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Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in
capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-D-glucose
cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of D-glucose across the blood-brain barrier and
delivery of D-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands
in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and
proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on
experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their
cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and
SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are com-
piled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional
changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus,
Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1.
Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy defi-
ciency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter
expression that influence clinical outcome.
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AA Ascorbic acid
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AβP Amyloid beta-peptide
AMG α-Methyl-D-glucoside
AMPK AMP-activated protein kinase
APP Amyloid precursor protein
ARH Hypothalamic arcuate nucleus
BBB Blood-brain barrier
BCCAO Bilateral common carotic artery occlusion
CCI Controlled cortical impact
CHI Closed head injury

CGN Cerebellar granule neuron
2DOG 2-Deoxy-D-glucose
DIO Diet-induced obesity
DMH Dorsomedial hypothalamus
EGP Endogenous glucose production
ER Endoplasmic reticulum
FDOG 2-Fluoro-2-deoxy-D-glucose
FDOG-6-P FDOG phosphorylated in position 6
FPI Fluid percussion injury
GABA γ-Aminobutyric acid
GE D-Glucose-exitated
GI D-Glucose-inhibited
GK Glucokinase
GlcNAc N-Acetylglucosamine
GLUT1-DS GLUT1 deficiency syndrome
HA Heat acclimation
HBSP Hexosamine biosynthetic pathway
HFD High-fat diet
HIF Heat inducible factor
HSP Heat shock protein
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i.c.v. Intracerebroventricular
IGF Insulin growth factor
IGTT Intraperitoneal glucose tolerance test
ITT Insulin tolerance test
K2P Two-pore-domain potassium
LHA Lateral hypothalamic area
MCA Medial cerebral artery
MCAO Medial cerebral artery occlusion
ME Median eminence
NFT Neurofibrillar tangle
OGA O-GlcNAcase
OGT O-GlcNAc transferase
3OMD 3-O-Methyl-D-glucose
PD Parkinson’s disease
PET Positron emission tomography
ROS Reactive oxygen species
SA Spontaneous alteration
SNV Single-nucleotide variant
SP Senile plaque
STZ Streptozotocin
TBI Traumatic brain injury
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
UDP-GlcNAc uridine

5′-diphosphate-N-acetylglucosamine
VDCC Voltage-dependent Ca2+ channel
VMH Ventromedial hypothalamic nucleus
ZDF Zucker diabetic fatty

Introduction

Glucose transporters in brain play pivotal roles in various
brain functions in health and disease. The high energy demand
of neurons is mainly covered by D-glucose supply with the
blood that is accomplished by glucose transporters in capil-
laries and brain cells. In addition to energy supply during
neurotransmission, cerebral glucose transporters are critically
involved in sensing of glucose concentrations in blood, cere-
brospinal fluid (CSF), and brain interstitium promoting central
nervous and whole-body regulatory processes. Glucose trans-
port across the blood-brain barrier (BBB) and across plasma
membranes of neurons and glial cells is precisely regulated.
This is necessary because energy demand changes in response
to brain activity. In addition, the delivery of D-glucose to brain
is not constant and changes due to alterations in blood glucose
concentration and in blood pressure. Various diseases are as-
sociated with, aggravated by, and/or caused by impairment of
central nervous supply with oxygen and/or glucose. Examples
include diabetes mellitus, Parkinson’s disease (PD), stroke,
and traumatic brain injury (TBI). In brain, facilitative diffu-
sion transporters belonging to the SLC2 family including the
transporters GLUT1, GLUT2, GLUT3, and GLUT4, and

Na+-D-glucose cotransporters belonging to the SLC5 family
including SGLT1 have been detected. In this review, an at-
tempt is made to provide a comprehensible overview of the
current knowledge about functions of glucose transporters in
brain. First, the functional properties and substrate selectivities
of human glucose transporters expressed in brain are reviewed
and the locations of glucose transporters in brain are de-
scribed. Because only few data about cerebral locations of
glucose transporters in human are available, the described
locations are mostly derived from studies in rodents. In the
second chapter, the roles of glucose transporters in central
nervous regulation of glucose homeostasis are discussed.
This includes the sites of glucose sensing in brain and the
central regulation of insulin and glucagon secretion. Like in
the previous and the following chapter, most of the reported
insights are derived from studies with rodents. The third chap-
ter deals with various types of regulations of glucose trans-
porters in response to energy demands. This includes short-
term regulations of glucose transporters in different cerebral
cells and regions during learning and exercise. In the fourth
and fifth chapters, associations of diabetes and Alzheimer’s
disease (AD) with changed expression and functions of glu-
cose transporters in brain and with intellectual impairments
are reported. Two hypotheses concerning the pathogenesis
of AD that complement each other are outlined. In addition,
data are reported suggesting that downregulation of GLUT1
and GLUT3 leading to a decrease of the D-glucose concentra-
tion in neurons represents an early event during the pathogen-
esis of AD. In the next chapter, GLUT1 deficiency syndrome
(GLUT1-DS) is described. In the last two chapters, the chang-
es of cerebral glucose transporters during stroke and traumatic
brain injury (TBI) are reported and the impact of glucose
transporters on clinical outcome of these devastating events
is discussed. A detailed list of references is provided to allow
in-depth reading.

Locations and functional properties
of glucose transporters expressed in brain

Overview

About 20% of ingested D-glucose is consumed by human
brain [278]. To enter brain interstitium or brain ventricles, D-
glucose must pass the blood-brain barrier (BBB) (Fig. 1), the
barrier between choroid plexus and cerebrospinal fluid (CSF)
in brain ventricles, the barrier between brain interstitium and
brain ventricles, or the barrier between circumventricular or-
gans (CVOs) and brain ventricles (Fig. 2) [7, 333]. The BBB
is formed by endothelial cells that are connected through tight
junctions (Fig. 1) [44]. The barrier between blood and CSF in
the choroid plexus is formed by tight junction-connected ep-
ithelial cells (Fig. 2) [44]. The barrier between brain
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interstitium and CSF is formed by ependymal cells lining
brain ventricles that are also connected by tight junctions,
and the barrier between blood and CSF at CVOs is formed
by tanycytes (Fig. 2) [333]. CVOs contain leaky capillaries.
They include the subfornical organ, the area postrema, the
vascular organ of the lamina terminalis, and the median emi-
nence (ME) [106]. Because hydrophilic compounds like D-
glucose cannot transverse tight junctions and need trans-
porters to cross plasma membranes, glucose transporters are
expressed in luminal and abluminal plasma membrane of cap-
illary endothelial cells, plasma membranes of epithelial cells
covering the choroid plexus, and plasma membranes of
ependymal cells and tanycytes. To allow uptake of D-
glucose into brain cells, glucose transporters are also
expressed in neurons, astrocytes, oligodendroglial cells,
and microglial cells.

The glucose transporters expressed in brain belong to SLC2
transporter family containing GLUT-type facilitated diffusion
transporters and the SLC5 family containing SGLT-type Na+-
D-glucose cotransporters (Table 1). To fulfill different require-
ments such as optimal transport efficacies at different glucose
concentrations and physiological demands, different types of
glucose transporters are expressed in different brain areas and
cells (Tables 2 and 3). Collaborative functions of glucose

transporters in the BBB, glial cells, and neurons are involved
in maintenance of energy supply to neurons.

Translocation of D-glucose across the BBB is mainly me-
diated by the high-affinity transporter GLUT1 that is highly
expressed in the luminal and abluminal membranes of the
endothelial cells (Fig. 1). In small brain vessels, additional
glucose transporters were observed such as Glut3 and Glut4
and the Na+-D-glucose cotransporter Sglt1 (Table 3). These
transporters may serve specific local functions. The driving
force for facilitative diffusion of D-glucose across the BBB
by the GLUT transporters is provided by the concentration
gradient between D-glucose in blood and brain interstitium.
Between meals, the D-glucose concentration in the blood is
4–6 mM whereas the D-glucose concentration in brain inter-
stitium is only 1–2 mM [319]. The glucose concentration gra-
dient between blood and brain interstitium is supposed to be
generated and sustained by uptake of D-glucose into astrocytes
and neurons, and metabolic degradation of D-glucose in these
cells. SGLT1/Sglt1-mediated uptake from brain interstitium
into the capillary endothelial cells may contribute (Fig. 1).

Similar to endothelial cells in the BBB, the high-affinity
GLUT1 transporter is highly expressed in dendritic end-feet of
astrocytes that enwrap brain capillaries and are connected by
permeable gap junctions [7] (Fig. 1). In addition, expression

Fig. 1 Schematic depiction of a
brain capillary, an associated
astrocyte, and an interacting
neuron with the most relevant
glucose transporters. Capillary
endothelial cells that are
connected by tight junctions form
the blood-brain barrier. In the in-
sets, glucose transporters are
depicted that mediate D-glucose
transport across the indicated
membranes. The main direction
of D-glucose translocation is
shown by red arrows.
Transporters are denoted by capi-
tal letters when their locations
were described in humans and
rodents. Lowercase letters were
used when the transporter loca-
tions were only described in
rodents
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of low-affinity Glut2, Glut3, and insulin-dependent Glut4 in
astrocytes has been observed (Table 2). The biggest part of D-
glucose leaving the capillary endothelial cells is supposed to
enter the end-feet of astrocytes where it may bemetabolized to
L-lactate or leave astrocyte processes close to neurons. A
smaller fraction of D-glucose leaving the endothelial cells is
supposed to enter the interstitial space directly. D-Glucose
uptake into neurons is mainly mediated by GLUT3, a high-
affinity glucose transporter that operates with high efficacy
(Fig. 1, Table 1). Additional transporters may participate in
D-glucose uptake into neurons that are critical for special func-
tions in specific brain areas and/or under specific physiologi-
cal or pathophysiological conditions (Table 2). For example,
neuronal expression of Glut2 and Glut4 has been described in
hypothalamic nuclei where these transporters are involved in
central regulations of glucohomeostasis, food intake, and/or
energy balance. SGLT1 which is ubiquitously expressed in
neurons may be important for glucose uptake under hypogly-
cemic and hypoxemic conditions.

D-Glucose taken up by neurons enters glycolysis and is
further metabolized by oxidative phosphorylation (Fig. 3).
However, energy delivery to neurons may be also accom-
plished by uptake of L-lactate that is supplied by astocytes or
directly by the blood during ketogenic metabolism (Fig. 3)
[394]. L-Lactate leaves the astrocytes via the monocarboxylate
transporter MCT2 and enters neurons via MCT2 [31, 138,
337]. The role of D-glucose uptake into astrocytes followed
by the astrocyte-lactate-neuron shuttle versus direct uptake of
D-glucose into neurons under normal physiological conditions
is controversially discussed [28, 250, 251, 324]. However,
there is an agreement that in case of insufficient supply with
D-glucose or upon nutrition with ketogenic diet, L-lactate in
the blood may become essential for central nervous energy
supply. L-Lactate can enter and leave brain capillaries via
MCT1 in the luminal and abluminal membrane of the endo-
thelial cells [229, 319].

Table 1 Apparent Km values [mM] of trans-zero D-glucose uptake by human glucose transporters that are expressed in brain

Transporter D-Glucose D-Galactose D-Fructose 2-Deoxy-
glucose

3-O-
Methyl-
glucose

Reference

GLUT1 0.7–3.2 tr. no tr. 6.9 1.4 [49, 362, 438, 439, 442]

GLUT2 17–20 86 67 11, 17 17 [49, 72, 144, 193, 407]

GLUT3 ~ 1.5 8.5 no tr. 1.4, 1.8 10.6 [49, 72, 143, 144, 400]

GLUT4 12.6 tr. no tr. 4.6 4.3 [49, 297, 439, 442]

GLUT5 not t. for tr. not te. 6 tr. not te. [50, 198, 203]

GLUT6 tr. not te. not te. tr. not te. [53, 103]

GLUT8 tr. i., not te. for tr. i., not te. for tr. 2.4 not te. [104, 178]

SGLT1 0.5 1 no tr. > 100 > 100 [446]

SGLT2 5 > 100 > 100. not te. not te. [446]

tr. transport, no tr. no transport, i. inhibition, not te. for tr. not tested for transport, not te. not tested

Fig. 2 Barriers between blood and CSF and between brain interstitium
and CSF containing glucose transporters. A barrier between blood in the
choroid plexus and CSF in brain ventricles is formed by epithelial cells
covering the choroid plexus. Tanycytes form a barrier between blood in
CVOs and CSF in brain ventricles. A barrier between brain interstitium
and CSF is formed by ependymal cells including tanycytes that line brain
ventricular walls. Tight junctions are indicated in red. Different
concentrations of D-glucose in the compartments are indicated by the
density of gray dots
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In the following parts of this chapter, the basic transport
characteristics of the human glucose transporters expressed in
brain are reviewed. In addition, the cerebral locations of glu-
cose transporters determined in humans and/or rodents are
reported and their presumed cerebral functions are compiled.

GLUT1

Human GLUT1 transports D-glucose, D-galactose, D-glucos-
amine, and the glucose analogs 2-deoxy-D-glucose (2DOG)
and 3-O-methyl-D-glucose (3OMG) (Table 1). For uptake of
D-glucose and 3OMG by GLUT1 measured in the absence of
initial intracellular substrate (trans-zero uptake), Km values
between 0.7 and 3.2 were determined. For trans-zero uptake
of 2DOG a Km value of 6.9 mM was measured. GLUT1 also
accepts dehydroascorbic acid as substrate [1, 204, 362, 424].
In addition, evidence was provided that human GLUT1

facilitates uptake of water and trivalent arsenicals via a trans-
location pathway different to D-glucose [124, 182, 192, 235].

In various species, GLUT1/Glut1 is abundantly expressed in
endothelial cells of the BBB exhibiting different expression
levels in different brain regions (Table 3) [40, 77, 155, 426,
427]. In brain of humans and primates, capillaries with high
and low expression of GLUT1 were distinguished [76–78].
GLUT1 in small brain vessels isolated from pig and dog was
highly glycosylated and appeared in SDS polyacrylamide gels as
55 kDa polypeptide like in human erythrocytes [94, 134, 201,
380]. In the BBB, the 55 kDa GLUT1 polypeptide was localized
to the luminal membrane, the cytosol, and the abluminal mem-
brane of capillary endothelial cells. Studies on isolated luminal
and abluminal membranes of endothelial cells from bovine brain
vessels revealed that GLUT1 in the luminalmembranewas high-
ly phosphorylated whereas GLUT1 in the abluminal membrane
showed minor phosphorylation [93]. Employing different anti-
bodies for electronmicroscopic immune detection of GLUT1/
Glut1 in different species, diverging results concerning the abun-
dance of GLUT1/Glut1 in the luminal versus the abluminal
membrane of capillary endothelial cells were reported [75, 120,
134, 380, 385]. However, comparing D-glucose equilibrium ex-
change in vesicles of luminal and abluminal membranes of cap-
illary endothelial cells from bovine brain and binding of cytocha-
lasin B to isolated luminal and abluminal membranes, transport
and binding was about twofold higher in the luminal compared
to the abluminal membrane [380]. This result was confirmed by
proteomic analysis [217]. In human brain vessels, endothelial
cells with high and low expression ofGLUT1were distinguished
by immunogold electron microscopy [74, 78]. The 55 kDa iso-
form of Glut1 was also localized to the basolateral membrane of
epithelial cells in the choroid plexus of rat, mouse, and rabbit [39,
102, 107, 155]. Abundant expression of non-glycosylated
GLUT1/Glut1 with an apparent molecular mass of 45 kDa was
observed in astrocyte of human, monkey, and rat where it was
located to end-feet surrounding capillaries, dendrites close to
neurons, and astrocyte cell bodies (Fig. 1) [228, 282, 458].
Glut1-mediated glucose uptake into cultured astrocyteswas stim-
ulated by glutamate suggesting that astrocytes participate in met-
abolic upregulation during neuronal activity [331]. In rodents,
expression of Glut1 was also observed in oligodendrocytes, mi-
croglia, neurons, ependymal cells, and tanycytes [131, 155, 218,
245, 247, 319, 433, 458].

The abundant expression of GLUT1/Glut1 in capillary en-
dothelial cells and end-feet of astrocytes indicates that this
transporter is of major relevance for the transfer of D-glucose
across the BBB and into astrocytes.

