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SUMMARY 

Clinical practice in CMR with respect to cardiovascular disease is currently focused on tissue 
characterization, and cardiac function, in particular. In recent years MRI based diffusion 
tensor imaging (DTI) has been shown to enable the assessment of microstructure based on 
the analysis of Brownian motion of water molecules in anisotropic tissue, such as the 
myocardium. With respect to both functional and structural imaging, 7T MRI may increase 
SNR, providing access to information beyond the reach of clinically applied field strengths. 
To date, cardiac 7T MRI is still a research modality that is only starting to develop towards 
clinical application.  

In this thesis we primarily aimed to advance methods of ultrahigh field CMR using 
the latest 7T technology and its application towards the functional and structural 
characterization of the myocardium.  

Regarding the assessment of myocardial microstructure at 7T, feasibility of ex vivo 
DTI of large animal hearts was demonstrated. In such hearts a custom sequence 
implemented for in vivo DTI was evaluated and fixation induced alterations of derived 
diffusion metrics and tissue properties were assessed. Results enable comparison of prior 
and future ex vivo DTI studies and provide information on measurement parameters at 7T.  

Translating developed methodology to preclinical studies of mouse hearts, ex vivo 
DTI provided highly sensitive surrogates for microstructural remodeling in response to 
subendocardial damage. In such cases echocardiography measurements revealed mild 
diastolic dysfunction and impaired longitudinal deformation, linking disease induced 
structural and functional alterations. Complementary DTI and echocardiography data also 
improved our understanding of structure-function interactions in cases of loss of contractile 
myofiber tracts, replacement fibrosis, and LV systolic failure.  

Regarding the functional characterization of the myocardium at 7T, sequence 
protocols were expanded towards a dedicated 7T routine protocol, encompassing accurate 
cardiac planning and the assessment of cardiac function via cine imaging in humans.  

This assessment requires segmentation of myocardial contours. For that, artificial 
intelligence (AI) was developed and trained, enabling rapid automatic generation of cardiac 
segmentation in clinical data. Using transfer learning, AI models were adapted to cine data 
acquired using the latest generation 7T system. Methodology for AI based segmentation was 
translated to cardiac pathology, where automatic segmentation of scar tissue, edema and 
healthy myocardium was achieved.  

Developed radiofrequency hardware facilitates translational studies at 7T, providing 
controlled conditions for future method development towards cardiac 7T MRI in humans.  

In this thesis the latest 7T technology, cardiac DTI, and AI were used to advance 
methods of ultrahigh field CMR. In the long run, obtained results contribute to diagnostic 
methods that may facilitate early detection and risk stratification in cardiovascular disease.  
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ZUSAMMENFASSUNG 

Bei kardiovaskulären Erkrankungen konzentriert sich die kardiale MRT aktuell auf die 
Gewebecharakterisierung und insbesondere die Herzfunktion. In den letzten Jahren hat sich 
gezeigt, dass MRT-basierte Diffusions-Tensor-Bildgebung (DTI) die Beurteilung der 
Mikrostruktur anhand der Analyse der Brownschen Bewegung von Wassermolekülen in 
anisotropem Gewebe, wie dem Myokardium, ermöglicht. In Bezug auf sowohl die funktionelle 
als auch die strukturelle Bildgebung kann 7T MRT SNR verbessern und Information messbar 
machen, die außerhalb der Reichweite von klinisch angewendeten Feldstärken liegt. Heute 
ist kardiale 7T MRT noch eine Forschungsmodalität, die sich Richtung klinischer Anwendung 
entwickelt.  

Hauptziel dieser Dissertation war die Weiterentwicklung von Methoden der kardialen 
Ultrahochfeld-Bildgebung mittels der neuesten 7T-Technologie und dessen Anwendung für 
die funktionelle und strukturelle Charakterisierung des Myokardiums. 

Für die Mikrostrukturcharakterisierung des Myokardiums bei 7T wurde die 
Durchführbarkeit von ex vivo DTI Messungen von Großtierherzen demonstriert. In solchen 
Herzen wurde eine Sequenz evaluiert, die für in vivo DTI etabliert wurde. Zudem wurden 
fixationsbedinge Veränderungen von Diffusionsparametern und Gewebeeigenschaften 
ermittelt. Die Ergebnisse erlauben den Vergleich von bestehenden und zukünftigen ex vivo 
Studien und geben Informationen zu Messparametern bei 7T.  

Der Transfer von etablierten Methoden zu präklinischen Studien in Mäuseherzen 
demonstrierte, dass ex vivo DTI sensitive Marker für Mikrostruktur-Remodeling nach 
Subendokard-Schäden liefern kann. In solchen Fällen zeigte Echokardiographie eine leichte 
diastolische Dysfunktion und eingeschränkte Longitudinalverformung. Komplementäre DTI 
und Echokardiographie-Daten erweiterten zudem unser Verständnis von Struktur-Funktions-
Interaktionen in Fällen von Verlust von kontraktilen Faserbündeln, Fibrose und 
linksventrikulärem, systolischem Versagen.  

Für die funktionelle Charakterisierung des Myokardiums bei 7T wurde ein dediziertes 
7T-Humanprotokoll erarbeitet, welches akkurate Schichtplanung und die Bestimmung der 
Herzfunktion mittels Cine-Bildgebung umfasst.  

Die Herzfunktionsbestimmung erfordert die Segmentierung des Myokards. Hierfür 
wurde künstliche Intelligenz (KI) entwickelt, die eine schnelle, automatische 
Herzsegmentierung in klinischen Daten ermöglicht. Mittels Lerntransfer wurden KI-Modelle 
für Bilder angepasst, die mit der neuesten 7T-Technologie aufgenommen wurden. Methoden 
für die KI-basierte Segmentierung wurden zudem für die Bestimmung und Segmentierung 
von Narbengewebe, Ödemen und gesundem Myokard erweitert.  

Entwickelte Radiofrequenz-Komponenten ermöglichen translationale 7T-Studien, 
welche kontrollierte Bedingungen für die Methodenentwicklung von kardialen 7T-
Anwendungen für den Humanbereich liefern.  

In dieser Arbeit werden die neueste 7T-Technologie, DTI am Herzen und AI genutzt, 
um Methoden der kardialen Ultrahochfeld-Bildgebung weiterzuentwickeln. Langfristig 
erweitern die erzielten Ergebnisse diagnostische Methoden, die Früherkennung und 
Risikoabschätzung in kardiovaskulären Erkrankungen ermöglichen können. 

VI



PUBLICATIONS 

The following list shows all publications I authored and co-authored. 

Original research publications and preprint, which are part of this thesis based on 
several published manuscripts (The medRxiv-preprint has been submitted to MRM; 
* indicates equal contributions):
1) Lohr D, Terekhov M, Weng AM, Schroeder A, Walles H, et al. Spin echo based cardiac

diffusion imaging at 7T: An ex vivo study of the porcine heart at 7T and 3T. PLOS ONE.
2019;14(3):e0213994.
DOI: 10.1371/journal.pone.0213994

2) Lohr D, Terekhov M, Veit F, Schreiber LM. Longitudinal assessment of tissue properties
and cardiac diffusion metrics of the ex vivo porcine heart at 7 T: Impact of continuous
tissue fixation using formalin. NMR in Biomedicine. 2020;33(7):e4298.
DOI: 10.1002/nbm.4298

3) Beyhoff N, Lohr D, Foryst-Ludwig A, Klopfleisch R, Brix S, et al. Characterization of
Myocardial Microstructure and Function in an Experimental Model of Isolated
Subendocardial Damage. Hypertension. 2019;74(2):295-304.
DOI: 10.1161/HYPERTENSIONAHA.119.12956

4) Beyhoff N*, Lohr D*, Thiele A, Foryst-Ludwig A, Klopfleisch R, et al. Myocardial
Infarction after High-Dose Catecholamine Application - A Case Report from an
Experimental Imaging Study. Frontiers in Cardiovascular Medicine. 2020;7(247)
DOI: 10.3389/fcvm.2020.580296

5) Elabyad IA, Terekhov M, Lohr D, Stefanescu MR, Baltes S, et al. A Novel Mono-surface
Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T.
Scientific Reports. 2020;10(1):3117.
DOI: 10.1038/s41598-020-59949-6

6) Ankenbrand MJ*, Lohr D*, Schlötelburg W, Reiter T, Wech T, et al. Deep Learning Based
Cardiac Cine Segmentation - Transfer Learning Application to 7T Ultrahigh-Field MRI.
medRxiv.2020.
DOI: 10.1101/2020.06.15.20131656

7) A Ankenbrand M, Lohr D, Schreiber LM. Exploring Ensemble Applications for Multi-
sequence Myocardial Pathology Segmentation. In: Zhuang X et al. (eds) Myocardial
Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance
Images. MyoPS 2020. Lecture Notes in Computer Science, vol 12554. Springer, Cham.
DOI: 10.1007/978-3-030-65651-5_6

VII



Co-authored original research publications, which were not part of the original 
application for a dissertation based on several published manuscripts or are outside 
the scope of this thesis (publication 13 was resubmitted to BMC Medical Imaging 
following major revision, the DOI leads to the published preprint): 

8) Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, et al. Design of a novel
antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. Journal of
magnetic resonance. 2019;305:195-208.
DOI: 10.1016/j.jmr.2019.07.004

9) Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, et al. Design and
Evaluation of a Novel Symmetric Multichannel Transmit/Receive Coil Array for
Cardiac MRI in Pigs at 7 T. IEEE Transactions on Microwave Theory and Techniques.
2019;67(9):3928-3945.
DOI: 10.1109/TMTT.2019.2913636

10) Hock M, Terekhov M, Stefanescu MR, Lohr D, Herz S, et al. B0 shimming of the
human heart at 7T. Magnetic Resonance in Medicine.
DOI: 10.1002/mrm.28423

11) Teh I, Romero W, Dall’Armellina E, Ennis D, Ferreira PF, et al. Reproducibility of
diffusion tensor imaging (DTI) on 12 clinical scanners: Towards validation of cardiac
DTI sequences. Journal of Cardiovascular Magnetic Resonance. Submitted November
2020.

12) Reiter T, Lohr D, Hock M, Ankenbrand MJ, Stefanescu MR, et al. On the way to
routine cardiac MRI at 7 Tesla - a pilot study on consecutive 84 examinations. PLOS
ONE. Submitted November 2020.

13) Ankenbrand MJ, Shainberg L, Hock M, Lohr D, Schreiber LM. Sensitivity Analysis for
Interpretation of Machine Learning Based Segmentation Models in Cardiac MRI. BMC
Medical Imaging. 2020.
DOI: 10.21203/rs.3.rs-97535/v1

VIII



ACKNOWLEDGEMENTS 

Finalizing the last pages of this thesis, I feel gratitude and admiration towards the 
people that have supported and guided me throughout these years. Without you, 
this thesis would not have been possible. This page is therefore dedicated to you 
as a token of my appreciation.  
Throughout this thesis I had the privilege to work with numerous amazing people 
in various different projects, while also meeting scientists from different places all 
around the globe.  
I would particularly like to thank Prof. Dr. Laura Schreiber, who has made this 
possible for me. The recent years have been an amazing learning experience, one 
that has shaped me and will accompany me for the rest of my life. I am deeply 
grateful that you have trusted me with this opportunity, thank you! I would also 
like to thank my other supervisors Prof. Dr. Herbert Köstler and Prof. Dr. Dr. 
Wolfgang Bauer, who have given me feedback and guidance at different time points 
in recent years. Thank you for having been part of this journey! 

I want to acknowledge the Graduate School of Life Sciences for enabling 
scientists like me. In particular the staff has been incredibly motivated and helpful, 
thank you for this! Similarly I want to thank Anna Dorsch and Bettina Dammenhain, 
who supported me with everything I had to organize outside the scientific aspects 
of my thesis. Thank you for your patience! 

I want to thank Niklas Beyhoff for the cooperation over the past two years. 
Thank you for all the insightful discussions! 

I extend my gratitude to all my current and former colleagues, in particular 
at the Chair of Cellular and Molecular Imaging. A special thanks goes to Michael 
Hock, Johannes Martens, Tim Jedamzik, Ibrahim Elabyad, Maya Bille, Steven 
Nguyen, Markus Ankenbrand, and Maxim Terekhov. Working with you has been a 
privilege. Maxim, I am deeply grateful to you. Over the last 5 years you were my 
endless source of scientific knowledge, wherever and whenever I tried to make 
sense of things, thank you for that! Markus, thank you for sharing my excitement 
for all things related AI and deep learning, and the countless discussions on what 
to do next! I very much hope we will continue to find time for Kaggle challenges in 
the days to come.   

At last, I want to thank my family, in particular my parents Bettina and 
Peter. It never ceases to amaze me with how much passion you follow whatever I 
do. Words cannot describe how grateful I am to you. Julia, the same applies to you. 
Thank you for your seemingly endless patience with me, but most of all, thank you 
for your love!  

I can no other answer make but thanks, and thanks, and ever thanks. 
– William Shakespeare

IX





TABLE OF CONTENTS 

1  INTRODUCTION 1 

2  MATERIALS AND METHODS 5  
2.1 Hardware 5 

2.1.1 MRI Data Acquisition 5 
2.1.2 Data Processing and Deep learning 6 

2.2 Data 6 
2.2.1 Deep learning Based Cardiac Cine Segmentation 6 
2.2.2 Multi-Sequence Myocardial Pathology Segmentation 7 

2.3 Software 8 
2.3.1 Data and Image Processing 8 
2.3.2 Deep Learning Based Cardiac Cine Segmentation 8 
2.3.3 Multi-Sequence Myocardial Pathology Segmentation 9 

3  PUBLISHED RESULTS 11  
3.1 Spin echo based cardiac diffusion imaging at 7T: An ex vivo study of the porcine 

heart at 7T and 3T 11 
3.2 Longitudinal assessment of tissue properties and cardiac diffusion metrics of the ex 

vivo porcine heart at 7 T: Impact of continuous tissue fixation using formalin 33 
3.3 Characterization of Myocardial Microstructure and Function in an Experimental Model 

of Isolated Subendocardial Damage 49 
3.4 Myocardial Infarction after High-Dose Catecholamine Application - A Case Report 

from an Experimental Imaging Study 61 
3.5 A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit 

Cardiac MRI in Pigs at 7T 69 
3.6 A Deep Learning Based Cardiac Cine Segmentation Framework – Transfer Learning 

Application to 7T Ultrahigh-Field MRI 89 
3.7 Exploring ensemble applications for multi-sequence myocardial pathology 

segmentation 117 

4  DISCUSSION 129  
4.1 Publications of this Thesis 130 
4.2 Cardiovascular Magnetic Resonance – Assessment of Myocardial Structure and 

Function 139 
4.3 Deep learning in Medical Imaging 140 

5  FUTURE WORK 143 

6  CONCLUSION 145 

XI



7  APPENDIX 147  

A INDIVIDUAL AUTHOR CONTRIBUTIONS 147  

B CONSENT TO PUBLISH 159  

C CURRICULUM VITAE 161  

BIBLIOGRAPHY 163  

XII



LIST OF TABLES 

Table 1: Author contributions to: PLOSONE - 2019 ...................................... 148 
Table 2: Figures and tables of: PLOSONE - 2019 ......................................... 148 
Table 3: Author contributions to: NMR in Biomedicine - 2020 ........................ 149 
Table 4: Figures and tables of: NMR in Biomedicine - 2020 ........................... 149 
Table 5: Author contributions to: Hypertension - 2019 ................................. 150 
Table 6: Figures and tables of: Hypertension - 2019 .................................... 150 
Table 7: Author contributions to: Frontiers - 2020 ....................................... 152 
Table 8: Figures and tables of: Frontiers - 2020 .......................................... 153 
Table 9: Author contributions to: Scientific Reports – 2020 ........................... 154 
Table 10: Figures and tables of: Scientific Reports – 2020 ............................ 155 
Table 11: Author contributions to: medRxiv – 2020 ..................................... 156 
Table 12: Figures and tables of: medRxiv – 2020 ........................................ 156 
Table 13: Author contributions to: LNCS – 2020 .......................................... 157 
Table 14: Figures and tables of: LNCS – 2020 ............................................. 157 

XIII



ACRONYMS 

ADC apparent diffusion coefficient  
AI artificial intelligence  
ANN artificial neural network 
ANP atrial natriuretic peptide 
CMR cardiovascular magnetic resonance 
CNN convolutional neural network 
CVD cardiovascular disease 
DL deep learning 
DTI diffusion tensor imaging 
EDV end-diastolic volume 
EF ejection fraction 
EM electromagnetic 
ESC European Society of Cardiology 
ESV end-systolic volume 
E2A secondary eigenvector angle or sheetlet angle 
FA fractional anisotropy 
HA primary eigenvector angle, helix angle 
HF heart failure 
HPC high performance cluster 
LGE late gadolinium enhancement 
LS longitudinal strain 
LSR longitudinal strain rate 
LV left ventricle 
MD mean diffusivity  
MI myocardial infarction 
MICCAI Medical Image Computing and Computer Assisted Intervention 
MRI magnetic resonance imaging 
MvMM multivariate mixture model 
RF radio frequency 
ROI region of interest 
RSD relative standard deviation 
RV right ventricle 
SAR specific absorption rate 
SE spin echo 
SNR signal-to-noise ratio 
STACOM Statistical Atlases and Computational Modelling of the Heart 
STE stimulated echo 
TE echo time 
TR repetition time 

XIV



 

1 INTRODUCTION 

According to the World Health Organization cardiovascular diseases (CVDs) are 
globally the number one cause of death.1 In 2016 alone CVDs led to an estimated 
17.9 million lives lost, which corresponds to 31% of global deaths in that time. 
CVDs will eventually result in heart failure (HF), a disease development, where a 
~50% 5-year mortality following initial diagnosis,2 is still a harsh prognosis. 

While the etiology of CVDs and HF is diverse with regard to world regions, 
advancing age has been identified as a powerful independent risk factor. This is 
particularly detrimental to developed countries (HF prevalence ≥ 10% among 
people older than 70 years),3,4 where the quality of healthcare and the absence of 
wars and obesity have led to high average life expectations and shifts in 
demographics. In these countries, CVDs are still a main cause of death and HF a 
common cause for hospitalization. The average life expectancy after first 
hospitalization is only 2.5 years,5 where present comorbidities predict adverse 
outcomes.6 
 Medical imaging has become a pillar of modern healthcare, enabling non-
invasive clinical analysis, intervention, and diagnostic as well as treatment 
evaluation. The European Society of Cardiology (ESC) Guidelines for the treatment 
of acute and chronic heart failure7 state that cardiovascular magnetic resonance 
(CMR) is the gold standard for measurements of mass and cardiac function via 
ejection fraction (EF) for both ventricles (LV, RV) and is the method of choice in 
patients with complex congenital heart disease.8-10 Routine applications also 
encompass the assessment of myocardial fibrosis and scar visualization, and the 
differentiation between ischemic and non-ischemic origins of HF (etiology 
establishment8,11). Furthermore, they enable the characterization of myocardial 
tissue8,10,11 of myocarditis, amyloidosis, sarcoidosis12, Fabry disease, non-
compaction cardiomyopathy and haemochromatosis.  
 In order to extract static anatomical and dynamic functional parameters 
such as myocardial mass, wall thickness, wall motion as well as LV and RV volumes 
and thus, EF, acquired MR images have to be segmented. This means that relevant 
pixels in each image have to be identified as part of the organ, a pathology (e.g. 
lesion or scar), or background, partitioning the image into semantically meaningful 
regions, which can be used to generate these quantitative measures. Manual 
segmentation of such regions is a rather tedious and time-consuming process that 
can be subject to non-negligible inter-observer variabilities.13-16 In recent years, 
artificial intelligence (AI), more precisely, deep learning (DL) based segmentation 
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has been shown to outperform all prior automatic segmentation methods, leading 
to segmentation models for the ventricles,17,18 the atria,19,20 the aorta,21 and the 
whole heart.22,23 There has also been an increasing number of applications to 
pathologies such as scar and edema. While the quantity of scar tissue functions as 
an independent predictor of cardiovascular outcomes and mortality in patients with 
ischemic heart failure24,25 and non-ischemic cardiomyopathies,26,27 edema is 
connected to the assessment of the area at risk. Scar and edema volumes enable 
the assessment of myocardial viability and salvage,28,29 which is essential in the 
diagnosis and treatment management for patients with MI. Rapid automatic data 
evaluation based on deep learning segmentation may increase the value of CMR, 
where long examination times are considered as a disadvantage to other imaging 
modalities.  

While CMR is already quite established with respect to CVDs and their impact 
on cardiac tissue, clinical practice is currently solely focusing on macroscopic 
alterations. Using pulsed gradient fields, magnetic resonance imaging (MRI) is able 
to acquire images of biological tissue sensitized to molecular diffusion, also called 
Brownian motion, which refers to the random motion of molecules induced by their 
thermal energy. Molecular diffusion in isotropic tissue can be described using a 
single scalar value, the apparent diffusion coefficient (ADC). However, this is 
insufficient for highly anisotropic tissue such as skeletal and cardiac muscle,30,31 
where molecular diffusion interacts with tissue boundaries and measured diffusivity 
depends upon tissue anisotropy. In order to fully characterize this orientation-
dependent displacement of water molecules in 3D space, the scalar value was 
replaced by a slightly more complex model of diffusion, the symmetric effective 
diffusion tensor.32 MRI based cardiac diffusion tensor imaging (DTI) has become an 
established technique for the visualization of the myocardial microstructure both ex 
vivo and in vivo, offering new insights into ventricular contraction and thus, the 
mechanical aspects of cardiac function and cardiac disease on a microscopic level. 
Physiological interpretation of the diffusivity of water in healthy myocardium states 
that cardiac DTI enables visualization of helical cardiomyocyte configurations,33-35 
and so-called sheetlets,36-38 which are functional units of connecting and branching 
cardiomyocytes, separated by shear layers. Functionally, cardiomyocyte helices are 
thought to facilitate rotation and torsion, while ventricular thickening39,40 and base-
to-apex shortening are attributed to sheetlet re-orientation during contraction. Next 
to non-destructive visualization of microstructures first discovered using histology, 
DTI demonstrated abnormal myocyte or sheetlet orientation in congenital heart 
disease, hypertrophic38,41,42 as well as dilative cardiomyopathies,38,43 and MI,44,45 
providing unique information about microstructure integrity and pathologic 
alterations. Myocardial disarray, impaired sheetlet mobility, and structure loss with 
respect to cardiomyocyte bundles, are potential non-invasive, early markers for 
contractile dysfunction, ventricular remodeling and underlying structural changes. 
Based on such features cardiac DTI may facilitate early detection of adverse 
remodeling in endocardial layers in response to multiple cardiovascular risk 
factors,46-48 allow risk stratification in asymptomatic disease states, and enable 
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treatment validation on a microstructural level. Increasing numbers of in vivo 
applications38,41,43,49-52 demonstrate that cardiac DTI may play an essential role in 
improving our understanding of functional and structural alterations in one of 
today’s major health burdens, namely CVDs.   

Since DTI is intrinsically limited in signal-to-noise ratio (SNR) and 
particularly susceptible to cardiac and breathing motion, initial research and 
validation was and still is performed in translational ex vivo studies.38,53-56 Without 
limiting factors such as motion, strain and flow, long scan times are enabled using 
fixed tissue specimen, allowing the generation of high fidelity, high resolution whole 
heart data.  

Clinical CMR assessments are run on 1.5T and 3T systems, but early studies 
have demonstrated that ultrahigh field MRI (7T) may improve SNR57-61 and thus, 
provide new, prognostic information on cardiac diseases. Next to already 
established CMR applications, MRI at ultrahigh field strengths may improve SNR in 
cardiac DTI measurements, enabling higher image quality, improved volume 
coverage and faster acquisitions.  

However, the higher field strength also leads to shorter wavelengths in 
tissue, inducing B1-non-uniformity, and thus difficulties regarding power deposition, 
and the specific absorption rate (SAR). Dedicated radio frequency (RF) hardware 
based on parallel transmit technology has been introduced to address these issues. 
Here, multiple transmit elements are used to actively shape the transmission field, 
a process known as B1

+ shimming. Depending on the shimming process the 
transmission field can be optimized with regard to field homogeneity, transmission 
efficiency, and SAR-safety. This process may facilitate homogeneous RF excitation 
and enables the potential of high SNR imaging at ultrahigh field strengths. 

To date, there is no 7T system with CE certification for cardiac MRI and no 
sequence protocols dedicated to ultrahigh field cardiac MRI are provided by the 
vendors. In that sense, cardiac 7T MRI is currently a research modality that is 
starting to develop towards clinical application. This is one of the first dissertations, 
where MR image acquisition and method development was mainly done using the 
latest generation 7T ultrahigh field MRI system.  

Primary aim of this thesis was the methodological advancement of ultrahigh 
field CMR using this latest 7T technology and its application for the functional and 
structural characterization of the myocardium. Since the 7T system did not come 
with options dedicated towards ultrahigh field cardiac MRI and sequence protocols 
applied on clinical systems of earlier generations were not simply transferable, 
dedicated sequence protocols had to be created. Next to the generation of a custom 
in vivo DTI sequence, the primary aim therefore encompassed the expansion of 
vendor sequences towards 7T cardiac protocols as well as the development of 
dedicated RF hardware for translational studies. Due to B1-non-uniformity, 
increased B0 inhomogeneity, and limited RF hardware at 7T, we aimed to 
implement the custom diffusion sequence on a clinical 3T system first. Moving to 
diffusion measurements at 7T in controlled ex vivo studies, we aimed to validate 
feasibility and effects of ultrahigh field MRI on both image acquisition and DTI 
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metrics. In addition to applications in humans we aimed to facilitate translational 
studies based on DTI for both large and small animals. Secondary aim of this thesis 
was the development of DL models for rapid automatic segmentation of clinical CMR 
data and its transfer towards images acquired at 7T. As indicated above, image 
segmentation is of paramount importance for the assessment of quantitative 
metrics and accurate segmentation thus an essential step towards future clinical 
application. Holistically, methods developed in this thesis may be applied for the 
assessment of functional and microstructural changes in CVDs at 7T, which may 
also improve our understanding thereof.  
 
Since this is a thesis based on several published manuscripts, the following chapter 
(Materials and Methods) presents an overview over key materials and methods 
relevant to the respective publications. Brief summaries of these publications in the 
chapter “Published Results” are meant to provide the reader with a comprehensive 
review on individual aims, study motivation as well as key findings. The summaries 
are followed by the full publications. Thematically publications of this thesis can be 
sorted into three categories: 

1. ex vivo cardiac DTI at 7T:  
chapters 3.1, 3.2, 3.3, and 3.4 (pages 11, 33, 49, and 61) 

2. hardware development for translational cardiac MRI at 7T: 
chapter 3.5 (page 69) 

3. deep learning based segmentation for cardiac MRI data: 

chapters 3.6  and 3.7 (page 89 and 117) 
 

Individual results and their relevance with respect to cardiovascular magnetic 
resonance imaging and deep learning in medical imaging, are discussed in the 
overarching chapter “discussion”.  
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2 MATERIALS AND METHODS 

This section is meant to give an overview over the key materials and methods 
applied in the publications of this thesis, while simultaneously providing some 
additional background information. All content will be divided into the sections 
hardware, data, and software. A detailed description for materials and methods is 
given in the individual publications in Chapter 3. 
 

2.1 Hardware 

2.1.1 MRI Data Acquisition  

MRI systems and hardware specifications used for image acquisition were:  
1. Siemens MAGNETOM™ Terra  

i. 7 T 
ii. 80 mT/m, 200 T/m/s 

iii. 1Tx/32Rx head coil (Noval Medical), 
1Tx/16Rx cardiac coil (MRI Tools, Berlin, Germany) 

iv. 8Tx/16Rx parallel transmit cardiac array  
 

2. Siemens MAGNETOM™ Prisma Fit (Cooperation with the Department of 
Diagnostic and Interventional Radiology, Würzburg) 

i. 3 T 
ii. 80 mT/m, 200 T/m/s 

iii. 1Tx/20Rx head coil 
 

3. Bruker PharmaScan™ 70/16 (Paravision 6.01 interface) 
i. 7 T 
ii. 570 mT/m, 5130 T/m/s 

iii. 1Tx/2Rx 1H-CryoProbe (Bruker BioSpin) 
 

4. Legend: 
i. field strength - B0 
ii. maximum gradient strength [mT/m], maximum slew rate [T/m/s] 

iii. commercial coils [channels: Tx – transmit/Rx - receive] 
iv. in-house built coil [channels: Tx/Rx] 
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2.1.2 Data Processing and Deep learning 

While most data processing was run on the personal desktop, DL approaches were 
generally realized using GPU hardware on high performance clusters (HPC) to 
achieve acceptable time frames. Depending on the task, a hardware setup was 
chosen from the following selection: 

1. Personal desktop:
i. 1x Intel® Core™ i7-4790 CPU @ 3.60 GHz
ii. 32 GB of memory
iii. 1x NVIDIA® GeForce® RTX 2070 Super with 8 GB of memory

2. Local HPC of the Chair of Cellular and Molecular Imaging:
i. 8x Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz
ii. 512 GB of memory
iii. 1x NVIDIA® Tesla® K80 with 12 GB of memory

3. GPU node of the Julia HPC of the University of Würzburg:
i. 2x Intel® Xeon® Gold 6134 Processor
ii. 384 GB of memory
iii. 2x NVIDIA® Tesla® P100 with 16 GB of memory

4. Google Colab

All data underlying data protection terms of the University Hospital Würzburg were 
computed in-house, using the personal desktop or the local HPC of the Chair of 
Cellular and Molecular Imaging. 

2.2 Data 

Training of supervised deep learning methods requires large amounts of so-called 
ground truth input data. For image segmentation tasks, ground truth means that 
we have labels that indicate the class of each pixel in each image. In cardiac MRI 
classes are typically tissue related such as LV blood pool, LV myocardium, or some 
kind of pathology, for example scar, edema, or fibrosis.  

2.2.1 Deep learning Based Cardiac Cine Segmentation 

Kaggle (www.kaggle.com) is an online platform and community for topics related 
to data analysis, machine learning, DL, data mining and “big data” that enables 
knowledge exchange between data scientists, corporations, and organizations from 
a variety of different fields. In addition, the platform allows members to host 
challenges, such as the Data Science Bowl Cardiac Challenge,62 which summoned 
participants to write an algorithm for the automated assessment of end-systolic and 
end-diastolic volumes (ESV and EDV) as well as ejection fraction from 
cardiovascular MRI data. The data provided for this challenge contained 1140 
cardiac MRI examinations (cine images) of normal and abnormal cardiac function 
as well as corresponding ground truth values for ESV and EDV in milliliter, but no 
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segmentation labels. Details regarding the MRI examinations and the use of this 
data set are described in the respective publication (page 89). 

2.2.2 Multi-Sequence Myocardial Pathology Segmentation 

In conjunction with the conferences STACOM (Statistical Atlases and Computational 
Modelling of the Heart) and MICCAI (Medical Image Computing and Computer 
Assisted Intervention 2020), a challenge for myocardial pathology segmentation 
(MyoPS 202063) was hosted. Participants were tasked to combine multi-sequence 
CMR data to classify myocardial pathology, such as scar and edema. Pre-processed 
clinical cine, late gadolinium enhancement (LGE), and T2-weighted images for 45 
patients were provided. Sequences parameters were: 

1. balanced steady-state free precession for cine
i. 8-12, 8-13 mm
ii. 1.4/2.7

2. Inversion-Recovery gradient-echo for LGE
i. 10-18, 5 mm
ii. 1.8/3.6

3. black blood Spectral Attenuated Inversion-Recovery for T2

i. 3-7, 12-20 mm
ii. 90/2000

4. Legend
i. number of slices, slice thickness [mm]
ii. TE/TR [ms]

Prior to release, images were processed using Multivariate Mixture Model (MvMM) 
methods,64,65 aligning them in common space with identical spatial resolution. In 
addition to images, the organizers provided ground truth labels on pixel by pixel 
basis for the following classes: 

〉 LV blood pool 

〉 RV blood pool 

〉 LV healthy myocardium 

〉 LV myocardial edema 

〉 LV myocardial Scar 

Details regarding data use are described in the respective publication (page 89). 
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2.3 Software 

2.3.1 Data and Image Processing 

A pipeline for data processing including denoising, image registration, and 
estimation of the diffusion tensor as well as derived diffusion metrics was set up 
simultaneously to data acquisition throughout this thesis. All data and image 
processing, unless stated otherwise, was performed using MATLAB66 with the 
following toolboxes: 

〉 image processing 

〉 curve fitting 

〉 optimization 

〉 statistics and machine learning. 

 

Denoising of diffusion-weighted image data was performed using overcomplete 
local partial component analysis as described by Manjon et al.67 Reconstruction of 
the diffusion tensor was achieved using methodology by Jiang et al68 in DSI 
Studio.69  

All sequence programming developments were done using the Siemens 
IDEA environment. Software baselines for the 7T MAGNETOM™ Terra and the 3T 
MAGNETOM™ Prisma were VE12U and VE11C, respectively. 

 

2.3.2 Deep Learning Based Cardiac Cine Segmentation 

This is a list of all the software applied by Ankenbrand et al70 (page 89) All models 
were built using an open source software environment based on: 

〉 Python 3.8.3 (www.python.org/) 
〉 Pytorch71 1.4.0 (pytorch.org/) 
〉 fastai72 V1 1.0.60 (docs.fast.ai/) 
〉 juypter 1.0.0 (jupyter.org/). 

 
Further Python software, including its dependencies, was: 

〉 NiBabel 3.1.0 (nipy.org/nibabel/) 
〉 numpy73 1.13.3 (numpy.org/) 
〉 pandas 1.0.3 (pandas.pydata.org/) 
〉 pydicom 1.4.2 (pydicom.github.io/) 
〉 scikit-image 0.16.2 (scikit-image.org/) 
〉 SciPy 1.4.1 (www.scipy.org/) 
〉 seaborn 0.10.1 (seaborn.pydata.org/) 
〉 tqdm 4.46.0 (tqdm.github.io/) 
〉 ukbb_cardiac v2.0 (github.com/baiwenjia/ukbb_cardiac). 

 
 

8

https://www.python.org/
https://pytorch.org/
https://docs.fast.ai/
https://jupyter.org/
https://nipy.org/nibabel/
https://numpy.org/
https://pandas.pydata.org/
https://pydicom.github.io/
https://scikit-image.org/
https://www.scipy.org/
https://seaborn.pydata.org/
https://tqdm.github.io/
https://github.com/baiwenjia/ukbb_cardiac


 

Next to Python we used software moduls in R 3.6.1 for data analysis: 
〉 Tidyverse 1.2.1 (www.tidyverse.org/) 
〉 Patchwork 1.0.0 (rdocumentation.org/packages/patchwork/) 
〉 ggfortify 0.4.10 (rdocumentation.org/packages/ggfortify) 

 
and the following implementations for data processing: 

〉 med2image 2.0.1 (github.com/FNNDSC/med2image) 
〉 mitools 2.0.3 (neuro.debian.net/pkgs/mitools.html) 
〉 dos2unix 7.4.0 (sourceforge.net/projects/dos2unix/). 

 
Initial labelling of the Kaggle data (page 6) was done using the publicly available 
model by Bai et al.74 
 
In order to provide transparency and to facilitate reproducibility of our results all 
models and code were made publicly available: 

• github.com/chfc-cmi/cmr-seg-tl 
• doi.org/10.5281/zenodo.3876351 

 
 

2.3.3 Multi-Sequence Myocardial Pathology Segmentation 

We built all models in Ankenbrand et al75 (page 117) using the previously mentioned 
(page 8) open source software environment with slight modifications: 

〉 Python 3.7.7 (www.python.org/) 
〉 Pytorch71 1.5.1 (pytorch.org/) 
〉 fastai72 V2 0.0.17 (docs.fast.ai/) 
〉 NiBabel 3.0.1 (nipy.org/nibabel/) 
〉 numpy73 1.19.0 
〉 scikit-image 0.15.0 
〉 tqdm 4.47.0 
〉 R Tidyverse 1.3.0 

 
and minor software additions: 

〉 MONAI 0.2.0 (www.python.org/) 
〉 TorchIO71 0.15.5 (pytorch.org/). 

 
For calculations in Google Colab we used pre-installed libraries and added TorchIO, 
fastai V2, and MONAI, as listed above, including their dependencies.  
Again, models and code were made openly available: 

• https://github.com/chfc-cmi/miccai2020-myops 
• doi.org/10.5281/zenodo.3982324 
• doi.org/10.5281/zenodo.3985837 
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3 PUBLISHED RESULTS 

This is a thesis based on several published manuscripts. This chapter includes 
information on individual publication licenses to publications listed on page ix, a one 
page summary of these publications, followed by the corresponding publications. 
Abbreviations used in the summaries are explained in the full publication. Chapter 
titles are publication titles. For the printed version of this thesis published 
supplementary material can be found on the added CD. For the digital version there 
is a separate PDF document “Published Supplemental Material”. 

3.1 Spin echo based cardiac diffusion imaging at 7T: An ex vivo 
study of the porcine heart at 7T and 3T 

〉 Published in PLOSONE – 201976 

This is an open access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 

〉  https://creativecommons.org/licenses/by/4.0/ 

These citations have been applied in this publication.34,38,41,49,50,53,54,67-69,76-121 
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Due to cardiac and breathing motion as well as intrinsically limited signal-to-noise 
ratio, angular and spatial resolution in in vivo DTI scans remain low, emphasizing 
the importance of ex vivo measurements for research and validation. MRI at 
ultrahigh field strengths may provide improved SNR in such measurements, 
enabling increased spatial and/or angular resolution, higher b-values, better image 
quality and consistency of diffusion metrics.  

In this study we aimed to assess the feasibility of cardiac DTI at ultrahigh 
field strengths using commercial apparatus and software.  

Whole heart DTI data was acquired at both 3T and 7T in a set (n=11) of 
healthy, unfixed porcine hearts shortly after excision. In order to demonstrate 
sample stability, we continuously measured changes in T2*, T1, and diffusion 
metrics in two freshly excised hearts for 12 hours. Derived diffusion metrics were 
compared to the 3T reference scan, following manual segmentation according to 
the 17 segment model of the American Heart Association. Various parallel imaging 
factors (R=2, 3, 4) were used at 7T to assess, if the increase in field strengths 
sufficiently compensates the SNR loss. 

Sample stability measurements demonstrated that T2* and T1 changes were 
within 2-5% and 2-6% and mean standard deviation over time for FA and MD were 
≤0.03 and ≤0.02, respectively. Using the same sequence protocol at 3T and 7T, 
SNR in b0 images was 29±3 and 44±6, respectively, and diffusion metrics, such as 
ADC, FA and |E2A| were significantly different. Susceptibility effects were most 
pronounced at epicardial and papillary muscle boundaries. Parallel imaging 
improved data consistency with the 3T reference and no statistically significant 
differences were found using R=3. SNR in b0 images using R=2, R=3, and R=4 was 
17±6, 19±5, 13±2. 

