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Abstract 

Objective:  Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells 
of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This 
research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We exam‑
ined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lenti‑
viral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 
and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining.

Results:  ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58% reduction 
in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22% 
(2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91% (10 of 11) of VS. Therefore, we provide first observa‑
tions on possible regulatory functions of ADAM9 expression in VS.
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Introduction
Vestibular schwannoma (VS) are benign tumors emerg-
ing from Schwann cells of the vestibular part of the 8th 
cranial nerve [1]. Their hallmark mutation is loss of 
Merlin function, which is a 4.1 protein/ezrin/radixin/
moesin protein (FERM) and acts as a tumor suppressor 
protein inhibiting Schwann cell growth by connecting 
the cytoskeleton with the cell membrane. It is activated 
by the cells’ attachment to the extracellular matrix (ECM) 
and intercellular adhesion [2]. A disintegrin and metallo-
proteinase 9 (ADAM9) is involved in tumor growth and 
invasion by liberating membrane-bound proteins by an 
enzymatic modification called “shedding” [3]. Its proteo-
lytic activity also releases cytokines and growth factors 

and it modifies the ECM by interacting with integrins [4]. 
In previous experiments we showed an 8.8 times higher 
ADAM9 mRNA-expression in VS compared to healthy 
vestibular nerves and suggested that ADAM9 inhibition 
may be of significance for VS pathogenesis and poten-
tial medical treatment [5]. Furthermore, we discussed 
whether ADAM9 might interact with the VS cell–matrix 
[5].

This research note builds on our recent findings. We 
hypothesized that alteration of Merlin expression could 
regulate ADAM9 protein expression and that ADAM9 
plays a role in VS cell proliferation. Finally, we investi-
gated co-localization of ADAM9 with Integrin α6 and 
Integrin α2β1, respectively, aiming to get a rough idea on 
putative regulatory protein interactions in VS.
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Material and methods
Tissue samples and cell culture
Tissue of 24 VS, surgically resected in the Department 
of Neurosurgery of the University Hospital Würzburg, 
was collected from January 2018 until July 2019. Half of 
each sample was embedded in paraffin for immunohis-
tochemistry, the other half was processed for primary 
cell culture as described elsewhere [6] and briefly out-
lined in Additional file 1.

Merlin overexpression
95,000 cells per well of the primary cell cultures 
were treated with 2  ml VS-medium (see Additional 
file  1) containing 8  µg/ml protamine (Sigma, Munich, 
Germany) and 100  µl NF2 transcript variant 1 
(NM_000268) Human mGFP Tagged ORF Clone Par-
ticle RC205883L2 (OriGene, Rockville, MD, USA) and 
incubated for 2 days. The medium was replaced by 2 ml 
fresh VS-medium, cells were photographically docu-
mented and lysed as described below.

ADAM9 knock down
Cells were prepared as described above, but 
57  µl ADAM9 Human shRNA Lentiviral Particle 
TL314947VB (Locus ID 8754) (knock down) or 120 µl 
Lenti-shRNA Control Particles TR30021V (scrambled 
control) (OriGene, Rockville, MD, USA) were added. 
After 3  days the medium was replaced by 2  ml VS-
medium and 24 h later by 2 ml VS-medium containing 
1 µg/ml puromycin (Gibco, Carlsbad, CA, USA), which 
was exchanged every 2 days by DMEM. At day 11 five 
fields of view of each well were photographed through 
the 10 × magnifying objective of the DMI 3000B fluo-
rescence microscope and the DFC 450C camera (Leica, 
Wetzlar, Germany) in bright field with 35  ms expo-
sure time and for green fluorescence using filter L5 ET 
and an exposure time of 900  ms. Cells were counted 
after importing the photographed fields of view to the 
program ImageJ by applying the tool “multi point” 
(National Institutes of Health (NIH), Bethesda, MD, 
USA; https​://image​j.nih.gov/ij/).

