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Abstract
We investigate eigenvalues of the zero-divisor graph �(R) of finite commutative rings
R and study the interplay between these eigenvalues, the ring-theoretic properties of
R and the graph-theoretic properties of �(R). The graph �(R) is defined as the graph
with vertex set consisting of all nonzero zero-divisors of R and adjacent vertices x, y
whenever xy = 0.We provide formulas for the nullity of�(R), i.e., the multiplicity of
the eigenvalue 0 of�(R).Moreover,weprecisely determine the spectra of�(Zp×Zp×
Zp) and�(Zp×Zp×Zp×Zp) for a prime number p.We introduce a graph product×�

with the property that �(R) ∼= �(R1)×� · · ·×� �(Rr )whenever R ∼= R1 ×· · ·× Rr .

With this product, we find relations between the number of vertices of the zero-divisor
graph �(R), the compressed zero-divisor graph, the structure of the ring R and the
eigenvalues of �(R).

Keywords EJMA-D-19-00287 · Zero-divisor graphs · Graph eigenvalues · Graph
nullity · Graph products · Local rings

1 Introduction

Let R be a finite commutative ring with 1 �= 0 and let Z(R) denote its set of zero-
divisors.As introduced byAnderson andLivingston [3] in 1999, the zero-divisor graph
�(R) is defined as the graph with vertex set Z∗(R) = Z(R)\{0} where two vertices
x, y are adjacent if and only if xy = 0. The aim of considering these graphs is to study
the interplay between graph theoretic properties of �(R) and the ring properties of
R. In order to simplify the representation of �(R), it is often useful to consider the
so-called compressed zero-divisor graph �E (R). This graph was first introduced by
Mulay [10] and further studied in [2,12,14,17].
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Definition 1.1 (Compressed zero-divisor graph) For an element r ∈ R let [r ]R =
{s ∈ R | annR(r) = annR(s)} and RE = {[r ]R | r ∈ R}. Then, the compressed
zero-divisor graph �E (R) is defined as the graph �(RE ).

Note that [0]R = {0}, [1]R = R\Z(R) and [r ]R ⊆ Z(R)\{0} for every r ∈ R\([0]r ∪
[1]R). The notations are adopted from Spiroff and Wickham [14].

The spectrum of a graph G is defined as the multiset of eigenvalues, i.e., the roots
of the characteristic polynomial of the adjacency matrix A(G). The aim of studying
eigenvalues of graphs is to find relations between those values and structural properties
of the graph. The author refers to [5,7] for good introductions to graph theory and
spectral graph theory, respectively.

The nullity η(G) of a graph G is defined as the multiplicity of the eigenvalue 0 of
G. It is easy to see that

η(G) = dim A(G) − rank A(G),

where dim A(G) denotes the dimension of the domain of the linear transformation
associated to the matrix A(G), i.e., the number of columns of A(G). Background and
further results on the nullity of graphs are summarized in [8].

Within spectral graph theory, most graphs are considered to be simple, i.e., to be
undirected finite graphs without loops or multiple edges. By definition, �(R) has no
multiple edges, and we can easily see that �(R) is undirected if and only if R is
commutative. Moreover, as already proven by Anderson and Livingston [3, Theorem
2.2], the graph�(R) is finite if and only if R is finite or an integral domain. In the latter
case, though, R has no zero-divisors at all and is just the empty graph. Hence, all our
rings are assumed to be finite and commutative. However, in contrast to the original
definition of Anderson and Livingston [3], we do not want to eliminate potential loops
of our zero-divisor graphs since these loops provide important information about the
structure of the ring R.

Definition 1.2 (Zero-divisor graph) Let R be a finite commutative ring with 1 �= 0 and
let Z(R) denote its set of zero-divisors. Then, the zero-divisor graph �(R) is defined
as the graph with vertex set Z∗(R) = Z(R)\{0} where two (not necessarily distinct)
vertices x, y are adjacent if and only if xy = 0.

In order to determine the eigenvalues of a graph, it often can be useful to consider
graph products. For example, in [1], the spectra of unitary Cayley graphs of finite rings
could easily be determined by observing that these graphs are isomorphic to direct
products of unitary Cayley graphs of finite local rings.

