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Abstract
Plant phenology is well known to be affected by meteorology. Observed changes in the occurrence of phenological phases are
commonly considered some of the most obvious effects of climate change. However, current climate models lack a representation
of vegetation suitable for studying future changes in phenology itself. This study presents a statistical-dynamical modeling
approach for Bavaria in southern Germany, using over 13,000 paired samples of phenological and meteorological data for
analyses and climate change scenarios provided by a state-of-the-art regional climate model (RCM). Anomalies of several
meteorological variables were used as predictors and phenological anomalies of the flowering date of the test plant Forsythia
suspensa as predictand. Several cross-validated prediction models using various numbers and differently constructed predictors
were developed, compared, and evaluated via bootstrapping. As our approach needs a small set of meteorological observations
per phenological station, it allows for reliable parameter estimation and an easy transfer to other regions. The most robust and
successful model comprises predictors based on mean temperature, precipitation, wind velocity, and snow depth. Its average
coefficient of determination and root mean square error (RMSE) per station are 60% and ± 8.6 days, respectively. However, the
prediction error strongly differs among stations. When transferred to other indicator plants, this method achieves a comparable
level of predictive accuracy. Its application to two climate change scenarios reveals distinct changes for various plants and
regions. The flowering date is simulated to occur between 5 and 25 days earlier at the end of the twenty-first century compared
to the phenology of the reference period (1961–1990).

1 Introduction

Based on changes in plant phenology, which deals with the
timing of various recurring phases of plants, conclusions about
the impacts of climate variations and change can be drawn. In
recent years, scientific attention towards determining changes
in and forecasting the development of phenology has grown
(Fu et al. 2014). Numerous analyses of phenological data have
demonstrated differences in the climate sensitivity of species all
across the planet (e.g., Menzel et al. 2006; Richardson et al.
2013; Thackeray et al. 2016). Learningmore about the complex

interactions between vegetation and meteorology is of rele-
vance, e.g., for creating high-quality earth system models
(ESM). Due to various feedback mechanisms (e.g., albedo,
evaporation, …) between biosphere and atmosphere, a good
representation of vegetation is a necessity for future climate
change simulations (Richardson et al. 2013). So far, dynamic
modeling of vegetation in ESMs is not the standard.

Previous studies dealing with the modeling of phenology
focused on developing empirical models usingmainly air tem-
perature as predictor. To investigate the relationship between
the onset of a phenological phase and temperature, the average
or sum of the measured temperature over a fixed time period,
called ‘Growing Degree Days’ (GDD), is calculated. Many
models employ a temperature threshold, typically excluding
values below 0 °C, as criterion for selecting the daily temper-
ature beyond that threshold over a chosen interval
(Chmielewski et al. 2005; McMaster 2005; Črepinšek et al.
2006). Most studies consider an accumulation interval from a
fixed date to the day of the year (DOY) when the particular
phenophase occurs for the first time in a given year or choose
the month(s) before or in which the DOY occurs on average
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(Chuine 2000). Using more months or larger intervals tends to
result in better models (e.g., Kolodziej and Frühauf 2008;
Scheffler and Frühauf 2012; Jochner et al. 2013).

In addition, there are so called process-based models that
are assumed to provide more realistic predictions of pheno-
logical characteristics due to their consideration of plant-
physiological processes. These models consider, e.g., chilling
hours (CH) or chilling units (CU) because temperate plants
often require a species-specific number of days below a criti-
cal temperature before dormancy is terminated and growth can
begin (Chuine et al. 1999; Islam et al. 2016). Despite their
higher complexity, process-based phenological models are
still outperformed by simple empirical models (Basler
2016). For example, Linkosalo et al. (2006) compared four
models for different tree species: the more complex models
with more than one climate predictor were outperformed for
all test plants by a simple temperature accumulation model, in
which all temperatures beyond a certain threshold are summed
up. However, in the future, such two- or more-phase models
(that consider GDD and CH) are expected to provide better
predictions concerning phenology, because current and partic-
ularly future winter temperature does not always fulfill the
coldness requirements every year, as it is assumed for pure
GDD or simple empirical models (Chuine et al. 2016).

In addition to different model approaches, there are
also varying species responses to temperature changes at
different rates and some species show different responses
at different sites (Primack et al. 2009). An overview of the
spatial and temporal variability of phenology in Germany
can be found in Menzel et al. (2001). A part of the spatial
variability can be attributed to the relationship between
altitude and phenology. However, it was found that the
gradient (DOY change/100 m) varies noticeably over dif-
ferent regions, elevation levels, and plant phenophases
(e.g., Rötzer and Chmielewski 2001; Dittmar and Elling
2006; Larcher 2007; Schleip et al. 2009; Ziello et al.
2009; Cornelius et al. 2013 and articles cited therein).
The same is true for different phenological phases during
the vegetation period: spring phases, which mostly de-
pend on temperature, can be assessed quite well, while
the modeling of autumn phases is less successful. One
possible explanation for the unsatisfactory representation
of autumn phases is that they also depend on water supply
and soil properties that are not taken into account in most
model approaches (Chmielewski and Rötzer 2001;
Estrella and Menzel 2006).

