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Abstract
The characterization and numerical solution of two non-smooth optimal control 
problems governed by a Fokker–Planck (FP) equation are investigated in the frame-
work of the Pontryagin maximum principle (PMP). The two FP control problems 
are related to the problem of determining open- and closed-loop controls for a sto-
chastic process whose probability density function is modelled by the FP equation. 
In both cases, existence and PMP characterisation of optimal controls are proved, 
and PMP-based numerical optimization schemes are implemented that solve the 
PMP optimality conditions to determine the controls sought. Results of experiments 
are presented that successfully validate the proposed computational framework and 
allow to compare the two control strategies.

Keywords  Fokker–Planck equation · Pontryagin maximum principle · Non-smooth 
optimal control problems · Stochastic processes

Mathematics Subject Classification  35Q84 · 49J20 · 93E20 · 49M05

1  Introduction

In the framework of stochastic optimal control theory [9, 23, 24], given a stochastic 
process X(t) subject to a control function u, a control problem is defined by introduc-
ing a general objective functional to be minimized that has the following structure

 *	 Alfio Borzì 
	 alfio.borzi@mathematik.uni‑wuerzburg.de

	 Tim Breitenbach 
	 tim.breitenbach@mathematik.uni‑wuerzburg.de

1	 Institut für Mathematik, Universität Würzburg, Emil‑Fischer‑Strasse 30, 97074 Würzburg, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00187-x&domain=pdf


500	 T. Breitenbach, A. Borzì 

1 3

where �[⋅] represents the expectation with respect to the probability measure 
induced by the process X(t) (nevertheless, for clarity we explicitly write X in the 
integral). On the other hand, a fundamental tool for analysing stochastic processes 
is the fact that the evolution of the probability density function (PDF) associated to 
X(t) is governed by the so-called Fokker–Planck (FP) equation (or forward Kolmog-
orov equation), which is a time-dependent partial differential equation (PDE) with 
an initial PDF configuration; see, e.g., [6] and references therein. Thus, assuming 
that the stochastic process X(t) owns an absolutely continuous probability measure, 
one can explicitate the expectation in (1) in terms of the PDF governed by the FP 
problem.

Now, to illustrate these facts and the purpose of this work, and formulate the 
class of problems that we investigate in this paper, we introduce the following 
n-dimensional controlled Itō stochastic process

where the state variable X(t) ∈ Ω ⊆ ℝ
n is subject to deterministic infinitesimal 

increments driven by the vector valued drift function b, and to random increments 
proportional to a multi-dimensional Wiener process dW(t) ∈ ℝ

m , with stochastically 
independent components, and � is the dispersion matrix coefficient. In this stochas-
tic differential equation (SDE) modelling the stochastic process, we assume that the 
state configuration of the stochastic process at t0 is given by X0 , and we suppose 
that the control function u ∈ U , where U represents the set of Markovian controls 
containing all jointly measurable functions u with u(x, t) ∈ KU ⊂ ℝ

n , and KU is a 
compact set, which for simplicity is chosen as a subset of ℝn.

In application, the model (2) is of central importance in statistical physics, e.g., 
in the study of Brownian processes, and in the study of biological systems [5]. 
Recently, it has attracted attention in the framework of modelling pedestrians’ 
motion; see, e.g., [33–35] and references therein. Notice that in all these cases, a 
constant dispersion coefficient is usually considered.

At this point, we remark that there is a difference in our understanding of the 
control function depending on whether or not its functional dependence on the 
state of the process X(t) is given a-priori or is sought in order to solve the given 
control problem. In the former case, we have an open-loop control, and in the lat-
ter case we have a closed-loop control function, in the sense that a sudden change 
of the state of the process X(t) provides instantaneously (feedback) the optimal 
control for the new state configuration. For a discussion on the significance of 
these two settings, we refer to [15, 16] and the discussion that follows.

Corresponding to (2) and a closed-loop control setting, we consider the follow-
ing functional

(1)J(X, u) = �

[
∫

T

t0

G(X(t), t, u(X(t), t)) dt + F(X(T))

]
,

(2)
{

dX(t) = b(X(t), u(X(t), t))dt + �(X(t)) dW(t), t ∈ (t0, T]

X(t0) = X0,
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which is a conditional expectation to the process X(t) taking the value x0 at time t0 . 
We refer to the functions G and F as the running cost and the terminal cost func-
tions, respectively; see the above references for more details.

The optimal control ū that minimizes Ct0,x0
(u) for the process (2) is given by

Correspondingly, one defines the following value function

A fundamental result in stochastic optimal control theory is that the function q (sub-
ject to appropriate conditions) is the solution to the so-called Hamilton–Jacobi–Bell-
man (HJB) equation given by

with the HJB Hamiltonian function

where aij represents the ijth element of the matrix a = 𝜎 𝜎⊤∕2 . Notice that in our 
case, since the diffusion coefficient a does not depend on the control, the second-
order differential term can be put outside the parenthesis in (7).

The HJB framework represents the essential tool to compute closed-loop con-
trols. This framework poses the challenging task to analyse existence and unique-
ness of solutions to the nonlinear HJB equation; see [20] for a fundamental work in 
this field. However, this task is facilitated in the case of uniform parabolicity that, in 
the simplest case, is guaranteed assuming that a is the identity matrix in ℝn multi-
plied by a positive number 𝜎 > 0 . This setting is considered later on to simplify our 
analysis.

We are now ready to introduce the FP equation for (2) and then formulate our 
optimal control problems while outlining the connection to the HJB framework 
mentioned above. We have

(3)Ct0,x0
(u) = �

[
∫

T

t0

G(X(s), s, u(X(s), s))ds + F(X(T)) | X(t0) = x0

]
,

(4)ū = argminu∈UCt0,x0
(u).

(5)q(x, t) ∶= min
u∈U

Ct,x(u) = Ct,x(ū).

(6)
{

�tq +H(x, t,Dq,D2q) = 0,

q(x, T) = F(x),

(7)

H(x, t,Dq,D2q) ∶= min
v∈KU

[
G(x, t, v) +

n∑
i=1

bi(x, v) �xiq(x, t)

+

n∑
i,j=1

aij(x) �
2
xixj

q(x, t)
]
,

(8)�tf (x, t) +

n∑
i=1

�xi (bi(x, u) f (x, t)) −

n∑
i,j=1

�2
xixj

(aij(x) f (x, t)) = 0
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where f denotes the PDF of the stochastic process, f0 represents the initial PDF dis-
tribution of the initial state of the process X0 , and hence we require f0(x) ≥ 0 with 
∫
Ω
f0(x) dx = 1.
In the following, both the stochastic process (2) and the FP equation (8) are con-

sidered in the time interval [0, T], i.e. t0 = 0 . We consider the stochastic process in 
the convex domain Ω ⊂ ℝ

n , with measure |Ω| , in the sense that X(t) ∈ Ω and, conse-
quently, Ω is the domain where f is defined. We assume that the boundary �Ω is Lip-
schitz, and denote with Q ∶= Ω × (0, T) the space-time cylinder.

One can see that the coefficients of the FP equation are directly determined by the 
coefficients of the SDE. Moreover, the choice of the barriers that limit the value of X(t) 
in Ω translate to boundary conditions for the PDF. Specifically, in the case of absorbing 
barriers, we have homogeneous Dirichlet boundary conditions for f on �Ω , t ∈ [0, T] . 
On the other hand, reflecting barriers correspond to flux-zero boundary conditions. In 
fact, notice that (8) can be written in the form �tf = ∇ ⋅ F(f ) , where the ith component 
of the flux F  is given by Fi(f ) =

∑n

j=1
�xj (aij(x) f (x, t)) − bi(x, u) f (x, t) ; thus, reflecting 

barriers require F(f ) ⋅ � = 0 , where � represents the outward normal to �Ω . For reasons 
that are explained below, later on we focus on Dirichlet boundary conditions, and, in 
correspondence to this choice, we discuss existence and regularity of solutions to 
(8)–(9), and the properties of the control-to-state map u ↦ f = f (u).

However, for both choices of boundary conditions, we can make the following dis-
cussion that aims at clarifying our framework. Let us assume that f0(x) = �(x − x0) 
(the Dirac’s delta) at t = t0 fixed, and notice that the expectation in (3) can be explicitly 
written in terms of the PDF solving the FP problem with the given initial density distri-
bution. Thus, the functional (3) becomes

Therefore the optimization problem (4) can be equivalently stated as a FP optimal 
control problem where a function u in the space U is sought that minimizes (10).

Now, in the Lagrange framework [38] and assuming Fréchet differentiability of all 
components of the FP optimal control problem, we can derive the following first-order 
necessary optimality conditions that characterize a solution to the FP optimal control 
problem. We have

(9)f (x, t0) = f0(x)

(10)J(f (u), u) ∶= ∫
T

t0
∫Ω

G(x, s, u(x, s)) f (x, s) ds dx + ∫Ω

F(x)f (x, T) dx.

(11)

�tf (x, t) +

n∑
i=1

�xi (bi(x, u(x, t)) f (x, t))

−

n∑
ij=1

�xixj (aij(x)f (x, t)) = 0,

f (x, t0) = f0(x),
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and

for all v ∈ U . This optimality system is completed with the specification of the 
boundary conditions. We have homogeneous Dirichlet boundary conditions for p if 
such are the boundary conditions for f. In the case of zero-flux boundary conditions 
for f, then variational calculus gives homogeneous Neumann boundary conditions 
for the adjoint variable.

We remark that, if a uniformly parabolicity condition for the FP equation 
holds, then the solution of the FP problem, with f0(x) ≥ 0 (strictly in some open 
set, and also in the case f0(x) = �(x − x0) ) and with the given boundary- and ini-
tial conditions, remains positive in the sense that f (x, t) > 0 for t > t0 and almost 
everywhere in Ω . Based on this fact, we see that (13) represents the first-order 
optimality condition for the minimization problem for the control function in (7). 
This remark is the starting point to establish a formal connection between the 
HJB equation and the adjoint equation (12) at optimality [6, 7]. This connection 
has already been used within a Lagrangian framework to construct closed-loop 
controls for different application problems [33, 37].

