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M. Schäfer, C. R. Becker, H. Buhmann, and L. W. Molenkamp

Direct Observation of the Aharonov-Casher Phase

Phys. Rev. Lett. 96, 076804 (2006).

• M. König, H. Buhmann, C. R. Becker, and L. W. Molenkamp

Phase effects in HgTe quantum structures

phys. stat. sol. (c) 4, 3374 (2007).
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Introduction

In recent years, spin-related phenomena have moved into the focus of solid state

research. The primary reason is that the spin properties became experimentally

accessible in electronic devices due to the ongoing progress in nanofabrication tech-

niques. Manifold issues can now be addressed in solid state systems for the first time

and studies are pursued for fundamental scientific purposes. Furthermore, an entire

new area of applications opened up and the field of spintronics (= spin + electron-

ics) developed [1,2]. Spintronic devices take advantage of the electron spin, whereas

conventional ones rely solely on the charge. The main improvements compared to

conventional devices include the reduced or maybe even vanishing dissipation in

the system and decreased electrical power consumption. For the realization of spin-

tronic devices, the major aspects are the creation, transportation, manipulation and

detection of the electronic spin polarization.

It turned out that these tasks are more difficult to realize than expected. This

is particularly the case, if spintronic applications are supposed to be implemented

on semiconductor materials. For example, the injection of spin-polarization from

a ferromagnetic metal is highly inefficient due to the difference in the density of

states for the two components [3]. The search for ferromagnetic semiconductors,

e.g., GaMnAs [4], or efficient spin injection, e.g., by tunnel contacts [5], guided most

research projects.

A rather new idea is to use the intrinsic spin-orbit interaction for creation,

manipulation and detection of spin accumulation or spin currents. Two-dimensional

electron gases formed in semiconductor heterostructures are highly suitable systems.
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2 Introduction

The advantage of this approach is that the strength of the spin-orbit interaction can

be locally controlled by the Rashba effect [6]. This rather direct method to affect

the electron spin not only initiated considerable experimental effort, but also was

very attractive to theoreticians and triggered the prediction of various effects and

devices [7–10]. A prominent example is the Spin Hall effect [11–13]. When a charge

current is driven in a system with a strong spin-orbit interaction, a transverse spin

current is generated and results in a spin imbalance at the sample edges. This

effect may be utilized for the creation of pure spin current and spin polarization.

Furthermore, the spin-orbit interaction can affect the phase of the electron wave

function in form of additional phase factors, the Berry phase [14] and the Aharonov-

Casher phase [15]. This modulation of the electron phase led to the concept of a new

type of spin-interference device [16]. The proposed ring structure represents a kind

of spin-interference field effect transistor, in which the transmission can be controlled

by spin-orbit induced phases. A spin field effect transistor had been suggested by

Datta and Das [17], but ferromagnetic contacts are required in the latter device,

which has proven to be an obstacle for the realization.

Recently, a new state of matter in a topological sense, the Quantum Spin Hall

effect, has been proposed [18,19]. This novel state is characterized by non-dissipative

transport of spin-polarized electrons in one-dimensional edge channels and thus has

equivalently high potential for spintronic applications.

Quantum well structures based on HgTe appear to be very suitable for the in-

vestigation of fundamental spin-orbit effects. HgTe as a bulk material is a zero-gap

semimetal, whereas a narrow energy gap opens up in a quantum well. First of all,

two-dimensional electron gases in HgTe quantum wells exhibit high carrier mobili-

ties. These result in a large mean free path comparable to the characteristic sample

dimensions, which is a prerequisite for the manifestation of spin-related transport

phenomena. In addition, the Rashba energy can reach values of up to 30 meV,

which is several times larger than for any other semiconductor material, and can be

tuned over a wide range [20–22]. Both attributes help to identify effects due to the



Introduction 3

spin-orbit interaction like the spin Hall effect or phase effects. Finally, HgTe quan-

tum wells feature very peculiar band structure properties. Depending on the actual

well width, the band structure is either normal or inverted, i.e., the ordering of the

energy states in the quantum well is reversed compared common semiconductors for

the latter case. For samples with an inverted band structure, the existence of the

quantum spin Hall effect was explicitly predicted [23].

Within the scope of this thesis, the transport properties of HgTe-based quantum

well structures are studied with an emphasis on various spin-orbit effects. A gen-

eral introduction to the specific properties of this material is provided in Chapter 1.

Due to recent advances in the growth and fabrication, which are also described, high

mobility devices with characteristic dimensions of only a few 100 nm were available,

meeting the requirements for the observation of spin-related effects.

In Chapter 2, transport phenomena are discussed, which arise from the narrow

energy gap and the peculiar band structure, respectively. The Fermi energy can be

tuned from the conduction band to the valence band due to the small band gap in

HgTe quantum wells, resulting in a transition from the intrinsic n-conductance to

p-conductance. When the Fermi level of a sample with an inverted band structure

is in the energy gap, a unique Landau level dispersion gives rise to a re-entrant

quantum Hall state in magnetic field.

The latter property is a manifestation of the non-trivial insulator, which forms

the basis of the Quantum Spin Hall state. Due to the energy gap of some 10 meV,

the demonstration of the QSH effect seems feasible in HgTe, while it turned out to be

not accessible for the initially suggested materials, i.e., graphene and strained GaAs,

using currently available measurement techniques. The aim of the experiments

presented in Chapter 3 is the verification of this yet unobserved state of matter and

an analysis of its charge transport properties.

Unlike the QSHE, the Spin Hall effect has been demonstrated for various ma-

terials. On the one hand, the spin accumulation at the sample edges was shown for
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semiconductors by means of optical methods [24–26]. On the other hand, a charge

imbalance induced by a spin current, called the inverse spin Hall effect, was reported

for metals [27–29]. However, an electrical detection of the SHE in semiconductors is

still outstanding. Hankiewicz et al. proposed an H-shaped device based on a semi-

conductor with strong spin-orbit interaction [30], where the spin Hall effect results

in a voltage signal and, consequently, can be detected in a purely electrical measure-

ment. HgTe micro-structures according to the suggested layout are investigated in

Chapter 4.

Furthermore, the spin-orbit interaction due to the Rashba effect can also be

used to control charge transport in suitable devices. Our HgTe ring structures

resemble the one proposed by Nitta et al. [16], where the transmission is governed

by spin-orbit induced phases. While several groups have claimed an observation

of the spin-orbit Berry phase [31–33], there is no evidence of the Aharonov-Casher

for semiconductor materials so far. Thus, the experiments presented in Chapter 5

focus on a fundamental demonstration of the phase effects. Promising results were

already obtained in previous work in this field [34].



Chapter 1

HgTe based quantum wells

Conventional semiconductor materials have been studied extensively in the past.

On the one hand, two-dimensional electron gases (2DEGs) have been fabricated for

III-V semiconductor compounds. For example, 2DEGs based on GaAs have highest

mobilities and are consequently used for the investigation of quantum effects in the

charge transport. On the other hand, II-VI wide gap materials like CdTe or ZnSe

can be doped magnetically using Mn atoms. Unlike for III-V materials, this does not

yield an additional charge doping. Thus, the magnetic properties can be modified

without an influence on the electric properties. These materials have mainly been

studied by means of optical methods, because there are major difficulties in the

doping and the application of electrical contacts.

A particular group of semiconductor compounds are the narrow-gap materials.

In such systems, the energy states can mix due to their low separation. Despite

the resulting peculiar transport phenomena, there has been only a low interest in

the narrow-gap material HgTe. This can be attributed to the rather low mobilities

and difficulties in the processing of HgTe-based devices. Indeed, the optical prop-

erties of HgTe-based superlattices [35] and quantum well structures [36] have been

investigated to some extent. But there are hardly any reports [37–39] on transport

measurements in this material except for results obtained by the Würzburg group.

5



6 1. HgTe based quantum wells

HgTe as a bulk material is a zero-gap semimetal. This leads to an inversion of

the sequence of the subbands, when HgTe is used for the well layer in quantum well

structures. In fact, the exact ordering of the states is determined by the confine-

ment energy. A normal band structure is obtained for narrow quantum wells, while

the band structure is inverted for wide quantum wells. Due to the inverted band

structure, the electrons in the conduction band feature hole-like properties.

This hole-like character of the electrons in the conduction band gives rise to a

large spin-orbit interaction of the Rashba type. For HgTe quantum wells, the Rashba

splitting is much more pronounced than in any other semiconductor material.

Recently, a significant progress has been achieved in the growth of HgTe-based

quantum well structures. These advances make samples with large mobilities avail-

able. Additionally, lithographical techniques were developed which meet the special

requirements of HgTe quantum wells.
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1.1 Band structure of HgTe-based quantum wells

In semiconductor materials, two-dimensional electron gases can be created by the

fabrication of quantum well (QW) structures. In general, three types of quantum

well structures formed in heterostructures can be distinguished. Here, the energy

gaps of the used materials and the respective valence band offset (VBO) play the

decisive role. In Fig. 1.1, the band edge profiles of the different types are shown.

In a type-I QW [Fig. 1.1 (a)], both electrons and holes are located in the same

layer, the QW layer between the barriers. In a type-II quantum well, the choice

of the material for barrier and well layer determines where the electrons and holes

are located, respectively. For a system as shown in Fig. 1.1 (b), the electrons are

trapped in the QW layer, whereas the holes are free to move within the outer layers.

When QW and barrier material are interchanged, the situation is reversed, i.e., the

holes will be bound in the QW layer. A type-III quantum well is formed, when a

semimetal is combined with a semiconductor [Fig. 1.1 (c)]. This kind of quantum

well formation is unique to mercury-based compounds [35], because only for these

symmetry-induced semimetals a negative energy gap Eg = EΓ6 − EΓ8 can be ob-

tained. As a barrier material, a semiconductor with a positive energy gap is used.

Figure 1.1: The three QW types are sketched schematically.

In this thesis, type-III HgTe quantum wells with barriers of Hg0.3Cd0.7Te have been

investigated. While HgTe as a bulk material has an energy gap of −300 meV, for

QW structures the energy gap depends heavily on the QW width dQW due to the

quantum confinement. The evolution of the electronic subbands as a function of
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Figure 1.2: (a) and (c) show the Landau level dispersion for a 40 Å and a

150 Å QW, respectively. For clarity, only Landau levels from

the lowest subbands of the conduction and the valence band are

included. The inset in (c) shows a magnification of the crossing

region. (b) Due to the quantum confinement, the position of

the energy subbands depends heavily on the QW width. (The

light-hole subbands are remote, so that they are not depicted.)

the QW width is shown in Fig. 1.2 (b). The notation of the subbands as elec-

tron (E)-, light-hole (L)- and heavy-hole (H)-like corresponds to the properties of

the respective wave functions [40]. As can be seen, the H1-band and the E1-band

cross for a critical QW width dcrit ≈ 63 Å [40]. For more narrow QWs the energy

gap between the lowest subbands of the Γ6 band and the Γ8 band is positive. This

order of the bands is referred to as a normal band structure, since it is common for

most semiconductor materials. For increasing QW width, the confinement energy is

reduced. Consequently, the lowest subband with Γ8 symmetry lies above the lowest

one with Γ6 symmetry for dQW > dcrit and the energy gap is negative according
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to the above definition. Thus, this kind of band structure is called inverted. For

the band structure, self-consistent Hartree calculations have been performed using

a 8× 8 k·p model [41].

The small energy separation of the subbands causes to a mixing of the electron-

like and hole-like states. This is reflected in the non-vanishing Bloch components

of both the Γ6 and the Γ8 state for a single subband, especially for the E1- and

H1-band which are closest to each other. The actual ratio of the Bloch components

for the individual bands, indicating the degree of mixing of the states, depends on

the QW width. For a normal band structure, the E1 band is the lowest subband

of the conduction band and the electrons have an electron-like character, i.e., the

Γ6 Bloch component is the dominant one. For an inverted band structure, the

electrons from the H1 subband, being the lowest state in the conduction band, are

hole-like. This peculiar property, however, is not reflected in the band dispersion of

the electronic states [Fig. 1.3 (a)]. While the conduction subbands, i.e., E2 and H1,

have an electron-like dispersion, the valence subbands are hole-like. The hole-like

character of the electrons in the H1 subband manifests itself in the response of the

wave function to an asymmetric QW potential. Fig. 1.3 (b) shows the edge profiles

of the Γ6 and the Γ8 band for an asymmetric quantum well with dQW = 120 Å. The

electron density distribution is shifted towards the maximum of the confining poten-

tial. This is contrary to the behavior expected for electrons, but can be explained

by the hole-like character.

A unique dispersion of the Landau levels is obtained for QW structures with

dQW > dcrit. In this regime of an inverted band structure, the lowest Landau level

(LL) originating from the H1-band contains a pure heavy hole state (M = −3/2).

Consequently, this LL lowers its energy for increasing magnetic field. On the other

hand, one of the valence band LLs has a more electronic character and shifts to

higher energies in magnetic field. This leads to a crossing of these two peculiar LLs

for a finite magnetic field. Its exact B-field value Bcross depends on the QW width.

In Fig. 1.2 (c), the LL dispersion of the lowest subbands from the valence and the
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Figure 1.3: (a) The E(k)-dispersion for k||(1, 0) is shown for a quantum well

with dQW = 120 Å. (b) Band edge profiles and electron density

distribution for the H1 subband are plotted for an asymmetric

120 Å QW.

conduction band is shown for a QW width of 150 Å. For this width, the LL crossing

occurs at Bcross ≈ 8 T. For a normal band structure (dQW = 40 Å), the energy gap

between the lowest Landau levels in the conduction and valence band, respectively,

opens up in magnetic field [Fig. 1.2 (a)].

The crossing of Landau levels for an inverted band structure was demonstrated

experimentally by Schultz et al. [42]. They investigated a HgTe/CdTe QW structure

with a well width of 122 Å by means of far-infrared Fourier-transform spectroscopy.

From the observation of several optical transitions as a function of Fermi energy and

magnetic field, they concluded that the LL crossing occurs at B ≈ 12 T, which is in

good agreement with the band structure calculations.

Experiments examining the LL crossing by magneto-transport measurements

will be presented in section 2.2 for several structures with different QW widths dQW .

The unique LL dispersion is expected to be reflected in a re-entrant quantum Hall
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state for finite magnetic field, when the Fermi energy is located within the funda-

mental gap for B = 0. This unusual behavior can be observed for samples with an

inverted band structure.

1.2 Rashba spin-orbit interaction

For structures with an inversion asymmetry, the degeneracy of the electronic states

can be lifted even in the absence of a magnetic field. The first possibility is an asym-

metry of the underlying crystal structure. This bulk-inversion asymmetry (BIA) is

present, e.g., in a zinc-blende structure, which is common for III-V and II-VI semi-

conductors. The BIA-induced splitting is described by the Dresselhaus term [43].

It was shown that this contribution to the spin splitting can be neglected for

narrow-gap materials [44–46]. In such systems, the dominant mechanism is at-

tributed to the structure inversion asymmetry (SIA) [6]. In this case, an asymmetry

of the confining potential of the quantum well lifts the spin degeneracy. The struc-

ture inversion asymmetry can be caused by a built-in potential or by an external

electric field.

The first experimental observation of a spin splitting due to the lack of inversion

symmetry was achieved in GaAs/AlGaAs 2DEGs by Störmer et al. [47] and Stein et

al. [48] in 1983. One year later, Bychkov and Rashba developed a theoretical model

to describe the SIA-related spin-splitting [6].

The Hamiltonian of a two-dimensional system with spin-orbit interaction is given

by

Ĥ = Ĥ0 + ĤSO =
h̄2k2

2m∗ + α[~σ × ~k]~ν, (1.1)

where ĤSO is the so-called Rashba term [6]. In the above equation, m∗ is the

effective electron mass, ~k the electron wave vector with k = |~k|, α the spin-orbit

constant, ~σ are the Pauli spin matrices and ~ν is a unit vector perpendicular to the

plane of electron motion.
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In some references [49, 50], the expectation value 〈α∗Ez〉 is used instead of α.

From this notation, it is obvious that the Rashba splitting depends on material-

specific properties described by α∗ [51] and on the effective electric field Ez. The

origin of the Rashba splitting was discussed controversially [44, 49, 52–55]. A re-

cent overview of the arguments is provided by Zhang et al. [20]. Experimental

evidence was provided that the band-edge profile and penetration of the electron

wave function into the barriers play an important role [56]. Recent theoretical in-

vestigations showed that the Rashba spin-splitting is controlled by the expectation

value of the electric field, properties of the interfaces and spin-dependent boundary

conditions [57].

Winkler and Rössler showed that the Rashba SO interaction leads to a spin

splitting linear in k [49]:

E± = E0 ± ESO =
h̄2k2

||
2m∗ ± αk||, (1.2)

where k|| is the in-plane component of the electron wave vector. This linear depen-

dence of the Rashba splitting on the wave vector k is valid for electrons. According

to Winkler [50], the Rashba splitting for heavy-hole systems is given by

ESO = ±βk3
||, (1.3)

and the Rashba splitting energy for a given value of k|| is

∆R = E+ − E− = 2ESO = 2βk3
|| (1.4)

As can be seen from Eqs. (1.2) and (1.3) the Rashba splitting vanishes for k = 0.

Thus, there is no difference in energy between the two spin-split states, but rather

there are two different values for k at the Fermi energy EF . Due to the different

dispersion of the two branches, a difference in the population the spin-split subbands

is obtained. The carrier densities n± for the two subbands in a heavy-hole system

with a total density nS are given by

n± =
1

2
nS ±

√
2m∗βnS

h̄2X

√
πnS(6− 4/X) (1.5)
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with

X = 1 +

√
1− 4πnS

(
2m∗β

h̄2

)2

(1.6)

It has to be noted that the electrons in the two branches of each subband cannot

be identified as spin-up and spin-down, because their eigenstates are not linearly

polarized and the net magnetic moment vanishes for B → 0 1.
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Figure 1.4: The band dispersion was calculated for a QW with a width of

120 Å. For a symmetric QW (dashed lines), the subbands are

degenerate. In a asymmetric QW (solid lines), the splitting of

the H-bands is much larger than for the E2-subband.

Fig. 1.4 shows the spin-split subbands for a HgTe QW structure with a QW width of

120 Å. For a symmetric quantum well, all subbands are degenerate. An asymmetry

of QW potential lifts the spin degeneracy for all subbands. As implied by Eqs. 1.2

1 To emphasize this, the term ”chiral splitting” is sometimes used instead of ”spin splitting” in

literature [58].
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and 1.3, the size of the splitting depends on the character of the subbands. While

the heavy-hole-like bands H1 and H2 are strongly split, the splitting for the electron-

like subband E2 is much smaller. For small k, the splitting of the H-subbands is

proportional to k3, whereas the splitting of the E2-band is linear in k. This is in

good agreement with the above theoretical models. However, the splitting saturates

and even decreases for larger k (Fig. 1.5). This non-monotonous behavior can be at-

tributed to the non-parabolicity of the subbands [49] and an increase of the effective

energy gap for large k [57].
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Figure 1.5: The splitting of the H1-subband (cf. Fig. 1.4) can be approxi-

mated by a k3-dependence for small k-values.

For HgTe-based QW structures with an inverted band structure, the Rashba

SO interaction is enhanced due to the heavy-hole-like character of the electrons in

the lowest conduction subband. For suitable devices, a Rashba splitting of up to

30 meV has been observed [20–22]. This is several times larger than the splitting in

III-V narrow-gap semiconductors, where values of the Rashba splitting energy up
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to approximately 10 meV have been reported [56, 59–61]. Additionally, the Rashba

splitting in HgTe QWs can be tuned over a wide range. When a sample is doped

symmetrically, the Rashba splitting vanishes. The application of a external voltage

to a gate electrode induces an asymmetry of the potential around the QW layer,

and the electrons experience an electric field which gives rise to a Rashba splitting.

For intrinsically symmetric quantum wells, the Rashba splitting vanishes for Vg ≈ 0

but can be tuned to finite values of up to 15 meV by an external gate voltage [20].

In contrast, an asymmetric doping causes a finite Rashba splitting even for Vg = 0.

The asymmetry is increased by applying a suitable voltage, yielding a splitting up

to the largest value mentioned above [22].

1.3 Sample fabrication

The results presented in the scope of this thesis were obtained from HgTe-based QW

structures. To utilize the particular properties of a normal and an inverted band

structure, respectively, samples with a QW width dQW in the range from 45 Å to

120 Å were investigated. The structures have been grown by molecular beam epitaxy

(MBE)2. Fig. 1.6 shows a schematic sketch of the layer sequence. The Hg0.3Cd0.7Te

barriers are n-type modulation-doped either on one or both sides of the QW with

Iodine. This doping leads to an asymmetric or symmetric potential for the quantum

well, respectively. The relevant properties of the investigated samples, e.g., QW

width and symmetry of doping, will be given in each section.

Recently, advances in the growth of HgTe-based QW structures were achieved [63].

Several modifications, e.g., an increase of the width of the spacer between the quan-

tum well and the doping layer, resulted in an enhancement of the carrier mobil-

ity µ. Thus, samples with mobilities of several 105 cm2/(Vs) even for low densities

n < 5 · 1011 cm−2 were available for our measurements. For such sample properties,

2 Details of the MBE growth of HgTe-based semiconductor compounds can be found in Refs. 62

and 20.
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Figure 1.6: The width dQW of the HgTe quantum well (here doped symmet-

rically) ranges from 45 Å to 120 Å.

the mean free path exceeds the typical sample dimensions. This allows for the in-

vestigation of quantum effects which otherwise would be destroyed by scattering.

From the MBE grown quantum wells, devices were fabricated by means of opti-

cal and electron beam (e-beam) lithography. For the optical lithography, standard

recipes for semiconductor processing can be applied. For nanostructured devices

fabricated by e-beam lithography, however, the customary processes for other semi-

conductor materials imply bake-out temperatures up to 200◦C for the polymethyl-

methacrylate (PMMA). Due to the low growth temperature of 180◦C for the HgTe

layer, the use of elevated temperatures would cause an interdiffusion of well and

barrier materials. Consequently, all lithographical processes are to be restricted to

temperatures well below the growth temperature.

A special process was developed for the first nanostructures based on HgTe QWs,

in which a standard photoresist was used for the e-beam lithography as well [64].

While this method enabled the fabrication of devices on a sub-micron scale, it turned



1.3 Sample fabrication 17

out that the resist is oversensitive to the electron beam and back-scattered electrons.

The overexposure of the resist resulted in an enlargement of the pattern transferred

to the sample. Recently, a process has been developed, in which PMMA can be

used with a bake-out temperature of only 80◦C. Using this resist for e-beam lithog-

raphy yields a better agreement between the design transferred to the sample by

the electron beam and the resulting device.

After the pattern has been transferred to the sample, a Ti layer is evaporated.

After the lift-off, the remaining Ti pattern serves as a mask for the successive etch-

ing. The first nanostructures were fabricated by wet chemical etching. Due to the

homogeneous etching, this method leads to an undercutting, i.e., the structure is

etched from the sides as well. The undercutting can be reduced, if dry plasma etch-

ing is used instead. Furthermore, samples fabricated by dry etching show a higher

mobility than devices made by wet chemical etching [63]. This new etching process

was available for most of the samples discussed below3. After the etching, the Ti

mask is removed by dipping the sample into hydrofluoric acid.

When the mesa is structured, a super-lattice of Si3N4 and SiO2 with a total thickness

of 110 nm is deposited by plasma-enhanced chemical vapour deposition (PECVD).

This layer serves as an insulator between the semiconductor and the metal (Au)

layer4 on top of the structure, which is used as a top-gate. By applying a voltage to

the gate, the carrier density n, the mobility µ and the Rashba splitting ∆R can be

modified [20,63].

It is necessary to apply large voltages for a maximum effect on the carrier den-

sity and the Rashba splitting. However, it was shown that the influence of the gate

voltage is limited [22]. When a positive gate voltage is applied, the carrier density

of the 2DEG increases. For a sufficiently large voltage, the conduction band edge

3 The plasma source was put into operation during the work on this thesis.

4 Between the insulator and the Au layer, a Ti layer of a few 10 nm serves as an adhesion

promoter.
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of the top semiconductor layer is at the same level as the chemical potential of the

2DEG. Then, electrons from the can tunnel from the QW layer to the insulator-

semiconductor interface and occupy surface states at lower energies. The interface

can now be seen as a capacitor plate parallel to the top gate and the 2DEG, respec-

tively. Any further increase of the gate voltage will only increase the voltage drop

over the insulator, while the semiconductor remains unaffected, yielding a maximum

for the density in the 2DEG. When the gate voltage is lowered again subsequently,

the density decreases immediately. The surface states remain charged until they

are lifted above the chemical potential. Finally, tunneling of electrons from the sur-

face states to the 2DEG leads to a saturation of the carrier density in the 2DEG

for sufficiently large negative voltages. The charging and discharging of the surface

states does not only limit the variation of the carrier density, but also results in a

hysteresis of the gate-voltage dependence of the carrier density in the 2DEG. It can

be inferred from this model that the hysteresis loop is reproducible as long as the

gate voltage range is not changed, i.e., the gate-dependent density is reproduced for

a repeated variation of the gate voltage between two extremal values. Furthermore,

it was stated that a hysteresis-free behaviour is possible as long as the surface states

have not been populated, which is the case for moderate gate voltages.

Consequently, a dependence of n, µ and ∆R on the gate voltage can be estab-

lished in a controlled way. When only small changes of the sample properties are

required, the device can be operated in the hysteresis-free range. For large gate volt-

ages, the variation of density and Rashba splitting is limited due to the influence of

the surface states. However, the behavior is reproducible for a cycle in gate voltage.

1.4 Summary

For this thesis, HgTe-based type-III QW structures were investigated. The negative

band gap of bulk HgTe gives rise to an inverted band structure for wide quantum

wells, i.e., dQW > 63 Å. For narrow QW layers, the energy states are shifted due

to the confinement in such way that a normal band structure emerges. For all QW
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widths discussed here, the separation of the subbands in energy is small enough

to enable a mixing of the states. This is reflected in a hole-like character of the

electrons in the conduction band for samples with an inverted band structure. One

consequence of this enhanced mixing of the states is a unique LL dispersion. Landau

levels from the valence and the conduction band cross for a finite magnetic field.

Furthermore, the hole-like character yields a Rashba splitting of the conduction

band, which is several times larger than for any other semiconductor material.

