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“Maypbe it meant something. Maybe not, in the long run, but no
explanation, no mix of words or music or memories can touch that
sense of knowing that you were there and alive in that corner of

time and the world. Whatever it meant.”

— Hunter S. Thompson (Fear and Loathing in Las Vegas)

“In this house, we obey the laws of thermodynamics!”

— Homer Simpson

" . . 4
In an isolated system, entropy can only increase.

— Muse (The 2nd Law)






Abstract

Clearly, in nature, but also in technological applications, complex systems built in an
entirely ordered and regular fashion are the exception rather than the rule. In this
thesis we explore how critical phenomena are influenced by quenched spatial ran-
domness. Specifically, we consider physical systems undergoing a continuous phase
transition in the presence of topological disorder, where the underlying structure, on
which the system evolves, is given by a non-regular, discrete lattice. We therefore
endeavour to achieve a thorough understanding of the interplay between collective
dynamics and quenched randomness.

According to the intriguing concept of universality, certain laws emerge from col-
lectively behaving many-body systems at criticality, almost regardless of the precise
microscopic realization of interactions in those systems. As a consequence, vastly
different phenomena show striking similarities at their respective phase transitions.
In this dissertation we pursue the question of whether the universal properties of
critical phenomena are preserved when the system is subjected to topological pertur-
bations. For this purpose, we perform numerical simulations of several prototypical
systems of statistical physics which show a continuous phase transition. In particular,
the equilibrium spin-1/2 Ising model and its generalizations represent — among other
applications - fairly natural approaches to model magnetism in solids, whereas the
non-equilibrium contact process serves as a toy model for percolation in porous
media and epidemic spreading. Finally, the Manna sandpile model is strongly related
to the concept of self-organized criticality, where a complex dynamic system reaches
a critical state without fine-tuning of external variables.

Our results reveal that the prevailing understanding of the influence of topological
randomness on critical phenomena is insufficient. In particular, by considering very
specific and newly developed lattice structures, we are able to show that — contrary
to the popular opinion — spatial correlations in the number of interacting neighbours
are not a key measure for predicting whether disorder ultimately alters the behaviour

of a given critical system.






Zusammenfassung

Ohne Zweifel stellen vollstandig regelméaflig aufgebaute komplexe Systeme sowohl
in der Natur als auch in technischen Anwendungen eher die Ausnahme als die Regel
dar. In dieser Arbeit erforschen wir, wie sogenannte kritische Phanomene durch
eingefrorene raumliche Unordnung beeinflusst werden. Konkret untersuchen wir
physikalische Systeme, welche einen kontinuierlichen Phasentibergang aufweisen,
in Gegenwart von topologischer Unordnung. Die raumliche Struktur, auf der sich
das dynamische System entwickelt, ist in diesem Fall durch ein unregelmafliges
diskretes Gitter gegeben. Die Erlangung eines tiefergehenden Verstiandnisses des
Zusammenspiels von physikalischer Dynamik und rdumlicher Unordnung kann
daher als das Hauptziel unserer Unternehmung angesehen werden.

Ein gleichermaflen faszinierendes wie zentrales Konzept in der statistischen Phy-
sik stellt die sogenannte Universalitdt dar, gemafl welcher das kollektive Verhalten
von Vielkorpersystemen im kritischen Bereich nahezu unabhéngig von der spezifi-
schen mikroskopischen Realisierung der Wechselwirkungen ist. Als Konsequenz sind
selbst in véllig unterschiedlichen Systemen bemerkenswerte Ahnlichkeiten an den
jeweiligen Phasentibergéngen beobachtbar. Diese Dissertation geht nun der Frage
nach, inwieweit diese universalen Eigenschaften erhalten bleiben, wenn das System
topologischen Storungen ausgesetzt wird. Zu diesem Zweck werden umfangrei-
che numerische Monte-Carlo-Simulationen von einigen prototypischen Systemen,
welche einen kontinuierlichen Phasentibergang aufweisen, durchgefiihrt. Ein pro-
minentes Beispiel fiir ein System im thermodynamischen Gleichgewicht stellt dabei
das Spin-1/2 Ising-Modell dar, welches unter anderem magnetische Eigenschaften
von Festkorpern modelliert. Zusitzlich werden auch Systeme fernab des Gleichge-
wichts behandelt, wie etwa der Kontaktprozess, welcher ein vereinfachtes Modell
fiir Perkolationsprozesse in pordsen Stoffen oder auch fiir die Ausbreitung von Epi-
demien darstellt, sowie spezielle Modelle, welche in engem Zusammenhang mit
selbstorganisiertem kritischen Verhalten stehen.

Unsere Ergebnisse demonstrieren, dass der Einfluss von topologischen Stérungen
auf kritische Phanomene derzeit noch unzureichend verstanden ist. Insbesondere
gelingt es uns mittels spezieller eigens entwickelter Gitterkonstruktionen zu zeigen,
dass lokale rdumliche Korrelationen in der Anzahl von wechselwirkenden Nachbarn,
entgegen weitldufiger Meinung, kein addquates Mafs sind, um den Einfluss von

Unordnung auf das Verhalten eines kritischen Systems vorhersagen zu konnen.
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CHAPTER

Introduction

“Aber die existierenden wissenschaftlichen Begriffe passen jeweils
nur zu einem sehr begrenzten Teil der Wirklichkeit, und der andere

Teil, der noch nicht verstanden ist, bleibt unendlich.”

— Werner Heisenberg

Exactly 100 years ago, Wilhelm Lenz devised a simple model of an “Umklappmagnet” [1]
which would go on to drive the development of an entire field of physics. In the century since
its introduction, the Ising model set the stage for the development of numerous analytical and
numerical techniques — and is still intensely researched today. Named after Ernst Ising, who
provided the exact solution for the one dimensional case in 1925 [2], this model has thus played
a pre-eminent role in establishing what we call today the physics of critical phenomena. Its
remarkable relevance derives to a large degree from the fact that, although originally proposed
as a model for ferromagnetism, it qualitatively (and also quantitatively) describes collective
long-range behaviour of many microscopic degrees of freedom of systems from vastly different
areas, also beyond the natural sciences. Leo P. Kadanoff, one of the pioneers of modern statistical
physics, described the impact, writing [3]:

Starting around 1925, a change occurred: With the work of Ernst Ising and Wilhelm Lenz,
statistical mechanics began to be used to describe the behaviour of many particles at once.

In their work, Lenz and Ising considered spins placed at discrete lattice positions, which can take



1 Introduction

Figure 1.1 | Typical configurations of the two-dimensional Ising model. Colours black and white repre-
sent up and down spins, respectively. (a) Ordered state below the critical temperature. (b) Self-similar,
scale-invariant clusters exactly at criticality. (c) High-temperature disordered phase.

on two configurations, +1 or -1. Figuratively speaking, they correspond to magnetic moments
of atoms, pointing upwards or downwards. Individual spins interact with their immediate
neighbours in a way which energetically favours parallel orientation. At the same time this
ordering mechanism is countered by random fluctuations, driven by a finite temperature of the
system. As a result, at a specific temperature, one observes a transition from a globally ordered
phase of high symmetry to a disordered phase of low symmetry, which correctly describes the
phenomenology of the ferromagnetic/paramagnetic transition, discovered by Pierre Curie in
1895 [4]. Above the so-called Curie temperature (about 768°C for iron, for instance), the material
loses its spontaneous magnetization, which it recovers, however, when cooled down again.

In general, phase transitions are characterized by an abrupt change of macroscopic properties
when certain system parameters are smoothly varied. In terms of the thermodynamic free energy,
used to describe systems obeying the Boltzmann statistics, this corresponds to a non-analytic
point in phase space. As a consequence, certain observable quantities which can be directly
derived from the free energy, such as the magnetic susceptibility or the specific heat, typically
diverge at the transition. If already the first derivative of the free energy presents a discontinuity
one speaks of a first-order or discontinuous transition, whereas a continuous phase transition
takes place if the first derivative is continuous, and only higher derivatives diverge. In the
latter case, the degree of these (usually algebraic) singularities is characterized by so-called
critical exponents. The emergence of a power-law behaviour at the criticality is no coincidence.
Mathematically it reflects the system’s scale invariance, one of the hallmarks of criticality [5] — at
the critical point, clusters of equal spin orientation become fractal and self-similar as can be seen
in Figure 1.1. Whereas the low- and high-temperature phases exhibit typical length scales, at
criticality clusters of any size can be found in the system, ranging from the system dimensions
all the way down to the lattice discretization. The typical length scale of correlations becomes
infinite at a continuous transition.

What is it that makes specifically the Ising model so significant? In his historic review of the
model [6], Stephen G. Brush writes:

In constructing a theory to interpret a complex physical phenomenon, a scientist frequently has
to choose between two approaches. On the one hand, he may want to make his theory [...] as



“realistic” as possible. But this approach usually leads to formulations that are mathematically
so complicated that the consequences of the hypotheses cannot be deduced from the theory
without gross approximations [...] On the other hand, one may intentionally sacrifice some of
the more realistic features of a model in order to obtain a simpler model that is exactly soluble.

At a first glance, the Ising model clearly falls into the second category. Attempting to model
magnetic behaviour while neglecting the details of the electronic structure of the material
almost entirely and reducing the individual atoms in the lattice to “arrows” that are moreover
restricted to only two orientations, seems to be a rather crude approximation. In addition to
that, any quantum mechanical effects are ignored, even though they are certainly expected to be
relevant in describing microscopic interactions in solids, which was already known at the time
when Lenz proposed the model. Astonishingly, however, the Ising model in fact does provide a
quantitatively correct description of the magnetic phase transitions in certain real materials. For
instance, Back et al. [7] measured the equation of state of a ferromagnetic atomic monolayer on
a non-magnetic substrate and found a striking data collapse over 18 orders of magnitude, and
experimental estimates of the corresponding critical exponents were in agreement with those of
the two-dimensional Ising model.

Surprisingly, critical exponents of the Ising model were found in experiments with systems
entirely unrelated to magnets [8-10], most notably at the so-called critical point of certain fluids
where properties of the liquid and vapour phases become indistinguishable. It is notable that
already Pierre Curie [4] was aware of an ...

...analogy between the way in which the intensity of magnetization of a magnetic body
increases under the influence of temperature and the intensity of the field, and the way in which
the density of a fluid increases under the influence of temperature and of the pressure.

The observation that entirely different systems at their continuous phase transition appear
to behave in a quantitatively similar fashion can not be regarded as a mere artefact. It rather
suggests that these systems share certain “universal” properties. In other words, the microscopic
nature of the system should become irrelevant on macroscopic scales. During the course of
the last century experimental physicists found an increasing number of examples of rather
distinct systems featuring strikingly similar behaviour at criticality, most notably the study
of coexistence curves of simple fluids by Edward Guggenheim [11] supporting the so-called
universality hypothesis.

On the theoretical side, the understanding of phase transitions was also progressing during
this time. An early substantial advance is due to Lev D. Landau, who in 1937 introduced the
concept of an order parameter and recognized the crucial role of its symmetries under the change
of external variables [12]. About this concept, Michael Fisher, one of the pioneers of modern
statistical physics, writes [13]:

To assert that there exists an order parameter in essence says: “I may not understand the
microscopic phenomena at all, but I recognize that there is a microscopic level and I believe it
should have certain general, overall properties especially as regards locality and symmetry:
those then serve to govern the most characteristic behaviour on scales greater than atomic.”



1 Introduction

Although Landau’s theory successfully explained the phenomenology of critical behaviour from
a mesoscopic perspective, it was only in the early 1970’s that scale invariance and universality
could eventually be motivated from a more rigorous mathematical point of view. Inspired by
Kadanoff’s block spin idea [14], Kenneth G. Wilson put forward the celebrated renormaliza-
tion group (RG) framework [15, 16] establishing one of the cornerstones of modern statistical
physics and quantum field theory [17]. In 1982, Wilson was awarded the Nobel price for his
groundbreaking contributions to the theoretical understanding of critical phenomena. Steven
Weinberg, a Nobel laureate himself (for his contributions to the electro-weak unification), wrote:!

Ken Wilson was one of a very small number of physicists who changed the way we all think,
not just about specific phenomena, but about a vast range of different phenomena.

It needs to be emphasized that the theoretical frameworks of both Landau and Wilson, in
general do not provide exact solutions. Landau’s theory is based upon the crucial approxima-
tion that local order parameter fluctuations can be regarded as “small” and hence represents
what today is known as an effective mean-field theory. In the renormalization group framework
significant approximations are involved as well, however in a considerably more elaborate
and technical fashion. Results, such as critical exponents, can usually only be computed as
appropriate (however oftentimes not even convergent) series expansions in which tackling
higher-order terms becomes increasingly cumbersome. As a consequence, exactly solvable
systems are of inestimable value. One can imagine that mathematically rigorous solutions
of (even heavily simplified) models of interacting many body systems represent the absolute
exception rather than the rule. It is hence not surprising that being exactly solvable on a regular
two-dimensional lattice eventually cemented the Ising model’s reputation as one of the most
influential physical models of the 20th century. As Michael Fisher puts it [13] ...

...in 1944 a bombshell struck! Lars Onsager [...] computed exactly the partition function and
thermodynamic properties of the simplest model of a ferromagnet or a fluid.

The impact was immediate. Not only did Onsager’s solution provide an extremely deep
theoretical understanding of the problem (involving quaternion algebras), but his mathematical
brilliance caused nothing less then a paradigm shift, as it convincingly demonstrated that
standard thermodynamics was capable of describing critical phenomena in the first place,
which was doubted at the time. Unfortunately, however, Onsager’s methods, as well as other
techniques reproducing his solution in later years [18-22] can not be generalized to three
dimensions, rendering the three-dimensional Ising model a still unsolved problem.

1published in New York Times, June 21, 2013



1.1 Universality

1.1 Universality

Broadly speaking, the critical behaviour at continuous phase transitions is governed by sym-
metry, dimensionality and locality alone. For instance, the Ising model features short-ranged
interactions and binary variables (up or down, on or off, active or passive, occupied or empty,
plus or minus), hence the macroscopic properties remain unchanged under a global change
of signs. In technical terms, one speaks of an invariance under Z, group operations, which
arguably represents a very simple and likewise fundamental symmetry group — and reflects
precisely the reason why Lenz and Ising had not only formulated a model for ferromagnetism
but (unknowingly) discovered one of the most prototypical classes of critical systems. As a
consequence of the Z, symmetry, below the transition (in the ordered phase) the system actually
features two energetically equivalent configurations, associated to positive and negative mag-
netization. When cooled down from a disordered high-temperature configuration of zero net
magnetization, the system will spontaneously select one of the two low-temperature solutions.
This behaviour is known as spontaneous symmetry breaking. In fact, continuous phase transitions
are quite commonly accompanied by a spontaneous breaking of certain symmetries below the
transition.

As mentioned earlier, the Ising model also describes the liquid-vapour transitions of certain
fluids. In this case, the binary degrees of freedom are mapped to regions featuring a density
higher or lower than the average in the medium [23, 24]. A comprehensive overview of other
systems described by the critical behaviour of the Ising model is given in the review article [25].
Rather than listing all of these applications, we select three other, fairly unusual ones which
were studied in recent years:

e Traffic control. Inspired by the grid pattern of roads in major cities, Suzuki et al. [26]
modelled the traffic by assigning traffic signals to each intersection, which feature two
states (red and green) and are controlled in a decentralised way depending on the local
traffic flow. The authors were able to show that their model undergoes a two-dimensional
ferromagnetic phase transition, where the coupling strengths between signals acts as a
temperature-like control variable.

e Pistachio trees. Studying a five year dataset of the nut production in a pistachio orchard,
Noble et al. [27] found large-scale, self-similar spatial and temporal correlations, decaying
as power-laws consistent with the critical behaviour of the two-dimensional Ising model.
According to the authors, this suggests that short-ranged interactions between individual
plants could be taking place through root grafting.

® Stock markets. The Ising model can serve as a toy model for financial markets, if the binary
variable is interpreted as the individual agent’s opinions (buy or sell) [28]. In this case,
imitation serves as the effective interaction between traders whereas private information
or idiosyncratic behaviour mimics the effect of a finite temperature. Moreover, external
news can be interpreted as a fluctuating ambient magnetic field, leading to spontaneous
symmetry breaking between buyers and sellers under equilibrium conditions.

All three examples, although seemingly unrelated to long-range collective behaviour at a first
glance, in fact show Ising-like critical dynamics, hinting at the conceptual beauty of universality
in general and illustrating the continuing significance of the Ising model in particular.
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Systems out of equilibrium

Most systems mentioned so far are defined in terms of thermodynamic equilibrium, which
means that on the microscopic level, the system reaches a state where there is no net flow
of matter or energy. However, universal long-range correlations can also be found in critical
systems which are generically out of equilibrium, i. e. which feature explicit temporal dynamics.
The conceptually simplest class of transitions is found in the so-called directed percolation (DP)
process. Originally, this process was intended to mimic filtering through porous media in a
gravitational field [29]. Interpreting the dynamics as a spreading process, it furthermore can be
used as a toy model for epidemics [30], where a lattice site represents an agent which can be
either healthy or infected. The dynamics comprises spontaneous healing and random infection
of immediate neighbours. Somewhat related, the model has also been used to describe the
dynamics of forest fires spreading under the influence of wind [31]. These applications already
hint at the rich variety of systems that exhibit DP behaviour. In fact, due to its simple dynamic
rules, it can be regarded as the prototypical class of non-equilibrium systems, analogously to
the Ising model in the equilibrium case. Consequently, since its introduction it has received
considerable attention and has been investigated through numerous theoretical, numerical
and more recently also experimental realizations [32-34]. Specifically, on a discrete lattice,
DP behaviour is typically realized by the contact process (CP), comprising a number of local
reaction-diffusion processes (self-destruction, diffusion, coagulation and offspring production)
and their corresponding rates. Systems in the DP class exhibit a phase transition, which in the
case of porous media separates the permeable from the impermeable regimes. In the epidemic
language, the two phases correspond to a disease either being able to spread throughout
the system or becoming extinct eventually. Note that in both descriptions the latter phase is
characterized by an absorbing state, from which the system can not escape.

It turns out that just as for the equilibrium case, also non-equilibrium critical phenomena can
be categorized into universality classes, as they are governed by long-range collective behaviour
at the transition and accordingly exhibit power-law behaviour of observables with universal
critical exponents. Apart from DP, another important non-equilibrium universality class which
will be considered in this thesis, is the so-called Manna sandpile model. Its discovery was inspired
by the concept of self-organized critical (SOC) systems, which had been introduced by Per
Bak, Chao Tang and Kurt Wiesenfeld (BTW) in 1987 [35, 36] and describes systems reaching a
critical configuration through their own dynamics, without the need for a fine-tuning of external
parameters (such as the temperature or the infection probability). In particular, BTW considered
a system where each lattice site harbours a number of grains. Driven by a random external
injection of new grains, the sites build up piles which eventually topple and redistribute the
grains to their neighbours. This can trigger whole cascades of events, so-called avalanches,
which obey well-defined power-law distributions, resulting in a scale-invariant appearance
of the system [37]. Only few years later, Subhrangshu S. Manna presented a variation of the
original BTW model with stochastic rather then deterministic toppling rules [38], establishing
the Manna universality class. We consider a conserved version of the model, the so-called
conserved stochastic sandpile model (CSSM), where the external dropping mechanism is removed,
but accounted for by a change of boundary conditions from open to periodic ones. As a result,
the system shows a highly fluctuating behaviour and a phase transition into multiple absorbing
states, given by configurations which prohibit further toppling events.
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1.2 Disorder

Traditionally, the models introduced above are studied on a regular structure (such as a square
lattice in two dimensions). Paired with periodic boundary conditions, this renders the system
translationally invariant, a property which can be heavily exploited in analytical calculations
and simplifies numerical studies as well. However, is this a faithful description of real systems?
In the case of magnetic models, the discrete lattice naturally corresponds to the regular crystal
lattice in a solid. Even though most atomic lattices can be considered as somewhat regular,
in general they contain defects, such as impurities or vacancies [39, 40], which might even
be intentionally introduced (e.g., doping of semiconductors). Moreover, crystalline solids
may exhibit dislocations or deformations on an atomic scale [41], possibly appearing during
the growth process or caused by external (mechanical) forces. Finally, there are materials
with intrinsically disordered atomic structure, so-called amorphous materials [42], which also
comprise certain metallic glasses [43, 44], some of which show magnetic behaviour [45]. It is
hence clear that perfectly regular lattices in general can only be regarded as an approximation
to real solids, which are naturally imperfect. Turning to non-equilibrium phenomena, a similar
picture emerges, as a perfectly regular distribution of spreading agents in an epidemic or of
trees in a forest can certainly not be regarded as very realistic. It is therefore crucial to study
complex systems on disordered geometries as well, in order to obtain a more complete picture of
their behaviour in real systems.

Investigating the influence of disorder requires a very important distinction. So-called
quenched disorder is characterized by that fact that it remains static (frozen) on the relevant
time scales of the physical system, whereas annealed disorder evolves dynamically. In the latter
case, disorder degrees of freedom (such as the positions of impurities) can be interpreted as
fluctuating together with the thermodynamic variables. Hence both can be treated on equal
footing, which makes annealed disorder considerably simpler to deal with in terms of analytical
and numerical methods. In this work, however, we exclusively focus on quenched randomness,
which, despite calling for more sophisticated techniques, is typically a more realistic model
of real disorder (at least for the systems considered here) and furthermore presents a rich
phenomenology related to critical phenomena. In practice, there is a variety of different ways
in which quenched disorder can be implemented. When modelling lattice imperfections, one
would typically resort to diluted structures, where starting from a regular lattice, a fraction
of sites or bonds is randomly removed, as illustrated in the left panel of Figure 1.2, where the
individual nodes end up with a varying number of neighbours. In a related construction, one
could also have random interaction strengths among neighbours instead of spatially uniform
ones. In both cases, certain regions of the system interact more tightly than others, and as a
consequence, might respond differently to changes of external variables.

Besides disordered structures originating from regular ones by, for instance, random dilu-
tions or deformations, one might go one step further and place the nodes randomly in space.
Connecting the cloud of points according to given geometric rules then gives rise to what
is called topological disorder. 1If, moreover, interactions are solely local, i. e. only short-ranged
links between nodes exist, one speaks of proximity graphs. One such construction is the random
geometric graph, where each node is connected to all nodes within a given fixed distance, as
can be seen in Figure 1.2. However, the possibilities are essentially endless here. Linking rules
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Figure 1.2 | Disordered lattices. The left panel represents a regular square lattice, where a number of sites
have randomly been removed. The middle and right panel illustrate realizations of topological disorder,
where the positions of the points are randomly chosen.

might, for instance, attempt to model certain real materials, or mimic their growth processes or,
still, simply display a theoretically interesting property. From a more abstract, theoretical point
of view, the exact realization of the disorder might however only play a secondary role. One
is more interested in identifying the overarching characteristics which influence the physical
model, instead of focusing on individual specifics. In the context of critical phenomena, the
central question, and also the key subject of this work, can be stated as follows:

Under the influence of quenched disorder, will the universal properties of a continuous phase transition
be altered or do they remain unaffected by this perturbation?

In fact, the study of critical phenomena on random geometries has a considerably long
history, essentially dating back to 1974 when Arthur Brooks Harris put forward his celebrated
relevance criterion, which successfully explains the influence of spatially uncorrelated disorder
(e.g. random dilution) [46, 47]. His criterion states that the critical behaviour of a physical
model is stable against quenched spatial disorder whenever

dv > 2,

where v is the critical exponent of the correlation length of the model and d denotes its dimen-
sionality. Although originally derived from heuristic arguments, the criterion can be motivated
by explicit dimensional analysis of the corresponding field-theoretic setup. Driven by an in-
creasing interest in the physics of spin glasses starting in the late 1970s [48, 49] and the discovery
of the replica trick at the same time, uncorrelated quenched randomness could soon be handled
by analytical techniques, such as the renormalization group framework. Consequently, the
physics of complex systems on diluted regular structures is fairly well understood today.

In contrast, only little is known about the influence of topological disorder. Due to the sig-
nificant increase in computing power over the last decades, numerical simulations on random
lattices have been feasible since the early 1990’s [50, 51]. Simulations particularly benefited from
significant improvements in the field of numerical Monte Carlo sampling techniques discovered
only a few years earlier, such as efficient cluster algorithms and histogram reweighting meth-
ods [52-56]. Consequently, since this time, a considerable number of basic models of statistical
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physics, most notably the ferromagnetic Ising model and its generalizations (Potts, XY, Blume-
Capel model, etc.) [50, 57-63], spin glasses [64], as well as non-equilibrium phenomena [65, 66],
have been simulated on topologically disordered structures. The large majority of these studies
concentrated on the so-called random Delaunay triangulations (illustrated in the right panel of
Figure 1.2), strongly related to the well-established partition of space into Voronoi cells.

Most of these studies provided valuable information and could, for the specific model they
were considering, answer the question raised above on the relevance of disorder on the phase
transition. However, a general understanding was still lacking, until in 2014 Barghathi and
Vojta [67] made a significant step towards a general relevance criterion for disordered structures,
when they, motivated by earlier contributions of Luck [68], put forth what we will call the
Harris-Barghathi-Vojta (HBV) criterion. According to their line of reasoning, the decay of spatial
fluctuations of the local coordination numbers on different length scales governs the stability of
the critical point. More precisely, they found disorder to be irrelevant when

av>1,

where a denotes a dimension-dependent geometric exponent of the lattice. The HBV criterion
successfully explained all existing numerical results known at the time. Consequently, from a
phenomenological point of view, with topological disorder not within the reach of analytical
methods, at this point the topic seemed to be settled.

1.3 Results

In this work we seek to further advance the understanding of critical phenomena on topo-
logically disordered structures. This is done by systematic numerical Monte Carlo studies of
a number of physical models on specifically designed geometries. A specific goal is to shed
light on the role of coordination number fluctuations which are believed to constitute the
main relevant variable encoding the randomness of disordered graphs in the context of critical
behaviour [67-69]. Surprisingly our results raise considerable doubt whether this assumption
is indeed correct and suggest that geometric properties beyond coordination numbers need to
be considered. Furthermore we are able to explicitly construct a setup which even violates all
existing relevance criteria. Overall, the results of the present thesis reveal substantial shortcomings
in the current understanding of critical phenomena on topologically disordered structures and
suggest that the quest for a better understanding needs to be continued.

As already indicated, all major conclusions of this work primarily rely on results of specifically
tailored numerical studies. Due to the necessary averaging over disorder configurations, as well
as the demand for large system sizes in order to reduce finite-size effects, the corresponding
simulations inevitably require high-performance computing (HPC) resources. These were
provided by the JULIA and ITPA clusters, both located at Wiirzburg University, as well as by the
Leibniz Supercomputing Centre through the GCS Supercomputer SuperMUC. In total, numerical
calculations took about five million core hours, equivalent to a modern Intel CPU.

Even though all activities of the present work share the common goal of advancing the
understanding of critical phenomena on topologically disordered structures, the results can be
separated into five major parts, which will be summarized in the following;:
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Violation of the Harris-Barghathi-Vojta criterion

Physical Review Letters 121, 100601 (2018) [P1],
in collaboration with J. S. E. Portela and F. Goth

As mentioned earlier in the introduction, in 1974, Harris proposed his celebrated criterion:
Continuous phase transitions in d-dimensional systems are stable against quenched spatial
randomness whenever dv > 2, where v is the clean critical exponent of the correlation length.
Forty years later, motivated by violations of the Harris criterion for certain lattices such as
Voronoi-Delaunay triangulations of random point clouds and inspired by earlier works of
Luck [68], Barghathi and Vojta [67] put forth a modified criterion for topologically disordered
systems, av > 1, where a is the disorder decay exponent, which measures how fast coordination
number fluctuations decay with increasing length scale (HBV criterion).

We present a topologically disordered lattice with coordination number fluctuations that
decay comparably slow (similar to those of conventional uncorrelated randomness), but for
which the clean universal behaviour is preserved, hence violating even the modified criterion.
Specifically, we define the DT lattice: a Delaunay triangulation of a Poissonian point cloud,
furnished with additional local bonds. This lattice is constructed from a usual DT triangulation
to which a number of bonds between next-nearest neighbours are randomly added. We find
the aforementioned disorder decay exponent for the DT to be a = 1, which follows from the
additional bonds being a source of uncorrelated disorder, which decays more slowly than the
coordination number fluctuations of the original DT lattice. The HBV criterion therefore predicts
that our construction should not display clean universal behaviour for any universality class
with v < 1, such as directed percolation (DP), where v ~ 0.73. In order to verify this prediction,
we perform extensive numerical simulations of the contact process on the DT lattice and
find strong indication of unchanged clean universal behaviour, hence clearly contradicting the
predictions of HBV and Luck.

The Constant Coordination lattice

Physical Review E 97, 022144 (2018) [P2],
Physical Review Research 1, 033061 (2019) [P3],
in collaboration with J. Richter and |. S. E. Portela

We develop a stochastic algorithm for constructing a topologically disordered (i. e. non-regular)
spatial lattice with nodes of constant coordination number, the CC lattice, presenting a novel type
of connectivity disorder. Among other applications, physical systems such as certain amorphous
materials with low concentration of coordination defects are an important example of disor-
dered, constant-coordination structures in nature. In a first publication [P2], we perform large
scale Monte Carlo simulations of the equilibrium spin-1/2 Ising model on a two-dimensional
realization of this lattice, and using finite-size scaling techniques, find disorder-dependent
effective critical exponents, similar to diluted 2D Ising systems, showing thus no clear uni-
versal behaviour. As our original CC algorithm presented an unfavourable computational
complexity of O(N?), where N denotes the number of sites the lattice is constructed from, as
well as some inconvenient tuning parameters related to the applicability of finite-size scaling
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methods, we dramatically improve the construction procedure of the CC lattice in a follow-
up publication [P3]. The improved algorithm reduces the algorithmic complexity to O(N)
and eliminates any issues related to finite-size properties entirely. As a result, the CC lattice
presents an alternative to traditional proximity graphs which, especially in higher dimensions,
is significantly faster to build. As an application, we characterize the criticality of the 3D Ising
model on the CC lattice. We find that its phase transition belongs to the clean Ising universality
class, establishing that the disorder present in the 3D CC lattice constitutes a non-relevant
perturbation for this model in the sense of renormalization group theory.

Since all existing relevance criteria for topological disorder [67, 68] rely on coordination
number fluctuations, they cannot be applied to our CC lattice. This raises the question, for
which classes of transitions this type of disorder can be a relevant perturbation. Hence, in
addition to the extensive studies of the two- and three-dimensional Ising model, reported above,
we investigate also the non-equilibrium phase transition of the two-dimensional contact process
on the two-dimensional CC lattice, in order to cast even more light on this quest. Our results
suggest, that in this case, the disorder is relevant, as the dynamical scaling behaviour turns out
non-conventional, which rules out the directed percolation universality class.

Continuous phase transitions on random Voronoi graphs

Physical Review E 100, 062118 (2019) [P4],
in collaboration with J. S. E. Portela

The Voronoi construction is ubiquitous across the natural sciences and engineering. In statistical
mechanics, however, only its dual, the Delaunay triangulation, has been considered in the
investigation of critical phenomena. We set to fill this gap by studying the Ising model, the
contact process, and the conserved stochastic sandpile model on two-dimensional random
Voronoi graphs. Particular motivation comes from the fact that these graphs have vertices of
constant coordination number, making it possible to isolate topological effects of quenched
disorder from node-intrinsic coordination number disorder. Using large-scale numerical sim-
ulations and finite-size-scaling techniques, we are able to demonstrate that all three systems
belong to their respective clean universality classes. Therefore, quenched disorder introduced
by the randomness of the lattice is irrelevant and does not influence the character of the phase
transitions. We report the critical points to considerable precision and, for the Ising model, also
the first correction-to-scaling exponent.

Dual Tessellation

submitted for publication in Scientific Reports (preprint: arXiv:1907.05809),
in collaboration with J. S. E. Portela and F. Goth

Combining our previous findings, it becomes clear that existing criteria predicting the relevance
of disorder on continuous phase transitions, although successful for a wide range of system
can not be applied to some structures and even result in incorrect predictions on others. As a
result, an area of research which was already settled is effectively re-opened, since the quest
for a general criterion must continue. In particular, our numerical results strongly suggest that

11
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coordination number fluctuations might only be a manifestation of a more general variable,
describing the spatial structure of disorder. We strive to take a couple of first steps towards a
more general description, by investigating the connectivity properties of the lattice in detail.
We design two analysis tools that seem to succeed in qualitatively distinguishing relevant
from non-relevant topological disorders. The so-called dual tessellation generalizes the graph-
theoretical concept of duality from planar to non-planar graphs. Specifically, we devise an
algorithm which decomposes the lattice into generalized faces, so-called polygons with weights,
which characterize the connectivity of the lattice locally. Then, a HBV-type coarse-graining
analysis is performed on this set of polygons, which can be related to the correlation length
divergence at the critical point. As a second approach we replace all links in the lattice by
Hookean springs and let the system relax. It becomes clear that some graphs be will strongly
distorted under this transformation, whereas others present themselves essentially stable, i. e.
structurally invariant. It turns out that the stability of a graph in this setup can be somewhat
related to its influence on critical systems, even though we can not provide a rigorous relation.

MARQOYV framework

to be released; in collaboration with F. Goth, M. Déring, |. Richter

All numerical simulations of equilibrium models have been carried out using the MARQOV
(MASSIVELY PARALLEL QUENCHED DISORDER ON VARIABLE GEOMETRIES) code framework, which
was developed as a part of the present work and has recently been granted funding from
the Bavarian Competence Network for Technical and Scientific High Performance Computing
(KONWIHR). The project currently is in the state of a working prototype and offers a convenient,
HPC-optimized workflow for the simulation of disordered canonical spin systems, using state-
of-the-art numerical techniques and algorithms. All performance critical parts are written
in C++14, whereas the data analysis is carried out in Jupyter notebook templates, written in
Python 3. A comprehensive overview over the current features will be given in Section 4.2.

1.4 Outline

This thesis consists of five major parts, given by the chapters 2-6. The structure is schemat-
ically illustrated in Figure 1.3, where arrows denote the dominant dependencies among the
corresponding chapters. A detailed outline is given in the following:

¢ Chapter 2 lays the necessary theoretical groundwork. We introduce the phenomenology
of phase transitions as well as their classification scheme. Focussing on continuous
transitions, we discuss the important concepts of universality and scaling. Then, the
equilibrium spin-1/2 Ising model and its generalizations to higher symmetries, as well as
the non-equilibrium contact process and Manna sandpile model are introduced. Later in
this chapter, we explain how the scaling behaviour at criticality is modified in the presence
of a finite geometry, establishing the finite-size scaling theory. Finally, we demonstrate
how quenched randomness can be implemented and elaborate on the current state of
research regarding the stability of continuous phase transitions on this type of disorder.

12
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Chapter 3 Chapter 6
Topological Road Towards
Disorder New Criterion
Chapter 2 Chapter 5
Theoretical Simulation
Foundations Results
Chapter 4
Numerical
Methods

Figure 1.3 | Schematic structure of this thesis. Blocks denote individual chapters and arrows indicate the
dependencies. Double framed blocks represent own results. Introduction and conclusion are omitted.

¢ In Chapter 3, a comprehensive overview over the relevant disordered structures consid-
ered in this work, is provided. After a brief summary of established proximity graph
constructions, the larger part of this chapter concentrates on the constant coordination lattice,
which was newly developed during the project. We elaborate on the basic idea of this
construction before presenting the explicit algorithmic details. Also, relevant properties
such as the computational complexity, dimensionality and possible generalizations are
discussed. The chapter is concluded with an analysis of coordination number fluctuations
for all random lattices considered.

¢ In Chapter 4, we introduce the necessary computational techniques for the simulation of
classical equilibrium spin models. After a brief exposition on the essential aspects of Monte
Carlo sampling, the implementation of update algorithms and histogram reweighting
methods is presented. Furthermore, we define observables and expand on the specific
finite-size scaling relations used later in the analysis. Also, detailed attention is given
to the analysis of statistical errors. In a similar manner, numerical algorithms for non-
equilibrium systems are presented in the second part of this chapter, including dynamical
simulations, starting from a single seed or a fully occupied lattice, as well as methods
probing the so-called quasi-stationary state. In this context, we review both static and
dynamic scaling properties of non-equilibrium phenomena in detail and discuss how they
are affected in the presence of disorder.

* Chapter 5 presents the detailed results of our numerical Monte Carlo simulations.

¢ In Chapter 6, we give a brief summary of the numerical results and their immediate
implications. Motivated by the apparent shortcomings in the current understanding of
critical phenomena on topologically disordered graphs, we introduce two conceptually
new ways to categorize disordered structures, the dual tessellation and elastic relaxation.

¢ Chapter 7, concludes this thesis. The numerical results, and their implications are sum-
marized in detail, before, in the Outlook, Chapter 8, several further interesting research
directions, based on the findings of this thesis, are suggested.
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CHAPTER

Theoretical Foundations

“Es ist das schonste Los einer physikalischen Theorie, wenn sie
selbst zur Aufstellung einer umfassenden Theorie den Weg weist,

in welcher sie als Grenzfall weiterlebt.”

— Albert Einstein

2.1 Fundamentals of phase transitions

This section gives a brief introduction on the phenomenology of phase transitions. In particular, after presenting
their modern classification scheme, we concentrate on continuous transitions and introduce the important
concepts of universality and scaling. The scope of this chapter is chosen as to provide the necessary groundwork
for this thesis. More comprehensive reviews can be found in standard textbooks on critical phenomena [70-75],

which are here the implicit references.

Phase transitions are part of our everyday life. The most immediate example are the three phases
of water, namely solid (ice), liquid and gas (vapour) and the respective transitions between them,
most notably melting, freezing, boiling and condensation. However, phase transitions can also
occur away from states of matter and thermodynamic equilibrium, such as jamming transitions
on a road. If the density of cars exceeds a critical value, smooth flow becomes unstable and
changes phase into a traffic jam, representing a (non-equilibrium) transition [76]. Generally
speaking, a phase transition is characterized by a drastic change of macroscopic properties when
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Figure 2.1 | Phase diagram of water. The sublimation curve is drawn in red, the evaporation curve in
blue and the melting curve in green. Specifically, the solid green line represents the melting/freezing
transition of water, which is anomalous compared to most other substances (dashed green line). Grey
dots mark the normal freezing and boiling points of water.

certain system parameters are smoothly varied. The qualitatively distinct states of the system
on either site of the transition are called phases. They can typically be characterized by a small
number of macroscopic observables. Returning to the example of water, it is clear that the three
phases comprise entirely different microscope structures. In the solid state, water molecules are
rigidly packed close together and form a crystalline lattice whereas in the liquid phase weaker
intermolecular forces allow for a movement of individual particles. Hence, they are no longer
regularly arranged and can even slide past each other, although their mean separation is still
small. Finally, in the gaseous phase, individual molecules are effectively unbound and the
typical distance is much greater then the molecule size. Figure 2.1 shows the phase diagram of
water as a function of the external parameters temperature and pressure, where the transitions
are marked by solid lines.

The physical origin of phase transitions in classical thermodynamic equilibrium can be
understood as an interplay between the internal energy E and the entropy S of a system, both
contributing to the Helmholtz free energy, defined as

F=E-TS. @.1)

Whereas the internal energy favours an ordering of individual degrees of freedom?, entropy
naturally privileges disorder. As the system seeks to minimize F, it is clear that for decreasing
temperature T, the entropy term becomes less dominant. At the point where its contribution
remains too weak to effectively counter the energy term, the system falls into an ordered state.
In this case, the temperature is called the control parameter as it drives the transition. Quantum
phase transitions on the other hand are driven by quantum fluctuations at zero temperature,
rather than by thermal fluctuations [77, 78]. Notice, however, that in the present work only
classical phase transitions will be considered.

%In the case of water molecules, the arrangement of individual atoms generates an effective dipole moment. The lower
the temperature, the stronger the individual dipoles tend to align with their neighbours.
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Table 2.1 | Phase transitions and their order parameters. Examples adopted from [73].

System Transition Order parameter

H,O0, *He, Fe liquid—solid shear modulus

Xe, Ne, N,, H,O liquid—gas density difference

Fe, Ni ferromagnet-paramagnet magnetization

RbMnF;, La;CuOy4 antiferromagnet—paramagnet  staggered magnetization
“He, 3He superfluid-normal liquid superfluid density

Al, Pb, YBayCu3Og 97 superconductor-metal superfluid density
Li,Rb, H Bose-Einstein condensation condensate

In the theory of critical phenomena, the central property of the system is represented by
the order parameter which distinguishes between the different phases on either side of the
transition. This parameter is not necessarily macroscopic, as can be seen in Table 2.1, where
order parameters for a number of different systems are listed. Usually, in the ordered phase,
it has a finite positive value and vanishes to zero in the disordered phase.®> However, order
parameters are not restricted to being scalar quantities, but may be more elaborated objects,
such as an n-component vector or a elements of a group.

From a more technical point of view, the abrupt change of macroscopic system properties
at the transitions is reflected in the thermodynamic potential used to describe the system
(in our case the free energy) becoming non-analytic at a specific point in phase space. As
a result, thermodynamic quantities, which can be written as derivatives of the free energy,
may become discontinuous. This observation was the basis for a historic classification scheme
by Paul Ehrenfest [79]. Concretely, phase transitions were categorized according to the first
derivative of the free energy which presented discontinuous behaviour, resulting in first-
order, second-order and higher-order transitions. In a more modern classification only the
first derivatives of the free energy are considered and one distinguishes between continuous
and discontinuous phase transitions. Phenomenologically, discontinuous phase transitions are
characterized by the emergence of a latent heat and a co-existence of phases at the critical point.
This is often accompanied by hysteresis or memory effects due to the macroscopically long time
the system requires to relax from metastable states of the old phase after crossing the transition.
The correlation length, which denotes the spatial length scale over which individual microscopic
degrees of freedom are correlated with each other, in general remains finite. Examples for
discontinuous phase transitions include melting of three-dimensional solids and gas-to-liquid
transition (condensation).

Continuous transition are characterized by all first-order derivatives of the associated free
energy being continuous. A special type are so-called infinite-order transitions, arising, for
instance, in the presence of topological constraints (such as the Kosterlitz-Thouless transition of
the two-dimensional XY model [80]) or from quantum fluctuations. A key property of contin-
uous transitions is that, at the critical point, fluctuations on all length scales become equally

30rdering does not necessarily refer to real space coordinates or orientations, but can also take place in more abstract
spaces, such as the momentum space, in the case of superfluid helium.
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important, resulting in a scale invariant appearance of the system. Consequently, as correlations
over all distances are present, the correlation length becomes effectively infinite at the transition*
and physical quantities behave non-analytically. The degree of these singularities is described
by so-called critical exponents. In a system undergoing a paramagnetic-to-ferromagnetic phase
transition®, a convenient choice for the control parameter is given by the reduced temperature,
defined as

T=—, (2.2)

measuring the distance from the critical point T.. The divergence of the correlation length can
hence be written as

En~vtY (2.3)
which defines the associated critical exponent v. Moreover, the magnetization per spin, acting

as the order parameter of the transition, diverges as

1 (oF
- o~ (—1)B <
m v <ah>T (—71) for T<T, (2.4)

at vanishing external field /&, where V denotes the number of spins in the system. Similar
relations hold for the susceptibility and the specific heat, given by

1 [/ 9?F om
- _ _ — - ~ -Y
=y (5), = (5),~ 25)
and
T [ d°F u
c=—3(5m),~ I (20

respectively, where ¥ and « denote the corresponding critical exponents.

It has been found experimentally that various physical systems obey power laws near their
critical point, already before an appropriate theoretical framework was available. In a celebrated
article [11], Edward A. Guggenheim showed in 1945 that in a suitably rescaled temperature-
density plot (see Figure 2.2), data points of several different liquid-gas systems collapse onto one
single curve. The order parameter exponent, in this case given by the relation (p — p;) ~ (—1)?,
was found to be remarkably close to 1/3. Strikingly, the same exponent was found in magnetic
phase transitions [81], providing strong experimental evidence that the character of continuous
transitions is only determined by few fundamental (global) system properties, regardless of
the details of the atomic interactions. As a matter of fact, experimentally determined critical
exponents are invaluable in verifying the accuracy of theoretical predictions, which oftentimes

4Experimentally, this gives rise to the phenomenon of critical opalescence at the critical point of fluids (endpoint of the
vaporization curve in the phase diagram Figure 2.1), where liquid and gaseous phase become indistinguishable. The
typical size of density fluctuations becomes comparable to the wavelength of light and hence drastically changes the
optical appearance of the medium at criticality.

5For the sake of simplicity we stick to the magnetic language in this section. A generalization to other types of
transitions is straightforward.
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Figure 2.2 | Experimental universality. Data collapse of liquid-gas coexistence curves of several fluids,
as presented in Reference [11], indicating a strikingly similar critical behaviour. The solid black line
represent a power-law fit with an exponent 3 = 1/3 (see text).

are only available as perturbation series expansions of associated field-theoretical models or
from numerical Monte Carlo simulations. To this date, the most precise measurement of any
critical exponent was performed for the specific heat at the superfluid transition of “He in
micro-gravity aboard the space shuttle “Columbia”, where a value of o« = —0.0127 4- 0.0003
was found [82, 83]. Interestingly, these results represent a noticeable discrepancy (about 8c)
compared to the most precise numerical estimates from Monte Carlo simulations of the three-
dimensional XY model [84, 85], which might eventually be resolved through very accurate
estimates recently provided by conformal bootstrap techniques [86, 87].

