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The Road Not Taken

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I–
I took the one less traveled by,
And that has made all the difference.

– Robert Frost
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1 Introduction and Basics

1.1 Overview of the Results

In this dissertation we show an extended version of the theorem of Bezout
(Lemma 1.2), give a new criterion for the tightness of a completely decom-
posable subgroup (Theorem 2.1), derive some conditions under which a
tight subgroup is regulating (Corollaries 2.2 and 2.3) and generalize a the-
orem of Campagna (Theorem 2.5). We give an example of an almost com-
pletely decomposable group, all of whose regulating subgroups do not
have a quotient with minimal exponent (Example 2.6).

We show that among the types of elements of a coset modulo a com-
pletely decomposable group there exists a unique maximal type (Corollary
3.4) and define this type to be the coset type (Definition 3.7). We give crite-
ria for tightness and regulating in term of coset types (Lemma 3.14) as well
as a representation of the type subgroups using coset types (Lemma 3.15).
We introduce the notion of reducible cosets (Definition 3.16) and show
their key role for transitions from one completely decomposable subgroup
up to another one containing the first one as a proper subgroup (Lemmata
3.19, 3.21 and 3.22).

We give an example of a tight, but not regulating subgroup which con-
tains the regulator (Example 3.38).

We develop the notion of a fully single covered subset of a lattice (Def-
inition 4.10), show that

�
-free implies fully single covered (Lemma 4.11),

but not necessarily vice versa (Example 4.12), and we define an equiva-
lence relation on the set of all finite subsets of a given lattice (Theorem
4.25). We develop some extension of ordinary Hasse diagrams, and apply
the lattice theoretic results on the lattice of types and almost completely
decomposable groups (Lemma 4.28).

1.2 Integers and Rational Groups

The following lemma was originally proven by K. Rogers (Univ. of Hawaii).

Lemma 1.1 Let ��������� be given, non-zero integers with �
	���
������������ . Then there
exists an integer � such that �
	���
������������������ .
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Proof: Factor � � � � ��� such that �
	�� 
�������� � � � and every prime factor of � �
is also a factor of � . By the Chinese Remainder Theorem the system

��� � 
��
	 � ��� � ��� � 
��
	 � ��� �
has a solution � . Then � � � � ��� for some integer � and �
	���
 � ����� �
�
	���
������������ . Hence �
	�� 
 � ��� � ����� , too. Q.E.D.

Lemma 1.2 (Extended Bezout) Let ��������� be three arbitrary integers. Then
there exist two integers � ��� such that �
� � ��� � �
	�� 
�������� and �
	�� 
�� ����� ��� .

Proof: Define � � �
	���
�������� , �� � ����� , �� � ����� . Then �
	���
����� � ��� � � and by
Bezout there exist two integers ��� ����� such that ������ ����� � � � � . Note that
�
	���
���� � � ������� .

Define ��� ����� � � � � and ��� ������� ���� for all integer � . Then ��� �� �!��� �� �
������ �"��� � � ��� and ��� � �"��� � � �
	���
�������� .

By the previous Lemma there exists an � such that �
	���
���� � � � ������� � � ,
because �
	�� 
���� � � ������� . With ��� �!��� ��� � � the claim follows. Q.E.D.

The extended Bezout is applied in a diffent form in this paper: If � and# are two integers, then does there exist an integer � relatively prime to# such that � � � �
	���
���� # � modulo # ? The extended Bezout answers this
question affirmatively.

The following Lemma will be used mostly without reference.

Lemma 1.3 Let $&%(')%+* be a rational group and let ����� be two integers.
Then

a) , -/.0' implies
�-1.0' for relatively prime � and � , and

b)
�
, .0' and

�- .0' implies
�2 3�465 ,87 -�9 .0' , and

c) if
�:<;.0' for all primes =?> � , then ' �A@ ��' � ��B and �DC � ' �A@ ' ���EC � B .

Proof:

a) By Bezout there exist integers � ��� such that � � ����� ��� . Then � , - ��� ��- . With �F.0' the claim follows.

b) By Bezout there exist integers � ��� such that � ���"��� � �
	�� 
�������� . Then
� �-��"� �

, ��G 3�H�5 ,87 -�9, - � �2 3�465 ,87 -�9 , because �
	���
���������I 	�� 
���������� � � .
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c) Let � . ' . Then � � � � with � .0$ and � .�� and �
	�� 
�� ��� � � � . Note
that

�� . ' if and only if � � � � ."' because of part a). So it suffices
to show that

�� .!@ ��' � ��B . Note that �
	���
������ � � � , because otherwise
there would exist a prime = with

�: . ' and =?> � , contradicting the
assumption. By Bezout there exist integers � ��� such that � � � �	� ��� .
Then � , � � � � �� . As , � . ��' and � . $ we have

�� . @ ��' � ��B and
' � @ ��' � ��B . The second claim follows simply by division.

Q.E.D.

1.3 Almost Completely Decomposable Groups

For the sake of self-containment we define some basic notions. For more
details see Mader’s Book [1] Chapter 2. In particular we assume that the
reader is familiar with types and type subgroups. Unless noted otherwise,
we use the notation of [1]. We assume that all torsion free groups in this
paper have finite rank unless noted otherwise.

Definition 1.4 A torsion free abelian group is called completely decompos-
able if it is the direct sum of rational groups.

Definition 1.5 Let 
 be a completely decomposable group and � �
�	��� be a de-
composition basis of 
 .

Then the basis is called adjusted if ����� 
 ��� ��������� 
 ��� � implies ��� 
 ��� ���
��� 
 ��� � for all � ��� .

For every completely decomposable group there exists an adjusted ba-
sis.

Definition 1.6 A torsion free abelian group is called almost completely de-
composable if it contains a completely decomposable group as subgroup of finite
index.

Definition 1.7 A torsion free abelian group is a Butler group if it is the epimor-
phic image of a finite rank completely decomposable group.

Every almost completely decomposable group is also a Butler group.



1 INTRODUCTION AND BASICS 9

Definition 1.8 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Then 
 is called regulat-
ing if there exists no completely decomposable subgroup with smaller index.

The concept of regulating subgroups is due to E. L. Lady.

Definition 1.9 Let � be an almost completely decomposable group. The inter-
section of all regulating subgroups of � is called the regulator of � .

Burkhardt introduced the regulator and has shown that the regulator
of an almost completely decomposable group group is completely decom-
posable and has finite index.

Definition 1.10 Let � be an almost completely decomposable group containing
a completely decomposable subgroup 
 of finite index. Then 
 is called tight
if there exists no completely decomposable subgroup of � that is strictly larger
than 
 .

The notion of tight subgroups is due to Benabdallah, Mader and Ould-
Beddi in [2].

The next definition is an alternative way of defining regulating sub-
groups in more generality for Butler groups and not as in Definition 1.8
only for almost completely decomposable groups.

Definition 1.11 Let � be a Butler group containing a subgroup 
 of finite in-
dex. Let 
 ����������	�
 
 � with � -homogeneous components 
 � . Then 
 is
called regulating if � 

� ��� 
 ��� ��� 

� � for all critical types � .

The following Lemma is due to Mader (1965), quoted in [1] Lemma
1.1.3.

Lemma 1.12 Let � ��� ��� be a direct decomposition of � -modules. Then
���� � 
 � � � � � � � � � ��� � . � �

defines a bijective correspondence between the maps of � 	 ��� 
 � � � � and the set
of complementary summands of � in � . Furthermore, � � �!� � � � 
 � � � � is
an isomorphism.
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2 Tight and Regulating Subgroups

2.1 Tight Criterion

Benabdallah, Mader and Ould-Beddi gave a criterion for tightness [2] Propo-
sition 2.7.(2) which required the verification that all rank-1 summands of
the subgroup in question were pure. Here we give a different criterion
which requires to check the order of elements in a set derived from the
type subgroups.

Lemma 2.1 Let � be an almost completely decomposable group with completely
decomposable subgroup 
 of finite index. Then 
 is not tight if and only if there
exist a critical type � and an element � . � 

� � � 
 � � ��� 

� � of prime order
modulo 
 .

Proof: ”if” It suffices to show that � � � @ 
 ���DB is completely decompos-
able. Split � � �: 
�� � ��� where � .�
 � and � .�
 � 

� � . Note that � ���: 
�� ����� ,
because otherwise � . � � 

� � . As ����
�� � � ����
���� and � � : 
�� � ��� � : 
���� there
exists a natural number � such that � � 
�� � � � � 
 � ��� and �
	���
 � � = � ��� . Then
by Bezout there exist two integers � and � such that ��= � � � ��� . Note that
� � @ 
 ���?� � ��B because � � .�
 . Write �?� � � � �: 
�� � 
 � � ��= � ����� �: 
�� � � � ��� .
As � � 
�� � � � � 
 � � ��� there exists a homomorphism 	 . � 	 � 
 
 � � 
 � 

� � �
such that 	 
�� � � � � � . Hence = 
 � �F� ����� � � � � � � � 
 � �
	 � .�
 � 
 � �
	 � % 
 .
But then 
 � 
 � ��	 � is not pure in � . As > � � 
�> � = .�� it is clear that
� � 
 
 � 
 � �
	 � ���� �������� � 
 � . As � �
	 is an isomorphism of 
 it is clear
that 
 
 � 
 � ��	 � ���� is completely decomposable and hence � , too.

”only if” If 
 is not tight, then by [2] Proposition 2.7 (2) there exists a
rank-1 summand of 
 which is not pure. Assume then that 
 � � � 
 �
where 
 � is not pure in � . Then there exists an element � . 
 � �� � 
 �
of prime order over 
 � and 
 . Set � � � ��� 
 � � � ����
 
 � � and note that
� . � 

� � . Let # � ����� � � � 
 . Then # � � . 
 � and � ;. 
 � imply � ;.

 � � ��� 

� � . Hence � .!� 

� � � 
 � � 
 � 

� � , as desired. Q.E.D.

As Corollary we obtain [2] Lemma 4.5.

Corollary 2.2 Let � be an almost completely decomposable group containing a
tight subgroup 
 such that = 
 � � 
�� ��� for some prime = . Then 
 is regulating
in � .
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Proof: Assume for contradiction that 
 was not regulating. Then there
exists a critical type � such that � 

� � ;� 
 � � ��� 

� � . Let � . � 

� � � 
 � �
��� 

� � . Then � ;. 
 and by = 
 � � 
�� � � we have that � has prime order
over 
 . By the previous lemma 
 is not tight then, a contradiction. Q.E.D.

We extend the previous corollary to a more general case. The proof is
shortened significantly by an idea of Otto Mutzbauer.

Corollary 2.3 Let � be an almost completely decomposable group containing a
tight subgroup 
 such that � 
 � � 
�� ��� for some square free integer � . Then 

is regulating in � .

Proof: Assume for contradiction that 
 was not regulating. Then there
exists a critical type � such that � 

� � ;� 
 � � ��� 

� � . Let � . � 

� � � 
 � �
��� 

� � . Let # be the order of � modulo 
 . Then # must be square free.
Let = � � ����� � = � be the prime divisors of # . Then �
	�� 
 �:�� � ����� � �:�� � � � as # is
square free. Hence # � �

�
� � ��� � 
 �:
	 � for suitable integers � � . Define � � � �

� 
 �:
	 � and note that � � has order =D� modulo 
 . As 
 is tight, we know that
� � .�
 ��� � � 

� � for all � , as all � � have prime order. But � � 
 � � � � 
 �:
	 � � � �
� � � � � � and hence � .�
 ��� ��� 

� � , contradicting our assumption. Q.E.D.

The following corollary is also found in [2] Corollary 4.6.

Corollary 2.4 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 such that � 
 � � 
�� ��� for some square
free integer � . Then 
 is contained in a regulating subgroup � of � such that
� 
 � ��� � ��� .
Proof: The completely decomposable group 
 is contained in some tight
subgroup � of � . Note that � 
 � � 
�� � � implies � ��% 
 %
� and hence
� 
 � ��� � ��� . So � is regulating by the previous corollary. Q.E.D.

2.2 Transitions to Regulating Subgroups

In [4] Theorem 2.5 Campagna has shown that the existence of a cyclic quo-
tient implies the existence of a cyclic regulating quotient. We generalize
this to the case of more than one generator and thus answer a question
posed by Benabdalla, Mader and Ould-Beddi in [2] Question 4.1.(2).
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Theorem 2.5 Let � � @ 
 ��� � � ����� ��� � B be an almost completely decomposable
group containing the completely decomposable group 
 of finite index. Then
there exists a regulating subgroup � with ��� @ � ��� � � ����� ��� � B .
Proof: Let 
 be not regulating. We will only show that there exists a com-
pletely decomposable subgroup 
 �

with ��� @ 
 � ��� � � ����� ��� � B and > � � 
�> �
> � � 
 � > . The claim follows by induction, as > � � 
�> is finite.