GLUT2

Human GLUT2 is a low-affinity glucose transporter with ap-
parent Km values for trans-zero uptake of 17–20 mM for D-
glucose, 86 mM for D-galactose, and 67 mM for D-fructose

Fig. 3 Role of astrocytes for transfer of D-glucose and L-lactate from
blood to nerve cells supplying energy in the form of ATP. During
hypoglycemia or nutrition through a ketogenic diet, energy may be
derived from L-lactate supplied with the blood. L-Lactate may be also
generated by astrocytes and contribute to neuronal energy supply under
normal conditions as proposed by the astrocyte-lactate-neuron shuttle
hypothesis. MCT1 monocarboxylate transporter 1, MCT2 monocarbox-
ylate transporter 2
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(Table 1). For uptake of 2DOGand 3OMG, similarKm values as
for D-glucose uptake were reported. GLUT2 also functions as a
glucose receptor that triggers glucose-dependent upregulation of
GLUT2 expression via its large intracellular loop [152, 390].
After overexpression of the large intracellular loop of rat Glut2
in mice, D-glucose-induced upregulation of Glut2 expression
was blunted and food uptake was increased. In this transgenic
mouse, D-glucose-induced activation of c-Fos in the hypothalam-
ic arcuate nucleus (ARH) was defective and the abundance of
orexin mRNA in hypothalamus was increased.

GLUT2 is abundantly expressed in hepatocytes but also
expressed in pancreatic β cells and brain. In pancreatic β cells,
GLUT2 serves as sensor for blood glucose in combination with
the pancreatic glucokinase (GK) and an ATP-dependent K+

channel [399]. In brain of rodents, expression of Glut2 was de-
tected in thalamic nuclei, in hypothalamic nuclei including the
ARH, in nuclei of the brain stem including the nucleus of the
tractus solitarius and the vagal motor nucleus, and in hippocam-
pus [12, 24, 230]. In addition, Glut2was observed inCVOs [258,
294]. Glut2 is expressed in neurons, astrocytes, oligodendro-
cytes, ependymal cells, and tanycytes (Tables 2 and 3) [12, 13,
24, 83, 132, 230, 245, 258, 294].

Glut2 is supposed to be involved in regulation of food and
glucose intake and in the central nervous regulation of glucose
homeostasis. When cerebral expression of Glut2 in rats was re-
duced by injection of antisense oligonucleotides into the third
brain ventricle, food intake was decreased [430]. In addition,
the increase of food intake observed after injection of 2DOG into
the third ventricle was blunted when the cerebral expression of
Glut2 had been reduced by antisense technology. Similar effects
of cerebral removal of Glut2 on food intake were observed in
mice. In Glut2 knockout mice in which expression of Glut2 in
pancreatic β cells was rescued by expression of rat Glut1, food
intake was smaller than in wildtype mice [20]. Moreover, the
effects of intracerebroventricular (i.c.v.) injection of D-glucose
or 2DOG to decrease or increase food intake, respectively, were
blunted in the knockout mice. In the knockout mice, also gluca-
gon secretion in response to glucodeprivation induced by i.c.v.
injection of 2DOG was blunted [259]. Glucagon secretion was
restored when Glut2 expression in glial cells was recovered by
transgenesis. A study with two Canadien populations suggests
that also in human, GLUT2 is involved in central nervous control
of D-glucose ingestion [114]. A single nucleotide variation in
GLUT2 leading to one amino acid exchange was correlated with
an increased glucose uptake independently of age and T2DM.

Impact of GLUT2/Glut2 in brain on glucose-dependent
central nervous regulation of insulin secretion and glucagon
secretion was suggested by two studies. In one study per-
formed with rats, the expression of Glut2 in the ARH was
decreased by bilateral injection of antisense oligonucleotides,
and insulin secretion was analyzed after injection of a small
amount of D-glucose into a carotic artery [232]. The injected
glucose did not increase the D-glucose concentration in the

blood. Whereas the intracranial D-glucose bolus stimulated
insulin secretion in control rats, no stimulation of insulin se-
cretion was observed in rats that had been treated with Glut2
antisense oligonucleotides. In another study, an impact of
Glut2 in brain on central nervous stimulation of glucagon
secretion during D-glucose depletion was demonstrated in
glut2 knockout in which the glut2 loss in pancreatic β cells
was rescued [259]. In wildtype mice, glucagon secretion was
increased after intraventricular application of 2DOG mimick-
ing glucoprivation; however, no central nervous stimulation
of glucagon secretion was observed in the Glut2 knockout
mice. Of note, evidence was provided that this effect was
due to removal of Glut2 in astrocytes rather than to removal
of Glut2 in neurons. This demonstrates a pivotal metabolic
coupling between astrocytes and neurons.

Recent data suggest that Glut2 in tanycytes of the ME
containing leaky capillaries is involved in translocation of D-
glucose from the interstitium into the third ventricle [258]. In
the presence of high D-glucose concentrations in the blood, the
glucose concentration in third ventricle increased correspond-
ingly whereas the D-glucose concentration in brain tissue with
functional BBBs only increased slightly. The elevated D-glu-
cose concentration in the third ventricle observed in response
to an increase of blood glucose was blunted when the expres-
sion of Glut2 and Glut6 in tanycytes of the ME had been
reduced by siRNA technology [258].

Experiments performed with Zebrafish expressing a
GLUT2 orthologoue in hindbrain in which the GLUT2
orthologoue was removed or rescued suggested that GLUT2
also plays an important role during brain development [256].

GLUT3

Human GLUT3 mediates trans-zero uptake of D-glucose and
2DOG with similar, relatively low Km values around 1.5 mM
(Table 1). This value is in the same range as the Km value for
D-glucose uptake by human GLUT1. Human GLUT3 does
not accept D-fructose as substrate but transports D-galactose
and 3OMG with 5–8 times higher Km values than D-glucose
(Table 1). Comparing the turnover numbers for D-glucose
transport by Glut3 in rat cerebellar neurons and by human
GLUT1 in erythrocytes, an about fivefold higher turnover
number was obtained for Glut3 [248, 382]. Provided this dif-
ference is not due to species differences, the data suggest that
GLUT3 transports glucose much more efficiently than
GLUT1. Similar to human GLUT1, human GLUT3 increases
transmembrane water permeability [402].

In situ hybridization and immunolocalization experiments
performed in rodents, monkeys and humans indicate that
GLUT3/Glut3 is ubiquitously expressed in brain. GLUT3/
Glut3 was detected in the frontal and parietal cerebral cortex,
hippocampus, gyrus pyriformis, corpus striatum, cerebellum,
inferior colliculi, and brainstem [252, 263, 283, 291, 372,
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455]. In brain, GLUT3/Glut3 is predominantly expressed in
neurons. Neuronal expression was demonstrated by localiza-
tion of GLUT3/Glut3 in various nuclei of the brain stem, in
the substantia nigra, the granular cell layer and dentate nucleus
of cerebellum, in brain cortex, hippocampus, and hypothala-
mus (Table 2) [11, 40, 63, 64, 83, 252, 283, 291]. In neurons,
GLUT3/Glut3 was located in neurites, dentrites, and plasma
membranes of the cell bodies [135, 228, 252, 382]. High ex-
pression was observed in pre- and postsynaptic nerve endings.
In cultured granular neurons derived from rat cerebellum, a
six- to tenfold higher abundance of Glut3 was observed com-
pared to Glut1 [246]. Expression of GLUT3/Glut3 was also
detected in brain microvessels where it was localized to endo-
thelial cells [3, 113, 135, 137, 252].Minor expression of Glut3
was detected in cultured astrocytes derived from rat [185].
Because GLUT3/Glut3 is ubiquitously and abundantly
expressed in brain neurons, this transporter is supposed to
serve housekeeping uptake of D-glucose into neurons.

GLUT4

GLUT4/Glut4 is an insulin-sensitive glucose transporter that
plays a key role in regulation of body glucose homeostasis.
GLUT4/Glut4 is most abundantly expressed in adipose tissue,
skeletal muscle, and heart. It is transferred from intracellular
compartments into the plasma membrane in response to extra-
cellular insulin [174]. After ingestion of glucose-rich foodwhen
blood glucose is increased and pancreatic insulin secretion is
induced, accelerated insulin-mediated D-glucose uptake into
adipocytes and muscle cells counterregulates the elevation of
blood glucose [467]. This regulatory circuit is defective in
T2DM in which pancreatic insulin secretion is impaired and
the sensitivity of insulin receptors in fat and muscle cells is
decreased. Human GLUT4 transports D-glucose, D-galactose,
2ODG, and 3OMG but does not accept D-fructose as substrate
(Table 1). For trans-zero uptake of D-glucose by human
GLUT4, an apparent Km value of 12.6 mM was determined
[442], whereas for trans-zero uptake of 2DOG, an apparent
Km value of 4.6 mM has been reported [49]. Similar to
GLUT1 and GLUT3, GLUT4 accepts dehydroascorbic acid
as substrate [350].

Employing in situ hybridization and immunohistochemistry
in rodents, low-level expression of Glut4 was observed in mo-
tor nuclei of spinal cord, nuclei of medulla oblongata, cerebellar
nuclei and Purkinje cell layer, basal ganglia, neocortex, olfac-
tory bulb, hypothalamus, and hippocampus (Table 2) [64, 108,
109, 209, 231, 420]. Glut4 is mainly expressed in neurons
where it is often coexpressed with Glut3 [11]. Here, Glut4-
related immunoreactivity was predominantly observed in the
somatodendritic portion; however, immunoreactivity was also
detected in neurites [108, 209, 231, 363]. Glut4-related immu-
noreactivity in neuronal somata was mostly assigned to intra-
cellular compartments [108]. In general, Glut4 protein and

Glut4 mRNA showed similar differences in abundance be-
tween brain areas. However, in some locations, differences
were observed between relative abundance of mRNA and pro-
tein indicating posttranscriptional regulation [43, 109]. Low
abundant expression of Glut4 was also detected in endothelial
cells of microvessels from rat brain [108, 266]. In rodents,
Glut4 was also detected in epithelial cells of the choroid plexus
and in ependymal cells of brain ventricles [209, 245, 421]. Of
note, glut4 in neurons was often colocalized with the insulin
receptor [150, 199, 420]. In cultivated neurons, insulin-induced
incorporation of Glut4 from intracellular stores into the plasma
membrane was demonstrated [30, 150].

GLUT4/Glut4 in brain is supposed to be involved in pro-
vision of metabolic energy for firing neurons, in insulin-
dependent regulation of active neuronal circuits, and in central
nervous regulation of whole-body glucose homeostasis. The
increased energy demand in firing neurons is met by upregu-
lation of ATP synthesis [338]. For generation of ATP by gly-
colysis and mitochondrial ATP synthesis, intracellular glu-
cose is required. Evidence was provided that increased energy
demand during sustained neuronal activation promotes the
insertion of Glut4 into the axonal plasma membrane, and that
the Glut4 insertion is under control of AMP activated protein
kinase (AMPK) [16]. In motoric neurons, energy demand is
acutely increased during exercise whereas energy demand in
hippocampal neurons is increased in response to intellectual
challenge or emotional stress.

Insulin plays important regulatory roles in brain where it
interacts with the insulin receptor in neurons located in various
brain areas including forebrain, hypothalamus, and hippocam-
pus [81, 411]. Insulin may exhibit direct effects as well as D-
glucose-mediated effects on neuronal activity [81, 215].
Insulin passes the BBB and the barriers between blood and
CSF very slowly, and the concentration of insulin in CSF is
one order of magnitude lower than in blood [81, 429].
Evidence was presented that insulin is synthesized by subpop-
ulations of cortical and hippocampal neurons and by neuronal
progenitor cells [81, 220]. Brain-derived insulin is supposed
to provide local stimuli for rapid upregulation of GLUT4/
Glut4 in neurons with high energy demand that may not be
covered by GLUT3/Glut3-mediated glucose uptake [81, 112].

GLUT4/Glut4 is supposed to be also involved in hypotha-
lamic regulation of food intake, energy expenditure, and
whole-body glucohomeostasis [345, 346]. Increased or de-
creased concentrations of D-glucose in brain activate different
neurons in hypothalamus that either decrease or increase
endogeneous D-glucose production (EGP) in the liver.
Hypoglycemic counterregulation that is crucial for insulin-
treated diabetic patients involves central effects of insulin,
sympathoadrenal stimulation, and increase of pancreatic glu-
cagon secretion [41, 126, 299, 313]. The glucose-dependent
activation of hypothalamic neurons may occur directly by D-
glucose uptake into efferent neurons or indirectly by D-
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glucose-mediated activation of insulin secretion by
interconnecting neurons and insulin-induced upregulation of
GLUT4/Glut4 in efferent D-glucose-sensitive neurons. After
removal of Glut4 in mouse brain, the glucose-dependent reg-
ulation of glucohomeostasis was blunted [346]. Data have
been reported which suggest that Glut4 is involved in D-glu-
cose sensing in hypothalamic nuclei [199]. In neurons of the
dissociated ventromedial hypothalamic nucleus (VMH), D-
glucose-sensitive neurons were identified bymeasuring D-glu-
cose-induced effects on oscillations of intracellular Ca2+ con-
centrations. It was observed that more than 60% of neurons
that were stimulated when extracellular D-glucose was either
increased or decreased coexpressed Glut4 and the insulin re-
ceptor. In most D-glucose excitable neurons, also GK was
expressed and D-glucose activation was abolished when GK
was inhibited by alloxan. GK has a gate keeping function for
D-glucose-induced increase of intracellular ATP (Fig. 4a).

Prolonged changes of D-glucose and insulin concentrations
in brain and decreased insulin receptor sensitivity during dia-
betes may influence the expression and function of GLUT4/
glut4 in brain. This may result in permanent alterations of
plasticity of neuronal circuits. In cultivated human cells, the
expression of GLUT2 was decreased and glucose-dependent
incorporation of GLUT4 into the plasma membrane was de-
creased after chronic treatment with insulin [30]. In mice, the
abundance of Glut4 in the hypothalamus was decreased when
the insulin receptor in neurons had been removed [97].

GLUT5

Human GLUT5 can be considered as selective transporter for
D-fructose with the restriction that minor uptake of 2DOG has
been described [50, 198, 203]. For trans-zero uptake of D-
fructose by human GLUT5, an apparent Km of 6 mM was
determined (Table 1).

In addition to intestine, skeletal muscle, fat, testis, and sper-
matozoa, human GLUT5/Glut5 is expressed in brain [50, 203,
371]. In rodents, Glut5 has been localized to various brain
regions including cerebral cortex, hippocampus, cerebellum,
and nuclei of the brain stem [212, 308]. In human and rat,
abundant expression of GLUT5/Glut5 was observed in
microglial cells [247, 321]. In human, GLUT5 expression
was also detected in microvascular endothelial cells [253]
whereas in rodents, expression of Glut5 was observed in cer-
ebellar Purkinje cells, nuclei of the optical tract, cortical and
hypothalamic neurons, epithelial cells of the choroid plexus,
ependymal cells, and tanycytes [130, 212, 253, 406].
Oxidative metabolism of D-fructose does not only occur in
liver, kidney, and small intestine but also in brain.
Accordingly, in rodents, considerable amounts of D-fructose
injected into brain or applied to brain tissue sections were
metabolized [164, 308]. After injection of [14C] D-fructose
into rat brain and after incubation of isolated nerve terminals

with [14C] D-fructose, 14C labeling of alanine, glutamate, as-
partate, γ-aminobutyric acid (GABA), and glutamine was ob-
served [164]. D-Fructose may enter oxidative metabolism di-
rectly employing ketohexokinase (KHK), triokinase, and al-
dolase or indirectly following conversion to D-glucose after
phosphorylation by hexokinase. In brains of mice and/or rats,
expression of KHK, aldolase, and hexokinase 1 was observed
[164, 308]. Expression of KHK was demonstrated in Purkinje

Fig. 4 Involvement of glucose transporters and a glucose sensor in D-
glucose sensing by neurons that are excitated by D-glucose (GE neurons).
a A metabolism-dependent mechanism detected in rodents is shown.
Increased D-glucose uptake at high extracellular glucose by a Glut trans-
porter leads to an increase of intracellular glucose promoting ATP syn-
thesis. Elevated intracellular ATP blocks an ATP-dependent K+ channel
resulting in a decrease of the membrane potential. This promotes opening
of the voltage-dependent Ca2+ channel VDCC. Increased intracellular
Ca2+ induces the release of neurotransmitters. b A metabolism-
independent mechanism observed in rodents is shown. Na+-D-glucose
cotransport by Sglt1, Sglt2, or Sglt3b or binding of D-glucose to the
glucose activated Na+/H+ ion channel Sglt3a leads to a depolarization
of the plasma membrane and to an increase of Ca2+ uptake via VDCC.
The increased intracellular Ca2+ concentration triggers the release of neu-
rotransmitters. Ψ membrane potential
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cells of mouse cerebellum [130]. Fructose may enter the brain
via GLUT5/Glut5 in capillary endothelial cells, choroidal ep-
ithelial cells, ependymal cells, or tanycytes. In early experi-
ments, no significant or minimal D-fructose uptake into brain
was observed after injection of tracer amounts of radioactively
labeled D-fructose into the carotic artery [304, 401]. This is not
surprising because the concentration of D-fructose in the blood
between meals is about three orders of magnitude lower than
the concentration of D-glucose [312]. However, D-fructose
oxidation in brain becomes relevant after ingestion of
fructose-rich food, particularly in combination with different
forms of fructose intolerance. Feeding of rats for 5 days with
D-fructose resulted in an about twofold increase of Glut5 in
hippocampus [377]. It was observed that the enzymatic activ-
ity of KHK in brain was threefold increased in mice that had
been provided for 1 month with drinking water containing
40% D-fructose [308]. An enhanced metabolism of D-fructose
in brain has been shown to induce the formation of advanced
glycation endproducts that are associated with several brain
pathologies including AD [121, 164]. Noteworthy, high D-
fructose concentrations in diets induced a central neuronal
insulin resistance and promoted memory impairment in ani-
mal models of dementia [56, 276].