However, comparison of (7) with (13), shows that differentiability with respect 
to u is not required in the HJB problem, and the appropriate theoretical optimiza-
tion framework to establish the HJB–FP optimal control connection appears to 
be provided by the Pontryagin’s maximum principle (PMP). This also implies 
that a consistent numerical optimization procedure to solve FP optimal control 
problems (and thus HJB problems) should be formulated in terms of the PMP 
framework.

In this paper, we would like to contribute to the investigation of both issues by 
pursuing a theoretical analysis of two specific FP optimal control problems in the 
PMP framework, and by developing a numerical PMP-based methodology. For both 
aims, we rely on our previous work in [13, 14] and on the fundamental references 
[27, 30], while our numerical PMP-based approach already proposed in [13, 14] rep-
resents a further development of previous methods developed in the field of optimal 
control of ordinary differential equation models [25, 36].

Now, to explain the challenge of our work, we anticipate that the necessary opti-
mality conditions provided by the PMP consist of the FP equation (11), the adjoint 
equation (12), and the condition

(12)

�tp(x, t) +

n∑
i=1

bi(x, u(x, t)) �xip(x, t)

+

n∑
ij=1

aij(x)�xixjp(x, t) + G(x, u(x, t)) = 0,

p(x, T) = F(x),

(13)�
T

t0
�Ω

(
f (x, t)

(
n∑
i=1

�ubi(x, u(x, t)) �xip(x, t) + �uG(x, u(x, t))

))

⋅ (v(x, t) − u(x, t))dt dx ≥ 0,
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for almost all (x, t) ∈ Q , where the PMP Hamiltonian function is given by

In (14), the pair 
(
f̄ , ū

)
 denotes the solution of the FP optimal control problem, and 

p̄ is the corresponding adjoint variable. We say that (11), (12), and (14) provide the 
PMP characterization of the solution to our FP optimal control problem. (We formu-
late (14) in terms of a minimum for convenience; however, an equivalent formula-
tion in terms of maximization of H could be chosen.)

Notice that the terminal conditions of our FP adjoint problem and of the HJB 
problem above are identical, and whenever f (x, t) > 0 the minimizer ū(x, t) of H at 
(x, t), coincides with that of (7), and correspondingly we have

Therefore at optimality, the adjoint equation can be written as 
�tp +H(x, t,Dp,D2p) = 0 , which allows to identify p with the value function q. 
Notice that by the very notion of absorbing boundary for the stochastic process, we 
have that in this case the value function, which now can be identified with p, must be 
zero at the boundary of the domain Ω.

However, although the HJB–FP connection is clear at a formal level, we have 
to guarantee that all components of the PMP optimality system are well defined. 
Specifically, on the one hand we have to discuss existence and regularity of solu-
tions to (11) and (12); on the other hand, we need to guarantee the well posedness 
of (14) and to provide a methodology to implement it. These requirements are the 
main challenges that we face in this work.

We remark that, in order to achieve the above mentioned goals, some L∞ esti-
mates on the FP solution f and on the adjoint variable p are required. The latter is 
needed in the proof of the PMP characterization of an optimal control; see also 
[30], whereas an additional L∞ estimate for f is required when we analyse well-
posedness of our PMP-based optimization method.

Notice that these estimates are usually not considered in existing works focus-
ing on a Lagrange framework for FP optimal control problems; see [6] for a list of 
these references. Indeed, these estimates are available in the case of PDEs with a 
linear control mechanism [13, 14], but not in the FP case where the control (drift) 
multiplies f and is subject to differentiation. In fact, proving these estimates is a 
delicate issue that we address in the following sections, and for this purpose we 
make some assumptions that allow us to focus on the most relevant problems. In 
particular, we assume that the diffusion coefficient a = 𝜎 𝜎⊤∕2 is the identity in 
ℝ

n multiplied by a scalar 𝜎 > 0 (we use the same symbol), and we choose homo-
geneous Dirichlet boundary conditions for the PDF. The case of flux-zero bound-
ary conditions requires a different analysis especially concerning the already 

(14)H
(
x, t, f̄ (x, t), ū(x, t),∇p̄(x, t)

)
= min

v∈KU

H
(
x, t, f̄ (x, t), v,∇p̄(x, t)

)
,

H(x, t, f , v, �) ∶= (G(x, t, v) + b(x, v) ⋅ �) f .

H(x, t,Dp,D2p) = G(x, t, ū) +

n∑
i=1

bi(x, ū) 𝜕xip(x, t) +

n∑
i,j=1

aij(x) 𝜕
2
xixj

p(x, t).
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mentioned L∞ estimates and, in order to keep this paper at a reasonable size, it is 
not discussed in this paper.

We focus, on a specific open-loop control structure and, on the other hand, on a 
closed-loop setting, having in mind that in application an open-loop control is usu-
ally much easier to implement than a closed-loop one, while the latter provides, 
in principle, the optimal control ‘per antonomasia’. Our choice of a specific open-
loop control structure is motivated by the discussion in [15, 16] in the framework 
of ensemble controls, where it is pointed out that a composite linear–bilinear open-
loop control mechanism in the SDE may provide a reasonable approximation of a 
closed-loop control; we investigate this fact with numerical experiments. We also 
refer to [15, 16] and the recent work [8] concerning the choice of the functions G 
and F in the cost functional. These functions will be specified and discussed below.

The other challenge that we face in our work is the numerical solution of our FP 
optimal control problems within the PMP framework. This is a main focus of our 
research, and in previous works we have proposed the so-called sequential quad-
ratic Hamiltonian (SQH) scheme to solve nonsmooth elliptic and parabolic optimal 
control problems with linear and bilinear control mechanisms [13, 14]. However, 
the bilinear control structure of the FP equation poses additional difficulties that we 
address in this work. Furthermore, the convergence analysis of the SQH scheme in 
[13, 14] needs to be extended to accommodate the FP structure, and this requires 
additional estimates that we present below.

As already mentioned, our theoretical and numerical investigation focuses on the 
following two stochastic processes. In the first case, we take b(x, u) = (v + w◦x) , 
where the control u = b is also identified with the pair (v, w), v,w ∶ [0, T] → ℝ

n ; 
it represents our open-loop control function. This is a linear–affine control-drift for 
the SDE where x appears linearly and is modulated by w. In this case, our controlled 
stochastic process is modelled as follows

where ◦ denotes the Hadamard product.
Our second SDE model is given by

where the control function u ∶ Ω × [0, T] → ℝ
n is intended to define a closed-loop 

control mechanism for the stochastic process. (In this case, the dependence of the 
control function on x has to be determined.)

Corresponding to these two cases, we consider FP optimal control problems that 
require to minimize (10) subject to the differential constraint given by (8)–(9), and 
t0 = 0 is fixed.

In the next section, we investigate the FP equation and its adjoint concerning the 
required L∞ estimates, considering both control strategies given above. In Sect.  3, 
we present the PMP characterization of our FP control problems. In Sect. 4, we illus-
trate the numerical approximation and PMP-based optimization procedure for solving 
the proposed optimal control problems. For this purpose, we illustrate the numerical 
approximation of the FP PMP optimality system, using the Chang–Cooper scheme [34] 

(15)dX(t) = (v(t) + w(t)◦X(t)) dt + � dW(t),

(16)dX(t) = u(X(t), t) dt + � dW(t),
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combined with implicit first- and second-order Euler schemes. These schemes provide 
accurate and positivity preserving approximations that are essential in the FP computa-
tion. Further, in this section we present the SQH method and discuss its convergence 
properties. Also in this section, we discuss a modification of the SQH procedure that 
implements the PMP optimality in the case of feedback controls that resembles the 
HJB approach. In Sect. 5, we present results of numerical experiments that demonstrate 
the ability of the FP framework to determine the two different control strategies for 
stochastic processes. In particular, we present results of Monte Carlo simulations that 
show the ability of the control mechanisms to drive the ensemble of stochastic paths 
along a desired trajectory. A conclusion completes this work.

2 � Analysis of the FP equation and of its adjoint

We start this section, providing the weak formulation of our FP problem (8)–(9) with 
homogeneous Dirichlet boundary conditions. We have

for all � ∈ H1
0
(Ω) and for almost all t ∈ (0, T) where the dot ⋅ denotes the Euclidean 

scalar product in ℝn , ∇ denotes the gradient in ℝn , the divergence of a vector-valued 
function y =

(
y1,… , yn

)T is given by ∇ ⋅ y , and the partial derivative with respect to 
t is denoted with f � ∶= �

�t
f .

We remark that for any function y ∈ (Lq(0, T))n , we have 
‖y‖q

Lq(0,T)
∶=

∑n

i=1
‖yi‖q

Lq(0,T)
 , and analogously for any function y ∈ (L∞(0, T))n , we 

have ‖y‖L∞(0,T) ∶= maxi=1,…,n ‖yi‖L∞(0,T) . We assume that Ω ⊂ ℝ
n is bounded and con-

vex, and q >
n

2
+ 1 for n ≥ 2 and q ≥ 2 for n = 1 . Further, (⋅, ⋅) denotes the L2(Ω)-scalar 

product.
We first consider the case of a drift function b(x, t) = (v(t) + w(t)◦x) , thereafter we 

focus on the case b(x, t) = u(x, t) . We anticipate that, in our FP control problems, these 
functions are sought in the following sets of admissible controls. For the former case, 
we have

where

and

where i ∈ {1,… , n} , and Ki
V
 , Ki

W
 are compact subsets of ℝ . Hence, we have that

(17)∫Ω

(
f �(x, t)�(x) +

�2

2
∇f (x, t) ⋅ ∇�(x) + ∇ ⋅ (b(x, t) f (x, t))�(x)

)
dx = 0,

f (⋅, 0) = f0,

Vad ∶= V1
ad
×⋯ × Vn

ad
and Wad ∶= W1

ad
×⋯ ×Wn

ad
,

Vi
ad

∶=
{
v ∈ Lq(0, T)| v(t) ∈ Ki

V
a.e. in (0, T)

}
,

Wi
ad

∶=
{
w ∈ Lq(0, T)| w(t) ∈ Ki

W
a.e. in (0, T)

}
,
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For the latter case, we choose the following admissible set of controls

where KU represents a compact subset. However, to ease our discussion and simplify 
notation, we consider the case KU ∶=

[
umin, umax

]n , with umin, umax ∈ ℝ , umin < umax.