In this study we demonstrate that essential DTI features such as HA, |E2A|, 
FA, and ADC, do not significantly change with B0 field strength, given sufficiently 
high SNR and geometrically undistorted images. Commercial hardware at 7T can 
lead to improved SNR compared to 3T and parallel imaging is required to reduce 
susceptibility induced distortions. For the coil used, we conclude that a minimum of 
R=3 will provide the best compromise between the effects of susceptibility induced 
distortions and SNR losses. 
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Abstract

Purpose of this work was to assess feasibility of cardiac diffusion tensor imaging (cDTI) at 7

T in a set of healthy, unfixed, porcine hearts using various parallel imaging acceleration fac-

tors and to compare SNR and derived cDTI metrics to a reference measured at 3 T. Mag-

netic resonance imaging was performed on 7T and 3T whole body systems using a spin

echo diffusion encoding sequence with echo planar imaging readout. Five reference (b = 0

s/mm2) images and 30 diffusion directions (b = 700 s/mm2) were acquired at both 7 T and 3

T using a GRAPPA acceleration factor R = 1. Scans at 7 T were repeated using R = 2, R =

3, and R = 4. SNR evaluation was based on 30 reference (b = 0 s/mm2) images of 30 slices

of the left ventricle and cardiac DTI metrics were compared within AHA segmentation. The

number of hearts scanned at 7 T and 3 T was n = 11. No statistically significant differences

were found for evaluated helix angle, secondary eigenvector angle, fractional anisotropy

and apparent diffusion coefficient at the different field strengths, given sufficiently high SNR

and geometrically undistorted images. R�3 was needed to reduce susceptibility induced

geometric distortions to an acceptable amount. On average SNR in myocardium of the left

ventricle was increased from 29±3 to 44±6 in the reference image (b = 0 s/mm2) when

switching from 3 T to 7 T. Our study demonstrates that high resolution, ex vivo cDTI is feasi-

ble at 7 T using commercial hardware.

Introduction

Mechanical [1] and electrical [2] properties of the heart are linked to the myocardial micro-

architecture, which exhibits alterations in a broad range of cardiovascular pathologies. In the

past years cardiac diffusion imaging, especially cardiac DTI (cDTI), has been established as a

nondestructive and non-invasive method for analysis of the microstructure of myocardial tis-

sue. Helical configuration of myofiber bundles [3–6] and sheet [7–9] formation of connecting
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and branching myocytes have been described in ex vivo studies and shown to have high con-

sistency to histological correlation, enabling this method to expand our knowledge of the

microstructural basis and progression of cardiovascular diseases.

While technical and methodical advances in cDTI gave rise to in vivo applications [10–13],

scan time remains a limiting factor for both angular and spatial resolution. Additionally, DTI

is intrinsically limited by signal-to-noise-ratio (SNR) [14–17] and derived metrics are affected

by partial volume effects. Thus, ex vivo studies, where scan times are unrestricted and no

motion and flow factors exist, remain an important research and validation tool in cDTI appli-

cations [18–21].

MRI at ultra-high field strengths (�7 T) may provide improved SNR, allowing for improve-

ment of the spatial and/or angular resolution, higher b-values, better image quality as well as

consistency of diffusion metrics. While there are demonstrations [22, 23] of DTI benefitting

from the 7T field in neurological applications, it remains unclear if the SNR advantage will

outweigh influences of shortened T2, T2
�, and increased B0 and B1 inhomogeneity in DTI of

the heart.

To date in vivo DTI studies of porcine or human hearts have been limited to field strength

of 1.5 T or 3 T, where, due to limited SNR, multiple averages [24–28] are required to ensure

consistent results.

Ex vivo studies so far use fixed myocardial tissue to enable the long scan times and/or multi-

ple experiments with parameter variations. In order to produce diffusion data, which is easily

reproducible and comparable, we minimized additional tissue treatment and therefore omitted

tissue fixation, which shortens the T2 relaxation time, a critical parameter in diffusion mea-

surements at ultra-high field strengths.

The main aim of this study was to assess feasibility of cDTI using commercial apparatus

and software in a set of healthy, unfixed, porcine hearts at 7 T shortly after excision and to

compare derived diffusion metrics to a reference data set measured at 3 T. This will allow the

comparison of data consistency between cDTI at 3 T and 7 T. Secondary aim of this study was

to assess if SNR loss due to increasing acceleration factors can be sufficiently compensated for

by the higher field strength. The analysis of consistency of diffusion metrics, susceptibility

induced distortions, and SNR derived from scans with various parallel imaging factors and

echo times should further allow adaptation and adjustment of established 3T cDTI techniques

to the usage at ultra-high fields in vivo.

Materials and methods

Study protocol

Hearts were collected in cooperation with the Translational Center Regenerative Therapies.

Animal experiments were approved (reference number: 55.2 2532-2-256) by the District Gov-

ernment of Lower Franconia and the local animal welfare committee and performed according

to the German Animal Welfare Act and the EU Directive 2010/63/EU. Male German Landrace

piglets, all obtained from the same breeder, and with body weights between 19 and 23.5 kg,

were used. More detailed information on the study animals is listed in the S1 Table.

The ratio of heart weight to body weight in 20-30kg pigs (5g/kg) is identical to that of adult

humans [29]. The left chambers in porcine hearts are more dominant than in the human heart

and the left ventricular wall is much thicker. The interventricular septum in porcine hearts is

located more to the right of the heart, while the interventricular septum in the human heart is

located in a more central position. This means that the porcine apex is only composed of left

ventricular musculature.

Spin echo based cardiac diffusion MRI at 7T
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For euthanasia, piglets were sedated with azaperone (Stresnil, 2–6 mg/kg) and anesthetized

with ketamine (Ursotamin 20–25 mg/kg) intramuscularly in the neck muscle caudal to the

base of the ear, before T61 (Embutramid, Mebezoniumiodid, Tetracainhydrochlorid, 0.3–0.4

ml/kg) was administered intravenously via the marginal ear vein.

Immediately after euthanasia the hearts were collected, rinsed and stored in physiological

saline solution. They were not fixed in Formalin or other substances. Hearts were centered in

plastic containers filled with saline solution using surgical threads. MRI was performed at bore

temperature (~19˚) on 7T and 3T whole body MRI systems (Siemens MAGNETOM Terra

and Prisma, respectively, Erlangen, Germany) within 10 hours after euthanasia using a 1Tx/

32Rx head coil. All measurements were therefore performed in a state of rigor mortis. On mea-

surement days we received two hearts, which were excised in one setting. Data for the two

hearts was acquired in consecutive measurements in five out of six cases (n = 11). Sample sta-

bility measurements were done on separate occasions, since they blocked the scanner for a

duration of 12 hours.

Sample stability

Tissue-stability measurements were made to monitor possible changes in tissue structure,

which may occur within the time period between scans at 7 T and 3 T. For this purpose, a

mid-cavity slice was imaged continuously in two hearts over a period of 12 hours. The delay

between the last excision and the start of imaging was roughly 45 minutes. Myocardial T2
� and

T1 values as well as diffusion parameters, such as FA and ADC were measured interleaved in

an uninterrupted cycle.

T2
� was evaluated based on a 2D gradient multi-echo sequence with the following imaging

parameters: slice thickness: 5 mm, matrix size: 68 × 176, field of view (FOV): 131 mm × 176

mm, number of averages: 6, TR: 150 ms. Nine echoes per excitation were acquired with TE val-

ues between 2.07 ms and 18 ms.

T1 was evaluated using the DESPOT1 method [30] with the flip angles: 15˚, 30˚, and 45˚.

Ten averages were acquired with TE: 3.69 ms. A supporting B1 map for DESPOT1 was derived

from additional double flip angle measurements using 6 averages and TR: 2000 ms. FOV and

the matrix size remained the same as listed for T2
� acquisitions.

Twenty diffusion directions according to Skare [31] (b = 700 s/mm2) and five reference

images (b = 0 s/mm2) were acquired using a single refocused spin-echo sequence with Stejs-

kal-Tanner diffusion preparation, EPI readout and a GRAPPA acceleration factor R = 3. Mea-

surement parameters were: slice thickness: 5 mm, TE/TR: 55/3000 ms, matrix size: 100 x 128,

FOV: 132x170 mm2, bandwidth: 2300 Hz/Pixel (readout) and 1299 Hz/Pixel (phase-encode).

DTI acquisition

At 7 T: Prior to measurements we applied 3rd order shims for a volume covering the whole

organ. Whole heart diffusion data sets (n = 11) were acquired with an isotropic resolution of

1.3x1.3x1.3 mm3 using a Stejskal-Tanner diffusion preparation and EPI readout (described

above). Further parameters were TE/TR: 55/15000 ms, 65 interleaved slices (no gaps), band-

width: 1302 Hz/Pixel (readout) and 1000 Hz/Pixel (phase-encode), non-accelerated (R = 1)

echo train length: 55, matrix size: 84x128, FOV: 111x170 mm2 and 5/8 partial-Fourier. 30 dif-

fusion directions (b = 700 s/mm2) [31] and 5 reference (b = 0 s/mm2) images were acquired in

a total scan time of nine minutes. Measurements with the parameters above were originally

chosen for measurements at 3 T [32] and were used here as a first point for comparison

between scans at 7 T and 3 T. Measurements with these parameters will be referred to as the

reference scan at 7 T (R = 1).

Spin echo based cardiac diffusion MRI at 7T
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The scan was repeated with GRAPPA acceleration factors R = 2 (n = 7), R = 3 (n = 11) and

R = 4 (n = 11), 3/4 partial-Fourier, and an increased readout bandwidth of 2300 Hz/Pixel

resulting in minimal TEs and echo train lengths of 50/47/43 ms and 33/21/ 16, respectively.

The bandwidth in phase-encode direction was 1299 Hz/Pixel. Total measurement time for the

7T scans was ~65 minutes.

AT 3 T: Whole heart (n = 11) diffusion data sets were acquired at 3T. Reference scan

parameters described above were used for image acquisition. The parameters were chosen to

optimize for a high isotropic resolution and minimal susceptibility induced distortions in dif-

fusion weighted images at 3 T, while maintaining SNR>25db, which is considered to be in the

clinical SNR regime [15].

DTI data analysis

All Processing was based on images using the vendor reconstruction pipeline. For whole heart

scans, motion correction was applied to account for eddy-current induced geometrical distor-

tions. Tensor reconstruction using DSI Studio [33, 34] was achieved as described in [35]. For

the Stejskal-Tanner sequence and isotropic samples the observed signal intensity S, following

diffusion weighting, is:

S ¼ S0e
� bgtDg ¼ S0e

� b
P

i;j¼x;y;z ðgigjÞDij ð1Þ

where S0 corresponds to the observed signal without diffusion weighting, g to the normalized

diffusion gradient directions, b to the diffusion weighting factor, which, for rectangular gradi-

ents, is defined by:

b ¼ g2d
2G2 D �

d

3

� �

ð2Þ

and D to a 3x3 diffusion Tensor (laboratory frame):

D ¼

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

2

6
6
4

3

7
7
5 ð3Þ

In the definition of the diffusion weighting factor, γ corresponds to the gyromagnetic ratio, δ
and G to the duration and amplitude of the applied diffusion gradient in a given direction, and

Δ to the separation between the applied diffusion gradients. With the introduction of the fol-

lowing two vectors:

�D ¼ ½Dxx Dyy Dzz Dxy Dxz Dyz�
T

ð4Þ

�g ¼ ½g2

x g
2

y g
2

z 2gxgy 2gxgz 2gygz�
T

ð5Þ

Eq (1) can be rewritten as:

X

i;j¼x;y;z

ðgigjÞDij ¼ �g t � �D ¼ ln
ðS=S0Þ

b
ð6Þ

Since the tensor is symmetric (Dij = Dji), it can be calculated based on the acquisition of�7

images (six or more diffusion weighted images Sk using the diffusion gradients gk and one

Spin echo based cardiac diffusion MRI at 7T
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reference S0). The resulting system of equations:

�g t
k �

�D ¼ ln
ðSk=S0Þ

bk
ðk ¼ 1; . . . ;K;K � 6Þ ð7Þ

is solved in matrix form:

A�D ¼ B ð8Þ

where A is a K x 6 matrix:

A ¼

�g t
1

..

.

�g t
K

2

6
6
4

3

7
7
5 ¼

g2
1x g2

1y g2
1z 2g1xg1y 2g1xg1y 2g1yg1z

..

. ..
. ..

. ..
. ..

. ..
.

g2
Kx g2

Ky g2
Kz 2gKxgKy 2gKxgKz 2gKygKz

2

6
6
6
4

3

7
7
7
5

ð9Þ

and B a K-dimensional vector:

B ¼ ln
ðS1=S0Þ

b1

. . . ln
ðSK=S0Þ

bK

� �T

ð10Þ

The solution is found using the pseudo-inverse (A+) of the matrix A:

�D ¼ AþB ¼ ðATAÞ� 1ATB ð11Þ

The calculated tensor was used for visualization of fiber bundle tracts, eigenvalue analysis on a

voxel-by-voxel-basis and the calculation of fractional anisotropy (FA) and the apparent diffu-

sion coefficient (ADC) using:

FA ¼
ffiffiffi
3
p

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl1 � lÞ
2
þ ðl2 � lÞ

2
þ ðl3 � lÞ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2

1
þ l

2

2
þ l

2

3

q ð12Þ

and

ADC ¼
l1 þ l2 þ l3

3
ð13Þ

Here, λ1, λ2, λ3 are eigenvalues of the diffusion tensor sorted by size and λ their mean value.

All other post processing was accomplished using MATLAB (MathWorks, Natick, USA). First,

images were converted to NIfTI format and denoised using the local PCA-denoising algorithm

described in [36]. Manual segmentation of the whole heart scans was done according to the 17

segment model [37] of the American Heart Association (AHA). Representative distribution of

the segments: basal, mid-cavity, apical and apex is displayed in Fig 1. Resulting myocardial

contours were applied to all whole heart scans of the same heart. A local orthogonal coordinate

system with longitudinal, circumferential, and radial axes was established and the primary

eigenvector (E1) was projected in the plane given by circumferential and longitudinal vectors.

As illustrated in Fig 2A and 2B the angle between the projected eigenvector and the circumfer-

ential direction was defined as the primary eigenvector angle or helix angle (HA) [3, 38]. The

orientation of the primary eigenvector depends on localization in the myocardium, describing

a smooth transmural progressing from positive right-handed angles in the endocardium to

negative left-handed angles in the epicardium (Fig 2D). Analysis of this pattern was done

using profile lines between the LV center and epicardial voxels. Profiles were averaged for api-

cal, mid-cavity, and basal parts as well as multiple hearts. The stability of the transmural
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gradient was assessed using the standard deviation of values at the five myocardial layers:

endocardial, sub-endocardial, mid-wall, sub-epicardial, and epicardial.

The secondary eigenvector is associated with sheetlet orientation [7, 38]. As shown in Fig

2C, a cross-myocyte plane was calculated perpendicular to E1 for every voxel. The secondary

Fig 1. Orientation of the main eigenvector of the diffusion tensor within apex, apical, mid-cavity, and basal parts.

Values were calculated from cDTI data measured at 7T and mapped onto fiber tractography of the left and right

ventricle. Segmentation was done according to the 17 segment AHA model.

https://doi.org/10.1371/journal.pone.0213994.g001

Fig 2. Orientation of primary and secondary eigenvector of diffusion and derived metrics helix angle and E2A. (a)

Main eigenvector of diffusion mapped onto fiber tractography of the left and right ventricle. (b) Cut transmural block

of reconstructed fibers from a) used to illustrate the parameter helix angle and assignment of its polarity within the

local coordinate system of longitudinal z!, radial r! and circumferential c! axes. (c) Projected secondary eigenvector

angle. (d) Tensor visualization as superquadric glyphs in basal, mid-cavity and apical parts of (a). Color coding

resembles helix angle values for single voxels. Zoomed areas show the typical smooth progression of positive right

handed fibers in the endocardium to negative left handed fibers in the epicardium.

https://doi.org/10.1371/journal.pone.0213994.g002
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eigenvector was projected onto this plane and the angle between projection and cross-myocyte

direction defined as secondary eigenvector angle (E2A).

Comparison between the reference scan at 3 T and 7 T, as well as 7T measurements with

GRAPPA factors R = 2, R = 3, and R = 4 was done for medians of ADC, FA, and |E2A| using a

Wilcoxon test with a significance level of P<0.05. This analysis was performed for apical, mid-

cavity, basal parts, and the entire left ventricle. Maximal and minimal deviations of ADC [10−3

mm2/s] and FA within the AHA segments were used to define a bias range for 7T acquisitions

relative to the median 3T reference.

Visualization of diffusion in 3D was done using superquadric glyphs [39] as represen-

tations of the primary eigenvector. A generalized version of the deterministic fiber track-

ing algorithm in [33] was used in DSI studio in order to generate fiber visualization from

DT-data. After calculation in Matlab, helix angle values were reintegrated back into DSI

Studio, in order to generate a color coded mapping of the parameter as local indices onto

reconstructed fibers of the right and left ventricle. The same was done for SNR values

within myocardial contours. All fiber tracking was based on a ROI, containing the left and

right ventricle from base to apex. Segmentation of this ROI was done using the R = 3 scan

and copied to other 7T scans, where applicable. Segmentation of the 3T scan was done

separately. An anisotropy threshold of 0.1 was used for fiber termination, filtering out all

voxels with FA<0.1. The angular threshold was set to 60˚ and the step size to 0.5 voxels.

Only tracks ranging from 10 mm to 300 mm were accepted and initially a total of 100000

tracks was reconstructed.

SNR analysis

For the assessment of SNR (n = 9) as a function of parallel imaging we acquired 30 b = 0 s/

mm2 images of 30 slices of the left ventricle (LV) using the reference scan parameters as

well as GRAPPA acceleration factors R = 2, R = 3, and R = 4. No partial Fourier technique

was used in GRAPPA accelerated scans. Echo train lengths were 55, 41, 27, and 21, respec-

tively. A region of interest (ROI) was drawn for myocardial tissue of the LV in all 30 slices

of the acquired b = 0 images. SNR was calculated according to the multiple acquisition

method described by Reeder et al. [40]. Multiple acquisitions with identical scan parame-

ters are used to form a pseudo-time dependent data set. The mean (�x) and standard devia-

tion (σ) of every voxel (r) can be calculated over “time” (t), allowing the measurement of

SNR on a pixel-by-pixel basis:

SNRðrÞ ¼
�xtðrÞ
stðrÞ

ð14Þ

Resulting values were averaged for the previously defined myocardial ROI. SNR in scans

with R�2 and increased bandwidth was compensated using the following two factors, in

order to normalize GRAPPA accelerated scans:

1 :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPEðR ¼ 1Þ

NPEðR ¼ kÞ

s

2 :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bwðR � 2Þ

bwðR ¼ 1Þ

s

ð15Þ

where NPE corresponds to the number of phase encodings in scans using varying parallel

imaging factors k and bw to the bandwidth. No pre-processing, such as denoising, was

applied prior to SNR analysis.
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Results

Sample stability

Experiments monitoring tissue stability over a period of 12 hours showed little sign of change

in the measured mid-cavity slice. Time curve developments for relative changes in T2
�, T1, FA,

and ADC over the time period of 12 hours are shown in Fig 3. Corresponding changes in abso-

lute values can be found in S1 Fig. Any tissue changes immediately after excision could not be

assessed, since scans started approximately 45 min after the second organ excision, due to the

transport and preparation time required. No change in LV wall thickness was observed during

the measurements. Initial myocardial T2
� values for the two hearts changed 2% and 5% over

the time course of 12 hours, remaining stable with mean ± error of the mean of 20.45 ± 0.15

ms and 20.47 ± 0.28 ms. Relative T1 changes over this time period were 2–6%. Mean ± error of

the mean for FA and ADC for the two hearts were 0.45±0.01 and 0.45±0.02 and 0.63±0.02

[10−3 mm2/s] and 0.69±0.03 [10−3 mm2/s], respectively. ADC values for one heart decreased

during the first 4–5 hours of scan time, but remained within measurement precision during

typical acquisition times in this study.

DTI

SNR in b = 0 images of reference scans (R = 1) at 3 T and 7 T was 29±3 and 44±6, respectively.

While B1 destructive interferences were apparent in saline solution in all 7T acquisitions, such

Fig 3. Temporal evolution of sample stability using measures of T2�, T1, FA, and ADC. Values are plotted relative

to time point t = 0 over a period of 12 hours for two hearts (blue, red). Changes in myocardial T2
� and T1 over this

time period for the two hearts were 2–5% and 2–6%, respectively. Mean ± single standard deviation were 0.45±0.01

and 0.45±0.02 for FA and 0.63±0.02 [10−3 mm2/s] and 0.69±0.03 [10−3 mm2/s] for ADC respectively. The green area

marks the time interval, were the diffusion measurements at 7T would take place. Derived diffusion parameters

measured within this time interval were stable.

https://doi.org/10.1371/journal.pone.0213994.g003
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artefacts were mostly not observed within myocardial tissue. Representative images for the var-

ious protocols can be found in S2 Fig.

Statistical DTI analysis was performed for 4±1 slices of the apical cap, 10±1 apical, 10±1

mid-cavity, and 11±1 basal slices. A typical segment distribution as well as main eigenvector

orientation for fibers of the left and right ventricle reconstructed by tractography is shown in

Fig 1.

Fig 4A displays median values of diffusion metrics for the 17 segments of the AHA model

for all DTI acquisitions. The biggest differences can be found between the reference scan at 3 T

and 7 T, particularly for the metrics ADC and FA. Eigenvector orientations appear robust to

increasing acceleration at 7 T. The absolute bias ranges of the examined parameters between 3

T and 7 T were as follows: 3–45% (ADC) and 3–26% (FA) using values of the reference at 7 T;

1–12% (ADC) and 1–13% (FA) for GRAPPA factor R = 2; 1–11% (ADC) and 1–12% (FA) for

GRAPPA factor R = 3; 1–15% (ADC) and 1–12% (FA) using GRAPPA factor R = 4.

Median ADC, FA, and |E2A| values averaged for apex, apical, mid-cavity, and basal parts as

well as the entire left ventricle are displayed in Fig 4B. All metrics measured at 7T exhibit

higher standard deviation when compared to the 3T reference. Statistically significant differ-

ences in some segments were found for all parameters derived from the 7T R = 1 and R = 4

scans. While calculated metrics from scans using GRAPPA factor R = 2 showed significant dif-

ferences in the apex for ADC and |E2A| in mid-cavity and basal parts, there were no significant

differences for data derived from scans with R = 3.

Fig 5 shows helix angle profiles averaged for apical, mid-cavity, and basal parts in compari-

son to the reference (R = 1) data at 3T. Transmural profiles follow the same trend for all acqui-

sitions. Helix angle standard deviations in apical, mid-cavity, and basal segments are displayed

in Table 1 for all scans. With 8.7˚ and 8.6˚, averaged over apical, mid-cavity, and basal seg-

ments, transmural profiles based on the reference scan at 7 T and scans using R = 4 exhibited

the highest variation. Mean values for scans using R = 2 and R = 3 were within a 2˚ deviation

with respect to the 3T reference. GRAPPA factors R>2 lead to an increase in standard devia-

tion relative to R = 2. Compared to the 3T reference, profiles based on the reference scan at 7 T

have shown the highest deviation in mean values at different transmural points, particularly in

the mid-cavity segment (�9.1˚). The lowest deviation in mean values relative to the 3T refer-

ence was found for the scans using R = 2.

Transmural helix angle gradients in degrees per percentage of transmural depth are pre-

sented in Fig 6. The highest variation in determined gradient values was found in the apical

region. Scans using the reference parameters at 7 T lead to the biggest difference in mean gra-

dients for apical and basal regions, while showing the smallest difference in mid-cavity regions.

Averaged over all regions the reference at 3 T and the R = 3 scan exhibited the lowest standard

deviations. The smallest difference in mean values in relation to the 3T reference was found

for R = 2.

Fig 7 shows an excerpt of fiber tractography of the left ventricle and the diffusion tensor

represented as superquadric glyphs in apical, mid-cavity, and basal slices for the same heart of

both the reference scan at 3 T and GRAPPA accelerated scans at 7 T. Helix angle values across

the myocardium of reconstructed fibers transition smoothly in the 3T reference and the scan

using GRAPPA factor R = 4. Transitions, particularly in the epicardium, are less smooth for

the scans using GRAPPA factors R = 2,3 and appear patchy. The highest variation for helix

angle values was found for epicardial voxels and areas within the left ventricle involving papil-

lary muscle. In addition there are areas with varying glyph form (black arrows), indicating var-

iations in the underlying diffusion tensor for scans at 7 T. These changes are severe for scans

using GRAPPA factor R = 1 and become less severe with increasing acceleration.
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Fig 4. 17 segment distributions of diffusion metrics at 3 T and 7 T using varying parallel imaging factors. (a) Median ADC [10−3 mm2/s], FA, and

the three main eigenvector E1 components E11, E12, E13 for all 17 segments. Color coding of the vector components corresponds to the “RGB” encoding

of spatial orientation for diffusion tensor main axes typically used in DTI (see Fig 1). (b) Values of median ADC, FA and |E2A| averaged for apex, apical,

Spin echo based cardiac diffusion MRI at 7T
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SNR

Fig 8A displays average SNR, normalized using the factors in Eq (15), in myocardial tissue in

unaveraged b = 0 s/mm2 images acquired for this study. Means of SNR were 29±3, 44±6, 17±6,

19±5, 13±2 for the reference at 3 T, the reference at 7 T, and scans using GRAPPA factors

R = 2–4, respectively. Representative, for the same heart, calculated values, mapped to fiber

tractography of the 3T and the 7T reference scan are shown in Fig 8B and corresponding trac-

tography for GRAPPA accelerated scans in Fig 8C. Mapped SNR values illustrate the distribu-

tion within the myocardium of the left ventricle. The SNR gain at 7 T is clearly visible.

Incomplete or diffuse reconstructions in the reference scan at 7 T and the scan using GRAPPA

acceleration factor R = 2 are indicated by black arrows.

mid-cavity, and basal parts as well as the whole left ventricle A significant difference in Wilcoxon test (P<0.05) compared to the 3T reference is

indicated by �.

https://doi.org/10.1371/journal.pone.0213994.g004

Fig 5. Average transmural helix angle profiles at 7 T and 3 T for apical, mid-cavity, and basal segments. Data was

derived from the reference scan at 3 T, the reference scan at 7 T and scans with increasing GRAPPA factors R = 2,

R = 3, and R = 4 at 7 T. Data points are displayed for five myocardial layers endocardial, sub-endocardial, mid-wall,

sub-epicardial, and epicardial as mean ± one standard deviation. Profiles show helix angle values as a function of

transmural depth (%).

https://doi.org/10.1371/journal.pone.0213994.g005
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Discussion

Our results demonstrate that cDTI in unfixed porcine hearts at 7 T is feasible and can lead to

improved SNR in DTI acquisitions of myocardial tissue. Comparison to a reference data set of

the same hearts measured at 3 T shows that essential DTI features such as HA, |E2A|, FA, and

ADC, do not significantly change with B0 field strength, given sufficiently high SNR and geo-

metrically undistorted images. This is an important finding with regard to future studies.

Measurements in vivo will require additional measures to reduce susceptibility in areas

close to the lung. This can be accomplished via dedicated shimming methods [41] and/or fur-

ther reduction of the echo train using reduced field-of-view approaches [13, 42].

Obtained FA values in the unfixed heart using b = 700 s/mm2 are 0.41±0.04 at 3 T (R = 1),

0.43±0.07 at 7 T (R = 2) and 0.42±0.06 at 7 T (R = 3). Using a similar b value (b = 800 s/mm2)

in porcine hearts at 3T, Wu et al. [21] reported FA = 0.32±0.01 and Pashakhanloo et al. [43]

FA = 0.37±0.04. Literature values above refer to formalin based tissue fixation prior to DTI

measurements. FA discrepancy observed in our study with respect to values cited above are in

agreement with studies analyzing the impact of tissue fixation on diffusion metrics. Mazumder

et al. [44] reported FA values of 0.42 ± 0.028 in porcine hearts prior to formalin fixation, which

dropped to 0.26 ± 0.034 after fixation. A similar observation was made in [45], which reports a

fixative concentration dependent decrease in FA compared to unfixed myocardial tissue.

Median ADC values for apical to basal segments in our study range from 0.53–0.62 [10−3

mm2/s] (3T) and 0.51–0.66 [10−3 mm2/s] (7T, R = 3). While the corresponding values of

0.671 ± 0.106 and 0.633 ±0.04 [10−3 mm2/s] reported by Wu and Pashakhanloo et al. in fixed

hearts are higher, our results are in good agreement with Mazumder et al., who reported an

Table 1. Helix angle standard deviation within apical, mid-cavity and basal parts of the left ventricle.

Reference (3T) Reference (7T) R = 2

(7T)

R = 3

(7T)

R = 4

(7T)

Apical 7.3 9.0 5.8 5.9 8.3

Mid-cavity 4.4 9.1 6.0 7.0 8.8

Basal 3.7 8.0 4.4 5.8 8.6

Mean 5.1 8.7 5.4 6.2 8.6

Values were measured at the 5 transmural layers: endocardial, sub-endocardial, mid-wall, sub-epicardial, and epicardial

https://doi.org/10.1371/journal.pone.0213994.t001

Fig 6. Transmural helix angle gradients between transmural layers. Endocardial, sub-endocardial, mid-wall, sub-

epicardial, and epicardial. Gradients were calculated based on the data displayed in Fig 4. Color coding: Endo- to sub-

endocardial gradient (blue), sub-endocardial to mid-wall gradient (light blue), mid-wall to sub-epicardial gradient

(yellow), and sub-epicardial to epicardial gradient (red). The complete transmural gradient is displayed with

mean ± one standard deviation.

https://doi.org/10.1371/journal.pone.0213994.g006
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ADC of 0.52 ± 0.026 [10−3 mm2/s] in unfixed tissue, and observed an increase in ADC follow-

ing tissue fixation. In addition to different tissue preparation, the age and breed of the pigs

may have an influence on derived ADC and FA values as well. Compared to heart regions in

the middle of the ventricle, the number of analyzed voxels in the apex is relatively low. Differ-

ences in FA and ADC compared to the other regions may therefore be caused by a mix of

structural differences and an increased role of partial volume effects.

ADC, |E2A|, and helix angle values were used for validation versus the 3T reference. Stan-

dard deviations were particularly high for the reference scan at 7T, resulting in a significant

difference compared to the 3T reference in ADC of mid-cavity segments, despite systematic

overestimation of this metric, and multiple significant differences for the metrics FA and |

E2A|. DTI measurements using EPI readout without reduction in the number of phase encod-

ing steps, due to parallel imaging acceleration, do not seem feasible at 7T, leading to a strong

bias in derived diffusion metrics. While ADC is influenced by low SNR (<20db), there was

only one significant difference between GRAPPA accelerated scans at 7T using R = 4 and the

3T reference in apical segments. FA was similarly affected, while main eigenvector orientations

appeared robust for GRAPPA accelerated scans. Simulations [46] have shown that FA and

parametric angles are largely independent of the trade-off between the number of acquired

directions and SNR in b = 0 images. However, the acquisition of 30 diffusion directions leads

to an increased robustness of measured FA and decreases the probability of a measured FA

bias caused by extreme cases of underlying tissue orientation. In addition to the ADC, |E2A| is

also affected by low SNR (<20db). In R = 4 scans this leads to significant differences compared

to the reference at 3 T and scans using R = 3. This is in agreement with recent work of Scott

Fig 7. Tractography and helix angle comparison between the 3T reference and GRAPPA accelerated scans at 7 T.

Examples of left ventricle tractography from the same heart are displayed for the 3T reference and GRAPPA

accelerated scans at 7 T showing differences in resulting tractography and helix angle values. Grey points indicate the

position of selected apical, mid-cavity and basal slices. The diffusion tensor within the myocardium of the left ventricle

in these slices is visualized as a superquadric glyph. Areas with glyph variation and underlying changes in the diffusion

tensor are indicated by a black arrow and areas of helix angle variation in the epicardium with a red arrow.

https://doi.org/10.1371/journal.pone.0213994.g007
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et al. [16] demonstrating that noise leads to a loss of both precision and accuracy in derived |

E2A| values.

Acceleration of image acquisition using parallel imaging at 7 T is a trade-off between sus-

ceptibility effects for long echo trains at low acceleration, SNR loss as acceleration penalty, and

an SNR gain for shortened EPI readouts due to lower T2
� induced losses. Undersampling-

effects on the k-space filter, and thus point spread function, were outside the scope of this

work and are most likely masked by the applied denoising algorithm. For the tested condi-

tions, we found that GRAPPA acceleration factor R = 3 was optimal for several derived DT-

features. Taking the number of phase encoding steps into account, SNR comparison showed,

that scans using R = 3 benefitted from the shorter EPI readout leading to an increase in relative

SNR compared to R = 2. We observed a significant loss in SNR compared to the reference

(R = 1) at 7 T when using R = 2, even when taking into account SNR penalty normalization.

Most likely this is due to the relatively small size of the piglet heart in comparison to the size of

the coil elements, which leads to an enhanced effect of the g-factor on noise amplification [47,

48] in GRAPPA reconstructed images. Additionally, as shown in [49], SNR decreases for high

acceleration factors at ultra-high field strength due to fundamental electromagnetic factors,

even considering optimal coil sensitivity profiles. For our setup this effect may already occur

for the moderate acceleration factors used. A systematic evaluation of different coil combina-

tions (sum of squares vs adaptive combine) and a comparison of GRAPPA versus SENSE

acceleration may be subject of future studies.

Fig 8. Calculated SNR in the 3T reference, the 7T reference and GRAPPA accelerated scans at 7 T. (a) Shown are

average SNR (normalized) values of the hearts measured at 7 T, the reference hearts measured at 3 T and their

mean ± single standard deviation. (b) A tractography excerpt of the left and right ventricle from the same heart is

displayed for 30 slices of the 3T reference and the 7T reference. Mapped to reconstructed fibers are the measured SNR

values. (c) Tractography volumes identical to the 7T reference in (b) are shown for GRAPPA accelerated scans and

resulting SNR. Areas of incomplete or diffuse fiber reconstructions are indicated by a black arrow. SNR values were

only calculated for myocardial contours of the left ventricle, setting voxels within the right ventricle and papillary

muscle to 0. Threshold for tractography was set to a FA value 0.1 for all visualizations.

https://doi.org/10.1371/journal.pone.0213994.g008
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The results also show that long echo times and readouts at 7 T lead to susceptibility effects,

causing deformation of the reconstructed diffusion tensor. While ADC and FA values are

changed significantly, main eigenvector orientation appears to be robust in the presence of

susceptibility induced geometrical distortions. This is in agreement with observations made in

our previous work [50], where susceptibility effects on the main eigenvector were analyzed at 3

T. It was demonstrated, that, while there are changes in the eigenvector components, the ratio

between them stays similar, resulting in small orientation changes of the main eigenvector of

diffusion. As shown in Fig 4B changes in the |E2A| are more pronounced, resulting in signifi-

cant deviations, when compared to our 3T reference. The need for highly parallel imaging

reported [22] for DTI in the brain at 7 T, holds true for ex vivo cDTI at 7 T as well.

Despite the observed advantages in SNR, the increased B0 (7 T) also increases demands on

the measurement setup and introduces additional limitations in comparison to lower field

strengths (�3T). For fixed hearts and certain scan times proton-free and low electrical permit-

tivity synthetic oils such as perfluorpolyether (e.g. Fomblin) can be used to minimize both B0

and B1 effects of the surrounding on image quality of myocardial tissue, without effecting T1,

T2, and targeted histo-architecture [51]. While the effects of Fomblin on T2 and T2
� in unfixed

tissue have been shown to be insignificant [52], diffusion metrics may still vary depending on

the sample preparation. The use of Fomblin was therefore omitted in this study. Additional

advantages may be gained using B0 correction techniques, enabling imaging with lower accel-

eration factors, and thus maintaining higher SNR. However, in our experience, non-negligible

second and third order shim terms are necessary to correct B0 field inhomogeneity in the heart

at 7 T. Established correction techniques might therefore show weaker performance at ultra-

high fields. Achieving stable solutions of optimization-based distortion correction methods is

additionally limited by the smaller organ size compared to the brain, which results in smaller

numbers of available pixels to solve the minimization problem. Exploration of the limits of

existing techniques might be subject of a future ex vivo study, but were outside the scope of

this work.

|E2A| has been shown to depend on the heart phase and therefore the contraction state of

the organ, which is why hearts are often forced into a set contraction state prior to fixation and

following ex vivo analysis of laminar structure. The question whether tissue fixation, which is

predominantly used at lower fields for ex vivo DTI, is reasonable for DTI of the porcine heart

at 7 T, is still open, and may be subject to future studies. However the reduced T�
2

due to tissue

fixation will further the need for higher parallel imaging factors. The contraction state of hearts

in this study was not controlled. The evaluation of |E2A| was therefore exclusively to analyze

reproducibility using varying acquisition protocols.

Optimization of different components of the measurement setup may lead to improved

robustness and precision of high resolution scans with long acquisition time. For the high

acceleration factors (R�3) required, it is beneficial to use a dedicated multi-channel array, e.g.

a 64 element array as used in [53]. The heart should be placed in a dedicated spherical con-

tainer filled with liquid (magnetic susceptibility and electric permittivity similar to tissue), in

order to achieve optimal 3rd order shimming results and minimize SNR degradation due to

inhomogeneous B1. Prior to measurements the influence of such liquids on DTI metrics

should be tested.

Additional advantages in diffusion imaging may be gained using pulse sequence optimiza-

tion. Long echo times required for diffusion encoding reduce available SNR at 7 T and increase

the influence of susceptibility effects. A stimulated echo approach may, despite the factor two

disadvantage in SNR compared to the standard spin echo sequence, increase SNR in two ways:

1) Signal during the mixing time, where magnetization is stored in the longitudinal direction,

decays with T1 time, which is increased at 7 T. 2) The mixing time also contributes to diffusion
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encoding and thus enables to shorten periods affected by T2 relaxation, which is short at 7 T.

Both factors become particularly pronounced in in vivo measurements where the mixing time

is equal to the RR-interval.

While an increase in field strength can lead to increased SNR, it will also lead to changes in

the distribution of field inhomogeneity introduced by locally varying orientations of fiber bun-

dles within the heart. In addition to studies that leverage ultra-high field strengths for resolu-

tion [54], this has led to studies exploring high resolution T2
� imaging [55, 56], quantitative

susceptibility mapping, or even measurements of a susceptibility tensor [57] as alternative

methods to diffusion imaging. While the feasibility of these methods has been demonstrated

for beating, isolated hearts and fixed, ex vivo hearts, there have been no demonstrations in

vivo. Macroscopic field inhomogeneity and variations of susceptibility due to changing blood

oxygenation levels may limit a direct translation to in vivo applications. Additionally, in order

to get sufficient orientation information for the reconstruction of a susceptibility tensor, the

specimen needs to be rotated with respect to the magnetic field, which complicates a practical

translation to in-vivo measurements.