We will first construct a completely decomposable subgroup 
 �
, then

we show that ��� @ 
 � ��� � � ����� ��� � B , and in the last section we show that 
 �

has smaller index in � than 
 .
Let 
 � � � ����	�
 
 � be a homogeneous decomposition of 
 . As 
 is

not regulating, there exists a critical type � such that � 

� � ;� 
 � � ��� 

� � .
Hence there exists a �". � 

� � � 
 
 � � ��� 

� � � . Note that also � � 
 � %
� 

� � ;� 
 � � ��� 

� � . So every element in � � 
 � witnesses that 
 is not
regulating.

For later purposes we are now selecting a special element from � � 
 � .
Define �
 � � ���� � 
 � . Then 
 � 
 ��� �
 . As ��� � � 
 � �� � � are generators
of � � 
 we know that there exist integers � � � ����� ��� � such that � � 
 �
�
�
� � � �D� � � � 
 . Then �
� �

�
� � � �D� � � � � � ����	�
�� � . 
 with � � . 
 � . Our

special element � . � � 
 � is defined as follows: � � � � ��� � .!� 

� � � 
 
 � �
��� 

� � � . As � � 
 �

�
� � � �D� � � �6�	� � . �
 we obtain

��. @ �
 ��� � � ����� ��� � B �
The particular property of � is that the � -component of � is solely a lin-
ear combination of the � -components of the generators ��� � � � . No element
of 
 � is needed for that. This is helpful, because 
 � will be replaced later
and we do not want the replacement to affect � .

Now we split � in two components � and � , which we will use as build-
ing bricks for the construction of a new � -homogeneous component of 
 .
Define 	�� > � � 
�> and let � � �


 
 � � ����	�
�� � � with � � . 
 � . As �0. � 

� �
we know that � � ��� for all � ;
 � . So we can set � ��� � , � � � ��� ��� � and
we obtain � � �


 
�� � ��� . As ����
�� � � ����
���� and as 	 is finite there exists an
integer � such that

� C � � .�
 � � � 
 � C � � � � � � 
���� � � � �: 
 � C � � � ������	���� I I�=?> 	 �
Note that � is not a multiple of 	 , because then we would have

�

 � . 
 �

and � � �

 ��� �


 � .�
 � � ��� 

� � , which cannot be.
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Define � � � � � C � � and � � � ��� . * > � � � .�
 � � . Then obviously ��� � % 
 �
and

�: ;.�� for all =?> 	 , because � � �: 
�� � � � � for all =?> 	 . Note that ��� � is a
pure subgroup of the homogeneous group 
 � , so by [3] 86.8 we know that

 � � ��� � ��� for some complement ��� 
 � . By [3] 86.7 we know that �
is completely decomposable.

Define 	 � � � �
	���
 	 ����� . As � is not a multiple of 	 , we know that 	 �

is a
proper divisor of 	 . Note that

�

�� � .�
 � , as 	 � > � . Together with

�

�� 
�� � ��� �



 � � . � we get that
�

 � � .�� . By the extended Bezout (Lemma 1.2) there

exist two integers � and � such that

	 � �!� � �"� 	 ��� � �
	���
 �
��	 � ��� �

Define � � � � �

 
�� � ��� � ��� � . Then 	 � �!� � �
� � � � 	 � � � 
�� ��� � 	 � � � �
� � �

	 � � � � � � and

� � �
	 � � � 	

�

	 �
� � 	

�

	
�
� � � � �

	 � �
	 �

The last term shows the intention of the process. The summand ��� � of 
 is
to be rotated ( � � �� � � �/� �


�� � ) and shifted (

 �

 ). We want to show that ��� � can

be replaced by � � to obtain a new completely decomposable subgroup
of � .

We get � � ��� � �

 
�� � ��� � � ��� � � 
 	 � � 	?� � �
 
�� � ��� � ��� � 
 �


 
�� � ��� �
� 
�� � ��� � ��� � 
 �


 
�� � ���6� ��� and
�

 � � � �


 
���� ���6� � �

 � � . So we can write

�
	 
�� � ����� �

	 � ���"� �
	 � � �

Note that for all primes =?> 	 we have
�: ;. � and hence � � �: 
�� � � � � �

� ���: 
 �

�� ��� . This implies ��� 
�� � � � � � 
 �


�� ��� and hence � �

�� � % � . We have



 � � � � 
�� � � � �

 � ��� � %���� � � � � �


 � � % � 

� � . Also we know that ��.!� 

� � .
By Lemma 1.3 c) we find � � % � 

� � . Now we define


 � � � � � ��� � �
 � � � � � @ 
 � � �	 � ����� � � ����� ��� � B ��� � � � � @ 
 � ��� � � ����� ��� � B �

Then 
 � % � and hence � � ��� % � . We want to show that � � � . This is
done in two steps, first we show � � � � and then � � � � .

Note that ����% 
 � 

� �
% 
 � % � � . By definition we have
�

 � � . � � .

Again by Lemma 1.3 c) we obtain � �

 � � % � � . We know that � ��% 
 � % � �
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and that



 � .<$ . Together we obtain




 � � ��%�� � and hence � 
�� � � � �


 � ��� %
� � . With � �


 � � % � � together we get ��� � % � � . But then 
 � ��� � � � � �
 %
� � and thus � � ��� .

Remember that we chose � such that � .A@ �
 ��� � ����� ��� � B % � . Hence
� � �


 
�� � ��� �
�

 � � ��� �


 � � . � . Then
�

 � � . $ �(% 
 � %�� implies

� �

 � � . � . As �
	���
 �
��	 � ��� we know that �
	���
 �
��	 � � ��� and by Lemma � � �

b) we get that
�

 � � . � . Hence � ��� � � � �A@ 
 � ��� � � ����� ��� � B .

It now remains to show that the index of 
 �
in � is smaller than the

index of 
 . We will show this by defining a subgroup � that is contained
in both 
 and 
 �

and then calculating the index of � in 
 and 
 �
.

Define � ��	 � � � � � � � �
 . Obviously we have � % 
 ����� � � � � �
 .
Note that 	 � � � � � 
 	 �A��� ��� � . Then � � 
 	 �A��� ��� � � � � �
 . As
��� % 
 � 

� �<% �
 we have that � � 	 � � � � � �
 . Then obviously
� % 
 � � � � ����� �
 . So � % 
�� 
 �

. Now we calculate > 
 � � > and
> 
 � � � > . As

�:<;.!� for all =?> 	 �

we have 	 � ��> � � 	 � � >
� > 
 � � > . As
�:<;.!�

for all =?> 	 we have 	 � > � � 	 � >��&> 
 � � � > . With > � � 
�> > 
 � � > �&> � �

 � > > 
 � � � > we get > � � 
 � > � 
 �


 > � � 
�> and hence > � � 
 � >�� > � � 
�> .
Q.E.D.

In [2] there was also the question, whether the existence of a tight sub-
group with a quotient of a given exponent implies the existence of a regu-
lating quotient with an equal or smaller exponent (Question 4.1.(1)).

Example 2.6 Let = ��� � � ���
�
	 ��� be different primes. Let


 �!* 5
� 9 � � � * 5�� 7 � 9 � � � * 5
� 7 � 9 ��� � * 5 � 9 ��� � * 5
� 9 ��� �

� � � �
= � 
 =

� � � � � � ��� � = � ��� � � � � � �
= � 


� � � ��� � � � �A@ 
 ��� � ��� ��B �
We claim that 
 is tight in � with ��� � 
 � � 
�� � = � and that ��� � 
 � ��� � � = �
for every regulating subgroup � of � . Hence the regulating quotients do not have
minimal exponent, although they have minimal order.

The claims will be verified at the end of section 3.2.
What makes this example remarkable is the fact that it shows that

regulating subgroups may have the minimal property with respect to in-
dex, but not necessarily with respect to exponent. Intersecting all tight
subgroups with minimal index (that is regulating subgroups) yields the
(index-)regulator. Similarly one could ask about the intersection of all tight
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subgroups with minimal exponent, which we call the exponent-regulator.
Except for the obvious fact that the exponent-regulator is a characteristic
subgroup, many properties are still open to research.

3 Coset Types and Reducible Cosets

3.1 Carriers and Cutted Elements

Definition 3.1 Let 
 be a completely decomposable group with decomposition
basis � � �	��� such that 
 � � � ' � � � for suitable $ %A' � % * . Let � . * 
 �
� � * � � with � � � ��� �8� � . Then we define

�������	�
� 
 � � � � ��� > � � ;��� �

to be the carrier of � with respect to the basis � �
�	��� ,

 �������
�
� 
 � � � � ��� > � � ;.0' � �

to be the real carrier of � with respect to 
 and its basis � �
� ��� , and

��� � �������
�� 
 � ��� �
� ������� ������ 5 � 9

� �8� � �

Remark 3.2 Note that � � 
 � ��� � � 
 � � � 
 , regardless of the choice of the
basis, because � � ��� � � 
 � ��� � � ���� � 5 � 9 � � � � � ��� � ��� � � � � � .�
 .

Lemma 3.3 Let 
 be a completely decomposable group with decomposition basis
� � � ��� . Let � ��� . # C � 
 with # . $ and � � 
 � � � 
 . Then the following
hold (always using 
 and � � � ��� for all carriers and cuts):

a)
� 
 ��� � 
 � � ��� 
 
 � � % � 
 � � ,

b) ��� 
 � ���! � �#" 5 � 9 ����
 � � � ,
c) ��� 
 ��� � 
 � � � 
 ����
 � � ,
d)

� 
�� ��$ 
 
 � � ,
e)

��� � 
 ��� � 
 � � � � ��� � 
 � � and

 
 � ��� � 
 ��� � 
 � � ��� � 
 ��� � 
 � � � ,
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f)

 
 � ��� 
 
�� � and ����
 ��� � 
 � � ��� ����
 ��� � 
�� � � ,

g)

 
 � � � % 
 
 � � for all � .<$ .

Proof:

a) Follows from the definition of
��� � 
 � � and from the fact that � � ;. ' �

implies � � ;��� .
b) ��� 
 � � 
  � �#" 5 � 9 ����
 � � � is obvious, and the equality is due to the direct

sum � . � � ' � � � .
c) Follows with a) and b).

d) Let � � � � � ��� � 
 � � . Then � .�
 because ��� 
 � � � 
 � ��� � 
 � � � 
 .
We now compare

� 
�� � � � 
 � � ��� � 
 � � � with
� 
 ��� � 
 � � ����� 
 � � . Let � �

� ��� � � � and
��� � 
 � � � � ��� � � � . Then � � . ' � and � � . 
�* � ' � ����� � �

for all � . If �<. � 
 ��� � 
 � � � , then � � . * � ' � and � � � � � . * � ' � and� . � 
 ��� � 
 � � � � � . Hence
� 
 ��� � 
 � � � � � $ � 
 ��� � 
 � � � .

e) From the definition of
��� � 
 � � it is clear that

��� � 
 ��� � 
 � � � � ��� � 
 � � .
Then


 
 � ��� � 
 ��� � 
 � � ��� � 
 ��� � 
 ��� � 
 � � ��� 
 
 ��� � 
 � � � .
f) Let � � � ��� � 
 � � and � � � ��� � 
�� � . Using d) and symmetry we get� 
 � � � $ 
 
�� � � and

� 
�� � � $ 
 
 � � � . By e) we know that
� 
 � � � � 
 
 � � �

and
� 
�� � ��� 
 
�� � � . Hence


 
 � � ��� � 
 � � � $ 
 
�� � ��� � 
�� � � $ 
 
 � � � and
 
 � � � � 
 
�� � � . Again by e) we have

 
 � � � 
 
 � � � and


 
�� � � 
 
�� � �
and hence


 
 � � � 
 
�� � .
g) Let � � ���� � � � �8� � . Assume that � . 
 
 � � ��� ��� > � � � ;. ' � � . Then

� � � ;.+' � and hence � � ;.+' � . So � . 
 
 � � � ����> � � ;.+' �	� and
 
 � � � % 
 
 � � .
Q.E.D.

Corollary 3.4 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let � �
�	��� be a decomposi-
tion basis of 
 .

Then for every coset of � modulo 
 there exists a type � which is the unique
maximal type contained in the typeset of the coset, and there exists a unique min-
imum carrier which is a subset of the carrier of any element in the coset.
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Proof: Clearly � % # C � 
 for some # . $ . By part d) of the previous
lemma we know that


 
 � � is the unique minimum carrier of that coset.
With the help of part b) we know that smaller carrier implies greater or
equal type. Hence a unique minimal carrier implies a unique maximal
type. Q.E.D.

Corollary 3.5 Let 
 be a completely decomposable group and � � 
 a coset of
finite order. Then all cosets that generate @�� � 
 B have the same coset carrier
(with respect to a fixed decomposition basis) and the same qualified coset type.

Proof: Let � � 
 . @�� � 
 B be a coset such that @ � � 
 B � @�� � 
 B .
Then also � . @ � � 
 B and both cosets are multiples of each other. Write
� � 
 � � � � 
 and � � 
 � � � � 
 with � ��� .<$ . Then � � 
 � � � � � 

and by Lemma 3.3 f) we know that


 
 � � � 
 
 � � � � . Likewise we obtain
that


 
 � � � 
 
 � � � . By Lemma 3.3 g) we know that

 
 � � $ 
 
 � � ��$ 
 
 � � � � .

