulation which allows us to calculate an optimal adaptation path

for a given video, a given goodput pattern and a given switching-versus-quality

trade-o� parameter. This trade-o� parameter de�nes the aggressiveness of the

quality switching behavior and is denoted by α. Choosing α = 0 results in an

adaptation path with zero quality switches and α = 1 results in an adaptation

path which tries to optimize the average quality at all cost, i.e. with as many

quality switches as necessary. Based on an example video we observe that the

average bu�er level drops fast for values of α between 0.0 and 0.1. For α > 0.1,

the average bu�er level stays close to 42 s and starting from α = 0.6 drops

linearly to 20 s. Afterwards we take a look at the average playback quality

and the switching frequency for the example video. The results show that the

switching frequency increases with α ≥ 0.6 rapidly, while the average quality

increases fast and reaches its maximum early at about α = 0.1. An evaluation

of 41 randomly selected videos from YouTube shows that on average an increase

of up to one quality level is possible by increasing the switching frequency by 5

switches per minute. However, the evaluation also shows that this increase is

half due to the sharp increase in average quality for α = 0.01 to α = 0.1.

In general, the results show that aggressive switching behavior is not necessary

rewarded with a higher average playback quality. From the evaluation also

follows that a good starting point for future evaluation of the α parameter is

α = 0.1. Higher, more aggressive, values do not increase the average playback

quality much further.

Figure 3.13 illustrates qualitatively the application of our contribution to the

future work in the area of HAS adaptation research. The optimization formula-
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Figure 3.13: Application of our contribution for future work. The optimization for-
mulation enables us to determine the Pareto frontier for any given HAS
adaptation algorithm, a given goodput pattern and a given video in
terms of the trade-o� between average quality and switching frequency.
In combination with a future sophisticated QoE model, this allows for a
novel evaluation and classi�cation of adaptation algorithms for HAS
video streaming.

tion allows us to determine the Pareto frontier for any given HAS adaptation

considering the trade-o� between maximizing the average quality and mini-

mizing the number of quality switches during playback. This means that no

existing or future HAS adaptation can reach a higher average quality for a given

number of switches than the Pareto frontier. Furthermore, we know from the

evaluation that the Pareto frontier quickly saturates in terms of average quality.

It is ongoing user-experience research to determine a model for the lower bound

for the average playback quality and an upper bound for the switching frequency.

In combination with such a future sophisticated QoE model, the Pareto frontier

allows for a novel evaluation and classi�cation of adaptation algorithms for HAS

video streaming.
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3.5 Optimal Fairness in Adaptive Streaming

As video streaming is such a widely used service, it often happens that multiple

video players play at the same time while sharing the same Internet connection.

When the bandwidth is limited, thus this connection forms a bottleneck, the

players compete for bandwidth and have to adapt the video quality accordingly.

In addition to maximizing quality across multiple users, an inherent question

is that of how to address the issue of fairness. There is a clear need to distin-

guish between QoS fairness (e.g., resulting in equal bitrate allocations) vs. QoE

fairness, leading to equal utility among users [136]. While client-side bitrate

adaptation algorithms may in a best-case scenario achieve �ow-based fairness,

this will rarely translate to session-level fairness (or QoE level fairness for a

given session) [161]. Recent papers have argued that a QoS fair system is not

necessarily QoE fair, e.g., [162, 163], given the lack of consideration of service

QoE models. Such models specify the relationships between user-level QoE and

various application-layer performance indicators (e.g., �le loading times, video re-

bu�ering) or in�uence factors such as device capabilities, context of use, network

and system requirements, user preferences, etc.

Even though a simple adaptation logic can perform very well for a single user,

in a scenario with multiple users the video players could over- and underestimate

the bandwidth due to mutual reactions between the adaptation logic. We therefore

investigate the behavior of multiple video players which share a bottleneck link

with variable and �xed bandwidth. Therefore, we developed a testbed which

allows to run multiple video players in parallel sharing a bottleneck. We con�gure

the bottleneck with real mobile throughput traces that have a high variance to

investigate the performance of the current state of HAS in challenging situations.

Literature proposes such concepts to ensure fairness with coordinated control

[132, 164]. However, in current implementations of HAS (like YouTube and

Net�ix), clients base their adaptation decisions on local information like the

bu�er status or the network throughput history [165].
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The �rst contribution of this section is a user-centric analysis of fairness

for several simultaneous HAS clients. In particular, we answer the following

questions. (1) To what extent is stalling and the video quality a�ected when video

streaming clients share a network bottleneck? (2) Is the simultaneous playback

of multiple adaptive video players fair or is there a signi�cant di�erence between

them? To answer these questions, we conduct a measurement study where

multiple users who share a bottleneck are watching videos at the same time

over a long period. We investigate to what degree the video resolution and the

frequency and duration of stalling events di�er. We focus on QUIC, since it is used

in Chromium / Chrome which is the most spread web browser. Our results show

that there are fairness concerns with QUIC that are not observed in measurement

studies that focus on TCP. The methodology of this measurement is described in

detail in the Appendix A.

As a second contribution, we extend the approach from Section 3.4 by for-

mulating a QoE optimal download strategy in the case of multiple HAS users

accessing Video on Demand (VoD) content via a shared bottleneck link, i.e., users

watch di�erent videos at di�erent starting points. A well-known issue linked to

such a scenario is that the on/o� nature of �ows often results in inaccurate client-

side bandwidth estimation and leads to potentially unfair resource demands,

quality oscillations, and poor bandwidth utilization [129, 132, 162, 166]. While

di�erent approaches in literature propose methods to mitigate these problems

by employing various monitoring and control solutions at di�erent points along

the service delivery path [162, 167, 168], what is missing is a methodology for

comparing and benchmarking these di�erent approaches. We thus propose a

quadratic problem formulation to compute the theoretical optimum in terms

of adaptation strategies and corresponding segment downloads across multiple

users under given bandwidth constraints. We specify the objective as being to

maximize average quality, minimize the number of quality switches, and ensure

equal utility (QoE) among users while avoiding stalling events. We do this by

extending the approach presented in Section 3.4.1 by a fairness component.
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3 Optimizing Adaptation in Video Streaming

By aiming to maximize both service quality and fairness, we quantify and

compare the impact of di�erent fairness objectives (bandwidth fairness, pattern

fairness, and session fairness) on resulting quality and achieved QoE fairness.

Based on conducted simulations and parameter studies, our results demonstrate

the bene�ts of optimizing for session fairness as compared with other approaches.

quality switches.

3.5.1 Measurement Study on Fairness in HAS
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Figure 3.14: The average max-min quality of concurrent users.

In Figure 3.14 we compare the user with the highest average quality and the

user with the lowest average quality during a single run. We call the di�erence

between these two values the max-min quality. Notice that lower values indicate

greater equality among the players. It can be observed that an increasing number

of concurrent players leads to a greater max-min quality. The bus scenario which

is characterized by a high average bandwidth and a low standard deviation has

a signi�cantly lower max-min quality than the other scenarios. For the tram

scenario, a �xed bandwidth only leads to slightly higher inequality.

Finally, we look at the fairness in terms of the max-min number of stalling

events in Figure 3.15. We �rst notice that a variable bandwidth leads to signi�-
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Figure 3.15: The average max-min number of stalling events of concurrent users.

cantly greater unfairness than �xed. In the tram scenarios there is also greater

unfairness compared with the bus scenario due to the lower bandwidth which

leads to an overall greater number of stalling events. The con�dence intervals

are given with a con�dence level of 95%. From this, it follows that a combination

of the YouTube algorithm and the QUIC protocoll is not fair over short periods

of time for multiple users that share a bottle neck.

3.5.2 Optimization Problem

We assume a set of U users. Each user u downloads exactly one video Yu. Each

video is divided into n segments which must be downloaded in exactly one of

rmax resolutions/layers
3

. The volume of segment i on layer j of video Yu is

de�ned as Suij . Each segment i of video Yu must be completely downloaded

before its deadline Dui to play the video without stalling. Each user u requests a

video at a point in time Tu. We assume that users request videos sequentially,

i.e., User 1 requests his video before User 2. The function V (t1, t2) describes the

3

If videos may have di�erent numbers of layers or segments, we replace rmax with ru,max or n
with nu
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3 Optimizing Adaptation in Video Streaming

Table 3.4: Notations and Variables

u = 1, 2, 3 . . . index for users (in order of requests)

U number of users

Yu video that is downloaded/watched by user u
Tu time of request of video Yu by user u (second)

i index for segments

n number of segments

j index for quality layer

rmax number of quality layers

Suij size of segment i of video Yu in quality j (Byte)

Dui deadline of segment i of video Yu until which

download must be completed (second)

V (t1, t2) data that can be downloaded between the points

in time t1 and t2 (second)

xuij ∈ {0, 1} solution whether segment i of video Yu is down-

loaded in quality j or not

wuij weight for segment i of video Yu in quality j, e.g.

QoE value

Fui absolute fairness for the quality of segment i be-

tween user u and other users

Fu absolute fairness for the mean quality of all seg-

ments between user u and other users

α relative importance of the average video quality

β relative importance of quality switches

γ relative importance of quality fairness

δ relative importance of upward switches compared

with downward switches

data that can be downloaded between the points in time t1 and t2. For V (0, t1)

we may use the shortened notation of V (t1).
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maximize α

U∑
u=1

n∑
i=1

rmax∑
j=1

wuijxuij − β
U∑
u=1

n∑
i=1

(

rmax∑
j=2

j−1∑
k=1

(j − k)xuijxu,i+1,k

− δ
rmax−1∑
j=1

rmax∑
k=j

(k − j)xuijxu,i+1,k)− γ 1

nU

U∑
u=1

Fu (3.15)

subject to xuij ∈ {0, 1} ∀u = 1, ..., U, ∀i = 1, ..., n, ∀j = 1, ..., rmax (3.16)

rmax∑
j=1

xuij = 1, ∀u = 1, ..., U, ∀i = 1, . . . , n (3.17)

U∑
u=l

k∑
i=1

rmax∑
j=1

Suijxuij ≤ V (Tl, Duk), ∀k = 1, . . . , n, ∀l = 1, . . . , U (3.18)

Fu ≥
n∑
i=1

rmax∑
j=1

wuij((U − 1)xuij −
U∑

ũ=1,ũ6=u

xũij), ∀u = 1, . . . , U (3.19)

Fu ≥ −
n∑
i=1

rmax∑
j=1

wuij((U − 1)xuij −
U∑

ũ=1,ũ6=u

xũij), ∀u = 1, . . . , U. (3.20)

9
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3 Optimizing Adaptation in Video Streaming

The optimization problem that we tackle can be formulated as follows: Op-

timize the average video quality of all users, while minimizing the number of

downward quality switches and maximizing the number of upward switches.

Quality switches are weighted with the di�erence in quality. Further, we mini-

mize the di�erence between the average quality among users, while avoiding

stalling events. The weight of each variable that is the subject of the optimization

is de�ned by α for the average quality, β for the number of switches and γ

for the fairness in quality among users. Upward switches may have a di�erent

impact on the user experience than downward switches. Therefore, we introduce

a parameter δ that re�ects the relative importance of upward switches compared

with downward switches. We arbitrarily chose δ = 0.5 for the remainder of this

section. An overview of all parameters is given in Table 3.4.

Currently QoS fairness is employed via protocols that ensure that users who

share the same link may use the same share of resources available. This means,

we have fair network QoS. In the following we present two fairness schemes for

application layer QoS.

Please note that in the quadratic program we do not use a fairness index such

as Jain’s or Hoßfeld’s QoE fairness metric directly. The optimization problem

formulates a theoretical implementation of a QoE management mechanism.

Thereby, we rely on a very simple fairness measure for the sake of simplifying the

quadratic program. For example, instead of relying on the standard deviation, we

use the mean di�erence, avoiding squares in the formulation. More sophisticated

fairness indexes such as the above can be applied to it nevertheless.

Session-Fairness

This approach corresponds to how fairness is evaluated over the whole session.

Each user u has an average quality QoEu in which he has viewed the video. The

average quality QoEu of each user should be as similar as possible to achieve

high fairness.

The values α, β and γ are normalized so that the minimum and maximum

value of their term is 0 and 1. Equation 3.17 means that each segment of any
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3.5 Optimal Fairness in Adaptive Streaming

video of any user must be downloaded in exactly one resolution. Equation 3.18

means that for each User l, the sizes of all segments, which are downloaded by

users who requested a video after User l, may in their sum never exceed the

data that can be downloaded since User l joined the system. Equation 3.19 and

3.20 are used to implement the absolute value for the di�erence to the mean. If

Tũ − Tu < 0 or Tũ − Tu > max(T ) then the constraint for this u is omitted.

This has been left out of the equations for the sake of clarity. A downside of

this approach for fairness is the di�culty of its implementation since we do not

know whether users abandon videos early. A possibility to solve this problem is

to implement a history-based fairness system, that considers all segments from

the past, and tries to equalize the average quality of users over time. It is also

possible to model this problem as a 2-step approach: In the �rst step, we ignore

switches and determine the maximum quality and fairness W that is possible. In

the second step, we try to reach at least W − ε and then minimize the number of

switches. For the sake of brevity this approach is not presented in further detail.