This study deals with the relationship between phenology
and several meteorological variables in Bavaria, Germany. Its
main aim is to develop a reliable multivariate statistical model
for the prediction of the onset of phenophases. As described
above, there are several approaches for selecting and prepar-
ing meteorological data. Most of them require additional in-
formation like plant-specific thresholds, CUs, gradients or

elevation to model phenology. We aim to find a powerful
method that can be applied without additional information
for specific plants, that does not require large data sets, and
that fits local phenological characteristics as good as possible.
The focus of our study is on the comparison of various
methods for selecting and preprocessing the climate predictors
in the light of their regional performance and limitation. In
contrast to the widespread temperature-based models, we in-
vestigate whether the inclusion of additional meteorological
parameters can improve the modeling results. A second ob-
jective is to predict future phenological characteristics in
Bavaria under climate change conditions as given by high-
resolution regional climate model projections.

The next sections describe the considered data and
methods, especially the modeling approaches to be compared
with each other. Section 3 is dedicated to the results. The
discussion of our results is undertaken in Sect. 4. The main
conclusions are drawn in Sect. 5.

2 Data and methods

2.1 Data

We use two observational datasets provided by the German
Weather Service (DWD) covering the period 1950–2013: (1)
phenological data from 1154 Bavarian stations, collected from
volunteers for various plants and phenological phases, indi-
cating the DOY, on which the plant reaches the phase for the
first time. The volunteers get a guide with descriptions of the
phases and are instructed to watch multiple plants in the sta-
tions’ surroundings to keep the monitoring standardized. The
quality of this data set is verified by the DWD using absolute
limit testing and a spatial consistency test (Kaspar et al. 2015).
This data set is widely used for phenological analysis (e.g.,
Menzel et al. 2001). (2) Meteorological data from 225 stations
across southeastern Germany, which provide up to 13 climatic
variables in daily resolution (see Table 1). Stations that do not
provide all necessary variables were excluded from the mul-
tivariate modeling approach.

To study phenology changes until 2100, we use daily
meteorological variables from the state-of-the-art RCM
REMO2009 (REMO), which is driven by observed histor-
ical greenhouse gas concentration in period 1950–2005
and afterwards by two representative concentration path-
way (RCP) scenarios, i.e., RCP 4.5, and RCP 8.5 assuming
a CO2 equivalent of 630 ppm and 1313 ppm, respectively,
until 2100. For a multi-model ensemble of global climate
models, this results in a global mean warming of about
1.8 °C (3.7 °C), compared to the average global surface
temperature of 1986–2005 (Jacob et al. 2001; Moss et al.
2008; IPCC 2013; Jacob et al. 2014).
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2.2 Data preparation

Figure 1 shows the complete workflow from data preparation,
building local anomalies to address spatial and temporal auto-
correlation, choosing an accumulation interval, choosing a
start day for the accumulation, selecting suitable meteorolog-
ical variables, and trying some regionalization for optimizing
the resulting model and calculate phenological onsets in the
future with two climate model scenarios. The following sec-
tions describe each step in more details. The figures and tables
cited in Fig. 1 show the respective result of this step.

The locations of the phenological and meteorological sta-
tions are not congruent. Therefore, we connect each pheno-
logical station with its nearest neighbor (NN) meteorological
station by considering two specific prerequisites: first, the
maximum distance between the meteorological and phenolog-
ical station is limited to 20 km and, second, more than 30 years
of data for pairs of meteorological and phenological station
data are available. The maximum distance was chosen as a
compromise to ensure that still enough pairs of stations are
available for analyses while the climatic conditions at the sta-
tions are sufficiently similar.

Figure 2 a illustrates the mean flowering date for our main
test plant Forsythia suspensa (forsythia) over the test period
with the location of the phenological and their assigned mete-
orological stations. Note that Forsythia suspensa is a wild
plant that exhibits large geographical variations in terms of
flowering. We focus on forsythia as it has a good data cover-
age and represents the indicator plant of the phenological
phase ‘Erstfrühling‘(early spring) as defined by Deutscher

Wetterdienst (2016). Forsythia is also known to be sensitive
to temperature. Figure 2 a also demonstrates the uneven dis-
tribution of the mean DOY of forsythia flowering, mainly
attributed to topography in the study region. In the elevated
northeastern and southern parts of Bavaria flowering starts
much later than in other regions and early flowering primarily
takes place in the lower parts of northwestern Bavaria.
Although the yearly values from station to station as well as
the range from year to year are subject to strong fluctuations,
there is a significant negative trend in the mean annual onset
of flowering during the 1950–2013 period. On average, for-
sythia has bloomed about 1.8 days earlier per decade since
1950, i.e., more than 10 days in total (Fig. 2b).