GLUT6

Human GLUT6, originally named GLUT9, may be consid-
ered as low-affinity D-glucose transporter because transport of
5 mM D-glucose was demonstrated after reconstitution into
protoliposomes whereas no significant transport of 1 mM D-
glucose was observed [103, 194]. Using endometrial tumor
cells that overexpressed GLUT6, it was shown that GLUT6
also accepts 2DOG as substrate. In human and mouse, abun-
dant expression of GLUT6/Glut6 mRNA was observed in
brain and spleen [54, 103]. Expression of Glut6 mRNA was
also detected in leukocytes, heart, and pancreas of humans and
in macrophages of mice [58, 103, 244]. In mouse brain, Glut6
protein was demonstrated in the ME and the ARH and local-
ized to ependymal cells and tanycytes [258, 391].

GLUT6/Glut6 is preferentially located in intracellular compart-
ments including lysosomes and supposed to undergo insulin-
independent endocytotic recycling [233, 244, 258]. After expres-
sion of hemagglutinin-epitope-tagged human GLUT6 in primary
rat adipose cells, GLUT6 was nearly exclusively observed in in-
tracellular compartments [233]. Similarly, Glut6-related immuno-
reactivity in tanycytes of the ME was mostly observed inside the
cells [258].GLUT6and the structural closely related glucose trans-
porter GLUT8 contain N-terminal dileucine motifs that are critical
for recycling. When these dileucine motifs were mutated or when
a dominant negative dynamin mutant was coexpressed, GLUT6
and GLUT8 were targeted to the plasma membrane [233].
Different to GLUT4/Glut4, plasma membrane targeting of these
transporters could not be induced by insulin. A recent study

suggests thatGLUT6/Glut6 in theME is involved in the regulation
of glucohomeostasis [258]; however, the physiological and path-
ophysiological roles of GLUT6/Glut6 in brain remain elusive. The
distribution of GLUT6/Glut6 in brain outside the hypothalamus
has not been determined and it has not been elucidated under
which condition GLUT6/Glut6 is targeted to the plasma
membrane.

GLUT8

When human GLUT8 was expressed in HEK293 or COS7
cells, the transporter was located within intracellular compart-
ments; however, GLUT8 was targeted to the plasma mem-
brane when a N-terminal dileucine motif was mutated [104,
178, 233]. After the expression of the dileucine mutant of
GLUT8 in Xenopus laevis oocytes, uptake of 2DOG was ob-
tained and a Km value of 2.4 mM was determined [178].
Uptake of 2DOG into oocytes was partially inhibited by D-
fructose and D-galactose. After reconstitution of wildtype
GLUT8 in proteoliposomes, uptake of D-glucose was demon-
strated [104]. In addition, evidence was provided that mouse
Glut8 accepts the disaccharide trehalose as substrate [262].

GLUT8/Glut8 is ubiquitously expressed in humans and ro-
dents [57, 104, 178]. GLUT8/Glut8 mRNA was abundantly de-
tected in testis and less abundantly in skeletal muscle, spleen,
heart, prostate, placenta, adipose tissue, adrenal gland, and brain.
In human brain, GLUT8 mRNA was observed in cerebellum,
brainstem, hippocampus, and hypothalamus [178]. In rat brain,
the distribution of Glut8 was studied in detail employing in situ
hybridization and immunohistochemistry [179, 341]. The exper-
iments revealed that Glut8 was ubiquitously expressed in neu-
rons. Most abundant Glut8-related immunoreactivity was ob-
served in amygdala, primary olfactory cortex, dentate gyrus, dor-
sal hypothalamic area, supraoptic nucleus, pituitary stalk, and
posterior pituitary [179]. In dentate gyrus and hippocampus im-
munoreactivity of Glut8 was observed in granular and pyramidal
cells, respectively [341]. In both regions, Glut8 was also detected
in non-principal neuronal cells. The Glut8-related immunoreac-
tivity in neurons was observed in cell bodies whereas the plasma
membrane was not stained [341]. Immunohistochemical
colocation experiments indicated that Glut8 is expressed in ex-
citatory and inhibitory neurons but not in astrocytes or microglial
cells [341]. In neurons, Glut8 and Glut3 were coexpressed show-
ing different subcellular locations. Glut8 was observed in cell
bodies and proximal dendrites whereas Glut3 was located to
neuronal plasma membranes, dendrites, and neurites.
Immunohistochemistry in mice revealed a ubiquitous location
of Glut8 in neurons similar to rats but suggested different expres-
sion levels in individual brain areas [363]. In addition to neurons,
GLUT8/Glut8 was also localized to intracellular compartments
of epithelial cells covering the choroid plexus and to ependymal
cells in human and mice [288, 292].
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In cerebral neurons of rodents, in COS7 cells transfected
with human GLUT8, in murine neuroblastoma cells
transfected with mouse Glut8, and in PC12 cells transfected
with myc-tagged rat Glut8, GLUT8/Glut8 was located in in-
tracellular compartments and it was observed that insulin did
not promote targeting of GLUT8/Glut8 to the plasma mem-
brane [233, 341, 365, 375, 441]. At variance, in murine blas-
tocyst cells, Glut8 was targeted to the plasma membrane dur-
ing the insulin-induced morphological changes of the blasto-
cysts [57]. The subcellular distribution of Glut8 was investi-
gated in detail using PC12 cells that were transfected with rat
Glut8 [441]. Performing colocalization experiments with
compartment specific proteins, Glut8 was identified in endo-
plasmic reticulum (ER) but not detected in early endosomes.
In another study, the intracellular locations of mouse Glut8
and human GLUT4 co-expressed in CHO cells were com-
pared [18]. No colocalization of Glut8 and GLUT4 was de-
tected in the basal state. In contrast to GLUT4, no distribution
of Glut8 to the plasma membrane was observed after treat-
ment with insulin. Plasma membrane targeting of Glut8 could
also not be induced by the Ca2+ ionophore A-23187 and the
phosphatase inhibitor okadaic acid. Furthermore, it was ob-
served that Glut8 does not share recycling endosomal com-
partments with the transferrin receptor and that Glut8 was
localized to late endosomes and lysosomes. The effect of ex-
perimentally induced hyperglycemia on subcellular location
of Glut8 in hypothalamic neurons was investigated in normal
rats and in rats with streptozotocin (STZ)-induced diabetes
[329]. Employing electronmicroscopic immunolocalization
and membrane fractionation, it was observed that Glut8 was
present in the cytosol and associated with low-density mem-
branes. In normal but not in diabetic animals, cytosolic Glut8
distributed to the ER in response to hyperglycemia.

The physiological role and pathophysiological impact of
GLUT8/Glut8 in brain are not well understood.When Glut8
was removed in mice, the proliferation of granular cells in
the gyrus dentatus was increased [273]. The Glut8 knockout
mice were hyperactive but showed no obvious effects in
memory and explorative behavior [273, 364]. The data sug-
gest that GLUT8/Glut8 is involved in energy supply for
neurons in hippocampus [364]. It is however enigmatic
how this is accomplished by a transporter located in the late
endosome that may distribute to the ER. It has been
discussed that GLUT8/Glut8 mediates the release of D-glu-
cose that is generated during glycosylation of proteins from
the ER; however, it is also possible that GLUT8/Glut8
transports D-glucose-6-phosphate into the ER during
glucogenesis. Unfortunately, the substrate selectivity of
GLUT8 has been poorly characterized so far. For example,
theKm for D-glucose uptake by wildtype human GLUT8 has
not been determined and it has not been investigated wheth-
er GLUT8 accepts D-galactose, D-fructose, and phosphory-
lated monosaccharides as substrates.

SGLT1

The Na+-D-glucose cotransporter SGLT1 (SLC5A1) is a sec-
ondary active transporter that translocates two sodium ions
together with one molecule of D-glucose [446]. Human
SGLT1 transports D-glucose and D-galactose with high affin-
ity and efficacy. It transports 2DOG and 3OMG with low
affinity but does not accept D-fructose as substrate (Table 1).
Expressing human SGLT1 in oocytes and measuring mono-
saccharide uptake in the presence of physiological Na+ gradi-
ent and membrane potential, Km values of 0.5 mM and 1 mM
were determined for uptake of D-glucose and D-galactose, re-
spectively [446]. In contrast to D-glucose and D-galactose, α-
methyl-D-glucoside (AMG) is transported only by Na+-D-glu-
cose cotransporters but not by GLUT transporters. Phlorizin is
a high-affinity inhibitor of SGLT1 independently of spe-
cies but does not inhibit GLUT transporters. Phlorizin
also inhibits the Na+-D-glucose cotransporter SGLT2/
Sglt2 of different species and blocks SGLT3/Sglt3b re-
ceptor functions in different species [446]. Porcine
SGLT3 and the rodent subtype Sglt3b are Na+-D-glu-
cose cotransporters whereas human SGLT3 and rodent
Sglt3a are glucose sensors that do not transport mono-
saccharides [446]. For inhibition of human SGLT1 by
phlorizin, Ki values around 200 nM have been deter-
mined [446].

SGLT1/Sglt1 is most abundantly expressed in small
intestine and kidney [446]. In addition, SGLT1/Sglt1 is
expressed in various organs, where it is partially located
in rarely occurring structures. SGLT1/Sglt1 is expressed
in heart, skeletal muscle, lung, liver, gall bladder, colon,
rectum uterus, testes, pancreas, and brain [210]. SGLT1/
Sglt1 mRNA in brain was observed in human, pig, rab-
bit, rat, and mouse [110, 118, 227, 290, 305, 330, 366].

By in situ hybridization in brains of rabbit and pig, SGLT1/
Sglt1 was localized to cortical neurons, hippocampal pyrami-
dal cells, and cerebellar Purkinje cells [110, 330]. In rat, Sglt1
mRNA was demonstrated in neurons of the VMH [118, 305].
In pig and rat, neuronal locations of SGLT1 expression were
confirmed by immunohistochemistry [22, 330, 460]. SGLT1/
Sglt1 may be also expressed in glial cells because Sglt1
mRNA was observed in primary cultures or rat astrocytes
[422] and Sglt1-related immunoreactivity was reported in glial
cells of the VMH [118]. The physiological importance of
SGLT1/Sglt1 for glucose uptake into neurons was suggested
by micro positron emission tomography (PET) and ex vivo
autoradiography experiments was performed in rats [446, 459,
460]. In these experiments, an accumulation of α-methyl-4-
deoxy-4-[18F]fluoro-D-glucopyranoside that is transported by
Sglt1 and possibly also by Sglt2 but not by Glut1 and proba-
bly also not by other Glut transporters was observed in brain
regions with high expression of Sglt1. For the PET experi-
ments, the BBM had to be permeabilized.
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Sglt1-related immunoreactivity was also observed in small
vessels of rat brain [110]. After occlusion of the medial cere-
bral artery (MCAO) in rats, expression of Sglt1 in small brain
vessels was also detected by in situ hybridization [110].
Evidence for the expression of (a) Na+-D-glucose
cotransporter(s) in microvessels of brain was provided by
transport measurements [224]. In this study, microvessels
were isolated from bovine brain and luminal and abluminal
membranes of the endothelial cells were isolated. Sodium-
dependent, high-affinity uptake of D-glucose was observed
in vesicles formed from abluminal membranes in contrast to
vesicles of luminal membranes. Employing a different anti-
body against Sglt1 than Elfeber and coworkers [110] for im-
munohistochemistry in rat brain, Yu and coworkers did not
detect Sglt1-related immunoreactivity in small blood vessels
[460]. Although it cannot be excluded that Elfeber and co-
workers observed nonspecific peptide blockable immuno-
staining of small blood vessels, it is more probable that
Sglt1 did not show up in a slim, little prominent structural
element under the experimental conditions employed by Yu
and coworkers.

The expression of (a) Na+-D-glucose cotransporter(s)
in the abluminal membrane of capillary endothelial cells
suggests that SGLT1/Sglt1 and/or SGLT2/Sglt2 is(are)
involved in the removal of D-glucose from brain inter-
stitium where the concentration of D-glucose is 2–3
times lower than that in the blood [165]. In addition,
SGLT1/Sglt1-mediated D-glucose uptake into neurons
and an intracellular glucose sink due to glucose metab-
olism SGLT1/Sglt1 may contribute to the removal of D-
glucose from brain interstitium. SGLT1/Sglt1-mediated
removal of D-glucose from brain interstitium may be
important to prevent glucotoxicity to neurons during re-
perfusion after brain ischemia. An exclusive expression
of (a) Na+-D-glucose cotransporter(s) in the abluminal
membrane of capillary endothelial cells provides an ex-
planation why glucose analogs that are transported by
SGLT1/Sglt1 but not by GLUT transporters such as ω-
18F-fluoro-n-ethyl-β-D-glucosides and α-methyl-4-de-
oxy-4-[18F]fluoro-D-glucopyranoside do not pass the
BBB and do not enter the brain [87, 459].

Taken together, the data show that SGLT1/Sglt1 is
expressed in neurons throughout the brain showing high ex-
pression in regions that are involved in learning, regulation of
feeding behavior, energy expenditure, and glucohomeostasis.
Expression of SGLT1/Sglt1 in the BBB may be involved in
adjustment of the glucose concentration in brain interstitium.
The role of SGLT1/Sglt1 during diseases is enigmatic. In
mice, cognitive impairment combined with damage of hippo-
campal neurons observed after chronic hypofusion was
blunted when Sglt1 was removed [183], and a decreased
cerebral expression of Sglt1 was protective during ex-
perimental TBI [366].

SGLT2

The Na+-D-glucose cotransporter SGLT2/Sglt2 operates with a
sodium/D-glucose stoichiometry of one [446]. Human SGLT2
transports D-glucose and AMG with Km values around 5 mM
but translocates D-galactose with very low efficacy (Table 1)
[446]. SGLT2/Sglt2 is almost exclusively expressed in kidney;
however, minor expression was also observed in brain [62, 113,
296, 360, 397, 446]. In human brain, SGLT2mRNAwas detected
by RT-PCR where it appears to be most strongly expressed in
cerebellum [62, 296, 397, 446]. In a proteomic analysis on
microvessels isolated from rat brain cortex, expression Sglt2 was
indicated [113]. Because the expression of SGLT2/Sglt2 in brain
is very low and no data showing positive SGLT2/Sglt2-related
signals in immunohistochemistry or in situ hybridization have
been reported, the physiological relevance of SGLT2/Sglt2 in
brain is questionable.

SGLT3

Whereas one SGLT3 entity is expressed in human and pig, two
subtypes called Sglt3a and Sglt3b have been cloned from rat and
mouse [5, 25, 96, 243]. SGLT3 of pig and Sglt3b of mouse are
Na+-D-glucose cotransporters which also accept AMGas substrate
and are inhibited by phlorizin [5, 243, 446]. For D-glucose uptake
by porcine SGLT3 and mouse Sglt3b, Km values of 8 mM and
65 mM were determined [5, 446]. Human SGLT3 is a glucose
sensor that induces membrane depolarization in response to low-
affinity, phlorizin inhibitable binding of D-glucose and AMG by
opening a channel-type Na+ and H+ permeability [96]. For D-glu-
cose-induced membrane permeability of human SGLT3, K0.5

values between 20 and 60 mM were determined [96, 428]. At
variance to human SGLT3 and mouse Sglt3a, rat Sglt3a exhibits
a sodium-independent channel activity that is activated by D-glu-
cose and AMG but cannot be blocked by phlorizin [25].

