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Abstract
Almost half of all preterm births are caused or triggered by an inflammatory process at the feto-maternal interface resulting in
preterm labor or rupture of membranes with or without chorioamnionitis (“first inflammatory hit”). Preterm babies have highly
vulnerable body surfaces and immature organ systems. They are postnatally confronted with a drastically altered antigen
exposure including hospital-specific microbes, artificial devices, drugs, nutritional antigens, and hypoxia or hyperoxia (“second
inflammatory hit”). This is of particular importance to extremely preterm infants born before 28 weeks, as they have not
experienced important “third-trimester” adaptation processes to tolerate maternal and self-antigens. Instead of a balanced adap-
tation to extrauterine life, the delicate co-regulation between immune defense mechanisms and immunosuppression (tolerance) to
allow microbiome establishment is therefore often disturbed. Hence, preterm infants are predisposed to sepsis but also to several
injurious conditions that can contribute to the onset or perpetuation of sustained inflammation (SI). This is a continuing challenge
to clinicians involved in the care of preterm infants, as SI is regarded as a crucial mediator for mortality and the development of
morbidities in preterm infants. This review will outline the (i) role of inflammation for short-term consequences of preterm birth
and (ii) the effect of SI on organ development and long-term outcome.
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Determinants of outcome after preterm birth

The main driver for the success of modern neonatology was
the overarching aim to reduce preterm infant mortality rates.
In the last decades, this goal has been achieved in many high-
income countries mainly due to the significant progress in the

perinatal management of high-risk pregnancies and the recent
advances in neonatal intensive care. Current international net-
work data indicate that preterm babies even at the margin of
viability of 24 weeks of gestation survive in more than > 70%
Fig. 1. Increasing survival of highly vulnerable babies under-
scores the need to assess and implement care that prevents
adverse short-term complications and optimizes long-term
outcomes. In Table 1, the incidences of typical adverse
short-term outcomes after preterm birth are summarized. It
should be noted that the current scientific evidence is primar-
ily related to extremely preterm infants < 28 weeks of gesta-
tion (EPI; 0.3–0.6% of births in high-income countries) and to
a lesser extent to very preterm infants (VPI; 28–32 weeks of
gestation, 0.5–1.5% of births). The numerical majority of pre-
term babies—the cohort of moderate-to-late preterm infants
(MLPI; 33–36 6/7 weeks of gestation; 5.5–7% of births)—has
not been studied in great detail yet [5, 6].

The etiology of adverse outcomes is multifactorial with
inflammatory processes being a crucial driving force.
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Inflammation is particularly important for the develop-
ment of bronchopulmonary dysplasia (BPD), necrotizing
enterocolitis (NEC), and retinopathy of prematurity (ROP)
but also for intracerebral hemorrhage (ICH) and
periventricular leukomalacia (PVL). Classical “inflamma-
tory phenotypes” are seen in preterm infants with sepsis
or NEC which are still the second most common causes of
death in preterm infants after respiratory failure [4]. Acute
inflammatory processes, specifically in survivors from
sepsis or NEC, may not be well resolved and therefore
result in SI. As outlined in Fig. 2, the main endogenous
risk factors for SI are gestational age, birth weight, and
gender. Genetic background is proposed to play a role for

SI; however, in the specific situation of preterm infants,
no single candidate variant has yet been confirmed as risk
factor [17]. Thus, SI risk might represent a mixture of
individual predispositions, which are the cause of preterm
birth or its consequence. Due to the care under highly
controlled conditions, the distinct cohort of preterm in-
fants can serve as a model to disentangle the impact of
(epi-)genetic factors from environmental influences on the
development of SI. Longitudinal studies could therefore
pioneer the investigation of entities in adulthood that are
mediated by prolonged inflammation (e.g., chronic lung
disease, coronary heart disease, neurodegenerative dis-
ease, metabolic syndrome) [18].

Table 1 Incidences of major short-term complications of preterm birth

Outcome EPI < 28 weeks VPI 28–32 weeks MPI/LPI 33–< 37 weeks References

Intracerebral hemorrhage

All 15–25% 1–4% 1–2% [5–13]

Grade III–IV (Papile) 3–6% 1–2% < 1%

PVL 2–8% 1–6% ?

Sepsis

Clinical 25–60% 10–30% 5–9% [5, 6, 8, 9, 13–15]

Blood culture confirmed 15–50% 2–6% 1–3% [7, 8, 13, 14]

EOS 1–1.5% 0.1–0.3% 0.1–0.2% [13, 14]

LOS 15–50% 1.5–6% 1–3% [13–15]

NEC requiring surgery 4–10% 0.5–3% < 1% [6–13, 16]

SIP requiring surgery 3–8% < 1% < 1% [6, 13]

Pneumothorax 4–7% 1–4% 1–2% [5–8, 13]

BPD 15–50% 5–25% ? [13]

ROP 2–5% 1–3% ? [13]

Death in hospital 10–20% 2–5% 1% [5, 6, 9–13]