To eliminate the given topographic effects between each
meteorological and phenological station pair as well as
among phenological stations, we transform all data sets
into anomalies. Daily meteorological data are converted
by subtracting the long-term daily mean of each station
from the original value. The annual phenological data are
converted by subtracting the long-term mean DOY of each
station from its annual DOYs. We consider all available
data for each station. When relating phenology to climate
by means of our statistical model, at least 30 data pairs are
required per station and the mean values used for con-
structing the anomalies are derived from the same years
available for climate predictors and phenological data.
These anomalies are robust to topographic effects
(Pollinger et al. 2017). The time scale of the meteorologi-
cal variables is adjusted to the annual phenological data by
means of accumulation over various intervals, testing three
different approaches: the first method uses the observed
DOY of each phenological station and year as last day of
the selected accumulation interval for the climate predic-
tors. This approach is the most data-adaptive one and re-
flects the genuine statistical relationships between climate
and phenology, but it cannot be applied to future periods
for which phenology is unknown. However, it can serve as
a reference for the two approximations considered here. To
approximate regionally adapted predictors, we define the
mean DOY of each station to be the endpoint of the accu-
mulation interval for any future period (second method).
For the third method, the mean value of the plant-phase-
combination (PPC) from all stations and years is used,
suppressing regional differences. The length of the accu-
mulation intervals is varied in 15-day steps between 15 and
120 days prior to the phenological DOY.

2.3 Methods

To explore and quantify the statistical relationship between
inter-annual variations in DOY and meteorological variables,
classical correlation analysis is employed as a first-step diag-
nosis. In addition, a cross-validated multiple regression model

Table 1 Correlation coefficients between input variables and the four
leading principal components as well as their eigenvalues and explained
variance. Coefficients above (below) 0.5 (− 0.5) are italicized

PC-Nr: 1 2 3 4

Mean air temperature (TM) − 0.97 0.20 − 0.08 − 0.08
Vapor pressure (DD) − 0.93 − 0.13 − 0.19 − 0.14
Cloudiness (NM) − 0.11 − 0.90 − 0.20 0.06

Air pressure at station altitude (PM) − 0.16 0.63 0.27 − 0.21
Relative humidity (RFM) 0.17 − 0.80 − 0.24 − 0.09
Mean wind velocity (FM) − 0.35 − 0.45 0.74 0.17

Maximal air temperature (TX) − 0.90 0.39 − 0.02 − 0.10
Minimal air temperature (TN) − 0.97 − 0.04 − 0.16 − 0.05
Temperature on the ground (TG) − 0.93 − 0.16 − 0.16 − 0.03
Maximal wind velocity (FX) − 0.44 − 0.46 0.69 0.14

Amount of precipitation (RR) − 0.15 − 0.73 0.14 − 0.22
Sunshine duration (SO) − 0.02 0.89 0.25 − 0.09
Snow depth (SH) 0.34 − 0.24 0.20 − 0.84

Eigenvalue 4.94 3.87 1.41 0.91

Cumulative explained variance (%) 38.01 67.77 78.62 85.59
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was tested to find the best statistical transfer function for pre-
diction (cf. Paeth 2011; Awoye et al. 2017). As this kind of
algorithms strongly depend on the sample and bare the risk of
overfitting triggered by the multi-collinearity between the pre-
dictors, a principal component analysis (PCA) is carried out
based on the correlationmatrix of the climate predictors. Since
the aim of creating a statistical model is to have high predict-
ability by using as few predictors as possible, one representa-
tive original variable is identified for each of the leading prin-
cipal components (PCs). Additionally, the reduced variable
space ensures a larger number of meteorological stations to
be used in the multiple regression model.

Besides the modeling approach using all available stations
across Bavaria, we test the potential of several spatial classi-
fication methods in order to apply the model to homogeneous
sub-regions. The underlying hypothesis is that statistical trans-
fer functions fitted to individual stations or smaller sub-

regions should outperform a generalized approach for the
whole study area. Such homogeneous sub-regions are built
by means of three alternative spatial classification methods:

1. A combined hierarchical cluster analysis with k-means
regroupment approach (e.g., Paeth et al. 2005) is ap-
plied to the selected long-term mean climate predictors
at each meteorological station (here: mean air temper-
ature, precipitation, mean wind velocity, snow depth).
The cluster analysis groups together those stations with
lowest Euclidian distance from each other, leading to
homogeneous sub-regions that distinctly differ from
other sub-regions.

2. Meteorological stations are grouped to sub-regions ac-
cording to elevation ranges.

3. Two existing and quite similar geographical classifica-
tions based on a set of natural landscapes occurring in

Fig. 1 Workflow of the complete
analysis from data preparation
with connecting both data sets
spatially and building anomalies,
choosing an accumulation
interval and getting an
approximation of the start value
of the accumulation interval,
selecting the suitable variables
and trying different
regionalization to get the resulting
model
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Bavaria are used: One from the Bavarian State Institute
for Environment (LfU) and one from the Bavarian
Institute for Forestry Seed and Plant Breeding (ASP)).