In human, SGLT3 mRNAwas abundantly expressed in skel-
etal muscle but was also observed in various other tissues includ-
ing adrenal gland, testis, uterus, small intestine, spinal cord, and
brain [96, 296]. In rat hypothalamus and cultivated hypothalamic
neurons, mRNAs of Sglt3a and Sglt3b were detected [305]. The
expression of Sglt3a and Sglt3b in hypothalamic neurons sug-
gests that SGLT3/Sglt3a play a role for activation of
glucosensitive neurons by high D-glucose concentrations.

Roles of glucose transporters in central
nervous regulations of glucose homeostasis

Overview

Homeostasis of D-glucose in the blood is of fundamental im-
portance for maintenance of physiological functions and
health. Hypoglycemia that may occur during fasting and
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during treatment of diabetes with insulin must be avoided
to maintain intact cerebral functions. Permanent low
blood glucose levels may lead to damage of various or-
gans including brain while permanent hyperglycemia
causes microvascular complications such as nephropathy
and macrovascular diseases including heart attack and
stroke. Glucose homeostasis is regulated by peripheral
mechanisms that are under central nervous control and
by central steering of behavioral traits such as feeding
behavior. The peripheral regulatory mechanisms include
pancreatic secretion of insulin and glucagon. The central
regulations are driven by glucose-sensitive neurons that
are located in nuclei in the hypothalamus and brain stem.
These neurons contain D-glucose-sensing mechanisms in
which GLUT transporters, Na+-D-glucose transporters, the
glucose sensors SGLT3/Sglt3a, or taste receptors may be
involved (Figs. 4 and 5). D-Glucose-sensitive neurons
have been identified in VMH, the dorsomedial hypotha-
lamic (DMH) nucleus, the lateral hypothalamic area
(LHA), the ARH, the nucleus of the solitary tract, and
the dorsal vagal complex [10, 51, 84, 272, 306, 349]. D-
Glucose-exitated (GE) and D-glucose-inhibited (GI) neu-
rons have been distinguished [10, 307]. They have been
shown to trigger regulations in response to hyper- and
hypoglycemia by activating neuronal circuits that involve
sympathetic and parasympathetic neurons [240, 387].
Under hyperglycemic conditions, GE neurons in VMH
and the nucleus of the solitary tract that release GABA,
and GE neurons in ARH that release anorexigenic pep-
tides, are activated [42, 199, 316]. When the D-glucose
concentration in the blood decreases, GI neurons in the
LHA releasing orexin/hypocretin, and GI neurons in the
VMH releasing glutamate and noradrenaline, were acti-
vated [52, 376, 403]. Sympathetic GI neurons in the
VMH a r e b l o c k e d und e r h yp e r g l y c em i c a nd
hyperinsulinemic conditions [97].

Sensing of blood glucose in brain

The interstitial D-glucose concentrations in most brain regions
is only 10–30% of the D-glucose concentration in blood. D-
Glucose in brain interstitium only changes slowly in response
to blood glucose varying between 0.5 and 2.5 mM during the
diurnal cycle [51, 354, 378]. Some hypothalamic neurons can
sense the relatively low D-glucose concentration in brain in-
terstitium and are supposed to be involved in slow and/or local
regulations [51, 454]. At variance, rapid central nervous reg-
ulation of glucose homeostasis is based on sensing of D-glu-
cose concentrations in the blood or in the CSF. D-Glucose

�Fig. 5 Involvement of glucose transporters in D-glucose sensing by
neurons that are deactivated by D-glucose (GI neurons). Metabolism-
dependent mechanisms detected in rodents are depicted in which a de-
crease of the extracellular D-glucose concentration leads to reduced D-
glucose uptake by the glucose transporters Glut1, Glut2, Glut3, and/or
Glut4. Decreased intracellular D-glucose promotes changes in metabo-
lism resulting in a decrease and increase of intracellular ATP and AMP,
respectively. aAmechanism based on the decrease of intracellular ATP is
shown. Due to decreased intracellular ATP, the activity of the Na+-
K+ATPase is reduced. This leads to a depolarization of the plasma mem-
brane. The depolarization activates VDCC leading to an increase of in-
tracellular Ca2+ that promotes neurotransmitter release. b Two mecha-
nisms that are promoted by the increase of intracellular AMP activating
AMP-dependent kinase AMPK are shown. Activation of AMPK may
lead to a depolarization of the plasma membrane by blocking the chloride
channel CFTR or the two-pore-domain potassium channel K2P. Opening
of VDCCs leads to an increase of intracellular Ca2+ that triggers neuro-
transmitter release
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sensing in the blood is achieved in two ways: on the one hand,
by sensing blood glucose in tight capillaries by tanycytes, and
on the other hand, by glucose sensing in CVOs with leaky
capillaries via neurons and tanycytes (Fig. 6) [191, 333,
351]. Tanycytes that line brain ventricles send projections to
neurons in hypothalamic nuclei. These projections may also
contact tight brain capillaries of the BBM (Fig. 6). Other
tanycytes have projections to leaky capillaries in CVOs. The
D-glucose concentration in the CSF is similar to D-glucose in
the blood. It changes rapidly in proportion to changes of blood
glucose and may rise up to 15 mM during hyperglycemia
[295, 389]. There is a controverse discussion whether D-glu-
cose enters the CSF by passing the epithelial cells of the cho-
roid plexus via GLUT/Glut transporters or via transcellular
movement through tanycytes that connect cerebral ventricles
with leaky and tight brain capillaries (Fig. 6) [240, 258]. In the
epithelial cells of the choroid plexus, expression of Glut1,
Glut4, Glut5, and GLUT8 was observed, and the location
Glut1 was assigned to basolateral membranes (Table 3) [39,

102, 107, 155, 288, 406, 421]. In tanycytes, expression of
Glut1, Glut2, Glut5, and Glut6 was detected [132, 212, 258].

In several areas close to hypothalamic nuclei and CVOs,
brain ventricles are lined by tanycytes [128, 240, 333]. Theβ1
subgroup of the tanycytes is supposed to be specifically in-
volved in the transmission of D-glucose-related signal to neu-
rons in hypothalamic nuclei (Fig. 6) [287, 351]. D-Glucose
sensing in tanycytes is performed by metabolism-dependent
and metabolism-independent mechanisms. Metabolism-
dependent sensing is supposed to involve GLUT/Glut
transporter-mediated D-glucose uptake leading to an increase
of D-glucose metabolism that results in elevated intracellular
concentrations of ATP and L-lactate. Metabolism-independent
D-glucose sensing in tanycytes may involve the sweet taste
receptor T1R2/3 [240]. Both sensing mechanisms promote
cellular release of ATP via connexin 43 hemichannels [128,
240, 309]. During metabolism-dependent D-glucose sensing,
L-lactate is released from the tanycytes. It is hypothesized that
extracellular ATP activates nucleotide receptors on tanycytes
and neurons and promotes intracellular Ca2+ fluctuations that
increase firing activity in neurons [128, 240]. Extracellular L-
lactate may be taken up by neurons, enter citric acid cycle and
oxidative phosphorylation, and increase intracellular ATP that
may promote neuronal firing.

Mechanisms for glucose sensing in neurons

Several mechanisms are involved in D-glucose sensing in neu-
rons (Figs. 4 and 5). An increase or decrease of extracellular D-
glucose concentrations may induce depolarization in GE or GI
neurons. Metabolism-dependent D-glucose sensing involving
GLUT/Glut transporters andmetabolism-independent glucose
sensing involving SGLT/Sglt transporters, the glucose sensor
SGLT3/Sglt3a, or the heteromeric sweet receptor T1R2/3 are
distinguished.

The most abundantly discussed D-glucose-sensing mecha-
nism that causes a cellular depolarization in response to in-
creased extracellular D-glucose is analogous to the mechanism
by which increased blood glucose stimulates insulin secretion
in pancreatic β cells (Fig. 4a). This mechanism is dependent
on metabolism. It comprises cellular D-glucose uptake medi-
ated by a GLUT/Glut transporter, phosphorylation by pancre-
atic glucokinase (GK) that initiates glycolysis, followed by
oxidative phosphorylation and blockage of an octameric
ATP-sensitive K+ channel. The resulting depolarization of
the plasma membrane triggers opening of voltage-dependent
Ca2+ channels. The subsequent increase of intracellular Ca2+

leads to insulin secretion in pancreatic β cells and to neuro-
transmitter release in neurons [240]. As prerequisites for prop-
er functioning of this sensing mechanism, several conditions
must be met. The Km for D-glucose uptake by the involved
GLUT transporter must be higher than the sensed glucose
concentration; e.g., the low-affinity GLUT2/Glut2 transporter

Fig. 6 Locations of neurons, tanycytes, and ependymocytes in respect to
brain ventricles, CVOs, and brain capillaries allowing glucose sensing in
blood, CSF, and brain interstitium. The tuberal region of the
hypothalamus with a CVO in the median eminence is depicted.
Tanycytes sense the glucose concentration in the CSF within the brain
ventricle and activate neurons. In addition, tanycytes and neurons sense
the interstitial concentration of D-glucose close to leaky capillaries located
in CVOs and the arcuate hypothalamic nucleus. Neurons also sense
glucose concentrations in brain interstitium. Tanycytes are also
supposed to be involved in the transfer of glucose from regions close to
leaky capillaries and from capillaries of the BBB to the CSF. DMH
dorsomedial nucleus, VMH ventromedial hypothalamic nucleus, ARH
arcuate hypothalamic nucleus, ME median eminence
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is suitable for sensing blood glucose whereas the high-affinity
GLUT1/Glut1 and GLUT3/Glut3 transporters are appropriate
to sense glucose concentrations in brain interstitium. In addi-
tion, the synthesis of ATP must correlate with GLUT/Glut-
mediated change of intracellular D-glucose and the ATP-
inhibited open probability of the K+ channel must be decisive
for membrane potential adjustment.

Cellular depolarization in response to increase of extracel-
lular glucose can be also induced via mechanisms that are
independent of metabolism. One mechanism involves D-glu-
cose binding to the heterodimeric metabotropic sweet receptor
T1R2/3 and activation of intracellular signal cascades that
finally increase neuronal activity [240]. This mechanism
may be associated with upregulation of SGLT1/Sglt1 expres-
sion [255]. The other metabolism-independent mechanism is
based on functions of SGLT/Sglt proteins (Fig. 4b). It is due to
the depolarizing effect of either sodium-coupled D-glucose
uptake by a SGLT/Sglt transporter or to glucose-mediated
activation of cation/proton permeability of a SGLT3/Sglt3a
glucose sensor. Since human SGLT1 expressed in brain has
a Km value of 0.5 mM, this transporter senses low D-glucose
concentrations. At variance, high D-glucose concentrations
can be sensed by the human D-glucose sensor SGLT3 and
the murine Na+-D-glucose cotransporter Sglt3b. Channel like
activity of human SGLT3 was activated with K0.5 value be-
tween 20 and 60 mM [96] and mouse Sglt3b mediated D-
glucose uptake with a Km value of 65 mM [5]. An involve-
ment of Sglt1 in neuronal D-glucose sensing in the
VMH of rats was suggested by the observation that
supp r e s s i on o f Sg l t 1 i n VMH improved the
counterregulatory increase of hepatic gluconeogenesis
in response to recurrent hypoglycemia [118].

For depolarization in GI neurons in response to a decrease
of extracellular D-glucose, three metabolism-dependent regu-
latory mechanisms involving GLUT/Glut transporters were
distinguished. In rat, one mechanism was identified in the
ARH that is involved in the regulation of feeding or blood
glucose concentration in response to fasting [219] (Fig. 5a).
Due to reduced D-glucose supply of ARH neurons, glycolysis,
citrate cycle, and oxidative phosphorylation were slowed
down causing a decrease of intracellular ATP and of Na+-
K+-ATPase activity [219, 240]. The resulting decrease of in-
tracellular K+ promoted a decrease of membrane potential that
triggered Ca2+ influx. A second mechanism for activation of
neurons by decreased extracellular D-glucose has been de-
scribed for GI neurons in the VMH of mice [123] (Fig. 5b).
Reduction of extracellular D-glucose leading to a decreased
intracellular D-glucose concentration and an increased AMP/
ATP ratio promoted the activation of AMPK. AMPK-induced
closure of the chloride channel CFTR resulted in neuronal
depolarization that triggered neuronal neurotransmitter re-
lease. The third mechanism was detected in mice for Glut2
expressing neurons in the nucleus of the solitary tract [222]

(Fig. 5b). In this mechanism, the increase of the AMP/ATP
ratio in response to decreased extracellular glucose-induced
activation of AMPK that mediated closure of two-pore-
domain potassium (K2P) channels in GABAergic neurons.

Finally, evidence for a metabolism-independent mecha-
nism for D-glucose-mediated inhibition of orexin/hypocretin
neurons in the LHA of mice has been provided [52]. These
neurons are involved in regulation of awakefulness and me-
tabolism. When extracellular D-glucose was increased from 1
to 2.5 mM, firing was blocked involving opening of a K2P
channel that contains a TASK3 subunit. It was demonstrated
that D-glucose acts from extracellular without changing intra-
cellular concentrations of ATP and Ca2+.

Analysis of D-glucose sensing in defined neurons

In rodents, D-glucose sensing was demonstrated and charac-
terized in some defined neurons. It was observed that neurons
in the VMH that can be excited or blocked by leptin were also
excited or inhibited by D-glucose [181]. In the hypothalamus,
orexin neurons were identified that stopped firing when extra-
cellular D-glucose was increased [444]. Part of these neurons
adapted to increased ambient D-glucose concentrations within
a second. It was also shown that D-glucose inhibited hypotha-
lamic neurons that express agouti-related protein and neuro-
peptide Y [71, 286]. In addition, it was observed that D-glu-
cose stimulated hypothalamic pro-opiomelanocortin express-
ing neurons [71, 180] and neurons expressing melanin con-
centrating hormone [214]. In individual neurons, different reg-
ulatory mechanisms for D-glucose sensing may be effective.
Thus, different mechanisms were identified in GI neurons of
the ARH [219], the VMH [123, 277], the NTS [222], and the
LHA [52]. In GE neurons of rat hypothalamus, two glucose
sensing mechanisms were distinguished [305]. A relatively
small fraction of the GE neurons was activated by a
metabolism-dependent mechanism involving a Glut transport-
er and an ATP-dependent K+ channel (Fig. 4a) whereas the
predominant fraction of the GE neurons was activated by the
metabolism-independent mechanism involving a phlorizin
inhibitable Sglt transporter or a phlorizin inhibitable Sglt-
type glucose sensor (Fig. 4b) [305].

Regulation of whole-body glucose homeostasis in
brain

Regulation of insulin and glucagon secretion

Pancreatic secretion of insulin and glucagon are not only reg-
ulated in pancreas in response to D-glucose in the peripheral
blood but also in the hypothalamus in response to D-glucose in
CSF or brain capillaries. The central nervous regulation is
supposed to involve GLUT2/Glut2 and GLUT4/Glut4 in
CVOs and/or hypothalamic nuclei. When D-glucose in rodent
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brain was increased by injection of a small amount of D-glu-
cose into the carotic artery without changing the D-glucose
concentration in the peripheral blood, pancreatic insulin secre-
tion was increased [153, 232]. This effect was associated with
D-glucose-induced activation of hypothalamic nuclei and
blunted when the metabolism of glial cells was blocked
[153]. Central nervous stimulation of pancreatic glucagon se-
cretion in response to hypoglycemia was shown to depend on
the expression of Glut2 in glial cells [259]. Central nervous
regulation of blood glucose was also demonstrated in mice in
which the cerebral expression of Glut4 was abolished
(GB4KO mice) [346]. In these mice, D-glucose uptake into
the ARH and VMH was reduced. The GB4KO mice showed
an increased rise in blood glucose during an intraperitoneal
glucose tolerance test (IGTT) although the accompanying rise
in blood insulin, peripheral glucose disposal, and the insulin
tolerance test (ITT) were similar to wildtype mice [346]. The
data suggest that the central nervous suppression of endoge-
nous glucose production (EGP) in response to increased blood
glucose was decreased after removal of Glut4 in brain.

Regulation of feeding behavior

Feeding behavior and appetite are regulated by hypothalamic
networks in neurons of the VMH, LHA, and ARH that are
sensitive to circulating and local signal molecules including
leptin, ghrelin, neuropeptide Y, orexin, insulin, and D-glucose
[51, 133, 181, 388, 416, 449]. Regulation of feeding behavior
is frequently associated with central nervous regulation of
insulin and glucagon secretion. When blood glucose de-
creased during fasting, EGP and food intake was increased
in rodents. These regulations involved glucose sensors in neu-
rons and tanycytes that register D-glucose concentration in
blood and CSF (Fig. 6) [68, 69]. In rats, food intake was
induced when the antiglycolytic agent 5-thioglucose or the
GK inhibitor alloxan were injected into the fourth brain ven-
tricle [347, 348]. Both compounds are inhibitors of
metabolism-dependent D-glucose sensing. Similarly, food in-
take was induced after injection of the D-glucose-depriving
monosaccharide 2DOG [279]. Indicating an involvement of
metabolism-independent D-glucose sensing in regulation of
feeding behavior, food intake was induced in rats after i.c.v.
injection of the SGLT/Sglt inhibitor phlorizin [139, 404]. Also
sweet taste receptors in tanycytes may be involved since it was
observed that tanycytes sense ligands of the Tas1r2/Tas1r3
sweet receptor and that the proportion of D-glucose-sensitive
tanycytes was decreased in Tas1r2 knockout mice [29].