As already mentioned, at continuous transitions, due to the diverging correlation length,
microscopic details are washed out. This gives rise to the important concept of universality,
according to which the microscopic details of the system are largely irrelevant. The character
of the phase transition (encoded in the values of the critical exponents), depends only on the
dimensionality of the system, the symmetry of its order parameter and the range of interactions.
As as consequence, surprisingly different systems fall into the same universality class and hence
show the same exponents, such as the transition of liquid helium and the magnetic XY model,
as was already pointed out above. Moreover, the emergence of self-similar behaviour at the
critical point gave rise to the scaling hypothesis originally introduced in the 1960s by Widom
[88, 89] with contributions of other authors (compare, e. g. [14, 90-93]). Sticking to magnetic
language, the free energy density depends on the reduced temperature T and the external field
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h and can be written as the sum of a regular and a singular part

f(T, 1) = freg(T, 1) + feing (T, 1), 2.7)
where the latter is a generalized homogenous function, given by
Foing (T, 1) = A7 fying (AYTT, AViR), (2.8)
with A, yr and y;, being scalar numbers. We take AY7|7| = 1 and obtain
foing (T, 1) = TV fng (1, | 7|70/ ¥h) = £ 4/¥ W (hfr90/ V), 2.9)

As can be seen, the free energy can be expressed by a universal scaling function (in this case
denoted by ¥) depending only on a single argument. Note that we added an index to ¥, in
order to account for the behaviour below and above the transition. The exponent A = y./y, is
often called gap exponent. Moreover, note that although Widom wrote down Equation (2.8) as an
educated guess, it can be rigorously derived using renormalization group (RG) techniques [75],
which will be briefly discussed later. In the RG framework, A represents the factor under which
the system is rescaled and the exponents y; and y;, represent the scaling dimensions of the
(relevant) scaling fields u; = 7 and uy, = h.

In order to obtain relations between the critical exponents introduced earlier and the scaling
fields, we compute the corresponding derivatives, e. g. for the magnetization

m(t,0) = af(a;’ ") ~ d=y/yr (2.10)
h=0

which allows us to identify f = (d — y)/y~. Differentiating again yields the susceptibility
exponent y = (d — 2y;,)/y+. A similar relation can obtained for the specific heat

2
C(r,0) = w ~ Y2, (2.11)

yielding « = 2 — d/y.. Finally, we can obtain another exponent §, defined on the critical
isotherm as

m(0,h) ~h'/®  for  h—0 (2.12)

by setting AYih = 1 in Equation (2.8) and differentiating with respect to the external field at
T =0. We find 6 = y;,/(d — y;,). As already mentioned, there are only two relevant scaling
fields, hence the exponents «, 3, ¥ and 6 are not independent and the knowledge of two of them
fully characterizes the universality class. Using the relations we found above to eliminate y;
and y;, one finds the following scaling relations

a+28+y=2 (Rushbrooke) (2.13)
y=p(6-1) (Widom). (2.14)

So far we have not considered the critical exponent of the correlation length v. How is
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it related to the other exponents? Answering this question requires us to consider another
important quantity, the two-point correlation function, defined by

G(x1,x2,7,h) = (P(x1)P(x2)) — (d(x1))(D(x2)), (2.15)

where ¢(x) represents the local value of the order parameter at spatial position x.° At criticality
the system is scale-invariant, hence we can safely assume that G depends only on the distance.
Choosing x; as the origin this is G(x, T) at vanishing external field, where |x1| = x. Using
similar scaling arguments as above (i. e. assuming that G(x, 7) is a generalized homogenous
function) leads to

G(x,7) = A2=2AG(A~ 1y, AV ). (2.16)

This general form allows us to extract the behaviour at criticality by setting T = 0 and A = x,
resulting in

G(x) ~ x2m=2d (2.17)

which means that the correlation function decays algebraically with distance at the critical point.
Since the corresponding critical exponent is typically denoted by G(x) ~ x~4+2~1, we obtain
n=d—2y,+2.

Finally, using the fact that, away from the critical point, the correlation function should
decay exponentially as e */¢ for large distances, by taking A"t = 1 we find v = 1/y., which
eventually leads to the following scaling relations

vy=02-n)v (Fisher) (2.18)
2—a=dv (Josephson). (2.19)
Due to the explicit appearance of the dimensionality of the system, the last relation is termed

hyperscaling relation. It is only valid below the upper critical dimension, which will be introduced
in the following section.

%In this work we consider lattice models, therefore ¢(x;) might be thought of as spins on discrete lattice positions x;.
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2 Theoretical Foundations

2.2 Equilibrium systems

In this section we concentrate on continuous phase transitions in thermodynamic equilibrium. Specifically,
the Ising universality class and its generalization to higher symmetries are introduced. Moreover, we give an
overview of the corresponding mean-field approximation and discuss how the phenomenological Landau theory
captures the essential qualitative features of the phase transition. Also the renormalization group approach is
briefly discussed.

2.2.1 Ising model

The prototypical physical system showing a continuous phase transition with individual degrees
of freedom behaving collectively over long distances is the celebrated Ising model [2], defined by
the Hamiltonian

H=- Z Jijsisj — Zhisir si==+1, (2.20)
(i) i

where s; are spins on discrete lattice positions. Individual spins couple only to their nearest
neighbours, which is denoted by (i, j). Moreover, J;; encodes the coupling strengths between
sites 7 and j and h; is the external field at site i. The model can be interpreted as a toy model for
uniaxial magnets where the spins can only align along a preferred direction. The system is said
to be ferromagnetic if the J;; are positive, which means that a parallel alignment of neighbouring
spins is preferred, as it minimizes the internal energy. Likewise, taking J;; < 0 results in antifer-
romagnetic interactions, where spins tend to align in an anti-parallel manner. As a consequence,
these systems usually feature multiple ground states of minimal energy, depending on the
structure of the lattice [94], a phenomenon which is usually referred to as geometrical frustra-
tion [95]. Moreover, if the system contains a mixture of ferro- and antiferromagnetic interactions,
it will present an even richer variety of frustration effects and is commonly referred to as a
spin glass (see [96] and references therein). In the present work, however, we only consider
non-negative couplings, i. e. purely ferromagnetic interactions.

We assume the system to be in contact with a heat bath of temperature T (or inverse tempera-
ture 3 = 1/T) which allows for the exchange of energy.” Hence, it is formally described by a
canonical ensemble and the partition function can be written as

Z(Bh) =Y e F%, (2.21)
{s1)

where the sum runs over all possible assignments of spin values to lattice sites. The thermal
expectation value of a macroscopic observable O can be expressed as

(0) = % {Z} Oe PX, (2.22)

7We trust the reader to distinguish between inverse temperature and order parameter exponent which are both
denoted by the symbol 3 in the literature.
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2.2 Equilibrium systems

As can be seen, in the case of uniform couplings J;; = | and spatially homogenous external
field h; = h, the system properties depend on two parameters only, given by the temperature T
and the strength of the external field h. At vanishing external field, # = 0, the model exhibits a
continuous phase transition at some critical temperature T,. Below that temperature, it features
an ordered phase where the majority of spins are aligned in the same direction. Above T,
thermal fluctuations dominate and destroy the ordering.

Although the Ising model was originally introduced as a model for magnetism, its actual
realm of application reaches far beyond that area. For instance, the Hamiltonian (2.20) is
mathematically equivalent to a toy model for a lattice gas. In fact, phase transitions in quite
diverse systems, featuring short-ranged interactions and a scalar order parameter, have been
found to belong to the Ising universality class. Besides uniaxial magnets, it describes, e.g.
experimental liquid-vapour transitions [97] and binary mixtures, ionic fluids [98], certain
transitions in high-energy physics (see references in [25]), voter dynamics [99] and can even be
found in fairly unexpected areas, such as neuroscience [100] and, as was already mentioned in
Section 1, the dynamics of traffic signals [26], pistachio trees [27] and finance markets [28].

Whereas an analytical solution for the one-dimensional Ising model can be obtained relatively
easily [2], tackling the two-dimensional model already turns out to be highly non-trivial, even
in the absence of an external field. The Ising model on a square lattice was solved in a much-
celebrated work by Lars Onsager in 1944 [101], who obtained an explicit expression for the free
energy of an infinite system [22], given by

1 27 27w 5 . 203
—Bf = ln2+ﬁ/0 d@l/o do6, In {cosh (2B]) — sinh(2])(cos 6, +cos€2)} , (2.23)

from which the critical temperature (for a square lattice)

T.—— 2 02269185, .. (2.24)

In(1+v2)

and critical exponents (see Table 2.2) can be rigorously derived.® For a detailed historical
overview, we refer the reader to the excellent reviews [6, 104], which particularly discuss
the impact of Onsagers solution on the field of critical phenomena. A modern summary of
analytical approaches can be found in standard textbooks, such as [105]. In three dimensions,
the Ising model remains unsolved. In this case, critical exponents are only approximately known
from numerical Monte Carlo simulations, high-temperature series expansions, field-theoretic
methods and - very recently — from conformal bootstrap techniques [87]. We list the critical
exponents for several dimensions in Table 2.2.

Mean-field theory

A constructive approach, which allows a qualitative insight into the phenomenology of the
Ising model is given by a so-called mean-field (MF) approximation, which is discussed in the
following. Although it might seem a crude approximation, it describes the properties of the
phase transition correctly. One starts by replacing the neighbouring spins which influence a

8The exact expression for T, was in fact already found a few years earlier by H. Kramers and G. Wannier who
discovered a duality between high- and low-temperature expansions of the free energy [102, 103].

23



2 Theoretical Foundations

Table 2.2 | Critical exponents of the Ising model in two and three dimensions as well as in the mean-field
regime. The three-dimensional values are truncated to four decimal digits. Most precise estimates
include results from high-precision Monte Carlo simulations and conformal bootstrap calculations [87,
106]. The validity of the MF results is discussed in the text.

Exponent d=2 d=3 MF
B 1/8 0.3264 1/2
v 1 0.6300 1/2
Y 7/4 1.2371 1
o 15 4.7899 3
n 1/4 0.0363 0
« 0 (log) 0.1101 0 (disct.)

given spin s; by an effective mean or molecular field. Specifically, the spin variables are separated
into their thermal average and fluctuations

si = (s;) + 6s; =~ m + 8s; (2.25)

where in the second step, the mean magnetic field m was introduced, which no longer depends
on the spatial position. Plugging this approximation into the Hamiltonian (2.20), we find

Hwvr = —J Z (m+ 5si)(m + 55]') - hZSi
(i.j) f
=~ —]mzNB — ]m Z ((551' + (55]') - hZSl‘ (2.26)
(i) i
= —Jm*Np — Jmy, qis; — ') si,
i i

where, in the second step, we neglected quadratic fluctuations and introduced Njp as the total
number of bonds in the system. Moreover, in the third step we used the fact that fluctuations at
different sites are effectively decoupled and introduced the local coordination number g;, which
represents the number of outgoing bonds. To further simplify the mean-field Hamiltonian, we
assume a constant coordination number g; = q (which holds for any regular lattice) and express
the remaining fluctuations in terms of their definition (2.25), yielding

Hme = —Jm*Ng — Jmgq Z(Si —m)— hZSi

= —Jm*Ng + Jm*qV — (Jmq + h) ;sz' (2.27)

= %]mqu = (Jmq +h) Y. si,

where V denotes the total number of sites in the system and we used the fact that Ng = gV /2.
Ignoring the additive constant, which is irrelevant as it can be absorbed by redefining the energy
scale, we recognize that the Hamiltonian can be written as a sum of decoupled spins, interacting
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Figure 2.3 | Analytic solution of the Ising model. (a) Graphical solution of Equation (2.28) for h = 0 and
different choices of 3]q, marked as red dots. Dashed curves represent the function tanh (3]mq) for
BJq > 1 (steep curve) and 3]q < 1 (flat curve). (b) Phase diagram in the magnetization/temperature
plane for & = 0 (solid line) and & # 0 (dashed line). (c) Phase diagram in the (T, k) plane, presenting a
first-order transition line (solid), ending at the critical point (red dot).

indirectly through an effective field Jmg + h.

As the next step, we compute an expression for the spontaneous magnetization, which is
straightforward from the definition (2.22) given by

m = (s;) = % Z sie PHME —  — tanh (B]mq + Bh), (2.28)
{si}

resulting in a self-consistent equation of state. At this point it is instructive to graph our solution,
as is done in Figure 2.3a, where m and tanh (3]mgq) are plotted for 1 = 0. When 3]q < 1, the
only solution of Equation (2.28) is given by m = 0, whereas for 3]q > 1 we find two additional
intersections at finite (positive and negative) magnetization. This implies that T, = Jq can be
identified as the critical point and m acts as the order parameter. In Figure 2.3b, the solutions for
m are plotted against the temperature. Note that the negative solution is also a physical one, as
it reflects the Z, symmetry of the system. In fact, below T, the system selects either the positive
or negative solution, whereas the solution m = 0 is unstable with respect to small perturbations
(such as through an infinitesimal external field). Hence, in the low-temperature phase, the Z,
symmetry is spontaneously broken.

In order to obtain the mean-field value of the critical exponent of the order parameter, we
expand Equation (2.28) around the critical point for k = 0, resulting in m ~ BJqm + (BJqm)3/3.
Solving for the magnetization yields

_(3(Jg—=T\'? [(T.—T\?
"= ( (ﬁ]q)2]q> ~ ( T, > 229

and hence we obtain 3 = 1/2 as the corresponding exponent. Similar expansions yield also

v =1,a=0and 6 = 3 (see, e. g. Reference [72] for details).

So far we have not discussed the limits of our initial approximation of small fluctuations
stated in Equation (2.25). In fact, the mean field approach results in a self-consistent picture
only if fluctuations are indeed sufficiently small, such as we have assumed in our ansatz. In
particular, considering a correlation volume &9 we want the accumulated fluctuations to be
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small compared to the average magnetization as the critical point is approached, in order for
the MF theory to be valid [74]. Therefore, we require

/g dx (85x) (550)
[ 4% {52 o)

—0  for T— T, (t—0). (2.30)

Using Equation (2.25), as well as the definition of the correlation function (2.15), the numerator
can be computed explicitly

L (852) (850 = [ (s = (s))) (50— (50))) @31)
= [ d%x ((sus0) ~ () s0)) (232)
= /5 dlx G(x) ~ x, (2.33)

where in the last step we used the fact that the susceptibility is given by the integral of the corre-
lation function over the whole space [74]. As the correlation function decreases exponentially
fast for |x| > &, the approximation is justified. Turning to the denominator we obtain simply

/Eddx (sx)(sg) ~ m?&? (2.34)

and can therefore re-express our consistency condition as

X __tvr
m2&d — g2Bp—vd

0 for 7—0 (2.35)

resulting in
v <vd—2p, (2.36)

which is known as the Ginzburg criterion. For the MF exponents of the Ising universality class,
this results in d > 4. Hence for dimensions larger then four, the mean-field calculations are
exact, whereas for d < 4 the approximation is internally inconsistent. The boundary case d. = 4
is called the upper critical dimension and shows leading MF critical behaviour with logarithmic
corrections. Likewise, one can define a lower critical dimension d; below which the MF approach
fails even qualitatively, as there is no finite temperature phase transition. For the Ising model in
one dimension no ordered phase exists, as can be explained by the lack of surface tension from
magnetic domain walls [107]. Hence, no critical exponent can be defined and d; = 1 + ¢.?

9In fact Van Hove’s theorem [108] states that in a one-dimensional equilibrium system with short-ranged interactions, a
finite temperature phase transition can not exist. Although valid for the most prominent classes of transitions, the
general range of applicability of this theorem has been questioned [109].
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Landau theory

Besides the mean-field approach described above, where we performed a suitable approxima-
tion of the microscopic Hamiltonian in order to eliminate degrees of freedom, one can obtain
a similar description of the critical behaviour of equilibrium systems by starting from first
principles, such as symmetry considerations, and therefore without any precise knowledge of
how interactions are realized in detail on a microscopic scale. In the so-called Landau theory
one starts from a phenomenologically motivated free energy density f, which depends on the
order parameter, conventionally denoted by ¢. If we, for instance, consider an Ising-like model,
the order parameter is scalar and the system is symmetric under Z, transformations (s; — —s;,
Vi). Therefore, we require the free energy density to be invariant under global changes of sign,
¢ — —@. We know that the order parameter vanishes at the critical point, hence we can expand
f around ¢ = 0, further assuming that it is an analytic function. This so-called Landau free-energy

10

expansion can be written as

f(¢)=f0+£¢2+%¢4+£d)6+..., (2.37)

where fy, ¥, u, and v are (in general temperature-dependent) phenomenological parameters
and the numeric pre-factors are convention [75]. Note that terms of odd powers (¢, ¢3,...) are
forbidden by the symmetry constraint mentioned above. Furthermore, terms such as |¢| would
violate the analyticity requirement.

What can be said about the phenomenological parameters? First, if u is positive, then the sixth-
order term can be dropped, as we are only considering the vicinity of the critical point (¢ ~ 0)
where it would result in sub-leading corrections. Moreover, we can add a term containing the
external field, in a way which is compatible with our symmetry requirementsn, resulting in

F(@) = fot 507 + 1t —hob 238)

This already indicates how the Landau expansion, also for systems other than Ising magnets, can
be obtained, namely by writing down all possible products and powers of the order parameters
which respect the global symmetry requirements of the system up to the highest relevant
order [107].

We know that the condition of thermodynamic equilibrium corresponds to finding the global
minimum of the free energy. Hence, since we dropped the sixth-order term, necessarily u > 0,
as otherwise an unphysical picture would arise, where f — —o0 as ¢ — £o0. Incorporating
this condition, the free energy is plotted in Figure 2.4 for three qualitatively different choices of
the parameter r at zero external field. For r > 0 we find a global minimum at ¢ = 0, which is
still there for r = 0, however very flat, i. e. presenting a neutral equilibrium instead of a stable
one. For negative 7, the minimum at ¢9 = 0 becomes unstable and two new symmetric minima
¢+ emerge, corresponding to the (spontaneously) symmetry-broken, low-temperature phase.
The qualitative change of the free energy landscape at r = 0 suggests to identify this parameter
with the distance from the critical point, which for the Ising model is given by the reduced

10Note that f is not the actual thermodynamic free energy, however strongly related (see, e. g. References [72, 74]).
n the presence of a field, the free energy should be symmetric under simultaneous changes of signs (¢,h) —

(7(1)/ 7h)
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Figure 2.4 | Landau free energy. Illustration of the functional form of Equation (2.38) for positive fourth-
order term, above (a), at (b) and below (c) the critical point. In the right panel, the point ¢ = 0 has
became unstable, resulting in two new minima which break the order parameter symmetry.

temperature T = (T — T;) /T, therefore
r(t) = at + O(7?) with  a>0. (2.39)

Any dependence of higher order on the reduced temperature will not contribute to the leading
behaviour at the transition. Similar arguments hold for the parameter u, which can, without
loss of generality, be set to a temperature-independent constant.

The framework of Landau theory lets us easily determine critical exponents. We set i = 0 and
consider the two regimes 7 < 0 and T > 0, i. e. below and above the critical point, separately. In
the high-temperature phase, we already know the solution ¢y = 0, hence f(7 > 0) = fj. In the
low-temperature regime we minimize f explicitly

df U3
- = N 24
dg ~ Ot =0, (2.40)
yielding the equilibrium order parameter ¢p3 = 6a|7|/u. This allows us to read off the exponent
B = 1/2, which is precisely the mean-field exponent found earlier. Keeping, instead, a non-zero
external field in the minimization calculation yields the equation of state

h(t,¢) = atd + %dﬂ (2.41)

which, on the critical isotherm 7 = 0, allows us to read off another exponent, 6 = 3, as h ~ 3.
Furthermore, we can compute an expression for the inverse susceptibility of the order parameter
as

V. _(oh\ U,
" = <8¢>T =at+ Ed) . (2.42)

Inserting the equilibrium solutions, ¢g = 0 for the high-temperature phase and ¢4 = 6a|7|/u
for the low-temperature regime, we arrive at

1/, >0
x=aV (2.43)
1/2|7| T <0.
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As a result, the critical exponent is given by v = 1 on both sides of the transition, also compatible
with the MF result. Moreover, we recognize that the ratio of amplitudes is exactly 2 for the
susceptibility. In fact, amplitude ratios are universal and depend neither on the parameters
nor on the critical temperature. Similarly, we can compute the specific heat, given by C =
VT(9%f/dT?)}—g above and below the transition and obtain

0, >0
C= ' (2.44)
3VTa?/u T<0

which means that it exhibits a discontinuity at the phase transition, hence o« = 0.

As we have seen, the Landau ansatz for the free energy expansion correctly describes the
phenomenology of a continuous phase transition if the coefficient of the fourth-order term is
positive. For the case of u < 0, as already mentioned earlier, the sixth-order term becomes sub-
stantial and must be positive, v > 0, to guarantee thermodynamic stability. As a consequence,
due to the interplay of the remaining parameters, r and u, metastable states can occur in the free
energy landscape. In this way, Landau theory describes a first-order transition at h = 0, which
we will not be discussed here, as in this work we only consider continuous phase transitions.
Finally, we remark that although we wrote down the Landau free energy ad hoc, it can also be
rigorously derived through a saddle point approximation of the corresponding field theory (see,
e.g., References [74, 75] for details).

RG in a nutshell

So far, we treated the order parameter ¢ as a single scalar quantity, thereby completely neglecting
any spatial structure in the system. We know however, that continuous phase transitions are
characterized by rather large spatial fluctuations of the order parameter, which, in particular,
leads to a breakdown of MFT in dimensions d < d., as was detailed above. Starting from
the Landau free energy expansion, we can extend the theory to an effective Hamiltonian, by
upgrading the order-parameter to a local, space-dependent field ¢(x), which can be interpreted
as a coarse-grained order-parameter density and by adding a gradient term, such as to include
spatial correlations. The resulting Landau-Ginzburg-Wilson (LGW) Hamiltonian reads [75]

Higl = [ di |3 (Vo0 + S0P + o)~ h()o(x) @45)

and is usually considered an effective field-theoretical description of the Ising universality
class. It can be explicitly derived from the microscopic Ising Hamiltonian through a so-called
Hubbard-Stratonovich transformation [110, 111]. This Hamiltonian is usually studied by means
of field-theoretical renormalization group (RG) analysis methods. The corresponding framework
was introduced by Kenneth G. Wilson in a number of seminal articles in the early 1970s [15, 16,
112], with contributions of Leo P. Kadanoff [14] and Michael Fisher.

The central idea of the RG is to take advantage of the self-similar structure at criticality and
successively eliminate correlated degrees of freedom on length scales below the correlation
length &. This is realized by two repeatedly applied steps: First, the system is coarse-grained,
which means that the individual degrees of freedom on the microscopic lattice scale a are
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Figure 2.5 | Renormalization group flow. Schematic RG flow of the Ising field theory below (left) and
above (right) the upper critical dimension in the coupling plane (u, 7). G denotes the trivial Gaussian
fixed point, whereas WF denotes the so-called Wilson-Fisher fixed point.

averaged (integrated out) up to a scale of Az, where A > 1 is the so-called the coarse-graining
factor. The actual realization of this procedure represents the core of the RG framework.
Commonly, it is implemented in real space, e. g. by block-spin transformations, or in momentum
space by integrating out high energy modes, associated to short-range correlations. Either way,
it is clear that this procedure changes the scales of the system. Consequently, the Hamiltonian
must be re-expressed in terms of appropriately rescaled variables. Therefore, in the second
step of an RG transformation, the original scales are restored by rescaling all quantities, such as,
for instance, the length scale x — x’ = x/A and the relative size of fluctuations ¢(x) — ¢'(x').
Accordingly, one obtains a new Hamiltonian #'(+',u’, I, .. .), characterized by couplings which
are functions of the original ones, for instance v’ = r(A,r,u,h,...). This defines a (in general
non-linear) transformation in parameter space, which can formally be denoted as S — RS,
where S denotes the parameter vector and R encodes the RG transformation. Since in a scale
invariant system, the Hamiltonian should be identical at different scales, the critical point must
be given by the fixed point of this transformation, RyS* = S§*. Moreover, it is clear that the
mapping R, should fulfil a group property.'? Introducing so-called scaling fields which are the
eigenvalues of R, we can write

Ry\RyU; = fi(A) fi(A)U; = RyyU; = fi(AN)U; (2.46)

and consequently, the eigenvalues must be of the functional form f;(A) = A¥i, which is exactly
what we wrote down in the phenomenological scaling ansatz, Equation (2.8). The values of the
scaling dimensions y; can be found by linearising the transformation around the fixed point. If,
furthermore, one allows for infinitesimal transformations, i.e. A — 0, this eventually gives rise
to a set of coupled differential equations, which determine the flow of the coupling parameters.
Solving these equations for different initial conditions (corresponding to parameters of the real
system), one obtains trajectories in parameter space, which are called the renormalization group
flow. For the Ising Hamiltonian, the RG flow is illustrated in Figure 2.5. We skip the long and
involved calculations here, as they can be found in standard textbooks such as [71, 75]. As can
be seen, one finds a fixed point at ¥ = A = 0, which corresponds to the trivial, non-interacting,

12The renormalization group is in fact a semi-group, as the coarse-graining procedure can not be reversed.
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Table 2.3 | Experimental critical exponents. Selected experimental estimates for clean and disordered
Heisenberg systems (upper/middle sections, respectively, from [25]), as well as the currently most
precise theoretical estimates from Monte Carlo (MC) simulations, numerical high-temperature (HT)
series expansions and field theoretical (FT) methods (lower section).

Material / Method Y B 1) Ref.
Ni 1.345(10) 0.395(19)  4.35(6) [113]
Tl,Mn, Oy 1.31(5) 0.44(6) 4.65(15) [114]
Lag.95Cag gsMnOj3 1.39(5) 0.36(7) 4.75(15) [115]
CrO, 1.43(1) 0.371(5) [116]
Fe1gNigyBi19Si 1.386(14) 0.360(15)  4.86(4) [117]
FeyoNigoP14Bg 1.385(10) 0.364(5) 4.79(5) [118]
Feg1Zrg 1.383(4) 0.366(4) 4.75(5) [119]
Fej 50Mn1 5051 1.274(60) 0.383(10)  4.45(19) [120]
MnCrq gIng Sy 1.39(1) 0.36(1) 4.795(10) [121]
MC + HT 1.3960(9) 0.3689(3)  4.783(3) [122]
FT 1.3895(50) 0.3662(25) 4.794(14) [123]

so-called Gaussian model. In d < 4 this fixed point is unstable and the system flows towards
another fixed point (historically named Wilson-Fisher fixed point), which constitutes the actual
critical behaviour of the Ising model. In contrast, for d > 4 the Gaussian fixed point becomes
stable and correctly describes the MF transition.

2.2.2 O(N) model

By extending the spin-1/2 Ising model to general O(N) symmetric spin vectors, one obtains the
XY model (N =2) and the Heisenberg model (N =3). Even higher symmetries (N =4, 5) become
relevant, for instance, in particle physics and high-temperature superconductor transitions
(see [25] for a comprehensive review). Rather than being restricted to two orientations (up and
down) as in the N = 1 case, the individual O(N) spins represent N-dimensional unit vectors.
The model is hence occasionally termed N-vector model. Due to its rich phenomenology and
considerable range of applications, it is extensively studied, especially in two and three spatial
dimensions [25, 74].

The XY model in three dimensions describes phase transitions in several physical systems,
most notably the A-transition in “He. In two dimensions, according to the Mermin-Wagner
theorem [124], the continuous O(2) symmetry can not be spontaneously broken at finite temper-
ature, so that no usual second-order transition exists. Instead, a so-called Berezinskii—-Kosterlitz—
Thouless transition [80] can be observed (Nobel prize in 2016), where the temperature controls
the binding of vortex-antivortex pairs. Turning to N = 3, the Heisenberg model [125] is
characterized by a three-component order parameter combined with short-range interacting
degrees of freedom and provides a simplified description of the critical behaviour of a number
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of isotropic magnetic materials. For instance, the Curie transition in nickel, iron and certain
compound materials is well described by this model, see Table 2.3. Due to the negative specific
heat exponent &« = —0.1336(15) [122], the three-dimensional Heisenberg model is stable against
uncorrelated spatial disorder, as will be discussed in Section 2.5.

Extending the N-vector model to a classical lattice field theory, it can be written as, for instance

2
H=-BY dibj+my ¢?+AY (¢2-1), 47)
(i,7) i i

where ¢; denotes an N-component real variable. Compared to the standard Ising Hamilto-
nian (2.20), also a mass term as well as a fourth-order interaction term have been added. For any
positive A, this system undergoes a continuous phase transition which lies in the universality
class of the O(N) model. The parameter A can be particularly useful in a numerical analysis,
as oftentimes it can be tuned such that leading scaling corrections approximately vanish. In
this case one speaks of an improved Hamiltonian [25, 126]. For A — oo the classical XY, Hei-
senberg and higher-symmetry vector-models are recovered, as the field is effectively forced to
unit-length ¢? = 1.

For completeness, we mention another generalization of the Ising model, which shows a
quite rich phenomenology, the so-called g-state Potts model [127]. The spin variable can take
onvaluess; =0,1,...,q — 1in this case. Hence, for 4 = 2 it maps exactly to the Ising model,
whereas the case 4 = 1 corresponds the universality class of isotropic percolation. In two (three)
dimensions, it shows a continuous transition for g < 4 (g < 2), which becomes first-order for
any larger 4.

2.3 Non-equilibrium systems

Whereas the previously discussed systems had been defined in terms of thermodynamic equilibrium, we now
turn our attention to so-called non-equilibrium phenomena. First, some general properties of those systems are
discussed. Then, we introduce two specific lattice models, the contact process and the Manna sandpile model,
which both exhibit continuous phase transitions into absorbing states and elaborate on the respective universal

properties.

Non-equilibrium systems are generically out of equilibrium, hence they do not obey detailed
balance and contain the time ¢ as an explicit coordinate.'®> As traditional methods of equilibrium
thermodynamics can no longer be applied to describe these systems, one instead resorts to
phenomenological descriptions through a master equation which governs the temporal evolution of
the probability distributions P of the microstates c. In a quite general form, the master equation
can be written as [5]

d
3 P1(0) = L wescPi(c) = Y weserPi(e), (2.48)
c ¢!

where w denotes the set of transition rates, encoding the probability flow. Obviously, the first

1BRecall that in equilibrium statistical mechanics there is no notion of time.
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sum on the right hand site corresponds to gain terms (flow of probability into configuration c),
whereas the second one accounts for loss terms (flow of probability out of c). In the case of
a continuum of states, the master equation is replaced by the corresponding Fokker-Planck
equation. Whereas in equilibrium statistical mechanics the probability distribution usually
is given by design (e.g. the canonical Boltzmann distribution for a spin model exchanging
energy with a heat bath) here one needs to solve Equation (2.48) explicitly. In fact, the set of
transition rates w actually defines the model, similar to the energy functional in equilibrium
systems. Except for some rather trivial systems, such as a simple random walk, the master
equation can not be solved in a closed form. However, it can be used as a starting point to derive
an associated field-theoretic action of the model and analyse it at criticality by renormalization
group methods. Besides the field-theoretic treatment, also a mean-field approximation remains
a possible approach to analyse non-equilibrium systems analytically. Introducing effective
transition rates and neglecting any spatial information, this results in differential equations
for certain coarse-grained parameters of the system (such as the density of active particles).
The mean-field approach can furthermore be extended to a full stochastic Langevin equation by
adding a suitably designed noise term. An example for such a phenomenological Langevin
description, which can be rigorously derived from the corresponding master equation of the
model (compare e. g. Reference [128]), will be given below. Since in this work, however, we
exclusively rely on numerical simulations to study the physical models, even the mean-field
approach will only be discussed briefly and we refer the reader to standard textbooks, such as
[75] for more details on either theoretical approach.

2.3.1 Directed percolation

In this work we are particularly interested in non-equilibrium systems which feature a (con-
tinuous) phase transition into an absorbing state. Such states are characterized by certain con-
figurations which do not allow for a further evolution of the system. In other words, once
the system reaches an absorbing state, it is trapped and can not escape. The arguably most
prominent reaction-diffusion-type lattice model that exhibits a non-equilibrium phase transition
into an absorbing state is given by the contact process (CP). It was originally introduced in the
context of epidemic spreading [30] and — in the community for modelling of infectious diseases
— goes under the more technical notion asynchronous susceptible-infected-susceptible (SIS) model.
On a lattice, each vertex can be in either of two states, which, in the terminology of epidemics,
correspond to infected or healthy (susceptible) particles. Infected sites are also said to be active or
occupied, whereas healthy ones are considered inactive or empty. Each site can only be occupied
by one particle. The temporal evolution of the system comprises two fundamental stochastic
processes [5]. Denoting an active site as A and empty sites as &, these are specifically

A—A+A offspring creation on adjacent site

A— g on-site particle removal (death).

If the state of a lattice site i is encoded as s;(t) = 0,1 depending on whether it is occupied
(si(t) = 1) or empty (s;(t) = 0), the corresponding rates, which determine the configuration at
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Figure 2.6 | Transition rules. Depicted are the transition rules for the (1+1)-dimensional contact process.
The rates (probabilities per unit time) are indicated below. From [129].

time t 4 6t are given by

w[0 — 1,n] = An/q (249)
w[l —0,n] =1, '

where the parameter A controls the infection rate, n denotes the number of active nearest
neighbours and g the total number of neighbours (7 = 2d for a d-dimensional hypercubic
lattice). For the case of one spatial dimension, these rules are illustrated in the upper row of
Figure 2.6. Fully equivalent, in the two-site picture (lower row of Figure 2.6), the associated
transition rates are given by

w =w =A/2
10—11 01511 / (2.50)

W10-00 = W01—00 = W11—01 = Wi1—10 = 1/2.

As sketched above, the CP dynamics evolves a cluster of active sites. The behaviour of the
system is controlled by the transition rate A, which acts as an order parameter. If offspring
creation is weak (small A), the dynamics is dominated by the annihilation process and eventually
the absorbing state is reached where the whole lattice is inactive and the evolution terminates.
Employing once again epidemic language, this means that the disease is extinct. In fact, as
will be become important later, the existence of a single and unigue absorbing state (the empty
configuration) is a key property of the CP and related models. If, in contrast, A is large enough,
the system steadily maintains an active cluster and is said to be in the active phase where the
disease persists indefinitely. The transition between active and absorbing phase takes place at
a critical parameter A, whose precise value depends on the microscopic details of the lattice.
At A = A spatial and temporal correlation length scales, £, and cSH , diverge and the emerging
activity cluster becomes scale-invariant and strikingly self-similar, as can be seen in Figure 2.7.

On regular structures, the phase transition of the contact process falls into the directed
percolation (DP) universality class. The name stems from an apparent relation to ordinary
(isotropic) percolation. If we, in a percolating system (e.g. a regular lattice with open and
closed bonds), consider one of the spatial coordinates as a temporal coordinate and furthermore
interpret open bonds as creation and closed bonds as annihilation events, then the system
becomes a stochastic reaction-diffusion process, evolving in time. Since, however —in the picture
of water flowing through the open bonds of a lattice — only flows along a preferred direction are
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Figure 2.7 | Phenomenology of the contact process. Typical undercritical, critical and overcritical samples
in 1+1 dimensions. The process is started from a fully occupied lattice in the left panels and from a
single active seed in the right panels. Black regions illustrate infected particles. Adopted from [129].

allowed, the resulting behaviour is entirely different compared to ordinary percolation, as is
illustrated in Figure 2.8. Due to this analogy, the DP class naturally models transport in porous
media [29].

Over the last decades, DP behaviour has proven to be particularly robust. The reason stems
from the fact that it can be interpreted as a reaction-diffusion process involving only very
fundamental particle processes, namely

¢ Particle removal (A — @)

¢ Offspring production (A — 2A)
e Coalescence (A — A)

e Diffusion (& + A — A+ 2).

In the implementation of transition rules (2.49) and (2.50), the coalescence process is contained
implicitly through the requirement that an empty site can only be activated once per time step,
even though more than one of its neighbours might attempt to colonize it. As a result, the
maximal particle density in the system is limited. Due to its robustness, DP behaviour can be
found in a large variety of different systems, such as forest fires [31], catalytic reactions [130],
interface pinning [131] or turbulence [132]. In fact, according to a conjecture by Janssen and
Grassberger [128, 133], any system which

e features a fluctuating phase and a unique absorbing state

* is controlled by a non-negative scalar order parameter

e includes only short-ranged interactions

* has no additional symmetries, quenched randomness or conservation laws

is expected to fall into this class. However, despite its robustness, constructing explicit exper-
imental realizations of DP behaviour has proven to be a surprisingly challenging task [32].
The first convincing evidence has been put forth only little more than a decade ago, when
Takeuchi et al. studied the phase transition between two topologically different turbulent states
of electrohydrodynamic convection in nematic liquid crystals [33, 34].

From the analytical point of view, models in the DP class remain unsolved, despite con-
siderable efforts (compare [5] and references therein), even in 1+1 dimensions. However, a
coarse-grained phenomenological treatment can be obtained quite easily. Given the rates in the
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isotropic percolation directed percolation

Figure 2.8 | Isotropic and directed percolation. Interpretation of the contact process as a percolating
system with the preferred direction being indicated by the arrow (right panel), compared to ordinary
isotropic bond percolation (left panel). Dotted connections represent closed channels. From [129].

upper panel of Figure 2.6, we can write down a mean-field equation for the particle density
p(x,t) as

Ap(t) = Ap(t) — Ap(t)* — p(t), (2.51)

where the first terms on the right hand side represent particle gains and the two remaining
terms account for particle loss through coalescence and spontaneous removal, respectively.
Note that since coalescence (2A — A) represent a binary process, the corresponding gain term
is non-linear, which, in fact is an essential ingredient in order to make the model non-trivial.
Introducing the distance from the critical point as T = A — 1, the mean field equation can be
written more compactly as

Ap(t) = Tp(t) — gp(t)?, (2.52)

where ¢ = A denotes the coupling constant of the quadratic interaction.

This simple approximation already captures some of the essential properties of the model.
First and foremost, the steady-state solution p = 0 represents the absorbing state. For A > 1 the
absorbing state becomes unstable and one finds another (stable) non-vanishing stationary state
p =1—1/A. Hence, the phase transition is located at A = A, = 1. As this corresponds to 7 = 0,
T is indeed the control parameter. Given that 3 represents the (static) critical exponents of the
order parameter, i. e.

p~(A=A)P ~ 1P, (2.53)

we obtain the corresponding mean field value 3 = 1. For non-equilibrium transitions one can
also define dynamic critical exponents, which capture the time-dependence at criticality (more
details will be given in Section 4.3). For the order parameter,

p(t) ~ 79, (2.54)

we obtain § = 1, when solving Equation (2.52) for T = 0.
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So far, we have neglected any spatial structure in the system. Accounting for diffusive motion
by adding a term proportional to V2p(x, t), we are able to obtain the mean-field exponents of
the correlation length and correlation time, given by v, = 1/2 and v| = 1, through a suitable
scaling ansatz (compare Section 4.3). In fact, the mean field approximation can be extended
even further by considering an effective noise term, resulting in

dip(x,t) = tp(x,t) — Ap(t)*> + DV?p(x,t) + /pn(x,t) (2.55)

which represents the phenomenological stochastic Langevin equation of directed percolation [128].
The noise is Gaussian and white, with the correlations

(n(x,t)) =0 (2.56)
(n(x, t)n(x,t)) =T25(x — x')s(t — t), (2.57)

where I" denotes a constant. Note that the noise enters through a density-dependent amplitude
proportional to /p, which ensures a non-fluctuating absorbing state. The square-root form
of the noise term can be motivated by means of local fluctuations of the coarse-grained den-
sity generated through local particle transitions and averaged according to the central limit
theorem [5]. By means of a dimensional analysis of Equation (2.55) one finds that the noise is
irrelevant in dimensions d > 4, hence d. = 4 can be identified as the upper critical dimension,
above which the mean-field approximation becomes exact. For dimension d < 4 however, a full
field-theoretical RG treatment is necessary in order to study the critical behaviour of the DP. In
fact, Equation (2.55) can serve as a starting point for deriving a suitable field-theoretic action
for the DP class, as shown in detail in Reference [129]. For historic reasons this theory is called
Reggeon field theory and — in the context of DP — has been extensively studied during the last
decades (see e. g. [75, 134, 135] for comprehensive reviews).

2.3.2 Manna universality class

The second non-equilibrium system which will be considered in this work is the so-called
Manna sandpile model. It is strongly related to the concept of self-organized criticality (SOC), which
was put forward by Bak, Tang and Wiesenfeld in 1987 [35, 36]. In the original formulation of
their model (BTW model or Abelian sandpile model), each site of a lattice harbours a number
of particles, which can be interpreted as sand grains. By randomly adding new grains to the
lattice, piles build up on the individual sites, which eventually topple. Specifically, as soon as a
site exceeds a given threshold height, it becomes unstable and one grain is moved to each of its
four neighbours, leaving the site empty after the move. In case one of the neighbours thereby
exceeds the threshold it also topples and distributes its grains. In this way a whole cascade of
events can be triggered, called an gqualanche. In the BTW model the boundaries of the lattice are
open, allowing particles to leave the system.

Analysing the avalanches, one recognizes that they occur in all sizes, where the size s is
defined by the total number of consecutive toppling events. The distribution of s follows a well
defined finite-size behaviour, exhibiting a leading power-law scaling

P(s;L) ~s ™ fs(s/s;) with s.(L)~ L7, (2.58)
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where 7, denotes a critical exponent and f;(x) represents a universal scaling function. The
upper cutoff size s. accounts for the finiteness of the lattice. Analogous relations hold for other
avalanche properties as well, such as their area a (number of distinct activated sites), duration
T, or the radius of gyration r, with different critical exponents 1, 71, T,. An excellent summary
of further scaling properties is given in Reference [37].

As a consequence of the slow driving mechanism (the external injection of grains), the system
reaches a critical configuration without the need for a fine-tuning of external variables. It
organizes itself into a complex critical state, where, as seen above, macroscopic observables
exhibit scale-free distributions. In nature, apart from granular media, self-organized criticality
can be found a large variety of other applications, such as earthquakes, forest fires, neural
networks, superconductors, financial markets and biological evolution to name only a few
(a comprehensive review can be found in [136]). Consequently, different variations of the
original BTW model have been proposed [38, 137-139] and extensively studied. It turns out that
modifying the toppling rules will in general change the universality class of the model [140].
In general a distinction can be made between Abelian vs. non-Abelian!4, deterministic vs.
stochastic and directed vs. undirected toppling rules [141]. A specific model which quickly
became prominent as an analytic solution can be obtained under certain conditions, was
introduced by Subhrangshu S. Manna in 1991. It presents a variation of the original BTW model
with stochastic toppling rules and established the so-called Manna universality class. Due to
its particularly robust and reproducible critical behaviour (see [5] and references therein), this
model has been studied in great detail in numerical simulations [142].

It is known that non-equilibrium systems respond strongly to boundary conditions [143-146].
Whereas the original SOC models use open boundaries where particles can leave the system,
there exists a number of models with periodic boundary conditions and no external injection
of particles. Hence the total number of particles is conserved. Here, we study the conserved
version of the Manna model. In this model, each site can contain an unlimited number of
particles n = 0,1, 2, ... which is why it is considered a bosonic model (as opposed to the the
fermionic contact process). As long as n is below a certain threshold N,, a site is considered
inactive, whereas it is active if n > N,.. The dynamics consists of toppling events, where a
random active site distributes all of its particles to randomly chosen neighbouring sites. This
so-called conserved Manna model (CMM) or conserved stochastic sandpile model (CSSM) no longer
presents a self-organized critical behaviour but rather a non-equilibrium phase transition into
infinitely many absorbing states (in the infinite-volume limit), controlled by the particle density
p. In particular if p > p. the systems maintains a state of steady activity, whereas for p < p. an
absorbing configuration is reached eventually.

The shared universal properties of the regular and conserved Manna model reveal a funda-
mental connection between the critical behaviour of absorbing state phase transitions (APTs)
and the critical state of self-organized critical systems. In fact, as pointed out in [5] sandpile
models can be considered as driven-dissipative versions of (closed) systems exhibiting ab-
sorbing phase transitions, resulting in intriguingly simple relations between corresponding
critical exponents. Moreover, we remark that the conserved Manna model is closely related to
the so-called conserved threshold transfer process (CTTP), the conserved counterpart of the

14 A model is said to be Abelian if the configuration after the avalanche does not depend on the order in which the
relaxation of the active sites was performed.
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ordinary TTP [147]. It describes a variation of the above mentioned model, where the number of
particles per site is restricted to n < 2. If during the redistribution of particles, a particular move
violates the height condition (i. e. the target site already contains two particles) it is reflected and
returns to its origin. In spatial dimensions d > 1, the CTTP belongs to the Manna universality
class. Only in 1D the critical behaviour is distinct. Finally, we remark, that another well-studied
model, belonging to the Manna class is the conserved lattice gas (CLG) model [148, 149], where
a particle is considered active if at least one of its neighbouring sites is occupied and active
particles undergo a diffusive motion.

2.4 Finite systems

We describe how the scaling behaviour at criticality derived in the previous sections is modified in the presence
of a finite geometry, establishing the so-called finite-size scaling theory. In particular, our discussion covers the

leading scaling behaviour as well as corrections, arising from the finite system size.

So far our discussion concerned the thermodynamic limit of infinitely-large systems. In simula-
tions on a computer this can obviously not be realized, hence we are confined to a finite systems,
typically characterized by a linear length scale L, the lattice dimension. As detailed earlier, in
the thermodynamic limit a continuous phase transition is characterized by physical observables
diverging as power-laws as the critical point is approached, such as for the correlation length
and magnetic susceptibility

—v
L (2.59)
X~ |t
The origin of this divergence can be traced back to the singular behaviour of the corresponding
free energy, as was detailed earlier in Section 2.1. In finite systems, however, all thermodynamic
quantities are analytic. As a consequence, at the transition, they exhibit instead finite peaks
which become sharper with increasing system size, diverging only for L— oo [150]. This
finite-size smoothening of the phase transition is typically unobservable in bulk experimental
systems, where one has particle numbers ~ 1023, For Monte Carlo simulations, as conducted
in the present work, where the accessible particle number is heavily limited, however, the
smoothening might even dominate the scaling scenario.