The quality of the QW structures has recently been improved by advances in the

MBE growth, so that high mobilities were achieved even at low electron densities.

A refinement of the lithographical process allows for the fabrication of devices with

dimensions down to the order of 100 nm. Due to the progress in both fields, devices

were available to study the peculiar properties of HgTe-based quantum well struc-

tures. The small sizes additionally make quantum effects experimentally accessible.





Chapter 2

Investigation of the band structure

HgTe as a bulk material is a zero-gap semimetal. A narrow energy gap appears when

it is used as a QW layer. Then, the band structure is inverted for wide quantum

well layers. For a decreasing QW width, the confinement energy increases, so that

the inversion of the energy states is lifted for quantum wells with a width below a

critical value dcrit ≈ 63 Å. For both band structure regimes, the states mix due to

their low separation in energy.

QW structures with a well width between 45 Å and 120 Å were investigated for

this thesis. In this range, the band gap does not exceed 80 meV. While the gap is

larger for dQW < 45 Å, it is limited due to the confinement of the energy subbands

otherwise. Because of the narrow band gap, it is possible to shift the Fermi energy

from the conduction band to the valence band. This is reflected in a transition from

n- to p-conductance. The mixing of the states for an inverted band structure causes

a unique LL dispersion. Two Landau levels originating from the conduction band

and the valence band, respectively, cross for a finite magnetic field. This crossing

occurs within the energy gap, giving rise to a re-entrant quantum Hall state. The

transition from an insulator to a conducting state in a magnetic field due to the

peculiar LL dispersion has not been reported so far as well. This chapter provides

experimental studies of these two transport phenomena based on the peculiar band

structure of HgTe quantum well structures.

21
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2.1 Transition from n- to p-conductance

For a variety of investigations on semiconductor structures, the application of a

voltage to a gate electrode on top of the device has been utilized to achieve a change

of the carrier density. This results in a shift of the Fermi with respect to the energy

bands1. For instance, the Fermi level is lowered, when the carrier density is decreased

and, consequently, less states are occupied. Generally a linear relation is observed

for the dependence of the electron density n on the gate voltage Vg:

n(Vg) = α · (Vg − Vth), (2.1)

where α = ∂n
∂Vg

is the gate voltage induced change of the carrier density and Vth the

threshold voltage. As can easily be seen from Eq. 2.1, the 2DEG is entirely depleted

for Vg = Vth.

The linear dependence of the density on the gate voltage according to Eq. 2.1 has

also been observed for HgTe-based 2DEGs [20,22]. In these studies, the application

of the gate voltage yielded a change of both the carrier density and the Rashba

splitting. Even though it was possible to vary the density over a wide range, a total

depletion of the 2DEG was not achieved for the used gate voltages. This can be

attributed to the rather high intrinsic densities, i.e., for Vg = 0, n ≈ 1 · 1012 cm−2

in the investigated samples. In addition, Al2O3 was used as an insulator between

the semiconductor and the gate electrode for these devices. For this insulator, the

risk of an electrical breakthrough restricted the gate voltage to rather low values,

providing another limitation for the variation of the carrier density.

For the work presented in this chapter, Hall bars with a length L and a width W

of 600 µm and 200 µm, respectively, were fabricated from structures with intrinsic

densities n ≤ 5 · 1011 cm−2. When a negative gate voltage is applied, the electron

density is decreased. The depletion of the 2DEG is reflected in an increase of the Hall

1 Strictly speaking, the Fermi energy stays constant and the energy subbands are shifted with

respect to the Fermi energy. Nevertheless, the more descriptive picture of shifting the Fermi

energy will be used throughout the thesis.
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Figure 2.1: The Hall resistance Rxy was measured for various gate voltages.

The inset shows the gate-voltage dependent carrier density, which

was deduced from the Hall measurements.

coefficient (Fig. 2.1). Here, the linear dependence of the density on Vg (cf. Eq. 2.1)

has been found for densities down to n ≈ 5 · 1010 cm−2 (inset of Fig. 2.1). Lower

densities are not observed, although the threshold voltage has not been reached yet.

In this case, the transmission through the sample is suppressed by potential fluctua-

tions which inhibit diffusive transport and only allow for hopping transport. In this

transport regime, the electron density can not be determined by Hall measurements.

It is also possible that the Fermi energy is locally shifted into the energy gap due to

potential fluctuations and the sample becomes insulating in that part. Finally, the

Fermi energy is shifted into the fundamental gap for the entire device. Due to the

large sample dimensions, potential fluctuations or local insulating regions result in

the same behavior as an insulating state for the entire device. Thus, one can not

distinguish between these two regimes, when only the experimental results shown

in this chapter are considered.
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For large negative voltages, conductance is observed again. It can be learned

from the Hall resistance (Fig. 2.1) that the transport is now hole-mediated, i.e., the

Fermi energy is located in the valence band. Unlike for n-conductance, only a weak

change of the carrier density is observed in the p-conducting regime as a function of

gate voltage. Since the transition to p-conductance requires high negative voltages,

the influence of the gate voltage on the two-dimensional hole gas might be limited

due to the screening effects described in Ref. 22 (cf. Sec. 1.3). In addition, the

change of carrier density can also be restricted by a low density of states close to

the valence band (VB) maximum. In this case, a shift of the Fermi energy within

the VB does not provide the same variation of the density as for the conduction

band, where the density of states is larger. In fact, the dispersion of the valence

band depends strongly on the QW width. Hence, it depends on the properties of the

individual sample, which reason is predominant for the limitation of the p-density.

The longitudinal resistance Rxx as a function of Vg reflects the transition from n-

to p-conductance as well (Fig. 2.2). For a decreasing electron density the resistance

rises until it reaches a maximum for the insulating regime, which is several orders

of magnitude larger than for the n-doped regime2. When the Fermi energy finally

is shifted into the valence band and the sample consequently becomes p-conducting,

Rxx decreases again by some orders of magnitude.

To our knowledge, a signature in transport for a transition from n- to p-conduc-

tance via an intermediate insulating regime has not been shown for other materials

so far. A direct transition from n- to p-conductance is possible and has been reported

for the zero-gap material graphene [65].

The transition from n- to p-type has been observed for several samples with different

QW widths. For 45 Å ≤ dQW ≤ 120 Å, the band gap does not exceed 80 meV.

2 The obtained finite resistance and the noisy signal for the insulating regime are artefacts due

to difficulties in performing an exact measurement of I = 0. In addition, the device resistance

for the insulating regime is approximately of the same order than the input resistance of the

instruments.
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Figure 2.2: The longitudinal resistance Rxx and the sample current I are

plotted as a function of the applied gate voltage.

Since the feasible variation of the Fermi energy is larger, it can be shifted from the

conduction band to the valence band, if the intrinsic electron density is sufficiently

low.

A relation between the width-dependent energy gap and the insulating range

in the gate voltage could not be established. This can be explained by the rather

large voltages which are usually required to reach the p-conducting regime for the

intrinsically n-doped samples. As it was shown in Sec. 1.3, the influence of the

gate on the 2DEG can be reduced by surface states. Due to the screening of the

gate potential, deviations from the linear gate-voltage dependence of the density

(cf. Eq. 2.1) can be expected. The influence of the surface states increases with the

absolute value of Vg, finally giving rise to a saturation of the carrier density. For

high intrinsic doping, large voltages are required for the depletion of the 2DEG and

the sample will remain in the insulating state for a larger voltage range than for a

device with a low intrinsic carrier density, even though the band gap is identical.
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Figure 2.3: The top figure shows the carrier species in a typical Hall bar de-

vice the for negative gate voltages Vg < Vth: the region under the

gate electrode (yellow) becomes p-conducting (orange), whereas

the leads remain n-type (green). The corresponding band edge

diagram is sketched in the bottom figure: for the leads, the Fermi

energy (dashed line) is in the conduction band, while it is in the

valence band for the gated region.

The observed transition from n- to p-conductance raises the question, how transport

is possible in the p-type regime at all. Since the samples are intrinsically n-doped

and the leads are not covered by the top-gate, the 2DEG in this region remains

n-type, independent of the gate voltage (Fig. 2.3). The entire device consequently

consists of a p-type region connected to n-type contacts, when the gated region is

tuned to p-conductance. As can easily be seen from the band edge diagram, thin

insulating regions occur at the interfaces between the n-doped leads and the gated

p-region. As a result, the sample contains two interfaces regarding the carrier type;

for a given direction of current, one is a transition from n to p, while the other one is
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of reversed order. The interfaces can be considered as diodes; one of them is always

set in conducting direction and the other one is in reversed direction, independent

of the bias voltage. Consequently, transport should be suppressed by the reversed

diode for such a device.
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Figure 2.4: The sample current (solid line) and the carrier density (squares)

are shown as a function of gate voltage. The voltage range cov-

ers the transition from n- to p-conductance via an intermediate

insulating regime.

However, Esaki showed that transport through a reversed diode is possible due

to tunneling [66]. For our devices, the tunneling resistance can be estimated by

employing a simple model. For sake of simplicity, it is assumed that the voltage

measurements are not affected by the p− n transition in each voltage probe. Thus,

the four-terminal resistance R4term depends only on the density and mobility of the

carriers in the gated region. For the two-terminal resistance R2term, one has to

distinguish between n- and p-conductance for the gate-covered region. In the n-
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regime, the ohmic contacts to the 2DEG, the ungated leads and the gate-covered

2DEG contribute to R2term. The total resistance of the ohmic contacts and the n-

doped leads is independent of the gate voltage and can be described by a constant

value Rcont. The resistance Rgate of the gated region depends on the carrier density

and mobility, which are varied by Vg. It can be calculated from R4term, when the

dimensions of the top gate are known: Rgate = lg
lxx

R4term, where lg is the gate

length and lxx is the distance between the voltage probes used for the four-terminal

measurement (cf. Fig. 2.3). For a p-type device the tunneling resistance Rtunnel due

to the n−p interfaces has to be added to Rcont and Rgate to obtain R2term. According

to Esaki [66], the tunneling behavior depends on the density of states of the p- and

the n-region. To keep the estimation of the tunneling resistance simple, Rtunnel is

assumed to be constant. This simplification is justified, because the density of states

for the n-doped side of the diode is constant anyway. As described above, usually

only a small change in the carrier density is possible for the p-type region and the

change in the density of states can be neglected here. From these considerations,

a tunneling resistance of some few 10 kΩ is determined for various devices with

different QW widths. This resistance value is sufficiently low to allow for charge

transport through the reversed diode. However, Rtunnel is larger than the size of

the contact resistance Rcont, which is usually below 10 kΩ, and the resistance of

the two-dimensional hole gas (2DHG). Thus, the tunneling resistance due to the

n-p transition at the gate boundary is the main reason for the reduced transmission

through the p-conducting regime. As can be seen in Fig. 2.4, the current for the

p-conducting regime is significantly smaller than for the n-regime, even though the

carrier densities are comparable, e.g., for a gate voltage of -2.0 V and -0.75 V,

respectively.

The current in the p-conducting regime is additionally limited by an increased

resistivity of the 2DHG. As can be determined from magneto-transport measure-

ments, the hole mobility is approximately one order of magnitude smaller than the

electron mobility for an identical carrier density. The difference in mobility can

be explained by the effective mass, which is approximately one order of magnitude
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Figure 2.5: The E(k) dispersion is shown for a 50 Å QW (left) and an 80 Å

QW (right). Remote bands are omitted to establish a better

comparability of the k-dependence of the individual subbands.

larger for the valence band than for the conduction band. In the Drude transport

theory, the mobility is given by µ = τm∗/e, where τ is the scattering time. The

difference in the effective mass for conduction and valence band is reflected in the

band dispersion (Fig. 2.5): The energy of the conduction band shows a significant

dependence on k, yielding a small effective mass 0.02 me < m∗ < 0.04 me [67, 68].

In contrast, the valence band is almost flat, which suggests a much higher effective

mass according to m∗ = h̄2
(

∂2E
∂k2

)−1

. Using the band structure calculations for an

80 Å QW (cf. Fig. 2.5), an effective mass of approximately 0.2 me is obtained for

the E1 band.

It can be concluded that the small band gap of HgTe-based quantum wells makes

a tuning of the sample from the intrinsic n-conductance to p-conductance possible,

if sufficiently large negative gate voltages are applied. While the Fermi level crosses
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the energy gap between the conduction band and the valence band, the sample is in

an insulating state. When the gate-covered region is in the p-conducting regime, the

sample is turned into an n-p-n structure. The finite current through the reversed

diode, which is formed at one of the n-p interfaces, can be explained by tunneling.

Thus, transport experiments in both the n- and the p-type regime are feasible.

2.2 Landau levels in HgTe

As it was shown in the previous section, the Fermi energy can be shifted into the

energy gap by a gate voltage. For devices with an inverted band structure the energy

gap will close for a finite magnetic field due to the unique Landau level dispersion

(cf. Sec. 1.1). While the underlying LL crossing has already been observed in opti-

cal measurements [42], there has been no experimental investigation of this peculiar

property by means of electrical transport measurements so far.

To explore the LL dispersion, measurements in an external magnetic field have

been carried out. When a 2DEG is subjected to a perpendicular magnetic field, the

electrons condense on Landau levels. The electronic states are quantized at energies

EN = (N + 1/2)h̄ωc, (2.2)

where N is the Landau quantum number and ωc = eB/m∗ is the cyclotron frequency

with the effective electron mass m∗. For simplicity, terms describing the Zeeman

effect and the Rashba splitting have been neglected. This leads to a discrete density

of states at the above energies

D(E) =
1

2πl2B

∑
N

δ(E − EN) (2.3)

with the magnetic length lB =
√

h̄/eB. The quantization of the energy states in

a magnetic field manifests itself in the transport properties of the 2DEG. When

the separation of the Landau levels is considerably larger than the broadening of

the levels, one has to distinguish between two transport regimes. In both of them,
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the longitudinal resistance Rxx reflects the density of states at the Fermi energy in

the bulk. For EF = (N + 1/2)h̄ωc, the Fermi energy is located in a Landau level

and the electronic states of the corresponding Landau level are delocalized over the

entire bulk. This makes backscattering possible and a large resistance is observed

(Fig. 2.6). If the Fermi energy in the bulk lies between two Landau levels, however,
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Figure 2.6: The longitudinal resistance Rxx and the Hall resistance Rxy are

plotted as a function of the external magnetic field. The re-

spective Fermi energies are given for the SdH maxima and the

transitions between the quantum Hall plateaus, which appear for

EF = (N + 1/2)h̄ωc.

the transport occurs only in the edge channels3. Then, no backscattering is possible,

because the channels at opposite edges are widely separated, and the longitudinal re-

sistance vanishes. The resulting oscillatory behavior of the longitudinal resistance in

magnetic field was observed for the first time by Shubnikov and de Haas in 1930 [70]

and has been referred to as Shubnikov-de Haas (SdH) oscillations since that time.

3 A comprehensive review of the edge-state transport has been published by Haug [69].



32 2. Investigation of the band structure

When the magnetic field is too low to cause a separation in energy between the

Landau levels, the Hall resistance Rxy increases linearly as a function of magnetic

field:

Rxy =
B

ne
, (2.4)

where n is the carrier density in the 2DEG. For high magnetic fields, the Lan-

dau levels are clearly separated and plateaus according to the quantum Hall effect

(QHE) [71] can be observed (see Fig. 2.6) with

Rxy =
h

e2

1

N
. (2.5)

Here, the Landau quantum number N gives the number of Landau levels below the

Fermi energy. The transitions between the QHE plateaus occur, when a Landau

level crosses the Fermi energy.

Since both the longitudinal and the Hall resistance show distinct features, when-

ever a Landau level crosses the Fermi energy, the experimental observation of Shub-

nikov-de Haas oscillations and the QHE grant experimental access to the evolution

of the Landau levels in magnetic field.

Measurements in a magnetic field up to 8 T have been performed to investigate

the Landau level dispersion of the conduction band (CB). When the gate voltage is

lowered for a fixed magnetic field, the Landau levels are subsequently shifted above

the Fermi energy. The number N of occupied Landau levels is determined from

the quantum Hall resistance Rxy = h
e2

1
N

. The results for an 80 Å QW are shown

for various magnetic field values (Fig. 2.7). For N > 1, the experimental data is

in good agreement with the theoretical LL dispersion. However, the transition to

N = 0, i.e., to insulating behavior, is not consistent with the theoretical model. The

unexpected transition to an insulator can be explained by density fluctuations in

the 2DEG. These fluctuations have been verified by Hall measurements on different

voltage probes of the same sample, yielding different carrier concentrations. When

the Fermi energy is close to the conduction band minimum, one region of the device

can already be turned into an insulator while the 2DEG in the vicinity of the volt-
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Figure 2.7: The experimentally determined Landau quantum numbers N

(colour coded), depending on the B-field and the gate voltage,

are in good agreement with the theoretical calculations for the

Landau level dispersion (black lines).

age probes is not entirely depleted yet. Nevertheless, transport through the device

will not be possible due to that insulating region and the entire sample will be seen

insulating.

For low electron densities (n ≤ 8 · 1010 cm−2), a transition to an insulating state is

observed for a finite magnetic field (Fig. 2.8)4. The transition can be understood by

the LL dispersion. When the Fermi energy is close to the CB minimum, the lowest

Landau level will cross EF for a magnetic field Bcrit. In principle, this transition

occurs for all Fermi energies at a certain magnetic field, but Bcrit is experimentally

accessible only for low densities. Since no Landau level from the conduction band is

4 Corresponding behavior is also observed for low hole densities, if the device is in the p-conducting

regime.
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Figure 2.8: Rxx and Rxy are measured for a sample with a low electron den-

sity.

below the Fermi energy for B > Bcrit, the sample is insulating. The B-field value for

the transition is shifted towards smaller values for decreasing densities, i.e., lower

Fermi energies, due to the monotonic behavior of the lowest Landau level in mag-

netic field.

While the transition to an insulator for finite magnetic field is observed indepen-

dently of the QW width, one has to distinguish between a normal and an inverted

band structure, when the Fermi energy is located in the fundamental gap for B = 0.

For a normal band structure, the gap between the lowest Landau levels of the va-

lence band and the conduction band, respectively, opens up in magnetic field. Con-

sequently, the sample remains insulating when a magnetic field is applied.

In contrast, conductance can be established in magnetic field for a sample with

an inverted band structure (Fig. 2.9). Even though the device is insulating for B = 0,

a transition to a conducting state is observed for a finite magnetic field Bcrit,1. When
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Figure 2.9: Longitudinal resistance (black), Hall resistance (red) and sample

current (blue) are shown as a function of B. The gate voltage is

such that the sample is insulating for B = 0.

the magnetic field is increased further, the sample becomes insulating again at Bcrit,2.

This unique transition is attributed to the peculiar LL dispersion. For a magnetic

field close to zero, the Fermi level is located between the lowest Landau levels of

the conduction band and the valence band. When the magnetic field is increased,

these two peculiar Landau levels shift into the energy gap. At the first critical

value Bcrit,1, the CB Landau level crosses the Fermi level. Subsequently, exactly

one occupied Landau level is below EF , resembling the familiar quantum Hall state.

This is reflected in a transport properties corresponding to the QHE regime; Rxx

vanishes and Rxy is quantized at h/e2. For B = Bcrit,2, the Landau level originating

from the valence band crosses the Fermi level. For larger fields, EF will be located

in the energy gap again and insulating behavior is observed.

When the Fermi level is lowered further into the gap, the conducting regime in

magnetic field, Bcrit,1 ≤ B ≤ Bcrit,2, narrows, until EF finally reaches the crossing
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Figure 2.10: (a) The Hall resistance is presented for various gate voltages.

(b) The calculated LL dispersion (black lines) is in good agree-

ment with the experimental results (indicated by dashed vertical

lines).
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Figure 2.11: The horizontal lines indicate the B-field range, in which the

sample is conducting for the respective gate voltage. The con-

ducting regime is smallest when Vg approaches −1.6 V.

point E(Bcross). For Fermi energies below the LL crossing point, a p-conducting

QH state appears in magnetic field. As shown in Fig. 2.10, the B-field values for

the transition between the conducting and the insulating regime depend on the gate

voltage. For −1.4 V ≥ Vg ≥ −1.9 V, the Fermi energy is located in the energy gap at

B = 0. The B-field range, for which the sample is conducting, depends on the exact

value of the gate voltage. For the entire transition from clear n-conductance to p-

conductance, the experimental results are consistent with the theoretical modelling

of the LL dispersion (Fig. 2.10). When the sample is insulating for B = 0, both

a transition to an n-conducting state (Vg = −1.4 V) and to a p-conducting state

(Vg ≤ −1.7 V) can be observed for a suitable gate voltage.

Using this method, the dispersion of the lowest Landau levels can be mapped ex-

perimentally. For several samples with an inverted band structure, a good agreement
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with the LL dispersion was obtained. In addition, the quite exact determination of

the B-field value for the LL crossing can verify the nominal value5 of the QW width.

For instance, the results shown in Fig. 2.11 were obtained on a sample which was

designed as a 55 Å QW, implying a normal band structure. However, the obser-

vation of the LL crossing indicates an inverted band structure and a QW width of

dQW ≈ 65 Å can be deduced from Bcross = (2.0± 0.3) T

In conclusion, a unique re-entrant quantum Hall state has been observed for

devices with an inverted band structure. While the sample is insulating for B = 0,

a conducting state appears at a certain magnetic field. For an even higher field,

the sample is turned into an insulator again. These transitions can be explained by

the peculiar LL dispersion, causing a crossing of Landau levels originating from the

conduction band and the valence band, respectively, within the energy gap. The

experimental observation of the LL crossing allows for a precise determination of

the QW width. In contrast, the band gap of a sample with normal band structure

opens up in magnetic field, so that the sample remains insulating when the Fermi

energy is in the gap for B = 0.

2.3 Summary

In this chapter, the peculiar band structure of HgTe quantum well structures was

studied by transport experiments. Since the band gap is not exceeding 80 meV for

the investigated structures, the Fermi energy can be shifted from the conduction

band to the valence band by applying a negative gate voltage. This leads to a

transition from n- to p-conductance via an intermediate insulating regime, which

is observable in our experiments. A low intrinsic carrier density is a prerequisite

for this transition, because the influence of the gate is limited due to screening

of the potential. While the carrier type in the gated region can be changed, the

leads remain n-type, independent of the gate voltage. Hence, the sample contains a

5 For several reasons, the thickness of MBE grown can deviate from the value aimed for.
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reversed diode at one of the boundaries between the n- and the p-region. Employing

a simple model, the tunneling resistance of the reversed diode can be estimated to

be only some few 10 kΩ, which permits charge transport through the device.

Samples with an inverted band structure, i.e., dQW < dcrit, show unusual trans-

port properties, when the Fermi energy is located in the energy gap. While the

sample is insulating for B = 0, a finite magnetic field can induce a transition to a

conducting state. For larger magnetic fields, the sample becomes insulating again.

This effect can be explained by the crossing of Landau levels originating from the

valence and conduction band, respectively, due to the inverted band structure.

To our knowledge, both the tuning from n- to p-type and the transition from an

insulating to a conducting state in magnetic field have not been observed so far in

transport measurements.





Chapter 3

The Quantum Spin Hall Effect

In recent years, spin Hall effects have aroused a lot of interest both theoretically

and experimentally [11–13,24,25]. This emerging interest is not only founded in the

relevance for the fundamental scientific understanding of the effect, but is also based

on its possible applications in the field of semiconductor spintronics. For spin Hall

systems, the spin current flows without dissipation. However, the accompanying

charge current is subject to the general transport properties of the doped semicon-

ductor, which makes the combined system of charge and spin current dissipative.

To avoid the objectionable dissipation due to the charge transport, it is necessary

to separate the spin transport from the charge transfer through the device. In this

context, the so-called Quantum Spin Hall (QSH) effect was predicted [18, 19]. In a

QSH system, edge states transport yields quantized spin and charge conductance,

while the bulk is insulating. Since the transport of the spin-polarized carriers in the

QSH channels is non-dissipative, QSH systems are considered to be ideal candidates

for spintronics devices.

Bernevig et al. predicted the existence of a QSH state for HgTe QW structures

with an inverted band structure [23]. This prediction is verified by measurements

on various devices presented in this chapter, providing the first experimental obser-

vation of the QSH effect. Beyond this, the influence of an external magnetic field

and the temperature on the QSH state are investigated.

41
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3.1 Introduction to the Quantum Spin Hall effect

A dissipation-less spin current was predicted to flow in a so-called Spin Hall insulator

(SHI), whereas the charge conductance is zero in such a system [72]. This SHI state

is expected to appear in zero-gap and narrow-gap materials such as Hg-based and

Pb-based semiconductor compounds. When the material is undoped, the Fermi

level is located in the energy gap which makes it insulating with respect to the

charge transport. For zero-gap materials, an energy gap at the Γ point can be

opened by uniaxial strain. Even though the charge conductance vanishes, the spin-

conductance is non-zero because of unequal Fermi distributions for the holes in

the light- and heavy-hole subbands in these systems. Motivated by this initial

suggestion, a quantized spin Hall effect was proposed [18,19]. Like for a SHI system,

the Fermi energy in the bulk is located in the energy gap for such a system. However,

the spin current can be carried by edge states, also allowing for non-dissipative charge

transport. Due to the analogy to the well-known quantum Hall effect (cf. Sec. 2.2),

this effect is called the quantum spin Hall (QSH) effect.

In their prediction of the QSH effect [19], Bernevig and Zhang utilized the fact

that the spin-orbit Hamiltonian of a two-dimensional system can be expressed by

ĤSO ∼ Eσz(xpy − ypx) which resembles the term describing a perpendicular mag-

netic field Ĥ ∼ B(xpy − ypx). This similarity suggests that the electric field E en-

tering the SO Hamiltonian can be represented by an effective magnetic field, causing

Landau level-like edge states for the two spin subsystems1. Since the spin σz of the

electron enters the SO Hamiltonian, the effective B-field points in opposite direction

for spin-up and spin-down electrons. Consequently, spin-up and spin-down electrons

counter-propagate at a given edge (Fig. 3.1). Considered separately, the edge states

are (anti-)chiral states. Due to the reversed chirality for electrons with opposite

spin, the total system of the states at a given edge forms a helical liquid [73].

1 Using an effective mass model, Kane and Mele demonstrated the quantization of the spin

conductance for graphene. The existence of the QSH edge states in that material was shown

introducing a tight-binding model [18].
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Figure 3.1: In a QSH system, electrons with opposite spin move in different

directions at a given edge.

