
Structural Properties of NP-Hard Sets and

Uniform Characterisations of Complexity Classes

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Stephen Travers

aus Frankfurt am Main

Würzburg, 2007

Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Eingereicht am: 6. Dezember 2007 bei der
Fakultät für Mathematik und Informatik,
Julius-Maximilians Universität Würzburg

1. Gutachter: Prof. Dr. Klaus W. Wagner
2. Gutachter: Prof. Dr. Edith Hemaspaandra
Tag der mündlichen Prüfung: 11. April 2008

Meinen Eltern.

Ich bedanke mich bei allen, die mich während der Entstehung dieser Arbeit unterstützt
haben. Besonderer Dank gilt meinem Doktorvater Klaus W. Wagner für die sehr gute
Betreuung, seine hilfreichen Anregungen sowie die hervorragende Arbeitsatmosphäre an
seinem Lehrstuhl. Besonders hervorheben möchte ich auch Christian Glaßer, der mich
gleich zu Beginn meiner Zeit am Lehrstuhl in die aktuelle Forschung eingebunden hat.
Durch die Zusammenarbeit mit ihm und durch seinen schier unerschöpflichen Erfahrungs-
schatz habe ich sehr viel gelernt, und seine ständige Motivation und Unterstützung haben
viel zum Gelingen dieser Arbeit beigetragen.

Meinen aktuellen und ehemaligen Kollegen Elmar Böhler, Daniel Meister und Christian
Reitwießner danke ich dafür, dass sie dazu beigetragen haben, die Zeit am Lehrstuhl zu
einer angenehmen und interessanten zu machen.

Schließlich möchte ich meinen Eltern und auch meinem Bruder danken, die mich stets in
meinem Tun unterstützt haben und auf deren Vertrauen ich mich immer verlassen konnte.
Meiner Frau Nora danke ich für alles. Im Zusammenhang mit der Entstehung dieser Arbeit
danke ich ihr insbesondere für die Geduld und ihre permanente Unterstützung.

Der Konrad-Adenauer-Stiftung danke ich für die Gewährung eines Promotionsstipendiums.

Würzburg, im Dezember 2007 Stephen Travers

Contents

Introduction . 9

1 Preliminary Notions, Basic Notations, and Definitions 19
1.1 Numbers, Words, Sets, and Operators . 19
1.2 Principles of Computational Complexity Theory 21

1.2.1 Turing Machines . 21
1.2.2 Complexity- and Function Classes 22
1.2.3 Relativisation . 26
1.2.4 Reducibilities . 27
1.2.5 Some Structural Properties . 29

1.3 Recursion Theory . 30

I Structural Properties of NP-Hard Sets 33

2 Unions of Disjoint, Equivalent NP-Sets 35
2.1 A Digression to Recursion Theory . 38
2.2 Necessary and Sufficient Conditions . 40

2.2.1 P-Separable Sets and Paddable Sets 41
2.3 Evidence for the Complexity of Unions of Disjoint NP-Complete Sets 44

2.3.1 The High-Hierarchy . 44
2.3.2 A Non-Uniform Reducibility . 46

2.4 Upper and Lower Bounds . 48
2.4.1 M-Idempotent Sets . 49
2.4.2 Harder Unions . 57

2.5 Summary and Outlook . 59

3 NP-Hard Sets and Faulty Data . 61
3.1 Weak Deterministic Self-Correction . 62
3.2 Partly Corrupt NP-Hard Sets . 64

3.2.1 Many-One Reductions . 64
3.2.2 Disjunctive Truth-Table Reductions 68

3.2.3 Conjunctive Truth-Table Reductions 77
3.2.4 Non-Robustness Against Sparse Sets of False Positives 80

3.3 Summary and Outlook . 83

4 Partitioning NP-Sets . 85
4.1 Separation of Mitoticity Notions . 86
4.2 Non-T-Mitotic Sets in NP . 89
4.3 Summary and Outlook . 92

II Uniform Computation Models 95

5 The Leaf-Language Approach . 97
5.1 An Introduction to Leaf Languages . 98

5.1.1 A Connection between Complexity Theory and Formal Languages . 99
5.1.2 Oracle Separations . 101

6 Unbalanced Leaf-Language Classes .103
6.1 Perfect Correspondences . 104
6.2 Polynomial-Time Tree Reducibility . 106
6.3 The ptt-Reducibility and the Dot-Depth Hierarchy 108
6.4 Summary and Outlook . 117

7 ε-Leaf-Language Classes .119
7.1 The ε-Leaf-Language Model . 119

7.1.1 Polylogarithmic-Time ε-Reducibility 121
7.1.2 A Connection to the Straubing-Thérien Hierarchy 122

7.2 Gap Theorems and Perfect Correspondences 124
7.3 Gap Theorems for NP, ΔP

2 , and ΣP
2 . 125

7.4 A Characterisation of 1NP . 129
7.5 An Overview . 139

Bibliography .143

Index .153

9

Introduction

Computational complexity theory is a branch of theoretical computer science. The cen-
tral question posed in this scientific discipline is the question of how difficult concrete
algorithmic problems are.

What is a concrete algorithmic problem? Generally, there are few limitations, as long as
the problem’s definition is mathematically sound and unambiguous. The following are
classical examples.

1. Given a map, what is the optimal route from one city A to another city B?

2. Given a natural number, what is its greatest prime factor?

3. Given a formula in propositional calculus with n variables, is there an assignment of
truth-values to the variables such that the whole expression evaluates to true?

4. Given a map, a delivery truck stacked with parcels, and a list of n locations on the
map where parcels are to be delivered. What is the minimum distance of this round
trip?

5. Given a list of n natural numbers, and a natural number m. Is there a subset of
these numbers whose sum is precisely m?

When we talk about the difficulty of algorithmic problems, the term difficult does not refer
to the difficulty of developing an algorithm to solve the problem. Instead, it refers to the
amount of resources needed to algorithmically compute the solution for a given problem
instance.

Problems 3 and 5 are decision problems. Given a problem instance x, the answer is either
“yes” or “no”. On the other hand, algorithmic problems are often optimisation problems,
like the problems 1 and 4 in the list above. Given a problem instance x, the answer to x
is a number y. The same holds true for problem 2. These problems are function problems.

The major part of computational complexity theory (or complexity theory, for short) deals
with decision problems, and so does this thesis. Interestingly, this is not a real restriction,
because function problems can in fact be simulated by decision problems.

10

Let us assume we have an algorithm A which solves the following decision problem with
a certain amount of resources:

“Given natural numbers n and k, does n have a prime factor greater than k?”

By doing a binary search on k and running the algorithm A multiple times with different
k’s, we can solve problem 2 without much more effort than A requires.

From a mathematical point of view, a decision problem is a set, and solving the yes-no
question for a given instance x is nothing more than deciding whether x belongs to the
set. For example, problem 3 can be represented by the set

{H ∣∣H is a formula in propositional calculus and H is satisfiable}.

It remains to clarify how the resources consumed by algorithms are measured. Typically,
the scarce resources are time and space, and the complexity is measured with respect to
the size of the problem instance. Hence, the central question in complexity theory can be
restated as follows:

“As the size of the problem instance x for a set A increases, how do the running time
or memory requirements to solve the problem whether x belongs to A change?”

Complexity classes are families of problems that have a similar asymptotic behaviour. One
of the most prominent examples is the complexity class P, which comprises all decision
problems that can be solved by deterministic Turing machines in polynomial time. For
instance, Dijkstra’s algorithm [Dij59] solves the shortest path problem in polynomial time,
so the decision version of problem 1 is in P. For the other problems in our list, no
polynomial algorithms are known. However, it does not follow that the problems are not
in P, because it could be the case that better algorithms do exist and we just do not know
of them yet. It is easy to see that all problems in our list (or their decision version) are in
EXP, the class of decision problems solvable in deterministic exponential time.

An algorithm which decides a set A implies an upper bound for the complexity of A.
Complexity classes usually consist of problems which share the same upper bound. Prov-
ing lower bounds is often much more difficult than proving upper bounds. While one
algorithm suffices to prove an upper bound, a lower bound is a statement that no algo-
rithm whatsoever can solve the problem with fewer resources. Up to the present day, no
super-polynomial lower bound is known for any of the problems 2-5.

However, there are other means of defining complexity classes which allow a more appro-
priate classification of the complexity of decision problems. If we take a closer look at the
problems 3 and 5, it becomes apparent that both problems share a remarkable property:

Let us analyze problem 5 in more detail. It seems difficult to solve the problem, because
there are 2n possible subsets. Hence, testing each single subset whether it sums up to m

11

is not possible in polynomial time (however, there could be more sophisticated methods
which significantly reduce the search space). In contrast to that, given a potential solution
to the problem, i.e., a subset consisting of say k < n natural numbers, then it is easy to
verify whether this subset sums up tom, this only requires k−1 additions. Both problems 3
and 5 have the property that verifying a potential solution is easy (more precisely, can
be done in polynomial time) while it is not clear how to find the correct solution in the
exponentially large search space.

Problems with this property form the class NP. By its definition, it is evident that P ⊆ NP.
Whether P = NP or P ⊂ NP holds is the most important open question in theoretical
computer science, this question is called the P-NP problem. In this connection, the notion
of reduction plays a crucial role. A problem A reduces to a problem B if any decision
algorithm for B can be used to solve a problem A without much additional effort. In
other words, A reduces to B if A is at most as difficult as B. In fact, problems 3 and 5
provably belong to the most difficult problems in NP, the so-called NP-complete problems.

In spite of the fact that NP-complete problems are the most difficult problems in NP, the
existence of a polynomial-time algorithm for a single NP-complete problem would imply
P = NP. However, most researchers in theoretical computer science strongly believe that
such an algorithm does not exist.

Numerous problems of great practical importance are NP-complete. For instance, the
Traveling Salesman Problem (which is closely related to problem 4 in our list1) is a central
question in Operations Research. The same holds true for other optimisation problems
like scheduling, and many more.

Complexity theory investigates the scalability of computational problems and algorithms.
By doing so, it places practical limits on what computers can accomplish. Furthermore,
complexity theory also gives partial or complete answers to philosophical questions like “is
finding a correct solution more difficult than verifying whether a given, potential solution
is correct?” (the P-NP problem). In the same spirit, the question “can two people com-
municate securely without ever having the opportunity to meet personally or use a secure
channel?” is also closely related to complexity theory (public-key cryptography). There
are many other examples of this kind. For this reason, computational complexity theory
is particularly exciting.

The first part of this thesis is devoted to the study of NP-complete-, and more generally,
NP-hard problems. It aims at improving our understanding of this important class of
problems. The second part studies complexity theory in a more general sense. There we
focus on the description of complexity classes and analyse uniform frameworks which allow
us to characterise a great variety of important complexity classes.

1Actually, the decision version of problem 4 is NP-hard which means that it is at least as difficult as

any NP-complete problem. However, it is unknown whether it is in NP, because it is not known how the

minimality of a given solution can be checked in polynomial time.

12

Outline of the Thesis

Part I

The first part of this thesis comprises Chapters 2, 3, and 4. These chapters are devoted
to structural properties of NP-hard sets. In Chapters 2 and 3 we investigate various ways
of altering NP-hard sets and analyse how this affects NP-hardness, or more generally, the
complexity of the resulting set.

Motivated by the recent discovery that all NP-complete sets can in fact be altered in a
rather extensive way (they can be split into two equivalent parts [GPSZ05]), Chapter 4
focuses on the question of whether all NP sets have this property.

Part II

The second part of this thesis comprises Chapters 5, 6, and 7. While Part I deals with
structural properties of complexity classes and their hard problems, Part II is also dedi-
cated to complexity classes, but from a different perspective:

In some sense, after investigating the interior of complexity classes in Part I, the focus
shifts to the description of complexity classes and thereby to the exterior in Part II.

Chapter 5 gives a short introduction to the concept of leaf languages, a uniform way to
describe complexity classes. Chapter 6 is devoted to the connections the leaf-language
approach establishes between complexity theory and the theory of formal languages, and
Chapter 7 introduces a new leaf-language model which allows us to prove further connec-
tions between the two research fields.

Synopses of the Individual Chapters

Chapter 1

The first chapter is an introductory chapter where we recapitulate basic notions and
notations in theoretical computer science. We start with basic mathematical notations
and then proceed to the principles of computational complexity theory.

We briefly introduce Turing machines and explain how different complexity classes can
be described by restricting the amount of resources Turing machines may consume while
solving problems. Then follows an overview of well and less well known complexity classes
which we will address in the subsequent sections.

13

We then glimpse at the important notions of reducibility and relativisation before we
conclude the chapter with a few fundamental notions of recursion theory.

Chapter 2

In this chapter, we systematically study the complexity of unions of disjoint, equivalent
sets. This research is motivated by the still open question [Sel88] of whether the union
of two disjoint NP-complete sets is always NP-complete. Before we study the situation
within NP, we glance at the situation in the recursion theory setting and observe that the
union of two disjoint RE-complete sets is always RE-complete.

We then explain that one cannot expect similar absolute results for NP. Hence all one
can hope for is results under reasonable hypotheses. We proceed by giving necessary and
sufficient conditions for an affirmative answer to the main open question. The former
turn out to be very likely to hold true while the latter imply rather unlikely consequences.
We resist the temptation to speculate on what the answer to the main question is and
approach the problem from another direction.

We prove that under reasonable assumptions, the union of two disjoint NP-complete sets
cannot become too easy. More precisely, we show that the union of two disjoint NP-
complete sets belongs to the class High1, the first level of Schöning’s high hierarchy [Sch83].
We give further evidence that unions of disjoint NP-complete sets are not far from being
NP-complete by showing that under a reasonable assumption, the union of an NP-complete
set with a disjoint set in NP is nonuniformly NP-complete.

We then abstract from the main problem and study the more general question of how
the complexity of unions of disjoint, equivalent sets can change. As a useful tool, we
introduce the notion of m-idempotence. By their definition, m-idempotent sets have the
property that their m-degrees are closed under unions of disjoint sets, so Selman’s question
translates to the question of whether SAT, the satisfiability problem for Boolean formulas,
is m-idempotent. In order to show that NP−P does contain m-idempotent sets, we prove
that every p-selective set is m-idempotent. It follows readily that if NE �= coNE, then there
exists A ∈ NP−coNP such that A is m-idempotent. Although this leaves open whether
the sets in the highest degree of NP, i.e., the NP-complete sets are m-idempotent, it does
show that NP is likely to contain degrees which have that property.

In contrast to that, we show in the remainder of the chapter that NP−P also contains
degrees with opposite properties: We show that NP−P contains disjoint, equivalent sets
whose union can be arbitrary simple unless P = NP ∩ coNP. Moreover, if the polynomial
hierarchy is strict, then it is possible for the union of two disjoint NP(2)-sets to be harder
than either of its components. Furthermore, we explain that under a strong hypothesis,
the same can also happen within NP−coNP.

14

Chapter 3

In this chapter, we pursue the track taken in Chapter 2 where we show that when NP-
complete data is added to an NP-complete set then the resulting set retains much of its
complexity, i.e., it is NP-complete with respect to more general reducibilities.

We now analyse what happens when we alter NP-hard sets in a more general way. By
dropping the condition that the data we add must be NP-complete itself, our focus shifts
to the more general question of how NP-hard sets can cope with faulty data. This includes
adding faulty data (false positives) to NP-hard sets, or removing reasonable data (false
negatives).

We investigate how polynomial time reductions can handle combinations of both, false
positives and false negatives. This relates our research to the notion of program self-
correction which was introduced by Blum, Luby, and Rubinfeld [BLR93]. That notion
addresses a fundamental question regarding software reliability: Can one increase the
reliability of existing software without understanding the way it works?

We show that ≤p
m-hard and ≤p

dtt-hard sets do not become too easy when false positives
are added (as they stay NP-hard with respect to more general reducibilities). Also, ≤p

2-dtt-
hard sets stay hard with respect to a more general reducibility when they encounter a
sparse amount of false negatives. On the other hand, we show that unless P = NP, there
exist sparse sets S1, S2 such that SAT ∪ S1 is not ≤p

btt-hard for NP, and SAT ∪ S2 is not
≤p

dtt-hard for NP.

Chapter 4

After investigating questions concerning the complexity of unions of sets in the previous
two chapters, this chapter focuses on the inverse question. Given one set A, can this set
be partitioned into two sets each satisfying certain properties? This question is captured
by the notion of mitoticity, a notion originally introduced by Lachlan [Lac67] and Ambos-
Spies [Amb84]. A set A is m-mitotic if there is a set S ∈ P such that A, A∩S, and A∩S
are all polynomial-time m-equivalent. Informally, if a set is m-mitotic, it can be split
into two parts that both have the same complexity as the original set. More generally,
r-mitoticity is defined analogously for other polynomial-time reducibilities r.

It is known that all m-complete sets for NP are m-mitotic [GPSZ05], hence it is a natural
question to ask whether there exist non-mitotic sets in NP, i.e., sets that cannot be split.
In this chapter we study the question of the existence of non-mitotic sets in NP. This is
a nontrivial question, because there are no natural examples of non-mitotic sets. As all
NP-complete sets are m-mitotic and nontrivial sets belonging to the class P are m-mitotic,

15

any unconditional proof of the existence of non-mitotic sets in NP would prove at the same
time that P �= NP. This implies that we cannot expect unconditional results in this area.

We prove that if EEE �= NEEE ∩ coNEEE, then there exists an L ∈ (NP ∩ coNP) − P
that is not m-mitotic but in fact is 1-tt-mitotic. From this, it follows that under the
same hypothesis, (NP ∩ coNP)−P contains a non-mitotic set and that 1-tt-reducibility
and m-reducibility differ on sets in NP. This consequence explains the need for a reason-
ably strong hypothesis. However, we also show that 1-tt-reducibility and m-reducibility
separate within NP under the weaker hypothesis that E �= NE ∩ coNE.

The last result in this chapter gives evidence of non-T-mitotic sets in NP. It states that if
EEE �= NEEE, then there exists a set C ∈ NP−P such that C is not T-mitotic.

Chapter 5

This is the first chapter of the second part of this thesis. We give a brief introduction to the
leaf-language concept which was introduced by Bovet, Crescenzi, and Silvestri [BCS92] and
independently by Vereshchagin [Ver93]. After defining leaf-language complexity classes we
show how prominent complexity classes can be characterised by leaf languages. We then
give an overview of the known connections which leaf languages establish between com-
plexity theory and formal languages. We conclude this introductory chapter by explaining
how the leaf-language approach allows concise oracle separations of leaf-language definable
complexity classes.

Chapter 6

The key to the concise oracle constructions via leaf languages mentioned in the last chapter
is the so-called BCSV-theorem which states that a language L1 is polylog-time reducible
(plt-reducible) to a language L2 if and only if Leafpb (L1) is robustly contained in Leafpb (L2).
We explain that for this equivalence it is crucial that balanced leaf-language classes are
used, because the theorem does not hold for the unbalanced model. This problem was
recently solved by introducing polynomial-time tree reducibility (ptt-reducibility, for short)
[Wag04b], an analogue of plt-reducibility for unbalanced leaf languages. Ptt-reducibility
admits a BCSV-theorem for unbalanced leaf-language classes.

In this chapter, we analyse this new reducibility and prove that restricted to regular
languages, the levels 0, 1/2, 1, and 3/2 of the dot-depth hierarchy are closed under ptt-
reducibility.

Moreover, we explain that these results indicate that the connection between dot-depth
and polynomial-time hierarchy is closer than formerly known: We show that on the lower

16

levels, the dot-depth and the polynomial-time hierarchy perfectly correspond, i.e., that
formal languages with a certain dot-depth precisely characterise a certain level of the
polynomial-time hierarchy.

Chapter 7

In this chapter we offer a useful completion of the known leaf-language concepts. This is
the concept of ε-leaf languages. It is inspired by the observation that rejecting paths of
nondeterministic computations act as neutral elements. In this sense we allow nondeter-
ministic transducers not only to output single letters but also to output the empty word
ε which is the neutral element of Σ∗.

We explain that this approach offers several advantages over the known balanced- and
unbalanced concepts. After the definition of ε-leaf languages and a few examples we prove
that this new model allows us to establish a tight connection between the polynomial-
time hierarchy and the Straubing-Thérien hierarchy, another very important hierarchy of
starfree languages.

We prove that the lower levels of the Straubing-Thérien hierarchy and the polynomial-time
hierarchy perfectly correspond, and we also provide a precise characterisation of the class
1NP.

In this sense, we argue that the ε-leaf-language approach combines the advantages of the
other two leaf-language notions.

17

Publications

This thesis consists of recently published results as well as unpublished results. The former
have appeared in the following refereed conference proceedings or journals.

[GSTW07] C. Glaßer, A. L. Selman, S. Travers, and K. W. Wagner. The Complexity
of Unions of Disjoint Sets. In Proceedings 24th Symposium on Theoretical
Aspects of Computer Science, volume 4393 of Lecture Notes in Computer
Science, pages 248–259. Springer Verlag, 2007

[GSTZ07] C. Glaßer, A. L. Selman, S. Travers, and L. Zhang. Non-Mitotic Sets.
In Proceedings 27th Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, volume 4855 of Lecture Notes
in Computer Science, pages 146–157. Springer Verlag, 2007

[GTW06] C. Glaßer, S. Travers, and K. W. Wagner. Perfect Correspondences
Between Dot-Depth and Polynomial-Time Hierarchy. In Proceedings 10th
Conference Developments in Language Theory, volume 4036 of Lecture
Notes in Computer Science, pages 408–419. Springer Verlag, 2006

[GT07] C. Glaßer and S. Travers. Machines That Can Output Empty Words.
Accepted to appear in Theory Of Computing Systems, Springer Verlag

Conference version appeared in: Proceedings 31st Symposium on Mathe-
matical Foundations of Computer Science, volume 4162 of Lecture Notes
in Computer Science, pages 436–446. Springer Verlag, 2006

The author of this thesis is a senior author of all publications listed above. Several results
in these papers were obtained in joint work with coauthors. This thesis however consists
of results which are predominantly or solely due to the author of this thesis. In general,
results due to coauthors were omitted.

18

19

Chapter 1

Preliminary Notions,

Basic Notations, and Definitions

In this chapter we recapitulate basic notions and notations in theoretical computer science.
We assume familiarity with standard mathematical notations.

1.1 Numbers, Words, Sets, and Operators

N denotes the set of all natural numbers including zero. ≤ denotes the standard order on
N. A subscript ae indicates that the statement does not have to hold for finitely many
exceptions. The set of all polynomials in one variable is denoted by pol.

Throughout the thesis, Σ denotes a finite alphabet with at least two letters, Σ∗ denotes
the set of all words over Σ, and |w| denotes the length of a word w ∈ Σ∗. We denote
the empty word with ε. For n ≥ 0, Σn denotes the set of all words of length n, and Σ≤n

denotes the set of all words up to length n. For a set A, #A denotes the cardinality of A.

We use the natural correspondence between words and numbers; when we consider func-
tions over natural numbers we assume that the input is given in binary coding.

For L ⊆ Σ∗ and a ∈ Σ, aL =def {aw ∣∣w ∈ L}.
A set A ⊆ Σ∗ is nontrivial if A �= ∅ and A �= Σ∗.

For a set L ⊆ Σ∗, L = {x ∣∣ x ∈ Σ∗, x �∈ L} denotes the complement of L.

For any set A, the power set of A is denoted by P(A) =def {B ∣∣B ⊆ A}.
The difference of sets A and B is defined as A−B =def {x ∈ A

∣∣ x �∈ B}.

20

The symmetric difference of sets A and B is defined as A�B =def (A−B) ∪ (B −A) .

The census function of a set S is defined as censusS(n) =def |S ∩ Σn|.
A set S is sparse if there exists a polynomial p such that for all n ≥ 0, censusS(n) ≤ p(n).

A tally set is a subset of 0∗.

Let A ⊆ Σ∗ be a set. The characteristic function cA : Σ∗ → {0, 1} of A is defined as
follows:

cA(x) =def

{
1, if x ∈ A

0, if x �∈ A

The quasicharacteristic function χA : Σ∗ → {0, 1} of A is defined as follows:

χA(x) =def

{
1, if x ∈ A

undefined, otherwise

For a finite alphabet Σ, the initial word relation
 on Σ∗ is defined by

u
 v⇐⇒
def

∃w(w ∈ Σ∗ ∧ uw = v).

We write u � v if and only if u
 v and u �= v.

The lexicographical order on {0, 1}∗ is defined by

x ≤ y⇐⇒
def

x
 y ∨ ∃u(u0
 x ∧ u1
 y).

As we use the same notation for natural numbers, we will ensure that it is always clear
from the context which of the two we mean.

The subword relation is denoted by �. It is defined by

v�w⇐⇒
def

v = v1 . . . vn, v1, . . . , vn ∈ Σ, w ∈ Σ∗v1Σ∗v2 . . .Σ∗vnΣ∗.

We write v≺w if v�w and v �= w.

For k ≥ 0 we write v�k w if v is a nonempty word that appears precisely k-times as a
subword of w. In addition we define ε�1 w for every word w.

For k ≥ 0 we write v�≥k w if there exists l ≥ k such that v�l w.

For k ≥ 0 and a finite set B of words v1, . . . , v|B| we write B�k w if k can be written as
k = k1 + · · · + k|B| such that

v1 �k1 w, v2 �k2 w, . . . , v|B| �k|B| w.

Chapter 1: Preliminary Notions, Basic Notations, and Definitions 21

So v�w if and only if there exists k ≥ 1 such that v�k w. Also, v ��w if and only if
v�0 w.

Regular languages are built up from the empty set ∅ and singletons {a} for a ∈ Σ using
Boolean operations, concatenation, and iteration. REG is the class of all regular languages.

We will also consider starfree languages which represent a subclass of the regular languages
where iteration is not allowed. SF is the class of all starfree languages.

The class of regular languages is precisely the class of languages which can be accepted
by finite automata. Moreover, for every regular language L there exists a unique minimal
automaton which accepts L. A very nice introduction to this topic is given in [HMU07].

1.2 Principles of Computational Complexity Theory

1.2.1 Turing Machines

Throughout the thesis, we use the concept of deterministic and nondeterministic multi-
tape Turing machines. A formal definition of these computation models can be found in
any textbook on computational complexity, e.g. [Pap94].

We use two different kinds of Turing machines. ‘Normal’ Turing machines do not have an
output tape but accept/reject an input via accepting and rejecting states.

A deterministic Turing machine M decides a set A ⊆ Σ∗ if the following holds for all
x ∈ Σ∗:

x ∈ A ⇒ M on input x halts after a finite number of steps.

When it halts it is in an accepting state.

x �∈ A ⇒ M on input x halts after a finite number of steps.

When it halts it is in a rejecting state.

A nondeterministic Turing machine can split its computation paths in every step into at
most two computation paths. Due to this mechanism, nondeterministic Turing machines
produce computation trees. Each computation path of a machine M on an input x can
be described by a word from {0, 1}∗, where 0 stands for “branch left” and 1 stands for
“branch right”.

Consequently, accepting/rejecting works differently for such machines. A nondeterministic
computation path is called accepting if the machine on this path halts after finitely many
steps and is in an accepting state when it halts. A nondeterministic computation path

22

is called rejecting if the machine on this path halts after finitely many steps and is in a
rejecting state when it halts.

A nondeterministic Turing machine M decides a set A ⊆ Σ∗ if the following holds for all
x ∈ Σ∗:

x ∈ A ⇒ on input x, M develops at least one accepting path.

x �∈ A ⇒ all paths of M on input x are rejecting paths.

Given a (deterministic or nondeterministic) Turing machine M , the language accepted by
M is denoted by L(M).

The second kind of Turing machine we consider is that of the Turing transducer. The
difference is that a transducer has an output tape by which it can output symbols and
hence compute functions.

A Turing transducer computes a function f : Σ∗ → Σ∗ if for all x ∈ Σ∗, the following
holds:

• If f(x) is defined, then M on input x halts after a finite number of steps. When it
stops, all tapes are cleared (i.e., all cells contain the symbol �) except for the first
working tape which contains f(x).

• If f(x) is not defined, then M does not halt on input x.

When talking about Turing machines and transducers, we will not always distinguish
between the two terms. It will be clear from the context what kind of Turing machine we
mean.

1.2.2 Complexity- and Function Classes

A complexity class is a subset of P(Σ∗). We will call the elements of a complexity class
languages, problems, or simply sets. A complexity class K is nontrivial if K �∈ {∅,Σ∗}.

Complexity classes are often defined by restricting the amount of resources Turing ma-
chines may consume while solving problems. In this thesis, the focus lies on time- and
space-bounded computations.

Definition 1.1 Let f : N → N be a monotonic increasing function.

1. DTIME(f) =def {A ⊆ Σ∗ ∣∣ there exists a deterministic Turing machine M such that
M decides the set A in time f}.

Chapter 1: Preliminary Notions, Basic Notations, and Definitions 23

2. DSPACE(f) =def {A ⊆ Σ∗ ∣∣ there exists a deterministic Turing machine M such
that M decides the set A in space f}.

3. NTIME(f) =def {A ⊆ Σ∗ ∣∣ there exists a nondeterministic Turing machine M such
that M decides the set A in time f}.

4. NSPACE(f) =def {A ⊆ Σ∗ ∣∣ there exists a nondeterministic Turing machine M such
that M decides the set A in space f}.

We define several standard complexity classes.

Definition 1.2 The following complexity classes are all defined by specifying different
time- or space bounds.

1. P =def DTIME(pol)
2. E =def DTIME(2O(n))
3. EXP =def DTIME(2pol)
4. NP =def NTIME(pol)
5. NE =def NTIME(2O(n))

6. NEXP =def NTIME(2pol)
7. L =def DSPACE(log)
8. NL =def NSPACE(log)
9. PSPACE =def DSPACE(pol)

Definition 1.3 The following are iterated-exponential-time analogues of the complexity
classes E, EXP, NE, and NEXP. Let k > 1.

1. E . . .E︸ ︷︷ ︸
k

=def DTIME(2 ... 2
O(n)}k)

2. E . . .E︸ ︷︷ ︸
k

XP =def DTIME(2 ... 2
pol}k)

3. NE . . .E︸ ︷︷ ︸
k

=def NTIME(2 ... 2
O(n)}k)

4. NE . . .E︸ ︷︷ ︸
k

XP =def NTIME(2 ... 2
pol}k)

Observe that some authors alternatively define these classes differently, e.g., EE is defined
as being equal to DTIME(2O(2n)).

Definition 1.4 The following complexity classes are defined by altering the acceptance
behaviour of Turing machines.

1. The class 1NP [GW86] (also called US [BG82]) is the class of languages L for which
there exists a nondeterministic polynomial-time bounded Turing machine M such

24

that an input x belongs to L if and only if M on input x has exactly one accepting
path.

2. For k > 1, the class ModkP [CH90] is defined as the class of languages L for which
there exists a nondeterministic polynomial-time bounded Turing machine M such
that an input x belongs to L if and only if the number of accepting paths is not
divisible by k.

3. The class PP [Gil77] is the class of languages L for which there exists a nondeter-
ministic polynomial-time bounded Turing machine M such that an input x belongs
to L if and only if M on input x produces more accepting than rejecting paths.

Definition 1.5 In the definitions of the following complexity classes we demand Turing
machines to satisfy certain promises.

1. The class UP [Val76] is the class of languages L for which there exists a nondeter-
ministic polynomial-time bounded Turing machine M such that for every input x, if
x ∈ L, then the machine M produces precisely one accepting path. If x �∈ L, then M
produces rejecting paths only.

2. The class BPP [Gil77] is the class of languages L for which there exists a nonde-
terministic polynomial-time bounded Turing machine M such that on every input x,
all paths of M have the same length, and whenever x ∈ L, then at least 2/3 of all
paths of M accept. Whenever x �∈ L, then at most 1/3 of all paths of M accept.

Observe that the two latter classes are different from all other classes defined so far,
because not all nondeterministic Turing machines can be used to accept their languages.
Suitable machines for these classes have to keep a promise, namely that they never output
more than one accepting path (as in the case of UP), or always accept/reject with a clear
majority (as in the case of BPP). For this reason, classes of this kind are called promise
classes.

FP denotes the class of total functions computable in deterministic polynomial time.

FP/poly is the superclass of FP that consists of all functions f for which there exists a
total function a : 0∗ → Σ∗ such that

• there exists a polynomial p such that for all n, |a(0n)| ≤ p(n), and

• there exists a g ∈ FP such that for all x, f(x) = g(x, a(0|x|)).

The function a is called the advice function.

The standard Boolean operations can be extended to complexity classes in a natural way:

Chapter 1: Preliminary Notions, Basic Notations, and Definitions 25

Definition 1.6 Let C ⊆ P(Σ∗) and D ⊆ P(Σ∗) be complexity classes. We define

coC =def {A ∣∣A ∈ C}
C∨D =def {A ∪B ∣∣A ∈ C, B ∈ D},
C∧D =def {A ∩B ∣∣A ∈ C, B ∈ D},

C ⊕ D =def {A�B : A ∈ C, B ∈ D}
C∨· D =def {A ∪B ∣∣A ∈ C, B ∈ D, A ∩B = ∅}
C∧· D =def co(coC∨· coD).

Notice that the union of disjoint sets used here is not the same concept as the marked
union which is sometimes denoted by ∪· . The reason is that the latter leads to unions of
disjoint p-separable sets, which does not have to be the case with ∨· . For instance, for all
sets A,B ∈ 1NP, it holds that A∪· B = 0A∪1B ∈ 1NP, implying that 1NP is closed under
∪· . Contrary to that, there exists an oracle relative to which 1NP∨· 1NP �= 1NP [GT07].

Definition 1.7 For a class of languages C which is closed under union and intersection,
the Boolean hierarchy over C [WW85] is the family of classes C(k) and coC(k) where k ≥ 1,

C(k) =def

k times︷ ︸︸ ︷
C ⊕ C ⊕ · · · ⊕ C, and

coC(k) =def

{
L : L ∈ C(k)

}
.

The properties of Boolean hierarchies were studied by Köbler, Schöning, and Wagner
[KSW87], and Cai et al. [CGH+88].

We define several operators which can be applied to complexity classes. ∃!· and ∀!· are
the unique variants of ∃· and ∀·, respectively. The semantics are as follows: ∃!· stands for
“there exists precisely one” while ∀!· stands for “there exists at most one exception”.

Definition 1.8 Let D be a complexity class. A language L belongs to the class ∃·D if
there exist a polynomial p and B ∈ D such that:

x ∈ L ⇒ ∃y(|y| ≤ p(|x|) ∧ (x, y) ∈ B
)

x /∈ L ⇒ ∀y(|y| ≤ p(|x|) → (x, y) /∈ B
)

A language L belongs to the class ∃!·D if there exist a polynomial p and B ∈ D such that:

x ∈ L ⇒ ∃!y
(|y| ≤ p(|x|) ∧ (x, y) ∈ B

)
x /∈ L ⇒ ∀y(|y| ≤ p(|x|) → (x, y) /∈ B

)

26

A language L belongs to ∀·D if there exist a polynomial p and B ∈ D such that:

x ∈ L ⇒ ∀y(|y| ≤ p(|x|) → (x, y) ∈ B
)

x /∈ L ⇒ ∃y(|y| ≤ p(|x|) ∧ (x, y) /∈ B
)

A language L belongs to ∀!·D if there exist a polynomial p and B ∈ D such that:

x ∈ L ⇒ ∀y(|y| ≤ p(|x|) → (x, y) ∈ B
)

x /∈ L ⇒ ∃!y
(|y| ≤ p(|x|) ∧ (x, y) /∈ B

)

1.2.3 Relativisation

Relativisation is a concept which formalises the idea of subroutine- or procedure calls in
programming languages. In computational complexity theory, this concept is modeled by
the use of oracle turing machines. An oracle Turing machine (OTM) M is a normal Turing
machine which differs from a normal Turing machine in that it has a query tape and three
special states zask, zyes, and zno. The query tape is a write-only tape.

A computation of M on input x with oracle O ⊆ Σ∗ then goes as follows: M acts as a
normal Turing machine, but when it reaches the state zask the following happens: Let q be
the string written on the query tape. If q ∈ O, then the computation immediately continues
in state zyes, if q �∈ O, then the computation continues in state zno. Simultaneously, the
query tape is cleared. All this happens in one single computation step, i.e., the idea is
that M is provided with some subroutine which can decide in one step whether any given
string belongs to O or not.

With this concept it is possible to define relativised variants of standard complexity classes.

Let O ⊆ Σ∗. By considering languages accepted by nondeterministic polynomial-time
oracle Turing machines (NPOTM) with access to the oracle O, we obtain the class NPO.
Let K be any complexity class. Then

NPK =def

⋃
O∈K

NPO.

The other Turing machine time- and space-bounded classes can be relativised in the same
way. For an oracle Turing machine M and O ∈ Σ∗ the language decided by M with oracle
O is denoted by L(MO).

Stockmeyer [Sto77] introduced the polynomial-time hierarchy (PH for short). The poly-
nomial-time hierarchy (sometimes also called polynomial hierachy) is a hierarchy of com-
plexity classes that generalise the classes P, NP and coNP to oracle machines. The levels
of the PH are ΔP

k , ΣP
k , and ΠP

k for k ≥ 0.

Chapter 1: Preliminary Notions, Basic Notations, and Definitions 27

It is defined as follows:

ΣP
0 = ΠP

0 = ΔP
0 =def P,

ΣP
n+1 =def NPΣP

n ,

ΠP
n+1 =def coNPΣP

n ,

ΔP
n+1 =def PΣP

n .