Combing relations (2.59), the temperature dependence can be eliminated, resulting in
x ~ &Y. (2.60)

In a finite system the correlation length is necessarily bounded by the length scale of the system
L, which also cuts off the susceptibility as the critical point is approached and & grows. We can
use the following ansatz [151]

x~ &% (L/8), (2.61)

where x( denotes a scalar, dimensionless scaling function with asymptotic limits being known
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Figure 2.9 | Finite-size scaling function. Schematic illustration of the scaling function of the susceptibility
in a finite system, where T. denotes the infinite-volume critical point. Reproduced from [71].

a priori, namely [152]
Xxo(x) =1 for x>1 (<L) (2.62)
xo(x) ~x"Y  for x—0 ({— o0) (t—0). (2.63)

This means that the function x((x) remains finite in the limit x— oo, yielding the correct
behaviour in a finite system and exhibits a singularity which causes the function x to behave
smoothly as the critical point is approach for fixed L. Specifically

lim y = LY/, (2.64)
x—0
which means that there exists a so-called pseudo-critical point given by the maximum of x as
can be seen in Figure 2.9. Notice that x does only explicitly depend on L through its function
argument. In order to eliminate the explicit dependence on £ we rescale the scaling function

X(x) =x" xo(x") (2.65)
and use again Equation (2.59) to obtain the central finite-size scaling (FSS) equation
x=LYg(LT), (2.66)

where the proportionality factor from Equation (2.61) and a possible asymmetry of the scaling
function below and above the transition was absorbed into the definition of ¥. The pseudo-
critical point is therefore shifted away from the infinite-volume critical point by a factor of L~1/”
as illustrated in Figure 2.9. The direction of this shift depends on the boundary conditions of
the system and is discussed in Reference [71]. The scaling function ¥ is universal in the sense
that it does not implicitly depend on the lattice size, which can be exploited in so-called scaling
collapses, which will be introduced in Section 4.1.3. However, it depends on the shape of the
system and on boundary conditions.

The FSS behaviour can also be obtained from the free energy (2.8), which, using the concept
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of scaling fields u, introduced in Section 2.2.1, generalizes to [25, 153]
fsing (r,up, {ui}) = A_dfsing (A7 ur, Ay, {A 1, }) (2.67)

Besides the scaling fields u, and uy,, which correspond to the reduced temperature and external
field, respectively, ur ~ T and u;, ~ h, as before, we have included further operators {u;},i > 3
which are also analytic functions of the Hamiltonian parameters. Recall that the parameter A
can be motivated from the RG framework and denotes the rescaling or coarse-graining factor.
For the infinite-volume Ising model, only u; and uj, are relevant scaling fields, whereas the
remaining scaling fields {u;},i > 3 are said to be irrelevant due to their negative eigenvalues,
y; < 0, which, at criticality, lead to them becoming increasingly small and eventually vanishing.
Since, as pointed out earlier, the eigenvalues of the relevant operators are directly related to
the critical exponents, we find yr = 1/v and y;, = (d + 2 — 17)/2, whereas the two leading
irrelevant scaling fields are related to correction exponents, specifically w = y3 and w, = y4.

What about the finite size of the lattice? In fact, it can be interpreted as another scaling field.
Under a scale transformation of size A, the lattice size transforms according to L — L/A, which
allows us to write down yet another term

Fing (e, i, {115}, L) = A4 F ging ()\yTuT, AV, {AViu;}, AL*l) . (2.68)

which means that L~! is nothing but a relevant scaling field with eigenvalue y; = 1. For solely
short-ranged interactions we can safely assume that the other scaling fields do not depend on
the lattice size [154]. Choosing A = L leads to

feing (e, i, {1}, L) = L™ fgng (LY"ug, LYuy, {LYu;} , 1) . (2.69)

Now we compute the magnetization

9 f sing

m(L,T) = 5

~ LY fl o (LY u, 0) = LE/Vm(LY Vtr), (2.70)
h=0
where in the last step we identified the critical exponents /v = d — y;, and used the explicit
representation of the scaling field in terms of the reduced temperature, 1, = 7. Similarly, for
the susceptibility

82fsing
x(L,T) = o2

~ DAL (L, 0) = LYY R (LY YT) (271)
h=0

we reproduce the result of Equation (2.66).

So far we have only discussed the leading scaling behaviour in the finite-size regime. In
general, corrections due to irrelevant scaling fields {u;},i > 3 can be expected [155], leading to
correction terms proportional to k0% wherek =1,2,...and 6, 6, ... represent correction-to-
scaling exponents. Additionally, scaling fields depending non-linearly on the system parameters
give rise to terms of the form 7*. For instance, for the infinite-volume susceptibility, this leads
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to a general expansion of the form

X = AXTiy (1 + QO,1T+110,2T2 +...
(2.72)
—l—tll,lTe + a1,2T26 + ...+ b]’1T1+9 + b1’2T1+29 +...+ ﬂzrlTez +.. )

near criticality, where Ay, a and b are non-universal amplitudes and we have neglected contribu-

29[ Tl+9 2

tions from the non-singular background. Note that the terms proportional to T , T, etc.

can be regarded as corrections to corrections [156] and typically have very small amplitudes.
Considering again a finite system, the corrections translate to terms depending explicitly on
the lattice size. Typically, as discussed in References [154, 157], when studying system with
periodic boundary conditions, one assumes that the finite-size scaling field is exactly 1/L (i.e. it
shows no corrections of higher order) and that the coefficients of the relevant scaling fields as
well as of the regular part of the free energy are independent of L. As a consequence one expects
no correction terms proportional to 1/L and the finite-size expansion of the susceptibility reads

x=A, LY (1 Fai L Y a2 4 L2 ) , (2.73)

where w = 0/v.

Finally, we remark that according to [158] all two-dimensional models on a square lattice
exhibit a scaling correction with an exponent of exactly 2, associated to the breaking of rotational
invariance.! Since for the two-dimensional Ising model, the operator breaking the rotational
symmetry is conjectured to be the only irrelevant operator [159], w = 2 represents the leading
correction for this model. For the three-dimensional Ising model on a cubic lattice the corre-
sponding correction is not exactly integer but rather close, 2.0208(12) [160], and is furthermore
superseded by a leading correction exponent given by w = 0.8303(18) [161, 162].

2.5 Disorder

After a brief introduction on the phenomenology of quenched disorder, we discuss how it can be implemented
in the Hamiltonian description of an equilibrium theory. Moreover, we investigate the question under which
conditions disorder is expected to constitute a relevant perturbation to critical behaviour, leading to Harris’
relevance criterion. We discuss several generalizations of this criterion, focusing particularly on topologically
disordered structures.

In the previous sections we introduced certain models of physical system which are traditionally
defined in terms of discrete degrees of freedom (spins, agents, grains, ...). The arguably simplest
discrete spatial structure is given by a regular lattice. The square and cubic lattice, for instance,
partition the spatial domain into equivolumetric rectangular or cuboid cells. In two dimensions
each site is connected to exactly four nearest neighbours, whereas in three dimensions this
number increases to six. From a technical point of view, regular structures are beneficial in so
far as they exhibit homogeneously distributed sites and hence a translational symmetry, which
can be exploited, especially in analytical calculations. It is clear however, that regular Cartesian

15For triangular and honeycomb lattices, the corresponding correction are w = 4 and w = 3, respectively [158] .
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lattices are, in general, not rotationally symmetric.

Despite their simplicity, regular lattices present a suitable description of certain real structures.
Alluding to the Ising model, one might think of the individual degrees of freedom being realized
as net magnetic dipole moments of unpaired electrons, such as, for instance, can be found in
iron atoms. As solid iron shows a well-defined regular atomic lattice structure, investigating
the Ising model on regular lattices is plausible. However, it is clear that real solids can never be
arranged perfectly periodic. They are affected by vacancies, impurities or deformations and
depending on the strength of the disorder, the microscopic structure and hence the physical
properties of a given material can change drastically. As a consequence, it is by no means
obvious whether collectively behaving systems should — even qualitatively — show the same
behaviour compared to their clean (i. e. regularly ordered) counterparts. In fact, certain physical
phenomena, such as e. g. the so-called Anderson localization even require a certain degree of
disorder in the medium to be observed [163].

2.5.1 Quenched randomness

An important distinction must be made between quenched and annealed disorder. The former
notion describes the case, when the disorder configuration is static or frozen.!® In the annealed
case, in contrast, the disorder degrees of freedom are allowed to “move” during the evolution of
the system and are hence dynamic. In terms of time scales, quenched randomness is attributed
to the case when the disorder relaxation time scale is much slower then the typical time scale on
which the system evolves. Vice verse, one speaks of annealed randomness if both time scales
are comparable. Concrete examples include general soft matter, such as liquids or plasmas
for annealed disorder and regular atomic lattices with impurities for the quenched case. As
a matter of fact, in the annealed setting, the disorder degrees of freedom (e. g. the impurity
distribution) can be interpreted as additional thermodynamic degrees of freedom that obey
the Gibbs distribution [164]. They can in principle be traced out, resulting in a disorder-free
multi-component system with modified parameters. To be more specific, let us consider a
Hamiltonian, depending on thermodynamic variables ¢ (e. g. the individual spins) as well as on
disorder variables 1 (e. g. random interaction strengths), where the latter are characterized by a
distribution P(1). When calculating the annealed free energy, both are treated on equal footing

_ 1 —pH@pw) _ 1 .
Fo=—glog / dp P() / Dge = 5 108 [Z(07) g (2.74)

and 1 is nothing but another dynamic degree of freedom in an effective potential ~ 3! log P(1).
Note that the latter integral runs over all thermodynamic degrees of freedom and is nothing but
the continuous version of Equation (2.21). Moreover, the square brackets are used as a short
notation for the disorder average.

For quenched disorder, the free energy is given by

1 . 1
Fo= 5 / dy P() log / Dep e BH®H) — 5 U0BZ(#: )],y (2.75)

16The notion of a “quench” originates from a system being cooled very rapidly such that the current distribution of
random variables becomes static.
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which corresponds to calculating the free energy of individual random realizations of the system
and performing the disorder average afterwards. Obviously, this second case is much more
challenging mathematically, and rather involved approximation methods, such as the replica
method have to employed [48, 164], as will be detailed below. For numerical simulations,
Equation (2.75) already points the way of how averages are performed. As the free energy
is given by an average over the free energies of the individual disorder realizations, also the
thermodynamic observables present themselves as averages over the replicas. More details
about how we explicitly perform the disorder averages for the respective models considered in
this work, can be found in Chapter 4.

2.5.2 Renormalization group flow

In the Landau-Ginzburg-Wilson Hamiltonian (2.45), quenched disorder can be introduced as
either random-mass disorder, which couples to the reduced temperature of the system or random-
field disorder, coupling to the external field. Random-field disorder locally breaks the symmetry
of the order parameter, which, in a lattice realization of the Ising model, corresponds to a
random external field i caused, e. g. by magnetic impurities in the material. In particular, the
random-field Ising model (RFIM) has been investigated thoroughly over the last decades [see
165, and references therein]. Random-mass disorder, in contrast, leads to local fluctuations
in the transition point without breaking any symmetries. For magnetic systems it is typically
realized by spatial fluctuations of the bond strengths in the absence of an external field, i. e. it
models for example vacancies or non-magnetic impurities in the material. If one allows for
positive and negative random couplings, the system in general shows the behaviour of a spin
glass, exhibiting highly non-trivial, random behaviour even in the ground state, which has
made it a well-studied research branch on its own [96, 166, 167]. In this work, however, we will
not consider spin glasses but only systems with a well-defined ferromagnetic ground state.

Using the notation 57(x) and 6h(x) for the respective disorder fields, the general disordered
Hamiltonian becomes for vanishing external field

H [p|67, 5h] = /ddx <;(v¢)2 - %(r +67(x))¢p* + %qb‘* — 5h(x)<l)) , (2.76)

where, in order to keep the notation simple, we suppress the space dependence of the spin
field ¢(x). Furthermore, recall that 7(7) = at + O(1?) with a > 0. For now we assume both
disorder fields to be characterized by zero-mean Gaussian distributions, i. e.

P[6t] ~ exp (—22T /ddx 5T(x)2> , P[sh] ~ exp <_22h /ddx 5h(x)2) , (2.77)

which are hence fully characterized by their respective variances
ST(x)oT (v) = A8 (x— &), hi(x)hj () = A, 68" (x — &) (2.78)

with the constants A; and Ay, respectively. As a consequence, disorder correlations are effec-
tively short-range correlated. The implications of this assumption will become quite important
later.
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Figure 2.10 | Disordered renormalization group flow. Shown is the RG flow of the three-dimensional
disordered N-vector model in the coupling plane (u,A;), for N = 1 (Ising model, left panel) and
higher-symmetry fields (right panel). For the Ising model, the clean fixed point becomes unstable and
the system flows to the random Ising model (RIM) fixed point. The trivial Gaussian fixed point is
represented by G in both panels. Reproduced from [168].

Let us take a closer look at the Hamiltonian (2.76) of the N-vector field theory, coupled to
quenched random-mass disorder. Moreover, we assume to have no field-randomness, which
means that 6k = 0. Using the replica trick

logZ]. . = lim a1 2.79)

& “lavg = 1% n ’ ’
one is able to replace the quenched average (2.75) by an annealed average, at the price of
introducing n replicated order parameter fields ¢,, [48, 164]. Integrating over the disorder [169]
one finds

n n
H{{@hinu b = [alx Y G(V%)Z +oBh L¢ﬁ> —Ac Y gy, (280)
u=1 u,v=1

where the explicit form of the disorder distribution given by Equation (2.77) was used. Note that
because of to the last term, this Hamiltonian effectively represents a homogenous disorder-free
coupled n-component theory. It can be studied using RG methods and eventually one obtains
the corresponding renormalization group flow depending on the three effective couplings
r, u and the disorder strength A;. In Figure 2.10 we show the results for the diluted three-
dimensional N-vector model in the (1, A;) coupling plane [168]. In the right panel, where
the situation for the XY, Heisenberg and higher-symmetry models (N > 1) is drawn, we find
a Gaussian as well as a non-trivial Wilson-Fisher fixed point at finite values of the coupling
parameters (compare Figure 2.5). As can be seen, the system flows towards the pure fixed
point, independent of the disorder strength. It therefore stays in the clean O(N) universality
class, even though strong corrections to scaling can be expected [25]. Instead, for the Ising case
(N = 1), shown in the left panel, the system runs away from the clean Ising fixed point and
a new stable disorder fixed point emerges which attracts the system for any disorder strength.
The system is hence expected to cross over to a new universality class, accompanied by critical
exponents different from the clean Ising ones. For a more comprehensive discussion, see [25].

45



2 Theoretical Foundations

2.5.3 The Harris criterion

Under which conditions is quenched random-mass disorder expected to change the character
of a phase transition? This question was answered in a seminal work by A. B. Harris in 1974.
His prominent relevance criterion [46] can be deduced using a remarkably simple line of
reasoning [47, 170], which will be presented in the following. For convenience, we again adopt
the magnetic language, although the arguments are by no means restricted to magnetic systems.

Consider a disordered (for instance site-diluted) Ising system at a temperature T slightly
above its critical point T;. The spins are effectively organized in collective clusters whose
characteristic size is determined by the correlation length &. Inside the clusters, the individual
spins tend to be aligned in parallel due to strong couplings between them and a comparably
small coupling to their surroundings. Depending on the exact realization of the randomness
inside those coherence volumes &7 (see Figure 2.11a), the phase transition in this finite region
is located at a temperature T, ;, which is in general different from the global critical point T..
Consequently, one obtains a distribution of local transitions temperatures in the system (see
Figure 2.11b), whose root-mean-square variation will be denoted by

AT, = (T2 + TX +...)Y2 (2.81)

This width of the fluctuations is compared to the global distance from criticality T — T, which
allows us to distinguish two qualitatively different regimes:

¢ AT. < T—-T,
The fluctuations in the local transition temperatures are smaller than the global distance
from criticality. As a results, all individual correlation volumes are supercritical with
respect to the global phase transition, i. e. they are located on the same side of the transition,
resulting in a homogeneous appearance of the system.

¢ AT.>T-T,
When the width of critical-temperature-fluctuations exceeds the global distance from
criticality, some correlation volumes are still in the ordered phase whereas others are
already in the high-temperature regime. Due to this heterogeneity, the transition will be
qualitatively affected by the disorder.

Harris argued that in order for the transition to be stable, the first inequality, AT, < T — T, has
to hold as the critical point is approached. At this point it is convenient to rewrite the inequality
in terms of the correlation length. From Section 2.1 we know that

EnIT=T)™ as T—T, (2.82)

where v denotes the critical exponent of the pure system. Furthermore, employing the central
limit theorem, which states that the variations in the transition temperatures of the local
correlation regions scale as the square root of the block volume, we can also express AT, in
terms of the correlation length, namely as

AT, ~ &79/2, (2.83)

Requiring that AT, < T — T, holds, as £— oo, we obtain an inequality for the exponents, called
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Figure 2.11| Schematic illustration of the Harris criterion. (a) Correlation volumes of a disordered
equilibrium system, exhibiting local transition temperature of individual spins which tend to fluctu-
ate collectively inside strongly connected clusters (b) Distribution of block transition temperatures.
Reproduced from [47].

the Harris criterion, which states that disorder is irrelevant if
dv > 2 (2.84)

and, conversely, is expected to change the character of the transition for dv < 2. Provided that
hyperscaling is in effect, the stability condition can be recast as

a<0 (2.85)

using Josephson’s identity (2.19), where o denotes the critical exponent of the energy fluctua-
tions.

Despite the elegance of these heuristic arguments, the Harris criterion can also be found
through a more explicit calculation, starting from the disordered Hamiltonian (2.76), where
random-mass disorder is implemented as a space-dependent function for the local distance
from criticality 67(x). Without loss of generality, this function can again be assumed to have a
zero average. The correlations are given by

57(x)07 (x') = Ay Gre (x — %), (2.86)

where the constant A; controls the disorder strengths and the correlation function G, depends
only on the spatial distance, as the system is translationally invariant. In order to derive the
stability criterion, we compare the root-mean-square fluctuations of the local perturbations of
the transition temperature

At = \/:3 - [éld/é'ddx 6T(x)]2 (2.87)

to the global distance from criticality, given by |7|, obtaining

A 1 —
ﬁ - |T|éd\/ /{ﬁ d'x /5 dx5t(x)5t (x') (2.88a)
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_ |T|1£d\/ /g dlx /5 A% Ar G (x — X)) (2.88b)
_ |T|1£ . \/ /5 dx /(E dXAL S (x — X)) (2.88¢)
N/ e

where in the third step we have explicitly used Equation (2.78), corresponding to uncorrelated
or effectively short-ranged spatial disorder.!” In order to obtain a stable critical point At/|7|
must vanish as 7— 0, which is only the case if dv /2 —1 > 0and hence dv > 2. Thus we obtain
precisely the Harris inequality.

What makes Harris’ criterion so elegant is the fact that it allows for a simple interpretation.
If the ratio AT, /(T — T¢) goes to zero as we approach the critical point, disorder becomes less
and less relevant on larger length scales and eventually vanishes, leaving a homogenous critical
system. Qualitatively speaking, in a clean system at criticality, if we zoom away, the appearance
will not change due to the property of scale-invariance. If disorder is asymptotically irrelevant, it
does not change this picture. In the opposite case, however, the strength of disorder approaches
a finite value for all length scales or even becomes stronger with increasing length scale. As
a consequence, the spatially non-uniform behaviour of correlation blocks is enhanced, which
ultimately results in a qualitative change of the critical behaviour. Note that for the marginal
case dv = 2 no predictions can be made based on the arguments above.

Adding disorder to a system (such as random lattice impurities) in general shifts the transition
to lower temperatures. In the region between the clean critical point T.” and the (actual)
disordered critical point T,, i. e. for temperatures in the range T, < T < T\, so-called Griffiths
effects can be observed [171], as illustrated in Figure 2.12. In the thermodynamic limit arbitrary
large regions devoid of impurities can be found, which effectively act as a local clean system.
When the working temperature is below the clean critical point, these so-called rare regions
tend to be locally ordered while the system is globally in the paramagnetic phase. In fact,
Robert Griffiths [172] was able to show that the free energy exhibits a singular behaviour in
the entire region region T, < T < T.?, which, for this reason is called Griffiths phase [173]. The
dynamics of the rare regions is very slow, as a coherent change of spins in the whole region
would be required to flip them.

A classification scheme which qualitatively predicts the influence of Griffiths effects on
continuous phase transition was proposed in Reference [174]. Since rare regions only occur
with a probability depending exponentially on their size, their effective dimensionality dg
determines whether they contribute significantly to measured observables. If d. is smaller
than the lower critical dimension of the system, do¢ < dj, then the rare regions can not undergo
a finite temperature phase transition on their own (compare Section 2.2.1). Hence their effects
are generically weak and expected to be unobservable in experiments. The transition shows
conventional power-law scaling. An example are classical equilibrium spin models with
(finite, and therefore effectively zero-dimensional) random impurities, where 0 = dog < d; =
1 + ¢. In the case degs = dj, rare regions still can not undergo a phase transition. However, a

7In the heuristic derivation of the Harris criterion given earlier, this assumption enters through the use of the central
limit theorem.
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Figure 2.12 | Phase diagram of a randomly diluted Ising magnet. The x-axis shows the dilution prob-
ability, where p. denotes the geometric percolation threshold of the lattice. The y-axis shows the
temperature and the solid black line corresponds to the dilution-dependent critical temperature. Repro-
duced from [171].

subtle interplay between the fact that rare regions become exponentially unlikely with their
volume but — in this case — individual regions contribute exponentially strong to macroscopic
observables, results in strong power-law Griffiths singularities with non-universal continuously
varying exponents. As also the scaling at the disordered critical point T, is affected by rare
region contributions, the conventional power-law behaviour is replaced by an exotic activated
(exponential) scaling scenario. Further details will be given in Section 4.3.3, where the disordered
contact process, which provides an examples for this case (d; = 1, degs = 1, including time) is
discussed. Finally, if dege > d), local regions can spontaneously undergo a transition on their
own and a global phase transition is effectively destroyed by smearing [78].

2.5.4 Topological disorder

It was mentioned in the previous section that as it stands, Harris’ inequality only holds for
effectively (spatially) uncorrelated disorder. In fact, over the past decades, different authors
employed a similar perturbative reasoning to derive relevance criteria for other types of dis-
order correlations as well. A specific generalization was found in 1983 by A. Weinrib and
B. Halperin [175], who were the first to study long-range correlated spatial randomness, given
by a disorder correlation function which decays as G¢¢(x) = |x|~?. Using this functional form
to replace the é-correlator in Equation (2.88), one arrives at a stability criterion av > 2 fora < d,
whereas the normal Harris inequality holds for the case a > d. Moreover, in 1985, W. Kinzel
adapted Harris’ reasoning to uncorrelated temporal disorder [176], resulting in a stable critical
point, if zv > 2, where z denotes the dynamic exponent of the physical model. Another couple
of years later, the first mathematically rigorous proof of Harris’ original inequality was brought
forward by Chayes et al. [177].

A further generalization, which is of particular importance for the present study, was put forth
in 1993 by J. M. Luck [68], who investigated the influence of aperiodic structures on continuous
phase transitions. This class of structures comprises smooth deformations of regular lattices,
as well as quasi-periodic tilings and general random lattices. Whereas in the former case of
so-called modulated structures, the effective disorder strength A; can be tuned arbitrarily weak,
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the latter class features intrinsic topological inhomogeneities and hence the limit Ar— 0 does
not exist naturally. In the absence of a regular underlying lattice, Luck resorted to fluctuations
in the local coordination numbers of the lattice sites as the predominant random variable.
Specifically, he considered spherical patches P of radius R, where the radius is measured based
on link-distances rather then on actual spatial coordinates. To be concrete, the spherical shell
of radius i around the origin site is given by all sites which can be reached from this site by
travelling along exactly i links and have not already been part of the (i — 1)-th shell. The average
node coordination number of a patch is given by

Q(R) (2.89)

1
N(R) & i
N (R) iepP
and fluctuates around the infinite-volume expectation value Qp = limg_,,, Q(R). Moreover,
N(R) denotes the volume of the patch, i.e. the total number of nodes enclosed by P. Using
the notation (...) to average over an ensemble of graphs, for increasing patch sizes R— oo the
fluctuations decay as

00(R) = (|Q(R) — Qol)/Qo ~ (N(R))~(17®) ~ gdl=w), (2.90)

which defines the wandering exponent w. At this is point, it is important to remark that w is a
geometrical property of the considered graph, rather than a property of the physical model. For
fractal structures, such as quantum gravity graphs discussed in Reference [69], d is replaced by
the Hausdorff dimension.

Analogously to relation (2.88), as criticality is approached (§— oo, T— 0), the corresponding
fluctuations inside a correlation volume, o (&) ~ E_d(l_w>, should vanish in order to guarantee
stability of the critical point, i. e.

00(&) = VA |7|"17¢) -0 as 10, (2.91)

where A; in this case denotes the second moment of the coordination number fluctuations,
encoding the disorder strength. From Equation (2.91) we obtain a threshold value for the
wandering exponent
1

we=1-— (2.92)
separating the regime of relevant and irrelevant fluctuations. For wandering exponents below
we, the regular critical behaviour persists, whereas for w > w, a new type of critical behaviour
can be expected. Note that for w = 1/2 the original Harris inequality is contained as a special
case. Moreover, also the criterion by Weinrib and Halperin can be recovered, since for long-range
correlated disorder the wandering exponent becomes w = 1 —a/2d.

Despite the elegance of Luck’s arguments, computing wandering exponents of topologically
disordered structures is a non-trivial task, not free of ambiguities. In a rather elaborate study,
Janke and Weigel [69] computed the wandering exponents of the two-dimensional Delaunay
triangulation (DT) using two different methods, either evaluating the scaling behaviour (2.90)
directly — and through an analysis of the two-point disorder correlation function. According to
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Figure 2.13 | Block-averaged coordination numbers. The top row shows the coordination numbers of a
Delaunay triangulation (left) and a randomly diluted hexagonal lattice (right). In the corresponding
lower panels, the coordination numbers have been averaged over spatial blocks. From [67].

their result, wpt = 1/2, disorder of the DT type should be as relevant as uncorrelated disorder,
revealing an inconsistency to simulations of the two-dimensional Ising model on this type
of disorder [50, 51, 178], where a very clear clean universal behaviour was observed with no
indications of strong corrections due to a possible marginality of the system with respect to
Luck’s criterion. Even more striking, a study of the two-dimensional 3-state Potts model [60]
on the DT reported changed critical exponents, although due to the clean correlation length
exponent v = 5/6 and hence a wandering exponent threshold of w. = 2/5 < wpr, regular
universal behaviour would have been expected.

In the following years, further puzzling numerical results were found for lattice models in
the DP universality class (v = 0.733, w. ~ 0.318 in two dimensions) on disordered structures.
Whereas the emergence of a new disorder fixed point for the contact process on randomly
diluted lattices [179-181], already predicted by theory [182, 183], is fully covered by the original
Harris criterion, the fact that the contact process on a two-dimensional DT shows clean universal
behaviour came as a surprise. A similar discrepancy was uncovered for the three-dimensional
Ising model (v =~ 0.630, w,. ~ 0.471) which features clean universal behaviour on the Delaunay
lattice [58, 184], even though the Harris-Luck condition is violated.

Most of these apparent issues could be resolved in 2014 by H. Barghathi and T. Vojta [67] who
presented a refinement of the previous arguments, resulting in a more convenient approach
to calculate wandering exponents of a specific geometry. In particular, they were able to
analytically motivate that geometrical constraints can lead to a faster decay of coordination
number fluctuations and, as a consequence, the wandering exponent of the DT being actually
given by wpr = 1/4. Specifically, the authors adapt the idea of Luck and partition the two-
dimensional random lattice of size N = L? into Nj, spatial blocks of size L%. The average
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coordination number within one block is given by

1 N
Qu=) i (2.93)
Nu 5

where N, denotes the number of lattice sites contained in block i and g; is the coordination
number of the lattice site 7, as before. An example for the resulting block-averaged coordination
numbers is shown in Figure 2.13. Moreover, one can compute the standard deviation of Q,,
which is used to quantify coordination number fluctuations. It reads

L WL N
L2 =1 u; (Qu—-1)", (2.94)

og(Ly)

where 7 denotes the asymptotic average coordination number of the lattice and we used the fact
that N, = L?/L2. The argument L, already indicates that these disorder fluctuations can be
evaluated on different length scales, corresponding to different patch radii in Equation (2.90).
For increasing block size, the fluctuations are expected to scale according to

oo(Ly) ~L,", (2.95)

which defines the dimension-dependent disorder decay exponent, denoted by the symbol a. If we
require the fluctuations to decay sufficiently fast at criticality (compare Equation 2.91) we obtain
a modified inequality which we call the Harris-Barghathi-Vojta (HBV) criterion. Quenched
topological randomness is irrelevant and does not alter the transition if

av > 1, (2.96)

whereas in the converse case changed critical behaviour can be expected. Obviously, the decay
exponent is strongly related to the wandering exponent, namely by

a=d(1-w) (2.97)

and therefore a value of a = 1 corresponds to uncorrelated randomness. For the DT on the
other hand, Barghathi and Vojta found a different exponent, a = 3/2, thus rendering disorder
of this type less relevant than generic uncorrelated randomness. Moreover, the authors were able
to motivate this result from geometrical constraints, as will be detailed in the following.

Concretely, they apply the Euler equation for two-dimensional planar graphs, stating that
x=N—-E+F (2.98)

where N, E and F denote the number of sites, edges and facets, respectively. In a triangulation,
each edge is shared by two triangles and since each triangle has three edges, 3F = 2E. As
furthermore, for the case of periodic boundary conditions, the Euler number x = 0, we arrive
at E = 3N, which means that the total coordination number does not fluctuate. In fact,
every disorder realization features an average coordination number of exactly § = 2E/N = 6.
Applying the argument to a single block, it is obvious that only those triangles that cut the
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Table 2.4 | Predictions of the HBV criterion for the two-dimensional Ising, Potts and direct percolation
(DP) universality classes as well as observations from numerical, theoretical and experimental studies
with respect to whether the clean universal behaviour is present (v) or not (X) for the respective
geometry. The disorder decay exponent 4 is calculated in Section 3.4.

Class v Lattice a av Prediction  Observation References
Ising 1 DT 3/2 3/2 v v [50, 51, 59, 178]
Ising 1 Diluted 1 1 - marginal [185-200]
3-state Potts 5/6 DT 3/2 5/4 v v [60]
3-state Potts 5/6 Diluted 1 5/6 X X [201, 202]
4-state Potts 2/3 DT 3/2 1 - unclear [62, 69]
4-state Potts 2/3 Diluted 1 2/3 X X [203-206]
DP 0.733 DT 3/2 1.100 v v [65, 66]
DP 0.733 Diluted 1 0.733 X X [179-181]
Dr 0.733 DT+ 1 0.733 X v [P1]

surface of the block can lead to coordination number fluctuations, as for the cells entirely inside
the block, 3F = 2E holds. Assuming the surface contributions to Q,, to be independent, we can
apply the central limit theorem, resulting in o(L;) ~ L;/ 2 JL% = L;3/ 2, and therefore 1 = 3 /2.
From Equation (2.97) it becomes clear that the correct wandering exponent of the DT is hence
given by w = 1/4. The reason why Janke and Weigel obtained a spurious decay w = 1/2, is
also pointed out in Reference [67]: If the patches are constructed based on link distances rather
than on real-space blocks, the average coordination number inside the cluster is in general
larger than the global average coordination number, i.e. Qp > 4. This bias had not been taken
into account in previous studies and stems from fact that sites with more neighbours have a
larger chance of being added to the cluster. Taking proper care of this bias, the resulta = 3/2
can also be reproduced using link-distance clusters [67].

But how can the fast decay be understood? It has been shown above that for any tiling of
the plane with triangles, the total number of links is constrained. As a consequence, highly
connected nodes will typically be surrounded by less connected nodes and vice verse, which can
be qualitatively measured using the two-point correlation function of the coordination number,
as will be discussed in detail in Section 3.4, where we present numerical results for several
disordered lattices. Using this measure, the authors [67] revealed strong spatial anti-correlations
in the local coordination numbers for the DT, explaining the fast decay of disorder on increasing
length scales. Similar holds for other constraint structures, such as quadrilateral tilings of the
plane as well as certain deterministic quasi-periodic lattices. These structures are therefore
expected to yield decay exponents 4 > 1 (or wandering exponent w < 1/2), resulting in an
improved stability of the critical behaviour compared to uncorrelated disorder.

In fact, given the correct geometric exponent of the DT, all previous results can be explained, as
detailed in Table 2.4. For the DT, the HBV criterion predicts marginal behaviour for a correlation
length exponent v = 2/3, since in this case av = 1. Interestingly, a system with this property
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2 Theoretical Foundations

Table 2.5 | Timeline of disorder relevance. Listed are significant contributions towards an answer of
the question under which conditions quenched disorder is relevant with respect to the stability of a
continuous phase transitions. The results of Reference [P1] will be presented in detail in Section 5.3

Seminal work, presenting the central argument;

1974 Harris Uncorrelated disorder irrelevant if dv > 2 [46]

1983  Weinrib & Halperin Extension to long-range correlated disorder [175]

1985  Kinzel Extension to uncorrelated temporal randomness [176]
Mathematically rigourous proof of Harris’

1989  Chayes et al. inequality [177]

1993 Luck Generahzahon.to aperloc.hc structures; Introduction [68]
of the geometric wandering exponent

1998  Aharony et al. Canomcal constraints on the random variables are
irrelevant [207]

2004  Janke & Weigel First to specifically adress topological randomness; [69]

(Wrong) calculation of wandering exponent for DT

Correct wandering exponent for DT; Coordination
2014  Barghathi & Vojta number anti-correlations found to improve stability  [67]
against disorder

2016  Vojta & Dickman Generalization to diffusive disorder [208]

Construct explicit violation for criteria of Luck and
2018  Schrauth et al. Barghathi & Vojta; Characterization of topological [P1]
randomness by coordination numbers not sufficient

does indeed exist, namely the 4-state Potts model. To our best knowledge, so far only two studies
considered this model on a DT. In Reference [62] the authors — even though they indicated
that their results might be inconclusive due to small lattice sizes used — found indications for
changed critical exponents. In contrast, a different group of authors [69] mentioned, without
explicitly presenting their results, regular critical behaviour. This discrepancy might, in the light
of the HBV argument, very well be understood as an effect of corrections due the marginality
of the model. However, we remark that despite the elegance of the arguments of Luck and
Barghathi & Vojta, we found an explicit violation of both criteria in the present work, when we
simulated the two-dimensional contact process on a specially designed variation of the DT with
additional random local bonds. These results will be presented in Section 5.3.

In order to provide a better overview over the publications which significantly contributed
to investigate the influence of quenched disorder on critical phenomena, we give a detailed
chronological list in Table 2.5.
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CHAPTER

Topological Disorder

“Ordnung ist die Verbindung des Vielen nach einer Regel.”

— Immanuel Kant

As we aim at improving the understanding of critical phenomena on disordered structures, the most common
types of (especially) topologically disordered lattices are reviewed in this chapter. Particular attention is given
to the constant coordination (CC) lattice and a Delaunay triangulation with additional bonds (DT™),

which have been newly developed in the course of the present work.

3.1 Terminology

Besides the actual physical formulation of a problem, encoded in a Hamiltonian for equilibrium
systems and in a master equation for non-equilibrium systems, also the underlying spatial
structure on which the problem is placed can have crucial influence. For discrete systems, the
topology of the system is usually encoded in a lattice, which defines neighbouring relations
among individual degrees of freedom (spins, agents, grains, ...). For the number of nearest
neighbours of a given site, which is the number of sites it is directly connected to, we use the
terms coordination number and degree as synonyms. The usual symbol is g. Similarly, the terms
lattice and graph/network can be regarded as synonyms throughout this work, even though
lattice is occasionally used in a slightly more specific meaning, namely when giving emphasis
to spatial graphs with predominantly local connections. Finally, also the terms link, bond and
connection will be used interchangeably.
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3 Topological Disorder

Topological disorder is defined by the fact that connections between lattice sites are not as-
sembled in a regular or periodic fashion, hence lacking any translational order. As a result,
in general, no local motif (sub-graph defined by a particular pattern of connections between
vertices) will be found elsewhere in the lattice, as it is obviously the case in regular lattices but
also for quasi-periodic structures [209]. Constructing a topologically disordered graph naturally
starts with a random distribution of sites in the given spatial domain. The coordinates of each
site are obtained through stochastic spatial point processes. Specifically, we use the Poisson
point process with constant spatial intensity A(x) = A (also called homogeneous Poisson point
process), which in some sense introduces the maximum amount of randomness to the system,
since consecutive coordinates are drawn independently. In other words, the history of the
process is irrelevant, when a new site is drawn.1® Moreover, the name stems from the fact that
the number of points in a finite region Q obeys a Poisson distribution, i. e.

P(N(Q) =n) = %exp(—)ﬂ(ﬂ) (3.1)

denotes the probability of finding n points inside Q. The resulting spatial distribution of sites
is uniform and isotropic — hence no topological defects are introduced, which is a desirable
property. More details on spatial point processes can be found in Reference [210]. In practice, the
Poisson point pattern in a subspace of the Euclidean space is generated by drawing independent
and identically distributed (i.i.d.) random variables in the corresponding interval from a uniform
distribution for each coordinate. For the construction of our lattices we use, unless otherwise
stated, periodic boundary conditions in all spatial dimensions throughout this work. Typically,
the spatial domain is given by [0, L]%, where the linear size L is defined by L = N 1/d and N
denotes the total number of lattice sites.

Finally, note that throughout this work, all interaction strengths are set to unity. Sites are
hence influenced equally strong by all of their direct neighbours, irrespective of the actual
spatial distance. This simplifies the numerical calculations and is justified in so far as it is known
that coupling strengths decaying e. g. exponentially with the distance do not affect the universal
properties of the phase transition [59, 60], as the interactions remain effectively short-ranged.

3.2 Proximity graphs

Given a set of discrete points in space, if connections between these points are created according
to a rule defined in terms of geometrical closeness, one obtains a so-called proximity graph.
Proximity graphs are useful in a wide range of applications, most notably mesh generation,
surface modelling, pattern classification, ad-hoc networks, path planning and astrophysics [211-
218]. Such graphs possess only local connections and their typical shortest path length scales
as [ ~ N1/ on a d-dimensional set of N points, in contrast to small-world networks [219] and
some scale-free networks [220], where shortcuts, provided by long-range connections, lead
to logarithmic scalings [ ~ InN and I ~ InIn N, respectively. On the latter, we remark that
equilibrium phase transitions display pathological behaviour. For instance, the temperature
of the ferromagnetic to paramagnetic crossover was found to shift with the system size and to

18 A natural counterexample might be the hard core point process, where due to spatial interactions points can not be
placed closer than a certain minimal distance (mutual repulsion).
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3.2 Proximity graphs

Figure 3.1| Common proximity graphs construction rules. (a) GG (RNG) construction: the smallest
circle (lune) defined by two connected sites, indicated by the cross- (single-) hatching, should contain no
other sites. (b) Illustration of the VG (green) and DT (red) lattices. (c) RGG: Only those points which are
closer than a certain distance (illustrated by the dashed circle, with the bottommost point as its centre)
are connected.

ultimately diverge for N — oo [221].

The outline of this section is as follows: First, we consider the Voronoi graph (VG) and its
dual the Delaunay triangulation (DT), both arguably very prominent and often-used proximity
graphs. Then, after a brief review of a simple distance-threshold construction (the random
geometric graph, RGG), two further graphs will be discussed, the relative neighbourhood graph
(RNG) and the Gabriel graph (GG), which represent subgraphs of the DT. Finally, lattices with
constant coordination number are addressed in greater detail. We explain why constructing a
topologically disordered lattice with constant local coordination number is a non-trivial task,
and present our solution, the so-called CC lattice algorithm.

Voronoi graph and Delaunay triangulation

Many location optimization problems can be approached through area-of-influence consider-
ations. A simple example is that of several fire stations distributed over a large city. Rather
naturally, the area of responsibility attributed to a particular fire station should include those
buildings which lie closer to it than to any other station. The resulting tessellation of the city
map defines the so-called Voronoi graph (VG). In Figure 3.1b, which shows the construction
schematically, the red dots would denote fire stations with the corresponding VG being depicted
as solid black lines and green nodes. Due to its conceptual simplicity, Voronoi constructions can
be found in a large number of applications, spanning all fields of physical sciences, including
climate modelling [222, 223], crystal structure [224], cosmology [216, 225], microbiology [226],
and growth processes [227], as well as optimization problems [228], game theory [229-231],
artificial intelligence [232, 233] and, recently, also in the field of machine learning [234], among
others. Moreover, numerous generalizations have been defined, such as weighted graphs, and
Voronoi graphs on spherical and general curved surfaces, [235, 236], as well as for fuzzy point
sets [237] or metrics other than Euclidean.?

Concretely, the Voronoi diagram is a partition of the plane into cells, generated by a set of

19Tn a more realistic fire station example, one might consider using the Manhattan distance rather than the standard
Euclidean one.
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3 Topological Disorder

points P = {p1, p2, ..., pn} such that for each cell corresponding to the point p;, every point g
in that cell is closer to p; than to any other point p jr i.e.,

d(q,pi) <d(q,p;) Yp;# pi- (32)

The VG is defined by taking as sites the corners of the cells and, as edges, the boundaries
between the cells, as shown in Figure 3.1b. Therefore, the new set of points P’ = p, p5, ..., phyn
is twice as large as the original set that defined the cells. This can be easily seen from the Euler
characteristic of a finite graph, which is defined as

where N, E and F are the number of vertices, edges and faces, respectively. For the periodic
boundary conditions used here, x = 0 holds. In a Delaunay triangulation, which will be
addressed below, E = 3N as the average coordination number is exactly () = 6 and any edge
is shared by two triangles. Therefore, one ends up with F = 2N faces in the triangulation and
hence 2N points in the VG due to the duality property. The locations of the VG sites are given
by the centre of the circumcircle of the corresponding triangle in the Delaunay triangulation.
A sample of a periodic VG is shown in Figure 3.2. It can be easily seen that all cells have
convex shape and that every site has exactly three neighbours. This latter feature, the absence
of coordination number fluctuations, will be important later.

As already stated above, the dual of the VG is the so-called Delaunay triangulation (DT). It
can be constructed by connecting points corresponding to adjacent Voronoi cells. In other
words, for a set of points it is a triangulation in which the circumcircle of every triangle is
empty, i. e., contains no point of the set. Such triangulations contain as a subgraph the (first)
nearest-neighbour graph and guarantee that the distance along the edges between any two
points is not larger than about 2.42 times their metric distance [238]. An example of such
a lattice for a Poissonian point sampling is shown in Figure 3.2. As can be seen, the local
number of neighbours fluctuates. In particular, the smallest possible coordination number is
three (corresponding to a triangular Voronoi cell). In a periodic 2D triangulation, the average
coordination number is exactly (q) = 6, which can be calculated using the identity (3.3).
For computing Delaunay triangulations and Voronoi graphs, we employ the Computational
Geometry Algorithms Library (CGAL) [239].

The Ising model has been thoroughly studied on two- and three-dimensional Delaunay
lattices (compare [50, 51, 59] and [58, 184], respectively) and found to belong to the same
universality class as the corresponding clean model, both for constant as well as distance-
dependent couplings. Whereas the two-dimensional Ising model represents a marginal case
of the Harris criterion (dv = 2, compare Section 2.5), the unchanged universality in three
dimensions was surprising, since the criterion is violated. This particular result partially
motivated the study of coordination number fluctuations in [67].

Finally, we define the DT lattice: a Delaunay triangulation, furnished with additional local
bonds, also shown in Figure 3.2. This lattice is constructed from a DT of N sites, to which kN
bonds between next-nearest neighbours are randomly added (we select k = 1), resulting in a
lattice with a total coordination number of exactly (6 + 2k)N. This latter constraint is relevant
for the applicability of the HBV criterion (compare Section 2.5.4).
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3.2 Proximity graphs

Random geometric graph

In the construction of an RGG, any two points whose distance falls below a certain threshold
are linked. In 4 dimensions, these graphs can be defined using the auxiliary variable

R@==jﬂ@wr<d§2>rm, (34)

which denotes the interaction radius of a random geometric graph with (g) neighbours on
average. The symbol ' denotes the gamma function with I'(2) = 1 and I'(5/2) = 4,/7/3,
for two and three dimensions, respectively. For a comprehensive review of further properties
see [218]. In an RGG, correlations arise from the fact that a high degree node must be surrounded
by many points close to each other, which typically implies rather high coordination numbers
in its immediate surrounding as well. In other words, dense clusters are more likely than in
generic random networks. This property can be observed very clearly in the example of an
RGG lattice shown in Figure 3.3.

Relative neighbourhood and Gabriel graph
In a Gabriel graph (GG), also displayed in Figure 3.3, two points i and j are connected whenever

d(i, j)* < d(i,k)* +d(k, j)? (3.5)

for any other point k of the graph, where d(i, j) is the distance between i and j. This condition
translates into requiring that the smallest circle defined by i and j contains no other points. The
relative neighbourhood graph (RNG) is similarly defined by the more restrictive condition

d(i,j) < max|[d(i k), d(k, j)] (3.6)

and also shown in Figure 3.3. Moreover, we schematically illustrate the construction rules of
both graphs in Figure 3.1a.