Segment-Fairness

Another way to implement fairness for application layer QoS is to minimize the

di�erence in quality between users for each video segment. This means that the

nth segment watched by all users has similar quality, independently of when

it is watched, e.g. in the case of maximum quality, the quality pattern in which

videos are viewed is the same for each user. If we use segment-fairness (also

referred to as pattern fairness), we have the following equations. We replace the

last term of Equation 3.15 with

−γ
U∑
u=1

n∑
i=1

1

nU
Fui (3.21)

and Equations 3.19 and 3.20 with
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3 Optimizing Adaptation in Video Streaming

Fui ≥
rmax∑
j=1

wuij((U − 1)xuij −
U∑
ũ=1

x
ũ,i+

Tũ−Tu
τ

,j
), (3.22)

∀u = 1, . . . , U, ∀i = 1, . . . , n

Fui ≥ −
rmax∑
j=1

wuij((U − 1)xuij −
U∑
ũ=1

x
ũ,i+

Tũ−Tu
τ

,j
), (3.23)

∀u = 1, . . . , U, ∀i = 1, . . . , n

Bandwidth-Fairness

To determine the optimal result for the bandwidth-fairness, we �rst must de-

termine, how much bandwidth is allocated to each user at which point in time.

We assume that while n users are requesting segments or watching a video,

Vu = 1
n

th of the bandwidth is reserved for each of them. Setting U to 1 and

replacing V by Vu, we apply the optimization problem for each user to determine

the optimal segment request sequence for each user. Notice, that by settingU to 1,

Equations 3.19 and 3.20 are eliminated and the problem is simpli�ed drastically.

3.5.3 Parameter Study for Optimization

In this section, we discuss the evaluation of the optimization program. We �rst

discuss a sample run and then conduct parameter studies, to explain the impact

of input values (i.e., scenarios) of the quadratic program.

Methodology

The scenario that we investigate in the following section is a low bandwidth

scenario. Three users request a YouTube video (ID: CRZbG73SX3s, ∆t = 549s)

at di�erent starting points t1 = 0s, t2 = 245s, t3 = 495. Videos start playing

after an initial delay of 5s. Each video is partitioned into video segments that have
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3.5 Optimal Fairness in Adaptive Streaming

an equal duration of 5s and are available in four quality levels (1, 2, 3, 4) that

di�er in average bit rate: 144p (14 kBps), 240p (31 kBps), 360p (68 kBps) and 480p

(127 kBps). The users share the same bottlenecked link with a constant e�ective

bandwidth that we vary from 50 kBps to 150 kBps (indicated as 0.5, ...1.5 in the

�gures).

We used a constant parameter α = 1 which indicates that the video quality

should always be of high importance. We varied the parameters β, γ ∈ {0, . . . 1}
to account for scenarios in which the degree of annoyance of quality switches

and the degree of importance of fair video quality among users varies. We use

δ = 0.5 in every scenario. The quadratic programs were solved in Gurobi
4

with

Matlab
5

as an interface. The program was executed on an i7 CPU with four cores

with 2.70 GHz and 16 GB RAM. The run time of the program heavily depends on

the scenario and the parameters used. The calculation for bandwidth fairness

takes 0.2 s for β = 0 and 0.5 s for β > 0. The calculation for pattern fairness

takes 5 s for β = 0 and 1700 s for β > 0. In the latter case we stop the program

after 30 s and take non-optimal results to get results within an acceptable time

frame. These results are very close to optimal results and do not di�er visibly.

For session fairness a run takes 0.8 s for β = 0 and 2 s for β < 0. The source

code of the programs is available online
6

. We invite any scientists to use it for

their own research. QoS fairness (also referred to as bandwidth fairness) was

modeled by giving each user
1
n

bandwidth while n users were in the network.

Users always fully exhausted their available bandwidth. Then we optimized

quality and switches according to α and β for the respective bandwidth pattern

using Gurobi, ignoring QoE fairness. In Figure 3.16 an example of a single run is

given in which we see the quality in which segments are watched over time for

each user. The three metrics that we investigate are: average video quality, the

fairness of the quality among users, and the number of quality switches.

4

http://www.gurobi.com/

5

https://www.mathworks.com/products/matlab.html

6

https://github.com/ChristianMoldovan/Quadratic-Program-for-Optimal-Fairness-and-Quality-in-

Video-Streaming-with-Multiple-Users
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Figure 3.16: Quality of segments over time for three users watching a video with
session-fairness employed and the following parameters: bandwidth
= 1.5 Mbit/s, α = 1, β = 1, γ = 1.

Trade-o� Between �ality, Switches, and Fairness

As can be seen in Figure 3.17, the quality increases with the bandwidth, the

number of switches is reduced with β, and fairness increases with γ. Furthermore,

β and γ have no signi�cant impact on the video quality. It is noticeable that the

average quality is slightly lower when QoS fairness is enforced since there is less

room for optimally scheduling the segment downloads. For example, when the

third user joins the system in Figure 3.16, the user can only use
1
3

of the available

bandwidth since it is fairly shared with the other users. Therefore, User 3 can

only download low quality segments. Optimally, when a new user starts a video,

the user is given a larger share of the bandwidth initially, so they can start with a

higher quality level. Other users may su�er with respect to obtained quality but

switching from 240p to 360p is more cost e�ective as compared with going from

360p to 480p, if we consider the ratio of the bit rate to the quality di�erence. A
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Figure 3.17: Impact of bandwidth, β and γ on the average video quality, the number
of switches and the fairness of the video quality for α = 1.

detailed analysis of the trade-o� between quality and switches has already been

conducted in [10].

In Figure 3.18(a) we see that a higher bandwidth leads to higher fairness.

Furthermore, the fairness parameter γ leads to higher fairness, when approaching

0. In contrast, we can see the trade-o� in Figure 3.18(b). While higher bandwidth

also leads to higher quality, increasing γ leads to an increase in quality.

Bandwidth Fairness, Pa�ern Fairness, Session Fairness

Current systems mostly rely on network QoS fairness, due to its simplicity. Each

user receives the same share of resources at any point in time. In the following,
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quality with β = 0.4. Mean over all γ values.

Figure 3.18: Impact of bandwidth on fairness and quality.

we emulate network QoS fairness by reserving 1/n of the total bandwidth for

each user while n users are watching a video and are in the system.

With a network-QoS-fairly shared bandwidth, the average quality is slightly

lower, compared with a perfect optimization. Even if perfect session fairness

can be guaranteed, the mean quality of every single user is higher than with

QoS-fairness. The fairness (in terms of Hoßfeld’s fairness index) of the system

is not impacted by γ, except for the simple case γ = 0 in which fairness is not

considered in the optimization. This means that optimizing fairness for single

segments has no impact on the overall fairness. Rather, it is impacted very much

by the bandwidth. In contrast to Figure 3.18(a), fairness is always lower compared

with optimizing session fairness. In Figure 3.18(b) we see that session-fairness

leads to the highest quality with an average of 3.03, then segment-fairness with

2.92 and last network QoS fairness with 2.74. This means that the video quality

can be increased by 0.29 quality layers in the above scenario on average, while

resulting in fairer QoS on the application layer. While this might seem like a

small value at �rst, it is unclear at what cost it comes in a practical scenario. If

fairness schemes other than bandwidth fairness can be implemented at very low

cost, even a small increase should not be disregarded.
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3.6 Using Viewport Prediction for Optimal
Adaptation in 360-Degree Videos

A straightforward approach to reduce the required resources for 360
◦

streaming

is to consider the viewport of the user, i.e., which part of the 360
◦

sphere the user

is currently focusing on. Tiles are streamed in the best possible quality only if

they are in the focus of the user, and in a reduced quality if they are out of focus.

If the viewport of the user would be known at any time during the streaming, an

optimal adaptation strategy could then be obtained. In this section, we de�ne and

solve this optimization problem for omnidirectional videos in a given network

scenario by an ILP. It can be used as a benchmark tool that is helpful to evaluate

adaptation strategies for 360
◦

videos.

3.6.1 Optimal Adaptation for 360-Degree Videos

We �rst de�ne a baseline linear program for 360
◦

video streaming, i.e., tile-based

video streaming. This linear program computes the optimal adaptation strategy

in a given network scenario if the viewport of the user would be known. As

in practice the viewport cannot be known in advance, we extend the baseline

program to take into account three approaches for viewport prediction. An

overview of the three approaches is given in Figure 3.19.

Baseline Linear Program for Optimal 360-Degree Adaptation

In this problem, we download a set of n video segments in order. Each segment

consists of m spatial tiles. To have a complete video, each tile of every segment

must be downloaded exactly once, compare Eq. (3.25). Each tile can be down-

loaded in one of r resolutions or quality layers. The size in bytes of tile s of

segment i in resolution j is de�ned as Sijs. The quality of a segment is de�ned

by its value function wijs.

For each segment i there exists a deadlineD2
i until which it must be completely

downloaded to allow seamless video streaming without stalling. The �rst segment
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Figure 3.19: Overview of the four approaches with input and result. The baseline
model only serves for comparison and is not applicable for practical
purposes since it requires exact future knowledge.

must be completely downloaded within the allowed initial delay D2
1 = T0. The

deadline of each consecutive segment i is de�ned asD2
i = T0+(i−1)·τ, ∀i >

1, where τ is the duration of a segment.

The data volume that can be downloaded between timeD1
i andD2

i is de�ned as

V (D1
i , D

2
i ). The sum of the volume of any consecutively downloaded tiles must

not be greater than the available data volume until the last segments deadline,

compare Eq. (3.27). In omnidirectional videos, the user only sees a subset of all

tiles. Thus, we de�ne the viewport Yi of a segment i which includes all tiles of

which at least one pixel is viewed during the segment. For the objective function

only the viewed tiles are relevant. For the sake of simpli�cation, we consider

each tile equally important, even if it is viewed brie�y or partially. The goal of the

objective function (3.24) is to maximize the sum of the quality of all viewed tiles

of all video segments while avoiding stalling. We formulate the corresponding

binary linear program as follows:

106



3.6 Using Viewport Prediction for Optimal Adaptation in 360-Degree Videos

maximize

n∑
i=1

r∑
j=1

∑
s∈Yi

wijsxijs (3.24)

subject to

r∑
j=1

∑
s∈Yi

xijs = 1 (3.25)

∀i ∈ {1, . . . , n}

xijs ∈ {0, 1} (3.26)

∀i ∈ {1 . . . n}, j ∈ {1 . . . r}, s ∈ {1 . . .m}
k∑
i=1

r∑
j=1

∑
s∈Yi

Sijsxijs ≤ V (0, D2
i ) (3.27)

∀k ∈ {1, . . . , n}

Optimal 360-Degree Adaptation under Viewport Prediction

In a practical use case, the viewport of the user is not known in advance. Thus,

it is necessary to predict the viewport in the next seconds of the playback and

rely on these predictions for adaptation decisions. Thus, we extend the baseline

program to take into account three approaches for viewport prediction, which

are also presented in Figure 3.19:

• a statistics-based approach that uses other users’ viewports to determine

the viewport probability for each tile during each video segment,

• a linear extrapolation of the head movement trajectory of the current user,

and

• a deep neural network that trains with previous users’ head movement

sequences during the same video before being applied to the current user’s

trajectory.
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Statistical Long-Term Prediction

The �rst method assumes that most users share a common interest in a subset of

all tiles during a segment. The idea is to download tiles in a higher resolution

if they are watched more frequently. Since this method is independent of the

current viewport, we can download tiles early and �ll the bu�er. For this, we

require the frequency Pisu that a tile s of segment i is viewed by a viewer u.

We then determine the probability Pis = E[Pisu] that a tile is viewed over

all previous users. For any new user, we use this probability P as a weight

for the objective function. Consequently, in the linear program, the input of

the algorithm changes as P and m have to be additionally considered, and the

objective function (3.24) must be replaced with (3.28):

maximize

n∑
i=1

r∑
j=1

m∑
s=1

Pisjxijs. (3.28)

Linear Extrapolation

For this method, we assume that the head movement of viewers follows a linear

trajectory over a short period of time. We extrapolate the head rotations of the

three head rotation angles θ, ψ, φ, i.e., yaw, pitch and roll. A prediction horizon

of p ∈ {2, 3...10} seconds is used to estimate the viewport during the next

p seconds. While a short prediction window leads to more accurate results, a

prediction window smaller than 2 s is not recommended since the video must be

split into shorter segments which leads to worse encoding e�ciency according

to [138]. Therefore, we only use p ≥ 2 for comparison with other methods.