The following is an equivalent definition which is due to Wrathall [Wra77].

ΣP
0 = ΠP

0 =def P,

ΣP
n+1 =def ∃·ΠP

n ,

ΠP
n+1 =def ∀·ΣP

n .

1.2.4 Reducibilities

A binary relation ≤ over P(Σ∗) is called a reducibility if it is a preorder, i.e., it is reflexive
and transitive. The notion of reducibility is to compare sets according to their complexity.
Assume we want to determine whether a string x belongs to a a set A. If we can decide
membership in A by asking whether certain other strings belong to a set B, then every
decision procedure for B immediately yields a decision procedure for A. We say that A is
at most as hard as B, or A is not harder than B and denote this with A ≤ B. According
to how the set B is queried when we decide the set A, we distinguish between a variety of
different reducibilities whose definitions we are about to give.

The focus of the studies in this thesis will lie on different kinds of polynomial-time re-
ducibilities. However, we will also address recursive reducibilities which we will define in
Section 1.3.

We recall standard polynomial-time reducibilities [LLS75].

Definition 1.9 A set B many-one-reduces to a set C (m-reduces for short; in notation
B≤p

mC) if there exists a total, polynomial-time-computable function f such that for all
strings x,

x ∈ B ⇔ f(x) ∈ C.

Definition 1.10 A set B Turing-reduces to a set C (T-reduces for short; in notation
B≤p

TC) if there exists a deterministic polynomial-time bounded oracle Turing machine M
such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

28

Definition 1.11 A set B 2-disjunctively truth-table-reduces to a set C (2-dtt-reduces for
short; in notation B≤p

2−dttC) if there exists a total, polynomial-time-computable function
f : Σ∗ → Σ∗ × Σ∗ such that for all strings x,

x ∈ B ⇔ at least one word from the pair f(x) belongs to C.

Definition 1.12 A set B truth-table-reduces to a set C (tt-reduces for short; in notation
B≤p

ttC) if there exists a deterministic polynomial-time bounded oracle Turing machine M
that queries nonadaptively such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

Definition 1.13 A set B disjunctively truth-table-reduces to a set C (dtt-reduces for
short; in notation B≤p

dttC) if there exists a total, polynomial-time-computable function
f : Σ∗ → P(Σ∗) such that for all strings x,

x ∈ B ⇔ f(x) ∩ C �= ∅.
Definition 1.14 A set B conjunctively truth-table-reduces to a set C (ctt-reduces for
short; in notation B≤p

cttC) if there exists a total, polynomial-time-computable function
f : Σ∗ → P(Σ∗) such that for all strings x,

x ∈ B ⇔ f(x) ⊆ C.

Definition 1.15 A set B bounded truth-table-reduces to a set C (btt-reduces for short; in
notation B≤p

bttC) if there exists a k ≥ 1, a k-ary Boolean function α, and g1, . . . , gk ∈ FP
such that for all x

x ∈ B ⇔ α(cC(g1(x)), cC (g2(x)), . . . , cC(gk(x))) = 1.

Definition 1.16 A set B 1-tt reduces to C (in notation B≤p
1−ttC) if for some M , B≤p

ttC

via M and for all x, M queries the oracle C at most once.

Similarly, we define 2-tt, and so on.

Definition 1.17 A set B non-uniformly many-one-reduces to a set C (non-uniformly m-
reduces for short; in notation B≤p/poly

m C) if there exists a total function f ∈ FP/poly
such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

We remark that non-uniform reductions are of interest in cryptography. There they are
a model of an adversary who is capable of long preprocessing [BV97]. They also have
applications in structural complexity theory. Agrawal [Agr02] and Hitchcock and Pavan
[HP06] investigate non-uniform reductions and show under reasonable hypotheses that
every many-one complete set for NP is also hard for length-increasing, non-uniform reduc-
tions.

Chapter 1: Preliminary Notions, Basic Notations, and Definitions 29

Definition 1.18 A set B strongly nondeterministic Turing-reduces to a set C [Lon78]
(snT-reduces for short; in notation B≤p

snTC) if there exists a nondeterministic polynomial-
time bounded oracle Turing machine M that on each computation path outputs exactly one
symbol from {+,−, ?} such that for all strings x,

x ∈ B ⇒ MC on x produces at least one + and no −,
x /∈ B ⇒ MC on x produces at least one − and no +.

If B≤p
mC and C≤p

mB, then we say that B and C are many-one-equivalent (m-equivalent for
short, in notation B ≡p

m C). Similarly, we define equivalence for other reducibilities. A set
B is many-one-hard (m-hard for short) for a complexity class C if every B ∈ C m-reduces
to B. If additionally B ∈ C, then we say that B is many-one-complete (m-complete for
short) for C. Similarly, we define hardness and completeness for other reducibilities. We
use the term C-complete as an abbreviation for m-complete for C.

Lemma 1.19 For any nontrivial complexity class K ⊆ P(Σ∗), it holds that neither ∅ nor
Σ∗ are ≤p

m-hard for K.

Proof. Let K be a nontrivial complexity class. Hence there exists L ∈ K such that L �= ∅
and L �= Σ∗. However, for all A ⊆ Σ∗, A≤p

mΣ∗ holds if and only if A = Σ∗, and A≤p
m∅

holds if and only if A = ∅. So neither L≤p
mΣ∗ nor L≤p

m∅ holds. �

Definition 1.20 Let A be a set, C be a complexity class and r ∈ {m, T, dtt, ctt, 1-tt, . . . }
be some polynomial-time reducibility. The reduction closure under r-reducibility and the
r-degree of A (resp., C) are defined as follows.

Rp
r (A) =def {B ∣∣B≤p

rA},
Rp

r (C) =def

⋃
A∈C

Rp
r (A),

degp
r (A) =def {B ∣∣A ≡p

r B},
degp

r (C) =def

⋃
A∈C

degp
r (A).

A class C is closed under ≤p
r if Rp

r (C) = C. It is easy to see that whenever a class C is
closed under ≤p

r , it also follows that degp
r (C) = C.

1.2.5 Some Structural Properties

Definition 1.21 Disjoint sets A and B are called p-separable if there exists a set S ∈ P
(the separator) such that A ⊆ S and B ⊆ S.

30

Definition 1.22 ([Sch83]) A set A ∈ NP is high for ΣP
k (the k-th level of the polynomial-

time hierarchy) if ΣP
k

A = ΣP
k+1. Highk is the class of languages that are high for ΣP

k .

Definition 1.23 ([BH77]) A set A is paddable if there exists a polynomial-time com-
putable, polynomial-time invertible function p(·, ·) such that for all x ∈ Σ∗ and a ∈ Σ,

x ∈ A ⇔ p(x, a) ∈ A.

Definition 1.24 ([Sel79]) A set B is p-selective if there exists a total function f ∈ FP
(the selector function) such that for all x and y, f(x, y) ∈ {x, y} and if either of x and y
belongs to B, then f(x, y) ∈ B.

Definition 1.25 ([Amb84]) A set A is polynomial-time T-autoreducible (T-autoreducible,
for short) if there exists a polynomial-time bounded oracle Turing machine M such that
A = L(MA) and for all x, M on input x never queries x. A set A is polynomial-time
m-autoreducible (m-autoreducible, for short) if A≤p

mA via a reduction function f such
that for all x, f(x) �= x.

Let ≤p
r be a polynomial time reducibility.

Definition 1.26 ([Amb84]) A set A is polynomial-time r-mitotic (r-mitotic, for short)
if there exists a set B ∈ P such that:

A ≡p
r A ∩B ≡p

r A ∩B.

A set A is polynomial-time weakly r-mitotic (weakly r-mitotic, for short) if there exist
disjoint sets A0 and A1 such that A0 ∪A1 = A, and

A ≡p
r A0 ≡p

r A1.

1.3 Recursion Theory

Definition 1.27 A partial function f : Σ∗ → Σ∗ is computable if there exists a Turing
machine M such that the following holds for all x ∈ Σ∗:

• If f(x) is defined, then M on input x halts after finitely many computation steps
and outputs f(x).

• If f(x) is not defined, then M does not halt on input x.

Definition 1.28 The class of recursive sets (or decidable sets) is defined as

REC =def {A ⊆ Σ∗ ∣∣ there exists a Turing machine M that computes cA}.

Chapter 1: Preliminary Notions, Basic Notations, and Definitions 31

Definition 1.29 The class of recursively enumerable sets is defined as

RE =def {A ⊆ Σ∗ ∣∣ there exists a Turing machine M that computes χA}.

Definition 1.30 Let A,B ⊆ Σ∗. The set A is recursive many-one reducible to the set B
(notation A ≤m B) if there exists a computable function f such that for all x, it holds that

x ∈ A ⇔ f(x) ∈ B.

Definition 1.31 Let A,B ⊆ Σ∗. The set A is recursive Turing reducible to the set B if
there exists a deterministic oracle Turing machine M such that for all strings x,

x ∈ A ⇔ M with B as oracle accepts the input x.

Observe that in the literature, these reducibilities are normally referred to as many-one
reducibility and Turing reducibility. However, we add the prefix recursive in order to
distinguish these reducibilities from from their polynomial-time counterparts.

Definition 1.32 Let A be a set, C be a complexity class and let r ∈ {m, T} be some re-
cursive reducibility. The reduction closure under recursive r-reducibility and the recursive
r-degree of A (resp., C) are defined as follows.

Rr(A) =def {B ∣∣B≤rA},
Rr(C) =def

⋃
A∈C

Rr(A),

degr(A) =def {B ∣∣A ≡r B},
degr(C) =def

⋃
A∈C

degr(A).

Definition 1.33 For i ∈ N, we define

Di =def {x ∈ Σ∗ ∣∣ the Turing machine with Gödel number i halts on input x}.

We denote the halting problem with K0. It is defined as

K0 =def {i ∈ N
∣∣ the Turing machine with Gödel number i halts on input i}.

Turing’s famous result states that the halting problem K0 is undecidable [Tur36]. More
precisely, K0 ∈ RE − REC.

32

33

Part I

Structural Properties of

NP-Hard Sets

34

35

Chapter 2

Unions of Disjoint, Equivalent

NP-Sets

Whenever a new complexity class is discovered, one of the first questions usually posed
is what kind of closure properties it has (on the other hand, new complexity classes are
often discovered by considering the closure of a known class under a certain operation). In
particular, the closure properties under Boolean operations, i.e., under union, intersection,
and complementation are of great interest.

Almost all of the better-known complexity classes like L,P,NP, coNP,PSPACE, and the
levels of the polynomial-time hierarchy are closed under union and intersection. Moreover,
the closure under union and intersection is usually very easy to obtain as in the cases of
the classes mentioned above. Here the classes PP and 1NP represent exceptions: The
former class is closed under union and intersection but the only known proof [BRS91] of
this is rather involved. The latter class is closed under intersection but is not known (and
not expected) to be closed under union.

Due to the asymmetry of nondeterministic time bounded complexity classes, these are not
(believed to be) closed under complementation. Interestingly, the situation is different for
nondeterministic space which is closed under complementation by the famous result of
Immerman and Szelepcsényi [Imm88, Sze87].

Polynomial-time complexity classes are closed downwards with respect to many-one poly-
nomial-time reducibility. Therefore, many complexity classes can be characterised by their
complete problems. For instance, NP can be characterised by SAT, the problem of testing
satisfiability for Boolean formulas:

NP = Rp
m(SAT) = {A ⊆ Σ∗ ∣∣A≤p

mSAT}

36

From a structural point of view, it is interesting to study closure properties of objects
less coarse than complexity classes, namely of degrees. By their definition, degrees of sets
differ from complexity classes in that they are generally not closed under reducibilities
since they only contain equivalent sets. The most prominent degree in computational
complexity theory is definitely the degree of NP-complete sets, which is defined as follows:

NPC =def degp
m(SAT) = {A ⊆ Σ∗ ∣∣A ≡p

m SAT}

A naive approach yields that NPC is not closed under union. More precisely, it is easy to
see that there exist NP-complete sets whose union is not NP-complete. This is depicted
in Figure 2.1. First observe that A =def 0SAT ∪ 1Σ∗ is NP-complete via the reduction
function f(x) =def 0x and B =def 0Σ∗∪1SAT∪ε is NP-complete via the reduction function
g(x) =def 1x. Consequently, A ∪B = Σ∗. Σ∗ is not NP-complete by Lemma 1.19.

B = 0Σ∗ ∪ 1SAT ∪ ε

0Σ∗ 1SAT

0SAT 1Σ∗

A = 0SAT ∪ 1Σ∗

Figure 2.1: Non-disjoint NP-complete sets A and B where A ∪B is not NP-complete.

Clearly, this approach does not capture the intrinsic difficulty of the question. The fact
that the two sets are not disjoint oversimplifies things. As we will see, the following
question is far more subtle:

Is the union of two disjoint NP-complete sets always NP-complete?

Selman [Sel88] posed this question in 1988. It turned out to be a very difficult question
which has not been solved up to the present day. Therefore, this question gives a nice

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 37

motivation for the studies in this chapter. Throughout this chapter, we will refer to it as
the main question.

If one attempts to prove that unions of disjoint NP-complete sets are always NP-complete,
one encounters the following difficulty: Let A,B,C ⊆ Σ∗ such that A is in NP and B and
C are disjoint NP-complete sets. Assume A≤p

mB via f ∈ FP and A≤p
mC via g ∈ FP. This

means x ∈ A ↔ f(x) ∈ B and x ∈ A ↔ g(x) ∈ C. Let x ∈ A, so f maps x to B and g

maps x to C. However, neither of the two functions qualifies to prove that A≤p
mB ∪ C:

Let x′ �∈ A. Then it follows that f(x′) �∈ B and g(x′) �∈ C. Nevertheless, it could happen
that f(x′) ∈ C or g(x′) ∈ B. It is not at all clear how we can ensure that f avoids C and
that g avoids B for elements outside A. More precisely, a function which reduces A to
B ∪ C must map elements from A to B ∪ C. This problem is depicted in Figure 2.2.

A B C

x
g(x)f(x)

g

f

x′ g(x′) f(x′)

Σ∗

Figure 2.2: A,B, and C are subsets of Σ∗, A ∈ NP, B and C are disjoint NP-complete
sets. x ∈ A, x′ �∈ A. A reduces to B via f ∈ FP, A reduces to C via g ∈ FP.

There are many natural generalisations of the main question, some of which we will also
address in this chapter. For instance, it is also interesting to consider coarser degrees, i.e.,
degrees defined by more general reducibilities like Turing reducibility. Moreover, we are
not bound to limit our research to the complete sets, i.e., to the sets in the highest degree
of NP. A natural generalisation of our main question is whether there exists some degree
in NP−P which has the property that it is closed under unions of disjoint, equivalent sets.

Before we study the complexity of unions of equivalent sets within NP, we digress to
recursion theory in order to catch a glimpse of the situation there.

38

2.1 A Digression to Recursion Theory

While the complexity classes P and NP are the most prominent complexity classes in
computational complexity theory, the classes REC and RE are situated in the very center
of interest in recursion theory.

Interestingly, there exists a natural correspondence between computational complexity the-
ory and recursion theory. Both the class P and REC represent classes of feasible problems
in their particular discipline. The classes NP and RE are obtained by applying polynomi-
ally bounded existential quantification to P and unbounded existential quantification to
REC, respectively.

In contrast to the polynomial-time setting where the question of whether the NP-complete
sets are closed under unions of disjoint sets seems to be very difficult, the similar question
for RE-complete sets can be answered affirmatively without much effort. In this section
we will prove that unions of disjoint RE-complete sets are always RE-complete. Note
that in the recursive setting, with “-complete” we will always refer to recursive many-one
reducibility or recursive Turing reducibility.

In the recursive setting, the notion of creative sets enables us to prove the central statement
of this section in a straightforward and concise way. This notion is motivated by the
idea that RE-complete sets are those whose complements are effectively non-recursively
enumerable. The notation creative sets was introduced by Post [Pos44]. We first give the
formal definition of creative sets.

Definition 2.1 Let A ⊆ Σ∗ be a recursively enumerable set. A is creative if there exists
a computable function ψ : N → Σ∗ such that for all i ∈ N, it holds that

Di ⊆ A ⇒ ψ(i) is defined and ψ(i) ∈ A ∪Di.

The notion of creative sets plays an important role in recursion theory as it provides an
alternative characterisation of many-one completeness for the class of recursively enumer-
able sets. Moreover, this characterisation allows a fairly easily demonstration that all
many-one RE-complete sets are recursively isomorphic [Rog67].

Theorem 2.2 [Myh55] A set A ⊆ Σ∗ is creative if and only if it is recursive m-complete
for RE.

The following is easy to see:

Lemma 2.3 There exists a Turing machine M which on input (i, j) ∈ N×N computes
k ∈ N such that Dk = Di ∪Dj .

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 39

Proof. Let (i, j) ∈ N× N. M works as follows on input (i, j): M first decodes the Gödel
numbers i and j to obtain the instruction sets of Mi, the i-th Turing machine and Mj ,
the j-th Turing machine.

For all x, it holds that x ∈ Di ∪Dj if at least one of the machines Mi, Mj started on input
x stops after a finite number of steps.

M needs to construct a machine N which on input x stops if and only if x ∈ Di ∪ Dj .
This can be accomplished by a simple dovetailing argument:

On input x, N interleaves the computations of Mi and Mj . More precisely, N alternately
simulates a step of Mi and then a step of Mj. It repeats doing so until either of the
two machines stops. In this case, N stops. Otherwise, N runs infinitely. Clearly, M can
compute an instruction set for N out of the instruction sets for Mi and Mj. All N then
has to do is to compute k, the Gödel number of N . �

Theorem 2.4 Let A be recursive m-complete for RE, and let B ∈ RE such that A∩B = ∅.
Then A ∪B is m-complete for RE.

Proof. Let A be m-complete for RE, and let B ∈ RE such that A ∩ B = ∅. By
Theorem 2.2, A is creative. As B ∈ RE, there exists b ∈ N such that B = Db. Let ξ be the
function computed by the Turing machine M in Lemma 2.3, and let ψ be the computable
function which witnesses A’s creativity. We define a computable function φ : N → N.

φ(i) =def ψ(ξ(i, b))

We now prove that this function witnesses that A∪B is creative: Clearly, φ is computable
because both ψ and ξ are computable. Let i ∈ N and suppose that Di ⊆ A ∪B. Hence
Dξ(i,b) = Di ∪ Db = Di ∪ B ⊆ A. Since ψ witnesses that A is creative, we obtain that
φ(i) = ψ(ξ(i, b)) is defined. Moreover, ψ(ξ(i, b)) ∈ A ∪Dξ(i,b) = A ∪B ∪Di. So A ∪B is
creative via φ. By Theorem 2.2, A ∪B is m-complete for RE. �

Corollary 2.5 Let A and B be disjoint, recursive m-complete sets for RE. Then the set
A ∪B is m-complete for RE.

Corollary 2.5 implies that the degreem(K0) is closed under unions of disjoint sets.

In the recursive setting, the case of T-reducibility can be settled in a straightforward way.

Theorem 2.6 Let A be recursive T-complete for RE, and let B ∈ RE such that A∩B = ∅.
Then A ∪B is T-complete for RE.

Proof. Let A be T-complete for RE, and let B ∈ RE such that A ∩B = ∅. We describe
a Turing machine M which has oracle access to A ∪ B and decides the set A. On input

40

x, M first queries the oracle for x. If it gets a negative answer, i.e. x �∈ A ∪ B, it follows
that x �∈ A, so M can reject x. If x ∈ A ∪ B, M gets a positive answer from the oracle.
M has to find out whether x belongs to A or to B. Let a, b ∈ N such that Da = A and
Db = B. Similarly to Lemma 2.3, M can simulate the a-th and the b-th Turing machine
simultaneously on input x. As A∩B = ∅, precisely one of the two machines will eventually
halt on x. If the a-th machine halts, M accepts x, if the b-th machine halts, M rejects x.
This proves A ≤T A ∪B. �

Theorem 2.6 was already observed by Shoenfield [Sho76].

Corollary 2.7 Let A and B be disjoint, recursive T-complete sets for RE. Then the set
A ∪B is T-complete for RE.

Observe that contrary to the m-case, Corollary 2.7 does not imply that degreeT (K0) is
closed under unions of disjoint sets. Obviously, this is not the case because degreeT (K0)
contains both K0 and K0 since K0 ≡T K0. For the same reason, no full Turing-degree
of a nontrivial set can be closed under unions of disjoint sets. Nevertheless, Corollary 2.7
does imply that degreeT (K0) ∩ RE is closed under unions of disjoint sets.

2.2 Necessary and Sufficient Conditions for the Polynomial-

Time Setting

The unconditional proofs in Section 2.1 are in contrast to the polynomial-time setting,
where we do not know whether similar statements hold. It is evident that we cannot
expect unconditional results about unions of disjoint NP-complete sets:

In the unlikely case that P = NP, unions of disjoint T-complete sets for NP are always
T-complete because the union of two P-sets is always in P and any set in P is T-complete
for P. Under the same improbable assumption, the situation for m-complete sets is similar.
The only difference is that by the definition of m-reducibility, neither Σ∗ nor the empty
set can be complete for NP (or for P). However, the situation is almost the same as in the
T-case: If A and B are m-complete for NP such that A ∩ B = ∅ and A ∪ B �= Σ∗, then
A ∪B is m-complete for NP.

Consequently, the question of whether unions of disjoint NP-complete sets are always
NP-complete is only interesting under the widely believed assumption that P �= NP.

It turns out that the situation is more subtle in the polynomial setting. In fact, the
assumption P �= NP is not strong enough for an affirmative answer to the main question:

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 41

Although P �= NP, it could still be the case that NP = coNP. Then SAT and SAT are
both NP-complete, but SAT ∪ SAT = Σ∗ cannot be NP-complete, so the main question
has a negative answer.

Ogiwara and Hemaspaandra [OH93] construct a relativised world where this actually is the
case. They construct an oracle O relative to which UPO �= NPO = PSPACEO. Relative
to their oracle O, PO �= NPO and NPO = coNPO.

In fact, NP �= coNP is the weakest hypothesis we know of which could enable us to prove
that the union of two disjoint NP-complete sets is always NP-complete.

In this section we prove that the situation in fact is as follows:

• If the main question has a positive answer, then NP does not equal coNP.

• If the main question has a negative answer, then NP equals coNP or there exist
p-inseparable NP-complete sets in NP.

This reveals that we do not know any unlikely consequences of a yes- or no- answer. So
basically, it is not clear what to believe with respect to the main question.

2.2.1 P-Separable Sets and Paddable Sets

Now that we now that NP �= coNP is a necessary condition for an affirmative answer to
the main question, we also want to formulate a sufficient condition.

If one is asked to name two disjoint NP-complete problems, then one will usually come
up with two natural sets that are disjoint for syntactic reasons, e.g., 0SAT and 1SAT.
Trivially, 0SAT ∪ 1SAT is NP-complete.

Interestingly, the same can also happen with more sophisticated examples of disjoint NP-
complete sets:

Clique = {(G, k) |G is a graph which has a clique of size ≥ k + 1}
Colouring = {(G, k) |G is a graph which is k-colourable}

It is easy to see that Clique and Colouring are disjoint, because whenever a graph
can be coloured with k colours, it cannot have a clique of size ≥ k + 1. Observe that
Clique ∪ Colouring is not empty, because not every graph that does not have a clique
of size ≥ k + 1 can be coloured with k colours, as Figure 2.3 depicts.

It turns out that Clique ∪ Colouring is in fact NP-complete.

42

Figure 2.3: A graph G where (G, 2) ∈ Clique ∪ Colouring. G cannot be coloured with
2 colours although it does not have a clique of size 3.

These two examples have in common that the involved sets are p-separable. For 0SAT
and 1SAT this is accomplished by the separator 0Σ∗. For Clique and Colouring the
separator is constructed via the θ function by Lovász [Lov79]. It turns out that it is the
p-separability of the sets that causes the unions to be NP-complete. In fact, all unions of
p-separable NP-complete sets are NP-complete (with the trivial exception of Σ∗):

Proposition 2.8 If A and B are p-separable such that A �= B, then A≤p
mA ∪B.

Proof. Let w ∈ A ∪B and let S be a separator such that A ⊆ S and B ⊆ S. A reduces
to A∪B via the function that on input x, outputs w if x /∈ S, and outputs x otherwise. �

Proposition 2.9 If NP �= coNP and all pairs of disjoint NP-complete sets are p-separable,
then the union of disjoint NP-complete sets is always NP-complete.

Unfortunately, it is questionable whether the approach via p-separable sets will allow us
to answer the main question. On the one hand, Homer and Selman [HS92] construct an
oracle relative to which NP does not contain p-inseparable pairs. Under this oracle, the
main question has an affirmative answer. On the other hand, Grollmann and Selman
[GS88] show that it is unlikely that all disjoint NP sets are p-separable because this would
imply that P = UP.

Consequently, it is unclear whether the approach via p-separability can solve the question
of whether all unions of disjoint NP-complete sets are NP-complete.

What is the situation for paddable NP-complete sets? The notion of paddability is closely
related to the famous Berman-Hartmanis Isomorphism Conjecture [BH77]. The conjecture
states that all NP-complete sets are p-isomorphic. It is easy to see that this implies

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 43

P �= NP, because no finite set can be p-isomorphic to the infinite set SAT. Moreover, the
Isomorphism Conjecture is equivalent to assuming that all NP-complete sets are paddable.

The conjecture has neither been proven nor refuted although it has generated a consid-
erable amount of research in computational complexity. Serious objections were raised
against it by Joseph and Young [JY85], who constructed NP-complete sets of the form
f(A) where A is a paddable NP-complete set and f is a one-way function. They argued
that since one-way functions are not invertible in polynomial time, it may be that f(A)
is not p-isomorphic to A. Based on this, they conjectured that there is a one-way func-
tion f and a paddable NP-complete set A such that f(A) is not p-isomorphic to A. This
conjecture has been referred to as the Encrypted Complete Set Conjecture.

Furthermore, Kurtz, Mahaney, and Royer [KMR95] show that the Isomorphism Conjecture
fails relative to a random oracle. Nevertheless, the Isomorphism Conjecture ist not known
to imply any really unlikely consequences.

So if we then assume that all NP-complete sets are paddable, is it then easier to find an an-
swer to our main question concerning unions of disjoint NP-complete sets? Unfortunately,
it turns out that a restriction to paddable sets will not make the question easier:

Theorem 2.10 [GPSS06] The following are equivalent:

1. For all disjoint NP-complete sets A and B it holds that A ∪B is NP-complete.

2. For all NP-complete sets A and B ∈ NP where A ∩ B = ∅ it holds that A ∪ B is
NP-complete.

3. For all paddable, disjoint NP-complete sets A and B it holds that A ∪ B is NP-
complete.

4. For all NP-complete sets B where SAT∩B = ∅ it holds that SAT∪B is NP-complete.

In the recursion theory setting, the notion of creative sets allowed us to prove that unions of
disjoint RE-complete sets are RE-complete (see Section 2.1). There were several attempts
to translate the definition of creativeness to the polynomial settings. For instance, the
aforementioned NP-complete sets of the form f(A) where A is a paddable NP-complete
set and f is a one-way function are called k-completely-creative sets [JY85]. Also, Wang
[Wan91] defined k-creative sets which are a generalisation of k-completely-creative sets.

However, neither of the two concepts have been able to successfully capture NP-complete
sets. Most of the natural complete sets for NP are not known to be even k-creative.
Moreover, it is not known whether all k-creative sets are NP-complete [AB96].

44

2.3 Evidence for the Complexity of Unions of Disjoint NP-

Complete Sets

We have argued in the last section that the perspective of answering the main question
is not too promising. Nevertheless, we can prove partial results: Although we cannot
show that unions of disjoint NP-complete are always NP-complete, we can show that such
unions cannot become too easy. More precisely, we prove the following for all disjoint
NP-complete sets B and C:

1. B ∪C is high for NP. By [KS97], this is equivalent to saying that B ∪C is strongly
nondeterministic-Turing-complete for NP.

2. Under a reasonable hypothesis, B ∪C is non-uniformly many-one-complete for NP.

Our results show that unions of disjoint NP-complete sets remain complete with respect
to more general reducibilities. This is evidence that unions of disjoint NP-complete sets
retain much of the complexity of their single components.

As a byproduct, we obtain that the levels 1, 2, . . . of the high-hierarchy are closed under
unions with arbitrary (but disjoint) NP-sets.

2.3.1 The High-Hierarchy

High sets are generalisations of NP-complete sets. In this section, we show that relaxed
to high sets, our main question has an affirmative answer.

Lemma 2.11 Let A,B ∈ NP such that A ∩B = ∅. Then NPA ⊆ NPA∪B.

Proof. Let MA and MB be nondeterministic polynomial-time Turing machines such that
L(MA) = A and L(MB) = B, and let C ∈ NPA via a nondeterministic polynomial-time
oracle Turing machine (NPOTM) M ; i.e., L(MA) = C.

We construct a NPTOM N such that L(NA∪B) = C:

N simulates M on input x until M wants to query the oracle A. Assume M wants to
query A for the string q. Recall that N on its simulation of M cannot query oracle A but
only the oracle A ∪B. So N queries A ∪B for q.

Case 1: q �∈ A ∪ B: It then follows that q �∈ A, so N can continue the simulation of M
with a negative answer to the query q.

Case 2: q ∈ A ∪ B: N branches nondeterministically into two paths. On the first path,
it simulates MA(q), on the second, it simulates MB(q). Since A and B are disjoint, only
one of these two machines produces an accepting path. Then N continues as follows:

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 45

• On all accepting paths of MA(q) (if any), N continues the simulation of M with a
positive answer to the query q.

• On all rejecting paths of MA(q), N rejects.

• On all accepting paths of MB(q) (if any), N continues the simulation of M with a
negative answer to the query q.

• On all rejecting paths of MB(q), N also rejects.

During its simulation of M , N proceeds in the same way for all of M ’s queries to A.
Observe that since MA(q) (or MB(q), respectively) can produce more than one accepting
path, N will in general perform several parallel simulations of M after a simulation of
MA(q) or MB(q). As L(MA) ∩ L(MB) = ∅, all these parallel simulations are identical.
Consequently, it is immediately clear that NA∪B(x) produces an accepting path if and
only if MA(x) produces an accepting path and hence L(NA∪B) = L(MA) = C. This
proves C ∈ NPA∪B and we obtain NPA ⊆ NPA∪B . �

If we were able to prove a similar statement for P, it would follow that Turing-complete
sets for NP are closed under unions of disjoint sets. The proof of Theorem 2.11 however
crucially depends on nondeterminism.

Theorem 2.12 Let k ≥ 1, A ∈ Highk and B ∈ NP such that A ∩B = ∅. Then A ∪ B ∈
Highk.

Proof. Let k ≥ 1, A ∈ Highk and B ∈ NP such that A ∩B = ∅. We will show that

ΣP
k+1 = ΣP

k
A ⊆ (ΣP

k)A∪B .

Since A is a set from Highk, the first equality follows from the definition. We will argue
for ΣP

k
A ⊆ (ΣP

k)A∪B by induction over k.

(IB) Let k=1. Then ΣP
1

A = NPA ⊆ (ΣP
1)A∪B = NPA∪B holds due to Lemma 2.11.

(IH) Let us assume that ΣP
k

A ⊆ (ΣP
k)A∪B holds for a k ≥ 1.

(IS) By definition, (ΣP
k+1)

A = (NPΣP
k)A.

Observe that (NPΣP
k)

A ⊆ NP0A∪1O for a suitable set O ∈ ΣP
k

A.
By the induction hypothesis, O ∈ (ΣP

k)A∪B .

Arguing similarly as in Lemma 2.11, we obtain

NP0A∪1O ⊆ (NPΣP
k)A∪B = (ΣP

k+1)
A∪B .

This shows that for all k ≥ 1, it holds that ΣP
k+1 = ΣP

k
A ⊆ (ΣP

k)A∪B. �

46

The following corollary is an immediate consequence of Theorem 2.12.

Corollary 2.13 For all k ≥ 1, Highk is closed under unions of disjoint sets.

Corollary 2.14 Let A,B ∈ NPC such that A∩B = ∅. Then A∪B is ≤p
snT-complete for

NP.

Proof. Since A and B are both NP-complete, they obviously are in High1. Theorem 2.12
yields that A ∪ B is also in High1. However, a set is in High1 if and only if it is ≤p

snT-
complete for NP [KS97]. �

2.3.2 A Non-Uniform Reducibility

In Section 2.3.1 we showed that the union of a disjoint NP-complete set and an arbitrary
NP-set is high for NP. In this section we give further evidence that unions of disjoint
NP-complete are not far from being NP-complete. To do so, we assume that NP contains
uniformly hard languages, i.e., languages that are uniformly not contained in coNP. Under
this hypothesis we show the following:

For every NP-complete A and every B ∈ NP that is disjoint from A it holds that A ∪ B
is nonuniformly NP-complete.

We remark that Downey and Fortnow [DF03] studied languages that are uniformly hard
for P. The notion we study in this section is a similar notion describing uniform-hardness
for NP.

We start with some notations which are related to the notion of uniform hard languages.

Definition 2.15 Let C and D be complexity classes, and let A and B be subsets of Σ∗.

1. A i.o.=B ⇐⇒def for infinitely many n it holds that A ∩ Σn = B ∩ Σn.

2. A
i.o.∈ C ⇐⇒def there exists C ∈ C such that A i.o.=C.

3. C i.o.⊆ D ⇐⇒def C
i.o.∈ D for all C ∈ C.

The following can easily be seen.

Proposition 2.16 Let C and D be complexity classes, and let A and B be subsets of Σ∗.

1. A i.o.=B if and only if A i.o.=B.

2. A
i.o.∈ C if and only if A

i.o.∈ coC.

3. C i.o.⊆ D if and only if coC i.o.⊆ coD.

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 47

Proposition 2.17 The following are equivalent:

(i) coNP
i.o.⊆/ NP

(ii) NP
i.o.⊆/ coNP

(iii) There exists an A ∈ NP such that A
i.o.∈/ coNP.

(iv) There exists a paddable NP-complete A such that A
i.o.∈/ coNP.

Proof. The equivalence of (i) and (ii) is by Proposition 2.16. Moreover, from the
definition it immediately follows that ¬(ii)⇒¬(iii) and ¬(iii)⇒¬(iv). It remains to show
¬(iv)⇒¬(ii). So we assume that for all paddable NP-complete A it holds that A

i.o.∈ coNP.
Choose any C ∈ NP and let B = 0C ∪ 1SAT. Hence B is paddable and NP-complete.
By our assumption B

i.o.∈ coNP. So there exists a D ∈ coNP such that B i.o.=D. Let D′ =
{w ∣∣ 0w ∈ D} and note that D′ ∈ coNP. Observe that for every n, if B∩Σn+1 = D∩Σn+1,
then C ∩ Σn = D′ ∩ Σn. Hence C i.o.=D′ which shows C

i.o.∈ coNP. �

For the following results, we assume that NP
i.o.⊆/ coNP. This is a believable assumption

that says that (for sufficiently long formulas) not all tautologies of a given size have short
proofs (confer Proposition 2.17).

Theorem 2.18 If NP
i.o.⊆/ coNP, then for every NP-complete A and every B ∈ NP that is

disjoint to A it holds that A ∪B is ≤p/poly
m -complete for NP.

Proof. By assumption, there exists an NP-complete K such that K
i.o.∈/ coNP. Then choose

f ∈ FP such that K≤p
mA via f , and choose g ∈ FP such that {(u, v) ∣∣ u ∈ K∨v ∈ K}≤p

mK

via g.
EASY =def {u ∣∣ ∃v, |v| = |u|, f(g(u, v)) ∈ B}

EASY belongs to NP. That EASY ⊆ K can be seen as follows: f(g(u, v)) ∈ B implies
g(u, v) /∈ K which shows u /∈ K. Intuitively, EASY is a set of words u that are outside
K and that have short proofs for this. (The proof is v together with an accepting path
proving f(g(u, v)) ∈ B.) From our assumption K

i.o.∈/ NP it follows that there exists an
n0 ≥ 0 such that

∀n ≥ n0,K
=n �⊆ EASY=n.

So for every n ≥ n0 we can choose a word wn ∈ K
=n − EASY. For n < n0, let wn = ε.

Choose a fixed z1 ∈ A ∪ B and a z0 /∈ A ∪ B (such a z0 exists since NP
i.o.⊆/ coNP implies

NP �= coNP). We define the reduction that witnesses K≤p/poly
m A ∪B.

h(v) =def

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(g(w|v|, v)) : if |v| ≥ n0

z1 : if |v| < n0 and v ∈ K

z0 : if |v| < n0 and v /∈ K

48

Observe that h ∈ FP/poly with the advice n �→ wn.

We claim that for all v it holds that

v ∈ K ⇔ h(v) ∈ A ∪B. (2.1)

This equivalence obviously holds for all v where |v| < n0. So we assume |v| ≥ n0. Let
n = |v|.
If v ∈ K, then g(wn, v) ∈ K and hence f(g(wn, v)) ∈ A ⊆ A ∪B.

