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Introduction

Functions of bounded variation of a single variable, or short BV -functions, were first
introduced in 1881 by Camille Jordan [74]. He extended a result about the pointwise
convergence of Fourier series of periodic and piecewise monotone functions proven
around 50 years earlier by Johann Peter Gustav Lejeune Dirichlet [52] who gave the
first rigorous proof of a conjecture on the representability of functions by means of
trigonometric series originally raised in 1808 by Jean Baptiste Joseph Fourier [62].
Jordan proved that the Fourier series of any 2π-periodic function x : R→ R of bounded
variation converges at each point to the arithmetic mean of the right and left sided
limits of x; in particular, if x is continuous, then its Fourier series converges even
uniformly to x. This is nowadays known as the Dirichlet-Jordan-Theorem. In the same
paper, Jordan also proved that any function of bounded variation may be written as
a difference of two monotonically increasing functions. In this sense, the class BV of
all real-valued functions of bounded variation defined on the real interval [0, 1] is the
linear hull of the set of monotone functions on that interval which do not form a linear
space on their own.

The class BV has also been extended in many interesting directions. For instance,
in the early 1920s, Norbert Wiener made the first noteworthy extension to Jordan’s
bounded variation concept by introducing the space WBV2 of functions of bounded
quadratic variation [154]. He proved that the Dirichlet-Jordan-Theorem still holds for
functions of this type. In 1937, Laurence Chisholm Young showed that this theorem
could be further extended to higher exponents and introduced the class WBVp of
functions of bounded p-variation for arbitrary p ≥ 1 [159]. Together with Eric Russel
Love, Young gave a comprehensive study of these functions [92] and finally went on
to generalize Wiener’s ideas by replacing the exponentiation by p by a composition
with a suitable convex and increasing “gauge function” ϕ : [0,∞) → [0,∞) [160]. By
doing so, he was hoping to extend the Dirichlet-Jordan-Theorem beyond the result he
already proved for functions in WBVp. In 1940, Raphaël Salem found a condition on ϕ
ensuring that the Dirichlet-Jordan-Theorem holds for functions in the resulting more
general space Y BVϕ [139]. Moreover, in 1972, Albert Baernstein showed that among
the Y BVϕ-spaces, Salem’s result concerning Fourier series is the best possible [19].
Also in 1972, Daniel Waterman extended the class of BV -functions in another direction
by weighting the summands in Jordan’s definition not by a composition but by a
multiplication with a decreasing sequence Λ of positive numbers instead [151]. The
resulting class ΛBV of such functions is of particular interest if one takes Λ to be

1



2 Introduction

the harmonic sequence Λ = (1/n)n∈N; in this case, ΛBV is denoted by HBV , and
functions in this spaces are called “of bounded harmonic variation”. Waterman showed
not only that the Dirichlet-Jordan-Theorem about Fourier series holds for functions
in HBV , he also pointed out that his result is best possible among all ΛBV -spaces.
Moreover, he showed that for any Young function ϕ satisfying Salem’s condition, the
inclusion Y BVϕ ⊆ HBV holds. Consequently, among all the generalizations of the
Dirichlet-Jordan-Theorem mentioned here, Waterman’s version is the strongest.
Another notion of “bounded variation” has been introduced by Frigyes Riesz in 1910
[135, 136]. His type of variation seems very natural from a functional analytic point
of view. In fact, an important result states that for fixed p ∈ (1,∞) a function
x : [0, 1] → R is of bounded p-variation in the sense of Riesz if and only if x is
absolutely continuous and its derivative x′ belongs to the Lebesgue space Lp. In this
case, we write x ∈ RBVp, and the Riesz variation of x may be calculated explicitly by
an integral over x′. Clearly, such a formula cannot be true for p = 1, because functions
in RBV1 = BV are in general not continuous, let alone absolutely continuous.
Remarkably, any function x ∈ RBVp belongs to the Sobolev space W 1,p, and any
function in W 1,p in turn agrees almost everywhere with a function in RBVp [56]. This
means that RBVp consists precisely of the continuous representatives of W 1,p. In this
sense Riesz introduced Sobolev spaces, at least in the scalar case, around 25 years prior
to Sobolev.
A very comprehensive overview about properties of functions of bounded variation and
their various generalizations may be found in the monograph [6].
Besides the development of the theory of Fourier series, BV -type functions have been
extensively studied also in other fields of mathematics, for instance, in geometric mea-
sure theory, calculus of variations, and mathematical physics. Renato Caccioppoli
and Ennio de Giorgi used them to define measures of nonsmooth boundaries of sets
[34, 35, 48]. Olga Arsenievna Oleinik introduced her view of generalized solutions for
nonlinear partial differential equations as functions from the space BV [125], and was
able to construct a generalized solution of bounded variation of a first order partial
differential equation [126]. A few years later, Edward D. Conway and Joel A. Smoller
applied BV -functions to the study of a single nonlinear hyperbolic partial differential
equation of first order [44], proving that the solution of the Cauchy problem for such
equations is a function of bounded variation, provided the initial value belongs to the
same class.
But functions of bounded variation turn out to be useful even when it comes to ques-
tions from the very foundations of analysis. For instance, it is clear that the sum of
two functions with primitive again has a primitive, but this is wrong when “sum” is
replaced by “product”. This raises the question what the multipliers of the set ∆ of
functions with primitive are, that is, how the functions g : [0, 1] → R look like such
that xg belongs to ∆ whenever x belongs to ∆. A discussion of these and more gen-
eral questions will be the starting point of this thesis: We will discuss some natural
“habitats” of functions of bounded variation and how they are related to other function
classes.
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This thesis is organized in seven chapters. The first chapter will be introductory
in which we collect basic definitions, notations and function classes that we use the
most. To be a little more precise we introduce in Section 1.1 the class C of continuous
functions, the class B of bounded functions as well as the class D of Darboux functions
(that is, functions with the intermediate value property) and discuss their relation to
BV and to each other. For instance, the inclusions BV ∩D ⊆ C ⊆ D ∩ B hold, but
none of these inclusions may be inverted. We also consider Lebesgue measurable and
integrable functions, regular functions, absolutely and Lipschitz continuous functions
and summarize how these classes are related to the class BV .

Section 1.2 is then devoted to functions of generalized bounded variation. We formally
introduce the Wiener spaces WBVp, the Young spaces Y BVϕ, the Waterman spaces
ΛBV and the Riesz spaces RBVp. Equipped with a suitable norm building upon the
corresponding type of variation, all these spaces become Banach spaces. Since functions
which are zero everywhere except on a countable set become very important throughout
this thesis, a major part of Section 1.2 is reserved for this kind of functions and how
they behave in the various BV -type spaces. At the end of Section 1.2 we quickly
discuss Helly’s Selection Principle which provides a certain type of compactness in
BV -spaces: Accordingly, every sequence in one of the BV -spaces that is bounded in
its norm possesses a pointwise convergent subsequence.