Definition 1.3 (Direct product) The direct product G1 × G2 of graphs G1 and
G2 is defined as the graph with vertex set V (G1) × V (G2) where two vertices
(v1, v2), (v

′
1, v

′
2) ∈ V (G1) × V (G2) are adjacent in G1 × G2 if and only if v1 is

adjacent to v′
1 in G1 and v2 is adjacent to v′

2 in G2.

It is well-known that the adjacency matrix of the direct product G1 × G2 equals
the Kronecker product A(G1) ⊗ A(G2). Therefore, if λi and μi are the eigenvalues
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of G1 and G2, respectively; then, the eigenvalues of G1 ×G2 are exactly the products
λiμ j .

Moreover, we want to introduce the following two graph products:

Definition 1.4 (Complete product and point identification)

(i) The complete product G1∇G2 consists of the vertex set V (G1) ∪ V (G2), where
v1 and v2 are adjacent in G1∇G2 if and only if either v1 ∈ V1 and v2 ∈ V2 or v1
is adjacent to v2 in G1 or G2, respectively.

(ii) For v1 ∈ V (G1), v2 ∈ V (G2) the point identification (or coalescence) G1 • G2

arises from setting v1 = v2. If v ∈ V (G1) and v ∈ V (G2), we write G1
v• G2 in

order to make clear that the graphs were coalesced at v.

In this paper, we study the interplay between graph-theoretic properties of the zero-
divisor graph �(R), the spectrum of �(R) and the ring properties of R. By now,
surprisingly little is known about the eigenvalues and adjacency matrices of zero-
divisor graphs. First research in this direction was done by Sharma et. al. [13] in
2011. They made some observations on the adjacency matrices and eigenvalues of the
graphs �(Zp ×Zp) and �(Zp[i] ×Zp[i]). Further results were found by Young [18]
in 2015 and independently by Surendranath Reddy et. al. [15] in 2017. Both studied
the graphs�(Zn) and precisely determined the eigenvalues of�(Zp), �(Zp2), �(Zp3)

and �(Zp2q) for p and q being prime numbers. Other recent papers on that topic are
[11,16]. Note that in most of these papers the corresponding zero-divisor graphs were
also considered with loops.

Our main approach is the following: since R is a finite ring, it can be written as
R ∼= R1 × · · · × Rr , where each Ri is a finite local ring. A proof for this and further
results within the theory of finite commutative rings can be found in [4]. In Sect. 2,
we introduce a graph product x� with the property that

�(R) ∼= �(R1) ×� · · · ×� �(Rr )

whenever R ∼= R1 × · · · × Rr . With this graph product, in Sect. 3, we find a relation
between the number of vertices of �E (R) and the property of R being a local ring.
Moreover, we derive formulas for the number of vertices of the zero-divisor graph
�(R) and the compressed zero-divisor graph �E (R) in terms of the local rings Ri .
From these formulas, we can deduce a lower bound for the nullity of �(R). In Sect. 4,
we restrict our considerations to rings which are isomorphic to direct products of
rings of integers modulo n, i.e., R ∼= Zp1 t1 × · · · ×Zpr tr for (not necessarily distinct)
prime numbers pi and positive integers r , ti . For these rings, we find a criterion which
may detect a local ring by considering its zero-divisor graph and the respective nullity.
Moreover, we find the exact nullity of�(R) and present an easy approach to determine
also the nonzero eigenvalues of�(R). For example, we precisely determine the spectra
of �(Zp ×Zp ×Zp) and �(Zp ×Zp ×Zp ×Zp) in terms of a prime number p. We
also provide the characteristic polynomials of �(Zp2 × Zp) and �(Zp × Zp × Zq)

for primes q �= p. This generalizes the results of Sharma et. al. [13], Young [18] and
Surendranath Reddy et. al. [15].

Throughout this paper, we denote edges as sets of two vertices. For a graph G, we
write A(G) for the adjacency matrix of G , V (G) for the set of vertices of G and
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χG(x) = det(x I − A(G)) for the characteristic polynomial of G. If λ is an eigenvalue
of G of multiplicity x , then we denote this by λ[x]. The number of elements in a set S
is denoted by #S, and ϕ denotes Euler’s totient function. For the set of units of a ring
R, we write U (R).