An interesting property, linking the majority of proximity graph constructions considered in
the present section is the fact that they are subsets of each other, given by the relation

NN C RNG ¢ GG ¢ DT ¢ DT* (3.7)

where NN denotes the (first) nearest neighbour graph. Due to this property, an algorithm for
constructing GGs and RNGs can be built such that starting from a DT, specific bonds, which
violate the respective proximity conditions are removed. An overview of the scaling of several
different algorithms in a Euclidean space is given in [212].
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Figure 3.2 | Lattice overview — Part 1. Samples of two-dimensional lattice geometries considered in this
work, generated from 242 points. (a) Constant coordination lattice with four neighbours, (b) CC lattice

with eight neighbours, (c) Delaunay triangulation, (d) Delaunay triangulation with additional bonds,
(e) Voronoi graph (green).
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3 Topological Disorder

3.3 The Constant Coordination lattice

We present an algorithm for the construction of a topologically disordered lattice with nodes of
constant coordination number. Boasting a computational complexity that scales linearly with
the number of points, it is significantly faster to build than other proximity graph constructions.
Our algorithm performs only local operations, dividing the spatial domain into cells of small
linear size compared to the lattice dimensions. This guarantees that bond lengths are bounded
and allows a straightforward generalization to any number of spatial dimensions and, in
principle, to different metrics and topologies. By efficiently constructing disordered graphs
with a fixed number of interactions, the CC lattice could (apart from this thesis) find application
in the modelling of amorphous materials such as low temperature amorphous silicon in two
and three dimensions [240, 241], especially given that the most well-known lattice with constant
coordination number, the Voronoi construction, is not considered a satisfactory model [242].

3.3.1 Motivation

For the majority of proximity graphs introduced above, the local number of neighbours fluctu-
ates. In contrast, a lattice which is still disordered in the topological sense, but where coordina-
tion number fluctuations are absent, can be an interesting tool for investigating the influence of
disorder on critical systems. When imposing the constraint of a constant coordination number
of the lattice nodes, the perhaps most obvious approach would be a g-nearest neighbour lattice,
where every site is linked to its g spatially closest sites. This construction is particularly simple,
as no geometric information other than the point distances is required, and furthermore can be
straightforwardly generalized to any dimension. However, the resulting graph in general is
directed, since neighbourhood is not necessarily reciprocal. Therefore, only gout, the out-degree
of every site, will be constant, i. e. exactly 4 bonds emanate from each site. Since not all links are
bi-directional, though, in general gi,, # const.

In the past, it has been pointed out by several authors that equilibrium systems on directed
graphs can be regarded as pathological in the sense that the detailed balance condition is
violated [243]. This leads to the fact that, e. g. on a directed, scale-free Barabasi-Albert graph, no
spontaneous magnetization can be found for the Ising model and different update algorithms?
lead to different results [244]. On directed small-world networks, higher-spin Ising models, as
well as the Blume-Capel model, show a phase transition, which changes from second to first
order if a specific critical rewiring probability is exceeded [245-247]. In the second-order regime,
the aforementioned results indicate a different universality class compared to the corresponding
models on a regular lattice. For a recent review article on this topic, see Reference [63]. To make
matters worse, it was first pointed out in [248] that directed systems can be seen as being in a
non-equilibrium stationary state rather than in conventional equilibrium. Therefore, a proper
definition of the energy of the system becomes problematic [243] and hence the applicability of
traditional equilibrium Monte Carlo methods can be regarded as questionable in the first place.

In order to avoid the massive complications accompanied with directedness, there are two
common ways to symmetrize g-nearest neighbour constructions. One may either delete any
directed links, such that only the bi-directed ones remain, or also add the reverse links to

20Update algorithms will be discussed in Chapter 4.
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3.3 The Constant Coordination lattice

the nodes connected by directed ones. Obviously, lattice sites can be left with more than g
neighbours after the latter symmetrization procedure and can have fewer than q neighbours
after the former procedure. Additionally, it can easily be checked that neither symmetrization
leads to a constant global coordination number Qot, which means that Qtot is (slightly) different
for each disorder realization. Another construction which could come to mind would be to
naively link every point to some other randomly chosen points that still has fewer than g
neighbours. However, this approach would result in a mean-field-like behaviour of the physical
system, similar to small-world networks [249] and Erdos-Rényi graphs [250], as the mean
path length is then of the same order as the system size and therefore information propagates
effectively instantaneously through the lattice. We therefore must place as a particular demand
on our model that the interactions are short-ranged in the sense that the bond lengths obey the
relation ¢ < L.

The resulting construction, incorporating the particular demands mentioned above, is called
the Constant Coordination (CC) lattice and was introduced first in [P2]. By construction, every
site is connected to exactly g other sites, without allowing for self or double connections. In
this way, any perturbation on the critical behaviour of a phase transition can only originate
from the implicit connectivity disorder, independent from coordination numbers. In a second
paper [P3], we refined the original construction rules by proposing an improved algorithm
with significantly reduced computational complexity (from quadratic to linear in the number
of points). Moreover, the improved algorithm can straightforwardly be applied to dimensions
larger than two and also eliminates certain shortcomings related to the applicability in finite-size
scaling simulations.

The remainder of this section is organized as follows: After a presentation of the basic ideas
of the CC algorithm, specific details of the improved implementation, published in [P3] will be
discussed. A list of deficiencies of an earlier algorithm, published in [P2], together with detailed
explanations of how they are solved in the improved one, can be found in Appendix A.1.

3.3.2 Basic concept

As typical for topologically disordered random lattices, our starting point is a cloud of randomly
distributed points in a toroidal domain of linear size L with Euclidean metrics. In the first
construction step, bonds between random pairs of sites are gradually introduced until each
site has exactly g4 neighbours. The key step after that, is to subject the graph to a dynamical
rewiring, by means of a simulated annealing (SA) procedure [251], in order to achieve locality,
i. e. to keep connections effectively short ranged. Specifically, in the SA algorithm, two bonds il
and jk are taken at random and rewired to a new configuration ij and kI whenever this leads to
a decrease of the sum of the bond lengths, i. e. whenever

d(i, j) +d(k 1) < d(i, 1) +d(j, k). (3.8)

If, instead, the new configuration leads to an increase of the combined link lengths, the rewiring
is accepted only with probability exp(—AH/T), where

AH = [d(i, j) +d(k,1)] — [d(i,1) + d(j, k)] (3.9)
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Figure 3.4 | Illustration of the construction process of a CC lattice: (a) Sites are grouped into cells and
(b) each site is randomly connected to q; = 2 neighbours in its respective cell; the sites are then (c)
regrouped into staggered cells and each site is connected to g, = 2 additional random neighbours in
its cell; bond lengths are finally minimized by simulated annealing dynamics, performed first (d) in
the original cell partition and then (e) for the staggered partition, resulting in (f) a final lattice with
coordination number g = q; +gq = 2+ 2 = 4. Note that the shaded region marks the currently
processed cell in the respective construction step.

defines the cost function. The simulated annealing temperature T has the effect of noise on the
convergence to a state of low cost function. The value of T is logarithmically decreased during
the simulation, such that in the beginning, non-optimal rewiring updates are accepted with
moderate probability, whereas in the final stages, this probability almost vanishes and only
those moves are performed where condition (3.8) strictly applies.

The first algorithm for the CC construction, put forward in the original proposal [P2], presents
two central drawbacks: first, it is computationally expensive; second, it requires considerable
care and the introduction of an inconvenient extra parameter in order to avoid any dependence
of its geometrical characteristics on the lattice size. An improved algorithm for generating the
CC lattice, which overcomes these drawbacks, can be obtained based on a simple key concept:
instead of over the whole lattice, we perform the construction locally, in subgraphs delimited
by grid cells of a small, fixed size. That brings the complexity from O(N?) to O(N) by keeping
fixed the size of the set to which the simulated annealing is applied and also precludes any
lattice-size dependency, due to its locality.
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Figure 3.5 | Computing time for the CC lattice. Shown is the scaling of the construction time for CC
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CPU. The error bars are smaller than the marker sizes.

3.3.3 Algorithmic details

In this section we elaborate on the CC lattice algorithm sketched in Section 3.3.2, giving attention
to its improvements over the original proposal [P2], most notably the significant reduction
of computational complexity and the improved finite-size scaling properties, for which we
use the term micro-scale equivalence (MSE). When this equivalence holds, a lattice with N sites
and an arbitrary subgraph with N sites from a larger lattice, built from the same rules, are
indistinguishable with respect to their connectivity properties (such as average bond length,
shortest path, clustering, etc.) up to boundary effects. This property is crucial for the application
of finite-size scaling methods. While it is trivially fulfilled for any geometrically constructed
lattice, like regular lattices, DTs, RGGs, etc., this is not the case in the original CC algorithm, as
it is explained in detail in Appendix A.1.

We impose that all the steps of the lattice construction must be local, restricted to subgraphs
delimited by grid cells of a small, fixed size instead of over the whole lattice. Therefore, in the
first step of the construction (Figure 3.4a), the spatial domain of linear size L is subdivided into
cells K1 ,, of linear size £ and index n. Typically, we choose ¢ ~ 8. In the next step (Figure 3.4b),
the sites in each cell are linked together, such that each of them has q; < g neighbours. Note
that building these subgraphs is always possible as long as g; is even?! , a restriction imposed
by the handshaking lemma [252]. Once this first layer of connections is in place, the lattice consists
of (L/¢)? disconnected subgraphs where d = 2 in Figure 3.4. Then, considering a second grid
of cells Ky ,, that is, for instance, diagonally displaced with respect to Ky ,,, another set of bonds
is added so that each site gets g, additional bonds (Figure 3.4c). This staggering of layers
results in a seamless, connected graph where each site has gq; 4 g neighbours. In the next step
(Figure 3.4d) bond lengths are reduced by a simulated annealing procedure as described in
Section 3.3.2, but now restricted to the cells ICLH, IQ,”, ..., wWhere the tilde indicates that the

2I'That we can always assign an even number g; of neighbours to any set of sites can be easily seen by arranging the
sites in a circle and connecting every site to its q; /2 left (or right) neighbours.
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Figure 3.6 | Bond length histograms for two-dimensional CC lattices with g = 4 for several values of L
in units of 1/L, indicating that the high degree of locality is independent of the lattice size. Each curve
is computed from a sample of 108 bonds, for typical parameter values.

cells are open, i. e. not only those bonds are considered which lie completely inside the cells,
but also those crossing the boundaries. In contrast to the initial connection steps (b, c), the SA
step may be repeated not only for diagonally staggered cells (Figure 3.4e), but also for cells
displaced only horizontally or only vertically by ¢/2 (not shown in the figure). The rewiring
is repeated until the desired degree of locality is reached, completing the construction of the
CC lattice (Figure 3.4f). Note that, in order to avoid any directional bias, we switch the order
in which the cells are processed (bottom left to top right in Figure 3.4) after each repetition. A
detailed pseudocode for the construction procedure can be found in Figure 3.7.

The drawbacks of the earlier algorithm are eliminated in the present, improved version by
restricting the most expensive construction step, namely the dynamical rewiring, to the small X-
cells. This drastically reduces the complexity of the lattice construction from O(N?) to O(N), as
shown in Figure 3.5. Moreover, the MSE property is now fulfilled by construction as long as the
length ¢ is fixed for lattices of different size L in a set of finite-size scaling simulations. This can
be shown (compare [P2]) by considering the distribution of bond lengths for lattices of different
sizes: as the histogram of Figure 3.6 illustrates, the bond length distribution for different values
of L coincides perfectly within numerical precision. The concentration of lengths around lower
values seen in the figure also gives evidence of the high degree of locality of the lattice.

It should be emphasized that the link distance histogram is a sufficient condition to prove
locality for our lattice construction, even though it is not a necessary one. If we, for instance,
move lattice points to new randomly chosen locations while keeping all bond connections
unchanged, we end up with a completely different link length profile with distances of all
length scales. However, the topology of the lattice would not be different than before, as it is
solely encoded in the neighbour relations. In this context, the typical shortest path length I on
the graph can be used as a proper quantity to check locality. As mentioned above, for regular
lattices and general proximity graphs, this distance is supposed to scale as [ ~ N1/, where N
is the number of nodes and d denotes the dimension of the system. Since for the CC lattice,
the geometric bond distances are explicitly minimized through the rewiring algorithm, this
property is fulfilled by design.
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3.3 The Constant Coordination lattice

Input: set G of N = L% sites in [0, L)d
Parameters:

* M., M; > 2 number of connection and rewiring layers
* q=q1+...+gm, coordination number >g; > 2

® r1,...,"m+m, € R? cell displacement vectors

¢ linear cell size > typically ¢ ~ 8
* s number of rewiring attempts per cell and layer
e T initial SA temperature (optional)

Complexity: O(sqM;N)

Phase 1 - Initial Connections

fora =1to M. do > iterate over connection layers
subdivide spatial domain into cells C; ,
of size ¢, displaced by r, w.r.t. the origin

for all cells KCy , do
call CONNECT_SUBGRAPH(sites in Ky 11; 4a)
end for
end for

Phase 2 - Dynamical Rewiring

fora =1to M, do > iterate over rewiring layers
subdivide spatial domain into cells X, ,
of size ¢, displaced by . p1, w.r.t. the origin

for all open cells K, , do

forb=1tos-gdo > number of repetitions per cell
i, j < two random sites € G
I +— random neighbour of i
k < random neighbour of j

if not any duplicates in {i, j, k, I}

and i is not neighbour of j

and k is not neighbour of [ then
call REWIRING_ATTEMPT(], j, k,I; T)
end if
end for

end for

decrease temperature (if not initially zero)
end for
repeat Phase 2 until desired locality is reached

Figure 3.7 | Pseudocode for the construction of the CC lattice. The subroutines CONNECT_SUBGRAPH
and REWIRING_ATTEMPT are described in Figures 3.8 and 3.9.
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3 Topological Disorder

procedure CONNECT_SUBGRAPH(set of sites G; g)
SHUFFLE G
Ig +length of G

fori =1tol; do

forj=1toq/2do
k< mod (i+7,1g) > cyclic connections
Add bond from site G(i) to site G(k)
end for
end for
return
end procedure

Figure 3.8 | Pseudocode for the subroutines (1). This function cyclically connects a set of points. Note
that a call to this subroutine might produce a connection already produced by a previous call, in which
case a reshuffle is necessary.

procedure REWIRING_ATTEMPT(sites i, j, k, I; T)

d 4 <+ distance(i, I) + distance(J, k) > respecting p.b.c
dp <+ distance(i, j) + distance(k, I)
AH +dp —dy > cost function, Equation (3.9)

Draw random number r € [0,1)

if ¥ < min(1,e 2H/T) then
Remove bond from i to !
Remove bond from j to k
Add bond from i to j
Add bond from k to !

end if

return

end procedure

Figure 3.9 | Pseudocode for the subroutines (2). This function attempts a rewiring step by choosing four
sites which are mutually connected and comparing the combined bond lengths in the old and new
configuration.
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3.3 The Constant Coordination lattice

Table 3.1 | Examples of possible coordination number decompositions and corresponding cell displace-
ments of the initial connection layers for the CC lattice construction in two and three dimensions.

d q qi layer displacements

2 4 2+2 (0,0), (¢/2,¢/2)

2 6 24242 (0,0), (¢/3,0/3), (2¢/3,2¢/3)

2 6 442 (0,0), (£/2,0/2)

2 8 4+4 (0,0), (¢/2,¢/2)

2 8 2424242 (nf/4,nl/4),n =0,1,2,3

2 8 2424242 (0,0), (¢/2,0), (0,£/2), (¢/2,¢/2)

3 4 242 (0,0,0), (£/2,¢/2,0/2)

3 6 24242 (nt/3,n/3,n0/3),n=0,1,2

3 8 242+242 (nt/4,nl/4,nl/4),n=0,1,2,3

3 8 2+2+42+42  (0,0,0),  (£/2,0,0),  (0,£/2,0),
(0,0,4/2)

We remark that some care must be taken with the set of construction parameters g;. The
handshaking lemma states that any finite graph has an even number of odd-degree nodes. As
a consequence, the algorithm cannot converge for cells which end up with an odd number of
nodes if g; is also odd. Clearly, this places an important limitation on the algorithm: it should
only be used for generating lattices with even coordination number 4. Provided g; are even,
the number of layers and the amount of displacement can be seen as tunable parameters. For
constructing a lattice of constant coordination number g = 6, for instance, one could employ
either g = g1 + 92 = 24+ 4 = 6, or three layers withg = g1 + 92 +g93 =2+2+2 = 6, and
displacements ¢/3 and 2¢/3. A two-layer setting g4 = g1 + g2 = 3+ 3 = 6 must be avoided
due to the evenness requirement from the handshaking lemma. An overview of some of the
possible configurations is given in Table 3.1.

3.3.4 Higher dimensions

Whereas the O(N?) scaling of the original algorithm is a significant limitation already in two
dimensions, for higher dimensions it makes the construction of lattices of reasonable size
prohibitively expensive. In this context, it is important to notice that the current algorithm is
not only a substantial improvement over the original one, but also compares favourably with
algorithms for usual proximity graphs, such as the Delaunay triangulation and its subgraphs,
as well as nearest-neighbour graphs. For the latter, typical sequential algorithms are known to
scale as O(NIn N), through the use of spatial tree decomposition methods [253-255]. For the
DT on uniformly distributed points, a O(N In1n N) scaling is possible [256] using sophisticated
divide-and-conquer techniques. In dimensions larger than two, some of those algorithms are
not trivially generalized and the scaling is not maintained, such as for the RNG, where one falls
back to algebraic complexity in 3D [257]. In contrast, the CC algorithm is straightforwardly
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3 Topological Disorder

generalized to higher dimensions, as already described in Figure 3.7, while maintaining the
O(N) scaling behaviour, as shown in Figure 3.5. Essentially, the construction remains the same,
with only some parameters such as the displacement vectors having to be adjusted accordingly.
In particular, the hypercubic grid of cells in the higher-dimensional setting admits many more
layer configurations and displacement vectors than the square cells of the 2D setting (compare
Table 3.1 for examples). One must only ensure that mixing in all directions takes place, such as
can always be achieved by a single fully diagonal displacement, i. e.

1 =(0,0,...,0), ra=(£/2,0/2,...,¢/2).

Hence, as in 2D, the smallest possible coordination number is 4 = 4 for any dimension.

Furthermore, the CC algorithm can not only be generalized to higher dimensions, but in
principle also to spaces equipped with metrics other than Euclidean, with the single necessary
change being in the distance function in the algorithm’s rewiring subroutine (Figure 3.9). A
generalization to curved manifolds should be possible as long as a proper spatial grid can be
defined, such as for the hyperbolic plane H?, for which a number of regular tessellations can be
constructed [258]. However, due to the inherent length scale of this space (the curvature radius),
the cell size is determined by geometric constraints and can not be freely chosen. Also, setting
up periodic boundary conditions is non-trivial in hyperbolic spaces, although possible [259].

3.3.5 Dimensionality and connectedness

The dimensionality of the initial random point cloud does not trivially determine the dimen-
sionality of the graphs constructed from it. We emphasize that the mere fact that we obtain
excellent data collapses of the Ising model scaling functions in Section 5.5, using the known
universal exponents, already provides a strong a posteriori verification that the lattice is of the
expected dimension. Nevertheless, in this section we provide a direct verification through a
cluster growth analysis.

In particular, starting from a single seed point, we count the number of sites 7 in the respective
shells as the link distance i from the cluster origin grows. Averaging this quantity over different
seed points and different disorder realizations, we obtain the average number of i" neighbours,
which allows us to determine the actual dimensionality of the graph, as this quantity should
scale as (n(i)) ~ i%~1. In Figure 3.10 we show (n(i)) in a double logarithmic plot, averaged
over 2000 realizations of two-dimensional CC4 lattices of size L = 2048. After an initial
transient caused by the discrete nature of the network on small scales, the convergence towards
the expected power law (dotted line) is very clear. For comparison we performed the same
analysis for the Delaunay triangulation, representing a well-established planar two-dimensional
structure. As can be seen, up to a constant offset related to the larger average coordination
number (g = 6 for the DT), the behaviour is qualitatively the same, hence strongly supporting
the fact that the CC construction indeed shows the expected dimensionality.

Besides the actual dimensionality, another important property of (spatial) graphs is their
connectedness, i. e. the possibility of obtaining small isolated components, disconnected from
the giant spanning cluster. As a matter of fact, the CC lattice algorithm is not guaranteed to
produce a fully connected lattice, which means that particular realizations may feature small
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Figure 3.10 | Actual spatial dimensionality of the CC and DT graphs. Curves are computed from cluster
growth of lattices of size L = 2048 in two dimensions. Also the variance of (n(i)), shown in the inset,
scales as expected.

clusters, isolated from the giant component. For instance, in a lattice with g = 4, a small isolated
island of five points connected only to each other might arise. However, due to its staggering
mechanism, the algorithm can only construct such an island if all sites in one cell are located in
the intersection region of the initial connection layer cells (a quarter of a cell in the example of
Figure 3.4). This makes the occurrence of non-fully connected lattices extremely unlikely for
realistic cell sizes, as estimated in the following example:

In a two-dimensional CC lattice realization of linear size L = 512 and cell size ¢ = 8 there are
N = 4096 cells, containing 64 sites on average. The probability of finding a cell which contains
exactly k sites is approximately given by N¢(})p*(1 — p)" ¥, wheren = L? and p = 1/N.. In
order to produce an isolated cluster, all k sites need to be located in the same quarter of the
cell, hence we multiply by another factor of (1/4)F~!. Summing both contributions from k = 5
(minimal number of points for isolated island for g = 4) to k = L? (total number of points in the
lattice) yields a probability of the order of 10~2° with the only significant contributions being
those from the first few terms in k. For larger 4 and higher dimensions this probability is even
lower.

3.4 Correlations

According to the HBV criterion, the decay of local coordination number fluctuations under
spatial coarse-graining transformations determines the stability of a continuous phase transition
in the presence of quenched topological disorder. As detailed in Section 2.5.4, for increasing
block size Ly, the fluctuations are expected to scale according to

og(Ly) ~ L,", (3.10)

where a denotes the disorder decay exponent. We perform the blocking analysis (compare
Figure 2.13) for the lattices introduced in this chapter and present the results in Figure 3.11. Using
the ansatz of Equation (3.10), we find decay exponents consistent with a = 1, corresponding
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Figure 3.11| Coordination number fluctuations on different length scales for several lattices. The
curves are obtained using Equation (3.10). Measured decay exponent values: Gabriel graph (GG):
0.999(1), relative neighbourhood graph (RNG): 1.001(2), site-diluted regular square lattice (SD):
1.001(3), DT: 1.501(2), random geometric graph (RGG): 1.004(6) and symmetrized g-nearest neighbour
graph (QNNsym) with g > 6: 1.001(2).

to that of conventional, uncorrelated disorder, for every lattice but the DT. For the latter, a
value of @ = 3/2 can be reproduced [67]. For the RNG and GG, however, the exponent of
a = 1 is somewhat unexpected, especially in light of recent results from [260], which provided
unambiguous evidence that the two-dimensional Ising model on those structures falls into
the universality class of the regular model. Since, with respect to the HBV arguments, which
predicts disorder to be irrelevant if av > 1, both lattices behave qualitatively similar to diluted
lattices (see Figure 3.11), one might expect that at least strong scaling corrections should appear
for the Ising model in two dimensions, which was however not mentioned by the authors [260].

In order to shed further light on the situation, we perform the calculation of the coordination
number correlation function from [67] and focus on anti-correlations in the coordination number.
Specifically, we measure the connected two-point correlation function of the coordination number,
defined as

1

Z|

Clx) = 5 X — D(gj — Dd(x — xy5). (3.11)
L]

Here, x; j denotes the distance vector from site i to j. The results are shown in Figure 3.12a as
a function of the spatial radius. As can be seen, we are able to reproduce the results for the
DT from Reference [67], revealing pronounced anti-correlations for small radii, which should
explain the comparably fast decay of the disorder fluctuations. The exactly opposite behaviour
is given by the curve for the RGG, where correlations are entirely positive. This reflects the high
clustering mentioned above, falling linearly up to the interaction radius Ry, where it displays
a pronounced drop before approaching zero for distances around r = 2R ;. This is consistent
with the fact that, for two sites with non-overlapping interaction regions, the coordination
numbers are effectively uncorrelated. Turning to the GG, we find that, interestingly, the curve
remains positive as well, i. e. it displays no anti-correlations at all and is thus consistent with the
slow disorder decay observed above. It is remarkable that the pruning of bonds of a DT lattice
in order to obtain the GG causes such a significant change with respect to the coordination
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Figure 3.12 | Spatial coordination number correlation functions. (a) First-layer correlations, according to
Equation (3.11), for the Delaunay triangulation, Gabriel graph, relative neighbourhood graph, random
geometric graph and symmetrized g-nearest neighbour graph with q > 6, as a function of the radius.
For the RGG, the radius was chosen such that the average coordination number is (q) = 6 and C(r) is
rescaled by a factor of 0.1. (b) Second-layer coordination number correlation function (3.12) for the DT
and the constant coordination models (CC4, CC6 and CC10). We show a magnification in the inset. The
x-axis is in units of the lattice spacing in both figures.

number correlations. Equally surprising is the circumstance that the removal of further bonds
from the GG, leading to the RNG, again considerably changes the picture and results in negative
correlations for short ranges. That means that highly connected sites now tend to be linked to
less connected sites and vice versa.

We remark that for the CC lattice a coarse-graining analysis of disorder fluctuations can not
be performed, since the coordination number does not fluctuate per construction. Consequently,
C(x) is identically zero. In order to provide at least some insight into the correlation struc-
ture in those lattices, we compute the connected two-point correlation function of the second-layer
coordination number, defined by

n 1 n =2 n =2
C(x) = 5 X (07" = ) (g7 — 777 8(x — x), (3.12)

ij

where innd denotes the number of next-nearest neighbours, i. e., the number of sites that can be
reached from point i by exactly two links and at the same time are not part of the set of nearest
neighbours. This quantity should capture similar geometrical information as its first-layer
equivalent C(x). We present results for different CC lattices in Figure 3.12b, where they are
compared to those of the DT. Evidently, the DT exhibits pronounced anti-correlations in the
second-layer coordination number as well. The curve for CC10 is qualitatively similar, but
shows significantly stronger oscillations. Comparing CC10 with CC6 and CC4, it can be noticed
that the relative strength of anti-correlations decreases as g is decreased. For g = 4 the first
minimum is hardly visible and positive values dominate (see inset of the figure).
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CHAPTER

Numerical Methods

“The generation of random numbers is too important to be left

chance.”

to

— Robert R. Coveyou

The necessary computational techniques for the simulation of equilibrium spin models are discussed in the
first part of this chapter. After a brief exposition on the essential aspects of Monte Carlo sampling, the actual
implementation of update algorithms is presented. We define the physical observables, develop the relevant
finite-size scaling framework, discuss the analysis of statistical errors in detail and introduce the so-called
histogram reweighting method, which allows a convenient extrapolation around the simulation point.

In a similar manner, numerical algorithms for non-equilibrium system are discussed in the second part of
this chapter, including dynamical simulations starting from a single seed or a fully occupied lattice, as well as
methods probing the quasi-stationary state. In this context we develop the static as well as the dynamic scaling

properties in detail and discuss how those are affected in the presence of conventional disorder.

4.1 Equilibrium systems

In thermodynamic equilibrium, the expectation value of an observable O is given by

0y =Y n(0)0(0), (4.

o€eS

1)
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4 Numerical Methods

where the sum extends over the space S = {01, 02,...} of all possible configurations of the
system. In this definition, 77(0) is the probability distribution of states and O(¢’) denotes the
value of O in the specific configuration o. Note that in the case of real-valued degrees of
freedom (e. g. the Heisenberg model) the sum in Equation (4.1) must be replaced by an integral.
In the present work, where we exclusively deal with canonical systems, 7z takes the form of a
Boltzmann distribution, i. e.

1
(o) = 7 exp (—=BE(0)), 4.2)
where 8 = 1/T is the inverse temperature and

Z =Y exp(—BE(0)) (4.3)

oc€eS

defines the partition function.??

4.1.1 Monte Carlo sampling

Using the relations above, we are in principle able to obtain any desired quantity of the system
at any temperature on a computer via direct summation. However, as the total number of
states, |S|, grows exponentially with the system volume, the sum quickly becomes unfeasibly
large. As a concrete example, even for the Ising model, where every site can only take on two
values, a three-dimensional cubic system of 7 x 7 x 7 = 343 spins would have 2343 ~ 10!
states, which is already significantly larger than the estimated number of elementary particles
in the universe. As a consequence, a direct calculation is impossible and one has to rely
on sampling methods in order to approximate the expectation value of an observable. If the
sampling is performed in a stochastic fashion, one speaks of so-called Monte Carlo methods. A
naive approach consists in picking a number of N, states from S at random and calculate the
observables from the corresponding average. Due to the random picking being ergodic, in the
limit N;;,— oo this would yield the true expectation value Equation (4.1). For a realistic number
of samples, however, a very poor result can be expected, since it is by no means guaranteed
that the relevant region in the phase space is even hit even once by our random sampling. In
fact, for the Boltzmann distribution, the overwhelming number of states have almost vanishing
weights due to the exponential factor. As a consequence, the relevant region, accounting for the
bulk of the sum of Equation (4.1), is extremely narrow.

To circumvent this issue one typically uses so-called importance sampling techniques [261]
where states are not picked at random but precisely according to the distribution 7r. As a result,
the estimator for the expectation value of an observable reduces to a simple sum

(O)=-—Y 0O (4.4)

in which Ny, represents the number of measurements. Although the importance sampling

22The so-called Boltzmann constant kg, oftentimes appearing in this relation, has no actual physical relevance and is
therefore set to unity throughout this work.
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estimator Equation (4.4) looks quite simple at the first glance, efficiently picking states according
to a specific distribution is not a trivial task. Typically, one employs a so-called Markov process,
which is a set of stochastic rules to obtain a sequence of suitable states, symbolically written as

P P/ P”
. o—=o s =" (4.5)

where the P’s denote the corresponding transition probabilities. The key property of such a
Markov chain is the fact that a specific state in the sequence only depends on the preceding state
but not on the whole history of the process. Obviously, the probabilities need to be normalized
Yores P(0 — 0') = 1, which means that always some next state is generated by the Markov
process. Note that it might very well occur that subsequent configurations are identical, o = o”.

In order to generate a suitable sequence of configurations obeying a specific probability
distribution, the Markov process needs to fulfil two further conditions, namely ergodicity and
detailed balance. Ergodicity describes the fact that starting from an arbitrary configuration every
other configuration of the system must be accessible through some trajectory of states generated
by the Markov chain rules. The condition of detailed balance on the other hand requires that

n(o)P(oc — o') = n(d’)P(¢’ - o) Vo,o, (4.6)

guaranteeing that there is no net flow of probability in the system. Mathematically rigorous
proofs of the three necessary conditions (normalization, ergodicity, detailed balance) being
fulfilled for specific update algorithms, which will be introduced in the following section, can
be found in many standard textbooks, such as [151], together with a detailed exposition of how
they result in a stationary sample distribution.

4.1.2 Update algorithms

Following up the last section, the main task remains in finding an appropriate set of rules for
constructing a Markov chain of system configurations. In fact, there exists a large number of
possibilities how an update algorithm resulting in a Boltzmann distribution can be implemented.
The prototypical example, which can also be applied to a huge variety of other problems, is
given by the Metropolis algorithm [262]. In fact, this algorithm sets the stage for a large spectrum
of so-called simulated annealing methods, such as the one we used for constructing the constant
coordination lattice in Section 3.3. In the case of a spin system, one site is picked at random and
a flip of the corresponding spin is proposed. Let E,jq and Enew denote the system energy before
and after the update attempt, respectively, then the spin flip is accepted with probability

1 Enew < Eold/
P(Uold — Unew) = e*ﬁ(Enew*E(ﬂd) E S F (47)
new = Lold/

and rejected otherwise. Hence, spin flips resulting in a less favourable configuration (higher
energy) are only accepted with the probability of a Boltzmann factor depending on the energy
difference AE = Enew — Eg)g, thus emulating entropic contributions due to the finite tempera-
ture of the system, whereas “good” updates are always accepted. In a more compact form, the
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Figure 4.1 | Operating principle of the non-local Wolff algorithm. (a) Given the spin marked in red as
the seed, the algorithm builds a cluster of equally oriented spins (b) which are eventually flipped (c).

Metropolis dynamics can be written as
P(0o1d = Onew) = min (1/ e_ﬁAE) , 4.8)

which directly follows from the general expression of the Metropolis acceptance probability

. 7T(Unew)
P(0o1q — Onew) = min (1, (0aa) ) , 4.9)
if we chose the Boltzmann distribution, defined by Equation (4.2), for 7. It is obvious from the
definition that the Metropolis algorithm only acts locally, since only one spin is considered at a
time. There are other, similar, local update schemes, such as Heatbath or Glauber dynamic523,
which essentially only differ in the concrete realization of the transition rates. In the present
work however, we use the Metropolis algorithm, due to its robustness and slightly superior

performance compared to other local schemes (compare, e. g. [151, 263] for details).

Despite their wide-ranging applicability, local update algorithms are only of limited use
if one studies a system close to a phase transition, as they suffer from what is called critical
slowing down. As mentioned earlier, criticality is characterized by collective behaviour of the
individual degrees of freedom over large distances. Therefore, as the critical point is approached,
local, uncorrelated updates become increasingly ineffective in propagating information through
the lattice. Considering, e.g. slowly changing observables, such as the magnetization, the
corresponding histogram becomes very broad at criticality [264], whereas flipping spins in
a local and uncorrelated manner results only in a small change of the magnetization. As a
consequence, the number of update steps required in order to sample the distribution properly
increases dramatically.

In order to overcome the critical slowing down, cluster updates have been developed, most
notably the algorithms by R. Swendsen and J. Wang [52] and U. Wolff [56]. The key idea of these
schemes is to grow a spatially extended cluster of connected spins and flip the entire cluster
at once. As a result, even one single cluster update is able to change the system configuration
substantially, which is illustrated in Figure 4.1, while still satisfying ergodicity and detailed
balance [264]. Roughly speaking, the speed in which the sampling of states moves through the
relevant phase space regions is dramatically increased compared to local schemes. The central

2For the spin-1/2 Ising model, Heatbath and Glauber dynamics are identical [263].
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quantity in the Wolff algorithm is the probability of adding a site to the cluster, which is given
by

Padd =1 —exp <_2ﬁ]ij5fritrj) , (4.10)

where the site with index i already belongs to the cluster and j is tested. Note that p,qq = 0 if
both sites do not share the same spin configuration, 0; # ¢;. Moreover, in our case J;; = 1 holds.
One Wolff cluster update step is defined as follows:

1. Choose a random site as the cluster seed
2. Add all nearest neighbours individually to the cluster with probability p,qq

3. For each site that was added, continue with its respective neighbours, i. e. repeat step 2. In
this way, sites may be tested multiple times

4. The cluster is completed as soon as no further sites can be added
5. Flip the cluster

An essential aspect of what makes the Wolff algorithm so powerful, is the fact that for the
specific choice of p,qq, the update is always accepted. The Swendsen-Wang algorithm in
contrast, decomposes the entire lattice into percolation-like clusters, but only flips some of
them eventually. As a result the Wolff algorithm in general performs better, especially in higher
dimensions, as shown in Table 4.1. For the sake of completeness, note that there exist a couple
of further collective update schemes for Ising-like models, e. g. the invaded cluster [265-267]
and worm algorithm [268], as well as conceptually different approaches to reduce the critical
down, such as multigrid methods [269].

In order to allow for a quantitative comparison between the update algorithms relevant in
this work, we introduce the dynamic exponent z defined by the relation

T~ EF 4.11)

where the autocorrelation time 7 will be addressed in detail in Section 4.1.4 and & denotes
the correlation length of the system. A large autocorrelation time results in a large number
of update steps being necessary in order to generate an effectively uncorrelated new system
configuration. Moreover, as ¢ tends to diverge at the critical point, but is limit by L in a finite
system, the computational cost of a simulation scales as

cost ~ VL? = L4F2, (4.12)

where V denotes the number of spins in the lattice. For local updates z ~ 2 holds, which can
be motivated by a random walk in energy space where signals propagate through neighbour
interactions. Cluster updates on the other hand typically have dynamic exponents z < 1, as
shown in Table 4.1 and therefore dramatically outperform any local schemes in the vicinity
of the critical point. In the high temperature regime § < ., however, the Wolff algorithm
essentially reduces to a Metropolis scheme, since the clusters rarely become larger than the seed
spin itself. The Metropolis dynamics even performs slightly better in this case as testing the
neighbouring spins is omitted. Similar holds for the low temperature regime, where the Wolff
algorithm renders effectively useless, as it flips almost the entire lattice in every update [151].
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Table 4.1 | Monte Carlo update algorithms. Dynamic exponents z for several equilibrium update algo-
rithms in d = 2,3 and 4 dimensions [151].

d Metropolis Wolff Swendsen-Wang
2 2.167(1) 0.25(1) 0.25(1)
3 2.02(2) 0.33(1) 0.54(2)
4 2.167(1) 0.25(1) 0.86(2)

Since in the present work, we exclusively study systems directly at, or in the vicinity of the
critical point, we employ the Wolff cluster algorithm as our primary update routine. Specifically,
in our simulations we perform so-called elementary Monte Carlo steps (EMCS), consisting
of a number of Wolff cluster updates and a full Metropolis lattice sweep. Since the average
cluster size (|C|) in a d-dimensional system at criticality scales as L¢~?/¥, where y and v denote
critical exponents of the model, we increase the number of cluster updates with lattice size
accordingly in order to keep the fraction of flipped spins approximately independent of the
lattice size [58]. Moreover, even though the additional Metropolis sweeps are not necessary as
the cluster updates are ergodic, they enhance the thermalization of short-wavelength modes.
Also, for disordered lattices, cluster schemes might only rarely visit small, isolated components
of the lattice. Additional local updates therefore ensure a proper treatment of these regions.
Finally, let us emphasize that all algorithms introduced in this section are straightforwardly
applicable to disordered lattices.

So far we have implicitly assumed to work with one-dimensional (Ising) spins. However,
turning to the O(N) model, one faces N-dimensional spin vectors and hence a continuous
phase space. The Metropolis algorithm generalizes naturally to this case, as instead of a spin
flip one simply proposes a random new direction. The Wolff cluster algorithm, however, can
only be applied to systems with one-dimensional spins, as it stands. It is clear that a flip can
not be generalized to a reflection for higher-dimensional spins (i. e. simply inverting the signs
of all components) as this would obviously break the ergodicity of the system. Moreover, the
probability (4.10) vanishes anywhere in the lattice, as no two spins are aligned perfectly in
parallel. The solution is to map the higher-dimensional spins onto a one-dimensional Ising-like
system. This is done by projecting all spins onto a randomly chosen direction via standard scalar
products, resulting in one-dimensional spins with — due to the projection — varying lengths.
The latter can be absorbed into the coupling constants in Equation (4.10). The cluster is then
built according to the above algorithm. As a last step, for all spins inside the cluster, the sign
of the component of the field parallel to the chosen random direction is inverted. We remark
that for each cluster update, a new random direction should be chosen, in order to preserve
ergodicity [56]. Other than drawing the directions at random one might also — for reasons of
performance — use the Cartesian directions in a fixed sequence and occasionally globally rotate
the field by a random amount [126].

Finally, turning from the O(N) model to a general lattice field theory, where individual fields
are not bound to unit-length, i. e. in general |¢;| # 1, the Wolff algorithm again does not meet
ergodicity requirements, as the length is conserved by construction. Therefore, it is necessary to
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perform additional Metropolis sweeps, which explicitly propose a length change of the field
variables, as detailed for instance in Reference [126].

4.1.3 Observables and scaling

Unless stated otherwise, we prepare the system in a hot initial state, meaning that spin orienta-
tions are randomly chosen. The system is then thermalized using a number of EMCS, until it
reaches thermodynamic equilibrium. A common check for proper thermalization is to perform
simulations starting from a cold configuration as well, which must give identical results within
numerical precision. After successful equilibration, we perform further EMCS and measure the
magnetization and energy per spin, defined by

1 1
m:VZsi, e:—VZsis]- (4.13)
i (i)

where the sums run over the lattice sites, V denotes their total number and s; € {—1, 1} for the
spin-1/2 Ising model. For scalar lattice field theory Hamiltonians, the corresponding definitions
are used, such as, for instance, for the improved O(N)-symmetric ¢* model

1 1 1 A 2
m= 3 L e="y Z‘i’id’ﬁgZ(i’%EZ(dﬁfl) , (4.14)
i (if) i i

where ¢; denotes an N-component real variable. The lattice structure enters as neighbouring
relations between sites which is denoted by (ij), as introduced in Section 2.2.1. Both quantities
are measured after every EMCS, resulting in respective time series. From this time series the
final (macroscopic) observables can be computed by performing thermal averages, denoted by
angular brackets (...).

In the investigation of disordered systems, it is necessary to average physical observables over
many different, independent disorder realizations, also called replicas of the system. As detailed
in Section 2.5, quenched averages over N, replicas are performed at the level of (extensive)
observables, rather than at the level of the partition function. Denoting quenched averages as

1 N
[Olavg = N Z Oi, (4.15)
ri=1

we obtain the following definitions of magnetization, energy, susceptibility and specific heat of
an ensemble of disorder replicas

M = [(|m|)]avg, (4.16a)
E = [{e)]avg, (4.16b)
x = VB[(m?*) — (Im])?]avg, (4.16¢)
C = VB[(¢*) — (&)]avgs (4.16d)
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as well as the following derivatives

TS — ((mle) — ) e @172
dln[<d7Z|>]avg _ _i'fi'f}) _ <€>ng, (4.17b)
dln[((ilﬂ;ﬂavg _ :<<m22€>> _ <e>LVg, (4.17c)

3 ol _ (1-w) <<e> -2l <<’Z:;’>>>] , @.17d)

_ v
;C”Lé{‘/lg a-w) <<e> - 2<<”jf>> + %”jff)] : (4.17¢)
_ v

which all exhibit singularities close to the phase transition in the thermodynamic limit. In order
to keep the notation simple, averages will be omitted in the remainder of this work, hence for
instance Equation (4.17c) will be denoted simply as d In m? /d leaving both the thermal and
replica averages implicit. In Equations (4.17d) and (4.17e), U, and Uy denote the second- and
fourth-order magnetic cumulants, also called Binder ratios [270], given by

(m?)
U= 11— , 4.18
2 3<|m|>2] s ( )
_ (m*)
Uy = |1— 3<m2>21 avg. (4.19)

Occasionally, also the sixth-order Binder ratio is used and therefore is defined by
(m®)
U = | 5= . 4.20
6 [ <77’l 2 > 3 ( )
avg

Finally, in a finite lattice, a suitable definition of the second-moment correlation length [271,
272] is given by

1 (P2 Dy
&= 2 sin(kmin/2) \/[<f2(kmin)>]avg L, (4.21)

with the Fourier transform of the magnetization being defined as

F(k) =Y sjexp(ikx;), (4.22)
j

where x; denotes the spatial coordinate of site j and kmn corresponds to the smallest non-zero
wave vector in the finite lattice. In our simulations, we measure the Fourier transform for every
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direction and average the results, which, e. g. in three dimensions results in
1
F?(kmin) = 3 \lf(zn/Lx, 0,0)[* + |F(0,27/Ly,0)[> + | F(0,0,27/L:)[*|, (4.23)

where in our case typically Ly = L, = L, = L. Along with m and ¢, the Fourier mode F- 2 (Kmmin)
is also recorded during the Monte Carlo run.

In a finite system of linear size L, it is known from Section 2.4 that near the critical point, the
above quantities scale according to the following relations

[<m>]avg = L_ﬁ/vfm(x)(l +...), (4.24a)
x=L"f(x)(1+...), (4.24b)
C=Co+ L fe(x)(1+...), (4.240)
CWZ;]“% =LOAVE (1)1 +..)), (4.24d)
dm[ﬂl";m“g =LY fu1(x)(1+...), (4.24e)
2
dh‘[i’i"ﬁ”“g = LYY fua(x)(1+...), (4.24f)
d[Uz]av
[dZ/l’g =LYV, (x)(1+...), (4.24¢)
d av
[L(?[]Sg = LYY, () (1+..), (4.24h)

which allows to extract the critical exponents «, 3, ¥ and v. Cj is the regular part of the
specific heat that does not diverge at the critical point and the functions fo are universal scaling
functions with the argument x given by

x=(B—B)LYY, (4.25)

where 3. denotes the infinite-volume critical point. The correlation length in units of the lattice
size and the Binder ratios share the property of being scale invariant at criticality. This property
is particularly useful as their curves intersect close to the critical point for different system sizes.
Concretely, in the critical regime they scale according to

Uy = fu,,(x) (1+...), (4.26a)
EJL = fe(x) (1+...). (4.26b)

Equations (4.24) and (4.26) describe the finite-size scaling (FSS) behaviour of the considered
observables to leading order. Corrections of higher order are expected to become irrelevant for
large system sizes, but can have strong effects for small L, as discussed in detail in Section 2.4.