The class ∆ of derivatives to which we will give our main attention in Chapter 2 is situ-
ated between the classes C and D. From Lebesgue’s and Riemann’s integration theory
it is well known that there are functions with primitive which are neither Lebesgue nor
Riemann integrable. Consequently, in order to characterize the functions in ∆ we need
to pass in Section 2.1 to another notion of integration which will be functions that are
integrable in the sense of Kurzweil and Henstock (KH-integrable). Every derivative is
KH-integrable automatically and fulfills the Fundamental Theorem of Calculus. We
also discuss another stronger form of integrability which enshrines both being KH-
integrable and having a primitive. We then move on to other attempts that have been
made in order to find integral free characterizations of the functions in ∆. However, it
turns out that even if these attempts pretend to be integral free, they are in fact not.
Nowadays, it is still not clear whether functions in ∆ can be characterized without any
kind of integration process; most mathematicians believe that this is impossible.

Moving on to more algebraic questions we discuss what happens when derivatives are
multiplied or composed; we will do this in the Sections 2.2 and 2.3, where Section 2.2
is the largest part of this chapter. Therein we slowly approach a full discussion of the
set ∆/∆ of multipliers of the class ∆ as described above which simultaneously serves
as a bridge to the class BV . Indeed, being continuous and of bounded variation is
sufficient but not necessary to be a member of ∆/∆, while there are functions in ∆/∆
that are bounded but neither continuous nor of bounded variation. In fact, functions
in ∆/∆ turn out to be those functions that have a primitive and are in a certain sense
of “local” bounded variation [59, 111].
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Besides multipliers of the class ∆ we also consider multipliers in other function spaces
X and Y of real-valued functions on [0, 1]. We denote by

Y/X :=
{
g : [0, 1]→ R | xg ∈ Y for all x ∈ X

}
the multiplier set of Y over X. While we identify multiplier sets for some classical
function spaces only in case X = Y in Section 2.2 we pass in Section 3.1 to other
combinations, where we also allow X 6= Y . Some of these combinations are easy
to find. For instance, it is straightforward to show that BV/BV = BV , and that
D/B = C/B = C/BV contains only the zero function 0. However, other combinations
are very difficult to find or even unknown, especially when Y = D. Here, the three
classes D/C, D/∆ and D/D will be of particular importance for us. Some authors
claim without proof that the class D/D is easily deduced from the following result due
to Radakovič [133]: If a function g has the property that x+ g is a Darboux function
whenever x is a Darboux function, then g is constant. We show in Section 3.1 that
D/D may indeed be deduced from Radakovič’s result, but this deduction is by far not
so easy, especially when g has zeros. Moreover, since we do not know how the classes
D/C and D/∆ look like, we give only partial results and show how they are related to
other multiplier classes and function spaces.
Section 3.2 is then dedicated to multipliers of spaces of functions of generalized varia-
tion. Conveniently, the results are quite similar for all such spaces. Since all BV -type
spaces considered in this thesis are algebras, we have X/X = X whenever X is one of
these spaces. On the other hand, if X and Y are two Wiener spaces, then Y/X = Y for
X ⊆ Y . If X 6⊆ Y , then Y/X contains only functions from Y with countable support.
The same is true if X and Y are two Young spaces or two Waterman spaces. We will
also see that for two Riesz spaces X and Y the condition X 6⊆ Y yields the strong
degeneracy Y/X = {0}.

Especially for applications it is quite handy that many differential equations may be
solved by rewriting them into integral equations. Those can then often be handled with
fixed point theory, even in the space BV and its various generalizations. In order to use
classical fixed point theorems like those named after Stefan Banach, Juliusz Schauder,
Gabriele Darbo or Mark Alexandrovich Krasnoselskii, one has to check several some-
times complicated conditions on the linear and nonlinear operators involved. This has
been done many times in the BV -type spaces mentioned above; we refer the reader
to the work of the Polish mathematicians Daria Bugajewska, Dariusz Bugajewski and
their colleagues [25, 26, 27, 29, 30, 31, 32, 33, 46].
However, many analytic and set theoretic properties of such operators are either ex-
tremely complicated to characterize or just unknown. While linear operators such as
multiplication, substitution or integral operators are mostly relatively easy to handle,
nonlinear operators like composition or superposition operators behave sometimes in
a rather strange way. The aim of the Chapters 4 and 5 of this thesis is to extend the
theory concerning properties of these operators in the various BV -spaces.
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Here, we consider the following three linear operators in Chapter 4 on two function
spaces X and Y of real-valued functions on [0, 1]. The multiplication operator

Mg : X → Y, Mgx(t) = x(t)g(t)

for a generating function g : [0, 1]→ R in Section 4.1, the substitution operator

Sg : X → Y, Sgx(t) = x
(
g(t)

)
for a generating function g : [0, 1]→ [0, 1] in Section 4.2, and the integral operator

Ig : X → Y, Igx(t) =
∫ 1

0
g(t, s)x(s) ds

for a generating function g : [0, 1] × [0, 1] → R in Section 4.3. For all three operators
we are particularly interested in analytic properties like acting conditions for various
BV -spaces X and Y , as well as continuity (which is for linear operators equivalent to
boundedness) and compactness. Especially for the multiplication operator the results
of Chapter 3 will be useful: Indeed, a multiplication operator Mg : X → Y is well-
defined if and only if its generator g belongs to the multiplier space Y/X. In particular,
recalling the sample results from above, the operator Mg maps BV into itself if and
only if g ∈ BV . Moreover, regarding compactness the operator Mg : BV → BV is
compact if and only if the support of g is countable, while Sg : BV → BV is compact
if and only if g has finite range. We show these and similar results for other BV -type
spaces in the Sections 4.1 and 4.2 for the multiplication and substitution operator,
respectively. But we also give some remarks on set theoretic properties like injectivity,
surjectivity and bijectivity. For instance, Mg : BV → BV is injective, if and only if
g has no zeros, while Sg : BV → BV is injective if and only if g is surjective. Thus,
mapping properties of Mg may often be described in terms of the support of g, while
mapping properties of Sg can often be characterized in terms of the image of g.
Especially for integral equations a comprehensive investigation of the integral operator
Ig is of particular importance for us. Therefore, Section 4.3 is by far the largest section
of Chapter 4. Our main concern is analytic properties, and from the aforementioned
cited papers of the Polish mathematicians Bugajewska, Bugajewski and colleagues
many sometimes quite technical conditions are known guaranteeing that the integral
operator maps a BV -space into itself and is bounded or compact. For instance, if
g(t, ·) ∈ L1 for any t ∈ [0, 1] and the variation of the function g(·, s) is almost every-
where bounded with respect to s by some L1-function, then Ig maps BV into itself
and is bounded and compact. Similar results are known for a few other BV -spaces.
We generalize the known results in two directions: The first is that we give a unified
approach to tackle all BV -spaces at once. The second is that we also consider the op-
erator Ig from L∞ into a BV -space X and give conditions under which such operators
are well-defined, bounded and compact. This will be one of our main ingredients in
the investigation of integral equations.
In Chapter 5 we discuss mapping properties of the following two nonlinear operators
on two function spaces X and Y of real-valued functions on [0, 1]. The (autonomous)
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composition operator
Cg : X → Y, Cgx(t) = g