Western‑blot
After washing the cells twice with phosphate buff-
ered saline (PBS; Biochrom, Berlin, Germany), they 
were lysed with 100  µl lysis buffer [10  mM Tris–HCl 
pH 7.4, 150  mM NaCl, 1  mM ethylenediaminetet-
raacetic acid (EDTA), 1  mM ethylene glycerol-bis 
(β-aminoethylether)-N,N,N′,N′-tetraacetic acid 
(EGTA), 1% Triton X-100, 0.5% IGEPAL CA-630, 1 mM 
phenylmethanesulfonylfluoride (PMSF), 10  µg/ml leu-
peptin and 23 µg/ml aprotinin (all from Sigma, Munich, 

Germany)]. The extracted protein was measured with 
the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 
Waltham, MA, USA). 0.3  µg total protein was loaded 
to a polyacrylamid gel, electrophoresis was performed 
as described [7] and the gel blotted for 7 min using the 
iBlot system (Thermo Fisher Scientific, Waltham, MA, 
USA) set to program 3. The membrane was blocked 
in TBST (Sigma, Munich, Germany) containing 5% 
non-fat milk powder (Roth, Karlsruhe, Germany) and 
probed with antibodies as described previously [7]. 
Antibodies NF2 B-12 sc-55575 (Santa Cruz Biotech-
nology, Dallas, TX, USA), ADAM9 ab186833 (Abcam, 
Cambridge, UK), and anti-γ-tubulin T6557 (Sigma, 
Munich, Germany) were utilized diluted in TBST at 
1:200, 1:1500, and 1:5000, respectively. Goat anti-rab-
bit IgG H&L (HRP) ab6721 (Abcam, Cambridge, UK), 
anti-mouse IgG HRP NA931 (GE Healthcare, Freiburg, 
Germany) and anti-mouse m-IgGk BP-HRP sc516102 
(Santa Cruz Biotechnology, Dallas, TX, USA) anti-
bodies were used as secondary antibodies at a 1:1000 
dilution in TBST. The ECL Western Blotting Analysis 
System (Amersham, Freiburg, Germany) was used to 
visualize the antibody labeled proteins.

Immunofluorescence double‑staining
Immunofluorescence staining of 3  µm thick formalin-
fixed paraffin sections has been described previously [7, 
8]. However, blocking with 10% goat serum (Life Tech-
nologies, Waltham, MA, USA) was performed for 2  h 
prior to an incubation of the slides with antibody dilution 
buffer (DCS, Jena, Germany) containing antibodies anti-
ADAM9 ab186833 (1:100) in combination with anti-Inte-
grin α2β1 [16B4] ab30483 (1:50) or anti-Integrin α6 [MP 
4F10] ab20142 (1:50) (all from Abcam, Cambridge, UK) 
at 4  °C overnight. Protein expression was visualized by 
1 h incubation using Goat anti-Rabbit IgG (H + L) Highly 
Cross-Adsorbed Secondary Antibody (Alexa Fluor Plus 
488 (A32732) and 555 (A32732); Thermo Fisher Scien-
tific, Waltham, MA, USA), both diluted 1:400. Slides were 
mounted using Fluoroshield mounting medium, contain-
ing DAPI (Abcam, Cambridge, UK) and photographed 
with the Leica microscope DMI 3000B and the DFC 
450C camera, using three different filters (Filtercubes A, 
L5 ET, and TXR ET) with exposure times of 77 ms, 2.5 s 
and 1.5 s, respectively, at both 10 and 40× objective mag-
nification. The percentage of positively stained tumors in 
relation to all stained tumors was calculated.

Statistical analysis
Statistical analysis was performed with GraphPad Prism 
6 software (GraphPad Software, La Jolla, CA, USA) to 
determine significance using unpaired t tests. p < 0.05 was 
considered to be statistically significant.

https://imagej.nih.gov/ij/
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Results
Without exception, high amounts of ADAM9 were 
detectable in all 24 VS (Fig.  1a). Since Merlin loss is a 
hallmark of VS development [9], we wondered whether 
the ADAM9 expression was due to lacking regulation 
by Merlin. Therefore, we restored Merlin expression 
by lentiviral transfection (Fig.  1b) and checked for any 
alteration in ADAM9 expression utilizing Western-blots 
(Fig. 1c). ADAM9 expression levels, however, did not sig-
nificantly differ in cells with or without Merlin expression 
(Fig. 1d), ruling out Merlin-mediated ADAM9 regulation. 
Next, we asked whether ADAM9 expression might be 
involved in the proliferation of VS cells. Therefore, a len-
tiviral shRNA-mediated ADAM9 knock down was per-
formed (Fig. 2a). The ADAM9 shRNA led to a threefold 
reduction of ADAM9 compared to scrambled control 
(band intensity normalized to γ-Tubulin expression 1.4 
vs. 4.1, respectively) in a proof of principle experiment 
(Fig.  2b). While Merlin overexpression did not result in 
statistically significant reduced cell numbers in compari-
son to vector-transfected controls, ADAM9 knock down 
caused a significant 58% reduction of VS cell numbers in 
comparison to the scrambled controls (p < 0.0001) and to 

18% reduction in comparison to Merlin overexpressing 
primary cells (p = 0.0213) (Fig. 2c).