Kane and Mele introduced a Z2 classification for the topological description of the

novel time reversal invariant system [74]. Similar to the topological index describ-

ing the charge quantum Hall effect [75], QSH systems can be characterized by a

topological number ∆ as well2. This integer describes the number of pairs of helical

states at one edge [18,23]. For a QSH insulator, ∆ is an odd number. The counter-

propagating edge states at a given edge form a Kramers pair and time reversal

invariant perturbations cannot destroy the topological order. It was shown that the

edge states are robust against weak magnetic disorder and electron-electron interac-

tion [73, 78]. Since backscattering can be neglected, transport in the edge channels

is non-dissipative and both spin and charge conductance are quantized: for the spin

conductivity, σs = e/(2π) is obtained and the charge conductivity is quantized with

σ = 2e2/h. However, when a phase transition to ∆ = even occurs, the hybridization

of the edge modes opens up a gap even at the sample edge, turning the sample into

a spin Hall insulator [79].

Amongst other materials [18, 76, 80], the existence of the QSH insulator has been

predicted for HgTe/CdTe quantum wells [23]. In this description3, the electronic

states are given by a relativistic Dirac equation. Due to the large separation of

the other subbands, only the E1 and the H1 band are considered in an effective

2 In some references, the topological index for the QSH state is called I [74,76] or Z2 [77] instead.

3 The following description is based on the prediction by Bernevig et al. [23].
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Figure 3.2: The spectrum of the lowest states in valence and conduction band

is sketched schematically. (a) For a normal band structure, the

Fermi energy is located in the energy gap for the entire sample.

(b) When the band structure is inverted, the Fermi energy is in

the gap for the bulk as well. However, the energy states cross the

Fermi energy at the edges, forming the QSH channels (inset).

four-band model. Here, the E1 band basically consists of the two spin states of the

s orbital. The H1 band is composed of the spin-orbit coupled p orbitals |px + ipy, ↑〉
and | − (px − ipy), ↓〉. The significant parameter of this model is the Dirac mass

M , which is equivalent to the energy difference between the E1 and the H1 band

at the Γ point. For a normal band structure, i.e., dQW < 63 Å, the E1 band lies

above the H1 band and M is positive, while an inverted band structure is identified

by a negative Dirac mass. The resulting sign change of M at the phase transition

for d = dcrit leads to a variation of the topological number by 1. Hence, the sample

is in the QSH state for one side of the transition, but represents a trivial insulator

for the other side. Applying a tight-binding model, it is shown that the nontrivial

QSH insulator state exists for an inverted band structure. Fig. 3.2 illustrates the

lowest states of the valence and conduction band, respectively. For a normal band

structure, the gap increases at the sample edge. This provides a trivial insulating

state, when the Fermi energy is in the energy gap (M > 0). However, the situation

changes drastically for an inverted band structure. The Fermi energy in the bulk is

in the gap as well, but M is negative due to the inverted band structure. Close to
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the sample edge, the two states cross, establishing a domain wall between a region

with M < 0 in the bulk and one with M > 0, which is connected to the vacuum.

Since the QSH states originating from the conduction and valence band cross, the

existence of QSH edge channels is ensured for all Fermi energies within the band

gap [see inset of Fig. 3.2 (b)]. Due to the crossing of the states, a QSH insulator

can not be adiabatically deformed into a trivial insulator. In this precise sense, the

QSH insulator represents a topologically new state of matter.

3.2 Experimental observation of the Quantum Spin

Hall insulator

For the experimental investigation of the QSH effect, several devices have been fabri-

cated from HgTe-based QW structures. The QW width of the individual structures

was in the range from 45 Å to 120 Å. While samples with dQW < 63 Å have a normal

band structure, a larger QW width causes an inversion of the band structure. From

these QW structures, Hall bar devices with different dimensions (L×W ) were fab-

ricated (see Fig. 3.3). All devices presented below can be turned into an insulator

by applying moderate gate voltages due to a low intrinsic (Vg = 0) electron density.

Unless stated otherwise, the experiments were done in a 3He/4He dilution refrig-

erator at base temperature T < 30 mK using standard AC lock-in measurement

techniques.

For various devices presented in this chapter, the nature of the band structure was

investigated by magneto-transport measurements as introduced in Sec. 2.2. For

structures with a small QW width dQW < dc, the energy gap between the lowest

Landau levels increases in magnetic field confirming the normal band structure. On

the other hand, the LL crossing for devices with an inverted band structure allows

for a precise determination of the QW width. Fig. 3.4 shows the theoretical B-field

values (cf. Sec. 1.1) for the Landau level crossing for quantum wells with an inverted
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Figure 3.3: The schematic sketch of the devices shows the QSH edge states

under the gate (shaded region). The ungated parts of the sample

are n-type.

band structure (red circles). These values are used to adjust the QW width of the

investigated samples (blue squares). The possible error in the measurement of Bcross

results in a small uncertainty in the experimental determination of the QW width.

According to the Dirac model introduced in the previous section, it can be shown

that the LL crossing only occurs for an inverted band structure. In this model, the

two Landau levels closest to the energy gap are given by E± = C±M − (D±B)l−2
c .

Here, B, C and D are material-specific parameters4, M is the Dirac mass and

lc =
√

h̄
eB⊥

the magnetic length according to the perpendicular magnetic field B⊥.

The condition for the LL crossing, E+ = E−, leads to Bcross = h̄M
eB

. Since the pa-

rameter B is negative in general, a LL crossing will only appear for M < 0, i.e.,

for an inverted band structure. The above expression for Bcross applies very well for

dQW ≤ 85 Å, if the dependence of the energy gap on the QW width is considered (cf.

4 Note that the parameter B of the Dirac model is not related to the magnetic field. The notation

as B is chosen according to Ref. 23. To avoid confusion, the magnetic field is given with an

index in this context, e.g., B⊥.
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Figure 3.4: The B-field value of the LL crossing is determined experimentally

(blue squares) and calculated theoretically (red circles). For the

energy gap Eg (black triangles), the negative values indicate the

inverted band structure.

Fig. 3.4). For dQW ≈ 85 Å, the E1 band falls below the H2 band (cf. Fig. 1.2). This

makes the four-band Dirac model based solely on the E1 and the H1 band invalid

and the LL crossing for wider QWs can not be deduced from the above expression.

Anyway, the LL crossing was observed for such QWs as well, confirming the inverted

band structure. Using this method, it can be established experimentally5, if the de-

vices have a normal or an inverted band structure.

Fig. 3.5 shows the longitudinal resistance R14,23 = U23/I14 (cf. Fig. 3.3) as a

function of the applied gate voltage for two Hall bar structures with dimensions

5 The method is not appropriate to verify the exact QW width for dQW > 80 Å. In this regime,

the variation of Bcross is comparable to the uncertainty in the experimental value. However,

the existence of the LL crossing satisfactorily shows the inverted band structure.
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Figure 3.5: The longitudinal resistance is measured as a function of the gate

voltage for a 45 Å QW (black) and a 80 Å QW (red), respectively.

(L ×W ) = (20 µm × 13.3 µm) and a QW width of 45 Å and 80 Å, respectively6.

Both devices are intrinsically n-doped. When a negative voltage is applied, the lon-

gitudinal resistance is increased due to the depletion of the 2DEG. One can clearly

distinguish between two different regimes when the devices are tuned to the insu-

lating state for Vg ≈ −1.0 V. For the 80 Å QW, a longitudinal resistance of approx-

imately 100 kΩ is observed, which corresponds to a conductance of G ≈ 0.25 e2/h

(red trace). In contrast, the resistance of the 45 Å sample is about two orders of mag-

nitude larger and the conductance is almost zero (black trace). In fact, the observed

resistance R ∼ 10 MΩ can be attributed to the intrinsic noise level of the lock-in

setup used for the measurements. For both samples, the resistance again decreases

6 For both samples, the nominal QW width has not been verified by the LL dispersion. However,

due to its large separation from dcrit, the samples are clearly in the normal and inverted band

structure regime, respectively.
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to approximately 10 kΩ for Vg ≈ −2.0 V, when the sample is p-conducting. As a

result of additional experiments on several other devices with different QW width,

the behavior in the insulating regime can be associated with the type of the band

structure: All samples with an inverted band structure, i.e., dQW > 63 Å, showed

a finite resistance stays not exceeding 100 kΩ, whereas conductance was entirely

suppressed for samples with a normal band structure. This significant distinction is

a clear indication of the existence of the QSH state for devices with an inverted band

structure, even though the observed resistance values do not match the theoretical

prediction.

For a four-terminal configuration, a vanishing resistance was predicted theoret-

ically, while the two-terminal resistance, e.g., R2term = U14/I14, is expected to be

quantized at h/(2e2) [23]. The deviation of the resistance from the predicted value

can be explained by the properties of the contacts. In the theoretical prediction,

ideal contacts to the QSH edge states were assumed, i.e., the potential of the edge

states can be probed without any influence due to the contacts. In the investigated

samples, the contacts are always n-doped, which can not be considered as ideal with

respect to the QSH states. Unlike for a quantum Hall system, the edge states in

a QSH system propagate in both directions at a given edge (cf. Fig. 3.3). Orig-

inating from different sources, the edge states reaching the same contact carry a

different potential. In the n-type contacts, the edge states necessarily equilibrate

and backscattering becomes possible. Hence, the voltage difference between neigh-

bouring contacts does not vanish even though they are connected by non-dissipative

edge channels. A simple Landauer-Büttiker formalism [81] can be applied to de-

termine the influence of the n-doped contacts. The current Ii in a contact i (cf.

Fig. 3.3) can be calculated from

Ii = (e/h)
∑

j

Tij(µj − µi).

Since the edge states are non-interacting, the transmission coefficient Tij is unity

for neighbouring contacts and zero otherwise. In the measurements, a current I is

injected from contact 1 to contact 4, i.e., I1 = −I4 = I, while Ii vanishes for all
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other contacts serving as voltage probes. When total equilibration of all edge states

in each contact is assumed, a four-terminal resistance of (h/2e2) is obtained. The

two-terminal resistance is determined by the number of the voltage probes between

the current source and drain. Between each pair of neighbouring contacts, a voltage

Vi = I · (h/e2) drops, adding up to a total voltage drop of (n + 1)Vi, where n is the

number of voltage probes. This yields a two-terminal resistance of (3h)/(2e2) for a

Hall bar geometry with two voltage probes on each side as shown in Fig. 3.3.

While the influence of the n-doped contacts causes a finite resistance contradict-

ing the initial theoretical prediction [23], it still does not give a conclusive picture

for the observed four-terminal resistance of around 100 kΩ. However, the enhanced

resistance can be explained by potential fluctuations within the sample. Due to the

narrow energy gap, these fluctuations can create local n- and p-conducting regions

embedded in the insulating region under the gate. In a quantum Hall system, the

position of the edge states is determined by a local Fermi energy corresponding to a

half-integer filling factor (cf. Sec. 2.2). Therefore, the edge channels will evade po-

tential fluctuations and dissipationless transport is conserved. In contrast to the QH

regime, the position of the QSH edge states depends on the dispersion of the energy

states close to the sample edge. The spatial separation of the QSH states from the

sample edge can be regarded as constant independent of possible potential fluctua-

tions. Consequently, the edge states will enter each conducting region located at the

sample edge (Fig. 3.6). These regions appear due to potential fluctuation which are

caused, e.g., by impurities or the roughness of the interfaces between the well and

both barrier layers. Furthermore, a fluctuation of the well width by one mono-layer

is conceivable despite the high accuracy of the MBE growth. A variation of dQW

shifts the energy levels. Thus, the Fermi energy is possibly not located within the

gap for the entire device. Like for the n-doped contacts, this leads to an equilibration

of the potential carried by the edge states. Since the otherwise independent edge

states can interact, backscattering is possible and yields an increase of the voltage

drop.
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Figure 3.6: When the QSH edge states (red and blue) enter a doped region

(grey), the edge states can interact.

As a second mechanism, inelastic scattering can contribute to the longitudinal

resistance. While the edge states are robust against elastic scattering, inelastic scat-

tering can give rise to backscattering. Using realistic parameters for n-doped samples

(n = 5 · 1011 cm−2 and µ = 105 cm2/Vs), an elastic mean free path λe ≈ 1.2 µm

is obtained. The inelastic mean free path λi can be estimated to be several times

larger. This assumption is corroborated by the interference effects observed in ring

structures with a radius of 1 µm, which will be presented in Ch. 5. The circumfer-

ence can be seen as a lower limit for the inelastic mean free path, because inelastic

scattering would destroy the phase coherence. In addition, other experiments on

HgTe QW devices, which have densities and mobilities comparable to the values

given above, show phase coherence for lengths up to 20 µm [34]. Taking these ex-

perimental findings into account, an inelastic mean free path of at least 10 µm is

a reasonable estimate7. Since the mean free path decreases with the electron den-

sity, its value in the insulating regime will be smaller than for an n-doped sample

and inelastic backscattering may occur on a length scale of the order of 1 µm for

the QSH regime. Hence, the distance between the voltage probes exceeds the in-

elastic mean free path and the longitudinal is expected to be larger than h/(2e2),

which is consistent with the experimental results. The length-dependence of the

QSH conductance also explains, why the conductance vanishes for macroscopic Hall

bars, i.e., L ≥ 600 µm, and the devices show trivial insulating behavior (cf. Fig. 2.2).

7 A comparable ratio of inelastic and elastic mean free path was found for GaN quantum wells [82].
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Hall bars with a length of 1 µm were fabricated from a 65 Å QW8 to show the

quantization of the resistance at h/(2e2) for the insulating regime. According to the

above estimation, the sample dimensions are of the same order as the inelastic mean

free path. In this case, backscattering can be neglected and a longitudinal resistance

of h/(2e2) is expected. For two devices with L = 1 µm, a resistance of approximately

18 kΩ is observed in the insulating regime, i.e., R is slightly above h/(2e2) (Fig. 3.7).

A full transition to the p-conducting regime could not be achieved, because the in-

trinsic carrier concentration of the 2DEG was increased due to the electron-beam

lithography needed for the fabrication. The deviation from the quantized value in

the insulating regime can be explained by residual backscattering. The QSH states

follow the sample edge into the voltage probes, which are also tuned into the QSH

regime by the top gate (cf. Fig. 3.3). In the investigated structures, the voltage

probes are covered by the gate on a length of 500 nm and the total length of the

edge states adds up to 2 µm, which most probably exceeds the inelastic mean free

path.

The width of the two devices is 0.5 µm and 1.0 µm, respectively. The difference

for the n-conducting regime is attributed to bulk properties. For the (W = 1 µm)

device, a defect in the bulk can explain the reduced transmission through the n-type

sample, yielding an almost constant resistance. The resistance in the insulating

regime, however, is independent of the sample width. This is in contrast to the

behavior for bulk-mediated transport, where the resistance is expected to scale like

R ∝ W−1. Unlike for bulk conductance, the resistance for edge state transport is

independent of the sample width as long the channels on opposite edges are clearly

spatially separated. Hence, the results confirm the existence of the QSH edge states

for the insulating regime.

The fluctuations on the signal, which appear in the insulating regime, are re-

producible and not caused by, e.g., electrical noise in the measurement setup. They

can be attributed to quantum interference effects, which depend strongly on the

8 This is the nominal value, the actual QW width might be slightly larger.
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Figure 3.7: For two devices with L = 1 µm, the longitudinal resistance in

the insulating regime is close to h/(2e2).

interface between the QSH region and the n-type contacts. This is confirmed by

temperature-dependent measurements (Fig. 3.8). While the fluctuations are clearly

visible at T ≈ 30 mK, the signal is much smoother at T = 4.2 K. The transport

in the QSH states as such remains apparently unaffected by the increase of tem-

perature9 and a conductance close to 2e2/h is observed in the insulating regime for

both traces. Both measurements were done on the same (1 µm × 0.5 µm) device

using the same measurement setup so that spurious effects due to the lithographical

process or specific properties of different measurement setups can be excluded to be

responsible for the suppression of the fluctuations for elevated temperatures.

Another indication for transport due to edge states can be found in the results ob-

tained by non-local measurements on a (1 µm× 1 µm) Hall bar at 1.8 K. For these

9 The temperature dependence of the QSH effect will be investigated in detail in Sec. 3.4.
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Figure 3.8: When the temperature is increased from 30 mK (black) to 4.2 K

(red), the fluctuations in the insulating regime almost vanish.

measurements, e.g., contacts 2 and 6 of the Hall bar were used as current source and

drain, respectively, while contacts 3 and 5 were used as voltage probes. For this and

several other non-local contact configurations, a finite conductance was observed

for the insulating regime (Fig. 3.9). For bulk conduction, no voltage difference is

expected for the probes. Assuming strong scattering, the non-local voltage probes

might get charged. However, the voltage difference would strongly depend on the

potential landscape in the bulk, which is directly affected by a change of the Fermi

level. Since this is not the case, the charging of the non-local voltage probes can

be attributed to the edge states. These carry the potential of the current source

and drain contact, respectively, to the neighbouring contacts. Hence, the non-local

signal is constant for the entire insulating regime, which is in agreement with the

experiments when the superimposed fluctuations are neglected. Thus, the results

corroborate the above conclusion that the transport in the insulating regime is based

on the existence of edge states.
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Figure 3.9: For different contract configuration, the non-local resistance was

measured as a function of the gate voltage. The insulating regime

occurs for Vg ≤ −2.2 V. The inset provides contact configuration

for the various traces.

The resistance value for the plateau can be qualitatively understood, when scat-

tering and the influence of the additional contacts between the voltage probes is

considered. Applying a simple Landauer-Büttiker formalism yields a non-local re-

sistance R26,35 = U35/I26 of 2h/(3e2). When backscattering is considered, a voltage

drop along the edge states results in a reduced charging of the voltage probes. In

addition, the voltage probes 3 and 5 are connected via contact 4, where the edge

states, at least partially, equilibrate. For both reasons, the measured voltage dif-

ference will be smaller than the theoretical one. Similar considerations lead to the

same qualitative behavior for R36,12 and R35,26.

In conclusion, the existence of the QSH effect was demonstrated for HgTe QW

structures with an inverted band structure, whereas devices with a normal band
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structure show trivial insulating behavior. In fact, our results provide the first ex-

perimental observation of the quantum spin Hall effect. Contrary to the theoretical

prediction, the longitudinal resistance in a four-terminal configuration does not van-

ish for a QSH insulator. This is due to the counter-propagation of the QSH edge

states at a single edge. The n-type contacts attached to the QSH regime enable

an equilibration of the edge states, leading to a finite resistance R = h/(2e2) for a

four-terminal configuration. A resistance close to this quantized value is observed for

devices with a length of 1 µm, where scattering can be neglected. When the samples

are larger than the mean free path, the resistance is increased due to backscattering.

Evidence for edge state transport in the QSH regime was provided in two different

ways. First, the conductance is independent of the device width for a given length.

Second, a strong non-local signal is observed for the insulating regime. Both findings

rule out bulk transport to be responsible for the observed conductance of the QSH

state.

3.3 QSH edge states in magnetic field

For B = 0, the helical edge states form a Kramers pair and are protected by time

reversal symmetry. In an external magnetic field, however, time reversal symme-

try is broken. In this case, elastic backscattering becomes possible and the con-

ductance suppressed. To investigate the B-field dependence of the QSH insulator,

measurements on Hall bars with (L×W ) = (20.0 µm× 13.3 µm) were performed10.

Fig. 3.10 (a) shows the magneto-conductance of a 73 Å QW in the insulating regime.

For B = 0, G = 0.23 e2/h is observed, which is a typical value for a device of the

given dimensions (cf. Fig. 3.5). When a perpendicular magnetic field is applied,

the conductance is destroyed, showing a very sharp, cusp-like peak in magnetic field

with a full width half maximum (FWHM) value of 10 mT. For finite magnetic field

B > 50 mT, a residual conductance G0 of 0.06 e2/h is observed. This value is com-

10 Devices of this dimensions were chosen despite the enhanced scattering, since the standard size

of 20.0 µm× 13.3 µm was used for several devices.
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Figure 3.10: (a) The conductance due to the QSH state is suppressed, when

a magnetic field is applied perpendicular to the 2DEG. (b) The

conductance peak for B = 0 exists for the entire insulating

regime.

parable to the conductance observed for a trivial insulator, i.e., dQW < dcrit, which

has be attributed to the noise floor of the measurement equipment (see Sec. 3.2).

As can be seen in Fig. 3.10 (b), the behavior of the conductance as a function of

magnetic field is independent of the exact value of Vg as long as the Fermi energy

is in the gap, i.e., for −0.9 V ≥ Vg ≥ −1.25 V. The apparent widening of the peak

close to the p-conducting regime is related to a slight increase of the background

due to the onset of the bulk conductance.
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Figure 3.11: (a) The conductance as a function of B is shown for gate volt-

ages close to the insulating regime. (b) The E(k) dispersion for

bulk and edge states is sketched schematically. The Fermi levels

corresponding to the gate voltages used in (a) are indicated by

dashed green lines.
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The conductance peak around B = 0 exists for the n-doped and the p-doped

regime as well. Fig. 3.11 (a) shows the magneto-conductance for the n- and p-regime

at a gate voltage of -0.7 V and -1.6 V, respectively (cf. Fig. 3.10). Fig. 3.11 (b)

provides a sketch of the E(k) dispersion for bulk and QSH states (cf. Ref. 83). The

qualitative agreement with the theoretically obtained dispersion [83] is sufficient to

explain the observed behavior. For energies slightly above the conduction band

minimum and below the valence band maximum, respectively, the QSH states still

exist for finite k, even though the Fermi energy is not located in the gap. Thus,

carriers in the bulk and edge channels contribute to transport simultaneously. While

the conductance due to the QSH states is significantly suppressed for finite magnetic

field, bulk transport is hardly affected.

Fig. 3.12 shows the conductance for devices with a QW width of 64 Å, 73 Å and

80 Å, respectively11. For all devices, the conductance decreases sharply to a residual

value for B ≈ 25 mT. However, there is a strong variation of the residual conductance

for finite magnetic field. For the 64 Å and the 80 Å device, G0 ≈ 0.2 e2/h is observed

instead of a total suppression of the conductance. Based on these results, a coherent

model for the B-field dependence can be developed.

First of all, the variation of the residual conductance is not caused by a shift of

the noise level or of the zero-point in the measurement setup. For the 64 Å device,

measurements were done in two different setups yielding identical results within the

typical measurement accuracy.

Furthermore, a thermal activation of transport in the bulk states can be ruled

out. On one hand, the thermal energy corresponding to a temperature of 100 mK 12

is only E = kBT = 8.6 µeV, which is several orders of magnitude smaller than the

bulk energy gap. On the other hand, a thermal excitation for the bulk states should

be observable for a trivial insulator as well. QW structures with a width of 45 Å,

11 dQW = 64 Å and 73 Å have been determined by the LL crossing (see Fig. 3.4); dQW = 80 Å is

the nominal value.

12 While the base temperature of the dilution refrigerator is below 30 mK, the effective electron

temperature can be slightly larger due to, e.g., noise input.
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Figure 3.12: For several devices with different QW widths, the dependence

of the QSH signal on a perpendicular magnetic field is shown.

73 Å and 80 Å exhibit a similar band gap (cf. Fig. 1.2), and the thermally activated

conductance should be comparable for the three devices, which is obviously not the

case (cf. Fig. 3.5).

For these reasons, it is evident that the residual conductance for finite magnetic

field has to be related to the QSH state. As mentioned in Sec. 3.1, the states at

a given edge form a Kramers pair and are consequently protected by time reversal

symmetry, i.e., the edge states are robust against disorder and backscattering is not

possible. But when a magnetic field is applied, time reversal symmetry is broken and

the protection of the edge states is lifted. It is stated in Refs. 18 and 23 that a gap

between the helical edge states opens up when time reversal symmetry is broken by

a magnetic field. This description is misleading, because only the helical property of

the edge states is destroyed by a magnetic field, whereas the underlying states still

exist. Thus, transport through the device is still possible for finite magnetic field,

albeit reduced due to the elastic scattering.
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Figure 3.13: (a) The LL dispersion of a 65 Å QW was obtained by band

structure calculations. In (b), (c) and (d) the dispersion of the

lowest states is sketched schematically for a non-trivial insula-

tor, a sample in the QH regime and a trivial insulator, respec-

tively. The insets display the situation close to the sample edge

and the possibly existing edge states.

The existence of the QSH edge states in magnetic field is directly connected

to the re-entrant quantum Hall state presented in Sec. 2.2. It was shown that a

transition to a conducting state can be observed for finite magnetic field even though

the device is insulating for B = 0. Fig. 3.13 shows the LL dispersion of a sample with

an inverted band structure (here a 65 Å QW). The QSH edge states originate from

the lowest states of the valence and conduction band which are indicated in red and

blue, respectively. For a small magnetic field [Fig. 3.13 (b)], the energy spectrum of

these states resembles the QSH state for vanishing B-field [cf. Fig. 3.2 (b)]. However,

elastic backscattering is possible due to the breaking of the time reversal symmetry.
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When the magnetic field is increased, the bulk states are shifted accordingly to

the Landau level dispersion. Hence, the bulk gap will close for B = Bcross and

subsequently increase again showing a reversed order of the bulk states. Depending

on the exact position of the Fermi energy within the bulk gap, one of the states

will cross EF for a lower magnetic field than the other state. In Fig. 3.13 (c), the

upper bulk state has already fallen below EF , whereas the lower bulk state has

not yet crossed the Fermi level. Consequently, only edge channels due to the latter

state do exist. Since counter-propagating edge states are now located at opposite

sides of the sample, no backscattering is possible, resulting in the observed n-type

quantum Hall-like state with Rxx = 0 and Rxy = h/e2 (cf. Sec. 2.2). When the

Fermi energy is at a lower level within the bulk gap, the lower bulk state will cross

EF first, providing a p-conducting QH state (not shown here). Finally, when the

magnetic field is increased further, also the second level will cross the Fermi energy

and the sample will become a trivial insulator [Fig. 3.13 (d)]. The transition to the

insulating regime was observed by a significant increase of the longitudinal resistance

to Rxx À h/e2 (see Fig. 2.9).