However, if we base the download purely on live predictions, tiles must be

downloaded very late, and the bu�er cannot be �lled for more than the prediction

window p. This is expressed through the point in timeD1
i at which the prediction

is done. In Figure 3.20, we see that for any prediction window p and segment

length τ it is D1
i = D2

i + τ − p. We therefore have to replace the viewport

Y with the predicted viewport Y ∗ and we add the point in time D1
i where the
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Figure 3.20: Sketch of the deadlines D1
i , D

2
i and prediction window in linear ex-

trapolation and machine learning prediction.

prediction occurs as the earliest possible download time. Constraints (3.27) must

be replaced with the following constraint (3.29).

k∑
i=l

r∑
j=1

∑
s∈Y ∗

i

Sijsxijs ≤ V (D1
i , D

2
k) (3.29)

∀l ∈ {1, . . . , n}, ∀k ∈ {l, . . . , n}.

Machine Learning Prediction

In a next step, we assume that the head movement patterns of users are similar

for the same video and not only linear. We therefore change the method to obtain

the viewport prediction and machine learning instead of linear extrapolation. As

the resulting prediction is the same, we can still rely on the same linear program

that was used for linear extrapolation described in Section 3.6.1.

To obtain a non-linear viewport prediction, we will rely on machine learning

to learn head movement patterns from previous viewers and to predict them for

the next viewer. For this, we use a neural network that consists of a 4× 1000

input layer, three hidden RNN layers with 256 neurons each and a 4 × 1000

output layer. The RNN uses a softsign activation function. We experimented with

many di�erent con�gurations for the RNN and used these since they returned

the best results. The input consists of the four parts q1, q2, q3, q4 that de�ne the

quarternion that describes the head rotation as described in [149]. To speed up
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the RNN, we quantize the head movement traces of the users to the 1000 nearest

values each.

During training, in each epoch we randomize the order in which the training

users are selected. Training is conducted for 2000 epochs for each combination

of parameters. We tested a prediction horizon of p ∈ {2, 3, ...10} seconds to

estimate the viewport during the next p seconds. Due to the same encoding

e�ciency problem described in Section 3.6.1, we sue p ≥ 2 for comparison with

other methods.

The RNN returns a quarternion for each time step. From it we determine

the viewport Yi that the user is expected to view during segment i. We also

experimented with a CNN with an LRU, but it performed worse than the RNN.

Thus, we do not investigate this approach further in this section.

3.6.2 Performance Evaluation of Viewport Prediction

This section describes the methodology and discusses the results of our perfor-

mance evaluation of the three di�erent viewport prediction methods.

Performance Evaluation Methodology

For the evaluation, 51 head movement traces from [148] are used for the viewport

prediction. The head movement traces start 40 s after the start of the video and

are 70 s long. For the evaluation we only consider these parts of the video. To

ensure that training and testing data is not correlated in the neural network, we

use the head movement traces from 40 users exclusively for training and eleven

users for testing. For the sake of comparability, we only used these eleven head

movement traces for all evaluations.

We implemented the optimization program in Gurobi in Matlab. For the value

function wijs, we chose the resolution j. This means, we focus on maximizing

the resolution. To create a realistic streaming experience, we used the eight

throughput traces that were recorded according to [169], concatenated them and

used consecutive intervals of 100 seconds. This resulted in eleven samples, one
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sample for each user of the testing group, that is evaluated. We scaled down

the throughput with a factor of 0.05 so that a realistic adaptation scenario is

obtained.

For our experiments, we downloaded the YouTube video 2OzlksZBTiA in eight

resolutions: 144p, 240p, 360p, 480p, 720p, 1080p, 1440p, and 2160p. Using �mpeg,

we determined the segment size in Bytes and the segment duration of 5.33 s for

each segment in each quality. We divided each segment into three subsegments

with a length of 1.78 s. This allows for shorter deadlines to download the seg-

ments, which is necessary for a short prediction horizon in the RNN and the

extrapolation. Furthermore, we partition each segment into 64 tiles (8x8) with

equal bit rate to allow for spatial adaptation.

In the following, performance evaluation results are given considering this

video, the head movement traces, and the bandwidth traces as presented above.

A one-to-one mapping was used for the traces, i.e., the same bandwidth trace

was always used with the same head movement trace.

Comparison of Viewport Prediction Approaches

Figure 3.21 gives an overview of how the �ve methods perform, that we compare

in this study. For each user, the mean resolution of the tiles in the viewport is

calculated for each approach. At the y-axis, the mean for all users is presented

while we use 95 % con�dence intervals. The same con�dence intervals are used

all other �gures. On the x-axis you can see the prediction window. The highest

reachable resolution lies between 1080p and 1440p on average, shown by the blue

line as baseline. The current YouTube approach (green) of naively downloading

the whole video in the same quality can only reach an average resolution of

slightly above 480p on average. If we determine a probabilistic viewport using

the viewing behavior of other users (red), we can reach a resolution between

720p and 1080p on average, which is in the middle between the optimal and

the current approach. The independence of the prediction window is a large

advantage of this approach since it allows a large bu�er. This helps to avoid

stalling and keep a steady resolution if the network is unstable.
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Figure 3.21: Impact of the prediction window size on mean quality over all users.
Blue, red and green curves do not depend on prediction and are only
given for comparison.

The neural network approach performs worst in this case. For a prediction

window up to 4 s, the con�dence intervals overlap with the current YouTube

performance (green). Thus, no statistically signi�cant di�erence can be detected.

For larger prediction windows the performance becomes even worse. Comparing

the linear extrapolation approach with the neural network approach, for a pre-

diction window of 2 s, the linear extrapolation performs better. However, even

in this best case, it is only on a par with the probabilistic viewport approach.

But since the segment size must be smaller than the prediction window, this can

lead to a lot of overhead as concluded in [139]. For larger prediction windows

also the performance drops, and no statistically signi�cant di�erence between

the linear extrapolation approach and the neural network approach can be seen

based on the 95 % con�dence interval.
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To sum up, we conclude that the probabilistic viewport prediction performs

best if no perfect knowledge is available. Only for a small prediction window of 2 s,

the linear extrapolation is on a par with the probabilistic viewport approach, but

for larger prediction windows the performance of linear extrapolation and neural

network decrease even below the naive baseline (green). Since the playback

resolution is only one factor for a QoE analysis, in the following we focus on

analyzing quality variations during playback resulting in quality changes.

The average viewport approach (red) and downloading all tiles in the same

quality (green) show the smallest variance of all methods. The two user-centric

prediction methods, extrapolation (yellow) and RNN (purple), have a high vari-

ance which indicates many quality changes.
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Figure 3.22: Mean value of the classi�cation functions for the neural network and
the extrapolation. The value of the y-axis is described in the legend.

Live Viewport Prediction Performance

For a more detailed analysis of the live viewport prediction performance, di�erent

prediction window sizes are compared in this section. For the RNN and the linear

extrapolation, we regard a viewed tile as a positive and tile that is not viewed as a
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negative. In Figure 3.22(a) and Figure 3.22(b), we see their classi�cation functions.

In both cases, we get a high accuracy and a high speci�city, even for larger

prediction windows, because during each segment, only a small subset of all tiles

is viewed. However, the sensitivity is very low for large prediction windows.

This means that the viewed tiles are not correctly identi�ed. Therefore, we also

receive a low F1 score. The fact that our RNN is worse than the extrapolation,

indicates that this method should not be applied with such a small data set.

Discussion

From the results of our performance evaluation, it can be seen that the probabilis-

tic viewport approach is the most successful. On average, the quality of the video

increases by almost one layer while the mean variance of the quality stays the

same. However, in the optimal case, we could still improve the average quality

by more than one quality layer. Nevertheless, the probabilistic approach has the

great advantage that it is not time constrained. This means that we can have a

large video bu�er, whereas user-centric live prediction only allows for a small

bu�er since we can only predict a few seconds in advance. A large bu�er helps

to reduce the frequency of stalling and quality switches. A disadvantage of this

approach is that we need to acquire the viewport of many users, in order to apply

it. A large enough group of malevolent users may sabotage a video’s quality by

viewing ’uninteresting’ tiles so that other viewers would only download these

tiles in high quality.

The extrapolation approach with a prediction window of up to two or three

seconds performed better than the current naive approach of YouTube to down-

load all tiles in the same quality. However, it has the disadvantage that the bu�er

is very low, and a short segment size is required. On the positive side, no addi-

tional user information is required. This makes it the preferred method for 360
◦

live streaming scenarios. While the RNN did not reach good results, we believe

that there is potential for applying neural networks in viewport prediction and

further research with more samples may allow for better results.
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3.7 Lessons Learned

While there exist many adaptation algorithms, each is optimized for a di�erent

set of scenarios and metrics. However, optimal values can never be reached for

every situation. It would be useful to know what potential for improvement

remains, given an algorithm and a scenario.

The goal of this chapter is to �nd out how adaptation can be conducted

optimally in HAS. To achieve this, we use a collection of linear programs that

assume perfect knowledge about the future throughout to optimize the video

quality and the number of resolution switches while avoiding stalling events.

As a �rst step, we use a queueing model for adaptive video streaming to get an

understanding on how key performance indicators are impacted by con�guration

at the bu�er or at the video content provider. Our analysis shows that at least

�ve quality layers should be o�ered, to avoid most stalling.

Additionally, we use two methods to quantify the decrease in e�ciency when

downloading the same segment multiple times in di�erent quality levels. The

�rst method is a fast heuristic approach based on historical data. The second

method is based on an optimization problem formulation. Our results show that

this method is ine�cient and that on average 20% of the videos could have been

downloaded in a higher quality. Furthermore, our optimization program shows

that stalling can be prevented in 94% of these cases. At the same time the initial

delay can be kept below 10 s in 95% of cases.

We investigate the trade-o� between the average quality and the number

of quality switches in a video streaming session. For this purpose, we use a

quadratic program that includes these two values in its optimization function in

order to receive optimal values. Our results show that high average quality can

be achieved with few switches while a very high number of switches is necessary

to achieve the highest possible quality. We conclude that it is advisable to rely

on conservative strategies that do not switch with a high frequency. However, it

is still subject of future work to what degree the number of switches actually

impacts the QoE.
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Next, we conduct a measurement study in which we observe that the QUIC

protocol is not always fair when multiple users share the same bottleneck in

video streaming. We investigate three approaches to fairness and extend above

quadratic program to include fairness. We �nd that the fairness of a video stream-

ing system with multiple users can be improved signi�cantly at little cost in

terms of quality or switches.

Finally, we venture into 360◦ videos and investigate three di�erent approaches

for viewport prediction. For each of these approaches we propose a linear pro-

gram that takes the prediction as input and uses it to optimize the video quality.

Our reslts show that a statistics-based adaptation is recommended when user

viewports are available, since this approach leads to the highest average quality

and the lowest variance. If live prediction is required, e.g., in live streaming where

no historical statistics about the users’ viewports are available, linear extrapola-

tion performed best although it only worked well for a prediction window of

two seconds.
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Mobile Video Streaming

According to a Conviva report [170], the QoS in video streaming has improved

signi�cantly between 2017 and 2019 due to increased bandwidth capacities. In

particular, the rebu�ering ratio has decreased from 1.0% to 0.5% and the average

video bit rate in which videos are viewed has increased from 3.3 Mbit/s to 4.6

Mbit/s. While the throughput of mobile networks has increased drastically during

the past decades, the energy density of lithium-ion cells has only quadrupled

since they became commercially available in 1991 and may soon hit a limit

[171]. The average monthly data volume per mobile Internet subscription in

Germany was 850 MB in 2017
1

. In comparison, one hour of HD video (720p) uses

about 900 MB. So, even though energy and data capacity are important limits

in mobile video, currently, video service platforms do not use energy and data

e�cient adaptive streaming mechanism. In academic research, a �rst signi�cant

contribution was made in [172] where a data conserving algorithm is presented

for non-adaptive streaming.

In Table 4.1, the challenges and interests of di�erent stakeholders are summa-

rized. The mobile user is most interested in high QoE, while he needs to manage

his limited resources. The ISP is interested in maintaining an infrastructure that

allocates resources e�ciently with high QoS. The video service provider wants its

users to be highly engaged with its platform. Moreover, he aims to reach as many

users as possible, including mobile users. The main goal of this chapter, is to �nd

1

https://www.statista.com/statistics/469121/mobile-internet-monthly-data-volume-per-user-

germany/
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stakeholder challenges interests

mobile user limited resources high QoE

ISP e�cient resource allocation high QoS

video service provider mobile access high User Engagement

Figure 4.1: Stakeholders of mobile video streaming.

solutions that improve the resource e�ciency of the user while maintaining high

QoE and not interfering with the other stakeholders in a negative fashion.

With the steady increase of the total Internet tra�c [173] caches seem like a

good option to reduce it by bringing the content closer to the end user. Many

websites use CDNs to get their content closer to the consumer. Caching data

inline on the path between the origin content source and the end users has

been another solution for many similar problems in the past. Here, we focus

on a caching approaches situated at home-routers, wherein content is placed

particularly close to the edge. We therefore conduct a �eld study at public WiFi

hotspots where we install caches to investigate the potential caching could have

to save Internet tra�c in a practical experiment. We discuss challenges that

HTTPS introduces to caching and analyze the performance of the caches in

terms of scalability. Our main research question is: To what degree can caching be
used for video streaming and how well could it perform?