(
x(t)

)
for a generating function g : R → R in Section 5.1, and the (nonautonomous) super-
position operator

Ng : X → Y, Ngx(t) = g
(
t, x(t)

)
for a generating function g : [0, 1] × R → R in Section 5.2. As for the composition
operator Cg it is well known that Cg maps BV into itself if and only if g is locally
Lipschitz continuous [75]. Similar results are also known for the other BV -spaces. We
then give some remarks about injectivity and surjectivity in X = Y = BV and other
BV -spaces. Here, Cg : BV → BV is injective if and only if g is injective. However,
surjectivity is not so easy to describe. We give a sufficient condition which states
that Cg : BV → BV is surjective if the slope of g is at suitable points in a certain
sense bounded away from zero; unfortunately, we were not able to decide whether this
condition is also necessary, but we give some indication why we think that it is. We
then move on to different types of continuity. In summary, one can say that the more
regular g is, the more “continuous” Cg is in BV and other spaces. For instance, Cg
is uniformly continuous on bounded sets if and only if g is continuously differentiable,
locally Lipschitz continuous if and only if g is continuously differentiable with locally
Lipschitz continuous derivative, globally uniformly continuous if and only if g is affine,
and compact if and only if g is constant. Similar results hold also in other BV -spaces,
where the Riesz spaces have to be treated separately. We prove all these results using
a unified approach. Surprisingly, the question of whether Cg is automatically pointwise
continuous in BV if g meets the acting condition has an interesting history. The first
proof given in [118] is very long and complicated, the second was given only recently
in [96]. We give a third proof, but for this purpose we develop some new theory in
Chapter 6 and therefore present the proof there also. Nonetheless, all proofs cannot
be generalized to other BV -spaces, at least to the best of our knowledge.
Section 5.2 is dedicated to the superposition operator, and we only focus on analytic
properties. Although both operators Cg and Ng are defined by an outer composition,
the additional dependence of t allows Ng to behave rather chaotic and complicated
compared to Cg. Again, many conditions guaranteeing analytic properties are known,
but the behavior of the operator Ng even in the space BV is by far not fully understood.
For instance, there is no (useful) criterion for the pointwise continuity of Ng in BV .
Again, we provide a unified approach to handle all BV -spaces at once. The aim of
Section 5.2 is to discuss the weird properties ofNg and reveal disparities betweenNg and
Cg. For instance, in contrast to Cg too weak kinds of regularity of g seem not directly
connected to any kind of regularity of Ng. It is possible to find a discontinuous function
g : [0, 1]×R→ R that generates a constant and therefore utmost regular operator Ng,
while it is also possible to construct a globally Lipschitz continuous generator g that
induces a discontinuous operator Ng : BV → BV ; we give a general technique on
how to construct such examples. Also, in contrast to Cg, there are compact operators
Ng : BV → BV generated by nonconstant functions g. Our main result, however, is
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Theorem 5.2.31. It provides for the first time a sufficient condition on g guaranteeing
that Ng maps any of our BV -spaces into itself and is locally Lipschitz continuous. We
show that our condition also covers the corresponding results for multiplication and
composition operators which can be seen as special superposition operators. Theorem
5.2.31 will also serve as one of the main ingredients in the theory of integral equations
in Chapter 7.
As mentioned before, the aim of Chapter 6 is to provide a new proof for the fact that
Cg is continuous in BV if g is locally Lipschitz continuous. In order to do that we
approximate Cg by other composition operator Cgn for sufficiently smooth generators
gn : R → R, where n ∈ N. This approximation has to be done in such a way that
the continuity of each Cgn carries over to Cg. Therefore, we investigate in Section 6.1
on the abstract level of metric spaces the following four types of convergence: Quasi
uniform, semi uniform, continuously uniform and locally uniform convergence. All of
these are able to transmit continuity to the limit function. Historically, quasi uniformly
convergence was introduced by Cesare Arzelà [14, 15], who answered the question what
on top of pointwise convergence has to be assumed in order to guarantee that the limit
function of a sequence of continuous functions is again continuous. Moreover, we
give criteria on such sequences and their underlying spaces under which convergent
subsequences can be extracted and recall that several types of convergence can even
be used to characterize compactness of the domains the functions under consideration
live in. Eventually, we compare all five types of convergence (pointwise convergence
included) with each other.
In Section 6.2 we then pass to the proof of the fact that Cg is continuous in BV provided
that it is well-defined. For this we first develop some theory and introduce the restricted
variation, another more general type of variation measuring the variation of that part
of a function that falls into a given set. The main result in this section is Theorem
6.2.7. It states that a sequence (Cgn) converges in BV locally semi uniformly to a given
composition operator Cg if and only if the corresponding generators gn converge in BV
to g and locally have a uniformly bounded Lipschitz constant. The continuity of Cg is
then a simple consequence.
As for applications Chapter 7 will probably be the most relevant. Here, we consider
Hammerstein and Volterra integral equations, where the latter are only special cases
of the former. A starting point of our considerations in Section 7.1 is the Hammerstein
integral equation

x(t) = h(t) + λ
∫ 1

0
k(t, s)g

(
x(s)

)
ds

and some slight modifications that have already been studied in some BV -spaces,
where h, k and g are given and x is unknown. Building on our results presented in the
Chapters 4 and 5 we investigate the much more general equation

x(t) = h
(
t, x(t)

)
+ λf

(
t, x(t)

) ∫ 1

0
k(t, s)g

(
s, x(s)

)
ds

for given data h, f , k and g and prove existence and sometimes also uniqueness for
solutions in BV -spaces. Again, we use a unified approach in order to handle all our
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BV -spaces simultaneously. To get uniqueness of solutions we mostly use the fixed
point theorem of Banach and Caccioppoli which requires strong conditions on the data
involved. We also use other fixed point theorems that require less restrictive conditions
on the data for the price that they guarantee only existence of solutions. Especially for
boundary and initial value problems we investigate the Hammerstein integral equation

x(t) = Ax(t) + λ
∫ 1

0
k(t, s)g

(
x(s)

)
ds,

where A is a linear operator from one BV -space into itself and provide some existence
results building on Schauder’s fixed point theorem. In the short Section 7.2 we refor-
mulate all results about Hammerstein integral equation to the corresponding Volterra
integral equations, where the upper limit of integration is replaced by the variable t.
The final Section 7.3 is then dedicated to boundary and initial value problems. In [27]
the boundary value problem

x′′(t) = −λg
(
t, x(t)

)
subject to the nonclassical boundary conditions

x(0) = A0x, x(1) = A1x

are solved, where A0 and A1 are linear functionals on BV . Two results are presented in
this paper each of which giving conditions under which the boundary value problem has
a solution. We generalize the ideas, simplify the conditions and summarize everything
in one stronger result that is even able to handle cases that have not been covered
yet. We also give some remarks on how the theory may be applied to other similar
boundary value problems. We end the section with initial value problems

x′′(t) = −λg
(
t, x(t)

)
subject to the nonclassical initial conditions

x(0) = A0x, x′(0) = A1x.

we present very similar results and conditions guaranteeing the existence of solutions.