We obtained DTI data of the fresh hearts at 7 T within 1–3 hours after euthanasia. The 3T

MRI system is predominantly clinically used, which limited the time slots for acquisition of

our reference data set to 5–10 hours after euthanasia. Usually, 3T and 7T scans should be per-

formed in random order to minimize systematic errors. Considering our results that T2
�, T1,

and diffusion metrics are constant over 12 hours, we believe that the time between scans and

the missing randomization are no critical factors for the results.

Conclusions

In this study we demonstrate feasibility of whole heart, high resolution DTI acquisitions of the

healthy, unfixed porcine heart at 7 T using commercial hardware. For the coil used, we con-

clude that a minimum of R = 3 will provide the best compromise between the effects of suscep-

tibility induced distortions and SNR losses. We also conclude that a dedicated coil setup for ex

vivo measurements of organs the size of a piglet heart is necessary to enable the use of accelera-

tion factors�4.

Supporting information

S1 Fig. Temporal evolution of sample stability using measures of absolute T2�, T1, FA, and

ADC. Values are plotted relative to time point t = 0 over a period of 12 hours for two hearts

(blue, red). The green area marks the time interval, were the diffusion measurements at 7T

would take place.

(TIF)

S2 Fig. Representative reference and diffusion weighted images for the various acquisition

protocols used. Diffusion weighted images #1–4 correspond to the first 4/30 gradient orienta-

tions according to Skare (31).

(TIF)

S1 Table. Information on study animals and corresponding estimates of left ventricle size

and heart weight. Heart size and weight were not measured within this study. Shown values

for the size are estimates of the size of the left ventricle based on the number of slices included

in the AHA segmentation and the slice thickness during data acquisition. Values for the heart

weight are estimates for the total heart weight based on the heart weight to body weight ratio

of 5g/kg reported by Lelovas et al (29).
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55. Köhler S, Hiller K-H, Waller C, Jakob PM, Bauer WR, Haase A. Visualization of myocardial microstruc-

ture using high-resolution T imaging at high magnetic field. Magnetic resonance in medicine. 2003; 49

(2):371–5. https://doi.org/10.1002/mrm.10346 PMID: 12541258
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3.2 Longitudinal assessment of tissue properties and cardiac 
diffusion metrics of the ex vivo porcine heart at 7 T: 
Impact of continuous tissue fixation using formalin 
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Due to limited scan time, cardiac and breathing motion as well as intrinsically 
low SNR lead to low spatial and angular resolution in in vivo DTI scans. Ex vivo 
measurements in controlled environments, that enable long scan times and the 
acquisition of high resolution and high-fidelity data thus remain an important 
research tool. Tissue fixation, often achieved using formalin, is applied to 
prevent autolytic effects after the organ harvest, preserving physiological 
diffusion properties and tissue microstructure for these long measurements. 
While continuous formalin fixation has been shown to shorten T1 and T2 
relaxation times and significantly decrease diffusivity in the brain, there is a 
lack of such data for the heart. 

Primarily we aimed to assess the impact of formalin immersion fixation 
on diffusion metrics of the ex vivo porcine heart at 7T. As a secondary aim of 
this study we evaluated changes in T2 and T2* and their impact on SNR in 
diffusion MRI at ultrahigh field strength.   

MRI was performed on a 7T system for n=8 excised porcine hearts. The 
protocol included SNR (diffusion), relaxometry (T2 and T2*), and diffusion (spin 
echo and a custom written stimulated echo sequence) measurements. Scans 
were performed within 3 hours of excision and 7, 15, 50, 100, and 200 days 
post immersion fixation using formalin. 

In the first 7 days post fixation average T2 and T2* dropped from 49.3 
ms to 32.1 ms and 25.1 ms to 19.8 ms. Over 200 days T2* values gradually 
recovered (Δ5%) and T2 values remained lowered (Δ26%). SNR in b0 images 
followed a similar trend, initially dropping 32% and 19% in spin echo and 
stimulated echo data and recovering to Δ20% and Δ 10%, respectively. ADC 
and FA values 7 and 200 days post fixation were 78% and 92% as well as 90% 
and 80% relative to fresh hearts. Average standard deviations over time in 
mean helix angle and sheetlet angle values were small 3.4° and 6.5° and no 
systematic alterations post tissue fixation were found. 

In this study we demonstrate that continuous immersion fixation using 
formalin significantly alters T2, T2*, ADC and FA. In addition to tissue fixation 
durations, storage and sample preparation need to be considered when 
interpreting the impact of diseases. The longitudinal setup of this study 
facilitates proper placement of previously published diffusion metrics with 
respect to disease induced alterations. Anisotropy and overall microstructure 
are preserved, even after long periods of immersion, enabling studies on 
ventricular remodeling of cardiac microstructure in various cardiac pathologies. 
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In this study we aimed to assess the effects of continuous formalin fixation on diffu-

sion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance

imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts

were measured fresh within 3 hours of cardiac arrest followed by immersion in 10%

neutral buffered formalin. T2
* and T2 were assessed using a gradient multi-echo and

multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated

echo sequence were employed to assess diffusion time-dependent changes in met-

rics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans

were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution:

1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the

apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased signifi-

cantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days

postfixation were 90% and 80%, while respective relative ADC values at those fixa-

tion stages were 78% and 92%. Statistical helix and sheetlet angle distributions as

well as respective mean and median values showed no systematic influence of con-

tinuous formalin fixation. Similar to changes in the ADC, values for T2, T2
* and SNR

dropped initially postfixation. Respective relative values compared with fresh hearts

at day 7 were 64%, 79% and 68%, whereas continuous fixation restored T2, T2
* and

SNR leading to relative values of 74%, 100%, and 81% at day 200, respectively.

Relaxation parameters and diffusion metrics are significantly altered by continuous

formalin fixation. The preservation of microstructure metrics following prolonged fix-

ation is a key finding that may enable future studies of ventricular remodeling in car-

diac pathologies.
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Abbreviations used: |E2A|, absolute sheetlet angle; ADC, apparent diffusion coefficient; cDTI, cardiac diffusion tensor imaging; DTI, diffusion tensor imaging; E2A, secondary eigenvector angle,

sheetlet angle; FA, fractional anisotropy; HA, primary eigenvector angle, helix angle; LV, left ventricle; ROI, region of interest; SE, spin echo; SNR, signal-to-noise ratio; STE, stimulated echo; λ1,
primary eigenvalue; λ2, secondary eigenvalue; λ3, tertiary eigenvalue.

Received: 20 November 2019 Revised: 18 February 2020 Accepted: 5 March 2020

DOI: 10.1002/nbm.4298

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd

NMR in Biomedicine. 2020;33:e4298. wileyonlinelibrary.com/journal/nbm 1 of 14

https://doi.org/10.1002/nbm.4298

35



1 | INTRODUCTION

Cardiac diffusion tensor imaging (cDTI) has become an emerging application in the characterization of cardiac tissue and its functional and struc-

tural integrity. It has since been applied in a variety of cardiovascular pathologies, such as hypertrophic1–3 and dilative cardiomyopathy3,4 as well

as myocardial infarction.5 In recent years the number of in vivo studies in humans6–8 and animals3,9 has increased. But, due to cardiac motion,

breath holds, intrinsically low SNR,10–12 and limited scan times, spatial and angular resolution as well as spatial coverage remain low. Many cardiac

studies using DTI have therefore been performed on ex vivo specimens. Usually rapid chemical fixation is applied to prevent autolytic effects after

the organ harvest,13,14 preserving physiological diffusion properties and tissue microstructure as best as possible. This tissue fixation, often per-

formed using formalin, enables long scan times and, thus, ex vivo measurements remain an important scientific tool which provides high resolution

and high fidelity, ground truth data. Historically, such data allowed validation of DTI against histology,9,15–17 proof of concept studies,18–20 as well

as validation of in vivo results.3,21 Furthermore, cardiac tissue samples can often be gained as a byproduct of other scientific or biomedical studies.

The site of cardiac experimentation and fixation, and the site for subsequent DTI measurement may be separated by hundreds of miles.19 Thus,

tissue specimens may be shipped before the MR measurements.

In order to allow an accurate comparison between in vivo and ex vivo measurements it is paramount to assess fixation-induced changes of

tissue properties. While there are studies analyzing the impact of tissue fixation on diffusion metrics of the heart,18,20,22 methodology in studies

throughout the years remained highly heterogeneous with regard to the procedure of fixation, storage times and temperature, the fixative itself,

and the overall fixation duration.

There is a lack of data on variations of cardiac MRI and DTI parameters following excision of the heart combined with subsequent formalin

fixation. For brain tissue, studies have shown that continuous formalin fixation shortens T1 and T2 relaxation times compared with the in vivo

values23–29 and that diffusivity is significantly decreased following fixation.13,30,31

In a study comparing different fixation methods on the porcine heart, Agger et al18 concluded that immersion fixation using formalin yielded

the diffusion profile most similar to that of “fresh” tissue. In addition, they state that the process of perfusion fixation, in dependence of the perfu-

sion pressure, may possibly inflict tissue damage, resulting in changes of both mean diffusivity and components of the diffusion tensor.

Therefore, the main aim of this study was to assess the impact of formalin immersion fixation on diffusion metrics of the ex vivo porcine

heart at 7 T. Diffusion properties for various fixation durations are assessed in dependence of the diffusion time using a stimulated echo

diffusion sequence. The secondary aim of this study was to assess fixation-induced alterations in T2 and T2
* at ultrahigh field strength and

their impact on SNR in diffusion MRI. Results of this study will benefit future ex vivo diffusion experiments regarding fixation, measurement

and sequence protocols. In addition, changes in diffusion metrics in dependence of the fixation duration will ease comparison of existing and

upcoming studies.

2 | METHODS

2.1 | Porcine heart samples

Hearts (n = 8) were kindly provided by the Translational Center for Regenerative Therapies Wuerzburg, following the animals approved use (55.2

2532–2-256, District Government of Lower Franconia, Germany) in another study. All experiments were performed according to the German Ani-

mal Welfare Act and the EU Directive 2010/63/EU. Euthanasia was achieved as described in32 and hearts were collected, rinsed and stored in

physiological saline solution. The eight hearts were harvested in four experiments, where two hearts each were excised with ~20 minutes tempo-

ral difference. All samples in this study were harvested from male German Landrace piglets, which were obtained from the same breeder. Body

weights ranged from 20-22 kg. Details regarding age and body weight are shown in Table S1.

3 | SAMPLE PREPARATION

Prior to MR measurements and subsequent tissue fixation, both atria were removed, easing the release of air trapped in the ventricles. Sample

transport and preparation required ~45–60 minutes before measurement of the first heart (set of two). We always started with MRI measure-

ments of the heart that was excised second, in order to minimize the time differences from excision to measurement between hearts within

one set. Hearts were centered in a plastic container filled with physiological saline solution and the sample position was fixed using surgical

threads. Directly after the initial MR measurement of the fresh heart, each heart was fixed via immersion in 10% phosphate buffered formalin

solution. Before MR measurements of fixed specimens, hearts were briefly (~3-5 minutes) rinsed to remove excess formalin. Throughout the

study, hearts were stored immersed in formalin in the scanner operating room. This room is temperature-controlled, allowing storage at a con-

sistent 21 ± 1�C.
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3.1 | MRI measurements

3.1.1 | General experimental setup

MRI was performed at bore temperature on a 7 T whole body MRI system (Siemens MAGNETOM Terra, Erlangen, Germany) using a 1/32 Tx/Rx

head coil (Nova Medical). Data for the two hearts were acquired in consecutive measurements. Figure 1 shows an illustration of the whole study

protocol. Initial measurements on the day of excision were performed on fresh hearts.

For MRI measurements, three short axis slices were positioned in relation to the valves in order to reproduce the slice position in subsequent

measurements. The distance between 5 mm slices was set to 15 mm, resulting in single basal, midcavity and apical slices. All scans were per-

formed with an in-plane resolution of 1 mm. Prior to measurements we applied third-order B0-shimming using the scanner-integrated 3D-

shimming algorithm covering the whole three-slice volume. The scan protocol consisted of relaxometry (T2, T2
*), diffusion (SE and STE) and SNR

(diffusion) measurements. An overview of all sequence parameters is displayed in Table S3. Total acquisition time for the protocol was 63 minutes.

Scans for both hearts were therefore completed within 3 hours after excision. Data was postprocessed using MATLAB (MathWorks, Natick, MA)

and DSI Studio.33 Measurements were repeated 7, 15, 50, 100 and 200 days after immersion.

3.1.2 | SNR

In order to evaluate peak SNR in diffusion measurements for the parameters used, we acquired 30 b = 0 images with the spin-echo sequence as

well as the stimulated echo sequence (tMix = 100 ms) for the basal, midcavity and apical slice. Due to a longer diffusion time, the applied spoiler

gradients amount to a diffusion weighting of b~18 s/mm2 in the stimulated echo sequence. Other sequence parameters are described in more

detail in the diffusion section below.

3.1.3 | Relaxometry

T2
* was evaluated based on a 2D multi-gradient-echo sequence with the following imaging parameters, field of view (FOV): 131 mm × 176 mm,

number of averages: 8, FA: 30�, bandwidth: 1095 Hz/pixel, TR: 150 ms. Nine echoes per excitation were acquired with TE values distributed

between 2.07 and 18.0 ms.

Measurements for T2 evaluation were performed using a multi-spin-echo spin echo sequence acquiring four averages with bandwidth:

465 Hz/pixel and TR: 2000 ms. Thirty-two images with TE values, distributed equally between 7.5 and 240 ms, were measured. The FOV

remained identical with the respective T2
* acquisition.

F IGURE 1 Study protocol for the assessment of changes in tissue properties and diffusion metrics in the ex vivo porcine heart due to
continuous formalin fixation
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3.1.4 | Diffusion

Diffusion data were acquired using a Stejskal-Tanner spin-echo sequence and an in-house written stimulated echo pulse sequence. Both pulse

sequences used a monopolar diffusion preparation, EPI readout and a GRAPPA acceleration factor of R = 3. In order to minimize TE we used a

bandwidth of 2442 Hz/pixel, leading to a bigger FOV. Further measurement parameters were: TR: 3500 ms, FOV: 208 mm x 256 mm, bandwidth:

2440 Hz/pixel, vendor-supplied diffusion directions (b = 1000 s/mm2): 6 (averages: 12), reference images (b = 150 s/mm2): 6 (averages: 12). In

order to gain additional information about changes in diffusivity and microstructure, we used varying mixing times (tMix = 50, 100, 200, 400 and

600 ms) in the stimulated echo sequence, probing diffusion metrics in dependence of the diffusion time. Prolonging the diffusion time allowed

shortening of the diffusion gradients, which resulted in shorter echo times. TE for the spin-echo sequence was 44 ms, while TEs for the stimulated

echo sequences (tMix) were 37, 36, 35, 32 and 32 ms.

3.2 | Data processing

All postprocessing was based on DICOM-images created using the vendor's reconstruction pipeline and MATLAB, if not indicated otherwise.

3.2.1 | SNR

Myocardial contours of the left ventricle (LV) were manually segmented and SNR calculated according to the multiple acquisition method.34 The

30 images were evaluated as a “pseudo” time-dependent dataset, where SNR can be calculated for each voxel (r) using the mean (�x) and standard

deviation (σ) over time (t):

SNR rð Þ= �xt rð Þ
σt rð Þ ð1Þ

The resulting values were averaged for the previously created LV ROI.

In addition, we assessed background noise and SNR in the saline solution as a reference, ensuring coil functionality. As described by Reeder

et al34 noise, assessed in a signal-free area, was corrected for Rayleigh distribution.

3.2.2 | Relaxometry

T2
* and T2 maps were reconstructed on a pixel basis using an in-house developed MATLAB script. Here a mono-exponential model fit:

S TEð Þ= S0e −TE=T*
2ð Þ ð2Þ

with the free parameters (T2
* and S0) was applied to a preliminary normalized data vector S (TE). T2 decay was fit the same way. Margins for the

fitting parameters of the nonlinear solver were set to 1-50 ms for T2
* and 1-80 ms for T2. Providing manually segmented epicardial contours

accelerated the fitting process.

3.2.3 | Diffusion

Motion correction was applied in order to correct for eddy current-induced geometrical distortions and DSI Studio33 was used for reconstruction

of the diffusion tensor as described by Jiang et al.35 All the following processing steps were performed using MATLAB. Eigenvalues (λ1, λ2, λ3),

fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were derived from the diffusion tensor using eigenvalue analysis and the

following two equations:

FA=

ffiffiffi
3

p
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1−λð Þ2 + λ2−λð Þ2 + λ3−λð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 + λ

2
2 + λ

2
3

q ð3Þ

ADC =
λ1 + λ2 + λ3

3
ð4Þ
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where λ corresponds to the mean eigenvalue of the diffusion tensor.

In addition, we assessed cardiac diffusion metrics such as the primary eigenvector or helix angle (HA) and secondary eigenvector angle (E2A),

which correspond to the fiber bundle and sheetlet orientation, respectively. Changes in HA or |E2A| distribution due to fixation were assessed

using histograms. Endocardial and epicardial contours of the LV were segmented for subsequent data analysis of diffusion metrics. This also

enabled determination of the LV center, which was used to calculate primary and secondary eigenvector angles as described by Ferreira et al.2

The LV center was recalculated for each time point. Changes in these metrics were also assessed in dependence of the diffusion time up to

600 ms. In order to demonstrate temperature independence, we placed a 20 x 20 pixel ROI in the saline solution for all ADC maps based on the

spin echo sequence. This was done for all time points of this study (0, 7, 15, 50, 100, 200 days).

3.2.4 | Statistics

All statistical testing was done using MATLAB. Prior to statistical tests, data were checked for normal distribution using Shapiro–Wilk tests with a

significance level of P < 0.05. Fixation-induced changes in T2, T2
*, eigenvalues of the diffusion tensor, ADC and FA were then assessed using a

paired t-test with P < 0.05. Bonferroni correction was applied to account for multiple testing.

4 | RESULTS

4.1 | SNR

Figure 2 displays SNR values in the LV in dependence of the tissue fixation duration comparing the spin echo (TE = 44 ms, tMix = 21 ms) and stimu-

lated echo (TE = 36 ms, tMix = 100 ms) sequence. For both pulse sequences, the SNR follows a similar trend. There is an initial drop of SNR in the

first 7 days of fixation (ΔSE: 32%, ΔSTE: 19%) followed by another week of approximately consistent SNR. With longer tissue fixation duration SNR

recovers compared with fresh tissue values (ΔSE: 20%, ΔSTE: 10%). The use of a stimulated echo approach resulted in a loss of ~33% SNR in the

fresh heart. With decreased T2 and T2
* this difference was 31% on day 7 after fixation and 25% on day 200 after fixation. Results of the paired t-

test are listed in Table S4 and histograms of the SNR distribution are shown in Figure S1. Using the STE sequence resulted in narrower histograms

with sharper modes. Destructive B1 interference, as illustrated in Figure S2, was present in the saline solution in all diffusion scans. Despite this

signal variation, the saline SNR reference was consistent throughout this study. In addition, there were no variations in the noise floor.

4.2 | Relaxometry

Representative image contrasts for the varying echo times in T2
* and T2 measurements are displayed in Figures S3 and S4 for a midcavity slice of

one heart. Alterations of the transverse and the effective transverse relaxation times due to continuous tissue fixation are shown in Figure 3. As

visualized by the parameter maps of a representative midcavity slice, both T2 (see Figure 3A) and T2
* (see Figure 3B) drop significantly in the first

7 days. Afterwards, we observe slightly increasing values for both T2 and T2
*. Mean values of individual hearts as well as their mean ± single stan-

dard deviation show that this trend was present in basal, midcavity and apical slices of all hearts. Average values for the initial drop as well as the

relative difference after 200 days of continuous fixation are listed in Table 1. On average, T2 dropped from 49.3 to 32.1 ms (35%) and T2
* from

25.1 to 19.8 ms (~21%) in the LV in the first 7 days. While T2
* values almost recovered after 200 days of continuous fixation (<5% mean differ-

ence to fresh hearts), T2 values remain lowered (26% mean difference to fresh hearts). Results of the paired t-test are listed in Table S4.

F IGURE 2 SNR in reference scans of the spin

echo and stimulated echo (tMix = 100 ms)
sequence for all hearts. Color coding: Hearts 1–8.
Displayed are mean values for individual hearts
and their mean ± single standard deviation for the
different time points prior to and after fixation.
Significant differences in paired t-test (P < 0.05)
are indicated by *
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4.3 | Diffusion

Mean temporal changes in the eigenvalues of the diffusion tensor, the ADC and FA are shown in Figure 4. All eigenvalues and therefore the

ADC decreased, similarly to T2 and T2
*
, within 7 days following fixation. Changes in λ2 and λ3 were rather small. After this initial drop, eigen-

values slightly increased with fixation duration. After 100 days of fixation this led to significant differences compared with first week λ1 and

ADC values.

F IGURE 3 T2 and T2
* prior to fixation and

7, 15, 50, 100 and 200 days after
(A) representative T2 maps for a single midcavity
slice for the different time points prior to and
after fixation. Below are mean values for
individual hearts and their mean ± single standard
deviation. A significant difference in paired t-test
(P < 0.05) relative to day 0 is indicated by *. Color
coding: Hearts 1–8. (B) Corresponding
visualization of T2

*

TABLE 1 Alterations of T2 and T2
* due to tissue fixation compared with fresh hearts

T2 fresh [ms] T2 day-7 [ms] Δ [%] T2 day-200 [ms] Δ [%]

Apical 49.8 ± 4.7 31.1 ± 1.7 38 35.2 ± 0.7 30

Midcavity 48.3 ± 2.3 32.4 ± 0.9 33 36.3 ± 0.6 25

Basal 49.7 ± 1.7 31.1 ± 0.7 34 37.6 ± 1.0 24

T2
* fresh [ms] T2

* day-7 [ms] Δ [%] T2
* day-200 [ms] Δ [%]

Apical 26.2 ± 2.1 19.8 ± 1.5 25 25.1 ± 0.4 4

Midcavity 24.5 ± 1.4 19.3 ± 1.0 21 25.8 ± 0.7 -5

Basal 24.5 ± 1.5 20.3 ± 0.9 17 24.6 ± 1.0 −0.1
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FA was altered significantly postfixation. However, contrary to the eigenvalue evolution, values decreased with fixation time, leading to sig-

nificant differences in first week values in midcavity and apical slices after 200 days of fixation. Initial changes in FA due to tissue fixation or tissue

fixation duration were smaller and insignificant for basal slices.

Reference values for the ADC are depicted in Figure S5. The average ADC in saline solution was 1.740 ± 0.022 [10-3 mm2/s], with the stan-

dard deviation being lower than 2%.

Representative fixation-induced alterations of the main eigenvector orientation and therefore microstructure for heart #5 are displayed in

Figure 5. Data were acquired using the spin echo sequence and the diffusion tensor and HA visualized as superquadric glyphs for a basal slice.

The expected smooth progression from positive values in the endocardium to negative values in the epicardium is present at all fixation stages.

Differences at various fixation stages can be found at the insertion point of the left and right ventricles. Mean HA values (in degrees) for the heart

shown in Figure 5 at the time points 0, 7, 15, 50, 100 and 200 days were −1.0�, −0.1�, −2.5�, 2�, −1.6� and 1.25�, respectively. Histograms show-

ing the distribution of HA values for this heart within LV segmentation at different time points after fixation compared with the distribution in

unfixed tissue are displayed in Figure S6. There is no systematic shift in the main eigenvector orientation. Respective HA distributions for the

remaining seven hearts prior and after 7, 15 and 100 days of fixation are shown in Figure S7. The average standard deviation (over time) in mean

values for all hearts was 3.4�.

Figure 6 demonstrates representative variations of the secondary eigenvector orientation for the same basal slice of heart #5. Superquadric

glyphs are used to visualize the diffusion tensor and the secondary eigenvector angle (|E2A|). Since the secondary eigenvector orientation is not

linked to a certain position in the myocardium, the visual assessment of changes turned out to be difficult compared with the main eigenvector.

However, similar to Figure 5, the main difference at different fixation stages was found at the insertion point of the left and right ventricles. While

the LV cavity looks similar for scans at days 7, 15, 50, 100 and 200, there is a distinct structural difference compared with day 0. Median |E2A|

values (in degrees) for the heart shown in Figure 6 at the time points 0, 7, 15, 50, 100 and 200 days were 64.6�, 64.5�, 65.1�, 65.2�, 64.6� and

F IGURE 4 Mean ± single
standard deviation of diffusion
metrics of the left ventricle prior
to fixation and 7, 15, 50, 100 and
200 days after fixation for basal,
midcavity and apical slices.
(A) eigenvalues λ1 (blue), λ2 (red),
λ3 (green) of the diffusion tensor.
(B) ADC. (C) FA. Standard

deviations are of averages across
all hearts. A significant difference
in paired t-test (P < 0.05) is
indicated by *. For visibility
reasons, test results for the
eigenvalues are only shown for λ1
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64.6�, respectively. Histograms showing the respective |E2A| distribution within LV segmentation at different time points after fixation are pres-

ented in Figure S8. |E2A| distributions for the remaining seven hearts prior and after 7, 15 and 100 days of fixation are shown in Figure S9. The

average standard deviation (over time) in mean values for all hearts was 6.5�.

Figure 7 shows tissue fixation-induced changes in diffusion metrics (λ1, λ2, λ3, ADC and FA) of the midcavity slice averaged over all eight

hearts in dependence of the diffusion time. Values for the diffusion time of 21 ms were acquired using the spin echo sequence. All longer mea-

surements with diffusion times longer than 21 ms were performed using the stimulated echo sequence. Values for individual hearts are displayed

in Figure S10.

While λ1 continually decreased with increasing diffusion time in the unfixed heart, this trend was not apparent after fixation. Values of λ1
appear rather consistent with increasing diffusion time. As described above, the main eigenvalue of the diffusion tensor drops following fixation.

In addition, there is a slight increase with increasing fixation duration. Thus, the difference between λ1 in fixed and unfixed cardiac tissue is

smallest for longer diffusion times and tissue fixation durations (<10%).

Differences of the secondary and tertiary eigenvalues following fixation were small compared with the main eigenvalue. Both λ2 and λ3 ini-

tially decreased with increasing diffusion time, resulting in a rather consistent state for longer diffusion times (>200 ms). This diffusion time-

dependent decrease was highest in unfixed hearts and on average became less impactful for longer tissue fixation durations. ADC curves exhibit

the same diffusion time dependency with smaller differences between fixed and unfixed tissue.

FA values increased with increasing diffusion time. This trend was present for all fixation stages and most prominent in the unfixed heart. On

average, longer fixation durations led to lower FA values. An initial drop of FA following fixation was present in all hearts.

For all metrics curves reached a plateau between 200 and 400 ms diffusion time.

F IGURE 5 Representative helix angle
distribution for one heart prior to fixation and
7, 15, 50, 100 and 200 days after fixation. The
diffusion tensor for a basal slice is visualized as a
superquadric glyph for each pixel. Color-coding of
each glyph corresponds to HA values. Dotted line:
example section at day 0 and respective zoomed
images for the various time points. Threshold for
visualization of a pixel as superquadric glyph was

set to a FA value of 0.2
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5 | DISCUSSION

We have demonstrated tissue fixation and fixation duration-dependent alterations of various MRI (T2, T2
*, SNR) and diffusion metrics (ADC, λ1,

λ2, λ3, FA, HA, |E2A|) in the LV of the porcine heart at 7 T. Our results show that T2 and T2
* relaxation times were continuously altered by immer-

sion fixation in formalin and that SNR values strongly correlated with the respective changes in T2 and T2
*. In addition, we found that tissue fixa-

tion significantly changed the main eigenvalue of the diffusion tensor, ADC and FA, and that continuous changes in the main eigenvalues, ADC

and FA after a fixation duration of 15 days were not significant. By contrast, no systematic changes in structural parameters, such as HA and |

E2A|, were introduced by fixation, independent of the immersion duration. This is an important finding for studies assessing ventricular remo-

deling of cardiac microstructure in various cardiac pathologies.

SNR in diffusion MRI directly influences the data fidelity11,12 of derived diffusion parameters. Most ex vivo studies use a Stejskal-Tanner dif-

fusion preparation and EPI readout. Thus, SNR strongly depends on both T2 and T2
*. Since ex vivo studies are usually performed to achieve high

quality and high fidelity data, study protocols should be optimized with respect to SNR. Our results show that SNR decreases (mean: ~32%) ini-

tially after tissue fixation and that SNR was somewhat restored (mean: ~20%) with prolonged tissue fixation. This change in SNR is mainly due to

the changes observed in T2 and T2
* relative to the used echo times as well as subsequent k-space filter effects. Special care needs to be taken in

order to avoid further reduction of T2
* due to increased B0 inhomogeneity at ultrahigh field strengths (≥7 T).

Many studies have reported a decrease in T2 in nervous tissue or other organs following tissue fixation using formalin.23–29 To our knowledge

such changes in relaxation parameters have not been yet reported for the heart. Initial T2 changes following tissue fixation observed in this study

fit well to the literature values for brain tissue listed above. T2 shortening in nervous tissue has been described in many studies and has been

attributed to multiple causes, such as increased tissue rigidity due to protein cross-linking, interactions of water molecules and myelin lipids in

F IGURE 6 Representative secondary
eigenvector angle distribution for one heart prior
to fixation and 7, 15, 50, 100 and 200 days after
fixation. The diffusion tensor for a basal slice is
visualized as a superquadric glyph for each pixel.
Color-coding of each glyph corresponds to |E2A|
values. Dotted line: example section at day 0 and
respective zoomed images for the various time
points. Threshold for visualization of a pixel as

superquadric glyph was set to a FA value of 0.2
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tissue compartments,36 changes in diffusion rates,37 intra/extra-cellular water components,25 tissue dehydration28,38 and regular replacements of

formalin solution.27 The analysis of the mechanisms of T2 shortening and their application to heart tissue was outside the scope of this study.

We rather focused on changes in MR and diffusion metrics induced by continuous tissue fixation in order to (1) ease optimization of future

study protocols and (2) enable comparisons of past and future studies regarding fixed versus unfixed tissue, fixation duration, and spin echo ver-

sus stimulated echo data.

Dawe et al23 reported a gradual increase (20%, 60-90 days postmortem) of T2 values in “deep” brain tissue for longer fixation durations, fol-

lowing the initial decrease after formalin immersion. We observed an increase (~13%) in T2 between 15 and 50 days of fixation. Dawe et al23

argue that this recovery in T2 values is connected to latent tissue decomposition.

In our study, we removed the atria from all hearts in order to ease the removal of trapped air and fixative distribution, allowing penetration of

the myocardial wall from both sides. Aldehyde fixation penetration occurs with a rate of 0.5 to 1 mm/hour at room temperature and we observed

the pale yellow color change, which indicates penetration, shortly after immersion. Multiple studies have shown that autolytic effects on cardiac

tissue are very slow.14,32,39 It is therefore unlikely that the gradual increase in T2 at later stages of fixation is related to latent effects of tissue

decomposition. During the fixation process cells move through stages of (1) shrinkage, (2) prolonged swelling and (3) secondary shrinkage. As

mentioned above, changes in T2 have been attributed to changes in intra- and extra-cellular volume components.25 In this study we apply forma-

lin, a neutral buffered, aqueous solution of formaldehyde (systematic name: methanal), with a formaldehyde concentration of 4%. Formaldehyde

concentrations below 5% only cause very minimal initial shrinkage followed by extensive swelling40 and later on shrinkage. Observed decreases

and increases in T2 may thus be caused by cell swelling and shrinkage, respectively. A dedicated study resolving the fixation process itself will be

necessary to completely exclude influences of tissue decomposition and variations in both heart size and contraction state. In addition to SNR,

alterations in T2 may possibly change T2 weightings in the diffusion-weighted images acquired.

F IGURE 7 Average diffusion time-dependent
changes of λ1, λ2, λ3, ADC and FA in the midcavity
slice in dependence of the fixation duration
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Since we did not observe any interference patterns in images for T2 quantification due to imperfect inversions, normalized the signal-

time curves and checked for mono-exponential decay via goodness of fit, we believe that B1 imperfections did not lead to first-order

approximation errors in measured T2 values. In addition, the goodness of fit showed that the effect of B1 inhomogeneity on SNR was negli-

gible for the analyzed tissue.

With 0.62 ± 0.1 (10−3 mm2/s), our ADC values in this study are in good agreement with our previous work at 7 T32 (0.51-0.66 [10−3 mm2/s])

using fresh hearts from animals of the same breed and comparable weight. ADC values of fresh hearts reported by Mazumder et al20

(0.52 ± 0.026 [10−3 mm2/s], Yorkshire, 41-50 kg) and Agger et al18 (0.54 ± 0.026 [10−3 mm2/s], Danish Landrace, 50-60 kg) are slightly lower and

ADC values of fixed hearts reported by Wu et al41 (0.671 ± 0.106 [10−3 mm2/s], minipigs, 45-50 kg) and Pashakhanloo et al42 (0.633 ± 0.04

[10−3 mm2/s], Yorkshire, 50 ± 18 kg) are slightly higher. Literature results of comparisons between fixed and unfixed heart tissue are sparse.

While the ADC in our study decreases after fixation, Agger et al18 report only a slight increase (11%) and Mazumder et al20 a strong increase in

the ADC (~54%). There are contradictory literature reports on postfixation ADC as well. While Shepherd et al26 report an increase in ADC, others

have shown a decrease postfixation.13,31,43 These contradictory reports may possibly be the result of varying tissue storage conditions during

sample preparation.

In their study on the effects of various fixation methods on heart tissue, Agger et al18 showed that freezing of heart tissue leads to

large increases in the ADC (71%) and that subsequent perfusion fixation will further increase the ADC (88%). Due to limited scanner avail-

ability, Mazumder et al20 stored freshly excised hearts in an ice bath for a prolonged period of time (5-48 h) in order to prevent tissue

decomposition prior to scans, while Shepherd el al26 placed excised rat brains in ice-cold artificial cerebrospinal fluid for 1 h in order to

minimize ischemic damage. None of the studies reporting reduced ADC values have used ice, ice baths, or temperatures below 4�C for

storage. A dedicated study may help to assess the influence of ice or varying storage temperatures on various tissue types, but this has

not been the scope of our study.

There is more consensus in studies regarding the effect of formalin fixation on FA. Comparisons of prefixation and postfixation tissue (heart

and nervous tissue) report consistent or decreasing FA following fixation. The results in our study are in good agreement with Agger et al18 and

Mazumder et al,20 who scanned hearts prefixation and postfixation with a time difference of 24 hours and 12-18 days, respectively. We show

that FA decreases with prolonged tissue fixation. This may explain why Agger et al18 reported consistent FA values, while Mazumder et al20

reported a decrease in FA.

Our results show that all eigenvalues decrease following fixation. Alterations of the main eigenvector of diffusion are the most pronounced,

and the second and third eigenvalues are less affected. Both Agger et al,18 for heart tissue, and D'Arceuil and de Crespigny,13 for white matter,

showed that the effects on the main eigenvector are most pronounced. In order to improve our understanding of changes in the ADC and FA it is

paramount to report changes in the individual eigenvalues. Future studies analyzing diffusion metrics in highly structured tissue, such as the brain

or the heart, should therefore report all eigenvalues.

Agger et al18 demonstrated that immersion fixation using formalin does not affect main fiber orientation and therefore tractography results.

This is in agreement with studies by Scollan et al16 and Helm et al,44 who compared the main eigenvector orientation in fixed hearts to myofiber

orientation in histology. Results obtained in this study support this observation. Even prolonged, continuous tissue fixation had little impact on

the helix angle and therefore main eigenvector orientation. Furthermore, the smooth gradient from endocardium to epicardium was consistent in

the presence of scan-to-scan slice offsets.

To our knowledge this is the first study analyzing effects of formalin fixation on the secondary eigenvector orientation within cardiac tissue.

Recent developments in cardiac DTI, particularly in vivo applications, have shown that the secondary eigenvector angle holds high diagnostic

value for myocardial remodeling in cardiac pathologies.2–4 In this study we demonstrate that continuous tissue fixation using formalin does not

affect the average secondary eigenvector orientation. Sheetlets generally run perpendicular to myocytes, which means through-plane in the short

axis slice, and thus scan-to-scan slice offsets are more apparent in the visualization of |E2A|.

Kim et al45 report a consistent main eigenvalue and decreasing secondary and tertiary eigenvalues for increasing diffusion times in refriger-

ated and thawed heart tissue of the calf. While this is in good agreement with the changes we found in heart tissue postfixation, we also found

that diffusion time-induced alterations in fixed and unfixed tissue follow a similar trend, but with a different scale. Longer diffusion times and

therefore increased anisotropy have been shown to decrease uncertainty in the determination of the main eigenvector orientation.46 In this study

we have shown that the dependence of FA from diffusion encoding time is reduced following fixation using formalin, indicating that formalin fixa-

tion introduces diffusion barriers along the main direction of diffusion.

Reference values, such as SNR in the saline solution and noise in the background, were meant to remove external factors, such as tempera-

ture and coil heating, for the assessment of SNR and diffusion metrics. While the background noise was very stable, SNR in the saline solution

was affected by destructive B1 interference. However, considering the combination of the SNR and the ADC reference in saline solution, we

believe that the results of this study are unaffected by temperature variation.

In order to minimize tissue decomposition-induced changes in derived metrics of fresh hearts, we set the scanning protocol to 63 minutes,

trading higher SNR for limited volume coverage. The diffusion weighting of b = 1000 s/mm2 was chosen to maintain comparability to other fixa-

tion studies on porcine hearts such as Agger et al18 (b = 1000 s/mm2) and Mazumder et al20 (1271 s/mm2). While additional higher b-values may
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have increased the dynamic range for restricted diffusion and enabled analysis based on non-Gaussian models, they also require longer diffusion

gradients, leading to longer echo times and a loss in SNR, particularly at 7 T. In this study we show that fixation leads to decreases in T2 and T2
*,

which are already short at ultrahigh field strengths. An assessment of respective tradeoffs and optimal b-values for ex vivo cDTI of fixed porcine

hearts at 7 T may be subject to future studies.

Since we received sets of two hearts per experiment, prefixation scans within one set were performed with a time difference of ~40 minutes

between excision and measurement. We found no systematic difference in diffusivity between hearts measured first and second. This is in agree-

ment with prior experiments analyzing sample stability of fresh hearts following excision.32 However, variations in heart size and times for trans-

port, tissue preparation and sample fixation may have resulted in different tissue temperatures. Thus, prefixation scans in this study may

therefore include a temperature bias.

Throughout the study, hearts were repeatedly taken from the fixation container and placed in dedicated plastic containers for measure-

ments. Therefore, slight offsets in slice positioning were present in some repeat scans, despite slice positioning with respect to anatomical

markers. In general these offsets were more pronounced for the prefixation scans and rather small for scans of fixed hearts. They may thus

be related to tissue changes introduced by the fixation process. While these offsets had little impact on derived structural parameters in

the LV of fixed samples, there were distinct differences at intersection points to the right ventricle. Particularly at very basal slices, struc-

tural coherence at these points was lower. Further analysis of these changes may be part of future studies, but was outside the scope of

this work.