PVL periventricular leukomalacia, EOS early-onset sepsis (≤ 72 h of age), LOS late-onset sepsis (> 72 h of age), NEC necrotizing enterocolitis, SIP
spontaneous intestinal perforation, ROP retinopathy of prematurity, BPD bronchopulmonary dysplasia
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It is an overarching hypothesis of this narrative re-
view that SI contributes to long-term complications of
several organ systems including central nervous system
(CNS) (e.g., cerebral palsy, neurobehavioral impair-
ment), lung (chronic pulmonary insufficiency of prema-
turity, CPIP) [19, 20], and gut [21–24] (Fig. 2). A clear
relationship has not yet been demonstrated, while indi-
rect evidence comes from observational data. For exam-
ple, the follow-up examination of GNN infants at 5 years
of age (n = 1552) noted that neonatal sepsis (n = 538) is
associated with a twofold risk to have a Wechsler
Preschool and Primary Scale of Intelligence (WPPSI)
score < 85 as compared with unaffected preterm infants
(28.1 vs 12.7%, p < 0.001; adjusted for gestational age,
intracerebral hemorrhage, and maternal educational lev-
el: OR 1.92 (95% CI: 1.40–2.64)). Hence, there is an
urgent need to prevent sepsis but also to evaluate new
resolution strategies of SI in order to promote long-term
health in preterm infants. The major challenge, however,
is the time lag between “a window of opportunity”
(usually within the first 4 weeks of life when most
postnatal inflammatory episodes occur) [25] and the
time-point at which relevant determinants of outcome
can be properly assessed (i.e., lung function, intelligence
tests at school age).

Sustained inflammation in the context
of preterm birth

Preterm infants have a remarkably different system of immune
regulation as compared with term infants and adults. For the
immune defense, the preterm infant relies on the non-specific
innate immunity, while T cell responses including those T
helper cells counter-regulating inflammation, e.g., regulatory
T cells (Treg), might be less functional. Hence, pro-
inflammatory cytokine responses (e.g., interleukin (IL)-1,
IL-6, IL-8, tumor necrosis factor (TNF)-a) and other
inflammation-related proteins (e.g., C-reactive protein
(CRP), intercellular cellular adhesion molecule (ICAM)-1,
erythropoietin, ferritin) are overexpressed and insufficiently
balanced by immunosuppressive elements (e.g., IL-10, S100
A8/9, myeloid-derived suppressor cells, Treg, CD71+ cells). In
inflammation-related protein measurements in blood spots,
serum and plasma are therefore used as surrogate markers to
define SI in preterm babies, as outlined in several reports of
the multicenter Extremely Low Gestational Age Newborn
Study (ELGAN, infants < 28 weeks of gestation) group
[26–29]. There is, however, a certain ambiguity in the defini-
tion of SI. Elevated concentrations of inflammation markers
on two time-points within an interval of 1 week may reflect an
ongoing process with failure of inflammation resolution (as

Fig. 2 Complex risk profile of preterm infants for sustained inflammation
and long-term vulnerability. This simplified model depicts that preterm
infants are at risk for sustained inflammation by the virtue of their
immaturity and several environmental exposures (“inflammatory” hits).
The neonatal immunity is primed by the feto-maternal interface and
interacts with the yet unstable microbiome. A delicate balance is needed
between tolerating microbiological colonization and adequate immune
responses to invasive pathogens. The neonatal “inflammatory

phenotype” may result from a disturbed immune-microbiome
development. The acute inflammatory process often fails to be properly
resolved after clinical recovery with the consequence of sustained
inflammation. The cross talk between immunity and microbiota
continues and is proposed to affect developmental trajectories and long-
term outcomes. Longitudinal studies are needed to account for protective
modulators and continued risks for dysregulatory influences. PPROM,
preterm premature rupture of membranes
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we define SI in this review). Alternatively, flare-ups of a re-
cent acute inflammatory process or two separate episodes of
inflammation may be associated with elevated concentrations
of inflammatory markers and cannot be discriminated from SI
[30]. Hence, follow-up examinations are needed to ascertain
SI in a clinical context. Notably, inflammatory processes can-
not only be sustained over a long time in preterm infants but
also in term infants who survived neonatal encephalopathy
[31].

Recent developments in the molecular analysis of complex
biomaterials suggest that there are multiple dimensions to SI
in preterm infants, i.e., a disturbed interaction between the
immune system and the microbiota (see also Fig. 2). The
“healthy”microbiome implies a symbiotic life of the host with
“friendly” microbes which provides homeostasis and protec-
tion from adverse short-term outcome. In preterm infants,
however, there is evidence that (i) systemic inflammation
(sepsis) often originates from the gut, (ii) the microbiota of
preterm infants develops in a highly dynamic fashion and is
therefore prone to dysbiosis, an imbalance with reduced mi-
crobial diversity and deficient metabolic capacity to control
potential pathogens (“enemies”), and (iii) most circulating
metabolic compounds (with potential to perpetuate inflamma-
tion) are actually derived from gut bacteria [32–35]. Specific
diseases, such as sepsis and NEC, are preceded by gut
dysbiosis and immunological dysbalance [36, 37].