While the QSH states enable transport for finite magnetic field in general, scat-

tering between these states has to be taken into account for an interpretation of

the observed magneto-conductance (cf. Fig. 3.12). As shown in the previous sec-

tion, the conductance for B = 0 is governed by scattering, if the sample length

is larger than the inelastic mean free path. Thus, the deviation of the zero-field

conductance G(B = 0) from the expected value of 2e2/h can be considered as a

measure of the disorder within the device. For finite magnetic field, the samples

are sensitive to elastic scattering in addition to the inelastic scattering, which is

present independently of the B-field. The resulting enhancement of scattering will

reduce the transmission. As G(B = 0) is attributed to the disorder, the residual

conductance in magnetic field is an indication for the combination of elastic and

inelastic scattering processes. For B = 0, a small conductance of the QSH state

implies a large disorder in the sample. This large disorder leads to an enhanced

occurrence of elastic backscattering for finite B. Consequently, the conductance is
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Figure 3.14: For three devices, the residual conductance G0 for finite mag-

netic field is shown in dependence on G(B = 0). In the inset,

both values are identified using the data from the 64 Å QW.

decreased to a smaller residual value G0 than for a sample with low disorder. This

rather qualitative description is confirmed by the B-field dependent behavior of the

devices presented above. As can be seen in Fig. 3.14, G0 depends almost linearly

on G(B = 0). It can be inferred from the extrapolation of the values presented in

Fig. 3.14 that the conductance for a finite magnetic field will be entirely destroyed, if

the disorder is sufficiently large. On the other hand, a comparatively large residual

conductance can be expected, when the disorder is low. A lower degree of disorder

can be achieved by, e.g., reducing the sample dimensions. When the (1 µm× 1 µm)

device (cf. Fig. 3.7) is investigated in magnetic field, the qualitative behavior is the

same as for the (20 µm × 13.3 µm) Hall bars (Fig. 3.15): The conductance peak

around B = 0 has a FWHM value of 10 mT. However, the residual conductance of

around 0.7 e2/h is much larger than for the bigger devices. Transmission through

the device is conserved in a large part due to the comparatively weak disorder on
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Figure 3.15: The conductance of a (1 µm× 1 µm) device was measured as a

function of magnetic field.

the length scale of 1 µm, even though elastic backscattering is possible due to the

magnetic field. Hence, the results for small devices confirm the above model.

The origin of the strong conductance fluctuations observed in magnetic field

(Fig. 3.15) is not fully understood yet. One possible reason is interference due to

the two parallel-propagating edge states at the opposite edges. For the larger de-

vices, the phase coherence will be destroyed due to the increased inelastic scattering

and the fluctuations vanish. Second, the actual path of the electron can also depend

on the magnetic field, giving rise to a B-field dependent scattering configuration.

For larger devices, the fluctuations average out.

It is evident from the above discussion that the conductance is decreased in magnetic

field due to an enhanced probability of scattering. However, it is still unclear which

mechanism is responsible for the destruction of the helicity of the edge states in de-
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tail. Measurements were performed for an in-plane magnetic to address this issue.

For the given sample mounting, the B-field was aligned in x-direction, i.e., perpen-

dicular to the direction of the current flow. In Fig. 3.16, the magneto-conductance

for an in-plane field is compared to the signal for a B-field perpendicular to the

2DEG. Both traces were obtained on the same device with a 64 Å QW. The differ-

ence in G(B = 0) for the two measurements is attributed to a varying configuration
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Figure 3.16: The conductance in the insulating regime is measured for a mag-

netic field in z-direction (black) and x-direction (red), respec-

tively. The orientation of the field with respect to the device is

illustrated in the inset.

of scatterers for both measurements13. In contrast to the behavior for perpendic-

ular B-field, the conductance decreases only slightly for an in-plane field. For the

investigation of this anisotropy of the conductance in magnetic field, measurements

were performed using a vector magnet at 1.4 K. In such a system, the magnetic field

13 This is plausible, because the device had to be re-mounted due to the fixed orientation of B in

the used setup. This procedure involves thermal cycling of the sample.
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can be applied in any direction. This allows for a detailed study of the destruction

of the helical states depending on the orientation of magnetic field. At 1.4 K, the

conductance peak for a perpendicular field still exists14. Since the B-field anisotropy

manifests itself in the shape of the conductance peak around B = 0, the residual

conductance for finite B is neglected in the following and the conductance will be

normalized with respect to the shape of the peak:

Gnorm =
G(B)−G0

G(B = 0)−G0

, (3.1)

where G0 is the residual conductance for a perpendicular field and G(B = 0) is the

conductance for zero field.

A peak with a FWHM field of 28 mT is observed for a perpendicular field. The

larger width compared to the peak shown in Fig. 3.16 is attributed to the enhanced

temperature. When the B-field is tilted towards the 2DEG plane, the peak widens

steadily. For an in-plane field, again only a slight change of the conductance is

observed for the presented range (Fig. 3.17). The main contribution to the decrease

of the conductance obviously stems from the perpendicular component of B. For

the verification of a possible contribution by the in-plane component of the magnetic

field, a simple model is applied. Assuming that the decrease of the conductance is

solely due to the perpendicular component of the magnetic field, the conductance

for an angle α, describing the orientation of the B-field with respect to the plane of

the 2DEG, is given by

Gα(B) = G90◦(Bα), (3.2)

where Gα and G90◦ are the B-dependent conductance for an angle α and perpen-

dicular field, respectively. The conversion of the magnetic field, Bα = B · (sin α)−1,

transforms the data obtained for α = 90◦ into a trace for an angle α, assuming an

effect only due to a perpendicular field. The resulting data is shown in Fig. 3.17 as

squares. For angles down to α ≈ 15◦, the experimental data is in excellent agreement

with the calculated values, whereas an increasing discrepancy appears for α → 0.

14 For a detailed discussion of the temperature dependence of the QSH effect, see the following

section.
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Figure 3.17: Traces of the normalized conductance is plotted for different

angles α of the B-field (solid lines). The squares represent the

data obtained by Eq. 3.2 for the different angles.

To rule out spurious effects due to a skew mounting of the sample, the mag-

netic field was rotated in the plane of the 2DEG. In Fig. 3.18 (a), the traces for a

magnetic field in x- and y-direction, respectively, are presented as an example. In

general, a distinct decrease of Gnorm is observed for magnetic fields up to 300 mT

independently of the exact orientation of B. In contrast to the significant decrease

of Gnorm in a perpendicular field (cf. Fig. 3.17), a decrease by only a few percent is

observed for an in-plane field. Since a variation of the conductance is observed for

any in-plane orientation of B, a possible tilting of the sample with respect to the

plane of the B-field rotation can be neglected. When the magnetic field is rotated in

the 2DEG plane, the conductance for finite B varies. As can be seen in Fig. 3.18 (b),

the conductance at B = 300 mT shows a periodic behavior, which can be fitted by a

sine curve. The oscillation period of 180◦ is an indication for an in-plane anisotropy

of the B-dependence of the conductance.



68 3. The Quantum Spin Hall Effect

0° 90° 180° 270° 360°
0,955

0,960

0,965

0,970

0,975

0,980

0,985

-0,2 0,0 0,2
0,96

0,97

0,98

0,99

1,00

-0,1 0,0 0,1
0,0

0,5

1,0

 

 

G
no

rm

B / T

 B || x
 B || y

(b)

 

 

G
no

rm

B / T

(a)

0°:   B || x
90°: B || y

 G
no

rm
 (B

=3
00

 m
T)

 

B-field angle

Figure 3.18: (a) The normalized conductance (cf. Eq. 3.1) for an in-plane

field in x- and y-direction, respectively, is shown for B up to

300 mT. The inset shows the same traces in comparison to the

measurement for B||z (green). (b) As a function of the rotation

angle of the B-field, Gnorm (connected black squares) can be

fitted by a sine curve (red). 0◦ and 90◦ correspond to the x-

and y-direction, respectively.

Based on the above results, the opening of the gap between the helical edge states

can be explained. As mentioned above, the notion of an opening gap just refers to

the fact that the helical character of the edge states is eliminated, while the states

as such still exist but are no longer protected by time reversal symmetry against

scattering. A sharp conductance peak as observed for a perpendicular field implies a

large gap between the helical states. On the other hand, the conductance is preserved

when no gap opens up in magnetic field. However, the latter example is unrealis-

tic, because a Zeeman term is present for any field orientation. The corresponding

energy is given by EZ = gµBSB, where S is the element of the Zeeman-coupling

matrix. In fact, the size of EZ depends on the direction of the magnetic field. The
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observed behavior of G for an in-plane rotation of the B-field yields EZ,x > EZ,y,

where EZ,x and EZ,y are the Zeeman energies for a B-field in x- and y-direction,

respectively. An anisotropic Zeeman term has been reported for 1D [84] and 2D [85]

GaAs hole gases. For the 1D system, the anisotropy was explained by the orien-

tation of the magnetic field with respect to the total angular momentum J of the

spin-orbit coupled holes. A much larger g-factor was observed for B||J than for

B ⊥ J . Thus, the anisotropic nature of the conductance for an in-plane field (cf.

Fig. 3.18) leads to the conclusion that the total angular momentum of the carriers in

the edge states points rather in x-direction than in y-direction. However, the exact

orientation of the angular momentum and the spin of the electrons in the helical

edge states, respectively, can not be determined from the experimental data. For

this, an analysis of the Zeeman term in a perpendicular field is required as well.

However, the operator for a perpendicular field includes also an orbital term given

by ẑ · r̂ × ĵ|B|. Here, r̂ and ĵ are the position and the electric current operator,

respectively, and ẑ is the unit vector perpendicular to the 2DEG. One can estimate

the magnitude of the two contributions to the gap between the helical edge states

using 〈↑ |ẑ · r̂ × ĵ| ↓〉 ∼ evξ and 〈↑ |S| ↓〉 ∼ 1. Here, v is the Fermi velocity and ξ

the width of the edge states. Both quantities can be obtained from the parameters

of the Dirac model as v ≈ A/h̄ and ξ ≈ h̄v/|M |. Taking realistic values for A and

M [86], it can be shown that the gap for the helical edge states due to the orbital

term in a perpendicular field is approximately two orders of magnitude larger than

the Zeeman-related gap. From this estimation it is obvious that the orbital effect is

the dominant mechanism for the destruction of the helical edge states, which gives

rise to the observed sharp decrease of the conductance in a perpendicular field. How-

ever, the Zeeman term becomes important for small angles of the magnetic field due

to the vanishing orbital term.

In conclusion, the helical property of edge states is destroyed when the time re-

versal symmetry is broken due to a magnetic field. A gap between the helical edge

states opens up due to the Zeeman term, which is present for any field direction.
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This contribution is anisotropic in magnetic field. For a B-field perpendicular to

the 2DEG, the dominant mechanism for the opening of the gap is caused by an

orbital effect. In this context, the notion of a gap only describes the destruction of

the helical property, while the underlying states still exist in magnetic field. Thus,

transport is still possible, but is decreased due to scattering. Since the strength of

both the orbital and the Zeeman term depend on the orientation of the magnetic

field, an anisotropy of the conductance is observed for finite B.

3.4 Temperature dependence of the QSH effect

In the previous sections, results obtained at temperatures up to 4.2 K were used for

the analysis of the QSH effect. These experiments show that the QSH effect still

exists at elevated temperatures. In this section, the temperature-dependence will

be investigated in a more detailed way.

For small samples, e.g., with L = 1µm, scattering can be neglected and the tem-

perature dependence of the undisturbed QSH states can be studied. Measurements

at 30 mK and 4.2 K, respectively, were presented in Fig. 3.8. The main difference

between the two traces are the conductance fluctuations, which exist only at low

temperature. These fluctuations are attributed to interference effects at the inter-

face between the QSH region and the n-doped contacts and not to the QSH states as

such. When the fluctuations are neglected, the conductance stays almost constant,

while the temperature is increased by two orders of magnitude. Thus, an increase

of the temperature leaves the QSH states almost unaffected.

In contrast, a clear temperature dependence of the conductance can be observed

for larger samples. Fig. 3.19 (a) shows the conductance for B = 0 for temperatures

up to 1 K 15. The measurements were done on a (20.0 µm×13.3 µm) Hall bar from a

15 These measurements were done without intermediate thermal cycling of the device. All other

measurements for T ≥ 1 K were done in different thermal cycles and, thus, only allow for a

qualitative comparison due to the possibly different scattering configuration for each cool-down.
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64 Å QW. Results from this device were already presented in the previous sections,

e.g., in Figs. 3.12, 3.16 and 3.17. For all measurements, the same gate voltage close

to the center of the QSH regime was applied, i.e., the Fermi level is located approx-

imately in the center of the bulk gap. When the temperature is below 100 mK,
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Figure 3.19: (a) The conductance for B = 0 is shown as a function of the

temperature. The data points were extracted from B-field de-

pendent measurements. The traces for temperatures of 100 mK,

200 mK, 500 mK and 1 K are presented in (b).

the conductance is almost constant at 0.3 e2/h. For higher temperatures, G rises

significantly up to G ≈ 0.6 e2/h for T = 1 K. It can be inferred from this behavior

that the effective electron temperature is about 100 mK, while lower nominal values

only describe the temperature of the sample lattice. Another possible explanation

for the constant conductance at low temperatures will be given below. The dif-

ference between the temperature of the lattice and the electrons can be explained

by the lack of phonons for such low temperatures. Thus, energy transfer from the

electrons to the lattice is not possible and the effective electron temperature can be

larger than the temperature of the lattice. The heating of the electrons is caused
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by the input of noise in the measurement setup. A second possible reason is the

excitation voltage Uexc of 10 µV used for the measurements, which corresponds to

T ≈ e ·Uexc/kB = 116 mK. Lowering the excitation voltage did not change the shape

of the conductance peak, but decreases the signal-to-noise ratio. Hence, the effective

electron temperature is limited by the electrical noise and the excitation voltage of

10 µV does not yield a further heating of the electron gas.

Fig. 3.19 (b) shows the B-dependent conductance for temperatures of 100 mK,

200 mK, 500 mK and 1 K, respectively. The increase of the conductance with tem-

perature is independent of the magnetic field strength. One possible explanation is

a thermal activation of carriers. Based on the results for short samples, the conduc-

tance of undisturbed QSH edge states is supposed to yield a constant contribution

GQSH for all temperatures. Hence, the total conductance can be described by

Gtotal(T ) = GQSH + Gth(T ), (3.3)

where Gth is the thermally activated conductance. Furthermore, it is assumed that

Gth(T < 100 mK) ¿ GQSH, which is reasonable due to Eg À kBT . Including this

estimation, the thermally activated conductance for a temperature T is given by

Gth(T ) ≈ Gtotal(T )−Gtotal(T = 10 mK). (3.4)

For a thermal excitation of carriers over an energy gap, e.g., from the bulk valence

band to the conduction band, an increase of conductance according to

Gth(T ) ∼ exp

(
−∆E

kBT

)
(3.5)

is expected. Here, ∆E is the energy gap. When the increase of Gth is fitted by

Eq. 3.5, an energy gap of approximately 20 µeV is obtained. This value is two or-

ders of magnitude smaller than the bulk gap for the 64 Å QW (cf. Fig. 3.4), which

makes thermal excitation of carriers in the bulk impossible [Fig. 3.20 (a)]. Since

the Fermi level is intentionally tuned to the center of the energy gap, an excitation

from the edge states to energetically remote states of the conduction band and va-

lence band, respectively, is also not possible [Fig. 3.20 (b)]. Close to the crossing
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Figure 3.20: Thermal excitation of carriers may occur (a) in the bulk from

the valence band to the conduction band, (b) close to the edge

from the QSH states to the conduction band and (c) between

the edge states for sufficiently large temperatures.

point of the QSH states [Fig. 3.20 (c)], the separation of the states for opposite spin

polarization can be as low as 20 µeV. However, the QSH states are not absolutely

sharp in energy, but have a finite width of a few meV [83]. Consequently, there is

actually no gap between the states for opposite spins close to the crossing point and

a thermal excitation of carriers between two QSH states can be ruled out as well.

In general, the contribution of thermally activated carriers to the transport can be

can be neglected at such low temperatures.

The increase of the conductance has rather to be related to an enhanced trans-

mission of the QSH edge states. This implies a decrease of scattering between

counter-propagating edge channels. Since the increase of G with T is observable

for B = 0, inelastic scattering and direct interaction of the edge states due to local

conducting regions have to be considered. Inelastic scattering is expected to in-

crease with temperature [87]. Therefore, it can not be responsible for the observed

increase of conductance. The temperature-dependence of the conductance can be

understood when an equilibration of counter-propagating edge states due to local n-

type regions16 is considered. As it was shown in Sec. 3.2, the conduction band (CB)

16 While the explanation is limited to n-type regions for simplicity, a corresponding effect is

expected for p-type regions as well.
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minimum can be shifted below the Fermi energy, e.g., due to potential fluctuations.

and n-doped regions will appear within the QSH regime. A possible configuration

of a sample is shown in Fig. 3.21 (a). On each edge, one n-type region enables

backscattering. Thus, the conductance for B = 0 deviates from the quantized value

of G = 2e2/h, which is obviously the case for all temperatures shown in Fig. 3.19.

The influence of the potential fluctuations on the conduction band (CB) minimum

is sketched in Fig. 3.21 (b) and (c). For large parts of the device, the Fermi level

Figure 3.21: (a) n-type regions close to the sample edge give rise to backscat-

tering of the edge states. (b) The energy of the edge state is

indicated by a red line corresponding to (a). Since the energy

distribution is defined sharply, all electrons in the edge state

enter the n-region (green). (c) For T2 > T1, the energy distribu-

tion is widened even to regions within the gap. (d) n-regions and

QSH edge states can locally co-exist for elevated temperatures.
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is in the band gap, making only QSH states available. However, an n-type region

appears, if the CB minimum is shifted below the Fermi energy. For finite tempera-

tures, the energy levels broaden and states within a range of kBT around the Fermi

energy can be occupied as well. It is obvious that the thermal broadening can be

neglected for low temperatures and only energy states exactly at the Fermi level

have to be considered for transport. The channels will enter each n-doped region

which provides states at EF [see Fig. 3.21 (b)] and counter-propagating edge states

inevitably equilibrate. For increasing temperature, the thermal broadening becomes

comparable to the size of the potential fluctuations [Fig. 3.21 (c)] and QSH states

in the energy are available as well. This results in a co-existence of n-conduction

and transport for the corresponding region of the device [Fig. 3.21 (d)]. Electrons

in these QSH states will not enter the n-region. Consequently, they can not be

backscattered, yielding an increase of conductance. For increasing temperature,

more QSH states become available and backscattering is further reduced. This pic-

ture can also provide an explanation for the temperature-independent conductance

for T < 100 mK. For such low temperatures, the thermal broadening of the levels is

not sufficient to populate QSH edge states in the vicinity of the n-regions. Thus, all

electrons equilibrate with electrons from the respective counter-propagating chan-

nel. For T > 100 mK, however, the conductance rises steadily with temperature

due to the increasing availability of QSH states. The latter can be demonstrated

on the basis of the E(k) dispersion sketched in Fig. 3.22. When the Fermi level

is above the CB minimum, n-conductance occurs. Although coexistent QSH states

(cf. Fig. 3.11) contribute to the conductance as well to some extent, they will not be

considered here, because the n-conductance of the bulk is the dominant transport

mechanism. The broadening of the energy states can be neglected for a low tem-

perature T1 [Fig. 3.22 (a)]. When the temperature is increased to T2 > T1, the QSH

states below the CB minimum become available due to the thermal broadening of

the Fermi level [Fig. 3.22 (b)].

The obtained energy gap of some few 10 µeV for the thermal activation is rea-

sonable for this mechanism as well. Even if the local conduction band minimum
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Figure 3.22: The E(k)-dispersion of bulk states (black solid lines) and edge

states (red and blue, respectively) is sketched schematically. (a)

For low temperatures, the Fermi level (green dashed line) is

limited to the conduction band. (b) For higher temperatures,

QSH edge states can be occupied due to thermal excitation of

the carriers.

is just slightly below the Fermi level an n-type region appears and gives rise to

backscattering due to the existence of an n-type region. Then, small thermal exci-

tation energies are sufficient to allow the electrons to occupy QSH states in the gap.

This is obvious in Fig. 3.22 from the small separation in energy of the bulk states

and the edge states, in particular for finite k.

As can be seen in Fig. 3.19 (b), the peak height, i.e., G(B = 0, T )−G0(T ), is al-

most constant for increasing temperature. This is an indication that the temperature-

dependence of the conductance is mainly attributed to the increased availability of

QSH states as described above. In comparison, the temperature-dependence of the

elastic scattering in finite magnetic field can be neglected.

In conclusion, the temperature dependence of the QSH effect was investigated. Here,

one has to distinguish between two regimes. On the one hand, the QSH states as

such are stable against an increase of temperature up to 4.2 K. This was shown by

measurements on small devices (L = 1 µm), where scattering can be neglected. On

the other hand, a clear temperature dependence of the conductance was observed,

when scattering was present due to a larger size of the devices. In such samples,



3.5 Summary 77

the conductance rises with temperature. Since inelastic scattering would lead to

a contrary effect, only local conducting regions within the QSH regime can be re-

sponsible for the observed behavior. At low temperatures, a local conducting region

inevitably leads to an equilibration of counter-propagating edge states. The broad-

ening of the Fermi energy for increased temperatures makes QSH states available,

which are located at energies slightly below the local CB minimum. Thus, electrons

in the can avoid the conducting regions and backscattering is reduced. It can be

deduced from the temperature dependence of scattering that local conducting re-

gions are the dominant mechanism for backscattering at B = 0, whereas inelastic

scattering of the QSH edge states plays only a minor role.

3.5 Summary

The measurements presented in this chapter provide the first experimental obser-

vation of the Quantum Spin Hall effect. The existence of this novel topological

phase was predicted for HgTe QW structures with an inverted band structure, i.e.,

dQW > 63 Å. When the Fermi energy is located in the energy gap for the bulk, edge

states can carry both a charge and a spin current without dissipation. These states

exist due to the inverted band structure, which causes a crossing of the lowest states

from conduction and valence band, respectively, close to the sample edge.

Despite the fact that the transport occurs solely due to edge states, in which

backscattering is prohibited by time reversal symmetry, the longitudinal resistance of

the QSH regime does not vanish in contrast to the initial theoretical prediction. The

main reason are the n-doped contacts, where the electrons from counter-propagating

edge states get equilibrated. Thus, backscattering can give rise to a finite resistance.

Considering the influence of the contacts, a four-terminal conductance of 2e2/h is ex-

pected. When the sample length is comparable to the mean free path, i.e., L = 1 µm,

scattering can be neglected and the four-terminal resistance is close to the quantized

value. For larger devices, the conductance is reduced due to scattering between the

counter-propagating states, which can be attributed to inelastic processes and the
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existence of local conducting islands within the QSH region. Edge state transport

for the QSH regime was verified in two distinct ways. On the one hand, a variation

of the sample width did not affect the resistance of the QSH state. On the other

hand, a clear non-local signal was detected in the insulating regime.

When time reversal symmetry is broken by a magnetic field, elastic scattering

becomes possible and the conductance of the edge states is reduced. The basic

existence of the edge states in magnetic field is reflected in the re-entrant quantum

Hall state described in Sec. 2.2. The dominant mechanism for the suppression

of conductance is attributed to an orbital effect only present in a perpendicular

field. In addition, a significantly smaller Zeeman term exists for all field directions.

The combination of these two contributions is reflected in an anisotropy of the B-

dependence of the conductance.

The pure QSH edge states do not show any temperature-dependence up to 4.2 K.

However, scattering due to local conducting regions is reduced for increasing tem-

perature, because the electrons can occupy edge states at energies below the CB

minimum and above the VB maximum, respectively. This results in an increase of

conductance with temperature in large samples.

Altogether, various aspects of the QSH effect were demonstrated in our experiments.

However, the exact conductance quantization could not be shown yet and remains

a goal of future investigations. For this purpose, the scattering of the edge states

has to be minimized. This can happen by downsizing the devices to length scales

well below 1 µm. In addition, a maximum size of the energy gap, i.e., dQW = 85 Å,

may make the potential fluctuation negligible. Detailed measurements on samples

free of disorder can also yield a better understanding of the B-field dependence of

the QSH effect. The stability of the QSH states for increasing temperature may be

utilized for possible applications. Neglecting the explicit temperature-dependence of

transport in the QSH states, e.g., due to thermally activated interaction of counter-

propagating channels, the QSH conductance can be expected to be observable up

to high temperatures. Precisely, the QSH states for ideal samples without disorder
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will be stable as long bulk states can not be occupied due to thermal activation. In

principle, this can be avoided for T < EG/(2kB), if the Fermi energy is exactly in the

center of the energy gap. Thus, the QSH effect for an 85 Å QW with Eg ≈ 40 meV

should exist up to T ≈ 230 K.

A second issue possibly addressed in future experiments covers the spin transport

properties of the edge channels. Investigations in this field require spin-selective

injection and detection of the carriers in the edge channels, which is an unsolved

task so far for HgTe QW devices.





Chapter 4

Spin Hall Effects in doped HgTe

QWs

Already in 1971, Dyakonov and Perel predicted a spin imbalance transverse to the

current in a semiconductor. In their model, the spin accumulation at the sample

edges occurs due to spin-dependent scattering [88]. However, their proposal aroused

no further interest and remained almost unnoticed for several decades. Recently,

possible applications in the field of spintronics renewed the interest in spin-related

phenomena. In 1999, Hirsch proposed the existence of a spin Hall effect [11]. This

effect is now known as the extrinsic spin Hall effect, since it is based on scattering

similar to the proposal by Dyakonov and Perel. Sinova et al. showed that an intrinsic

spin Hall effect purely based on the spin-orbit interaction also exists [13]. Due to

the inverse spin Hall effect (SHE−1), which can be seen as a complementary effect to

the spin Hall effect, a spin current can yield a transverse charge imbalance [89,90].

The spin accumulation due to both extrinsic and intrinsic SHE has been de-

tected for semiconductor materials by means of optical methods [24–26], while no

observation by an electrical measurement was achieved so far. The existence of the

SHE−1 in metals has been inferred from a transverse charge imbalance, when a spin

current was injected from a ferromagnetic contact [27–29]. However, a detection in

a semiconductor was not reported yet.