Throughout this thesis we give a lot of estimates, proofs and results, and many of them
are quite technical. Therefore, it is of particular concern to us to illustrate most results
by special cases, remarks, comparisons and summaries to make the presentation as
clear as possible. This will be done by a total of 14 figures, 20 tables and 166 examples
and counterexamples.



Chapter 1

Preliminaries

1.1 Classical Classes of Functions
In this section we recall the definitions of classical function spaces which we use the
most. We repeat several mostly well-known results the proofs of which (unless stated
otherwise) may be found in the monograph [6] and in the recent paper [10], respectively.
Before we start, let us make some comments on notations. We primarily consider sets
X of real-valued functions defined on the real interval [0, 1]. Sometimes, the functions
are defined on a compact interval [a, b] = {(1 − t)a + tb | t ∈ [0, 1]} with a, b ∈ R (we
allow a > b for technical reasons). We then write X[a, b] instead of X and mean the
set of functions x ◦ ψ, where x ∈ X and ψ : [a, b] → [0, 1], t 7→ (t − a)/(b − a). The
symbols 0 and 1 always denote the functions that are 0 respectively 1 everywhere on
their domain of definition. Finally, for a set A ⊆ R we denote by

χA(t) :=
1 for t ∈ A,

0 for t ∈ R\A

its characteristic function that satisfies χ∅ = 0 and χR = 1.

To construct examples and counterexamples, we will frequently make use of the fol-
lowing oscillation function ϕα,β,n : [0, 1] → R which we define for α, β ∈ R and n ∈ N
by the formula

ϕα,β,n(t) =

t
α sinn 1

t
for 0 < t ≤ 1,

β for t = 0.
(1.1.1)

In Figure 1.1.1 are some pictures showing the behavior of ϕα,β,n for different parameter
values. While x1, x2 and x4 are discontinuous and x3 is continuous, the functions x1, x2
and x3 are bounded, but x4 is not.

Generally speaking, the function ϕα,β,n is bounded if and only if α ≥ 0 and continuous
at t = 0 and hence on all of [0, 1] if and only if α > 0 and β = 0. Consequently,
denoting by C the space of real-valued continuous functions on [0, 1] and by B the

9
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1

1

−1

1

1

−1x1 = ϕ1/2, 1/2, 1 x2 = ϕ5/4, 1/2, 1

1

1

−1 1

10

x3 = ϕ1/3, 0, 3 x4 = ϕ−1/2, 3, 2

Figure 1.1.1: Some examples for ϕα,β,n.

space of real-valued bounded functions on [0, 1] the function ϕ0,0,1 shows that the well-
known inclusion

C ⊆ B (1.1.2)

is strict. Equipped with the supremum norm

‖x‖∞ := sup
0≤t≤1

|x(t)| (1.1.3)

both B and C become Banach spaces and we even have the continuous embedding
C ↪→ B. The spaces C(R) and B(R) denote the spaces of real-valued continuous
respectively bounded functions on all of R equipped with the norm

‖x‖∞ := sup
t∈R
|x(t)|.

For functions in C[a, b] and B[a, b], respectively, we write ‖x‖[a,b] = supa≤t≤b |x(t)| for
the supremum norm.
By the Intermediate Value Theorem any continuous function x ∈ C is a Darboux
function, that is, x(I) is an interval whenever I ⊆ [0, 1] is an interval. Consequently, if
D denotes the set of Darboux functions defined on [0, 1], then we have the inclusion

C ⊆ D. (1.1.4)

The following example shows that this inclusion is strict as well.

Example 1.1.1. The function ϕ−1,β,1, which for β ∈ R according to (1.1.1) is given by

ϕ−1,β,1(t) =


1
t

sin 1
t

for 0 < t ≤ 1,

β for t = 0,
(1.1.5)

belongs to D for any β and to C or B for no β. ♦
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While B and C are linear spaces, the space D is not. Although D is stable under
multiplication with real scalars, it is not closed under addition.

Example 1.1.2. The functions x := ϕ0,1,1 and y := −ϕ0,0,1 which are given by

x(t) =

sin 1
t

for 0 < t ≤ 1,

1 for t = 0
and y(t) =

− sin 1
t

for 0 < t ≤ 1,

0 for t = 0,

are both Darboux functions. But their sum which is the (bounded) characteristic
function x+ y = χ{0} is clearly not a Darboux function. ♦
The preceding two Examples 1.1.1 and 1.1.2 show that there is no inclusion between
the spaces D and B.
Generally speaking, the functions ϕα,β,n belong to D if and only if one of the following
five cases is satisfied. Either α > 0 and β = 0 and n is arbitrary, or α = 0 and β ∈ [0, 1]
and n is even, or α = 0 and β ∈ [−1, 1] and n is odd, or α < 0 and β ≥ 0 and n is
even, or α < 0 and β is arbitrary and n is odd. For instance, the two functions x3 and
x4 in Figure 1.1.1 are Darboux functions, whereas x1 and x2 are not; we will prove this
for the general functions (1.1.1) in Proposition 1.1.12 below.
The space C is also contained in Lp for any p ∈ [1,∞], where Lp denotes the space of all
(equivalence classes of) measurable1 functions x : [0, 1] → R such that for 1 ≤ p < ∞
the function |x|p is Lebesgue integrable and for p = ∞ the function x is essentially
bounded. Here, two functions are considered to be equivalent if they agree everywhere
on their domain of definition except on a set of Lebesgue measure zero. The spaces
Lp(I) of functions defined on an arbitrary measurable set I ⊆ R of finite positive
measure are strictly decreasing with respect to p, i.e.

Lq(I) ( Lp(I) for 1 ≤ p < q ≤ ∞.
This is no longer true if I has infinite measure.

Example 1.1.3. The function f(t) = 1/t for t ∈ I = [1,∞) does not belong to L1(I),
because ∫ ∞

1
f(t) dt = lim

b→∞
log(b) =∞.

However, f ∈ Lq(I) for any q > 1, as∫ ∞
1

f(t)q dt = lim
b→∞

1− b1−q

q − 1 = 1
q − 1 <∞.