Hence

 
 � ��� 
 
 � � ��� 
 
 � � � � � 
 
 � � and

� 
 � � 
���� � 
 � � 
�� . Hence
also ����
 ��� 
���� ����
 � � 
�� . Q.E.D.

Lemma 3.6 Let 
 � � �� � � ' �8� � with # � -basis � � � ��� . Let � ��
 be a coset of or-
der # � . Then there exists a representative � . � � 
 such that ��. �

��� � �� � � $ � �
and

� �����	�
� 
 � � % � �����	�
� 
 � � .
Proof: Write � � �

��� ���� � � � �8� � with � � . ' � . Then � � � � �
� � with � � . $ ,

� � . � and �
	�� 
 � � � � � ��� � . Define � � I 	�� �� � � � � . Split � ��� � ��� such that
�
	���
 # ������� � � � and �8=�> =?> � � � % �8=�> =?> # � � . Then �
	���
�� � ������� � � and
there exists an integer � such that ����� � � 
 # � � . Hence ����� � ."� � 
 and
����� � � . ' � is a fraction that has only prime divisors which are also prime
divisors of # � . Note that

� �����	�
� 
 ����� � � � � �����	�
� 
 � � .
So WLOG we may assume that all prime divisors of � � are prime di-

visors of # � . Define 	 � � � > ' � � # ��' � > and �	 � � � # ���
	 � . With the # � -basis
property of � � � ��� we conclude that ' � �	 � � ' � . Note that � � .!' � implies�
� � .A' � and

�: . ' � for all prime divisors of � � . Hence � � contains only
those prime divisors of # � , for which ' � is divisible. In particular we have
�
	���
 � � ��	 � ����� .

For every � � we define some 	 � .&$ as follows: If � � � � then set
	 � � � . If � � ;� � , then let 	 � be an integer that solves � � ��	 � 	 � � ��
 � � � .
A solution exists, because �
	���
 � � � � � � � � and �
	���
�	 � � � � � � � . Note that



3 COSET TYPES AND REDUCIBLE COSETS 18

�
����� � � �� � �

� ��� � � � ."' � as the denominator contains only primes, for which ' �
is divisible.

Define � � � ���� � � � ��� � � � � � . Then � . 
 and � ��� .!� � 
 . We find

� � � � �
��� ���� � �

� � �
� � � ��� � ��� � � ��� � � � �

��� ���� � �
� � ��� � � � �� ��� � � . �

��� � �� � � $ � � .
Note that

� �����	�
� 
 � � ��� % � �������
� 
 � � as 	 � ��� if � � ��� . Q.E.D.

3.2 Coset Types

Definition 3.7 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let � �
�	��� be a decomposi-
tion basis of 
 . Let � � 
 be a coset of � modulo 
 . Then

����
 � � 
�� � � ����
 ��� � 
 � � �
is called the coset type of � � 
 and

� 
 � � 
�� � � 
 
 � ��� � 
 ��� � 
 � � �
is called the coset carrier of � � 
 . A coset type � � ����
 � � 
�� is called true,
if there exists a � . � 
 � � 
�� with ����
 � � � � � . Otherwise the coset type shall
be called false. By qualified coset type we mean a coset type together with the
additional property ’true’ or ’false’ given.

Remark 3.8 By Lemma 3.3f) , coset type and coset carrier are well defined. If
the coset type is not a critical type, it cannot be a true coset type, because the
components of � have only critical types.

Lemma 3.9 Let � be an almost completely decomposable group containing a
completely decomposable group 
 of finite index. Let � . � and let � �
� ��� and
� � � ��� be two decomposition bases of 
 with @ � � B �� � @ � � B �� for all � . Then

�������	�
� 
 � � � ��� � �	�
� 
 � � � 
 �������
�
� 
 � � � 
 � � �	�
�

� 
 � � � ��� � ��� � �������
�� 
 � � � ��� � � � �	�
�� 
 � � �
As a consequence,

��� �������
� 
 ��� 
���� ��� � � �	�
� 
 ��� 
�� � ��� � �������	�
� 
 ��� 
�� � ��� � �	�
� 
 ��� 
�� �
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Proof: Write ' � � � � @ � � B �� � @ � � B �� � ' �� � � . Then � � � � � � � with � � .
* � � � ;� � ��' � � � � ' �� � and ' � ��' �� % * . Let # � � � ��� � � � 
 and write � ��
��� ���� � � � � � � � �

��� ���� � � � � � � with � � . ' � and � � . ' �� . Then � � � � � � � � �
and � � � � � � � . As � � ;��� for all � we get�������	�
� 
 � � � ����> � � ;��� � � ��� > � � � � ;��� � � ����> � � ;��� � � ��� � �	�
� 
 � �
and
 �������
�

� 
 � � � ��� > � � ;.0' �	� � ����> � � � � ;.0' � � � � � ����> � � ;.0' �� � � 
 � � ���
�
� 
 � � �

Then ��� � �����	�
�� 
 � � � ������ ������ 5 � 9
� �8� � � ������ ������ 5 � 9

� � � � � ��� � � � �	�
�� 
 � � �

��� �����	�
� 
 ��� 
�� � ����
 ��� � �������
�� 
 � � � � ��� 
 ��� � � � �	�
�� 
 � � � � ��� � � �	�
� 
 ��� 
�� �
and �������	�
� 
 ��� 
�� � 
 �������
�

� 
 � � � 
 � � �	�
�
� 
 � � � ��� � �	�
� 
 ��� 
�� �

Q.E.D.

Corollary 3.10 Let � be an almost completely decomposable group containing
a completely decomposable group 
 of finite index. Let � � 
 be a coset of �
modulo 
 . Then coset type and coset carrier depend only on the decomposition
of 
 into rank-1 summands.

Proof: Once 
 is decomposed 
 � � �� � � 
 � where � � 
 � � � , the de-
grees of freedom for choosing a corresponding decomposition basis have
been greatly reduced. Any two sets � � �	��� and � � � ��� which are supposed to
correspond to the given rank-1 decomposition of 
 , must have @ �
� B �� �

 � � @ � � B �� . Hence by the previous Lemma, carriers and cuts are not
affected when � � �	��� is changed into � � � ��� and vice versa. Hence the de-
composition of 
 already determines uniquely carriers and cuts. Q.E.D.

Definition 3.11 Let � be an almost completely decomposable group containing
a completely decomposable group 
 of finite index. Let 
 � � �� � � 
 � be a
decomposition of 
 into rank- � summands � 
 � ��� . Let � � 
 be a coset of �
modulo 
 . Then we define��� � ���
� 
 ��� 
���� �������	�
� 
 ��� 
�� � ��� � � �	�
� 
 ��� 
�� � ��� �����	�
� 
 � � 
��
where � � �	��� is an arbitrary basis of 
 such that @ � � B �� ��
 � for all � . Wellde-
finedness follows with the previous corollary.
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Lemma 3.12 Let � be an almost completely decomposable group containing a
completely decomposable group 
 of finite index. Let � � 
 be a coset of �
modulo 
 . Then the qualified coset type ����
 � ��
�� true/false does not depend on
a given decomposition of 
 .

Proof: It suffices to show that the qualified coset type does not change if
one component of 
 is rotated, as it is known that every transition from
one decomposition to another can be broken up into 1-component rota-
tions.

Let 
 � � �� � � 
 � where 
 � � ' � � � for some $+%(' � % * . We as-
sume WLOG that � � �	��� is an adjusted basis. WLOG we can assume that
� � ��� � � � �	�
� 
 � � and that we rotate component number 1. Let � � ����
 
 � �
and let ��� ��� �����	�
� 
 � � 
�� . Define � � � � � ��� > ����
 
 � � � � � and sim-
ilarly � �� � , etc. Write

�
 � � �� � � 
 � such that 
 �
�
 � 
 � . We are

now examining all possible complements of
�
 in 
 . By Lemma 1.12 we

know that all possible complements of
�
 in 
 are of the form 
 � 
 � � 	 �

where � 	 � 
 
 � � �
 � � � �� � � � 	 � 
 
 � � 
 � � � � � �� � 7
� ������� � 	 � 
 
 � � 
 � � �

� 	 � 
 
 � � � � �� � 7
� ������� 
 � � .

Set 
 �� �
� 
 � 
 � ��	 � � ���


 � � ;��� and � �� �
� � � 
 � ��	 � � ���� � � ;��� . Then


 � � �� � � 
 �� and 
 �� �)' �8� �� , that is the same rational groups � ' �	��� are
used.

Write � � �
��� � �� � � � � � � . As � � ��� � � � ���
� 
 � � we know that either � � ���

or # C �� � � ;. ' � for any given � . Write � � 	 � � �� � � � �8� � . Then � � � � for all� .�� �� � and for � � � . So � � � � � � � ���� � � � � � � . We can write � in terms

of the � � �� ��� . Then ��� �
���
	 � � 
 � � � ���� � � � � � � � � � �� � � 
 � � � � � � � � � ��� �

�
���
	 � � � � � ������ � � 
 � � � � � � � � � �� � . From this equation it is clear that �A.
� � � ���
� 
 � ��� # C �� � � ;. ' � � � . � � ���� �
� 
 � � and for all � .�� �� � that
�F. � � � ���
� 
 � ��� �/. � � ���� �
� 
 � � . In particular, if � � � � then � � � �	�
� 
 � � �
� � � �� �
� 
 � � and the qualified coset type remains unchanged. So it remains
to examine the case � � ;� � . This implies � � � . Note that with the new
decomposition � has still a component of type � . The indices in which
� � � ���
� 
 � � and � � � �� �
� 
 � � could differ, all lie in � � � . Hence the coset types,
being the intersections over the types of components that appear in the
real carrier, cannot change, as in both cases there is a component of type �
present, making changes in components with types � � irrelevant for the
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type of the coset.
So it remains only to check, whether the true/false status changes. If

� � � then a component of type � is either present with respect to both de-
compositions or not present, so there is no change. If � � � then the coset
type is true with respect to both decompositions, as both decompositions
have a nonzero component of type � .

So after the rotation has been performed, the qualified coset type is still
the same as before. Q.E.D.

Lemma 3.13 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let � be a critical type and
� � ��� � 
 � � .

Then � .!� 

� � � 
 � � � � 

� � if and only if ����
 � � 
�� � � true critical.

Proof: Let � � �	��� be a decomposition basis of 
 . Write � � ���� � � � �8� � .
Then for all � either � � ��� or � � ;.0' � , because � � ��� � 
 � � .

”If” Assume ����
 � � 
�� � � true critical. Then � � ;��� for some � with
����
 � � � � � . For this � we know � � ;. ' � , hence � ;.�
 � � ��� 

� � . With
����
 � � � ����
 ��� � 
 � � � � � we get � .!� 

� � � 
 � � ��� 

� � .

”Only If” Let ��. � 

� � � 
 ��� ��� 

� � . Then ����
 � � � � � ��� 
 � � 
�� . As
� ;.�
 � � ��� 

� � , we know that there must be some nonzero component of
type � . Hence the coset type is true critical. Q.E.D.

Lemma 3.14 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Then there is the set of
cosets of � modulo 
 with their respective coset types.

a) 
 is regulating in � if and only if there exists no true critical coset type.

b) 
 is tight in � if and only if there exists no true critical coset type among
the cosets of prime order.

Part a) is basically derived from the carrier condition defined in [6]
Lemma 3.2.
Proof:

a) ”Only if” Assume there was a true critical coset type � � ����
 ��� 
�� �
��� 
 ��� � 
 � � � . � � � . Then

��� � 
 � � . � 

� � � 
 � � � � 

� � by Lemma 3.13
and hence � 

� � ;� 
 � � ��� 

� � and 
 is not regulating.
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”If” Assume 
 was not regulating. Then there exists a critical type �
such that � 

� � ;� 
 � � ��� 

� � . Choose � . � 

� � � 
 � � ��� 

� � . As
� � ��� � 
 � � . 
 

� � % 
 � � � � 

� � , we have

��� � 
 � � � � � � .!� 

� � � 
 � �
��� 

� � . By Lemma 3.13 we know that ����
 � � � 
�� � � true critical.

b) ”Only if” Assume that here was a true critical coset type � � ����
 � �

���������
 ��� � 
 � � � 
�� .�� � � with = 
 � � 
�� % 
 for some prime = .
Then

��� � 
 � � � 
 ��� � 
 and hence = 
 ��� � 
 � � � 
�� % 
 . By the
previous lemma

��� � 
 � � . � 

� � � 
 � � � � 

� � . As = ��� � 
 � � . 
 we
conclude that 
 is not tight with Lemma 2.1.

”If” Assume 
 was not tight. Then by Lemma 2.1 there exists a
critical type � and an element �". � 

� � � 
 � � ��� 

� � and a prime
= with =D� . 
 . As �<� ��� � 
 � � . 
 

� � % 
 � � � � 

� � we have
� � � � ��� � 
 � � . � 

� � � 
 � � ��� 

� � . Also =D� � . 
 . With the previous
lemma we get ����
 � � � 
�� � � and = 
 � � � 
�� % 
 .