Maximum scaling

The scaling functions listed above lead the way of how critical exponents can be determined if
the system is simulated for different L. However, this requires one to eliminate the dependence
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on the scaling function first. Even though these functions are universal, their explicit form
is usually not known. In Section 2.4 we found that observables which diverge in the infinite-
volume limit exhibit pronounced maxima for finite systems at the transition. The location of
these peaks tends towards the true critical point in the limit L— oo, resulting in a series of
pseudo-critical points, denoted by £. Specifically, they scale according to

BL = Be+al V... 4.27)

As a consequence, when evaluated at the peaks, the scaling function reduces to a constant, as the
scaling variable, defined by Equation (4.25), becomes x = (8L — Bc)Ll/ Y =a+.... Hence, we
are able to compute the exponents by taking logarithms of relations (4.24), which for instance,
for the susceptibility results in In x = const + (y/v) In L. The exponent can then be extracted
by means of linear fit to In L [263]. Let us remark that the simplicity of this so-called maximum
scaling method originates from the fact that the peaks of the scaling functions are, so to speak,
self-defined and can easily be found numerically, especially if so-called reweighting techniques
are employed, which will be introduced below. One of the drawbacks of this method however
is that including corrections to scaling, which are typically of the form (1 + bL™%) necessarily
leads to non-linear fits, which are hard to control. If the correction terms of the considered
model are generically strong or one is restricted to small L, one might instead resort to other
finite-size scaling methods, such as the scaling at fixed temperature, fixed phenomenological
couplings (compare e. g. [273]) or the quotients method (detailed below), which all allow for a
better control of scaling corrections.

Scaling collapse

This method is related to the scaling of the peak locations introduced before, as it also directly
exploits the universal character of the scaling functions. The goal is to measure the observable
at hand in a certain range of temperature in the critical region and rescale the corresponding
relations (4.24) accordingly in order to extract the scaling function. Using once again the
susceptibility as an example, one plots L~Y/¥x(, L) against the scaling variable x = (8 —
[3C)L1/ Y, resulting in a collapse of curves for different L.

Even though scaling collapses provide a powerful and versatile tool to reveal the universal
character of a transition, they present a number of immediate drawbacks. In cases where
the critical exponents are known (or can be guessed), only the critical temperature needs to
be tuned in order to produce a scaling collapse. However, using the method to determine
exponents which are a priori unknown, requires three parameters to be controlled (y, v and
B¢ in the case of the susceptibility). Collapsing the curves by hand can, in this case, become
very cumbersome and one might rather automatize the process using a non-linear Levenberg-
Marquardt optimization procedure [274, 275]. Moreover, we remark that even though a scaling
collapse over an extended region of TL!/" certainly represents an impressive manifestation of
the universal character of a transition, it comes at the cost of requiring to simulate the system at
several temperatures for each system size. This naturally limits the applicability of data collapses

to moderate system sizes.?

2Gtrictly speaking, this is only the case for equilibrium or steady state properties. As we shall see, for non-equilibrium
systems scaling collapses can also be performed for dynamic (i. e. time-dependent) observables. In this case, as the
time evolution is naturally recorded during the simulation, scaling collapses in fact can be the method of choice for
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Quotients method

A finite-size scaling method, which avoids the problems related to analytic corrections to scaling
in an elegant manner, is the so-called quotients method. It was introduced by H. G. Ballesteros and
co-workers [276, 277] motivated by earlier works [278]. The central quantities in this method
are quotients of observables O, defined by

(O)(t,sL)

Qo(t,L,s) = m/

(4.28)

where s represents a fixed scaling factor (typically s = 2). This means we consider the observable
on two lattices of size L and sL. From Section 2.4, it is known that the finite-size behaviour of O
is in general given by

(0)(t, L) = L¥o/ (fO(TLl/V) + L Ygo(tLYY) + .. ) , (4.29)

where fo and go denote universal scaling functions, xp is the exponent associated to the
singularity of O in the infinite-volume limit and w represents the leading correction-to-scaling
exponent. Using the fact that at criticality the relation & ~ 77" holds, we can eliminate the
explicit temperature dependence, writing

(0)(t,L) = L*/¥ (fo(&/L) + L™“Go(&/L) +...) (4.30)

where & = &(t, L) represents a suitable definition of the finite-size correlation length, such as
given by Equation (4.21). The quotient then becomes

T,L,s :sxo/vw —w
Qol(t,L,s) D)D) O(L™%). (4.31)

If we now evaluate this equation at the temperature 71 where both curves intersect, given by

&(tt°, L) &(t7,sL)

7 = I (4.32)
the scaling functions cancel and we find
Qolo._, = Qo(w*, L,s) =s™ /" +al™® 4 ..., (4.33)

where a denotes a constant. For L — oo, the crossing points defined by Equation (4.32) approach
the critical point, i. e. the critical temperature as well as the fixed point of the correlation length,
denoted by (&/L)*. Thus, the quotients method essentially can be seen as a realization of a
phenomenological renormalization procedure [279]. In fact, the method is not restricted to the
crossing points of the correlation length in units of the lattice size, but can rather be applied to
any RG invariant quantity, such as the Binder ratios Uy, Uy, etc. In the following, we use the
symbol R whenever the exact choice of these so-called phenomenological couplings is irrelevant.?®

studying these system, especially for large L.
ZBroadly, phenomenological couplings are observables which are monotonous in the critical region and become
independent of the system size in the thermodynamic limit.
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Equation (4.33) in principle allows us to obtain the exponent xp /v by means of a non-linear fit.
However, we can estimate w from the scaling behaviour of the phenomenological couplings,
given by

Rilgg,, = Ri + AR, L™ +..., (4.34)

where A denotes a constant and Ry, Ry € {&/L, Uy, Uy, . ..}. Once w is known, one can use a
linear fit in order to obtain xp /v from Equation (4.33).

It becomes clear that one particular strength of the crossing method lies in the fact that no
precise estimate of the infinite-volume critical temperature 3. is required. Since the crossing
points pLs effectively acts as series of pseudo-critical points (similar the peak locations in the
maximum scaling method described earlier), we can — once the exponents v and w are known -
perform linear fits according to the relation

1—s%
sl/v—1

b= B+ Ll (4.35)

in order to extract 3. [280].

4.1.4 Statistical analysis

As described in the last section, the calculation of observables from the importance sampling
Monte Carlo “time” series of magnetization, energy and Fourier transform is straightforward.
However, things become more involved when it comes to computing uncertainties of ob-
servables, as one unavoidably suffers from auto-correlations and statistical bias intrinsic to the
data [281]. These important concepts will be introduced in the following.

Autocorrelations

In importance sampling Monte Carlo simulations, a naive estimator for the uncertainty of an
observable (4.4) is the standard error of the mean, which can be written as [282]

_std(0)  [(0%) —(0)?
" VNy | Nu(Nw—1) (439

The estimate (4.36) only holds for statistically independent numbers O;, which is not a valid

AO

assumption for Markov chain Monte Carlo simulations. In fact, subsequent measurements tend
to be highly correlated, especially in the critical regime, since only portions of the full system
configuration are updated per EMCS. We can measure these correlations for an observable O
using the autocorrelation function [283], defined as

Co(t) = (O(to)O(to +t)) — (O(t0)){(O(to + 1)) (4.37)
which, for large temporal separations, decays exponentially

lim Co(t) ~ exp(—t/T0exp)- (4.38)

t—o0
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This defines the exponential autocorrelation time 7o ey, However, for practical purposes one
rather uses the integrated autocorrelation time?®, defined by

Co(t)
“ Col(to)

(4.39)

18

TO,int = +

N —

t

where for actual (i. e. finite) simulations, the sum should be cut off self-consistently [285] as the
double summation will become expensive otherwise. Taking auto-correlations into account,
Equation (4.36) can then be generalized (we omit the detailed derivation here and refer the
reader to Reference [286]) and one obtains

(AO)corr = Aom, (4.40)

i.e. due to correlations in the data set the variance is enhanced by a factor of 27¢ j,¢ compared
to the naive estimate.

Resampling

As pointed out above, in order not to underestimate the uncertainty of an observable in Equa-
tion (4.40), monitoring the corresponding integrated auto-correlation time is crucial. However,
in practice we face a couple of problems. First and foremost, calculating 1 jn¢ can become cum-
bersome already for the basic observables due to the double summation and noisy behaviour
of Co(t) for large t [287]. Second, for combinations of observables, f((O1), (O3),...), a proper
autocorrelation analysis can not straightforwardly be defined. Moreover, it is important to
note, that we cannot use standard error propagation in this case, as the different observables
are measured from the same simulation and are hence trivially correlated. Ignoring those
cross correlations (which would result in covariance terms in the error propagation analysis)
could again seriously spoil the results. Finally, there are situations, where the estimator is even
non-parametric, such as the location of a maximum, the intersection of two curves or fitting
procedures which obtain critical exponents (compare Section 4.1.3). This rules out traditional
error propagation in the first place.

The answer to all these problems lies in what is called resampling techniques [288], in particular
Jackknife and Bootstrap [289, 290], which are nowadays considered state-of-the art techniques
for statistical analysis. One particular strength is the fact that they do not rely on a parametric
formulation of an underlying theoretical model and can hence be applied to a broad class of
problems. The key concept is to divide the existing time series into blocks whose lengths are
larger than the typical auto-correlation time of the data. These (effectively uncorrelated) blocks
are then used to construct a set of new (resampled) time series and all necessary information
(bias, cross-correlations, etc.) is computed from this set. It is important to note, that resampling
methods do not only yield reliable estimates for the uncertainties of observables. They also
allow to construct improved estimators for the actual averages, which reduce the statistical bias
(it will be introduced below and is explained in greater detail in Appendix A.2) compared to a
naive estimator [291], as can be seen in Figure 4.2. Both, Bootstrap and Jackknife resampling
techniques are used frequently in the data analysis in this work. The technical details are
therefore explained in Appendix A.3.

26For a purely exponential decay To,int & To,exp holds true, whereas in general 7o int < 70 exp [284, 285].
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Figure 4.2 | Bias correction. Magnetic susceptibility x of the Ising model on a three-dimensional disordered
CC4 lattice with L = 40 near criticality as a function of the number of measurements N,,. All data
points represent averages over N, = 10000 disorder replicas and the uncertainties are computed from
fluctuations among them. In the inset, x is plotted against the inverse number of measurements, proving
the expected bias to be proportional to 1/Ny,.

Statistical bias

Relying on a finite number of measurements for the calculation of observables does not only
result in possibly large uncertainties, but also gives rise to a what is called bias of an estimator [282].
This term describes the situation when the MC estimator does not converge towards the
unknown true value of an observable and comes into play as soon as we consider a function of
expectation values, i.e. f({O)o). Since the function can not be defined in terms of individual
measurements, a MC estimator has to be of the form

Np
fest — f(<O>an) =f (Z\}m ;Oi> . (4.41)

For simplicity, we restrict our attention to only one observable, whereas in general, f might
be a non-linear combination of several observables (O1), (O,), ..., compare Equation (4.17). A
detailed analysis of this estimator is performed in Appendix A.2 and reveals that it actually
converges to

£ £((0) (1- 2202 o) ), @.42)
m
where the latter terms in the bracket represent the bias. Therefore, only in the limit N;,,— oo we
obtain the “true” result, whereas for a small number of measurements it might be severely un-
derestimated.?” It needs to be emphasized that the bias is not a consequence of auto-correlations
in the data. It arises from non-linear functional dependencies between observables and can be
found in completely uncorrelated measurements as well [282]. For the latter case 7o jnt = 1/2
holds true, as can be seen from the definition in Equation (4.39), and therefore the leading
bias term can be corrected by multiplying a factor Ny, /(N;, — 1), which is occasionally termed

27To be specific, the correction is negative for convex functions, such as f(x) = x2, used in the definition of, e. g., the
susceptibility, but positive for concave functions, according to Jensen’s inequality.
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Bessel’s correction.?8

As a concrete example, we measure the magnetic susceptibility of the Ising model, as defined
in Equation (4.16c) on three-dimensional CC4 lattices with L = 40 near criticality, and show
the results in Figure 4.2. The simulation is repeated for different numbers of measurements.
As can be seen, especially for small Ny, the biased estimator deviates quite strongly from the
results for bias corrected estimators. Moreover, the inset shows the dependence on 1/N,,
nicely. In a disordered setting, where a replica average has to be performed, one might be
tempted to think that the fluctuations among the replicas exceed the individual bias and might
therefore omit a correct analysis of the latter. However, as the replicas can be assumed to be
statistically independent, the standard error of their fluctuations decays as 1/1/N; and therefore
slower than the bias, which decays as 1/Ny,. Since, for strongly disordered systems, it is not
uncommon to use as little as N;;, = 100 measurements per replica [292-294], both terms can
become comparable. This is illustrated in Figure 4.2, where 10000 disorder replicas have been
used. Even for typical values used in this work (N, ~ 1000) deviations are clearly visible,
which makes a proper treatment of bias crucial in order to avoid systematic errors in the entire
analysis.

From the above reasoning, it becomes obvious that one should use unbiased estimators when-
ever available, even though for correlated data their proper definition in general presents a
non-trivial task. Of course, one possibility is to perform a very large number of Monte Carlo
update steps between two measurements, such that two subsequent configurations are effec-
tively uncorrelated, i.e. 27p it = 1, and then multiply a proper Bessel correction term. In
practice, this would require to increase the number of EMCS per update by at least one order of
magnitude, which makes this approach simply too expensive from the computational point
of view. Fortunately, there exist several approaches for constructing unbiased estimators for
correlated data. As mentioned above, and shown in Figure 4.2, binning techniques, such as
Jackknife or Bootstrap represent convenient approaches to reduce the bias of an estimator. In
this work, however, we use a different method (which nevertheless lies also in the spirit of
binning methods), originally introduced in [295] and generalized by [273]. This method proves
equally powerful than Jackknife or Bootstrap and is computationally less expensive, as large
number of re-binning calculations can be avoided. Specifically, in order to construct an unbiased
estimator, the time series is split into two contiguous halves and the observable is computed by
combining them according to

st — o5t ((0)y,) -~ 5 [f“t(<0>wzm,1) +fest(<o>N2m,2)] : (4.43)

By applying Equation (4.42), it can be seen that the leading bias term vanishes. Effectively, the
observable is computed for two different (finite) values of N, and linearly (hence the subscript)
extrapolated for Ny, — oco. One can also perform a quadratic extrapolation, where, additionally,

2This factor is widely used to construct unbiased estimates of variances, i.e. f = (O?) — (O)2. Although commonly
attributed to F. W. Bessel, it was used even earlier by C. F. Gauf$ (Theoria combinationis observationum erroribus
minimis obnoxiae, Gottingen 1823).
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the time series is split into four quarters

8 2 1
farat = 2= (0w, ) = X £ (10)mn) + 15

i=1

4
Z,lf (<O>N4m,i)] (4.44)

and which again cancels the leading bias term. Both estimators are plotted in Figure 4.2. As
can be seen, the results are almost identical, proving the robustness of this approach. Finally, it
should be noted that another particular advantage of the estimators (4.43) and (4.44) over the
Jackknife method is that they can be used even for a very small number of measurements.

4.1.5 Reweighting

The fact that a “raw” Monte Carlo time series contains a huge amount of information moti-
vated A. M. Ferrenberg and R. H. Swendsen to develop the celebrated histogram reweighting
method [53]. It allows one to extrapolate observables at a temperature 3, away from the actual
simulation point 3. This is done by reweighting the energy histogram by appropriately shifted
Boltzmann factors. In particular, one writes

(0)(B') = (Oe™F=RIE) /(e (F=RIE) (4.45)

where the subscript 3 represents the fact that the thermal averages have to be taken at the run
temperature. This way, observables can be obtained as continuous functions of the temperature,
allowing, for instance, extremal points which are used in the finite-size scaling analysis to be
determined with high precision. A key requirement for this method is that the energy histograms
at B and f3’ need to present sufficient overlap. A small overlap (i. e. an attempt to reweight at a
temperature considerably far away from the simulation point) naturally results in very poor
statistics and possibly systematic errors of the reweighted observables [263]. In practice, we
estimate the valid reweighting range as proposed in [151]. The distance A = |3 — 8| inside
which one can expect a reliable extrapolation is given by
2
{Aﬁ} < 1 (4.46)
B (B)

where the width of the energy histogram at the simulation temperature enters through the
specific heat C. The reweighting method drastically improves both workflow and required com-
putational effort, since observables can be computed arbitrarily smooth around the simulation
point, as illustrated in Figure 4.3. Note that the reweighting method is not restricted to extrap-
olations in the temperature and can also be performed along other Hamiltonian parameters,
such as the external field or the fourth-order coupling constant u.

If one is interested in a physical observable over an extended range of temperature, the
single-histogram reweighting method turns out to be no longer sufficient, since the range
in which one can expect reliable results is very narrow in practice and systematic errors can
not be controlled outside this region. A typical example are simulations where the crossing
points of RG invariant quantities need to be analysed (the quotient FSS method, introduced
in Section 4.1.3). As we are interested in the crossing points of the lattice pairs (L,2L), we
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Figure 4.3 | Illustration of the single-histogram reweighting technique. Susceptibility (left) and correla-
tion length (right) of the Ising model on a Voronoi lattice (compare Figure 3.2), reweighted from a single
run at the inverse temperature indicated by the vertical dotted line. The black dots mark the maxima of
the scaling function (4.24b) in the left panel and crossing points of (L, 2L) lattice pairs in the right panel
and can be used for extracting critical exponents. For the smaller lattices up to 10° disorder realizations
were simulated, whereas we used at least 5000 replicas for the largest lattices.

need to know the quantity as precisely as possible at two temperatures.”’ Obviously, one
could just perform two entirely independent simulations, which however makes the analysis
cumbersome. It would therefore be convenient to combine the histogram information of several
independent simulations into one reweighted curve. A clever approach how this can be done
is the multi-histogram reweighting method, also introduced by Ferrenberg and Swendsen [54,
55]. This method is the direct precursor to a whole arsenal of so-called weighted histogram
analysis methods (WHAM), which apart from statistical physics, quickly became very popular
in molecular dynamics simulations [296-298] and are still object of current research [299]. In
this work, we use a slightly modified version [300, 301], where no initial binning of the energy
histogram is necessary. In particular, we define

N,
fr=—In
i

(g

Nm,i
Y. P(Bx Eij), (4.47)
1i=1

where E; ; denotes the energy of the j-th configuration at temperature 3; and

w; ' exp(BE; )

N, 1 . (4.48)
21:1 w; N1 EXP(—[.;ZEI‘,]' +fl)

P(B,E;j) =

In order to account for correlations in the MC time series, additional weights w = (1 + 27 int) -1
have been added. Once the f; are known, Equation (4.48) replaces the Boltzmann weights in the
single-histogram reweighting formula (4.45). One obtains

Y O(0i;)P(B,Ei;)
Y P(B, Ex;)

2In case we are interested in the intersection points of several quantities, like Uy and & /L which do not necessarily lie
close, this amounts to even more points that have to be known.

(0)(B) = (4.49)
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Figure 4.4 | Illustration of the multi-histogram reweighting technique. Black dots in the left panel show
actual simulation temperatures, white dots show results of the MHR interpolation, which fit the analytic
solution (solid line) very well over a large range of temperatures. The left panel shows the corresponding
energy histograms of the five measurements. Adopted from [151].

which allows us to calculate O at temperature 3 using the combined information of multiple
energy histograms. It needs to be emphasized that, as shown in Figure 4.4, the histograms
of the individual runs need to present sufficient overlap in order for this method to work.
The system of equations (4.47) is solved self-consistently using iterative multi-root finding
methods, which is quite challenging, especially for disordered systems, where the replica
average requires a particularly robust solver and an automatized calculation of proper initial
values. In fact, optimizations and convergence properties are subject of current research [299,
302]. Anillustration is depicted in Figure 4.4 which demonstrates the accuracy of the results.

4.2 The MARQOYV framework

In the course of the present project we developed a code framework which incorporates the
techniques mentioned in the previous section into a convenient workflow. The project currently
is in the state of a prototype and goes under the working name MARQOYV (MASSIVELY PARALLEL
QUENCHED DISORDER ON VARIABLE GEOMETRIES). As this name already suggests, special focus
is placed on quenched disordered systems, which are particularly demanding in terms of
computational resources. Not only does the need for a large number of disorder replicas
(typically 10°-10° for a set of finite size simulations) require considerable computing time,
but also extensive amounts of memory (due to performing simulations on multiple lattices
in parallel) and permanent storage (we store the entire MC time series, in order to ensure the
greatest possible flexibility when it comes to reweighting) are required. Moreover, when dealing
with thousands of independent systems, parallelization and automatization aspects become
particularly important. In summary, state-of-the-art MC simulations of disordered canonical
spin systems clearly lie in the domain of high performance computing (HPC).

Our code framework is designed to essentially split into three parts, as can be seen in
Figure 4.5. The first and most important part is the actual Monte Carlo simulation code,
followed by a separate postprocessing code, performing basic statistical analysis and calculation
of observables through reweighting methods mentioned above. Both codes are written in
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Figure 4.5 | Structure of the MARQOV framework. Ellipsis symbols denote header modules and dashed
elements are not yet implemented. Arrows represent the direction of data processing.

C++14. The last stage consists of Jupyter notebook templates which perform the data analysis
and are written in Python 3. All three parts of the code, as well as the header modules, are
version-controlled using Git and will be briefly described in the following:

Monte Carlo code

This part of the framework performs the actual importance-sampling Monte Carlo simulation,
using a combination of Wolff cluster and local Metropolis updates, as detailed in Section 4.1.2.
The code is replica-parallelized using MPI, which means that each process runs an entirely sep-
arate disorder realization of the system. This has clear advantages over other parallelization
concepts, such as domain decomposition, since in the critical regime the system shows collective
behaviour over long distances, which in general would require heavy inter-process communica-
tion. Furthermore, especially in three dimensions, the cluster algorithm flips only rather small
regions of the lattice, which makes proper load balancing virtually impossible. As a matter of
fact, there do exist parallel implementations of the Wolff cluster algorithm [303, 304], however,
the scaling of their performance with the number of processes turns out to be very poor for
exactly this reason.

Our parallel implementation specifically works as follows: Upon execution, the code is
given a list of run parameters (number of replicas, corresponding lattice sizes and simulation
temperatures), which are scheduled to all available cores at runtime. If the number of cores is
considerably smaller than the total number of replicas, this naturally results in an almost optimal
scaling and load-balancing, since after the scheduling step, every process works through its
individual list and no further communication is required.

Special attention is also given to the geometry of the problem, encoded in the lattice structure.
We introduced a standardized container format for this purpose, which allows seamless integra-
tion of any regular and disordered lattice/network topologies as header libraries. Currently, a
number of standard geometries (regular square and cubic, triangular, randomly diluted cubic,
Voronoi-Delaunay and other proximity graphs) are available (compare Section 3). Moreover,
also the generation of random numbers is wrapped in a header module, allowing to switch
between specific generators. Currently, a Mersenne Twister 19937 generator provided by the
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C++ standard library, as well as our own implementation of a generalized feedback shift-register
(GFSR) random-number generator [305] are available. Finally, the implementation of an inter-
face to include arbitrary spin Hamiltonians is planned in the future, as the ones mentioned in
Section 2.2 are currently hard-coded.

Postprocessing

This part of the code uses the raw MC time series data of the previous step as an input and
allows the calculation of all relevant observables at any desired temperature near the simulation
point via single or multi-histogram reweighting (Section 4.1.5). It includes resampling and
bias-correcting methods (Section 4.1.4). Similarly to the main code, the postprocessing is MPI
parallelized using a replica scheduling system and some of the inner loops optionally support
OpenMP parallelization. This presents an efficient, automatized data management solution
which is crucial for both disordered systems (with possibly 10° or more replicas) and also for
extensively long time series of regular models.

Data Analysis

We wrote a Python class which allows one to easily read and process the output of the postpro-
cessing step. Taking advantage of the flexibility of Python'’s scientific libraries (numpy, scipy,
pandas, matplotlib, etc.) a convenient workflow is implemented inside a Jupyter notebook
template. It contains predefined functions to perform different types of FSS analyses, including
plot scripts and fit procedures using Bootstrap resampling for the calculation of parameter
uncertainties.

Application: O(3) model on RGG

As an application of the MARQOV framework, we simulate the O(3) model (commonly re-
ferred to as the Heisenberg model and defined in Section 2.2) on a three-dimensional random
geometric graph (compare Section 3.2), modelling a finite, fixed interaction radius in a dis-
ordered medium. The radius is chosen such that on average the nodes have six neighbours,
representing moderate to strong disorder.>’ Due to the fact that the RGG represents effectively
uncorrelated randomness (compare discussion in Section 3.4), we can apply Harris inequality,
according to which disorder should be irrelevant if dv > 2. Since for the three-dimensional
Heisenberg universality class, v ~ 0.71 [122, 307], the criterion predicts that one should find a
clean transition in this case, similar to dilute Heisenberg systems, which have been investigated
in References [308, 309] (see also Section 2.5).

As mentioned before, simulations of disordered systems are particularly demanding from
the computational point of view, since on the one hand, large lattice sizes are necessary in order
to reduce finite-size corrections and, on the other hand, a large number of independent disorder
realizations is required. In the present case, we use linear lattice sizes L = 8, 10,12, ..., up to 192
and simulate N, = 10° replicas for the smaller lattices and at least N, = 10* for the largest one.
Our aim is to use the quotient FSS method, developed in Section 4.1.3, which allows us to extract
the leading correction-to-scaling exponent w to considerable precision. As this method exploits

30The percolation threshold of the three-dimensional RGG on a torus is located at () = 2.74(1) [306].
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the scaling behaviour of observables at the crossing points of phenomenological couplings
Re{&/L, Uy Us,...}, (4.50)

we chose simulation temperatures close to the crossing points of the correlation length in units
of the system size, £/L. The precise location of the crossing points is then determined via
histogram reweighting methods, introduced in Section 4.1.5.

Every replica is initially prepared in a hot (random) configuration (all spins aligned in
parallel) and is thermalized using 500 elementary Monte Carlo steps. We checked for a proper
thermalization by also performing simulations starting from a cold configuration, which gives
identical results within numerical precision. In our update procedure, one EMCS consists of a
full Metropolis lattice sweep and several Wolff cluster updates. Since the average cluster size in
a d-dimensional system at criticality scales as L9~/ = L#~2%1 and 1 ~ 0.04 for the Heisenberg
universality class, we increase the number of cluster updates linearly with the lattice size in
order to keep the fraction of flipped spins approximately independent of the lattice size [58].
After the thermalization, we perform another 750 EMCS and measure magnetization, energy
and Fourier transform of the magnetization after every EMCS (compare Section 4.1.3 for their
definitions).

As the first step in our analysis, we determine the critical value of the RG invariant quantities
as well as the leading correction-to-scaling exponent w. This can be done without precise
knowledge of the critical temperature and the correlation length exponent v, by evaluating
the scaling functions defined in Equation (4.50) at crossing points of (L, 2L) pairs of the finite-
volume correlation length ¢ /L. The procedure is illustrated in the right panel of Figure 4.3. We
use the following scaling ansatz

R|g,—2 = R* +agL™, (4.51)

where sub-leading corrections are neglected, R* denotes the value of R at the infinite-volume
critical point and the amplitude ag of the leading correction term depends on the respective
function used. Uncertainties for the fit parameters are obtained by a comprehensive bootstrap
resampling analysis. To be specific, we construct np bootstrap samples (typically np ~ 200) of
the full data set by averaging the observables over N, (L) randomly drawn disorder replicas
rather than performing a simple average where every replica is considered exactly once. For
every of those bootstrap samples the fits are performed, resulting in np estimates for the fit
variables. Averages and standard deviations of these estimates are reported as the final fit
estimates. We employ this procedure throughout the entire analysis. More details can be found
in Appendix A.3.

When performing a finite size scaling analysis of crossing points of observables, it was pointed
out in Reference [309] that the fact that one particular curve R(j3, L) intersects with fwo others,
namely R(f,2L) and R(j3, L/2), introduces non-trivial correlations among the corresponding
pairs of crossing points. As a consequence, using a fit method which optimizes a traditional x?
is no longer valid here and one rather must use a more general definition, which includes the
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Figure 4.6 | Cross-correlations. (a) Inverse covariance matrix (compare Equation 4.53) of Uy at the crossing
points of & /L, revealing the cross-correlation structure among the data points. (b) Cross-correlations of
&/L, Uy and Uy evaluated at the crossing points of & /L, showing a block structure. Colour values are
rescaled by a factor of 106 in the left and 107 in the right panel.

whole self-covariance of the data set, namely

Ner
Z x) — fit) C; 1 (2 — fit). (4.52)

||
[0

Here, N is the number of crossing points taken into account in the fit. Moreover, x denotes
the value of the observable under consideration at the crossing point and C~! is the inverse
self-covariance matrix. Since, as described earlier, we perform an extensive bootstrap-replicated
analysis of our simulation data, C can be straightforwardly evaluated by

1 &

— Z;(fl,i — (1)) (% — (xm)), (4.53)

Clm =

which is nothing but the definition of the general bootstrap covariance matrix [288, 289]. Recall
that np denotes the number of bootstrap samples of the full data set. Moreover, %;; denotes
the data point corresponding to the crossing point with index [ in the bootstrap sample with
index i and (x) is the corresponding average over all bootstrap samples. A visual example of
C~! for the values of Uy at the crossing points of £ /L is presented in Figure 4.6a. As expected,
we find a pronounced (anti)correlation structure parallel to the diagonal, representing the
correlations among the data points mentioned before. Had we not performed this extensive
analysis, this structure would have not been taken into account, but rather only the diagonal
(simple) uncertainties, possibly resulting in systematic errors of all quantities to be extracted in
the following.

When performing individual fits of either &/L , Uy or Ug according to Equation (4.51), the
results turn out to depend quite sensitively on the precise choice of Ly, specifically w fluctuates
in the range 0.3 — 0.5. However, the quality of the fits (and therefore the precision of the w
estimate) can be greatly improved by performing a simultaneous fit of all three curves according
to Equation (4.51) with joint w. Note that our comprehensive bootstrap analysis again proves
very useful here, as it allows us to take not only the cross-correlations among data points of
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Table 4.2 | Results of the combined fits according to Equation (4.51), at the crossings of & /L (upper part)
and Uy (lower part), as a function of L. Uncertainties are computed from bootstrapping the full data
set, as described in the text.

Lmin (&/L)* u; u; w x%/d.o.f

8  05592(11)  0.6213(2)  1.4091(16)  0.451(10) 3.45
10 05618(14)  0.6208(2)  1.4134(22)  0.422(13) 3.37
12 05615(17)  0.6207(3)  14142(27)  0.419(16) 242
16 05608(28)  0.6207(5)  1.4150(43)  0.419(28) 1.87
20 05596(36)  0.6208(6)  1.4141(58)  0.430(41) 1.87

8 0.5546(8)  0.6211(3)  1.4103(27)  0.455(13) 341
10 05571(10)  0.6204(4)  1.4167(38)  0.422(16) 1.15
12 05574(12)  0.6203(5)  1.4179(45)  0.416(18) 112
16 05581(21)  0.6200(8)  1.4204(75)  0.406(32) 1.28
20  05581(29) 0.6200(12)  1.421(11)  0.407(46) 1.60

one individual curve into account, but also the full correlations between the curves. Since for all
three phenomenological couplings, we obtain 12 crossing points of pairs (L,2L), this amounts
to a covariance matrix of size 36 x 36, which is calculated again by means of Equation (4.53).
A typical example is shown in Figure 4.6b. As can be seen, we find considerable correlations
also between the curves, as expected. Moreover, the self-covariance structure of the individual
curves is retrieved as blocks along the diagonal. We remark that in practice, when computing
the full covariance matrix of several combined observables, certain technical issues arise, which
are discussed in Appendix A 4.

In the joint fits, an identical Ly, is used for all three curves. Results are shown in the
upper part of Table 5.4. Evidently, w only fluctuates very little, as Ly is gradually increased.
For Lyin > 16, the x?/d.o.f of the fit does not change significantly which indicates that any
sub-leading corrections to scaling become small. As our final estimate, we obtain

w = 0.42(4), (4.54)

which includes all individual estimates for Ly, = 10,12, 16, 20 as well as their corresponding
uncertainties. Obviously, this estimate is significantly smaller than the corresponding value
for the pure model, w ~ 0.8 [123, 126], as well as the results found for diluted Heisenberg
systems [309]. This already indicates that scaling corrections originating from the topological
randomness are considerably strong and necessarily need to be taken into account in the
analysis.

As a consistency check, a similar analysis at the crossing points of Uy is shown in the lower
part of the table. As can be seen the results are largely consistent with the ones in the upper part
of the table, and the x?/d.o.f saturates already at Lyin = 12. This is rather remarkable, since the
simulation temperatures were located near the crossing points of £ rather than U which, when
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Table 4.3 | Results of the combined fit according to Equation (4.58) as a function of L.

Lmin 2—n wy x2/d.of

8  1955(8) 1.68(24) 436
10 1.952(9) 191(47) 423
12 1.953(9) 1.98(64)  4.39
16 1.958(13) 1.95(96)  4.94
20 1.959(13) 2.1(11) 5.95

evaluating the latter, introduces systematic errors due to the reweighting step becoming less
reliable as one moves farther away from the simulation point. Our final estimates for the fixed
point values of the phenomenological couplings are hence given by the estimates for Ly, = 16
at the crossing of & /L, resulting in

(£/L)* = 0.5608(28),
U; = 0.6207(5), (4.55)
U; = 1.4150(43),

which have to be compared to the most-precise values for the Heisenberg model on a cubic
lattice, ({/L)* = 0.5644(3), Uy = 0.6202(1) and U; = 1.4202(12) [122]. All three estimates
are compatible, which, already at this stage of the analysis, strongly indicates that our model
falls into the same universality class as the pure Heisenberg model. Note, however, that these
quantities are only universal in a limit sense as they weakly depend on certain geometrical
characteristics of the system [310-312].

Equipped with an estimate for w, we are now able to extract critical exponents. This is done
by fits to the ansatz

Qo lgg=s = ™0/ +aL ™%, (4.56)

where x(/v denotes the corresponding critical exponent and the quotient is defined by

(O)(sL, T)

Qo =o)L, 1)

(4.57)
In particular, dIn(m*) /dB, where k = 1,2, yields the correlation length exponent v. Further-
more, the susceptibility x allows us to compute y/v = 2 — 1. Finally, from the magnetization
(m) and its derivative d(m) /93, we get the exponents /v and (1 — ) /v, respectively. For all
fits we fix w to the estimate (4.54), also taking into account its uncertainty. As before, the fitting
procedure uses np independent bootstrap replicas of the full data sets. The results are shown
in Figure 4.7, including the x?/d.o.f of the fits in the lower panels. The estimates for v clearly
approach the reference value (indicated by the solid horizontal line) for increasing Ly, and
likewise does the exponent (1 — ) /v. In both cases, especially those fits which are — within
their uncertainties — compatible with the corresponding reference values, represent the lowest
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Figure 4.7 | Critical exponents of the three-dimensional O(3) model on a RGG. Results of the fits ac-
cording to relation (4.56), as a function of Ly,. On the left hand side, the derivatives of In(m) and
In(m?) yield the exponent v whereas on the right hand side the susceptibility x yields y/v =2 — 7
and dg(m) yields (1 — 8)/v. The x?/d.o.f of the fits are indicated in the lower panels on each side.
Moreover, horizontal lines indicate the reference values and their uncertainties from the literature [122,
307].

x?/d.o.f. The exponent 1, however, deviates slightly but systematically from its expected value.
We hence fit the data for x to the more general ansatz

Qy loges= 8"/¥ +al™% 4 bL™2, (4.58)

introducing an additional higher-order correction term and fixing w as before, resulting in
four free parameters. From optical inspection of the fits it becomes clear that the largest data
point presents itself a considerable outlier, which could be caused the relatively low number of
replicas, compared to the magnitude of the disorder. Discarding this point, we find the results
listed in Table 4.3. As can be seen, the estimates are in good agreement with the reference
value 2 — 1 = 1.9625(5) [122]. Interestingly, the sub-leading correction exponent is found to
be wy =~ 2, although showing considerably large error bars. In fact, this is a reasonable result,
since the susceptibility is known to gather corrections proportional to L2~ from its regular
background term [154, 313]. Furthermore, since an individual realization of the RGG is not
rotationally invariant, corrections proportional to w, ~ 2 may arise from the breaking of the
corresponding symmetry as well, as we have discussed earlier (in Section 2.4).

In summary, we find a scaling scenario consistent with the clean universal exponents of
the Heisenberg universality class, which strongly indicates that the O(3) symmetric model
on a three-dimensional random geometric graph belongs to this class and disorder presents
an irrelevant perturbation, as expected by the HBV criterion. We also find that, owed to the
strength of the disorder, corrections to the leading scaling behaviour turn out to be considerably
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strong (w ~ 0.4) and necessarily must be taken into account in the course of the analysis.

4.3 Non-equilibrium systems

Having discussed the required numerical methods for equilibrium spin models in detail, we now
turn our attention to non-equilibrium systems. For the contact process, as detailed in Section 2.3,
the time evolution of the system comprises two processes, offspring creation and spontaneous
on-site removal, which evolve a cluster of active sites over time by means of a (continuous time)
Markov process. In contrast to equilibrium systems, an algorithmic implementation of the
update rules is quite straightforward. Recalling Equation (2.49), the rates of the CP are given by

w[0 — 1,n] = An/q, (459)
w1l —0,n] =1, '

where A controls the offspring rate, n denotes the number of active nearest neighbours and g the
total number of neighbours of the site under consideration. In a practical implementation on a
computer, the rates translate to probabilities

An 1
Poffspring = m and Premoval = m’ (4.60)

which control the frequency of both processes. In our simulations, we employ a random-
sequential update scheme, which means that in every time step an active site is randomly
chosen. With probability

A __ QPoffspring
1+A n

p (4.61)
the site stays active and a neighbour is randomly selected: if currently inactive, this neighbour
becomes infected; if it is already infected, nothing happens. With probability 1 — p, the site
recovers spontaneously, i. e. it becomes inactive but is immediately susceptible to reinfection.
Either way, time is incremented by At = 1/N,, where N is the number of active sites before
the update attempt, resulting in a (pseudo)continuous time evolution, since on average all
active particles are being considered once per time unit. Note that for simulations studying
the dynamical (i. e. time-dependent) properties of the CP, one usually averages the results
over an ensemble of several runs. Since in every realization the evolution of the cluster might
evolve entirely different, the time signatures of the measurements in general do not coincide
between individual runs. This problem can be circumvented by grouping the measurements
into temporal bins and average the individual bins afterwards. In our simulations, we used
bins with linear size for early times (typically t < 500) and logarithmically spaced bins for later
times in order to reduce the amount of output data.

Also for the conserved Manna model, introduced in Section 2.3, a continuous-time random-
sequential update scheme is employed. In particular, we use a variant of the model with
unrestricted height, which means that every site can in principle carry an arbitrarily large
number of particles. Sites with two or more particles are active. As for the CP, the indices of
active sites are saved in a dynamic array, which allows to select one at random in each time
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step. Then, all particles are transferred to randomly selected neighbouring sites and the time is
incremented by At = 1/N,, where N, is the number of active sites before the redistribution.

4.3.1 Static scaling

We consider a non-equilibrium reaction-diffusion process in an infinitely large system. In the
active regime, i.e. for A = p — p. > 0, after an initial transient behaviour which depends on
the chosen initial configuration, the process relaxes into a well-defined state of steady activity,
where system properties take on stationary values. Particularly important is the density of
active sites, given by

(1) = 5 L), 462

where V denotes the total number of sites in the lattice and each site i can either be occupied,
n; = 1, or empty, n; = 0, at time ¢. As mentioned earlier, the density is typically averaged over
multiple individual realizations of the Markov process, which is indicated by (...). In fact, the
steady state density

Pstat = lim p(t) (4.63)
t—o00

represents the order parameter of the non-equilibrium phase transition. Similar to equilibrium
systems, at criticality, the spatial correlation length &, diverges with the (reduced) control
parameter, i. e.

&L ~|ATYE as A— 0. (4.64)
Analogously, for the correlation time, the relation
g ~ AT as A= 0, (4.65)

holds, where spatial and temporal correlations are related through v, z = v, which defines the
dynamic exponent z. This enables us to write down a general scaling form of the density near
the critical point [314, 315] for a finite system of linear extension L, given by

p(A L) = b P/ p(AbY Y, b7 /1, b /L), (4.66)

where p defines a scaling function with an appropriate asymptotic behaviour and b is an
arbitrary scale factor. This relation allows us to extract a number of scaling relations. Taking
b = AL we find in the thermodynamic limit (L— oo, t— 00)

Pstat ™~ Aﬁ/ (4.67)

where f3 is the critical exponent of the order parameter.

In order to obtain the dependence of pstat on the lattice size, we evaluate the scaling form (4.66)
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directly at criticality (A = 0). Setting b = L yields
Pstat ~ LB/7L, (4.68)

Similar relations can be obtained [314] for the susceptibility (variance of the order parameter)
x =L ((0%) = (p)?) ~ L7, (469)
where the following hyperscaling relation
y=dv, —28, (4.70)
holds [316] and the relaxation time scale of the steady state 31 fulfils
T~ L% (4.71)

Even though the above scaling relations allow, in principle, a straightforward extraction
of the critical exponents, in finite systems the fact that the process features (one or several)
absorbing configurations brings along an issue in numerical simulations. Depending on the
system size, at some point an absorbing state will be reached® and the system is trapped, which
prohibits to probe the stationary state systematically. Actually, in a finite system, the absorbing
configuration is the only true stationary state. To overcome this issue, one possibility is to apply
an external field [317], which can be implemented in a way that active particles are created
spontaneously [129], and analyse the scaling properties in the limit of the field tending to zero.
Another possibility is to consider systems conditioned on survival, which means that one uses
an ensemble of systems and p(t) is averaged only over those which are still alive at time # [314].
Although quite different on the first glance, both methods can be derived from each other, as
pointed out in Reference [318].

In this work we use a clever approach, that was suggest by R. Dickman and M. de Oliveira
[319, 320] and is related to the second method mentioned above. It allows for a direct and
technically convenient probing of the quasi-stationary (QS) regime (i. e. conditioned on survival).
Specifically, the run takes place on a finite lattice and starts from a configuration where all
sites are active. Every time the absorbing state is reached, the system is reset to an active
configuration randomly chosen from its history. Numerically, this can be realized by saving a
list of previously visited states. This list is periodically updated to assure convergence towards
the QS state. At the end of the simulation, the desired observables (such as the QS density pgg)
can be obtained by a simple average over the configurations on the list. Moreover, the exponent
z can be obtained by taking the mean time between successive attempts to visit the absorbing
state as the relaxation time scale in Equation (4.71). As detailed in References [319, 320], this
algorithm effectively samples a modified process, free of an absorbing state, but with the same
QS properties as the original system. As a consequence, the QS method allows for arbitrarily

31There is no unique definition of a relaxation time scale in the stationary state of non-equilibrium systems with
absorbing configurations. However, T may be thought of as the time after which the stationary density decays to
half of its value [314].

32Even in the active phase, a finite system inevitably reaches an absorbing state after a specific time scale due to random
fluctuations.
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long simulations while providing a good statistical sample size. Note that for certain small
systems, the QS properties can even be computed analytically [321].

In a practical implementation, the QS simulation method presents two essential parameters,
the size of the list of saved configurations N, and the update probability p, per unit time
step. Typically, N, is limited by technical constraints (memory of the computer), since storing
hundreds or even thousands of configurations quickly becomes expensive for large systems.
This is particularly delicate for bosonic systems, such as the Manna model, where the exact
configurations needs to be stored. For the contact process in contrast, saving a list (of indices)
of active sites, which in the QS regime typically turns out to be much smaller than the actual
system volume, is sufficient. Note that the update probability p, (per unit time) of the saved
configurations represents important tuning parameters of the QS method. As a rule of thumb,
the typical residence time of a configuration on the list, N./p,, should be much larger than the
QS lifetime, but small compared to the total duration of the study.>

4.3.2 Dynamical scaling

So far we have only considered the stationary scaling properties of non-equilibrium systems in
the steady state. We now turn our attention to the so-called dynamical scaling regime, which
explicitly captures the time dependence of the process. Starting from a fully occupied lattice at
the critical point, we take b = +1/7 in Equation (4.66) and, for an infinite system (L— o), obtain

p(t) ~t79, (4.72)

where the dynamical critical exponent of the order parameter is defined as

5= P 4.73)
v,z

implying that the density decays as a power law at criticality. In a finite system, the power law
decay can only be observed as long as the correlation length is smaller than the linear extension
of the system. As soon as spatial correlation length &£, and lattice size L are comparable, the
density decay becomes exponential. This time scale, representing the characteristic time after
which the absorbing state is reached, is given by tpss ~ L* [5]. Hence, in order to obtain a clean
estimate of the exponent 6, one has to ensure that only the regime ¢ < Tpss is probed in the
study. Additionally, one might also neglect the behaviour at small times due to early transient
behaviour, depending on the initial configuration.

Further dynamical scaling properties can be derived if the evolution is started from a single
occupied seed in an otherwise empty lattice. In these so-called seed simulations, typically three
time-dependent quantities are measured and averaged over an ensemble of runs: the average
size N, of the evolving cluster, its mean-square radius R?, and the survival probability P;. We
remark that the latter is typically only averaged over the surviving clusters. Furthermore,
note that if there is only one absorbing state (such as for the CP), the survival probability and
the density (4.66) are dual in the sense that they obey the same scaling behaviour [322], i.e.

3R. Dickman, personal communication.
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Py(t) = p(t) in the long-time limit.3* Guided by this identity, we are able to write down a
general scaling form of the survival probability

Py(At, L) = b P/YLP (ALY YL, b7/, b/L). (4.74)

Analogous relations can be adopted for the total number of active particles and the mean-square
radius of the active cluster [183], given by

Na(A,t, L) = b 2P/YL N, (AbY YL, b7 /1, b/ L), (4.75)
R%(A,t,L) = b*R2(AbY YL, b7 /t,b/L). (4.76)

At the critical point and for sufficiently large systems, this results in scaling relations
No(t) ~ 9, RE(t) ~ /%, Py(t) ~ 75, (4.77)

where the critical exponent of the cluster volume is given by

0= g — 2. (4.78)

For systems which, due to the existence of multiple absorbing states, do not obey the sym-

metry mentioned above, the exponent 3 in Equations (4.74)—(4.76) is replaced by a different

exponent 8, hence P; scales with an exponent 8’ # 5. Also the hyperscaling relation (4.78) must

be generalized in this case (see Reference [147] for details). However, since in this work only the
dynamical scaling properties of the CP are considered, we will not discuss this case here.