Consequently, Lq(I) 6⊆ L1(I) in this case. ♦
It is well known that the Lp-spaces when endowed with the norms

‖x‖Lp =
(∫

I
|x(t)|p dt

)1/p
for 1 ≤ p <∞, (1.1.6)

‖x‖L∞ = esssup
t∈I

|x(t)|, (1.1.7)

1Whenever we talk about measurable functions or sets, we mean measurable with respect to the
Lebesgue measure.
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are Banach spaces. However, only L∞(I) is an algebra, because among all Lebesgue
spaces this is the only one which is closed under multiplication. The Hölder inequality
estimates the product of two functions from Lebesgue spaces; we will use this in more
detail in Section 3.2 on I = [0, 1].

Although functions in either of the spaces B and L∞ are called “bounded” respectively
“essentially bounded”, there is no inclusion between these two spaces.

Example 1.1.4. The characteristic function χA for A being a nonmeasurable2 set
A ⊆ [0, 1] is bounded, but does not belong to L∞ as it is not measurable. The function

x(t) =


χQ(t)
t

for 0 < t ≤ 1,

0 for t = 0,

is measurable and essentially bounded, since Q ∩ [0, 1] has measure zero. But it is not
bounded, since x(1/n) = n for all n ∈ N. ♦
The function in the previous example is a function with countable support. Such
functions will be of great importance in the sequel, in particular in the Chapters 3 and
4. For a function x : [0, 1]→ R we write

supp(x) :=
{
t ∈ [0, 1] | x(t) 6= 0

}
(1.1.8)

for its support. Note that in contrast to the standard definition we do not take the
closure here. More generally, for δ > 0 we also define

suppδ(x) :=
{
t ∈ [0, 1] | |x(t)| ≥ δ

}
. (1.1.9)

Then suppδ(x) is decreasing with respect to δ in the sense that suppδ(x) ⊆ suppη(x)
whenever δ ≥ η, and it is related to supp(x) via

supp(x) =
⋃
δ>0

suppδ(x) =
⋃
n∈N

supp1/n(x). (1.1.10)

In particular, if supp(x) is uncountable, then suppδ(x) is also uncountable for some δ >
0. Conversely, if suppδ(x) is countable for all δ > 0, then also supp(x) is countable as it
is then a countable union of countable sets; this fact also has the following consequence
which we will use later on in Section 4.1.

Lemma 1.1.5. Let x : [0, 1]→ R have uncountable support. Then there is some m > 0
and a strictly monotone sequence (tj) in (0, 1) such that |x(tj)| ≥ m for all j ∈ N.

Proof. If supp(x) is uncountable, then because of (1.1.10) there is some n ∈ N such
that supp1/n(x) is uncountable, as well. For m := 1/n we therefore find infinitely many
pairwise distinct numbers sj ∈ suppm(x) for which |x(sj)| ≥ m holds for all j ∈ N. But

2Giuseppe Vitali was the first who proved in 1905 in [148] the existence of such sets, but he used
the axiom of choice. Without it an example of Vitali’s type is in fact not possible, and this was proved
later in 1970 by Solovay [143].
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then, since (sj) is a bounded sequence, by a classical argument we can extract from it
a monotone subsequence (tj). Since the sj are pairwise distinct, so are the tj which
makes them form a strictly monotone sequence. �

Finally, by Sc we denote the family of functions on [0, 1] with countable support, and
by Sf the family of functions on [0, 1] with finite support. Both families are related by
the strict inclusion Sf ( Sc.
Example 1.1.6. The function x := χA for some set A ⊆ [0, 1] belongs to Sc if and
only if A is countable, and to Sf if and only if A is finite. Moreover, suppδ(x) = A for
0 < δ ≤ 1 and suppδ(x) = ∅ for δ > 1. ♦

We now turn to the most important space of this thesis, the space BV of functions of
bounded variation which was introduced in 1881 in [74] by Camille Jordan.
Definition 1.1.7. For a function x : [0, 1]→ R we call the possibly infinite number

Var(x) = sup
P

n∑
j=1
|x(tj−1)− x(tj)| (1.1.11)

the (Jordan) variation of x on [0, 1], where the supremum is taken over all finite
partitions P : 0 = t0 < . . . < tn = 1 of [0, 1]. If Var(x) < ∞, we say that x has
bounded variation and write x ∈ BV .
For functions x : [a, b]→ R with a < b we write Var(x, [a, b]) instead of Var(x).
Clearly, every monotone function x : [0, 1]→ R belongs to BV with Var(x) = |x(0)−
x(1)|. Conversely, Var(x) = |x(0) − x(1)| implies that x is monotone. However, BV -
functions can be quite chaotic. The following auxiliary result deals with functions that
have countable support, that is, with functions in Sc.

Proposition 1.1.8. For x ∈ Sc we have

Var(x) = |x(0)|+ |x(1)|+ 2
∑

τ∈supp(x)\{0,1}
|x(τ)|. (1.1.12)

In particular, x ∈ BV if and only if the series in (1.1.12) converges.

Proof. Consider an arbitrary partition 0 = t0 < . . . < tn = 1 of [0, 1]. Then

n∑
j=1
|x(tj−1)− x(tj)| ≤

n∑
j=1

(
|x(tj−1)|+ |x(tj)|

)
= |x(0)|+ |x(1)|+ 2

n−1∑
j=1
|x(tj)|

≤ |x(0)|+ |x(1)|+ 2
∑

τ∈supp(x)\{0,1}
|x(τ)|.

This shows the “≤”-part in (1.1.12).
For the reverse inequality let n ∈ N with n ≤ #(supp(x)\{0, 1}) be fixed, where #A
denotes the number of elements in a set A, and pick numbers t2, t4, t6, . . . , t2n ∈ supp(x)
in strictly increasing order. Set t0 := 0 and t2n+2 := 1, and pick for each j ∈ {0, . . . , n}
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numbers t2j+1 ∈ (t2j, t2j+2)\ supp(x) which is possible as supp(x) is countable. Then

Var(x) ≥
2n+2∑
j=1
|x(tj−1)− x(tj)| =

n∑
j=0
|x(t2j)|+

n+1∑
j=1
|x(t2j)|

= |x(0)|+ |x(1)|+ 2
n∑
j=1
|x(t2j)|. (1.1.13)

If supp(x) is finite we are done by putting n = #(supp(x)\{0, 1}), because then the
right hand side of (1.1.13) coincides with the right hand side of (1.1.12). If supp(x) is
infinite, we may let n→∞, and then the right hand side of (1.1.13) converges to the
right hand side of (1.1.12) provided that for each n one picks the tj appropriately. In
any case, the proof is complete. �

Formula (1.1.12) allows us to give an example of a function x that is nowhere monotone
but yet of bounded variation [6].

Example 1.1.9. Let (qn) be an enumeration of all rational numbers in (0, 1). Define
the function x : [0, 1]→ R by

x(t) =
2−n for t = qn,

0 otherwise.

Then x has countable support and according to formula (1.1.12) its variation is given
by

Var(x) = 2
∞∑
n=1

2−n = 2.