ADAM9 is a cell–matrix modifying enzyme, reported 
to interact with Integrin α6β1 and thereby regulating cel-
lular motility [10]. This integrin is also expressed by VS 
cells [10] and therefore could be associated with ADAM9 
in VS. Indeed, Integrin α6 expression could be found in 
10 of 11 investigated VS (91%) and was co-localized with 
ADAM9 (Fig.  3). This co-localization was mainly found 
in tumor tissue (Fig.  3a, b), near blood vessels (Fig.  3c) 
and enriched along the tumor capsule (Fig. 3e, f ). In con-
trast, Integrin α2β1 was only weakly expressed in the 
analyzed VS (Fig. 3g, h). Strong expression with scattered 
ADAM9 co-localization was observed in merely two of 9 
VS (22%) (Fig. 3g).

Discussion
We were the first to describe ADAM9 overexpression in 
VS, suggesting it might be a marker for tumor growth 
and invasiveness [5]. However, our study was descrip-
tive in nature and we only could speculate on ADAM9 
regulation and function. Here, we performed first 
experiments to address these questions. We confirmed 

Fig. 1  ADAM9 was not regulated by Merlin in VS. a Western-blot of ADAM9 expression in four representative VS of n = 24. b Merlin protein 
expression in VS primary cells after lentiviral transfection. The immunofluorescent images compare successfully transfected green fluorescent cells 
(left) with the same field of view showing all cells (right) to estimate the transfection rate. c Western-blot of MCF7 breast cancer cell-lysate (MCF7), 
suggested by the manufacturer of the Merlin antibody as positive control, VS primary cells transfected with Merlin (Merlin) and untransfected 
VS primary cells (Control). Cell lysates were loaded twice onto the same gel to avoid stripping of the blot, which then was cut into half for the 
incubation with Merlin and ADAM9 antibody, respectively. Shown is one representative experiment of n = 3. γ-Tubulin served as loading control 
in all Western-blot experiments. Blots were cropped for better clarity. The full length blots are presented in Additional file 1, Fig. S1 and full length 
blots of the two additional experiments in Additional file 1, Fig. S2a. d Quantification of ADAM9 expression in Merlin overexpressing (Merlin) and 
untransfected VS primary cells (Control) as analyzed in (c)
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expression of ADAM9 in the analyzed VS, showed that 
Merlin overexpression does not regulate expression of 
the 47 kDa ADAM9 isoform, but that an ADAM9 knock 
down resulted in reduced VS cell numbers. Furthermore, 
we demonstrated ADAM9 co-localization with Integrin 
α6 in 91% of the analyzed VS, but with Integrin α2β1 only 
in 22% of the cases.

Merlin modulates cell–cell interactions and cell migra-
tion. It is a tumor suppressor gene, with loss of func-
tion mutations in VS [11], leading to overexpression of 

Neuregulin 1 (NDRG1), which in turn activates ERK- and 
AKT-signaling pathways in VS, promoting VS cell pro-
liferation [12–14]. Since we observed overexpression of 
ADAM9 in VS, we wondered whether this may be due 
to the loss of Merlin in these cells and restored Merlin 
expression. However, our data suggest that there is no 
causal link between loss of Merlin and overexpression of 
at least the proteolytically-processed, membrane-bound 
47  kDa isoform of ADAM9 [3]. However, the knock 
down of ADAM9 led to a reduction of VS cell numbers. 