Obviously, in numerical simulations, the relations (4.77) can only hold if the system is
sufficiently large. In general, for finite systems the cluster reaches the boundaries at some
point and cannot spread further. Hence, similar to the decay simulations from a fully active
configuration, N,, R? and P, exhibit a well-defined finite-size cut-off after a time Tgsg, which
was defined above. In practice, finite-size effects can be avoided altogether by choosing the
lattice sufficiently large and monitoring the cluster size during the simulation.

4.3.3 Activated scaling

For the CP, in the presence of site or bond-randomness, strong Griffiths effects emerge in the
active phase [171], alongside with the transition being controlled by a new infinite-randomness
fixed point. Similar to the Griffiths phase in equilibrium spin models (compare general discus-
sion in Section 2.5.3) regions devoid of impurities are locally in the active phase, whereas the
system globally is subcritical. In terms of the infection rate A, the Griffiths region is located at
)\? < A < A;, where A; and )\g are the disordered and clean critical points, respectively. For a
better overview, the phase diagram of the diluted contact process is depicted in Figure 4.8.

As already indicated in Section 2.5.3, for A > A rare regions are able to maintain metastable
states of activity. Even though, due to their finiteness, they eventually decay to the absorbing
state, the typical lifetime scales exponentially with the distance from the clean critical point

34A detailed discussion of how this so-called rapidity-reversal symmetry arises can be found in Reference [5].
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Figure 4.8 | Phase diagram of the randomly diluted contact process. The x-axis shows the dilution
probability, where p. denotes the percolation threshold of the lattice. The y-axis shows the inverse
infection rate. Both transition lines (strong disorder transition with activated scaling and geometric
lattice percolation transition) meet at a multi-critical point (MCP). Reproduced from [323].

(or, correspondingly the correlation length), as well as with the disorder strength. This slow
decay has implications for the dynamic variables. Combined with their exponentially decaying
likelihood (depending on the disorder parameter and their volume), it gives rise to power-law
scaling with non-universal, continuously varying exponents in the Griffiths region A < A < A..
In the specific case of the diluted contact process (controlled by the dilution parameter p) the
asymptotic behaviour can be expressed as

p(t) ~ tnA=P)/a with g~ &~ (A= AP (4.79)

where V) denotes the clean critical exponent of the correlation length. A more detailed discus-
sion can be found in [181] and references therein.

At the actual critical point A, the Griffiths exponents (4.79) obviously diverge, giving rise
to a logarithmic scaling scenario. In fact, the critical exponents are found to be independent
of the disorder strength and match those of the random transverse-field Ising model (RTFIM)
universality class [324-326]. This was predicted in strong-disorder renormalization-group
studies [182, 183, 327, 328] and verified in extensive numerical simulations in one, two and three
spatial dimensions [179-181, 329, 330]. At this new, unconventional fixed point, the dynamics is
ultraslow, which means the system evolves on a characteristic time scale proportional to In ¢
rather than to t itself. As a consequence, the conventional algebraic scaling laws are replaced by
logarithmic counterparts, such as in the case of the density

p(A,Int, L) = b= P/YLp(ABY Y2, b7 /Int,b/L). (4.80)

Similar relations hold for the cluster size, cluster radius and survival probability in seed
simulations. The logarithmic time dependence enters in the scaling at the critical point

Na(t) ~ In(t/to)?, (4.81)
R2(t) ~ In(t/tg)¥¥, (4.82)
Py(t) ~ In(t/ty) 2, (4.83)
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p(t) ~In(t/to)~°, (4.84)

featuring new disorder exponents, obeying scaling relations

- - d

o= B and 0= ——-26. (4.85)
v,y YP

In this so-called activated scaling or strong disorder scaling scenario, where ¢y, denotes a non-

universal timescale, the relation between temporal and spatial correlations becomes

In(g /to) ~ &Y, (4.86)

rendering the dynamical exponent z formally infinite and giving rise to a new exponent 1,
called the tunnelling exponent. As a consequence, the correlation length still shows an algebraic
singularity at criticality, whereas the correlation time diverges exponentially. In one spatial
dimension, the disorder exponents 8, 6 and ¢ can be estimated by analytical methods [182, 183],
however, they can only be determined numerically in higher dimensions [181, 330, 331]. In fact,
traditional Monte Carlo simulations of the CP under the influence of quenched disorder present
a considerable challenge, as due to the logarithmic time-dependence, very long simulation
times are necessary in order to reach the asymptotic scaling regime. Moreover, the characteristic
non-universal time-scale represents an inconvenient extra parameter, significantly complicating
any fitting procedures.

Finally, we note that the static scaling behaviour remains of algebraic type in the presence of
quenched disorder, as can be seen in Equation (4.80), although with, in general modified values
of the corresponding critical exponents, compared to the clean scaling scenario.
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CHAPTER

Simulation Results

“Science is what we understand well enough to explain to a com-

puter; art is everything else.”

— Donald E. Knuth (Turing Award winner)

We review the numerical simulation results from the publications related to this work, [P1-P5], in detail and
comment on the immediate conclusions. A more compact summary of these results will be provided at the
beginning of Chapter 6. Note that some passages of this chapter have been quoted verbatim from the sources
listed above.

The simulations have been performed on the JULIA and ITPA cluster, both located at Wiirzburg University,
as well as on the GCS Supercomputer SuperMUC at the Leibniz Supercomputing Centre and took about five
million CPU hours in total.

5.1 Ising model on two-dimensional lattices

In this section we present and discuss numerical simulations of the two-dimensional Ising
model on CC lattices with different numbers of neighbours. They are analysed using the
maximum finite-size scaling method. To this end, simulations on a square lattice and a DT are
performed first. Having an analytical solution for the 2D Ising model available, they hence serve
as a walk-through of the analysis and quantitative validation of our code (compare Section 4.2).
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Square lattice benchmark

We simulate the two-dimensional Ising model on regular square lattices with linear sizes L = 16
up to L = 256 and compare the resulting critical exponents with the analytically known values.
For the analysis, we exploit finite-size scaling properties of the extremal points of the scaling
functions, as detailed in Section 4.1.3. All systems are simulated at temperatures close to the
expected peak locations of their scaling functions, and reweighting techniques (see Section 4.1.5)
are used to determine these locations with high precision. We chose one elementary Monte
Carlo step (EMCS) to include 25 Wolff cluster updates and a full Metropolis lattice sweep. For
each system size, a number of 10° EMCS is reserved to ensure proper equilibration. After that,
another 2 - 10 EMCS are performed and magnetization and energy are evaluated after every
update. Hence, in total we perform roughly 108 single cluster updates for each system size.
Averages and corresponding uncertainties are computed using Jackknife techniques in order to
properly handle autocorrelations and to reduce the bias of non-linear estimators, as was pointed
out in Section 4.1.4.

In Section 2.4, we discussed that the scaling relations (4.24) generically include multiplicative
correction factors, such as for the susceptibility

Xx=L" ()1 +a L % +...), (5.1)

with a correction-to-scaling exponent w, some non-universal constant a,, and possibly further
terms of higher order (see, e.g. [154, 157, 332] for a detailed discussion for the case of the
two-dimensional Ising model). Note that w is expected to be the same for all observables,
whereas the correction amplitude is in general different. Taking into account these corrections
would, however, require non-linear fitting methods with at least four parameters, which tend to
be numerically unstable when maximum scaling is employed. Therefore, in order to avoid non-
linear fits while still keeping track of possible systematic corrections, we adopt the following
procedure [263]:

1. Determine a suitable minimum lattice size, Lyin, by discarding an increasing number of
the smallest lattices and refitting, up to the point where the values of the exponents and
also the goodness-of-fit parameter Q [275] cease to show a systematic trend.

2. Check the corresponding residual plot and, if necessary, increase L, in order to eliminate
any systematic trend still present in the remaining data points.

In order to determine the correlation length exponent v, we use the last four scaling relations
of (4.24), each of which is fitted to the seven pseudo-critical sequences of peak location (4.16¢)-
(4.17e), yielding a total of 28 fits. The relations could be fitted only at their own pseudo-critical
temperatures with good results — however, performing the full number of fits allows for the
determination of v to the greatest possible precision. This is advantageous since this exponent
is required for the determination of the infinite-volume critical temperature, as well as for the
other exponents obtained from y/v, (1 — 3)/v and /v. Nevertheless, we emphasize that
taking into account all 28 fits brings about only a modest increase in precision, given that all fits
are trivially correlated, as they stem from the same set of simulations.

For the regular lattice, discarding the smallest lattice size simulated, L = 16, we find 23
acceptable fits with goodness-of-fit values Q > 0.2. The residual plots for four of the curves
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Figure 5.1 | Residuals for the exponent v (Ising, regular). Shown are the residuals of 4
out of 28 fits, shifted vertically for convenience. The vertical dotted line separates the
region that is excluded in the fits. The grey curves are guides to the eye.
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Figure 5.2 | Residuals for further exponents (Ising, regular.) Shown are the residuals for
the fits of the exponents (a) y/v and (b) /v for the regular lattice. The single lines
in each panel correspond to observables (4.16¢) to (4.17e) from top to bottom and are
shifted vertically for convenience. The vertical dotted line separates the region which is
excluded from the fitting procedure and the grey curves are guides to the eye. Error
bars are about the size of the markers in panel (a) and roughly two times as large in

panel (b).

109
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Table 5.1 | The seven single fits for /v for the two-dimensional Ising model on a regular square lattice
using L = 48 to 256 (8 data points) as well as the average, obtained from the five values with Q > 0.01.
Corresponding residuals are shown in Figure 5.2b.

B/v goodness-of-fit Q at max of
0.1298 + 0.0014 0.976 X
0.1201 £ 0.0014 0.000 C
0.1201 £ 0.0013 0.986 dm/dp
0.1269 + 0.0017 0.051 dlnm/dp
0.1266 + 0.0020 0.012 dIn mz/dﬁ
0.1290 £+ 0.0015 0.071 duU,/dp
0.1343 £+ 0.0021 0.000 duy/dpj
0.1261 £ 0.0013 avg. Q > 0.01

are shown in Figure 5.1. In order to obtain a final value for v, we calculate the error-weighted
average over all acceptable fits. Concerning the uncertainty, we quote the smallest error of the
single fits included in the average, thus being quite conservative, as suggested in [58]. The final
result is

v = 1.0000 & 0.0006 (Lmin = 32), (5.2)

which perfectly coincides with the analytically known value of v=1. As a next step, making
use of the relation (4.27) in combination with the pseudo-transition point sequences, the critical
temperature 3, can be determined via infinite-volume extrapolation, where we fix v = 1. After
averaging the individual 3., we arrive at

Be = 0.440688 = 0.000015  (Lpmin = 32), (5.3)

where the reported uncertainty is the standard error of the average. This value is quite close to
the exact critical temperature of B. = In(1 + v/2)/2 ~ 0.4406868. The smallest lattice (L = 16)
has again been discarded in all fits.

The exponent /v is obtained from relation (4.24b). Here, we exclude all lattice sizes L < 64,
since residual plots indicate (slight) systematic deviations up to that value. The weighted
average of the three resulting fits with acceptable quality (Q > 0.3) yields y/v = 1.7516 +
0.0008 (Lmin = 80) as the final result, which is compatible with the exact value of 7/4. The
residuals of all seven fits are shown in Figure 5.2a. The combinations (1 — 3)/v and /v are
determined from fits to relations (4.24d) and (4.24a), respectively. For the former exponent, we
find three fits with Q > 0.2, similar as for /v, but the residual plots show no need to discard
further data points. Our final value is thus given by the average (1 — 3)/v = 0.8747 4+ 0.0010
(Lmin = 64), also compatible with the exact value of 7/8. For 3/v, however, our data does
not return a single acceptable fit — even when discarding half of the data points. A thorough
analysis of the fit residuals shows no systematic corrections for L > 32, but reveals that the
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Figure 5.3 | Fit residuals for the exponent y/v (Ising, DT). The single lines correspond to observables
(4.16¢) to (4.17e) from top to bottom and are shifted for convenience. The dashed horizontal black lines
show the region excluded in the fits. The grey curves are only guides to the eye. Error bars are smaller
than the markers, except for the cyan curve (second from the top), where they are about three times as
large as the marker. Only the green curve (third from the top) shows no systematic deviation and yields
v/v = 1.7512(7), with a goodness-of-fit value Q = 0.90.

poor quality of the fits arises from the small uncertainties assigned to the values of (). Indeed,
the relative uncertainties are about half an order of magnitude smaller compared to, e. g. the
last five observables of (4.24). If we increase the uncertainties of the data points by an ad hoc
factor f = 5, then five out of seven fits turn out to be acceptable, with Q > 0.01, producing the
reasonable final average of /v = 0.1261 £ 0.0013 (Lyin = 48). The full list of fits can be seen
in Table 5.1 and the corresponding residual plot in Figure 5.2b. By calculating 3/v estimates for
multiplication factors f = 2 to 8, we observe that the number of good fits increases with f, but
the average f3/v fluctuates only in the last digit, consistently maintaining compatibility with
the exact result 1/8.

We note, regarding the fits for the three ratios y/v, (1 — 8)/v and /v, that those fits which
depend on the function values at the pseudo-critical points of either C, d In(m?)/d3 or dU,/dj3
always present the lowest fit quality (i. e. large reduced x?). This is due to the fact that those three
quantities have their maxima at a larger distance from the simulation temperature, compared
to the remaining observables. Therefore, in order to obtain a larger number of acceptable fits
and more accurate estimates for the critical exponents, multi-histogram reweighting methods
(compare Section 4.1.5) would be necessary, which would however require at least a second set
of simulations and therefore essentially double the computational effort.

Delaunay triangulation

As a second benchmark, and an analysis walkthrough for disordered models, we proceed with
the Ising model on a two-dimensional Delaunay triangulation. Due to the spatial randomness,
stronger corrections to scaling, compared to the regular case, are to be expected. For L = 16,
24,..., 320, we perform quenched replica averages over N, = 1000 independent realizations
of the DT construction. For the largest lattice considered, L = 400, only N, = 500 realizations
are simulated. Starting from a completely ordered configuration, we perform 4 - 10* EMCS
to equilibrate the system, followed by 2 - 10° cluster updates. As for the regular case, one
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Figure 5.4 | Local fitting procedure. Schematic illustration for L = 96. Each circle symbolizes one lattice
size L, whereas the numbers inside the circle are the corresponding weights.

EMCS consists of 25 cluster updates and one Metropolis sweep, independent of the lattice size.
Physical observables are obtained by reweighting for each simulated replica individually — this
amounts to one curve for each observable and each replica. After averaging the curves of the
observables of all replicas, extremal points are determined using an iterative bisection method.

The statistical uncertainties of the replica-averaged observables are obtained from the stan-
dard error of the N, different observable curves used to calculate the average. This error estimate
contains both the uncertainty corresponding to the thermal fluctuations in each replica, as well
as the fluctuations among different replicas, arising from the different disorder realizations. As
the latter are effectively uncorrelated, standard and Jackknife error will give nearly identical
results. Note however that we still use Jackknife resampling in order to reduce the bias of the
individual curves. We perform linear fits to the scaling equations, as in the previous subsection,
thereby ignoring any corrections to scaling. For each observable listed in Equations (4.24a)
— (4.24h), we perform seven linear fits, each using a different estimate of the pseudo-critical
temperature, as obtained from extremal points of the observables. Instead of adopting a fixed
Lmin, as for the regular lattice, we employ a local fitting procedure in order to obtain an effective
(i. e. running) exponent. More specifically, we perform the fitting over a window of five consec-
utive data points from the range L € {16, 32,...,320,400}, assigning weights that emphasize
the central data point, as illustrated in Figure 5.4. This local fitting is necessary due to the
rather strong systematic deviations from a pure power-law. The residuals of the fits for y/v, for
instance, shown in Figure 5.3, clearly demonstrate that the data points systematically deviate
from the horizontal.

The effective local exponents v, y/v, (1 — 3)/v and /v for the DT are shown in Figure 5.6
and listed in Table B.3, where we display the averages of the single fits in each individual fitting
window. For the estimates of v, we observe a very smooth curve, decreasing continuously as
the fitting window is moved towards larger lattices. Therefore, we offer no final result for the
exponent v. Regarding the estimates at hand, we expect the effective exponent v to tend to the
exact value in the infinite-volume limit. For y/v, the situation is very similar. As in the case
for v, the individual estimates again exhibit a systematic downwards trend and we expect the
exact value to be reached in the infinite-volume limit. For the critical exponent 3, which can
be estimated from the scaling of [(11)]avg and d[(m)]avg/d 3, the corresponding curves are also
smooth and indicate a tendency towards the expected values in both cases. In particular, for
3/ v the universal value of 0.125 is already reached within the error bars for smaller values of L.

112



5.1 Ising model on two-dimensional lattices

Turning our attention to the critical temperature, linear fits according to Equation (4.27) reveal
systematic deviations, even if many of the small lattice sizes are discarded, qualitatively similar
to those observed for the exponents (compare Figure 5.3). Therefore, we decided to take into
account higher order corrections in the finite-size scaling analysis in order to allow for a more
precise estimate of 3.. Considering a first-order correction term, Equation (4.27) becomes

BLi = Bc+aL ™%+ bL~ w1, (5.4)

where the indices indicate the dependence of the amplitudes on the chosen observable. As
outlined in Section 2.4, on a square lattice with periodic boundary conditions, the leading
correction-to-scaling exponent w is expected to take on a value of exactly 2 due to the breaking
of rotational invariance. For the strongly site-diluted Ising model, which is perhaps more
directly comparable to the DT model, a value of w = 0.63(20) has been found [333]. When
fitting Equation (5.4) to our data, we can, in light of the results of Table B.3, set v to unity, which
reduces the number of fitting parameters to four. As the effects we are trying to detect are
rather small, it is still challenging to obtain stable fits. For this reason, we perform a series of fits
for different, fixed values of w and hence obtain corresponding 3. estimates. We follow this
procedure for the data for each of the seven observables, and then calculate the average as well
as the standard deviation of 3. for each w. In Figure 5.5, the estimate of 3, and its error (shaded
region) is depicted together with the average reduced x? as a function of fixed w. It can be seen
that the best fits are obtained for w < 1, coinciding with the most precise estimates of 3. as well.
The best fit value is

Be = 0.262904(9), (5.5)
corresponding to T, = 3.80368(13), at a correction exponent of
w = 0.84. (5.6)

To the best of our knowledge, this is so far the most precise value available for the critical
coupling for the two-dimensional Ising model on a Delaunay lattice. Also our estimate for the
correction exponent may be used for future reference, although we remark that the method we
used does not allow to determine proper error bars for that quantity.

Constant Coordination lattice

We study CC lattices with coordination numbers g = 4,6 and 10 (short: CC4, CC6, CC10),
constructed from a Poissonian point cloud. For all three systems we use the same number of
independent disorder realizations, measurements, equilibration steps and cluster updates as
for the DT lattice. In this way, the results for the different models are of comparable precision.
Also the estimates of the exponents are obtained following the same procedures described in
the previous section. The results for the CC4, CC6 and CC10 models are presented in Figure 5.6,
where we also added the DT exponents for comparison. A detailed list of the data points can
also be found in Table B.3.

Recall that due to the nature of the CC construction, small isolated components may occur,
in contrast to the DT, where the lattice always consists of one single component. In order to
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Figure 5.5 | Estimate of 3, and w (Ising, VD). (a) Estimate of 3. and its error (shaded region) as a function
of fixed w. (b) Corresponding reduced x2-values, as described in the text. Employing different fitting
algorithms generates qualitatively similar results, which are also insensitive to the choice of lattice size
range.

properly update those islands, we employ an additional Metropolis step between measurements.
Furthermore, we report results only for lattices of size L = 16 to L = 320, as for larger lattice
sizes the construction already becomes as expensive as the actual Monte Carlo simulation.3®
Considering the fit results presented in Figure 5.6, we see similar tendencies as for the DT,
however, with larger absolute deviations from the clean universal values. For the correlation
length exponent v, all CC models seem to show a systematic trend. However, the deviations
become larger for smaller 4. Compared to the DT, for 4 = 10 those deviations are roughly three
times as large, and for 4 = 6 already about one order of magnitude larger. Considering also
the fact that for g = 6 the error bars are only about twice as large as for DT, the results indicate
that any possible convergence is significantly slower. A remarkably different situation arises for
the susceptibility exponent y/v, where the effective exponents for all models seem to collapse.
However, whereas the CC10 shows a clear trend of decreasing estimates, this behaviour becomes
less distinct for § = 6, where the curves seem to saturate within the considered range of L.
Eventually, for g = 4, almost all values are compatible with 7/4, which may, however, be a
consequence of the relatively large error bars.

As for v, the exponent (1 — ) /v is clearly different for CC and DT graphs. For the DT, a
trend consistent with (1 — )/v = 0.875 is evident. In contrast, the CC exponents are further
away from the universal value and show no clear trend, with a possible exception of CC4, where
the effective exponent appears to increase with L. Similar to v, the absolute deviations for CC6
are already almost one order of magnitude larger than for the DT. Finally, the exponent 3/v
shows a clear trend towards the universal value in the case of 4 = 4 and 6, with the last few data
points being fully compatible with 1/8. For g = 10, however, all estimates match the universal
value, very similar to the DT model. For completeness, we state the critical temperatures for the
constant coordination models which are roughly . ~ 0.549, 0.294 and 0.148 for CC4, CC6 and

35In this particular study, we used the original algorithm for constructing the CC lattice as presented in [P2], which,
as pointed out in Appendix A.1, scales quadratically with the number of points and hence restricts the range of
accessible lattice sizes heavily (compare also Section 3.3).
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Figure 5.6 | Critical exponents (Ising, CC and DT). Comparison of critical exponent estimates for CC
lattices with g = 4, 6,10 and DT lattices, as a function of the lattice size, obtained through the local fitting
procedure. Dashed horizontal lines indicate the clean universal values of the 2D Ising universality class.

CC10, respectively. A more precise determination is omitted, since these values depend on the
fine-tuning of the CC algorithm and are therefore non-universal.

Discussion

In comparison with the Delaunay triangulation, the CC model for g = 6 has exponents v and
(1 — B)/v that show deviations from their respective universal values which are larger by about
one order of magnitude (e.g. v = 1.0042(5) for DT and v = 1.0281(12) for CC6 at L = 192).
Furthermore, for all CC models, the convergence of the effective exponents seems weaker or
even doubtful, with the possible exception of 3/v, which has rather large relative errors. In
the following, we want to understand our findings using a number of topological arguments.
As pointed out in Section 2.5.4, for the DT lattice, the constrained total coordination number
imposes strong anti-correlations in the local g fluctuations, which in turn are responsible for
the fast decay of disorder under spatial renormalization-group-type blocking transformations
(compared to, e. g. diluted lattices) and are thus asymptotically irrelevant. It was reasoned
that this fast decay can be expressed in terms of a modified (so-called Harris-Barghathi-Vojta)
criterion av > 1 that explains the fact that, e. g. simulations of the contact process on those
lattices show the clean universal exponents, although the classical Harris criterion dv > 2 is
violated.

With the CC lattice, we constructed a lattice that provides random connectivity (and thus

topological disorder)® and — as an obvious effect of the fixed local coordination number — no
fluctuations in the original lattice or on any blocking level. Therefore, since the effective critical

36 At this point, keep in mind that random connectivity does not imply a random coordination number.

115



5 Simulation Results

Table 5.2 | Global geometric lattice properties. The disorder decay exponent a is defined by the relation
og ~ L, ?, where o is defined according to Equation (2.94). The values marked with { have been
calculated in Section 3.4, see Figure 3.11, the symbol | refers to Figure 3.12 (upper panel). §: for the RGG
and the symmetric qNN, no clear universal properties are expected, see text. x: negative correlations
are present, but positive correlations are dominant, especially on the typical scale of one bond length,
see Figure 3.12. We only consider two-dimensional structures in this table.

Coordination Total
s clean 2D
number coordination .
Geometry a - Planar ~ Connected Ising
anti- number . .
. . universality
correlation constrained
DT 3/2 yes yes yes yes yes [67]
VG undef. no no yes yes yes [P4]
CcC undef. no yes no no questionable  [P2]
GG 1t nof no yes yes yes [260]
RNG 1t yes? no yes yes yes [260]
BD 1 no yes yes no strong/weak  [185-200]
SD 1t yes no yes no strong/weak  [185-200]
RGG 1t no no no no unclear?
qNNsym 1t no* no no no unclear?

exponents clearly deviate from the corresponding universal values, we are led to the conclusion
that the scaling of coordination number fluctuations og under coarse-graining should not be the
decisive property determining the nature of the phase transition. This conclusion is supported
by recent results of Schawe et al. [260], where it is shown that the universality of the Ising
model on two-dimensional Gabriel graphs (GG) and relative neighbourhood graphs (RNG) is
unchanged and therefore belongs to the same class as the Ising model on a regular lattice. In
Section 3.4, we performed the blocking analysis for these two types of proximity graphs and
find that both of them unambiguously show a decay of o L;l, hence 2 = 1. This means
that disorder in these graphs decreases as slow as for generically disordered models. Hence,
one would expect considerably strong (logarithmic) corrections to the clean scaling behaviour,
which were not found by the authors in [260].

We collect several different disordered lattice models in Table 5.2, together with some relevant
geometric properties and statements concerning the universality of the two-dimensional Ising
model on each lattice. From the overview given in this table, we claim that the general statement
of topological disorder being less relevant than generic disorder, as stated in [67], might be too
general. However, the particular instances of lattices mentioned by the authors can indeed be
expected to preserve the universal features of a transition, since they are all tilings. The key
difference between tilings and lattices with bonds that may cross each other (like our CC model
or the random geometric graph with fixed interaction radius) lies in the fact that for tilings, it is
always ensured that there exists one single component containing all sites. We thus conclude
that very clear universal properties (e. g. no strong logarithmic corrections) are obtained if the
underlying lattice is both planar and connected. Note, in this context, that tilings are a special case
of planar, connected graphs. Also, we remind that a graph is called planar if it can be embedded
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5.1 Ising model on two-dimensional lattices

in the plane such that there are no edge crossings. Whether a specific graph is planar or not can
be checked according to Kuratowski’s theorem [334], which can be implement efficiently on a
computer [335]. Since RNG and GG possess these properties, this would explain the positive
results observed in Reference [260].

Comparing the GG and the random geometric graph (RGG) in Table 5.2, it is clear that — apart
from the RGG being neither planar nor connected — they show the same geometric characteristics.
Following our line of argumentation, the Ising model on the RGG lattice is expected to have
disorder dependent effective critical exponents, exactly as for the CC model. Some preliminary
simulations with a short-ranged interaction radius of R ,)_¢ (see Equation 3.4), not presented
here, indeed seem to confirm this expectation. Similar holds for the symmetrized g-nearest
neighbour graph, compare also Table 5.2. Moreover, a prominent and well-studied example
of disordered lattices that are planar but not connected are the site- or bond-diluted regular
lattices (compare Figure 3.3), also included in Table 5.2. They allow for isolated clusters and thus
show a percolation transition, resulting in a multi-critical point in the temperature/dilution-
strength phase diagram. The constant coordination model also allows for the occurrence of
isolated islands. By employing a cluster counting procedure, we calculate the fraction 1 — peon
of all sites on the CC lattices belonging to islands disconnected from the giant component.?”
For the CC4, we find 1 — peon ~ 1073. As expected, this number decreases strongly as g is
increased. For g = 6 we find 1 — pcon ~ 107° and for g = 10 no small islands were detectable
in all of the N, = 1000 realizations of constant coordination lattices with L = 320, yielding
1—peon < 10~7 as an upper bound.38 Considering, in contrast, smaller values of g, say g = 2,
the lattice would undergo a percolation transition, as in this case the formation of, e. g., triangles
(3 sites, 3 links) is very likely and a giant component may not form at all in most realizations. It
should be emphasized that the effect of the isolated islands on the measured observables might
be negligible, since, even for CC4 lattices, such sites amount to only 0.1% of the total lattice
sites. Furthermore, we ensured that isolated clusters are properly updated by local Metropolis
updates, as explained above. By decreasing g below the percolation threshold, though, any
collective long-range magnetic phase must inevitably be destroyed since the system is then
decomposed into many disconnected finite clusters and no collective long-range behaviour can
be maintained.

Reviewing the ample literature on the two-dimensional site- or bond-diluted Ising model,
one indeed finds remarkable similarities to our results for the CC lattice. First of all, many
numerical simulations seem to show exponents which are clearly non-universal and vary
dramatically with dilution strength. Already in the 1990’s, these numerical results, as well
as field-theoretic calculations, led to a controversy that still persists, regarding the universal
character of those models. According to the so-called strong universality hypothesis, disorder is
marginally irrelevant, leading to clean exponents accompanied by logarithmic scaling correc-
tions and, particularly remarkable, a specific heat diverging ultra-slowly in form of a double
logarithm [185-189]. The weak universality scenario, in contrast, posits leading critical exponents
that vary continuously with the strength of the dilution, but with some quotients of exponents,

37The following estimates again consider the original CC algorithm. For the improved algorithm, the occurrence of
isolated components is even less likely, as pointed out in Section 3.3.5.

3Due to the constraint of fixed g, the smallest possible isolated component needs to contain at least 11 sites. Thus,
if we had found one single realization in the 1000 lattice replicas, the fraction would have been calculated by
11/(1000 - 320%) ~ 10~7.
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such as y/v and f3/v, remaining unchanged [190-195]. For a comprehensive historical review
covering articles supporting either of the two scenarios, we refer the reader to [196]. Currently,
the strong universality scenario is favoured, having been strengthened by recent numerical
studies [197-199], with Zhu et al. effectively ruling out the weak scenario for their large-scale,
high-accuracy results [200].

Comparing our results with those from the aforementioned studies of dilute models, we
recognize a number of similarities. In particular, the effective exponents v and (1 — )/v
change continuously with the lattice parameter g, whereas y/v varies only slightly among
the models and /v is already compatible with the universal value for all choices of q. Given
these similarities, the question arises whether topological disorder in the CC model is also
marginally irrelevant and logarithmic corrections arise (i. e., strong universality) or whether one
is facing continuously varying leading critical exponents (as proposed by the weak universality
hypothesis). As both scenarios predict unchanged values for the ratios y/v and /v, they
both can not be used for a distinction. The specific heat, in contrast, shows a different scaling
behaviour already in the leading order. For the strong scenario, a double-logarithmic scaling

C=aln(bln(cL)), (5.7)

with constants a, b, ¢, can be expected [336-338], whereas weak universality predicts a power-law
scaling

C =Cy+al*”, (5.8)

with negative exponent and regular background Cy. In order to investigate the origin of the
deviations from clean universality in our models, we fit the finite-size data of the specific heat to
both ansétze (5.7) and (5.8), summing up to seven fits each (corresponding to the peak locations
of the scaling functions). Remarkably, both scenarios fit the data equally well. Even when
including the smallest lattice size, L = 16, we find reduced x2-values between 0.5 and 3 for
all seven fits for both scenarios. However, as the leading scaling behaviour is only valid for
large L, we discard the smallest lattice size which again significantly increases the quality of
most fits. Specifically, for the strong universality scenario, we then find 5 out of 7 fits with
x%/d.o.f in the range 0.1 to 0.2. Furthermore, if further lattice points are discarded, all fits
appear very stable. For the power-law scenario, Equation (5.8), after discarding L = 16, we
also find 5 out of 7 fits with very good quality (see Table 5.3). Moreover, the fits are again
numerically very stable and their quality (in terms of x?) as well as the fitted parameters /v, a
and Cp show no systematic trend if further lattices are discarded. As can be seen in Table 5.3, all
seven fits consistently yield a small negative exponent ¢/ v. Performing a simple average with
standard error, we obtain an exponent ratio of a/v = —0.048(12) for the CC6 model. Using
the hyperscaling relation 2 — o« = dv, this yields a correlation length exponent of v = 1.025(6),
which is, rather remarkably, compatible with the effective exponent v we obtained earlier for
the largest lattices available (see also top left panel of Figure 5.6). In light of these findings, one
may speculate about whether the two-dimensional Ising model on the CC lattice is situated in a
weakly universal scenario with g-dependent leading exponents. The exponents vand (1 —3)/v
in Figure 5.6 would thus not tend towards the respective clean universal value. However, it
should be emphasized again that also the logarithmic corrections fit the data well. Therefore,
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Table 5.3 | Single fits for the specific heat finite-size data to Equation (5.8) for the CC6 lattice with the
linear lattice size ranging from 32 to 320 (10 data points).

alv Co a x%/d.of at max of
—0.026 13.58 —-13.21 0.11 X
—0.040 9.78 —9.42 1.95 C
—0.052 8.00 —7.70 1.20 dm/dp
—0.059 7.20 —7.14 0.07 dlnm/dj
—0.066 6.61 —6.66 0.10 dIn mz/d[j’
—0.043 9.06 —8.84 0.08 du,/dp
—0.050 8.07 —8.04 0.21 dU,/dp

based on the data at hand, we can not ultimately decide on either scenario.

5.2 Continuous transitions on Voronoi graphs

The literature on critical phenomena under quenched topological disorder has so far neglected
Voronoi graphs, focusing instead on lattices such as its dual, the Delaunay triangulation. In
order to correct for this omission, we conduct large-scale numerical simulations of the classical
Ising model, the contact process (CP) and the conserved stochastic sandpile model (CSSM) on
two-dimensional VGs constructed from randomly distributed sites. In particular, we compute
the critical points for all three models to considerable precision, allowing them to be used as
reference values. For the Ising model, also the first correction-to-scaling exponent is obtained to
considerable precision. The VG is introduced in Section 3.2 and features a constant coordination
number of the nodes, g; = 3. Hence due to the lack of coordination number fluctuations, it
represents a valuable new puzzle piece for finding a complete criterion for the influence of
topological disorder on continuous phase transitions.

Ising class

For the simulation and analysis of the Ising model on two-dimensional Voronoi graphs, we
use the method of finite-size data collapses, which provides a convenient way of verifying the
universality of a given model. Furthermore, in order to obtain the correction exponent w, we
employ the quotient method. Both techniques are described in Section 4.1.3. For the quotient
method, we determine the crossing points of the correlation length in units of the system size,
& /L, using histogram reweighting techniques to high precision. The reweighting procedure is
performed for every disorder replica individually and the curves are averaged afterwards. Up to
10° disorder realizations are used for the smallest lattices and at least 4000 replicas for the largest
ones. Every replica is initially prepared in a hot spin configuration and is thermalized using
1000 elementary Monte Carlo steps. We check for a proper thermalization by also performing
simulations starting from a cold configuration, which gives identical results within numerical
precision. In our update procedure, one EMCS consists of a full Metropolis lattice sweep and

119



5 Simulation Results

Table 5.4 | Results of the simultaneous fits according to Equation (5.9).

Limin (&/L)* u; u; w x%/d.o.f

16 0.9078(2) 0.61067(2) 1.4563(2) 1.36(2) 12.6

18 0.9070(2)  0.61066(2)  1.4564(2) 1.43(2) 7.2
20 0.9066(3)  0.61066(2)  1.4564(2) 1.47(3) 58
24 09062(3)  0.61065(2)  1.4564(2) 1.53(4) 5.0
32 09058(3)  0.610653)  1.4563(2) 1.59(7) 47

40 0.9060(5)  0.61067(4)  14561(3)  1.50(12) 41
48 0.9063(7)  0.61069(5)  1.4559(4)  1.37(18) 45

several single-cluster updates. Since the average cluster size in a d-dimensional system at
criticality scales as L?~Y/", we increase the number of cluster updates with lattice size according
to L% in order to keep the fraction of flipped spins approximately independent of the lattice
size [58]. A detailed list of replica configurations and cluster steps can be found in Table B.1.

In order to obtain the fixed point phenomenological couplings and the correction exponent,
we perform simultaneous fits of the relation

R|Q£:s = R*+ aRL_‘”, (59)

for all three phenomenological couplings R € {&/L, Uy, Ug} with joint w and for different
Liin, i. €., discarding the smallest lattices in the fits. As the quotients Qo = O(sL, T)/O(L, T)
are naturally correlated in pairs (L,2L), we implement a fitting procedure that optimizes
a generalized x?, including the full self-covariance information, as described in Section 4.2.
Uncertainties for the fit parameters are obtained by a comprehensive bootstrap resampling
procedure of the full data set. The results are shown in Table 5.4. As Ly, is increased, the fit
results show slight systematic trends, caused by higher-order corrections. Above Ly ~ 24 the
values saturate and the x?/d.o.f of the fit does not improve further. We therefore use, as our final
estimates, the averages for Ly, = 24, 32,40 and adopt a rather conservative uncertainty which
includes the fluctuations among the single estimates as well as their individual uncertainties.
This yields, as our final results

w = 1.54(16) (5.10)
and
(¢£/L)* =0.9060(5), (5.11a)
Uy = 0.61066(3), (5.11b)
U; = 1.4563(5). (5.110)

Comparing our estimates for the critical couplings with reference values of the Ising model
on a regular square lattice, which are known exactly, up to small uncertainties from numerical
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Figure 5.7 | Critical temperature (Ising, VG). Estimates for T, from fits to Equation (5.12). Some results
are slightly shifted along the x-axis to make them better visible. The horizontal lines correspond to the
final estimate T, = 1.4720633(31).

integration, namely (&/L)* = 0.90505..., U; = 0.61069..., U; = 1.45565... [154, 339], we
find that even though these quantities are only considered universal in a limited sense (they
weakly depend on certain geometrical characteristics of the system [310-312]) they compare
remarkably well, giving a first indication that the Ising model on a VG stays in the universality
class of the clean model. Also our result for the correction exponent is noticeably smaller than
the reference value on a square lattice, w = 2 [340], though not particularly small in absolute
numbers, which explains why corrections to scaling turn out to be relatively weak in the scaling
collapses described below.

Essential for computing scaling collapses is a precise knowledge of the location of the critical
point, which depends on the details of the lattice structure and is therefore in general not known
in advance. In the framework of quotient-FSS, the critical temperature can be obtained using
infinite-volume extrapolations, as the crossing points are expected to scale, according to [270],
as

T|Qg:s =T+ awafl/v’ (5.12)

where higher-order terms have been neglected as in Equation (5.9), and we adopt the clean
exponent v = 1. We perform four series of fits, where in the first three the correction exponent
is fixed to our previous estimate (5.10), plus and minus its uncertainty, i.e., w = 1.38,1.54, 1.70.
In the last series of fits, w is a treated as a free parameter. The results are displayed in Figure 5.7
and listed in detail in Appendix B, including x?/d.o.f values. It can be seen that for Ly = 40
all four fits are compatible within their error bars. As our final estimate, we take the average of
the fixed-w fits for Ly, = 64, obtaining

T. = 1.4720633(31). (5.13)
In the next step of the analysis we simulate the Ising model on Voronoi graphs of linear

size L = 24,32,...,384 for several temperatures in the vicinity of the critical point, using at
least 1000 disorder replicas for every lattice size and temperature. Similar to the precision
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simulations directly at criticality reported above, we start from cold configurations and perform
2500 measurements after a thermalization time of 500 EMCS. The number of cluster updates
per EMCS is reduced by about a factor of five with respect to the values reported in Table B.1.

Finite-size scaling theory predicts that magnetization, susceptibility and Binder ratio scale
according to

[(M)]avg = L7P/Y fu(x)(1 4 - - +), (5.14a)
x=L"f(x)(1+--), (5.14b)
Uy = fu,(x)(1+--+), (5.14¢)

where 3, v and v are critical exponents of the model and the universal scaling functions f have
the argument

x=(T—T.)LY". (5.15)

As detailed earlier, these equations describe the scaling behaviour to first order. Corrections of
higher order are expected to become irrelevant for large system sizes. In Figure 5.8, we show
the scaling collapse plots, fixing all critical exponents to their exactly known values (v = 1,
B =1/8, vy =7/4) and T, to the estimate (5.13). Evidently, a flawless collapse for all three
scaling functions is obtained even for small lattices, which shows that the Ising model on a
two-dimensional random Voronoi graphs belongs to the universality class of the clean Ising
model.

Directed percolation

In order to show that the directed percolation universality class retains its clean universal
behaviour on a Voronoi graph, we conduct numerical simulations of the contact process as
described in Section 4.3. As a first step, from seed simulations, we determine the critical point,
by rescaling the cluster size and survival probability according to their expected power law
behaviour N,(t) ~ t¢ and P(t) ~ t~°, where 0 and & denote critical exponents. In total, we use
75000 independent disorder realizations of linear size L. = 2048 with periodic boundary condi-
tions and perform 10 000 seed runs on each of them. Using reference values from Dickman [341],
0 = 0.2293(4) and 6 = 0.4523(10), we obtain the critical probability

pe = 0.649788(1) (5.16)

by determining the asymptotically constant curve, as shown in Figure 5.9. The uncertainty is
obtained from curves which noticeably bend away from horizontal behaviour. Note that using
larger lattices and longer simulation times would not significantly increase the precision of this
estimate, as the analysis is limited by the uncertainties of the reference values.

Once the critical probability is known, we perform decay simulations starting from an initially
fully occupied lattice for different system sizes precisely at criticality and monitor the density
p(t) of active sites until the system reaches the absorbing state. This allows us to obtain the

122



5.2 Continuous transitions on Voronoi graphs

L N B OO L Q. . . S S S . . L L L
007f © 2% i Y o H
v 32 oL :-i x(T) ]
006 F 4 48 i . i s b E
o v e ]
005F 64 4 f gmthe, 4
= E @ 9 a p Seaaeass s
- v o *°° ]
?‘ 0‘045 ¢ 128 " % 2_:.?. I B T b
L] 0.03 E * 192 ) \ 1450 1475 1500 1.525 1.550]
® 256 d ]
0.02F x 384 z "o @ 7
ha 3]
0.01 | & \o TN E

s »™® ® 00p
000 X% 7, ! ! ! L L
LA T T LI L L L L WAL AL L
1.50 |- 08 s 5
e L ]
Y ., by, m(M) ]
1.25:— o 1 06 - ’ez .. -
- 3 e\ v * . 1
1o 7% 04 | Ben S e [
/é\ - A 48 : AL\ e s v . ®. ]
5/0.75:‘ mo64 0_2_...l....|7.9.a.'..‘|+...7—:
I:] r ® 9 \ 1450 1475 1500 1525 1.550]
050 F # 128 3
ot Peny ®)
025F @ 256 09 49 .
[ x 384 $ 0 eer 4
000 TR T SN SN SR (ST ST ST S (ST ST ST S (T ST ST SN (N S SN NN S S S S S SN SR S
0.7 :_ ".I T L B By L L BN

X

X oo RS S (1) |
0.6 — 5 \ 06 _ '!z -
05F v 3 : AN B

® :
v a
05 | . ]
04 F A 48 ‘ r M\ = v * ]
-« C L A . ]
> P64 % 0'4T..I....I’...I»..YI....I:
03F o 9 ® 1450 1475 1500 1525 1.550]
C a ]
02F ® 128 -
F o+ 192 "\ ]
01F o 256 .~~ © E
s o, ]
oob * 384 L 2%
S IR R NI ST SR ST B SR
—4 -2 0 2 4 6 8 10
LYv(T-T,)

Figure 5.8 | Scaling collapse (Ising, VG). Shown are the scaling function of Equation (5.14).
The insets display the non-rescaled observables. The gray lines are only guides to the
eye. All three panels share the same x—axis.
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exponents § and z via a data collapse according to
p(L,t) =t°p(t/L7), (5.17)

where p denotes a universal scaling function. In a second set of simulations, we perform decay
runs for lattices of fixed size L = 1024 in the vicinity of the critical point, which gives us the
exponents 6 and v = zv by means of the relation

p(A 1) =t (Atl/ Vu) ) (5.18)

where we remind that A = p — p, is the distance from criticality and p a scaling function. Both
scaling collapses, which turn out flawless, are shown in Figure 5.10, where we used the reference
values, § = 0.4523(10), z = 1.7674(6) and v| = 1.292(4) from Reference [341]. In the top panel,
all curves are averages over 1400 disorder realizations with 5 runs per realization, whereas in
the bottom panel we used 250 disorder replicas and 5 runs per realization. The insets show the
respective non-rescaled density as a function of time. This confirms the critical exponent values
used and provides compelling evidence that CP on the random VG belongs to the clean DP
universality class.

Manna class

In this section, we study the conserved stochastic sandpile model, belonging to the Manna
universality class, on a two-dimensional Voronoi graph. In the CSSM, each site can contain
an unlimited number of particles n = 0,1,2,.... Aslong as n is below a threshold value of
N¢ = 2, the site is considered inactive, whereas it is active if n > N.. The dynamics consists
of toppling events where a random active site sends all of its particles to randomly chosen
neighbouring sites. As detailed in Section 2.3, the CSSM exhibits a non-equilibrium phase
transition into infinitely many absorbing states (in the infinite-volume limit), controlled by the
density of particles p = N,/ L4, where N p denotes the total number of particles in the system.
In the infinite-volume limit, if p > p,, the system maintains a state of steady activity, whereas
for p < p. an absorbing configuration is reached eventually.

For lattice models in the Manna universality class, it has been shown that the choice of initial
conditions can have crucial influence on the critical behaviour. For instance, correct exponents
for the conserved lattice gas (CLG) models are only obtained using so-called natural initial
states (NIS), rather than random initial states (RIS) [342]. Furthermore, an argument raised
in Reference [343], according to which the Manna critical behaviour would eventually cross
over to DP universality for large times, was substantially weakened by Lee [344, 345] using MC
simulations with carefully prepared initial states. The debate could finally be settled, as Dickman
and da Cunha [346] showed that disorder fluctuations generated by the CSSM dynamics itself
would in fact alter a DP transition, independent of the choice of initial conditions.