To restrict the statistical model to relevant climate pre-
dictors for the considered phenological phases, a cross-
validated multiple linear regression analysis is carried
out. Out of the total sample, 200 randomly selected data
pairs are excluded for the cross validation by means of
bootstrapping. The remaining sample is used to train the
regression model. This procedure is repeated over 1000

iterations, each time excluding a different random subsam-
ple. This leads to the mean characteristics and uncertainty
range of the statistical model. The statistical model is first
applied to the flowering date of forsythia and tested using
the different model setups and data preprocessing de-
scribed above. In total, the data of 106 forsythia stations
could be taken into account. The trained regression model
is then applied to future climate predictors from regional
climate projections under two emissions scenarios in order
to assess future changes in flowering dates. We also em-
ploy this method in terms of five other spring phases

Fig. 2 Interpolated (IDW) long-
term mean onset of flowering of
forsythia for 1950–2013 with the
location of the used meteorologi-
cal and phenological stations in
Bavaria and their nearest neigh-
bor relationship (a), spatial-mean
time series and range over all
Bavarian stations including the
number of observations per year
(b)
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(flowering of Syringa vulgaris , Cornus mas , and
Philadelphus coronarius as well as leaf sprouting and
flowering of Robinia pseudoacacia).

3 Results

3.1 Bivariate correlation

Figure 3 illustrates the strength and direction of the sta-
tistical relationships between all considered climate pre-
dictors and the flowering date of forsythia. For each me-
teorological predictor and each accumulation interval pri-
or to the flowering date, the figure shows one boxplot of
correlation coefficients calculated for all phenological sta-
tion across Bavaria. The negative correlations calculated
for all temperature variables point out that warmer periods
lead to an earlier flowering and colder periods to later
flowering. The closest correlation is found between daily
mean temperature (TM) anomalies and DOY. Mostly sig-
nificant correlation coefficients are also found for the oth-
er thermal predictors and the shorter accumulation inter-
vals of snow depth, whereas those of the non-thermal
predictors do not exceed the thresholds of statistical sig-
nificance (|r| = 0.35 for α = 5%) and even vary in sign.
Among the different accumulation intervals, the predictors
built over the 45-day period prior to DOY attain the stron-
gest correlation. Therefore, this accumulation interval is
chosen for the subsequent analyses.

3.2 Multiple regression

When combining the various climate predictors in a multiple
regression model, the multi-collinearity of the meteorological
variables has to be taken into account in order to restrict the
model to a minimum number of relevant predictors. The cor-
relation coefficients among all predictors are depicted in
Fig. 4. The inter-correlation is quite strong (|r| > 0.8) among
all thermal variables and, e.g., between air pressure and cloud-
iness considering the 45-day accumulation interval. Thus,
there is need to reduce the number of climate predictors. In
the first step, this is achieved via cross-validation of the mul-
tiple regression model. In the second step, the predictor set is
reduced by means of a principal component analysis.

In Fig. 5, we present results from multiple regression anal-
yses using different numbers of climate predictors accumu-
lated over a 45-day interval. The aim is to find a statistical
transfer function for the flowering of forsythia with as few
predictors as possible. In addition, three approaches for the
definition of DOYare considered: measured DOYper station
and year, long-term mean DOY per station, mean DOY over
all stations and years (see Sect. 2.2). The adjusted coefficient
of determination (R2) and the root mean square error (RMSE)
are shown on the left side as a function of amount of admitted
predictors. The right side presents the predictors selected as
being the most important ones depending on the predefined
total number of predictors. The final selection is marked by
the minimum RMSE after cross-validation and represents a
basic quality criterion of the statistical model, i.e., optimizing
its performance with as few predictor as possible. Using the

Fig. 3 Boxplots of correlation
coefficients between the
anomalies of onset of flowering of
forsythia and the anomalies of
climate predictors accumulated
over various intervals. Thresholds
of statistical significance are
marked as horizontal lines
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measured DOY (Fig. 5a), mean air temperature represents the
leading predictor, explaining 60% of the total variance. Any
additional predictor only slightly contributes to the explained
variance. When all variables are included in the regression
model, R2 is enhanced by no more than 2.3%. However, the
RMSE improves from around 13 days based on one predictor
to 8.6 days with all meteorological variables used in the mod-
el. The same performance, however, can be achieved using
only seven predictors. Consequently, the predictors added
afterward (e.g., vapor pressure, cloudiness and others) do
not provide additional information to the statistical model.
The method that uses the time- and site-specific measured
DOY reaches a higher R2 (approx. 8%) and a slightly smaller
RMSE for all numbers of predictors in the model than the
methods that approximate flowering data (Fig. 5a–c). It can
also be stated that the station-mean DOY approach (Fig. 5b)
has a 2% higher R2 than the method losing the individual
stations’ information (Fig. 5c). Thus, the method with most
stringent adaptation to the data achieves the best perfor-
mance, as to be expected.