If v /∈ K, then g(wn, v) /∈ K (since wn /∈ K). Hence f(g(wn, v)) /∈ A. If f(g(wn, v)) ∈ B,
then wn ∈ EASY which contradicts the choice of wn. Therefore, f(g(wn, v)) /∈ B. This
proves (2.1) and therefore, A ∪B is ≤p/poly

m -complete for NP. �

2.4 Upper and Lower Bounds

In this section, we abstract from the main question. We investigate how complex the
union of two disjoint equivalent NP sets can be, and we state upper and lower bounds.

For any set A, we define the set U(A) which is the class of all sets which are m-equivalent
to the union of two disjoint sets from the m-degree of A.

Definition 2.19 For a set A, we define the class

U(A) =def degp
m

({C ∪D ∣∣C ∩D = ∅ ∧ C ≡p
m D ≡p

m A}).
The next theorem characterises the scope of U(A). We state a technical lemma first.

Lemma 2.20 Let K and M be complexity classes that are closed under ≤p
m. Then the

class K∨· M is closed under ≤p
m as well.

Proof. We have to show that A ∈ Rp
m(K∨· M) implies A ∈ K∨· M.

Let A ∈ Rp
m(K∨· M), hence there exist f ∈ FP, A1 ∈ K, A2 ∈ M such that A1 ∩ A2 = ∅,

and x ∈ A ⇔ f(x) ∈ A1 ∪ A2. For i ∈ {1, 2}, let f−1[Ai] =def {x ∣∣ f(x) ∈ Ai}. Observe
that for i ∈ {1, 2}, f reduces f−1[Ai] to Ai. As K and M are closed under ≤p

m, it follows
that f−1[A1] ∈ K and f−1[A2] ∈ M. Moreover f−1[A1] ∩ f−1[A2] = ∅. We obtain

x ∈ A ⇔ f(x) ∈ A1 ∪A2

⇔ (
f(x) ∈ A1

) ∨ (
f(x) ∈ A2

)
⇔ (

x ∈ f−1[A1]
) ∨ (

x ∈ f−1[A2]
)

⇔ x ∈ f−1[A1] ∪ f−1[A2].

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 49

So x is in A if and only if x is in the union of a K-set and a disjoint M-set, hence
A ∈ K∨· M. �

Theorem 2.21 For all nontrivial sets A, it holds that

degp
m(A) ⊆ U(A) ⊆ Rp

m(A)∨· Rp
m(A).

Proof. Let A be a set and B ∈ degp
m(A). Hence, we have A ≡p

m B ≡p
m 0A ∪ 1A. To

see that 0A ∪ 1A is in U(A), notice that 0A ∩ 1A = ∅ and 0A ≡p
m 1A ≡p

m A. As B is
m-equivalent to A and 0A ∪ 1A, B is also in U(A).

For the second inclusion, let E ∈ U(A). So there exist C,D ∈ degp
m(A) such that C∩D = ∅

and E ≡p
m C ∪D. So E �= ∅. It follows that E ∈ Rp

m(C ∪D) ⊆ Rp
m(degp

m(A)∨· degp
m(A)) ⊆

Rp
m(Rp

m(A)∨· Rp
m(A)). By Lemma 2.20, this is equal to Rp

m(A)∨· Rp
m(A). �

The next proposition implies that for nontrivial sets, at least one of the two inclusions has
to be strict.

Proposition 2.22 For any nontrivial set A, it holds that degp
m(A) � Rp

m(A)∨· Rp
m(A).

Proof. Let A be a nontrivial set. By definition, degp
m(A) ⊆ Rp

m(A)∨· Rp
m(A). Since

A �= ∅, it is clear that ∅ ∈ Rp
m(A)∨· Rp

m(A). If degp
m(A) contained the empty set, it would

follow that A = ∅, contradicting our assumption. �

Let A be a set and B and C be disjoint sets that are m-equivalent to A. In the next
sections we will study the following phenomena:

• For some A, the union B ∪C is always m-equivalent to A, no matter how B and C
are chosen.

• For some A, the union B ∪ C can be less complex than A.

• For some A, the union B ∪ C can be more complex than A.

2.4.1 M-Idempotent Sets

In the following section, we consider m-equivalent, disjoint sets whose union is at most as
complex as the single components. We prove that two extremes can occur:

• Unions of disjoint, m-equivalent NP sets can be equivalent to their single components
(Theorem 2.27).

• Unions of disjoint, m-equivalent NP sets can be very easy, e.g. in P (Theorem 2.33).

50

Definition 2.23 We say that a nontrivial set A is m-idempotent if the following holds
for all sets B and C:

(A ≡p
m B ≡p

m C) ∧ (B ∩ C = ∅) =⇒ A ≡p
m B ∪ C.

Observe that a set A is m-idempotent if and only if degp
m(A) = U(A); that is, if the first

inclusion in Theorem 2.21 is an equality. Furthermore, it is clear that whenever a set A is
m-idempotent, the same holds for all sets B ∈ degp

m(A).

It turns out that our main question can be formulated equivalently with the notion of
m-idempotence.

Proposition 2.24 SAT is m-idempotent if and only if the union of two disjoint NP-
complete sets is always NP-complete.

So it is open whether the sets in the highest degree of NP are m-idempotent. A more
general question is to ask whether there exists a set A ∈ NP such that the sets in the
m-degree of A are m-idempotent. In other words, this is the question whether there is a
set A in NP that has the least possible scope for U(A). Observe that such a set A must
be in NP−P. Otherwise 0Σ∗ ≡p

m (1Σ∗ ∪ {ε}) ≡p
m A, which would imply that Σ∗ ≡p

m A.
This is a contradiction because A is nontrivial.

The next theorem states that the notion of p-selectivity can help us to find m-idempotent
sets. More precisely, p-selectivity implies m-idempotence for any set outside P.

Theorem 2.25 Let A /∈ P. If A is p-selective, then A is m-idempotent.

Proof. Let A be a p-selective set outside P.

Claim 2.26 For all disjoint B,C ∈ degp
m(A) it holds that the pair (B,C) is p-separable.

Proof of the claim. Let B,C ∈ degp
m(A) such that B ∩ C = ∅. Let g, h ∈ FP such that

B≤p
mA via g and C≤p

mA via h. Furthermore, let f ∈ FP be the selector of A. We now
define a set S ∈ P which separates the pair (B,C). Let

S =def {x ∣∣ f(g(x), h(x)) = g(x)}.

Since f, g, h ∈ FP, S clearly is in P. It remains to show that S separates (B,C), this
means that for all x, it must hold that

x ∈ B ⇒ x ∈ S

x ∈ C ⇒ x ∈ S.

Let x ∈ B. Then g(x) ∈ A. Moreover, h(x) �∈ A since B and C are disjoint. Conse-
quently, f(g(x), h(x)) = g(x) and x ∈ S. If x ∈ C, h(x) ∈ A and g(x) �∈ A. We obtain
f(g(x), h(x)) = h(x) and x �∈ S. This proves our claim. �

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 51

Hence, we have shown that all disjoint B,C ∈ degp
m(A) are p-separable. We argue that

this implies that A is m-idempotent. Let B,C ∈ degp
m(A) such that B∩C = ∅ and C≤p

mB

via f ∈ FP. We have to show that B ∪ C ≡p
m B.

Clearly,

g(x) =def

{
x, if x ∈ S

f(x), if x �∈ S

yields B ∪ C≤p
mB.

Let us assume that C = B. This implies A ≡p
m A, because A ≡p

m B ≡p
m B ≡p

m A. From
[Sel79] it then follows that A ∈ P. This is a contradiction, so C �= B. By Proposition 2.8,
B ∪ C ≡p

m B. From this, it follows that B ∪C ≡p
m A. This finishes our proof. �

The proof of Theorem 2.25 does also show that every degree having the property that all
pairs of disjoint sets are p-separable is m-idempotent.

Claim 2.26 then states that this holds in particular for degrees of p-selective sets. Recall
that if all pairs of disjoint NP sets were p-separable, it would follow that P = UP [GS88]
and that all sets in NP are m-idempotent. Moreover, we refer to Fortnow and Rogers
[FR02] for an analysis of this hypothesis.

The next theorem gives a positive answer to the more general question whether NP con-
tains m-idempotent sets under the assumption that NE �= coNE.

Theorem 2.27 If NE �= coNE, there exists A ∈ NP−coNP such that A is m-idempotent.

Proof. We assume that NE �= coNE. This implies the existence of a tally set T ∈
NP−coNP [BWSD77]. It then follows [Sel79] that there exists A ≡p

T T such that A ∈ NP
and A is p-selective. Suppose that A ∈ NP ∩ coNP. Since NP ∩ coNP is closed under ≤p

T-
reducibility, this implies that T ∈ NP ∩ coNP. As T ∈ NP−coNP, this is a contradiction.
It follows that A ∈ NP−coNP. So we have identified a p-selective set in NP−coNP. In
particular, A �∈ P. By Theorem 2.25, A is m-idempotent. �

We will now show that the complexity class EXP contains m-idempotent sets uncondi-
tionally.

Theorem 2.28 There exists an m-idempotent set A ∈ EXP.

Proof. We first prove that there exists a tally set in EXP−P. We use a standard diagonal-
isation argument. Let M1,M2, . . . be an enumeration of all deterministic polynomial-time
Turing machines. For all i ≥ 1, let the running time of machine Mi be bounded by poly-
nomial pi. For technical reasons, we choose an enumeration of machines and polynomials
such that for all i ≥ 1, pi(i) ≤ 2i − 1.

52

Define
H =def {0i

∣∣Mi accepts 0i after at most 2i steps}.

Obviously, H is a tally set in EXP. We now prove that H �∈ P. We suppose, for the
sake of contradiction, that there exists an x ≥ 1 such that Mx accepts H. We construct
a Turing machine D as follows: On input 0i, D simulates Mx on input 0i. D accepts the
input 0i if and only if Mx rejects 0i.

Such a machine clearly exists, so there exists y ≥ 1 such that D = My. The running time
of My on an input 0n can be bounded by px(n) + 1 ≤ py(n).

We now run My on input 0y. My then starts a simulation of Mx on input 0y.

Let us assume that Mx accepts 0y. By the definition of H, it must hold that My accepts
0y after at most 2y steps. Nevertheless, we have designed My to reject whenever Mx

accepts, so this is a contradiction. Hence, Mx rejects 0y. Similarly, it follows that My

does not accept 0y after at most 2y steps. Since we know that My on input y halts within
px(y) + 1 ≤ 2y steps, it follows that My rejects 0y within py(y) steps. Again, this is a
contradiction.

Consequently, no such machine Mx can exist, hence H �∈ P. Hence, H is in EXP − P.
Since H is a tally set, it follows [Sel79] that there exists A ≡p

T H such that A is p-selective.
It is easy to see that A ∈ EXP − P. Together with Theorem 2.25, this implies that A is
m-idempotent. �

We have shown that there are sets in EXP for which the first inclusion in Theorem 2.21
is an equality. Under a reasonable assumption, we have shown the same for NP. We now
take a look at the second inclusion.

We will show that there exists a set A ∈ NP such that

degp
m(A) � U(A) = (Rp

m(A)∨· Rp
m(A)) − {∅}

under the assumption that P �= NP ∩ coNP. We first prove that a set A cannot be
m-idempotent if Rp

m(A) is closed under Boolean operations.

Theorem 2.29 Let A be a nontrivial set. If Rp
m(A) is closed under Boolean operations

then U(A) = Rp
m(A) − {∅}.

Proof. As Rp
m(A) is closed under Boolean operations, it is easy to see that Rp

m(A) =
Rp

m(A)∨· Rp
m(A) = Rp

m(A)∨Rp
m(A). Hence it follows from Theorem 2.21 that we only have

to show Rp
m(A) − {∅} ⊆ U(A).

Let E ∈ Rp
m(A) − {∅} and Σ be an alphabet such that A ∪ E ⊆ Σ∗, let a �∈ Σ be a new

letter, and let Δ =def Σ ∪ {a}. Assume E≤p
mA via function h ∈ FP. Since Rp

m(A) is

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 53

closed under complementation it follows that A≤p
mA, say via function h′ ∈ FP, and hence

A ≡p
m A. So we can assume that E �= Σ∗, since otherwise E ∈ U(A) holds trivially because

A ∪A = Σ∗.

Let a0, e0, e1 ∈ Σ∗ such that a0 �∈ A and e0 �∈ E and e1 ∈ E.

We will define sets A0, A1 ⊆ Δ∗ such that

• A0 ∩A1 = ∅,

• A0 ∪A1 ≡p
m E,

• A0 ≡p
m A1 ≡p

m A.

Notice that this implies E ∈ U(A).

We define A1 =def aA ∪ E and A0 =def a(Σ∗ −A). Clearly, A0 ∩A1 = ∅.

Claim 2.30 A0 ∪A1 ≡p
m E

Proof of the claim. It holds that A0 ∪A1 = aΣ∗ ∪ E. Let f1 : Δ∗ → Σ∗ be defined by

f1(x) =def

⎧⎨
⎩

x, if x ∈ Σ∗

e1, if x ∈ aΣ∗

e0, otherwise.

Observe that x ∈ aΣ∗∪E ⇔ f1(x) ∈ E. As f1 clearly is in FP, we have shown A0∪A1≤p
mE.

For the other direction, let f2 : Σ∗ → Δ∗ be defined by f2(x) = x. Again, it is easy to see
that x ∈ E ⇔ f2(x) ∈ aΣ∗ ∪E and f2 ∈ FP. This proves the claim. �

Claim 2.31 A0 ≡p
m A1 ≡p

m A

Proof of the claim. We will define functions f3, f4, f5 ∈ FP such that A0≤p
mA1 via f3,

A1≤p
mA via f4, and A≤p

mA0 via f5.

Define f3 : Δ∗ → Δ∗ by

f3(x) =def

{
ah′(z), if x = az where z ∈ Σ∗

e0, otherwise.

If x ∈ A0, there exists z ∈ Σ∗ −A such that x = az. As h′ reduces A to A, ah′(z) is in A1.
If x �∈ A0, it either is of the form x = az′ where z′ ∈ A or x ∈ Δ∗ − aΣ∗. In the first case,
h′(z′) ∈ Σ∗ −A, so ah′(z) �∈ A1. In the second case f3(x) = e0 �∈ A1. Obviously, f3 ∈ FP,
hence A0≤p

mA1.

54

We define f4 : Δ∗ → Σ∗ by

f4(x) =def

⎧⎨
⎩

z, if x = az where z ∈ Σ∗

h(x), if x ∈ Σ∗

a0, otherwise.

If x ∈ A1, either x = az where z ∈ A or x ∈ E. In the first case, f4(x) = z ∈ A. In the
second case, f4(x) = h(x) ∈ A since h reduces E to A. If x �∈ A1, we distinguish three
cases:

1. Assume x ∈ a(Σ∗ − A), i.e. there exists z′ ∈ Σ∗ − A such that x = az′. Then
f4(x) = z′ �∈ A.

2. Assume x ∈ Σ∗ − E. Then f4(x) = h(x) �∈ A.

3. Assume x ∈ (Δ∗aΔ∗) − (aΣ∗). Then f4(x) = a0 �∈ A.

Together with f4 ∈ FP, we obtain A1≤p
mA.

Define f5 : Σ∗ → Δ∗ by f5(x) = ah′(x). If x ∈ A then h′(x) ∈ Σ∗ − A hence f5(x) =
ah′(x) ∈ a(Σ∗ − A) ⊆ A0. If x �∈ A then h′(x) ∈ A and hence f5(x) = ah′(x) ∈ A0.
Obviously, f5 ∈ FP. This proves our claim. �

As argued above, we have now shown that E ∈ U(A). This proves Rp
m(A) − {∅} ⊆ U(A).

Altogether, we obtain U(A) = Rp
m(A) − {∅}. �

Corollary 2.32 Let A be a set. If Rp
m(A) is closed under Boolean operations, then A is

not m-idempotent.

Proof. Follows immediately from Proposition 2.22 and Lemma 2.29. �

Consequently, no ≤p
m-complete problem for a deterministic Turing machine time or space

complexity class that is closed under ≤p
m-reducibility can be m-idempotent.

The next theorem shows that unions of disjoints sets in NP can be much easier than the
single components. In particular, there exists a degree degp

m(A) in NP−P such that all
intermediate degrees can be reached by unions from disjoint sets from degp

m(A).

Theorem 2.33 If P �= NP∩ coNP, then there exists a set A ∈ (NP∩ coNP)−P such that
U(A) = Rp

m(A) − {∅} = Rp
m(A)∨· Rp

m(A) − {∅}.

Proof. By Lemma 2.29, it suffices to show under the assumption P �= NP ∩ coNP,
that there exists a set A ∈ (NP ∩ coNP) − P such that Rp

m(A) is closed under Boolean
operations.

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 55

Let us assume that P �= NP ∩ coNP. Then there exists a set D ∈ (NP ∩ coNP) − P.
Let cD be the characteristic function of D. We now define a set A which has the desired
properties.

We define

A =def {H(x1, . . . , xn), w1, . . . , wn

∣∣H is a Boolean formula with variables

x1, . . . , xn and H(cD(w1), . . . , cD(wn)) = 1}.

It remains to show that

(1) A ∈ (NP ∩ coNP) − P,

(2) B ∈ Rp
m(A) implies B ∈ Rp

m(A),

(3) B,C ∈ Rp
m(A) implies B ∪ C ∈ Rp

m(A).

We first argue for (1). A cannot be in P since it obviously holds that D≤p
mA. We have to

show that A ∈ NP ∩ coNP. Let M1 and M2 be nondeterministic machines such that the
following holds for all x:

x ∈ D ⇔ M1 on input x has (at least) one accepting path

⇔ M2 on input x has no accepting paths.

Clearly, this implies that for all inputs x, precisely one of the machines M1,M2 produces
an accepting path when running on input x. We informally describe a nondeterministic
algorithm which decides A in polynomial time:

On input
(
H(x1, . . . , xn), w1, . . . , wn

)
do the following:

1. i := 1

2. Nondeterministically simulate M1 and M2 on input wi.

3. On all nondeterministic paths of M1 and M2:

(a) If the current path is rejecting, terminate the computation on

this path.

(b) If the current path accepts, set ci := 1 if the path belongs to

M1, set ci := 0 if it belongs to M2.

(c) If i < n, set i := i + 1 and goto 2.

(d) If i = n, evaluate H(c1, . . . , cn).
(e) Accept if and only if H(c1, . . . , cn) = 1.

Algorithm 2.1: A nondeterministic algorithm which decides A in polynomial time

56

Observe that the algorithm runs in polynomial time and produces an accepting path if
and only if the input

(
H(x1, . . . , xn), w1, . . . , wn

)
is in A. So we obtain A ∈ NP. To

see that A ∈ coNP, note that A≤p
mA via the function f(H(x1, . . . , xn), w1, . . . , wn) =def

(¬H(x1, . . . , xn), w1, . . . , wn). Hence, A ∈ (NP ∩ coNP) − P.

We now prove (2) and (3). Let B≤p
mA and C≤p

mA via functions g1, g2, that means x ∈
B ⇔ g1(x) ∈ A and x ∈ C ⇔ g2(x) ∈ A holds for all x. Clearly, the function f defined
above reduces B to B. It remains to show that B ∪ C≤p

mA. This is accomplished by the
function h.

h(x) =def

(
H1∨H2(x1, . . . , xn, x

′
1, . . . , x

′
m), w1, . . . , wn, w

′
1, . . . , w

′
m

)
,

where(
H1(x1, . . . , xn), w1, . . . , wn

)
=def g1(x) and

(
H2(x′1, . . . , x

′
m), w′

1, . . . , w
′
m

)
=def g2(x).

It now holds that

x ∈ B ∪ C ⇔ (g1(x) ∈ A) ∨ (g2(x) ∈ A)

⇔ h(x) ∈ A.

Function h is computable in polynomial time. We obtain B ∪ C≤p
mA via function h and

hence B ∪ C ∈ Rp
m(A). This finishes our proof. �

By Proposition 2.22, the set A in Theorem 2.33 cannot be m-idempotent. Informally
speaking, the reason is that unions of sets in the degree of A can be too easy to be in the
degree of A. As stated before, the question whether unions of NP-complete sets can be
less than NP-complete is still open.

As a bibliographic note, the next proposition states a connection to secure public-key
cryptosystems which is known due to Grollmann and Selman [GS88]:

Proposition 2.34 If SAT is not m-idempotent, then there exist secure public-key cryp-
tosystems.

Proof. In the proof of Theorem 2.25, we show that if all disjoints sets in the degree
of a set A are p-separable, then A is m-idempotent. Hence, if the NP-complete sets are
not m-idempotent, there exist NP-complete sets B and C such that the pair (B,C) is not
p-separable. Grollmann and Selman showed [GS88] that such a pair (B,C) exists if and
only if secure public-key cryptosystems do exist. �

In the next section, we will show that the opposite can occur also, i.e. unions of equivalent
sets can be harder than the original sets.

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 57

2.4.2 Harder Unions

Buhrman, Hoene, and Torenvliet [BHT98] showed unconditionally that there exists an
A ∈ EXP−P such that A is not EXP-complete and not m-idempotent. Recall that due to
Corollary 2.32, no EXP-complete problem can be m-idempotent.

Theorem 2.35 [BHT98] Let C be m-complete for EXP. Then C can be split into A and
B such that

• A,B ∈ EXP,

• A ≡p
m B,

• A≤p
mA ∪B = C,

• A ∪B does not m-reduce to A, that means A,B are not m-complete for EXP.

Corollary 2.36 There exists A ∈ EXP such that

degp
m(A) � U(A) ⊆ Rp

m(A)∨· Rp
m(A) = EXP,

hence A is not m-idempotent.

Proof. Let C be m-complete for EXP. By Theorem 2.35, C can be split into sets
A,B ∈ EXP such that A ≡p

m B, A ∩ B = ∅, A≤p
mA ∪ B, and A ∪ B does not m-reduce

to A. Hence, A ∪ B ∈ Rp
m(A)∨· Rp

m(A). As C = A ∪B is EXP-complete and A ≡p
m B, it

follows that Rp
m(A)∨· Rp

m(A) = EXP. �

In this case, the union of sets in degp
m(A) can be harder than A. We will identify degrees

in ΘP
2 for which the same holds. After this, we will construct such sets within NP.

The chromatic number of a graph G (in notation γ(G)) is the smallest number k such that
G is k-colourable.

Definition 2.37 Let γ(G) be the chromatic number of a graph G, and let k ≥ 1. Then

Colourk =def {(G, a1, . . . , ak)
∣∣G is a graph, a1, . . . , ak ≥ 0 are pairwise different,

and γ(G) ∈ {a1, . . . , ak}}.

It follows from [CGH+88] that Colourk is ≤p
m-complete for NP(2k) . Since Colour1 is

m-complete for NP(2), it follows that degp
m(Colour1) = {A ∣∣A is m-complete for NP(2)}

and Rp
m(Colour1)∨· Rp

m(Colour1) = NP(2)∨· NP(2).

Theorem 2.38 If the Boolean hierarchy over NP does not collapse to the second level,
then there exist A,B ∈ NP(2) such that

58

• A ≡p
m B,

• A≤p
mA ∪B,

• A ∪B does not m-reduce to A.

Proof. We prove a stronger statement: For every k ≥ 1, there exist disjoint sets A and
B such that A and B are NP(2k)-complete and A ∪ B is NP(4k) complete. We consider
variants of the well known graph colouring problem.

Let k ≥ 1. Then the set Colour2k can be partitioned into L−Colour2k ⊆ Colour2k

and R−Colour2k ⊆ Colour2k, where

L−Colour2k =def {(G, ai pairwise different, γ(G) ∈ {a1, . . . , ak}},
R−Colour2k =def {(G, a1, . . . , a2k)

∣∣ ai pairwise different, γ(G) ∈ {ak+1, . . . , a2k}}.

It is easy to see that the following holds for all k ≥ 1:

• Colourk ≡p
m L−Colour2k ≡p

m R−Colour2k.

• L−Colour2k ∩ R−Colour2k = ∅.

• L−Colour2k ∪ R−Colour2k = Colour2k.

In particular, the problem Colour2 (which is m-complete for NP(4)) does neither m-
reduce to L−Colour2 nor to Colour1 (both of which are m-complete for NP(2)) unless
the Boolean hierarchy collapses to NP(2). �

Corollary 2.39 There exist A,B ∈ NP(2) such that

• A ≡p
m B,

• A≤p
mA ∪B,

• A ∪B does not m-reduce to A.

unless the polynomial-time hierarchy collapses.

Under the assumption that the Boolean hierarchy over NP does not collapse, it follows that
degp

m(Colour1) � U(Colour1). Hence, the NP(2)-complete sets are not m-idempotent.
This indicates that the converse of Corollary 2.32 does not hold.

The next theorem states that Colour1 is an example for which U(Colour1) lies strictly
between degp

m(Colour1) and Rp
m(Colour1)∨· Rp

m(Colour1) = NP(2)∨· NP(2).

First we prove a lemma.

Chapter 2: Unions of Disjoint, Equivalent NP-Sets 59

Lemma 2.40 For all sets A, the following are equivalent:

1. U(A) ∩ P �= ∅

2. U(A) ⊇ P − {∅}

3. A ≡p
m A.

Proof. Let A be a set.

For the implication from item 1 to item 2, assume that there exists a set B ∈ U(A) ∩ P.
By definition, U(A) contains all sets in degp

m(B) = P − {∅}, i.e. U(A) ⊇ P − {∅}. For the
implication from 2 to 3, assume that U(A) ⊇ P − {∅}. Hence, there exists E ∈ P − {∅}
such that E ∈ U(A). So there exist sets C and D such that C ≡p

m D ≡p
m A, C ∩D = ∅,

and E ≡p
m C ∪D. Observe that C ∪D ∈ P and C ∪D∩D = ∅. Therefore, it is easy to see

that C = C ∪D ∪D ≡p
m D. We now have A ≡p

m C ≡p
m D ≡p

m C. We conclude A ≡p
m A.

For the implication from 3 to 1, we assume A ≡p
m A. Hence, A �= ∅. Let a ∈ A. Trivially,

A ≡p
m A− {a} ≡p

m A. Therefore, Σ∗ − {a} = A− {a} ∪A ∈ U(A). �

Theorem 2.41 If the Boolean hierarchy over NP does not collapse to NP(2), it holds that

degp
m(Colour1) � U(Colour1) � Rp

m(Colour1)∨· Rp
m(Colour1).

Proof. Due to Theorem 2.21 and Theorem 2.38 it suffices to show that there exists D ∈
Rp

m(Colour1)∨· Rp
m(Colour1) = NP(2)∨· NP(2) such that D �∈ U(Colour1). Clearly,

NP(2)∨· NP(2) contains P, so let D ∈ P. As we assumed that the Boolean hierarchy does
not collapse to NP(2), it follows that NP(2) �= coNP(2) and hence Colour1 �≡p

m Colour1.
From Lemma 2.40 we then obtain U(Colour1)∩P = ∅. Consequently, D �∈ U(Colour1).

�

Corollary 2.42 It holds that

degp
m(Colour1) � U(Colour1) � Rp

m(Colour1)∨· Rp
m(Colour1)

unless the polynomial-time hierarchy collapses.

2.5 Summary and Outlook

In this chapter, we systematically studied the complexity of unions of disjoint, equivalent
sets. We glanced at the situation in the recursion theory setting and observed that the
union of two disjoint RE-complete sets is always RE-complete.

60

We then explained that one cannot expect similar absolute results for NP. We presented
necessary and sufficient conditions for an affirmative answer to the main open question of
whether the union of two disjoint NP-complete sets is always NP-complete.

We proved that under reasonable assumptions, the union of two disjoint NP-complete
sets cannot become too easy: More precisely, we showed that the union of two disjoint
NP-complete sets belongs to the class High1, the first level of the high-hierarchy. We
give further evidence that unions of disjoint NP-complete sets are not far from being NP-
complete by showing that under a reasonable assumption, the union of an NP-complete
set with a disjoint set in NP is nonuniformly NP-complete.

We then abstracted from the main problem and studied the more general question of
how the complexity of unions of disjoint, equivalent sets can change. As a useful tool,
we introduced the notion of m-idempotence. In order to show that NP−P contains m-
idempotent sets, we proved that every p-selective set is m-idempotent. We obtained that
if NE �= coNE, then there exists A ∈ NP−coNP such that A is m-idempotent. Although
it remained open whether the sets in the highest degree of NP, i.e., the NP-complete sets
are m-idempotent, we were able to show that NP is likely to contain degrees which have
that property.

In contrast to that, we also showed that NP−P also contains degrees with opposite prop-
erties: NP−P contains disjoint, equivalent sets whose union can be arbitrary simple unless
P = NP∩ coNP. Moreover, if the polynomial hierarchy is strict, then it is possible for the
union of two disjoint NP(2)-sets to be harder than either of its components.

Furthermore, we remark that under a strong hypothesis, one can also show that the same
can happen within NP−coNP. More precisely, under a strong assumption, it is possible to
show that there exist m-equivalent disjoint sets E and F in NP such that E ∪F is harder
than E. This assumption utilises the notion of immunity :

Definition 2.43 A set L is immune to a complexity class C, or C-immune, if L is infinite
and no infinite subset of L belongs to C. A set L is bi-immune to a complexity class C, or
C-bi-immune, if both L and L are C-immune.

Theorem 2.44 [GSTW07] If NP has NP ∩ coNP-bi-immune sets and NP ∩ coNP has
P-bi-immune sets, then there exist disjoint sets E,F ∈ NP− coNP such that E ≡p

m F , but
E ∪ F �≤p

mE.

As a bibliographical remark, we note that the marked union can in fact lower low-
hierarchy1 complexity [HJRW98]. Contrary to the results in this section however, the
involved sets are not equivalent.

1The low-hierarchy was defined in [Sch83]. It is related to the high-hierarchy. These hierarchies provide

a yardstick to measure the complexity of sets that are known to be in NP but that are seemingly neither

in P nor NP-complete

61

Chapter 3

NP-Hard Sets and Faulty Data

In Chapter 2, we investigated unions of disjoint NP-complete sets. We showed that when
we add NP-complete data to an NP-complete set, then the resulting set retains much of
its complexity, i.e., it is NP-complete with respect to more general reducibilities.

In this chapter, we follow this track and analyse what happens when we alter NP-hard sets
in a more general way. This includes adding faulty data (false positives) to NP-hard sets,
or removing reasonable data (false negatives). By dropping the condition that the data
we add must be NP-complete itself, we shift our focus to the question of how NP-hard
sets can cope with faulty data.

Even small amounts of faulty data can obscure reasonable information. For instance, by
filling more and more whitespaces of a printed text with arbitrary letters, it can become
quite difficult to understand the original meaning of the text.

The same holds true for NP-complete sets. Take for instance SAT, the set of all satisfiable
formulas. By adding false positives to SAT, i.e., some unsatisfiable formulas, we can
actually lose information: If we overdo it, we end up with SAT ∪ SAT = Σ∗, and by
this definitely lose NP-completeness. But how much false positive data can NP-hard sets
handle, i.e., how many false positives can we add such that the resulting set stays NP-hard?
Alternatively, how much effort is needed to extract the original information?

In this chapter, we investigate how polynomial time reductions can cope with false pos-
itives. More precisely, we consider NP-hard sets for several polynomial time reductions
and add false positives to the sets.

Moreover, we study the effects of more general kinds of faulty data. We investigate how
polynomial time reductions can handle combinations of both, false positives and false
negatives.

62

This also explains why we consider NP-hard sets instead of restricting ourselves to NP-
complete sets. As we allow arbitrary kinds of faulty data, we cannot guarantee that the
resulting set remains within NP.

Our research is related to the notion of program self-correction which was introduced
by Blum, Luby, and Rubinfeld [BLR93]. That notion addresses a fundamental question
regarding software reliability: Can one increase the reliability of existing software without
understanding the way it works? More precisely, let P be a program that is designed to
solve a problem L. However, we do not know whether P is correct. Is it possible to write
an auxiliary program M that uses P such that if P errs only on a small fraction of the
inputs, then with high probability M corrects the errors made by P? So M has to find
the right answer with high probability by calling P on several inputs.

Our investigations of the consequences of faulty data are related to a deterministic variant
of self-correction which we will introduce in the next section. In this case, the error
probability of the wrapping machine M must be 0, i.e., M must achieve certainty about
the question of whether the input belongs to L. As in the original definition, we also
demand that M runs in polynomial time.

3.1 Weak Deterministic Self-Correction

We introduce the notion of weak deterministic self-correction which is a deterministic
variant of (probabilistic) self-correction [BLR93]. The prefix weak indicates that our notion
of deterministic self-correction does not necessarily imply probabilistic self-correction in
the sense of Blum, Luby, and Rubinfeld [BLR93]. The difference is as follows: For weak
deterministic self-correction, we require that a sparse amount of errors can be corrected
by a deterministic polynomial-time corrector. For probabilistic self-correction however, a
probabilistic polynomial-time corrector must be able to correct up to 2n/p(n) errors for
some polynomial p.

Definition 3.1 L is weakly deterministically self-correctable if for every polynomial q
there exists a polynomial-time machine M such that L≤p

TP via M whenever the census
of L�P is bounded by q. If M queries nonadaptively, then L is nonadaptively weakly
deterministically self-correctable.

The set P in the definition formalises a program for L that errs on at most q(n) inputs
of length n. So L is weakly deterministically self-correctable if there exists an auxiliary
machine M that corrects all programs that err on at most q(n) inputs of length n. The
next theorem shows that such a universal M already exists if the single programs can be
corrected with possibly different machines. This establishes a connection between weak
deterministic self-correction and robustness against false positives.

Chapter 3: NP-Hard Sets and Faulty Data 63

Theorem 3.2 L is weakly deterministically self-correctable if L≤p
TL�S holds for all

sparse sets S.

Proof. ⇒: This follows directly from Definition 3.1.

⇐: Assume that L is not weakly deterministically self-correctable. So there exists a
polynomial q such that

∀polynomial-time machine M, ∃T ⊆ Σ∗ [censusT ≤ q and L �= L(ML�T)]. (3.1)

We construct a sparse S such that L �≤p
TL�S. The construction is stagewise where in step

i we construct a finite set Si such that S1 ⊆ S2 ⊆ · · · and S =def
⋃

i≥1 Si. Let M1,M2, . . .

be an enumeration of all deterministic, polynomial-time Turing machines such that Mi

runs in time ni + i. Let S0 = ∅. For i ≥ 1, the set Si is constructed as follows:

Choose n sufficiently large such that Si−1 ⊆ Σ<n and changing the oracle with respect to
words of length ≥ n will not affect the computations that were simulated in earlier steps.
Choose a finite Ti ⊆ Σ≥n and an xi ∈ Σ∗ such that censusTi ≤ q and

xi ∈ L ⇔ xi /∈ L(ML�(Si−1∪Ti)
i). (3.2)

Let Si =def Si−1 ∪ Ti.

We argue that the choice of Ti is possible. If not, then for all finite Ti ⊆ Σ≥n where
censusTi ≤ q and all xi ∈ Σ∗ it holds that

xi ∈ L ⇔ xi ∈ L(ML�(Si−1∪Ti)
i).

Let M be the polynomial-time machine obtained from Mi when queries of length < n

are answered according to (L�Si−1) ∩ Σ<n (which is a finite set). So for all T where
censusT ≤ q and all xi ∈ Σ∗ it holds that

xi ∈ L(ML�T) ⇔ xi ∈ L(ML�(Si−1∪(T∩Σ≥n))
i) ⇔ xi ∈ L(ML�(Si−1∪T ′)

i) ⇔ xi ∈ L,

where
T ′ = T ∩ Σ≥n ∩ Σ≤|xi|i+i.

Hence L = L(ML�T) for all T where censusT ≤ q. So M contradicts (3.1). It follows that
the choice of Ti is possible and hence also the construction of S.

The equivalence (3.2) ensures that

∀i ≥ 1 [xi ∈ L ⇔ xi /∈ L(ML�S
i)]

and hence L �≤p
TL�S. �

64

Corollary 3.3 L is nonadaptively weakly deterministically self-correctable ⇔ L≤p
ttL�S

for all sparse S.

Proof. This is shown with the same proof as Theorem 3.2, except that all machines
query nonadaptively. �

3.2 Partly Corrupt NP-Hard Sets

In this section we investigate how polynomial reductions can cope with sparse amounts of
false data in sets that are hard for NP with respect to various reducibilities. In Section 3.2.1
we show that altering sparse information in m-hard sets results in sets that are at least
tt-hard. In particular, all m-complete sets are nonadaptively weakly deterministically self-
correctable. In Section 3.2.2 we prove that adding a sparse amount of false positives to
dtt-hard sets results in sets that are at least T-hard. However, it remains open whether
dtt-complete sets are weakly deterministically self-correctable. At the end of Section 3.2.2,
we give evidence that this open problem is rather difficult to solve.

Finally we show in Section 3.2.4 that many-one reductions, bounded truth-table reduc-
tions, and disjunctive truth-table reductions are provably too weak to handle false positives
in SAT.

Several proofs in this section are based upon the left-set technique by Ogihara and Watan-
abe [OW91].

3.2.1 Many-One Reductions

Here we alter sparse information in m-hard sets for NP. Under the assumption P �= NP,
the resulting sets are still ctt-hard when we add a sparse amount of false positives. Under
the same assumption, we obtain that m-hard sets for NP remain dtt-hard when we remove
a sparse amount of reasonable information, i.e., when we allow a sparse amount of false
negatives.