In this work, we perform quasi-stationary (QS) simulations of the CSSM, which should avoid
ambiguities related to initial conditions altogether. For details on the method, see Section 4.3.1.
We start from a RIS, where N, = pL? particles are randomly distributed on the lattice sites.
Note that in principle p can only be tuned in steps of 1/L2. However, we are able to realize
intermediate values of p by employing a stochastic linear interpolation using the disorder
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Figure 5.11 | Critical conserved Manna model on a VG. The curves represent fits of the lifetime (circles),
susceptibility (squares) and density of active sites (stars). The inset shows the moment ratio against the
inverse lattice size for p = 0.721886, 0.721889, 0.721892, 0.721893, 0.721895, from top to bottom. The
curve for p = 0.721893 (dashed) represents our estimate of the critical point and is interpolated linearly
from its two adjacent curves. The data points connected by solid lines represent actual measurements.

replicas.® In each time step, an active site is chosen and sends each of its particles to randomly
selected neighbouring sites. The time is incremented by 1/N,, where N, is the number of active
sites prior to the update. During the run, a history, a list of M system configurations, is saved
and periodically updated. Every time the process reaches an absorbing state, it is reset to a
random configuration from its history. In order to ensure that the quasi-stationary state does
not suffer from vestiges of the initial configuration, we run the evolution for a considerably long
time of T = 10° units and take measurements after the first 6 - 108 time units. The measured
quantities are the density of active sites p, and the lifetime of the QS state, 7. The latter is given
by the average time between two successive visits to absorbing configurations. We employ
large lattice sizes up to L = 2048 in order to reduce corrections due to sub-leading finite-size
terms. For the history update probability per unit time, we use p, ~ 0.1/L*, where z is the
dynamic exponent of the system. This ensures that the average residence time of a configuration
in the history is larger than T but much smaller than the total duration T of the run. Detailed
simulation parameters are listed in Table 5.5.

In the framework of QS simulations, a reliable method to obtain an accurate estimate for the

% Consider a two-dimensional lattice of linear size L = 10. Due to the number of initially placed particles necessarily
being integers, p can only be varied in steps of Ap = 1/L? = 0.01. Now say we want to realize a density given
by p = 0.7078. First we distribute floor(pL?) particles on the lattice. Then, a random number in the range [0, 1) is
drawn and compared to p = mod (pL?,1). If p > p, one additional particle is added. Repeating this procedure
for every disorder realization we end up with, on average, pL2 particles.
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5.2 Continuous transitions on Voronoi graphs

Table 5.5 | QS simulation parameters for the CSSM model. N, denotes the number of independent
disorder realizations, M is the size of the history and p; the associated update probability. For the QS
lifetime we used a separate history list, containing 5000 slots, independent of L. During the first 108
time units a larger p, (by a factor of ten) is adopted in order to efficiently erase initial states from the
history.

L N, M pr- 103
32 400 4000 0.55
64 400 4000 0.20
128 400 2000 0.069
256 400 800 0.024
512 400 400 0.009
1024 192 100 0.003
2048 64 50 0.001

critical point is to consider the ratio

m=[(e%)/(0)?] (5.19)

4
avg

which is known to intersect at p. for different L. In the inset of Figure 5.11, we show m for
several probabilities close to criticality. Using linear interpolation in order to estimate the
horizontal curve, we obtain

pe = 0.721893(2) (5.20)

for the critical point at an amplitude of m, = 1.35(1), which is compatible with the value on
a square lattice m. = 1.348(7) [66]. Once the critical point is known, we are able to compute
exponents from fits to the QS density

P05 = [(P)]avg ~ L P/, (5.21)

the average lifetime of the QS state
T= [(Tﬂavg ~ L7, (5.22)

and the susceptibility

x=L (%) = (02| ~17, (5.23)
avg

directly at criticality. We perform fits for these three equations, shown in Figure 5.11, and
present the corresponding results for the critical exponents in Table 5.6. The uncertainties of the
estimates mostly stem from the uncertainty of the critical point, but also include the variation
due to the exclusion of some of the data points. The latter variation turns out to be very small
and, significantly, there is no systematic trend visible when discarding points corresponding to
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Table 5.6 | Critical exponent estimates and reference values (Manna, VG). Estimates from numerical
Monte-Carlo simulations of conserved lattice models belonging to the two-dimensional Manna uni-
versality class. The results of Lee correspond to the CSSM and the conserved lattice gas (CLG). Apart
from Oliveira [66], which performed their simulations on a Delaunay triangulation, all simulations
used a square lattice. When no direct measurement of y was available, we employed the relation
y=dv—25[5]

B/v v/v z

Dickman et al. [347] 0.774(3) 0452(6)  1.572(7)
Liibeck et al. [317, 348] 0.803)  0.459(25) 1.533(24)
da Cunha et al. [349] 0.78(1) 044(2)  1.510(6)
Lee [342] (CSSM) 0.785(9) 0.430(18) 1.54(2)
Lee [342] (CLG) 0.781(8) 0.438(16) 1.53(1)
Oliveira et al. [66] 078(1)  0.44(2)  1.54(2)
this work 0.773(8) 0.456(3)  1.558(23)

even smaller lattices from the fits. Comparing our estimates with reference values from several
authors also listed in Table 5.6, we find them to be clearly compatible, hence strongly indicating
that the CSSM on the VG belongs to the clean Manna universality class.

Discussion

Summing up, critical phenomena on Voronoi graphs have, to the best of our knowledge, not yet
been investigated, focusing instead on lattices such as its dual, the Delaunay triangulation. In
order to correct for this omission, we conducted large-scale numerical simulations of the classical
Ising model, the contact process and the conserved Manna sandpile model on two-dimensional
VGs constructed from randomly distributed sites. We establish reference values for the critical
points of the three models and, for the Ising model, also obtain the first correction-to-scaling
exponent. Furthermore, using finite-size scaling techniques, we show that all systems display
clean universal exponents at criticality, i. e., we reveal that the VG disorder is — in the sense
of the RG — an irrelevant perturbation to their phase transitions. Although we only analysed
three particular models, this result has implications for other classes of transitions as well. From
the RG perspective, the correlation length exponent v is directly related to the relevance of
quenched disorder [46, 67-69, 175, 176]. Hence, the phase transition of, for instance, regular
(isotropic) percolation can be predicted to also remain unchanged on a Voronoi graph, since its
exponent, v = 4/3, is larger than for the models considered in this thesis. Moreover, our results
are especially relevant for the search for a general disorder relevance criterion. The Voronoi
graph has constant coordination number, similar to the CC lattice. In studies of both the Ising
and DP phase transition on the CC lattice (also performed in this work), we find disorder to
be probably marginal in the Ising case and clearly relevant for the DP universality class. The
contrast of this result with the irrelevance of the VG disorder gives another indication that the
absence of coordination number fluctuations is non-predictive of disorder relevance.
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Figure 5.12 | Coordination number fluctuations on different length scales for DT, ordinary DT, the set
of additional bonds that distinguishes both (4-), and a site-diluted square lattice (SD). The curves are
found to decay with a power of 4 = 3/2 for the DT, and with a = 1 for the other structures. For the
analysis, 100 independent realizations of size L = 5000 have been used for each lattice. Note that the
data points for DT and (+) almost coincide.

5.3 Violation of the HBV criterion

In this section, we present a specific combination of a physical model and a randomly disordered
lattice, which violates the Harris-Barghathi-Vojta (HBV) criterion, discussed in Section 2.5.4.
Specifically, we use the DT lattice’, as introduced in Section 3.2: a Delaunay triangulation
of a two-dimensional Poissonian point cloud, furnished with additional local bonds, compare
Figure 3.2. This lattice is constructed from a Delaunay triangulation of N sites, to which
kN bonds between next—nearest neighbours are randomly added (we select k = 1). Since
from geometrical constraints, any triangular lattice with N vertices on a torus has exactly 6N
bonds [67], this results in a lattice with a total coordination number of exactly (6 + 2k)N. This
latter constraint is relevant for the applicability of the HBV criterion (compare Section 2.5.4).

We find the disorder decay exponent for the DT to be a = 1, as can be seen in Figure 5.12.
This naturally follows from the additional bonds being a source of uncorrelated disorder,
which decays more slowly than the coordination number fluctuations of the original DT lattice
(compare also Section 3.4). This interpretation is corroborated by the measurement of oo (Lj)
for the additional bonds alone: as can be seen in Figure 5.12, both curves are almost identical,
demonstrating the dominance of the additional bonds. The HBV criterion therefore predicts
that our construction should not display clean universal behaviour for any universality class
with spatial correlation length exponent v < 1, such as DP, where v = 0.733. .. [341]. In order
to verify this prediction, we perform extensive numerical simulations of the two-dimensional
contact process on the DT lattice. However, as detailed in the following, we find strong
indication of clean universal behaviour, thus contradicting the HBV prediction.

As a first step, the critical point p. that separates the absorbing (subcritical) and active
(supercritical) phase is determined. To this end, we conduct simulations starting from a single
active seed on an otherwise empty DT lattice of size L = 6000, allowing for times up to
T = 10°. Unwanted finite size effects are avoided by ensuring that cluster diameters remain

“0In the original publication [P1], the structure was called VD™
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Figure 5.13 | Static exponents (CPF, DT"). Quasi-stationary density (a) and lifetime (b) as a function of
the lattice size L, ranging from 32 to 1024. The slope of In p yields 3/v, whereas In 7 yields z. The dots
represent averages over 320 independent disorder realizations. The error bars are smaller than the
symbol sizes.

smaller than L. We use 2000 independent disorder realizations with 2000 runs each. For
pe = 0.589775(3) (5.24)

we find that the average cluster size follows a power-law behaviour, N,(t) ~ 9, as expected in
the case of clean universality. The uncertainty of the critical point is estimated from simulations
at probabilities close to the estimated critical point, such that the corresponding time evolution
barely, but noticeably bends away from a straight line in a double-logarithmic plot. A linear fit
in the region 103 < t < 10° yields an exponent @ = 0.230(9), where the error stems from the
uncertainty of the critical point, a result compatible with the reference value 6 = 0.2293(4) of
the clean DP class [341].

Once the critical point is known, we can obtain the quasi-stationary (QS) density p, as well as
the average lifetime of the quasi-stationary state T directly at p.. For details on the method, see
Section 4.3.1. As emphasized in [350], very long simulation times are required to reliably detect
a deviation from the universal behaviour. We therefore use 320 independent realizations of the
DT lattice, ranging from L = 32 to 1024, and simulate the contact process for a time of 108
units. The measurements are taken after a generously sized relaxation period of 7 - 107 time
units. The resulting data, shown in Figure 5.13, reveals that In p and In 7 follow straight lines,
and linear fits yield the exponents

B/v =0.800(5), (5.25)
z = 1.758(14), (5.26)

where the errors reflect both the uncertainty of the critical point and the fluctuations of the
individual data points, with the latter accounting for roughly one third of the total uncertainties.
Both exponents are compatible with reference values, /v = 0.797(3) and z = 1.7674(6) [341].
In fact, the power law dependence displayed by 7 is in itself an indication of clean universal
behaviour, since an exponential scaling, In T ~ LY, is expected for uncorrelated randomness, as
pointed out in Section 4.3.3.

In a second set of simulations, we measure the density of particles p(f), starting from a fully
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Figure 5.14 | Finite-size data collapse (CP, DT™). Simulations starting from a fully occupied DT lattice
at the critical point p. = 0.589775, using the critical exponent estimates stated in the figure. All curves
are averages over 500 disorder realizations with 5 runs per realization. L denotes the linear system size.
The inset shows the non-rescaled density as a function of time.

occupied lattice. For finite systems at the critical point, this density is expected to follow
p(L,t) = t°p(t/L7), (5.27)

where f is a universal scaling function. Performing simulations on lattices from L = 32 to 2048,
running for times up to 10® and using 500 disorder realizations with 5 runs on each realization,
we obtain the data presented in Figure 5.14, which shows the finite-size data collapse, as well
as the original measurement of p(t) in the inset. The data collapse is performed by, using the
estimate (5.26) for z, determining the value of 6 for which the curves in Figure 5.14 superpose
each other. We obtain as our final estimate

5 = 0.453(5), (5.28)

which is again compatible with the reference value 6 = 0.4523(10) from Dickman [341].

We can obtain a further exponent, V| =2v, from off-critical simulations, using the relation

p(A 1) =755 (Atl/ VH) ) (5.29)

where A = p — p, denotes the distance from criticality and p is a scaling function. Taking the
estimate for 6 obtained above, we produce the curve collapse of Figure 5.15 when we set

in accordance with the reference value v| = 1.292(4) [341].

In summary, all the exponents we obtain for the two-dimensional DT lattice in numerical
simulations of the contact process turn out to be fully compatible with the ones of the cor-
responding clean universality class. In particular, the data collapse plots are flawless within
numerical precision. This provides strong evidence that the phase transition on the DT is in
fact controlled by the clean universal behaviour of the DP class, hence indicating that this type
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Figure 5.15| Critical region collapse (CP, DT"). Data collapse near criticality, starting from a fully
occupied DT lattice of linear size L = 2048 using the critical exponent estimates given in the figure.
All curves are averages over 250 disorder realizations, with 5 runs per realization. The symbol A
denotes the distance from the critical point p. = 0.589775. The inset shows the non-rescaled density as
a function of time.

of disorder violates the HBV criterion. Clearly, regardless of our extensive numerical effort,
including large lattice sizes and long simulation times, the possibility of a crossover away from
the clean universal behaviour for extremely long times can not be ruled out, though very large
crossover times are unlikely for DT, as reasoned in Reference [67]. Moreover, it could be argued
that the “canonical” constraint (i. e., fixed number of additional bonds) imposed in the DT*
construction leads to spurious results. In particular, Aharony et al. [207] showed that although
the canonical and its “grand-canonical” counterpart (i. e., without global constraints) belong to
the same universality class, the approach to the asymptotic behaviour can be much slower in
the former. We therefore also implemented a grand-canonical construction of the DT™ lattice,
DT{ -, where the additional bonds are now drawn independently with a certain probability
for each node, resulting in a total coordination number which fluctuates around an average
value of (6 + 2)N. When we repeat all simulations described above on the DT, we again
obtain results fully compatible with the clean universal behaviour of the DP class 4!, revealing
that the constraint has no influence on our conclusions. Corresponding plots are shown in
Appendix B. Finally, since the DT lattice is clearly not planar (triangulations are maximal sets
of non-intersecting edges [238], thus added bonds necessarily cross existing ones), our results
answer a question raised in Section 5.1, as planarity is shown not to be a necessary condition for
stability of the phase transition against quenched spatial disorder.

5.4 CP on two-dimensional lattices

As mentioned earlier, there exist lattices inaccessible to the HBV criterion, namely, for instance,
the VG and the CC lattice, where coordination number fluctuations are absent. However,
numerical simulations of the two-dimensional Ising model on those two lattices with constant
coordination number produce rather distinct results. Whereas for the VG, the system remains

#1The location of the critical point of the DT is slightly lower (by about 0.2%) compared to the ordinary (canonical)
DT*.
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in the clean Ising universality class (Section 5.2), the CC lattice shows varying exponents and
hence no clear evidence of clean universal behaviour (Section 5.1). In fact, the latter results
are qualitatively similar to those on diluted regular lattices, which, owing to the ambiguity
of their universality character, received considerable attention through the last three decades.
Specifically, deviations of the system’s critical exponents from their clean values have been
explained both as a disorder-dependent non-universal behaviour [190-195] (the so-called weakly
universal scenario), and as resulting from strong logarithmic corrections due to the marginality
of the model with respect to the Harris criterion (strong universality scenario) [185-189, 197-200].
This marginality makes it difficult to tell whether disorder of the CC type ultimately represents
a relevant perturbation. In this section, we therefore turn our attention to the contact process,
as it should allow for a clearer distinction between universal and non-universal behaviours,
due to its smaller correlation length exponent, v ~ 0.73 in two spatial dimensions. We find
that the CC lattice disorder constitutes a relevant perturbation, as the dynamics shifts from the
conventional power-law scaling into the activated scaling regime. It turns out that the results
are much like those for the contact process on Gabriel graph and relative neighbourhood graphs,
also investigated in this section, for which the HBV criterion already predicts a failure of clean
universal behaviour (compare Table 2.4). This raises the question of why disorder of the CC
type is more relevant than that of the Voronoi type, even though both share the absence of the
coordination number fluctuations.

Concretely, we perform simulations of the contact process on the CC lattice with four neigh-
bours at each node (CC4), as well as on the GG and RNG, measuring the number of active sites
N,, the survival probability Ps and the radius of the active cluster R as a function of time. The
critical points are determined using seed simulations where lattices of linear size L = 12 000
with periodic boundary conditions are employed. This very large size allows simulation times
at least up to T = 10°, while avoiding any finite-size effects. We ensured this by monitoring the
typical cluster diameter during the simulation. Even larger lattices could not be afforded due to
the huge memory requirements. In total, we used up to 600 independent disorder realizations,
with 10 000 spreading runs per probability on each realization. In the following we present the
analysis for the CC4 lattice, whereas for the RNG and GG we proceeded completely analogous.
For all three lattices, results are shown in Figure 5.16.

The first step in the analysis is to locate the critical point. According to the criterion of Moreira
and Dickman [329], we search for the smallest p that results in a curve that asymptotically
does not decay. In Figure 5.16(a), we therefore evaluate N,(t) for several probabilities. The
curves corresponding to the smallest values decay quickly, while those for the largest p bend
away from the critical region, providing us with a rough estimate of the critical value. In order
to obtain a more precise estimate of p., we plot N,(t) against Ps(t), as shown in the inset of
Figure 5.16(b) and search for the curve best described by the power law, i. e. the one which is
straight in the long-time limit in a double logarithmic plot. Note that this approach can be used
independently of the scaling scenario, since in the case of activated logarithmic scaling, the
non-universal time scale t cancels out, which means that either way we are led to a power-law
behaviour

Ny ~ P9/, (5.31)

We find p, = 0.644053(2), where the error is estimated from the nearby curves that show
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Figure 5.16 | Numerical results for the CC4 (top), GG (middle) and RNG (bottom). Left column: Average
cluster size as a function of time for spreading runs. The markers highlight the curve corresponding to
the estimated critical point. Middle column: Verification of the exponent 8/5. The insets show In N, (¥)
against In Ps(f). Right column: Quasi-stationary density against the linear system size L. The solid line
represents a linear fit to the data points, with slope /v (compare Table 5.7).
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5.4 CP on two-dimensional lattices

Table 5.7 | Critical exponent results (CP on 2D CC, RNG, GG). Errors stem from the uncertainty of
the critical point and fluctuations of the individual data points. The latter are indicated in square
brackets whenever comparably large to the former. The last two lines show the corresponding exponent
combinations for the DP universality class [341] and for the random transverse-field Ising model [331]
as reference values. Note that in the case of DP universality, z = 3/v holds.

/s 01 5y B/vy Pe
CcC 0.21+5:93  0.20(6) 1.06(6)  0.85(1)[1] 0.644053(2)
RNG 0.17+5:9%  0.20(4) 1.08(4)  0.88(1)[1] 0.672389(3)
GG 0.23709  0.24(8) 1.04(8)  0.84(1)[1] 0.631767(3)
DP reference [341] 0.507(1)  0.4051(7) 0.799(2)  0.799(2)
RTFIM reference [331] 0.075(5)  0.078(4)  1.034(23)  0.964(2)

noticeable deviations from a power law. Fitting Equation (5.31) to the asymptotic region (which
spans about one order of magnitude in P;), we obtain the exponent combination /8 = 0.21+9-03
where the error stems from the uncertainty of the critical point. We verified this estimate by
also plotting the ratio N (t)/Ps(t) /%, and found the expected results (asymptotically constant
behaviour) to be fulfilled best at 6/5 = 0.21, as shown in Figure 5.16(b), confirming the former
estimate. As a consistency check, we also tried to tune /6 such that the curves corresponding to
pe = 0.644053 £ 0.000002 show horizontal behaviour for large times, however, they still exhibit
slight systematic curvature, which confirms our estimate of the critical point. A similar analysis
of N, vs R and P; vs R, yields the exponent combinations 0y = 0.20(6) and 1 = 0.106(6), if

we use the relations

N, ~ R%, (5.32)
Py ~ R™%%. (5.33)

Due to the very late onset of the non-algebraic behaviour we can estimate only exponent
combinations rather than the explicit values of 8, 5 and 1. In principle, those could be computed
by fitting Equations (4.84) to the respective curves under the constraint of In(#) being the same
for the three observables. However, as stable fits would require much longer simulation times
and therefore enormous lattice sizes, this lies beyond present computational capabilities.

In addition to the dynamic exponents, we determine the static exponent of the order parameter.
To this end, we perform QS simulations (compare Section 4.3.1), using lattice sizes up to
L = 1024 and simulate the system for 2 - 10% time steps. For the largest lattices, we use
at least 140 disorder realizations, for the smaller ones up to 1000 realizations. The quasi-
stationary density is shown in Figure 5.16(c), revealing the expected straight behaviour of
Equation (4.68). A linear fit yields the estimate 3/v, = 0.85(1)[1], where the first error stems
from the uncertainty of the critical point whereas the second one is due to the statistical
fluctuations of the individual data points in the fit (x?/d.o.f. = 1.64). The exponent estimates,
also for the RNG and GG, are summarized in Table 5.7.

The critical exponent combinations we obtain for the topologically disordered lattices, com-
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pared to those of the clean DP universality class (see Table 5.7), make it evident that, despite
the relatively large error bars, it can be ruled out that the phase transitions belong to this
class. This is already indicated by the behaviour of the dynamic observables, which show no
straight lines in the double logarithmic plots (Figure 5.16, curves in the vicinity of the critical
point). Furthermore, with the possible exception of 51, the exponents of all three models do not
match those of the RTFIM either, which rules out this scenario as well. Strikingly, however, the
exponents for the CC, RNG, and GG simulations coincide within their error bars, suggesting
that the contact process on those three lattices might be determined by a yet undiscovered
disorder fixed point and the three models belong to the same (potentially new) universality class.
Whether or not that is the case remains open, especially since topological disorder has so far
not been within the reach of analytical methods. From the numerical standpoint, more precise
estimates of the exponent combinations can reveal whether they remain compatible with each
other within smaller uncertainties or if there exists a weak dependence on the disorder strength
that our simulations are not able to resolve. Given the already considerable computational
effort demanded for obtaining the present results, these questions also remain open.

5.5 Ising model on the three-dimensional CC lattice

In the previous sections, we conducted simulations of the Ising model and the CP on two-
dimensional constant coordination lattices. Although the CC lattice is particularly designed
in a way which does not allow apply existing disorder relevance criteria (Harris-Luck or
Harris-Barghathi-Vojta), the results of our simulations very much resembled those of traditional
uncorrelated disorder. Specifically, for the Ising model indications of a marginal behaviour and
strong corrections to scaling were found (Section 5.1) and for the CP an activated dynamical
scaling and hence a clear departure from the universality of the clean model (Section 5.4), in
accordance with simulations of the respective models on lattices with random bond or site
dilution (compare Table 2.4). Hence, the results provide a consistent picture of the properties of
the two-dimensional CC lattice.

In this section, we therefore turn our attention to the three-dimensional case and perform large-
scale Monte Carlo simulations of the ferromagnetic Ising model on a 3D constant coordination
lattice with coordination number g = 4 (CC4). For the construction of the CC4, we choose
a number of M, = 8 rewiring layers, a linear cell size of / = 8 and s = 20000 rewiring
attempts per cell and layer at zero noise temperature. We use the definition of the Ising model
in Equation (2.20) at zero external field, i = 0, considering nearest-neighbour interactions. All
coupling strengths are fixed to unity.

As pointed out earlier, the first step in the analysis consists in locating the critical point.
Although in previous sections a quite precise estimate of the critical point was obtained by a
suitable infinite-volume extrapolation of the Binder ratio intersection points, here, we simply
use the crossings without an infinite volume extrapolation. This already provides a sufficiently
good estimate for the next steps of the analysis. In fact, since we are working in three di-
mensions, determining a more precise estimate would significantly increase the already large
computational effort. In Section 5.2, this effort was justified as we were able to obtain a new
reference value. However, for the CC, the precise location of the critical point is less meaningful,
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5.5 Ising model on the three-dimensional CC lattice

since the lattice construction depends on choices of parameters, which influence the location of
the critical point. We obtain the critical temperature estimate from the crossing points of the Uy
curves as

T, = 2.4818(2), (5.34)

where the error is evaluated, quite conservatively, from the width of the entire intersection
region. The estimate from the crossing points of & /L turns out to be considerably less precise,
though fully compatible. For the fixed point values of the phenomenological quantities, we
obtain

(£/L)* = 0.623(10), (5.35)
Uj = 0.468(4), (5.36)

again without using infinite volume extrapolations. These quantities are considered universal,
at least in a limited sense, in that they depend weakly on certain geometrical characteristics
of the system [310-312]. Taking as reference the most precise estimates available for the three-
dimensional Ising model on a cubic lattice, (¢/L)* = 0.6431(1) [351] and U = 0.46548(5) [106],
we see that our estimates present only small deviations, giving a first indication that the Ising

model on a 3D CC4 lattice stays in the universality class of the clean model.*?

In the next step, we simulate the Ising model on lattices of size L = 16, 24, 32, 48, 64, 96, and
128 for several temperatures in the vicinity of the critical point. A measurement is taken after
EMCS, which, in this case, consists of one Metropolis sweep and L cluster updates, keeping the
fraction of flipped sites approximately independent of the lattice size. Each disorder realization
is initially prepared in a cold configuration and 500 EMCS are used for proper equilibration.
Then another 1000 EMCS are performed, with a measurement being taken after each one of
them. For the smaller lattices we use up to 10* disorder replicas for the disorder average,
whereas for the two largest lattice, L = 96 and L = 128, we use at least 1500 replicas for every
temperature. The time for constructing the lattices was below 1% of the total computing time.

Finite-size scaling theory (compare Sections 2.4 and 4.1.3) predicts that the susceptibility, the
fourth-order magnetic cumulant and the correlation length scale according to

X =LYV (x) (1+...), (5.37a)
Uy :fu4(x) (1+...), (5.37b)
EJL=fr(x)(1+...), (5.37¢)

where y and v are critical exponents and f,, fu,, and f; denote universal scaling functions,
with the argument x given by

x=(T—T,)L". (5.38)

These equations describe the scaling behaviour to first order. Corrections of higher order are
expected to become irrelevant for large system sizes. We compute the corresponding scaling
collapse plots, assuming the best known values for the clean model critical exponents [106]

42Recall, that these quantities are only universal in a limited sense, as discussed in Section 5.2
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Figure 5.17 | Scaling collapse (Ising, 3D CC4). Finite-size data collapse for the Ising
model on a 3D CC4 lattice, according to Equation (5.37c). (a) Magnetic susceptibility.
(b) Fourth-order Binder cumulant (lower curve) and two-point finite-size correlation
function (upper curve). Insets show the non-rescaled observables. The gray lines are
guides to the eye.



5.5 Ising model on the three-dimensional CC lattice

and the value (5.34) for T.. In the upper panel of Figure 5.17, we plot the scaling collapse for
the susceptibility and, in its lower panel we plot both phenomenological couplings against the
scaling variable. The nearly flawless collapse displayed by the curves, for lattice sizes L > 32 in
the upper panel and for L > 16 in the lower panel, provides compelling evidence that the Ising
model on a three-dimensional CC4 lattice belongs to the universality class of the clean 3D Ising
model. This result is in fact surprising, since given the strong similarity of CC constructions
compared to uncorrelated disorder in two-dimensions, one might have expected something
similar in 3D as well. However, whereas the Ising model on 3D diluted random lattices is
controlled by a new disorder fixed point (compare RG flow in Figure 2.10), for disorder of the
CC type this is apparently not the case.
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CHAPTER

Road towards a new relevance

criterion

“An diesem Ort war ich noch niemals: Anders geht der Atem, blen-

dender als die Sonne strahlt neben ihr ein Stern.”

— Franz Kafka (Aphorismen)

The numerical results of the previous chapter are reviewed and situated within the context of existing disorder
relevance criteria. An immediate conclusion is that the randomness of coordination numbers alone provides an
unsatisfactory description of topological disorder. We propose two novel approaches to characterizing topological
randomness, potentially illuminating the path towards a more general relevance criterion for continuous phase
transitions.

In Section 5, we performed a series of numerical simulations in order to explore the behaviour
of prototypical systems with continuous phase transitions on topologically disordered graphs.
Existing criteria for the relevance of disorder with respect to its effect on the character of the
transition argue that spatial disorder fluctuations that decay too slowly are able to disrupt the
clean collective behaviour at criticality, i. e. change the nature of the transition. For topological
disorder in particular, the Harris-Luck and Harris-Barghathi-Vojta (HBV) criterion (compare
Section 2.5) both focus on the local coordination numbers of the lattices nodes as the random
variable whose fluctuations predominantly determine the stability of the transition.
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6 Road towards a new relevance criterion

Table 6.1 | Summary of numerical results with respect to whether the clean universal behaviour is
present (v) or not (X) for the respective combination of model and geometry. The fourth row presents
predictions of the HBV criterion, whenever applicable. List entries furnished with an asterisk are open
to interpretation, as discussed in the text. Compare also Table 2.4.

Class Dimension Lattice Prediction Observation Reference Section
Ising 2 CC n.a. marginal* [P2] 5.1
DP 2 CcC n.a. X [P5] 54
DP 2 RNG, GG X X [P5] 5.4
Ising, DP, Manna 2 VG n.a. v [P4] 5.2
DP 2 DT+ X v [P1] 53
Ising 3 CC n.a. v [P3] 5.5
Heisenberg 3 RGG v v [P6] 4.2

As can be seen from Table 6.1, our studies were revolved around specific random lattices
where the above mentioned criteria are not applicable in the first place, as they feature a
constant coordination number of the nodes. Aiming to investigate this scenario, we developed
the CC lattice (Section 3.3), a topologically disordered lattice with a locally constant number of
neighbours. On a two-dimensional realization of this graph, the spin-1/2 Ising model showed
critical exponents slightly changing with the lattice size (Section 5.1), which could very well be
attributed to strong finite-size corrections in an otherwise clean Ising scaling scenario. Similar
behaviour has already been observed for the Ising model on diluted lattices, and is arguably
associated to the marginality of the model with respect to the original Harris criterion (see
Section 2.5 for details) on these structures. Also for the DP transition on the two-dimensional CC
lattice, the results qualitatively resemble those from dilution-type disorder, as we were able to
demonstrate in Section 5.4. Specifically, the transition appears to shift into the activated scaling
regime with an infinite-order fixed point, accompanied by strong Griffiths effects. Irrespective
of the precise classification of the phase transition, which can not be resolved in the present
work, as even larger simulations would be needed, the fact that the transitions do not belong to
the clean DP universality class means that the CC type disorder is relevant for these models.

For the two-dimensional Voronoi graph, however which features a constant coordination
number of the nodes as well, the picture is entirely different. For both systems (Ising and DP)
we find compelling numerical evidence that the respective regular (clean) universal behaviour
is maintained (Section 5.2). Although this result could be expected — since the VG inherits its
geometric structure and therefore presumably also its extraordinary stability from its dual, the
DT (compare Section 2.5) — this indicates that coordination number correlations are not sufficient
to draw a distinction between relevant and irrelevant types of disorder. Also summarized in
Table 6.1 are our results for three-dimensional systems. In particular, we find clean universal
behaviour for the Ising model on a CC lattice, which is quite remarkable, since on diluted
lattices the transition is altered, as predicted by the Harris criterion, shifting towards a new
disorder fixed point, independent of the dilution strength [273].
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6.1 Dual tessellation

Besides those cases where the HBV criterion can not be applied, we also constructed an
explicit violation for a combination of geometry and lattice model, i. e. a case where it makes
incorrect predictions, see Section 5.3. In the so-called DT lattice, we add a second layer of local
bonds to a regular Delaunay triangulation, resulting in a slower decay of coordination number
correlations. However, we were able to show that the transition does not shift into the activated
scaling regime, even though both known criteria concerning topological disorder predict exactly
that. This is a major result, as it reveals that existing criteria are not generically applicable.

In summary, we found that current disorder relevance criteria, although successful for a wide
range of systems, are not general and can even produce false predictions. As a consequence,
an area of research which seemed already settled, is effectively re-opened and the search for
a general disorder relevance criterion for continuous phase transitions must continue. The
aggregate of our results strongly suggests that coordination number fluctuations can be seen as
a manifestation of a more general random variable that describes the spatial structure of the
lattice. This evasive variable is still to be found, but in the following we believe to offer a few
first steps towards a more general understanding.

6.1 Dual tessellation

In the case of the DT, where all connections remain local, slowly-decaying fluctuations caused
by a surplus of edges will not deter the emergence of collective behaviour. Thus, the relevant
inhomogeneities seem to be those that impair the propagation of information through the
system. This leads us to the assumption that the key concept appears to be some form of poor
connectivity of the lattice and how fast it decays. In order to characterize this poor connectivity,
we turn our attention to holes in the lattice. A hole is understood as a region where nodes
metrically close to each other are separated by large edge distances. Pictorially, holes are
edgeless regions in the lattice where, were the edges between the nodes distributed more
uniformly in space (such as in a triangulation), edges would be expected. In planar graphs,
holes trivially correspond to faces, and a large hole is a face surrounded by a large number of
nodes. The DT, for instance, has only triangular faces and, therefore, no proper holes, while
GGs have moderately-sized holes and RNGs relatively large holes, compare Figures 3.2 and
3.3. For planar graphs, a convenient way to analyse the size of these holes (faces) is through
the so-called dual graphs, where each site corresponds to a given face of the original lattice and
bonds are placed between those sites whose associated faces share an edge [352]. Thus, dual
lattice sites with high coordination numbers correspond to large holes in the original graph.
In this way, by considering the coordination number fluctuations on their dual lattices, we
can investigate the effect of hole-size fluctuations and their spatial decay and — in this way —
characterize the stability of universal processes on the original lattices.

When considering non-planar graphs, such as the CC lattice, the concept of faces, and therefore
dual graphes, is ill-defined and we need a new tool. Given that a face is delimited by the smallest
path around it, we propose a generalization of a face, which is a polygon P, defined by a closed
path, and a weight w corresponding to the size of the face. These polygons can overlap with
each other and, together, constitute a dual tessellation whose end-product is a function W(x)
attributing a weight to each point of space. A thorough description of this construction is
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Figure 6.1 | [llustration of the cycle finding algorithm. (a) Section of a regular square lattice where the
loop algorithm finds the usual face. (b) Illustration of the pruning process. (c) Simple example, where a
bond, which breaks planarity, also breaks the symmetry between left- and right-turning walkers. (d)
Non-unique contractions result in different loops.

presented in the following:

We introduce a generalization of the concept of duality to non-planar graphs, such as the
CC lattice and the RGG (compare again Figures 3.2 and 3.3), for which dual graphs are not
defined. Based on the fact that a face is delimited by the smallest path around it, we take as
our starting point cycles C, which reduce, in graphs with no bond crossings, to usual faces.
Note that, by focusing on paths, this generalization might be only appropriate for weakly
non-planar graphs, like the ones we consider in this work, rather than non-local lattices, such
as small-world networks. The algorithm for finding the cycles C works as follows: Consider a
walker which starts from a given site, say i, in the lattice and travels along a given bond, ending
at site j; from j it continues along the rightmost (alternatively leftmost) bond with respect to
the incoming bond, i. e. it chooses the next site k such that the angle between i — jand j — kin
clockwise (anti-clockwise) direction is smallest. This rule is iterated until the walker closes a
cycle, i. e. returns to i, which is guaranteed by the finiteness of the lattice. The cycle obtained
as just described is what we call a generalized face. A schematic visualization is shown in
Figure 6.1a, where a left-turning walker starting from A to B finds the cycle ABCDA.

In this procedure, the walker may close an intermediate loop before ultimately returning to
its origin. In order to avoid inflating the cycle length and over-counting these loops (already
found for different initial conditions) those intermediate, or stray loops are pruned from the
cycle. An example is shown in Figure 6.1b: A left-turning walker starting from E towards D

travels along the path
e L
EDCFGCBABE = EDCBE, (6.1)
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6.1 Dual tessellation

where the contraction symbols mark the pruned intermediate loops, namely the triangle CFGC
and the leaf A. Note that a right-turning walker starting from E towards D returns the quadri-
lateral path EDCBE directly. In less trivial graphs the pruning process may be non-unique, in
which case all possible pruned cycles are collected. An example can be seen in Figure 6.1d for a
left-turning walker starting from F to E, where three different, overlapping intermediate loops
are present, resulting in three possible pruned cycles:

o FEGHIJDABF
FEDCBADEGHIJDABF = { FEDABF (6.2)
I — |
FEDCBEF.

Furthermore, closed paths are invariant under cyclic permutations, thus, we define equivalence
classes, such as for example

[Capcp] = {x € Q | Capcp ~ x} = {Capcp,Cocpa, Cepas, Cpasct, (6.3)

where Q denotes the set of all cycles found in the graph by the algorithm. In the planar case the
number of permutations (i. e. the cardinality or multiplicity of [C;]) exactly coincides with the
number of edges in the cycle C; for every i. Every class of equivalent cycles defines a polygon
P([C]) that has the cycle’s sites on its vertices (corners). To the polygon a weight w; is attributed,
which is given by

w; = [[Gl] < i, (64)

where the equality always holds for the planar case. In the above example, the polygon
Papcp = P([Capcp]) consists of four vertices and therefore carries the weight wapcp =
|[Cabcpll = |Casep| = 4.

For non-planar graphs, not necessarily every possible permutation is found by the walker,
hence in general |[C;]| < |C;| holds. Furthermore, when the pruning process is non-unique, we
attribute fractional weights to the pruned paths. In Equation (6.2), each of the three pruned
paths contributes to a different set of equivalent cycles with weight 1/3. Consider the following
example, where the overtext shows how often each cycle was found by the algorithm:

1 1/3
[Cpceer] = {x € Q | Cpceer ~ x} = {Cpcaer, CcBeFD, CFEDCB} - (6.5)

Here, the first two loops were found once, whereas the third cycle, Crppcp, was only found
“1/3-times”, meaning that it was one of three valid contractions of a given path (such as in the
example of Figure 6.1d). The cycles Crrpcp and Cperpc, which are also equivalent to Cpcper,
are not found at all by the walker. In this more general case, the multiplicity of the equivalence
class and therefore the weight of the associated polygon Ppcper is given by the sum of the
overnumbers, in this case wpcper = |[Capep]| = 1+1+1/3 = 7/3 < |Cpcper| = 5. The
polygons P; and corresponding weights w; can be seen as the generalization of faces and their
size in the planar case.

Due to symmetry reasons, we always consider both right- and left-turning walkers. For
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graphs with no bond crossings this results in a double-counting which is accounted for by
dividing all face weights by two. Note that for this reason we do not include inversions in
the equivalence class definition (compare Equation 6.3). However, as soon as bonds cross, as
for non-planar graphs, the left/right symmetry can be broken, as illustrated in Figure 6.1c.
There, a right-turning walker starting from A to D finds the cycle ADBA, whereas the reverse
search (a left-turning walker starting from D to A) finds the cycle DACD. Were the bond A-D
instead outside the quadrilateral (denoted by the dashed circle segment), the symmetry would
be retained, with both walkers traversing the cycle ADBA, and, respectively DABD, which are
the same path.

Finally, note that the examples of Figure 6.1 are only meant to clarify the concepts introduced.
For such small graphs the infinite face (i. e., external to all bonds) needs to be taken into account
as well — and the algorithm fails to do so properly when a site is present more than once in the
path along the graph boundary (such as site C in Figure 6.1b), since the path is then pruned,
misrepresenting the infinite face. For the large lattices under periodic boundary conditions we
consider, though, a “bulk” algorithm is fully adequate.

We perform the search procedure using both right and left walkers, starting from every site
and direction. The resulting set of polygons and corresponding weights is what defines our
generalised dual tessellation

T = {(’Pl',wi),('P]‘, w]),} (6-6)

Every polygon covers a certain area of the spatial domain, as exemplified in Figure 6.1d. The
weight of the polygon is attributed to this area, as shown in Figure 6.2. For planar graphs
(Figure 6.2b), the weights exactly represent the coordination numbers of the dual lattice sites,
i.e. w are the number of vertices of the corresponding face. For dual tessellations of non-planar
graphs (Figure 6.2a) different cycles often overlap. The weights attributed to those regions
are the sums of the weights of the individual overlapping polygons. Note that irrespective of
the overlap and the in general fractional final weights, the total weight of an area still can be
interpreted very similarly compared to the planar case. More precisely, the total weight W of a
point x in space is defined by

W(x) = Zwi | xinside P([C]), 6.7)

i. e. the sum of the weights of polygons inside of which x can be found.

We calculate the dual tessellation for the VG, GG, CC4 and DT lattices and show them
(more precisely their weight fields W(x)) in the top row of Figure 6.3. In planar graphs,
(ordinary) faces present no overlaps and the weights are simply the coordination numbers
of the corresponding sites of the dual lattice. Hence, the VG’s dual tessellation shows the
coordination number fluctuations of the corresponding DT lattice, its dual. As can be seen, the
weight amplitudes vary considerably between the different lattices considered. For instance,
VG cells with W > 10 are rare, whereas the CC features a few large holes with W ~ 30. In
order to make the weight fluctuations comparable, we rescale the dual tessellations according
to Wiescaled = (W — uw)/ow, where uy and o represent the weight mean and standard
deviation.
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Ly

3N

Figure 6.2 | Schematic visualization of the dual tessellation. The numbers denote the corresponding
weights of the polygons P (generalized faces). In the example of a non-planar lattice (a) the polygons
intersect and the weights are added in the overlapping regions. In the planar case (b) no overlaps exist
and the weights reduce to the number of sites in the polygon.

b)

The rescaled dual tessellations for the four lattices displayed in the second row of Figure 6.3
are quite distinct: the VG is characterized by regions of very high and very low weights
found close together, giving it a relatively homogeneous, well-mixed appearance — a visual
consequence of the coordination number anti-correlation present in the DT lattice [67]; the
GG’s dual tessellation, on the other hand, appears less homogeneous, with high-weight regions
standing out more clearly, as a consequence of the lack of such anti-correlations; even less
homogeneous is the CC4, whose dual tessellation displays large swaths of high-W regions
against a relatively featureless background; and the DT is marked by randomly distributed
peaks of very high weights. More decisive still than the magnitude of the fluctuations, is
how fast they decay under a block coarse-graining analysis [67], i. e. how fast homogeneity
increases as the weights are averaged over increasingly larger square blocks of the spacial
domain. The lower two rows of Figure 6.3 show two steps of this analysis. In the case of the VG,
significant homogeneity sets in already after a weak coarse-graining step, due to the inherent
anti-correlations mentioned above. This fast decay of the fluctuations indicates that the disorder
should be less relevant. In contrast, the GG has no such anti-correlations [P2] and regions of
high weight survive large coarse-graining steps, keeping the tessellation less homogeneous
through the procedure. For the CC lattice — an important motivation for the introduction of
the generalized dual tessellation — we find that the fluctuations are indeed as pronounced, and
decrease equally slowly as those of the GG. Finally, we see that the prominent peaks of the dual
tessellation of the DT quickly disappear under coarse-graining, leaving only fluctuations that
decay about as fast as those of the VG.

Just as the behaviour of coordination number fluctuations under coarse graining of the
original (i. e. non-dual) lattice is used to establish the HBV criterion, we propose to apply the
same reasoning to the dual tessellation. This means taking a slow decay in the dual tessellation
weights to imply a stronger relevance of disorder in the original lattice. Hence, the slow decay of
fluctuations in the CC4 dual tessellation indicates that the disorder is as relevant as for the GG,
agreeing with the results of our simulations (Table 5.7), where both lattices show very similar
behaviour. Therefore, we argue that the relevance of the disorder present in the contact process
on the CC4 (see Section 5) is reflected by the persistent fluctuations in its dual tessellation.
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Figure 6.3 | Dual tessellation samples for the lattices VG, GG, CC4, and DT . In the second row, the dual
tessellation weights are rescaled as described in the text. Hence, the colours denote the fluctuations of
the weights around their respective spatial averages. Except for the top row, the colour ranges are the

same in every row. The two bottom rows show coarse graining steps.
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6.2 Elastic relaxation

Conversely, the fast decay of dual-tessellation fluctuations for the DT+ would indicate its
disorder to be less relevant. Hence, it might successfully explain the universal character of the
CP, which could not be explained by a coordination number analysis performed directly on the
DT lattice [P1].

6.2 Elastic relaxation

In a different approach, we perform a relaxation process with respect to tensions imposed along
bonds in the graph. This results in a new spatial distribution of the nodes, which should reflect
the topology of the lattice. Specifically, we let one site at a time move, under a decreasing
heat bath, according to the total force the site is subjected to when we take its bonds to be
stretched Hookean springs. Lattice sites are therefore attracted to sites they are connected
to, and bond-poor regions tend to expand — highlighting the poor connectivity we believe to
characterize relevant topological disorder. In this way, the topology of the lattice becomes
accessible to geometrical tools, besides the established tools from graph theory. This approach
also greatly facilitates visual inspection in two-dimensional lattices, since any holes present
become more pronounced, as can be seen in Figure 6.4, and it can trivially be generalized to
higher dimensions.