Glut2 and Glut4 are involved in the regulation of feeding
behavior in response to blood glucose in rodents. In rodents,
expression of Glut2 was observed in CVOs, tanycytes, and
hypothalamic nuclei, whereas expression Glut4 was observed
in hypothalamic nuclei. When Glut2 expression was de-
creased by injection of Glut2 antisense RNA into the third

brain ventricle of rats, the stimulation of food intake in re-
sponse to intraventicular injection of 2DOG was blunted
[430]. Genetic suppression of Glut2 in tanycytes provided
evidence that Glut2-dependent glucose sensing in
tanycytes is critical for D-glucose-dependent regulation
of feeding behavior [24]. After ablation of Glut4 ex-
pressing neurons in hypothalamus of mice, food intake
was largely decreased [345].

Regulation of glucose transporters
in response to neuronal activity

Introduction

Brain is nearly exclusively fueled by D-glucose. To minimize
glucotoxic effects on neurons, the concentration of D-glucose
in brain interstitium is adjusted to about 20% of blood glucose.
Glucose supply of brain under resting conditions is adjusted to
a level that is only just sufficient [26, 381]. Local energy
demand is largely increased during neuronal activation, for
instance during sensory stimulation, exercise, and mental ac-
tivity, because much energy is consumed during excitation of
neurons and synaptic neurotransmission [162]. Architecture,
functional properties, and regulatory mechanisms in the BBB,
astrocytes, and neurons allow an efficient provision of energy
during neuronal activation (Figs. 1 and 3) [195]. Most D-glu-
cose leaving brain capillaries is taken up by astrocytes that
path D-glucose or its glycolytic metabolite L-lactate, to neu-
rons. Some D-glucose may leave brain capillaries via diffusion
through gap junctions that connect end-feet of astrocytes and
may enter neurons directly. The regulation of D-glucose trans-
port in response to neuronal activation via GLUT1/Glut1 in
capillary endothelial cells and astrocytes and via GLUT3/
Glut3 and/or Glut4 in neurons has been investigated in detail.

Regulation of D-glucose transport across the BBB

The regulation of D-glucose transport across the BBB in re-
sponse to neuronal activity involves regulation of blood sup-
ply, adjustment of driving forces for transport, and regulation
of the expression of glucose transporters. In response to neu-
ronal activation, blood flow in rat brain capillaries was shown
to be increased due to dilatation of arterioles [142]. In addi-
tion, the D-glucose concentration gradient between blood and
brain interstitium that represents the driving force for D-glu-
cose transport across capillary endothelial cells mainly medi-
ated by GLUT1/Glut1 is maintained. This driving force is
generated by D-glucose uptake into astrocytes and neurons
via GLUT/Glut transporters. The D-glucose uptake into astro-
cytes and neurons is driven by intracellular D-glucose phos-
phorylation that keeps the concentration of free intracellular D-
glucose low. During neuronal activation, D-glucose
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phosphorylation is accelerated. It has been observed that
Glut1 in plasma membranes of capillary endothelial cells
was upregulated during neuronal activation and proposed that
this upregulation of Glut1 is mediated by paracrine activation
via astrocytes [9, 37, 342]. Although pathological conditions
such as epileptic seizures or hypoglycemia lead tomore severe
energy depletion in neurons compared to physiological neu-
ronal activation, similar regulatory processes and mechanisms
may be involved. Thus, D-glucose transport across the BBB
was upregulated after a seizure and in glucose depleted cul-
tured endothelial cells [79, 82]. Three minutes after induction
of a seizure by pentylene tetrazole in rats, the rate of 2DOG
removal from brain vessels was increased 30–40% and this
effect was due to an increased Vmax [79]. After ATP depletion
of endothelial cells derived from small brain vessels of rats,
Glut1 was incorporated into the plasma membrane and Vmax

of glucose uptake was increased [82]. This effect was mediat-
ed by activation of AMPK which phosphorylates thioredoxin
interacting protein TXNIP that binds to Glut1 [447].

Impact of interplay between astrocytes and neurons

During neuronal activation, membrane abundance of Glut1
and glycolysis in astrocytes were upregulated within seconds
leading to an interstitial decrease of D-glucose and increase of
L-lactate [55, 173, 176, 334, 378]. In addition, membrane
abundance of GLUT3/Glut3 and/or GLUT4/Glut4 may be
increased in neurons [16, 382]. In activated neurons, stimula-
tion of Glut1 mediated D-glucose uptake into astrocytes was
induced within seconds whereas D-glucose uptake into neu-
rons was not affected [67, 239, 331]. This rapid upregulation
of Glut1 in astrocytes was mainly mediated by uptake of re-
leased glutamate via the Na+-glutamate cotransporter that
leads to an increase of intracellular Na+ which triggers in-
crease of intracellular Ca2+ [331]. Glycolysis in astrocytes in
response to neuronal activation is rapidly stimulated by two
mechanisms [435]. In one mechanism, increased intracellular
Na+ due to Na+ coupled glutamate uptake stimulates the Na+-
K+-ATPase that leads to an increased ATP hydrolysis
resulting in a decreased ATP/(ADP + AMP) ratio. The in-
crease of AMP promotes allosteric activation of glycolytic
enzymes [60]. In the other mechanism, the increased concen-
tration of interstitial K+ in response to neuronal activation
induces a depolarization of astrocytes. The depolarization ac-
tivates HCO3

− uptake by the electrogenic Na+/HCO3
−

cotransporter NBCe1 leading to an intracellular alkalization
that stimulates glycolytic enzymes [35, 358].

Neurons isolated from rat hippocampus were cultivated in
the presence of insulin and the effect of activation on mem-
brane trafficking of Glut3 and Glut4 was investigated [16]. In
response to neuronal activation, Glut4 was rapidly inserted
into the plasma membrane whereas plasma membrane abun-
dance of Glut3 was not altered. The plasma membrane

insertion of Glut4 containing vesicles was shown to be trig-
gered by activation of AMPK.

Effects of sustained neuronal activations

Exercise

During exercise, the L-lactate concentration in brain increases
due to activation of the astrocyte-neuron lactate shuttle that
provides additional energy to activated brain regions. Several
hours after one bout of exercise or after prolonged exercise in
rodents, plasma membrane expression of Glut1 and/or Glut4
was(were) changed in distinct brain regions [6, 21, 393].
Thirty minutes after 2-h exercise of mice on a treadmill, L-
lactate concentrations in hippocampus and brain cortex were
increased [393]. Five hours after exercise, expression of lac-
tate transporters in brain vessels, astrocytes, and neurons was
upregulated whereas Glut1 in brain cortex was upregulated
only after 18 h. In another study performed in mice, the effect
of exercise on glucose transporters in cerebellum was investi-
gated [21]. After 2-h exercise on a treadmill, uptake of FDOG
in cerebellum and the abundance Glut4 protein in cerebellar
plasma membranes were increased. In cultivated cerebellar
neurons, it was demonstrated that insulin stimulated plasma
membrane insertion of Glut4 [21]. In addition, Glut4 protein
was colocalized with insulin-responsive aminopeptidase and
with the putative sorting receptor sortilin.

Learning and memory

Neuronal circuits in hippocampus play pivotal roles in learn-
ing and memory formation representing processes that are
associated with high energy consumption in neurons. The
increased energy demand is met by provision of D-glucose
and L-lactate in combination with increased aerobic glycoly-
sis. The increased provision of D-glucose and L-lactate to neu-
rons is accomplished by upregulation of glucose and lactate
transporters and by increased glycolysis in astrocytes [293,
322, 323]. The upregulations are triggered by a decreased
extracellular D-glucose concentration and by an increased ce-
rebral secretion of insulin.

During training of rodents for different memory tasks, a
decrease of D-glucose and an increase of L-lactate in hippo-
campus were measured [269, 270, 293, 392]. The cognitive
effect of training was augmented when the decrease of cere-
bral D-glucose was prevented by provision of D-glucose [269,
270]. In addition to upregulation of lactate transporters in as-
trocytes and neurons during learning, upregulation of Glut1,
Glut3, and Glut4 was observed [65, 322, 323, 392].
Furthermore, it turned out that the short-term memory was
improved by phlorizin, an inhibitor of Sglt1, Sglt2, Sglt3a,
and Sglt3b [38, 156].
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Evidence was presented that brain-derived insulin that in-
teracts with the insulin receptor in brain is involved in
memory-related hypothalamic neuronal circuits [23, 268,
465]. Thus, application of insulin to hippocampus improved
the performance of a spatial memory task in rats whereas the
performance was impaired when endogenous insulin in the
hippocampus was inactivated [271]. Training rats for an op-
erative memory task increased hypothalamic expression of the
insulin receptor [465]. Moreover, in rats with insulin resis-
tance that had been induced by a high-fat diet (HFD), memory
performance was impaired and the effect of hippocampal ap-
plication of insulin was blunted [271]. Since it was observed
that the administration of D-glucose improvedmemory perfor-
mance similar to insulin [140, 267] and that insulin-stimulated
plasma membrane insertion of Glut4 in hippocampal neurons
[339], it was reasoned that the effect of insulin on memory
performance may be mediated via upregulation of Glut4.
Studying the role of Glut4 in learning that involves hippocam-
pal neuronal circuits, spontaneous alteration (SA) operational
memory tasks were employed [73, 322, 323]. In these exper-
iments, it was ensured that insulin signaling in hippocampus
was required for successful accomplishment of the tasks, that
insulin administration to hippocampus improved the out-
come, and that upstream components of insulin regulation
were involved. It turned out that during short-term learn-
ing, glucose utilization in the dorsal hippocampus was
increased and Glut4 abundance in hippocampal plasma
membranes was upregulated whereas plasma membrane
abundance of Glut1 and Glut3 was not changed [150,
323]. To determine the impact of Glut4-mediated glucose
transport on learning, Glut4 in hippocampus was inhibited
by the HIV drug indinavir that does not inhibit Glut1 and
Glut3. Selective blockage of Glut4-mediated transport im-
paired the improved outcome in the SA operational task
observed after hippocampal application of insulin [323].
The outcome in the SA operational task without applica-
tion of insulin was impaired when the upstream pathway
of insulin-dependent Glut4 trafficking was blocked [271,
323]. The data demonstrate the requirement of insulin-
dependent upregulation of Glut4 during learning. In con-
trast to neuronal glucose uptake during learning, neuronal
glucose uptake during unforced brain activity is supposed
to be mainly covered by Glut3. Glut4 probably contrib-
utes, because prolonged inhibition of Glut4 in hippocam-
pus led to upregulation of Glut3 that resulted in an im-
provement of the working memory [322]. The observation
that the expression of Glut1 in hippocampus of mice was
increased about 4 h after a conditioning task suggests that
Glut1 is also is involved in learning [65]. The upregula-
tion of Glut1 is supposed to be mediated by a cooperative
effect of insulin and insulin growth factor 1 (IGF-1) on
the expression of Glut1 in astrocytes involving a mitogen-
activated protein kinase/protein kinase D pathway [122].

Cerebral glucose transporters during diabetes

Introduction

It has been reported that cerebral D-glucose uptake and expres-
sion of glucose transporters in brain change in response to
consumption of HFDs and during type 1 and type 2 diabetes
mellitus. HFDs promote obesity and type 2 diabetes mellitus
(T2DM) that have been identified as risk factors for emer-
gence of PD. In this chapter, changes in cerebral D-glucose
transport and expression of glucose transporters in brain dur-
ing type 1 diabetesmellitus (T1DM) and T2DMare described.
Considering the impact of cerebral glucose transporters for
operative learning and memory formation, also diabetes asso-
ciated changes in cognitive functions are discussed.

Type 1 diabetes mellitus

T1DM in which insulin secretion by pancreatic β cells is
destroyed has been identified as risk factor for development of
cognitive impairment in humans [170, 275, 355, 359] and in
rodents with STZ-induced T1DM [33, 34, 320]. In humans with
T1DM, similar cerebral D-glucose concentrations and D-glucose
uptake rates into brain were observed under normo-, hypo-, and
hyperglycemic conditions [119, 154, 415] suggesting that D-glu-
cose-dependent regulation of glucose transporters is intact in
T1DM. In rats, detailed investigations concerning effects of
STZ-induced diabetes on cerebral D-glucose uptake and expres-
sion of glucose transporters in brainwere performed. Some of the
reported data are diverging. Measuring tracer uptake of radioac-
tively labeled D-glucose, 2DOG or 3OMG into total brain or
frontal cortex, a decreased or unchanged uptake was observed
in rats with STZ-induced diabetes [196, 280, 336]. In small ves-
sels isolated from total brain, upregulation of Glut1 mRNA was
observed in the diabetic animals [66, 241] whereas the abun-
dance of Glut1 protein was either downregulated [241, 314,
332] or not changed significantly [19, 280, 395]. In hippocampus
of rats with STZ-induced diabetes, Glut1 mRNAwas upregulat-
ed whereas Glut1 protein abundance was not changed [341]. At
variance, Glut3 in hippocampus was upregulated on mRNA and
protein level [340]. The upregulation of Glut3 is supposed to be
specific for hippocampus since no upregulation was detected in
total brain samples. In cerebellum of rats with STZ-induced dia-
betes, a higher abundance of Glu4 was observed compared to
non-diabetic animals [420]. Finally, it has been described that in
micewith STZ-induced diabetes, insulin-dependent translocation
of Glut4 to plasma membranes of hippocampal neurons was
affected [320]. In the diabetic mice, locomotion and cognitive
functions were impaired. Taken together, the data suggest that
changes of Glut4 and Glut3 mediated glucose uptake into hippo-
campal and cerebellar neurons are associated with cognitive and
operational impairments during T1DM.
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Type 2 diabetes mellitus

High-fat diets and obesity as precursors of type 2 diabetes

Prolonged consumption of hypercaloric HFDs, in partic-
ular of HFDs that contain large amounts of sucrose, so
called Western diets, lead to obesity, induce metabolic
changes including insulin intolerance, and promote
T2DM [117, 260]. Peripheral and central insulin intol-
erance are key symptoms of T2DM beside increased
concentration of D-glucose in blood and impaired pan-
creatic insulin secretion. It has been observed in humans
and rodents that prolonged nutrition with hypercaloric
HFDs leads to impaired hippocampus-related memory
functions that are associated with insulin resistance
[115, 127, 146–148, 200, 284, 414]. The impairments
are influenced by the abundance of saturated fatty acids
and sucrose in the diet [146, 147]. The effects of HFDs
on memory functions have been studied in rat models
for T2DM using different operative memory tests [73].
For example, some impairment of the working memory
measured in a radial maze test was observed when rats
were kept for 9 days on a hypercaloric HFD, although
body weight and morning blood glucose were not in-
creased [289]. When rats were kept for 3 months on
HFD, they became obese, exhibited peripheral and cen-
tral insulin resistance and dysfunction of hippocampal
mitochondria. These rats showed an impairment of the
operative spatial memory measured by the Morris water
maze task [73, 327, 328]. The brain dysfunction was
improved by antidiabetic drugs like metformin or
dipeptiyl-peptidase 4 inhibitors [326–328]. Arnold and
coworkers observed impaired insulin sensing in brain
cortex and hippocampus of mice after feeding for
17 days with a hypercaloric HFD [15]. The mice had
a 20% higher body weight and an increased morning
blood D-glucose concentration compared to mice on
control diet. Operative spatial memory in a T-maze task
[73] was impaired. It is probable that Glut4 in hippo-
campus that participates in operational learning [323] is
involved.

In mice, a transient impairment of an operational memory
task correlated with downregulation of Glut1 has been de-
scribed [190]. Administration of HFD for 3 days led to down-
regulation of Glut1 mRNA and protein in small vessels in
different brain areas including cerebral cortex and hippocam-
pus. The downregulation was reversed when the HFD was
adminis tered for 8 days or longer t ime periods.
Downregulation of Glut1 observed after 3 days was associated
with a decrease of D-glucose uptake in hippocampus and brain
cortex. Evidence was presented that the reversal of Glut1
downregulation was induced by an increased expression of
vascular endothelial growth factor in macrophages.