81
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Hankiewicz et al. proposed an H-shaped device based on a 2DEG with spin-orbit

interaction, which can provide evidence of both the SHE and the SHE−1 [30]. In one

leg of the device, a charge current is driven and the spin Hall effect is responsible

for the generation of a transverse spin current. This, in turn, will yield a non-local

charge signal in the other leg due to the inverse spin Hall effect. Thus, the exis-

tence of both effects can be shown simultaneously within a single device. Since the

Rashba splitting in HgTe quantum wells is much larger than for other semiconductor

materials and, additionally, can be tuned over a wide range, devices based on this

peculiar material are a good candidate for the investigation of spin-orbit related ef-

fects in general and of intrinsic spin Hall effects in particular. In this chapter, results

from purely electrical measurements on H-shaped devices are presented, providing

evidence for the existence of both the spin Hall effect and the inverse spin Hall effect

in HgTe QW structures.

This chapter also contains experimental results, which were obtained from sim-

ilar samples prior to the work on this thesis and not understood at that time. How-

ever, an interpretation is possible now, when the QSH effect is taken into account.

The spin-polarized transport in the QSH edge states can be used for an injection

and a detection of a spin-imbalance, respectively. Thus, the SHE and the SHE−1

can be demonstrated independently.
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4.1 Theory of Spin Hall Effects

A lot of efforts were made to explain the spin Hall effect in the recent years due to

the renewed interest in spin-related phenomena based on the potential applications

in spintronic devices. It was shown that a variety of mechanisms can yield a spin

accumulation at the sample edges1. The mechanism proposed by Hirsch [11] is

today known as the extrinsic spin Hall effect. The description as extrinsic refers to

the fact that the asymmetric accumulation of spins relies on impurities within the

sample. These impurities can result in a spin accumulation for various reasons. One

contribution is a skew scattering, also known as Mott scattering [92], of the spin-

carrying electrons. In this case, the extrinsic SO interaction gives rise to an unequal

scattering cross section for the two spin states. This explanation is similar to the

reasoning by Dyakonov and Perel [88, 93]. Another possibility is based on so-called

side jumps [94]. Here, the SO interaction produces a lateral displacement of the

electron wave function during a scattering event. Both mechanisms are reflected in a

spin-dependent preferential direction of scattering, which causes a spin accumulation

at the sample edges. Without distinguishing between the mechanisms mentioned

above, the extrinsic SHE can be explained analogous to the anomalous Hall effect

(AHE). In general, every mechanism that leads to a Hall voltage, but is not solely

caused by an external magnetic field, is called an anomalous Hall effect. On the one

hand, magnetic impurities can create an additional internal magnetic field. However,

this contribution to the Hall voltage vanishes with the external magnetic field unless

the impurities are ferromagnetic. On the other hand, spin-dependent scattering can

also yield an anomalous Hall voltage. This mechanism is not based on an external

magnetic field, but on a net magnetization of the electron system, which is reflected

in an unequal number of up- and down-spins. Thus, a spin-dependent asymmetric

scattering results in a charge imbalance and the anomalous Hall voltage can be

observed in a direction perpendicular to the current. The latter mechanism can

induce a pure spin Hall effect, if a non-magnetic material is considered. Since the

1 A comprehensive overview can be found in Ref. 91
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scattering mechanisms, which establish the AHE, do not rely on the magnetization,

electrons with spin up and spin down, respectively, will be preferentially scattered

into opposite directions and a spin imbalance will appear: at one edge the majority

of electrons will have spin up, while it will be spin down for the opposite edge. Unlike

the AHE, no charge imbalance will appear, since spin-up states and spin-down states

are equally occupied. Consequently, a pure spin Hall effect will be obtained.

But scattering is not necessarily required to obtain a spin Hall effect. Recently,

the existence of an intrinsic SHE has been proposed for p-doped bulk semiconduc-

tors [12], a two-dimensional electron gas [13] and a two-dimensional hole gas [95],

respectively. For the 2D systems, the SHE stems from a substantial Rashba split-

ting. The corresponding electric field in z-direction, i.e., perpendicular to the 2DEG,

gives rise to a momentum-dependent effective magnetic field:

~Beff ∼ ~p× ~E, (4.1)

where ~p is the electron momentum and ~E the electric field. It is obvious that ~Beff is

localized in the xy-plane, when only the Rashba field in z-direction is present. The

spins of the electrons are aligned with Beff , i.e., perpendicular to both the electric

field and the momentum [Fig. 4.1 (a)]. When an external electric field is applied to

drive a current, e.g., in x-direction, the electrons will be accelerated and the effective

magnetic field will be changed. Beff will acquire an additional z-component and the

spins consequently will be tilted out of the 2DEG plane. The orientation of Beff with

respect to the z-axis is determined by the sign of the y-component py of the electron

momentum, i.e., the direction of movement perpendicular to the current determines

the spin orientation. The z-component of the spin direction is given by [13]

nz =
−eh̄2pyEx

2αp3
, (4.2)

where α is the spin-orbit constant2. It is obvious from the linear dependence of

the nz on the y-component of the electron movement that left-moving electrons will

2 While the Rashba parameter is called λ in Ref. [13], the notation as α is used consistently

throughout the thesis.
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Figure 4.1: The electron spins (red arrows) align with the effective magnetic

field, which is determined by the momentum (green arrows) and

the total electric field. (a) For t = 0 the situation is equivalent to

an absence of the electric field in x-direction. (b) For t > 0, the

Fermi surface is shifted due to the electric field and the electron

spins are tilted out of the xy-plane. (from Ref. 13)

be spin-up and all right-moving ones spin-down [cf. Fig. 4.1 (b)]. The resulting

accumulation of spin-polarized electrons at the sample edge is the intrinsic spin Hall

effect.

A direct observation of spin Hall effects by means of purely electrical measurements

is not possible. Even though a spin imbalance is achieved at the sample edges, no

charge imbalance is expected, since both spin states are equally occupied. For the

experimental verification of the spin Hall effect, two basically different approaches

have been chosen. On the one hand, the spin accumulation at the sample edges

can be detected by means of optical methods. The first observation of the SHE was

reported by Kato et al. who used the Kerr rotation to demonstrate opposite spin po-

larization for the two sample edges of n-doped GaAs and InGaAs, respectively [24].

It is generally believed [96] that the spin accumulation is based on the extrinsic
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SHE in this case. Using the same method, the extrinsic SHE was also observed for

a 2DEG in AlGaAs quantum wells [26]. Wunderlich et al. [25] detected an opposite

spin polarization at the edges of a 2D hole layer using a light-emitting diode, which

includes a spin-orbit coupled 2D hole system. Subsequent calculations [95] showed

that the intrinsic SHE was observed.

A second possibility for the experimental observation of the SHE is based on the

so-called inverse spin Hall effect (SHE−1). In this case, a spin current gives rise to

a transverse charge imbalance, which can be detected by electrical measurements.

Hirsch proposed a device based on the extrinsic SHE−1 for the detection of the spin

Hall effect [11]. An intrinsic SHE−1 can be caused by a spin force due to the spin-

orbit coupling [89, 90]. Thus, the generation of a spin current by the SHE can be

demonstrated indirectly by the detection of the voltage due to the inverse spin Hall

effect. The first experimental observation of the SHE−1 was obtained, when a spin

current was injected from a ferromagnetic electrode (CoFe) into an Al Hall cross [28].

The voltage difference for the transverse probes in the Hall cross depends on the

polarization of the injected spin current which is a clear indication of the SHE−1.

The inverse SHE was shown to exist up to room temperature in metals [27, 29].

Kimura et al. were also able to measure a voltage signal which was attributed to

the ”normal” SHE at room temperature [29]. In all these experiments the spin

current was injected from a ferromagnetic metal contact. So far, an observation

of the SHE−1 has not been reported for semiconductor systems. In addition, the

generation of a spin current by the SHE has not been shown yet as well.

Hankiewicz et al. proposed a device, in which the spin Hall effect and the inverse spin

Hall effect can be detected simultaneously by a purely electrical measurement [30].

Fig. 4.2 shows the suggested H-shaped structure. One leg is used to drive a current

(injector), while the contacts in the other leg (detector) are used as voltage probes.

When pure charge transport is considered, no voltage difference between the remote

probes is expected due to the non-local measurement configuration. However, the

spin Hall effect will generate a finite voltage drop. Descriptively, V34 is built up in
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Figure 4.2: In the H-shaped structure proposed by Hankiewicz et al. [30], the

current is injected from contact 1 to 2, and a voltage difference

is detected between contacts 3 and 4.

the following way: When a charge current IC is driven between contacts 1 and 2, the

spin-orbit interaction gives rise to a transverse spin current due to the intrinsic spin

Hall effect. The movement of the electrons perpendicular to the current direction

is restricted by the sample edges in the leads and a spin accumulation occurs as

experimentally demonstrated in Ref. 24. In the center part of the device, however,

the spin current IS can reach the other leg. This spin current generates a transverse

charge current due to the inverse spin Hall effect and a voltage difference between

contacts 3 and 4 can be detected. The amplitude of V34 depends on the strength

of the SO interaction since both the SHE and the SHE−1 are tuned by ∆R in the

device.

An effective mass model using a tight binding approximation was applied to

calculate V34. Using realistic parameters, voltages of some few µV were obtained

at large Rashba splitting for an injected current of 10 nA. It was shown that the

voltage signal depends strongly on the size of the device. For example, V34 decreases

approximately from 8µV to 2µV, when the width w is increased from 15 nm to

20 nm, while all other parameters are constant. Nevertheless, the existence of both
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intrinsic SHE and SHE−1 can be demonstrated in principle by the detection of a

Rashba-dependent voltage drop V34.

In conclusion, a variety of mechanisms can yield a spin imbalance perpendicular

to a charge current. While the extrinsic spin Hall effect requires a spin-dependent

scattering analogous to the anomalous Hall effect, the intrinsic SHE relies purely on

the spin-orbit interaction in the system. The mechanisms establishing the spin Hall

effect can also be reversed, i.e., a spin current generates a transverse charge current.

The latter effect is called the inverse SHE. So far, both extrinsic and intrinsic SHE

have been observed using optical methods and the SHE−1 was found for metals by

means of electrical measurements. To demonstrate the existence of SHE and SHE−1

for semiconductors by purely electrical measurements, an H-shaped device was pro-

posed. Here, the SHE causes a transverse spin current which results in a charge

current in the detector leg.

4.2 Experimental investigation of the Spin Hall

Effect

Even though the intrinsic spin Hall effect has been successfully demonstrated for

semiconductors by optical means [25], there has been no experimental observation

by electrical measurements in such systems so far. A second, so far unsolved task

is providing an evidence of the inverse spin Hall effect in semiconductors. Both

aims can be achieved using an H-shaped device as it was proposed by Hankiewicz

et al. [30], where the existence of the spin Hall effect and the inverse spin Hall effect

can be shown simultaneously. HgTe quantum well structures are an appropriate

material for the fabrication of such H-devices. On the one hand, high mobility sam-

ples [63] with a substantial Rashba splitting [21,22] are available. Thus, the intrinsic

SHE is supposed to be the dominant mechanism for the generation of spin currents.

Additionally, the Rashba splitting can be tuned over a wide range. This results in a
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modulation of the strength of the SHE and, consequently, in a significant variation

of the non-local signal. On the other hand, recent developments in the lithography

allow for the fabrication of nanostructures (cf. Sec. 1.3) which are required for the

detection of the spin Hall effect. A width w of the legs not exceeding 20 nm was

used for the proposal in Ref. 30. This size is approximately one order of magnitude

smaller than the feasible dimensions for HgTe nanostructures. In the theoretical

calculations, the non-local voltage shows an oscillatory behavior as a function of

the sample size. In general, however, the signal tends to decrease for an increasing

sample size [97]. Then again, the non-local voltage drop V34 will increase by at

least one order of magnitude, when a Rashba term proportional to k3 is considered

instead of the splitting linear in k [97]. Altogether, the enhanced spin Hall effect for

both n- and p-conductance might compensate the diminishment of the signal due

to the larger size of the device. For the devices presented in this section, the legs

have a nominal width of 200 nm, which is also the length of the connection between

injector and detector. Due to inaccuracies in the lithographical process, e.g., caused

by an unintentional overexposure of the PMMA, the actual width might be slightly

larger3. All measurements were done in a 4He cryostat at a temperature of 1.8 K

and 4.2 K, respectively, using standard AC lock-in techniques. In our experiments,

the non-local resistance R12,34 = V34/I12 is considered. In this way, the results from

different devices can be compared quantitatively. It is justified to analyze the re-

sistance instead of the non-local voltage, because the model by Hankiewicz et al.

works in linear response, i.e., the non-local voltage is proportional to the injected

current [98]. This relation holds as long as the excitation energy of the electrons is

much smaller the Fermi energy, i.e., eUexc ¿ EF .

3 Since taking a picture with a scanning electron microscope usually affects the samples, e.g.,

due to a charging of the 2DEG, the exact dimensions of the investigated devices were not

determined. However, w ≤ 250 nm was measured for one non-working device at an early

stage of the experiments. This size can be seen as an upper limit, because the lithographical

parameters were adjusted afterwards.
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A device was fabricated from an 80 Å QW with an intrinsic electron density

n(Vg = 0) = 1.3 · 1012 cm−2 and a mobility of 3.38 · 105 cm2(Vs)−1. Only one

of the QW barriers was doped to induce a large Rashba splitting due to the intrinsic

asymmetry of the QW potential. Such a sample meets the demands for the existence

of the intrinsic spin Hall effect given in Refs. 13 and 30. In a Hall bar fabricated

from the same QW structure, the Rashba splitting was tuned continuously from

zero for Vg = −2.0 V to approximately 12 meV for Vg = +2.0 V. While a direct

analysis of the Rashba splitting was not possible for the H-device, the dependence

of the resistivity on the gate voltage is comparable for both devices. Thus, the

variation of ∆R should be similar as well, i.e., the QW potential is symmetric for

Vg ≈ −2.0 V and becomes increasingly asymmetric for larger gate voltages. In the

H-shaped sample, almost no change of the non-local resistance was observed, even

though the gate voltage was varied over a wide range (Fig. 4.3). Due to the large
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Figure 4.3: The non-local voltage and resistance of an H-shaped device with

a large intrinsic density are plotted as a function of gate voltage.

The error bar in the lower left corner indicates the noise level.
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density, the current is mainly limited by the contact resistance and consequently

can be seen as constant. When the noise is neglected, a slight variation of the volt-

age is obtained. However, this general behavior is not reproducible for repeated

measurements. Hence, no clear indication of a charging of the voltage probes was

observed.

As can be seen in Ref. 13, the transverse spin current depends crucially on the

difference of the momenta for the two Rashba-split branches. While this quan-

tity is proportional to the Rashba parameter α for a splitting linear in k [13], the

k-difference can not be determined from ∆R for HgTe QWs that easily. Here,

∆k = k+ − k− has to be derived from the band structure calculations, when k±

are the Fermi wave vectors of the Rashba split subbands. For the parameters used

in Ref. 30, a significant increase of the non-local voltage was obtained for α larger

than 40 meV·nm, corresponding to ∆k ≈ 0.05 nm−1. This is several times larger

than for the investigated sample, where values up to ∆k ≈ 0.02 nm−1 were achieved.

Because of the non-linear dependence of the Rashba splitting on the wave vector for

HgTe QWs (cf. Sec. 1.2), a large energy splitting does not necessarily imply a large

difference in k. However, the latter is a prerequisite for the experimental observation

of the SHE signal.

In contrast to the conduction band, it is quite easy to obtain a large k-difference for

the valence band (Fig. 4.4). Due to the almost flat dispersion, already a small Rashba

splitting in energy can result in a much larger difference in k than for the conduction

band. It has to be noted that a spin Hall effect is also expected, when only one of the

subbands is occupied [13]. This can happen when the Rashba splitting is larger than

the Fermi energy (cf. Fig. 4.4). In this case, the difference between the two k-values

of the one occupied subband at the Fermi energy has to be considered instead of the

Fermi wave vectors of the two Rashba-split branches. It was shown for an electron

system with only one occupied subband that the spin conductance decreases linearly

with the carrier density. Nevertheless, the enhanced ∆k can yield a measurable SHE

signal, if the density is not too low. Therefore, further measurements were done on
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Figure 4.4: The E(k)-dispersion is plotted for an asymmetric 80 Å QW. The

dashed horizontal lines indicate two possible Fermi energies for n-

and p-conductance, respectively. The dotted vertical lines show

the corresponding difference in k.

samples with low intrinsic densities, i.e., n(Vg = 0) ≤ 2.0 · 1011 cm−2, which can

be tuned to p-conductance by applying moderate gate voltages. Differing from the

proposed device (cf. Fig. 4.2), contacts 5 and 6 were added [Fig. 4.5 (a)] to allow for

measurements of the longitudinal resistance R34,56 = V56/I34. Fig. 4.5 (b) shows the

current through the device and R34,56 as a function of gate voltage. The minimum

of the current for Vg ≈ −0.4 V indicates the insulating regime, i.e., the sample is

n-conducting for higher voltages and p-conducting for lower voltages4, whereas the

measurement of R34,56 does not reflect the transition from n- to p-conductance. This

can be explained by the fact that the current is determined by the behavior of the

4 The voltage range for the insulating regime is comparable to the range that was observed for a

macroscopic Hall bar which was used for the characterization of the wafer.
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Figure 4.5: (a) A sketch of the device layout is presented. (b) The current

and the longitudinal resistance are measured as a function of the

gate voltage. (c),(d) The non-local resistance is shown for two

different contact configurations [cf. (a)].

entire device, while the four-terminal resistance describes the local properties. A

minimum in the current is observed, when most of the gated region is in the insu-

lating regime, even though this might not be the case for the part of the sample

between the voltage probes 5 and 6. When the contacts used for current injection

and voltage detection are interchanged for a measurement of R56,34, a qualitatively

identical result is obtained, i.e., the general behavior of R is conserved, but the ac-

tual values are slightly different5. Hence, it can be deduced that the region between

the contacts 5 and 6 is not tuned to p-conductance for the investigated range of Vg.

5 This is the case for all contact configurations Rij,mn discussed afterwards.
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Such a behavior can be caused by potential fluctuations which enhance the electron

density locally.

The non-local resistance R12,34, which is shown in Fig. 4.5 (c), provides clear

evidence that at least a part of the H-device can be tuned to p-type, passing the

QSH state. When the sample is clearly n-type for Vg ≥ 0, only a small variation

of the signal is observed. In contrast, a large non-local voltage is observed for the

insulating regime. This can be explained by the QSH edge states, which carry the

potential of the current source and drain contact, respectively, to the voltage probes.

Since the QSH edge states also exist for low densities in the n- and p-regime (cf.

p. 59), the detector leg does not necessarily have to be in the insulating state to

enable edge states transport. For this reason, the non-local signal is dominated by

the contribution of the edge state transport in the vicinity of the insulating regime,

i.e., for approximately −2.0 V ≤ Vg ≤ 0 V.

Figure 4.6: Within the device a density gradient occurs. The density n1 in

the red region is lower than n2 in the green region. The solid

white lines indicate the relevant QSH edge states for the insu-

lating regime, while the dashed lines mark the co-existing QSH

states at low densities.
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When a density gradient within the sample is assumed, the results presented in

Fig. 4.5 can be explained consistently. Fig. 4.6 illustrates a possible density distri-

bution in the device. The lower part of the device has a low intrinsic density n1 and

can consequently be tuned to p-conductance. In contrast, the density n2 in the upper

part is significantly higher. Hence, the 2DEG in this part of the device cannot be

entirely depleted for the used voltage range and only an increase of R34,56 according

to the decrease of the electron density is observed. In this contact configuration for

a measurement of the longitudinal resistance, the coexistent QSH edge states have

only a minor influence, because the bulk transport is dominant. In contrast, mainly

the edge states will be responsible for the size of R12,34, when the current is injected

into the detector leg from the injector by QSH edge states.

The contribution of the QSH states to the total conductance decreases for in-

creasing hole densities. Simultaneously, the non-local resistance due to the edge

states is expected to decrease as well. However, a increase of R12,34 is observed for

Vg < −1.5 V. This is an indication of the non-local voltage induced by the spin

Hall effect according to the proposal by Hankiewicz et al. [30]. For simplicity, the

variation of the Rashba splitting of the valence band with gate voltage is neglected.

This is justified, because only one of the Rashba-split subbands is occupied. Then,

the size of the spin Hall signal is determined by the two different k-values of the

occupied subband at the Fermi level. In this particular case, the difference in k

increases with the hole density (cf. Fig. 4.4), resulting in a rising non-local voltage.

This interpretation is confirmed by the measurement of R12,56 [Fig. 4.5 (d)]. The

contacts for current injection and the voltage probes, respectively, are not connected

directly by QSH states for this configuration. Possibly existing edge states will be

scattered in contacts 3 and 4. Consequently, their contribution can be neglected

in comparison to the bulk transport, when neither the injector nor the detector is

in the QSH regime. Nevertheless, a non-local resistance can be detected, which is

comparable to the longitudinal resistance R34,56. This indicates current flow in the

upper leg, giving rise to a finite voltage drop between contacts 5 and 6. When a

charge current is injected in the lower leg, the spin Hall effect generates a transverse
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spin current. The spin current, in turn, induces a charge current in the upper

leg. For Vg > 0, almost no change of R12,56 is observable due to the only small

variation of the SO splitting. However, a sudden increase of the resistance occurs,

if the injector is tuned to p-conductance for Vg ≈ −1.0 V. This is attributed to

the considerable difference in ∆k for the conduction band and the valence band,

respectively, resulting in a significant enhancement of the spin current. For the spin

current, the influence of the transition from p- to n-conductance, which appears due

to the density gradient between the injector and the detector, can be neglected. At

the boundary between the p- and the n-region of the device, a narrow QSH regime

exists. The polarization of the spin current for the n- and p-type regions is in z-

direction, which matches the spin orientation in the QSH edge states. Thus, the spin

current will be transmitted. Since the spin current is not accompanied by charge

transport, the electrical resistance of the p-i-n transition does not affect the spin

transport. In the n-type detector leg, the spin current creates a transverse charge

current due to the inverse spin Hall effect. When the spin current is increased by

shifting the Fermi energy further into the valence band, the resulting charge current

in the detector rises as well. The strong increase of the non-local increase, when the

injector leg is in the p-conducting regime, is a clear indication of the existence of

both SHE and SHE−1 in our devices. An elastic mean free path of at least 1 µm

was observed for other HgTe samples [64]. Since the sample dimensions are smaller

than this value, scattering is unlikely and the spin Hall effect is an intrinsic property

due to the large SO splitting in this material.

When the contact pairs for current and voltage, respectively, are interchanged

for a measurement of R56,12, an almost identical trace for R(Vg) is obtained. This

observation implies that both SHE and SHE−1 are reversible. When a certain spin

current IS induces a charge current IC due to the inverse spin Hall effect, the same

charge current will generate a spin current IS due to the SHE. Furthermore, it is

hardly conceivable that an extrinsic effect causes an almost identical charging of the

non-local voltage probes when injector and detector are inverted. When current and

voltage contacts are interchanged, the configuration of scatterers will be different for



4.2 Experimental investigation of the Spin Hall Effect 97

the two frameworks and an extrinsic effect based on scattering is expected to yield

significantly different results, which is obviously not the case. Rather, the intrinsic

spin Hall effect has to be responsible for the observed charging.

The layout of the device was modified for the verification of the SHE on other

samples. As can be seen in the inset of Fig. 4.7 (b), the voltage probes 5 and 6 are

relocated to a wider part of one of the leads. This modification serves two purposes:

First, the influence of these contacts on the non-local measurements, e.g., of R12,34,

is reduced due to the increased spatial separation. Second, the larger width of the

leads compared to the narrow channels in the H-structure was intended to allow for

measurements of the Shubnikov-de Haas oscillations, providing direct access to the

size of the Rashba splitting. But no distinct oscillations were observed. Apparently,

the width of 1 µm is not large enough to prevent backscattering due to potential

fluctuations. The device was fabricated from an intrinsically symmetric quantum

well. The rather large negative gate voltages, which are required to tune the sample

to p-conductance, will simultaneously make the QW potential asymmetric. Thus,

the necessary spin-orbit splitting will be obtained for the relevant gate voltage range.

Both the current and the longitudinal resistance indicate that the insulating regime

occurs for approximately −3.0 V ≤ Vg ≤ −2.5 V [Fig. 4.7 (a)]. Again, a strong

increase of the non-local resistance R34,12 [Fig. 4.7 (b)] is observed for the p-regime,

while the current in the injector increases only slightly. Hence, the significant change

of the non-local voltage can not be caused by spurious effects like charge injection

into detector, e.g., due to scattering. Rather, the charging of the detector has to be

attributed to the inverse spin Hall effect.

In contrast, the resistance vanishes for Vg > −2.5 V, i.e., for the n-conducting

regime. On one hand, the SHE signal is much smaller for n-conductance than for

p-conductance due to the smaller value for ∆k. On the other hand, the sample is

almost symmetric around Vg = 0 due to the intrinsically symmetric doping of the

quantum well. The absence of a non-local signal due to QSH edge states for the

insulating regime can be explained by the small width w = 200 nm of the device.
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Figure 4.7: The longitudinal resistance Rxx, the current I [both shown in

(a)] and the non-local resistance R34,12 (b) were measured as a

function of the gate voltage. The inset of (b) depicts the layout

of the device.

When the width of the device is comparable to the extension of the edge states, these

can spatially overlap and interaction of states from opposite edges is probable. Then,

the contribution of the QSH states to the non-local signal is suppressed. In this case,

the transport can no longer be attributed to undisturbed edge states, but rather has
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to be considered as bulk transport. For example, small potential fluctuations or a

unintended variation of the width due to imperfections of the lithographical process

can determine, whether the QSH states actually overlap. If transport by the QSH

states is eliminated, the signal due to the SHE can be clearly detected. In general,

it depends on the details of the individual devices, if transport by QSH edge states

is possible. In that sense, it can be stated that a device, which is good for the

detection of the QSHE, is unsuitable for the detection of the SHE and viceversa.

The above interpretation is confirmed by measurements on an identical device

fabricated from the same wafer. As shown in Fig. 4.8, the non-local resistance shows

a distinct maximum in the insulating regime around Vg = −1 V, indicating transport

by the QSH edge states. For the conducting regimes, the QSH states still dominate

the signal so that the SHE signal can not be detected.

Figure 4.8: The current I and the non-local resistance R34,12 are plotted as

a function of the gate voltage Vg.