Q.E.D.

Lemma 3.15 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let � be a critical type.
Then

� 

� ��� 
 �
� ��� � 
 >	����
 � � 
�� 
 � � �

� � 

� ��� 
 �
�
����� 
 >	����
 � � 
�� � ��� ����
 ��� 
�� � � � � I�� � � �

Proof: For the first equation let � .!� 

� � � 
 . Then � can be split � � ��� �
with �0. � 

� � and ��. 
 . Then ����
 � � 
 � and hence ����
 � � 
�� 
 � . So
� . � � 
 is contained in ��� � 
 > ����
 � � 
�� 
 � � . Conversely assume
that � . ����� 
 > ����
 ��� 
�� 
 � � . Then there exists a coset � � 
 such that
��. � � 
 and ����
 � � 
�� 
 � . This implies that there exists some element� . � � 
 � � � 
 with ����
 � � 
 � . Hence

� . � 

� � and with � . � � 

we get � .!� 

� � � 
 .

For the second equation we need to assume a decomposition basis
� � � ��� of 
 . Let �A. ��� 

� � � 
 . Then � can be split ��� � � � with
� .���� 

� � and ��. 
 . Then

� �����	�
�
� 
 � �1% � � � . Hence also

� �����	�
� 
 � � 
��F%� � � . Hence either ����
 � � 
�� � � or ����
 � � ��� � � false, as there is no com-
ponent of type � in the coset carrier of � � 
 . So � . � � 
 is contained in
����� 
 >	��� 
 ��� 
�� � ��� ����
 ��� 
���� � � � I�� � � .
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Conversely assume that � . ��� � 
 > ����
 � � 
�� � � ������
 � � 
�� �
��� � I�� � � . Then there exists a coset � � 
 such that � . � � 
 and either
����
 � � 
�� � � or ����
 � � 
�� � � false. This implies that there exists
some element

� .�� � 
 � � � 
 with either ����
 � � � � or ��� 
 � � � �
and

� �����	�
�
� 
 � �
% � � � . Hence

� . ��� 

� � and with � . � � 
 we get � .
� � 

� ��� 
 . Q.E.D.

Proof: (Of Example 2.6) Let ��� � � ����
 � � � . Note that � � 
 � @�� � � 
 B � @�� � �

 B . So we can easily determine the cosets of prime order in � � 
 . These
are exactly � � = � � � � � � = � � � � 
 with �D� . $ and not both multiples of = .
Then � � = � � � � � � = � � � � 
 � � � �: 
 � � � ��� ��� � � �: 
 � � � ��� � � 
 . Obviously
there is no true critical coset type among these cosets, so by Lemma 3.14
we find that 
 is tight in � . But as =D� � � 
 � �: � 
 = � � � � ��� ��� � � 
 has
coset type � true, we conclude with Lemma 3.14 that 
 is not regulating.

Define � � * 5
� 9 = � � � * 5�� 7 � 9 � � � * 5�� 7 � 9 ��� � * 5 � 9 ��� � * 5
� 9 ��� � and � � � � � .
Then � �(@ � ��� � ��� ����� � B . We rewrite � �)* 5�� 9 
 = � � � � � � ��� � � * 5
� 7 � 9 � � �
* 5
� 7 � 9 ��� � * 5 � 9 ��� � * 5
� 9 ��� � . Setting � � � � � = � � � � ��� ��� we get � � � �: 
 � � � �� � � ��� � and

���!* 5�� 9 � � � � * 5
� 7 � 9 � � � * 5
� 7 � 9 ��� � * 5
� 9 ��� � * 5 � 9 ��� �

� � � �
= � 


� � � � = � ��� � � � � � �
= �
� �
= 


� � � � � � � ��� � � ��� 	 � �
= � 


� � � � � ��� ��� � = ��� � �

� � � �
= 


� � � � � � � ��� � � ��� @ � ��� � ��� � ��� � B �

Note that
�: �
� � � � =D� � � ��� . � . So define � � �� � �: �

� � � and define

�
� � * 5
� 9 � � �� � * 5
� 7 � 9 � � � * 5�� 7 � 9 ��� � * 5
� 9 ��� � * 5 � 9 ��� �

As �
� $ � we know that � ��@ � � ��� � ��� � ��� � B . Rewriting the generators we

obtain

� � � �
= � 
 =

� � � �� � = � ��� ��� �
= 


� � �� � ��� � � � � � �
= � 
 =

� � � �� � � � � ��� � = ��� � �

� � � �
= 
 =

� � � � � � � � ��� ��� �
= 
��

� � � ��� � � = � � �� � ��� @ � ��� � ��� � ��� � B �
Note that =

�
� � � 
 � � � � 
 and hence � ��@ � � ��� � ��� ��B . We now have to

check whether �
�
is regulating in � . Note that � ��� � �A@�� � � �

� B � @�� � � �
� B .



3 COSET TYPES AND REDUCIBLE COSETS 24

It is clear that no linear combination of � � and � � will yield a coset type
��� or � � , as they cannot be seperated - a coset carrier contains either both
or none of them.

There is no coset with a carrier that is equal to � � � , because in order
to obtain such a coset carrier one would have to take a nontrivial multiple
of � � and remove the � � component by adding a suitable multiple of � � . But
the price for removing the � � component would be components of type ��� ,
� � and � � and hence there is no way to obtain a coset carrier equal to � � � .
The same argumentation works for coset type � � .

Now it remains to check, whether there exists a coset with type � � true,
that is a coset with carrier either � � � � � �
��� � � � �
� � � , or � �
��� � � � . Note that
carrier ��� � � � yields coset type � � false. If a linear combination of � � and � �
contains a nontrivial contribution of � � , then we have necessarily compo-
nent 4 in the carrier. So only multiples of � � could have coset type � � .
The problem with � � is the component of type � � . We have to multi-
ply � � with =

�
to get rid of the ��� component. But =

�
� ��� 
 � �: 
 � � � ��� �

which corresponds to coset type � � false. Hence �
�
is regulating in � and

��� � 
 � ��� � ��� = � .
It remains to show that all regulating subgroups have the same expo-

nent. For this purpose we will determine the regulator and see that there
are only = different regulating subgroups that have all the same exponent.

We have seen in the preceeding paragraph that the only critical coset
type was ����
 = � � � � 
�� � � false and that of its nontrivial multiples. So
by Lemma 3.15 we have � � 

����� � 
 � 

����� for all ����� � ����� ��� . Hence the
Burkhardt invariants for these types are equal to 1.
Then ��� 

� � � �&@ 
 � 

� � � � = � � ��B and � � � ����� � �

� 5 � �
� � 5 � 9 � = . Hence we obtain

the regulator � 
 � � � �
� � * 5
� 9 = � � �� � * 5�� 7 � 9 � � � * 5
� 7 � 9 ��� � * 5 � 9 ��� � * 5 � 9 ��� �

Note that all regulating subgroups are of the form

� � � * 5
� 9 � � � �� � � �= 

� � � ��� � 	 � * 5
� 7 � 9 � � � * 5�� 7 � 9 ��� � * 5 � 9 ��� � * 5
� 9 ���

with respective generators

� � � � �
= � 
 = � � �� � � � ��� � ��� � = ��� � � � � � � �

= � 
 =
� � � �� � 
 = � � � � � ��� 
 = � � � � ��� � = ��� � �

Note that � � � has order =
�

for all � as � � : 
 ��= � � � � � for all � . It does not
matter that � � � and � � � are no longer linearly independent for � ;��� .



3 COSET TYPES AND REDUCIBLE COSETS 25

The same argumentation that was used to show that �
� � � � is regu-

lating, works for � � in general. So all � � are indeed regulating and have
exponent =

�
in � .

Q.E.D.

3.3 Reducible Cosets

Definition 3.16 A coset is called reducible if the coset and all its nontrivial
multiples have the same true critical coset type.

Lemma 3.17 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let � � 
 be a reducible
coset. Then

a) all cosets � � � 
 where � � ;. 
 and � . $ are reducible with the same
coset type, and

b) if � is completely decomposable with 
 % � % @ 
 ���DB , then g+K is
reducible with the same coset type.

Proof:

a) The multiples of � � � 
 are a subset of the multiples of � � 
 , so the
”reducible” property carries over.

b) Define � � � > @�� � 
 B�> . As @ 
 ���DB � 
 is cyclic, we can write � �
@ 
 � # �DB for some # .<$ with # > � . Set �

� � � � # and write

� � �
C �
�

� � �

 � # � � 
�� �

��� � � � ��� � � C
�

�

� � �

 � # � � 
�� � �

C �
�

� � �

���� � � # � � 
�� � �

C �
�

� � �

 
���� � # � � � 
�� �

For all � with ��� ;. 
 we have to show that ����
���� � � � � ����
 � �

�� � � � true critical. Note that ��� . � is equivalent to # > � . So
assuming ��� ;. � we know that # ; > � . Hence # ; > � ��� # for all � .
As # > � we get � ; > � � � # for all � . So 
�� � � # � � � 
 ;� 
 for all � .
Hence ����
 
�� � � # � � � 
�� � � true critical for all � , as 
�� � � # � � � 

is not a ’trivial’ multiple in the sense of Definition 3.16. So we get
��� 
������ � � �!��� � � �	����
 
�� ��� # � � � 
�� � � � true critical.
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Q.E.D.

Lemma 3.18 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index.

If � ��
 is reducible then there exists a decomposition of 
 such that

 
 � � �� 
 ��� 
�� contains only one element.

Proof: Let 
 � � �� � � 
 � with � � 
 � � � . Let # � � �&> � � 
�> and let � � �	���
be an adjusted # � -basis of 
 such that 
 � � ' �8� � for suitable $ %!' � % * .
Let � � ����
 � � 
�� .

It is possible that # � � � ���� � � � � with � � . 
 � has more than one
nonzero component of type � . We will first show that this case can be dealt
with by redecomposing 
 � � � � ������� 
 � into different rank-1 summands.
Set

�
 � � � �������� 
 � . Then 
 � 
 � � �
 and we can write # � � ��� � � �� �
with � � . 
 � and

�� � . �
 . As 
 � is a � -homogeneous group, we know by
[3] 86.x that @�� � B � �� is a direct summand of 
 � . The complement of @�� � B � ��

in 
 � is again completely decomposable, so we have a new decomposi-
tion of 
 � , and subsequently of 
 , into rank-1 components such that �
has only one component of type � , that is � . @�� � B � �� . So WLOG we can
assume that

� �����	�
� 
 � � � � � � � � � � .
By Lemma 3.6 we can WLOG assume that � � �

� � ���� � � � � � � with � � .
$ . As � � 
 is reducible we know for all # � ; > � that � . � �����	�
� 
 � � � 
�� .
In particular this implies �
	���
 � � � # � � � � , as otherwise

� �����	�
� 
 � �
G 3�H�5 � � 7 � � 9�� �
�� ;� � , contradicting �F. � �����	�
� 
 � ��� 
�� for all # � ; > � .

Let � � � ��� � �����	�
�� 
 � � . Then we can write � � �
� � ���� � � � � � � . As ����
 � �


�� � ����
 � � 
�� � � and
� �����	�
� 
 � � 
�� � � �������
� 
 � � , we know that � � ��� for

all � with ����
 � � � ;
 � . Note also that � � � � � and hence �
	���
 � � � # � ����� .
Define �� � � � �� � � � � � � Then ����
��� � 
 � and by the adjusted basis prop-

erty we have ��� 
��� � 
  � � �� � 7 � �� � ��� 
 � � �

 ��� 
 � � � . Note also that �� .


 � 

� � % 
 . We can write � � �
� � 
 � � � � � �� � .

The problem at the moment is that it could happen that � � 
��� � ;
 ��� 
 � � � � � .
Let � be an integer such that ��� � � � 
 # � � . Define � � � � � � C �

� � . Then � . $
and � � > � # � � � . Let �

� � � � � � �� . � � 
 � � � 
 . We get

�
� � �# � 
 � � � � � �� � � �� # � ��� �# � � � 
 � � � � �� � �
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As ��� 
 � �� � 
 ��� 
 � � � there exists a homomorphism 	". � 	 � 
 
 � � 
 � 

� � �
with � � 	 � � �� . Set 
 � 
 � 
 ��� 	 � � � �� � � 
 � . Then �

� � �
� � � � � � 
 ��� 	 � has

only one component with respect to the new decomposition of 
 . Q.E.D.

Lemma 3.19 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index.

If ��� 
 is reducible then @ 
 ���DB is completely decomposable.

Proof: As � � 
 is reducible there exists a decomposition of 
 such that
 
 � � contains only one element, by Lemma 3.18. So we have WLOG 
 �
� �� � � 
 � and


 � � ���
� 
 � � � � � � . Let � � � ��� � � � ���
� 
 � � . Then �". * 
 � and
@ 
 � ��� B is a rational group. Hence @ 
 � ��� B � � �� � � 
 � � @ 
 ��� B � @ 
 ���DB is
completely decomposable. Q.E.D.