Microorganisms perform essential functions mechanisti-
cally linked to the immune system of the preterm infant.
Metabolites (e.g., short-chain fatty acids, SCFAs) and
microbe-associated molecular patterns (MAMPs, e.g., lipo-
polysaccharide (LPS), peptidoglycan, flagellin) are supposed
to play an important role as mediators. SCFAs such as buty-
rate are able to generate and enhance the pool of regulatory T
cells which are capable to suppress inflammation [38].
Butyrate can also restore anti-inflammatory cytokine expres-
sion IL-10 levels by inhibiting the histone deacetylase in
myeloid-derived suppressor cells (MDSCs) which limits in-
flammation in a K. pneumoniae murine sepsis model [39].
Translational studies with adult cohorts demonstrate that the
composition of the gut microbiome is a crucial determinant for
ex vivo cytokine production capacity and that the abundance
of SCFA-producing bacteria in the gut is associated with a
decreased infection risk following allogenic stem cell trans-
plantation [40, 41]. In preterm infants, the potential link be-
tween dysbiosis-sustained inflammation and long-term out-
come has not been evaluated yet [42]. A recent study in pre-
term babies < 32 weeks suggested that a subgroup of infants is
capable of rapidly acquiring adequate immune functionality,
independently of the developing heterogeneous microbiome.
Preterm infants who had an inflammatory insult, however,
have reduced percentages of CXCL8 but comparable levels
of TNF-producing T cells, as precursors of adverse outcome.
Hence, distinct identifiable differences in functionality may

predict subsequent infection-mediated outcomes [43].
Intriguingly, there is evidence that the developing organ sys-
tems at risk for long-term sequelae have a significant cross talk
via the microbiome-immune interaction (gut-brain axis, gut-
lung axis, gut-heart axis) [44]. This emerging field of research
offers new targets for microbiota stabilization in order to
strengthen the ability to downregulate or resolve immune
responses.

Sustained inflammation and long-term
outcome of developing organ systems

There are strong arguments for SI contributing to systemic
alterations on the immune system itself but also on the tis-
sue-/organ-specific development of organ systems. The exper-
imental evidence for a causal relationship are often lacking,
while observational studies provide indirect evidence. With
regard to long-term immunological vulnerability, the risk of
rehospitalization due to infections during childhood is inverse-
ly correlated with gestational age [53, 54]. Other association
studies suggest a potential role of accelerated immunological
aging in ex-preterm infants as indicated by telomere length
differences in comparison with term-born infants [55]. On
the other hand, preterm infants have a reduced risk of devel-
oping immune-mediated atopic dermatitis [56]. As potential
mechanisms have currently been discussed a reduced expo-
sure to environmental antigens, the early weaning from human
milk and the premature development of a skin microbiome
which can trigger specific local immune reactions to prevent
dermatitis. Most of these data are case-control designs. A
careful interpretation is needed, and the potential effect size
of SI requires adjustment for other confounding factors for
immunological susceptibility later in life including small anat-
omy and organ-specific predispositions which are outlined
below.

Inflammation and the preterm brain

In recent years, it has been demonstrated that the brain of
preterm infants responds differently to injurious exposures
than the brain of term neonates or children [57–63].

This explains the high susceptibility of extremely preterm
infants to neurodevelopmental impairment and cerebral palsy
[64]. Other studies indicate that alsomoderate and late preterm
children exhibit a risk for developmental delay, most marked
in the language domain, at 2 years, and behavioral problems at
7 years [65–67]. The CNS is an immune-privileged organ.
However, inflammatory hits such as maternal immune activa-
tion (MIA) during pregnancy or other exposures during vul-
nerable periods of development (Fig. 3) can severely affect the
development of the CNS [68, 69]. Three main cell types ac-
count for neuroinflammation in the human brain: microglia,
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astrocytes, and immune cells from the peripheral system mi-
grating into the brain tissue after blood-brain barrier dysfunc-
tion. Pro-inflammatory cytokines are produced which further
induce the activation, migration, and proliferation of cytotoxic
T cells and natural killer cells. As a consequence, tissue dam-
age occurs, particularly in the white matter [70]. The extent of
damage apparently depends on the developmental stage as
inflammatory stimulants (e.g., IL-1ß) lead to more pro-
nounced neutrophil migration, chemokine production, and
more disrupted blood-brain barrier in neonatal mice than in
adult mice [71–73]. Microglial cells have an important phys-
iological role for the regulation of neuronal apoptosis and
neurogenesis and promote synaptic formation, pruning, and
maturation [69, 74–79]. They also support axon fasciculation
and myelinisation [80] and are important for the synaptogen-
esis and degradation of weak synapses. In terms of inflamma-
tory function, the microglial cells display a plentitude of re-
ceptors for cytokines, chemokines, as well as for damage-
associated molecular patterns (DAMPs), pathogen-
associated molecular patterns (PAMPs), and factors of extra-
cellular matrix [81]. Long cellular processes scan the environ-
ment for changes in brain tissue and are able to switch the cell
into an activated stage [82–84]. Activated microglia trans-
forms into macrophage-like cells which have the ability for
phagocytosis [84], proliferation, and migration into the areas
of injury. In preterm postmortem brains, the concentration of
microglia was shown to be increased around cystic lesions

indicating that an inflammatory process has not been properly
resolved [85–87]. In the cerebrospinal fluid (CSF) of new-
borns with perinatal hypoxic-ischemic encephalopathy, sig-
nificantly elevated levels of inflammatory markers derived
from microglia were found and causally linked to neonatal
white matter damage leading to spastic cerebral palsy [88–93].