In conclusion, we have demonstrated that continuous immersion fixation of porcine hearts using formalin leads to alterations of relaxa-

tion parameters and diffusion metrics, such as eigenvalues, ADC and FA. Thus, tissue fixation durations should be kept in mind when inter-

preting the impact of diseases on these parameters. In addition, our results highlight the importance of proper method selection and

reproducible tissue handling, preparation and storage. In recent years, metrics of microstructure been shown to be precise and specific

markers for remodeling in cardiac pathologies.3–5,19 The preservation of anisotropy and overall microstructure following even long periods

of immersion in formalin may enable future studies assessing ventricular remodeling of cardiac microstructure in various cardiac pathologies

in more detail.
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Experimental data suggests that adverse remodeling in response to 
cardiovascular risk factors and effects of cardiac disease first surface in the 
subendocardium, the innermost layer of the myocardium. Diagnostic markers 
for subendocardial integrity and status may therefore facilitate early detection 
of adverse remodeling, cardiac damage, and enable risk stratification as well 
as treatment monitoring in asymptomatic disease states. 
 In this study we aimed to assess whether subendocardial fibrosis 
(mouse model) affects the LV myofiber configuration and leads to impaired 
cardiac function and whether corresponding structural and functional changes 
are detectable both in vivo and ex vivo. 
 Subendocardial damage was induced using isoproterenol injections 
(n=20), while the corresponding control (n=18) received saline solution. 
Methods applied included a graded exercise test, echocardiography (speckle-
tracking and dobutamine stress), ex vivo DTI, gene expression analysis and 
histology. 
 Gravimetric measures revealed no significant differences, no signs of 
cardiac hypertrophy were found, and EF and other parameters of global systolic 
function remained unchanged. Isoproterenol-treated animals developed 
pronounced subendocardial fibrosis, accompanied by diastolic dysfunction and 
significantly increased E/e′ ratios. Global peak LS and LSR were markedly 
reduced. Transmural and subendocardial MD were significantly lower and 
subepicardial layers exhibited a significant reduction in HA. ANP, ST2, CD68, 
Galectin-3, and precursors of collagen I and III levels were significantly 
upregulated in the LV.  

In this study we show that subendocardial fibrosis induces myofiber 
configuration changes predominantly in remote regions and leads to signs of 
diastolic dysfunction and reduced longitudinal deformation. Corresponding 
microstructural and functional changes were detectable. Subepicardial HA as 
well as global peak LS were identified as highly sensitive predictors for the 
presence of subendocardial fibrosis and thus, as diagnostic measures for early 
detection of cardiac impairment. Structural changes and respective 
measurement using DTI will have to be confirmed in patients in vivo.  
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The subendocardium is the innermost myocardial layer and 
is highly vulnerable against injury.1 Therefore, the suben-

docardium is often considered the myocardial layer affected 
first in many cardiac diseases.1 Experimental data indicate that 
adverse remodeling in response to multiple cardiovascular risk 
factors starts in the subendocardium of the left ventricle (LV) 
before occurring in other myocardial layers.2–5 Hypertension 
and concomitant cardiac hypertrophy are accompanied by 
abnormal coronary autoregulation and consequently reduced 

perfusion pressure in the subendocardium, which may predis-
pose to subendocardial ischemia.6,7 Recently, Ishizu et al2 dem-
onstrated that subendocardial fibrosis is among the first cardiac 
manifestations of hypertension preceding functional changes. 
Accordingly, diagnostic markers of subendocardial status may 
facilitate early detection of cardiac damages and risk stratifica-
tion already in asymptomatic disease states. Despite accepted 
clinical surrogates of subendocardial function such as global 
peak LS,8 however, multiple confounding factors hamper the 
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establishment of cause-effect relationships between subendo-
cardial pathologies and diagnostic measures in humans and 
many animal models.

Several cardiac pathologies have been shown to alter 
the 3-dimensional arrangement of myofibers in the heart.9–11 
Within the normal LV, the myofibers form 2 counter-direc-
tional helices varying continuously in orientation (helix angle 
[HA]) from subendocardium (right-handed helix, positive 
HA) to subepicardium (left-handed helix, negative HA).12 
The integrity of this microstructural organization is a critical 
determinant of the mechanical properties of the LV, and dis-
turbance of myofiber geometry may thus result in impaired 
cardiac function.13 Diffusion tensor magnetic resonance 
imaging (DT-MRI) is a feasible tool to study the cardiac 
myofiber arrangement and has been applied in a variety of 
pathological conditions in humans as well as in animal stud-
ies.9,10,14–16 However, there is a lack of data regarding the im-
pact of subendocardial damage on myofiber organization and 
corresponding functional consequences.

In the present study, we aimed to characterize myocar-
dial microstructure and function in an experimental model 
providing the opportunity to study isolated subendocardial 
fibrosis in the absence of major confounders like cardiac 
hypertrophy or altered loading conditions.17 By combining 
comprehensive DT-MRI analyses with several measures 
available in patients, we sought to provide translational ev-
idence for clinical observations. We hypothesized that sub-
endocardial fibrosis (1) affects the myofiber arrangement in 
the LV; (2) leads to impaired cardiac function; and (3) is de-
tectable by assessment of corresponding microstructural and 
functional changes.

Methods
The authors declare that all supporting data are available within 
the article and in the online-only Data Supplement. All in vivo 
experiments were approved by local authorities (Landesamt für 
Gesundheit und Soziales Berlin, Germany) and were conducted in 
accordance with the German Law on the protection of animals. All 
animals were kept in a 12 hour light/dark cycle and received standard 
diet ad libitum.

Study Protocol
Subendocardial damage was induced by subcutaneous injection 
of isoproterenol as described previously.17,18 Male 129/Sv mice 
(6–8 weeks old; Janvier Labs, France) were treated for 4 consec-
utive days with either isoproterenol (n=20; 25 mg/kg; dissolved 
in saline) or saline as corresponding control (n=18, matched for 
weight). During the week after final treatment, exercise capacity 
was assessed by a graded exercise test protocol. After echocar-
diographic examination (including speckle-tracking echocardi-
ography and dobutamine stress echocardiography) an additional 
week later, mice were euthanized, and tissues were harvested for 
further analyses. Hearts were sent to the MRI site (Comprehensive 
Heart Failure Center, University Hospital Wuerzburg, Germany) 
for high-resolution DT-MRI measurements in a 7 T scanner at a 
spatial resolution of 100×100×100 µm3. Results were correlated 
with histology and gene expression analyses.

Detailed Methodology
The online-only Data Supplement contains detailed information 
on echocardiography, the graded exercise test protocol, tissue pro-
cessing, DT-MRI measurements, histology, gene expression analyses, 
and statistics.

Results
One animal died after the third isoproterenol-application by reasons 
not further investigated; another isoproterenol-treated animal devel-
oped signs of myocardial infarction (ventricular aneurysm and im-
paired ejection fraction) and was, therefore, excluded from study 
results. All control animals finished the study protocol.

Gravimetric Measures and Cardiac Tissue Analyses
Weight development and final body weights were comparable be-
tween both groups (Table). No signs of cardiac hypertrophy or lung 
congestion were found during necropsy, as evident from indexed 
heart weights and lung wet/dry weight ratios, respectively (Table).

Isoproterenol-treated animals developed pronounced fibrotic le-
sions in the subendocardium, whereas subepicardial collagen content 
was similar in both groups (Figure 1A–1C). The degree of subendocar-
dial fibrosis varied between the different cardiac segments (Figure S1 
in the online-only Data Supplement) and was found to be highest at the 
apex of the LV (Figure 1D). Immunohistochemical analyses revealed 
the presence of CD68+ macrophages within fibrotic lesions, which 
showed a comparable distribution pattern accordingly (Figure S2).

ANP (atrial natriuretic peptide) mRNA levels were significantly 
upregulated in the LV after treatment with isoproterenol (Figure 1E). 
These animals also showed a higher expression of genes involved 
in inflammation and extracellular matrix turnover, such as CD68, 
Galectin-3, and precursors of collagen I and III (Figure 1E). GDF15 
(growth/differentiation factor 15) was not induced at this time point 
(Figure 1E). ST2 (interleukin 1 receptor-like 1) levels were signifi-
cantly upregulated in isoproterenol-treated animals (Figure 1E).

Diffusion Metrics
DT-MRI parameters were assessed for each myocardial layer (sub-
endocardium/subepicardium) and segment (base/mid/apex), or glob-
ally for the transmural myocardium and the whole LV (Figure 2A; 
Figure S3A). Animals with subendocardial fibrosis displayed signif-
icantly lower transmural and subendocardial mean diffusivity (MD; 
Figure 2B and 2C). Subepicardial MD decreased significantly at apex 
level only (Figure 2B and 2C). Fractional anisotropy (FA) did not dif-
fer between both groups in any layer or segment, although variability 
of FA values decreased after treatment with isoproterenol (Figure 2D; 
Figure S3B). All eigenvalues of the diffusion tensor were consistently 
lowered in the apical subendocardium only (Figure S3C–S3E).

Myofiber Arrangement
Myocardial microstructure was studied by 3-dimensional reconstruc-
tion of fiber tracts with respect to layer and segment (Figure 3). Both 
treatment groups showed the stereotypic arrangement of myofibers 
forming 2 counter-directional helices as illustrated in Figure 3A and 
3B. Animals presenting with subendocardial damage showed a left- 
shift of HA in the LV towards more negative values (Figure 3C). On 
segmental level, this left-shift reached statistical significance at the apex 
region only (Figure S4). Analyses of the HA gradient across the myo-
cardial wall revealed lower HAs in the meso-subepicardium of animals 
with subendocardial fibrosis (Figure 3D). This effect was present in 
all myocardial segments (Figure S4). Layer-specific analyses indicated 
that the observed left-shift was caused by a change of subepicardial 
HA towards steeper angles, whereas HAs in the subendocardium were 
comparable in all segments (Figure 3E). The reduction of subepicardial 
HA was evident in all myocardial segments (Figure 3E).

Cardiac Function
Ejection fraction and other parameters of global systolic func-
tion remained unchanged after isoproterenol-treatment (Table). 
Subendocardial fibrosis was accompanied by signs of diastolic dys-
function (Figure 4A); animals had prolonged isovolumic relaxation 
times (**P<0.01) and tended to have slower late filling rates in the 
transmitral flow profile (P=0.07; Table). Deceleration time of the 
early diastolic filling rate (E) was longer; however, differences did 
not reach statistical significance (P=0.07; Table). Early diastolic mi-
tral annular velocity (e′) was lower (**P<0.01) leading to a reverse 
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relation of e′ and late diastolic mitral annular velocity (*P<0.05; 
Table). E/e′ ratios were significantly (**P<0.01) increased in animals 
with subendocardial fibrosis (Table).

Myocardial Deformation
Myocardial strain and strain rate were assessed by speckle-track-
ing echocardiography in the parasternal long and short axis view 
(Figure 4B). In comparison to controls, isoproterenol-treated animals 
displayed markedly reduced global LS values (Figure  4C). Global 
peak radial and circumferential strain were unchanged (Figure 4C). 

A similar pattern was observed in strain rate, where global longi-
tudinal strain (LS) rate declined in isoproterenol-treated animals, 
whereas global radial and circumferential Strain Rate remained unaf-
fected (Figure 4C). Although LS was lowered in all myocardial seg-
ments, a significant reduction was observed in the apex of the LV only 
(Figure 4D).

Stress Tests
Dobutamine injections resulted in similar stress responses and did 
not unmask any signs of systolic dysfunction (Figure 4E; Table S3). 
Neither absolute peak stress values nor dobutamine-induced rela-
tive changes in echocardiographic parameters differed significantly 
between the 2 groups (Table S3). Similarly, no differences were 
observed during the graded exercise test; both groups were able to 
cope with comparable exercise stress in terms of covered distance and 
maximum running speed achieved (Figure 4F).

Diagnostic Assessment of Subendocardial Damage
Parameters with an appropriate area under the receiver operating 
characteristic curve for the detection of subendocardial fibrosis are 
displayed in Table S4. Transmural and subepicardial HA were su-
perior predictors for subendocardial fibrosis among DT-MRI-derived 
parameters (Figure 5A; Table S4). Similarly, the ratio of positive to 
negative HA values allowed to distinguish both treatment groups 
(Table S4). Transmural and subendocardial MD lacked sufficient 
specificity, and the area under the receiver operating characteristic 
curve failed to reach statistical significance (Table S4). Among echo-
cardiographic parameters, global peak LS and E/e′ were highly sensi-
tive predictors for the presence of subendocardial fibrosis (Figure 5B; 
Table S4). Isovolumic relaxation time and global LS Rate also 
allowed to distinguish between both groups but had a remarkably 
lower sensitivity (Figure 5B; Table S4).

Linear regression analyses revealed clustered associations be-
tween parameters of longitudinal deformation and different DT-
MRI-derived predictors for subendocardial damage (Figure  5C). 
Parameters of diastolic function occasionally correlated with DT-
MRI measures but did not show distinct clustering (Figure  5C). 
Neither systolic function parameters nor radial or circumferential de-
formation indices showed any association (Figure 5C).

Discussion
In this experimental study, we showed that subendocardial fi-
brosis (1) induced changes in fiber orientation predominantly 
in remote regions; (2) was accompanied by signs of diastolic 
dysfunction and reduced longitudinal deformation, whereas 
systolic function and cardiac stress response remained pre-
served; and (3) was detectable via assessment of corre-
sponding microstructural and functional changes.

Subendocardial Vulnerability
Metabolic demand, coronary blood supply, and compressive 
forces are transmurally heterogeneous where the subendo-
cardium is at higher risk for injury than the outer layers.1 As 
a consequence, several cardiovascular risk factors have been 
shown to affect preferentially the subendocardium during 
formation of cardiac organ damage (eg, hypertension,2 dia-
betes mellitus,3 ischemic heart disease,4 and age5). Therefore, 
diagnostic markers of subendocardial status might facilitate 
early detection of cardiac damage, disease monitoring, and 
timely onset of treatment already during asymptomatic states. 
However, direct evidence for subendocardial pathologies is 
difficult to obtain in patients, and it often remains unclear 
whether observed changes in noninvasive surrogates are actu-
ally because of subendocardial impairment.20–24

Table.  End Point Characteristics

Parameter Control Isoproterenol P Value

Physiological data

 ��� BW, g 26.2±0.4 26.7±0.3 0.36

 ��� ΔBW, % +7.8±1.1 +9.1±1.0 0.40

 ��� Heart rate, bpm 370±7 347±11 0.10

Necropsy data

 ��� Heart weight, mg 189±13 172±13 0.37

 ��� Heart weight/BW, mg/g 7.2±0.5 6.5±0.5 0.31

 ��� Heart weight/tibia length, 
mg/mm

11.7±1.1 10.2±0.8 0.27

 ��� Lung weight, wet/dry 4.6±0.3 4.9±0.2 0.44

Parasternal long axis view

 ��� EF, % 47±1 46±1 0.57

 ��� FAC, % 32±1 30±1 0.47

 ��� EDV, μL 69±3 71±3 0.66

 ��� ESV, μL 30±2 34±3 0.38

 ��� Stroke volume, μL 30±2 29±1 0.52

Parasternal short axis view

 ��� EF
Teichholz

, % 56±1 53±3 0.44

 ��� FS, % 29±0.5 27±2 0.58

Apical 4-chamber view

 ��� E, mm/s 729±17 739±26 0.78

 ��� A, mm/s 401±18 334±27 0.07

 ��� e′, mm/s 20±2 15±1 <0.01

 ��� a′, mm/s 16±2 17±1 0.68

 ��� E/A 1.9±0.1 2.4±0.2 0.07

 ��� E/e′ 38±3 52±4 <0.01

 ��� a′/e′ 0.8±0.1 1.2±0.1 0.03

 ��� IVRT, ms 19.2±0.6 22.2±0.6 <0.01

 ��� IVCT, ms 20.8±0.8 20.9±1.3 0.92

 ��� DT, ms 23.4±1.5 28.7±2.2 0.07

 ��� Tei index 0.70±0.01 0.76±0.02 0.03

Mean±SEM; n=10–12 per group; Student t test. ΔBW, change in body 
weight from baseline to final assessment; A, late diastolic filling rate; a′, late 
diastolic mitral annular velocity; BW, body weight; DT, deceleration time of early 
diastolic filling rate; E, early diastolic filling rate; e′, early diastolic mitral annular 
velocity; EF, ejection fraction; EF

Teichholz
, EF according to Teichholz formula; FAC, 

fractional area change; FS, fractional shortening; EDV, end-diastolic volume; 
ESV, end-systolic volume; IVRT, isovolumic relaxation time; and IVCT, isovolumic 
contraction time. *P<0.05; **P<0.01.
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Here, we investigated an experimental model of suben-
docardial fibrosis in the absence of major confounders like 
cardiac hypertrophy or altered loading conditions,17,18 which 
allowed to establish cause-effect relationships under con-
trolled conditions. Application of isoproterenol aggravates 
the discrepancy between subendocardial oxygen demand and 
supply leading to ischemic damage in the subendocardium.25 
Accordingly, necrosis, apoptosis, and inflammatory pathways 
may have contributed to the observed phenotype, as well as 
differences in calcium signaling, coronary microcirculation, 
and membrane permeability.25 The presence of CD68+ cells 
2 weeks after final isoproterenol treatment indicates that sus-
tained immune response may also play a role.

Isoproterenol acts via β-adrenergic receptors, whose den-
sity is highest at the apex of the LV.26 Accordingly, damage 
in this model is predominantly located in apical regions, as 
shown before.27

Microstructural Changes in Response to 
Subendocardial Damage
Our understanding of structural-functional relationships 
in the heart is incomplete.28 DT-MRI is a feasible tool to 
study the 3-dimensional myofiber arrangement that has 
been applied in various cardiovascular pathologies in both 
experimental models9,15,16,19 and patients.10,14,29 Despite 
the growing wealth of cardiac DT-MRI studies, however, 
there is a lack of data regarding changes that occur dur-
ing early disease states and investigation of layer-specific 
alterations.30 Additionally, the sequential morphological and 
functional changes during transition from initial subendo-
cardial damage to transmural affection are largely unclear. 
To our knowledge, this is the first application of DT-MRI to 

characterize the impact of subendocardial damage on myo-
cardial microstructure.

The effect of fibrosis on MD and FA is controversial.9,29,31 
Subendocardial scarring was accompanied by decreased 
MD and unaltered FA, which is in accordance with a study 
by Wu et al9 that showed decreased subendocardial MD but 
unchanged transmural FA in the scar tissue after myocar-
dial infarction. Similarly, Strijkers et al31 reported on reduced 
MD and increased FA in the infarct region. In contrast, other 
studies attributed myocardial fibrosis to increased MD and 
decreased FA.29,32 This implies that changes in MD might be a 
promising, yet nonspecific marker for myocardial fibrosis and 
that future studies are needed to identify morphological cor-
relates for changes in these parameters under different patho-
logical conditions.

In general, MD is considered to decrease with increased 
cellularity or reduced extracellular space, respectively. 
Isoproterenol-treatment is known to induce cardiomyocyte 
hypertrophy and collagen deposition that fills major parts of 
the extracellular space,33 both conditions in which free extra-
cellular space is reduced. We, therefore, hypothesize that the 
observed decline in MD might be due to the relative loss of ex-
tracellular space and the consecutive slower diffusion of water 
molecules in this particular model.

It has been shown that residual myofibers serve as a scaffold 
for newly developing collagen fiber tracts during scar forma-
tion, and that these collagen fibers have the same orientation as 
surrounding myofibers.34 FA is considered a measure of direc-
tional coherence and orientational integrity. Accordingly, such 
structured collagen fibers may account for observed unaltered 
FA in case of no greater disturbance of tissue organization.

Figure 1.  Cardiac tissue analyses. A, Representative histology of mid-myocardial cross-sections stained with picrosirius red (scale bar: 1 mm). B, Magnified 
regions within subendocardium and subepicardium (scale bar: 40 μm). C, Layer-specific quantification of collagen content (n=10–13 per group; 2-way 
ANOVA followed by Bonferroni post hoc test). D, Segment-specific quantification of subendocardial collagen content (n=10–13 per group; Student t test). E, 
Gene expression profile of the left ventricle (n=6 per group; Student t test). CollagenEndo indicates subendocardial collagen content; Endo, subendocardium; 
Epi, subepicardium; ISO, isoproterenol; and n.s., not significant. Mean±SEM; *P<0.05; **P<0.01; ***P<0.001; and ****P<0.0001.
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Notably, no changes in the subendocardial HA were 
observed despite histological proof of subendocardial fibrotic 
lesions. Again, formation of collagen fibers running in parallel 
to residual myofiber tracts34 may be a likely explanation. In 
contrast to complete coronary occlusion, scarring in this model 
occurs next to viable myofiber tracts, and damage is limited to 
the subendocardium. As a putative mechanism, newly formed 
collagen fibers may have the same orientation as surrounding 
myofibers and the ones they replace in response to damage. In 
the latter case, no greater changes in HA may be detectable.

Subendocardial fibrosis was accompanied by a left shift 
in HA towards lower values, which is present also in other 
pathologies.11,14,16 Interestingly, this left-shift was caused 
predominantly by subepicardial but not subendocardial 

myofibers. This suggests that circumscribed subendocardial 
damage affects also remote regions and induces microstruc-
tural remodeling within the entire LV. Similarly, microstruc-
tural changes in response to myocardial infarction also involve 
the remote zone, in which a left shift in HA can be observed.9 
It remains unclear whether this represents adaptive reorienta-
tion or passive mechanisms, and further studies are required to 
clarify the biological relevance of these findings.

Functional Changes in Response to Subendocardial 
Damage
Isolated subendocardial damage resulted in a phenotype resem-
bling several hallmarks of cardiovascular high-risk patients 
in the absence of heart failure symptoms or signs. Since 

Figure 2.  Diffusion tensor magnetic resonance imaging post-processing and diffusion metrics. A, Endocardial and epicardial borders were traced manually 
in multiple short axis slices per heart, and subendocardium (Endo) and subepicardium (Epi) were defined as regions of interest. Subsequently, 3-dimensional 
volumes were rendered by tomographic reconstruction allowing analyses of both regions for the whole left ventricle (LV) or within myocardial segments 
(base/mid/apex). B, Representative color maps for mean diffusivity (MD) in a reconstructed cardiac long axis and different myocardial short axis segments. 
C, Analysis of MD. D, Analysis of fractional anisotropy (FA). Medians and quartiles with minimum and maximum values; n=9–11 per group; Student t test. 
*P<0.05. ISO indicates isoproterenol.
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impairment of either subendocardium, subepicardium, or trans-
mural myocardium results in distinct phenotypes, it has been 
proposed to classify heart failure according to the damaged my-
ocardial layer(s).35,36 Selective subendocardial involvement is 
usually considered a marker of subclinical disease,1 which may 

be accompanied by diastolic dysfunction but preserved ejection 
fraction together with reduced longitudinal but unaltered radial 
and circumferential mechanics in patients.36 The experimental 
model we used demonstrated a comparable phenotype, which 
provides evidence for corresponding classification.

Figure 3.  Myofiber geometry. A, Representative reconstruction of fiber tracts: helix angle (HA) in the left ventricle (LV) changes continuously from positive 
values in the subendocardium (right-handed helix), over neutral in the mesocardium, to negative values in the subepicardium (left-handed helix). B, 
Definition of HA-polarity. Mean±SEM (C, D) or medians and quartiles with minimum and maximum values. E, Analysis of HA. Medians and quartiles with 
minimum and maximum values; n=9–11 per group; Student t test. Endo indicates subendocardium; Epi, subepicardium; and ISO, isoproterenol. *P<0.05 
and **P<0.01.

D
ow

nloaded from
 http://ahajournals.org by on A

ugust 26, 2020

56



Beyhoff et al    Impact of Subendocardial Damage    301

Animals with subendocardial fibrosis showed mild dias-
tolic dysfunction, suggesting that isolated subendocardial fi-
brosis alone may account for preclinical diastolic dysfunction. 
As such, subendocardial fibrosis may be of considerable rel-
evance given that preclinical diastolic dysfunction has been 
shown to be highly prevalent in large population-based studies 
and that a relevant portion of these subjects shows a progres-
sion to congestive heart failure over time.37,38 Our findings are 
supported by clinical studies reporting on preclinical diastolic 
dysfunction in asymptomatic patients with risk factors that 
are known to affect preferentially the subendocardium.21,22 

However, these studies relied on nonspecific surrogates and 
did not provide direct evidence for subendocardial patholo-
gies, which warrants further investigations in patients with 
confirmed subendocardial damage.

Longitudinal, yet not radial or circumferential deformation 
declined in animals with subendocardial fibrosis. Reduced LS 
is a common feature of both high-risk patients21–24 and sub-
jects with overt heart failure. Since longitudinal mechanics of 
the LV are determined mainly by subendocardial myofibers, 
impaired LS parameters are well-accepted surrogates of pu-
tative subendocardial damage.1 Reduced LS has been linked 

Figure 4.  Functional analyses. A, Representative transmitral flow patterns (left; arrows indicate isovolumic relaxation time), B-mode images of the apical 
4 chamber view (mid), and tissue Doppler analyses of the septal mitral annulus (right; arrows indicate early and late diastolic mitral annular velocities). B, 
Speckle-tracking echocardiography and representative longitudinal strain (LS) curves over one cardiac cycle (arrows indicate papillary muscles). C, Global 
peak strain and global strain rate. D, Segmental peak LS. E, Representative M-mode images acquired in the parasternal short axis view at rest and during 
Dobu stress. F, Results of the graded exercise test protocol. n=7–12 per group; Student t test. Ao indicates aorta; Col1a1, collagen type I, alpha 1 chain; 
Col3a1, collagen type III, alpha 1 chain; CollagenEndo, subendocardial collagen content; CS, circumferential strain; CSR, circumferential strain rate; Dobu, 
dobutamine; ISO, isoproterenol; LSR, longitudinal strain rate; LV, left ventricle; MV-Flow, transmitral flow pattern; RS, radial strain; RSR, radial strain rate; STE, 
speckle-tracking echocardiography; and TDI, tissue Doppler imaging. Mean±SEM; *P<0.05 and ***P<0.001.
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to subendocardial fibrosis in preclinical patients due to cor-
relations with circulating biomarkers of increased extracel-
lular matrix turnover.20,21 Our results confirm that reduced 
longitudinal deformation indeed closely reflects subendocar-
dial fibrosis, and that global peak LS can serve for diagnostic 
assessment. This is in accordance with previous studies in this 
model18 and in experimental hypertensive heart disease.2

Biomarkers play a pivotal role in the clinical diagnosis of 
heart failure, and several studies demonstrated that circulating 
markers of cell damage, extracellular matrix turnover, and in-
flammation are elevated in these patients.39 We found that sev-
eral biomarkers associated with heart failure were upregulated 
in the LV of animals presenting with isolated subendocardial 
fibrosis. This might be of interest for future studies regarding 
biomarker assessment in preclinical high-risk patients.

Limitations
The isoproterenol-model is limited with regards to the com-
parability of the human situation, and technical issues of 
small animal echocardiography (eg, susceptibility to off-axis 
imaging, spatial/temporal resolution, and assessment under 

anesthesia) should be considered. Myocardial deformation 
analysis by speckle-tracking echocardiography in small ani-
mals is limited regarding assessment of left-ventricular torsion. 
The latter may be assessed by magnetic resonance imaging, 
which, however, was performed ex vivo in our study, and thus 
did not allow to study dynamic changes occurring during the 
cardiac cycle. The model we used is known to develop ele-
vated diastolic pressures,40 and we observed increased E/e′ 
ratios as a noninvasive surrogate. However, invasive measure-
ments of hemodynamics were not performed in the present 
study. We applied an established graded exercise test protocol 
that was originally developed for another mouse strain,41 and 
that has never been evaluated in 129/Sv mice before. Due to 
technical issues, only systolic function parameters could have 
been assessed during dobutamine stress. Biomarker expres-
sion was determined 2 weeks after final treatment with isopro-
terenol. Despite this relatively long time period, direct action 
of isoproterenol on biomarker expression cannot be ruled out. 
There was no readout for successful cardioplegic arrest, and 
fixation during different phases of the cardiac cycle may have 
an impact on DT-MRI analyses. Hearts were scanned after 

Figure 5.  Receiver operating characteristic (ROC) curves and correlation analyses. A, ROC curves for diffusion tensor magnetic resonance imaging (DT-MRI)-
derived parameters to detect subendocardial fibrosis. B, ROC curves for echocardiographic parameters to detect subendocardial fibrosis. C, Color-coded 
correlation coefficients of various parameters (Pearson correlation coefficient r). A indicates late diastolic filling rate; a′, late diastolic mitral annular velocity; 
DT, deceleration time of early diastolic filling rate; E, early diastolic filling rate; e′, early diastolic mitral annular velocity; EF, ejection fraction; FAC, fractional 
area change; FS, fractional shortening; GCS, global peak circumferential strain; GCRS, global circumferential strain rate; GLS, global peak longitudinal strain; 
GLSR, global longitudinal strain rate; GRS, global peak radial strain; GRSR, global radial strain rate; HAEpi, subepicardial helix angle; HAEndo, subendocardial 
helix angle; HATransmural, transmural helix angle; IVCT, isovolumic contraction time; IVRT, isovolumic relaxation time; MDEpi, subepicardial mean diffusivity; MDEndo, 
subendocardial mean diffusivity; and MDTransmural, transmural mean diffusivity.
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comparable time intervals of fixation, but absolute values of 
MD and FA might have been affected by formalin-fixation.42

Conclusions
Circumscribed subendocardial damage can account for sev-
eral hallmarks observed in cardiovascular high-risk patients. 
Microstructural remodeling in response to subendocardial 
damage involves also other myocardial layers indicating a 
newly identified remote process.

Finally, our data provide translational evidence for both 
established surrogates of subendocardial damage and novel 
markers of microstructural remodeling that might serve as di-
agnostic measures for early detection of cardiac impairment. 
Among these, global peak LS and subepicardial HA were the 
best predictors of subendocardial damage.

Perspectives
As a future direction, DT-MRI may be used to identify char-
acteristic microstructural changes in various cardiac diseases 
facilitating diagnostic application. Based on this, DT-MRI might 
help to further improve our understanding of cardiac pathologies 
and might ultimately serve as a diagnostic tool in patients. The 
present work indicates that microstructural changes are present 
already in early disease stages, and that DT-MRI is capable of 
assessing them. These findings have to be confirmed in patients 
by in vivo DT-MRI for translation of our results. The transmural 
heterogeneity of microstructural changes as observed in our 
study should be considered in future investigations.
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What Is New?
•	 First characterization of microstructural changes in response to suben-

docardial damage by diffusion tensor magnetic resonance imaging.
•	Comprehensive assessment of functional consequences of isolated sub-

endocardial damage in the absence of confounding factors.

What Is Relevant?
•	Subendocardial damage leads to microstructural reorganization of car-

diac fibers predominantly in remote regions.

•	Subendocardial damage can account for several observations in cardio-
vascular high-risk patients, and assessment of corresponding changes 
may facilitate early detection of cardiac damages.

Summary

Isolated subendocardial damage resulted in a phenotype resem-
bling several hallmarks of cardiovascular high-risk patients, and 
changes in myofiber arrangement under these conditions were 
characterized for the first time.
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Survival of MI is likely to result in HF, which represents one of today’s major health 
burdens. Despite this fact, there is still a lack of understanding when it comes to 
structural and functional alterations of the myocardium as well as structure-function 
interactions.  

This is a case report of an animal that exhibited features of MI following 
treatment with the catecholamine isoproterenol in an experimental imaging study 
in mice (chapter 3.3, page 49). In this study we employed a published animal model 
of isolated subendocardial fibrosis, where mice received subcutaneous injections of 
25 mg/kg isoproterenol for four consecutive days. The study protocol also included 
state-of-the-art imaging modalities: ultra-high frequency echocardiography for the 
characterization of cardiac function, speckle tracking analysis for the assessment of 
myocardial strain, and high resolution ex vivo DTI for the characterization of 
myocardial microstructure. Detailed histopathology was performed to validate and 
evaluate results observed using either imaging modality.  

Compared to its littermates, recovery times following the four injections 
were slightly prolonged. Echocardiography two weeks after treatment with 
isoproterenol showed wall thinning and prominent apical aneurysm, strongly 
increased LV volumes, distinct reductions in global systolic function, and akinetic 
apical segments. Speckle tracking revealed reduced radial strain in corresponding 
apical segments and more pronounced alteration in longitudinal strain compared to 
other animals treated with isoproterenol (-4.6 vs. -12.5±1.9%). Histology showed 
transmural scarring in the apex and confirmed aneurysmatic wall thinning as well 
as replacement fibrosis. Fiber tracking based on DTI data illustrated that tract 
reconstruction on a submillimeter scale was possible in some areas of the infarct 
zone, whereas tract reconstruction failed for increasingly long distances. This 
observed disarray in orientation and the loss of contractile fiber tracts correlated 
well with segments exhibiting increased mean diffusivity, impaired cardiac function, 
and replacement fibrosis.  

While the evaluation of cardiac function via non-invasive imaging modalities 
is a keystone of the diagnosis and follow-up assessment of both MI and HF, 
underlying structural changes are currently not assessable in clinical routine 
practice. In this pre-clinical case report we demonstrate that emerging imaging 
techniques such as speckle tracking and DTI provide valuable insights into 
pathophysiology and structure-function interactions of heart failure following MI.  
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Although heart failure following myocardial infarction (MI) represents a major health

burden, underlying microstructural and functional changes remain incompletely

understood. Here, we report on a case of unexpected MI after treatment with the

catecholamine isoproterenol in an experimental imaging study in mice using different

state-of-the-art imaging modalities. The decline in cardiac function was documented

by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial

microstructure was studied ex vivo at a spatial resolution of 100× 100× 100 µm3 using

diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two

weeks after ISO treatment, the animal showed an apical aneurysm accompanied by

reduced radial strain in corresponding segments and impaired global systolic function.

DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining

fibers as corresponding microstructural correlates. This preclinical case report provides

valuable insights into pathophysiology and morphologic–functional relations of heart

failure following MI using emerging imaging technologies.

Keywords:myocardial infarction, catecholamines, speckle tracking, diffusion tensor imaging,magnetic resonance

imaging, case report, heart failure, echocardiography

INTRODUCTION

Although heart failure following myocardial infarction (MI) represents a major health burden,
underlying structural/functional relationships remain incompletely understood (1, 2). While
adverse cardiac remodeling after MI is considered to directly affect the mechanical and electrical
properties of the heart (3–5), the exact impact of microstructural changes on myocardial function
remains unclear. Here, we report on a case of unexpectedMI after treatment with the catecholamine
isoproterenol (ISO) in an experimental imaging study in mice correlating a comprehensive set
of functional parameters with detailed histopathology and diffusion tensor magnetic resonance
imaging (DT-MRI).
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CASE DESCRIPTION

We conducted an experimental imaging study to characterize
myocardial microstructure and function in a murine model
of circumscribed subendocardial damage whose results have
been published previously (6). Briefly, male 129/Sv mice (6–8
weeks old) received subcutaneous injections of 25 mg/kg ISO
or saline as placebo control for four consecutive days according
to a standard protocol (Figure 1A) (6). The case animal was
randomized to the ISO group. During baseline echocardiography
prior to treatment, all animals showed comparable parameters of

cardiac function and ventricular dimensions. At baseline, the case

animal had a left ventricular ejection fraction of 48% without any
evidence of regional wall motion abnormalities (Figure 1B and
Supplementary Video 1). First differences became apparent after
the first injection, where it required a longer recovery period than
its littermates. Recovery time was also slightly prolonged after the
second to fourth injection. Typically, ISO does not cause chronic
alterations of ventricular dimensions and systolic function in

FIGURE 1 | Study protocol and cardiac phenotyping. (A) Study protocol. (B) Parasternal long-axis view during end-diastole and end-systole before (upper panel) and

2 weeks after ISO treatment (lower panel). Scale bar represents 2mm. (C) Comparative volumetry indicating increased left ventricular volumes accompanied by

reduced stroke volume. (D) Ejection fraction analysis. (E) Normalized heart weights indicating cardiac enlargement. Remaining ISO-treated animals (n = 12) served as

reference. EDV, end-diastolic volume; ESV, end-systolic volume.

this model (6). However, echocardiography 2 weeks after final
injection revealed wall thinning and a pronounced aneurysm of
the apex of the left ventricle (LV) resulting in massively increased
LV volumes and markedly reduced global systolic function
(Figures 1B–D). Cardiac enlargement was also evident from
indexed heart weight obtained during necropsy (Figure 1E).
Apical segments were akinetic, whereas the base appeared
to contract normally (Figure 2A and Supplementary Video 2).
During speckle-tracking echocardiography, the same segmental
differences were observed in reduced apical but preserved basal
radial strain of the LV (Figure 2B). The ISO-mediated decline
in longitudinal deformation indices (7) was substantially more
pronounced in this animal (global longitudinal strain: −4.6 vs.
−12.5% ± 1.9%; global longitudinal strain rate: −1.8 vs. −3.9
± 0.7−s).

Histological analyses showed subendocardial fibrosis
within basal and midmyocardial sections of the LV
(Figure 3A). Fibrotic lesions in the apex exceeded the
subendocardial layer resulting in transmural scarring and

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 November 2020 | Volume 7 | Article 580296
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FIGURE 2 | Wall motion analyses by conventional and speckle-tracking echocardiography. (A) Reconstructed M-modes at basal (upper panel) and apical level (lower

panel) indicating apical akinesia. (B) Three-dimensional reconstruction of radial strain during three cardiac cycles. Three-dimensional Cartesian coordinate system

mapping radial strain, time/cardiac cycles, and myocardial segments derived from the cardiac long axis (from anterior base over apex to posterior base). Radial strain

in midmyocardial and apical segments (both anterior and posterior) was markedly lower as compared to basal segments.

FIGURE 3 | Histological analysis. (A) Cardiac cross-sections at basal, midmyocardial, and apical level with exemplary region of interest showing transmural scarring

(Picrosirius red staining for detection of collagen fibers). (B) Collagen quantification in subendocardium (Endo) and subepicardium (Epi). (C) Detailed histology of the

apical scar presented in (A) indicating replacement fibrosis in response to cardiomyocyte loss (hematoxylin-eosin stain). Remaining ISO-treated animals (n = 12)

served as reference.

aneurysmatic wall thinning (Figures 3A,B). In contrast,
the remaining ISO-treated animals showed circumscribed
subendocardial collagen accumulation, as expected in this
model (Figure 3B) (6, 7). Histopathology of the apical scar
revealed replacement fibrosis in response to a profound loss of
cardiomyocytes (Figure 3C).