Proof: (Alternative version) Assume � � 
 is a reducible coset. Let � � �
> @�� � 
 B�> and let � � � � � � � � ����� � � � � � be a chain of integers such
that � ��� � � C � is prime. Define �
� � ��@ 
 ��� � �DB . Then 
 � � � % � � C � % ����� %
�
� ��@ 
 ���DB where > � ��� � � � � > is prime. We will show by induction that � �
is completely decomposable.

Obviously � � is completely decomposable. Now assume that �
� was
completely decomposable. Then by the previous lemma � � � � is re-
ducible and � � C � � � � � has the prime order � ��� � � C � and is reducible. So
modulo � � we have a coset with true critical coset type of prime order.
Let ��� 
 � � C � � � 
�� � � true critical. Then � � C � � � ��� � 
 � � C � � � has type � and
����
 � � C � � 
�� � � true critical. Hence � � C � . � 

� � � 
 � � ��� 

� � . Hence
� � C � ��@ � � ��� � C � B is completely decomposable. Induction finally yields � �
is completely decomposable. Q.E.D.

Remark 3.20 The converse of Lemma 3.19 is not true, as the following example
shows: Let 
 � * 5 � 9 � � * 5 � 9 � and � � �� ��� �

� � . Note that
��� � � ,87 - �� 
 � � �!� and

����
 � � 
�� � ����
 � � � ����
�$ � , which must be a false coset type. Hence � � 
 is not
reducible. But � �A@ 
 ���DB �A@ 
 ����� � � �DB �A@ 
 ��� �

�
� ����� � �� ��B � @ 
 � �� ��� �� ��B �

* 5 � 9 �� � � * 5 � 9 �
� � is completely decomposable.

Lemma 3.21 Let � % � be two completely decomposable groups with > � � � >
�
= prime. Then there exists a decomposition � � � �� � � � � with � � � � � � such
that ��� �: � � � � �� � � � � . In particular, every nontrivial coset of � � � is reducible.
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Proof: As � is not tight in � , by [2] Proposition 2.7 (2) there exists a rank-1
summand of � that is not pure in � . Call this summand � � . The com-
plement of � � in � is completely decomposable by [3] 86.7. So we have� � � �� � � � � and 
 � � @ � � B��� � � �� � � � � . Then � % 
 % � with� ;� 
 . As > � � � > is prime, this implies 
 � � . Note that > � � � > �)=
implies that

���
��� ���	� �� � ��� divides = . As @ � � B��� ;� � � we find that @ � � B��� � � : � � .

As
� � � �	�
� 
 � � � � � � � 
 � � ���
� 
 � � we have that ����
 � � � � � ����
 � � � true. As

the other nontrivial cosets of � � � are generators, too, they have the same
qualified coset type by Corollary 3.5. Hence every nontrivial coset is re-
ducible. Q.E.D.

Lemma 3.22 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let � � � 
 and � � � 
 be
reducible cosets of the same type � that have relatively prime orders modulo 
 .

Then there exists a reducible coset � � 
 of type � such that @�� � ��� � � 
 B �
@ � � 
 B .
Proof: Let 
�� � �(> � � � 
�> and 
 � � �� � � ' � � � with $ %�' � %�* . WLOG

we assume that � � � ��� � �����	�
�� 
 � � � . Write 
�� � � ���� � � ���� � � � � � � � and 
�� � � � �
� � ������� � � �8� � . Note that � � �: 
��� � � � � for all primes =?> 
�� , because otherwise
the order 
�� would not be correct.

As � � � 
 is reducible of type � , we know that every nontrivial multiple
must have a nonzero component of type � . That is � � � ;. 
 implies � � � � ;.

 for all � . $ . As 
 is a direct sum, we get that � � � .�
 implies � � � � .�

for all �1. $ . Hence � � � . 
 if and only if � � � � . 
 . Note that we have
�
	���
�
 � ��
�� ����� .

Now set � � �A� � �"� � . We claim that � � 
 is reducible of type � and
that @ 
 ��� B � @ 
 ��� � ��� ��B .

a) For the latter see @ 
 ��� B�� @ 
 ��
 � � ��
���� B�� @ 
 ��
 � � � �

 � � � ��
���� � �

�� � ��B��A@ 
 ��
 � � � ��
���� � B � @ 
 ��� �

� � �� � ��� �

�
� �� � B � @ 
 � �

� � �� � � �
�
� �� � B � @ 
 ��� � ��� � B .

For the equations note that 
 � � � . 
 and that for reduced fractions
, - .0' % * implies

�- .0' .

b) Obviously ��� � 
 � � 
 � as ��� 
 � � � 
�� � � and � � ��� � are cut. So it re-
mains to show that all nontrivial multiples of � have a � -component
that does not lie in 
 . It is easily seen that > � � 
�> ��
 � 
�� as
@�� � � 
 B � @�� ��� 
 B�� ��� 
 . We have to show that � 
 � � � �"� � � �/.
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 only if � � . 
 . So assume that � 
 � � � � � � � � . 
 . Note that
@�� � � � 
 B � @�� � � � 
 B � � � 
 as the orders are relatively prime.
Hence there are no ”interactions” of � � � and � � � and we can say:
� 
 � � � � � � � ��. 
 implies � � � � . 
�� � � � � . 
 which implies � � � . 

and � � � .�
 which implies � � � � 
 � � � � � � . 
 as desired.

Q.E.D.

Lemma 3.23 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index.

If � � 
 and � � 
 are reducible with ����
 � � 
�� � ����
 � � 
�� , then � � @ 
 ��� B
is reducible of the same order and type as � � 
 .

Proof: By Lemma 3.18 we can choose a decomposition basis of 
 such
that

� 
 � � 
�� � � � � . Write � � ����
 � � 
�� . WLOG we may assume
that � � ��� � 
 � � . As � � 
 is reducible, we know that every nontrivial
multiple of � � 
 has a component of type � . The transition from � � 
 to
� � @ 
 ��� B will affect only component number 1, as basis element number
1 is the only basis element with a new coefficient set. So components of
type � are not affected and hence every nontrivial multiple of � � @ 
 ��� B
has a component of type � . So ��� @ 
 ��� B is reducible of type � . Q.E.D.

3.4 Order Carrier

Definition 3.24 A coset is called primary reducible if it is reducible and has
prime power order.

Definition 3.25 A set � of primary reducible cosets is called simultaneously
reducible if � �A@ 
 ��� >�� � 
 . ' B is reducible for all � � 
 . � and all
' % � .

Definition 3.26 Assume that a decomposition basis � �
�	��� of 
 is given. Let
��� 
 be a primary reducible coset of type � and order = � .

Then the order carrier of ��� 
 is defined as
� �����	�
� 
 ��� 
���� � �����	�
� 
 = � C � ��� 
�� � � � � �
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Lemma 3.27 Assume that a decomposition basis � �
�	��� of 
 is given with 
 �
� �� � � ' � � � for suitable $ % ' � % * . Let � � 
 be a primary reducible coset of
type � with order = � . Assume that � � �: � ���� � � � �8� � with � � .0' � .

Then � �����	�
� 
 ��� 
�� � ��� > ����
 � � ��� � � � � � �: 
 � � ����� � �
Proof: ” % ”. Let �6. � �����	�
� 
 � ��
�� � � �������
� 
 = � C � � ��
�� � � � � . It is obvious that
����
 ��� � � � then. We also know that = � C � �: � � � ��� ;. 
 . Hence � � �: 
 � � ��� � �
� ��� � ��� � �: 
 � � ��� ����� � ���: 
 � � � .

” $ ” Let ��. ��� > ����
 � � � � � � � � � �: 
 � � � ��� � � Then ����
 ��� � � � and � . � � � .
Note that � � ���: 
 � � � � � � � � ��� � �: 
 � � ��� � � � � �: 
 � � ��� � and hence = � C � �: � � � ��� ;.

 . So �6. � �������
� 
 = � C � ��� 
�� . Q.E.D.

Lemma 3.28 The order carrier of a primary reducible coset is never the empty
set.

Proof: As all nontrivial multiples of a primary reducible coset of type �
must have a coset type � true critical, we know that all coset carriers of
nontrivial multiples must have a component of type � . If the order car-
rier was the empty set, then there is one multiple without a component of
type � , a contradiction. Q.E.D.

Lemma 3.29 Let � be an almost completely decomposable group containing a
completely decomposable subgroup 
 of finite index. Let # � � ��� � � � 
 and

 � � �� � � ' � � � with adjusted # � -basis � � �	��� . Let � . � and let � � 
 be a
primary reducible coset of order = � .

If �6. � �������
� 
 � � 
�� then there exists an adjusted basis � � �� ��� of 
 such that

a)
� ��� �� �
� 
 ��� 
���� � � � ,

b) � � �� ��� is an adjusted # � -basis with 
 � �
�� � � ' � � �� ,

c) � �� � � � for all � ;� � ,
d) � � � � ��� 
 � ��	 � with 	 .!� 	 � 
 ' � ��� � � � �� � ' �8� � �
e) � � �� 
 ��� 	 � 
 � for all � > # � and � ;� = ,
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f) in particular for every primary reducible coset � � 
 of order � � , � ;� = ,
we have

� �������
� 
 � � 
���� � ��� �� �
� 
 � � 
�� .
Proof: It is obvious that $�% ' � %)* for all � . Assume WLOG that � ���� � �����	�
�� 
 � � . By Lemma 3.6 we know that there exists a representative � .
� � 
 such that � � �: � ���� � � � � � � with � � .0$ and

� �������
� 
 � ��% � �����	�
� 
 � � . As

the carrier of � � ��� � �������
�� 
 � � must be minimal in � � 
 we get
� �������
� 
 � � �� �������
� 
 � � and hence � � ��� � �����	�
�� 
 � � .

Let ��� ����
 � � 
�� � ����
 � � 
�� . As � � 
 is primary reducible, the
order carrier is not the empty set by Lemma 3.28. So let � . � �����	�
� 
 � �

�� � � �����	�
� 
 � � 
�� . Using Lemma 3.27 we know that ����
 � � � � � and
� � ���: 
 � � � � � . As there exists an element with finite = -height in ' � we can
conclude that = ' � ;� ' � . Together with the = -basis property we get

�: ;."' � .
Hence � � �: 
 � � ��� ����� .

Let � � � � � � ��� and �� � � � � � �� ��� �8� � . Then = � � � � � � �� � . Let 	 ��� � � >
� > # � � = ;� � � . Then �
	�� 
 	 � = � � � . As �
	�� 
 � � � = � � � there exists an integer �
such that ��� � � � 
 = � � and 	�> � . Define � � � � � � C �: � . Then � .<$ and � � > �8= � ��� .
Set

� � � � � � �� � . � � 
 ��� � 
 . We get
� � �: � 
 � � ��� � �� � � �8= � �� � � �� �: � 
 ��� � � �� � � .

As � � �	��� is an adjusted basis and as � � � � for all � ;. � � � we get
��� 
 � �� � � 
 ��� 
 �� � � � ��� 
 � � ����� � � �8� � � 
  � ����� � ��� 
 � � � 
 ��� 
 ��� � . Hence
there exists a homomorphism 	A. � 	 � 
 ' � ��� � � � �� � ' �8� � � with ��� 	�� � �� � .
Set � �� �

� � � � ;� ���� 
 � ��	 � � � � . Then
� � �: � 
 � � � � � � and 
 � � �� � � ' �8� �� and� �������
� 
 � ��� � � � � � �����	�
� 
 ��� 
�� , showing a).

For e) note that ��� 	 � � �� � and hence � � �: 
 ��� 	 � 
 � ���: 
 � � . Then 	�> � yields
the claim.

For claim f) let � � 
 be a primary reducible coset of order � � with
� ;� = . Then � > 	 and hence � > � . Write � � ���� � �� � � � � � � with � � .!' � . By
Lemma 3.6 we may WLOG assume that � � . $ . Set ��� 	 � ���� � � � � � � with
� � . ' � . Then � � ��� . As ��� 	 � � �� � with �� � . 
 we get that � C � � � . ' � for
all � ;� � . Hence � � � �� 
 � � � 
 � for all � ;� � .

Writing � in terms of the new basis � � �� ��� we get, using ��� � � � � � ��� 	 ,
that

� � �
� �

�
� � � � � � � � ��� 	 �

�
� � � � �

� � ���� � �
� �

�
� � � � � �

�
� � � �
	 � � � � � � ��� � ���� �
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We know that � � � � � � � ."' � for all � ;� � . As � � � �: 
 � � � 
 � and � � . $ we
obtain � � � �: 
 � � � � � 
 � for all � ;��� . Note that � ���: 
���� � � ���: 
�� � implies that
� ���: 
���� ����� � ���: 
�� � for arbitrary ����� . � . With this in mind we get

� � � �������
� 
 � � 
��� ����
 ��� ��� ����
 � � 
�� � � � ���: 
 � � ������ ����
 � � � ��� ����
 � � 
�� � � � ���: 
 � � � � � � � ������ � . � ��� �� �
� 
 � � 
��
Q.E.D.

Lemma 3.30 Let 
 � � �� � � ' �8� � be a completely decomposable group with
adjusted = -basis � � � ��� . Let ��� 
 be a primary reducible coset of order = � .