Without the assumption P �= NP, we can show that the resulting sets are at least tt-hard.
On the technical side we extend an idea from [GPSZ06] which shows how many-one queries
to NP-hard sets can be reformulated. In this way, for a given query we can generate a
polynomial number of different, but equivalent queries (Lemma 3.4). From this we easily
obtain the conditional ctt-hardness, dtt-hardness and the unconditional tt-hardness of the
altered NP-hard set. As a corollary, all m-complete sets for NP are nonadaptively weakly
deterministically self-correctable.

Chapter 3: NP-Hard Sets and Faulty Data 65

Lemma 3.4 Let L be ≤p
m-hard for NP and let B ∈ NP. Then there exists a polynomial

r such that for every polynomial q there is a polynomial-time algorithm A such that A on
input x,

• either correctly decides the membership of x in B or

• outputs k = q(r(|x|)) pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all i ∈ [1, k],
it holds that

x ∈ B ⇔ yi ∈ L.

Proof. Choose R ∈ P and a polynomial p such that x ∈ B if and only if there exists a
w ∈ Σp(|x|) such that (x,w) ∈ R. For x ∈ B, let wx be the lexicographically greatest such
witness. The following set is in NP.

Left(B) = {(x, y) ∣∣ x ∈ B, |y| = p(|x|), y ≤ wx}.

So there is a many-one reduction f from Left(B) to L. In particular, there exists a
polynomial r such that for all x ∈ Σ∗ and all y ∈ Σp(|x|), |f(x, y)| ≤ r(|x|). Choose a
polynomial q. We now describe the algorithm A.

1. m := p(n)
2. if (x, 1m) ∈ R then accept

3. l := 0m

4. if f(x, l) = f(x, 1m) then reject

5. Q = {f(x, l)}
6. while |Q| ≤ q(r(n)) do

7. choose a ∈ Σm such that l ≤ a ≤ 1m, f(x, a) ∈ Q,

and f(x, a + 1) /∈ Q

8. l := a + 1

9. if (x, a) ∈ R then accept

10. if f(x, l) = f(x, 1m) then reject

11. Q = Q ∪ {f(x, l)}
12. end while

13. output Q

Algorithm 3.1: A, input x, |x| = n

Observe that algorithm A places a string f(x, l) in Q only if f(x, l) �= f(x, 1m). Thus
f(x, 1m) is never placed in Q. So in step 8, f(x, l) ∈ Q and f(x, 1m) /∈ Q. Therefore, with

66

a binary search we find the desired a in polynomial time. Each iteration of the while loop
adds a new string to Q or decides the membership of x in B. Thus the algorithm works in
polynomial time and when it outputs some Q, then |Q| = q(r(|x|)) and words in Q have
lengths ≤ r(n).

Claim 3.5 If the algorithm outputs some Q, then for all y ∈ Q, x ∈ B ⇔ y ∈ L.

Proof of the claim. If x /∈ B, then for all c ∈ [0m, 1m], (x, c) /∈ Left(B). Observe that
the algorithm places a string y in Q only if y = f(x, a) where a ∈ [0m, 1m]. Since f is a
many-one reduction from Left(B) to L, no string from Q belongs to L.

From now on we assume x ∈ B. We prove the claim by induction. Initially, Q =
{f(x, 0m)}. Clearly, x ∈ B ⇔ (x, 0m) ∈ Left(B). Since f is a many-one reduction from
Left(B) to L, the claim holds initially. Assume that the claim holds before an iteration of
the while loop. The while loop finds a node a such that f(x, a) ∈ Q, but f(x, a+ 1) /∈ Q.
From f(x, a) ∈ Q and x ∈ B it follows (by induction hypothesis) that f(x, a) ∈ L. Thus
(x, a) ∈ Left(B) which implies a ≤ wx. At this point the algorithm checks whether a is
a witness of x. If so, then it accepts and halts. Otherwise, we have a + 1 ≤ wx. Thus
(x, a+ 1) ∈ Left(B) and f(x, a+ 1) ∈ L. So the claim also holds after the iteration of the
while loop. �

Claim 3.6 If the algorithm accepts x (resp., rejects x), then x ∈ B (resp., x /∈ B).

Proof of the claim. The algorithm accepts x only if it finds a witness of x. Thus if
the algorithm accepts, then x ∈ B. The algorithm rejects only if f(x, l) = f(x, 1m).
Note that f(x, l) ∈ Q, so by the previous claim, x ∈ B ⇔ f(x, l) ∈ L. Observe that
(x, 1m) /∈ Left(B). Thus f(x, l) = f(x, 1m) /∈ L and hence x /∈ B. �

This finishes the proof of the lemma. �

Theorem 3.7 The following statements are equivalent.

1. P �= NP

2. If L is ≤p
m-hard for NP and S is sparse, then L ∪ S is ≤p

ctt-hard for NP.

Proof. ¬1 ⇒ ¬2: If P = NP, then L = Σ∗ − {0} and S = {0} are counter examples
for statement 2.

1 ⇒ 2: Assume P �= NP and let L and S be as in statement 2. If L is sparse, then there
exist sparse coNP-hard sets and hence P = NP [For79]. So it follows that L is not sparse
and L ∪ S �= Σ∗. Hence there exist elements x0 /∈ L ∪ S and x1 ∈ L ∪ S.

Let B ∈ NP; we show B≤p
cttL∪S. First, choose the polynomial r according to Lemma 3.4.

Let q be a polynomial such that |S ∩ Σ≤n| < q(n). Lemma 3.4 provides an algorithm A

Chapter 3: NP-Hard Sets and Faulty Data 67

that on input x either correctly decides the membership of x in B, or outputs k = q(r(|x|))
pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all i ∈ [1, k], (x ∈ B ⇔ yi ∈ L). Define
the following polynomial-time-computable function.

g(x) =def

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 : if A(x) rejects

x1 : if A(x) accepts

(y1, . . . , yk) : if A(x) returns Q = {y1, . . . , yk}

Note that in the last case, k = q(r(|x|)) and the yi have lengths ≤ r(|x|). So at least one
of the yi does not belong to S. From A’s properties stated in Lemma 3.4 it follows that
B≤p

cttL ∪ S via g. �

Similarly, we can show the following:

Theorem 3.8 The following statements are equivalent.

1. P �= NP

2. If L is ≤p
m-hard for NP and S is sparse, then L−S is ≤p

dtt-hard for NP.

Proof. The proof is basically the same as the proof of Theorem 3.7. Lemma 3.4 provides
an algorithm which either decides membership for an input x directly or outputs sufficiently
many elements (i.e., more than censusS-many elements) which are equivalent with respect
to their membership in L. Hence it follows that whenever the algorithm cannot solve
the problem directly, there is at least one element from S among the elements which the
algorithm outputs. This yields the dtt-reduction. �

It is not difficult to see that a similar approach also yields the following: Unless P = NP,
≤p

m-hard sets for NP remain ≤p
m-hard when the sparse information S subtracted is in P:

Applying the algorithm in Lemma 3.4, we simply have to check for each element in Q

whether or not it belongs to S. Since S ∈ P, this can be done in polynomial time. As soon
as an element from outside S is found, the m-reduction simply outputs this element. This
observation already follows from [GPSS06]. There the authors prove that NP-complete
sets are robust against sparse p-selective sets. Theirs is a stronger result but also requires
a far more complicated argumentation.

We now consider combinations of false negatives and false positives.

Theorem 3.9 If L is ≤p
m-hard for NP and S is sparse, then L�S is ≤p

tt-hard for NP.

Proof. For B ∈ NP we show B≤p
ttL�S. First, choose the polynomial r according to

Lemma 3.4. Let q be a polynomial such that 2 · |S ∩ Σ≤n| < q(n). Lemma 3.4 provides

68

an algorithm A that on input x either correctly decides the membership of x in B, or
outputs k = q(r(|x|)) pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all i ∈ [1, k],
(x ∈ B ⇔ yi ∈ L).

We describe a polynomial-time oracle machine M on input x: If A(x) accepts, then M

accepts. If A(x) rejects, then M rejects. Otherwise, A(x) returns elements y1, . . . , yk ∈
Σ≤r(|x|). M queries all these elements and accepts if and only if at least k/2 of the answers
were positive.

Clearly, if A(x) accepts or rejects, then (x ∈ B ⇔ M(x) accepts). So assume that A(x)
returns elements yi. S contains less than q(r(|x|))/2 = k/2 words of length ≤ r(|x|). So
more than k/2 of the yi do not belong to S. Hence, for more than k/2 of the yi it holds
that

x ∈ B ⇔ yi ∈ L ⇔ yi ∈ L�S.
Therefore, x belongs to B if and only if at least k/2 of the yi belong to L�S. This shows
that B≤p

ttL�S via M . �

Corollary 3.10 All ≤p
m-complete sets for NP are nonadaptively weakly deterministically

self-correctable.

Proof. Let L be ≤p
m-complete for NP. By Corollary 3.9, for all sparse S, L≤p

ttL�S. By
Corollary 3.3, L is nonadaptively weakly deterministically self-correctable. �

3.2.2 Disjunctive Truth-Table Reductions

In this section we analyse how disjunctive truth-table reductions can handle false positives.
We show that the union of dtt-hard sets with arbitrary sparse sets is always T-hard.
Moreover, we explain why the similar question for false-negatives (or even combinations of
both) is very difficult. In the restricted case of 2dtt-hard sets however, we can show that
such sets stay dtt-hard when we subtract a sparse amount of data, i.e., when we allow a
sparse amount of false negatives.

Theorem 3.11 Let L be ≤p
dtt-hard for NP, and let S be a sparse set. Then L ∪ S is

≤p
T-hard for NP.

Proof. Let L ⊆ Σ∗ and S ⊂ Σ∗ be as above, and let M be a nondeterministic Turing
machine whose running time on input x is bounded by polynomial p. Without loss of
generality, we assume that on input x, M develops precisely 2p(|x|) nondeterministic com-
putation paths. Each path can hence be identified by a word z ∈ {0, 1}p(|x|). For a path
z ∈ {0, 1}p(|x|), z �= 1p(|x|), we denote the path on the right of z with z + 1.

Chapter 3: NP-Hard Sets and Faulty Data 69

Let A be the language accepted by M . We will show that A≤p
TL∪ S. The left-set of A is

defined as

Left(A) =def {(x, y) ∣∣ there exists a z ≥ y such that M accepts x along z}.

From A ∈ NP it follows that Left(A) ∈ NP. Since L is ≤p
dtt-hard for NP, there exists a

function f such that Left(A)≤p
dttL via f : Σ∗ → P(Σ∗), f ∈ FP.

By the definition of ≤p
dtt it holds that (x, y) ∈ Left(A) ⇔ f(x, y) ∩ L �= ∅.

Without loss of generality, we assume that M does neither accept on its first computation
path nor on its last path. Furthermore, we define f+(x, y) =def f(x, y) ∩ (L ∪ S).

Let q be a polynomial such that for all x ∈ Σ∗ and for all y ∈ {0, 1}p(|x|) it holds that

q(|x|) >
|f(x,y)|∑

i=0

censusS(i)

We will construct a deterministic polynomial time oracle machineN such that the following
holds for all x:

x ∈ A ⇔ ∃y ∈ {0, 1}p(|x|)((x, y) ∈ Left(A)
)

⇔ ∃y ∈ {0, 1}p(|x|)(f(x, y) ∩ L �= ∅)
⇔ NL∪S accepts x.

We describe how N works on input x ∈ Σ∗.

1. i := 0

2. zi := 1p(|x|) //current position in tree, start with rightmost path

3. Fi := f+(x, zi) //positively answered oracle queries

4. while i < q(|x|)
5. if f+(x, 0p(|x|)) − Fi = ∅ then reject

6. determine zi+1 ∈ {0, 1}p(|x|), zi+1 < zi such that
(
f+(x, zi+1) − Fi

) �= ∅
and

(
f+(x, zi+1 + 1) − Fi

)
= ∅

7. if M accepts along zi+1 then accept

8. Fi+1 := Fi ∪ f+(x, zi+1) //cull new element from S− L

9. i := i + 1

10. end while

11. reject //this statement is never reached

Algorithm 3.2: OPTM N , input x

70

We show that N is a polynomial time machine: As the number of passes of the while
loop is bounded by a polynomial, it suffices to argue that step 6 can be performed in
polynomial time. Note that N can compute the set f+(x, z) by querying the oracle L∪ S
for all elements in f(x, z). Step 6 is an easy binary search: Start with z1 := 0p(|x|) and
z2 := 1p(|x|). Let z′ be the middle element between z1 and z2. If

(
f+(x, z′) − Fi

)
= ∅

then z2 := z′ (i.e., the binary search continues on the left) else z1 := z′ (i.e., the binary
search continues on the right). Choose the middle element between z1 and z2 and repeat
the above steps until a suitable path is found. Consequently, we obtain that N runs in
polynomial time.

We now argue that the algorithm is correct, i.e., N accepts x if and only if x ∈ A.

For the only-if part, let us assume that N accepts x. If N accepts in line 7 then it has
found an accepting path of M on input x. Hence, x ∈ A. This proves the only-if part.

We now prove the if-part. Let x ∈ A, so there exists a rightmost accepting path of M on
input x, say zright. As M does neither accept on the leftmost nor on the rightmost path,
it holds that 0p(|x|) < zright < 1p(|x|).

We explain that during the execution of the while loop, the accepting path zright is found.

Claim 3.12 For 0 ≤ i ≤ q(|x|), if zright was not found during the first i iterations of the
while loop, then the following holds after i iterations:

1. #Fi ≥ i

2. zi > zright

3. Fi ⊆ S − L

4. f+(x, 0p(|x|)) − Fi �= ∅

Proof of the claim. We prove the claim by induction over i. Let i = 0. Since M does not
accept on its rightmost path, it follows that F0 ∩ L = ∅ and hence F0 = f+(x, 1p(|x|)) ⊆
S − L. Moreover, z0 = 1p(|x|) > zright. As x ∈ L, it follows that f+(x, 0p(|x|)) ∩ L �= ∅.
Hence f+(x, 0p(|x|)) − F0 �= ∅.

Assume the claim does hold for an i ∈ {0, . . . , q(|x|) − 1}. So zright was not found during
the first i iterations of the while loop.

Observe that since M accepts on path zright, it holds for all z′ ∈ {0, 1}p(|x|) that

• z′ ≤ zright ⇒ f(x, z′) ∩ L �= ∅ ⇒ f+(x, z′) ∩ L �= ∅ and

• z′ > zright ⇒ f(x, z′) ∩ L = ∅ ⇒ f+(x, z′) ∩ L = ∅.

Chapter 3: NP-Hard Sets and Faulty Data 71

Since i < q(|x|), the algorithm proceeds with the i+1-th iteration. By the induction
hypothesis, it holds that f+(x, 0p(|x|)) − Fi �= ∅, so the condition in line 5 is not satisfied,
hence the while-loop is not left prematurely.

N then determines zi+1 such that zi+1 < zi, f+(x, zi+1)−Fi �= ∅, and f+(x, zi+1+1)−Fi =
∅. Clearly, such a zi+1 must exist since f+(x, zright) (which is on the left of zi) contains
at least one element from L which cannot have been culled before because Fi ⊆ S − L

by the induction hypothesis. The same holds true for all f+(x, z′) where z′ < zright. If
zi+1 = zright, this means that the algorithm has found zright in the i+ 1-th iteration of the
while loop. In this case, we are done.

So let us assume for the sake of contradiction that zi+1 < zright. Then f+(x, zi+1 +1)∩L �=
∅. This is a contradiction because f+(x, zi+1 + 1) ⊆ Fi ⊆ S − L. For this reason, zi+1

cannot be the path chosen in the i+1-th iteration. It follows that zi+1 > zright. This
implies f+(x, zi+1) ⊆ S − L.

Recall that f+(x, zi+1) − Fi �= ∅. This means that f+(x, zi+1) contains an element from
S − L that has not been culled before, i.e., an element which is not in Fi. It follows that
#Fi+1 ≥ #Fi+1 ≥ i+1. Finally, f+(x, zi+1)∩L = ∅ implies that f+(x, 0p(|x|))−Fi+1 �= ∅.
This proves the claim. �

By Claim 3.12 either zright is found during the first q(|x|) iterations of the while loop or
Fq(|x|) contains at least q(|x|) elements from S − L.

Together with q(|x|) > ∑|f(x,y)|
i=0 censusS(i), we obtain that S − L cannot contain this

many elements. We conclude that zrightis found during the first q(|x|) iterations of the
while loop. This proves the theorem. �

Contrary to Section 3.2.1 we do not know how dtt-reductions react towards false negatives.
For that reason, we cannot deduce that dtt-complete sets are weakly deterministically self-
correctable. However, we can provide evidence that the question is indeed difficult. We
explain that it is related to the longstanding open question [HOW92] of whether the
existence of sparse dtt-complete sets implies P = NP.

Corollary 3.13 If dtt-complete sets for NP are weakly deterministically self-correctable,
then the existence of sparse dtt-complete sets for NP implies P = NP.

Proof. We assume that dtt-complete sets for NP are weakly deterministically self-
correctable and that there exists a sparse set L such that L is dtt-complete for NP. Since
L is weakly deterministically self-correctable, it follows from Theorem 3.2 that for all sparse
sets S, L≤p

TL�S. It follows that L≤p
TL�L and hence L≤p

T∅. This implies P = NP. �

72

For the restricted case of 2dtt-reducibility however, we can characterise what happens
when the reduction encounters false negatives. We show that 2dtt-hard sets for NP stay
dtt-hard when we subtract arbitrary sparse information.

Theorem 3.14 If L is ≤p
2-dtt-hard for NP and S is a sparse set such that L �⊆ S, then

L−S is ≤p
dtt-hard for NP.

Proof. Let L ⊆ Σ∗ and S ⊂ Σ∗ be as above, and let M be a nondeterministic Turing
machine whose running time on input x is bounded by polynomial p. Without loss of
generality, we assume that on input x, M develops precisely 2p(|x|) nondeterministic com-
putation paths. Each path can hence be identified by a word z ∈ {0, 1}p(|x|). For a path
z ∈ {0, 1}p(|x|), z �= 0p(|x|), we denote the path on the left of z with z − 1.

Let A be the language accepted by M . We will show that A≤p
dttL− S. The left-set of A

is defined as

Left(A) =def {(x, y) ∣∣ there exists a z ≥ y such that M accepts x along z}.

From A ∈ NP it follows that Left(A) ∈ NP. Since L is ≤p
2-dtt-hard for NP, there exists a

function f such that Left(A) ≤p
2-dtt L via f : Σ∗ → Σ∗ × Σ∗, f ∈ FP. So f(x, y) is a tuple

consisting of two elements from Σ∗. For simplicity, we denote these elements with f1(x, y)
and f2(x, y), respectively.

By the definition of ≤p
2-dtt it holds that

(x, y) ∈ Left(A) ⇔ (f1(x, y) ∈ L) ∨ (f2(x, y) ∈ L).

Let q be a polynomial such that for all x ∈ Σ∗ and for all y ∈ {0, 1}p(|x|) it holds that

q(|x|) >
|f(x,y)|∑

i=0

censusS(i)

We now describe a procedure collect(x) which runs in polynomial time and outputs a
set of words. We will show that the following holds for all x:

x ∈ A ⇔ ∃y ∈ {0, 1}p(|x|)((x, y) ∈ Left(A)
)

⇔ collect(x) outputs at least one word from L− S

Without loss of generality, we assume that M does neither accept on its first computation
path nor on its last path. Furthermore, let y1 ∈ L− S.

Chapter 3: NP-Hard Sets and Faulty Data 73

1. z := 0p(|x|) //current position in tree

2. F := {f(x, z)} //set of culled tuples

3. Flastrun := F //elements culled in last run of inner while loop

4. G := ∅ //set of pivot elements

5. while j ≤ q(|x|) do

6. i := 0

7. while i ≤ q(|x|)2 do

8. if f(x, 1p(|x|)) ∈ F then goto 26

9. determine z′ ∈ {0, 1}p(|x|), z′ > z where f(x, z′) �∈ F∧ f(x, z′ − 1) ∈ F

10. if M accepts along z′ − 1 then output {y1}, goto 27

11. F := F ∪ {f(x, z′)} //store new tuple

12. Flastrun := Flastrun ∪ {f(x, z′)}
13. z := z′

14. i := i + 1

15. end while

16. determine c ∈ Σ∗−G such that #{c′ ∣∣ (c, c′) ∈ Flastrun ∨ (c′, c) ∈ Flastrun}
is maximal //compute new pivot element

17. G := G ∪ {c} // store new pivot element

18. if {f1(x, 1p(|x|)), f2(x, 1p(|x|))} ∩ G �= ∅ then goto 26

19. determine z′′ ∈ {0, 1}p(|x|), z′′ > z such that {f1(x, z′′), f2(x, z′′)} ∩ G = ∅
and {f1(x, z′′−1), f2(x, z′′−1)} ∩ G �= ∅

20. if M accepts along z′′ − 1 then output {y1}, goto 27

21. F := F ∪ {f(x, z′′)}
// If G ⊆ L, then f(x, z′′) contains a word from L.

22. z := z′′

23. j := j + 1

24. Flastrun := ∅
25. end while

26. output {a ∣∣ ∃b ∈ Σ∗
(
(a, b) ∈ F ∨ (b, a) ∈ F

)}
27. end procedure

Algorithm 3.3: collect(x), the 2dtt-algorithm

74

Claim 3.15 The algorithm collect(x) runs in polynomial time.

Proof of the claim. As the number of passes of the outer and inner while loops is bounded
by a polynomial, it remains to be argued that steps 9, 16, and 19 can be performed in
polynomial time. Steps 9 and 19 are easy binary searches: Start with z1 := 0p(|x|) and
z2 := 1p(|x|). Let z′ be the middle element between z1 and z2. If f(x, z′) ∈ F then z1 := z′

else z2 := z′. Choose the middle element between z1 and z2 and repeat the above steps
until a suitable path is found. The explanation for step 19 is analogous. Step 16 searches
for the element occurring most often among the tuples collected in the last round. This
can clearly be done in polynomial time. Consequently, the algorithm collect(x) runs in
polynomial time. �

We now argue that the algorithm is correct, i.e., it outputs a word from L−S if and only
if x ∈ A.

The only-if part is straightforward: Let us assume x �∈ A. This means that M on input
x does not produce an accepting path, so the if-conditions in lines 10 and 20 are never
satisfied. Clearly, x �∈ A implies (x, z) �∈ Left(A) for all z ∈ {0, 1}p(|x|). Consequently,
{f1(x, z), f2(x, z)} ∩ L = ∅ for all z ∈ {0, 1}p(|x|). So none of the collected tuples contains
an element from L. Hence the algorithm only outputs words from L. This proves the
only-if part.

For the if-part, we assume that x ∈ A. So there exists a rightmost, i.e., lexicographically
largest path zright ∈ {0, 1}p(|x|) such that M accepts x along zright, and all paths on the
right of zright reject.

Consequently, the following holds for all 0p(|x|) ≤ z ≤ zright:

• (x, z) ∈ Left(A)

• {f1(x, z), f2(x, z)} ∩ L �= ∅

The general idea of the algorithm is as follows. As we have assumed x ∈ A, each tuple
f(x, z) where z is a path on the left of zright contains an element in L. The algorithm tries
to cull more than q(|x|) distinct elements from L. If it successfully does so, we can be sure
that one element from L− S is output at the end, since we have chosen q(|x|) sufficiently
large such that not all elements culled can be in the sparse set S.

We now explain the algorithm in more detail. In the inner while loop, the algorithm culls
tuples f(x, z), starting with z = 0p|x|.

It searches the next tuple f(x, z′) doing a binary search.

Claim 3.16 If z ≤ zright, then z′ ≤ zright.

Chapter 3: NP-Hard Sets and Faulty Data 75

Proof of the claim. Let us assume that the binary search starts on the left of zright, i.e.,
z < zright. As f(x, z) ∈ F and f(x, 1p(|x|)) �∈ F , there has to exist a path z′ satisfying
f(x, z′) �∈ F and f(x, z′ − 1) ∈ F . As argued above, a path z′ satisfying this condition can
be found in polynomial time. Note however, that we cannot guarantee to find one particu-
lar z′, for example the leftmost z′. We might very well miss paths satisfying the condition
during the search. However, we can neglect this, since the condition f(x, z′ − 1) ∈ F en-
sures that we cannot have missed the rightmost accepting path zright: Since z < zright,
all tuples culled so far correspond to paths on the left of z (and hence also on the left of
zright). Consequently, each tuple in F contains an element from L. Hence, the same holds
true for the tuple f(x, z′ − 1). So z′ − 1 is not the rightmost accepting path. Since the
algorithm then checks whether M accepts along z′ − 1, we have ensured that z′ ≤ zright.
If z = zright, then both elements of the tuple f(x, z+ 1) are outside L, and the same holds
for all tuples corresponding to paths further right. Hence, the binary search will end with
z′ = z+1, and will therefore discover the accepting path, which then causes the algorithm
to terminate. �

Observe that the property proven in the last claim is crucial in order to ensure that every
tuple collected contains an element from L. Notice that the condition in line 8 cannot
be satisfied if j = 0, i.e., in the first run of the outer while loop: Since we have assumed
that M does not accept along 1p(|x|), f(x, 1p(|x|)) does not contain a word from L. Hence,
f(x, 1p(|x|)) cannot be among the collected tuples since all tuples culled so far correspond
to paths on the left of zright. Consequently, if the inner while loop was not left prematurely,
i.e., no accepting path of M was found and the condition in line 8 was never satisfied, then
we have collected q(|x|)2 + 1-many different tuples after the inner while loop has ended.1

Note that the condition in line 8 can only be satisfied if a tuple (z1, z2) where z1, z2 �∈ L

was added to F in an earlier round. Claim 3.16 then tells us that in this earlier iteration,
the binary search must have started on the wrong side of zright.

After the binary search, the algorithm determines the element c occurring most often in
the tuples collected in the last execution of the inner while loop.

Using a binary search, the algorithm then searches for a path z′′ such that

{f1(x, z′′), f2(x, z′′)} ∩G = ∅ and {f1(x, z′′−1), f2(x, z′′−1)} ∩G �= ∅. (3.3)

Claim 3.17 If G ⊆ L, then there exists a z′′ satisfying (3.3). Furthermore, if M does
not accept x along z′′ − 1, then f(x, z′′) contains an element from L−G.

Proof of the claim. G ⊆ L implies that all pivot elements culled so far are in L. If M
does not accept along z′′ − 1, it follows that z′′ ≤ zright. As z′′ satisfies (3.3), it hence
follows that f(x, z′′) contains an element from L−G. �

1Observe that in the worst case however, we may still have only collected one element from L, because

elements can appear in tuples more than once.

76

As long as no accepting path of M is found and the outer while loop is not left prematurely
in line 18, each iteration of the outer while loop adds a new element from L to F . Observe
that the same element is never added twice. Claim 3.17 ensures that as long as the pivot
element c chosen in line 16 belongs to L, the element added to F in line 21 does also
belong to L. Moreover, if the outer while loop is left in line 18 this implies that in an
earlier iteration, a pivot element outside L must have been added to G, because we have
assumed that M does not accept on 1p(|x|), its rightmost computation path. Observe that
in case an accepting path of M is found during one of the binary searches, we are done:
The algorithm then outputs y1 ∈ L.

So we from now on assume that the algorithm does not find an accepting path of M .

• Case 1: Assume none of the conditions in lines 8 and 18 becomes satisfied while
the algorithm is working on input x.

As argued above, each full run of the inner while loop culls q(|x|2)-many tuples while
each iteration of the outer while loop adds a new element c to G.

For 0 ≤ j ≤ q(|x|), let cj be the pivot element chosen in the j-th iteration of the
outer while loop.

– Case a: {c0, . . . , cq(|x|)} ⊆ L.

By applying Claim 3.17 inductively, we obtain that after the last iteration of
the outer while loop, F contains at least q(|x|)+1 many different elements from
L. So the algorithm outputs at least one element from L− S.

– Case b: {c0, . . . , cq(|x|)} �⊆ L.

Choose the smallest j such that cj �∈ L. As cj was chosen to be the pivot element
in the j-th iteration of the outer while loop, cj was the element occurring most
often in Flastrun,j, i.e., in the tuples culled in the preceding execution of the
inner while loop. Let m = #{c′ ∣∣ (cj , c′) ∈ Flastrun,j ∨ (c′, cj) ∈ Flastrun,j}.

∗ Case I: m ≥ q(|x|).

Let (cj , c′1), . . . , (cj , c′m) be the tuples in Flastrun,j which contain cj . As
we have chosen j to be the smallest index where cj �∈ L , it follows that
c′1, . . . c′m ∈ L. All these elements were added to F . So we obtain that in
this case, F contains at least q(|x|) > ∑|f(x,y)|

i=0 censusS(i) different elements
from L. We conclude that the algorithm outputs at least one element from
L− S.

∗ Case II: m < q(|x|).

Chapter 3: NP-Hard Sets and Faulty Data 77

This implies that no element occurs in more than q(|x|)−1 tuples collected
in Flastrun,j. Each tuple in Flastrun,j contains an element from L (recall that
we have chosen j to be minimal). All tuples in Flastrun,j differ in at least
one component, and #Flastrun,j = q(|x|)2 + 1. So it follows that among the
tuples in Flastrun,j there have to be at least q(|x|) different elements from
L. Again, we can conclude that the algorithm outputs at least one element
from L− S.

• Case 2: One of the conditions in lines 8 and 18 becomes satisfied while the algorithm
is working on input x.

Recall that we have assumed x ∈ L and that M does not accept along 1p(|x|). So
zright < 1p(|x|). Due to Claim 3.16, it is easy to see that the condition in line 8 can
only become satisfied if a pivot element outside L was chosen in an iteration of the
outer while loop. A similar argument holds for the condition in line 18. If a pivot
element outside L was chosen in one of the iterations of the outer while loop, the
same reasoning as in case b yields that the algorithm outputs at least one element
from L− S.

We have shown that the following holds for all x:

x ∈ A ⇔ collect(x) outputs at least one word from L− S

This clearly is a dtt-reduction. So L− S is ≤p
dtt-hard for NP. �

We immediately obtain:

Corollary 3.18 Let L be ≤p
m-hard for NP and let S be a sparse set such that L �⊆ S.

Then L− S is ≤p
dtt-hard for NP.

3.2.3 Conjunctive Truth-Table Reductions

Theorem 3.19 If L is ≤p
ctt-hard for NP and S is sparse, then L−S is ≤p

T-hard for NP.

Proof. The proof is somewhat similar to the proof of Theorem 3.11. Let L ⊆ Σ∗ and
S ⊂ Σ∗ be as above, and let M be a nondeterministic Turing machine whose running time
on input x is bounded by polynomial p. Without loss of generality, we assume that on
input x, M develops precisely 2p(|x|) nondeterministic computation paths. Each path can
hence be identified by a word z ∈ {0, 1}p(|x|). For a path z ∈ {0, 1}p(|x|), z �= 0p(|x|), we
denote the path on the left of z with z − 1.

Let A be the language accepted by M . We will show that A≤p
TL − S. The left-set of A

is defined as

Left(A) =def {(x, y) ∣∣ there exists a z ≥ y such that M accepts x along z}.

78

From A ∈ NP it follows that Left(A) ∈ NP. Since L is ≤p
ctt-hard for NP, there exists a

function f such that Left(A)≤p
cttL via f : Σ∗ → P(Σ∗), f ∈ FP. By the definition of ≤p

ctt

it holds that (x, y) ∈ Left(A) ⇔ f(x, y) ⊆ L.

Without loss of generality, we assume that M does neither accept on its first computation
path nor on its last path.

Furthermore, we define

f−(x, y) =def f(x, y) ∩ (L− S)

Let q be a polynomial such that for all x ∈ Σ∗ and for all y ∈ {0, 1}p(|x|) it holds that

q(|x|) >
|f(x,y)|∑

i=0

censusS(i)

We will construct a deterministic polynomial time oracle machineN such that the following
holds for all x:

x ∈ A ⇔ ∃y ∈ {0, 1}p(|x|)((x, y) ∈ Left(A)
)

⇔ ∃y ∈ {0, 1}p(|x|)(f(x, y) ⊆ L)

⇔ NL−S accepts x.

We describe how N works on input x ∈ Σ∗. The machine N uses the oracle L − S to
compute the set f−(x, z) for several z ∈ {0, 1}p(|x|).

1. i := 0

2. zi := 0p(|x|) //current position in tree, start with leftmost path

3. Fi := f−(x, zi) //set containing elements outside L− S

4. while i < q(|x|)
5. if Fi ⊇ f−(x, 1p(|x|)) then reject

6. determine zi+1 ∈ {0, 1}p(|x|), zi+1 > zi such that
(
f−(x, zi+1) − Fi

) �= ∅
and

(
(f−(x, zi+1 − 1) − Fi

)
= ∅

7. if M accepts along zi+1 then accept

8. Fi+1 := Fi ∪ f−(x, zi+1)
9. i := i + 1

10. end while

11. reject

Algorithm 3.4: OPTM N , input x

Chapter 3: NP-Hard Sets and Faulty Data 79

We show that N is a polynomial time machine: As the number of passes of the while loop
is bounded by a polynomial, it suffices to argue that steps 3 and 6 can be performed in
polynomial time. Note that N can compute the set f−(x, z) by querying the oracle L−S

for all elements in f(x, z). Step 6 is an easy binary search: Start with z1 := 0p(|x|) and
z2 := 1p(|x|). Let z′ be the middle element between z1 and z2. If

(
f−(x, zi+1) − Fi

)
= ∅

then z1 := z′ else z2 := z′. Choose the middle element between z1 and z2 and repeat
the above steps until a suitable path is found. Consequently, we obtain that N runs in
polynomial time.

We now argue that the algorithm is correct, i.e., N accepts x if and only if x ∈ A.

For the only-if part, let us assume x �∈ A. This means that M on input x does not produce
an accepting path, so the if-condition in line 7 is never satisfied. So N does not accept x.
This proves the only-if part.

Let x ∈ A, so there exists a rightmost accepting path of M on input x, say zright. Hence,
for all z ∈ {0, 1}p(|x|), it holds that z ≤ zright ⇒ f(x, z) ⊆ L.

Claim 3.20 For 0 ≤ i < q(|x|), if no accepting path of M was found during the first
i iterations of the while loop, then it holds that #Fi ≥ i. Furthermore, it holds that
f−(x, 1p(|x|)) �⊆ Fi, i.e., the condition in line 5 is not satisfied.

Proof of the claim. We prove the claim by induction over i.

Let i = 0. Then F0 = f−(x, 0p(|x|)) ⊆ L and #F0 ≥ 0. Since we have assumed that M
does not accept along 1p(|x|), it follows that f(x, 1p(|x|)) contains (at least) one element
from Σ∗ − L, say y. It follows that y ∈ f−(x, 1p(|x|)), hence f−(x, 1p(|x|)) �⊆ F0.

Assume the claim does hold for an i ∈ {0, . . . , q(|x|)− 2}. So no accepting path was found
during the first i iterations of the while loop and f−(x, 1p(|x|)) �⊆ Fi. Since i+ 1 < q(|x|),
the while loop is entered for the i+1-th time. N then determines zi+2 such that zi+2 > zi+1

and
(
f−(x, zi+2) − Fi+1

) �= ∅ and
(
(f−(x, zi+2 − 1) − Fi+1

)
= ∅. If an accepting path is

found during this binary search, i.e., in the i+1-th iteration of the while loop, then we are
done. Otherwise, as

(
f−(x, zi+2) − Fi+1

) �= ∅, it holds that #Fi+2 > #Fi+1 > #Fi ≥ i.
For the same reason as above, f−(x, 1p(|x|)) �⊆ Fi+1 clearly holds. �

From Claim 3.20, it immediately follows that either an accepting path is found during
the first q(|x|) iterations of the while loop or Fq(|x|) contains at least q(|x|) elements from
L− S. As we have assumed x ∈ A, it follows that Fq(|x|) ⊆ L ∩ S. Together with

q(|x|) > ∑|f(x,y)|
i=0 censusS(i), we obtain that an accepting path of M is found during the

first q(|x|) iterations of the while loop. This proves the theorem. �

80

3.2.4 Non-Robustness Against Sparse Sets of False Positives

So far we showed that partly corrupt NP-hard sets cannot become to easy because they
stay hard with respect to more general reducibilities. Now we consider reductions that
are provably too weak to handle corrupt information. Under the assumption P �= NP we
show that many-one reductions, bounded truth-table reductions, and disjunctive truth-
table reductions are weak in this sense. More precisely, altering sparse information in SAT
can result in sets that are not ≤p

m-hard, not ≤p
btt-hard, and not ≤p

dtt-hard for NP. On the
other hand, Corollary 3.23 shows that similar results for ≤p

ctt, ≤p
tt, and ≤p

T would imply
the existence of NP-complete sets that are not paddable and hence refute the Isomorphism
Conjecture (confer Chapter 2, Section 2.2.1). This explains why such results are difficult
to prove.

Theorem 3.21 The following statements are equivalent.