In order, to improve the energy consumption and data e�ciency of mobile

videos, we must understand how such videos are consumed. Therefore, as a �rst

step, we want to identify the behavior of YoMoApp users who view videos in

a natural setting on mobile devices. For this, we use a provided data set from

a four-year long user study with a mobile phone application that allows to

watch YouTube videos. This data set was partly published in [174]. We analyze

the frequency and the correlation between di�erent user actions. Particularly

interesting parameters that we investigate include stalling, pausing, seeking,

quality changes, and device rotations. Our research question is: How do mobile
video streaming users behave and interact with the video?
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As a third step, we present a new adaptation algorithm for mobile HAS that

is based on KLUDCP [96]. The proposed algorithm uses audience retention

statistics of the video that is currently watched to keep the bu�er low during

periods where many users abandon the video. This way, fewer bu�ered video

segments are discarded and thus less tra�c is wasted. Otherwise, the algorithm

downloads video segments in an on/o� pattern based on an algorithm presented

in [172]. This way, the device must not always be fully connected with the

cellular network, leading to lower power consumption. In practice this algorithm

is easy to implement for video streaming providers since they have access to

these statistics. We compare our algorithm with its baseline (KLUDCP) in terms

of application layer QoS (i.e. number of stalling events, average quality, and

number of quality switches) and in terms of energy savings and data savings. For

this purpose, we conduct a simulation which uses viewing statistics
2

from real

YouTube videos, real mobile bandwidth traces (WiFi, 3G [175] and LTE [169])

and appropriate energy models. In the simulation, users watch videos and may

skip ahead in a video or abandon it based on the audience retention statistic of

each video. This is the �rst time that real user behavior is used in an adaptation

algorithm and in its evaluation.

This chapter is based on [11, 16, 19] and its remainder is structured as follows.

In the next section, we discuss background and related work on user engagement,

energy e�ciency, and data e�ciency. In Section 4.2, we discuss our �eld study

with public WiFi-caches and to what degree caching could be used to reduce

tra�c. Section 4.3 describes our study on the behavior of mobile video users. In

the next section, we present a novel adaptation algorithm that is very energy-

and data-e�cient. Finally, we sum up the lessons we learn in this chapter.

2

https://support.google.com/youtube/answer/1715160
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Table 4.1: Six levels of video streaming from a user centric point of view.

level / layer parameter group example parameters

network QoS packet loss, bandwidth, latency

application QoS stalling, resolution, initial delay

user QoE MOS, SOS

single video user behavior viewing duration, interactions

video session user behavior number of consecutive videos

user history user behavior return rate, average session length

4.1 Background and Related Work on User
Engagement and Resource E�iciency in HAS

4.1.1 User Engagement in Video Streaming

When analyzing video streaming from a user-centric point of view, there are

di�erent angles from which video streaming and its users can be investigated

that di�er in scale and layer, compare Table 4.1.1.

The User Engagement describes the time or percentage of the video viewed,

i.e. the time between starting to play the video and reaching the end of the video

or abandoning it subtracted by pauses or stalls. In [176], a large-scale study of the

User Engagement of 1.5 million unique users is conducted over a seven month

period. They focus on user arrival rates and request patterns and investigate the

impact of network and application layer QoS on User Engagement. The authors

�nd that the bu�ering ratio has the highest impact on User Engagement. The

authors of [177] investigate the impact of di�erent application layer QoS metrics

on User Engagement for di�erent types of content. They use a data set with

over 1 million users. Based on their results, it is shown that there exists a strong

correlation between QoE and User Engagement. In [25], they measure QoE-

metrics and User Engagement from various sites, di�erent types of content (short

VOD, long VOD, and live video), and also distinguish other kinds of parameters.

Their results show that a high bu�ering ratio lowers User Engagement, with the
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impact being stronger for short videos. Similarly, a high bit rate has a signi�cant

impact in the live scenario while it does not in VOD. Other metrics that are used

to indicate User Engagement include the number of comments, the number of

votes or likes and the like-dislike ratio. These metrics are usually applied on a

video level or on a content provider level [178]. In [68] tra�c during a single

live event is measured and the impact of QoE metrics on User Engagement is

analyzed. Their results show that the bu�ering ratio and the bit rate have a high

impact on User Engagement. Further, they noted that the video play time may

depend on various other factors such as user behavior. A correlation between

QoE and User Engagement was also recognized. A 2014 paper [69] conducted a

large scale measurement study that looked at the abandonment rate — which can

be another appropriate User Engagement metric — for mobile video streaming.

Using data from the study, a model is proposed that can predict User Engagement

in mobile video streaming with a high accuracy based on network statistics. In

two further publications, Balachandran et al. [70, 71] measured User Engagement

and video session quality and run machine learning algorithms on it. Through

this e�ort, they highlight the challenges of obtaining a robust video QoE model

from such metrics. A related work from Krishnan et al. [74] puts viewer behavior

in relation to video quality metrics. Of note is the observation that an increase in

the initial delay of a video stream also directly leads to a higher abandonment rate.

Video content related reasons for declining User Engagement and abandonment

are described in [179] at the example of a lecture video. The impact of application

layer QoS on the User Engagement is also researched in [180]. The authors

de�ne new metrics to characterize the User Engagement for a data set of over

1000 non-mobile YouTube viewers. Their results show that a negative video bit

rate change leads to more abandonment than stalling and that even positive bit

rate changes lead to abandonment. Other reasons for abandonment have been

studied in a �eld study in [116] using the browser plugin YouSlow. The authors

of [181] propose a comprehensive QoE model that includes the user state and

the user behavior. They analyze QoE, the user state and the user behavior from

the perspective of the user, the system and the service provider. Furthermore,
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they discuss how the price and the energy consumption of a service may impact

QoE and user behavior.

While a video is playing, users have various options to control the playout

of the video. Users can skip ahead to a later point in the video. This is also

called seeking or fast forwarding. If they seek a video segment that is not yet

downloaded, stalling will occur. However, since this is an expected event, it is

not as annoying as other stalling events but more like initial delay [182]. Users

can pause and resume videos. Usually, the video download continues while the

video is paused until the bu�er is �lled. Thus, users often use this option to

avoid stalling events when they have a low throughput. Similar to the YouTube

App, in the YomoApp full screen mode can be activated by either pressing the

respective button or by rotating the device into a horizontal position (landscape

mode). Normal mode can be re-entered by reversing this action. Furthermore,

users have the option to manually change the video resolution, the volume and

the speed at which the video frames are replayed. The typical video behavior of

about 300k users is investigated in [183]. The authors present a model for the

user arrival process and for the stream control. They �nd that there exist typical

sets of viewer actions such as fast forward, followed by pause and rewind.

Frequently, users will watch another video after �nishing or abandoning a

video. We de�ne the process of starting the YomoApp, watching one or more

videos, and closing the YomoApp as a video session. If a viewer watches two or

more episodes of a series in one session, it is called binge-watching [184]. In this

chapter, we investigate the number of videos that a video session contains. Other

interesting metrics include the session duration and the time delay between

end of video and start of next video. If we consider multiple sessions of the

same user, we look at the user’s history and consider their behavior over long

time periods. Particularly interesting parameters include the rate with which the

user returns to the service, the average session length, the start and end date

of use or subscription to the service and the money or resources spent on the

service. These parameters are particularly interesting for strategical, �nancial
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and marketing decision making. However, they are out of scope of this work and

will not be discussed in greater detail.

4.1.2 Energy and Data E�iciency in Mobile Video
Streaming

Energy and tra�c are often limited resources in mobile scenarios. Let us �rst

investigate the energy consumption of mobile devices. During a video stream,

the greatest share of the energy is typically consumed by the display of the

device. The amount of consumed energy mainly depends on the display type,

the display’s brightness, and a frame’s colour composition [185]. Modern devices

already adapt the brightness depending on the surrounding brightness and on

the battery status. The decoding of the downloaded video also consumes energy.

However, this is usually done by specialized hardware components which do not

consume a signi�cant amount of energy during the decoding [185]. In [185], a

energy model for the power consumption of video decoders is discussed. It can

be seen that some energy can be saved by playing a video in low quality.

The Radio Resource Control (RRC) is a protocol used in UMTS and LTE. Its

functionality includes the management of resources and inactivity timers which

signi�cantly impact the power consumption of a device. Depending on the

(cellular) network technology used, there are di�erent states of connectivity

that a device can assume. In UMTS, the most important RRC states include

DCH, FACH, PCH, and IDLE [186]. Their energy consumption is discussed in

detail in [187]. DCH is the state which provides a dedicated channel to the user

allowing for high throughput but also consuming the most power. FACH is used

by applications with very low throughput and consumes about half the power

compared to DCH. While in the PCH the user device cannot receive or send

packets. However, it can receive noti�cation whether there are downlink packets

and then change its state to DCH or FACH. This state only consumes about

1-2 percent of the power compared to DCH. In the IDLE state, the device is

disconnected and the energy consumption is similar to PCH. If the device is not
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in IDLE and there is no tra�c, it will change its state to a less energy consuming

one after a few seconds. The exact duration is de�ned by inactivity timers. In LTE,

there are two RRC states, CONNECTED and IDLE [188]. If we try to compare

them to UMTS states, CONNECTED is similar to DCH and IDLE is similar to

PCH. Furthermore, LTE uses DRX to continuously listen for data with reduced

energy consumption. A very detailed overview of DRX can be found in [189].

Qian et al. [190] investigate di�erent RRC inactivity timers in video streaming

over 3G cellular networks. They discover a performance ine�ciency due to tail

e�ects and state promotion overhead. They �nd that each application has its

optimal value for the inactivity timer. In [191], they present a framework that

optimizes tail times resulting in a signi�cant reduction of energy consumption

for various Internet applications. Hoqoe et al. [192] discover that video streaming

platforms use di�erent streaming techniques for di�erent devices, players, and

video qualities. They discover that there is room for optimization in terms of

energy e�ciency for every technique.

Seufert et al. [193] use throughput traces of 2G, 3G, 4G and WiFi networks

to investigate how e�ective it is to o�oad mobile tra�c to WiFi hotspots. They

�nd that the low throughput of WiFi networks leads to lower QoE and higher

energy consumption compared with 4G. WiFi o�oading is recommended if only

2G or 3G networks are available but not for 4G. In this chapter, we conduct a

similar simulation, which utilizes 3G and LTE network traces to simulate HAS

in a mobile environment. Further, we simulate user behavior and evaluate the

energy consumption of di�erent adaptation strategies and di�erent devices to

evaluate HAS with similar network traces and di�erent tail times.

Schwartz et. al. [194] evaluated four di�erent video streaming mechanisms, in

respect to QoE, energy consumption, User Equipment, and wasted tra�c. They

show, that their streaming mechanism, which uses a bu�er with two thresholds,

o�ers the best trade-o� between energy consumption and wasted tra�c. They

use basic probability distributions to model the user behavior while we use

real user statistics in our evaluation. Furthermore, their work does not discuss
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adaptive streaming mechanisms since it was written in a time before adaptive

streaming was popularized.

Siekkinen et al. [195] measured 20% energy savings in mobile video streaming

when shaping the tra�c received from 3G and LTE networks into tra�c bursts.

Energy could not be reduced further due to YouTube’s background tra�c, which

was interfering with the tra�c shaping and causes unexpected transitions of the

RRC. Tra�c shaping also provides a good balance between saved energy and

signaling overhead. In [172], they developed a scheduling algorithm, which relies

on viewing statistics to reduce the energy consumption and tra�c overhead

in mobile video streaming. They de�ned a scenario, where users can abandon

the playback at any time and developed an algorithm, which predicts the user

behavior based on the viewing statistics. Depending on the wireless interface

that is used, the algorithm calculates the energy and tra�c optimal download

schedule. We adapt their scheduling algorithm to develop a HAS adaptation

strategy, which optimizes the quality, energy consumption, and tra�c waste.

Furthermore, we follow a similar idea and utilize audience retention statistics to

perform a user centric tra�c shaping. However, our strategy is built around HAS

since it is very common in video streaming applications. In addition, we have

more complex video sessions, where multiple videos are watched, and video

content may be skipped.

4.2 Viability of Caching in an Era of HTTPS

Popular Internet videos are transmitted very frequently and may only be inter-

esting in a small geographical region, e.g., due to the used language. Therefore,

caching popular videos at the edge seems like a resourceful option to save tra�c

at �rst glance. However, most tra�c in the Internet is encrypted, in particular

videos. It is very likely that YouTube will continue delivering its content via

HTTPS and using its Content Distribution Network (CDN) for better content

propagation. The consequence is that content will be di�cult to cache at a

forward or inline cache, yet CDN servers are typically already situated at the
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network edge which leads to diminishing returns for additional caches. This

inspired us to investigate the general feasibility of edge caching with the increas-

ing deployment of HTTPS in the Internet, in particular. Furthermore, we are

interested in the performance of caches regarding their loading time and the

number of simultaneous connections since little research is done in this regard.