If there exists an element �� � . 
 such that 
 � @����� B �� � � � �� � ' � � � and��� � �����	�
�� 
 � � . * ���� , then �6. � �����	�
� 
 ��� 
�� .
Proof: As @����� B �� and ' � ��� have the same type, they are isomorphic and
hence @����� B �� �+' � � � � for some � � � .�@����� B �� . Let � � ����
 � � 
�� � ����
 ��� � �
����
 � � � � . Set

�
 � � � �� � ' �8� � . So both ' � � � and ' � � �� are complements of�
 in 
 . By Lemma 1.12 we know that there exists an homomorphism
	 . � 	 � 
 ' � � � � � �
�� such that ' �8��� �)' � � � � 
 � ��	 � . As

��� � �����	�
�� 
 � � . * ��� we
know that there exists an � . � � 
 such that = � � .0' � � � � and > � � ' � � � � > � = � .
So � � �: � � � � � � for some � � . ' � . As � � �	��� is a = -basis, we know that either
= ' � � ' � or

�: ;.0' � . But as � ;.�
 we can eliminate the case = ' � � ' � . Hence
� � �: 
 � � � � ��� . As � � �: 
 � � � � � ����� for order reasons, we find � � ���: 
 � � � ��� . Now
we write � in terms of � � � ��� solely. � � �: � � � � � � � � �: � 
 ��� � � � � 	 � � � �: � 
 ��� � �� �
where �� . �
 with ����
��� � 
 � and ��� 
��� � 
 ��� 
 ��� � . So ����
 ��� � � � and
� � ���: 
 � � ����� and by Lemma 3.27 we know �6. � �����	�
� 
 ��� 
�� . Q.E.D.

Lemma 3.31 Let 
 � � �� � � ' �8� � with $ %!' � % * and adjusted = -basis � � �	��� .
Assume that ��� 
 is primary reducible of type � and order = � . Then

� �������
� 
 � � 
�� �
�
�
�����	� � � � � 
 �A@ � � � B �� ��
 � �� � ' �8� � � ��� � �����	�
� 
 � � .<* � � �
� �

Proof: Lemma 3.29 shows ” % ” and Lemma 3.30 shows ” $ ”. Q.E.D.

So this Lemma actually guarantees the existence of a stacked basis for
the two completely decomposable groups 
 and @ 
 ���DB .
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3.5 Completely Decomposable Subgroups

Lemma 3.32 Let � � %�� �/%�� � be three completely decomposable groups with
> � � � � � > � = and > � � � � � > � � where = and � are different primes. Then there
exists a completely decomposable group � � with � � %�� � %�� � and > � � � � � > � =
and > � � � � � > � � .

Proof: By Lemma 3.21 we may WLOG assume that we can write

� � � �
 � � � ' �8� � � � � � �
� ' � � � � �
 � � � ' �8� �

such that � � � ��� is a =�� -basis of � � . Then
�� ;.0' � and � � � @�� � � �� � � B . Choose

a � .�� � � � � . WLOG we may assume that � � ��� � �����	�
��
� 
 � � . Then

� �����	�
� 
 � � �
 �������
��
� 
 � � � � �����	�
� 
 � ��� � � . As � � �A@�� � ���DB we see that > � ��� � > � = � > ��� ��� � >

and � � �&@�� � �����DB , because = and � are relatively prime. Furthermore we
have

� �����	�
� 
 � ��� � ��� � �������
� 
 ��� ��� ��� and that ��� � ��� � �����	�
��
� 
 ��� � . As � � $�� �

we also know that ��� � ��� � �������
�� � 
 ��� � and thus
� �������
� 
 ��� �	� ��� � � �����	�
� 
 ��� �

� � � . So ��� �
� � and �����
� � have the same qualified coset type.
As � � is strictly smaller than � � , we know that � � is not tight in � � . By

Lemma 3.14 we conclude that at least one coset type of the cosets of � � ��� �
must be true critical. As all nontrivial coset types of � � ��� � are generators,
we know that all of them have the same qualified coset type. So ����
 ��� ��� � �
is true critical. Define � � �(@ ��� �
� � B . If we can show that > ��� ��� � > �A= ,
then �����
� � is reducible and � � is completely decomposable.

As > � � ��� � > � =�� , every element of � � has order either �
� = ��� � or =�� over
� � . Hence every element of ��� � has an order of = or � modulo � � . As ��� ;.
� � $�� � we conclude that > ��� ��� � > ��= and hence that � � is completely
decomposable. Note that > � � � � � > � � and > � � � � � >
� = . Q.E.D.

Corollary 3.33 Let 
 % � be completely decomposable groups with finite quo-
tient � � 
 . Define � : � � ��� . ��> > ��� 
�>������ = � � 	�� � � � for some prime = .
Then � : is completely decomposable.

Proof: The quotient group 
 ��� is finite abelian. Note that � : is a group, as
cosets ��� � of prime power order are closed under addition. Furthermore
we see that � : ��� is the = -component of 
 ��� . Let =

�
be the greatest power

of = that divides > 
 ��� > . Hence if we find a group �A% ' % 
 with > ' ��� >
�
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= � , then we know that ' � � : . We will give a completely decomposable
group that has index = � over � .

As � is not tight in 
 there exists a coset � �
� of prime order with
����
 � � � � true critical. Hence � � � is reducible and � � � � @ � ���DB is com-
pletely decomposable. With repeated application of that Lemma we obtain
a chain of completely decomposable subgroups:

��� 
 � % 
 � %������D% 
 � � 

with > 
<� � � � 
<��> prime.

Whenever there exists an index � such that > 
0��� 
<� C � > ;� = and > 
<� � � � 
<��>
�
= , apply the previous Lemma to obtain a completely decomposable 
 ��
such that > 
 �� � 
<� C � > �!= and > 
<� � � � 
 �� > ;�!= . Repeated application of this
Lemma will eventually yield a chain whose first � steps have index = . So
> 
 � ��� >
� =

�
and 
 � � � : is completely decomposable. Q.E.D.

Lemma 3.34 Let � � %�� �/%�� � be three completely decomposable groups with
> � � � � � > � = �+> � � � � � > with = prime. Let � � � @�� ����� ��B and � � �&@�� � ��� � B
with ����
 � � � � � � � ����
 � � � � � � . Then there exists a completely decomposable
group � � with � � %�� � %�� � and > � � � � � > � = � > � � � � � > and an element �
such that � � � @�� � ���DB and � � � @�� � ��� � B and � � � @�� � ���DB .
Proof: By Lemma 3.21 we may WLOG assume that we can write

� � � �
 � � � ' �8� � � � � � �
= ' � � � � �
 � � � ' �8� �

such that � � �	��� is a = -basis of � � . Then
�: ;. ' � and � � ��@�� � � �: � � B . Choose

a � . � � � � � such that ��� ��� � �������
��
� 
 � � . Then

� �����	�
� 
 � � � 
 �������
��
� 
 � � �� �������
� 
 � �
� � � .

As � � $�� � we also know that � � ��� � �������
�� � 
 � � and thus
� �����	�
� 
 � � � � ���� �������
� 
 � �
� � � . So ���
� � and ���
� � have the same qualified coset type.

As ����
 � � � ����
 � � � we know that � ;. � �������
� 
 � � and hence that > � �	� � > �
> � ��� � > � = , as component 1 is the only component in which � � and � �
differ.

As � � is strictly smaller than � � , we know that � � is not tight in � � .
By Lemma 3.14 we conclude that among the cosets of � � modulo � � there
exists at least one coset with a true critical coset type. As all nontrivial
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cosets of � � modulo � � generate � � ��� � , we know that all of them have the
same qualified coset type. So ��� 
 � � � � � � ����
 � � � � � is true critical. Define
� � � @�� �
� � B . As > � ��� � >�� = we know that � ��� � is reducible and � � is
completely decomposable. Q.E.D.

The following conjectures arose naturally during the course of the re-
search. They are the starting point for further research on coset types.

Conjecture 3.35 Let 
 be a completely decomposable group and let ��� 
 and
� � 
 be two primary reducible cosets. If ��� 
 � � 
�� ;� ����
 � � 
�� or > � � 
�>
is relatively prime to > � � 
�> , then � � @ 
 ��� B is reducible of the same type as
��� 
 and of the same order.

Conjecture 3.36 Let 
 be a completely decomposable group and � a set of pri-
mary reducible cosets modulo 
 . Partition the set � into � � � � 7 : � � 7 : where
� � 7 : � ��� � 
 . � > ����
 � � 
�� � � � > � � 
�>��A= � � �".!$ � . Let � � �	��� be
a decomposition basis of 
 . Then � is simultaneously reducible if and only if
@�� � 
 >�� � 
 . � � 7 : B contains only cosets with coset type � true critical for
all critical types � and primes = .

Conjecture 3.37 Let 
 be a completely decomposable group and let � $ 

with finite quotient. Then � is completely decomposable if and only if there exists
a set of simultaneously reducible cosets which generate � � 
 .

3.6 Tight Subgroups

We conclude the chapter on coset types by an example that shows that
tight sugbroups can appear above the regulator under certain circumstances.

Example 3.38 Let � ��� � � ���
�
	 be five different primes. Let 
 �!* 5�� 9 � � * 5�� 7 � 9 � �
* 5
� 7 � 9 � � * 5
� 7 � 9�� and � � � �

� 
�� � ��� and � ��� �� 
�� � � � . Define � �)@ 
 ��� � ��� ��B .
Note that there is a quite obvious direct decomposition of � � * 5�� 9 � � 
 � �
* 5
� 7 � 9 � � * 5�� 7 � 9 � � * 5
� 7 � 9 � � .

Our first task is to check, whether 
 is regulating in � . This is done by
examining the coset types of the � � 
 . Note first that � � and � � are linearly
independent modulo 
 , so � � 
 has order 8. With some calculations we finally
obtain:

��� 
 � � � � � � ��� � � 
�� �
� ����
 � � �D� � � .�
 � �
����
�� � � � I�� � 	 � � � � � ��� �
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So there is no true critical coset type and hence 
 is regulating.
We write � , for ����
�� � and likewise � - � � � � ����� . Note that � � 

� � � � for all

� ;� � , . It is easy to verify that � � 

� , � � @ 
 � 

� , � ��� � ��� ��B . As the critical
typeset of ��� 

� , � is an antichain we also know that � 
 � � 

� , � ��� 
 � 

� , � . So
the Burkhardt invariant � ��� ����� � �� ��� 

� , ��� 
 � 

� , �

�� � �
.

We obtain the regulator � 
 � � �&* 5�� 9 � � � * 5�� 7 � 9 � � * 5
� 7 � 9 � � * 5
� 7 � 9 � . The
index of the regulator � 
 � � in � is

����� � � � . We have � � @ � 
 � � ��� � ��� � ����B
by Lemma 1.3 c). As � � 5

� 9 
 � � � � ���
� 	�


 � � � � � 
�� � ��� we can write � 
 � � �

* 5
� 9 
 � � � ��� ��� � * 5
� 7 � 9 � � * 5
� 7 � 9 � � * 5�� 7 � 9 � . Define � � � � � �
� � � � � � �� 
���� ��� . Then

� �A@ � 
 � � ��� � ��� � ��� � � �� 
�� � ����B with � 
 � � �!* 5�� 9 � � � � * 5�� 7 � 9 � � * 5
� 7 � 9 � � * 5
� 7 � 9�� .
Note that � � � ��� 
 � � is a coset of order 2 modulo � 
 � � , and that ����
 � � � �

� 
 � � � � � , true. Hence � � � � � 
 � � is reducible. Set � � � @ � 
 � � ��� � � B �
* 5
� 9

� � � � * 5
� 7 � 9 � � * 5
� 7 � 9 � � * 5�� 7 � 9 � . Trivially we get � � @ � ��� � ��� � ��� � � �� 
�� �
����B . As � � � 
 � � has order 2, we find that � ��� has order 16. So � cannot be
regulating.

We claim that � is tight. To verify this claim we have to check whether there
exist cosets of prime order that have a true critical coset type (Lemma 3.14). Con-
sider a coset � � � � � � � � � � � � � � � � 
�� � � �

� � � � � � . First note that the only
possible coset types are � , false and � , true. Assume that the given coset � � �
had coset type � , true. We will show that then > � � � > � �

, in particular � � �
does not have prime order. Let � � � have true critical coset type. Then � � must
be odd, as � 
�� � � �

� � � � � ��� � � � � and there would be no component of type � ,
in the coset carrier. With � � odd, we check whether ��� � � � � or not. We get
��� � � � 
 ��� � � � � ��
 ��� � � � � � � � � � � � � 
 ��� � � � � � � � � � � � ;� � for odd
� � . Hence � � � does not have order � , and all cosets with coset type � , true have
order

�
. So � is tight.

In the previous example one might wonder why � � has been carried
through all calculations without ever playing a significant role. At first
glance it might as well have been omitted. But the purpose of �
� lies solely
in increasing the Burkhardt invariant to 4 and thus lowering the regulator
beyond ”good”.