1. P �= NP

2. There exists a sparse S such that SAT ∪ S is not ≤p
btt-hard for NP.

3. There exists a sparse S such that SAT ∪ S is not ≤p
dtt-hard for NP.

Proof. 1 ⇒ 2: Assume P �= NP and let M1,M2, . . . be an enumeration of polynomial-
time oracle Turing machines such that Mi runs in time ni + i and queries at most i strings
(so the machines represent all ≤p

btt-reduction functions). We construct an increasing chain
of sets S1 ⊆ S2 ⊆ · · · and finally let S =def

⋃
i≥1 Si. Let S0 =def {ε} and define Sk for

k ≥ 1 as follows:

1. let n be greater than k and greater than the length of the longest word in Sk−1

2. let T =def (SAT ∩ Σ≤n) ∪ Sk−1 ∪ Σ>n

3. choose a word x such that MT
k (x) accepts if and only if x /∈ SAT

4. let Q be the set of words that are queried by MT
k (x) and that are longer than n

5. let Sk =def Sk−1 ∪Q

We first observe that the x in step 3 exists: If not, then L(MT
k) = SAT and T is cofinite.

Hence SAT ∈ P which is not true by assumption. So the described construction is possible.

If a word w of length j is added to S in step k (i.e., w ∈ Sk − Sk−1), then in all further
steps, no words of length j are added to S (i.e., for all i > k, Si ∩ Σj = Sk ∩ Σj). In the
definition of Sk it holds that |Q| ≤ k ≤ n. So in step 5, at most n words are added to S
and these words are of length greater than n. Therefore, for all i ≥ 0, |S ∩ Σi| ≤ i and
hence S is sparse.

Chapter 3: NP-Hard Sets and Faulty Data 81

Assume SAT ∪ S is ≤p
btt-hard for NP. So there exists a k ≥ 1 such that SAT≤p

bttSAT ∪ S
via Mk. Consider the construction of Sk and let n, T , x, and Q be the corresponding
variables. In all steps i ≥ k, S will be only changed with respect to words of lengths
greater than n. Therefore, S ∩ Σ≤n = Sk−1 and hence

∀w ∈ Σ≤n, (w ∈ SAT ∪ S ⇔ w ∈ T). (3.4)

If q is an oracle query of MT
k (x) that is longer than n, then q ∈ Q and hence q ∈ Sk ⊆ S.

So q ∈ SAT ∪ S and q ∈ T . Together with (3.4) this shows that the computations MT
k (x)

and MSAT∪S
k (x) are equivalent. From step 3 it follows that MSAT∪S

k (x) accepts if and only
if x /∈ SAT. This contradicts the assumption that Mk reduces SAT to SAT ∪ S. Hence
SAT ∪ S is not ≤p

btt-hard for NP.

2 ⇒ 1: If P = NP, then for all sparse S, SAT ∪ S is trivially ≤p
m-complete for NP.

1 ⇔ 3: Analogous to the equivalence of 1 and 2; we only sketch the differences. We use
an enumeration of ≤p

dtt-reduction machines (i.e., machines that nonadaptively query an
arbitrary number of strings and that accept if at least one query is answered positively).
Moreover, we change the definition of Sk in step 5 such that

Sk =def

⎧⎨
⎩

Sk−1 : if Q = ∅
Sk−1 ∪ {q} : if Q �= ∅, where q = max(Q).

Observe that this ensures that S is sparse.

Assume SAT≤p
dttSAT ∪ S via Mk. If no query of MT

k (x) is longer than n, then MT
k (x)

and MSAT∪S
k (x) are equivalent computations and hence L(MSAT∪S

k) �= SAT by step 3.
Otherwise, there exists a query that is longer than n. Let q be the greatest such query
and note that q ∈ Sk ⊆ S. This query gets a positive answer in the computation MT

k (x).
So the computation accepts and by step 3, x /∈ SAT. In the computation MSAT∪S

k (x), the
query q also obtains a positive answer and hence the computation accepts. So also in this
case, L(MSAT∪S

k) �= SAT. This shows that SAT ∪ S is not ≤p
dtt-hard for NP. �

This shows that while ≤p
m-hard and ≤p

dtt-hard sets do not become too easy when false
positives are added (as they stay NP-hard with respect to more general reducibilities,
confer Section 3.2.1, and Section 3.2.2), they are not robust against sparse sets of false
positives. The next result says that the situation is different for paddable hard sets.

Proposition 3.22 Let L be paddable and let S be sparse.

1. If L is ≤p
tt-hard for NP, then L ∪ S is ≤p

tt-hard for NP.

2. If L is ≤p
T-hard for NP, then L ∪ S is ≤p

T-hard for NP.

3. If L is ≤p
ctt-hard for NP, then L ∪ S is ≤p

ctt-hard for NP.

82

Proof. We start with the first statement. Let M be a polynomial-time oracle Turing
machine that witnesses SAT≤p

ttL and let p be a polynomial which is a bound for the
running time of M . Without loss of generality we may assume that the words queried by
M(x) are pairwise different. Let f be a padding function for L and let q be a polynomial
bounding both, the computation time for f and the census of S.

We describe a machine M ′ with oracle L ∪ S on input x: First, M ′ simulates M(x)
until the list of all queries Q = (q1, . . . , qm) is computed. Let k = q(q(2p(|x|))) and let
Qj = (f(q1, j), . . . , f(qm, j)) for j ∈ [0, 2k]. M ′ queries all words in Qj for j ∈ [0, 2k].
Let Aj be the corresponding vectors of answers. For every j ∈ [0, 2k], M ′ continues the
simulation of M by answering the queries according to Aj . M ′ accepts if and only if the
majority of the simulations accepts.

We argue that SAT≤p
ttL ∪ S via M ′. Note that all f(qi, j) are pairwise different, since

f is injective. For sufficiently large x it holds that |qi| ≤ p(|x|) and |j| ≤ p(|x|). So
|f(qi, j)| ≤ q(2p(|x|)) and hence at most k of the words f(qi, j) belong to S. Therefore,
for the majority of all j ∈ [0, 2k], Qj does not contain a word from S. From the padding
property f(qi, j) ∈ L ⇔ qi ∈ L it follows that for the majority of all j ∈ [0, 2k], Aj equals
the vector of answers occurring in the computation ML(x). Hence the majority of all
simulations shows the same acceptance behavior as ML(x). This shows SAT≤p

ttL ∪ S via
M ′ and hence L ∪ S is ≤p

tt-hard for NP. This shows the first statement.

The remaining statements are shown analogously, where in the ≤p
ctt-case M

′ accepts if
and only if all simulations accept. �

With Theorem 3.21 we have explained that ≤p
m-complete, ≤p

btt-complete, and ≤p
dtt-complete

sets are not robust against sparse sets of false positives. The following corollary explains
the difficulty of showing the same for ≤p

ctt-complete, ≤p
tt-complete, and ≤p

T-complete sets.

Corollary 3.23 1. If there exists a ≤p
tt-complete set L in NP and a sparse S such that

L ∪ S is not ≤p
tt-hard for NP, then there exist ≤p

tt-complete sets in NP that are not
paddable.

2. If there exists a ≤p
T-complete set L in NP and a sparse S such that L ∪ S is not

≤p
T-hard for NP, then there exist ≤p

T-complete sets in NP that are not paddable.

3. If there exists a ≤p
ctt-complete set L in NP and a sparse S such that L ∪ S is not

≤p
ctt-hard for NP, then there exist ≤p

ctt-complete sets in NP that are not paddable.

Chapter 3: NP-Hard Sets and Faulty Data 83

3.3 Summary and Outlook

In this chapter we investigated the setting where sparse parts of NP-hard sets can be
corrupt. We proved that

• the symmetric difference of m-hard sets and arbitrary sparse sets is always tt-hard.
This implies that m-complete sets for NP are nonadaptively weakly deterministically
self-correctable.

• the union of dtt-hard sets and arbitrary sparse sets is always T-hard.

• the difference of 2dtt-hard sets and arbitrary sparse sets is always dtt-hard.

These results show that ≤p
m-hard and ≤p

dtt-hard sets do not become too easy when false
positives are added (as they stay NP-hard with respect to more general reducibilities).
Also, ≤p

2-dtt-hard sets stay hard with respect to a more general reducibility when they
encounter a sparse amount of false negatives. On the other hand, we showed that unless
P = NP there exist sparse sets S1, S2 such that SAT ∪ S1 is not ≤p

btt-hard for NP, and
SAT ∪ S2 is not ≤p

dtt-hard for NP.

We remark that one can also show that altering sparse information in btt-hard sets for NP
results in sets that are still T-hard for NP. Roughly speaking, this can be accomplished
by performing a modified Ogihara-Watanabe-like tree-pruning in the computation tree of
a given NP-machine.

Theorem 3.24 [GPT08] If B is ≤p
btt-hard for NP and S is sparse, then B�S is ≤p

T-hard
for NP.

This implies that btt-complete sets for NP are weakly deterministically self-correctable.

Moreover, this result is related to the notion of p-closeness: Yesha [Yes83] defined two sets
A and B to be close if the census of their symmetric difference, A�B, is a slowly increasing
function. Accordingly, A and B are p-close if the census of A�B is polynomially bounded.
A is p-close to a complexity class C, if there exists some B ∈ C such that A and B are
p-close. Yesha [Yes83] poses the question of whether ≤p

m- or ≤p
T-hard sets for NP can be

p-close to P (assuming P �= NP). Schöning [Sch86] showed that no ≤p
T-hard set for NP is

p-close to P, unless PH = ΔP
2 . Ogiwara [Ogi91] and Fu [Fu93] proved that no ≤p

m-hard
set for NP is p-close to P, unless P = NP. As a direct consequence of btt-complete sets
for NP being weakly deterministically self-correctable, this can be strengthend as follows.

Corollary 3.25 No ≤p
btt-hard set for NP is p-close to P, unless P = NP.

84

85

Chapter 4

Partitioning NP-Sets

In the last two chapters, we investigated questions concerning the complexity of unions of
sets. Given two sets A and B with certain properties, we asked how complex the union
A ∪B is. In some respect, this chapter focuses on the inverse question.

Given one set A, can this set be partitioned into two sets each satisfying certain properties?

Clearly, the difficulty of this question depends heavily on the properties we require the
partition to satisfy. If we for instance do not limit the computation time available for
partitioning the set, then any recursive set can be partitioned into two parts of roughly
the same size. The question is more difficult however when we demand that the parti-
tioning has to be performed by a polynomial-time machine. Moreover, one can demand
a partitioning where the single components and the original set are similar with respect
to quality rather than quantity: Given a set A, is there a partitioning of A into disjoint
sets B,C such that A, B, and C are all equivalent with respect to some polynomial-time
reducibility?

This question is captured by the notion of mitoticity, a term which originates from Mitosis
in biology, the process by which a cell duplicates its DNA in order to generate two identical
daughter cells.

In computer science, this notion was originally introduced by Lachlan [Lac67] for re-
cursively enumerable sets. Ambos-Spies [Amb84] then transferred this notion to the
polynomial-time setting. A set A is m-mitotic if there is a set S ∈ P such that A, A ∩ S,
and A∩S are all polynomial-time m-equivalent. Informally, if a set is m-mitotic, it can be
split into two parts that both have the same complexity as the original set. T-mitoticity
is defined analogously.

Two important open questions concering mitoticity have just recently been solved. First,
Glasser et al. [GOP+05] proved that all NP-complete sets are m-autoreducible. Autore-

86

ducibility is a notion which also originated from recursion theory. Trakthenbrot [Tra70]
introduced the notion in recursion theory, and Ambos-Spies [Amb84] transferred it to the
polynomial-time setting. A set A is autoreducible if it can be reduced to itself by a Turing
machine with oracle A that does not ask its own input to the oracle. In a breakthrough
result, Glasser et al. [GPSZ05] showed that m-mitoticity coincides with m-autoreducibility.
Together with [GOP+05], it follows that all m-complete sets for NP are m-mitotic.

Hence, it is a natural question to ask whether there exist non-mitotic sets in NP, i.e., sets
that cannot be split. In this chapter we study the question of the existence of non-mitotic
sets in NP. This is a nontrivial question, because there are no natural examples of non-
mitotic sets. Natural NP-complete sets are all paddable. It is easy to see that all paddable
sets are T-mitotic.

As explained above, it is known [GPSZ06] that all NP-complete sets are m-mitotic (and
therefore T-mitotic). Also, nontrivial sets belonging to the class P are T-mitotic. So any
unconditional proof of the existence of non-mitotic sets in NP would prove at the same
time that P �= NP. This implies that we cannot expect unconditional results in this area.
In contrast to that, Buhrman, Hoene, and Torenvliet [BHT98] unconditionally showed
that EXP contains non-m-mitotic sets.

4.1 Separation of Mitoticity Notions

In this section we show that under a reasonable assumption on exponential-time classes,
there exist non-m-mitotic sets in NP. However, in showing that the non-m-mitotic set we
construct is nevertheless 1-tt mitotic, we in fact prove a stronger result. This relates our
search for non-mitotic sets to separations of polynomial-time reducibilities within NP.

Ladner, Lynch, and Selman [LLS75] and Homer [Hom90, Hom97] ask for reasonable as-
sumptions that imply separations of polynomial-time reducibilities within NP. In this
section we present such an assumption and demonstrate that it allows a separation of
mitoticity notions within NP. This implies a separation of the reducibilities ≤p

m and ≤p
1−tt

within NP.

Theorem 4.1 If EEE �= NEEE ∩ coNEEE, then there exists an L ∈ (NP ∩ coNP) − P
that is 1-tt-mitotic but not m-mitotic.

Proof. Choose B ∈ (NEEE ∩ coNEEE) − EEE. So there exists a constant c ≥ 1 such
that B and B are decidable in nondeterministic time 222c·n

.

Chapter 4: Partitioning NP-Sets 87

We now identify Σ∗ with the natural numbers: Let t : N → N,

t(x) =def 22x2c

be a tower function and let

A =def {0t(n)
∣∣n ≥ 0},

C =def {0t(x)
∣∣x ∈ B}.

Note that A ∈ P.

Claim 4.2 C ∈ (NP ∩ coNP) − P.

Proof of the claim. A membership test for C has to decide x ∈ B on input y = 022x2c

.
The test x ∈ B can be carried out in nondeterministic time

222c·|x|
≤ 222c·2·log x

= 22x2c

= |y|.
Therefore, C ∈ NP and analogously C ∈ coNP, since B ∈ coNEEE.

Assume C ∈ P. Then B can be decided as follows: On input x we construct the string

y = 022x2c

and simulate the deterministic polynomial-time decision procedure for C.

Clearly, this algorithm decides C.

|y| = 22x2c

≤ 22(2|x|)2c

= 222(2c|x|)

So the described algorithm has a running time that is polynomial in 222(2c|x|)
. This shows

B ∈ EEE which contradicts the choice of B. Therefore, C /∈ P which proves Claim 4.2. �

We define the language that we show to be 1-tt-mitotic, but not m-mitotic.

L = C ∪ 0(C ∩A)

Note that the union above is disjoint, since C consists of strings of length t(n) while
0(C ∩A) consists of strings of length t(n) + 1. Observe that L ∈ (NP ∩ coNP) − P.

Claim 4.3 L is 1-tt-mitotic.

Proof of the claim. The separator is S = A. First, we describe the 1-tt-reduction from
L to L ∩ S on input x: If x /∈ A ∪ 0A, then reject. If x ∈ A, then accept if and only if
x ∈ L ∩ S. Otherwise, accept if and only if y /∈ L ∩ S where x = 0y. Second, we describe
the 1-tt-reduction from L∩S to L∩S on input x: If x /∈ S, then reject. Otherwise, accept
if and only if 0x /∈ L∩S. Finally, we describe the 1-tt-reduction from L∩S to L on input
x: If x ∈ S, then reject. Otherwise, accept if and only if x ∈ L. This shows that L is
1-tt-mitotic. �

88

Claim 4.4 L is not m-mitotic.

Proof of the claim. Assume L is m-mitotic. Hence L is m-autoreducible [Amb84], i.e.,
L≤p

mL via a reduction such that f(x) �= x. Let p be a polynomial bounding the com-
putation time of f . Choose the smallest number k such that for all n ≥ k it holds that
p(t(n) + 1) < t(n+ 1). This choice is possible because

p(t(n) + 1) ≤ t(n)d =
(

22n2c
)d

= 2d·2n2c

≤ 22d+n2c

< 22n+n2c

≤ 22(n+1)2c

for a suitable constant d ≥ 1. Define the finite set

L′ =def {w ∣∣ |w| ≤ t(k) + 1 and w ∈ L}.

The following algorithm decides in polynomial time whether the input z belongs to L.

1. x := z

2. if |x| ≤ t(k) + 1 then accept if and only if x ∈ L′

3. if |f(x)| ≥ |x| then reject

4. x := f(x), goto 2

The algorithm runs in polynomial time, since each iteration decreases the length of x.
Also, since f is an m-autoreduction, at any time it holds that

z ∈ L ⇔ x ∈ L. (4.1)

So if we stop in line 2, then we accept if and only if z ∈ L. It remains to be argued for a
stop in line 3.

Assume z ∈ L but we reject in line 3; we will derive a contradiction. By (4.1), at the
moment we reject, it holds that

x ∈ L and |x| ≥ t(k) + 1 (4.2)

In particular, x ∈ A∪ 0A, i.e., x = 0t(n) or x = 0t(n)+1 for a suitable n. By definition of L,

0t(n) ∈ L ⇔ 0t(n)+1 /∈ L.

It follows that f(x) �= 0t(n) and f(x) �= 0t(n)+1, since otherwise either f(x) = x or
(0t(n) ∈ L ⇔ 0t(n)+1 ∈ L). Note that n ≥ k, since otherwise |x| ≤ t(n) + 1 < t(k) + 1
which contradicts (4.2). Therefore, by the choice of k,

|f(x)| ≤ p(|x|) ≤ p(t(n) + 1) < t(n+ 1).

Chapter 4: Partitioning NP-Sets 89

However, apart from x there are no words in L that have a length in [t(n), t(n + 1) − 1].
It follows that |f(x)| < |x|, since f(x) must belong to L. This contradicts our assumption
that we reject in line 3. Therefore, if we stop in line 3, then z /∈ L. So the algorithm above
decides L in polynomial time. This is a contradiction. Therefore, L is not m-mitotic. �

This proves the theorem. �

Selman [Sel82] showed under the hypothesis E �= NE∩coNE that there exist A,B ∈ NP−P
such that A tt-reduces to B but A does not positive-tt-reduce to B. The separation of
mitoticity notions given in the last theorem allows us to prove a similar statement:

Corollary 4.5 If EEE �= NEEE∩coNEEE, then there exist A,B ∈ (NP∩coNP)−P such
that A≤p

1−ttB, but A �≤p
mB.

Proof. Take the set L from Theorem 4.1 and let S ∈ P be a separator that witnesses L’s
1-tt-mitoticity, i.e., L, L ∩ S, and L ∩ S are pairwise 1-tt-equivalent. These sets cannot
be pairwise m-equivalent, since otherwise L would be m-mitotic. This gives us the sets A
and B. �

However, a weaker assumption already separates 1-tt-reducibility from m-reducibility
within NP.

Theorem 4.6 If E �= NE ∩ coNE, then there exist A,B ∈ (NP ∩ coNP) − P such that
A≤p

1−ttB, but A �≤p
mB.

Proof. If E �= NE ∩ coNE, then there exists a tally set T ∈ NP ∩ coNP − P and there
exists a p-selective set A such that A ≡p

T T [Sel79]. Trivially, A≤p
1−ttA, and since A is

p-selective, and not in P, A is not m-reducible to A. �

4.2 Non-T-Mitotic Sets in NP

Buhrman, Hoene, and Torenvliet [BHT98] showed that EXP contains non-m-mitotic sets,
but left open whether EXP contains non-T-mitotic sets. We are interested in constructing
non-T-mitotic sets in NP. Recall that the existence of non-T-mitotic sets in NP would
imply that P �= NP, hence we cannot expect to prove their existence without a sufficiently
strong hypothesis. Moreover, the same holds for the non-existence of non-m-mitotic sets
in NP. Since it is known [BHT98] that EXP contains non-m-mitotic sets, this would imply
that NP �= EXP.

It is well known that mitoticity implies autoreducibility [Amb84], hence it suffices to
construct non-T-autoreducible sets in NP.

90

Beigel and Feigenbaum [BF92] construct incoherent sets in NP under the assumption
that NEEEXP �⊆ BPEEEXP, the triple-exponential time variant of BPP. Coherent sets
[Yao90] are sets that are autoreducible via probabilistic polynomial-time oracle Turing
machines. In particular, incoherent sets are non-T-autoreducible.

With the next theorem, we show that there are non-T-autoreducible sets in NP under
the weaker assumption that NEEE �⊆ EEE. Observe that these sets are not necessarily
incoherent.

We apply a similar method as in the proof of Theorem 4.1.

Theorem 4.7 If EEE �= NEEE, then there exists C ∈ NP−P such that C is not T-
autoreducible.

Proof. Choose B ∈ NEEE − EEE. So there exists a constant c ≥ 1 such that B is
decidable in nondeterministic time 222c·n

.

We now identify Σ∗ with the natural numbers: Let t : N → N,

t(x) =def 22x2c

be a tower function and let

A =def {0t(n)
∣∣n ≥ 0},

C =def {0t(x)
∣∣x ∈ B}.

Note that A ∈ P.

Claim 4.8 C ∈ NP − P.

Proof of the claim. Analogous to the proof of Claim 4.2 in Theorem 4.1. �

We will now show that the set C is not T-autoreducible.

Let us assume that C is T-autoreducible. So there exists a deterministic polynomial time
oracle Turing machine M ′ such that L(M ′C) = C. Furthermore, it holds for all x that
during its work on input x, M ′ never queries the oracle C for x.

Let k ≥ 0 such that the running-time of M ′ on inputs of length n ≥ 1 is bounded by the
polynomial nk.

Observe that t(n)k <ae t(n+ 1). More precisely,

(
n > log(k)−1

)
=⇒ t(n)k = (22n2c

)k < t(n+ 1) = 22(n+1)2c

. (4.3)

Let log(k) ≤ m, and assume that M ′ is running on input 0t(m). Since M ′ is an oracle
machine, it can query C for a string q. Observe that such a query q can have length at

Chapter 4: Partitioning NP-Sets 91

most t(m)k. We can assume that M ′ queries C only for strings from A (i.e. strings of the
form 0t(i) for i ≥ 0). As C ⊆ A, these are the only queries that have a chance of getting
a positive answer from C. Notice that M ′ is not allowed to query C for 0t(m) because M ′

proves that C is T-autoreducible. Furthermore, due to (4.3), M ′ on input 0t(m) cannot
query C for 0t(m+1) or longer strings. So M ′ on input 0t(m) can only query C for strings
in {0t(i)

∣∣ 0 ≤ i < m}.

We construct a deterministic polynomial-time Turing machine M such that L(M) = C.
On input x, M first checks whether x ∈ A, i.e., whether x = 0t(n) for some n ≥ 0. If no
such n exists, M rejects. Since this can easily be done in polynomial time, we assume that
there exists an n ≥ 0 such that M is running on input 0t(n).

We define

E[i] =
{

1, if 0t(i) ∈ C,
0, if 0t(i) �∈ C.

M will compute E[0], E[1], . . . , E[n] one after another and accept the input 0t(n) if and
only if E[n] = 1.

Since k is a constant, we can encode E[0], E[1], . . . , E[log(k) − 1] into the program of M .

During its work on input 0t(n), M will simulate M ′. Notice that while M ′ is equipped with
oracle C, M is not an oracle machine and hence cannot query an oracle while simulating
M ′. Instead, M will make use of the values E[0], E[1], . . . it has computed so far to answer
possible oracle queries of M ′.

Let log(k) ≤ m ≤ n. We now describe how M computes E[m] if it has access to
E[0], E[1], . . . , E[m− 1].

1. Compute 0t(m).

2. Simulate M′ on input 0t(m).

For every oracle query q of M′ on input 0t(m), proceed as follows:

(a) Compute j ≥ 0 such that q = 0t(j). //Note that j < m.

(b) If E[j] = 0, continue the simulation of M′ with a negative

answer to query q.

If E[j] = 1, continue the simulation of M′ with a positive

answer to query q.

3. If M′ accepts, set E[m] := 1, else set E[m] := 0.

Algorithm 4.1: Subroutine compute E[m]

92

From our argumentation above it follows that for 0 ≤ i ≤ n, the algorithm computes
E[i] correctly if it has access to E[0], . . . , E[i− 1]. Since M is running on input 0t(n) and
computes E[0], E[1], . . . , E[n] one after another, M clearly is a polynomial time machine
and it holds that L(M) = C.

This proves C ∈ P, which contradicts our assumption. Hence, such a machine M ′ cannot
exist. So C is not T-autoreducible. �

Corollary 4.9 If EEE �= NEEE, then there exists C ∈ NP−P such that C is not T-
mitotic.

Proof. T-mitoticity implies T-autoreducibility [Amb84]. Consequently, the set C in
Theorem 4.7 cannot be T-mitotic since it is not T-autoreducible. �

With respect to Theorem 4.7, Buhrmann and Torenvliet [BT96] cite Beigel et al. [BBFG91]
for a similar result. Nevertheless, we have presented our proof here because a proof is not
given explicitly in [BBFG91].

Moreover, we can reuse Theorem 4.7 to show that under a stronger assumption, there are
non-T-autoreducible sets in (NP ∩ coNP) − P.

Corollary 4.10 If EEE �= NEEE∩ coNEEE, then there exists C ∈ (NP∩ coNP)−P such
that C is neither T-autoreducible nor T-mitotic.

Proof. This can easily be seen by using the sets B and C from the proof of Theorem 4.1
in the proof of Theorem 4.7 instead of the ones constructed in the latter. �

4.3 Summary and Outlook

In this chapter we studied the question of the existence of non-mitotic sets in NP. We
proved that if EEE �= NEEE ∩ coNEEE, then there exists an L ∈ (NP ∩ coNP) − P that
is not m-mitotic but in fact is 1-tt-mitotic. From this, it followed that under the same
hypothesis, (NP ∩ coNP) −P contains a non-mitotic set and that 1-tt-reducibility and m-
reducibility differ on sets in NP. On the one hand, this consequence explains the need for
a reasonably strong hypothesis. On the other hand we also showed that 1-tt-reducibility
and m-reducibility separate within NP under the weaker hypothesis that E �= NE∩ coNE.

We then gave evidence for the existence of non-T-mitotic sets in NP. Unless EEE = NEEE,
there exists a set C ∈ NP − P such that C is not T-mitotic. We will now explain that
under a strong hypothesis concerning n-generic sets, one can show that the notions of
T-autoreducibility and T-mitoticity already differ within NP.

Chapter 4: Partitioning NP-Sets 93

Ladner [Lad73] showed that T-autoreducibility and T-mitoticity coincide for computably
enumerable sets. Under the strong assumption that NP ∩ coNP contains n-generic sets,
one can show that the similar question in complexity theory has a negative answer.
The notion of resource-bounded genericity was defined by Ambos-Spies, Fleischhack, and
Huwig [AFH87]. We use the following equivalent definition [BM95, PS02], where L(x)
denotes L’s characteristic function on x.

Definition 4.11 For a set L and a string x let L|x = {y ∈ L
∣∣ y < x}. A deterministic

oracle Turing machine M is a predictor for a set L if for all x, ML|x(x) = L(x). L is
a.e. unpredictable in time t(n), if every predictor for L requires more than t(n) time for
all but finitely many x.

Definition 4.12 A set L is t(n)-generic if it is a.e. unpredictable in time t(2n).

This is equivalent to demanding that for every oracle Turing machineM , ifML|x(x) = L(x)
for all x, then the running time of M is at least t(2|x|) for all but finitely many x.

Under the assumption that NP ∩ coNP contains n-generic sets, it is possible to show that
2-tt autoreducibility and T-mitoticity (and hence r-autoreducibility and r-mitoticity for
every reduction r between 2-tt and T) do not coincide for NP.

Theorem 4.13 [GSTZ07] If NP∩ coNP contains n-generic sets, then there exists a tally
set S ∈ NP ∩ coNP such that S is 2-tt-autoreducible but not T-mitotic.

A summary of the results is shown in Table 4.1.

Assumption Conclusion Remark
EEE �= NEEE ∃A ∈ NP that is not T-autoreducible A ∈ NP − P
NP ∩ coNP contains
n-generic sets

∃A ∈ NP that is 2-tt-autoreducible
but not T-mitotic

A ∈ (NP ∩ coNP) − P

EEE �=
NEEE ∩ coNEEE

∃A ∈ NP that is 1-tt-mitotic but not
m-mitotic

A ∈ (NP ∩ coNP) − P

E �= NE ∩ coNE ∃A,B ∈ NP such that A≤p
1−ttB but

A �≤p
mB

A,B ∈ (NP∩coNP)−P

Table 4.1: Summary of results related to NP.

94

95

Part II

Uniform Computation Models

96

97

Chapter 5

The Leaf-Language Approach

The preceding chapters dealt with structural properties of complexity classes and their
hard problems, mainly of the class NP. The second part of this thesis is also dedicated to
complexity classes. We will however take a different perspective and shift our focus to the
description of complexity classes and to the relations between complexity classes.

In some sense, after investigating the “interior” of complexity classes, we now look at the
exterior and study the “big picture”.

We have learnt that many complexity classes are defined by restricting the amount of
time or space a deterministic Turing machine may consume when deciding a language,
e.g. P, PSPACE, and EXP. Nondeterministic complexity classes like NP and NEXP
are defined in a similar way by nondeterministic Turing machines. Contrary to that,
complexity classes like UP, 1NP, and BPP are also defined by nondeterministic machines
with a polynomial time bound, but with an acceptance behaviour altered in some way.

For instance, a language A is in 1NP if there exists a nondeterministic polynomial-time
Turing machine M such that x is in A if and only if M on input x produces precisely one
accepting path. So an input is rejected if the machine outputs zero accepting paths or at
least two accepting paths. It is not difficult to see that the complements of NP-sets are
all in 1NP, i.e., coNP ⊆ 1NP.

The situation is more peculiar with the so-called promise classes UP and BPP. Let us
have a look at the class UP. Similarly to the class 1NP, a language A is in UP if there
exists a nondeterministic polynomial-time Turing machine M such that x is in A if M on
input x produces precisely one accepting path and x is not in A if M does not produce
an accepting path at all. What makes the class UP in some sense a new and unusual
kind of complexity class is that not every polynomially bounded nondeterministic Turing
machine can be the basis defining a language in UP. For a machine M to define a UP-
language, it must have the property that on all inputs it either accepts by producing

98

precisely one accepting path among its nondeterministic computation paths, or rejects by
producing rejecting paths only. In general, nondeterministic Turing machines do not show
this behaviour, so only Turing machines who keep the promise of never producing more
than one accepting path can be used to define languages in UP.

These were just a few examples: Over the past forty years, a variety of different acceptance
notions have been introduced and investigated, some of which are very complicated. The
concept of leaf languages provides a uniform way to characterise complexity classes. It was
introduced by Bovet, Crescenzi, and Silvestri [BCS92] and independently by Vereshchagin
[Ver93]. In the last decade, the leaf-language approach has gained a considerable amount
of attention. Vollmer’s [Vol99] and Wagner’s [Wag04a] survey articles provide extensive
coverage of the progress made in the field of leaf languages.

In the next section, we will give a formal definition of the leaf-language approach.

5.1 An Introduction to Leaf Languages

Let M be a nondeterministic polynomial-time bounded Turing machine such that every
computation path outputs one letter from a fixed alphabet. LetM(x) denote the computa-
tion tree of M on input x. Furthermore, let βM (x) be the concatenation of all leaf-symbols
of M(x) in the lexicographic ordering of the computation paths, i.e., the leftmost path
outputs the first letter of βM (x) while the rightmost path outputs the last letter of βM (x).

A nondeterministic polynomial-time bounded Turing machine M is balanced if on all in-
puts, it produces a balanced computation tree in the following sense: On input x, there
exists a path p with length l(x) such that all paths on the left of p have length l(x), and
all paths on the right have length l(x) − 1. Observe that this is equivalent to demanding
that there exists a polynomial-time computable function that on input (x, n) computes
the n-th path of M(x).

Definition 5.1 Let Δ be a finite alphabet, and let L1, L2 ⊆ Δ∗, L1, L2 �∈ {∅, {ε}} such
that L1 ∩ L2 = ∅.

1. The (unbalanced) leaf-language class Leafpu (L1|L2)Δ is defined as follows:

A ∈ Leafpu (L1|L2)Δ ⇔def there exists a NPTM M such that for every x ∈ Σ∗,
x ∈ A → βM (x) ∈ L1 and x �∈ A → βM (x) ∈ L2.

2. The balanced leaf-language class Leafpb (L1|L2)Δ is defined as follows:

A ∈ Leafpb (L1|L2)Δ ⇔def there exists a balanced NPTM M such that for every

x∈Σ∗, x ∈ A → βM (x) ∈ L1 and x �∈ A → βM (x) ∈ L2.

Chapter 5: The Leaf-Language Approach 99

For leaf-language classes Leafpu (L1|L2)Δ and Leafpb (L1|L2)Δ, we will often omit the sub-
script Δ when Δ is the smallest alphabet such that L1 ∪ L2 ⊆ Δ∗. In these cases, it will
be clear from the context what Δ is. If L2 = Δ∗ − L1, then we will also write Leafpu (L1)
and Leafpb (L1), respectively.

Definition 5.2 For any class of languages C, we define

1. Leafpu (C) =
⋃

B∈C Leafpu (B) and

2. Leafpb (C) =
⋃

B∈C Leafpb (B).

A complexity class D is unbalanced leaf-language definable if there exists C such that
D = Leafpu (C). Analogously define balanced leaf-language definability.

Example 5.3 The following are leaf-language characterisations of several well known
complexity classes.

1. Leafpu (1) = Leafpb (1) = P

2. Leafpu (0∗1(0 ∪ 1)∗) = Leafpb (0∗1(0 ∪ 1)∗) = NP

3. Leafpu (0∗){0,1} = Leafpb (0∗){0,1} = coNP

4. Leafpu (0∗10∗) = Leafpb (0∗10∗) = 1NP

5. Leafpu (0∗10∗|0∗) = Leafpb (0∗10∗|0∗) = UP

6. Leafpu (REG) = Leafpb (REG) = PSPACE

7. Leafpu ((11)∗) = Leafpu ((0∗10∗1)∗0∗) = Leafpb ((0∗10∗1)∗0∗) = ⊕P

8. Leafpb ((11)∗) = P

5.1.1 A Connection between Complexity Theory and Formal Languages

Example 5.3 lists several regular languages and the complexity classes they describe via
the leaf-language approach. In fact, there exists a close connection between leaf languages
and formal languages. To explain this connection, we recapitulate the notions of starfree
languages and the dot-depth hierarchy.

Recall that starfree regular languages (starfree languages for short) are regular languages
that can be built up from single letters by using Boolean operations and concatenation
(so iteration is not allowed), and SF denotes the class of starfree languages.

Brzozowski and Cohen [CB71, Brz76] introduced the dot-depth hierarchy (DDH for short)
which is a parameterisation of the class of starfree languages. The dot-depth counts the

100

minimal number of nested alternations between Boolean operations and concatenation
that is needed to define a language. The classes of the dot-depth hierarchy consist of
languages that have the same upper bound for their dot-depth. For a class of languages
C, let Pol(C) denote C’s closure under finite union and finite concatenation. Let BC(C)
denote the Boolean closure of C.

The classes (or levels) of the dot-depth hierarchy are defined as:

B0 =def {L ⊆ Σ∗ ∣∣ Σ is a finite alphabet with at least two letters and L

is a finite union of terms vΣ∗w where v,w ∈ Σ∗}
Bn+ 1

2
=def Pol(Bn)

Bn+1 =def BC(Bn+ 1
2
)

The dot-depth of a language L is defined as the minimal m such that L ∈ Bm where
m = n/2 for some integer n. Brzozowski [CB71] also formulated the dot-depth problem:
Given a starfree language L, what is the dot-depth of L? Although partial results (i.e.,
decidability results for the lower levels) are known, the problem remains unsolved, despite
the combined efforts of many researchers.

All levels of the dot-depth hierarchy are closed under union, intersection, taking inverse
morphisms, and taking residuals [PP86, Arf91, PW97]. The dot-depth hierarchy is strict
[BK78, Tho84] and exhausts the class of starfree languages [Eil76]. The levels of the dot-
depth hierarchy provide a fine characterisation of the starfree languages. We now discuss
the connection to the polynomial-hierarchy in complexity theory.

The following theorem shows that the dot-depth hierarchy and the polynomial-time hier-
archy are closely related.

Theorem 5.4 ([HLS+93, BV98, BKS99]) The following holds for n ≥ 1 and relative
to all oracles.

1. P = Leafpb (B0) = Leafpu (B0)

2. ΣP
n = Leafpb (Bn−1/2) = Leafpu (Bn−1/2)

3. ΠP
n = Leafpb (coBn−1/2) = Leafpu (coBn−1/2)

4. BC(ΣP
n) = Leafpb (Bn) = Leafpu (Bn)

In particular, the attraction of this connection comes from the fact that both the polynomial-
time hierarchy and the dot-depth hierarchy are prominent and well-studied objects. Even
more, with the P-NP problem and the dot-depth problem, they represent two of the most
fundamental problems in theoretical computer science.

Chapter 5: The Leaf-Language Approach 101

5.1.2 Oracle Separations

We will also consider relativised leaf-language classes which are denoted by Leafpb
O(C) and

Leafpu
O(C), where the superscript O indicates that the nondeterministic machine can query

oracle O. In fact, a further advantage of the leaf-language approach is closely related to
relativisation:

In their pioneering work for the leaf-language approach, Bovet, Crescenzi, and Silvestri
[BCS92] and Vereshchagin [Ver93] independently introduced the notion of polylog-time
reducibility (plt-reducibility for short). This is a reducibility for formal languages. We
start with a formal definition.