Our research questions can thus be formulated as follows: What share of Internet
tra�c can be cached at WiFi hotspots? How well does a cache perform under high
load?

4.2.1 Measurement Study

This section discusses the methodology of our experiments which can be divided

into two parts. First, we set up a prototype of our caching system in public

locations to investigate its behavior in a realistic environment. Second, we bench-

marked the system to evaluate its performance and compare it to the proposed

queueing model.

Setup

First, let’s introduce our setup. For the practical evaluation of edge-caching we

built a low-cost setup that can be installed together with standard access points.

We used standard consumer access points (TP-Link WDR-4300) for the WiFi

and a Banana Pi, a credit-card sized computer (ARM Cortex A7, 2 GB RAM),

with an SD-card as caching storage. This compact form-factor with its low-power

cost properties allowed for the placement in locations, where no large-scale cache

could be employed, e.g. directly at a WiFi access points. All devices are then

connected via 1 Gbit/s-Ethernet using the access point’s on-board switch.

The general setup works as follows: The access point announces the public

WiFi network. All HTTP-tra�c is then routed to the cache, acting as a regular

transparent proxy. All other tra�c is directly routed to the Internet without

the intermediate cache. Due to legal reasons, the tra�c was routed through a

secondary TP-Link router over a VPN tunnel.
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The access point is running OpenWRT
3

, a Linux-based distribution for access

points, that allowed us to route the tra�c using iptables. Additionally, we

were able analyze the tra�c with iptraf4

in order to determine the ratio of

cacheable HTTP tra�c compared with the overall tra�c. The cache runs Linux

and the proxy server Squid5

. We chose Squid over other proxy software

solutions, as it is actively developed and its cache replacement strategies as well

as the cache size are con�gurable. This gives us the possibility to extend our

research on this basis.

Real-world Test

We chose two locations for evaluation: a computer club, where a WiFi access

point existed before, and an apartment, with a bar within its radio coverage area.

The caching proxy logged all HTTP requests and whether they invoked a hit or a

miss. The experiments were conducted in August and September of 2016. In the

�rst location — the computer club — the experiment ran for �ve days, and nine

days in the second location. In the computer club, a VDSL Internet connection

with a downlink speed of 100 Mbit/s was available, while at the other location

a Cable connection with 50 Mbit/s was used.

Benchmarking Study

For the purpose of benchmarking, we tested the cache in a controlled environment

using wired 1 Gbit/s connectivity for all devices. First, we determined the page

load time of the nine most popular websites in Germany in 2016 according to

Alexa [196], that did not use HTTPS by default with an empty cache, so that a

cache miss is guaranteed to occur. Second, we repeated the experiments with a

cache, where the web page is already stored (i.e., a cache hit). For comparison,

we also measured the page load time without any intermediate cache. This

experiment is indented to show the potential of caching. The loading time of

3h�ps://openwrt.org/
4h�p://iptraf.seul.org/
5h�p://www.squid-cache.org/
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pages was determined using Firefox 42.0 with a fresh browser pro�le and

an empty cache. The add-on app.telemetry6

measured the page load times.

App.telemetry uses the onLoad()-event to determine when a page is

fully loaded. During our tests, this re�ected the perceived loading time. If a request

was not completed within θ = 30 s, the request expired. We also observed, that

the displayed advertisements change every time the web pages were loaded,

while the page’s actual content remained the same. To obtain comparable results,

we therefore used an ad blocker (Adblock Plus7

with the �ltersets Easylist
Germany+Easylist). This measure made it possible to directly compare the page

load time of multiple requests of the same page.

To investigate the behavior of the cache under load, we used the tool Siege8

to generate requests for a �le with a size of 100 kB from another web server. At

the same time, we measured the loading time of a web page like in the previous

experiment. Di�erent levels of load were generated once again with Siege’s

capability to simulate more than one concurrent simultaneous user requesting

the speci�ed �le. We tested our setup with 0 − 700 users, which do not wait

for the result of their request. The inter-arrival time of the requests follows a

continuous uniform distribution U(0 s, 1 s), hence the arrival rate of λ = 1/s.

Each of the individual components ran on a separate network node, i.e. a request

generator, the cache, as well as the web server for the test �le.

Note, that no steps were performed to ensure absolutely realistic load scenarios.

For example, Squid uses in-memory caching, which cannot be deactivated.

Due to this, the test scenarios would probably result in an unrealistically good

performance. Additionally, the Siege load tests do not produce realistic load

patterns, they are only meant to generate a steady load baseline at the cache.

6h�p://www.apptelemetry.com/
7h�ps://adblockplus.org
8h�ps://www.joedog.org/siege-home/
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ratio club bar Google 08/2016 [198] Google 05/2020 [198]

HTTP 6.6 % 16.6 % 15.0 % 5.0 %
HTTPS 93.4 % 83.4 % 85.0 % 95.0 %

Figure 4.2: Share of HTTP and HTTPS tra�c.

Cacheability of Requests

Next, we examine the share of cacheable requests, which is identical to the ratio

of secured to unsecured transmissions. The results are compared to encrypted

tra�c across Google in Table 4.2. Both data sets show similar characteristics: The

share of HTTPS tra�c is the largest with over 80 % in the bar and over 90 % in

the computer club. The second rank is taken by HTTP tra�c. Other tra�c types

make out less than 0.1 % of the total tra�c. 45 % of page loads use HTTPS [197]

and many of those consist of large �les such as YouTube videos which leads to a

very high share of HTTPS tra�c.

The total hit rate of our cache only lies at 12.6 %, resulting in an overall

reduction in non-encrypted tra�c of 1.6 %. Interestingly, the highest caching

e�ciency was achieved in RSS tra�c and ingress tra�c was signi�cantly reduced

(by 58 % at the computer club). However, RSS does not amount to a large share

of total tra�c.

4.2.2 Cache Performance

In order to investigate the CPU performance of our cache, we now present our

system model and compare its results to the measurements.

System Model

We model the cache as a M/M/1/S loss system with an average arrival rate λ,

average service rate µ and a �nite queue with length S. In practice a request

129



4 Resource E�ciency Measures in Mobile Video Streaming

is blocked if its waiting time expires a threshold θ. We consider this expiration

threshold by setting the queue length S to S = θ · µ.

The system dynamics can be described by a birth-death process with states

{0, 1, . . . , S + 1} and transition rates λ and µ. Using the completeness relation,

the steady state probability x(i) that i jobs are in the system on arrival of a

request is calculated by

x(i) =

(
λ
µ

)i
∑S+1
j=0

(
λ
µ

)j .

The blocking probability pb is de�ned as the probability that the system

contains S + 1 jobs upon an arrival. Then the server and each slot in the queue

is occupied.

pb = x(S + 1) =

(
λ
µ

)S+1

∑S+1
j=0

(
λ
µ

)j . (4.1)

As long as the system is serving any requests the CPU load ρ∗ can be estimated

as estimated as

ρ∗ = 1− x(0) = 1− 1∑S+1
j=0

(
λ
µ

)j . (4.2)

Results

For the analysis of our benchmark results we use the page load time and the CPU

load as performance metric. Figure 4.3 depicts results for popular (according to

[196]) German web sites. For some of these pages the use of a cache does not

lead to a statistically signi�cantly di�erent load time (amazon.de, ebay.de,

gmx.de, spiegel.de, chip.de). For others, we note that a cache miss

leads to a load time of more than 2 s which is considered unacceptable for web
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Figure 4.3: Comparison of loading times of popular websites with and without cache.

pages [199]. While a cache hit will always improve the load times compared

with a cache miss, there are some scenarios (e.g. spiegel.de) where even

the presence of a cache can negatively impact the performance and result in an

overall increase of the load time no matter if it’s a cache hit or miss.

Next, we want to determine how the page load time increases if the CPU is

overloaded. Results are shown in Figure 4.5. An individual request of the page

web.de was measured to have an average page load time of 4 s (variations

can be attributed to the dynamics of the page’s contents). When the cache is

subjected to an increased CPU load by saturating it with requests, the page load

time in seconds increases linearly based on the mean arrival rate of request λ

according to the function

f(x) = 0.0198λ+ 4.568 .
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Figure 4.4: Comparison of measurement results and analytic results for the CPU
load of the cache based on the mean arrival rate λ and the mean service
rate µ (in seconds). Analytical results are based on Equation 4.2.

In Figure 4.4 we investigate the number of requests that the cache can serve

simultaneously. This is done by observing the CPU load and the duration of

the longest transaction. We notice that up to 30 simultaneous connections do

not impact the performance of the cache. If there are more than 40 requests per

second, the cache is overloaded and it takes several seconds to process a request.

Since we used a dual-core processor for the experiments, the CPU load may

exceed 100 %. The analytical results for the request time-out probability show

that it is easy to dimension a cache based on the number of incoming requests,

cf. Figure 4.6.

4.2.3 Discussion

The results collected here seem to be in line with our expectations. At both the

computer club and the bar a very unique tra�c mix could be captured (where
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Figure 4.5: Loading time of the web page web.de using a cache that is servicing
multiple connections simultaneously with a mean arrival rate λ.

the caches and access points were situated). The speci�c audience at these

locations was quite indicative of a broader future, where almost all connections

could be secured. Such a situation may come to pass rather sooner than later,

as all involved parties, including browser vendors and Website operators, are

increasingly pushing this, e.g. by notifying the users about unsecured Web pages

in their browser, or by discouraging and blocking mixed content sites.

In the end this will lead to an inability to conduct any kind of forward and

inline caching or operate any other kind of application layer middlebox. The only

viable form of caching in this scenario will be reverse caches inside the domain

of control of the content provider, with the HTTPS connections’ endpoint at the

caches. This is the scenario that is already present in today’s solutions in the

form of CDNs.

But even if this tra�c mix scenario does not come to fruition, the results have

also shown other drawbacks in such a forward caching approach. Cache misses
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Figure 4.6: Analytical results for the probability that a request times out according
to Equation 4.1.

are rather costly in terms of page load time, yet the gains in case of a cache

hit might only be marginal. And cache misses will frequently occur due to the

low number of target users when the cache is situated so close to the content’s

destination. Even looking from the perspective of network and service operators

caching on the user’s premises might not be worthwhile at all, as the amount of

bandwidth saved might be minimal, as our experiments have shown.

4.3 Evaluation of User Behavior and Abandonment

Since watching videos in mobile networks is much more challenging than with

�xed connections, it is important to understand the user behavior in this scenario

very well. In this section, we evaluate the results of a measurement study on the

behavior of mobile video users to get an idea on how their behavior might be

di�erent from the behavior of desktop users. For the algorithm which we will
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present in Section 4.4 the abandonment behavior and the number of consecutive

videos are of particular interest.

4.3.1 Data Set and Crowdsourced Measurement

The tool YoMoApp [200] is an application for YouTube crowdsourced QoE mea-

surements publicly available on the Google Play Store. It replicates the native

YouTube client, giving it the same functionality as the original app. Personal

recommendations and favorites are displayed, and you can play your previously

tagged videos. The goal is to provide a measurement methodology to monitor

application-related and user based KPIs during a YouTube session. Monitored

KPIs were chosen to be main QoE factors of the mobile user. Furthermore, we

monitor user interaction such as activating the full screen or changing the play-

back quality. The app also collects data about the device and the user context,

including KPIs such as screen size and orientation, user location, and mobility,

and ISP. The existing data set we survey consists of more than 6,000 YouTube

video views collected over 70 di�erent mobile operators worldwide and by 451

di�erent users from 2014 to 2018.

4.3.2 Characterization of User Behavior

In this section, we evaluate the data set described in the previous section with

focus on user behavior over single videos, multiple videos, and reasons for the

behavior. We start by looking at correlations between important measures to

point us into the right direction which are summarized in the Appendix in

Table B.1. We then investigate the occurrence of stalls and the active behavior of

users, e.g., how often they pause videos. Lastly, we analyze the User Engagement

and the abandonment behavior of users. The preexisting data set we survey

consists of more than 6,000 YouTube video views collected by over 70 di�erent

mobile operators worldwide and by 451 di�erent users from 2014 to 2018.

A �rst surprising discovery was that the User Engagement only has a small

negative correlation with the stalling ratio in the YomoApp. This is a contrast
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to the YouTube App, for which a stronger impact of the stalling ratio on the

User Engagement is presented in [180]. In addition, Section 2.5.1 shows that User

Engagement can be directly mapped to stalling ratio in non-mobile scenarios.

Furthermore, we found a small positive correlation between User Engagement

and the number of quality changes. In [180] a negative correlation between

User Engagement and positive and negative switches was shown for non-mobile

YouTube users. In addition, we see that the number of seeks has a negative

correlation with the User Engagement. We can imagine impatient YoMoApp

users to fast forward more frequently as well as abandon videos earlier. The

stalling ratio correlates with stalling duration and with number of stalls which is

unsurprising since it is a function of it. The number of stalls correlates with the

number of pauses and seeks. That makes sense, since stalling occurs when the

user skips to a part of the video that is not yet bu�ered. Furthermore, users that

experience stalling like to pause the video or manually decrease quality to load

a large section of the video to prevent further stalling events. Mode switches

and screen orientation changes are correlated since orientation changes often

trigger full screen mode. Usually, a video will go into full screen mode, if the

device is rotated. However, on some devices an orientation change does not lead

to a mode change, e.g., when the respective option is deactivated by the user.