Astrocytes display multiple functions on synapses, metab-
olite transfer, production of extracellular matrix, myelination,
and blood-brain barrier formation. Proliferation of astrocytes
starts around gestational age of 24 weeks with a peak around
26–28 weeks [84]. Astrocytes are usually important for anti-
inflammatory homeostasis and microglia modulation [94].
However, after specific microglial stimuli, astrocytes may turn
into inflammation triggering cells by releasing pro-
inflammatory cytokines inducing brain damage [95–97]. A
cytokine storm further supports the plasticity of astrocytes
which remarkably contributes to SI in the brain [97].

Preterm infants with SI have adverse neurodevelopmental
outcomes at 18–22 months including cerebral palsy, reduced
Bayley Scales of Infant Development II testing scores, re-
duced mental and psychomotor development indices, and vi-
sion impairment [24]. The ELGAN study group [29] reported
that sustained elevations of acute inflammatory proteins dur-
ing the first 4 weeks of life were associated with a 2- to 5-fold
increased risk for various impairments of intelligence quotient
(IQ) and executive function. There was a measurable “dose
effect” of early vs late elevations indicating that the
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consequent implementation of prevention strategies of infec-
tions such as breast milk feeding, less invasive care, hand
hygiene, and antibiotic stewardship programs is needed to
improve neurodevelopmental outcome [98–100].

Postmortem studies of preterm brains and animal sepsis
studies suggested that γδ T cells were also linked with injury
of the developing brain. Depletion of these cells protected
mice against brain injury after induction of inflammatory cas-
cades [101, 102]. Specialized B cells with innate-like func-
tions, maternal antibodies (especially when blood-brain barri-
er is disrupted), and the complement system may play a fur-
ther role in detrimental effects on brain tissue [103–106]
which is reviewed elsewhere [45, 107]. A causal relationship
betweenmaternal infection and inflammation during pregnan-
cy and adverse neonatal brain development has recently been
demonstrated for Zika virus infection and microcephaly [108]
but also exists for Toxoplasma gondii, herpes viruses, and
several bacterial infections [109–122]. Animal models have
suggested that maternal immune activation induces sustained
inflammation in the offspring at a much higher likelihood
when the offspring was additionally exposed to stress or drug
use [123–125]. In the human context, infants that undergo
early (prenatal) and subsequent inflammation have a higher
risk for adverse neurocognitive and behavioral outcome
[126–130]. Several clinical studies imply that a distortion of
the gut-immune axis has an impact on neurocognitive out-
come. Similar to the central nervous system, the enteric ner-
vous system is able to release distinct signaling molecules
which are key regulators in local (and systemic) inflammatory
processes of the gut [131–135]. The complex gut-CNS inter-
play via neural, endocrine, metabolic, and immune factors is
referred to as the “gut-brain axis,” but the pathways remain to
be fully elucidated. However, several diseases of the gastro-
intestinal tract with inflammatory characteristics impact
neurodevelopment and behavioral outcome [23, 135]. In pre-
term infants, NEC is a good example for the potential clinical
relevance of a “gut-brain axis.” NEC is a devastating disease
characterized by inflammation of the mucosa with subsequent
necrosis of the intestinum. A multifactorial pathogenesis with
immune response to non-physiologic intestinal microbiota
(“dysbiosis”), immature intestinal anatomy, and increased ex-
pression of pro-inflammatory mediators is involved in the
pathogenesis. Several studies have shown significant higher
incidences of neurodevelopmental dysfunction [23, 136–140],
and brain injury in magnetic resonance imaging [141], espe-
cially when infants were longer exposed to the inflammatory
process [139, 140]. Given the major instability of the
microbiome in the first months of life (Fig. 3), a multifactorial
therapeutic approach by modulation of early dysbiosis via
probiotics, controlled administration of antibiotics in accor-
dance with antibiotic stewardship, and early termination of
inflammation through early surgery may improve
neurocognitive outcome [142, 143]. More research is needed

to address the critical need for the early determination (at best
pre-symptomatic) of adverse neurological outcome by potent
biomarkers such as brain imaging and sensitive testing
batteries.