2.1 � The ‘open‑loop’ case

We consider the case of the drift b(x, u) = (v + w◦x) . Since this drift is differenti-
able with respect to x, we have

The next theorem states a specific boundedness result that is required in our PMP 
framework.

Theorem 1  Consider the following parabolic problem

for all � ∈ H1
0
(Ω) and almost all t ∈ (0, T) ; let a, T > 0 , b ∈ (L∞(Q))n , 

c ∈ L∞(Q) , y0 ∈ L∞(Ω) and h ∈ Lq(Q) . Then there exists a unique solution 
y ∈ L2

(
0, T;H1

0
(Ω)

)
∩ L∞

(
0, T;L2(Ω)

)
 to (19), and it satisfies the following

where C ∶= C
�
Ω, a, T , ‖b‖L∞(Q), ‖c‖L∞(Q)

�
> 0.

Proof  The existence and uniqueness of the solution 
y ∈ L2

(
0, T;H1

0
(Ω)

)
∩ L∞

(
0, T;L2(Ω)

)
 is proved in [21]. Our concern is to prove 

(20), for which purpose we use results in [14, Theorem A.1].
Now, we define the bilinear map

KV ∶= K1
V
×⋯ × Kn

V
and KW ∶= K1

W
×⋯ × Kn

W
.

Uad ∶=
{
u ∈ (Lq(Q))n| u(x, t) ∈ KU a.e. on Q

}
,

(18)

∇ ⋅ ((v(t) + x◦w(t))f (x, t)) =

n∑
i=1

�

�xi

((
vi(t) + xiw

i(t)
)
f (x, t)

)

=

n∑
i=1

(
vi(t) + xiw

i(t)
) �

�xi
f (x, t) + wi(t)f (x, t)

= (v(t) + x◦w(t)) ⋅ ∇f (x, t) +

n∑
i=1

wi(t)f (x, t).

(19)

(
y�,�

)
+ a(∇y,∇�) + (b ⋅ ∇y,�) + (cy,�) = (h,�) in Ω × (0, T)

y = 0 on �Ω × [0, T]

y = y0 on Ω × {0}

,

(20)‖y‖L∞(Q) ≤ C
�‖h‖Lq(Q) + ‖y0‖L∞(Ω)

�
,
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In order to apply [14, Theorem A.1], we construct an auxiliary problem where the 
corresponding bilinear map fulfils the coercivity condition. For this purpose, we set 
ŷ(x, t) ∶= e−𝜂ty(x, t) for any � ≥ 0 where y solves (19). Then, we multiply both sides 
of the equation in (19) with e−�t and obtain

with this result, and by inserting the definition of ŷ , we obtain the following

where ĥ(x, t) ∶= h(x, t)e−𝜂t ∈ Lq(Q) , because of the boundedness of t ↦ e−�t over 
[0, T] . Now, from (21), we have that

which is uniquely solvable with ŷ = 0 on 𝜕Ω × [0, T] and ŷ = e−𝜂0y0 = y0 on Ω × {0} 
where

see [21, Section  7.1 Theorem  3] with ŷ ∈ L2
(
0, T;H1

0
(Ω)

)
∩ L∞

(
0, T;L2(Ω)

)
 since 

t ↦ e−�t is bounded over [0, T] . Then we have the following result

From (23), we obtain

B(y,�;t) ∶= ∫Ω

a∇y(x, t) ⋅ ∇�(x) + b(x, t) ⋅ ∇y(x, t)�(x)

+ c(x, t)y(x, t)�(x)dx.

∫Ω

e−�ty�(x, t)�(x)dx + e−�tB(y(⋅, t),�) = ∫Ω

e−�th(x, t)�(x)dx,

(21)
∫Ω

ŷ�(x, t)𝜑(x)dx + B(ŷ(⋅, t),𝜑;t) + ∫Ω

𝜂ŷ(x, t)𝜑(x)dx

= ∫Ω

ĥ(x, t)𝜑(x)dx,

(22)∫Ω

ŷ�(x, t)𝜑(x)dx + B̂(ŷ(⋅, t),𝜑) = ∫Ω

ĥ(x, t)𝜑(x)dx,

B̂(ŷ,𝜑;t) ∶= B(ŷ(⋅, t),𝜑;t) + ∫Ω

𝜂ŷ(x, t)𝜑(x)dx,

(23)

a‖ŷ(⋅, t)‖2
H1

0
(Ω)

= a∫Ω

∇ŷ(x, t) ⋅ ∇ŷ(x, t)dx

= B̂(ŷ, ŷ;t) − ∫Ω

b(x, t) ⋅ ∇ŷ(x, t)ŷ(x, t) + (c(x, t) + 𝜂)ŷ2(x, t)dx.
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with

where we use the Cauchy inequality, see [21, page 622], for 𝜖 > 0.
We assume that ‖b‖L∞(Q) ≠ 0 and choose � ∶= a

2‖b‖L∞(Q)

 . From (24), we have that

which gives

for � ≥ ‖b‖2
L∞(Q)

+2a‖c‖L∞(Q)

2a
 . If ‖b‖L∞(Q) = 0 , then from (24) we obtain that (25) holds 

for � ≥ ‖c‖L∞(Q) . Consequently, we choose

Since it holds that B̂(−k,𝜑;t) ≤ 0 for k ≥ 0 if � ≥ 0 for any t ∈ [0, T] , we can apply 
[14, Theorem A.1] to the following

and obtain

(24)

a‖ŷ(⋅, t)‖2
H1

0
(Ω)

+ �Ω

𝜂ŷ2(x, t)dx

= B̂(ŷ, ŷ;t) − �Ω

b(x, t) ⋅ ∇ŷ(x, t)ŷ(x, t) + c(x, t)ŷ2(x, t)dx

≤ B̂(ŷ, ŷ;t) + ‖b‖L∞(Q)

�
𝜖 �Ω

∇ŷ(x, t) ⋅ ∇ŷ(x, t)dx +
1

4𝜖 �Ω

ŷ2(x, t)dx

�

+ ‖c‖L∞(Q) �Ω

ŷ2(x, t)dx,

�����Ω

b(x, t) ⋅ ∇ŷ(x, t)ŷ(x, t)dx
���� ≤ ‖b‖L∞(Q)

n�
i=1

�Ω

����
𝜕

𝜕xi
ŷi(x, t)

�����ŷ(x, t)�dx

≤ ‖b‖L∞(Q)

n�
i=1

�
�Ω

𝜖
����
𝜕

𝜕xi
ŷi(x, t)

����
2

+
1

4𝜖
�ŷ(x, t)�2

�
dx

= ‖b‖L∞(Q) �Ω

𝜖∇ŷ(x, t) ⋅ ∇ŷ(x, t) +
n

4𝜖
�ŷ(x, t)�2dx,

a

2
‖ŷ(⋅, t)‖2

H1
0
(Ω)

+ �Ω

𝜂ŷ2(x, t)dx ≤ B̂(ŷ, ŷ;t)

+
‖b‖2

L∞(Q)
+ 2a‖c‖L∞(Q)

2a �Ω

ŷ2(x, t)dx,

(25)a‖ŷ(⋅, t)‖2
H1

0
(Ω)

≤ B̂(ŷ, ŷ;t),

� ≥ ‖b‖2
L∞(Q)

+ 2a‖c‖L∞(Q)

2a
.

(
ŷ�,𝜑

)
+ B̂(ŷ,𝜑;t) =

(
ĥ,𝜑

)
in Ω × (0, T)

ŷ = 0 on 𝜕Ω × [0, T]

ŷ = y0 on Ω × {0}

,
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for a constant Ĉ > 0 . Thus, from (26) we have

where C ∶= max
(
Ĉe𝜂T , e𝜂T

)
 . 	�  ◻

In the framework of Theorem  1, and with v ∈ Vad and w ∈ Wad , the FP 
equation (17) with f0 ∈ L2(Ω) is uniquely solvable for f ∈ L2

(
0, T;H1

0
(Ω)

)
 

with f � ∈ L2
(
0, T;H−1(Ω)

)
 , see [1, Theorem  2.14], [21, Section  7.1, Theo-

rem  3 and Theorem  4]. However, to obtain the desired regularity, we require 
f0 ∈ L∞(Ω) ∩ H1

0
(Ω) such that we have f ∈ L2

(
0, T;H2(Ω)

)
∩ L∞

(
0, T;H1

0
(Ω)

)
 , see 

[21, Section 7.1 Theorem 5] where the corresponding part of the proof also holds 
for our case to prove the desired regularity. From these results and Theorem 1, we 
prove the following theorem; compare with [10].

Theorem 2  Let f0 ∈ L∞(Ω) ∩ H1
0
(Ω) . Then the solution to the FP problem (17) sat-

isfies the following

where C ∶= C
�
Ω, 𝜎, T , ‖v + x◦w‖L∞(Q), ‖∑n

i=1
wi‖L∞(Q)

�
> 0.

Proof  From the assumption f0 ∈ L∞(Ω) ∩ H1
0
(Ω) and the discussion before Theo-

rem  2, we have that f ∈ L2
(
0, T;H2(Ω)

)
∩ L∞

(
0, T;H1

0
(Ω)

)
 . In view of (18), our 

FP equation takes the form of (19) when we choose b(x, t) = v(t) + x◦w(t) and 
c =

∑n

i=1
wi(t) . Then we apply Theorem 1 and obtain the desired result. 	� ◻

Next, we discuss the adjoint FP problem given by

for all � ∈ H1
0
(Ω).

We assume that, for any v ∈ Vad and w ∈ Wad , it holds G(⋅, ⋅, v,w) ∈ L∞(Q) , 
further we assume F ∈ L∞(Ω) ∩ H1

0
(Ω) , and consider the time transformation 

t = T − t̃ . Thus, we have the existence of a unique solution to (28) analogously 
to (17). Furthermore, by the proof of [21, Section 7.1 Theorem 5], we have that 
p ∈ L2

(
0, T;H2(Ω)

)
∩ L∞

(
0, T;H1

0
(Ω)

)
 and p� ∈ L2

(
0, T;L2(Ω)

)
 . Therefore, we 

have the following theorem.