Myocardial microstructure was studied at a spatial resolution
of 100 × 100 × 100 µm3 using DT-MRI at 7 T. By using
an ex vivo approach without constraining influences such
as motion, strain, and electrocardiogram (ECG) triggering,
we aimed for full coverage of the entire LV with the highest

possible image resolution and quality. On average, the case
showed highly reduced mean diffusivity in the LV when
compared to the remaining animals (Figures 4A,B). Mean
diffusivity was found to be higher in apical (=infarcted)
than in basal (=remote) segments (Figure 4C). Three-
dimensional tractography showed that orientation coherence
of myocardial fibers was maintained on a submillimeter scale,
while increasing minimal tract lengths revealed increasingly
sparse tract reconstruction (Figures 4D,E). Compared to the
remaining ISO-treated animals, there was a reduced number
of voxels with positive helix angle in the midventricular

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 November 2020 | Volume 7 | Article 580296
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FIGURE 4 | DT-MRI analysis. (A) Long-axis mean diffusivity for a representative heart of the ISO group (reference) and the infarcted heart (case). (B) Quantitative

analyses of mean diffusivity in the left ventricle. (C) Bull’s-eye plot for mean diffusivity of the infarcted heart. (D) Whole-heart volume rendering and respective surface

cut for tractography visualization in (E) tractography of the main eigenvector using varying minimal fiber bundle lengths (0.1, 1, 5, 10, 15mm) as termination criteria.

(F) Helix angle distribution in a basal, midcavity, and apical slab of the infarcted animal with zoomed tractography. (G) Ratio of positive to negative voxels in basal,

midcavity, and apical segments. Remaining ISO-treated animals (n = 11) served as reference.

and apical segments resulting in a lower positive-to-negative
helix angle ratio, whereas the proportion of fiber tracts
with positive helix angle was higher in basal segments
(Figures 4F,G).

DISCUSSION

Evaluation of cardiac function by noninvasive imaging tools
is a cornerstone in the diagnosis and follow-up evaluation of
both MI and heart failure. Yet, the underlying structural basis
for cardiac function abnormalities often remains elusive. DT-
MRI is an emerging imaging technique that facilitates three-
dimensional reconstruction of the cardiac myofiber arrangement
on a submillimeter scale [as comprehensively reviewed by
Mekkaoui et al. (8)]. In the present report, DT-MRI revealed
a pronounced disarray and loss of contractile fiber tract as
microstructural correlates of impaired cardiac function in an
uncommon case of MI. In accordance with histopathologic
analysis, the disturbance of myofiber organization occurred
predominantly in exactly those myocardial segments that showed
impaired contraction/deformation.

Given that ISO’s cardiotoxic effects are believed to be
mediated by aggravating the mismatch between myocardial
oxygen demand (positive inotropic effect) and supply (reduced
coronary flow via positive chronotropic effects and consecutive
shortening of the diastolic interval), the used experimental model
may be considered as a preclinical correlate of type 2 MI (9).
Indeed, there is clinical evidence that β-adrenergic agonists can
induce characteristics of MI, although these effects are transient
when treated accordingly (10).

Apical ballooning is also a key feature of stress
cardiomyopathy (also known as Takotsubo syndrome), a
transient acute heart failure syndrome putatively caused by the
release of catecholamines in response to sympathetic stimulation
(11). Interestingly, application of ISO has been shown to induce
several characteristics of stress cardiomyopathy in rats including
transient apical akinesia and reversible left ventricular systolic
dysfunction (12). In contrast to stress cardiomyopathy, however,
the present case showed an irreversible damage pattern with
severe replacement fibrosis in response to cardiomyocyte death
(apical scarring), a pronounced loss of myofiber tracts, and
sustained left ventricular systolic failure. Typically, ISO leads to
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circumscribed subendocardial fibrosis in the used mouse model.
As the damage exceeded the subendocardium and resulted in
transmural affection in the presented case, it appears likely
that (1) there was a higher vulnerability against ISO-mediated
effects (e.g., greater response of the myocardium to β-adrenergic
signaling); (2) ISO provoked unexpected thromboembolic
coronary occlusion; and/or (3) ISO was accompanied by
additional harmful effects, such as coronary artery dissection.
However, our study was designed to characterize morphology
and function rather than to elucidate the etiology of this
unexpected event, which is why the prespecified study
protocol did not include an appropriate assessment of
the abovementioned aspects (e.g., lack of ECG recording
and troponin assessment after ISO application, specialized
tissue preparation for DT-MRI hampering the detection of
thrombotic material).

In conclusion, this preclinical case report provides insights
into pathophysiological and morphologic–functional relations
of heart failure following MI by combining latest functional
analysis and cardiac imaging techniques. The advent of clinical
DT-MRI may facilitate simultaneous assessment of morphologic
and functional changes under these conditions.
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Despite numerous technical challenges, early studies have demonstrated that 
CMR at ultrahigh field strengths (7T) may improve SNR and enable novel 
insights into cardiac pathology. B1-non-uniformity, and thus difficulties 
regarding power deposition, and SAR-safety are induced by the shorter 
wavelength in tissue at ultrahigh field strength, an issue that is increasingly 
addressed with dedicated RF hardware.  

In this study we aimed to design, simulate, construct, and test an 
8Tx/16Rx mono-surface coil that enables homogeneous and efficient RF 
excitation using parallel transmit technology as well as rapid parallel imaging 
acceleration.  

The coil was designed for ultrahigh field CMR in large animals with 
weights of 40-80 kg. Measurements using a pig body phantom (≤-10dB) and 
a 46 kg pig cadaver (≤-11 dB) demonstrated accepted decoupling. Capacitor 
values determined through bench-top measurements were in good agreement 
with initial CSD simulations. Relative standard deviation (RSD) of the flip angle 
within the heart region (ex vivo) was 0.19 using hardware phases, which 
improved to 0.16 using static pTx shimming. For comparison, RSD was 0.35 
using a human array prototype. EM simulations showed that pTx shimming 
increased transmit efficiency by ≥3. Simultaneously, the L-shaped distribution 
of elements enabled high parallel imaging acceleration factors (R=2-6) with 
small noise amplification (gR4=1.03, gR4=1.05, gR4=1.09, gR6=1.26) in another 
ex vivo measurement (68 kg). In vivo measurements in a 60 kg pig confirmed 
great transmit and receive properties, enabling artifact-free acceleration to 
R=4, without the presence of destructive interference. 

In conclusion, we designed, simulated, constructed and tested a mono-
surface antisymmetric array design that enabled homogenous and efficient RF 
excitation as well as rapid parallel imaging acceleration, an essential aspect to 
CMR. We demonstrate that dedicated hardware that properly utilizes the 
potential of parallel transmit technology enables large animal studies at 7T with 
high image quality and SNR, offering access to new discoveries and information 
on cardiac pathology. The developed design can easily be adapted as multi-
channel coil arrays for different ultrahigh field MR applications such as cardiac, 
brain, spine or abdominal imaging.  
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A Novel Mono-surface 
Antisymmetric 8Tx/16Rx Coil Array 
for Parallel Transmit Cardiac MRI in 
Pigs at 7T
Ibrahim A. Elabyad*, Maxim Terekhov, David Lohr, Maria R. Stefanescu, Steffen Baltes & 
Laura M. Schreiber

A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, 
simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The 
cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-
symmetrically and flanked by seven elements on either side. The array was configured for parallel 
transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. 
Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two 
pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements 
with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-
resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 
0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase B1

+ shimming 
in a pig body phantom with the optimal phase vectors makes possible to improve the B1

+ homogeneity 
by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). 
Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic 
quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be 
adapted for arrays optimized for animals and humans with a larger number of elements (32–64) while 
maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).

With the development of ultrahigh field (UHF) strength (B0 ≥ 7 T) magnetic resonance imaging (MRI) scanners, 
a significant improvement in the SNR, and hence in spatial and temporal resolutions can be achieved compared 
to conventional lower field strength (e.g., B0 ≤ 3 T) MRI scanners1,2. Because of the radiofrequency (RF) 
wavelength-lowering effects of the +B1  field at 7 T (λeff ≈ 12 cm, i.e., in the order of a human thorax), the design of 
an optimized RF coil array at 7 T is becoming more challenging. This is because of standing waves creating con-
structive and destructive interferences of the transmitted +B1  field magnitude and hence strong intensity artifacts 
occurring in the acquired MR images3–6. For brain imaging at 7 T, different coil array designs and technologies 
have been introduced to solve the issues of +B1  field inhomogeneity such as microstrip transmission line (MTL) 
resonators7–12, inverted (MTL) resonators13, stepped impedance resonators14–19, and by utilizing a high-impedance 
surface as the RF-shield to improve the efficiency and penetration of the +B1  field20,21.

Despite the numerous technical challenges related to B0 and +B1  field inhomogeneities, the application of UHF 
scanners for cardiovascular research holds significant promise22,23. Another hardware challenge is the necessity to 
increase the number of elements of the array at 7 T (typical 16–32) to allow for parallel imaging and RF-shimming 
while keeping all resonant coil elements well decoupled. At 7 T, most of the commercial human cardiac coil arrays 
are designed as local Tx/Rx arrays. Different coil arrays and design concepts have been introduced for cMRI in 
humans at UHF including, MTL resonators24,25, conventional multichannel local Tx/Rx loop arrays26–32, dipole 
antenna arrays33–39, combined dipoles and loop arrays40,41 and dielectric resonant antenna arrays42.

The existing commercial cardiac coil arrays for humans at 7 T comprise two independent anterior and posterior 
arrays. The anterior array is the most efficient, because it is fixed near to the heart region and its element 
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dimensions are optimized to have good penetration and transmit efficiency (Txeff) of the +B1  field up to 10 cm 
depth within the thorax. The posterior array is used in order to improve the penetration of the +B1  field within the 
heart from the back side of the thorax. However, the contribution of the +B1  field from the posterior array is low 
compared to the anterior array due to its large distance to the heart. Recent studies43,44 presented two 8Tx/16Rx coil 
arrays comprising two independent anterior−posterior (A–P) parts optimized for moderate weight pigs (<50 kg). 
The distance from the center of the pig heart to the posterior array for the 46 kg pig was about 16 cm and, thus, the 
posterior array contributed only about 10% of the total +B1  field, despite the optimized sizes of the array elements.

The magnitude and phase of the signal for each individual transmit coil element can be optimized to provide 
a uniform combined +B1  field distribution in the selected region-of-interest (ROI). This process is referred to as 
RF-shimming or +B1  shimming45–50. Using eight independent RF power amplifiers (RFPAs) in pTX mode allows 
driving the individual 8Tx channels of the array dynamically (i.e. to vary the magnitude/phase of each channel or 
the RF-pulse waveforms), which enables shaping of 2D and 3D excitation profiles based on a wide-range of opti-
mization criteria51,52. Another major issue is that the limited RF power given from the RFPA is distributed to both 
array parts. Approximately half of the RF power contributes to only 10% of the total +B1  field under the assump-
tion that the power is divided equally to both arrays. This makes the standard vendor-integrated pTx +B1  shim-
ming algorithm, which is usually developed for the cylindrical Tx/Rx head coils (e.g., birdcage) inefficient for 
cardiac arrays, comprising two independent anterior and posterior arrays. The vendor-integrated pTx +B1  shim-
ming algorithm targeted to achieve an optimal combination of +B1  field homogeneity and mean value, tries to 
compensate the low penetration from the posterior array, and thus provides high amplitudes to most of its chan-
nels, resulting in low amplitudes for some of the channels of the anterior array.

One of the major challenges associated in cMRI is gating the acquisition to compensate the heart motion and that 
of surrounding tissues such as the lung. Standard cMRI protocols actively implement the parallel acquisition tech-
niques (PAT), which allows for reducing total acquisition time (TA), leading, however, to an SNR penalty proportional 
to the square root of the phase encoding lines reduction factor and g-factor of the array. Therefore, characterization of 
the noise amplification (g-factor) is an important aspect when testing RF coil arrays for cMRI at 7 T. The rationale of 
proposed mono-surface antisymmetric array design for 7 T cMRI in pigs is to reduce the coupling among the ele-
ments and to provide optimal receive properties for efficient parallel acquisition, while simultaneously minimizing the 
mutual correlation of the transmitted +B1  fields generated by individual elements and, hence, to improve RF-shimming 
capabilities. This mono-surface array design combines the properties of both volume resonator and surface coils in the 
most appropriate way and provides a well-balanced of combination of both +B1  and −B1  fields.

In this paper, we report a novel 8Tx/16Rx pTx cardiac coil array composed of 16-loop elements allocated on 
the mono-surface of one printed circuit board (PCB) and fixed on half-elliptical housing. The housing dimen-
sions were designed to fit with pigs of body weights ranging from 40 to 80 kg. Final tuning and matching of the 
mono-surface array were done using a 46 kg pig cadaver. The testing and validation of the array’s transmitting and 
receiving properties was done using two cadaver pigs (68 and 46 kg) in weights. Finally, the cardiac array was used 
in the in-vivo scans using a 60 kg pig. The mean g-factor within the heart region of 1.26 was shown with an accel-
eration factor of R = 6. Static phase +B1  shimming in a pig body phantom with the optimal phase vectors shows 
the potential to improve the +B1  homogeneity characterized via relative-standard-deviation (RSD) by factor > 2 
and transmit efficiency (Txeff) by factor > 3 compared to zero-phases (without RF-shimming). To investigate the 
potential benefit of the mono-surface array in pTx +B1  shimming and parallel imaging, phantom and cadaver pig 
MR-measurements were additionally performed and compared to an 8Tx/16Rx pTx human cardiac array proto-
type. After +B1  shimming using the vendor pTx algorithm, the mono-surface array has demonstrated improve-
ment in +B1  homogeneity coefficient by factor > 4 in a 20 cm spherical phantom and by about 43% in a pig body 
phantom compared to before shimming with hardware (HW) phases.

Results
Array characterization.  S-matrix measurements.  Simulated and measured S-matrices for the mono-sur-
face array loaded with the pig body phantom are shown in Table 1. Simulated and measured S-matrices for the 
mono-surface array loaded with a 20 cm diameter spherical phantom are shown in Supplementary Table S1. For 
the spherical phantom, the worst-case transmission coefficient Sij was below −8 dB due to reduced loading of the 
side elements (e.g., 14 and 16). For the pig body phantom, the worst-case transmission coefficient Sij was below 
−10 dB between elements 14 and 16. The S-matrix was measured when the array was loaded with a cadaver of
46 kg pig (cadaver #2) [see Supplementary Table S2]. With loading of the ex-vivo pig, reflection coefficients Sii
were below −15 dB for all 16 elements. The worst-case transmission coefficient Sij was below −11 dB between 
elements 1 and 6 and between elements 2 and 5.

Quality factor measurements.  Since the mono-surface array has different element dimensions, bending, and 
loading conditions due to the heterogeneity of the pig thorax, the quality factors (Q) will be different. Both 
unloaded (Qun) and loaded (Qlo) quality factors were measured from matched Sii reflection coefficients for all 16 
loops. For all 16-elements, Qlo were measured when the array loaded with a 46 kg pig cadaver. The measured 
Q /Qlo un ratio for all elements was in the range of 0.50 to 0.75.

Phantom MRI measurements.  Spherical phantom.  Figure 1 illustrates the simulated and measured cen-
tral coronal +B1  field distributions within a 20 cm diameter spherical phantom for eight individual Tx-channels 
(Tx1, Tx2, Tx3, Tx 4, Tx5, Tx6, Tx7, and Tx8). The combined +B1  fields per channel were normalized to their maxima. 
Good agreement between the CST simulations and the experimentally measured FA maps was achieved for most 
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of the channels (Tx1, Tx2, Tx3, Tx6, Tx7, and Tx8). The +B1  field patterns show good similarity between simulations and 
measurements and match well even within the locations of destructive interferences. However, some differences 
between simulated and measured FA maps are observed for the Tx-channels (Tx 4 and Tx5) [see Fig. 1(d,h,i,m)].

Pig body phantom.  Figure 2 demonstrates the simulated +B1  field distribution in the central transversal 
cross-section and the measured in corresponding position FA maps within the pig body phantom. Good agree-
ment between the simulated +B1  field distributions and the experimentally measured FA maps was achieved for all 
8Tx channels.

Validation of B1
+ shimming (combined FA maps).  Figure 3 demonstrates the results of the simulated

combined +B1  field distribution and the experimentally measured FA maps in transversal, coronal, and sagittal 
central slices within the pig body phantom before optimization (with zero-phases), HW phases, and after +B1  
shimming (with two optimized phase vectors PV1 and PV2). It can be seen in the EM simulation results that the 
implementation of the HW phases led to an enhancement in Txeff  by factor > 3 (from 2.2 to 6.9 μT/ kW), with-
out any additional RF-shimming compared to zero-phases. This proves that the initially optimized HW phases 
were close to optimal regarding maximization of the transmit efficiency. With PV1, the RSD was decreased by 
factor > 3 (from 0.35 to 0.10) and Txeff  was increased by factor > 3 (from 2.2 to 6.7 μT/ kW) compared to 
zero-phases. With PV2, the RSD was decreased by factor > 2 (from 0.35 to 0.15) and the Txeff  was increased by 
factor > 3.4 (from 2.2 to 7.5 μT/ kW) compared to zero-phases. With HW phases and even with prior pTx 
shimming, the mean FA was increased by 80% (from 10° to 18°) compared to zero-phases [see Fig. 3(f)]. The RSD 
computed in the selected ROI of the measured FA map was improved by factor > 3 (from 0.32 to 0.10) compared 
to zero-phases. It is interesting to see that with PV2, the RSD was improved by factor > 6 and factor > 2 compared 
to zero-phases and HW phases, respectively [see Fig. 3(h)]. The enhancement in the +B1  field penetration for PV2 
compared to zero-phases, HW phases and PV1 is particularly clear in the simulated and measured central coronal 
[see Fig. 3(i–p)] and sagittal [see Fig. 3(q–y)] slices.

Good agreement between the simulated combined transversal +B1  field distributions and the measured FA 
maps was achieved for zero-phases, HW phases and PV2. However, there were some discrepancies between the 
CST simulation results and the experimentally measured FA maps for PV1. The potential sources of observed 
discrepancies are: (i) light asymmetry of the pig phantom prototype compared to the ideal simulation model [see 
Fig. 4(c,e)] and (ii) shift in phantom position with respect to the coil in comparison to simulated position.

Figure 5 shows the simulated improvement of the SNR achieved by static +B1  field shimming of the selected 
phase vector PV2 obtained using our in-house developed phase optimization method. An increase in mean SNR 
(a.u.) was observed in the whole volume of the pig body phantom from 36 before shimming with zero-phases to 
83 after shimming with PV2 (i.e., factor 2.3), in median value of SNR within phantom from 14 before shimming 
to 25 after shimming with PV2 (i.e., factor 1.7), and in volume within SNR is 83 iso-surface (i.e., “SNR above 
mean for optimized case”): by a factor of 1.7 and an absolute volume increase of 1362 cm3.

B1
+ shimming using the pTx system.  Combined FA maps.  Figure 6(a–d) illustrates the measured com-

bined central transversal FA maps in the 20 cm diameter spherical phantom and the pig body phantom acquired 

El.# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 El.#

−13 −16 −20 −15 −20 −15 −28 −26 −23 −20 −35 −29 −23 −25 −27 −36 1

−14 −14 −22 −14 −23 −20 −28 −17 −23 −33 −36 −21 −23 −30 −24 2

1 −16 −21 −22 −16 −30 −12 −29 −24 −28 −19 −44 −23 −27 −30 −30 3

2 −17 −16 −21 −30 −16 −38 −11 −28 −12 −48 −17 −30 −27 −38 −28 4

3 −21 −12 −18 −24 −20 −15 −27 −11 −27 −20 −27 −19 −27 −28 −30 5

4 −12 −21 −27 −18 −20 −24 −18 −24 −13 −29 −24 −27 −20 −34 −19 6

5 −18 −14 −15 −28 −15 −15 −32 −16 −45 −12 −34 −17 −37 −17 −38 7

6 −14 −19 −28 −15 −22 −15 −14 −34 −12 −34 −11 −34 −13 −48 −14 8

7 −25 −35 −12 −36 −15 −27 −21 −24 −27 −20 −35 −11 −30 −12 −42 9

8 −35 −25 −36 −12 −27 −15 −26 −21 −24 −35 −19 −38 −13 −50 −12 10

9 −18 −17 −13 −25 −13 −22 −19 −24 −28 −15 −42 −10 −35 −22 −42 11

10 −17 −18 −25 −13 −22 −13 −24 −18 −20 −28 −16 −37 −10 −37 −14 12

11 −24 −26 −22 −36 −25 −29 −10 −33 −18 −32 −21 −16 −33 −11 −37 13

12 −26 −24 −36 −22 −29 −25 −33 −10 −32 −19 −42 −20 −27 −44 −10 14

13 −22 −21 −23 −32 −31 −29 −12 −27 −10 −27 −10 −37 −15 −13 −41 15

14 −21 −22 −32 −23 −30 −31 −27 −12 −26 −10 −37 −10 −32 −15 −13 16

15 −36 −56 −22 −36 −24 −47 −16 −42 −10 −35 −23 −41 −10 −39 −15

16 −57 −36 −36 −22 −47 −24 −41 −16 −35 −10 −41 −23 −39 −10 −45 −15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1.  Simulated (italic) and measured S-Matrix in dB for the mono-surface array loaded with the pig body 
phantom with εr = 59.3 and σ = 0.79 S/m.
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using the mono-surface array without shimming and after on-scanner static +B1  shimming with both amplitude/
phases using the vendor integrated pTx shimming algorithm. It is important to notice that the found amplitudes 
for the pig body phantom were approximately equal for all 8Tx-channels [see Supplementary Table S3], which 
means that static +B1  shimming was performed with the maximum amplitude efficiency. For the spherical phan-
tom [see Fig. 6(a,b)], the on-scanner +B1  shimming improved the FA homogeneity coefficient by factor > 4 (the 
RSD was decreased from 0.33 to 0.08) in the selected 3D ROI (10 × 10 × 1.0 cm3) compared to before shimming 
with HW phases. For the pig body phantom, the RSD has improved from 0.10 before pTx shimming to 0.07 after 
pTx shimming. This corresponds to a 43% improvement in the FA homogeneity coefficient compared to before 
shimming with HW phases. The vendor integrated static +B1  shimming in combination with the mono-surface 
array allows for shaping a relatively homogeneous profile of the FA in the area of the heart within the pig body 
phantom [see Fig. 6(c,d)].

g-factor maps.  Figure 6(e–h) demonstrates the measured g-factor maps acquired using the mono-surface array 
with acceleration factors of R = 2, 3, 4, and 6 after a vendor integrated on-scanner pTx +B1  shimming. For accel-
erations defined in the left−right (L−R) direction, the g-factor in the region corresponding to the position of the 
pig’s heart increases gradually with acceleration factors. The mean values of g-factor for accelerations from R = 2 
to 6 changes from 1.03 to 1.40, respectively, being very moderate values for a typical cardiac array. That way, an 
acceleration up to R = 6 is possible in L−R direction whereas for classical double-surface arrays with individual 
anterior and posterior parts, the acceleration regime is practically not feasible with R > 3.

MRI measurements with pig cadavers.  Cadaver #1 (68 kg).  Figure 7(a–c) illustrate the combined FA 
maps in short axis (SA) views within the whole thorax of pig cadaver #1 (68 kg) acquired using the mono-surface 
array without shimming and after on-scanner pTx +B1  shimming compared to the human array prototype. The 
coil showed good homogeneity in the FA map with a computed FA mean value of 14° before pTx shimming. After 

Figure 1.  Simulated normalized central coronal +B1  field distributions and measured FA maps for the 
individual 8Tx channels (Tx1–Tx8) of the mono-surface array within a spherical phantom of 20 cm in diameter. 
Simulation (a–d) & (i–l). Measurement (e–h) & (m–p). All images were seen from F–H direction as shown in 
the array setup of Fig. 4 (h).
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the vendor’s +B1  shimming, the mean FA was increased by about 21%. With the pig cadaver #1, the vendor static 
+B1  shimming has improved the RSD from 0.19 to 0.16. For the recently published44 antisymmetric anterior coil 

array comprising of 8-elements combined with a rectilinear 8-elements posterior array and optimized for smaller 
pigs (<50 kg), the RSD was computed as 0.46 within the pig heart. This result shows that static +B1  shimming 
using pTX RFPA combined with the mono-surface array significantly improved the +B1  field homogeneity coeffi-
cient (factor > 2.8) compared to an 8Tx/16Rx pig cardiac array comprising two independent A−P parts. The RSD 
in the pig cadaver #1 using the mono-surface array was improved by factor > 2 (from 0.35 to 0.16) compared to 
the human array prototype [see Fig. 7(b,c)].

Figure 7(d) shows the noise correlation matrix acquired using the mono-surface array loaded with the pig 
cadaver of 46 kg. Despite the complexity of the mono-surface array, the maximum noise correlation was 0.4. 
Figure 7(e,f) depicts coronal views demonstrating a relatively homogeneous +B1  field excitation acquired using the 
mono-surface array, while destructive +B1  artefacts are clearly visible for the human array prototype.

Figure 8 demonstrates the parallel imaging performance of the mono-surface array compared to the human 
cardiac array prototype. G-factor maps were acquired for acceleration factors of R = 2, 3, 4, and 6 in a pig cadaver 
#1 (68 kg). For both coils, the acceleration was set in the L−R direction. For the mono-surface array, the mean 
of the g-factor in the heart ROI was evaluated as: 1.03, 1.05, 1.09, and 1.26 for R = 2, 3, 4 and 6, respectively. It is 
important to notice that the dedicated mono-surface array provides improved parallel imaging capabilities with 
up to 50% lower g-factor for the high acceleration rates (R = 6) compared to human array prototype.

Cadaver #2 (46 kg).  Figure 9 shows SA [see Fig. 9(a)] and long axis (LA) [see Fig. 9(b)] views acquired using R = 2, 
3 and 4 in a pig cadaver #2 (46 kg). Images in the second row show SNR maps for the respective anatomical images. 
Placement of the four LV ROIs and the respective SNR in dependence of the acceleration factor are displayed in 

Figure 2.  Simulated central transversal +B1  field distribution in μT and measured FA maps in degrees for the 
individual 8Tx channels (Tx1–Tx8) of the mono-surface array within the pig body phantom. Simulation (a–d) &  
(i–l). Measurement (e–h) & (m–p). All images were seen from F–H direction as shown in the array setup of  
Fig. 4 (h).
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Fig. 9(c). Mean SNR values in the ROIs range from 64–79, 48–61, 33–41 (SA view) and 62–101, 50–81, 34–58 (LA 
view) for acceleration factors R = 2, 3, 4, respectively. For the SA view this corresponds to a drop of about 23% and 
48% for R = 3 and R = 4. Respective drops for the LA view are about 20% and 44% for R = 3 and R = 4.

In-vivo MRI measurements with pig (60 kg).  Figure 10 shows in-vivo single frames of the GRE CINE 
images of the pig heart acquired with parallel imaging acceleration factors R = 2, 3, 4 and 6. The number of phase 
encoding steps (NPE), TA, and number of heart beats (HB) used for acquisition are shown in the corresponding 

Figure 3.  Simulated combined +B1  field distribution and measured FA maps in axial (a–h), coronal (i–p) and 
sagittal (q–y) central slices within the pig body phantom with zero-phases, HW phases and after static phase +B1  
shimming with PV1 and with PV2.
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images. For the large number of PE-lines at R = 2 a significant blurring of the heart wall is observed. This is due to 
the large amount of HB required during acquisition and, which often results in poor consistency of the acquired 
image k-spaces due to intrinsic variation of the both heart rhythm and motion. This effect is removed by higher 
acceleration (less PE-steps), where, a lower amount of HB is needed. With the acceleration factors R = 2, 3, 4 and 
6, visualization shows clear sharp contours for the myocardium wall.

Figure 4.  Schematic of the mono-surface array with element dimensions, capacitor variables, and channel 
numbers (Tx1–Tx8) (a), RF coil simulation model loaded with a 20 cm diameter spherical phantom (b) and a pig 
body phantom (c,d). (e) Prototype of the in-house developed pig body phantom. Prototype of the mono-surface 
array shown from the head−foot (H–F) direction (f) and side view (g). (h) The mono-surface array setup 
loaded with a pig body phantom and connected to the interface via four ODU plugs and to the 7 T scanner.
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Figure 11 show in-vivo multiple heart phases acquired with GRE CINE at acceleration factor R = 3 (every 
second reconstructed heart phase is shown).

Discussion
In this study we designed, simulated, built, and tested a mono-surface 8Tx/16Rx pTx coil array for cMRI in pigs 
at 7 T. The mono-surface array was driven in pTx mode on a 7 T scanner. The mono-surface array shows a signif-
icant improvement in the +B1  field homogeneity after RF-shimming, which proves the high efficiency of the devel-
oped array design for using with the pTx-capable MR-system in large animal cardiac studies at UHF.

The PCB was fixed on one half-elliptical housing, which was designed to fit pigs ranging from 40–80 kg [see 
Fig. 4(f–h)]. The mono-surface array enabled efficient +B1  shimming capabilities and showed better control of the 

+B1  field distribution for all individual 8Tx channels in a spherical phantom [see Fig. 1] and in a pig body phantom 
[see Fig. 2]. However, both simulated and measured +B1  field distribution per channel within a 20 cm diameter 
spherical phantom shows some stronger overlaps between the channels Tx2 (combined elements 1 & 4), Tx3 (com-
bined elements 2 & 3) and Tx 4 (combined elements 5 & 9) [see Fig. 1(b,c,d,f,g,h)]. This overlap of the +B1  profiles 
in the central coronal plane at about 10 cm depth from the coil surface has many reasons. First, the spherical 
phantom was selected to test the worst-case scenario for loading conditions, where the side elements are not 
loaded properly (e.g., Tx5 for combined elements 14 & 16, and Tx6 for combined elements 8 & 12) and similarly for 
the antisymmetric channels Tx7 and Tx8. For example, based on bench-top S-parameter measurements for the 
individual 16 elements, the channels Tx7 (combined elements 7 & 11) and Tx8 (combined elements 13 & 15) pres-
ent poor decoupling (e.g., S13,15  =  −8 dB and S14,16  =  −9 dB) [see Supplementary Table S1]. Second, there 
is ± 10° error in the measured relative HW phase per element, which was measured at distance of about 10 cm 
from the element surface. The measured relative HW phases were used to compute the required RF cable phase 
shifters, which were used to implement the optimal phase vectors PV1 and PV2 [see Table 2]. However, the 
mono-surface array demonstrated accepted decoupling when loaded with the pig body phantom (S13,15  =  
−11 dB and S14,16  =  −10 dB) [see Table 1] and with a 46 kg pig cadaver (S13,15  =  −16 dB and S14,16  =  −12 dB)
[see Supplementary Table S2].

The capacitor values optimized on bench-top measurements were in good agreement with those capacitor 
values initially optimized in CST-DS (pig body phantom as load) [see Table 3]. For some elements, there are dis-
crepancies between the optimized capacitor values in CST-DS simulations and on bench-top measurements, 
which mainly arises at the feeding ports of the splitting tuning and matching capacitors (e.g., C m

14, C a
14 and C b

14 for 
element 14). This is because the discrete implemented PS circuits were added to adjust the HW phases, and they 
were not modeled in the CST simulations since they were considered to be ideal 50 Ω circuits. However, in the 
real coil prototype, the additional discrete PSs might change the input impedance at the coil feeding ports, which 
cause some discrepancies among capacitors optimized using simulations and bench-top measurements.

The developed 8Tx/16Rx cardiac array demonstrated high efficiency in both Tx and Rx properties for cMRI at 
7 T. Due to the good decoupling and low correlation between the +B1  fields generated by all individual 16 elements 
it enables efficient capabilities for static phase +B1  shimming using phases control [see Fig. 3] and pTx RFPA based 

+B1  shimming with both amplitudes/phases in phantom [see Fig. 6] and pig cadaver [see Fig. 7] providing 
improved homogeneity and penetration of the +B1  field. A comparison between an antisymmetric coil array and 
a standard rectilinear symmetric coil array has previously been made44. The main issue of the standard rectilinear 
coil array design is the coupling between the diagonal elements. The coupling between neighboring and diagonal 
elements can be minimized by the optimal distribution of the coil elements of the array. The basic idea of the 
mono-surface array design is to move some elements from the longitudinal distribution in the z-axis in a standard 
rectilinear design44 to the transversal direction in the x-axis [see Fig. 4(a)]. Then, the central four elements (e.g., 
elements 1–4) together form two antisymmetric L-shaped channel pairs driven by independent two RFPA. This 
will facilitate the decoupling of the central four elements by using a common conductor and a shared decoupling 
capacitor30,31,43,44,53 (SDC) (i.e., between elements 1 & 2, elements 2 & 3, and elements 1 & 4). Additionally, this 
gives more degrees of freedom to distribute the surrounding two elements 5 and 6 via the selection of five differ-
ent decoupling locations using capacitive decoupling mechanism (C d

5 , C d
6 , C d

7 , C d
9 , and C d

10) in conjunction with a 
gap of 1.5 cm from each side of the array. The dimensions of the antisymmetric elements were selected to create a 
balance between the optimal dimensions of the individual 16-loops and the total external dimensions of the array 

Figure 5.  Simulated 3D SNR improvement achieved by the static +B1  shimming with PV2 compared to zero-
phases.
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Figure 6.  Measured central transversal FA maps in degrees acquired using the mono-surface array within a 
spherical phantom of 20 cm in diameter (a,b) and within a pig body phantom (c,d) before on-scanner static +B1  
shimming using the vendor shimming algorithm. (e–h) Measured g-factor maps within the pig body phantom 
with acceleration in the L−R direction for R = 2, 3, 4, and 6, respectively. The mean ± SD of the g-factor values 
were computed in the selected ROI.

Figure 7.  Measured FA maps in transversal view acquired using the mono-surface array within a cadaver pig #1 
(68 kg) without on-scanner shimming (with HW phases) (a), and after on-scanner static +B1  shimming using 
the vendor shimming algorithm (b). (c) Transversal FA map acquired from the same animal using an 8Tx/16Rx 
human cardiac array prototype. (d) Measured noise correlation matrix from the mono-surface array loaded 
with a pig cadaver. (e,f) Coronal views demonstrate relatively homogeneous +B1  field excitation using the 
dedicated mono-surface array (e) while the coronal images acquired using the human cardiac array prototype 
shows clearly visible destructive +B1  artefacts (f).
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to fit perfectly with the half-elliptical housing. Additionally, instead of extending the other loop elements in the 
longitudinal z-axis like in the standard rectilinear array design, eight elements (3, 4, 11, 12, 13, 14, 15 and 16) were 
extended in the transversal x-axis. These elements results in a stronger penetration of the +B1  field within the pig 
heart after bending.

The phase vector optimization results reveal the significant advantage of the mono-surface array in terms of 
static phase +B1  shimming optimization potential. The new mono-surface array design provides additional 
degrees of freedom for +B1  shimming (e.g., the L-shaped element distribution, loop sizes and geometries, and the 
antisymmetric 16 elements allocation on the half-elliptical housing). Even without RFPA-based static +B1  shim-
ming, the developed coil array with the optimized HW phases showed homogeneous FA map distribution (RSD 
of 0.19) without noticeable destructive interferences within the heart region [see Fig. 7(a)]. After on-scanner 
RFPA-based static pTx +B1  shimming with the RSD of the measured FA within the heart region of pig cadaver #1 
is 0.16 [see Fig. 7(b)]. This result shows that the mono-surface array after on-scanner RFPA-based static pTx +B1  
shimming has a significant improvement in the +B1  field homogeneity becoming by factor of 2.8 higher compared 
to a pTx cardiac array of similar design with two independent A−P parts (RSD = 0.46)44.

Due to the difficultly to find in literature a dedicated multichannel pTx coil array for pigs at 7 T, we compared 
our new array design to some published human arrays. The measured mean g-factors that we report in this work 
using the dedicated coil array in a pig cadaver #1 with acceleration factors of R = 4 (1.09) [see Fig. 8(a–d)] is lower 
than the mean g-factors mentioned in the literature (1.58, 2.33, and 1.2) using 8-channel30, 16-channel31 and 
32-channel26 Tx/Rx loop human coil arrays, respectively. The mean g-factor obtained from the mono-surface
array with acceleration factors of R = 6 is 1.26, which is about 58% lower than the measured mean g-factor men-
tioned in the literature26 (gmean  =  2) with 32-channel Tx/Rx human coil array. High resolutions 
(0.3 mm × 0.3 mm) cardiac images were acquired using the mono-surface array in a pig cadaver #2 [see Fig. 9]. 
The mono-surface array provides relatively small intensity variation across the region of the heart. In comparison 
to the smaller designs with two independent arrays43,44, the mono-surface array reveals practically negligible noise 
amplification over R = 2, 3, and 4. The posterior wall in a SA view remains clearly visible for acceleration factors 
R = 2, 3, and 4, indicating that the coil is capable for high quality volumetric cMRI acquisitions in in-vivo use.

The demonstrated in-vivo results confirm that the optimized phase vector (PV2) provides homogeneous +B1  
excitation of the heart region without visible destructive interference and sufficiently good coverage of the poste-
rior rear wall [see Fig. 10]. The noise level (σN) computed as standard deviation in marked ROIs increases with 
decreasing number of PE-lines. An average tissue-to-blood contrast of eight is observed on both LA and SA 
views. The mono-surface array has high parallel imaging capability, enabling high spatial resolution cMRI. The 
antisymmetric design allows for efficient usage of the acceleration with phase-encoding direction angulated 
according to the standard anatomical views of the heart. A low acceleration factor (R = 2) resulted in blurring of 
the in-vivo images due to the relatively large amount of PE-lines and thus, HB used for CINE reconstruction. This 
was, however, efficiently handled by increasing the acceleration and correspondingly decrease the number of 
PE-lines needed for the reconstruction. By this way, errors originated from losing k-space coherence were effec-
tively prevented. No visible artefacts of GRAPPA reconstruction are observed in the in-vivo scans despite the 

Figure 8.  Measured g-factor maps of R = 2, 3, 4, and 6 within a cadaver pig #1 (68 kg) with acceleration in the 
L−R direction were acquired using the mono-surface array (a–d) compared to an 8Tx/16Rx human cardiac 
array prototype (e–h). The mean and maximum of the g-factors were evaluated in the ROI of the heart. The 
mono-surface array geometry and housing shaping provide clearly observed benefit for the parallel imaging 
acceleration providing up to 50% lower g-factor for the high acceleration rates (R = 6) compared to the human 
cardiac array prototype.
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significant reduction of total PE-steps. Both LA and SA anatomical views provided high spatial (0.6 mm in-plane) 
and sufficient temporal resolution while keeping fair diagnostic quality SNR [see Fig. 11]. The in-vivo measure-
ments using the mono-surface array confirmed high potential of the antisymmetric design in terms of both 
transmit and receive properties. Both LA and SA views could be visualized with high spatial resolution if a dras-
tically reduced number of phase encoding steps (and number of heart cycles) was used for the reconstruction of 
30 cardiac phases. The spatial resolution of 0.6 mm achieved in-vivo is essentially superior to that used under 
typical clinical cMRI conditions at 3 T (1–1.5 mm in-plane spatial resolution).