Inversely, when users manually go into full screen mode they usually want to

rotate their device to view the video properly. Therefore, both curves are very

close together and are strongly correlated (coe�cient of correlation of 0.62).

User Interactions

We observed three kinds of events that interrupt the �ow of the video: pausing,

stalling and seeking. Almost 90% of videos were not paused once and only very

few videos are paused more than once. Most pauses are shorter than two seconds.

However, several users pause their video for a very long time. More common

than pausing is seeking, which occurs in about 75% percent of videos. Stalling

was the most frequent event that interrupted the video playout. However, it is

the only event that is triggered involuntarily and has a negative impact on the
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Figure 4.7: Relative User Engagement, i.e., ratio between User Engagement and video
length.

user experience. Stalling events were also much shorter than pauses, most of the

time. Notice that we do not consider initial delay as stalling.

User Engagement and Video Abandonment Behavior

The above investigated user actions a�ect and extend the total amount of time a

user spends on a video and how long he/she stays on the video page. The time

users spend on a video consists of watching, stalling, initial delay, pausing and

seeking. For the User Engagement we only consider the time spent watching. In

Figure 4.7 we investigate the relative User Engagement as a share of the video

length. When a video is not abandoned a time slightly higher 100% is expected.

Higher values occur because some people rewind the video to watch certain

scenes multiple times. Lower values than 100% in the blue curve indicate that a

user skipped ahead in the video. Most YoMoApp users only watch a single video
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Figure 4.8: Number of videos that were watched in a row by the same user during
one session.

during a session, compare Figure 4.8. Only about 1.1% of users watched more

than ten videos in a single session.

When a video runs in full screen mode and the user wants to abandon the

video, he �rst needs to leave full screen mode. We suspect that this is a primary

reason to leave full screen mode. In Figure 4.9 we therefore determine the time

between the last change from full screen mode to normal mode and the point

in time where the video is abandoned. Indeed, 50% of users abandon the video

within three seconds of leaving full screen mode. However, over 5% of users only

abandon the video 50 seconds or later after leaving full screen mode.

Concluding, this data gives us a good insight, that YoMoApp users can be-

have very di�erently from each other. Furthermore, we observed typical binge-

watching behavior as is common on other video platforms. In the remainder of

this chapter, we focus on YouTube users instead of YoMoApp users which is why

we use di�erent data on the user behavior for the evaluation in the following

section.
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Figure 4.9: CDF of time that passed between leaving full screen mode and abandon-
ing the current video.

4.4 Energy E�icient Adaptive Streaming Algorithm

It has been shown that not only video degradation but also the energy consump-

tion and the battery life while using a service or application has an impact on the

user’s QoE [201]. We develop a new algorithm for mobile video streaming that

aims to reduce the video streams energy and data consumption while delivering

high quality. We investigate the performance of the algorithm in WiFi, 3G, and

4G networks in a simulation using using real world-like user behavior patterns.

Figure 4.10 gives an overview of the structure of this section.

4.4.1 Adaptation Algorithm

In this section, we present the adaptation algorithm and its components. Our

algorithm is a combination of the bu�er- and bandwidth-based algorithm from

[96] and an energy-e�cient schedule for the download of video segments from

[202] that we extend for adaptive streaming. We determine the bit rate bw+
of
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Figure 4.10: Overview of other works that were used by us (blue) and our own
contribution (green).

the following segments P1 to P2 according to KLUDCP, adding an error variable

to avoid overestimating future bandwidth. Since we want to select a quality layer

for a batch of segments instead of a single segment, several changes had to be

made to the basic algorithm. To avoid stalling when downloading large batches

of segments, we estimate the bit rate after the download of each segment. An

overview of the used notion is given in Table 4.2.

We de�ne an error er ∈ [0, 1], which describes the highest percentage, which

we expect the bandwidth to sink/rise per downloaded segment. We call this

optimistic bandwidth estimation for a rising throughput and pessimistic band-

width estimation for a shrinking throughput. Equation 4.3 shows the optimistic

bandwidth estimation, where the error value rises per segment download and the

resulting estimated bandwidth rises per segment download. Equation 4.4 shows

the pessimistic bandwidth estimation, where the error value rises per segment

download and the resulting estimated bandwidth shrinks. Note, that we hereby

extended the model presented in [96] to include an error value and batches

of segments instead of a single segment. The bu�er level is used to calculate

the quality level, so we calculate the expected bu�er level after each segment

download. The throughput prediction can be replaced by more re�ned methods,

compare [203].
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Table 4.2: Notion of variables.

Variable De�nition

P0 last segment that was downloaded

P1 �rst segment of next batch that is downloaded

P2 last segment of next batch that is downloaded

n size of batch in segments

bw+
optimistic bit rate suggestion for next batch

bw− pessimistic bit rate suggestion for next batch

tl tail time

er predictability of the network throughput

rdl(P0) throughput during download of last segment

bl+ optimistic bu�er level estimation

bl− pessimistic bu�er level estimation

Q(i) quality layer in which segment i is downloaded

br(Q(i)) encoding rate of quality layer Q(i)
ti remaining play time of segment i
con constraints to avoid stalling and guarantee high

quality

pabd(j) abandonment prob. at segment j
D last segment played before next download

Etail energy consumption per second during tail

Erx energy consumption of bit rate

E[Bwaste(P2, D, n)] expected value (mean) of wasted data that is

stored in the bu�er and has not yet been viewed

E[Ewa∼≈(Pm,P2,D,n)] expected value (mean) of wasted energy that was

used to download content that has not yet been

viewed
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bw+(P1, P2, n, tl) = (4.3)

rdl(P0) · (1− er)n−1 · 0.3 if 0 ≤ bl+ < 0.15

rdl(P0) · (1− er)n−1 · 0.5 if 0.15 ≤ bl+ < 0.35

rdl(P0) · (1− er)n−1 if 0.35 ≤ bl+ < 0.5

rdl(P0) · (1− er)n−1 · (1 + 0.5 · bli) if 0.5 ≤ bl+ < 1

bw−(P1, P2, n, tl) = (4.4)

rdl(P0) · (1− er)n−1 · 0.3 if 0 ≤ bl− < 0.15

rdl(P0) · (1− er)n−1 · 0.5 if 0.15 ≤ bl− < 0.35

rdl(P0) · (1− er)n−1 if 0.35 ≤ bl− < 0.5

rdl(P0) · (1− er)n−1 · (1 + 0.5 · bli) if 0.5 ≤ bl− < 1

As we consider optimistic and pessimistic bandwidth, we also need an opti-

mistic and pessimistic bu�er level estimation. Equation 4.5 calculates the expected

pessimistic bu�er level, while Equation 4.6 calculates the expected optimistic

bu�er level. Both consist of three parts: the �rst part sums the already bu�ered

time. The second part sums additionally bu�ered time after the download is

completed, in respect to the pessimistic/optimistic bandwidth estimation. The

third part represents the tail time, which is spent before the download started.

For the video encoding rate br(Q(i)) of quality Q(i) of segment i, the bu�er

level is determined as
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bl+ =

P2∑
i=P1

ti +

P2+n∑
i=P2+1

ti · (1−
br(Q(i))

bw+
)− tl (4.5)

bl− =

P2∑
i=P1

ti +

P2+n∑
i=P2+1

ti · (1−
br(Q(i))

bw−
)− tl. (4.6)

The equations determine an optimistic and pessimistic bandwidth and bu�er es-

timation. Equation 4.7 contains multiple constraints for optimistic and pessimistic

bandwidth and bu�er estimation. The bu�er constraint bl+ > 0 ∧ bl− < 1

checks, whether the bu�er may run empty or full. The �rst bandwidth constraint

bw+ ≥ br(Q) checks, whether the estimated bandwidth is not less than the

quality level’s bit rate. The second bandwidth constraint bw− < br(Q + 1)

checks, whether the optimistic bandwidth estimation is not bigger than the next

quality level’s bit rate. Both constraints must be met to ensure a smooth playback.

The abandonment probability pabd(j) is the probability that a user abandons

the video right before starting to watch segment j. The algorithm starts by select-

ing the quality level before the algorithm enters three interleaved loops. The �rst

loop iterates over the segments, which can be downloaded. The loop begins at the

�rst not yet bu�ered segment and ends after the limiter is exceeded. The second

loop also begins at the �rst, not yet bu�ered segment and ends at the current

position of the �rst loop. The third loop iterates over the bu�ered segments.

Then the algorithm calculates the expected bu�er state for each combination.

The expected bu�er state is determined using the expected bu�er state of the

download, which downloads all previous segments, or the current bu�er state, if

there is no previous download. When the user abandons a video, the data that is

stored in the bu�er but has not yet been viewed, is wasted. The expected (mean)

wasted data E[Ewaste] depends on the abandonment probability pabd(j) and the

current bu�er state ti · br, compare Equation 4.8. The expected wasted energy

depends on the energy spent downloading data that will not be viewed on tail
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energy, compare Equation 4.9. If there are no constraint violations the bu�er

state with the lowest expected wasted energy is stored. Per segment one bu�er

state is stored. The comparison is performed to the stored bu�er state, which

download ends at the same segment. After all combinations are evaluated, the

algorithm performs a back trace. Therefore, the algorithm starts at the stored

expected bu�er state, which downloads the last segment. The next expected

bu�er is searched, which ends before the bu�er state’s �rst downloaded segment.

This process continues, until the back trace reaches the current bu�er. The traced

downloads are returned as schedule in reversed order together with the deter-

mined quality level. The download schedule can be incomplete, which should

not a�ect the overall behavior, because the schedule must be reevaluated after

each download. If there is no optimal download without adaptation or stalling,

the algorithm falls back by downloading the next segment at the selected quality

level. Note, with Equations 4.8 and 4.9 we extend the original model for normal

video streaming, published in [202], to adaptive streaming.

con =


1, if bw+ ≥ br(Q) ∧ bw− < br(Q+ 1)

∧bl+ > 0 ∧ bl− < 1

0, else

(4.7)

E[Bwaste(P2, D, n)] =

P2+n∑
i=D+1

i∑
j=D+1

pabd(j) · ti · br (4.8)

E[Ewaste(Pm, P2, D, n)] = (4.9)

Etail

D∑
i=P1

max(ti, t) +
E[Bwaste(P2, D, n)]

rdl
· Erx(rdl)

As shown in Figure 4.11, the adaptation strategy does not keep the same bu�er

size and the RRC transits to the lower state for several times. The bu�er �uctuates

between 10 and 30 seconds. According to the audience retention, the bu�er is
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Algorithm 1: Energy-E�cient Batch Adaptation (EE)

Data: P1, P2, buffersize
// buffersize is the maximum buffer size
Result: S, quali

1 En(P2) = 0
2 P1(P2) = P1 // first segment in buffer
3 P2(P2) = P2 // last segment in buffer
4 forall q = P1 to P2 do
5 if br(p) < minbw then
6 quali = q(p) // quality of last segment which has lower

bit rate than bandwidth
7 end
8 end
9 forall i = P2 + 1 to P2 + buffersize // segments that may be

downloaded without overextending the buffer size
10 do
11 forall j = P2 + 1 : i // subsets of consecutive segments

beginning with the next segment
12 do
13 forall k = P1 − 1 : j // segments of buffer and subset
14 do
15 Ecur = En(j) + E[Ewaste(P1(i), P2(i), k, i− j)] // expected

wasted energy when downloading segments until
j, considering abandonment rate and tail energy

16 Pminn = P1(j − 1)
17 forall l = P1(j − 1) : P2(j − 1) do
18 Pminn+ = (tl − (tl · enc/dl))
19 end
20 Pminn− = tail
21 if Ecurr < En(i) ∧ con(Pminn, j − 1, i− j, tail, quali) == 0)

// check if expected wasted energy will be
lower compared with downloading one less
segment and if buffer and bandwidth constraints
are fulfilled

22 then
23 En(i) = Ecur
24 lastchange(i) = j
25 P2(i) = j − 1
26 P1(i) = Pminn
27 P − x(i) = i // schedule segments P2 + 1 to j to be

downloaded as a batch
28 end
29 end
30 end
31 end
32 end = PLx + buffersize
33 while (end > PLx) do
34 S = (end− lastchange(end), S)
35 end = lastchange(end)

36 end
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Figure 4.11: Video browsing session in which �ve videos are watched of which three
are abandoned early. At the beginning of a video the abandonment rate
is high, so the bu�er is kept low to save data. The RRC state is turned
o� frequently to save energy with EE.