Note that � � � � 
 � � has no proper divisors in � � � 
 � � in the sense that
there exists no element of greater order in � � � 
 � � which has � � � � 
 � �
as a multiple. The element is hence not ”rooted” deeper in the group.
We believe that this very ”weakness” gave rise to the construction of a
tight but not regulating subgroup above the regulator. Generalizing this
example we come to this conjecture.
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Conjecture 3.39 Let 
 be a regulating subgroup of the almost completely de-
composable group � . If there exists a critical type � and an element � � 
 

� ��.
� 

� ��� 
 

� � such that the exponent of � 

� ��� 
 

� � is strictly larger than the or-
der of the greatest cyclic subgroup containing � � 
 , then there exists a non
regulating tight subgroup containing the regulator.

The basic idea for a proof is again the same as in the previous exam-
ple, but a more subtle approach will be necessary. Every subgroup � has
possibly many tight groups above which need not have the same index
in � . Let � be a tight subgroup with � % � and > � � � > minimal among
all the tight subgroups. Then we call > � ����> the reserve of � in � , in the
sense that this number gives an idea about what space is left above, what
can be obtained by shifting optimally. With this definition in mind we can
look at the example and note that there was a transition that reduced the
index of the subgroup by 2, but has reduced the reserve by 4, which ba-
sically meant that there was no regulating subgroup above anymore. A
proof for the conjecture will have to formalize the notion of the reserve and
will have to trace the reserve during any transition. This notion in mind
we believe that a proof of the conjecture might take several pages, but is
strightforward in some sense.

Another idea is to determine the amount of information that is given
with coset carriers. We have seen that being given the finite quotient
group � � 
 and the respective coset types for every coset of the quotient
is enough information to determine whether the subgroup is regulating or
tight. If the finite quotient group � � 
 and all coset carriers with respect
to some decomposition basis were given, does this suffice to determine the
regulator quotient or the regulating index or some other given invariant
of the group � ? Does it suffice in case that 
 is the regulator or in case
that 
 is the Core of � . Note that the amount of information increases if
the quotient is enlarged suitably. This topic is related to the normal form
question for almost completely decomposable groups.

4
�
Closure

4.1 � Closures of Subsets of Lattices

We will work with lattices and subsets therof. The subsets we will use will
never be considered as potential lattices but solely as subsets of lattices.
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Even if a subset of a lattice happens to be a lattice itself, we will only rec-
ognize it as a subset and � or � refer to the join or meet operation of the
superset lattice. Hence an intersection of two elements of a subset may not
be in the subset, but it is nevertheless defined and there is no ambiguity
which element is meant.

In this section we are showing results on lattices in general, but we
have typesets of almost completely decomposable groups in mind as a
particular application. This particular application gave rise to develop-
ment of the notion of ”fully single covered” subsets of a lattice. There are
properties of a critical typeset that go beyond the partial ordering of the
typeset and which are not depicted in usual Hasse diagrams.

Definition 4.1 Let � be a finite subset of a lattice
�

. Let �� denote the closure
of � with respect to intersections. Define the

�

closure of � in
�

by
� � � � � . �� > � � . � � � � � � �

The finiteness of � implies the finiteness of �� and
� � .

Definition 4.2 Let � ��� . � with � ;� � where � is a finite subset of a lattice
�

.
Then � is called a cover of � in � if � 
 � 
 � for some � . � implies either� � � or � � � .

Note that the covers of the element � are exactly the minimal elements
in � � > � � � � . Hence two covers of the same element are necessarily
incomparable.

Definition 4.3 Let � be a finite subset of a lattice
�

and let
� � be its

�

closure
in

�
. Then we will call those elements of

�
critical which are elements of � , too.

Lemma 4.4 Let � be a finite subset of a lattice
�

. Let
� � be the

�

closure of � in
�

. Then an element � of
� � has the following properties:

a) We can write � �� ' for some ' %�� .

b) If there exist more that one cover of � in
� � , then intersecting any two of

them yields � .

If � is noncritical we also have the following:

c) There exist at least two covers of � in
� � .
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d) There exists an element of
� � that is covered by � in

� � .

Proof:

a) Direct consequence of the
�

closure.

b) Let � � ��� � be two different covers of � in
� � . Define � � � � ��� � . As

� � and � � cover the same element, they are incomparable and � ;� � � .
As � is the intersection we get � � � � and � 
 � . So alltogether we
get � � � � � � and as � � is a cover of � in

� � we have � � � .

c) Assume for contradiction that there was only one cover � of � in
� � .

Hence for every element � � � we have that � 
 � . By a) we can
write � �  ' with 'A% � . Note that ' can only contain elements
greater than � . So � � � for all �!.�' . But then � �  ' � � , a
contradiction.

d) As there exists an element � . � with � � � , this is obvious.

Q.E.D.

Lemma 4.5 Let � be a finite subset of a lattice
�

. Let
� � be the

�

closure of� . If
� � contains a lower bound for two of its elements, then it contains their

intersection.

Proof: Let � � ��� �0. � � and let � . � � be their lower bound. Then there
exists a � . � with � � � and we get � � � � � 
 � 
 � . Write � � �  ' �
and � � �  ' � with ' � ��' � % � . Then � � � � � � � �  
 ' � �0' � � and hence
� � � � � . � � . Q.E.D.

Definition 4.6 Let � be a finite subset of a lattice. Then � is called

a)
�

-free, if � � . � > � � � � is a chain for all � . � .

b) antichain, if all elements of � are maximal in � .

Lemma 4.7 Let � be a finite subset of a lattice. If � is
�

-free then every non-
maximal element of � has exactly one cover in � . If � is a chain then every
nonmaximal element of � has exactly one cover and no other element has the
same cover.
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Proof: Let � . � be nonmaximal. Since '�� � � . �(> � � � � is a finite
chain we know that its minimal element is the only cover of � in � .

If � is a chain, then the elements can be written 	 � � 	�� � ����� � 	 � and
the claim is obvious. Q.E.D.

Lemma 4.8 Let � be a finite subset of a lattice
�

. Let
� � be the

�

closure of � in
�

. If � is
�

-free, then � � � � .

Proof: Trivially we have
� � 
 � . Now assume for contradiction that

� � ;�� . Hence there exists some noncritical element � . � � � � . By Lemma 4.4
we know that � has two incomparable covers � � and ��� . By the definition
of the

�

closure there exists some ��. � such that � � � , but then � � � � �����
and the elements greater than � do not form a chain. That contradicts the�

-freeness of � . Q.E.D.

Definition 4.9 Let � be a finite subset of a lattice
�

. Let
� � be the

�

closure of� in
�

. An element of � is called
�

closure single covered if it has exacly one
cover in

� � .

Definition 4.10 Let � be a finite subset of a lattice
�

. Then � is fully single
covered if all nonmaximal elements of � are

�

closure single covered.

Lemma 4.11 Let � be a finite subset of a lattice. If � is
�

-free then � is fully
single covered.

Proof: Let
�

be the superset lattice of � and let
� � be the

�

closure of � in
�

. As � is
�

-free we know by Lemma 4.8 that � � � � , and by Lemma 4.7
that all nonmaximal elements of � have only one cover in � and thus also
in

� � . Together we find that all nonmaximal elements of � have exactly
one cover in

� � . Q.E.D.

We can visualize the classes of subsets of a lattice as follows:



4
�

CLOSURE 41

� �

� ��

�

�

�
� �

� ��

�

�

�
� �

� ��

�

�

�

� �

� ��

�

�

�

� fully single covered

� �
-free

� antichain

> �A> ���

� chain

We show that
�

-free and fully single covered are different properties.

Example 4.12 Let
�

be a lattice with elements ��������� � � such that � � � � �
and

� � � while � and � are incomparable. Define � � � ������� � � . Then �� �
� ������� � ��� � � � � � ��������� � � � . This yields the

�

closure
� � � � ��������� � � � . Then � is

the only cover of
�

in
� � . As � and � are maximal in � and

�
is single covered in

� � , we find that � is fully single covered. Obviously � is not
�

-free.

� �

�

� �

��
�

�
�

�
�

�
�

�
�

�
�

�

� �

�

�

� �

�
�

�
�

�
�

�
�

��

� �

	

�

� �

�
�

�
� �

�
��

� �
Lemma 4.13 Let � be a fully single covered finite subset of a lattice

�
. Let

� �
be the

�

closure of � in
�

. Let ' % � . Then  ' ;. � if and only if ' has at least
two elements minimal in ' .

Proof: ”If”: If ' had only one minimal element, then this element would
be  ' and hence  ' . � .



4
�

CLOSURE 42

”Only if”: Now assume that ' contains more than one minimal ele-
ment. Define � �  ' . As minimal elements are incomparable we have
� ;� � for all minimal � . ' . So this yields � � � for all � . ' . It remains to
show that � ;. � . Assume for contradiction that �
. � . Then � is

�

closure
single covered in

� � and hence let � � � be the single unique cover of � in
� � . Then � � � for all �0. ' and we have � �  ' . But this contradicts� � � . Hence � ;. � , as desired. Q.E.D.

For a poset ' let � � � ' denote the set of minimal elements of the poset.
We write >�� � ��' > to denote the cardinality of � � � ' .

Lemma 4.14 Let � be a finite subset of a lattice
�

. Assume for every subset
' %�� that  ' . � implies >�� � � ' > ��� . Then � is fully single covered.

Proof: We begin with some prior considerations: Let � ���A. � � be two
incomparable elements of the

�

closure
� � of � in

�
. Then there exist two

subsets � ��� % � such that � �  � and ���  � . Note that � and �
are not necessarily uniquely defined with this property. We have � � � � 
 � ��� � and claim that � ��� must have more than one minimal element.

Assume for contradiction that there exists some single unique minimal
element � of � ��� . Then � �  
 � ��� � . WLOG assume that � . � . Then
� is also the single unique minimal element of � . Hence � �  � � � . As
� �  
 � ��� � �  �� ��� we have that � � � � � which contradicts the
incomparability of � and � . Hence >�� � � 
 � ��� ��> � � .

Now comes the actual proof: Assume for every subset ' % � that '". � implies >�� � � ' >
� � . Let �<. � and assume that � is not maximal,
as we do not have to verify anything for maximal elements. We want to
show that � is single covered in

� � . Assume for contradiction that � had
more that one cover in

� � . Let � ;��� be any two of the covers of � in
� � .

Then by Lemma 4.4 b) we get � � � � � . Note that � and � are incomparable.
We can find � ��� % � such that � �  � and � �  � . By our prior
considerations we know that 
 � ��� � has more than one minimal element.
Set ' � � �	� . Then � �  ' . � and >�� � � ' > � � . But as  ' . � we also
get that >�� � ��' > � � , by our starting assumption. That is a contradiction,
and hence � has only one cover in

� � . So � is fully single covered. Q.E.D.

Lemma 4.15 Let � be a finite subset of a lattice
�

. Then the following are equiv-
alent:

a) � is fully single covered,
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b) ��' %�� � 
8>�� � � ' > � � ���  ' ;. �
c) ��' %�� � 
8>�� � � ' > � � � �  ' ;. �

Proof: a) � b) was shown in Lemma 4.13.
b) � a) can be derived from Lemma 4.14 by negating the statements and

reversing the direction of the implication.
c) � b) is trivial.
b) � c) comes from the fact that the intersection of a set with only one

minimal element is exactly that minimal element. Q.E.D.

Lemma 4.16 Subsets of fully single covered finite subsets of a lattice are fully
single covered, too.

So the property ”fully single covered” inherits to subsets. This is not
obvious! What might happen is that the unique single cover, that an ele-
ment � of � had in

� � , is no longer in
� � although � .�� � � .

Proof: Let � be a finite fully single covered subset of the lattice
�

. Let � be
a subset of � . Let

� � and
� � denote the

�

closures of � and � , respectively.
Likewise let �� and �� be the closures of � and � , respectively, with respect
to meets. Then

� � $ � � because of �� $ �� and ��$ � . Let ' � � � .�� > � �� � for some � . � . If ' is empty, then � is maximal and we have nothing
to show. Now we have two cases, according to the number of minimal
elements in ' .

Let ' have only one minimal element � . Every noncritical element
	 . � � with 	 � � is the intersection of critical elements in � by Lemma
4.4 a). Write 	 �  �� with � %�� . As 	 � � we find that � % ' . So � 
 �
for every � .�� . Hence 	 �  �� 
 � �  ' . Thus every element 	 � � is
greater or equal to � . Hence � is the unique cover of � in

� � . As '"%�� we
find that � . � � . Then � is also the single unique cover of � in

� � .
Now assume that '�% � has more than one minimal element. Then

� �  ' ;. � by Lemma 4.13, as � is fully single covered. As �&% � we
get that � ;.	� , either. Note that � . � � , though. So  ' � � 
 � implies
� � � , as � . � � . We claim that � is the single unique cover of � in

� � .
Thus we take an arbitrary element � � � with � . � � . We have to show
that � 
 � . As � . � � we can apply Lemma 4.4 a) to obtain a set �(% �
such that � �  �� . As � � � we have � � � for every � .�� . So � % ' and
hence  �� � � 
 � �� ' , as desired.