Definition 5.5 A function f : Σ∗ → Σ∗ is polylog-time computable if there exist two
polynomial-time bounded oracle transducers R : Σ∗ × N → Σ and l : Σ∗ → N such that for
all x,

f(x) = Rx(|x|, 1)Rx(|x|, 2) · · ·Rx(|x|, lx(|x|))
where R and l access the input x as an oracle.

A language B is polylog-time reducible (plt-reducible) to a language C, B≤plt
m C for short,

if there exists a polylog-time computable f such that for all x, it holds that

x ∈ B ⇔ f(x) ∈ C.

This reducibility permits an unexpected connection between two seemingly independent
questions:

1. Are given complexity classes separable by oracles?

2. Are given languages plt-reducible?

This connection is established by the following theorem:

Theorem 5.6 [BCS92, Ver93] Suppose for given complexity classes D1 and D2, there
exist languages L1 and L2 such that D1 = Leafpb (L1) and D2 = Leafpb (L2). Then it holds
that

L1≤plt
m L2 ⇔ ∀O(

Leafpb
O(L1) ⊆ Leafpb

O(L2)
)
.

In the same spirit, leaf languages allow concise oracle constructions. The connection via
the BCSV-theorem reduces oracle constructions to their combinatorial core. In particular,
we have neither to care about the detailed stagewise construction of the oracle, nor do we
have to describe the particular coding of the single stages.

102

103

Chapter 6

Unbalanced Leaf-Language Classes

Unbalanced leaf languages form the most natural leaf-language model, as any nondetermin-
istic Turing machine can be used to define a complexity class. Moreover, they sometimes
allow simpler characterisations of complexity classes than balanced leaf languages do. For
instance, we saw in Example 5.3 that in order to characterise the class ⊕P, we need a
more complicated leaf language in the balanced case than we do in the unbalanced case.
However, despite its simplicity, this approach suffers from one major drawback:

In Chapter 5, we explained the advantages of the famous BCSV-theorem (Theorem 5.6),
which states that a language L1 is plt-reducible to a language L2 if and only if Leafpb (L1)
is robustly contained in Leafpb (L2). Robustly contained means that the containment holds
relative to all oracles.

For this equivalence however, it is crucial that balanced leaf-language classes are used.
The theorem does not hold for the unbalanced model: Observe that languages L,L′ ⊆
{0, 1}∗ with L =def {w ∣∣ |w| is odd} and L′ =def 0{0, 1}∗ form a counterexample, since
Leafpu (L) = ⊕P is not robustly contained in Leafpu (L′) = P although L plt-reduces to L′.

Recently, Wagner [Wag04b] solved this problem by introducing the polynomial-time tree
reducibility (ptt-reducibility, for short) which is an analogue of plt-reducibility for unbal-
anced leaf languages. He was able to show that this reduciblity admits a BCSV-theorem
for unbalanced leaf-language classes.

Theorem 6.1 [Wag04b] For nontrivial L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 the following are equivalent:

1. L1≤ptt
m L2

2. ∀O(Leafpu
O(L1) ⊆ Leafpu

O(L2))

104

In this chapter, we will analyse this new reducibility: We prove that restricted to regular
languages, the levels 0, 1/2, 1, and 3/2 of the dot-depth hierarchy are closed under ptt-
reducibility. We will explain that these results are also interesting in other respects: They
indicate that the connection between dot-depth and polynomial-time hierarchy is closer
than formerly known. More precisely, we show that on the lower levels, the dot-depth and
the polynomial-time hierarchy perfectly correspond.

6.1 Perfect Correspondences

We already mentioned that Hertrampf et al. [HLS+93], and Burtschick and Vollmer [BV98]
proved that the levels of the polynomial-time hierarchy are connected with the levels of
the dot-depth hierarchy.

For instance, Theorem 5.4.2 makes two statements. First, it states that Bn−1/2 contains
a language Ln such that Leafpb (Ln) = Leafpb (Ln) = ΣP

n . Second, it states that for n ≥ 1
and L ⊆ Σ∗ it holds that

L ∈ Bn−1/2 ⇒ ∀O(Leafpb
O(L) ⊆ ΣP

n
O
), (6.1)

L ∈ Bn−1/2 ⇒ ∀O(Leafpu
O(L) ⊆ ΣP

n
O
), (6.2)

since the proofs do relativise.

However, these results do not answer the following questions: Are the languages in Bn−1/2

precisely the starfree languages which characterise ΣP
n via the balanced leaf-language

model, or does there exist L ∈ SF such that L �∈ Bn−1/2 but Leafpb (L) ⊆ ΣP
n? What

is the situation for the unbalanced leaf-language model? The possible scenarios are de-
picted in Figure 6.1.

For balanced leaf languages, the (disappointing) answer is already known: The reverse
of (6.1) does not hold, even if we demand L to be starfree: For every n ≥ 1, there
exists a starfree regular language Ln /∈ Bn−1/2 such that Ln plt-reduces to a language
in B1/2 [Gla05]. So by Theorem 5.6 it holds that ∀O(Leafpb

O(Ln) ⊆ NPO), but Ln /∈
Bn−1/2. Thereby, Scenario I (confer Figure 6.1) holds for the connection via balanced
leaf languages. This reveals that although balanced-leaf languages do connect DDH and
PH, the connection they establish is not perfect, most importantly, it is not a one-one
connection between the levels of the hierarchies.

We now draw our attention to unbalanced leaf languages. There several known results
indicate that the situation is different: For certain lower levels of the dot-depth hierarchy,
much closer connections than those in Equation (6.2) are known. The following theorem
summarises results by Borchert, Kuske, Stephan, and Schmitz:

Chapter 6: Unbalanced Leaf-Language Classes 105

B0

B 1
2

Bn− 1
2

ΣP
0

ΣP
1

ΣP
n

B0

B 1
2

Bn− 1
2

ΣP
0

ΣP
1

ΣP
n

DDH PH DDH PH

L Leafp(L) L Leafp(L)

Scenario I Scenario II

Figure 6.1: Connection between dot-depth hierarchy (DDH) and polynomial-time hierar-
chy (PH) via leaf languages. Which of the two scenarios does hold? Observe that due to
Equations (6.1) and (6.2), arrows from left to right can never point upwards.

Theorem 6.2 ([Bor95, BKS99, Sch01]) Let L be a regular language.

1. [Bor95] If L ∈ B0, then Leafpu (L) ⊆ P. If L /∈ B0, then Leafpu (L) ⊇ NP or
Leafpu (L) ⊇ coNP or Leafpu (L) ⊇ MODpP for a prime p.

2. [BKS99] If L ∈ B1/2, then Leafpu (L) ⊆ NP. If L /∈ B1/2, then Leafpu (L) ⊇ coNP or
Leafpu (L) ⊇ co1NP or Leafpu (L) ⊇ MODpP for a prime p.

3. [Sch01] If L ∈ B3/2, then Leafpu (L) ⊆ ΣP
2 . If L /∈ B3/2, then Leafpu (L) ⊇ ∀·UP or

Leafpu (L) ⊇ co∃!·UP or Leafpu (L) ⊇ MODpP for a prime p.

For instance, by Equation (6.2), for all L ∈ B1/2 it holds that Leafpu (L) is robustly con-
tained in NP. Theorem 6.2.2 states that the languages in B1/2 are in fact the only regular
languages having this property. This means that for B1/2 and regular L, even the converse
of (6.2) holds. We say that B1/2 and NP perfectly correspond :

L ∈ B1/2 ⇔ ∀O(Leafpu
O(L) ⊆ NPO)

By Wagner’s new BCSV-theorem (Theorem 6.1) this is equivalent to the following:

Restricted to regular languages, B1/2 is closed under ptt-reducibility.

Here and in the following, this formulation means that Rptt(B1/2) ∩ REG = B1/2 where
Rptt(B1/2) denotes B1/2’s closure under ptt-reducibility.

106

The example above shows that we can utilise Theorem 5.6 and Theorem 6.1 to make the
notion of perfect correspondence precise:

Definition 6.3 A class of regular languages C and a complexity class D perfectly cor-
respond with respect to balanced leaf languages if (restricted to regular languages) C is
closed under plt-reducibility and Leafpb (C) = D.

Definition 6.4 A class of regular languages C and a complexity class D perfectly corre-
spond with respect to unbalanced leaf languages if (restricted to regular languages) C is
closed under ptt-reducibility and Leafpu (C) = D.

6.2 Polynomial-Time Tree Reducibility

In this section we provide an introduction to the polynomial-time tree reducibility. We
first sketch the idea behind ptt-reducibility:

With polynomial-time tree reducibility (ptt-reducibility for short) Wagner [Wag04b] in-
troduced the unbalanced analogue of polylog-time reducibility (plt-reducibility). For the
representation of a balanced computation tree it suffices to think of a leaf-string such that
each symbol is accessible in polylog-time in the length of the leaf-string. Representations
of unbalanced computation trees are more complicated. Here the particular structure of
the tree must be taken into account. This makes it necessary to define suitable represen-
tations of trees. Intuitively, a language B ptt-reduces to a language C if there exists a
polynomial-time (in the height of the tree) computable function f that transforms trees
such that for every tree t, the leaf-string of t belongs to B if and only if the leaf-string of
f(t) is in C.

1 0
1 1 1 0

1 11 01 1

1
1 1

1 1 1
1 1

1 11
1 1

1 1 1

f
=⇒

Tree t Tree t′ = f(t)

Figure 6.2: An example of a tree function f .

Chapter 6: Unbalanced Leaf-Language Classes 107

Example 6.5 Let Σ1 = {0, 1} and Σ2 = {1} be alphabets, and let L1 ⊆ Σ∗
1 be defined as

L1 = (0∗10∗1)∗0∗, the language of all words w over {0, 1}∗ such that w contains an even
number of 1’s. Let L2 ⊆ Σ∗

2 be defined as L2 = (11)∗, the language of all words w over {1}∗
such that w has even length. Then L1 ptt-reduces to L2.1 This can easily be seen: Imagine
M to be a nondeterministic, polynomial-time Turing machine that outputs words from Σ∗

1

as leaf-strings. Roughly speaking, in order to prove that L1 ptt-reduces to L2, we have to
transform the computation tree t of M into a tree t′ whose leaf-string β(t′) is a word from
Σ∗

2 and β(t′) ∈ L2 if and only if β(t) ∈ L1. Since the desired tree-function f transforms
trees and not machines, it needs to be independent of the program of M , i.e., it also has to
work with any other machine that outputs words from Σ∗

1 as leaf-strings. In our case, the
transformation can be described as follows: For all paths in t that output 1, do not change
anything. For all paths that output 0, do not output 0 but branch nondeterministically into
two paths and output 1 on both paths. This is shown in Figure 6.2.

We now formalise the notion of ptt-reducibility and start with representations of trees.

Let Σ be a finite alphabet. A triple t = (T, h,m) is called a Σ-tree if

• T ⊆ {0, 1}∗, the set of paths, is finite, and ∀z∀u((u
 z ∧ z ∈ T) → u ∈ T)

• mapping h : T → Σ assigns letters to paths,

• m ∈ N is the maximal length of a path, i.e., ∀z(z ∈ T → |z| ≤ m).

Let TΣ be the set of all Σ-trees. A leaf of t is a z ∈ T such that there is no u ∈ T with z � u.
For a Σ-tree t = (T, h,m), we define the leaf word of t as β(t) =def h(z1)h(z2) · · · h(zs)
where {z1, z2, . . . , zs} is the set of all leaves of t and z1 < z2 < · · · < zs. Hence, the labels
of the inner nodes have no effect on the leaf word.

We describe how a Σ-tree can be encoded as a language: Choose r ≥ 1 such that |Σ| ≤ 2r,
and let e : Σ → {0, 1}r be an injective mapping. A Σ-tree t = (T, h,m) is encoded by the
set Ot =def {ze(h(z)) ∣∣ z ∈ T} and the number mt =def m.

Now we define functions that transform unbalanced computation trees.

Definition 6.6 [Wag04b] Let Σ1 and Σ2 be finite alphabets. A function f : TΣ1 → TΣ2

is called a polynomial-time tree function (ptt-function for short) if there exist k > 0 and
functions g1 : TΣ1 × {0, 1}∗ × N → {0, 1} and g2 : TΣ1 × {0, 1}∗ × N → Σ2 such that:

• There exists a polynomial p(·, ·) such that g1(t, z,m) and g2(t, z,m) are computable
in time p(|z|,m) where the tree t is accessed as the oracle Ot.

• It holds that f(t) = (T ′, h′,mk
t +k) where T ′ =def {z ∣∣ g1(t, z,mt) = 1} and h′(z) =def

g2(t, z,mt).

1Note that L1 does not plt-reduce to L2.

108

Finally, we define polynomial-time tree reducibility.

Definition 6.7 [Wag04b] For L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, we define L1≤ptt
m L2 (L1 is ptt-

reducible to L2) if there exists a ptt-function f : TΣ1 → TΣ2 such that for all t ∈ TΣ1 ,

β(t) ∈ L1 ↔ β(f(t)) ∈ L2.

Proposition 6.8 ≤ptt
m and ≤plt

m are incomparable.

Proof. From Example 6.5 we know that ≤ptt
m does not imply ≤plt

m . For the other direction,
let Σ = {1}. It is easy to see that (11)∗≤plt

m (1), but (11)∗ �≤ptt
m (1). Hence, neither of the

two reducibilities implies the other. �

Remark. Although plt- and ptt-reducibility are incomparable, the following straight-
forward modification of Definition 6.7 yields plt-reducibility: On the one hand, the tree
function in Definition 6.7 can assume that the input tree is balanced, while on the other
hand we require it to output a balanced tree. So this modification is neither a restriction
nor a generalisation, which is consistent with Proposition 6.8.

6.3 The ptt-Reducibility and the Dot-Depth Hierarchy

By Theorem 5.4, the levels of the dot-depth hierarchy and the levels of the polynomial-time
hierarchy are closely related. Note that this connection exists for both models, balanced
and unbalanced leaf languages. In this section we discuss evidence showing that for the
unbalanced model this connection is much closer than that stated in Theorem 5.4.

Recall that perfect correspondences are connections closer than those stated in Theo-
rem 5.4: For a class of regular languages C and a complexity class D that perfectly
correspond with respect to unbalanced leaf languages, we know that the languages in
C are precisely those whose unbalanced leaf language classes are robustly contained in D.
Therefore, there can be no regular language L′ outside C such that Leafpu (L′) is robustly
contained in D.

Proposition 6.9 If C perfectly corresponds to D with respect to balanced leaf languages,
then for every regular L /∈ C there exists an oracle relative to which Leafpb (C) �⊆ D. The
similar statement holds for unbalanced leaf languages.

Proof. Follows from Theorems 5.6 and 6.1. �

The levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy do
not correspond perfectly with respect to balanced leaf languages. In particular, for n ≥ 1,
Bn/2 is not closed under plt-reducibility even if we restrict ourselves to starfree regular
languages.

Chapter 6: Unbalanced Leaf-Language Classes 109

Theorem 6.10 For every n ≥ 1, Bn−1/2 does not correspond perfectly to ΣP
n with respect

to balanced leaf languages.

Proof. For every n ≥ 1, there exists Ln ∈ SF − Bn−1/2 such that Ln plt-reduces to a
language in B1/2 [Gla05]. �

In contrast, we will now show that restricted to regular languages, the classes B0, B1/2, B1,
and B3/2 are closed under ptt-reducibility. In particular, these classes perfectly correspond
to the classes of the polynomial-time hierarchy. While for B0, B1/2, and B3/2 the latter
can be derived from known results [Bor95, BKS99, Sch01], this is a new result for B1.

Theorem 6.11 Rptt(B0) ∩ REG = B0.

Proof. It suffices to argue for the inclusion from left to right. Assume there exists
L ∈ Rptt(B0) ∩ REG such that L /∈ B0. So there exists L′ ∈ B0 such that L≤ptt

m L′. By
Theorem 6.1, if follows that Leafpu

O(L) ⊆ Leafpu
O(L′) holds for all oracles O. From [Bor95]

we obtain that for all oracles O, Leafpu
O(L′) ⊆ PO. Moreover, it also follows [Bor95] that

one of the following statements holds true for all oracles O: coNPO ⊆ PO, or NPO ⊆ PO,
or MODpPO ⊆ PO for some prime p. Note that UPO ⊆ NPO and UPO ⊆ MODpPO holds
relative to all oracles. Now observe that the famous oracle construction by Baker, Gill,
and Solovay [BGS75] separates both coNP from P and UP from P. This is a contradiction.
Hence no such language L can exist in Rptt(B0) ∩ REG. �

Theorem 6.12 Rptt(B1/2) ∩ REG = B1/2.

Proof. It suffices to argue for the inclusion from left to right. Assume there exists
L ∈ Rptt(B1/2) ∩ REG such that L /∈ B1/2. So there exists L′ ∈ B1/2 such that L≤ptt

m L′.
Hence for all oracles O, Leafpu

O(L′) ⊆ NPO. By Borchert, Kuske, and Stephan [BKS99],
for all oracles O, coUPO ⊆ Leafpu

O(L). By Theorem 6.1, for all oracles O, Leafpu
O(L) ⊆

Leafpu
O(L′) and therefore, coUPO ⊆ NPO. This contradicts an oracle construction by

Eppstein et al. [EHTY92]. �

We now prove a technical lemma which will enable us to show that B1 and the Boolean
closure of NP correspond perfectly.

The decidability of B1 is due to Knast [Kna83]. Schmitz [Sch01] transformed the algebraic
conditions given by Knast into a forbidden pattern (Figure 6.3), which we will exploit in
the proof of the lemma.

For the next lemma, we need two notations: PNP[log n] says that the P-machine can query
the NP-oracle at most logarithmically often. Furthermore, PNP

‖ says that the P-machine
has to query the oracle nonadaptively.

110

s0

vu y′

w′

y

w

s2s1

v

w′

u

w

s3s5

z
v

w′

u

w

s6s4

x

z

s7 : +/− s8 : −/+

Figure 6.3: Pattern P1 where w,w′ are nonempty words. Nonexistence of this pattern
characterises B1.

Lemma 6.13 Let L ∈ REG � B1. Then there exists an oracle B such that Leafpu
B(L) �⊆

PNP[ε·log n]B for all ε < 1.

Proof. Let A be an alphabet with #A ≥ 2 and L ⊆ Σ∗ such that L ∈ REG � B1.
Hence, the minimal automaton of L contains pattern P1 (see Figure 6.3) and there exist
u, v, x, y, y′, z ∈ Σ∗ and w,w′ ∈ Σ+ as apparent in Figure 6.3. Without loss of generality,
we assume that the minimal automaton contains the first version of the pattern, i.e.,
state s7 is accepting and state s8 is rejecting. Let LP1 be the language of all words in
x{u, v,w,w′ , y, y′}∗z such that the minimal automaton of L moves along the paths drawn
in Figure 6.3 and finally reaches s7. Let L′

P1
be the similar set of words leading to s8.

Clearly, Leafpu (LP1 , L
′
P1

) ⊆ Leafpu (L). We construct B such that for all ε < 1,

Leafpu
B(LP1 , L

′
P1

) �⊆ PNP[nε]
‖

B
.

This implies that for all ε < 1,

Leafpu
B(LP1 , L

′
P1

) �⊆ PNP[ε·log(n)]B .

Let e /∈ Σ be a new letter. For n ∈ N let α0,n < α1,n < . . . < α2n−1,n be the words of
{0, 1}n in lexicographical order.

For any set D ⊆ {0, 1}∗ with characteristic function cD, the characteristic sequence of D
restricted to words of length n is defined as

CD(n) =def cD(α0,n)cD(α1,n) . . . cD(α2n−2,n)cD(α2n−1,n).

Such a characteristic sequence can be considered as a sequence of letters from Σ∪{e} where
�log(#Σ + 1)� bits of CD(n) encode a letter from Σ ∪ {e}. Denote this new sequence by
C ′

D(n) and observe that its length is greater than 2n−#Σ. Let C ′
D(n)|Σ be the sequence

obtained by removing all e’s from C ′
D(n).

We say that the sequence CD(n) is valid for pattern P1 if the following holds:

Chapter 6: Unbalanced Leaf-Language Classes 111

• C ′
D(n) does not contain a factor en+1, and

• C ′
D(n)|Σ ∈ LP1 ∪ L′

P1
.

We call a valid sequence accepted (resp., rejected) by pattern P1 if it belongs to LP1 (resp.,
L′

P1
). Hence, a valid sequence CD(n) encodes a sequence C ′

D(n) over Σ ∪ {e} which may
contain only short e-blocks.

We will define a fast-growing tower function t : N → N such that t(n+1) = 2t(n) for n ≥ 0.
For an arbitrary oracle O, we define our witness language WO as follows:

WO =def {0t(n)
∣∣n ≥ 0 and CO(t(n)) is accepted by pattern P1}

Throughout the construction we will ensure that for all n, the sequence CB(t(n)) is valid for
pattern P1. This implies WB ∈ Leafpu

B(LP1, L
′
P1

): On input 0m, an unbalanced machine
first verifies that m = t(n) for some n, and then produces a computation tree with leaf
string C ′

O(m). Since C ′
O(m) only contains short blocks of e’s, this machine can reorganise

its computation tree such that all e’s are removed from the leaf string. So it remains to
show that WB /∈ PNP[ε·log(n)]B .

Our oracle B will be defined as the union of (finite) oracle stages Bi, i ≥ 1, which are
constructed iteratively. Each stage Bn is characterised by oracle words of length t(n) and
therefore by the sequence CB(t(n)). Let B[k, j] =def

⋃
k≤i≤j Bi denote an interval of oracle

stages.

We enumerate PNP[mε]
‖ -machines as follows:

Consider an enumeration of all tuples (M,N, p, ε) such thatM is a deterministic polynomial-
time oracle Turing machine, N is a nondeterministic polynomial-time oracle Turing ma-
chine, p is a polynomial and ε < 1. We interpret M as the base machine and N as the
oracle machine.

By defining the first value t(0) of the tower function sufficiently large and t(n+1) =def 2t(n),
we can ensure that the enumeration satisfies the following technical requirements. For the
n-th tuple of the enumeration, (M,N, p, ε), all of the following holds:

1. p(t(n)) ≤ 2log2 t(n)

2. 3 log2 t(n) ≤ t(n)(1−ε)/2

3. 2t(n)/2t(n)(1+ε)/2 ≥ 2 · #A · |ww′yy′uv|
4. Let the running times of M and N be bounded by polynomials q and r, respectively.

Then it holds that r(q(n)) ≤ p(n).

5. M on input x asks at most |x|ε nonadaptive queries to the oracle L(N).

112

Let (M,N, p, ε) be the n-th tuple in our enumeration and let m = t(n). We diagonalise
against (M,N, p, ε) through ensuring

L(MB[1,n],L(NB[1,n])) �= WB[1,n]. (6.3)

Notice that M can access both oracles, B[1, n] and L(NB[1,n]).

We describe the main idea behind the diagonalisation against (M,N, p, ε): We start with
an oracle Bn such that CB(m) is accepted by P1. After that we simulate M with the
so-far constructed oracle (B[1, n]) on input 0m and determine segments in Bn that have
to be reserved. If M rejects 0m we are done for this stage. Otherwise we change Bn on
non-reserved positions, such that CB(m) is still valid but now rejected by P1 (here the e’s
compensate length differences).

We then repeat the simulation of M on input 0m with the modified oracle and update the
list of reserved segments. If M still accepts we are done, otherwise we modify non-reserved
positions such that CB(m) remains valid but accepted by P1 again. We will show that
after ε · logm such rounds, M on input 0m will err in its decision.

The detailed construction of the diagonalisation against (M,N, p, ε) follows.

We define
β =def xwγwuz,

such that γ ∈ {w, e}∗, γ does not contain a factor em+1, and |β| = 2m−#A. We start
with Bn ⊆ {0, 1}m such that C ′

Bn
(m) = β. Clearly, CBn(m) is accepted by pattern P1:

Whether a valid sequence is accepted or rejected is determined by the first occurrence of
a word from {u, v} in the encoded sequence; for u the sequence is accepted, for v it is
rejected.

Let F denote the set of reserved segments; F = ∅ at the beginning. F is supposed to
contain words of length m that we will not modify in the further construction. Simulate
MB[1,n] on input 0m. If M rejects, (6.3) is fulfilled and the construction of stage Bn is
complete. So assume M accepts. Let Q1 be the set of M ’s queries to Bn on input 0m.
Thus, #Q1 ≤ p(m). Let q1, . . . , qk be M ’s nonadaptive queries to N where k ≤ mε.
Let Q+ ⊆ {q1, . . . , qk} be the set of positively answered queries. Hence, for q ∈ Q+, the
nondeterministic machine N on input q produces at least one accepting path. We define

Q2 =def {q ∣∣ ∃q′ ∈ Q+(N on input q′ queries q on its leftmost accepting path)}.

Observe that #Q2 ≤ p(m)2. We now set F = F ∪ Q1 ∪ Q2. Since #F ≤ p(m)3 and
|CBn(m)| = 2m, there exist 2m/p(m)3 consecutive words of length m that are not in F .
These words represent a segment s in β. By the construction of β, s ∈ {w, e}∗. In the
next step, s is replaced by a segment s′ ∈ y{w′, e}∗v such that |s′| = |s| and s does not
contain a factor em+1. Observe that the purpose of e in this construction is to compensate

Chapter 6: Unbalanced Leaf-Language Classes 113

differences in the lengths of y,w,w′ and v. After this modification, CBn(m) is still valid
but now rejected by P1. Since all further modifications in later rounds will be restricted
to the segment s′, we reserve all the rest of the oracle at this stage, i.e., F now contains
all words from {0, 1}m except those encoding s′.

Again, we simulate MB[1,n] on input 0m and now assume that it has noticed the deception
and thus rejects. Let Q3 be the set of queries to Bn during this simulation. Since Q2 ⊆ F ,
no query in Q+ can have flipped from positive to negative. Consequently, there have to be
queries in {q1, . . . , qk} �Q+ which have been answered positively by N during the second
simulation of M . Let Q′

+ be the set of these queries. We repeat the above construction
by defining the set

Q4 =def {q ∣∣∃q′ ∈ Q′
+(N on input q′ queries q on its leftmost accepting path)}.

We have #Q3 ≤ p(m) and #Q4 ≤ p(m)2.

Set F = F ∪Q3 ∪Q4. Hence, we still find

2m

p(m)3 · p(m)3

consecutive words of length m that are not in F . These correspond to a segment s1 ∈
{w′, e}∗ which has not been reserved yet. This segment is replaced by a segment s′1 ∈
y′{w, e}∗u with |s1| = |s′1|. This modification causes CBn(m) to be accepted by P1.

We can deceive M again by repeating the above procedure. After at most k rounds, no
more of M ’s queries to N can flip from negative to positive. At that point, M cannot
change its behavior any longer. Each round the size of the non-reserved area of {0, 1}m is
divided by at most p(m)3. Hence after k rounds we still have a segment of size

2m

p(m)3k
≥ 2m

p(m)3mε ≥ 2m

23mε(log2 m)
≥ 2m

2m(1−ε)/2mε
=

2m

2m(1+ε)/2
≥2 · #A · |ww′yy′uv|.

Therefore, after k rounds we can still find a sufficiently large non-reserved area. We can
then modify this segment to deceive M one final time. �

Utilising Theorem 6.1, we can translate this oracle separation into a statement about the
ptt-closure of B1.

Theorem 6.14 Rptt(B1) ∩ REG = B1.

Proof. It suffices to argue for the inclusion from left to right. Assume there exists
L ∈ Rptt(B1) ∩ REG such that L /∈ B1. So there exists L′ ∈ B1 such that L≤ptt

m L′. By
Theorem 6.1, for all oracles O, we then have Leafpu

O(L) ⊆ Leafpu
O(L′). Theorem 5.4 holds

114

relative to all oracles. Therefore, for all oracles O, it holds that Leafpu
O(L′) ⊆ BC(NP)O.

This contradicts Lemma 6.13. �

As a consequence, we obtain the first gap theorem of leaf language definability above the
Boolean closure of NP.

Corollary 6.15 Let D = Leafpu (C) for some C ⊆ REG. Then D ⊆ BC(NP) or there
exists an oracle O such that DO �⊆ PNP[ε·logn]O for all ε < 1.

Theorem 6.16 Rptt(B3/2) ∩ REG = B3/2.

Proof. It suffices to argue for the inclusion from left to right. Assume there exists L ∈
Rptt(B3/2)∩REG such that L /∈ B3/2. So there exists L′ ∈ B3/2 such that L≤ptt

m L′. Hence
for all oracles O, Leafpu

O(L′) ⊆ Σp
2
O. By Schmitz [Sch01], for all oracles O, ∀!·∃!·PO ⊆

Leafpu
O(L). By Theorem 6.1, for all oracles O, Leafpu

O(L) ⊆ Leafpu
O(L′) and therefore,

∀!·∃!·PO ⊆ Σp
2
O. This contradicts an oracle construction by Spakowski and Tripathi

[ST07]. �

As stated in the Theorems 6.11, 6.12, 6.14, and 6.16, the classes B0, B1/2, B1, and B3/2

are closed under ptt-reducibility if we restrict ourselves to regular languages. We explain
this difference and show that the restriction to regular languages is crucial: For k ≥ 1,
Bk/2 is not closed under ptt-reducibility.

Theorem 6.17 There exists B ∈ NP � REG such that Leafpu (B) ⊆ NP.

Proof. We use the pairing function 〈·, ·〉 that is defined as follows for letters ai and bi.

〈a1a2 · · · ak, b1b2 · · · bl〉 =def 0a10a2 · · · 0ak1b11b2 · · · 1bl

Let N1, N2, . . . be an enumeration of nondeterministic polynomial-time bounded Turing
machines such that Ni on inputs of length n has running time ni + i. We may assume
that given i, one can determine the machine Ni in polynomial-time in |i|.

Every word appears as a leaf string of a suitable computation. This changes if we demand
that the leaf string is generated by a short input. A word w is called honestly generated
if it is generated by a machine Ni on input of a sufficiently small word x. We make this
precise with the definition of B which consists of all honestly generated words.

B =def {w ∣∣ (∃i ≤ |w|/2)(∃x ∈ Σ∗, |x|i + i < |w|)[βNi(x) = w]}

Assume we are given w, i, and x as above. The running time of Ni on x is |x|i + i < |w|.
Therefore, in time O(|w|2) we can determine the machine Ni, can simulate the first |w|
computation paths of Ni(x), and can test whether βNi(x) = w. This shows B ∈ NP.

Chapter 6: Unbalanced Leaf-Language Classes 115

Let n ≥ 2 and 1 ≤ i ≤ n/2. We estimate #(B ∩ Σn) as follows.

#(B ∩ Σn) ≤
n/2∑
i=1

#{x ∈ Σ∗ ∣∣ |x| ≤ (n − i− 1)1/i} ≤
n/2∑
i=1

2n−i = 2n

n/2∑
i=1

2−i < 2n

This shows that at least one word of any length belongs to B. In particular, B is infinite.

We argue that B /∈ REG. For this we start with the description of a nondeterministic
machine N on input 〈M, k〉 where k is a natural number and M is a deterministic finite
automaton. First, N deterministically computes nonempty words u, v, z such that for all
i ≥ 0, uviz /∈ L(M). If such words do not exist, then N generates the leaf string 0.
Otherwise, in a nondeterministic way N generates the leaf string uvkz. Observe that the
words u, v, z, if they exist, can be computed in polynomial-time which shows that N is
polynomial-time bounded. Therefore, N = Nj for some j ≥ 1.

Assume B ∈ REG, i.e., B = L(M) for some finite automaton M. Choose l sufficiently
large such that l ≥ 2j and l > |〈M, l〉|j + j. Let x =def 〈M, l〉 and w =def βNj (x). Since
B is infinite, there exist nonempty words u, v, z such that for all i ≥ 0, uviz /∈ L(M).
Therefore, for suitable such words it holds that w = uvlz /∈ L(M). So j ≤ |w|/2 and
|w| > |x|j +j. It follows that w ∈ B−L(M) which contradicts the assumption B = L(M)
and which shows B /∈ REG.

Finally we show Leafpu (B) ⊆ NP. Fix any j ≥ 1 and let L = {x ∣∣ βNj (x) ∈ B}. It suffices
to show L ∈ NP. Let x be an arbitrary word of length ≥ 2. Define w =def βNj (x) and
observe

x ∈ L ⇔ w ∈ B

⇔ (|x|j + j < |w|) ∨ (|x|j + j ≥ |w| ∧ w ∈ B).

The first |x|j + j letters of the leaf string w can be determined in polynomial-time in |x|.
So the condition |x|j +j < |w| is decidable in polynomial-time in |x|. If |x|j +j ≥ |w|, then
w ∈ B can be decided in nondeterministic polynomial-time in |x|. Hence the condition on
the right-hand side is decidable in NP which shows L ∈ NP. �

Corollary 6.18 1. There exists B ∈ NP � REG such that B ∈ Rptt(B1/2).

2. For every k ≥ 1, Bk/2 is not closed under ≤ptt
m -reducibility.

Proof. Let C =def (0 ∪ 1)∗1(0 ∪ 1)∗ and define B as in Theorem 6.17. There we show
B ∈ NP�REG and Leafpu (B) ⊆ NP. The argument for the latter inclusion is relativisable.
Therefore, for all oracles O, Leafpu

O(B) ⊆ NPO = Leafpu
O(C). By Theorem 6.1, B≤ptt

m C

and hence B ∈ Rptt(B1/2). This shows the first statement and the second one follows
immediately. �

116

We have shown that for k ≥ 1, Rptt(Bk/2) contains non-regular languages. However, this
cannot happen in the case of Rptt(B0). We will address this issue in the outlook section
at the end of this chapter.

In order to give us an impression of what ptt-reductions can do (recall that we have just
learnt that ptt-reductions can reduce languages from NP − REG to B1/2), we now state
an upper bound for the complexity of the ≤ptt

m -closure of regular languages.

Theorem 6.19 Rptt(REG) ⊆ ⋃
k≥1 DSPACE(logk n).

Proof. Let L ∈ Rptt(REG), i.e., there exists L′ ∈ REG such that L≤ptt
m L′ via ptt-

function f . So there exist k > 0 and functions g1 and g2 as in Definition 6.6. Both
functions are polynomial-time computable when the tree is accessed as an oracle. For a
word x, let tx denote the balanced binary tree that has the leaf string x.

Let m = �log |x|�k + k. We describe an algorithm that computes β(f(tx)): Consider all
strings z of length ≤ m in lexicographical order. If g1(tx, z, �log |x|�) = 1, then output
g2(tx, z, �log |x|�). Consider the next string z.

This algorithm computes β(f(tx)), since it exactly simulates f . If tx is accessed as oracle,
then g1(tx, z, �log |x|�) and g1(tx, z, �log |x|�) are computable in polynomial time in log |x|.
Given x, an oracle access to tx can be simulated in logarithmic space. Therefore, the
algorithm above can be simulated in polylogarithmic space in |x|. Given β(f(tx)), we can
test in constant space whether β(f(tx)) ∈ L′. The theorem follows, since x ∈ L ⇔ β(tx) ∈
L ⇔ β(f(tx)) ∈ L′. �

Due to this theorem, we can now specify the complexity of non-regular sets C such that
Leafpu (C) ⊆ NP. Recall that for regular sets, we already know by Theorem 6.12 that
only languages in B1/2 come into question. Accordingly it is unlikely that such sets are
NP-complete. In particular, this applies to the set B that was used in Theorem 6.17 and
Corollary 6.18.

Corollary 6.20 Let C be a set. Then the following holds: If Leafpu
O(C) ⊆ NPO for all

oracles O, then C ∈ ⋃
k≥1 DSPACE(logk n).

Proof. For all oracles O, Leafpu
O(C) ⊆ NPO = Leafpu

O(0∗1{0, 1}∗). So C≤ptt
m 0∗1{0, 1}∗

and hence C ∈ Rptt(REG) ⊆ ⋃
k≥1 DSPACE(logk n). �

We remark that since PSPACE = Leafpu (REG) [HLS+93], the last corollary remains valid
if we replace NP with PSPACE.

Chapter 6: Unbalanced Leaf-Language Classes 117

6.4 Summary and Outlook

In this chapter, we analysed the ptt-reducibility and proved that restricted to regular
languages, the levels 0, 1/2, 1, and 3/2 of the dot-depth hierarchy are closed under ptt-
reducibility. We explained that these results indicate that the connection between dot-
depth and polynomial-time hierarchy is closer than formerly known: We showed that on
the lower levels, the dot-depth and the polynomial-time hierarchy correspond perfectly, i.e.,
languages with a certain dot-depth precisely characterise a certain level of the polynomial-
time hierarchy:

• B0 perfectly corresponds to P with respect to unbalanced leaf languages.

• B1/2 perfectly corresponds to NP with respect to unbalanced leaf languages.

• B3/2 perfectly corresponds to ΣP
2 with respect to unbalanced leaf languages.

We showed that this is equivalent to proving that restricted to regular languages, the
classes B0, B1/2, and B3/2 are closed under ptt-reducibility.

Furthermore, we showed that restricted to regular languages, B1 is closed under ptt-
reducibility. From this we obtained a new perfect correspondence:

• B1 perfectly corresponds to the Boolean closure of NP with respect to unbalanced
leaf languages.