2 Products of zero-divisor graphs

Let R ∼= R1 × · · · × Rr be a ring, where each Ri is a finite local ring. Note that in this
case #Ri = ptii for some prime numbers pi and ti ∈ N. Our aim is to define a graph
product ×� such that

�(R) ∼= �(R1) ×� · · · ×� �(Rr )

whenever

R ∼= R1 × · · · × Rr .

Since two vertices (v1, . . . , vr ), (v
′
1, . . . , v

′
r ) ∈ R1 × · · ·× Rr are adjacent in �(R1 ×

· · · × Rr ) if and only if vi , v
′
i ∈ Z∗(Ri ) or either vi = 0 or v′

i = 0, our idea is the
following: we first add the vertex 0 ∈ Ri and the units of Ri to the vertices of each
zero-divisor graph �(Ri ), as well as edges from 0 to every other vertex. Then, we take
the direct product of these somehow extended zero-divisor graphs, each of which we
will denote by E�(Ri ), which yields the extended zero-divisor graph E�(R). Finally,
by removing the vertex 0 ∈ R with all its edges, as well as all units of R, we end up
with the zero-divisor graph �(R).

To formalize this, we define the unit graph U(Ri ) of Ri as the graph with vertex set
U (Ri ) and empty edge set. Moreover, let Z(Ri ) and ZL(Ri ) be the zero graphs with
vertex set {0} (where 0 ∈ Ri ) and empty edge set or edge set {{0, 0}}, respectively
(i.e., both graphs consist of one vertex only, and, in contrast to Z(R), the graph ZL(R)

also has a loop at that vertex; we need this distinction for our result in Sect. 5).

Definition 2.1 (Extended zero-divisor graph) Let R be a finite commutative ring with
1 �= 0. Then, the extended zero-divisor graph E�(R) is defined as the graph with
vertex set R where two (not necessarily distinct) vertices x, y ∈ R are adjacent if and
only if xy = 0.

In view of those definitions, the extended zero-divisor graph E�(Ri ) is given by

E�(Ri ) = (
�(Ri )∇ Z(Ri )

) {0}• (
U(Ri )∇ ZL(Ri )

)
,

and we have that

(
�(R) ∪ (

U(R1) × · · · × U(Rr )
))∇ Z(R) ∼= E�(R1) × · · · × E�(Rr ).
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Fig. 1 Zero-divisor graphs �(Z8) and �(Z4)

Fig. 2 Extended zero-divisor graphs E�(Z8) and E�(Z4)

Hence, we define the associative product ×� by

�(R1) ×� �(R2) :=
(
E�(R1) × E�(R2)

)
\
(
V

(
Z(R1 × R2)

) ∪ V
(
U(R1 × R2)

))
,

where G\{v} denotes the graph G without the vertex v ∈ V (G) and all its adjacent
edges. Note that Z(R1 × R2) ∼= Z(R1) × Z(R2) and U(R1 × R2) ∼= U(R1) ×U(R2).
The product ×� is illustrated in the following example:

Example 2.2 Let R = Z8 × Z4. Figure 1 shows the zero-divisor graphs �(Z8) and
�(Z4) and Fig. 2 the extended zero-divisor graphs E�(Z8) and E�(Z4). In Fig. 3, we
see the direct product E�(Z8)×E�(Z4) ∼= E�(Z8×Z4) and Fig. 4 finally illustrates
the graph product �(Z8)×� �(Z4) ∼= �(Z8 ×Z4) arising from removing the vertices
(0, 0) and V (U(Z8 × Z4)) from the graph E�(Z8) × E�(Z4).