Type 2 diabetes mellitus in human

Correlations between deficits inmemory functions and T2DM
have been observed using various cognitive tests. Employing
a psychological test battery, it turned out that speed of reaction
time was decreased and the outcome in a memory-
concentration task was impaired in patients with T2DM
[275]. In a prospective study following T2DM patients over
a period of about 30 years, increased risk for poor perfor-
mance of tests on verbal memory was associated with duration
and severity of T2DM [111]. In another large prospective
multicenter study on women older than 64 years, the
effect of T2DM on cognitive functions was tested three
times every 3 years [149]. It turned out that T2DM was
associated with impaired cognitive functions and accel-
erated cognitive decline.

Rodent models of type 2 diabetes

Individual aspects concerning effects of T2DM on cerebral
glucose transporters were investigated in rodent models. The
employed models were diet induced obesity (DIO) [271], ob/
ob mice [213], db/db mice [419, 420], and Zucker diabetic
fatty (ZDF) rats. When rats were fed for 20 days with HFD,
part of the animals became obese and developed diabetes with
increased blood D-glucose and blood insulin concentrations
(DIO rats). In the DIO rats, memory performance measured
in SA memory tasks was impaired compared to diet resistant
rats or to rats on standard chow [271]. Ob/ob mice containing
defect mutations in the leptin coding gene become obese and
exhibit high blood levels of D-glucose and insulin. In the ob/
ob mice, increased expression of Glut4 was observed in neu-
rons of the ARH which is supposed to be involved in central
regulation of blood glucose [213]. Adult db/db mice express-
ing a defective leptin receptor are obese and insulin resistant.
They exhibit increased levels of D-glucose and insulin in the
blood. In adult db/db mice, a decreased brain weight and de-
creased cerebral D-glucose utilization was observed [419]. In
the db/dbmice, protein abundance of Glut1 in the BBB and of
Glut3 in total brain were similar to nondiabetic littermates
[419]. In cerebellum of db/db mice, the expression of Glut4
protein was increased [420]. ZDF rats which exhibit a highly
increased blood D-glucose concentration and an increased
concentration of D-glucose in hippocampus showed a de-
creased abundance of Glut4 protein in hippocampal plasma
membranes whereas tissue abundance of Glut4 protein in hip-
pocampus was not altered [417, 445]. Performing interval
learning tasks, memory functions with longer time intervals
were impaired in ZDF rats [445]. Taken together, the data
suggest that the decrease of mental functions observed in pa-
tients with badly controlled T2DM may be associated with
changes in regulation of GLUT4 in hippocampus.
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Cerebral glucose transporters
during Alzheimers’s disease

Pathogenesis of AD

Overview

AD is the most abundant cause of progressive intellectual
failure in aged humans [36, 369, 456]. Two types of AD are
distinguished: early-onset AD that is observed in 5–10% of
patients, often starts early in live and is caused by genetic
abnormalities, and late-onset AD that is observed in 90–95%
of patients. Late-onset ADmainly emerges in aged individuals
and is supposed to be caused by complex interactions of ge-
netic and environmental factors that provoke neuronal
hypometabolism. Advanced stages of AD are characterized
by extensive synaptic loss that is associated with decreased
D-glucose uptake and D-glucose metabolism in specific brain
areas [92, 368]. Early described hallmarks of neuronal damage
during AD were neuritic extracellular amyloid plaques—
called senile plaques (SPs)—and cytosolic neurofibrillar tan-
gles (NFTs). The SPs are formed by amyloid beta-peptides
(AβPs) that are fragments of beta-amyloid precursor protein
(APP). NFTs are aggregates of abnormally hyperphos-
phorylated cytosolic tau protein. The occurrence of SPs and
NFTs in early-onset and late-onset AD, and the observation
that missense mutations in APP cause autosomal dominant
forms of early-onset AD, gave rise to the so-called classical
hypothesis on AD pathogenesis. This hypothesis states that
AD is caused by formation of AβP oligomers that form SPs
and induce neuronal injury promoting formation of NFTs.
Whereas this pathogenetic mechanism may be valid for some
forms of early-onset AD, late-onset AD is considered as a
metabolic disease with hypometabolism in specific brain re-
gions as described by the neuroenergetic hypothesis on AD
pathogenesis. The hypometabolism can be induced by con-
tinuing or recurrent effects of genetic and/or environmental
factors. In this chapter, both hypotheses for the pathogenesis
of AD are outlined. In addition, associated structural and func-
tional changes in brain associated with late-onset AD are de-
scribed, and the potential role of glucose transporters in path-
ogenesis of AD is discussed.

Classical hypothesis on AD pathogenesis

In the classical hypothesis on AD pathogenesis, the formation
of extracellular AβP oligomers is considered as initial event
[14, 159, 160, 285, 344]. AβPs are derived fromAPP variants
that are degraded by β- and γ-secretase and contain a
part of the hydrophobic transmembrane domain of APP.
Inherited forms of early-onset AD may be due to mu-
tations in APP that block cleavage sites for secretases,
to genetic variations in presenilin 1 and 2 that interact

which γ-secretase and enhance the formation of AβPs,
and to genetic variations in apolipoprotein E that is
supposed to be involved in the clearance of AβP.
AβP forms oligomers and SPs and promotes synaptic
and neuritic injury. The neuritic injury is combined with
changes of intracellular ionic homeostasis and kinase/
phosphatase activities and leads to neuronal dysfunction
and cell death. The changed kinase/phosphatase activi-
ties lead to hyperphosphorylation of microtubule-
associated protein tau and formation of intraneuronal
tangles. Whereas it is established that extracellular
AβP oligomers can cause AD by exhibiting neuritic
injury, the detailed mechanism promoting the injury is
not understood. The observations that the occurrence of
extracellular SPs and NFTs was not always correlated
during AD and that the number of SPs in patients could
not be unambiguously correlated with the degree of
cognitive impairment, are in contradiction to a general
validity of the classical hypothesis on AD [14, 285,
344].

Neuroenergetic hypothesis on AD pathogenesis

The ambiguity in the causal chain proposed by the classical
hypothesis on AD pathogenesis and the inability of this
hypothesis to comprise the multiple genetic and environ-
mental factors that promote late-onset AD [14, 285] showed
the demand of an alternative more general hypothesis. Thus,
the neuroenergetic hypothesis was raised in which de-
creased metabolizable energy availability for neurons is
the key factor of AD pathogenesis [36, 85]. A central obser-
vation leading to this hypothesis was that permanent or oc-
casional insufficiency of energy supply is neurotoxic and
leads to a destruction of synapses and neurons. This destruc-
tion may include intracellular signaling, inflammatory reac-
tions, and microglial cell activities. It was observed that AD
is always associated with a reduction of D-glucose uptake
into specific brain regions that may be caused by decreased
blood flow and/or decreased expression of glucose trans-
porters in the BBB. The destruction of neurons in response
to reduced energy supply may be influenced by various
genetic and environmental factors, for example by apolipo-
protein E4 and HFD [4, 169]. Likewise, the neuroenergetic
hypothesis is consistent with the observations that the inci-
dence for AD is increased with age and in patients with
T1DM or T2DM [274, 311]. With increasing age and
during diabetes, blood flow through small blood vessel,
cerebral D-glucose uptake into brain, and cerebral glu-
cose metabolism are impaired. During insulin-treated
T1DM, hypoglycemia may promote neuronal destruction
whereas insulin resistance during T2DM may decrease
the insulin upregulation of GLUT4/Glut4 in hippocam-
pal neuronal membranes [320].
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Cerebral uptake and metabolism of D-glucose during
AD

Changes in utilization and metabolism of D-glucose

PET employing [18F]2-fluoro-2-deoxy-D-glucose ([18F]DOG)
allows the identification of brain regions with decreased up-
take and/or phosphorylation of D-glucose [89, 105, 129, 167,
188, 383]. Like [14C]DOG that had been introduced in 1977
for autoradiographic studies in animals [386], [18F]DOG
serves as tracer for netto uptake of D-glucose from blood into
brain followed by phosphorylation via hexokinase. [18F]DOG
phosphorylated in position six ([18F]DOG-6-P) is not metab-
olized further and trapped in cells. In addition to accumulation
of [18F]DOG-6-P in brain tissue after a defined time period,
also the time course of radioactivity accumulation can be de-
termined. Employing simple models, time constants for up-
take of [18F]DOG (k1), efflux of [18F]DOG (k2), phosphory-
lation of [18F]DOG (k3), and dephosphorylation of [

18F]DOG-
6-P (k4) were estimated [188, 325]. During AD, [18F]DOG-6-
P accumulation was decreased in various brain regions.
Distinct signal reductions were observed in the frontal, tem-
poral, parietal, occipital, and entorhinal cortex, and in hippo-
campus [89, 167, 188, 325]. These regions overlap with brain
regions in which the largest histological changes in response
to AD were observed [46]. The degree of PET [18F]DOG
signal reduction during AD was correlated with the severity
and rate of progression of cognitive defects [89, 189].
Interestingly, reductions of [18F]DOG signals in non-
diseased individuals were correlated with genetic risk for
AD [343]. Model analysis of time courses of PET with
[18F]DOG revealed that the time constants for [18F]DOG up-
take (k1) and [18F]DOG phosphorylation (k3) were decreased
[188, 325]. The decrease of k1 suggests a decelerated passage
of D-glucose from blood capillaries into brain tissue. This can
be due to slowed blood flow through small brain vessels,
decreased D-glucose transport across the BBB, and/or de-
creased D-glucose transport into cerebral cells. The decreased
k3 value indicates a decelerated metabolism of D-glucose. PET
with [18F]DOG is a valuable tool for diagnosis of AD and
evaluation of neuronal damage during AD.

Changes in blood flow

During AD and other dementing illnesses, expansion and ar-
chitecture of small blood vessels is altered and cerebral blood
flow is decreased [47, 125, 249, 357, 440]. Local functional
and structural changes in microvessels are supposed to repre-
sent an early event during emergence of AD [335, 384].
Accordingly, the hypothesis was raised that hypoperfusion
can be an early event in the causal chain of AD pathogenesis
[242, 254, 361, 468, 470]. Accordingly, an impairment of
regional blood flow was detected in patients during early

stages of AD where no distinct tissue defects were detectable
[335]. In addition, in cognitively intact individuals with genet-
ic risk factors for AD, task activation of blood flow was im-
paired in brain areas in which neuropathological changes dur-
ing AD have been described [384]. Furthermore, the impact of
cerebral hypoperfusion on the pathogenesis of AD was sug-
gested by experiments with rodents. It was observed that
chronic cerebral hypoperfusion led to cognitive impairment
and neurodegeneration in hippocampus that was associated
with accumulation of AβP oligomers [432]. In a mouse model
of AD, transient cerebral hypoperfusion induced an upregula-
tion of AβP in brain [211]. All in all, impairment of blood
supply represents one way how energy supply to neurons can
be reduced. It may represent a starting point of AD pathogen-
esis according to the neuroenergetic hypothesis. In general
terms, brain capillaries have high impact on emergence of
cerebral malfunctions including AD. They are part of the
neurovascular unit that does not only play a central role in
regulation of local blood flow in response to neuronal activity
but also in regulation of capillary growth and AβP transfer
from the blood into brain tissue [91, 177, 469].

Changes in expression of glucose transporters

The expression of GLUT1, GLUT2, GLUT3, and GLUT4 in
brain tissue and small brain vessels has been compared be-
tween patients with AD and healthy individuals [197, 236,
281, 379]. During AD, downregulation of GLUT1 protein
was detected in cerebral cortex and hippocampus [236, 281,
379] and confined to GLUT1 in endothelial cells of brain
capillaries [172, 197, 425]. In a mouse model for early onset
of AD in which atrophy of hippocampus and increased Aβ
abundance in hippocampus were observed whereas capillary
density in hippocampus was not changed, Glut1 protein in
small hippocampal vessels was decreased [171]. In patients
with AD, also the cerebral abundance of GLUT3 protein was
decreased [161, 236, 379]. Downregulation of GLUT3 was
observed in cerebral cortex and hippocampus. It was due to
downregulation of GLUT3 in neurons [379]. In brain tissue
from AD patients, the expression of GLUT2 protein was up-
regulated whereas a similar expression of GLUT4 protein was
observed as in non-diseased individuals [236].

Potential roles of glucose transporters during AD
pathogenesis

The downregulation of GLUT1/Glut1 and GLUT3/Glut3 pro-
tein during AD could represent an early concomitant phenom-
enon that aggravates AD progression [466] or an early mem-
ber within the causal chain of the pathogenetic mechanism of
AD [151]. Whereas the first possibility is supported by the
observation that application of Aβ decreased the incorpora-
tion of Glut3 into the plasma membrane of cultured neurons
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[405], other data support the second possibility [151]. Gu and
coworkers observed that the activation of calpain I in neurons
was correlated with a decrease of GLUT3 protein, and provid-
ed evidence suggesting that this effect is due to calpain I-
mediated proteolysis of GLUT3 at the N-terminus [151].
Since calpain I in neurons can be activated during over-
stimulation of amino acid receptors [418], GLUT3/Glut3
may be downregulated during excitatory stress and promote
AD emergence. Promotion or aggravation of AD in response
to downregulation of glucose transporters may be explained
by effects of intracellular glucose on O-AcNAcylation of Aβ
and tau peptides [466]. Downregulation of GLUT1/Glut1 and
GLUT3/Glut3 in endothelial cells and neurons leading to a
decrease of intracellular D-glucose may cause a slow-down
of the hexosamine biosynthetic pathway (HBSP) that is in-
volved in the synthesis of uridine 5′-diphosphate-N-
acetylglucosamine (UDP-GlcNAc) (Fig. 7). Since UDP-
GlcNAc is the donor molecule for the transfer of N-
acetylglucosamine (GlcNAc) to proteins catalyzed by O-
GlcNAc transferase (OGT), GlcNAc modification of
intraneuronal proteins may be reduced (Fig. 7). The reverse
reaction is catalyzed by glycoside hydrolase O-GlcNAcase
(OGA). O-GlcNAcylation of tau protein and γ-secretase
which are involved in generation of Aß, was observed, and
it was shown that neurotoxicity of tau and Aβ in animal AD
models was reduced when OGA was inhibited [462, 466]. O-
G l cNAcy l a t i o n o f t a u p r o t e i n d e c r e a s e s t h e
hyperphosphorylation of tau that leads to the formation of
neurotoxic tau oligomers [216, 234, 466]. Degradation of
APP by the amyloidogenic pathway leading to the generation
of neurotoxic Aβ was shown to be decreased when O-
GlcNAcylation of APP in neurons was stimulated by inhibi-
tion of OGA [116, 187]. This effect may be due to stimulation
of O-GlcNAcylation of APP and/or of γ-secretase [187, 205].
γ-Secretase is involved in APP degradation and is activated
by O-GlcNAcylation. Taken together, the data indicate that
GLUT1/Glut1 and GLUT3/Glut3 are related to AD emer-
gence and/or progression.

GLUT1 deficiency syndrome

GLUT1 deficiency syndrome in humans

Rarely occurring neurological disorders based on decreased
expression and/or function of GLUT1 in brain are subsumed
as GLUT1 deficiency syndrome (GLUT1-DS) [28, 86, 90,
319]. In most cases, GLUT1-DS is caused by heterozygous
single-nucleotide variants (SNVs) in the SLC2A1 gene that
provoke complete or severe impairment of functionality and/
or expression of GLUT1 in brain [367]. The identified SNVs
induce amino acid exchanges, exon deletions, frame shifts,
and effects on regulation of transcription or translation [163,

225, 238, 443]. Recessive inheritance was assigned to SNVs
leading tomoderate impairment of GLUT1 functionality [208,
353]. SNVs in SLC2A1 that induce major impairment of
GLUT1 functionality or expression are lethal in homozygote
carriers as indicated by animal models of GLUT1-DS [303,
431]. Carriers of SNVs in SLC2A1 may develop different
neurological symptoms dependent on the residual functional-
ity of GLUT1 in brain capillaries and astrocytes in combina-
tion with differential genetic predisposition of the affected
individuals [45, 86]. Being expressed in capillary endothelial
cells and astrocytes, GLUT1 is pivotal for glucose uptake
across the BBB and for the glycolysis in astrocytes providing
glucose and L-lactate for neurons. The observed neurological
disorders in GLUT1-DS represent different clinical manifes-
tations of intellectual impairment, acquired microcephaly, ep-
ilepsy, and movement disorders [45, 86]. GLUT1-DS was
first described as an early onset childhood epileptic encepha-
lopathy [90]. With the description of additional cases associ-
ated with mutations in GLUT1, the phenotype spectrum was
expanded by epileptic encephalopathy with different types of
seizures, movement disorders, and paroxysmal events of non-
epileptic origin [45, 86]. The observed epileptic seizures com-
prise subtle myoclonic limb jerking with alternating staring
and eye-rolling, unresponsiveness, head bobbing, and gener-
alized seizures. The movement disorders include ataxia, spas-
ticity, and dystonia that occur in different combinations. The
observed paroxysmal events comprise intermittent ataxia, pe-
riodic confusion, periodic weakness, and recurrent headaches.
Additionally, specific atypical manifestations of GLUT1-DS
have been described [45, 86]. They include paroxysmal exer-
tion induced dystonia without and with seizures, intermittent
ataxia, dystonia, migraine or choreoathetosis, and alternating
hemiplegia.