Figure 9.  Impact of parallel imaging acceleration on SNR in anatomical images within a cadaver pig #2 (46 kg). 
(a) Anatomical SA and corresponding SNR maps for varying acceleration factors R = 2, 3 and 4 (left to right). 
(b) Respective LA views analogous to (a). (c) SNR plots of mean ± single standard deviation in four myocardial 
ROIs for SA and LA views in dependence of the acceleration factor. Black: R = 2, Blue: R = 3, and Red: R = 4.
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The mono-surface antisymmetric array design, hardware electronics, RF shimming simulations described in 
this paper can be easily adapted for multichannel coil arrays optimized for different MR applications (e.g., cardiac, 
head, and spine) at UHF. The number of loop elements can be easily increased to 32 or even 64, while maintaining 
good decoupling among all elements.

Figure 10.  Single frames of the GRE CINE images of the pig heart acquired in a 60 kg pig in-vivo with 
parallel imaging acceleration factors R = 2, 3, 4, and 6. Spatial resolution 0.6 mm × 0.6 mm × 6 mm, FA = 35°, 
retrospective reconstruction 30 phases, frame at trigger delay = 270 ms. For the large number of PE-lines 
significant blurring of the heart is observed due to relatively large number of HB needed for acquisition and 
probably poor consistency of the acquired k-space. This effect is removed by higher acceleration (less PE-steps) 
and, thus, less amount of HB needed. With R = 3 and 4 the myocardium wall has clear sharp contours.

Figure 11.  Multiple heart phases acquired in a 60 kg pig in-vivo with GRE CINE at acceleration factor R = 3. LA 
view (a) and SA view (b) are shown. High spatial resolution of 0.6 mm in-plane is demonstrated while keeping 
fair diagnostic quality SNR. This is essentially superior to the typical clinical cMRI at 3 T which usually is 
obtained at in-plane spatial resolutions of 1–1.5 mm.
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Methods
Array design.  The antisymmetric coil array was composed of a mono-surface with 16-elements which were 
arranged so that the central two elements were arranged anti-symmetrically and flanked by seven elements on 
either side. Figure 4(a) shows the schematic of the dedicated mono-surface antisymmetric array for pigs. The 14 
loop elements were distributed around the central two loop elements 1 and 2 in an antisymmetric arrangement to 
reduce element coupling due to less overall proximity of neighboring elements44. In addition, this method aims to 
minimize the overlapping of the +B1  profiles from each individual Tx channel in the heart region of the pig. The 
dimensions of the central loops 1 and 2 were selected as 3.50 cm × 7.35 cm as described in43,44. The decoupling 
between the central two elements 1 and 2 is accomplished using a common conductor and a SDC30,31,43,44,53 of C d

1 . 
The size of the antisymmetric L-shaped elements 3 and 4 was 3.80 cm × 7.50 cm. The antisymmetric L-shaped 
elements 3 and 4 were decoupled from the loop elements 2 and 1 using a SDC of C d

2 . The elements 1, 2, 3 and 4 
formed a pair of antisymmetric L-shaped channels (Tx2 and Tx3) to reduce coupling between the neighboring 
elements 5 and 6. The size of the elements 5 and 6 was selected as 5.0 cm × 9.0 cm. Both loop elements have the 
larger dimensions in the array in order to make a balance between the dimensions of all surrounding loops in the 
array. This results in five different locations for capacitive decoupling with the surrounding elements (1, 2, 3, 7 and 
9) with a gap of 1.5 cm. The elements 1, 2, and 3 were decoupled from the neighboring elements 5 and 6 using 
capacitive decoupling mechanism of two equal capacitors of C d

5 , C d
6  and C d

7  in addition to two gaps of 1.60 cm and 
1.1 cm, respectively. The elements 7 and 9 and the antisymmetric identical elements 8 and 10 were decoupled 
using a SDC of C d

3 . Both antisymmetric L-shaped loop elements 11 and 12 were decoupled with elements 7 and 8 
using a SDC of C d

2 . The elements 13 and 15 and the antisymmetric identical elements 14 and 16 were decoupled 
using a SDC of Cd

4 . The total external dimension of the array is 15.8 cm × 49.7 cm.

EM simulations.  EM simulations were performed using CST Microwave Studio (CST-MWS) (Computer 
Simulation Technology AG Darmstadt, Germany). Figure 4(b–d) illustrates the RF-simulation models of the 
dedicated cardiac coil array as simulated in CST-MWS. In this paper, the mono-surface array was simulated with 
two different phantom loads (a 20 cm diameter spherical phantom and a pig body phantom [see Fig. 4(b,c)]. Both 
phantoms have the same electrical properties with εr = 59.3 and σ = 0.79 S/m. All feeding ports, tuning, matching, 
and decoupling capacitors were modeled as 50 Ω discrete face ports for RF circuit co-simulations to obtain the 
initial values of capacitors using CST-DS54. The array has a copper (Cu) track width of 4 mm and a thickness of 35 
μm etched on a 0.3 mm FR4 (εr = 4.24 and δtan  = 0.014 at 297.2 MHz) PCB (Q-print Electronic GmbH, 
Heddesheim, Germany). The PCB was bent and fixed around the half-elliptical housing (xdiamter  = 34 cm and 
yrad  = 22 cm and 5 mm thickness) made from ABS (εr = 2.8 and δtan  = 0.0095 at 297.2 MHz) [see Fig. 4(b)]. For 
matching, tuning, and decoupling, fixed chip nonmagnetic capacitors (Voltronics Corp., Denville, NJ, USA) were 
used. The total number of mesh cells was 40.195 and 43.332 million for the spherical and pig phantoms, respec-
tively. Individual 16-AC simulation tasks corresponding to the 16-elements of the array were evaluated at 
297.2 MHz for each load. The 3D-data of the H-field for each resonance element was exported to MATLAB 
(MathWorks, Natick, MA, USA) for post-processing.

The two circularly polarized components of the magnetic field with opposite directions of rotation, which repre-
sent the transmit field ( +B1 ) and the receive field ( −B1 ) are given by: = ++B B iB( )/2x y1  and = −− ⁎B B iB( ) /2x y1 , 
respectively, where Bx and By are the complex transversal components of the magnetic field in the x and y directions, 

pTx 
Channel # Element#

HW 
Phases[°] PV1[°] PV2[°]

Cable PSs for 
PV1 [°]

Cable PSs for 
PV2 [°]

Tx1

6 −98 −25 59 45 90 + 22.5

10 −91 4.0 48 22.5 90 + 45

Tx2

1 −30 81 114 0 90 + 22.5

4 15 12 11 90 + 22.5 180 + 90

Tx3

2 −66 19 91 22.5 90 + 22.5

3 −113 −246 148 180 + 45 + 22.5 0

Tx4

5 13 110 181 22.5 90

9 70 −214 −71 45 45

Tx5

14 87 −111 −4.0 180 + 90 + 45 0

16 82 −169 −77 0 45 + 22.5

Tx6

8 136 −47 3.0 180 + 90 + 22.5 45

12 164 −106 −72 22.5 90 + 45

Tx7

7 68 −188 −139 0 90 + 22.5

11 98 −96 247 180 + 90 + 45 90 + 22.5

Tx8

13 140 −164 −67 45 90 + 22.5

15 164 −82 −35 0 90

Table 2.  Measured relative HW phases for the mono-surface array loaded with the pig body phantom, relative 
optimized phases (PV1 and PV2), and the required coaxial cable PSs required to validate the optimal vectors PV1 
and PV2. The coaxial cable PSs were computed after subtracting the HW phases from PV1 and PV2, subtraction 
the results from the maximum positive phase value and finally rounding the resulted phase nearest to 22.5°.
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i is the imaginary unit, and the asterisk indicates the complex conjugate. The = + +B BRSD SD( )/1 1 , and 
= +B PTx / ineff 1  in μT/ kW, were evaluated in the selected ROI, where SD is the standard deviation, +B1  is the 

mean value of the +B1  field, and Pin is the stimulated input power in (kW). The mono-surface array was fed with the 
same total input stimulated power (Pin = 8 W) and all coil elements were fed with equal amplitudes.

The simulated 3D-SNR map within the pig body phantom [see Fig. 5(q,r)] was computed using magnitudes of 
the combined +B1  field and −B1  fields of individual 16-elements, with a low FA (<10°) approximation:

∑∝ ⋅
=

+ −⁎B BSNR ( )
(1)k 1

N

1 1,k
2

where the combined +B1  was given by

∑= ϕ+

=

+B b ( )
(2)1

k 1

N

1,k k

where =+ + ϕb b ei
1k 1k k is the complex +B1  field for each coil element (N = 1–16) and i is the imaginary unit.

Capacitor Bench Simulation Capacitor Bench Simulation

C d
1 12.7 12.7 C m

14 10.0 6.20

C d
2 12.7 12.7 C m

15 8.20 6.20

C d
3 13.3 13.3 C m

16 8.20 6.20

C d
4 7.20 7.20 C a

1 10.0 8.20

C d
5 10.0 10.0 C a

2 10.0 8.20

C d
6 0.50 0.50 C a

3 6.20 6.20

C d
7 1.00 1.00 C a

4 6.20 6.20

C d
8 1.00 1.00 C a

5 4.70 2.10

C d
9 10.0 10.0 C a

6 4.70 2.10

C d
10 1.00 1.00 C a

7 6.20 6.20

C d
11 1.00 1.00 C a

8 8.20 6.20

C d
12 1.00 1.00 C a

9 10.0 8.20

C d
13 1.00 1.00 C a

10 8.20 8.20

C d
14 2.10 2.10 C a

11 6.20 6.20

C t
1 7.20 7.20 C a

12 8.20 6.20

C t
2 6.20 6.20 C a

13 8.20 8.20

C t
3 8.20 8.20 C a

14 10.5 8.20

C t
4 10.0 10.0 C a

15 10.0 10.0

C t
5 12.1 12.1 C a

16 10.0 10.0

C t
6 4.70 4.70 C b

1 11.6 10.0

C t
7 10.0 10.0 C b

2 11.0 10.0

C t
8 6.70 6.70 C b

3 9.20 8.20

C m
1 6.20 6.20 C b

4 10.9 8.20

C m
2 6.20 6.20 C b

5 6.70 6.20

C m
3 6.20 6.20 C b

6 4.70 6.20

C m
4 4.70 6.20 C b

7 6.20 7.80

C m
5 10.0 12.0 C b

8 8.20 7.80

C m
6 8.20 12.0 C b

9 8.20 9.00

C m
7 10.0 10.0 C b

10 9.20 9.00

C m
8 10.0 10.0 C b

11 8.20 7.40

C m
9 10.0 10.0 C b

12 6.20 7.40

C m
10 10.0 10.0 C b

13 13.3 10.0

C m
11 10.0 4.70 C b

14 8.20 10.0

C m
12 10.0 4.70 C b

15 12.7 10.0

C m
13 10.0 6.20 C b

16 10.0 10.0

Table 3.  Optimized capacitor values of the mono-surface array in pF obtained using CST RF-circuit co-
simulation loaded with the dedicated pig body phantom and final optimized capacitor obtained using bench-
top measurements loaded with the pig cadaver of 46 kg.
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Static phase B1
+ shimming.  To achieve the best possible image quality with the proposed mono-surface 

array for in-vivo MRI studies, comprehensive +B1  field optimizations of static phase +B1  shimming within a pig 
body phantom was performed. Static phase +B1  shimming was carried out within the pig body phantom using two 
optimization cost functions within a 3D ROI of 12 × 10 × 1.0 cm3 resulting in two optimal phase vectors (PV1 and 
PV2). The first optimal phase vector (PV1) was found using the optimization of the cost function Fc1 of Eq. (3) for 
maximum +B1  field homogeneity. The second optimal phase vector (PV2) was found using weighted combination 
of both +B1  field homogeneity and transmit efficiency using the cost functions Fc3 of Eq. (5). The optimization cost 
functions were given by

=
−

⋅
+

+ +⌊ ⌋
F B

B BRSD max( ) ( )
TXE

(3)
c1

1

1 1

= ⋅
+

F Bmin( )
RSD

TXE (4)c2
1

= + − = .F F Fw (1 w ) where w 0 8 (5)c c c3 1
2

2

=
∑ ϕ

∑ ϕ
=

=

b
b

where TXE
({ })
({ }) (6)

k 1
N

1,k k

k 1
N

1,k k

ϕ = ϕF{ } argmax[ ({ })] (7)ck (1,3) k

Channel pairing for the 8Tx/16Rx pTx system.  The pTx system provides 16 kW Tx power output for 
eight individual feeding lines (8Tx RFPA channels). Each of these lines is then split equally by a 1:2 wilkinson 
power splitter, both outputs of the power divider fed two elements of the array. Therefore, each of the 8Tx chan-
nels was driven by a 2 kW/channel. To form an 8Tx/16Rx coil array, each two neighbouring loops were combined 
in one Tx channel [see Fig. 4(a)]. For example, the antisymmetric L-shaped Tx channel (Tx2) which have a com-
mon conductor and a SDC was formed by the combination of the two L-shaped elements 1 and 4. Likewise, the 
Tx channel (Tx3) was formed by the combination of the two L-shaped elements 2 and 3. The same applies to the 
other antisymmetric L-shaped Tx channel (Tx6 and Tx7), which was formed by the combination of the two ele-
ments 8 & 12 and the elements 7 & 11, respectively. The same applies to the other antisymmetric rectangular 
channels (Tx5 and Tx8) were formed by the combination of the two elements 14 & 16 and the elements 13 & 15, 
respectively. The 2Tx channels (Tx1 and Tx 4) were formed by the combination of the two elements 6 & 10 and the 
elements 5 & 9, respectively. The array was connected to a Tx/Rx switch and 16-preamplifier interface (Rapid 
Biomedical GmbH, Rimpar, Germany) via four plugs (ODU GmbH & Co. KG, Mühldorf a. Inn, Germany) [see 
Fig. 4(h)]. Each plug was connected to four loop elements of the array via four 50 Ω coaxial cables K-02252-D-60 
(Huber + Suhner, Herisau, Switzerland). The Tx/Rx interface was connected to the pTX system via two compati-
ble Siemens Rx plugs and one Tx pTx plug (ODU GmbH & Co. KG, Mühldorf a. Inn, Germany). PTx +B1
-shimming for varying both amplitudes/phases for the 8Tx/16Rx mono-surface array was performed using soft-
ware provided by the vendor of the MRI system in the pTx mode. The 8Tx/16Rx mono-surface array was com-
pared to an 8Tx/16Rx pTx transceiver human cardiac array prototype (Rapid Biomedical GmbH, Rimpar, 
Germany). The 8Tx/16Rx human cardiac array prototype consists of two sections, each comprising 8 loop ele-
ments with one central element, surrounded by seven elements, forming a circular shape coil arrangement55. 
Figure 4(f–h) shows the prototype of the dedicated 8Tx/16Rx mono-surface pig array loaded with the pig body 
phantom connected to the interface and the 7 T MRI system.

Array characterization.  S-matrix measurements.  After obtaining the initial capacitor values from 
RF-circuit co-simulations using CST-DS, the final values of matching, tuning and decoupling capacitors were 
optimized on bench-top measurements using the cadaver of 46 kg pig as the load. The S-matrix was measured 
using an E5080A 4-port Vector Network Analyzer (VNA) (Keysight Technologies, Santa Rosa, CA, USA). For 
each resonant element, one solenoid cable trap was designed to remove the unbalanced surface current and cable 
resonance on the coaxial cables.

Relative HW phases.  The implemented HW phases were obtained using an in-house developed MATLAB algo-
rithm as described in50. To adjust the phase shift between the 16 loops, individual low pass π-network discrete 
phase shifter (PS) circuits were designed. The PS consists of two equal capacitors and one nonmagnetic and high 
quality factor inductor (Coilcraft, Inc., Silver Lake Road, Cary, IL). All PS circuits were inserted between cable 
traps and loops. The measured relative HW phases in the pig body phantom are shown in Table 2. To validate the 
optimal vectors PV1 and PV2, the phases are adjusted by coaxial cables and connected via BNC connectors to 
the interface as shown in Fig. 4(h). The coaxial RF cable phases were computed account of HW phases and with 
rounding the resulted phase to the nearest k·22.5°, where k is integer number [see Table 2].

MRI measurements.  All MR measurements were performed on a 7 T whole-body MAGNETOM Terra 
scanner (Siemens Healthineers, Erlangen, Germany) equipped with 8-channel RFPA (2 kW/channel) in pTx 
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mode. All animals used in this work were German Landrace pigs obtained from Heinrichs Tierzucht GmbH, 
Heinsberg, Germany.

The two pig cadavers for coil optimization and testing were provided for MR-measurements immediately 
after usage in the approved project 55.2 DMS 2532–2–664 (Regierung Unterfranken, Germany). Euthanasia was 
performed with an intravenous application of 150-mg/kg pentobarbital under isoflurane anesthesia with fentanyl 
analgesia. The final and optimized version of the array was used for the in-vivo scans in agreement with the aims of 
the project named above. All experiments were performed in accordance with relevant guidelines and regulations.

Phantom MRI measurements.  Phantom MR-experiments were performed using a 20 cm diameter spherical 
phantom and a pig body phantom (internal dimensions: maximum height in y-axis = 23 cm, maximum width in 
x-axis = 25 cm, length in z-axis = 30 cm, and with 1.0 cm thickness) to validate the +B1  field simulations [see
Fig. 4(c–e)]. We selected the spherical phantom to test the worst-case scenario for loading conditions with side 
elements not loaded properly by the sphere. The pig body phantom was designed in-house and constructed from 
Plexiglas (Kunststoff Acryl Design GmbH, Essen, Germany). The composition of the phantom contents was:
water (12.56 kg), PVP (5.96 kg), and salt NaCl (172 g), which results in volume of about 16 L and the electrical
properties are εr ≅ 58 and σ ≅ 0.77 S/m. The measurements of the +B1  spatial distribution in both phantoms and 
pig cadaver experiments were performed using the saturated double flip angle method (SDAM) based on a GRE 
sequence. The GRE-SDAM measurement parameters were: TE/TR = 1.8/4000 ms, pixel resolution 2 × 2 mm, slice 
thickness = 4 mm for the transversal and for coronal views. The images for FA-map reconstruction were acquired 
in two successive measurements with doubling voltage of the excitation RF-pulse. The actual FA maps were 
reconstructed using an in-house developed MATLAB script.

MRI measurements with pig cadavers.  Performing measurements in a fresh pig cadaver allows consistent condi-
tions for high-resolution scans using varying acceleration factors, while avoiding cardiac and respiratory motion. 
In particularly, the FA-maps can be acquired using ground-truth SDAM methods which are not feasible in-vivo, 
since the long repetition times needed to exclude effects of T1 weighting, result in long acquisition times. The total 
measurement time was about two hours covering the preparatory pulse sequences, anatomical GRE sequence, FA 
maps, SNR maps, noise correlation, and the g-factor maps. The pig cadavers were placed head first in dorsal 
recumbence inside the scanner. The position of the heart was estimated to fit approximately in the center of the 
coil. The sequence parameters for characterization of SNR and parallel imaging capability of the array in cadaver 
experiments were based on the standard GRE CINE protocol. The sequence parameters were: TR/TE = 69.52/4.07, 
FA = 45°, pixel size = 0.3 mm × 0.3 mm, number of averages = 8, FOV = 320 × 320 mm and a slice thickness of 
6 mm. The analysis of SNR was carried out on SA and LA images. Varying parallel acceleration factors from 
R = 2–6 resulted in TEs/TRs of 4.7/69.52 ms, 4.7/78.21 ms, and 4.7/78.75 ms. Parallel imaging methodology used 
for accelerating MR image acquisitions was Generalized Auto-Calibrating Partially Parallel Acquisition 
(GRAPPA). The SNR in the images was calculated as the signal intensity in a given voxel divided by the image 
noise. The noise was determined as the standard deviation within a ROI placed in air. A correction factor was 
applied according to56. In addition, the SNR in myocardial tissue in dependence of the acceleration factors was 
assessed within four ROIs placed in the left ventricle for both SA and LA views. The GRE-SDAM measurement 
parameters for both cadaver pig measurements were: TE/TR = 1.8/4000 ms, pixel resolution 2 × 2 mm, slice thick-
ness 6 mm, and number of slices = 6. The g-factor characterizations for both cadaver pig measurements were done 
using vendor-provide protocol and reconstruction pipeline (“coilutil”). The measurements sequence was GRE 
with TR = 3.9/TE = 10 ms FA = 15°, number of averages = 10, slice thickness = 6 mm, spatial resolution in-plane 
0.5 × 0.5 mm. For comparison the FA-maps and g-factor measurements were done with the 68 kg cadaver using 
8TX/16RX human cardiac array prototype.

In-vivo MR measurements.  The pig for an in-vivo measurement was anesthetized using isoflurane with additional 
fentanyl analgesia and artificially ventilated using an MR-compatible ventilator (Draeger, Germany). Ventilation 
parameters, heart rate, sPO2 and rectal temperature were monitored through whole session. The heart rhythm 
monitoring was performed using ECG (vendor integrated) and acoustic triggering system (ACT, MRI.Tools, 
Berlin, Germany) connected to the external triggering input. Outside of the scanner bore the ECG and ACT system 
show very close heart rate and duration of RR-interval (as measured by scanner system). Inside the bore the ECG 
signal was significantly distorted by magneto-hydrodynamic-effect and, thus, ACT system was used for the trigger-
ing of CINE acquisition. The measurement parameters of the GRE CINE pulse sequence were: TR/TE = 44/2.9 ms, 
FA = 35°, pixel resolution in-plane 0.6 mm × 0.6 mm, slice thickness 6 mm; 30 heart beating phases was retrospec-
tively reconstructed using 21, 14, 12, and 9 RR-cycles acquired with parallel imaging GRAPPA acceleration factors 
R = 2, 3, 4, and 6, respectively. The in-vivo measurement was performed using the optimal phase vector PV2.
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Artificial neural networks have become state of the art for image segmentation and 
are increasingly applied to the assessment of cardiac function based on MRI. Limited 
availability of annotated data due to data access, privacy issues, missing data 
harmonization, and data protection is one of the biggest obstacles to routine 
applications of neural networks in clinical routine.  

Primary aim of this study was to provide annotated, clinical data for cardiac 
cine segmentation as well as DL models, guidelines and easily accessible tools, 
enabling researchers and clinicians to apply DL based segmentation models in their 
respective research. Furthermore, we aimed to assess how much and which data 
is required to enable transfer learning on 7T cine data. 

We applied a publicly available segmentation model to create RV, LV, and 
blood pool labels for a publicly available data set. Data with accurate (Δ<15% 
compared to publicly available ESV and EDV) labels was used to train a neural 
network for LV segmentation, assessing influences of architectures, loss functions, 
and input data. The resulting network was used for transfer learning to the 
segmentation task on 7T cine data of healthy volunteers (n=22, 7874 images). 
Data requirements for transfer learning were assessed using structured and random 
subsets of input data for model training.  

Accurate labels were gained for 763 examinations (238350 images). Our 
initial model achieved DICELV=0.835 and DICEMY=0.670 on 7T cardiac cine images. 
Transfer learning using 7T cine data and ImageNet weight initialization significantly 
improved model performance (DICELV=0.900 and DICEMY=0.791). Using structured 
and random subsets we found that training could be reduced by 90%, with no 
negative impact on segmentation performance (DICELV=0.908, DICEMY=0.805). 
Key to maintaining model performance were end-systolic and end-diastolic images. 

Access to our labeled data, segmentation models, and all respective code 
will facilitate further application and research. We demonstrate that this data and 
methodology enable transfer learning approaches, such as 7T cine segmentation. 
Furthermore, we show that not all data has the same value with respect to 
supervised learning. In addition, this study demonstrates that we need to evaluate 
how existing models can be applied to individual research questions and how we 
decide on the adaptations required to successfully do so.  
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Abstract 

Background Artificial neural networks show promising performance in automatic 

segmentation of cardiac MRI. However, training requires large amounts of annotated data and 

generalization to different vendors, field strengths, sequence parameters, and pathologies is 

limited. Transfer learning addresses this challenge, but specific recommendations regarding 

type and amount of data required is lacking. In this study we assess data requirements for 

transfer learning to experimental cardiac MRI at 7T where the segmentation task can be 

challenging. In addition, we provide guidelines, tools, and annotated data to enable transfer 

learning approaches by other researchers and clinicians. 

Methods A publicly available segmentation model was used to annotate a publicly available 

data set. This labelled data set was subsequently used to train a neural network for segmentation 

of left ventricle and myocardium in cardiac cine MRI. The network is used as starting point for 

transfer learning to 7T cine data of healthy volunteers (n=22; 7873 images). Structured and 

random data subsets of different sizes were used to systematically assess data requirements for 

successful transfer learning. 

Results Inconsistencies in the publically available data set were corrected, labels created, and 

a neural network trained. On 7T cardiac cine images the initial model achieved DICELV=0.835 

and DICEMY=0.670. Transfer learning using 7T cine data and ImageNet weight initialization 

improved model performance to DICELV=0.900 and DICEMY=0.791. Using only end-systolic 

and end-diastolic images reduced training data by 90%, with no negative impact on 

segmentation performance (DICELV=0.908, DICEMY=0.805). 

Conclusions This work demonstrates and quantifies the benefits of transfer learning for cardiac 

cine image segmentation. We provide practical guidelines for researchers planning transfer 

learning projects in cardiac MRI and make data, models and code publicly available. 

Key words:  Deep learning, neural networks, cardiac magnetic resonance, ultrahigh-field, 

7T, cardiac function, segmentation, transfer learning
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1 

Background 

Image segmentation, which is of great interest in cardiac magnetic resonance imaging is applied 

to partition acquired images into functionally meaningful regions, allowing the extraction of 

quantitative static measures such as myocardial mass, left ventricle (LV) volume, right ventricle 

(RV) volume, and wall thickness, as well as dynamic measures such as wall motion and the 

ejection fraction (EF). Cardiac cine MRI is the accepted gold standard for this assessment of 

cardiac function1 and anatomy and is therefore of paramount clinical importance2,3. Proper 

segmentation of such data sets is a tedious and time-consuming process that has increasingly 

been tackled using various deep learning approaches4-7. 

Artificial neural networks have been shown to outperform other methods on several high profile 

image analysis benchmarks and, thus, so-called deep learning models have become state-of-

the-art for a wide variety of computer vision tasks. Multiple factors like the wide application 

area of deep learning, available compute power, and increasing investments as well as user-

friendly open source software have enabled a rapid development of the field of artificial 

intelligence. This led to ever increasing applications in medical imaging such as MRI8 where 

tasks nowadays range from data acquisition and image reconstruction9-11, image restoration12,13, 

to image registration14,15, segmentation16-19 as well as classification20,21 and outcome 

prediction22,23. 

There is consensus in the field that the limited availability of labelled or annotated data due to 

data access, privacy issues, missing data harmonization, and data protection is one of the main 

obstacles for future clinical applications of deep neural networks17,19,24. While some resources 

like the UK Biobank25 already exist to address this issue, the high quality standards and the 

amount of work required to organize and maintain such a resource makes data access expensive. 

In addition, such data may already exceed the quality that is available in clinical routine cardiac 

MRI. This leads to neural networks, which perform very well for a very specific task within a 

confined data space, where training and testing data share the same distribution. However, these 

networks usually lack generalization capabilities. While methods such as data augmentation, 

transfer learning, weakly-, self-supervised, and unsupervised learning have been applied to 

overcome the issue of small datasets in research, it is unclear how much data is really required 

in order to create a well-generalizing network or to apply transfer learning.  

In this work, we aim to enable researchers and clinicians in cardiology to apply deep learning- 

based segmentation models in their respective research by providing guidelines and easily 

accessible tools as well as annotated data for transfer learning. We create labels for a public 
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data set, the Data Science Bowl Cardiac Challenge Data26 (further referred to as Kaggle data 

set) which, at this point, does not have segmentation labels. We further create a base network 

for LV segmentation using these labels and evaluate its performance on 7T human cine data. In 

addition, we assess if transfer learning improves model performance for the 7T segmentation 

task and analyze how much and which data is required. The framework provided in this study 

in combination with access to scripts and the data used, will enable researchers to reproduce 

our results and apply deep learning based segmentation in their respective field.  

 

Methods 

The Kaggle Data Set 

As mentioned above, cardiac MRI is the gold standard for the assessment of cardiac function, 

a key indicator of cardiac disease. The 2015 Data Science Bowl challenged participants to 

create an algorithm for automatic assessment of end-systolic and end-diastolic volumes (ESV 

and EDV) and thus, ejection fraction, based on cardiac cine MRI. The data set consists of a 

training, a validation, and a test set and once the challenge has ended, all sets and their 

corresponding volume information (end-systolic and end-diastolic) was made available for 

research and academic pursuits, leading to a total of 1140 “annotated” cardiac MRI 

examinations of normal and abnormal cardiac function. Images are in DICOM format resolving 

up to 30 phases of the cardiac cycle. While we will focus on short axis images in this study, the 

Kaggle data set also contains alternative views. Examinations were done on 1.5 T and 3.0 T 

systems (Siemens Magnetom Aera and Skyra, Siemens Healthineers, Erlangen, Germany) with 

applications of both FLASH and TrueFISP sequences. An overview of the complete data set 

and its variation in patient data and sequence parameters is given in Table 1. 

 

Data Curation 

The complete data set is a compilation of real, clinical data from several sites and as such, 

subject to inconsistencies within individual examinations. Those can be a combination of: 

 missing time points 

 inconsistent slice spacing 

 inconsistent image dimension 

 repeat measurements (identical slice location) 

 scaled images 

 image rotations 
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Prior to the application of the published segmentation network of Bai et al.4 we performed data 

curation, correcting inconsistencies in all but 8 examinations. More detailed information and 

curated data can be found in the online repository (https://github.com/chfc-cmi/cmr-seg-tl, 

https://doi.org/10.5281/zenodo.3876351). 

  

Creating Labels 

Once the data was corrected for inconsistencies we ran the Python based segmentation model 

of Bai et al. for the complete data set, generating RV, LV, and blood pool labels as well as LV 

ESV and EDV volumes. ESV and EDV values were then compared to the ground truth values 

provided by Kaggle in order to determine the accuracy of the network prediction. Based on this 

comparison we created confidence sets where the predicted values were in the range of ±5% 

(p5), ±10% (p10), and ±15% (p15) of the true value. Respectively, these sets contained 175, 

520, and 763 examinations and 54540, 162480, and 238350 images. All scores (label versus 

ground truth) for ESV and EDV values are listed in the online repository.      

 

Hardware 

In order to deal with the extensive computation demands we used a custom workstation and a 

high performance cluster, both with graphical processing units. Details are given in the online 

repository. 

 

Framework - Deep neural network 

All implementations were realized using Pytorch27 and fastai28 V1. Training of neural networks 

(U-Net29 architectures with varying backbones: Restnet3430, ResNet5031, and VGG1632) was 

performed using fastai’s implementation of the one cycle policy33 with adjusted learning rates 

(lr) and the confidence sets p5, p10, and p15.  

 

Parameter Search 

During the parameter search, we evaluated the influence of different training parameters on the 

efficacy of the trained model. Training speeds of the varying models and their architectures is 

given in the online repository. Training with a weight-decay of 0.02 and a batch-size of 32 was 

done for 30 epochs with frozen weights (lr = 1e-4) and another 30 epochs with unfrozen weights  

(lr = 1e-5). Details regarding frozen and unfrozen weights are provided in the online repository. 

The smallest training set (p5) was used initially, image size was 256x256, and moderate data 
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augmentation transforms (s1: flip [none], rotation [20°], lighting [0.4], zoom [1.2], padding 

[zeros]) were applied.  

In order to avoid an extensive parameter grid search, we assessed parameter dependent 

performance changes in incremental steps. After each step, we determined the best-performing 

model using EF predictions and introduced subsequent parameter variations on this respective 

model.   

In the first step we evaluated the influence of the architecture (VGG16, ResNet34, ResNet50) 

compared to the fully convolutional Network by Bai et al4. trained on UKBB data (further 

referred to as UKBB model). Due to memory limitations, we had to reduce the batch size for 

training of the VGG16 and the ResNet50 models.  

In the second step, we assessed variations in the loss function such as cross-entropy (default), 

generalized DICE34, and focal loss. In the third and last step we evaluated the influence of the 

number of training images using the confidence sets p5, p10, and p15.  

We assessed the influence of training data resolution, training a model with lower input 

resolution (128x128, r34_CE_p5_128). Details are provided in the online repository.  

 

Data Augmentation 

Since transfer learning applications assessed in this study are based on 7T data we expect 

somewhat different image contrast and artefacts compared to conventional, clinical datasets. In 

addition, we intended to account for the heterogeneous training data, which led to the following 

set of augmentations for the initial networks (s1: flip [none], rotation [20°], lighting [0.4], zoom 

[1.2], padding [zeros]). Further, we aimed to introduce some robustness to forms of data 

variations, such as 90°-rotations and flips (left-right) using more extensive data augmentation 

(s2: flip [Left-Right], rotation [90°], lighting [0.4], zoom [1.2], padding [zeros]). In order to test 

the efficacy of these transforms we trained a new model (r34_CE_p5_s2) and compared EF 

predictions on a dataset including rotated and flipped images retained during the data curation 

process.  

 

Transfer Learning 

All assessments regarding transfer learning to 7T data are done using model: r34_CE_p5_s2. 

As initial point of comparison we used the UKBB model to create labels for 7T data, in order 

to assess generalization capability of a model, which was trained on a very homogeneous data 

set (UKBB). 
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Following approval of the local ethics committee (7/17-SC), n=22 (14 female, 8 male) were 

examined using a 7T whole body MRI system (Siemens MAGNETOM Terra, Erlangen, 

Germany) and a 1TX/16RX thorax coil (MRI Tools, Berlin, Germany)35. Written informed 

consent was obtained prior to all measurements. Patient age was 22-53 years, body weight 52-

95 kg, and height: 151-185cm. For triggering, both the integrated ECG and an external acoustic 

triggering system (MRI Tools, Berlin, Germany) were used in order to synchronize 

measurements with the heartbeat, choosing whichever method provided a more stable trigger 

signal during the examination. Images were obtained during initial sequence implementation 

and optimization for 7T cardiac MRI using a cardiovascular (CV) GRE cine-sequence and 

protocol parameters therefore vary to some degree. The parameters were: TE = 3.57ms, FOV 

= 340 mm x 320 mm, interpolated voxel size = 0.66 x 0.66 x 6 mm, GRAPPA acceleration 

factors: R = 2 and R = 3. Depending on the heart rate 6-11 segments and 20-35 cardiac phases 

were measured using retrospective gating. Short axis CINE stacks for volumetric evaluation 

varied in the number of slices (14-17) and multiple breath-holds (~13s) were necessary to 

acquire the whole stack. Images were assigned into training, validation and test sets (14, 5, 3 

subjects and 5076, 1842, 955 images, respectively). All images were manually segmented by 

an expert radiologist (TR). Three data sets of the test set were additionally segmented by an 

expert cardiologist (WS), in order to obtain an estimate of interobserver-variability.    

 

Starting Point for Model Training - 7T Human 

To assess the efficacy of transfer learning for LV segmentation based on clinical 1.5T and 3T 

data and experimental (human) 7T data, we compare models with varying degrees of training 

and transfer learning. Using a U-Net architecture with a ResNet34 backbone (r34_CE_p5_s2), 

we generated the following three models: 

1) initialization with random weights (R) 

2) initialization with ImageNet-weights – transfer learning 1 (TL) 

3) Model 2, pre-trained on Kaggle data - transfer learning 2  (TL2) 

All models were used to generate predictions for the 7T test set.  

Model performance was always evaluated using the Soerensen-DICE36 coefficient between 

predictions and respective ground truth labels. 
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Data Requirements for Model Training - 7T Human 

To assess how much and what data is required for convergence of a model we trained all models 

(R, TL, TL2) with subsets of the training data. These subsets were created in two ways:  

1) Complete subject data (all slices and all phases) from either 14, 7, 3, 1 subjects (5076, 

2626, 1001, 306 images, respectively); Partial subject data (only end-systolic and end-

diastolic images) from all subjects (448 images) 

2) Shuffle all images once, create a list of images (1-5076), and generate subsets 

corresponding to the respective image numbers from subset 1, always starting the count 

with image #1 

When training with subsets, the model is exposed to a smaller number of images in every epoch. 

We therefore increased the number of epochs for the subsets to correct for this effect.  

 

Results 

Framework - Deep neural network 

Parameter Search 

Results of the parameter search are illustrated in Figure 1, showing the absolute distance 

between the EF predictions based on model segmentation and ground truth data provided by 

Kaggle. Overall, the impact of parameter variation on model performance was small (3.64-

4.06% mean distance to ground truth EF).  

In a first approach to interpret these results, we compared varying architectures, such as 

ResNet34, ResNet50, and VGG16 with the UKBB model (Figure 1A). All models led to lower 

mean and median distance values compared to the UKBB model (table 2). The lowest median 

distance values were found using a ResNet50 (2.79%), while the lowest mean distance values 

were found using a ResNet34 (3.64%). Differences in the absolute distance between the models 

(r34, r50) were rather small (Δ0.08%), however. Considering computational demand, we 

selected the ResNet34. 

In the next step of the parameter search we evaluated model performance using varying loss 

functions, namely cross-entropy, generalized DICE, and focal loss (Figure 1B). Using the 

generalized DICE score led to the highest mean (3.93%) and median (3.07%) distance values. 

Median distance values were similar for cross-entropy and focal loss (2.87% vs 2.86%), while 

the mean distance value was lowest using cross-entropy (3.64%).  
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We thus selected cross-entropy for the next step of the parameter search, where we evaluated 

model performance using varying confidence sets: 5%, 10%, 15% (Figure 1C). Using the 

various confidence sets only slightly affected median distance values (2.87%, 2.89%, 2.91%). 

Based on EF predictions the model: r34_CE_p5_s1 performed best achieving a mean distance 

value of 3.64%. 

 

Data Augmentation 

Figure 2shows the performance of our models on the image set containing rotated images, plus 

the performance of an additional model where data augmentation allowed left-right flips, as 

well as rotations of up to 90°. Median and mean absolute distance values were lowest (3.06%, 

4.08%) using the model with extended data augmentation (r34_CE_p5_s2).   

 

Transfer Learning 

Exemplary cine images from the Kaggle and the 7T cine data set as well as respective data 

augmentation are shown in Figure 3A and 3B. While the Kaggle data set includes images with 

varying field of views and resolution, the 7T data is consistent.  

Figure 4 presents the inter-observer variability as difference of LV volume within each image 

in ml for all slices and phases of the 7T human cine test set (n=3). The slice count starts with 0 

at the most apical slice and moves towards the most basal slice with increasing slice number. 

Overall expert 2 achieved DICELV = 0.94 and DICEMY = 0.81 and deviations in LV volume of 

individual images were lower than ±5 ml in all but one image (set 3, slice 12, phase 4). 