The same also holds for the compressed zero-divisor graph, i.e., we have that
�E (R) ∼= �E (R1) ×� · · · ×� �E (Rr ) whenever RE ∼= R1E × · · · × Rr E . In Sect. 5,
we deduce a relation between the characteristic polynomial of �(R) and the one of
the extended zero-divisor graph E�(R).
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Fig. 3 Direct product E�(Z8) × E�(Z4) ∼= E�(Z8 × Z4)

Fig. 4 Zero-divisor graph �(Z8 × Z4) ∼= �(Z8) ×� �(Z4)

123



Journal of Algebraic Combinatorics (2021) 54:787–802 793

3 Nullity of zero-divisor graphs of finite commutative rings

The following lemma follows directly from the construction of the product ×�:

Lemma 3.1 Let R ∼= R1 × · · · × Rr with local rings Ri . Then, the number of nonzero
zero-divisors of R, i.e., the number of vertices of the zero-divisor graph �(R) equals

#V (�(R)) =
r∏

i=1

#Ri −
r∏

i=1

#V (U(Ri )) − 1

=
r∏

i=1

#Ri −
r∏

i=1

#U (Ri ) − 1.

Proof We have that #V (E�(Ri )) = #Z∗(Ri ) + #U (Ri ) + 1 = #Ri since Ri =
Z∗(Ri )∪U (Ri )∪{0}. Taking into account that E�(R) ∼= E�(R1)×· · ·×E�(Rr ), we
therefore get that #V (E�(R)) = ∏r

i=1 #Ri . Finally, since �(R) arises from E�(R)

by removing the vertex 0 ∈ R and all units of R (where each unit of R is a direct
product of units of the Ri ’s), the statement follows. ��

Moreover, we get a similar result for the number of vertices of the compressed
zero-divisor graph:

Lemma 3.2 Let R ∼= R1 × · · · × Rr with local rings Ri . Then, the number of vertices
of the compressed zero-divisor graph �E (R) equals

#V (�E (R)) =
r∏

i=1

(
#V (�E (Ri )) + 2

) − 2

=
r∏

i=1

#Ri E − 2.

Proof Since the Ri ’s are finite rings, each element of Ri is either a zero-divisor or
a unit. Thus, the elements of Ri E are exactly the vertices of �E (Ri ) together with
[0]Ri and [1]Ri (since the elements of [1]Ri are exactly the units of Ri ). The statement
follows from the construction of ×� . ��

Of course, those results are not very surprising since every nonzero-divisor of a
finite commutative ring is a unit, i.e., #Z∗(R) = #R − #U (R) − 1. However, from
the latter lemma we observe that if #V (�E (R)) + 2 is a prime number, then R must
be a local ring. This provides a notable relation between combinatorial objects (the
zero-divisor graphs) and algebraic structures (the respective rings).

Example 3.3 Let R = Z3[[X ,Y ]]/(XY , X3,Y 3, X2 − Y 2). The corresponding com-
pressed zero-divisor graph �E (R) has five vertices, see Fig. 5. Since 5 + 2 = 7 is a
prime number, R has to be a local ring.

Moreover, we can derive a lower bound for the nullity of zero-divisor graphs:
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Fig. 5 Compressed Zero-divisor graph �E (R) for R = Z3[[X , Y ]]/(XY , X3, Y 3, X2 − Y 2)

Theorem 3.4 Let R ∼= R1 × · · · × Rr with local rings Ri . Then, the nullity of the
zero-divisor graph �(R) is at least

η(�(R)) ≥
r∏

i=1

#Ri −
r∏

i=1

#U (Ri ) −
r∏

i=1

(
#V (�E (Ri )) + 2

) + 1.

Proof Each element of [r ]R ∈ V (�E (R)) contributes exactly the same row to
the adjacency matrix A(�(R)). Thus, rank A(�(R)) ≤ #Z∗(RE ) = #V (�E (R)).
Since η(�(R)) = dim A(�(R)) − rank(A(�(R))) and dim A(�(R)) = #Z∗(R) =
#V (�(R)), we have that η(�(R)) ≥ #V (�(R))−#V (�E (R)). The statement follows
with Theorems 3.1 and 3.2 . ��

4 Spectra of zero-divisor graphs of direct products of rings of
integers modulo n

As already observed by Young [18], the adjacency matrix of the compressed zero-
divisor graph is a so-called equitable partition of the adjacency matrix of �(R). A
formal definition for this is given in [5]. We define the weighted adjacency matrix
A(�E (R)) of the compressed zero-divisor graph as the matrix with (i, j)-th entry

A(�E (R))i, j =
{
0, if A(�E (R))i, j = 0,

#[ j]R, else.