Inflammation and the preterm gut

The gastrointestinal tract (GI) underlies a vast transition
through pregnancy and the period of preterm birth which
makes it susceptible to inflammatory damage [144]. Major
risk factors include immature mucosal barriers, dysfunctions
of immune cells, reduced motility of the GI tract, decreased
concentrations of secretory IgA and antimicrobial peptides,
and an increased risk of dysbiosis and bacterial overgrowth
as outlined above [145]. Several exogenic factors (e.g., chron-
ic ischemia during pregnancy, chorioamnionitis, antibiotic ex-
posure, parenteral nutrition) trigger dysbiosis and seem rele-
vant for the risk of inflammation-mediated acute gut compli-
cations (e.g., NEC). In pregnancy mouse models, maternal
inflammation leads to subsequent GI injury in the mucosal
and submucosal layers of the gut [146] and alteration of GI
epithelial cells in the offspring, which play a key role in innate
immunity [147, 148]. In a human study of preterm infants,
chorioamnionitis was shown to higher the incidence of late-
onset sepsis and death among preterm infants and shifted the
fecal microbiome of preterm infants [149]. The gut microbiota
and its metabolites can influence immune functions and im-
mune homeostasis both within the gut and systematically.
Beyond the role of microbial-derived short-chain fatty acid
(SCFA) and biotransformed bile acid (BA) potential immune
ligands, inflammation can be mediated via epigenetic process-
es or by specific cell signaling receptors like GPRCs, TGR5,
and FXR [150]. Intestinal permeability and bacterial translo-
cation are important contributors of SI and, without repair of
the intestinal barrier, might represent a continuous inflamma-
tory stimulus leading to growth failure, short bowel syndrome,
and a higher risk for autoimmunity (e.g., inflammatory bowel
disease) after preterm birth [56, 151]. Growth failure is the
main cause of rehospitalization of highly preterm infants dur-
ing infancy [53]. Mechanistic models, e.g., short bowel syn-
drome zebrafish, show that the short bowel syndrome results
in an increased expression of genes involved in inflammation,
proliferation, and bile acid synthesis. Vice versa, genes in
folate synthesis, gluconeogenesis, glycogenolysis, and fatty
acid oxidation as well as activation in drug and steroid metab-
olism are downregulated [152]. These significant and com-
plex alterations in pathways suggest that short bowel syn-
drome is provoked by SI and aggravated by long-term expo-
sure to potential inflammatory compounds such as parenteral
nutrition. Hence, anti-inflammatory strategies including hu-
man milk and pre-, pro-, and synbiotics are attractive interven-
tions to target gut-mediated SI which are discussed in detail
elsewhere (e.g., [153]).
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Inflammation and the preterm lung

The continuous antenatal process of lung tissue development
makes survival of preterm infants possible when differentia-
tion of the lung structures enables gas exchange. Lung devel-
opment has been traditionally characterized in different stages
[48], as outlined in Fig. 3, but goes far beyond birth.
Especially at early developmental steps, interruptions can dis-
turb lung maturation, leading to impairments in lung function
and structure [47]. Therefore, extremely preterm infants are at
high risk to develop chronic lung disease (CLD), which may
be characterized as the BPD “phenotype,” i.e., oxygen need >
36 weeks, corrected age, or a CPIP which has clinical overlaps
with the early childhood “asthma phenotype” [19]. A meta-
analysis of 31 birth cohorts showed that preterm birth is asso-
ciated with an increased risk of wheezing (OR 1.34 (95% CI:
1.25–1.43)) and school-age asthma (OR 1.40 (95% CI: 1.18–
1.67)) [154]. A potential explanation is that preterm infants are
more likely to be exposed to multiple risk factors for the de-
velopment of the “asthma phenotype” (cesarean delivery, in-
fections, and antibiotic use) as compared with term infants. All
these risk factors are associated with a higher risk to SI [155].

Recent animal and human studies have also demonstrated
cross talks between different mucosal sites, e.g., gut-lung axis
[156]. Hence, microbiome-immunity interactions might be
important for the development of BPD/CPIP which is indi-
rectly supported by epidemiological data. In particular, multi-
variate logistic regression analysis from the GNN cohort (n =
2527 BPD-diagnosed infants, n = 12,826 unaffected controls)
indicate that neonatal sepsis is an independent risk factor for
BPD (odds ratio, OR 2.2, 95% CI: 1.9–2.4, p < 0.001). Sepsis
also increases the risk for oxygen need at discharge (n = 432
affected infants/n = 11,634 controls; OR 1.68 (1.35–2.08),
p = 0.001). In contrast, potential “stabilizer” of the immune-
microbiome interaction such as nutrition with humanmilk and
probiotic supplementation is associated with a reduced risk for
BPD and respiratory infections [151]. Infants with BPD were
shown to have a decreased airway microbiome diversity and
higher concentrations of Ureaplasma spp. as compared with
non-BPD infants. However, clinical and methodological het-
erogeneity make these data difficult to interpret [157, 158].
Furthermore, changes in the composition of the airway
microbiome do not necessarily impact on inflammatory cyto-
kine levels and might be heavily confounded by the clinical
practice (e.g., exposure to antibiotic therapy, ventilation, nu-
trition, surrounding) [157, 159, 160].

The histological picture of CLD includes alterations of the
lung structure with reduced septation, vascularization, number
of alveoli, and simplified alveolar structures leading to a re-
duced capability of gas exchange and relevant lung function
restrictions persisting into adulthood [47, 161, 162]. SI in the
lung is triggered by mechanical ventilation, oxygen use, and
infection. Tracheal aspirates of infants mechanically