However, x is monotone on no interval [a, b] ⊆ [0, 1] with a < b. Since Q is dense in R
we find m,n ∈ N such that a < qm < qn < b, and since R\Q is also dense in R we find
some c ∈ [0, 1] with qm < c < qn. But then x(qm), x(qn) > 0 = x(c) which implies that
x is not monotone on [qm, qn] and hence also not on [a, b]. ♦
Interestingly, although BV -functions do not necessarily have any monotonicity behav-
ior at all, they are generated by monotone functions [74].

Theorem 1.1.10 (Jordan’s Decomposition Theorem). A function x : [0, 1] → R is
of bounded variation if and only if it can be written as a difference x = y − z of two
increasing functions y, z : [0, 1]→ R.

Obviously, the setM of monotone functions on [0, 1] is not a linear space. For instance,
the sum of the two monotone functions x(t) = t2 and y(t) = 1−t is given by (x+y)(t) =
t2 − t + 1 which is not monotone on [0, 1]. Jordan’s Decomposition Theorem shows
Span(M) = BV , that is, the linear hull ofM is BV . Therefore, Theorem 1.1.10 can be
understood as the dawn of the BV era. Moreover, it also shows that “nice” properties
of monotone functions carry over to BV -functions. In particular, monotone and hence
BV -functions have only at most countably many discontinuities, and each discontinuity
is of first kind (jumps) or removable [163]. This means that for x ∈ BV all the left-
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and right-sided limits

lim
t→t0−

x(t) for t0 ∈ (0, 1], lim
t→t0+

x(t) for t0 ∈ [0, 1)

exist and are finite. Even better, by Lebesgue’s Theorem, every monotone and hence
BV -function is differentiable almost everywhere [86].

In general, functions which have no discontinuity of second kind are automatically
bounded on compact intervals and usually called regular. So denoting by R the space
of all regular functions on [0, 1], we have the inclusions

BV ⊆ R ⊆ B ∩ L∞, (1.1.14)

and both inclusions are strict. Note that each BV -function is indeed bounded, since
the relation |x(t)| ≤ |x(0)|+ |x(0)− x(t)| ≤ |x(0)|+ Var(x) for each t ∈ [0, 1] implies

‖x‖∞ ≤ |x(0)|+ Var(x). (1.1.15)

The characteristic function χQ∩[0,1] is bounded and measurable but not regular and
thus shows that the second inclusion in (1.1.14) is strict. Formula (1.1.12) applied
to functions with nonempty but finite support shows that BV and hence R contain
discontinuous functions. However, there is an interesting interconnection between R

and D: Since a Darboux function can have only essential discontinuities and a regular
function can have only jump discontinuities, every regular Darboux function must be
continuous. Conversely, every continuous function is clearly regular. Consequently,

R ∩D = C. (1.1.16)

In particular, BV ∩ D = BV ∩ C. However, not every continuous and hence regular
function belongs to BV , and this is why also the first inclusion in (1.1.14) is strict.

Example 1.1.11. The function x = ϕ1,0,1, given by

x(t) =

t sin 1
t

for 0 < t ≤ 1,

0 for t = 0,
(1.1.17)

is clearly continuous and hence regular as |x(t)| ≤ t for all t ∈ [0, 1]. But x is not of
bounded variation. To see this consider the points 0 < tn < tn−1 < . . . < t1 < t0 =
2/π < 1 of the extremal points of x located at tj = 1/(jπ + π/2). Then

Var(x) ≥
n∑
j=1
|x(tj−1)− x(tj)| =

n∑
j=1

(
tj−1 + tj

)
= 8
π

n∑
j=1

j

4j2 − 1 ≥
2
π

n∑
j=1

1
j

which gets infinitely large as n→∞. ♦
The function x3 in Figure 1.1.1 is also continuous and of unbounded variation. The
functions x1 and x4 also have unbounded variation; only x2 is of bounded variation.
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In general, the function ϕα,β,n belongs to BV if and only if α > 1. The proof for this
general fact is given in our next result that summarizes the conditions on α, β and n
in order to make ϕα,β,n a member of the classes B, C, D and BV . The special case
β = 0 and n = 1 has been discussed comprehensively in [4]; we give the full proof here,
since the generalization to arbitrary β and n will be of importance for the sequel.

Proposition 1.1.12. For the functions ϕα,β,n the following statements are true.

(a) ϕα,β,n ∈ B if and only if α ≥ 0.

(b) ϕα,β,n ∈ BV if and only if α > 1.

(c) ϕα,β,n ∈ C if and only if α > 0 and β = 0.

(d) ϕα,β,n ∈ D if and only if one of the following five cases is true.

(i) α > 0, β = 0 and n is arbitrary,

(ii) α = 0, 0 ≤ β ≤ 1 and n is even,

(iii) α = 0, −1 ≤ β ≤ 1 and n is odd,

(iv) α < 0, β ≥ 0 and n is even,

(v) α < 0, β is arbitrary and n is odd.

Proof. (a) Note that for α < 0 we have for tj := 1/(2jπ + π/2) with j ∈ N0 that
ϕα,β,n(tj) = 1/(2jπ + π/2)α → ∞ as j → ∞. For α ≥ 0 we have on the other hand
|ϕα,β,n(t)| ≤ max{|β|, 1} for all t ∈ [0, 1]. Thus, (a) is established.
To prove (b), note that for α < 0 we have that ϕα,β,n /∈ BV because of (a). Thus we
can assume that α ≥ 0 and that ϕα,β,n is bounded. For tj := 1/(jπ+π/2) with j ∈ N0
we have

Var(ϕα,β,n) = |ϕα,β,n(2/π)− ϕα,β,n(1)|+ lim sup
t→0+

|ϕα,β,n(t)− β|+
∞∑
j=0
|ϕα,β,n(tj)|.

In particular, since ϕα,β,n is bounded, it is of bounded variation if and only if the series
converges. We have

∞∑
j=0
|ϕα,β,n(tj)| =

∞∑
j=0

tαj =
∞∑
j=0

1
(jπ + π/2)α ,

and this series converges if and only if α > 1. In this case, and only then, the function
ϕα,β,n is of bounded variation.
(c) The function ϕα,β,n is clearly continuous at every point t ∈ (0, 1], so we only need
to consider t = 0. Again by (a) we can assume that α ≥ 0, because for α < 0 the
function ϕα,β,n is unbounded and hence discontinuous. For α = 0 consider the points
tj := 2/(jπ) for j ∈ N which converge to 0 as j →∞. Then |ϕ0,β,n(tj)| = [1− (−1)j]/2
for all j ∈ N, and the function ϕ0,β,n cannot be continuous at t = 0, no matter what n
and β are.
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For α > 0, however, we have |ϕα,β,n(t)| ≤ tα for 0 < t ≤ 1 and hence ϕα,β,n(t) → 0 as
t→ 0+. This shows that ϕα,β,n is continuous at t = 0 if and only if β = 0.
(d) Again, ϕα,β,n ∈ D[ε, 1] for all ε ∈ (0, 1) and we only need to check what happens
around t = 0. For even n ∈ N we have

lim inf
t→0+

ϕα,β,n(t) = 0 and lim sup
t→0+

ϕα,β,n(t) =


0 for α > 0,
1 for α = 0,
∞ for α < 0,

and for odd n ∈ N,

lim inf
t→0+

ϕα,β,n(t) =


0 for α > 0,
−1 for α = 0,
−∞ for α < 0

and lim sup
t→0+

ϕα,β,n(t) =


0 for α > 0,
1 for α = 0,
∞ for α < 0.