(26)‖ŷ‖L∞(Q) ≤ Ĉ‖ĥ‖L∞(Q) + ‖y0‖L∞(Ω),

‖y‖L∞(Q) = ‖e𝜂⋅ŷ‖L∞(Q) ≤ e𝜂T‖ŷ‖L∞ ≤ e𝜂TĈ‖ĥ‖L2(Q) + e𝜂T‖y0‖L∞(Ω)

≤ Ĉe𝜂T‖h‖L2(Q) + e𝜂T‖y0‖L∞(Ω),

(27)‖f‖L∞(Q) ≤ C ‖f0‖L∞(Ω),

(28)

∫Ω

(
−p�(x, t)�(x) +

�2

2
∇p(x, t) ⋅ ∇�(x) − (v(t) + x◦w(t)) ⋅ ∇p(x, t)�(x)

)
dx

= ∫Ω

(G(x, t, v,w)(x, t)�(x))dx,

p(⋅, T) = F(⋅),
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Theorem 3  For the solution to (28), it holds

for C ∶= C
�
Ω, 𝜎, T , maxi=1,…,n ‖vi + xiw

i‖L∞(Q)

�
> 0.

Proof  As F ∈ L∞(Ω) ∩ H1
0
(Ω) , and due to the pointwise boundedness of v, w and (

vi(t) + xiw
i(t)

)
∈ L∞(Q) for all i ∈ {1,… , n} , we can apply Theorem 1 to obtain the 

desired result. 	�  ◻

Additionally, we have that p ∈ Lq
(
0, T;W

1,q

0

)
 , see [11] and [32, Proposition 

8.35]. Notice that in the adjoint FP problem (28) the solution of the forward FP 
problem does not appear. This is due to the linearity of our cost functional with 
respect to the PDF.

2.2 � The ‘closed‑loop’ case

In the case where u ∈ (Lq(Q))n , the well posedness of the FP problem with homo-
geneous Dirichlet boundary condition is discussed in [5, 22], and also in this case, a 
L∞ bound for the PDF, analogous to Theorem 2, can be shown based on [10, Theo-
rem 3.1]. As discussed in detail below, the adjoint FP problem for this case is given 
by

for all � ∈ H1
0
(Ω) . Further, since u ∈ Uad ⊂ L∞(Q) , we can apply Theorem  1 to 

obtain a L∞ bound for the solution of the adjoint problem that is analogous to that of 
Theorem 3. For brevity, and to keep this paper at a reasonable size, we avoid to put 
these statements in the form of theorems. Notice that, also in this case, in the adjoint 
FP problem the PDF does not appear.

3 � Analysis of FP optimal control problems

In this section, we discuss our optimal control problems governed by the FP model 
(8)–(9) with homogeneous Dirichlet boundary conditions and with the cost func-
tional defined in (10). Also in this section, we first discuss the open-loop case where 
b(x, t) = v(t) + x◦w(t) and identify u with the pair (v, w). Thereafter, we focus on the 
closed-loop case.

‖p‖L∞(Q) ≤ C
�‖G(⋅, ⋅, v,w)‖Lq(Q) + ‖F‖L∞(Ω)

�
,

(29)
∫Ω

(
−p�(x, t)�(x) +

�2

2
∇p(x, t) ⋅ ∇�(x) − u(x, t) ⋅ ∇p(x, t)�(x)

)
dx

= ∫Ω

(G(x, t, u)(x, t)�(x))dx,

p(⋅, T) = F(⋅),
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In the first case, we consider the following optimal control problem

Suppose that the purpose of the control is that all realizations of the stochastic 
process (2) track a desired xd ∈ L2(0, T;ℝn) , and attain a given final configuration 
xT ∈ ℝ

n at final time (possibly with xd(T) ≠ xT ), while the cost of the control is kept 
at a minimum. (The ability to track and attain given values as well as the cost are 
meant in terms of statistical mean.)

Then, we can think of G having a composite structure

where A plays the role of an attracting potential (i.e. a well centred at a desired 
minimum point, such that the negative of the gradient of the potential is 
directed towards this minimum). For example as in [15, 16], one could choose 
A
(
x, t

)
=
(
x − xd(t)

)2 , and similarly F
(
x
)
=
(
x − xT

)2 . Moreover, as in [8], we may 
choose A

(
x, t

)
= − exp

(
−
(
x − xd(t)

)2
∕c
)
 . In both cases, the minimum of the track-

ing part of the functional corresponds to have the PDF concentrated on the desired 
path. In general, we assume A ∈ Lq

(
0, T;W1,q(Ω)

)
∩ L∞(Q) bounded from below.

On the other hand, we consider costs of the controls in the form

where the gi
s
 are non-negative functions, and in (31) we have s1, s2 ≥ 0 and �, � ≥ 0 . 

The lower boundedness of the cost functional is ensured by the boundedness of 
A, gs1 , gs2 and the fact that f ≥ 0 . Clearly, the choice gi

s
(z) = (zi)2 corresponds in 

the functional to a mean L2 cost. On the other hand, the choice gi
s
(z) = |zi| corre-

sponds to a mean L1 cost. In general, we assume that the gi
s
 are convex and Lipschitz 

continuous.
With this setting, existence of a solution to (30) can be proved as in [22, 5 

Existence of optimal controls] with the following additional arguments. The func-
tion G is bounded by a constant, and the control-to-state map is sequentially con-
tinuous as a map from the admissible set of controls to L2(Q) , see [22, Remark 
5.1]. This means that any weakly converging sequence results in a strongly con-
verging subsequence of the state, which ensures that we can proceed similarly as 
in the proof of [22, Corollary 5.1] in our case.

(30)

min
f ,v,w

J(f , v,w) ∶= ∫
T

0 ∫Ω

G(x, t, v,w)(x, t)f (x, t)dxdt + ∫Ω

F(x)f (x, T)dx

s.t. ∫Ω

(
f �(x, t)�(x) +

�2

2
∇f (x, t) ⋅ ∇�(x)

+∇((v(t) + x◦w(t)) f (x, t))�(x))dx = 0

a.e. in (0, T) for all � ∈ H1
0
(Ω)

f (⋅, 0) = f0

v ∈ Vad, w ∈ Wad.

(31)G(x, t, v,w)(x, t) ∶= A(x, t) + � gs1(v(t)) + � gs2(w(t)),

gs ∶ ℝ
n
→ ℝ, z ↦ gs(z) ∶=

n∑
i=1

gi
s

(
zi
)
, s ≥ 0,



513

1 3

The Pontryagin maximum principle for solving Fokker–Planck…

Our purpose is to discuss in detail the characterization of solutions to (30) in 
the PMP framework. For this reason, we present some preparatory results that are 
required for proving Theorem 5 below.

Central to the formulation of the PMP is the so-called Hamiltonian function 
H ∶ ℝ

n ×ℝ ×ℝ × KV × KW ×ℝ
n
→ ℝ given by

Notice that, when f, v, w, � are functions, we shorten notation and write

Later the place holder � will be filled with the spatial derivative of the solution to the 
adjoint FP problem.

The next step in order to characterise a solution to (30) in the PMP framework 
is the following lemma that provides a direct relationship between the values of 
the cost functional at different triples (f, v, w) and the values of the correspond-
ing Hamiltonian. We have that 

(
f1, v1,w1

)
 solves (17) for f1 in place of f, with v1 in 

place of v, and with w1 in place of w. (We also write f ← f1 , v ← v1 and w ← w1 .) 
We have

Lemma 4  Let 
(
f1, v1,w1

)
 and 

(
f2, v2,w2

)
 each be solutions to (17). Then, it holds

where p1 is given by (28) for v ← v1 and w ← w1.

Proof  In order to save notational effort, we drop the functions’ dependency with 
respect to x, t. We have

and

H(x, t, f , v,w, �) ∶= G(x, t, v,w)f + � ⋅ (v + x◦w) f .

H(x, t, f , v,w, �) ∶= H(x, t, f (x, t), v(x, t),w(x, t), �(x, t)).

J
(
f1, v1,w1

)
− J

(
f2, v2,w2

)
= ∫

T

0 ∫Ω

H
(
x, t, f2, v1,w1,∇p1

)

− H
(
x, t, f2, v2,w2,∇p1

)
dxdt,

(32)

J
(
f1, v1,w1

)
− J

(
f2, v2,w2

)

= ∫
T

0 ∫Ω

G
(
v1,w1

)
f1dxdt + ∫Ω

Ff1(⋅, T)dx

− ∫
T

0 ∫Ω

G
(
v2,w2

)
f2dxdt − ∫Ω

Ff2(⋅, T)dx

= ∫
T

0 ∫Ω

G
(
v1,w1

)
f2 + G

(
v1,w1

)(
f1 − f2

)

− G
(
v2,w2

)
f2dxdt + ∫Ω

F
(
f1 − f2

)
(⋅, T)dx,
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by partial integration with respect to t [38, Satz 3.11], partial integration with respect 
to x (second line) and with (17) (fourth line). Combining (32) and (33), we obtain

	�  ◻

Next, we recall that the standard step for the PMP characterisation of a solu-
tion to the FP optimal control (30) is to introduce the concept of needle variation. 
For this purpose, we define the needle variation for any ṽ ∈ Vad and w̃ ∈ Wad with 
t0 ∈ (0, T) and with Sk

(
t0
)
 , a ball centred in t0 and for its measure |Sk

(
t0
)| it holds 

that limk→∞ |Sk
(
t0
)| = 0 , as follows

where v ∈ KV and w ∈ KW . These variations should be understood componentwise 
for all components of v and w.