It can be summarized that clear indications for the existence of intrinsic spin Hall

effects have been found in H-shaped structures based on HgTe quantum well struc-
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tures. The devices are approximately one order of magnitude larger than the one

proposed by Hankiewicz et al. [30]. The enlargement of the sample is expected to

reduce the non-local signal due to the spin Hall effect. Furthermore, the difference

in the wave vectors k for the Rashba-split branches of the conduction band is smaller

than assumed in the proposal. Therefore, no signal due to the SHE could be ob-

served in n-conducting samples. The situation changes drastically when the device

is tuned to p-conductance by an external gate voltage. Due to the large Rashba

splitting in HgTe structures, only one of the Rashba-split subbands of the valence

band is occupied (cf. Fig. 4.4). In this case, the k-difference does not stem from

the two spin-branches but is rather set by the two k-values for the occupied valence

subband at the Fermi level, which exceeds ∆k of the conduction band by far. Thus,

a detectable non-local signal can be expected for the p-type regime despite of the

increased sample size compared to the proposed device. As it was shown in the

previous chapter, QSH edge states can provide a contribution to the total conduc-

tance beside the bulk transport in the vicinity of the insulating regime. Hence, the

non-local SHE signal is superimposed by the QSHE signal which is much larger.

However, when transport due to the QSH edge states is not possible, e.g., due to

scattering or an overlap of states from opposite edges, a clear non-local voltage can

be observed for the p-conducting regime. The charging of the voltage probes in-

creases with ∆k, when the Fermi energy is shifted further into the valence band.

The observed results can be attributed to the intrinsic SHE and SHE−1, respectively,

for two reasons: On the one hand, the size of the device is smaller than the elastic

mean free path, so that scattering can be almost excluded. On the other hand, the

signal is not affected by interchanging the current contacts with the voltage probes,

which would obviously be the case for an extrinsic effect based on scattering. Alto-

gether, our experiments provide the first all-electrical measurement of the intrinsic

spin Hall effect. Furthermore, the generation of a spin current by the SHE which, in

turn, creates a charge current due to the SHE−1 in the same material has not been

reported previously as well.
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4.3 Interplay of SHE and QSHE

A first attempt to observe the spin Hall effect was already made in 2003. Since the

QSHE was still an unknown phenomenon, the experimental observations were not

understood and the experiments were suspended. However, considering the QSHE

shed new light on the results. The design of the devices differs significantly from

the one presented above. First, the width of the legs is 5 µm. Second, the injec-

tor and detector leg are covered by separate gate electrodes (Fig. 4.9). Thus, both

parts of the device can be controlled individually. The device was fabricated from a

Figure 4.9: In this device, the injector leg and the detector leg are covered

by individual gate electrodes. The width w is 5 µm.

symmetric 120 Å QW with an intrinsic density of 3.1 · 1011 cm−2 and a mobility of

2.79·105 cm2(Vs)−1. Due to the low intrinsic carrier density, the device can be tuned

from n- to p-conductance, passing the QSH regime. The width w = 5 µm of the

legs prevents scattering between the QSH states at opposite edges can be excluded

and the transmission of both spin and charge current through the insulating region

will only be reduced by inelastic scattering and interaction due to local conducting

regions. The measurements discussed below were performed at 4.2 K.

The transition from n- to p-conductance is observed in the sample current, when

a negative voltage is applied to the gate covering the injector (Fig. 4.10). The
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rather high residual current of approximately 20 nA for the insulating regime, i.e.,

for −3.0 V < Vg,inj < −2.5 V, can be attributed to the large excitation volt-

age Uexc ≈ 10 mV. The voltage applied to the detector gate is kept constant at

Vg,det = 0. When the injector is n-conducting for Vg,inj > −2 V, no non-local signal

Figure 4.10: Sample current I (black) and non-local resistance R12,34 (red)

are measured as a function of the voltage Vg,inj applied to the

electrode covering the injector leg, while the detector gate is

kept constant at Vg,det = 0.

is observed. A strong increase of R12,34 occurs, when the injector gets close to the

insulating regime, yielding a maximum at R ≈ 13 kΩ. When the injector is finally

tuned to p-conductance, the non-local resistance at first decreases almost to zero for

Vg,inj ≈ −3.5 V, but rises again subsequently.

As it was shown already in the previous section, the difference in the wave vec-

tors k for the two Rashba-split conduction subbands is not large enough to yield

a detectable spin Hall signal, if the entire device is n-type. However, the situation

changes drastically for a injector in the QSH regime (bottom part of Fig. 4.11).

When a current is driven through the QSH states by an electric field, parallel prop-
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Figure 4.11: (top) Close to the QSH region, the majority of the electrons is

spin-up, whereas both spin states are equally occupied in the

detector. (bottom) When the injector is in the QSH regime,

transport occurs due to spin-polarized edge channels (white ar-

rows), generating a transverse spin current (yellow). In the

detector, the induced transverse charge current (black) results

in a voltage drop.

agating states at opposite edges have an opposite spin polarization. Since the QSH

channels follow the geometrical edge of the sample, the spin-up polarized carriers

will enter the connection to the detector leg. In contrast, the spin-down edge state

remains localized at the opposite edge. In the n-type region, the spin-up electrons

follow the potential gradient towards the current drain (contact 1) and re-enter the

edge state at the opposite side. Thus, no charge current is effectively injected into

the connection towards the detector. However, the spin-polarization of the carriers

causes an unequal occupation of the two spin states at the boundary between the

QSH region and the n-type detector (top part of Fig. 4.10). While the density of
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spin-up electrons is enhanced at the boundary between QSH region and detector,

the spin-down density is lower than in the detector. No spin imbalance is present in

the detector leg, providing a gradient of the spin-dependent chemical potential for

the two spin states. Consequently, a pure spin current will flow from the injector

to the detector. Due to the inverse spin Hall effect, a transverse charge current will

be generated, yielding the observed large non-local voltage. In this regime, the spin

current is not generated by the spin Hall effect for a doped semiconductor and the

SHE−1 can be detected independently of the SHE.

When the injector finally is p-type, the large k-difference gives rise to a spin

Hall effect. In this case, the carriers have a preferential orientation with respect

to the z-direction, but are not fully polarized. Thus, the spin polarization is much

smaller than for the QSH edge states and the resulting spin current is also reduced

compared to the QSH injector, yielding only a comparatively small non-local signal.

When the Fermi energy is shifted further into the valence band, the transverse spin

current due to the SHE will increase with ∆k, and a rising non-local signal can be

observed.

In general, tuning the properties of the injector leg can provide a spin current

which, in turn, will create a transverse charge imbalance in the detector due to the

inverse spin Hall effect. Having a QSH injector, the SHE−1 can be detected inde-

pendently of the spin Hall effect by means of a purely electrical measurement.

In a second configuration, the detector is tuned by the respective gate electrode.

Using this approach, the spin accumulation due to the spin Hall effect can be de-

tected. Here, no voltage is applied to the injector gate and the injector leg remains

n-conducting. When the detector is n-type as well, only a small, but finite non-local

resistance is observed (Fig. 4.12). On the one hand, this can be a real spin Hall

signal for the n-type device. On the other hand, however, it can not be ruled out

that the signal stems from a spurious effect caused by, e.g., unintentional charge

injection into the detector due to scattering or a misadjustment of the zero point of

the measurement setup. In any case, the non-local resistance increases significantly
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Figure 4.12: The non-local resistance is plotted as a function of the volt-

age Vg,det, which is applied to the gate electrode covering the

detector.

when the detector is tuned to the QSH regime. The shift of the insulating regime

compared to the injector gate can be attributed to the hysteresis-like effect described

in Sec. 1.3, which occurs for rather high voltages. In the injector, a spin imbalance

will appear at the edges due to the intrinsic spin Hall effect (top part of Fig. 4.13).

Due to the low k-difference between the Rashba-split branches of the conduction

band, the spin imbalance will be small but finite. When the spin-dependent chemi-

cal potential is considered, a difference eUSH in the Fermi energies for the two spin

states is obtained at the sample edges. This potential difference can be probed by the

QSH edge states. Since the states in the QSH edge channels are spin-polarized, only

carriers with a corresponding polarization can be injected. The observed charging of

the non-local voltage contacts can be explained using the sketch of the device shown

in Fig. 4.13. The QSH edge state connecting contact 4 with the injector only trans-

mits spin-down electrons, whereas the channel to contact 3 carries spin-up electrons.
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Figure 4.13: The spin Hall effect is reflected in a spin-dependent chemical

potential (top). For a detector in the QSH regime, the edge

channels from the injector to the non-local voltage probes are

spin-polarized (bottom).

When scattering of the edge channels is neglected, the observed voltage difference

U34 corresponds to USH . But inelastic scattering is probable, because the length of

the edge channels is approximately 20 µm. The existence of scattering is revealed

by the variation of the signal for the QSH regime. When the Fermi energy is close to

the conduction band minimum and the valence band maximum for Vg,det ≈ −1.4 V

and Vg,det ≈ −2.0 V, respectively, the probability of local conducting regions in

the QSH insulator is increased and backscattering is enhanced. Thus, only a small

non-local signal can be observed. However, backscattering is reduced when EF is in

the center of the energy gap. Altogether, the voltage observed at the center of the

insulating regime (Vg,det ≈ −1.6 V) is a distinct indication of the spin imbalance at

the boundary between injector and detector, while the actual difference between the

chemical potential for spin-up and spin-down electrons, respectively, most probably
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is larger than the observed value of 4 µV. Nevertheless, the existence of the spin

Hall effect in the injector leg was successfully demonstrated.

The oscillations in the non-local signal for a p-type detector, which is obtained

for Vg,det < −2.5 V (cf. Fig. 4.12), is reproducible for repeated measurements. The

observed sign change for the non-local signal based on the SHE−1 implies a reversal

of the spin current. In principle, it can also occur due to a reversal of the asymmetry

of the QW potential. However, this can happen only once when the quantum well

is tuned through the point of symmetry, but not repeatedly for a monotonic change

of the gate voltage. A spin current is described by the polarization of the spins and

the movement of the spin-carrying particles, so that a reversal of either parameter

results in a sign change for the spin current. In our devices, the spin current is

not accompanied by a charge current. Thus, a variation of the polarization has

to be the reason for the observed behavior. A periodic modulation of the spin

orientation can be caused by the spin precession due to the Rashba field. This effect

was utilized for the proposal of a spin field effect transistor (FET) by Datta and

Das [17]. In their device, source and drain contact, respectively, are fabricated from

a ferromagnetic material. The intermediate region is a semiconductor with tunable

spin-orbit interaction of the Rashba type. Due to the magnetization of the injector,

the current is spin-polarized when it is injected to the semiconductor. There, the

effective magnetic field Beff due to the SO interaction is oriented perpendicular

to the spin-polarization of the injected electrons. The spins will precess with a

frequency depending on the strength of the Rashba field. When the electrons reach

the detector with a spin parallel to the magnetization of the ferromagnet, they will

be transmitted, while they are reflected for an anti-parallel orientation. Thus, the

conductance can be tuned by the Rashba field as it was shown theoretically using

realistic sample parameters [99].

In contrast to the so-called Datta-Das transistor, no modulation of the trans-

mission between current source and drain is obtained in our device. However, the

non-local signal is affected by the same underlying mechanism, i.e., the detected

signal depends on the spin precession due to a Rashba field. The spin Hall effect
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in the injector leg is utilized for the generation of the spin current. At the bound-

ary between the n-type injector and the p-type detector, a thin QSH region exists.

Due to the short length of the edge states, scattering can be excluded and the spin

current is transmitted dissipationless. Since the spin imbalance generated by the

SHE is not accompanied by a charge current, a pure spin current is injected into the

p-type region. While the spin polarization due to the SHE is in z-direction, the ef-

fective magnetic field due to the Rashba effect is in the QW plane. Hence, the spins

will precess in the p-region, modulating the z-component of their orientation. In the

detector, the inverse spin Hall effect will transform the spin current into a transverse

charge current. The direction of the charge current, however, is determined by the

z-component of the spins. The charging of the voltage probes can be tuned by the

detector gate voltage via the Rashba-dependent spin precession. The polarization

Figure 4.14: When a spin current with polarization in z-direction is injected

into a Rashba medium, the z-component of the spins will be

modulated due the spin precession described by the spin pre-

cession length LSP .

of the spin current will be reversed after a distance l = LSP /2 due to the preces-

sion, where LSP is the spin precession length. Using a simple approach including

a Rashba splitting ∆R = αk, LSP = h̄2π/(2m∗α) = 2π/∆k is obtained [17]. Even

though such a simple model does not describe our material system quantitatively, it

is obvious that the spin precession length can be tuned via the spin-orbit interaction

and the difference in k, respectively. Based on realistic values for ∆k in the valence

band (cf. Fig. 4.4), a spin precession length of approximately 50 nm is obtained.

For other two-dimensional systems, values of several 100 nm have been reported
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for LSP [17, 99]. For both reasons, a spin precession length of the order of 100 nm

is a reasonable estimate for our devices. Consequently, already a small variation

of the spin-orbit interaction reverse the spin current entering the detector, because

the separation of injector and detector is several times larger than LSP . However,

the spin current will decrease due to spin relaxation processes, if the length of the

device exceeds the spin diffusion length. Based on the experimental results it can

be estimated that the spin diffusion length is at least of the order of some few µm,

since the polarization of the spin current would be entirely destroyed otherwise and

a non-local signal could not be observed at all.

In conclusion, individual control of the injector and the detector, respectively, by

separate top gate electrodes allows for the detection of the spin Hall effect and the

inverse spin Hall effect independent of each other. When the injector leg is in the

QSH regime, the spin-polarization of the edge states gives rise to a gradient in the

spin-dependent chemical potential between injector and detector. A pure spin cur-

rent will flow which generates a transverse charge current due to the inverse spin

Hall effect, resulting in the observed charging of the non-local voltage probes. Our

experiments provide, to our knowledge, the first evidence of the SHE−1 in a semicon-

ductor system. Furthermore, the spin current was generated in the same material

and not injected from a ferromagnetic contact, as it was done for the observation of

the SHE−1 in other experiments [27–29].

The spin accumulation at the edges of the device due to the spin Hall effect is

reflected in a difference in the spin-dependent chemical potential. When the spin-

polarized QSH edge states are utilized, this potential difference can be detected in

a purely electrical measurement. For a detector in the QSH regime, the polarized

edge states carry the chemical potential of the spin-up and spin-down electrons,

respectively, to the non-local voltage probes. Even though backscattering between

the counter-propagating QSH states at the same edge decreases the voltage signal,

the spin accumulation can be demonstrated qualitatively. After detecting the spin

accumulation due to the SHE by various optical methods [24–26], the spin imbalance
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is demonstrated here for the first time by a purely electrical measurement.

When the injector is n-type and the detector p-type, the non-local voltage os-

cillates around zero as a function of the gate voltage. This can be explained by the

precession of the spins due to the Rashba field. While this precession is utilized for

the control of transmission in the so-called Datta-Das spin-FET, it causes a periodic

modulation of the spin current in our experiments, resulting in the observed oscilla-

tion of the non-local signal. In principle, a similar behavior can be expected, when

both injector and detector are p-type. But since the SHE only causes a preferential

spin orientation, the signal will be reduced. In the sample configuration used for

the experiments, the QSH states connecting injector and detector serve as a spin

aligner so that the injected spin current is fully z-polarized. The spin precession

length LSP and spin diffusion length LSD can be estimated from the experimental

results to be of the order of 1 µm. However, only for LSP < LSD several oscillations

of the non-local voltage can be detected.

As mentioned above, the experiments on the presented device were suspended at an

early stage and only a limited amount of data was available. Nevertheless, it was

demonstrated that such devices make exciting experiments possible. On the one

hand, the spin polarization of the sample edge due to either the spin Hall effect or

the QSH effect can be probed. On the other hand, the propagation of pure spin

currents can be studied by purely electrical measurements. The above experiments

provide strong indication that the observed results are indeed related to spin trans-

port in the sample. However, further measurements are required to definitely rule

out spurious effects, e.g., due to QSH states existing in the low-density regime. Ad-

ditional experiments on similar devices can also provide a deeper insight into spin

transport in semiconductor devices, because SHE, SHE−1 and the spin-polarization

of the QSH edge states can be addressed independently.
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4.4 Summary

In this chapter, results from H-shaped devices based on HgTe QWs were presented.

The layout of the samples corresponded to the proposal by Hankiewicz et al. [30].

However, the size of our devices was at least one order of magnitude larger than

in the theoretical proposal. The main reason are limitations in the lithographical

process, in which devices can be fabricated reproducibly only for widths down to

approximately 200 nm. This size consequently was chosen for the width of the leads

in our devices.

In general, a non-local voltage is expected due to a combination of spin Hall

effect and inverse spin Hall effect. When the spin-orbit interaction in the sample

is large enough, a charge current in the injector leg of the H-device will generate

a transverse spin current due to the spin Hall effect. The spin current, in turn,

induces a transverse charge imbalance, which can be detected as a voltage difference

between the two contacts in the detector leg. When the sample dimensions are

small compared to the typical mean free path and the spin-orbit splitting is large, the

intrinsic effect will be dominant compared to the extrinsic effect based on scattering.

In fact, a large difference in k is required for the existence of the SHE rather

than a large Rashba splitting in energy. Thus, no clear signal attributed to the

SHE was detectable for an n-type device, where ∆k of the conduction band is too

small. In addition, the possible non-local signal is reduced due to the rather large

size of our devices. The former obstacle can be overcome, if the sample is tuned to

p-conductance. Due to the flat dispersion of the valence band and the substantial

SO interaction, only one of the Rashba-split subbands is occupied. In this case, the

two different k-values for the same subband at the Fermi level have to be considered

for the SHE. Their difference is much larger than ∆k in the conduction band, so

that a distinct SHE signal is detected. It has to be noted that the SHE signal can

be concealed by a non-local signal due to the QSH edge states, which still exist at

low n- and p-densities, respectively. When ∆k is enhanced by shifting the Fermi

level further into the valence band, the non-local voltage increases accordingly. Our
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experiments provide clear evidence for the existence of spin Hall effect and the in-

verse spin Hall effect in our devices. It is the first time that the SHE has been

demonstrated for a semiconductor system by means of purely electrical measure-

ments. The experimental findings can be attributed to the intrinsic SHE, because

high mobilities in the studied devices make scattering unlikely on the length scale

of the device, which is comparable to the mean free path.

While the QSH states may complicate the detection of the SHE in some experi-

ments, they can also be utilized for an independent detection of spin Hall effect and

inverse spin Hall effect in suitable devices. For this purpose, injector leg and detector

leg are controlled by separate gate electrodes. The enhanced width w = 5 µm of the

leads clearly separates the states located at opposite edges. When the injector leg

is in the QSH regime, the spin imbalance at the interface between the QSH region

and the n-type detector drives a pure spin current towards the detector leg. There,

the inverse spin Hall effect generates a transverse charge current. The observation

of the resulting non-local voltage drop demonstrates the existence of the SHE−1 in

HgTe quantum wells. When it comes to the detection of the spin Hall effect, QSH

states in the detector can be utilized. For an n-conducting injector, the SHE yields

a spin imbalance at the edges of the leg. Since the QSH states in the detector are

spin-polarized, they will carry the chemical potential of the respective spin state to

the non-local voltage probe and the observed voltage reflects the difference in the

spin-dependent chemical potential. Only a qualitative analysis of the spin imbal-

ance created by the spin Hall effect is possible, because the QSH states are likely

to scatter due to their length of approximately 20 µm. In general, both SHE and

SHE−1 have been observed for the first time in a semiconductor by purely electrical

measurements. Furthermore, the spin-polarization of the QSH edge states can also

be inferred from the above results.

Peculiar non-local transport properties appear, when the SO interaction in the

p-conducting detector is varied, while the injector is n-type. The observed oscil-

lations of the non-local signal around zero can be explained by the precession of

the spins due to the effective Rashba field. Since the injected spin current due to
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the spin Hall effect is polarized in z-direction, the spins will precess around the in-

plane Rashba field in the detector. The spin precession length is determined by the

strength of the Rashba field and can consequently be tuned via the gate voltage.

Depending on the sign of the z-component of the spin orientation in the detec-

tor, the direction and amplitude of the charge current due to the inverse spin Hall

effect is varied, yielding the observed oscillatory behavior of the non-local resistance.

A task for future experiments is a more quantitative investigation of the SHE and

SHE−1. For this purpose, it is reasonable to study the two effects independently

of each other, employing the spin-polarized QSH edge states. It is crucial in this

context that scattering of the QSH states is minimized. On the one hand, this calls

for a wide separation of opposite sample edges to prevent a spatial overlap of the

states. On the other hand, the edge states have to be shorter than the inelastic

mean free path to avoid scattering between the counter-propagating states at a sin-

gle edge. The fabrication of such devices is feasible with established lithographical

techniques, so that the above issues can be addressed.

Another device, which relies on the above findings, is similar to the Datta-Das

spin-FET. First if all, spin precession due to the Rashba field was successfully demon-

strated in our devices. Furthermore, the spin-polarized QSH states might provide

a good alternative to the ferromagnetic contacts included in the initial proposal,

which were an obstacle for a realization of such a device so far. Thus, it seems

possible to fabricate a spin-FET purely based on HgTe quantum well structures.





Chapter 5

Transport in ring structures

In search of possible spin-based electronic applications, various approaches were pro-

posed. Two of the main issues in this context are the injection of a spin-polarized

current into a device and the manipulation of the spin state. It was shown that the

injection of a significantly spin-polarized current from a metal into a semiconductor

is not possible [3]. Thus, many devices where the Rashba effect is utilized to ma-

nipulate the polarization of the electron spin, e.g., the Datta-Das spin field effect

transistor [17], are difficult to realize. This obstacle can be overcome if, for example,

devices are fabricated from a single appropriate semiconductor material.

Following this approach, Nitta et al. [16] suggested a ring-shaped structure based

on an InGaAs-2DEG, i.e., a system with large spin-orbit interaction. In this de-

vice, the interference of electrons passing different arms of the ring controls the

transmission. The most probably best-known interference effect in ring structures,

the Aharonov-Bohm effect [100], requires an external magnetic field, which is un-

favourable for most electronic applications. However, interference effects can also

be obtained when the Aharonov-Casher phase [15] is considered. This effect is anal-

ogous to the Aharonov-Bohm effect if the role of the magnetic and electric field is

interchanged. For the Aharonov-Casher effect, the magnetic moment of the mov-

ing particle, e.g., the electron spin, is coupled to an electric field, which may be

caused by spin-orbit interaction. Additionally, a SO Berry phase can also occur in

115
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such systems. Thus, a controlled variation of the Rashba spin-orbit interaction can

modulate of the transmission through the device.

Due to the large tunability of the Rashba splitting, HgTe-based QW structures

are an excellent candidate for the realization of spin-interference devices as described

above. Earlier experiments on ring structures already gave an indication of spin-

orbit related phase effects [34]. These observations initiated more detailed studies,

which are presented in this chapter. The experimental results for our devices provide

the first direct observation of the dynamical part of the Aharonov-Casher phase.

Further experiments on HgTe ring structures have been used to investigate phase

effects especially in high magnetic fields. In this case, the AB phase is the dominant

contribution to the electron wave function and the SO-related phase effects can be

neglected. Since the period of the AB oscillations is determined by the magnetic flux

enclosed by the electron orbit, such experiments can provide information about the

electron paths in the ring structure. It will be shown that the effective radius of the

orbit decreases for increasing magnetic fields, which is attributed to the appearance

of edge states in the quantum Hall regime.
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5.1 General description of phase effects

If the characteristic dimensions of a device are significantly larger than the phase

coherence length, only the particle-like properties are relevant and phase effects

can be neglected in the experiment. But the wave properties gain in importance

for samples with smaller dimensions. The particle-wave dualism is reflected in the

quantum mechanical description of a particle by a wave function

Ψ = A · exp (iϕ) . (5.1)

The amplitude A is usually used for normalization purposes, and the phase ϕ de-

scribes the propagation of the wave in time and space.

For a single wave function, no experimental access to the phase is possible,

because the expectation value of a observable quantity X is obtained by

〈X〉Ψ = 〈Ψ|X|Ψ〉 =

∫
Ψ∗XΨ. (5.2)

Due to the use of the complex conjugates Ψ and Ψ∗, the phase term cancels out.

Phase-related effects can be observed if a superposition of at least two different

partial waves Ψi occurs. In this case, the expectation value of X is given by

〈X〉Ψ1+Ψ2 =

∫
(Ψ1 + Ψ2)

∗X(Ψ1 + Ψ2)

= 〈X〉Ψ1 + 〈X〉Ψ2 +

∫
Ψ∗

1XΨ2 +

∫
Ψ∗

2XΨ1. (5.3)

As shown above, the first two terms are independent the phase of the individual

partial waves. However, the phase factors of the two partial waves do not cancel

out for the latter terms. Thus, interference effects between the two partial waves

become observable and can provide information about the phase difference.

The most probably best-known realization of the phase acquired by a particle

wave function is the so-called Aharonov-Bohm (AB) effect. The effect was named

after Y. Aharonov and D. Bohm, who showed that a charged particle like an electron

can acquire a phase if it is coupled to a magnetic vector potential [100]1. In their

1 The effect was already described in 1949 by Ehrenberg and Siday [101], but their description

remained unnoticed.
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thought experiment, they considered a split electron beam, which passes a cylin-

drical solenoid on opposite sides. A magnetic field is confined within the solenoid,

whereas it vanishes on the outside and consequently can not affect the electron orbit.

However, the corresponding vector potential A is present and leads to a modulation

of the phase of the electron wave function:

dϕ =
e

h̄
~Ad~s, (5.4)

where d~s is an infinitesimal part of the electron orbit. Finally, the two split branches

of the initial beam are combined again, leading to interference between electrons of

the two beams. The phase difference for the two split beams is

∆ϕ =
e

h̄

∫

s1

~Ad~s− e

h̄

∫

s2

~Ad~s

=
e

h̄

∮
~Ad~s

=
e

h̄

∫
~Bd~S, (5.5)

where d~S is a surface element of the area enclosed by the electron orbit. The last

transformation is based on the definition of the magnetic vector potential, ~A =

~∇ × ~B. Thus, the phase does not depend on the magnetic field on the electron

orbit, but on the magnetic flux enclosed by it. This means that the electron itself

has not necessarily to be exposed to a magnetic field along its course to acquire

an Aharonov-Bohm phase. The phase difference between two paths passing the

suggested solenoid is given by

∆ϕ =
e

h̄
Φ =

2πΦ

Φ0

, (5.6)

where Φ is the magnetic flux enclosed by the two interfering paths and Φ0 = h/e

is the magnetic flux quantum. A full oscillation period, i.e., a phase change of 2π,

emerges if the enclosed flux is varied by one flux quantum h/e.