From these estimates (d) is an immediate consequence. �

Note that the conditions in (a) and (b) do not depend on β and n, while the one in (c)
is independent of n.

The two examples x2 and x3 in Figure 1.1.1 show that there is no inclusion between
the two spaces C and BV . Nevertheless, C and BV are connected in the sense that
the set NBV of all normalized functions x# − x(0), where the right regularization x#

of a function x ∈ BV is defined by

x#(t) =
lims→t+ x(s) for 0 ≤ t < 1,
x(1) for t = 1,

(1.1.18)

can be considered as the dual of C [6, Theorem 4.31], where the duality is established
by a Riemann-Stieltjes integral.

One can show that BV , equipped with the norm

‖x‖ = |x(0)|+ Var(x) (1.1.19)

is a Banach space which is continuously embedded into B, by (1.1.15). One can even
show that BV as well as C and B are closed under multiplication, that is, the spaces
BV , C and B are algebras. In addition, C is also closed under forming reciprocals of
functions x that have no zeros. Indeed, if x ∈ C has no zeros, then it is bounded away
from zero by the Permanence Principle. But then 1/x is also continuous. An analogue
of this fact is not true in B and BV .

Example 1.1.13. The function

x(t) =
t for 0 < t ≤ 1,

1 for t = 0
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belongs to BV and hence also to B, but its reciprocal

1
x

(t) =
1/t for 0 < t ≤ 1,

1 for t = 0

does not, since it is unbounded near t = 0. ♦
In contrast to C to ensure that 1/x ∈ BV or 1/x ∈ B we have to assume explicitly
that x ∈ BV is bounded away from zero, that is, suppδ(x) = [0, 1] for some δ > 0. In
this case the estimate

Var(1/x) ≤ δ−2 Var(x)

is true.

However, the spaces BV , C and B are not only algebras, their norms are in a sense
submultiplicative. In general, if a normed algebra (X, ‖·‖) satisfies an estimate of the
form

‖xy‖ ≤ c ‖x‖ ‖y‖ for x, y ∈ X

with some constant c > 0 independent of x and y, then we call X a Banach algebra
if (X, ‖·‖) is a Banach space; in addition, we say that X is normalized if c = 1. For
instance, the spaces C and B are both normalized Banach algebras with respect to
the supremum norm ‖·‖∞ given in (1.1.3), whereas (BV, ‖·‖∞) also equipped with
the supremum norm is a normalized algebra, but not a Banach algebra. That BV
when equipped with the supremum norm is not complete may be seen by the following
example.

Example 1.1.14. For each n ∈ N let xn : [0, 1]→ R be defined by

xn(t) =
1/j for t = 1/(2j), j ∈ {1, . . . , n},

0 otherwise.

Then each xn belongs to BV according to Proposition 1.1.8 as it has finite support.
Moreover, (xn) converges uniformly to the function x : [0, 1]→ R, defined by

x(t) =
1/j for t = 1/(2j), j ∈ N,

0 otherwise,

because
‖xn − x‖∞ = 1

n+ 1 for all n ∈ N.

In particular, (xn) is a Cauchy sequence with respect to the supremum norm. However,
the limit x does not belong toBV . On the one hand, x has countable support supp(x) =
{1/2, 1/4, 1/6, 1/8, . . .}, but on the other hand, by Proposition 1.1.8 its variation is

Var(x) =
∞∑
j=1

2
j

=∞.

Therefore, x /∈ BV , and hence (BV, ‖·‖∞) is not complete. ♦
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The most function spaces X we investigate in this thesis are real Banach algebras when
endowed with a norm of the form ‖x‖ = |x(0)| + Φ(x), where Φ : X → [0,∞) is a
seminorm on X. The space BV with the norm (1.1.19) is an example of such a space.
Most of the time one can replace ‖·‖ by an equivalent norm ‖·‖X which then makes X
even a normalized Banach algebra. Here come the details.

Proposition 1.1.15. Let (X, ‖·‖) be a Banach algebra with X ⊆ B and norm

‖x‖ = |x(0)|+ Φ(x),

where Φ : X → [0,∞) is a seminorm satisfying

Φ(xy) ≤ αΦ(y) ‖x‖∞ + αΦ(x) ‖y‖∞ for x, y ∈ X (1.1.20)

for some constant α ≥ 1 independent of x and y. Then X, equipped with the norm

‖x‖X := α ‖x‖∞ + Φ(x),

is a normalized Banach algebra, i.e. ‖xy‖X ≤ ‖x‖X ‖y‖X for all x, y ∈ X. Moreover,
in case X ↪→ B both norms are equivalent.

Proof. Since Φ is a seminorm and ‖·‖∞ is a norm, ‖·‖X is a norm on X for any α.
Moreover,

‖xy‖X = α ‖xy‖∞ + Φ(xy) ≤ α ‖x‖∞ ‖y‖∞ + αΦ(y) ‖x‖∞ + αΦ(x) ‖y‖∞
≤ α2 ‖x‖∞ ‖y‖∞ + αΦ(y) ‖x‖∞ + αΦ(x) ‖y‖∞ + Φ(x)Φ(y)
=
(
α ‖x‖∞ + Φ(x)

)(
α ‖y‖∞ + Φ(y)

)
= ‖x‖X ‖y‖X .

Finally, if X ↪→ B, there is some c > 0 such that ‖x‖∞ ≤ c ‖x‖ for all x ∈ X. Then

‖x‖ = |x(0)|+ Φ(x) ≤ ‖x‖∞ + Φ(x) ≤ α ‖x‖∞ + Φ(x) = ‖x‖X ,
‖x‖X = α ‖x‖∞ + Φ(x) ≤ αc ‖x‖+ ‖x‖ ≤ (1 + αc) ‖x‖ ,

which completes the proof. �

For our space BV , the function Φ(x) := Var(x) is a seminorm on BV satisfying the
hypotheses of Proposition 1.1.15 with α = 1. Accordingly, the space BV is a normalized
Banach algebra when equipped with the equivalent norm

‖x‖BV := ‖x‖∞ + Var(x). (1.1.21)

In this thesis we will primarily consider this norm for BV .
Besides BV ↪→ B we also have the embedding BV ↪→ L∞, since each function in BV
is measurable as it is bounded and has only countably many discontinuities, and the
norms satisfy ‖x‖L∞ ≤ ‖x‖∞ ≤ ‖x‖BV .