The development of quality criteria, when adding new me-
teorological variables to the model, is the same in all three
DOYapproaches. In terms of the selected predictor combina-
tion for each method, it becomes apparent that the selections
per model step resemble each other (Fig. 5, right panels):
mean air temperature is the most important predictor in the
model. For the first and second method, the best model with
two variables is the one comprising mean and minimal tem-
perature, whereas for the third method, the combination of

mean wind velocity and maximum temperature is selected.
Figure 5 also indicates that if a meteorological variable is once
chosen as a predictor, it persists when the number of predictors
is increased, except for the model with eight meteorological
variables that is more disruptive. In addition, almost all cli-
mate predictors are statistically significant. This demonstrates
that the relationship between climate and phenology is quite
robust with respect to different DOY approaches, different
locations across Bavaria and different predictor sets. As the
predictive skill of the statistical models does not differ sub-
stantially among the three definitions of the flowering date,
the station-mean DOY approach is used for further analysis
because it allows for the application to future periods.

To reduce the multicollinearity of the meteorological var-
iables prior to the predictor selection by the cross-validated
multiple regression model, a principal component analysis
with all 13 input variables was performed. Table 1 shows
the correlation coefficients between each input variable and
the first four principal components (PCs). Coefficients above
(below) 0.5 (− 0.5) are highlighted. The first PC mainly
represents the thermal variables, all of which show very
close correlations. The second one can be interpreted as an
indicator of hygric variables, such as precipitation and rela-
tive humidity, while the third one stands for mean and max-
imum wind velocity and represents the atmospheric dynam-
ics, as, e.g., mirrored by the North Atlantic Oscillation. For
the fourth PC, only snow depth (SH) exceeds the threshold.
In the first four PCs, each meteorological input variable
exceeds the threshold only once, allowing for such a clear
physical interpretation of the PCs. Considering their eigen-
values (threshold given by Jolliffe 1972) and explained var-
iance, the leading four PCs account for 85.6% of the total
variance given by the 13 meteorological input variables.
Thus, the model dimension can be reduced from 13 to 4
predictors and still the main characteristics of Bavaria’s cli-
mate are retained. To build the four PCs, however, the data
of all 13 input variables are still required. To retain more
pairs of meteorological and phenological stations, a repre-
sentative variable for each PC was selected. This leads to the
following predictors for the best model approach: (1) mean
air temperature, (2) precipitation amount, (3) mean wind
velocity, and (4) snow depth (cf. Table 1). Precipitation
was selected because data for cloudiness, sunshine duration,
and relative humidity were not available for as many stations
as for precipitation. In addition, there is no noticeable differ-
ence between the results derived from cloudiness and pre-
cipitation (not shown). The integration of snow depth as
model predictor for forsythia is obvious because it affects
the local surface radiation balance and serves as storage of
moisture and heat on the ground. The effect of mean wind
velocity is less apparent. The use of wind as a predictor for
phenology can be justified by the effect of wind in terms of
wind chill and evapotranspiration and as an expression of

Fig. 4 Correlation matrix of the climate predictors accumulated over
45 days before the flowering date of forsythia. For acronyms of
variables, refer to Table 1
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large-scale modes of variability like the North Atlantic
Oscillation. In addition, mean wind velocity was also found
to be one of the leading climate predictors in Fig. 5 (right
panels). To approve this selection, we performed another
model run without wind as predictor for forsythia and
achieved an 11% lower R2 and a 1-day larger RMSE.
Therefore, the final statistical model is based on all four

predictors. Considering the whole study area of Bavaria,
the multiple regression model with these four predictors ac-
cumulated over 45 days and using the station-mean DOY
approach achieved an R2 of 51.9% and an RMSE of 9.4 days
(Table 2, top row). Note that using the four leading PCs as
predictors did not improve these values, although all 13
variables are included to build the PCs.

Fig. 5 Total explained variance and standard error of the multiple
regression model for different admitted numbers of climate predictors
accumulated over 45 days (left) and the leading predictors selected by
each of these models with the rows referring to different upper limits of

admitted predictors (right), as observed per individual station and year
(top), using each stations’meanDOY (middle), and using the meanDOY
over Bavaria (bottom). For acronyms of variables, refer to Table 1
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3.3 Regional models

In the next step, we attempt to enhance the model’s skill by
subdividing the study area in order to tailor the model to spe-
cific landscapes, altitudinal belts and climate subzones. The
tested regional models achieve a rather similar performance
with the RMSE varying by no more than 0.11 days. As the
geographical classification of natural landscapes from LfU
performs slightly better than the other regional classifications,
its RMSE is illustrated in Fig. 6b and compared with the
model derived from all Bavarian stations (Fig. 6a).
Considering geologic, morphologic, hydrologic and climatic
criteria as well as land-use properties, 18 different natural
landscapes are classified for Bavaria (Ssymank 1994;
Bayerisches Landesamt für Umwelt 2016). For those classes
containing more than 30 data points, RMSE and R2 are listed
in Table 2. The table and map reveal that the quality criteria
vary considerably from class to class. Class 17, i.e., a low
mountain range in the southwest of Bavaria, has a relatively
poor performance with R2 being below 36% and an RMSE of
about 17 days. Classes 5 and 12 in the northwestern and
northeastern parts of Bavaria exceed an R2 of 70%.