The diagnosis of GLUT1-DS should bemade in children as
early as possible trying to prevent serious disease progression.
A decreased D-glucose concentration in CSF called
hypoglycorrhachia is a distinct biomarker of GLUT1-DS;
however, it also shows up in some other neurological diseases
[86, 226]. A second diagnostic marker is a decreased uptake of
2DOGor 3OMG into erythrocytes. Thismarkermay not show
up when GLUT1 expression is selectively downregulated in
brain. Downregulation of GLUT1-mediated D-glucose uptake
into brain can be detected by PET using [18F]DOG [2, 318].
For ultimate validation of GLUT1-DS, DNA sequencing of
the SLC2A1 gene should be employed. It is recommended to
include non-coding gene regions to allow detection of muta-
tions in regulatory domains [238, 443].

For therapy of GLUT1-DS, ketogenic diets (high-fat, low
protein, low-carbohydrate) have been introduced trying to
compensate impaired cerebral energy supply with glucose
by short-chain fatty acids [90, 206, 207]. It was observed that
the ketogenic diets improved various but not all symptoms of
GLUT1-DS. If a ketogenic diet is started very early in life
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when brain development has not been completed, it may pre-
vent the development of encephalopathy and alleviate the se-
verity of the disease including intellectual deficits [81, 85].
Because compliance of ketogenic diets is bad in some pa-
tients, a modified Atkins diets (high-fat, high protein, low-
carbohydrate) have been introduced [8]. Modified Atkins di-
ets showed the same positive effects as the ketogenic diets.

Animal models for GLUT1 deficiency syndrome

To establish animal models of GLUT1-DS, heterozygous
Glut1 knockout mice [303, 431] and transgenic mice express-
ing antisense-Glut1 [166, 257] were generated. Homozygous
Glut1 knockout mice proved to be lethal [303, 431] and
antisense-Glut1 mice in which the expression of Glut1 was
strongly suppressed showed very severe phenotypes of
GLUT1-DS including anencephaly and pronounced cerebral
dysgenesis [166]. The heterozygous Glut1 knockout mouse
generated by Wang and coworkers exhibited a less severe
GLUT1-DS phenotype compared to an antisense-Glut1
mouse described by Marin-Valencia and coworkers [257,
396, 408, 431].

In the heterozygous Glut1 knockout mouse with mild
GLUT1-DS phenotype, no epileptic seizures and no distinct
neuronal failures were observed. However, the mice exhibited

impaired motor performance, motoric coordination, and learn-
ing [431]. In electroencephalograms, spontaneous generalized
epileptiform discharges without behavioral correlates were
observed [431]. Starting at the age of 21 weeks, the brain
weight of the heterozygous Glut1 knockout mice was slightly
smaller compared to wildtype mice [408, 431]. The plasma
membrane abundance of Glut1 protein in brain was decreased
by about 30% and the CSF-to-blood glucose ratio was de-
creased by about 70% [431]. [18F]DOG PET measurements
indicated a decrease in cerebral glucose uptake. In these het-
erologous Glut1 knockout mice, also a slight decrease of the
hippocampal volume and an increase of activated astrocytes in
deeper cortical layers were observed [408]. Noteworthy, an
expansion of small blood vessels in thalamus during brain
development that was observed between 2 and 20 weeks after
birth in wildtype mice, was significantly reduced in the het-
erozygous Glut1 knockout mice [396].

The transgenic Glut1-antisense mice with severe GLUT1-
DS phenotype displayed severe ataxia [257]. These miceman-
ifested generalized jerks during rest and motion and showed
exaggerated response to tactile and acoustic stimuli. Different
to wildtype mice, frequent epileptic spikes and series of spike
and spike-wave activities were observed. The brain weight of
the Glut1-antisense mice was reduced by about 8% and the
concentration of Glut1 in forebrain was decreased by about

Fig. 7 Hypothesis how decreased expression of glucose transporters in
brain leading to a decreased intracellular D-glucose concentration in
neurons may promote the emergence of AD. A reduced concentration
of D-glucose in neurons decelerates the biosynthetic pathway of
hexosamine (HBSP) leading to a decreased O-glycosylation of proteins
tau and APP with N-acetylglucosamine. The glycosylation of these pro-
teins is neuroprotective because it decreases hyperphosphorylation of tau

that promotes the formation of tau oligomers and decreases Aβ formation
by degradation of APP. The effects of downregulation of cerebral glucose
transporters are indicated by red arrows. GlcNAc N-acetylglucosamine,
UDP-GlcNAc uridine 5′-diphosphate-N-acetylglucosamine, OGT O-
GlcNAc transferase, OGAO-GlcNAcase, APP amyloid precursor protein
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50%. Uptake of intraperitoneal injected [14C]2DOG into ce-
rebral cortex and thalamus was decreased by about 30%. In
brain tissue of the Glut-antisense mice, the abundance of
acetyl-CoA and fatty acids were reduced whereas the concen-
trations of tricarboxylic acid cycle intermediates and of amine
neurotransmitters were not changed. This suggests that the
tricarboxylic acid cycle is intact and can be maintained by
ketone body utilization. Oxidative phosphorylation appears
to be sufficient to provide energy for neurotransmitter synthe-
sis. The findings suggest that GLUT1-DS—at least in this
model—was not due to an energy deficit. Accordingly, the
hypothesis was raised that GLUT1-DS is caused by a shortage
of acetyl-CoA that leads to downregulation of acetyl-CoA-
dependent metabolic pathways such as the synthesis of fatty
acids and lipids [257, 317]. Therapy with ketonic diets may
prevent the shortage of acetyl-CoA.

Stroke

Pathophysiology and animal models

Stroke is a devastating neurological disturbance that is the
second leading cause of death worldwide. More than 80% of
stroke events are ischemic and result from restricted blood
flow to a brain part. Stroke is mostly caused by arterial occlu-
sion due to thrombosis, embolism, and/or arteriosclerosis. The
arterial occlusion causes irreversible structural damages in a
core region and changes in a surrounding area called penum-
bra that may be reversible [17, 237, 398]. Ischemia leads to
failure of supply with D-glucose and oxygen that are required
for ATP formation. In brain, ATP is mainly used to fuel the
Na+-K+-ATPase and the Ca2+-ATPase in neurons that are piv-
otal for maintenance of transmembrane gradients of Na+, K+,
and Ca2+ and of plasma membrane potential. Failure of ATP
supply leads to an accumulation of intracellular Na+ followed
by influx of monovalent anions such as Cl− and influx of
water, resulting in cytotoxic edema. The depolarization of
plasma membranes induces opening of voltage-gated cation
channels and reverses transport directions of the Na+/Ca2+

exchanger. The resulting increase of intracellular Ca2+ in neu-
rons induces fusion of neurotransmitter containing vesicles
with presynaptic membranes. Massive release of glutamate
is neurotoxic and exacerbates neuronal damage by overstim-
ulation of excitatory receptors. Energy failure in brain cells
also promotes generation of reactive oxygen species (ROS)
by mitochondria. ROS induce activation of inositol trisphos-
phate and ryanodine receptors liberating Ca2+ from intracellu-
lar stores. The massive cytosolic Ca2+ overload induced by
these processes activates Ca2+-dependent proteases, phospho-
lipases, endonucleases, and Ca2+-calmodulin-dependent nitric
oxide synthases. The activation of these and other enzymes
promotes protein degradation, DNA damage, and disruption

of cellular signaling pathway leading to cellular death.
Necrotic cells release cytotoxic compounds that may enter
adjacent neurons with impaired plasma membrane integrity.
Cerebral ischemia also induces inflammatory reactions. In ad-
dition, ischemia is associated with an increase of passive per-
meability of microvessels combined with changes of trans-
porter abundance in capillary endothelial cells [398]. For ex-
ample, it has been described that the activity of the Na+-K+-
2Cl−-cotransporter in the luminal membrane of capillary en-
dothelial cells was increased during ischemia [300]. These
changes in the BBB cause vasogenic brain edema that repre-
sents a frequent cause of early mortality during stroke. Trying
to improve the outcome of stroke events, an early recanaliza-
tion of occluded vessels is attempted, e.g., by thrombolytic
therapies or mechanical interventions [398]. These therapies
may be beneficial promoting salvage of tissue in the penumbra
region; however, they may also lead to an increase of the
infarcted tissue volume [298]. Reasoning about the role of
glucose transporters during stroke, the regulation of glucose
transporters in the core region during the onset of cellular
death and the regulation of glucose transporters in the penum-
bra must be considered. This includes regulation in the pen-
umbra during later phases of stroke when ischemia may be
blunted due to opening of collateral circulation and/or thera-
peutic recanalization.

The knowledge about regulation of glucose transporters in
brain during stroke is derived from occlusion-reperfusion
models in rodents. In the most frequently applied median ce-
rebral artery occlusion (MCAO) model [223], the median ce-
rebral artery (MCA) is occluded whereas in the bilateral com-
mon carotic artery occlusion (BCCAO)models, both common
carotic arteries are clamped without or with parallel reduction
of blood pressure [136, 265]. The artery occlusions were per-
formed for short time periods of 6 to 15 min or for several
hours. At different times after canceling the occlusion, the
expression and/or function of glucose transporters was inves-
tigated. Different effects showed up at different times. Effects
observed within hours are supposed to represent the early
response to ischemia and direct counterregulations. At vari-
ance, the effects observed one or several days after occlusion
represent long-lasting regulatory responses.

Expression of glucose transporters during stroke

GLUT1

One hour after short-term MCAO in rats, Glut1 mRNA was
upregulated throughout ipsilateral and contralateral brain cor-
tex [223]. In the following hours, upregulation of Glut1
mRNA was normalized in contralateral cortex whereas it
was intensified in a lateral region of the ipsilateral cortex.
Upregulation of Glut1 was observed in microvessels, astro-
cytes, and distinct neuronal populations. One day after
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MCAO, Glut1 mRNAwas still upregulated in glial cells of the
penumbra but not anymore in neurons [223]. In another study
on rats in which the MCA was occluded for 3 h, mRNA and
protein of Glut1 were upregulated at 12 h of reperfusion in an
ipsilateral cortical area outside the core infarct region [412].
BCCAO models of stroke were studied in gerbils and rats.
Three hours after 6-min BCCAO in gerbils, Glut1 mRNA
was increased in brain cortex and thalamus [136]. After
1 day, Glut1 mRNA in these regions was further increased
whereas it was gone after 3 days. Employing BCCAO in
combination with blood pressure reduction in rats, effects on
Glut1 associated immunoreactivity were investigated in hip-
pocampus [265]. One and 4 days after 15-min BCCAO, Glut1
protein in small blood vessels and in hippocampal tissue was
upregulated. In parallel, total length and ramification of
microvessels were increased. A study in rats with STZ-
induced diabetes revealed that upregulation of Glut1 mRNA
and protein in response toMCAOwas more pronounced com-
pared to non-diabetic rats [464].

Some information about mechanisms that may be involved
in regulation of GLUT1/Glut1 during stroke is available.
Thus, data were reported suggesting that heat shock protein
(HSP) 70, hypoxia inducible factor (HIF) 1, and insulin-like
growth factor (IGF) 1 are involved [61, 265]. One day after
15-min BCCAO in rats, upregulation of Glut1 protein in hip-
pocampus was correlated with upregulation of HSP70 [265].
In another study in rat depicted in Fig. 8, 1 h after 12-min
BCCAO, the expression of HIF1α was increased whereas
expression of the HIF1α target proteins erythropoietin and
Glut1 were increased only after 12 h [61]. Interestingly, up-
regulation of HIF1α, erythropoietin, and Glut1 persisted for
1 week although cerebral hypoxemia was only detectable for
2 days. Noteworthy, cerebral expression of insulin growth
factor (IGF) 1 that stimulates the expression of HIF1α was
increased only 1 day after ischemia but persisted for 1 week
like HIF1α, erythropoietin, and Glut1. Based on these data,
the hypothesis was raised that hypoxia in brain induces ex-
pression of HIF1α that stimulates the expression of various
gene products including Glut1. Thereby a delayed and

continuous upregulation of IGF1 may be promoted that drives
the sustained expression HIF1α and the upregulation of
Glut1. Data that were obtained with cultivated rat astrocytes
suggest that NF-κB is involved in ischemic regulation
of Glut1 in astrocytes [185]. It was observed that the
upregulation of Glut1 in cultivated astrocytes in re-
sponse to glucose and oxygen deprivation was blunted
when NF-κB was inhibited.

GLUT3

The regulation of Glut3 during stroke differs to Glut1. For
example, throughout the first couple of hours after short-
term MCAO in rats, no changes of Glut3 mRNA were ob-
served in the ipsilateral or contralateral forebrain at variance to
Glut1 [223]. However, 1 day after MCAOwhen the increased
expression of Glut1 mRNA was subsided, the abundance of
Glut3 mRNA in neurons of the ipsilateral cortex was slightly
increased. In another MCAO study in rats, it was observed
that the expression of Glut3 mRNA and protein in the contra-
lateral cortex were increased 2 days after 3-h MCAO [412].
Performing 6-min BCCAO in gerbils, similar results were
obtained as after short-term MCAO in rats [136, 223]. Three
hours after BCCAO, the abundance of Glut3 mRNA in cere-
bral cortex and thalamus was not changed at variance to Glut1
whereas after 1 day, Glut3 mRNA was increased in both re-
gions. Different effects on Glut3 expression were observed in
hippocampus of rats when a more severe ischemia was in-
duced by 15-min BCCAO combined with blood pressure re-
duction [264]. In these experiments, a decrease of Glut3 pro-
tein was detected 4 days after BCCAO which became maxi-
mal after 7 days [264]. Performing MCAO in rats with STZ-
induced diabetes, data were obtained indicating that the regu-
lation of Glut3 in brain was influenced by homeostasis of
blood glucose similar to Glut1 [464]. After MCAO in rats
with STZ-induced diabetes, ipsilateral upregulation of Glut3
was more pronounced compared to non-diabetic rats [464].

Experiments on cultivated neurons and astrocytes provided
information about the regulation of Glut3 in response to ener-
gy depletion during ischemia. Thus, energy depletion experi-
ments on primary cerebellar granule neurons (CGNs) sug-
gested that Glut3 is rapidly inserted into the plasma mem-
branes during onset of ischemia [436]. This rapid posttransla-
tional regulation may counteract neuronal cell death in re-
sponse to ischemia. In these experiments, energy depletion
was induced by excitation of CGNs with glutamate promoting
cell death. Upon glutamate excitation the mitochondrial mem-
brane potential was increased, intracellular ATP was de-
creased, AMP was increased, and AMPK was activated.
Evidence was provided that the activation of AMPK promot-
ed the recruitment of Glut3 to the plasmamembrane leading to
a protection of the CGNs from cell death [434, 436]. Data
obtained with cultivated rat astrocytes suggest that Glut3 is

Fig. 8 Chronical order of onset and duration of cerebral hypoxemia,
upregulation of transcription factor HIFα, the HIF1α target proteins
erythropoetin and Glut1, and IGF1 after stroke. The scheme is based on
data in rats employing a BCCAO model of stroke [61]
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upregulated in astrocytes during ischemia [185]. After glucose
and oxygen deprivation, the expression of Glut3 in cultivated
astrocytes was increased on mRNA and protein level. This
upregulation was blunted after inhibition of the transcription
factor NF-κB.

SGLT1

Experiments with cultivated porcine brain cells and stroke
models in mice were performed to elucidate the impact of
SGLT1/Sglt1 expressed in brain on the devastating effects
of stroke [423, 450]. It was observed that SGLT1 expressed
in primary cultured endothelial cells derived from small ves-
sels of bovine brain was stimulated under hypoxemic, hypo-
glycemic, and/or aglycemic conditions of cultivation [423].
During cultivation under control conditions with 5.5 mM D-
glucose in the medium, phloretin inhibited glucose uptake was
observed that was probably mediated by GLUT1, whereas no
significant phlorizin inhibited glucose uptake was detected.
When the cells were cultivated for 12 h under hypoxemic
conditions in the absence of D-glucose, phloretin inhibited D-
glucose uptake was increased fivefold. Under these con-
ditions, also phlorizin inhibited D-glucose uptake
showed up that was sodium dependent. The data sug-
gest that SGLT1/Sglt1-mediated uptake across the BBM
is increased during ischemia.