�lled and depleted. During the depletion phase, the RRC transits to the lower

state. After a long tail duration, the adaptation strategy continues the download

to avoid stalling. Another aspect of the bu�er behavior is that the bu�er stays

small during the �rst few seconds of playback. The audience retention statistics

usually possess high abandon probabilities at the video’s beginning. Therefore,

the �rst segments are carefully downloaded. This approach shows the desired

bu�er and RRC behavior, which potentially saves energy and tra�c.

4.4.2 Energy Model

Huang et al. [204] investigated the performance and power characteristics of LTE

networks. They measured the energy consumption and timing of 3G, LTE and
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WLAN interface in smart phones. They found that LTE possesses the highest tail

time and power consumption. The tail refers to the period where the user device

is still in a connected state but has �nished its communication. WLAN has the

smallest tail time and energy consumption. Additionally, they investigated the

send and receive power consumption. They conducted several experiments and

developed an energy consumption model. Also, LTE possesses the biggest base

power consumption, but the least power consumption per download throughput.

WLAN possesses the least amount of base energy consumption, but the biggest

energy consumption per download throughput. The tail energy can be limited

using Fast Dormancy (FD) [205]. As the model does not provide a speci�cation

for the 3G wireless interface with FD, we specify the missing model using the

FD con�guration from [202]. The FD timer is set by the device to reduce the tail

time
910

. To reduce the tail time, we set the FD timer to 5 seconds. We use the same

3G power model to simulate the same device, which supports FD. Further, the tail

time is reduced to the half of the LTE wireless interface’s tail time. Li et al. [185]

investigated the energy consumption of video decoding in smartphones. They

conducted several experiments, watching di�erent videos and built an empirical

model of the video decoding power consumption. They compared the energy

consumption with the empirical model, which shows less than 10 percent error.

For our evaluation, we rely on these energy models provided for the 4G EVO and

the Galaxy S. The smartphones both possess a display resolution of 800× 480.

Videos with a smaller or greater resolution are up-scaled or down-scaled to �t

the screen size which leads to an impact on the parameters in the energy model.

The di�erent devices possess a di�erence in energy consumption of 300 mW

for smaller and 500 mW for larger videos. Modern devices with much greater

resolution than used in our evaluation should therefore be more e�cient at

decoding videos. For such devices, the parameters of the energy models can be

simply replaced to obtain results representing current developments.

9

https://www.gsma.com/newsroom/wp-content/uploads/2013/08/TS18v1-0.pdf

10

http://www.3glteinfo.com/fast-dormancy-in-3gpp/
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4.4.3 Audience Retention Model

Figure 4.12: Example for viewer abandonment statistic: audience retention of video
segments compared with total views of YouTube video ABSIFBFIOS.
Abandonment is typically high at the beginning. An increase in the
curve indicates that users skipped ahead in the video.

Most studies, such as [206], consider a video to be completely watched when

benchmarking adaptation algorithms, but on actual video platforms users fre-

quently interact with videos. Users abandon the video playback or skip some

playback and resume at another playback position. Statistics about the user’s

video playback behavior show that users skip playback time and abandon the

playback. For example, YouTube provides audience retention statistics
11

to the

owner of the video channel. These statistics describe which part of a given video

is watched by what share of users. Figure 4.12 shows an example for a video,

which possesses a duration of 223 seconds. The audience retention starts at

100%, indicating that all users started to watch the video at its beginning. About

30% of all users abandoned the video or skipped ahead during the �rst 7 seconds.

Due to the user’s possibility to skip playback before the start of playback, the

audience retention can also start with less than 100%. Users, who skip backwards

to the beginning of the video, result in higher audience retention than 100%.

Forward and backward skipping lets the audience retention rise and fall during

the playback time.

Video segments with a low user retention, are watched by few users. Always

downloading them results in a lot of wasted data and energy. We make use of

11

https://support.google.com/youtube/answer/1715160?hl=en
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this fact by delaying the download of these segments until necessary. This leads

to a lower expected data consumption and energy consumption during video

streaming. The details of this approach are described in Algorithm 1.

4.4.4 Results

Methodology

The simulation is based on a queue in which four di�erent events can occur: the

arrival of a video segment, the playback of a video segment, the abandonment of

the video by the user, or skipping forward in the video by the user. In a single

run of a simulation a single user is processed who watches �ve videos in a

row, compare Figure 4.11. The arrival of video segments occurs according to

deterministic processes based on the video bit rate and the goodput traces. For the

video bit rate, we downloaded 21 popular videos every available resolution and

decode them into their frame sequence using �probe to determine the location

of key frames which we use as segment start in our simulation. For the goodput,

we use three kinds of goodput traces: constant bandwidth, real vehicular 3G

traces [175], real vehicular LTE traces [169]. The 3G traces were recorded while

moving through Norway with the following type of transportation: bus, metro,

tram, ferry, car, and train. The LTE traces were recorded while moving through

Ghent, Belgium with the following type of transportation: bicycle, bus, car, foot,

train, tram. The probability that the user abandons the video or skips ahead in

the video is given through the viewer abandonment statistic for the video he is

currently watching and will be described below in detail. However, such statistics

are not publicly available, but only to the owner of the YouTube channel on

which the corresponding video is featured. To obtain these statistics, we asked

several YouTube channels to make screenshots of the audience retention statistic

of their most popular videos and send them to us. Six channels replied and send

us data on a total of 21 videos. We do not consider skipping back to a previous

position of the video since it is not possible to determine from viewer statistics.

If a video is �nished or abandoned, the next video is selected randomly from the
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remaining pool of videos until �ve videos have been viewed by the user. Each

experiment was repeated 100 times. All con�dence intervals in the �gures are

given with 95% con�dence.

To generate an abandon/skip event, we �rst split the audience retention curve

(c.f. Figure 4.12) into segment sized sections and search for the next decreasing

section of the curve. We then generate a uniformly distributed random number

r between 0 and 1. If r is lower than the relative decrease in viewers during this

section, we generate and abandon/skip event. After such an event occurs, the

remainder of the audience retention curve is searched for increasing sections.

Let us de�ne the value of the retention at the beginning of such a section as

x. If such a section is found, a new uniformly distributed random number q

between 0 and 1 − x is generated. If q is smaller than the relative increase in

viewers during this section, the abandon/skip event becomes a skip event. Then

the process repeats and we search for the next abandon/skip event during the

same video. If no increasing section is found, the abandon/skip event becomes

an abandon event and the next video is initiated. While this method does not

replicate the real user behavior perfectly well, it converges towards the original

audience retention curve.

Impact of the Bu�er Size

First, we investigate the impact of the bu�er size on QoS, energy consumption

and data consumption for our new algorithm. The minimum bu�er size deter-

mines the lower threshold that should never be underpassed to avoid stalling. A

minimum bu�er size lower than 5 seconds leads to more frequent stalling events,

as can be seen in Figure 4.13. A larger minimum bu�er size also leads to higher

average quality and fewer quality switches. However, a higher min bu�er means

that more data will be wasted in the case of an abandonment event and more

energy is used since idle periods cannot last as long, compare Figure 4.14. We

therefore use a balanced min bu�er size of 15 seconds to avoid too many stalling

events.
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Figure 4.13: Impact of the minimum bu�er size on the frequency stalling events for
constant bandwidth.

The (maximum) bu�er size de�nes how much video content may be down-

loaded into the bu�er at most before it is played. In Figure 4.15,4.16 and 4.17 we

see the impact of the bu�er size on energy consumption and wasted data. A large

bu�er of 80 s means that we can download a lot of video content into the bu�er

and then pause the download until the bu�er is almost depleted. This pause is

very energy e�cient since the idle RRC state can be reached for a long period of

time. However, if the user abandons the video when the bu�er is �lled up, a lot of

data is wasted. This means that the bu�er size is a trade-of between energy and

data. Since it depends on the scenario whether data or energy is more valuable,

we use three parameters for the bu�er size in the following: 30s, 50s, 80s.

Impact of the Network Type on Saved Energy

Next, we investigate how much energy can be saved with EE compared to KLU

in di�erent scenarios. In Figures 4.15, 4.16, and 4.17 the x-axis shows the average

throughput of the di�erent network traces that we use, while the y-axis shows the

average amount of energy that is consumed per second by the video download

or the average wasted tra�c per scenario. In a WiFi scenario (Figure 4.15) the
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Figure 4.14: Impact of the minimum bu�er sized on energy and data saved for
constant bandwidth using an LTE interface.

consumed energy can be reduced by about 25% with a large bu�er. While less

data is wasted with EE than with KLU, data is usually not limited in WiFi settings

compared with other mobile settings where data is limited through data plans.

In conclusion, EE leads to higher energy e�ciency in a WiFi setting. In a 3G

scenario (Figure 4.16) EE leads to 10− 12% of energy saved when comparing a

30s bu�er to an 80s bu�er. In terms of data, it becomes visible that especially for

high bu�er sizes, EE is much more e�cient than KLU since it makes use of user

abandonment statistics. In absolute numbers however, in average only about

2MB are saved for each video that is started. In contrast, savings are much higher

in LTE networks (Figure 4.17). For an 80s bu�er, we can reduce the average

energy consumption by 35− 40% and the wasted tra�c by about 50%. Here,

the saved data is larger, but also only lies between 3-6 MB which corresponds

to 12-24 seconds of 720p video content. From the energy perspective it makes

the most sense to use EE in LTE scenarios where it can result in much longer

battery time. Furthermore, it is visible that a large bu�er always increases the

battery time signi�cantly while the saved data is insigni�cant. Even with a large

bu�er only little data is wasted since the bu�er is not �lled up during scenes in

the video where many users abandon.
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Figure 4.15: Resourcefulness of KLU and EE in constant WiFi scenario

Performance in Terms of Application-Layer QoS

Next, we compare the QoS for KLU and EE in the LTE scenario. The average

playback quality is only about 1% higher in KLU, c.f. Figure 4.18. With KLU the

average number of quality switches per hour lies between 7 and 50 depending on

the scenario and is about 50% - 100% higher than with EE. The number of stalling

events is higher for EE with 0.4 stalls per hour because KLU constantly stays at

high bu�er, while EE has ON/OFF phases to conserve energy. An exception can

be observed for the subway scenario. In this scenario, the user passes through

many long tunnels where no connection to the network is possible. If such a

tunnel cannot be predicted, stalling can only be avoided if the bu�er is very high

when we enter the tunnel. So, only KLU with 80 s bu�er size can avoid some

stalling events. Notice, that we already discussed the optimization of HAS in

such scenarios in 3.4.1. In such a situation, only a very large bu�er can reduce

the number of stalling events. However, since a large bu�er leads to more wasted

tra�c, the best-case scenario would be to predict such a rare outage event and

to temporarily increase the bu�er in time.

To sum up the results, we see that EE is much more resourceful than KLU while

maintaining a similar QoS on application layer. An exception is only observed

in a scenario with very bad connectivity where energy and data e�ciency are a
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Figure 4.16: Resourcefulness of KLU and EE in vehicular 3G scenarios

Figure 4.17: Resourcefulness of KLU and EE in vehicular LTE scenarios

secondary concern. When such a scenario is detected, the player should switch to

a conservative adaptation strategy that maintains a high bu�er such as KLU. To

detect such a scenario, it is imaginable to collect data on the QoS combined with

the devices location. A train ride, for example, could then be easily be mapped to

a bandwidth curve which would make bandwidth estimations much easier.
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(a) (b)

Figure 4.18: Application layer QoS for KLU and EE in a vehicular LTE scenario

4.5 Lessons Learned

The popularity of video streaming has increased considerably on mobile devices

in the past years. Consumers do not only care about the quality of the content

and the quality of the service, but also about the energy e�ciency and the data

e�ciency of their device while they use the service. In this chapter, we discussed

how data and energy can be used more e�ciently in mobile video streaming

where these are limited resources. We identi�ed adaptation algorithms as a good

point in the service chain for optimizing the expected energy consumption and

the expected data consumption.

To answer the question to what degree WiFi-caches can be used to save

tra�c by avoiding redundant downloads within the same local network, we have

conducted two sets of experiments. The �rst set is comprised of load tests in a

testbed where we investigate the impact of a cache hit or miss on the loading

time of popular websites. In addition, we analyze the performance impact of

the number of clients that are simultaneously connected to the cache. As a

second experiment, we set up caches at two public WiFi hotspots in di�erent

locations and were able to derive interesting observations regarding the ratio
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of encrypted — and therefore uncacheable — tra�c that seem to con�rm the

recent developments described above. In addition, we propose a queueing model

for caches that we use to conduct a mean value analysis and compare it to the

results from the measurement study. We observed that a large amount of the

tra�c was encrypted with HTTPS and could not be cached without using man

in the middle attacks. As a consequence, using a router-cache did not lead to a

signi�cant amount of saved tra�c.

To optimize adaptive streaming algorithms, it is necessary to know more

about the user activity during video streaming. However, this is a �eld that is

researched little. In this chapter, we discussed the user behavior during video

streaming which was measured over multiple years using the YoMoApp. The

measurement results show that many user actions are correlated. For example,

stalling, pausing and seeking often occurs in similar ratios. We found that mobile

users are less likely to abandon a video due to stalling than non-mobile users.