First experimental evidence for the AB effect was provided by R. G. Chambers

in 1960 [102]. He modified an electron microscope in such way that it could be used

as an interferometer. For one of the reported experiments, no magnetic field was
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present at the path of the electrons, but a magnetic flux was enclosed by the two

partial beams. In this configuration, a shift of the interference pattern was observed,

confirming the theoretical prediction.

A similar phase effect was predicted in 1984 by Y. Aharonov and A. Casher [15].

They described the new effect as the electromagnetic dual to the AB effect. While

the AB phase results from the movement of a charged particle in a magnetic vector

potential, the relevant properties of the particle and the potential are interchanged

for the so-called Aharonov-Casher (AC) effect. In resemblance to the AB effect, a

vector potential ~A ∼ ~E × ~µ was introduced, which couples a magnetic moment ~µ

to an electric field ~E. Thus, an AB-like phase will be acquired by a particle with a

magnetic moment which moves around an electric field. The first observation of the

AC effect was obtained for neutrons [103], followed by experiments using Ca and

Rb atoms, respectively [104,105].

In a seminal paper [14], Berry provided a general description of geometric phase

effects, which is based on an adiabatic variation of the environment of the system.

The notion of an adiabatic process indicates that the evolution of the parameters

included in the Hamiltonian is slow enough to keep the system in an eigenstate at

any time. When the system returns to its original state after a cyclic evolution,

the phase shift of the wave function depends on the evolution of the Hamiltonian in

phase space. Both the AB phase and the AC phase represent a special case of the

general Berry phase. The former one was explicitly given as an example by Berry

in his paper. A few years after the initial prediction by Berry, Aharonov and Anan-

dan showed that a geometric phase can be acquired by any cyclic evolution, i.e., an

evolution in which the system returns to its original state, even though adiabaticity

is not given [106]. In fact, the Aharonov-Anandan phase tends to the Berry phase

for increasing adiabaticity and finally reaches it in the adiabatic limit. The first

experimental observation of the geometric Berry phase beside the AB effect was

achieved for photons in wound optical fibre [107].
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Through the past decades, several phase effects like the AB effect, the AC effect

and, more general, the Berry phase, have been theoretically predicted. All these

effects have been verified by interference experiments with particles meeting the

particular requirements for the individual effects, e.g., electrons for the AB effect.

While the respective first demonstration of the phase effects was not achieved in

a solid state system, all above effects are supposed to be observable in suitable

semiconductor devices as well.

5.2 Phase effects in semiconductor ring structures

The above general description of the individual phase effects can be adapted to the

special case of a ring structure with spin-orbit coupling subjected to a homogeneous

external magnetic field. Such experiments will be discussed in the following chapter.

As shown in Eq. 5.6, the phase due to the Aharonov-Bohm effect is determined

by the magnetic flux enclosed by the electron orbit. For a homogeneous magnetic

field B perpendicular to a ring structure with radius r, the phase difference between

the two partial waves passing through the different arms of the ring is given by

∆ϕ =
e

h̄
Φ =

e

h̄
r2π ·B. (5.7)

From this it follows that the periodicity of the AB oscillations in magnetic field is

solely determined by the ring radius:

∆B =
h

r2πe
. (5.8)

The first realization of the AB effect on semiconductor ring structures was

achieved by Timp et al. who studied devices fabricated from GaAs/AlGaAs het-

erostructures [108].

The influence of the spin-orbit interaction on the electron phase was introduced

theoretically by Meir et al. [109]. They assumed the presence of spin-orbit scatter-

ing for a mesoscopic system in an AB geometry, where two distinct paths enclose a
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finite magnetic flux. The SO contribution to the phase can be described by an addi-

tional effective magnetic flux. This transformation can be used for any property of

the system, which does not explicitly depend on the electron spin. Mathur and Stone

extended this idea by considering a uniform SO interaction, e.g., due to the inversion

asymmetry of a two-dimensional semiconductor system [110]. They confirmed the

results of Meir and coworkers, now using a uniform electric field perpendicular to the

plane of motion instead of random SO scattering. It was furthermore predicted that

several oscillation periods due to the AC effect may be observed in samples with typ-

ical dimensions for a feasible tuning of SO interaction. The first explicit prediction

for a ring structure was provided by Oreg and Entin-Wohlman [111]. Considering

SO scattering, it was shown that the transmission T through a one-dimensional ring

depends periodically on the magnetic flux and the SO interaction:

T = f
(
cos(2πΦ/Φ0 ± λ/2)

)
, (5.9)

where λ is a dimensionless parameter proportional to the effective magnetic flux

describing the strength of the SO scattering [109]. It can be deduced from this

relation that both the magnetic field and the SO interaction affect the transmission

of a ring structure. A more elaborate description of the effect of SO interaction on

the electron phase was given by Qian and Su [112]. If the orientation of the electron

spin deviates from the z-axis by an angle χ, the SO-related phase is proportional

to ±α sin χ, where α is the spin-orbit parameter2. A deviation of the spin from the

direction of the external magnetic field is caused by an effective in-plane magnetic

field due to the SO interaction (Fig. 5.1). The two signs for the electron phase

refer to a parallel and anti-parallel orientation of the spin with respect to the total

magnetic field, respectively.

The above description of SO-based phase effects is not complete, since it only in-

cludes the so-called dynamical phase, i.e., a phase acquired due to the movement

2 In Ref. 112, the SO parameter is given by κ, which is proportional to α. However, the notation

as α is used in line with other parts of the thesis.
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along a certain path. The geometric Berry phase, however, has not been considered

yet. Its contribution to the electron phase is obtained for the variation of an ex-

perimental parameter like the orientation of the magnetic field along the path. The

direction of the magnetic field is modulated by the spin-orbit interaction, which

can be represented by an effective in-plane magnetic field Beff . The resulting total

magnetic field is given by

~Btot = ~Bext + ~Beff . (5.10)

Because the effective Rashba field is always directed perpendicular to the direction

of motion, the total field will rotate when the electron moves around the ring3,

yielding the so-called spin-orbit Berry phase [113]

ϕgeom = ±π(1− cos θ), (5.11)

where θ is the angle between the external and the total magnetic field:

θ = tan−1 Beff

Bext

. (5.12)

For a non-adiabatic system, a geometric Aharonov-Anandan phase similar to

the Berry phase can be observed [112]. In this case, the angle θ of Eq. 5.11 has

to be substituted by χ, which is the tilt angle of the electron spin with respect to

the external magnetic field. In the fully non-adiabatic regime, the electron spin is

not affected by the SO field and consequently will be aligned with the external field

yielding χ = 0, while χ = θ for the adiabatic case, i.e., the SO Berry phase is the

adiabatic limit of the Aharonov-Anandan phase.

In real samples, the adiabatic limit is reached if the spin follows the varying mag-

netic field at any time. This condition is equivalent to ωst À 1, where ωs = gµBB/2h̄

is the Larmor frequency describing the spin precession around the magnetic field and

t is the time scale on which the direction of the magnetic field varies significantly.

In a ballistic 1D device with length L, this is the time needed for one cycle around

the ring structure, i.e., t ≈ L/vF . A similar condition was obtained for a ballistic

3 A similar experiment considering a spatially varying magnetic field was already proposed by

Berry in the initial prediction of the geometric phase [14].
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Figure 5.1: When electrons pass a ring structure in the presence of both an

external magnetic field Bext and an effective field Beff due to the

SO interaction, the spin (red) is aligned with the total magnetic

field Btot. For non-adiabatic transport, the angle χ of the spin

orientation deviates from θ.

2D device [114]. For a diffusive sample, the relevant time scale for the adiabatic cri-

terion has been discussed controversially. One approach uses the elastic scattering

time, demanding a rather large magnetic field to reach the adiabatic limit [115–117].

Contrary to this prediction, it was stated by Loss and coworkers that the time of dif-

fusive transport around the ring is the relevant time scale for adiabaticity [118–120].

In this case, already small magnetic fields are sufficient for the adiabatic limit. Up

to now, no generally applicable criterion for adiabaticity was presented, which can

solve the important issue.

When all phase contributions mentioned above are included, the phase difference

between two partial waves passing different arms of a ring with radius r is described

by [16]:
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∆ϕψ+
↑ −ψ−↑

= −2π Φ
Φ0
− π(1− cos θ), (5.13)

∆ϕψ+
↓ −ψ−↓

= −2π Φ
Φ0

+ π(1− cos θ), (5.14)

∆ϕψ+
↑ −ψ−↓

= −2π Φ
Φ0
− 2πrm∗α

h̄2 sin θ, (5.15)

∆ϕψ+
↓ −ψ−↑

= −2π Φ
Φ0

+ 2πrm∗α
h̄2 sin θ. (5.16)

Here, ↑ (↓) refers to an (anti-)parallel alignment of the electron spin with the mag-

netic field and the superscript +(-) denotes a (counter-)clockwise evolution, respec-

tively. In all above equations, the first term on the right hand side can be identified

as the AB phase ∆ϕAB due to the enclosed magnetic flux Φ. For Eqs. 5.13 and

5.14, the second term is the geometric SO Berry phase ∆ϕgeom, i.e., the system is

assumed to be in the adiabatic limit. The second term of Eqs. 5.15 and 5.16 is the

dynamical part of the AC phase ∆ϕAC due to the SO interaction described by the

Rashba parameter α. A variation of the SO interaction will affect both the Rashba

parameter α and the angle θ. The AC phase will increase continuously with α. In

contrast, the SO Berry phase is limited to ∆ϕgeom ≤ π, because it depends solely

on θ, which can be tuned from 0 for Bext À Beff to π/2 for Bext ¿ Beff .

Several groups have claimed evidence for an experimental observation of the

SO Berry phase in semiconductor ring structure [31–33]. All of them inferred the

existence of the Berry phase from a complex structure of the Fourier transform

of the AB oscillations, i.e., a splitting of the AB peak and side peaks, respectively.

However, these interpretations have been questioned [121–123]. The main objections

relate either to technical aspects of the Fourier transform, which make artificial side

peaks possible, or to an inadequate theoretical modeling.

It can be summarized that an unambiguous experimental verification in semicon-

ductor structures has only been accomplished for the AB effect. Both the Aharonov-

Casher effect and the SO Berry phase were predicted not only to occur in systems

with substantial spin-orbit interaction but also to be observable in ring structures

fabricated from suitable materials. However, a direct demonstration is still out-

standing.
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5.3 Observation of the Aharonov-Casher effect

The aim of the experiments presented below is to provide direct evidence for phase

effects due to spin-orbit interaction. For this purpose, ring structures were fabri-

cated from HgTe/HgCdTe quantum well structures with a well width of 120 Å (cf.

Fig. 1.6). This QW width was chosen, because highest mobilities had been achieved

for this width until then. The structures were symmetrically modulation doped. In

such samples, the spin-orbit interaction is supposed to vanish due to the intrinsic

symmetry of the QW potential. Ring-shaped devices with a average radius r = 1 µm

were fabricated from these samples by e-beam lithography and wet chemical etching.

The width of the leads in each arm was 300 nm. After the fabrication of the devices,

a top gate was deposited to be able to tune the Rashba splitting in a wide range.

Figure 5.2: (a) A scanning electron microscope picture shows a typical ring

structure with a radius r = 1 µm and a width of the leads of

300 nm. (b) For a later generation of samples, a ring of the same

size was attached to a Hall bar; the top gate electrode is not

applied yet (picture taken by optical microscope).

A first set of experiments was performed on single rings [Fig. 5.2 (a)]4. While a

dependence of the interference pattern on the gate voltage was observed, no quanti-

tative analysis of the SO interaction was possible. To meet this purpose, the devices

were extended by a Hall bar, which was attached to the ring structure [Fig. 5.2 (b)].

There, much more distinct Shubnikov-de Haas oscillations can be detected and the

4 Some of the results are presented in Ref. 34
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Rashba splitting can be deduced by means of Fourier transformation. Several such

devices were investigated and showed comparable results with respect to the effects

discussed below. For clarity, the detailed analysis below will be restricted to data

obtained from one sample.

Figure 5.3: When the gate voltage is varied, the pattern of the SdH oscilla-

tions in the longitudinal resistance Rxx is modulated. (The traces

are offset for clarity.)

From Shubnikov-de Haas oscillations in the longitudinal resistance, which was

measured for various gate voltages (Fig. 5.3), the occupation of the Rashba-split

subbands is inferred by an analysis of the Fourier spectrum. Over a wide range, the

total carrier density depends linearly on the gate voltage with

n(Vg) = n(Vg = 0) + 0.182 · 1012 cm−2

V
· Vg, (5.17)

where n(Vg = 0) = 2.29 · 1012 cm−2 is the intrinsic carrier density (inset of Fig. 5.4).

A 8×8 k·p band structure calculation was used to fit the SdH oscillations in order to

determine Rashba splitting as a function of gate voltage. The voltage corresponding
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to ∆R = 0 was estimated by interpolation as Vg(∆R = 0) = (−2.57± 0.02) V. The

deviation of the point of symmetry from Vg = 0 is inconsistent with a symmetrically

doped sample, but can be explained either by an unintentional asymmetry of the

doping or by the insulator on top of the structure, which can affect the potential in

the barriers as well due to the introduction of interface states. In addition, defects

induced by the e-beam lithography can result in additional doping. It turned out

that ∆R scales linearly with the gate voltage for the range −6.5 V ≤ Vg ≤ 0 V:

∂∆R

∂Vg

= 3.15
meV

V
. (5.18)
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Figure 5.4: The Rashba splitting ∆R can be tuned through zero by the gate

voltage. The empty circles represent the results of the theoretical

fits to the experimental data for the respective gate voltages. The

inset shows the population of the Rashba split subbands in the

vicinity of the point of symmetry.

As can be seen in Fig. 5.4, the Rashba splitting can be tuned from -15 meV to

+10 meV. While negative energies are not reasonable in general, this notation is
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used here to identify the two distinct regimes with finite Rashba splitting on either

side of the point of symmetry. The sign change can be understood as an indication

of the reversal of the electric field causing the Rashba effect (cf. Sec. 1.2). The

precise control of the Rashba splitting via the applied gate voltage is necessary for

a quantitative study of the phase effects induced by spin-orbit interaction.

In the vicinity of the symmetry point, i.e., for Vg ≈ −2.57 V, pure Aharonov-

Bohm oscillations are expected, because the influence of the SO interaction on the

electron phase can be neglected. The oscillation pattern for Vg = −2.57 V is shown

in Fig. 5.5. The periodicity of the oscillations of 1.3 mT is in good agreement with
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Figure 5.5: The Aharonov-Bohm oscillations are plotted for Vg = −2.57 V,

i.e., ∆R ≈ 0.

the ring radius of 1 µm (cf. Eq. 5.8). The background conductance of approximately

23 e2/h indicates that several modes are transmitted through the ring. This can be

attributed to the width of the leads of 300 nm, which is several times larger than

the Fermi wavelength λF ≈ 20 nm.
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Even though the SO interaction is supposed to be negligible, a distinct beating

pattern is observed. In Ref. 33, a similar behavior has been considered as evidence

of the existence of the SO Berry phase. However, a modulation of the oscillation

amplitude can also originate from the finite width of the ring structures. In a two-

dimensional system, several modes are transmitted and, consequently, contribute to

the total conductance. Depending on the strength of the B-field, the transmission

of the individual modes varies, e.g., due to different scattering probabilities. This

will result in a modulation of the amplitude of the conductance oscillations and in

the occurrence of seemingly irregular behavior, e.g., at B = ±7.5 mT.

If the gate voltage is varied at B = 0, oscillations of the conductance are ob-

served (Fig. 5.6). The amplitude of the oscillations is comparable to the one for the

AB oscillations in finite magnetic field. Beside SO-related phase effects, a different
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Figure 5.6: Oscillations of the conductance are observed as a function of

gate voltage for B = 0. The background conductance has been

subtracted in this figure.
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length of the two arms can cause such oscillations. In the case of an asymmetric

ring structure, a phase difference depending on the wave vector ki and the length li

of the individual arms will appear:

ϕasymm = k1l1 − k2l2, (5.19)

where i = 1, 2 denotes the different arms. It can be assumed that the wave vector

in both arms is identical, i.e., k1 = k2 = k and ϕasymm = k ·∆l. A variation of k by

a modulation of the density n will yield a phase shift

∆ϕasymm =
∂ϕ

∂n
∆n =

∂ϕ

∂k

∂k

∂n
∆n = ∆l

√
π

2n
∆n. (5.20)

For a simple estimation of ∆ϕasymm, the length difference between the two electron

pathes is assumed to be 300 nm, which is the width of the leads. Taking a carrier

density of n = 2 ·1012 cm−2 and the dependence n(Vg) as given in Eq. 5.17, a change

of the gate voltage by approximately 1 V is required to achieve a phase shift of 2π.

Hence, the effect of an asymmetry of the ring structure can be neglected for the

voltage range depicted in Fig. 5.6.

It is more likely that the oscillations are caused by the variation of the SO

interaction via the gate voltage and, consequently, clearly indicate the presence of

SO-related phase effects. It was shown in Ref. 16 that the conductance modulation

in a one-dimensional ring due to the SO interaction is given by

G =
e2

h

[
1 + cos

(
2πr

αm∗

h̄2

)]
. (5.21)

However, no periodic behavior is observed in our samples due to the non-parabolic

energy dispersion of the HgTe QWs. As can be seen in Fig. 1.5, the Rashba splitting

is not proportional to k and can not be described by a constant parameter α as used

in the above model. Thus, a linear dependence of ∆R on Vg does not necessarily

come along with a linear variation of α, and consequently non-periodic conductance

oscillations can appear as a function of gate voltage.

A more comprehensive picture of phase effects in the investigated ring structures
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Figure 5.7: When both external magnetic field and gate voltage are varied, a

complex interference pattern is obtained; yellow and blue regions

indicate large and low conductance, respectively.

is obtained, when both magnetic field and gate voltage are varied. The resulting

interference pattern is plotted in Fig. 5.7, which shows a complex dependence of the

oscillations on the experimental parameters. Close to the gate voltage corresponding

to a symmetric QW potential, i.e., ∆R(Vg) = 0, no effect of the gate voltage on the

AB oscillations is expected. From this consideration, the point of symmetry can be

located precisely at Vg = −2.568 V, which is in excellent agreement with the inter-

polation of the data obtained from the SdH oscillations (cf. Fig. 5.4). As stated

above, the phase shift due to the SO Berry phase is limited to ±π, whereas the

dynamic part of the AC phase continuously increases with the SO strength. Thus,

the observed variation of the interference pattern can be attributed to the latter

contribution. The dynamic AC phase depends on the orientation of the electron

spin with respect to the total magnetic field (Eqs. 5.15 and 5.16) and therefore leads

to a splitting of the AB-type oscillations, when the SO interaction is tuned by the

gate voltage. Hence, the observed interference pattern is in qualitative agreement

with the behavior expected from Eqs. 5.13 - 5.16.
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The interference pattern as a function of both external magnetic field and SO in-

teraction was modeled theoretically in order to verify that the experimental re-

sults are indeed a consequence of the AC phase. The numerical calculations were

performed by E. Hankiewicz and J. Sinova5. Their calculations are based on the

Landauer-Büttiker formalism [124]. The Hamiltonian for a 2D ring structure with

SO interaction in a perpendicular magnetic field is given by

Ĥ =
(~p− e ~A)2

2m∗ +
α

h̄
[~σ × (~p− e ~A)]z +

1

2
gµBσzB + Ĥconf + Ĥdis, (5.22)

where the terms on the right hand side are the kinetic energy, the Rashba SO in-

teraction, the Zeeman term, the confinement energy and the disorder, respectively.

The conductance of 1D ring structures can be determined analytically [16,125–127].

Since the finite width of our devices allows for multichannel transport, a rather

simple 1D model is not sufficient. For the modeling of our devices, a concentric

tight-binding approximation is used to include multichannel effects (Fig. 5.8).

Figure 5.8: The 2D ring structure is modeled using a concentric tight-binding

approximation.

For transport due to a single channel, a chessboard-like pattern in conductance is

observed as a function of magnetic field and Rashba splitting [Fig. 5.9 (a)]. The con-

ductance varies between 2 e2/h for full transmission, i.e., constructive interference

5 At that time, both were member of the Physics Department at Texas A&M University, Austin.
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Figure 5.9: (a) For a single channel, a chessboard-like interference pattern is

obtained. (b) When the number of coherently conducting chan-

nels is increased (here: six modes), the pattern becomes irregular.

Pink and red (cyan and blue) indicate high (low) conductance in

(a) and (b), respectively.

of the two paths, and zero, i.e., no transmission due to destructive interference.

From comparison to the experimental results and considerations given above, it

is obvious that more than one channel is involved in transport through the device.

For the calculation presented in Fig. 5.9 (b), a ring with ten modes was assumed,

where six modes conduct coherently, i.e., six channels contribute to the interference

pattern, while the remaining four only give rise to a constant background. Since

several channels are present, scattering can occur between the individual modes and

suppress the interference. No distinct oscillations are obtained but a rather complex

pattern. The interference pattern is expected to become more irregular when the

number of coherent modes is further increased.

The distinct interference pattern, which has been observed in our experiments,

strongly indicates that only one channel transmits coherently. However, several

additional modes must be present in the ring, resulting in the observed background

in conductance of G ≈ 23 e2/h. The incoherent transport by these channels may

be caused by impurities and imperfections in the ring structure, e.g., due to the

lithographical process.
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For the theoretical modeling, a ring with six channels was assumed, where only

one mode conducts coherently. Even though the conductance of approx. 23 e2/h

indicates that more than six modes are involved in transport, the model provides

reasonable results. While scattering between coherent and non-coherent channels

will affect the interference pattern, the exact number of non-coherent channels is

not crucial for the modeling, since coherence will be destroyed by any process of

inter-mode scattering. Therefore, a variation of the number of incoherent modes

will mainly affect the background conductance.
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Figure 5.10: The conductance as a function of magnetic field and Rashba

splitting was calculated (a) for ∆R ≈ 0 and (c) for finite SO

interaction. In both cases, the theoretical results are in good

agreement with the experimental observation in the correspond-

ing gate voltage range shown in (b) and (d), respectively.

For a very low Rashba splitting, the contribution of the SO interaction to the

electron phase can be neglected and oscillations solely due to the AB effect are ob-

served. This situation is reflected in the calculations for |∆R| ≤ 5 µeV [Fig. 5.10 (a)].
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The prediction agrees well with the experimental results around the point of sym-

metry Vg = −2.568 V [Fig. 5.10 (b)]. The variation of the Rashba splitting in the

theoretical data complies well with the voltage range shown in the experimental fig-

ure if the dependence ∆R(Vg) determined from the analysis of the SdH-oscillations

is taken into account (cf. Eq. 5.18).

Fig. 5.10 (c) shows the theoretical calculation for finite Rashba splitting. The

AB oscillations are shifted diagonally, because the AC phase increases with the

Rashba parameter α. It can be seen in Eqs. 5.15 and 5.16 that the sign of the AC

contribution to the phase depends on the orientation of the electron spins in the two

arms of the ring. Thus, the undisturbed AB oscillations, as they are obtained for

vanishing SO interaction, split and shift towards lower and higher magnetic fields,

respectively, when the Rashba splitting is increased. As for the calculations with

∆R ≈ 0, the theoretical model matches the experimental observation [Fig. 5.10 (d)].

The depicted voltage range corresponds directly to the variation of the Rashba split-

ting used for the calculations without any additional adjustable parameter.

In this section, the transmission of ring structures fabricated from HgTe-based QWs

has been investigated as a function of magnetic field and gate voltage. Aharonov-

Bohm-like oscillations are observed in an external magnetic field. They can be used

to analyze phase effects due to the spin-orbit interaction in the samples. A tuning of

the Rashba splitting yields a distinct modulation of the interference pattern. Since

a spurious effect due to an unintentional asymmetry of the ring structure can be

ruled out, the modulation of the AB-like oscillations can be attributed to phase

contributions induced by the SO interaction. While the variation of the SO Berry

phase is limited, the dynamical part of the AC phase increases continuously with the

Rashba strength and, consequently, gives rise to the observed interference pattern.

This interpretation is confirmed by comparison of the experimental data to theoret-

ical calculations. Thus, the experimental results provide the first direct observation

of the dynamical AC phase in semiconductor structures.
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5.4 Measurements in high magnetic field

While the measurements in the previous section were limited to small magnetic fields

B ¿ 1 T, the analysis of the Aharonov-Bohm-type oscillations will be extended to

much larger fields in this section. The experiments were performed on similar HgTe-

based ring structures with an average radius r = 1 µm and a width w = 300 nm

of the leads. In case of large fields, phase effects can be interpreted in an easier

way, because the effective SO-field Beff can be neglected in comparison to the much

larger external field Bext. The angle θ, which enters both the AC phase and the SO

Berry phase (cf. Eqs. 5.13 - 5.16), tends towards zero and the phase contributions

depending on θ vanish. Thus, occurring oscillations are purely due to the AB effect.
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Figure 5.11: The longitudinal resistance Rxx is measured across the ring

structure. The inset shows the AB oscillations for small mag-

netic fields.

Fig. 5.11 shows the magneto-resistance of the ring structure. Clear SdH oscil-

lations are observable for B > 2 T and a carrier density of 2.3 · 1012 cm−2 can be

deduced from the Fourier transform. The position of the SdH peaks is in excellent
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agreement with the data obtained from the attached Hall bar. Unlike for measure-

ments at the Hall bar, Rxx stays finite in the minima of the SdH oscillations even

for large magnetic fields, which indicates scattering between the counter-propagating

edge states. This can be explained by the lower spatial separation of the edge states

due to the reduced width of the leads in the ring compared to the Hall bar [cf.