From [5, Lemma 2.3.1], it follows that every eigenvalue of A(�E (R)) is also an
eigenvalue of A(�(R)). In general, it is not clear whether these eigenvalues are exactly
the nonzero eigenvalues of �(R), i.e., whether A(�E (R)) always has full rank. But
assuming that R is a product of rings of integers modulo n, we can prove the following:

Theorem 4.1 Let R ∼= Zp1t1 ×· · ·×Zpr tr for prime numbers p j and r , t j ∈ N. Then,

rank A(�(R)) = rankA(�E (R)) = #V (�E (R)).
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Proof We can easily see that rank A(�(R)) = rankA(�E (R)) since for every r ∈
R, each element of [r ]R contributes exactly the same row to the adjacency matrix
A(�(R)). Thus, it suffices to show that rankA(�E (R)) = #V (�E (R)). The matrix
A(�E (Ri )) for Ri = Zpi ti is of the form

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 · · · 0 0 pi − 1
0 0 0 · · · 0 pi (pi − 1) pi − 1
0 0 0 · · · p2i (pi − 1) pi (pi − 1) pi − 1
...

...
... . .

. ...
...

...

0 0 pti−4
i (pi − 1) · · · p2i (pi − 1) pi (pi − 1) pi − 1

0 pti−3
i (pi − 1) pti−4

i (pi − 1) · · · p2i (pi − 1) pi (pi − 1) pi − 1
pti−2
i (pi − 1) pti−3

i (pi − 1) pti−4
i (pi − 1) · · · p2i (pi − 1) pi (pi − 1) pi − 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

since V (�E (Ri )) = {[pi ]Ri , [p2i ]Ri , . . . , [pti−1
i ]Ri } and

#[pki ]Ri = #{x | gcd(x, ptii ) = pki } = ϕ(pi
ti /pki ) = pi

ti−k−1(pi − 1).

Obviously, thismatrix has full rank #V (�E (Ri )). Now, the graphE�E (Ri ) arises from
�E (Ri )byadding thevertices [1]Ri and [0]Ri and the edges {[1]Ri , [0]Ri },{[0]Ri , [r ]Ri }
for all [r ]Ri ∈ V (�E (Ri )). With an appropriate enumeration of the vertices of
E�E (Ri ), it follows that the matrix A(E�E (Ri )) equals

⎛

⎜⎜⎜
⎜⎜
⎝

0 0 . . . 0 1
0
...

0
A(�E (Ri ))

1
...

1
pti−1
i (p − 1) pti−2

i (p − 1) . . . pi − 1 1

⎞

⎟⎟⎟
⎟⎟
⎠

.

This matrix has full rank, too. Since E�E (R) ∼= E�E (R1) × · · · × E�E (Rr ), the
matrixA(E�E (R)) equals the Kronecker productA(E�E (R1))⊗· · ·⊗A(E�E (Rr ))

which has the form

⎛

⎜⎜⎜⎜
⎝

0 0 . . . 0 1
0
...

0
A(�E (R))

1
...

1
x1 x2 . . . x#V (�E (R))+1 1

⎞

⎟⎟⎟⎟
⎠

for nonzero entries x j . By the fact that the rank of the Kronecker product of two
matrices equals the product of the ranks of these two matrices, we finally conclude
that A(E�E (R)), and therefore also A(�E (R)) has full rank, i.e., rankA(�E (R)) =
#V (�E (R)). ��
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With this result, we can easily prove the following corollary, which illustrates the
interplay between rings of integers modulo n, zero-divisor graphs and their eigenval-
ues:

Corollary 4.2 Let R ∼= Zp1 t1 × · · · × Zpr tr for prime numbers p j and r , t j ∈ N and
let �(R) be its zero-divisor graph. If

#V (�(R)) − η(�(R)) + 2

is a prime number, then R is a local ring (i.e., r = 1).