(33)

∫
T

0 ∫Ω

G
(
v1,w1

)(
f1 − f2

)

= ∫
T

0 ∫Ω

−p�
1

(
f1 − f2

)
+

�2

2
∇p1 ⋅ ∇

(
f1 − f2

)

−
(
v1 + x◦w1

)
⋅ ∇p1

(
f1 − f2

)
dx

= ∫
T

0 ∫Ω

(
f �
1
− f �

2

)
p1 +

�2

2

(
∇f1 − ∇f2

)
⋅ ∇p1

+
(
∇
((
v1 + x◦w1

)
f1
)
− ∇

((
v1 + x◦w1

)
f2
))
p1dxdt

− ∫Ω

F
(
f1 − f2

)
(⋅, T)dx

= ∫
T

0 ∫Ω

∇
((
v2 + x◦w2

)
f2
)
p1

− ∇
((
v1 + x◦w1

)
f2
)
p1dxdt − ∫Ω

F
(
f1 − f2

)
(⋅, T)dx,

J
(
f1, v1,w1

)
− J

(
f2, v2,w2

)

= ∫
T

0 ∫Ω

G
(
v1,w1

)
f2 − ∇

((
v1 + x◦w1

)
f2
)
p1

− G
(
v2,w2

)
f2 + ∇

((
v2 + x◦w2

)
f2
)
p1dxdt

= ∫
T

0 ∫Ω

G
(
v1,w1

)
f2 +

((
v1 + x◦w1

)
f2
)
⋅ ∇p1

− G
(
v2,w2

)
f2 −

((
v2 + x◦w2

)
f2
)
⋅ ∇p1dxdt

= ∫
T

0 ∫Ω

H
(
x, t, f2, v1,w1,∇p1

)
− H

(
x, t, f2, v2,w2,∇p1

)
dxdt.

vk(t) ∶=

{
ṽ(t) if t ∈ (0, T)�Sk

(
t0
)

v if t ∈ Sk
(
t0
)
∩ (0, T)

, wk(t) ∶=

{
w̃(t) if t ∈ (0, T)�Sk

(
t0
)

w if t ∈ Sk
(
t0
)
∩ (0, T)

,
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Now, we can state the PMP characterisation of an optimal control to (30) as 
follows.

Theorem 5  Let 
(
f̄ , v̄, w̄

)
 be a solution to (30). Then it holds that

for almost all t ∈ (0, T) where p̄ is the solution to (28) for v ← v̄ and w ← w̄.

Proof  Since vk ∈ Vad and wk ∈ Wad for all k ∈ ℕ , we have with Lemma 4 that for 
any k ∈ ℕ the following holds

for all v ∈ KV and w ∈ KW where 
(
fk, vk,wk

)
 solves (17) for (f , v,w) ←

(
fk, vk,wk

)
.

Next, we prove that

We subtract (28) for v ← vk and w ← wk from (28) for v ← v̄ and w ← w̄ and obtain

(34)∫Ω

H
(
x, t, f̄ , v̄, w̄,∇p̄

)
dx = min

v∈KV ,w∈KW ∫Ω

H
(
x, t, f̄ , v,w,∇p̄

)
dx,

(35)

0 ≤ 1

|Sk
(
t0
)|
(
J
(
fk, vk,wk

)
− J

(
f̄ , v̄, w̄

))

=
1

|Sk
(
t0
)|
(
�

T

0 �Ω

H
(
x, t, f̄ , vk,wk,∇pk

)
− H

(
x, t, f̄ , v̄, w̄,∇pk

)
dxdt

)

=
1

|Sk
(
t0
)|

(
�Sk(t0)

�Ω

H
(
x, t, f̄ , v,w,∇p̄

)
− H

(
x, t, f̄ , v̄, w̄,∇p̄

)
dxdt

)

+
1

|Sk
(
t0
)|

(
�Sk(t0)

�Ω

(
∇pk − ∇p̄

)
⋅ (v + x◦w)f̄

+
(
∇p̄ − ∇pk

)
⋅ (v̄ + x◦w̄)f̄ dxdt

)

=
1

|Sk
(
t0
)|

(
�Sk(t0)

�Ω

H
(
x, t, f̄ , v,w,∇p̄

)
− H

(
x, t, f̄ , v̄, w̄,∇p̄

)
dxdt

)

−
1

|Sk
(
t0
)|

(
�Sk(t0)

�Ω

(
pk − p̄

)
∇
(
(v + x◦w)f̄

)

+
(
p̄ − pk

)
∇
(
(v̄ + x◦w̄)f̄

)
dxdt

)
,

lim
k→∞

‖pk − p̄‖L∞(Q) = 0.

∫Ω

−𝛿p�(x, t)𝜑(x) +
𝜎2

2
∇𝛿p(x) ⋅ ∇𝜑(x)

− (v̄(t) + x◦w̄(t)) ⋅ ∇p̄(x, t)𝜑(x)dx

+ ∫Ω

(
vk(t) + x◦wk(t)

)
⋅ ∇pk(x, t)𝜑(x)dx = ∫Ω

(G(v̄, w̄)(x, t)

−G
(
vk,wk

)
(x, t)

)
𝜑(x)dx,
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where 𝛿p ∶= p̄ − pk and thus

From (36) and Theorem 3, we have that

if

and

For the first term, we have the following

for a constant c > 0 due to p ∈ Lq
(
0, T;W1,q(Ω)

)
 , q >

n

2
+ 1 , see [11]. This means 

that the function

is integrable, see [4, Theorem  6.11, Theorem  6.9] and we can apply the Average 
Value Theorem [29, Theorem 51] to obtain

for almost all t0 ∈ (0, T) . Further, since

(36)

∫Ω

−𝛿p�(x, t)𝜑(x) +
𝜎2

2
∇𝛿p(x) ⋅ ∇𝜑(x) −

(
vk(t) + x◦wk(t)

)
⋅ ∇𝛿p(x, t)𝜑(x)dx

= ∫Ω

(
vk(t) + x◦wk(t) − (v̄(t) + x◦w̄(t))

)
⋅ ∇p̄(x, t)𝜑(x)dx

+ ∫Ω

(
G(v̄, w̄)(x, t) − G

(
vk,wk

)
(x, t)

)
𝜑(x)dx.

lim
k→∞

‖pk − p̄‖L∞(Q) = 0,

lim
k→∞

‖�vk + (⋅)◦wk − (v̄ + (⋅)◦w̄)
�
⋅ ∇p̄‖Lq(Q) = 0,

lim
k→∞

‖G(v̄, w̄) − G
�
vk,wk

�‖Lq(Q) = 0.

�Q

���vk(t) + x◦wk(t)
�
− (v̄(t) + x◦w̄(t))

�
⋅ ∇p̄(x, t)�qdxdt

≤ c�
T

0 �Ω

n�
i=1

� 𝜕

𝜕xi
p̄(x, t)�qdxdt

≤ c�
T

0

‖∇p̄(⋅, t)‖q
L2(Ω)

dt ≤ c‖p̄‖q
Lq(0,T;W1,q(Ω))

,

t ↦ ∫Ω

|(vk(t) + x◦wk(t) − (v̄(t) + x◦w̄(t))
)
⋅ ∇p̄(x, t)|qdx,

lim
k→∞

‖�vk + (⋅)◦wk − (v̄ + (⋅)◦w̄)
�
⋅ ∇p̄‖Lq(Q)

= lim
k→∞∫Sk(t0)

∫Ω

�(v(t) + x◦w(t) − (v̄(t) + x◦w̄(t))) ⋅ ∇p̄(x, t)�qdxdt = 0,
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for all v̄ ∈ Vad and w̄ ∈ Wad , we analogously have that

for almost all t0 ∈ (0, T).
Now, we have that the last line in (35) goes to zero for k → ∞ due to

and due to the Average Value Theorem [29, Theorem 51], because

using the Poincaré inequality [2, 6.7] and the function

is locally integrable, see Fubini’s Theorem [4, X Theorem 6.11, Theorem 6.9]. Since

is measurable on Q, see [18, Proposition 2.1.7] and an element of L1(Q) , we apply 
Fubini’s Theorem [4, Theorem 6.11, Theorem 6.9] and obtain

and thus we obtain from the Average Value Theorem [29, Theorem 51] the following

by taking the limit over k on both sides of the inequality (35) for all v ∈ KV and 
w ∈ KW and for almost all t ∈ (0, T) , renaming t0 into t.

	�  ◻

We remark that the (unusual) integral form of the PMP given in (34) results from the 
fact that the controls depend only on time variable, and so the needle variation. This is 
in contrast to the case where the control depends on both variables (x, t), see, e.g., [13, 
14, 30] and references therein, in which case the needle variation is defined in Q.

‖G(v̄, w̄) − G
�
vk,wk

�‖L∞(Q) < c,

lim
k→∞

‖G(v̄, w̄) − G
�
vk,wk

�‖L2(Q) = lim
k→∞∫Sk(t0)

∫Ω

�G(v̄, w̄) − G(v,w)�2dxdt = 0,

lim
k→∞

‖pk − p̄‖L∞(Q) = 0,

�Q

���∇
�
(v(t) + x◦w(t))f̄ (x, t)

����dx

= �Q

������

�
n�
i=1

wi(t)f̄ (x, t)

�
+ (v(t) + x◦w(t)) ⋅ ∇f̄ (x, t)

������
dxdt

≤ c‖f‖L2(0,T;H1
0
(Ω)),

t ↦ ∫Ω

∇
(
(v(t) + x◦w(t))f̄ (x, t)

)
dx,

(x, t) ↦ H
(
x, t, f̄ , v,w,∇p̄

)
− H

(
x, t, f2, v2,w2,∇p̄

)
,

t ↦ ∫Ω

H
(
x, t, f̄ , v,w,∇p̄

)
− H

(
x, t, f̄ ,∇f̄ , v̄, w̄,∇p̄

)
dx ∈ L1(0, T),

0 ≤ �Ω

(
H
(
x, t, f̄ , v,w,∇p̄

)
− H

(
x, t, f̄ , v̄, w̄,∇p̄

))
dx,
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We also see that (34) involves the PDF, which is consistent with the fact that we 
are characterizing an open-loop control for (15). The situation is different for our 
second FP optimal control problem corresponding to the stochastic process (16). In 
this case, the drift has the closed-loop structure that leads to important consequences 
that we illustrate below.