In summary, we have shown that the following holds for every regular language L :

L ∈ B0 ⇔ ∀O(Leafpu
O(L) ⊆ PO)

L ∈ B1/2 ⇔ ∀O(Leafpu
O(L) ⊆ NPO)

L ∈ B1 ⇔ ∀O(Leafpu
O(L) ⊆ BC(NP)O)

L ∈ B3/2 ⇔ ∀O(Leafpu
O(L) ⊆ ΣP

2
O
)

We remark that the perfect correspondence between B0 and P can be improved further.
Unlike all classes Bn/2 for n ≥ 1 (confer Theorem 6.17), one can show that the class B0 is
closed under ptt-reducibility even without the restriction to regular languages.

Theorem 6.21 [GTW06] Rptt(B0) = B0.

This special case yields an even tighter connection of B0 and P: Not only that B0 and
P perfectly correspond, but it even holds that for any language L /∈ B0 (this includes all
non-regular languages) there exists an oracle O such that Leafpu

O(L) � PO.

As the dot-depth hierarchy perfectly corresponds to the polynomial-time hierarchy on the
lower levels, we consider this as evidence that restricted to regular languages, all levels of
the dot-depth hierarchy might be closed under ptt-reducibility:

118

Conjecture 6.22 For every k ≥ 0, Rptt(Bk/2) ∩ REG = Bk/2.

However, whether this holds remains a challenging open question. We think that a partic-
ular difficulty will be the lack of forbidden pattern characterisations for the higher levels
of the dot-depth hierarchy. Although a complete characterisation of the dot-depth hier-
archy’s levels in terms of forbidden patterns would be very desirable, this seems to be
an extremely difficult (if not impossible) task. Such a uniform characterisation would
solve the dot-depth-problem, which is often considered to be one of the most important
problems in formal languages [Pin98].

119

Chapter 7

ε-Leaf-Language Classes

In the last chapter we learned that unbalanced leaf languages establish a close connection
between the lower levels of the dot-depth hierarchy and the polynomial-time hierarchy, and
we conjectured that this connection can be extended to the higher levels of the hierarchies.
Also, we discussed that balanced leaf languages do not allow a similarly close connection.

In this chapter we offer a useful completion of the known leaf-language concepts. This is
the concept of ε-leaf languages. It is inspired by the observation that rejecting paths of
nondeterministic computations act as neutral elements. In this sense we allow nondeter-
ministic transducers to output not only single letters but also to output the empty word
ε which is the neutral element of Σ∗.

We consider the following aspects to be the main advantages of this approach:

First, we can assume that the nondeterministic machines involved have balanced compu-
tation trees. This allows us to write down proofs in a more concise way as we do not
have to care about the representation of complicated objects like trees. This is an ad-
vantage over the unbalanced leaf-language model. Second, we will show that this new
model allows us to establish a tight connection between the polynomial-time hierarchy
and the Straubing-Thérien hierarchy [Str81, Thé81, Str85], another very important hier-
archy of starfree languages. In turn, this is an advantage over the balanced leaf-language
model. In a sense, the ε-leaf-language approach combines the advantages of the other two
leaf-language notions.

7.1 The ε-Leaf-Language Model

In this section, we introduce a new leaf-language model, the ε-model. After the formal
definition we introduce the pte-reducibility which allows us to formulate and prove an

120

analogue of the BCSV-theorem. Furthermore, we show that the new model connects the
polynomial-time hierarchy to the Straubing-Thérien hierarchy.

Throughout the chapter, we will often compare the new ε-model to the existing models.
For the sake of brevity, we will refer to the unbalanced leaf-language model as u-model,
to the balanced leaf-language model as b-model, and to the new ε-model as e-model,
respectively. Analogously, we use the terms u-class, b-class, and e-class when we talk
about complexity classes defined by the different leaf-language models.

Recall the definitions of the various subword relations.

Example 7.1 It holds that 10�3 1110 and {0, 1, 10}�7 1110.

Recall that whenever L and K are disjoint languages over the alphabet Σ, we also write
(L|K) ⊆ Σ∗ as an abbreviation. Hence, whenever we talk about a pair (L|K) ⊆ Σ∗ of
languages, we assume that L and K are disjoint.

Definition 7.2 Let (L|K) ⊆ Σ∗. The class Leafpε (L|K)Σ consists of all languages A for
which there exists a nondeterministic polynomial time transducer M producing on every
computation path a symbol from Σ or the empty word ε such that the following holds:

x ∈ A ⇒ βM (x) ∈ L,

x �∈ A ⇒ βM (x) ∈ K.

For a leaf-language class Leafpε (L1|L2)Σ we will often omit the subscript Σ when Σ is the
smallest alphabet such that L1 ∪L2 ⊆ Σ∗. In these cases, it will be clear from the context
what Σ is. If L2 = Σ∗ − L1, then we will also write Leafpε (L1). Notice that it makes no
difference whether we use balanced or unbalanced computation trees: Paths that are too
short can easily be extended by attaching subtrees where all leaves but the leftmost leaf
output the empty word ε. So for convenience we may assume that paths can not only
output single letters but also arbitrary words.

Example 7.3 The following holds:
1. Leafpε (11∗|ε) = Leafpε (0∗1(0 ∪ 1)∗|0∗) = NP.
2. Leafpε (1) = 1NP.
3. Leafpε (1|ε) = UP.
4. Leafpε (0∗){0,1} = coNP.

It is immediately clear that the u-model and the b-model are restrictions of the e-model.

Proposition 7.4 For all leaf languages B ⊆ Σ∗, it holds that

Leafpb (B) ⊆ Leafpu (B) ⊆ Leafpε (B).

Chapter 7: ε-Leaf-Language Classes 121

Moreover, it is intuitively clear that the presence of the neutral element ε gives the class
Leafpε (B) some inherent nondeterministic power which makes Leafpε (B) seemingly bigger
than P. We will discuss this issue later on and we will identify UP ∩ coUP as a lower
bound (we obtain stronger bounds if we restrict ourselves to regular languages B).

7.1.1 Polylogarithmic-Time ε-Reducibility

We now define the polylogarithmic-time ε-reducibility (pte-reducibility, for short), the
counterpart of plt-reducibility (in the balanced leaf-language model) and ptt-reducibility
(in the unbalanced leaf-language model).

Recall that a function g is computable in polylogarithmic time if there exists k ≥ 1 such
that g(x) can be computed in time O(logk|x|) by a Turing machine which accesses the
input as an oracle.

For a finite alphabet Σ and a �∈ Σ, define a homomorphism hΣ,a : (Σ ∪ {a})∗ → Σ∗ by
hΣ,a(b) =def b for b ∈ Σ and hΣ,a(a) =def ε.

Definition 7.5 Let (L|K) ⊆ Σ∗
1, (L

′|K ′) ⊆ Σ∗
2 and a �∈ Σ∗

1 ∪ Σ∗
2. Then (L|K)≤pte

m (L′|K ′)
if and only if there exists a function f : (Σ1 ∪ {a})∗ → (Σ2 ∪ {a})∗ such that

• there exist functions g : ((Σ1 ∪ {a})∗ × N) → Σ2 ∪ {a}, h : (Σ1 ∪ {a})∗ → N

computable in polylogarithmic time such that for all x ∈ (Σ1 ∪ {a})∗ it holds that
f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)),

• for all x ∈ (Σ1 ∪ {a})∗, (
hΣ1,a(x) ∈ L ⇒ hΣ2,a(f(x)) ∈ L′),

• for all x ∈ (Σ1 ∪ {a})∗, (
hΣ1,a(x) ∈ K ⇒ hΣ2,a(f(x)) ∈ K ′).

If (L|K)≤pte
m (L′|K ′) and K = Σ∗

1 −L and K ′ = Σ∗
2 −L′, we write L≤pte

m L′ as abbreviation.

The following leads to an alternative definition.

Definition 7.6 For any language L ⊆ Σ∗ and a �∈ Σ, we define La ⊆ (Σ ∪ {a})∗ as

La =def {am0w1a
m1w2 . . . a

mn−1wna
mn

∣∣m0, . . . ,mn ≥ 0, wi ∈ Σ, w1w2 . . . wn ∈ L}.

The following is an immediate consequence of the definition of ≤pte
m :

Proposition 7.7 For leaf languages (L|K) ⊆ Σ∗
1, (L′|K ′) ⊆ Σ∗

2 and a �∈ Σ1 ∪Σ2, it holds
that (L|K)≤pte

m (L′|K ′) if and only if (La|Ka)≤plt
m (L′

a|K ′
a).

Lemma 7.8 For (L|K) ⊆ Σ∗ and a �∈ Σ, Leafpε (L|K) = Leafpb (La|Ka) = Leafpu (La|Ka) =
Leafpε (La|Ka).

122

Proof. It suffices to show that Leafpε (L|K) ⊆ Leafpb (La|Ka) and Leafpε (La|Ka) ⊆
Leafpε (L|K). For the first inclusion, let A ∈ Leafpε (L|K) via the nondeterministic trans-
ducer M , which outputs symbols from Σ ∪ {ε}. M can easily be transformed into a
transducer M ′ which proves that A ∈ Leafpb (La|Ka): M ′ works like M , but whenever M
outputs ε, M ′ outputs a. For the second inclusion, let again M be the nondeterministic
transducer which proves A ∈ Leafpε (La|Ka). Observe that letters a in the leaf string of M
on an input x have no influence on whether x belongs to A or not. Hence, we can transform
M into a machine M ′ that outputs ε whenever M outputs a. Hence, A ∈ Leafpε (L|K). �

We obtain the following BCSV-like theorem for the e-model.

Theorem 7.9 Let (L|K) ⊆ Σ∗
1 and (L′|K ′) ⊆ Σ∗

2. Then the following statements are
equivalent:

1. (L|K)≤pte
m (L′|K ′).

2. For all oracles O it holds that Leafpε (L|K)O ⊆ Leafpε (L′|K ′)O.

Proof. The following equivalences hold:

(L|K)≤pte
m (L′|K ′) I.⇔ (La|Ka)≤plt

m (L′
a|K ′

a),
II.⇔ ∀O,Leafpb

O(La|Ka) ⊆ Leafpb
O(L′

a|K ′
a),

III.⇔ ∀O,Leafpε
O(L|K) ⊆ Leafpε

O(L′|K ′).

Note that I. holds because of Proposition 7.7, II. holds because of the BCSV-theorem
[BCS92, Ver93], and III. holds because Lemma 7.8 is relativisable. �

7.1.2 A Connection to the Straubing-Thérien Hierarchy

Brzozowski and Cohen [CB71, Brz76] introduced the dot-depth hierarchy which we dis-
cussed in the last chapter. Straubing and Thérien [Str81, Thé81, Str85] introduced a
modification that is more appropriate for the algebraic theory of languages but still covers
the important aspects of the dot-depth hierarchy. This hierarchy is called the Straubing-
Thérien hierarchy (STH).

Perrin and Pin [PP86] proved a logical characterisation of the STH. We use this charac-
terisation as a definition since it uses a natural logic on words and it shows nice parallels
to the definition of the polynomial-time hierarchy.

Formulas of the first-order logic FO[<] consist of first-order quantifiers, Boolean operators,
the binary relation symbol <, and unary relation symbols πa for each letter a.

Chapter 7: ε-Leaf-Language Classes 123

A sentence φ is satisfied by a word w if φ evaluates to true where variables are interpreted
as positions in w and πax is interpreted as “letter a appears at position x in w”.

A language B is FO[<] definable if there exists a sentence φ such that for all words w,
w ∈ L if and only if φ is satisfied by w.

A ΣFO
k -sentence (resp., ΠFO

k -sentence) is a sentence of FO[<] that is in prenex normal form,
starts with an existential (resp., universal) quantifier, and has at most k − 1 quantifier
alternations.

A language belongs to the class ΣFO
k (resp., ΠFO

k) of the STH if it can be defined by a
ΣFO

k -sentence (resp., ΠFO
k -sentence). ΔFO

k denotes the intersection of ΣFO
k and ΠFO

k .

The next theorem shows a connection between the STH and the PH via the e-model. As
we discussed in the last chapter, a similar connection for the existing b- and u-models was
proven by Hertrampf et al. [HLS+93], Burtschick and Vollmer [BV98], and Borchert et
al. [BLS+05].

Theorem 7.10 The following statements hold for all k ≥ 1:

1. Leafpε (ΣFO
k) = ΣP

k

2. Leafpε (ΠFO
k) = ΠP

k

3. Leafpε (ΔFO
k) = ΔP

k

Proof. Let B ⊆ Σ∗ and choose a new letter a /∈ Σ. We show: if B ∈ ΣFO
k , then

Ba ∈ ΣFO
k . Let φ be a ΣFO

k -sentence defining B. Assume φ = Q1i1Q2i2 · · ·Qnin ψ where
the Q’s are quantifiers, the i’s are variables, and ψ is quantifier-free. Now replace the
quantifiers Qn, . . . , Q1 and the formulas α they range on:

∃i α is replaced by ∃i (¬πai ∧ α)

∀i α is replaced by ∀i (πai ∨ α)

Denote the resulting formula by φ′. Observe that φ′ definesBa and that φ′ can be converted
to a ΣFO

k -sentence. Hence Ba ∈ ΣFO
k . The same argument shows (i) if L ∈ ΠFO

k , then
La ∈ ΠFO

k and (ii) if L ∈ ΔFO
k , then La ∈ ΔFO

k .

If we consider the u-model instead of the e-model, then the statements of the theorem
are known [BV98, BSS99, BLS+05]. By Leafpu (B) ⊆ Leafpε (B), it suffices to argue for the
inclusions from left to right. Let L ∈ Leafpε (ΣFO

k), i.e., there exists B ∈ ΣFO
k such that

L ∈ Leafpε (B). By Lemma 7.8, L ∈ Leafpu (Ba) where a is a new letter. As argued above,
Ba ∈ ΣFO

k and therefore, L ∈ Leafpu (ΣFO
k) ⊆ ΣP

k . The inclusions Leafpε (ΠFO
k) ⊆ ΠP

k and
Leafpε (ΔFO

k) ⊆ ΔP
k follow analogously. �

124

7.2 Gap Theorems and Perfect Correspondences

In the last section we proved that the e-model connects the STH to the PH in a similar
way as the b- and u-models connect the DDH to the PH. In the last chapter we introduced
the notion of a tighter connection which we called perfect correspondence. We proved that
via balanced leaf languages, the DDH and the PH do not correspond perfectly. Contrary
to that, we were able to show that the lower levels of both hierarchies do in fact correspond
via unbalanced leaf languages. We now transfer the notion of perfect correspondence to
the e-model. Observe that the following definition is an analogue of Definitions 6.3 and
6.4.

Definition 7.11 A class of regular languages C and a complexity class D perfectly corre-
spond with respect to ε-leaf languages if (restricted to regular languages) C is closed under
pte-reducibility and Leafpε (C) = D.

In the next sections, we will show that the e-model establishes perfect correspondences
between the lower levels of the STH and the PH. We will in fact prove slightly stronger
results which we interpret as gap theorems. Recall that in order to show that a class of
regular languages C and a a complexity class D perfectly correspond with respect to ε-leaf
languages, we have to prove the following amongst other things:

Whenever we chose a regular language L outside C,
then Leafpε (L) is not robustly contained in Leafpε (C).

Assume that no matter how L ∈ REG−C is chosen, we can prove that Leafpε (L) ⊇ D′ for
some complexity class D′ which is oracle separable from D.

D′D

Leafpε (L)

Figure 7.1: Complexity classes D and D′ are incomparable relative to an oracle. Whenever
Leafpε (L) ⊃ D, it follows that Leafpε (L) ⊃ D ∪ D′.

Chapter 7: ε-Leaf-Language Classes 125

Then this is a gap theorem of leaf-language definability between D and D′: Every ε-leaf-
language definable class is either contained in D or it contains D′. If such a class strictly
contains D, then it must also contain D′. This situation is depicted in Figure 7.1.

7.3 Gap Theorems for NP, ΔP
2 , and ΣP

2

In this section we use existing forbidden-pattern characterisations to obtain lower bounds
for certain e-classes. From this we derive gap theorems for NP, ΔP

2 , and ΣP
2 . A summary

of these results can be found in Table 7.1 at the end of this chapter.

Pin and Weil [PW97] proved the following characterisation of level ΣFO
1 of the STH.

Proposition 7.12 ([PW97]) The following are equivalent for any language A.

1. A ∈ ΣFO
1

2. ∀v,w ∈ Σ∗[v�w ⇒ cA(v) ≤ cA(w)]

3. ∀v,w ∈ Σ∗∀a ∈ Σ[cA(vw) ≤ cA(vaw)]

Using this characterisation, we can apply the same technique as [Bor95] and [BKS99]
and obtain the following lower bounds for the e-class of languages outside ΣFO

1 . Since this
requires only straightforward modifications to the proofs of Borchert and Borchert, Kuske,
and Stephan, we omit the proof here.

Theorem 7.13 Let A be an arbitrary language.

1. If A /∈ ΣFO
1 , then coUP ⊆ Leafpε (A).

2. If A ∈ REG − ΣFO
1 , then Leafpε (A) contains at least one of the following classes:

coNP, co1NP, MODpP for a prime p.

3. If A ∈ SF−ΣFO
1 , then Leafpε (A) contains at least one of the following classes: coNP,

co1NP.

In combination with Theorem 7.10 we obtain a gap theorem for NP.

Corollary 7.14 Let B be a nontrivial language.

1. The e-class of B either is contained in NP, or contains coUP.

2. If B ∈ REG, then the e-class of B either is contained in NP, or contains at least
one of the following classes: coNP, co1NP, MODpP for a prime p.

3. If B ∈ SF, then the e-class of B either is contained in NP, or contains at least one
of the following classes: coNP, co1NP.

126

Proof. Follows from Theorems 7.10 and 7.13. �

Now we can prove general lower bounds for e-classes. In particular, no complexity class
below UP is definable with this concept.

Corollary 7.15 Let A be a nontrivial language.

1. Leafpε (A) contains at least one of the following classes: UP, coUP.

2. If A ∈ REG, then Leafpε (A) contains at least one of the following classes: NP, coNP,
MODpP for a prime p.

3. If A ∈ SF, then Leafpε (A) contains at least one of the following classes: NP, coNP.

Proof. Assume ε /∈ A. By assumption, there exists a nonempty w ∈ A. Any UP machine
can be modified such that rejecting paths output ε and accepting paths output w. This
shows UP ⊆ Leafpε (A). Analogously, the assumption ε ∈ A implies coUP ⊆ Leafpε (A).

If A also belongs to REG, then Leafpε (A) or Leafpε (A) contains at least one of the following
classes: coNP, co1NP, MODpP for a prime p. Hence Leafpε (A) contains at least one of the
following classes: NP, coNP, MODpP for a prime p. If A even belongs to SF, then the
same argument shows that Leafpε (A) contains at least one of the following classes: NP,
coNP. �

Under reasonable assumptions there is no regular A such that A’s e-class lies strictly
between coNP and 1NP. By symmetry, the same holds for NP and co1NP.

Corollary 7.16 Let A ∈ REG be a nontrivial language. Assume that NP �⊆ 1NP and
MODpP �⊆ 1NP for all primes p. Then the following implication holds.

Leafpε (A) � 1NP ⇒ Leafpε (A) ⊆ coNP.

Proof. If Leafpε (A) �⊆ coNP, then A /∈ ΠFO
1 . By Theorem 7.13, Leafpε (A) contains at

least one of the following classes: NP, 1NP, MODpP for a prime p. �

Starting with a forbidden-pattern characterisation for ΣFO
2 [PW97] (Figure 7.2) we prove

a lower bound for the e-class of ΣFO
2 . Again, this yields a gap theorem, this time for ΣP

2

(Corollary 7.19). Schmitz [Sch01] announces a similar result for the u-class of ΣFO
2 , but

does not give a proof. The proof we give here uses a similar technique as [Bor95] and
[BKS99]. In our proof, we will utilise a recent result by Spakowski and Tripathi [ST07].
This result concerns the unambiguous alternation hierarchy, which was introduced by Nie-
dermeier and Rossmanith [NR98]. We give an alternative characterisation of the unam-
biguous alternation hierarchy which is attributed to unpublished work of Hemaspaandra
[NR98].

Chapter 7: ε-Leaf-Language Classes 127

For any complexity class C, define ∃u·C as the class of languages L such that there exist a
polynomial p and L′ ∈ C such that for all x,

x ∈ L ⇒ there exists exactly one y ∈ Σp(|x|) such that (x, y) ∈ L′

x /∈ L ⇒ there exists no y ∈ Σp(|x|) such that (x, y) ∈ L′.

Analogously, ∀u·C is the class of languages L such that there exist a polynomial p and
L′ ∈ C such that for all x,

x ∈ L ⇒ for all y ∈ Σp(|x|), (x, y) ∈ L′

x /∈ L ⇒ there exists exactly one y ∈ Σp(|x|) such that (x, y) /∈ L′.

The following definition is attributed to unpublished work of Hemaspaandra [NR98].

Definition 7.17 The following are the levels of the unambiguous alternation hierarchy.

AUΣP
0 = AUΠP

0 =def P

AUΣP
k+1 =def ∃u·AUΠP

k for k ≥ 0

AUΠP
k+1 =def ∀u·AUΣP

k for k ≥ 0.

Spakowski and Tripathi [ST07] construct an oracle relative to which for every n ≥ 1, level
n of the unambiguous alternation hierarchy is not contained in ΠP

n .

Theorem 7.18 If A ∈ REG − ΣFO
2 , then AUΠP

2 ⊆ Leafpε (A).

Proof. Pin and Weil [PW97] proved the following forbidden pattern characterisation of
ΣFO

2 : A regular language belongs to ΣFO
2 if and only if the transition graph of its minimal

automaton does not contain the subgraph shown in Figure 7.2. So by assumption, A’s
minimal automaton contains this graph.

s1 s2

� �

v v

�
w

��
+ −

z z

Figure 7.2: Forbidden pattern for ΣFO
2 where w� v.

128

Let L ∈ AUΠP
2 , i.e., there exist B ∈ P and polynomials p and q such that for all x,

x ∈ L ⇒ ∀y ∈ Σp(|x|),∃!z ∈ Σq(|x|)[(x, y, z) ∈ B],

x /∈ L ⇒ there exists y ∈ Σp(|x|) such that the following holds:
(i) ∀z ∈ Σq(|x|)[(x, y, z) /∈ B],
(ii) ∀u ∈ Σp(|x|) − {y},∃!z ∈ Σq(|x|)[(x, u, z) ∈ B].

We describe a nondeterministic machine M on input x: First, M nondeterministically
guesses y ∈ Σp(|x|). Now M splits into |v| paths which we associate with the letters of
v. Consider the first occurrence of w as a subword of v. The paths that are associated
with the positions involved in this occurrence output the respective letters of v and stop.
On all other paths (i.e., those which are not involved in the first occurrence of w in v)
the computation is continued as follows: Assume we are on a path that is associated with
letter c in v. M nondeterministically guesses z ∈ Σq(|x|). If (x, y, z) ∈ B, then output ε
and stop. Otherwise, output c and stop.

In order to determine the leaf string βM (x) we first consider certain factors of this string.
More precisely, let βu be the leaf string that is produced by the paths that guess y = u.
Note that βM (x) = β0β1 · · · β2p(|x|) .

Assume u ∈ Σp(|x|) such that ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Consider the path where M
guesses y = u. In the next steps, M splits into |v| paths associated with the letters of v.
The paths involved in the first occurrence of w in v will output the respective letters from
v. Each remaining path continues the computation. By assumption, there exists exactly
one z such that [(x, y, z) ∈ B]. The path guessing that z will output the respective letter
in v, while all other paths will output ε. Therefore, βu = v.

Assume u ∈ Σp(|x|) such that ∀z ∈ Σq(|x|)[(x, u, z) /∈ B]. Consider the path where M
guesses y = u. Again M splits into |v| paths. The paths involved in the occurrence
of w will output the respective letters from v. However, now there is no z such that
[(x, y, z) ∈ B] and therefore, all remaining paths output ε. It follows that βu = w.

Now let us consider βM (x). If x ∈ L, then for all u, ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Therefore,
all u, βu = v and it follows that βM (x) ∈ v∗. Otherwise, x /∈ L. So there exists y ∈ Σp(|x|)

such that (i) ∀z ∈ Σq(|x|)[(x, y, z) /∈ B] and (ii) for all u �= y, ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B].
Therefore, (i) βy = w and (ii) for all u �= y, βu = v. It follows that βM (x) ∈ v∗wv∗. So we
obtained:

x ∈ L ⇒ βM (x) ∈ v∗

x /∈ L ⇒ βM (x) ∈ v∗wv∗

Let y be a word leading from the initial state to s1 in the minimal automaton of A. Let
M ′ be the modification of M that on the left additionally outputs y and on the right
additionally outputs z. Hence, x ∈ L if and only if βM ′(x) ∈ A. This shows L ∈ Leafpε (A).

�

Chapter 7: ε-Leaf-Language Classes 129

Corollary 7.19 Let B be a nontrivial, regular language. The e-class of B either is con-
tained in ΣP

2 , or contains AUΠP
2 .

Proof. Follows from Theorems 7.10 and 7.18. �

In addition, Theorem 7.18 also yields a lower bound for the e-class of ΔFO
2 :

Corollary 7.20 If A ∈ REG − (ΣFO
2 ∩ ΠFO

2), then Leafpε (A) contains at least one of the
following classes: AUΠP

2 , AUΣP
2 .

Proof. By assumption, A or A is outside ΣFO
2 . By Theorem 7.18, AUΠP

2 ⊆ Leafpε (A) or
AUΠP

2 ⊆ coLeafpε (A). The latter is equivalent to AUΣP
2 ⊆ Leafpε (A). �

The following is a gap theorem for ΔP
2 . It holds for both the u- and the e-model.

Corollary 7.21 Let B be a nontrivial, regular language.

1. The e-class of B either is contained in ΔP
2 , or contains at least one of the following

classes: AUΣP
2 , AUΠP

2 .

2. The u-class of B either is contained in ΔP
2 , or contains at least one of the following

classes: AUΣP
2 , AUΠP

2 .

Proof. The first statement is an immediate consequence of Theorem 7.10 and Corol-
lary 7.20. For the second statement, let B3/2 denote level 3/2 of the dot-depth hierarchy
[CB71, PW97]. If A ∈ REG − (B3/2 ∩ coB3/2), then Leafpu (A) contains at least one
of the following classes: AUΣP

2 , AUΠP
2 [Sch01]. Borchert et al. [BLS+05] mention that

Leafpu (B3/2 ∩ coB3/2) = ΔP
2 can be obtained by an extension of their method. �

7.4 A Characterisation of 1NP

In this section we analyse the class 1NP in detail and prove a gap theorem for this class.
This case is more challenging since we cannot utilise an existing forbidden-pattern charac-
terisation. With Theorem 7.31 we give such a characterisation for the class of languages
corresponding to 1NP. Additionally, this theorem shows that with this class we have in
fact identified all languages whose e-class is robustly contained in 1NP. This lets us derive
a gap theorem for 1NP.

For a given language L, we define the following conditions:

130

P1: There exist words u ∈ L, v /∈ L, and w ∈ L such that u� v�w.

P2: There exist k ≥ 2 and nonempty words u, v,w ∈ L such that {u, v}�k w

and (∀x)[x≺u or x≺ v ⇒ x /∈ L].1

We interpret the patterns P1 and P2 as forbidden patterns and define a class of languages
U which neither fulfill P1 nor P2:

U =def {L : P1 and P2 fail for L}

We will see later on that U is in fact a class of regular languages which precisely charac-
terises the class 1NP in the e-model of leaf languages. The next two lemmas show that
the e-class of a language which fulfills P1 or P2 is quite powerful.

Lemma 7.22 Let L ⊆ Σ∗ such that L satisfies P1. Then Leafpε (L) ⊇ UP∨· coUP.

Proof. Let L ⊆ Σ∗ such that there exist words u ∈ L, v /∈ L, and w ∈ L such that
u� v�w, i.e. L satisfies pattern P1. Furthermore, let A ∈ UP∨· coUP. Hence A = B ∪C
where B ∈ UP, C ∈ coUP, and B ⊆ C. Let MB be the UP-machine accepting B,
and let MC be the coUP-machine accepting C. Observe that whenever MB on an input x
produces an accepting path (and thus accepts the input in an UP-sense), MC also produces
an accepting path and hence rejects (in an coUP-sense).

In order to prove Leafpε (L) ⊇ UP∨· coUP, we show how to construct a nondeterministic
polynomial-time Turing machine M such that for all x:

x �∈ A =⇒ βM (x) = v

x ∈ B =⇒ βM (x) = w

x ∈ C =⇒ βM (x) = u

Since u� v�w = w1 . . . wk, we can mark the letters of one fixed occurrence of u in w,
we do the same with one fixed occurrence of v in w. Let Iu � {1, . . . , k} be the indices
of letters in w that are marked to belong to u, and let Iv � {1, . . . , k} be the indices of
letters in w that are marked to belong to v. Note that #Iv = |v|, #Iu = |u|, and Iu � Iv.

For 1 ≤ i ≤ k, we construct Turing machines Mi as follows:

• If i ∈ Iu, Mi develops only one path and outputs wi on this path.

• If i ∈ Iv−Iu, Mi simulates machine MC on the same input. On every rejecting path
of MC , Mi outputs ε, if an accepting path exists, this path outputs wi.

• If i �∈ Iv, Mi simulates machine MB on the same input. On every rejecting path of
MB , Mi outputs ε, if an accepting path exists, this path outputs wi.

1Note that in P2, the words u and v can be the same.

Chapter 7: ε-Leaf-Language Classes 131

Turing machine M is constructed as follows: On input x, M branches into k nondetermin-
istic paths. On path i, M then simulates Mi on input x. Notice that M can only produce
leaf strings from {u, v,w}. It is easy to see that M satisfies the above condition: It holds
that x ∈ A ⇔ βM (x) ∈ L, and hence A ∈ Leafpε (L). �

Lemma 7.23 Let L ⊆ Σ∗ such that L satisfies P2. Then Leafpε (L) ⊇ UP ∨ UP.

Proof. Let L ⊆ Σ∗ such that there exists k ≥ 2 and nonempty words u, v,w = w1 . . . wl ∈
L such that {u, v}�k w and ∀x((x≺u or x≺ v) ⇒ x /∈ L

)
. If u�0 w we set u := v, if

v�0 w we set v := u. We obtain {u, v}�k w and u�w, v�w. Observe that since L
satisfies P2, the empty word ε cannot be in L, which has to have nonempty minimal
words. Furthermore, let A ∈ UP ∨ UP. Hence A = B ∪ C where B ∈ UP and C ∈ UP.
Let MB be the UP-machine accepting B, and let MC be the UP-machine accepting C.

In order to prove Leafpε (L) ⊇ UP ∨ UP, we show how to construct a nondeterministic
polynomial-time Turing machine M such that the following holds for all x:

x �∈ A =⇒ βM (x)≺u

x ∈ B − C =⇒ βM (x) = u

x ∈ C −B =⇒ βM (x) = v

x ∈ B ∩C =⇒ βM (x) = w

Observe that no proper subword of u can be in L, since P2 requests that u and v are
minimal words in L. Consequently, constructing a machine M as above yields x ∈ A ⇔
βM (x) ∈ L and hence A ∈ Leafpε (L).

Since u�w and v�w, we can mark the letters of one fixed occurrence of u in w, we do
the same with one fixed occurrence of v in w.2 Let Iu � {1, . . . , l} be the indices of letters
in w that are marked to belong to u, and let Iv � {1, . . . , l} be the indices of letters in w

that are marked to belong to v. Observe that Iu �= Iv and hence #(Iu ∩Iv) < min(|u|, |v|).
For 1 ≤ i ≤ l, we construct Turing machines Mi as follows:

I. If i ∈ Iu ∩ Iv, Mi develops only one path and outputs wi on this path.

II. If i ∈ Iu−Iv, Mi simulates machine MB on the same input. On every rejecting path
of MB, Mi outputs ε, if an accepting path exists, this path outputs wi.

III. If i ∈ Iv−Iu, Mi simulates machine MC on the same input. On every rejecting path
of MC , Mi outputs ε, if an accepting path exists, this path outputs wi.

IV. If i �∈ Iu ∪ Iv, Mi outputs wi if and only if MB and MC (running on the same input
as Mi) produce an accepting path, otherwise Mi outputs ε.

2If u = v, we fix two different occurrences of u in w.

132

Turing machine M is constructed as follows: On input x, M branches into l nondetermin-
istic paths. On paths i for 1 ≤ i ≤ l, M then simulates Mi on input x.

We consider the four different possibilities for the behavior of M on an input x. We do
this by analysing the behavior of the machines M consists of. Notice that depending on
u, v,w, there might not be any machines of types I and IV.

Case 1: x �∈ A. Hence, UP-machines MB and MC do not accept x, i.e. both produce only
rejecting paths. Clearly, all machines of type II, III, and IV only output empty words.
If Iu ∩ Iv �= ∅, precisely those letters of w are output that belong simultaneously to the
marked occurrence of u and to the marked occurrence of v. Let i1 < i2 < . . . < i#(Iu∩Iv)

be the elements of Iu ∩ Iv, then βM (x) = wi1 . . . wi#(Iu∩Iv)
. As we then have βM (x)≺ u,

we can conclude that βM (x) �∈ L, since no subword of u is element of L. If Iu ∩ Iv = ∅,
βM (x) = ε. Again, we conclude βM (x) �∈ L since ε �∈ L.

Case 2: x ∈ B−C, i.e. MB produces an accepting path on input x whereas MC produces
only rejecting paths. This means all machines of type III and IV output empty words.
Recall that letters belonging to u and v simultaneously are created by machines of type I
regardless of the input. So we obtain βM (x) = u and βM (x) ∈ L.

Case 3: x ∈ C −B. Analogous to case 2.

Case 4: x ∈ B ∩ C, i.e. MB and MC both produce an accepting path on input x. If
Iu ∪ Iv = {1, . . . , l}, it is clear that βM (x) = w ∈ L. Iu ∪ Iv � {1, . . . , l}, the missing
letters of w are produced by the machines of type IV. We again obtain βM (x) = w ∈ L.

From the above case differentiation, we obtain x ∈ A ⇔ βM (x) ∈ L which proves A ∈
Leafpε (L). �

The next lemma presents languages that define the classes 1NP and UP∨· coUP in terms
of leaf languages.

Lemma 7.24 1. Leafpε (1|(ε ∪ 111∗)) = 1NP.
2. Leafpε ((ε ∪ 12)|2) = UP∨· coUP.
3. Leafpε ((1 ∪ 2 ∪ 12)|ε) = UP ∨ UP.

Proof. 1. For ⊇, simply modify the 1NP-machine such that every accepting path outputs
1 and every rejecting path outputs ε. For ⊆, modify the ε-machine such that every path
that outputs ε then rejects, and every path that outputs 1 then accepts.

2. ⊇: Let A ∈ UP∨· coUP, that means A = B ∪ C where B,C ∈ UP and B ⊆ C. Let
MB ,MC be the UP-machines that prove B,C ∈ UP. As B ⊆ C, it holds for all inputs x
that whenever MB on input x produces an accepting path MC on input x also produces
an accepting path. We now construct a nondeterministic Turing machine M as follows:

Chapter 7: ε-Leaf-Language Classes 133

On input x, M first branches nondeterministically. On the left path, M simulates MB

on input x, on the right path, it simulates MC on input x. All rejecting paths of these
simulations output ε, the accepting path of MB (if existent) outputs 1, the accepting path
of MC (if existent) outputs 2. It is easy to see that the following now holds:

∀x, βM (x) ∈ {ε, 2, 12},
x ∈ B ⇒ βM (x) = 12,

x ∈ C ⇒ βM (x) = ε,

x �∈ A ⇒ βM (x) = 2.

This proves A ∈ Leafpε ((ε ∪ 12), 2).

⊆: Let A ∈ Leafpε ((ε ∪ 12)|2) via the nondeterministic ε-machine M . Observe that A =
B ∪ C, where B =def {x ∣∣ βM (x) = 12} and C =def {x ∣∣ 2� βM (x)}. Clearly, B,C ∈ UP
and B ⊆ C. Hence, A ∈ UP∨· coUP.

3. Analogous. �

In order to show that for any language L, fulfillment of P1 suffices for the class Leafpε (L) to
be not robustly contained in 1NP, we first prove that languages characterising UP∨· coUP
cannot be pte-reduced to languages characterising 1NP.

Lemma 7.25 ((ε ∪ 12)|2)�≤pte
m (1|(ε ∪ 111∗)).

Proof. We assume that (L|K)≤pte
m (L′|K ′), where (L|K) = ((ε ∪ 12), 2) and (L′|K ′) =

(1, (ε ∪ 111∗)). Due to Proposition 7.7, this is equivalent to (L0|K0)≤plt
m (L′

0,K
′
0). Recall

that (L0|K0) =def ((0∗ ∪ 0∗10∗20∗)|0∗20∗) and (L′
0|K ′

0) =def (0∗10∗|(0∗ ∪ 0∗10∗1(0 ∪ 1)∗)).
Assume (L0|K0)≤plt

m (L′
0|K ′

0) holds via plt-reduction f .

This means there exist functions g, h which are computable in time c · logk fur suitable
c, k ≥ 0 such that f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) and the following holds:

x ∈ L0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′
0,

x ∈ K0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ K ′
0.