ventilated had higher concentrations of pro-inflammatory cy-
tokines (IL-1β, IL-6, IL-8, TNF-α) [163, 164] (for review, see
[47]). In a myriad of animal studies, a clear link between
intrauterine inflammation and impaired fetal lung develop-
ment is described [165–169]. Intra-amniotic injection of LPS
resulted in changes of vascular markers and structural alter-
ations of the preterm lung [167, 170]. In particular, intra-
amniotic inflammation induced smooth muscle hypertrophy
[167], decrease of alveoli number, and increase of alveolar
volume [170]. Studies in fetal lambs with intra-amniotic ad-
ministration of LPS prior to delivery showed effects on pul-
monary hemodynamics [171], especially when time to deliv-
ery after injection of LPS was long enough for vascular re-
modeling [172], suggesting a link between maternal immune
activation and pulmonary hypertension. Models of in utero
infection further revealed decreased expression of vascular
endothelial growth factor (VEGF) in lung tissue (important
for alveologenesis), increased synthesis of extracellular matrix
(collagen), and higher levels of inflammatory markers (IL-1β,
IL-6, IL-17A) in lung tissue samples leading to inflammatory
damage of the lungs [173–180]. Other authors demonstrated
that intrauterine infection enhanced Th17 expression resulting
in an immune modification of the lungs leading to uncon-
trolled inflammatory responses [181, 182]. This is in line with
the finding that extremely preterm neonates with BPD had
increased levels of Th17 and IL-17+ Treg lymphocytes in cord
blood samples as compared with unaffected controls [180].

Postnatal inflammation also plays an important role in the
pathogenesis of CLD. Several postnatal factors are known to
have an effect on the expression of pro-inflammatory cas-
cades. One of the most important triggers in the pathogenesis
of CLD is mechanical stretch injury via the use of invasive
ventilation [183]. In a multitude of animal models, increased
levels of pro-inflammatory cytokines [184–186] and inflam-
matory cells in the bronchoalveolar lavage fluid were found
secondary to invasive ventilation [183, 184]. Cytokine levels
are dependent on the duration of invasive ventilation [187],
tidal volume strategy [188, 189], and the type of ventilatory
support. Decreased inflammation was associated with non-
invasive ventilation models [190, 191]. In the pathogenesis
of CLD, early onset of inflammation processes seem to play
an important role as an early cytokine storm was shown to
impact the progress of chronic lung disease. In a longitudinal
analysis of human serum cytokine profiles in preterm infants,
infants with later diagnosis of BPD were shown to have ele-
vated levels of IL-6, IL-8, and granulocyte-colony stimulating
factor (G-CSF) at first weeks of life [192]. Using a murine
BPD model, Rudloff et al. could demonstrate that early anti-
inflammatory intervention on day one after birth via adminis-
tration of IL-1 receptor antagonists was beneficial to protect
from murine BPD as treatment initiated at day 6 [193]. In the
clinical setting, studies on the administration of steroids to
reduce the incidence of BPD argue for an effect of early
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administration (</= 7 days), but potential drug-related adverse
outcomes need to be considered [194]. A major challenge is
the assessment of early lung function parameters in preterm
infants. The lung clearance index (LCI) measured by multiple
breath washout (cumulative expired volume (CEV) divided
by the functional residual capacity (FRC) at 1/40 of the
starting gas SF6 concentration) might become a useful phys-
iological test to detect obstructive lung disease, air trapping, or
ventilation inhomogeneities. Future research needs to evaluate
the significance of respiratory rate, lung MRI, or lung imped-
ance tomography as functional biomarkers.

Inflammation and the preterm heart

Cardiac dysfunction in adults is well described in the setting of
sepsis and inflammation and is linked to the release of cyto-
kines and tissue hypoxia [195, 196] (see for review [197]).

Little is known about the effects of intrauterine or early
postnatal inflammation on the morphogenesis of the heart
and its consequences for the preterm infant. Growth, forma-
tion, and development of the cardiomyocytes continue until
birth [198] and may be potentially disrupted through inflam-
mation as changes in the transcriptome of fetal cardiac tissue
after inflammation were found [199]. Since the first descrip-
tion of David Barker [200], growing evidence suggests an
association of preterm birth and high blood pressure, type 2
diabetes, and stroke in adulthood [201–203], but pathophysi-
ological mechanisms remain to be determined. The fetal en-
vironment seems to play an important role in morphogenesis
of the heart during pregnancy, as infants born after preeclamp-
sia have a higher risk to develop high blood pressure and
stroke in later years [204–206]. Exposure of the immature
heart and vessels to a pro-inflammatory milieu [207, 208]
may lead to epigenetic modifications [209, 210], perturbation
in cardiac development-related genes, and changes of the ac-
tivity of transcription factors linked to chronic inflammation
and later atherosclerosis [211]. Furthermore, direct effects of
bacterial toxins were shown to injure cardiomyocytes in vitro
and reduce the number of cardiomyocytes [212–214] with
subsequent loss of cardiac function [215]. Further hits during
the neonatal period (infections, oxygen delivery) may poten-
tially increase the risk for a chronic inflammatory response
which may predispose for cardiovascular diseases in later life
[216, 217]. In adults, toll-like receptors (TLR) play a role in
septic myocardial dysfunction [218], demonstrated by a re-
duced dysfunction after administration of TLR4 inhibitors in
experimental models [218–220]. In fetal sheep endotoxin
models, an increase of TLR2 and 4 mRNA levels was also
detectable, suggesting identical mechanisms in the fetus
[214]. Other clinical studies of chorioamnionitis suggest ef-
fects of intra-amniotic inflammation on cardiac dysfunction
[221, 222].