Our second FP optimal control problem is given by

Similar to (31), we assume the structure G(x, t, u)(x, t) ∶= A(x, t) + � gs(u(x, t)) . The 
PMP Hamiltonian corresponding to (37) is given by

Next, we prove that a solution to (37) has the following PMP characterization.

Theorem 6  Let 
(
f̄ , ū

)
 be a solution to (37). Then it holds that

for almost all (x, t) ∈ Q , where p̄ is the solution to (29) for u ← ū.

Proof  We have that p ∈ Lq
(
0, T;W

1,q

0

)
 due to the regularity of the right hand-side of 

(29), see [11] and [32, Proposition 8.35]. By [22, Theorem  3.1], we have that 
f ∈ L2

(
0, T;H1

0
(Ω)

)
 . Then the proofs of Lemma 4 and Theorem 5 can be done anal-

ogously, where the corresponding control terms are replaced by the control of (37), 
and the needle variation is now defined in Q. Going step by step through the men-
tioned proofs, we can apply the same arguments to the control u. 	�  ◻

We remark that Theorem 6 is analogous to [14, Theorem 3.3] or [13, Theorem 2] 
with similar proofs. The main difference in the proof of Theorem 5 with respect to 
that of Theorem 6 is that in the former the needle variation is performed for func-
tions in (0, T) whereas in the latter variations of functions in Q are considered.

Now, we focus on (38) and (39), and notice that our FP equation is uniformly 
parabolic. Therefore the PDF is almost everywhere non-negative, and we can write 
the PMP condition (39) in the following form

(37)

min
f ,u

J(f , u) ∶= ∫
T

0
∫Ω

G(x, t, u)(x, t)f (x, t)dxdt + ∫Ω

F(x)f (x, T)dx

s.t. ∫Ω

(
f �(x, t)�(x) +

�2

2
∇f (x, t) ⋅ ∇�(x)

+∇ ⋅ (u(x, t) f (x, t))�(x)

)
dx = 0

a.e. in (0, T) for all � ∈ H1

0
(Ω)

f (⋅, 0) = f0

u ∈ Uad,

(38)H(x, t, f , u, �) ∶= (G(x, t, u) + � ⋅ u) f .

(39)H
(
x, t, f̄ , ū,∇p̄

)
= min

u∈KU

H
(
x, t, f̄ , u,∇p̄

)
,
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for almost all (x, t) ∈ Q.
This last result and the fact that f does not enter in the formulation of the adjoint FP 

problem imply that the optimal control u is independent of the PDF and thus independ-
ent of the initial condition f0 , and so on the initial condition of the stochastic process 
(16). Therefore the optimal control u has the structure and the significance of a closed-
loop control (feedback law).

Notice that, since the Hamiltonian is continuous on the control argument, the control 
obtained in (40) as a result of an arg min-function is measurable; see [31, 14.29 Exam-
ple, 14.37 Theorem].

4 � Numerical approximation and optimization methods

In this section, starting from the PMP characterisation of solutions to our FP control 
problems (30) and (37), we discuss two numerical solution procedures. In the first 
case, we implement the SQH method that was proposed in [14]. In the second case, we 
exploit the special structure of the resulting optimality system and the connection to the 
HJB problem to formulate a variant of the SQH solution procedure for determining the 
optimal control. This variant has similarity with a well-known implementation of the 
HJB equation [39]. However, to avoid confusion we call this procedure the SQH direct 
Hamiltonian (SQH-DH) method.

For the implementation of both methods, we illustrate the numerical approximation 
of the FP and adjoint FP problems. For this purpose, we consider the two-dimensional 
case, n = 2 , and a square domain Ω = (−�,�) × (−�,�) . We define a uniform grid Ωh 
given by

where Nx represents the number of subintervals in each direction, and h = 2�∕Nx . 
Further, let �t = T∕Nt be the time step size, and Nt denotes the number of time steps. 
Define

On this grid, �m
i,j

 represents the value of a grid function in Ωh at (x1
i
, x2

j
) and time tm.

For the space discretization of the FP equation, we consider the Chang–Cooper (CC) 
scheme that is a second-order accurate spatial discretization scheme which guarantees 
positivity of the PDF [5, 17, 28]. For the formulation of the CC scheme one considers 
the flux form of the FP equation �tf = ∇ ⋅ F(f ) , where the ith component of the flux F  
is given by

(40)(G(x, t, ū) + ∇p̄ ⋅ ū) = min
u∈KU

(G(x, t, u) + ∇p̄ ⋅ u),

Ω̄h = {(x1
i
, x2

j
) ∈ ℝ

2 ∶ (x1
i
, x2

j
) = (−� + ih,−� + jh), i, j ∈ {0,… ,Nx}},

Qh,�t = {(x1
i
, x2

j
, tm) ∶ (x1

i
, x2

j
) ∈ Ωh, tm = m �t, 0 ≤ m ≤ Nt}.

(41)Fi(f ) =

n∑
j=1

�xj (aij(x) f (x, t)) − bi(x, t) f (x, t), i = 1, 2.
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In the CC method we have the following finite-volume approximation

where Fm

i+
1

2
,j
 and Fm

i,j+
1

2

 represent the flux in the ith and jth direction, respectively. To 

compute these flux terms, Chang and Cooper proposed to use a linear convex com-
bination of values of f at the cells sharing the same edge. For example, considering 
the edge between the grid points i, j and i + 1, j , we have

where the value of �j
i
 is specified as follows. Define Bm

i+
1

2
,j
= −b1(x

1

i+
1

2

, x2
j
, tm) and 

Bm

i,j+
1

2

= −b2(x
1
i
, x2

j+
1

2

, tm) . Thus, we have

Therefore the numerical fluxes are given by

and

For the time discretization, we consider a combination of the first- and second-order 
implicit Euler schemes. Specifically, for the first time step, we implement the fol-
lowing backward Euler scheme as follows

where m = 1 . On the other hand, for m = 2,… ,Nt , we use the following second-
order (BDF2) scheme

∇ ⋅ F =
1

h

{(
F

m

i+
1

2
,j
− F

m

i−
1

2
,j

)
+

(
F

m

i,j+
1

2

− F
m

i,j−
1

2

)}
,

f m
i+1∕2,j

=
(
1 − �

j

i

)
f m
i+1,j

+ �
j

i
f m
i,j
,

(42)

�
j

i
=

1

w
j

i

−
1

exp(w
j

i
) − 1

, w
j

i
= 2hBm

i+
1

2
,j
∕�2,

�i
j
=

1

wi
j

−
1

exp(wi
j
) − 1

, wi
j
= 2hBm

i,j+
1

2

∕�2.

(43)F
m

i+
1

2
,j
=

[
(1 − �

j

i
)Bm

i+
1

2
,j
+

�2

2h

]
f m
i+1,j

−

[
�2

2h
− �

j

i
Bm

i+
1

2
,j

]
f m
i,j
,

(44)F
m

i,j+
1

2

=

[
(1 − �i

j
)Bm

i,j+
1

2

+
�2

2h

]
f m
i,j+1

−

[
�2

2h
− �i

j
Bm

i,j+
1

2

]
f m
i,j
.

(45)
f m
i,j
− f m−1

i,j

�t
=

1

h

(
F

m

i+
1

2
,j
− F

m

i−
1

2
,j

)
+

1

h

(
F

m

i,j+
1

2

− F
m

i,j−
1

2

)
,

(46)
3f m

i,j
− 4f m−1

i,j
+ f m−1

i,j

2�t
=

1

h

(
F

m

i+
1

2
,j
− F

m

i−
1

2
,j

)
+

1

h

(
F

m

i,j+
1

2

− F
m

i,j−
1

2

)
,
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where m = 2,… ,Nt . The numerical analysis of these schemes is presented in [28], 
where it is proved that the resulting numerical solution is O(�t + h2) accurate with 
(45), and O(�t2 + h2) accurate with (46). Therefore, in order to guarantee a global 
second-order accurate solution, the first scheme is used to solve the FP problem on 
the interval [0, �t] with 𝛿t = 𝛿t2 step sizes.

Now, concerning the adjoint FP equation, it has been proved in [5, 34] that the 
transpose of (45) provides an O(�t + h2) accurate approximation of the adjoint FP 
equation. This approximation is as follows

where

A similar result also holds for the scheme (46); see, e.g., [5, 28, 34].
Next, we discuss our numerical SQH optimization scheme [13, 14]. The main 

feature of this method is to consider the following augmented Hamiltonian

where v2 ∶=
∑n

i=1

�
vi
�2 for any vector v ∈ ℝ

n . The quadratic term, which augments 
the Hamiltonian H, aims at penalising large updates of the control in a sweep that 
improves the control on all grid points where it is defined. In this way, the current 
values of the state and adjoint variables are approximately valid during the iteration 
sweep on all grid points and do not need to be updated during this process, but only 
after its completion. In this way, the SQH scheme provides an efficient and robust 
optimization procedure. The SQH method for the open-loop setting is schematically 
illustrated with the following algorithm. 

(47)

pm−1
i,j

= S(pm, um)

∶= pm
i,j
+

�t

h

(
Km

i−
1

2
,j
pm
i−1,j

− Rm

i+
1

2
.j
pm
i,j
− Km

i−
1

2
,j
pm
i,j
+ Rm

i+
1

2
,j
pm
i+1,j

)

+
�t

h

(
Km

i,j−
1

2

pm
i,j−1

− Rm

i.j+
1

2

pm
i,j
− Km

i,j−
1

2

pm
i,j
+ Rm

i,j+
1

2

pm
i,j+1

)
+ �t G(bm),

Km

i+
1

2
,j
=
(
1 − �

j

i

)
Bm

i+
1

2
,j
+

�2

h
, Km

i−
1

2
,j
=
(
1 − �

j

i−1

)
Bm

i−
1

2
,j
+

�2

h
,

Km

i,j+
1

2

=
(
1 − �i

j

)
Bm

i,j+
1

2

+
�2

h
, Km

i,j−
1

2

=
(
1 − �i

j−1

)
Bm

i,j−
1

2

+
�2

h
,

Rm

i+
1

2
,j
= −�

j

i
Bm

i+
1

2
,j
+

�2

h
, Rm

i−
1

2
,j
= −�

j

i−1
Bm

i−
1

2
,j
+

�2

h
,

Rm

i,j+
1

2

= −�i
j
Bm

i,j+
1

2

+
�2

h
, Rm

i,j−
1

2

= −�i
j−1

Bm

i,j−
1

2

+
�2

h
.