The mean R2 and RMSE of all sub-regions are 58.3% and
9.9 days, respectively. Compared with the Bavarian model
without regionalization, this implies that R2 is about 6%

higher in the LfU classification approach, whereas the
RMSE is about 0.5 days lower in the Bavarian model
(Table 2). However, comparing the mean RMSE per station,
the regional model has an RMSE average of 8.61 and the
Bavarian model of 8.72 days per station. The main difference
between the spatial RMSE patterns in Fig. 6 is located in the
northeast and results from one missing station in the regional
statistical model because there is insufficient data for this land-
scape class to derive the statistical transfer function. Figure 6
also shows that the interpolated station RMSE has two
‘hotspots’: in the southwest of Bavaria, a few stations have a
mean error of more than 2 weeks. The station with the highest
mean RMSE of 24 days, however, is located in the north of the
study area near the city of Bamberg. Note that several stations
nearby have prediction errors of less than 8 days. Apparently,
prediction quality is strongly affected by the quality of indi-
vidual station data but relatively independent of spatial pat-
terns or regional classes.

After testing, analyzing and comparing all different statis-
tical model approaches, we chose the one with the station-
mean DOY, the accumulation interval of 45 days, the four
predictors derived from PCA as mentioned above and based
on the LfU landscape classification as the best tool and apply
this model to all forsythia stations as well as to other indicator
plants, leading to specific statistical transfer functions for each

Table 2 RMSE and R2 for the Bavarian model (first row) and each class of the regional model. Classes containing less than 30 records are not taken
into account in the multiple regression analysis

Number of observations RMSE (in days) R2

Bavarian model 9.4 51.9%

Regional model ID Landscape class

1 Vogtland 24

2 East Hesse Highlands. Vogelsberg and Rhön Mountains 0

3 Thuringian-Franconian Highlands 145 9.6 46.9%.

4 Upper Rhine Plain and Rhine Main Plain 0

5 Forest of Odes. Spessart and southern Rhön Mountains 63 9.4 71.2%.

6 Main Franconian Plateau 325 8.1 65.4%.

7 Gäu Plateaus 0

8 Swabian Keuper-Lias Plains 0

9 Franconian Keuper-Lias Plains 410 9.8 53.7%.

10 Swabian Jura 0

11 Franconian Jura 263 7.3 67.1%.

12 Upper Palatine-Upper Main Hills 83 9.2 71.2%.

13 Upper Palatine Forest and Bavarian Forest 194 8.2 60.9%.

14 Iller-Lech Plateau 86 8.4 69.3%.

15 Lower Bavarian Upland and Isar-Inn Upland 531 8.3 57.6%.

16 Pre-Alpine Moorland and Upland 414 12.2 42.6%.

17 Swabian Upper Bavarian Alpine foothills 66 17.5 35.8%.

18 Northern Limestone Alps 156 10.6 57.7%.

mean of all classes 9.92 58.3%
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plant. The aim of applying the model to other plants is to test
the hypothesis that our statistical model is sufficiently robust
and universal to yield reliable results for other plants apart
from the one the model is optimized for. Thus, a low R2 and

high RMSE arising from this approach does not necessarily
imply a missing link between climate and phenology, but may
point to the fact that other climate predictors and accumulation
intervals are relevant to the specific plant. The results for all
considered indicator plants are summarized in Table 3.
Besides average and standard deviation of the measured
DOY for each PPC, Table 3 shows the mean R2 and RMSE
per station. Out of the six considered PPCs, flowering of for-
sythia achieves the highest R2. Syringa vulgaris and Cornus
mas, whose mean flowering date resembles the one from for-
sythia, follow with an R2 of 41.5% and 39.2%, respectively. In
contrast, the selected four climate predictors barely affect the
flowering of Philadelphus coronarius and the flowering and
leaf sprouting of Robinia pseudoacacia. Regarding the mean
RMSE, the value for Syringa vulgaris with 6.6 days and for
Robinia pseudoacacia with 7.8 days is even better than for
forsythia. It is important to note that all prediction errors are
substantially smaller than the observed year-to-year standard
deviation of DOY. This implies that the multiple regression
model provides some gain of information for every considered
plant’s DOY. Due to the relatively low R2, the PPCs of
Philadelphus coronarius and Robinia pseudoacacia are not
considered for the subsequent analysis.

3.4 Future changes in phenology

In the last step, the future development of the flowering dates
of forsythia, Syringa vulgaris and Cornus mas are assessed
until the end of the twenty-first century based on meteorolog-
ical predictors taken from REMO RCP 4.5 and RCP 8.5 data.
The observed and simulated time series of the spatial mean
DOYof forsythia flowering show remarkable similarities with
respect to the mean, variability, and trend until 2013 and the
negative trend of the flowering date goes on until the year
2100 (Fig. 7). Compared with the mean onset of flowering
in the reference period (101st DOY), flowering will start sub-
stantially earlier under the RCP 4.5 and RCP 8.5 scenarios,
23 days on average during the 2071–2100 period in the

Fig. 6 Interpolated (IDW) mean RMSE in days per station for the
Bavarian model (a) and for the regional model based on the LfU’s land-
scape classification (landscape class numbers as in Table 2) (b). Note that
the number of stations is smaller than in Fig. 1 due to the predictor
selection criteria