Fig. 5.2 (b)]. Superimposed on the SdH signal, periodic oscillations can be observed

for all magnetic fields due to the AB effect. For B around zero, the oscillation fre-

quency of fAB ≈ 770 T−1, which corresponds to a period of 1.3 mT, agrees with the

ring radius of 1 µm (see inset of Fig. 5.11). When the magnetic field is increased,

the frequency of the AB oscillations decreases (Fig. 5.12). The data points for the

individual B-field values were obtained from the respective Fourier transform of the

AB oscillations in the range B ± 0.5 T. The plotted traces were obtained for gate

voltages from -2.5 V to +3.0 V. In this voltage range, the Rashba splitting is tuned

from approximately zero to 10 meV (cf. Fig. 5.4). Despite the large variation of the
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Figure 5.12: The frequency of the AB oscillations is plotted as a function of

the magnetic field for various gate voltages.
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SO interaction, all traces coincide within the given accuracy. This indicates that a

effect due to SO interaction, albeit possibly present, is negligible. The frequency of

the AB oscillations is given by

fAB = (∆B)−1 =
r2πe

h
. (5.23)

Accordingly, a decrease of the frequency may be attributed to a local attenuation of

the external magnetic field. This might originate from an effective magnetic field,

which is oriented anti-parallel to the external field. However, the effective magnetic

field, which is obtained from the experimentally variation of the oscillation frequency,

rises quadratically with the external field up to Beff ≈ 0.8 T for Bext = 6 T. Such

large fields are unrealistic and can be ruled out as an origin of the decreasing AB

frequency.

A decrease of the area enclosed by the electron orbit, which is generally possible

for leads with a finite width w, can also explain the observed behavior. Then, the

electron paths can be shifted within the lithographical boundaries of the device. If

a homogeneous behavior for the entire sample is assumed, the electron orbit can be

described by an effective radius reff . In our devices with an average radius r = 1 µm

and a width w = 300 nm, the effective radius of the electron orbit is limited to

(r − w/2) = 0.85 µm ≤ reff ≤ (r + w/2) = 1.15 µm.

From the data presented in Fig. 5.11, the AB oscillations were extracted by sub-

tracting the SdH background from the total signal. The resulting oscillatory signal

was used to determine the AB frequency. The deduced effective radius (Eq. 5.23)

decreases with increasing magnetic field (Fig. 5.13). For large fields B > 8 T, the

effective radius saturates close to 0.85 µm, which corresponds to the value of the

inner radius of the ring structure. Thus, the data is consistent with a shift of the

electron path for finite magnetic field.

An explanation for the decreasing effective radius can be inferred from the

magneto-transport measurements presented in Fig. 5.11. For low magnetic fields

B < 2 T, no SdH oscillations are observable. This indicates that the electron paths
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Figure 5.13: The effective radius of the electron orbit decreases with increas-

ing magnetic field.

are spread over the entire width of the sample. For larger fields, SdH oscillations

dominate the signal. This indicates that transport occurs mainly through edge

channels.

Independent of the exact number of edge channels, the counter-propagating edge

states do not interact in an ideal sample (Fig. 5.14). The states at the outer edge

(dotted lines) connect the leads attached to the ring and are consequently responsi-

ble for the transport through the device. In fact, because of the oppositely directed

propagation of these states, transport occurs only through one of the arms, which

makes interference impossible. In contrast, the states at the inner edge (dashed line)

form closed loops, allowing for full circular movement around the ring. Since these

states do not interact with the states at the outer edge, they are not involved in

transport. Thus, no AB oscillations are expected when transport occurs by undis-

turbed edge states.
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Figure 5.14: The edge state transport through a ring structure is schemati-

cally illustrated. The red line indicates a possible event of scat-

tering between states at the inner and outer edge, respectively.

However, the non-vanishing longitudinal resistance indicates scattering between

counter-propagating edge states, as stated above. Since an interaction of the inner

and outer edge is possible, the states at the inner edge can be seen as a ring structure

coupled to the transmitting states at the outer edge. The phase acquired by electrons

circling the closed loop at the inner edge manifests itself in the transmission through

the ring by the observed AB oscillations for high fields.

When the magnetic field is increased, the average position of the occupied edge

states at the inner edge will be shifted towards the center of the ring. Hence, the

effective radius will decrease, as observed in the experiments. Finally, all states will

be located as close to the inner edge as allowed by the edge potential, resulting in a

saturation of the effective radius at reff ≈ r − w/2 = 0.85 µm.

Camino et al. studied transport through a two-dimensional island with r = 1.3 µm

in high magnetic fields [128]. In the narrow leads, which were used as contacts

to the island, scattering between the counter-propagating edge states was possible.

Thus, a closed loop is formed by the channels at the outer edge of the device and

interference is possible. In their experiments, distinct AB oscillations corresponding

to the enclosed magnetic flux were observed. The sample layout is comparable to
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our devices if the inner edge states are neglected. However, there is no indication

of oscillations due to interference of outer edge states in our experiments. While

scattering between states located at the inner and the outer edge, respectively, can

occur within the entire ring structure, the counter-propagating states at the oppo-

site outer edges can only interact directly in the narrow leads attached to the ring

[cf. Fig. 5.2 (b)]. Thus, the interference effect due to the inner loop is expected

to be much larger than the one to the outer edge states and the Fourier transform

peak corresponding to the latter orbit can be obscured by the larger peak due to

the inner loop and the second harmonic of this peak, which also exists.

AB-type oscillations in high magnetic field were studied in this section. It was

shown that the oscillation period increases with magnetic field, which can be at-

tributed to a decreasing effective radius of the electron orbit. This can be explained

by the edge states appearing in high magnetic field. Then, the edge states at the

inner edge of the ring structure form a closed loop with B-dependent radius, being

sensitive to the enclosed flux. Due to the narrow width of the leads, states at the

inner and outer edge, respectively, can interact. Hence, the AB effect for the elec-

trons circling at the inner edge is observable in the transmission through the ring,

which is mainly obtained by the states at the outer edge.

The scattering between the inner and outer edge indicates potential fluctuations

within the arms of the ring. These potential fluctuations can also suppress the

coherence of transport for B = 0. This supports the assumption made in the previ-

ous section that only a few coherent modes exist, whereas many channels transmit

incoherently.

5.5 Summary

Quantum mechanically, the phase of a particle wave function can be affected by

many external parameters. Interference experiments have been used to demonstrate

the phase difference between the individual partial waves. Such experiments were



142 5. Transport in ring structures

performed on ring structures fabricated from HgTe QW samples to study phase

effects present in this material. Like for various other semiconductor materials,

Aharonov-Bohm-like oscillations were found in a magnetic field, which was applied

perpendicular to the ring plane. These oscillations were used as a tool to identify

other phase effects. In the presence of spin-orbit interaction, two additional contri-

butions to the electron phase appear. The first one is the Aharonov-Casher phase,

which is the electromagnetic dual to the AB phase. For the AC effect, the magnetic

moment of a particle, e.g., the electron spin, couples to a vector potential of an

electric field, e.g., due to the Rashba effect. Furthermore, the SO interaction gives

rise to an effective magnetic field in the ring plane, which modulates the external

magnetic field. The smooth variation of the orientation of the total magnetic field

yields the geometric SO Berry phase. However, this phase effect is dominated by

the AC phase and not directly observable.

In the absence of the external magnetic field, pure AC oscillations can be ob-

served. Due to the non-linear dependence of the Rashba splitting on the wave

vector k, no periodic behavior is obtained as a function of gate voltage. When the

spin-orbit interaction is varied via the gate voltage for finite magnetic field, the

maxima of the AB oscillations are split and shifted. The complex interference pat-

tern can be attributed to the increasing contribution by the AC phase, which has

opposite sign for parallel and anti-parallel orientation of the spin with respect to the

magnetic field. This interpretation is confirmed by theoretical calculations, where a

ring structure with one coherent mode and five additional non-coherent modes was

assumed. While only the coherent mode contributes to the oscillatory signal, scat-

tering between all modes is possible, affecting both the total conductance and the

amplitude of the oscillations. In this model, an excellent agreement with the exper-

imental observation is achieved. Thus, the presented results provide the first direct

observation of the dynamical part of the AC phase. It should be mentioned that

an influence of the SO interaction on the AB oscillations was observed recently for

other materials with substantial SO interaction by several groups as well [129–131].

The most distinct features are reported in Ref. 130, where several periods of the
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AC effect were demonstrated for an array of rings. In these experiments, a regular

oscillation pattern was obtained as a function of gate voltage.

A surprising result was obtained for measurements in high magnetic fields, where

AB oscillations were observed up to 16 T. When B increases, the frequency of

the oscillations decreases. This is attributed to a decrease of the effective radius

of the electron orbit. When the transport is dominated by edge states for large

magnetic fields, only edge states passing one of the arms effectively will contribute

to transport. A closed electron orbit exists due to the states at the inner edge of the

ring. Thus, electrons in this loop enclose a magnetic flux and acquire an AB phase.

If this orbit is coupled to the outer edge states due to the spatial overlap of the

counter-propagating edge states, AB oscillations are observed as a superposition on

the SdH oscillations in the longitudinal resistance. For increasing B, the inner edge

states are shifted towards the center of the ring, which results in a decreasing effective

radius. For B > 8 T, the inner edge states are finally located at the lithographical

edge of the device. In this case, the effective electron radius corresponds to the inner

radius of the device and does no longer depend on the strength of the external field.





Summary and Outlook

Within the scope of this thesis, spin related transport phenomena have been in-

vestigated in HgTe/Hg0.3Cd0.7Te quantum well structures. This material exhibits

peculiar band structure properties, which result in a strong spin-orbit interaction

of the Rashba type. An inverted band structure, i.e., a reversed ordering of the

energy states in comparison to common semiconductors, is obtained for quantum

well layers above a critical thickness. Furthermore, the band structure properties

can be controlled in the experiments by moderate gate voltages. Most prominently,

the type of carriers in HgTe quantum wells can be changed from n to p due to the

narrow energy gap.

This unique transition is, in combination with the inverted band structure, the basis

for the demonstration of a new state of matter, the Quantum Spin Hall state. This

novel state is characterized by the existence of two one-dimensional spin-polarized

edge states, while the Fermi level in the bulk is in the energy gap. In the QSH state,

these two states counter-propagate at each edge, but elastic scattering is suppressed

by time reversal symmetry. This results in a quantized conductance for both spin

and charge transport. A charge conductance close to the expected quantized value

of 2e2/h has been observed for samples with characteristic dimensions below the

inelastic mean free path. For larger samples, potential fluctuations have to be con-

sidered as a source of backscattering, which reduces the conductance. Backscattering

can be caused by inelastic scattering of the QSH edge states and local conducting

regions, where the counter-propagating edge states equilibrate. While temperature-

dependent measurements have indicated that the latter mechanism is presumably

145
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dominant, a detailed analysis of the scattering mechanisms can be seen as a future

task. Studies of the length dependence of the QSH states may provide new insight.

Strong indication for the edge state transport was found in two distinct ways:

First, the conductance of the QSH state is independent of the sample width. Second,

a clear non-local signal emerges for the insulating regime. While both results imply

edge state transport, the presented transport experiments can not provide absolute

evidence of this concept. Thus, it is important to employ a method, which is suitable

for a direct demonstration. In this context, a spatial mapping of the current flow in

the QSH state might be a reasonable approach, e.g., by scanning gate measurements.

The protection of the QSH edge states by time reversal symmetry was verified by

experiments in magnetic field. If the time reversal symmetry is broken by a B-field,

elastic scattering becomes possible and conductance is significantly suppressed. The

dominant mechanism is an orbital effect in a perpendicular field, while a smaller

Zeeman-like effect is present for any field direction. For large perpendicular fields, a

re-entrant quantum Hall state appears. This unique transport property is directly

related to the non-trivial insulating state, which is the basis of the QSH effect.

In our experiments, the existence of the QSH state was successfully demon-

strated for the first time and the presented results provide clear evidence for the

charge transport properties of the QSH state. However, the spin properties are

more difficult to address. This might be achieved in transport measurements by in-

corporating spin-sensitive barriers or, in different experimental approaches, by using

optical methods or nano-SQUID techniques. Another option for transport exper-

iments takes advantage of the spin Hall effect, which was also studied within this

thesis.

Predominantly, the investigation of the spin Hall effect was motivated by the possi-

bility to create and to detect pure spin currents and spin accumulation by means of

a purely electrical experiment on an H-shaped nanostructures with large SO interac-

tion. It has turned out that the SO splitting of the conduction band with respect to
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the wave vector is too small for an observation of the SHE in the presented devices.

But in contrast, a distinct signal attributed to the SHE has been detected for a

p-type sample, where the k-difference is significantly larger. These results provide

the first purely electrical demonstration of the SHE and SHE−1 in a semiconductor

system.

A possibly more direct way to study the spin Hall effects, and spin transport in

general, opens up when the spin properties of the QSH edge states are taken into

account: If the two legs of an H-shaped device are controlled separately, one of them

can be tuned to the QSH regime, while the other one is either n- or p-conducting.

In such configuration, the spin-polarized QSH edge channels can be used either as

spin-selective voltage probes or for the injection a pure spin current, depending on

the actual choice of the current path through the device. If a spin-polarization of the

QSH states is assumed in accordance to the theoretical prediction, the experimental

results indicate the existence of both intrinsic SHE and SHE−1 independently of

each other. However, further studies are required to rule out spurious effects and

confirm the above interpretation.

When the QSH states injected a spin-polarized current into a conducting region,

the precession of the spin due to the effective Rashba field has been observed. Both

the spin-polarized injection and the manipulation of the spin orientation might be

used for the realization of a spin-FET. Conveniently, no ferromagnetic contacts are

required in such a sample, which is an obstacle of the realization of the initial pro-

posal by Datta and Das.

Another approach to overcome the usage of ferromagnetic contacts for a spin-based

FET relies on the interference in a ring structure. The transmission of the spin in-

terference device proposed by Nitta et al. is governed by the Aharonov-Casher phase

and the Berry phase, both due to the SO interaction. While the former is caused by

the electric Rashba field, the latter appears due to the modulation of the magnetic

field by the effective magnetic field. In the presented experiments, devices similar

to the proposed ones were studied. The complex interference pattern of AB-like
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oscillations as a function of external magnetic field and gate voltage clearly demon-

strates the existence of phase effects induced by spin-orbit interaction. The observed

dependence of the interference pattern on the Rashba splitting is attributed to the

Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved.

This interpretation is confirmed by theoretical calculations, where multi-channel

transport through the device has been assumed in agreement with the experimental

results. Thus, our experiments provide the first direct observation of the AC effect

in semiconductor structures. If such samples are supposed to be used as a spin-

interference FET like initially proposed, transmission has to be totally suppressed

for destructive interference. However, this is only possible, if only a single mode

exists in the ring, which is difficult to realize in HgTe samples.

In conclusion, HgTe quantum well structures have proven to be an excellent template

for studying spin-related transport phenomena: The QSHE relies on the peculiar

band structure of the material and the existence of both the SHE and the AC ef-

fect is a consequence of the substantial spin-orbit interaction. While convincing

results have been obtained for the various effects, several questions can not be fully

answered yet. Some of them may be addressed by more extensive studies on the

devices discussed above. Other issues, however, ask, e.g., for further advances in

sample fabrication or new approaches by different measurements techniques. Thus,

future experiments may provide new, compelling insights for both the effects dis-

cussed in this thesis and, more generally, other spin-orbit related transport prop-

erties. Furthermore, the above effects may find application in various spintronic

devices.



Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene an

HgTe/Hg0.3Cd0.7Te-Quantentrogstrukturen untersucht. Dieses Materialsystem weist

besondere Eigenschaften in der Bandstruktur auf, die zu einer starken Spin-Bahn-

Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anord-

nung der Energiezustände im Quantentrog im Vergleich zu herkömmlichen Halb-

leitermaterialien, ergibt sich, wenn die Dicke der Quantentrogschicht einen kritischen

Wert überschreitet. Außerdem können die Bandstruktureigenschaften im Experi-

ment durch moderate Gatespannungen gezielt beeinflusst werden. Eine bedeutende

Rolle spielt dabei, dass die Art der Ladungsträger im Quantentrog von n nach p

verändert werden kann.

Dieser einzigartige Übergang bildet - in Zusammenspiel mit dem Auftreten der

invertierten Bandstruktur - die Grundlage für den Nachweis eines neuartigen Zu-

stands, des Quanten-Spin-Hall-(QSH-)Effekts. Dieser Zustand zeichnet sich dadurch

aus, dass zwei eindimensionale spinpolarisierte Randkanäle existieren, während das

Fermi-Niveau im Probeninneren in der Energielücke liegt. Im QSH-Zustand breiten

sich die Ladungsträger in diesen beiden Randkanäle in entgegengesetzte Richtun-

gen aus. Elastische Streuprozesse zwischen diesen Kanälen sind allerdings aufgrund

der Zeitumkehrinvarianz verboten. Dies führt zu einer quantisierten Leitfähigkeit

sowohl im Ladungs- als auch im Spintransport. Für den Ladungstransport wurde

eine Leitfähigkeit nahe des erwarteten quantisierten Wertes von 2e2/h gemessen,

falls die charakteristischen Probenlängen nicht über die mittlere inelastische freie

Weglänge hinausging. Für größere Proben müssen allerdings Potentialfluktuatio-
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nen berücksichtigt werden. Diese können Rückstreuung hervorrufen und verringern

daher die Leitfähigkeit. Die Rückstreuung kann dabei durch inelastische Streu-

prozesse zwischen den gegenläufigen QSH-Kanälen verursacht werden oder durch

das Auftreten von lokalen, leitenden Bereichen, in denen sich das Potential der

QSH-Kanäle angleicht. Temperaturabhängige Messungen legen nahe, dass der letz-

tere der genannten Streumechanismen dominiert. Eine detaillierte Untersuchung

der Streumechanismen, die in diesem Punkt endgültige Klarheit verschaffen kann,

steht allerdings noch aus. Dabei könnte die Ermittlung der Längenabhängigkeit der

QSH-Zustände neue Erkenntnisse liefern.

Deutliche Anzeichen dafür, dass der Transport in der Tat in Randkanälen er-

folgt, wurden in zwei voneinander unabhängigen Experimenten gefunden: Zum einen

hängt die Leitfähigkeit nicht von der Breite der Proben ab. Zum anderen wird ein

deutliches nicht-lokales Signal sichtbar, wenn die Probe in das QSH-Regime gebracht

wird. Obwohl beide Ergebnisse deutliche Anzeichen für Transport mittels Rand-

kanälen liefern, kann kein endgültiger Beweis erbracht werden. Es ist daher wichtig,

geeignete Methoden für einen direkten Nachweis zu finden und anzuwenden. Eine

sinnvolle Herangehensweise wäre in diesem Zusammenhang eine räumlich aufgelöste

Abbildung des Stromflusses in der Probe, wie es z.B. bei Scanning Gate-Messungen

möglich ist.

Die Erhaltung des Transports in den QSH-Kanälen aufgrund der Zeitumkehr-

invarianz wurde durch Messungen im Magnetfeld bestätigt. Wenn die Zeitumkehr-

symmetrie durch das Anlegen eines externen B-Feldes gebrochen wird, treten elas-

tische Streuprozesse auf und die Leitfähigkeit verringert sich deutlich. Der dominie-

rende Mechanismus ist dabei ein orbitaler Effekt, der durch ein senkrechtes Mag-

netfeld verursacht wird. Darüber hinaus existiert ein Zeeman-artiger Effekt für jede

Ausrichtung des Feldes. Für starke Felder senkrecht zur Ebene der zweidimen-

sionalen Elektronengases zeigt sich ein wieder-eintretender Quanten-Hall-Zustand.

Dieses einzigartige Transportphänomen ist direkt mit dem nicht-trivialen isolieren-

den Zustand verknüpft, der die Grundlage des QSH-Effektes bildet.
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In unseren Experimenten wurde zum ersten Mal die Existenz des QSH-Zustandes

nachgewiesen. Dabei ermöglichen die Ergebnisse klare Aussagen über den Ladungs-

transport in den Randkanälen. Erkenntnisse über den Spintransport sind allerdings

wesentlich schwieriger zu erzielen. In Transportmessungen könnten spinsensitive

Barrieren neue Aufschlüsse liefern; bei einer anderen experimentellen Herangehens-

weise könnten auch optische Methoden oder Nano-SQUID-Techniken eingesetzt wer-

den. Eine weitere Möglichkeit im Rahmen von Transportexperimenten nutzt den

Spin-Hall-Effekt aus, der ebenfalls in dieser Arbeit untersucht wurde.

In erster Linie waren die Messungen zum Spin-Hall-Effekt (SHE) durch die Aussicht

motiviert, reine Spinströme und eine Spinanreicherung in einem rein elektrischen

Experiment an H-förmigen Nanostrukturen mit starker Spin-Bahn-Wechselwirkung

hervorzurufen und nachzuweisen. Es zeigte sich, dass die Spin-Bahn-Aufspaltung

des Leitungsbandes hinsichtlich des Wellenvektors zu schwach ist, um den SHE in

den untersuchten Proben zu beobachten. In p-leitenden Strukturen mit wesentlich

größerer k-Aufspaltung konnte hingegen ein deutliches Signal detektiert werden,

das auf den SHE zurückzuführen ist. Diese Ergebnisse stellen den ersten, rein elek-

trischen Nachweis des SHE und des SHE−1 in einem Halbleitermaterial dar.

Ein möglicherweise direkterer Zugang zur Untersuchung der Spin-Hall-Effekte,

und auch des Spintransports im Allgemeinen, ergibt sich, wenn die Spineigenschaften

der QSH-Randkanäle berücksichtigt werden: Wenn die Transporteigenschaften der

beiden Arme einer H-förmigen Struktur unabhängig voneinander kontrolliert wer-

den, kann einer der beiden Arme in das QSH-Regime versetzt werden, während

der andere n- oder p-leitend ist. In einer solchen Probenkonfiguration können die

QSH-Randkanäle - abhängig vom exakten Verlauf des Stromes durch die Probe -

entweder als spinselektive Spannungskontakte oder zur Injektion eines reinen Spin-

stroms verwendet werden. Wenn eine Spinpolarisation der Randkanäle entsprechend

der theoretischen Modelle angenommen wird, weisen die experimentellen Ergebnisse

sowohl den SHE als auch den SHE−1 unabhängig voneinander nach. Es sind aller-

dings noch weitere Messungen auf diesem Gebiet nötig, um anderweitige Ursachen
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für die beobachteten Effekte ausschließen zu können und die obige Interpretation zu

bestätigen.

Bei der Injektion eines spinpolarisierten Stroms aus den QSH-Kanälen in ein p-

leitendes Gebiet konnte die Spinpräzession aufgrund des Rashbaeffektes beobachtet

werden. Sowohl die spinpolarisierte Injektion als auch die gezielte Steuerung der

Spinausrichtung können für die Verwirklichung eines Spin-Feldeffekttransistors

(FET) verwendet werden. Günstigerweise kann dann auf ferromagnetische Metall-

kontakte verzichtet werden, die bisher eine Umsetzung des ursprünglich von Datta

und Das vorgeschlagenen Modells verhindert haben.

Ein weiterer Ansatz, der die Verwendung von ferromagnetischen Kontakten in einem

auf dem Spin basierenden FET überflüssig macht, beruht auf der Interferenz in

Ringstrukturen. Die Transmission in einem Spin-Interferenz-Bauteil, wie es von

Nitta et al. vorgeschlagen wurde, wird über die Aharonov-Casher-(AC)-Phase und

die Berry-Phase gesteuert, die beide aufgrund der Spin-Bahn-Wechselwirkung auf-

treten. Während erstere durch das elektrische Rashba-Feld verursacht wird, tritt

letztere aufgrund einer Modulation der Magnetfeldausrichtung durch das effektive

Feld der Spin-Bahn-Wechselwirkung auf. Der Aufbau der hier untersuchten Proben

ähnelt dem ursprünglich vorgeschlagenen Design. Das komplexe Interferenzmuster

der AB-ähnlichen Oszillationen, das sich in Abhängigkeit vom externen Magnetfeld

und der Gatespannung ergibt, weist eindeutig Phaseneffekte nach, die durch die

Spin-Bahn-Wechselwirkung hervorgerufen werden. Die beobachtete Abhängigkeit

des Interferenzmusters von der Rashba-Aufspaltung wird der Aharonov-Casher-

Phase zugeordnet, wohingegen Effekte aufgrund der Berry-Phase nicht aufgelöst wer-

den können. Diese Interpretation wird durch theoretischer Berechnungen bestätigt,

bei denen - in Übereinstimmung mit den experimentellen Ergebnissen - Transport

mittels mehrerer Moden angenommen worden ist. Somit liefern unsere Experi-

mente den ersten direkten Nachweis des AC-Effektes in Halbleiter-Strukturen. Wenn

solche Strukturen eine Anwendung als Spin-Interferenz-FET finden sollen, wie es

ursprünglich vorgeschlagen wurde, muss im Falle destruktiver Interferenz die Trans-
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mission vollständig unterdrückt werden. Dies ist allerdings nur möglich, wenn nur

eine einzige Mode im Ring vorliegt, was in HgTe-Proben schwer zu erreichen ist.

Abschließend lässt sich festhalten, dass HgTe-Quantentrogstrukturen sich als heraus-

ragendes System erwiesen haben, um spin-bezogene Transportphänomene zu unter-

suchen: Der QSHE beruht auf den besonderen Eigenschaften der Bandstruktur

und sowohl der SHE als auch der Aharonov-Casher-Effekt sind eine Folge der aus-

geprägten Spin-Bahn-Wechselwirkung. Obwohl überzeugende Erkenntnisse im Hin-

blick auf die verschiedenen Effekte gewonnen wurden, sind einige Gesichtspunkte

noch nicht vollständig geklärt. Einige Fragen können eventuell durch umfang-

reichere Untersuchungen an schon vorhandenen Proben beantwortet werden. An-

dere wiederum erfordern z.B. weitere Fortschritte in der Probenherstellung oder

neue Herangehensweisen mittels anderer experimenteller Methoden. Somit können

zukünftige Experimente neue, fesselnde Einsichten mit sich bringen, sowohl in die

hier untersuchten Effekte als auch im Allgemeinen in andere auf der Spin-Bahn-

Wechselwirkung beruhende Transporteigenschaften. Darüber hinaus können die

obigen Effekte in verschiedenartigen spintronischen Bauteilen eingesetzt werden.
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[2] I. Zutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

[3] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees,

Phys. Rev. B 62, R4790 (2000).

[4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,

1019 (2000).

[5] E. I. Rashba, Phys. Rev. B 62, R16267 (2000).

[6] Y. A. Bychkov and E. I. Rashba, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 (1984),

[JETP Lett. 39, 78 (1984)].

[7] M. Khodas, A. Shekhter, and A. M. Finkel’stein, Phys. Rev. Lett. 92, 086602

(2004).
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