K𝜖(x, t, f , v, ṽ,w, w̃, 𝜁) ∶= H(x, t, f , v,w, 𝜁) + 𝜖
(
(v(t) − ṽ(t))2

+(w(t) − w̃(t))2
)
,
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Algorithm 1 (SQH method)

1. Choose 𝜖 > 0 , � ≥ 0 , 𝜎̂ > 1 , � ∈ (0, 1) , � ∈ (0,∞) , v0,w0 , compute f 0 by (17) and p0 by (28) for 
v ← v0 , w ← w0 , set k ← 0

2. Find v ∈ KV and w ∈ KW such that
∫
Ω
K𝜖

(
x, t, f k, v, vk,w,wk ,∇pk

)
dx ≤ ∫

Ω
K𝜖

(
x, t, f k, v̂, vk, ŵ,wk,∇pk

)
dx

 for all v̂ ∈ KV and ŵ ∈ KW and for all t ∈ [0,T]

3. Calculate f by (17) with v, w and �1 ∶= ‖v − vk‖2
L2(0,T)

 , �2 ∶= ‖w − wk‖2
L2(0,T)

4. If J(f , v,w) − J
(
f k, vk,wk

)
> −𝜂

(
𝜏1 + 𝜏2

)
 : Choose 𝜖 ← 𝜎̂𝜖

  Else: Choose � ← �� , f k+1 ← f  , vk+1 ← v , wk+1
← w , calculate pk+1 by (28) with vk+1 and wk+1 , set 

k ← k + 1

5. If 𝜏1 + 𝜏2 < 𝜅 : STOP and return vk and wk

 Else go to 2.

The well-posedness of this SQH scheme means that Step 2. to Step 4. are math-
ematically well defined and can always be performed. Specifically, the minimization 
in in Step 2. can always be performed, see [14, Lemma 4.1]. Further, if a control 
is attained that is PMP optimal, then the algorithm will stop, see [14, Lemma 4.3]. 
On the other hand, in Step 4., if no sufficient decrease of the value of J is attained, 
a larger value of � can always be found in finitely many steps such that we obtain 
an update of the control that satisfies the decrease condition given with � ; see [12, 
Lemma 50] and [14, (16)].

We remark that the convergence analysis of the SQH method for our FP control 
problems can be done analogously as in [13, 14]. However, for this purpose, we 
need to prove bounds for ‖f‖L∞(0,T;H1

0
(Ω)) and ‖p‖L∞(0,T;H1

0
(Ω)) , which are not dis-

cussed in this paper.
The SQH scheme given above is applied to solve both FP optimal control prob-

lem (30).
In the case of the closed-loop control (37), we consider a variant of the SQH 

scheme that consistently implements the equivalence of the FP control problem with 
the HJB formulation assuming that the PDF is everywhere positive. This variant is 
obtained according to (40) by introducing the following augmented Hamiltonian

This choice of augmented Hamiltonian results naturally from the positivity of the 
PDF and by considering the expected value of the quadratic penalization.

Therefore we implement the following iterative scheme 

K̃𝜖(x, t, u, ũ, 𝜁) ∶= (G(x, t, u(t)) + 𝜁 ⋅ u(t)) + 𝜖 (u(t) − ũ(t))2.
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Algorithm 2 SQH-DH method

1. Choose 𝜖 > 0 , � ≥ 0 , 𝜎̂ > 1 , � ∈ (0, 1) , � ∈ (0,∞) , u0 , compute f 0 by (17) and p0 by (28) for u ← u0 , 
set k ← 0

2. Find u ∈ KU such that
K̃𝜖

(
x, t, u, uk ,∇pk

) ≤ K̃𝜖

(
x, t, û, uk ,∇pk

)
 for all û ∈ KU and for all t ∈ [0,T]

3. Calculate f by (17) with u and � ∶= ‖u − uk‖2
L2(Q)

4. If J(f , u) − J
(
f k, uk

)
> −𝜂 𝜏 : Choose 𝜖 ← 𝜎̂𝜖

 Else: Choose � ← �� , f k+1 ← f  , uk+1 ← u , calculate pk+1 by (28) with uk+1 , set k ← k + 1

5. If 𝜏 < 𝜅 : STOP and return uk

 Else go to 2.

Notice that in the SQH-DH scheme the calculation of f is only required to evalu-
ate the cost functional. Furthermore, at convergence the solution of the adjoint 
problem corresponds to solving the HJB equation as discussed in [39]. However, 
the gradual update of the control thanks to the quadratic penalization makes the 
SQH-DH approach more robust and does not suffer of instabilities for large time-
step sizes.

We see that, in both SQH optimization schemes, Step 2. requires the point-
wise evaluation of minimization problems for the augmented Hamiltonian in small 
dimensional (in our case 4, resp. 2, counting all components) compact sets. These 
problems can be solved by many methods considering a discretization of these sets. 
In particular, we refer to derivative-free optimization methods [19, 26]. See [13] for 
an application of the secant method in our context.

However, one great advantage of the SQH approach is that a case study of min-
imization of the augmented Hamiltonian can be performed beforehand by simple 
analytical tools, which delivers a choice of few possible minimizers depending on 
the input of the problem. In this case, one is required to evaluate K� (or K̃𝜖 ) on this 
points and choose the actual minimizer.

In our experience, this approach has large applicability as demonstrated in [13] 
where different cost functionals and PDE models are considered. In the following, 
we illustrate this fact for our specific setting. We focus on the FP optimal control 
problem (30), and choose

where A is a continuous function that we specify in the numerical experiments sec-
tion. We assume that the following (generalised) L1 control costs

where s1 =
3

5
 , s2 =

3

10
 . The admissible values of the controls are given by the intervals  

K1
V
= K2

V
=
[
vmin, vmax

]
 and K1

W
= K2

W
=
[
−wmin,wmax

]
 , where vmin = −2 , vmax = 2 , 

wmin = −1 and wmax = 1.
We have

G(x, t, v,w) = A(x, t) + � gs1(v) + � gs2(w),

(48)gs(z) ∶= max
(
0, |z1| − s

)
+max

(
0, |z2| − s

)
,
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where |Ω| is the measure of Ω , �(t) ∶= ∫
Ω
f (x, t)dx and

We remark that due to the zero boundary conditions it holds that 0 ≤ a ≤ 1 . Since

the pointwise minimum of (v,w) ↦ ∫
Ω
K𝜖(x, t, f , v, ṽ,w, w̃,∇p) is 

given by the following case study where we use the differentiability of 
(v,w) ↦ ∫

Ω
K𝜖(x, t, f , v, ṽ,w, w̃,∇p) in the intervals 

(
vmin,−s

)
 , (−s, s) , 

(
s, vmax

)
 for v 

and analogously for w.
By inspection, we see that the minimization problem in the given intervals 

reduces to the evaluation of the value of integral of the augmented Hamiltonian 
on a discrete set of points of the admissible set of control values as follows

where

with

∫Ω

K𝜖(x, t, f , v, ṽ,w, w̃,∇p)dx

= ∫Ω

G(x, t, v,w)f (x, t) + ∇p(x, t) ⋅ (v + x◦w)f (x, t)

+ 𝜖
(
(v − ṽ(t))2 + (w − w̃(t))2

)
dx

= G(x, t, v,w)𝜛(t) +

2∑
i=1

vi𝜚i(t) +

2∑
i=1

wi𝜍i(t)

+ 𝜖|Ω|
(

n∑
i=1

(
vi − ṽi(t)

)2
+

n∑
i=1

(
wi − w̃i(t)

)2
)
,

�i(t) ∶= ∫Ω

�

�xi
p(x, t)f (x, t)dx, �i(t) ∶= ∫Ω

xi
�

�xi
p(x, t)f (x, t)dx, i = {1, 2}.

max (0, �z� − s) =

⎧⎪⎨⎪⎩

z − s if z > s

−z − s if z < −s

0 if �z� ≤ s

,

(v(t),w(t)) = arg min
v∈KV ,w∈KW

∫Ω

K𝜖(x, t, f , v, ṽ,w, w̃,∇p)dx

= arg min
v∈K̃V (t),w∈K̃W (t)

∫Ω

K𝜖(x, t, f , v, ṽ,w, w̃,∇p)dx,

K̃V (t) ∶= K̃1
V
(t) × K̃2

V
(t), K̃W ∶= K̃1

W
(t) × K2

W
(t),

K̃i
V
(t) ∶=

{
vi
1
(t), vi

2
(t), vi

3
(t)
}
, K̃i

W
∶=

{
wi
1
(t),wi

2
(t),wi

3
(t)
}
, i = {1, 2},
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and

for any t ∈ [0, T] , and i = {1, 2} since the minimum is either in the inner of the cor-
responding intervals where the derivative with respect to v or w equals zero or on 
the boundary of the intervals, see [3, IV Remark 2.2 (b)].