Table 3 Comparison of the
RMSE and the R2 for different
indicator plants and phenological
phases, using the best statistical
model approach (see text). The
number of stations refers to the
phenological stations that fulfill
the selection criteria described in
the text

Forsythia
suspensa

Philadelphus
coronarius

Syringa
vulgaris

Cornus
mas

Robinia pseudoacacia

Phase Flowering Flowering Flowering Flowering Leaf
sprouting

Flowering

Number of stations 106 81 112 85 75 86

Number of records 3279 1438 3563 1978 1299 2042

Mean DOY 98 164 133 91 138 153

Standard deviation
of DOY

15.07 14.83 11.04 22.19 13.04 13.03

Mean R2 58.29% 18.48% 41.46% 39.24% 17.23% 34.72%

Mean RMSE per
station (in days)

8.16 9.81 6.59 12.10 8.52 7.81
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business-as-usual scenario. In Fig. 8a, the differences between
consecutive future 30-year mean flowering dates of forsythia
and the reference period are mapped. In both scenarios,
flowering begins continuously earlier everywhere in Bavaria
when greenhouse gases increase over the twenty-first century.
The few positive values in North-Eastern Bavaria during the

first 30-year period under RCP 4.5 scenario result from the
occasionally wetter and cooler years in this area simulated by
the climate model. However, going further into the future the
model output becomes nearly a function of temperature be-
cause rapidly rising temperature overcompensates any poten-
tially counteracting effects. The RCP 8.5 scenario reaches a
flowering state exactly 30-year period earlier than the RCP 4.5
scenario. The spatial differences of future flowering changes
in different regions across Bavaria is striking. Strongest
changes are found for northwestern Bavaria. Here, forsythia
is predicted to flower up to 25 days earlier compared with the
reference period 1961–1990.

The extent and spatial characteristics of future phenological
changes also depend on the considered PPC (Fig. 8b). While
the temporal shift of Syringa vulgaris is lower, ranging from 5
to a maximum of 15 days, Cornus mas resembles the climate
change signal of forsythia with 10 tomore than 20 days earlier.
Regarding the most affected regions, the southwestern part of
Bavaria and isolated stations in the southernmost part along
the northern Alps must be mentioned for Syringa vulgaris and
the upper middle part of Bavaria (Middle Franconia) for
Cornus mas.

4 Discussion

The present study is dedicated to climate-driven phenological
changes in Bavaria, southern Germany. Among various PPCs
available on behalf of the observational data, we mainly focus
on the flowering of forsythia because of its well-known link to
temperature. In a study by Henniges and Chmielewski (2006),
forsythia flourished about 2 days earlier in the urban area of
Berlin than in the surrounding rural area. Franken (1955) and
Bernhofer (1991) found even greater temporal differences be-
tween urban and non-urban areas around other cities. This also
holds for other plants and phenological phases (Rötzer et al.
2000; Jochner et al. 2012). The effect of earlier spring phases
in cities is mainly attributed to higher temperatures caused by
the urban heat island effect (Lakatos and Gulyás 2003; Neil
and Wu 2006).

Fig. 8 Differences between future 30-year means of flowering date under
RCP4.5 (left) and RCP8.5 (right) scenario and the reference period 1961–
1990 for forsythia (a) and for Syringa vulgaris and Cornus mas (b)

Fig. 7 Observed and simulated
time series of the spatial-mean
flowering date of forsythia in
Bavaria from 1950 to 2100
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Other authors accumulate the absolute values of tempera-
ture over several months and/or divide their study region into
smaller areas with similar natural landscapes to better fit their
model to topographic or other landscape characteristics (e.g.,
Chmielewski and Rötzer 2001; Schröder et al. 2006; Larcher
2007; Kolodziej and Frühauf 2008; Scheffler and Frühauf
2012). Here, we demonstrate that it is possible to develop
statistical transfer functions between climate and phenology
based on data from many different sites by using climate pre-
dictors in the form of anomalies (cf. Stöckli and Vidale 2004).
The main objective of our statistical model is to predict the
changes in phenology and not to forecast the absolute value.
Therefore, spatial differences at station locations can be dealt
with by one single model that, hence, refers to a much larger
sample of data pairs. As a consequence, PPCs with lower data
coverage can be treated as well when it comes to the assess-
ment of future phenological changes at the regional scale.

Yet, some limitations of our modeling approach must be
discussed: the first strong assumption that had to be made is
the spatial interpolation of the meteorological data. The
threshold of 20 km that limits the maximum distance between
two stations could be reduced to bound the phenological sta-
tions closer to their local climate. Unfortunately, data coverage
did not allow for a shorter distance between meteorological
and phenological stations, even in the light of the high data
amount in Germany. In order to address the sensitivity of our
results to the interpolation method, we also tested the inverse-
distance weighted interpolation, but the resulting correlations
were much lower for all variables and intervals than for NN.
Note, that for the large set of meteorological variables required
for our analysis over a long data period no alternative gridded
data set or high-resolution reanalysis is available.