To determine whether SGLT1/Sglt1 or another phlorizin
inhibited member of the SLC5 transporter family expressed
in brain influences the outcome of stroke,MCAO experiments
were performed in mice [423, 450–453]. In one experimental
setting, the MCA was occluded for 6 h combined with i.p.
injection of phlorizin or saline [423]. It turned out that
phlorizin decreased the infarct volume, reduced brain edema,
and blunted the decrease of deficit scores. In subsequent stud-
ies of Yamazaki and coworkers trying to elucidate the cause
for the protective effect of phlorizin during stroke, two obser-
vations were considered [450–453]. First, the finding that
blood glucose is increased during the early phase of brain
ischemia [158, 261] and second, the observation that
ischemia-induced tissue deterioration was protected by insulin
[158]. In the studies by Yamazaki and coworkers, the MCA
was occluded for 2 h and phlorizin was either subsequently
applied by i.p. injection or phlorizin, D-glucose, and/or anti-
sense SGLT1 RNA was(were) applied by i.c.v. injection.
Fasting blood glucose, infarct size, deficit scores, and/or
Sglt1 protein was(were) measured after 1 or 3 days. In the first
study of this series, it was investigated whether phlorizin
inhibited (a) SLC5 transporter(s) that is(are) involved in gen-
eration of ischemic hyperglycemia and/or in D-glucose-depen-
dent aggravation of ischemia-induced defects [450]. One day
after MCAO, a decrease of fasting blood glucose was ob-
served after i.p. but not after i.c.v. application of phlorizin.
This indicates that cerebral SLC5 type transporters were not

critically involved in the generation of ischemic hyperglyce-
mia. Of note, i.c.v. application of phlorizin after MCAO de-
creased the infarct size and improved deficit scores that were
determined 3 days after MCAO. In addition, it was observed
that infarct size and deficit scores were increased after i.c.v.
injection of D-glucose or AMG and that these effects were
blunted upon coinjection of phlorizin [450, 451, 453]. These
data indicate that D-glucose interaction with a phlorizin
inhibitable member of SLC5 family in brain exacerbated tissue
damage after MCAO. It was also demonstrated that 1 day after
MCAO, the expression of Sglt1 protein was increased in brain
cortex and striatum but not in hippocampus and hypothalamus
[450, 452]. This upregulation probably occurred in neurons
where Sglt1 is predominantly expressed [330, 452].
Noteworthy, downregulation of Sglt1 expression in brain by
i.c.v. injection of antisense Sglt1 mRNA decreased infarct size
and blunted deficit scores 1 day after MCAO [453].
Collectively, the data suggest that phlorizin-sensitive glucose
uptake by Na+-D-glucose cotransport in brain cells aggravate
tissue destructions during brain ischemia. They implicate that
sodium-mediated D-glucose transport via upregulated
SGLT1/Sglt1 in neurons plays a critical role in this effect. In
contrast to D-glucose transport via GLUT transporters, Na+-D-
glucose transport is an energy-consuming process that may
increase energy deficit during brain ischemia. In accordance
with this hypothesis, it was demonstrated in primary cultured
mouse neurons expressing Sglt1 that application of extracel-
lular D-glucose increased intracellular Na+ and that the in-
crease of Na+ could be inhibited by phlorizin [453].

Effects of estrogen, ascorbic acid, and curcumin on
glucose transporters during stroke

Estrogen

Estrogen replacement in postmenopausal women has been
shown to be correlated with improved outcome of stroke
[145]. This may be due to effects of estrogen on the Na+-
K+-Cl− cotransporter or on glucose transporters expressed in
brain [301, 374]. It was observed that 17beta-estradiol in-
creased the expression of Glut1 in the BBB of ovarectomized
female rats [373] and the expression of GLUT1, GLUT3, and
GLUT4 in brain of ovarectomized female rhesus monkeys
[63]. In female ovarectomized rats, the effect of one subcuta-
neous injection of 17beta-estradiol on infarct size and Glut1
expression was investigated [374]. In these experiments, the
MCA was occluded for 30 min and infarct size and cerebral
Glut1 expression were investigated 1 day later. After 17beta-
estradiol treatment, the infarct size was decreased by about
30% and the expression of Glut1 protein in the infarcted core
region was reduced by about 20%. In the penumbra of the
infarct, the expression of Glut1 protein was about 20% in-
creased in response to 17beta-estradiol treatment [374].
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Ascorbic acid

After food supplementation of non-diabetic and diabetic rats
with ascorbic acid (AA), protective effects on infarct size,
brain edema, and neurological deficits after MCAO were ob-
served [186]. In the experiments, diabetes was induced by
STZ and AA was provided for 2 weeks. Thereafter, MCAO
was performed for 2 h, and infarct size, brain edema, neuro-
logical deficits, and expression of cerebral Glut1 were ana-
lyzed 1 day later. In brain of sham-operated diabetic rats, the
expression of Glut1 was smaller compared to sham-operated
non-diabetic rats. However, AA induced upregulation of
Glut1 expression in diabetic and non-diabetic rats to similar
levels. After MCAO without AA treatment, infarct size, brain
edema, and neurological deficits were more pronounced in
diabetic rats compared to non-diabetic animals. AA treatment
improved the outcome after MCAO in non-diabetic and dia-
betic rats; however, the improvement in diabetic rats wasmore
pronounced. The data suggest that the protective effect of AA
on neuronal survival during ischemia is partially due to an
AA-induced upregulation of Glut1 [70].

Curcumin

Curcumin extracted from turmerin is widely used as food
additive. Curcumin exhibits various pharmacological effects
including metabolic, anti-inflammatory, antioxidant, and anti-
diabetic effects [48, 59]. Recent data performed in rats with
STZ-induced diabetes suggest that curcumin compensates the
decreased expression level of GLUT1/Glut1 during diabetes
and thereby improves the outcome of stroke [448]. In rats with
STZ-induced diabetes, 90-minMCAOwas performed and the
animals were subsequently gavaged with curcumin or saline
as control. One day later, neurological deficit scores, infarct
volume, and brain edema were determined. After curcumin
treatment, infarct size and brain edema were reduced and neu-
rological deficit scores improved. In parallel, curcumin
blunted the MCAO-induced decrease of cerebral expression
of Glut1 and Glut3 protein. In tissue culture experiments, it
was demonstrated that curcumin increased the expression of
Glut1 and Glut3 on the cellular level.

Traumatic brain injury

Pathophysiology and animal models

TBI frequently causes mental and physical disabilities. The
term TBI comprises focal and diffuse brain damage caused
by different types of violation and brain concussion. For ex-
ample, brain contusion may induce an instant focal damage
followed by secondary focal and/or secondary diffuse brain
damage whereas acceleration/deacceleration trauma may only

cause a delayed diffuse damage [437]. The instant traumatic
insult during brain contusion is followed by different stages of
secondary damage as observed during stroke. Early stages of
secondary damage during TBI are characterized by lack of
oxygen and glucose supply that is caused by destruction
and/or occlusion of brain vessels combined with impairment
of cerebral blood flow [315, 461]. Failure of oxygen and glu-
cose supply induces metabolic responses in neurons and as-
trocytes promoting anaerobic glucose metabolism that leads
inter-alia to increased cerebral L-lactate concentrations and
decreased ATP concentration in neurons [32, 88, 141, 413].
As described for stroke, lack of ATP induces a cascade of
processes that include plasma membrane depolarization,
changes in ion distribution, release of neurotransmitters, in-
creased permeability of brain vessels, edema, and formation of
ROS. Excitatory toxicity, ROS and brain edema may promote
secondary brain damage [27]. In later stages during TBI, cell
death in severely damaged tissue promotes immigration of
immune cells [463]. The edema recedes and blood circulation
may improve in less severe damaged tissue regions by an
increase of capillary length and capillary diameter. In regions
with less severe tissue damage, regulatory processes take
place that include regulation of metabolic pathways and glu-
cose transporters. Remarkably, TBI also induces extracerebral
body responses that in return influence metabolic regulations
in damaged brain tissue. One important body response to TBI
is a post-traumatic hyperglycemia that is correlated with un-
favorable clinical outcome [88, 221, 356].

The knowledge about pathophysiology of TBI is mainly
derived from studies on animal models. Various animal
models for TBI have been applied in rodents. The employed
models include the fluid percussion injury (FPI) model [100,
461], the controlled cortical impact (CCI) model [101, 352],
the impact acceleration model [168], and closed head injury
(CHI) models [410]. These models mimic brain contusion of
different severity and diffuse brain trauma without contusion.

During TBI, changes in cerebral D-glucose uptake and ce-
rebral expression of the glucose transporters Glut1, Glut3, and
Sglt1 have been described. Whereas in areas of badly dam-
aged tissue entering cell death, transporter abundance is de-
creased like other cell proteins, specific, time-dependent reg-
ulatory processes have been observed in less severely dam-
aged areas.

Cerebral D-glucose uptake and cerebral expression of
glucose transporters during TBI

Cerebral D-glucose uptake

After brain trauma, changes in cerebral D-glucose uptake, ce-
rebral glucose metabolism, and cerebral expression of glucose
transporters were observed. In patients, cerebral uptake of D-
glucose was decreased during the acute phase of TBI
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indicating hypometabolism [80]. Employing [18F]DOG PET,
it was observed that cerebral glucose uptake in patients was
increased 1 week after severe brain trauma [32]. In rats, local
cerebral metabolic rates for 2DOGwere studied in FPI models
for TBI [202, 457]. After mild unilateral FPI mimicking brain
concussion, the local cerebral metabolic rate for 2DOG was
increased for 30min in cerebral cortex and hippocampus [202,
457]. This increase of 2DOG utilization was blunted by cere-
bral application of glutamate receptor antagonists. Between
6 h and 5 days after the FPI, the 2DOG utilization was de-
creased [457]. In another study in rats in which more severe
FPI was performed, the local cerebral metabolic rate for
2DOG was decreased for 1 day [95].

GLUT1 and GLUT3

Immunoreactivity of an antibody against the human erythroid
55 kDa GLUT1 transporter was investigated by light and
electron microscopy in brain cortex that had been resected
from patients about 8 h after brain trauma [76]. At this time,
a decrease of immunoreactive small blood vessels was ob-
served close to the damaged area whereas the numbers of
immunoreactive small blood vessels were increased in areas
located more distantly. Blood vessels in these more distant
areas exhibited a more intense immunoreactivity than blood
vessels close to the damaged area suggesting an upregulation
of GLUT1 expression. Immunoelectron microscopy revealed
that the GLUT1-related immunoreactivity was predominantly
located in endothelial cells of brain capillaries.

In brains of rodents, effects of TBI on immunoreactivity of
55 kDa Glut1 polypeptide expressed in brain capillaries and of
45 kDa Glut1 polypeptide expressed in glial cell was investi-
gated employing a severe impact acceleration model and a
CHI model [157, 366, 410]. In both models performed in
rat, in which severe diffuse brain injury was induced, no ef-
fects on the expression of the 45 KDa Glut1 polypeptide were
observed up to 2 days after the traumatic events [157, 410]. In
contrast, the expression of the 55 kDa Glut1 protein was in-
creased 6 h and 2 days after the trauma [410]. Employing a
CCI model in mice, it was observed that mRNA of Glut1 was
not changed 1 day after the trauma [366]. Together, the data
sugges t tha t GLUT1/Glut1 in the BBB is pos t -
transcriptionally upregulated after TBI.

In rodents, data were obtained which suggest that
HIF1α is involved in regulation of Glut1 expression
after TBI. After TBI, HIF1α was increased in parallel
with 55 kDa Glut1 polypeptide, aquaporins and other
proteins whereas the expression of 45 kDa Glut1 protein
was not changed [98, 99, 175, 410]. Inhibition of
HIF1α by acriflavine increased the cerebral expression
of 55 kDa Glut1 polypeptide in control mice and altered
its regulation after TBI [410]. At variance, acriflavine
did neither influence the expression of 45 kDa GLUT1

polypeptide in control mice nor in mice after TBI [410].
After inhibition of HIF1α, the expression of the 55 kDa
Glut1 polypeptide was decreased 6 h after severe CHI.
HIF1α was shown to be involved in the protective ef-
fect of heat acclimation (HA) during TBI. HA denotes a
prolonged exposure of an animal or human individual to
a moderately high ambient temperature. In rodent
models, it was observed that HA reduced tissue damage
and cerebral impairment during TBI [370, 409, 410].
HA increased the cerebral expression of HIF1α and of
55 KDa Glut1 polypeptide in control mice whereas it
did not alter the expression of the 45 kDa Glut1 poly-
peptide. After HA, upregulation of the 55 kDa Glut1
polypeptide after TBI was maintained, however, no neu-
roprotective effect of HA during TBI was observed
when HIF1α was inhibited [410]. At variance, upregu-
lation of the 45 kDa Glut1 polypeptide during TBI was
only observed after HA and this upregulation was
prevented when HIF1α was inhibited.

After TBI in rats induced by an impact acceleration model,
a distinct upregulation of Glut3 protein was observed in cere-
bral cortex and cerebellum 4 h after TBI [157]. Two days after
TBI, upregulation of GLUT3 was still detectable.

SGLT1

Concerning expression and function of SGLT1/Sglt1 in brain
during TBI, only very limited information is available. In one
study, SGLT1-related immunoreactivity in Western blots was
compared between cerebral tissues from dissected human
bodies that died following TBI and due to cardiac arrest
[302]. In female and male individuals that died after TBI,
higher expression of SGLT1 was observed compared to the
cardiac arrest group.

Employing a CCI model in wildtype mice and in mice in
which the regulatory protein Rs1 (Rsc1A1) was removed
[310], expression of Sglt1 mRNA, infarct size, brain edema,
and motoric disability were compared [366]. Removal of Rs1
had no effects on the expression of Sglt1 mRNA in cerebral
cortex and hippocampus; however, it altered the regulation of
Sglt1 after TBI. Whereas in brain cortex of wildtype mice
Sglt1 mRNA was increased about 2.5-fold 1 day after TBI,
no increase of Sglt1 mRNA was observed in Rs1 knockout
mice. Importantly, in Rs1 knockout mice, infarct size, brain
edema, and motoric disability were smaller than in wildtype
mice whereas the posttraumatic increase of the cerebral D-
glucose concentration was not changed. The data suggest that
upregulation of SGLT1/Sglt1 during TBI aggravates second-
ary tissue damage and clinical outcome. The hypothesis was
raised that upregulation of SGLT1/Sglt1 mediated Na+-D-glu-
cose cotransport into neurons leads to an increased energy
consumption that enhances tissue damage.
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Conclusions

The reviewed data show pivotal involvements of cerebral glu-
cose transporters in various physiological brain functions and
pathophysiological mechanisms associated with brain dis-
eases. Despite extensive research during the last 40 years,
most functions of glucose transporters in brain are poorly un-
derstood. This is due to the high complexity of brain functions
involving glucose transporters and to technical difficulties to
analyze mechanisms that are involved in specific brain func-
tions. Other reasons are the overlap in substrate specificities
and cerebral locations of glucose transporters and the complex
regulations of glucose transporters in response to physiologi-
cal and pathophysiological conditions. In addition, analysis of
transporter locations in brain is complicated due to methodo-
logical limitations in the immunohistological analysis of trans-
porter locations. The large majority of immunohistochemical
localizations of glucose transporters in brain and most in vivo
investigations have been performed on rodents and rodent
models for diseases. Thus, most of our present knowledge
concerns the functions of glucose transporters in rodents and
does not necessarily reflect the situation in humans.
Considering the high functional importance of glucose trans-
porters in brain and their high biomedical impact intensive
future research is demanded. This should include a detailed
immunohistochemical localizations of the different glucose
transporters in human tissue and a comparison of PET mea-
surements using glucose analogs with different substrate spec-
ificities for glucose transporters between human individuals
and rodents. In addition, further sophisticated in vivo experi-
ments in rodents employing targeted knockout of selective
glucose transporters in brain are required. An advanced un-
derstanding of the physiological and pathophysiological roles
of glucose transporters in human brain will open the possibil-
ity to develop drugs that target cerebral glucose transporters.
Such drugs may be useful for treatment of neurological disor-
ders that are combinedwith cerebral energy deficiency such as
stroke, TBI, and AD.
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