Next, we consider the FP optimal control problem given in (37). In this case, 
we choose

where u = (u1, u2) and A is as given above. The admissible set of values of the con-
trol is given by the interval KU = [umin, umax]

2 with umin = −10 , umax = 10.
Also in this case, we can determine a priori the set of points where the aug-

mented Hamiltonians can take a minimum. Specifically, in the SQH-DH method, 
we have

where

and

vi
1
(t) = min

(
max

(
s1,

2𝜖|Ω|ṽi(t) − 𝛼𝜛(t) − 𝜚i(t)

2|Ω|𝜖
)
, vmax

)
,

vi
2
(t) = min

(
max

(
vmin,

2𝜖|Ω|ṽi(t) − 𝛼𝜛(t) − 𝜚i(t)

2|Ω|𝜖
)
,−s1

)
,

vi
3
(t) = min

(
max

(
−s1,

2𝜖|Ω|ṽi(t) − 𝜚i(t)

2|Ω|𝜖
)
, s1

)
,

wi
1
(t) = min

(
max

(
s2,

2𝜖|Ω|w̃i(t) − 𝛽𝜛(t) − 𝜍i(t)

2|Ω|𝜖
)
,wmax

)
,

wi
2
(t) = min

(
max

(
wmin,

2𝜖|Ω|w̃i(t) − 𝛽𝜛(t) − 𝜍i(t)

2|Ω|𝜖
)
,−s2

)
,

wi
3
(t) = min

(
max

(
−s2,

2𝜖|Ω|w̃i(t) − 𝜍i(t)

2|Ω|𝜖
)
, s2

)
,

G(x, t, u) = A(x, t) +
�

2

(
u2
1
+ u2

2

)
+ �

(|u1| + |u2|
)
,

u = arg min
v∈KU

(
G(v) + ∇hp ⋅ v

)
+ 𝜖(v − ũ)2

= arg min
v1∈{v11,v

2
1}, v2∈{v

1
2
,v2
2}

(
𝛼

2

(
v2
1
+ v2

2

)
+ 𝛽

(|v1| + |v2|
)
+ v1∇

1
h
p + v2∇

2
h
p
)

+ 𝜖(v − ũ)2,

v1
i
= min

(
max

(
0,

2𝜖ũi(x, t) − ∇i
h
p(x, t) − 𝛽

2𝜖 + 𝛼

)
, umax

)
,
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In the following section, we validate and compare our SQH schemes, where in Step 
2. we take advantage of the pre-determined minimizers.

5 � Numerical experiments

In this section, we report results of numerical experiments that validate our FP optimi-
zation framework and the ability of the resulting controls to drive the related stochastic 
processes in order to perform given tasks. Concerning the first goal, we would like to 
demonstrate that our optimization procedure is able to provide a solution that satisfies 
the PMP optimality conditions discussed in the previous sections. For this purpose, we 
define a measure of PMP optimality of the numerical solution of the open-loop setting 
as follows

assuming that f, v, w and p represent the output of Algorithm 1 applied to our FP 
problem (30). Similarly, we define a measure of PMP optimality for the closed-loop 
problem (37).

We also report values of the variable Nl
%
 , l ∈ ℕ that give the percentage of grid 

points where 0 ≤ △H(t) ≤ 10−l is fulfilled.
Our computational setting for both control problems is as follows. We choose 

Ω = (−2, 2) × (−2, 2) , and consider a uniform space and time discretisation with 
Nx = 40 and Nt = 80 and T = 2.

The initial condition for the FP problem is given by the following normalized Gauss-
ian distribution

where r = 0.3 and x0 = (−1, 0) , and | ⋅ | denotes the Euclidean norm in ℝ2 . In the FP 
equation, we choose a diffusion coefficient D =

�2

2
= 10−2.

In our cost functional for the open-loop problem, we specify the function 
G = A + � gs1(v) + � gs2(w) choosing

where xd ∶ [0, T] → ℝ
2 is given by the arc

v2
i
= min

(
max

(
umin,

2𝜖ũi(x, t) − ∇i
h
p(x, t) + 𝛽

2𝜖 + 𝛼

)
, 0

)
.

△H(t) ∶= ∫Ω

H(x, t, f , v,w,∇p)dx − min
ṽ∈KV ,w̃∈KW ∫Ω

H(x, t, f , ṽ, w̃,∇p)dx,

(49)f0(x) =
1

2�r2
e
−

|x−x0 |2
2r2 ,

(50)A(x, t) = −
10−3

2�r2
e
−

|x−xd (t)|2
2r2 ,

(51)xd(t) =

(
t − 1

sin (� t∕2)

)
.



527

1 3

The Pontryagin maximum principle for solving Fokker–Planck…

Further, we have gs given in (48) with the parameters � = � = 10−4 , and s1 = s2 = 0 . 
The same function A and the same values � = � = 10−4 are chosen for our closed-
loop problem. In both cases, the terminal function F is taken as follows

The choice of A and F is motivated by the concept of ensemble control proposed in 
[15, 16] and analysed in [8]. To illustrate this setting, suppose that the purpose of 
the control is that the trajectories of our stochastic models are required to track the 
desired trajectory xd(t) , in the sense that minimizing this term corresponds to hav-
ing all trajectories of the ensemble being close to xd . For this purpose, the function 
A(x,  t) represents an attracting potential that monotonically increases as a function 
of the distance |x − xd(t)| . Therefore, by minimization, we have that f results mainly 
concentrated on the minimum of A corresponding to xd (a valley). Similarly, the pur-
pose of F(x) = A(x, T) is to model the requirement that the density f at final time 
concentrates on a final position given by xd(T).

The parameters for both SQH Algorithms are set as follows. The initial guess 
� = 102 , and the controls are initialized by zero functions. We choose � = 10−8 , 
𝜎̂ = 25 , � = 10−1 and � = 10−14.

The main purpose of our experiments is to validate the resulting optimal con-
trol problems at the level of the stochastic dynamics. Therefore, once the controls 
are computed, we use them in Monte Carlo simulation to verify the ability of these 
controls to perform the given tasks. Moreover, by taking different initial conditions 
in the simulation of the controlled SDEs, we can test whether the controls have the 
closed-loop ability to drive the system to perform the given tasks from any initial 
configuration. In the following, we report results of numerical experiments with the 
setting above and for both control problems.

In Fig.  1a, we plot the open-loop optimal control functions v = (v1, v2) and 
w = (w1,w2) in [0, T], and in Fig. 1b, we depict the minimization history of the cost 

F(x) = −
10−3

2�r2
e
−

|x−xd (T)|2
2r2 .
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(b) Minimization history of the cost func-
tional with the SQH iteration.

Fig. 1   Results for the open-loop problem
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(a) The optimal control u in Ω at t = 1 and t = 1.5.

(b) Minimization history of the cost func-
tional with the SQH-DH iteration.

Fig. 2   Results for the closed-loop problem. The optimal control u1 (left) and u2 (right) at t = 1 (top) and 
t = 1.5 (bottom)

Fig. 3   Comparison of closed-loop (left) and open-loop controls. The optimal control u1 (left) and u2 
(right) at t = 1 (top) and t = 1.5 (bottom). The optimal control v + w◦x with u1 (left) and u2 (right) at t = 
1 (top) and t = 1.5 (bottom)

▸
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Fig. 4   Evolution of �[X(t)] (circles); the dashed line depicts the desired trajectory. Left: the closed-loop 
case; right: the open-loop case

functional along the SQH iterations. Notice that the functional is monotonically 
decreasing. The numerical PMP test gives N1

%
= 100% , N2

%
= 100% , N3

%
= 100% , 

and N4
%
= 16% . These results indicate that the solution obtained with the SQH 

method is PMP optimal in the sense of (34) with a tolerance of 10−4.
In Fig. 2a, we plot the closed-loop optimal control functions u = (u1, u2) in Ω at 

t = 1 and t = 1.5 , and in Fig. 2b, we depict the minimization history of the cost func-
tional along the SQH-DH iterations. Also in this case, notice that the functional is 
monotonically decreasing. The numerical PMP test gives N1

%
= 100% , N2

%
= 100% , 

N3
%
= 99% , N4

%
= 99% , N5

%
= 99% , N6

%
= 98% , N7

%
= 97% , N8

%
= 96% , N9

%
= 94% , 

N10
%

= 92% , N11
%

= 90% , and N12
%

= 88% , thus demonstrating that in this case the 
solution obtained with the SQH-DH method is PMP optimal close to machine 
precision.

In order to allow a more direct comparison of the controls obtained with the 
two settings, in Fig.  3a, we plot again the closed-loop optimal control functions 
u = (u1, u2) in Ω at t = 1 and t = 1.5 , and compare it with Fig. 3b where we depict 
(v + w◦x) in Ω at t = 1 and t = 1.5 . We see that, although some similarities can be 
recognized, the two controls differ substantially. Notice that with these controls and 
the setting above, the total probability at final time differs from the initial one by less 
than 10−4.
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Next, we show that the two controls perform similarly well when the initial con-
ditions for the two stochastic models coincide with x0 where f0 is centred. For this 
purpose, in Fig. 4 we plot the evolution of �[X(t)] for the two stochastic processes in 
[0, T]. However, in the same figure, a more detailed comparison is given by plotting 
a few (10) stochastic trajectories of the two models. We see that the distribution of 
these trajectories confirm the plots of the mean �[X(t)] . On the other hand, we notice 
that the closed-loop control is more effective in attaining the tracking objective.

Now, we validate the ability of the computed controls to provide a feedback law. 
In the case of our closed-loop control this feature is expected by construction as 
discussed in this paper. On the other hand, we would like to investigate the claim 
in [15, 16] that our open-loop control provides a valuable approximation to a feed-
back control mechanism. In fact, the results in the Fig. 3a, b do in part support this 
claim. However, we perform a more strict validation by using these controls as drifts 
of our stochastic models and choosing an initial condition X0 that is far away from 
x0 . The resulting trajectories are plotted in Fig. 5 and compared with the previous 
ones obtained with X0 = x0 . We see that the closed-loop control is able to drive the 
SDE to follow the desired trajectory and attain the target configuration. On the other 
hand, the open-loop control mechanism appears not able to perform these tasks 
properly. Results of additional experiments confirm this conclusion.
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Fig. 5   Trajectories of the SDE models with the closed-loop control (top) and the open-loop control (bot-
tom). Left: trajectories starting with X0 = x0 = (−1, 0) ; right: trajectories starting at X0 = (1, 1)
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6 � Conclusion

A theoretical and computational framework to investigate open- and closed-loop 
control strategies for stochastic models was presented. This framework is based on 
the Pontryagin maximum principle (PMP) applied to optimal control problems gov-
erned by the Fokker–Planck (FP) equation, which governs the evolution of the prob-
ability density function of these models.

In this work, existence and PMP characterisation of optimal controls for the 
FP control problems were discussed. Further, PMP-based numerical optimization 
schemes were implemented to solve these problems. Results of experiments were 
presented that successfully validated the effectiveness of the PMP FP optimization 
framework and the ability of the resulting controls to drive the stochastic models to 
perform a given task.
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