Let Mg be the deterministic polylog-time machine that computes g within the above time
bound. We choose n sufficiently large such that n > 2 ·c · logk(n+c logk n)+2 and consider
the input w =def 0n. Since w ∈ L0, there exists precisely one 1 ≤ i ≤ h(w) such that
g(w, i) = 1. Hence, Mg on input (w, i) outputs 1, while it outputs 0 on input (w, k) for all
other k. Since n > 2 · c · logk(n+ c logk n) + 2, Mg on input (w, i) cannot have queried all
positions in w. Let j be a position that is not queried by Mg on input (w, i). We then set
v =def 0j−120n−j . Notice that Mg still outputs 1 when ran on input (v, i) since w and v

only differ on a position not queried by Mg on input (w, i). As v ∈ K0, f has to output a

134

word from K ′
0. Since g(v, i) = 1, there has to be another i′ such that g(v, i′) = 1. Due to

n > 2 · c · logk(n+ c logk n) + 2, we can easily find a position j′ < j such that Mg neither
queries j′ on input (v, i) nor on input (v, i′). Let u =def 0j′−110j−j′+120n−j . As we still
have g(u, i) = g(u, i′) = 1, f(u) ∈ K ′

0 although u ∈ L0. By this contradiction, we have
shown that no such f can exist. �

Lemma 7.26 There exists an oracle O such that (UP∨· coUP)O �⊆ 1NPO.

Proof. This follows directly from Leafpε ((ε ∪ 12)|2) = UP∨· coUP, Leafpε (1|(ε ∪ 111∗)) =
1NP (Lemma 7.24), ((ε ∪ 12)|2)�≤pte

m (1|(ε ∪ 111∗)) (Lemma 7.25) and Theorem 7.9. �

Similarly to the above note, we now prove that languages characterising UP ∨ UP cannot
be pte-reduced to languages characterising 1NP. This is a step towards showing that
for any language L, fulfillment of P2 suffices for the class Leafpε (L) to be not robustly
contained in 1NP.

Lemma 7.27 ((1 ∪ 2 ∪ 12)|ε)�≤pte
m (1|(ε ∪ 111∗)).

Proof. We assume that (L|K)≤pte
m (L′|K ′) where (L|K) = ((1 ∪ 2 ∪ 12)|ε) and (L′|K ′) =

(1|(ε∪111∗)). Due to Proposition 7.7, this is equivalent to (L0|K0)≤plt
m (L′

0|K ′
0). Recall that

(L0|K0) =def ((0∗10∗∪0∗10∗20∗∪0∗20∗)|0∗) and (L′
0|K ′

0) =def (0∗10∗|(0∗ ∪ 0∗10∗1(0∪ 1)∗)).
Assume (L0|K0)≤plt

m (L′
0|K ′

0) holds via plt-reduction f .

This means there exist functions g, h which are computable in time c · logk for suitable
c, k ≥ 0 such that f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) and the following holds:

x ∈ L0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′
0,

x ∈ K0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ K ′
0.

Let Mg be the deterministic polylog-time machine that computes g within the above
time bound. We choose n sufficiently large such that n

2 > 2 · c · logk(2n + c logk 2n) and
consider words xi, yi, zi,j ∈ {0, 1, 2}2n: For i, j ∈ {1, . . . , n}, we define xi =def 0i−110n−i0n,
yi =def 0n0i−120n−i, and zi,j =def 0i−110n−i0j−120n−j . Observe that for i, j ∈ {1, . . . , n},
xi, yi, and zi,j are all in L0 and hence f(xi), f(yi), and f(zi,j) are all in L′

0. Therefore, we
have

∀a ∈ {x, y}∀i ∈ {1, . . . , n}∃!j : g(ai, j) = 1.

For 1 ≤ i ≤ n, we define

d(i) =def l, where g(xi, l) = 1,

B(i) =def {l ∈ {1, . . . , 2n} ∣∣Mg on input (xi, d(i)) queries position l in xi}
e(i) =def l, where g(yi, l) = 1,

C(i) =def {l ∈ {1, . . . , 2n} ∣∣Mg on input (yi, e(i)) queries position l in yi}

Chapter 7: ε-Leaf-Language Classes 135

Claim: There exist i, j ∈ {1, . . . , n} such that i �∈ C(j) and n+ j �∈ B(i).

Proof of the claim. Assuming that our claim is wrong, we conclude that for all (i, j) ∈
{1, . . . , n}2, it holds that i ∈ C(j) or n+j ∈ B(i). Without loss of generality, we can
assume that i ∈ C(j) holds for at least half of all (i, j), i.e. for at least n2

2 tuples.3

Observe that there now exists 1 ≤ j ≤ n such that among these n2

2 tuples, there are
tuples (i1, j), (i2, j), . . . , (in/2, j) such that i1 < i2 < . . . < in/2. Hence, it holds that
i1 ∈ C(j), i2 ∈ C(j), . . . in/2 ∈ C(j). This in turn implies that Mg on input (yj , e(j))
queries at least n

2 positions in yj . Since we have chosen n sufficiently large such that
n
2 > 2·c · logk(2n+c logk 2n), Mg cannot query all these positions. So we have contradicted
our assumption and thus proven the claim. �

By this, we know that there exist i, j ∈ {1, . . . , n} such that i �∈ C(j) and n + j �∈ B(i).
Using a standard technique, we can show that d(i) �= e(j).

Let us assume for a moment that d(i) = e(j). This means that on input (xi, d(i)), Mg

does not query position n+j in xi, and on input (yj , d(i)), Mg does not query position i in
yj. Recall that xi and yi only differ on positions i and n+ j. Since Mg cannot distinguish
between (xi, d(i)) and (yj , d(i)) until it has queried either position i or position n+ j (and
may not be allowed to do so, depending on whether it is running on (xi, d(i)) or (yj, d(i))),
the only way to get out of the dilemma is to neither query position i nor position n + j.
However, this implies that g(xi, d(i)) = g(yj , e(j)) = g(02n, d(i)) = 1. Moreover, Mg

cannot distinguish whether it is running on input (xi, d(i)), (yj , d(i)), or (02n, d(i)). Since
02n ∈ K0, there exists (at least one) e′ �= d(i) such that g(02n, e′) = 1. Let p be a position
in 02n such that Mg neither queries p when running on input (02n, d(i)), nor when running
on input (02n, e′). Such a position exists since n

2 > 2 ·c · logk(2n+c logk 2n). Consequently,
g(0p−1102n−p, d(i)) = 1 and g(0p−1102n−p, e′) = 1. Hence, f(0p−1102n−p) ∈ K ′

0 although
0p−1102n−p ∈ L0. This is a contradiction, hence d(i) �= e(j).

Since i �∈ C(j) and n + j �∈ B(i) it follows that g(xi, d(i)) = g(yj , e(j)) = g(zi,j , d(i)) =
g(zi,j , e(j)) = 1. From d(i) �= e(j), we can then conclude that f(zi,j) ∈ 0∗10∗1(0 ∪ 1)∗ and
thus f(zi,j) ∈ K ′

0 although zi,j ∈ L0. This contradiction proves that no such f can exist;
hence (L0|K0)�≤plt

m (L′
0|K ′

0) and by Proposition 7.7 (L|K)�≤pte
m (L′|K ′). �

Lemma 7.28 There exists an oracle O such that (UP ∨ UP)O �⊆ 1NPO.

Proof. This follows directly from Leafpε ((1 ∪ 2 ∪ 12)|ε) = UP ∨ UP (Lemma 7.24.3),
Leafpε (1|(ε∪ 111∗)) = 1NP (Lemma 7.24), ((1 ∪ 2 ∪ 12)|ε)�≤pte

m (1|(ε ∪ 111∗)) (Lemma 7.27)
and Theorem 7.9. �

We now know that e-classes of languages outside U are not in 1NP.

3Otherwise, n+j ∈ B(i) has to hold for at least n2

2
tuples. The reasoning is analogue.

136

The next theorem will enable us to understand the languages inside U better. As it turns
out, we can avail ourselves of a well-known algebraic property of Σ∗ to obtain a convenient
characterisation of U.

Definition 7.29 A partial ordering is a well-partial ordering if it contains no infinite de-
scending sequence and no infinite antichain (i.e., a set of pairwise incomparable elements).

Theorem 7.30 ([Hig52]) (Σ∗,�) is a well-partial ordering.

The following theorem provides the announced characterisation of U, the class that pre-
cisely corresponds to 1NP in the e-model.

Theorem 7.31 The following statements are equivalent for any language L ⊆ Σ∗.

1. L ∈ Rpte(1), the pte-closure of {1}.
2. For all oracles O it holds that Leafpε (L)O ⊆ 1NPO.

3. L ∈ U, that means both conditions, P1 and P2, fail for L.

4. There exist finite sets A,B ⊆ Σ∗ such that

L = {w ∣∣A�1w and (∀v ∈ B)[v ��w]}.4 (7.1)

Proof. 1 ⇔ 2 : This is an immediate consequence of Theorem 7.9, since for all oracles
O, Leafpε (1)O = 1NPO.

2 ⇒ 3 : Assume that relative to all oracles, Leafpε (L) ⊆ 1NP. From Lemmas 7.22, 7.26
and Lemmas 7.23, 7.28, we know that if L satisfies P1 or P2, we can construct an oracle
O such that Leafpε (L)O �⊆ 1NPO. This contradicts our assumption. Therefore, L neither
satisfies P1 nor P2.

3 ⇒ 4 : Let
A = {v ∈ L

∣∣ (∀v′ ≺ v)[v′ /∈ L]}.
Observe that A can be seen as the set of minimal words in L. Furthermore, the elements
in A are pairwise incomparable with respect to �. From Theorem 7.30 and Definition 7.29
it follows that A is finite. Let

B = {w /∈ L
∣∣ (∃v ∈ A)[v�w and ∀w′[v�w′ ≺w ⇒ w′ ∈ L]]}.

This set can be thought of as the set of minimal words outside L that have predecessors
in A. We claim that B is finite as well: Otherwise, since A is finite, there exists v ∈ A

such that the following subset of B is infinite.

B′ = {w /∈ L
∣∣ v�w and ∀w′[v�w′ ≺w ⇒ w′ ∈ L]}.

4B can be thought of as the set of forbidden subwords, i.e., events that may not occur in words from

L. Contrary, A represents the set of events such that every word in L triggers exactly one such event.

Chapter 7: ε-Leaf-Language Classes 137

Observe that the elements in B′ are pairwise incomparable with respect to �. Again, from
Theorem 7.30 and Definition 7.29 it follows that B is finite.

We are going to show Equation (7.1). Let w ∈ L. So there exists v ∈ A such that v�w.
Assume there exist different v1, v2 ∈ A such that v1 �w and v2 �w. It follows that v1,
v2, and w are nonempty. This implies that L satisfies condition P2 which contradicts our
assumption. Therefore, there exists exactly one v ∈ A such that v�w. If v�k w for some
k ≥ 2, then L satisfies condition P2 which again is a contradiction. So v�1w and hence
A�1w.

Assume now that there exists v ∈ B such that v�w. By B’s definition, there exists
v′ ∈ A such that v′ � v and for all w′, [v′ �w′ ≺ v ⇒ w′ ∈ L]. In particular, v′ � v�w

and v′ ∈ L, v /∈ L, and w ∈ L. Hence L satisfies condition P1 which contradicts our
assumption. So there does not exist such v ∈ B and therefore, w belongs to the right-
hand side of Equation (7.1). This shows the inclusion ⊆ in Equation (7.1).

Let w be an element of the right-hand side of (7.1). Hence there exists precisely one v ∈ A

such that v�w. Assume w /∈ L and choose a shortest word u /∈ L such that v�u�w.
It follows that u ∈ B. Together with u�w this implies that w is not an element of
the right-hand side of (7.1). This contradiction shows w ∈ L and finishes the proof of
Equation (7.1).

4 ⇒ 2 : Let A = {u1, . . . , um} and B = {v1, . . . , vn} wherem = |A| and n = |B|. Let L′ ∈
Leafpε (L). So there exists a polynomial-time Turing machine M whose computation paths
output symbols from Σ ∪ {ε} such that x ∈ L′ ⇔ βM (x) ∈ L. Define a nondeterministic
machine N that works as follows on input x. First, N splits into m+ n paths p1, . . . , pm

and q1, . . . , qn. If ui = ε, then path pi outputs 1. If ui �= ε, then on path pi the machine
nondeterministically guesses an occurrence of ui (by guessing the positions of ui’s letters) in
the leaf string βM (x). If such a guess is successful, then N outputs 1, otherwise it outputs
ε. Similarly, on path qi the machine nondeterministically guesses an occurrence of vi in
βM (x). If such a guess is successful, then N outputs 11 (by producing two neighbouring
paths with output 1), otherwise it outputs ε. From (7.1) it follows that

x ∈ L′ ⇔ βM (x) ∈ L ⇔ βN (x) = 1.

Hence L′ ∈ Leafpε (1) and therefore Leafpε (L) ⊆ Leafpε (1). Finally, observe that our argu-
mentation is relativisable. �

We can now formulate the new gap theorem.

Theorem 7.32 Let L be a nontrivial language.

1. If L ∈ U, then the e-class of L is contained in 1NP.

2. If L �∈ U, then the e-class of L contains UP∨· coUP or UP ∨ UP.

138

Proof. Follows from Theorem 7.31 and the fact that the Lemmas 7.22 and 7.23 are
relativisable. �

We summarise properties of U. Accordingly, U is not a (positive) variety of languages
[PW97], since it is not closed under union.

Theorem 7.33 1. U ⊆ ΣFO
1 ∧ ΠFO

1 which is the second level of the Boolean hierarchy
over ΣFO

1 . In particular, U ⊆ SF ⊆ REG.

2. U is closed under intersection.

3. U is neither closed under union nor under complement.

Proof. For the first statement, let L ∈ U. By Theorem 7.31, there exist finite sets A
and B such that

L = {w ∣∣A�1w and (∀v ∈ B)[v ��w]}.
The expression A�1 w is equivalent to

(∃v ∈ A)[v�w] and w /∈ C

where C =def {w ∣∣ (∃k ≥ 2)[A�k w]}. C is closed upwards with respect to �. From
Theorem 7.30 it follows that C is finitely generated, i.e., there exists a finite D such that
C = {w ∣∣ (∃v ∈ D)[v�w]}. So A�1 w is equivalent to

(∃v ∈ A)[v�w] and (∀v ∈ D)[v ��w].

Hence for L1 =def {w ∣∣ (∃v ∈ A)[v�w]} and L2 =def (∀v ∈ B ∪ D)[v ��w] it holds that
L = L1 ∩ L2.

For the second statement, let L1, L2 ∈ U and let L =def L1 ∩ L2. First, we show that
Leafpε (L) ⊆ 1NP. For this, let A ∈ Leafpε (L), i.e., there exists a nondeterministic polyno-
mial time transducer M that produces on every computation path a symbol or the empty
word such that

x ∈ A ⇔ βM (x) ∈ L.

By Theorem 7.31, Leafpε (L1) ⊆ 1NP and Leafpε (L2) ⊆ 1NP. So there exist A1, A2 ∈ 1NP
such that (x ∈ A1 ⇔ βM (x) ∈ L1) and (x ∈ A2 ⇔ βM (x) ∈ L2). Therefore,

x ∈ A1 ∩A2 ⇔ βM (x) ∈ L1 ∩ L2 = L.

So A = A1 ∩ A2. It follows that A ∈ 1NP, since 1NP is closed under intersection. This
shows Leafpε (L) ⊆ 1NP. Since our argumentation is relativisable, it also shows that for all
oracles O, Leafpε (L)O ⊆ 1NPO. So by Theorem 7.31, L ∈ U.

For the third statement, let L1 =def {0} and L2 =def {00}. Observe that L1, L2 ∈ U.
However, L1 ∪ L2 = {0, 00} /∈ U, since it satisfies condition P2 for k = 2, u = v = 0, and

Chapter 7: ε-Leaf-Language Classes 139

w = 00. So U is not closed under union. If U were closed under complement, then by the
closure under intersection and by De Morgan’s law it is also closed under union which is
not true. �

7.5 Gap Theorems and Perfect Correspondences-

an Overview

Table 7.1 summarises the results of this chapter.

C Leafpε (C) if B /∈ C then
Leafpε (B) contains

if B ∈ REG − C then
Leafpε (B) contains

if B ∈ SF − C then
Leafpε (B) contains

∅ ∅ UP or coUP NP, coNP, or MODpP
for a prime p

NP or coNP

ΣFO
1 NP coUP coNP, co1NP, or

MODpP for a prime p
coNP or co1NP

ΠFO
1 coNP UP NP, 1NP, or MODpP

for a prime p
NP or 1NP

U 1NP UP ∨ UP or
UP∨· coUP

UP ∨ UP or
UP∨· coUP

UP ∨ UP or
UP∨· coUP

coU co1NP coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

ΔFO
2 ΔP

2 – AUΣP
2 or AUΠP

2 AUΣP
2 or AUΠP

2

ΣFO
2 ΣP

2 – AUΠP
2 AUΠP

2

ΠFO
2 ΠP

2 – AUΣP
2 AUΣP

2

Table 7.1: Summary of the gap theorems, B is a language different from ∅ and Σ∗.

The results in the table can be interpreted as gap theorems for ε-leaf-language definability.
For instance, the row about ΣFO

1 tells us that any e-class either is contained in NP or
contains at least coUP. Hence, once an e-class becomes bigger than NP, its complexity
jumps to at least NP ∪ coUP. Second, there exists evidence that classes in the columns
3–5 are not contained in the corresponding class of column 2. In any case there exist
oracles relative to which this non-containment holds. Third, all classes in the first column
are decidable, i.e., on input of a finite automaton A we can decide whether the language
accepted by A belongs to the class. This permits a decidable and precise classification of
e-classes under the assumption that the classes in the 4th column are not contained in the
respective class in the 2nd column.

140

We identified U to be the class of all languages whose e-class is (robustly) contained in
1NP. A language belongs to U if and only if membership of a word can be expressed in
terms of a unique occurrence of a substring and in terms of forbidden substrings. This
shows that U is a class of regular languages. We proved a decidable characterisation of U,
a so-called forbidden-pattern characterisation. It exactly reveals the structure in a finite
automaton that is responsible for shifting a language outside U.

We conclude with an overview of perfect correspondences between classes of starfree lan-
guages and the polynomial hierarchy.

C K Leaf-language model REG

ΣFO
1 NP e

√

ΠFO
1 coNP e

√

U 1NP e
√

ΔFO
2 ΔP

2 e
ΣFO

2 ΣP
2 e

ΠFO
2 ΠP

2 e

B0 P u
√

B1/2 NP u
coB1/2 coNP u

B1 BC(NP) u
B3/2 ΣP

2 u

Table 7.2: Summary of perfect correspondences via different leaf language models. A sym-
bol “

√
” in the fourth column indicates that the perfect correspondence between C and K

can be extended to non-regular languages, i.e. for all L ∈ C (this includes all non-regular
languages), there exists an oracle O such that Leafp(L)O �⊆ KO.

Chapter 7: ε-Leaf-Language Classes 141

142

143

Bibliography

[AB96] M. Agrawal and S. Biswas. NP-creative sets: A new class of creative sets in NP.
Mathematical Systems Theory, 29(5):487–505, 1996.

[AFH87] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polyno-
mial time computable sets. Theoretical Computer Science, 51:177–204, 1987.

[Agr02] M. Agrawal. Pseudo-random generators and structure of complete degrees. In
IEEE Conference on Computational Complexity, pages 139–147, 2002.

[Amb84] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding,
editors, Logic and Machines, volume 171 of Lecture Notes in Computer Science,
pages 1–23. Springer Verlag, 1984.

[Arf91] M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical
Computer Science, 91:71–84, 1991.

[BBFG91] R. Beigel, M. Bellare, J. Feigenbaum, and S. Goldwasser. Languages that
are easier than their proofs. In IEEE Symposium on Foundations of Computer
Science, pages 19–28, 1991.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define com-
plexity classes. Theoretical Computer Science, 104:263–283, 1992.

[BF92] R. Beigel and J. Feigenbaum. On being incoherent without being very hard.
Computational Complexity, 2:1–17, 1992.

[BG82] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information
and Control, 82:80–88, 1982.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP problem. SIAM
Journal on Computing, 4:431–442, 1975.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other
complete sets. SIAM Journal on Computing, 6:305–322, 1977.

144

[BHT98] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure
of complete sets. SIAM Journal on Computing, 27:637–653, 1998.

[BK78] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages
is infinite. Journal of Computer and System Sciences, 16:37–55, 1978.

[BKS99] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable
languages and their relation to NP. Theoretical Informatics and Applications,
33:259–269, 1999.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
1993.

[BLS+05] B. Borchert, K. Lange, F. Stephan, P. Tesson, and D. Thérien. The dot-depth
and the polynomial hierarchies correspond on the delta levels. International
Journal of Foundations of Computer Science, 16(4):625–644, 2005.

[BM95] J. Balcazar and E. Mayordomo. A note on genericty and bi-immunity. In Pro-
ceedings of the Tenth Annual IEEE Conference on Computational Complexity,
pages 193–196, 1995.

[Bor95] B. Borchert. On the acceptance power of regular languages. Theoretical Com-
puter Science, 148:207–225, 1995.

[BRS91] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. In
Proceedings 23rd Symposium on Theory of Computing, pages 1–9. ACM Press,
1991.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor.,
10:33–49, 1976.

[BSS99] B. Borchert, H. Schmitz, and F. Stephan. Unpublished manuscript, 1999.

[BT96] H. Buhrman and L. Torenvliet. P-selective self-reducible sets: A new character-
ization of P. Journal of Computer and System Sciences, 53:210–217, 1996.

[BV97] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic appli-
cations. In SODA, pages 675–681, 1997.

[BV98] H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language defin-
ability. International Journal of Foundations of Computer Science, 9:277–294,
1998.

[BWSD77] R. V. Book, C. Wrathall, A. L. Selman, and D. P. Dobkin. Inclusion complete
tally languages and the hartmanis-berman conjecture. Mathematical Systems
Theory, 11:1–8, 1977.

145

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of
Computer and System Sciences, 5:1–16, 1971.

[CGH+88] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson,
K. W. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties.
SIAM Journal on Computing, 17:1232–1252, 1988.

[CH90] J. Y. Cai and L. Hemachandra. On the power of parity polynomial time. Math-
ematical Systems Theory, 23(2):95–106, 1990.

[DF03] R. Downey and L. Fortnow. Uniformly hard languages. Theoretical Computer
Science, 298:303–315, 2003.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[EHTY92] D. Eppstein, L. A. Hemachandra, J. Tisdall, and B. Yener. Simultaneous strong
separations of probabilistic and unambiguous complexity classes. Mathematical
Systems Theory, 25:23–36, 1992.

[Eil76] S. Eilenberg. Automata, languages and machines, volume B. Academic Press,
New York, 1976.

[For79] S. Fortune. A note on sparse complete sets. SIAM Journal on Computing,
8(3):431–433, 1979.

[FR02] L. Fortnow and J. Rogers. Separability and one-way functions. Computational
Complexity, 11(3-4):137–157, 2002.

[Fu93] B. Fu. On lower bounds of the closeness between complexity classes. Mathemat-
ical Systems Theory, 26(2):187–202, 1993.

[Gil77] J. Gill. Computational complexity of probabilistic turing machines. SIAM Jour-
nal on Computing, 6:675–695, 1977.

[Gla05] C. Glaßer. Polylog-time reductions decrease dot-depth. In Proceedings 22nd
Symposium on Theoretical Aspects of Computer Science, volume 3404 of Lecture
Notes in Computer Science. Springer Verlag, 2005.

[GOP+05] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibil-
ity, mitoticity, and immunity. In Proceedings 30th International Symposium on
Mathematical Foundations of Computer Science, volume 3618 of Lecture Notes
in Computer Science, pages 387–398. Springer-Verlag, 2005.

[GPSS06] C. Glaßer, A. Pavan, A. L. Selman, and S. Sengupta. Properties of NP-complete
sets. SIAM Journal on Computing, 36(2), 2006.

146

[GPSZ05] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Redundancy in complete sets.
Technical Report 05-068, Electronic Colloquium on Computational Complexity
(ECCC), 2005.

[GPSZ06] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Redundancy in complete sets.
In Proceedings 23nd Symposium on Theoretical Aspects of Computer Science,
volume 3884 of Lecture Notes in Computer Science, pages 444–454. Springer,
2006.

[GPT08] C. Glaßer, A. Pavan, and S. Travers. False positives and NP-hard sets. 2008.
Submitted.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosys-
tems. SIAM Journal on Computing, 17(2):309–335, 1988.

[GSTW07] C. Glaßer, A. L. Selman, S. Travers, and K. W. Wagner. The complexity of
unions of disjoint sets. In Proceedings 24th International Symposium on Theo-
retical Aspects of Computer Science, volume 4393 of Lecture Notes in Computer
Science, pages 248–259. Springer Verlag, 2007.

[GSTZ07] C. Glaßer, A. L. Selman, S. Travers, and L. Zhang. Non-mitotic sets. In
Proceedings 27th Symposium on Foundations of Software Technology and The-
oretical Computer Science, volume 4855 of Lecture Notes in Computer Science,
pages 146–157. Springer Verlag, 2007.

[GT07] C. Glaßer and S. Travers. Machines that can output empty words. Theory of
Computing Systems, 2007. To appear.

[GTW06] C. Glaßer, S. Travers, and K. W. Wagner. Perfect correspondences between
dot-depth and polynomial-time hierarchy. In Proceedings Tenth International
Conference Developments in Language Theory, volume 4036 of Lecture Notes in
Computer Science, pages 408–419. Springer Verlag, 2006.

[GW86] T. Gundermann and G. Wechsung. Nondeterministic Turing machines with mod-
ified acceptance. In Proceedings 12th Symposium on Mathematical Foundations
of Computer Science, volume 233 of Lecture Notes in Computer Science, pages
396–404. Springer Verlag, 1986.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. In Proc. London
Math. Soc., volume 3, pages 326–336, 1952.

[HJRW98] L. A. Hemaspaandra, Z. Jiang, J. Rothe, and O. Watanabe. Boolean oper-
ations, joins, and the extended low hierarchy. Theoretical Computer Science,
205(1-2):317–327, 1998.

147

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner.
On the power of polynomial time bit-reductions. In Proceedings 8th Structure in
Complexity Theory, pages 200–207, 1993.

[HMU07] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation (3rd Edition). Addison-Wesley Series in Com-
puter Science. Addison-Wesley, Reading, MA, 2007.

[Hom90] S. Homer. Structural properties of nondeterministic complete sets. In Structure
in Complexity Theory Conference, pages 3–10, 1990.

[Hom97] S. Homer. Structural properties of complete problems for exponential time. In
A. Selman and L. A. Hemaspaandra, editors, Complexity Theory Retrospective
II, pages 135–153. Springer Verlag, New York, 1997.

[HOW92] L. A. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets?
In Structure in Complexity Theory Conference, pages 222–238, 1992.

[HP06] J. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets. Tech-
nical Report TR06-039, Electronic Colloquium on Computational Complexity,
2006.

[HS92] S. Homer and A. Selman. Oracles for structural properties: The isomorphism
problem and public-key cryptography. Journal of Computer and System Sci-
ences, 44(2):287–301, 1992.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17:935–938, 1988.

[JY85] D. Joseph and P. Young. Some remarks on witness functions for nonpolynomial
and noncomplete sets in NP. Theoretical Computer Science, 39:225–237, 1985.

[KMR95] S. A. Kurtz, S. R. Mahaney, and J. S. Royer. The isomorphism conjecture
fails relative to a random oracle. Journal of the Association for Computing
Machinery, 42:401–420, 1995.

[Kna83] R. Knast. A semigroup characterization of dot-depth one languages. RAIRO
Inform. Theor., 17:321–330, 1983.

[KS97] J. Köbler and U. Schöning. High sets for NP. In Advances in Algorithms,
Languages, and Complexity, pages 139–156, 1997.

[KSW87] J. Köbler, U. Schöning, and K. W. Wagner. The difference and the truth-table
hierarchies for NP. RAIRO Inform. Théor., 21:419–435, 1987.

[Lac67] A. H. Lachlan. The priority method. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 13:1–10, 1967.

148

[Lad73] R. E. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

[LLS75] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103–123, 1975.

[Lon78] T. J. Long. On some Polynomial Time Reducibilities. PhD thesis, Purdue
University, Lafayette, Ind., 1978.

[Lov79] L. Lovaáz. On the shannon capacity of graphs. IEEE Transactions on Informa-
tion Theory, 25:1–7, 1979.

[Myh55] J. Myhill. Creative sets. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik, 1:97–108, 1955.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally
definable acceptance types. Theoretical Computer Science, 194(1-2):137–161,
1998.

[Ogi91] M. Ogiwara. On P-closeness of polynomial-time hard sets. manuscript, 1991.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure prop-
erties. Journal of Computer and System Sciences, 46:295–325, 1993.

[OW91] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table re-
ducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483,
1991.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
MA, 1994.

[Pin98] J. E. Pin. Bridges for concatenation hierarchies. In Proceedings 25th ICALP,
volume 1443 of Lecture Notes in Computer Science, pages 431–442. Springer
Verlag, 1998.

[Pos44] E. L. Post. Recursively enumerable sets of positive integers and their decision
problems. Bulletin of the American Mathematical Society, 50:284–316, 1944.

[PP86] D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer
and System Sciences, 32:393–406, 1986.

[PS02] A. Pavan and A. L. Selman. Separation of NP-completeness notions. SIAM
Journal on Computing, 31(3):906–918, 2002.

[PW97] J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
computing systems, 30:383–422, 1997.

149

[Rog67] H. Rogers Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[Sch83] U. Schöning. A low and a high hierarchy within NP. Journal of Computer and
System Sciences, 27(1):14–28, 1983.

[Sch86] U. Schöning. Complete sets and closeness to complexity classes. Mathematical
Systems Theory, 19(1):29–41, 1986.

[Sch01] H. Schmitz. The Forbidden-Pattern Approach to Concatenation Hierarchies.
PhD thesis, Fakultät für Mathematik und Informatik, Universität Würzburg,
2001.

[Sel79] A. L. Selman. P-selective sets, tally languages, and the behavior of polynomial-
time reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[Sel82] A. Selman. Reductions on NP and p-selective sets. Theoretical Computer Science,
19:287–304, 1982.

[Sel88] A. L. Selman. Natural self-reducible sets. SIAM Journal on Computing,
17(5):989–996, 1988.

[Sho76] J. R. Shoenfield. Degrees of classes of RE sets. Journal of Symbolic Logic,
41(3):695–696, 1976.

[ST07] H. Spakowski and R. Tripathi. On the power of unambiguity in alternating
machines. Theory of Computing Systems, 41(2):291–326, 2007.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1977.

[Str81] H. Straubing. A generalization of the Schützenberger product of finite monoids.
Theoretical Computer Science, 13:137–150, 1981.

[Str85] H. Straubing. Finite semigroups varieties of the form V ∗ D. J. Pure Appl.
Algebra, 36:53–94, 1985.

[Sze87] R. Szelepcsényi. The method of forcing for nondeterministic automata. Bull. of
the EATCS, 33:96–100, 1987.

[Thé81] D. Thérien. Classification of finite monoids: the language approach. Theoretical
Computer Science, 14:195–208, 1981.

[Tho84] W. Thomas. An application of the Ehrenfeucht–Fräıssé game in formal language
theory. Société Mathématique de France, mémoire 16, 2:11–21, 1984.

150

[Tra70] B. Trahtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192, 1970. Trans-
lation in Soviet Math. Dokl. 11: 814– 817, 1970.

[Tur36] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. In Proceedings of the London Mathematical Society, Series 2, 42,
page 230–265, 1936.

[Val76] L. G. Valiant. Relative complexity of checking and evaluation. Information
Processing Letters, 5:20–23, 1976.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polyno-
mial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993.
In Russian.

[Vol99] H. Vollmer. Uniform characterizations of complexity classes. Complexity Theory
Column 23, ACM-SIGACT News, 30(1):17–27, 1999.

[Wag04a] K. W. Wagner. Leaf language classes. In Proceedings International Conference
on Machines, Computations, and Universality, volume 3354 of Lecture Notes in
Computer Science. Springer Verlag, 2004.

[Wag04b] K. W. Wagner. New BCSV theorems. Technical Report 337, Inst. für Infor-
matik, Univ. Würzburg, 2004. Available via ftp from http://www.informatik.uni-
wuerzburg.de/reports/tr.html.

[Wan91] J. Wang. On p-creative sets and p-completely creative sets. Theoretical Computer
Science, 85(1):1–31, 1991.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Computer Science, 3:23–33, 1977.

[WW85] K. W. Wagner and G. Wechsung. On the boolean closure of NP. In Proceedings
International Conference on Fundamentals of Computation Theory, volume 199
of Lecture Notes in Computer Science, pages 485–493. Springer-Verlag, 1985.

[Yao90] A. C.-C. Yao. Coherent functions and program checkers. In Proceedings of the
22nd ACM Symposium on Theory of Computing, pages 84–94. ACM Press, 1990.

[Yes83] Y. Yesha. On certain polynomial-time truth-table reducibilities of complete sets
to sparse sets. SIAM Journal on Computing, 12(3):411–425, 1983.

151

152

153

Index

Σn (words of length n), 19
Σ≤n (words of length up to n), 19
i.o.= (infinitely often relation), 46
i.o.∈ (infinitely often relation), 46
i.o.⊆ (infinitely often relation), 46
≤ (lexicographical order on {0, 1}∗), 20
≤ (order on N), 19
≤ae (order on N, almost everywhere), 19

 (initial word relation), 20
� (subword relation), 20
�k (k-times subword relation), 20
(·|·) (pair of disjoint languages), 120
co· (complexity class operator), 25
∨ (complexity class operator), 25
∧ (complexity class operator), 25
⊕ (complexity class operator), 25
∨· (complexity class operator), 25
∧· (complexity class operator), 25
∃· (complexity class operator), 25
∃!· (complexity class operator), 25
∃u· (complexity class operator), 127
∀· (complexity class operator), 26
∀!· (complexity class operator), 26
∀u· (complexity class operator), 127

advice, 24
algorithmic problem, 9

decision problem, 9
function problem, 9

autoreducible
m-, 30
T-, 30

BCSV-theorem, 101
βM (x) (leaf-string of M on input x), 98

Boolean hierarchy over NP, 25

Clique, 41
coherent set, 90
Colourk, 57
Colouring, 41
complexity class, 22

⊕P, 99
ModkP, 24
1NP, 23
function class FP, 24
BPP, 24
E, 23
EXP, 23
L, 23
NE, 23
NEXP, 23
NL, 23
nontrivial, 22
NP, 23
operators, 24
P, 23
PP, 24
PSPACE, 23
UP, 24

computational complexity theory, 9
creative set, 38

k-, 43

Di (domain of the i-th Turing machine), 31
Dijkstra’s algorithm, 10
dot-depth hierarchy (DDH), 99

connections to PH, 100

Encrypted Complete Set Conjecture, 43

154

first-order logic FO[<], 122
forbidden pattern, 125

for ΣFO
2 , 127

for U (1NP characterisation), 130
function

characteristic, cA, 20
computable, 30
quasicharacteristic, χA, 20

Gödel number, 31
gap theorem, 124

halting problem K0, 31
Highk, 30
high-hierarchy, 30

immune (to a complexity class), 60
incoherent set, 90
Isomorphism Conjecture, 42

language
nontrivial, 19
regular, 21
starfree, 21

leaf-language
class

balanced, 98
unbalanced, 98

definable, 99
leaf string βM , 98

left-set technique, 64

m-idempotent set, 50
marked union, 25
mitotic

r-, 30
weakly r-, 30

n-generic set, 93
N, 19
NP-complete (NPC), 36

Operations Research, 11

p-close, 83

P-NP problem, 11
p-selective set, 30
p-separable set, 29
paddable set, 30
perfect correspondence

via ε-leaf languages, 124
via balanced leaf languages, 106
via unbalanced leaf languages, 106

pol (set of polynomials), 19
polynomial-time hierarchy (PH), 26

equivalent definition, 27
ΔP

k , 27
ΠP

k , 27
ΣP

k , 27
predictor, 93

recursion theory, 30
recursive set, 30
recursively enumerable set, 31
reducibility, 27

≤T (recursive Turing-), 31
≤m (recursive many-one-), 31
≤p

T (Turing-), 27
≤p

btt (btt-), 28
≤p

ctt (ctt-), 28
≤p

dtt (dtt-), 28
≤p

m (many-one-), 27
≤p/poly

m (non-uniformly many-one-), 28
≤p

1−tt (1tt-), 28
≤plt

m (polylog-time-), 101
≤ptt

m (polynomial-time tree-), 108
≤p

snT (snT-), 29
≤p

tt (tt-), 28
≤p

2-dtt (2-dtt-), 28
r-closure Rp

r (·), 29
r-degree Rp

r (·), 29
r-equivalent, 29
recursive r-closure Rr(·), 31
recursive r-degree degr(·), 31

relativisation, 26
relativised leaf-language class, 101

155

SAT, 35
set

census of a, 20
nontrivial, 19
power, 19
sparse, 20
tally, 20

shortest path problem, 10
Straubing-Thérien hierarchy (STH), 122

Traveling Salesman Problem, 11
Turing machine

deterministic, 21
nondeterministic, 21
oracle, 26
transducer, 22

U(A), 48
unambiguous alternation hierarchy, 126