Sites in periodic and quasiperiodic structures find themselves in equilibrium or near equilib-
rium with respect to bond tension and wiggle about slightly due to the heat bath, but otherwise
remain unchanged under elastic relaxation. As soon as dilution is introduced into the lattice,
however (e. g. by randomly eliminating a fraction of its sites), the picture changes: even at low
dilution rates, the lattice’s connectivity is affected and relaxation makes a number of significant
holes evident. Similar and even more numerous holes can be seen in the relaxed versions of
the proximity graphs, such as the RNG. The CC lattice also presents significant holes and a
remarkable resemblance to the RNG after relaxation. Among the considered lattices, the most
dramatic change brought about by elastic relaxation is found in the RGG, which is reduced to
threads by the procedure. Triangulations of random clouds, on the other hand, contain maximal
sets of non-crossing bonds and, akin to periodic tessellations, are little affected by relaxation, as
can be seen in the Delaunay triangulation. The introduction of a number of additional random
local bonds to a DT (resulting in the DT™ lattice, not shown) promotes a moderate degree
of agglutination, but does not otherwise change the scenario. Also the VG remains mostly
unaffected by the relaxation.

The results described above show that the elastic relaxation procedure provides a tool which
clearly distinguishes, to the unaided eye, between lattices with and without significant holes.
Every lattice belonging to the latter group (no holes: DT, DT, and VG) is found to present an
irrelevant perturbation to the DP universality class, while those with significant holes do not.
These results provide strong, if qualitative evidence for our claim that the decisive factor for the
relevance of topological disorder is how strongly the disorder affects the connectivity properties
of a lattice.
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CHAPTER

Conclusion

“I think it’s much more interesting to live not knowing than to have

answers which might be wrong.”

- Richard Feynman

In this work we explored the influence of quenched topological disorder on critical phenomena.
This was realized mainly through large-scale numerical Monte Carlo simulations, covering
the most common classes of continuous phase transitions. At criticality, they all develop
collective behaviour over long distances, even though the individual, microscopic components
are only locally coupled. We discussed how, according to the concept of universality, the
critical behaviour is in fact independent of the underlying mechanisms driving the system
at the microscopic level and — as a consequence — is governed by the dimensionality and the
symmetries of the system alone.

Convincingly demonstrated in numerous experiments and well established theoretically
through the renormalization group framework, the notion of universality has become one of the
most intriguing concepts in modern physics. But how robust are critical systems with respect to
quenched spatial disorder? When spatial randomness is introduced, can we predict whether
the universal character of a transition is preserved? Can we predict when it will be broken
instead, allowing for a qualitatively new behaviour to emerge? Even though Harris in 1974
provided a convenient heuristic criterion [46], it has a very limited applicability, namely to cases
where the disorder does not feature any significant spatial correlations. Since uncorrelated
randomness also considerably simplifies analytical calculations, corresponding systems become
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tractable by standard renormalization group methods and have already been extensively studied
analytically. In contrast, the investigation of disordes endowed with more complex spatial
structures has considerably shorter history, dating back to the seminal work by Luck in the
1990’s [68]. Typically, the local number of interacting neighbours is given the role of the
primary variable encoding the spatial structure of the disorder. By comparing the decay rate
of coordination number fluctuations under spatial coarse-graining to the critical exponent of
the correlation length, Barghathi and Vojta were able to derive a generalization of the Harris
criterion applicable to more general types of quenched disorder [67]. This refined criterion
provided a clear picture of the interplay between scales of geometric and physical fluctuations
and was able to explain the existing numerical results, suggesting that the role of quenched
disorder had been essentially understood.

In this work we revealed that this is not the case. Specifically, we examined the robustness of
both established criteria for the relevance of topological disorder on critical phenomena (i. e.
Harris-Luck [68], Harris-Barghathi-Vojta [67]) and constructed an explicit violation. Moreover,
we explored lattices where fluctuations of coordination numbers are absent by construction —in
particular the so-called Voronoi graph, as well as the newly developed constant coordination
(CCQ) lattice — providing evidence that fluctuations in the number of interacting neighbours are
not a key measure for predicting the impact of disorder on continuous phase transitions. In what
follows we go through our results in more detail. A systematic summary of the simulations that
support our conclusions is found in Table 6.1.

As already pointed out above, a large part of our work has been devoted to structures to which
existing disorder relevance criteria can not be applied, which is the case when the number
of interacting neighbours is locally constant. Specifically, we investigated three prominent
critical systems — the Ising model, the non-equilibrium contact process, and the conserved
stochastic sandpile model — on two-dimensional Voronoi graphs (VG), which arise naturally
when considering regions of influence and are hence frequently encountered across the natural
sciences and engineering. We found that all three models remain in their respective clean
universality classes — a result which can be motivated by the graph-theoretical dual of the
VG, the Delaunay triangulation, showing analogous behaviour. Therefore, we developed a
second structure, the so-called CC lattice — a topologically disordered lattice with constant
local coordination number, bearing only short-ranged interactions. We devised a very efficient
algorithm for constructing the CC lattice, which is in fact significantly faster to build than
traditional proximity graphs. This is achieved by a multi-layer dynamical simulated annealing
procedure, operating only in spatially local blocks. Concretely, nodes are distributed at random,
such as for any proximity graph. The domain is then decomposed into spatial blocks and
random connections among the points inside the respective boxes are introduced. That is
followed by a relaxation of link distances by a dynamical pairwise rewiring scheme, which is
based on a simulated annealing technique. In both stages, multiple, staggered grids of blocks
are used in order to guarantee a homogeneously connected graph. We demonstrated that the
lattice is perfectly suitable for finite-size scaling studies and generalizes straightforwardly to
higher dimensions. However, due to combinatorial restrictions, the algorithm can only construct
lattices of even coordination number.

Similar to our investigation of the VG, we performed numerical simulations of a number of
systems on the CC lattice. For the two-dimensional Ising model we found critical exponents
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varying with the strength of the disorder. From the lattice sizes available we were not able to
conclude whether they eventually converge to the universal Ising ones in the infinite-volume
limit. The character of the phase transition hence remains unclear, although we speculate
that the deviations can be explained by strong logarithmic corrections. Overall, the situation
looks somewhat similar to the case of the randomly site- or bond-diluted Ising model, which
represent exactly the borderline scenario in terms of Harris” original criterion. In order to shed
more light on this situation, we also simulated the two-dimensional contact process on the
CC lattice, since for this model the Harris criterion predicts an unusual “activated” scaling
scenario on diluted structures. On the CC lattice, we found strong indications for this type
of scaling scenario as well, although it shapes up only at significantly longer times, making a
numerical detection particularly challenging. Both results, the two-dimensional Ising model
and contact process, suggest that the CC lattice behaves similarly to traditional lattices with
uncorrelated disorder. Therefore, as another test, we conducted simulations of the Ising model
on a three-dimensional CC lattice, where due to the positive specific heat exponent, a failure of
clean universal behaviour should follow. In particular, the Ising model on a randomly diluted
three-dimensional lattice is known to cross over to a new universality class. Surprisingly,
however, we obtained a striking finite-size data collapse using the clean critical exponent, hence
providing compelling evidence that the model in fact remains in the clean 3D Ising universality
class.

In a further study, we designed another novel type of lattice, which is based on the well-known
Delaunay triangulation but where — in a random fashion — links to next-nearest neighbours
are added, the DT lattice. The additional bonds are short-ranged and spatially uncorrelated,
which we were able to demonstrate using a numerical block-coarse-graining scheme [67]. In
fact, the coordination number fluctuations due to the additional bonds dominate the overall
decay of disorder correlations and, as a result, the lattice presents a geometric decay exponent
of 2 = 1. According to the criterion by Barghathi and Vojta, this should result in a changed
critical behaviour for all universality classes with correlation length exponent v < 1, such as it
is the case for the directed percolation (DP) class. We therefore simulated the non-equilibrium
contact process on the DT™ lattice, in order to verify this prediction, and, strikingly, determined
the transition to be controlled by the clean universal DP exponents. In particular, we could
not find any indications of exotic or unusual scaling behaviour. Instead, the temporal decay
of the density of active particles from a fully occupied configuration resulted in excellent data
collapses, both in the off-critical regime as well as in a finite-size study. Moreover, through
simulations of the quasi-stationary state, we were also able to verify the static exponents to
be compatible with the ones of clean DP as well. These results combined provide convincing
evidence that the two-dimensional DP class is unaffected by the disorder present in the DT
lattice, which represents an explicit violation of existing disorder relevance criteria.

In summary, our results raise considerable doubt about the current understanding of the
influence of topological disorder (or disorder with complex spatial structure in general) being
in fact sufficient. In particular, we revealed that although coordination number fluctuations in
some cases capture the structure of the disorder sufficiently well in order to draw qualitative
conclusions, they must be regarded as non-predictive in general.

Comparing the lattices we considered in this work on a qualitative level, one notices that
those which are in some sense more strongly connected turn out to be less effective in altering
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critical behaviour. Hence, based on the assumption that a yet-to-be-precisely-defined poor
connectivity may lead to relevant perturbations, we devised two tools: the dual tessellation
and the elastic relaxation. The dual tessellation generalizes the concept of duality to non-planar
graphs. Using a deterministic walker-based cycle-detection algorithm, we are able to reveal
large topological holes in the lattice, which can then be subjected to a quantitative coarse-
graining analysis. We find that for the CC lattice, these disorder fluctuations decay comparably
slow, possibly explaining their strong effect in altering the DP phase transition. The dual
tessellation fluctuations of the VG and DT+, however, decay noticeably faster under the coarse
graining — consistent with the clean DP phase transition on those lattices being retained. In
the elastic relaxation approach, we consider the lattices subjected to mechanical tension along
their bonds and allow the sites to move according to the resulting forces. This leads poorly
connected regions to expand, clearly revealing graphs that are loosely connected, in contrast
to tightly connected ones, such as DTs, which are stable against the relaxation. As expected,
poor connectivity corresponds to the contact process leaving the clean DP universality class. In
summary, both geometric approaches are able to qualitatively distinguish which perturbations
are relevant against the two-dimensional DP phase transition. In this way, they provide a
visual indication, acting as a road sign towards a more general relevance criterion — a sign that
indicates that a measure of the degree of connectivity may provide the additional property
required to obtain a more general relevance criterion.
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CHAPTER

Outlook

“Modern science has been a voyage into the unknown, with a lesson

in humility waiting at every stop.”

— Carl Sagan (Pale Blue Dot)

Our results raise a number of questions. First, if the local fluctuations in the number of in-
teracting neighbours do not sufficiently capture the spatial structure of the disorder, which
quantity can be used instead? In our topological analysis we found that connectivity might
play an important role, however there is no general, established way for encoding this prop-
erty in a locally defined measure. The dual tessellation approach we introduced offers some
insight, but is restricted to two-dimensional graphs and can therefore only hint at the needed
connectivity characterization we look for. Second, the general mechanism underlying the
interplay of quenched disorder and critical behaviour remains to be found. Right now, there is
a number of different criteria, namely, Harris’ original one for short-ranged correlations and
the generalizations discussed in Table 2.5, such as Halperin and Weinrib’s criterion for very
specific long range correlations and Barghathi and Vojta’s for lattices which are dominantly
anti-correlated. However, the complete picture is still missing. Third, how can topological
disorder be made accessible to analytical methods? This question is in fact directly related to
the previous ones. As detailed earlier in this work, handling general types of disorder would
require to pinpoint the relevant properties which establish the connectivity behaviour and
re-formulate them as a random variable with a suitable distribution — an undertaking which
is certainly highly non-trivial. As long as analytical descriptions are out of reach, it becomes
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8 Outlook

clear that numerical simulations are the go-to method for studying the influence of spatially
correlated quenched disorder on critical phenomena — the additional puzzle pieces that these
simulations gradually reveal should allow a helpful, increasingly clear glimpse at the complete
picture. Looking forward, a number of lines of inquiry suggest themselves, which we will
briefly discuss in the following.

8.1 Random fields

A promising approach for studying topological disorder might be to take one step back and
construct regular lattices with random interactions that obey a pre-defined correlation structure.
This can, for instance, be realized by interactions strengths which are modelled according to so-
called random fields [353]. A random field is a random function z : Q — R, where Q € R? such
that for any position x; € Q the quantity z(x;) is a random variable. If z follows a multi-variate
normal distribution, we have a Gaussian random field (GRF). In this case, the field is only
characterized by its mean p(x) = E[z(x)] and covariance C(x1, x2) = E[z(x1)z(x2)], where E
denotes the expectation value. Without loss of generality we can take p = 0. Furthermore,
let us assume the field to be homogenous, i. e. the covariance is invariant under translations,
C(x1,x2) = C(|x1 —x2]) = {(r). A couple of realizations of random fields with given correlation
structure are shown in Figure 8.1. They have been generated by a spectral decomposition of
the covariance matrix using Fast Fourier transforms (FFT). The randomness is introduced as
a white noise in Fourier space and the field is finally transformed back to real coordinates. If
the power spectrum y(k), which essentially represents the Fourier transform of the correlation
function ¢, can be computed analytically, the generation of a GRF can be carried out with less
sampling and discretization errors, as only a single FFT is necessary. Other methods to generate
Gaussian random fields include Cholesky decompositions of the covariance matrix or more
sophisticated spectral methods, such as circulant embedding techniques [354]. Our goal is to
use the height of the random field z(x) as bond strengths in, for instance, ferromagnetic models.
Therefore, it makes sense to transform the Gaussian distribution to a finite non-negative one,
naturally resulting in a so-called non-Gaussian random field. In the examples of Figure 8.1, the
fields have been transformed to uniformly distributed values in a closed, finite interval. While
transformations like this are technically simple, they will in general alter the correlation structure.
Even though there exists some literature pointing out how this can be circumvented [355-357],
the corresponding techniques turn out to be quite involved.

In a preliminary study, we simulated the two-dimensional Ising model on a lattice where
interactions strengths were modelled according to a random field with power spectrum

1

y(k) o 2

which transforms to interaction correlations that decay exponentially with real-space distance.
The characteristic spatial scale is given by &. As a result, disorder can be regarded as effec-
tively uncorrelated and the system should show no clear universal behaviour to due to the
marginality of the problem with respect to the Harris criterion, which was indeed found in our
simulations. The next step would be to expand this study to random-bond lattices with other
than exponentially decaying correlation structure (compare, e. g. Figure 8.1) and to resort to
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8.2 More topological disorder

Figure 8.1 | Random fields. Realizations of random fields with different correlation structure, sampled
on 512512 points. All fields have initially been constructed as Gaussian random fields using spectral
methods and were transformed to uniform distributions afterwards. Colours encode the height of
the field in the interval [0,1]. (a) Scale-free fractal random field, constructed from a power spectrum
y(k) = |k|~t. (b) Gaussian correlation structure {(x) = exp(—|x|?/&?) with reference scale & = 20. (c)
Damped wave correlations {(x) = exp(—|x|/7) cos(27|x|/&) with decay scale T = 20 and wavelength
& =>50.

a physical model other then Ising model (i. e. one which does not represent a borderline case
in terms of the Harris criterion). Eventually, the goal would be to map topological structures
to a regular lattice with varying interactions strengths, hence fulfilling the original ambition
of answering the question as to which is the relevant measure or observable that captures the
structure of the randomness.

8.2 More topological disorder

In addition to the study of correlated regular lattices, one might also continue to investigate
further random graphs. Particularly interesting are those structures which in a certain limit
become regular. For instance, applying a neighbour search with appropriate radius to a square
grid of regularly spaced points will result in a regular lattice. Similarly, constructing the
Delaunay triangulation of a triangular point grid will yield a regular triangular lattice. Therefore,
jittered regular point clouds can provide a natural passage from ordered to topologically
disordered structures, with the jittering amplitude acting as the control parameter. In principle
this should also work for our CC lattice algorithm. As however the dynamic rewiring process is
stochastic, a fully regular topology is not guaranteed although after a sufficiently long relaxation,
the lattice can certainly be regarded as quasi-regular. A smooth passage from a regular topology
to a random one has the particular advantage that the scaling functions can be monitored as
the disorder is increased. As demonstrated e. g. in Reference [260] this allows to reliably detect
the presence or absence of clean universal behaviour and hence avoids potential ambiguities
related to strong scaling corrections in other standard FSS methods.

Also the CC lattice itself might inspire a number of further studies. Although the Harris
criterion is commonly applied to both equilibrium and non-equilibrium transitions, recent
studies of models in the Manna class raised doubt about whether the criterion is generally
applicable in the latter case. Namely, in a series of articles [344, 358, 359], it was revealed
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that both discrete and continuum realizations of the Manna class display unchanged critical
behaviour when strong disorder in the form of random impurities is present. Since, due to a
correlation length exponent of v ~ 0.8, Harris’ inequality predicts disorder to be relevant in
this case, these unexpected results remain to be explained. In this work we have demonstrated
that in two dimensions the CC lattice behaves somewhat similar to “traditional” uncorrelated
randomness. One might therefore ask whether this unexpectedly stable behaviour of the Manna
class persists in the CC construction as well. Note that our study of the conserved Manna
sandpile model on the VG can not contribute to resolving the “Manna anomaly”, since on
this structure, it should obey the generalized criterion by Barghathi and Vojta rather than the
original Harris criterion.

Still with regard to the CC construction, also the study of the three-dimensional Ising model
could be extended. As detailed earlier, the clean universal behaviour found in our simulations
comes as a surprise. As the CC lattice is particularly designed in a way to be inaccessible
to existing disorder relevance criteria, obviously no predictions are available and the results
remain unexplained. To shed more light on this situation, one might for instance think of
realizing a variation of the CC lattice where on half of the points has four neighbours and the
other half has six. This construction should therefore have exactly five neighbours on average.
Moreover, although not a CC lattice in the strict sense, the morphology should presumably be
very similar to a pure CC4 or CC6. This, in turn, makes a strong case for a still clean universal
behaviour of the 3D Ising model also being present on this structure. However, since in this case
coordination number fluctuations do exist, the criterion by Barghathi & Vojta can be applied
and the decay exponent should present a slow decay, if the distribution of 4-nodes and 6-nodes
is sufficiently mixed, and therefore predict the universal character to be changed, hence possibly
resulting in a further violation of the HBV criterion.

Finally, the unexpectedly stable behaviour of the CC lattice in three dimensions should be
further explored by considering other physical systems. Particularly, as we found the Ising
transition with a clean correlation length exponent of vf’s?ng ~ 0.630 to be unaffected by the
disorder, this demands considering a transitions with smaller exponents, as they should be less

stable. Natural candidates are again the DP and Manna class, with their exponents 25 ~ 0.584

3D
YManna

DP transition will change, namely to being controlled by an infinite-random fixed point with
activated scaling, accompanied by strong Griffiths effects, as it is the case for conventional
disorder in three dimension [330]. If the DP transitions instead turns out to be stable as well,

and ~ 0.594, respectively. For instance, one may ask whether the character of the

i.e. unaffected by the disorder, the Manna universality class should be considered. In this case,
if the Manna class were revealed to be unstable on the CC lattice, this would present another
strong indication that equilibrium and non-equilibrium phenomena should not be treated on
the same footing in terms of the relevance of quenched disorder (compare above discussion).
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8.3 Curved manifolds

To conclude this thesis, let us discuss an application of topological randomness which might
not be obvious at a first glance: curved manifolds, i.e. spaces with non-Euclidean geometry.
Even though cosmological phase transitions (such as it is believed to have taken place in
the early universe) may come to mind as obvious examples of critical behaviour in curved
spaces, there are in fact many more situations where physical phenomena are crucially altered
by the effects of the supporting geometry, ranging from magnetic properties of artificially
fabricated nano-devices [360-362], soft materials [363], aspects of complex networks [364, 365]
such as information infrastructure [366], quantum gravity [367-369], bio-membranes [370], glass
transitions [371, 372], up to adsorption and coating phenomena on non-flat surfaces [372]. From
the theoretical point of view, due to the introduction of additional control parameters (e. g. the
curvature radius), curved spaces represent a very intuitive extension of the usual flat geometry.
Induced by the non-trivial geometry, established physical systems might behave substantially
different or even produce entirely new effects. This, in turn, can help to gain a deeper insight
into the physics of the corresponding flat models, whenever the corresponding limit is available.

Even though it is a rather simple and well-understood concept, ordinary diffusion — due to
its importance as a substantial biophysical mechanism — has been addressed in curved envi-
ronments [370, 373, 374]. In particular, it was found that on a manifold with constant negative
curvature (a so-called hyperbolic space) diffusive motion is accelerated [375] but slowed down
on spherical geometries, where the curvature is positive [376]. Regarding critical phenomena,
the Ising model has been investigated on sphere-like lattices and other compact topologies (see
e.g. [377-380]). It was revealed that in the thermodynamic limit, such systems feature the same
universality class as the flat Ising model. The arguably more interesting case, however, concerns
hyperbolic manifolds, which are, unlike spheres, non-compact spaces. There, one has found
strong indications that the critical exponents take on their corresponding mean-field values as
the hyperbolic grid (compare Figure 8.2) can be regarded as effectively infinite-dimensional [381-
383]. Moreover, even at temperatures much larger than T, small-sized ferromagnetic domains
can be observed [384]. Despite the mean-field properties on hyperlattices, the correlation length
does not diverge at criticality, rather it stays finite, thus indicating the existence of an inherent
length scale linked to the curvature radius which destroys the usual concept of scale invariance
at criticality [385, 386]. Also other equilibrium critical phenomena have been examined on
hyperbolic lattices, including the g-state Potts model and the XY model [371, 387, 388]. For the
latter, it turned out that the hyperbolic surface induces a zero-temperature glass transition even
in systems without disorder. This is due to the non-commutativity of parallel transport of spin
vectors which causes a breakdown of their perfect orientational order and consequently gives
rise to local frustration. Even more striking novel effects were found in percolation systems on
hyperbolic lattices [389-394]. Specifically, an intermediate phase associated with two critical
thresholds arises. At the lower critical probability, infinitely many unbounded clusters emerge.
At the upper critical point, these clusters join into one unique unbounded cluster, spanning the
entire system. In the flat Euclidean limit, these two thresholds coincide and the intermediate
phase vanishes. It was found that this behaviour is due to the non-vanishing surface-volume
ratio of these lattices in the infinite-volume limit. Percolation on hyperlattices was also studied
quantitatively by means of finite-size scaling methods [395], where the authors suggested that

159



8 Outlook

Figure 8.2 | Hyperlattices. Left: Innermost three levels of a regular tiling of the hyperbolic plane by
congruent heptagons. Since three heptagons meet at each vertex, the tessellation shown here is denoted
by {7,3}. In this representation, the hyperbolic plane is projected onto the Poincaré disk. Note that the
circumference of the disk corresponds to an infinite distance from the centre of the disk. Right: Cayley
tree { oo, 3} with seven layers projected onto the Poincaré disk. Algorithm from [258].

hyperbolic percolation may form a universality class on its own.

Turning from the Euclidean space to geometries with constant curvature, as they arguably
represent the simplest curved manifolds, one faces a number of crucial implications concerning
spatial discretizations. Due to the inherent length scale, regular tilings, such as depicted in Fig-
ure 8.2 are restricted to very specific polygons and corresponding dimensions,*> which severely
limits the applicability of traditional FSS methods. Moreover, these geometric peculiarities
essentially forbid the construction of periodic boundaries which appear to be indispensable
when studying bulk systems due to the generically large boundary of hyperbolic spaces.

A clever way to circumvent most of these issues can be random lattices, where (as it was
defined in Section 3), nodes are distributed in a homogeneous and isotropic fashion and are
then locally linked according to a given set of rules. When dealing with curved geometries,
the approach of non-regular positions of sites has the great advantage that the shape of the
underlying space can be varied continuously, which appears to be a very cumbersome task for
e. g. regular hyperbolic lattices [386]. As another consequence, the Euclidean limit of vanishing
curvature is directly available and may thus be used as benchmark. For the hyperbolic space of
constant negative curvature, random lattices allow one to use periodic boundary conditions,
although their implementations is somewhat technical [259]. Besides the special cases of
constant curvature, spatial discretizations in arbitrary manifolds where a proper metric tensor
can be written down, should be feasible through random graphs.

In summary, random lattices have the potential to significantly enhance the study of critical
phenomena on curved geometries, as they provide a convenient way to discretize these spaces,
therefore making them tractable for standard numerical methods. In fact, this yields another
motivation for this work. Before applying topological disorder to manifolds more complex than
the flat Euclidean space, one needs to make sure that the effects of the randomness itself are
properly understood.

#3Gcaling (i. e. shrinking or enlarging) a regular polygon in a hyperbolic/spherical space will also influence its shape
(for instance the angles at the corners) and the regular tessellation will in general no longer cover the space without
voids or overlappings. Technically speaking, there is no concept of similarity in curved spaces.
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APPENDIX

This appendix collects and presents the technical details of several numerical methods and concepts used
throughout this work.

A.1 Drawbacks of the original CC algorithm

In the original algorithm of the constant coordination lattice, which was proposed in [P2], every
rewiring step takes, at random, two bonds of the full set of bonds. Hence, the time complexity
scales as O(sqN?), where N is the number of sites in the lattice, g the coordination number and
s the number of rewiring attempts. Even though g and s are constant parameters, the O(N?)
dependence alone renders the algorithm prohibitively expensive for large lattices. Besides, as
the typical bond length becomes small with respect to L, random rewirings grow increasingly
unlikely to satisfy condition (3.8) and the majority of update attempts is rejected, resulting in a
slow convergence which demands a very large number of steps s.

The need for a large number of rewiring steps can be mitigated by starting the rewiring
procedure from a configuration that already has a certain degree of locality, instead of being
fully random. Such an initial configuration can be obtained simply by, considering only sites
with fewer than g bonds, randomly linking those sites to their nearest neighbours until each
site has exactly g bonds. This requires the full distance matrix of the sites to be known, which
can be calculated in O(N In N) using spatial tree techniques [396]. In practice, this initial step
allows the parameter s to be reduced by about two orders of magnitude.

However, the use of an optimized initial configuration also comes with a drawback of its
own: the occasional failure to produce a so-called simple graph, due to unlucky configurations,
or pathological motifs. One such configuration arises, e.g. when the last site in the initial
construction loop is left to connect to itself (all the other sites already having g bonds). Figure A.1
shows the most frequently encountered pathological or “degenerate” motifs. In the case labelled
by (2), for instance, every site except for one is already fully connected. This site, however, still
has two dangling connectors, which clearly would lead to a self-connection, which is illegal.
Another example is the case (1,1)*, where eventually two sites remain with one dangling bond
each. As they, however, are already connected, this would result in a double-connection, which
is also illegal. These occasional failures must be dealt with using either some involved iterative
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procedure or a complete restart. In the improved CC algorithm, presented in this paper, these
issues do not arise in the first place, as fully random initial connections are sufficient, as pointed
out in Section 3.3.3.

Finally, the original algorithm does not fulfil micro-scale equivalence strictly. Even though the
initial connection step connects most of the sites locally, typically a few larger bonds spanning a
significant part of the system can not be avoided, hence introducing a dependence on the lattice
size. Therefore, in order to achieve micro-scale equivalence, larger lattices must be subjected
to longer SA procedures, i.e., instead of a constant parameter s, we have a function s = s(L),
which is an undesirable additional parameter and a possible source of error.

(@) “ (6)

(1,3)=(2) (2,2,2)*

Figure A.1| Pathological motifs of the originally proposed CC lattice algorithm. Dashed lines symbol-
ize open connectors (which form a bond when two are closed/connected) at the end of the initial
construction step, whereas the peripheral blue dots represent sites that are already fully connected.
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A.2 Statistical bias

This appendix provides a detailed explanation of how systematic bias arises when a non-linear
combination of physical observables is estimated from a finite sample size. It is based on
Reference [273], however, for the sake of clarity, the notation was slightly adjusted and a couple
of intermediate steps were added in the calculations.

In this work we usually consider two averages, the thermal average of an observable on one
disorder realization (replica) of the system, as well as the average over disorder realizations, the
replica average. For the disorder realizations we assume them to be drawn from a state space
R = {ry, 1y, ...} which is huge although finite, since even for topological disorder the number
of possible bond configuration is bound. The probability of drawing a specific sample is p(r).
As soon as the disorder replica is drawn, we have another state space of spin configurations
S = {0y, 09, ...} with probability distribution 7(0; r) being a Boltzmann distribution. Note,
that 7 depends on r. We use the notation (...) for thermal expectation values, i.e.

(Ay, =Y n(o;r)A(0,7) (A1)
o€s
where the subscript r denotes the specific replica which is considered. In case the calculations
holds for any r the subscript is omitted.

In practice, our goal is to calculate an observable, given by

m=mw:2www=2ﬂwpwwwﬂwﬂ (42

reR reR o€eS

where we introduced the overline notation for the replica expectation value. In a simulation we
draw N, disorder samples denoted by r1,73, ..., 7y, from R and N, samples (measurements)
01,02, ...0N,, from S on every replica r. Hence we can write down an estimator for O as [273]

o 1N 1N Ny !
oSt = N Y (Al = N, Z (Nm ) A(O']‘,Ti)> (A3)
i j

i=1 =1 =1

At this point it is important to emphasize the conceptual distinction between expectation values
and averages. Whereas the former, Equation (A.2), represent the exact, but of course unknown
result, the average, Equation (A.3) represent an approximation, which due to the finite sample
size, fluctuate around the respective expectation value. For thermal average we use square
brackets with subscript as defined in Equation (A.3).

The central question is now whether Ot — O,, for N,— oo at fixed N,,. As we will see, for
n = 1 this is in fact the case, whereas for n = 2 a correction term (bias) arises.

The estimator Equation (A.3) can be recast as

)
ogt=— Y ¥ 4L, (A4)

where N(r) denotes the number of r; such that r; = r, since in general the same configuration
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can be drawn multiple times. We multiply by a factor N(r) /N(r) and perform the limit N,— oo

Ny—oo /=% Nr =1 reR

Nr [
i 20 (s B 142) = £ o a7 (45

where we used that N(r) /N, — p(r) according to the law of large numbers and the average
converges to the corresponding thermal expectation value due to ergodicity. The last equality
holds per definition of the replica expectation value.

We now consider the case n = 1 for one specific replica  and obtain

1 R 1 R
(ADr = {5~ ];1 Aloj, )=~ ]§,1<A(Ujr )= (A (A.6)

where we used the linearity of the expectation value. Hence,

()TSt N W = (A), = Oy for N,— oo (A7)

i. e. the estimator O$*" converges to O; for any fixed (i. e. even for very small) Ny,

Let us now consider the case n = 2. We obtain

1 Nm Nm

([A]%), =z Y Y Aoy, 1)A(0), 1))
m j1=1jp=1
1 Nm Nm A A
_N7%j§1j§1< ((le,?’) ((sz,r)>y (A.8)
= [N (N = 1) ()2 4 Nn(42),]

and therefore

08 > (AP = Or 4 - (AT, ~TAR) 202 for Nyvoo. (A9

Hence the estimator systematically underestimates the true value of O, by a factor proportional
to 1/N,,. The correction term is what we call bias of the estimator.
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A.3 Bootstrap and Jackknife

A powerful set of techniques, which allows to estimate parameter uncertainties, covariances and
reduce the statistical bias arising in non-linear combinations of averages, is given by so-called
resampling methods. In the following we give a brief introduction of this concept, based on
the standard textbooks [288, 289], which are here the implicit references. Specifically for the
application in Monte Carlo simulations of equilibrium spin systems, a compact summary is
provided in Reference [397]. The key idea of resampling is to generate new samples from the
original data pool by drawing combinations of subsamples and analyse the correlation structure
among them. To be specific, suppose we have a set of n data points, for instance independent
measurements of a physical quantity, denoted by

X ={Xq,Xs,...Xn}. (A.10)

In Monte Carlo simulations, the samples X; are typically generated by dividing the time series
of N;; measurements into n blocks, with the their size being chosen large enough to render
consecutive blocks effectively uncorrelated.

We seek to calculate a quantity f(X) from the data set, which for now is some function of the
average of X. Later in this section, we will generalize the procedure to non-parametric objects,
such as parameters of a fit.

In the delete-1-Jackknife method, we define a Jackknife replica X as the set which includes all
samples except X, i.e.

X(]) = {XLXZ,-~-Xi71/Xi+1/~'-/Xn}- (All)
The estimator of f(-) for the j-th Jackknife sample is formally denoted as

0y = f(X(j) (A12)

A 1 & 4
9() = E Z Q(k) (A.13)

The variance of the estimator is now defined as

A -1 & /4 n 2
Var(0) = " " k; (G(k) — 9()) , (A.14)

where the factor n — 1 in the numerator compensates for the reduction of variance due to
repeatedly using almost identical samples. An important feature of resampling techniques is
that they allow for the construction of unbiased estimators (compare the general discussion in
Section 4.1.4). Specifically for Jackknife, it can be shown that for

A k A A

0% =nd— (n—1)8,, (A.15)

unb

the leading bias correction vanishes. Here, 8 = f(X).

165



A Appendix

A related resampling technique is the Bootstrap method, where one also generates a number
np of new sets of samples from X, but in this case by drawing #n measurements X; at random, i. e.

Xy = {X5, X5,..., X} (A.16)

where j = 1,...,np and X7 € X (random). Note that an individual sample may be drawn
multiple times (sampling with replacement). Similar to the Jackknife method, we define the
estimator of f(-) for the j-th Bootstrap replica as

0, (A.18)

where the number of Bootstrap samples np can be chosen as a free parameter. As a rule of
thumb, however, a number of 100-500 replicas is usually a good choice, depending on the
quality of the data set [397]. The variance of the estimator is now defined as

N 1 2: N A \2
Var(0) = k; (00 — )" (A.19)

One particular strength of resampling methods is that they allow us to compute uncertainties
and correlations of problems which do not rely on a parametric formulation of an underlying
theoretical model. In order to illustrate how this can be implemented, suppose that we have an
ordered data sample

Y=1{Y1,Ys...Ys}, (A.20)

which could, for instance, represent the mean values of some observables for different lattice
sizes. We want to perform a fit, which is symbolically denoted by

6= 5(Y), (A21)

resulting in a vector of fit parameters §. How can we calculate uncertainties for these fit
parameters? Propagating the uncertainties of the original data pool through a fit (or a non-
parametric object in general), effectively results in a vectorized Bootstrap resampling. This
requires to measure each Y; several times, i. e. strictly speaking, Y represents a set of sets

Y={Y1,Ys...,Yu} (A.22)
= {{Yi1,- Vi Vo1, .- Youlr oo oo \Ymas - Ymul}, (A.23)

where, in general, m # n. We are now able to construct np bootstrap replicas Y ;) by drawing
randomly from each respective subset, i. e.

Yo ={Y], Y5,..., Y5} (A.24)

166



A.3 Bootstrap and Jackknife

= Y o Yo (G Yia b A Vit (A.25)

where Yl?fj €Y; (random) fori=1,...,m,j=1,...,nand k =1,...,np. For each replica Y(k>,
we compute the averages of the individual resampled data points, i. e.

Yoo ={Y1, Y3, Yn}, (A.26)
where
1 n
Yi=—3Y; (A27)
n =
and use these to compute
0 = S(Y(i)), (A.28)

resulting in a number of np fit parameter vectors, from which the final estimates, as well as
their corresponding uncertainties can be computed straightforwardly, using Equations (A.18)
and (A.19). Furthermore, the covariance matrix is given by

1 &

ng — 1 k;l (évc(k) - éoc(-)) (éﬁ(k) - érsc)) (A.29)

Faﬁ (é) =

where, éa(k) represent the results for the a-th fit parameter in the Bootstrap replica with index k
and (-) denotes the corresponding average

Ou() = - k; Oui)- (A.30)

Finally, by means of the Bootstrap analysis, we are also able to compute cross-correlations
among the data points. The corresponding covariance matrix is given by

— 1 & * * * * ..

*

where Yi(k) denotes the i-th (averaged) data point of the k-th Bootstrap replica and Y; 0 is the
average of the corresponding data point over all replicas, as before.
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A.4 Covariance matrix

We seek to perform fits which minimize a general x?, given in terms of an inverse covariance
matrix, which accounts for cross-correlations among the data points by

2

X = (x; — fit) C; 1 (2 — fit), (A.32)

1

M=
M=

I=1m

where N denotes the length of the data set. The covariance matrix can readily be computed
from bootstrap methods [288, 289], using the formula

1 &

Cim = . Y (Fi = () (Foi — (X)), (A.33)
i=1

where np denotes the number of bootstrap samples. Moreover, ¥ ; denotes the [-th out of N
data points in the bootstrap sample with index i and (x) is the corresponding average over all
bootstrap samples.

A sufficient condition for the covariance matrix to be invertible is that the matrix is positive
definite, which should apply by construction. However, numerically it turns out that this is
not the case, even if, in our Python implementation, we use math. fsum (rather than numpy . sum)
for carrying out the summations in Equation (A.33). Since, especially in joint fits consisting of
several observables, huge differences in the orders of magnitudes of the individual entries can
be expected, math. fsum is more robust against numerical rounding errors.

As a consequence of the covariance matrix being non-symmetric due to numerical uncer-
tainties, we need to “repair” it, which is done in multiple steps. First, we symmetrize C by
computing

1
Coym = 5(C+ ch). (A.34)

For joint fits such as performed in this work one now typically faces the problem that the
covariance matrix is rank deficient due to the strongly correlated blocks it is build of. In order
to circumvent this problem, we compute the spectral decomposition and neglect contributions
from some of the smallest eigenvalues. Specifically,

Csym = Q/\Qil (A.35)

where Q is a square matrix which contains the eigenvectors of Csym as columns and A is the
diagonal matrix built from the corresponding eigenvalues. Numerically, it turns out that the
eigenvalues and eigenvectors depend noticeably on the algorithm used for the decomposition.
In particular, we compared numpy . 1inalg.eig which can be regarded as the generic implemen-
tation for that purpose and numpy . linalg.eigh which exploits the fact that Csym is symmetric
by using appropriately specialised routines. Eventually, we found that in our case both routines
tend to behave numerically unstable due to large differences in numerical values mentioned
already and therefore resorted to a singular value decomposition

Coym = UZVT (A.36)
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by using numpy.linalg.svd instead, which turns out to be considerably more robust. For
details on the singular value decomposition, we refer the reader to standard textbooks, such
as [398]. Since, in our case, Csym is a square matrix, also U, £ and V are. Furthermore, L is
diagonal and contains the singular values s;, i. e.

X = diag(s1,s2,.--,5N)- (A.37)
We reconstruct the covariance matrix by means of a principal component analysis [399],
Cpea = UEVT, (A.38)
where
¥ = diag(s1,s2,...,5m,0,...,0), M< N (A.39)

and where we assume that the singular values are ordered according to their size, s; > s, >
... > sp. Hence, any contributions from the smallest N — M singular values are neglected.
According to [400], the optimal threshold for square matrices is given by 2.858 times the median
of the s;. The reconstructed matrix is still rank deficient. In order to obtain a full rank matrix,
we add a so-called isotropic noise [401]

Cspp = Cpea + BI, (A.40)
where I denotes the identity and f3 is given by
B = tr(csym) - tr(CI’CA)~ (A41)

This procedure conserves the trace of the covariance. In summary, we found a symmetric
positive semi-definite reconstruction of the original covariance matrix, given by Equation (A.40),
which can be used in the fitting procedure.
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APPENDIX

Supplementary Material

Table B.1 provides detailed simulation settings for the Ising model on the DT, performed in
Section 5.2, and Table B.2 lists fit results for the critical temperature of this simulations, according
to Equation (5.12). Moreover, in Figures B.1 and B.2, we present data collapses for the contact
process on the grand-canonical DT lattice, mentioned in Section 5.3. Finally, Table B.3 presents
the detailed fit results for the running critical exponents of the Ising model on CC and DT
lattices, investigated in Section 5.1.

L N; Nwolff
16,18,20,24 100000 10
32,36,40,48 100000 12

64,80,96 100000 15
128,192,256 35000 17
384,512 15000 23
768 5000 27
1024 4000 29

Table B.1 | Number of disorder replicas and cluster updates (Ising, VG). Number of disorder replicas
and cluster updates per EMCS for simulations of the Ising model on two-dimensional Voronoi graphs
at criticality. All systems were simulated at T = 1.47205.
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Table B.2 | Critical temperature (Ising, VG). Results of the fits according to Equation (5.12) with fixed v = 1. The results are graphically displayed in
Figure 5.7.

w =170 w =154 w =1.38
Lin T. x%/d.o.f T, x%/d.o.f T, x%/d.o.f T, w x%/d.o.f

16 1.472009(15) 329 1.472031(15) 8.8 1.472040(15) 16.8 1.4720607(17)  1.495(12) 7.5
18 1.472686(15) 13.2 1.472619(15) 4.0 1.472541(15) 18.4 1.4720624(17)  1.552(15) 3.9
20 1.472673(15) 79 1.472615(15) 39 1.472548(15) 18.6 1.4720631(17)  1.582(21) 33
24 1.472659(15) 4.0 1.472616(15) 44 1.472566(15) 14.7 1.4720639(18)  1.626(32) 32
32 1.472650(16) 3.2 1.472622(16) 4.1 1.472590(16) 8.1 1.4720645(20)  1.668(55) 3.8
40 1.472651(16) 3.8 1.472631(16) 35 1.472608(16) 45 1.4720636(24)  1.582(98) 7.3
48 1.472653(17) 4.6 1.472637(17) 3.6 1.472619(17) 3.2

64 1.472645(19) 5.0 1.472635(20) 43 1.472623(20) 3.8
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Figure B.1 | Finite-size data collapse (CP, DTgC). Simulations starting from a fully
occupied grand-canonical DT lattice at the critical point p. = 0.588311, using
the critical exponent estimates stated in the figure. All curves are averages over
800 disorder realizations with 5 runs per realization. L denotes the linear system
size. The inset shows the non-rescaled density as a function of time.
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A denotes the distance from the critical point p. = 0.588311. The inset shows
the non-rescaled density as a function of time.
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L Nits v Niits v/v Nits  (1-B)/v  Nis B/v
DT Q>02 Q>02 Q>02 Q>08
32 4 1.0139(28) 3 1.7620(23) 2 0.8670(28) 2 0.1191(28)
48 4 1.0125(2) 3 1.7612(16) 2 0.8681(20) 3 0.1212(22)
64 16 1.0107(9) 5 1.7638(12) 6 0.8706(6) 5 0.1215(21)
80 25 1.0082(5) 6 1.7606(7) 7 0.8707(4) 6 0.1240(17)
96 28 1.0063(5) 7 1.7583(6) 7 0.8714(4) 6 0.1243(17)
128 28 1.0051(4) 7 1.7570(6) 7 0.8719(4) 6 0.1247(17)
160 28 1.0045(5) 7 1.7556(6) 7 0.8722(4) 6 0.1249(17)
192 28 1.0042(5) 7 1.7543(5) 6 0.8721(4) 5 0.1245(17)
256 28 1.0038(5) 7 1.7538(6) 7 0.8726(5) 5 0.1242(18)
320 27 1.0036(6) 6 1.7536(7) 6 0.8730(7) 4 0.1241(23)
CC4 Q> 0.01 Q>02 Q>03 Q>06
32 7 1.156(11) 7 1.779(5) 3 0.784(19) 7 0.101(5)
48 3 1.136(8) 7 1.775(4) 3 0.791(14) 7 0.102(5)
64 19 1.109(6) 7 1.764(7) 5 0.800(9) 7 0.103(7)
80 28 1.0939(32) 7 1.760(8) 7 0.810(5) 7 0.105(9)
96 28 1.0847(31) 7 1.758(8) 7 0.813(4) 7 0.107(9)
128 28 1.0815(31) 7 1.757(8) 7 0.813(4) 7 0.110(8)
160 28 1.0739(31) 7 1.757(8) 7 0.818(5) 7 0.112(9)
192 28 1.0648(30) 7 1.758(8) 7 0.824(4) 7 0.115(8)
256 28 1.0619(35) 7 1.758(10) 7 0.826(5) 7 0.116(10)
CCé6 Q> 0.05 Q>01 Q>03 Q>06
32 5 1.066(8) 4 1.765(6) 6 0.8417(13) 4 0.1156(29)
48 5 1.061(6) 4 1.763(5) 6 0.8425(13) 7 0.1156(28)
64 18 1.0470(23) 7 1.764(4) 6 0.8447(20) 7 0.119(4)
80 24 1.0399(16) 7 1.7615(33) 7 0.8492(19) 7 0.116(5)
96 28 1.0353(13) 7 1.7572(33) 7 0.8506(19) 7 0.1190(5)
128 28 1.0334(12) 7 1.7546(32) 7 0.8503(18) 7 0.120(5)
160 28 1.0307(12) 7 1.7536(33) 7 0.8512(19) 7 0.121(5)
192 28 1.0281(12) 6 1.7546(34) 6 0.8520(22) 6 0.122(6)
256 28 1.0268(14) 6 1.755(4) 6 0.8517(27) 6 0.123(7)
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CC10 Q>0.1 Q>03 Q>03 Q>0.8
32 5 1.0219(18) 5 1.7630(7) 1 0.858(6) 1 0.1200(40)
48 6 1.0207(14) 5 1.7626(6) 3 0.857(4) 3 0.1211(30)
64 25 1.0180(6) 7 1.7616(11) 7 0.8621(9) 6 0.1243(36)
80 28 1.0168(5) 7 1.7598(12) 6 0.8643(17) 7 0.1254(25)
96 26 1.0143(6) 7 1.7588(12) 7 0.8651(6) 7 0.1247(27)
128 27 1.0129(6) 7 1.7576(12) 7 0.8658(6) 7 0.1245(27)
160 27 1.0115(6) 7 1.7563(11) 7 0.8662(6) 7 0.1251(27)
192 28 1.0102(6) 7 1.7554(11) 7 0.8666(7) 6 0.1251(27)
256 28 1.0099(7) 7 1.7550(13) 7 0.8668(8) 6 0.1251(33)

Table B.3 | Effective critical exponents for the DT, CC4, CC6 and CC10 lattices. Columns N, denote
the number of fits with a goodness-of-fit parameter Q larger than the value indicated out of 4 - 7 = 28
fits for v and 7 for all other exponents. L denotes the centre of the respective fitting window, compare

Figure 5.4. The data is displayed in Figure 5.6.
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