The length of the accumulation interval was optimized in
our study by systematic testing. It was implicitly assumed that
the plants’ chilling needs are generally fulfilled at the given
DOY. While for the flowering of forsythia the 45-day interval
reaches the best model performance, this interval probably
differs for other plants and phases. Individual intervals for
each PPC might improve the individual results, but contradict
our aim of a general and transferable model approach.
Another approximation that had to be made was the definition
of the start value of the accumulation interval. Here, the
station-mean DOY was used and achieved reliable results
compared with the measured DOY for each station and year.
An iterative approach would be another possibility to approx-
imate the DOY for future periods when the DOY is not ob-
served. However, this is approach is computationally expen-
sive, and it is not evident that a convergent solution can be
found for every station.

The chosen 45-day interval was also successfully used in
other empirical modeling studies (see Sect. 1): plant develop-
ment and productivity seem to be driven by longer-term
anomalies from the local mean of temperature, precipitation,

wind, and snow depth. These meteorological boundary con-
ditions influence plants as follows: temperature controls the
rate of chemical processes in plants (Hatfield and Prueger
2015). Precipitation supplies the required water and, hence,
reflects the water-stress conditions for the plant. This stress
can be intensified by enhanced evapotranspiration caused by
wind. Furthermore, wind can affect plants by means of me-
chanical movement and by changing leaf gas and heat ex-
change (Onoda and Anten 2011). It is also related to the
North Atlantic Oscillation that is known for its effect on
European phenology (Chmielewski and Rötzer 2001). Snow
can protect plants from frost and provides moisture as it melts.
Its depth also limits the sunlight a plant is receiving and,
therefore, limits its photosynthesis.

In our study, the consideration of different regional models
has demonstrated that the prediction error depends more on
the station than on the regionalization. The overarching
Bavarian model had almost the same quality in reproducing
phenology as the regional models. The significant differences
in prediction errors at the stations could be explained either by
varying quality of the phenological data or additional factors
like exposition, slope or land use-related anthropogenic influ-
ences that were not explicitly considered in this study.

Addressing a similar issue, Pollinger et al. (2017) showed
that results from climate-phenology models based on different
linear and nonlinear regression methods strongly resemble
each other. Thus, choosing ordinary least square regression
seems appropriate for this purpose. Other factors that were
not available for this study but may affect phenology are glob-
al radiation, more specifically photosynthetic active radiation
that provides the energy for photosynthesis (Neil and Wu
2006), and soil parameters. However, there is still a contro-
versy whether and how these parameters influence plant de-
velopment (McMaster and Wilhelm 1998; Repo et al. 2004;
Apostol et al. 2007; Kolbe and Kaiser-Weiss 2015).

More generally, the quality of the phenological data must
be scrutinized. Collected by volunteers, they depend on the
conscientiousness and subjective perception of the observers
who might interpret the phase definition differently. Larcher
(2007) quantified the typical error generated by observers to
±2–3 days. Schaber and Badeck (2002) even estimate the error
to be as high as 1 to 2 weeks. On the other hand, Baumgartner
(1952) showed that phenology could exhibit a very large spa-
tial variability over short distances and under similar boundary
conditions (topography, meteorology, nutrient supply, age,
breed of plant species). However, given the large sample size
in our study, such site- and plant-specific variations should
play a minor role. In fact, the performance of our model ap-
proach is quite good: every model setting led to an RMSE
substantially smaller than the year-to-year standard deviation
of DOY.

With the earlier onset of spring phases that can already be
observed and will further aggravate into the twenty-first
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century the risk of plant damages due to late frost might in-
crease despite a warming climate. While altogether a decline
in frost days is expected, late frost days might not shift for-
ward. Consequently, there is an increasing risk for blossoms
and other growing stages until the year 2100 (cf. Bernhofer
et al. 2011; IPCC 2013). This process might partly be
counteracted by light-dependent plant mechanisms that have
a demonstrable influence on phenology in spring (Linkosalo
et al. 2000).

5 Conclusions

This study presents a robust statistical-dynamical modeling
approach for computing present-day and future changes in
phenology across Bavaria, southern Germany, by means of a
set of significant climate predictors. All tested statistical mod-
el approaches generate satisfactory results in predicting phe-
nology. It was found that reducing the number of meteorolog-
ical predictors deteriorates the quality of prediction only to a
minor extent but improves the statistical properties of the
model. In addition, the regionalization of the model had no
major impact on its performance, so this method is transfer-
able to other regions. The main outcome of a negative pheno-
logical trend towards earlier onset dates during the twenty-first
century is consistent with many previous studies (see Sects. 1
and 4). The advantage of our approach is its universal appli-
cability. The model requires neither long time series nor an
abundant set of meteorological variables. Using anomalies
instead of absolute values allows for integrating station data
from different elevations and landscapes into the same statis-
tical model, enhancing the sample and making the model
more robust. Therefore, we see a large potential for applica-
tions to various PPCs in other climate zones, taking our model
as a tool to assess the link between shifting climate and veg-
etation zones all around the globe.
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