Compared to expert 1, who labelled our training data, and expert 2 the AI model achieved 

DICELV = 0.90, DICEMY = 0.79 as well as DICELV = 0.91, DICEMY = 0.81. Deviations in LV 

volume of individual images were smaller than 5 ml in >95% of the cases. Exemplary 

predictions of the AI and deviations to expert 1 are shown in Figure 5. All apical slices labelled 

by the AI were in excellent agreement with that of our experts. The largest deviations between 

AI and both experts was found for the very basal slice where myocardial tissue moves in and 

out of plane throughout the cardiac cycle. 

 

Starting Point for Model Training 

Results of model training using varying degrees of transfer learning are displayed in Figure 6. 

Plotted are the DICE scores for the left ventricle and the myocardium in dependence of the 

number of images seen during training, showing performance and overall convergence for the 
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three models analyzed. All curves have been smoothed to increase interpretability. Respective 

plots of the raw data are shown in the online repository.  

Starting with the full data set, there are clear differences in starting points (DICE after first 

epoch), convergence speed, and peak performance (highest performance reached) for the three 

models.  

R: Random weight initialization followed by training using 7T data led to the: 

 lowest starting points with DICELV ~ 0.57 and DICEMY ~ 0.25 

 lowest convergence speed, reaching plateau values after 100.000 images 

 lowest peak performance with DICELV ~ 0.89 and DICEMY ~0.77 

TL: ImageNet weight initialization followed by training using 7T data led to the: 

 starting points of DICELV ~ 0.77 and DICEMY ~ 0.51 

 higher convergence speed, reaching plateau values after 50.000-60.000 images 

 higher peak performance with DICELV: 0.91 and DICEMY: 0.79 

TL2: ImageNet weight initialization, pre-trained (Kaggle data), re-trained 7T data led to the: 

 highest starting points with DICELV ~ 0.90 and DICEMY ~ 0.78 

 higher convergence speed, reaching plateau values after 40.000-50.000 images 

 higher peak performance with DICELV: 0.92 and DICEMY: 0.81 

 

Data Requirements for Model Training 

Results of model training using varying degrees of transfer learning and a smaller amount of 

training data are displayed in Figure 6 as well. The full training data set consists of 14 

volunteers, while the subsets consist of 7, 3, and 1 volunteer. For the most part, curves follow 

the trend described for the full data set, while each reduction in volunteers led to lower starting 

points. Peak performances remain similar with a reduction to 7 volunteers, but drop using subset 

n3, in particular for models R and TL. Only for a very small number of training images (n1) 

peak performances are higher for model R (DICELV: 0.86; DICEMY: 0.72) compared to TL 

(DICELV: 0.83; DICEMY: 0.70).  

For small subsets, such as n3 and n1, starting points as well as peak performances of all models 

is higher using the random selection of training images instead of all images from a set (3/1) of 

volunteers. The same trend is shown for the set n7 using models R and TL.  

Using only end-systolic and end-diastolic images led to similar convergence speed and peak 

performance regarding DICE scores compared to the full data set (RLV,MY: 0.90, 0.77; TLLV,MY: 

0.90, 0.78; TL2
LV,MY: 0.92, 0.81 versus RLV,MY: 0.89, 0.77; TL LV,MY: 0.91, 0.79; TL2

 LV,MY: 
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0.92, 0.81). In addition, the selection of end-systolic and end-diastolic images led to increased 

DICE-scores as starting points, fast convergence, and higher peak performance for all models, 

when compared to the same number of randomly selected images.  

 

Discussion 

In this study, we successfully used a specialized, publicly available model4 to produce labels 

for a public data set of clinical 1.5 and 3T cardiac cine MRI, enabling access to more annotated 

data. Based on these labels we created a basic AI model, other researchers can use for their 

individual segmentation tasks. In addition, we applied transfer learning to segmentation of 7T 

human cine data, demonstrating that models based on these labels and a moderate amount of 

new domain data enable state-of-the-art segmentation results.  

One of the obstacles to get started in deep learning based segmentation is the large amount of 

annotated data required to train an initial model. In this study we circumvent this problem by 

using the public Kaggle data set, to which we provide labels. The quality of these labels was 

evaluated using the volume information (end-systolic and end-diastolic volumes) included in 

the original Kaggle data set. Therefore, careful data curation had to be applied to avoid data 

inconsistencies (slice spacing, changes in image dimensions and image resolution, as well as 

missing slices) within individual patients. In addition, we found that label quality was connected 

to image orientation and image resolution. Scores (mean distance between labels and Kaggle 

“ground truth”), data curation scripts, as well as labels are provided in the online repository, 

enabling future use in other studies. We want to point out that label quality and accuracy was 

assessed via comparison to volume information only, with rare exceptions of visual 

confirmation. Thresholds of 5%, 10%, and 15% (deviation to the “ground truth”) for the subsets 

used in this study were chosen arbitrarily. With 54540, 162480, and 239350 images 

respectively, we assumed these three sets to provide the reasonable compromise between label 

accuracy and label quantity needed to assess data requirements in this specific transfer learning 

application.  

Based on the now annotated data we trained initial segmentation models with varying 

architectures (ResNet34, ResNet50, VGG16), varying loss functions (cross-entropy, 

generalized DICE, focal loss), varying training sets (p5, p10, p15). The final model we selected 

was a ResNet34, using cross-entropy as a loss function, and the p5 set for training with an image 

resolution of 256x256. While we selected this model based on performance (mean distance to 
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ground truth EF), overall impacts of parameter variations (3.64-4.06% mean distance to ground 

truth EF) were rather small. Similar to the use in this study, researchers or clinicians can use 

this model as a starting point for their respective transfer learning applications.  

Considering the performance of this model on 7T human cine data (DICELV: 0.84, DICEMY: 

0.67), generalization capability appears limited. This is also true for the UKBB model (7T 

human cine, DICELV: 0.67, DICEMY: 0.52). As the authors4 point out, the UKBB model was 

“trained on a single data set, the UK Biobank dataset, which is a relatively homogenous dataset” 

and might therefore “not generalize well to other vendor or sequence datasets”. With respect to 

the performance on 7T data this just means that, compared to the UKBB dataset, the Kaggle 

data set contains image patterns and characteristics more similar to the 7T data we acquired. In 

addition, it emphasizes why improvements in generalization37-39 are needed and why we applied 

an additional step of transfer learning to 7T data.  

Due to differences in training data our initial models based on UKBB labels outperformed the 

UKBB model on the Kaggle data. While the UKBB model was trained on the homogeneous 

UKBB data, our models were trained on the heterogeneous Kaggle data itself. In addition, we 

applied data augmentation with respect to rotations and contrast and used only Kaggle data with 

the most accurate (top 15%) labels.         

While multiple studies4,5,26,40 have demonstrated great image segmentation results for one 

specific dataset, these models have not been tested on other datasets or initially lack 

generalization capability. In this study, we show that transfer learning leads to improved model 

performance. DICE scores achieved on 7T human cine data prior to and after transfer learning 

were DICELV: 0.84, DICEMY: 0.67 and DICELV: 0.92, DICEMY: 0.81, respectively. This was 

comparable to human inter-observer variability (DICELV: 0.94 and DICEMY: 0.81) and is within 

the range of state-of-the-art results, despite the relatively small set of training data19. In addition, 

inter-observer-variability in EDV (3.5%) and ESV (10.5%) between our model and the expert 

radiologist are in good agreement with literature reports (EDV: 2.5-5.3%, ESV: 6.8-13.9%)41 

based on SSFP CMR imaging. 

Typically, segmentation of the left ventricle is done to evaluate ejection fraction, a clinically 

used parameter. In this study we show that the model based volume prediction on the test set is 

very accurate for apical, mid-cavity and basal slices, with the exception of the most basal slice, 

where myocardial tissue moves in and out of plane throughout the cardiac cycle. Since we do 

not have a “ground-truth” segmentation for the Kaggle data and no information on labelling 

protocols, we do not know if there is any consistency in the definition of basal slices or the 

inclusion or exclusion of papillary muscle.  
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While transfer learning allows models to adapt to similar tasks and new datasets, containing 

new characteristics and patterns, this step also requires new labels. This aspect is often a 

limitation, since labelled medical data is difficult to acquire, particularly in areas that require 

domain-specific knowledge. In addition, the manual labelling process for high quality 

segmentations itself is often tedious and labor intensive. In this study we show that transfer 

learning applications (ImageNet weights to Kaggle data to 7T data) for cardiac cine 

segmentation of human 7T data can provide state-of-the-art results when training with labelled 

data from 7-14 volunteers (2626 – 5076 images), reaching DICELV: 0.92 and DICEMY: 0.81 as 

well as accurate EF values. Having labels for three volunteers (1001 images) leads to decent 

results (DICELV: 0.91 and DICEMY: 0.80). We consider labels for only one volunteer to be 

insufficient (DICELV: 0.88 and DICEMY: 0.77).  

For small training datasets (n≤1001) we show that a random selection of images from multiple 

volunteers leads to better performance compared to the selection of all images from a smaller 

number of volunteers (n=3 or n=1, figure 6). Generalization capabilities of a model increase 

with the amount of variation provided in the training data and thus using data from a multitude 

of patients or volunteers, where morphology and therefore image content and contrast differ, 

may be more beneficial than providing the same number of more coherent images from a small 

number of volunteers. Furthermore we demonstrate that the number of required images can 

drastically be reduced (from 5076 to 448 images), using labelled data from specific heart 

phases, end-diastolic and end-systolic, instead of all images. This may be possible, because 

knowing the two extreme states of contraction the model can deal more easily with intermediate 

states. Considering that n=448 images (roughly two cardiac EF examinations) enable close to 

state-of-the-art results for cardiac cine segmentation, data requirements for transfer learning 

applications in closely related tasks are low. In addition, labels for end-diastolic and end-

systolic images are created in routine clinical cardiac examinations and thus easily accessible. 

In summary, how much and which kind of data should be included in the transfer learning 

process should be carefully considered prior to labelling new data. In particular, the notion to 

provide data patient by patient may result in higher data requirements than necessary. There are 

various other routine cardiac MR examinations such as T2, T1, LGE, and even T2
* that require 

segmentation38,39,42. Transfer learning applications to image segmentation of such varying 

contrasts may benefit from the amount of annotated data and the framework provided in this 

study. 

With respect to future use of this annotated data we recommend researchers take the following 

steps: 
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1) use the pre-trained model we provide (r34_CE_p5_s2) 

2) re-train with training data from the new domain and tune hyper parameters using 

validation data from the new domain  

3) evaluate model performance on a test set from the new domain 

In this study, we used only the 5-15% of the most accurate kaggle labels to create our base 

models. Thus, researchers attempting to train their own base network using the labelled Kaggle 

data should always assess label quality.   

The experimental 7T data used in this study is not comparable to clinical cardiac MRI in 

patients. Future performances on clinical data should be evaluated against the Kaggle dataset. 

There are some limitations connected to the use of the Kaggle dataset. While there are variations 

in measurement parameters, such as resolution, FOV, matrix size, TE, TR, bandwidth, and slice 

thickness, most examinations (~90%) were done at 1.5T. In addition, all data was acquired 

using Siemens whole body MRI systems. Models trained using this dataset might thus not 

generalize well to other vendor datasets, requiring transfer learning as demonstrated in this 

study.   

Since no disease-related information is provided in the Kaggle dataset, we have no knowledge 

which and how many pathological patterns are currently represented in the dataset. In this study 

we demonstrate that transfer learning to 7T data of healthy human volunteers enables DICE 

scores of DICELV: 0.92 and DICEMY: 0.81. A clinical application would require a performance 

assessment or transfer learning for specific cardiac pathologies, both beyond the scope of this 

cardiology-related methodological work. 

Furthermore, the accuracy of the labels we created was assessed based on comparison to 

provided volume information only and visual confirmation of the contours may be biased, 

because we do not know if the provided volume information is based on consistent definitions 

of basal slices or the inclusion or exclusion of papillary muscle. This should be considered when 

creating models based on this dataset. In general, there is a need for a standard benchmark 

dataset, where labels are based on standardized protocols and images are representations of 

diverse clinical phenotypes (diseases, vendors, field strengths, sequences, protocols). 
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Conclusions 

In this study, we provide access to annotated cardiac cine MRI data, and AI models, which can 

be used as a starting point for transfer learning applications. Using such a base model, we 

demonstrate that transfer learning from clinical 1.5 and 3T cine data to 7T cine data is feasible 

with moderate data requirements, enabling future applications to other cardiac MRI 

examinations such as T2, T1, LGE, and even T2
*. Furthermore, we show that not all data has the 

same value with respect to transfer learning approaches and that careful selection of the training 

data may drastically reduce data requirements.   

 

Declarations 

Ethics approval and consent to participate 

Ethics approval of the local ethics committee at the University Hospital Würzburg has been 

granted under reference number 7/17-SC. 

 

Consent for publication 

All human volunteers gave their consent for publication using our institutional consent form. 

 

Availability of data and materials 

The datasets supporting the conclusions of this article are available in the zenodo repository, 

https://doi.org/10.5281/zenodo.3876350 and source code is available in GitHub and zenodo 

https://github.com/chfc-cmi/cmr-seg-tl, https://doi.org/10.5281/zenodo.3894647. The raw 7T 

images are not publicly available due to data privacy regulations. 

 

Competing interests 

The Department of TW (Department of Diagnostic and Interventional Radiology, University 

Hospital, Wuerzburg, Germany) revceives a research grant from Siemens Healthcare GmbH. 

 

 

 

105



14 

 

Funding 

This work was supported by the German Ministry of Education and Research (grant number, 

01EO1504). The funding body took no role in the design of the study, collection, analysis, and 

interpretation of data and in writing the manuscript. 

 

Authors' contributions 

DL, MJA, LMS & TW designed the study. MJA, DL & TW developed the computational 

methods. DL, WS and TR collected the data. MJA and DL analyzed and interpreted the data. 

DL wrote the initial draft of the manuscript. All authors read and approved the final manuscript. 

 

Acknowledgements 

We thank Andreas Hotho for insightful discussions. 

 

List of abbreviations 

LV  left ventricle 

RV  right ventricle 

EF  ejection fraction 

ESV  end-systolic volume 

EDV  end-diastolic volume 

lr  learning rate 

UKBB  UK Biobank 

  

106



15 

 

References 

1. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ. Breath-hold FLASH and FISP cardiovascular 

MR imaging: left ventricular volume differences and reproducibility. Radiology. Jun 2002;223(3):789-

797. 

2. Curtis JP, Sokol SI, Wang Y, et al. The association of left ventricular ejection fraction, mortality, and 

cause of death in stable outpatients with heart failure. J Am Coll Cardiol. Aug 20 2003;42(4):736-742. 

3. Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S. The role of cardiovascular 

magnetic resonance imaging in heart failure. J Am Coll Cardiol. Oct 6 2009;54(15):1407-1424. 

4. Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with 

fully convolutional networks. Journal of cardiovascular magnetic resonance : official journal of the 

Society for Cardiovascular Magnetic Resonance. Sep 14 2018;20(1):65. 

5. Baumgartner CF, Koch LM, Pollefeys M, Konukoglu E. An Exploration of 2D and 3D Deep Learning 

Techniques for Cardiac MR Image Segmentation. arXiv e-prints. 2017. 

https://ui.adsabs.harvard.edu/abs/2017arXiv170904496B. Accessed September 01, 2017. 

6. Jang Y, Hong Y, ha S, Kim S, Chang H-J. Automatic Segmentation of LV and RV in Cardiac MRI. 

2018:161-169. 

7. Tran PV. A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI. arXiv 

e-prints. 2016. https://ui.adsabs.harvard.edu/abs/2016arXiv160400494T. Accessed April 01, 2016. 

8. Liu J, Pan Y, Li M, et al. Applications of deep learning to MRI images: A survey. Big Data Mining and 

Analytics. 2018;1(1):1-18. 

9. Chen F, Taviani V, Malkiel I, et al. Variable-Density Single-Shot Fast Spin-Echo MRI with Deep 

Learning Reconstruction by Using Variational Networks. Radiology. Nov 2018;289(2):366-373. 

10. Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A Deep Cascade of Convolutional Neural 

Networks for Dynamic MR Image Reconstruction. IEEE transactions on medical imaging. Feb 

2018;37(2):491-503. 

11. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold 

learning. Nature. 2018/03/01 2018;555(7697):487-492. 

12. Benou A, Veksler R, Friedman A, Riklin Raviv T. Ensemble of expert deep neural networks for spatio-

temporal denoising of contrast-enhanced MRI sequences. Med Image Anal. Dec 2017;42:145-159. 

13. Bermudez C, Plassard AJ, Davis TL, Newton AT, Resnick SM, Landman BA. Learning Implicit Brain 

MRI Manifolds with Deep Learning. Proceedings of SPIE--the International Society for Optical 

Engineering. Mar 2018;10574. 

14. de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Isgum I. A Deep Learning 

Framework for Unsupervised Affine and Deformable Image Registration. arXiv e-prints. 2018. 

https://ui.adsabs.harvard.edu/abs/2018arXiv180906130D. Accessed September 01, 2018. 

15. Wu G, Kim M, Wang Q, Munsell BC, Shen D. Scalable High-Performance Image Registration 

Framework by Unsupervised Deep Feature Representations Learning. IEEE transactions on bio-

medical engineering. Jul 2016;63(7):1505-1516. 

16. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for Brain MRI 

Segmentation: State of the Art and Future Directions. Journal of Digital Imaging. 2017/08/01 

2017;30(4):449-459. 

17. Hesamian MH, Jia W, He X, Kennedy P. Deep Learning Techniques for Medical Image Segmentation: 

Achievements and Challenges. Journal of Digital Imaging. 2019/08/01 2019;32(4):582-596. 

18. Ruijsink B, Puyol-Antón E, Oksuz I, et al. Fully Automated, Quality-Controlled Cardiac Analysis From 

CMR: Validation and Large-Scale Application to Characterize Cardiac Function. JACC: 

Cardiovascular Imaging. 2019/07/17/ 2019. 

19. Chen C, Qin C, Qiu H, et al. Deep learning for cardiac image segmentation: A review. arXiv e-prints. 

2019. https://ui.adsabs.harvard.edu/abs/2019arXiv191103723C. Accessed November 01, 2019. 

20. Liu F, Shen C. Learning Deep Convolutional Features for MRI Based Alzheimer's Disease 

Classification. arXiv e-prints. 2014. https://ui.adsabs.harvard.edu/abs/2014arXiv1404.3366L. Accessed 

April 01, 2014. 

21. Pinaya WHL, Gadelha A, Doyle OM, et al. Using deep belief network modelling to characterize 

differences in brain morphometry in schizophrenia. Scientific Reports. 2016/12/12 2016;6(1):38897. 

22. Bello GA, Dawes TJW, Duan J, et al. Deep-learning cardiac motion analysis for human survival 

prediction. Nature Machine Intelligence. 2019/02/01 2019;1(2):95-104. 

107



16 

 

23. Dawes TJW, de Marvao A, Shi W, et al. Machine Learning of Three-dimensional Right Ventricular 

Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. 

Radiology. May 2017;283(2):381-390. 

24. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. 

Zeitschrift für Medizinische Physik. 2019/05/01/ 2019;29(2):102-127. 

25. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: An Open Access Resource for Identifying the 

Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLOS Medicine. 

2015;12(3):e1001779. 

26. Data Science Bowl Cardiac Challenge Data 2016. https://www.kaggle.com/c/second-annual-data-

science-bowl/data. Accessed 29th of July 2019. 

27. Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning 

Library. arXiv e-prints. 2019:arXiv:1912.01703. 

https://ui.adsabs.harvard.edu/abs/2019arXiv191201703P. Accessed December 01, 2019. 

28. Howard J, Gugger S. Fastai: A Layered API for Deep Learning. Information. 2020;11(2):108. 

29. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image 

Segmentation. arXiv e-prints. 2015:arXiv:1505.04597. 

https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R. Accessed May 01, 2015. 

30. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv e-prints. 

2015:arXiv:1512.03385. https://ui.adsabs.harvard.edu/abs/2015arXiv151203385H. Accessed December 

01, 2015. 

31. Abbasi-Sureshjani S, Amirrajab S, Lorenz C, Weese J, Pluim J, Breeuwer M. 4D Semantic Cardiac 

Magnetic Resonance Image Synthesis on XCAT Anatomical Model. arXiv e-prints. 2020. 

https://ui.adsabs.harvard.edu/abs/2020arXiv200207089A. Accessed February 01, 2020. 

32. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 

arXiv e-prints. 2014:arXiv:1409.1556. https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S. 

Accessed September 01, 2014. 

33. Smith LN. A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch 

size, momentum, and weight decay. arXiv e-prints. 2018:arXiv:1803.09820. 

https://ui.adsabs.harvard.edu/abs/2018arXiv180309820S. Accessed March 01, 2018. 

34. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised Dice Overlap as a Deep 

Learning Loss Function for Highly Unbalanced Segmentations. 2017; Cham. 

35. Lohr D, Terekhov M, Kosmala A, Stefanescu MR, Hock M, Schreiber LM. Cardiac MRI with the 

Siemens Terra 7T System: Initial Experience and Optimization of Default Protocols. Paper presented at: 

Proc. of the 26th Annual Meeting of ISMRM; April, 2018; Paris, France. 

36. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. Morphometric analysis of white matter lesions 

in MR images: method and validation. IEEE transactions on medical imaging. 1994;13(4):716-724. 

37. Feng X, Yang J, Laine AF, Angelini ED. Discriminative Localization in CNNs for Weakly-Supervised 

Segmentation of Pulmonary Nodules. arXiv e-prints. 2017:arXiv:1707.01086. 

https://ui.adsabs.harvard.edu/abs/2017arXiv170701086F. Accessed July 01, 2017. 

38. Chen J, Li H, Zhang J, Menze B. Adversarial Convolutional Networks with Weak Domain-Transfer for 

Multi-Sequence Cardiac MR Images Segmentation. arXiv e-prints. 2019. 

https://ui.adsabs.harvard.edu/abs/2019arXiv190809298C. Accessed August 01, 2019. 

39. Wang J, Huang H, Chen C, Ma W, Huang Y, Ding X. Multi-sequence Cardiac MR Segmentation with 

Adversarial Domain Adaptation Network. arXiv e-prints. 2019. 

https://ui.adsabs.harvard.edu/abs/2019arXiv191012514W. Accessed October 01, 2019. 

40. Tran PV. A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI. arXiv 

e-prints. 2016:arXiv:1604.00494. https://ui.adsabs.harvard.edu/abs/2016arXiv160400494T. Accessed 

April 01, 2016. 

41. Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJM, Helbing WA. Intra-

observer and interobserver variability of biventricular function, volumes and mass in patients with 

congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging. 2010;26(1):57-64. 

42. Vesal S, Ravikumar N, Maier A. Automated Multi-sequence Cardiac MRI Segmentation Using 

Supervised Domain Adaptation. arXiv e-prints. 2019. 

https://ui.adsabs.harvard.edu/abs/2019arXiv190807726V. Accessed August 01, 2019. 
 
 

108



17 

 

Table 1: Data Composition and measurement parameters of the Kaggle data 

Metric Count 

Male 670 

Female 470 

Age: 0-17 [years] 202 

Age: 18 – 30 [years] 173 

Age: 31-50 [years] 298 

Age: 51+ [years] 467 

Max Age [years]  88 

Min Age [years] 0.04 

  

1.5 T 1025 

3.0 T 115 

  

Metric Range 

Echo Time [ms] 1.04 - 1.54 

Repetition Time [ms] 14 - 54.72 

Bandwidth [Hz/Pixel] 915 - 1235 

Slice Thickness [mm] 5 - 8 

Matrix Size  120-608 x 160-736 

Resolution [mm] 0.59 - 1.95 

Phases 112 - 416 
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Table 2: Summary statistics of absolute deviation of predicted and true EF in % for the 

parameter search. Sorted from lowest to highest mean value. Models are named by 

architecture (ResNet34: r34, ResNet50: r50, VGG16: v16), loss function (cross entropy: CE, 

focal, DICE), confidence set (p5, p10, p15), and data augmentation (s1, s2).   

Model Mean Sd Median Iqr 

r34_CE_p5_ s1 3.64 3.38 2.87 3.72 

r50_CE_p5_s1 3.71 3.73 2.79 3.70 

r34_CE_p15_s1 3.73 3.38 2.91 3.72 

r34_focal_p5_s1 3.75 3.90 2.86 3.80 

r34_CE_p10_s1 3.77 4.44 2.89 3.76 

r34_DICE_p5_s1 3.93 3.43 3.07 3.91 

v16_CE_p5_s1 4.06 4.94 3.02 3.87 

UKBB 5.42 8.83 3.72 4.34 

 

 

  

110



19 

 

 

Figure 1: Model evaluation during incremental parameter search. Plots show the absolute 

distance between the EF prediction based on model segmentation and ground truth data 

provided by Kaggle. The range of the y-axis is restricted for better comparability, dashed lines 

indicates lowest median. Model performance with A: Architectures (r34: ResNet34, r50: 

ResNet50, VGG16: v16, UKBB). B: Loss functions (Cross-entropy: CE, DICE, focal loss). C: 

Confidence sets (p5: 5%, p10: 10%, p15: 15%).  
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Figure 2: Model evaluation based on data including rotated images. Plots show the absolute 

distance between the EF predictions based on model segmentation and ground truth data 

provided by Kaggle for all models of the parameter search, plus one model trained with 

extended data augmentation (s2). Models are named by architecture (ResNet34: r34, ResNet50: 

r50, VGG16: v16), loss function (cross entropy: CE, focal, DICE), confidence set (p5, p10, 

p15), and data augmentation (s1: standard data augmentation, s2: extended data augmentation, 

enabling LR-flips and rotations up to 90°). 
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Figure 3: Exemplary cine images and respective data augmentation. Random selection of 

five images (top) with five data augmentation examples (bottom) for the first image of the 

random selection. A: Kaggle data. B: 7T human cine data.  
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Figure 4: Inter-observer variability. Difference in LV volume in [ml] for all slices and 

phases of the 7T cine images of the test set. The slice count starts with 0 at the most apical 

slice and moves towards the most basal slice with increasing slice number. Top: Inter-

observer variability of the two experts. Middle: Inter-observer variability expert 1 (labelled 

training data as well) versus AI. Bottom: Inter-observer variability expert 2 versus AI. 
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Figure 5: Predictions of TL2 on the 7T human test set. Examples of mid-cavity segmentation 

results with high (top), intermediate (middle) and low (bottom) DICE scores. Images (left), with 

predicted classes (middle, background: purple, LV: blue, MY: yellow) and differences to the 

ground truth (right, LV-error: blue, MY-error: yellow). 
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Figure 6: Training evaluation based on the validation set. DICE scores of the left ventricle 

and the myocardium in 7T human cardiac cine images normalized for the number of images 

seen. Varying degrees of transfer learning (R: ResNet34 initialized with random weights and 

trained using 7T cine images, TL: ResNet34 initialized with ImageNet weights and trained 

using 7T cine images, TL2: ResNet34 initialized with ImageNet weights, pre-trained on the 

1.5T and 3T Kaggle cine images and re-trained on 7T cine images) are shown for the two 

subsets 1 (line): subset of whole volunteers (full=14, 7, 3, 1), 2 (dotted line): subset of random 

images with image numbers corresponding to first subset. In addition, there is one model 

(“esed”) trained using only end-systolic and end-diastolic images from all volunteers and a 

corresponding model trained with a number of random images equivalent to the “esed”-set. 
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3.7 Exploring ensemble applications for multi-sequence 
myocardial pathology segmentation 

〉 Published in Lecture Notes in Computer Science 202075 

The copyright holder for publication is Springer Nature Switzerland AG and the 
relevant copyright notice is provided with the final authenticated version. 

The final authenticated publication is available online at 
https://doi.org/10.1007/978-3-030-65651-5_6 

〉 Retained author rights (consent to publish) are attached in the appendix 

These citations64,65,70-72,281-292 have been applied in this publication. 

As indicated on page 7, this paper was published as part of the challenge for 
myocardial pathology segmentation (MyoPS 202063), which was hosted in 
conjunction with the conferences STACOM and MICCAI. 

In order to facilitate discussion, reproducibility and reuse we made all required code 
openly available.    

Code: 
github.com/chfc-cmi/miccai2020-myops 
doi.org/10.5281/zenodo.3982324 

Models: 
doi.org/10.5281/zenodo.3985837 
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Next to automatic segmentation for the MR based assessment of cardiac function, 
DL is increasingly applied to segment pathologic alterations such as scar and 
edema. These segmentations enable determination of myocardial salvage and 
viability, which is essential in the diagnosis and treatment management for patients 
with MI.  

Primary aim of this study was the development of a DL model for myocardial 
pathology segmentation, such as scar and edema, based on multi-sequence data. 
Furthermore, we aimed to determine whether models based on multi-sequence 
data or individual sequences (LGE for scar tissue) performed better.  

Only data provided in the context of the MyoPS 2020 challenge was used. 
All images were co-registered with the same image resolution by the organizers. 
Data contained cine, LGE, and T2-weighted images for a total of 45 patients and 
respective labels for LV blood pool, RV blood pool, LV healthy myocardium, LV 
myocardial edema, and LV myocardial scar. After an initial assessment of data 
preprocessing (contrast enhancement, cropping, and resizing), we trained and 
evaluated multi-channel-multi-class models versus pathology specific models using 
various loss functions. Data augmentation (rotation, brightness, contrast, artifacts, 
noise) was applied to improve model training. Well performing models were 
combined into a bagging ensemble approach. 

For pre-processing only cropping improved model performance. During 
model training, cross entropy based model training yielded the highest performance 
for non-pathologic classes (DiceRV: 0.783, DiceLV: 0.855, DiceMy: 0.696). Highest 
mean performance on both pathology classes (Dicescar+edema: 0.345) was achieved 
using a multi-channel-multi-class model (class weights: 0.35). Two model 
submissions were allowed and evaluation of Dice scores on the test set was 
performed by the organizers. Our multi-channel-multi-class model with class 
weights of 0.35 achieved Dicescar: 0.593±0.232 and Dicescar+edema: 0.611±0.111 and 
the bagging ensemble approach Dicescar: 0.620±0.240 and Dicescar+edema: 
0.665±0.137.  

In this study we demonstrate that multi-sequence input data enables model 
performances similar to pathology specific input data and that a bagging ensemble 
can drastically improve multi-sequence-multi-class segmentation. Both submitted 
models achieved higher Dice scores than were reported for inter-observer variability 
(Dicescar: 0.524±0.158). 
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Abstract. We tested different loss functions and hyper-parameters using a 2D U-

Net architecture (resnet34 backbone) with five-fold cross-validation on the train-

ing data. Pathology specific sequence data (e.g. LGE for scar and T2 for edema) 

was used as a sole input for training and in combination with all sequences. We 

wanted to address the question whether for limited training data it is beneficial to 

incorporate prior knowledge by predicting classes with their appropriate se-

quence or if a neural network is able to infer these relationships from a multi-

sequence dataset. In addition, we aimed to create a model zoo, combining pre-

dictions from models with high performance on individual classes. Images were 

cropped to the central 256x256 region as this contained the region of interest in 

all cases. To improve robustness and learn more general features extensive data 

augmentation was used, including both MR artifacts (motion, noise) and standard 

image transformations (zoom, rotation, brightness, contrast). Variations of train-

ing data, loss functions and hyper-parameters led to 21 models trained. The multi-

sequence model was trained using all image sequences input via color channels 

producing pixel-level segmentation for all six classes (background, left ventricle, 

right ventricle, myocardium, edema, and scar). Cross-entropy as a loss function 

performed best (metric: dice) for non-pathologic tissue, while pathology 

weighted focal-loss (0.35 for both scar and edema) had best mean performance 

on scar and edema.  

These results indicate that the employed neural networks are capable of learn-

ing multi-sequence segmentation end-to-end. Combining different outputs from 

a model zoo further improved segmentation performance. 

Keywords: Deep Learning, U-Net, Ensemble, Segmentation, Cardiac MRI 

1 Introduction 

1.1 Background 

Cardiac magnetic resonance (CMR) imaging applies methods to investigate cardiac 

function and pathologies non-invasively. Different measurement sequences are used to 

produce images with different contrast, enabling diagnosis of varying pathologic tissue 
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alterations. It is common practice to segment the left ventricle and the myocardium to 

assess clinically relevant parameters like ejection fraction, stroke volume and myocar-

dial mass as well as wall motion. Scar volume, as a result of acute myocardial infarc-

tion, has significant prognostic value for outcome prediction and treatment, thus, in-

creasing the importance of accurate pathology segmentation. In clinical practice, such 

segmentations are commonly done semi-automatically. Fully automatic segmentation 

algorithms have been proposed using different methods, including artificial neural net-

works [1, 2]. However, these networks are usually trained on a single sequence and a 

subset of tissue/pathology classes. For the prediction of multiple pathologic tissue al-

terations in parallel, it might be beneficial to train segmentation networks, which com-

bine information from multiple sequences.  

1.2 Related work 

Neural networks, particularly convolutional neural networks and U-Nets [3] have been 

used for segmentation of cardiac magnetic resonance images [1, 4]. Beside healthy tis-

sue also pathological classes like left ventricular scar [5] or left atrial scar have been 

addressed [6, 7]. However, the simultaneous use of multiple sequences and multiple 

classes presents a new set of challenges. 

2 Experiments 

In the MyoPS 2020 challenge, three different sequences (bSSFP, LGE, SPAIR) were 

measured for each of 45 patients, providing ground truth segmentation for left ventric-

ular (LV) blood pool, right ventricular (RV) blood pool, LV myocardium (MY), edema, 

and scar for 25 patients. All data was provided aligned (MvMM method [8, 9]) in a 

common space with identical spatial resolution by the organizers. The aim of the chal-

lenge was to create an algorithm for pixel-wise segmentation of the pathology classes 

edema and scar. In this study, we employed variations of individual neural networks as 

well as a model ensemble, combining models with high performance on individual 

morphologic classes. 

The experiments and parameter search were done in Google Colab GPU instances. For 

the final training and prediction, we used our local HPC i. 8x Intel(R) Xeon(R) CPU 

E5-2630 v3 @ 2.40GHz ii. 512 GB of memory iii. 1x NVIDIA Tesla K80 with 12 GB 

of memory. 

3 Methods 

3.1 Software 

We built our model using open source software including python 3.7.7, pytorch 1.5.1 

[10], fastai2 0.0.17 [11], torchio 0.15.5 [12], MONAI 0.2.0, nibabel 3.2.1 [13] as well 

as their dependencies. Our model and code is openly available on GitHub and zenodo 
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(https://github.com/iimog/miccai2020-myops and https://doi.org/10.5281/ze-

nodo.3982324). 

3.2 Processing pipeline and architecture 

We converted all images from nifti to png format saving each slice as one image with 

sequences combined as color channels. Additionally, each sequence was saved inde-

pendently as a grey-scale image. We tried normalization of the LGE and T2 images 

using contrast limited adaptive histogram equalization (CLAHE) [14]. In this step, in 

addition to the original images, transformed images with simulated MR artifacts (mo-

tion and noise) were produced using torchio [12]. These images were used to train U-

Nets [3] with a resnet34 [15] backbone (initialized using ImageNet [16] weights) with 

further augmentations (rotation, brightness, contrast) with fastai2 [4, 11]. Performance 

of different hyper-parameter settings were evaluated using dice scores from five-fold 

cross-validation. The same split was used for all experiments and every data set was 

part of the validation set at least once.  

 

3.3 Hyper-parameter search 

Preliminary experiments. In preliminary experiments the effect of contrast enhance-

ments using CLAHE as well as cropping vs resizing to 256x256 pixels were tested. 

Systematic experiments. For the general multi-channel/multi-class networks, different 

losses were tested. Cross-entropy loss (ce) was compared to differently weighted focal 

loss [17]. We experimented with some classes receiving higher weights (values used 

are indicated in parentheses), while the other classes received balanced weights: 

 all classes with equal weights (balanced) 

 myocardium (0.2, 0.3), edema (0.2, 0.3) and scar (0.2, 0.3), label: multi_pathoMyo 

 edema (0.2, 0.35, 0.49) and scar (0.2, 0.35, 0.49), label: multi_patho 

 edema (0.2, 0.4, 0.6, 0.8, 0.99), label: multi_edema 

 scar (0.2, 0.4, 0.6, 0.8, 0.99), label: multi_scar 

 

Additionally, pathology specific networks (t2_edemaOnly, lge_scarOnly) were trained 

on their corresponding sequence only (edema with T2 and scar with LGE) using two 

different weightings of the focal loss (0.5 and 0.8). In total 21 networks were trained 

this way for 30 epochs (10 epochs frozen, 20 epochs unfrozen) and a base learning rate 

of 10-3. 

Targeted experiments. The best performing networks from the systematic experi-

ments were selected based on mean dice score over all cross validations. For LV, RV 

and myocardium only the network with the highest dice score was selected. For the 

pathology classes first the network with highest mean dice over both classes was se-

lected, then for each class the two remaining networks with highest individual dice 
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scores in the respective class were selected. This way a total of six networks were se-

lected. These networks were trained for 60 epochs (20 frozen, 40 unfrozen) in order to 

assess benefits of prolonged training duration. 

Final training. For the evaluation on the test set, the six networks from the targeted 

experiments were trained from scratch using all 25 data sets for training and no valida-

tion set. Training was done for 60 epochs (20 frozen, 40 unfrozen), since average per-

formance was increased with prolonged training duration. 

 

 
Fig. 1. Probability maps for all classes and derived prediction (second column) for 

the six networks and the ensemble, compared to the ground truth (first column) for a 

single slice of the training data. The result of the ensemble method (bottom row) is 

the mean over the probability maps of the six separate networks above. 
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3.4 Ensemble method 

The networks were trained with different foci, which led to different strengths and 

weaknesses. Therefore, we combined predictions from the different networks in a bag-

ging approach. This combination included predictions from all six networks from the 

final training. Class probabilities were averaged over all networks, taking into account 

that the specialized networks only returned predictions for their respective pathology 

class. The final prediction for each pixel was the argmax of these averages ( 

Fig. 1). 

4 Results 

4.1 Cross-validation results on training set 

Preliminary experiments indicated that not using CLAHE and cropping to 256x256 

pixels yields better results than normalization or resizing. Thus, only cropping was used 

in the systematic experiments. In the systematic experiments, the network with cross-

entropy loss reached the best results for LV, RV and myocardium segmentation with 

mean values of diceLV=0.855, diceRV=0.783 and diceMY=0.696. The best mean perfor-

mance on both pathology classes: mean(diceedema, dicescar)=0.345 was achieved using 

the multi-channel network (multi_patho) with weights of 0.35 for both pathology clas-

ses. Of the remaining networks the highest dice on scar was reached by the multi-chan-

nel network (multi_scar, weight: 0.4) and by the specialized LGE network 

(lge_scarOnly, weight 0.8) (Fig. 2), while the specialized T2 network (t2_edemaOnly, 

weight: 0.8) and the multi-channel network (multi_edema, weight: 0.4) reached the 

highest dice scores for edema (Fig. 2). Longer training improved dice scores for almost 

all classes and networks (Fig. 3, Table 1).  