Fig. 2  ADAM9 was involved in controlling VS primary cell proliferation. a Lentiviral mediated shRNA knock down of ADAM9. Green fluorescent 
ADAM9 knock down (left) and scrambled transfected control cells (right). One representative experiment of n = 4 is shown. b Proof of principle 
Western-blot of ADAM9 knock down, n = 1. γ-Tubulin served as loading control. Blots were cropped for better clarity. The full length blots are 
presented in Additional file 1, Fig. S2b. c Quantification of cell numbers after Merlin overexpression (Merlin) and ADAM9 knock down

(See figure on next page.)
Fig. 3  Co-localization of ADAM9 with Integrin α6 and Integrin α2β1 in VS tumor samples. a–f Immunofluorescence double-staining of ADAM9 (red) 
and Integrin α6 (green). a, b Co-localization (yellow) was mainly found in tumor tissue and c near blood vessels (arrows). d One VS did not express 
any detectable Integrin α6. e, f Demonstrate enriched co-localization along the tumor capsule (arrows). g, h Immunofluorescence double-staining 
of ADAM9 (red) and Integrin α2β1 (green). g Integrin α2β1 VS with ADAM9 co-localization. h Integrin α2β1 negative VS. DAPI = blue. Representative 
images of n = 20. The split-channel images are provided in Additional file 1 Fig. S3
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ADAM9 inhibition had already been shown to reduce 
migration and invasion of human glioma cell lines [15]. 
Therefore, our data might be a first hint that ADAM9 
plays a similar role in VS and its expression might induce 
progression or possibly reduce cell death in these benign 
tumors.

ADAM9 is a cell membrane spanning protein connect-
ing the cytoskeleton with the ECM or neighboring cells. 
Its cysteine-rich domain binds to proteoglycans and its 
disintegrin domain to integrins [3]. Metalloproteinases 
of the ADAM-family digest proteins of the ECM, allow-
ing tumor cells to detach from the tissue and thereby 
promoting their migration and invasion [3, 16] Thus, 
highest ADAM9 expression could be detected in areas 
of liver metastases with high invasive growth [3]. Inte-
grins mediate attachment of cells to the basal lamina 
[17]. Integrin α6 and Integrin α2β1 are both known sub-
strates of ADAM9. Interaction of ADAM9 and Integrin 
α2β1 has been described for liver metastases [3] and of 
ADAM9 and Integrin α6β1 for fibroblasts [10]. How-
ever, their association had not yet been shown for VS. 
Since we found co-localization of ADAM9 and Integrin 
α2β1 in only 22% of the analyzed VS, we conclude that 
this is not the main substrate of ADAM9 in VS. On the 
other hand, Integrin α6 is detectable in Schwann cells 
[18]. Its precursor has higher expression levels in VS cells 
in comparison to Schwann cells [19] and we found co-
localization in 91% of the VS with highest levels in tumor 
tissue and near blood vessels. ADAM9 knock-out mice 
display a significant reduction of retinal neovasculariza-
tion, whereas ADAM9 was highly expressed in patho-
logical retinal blood vessels of wild type mice [20]. It has 
been suggested that hypoxia induces ADAM9 expression 
and this enhanced expression in turn leads to release of 
pro-angiogenic factors [20]. Our data may support such 
assumption and could indicate that VS may require neo-
angiogenesis for their growth, although they are generally 
considered to be weakly vascularized tumors [21].

Our new data supplement our previous observations 
on ADAM9 expression in VS, are a first glimpse on possi-
ble regulatory functions and provide a rationale for more 
in-depth future investigations.

Limitations
VS are slowly growing, benign tumors. Thus, it is a 
challenge to establish primary cell cultures [6] and even 
more difficult to achieve high transfection rates. For 
this reason, only a small number of experiments could 
be performed for protein knock down and overexpres-
sion, limiting generalizability of these experiments. 
Several ADAM9 isoforms have been described [3, 
22, 23]. However, the antibody used in this study was 

specific for the 47 kDa isoform only. Therefore, we can-
not conclude on a possible Merlin mediated regulation 
of other ADAM9 isoforms. The immunofluorescence 
double staining indicates co-localization of ADAM9 
and Integrin α6 or α2β1, which does not necessarily 
mean that there is direct protein–protein interaction.
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org/10.1186/s1310​4-020-05378​-7.
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ADAM9, Merlin and γ-Tubulin protein expression in VS and VS primary 
cells from Fig. 1. Figure S2. Unaltered full-length Western-blots of Merlin, 
ADAM9 and γ-Tubulin protein expression in VS primary cells. Figure S3. 
Split-channel presentation of ADAM9 co-localization with Integrin α6 and 
Integrin α2β1 in VS tumor samples as shown in Fig. 3.
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