4
�

CLOSURE 44

In both cases we have that � .	� has a unique single cover in
� � and

hence � is fully single covered, too. Q.E.D.

Lemma 4.17 Let � � � be fully single covered finite subsets of a lattice such that
every element of � is incomparable to every element of � , then � � � is fully
single covered, too.

Proof: Let � .�� � � � � . WLOG assume that � .�� . If � is maximal in �
then � is also maximal in � � � and we are done. So assume from now on
that � is not maximal in � . We are looking for a cover of � in

� � . Let ' �
� �
. �A> � � � � and note that ' % � , because ' � � ;� �

would violate the
incomparability condition for elements in � and � . Hence every element
in

� � that is greater than � , is an intersection of elements of � . So every
element of

� � that is greater than � is also in
� � . Then it is clear that the

single unique cover of � in
� � is also the single unique cover of � in

� � .
Q.E.D.

We now want to reverse the process of taking the
�

closure and ask the
question which sets ' have a

�

closure that is equal to some given clo-
sure

� � .

Definition 4.18 Let � be a subset of a lattice. Then define

� � � � � � . � > � ���6��� � � ��� I � � � � � ��� I 	�� � � � � I � 	�	���� � ��� � ��� � �
We call � � the reverse

�

closure of � .

Note that this reverse closure does not satisfy � 
 � � � � � � as the fol-
lowing example shows.

Example 4.19 Let ��������� � � ��	
� � ��� be distinct elements of a lattice such that � �� � 	 � � � � and � � ��� � . Let � � � ��������� � � ��	
� � ��� � . Then � � �
� ������� � ��	
� � ��� � and � 
 � � � � � ��������	
� � ��� � and � 
 � 
 � � � � � � ������� � ��� � and
� 
 � 
 � 
 � � � � � � � ��������� � . Note that the reverse

�

closure always removes inter-
mediate, non single covered elements. But during this operation, some of the
surviving elements might have lost their single unique cover and thus may be re-
moved in a following reverse

�

closure. The following figure helps visualizing the
reverse

�

closure:
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Lemma 4.20 Let � be a finite subset of a lattice

�
. Let

� � be the
�

closure of �
in

�
. Then � 
 � � � %�� .

Proof: Maximal and minimal elements of
� � must be critical, because they

cannot have come from taking the
�

closure. By Lemma 4.4 c) we see that
single covered elements in

� � must be critical. As an element of � 
 � � � is
either minimal/maximal or single covered by definition, we have � 
 � � � %� . Q.E.D.

The following example shows that � 
 � � � can be strictly smaller than � .

Example 4.21 Let ��������� � � be distinct elements of a lattice such that � � �
and

� � � � � . Define � � � ��������� � � � and note that
� � � � , because � is closed with

respect to intersections. As a direct consequence we have � 
 � � � � � � . But we
have � � � � ������� � � � � 
 � � � whereas � � � ��������� � � � .
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Lemma 4.22 Let � be a finite subset of a lattice

�
. Let

� � be the
�

closure of � in
�

. Let � 
 � � � be the reverse
�

closure of
� � . Then

� 
 � 
 � � � � � � � .
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Proof: Let ' � � � 
 � � � . We want to show that
� ' � � � . This is done in three

steps. First we show that ��� � � ' � ��� � � � and � � � � ' � � � � � � , then we
show that also the single covered elements of

� ' and
� � are the same, and

finally we extend the equality to the remaining elements. Note that ��� �
and � � � refer to the subsets of maximal and minimal elements of a given
poset.

We know that ��� � � � � ��� � � , � � � � � � � � � � , ��� � � ' � ��� � '
and � � � � ' � � � ��' . Let � . ��� � � � . By the definition of the reverse

�

closure we can also find � . � 
 � � � � ' and we know that it is maximal
in ' . Now conversely assume that � . ��� � ' . If � ;.!��� � � � then there
would exist an � . ��� � � � with � � � and we would get � .���� ��' ,
contradicting the maximality of � in ' . Hence ��� ��' ����� � � � and thus
��� � � ' � ��� ��' � ��� � � � � ��� � � . Similarly we get � � ��' � � � � � � and
thus � � � � ' � � � ��' � � � � � � � � � � � .

The set of single covered elements of
� � is contained in ' by the def-

inition of the reverse
�

closure, and is also contained in
� ' , as

� ' $ ' .
Conversely let � . � ' be single covered. Then by Lemma 4.4 c) we know
that � must be critical, that is � .0' . As ' % � � , we also have � . � � .

Now let � . � � . There exists a subset � % � with � �  �� , and
an element � . � � � � with � � � . We have to show that � . � ' . Note
that � . � � � � implies that � . � � ��'��)� � � � ' . WLOG we can assume
that � contains only maximal elements or elements that are single covered
in

� � , by the following recursion: As � is not critical, it is neither single
covered nor maximal, and hence it is the intersection of any two of its
covers. Examine one of those two covers. It is either single covered or
maximal or again the intersection of two of its covers.... As

� � is finite,
this recursion must end. So � contains only single covered or maximal
elements. With the previous paragraph we obtain � % ' % � ' . As ��% '
and � .0' we conclude that � �� � . � ' . So

� � % � ' .
Conversely assume � . � ' . There exists a subset � %�' with � �  �� ,

and an element � . � � ��' with � � � . We have to show that � . � � . Note
that � . � � ��' implies that � . � � � � ��� � � � � . WLOG we can assume
that � contains only maximal elements or elements that are single covered
in

� � , by the same recursion as in the previous paragraph. We obtain � %
� � . (Note that we do not yet obtain ��% � as the analogy to the previous
paragraph would suggest, because there is some asymmetry.) So we have
that � �  �� with �A% � � and � � � with ��. � . If � contains an element
� . � � which is not critical, that is � ;. � , then there exists a subset � � % �
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such that � �  � � , and we can replace � by � � . So WLOG we can assume
that � %�� . Hence � . � � , as desired. So

� ' % � � .
Together we obtain

� ' � � � . Q.E.D.

Lemma 4.23 Let � ��' be two finite subsets of a lattice
�

such that � %�' % � �
where

� � is the
�

closure of � in
�

. Then
� ' � � � .

Proof: The minimal elements of ' are exactly the minimal elements of � ,
because the

�

closure cannot generate additional minimal elements. Like-
wise we have that the maximal elements of ' are exactly the maximal ele-
ments of � . Elements of ' are intersections of elements in � , because ' %

� � . Elements of
� ' are intersections of elements of ' . Hence elements of

� '
are intersections of elements of � . This is equal to writing

� '!% �� , where�� is the closure of � with respect to meet.
Let � . � ' % �� . Then there exists some � . � � ��' with � � � . As

� . � we get � . � � . Conversely let � . � � . Then there exists some
� .<� � � � �!� � ��' with � � � . As � is the intersection of elements in � it is
also the intersection of elements of ' . Hence � . � ' . So we have got

� '��
� � . Q.E.D.

Lemma 4.24 Let � be a finite subset of a lattice
�

and let
� � be the

�

closure of �
in

�
. Then there is at most one fully single covered set between � 
 � � � and

� � .

Proof: Let � 
 � � � % � � ' % � � with � ;� ' . By Lemma 4.23 and Lemma
4.22 we know that

� � � � ' � � � . Assume that � is fully single covered.
Then every element in

� � � � is noncritical and has two covers in
� � by

Lemma 4.4 c). As � � ' % � � � � � , we have that ' � 
 � � � � � ;� �
. So

there exist elements in ' which are not single covered in
� � . So ' is not

fully single covered. Q.E.D.

Theorem 4.25 The
�

closure and the reverse
�

closure define an equivalence rela-
tion on the set of all finite subsets of a given lattice

�
by:

Two subsets � and ' are equivalent, if and only if � 
 � � � %!' % � � .

Proof: We have to verify that the relation ( � ) is reflexive, symmetric, and
transitive.

Reflexivity is due to � % � � and � 
 � � � % � for all � by Lemma 4.20.
By Lemma 4.23 and Lemma 4.22 we can obtain that

� ' � � � and hence
� 
 � '�� � � 
 � � � . This implies symmetry.
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Now for transitivity. Let � � ' and ' � � . By the symmetry we can
assume that � � ' � � . Using Lemmata 4.23 and 4.22 we obtain that

� � �
� '�� � � and � 
 � � � � � 
 � '�� ��� 
 � � � . Hence � 
 � � ��%�' % � . Hence ' and� are equivalent. Q.E.D.

4.2 Extended Hasse Diagrams

We use some modified form of a Hasse diagram to make the structure of
finite subsets of lattices visible. We will assume that the reader is familiar
with ordinary Hasse diagrams.

Extended Hasse diagrams are only used on subsets of a lattice, which
offer an additional property that their elements can either have or not
have. In particular we think of

�

closures, whose elements can be critical or
not. An extended Hasse diagram of a

�

closure is a Hasse diagram of the
elements of the

�

closure where critical elements get solid black circles and
noncritical elements get empty circles.

Usually we will start with some given subset of a lattice, and then we
apply some sort of closure on that given subset. The elements of the origi-
nal subset are considered to be critical elements and will be depicted using
solid black circles, whereas the other elements are represented by empty
circles. Unless otherwise noted we will use the

�

closure. For example see
the figure at Example 4.12. In the rightmost diagram the element � is not
critical and hence gets an empty circle.

4.3 ACD/Butler Groups with Fully Single Covered Type-
set

We now apply the lattice theoretic results to the lattice of types and see,
what conclusions can be derived from the properties of the underlying
critical typeset. Two well known results are:

Lemma 4.26 An almost completely decomposable group whose critical typeset is
a chain is completely decomposable.

Lemma 4.27 An almost completely decomposable group whose critical typeset is�
-free has a regulating regulator.
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We note that there is some entity between the critical typeset of a group
and the (whole) typeset of the group. We call the

�

closure of the critical
typeset the extended critical typeset.

The notion of
�

closure single covered has also some implications of
corresponding type subgroups.

Lemma 4.28 Let � be a butler group with critical typeset � . If a critical type
� . � is single covered in

� � then ��� 

� ����� � 

� � .
Proof: Let � be the single unique cover of � in the extended critical typeset
of � . We know that � 
 ��� is pure in � , and if we can show that � 
 ��� �
� � 

� � then this implies that � � 

� � is pure and we are done. Note the ob-
vious fact that � 
 ��� $ � 
�� � if � 
 � � � . Using � � � � � � � we get
� � 

� ��� ��� ����� � � 
�� ��� ��� ��� ��� � 
�� ��� � 
 ��� . Q.E.D.

Lemma 4.29 Let � be a pure subgroup of the almost completely decomposable
group � . If the typeset of � is fully single covered, then the critical typeset of �
is fully single covered, too.

Proof: Note that the critical typeset of � is a subset of the critical typeset
of � . With Lemma 4.16 the claim follows. Q.E.D.

Lemma 4.30 Let ��� � � � be an almost completely decomposable group with
direct summands � and � . If the critical typeset of � is fully single covered, then
the critical typesets of � and � are fully single covered, too.

Proof: As � and � are pure subgroups of � , the claim follows with the
previous lemma. Q.E.D.

Lemma 4.31 Let � � � be almost completely decomposable groups with fully sin-
gle covered critical typeset. Let every critical type of � be incomparable to every
critical type of � . Then the critical typeset of � � � is fully single covered.

Proof: Application of Lemma 4.17. Q.E.D.

In [5] Definition 3.1 a) John E. Koehler introduced a notion that is now
called a Koehler-basis.

Definition 4.32 A decomposition basis � �
�	��� of a completely decomposable group

 is called a Koehler-basis of 
 if � � 
 � � � � � � 
 � � � � � � 
 ��� � whenever
����� 
 � ��� � ����� 
 � � ��� ����� 
 ��� � for some integers � � �
� � .
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Note that a Koehler-basis is always an adjusted basis. The proof of the
existence of an adjusted basis for every completely decomposable group
can be modified to obtain a statement on the existence of a Koehler-basis
for the same group.

Note that completely decomposable groups with fully single covered
critical typeset have the additional property that a decomposition basis is
adjusted if and only if it is a Koehler-basis. So for the fully single covered
case the two notions coincide.

The converse is not true. If for some almost completely decomposable
group the notions of adjusted basis and Koehler-basis coincide, then this
does not imply that the critical typeset is fully single covered. Every ad-
justed basis of * 5 � 7

� 9 � � * 5 � 7
� 9 � � * 5 � 7

� 9 � � � � $ �
is necessarily a Koehler-basis,

but it is not fully single covered, as ����
�$ � has three covers in the extended
critical typeset.

In my opinion, the following points deserve further investigation:

a) Does there exist another inverse of the
�

closure that would allow a
strengthening of Lemma 4.24 such that ”at most one” can be replaced
by ”exactly one”. This would allow to take the unique fully single
covered subset (which would have to exist then) as a canonical rep-
resentative of an equivalence class defined in Theorem 4.25.

b) The fact that ��� 

� � � � � 

� � for all critical types � should be ex-
ploited somehow. Note that in this case the numerical invariants � �
as defined in [1] Definition 4.5.6 are all equal to 1. Some counting
problems should profit from this simplification.
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