The heart of preterm infants is functionally and structurally
immature and susceptible to the preterm environment [216].
Ex-preterm infants have increased left and right ventricular
mass and altered systolic and diastolic function [204, 223].
Inflammatory processes are known to play an important role
in the pathogenesis of pulmonary hypertension and therefore
have an indirect effect on cardiac outcome. However, inflam-
mation has direct effects on myocardial structure and function
in preterm infants. Velten et al. could demonstrate an effect of
systemic maternal inflammation followed by neonatal
hyperoxia on left ventricular structure and systolic and diastol-
ic dysfunction [224]. Therefore, inflammation in early life
might play a significant role in remodeling of the cardiac
structures with consecutive loss of function in later life.
Associations between infection-related hospitalization in in-
fancy and cardiovascular disease in adulthood were reported
[225]. Ex-preterm infants often have restricted activities of
daily living which might be associated with cardiorespiratory
insufficiency and increased energy requirements (due to SI).
Hence, growth failure is a critical issue. In the GNN follow-up
investigation at 5 years of age, we noted that a significant
proportion of preterm infants has a growth disadvantage as
compared with term infants examined in the “German
Health Interview and Examination Survey for Children and
Adolescents” (KiGGS) study (mean ~ 2.5 kg less body
weight, ~ 4 cm less body length). The administration of
Lactobacillus acidophilus/Bifidobacterium spp. probiotics—
as proposed “stabilizer of the microbiome”—during primary
stay in hospital resulted in improved growth, particularly in
infants who were early exposed to antibiotics [151].

Inflammation and the preterm kidney

Little information exists on the effects of inflammation on
preterm kidney function. Term newborns present usually with
an amount of over 300,000 nephrons [226]. Theoretically,
nephrogenesis is sensitive for inflammatory events, as it con-
tinues until 34–36 weeks of gestation [46] (Fig. 3).
Susceptibility of the nephrogenesis to exogenous noxious sub-
stances was proven in experimental models with postnatal
exposure to hyperoxia and a 25% reduction of nephron num-
bers that persisted into adulthood [227]. In adults with septi-
cemia, oliguria is interpreted as manifestation of renal inflam-
mation [228, 229]. Oliguria is often a hallmark of the “inflam-
matory phenotype” in preterm infants. Clinical data of infants
born after chorioamnionitis and treated with indomethacin
suggest a harming effect on renal development [230]. In pre-
term fetal sheep exposed to LPS-induced intrauterine inflam-
mation, a reduction of nephron numbers, but not of kidney or
birth weight, was demonstrated [231]. This might be a risk
factor for impaired renal function or a predisposition for sec-
ond hits (indomethacin) during the neonatal period and for
hypertension in later life [232]. How these observations occur
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if these are the result of renal hypoperfusion or renal inflam-
mation during chorioamnionitis and which molecular path-
ways lead to such damages is largely unknown and remains
speculative.

Inflammation and preterm sex differences

The personalized approach to maximize results and mini-
mize risks particularly of new targeted treatments against
SI requires genotypic and phenotypic fine-tuning of the
single preterm baby including information beyond gesta-
tional age as the main contributor to adverse SI-related
outcome. The significance of gender (including the role
of sex hormones, sex chromosomes) has been well
established for inflammation processes and microbiome
development in animal models and observed in a variety
of human studies [233]. The gender difference is particu-
larly marked among preterm infants, where females have
a distinct survival and outcome advantage at similar birth
weights and gestational ages [4, 234]. Female preterm
infants have a decreased risk for severe courses of infec-
tious diseases as compared with males (bacterial, viral,
fungal) [234–241]. Gender differences have also been re-
ported in several responses of inflammatory signaling pro-
cesses, with a tendency towards a more anti-inflammatory
environment in female infants. For example, reduced ox-
idat ive stress biomarkers and concentrat ions of
myeloperoxidase were found in female preterms [242,
243]. In umbilical cord blood, females were shown to
have increased CD4+/CD8+ T cell ratios and reduced
numbers of NK cells [233]. After stimulation with LPS,
female cord blood cells showed reduced concentrations of
pro-inflammatory cytokines (IL-1ß and IL-6) than male
cells [244]. Animal models reveal a gender-specific re-
sponse to inflammatory stimuli with an advantage for fe-
male rodents. In female newborn rats, for example, the
increased production of IL-2, IFN-γ, and TNF-α is
thought to promote the Th-1 response in better defending
against infection [245]. Reasons for the mmunological
advantage of female infants are mainly unknown, while
multidirectional cross talk between host immunity, micro-
biota, and the endocrine system is anticipated. Bacteria
are able to produce hormones (e.g., serotonin, dopamine,
and somatostatine), to interact with host hormones (e.g.,
estrogens), and to regulate the host hormones’ homeosta-
sis (e.g., by inhibiting gene prolactin transcription or
converting glucocorticoids to androgens) which can lead
to context-dependent immunosuppression or activation.
Differences in the gut microbiome profiles in newborn
infants have been described with higher abundance of
Enterobacteriales and lower abundance of Clostridiales
in males shortly after birth [246].

Some light is shed on the important role of sex chromo-
somes, signaling genes and single nucleotide polymorphisms,
microRNAs, methylation alterations, and hormonal concen-
trations which are discussed elsewhere [247]. The role of these
findings on clinical effects is unknown and requires further
studies.