Proof Sinceη(�(R)) = dim A(�(R))−rank(A(�(R))) = #V (�(R))−rank(A(�(R)))

and rank(A(�(R))) = #V (�E (R)) by Theorem 4.1, we get that #V (�E (R)) =
#V (�(R)) − η(�(R)). As already mentioned above, if #V (�E (R)) + 2 is a prime
number, then R must be a local ring. Thus, the statement follows. ��

Moreover, we are able to improve Theorem 3.4:

Theorem 4.3 Let R ∼= Zp1 t1 × · · · ×Zpr tr for prime numbers p j and r , t j ∈ N. Then,
the zero-divisor graph �(R) has

r∏

i=1

(ti + 1) − 2

nonzero eigenvalues, and the nullity of �(R) equals

η(�(R)) =
r∏

i=1

pti−1
i

( r∏

i=1

pi −
r∏

i=1

(pi − 1)
)

−
r∏

i=1

(ti + 1) + 1.

Proof By Theorem 4.1, the number of nonzero eigenvalues of �(R) equals the num-
ber of vertices of the compressed zero-divisor graph �E (R). Since V (�E (Ri )) =
{[pi ]Ri , [p2i ]Ri , . . . , [pti−1

i ]Ri }, we deduce form Theorem 3.2 that

#V (�E (R)) =
r∏

i=1

(ti + 1) − 2.

Similar as in the proof of Theorem 3.4, we see that η(�(R)) = #V (�(R)) −
#V (�E (R)). The number of units in Ri (= #U (Ri ) = #V (U(Ri ))) is given by
ϕ(ptii ) = pti−1

i (pi − 1). Thus, by Theorem 3.1, we get that

#V (�(R)) =
r∏

i=1

ptii −
r∏

i=1

pti−1
i (pi − 1) − 1

=
r∏

i=1

pti−1
i

(
r∏

i=1

pi −
r∏

i=1

(pi − 1)

)

− 1,
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and, therefore, the statement follows. ��
Note that the number of nonzero eigenvalues of�(Zp1 t1 ×· · ·×Zpr tr ) does not depend
on the prime numbers pi but on the powers ti only.

Now, we can easily determine the eigenvalues of �(R) for R ∼= Zp1 t1 ×· · ·×Zpr tr .
Theorem4.3 gives us the number of eigenvalues equal to zero. The nonzero eigenvalues
can be computed as in the proof of Theorem 4.1. We illustrate this in the following
examples. Note that the eigenvalues of the graphs �(Zp2), �(Zp3), �(Zp × Zq) and
�(Zp2 × Zq) for prime numbers p �= q were already determined by Young [18] and
Surendranath Reddy et. al. [15], and the ones of �(Zp × Zp) by Sharma et. al. [13].

Example 4.4 Let p be a prime number and R ∼= Zp × Zp × Zp. By Theorem 4.3 the
multiplicity of the eigenvalue 0 of �(R) equals

η(�(R)) = (
p3 − (p − 1)3

) − 23 + 1 = 3(p + 1)(p − 2).

The ring Zp has no zero-divisors and, therefore, �(Zp) is the empty graph. Thus, the
matrix A(E�E (Zp)) is given by

A(E�E (Zp)) =
(

0 1
p − 1 1

)
.

Now, we compute the Kronecker product

A(E�E (Zp)) ⊗ A(E�E (Zp)) ⊗ A(E�E (Zp))

which yields the matrix

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 p − 1 1
0 0 0 0 0 p − 1 0 1
0 0 0 0 (p − 1)2 p − 1 p − 1 1
0 0 0 p − 1 0 0 0 1
0 0 (p − 1)2 p − 1 0 0 p − 1 1
0 (p − 1)2 0 p − 1 0 p − 1 0 1

(p − 1)3 (p − 1)2 (p − 1)2 (p − 1) (p − 1)2 p − 1 p − 1 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

Hence, A(�E (R)) equals the submatrix

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 p − 1
0 0 0 0 p − 1 0
0 0 0 (p − 1)2 p − 1 p − 1
0 0 p − 1 0 0 0
0 (p − 1)2 p − 1 0 0 p − 1

(p − 1)2 0 p − 1 0 p − 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,
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which has characteristic polynomial

χ�(R)(x) = −(−1 + 3p − 3p2 + p3 + (1 − p)x − x2)2

(−1 + 3p − 3p2 + p3 + 2(p − 1)x − x2).