4.2 Performance on test set 

Evaluation results on the test set were provided by the challenge organizers for two 

models, the multi_patho.35 network and the ensemble method. The ensemble reached 

better performance with mean ± standard deviation of dicescar=0.620±0.240 and 

diceedema+scar=0.665±0.137 compared to dicescar=0.593±0.232 and 

diceedema+scar=0.611±0.111 for the single network. For all but one patient dice scores for 

scar were greater than 0 indicating at least some overlap between truth and prediction. 

 

Table 1. Mean performance of the targeted experiment networks over the five-fold cross-vali-

dation after 60 epochs of training. Highest dice for each class in bold. 

Network diceLV diceMY diceRV diceedema dicescar mean dice 

edema, scar 

multi_patho.35 0.829 0.649 0.773 0.246 0.441 0.343 

multi_scar.4 0.850 0.690 0.779 0.202 0.479 0.341 
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multi_ce 0.853 0.695 0.787 0.227 0.438 0.333 

multi_edema.4 0.843 0.664 0.781 0.261 0.400 0.330 

lge_scarOnly.8 - - - - 0.467 - 

t2_edemaOnly.8 - - - 0.276 - - 

 

Fig. 2. Dice score for edema (top panel) and scar (bottom panel) over the five cross-

validation folds of each of the 21 networks from the systematic parameter search. 

Naming of models: input channels (multi, lge, t2), focused classes (scar, edema, 

patho: scar+edema, pathoMyo: scar+edema+MY, ce for cross-entropy and balanced 

have identical weight for all classes) and weight for those classes as suffix. 
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Fig. 3. Dice scores throughout training of the six networks from the targeted experiments. Data 

for all five cross-validation folds is shown with loess-smoothed lines for each class. The first 20 

epochs were trained with frozen weights, the remaining 40 with unfrozen weights. 

 

5 Discussion 

It is possible to train neural networks both on separate sequences and on multiple se-

quences with good performance. For scar the reported dice score is higher than that 

achieved by individual observers reported as 0.524±0.158 [9]. Segmentation quality 

can be further improved by training a model zoo with focus on different classes and 

combining their predictions using a bagging ensemble method. We showed that it is 

even possible to combine predictions from networks that were trained on different input 

data (channels) with a different set of output channels using averaging. While these 

results are promising, further experiments are needed to optimize the hyper-parameters 

for this challenging task. Additionally more and diverse training data is needed to train 

an algorithm with good performance and to reliably estimate its performance on unseen 

data. 
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4 DISCUSSION 

 “Functional and structural characterization of the myocardium” is a very generic 
thesis topic that could be addressed in many different ways. While the main aim of 
this thesis involved ultrahigh field cardiac MRI and DTI to do so, there are numerous 
other methodologies and aspects to consider. Some of them, such as 
echocardiography, standard clinical CMR, histology, gene expression analysis, and 
necropsy were applied in publications of this thesis, providing context to our 
understanding of microstructural and functional changes in cardiac pathology.  

As indicated in the introduction, the publications of this thesis can be sorted 
into three categories:  

1. ex vivo cardiac DTI at 7T
2. hardware development for translational cardiac MRI at 7T
3. deep learning based segmentation for cardiac MRI data

There are two things these categories have in common. First, they are based on 
the same diagnostic methodology, namely MRI, and second, they all refer to 
technologies (ultrahigh field MRI, cardiac DTI, and AI) that are likely to have a 
strong impact on clinical CMR within the next 10 years. All publications of this thesis 
also contribute to the more holistic aim of this thesis, because developed methods 
may be applied for the assessment of microstructural and functional changes in 
CVDs, improving our understanding thereof.  

Within the following chapter, I will discuss individual contributions of the 
publications to their respective field as well as to this thesis. This includes 
considerations beyond the already published discourse. In chapters 4.2 and 4.3 
published results will be linked to aims of this thesis and thus discussed in the 
context of CMR for the assessment of myocardial structure and function as well as 
deep learning in medical imaging.  
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4.1 Publications of this Thesis 

Spin echo based cardiac diffusion imaging at 7T: An ex vivo study of the 
porcine heart at 7T and 3T 
Over the years ex vivo DTI studies of cardiac microstructure at ultrahigh field 
strengths have been performed using hearts of rodents, while measurements in 
porcine,101,105,120 canine,53,90,130 and even goat293 hearts have been limited to field 
strengths ≤4.7T. Due to similarities in organ size, coronary anatomy, immunology 
and physiology compared to humans, porcine animal models are attractive for pre-
clinical protocols and translational research of CVDs and their diagnosis and 
treatment.294,295  

Measurements ex vivo provide a controlled environment with ideal conditions 
for the acquisition of high fidelity data. This study76 is the first to utilize the latest 
7T MRI technology for ultrahigh field DTI of excised large animal hearts, confirming 
that a commercial setup using a 1Tx/32Tx head coil leads to increased SNR in 
diffusion acquisitions (Δ52% compared to 3T without parallel imaging). While 
theoretically the gain in SNR is proportional to the square of B0, our values fit well 
to literature reports, where SNR gains do not reach theoretical expectations. Studies 
comparing SNR at 7T and 4T showed that practically, the SNR gain is highly 
dependent on localization (head coil). While the SNR gain in the center of the brain 
was approximately 100%, SNR was only about 40% higher in the periphery of the 
brain.296,297 Decreased T2* values at ultrahigh field strength add to signal loss, 
particularly for scans without parallel imaging acceleration and thus, long echo 
times and readouts. In our study we found these scans to be strongly affected by 
susceptibility effects, causing deformation of the reconstructed diffusion tensor. For 
the coil we used, parallel imaging acceleration of R=3 was optimal regarding the 
trade-off between SNR loss as acceleration penalty and susceptibility effects for 
longer echo trains. Based on these scans (R≥3) we demonstrated that the change 
in field strength does not affect derived diffusion metrics, which is an important 
finding with respect to future ultrahigh field examinations. Dedicated multi-channel 
arrays with 64109,298 or more channels may further improve SNR at 7T. Studies 
analyzing potential SNR at ultrahigh field strength suggest that synergistic 
combinations of a higher number of receive channels and parallel imaging 
acceleration enable access to SNR gains closer to theoretical expectations,104,299-301 
while simultaneously addressing increased susceptibility effects and decreased T2* 
values. Based on hardware and software developments scans at 7T are likely to 
improve SNR in other sequence modalities besides DTI, pushing currently existing 
limitations of spatial resolution.  

In 2017, approximately 15% of the sites equipped with a 7T MRI system have 
explored CMR applications.302 With the number of 7T systems steadily increasing, 
the number of translational studies using these systems is likely to increase as well. 
For all these studies this work offers valuable information on general feasibility and 
proper setup for ex vivo DTI at ultrahigh field strengths. 
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With respect to this thesis, this study resulted in a DTI data processing pipeline 
applicable to all following DTI studies and respective publications as well as a setup 
for high resolution ex vivo DTI of excised large animal hearts. Using this setup at 
7T, we assessed the impact of continuous formalin fixation on excised large animal 
hearts and evaluated a custom stimulated echo sequence implemented for in vivo 
DTI acquisitions. 
 
Longitudinal assessment of tissue properties and cardiac diffusion metrics of 
the ex vivo porcine heart at 7 T: Impact of continuous tissue fixation using 
formalin 
Most ex vivo DTI studies are performed on fixed tissue specimen, where rapid 
chemical fixation (often formalin) is applied to prevent autolytic effects after organ 
harvest. Compared to brain tissue T2 and T2* are lower in the heart and even 
shorter at ultrahigh field strengths. This study on the effects of continuous tissue 
fixation using formalin is the first to provide information on changes in T2 and T2* 
and their impact on SNR in diffusion MRI at ultrahigh field strength. T2 and T2* in 
the LV drop significantly following fixation, leading to a loss in SNR of b0 images, 
which directly influences data fidelity of derived diffusion metrics.102,111 Since ex 
vivo scans are set up to achieve high fidelity, high resolution data, fixation induced 
effects should be considered when designing a study protocol, particularly at 
ultrahigh field strengths. These considerations should include the question, whether 
tissue fixation due to limited scan times or storage demands is really required. A 
way to address the SNR loss due to decreasing T2* values and subsequent k-space 
filter effects is dedicated RF hardware. As mentioned above, combinations of high 
parallel imaging factors and a large number of receive channels appear to be 
beneficial for ultrahigh field MRI.299-301 

Observed changes in diffusivity following fixation are in good agreement 
with prior literature reports.123,126 The longitudinal study setup improves our 
understanding of already published observations and enables more meaningful and 
accurate comparisons between such studies and newly generated data, which 
increases the value of quantitative measures with respect to the impact of diseases. 
Despite observed changes in diffusivity results of this work support the observation 
that formalin based tissue fixation does not affect cardiomyocyte 
orientation.54,123,130 In addition, I provide initial evidence that this observation is 
true for average sheetlet orientation as well. This metric, or rather the change in 
sheetlet orientation between systole and diastole, has become of particular interest 
for the assessment of dynamic microstructural changes during contraction in 
patients with CVDs.38,41,43  

Measurements in vivo are based on two different sequence types, spin echo 
and stimulated echo acquisitions. The stimulated echo approach encodes diffusion 
over two consecutive heart beats, assuming that the position of the heart is 
consistent in the same heart phase of each heartbeat.303 This process enables very 
long diffusion times. While differences in diffusion metrics derived from these 
sequences have been analyzed and discussed for measurements in vivo,51,116 there 
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is no data on sequence related differences for ex vivo measurements. Literature 
results comparing these two sequence types in vivo suggest that the expected loss 
in SNR using a stimulated echo approach decreases with increasing field 
strength.51,116 This is likely due to increasing longitudinal relaxation times, 
shortened transverse relaxation times, and increased susceptibility effects at 
ultrahigh field strength. In ex vivo measurements the stimulated echo approach 
(mixing time: 100ms) still results in a SNR loss (on average 25-31% in fixed hearts) 
at 7T. However, long diffusion times and the resulting increase in fractional 
anisotropy have been shown to decrease uncertainty in the determination of the 
main eigenvector orientation.131 Future studies at ultrahigh field strength may 
therefore rely on a stimulated echo approach. Results of this thesis allow 
comparison of diffusion metrics derived from both sequences.  
 
Characterization of Myocardial Microstructure and Function in an 
Experimental Model of Isolated Subendocardial Damage 
Our understanding of structure-function interactions in the heart is incomplete, 
particularly when it comes to disease.152 Therefore more diverse and 
interdisciplinary studies creating data, which connects structural and functional 
alterations, are becoming increasingly important to improve our knowledge of 
cause-effect relationships in CVDs.38,43,45  

This is the first study assessing the impact of subendocardial damage on 
myocardial microstructure and function, where data is generated using a mouse 
model of isolated subendocardial fibrosis in which major confounders like 
hypertrophy and altered loading conditions150,172 are absent.  

Adverse remodeling in response to cardiovascular risk factors is considered 
to start in the endocardium46-48 and subendocardial integrity could thus function as 
a diagnostic marker for early detection of cardiac damages and facilitate risk 
stratification. Our study provides translational evidence that global peak longitudinal 
strain and subepicardial HA are markers of microstructural remodeling and may 
serve as diagnostic measures for early detection of cardiac impairment.  

In order to achieve the setup for reproducible, high resolution ex vivo DTI 
of mouse hearts required for this study, we custom designed, and 3D-printed a 
small sledge, which allowed accurate specimen placement within the cryoprobe, 
while DSI Studio’s support of Bruker 2dseq files enabled direct application of the 
developed DTI processing pipeline. Method development in this study in 
combination with the functional assessment performed by collaboration partners 
enabled the assessment of myocardial structure-function interactions.  

Using diffusion tensor imaging we demonstrate that subendocardial damage 
and fibrosis lead to lower transmural and subendocardial mean diffusivity and 
significantly lower HA in subepicardial layers. Similar, remodeling with a shift 
towards lower values has previously been reported in other pathologies.43,120,178 In 
this study the left shift was predominantly found in remote zones (subepicardial 
layers), which is comparable to observations made post MI.179 Functional 
assessment using echocardiography revealed that animals with isolated 
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subendocardial fibrosis exhibited mild diastolic dysfunction, which has been shown 
to be highly prevalent in large population studies, where these particular subjects 
progressed to congestive heart failure over time.160,176 Our study suggests that 
subendocardial fibrosis may account for preclinical diastolic dysfunction, an 
observation which is supported by reports of preclinical diastolic dysfunction in 
asymptomatic patients suffering from risk factors linked to effects on the 
subendocardium.161,163 Since myofiber bundles run longitudinally they are thought 
to determine longitudinal mechanics, which is why impaired LS parameters are 
considered as well accepted surrogates of subendocardial damage.159,161,174 This 
study confirms that reduced longitudinal deformation is indeed linked to 
subendocardial fibrosis and that global peak LS can be used to assess this. The 
observed phenotype of diastolic dysfunction with preserved ejection fraction in 
combination with reduced longitudinal but unaltered radial and circumferential 
deformation is comparable to that of selective subendocardial involvement, which 
is considered as a marker for subclinical disease.174  

In conclusion, subendocardial damage appears to be connected to several 
hallmarks observed in cardiovascular high-risk patients. We demonstrate that 
metrics derived from echocardiography and cardiac DTI can be highly sensitive 
surrogates for microstructural remodeling in response to such subendocardial 
damage, which may facilitate early detection of cardiac impairment. Validation of 
our translational evidence in patients with confirmed subendocardial damage may 
enable future clinical application.  
 
Myocardial Infarction after High-Dose Catecholamine Application - A Case 
Report from an Experimental Imaging Study 
Survival of MI is often followed by heart failure and the already mentioned, grim 
prospect of ~50% 5-year mortality following initial diagnosis.2 While adverse 
remodeling after MI is known to affect mechanical and electrical 
properties,45,175,183,186 we have very limited understanding of the underlying 
microstructural and functional alterations.152,177 This case report features 
unexpected MI after treatment with the catecholamine isoproterenol, where the 
application was meant to induce subendocardial fibrosis as described in Beyhoff et 
al.56 This case is of particular interest, because it could be considered as a pre-
clinical model of Type 2 MI.187 The respective animal was part of our experimental 
imaging study (Hypertension - 2019) and thus, a comprehensive set of functional 
parameters, detailed histopathology, and high resolution DTI data were available.  

The ratio of voxels showing positive and negative HA was found to quantify 
myocardial disarray quite well. While results of Beyhoff et al56 support this 
observation, future applications of this metric in DTI assessments of CVDs will be 
required to assess and validate applicability in various CVDs. To date, in vivo DTI is 
available only to a select few research sites. Moving towards future clinical 
applications of DTI, derived metrics need to be linked to unique and, most 
importantly, actionable readouts. With respect to longitudinal deformation during 
contraction, this ratio may be such a readout. In addition to rather simple 
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interpretation, its determination is straightforward and requires only minor data 
processing and negligible compute power.  

In this study we link pronounced loss of myofiber tracts to replacement 
fibrosis and apical scarring as well as left-ventricular systolic failure. We 
demonstrate that a simultaneous assessment of functional and structural changes 
improves our understanding of morphology-function interactions and enables 
validation and discovery of clinically useful surrogates for disease detection and 
possibly severity classification. 

   
A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel 
Transmit Cardiac MRI in Pigs at 7T 
As previously mentioned, heart size, coronary anatomy, immunology and 
physiology in pigs are highly similar to that of humans. Porcine animal models are 
therefore attractive for pre-clinical protocols and translational research of CVDs with 
respect to diagnosis and treatment.38,120,179,294,295 Early studies have already 
demonstrated that CMR at 7T can lead to higher SNR,57-61 but to date there are no 
studies exploiting the potential of ultrahigh field strength for translational studies in 
large animals.   
 In this study we aimed to design, simulate, construct, and test an 8Tx/16Rx 
mono-surface coil that enables homogeneous and efficient RF excitation using 
parallel transmit technology as well as rapid parallel imaging acceleration for CMR 
in large animals at 7T. 
 We demonstrate that EM simulations for the developed coil fit well to MR 
measurements in phantoms. Due to cardiac motion and required breath holds CMR 
applications benefit greatly from fast image acquisition, which is typically achieved 
using parallel imaging acceleration. Historically, multi-channel arrays have been 
designed to enable high acceleration factors with minimal noise amplification. At 7T 
however, we want to make use of multiple transmit channels as well as multiple 
receive channels. Coil design and element configurations may become a 
compromise between optimal performance regarding transmit and receive. The L-
shaped distribution of elements in our design enabled high parallel imaging 
acceleration factors (R=2-6) with small noise amplification (gR2=1.03, gR3=1.05, 
gR4=1.09, gR6=1.26) in an ex vivo measurement (pig, 68 kg). Compared to 
literature reports of gR4=1.2-2.33 using a 32-channel199 and a 16-channel219 loop 
array in humans, our coil exhibits negligible noise amplification for R=2-4. 
Furthermore, pTx shimming increased transmit efficiency by ≥3 and reduced RSD 
in the flip angle, demonstrating that the coil design offers additional degrees of 
freedom and thus, effective and flexible B1-shimming. This is of paramount 
importance for longitudinal translational studies, where changes of body shape and 
size due to animal aging lead to different conditions with respect B1-non-uniformity 
at ultrahigh field strength.      

Vendor supplied patient safety systems have originally been developed in 
clinical systems, where SAR deposition and tissue heating are easy to manage due 
to lower field strengths and single transmit excitation. With the advent of parallel 
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transmit technology and B1-shimming in ultrahigh field MRI, new methods and 
guidelines need to be established.194,304-306 This is of particular importance, since 
cardiac CMR techniques such as LGE, T2, and perfusion imaging are demanding with 
respect to RF excitation. Thus, B1-non-uniformity and SAR-safety may limit 
application in humans. Clinically, in addition to cardiac function, these techniques 
enable the assessment of myocardial fibrosis, scar visualization, establishment of 
HF etiology,8,11 and the characterization of myocardial tissue in various CVDs.8,9,11,12 

Preliminary data shows that the dedicated hardware we developed can 
leverage the potential of ultrahigh field strengths and enables standard cardiac CMR 
techniques such as LGE and perfusion imaging in large animals. Initial work has 
been done to demonstrate that this coil design is scalable. This enables not only 
longitudinal, translational, large animal studies, but also the transfer to other 
ultrahigh field applications like spine or abdominal imaging.  
  
Deep Learning Based Cardiac Cine Segmentation Framework – Transfer 
Learning Application to 7T Ultrahigh-Field MRI 
Deep learning is a rapidly developing field that is increasingly applied in cardiac 
image segmentation, particularly for the assessment of cardiac function based on 
MRI. Many reviews on AI and AI based image segmentation have identified the 
limited availability of annotated data as one of the biggest obstacles to routine 
applications of neural networks in clinical routine.245,250,258,262,264 Reasons for this 
are difficulties regarding data access, data privacy, missing data harmonization, and 
data protection. 

In this study we generate cardiac cine segmentation annotations for a 
publicly available data set307 of clinical 1.5T and 3.0T images. In total, we labeled 
short axis slices for 1,140 cardiac MRI examinations of normal and abnormal cardiac 
function. Following data curation (correction for slice spacing, changes in image 
dimensions and image resolution, as well as missing slices, etc.), MR examinations 
with the top 5%, 10%, and 15% label accuracy contained 54540, 162480, and 
239350 images, respectively. Label accuracy was determined indirectly, comparing 
ESV and EDV derived from predicted labels to ground truth values provided by 
Kaggle. With respect to MRI data this is the biggest data set currently openly 
available. Other public data sets contain 30-200 examinations and have typically 
been published in the context of MICCAI (International Conference on Medical 
Image Computing and Computer-assisted Intervention).308-315 While there is a clear 
need for high fidelity data and resources with respective annotations, the high 
amount of work required to organize and maintain such data bases inevitably makes 
access expensive. In addition, we have to ask ourselves, if such high fidelity data is 
realistically comparable to routine clinical cardiac MRI or if such data is only suitable 
to answer research questions.  

We employ a publicly available model74 for label generation and 
demonstrate that training of DL segmentation models using the newly annotated 
dataset enables state-of-the-art results and even transfer learning approaches, 
such as 7T cardiac cine segmentation. During the labelling process we noticed that 
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segmentation was working particularly well for certain patients and failed for others. 
Concerning applications of DL models this is a dilemma that will continue to come 
up: is this model suitable for my data and if not, can I adapt my data in a certain 
way to improve model compatibility? In our case the model by Bai et al74 was 
trained on data from the UK Biobank, which is a relatively homogeneous data set, 
where all images are acquired using the same sequence and the same scanner 
type. Increasing the similarity between the Kaggle data and UK Biobank data thus 
resulted in increased model performance for label generation. In general, it is useful 
to understand why a model makes a certain prediction and it is arguably part of 
human nature that we want to understand, why a certain decision was made. This 
notion is probably even stronger when the information we are presented is meant 
to be used for diagnostic purposes and treatment decisions. Explainability and 
interpretability of neural networks is therefore an active field of research. In order 
to deal with model compatibility and model-data-interactions we developed misas 
(model interpretation through sensitivity analysis for segmentation), a software tool 
that enables sensitivity analysis for segmentation models.316 Misas provides intuitive 
local interpretations, transforming an input image in a defined manner and 
analyzing the impact of this transformation on the resulting model performance. 
This process allows users to gain information on model-data interactions, 
concretely, if a model is suitable for a certain dataset, if data needs to be adapted 
prior to input, how robust a model is to diverse input data, or if and to what degree 
potential perturbations, such as image artifacts affect model performance. To the 
best of our knowledge, misas is the first tool of its kind and the open source Python 
library Ankenbrand et al.316 provide therefore enables the scientific community to 
apply sensitivity analysis to their own data and models. While developed based on 
cardiac image segmentation tasks, misas is applicable to basically every image 
segmentation task.  

The curated and now labeled dataset allowed training of a basic cardiac MRI 
segmentation model, which we used for a transfer learning approach to 7T cine 
data. We assess how much and which data is required to enable this transfer 
learning application. As initially pointed out, labeled data is limited and often difficult 
to acquire, particularly in areas that require domain specific knowledge. In addition, 
the generation of new labels is a time-consuming and tedious process, which means 
that the lower the amount of labeled data required for transfer learning, the better. 
Our study demonstrates that end-diastolic and end-systolic images appear to be 
more valuable with regard to model performance than images from other or even 
random heart phases. Compared to full CMR examinations from 14 volunteers, 
using end-diastolic and end-systolic images only, allowed reduction of training 
images from 5076 to 448, which corresponds to Δ91%. This has major implications. 
Firstly, state-of-the-art segmentation results comparable to inter-observer 
variability can be achieved with moderate data requirements. Secondly, the notion 
to label patient by patient may result in higher data requirements than necessary. 
Thirdly, we can profit from clinical segmentations, where labeling end-diastolic and 
end-systolic data is common practice for the evaluation of cardiac function.   
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Our demonstration of transfer learning to 7T data suggests that data and models 
provided as part of this study will enable segmentation models for other cardiac MR 
examinations, such as T2, T1, LGE, and T2*, and even DTI. Further analysis with 
respect to data requirements to enable these transfer learning applications may be 
subject to future studies. 

In order to facilitate reproducibility and further application in research by 
others all labeled data, segmentation models, and respective code was published 
using the code and data repositories GitHub and Zenodo. As pointed out initially, AI 
is a rapidly developing field, where it is paramount that potential end users such as 
clinicians get access to functioning and well documented code. If contact to such 
tools remains limited for clinicians, it is unlikely that applications will gain a foothold 
in a clinical setting.  
   
Exploring ensemble applications for multi-sequence myocardial pathology 
segmentation 
Next to the assessment of cardiac function, CMR allows imaging of the acute injury 
and ischemic regions post MI, providing pathological and morphological information 
of the myocardium. Similar to the segmentation for the assessment of cardiac 
function, DL is used to segment such pathologic alterations (scar and edema). 
Clinically, two different sequences are used and segmentations are done separately 
for each sequence.  

We participated in the myocardial pathology segmentation (MyoPS 2020) 
challenge, where the aim was to combine multi-sequence CMR data to classify 
myocardial pathology, infarcted and edema regions to be precise. All our 
approaches were based on DL, demonstrating that individual sequences lead to 
good segmentation results for their target, for example LGE for scar tissue. More 
interestingly, we demonstrate that multi-sequence-multi-class models enable 
results comparable to the dedicated sequences and that combining multiple models 
in a so-called “model ensemble” combines the strengths of individual models in 
multi-sequence-multi-class segmentation. In addition, the model ensemble 
provided consistent segmentation for non-pathological regions such as healthy 
myocardium, LV and RV. With DICEscar: 0.59±0.23 and Dicescar+edema: 0.61±0.11 
for a multi-sequence-multi-class model and Dicescar: 0.62±0.24, Dicescar+edema: 
0.67±0.14 for the ensemble approach, we reached markedly improved 
segmentation results compared to reported inter-observer variability of manual scar 
segmentation (Dicescar: 0.52±0.16). 
While these results already demonstrate that AI outperforms capabilities of human 
operators regarding pathology segmentation, AI will likely become even better in 
the future. With only 45 cases of patient data (training set: 25, test set: 20), the 
amount of labeled data was very small and a larger sample may already have led 
to significantly improved model performance. New methods are developed to 
circumvent the bottle-neck that is limited access to annotated data. Self-supervised 
learning aims to generate labels from the data automatically,317 unsupervised 
learning aims to learn representations without paired labeled data,318 and 
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unsupervised domain adaption aims to optimize model performance on previously 
unseen datasets without additional labelling costs.319-322 

In this challenge all images were co-registered and the model performance 
was solely judged on pathology segmentation. While this is already an important 
application with respect to outcome prediction24-27 and myocardial salvage,28,29 
other CMR metrics such as wall motion or ejection fraction are not considered. 
Looking towards future clinical applications of AI with respect to multi-sequence-
multi-class segmentation, clinicians are likely to expect a more comprehensive 
approach, where all relevant CMR metrics can be derived at the same time.   

Our study is the first application of ensemble methods for cardiac multi-
sequence-multi-class segmentation. Model ensembles, also called “model zoos” are 
becoming more common for segmentation tasks. Therefore, our biggest 
contribution to the field is that we demonstrate how public tools and libraries, such 
as PyTorch266 and fastai,72 enable high performance segmentation models and even 
multi-sequence-multi-class segmentation models with moderate requirements to  
additional programming. Particularly, fastai, which is designed around the main 
goals “to be approachable and rapidly productive, while also being deeply hackable 
and configurable […]”72,323 has accelerated how we develop and build our models. 
Our study demonstrates how to apply these public DL tools to cardiac image 
segmentation, in this case pathology segmentation. Aiming to increase 
interdisciplinary discussion, to facilitate reproducibility and further model 
applications, we made all models and code publicly available using the repositories 
GitHub and Zenodo. We thus contribute to make DL more accessible, a process that 
will drive future research and application.   
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4.2 Cardiovascular Magnetic Resonance – Assessment of 
Myocardial Structure and Function 

While sequence design, data analysis, and hardware developments in recent years 
have significantly improved cardiac DTI, the method for in vivo imaging remains 
accessible to only a small number of researchers and physician scientists. No vendor 
has developed and offered a cardiac DTI product sequence and there is a plethora 
of challenges still to address, before DTI will be applied in clinical routine 
examinations.  
 However, initial work has already been done to address some of these 
challenges, for example harmonization of DTI metrics with respect to different 
sequences used. All pulse sequences currently applied for in vivo cardiac DTI can 
be classified as either a stimulated echo acquisition mode324 with monopolar 
diffusion gradients or a spin echo with motion-compensated diffusion gradients.87 
Varying sequences and protocol parameters from site to site limit reproducibility 
and comparison of diffusion metrics. While there are individual studies analyzing 
intra-scanner variation52 or coefficients across two time points,103 there is not 
enough data to validate accuracy and reproducibility of DTI metrics. Therefore, Teh 
et al started a multi-center phantom study, aiming to establish accuracy, precision 
and reproducibility of product pulsed gradient spin echo sequences.325 Participating 
sites were sent a custom built phantom with seven tubes of Polyvinylpyrrolidone 
and detailed measurement instructions. Values for average MD (mean ± standard 
deviation across scanners) and FA in the reference tube at scans 1 and 2 were 
1.149 ± 0.032 and 1.159 ± 0.049 [10-3 mm2/s] and 0.035 ± 0.0013 and 0.030 ± 
0.0015, respectively. Overall, results of this study demonstrated good baseline 
inter- and intra-site reproducibility and the measurement protocol was extended by 
custom cardiac DTI sequences of the individual sites. We provide 3T data for the 
product pulsed gradient spin echo sequence and a custom stimulated echo 
sequence (Lohr et al.122) that was implemented as part of this thesis. We thus 
contribute to validate the accuracy, precision, and reproducibility of state-of-the-
art custom sequences for in vivo cardiac DTI. This study is a milestone towards 
protocol harmonization and the establishment of clinical cardiac DTI.  
 While DTI has been shown to provide novel information on structure-
function38,41,43 and structure-conductivity interactions,42,45 our understanding of 
myocardial remodeling in response to cardiac injury or CVDs in general, remains 
limited. In order to become clinically relevant, DTI metrics need to be linked to 
unique and, most importantly, actionable readouts. Obviously, measurements of 
these metrics or rather markers have to be done in vivo eventually, but translational 
ex vivo studies are usually preferred for proof of concept studies, because they 
provide high fidelity data that was measured in an optimized and controlled setting. 
DTI results of this thesis contribute to the field in this specific area, demonstrating 
feasibility of 7T ex vivo scans of large animal hearts as well as fixation induced 
alterations in derived diffusion metrics and tissue properties of such hearts. 
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Furthermore, we show that cardiac DTI provides highly sensitive surrogates for 
microstructural remodeling in response to subendocardial damage and how these 
changes relate to echocardiography measurements. We also directly link 
pronounced loss of contractile myofiber tracts, replacement fibrosis, and LV systolic 
failure.  

All these results contribute to improve the value of ex vivo DTI of the heart, 
which will remain a valuable tool for studies aiming for high data fidelity. 
Furthermore, we provide insights how structural changes relate to clinically 
assessable functional changes and how cardiac DTI may provide unique readouts 
such as our newly introduced metric: the ratio between voxels showing positive HA 
and voxels showing negative HA. Coming back to the ESC guidelines of acute and 
chronic heart failure, such readouts may significantly improve diagnosis, 
establishment of etiology, treatment monitoring, and validation of novel drugs. 

As highlighted in the introduction, 7T cardiac MRI is currently a research 
modality that is developing towards clinical applications. This means that RF 
hardware, clinically applicable sequences, and SAR-safety, in particular in parallel 
transmit applications, are still subject to research and validation. In this thesis we 
implemented and performed CMR using a new generation 7T system and a 
commercial RF coil. With respect to clinically applicable sequences for functional 
cardiac MRI at ultrahigh field strengths, we expanded vendor sequences towards 
accurate cardiac planning and the assessment of cardiac function based on cine 
sequence acquisitions.70,263 Image segmentation is a key process of the assessment 
of quantitative morphological and functional metrics. In order to provide automatic 
image segmentation for functional 7T data that is robust to contrast variations, we 
created deep learning models based on clinical data, which we then successfully 
optimized towards our 7T acquisitions. This transfer to 7T data was already feasible 
based on a very limited number of images, demonstrating that images acquired at 
7T are highly similar to clinical data, containing all relevant features for 
segmentation and the assessment of cardiac function.   
 

4.3 Deep learning in Medical Imaging 

Deep learning technology is applied in almost any newly released digital device in 
use today and the rapidly developing field is continuing to generate new ideas and 
concepts, leading to ever better and deeper models. Similarly, applications in 
healthcare and MRI are increasing, leading to DL solutions for every step of the 
image generation pipeline.262,264  

In this thesis we apply deep learning based segmentation that enables both 
functional and structural characterization of the myocardium based on clinically 
used MRI sequences. The functional assessment is enabled through automatic 
segmentation of cine data and the structural assessment through detection and 
segmentation of scar tissue and edema. With respect to cine data acquired at 
ultrahigh field strength we demonstrate that transfer learning approaches are able 
to cope with field strength and sequence induced alterations in contrast compared 
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to clinical examinations. While we solely focused on cardiac image segmentation, 
the following thoughts and concepts apply to DL in medical imaging in general. 

Deep learning for image segmentation has long been shown to outperform 
manual operators for various tasks, leading to models for morphology of the 
ventricles,17,18 the atria,19,20 the aorta,21 the whole heart,22,23 and even 
pathology,252,276,277 such as scar and edema. However, scarcity of labels, data 
privacy, and low interpretability limit clinical applications, where DL could greatly 
reduce the workload for clinicians and improve consistency in data analysis. 
Publications of this thesis aimed to address these limitations, creating newly 
annotated data, making all data and respective code openly accessible, and using 
models and architectures that are commonly known, available to everyone, and 
have been demonstrated to perform well for a large variety of segmentation tasks. 
In addition to applications in ultrahigh field CMR, we intended to facilitate easy 
understanding, re-use, reproducibility, and interpretability and thus, discussions 
around AI in a clinical setting. Due to limited data access, real clinical publications 
on DL applications are scarce and feasibility of models is discussed in relation to the 
few, rather small data sets currently available.308-315 While a future DL model may 
possibly enable great segmentation results independent of sequence, vendor, field 
strengths, measurement protocol, patient or even pathology, very stable and well 
performing task-specific models already do exist. In order to enable clinical 
application, computer scientists, basic researchers and clinician scientists will have 
to cooperate, because there are two very basic requirements. Firstly, labeling 
protocols should be harmonized. This means that there needs to be a clinical 
consensus on proper segmentation, in particular with respect to the inclusion of 
basal slices or papillary muscle. Secondly, a benchmark dataset based on this 
consensus, which is large enough to contain substantial data diversity that reflects 
the spectrum of clinical CMR needs to be established. The CheXpert benchmark 
dataset,326 which consists of 224.316 chest radiographs of 65.240 patients is a good 
example for such a benchmark dataset. The more than 150 entries to the 
leaderboard demonstrate that such datasets facilitate discussion and comparable 
improvements towards clinical establishment of DL applications.   

Due to the rapid developments in the field of AI, novel models, concepts, 
and architectures are usually published on pre-print servers first, while established 
journals struggle to keep up with respective peer-reviewed publications. With the 
advent of AI, software in general, but also in medical imaging, has become crucially 
important. In order to maintain high quality standards, even within preprint 
publications, transparency and reproducibility through availability of code and data 
are key, especially for DL, where interpretability is already limited by the black box 
that is DL.327,328  

Availability, applicability and reproducibility are essential features of 
research that prevent redundant work and can be built on.329,330 In medical imaging, 
even healthcare in general, this enables the translation from research to clinical 
applications. However, proper testing and documentation of code takes time and, 
similar to other fields,331 the current system in healthcare research does provide 
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little to no incentives to put in the work. Despite that, we provide all models and 
code for our AI publications under an open source license using the platform GitHub. 
This platform provides mechanisms for quality control, usage and collaborations 
and all projects are developed and continuously tested using a defined and clean 
environment. It is intuitive to assume that target users of software should be 
involved in its development and that open source projects empower bioinformatics 
communities.332 With the public availability on GitHub, our contributions to the field 
are shared in a sustainable and productive way for re-use and future research. 
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5 FUTURE WORK 

While results of this thesis emphasize the value of translational ex vivo studies, we 
aimed to establish cardiac DTI in volunteers and patients in vivo at both 3T and 7T. 
Measurements using the stimulated echo sequence demonstrate sequence 
functionality and comparability of derived diffusion metrics in ex vivo and phantom 
acquisitions.76,122,325 Due to diffusion encoding over consecutive heart beats, the 
stimulated echo sequence is highly susceptible to trigger accuracy. Initial scans in 
large animals in vivo at 7T have shown that proper gating based on an acoustic 
trigger is possible and that B0 inhomogeneity can be managed. Further 
measurements in large animals, volunteers, and patients are required to improve 
the sequence and establish optimal routine protocols, in particular at 7T. 

With optimized sequences for accurate cardiac planning and cine imaging 
we have implemented the gold standard for the measurement of mass and cardiac 
function via EF on a new generation 7T system. However, other clinical routine 
applications will require implementation in order to make 7T CMR a viable 
alternative to clinical 1.5T and 3.0T systems. We therefore continue to develop 
dedicated, parallel transmit hardware that enables SAR-safe, homogeneous and 
efficient RF excitation. This is of paramount importance, because next to clinically 
used CMR acquisitions such as LGE and T2-weighted images, this hardware also 
enables us to leverage SNR gains associated with ultrahigh field strength.57-61  

In this thesis DL is applied for rapid automatic segmentation of cardiac MRI 
examinations, including short axis cine, LGE, and T2-weighted images. Future work 
aims to integrate developed models into clinically used software. This can be a 
tedious venture, because it requires vendors to provide access to contour files and 
proper system integration. However, assuming an experienced physician will need 
approximately 10 seconds to segment a cine short axis image, AI models can 
accelerate this process a hundredfold. Translation towards clinical applications is 
therefore connected to a significant gain of time, a valuable resource in healthcare. 
In addition to clinical applications such model integration will also accelerate data 
evaluation in pre-clinical studies, allowing rapid and consistent segmentation of MR 
examinations in mice, rats, or pigs. We based our DL models on a UNet architecture. 
Theoretically, this architecture enables many other DL applications such as image 
restoration and even super-resolution techniques. Future work may evaluate these 
applications in both clinical and pre-clinical cardiac MRI, particularly at 7T.  
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6 CONCLUSION 

The three fields of ultrahigh field MRI, cardiac DTI, and AI are likely to have a strong 
impact on future clinical CMR. Results obtained in this thesis establish the functional 
characterization of the myocardium in vivo using the latest generation 7T system 
as well as the structural characterization of the myocardium of large and small 
animal hearts ex vivo. Furthermore, developed methods were applied in pre-clinical 
studies, improving our understanding of structure-function interactions in cases of 
subendocardial damage, fibrosis and MI. Developed AI for segmentation of clinical 
cardiac MRI achieved state-of-the-art results and feasibility of its transfer to 
ultrahigh field applications was demonstrated. For all deep learning applications we 
employed open source software tools and made all data and code accessible, and 
thus, reproducible, and reusable. In conclusion, all results, developed methods, and 
tools addressed main goals of this thesis, enabling future research in ultrahigh field 
CMR and related deep learning applications. Furthermore, results of this thesis 
contribute to diagnostic methods that facilitate early detection, and risk 
stratification with respect to CVDs. In the long run these findings may contribute to 
meaningful and accessible ways of prevention in clinical routine applications. 
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7 APPENDIX 

A INDIVIDUAL AUTHOR CONTRIBUTIONS 

This chapter lists individual author contributions for each publication (chapter 3, 
page 11) included in this thesis in detail. The initial table displays contributions to 
parts of the respective study and experiments and the following table displays 
contributions to figures and tables (if present) of the same publication. 
Responsibility decreases from left to right. The label S indicates figures and tables 
which are part of the supplemental material.  
The statement (chapter “Confirmation”) confirms that legal second publication 
rights for all manuscripts were obtained, where necessary. Details regarding the 
publication licenses can be found in the respective paper sections in chapter 3.  
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