Particularly interesting is the fact, that leaving full screen is an indicator that

users will soon abandon the video, which could be used to save data.

Furthermore, we combine an adaptive streaming heuristic and an energy

e�ciency scheme for video streaming using user behavior statistics into a new

adaptive streaming heuristic. Furthermore, we extend the heuristic with a data

e�ciency scheme by comparing the abandonment probability with tail energy

that can be saved to determine a schedule for downloading the next segments.

We investigate the performance of our heuristic by simulating a video session

where users watch �ve consecutive videos. Simulated users abandon videos or

skip through parts of a video based on viewer retention statistics of real YouTube

videos and users. Our results show that being aware of the user behavior and

scheduling segment downloads e�ciently can reduce the energy consumption

of the video download by about 25% in WiFi networks and by 35− 40% in LTE

networks with a bu�er size of 80s. The wasted tra�c that results from video

segments that are downloaded but never viewed can be reduced by about 50%

in the latter scenario. The gain in terms of energy and data comes at no cost in
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terms of quality and stalling compared with the baseline KLUDCP, except for

scenarios with very long connection interruptions.
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As one of the most popular Internet applications, video streaming will account

for 79% of all Internet tra�c in 2020 [28]. The type of video streaming that

is currently mostly used is HTTP Adaptive Streaming. ISPs and video service

providers try to mitigate stalling and increase the delivered video bit rate to

meet user expectations and maximize the QoE. In particular in mobile networks,

where the bandwidth is �uctuating, it is di�cult to keep the video quality high

without stalling. It is therefore important to know the interplay between video

player parameters, network bandwidth, content and transmission method. A

further aspect is the high data and energy consumption of mobile devices when

playing videos. As ISPs mostly give customers mobile access with data caps

and the battery capacity of modern devices increases slowly, these are valuable

resources that are consumed rapidly when watching Internet videos. Conserving

the resources of the user device is therefore another goal in mobile scenarios.

In this monograph, we study the performance of video streaming in mobile

networks. While our results also apply to non-mobile video streaming, the mobile

case is more interesting since it is much harder to ful�ll user expectations. We

show that stalling, quality switches, and resource consumption can be reduced

while the video quality can be increased signi�cantly by using di�erent adaptation

techniques. For this, we use simulations, measurement studies, and analytical

models. The major insights of this monograph are that there are many parameters

in video streaming that can easily be �ne-tuned to reach the optimal con�guration

for a given scenario. The more complex the video streaming application becomes,

from classical streaming to adaptive streaming to 360◦ video streaming, the

more parameters are added. This also means, that the more complex such an
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application is, the greater the di�erence between standard solutions and optimal

solutions becomes. Another important aspect of this work is how we link the

QoE to user speci�c behavior and engagement. Not only do we determine a

strong correlation between the QoE and the User Engagement, but we identify

the scenario in which a video is viewed as a signi�cant indicator as to which

QoE model should be applied. In addition, we make use of user data such as head

movements and audience retention to increase the video quality and to reduce

the data consumption in video streaming. Finally, we �nd that QoE fairness,

which is currently ignored by most video service providers and ISPs, can be

realized without decreasing the average QoE.

As a �rst step, we investigate how di�erent bu�er settings and policies impact

stalling duration and frequency using analytical models and empirical measure-

ment studies. This also gives us an insight into the user’s QoE and engagement.

We are able to show that the bu�er dimensions must be selected according to the

user scenario. For example, for video browsing we recommend to start playing a

video after 1-2 s of video content is downloaded while this value lies at 2-4 s for

normal video streaming. In scenarios with high bandwidth, we recommend to

limit the bu�er size to avoid wasted tra�c in the case of abandonment. Further-

more, we �nd a strong correlation between the QoE and the User Engagement

in video streaming.

In the third chapter, we consider adaptation related aspects besides the bu�er

that can be optimized in HAS. We start with an analytical approach which

allows us to derive KPIs of HAS. The remainder of the chapter presents quadratic

programs that model HAS in detail and optimize video quality, switches and

stalling. In an investigation of YouTube download traces, we observe that 95%

of stalling events could have been avoided with di�erent adaptation decisions

while keeping the initial delay below 10 s. We demonstrate that it is possible

to reduce the number of switches of an optimal solution strongly while only

sacri�cing little in term of video quality. Using three approaches to fairness, we

show that the video quality can be increased by 0.29 quality layers in average

while resulting in fairer QoS on the application layer. We adapt our optimization
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approach to 360◦ and use it to identify the potential tra�c savings that could be

achieved using three di�erent approaches to viewport prediction. Our results

show that a statistics-based viewport prediction should be used in VODs and

a extrapolation-based approach should be used for live streaming. Machine

learning-based approaches for viewport prediction still require more research.

The fourth chapter focuses on energy and data conservation in mobile net-

works. As a �rst approach we investigate the degree to which Internet tra�c

be cached at WiFi hotspots. Identifying that most videos are encrypted during

transmission and that there is little anyone besides the video service provider can

do to cache these videos at the edge, we turn our gaze towards other solutions

to reduce the data consumption in video streaming. As such, we evaluate the

behavior and interactions of mobile YoMoApp users and detect that many user

interactions are correlated. For example, users who leave the full screen mode

of a video are very likely to abandon the video within seconds. This can be

used to limit the amount of new video segments that are downloaded into the

bu�er, after leaving full screen, thus reducing the average wasted tra�c. We then

develop a new adaptation algorithm that uses video abandonment statistics to

conserve data and energy in mobile networks. in a simulation, we were able to

show that the algorithm is able to save up to 25% of energy in WiFi networks,

and 35−40% of energy and 50% of wasted tra�c in LTE networks compared to

another adaptation algorithm. At the same time, it does not perform signi�cantly

worse in terms of video quality and stalling, except for a single scenario.

For practical purposes, our results show that with changes at the video client

QoE can be increased while being more resource e�cient. An increase in QoE

and a reduction in energy consumption means that users are likely to spend more

time on video platforms which is in the best interest of video service providers.

Since most users use the standard client o�ered by the video service provider,

it is the providers responsibility to implement changes we recommend in this

work.

For further research, this work is an important milestone for the optimization of

QoE, not only in video streaming but also in applications that use video streaming
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as their foundation, such as video conferencing, virtual reality, augmented reality,

and cloud gaming. Future work could extend our optimization problems to

include such technologies and adapt our analytical models for them. In the future

new technologies will emerge that will be even more data intensive than video

streaming. For these applications similar approaches will be necessary as we

have presented in this work. For applications with low latency requirements, it

is very important to develop optimized adaptation algorithms in order to deliver

video streaming with high user perceived QoE.
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In this measurement study, we developed a testbed in which multiple clients

use a shared bottleneck. The implementation is done using virtual machines in

order to have a �exible setup. So, the number of clients is only restricted by the

available hardware, especially memory and processing capacity. We were able

to run up to four clients in parallel. The clients are running Ubuntu Linux with

a Chromium web browser. With little e�ort, the clients could be replaced with

arbitrary devices running a standard web browser, for example smart phones.

The test setup consists of multiple clients that all share the same bottleneck.

A control-server manages the experiments, provides the con�gurations of the

clients and collects the results. The bottleneck is implemented via a bandwidth

limiter that connects the clients and the control server to the Internet with a

bandwidth of 1 Gbit/s.

As in the YouTube Player the video source cannot be changed, we use a video

directly from YouTube
1

. YouTube provides videos in di�erent video codecs and

container formats (e.g., 3GP, VP9, WebM) and quality levels, in order to give

suitable versions for di�erent devices [207]. In our case, the browser Chromium

selected only the VP9 version of the test video. Furthermore, videos are trans-

mitted via QUIC over UDP instead of TCP in Chromium. As we are performing

a steady-state analysis, we use a long video. It has duration of 64 minutes, and

comes in six di�erent quality representations, going from the lowest quality

144p to full HD resolution 1080p. For more information on the quality levels see

Table A.1.

1

https://www.youtube.com/watch?v=7ojfoBmR1fw
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Table A.1: Quality levels of the test video. All videos come with 30 frames per second.
In our test video, the video and audio are stored independently. The Itag
identi�es the resolution and bit rate of the YouTube video.

Itag Resolution Bit rate File size

249 audio (50k) 53 kbit/s 20.81 MB

250 audio (70k) 72 kbit/s 27.54 MB

251 audio (160k) 139 kbit/s 55.13 MB

278 144p 113 kbit/s 38.11 MB

242 240p 224 kbit/s 72.35 MB

243 360p 413 kbit/s 140.39 MB

244 480p 764 kbit/s 207.96 MB

247 720p 1515 kbit/s 279.89 MB

248 1080p 2656 kbit/s 390.96 MB

Table A.2: Characteristics of the bandwidth scenarios given in kB/s.

Scenario Mean Std. Dev. 10
th

/90
th

Perc. Min/Max

Bus 244.7 164.1 34.6/499.6 25.3/773.3

Tram 100.4 62.4 23.2/169.3 53.5/824

The bandwidth is limited using bandwidth traces, which re�ect real-world

commuting scenarios using di�erent means of transportation. We use two dif-

ferent bandwidth traces, both recorded by Riiser et al. using a notebook and a

3G modem to determine the download speed a GPS module to determine the

location[92]. The �rst bandwidth trace was recorded during traveling with a bus.

This scenario has an average bandwidth of 251 kB/s. The second bandwidth

trace was recorded while commuting with a tram, it has a signi�cantly lower

average bandwidth of 103 kB/s. Details about these bandwidth scenarios can be

found in Table A.2. These bandwidth traces are replayed using the built-in tool
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Table A.3: Bandwidth con�guration of the experiments. In case of variable band-
width, the bandwidth scenario is multiplied with the given factor. For
constant bandwidth, the average of the bandwidth scenario is used.

# of

Browser

Bus Tram

clients Var. Const. Var. Constant

1 Chromium 0.5 122.3 kB/s 0.5 50.2 kB/s

2 Chromium 1 244.7 kB/s 1 100.4 kB/s

3 Chromium 1.5 367.0 kB/s 1.5 150.6 kB/s

4 Chromium 2 489.4 kB/s 2 200.8 kB/s

tc from the package iproute2. Mobile scenarios are of special interest, because

it is di�cult for the video players to adapt to the varying bandwidth. For com-

parison, we repeat all experiments with a constant bandwidth, which is exactly

the average of the bandwidth scenarios. In order to ensure comparability, the

bandwidth is depending on the number of simultaneous clients. This way, each

client has the same bandwidth in all experiments. This means, that the video

quality with multiple clients should be at least the same as in case of a single

client. The detailed con�guration of all experiments is listed in Table A.3.

The procedure of the experiments is as follows: The clients simultaneously

start to play the same video using the standard YouTube video player embedded

in a website. The window of the YouTube player has a width of 1920px, so that

the video player will choose all available video resolutions up to 1080px. In

previous experiments we found, that the YouTube player does not select high

video resolutions if the window size is too small. During the playback, the client

records the behavior of the video player. As soon as the playback has �nished,

this information is transmitted to the Control-Server. Then, the playback of the

video is restarted. The cache of the web browser is deactivated, so that the video

has to be completely retransmitted. During the playback, the Bandwidth-Limiter
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controls the throughput according to the current bandwidth scenario. When it

has reached the end of the bandwidth trace, it starts all over again.

Table A.4: Number of repetitions for each experiment. As the players play indepen-
dently, in one experiment there are di�erent repetitions for each player.

Scenario # of players

# of runs

Var. bandw. Const. bandw.

Bus 1 131 11

Bus 2 95-96 46

Bus 3 18-20 23

Bus 4 12 19

Tram 1 28 19

Tram 2 27 45

Tram 3 57 18

Tram 4 19 39

In order to get statistics about the behavior of the video players, the playback is

repeated numerous times. The exact experiments and their number of repetitions

is listed in Table A.4. Due to stalling, some players can have more repetitions

than others. This span is also indicated in this table. Using the JavaScript API of

the YouTube player, we collected the following information for each player:

• the number and duration of stalling events,

• the quality level in which the video was played and

• the number of quality adaptation events
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B
C
oe�

cients
ofC

orrelation
for

Section
4.3

coef. of corr. user eng. stall ratio stalls stall dur. full screen rotations seeking

user eng. - -0.0828 -0.0199 -0.0113 0.0967 0.1502 -0.1018

stalling ratio -0.0828 - 0.9520 0.9782 -0.0109 -0.0099 0.0821

stalls -0.0199 0.9520 - 0.9484 0.0240 0.0292 0.1303

mean stall dur. -0.0113 0.9782 0.9484 - 0.0092 0.0173 0.0742

full screen 0.0967 -0.0109 0.0240 0.0092 - 0.6957 0.0670

screen rotations 0.1502 -0.0099 0.0292 0.0173 0.6957 - 0.0261

seeking -0.1018 0.0821 0.1303 0.0742 0.0670 0.0261 -

Table B.1: Spearman coe�cient of correlation between interesting measures. Values greater than 0.2 are marked
boldly.

1
6
8
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