The roots of this polynomial, i.e., the nonzero eigenvalues of �(R), are

λ1,2 = 1

2

(
1 − p ± (p − 1)

√
4p − 3

)
, λ3,4 = p − 1 ±

√
p − 2p2 + p3,

and, therefore, the spectrum of �(R) equals

spec(�(R)) = {
λ

[2]
1 , λ

[2]
2 , λ

[1]
3 , λ

[1]
4 , 0[3(p+1)(p−2)]} for p > 2,

and

spec(�(Z2 × Z2 × Z2)) = {
λ

[2]
1 , λ

[2]
2 , λ

[1]
3 , λ

[1]
4

}
.

Example 4.5 Let p be a prime number and R ∼= Zp ×Zp ×Zp ×Zp. By Theorem 4.3,
the multiplicity of the eigenvalue 0 of �(R) equals

η(�(R)) = p4 − (p − 1)4 − 24 + 1.

Analogously as in Example 4.4, we find the matrix A(�E (R)) as a submatrix of the
Kronecker product

A(E�E (Zp)) ⊗ A(E�E (Zp)) ⊗ A(E�E (Zp)) ⊗ A(E�E (Zp)).

The characteristic polynomial of this matrix is

χ�(R)(x) = − (1 − 2p + p2 − x)5(1 − 2p + p2 + x)×
× (

1 − 4p + 6p2 − 4p3 + p4 + (1 + p − 2p2)x + x2
)×

× (
1 − 4p + 6p2 − 4p3 + p4 + (1 − 3p + 2p2)x + x2

)3

and has roots

λ1 = (p − 1)2, λ2 = −p2 + p − 1,

λ3,4 = 1

2

( − 2p2 + 3p − 1 ± (p − 1)
√
4p − 3

)
,

λ5,6 = 1

2

(
2p2 − p − 1 ± √

3
√
4p3 − 9p2 + 6p − 1

)
.
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Hence, the spectrum of �(R) is given by

spec(�(R)) = {
λ

[5]
1 , λ

[1]
2 , λ

[3]
3 , λ

[3]
4 , λ

[1]
5 , λ

[1]
6 , 0[p4−(p−1)4−24+1]} for p > 2,

and

spec(�(Z2 × Z2 × Z2 × Z2)) = {
λ

[5]
1 , λ

[1]
2 , λ

[3]
3 , λ

[3]
4 , λ

[1]
5 , λ

[1]
6

}
.

Example 4.6 Unfortunately, if we consider not only products of the ring Zp but also of
rings of the form Zpt for t > 1 or of the form Zq for a prime q �= p, the eigenvalues
of �(R) get very cumbersome. However, at least we want to include the characteristic
polynomials of the graphs �(Zp × Zp × Zq) and �(Zp2 × Zp). Note that

A(E�E (Zp)) =
⎛

⎝
0 0 1
0 p − 1 1

p(p − 1) p − 1 1

⎞

⎠ .

With the same method as in the latter examples, we find the polynomials

χZp×Zp×Zq (x) = −(p − 1)6(q − 1)3 + (p − 1)3(q − 1)
(
p(3q − 2) − q

)
x2 −

−2(p − 1)2(q − 1)x3 − (p − 1)
(
p(3q − 2) − q

)
x4 + x6,

χZp2×Zp (x) = (p − 1)5 p + (p − 1)3 px − 2(p − 1)2 px2 − (p − 1)x3 + x4.

Remark 4.7 It is clear that two rings are isomorphic only if their respective zero-divisor
graphs are isomorphic.Moreover, two graphs are isomorphic only if they have the same
characteristic polynomial. Thus, in order to see that two rings are non-isomorphic, it
might help to compare the characteristic polynomials of their corresponding zero-
divisor graphs.

5 A relation between �0(R) and �E0(R)

The main interest in spectral graph theory of building graph products is that there are
relations between the eigenvalues of graphs and the eigenvalues of their product. For
example, we already mentioned that if λi , μi denote the eigenvalues of graphs G1
and G2, respectively, then the eigenvalues of the direct product G1 × G2 are exactly
the values λiμ j . Similar results are also known for the point identification and the
complete product of simple graphs: let G − v denote the graph arising from removing
the vertex v ofG together with all its edges, and letG be the complement ofG (that is,
the graph with same vertex set asG, where two distinct vertices are adjacent whenever
they are non-adjacent in G), then the following holds:

Lemma 5.1 ([6, p. 159]) Let G1 and G2 be simple graphs with v ∈ V (G1) and
w ∈ V (G2). The point-identification v = w yields
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χG1•G2(x) = χG1(x)χG2−w(x) + χG1−v(x)χG2(x)

−xχG1−v(x)χG2−w(x).