Conclusions and future outlook

The concept that sustained inflammation contributes to short-
and long-term complications after preterm birth has been
largely accepted. Numerous observational studies demon-
strate a risk association between unfavorable immune adapta-
tion and long-term vulnerability for infections [248], CPIP
and asthma [56, 249], neurodevelopmental impairment, and
stress incontinence [250, 251]. The underlying mechanisms,
in particular the host factors determining resilience or long-
term vulnerability, remain to be elucidated. To improve out-
come in preterm babies, clinicians hope for the successful
identification of distinct “immune-microbiome signatures” in
preterm babies as biomarkers for the development of new SI-
targeted therapies. The main challenges and potential ap-
proaches are described in Table 2. At this stage, non-specific
preventive measures of acute inflammatory episodes and SI
have the highest priority in clinical practice, including the
following:

(i) Hygiene and surveillance: the key to reduce sepsis rates is
hand hygiene, training of staff and parents, surveillance
and network participation, and the avoidance of under-
staffing and overcrowding.

(ii) Less invasive care approach: preterm infants may benefit
from less invasive respiratory management [13, 252] and
rapid feeding advancement [253].

(iii) Human milk feeding: human milk is beneficial in terms
of sepsis rates and reduces the risk for ROP and BPD
and asthma. It contains S100 A8/9, growth factors, and
human milk oligosaccharides (HMOs) which cannot be
digested by humans that facilitate the growth of “bene-
ficial” bifidobacteria and support the production of
SFCAs.

(iv) Antibiotic stewardship programs: the implementation of
antibiotic stewardship programs increases awareness
and reduces the rates of drug-resistant organisms.

(v) Strengthening the immune system: vaccinations to
mothers and infants are important modes of infection
prevention and immunological maturation, and the con-
tinuum of parental care from birth even in an intensive
care setting is highly immune promoting.

(vi) Avoidance of adverse exposures: extensive counseling
of parents is needed to avoid passive smoking and
stressful experiences.
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( v i i ) Prov i s i on o f deve lopmen t a l c a r e : e a r l y
neurodevelopmental support and continued case man-
agement are needed to promote long-term health.

Hence, a more personalized precision medicine approach is
needed. The neonatal period has lifelong imprinting effects
and remains the primary window of opportunity for preven-
tion or intervention [254]. It could be promising to extrapolate
the set trajectory of immune development in term infants
[255] into the context of preterm birth. A proportion of pre-
term babies is capable of rapid neonatal progression to “catch
up” immune function with immune profiles converging in a
similar time frame to term babies [256]. Infants with postnatal
inflammation, however, may have distinct immune signatures
and microbiome patterns before the “inflammatory” event and
thereafter. Polygenic risk profiling can identify several stages
of vulnerability, and standardized observational times can tar-
get gene-environment interactions. Systems biology ap-
proaches and large sample sizes are needed to account for
the different factors which challenge the transcriptional and
epigenetic reprogramming of systemic and mucosal immuni-
ty, e.g., colonizing microbes and their metabolites, nutritional
antigens, drugs, and vaccines [257, 258]. Multinational net-
work approaches are needed to align definitions for sepsis and
sustained inflammation and to study interventions in pre-
specified subgroups.
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Table 2 Targeting sustained inflammation to improve outcome in preterm infants: challenges and outcomes

Challenge Approach

Inflammatory episodes (sepsis, NEC) remain predominant
causes of mortality and long-term morbidity

Large center-specific variations

Implementation of inflammation prevention bundles (hygiene, antibiotic stewardship
programs, restrictive use of invasive measures, promotion of human milk feeding)

Continuous establishment of quality improvement networks

Understanding of underlying pathophysiological
mechanisms

Availability of animal models for preterm infants
Limited opportunity to study tissue-specific aspects

Well-phenotyped large-scale longitudinal studies, systems biology approaches
Mechanistic neonatal mouse or rhesus monkey models, in silico modeling
Organoid models to investigate organ-specific mechanisms of SI

Disentangle the impact of prenatal and postnatal factors Linking perinatal, neonatal datasets to follow-up data from cohort studies; target
“neonatal window of opportunity”

Establishment of a physiological immune-microbiome
adaptation despite postnatal intensive care

Basic research addressing long-term effects of perinatal exposures (e.g., antibiotics),
postnatal biomarkers (e.g., S100 A8/9, Treg), and interventions (pre-/pro-/synbiotics;
anti-inflammatory compounds; stem cells)

Phase I–III clinical trials and randomized, placebo controlled trials with long-term
follow-up

Lack of valid outcomemeasures of important organ functions
(e.g., cognition, lung function)

Development of new tools for early short-term assessment; childhood follow-up with
detailed determination of beneficial factors (human milk feeding, vaccinations) and
harmful exposures (passive smoke, lack of participation)

Define further “windows of opportunity” during infancy and childhood; study
interventions to promote long-term health in controlled trials (e.g., music, sport,
nutrition)

Targeted personalized therapies of preterm infants Use of polygenic risk scores from adult cohorts for preterm infants and establishment of
valuable trajectory-specific biomarkers (e.g., S100 A8/9)
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