Lemma 5.2 ( [6, Theorem 2.7]) Let G1 and G2 be simple graphs with #V (G1) = n1
and #V (G2) = n2. Then, the characteristic polynomial of the complete product of G1
and G2 equals

χG1∇G2(x) = (−1)n2χG1(x)χG2
(−x − 1) + (−1)n1χG2(x)χG1

(−x − 1)

−(−1)n1+n2χG1
(−x − 1)χG2

(−x − 1).

We can easily see that the formula in Lemma 5.1 still holds for graphs with loops
if the graphs do not have loops on both vertices, v and w. Moreover, Hwang and Park
[9] generalized the result of Lemma 5.2:

Lemma 5.3 ([9, Theorem 2.5]) Let A ∈ R
m×m, B ∈ R

n×n, a, c ∈ R
m, b, d ∈ R

n,

M =
(

A adt

bct B

)

and Ã = act − A, B̃ = bdt − B. Then

χM (x) = (−1)mχ Ã(−x)χB(x) + (−1)nχA(x)χB̃(−x)

−(−1)m+nχ Ã(−x)χB̃(−x).

Therefore, in the following, let G denote the generalized complement of G, i.e.,
the graph with same vertex set as G, where two not necessarily distinct vertices are
adjacent in G whenever they are non-adjacent in G. That is, the graph with adjacency
matrix A(G) = J − A(G), where J denotes the all-1 matrix. Now, we are able to
prove the following:

Theorem 5.4 Let R be a finite commutative ring and let n = #U (R), i.e., the number
of units in R. Then, we have that

χE�(R)(x) = xn−1((−1)n+1χ�(R)(−x)x + χ�(R)(x)(x
2 − n)

)
.

Proof We recall that

E�(R) = (
�(R)∇ Z(R)

) {0}• (
U(R)∇ ZL(R)

)
.

We first determine the characteristic polynomial of U(R)∇ ZL(R) by applying
Lemma 5.3 for A = (

1
)
and B being the zero-matrix of dimension n × n. We can

easily see that χA(x) = x − 1, χ Ã(x) = x , χB(x) = xn and χB̃(x) = xn−1(x − n).
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Thus, we get

χU(R)∇ ZL(R)(x) = χM (x)

= (−1)(−x)xn + (−1)n(x − 1)(−x)n−1(−x − n)−
− (−1)n+1(−x)(−x)n−1(−x − n)

= xn−1(x2 − x − n).

Analogously, we find the characteristic polynomial of �(R)∇ Z(R) for A = (
0
)
and

B = A(�(R)) to be

χ�(R)∇ Z(R)(x) = (−1)n+1χ�(R)(−x) + χ�(R)(x)(x + 1).

Finally, with Lemma 5.1 we get

χE�(R)(x) = χU(R)∇ ZL(R)(x)χ�(R) + xnχ�(R)∇ Z(R)(x) − x · xnχ�(R)

= xn−1(x2 − x − n)χ�(R)(x)+
+ xn

(
(−1)n+1χ�(R)(−x) + χ�(R)(x)(x + 1)

)−
− xn+1χ�(R)(x)

= xn−1((−1)n+1χ�(R)(−x)x + χ�(R)(x)(x
2 − n)

)
.

��

Remark 5.5 If R ∼= R1 × · · · × Rr , we can apply Theorem 5.4 to each of the rings
Ri , which gives us the characteristic polynomials χE�(Ri ). By computing the roots of
χE�(Ri ), we find the eigenvalues of E�(R) to be all possible products of these roots,
since E�(R) ∼= E�(R1) × · · · × E�(Rr ). Unfortunately, it is difficult to extrapolate
the eigenvalues of �(R) from the ones of E�(R), since the characteristic polynomial
χ�(R) not only depends on χE�(R) but also on the characteristic polynomial of the
generalized complement of �(R).
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