As we have seen, the class C is not a subclass of BV . However, the class AC of
absolutely continuous functions is.
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Definition 1.1.16. A function x : [0, 1]→ R is said to be absolutely continuous, if it
has the following property: For each ε > 0 there exists δ > 0 such that for each finite
collection ([aj, bj])1≤j≤n of nonoverlapping3 intervals [aj, bj] ⊆ [0, 1] the implication

n∑
j=1
|aj − bj| ≤ δ =⇒

n∑
j=1
|x(aj)− x(bj)| ≤ ε (1.1.22)

holds.
It is well known that absolutely continuous functions can also be characterized as
follows.

Theorem 1.1.17. A function x : [0, 1]→ R belongs to AC if and only if x is almost ev-
erywhere differentiable and its derivative x′ belongs to L1 and satisfies the Fundamental
Theorem of Calculus, namely the identity

x(t)− x(s) =
∫ t

s
x′(τ) dτ for s, t ∈ [0, 1]. (1.1.23)

As said, it is easy to show that

AC ⊆ BV (1.1.24)

and this inclusion is also strict, because every absolutely continuous function is con-
tinuous, but there are discontinuous functions of bounded variation.

Example 1.1.18. The characteristic function x = χ{0} has bounded variation and
is discontinuous at t = 0. Therefore, it cannot be absolutely continuous. Indeed, it
does not satisfy (1.1.22): For ε = 1/2 and any δ > 0 we have for [a1, b1] = [0, δ] that
|a1 − b1| = δ, but |x(a1)− x(b1)| = 1 > ε. ♦
Since every AC-function is continuous, one might ask if the inclusion (1.1.24) can be
replaced by AC = C ∩BV . This is not true, and here is a prominent counterexample.

Example 1.1.19. Write every t ∈ [0, 1] in a ternary representation

t =
∞∑
j=1

aj(t)
3j with aj(t) ∈ {0, 1, 2}, (1.1.25)

and define the Cantor set C := {t ∈ [0, 1] | aj(t) ∈ {0, 2} for all j ∈ N}. It can be
shown that C is independent of the ternary representation of t which may be not unique
in general, and that C is a compact uncountable null set.
Moreover, denote by N(t) the smallest j such that aj(t) = 1 if it exists. If not, put
N(t) =∞. The Cantor function c : [0, 1]→ R is then defined by

c(t) = 1
2N(t) + 1

2

N(t)−1∑
j=1

aj(t)
2j .

3Nonoverlapping means here that the intersection of two intervals contains at most one point.
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It can be shown that the definition of c is independent of the ternary representation
of t, that is, c is well-defined, and that c is the unique continuous extension of the
function c̃ : C → R which satisfies

c̃(t) = 1
2

∞∑
j=1

aj(t)
2j for t ∈ C.

Moreover, c is increasing and continuous and hence belongs to C ∩BV . However, c is
also differentiable almost everywhere with c′ = 0, because c is constant outside of C; in
particular, c(C) = [0, 1]. By Theorem 1.1.17 it cannot be absolutely continuous, since
it cannot fulfill the relation (1.1.23). ♦
Thus, functions x ∈ AC apart from being continuous and of bounded variation must
have a third property. Indeed, this property is called the Luzin property and states
that x must map null sets into null sets. The Vitali Banach Zaretskij Theorem then
yields that a function x ∈ C ∩BV is absolutely continuous if and only if it satisfies the
Luzin property [76]. The Cantor function from Example 1.1.19 does not satisfy this
property, since C is a null set, but c(C) = [0, 1] is not.
In contrast to BV -functions it is easier for AC-functions to calculate the variation
explicitly. This is because of the following result.

Theorem 1.1.20. For a function x ∈ AC we have

Var(x) =
∫ 1

0
|x′(t)| dt = ‖x′‖L1 . (1.1.26)

Formula (1.1.26) geometrically means that x considered as a curve or path in R has
length Var(x). Thus, functions of bounded variation are sometimes called rectifiable.
Of course, from a geometric point of view this makes more sense in higher dimensions.
The conditions (1.1.11) and (1.1.22) also make sense for functions attaining values in a
normed space (X, ‖·‖X). One then just has to replace the absolute values by the norm
‖·‖X . In this case Theorem 1.1.20 still holds true. In this thesis, however, we will only
consider real-valued functions.
Before we pass to classes of functions with more regularity let us mention the following
curiosity which shows that modifying the partitions or interval collections in the Defi-
nitions 1.1.7 and 1.1.16 leads to unexpected phenomena. Recall that BV is defined by
the condition (1.1.11) where the supremum is taken over all ordered partitions of [0, 1].
Instead, let us define the space SBV to consist of all functions x : [0, 1]→ R satisfying
(1.1.11) where the supremum is now taken over all not necessarily ordered collections
of points t0, t1, . . . , tn−1, tn ∈ [0, 1] which satisfy ∑n

j=1 |tj−1 − tj| ≤ 1 instead. We call
the elements of SBV functions of super bounded variation. Clearly, SBV ⊆ BV . The
following example shows that the inclusion is strict.

Example 1.1.21. Consider the function x : [0, 1]→ R, t 7→
√
t, and the collection t0,

t1, . . ., t2k−1 ∈ [0, 1] for k ∈ N, defined by

t0 = 0, t1 = 3
π2 , t2 = 0, t3 = 3

π2
1
4 , . . . , t2k−2 = 0, t2k−1 = 3

π2k2 .
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Then
2k−1∑
j=1
|tj−1 − tj| ≤ 2

k∑
j=1

t2j−1 = 6
π2

k∑
j=1

1
j2 ≤

6
π2

∞∑
j=1

1
j2 = 1,

but
2k−1∑
j=1
|x(tj−1)− x(tj)| ≥

k∑
j=1

∣∣∣√t2j−1
∣∣∣ =
√

3
π

k∑
j=1

1
j

gets infinitely large as k → ∞. Thus, x /∈ SBV . However, as an increasing function,
x belongs to BV . ♦
The next result characterizes SBV and states that SBV coincides with the space Lip
of Lipschitz continuous functions, that is, functions x : [0, 1]→ R for which there exists
some L > 0 such that

|x(s)− x(t)| ≤ L|s− t| for s, t ∈ [0, 1]. (1.1.27)

In this sense the following theorem provides another way of how to define Lip.

Theorem 1.1.22. The equality SBV = Lip is true.
Proof. The inclusion Lip ⊆ SBV is trivial. So assume that x ∈ SBV and fix numbers
a, b ∈ [0, 1] with a 6= b. Choose n ∈ N so that

n ≤ 1
|a− b| ≤ 2n (1.1.28)

and define the numbers t0 := a, t1 := b, t3 := a, t4 := b, . . ., that is, tn := a if n is even
and tn := b if n is odd. Then, by the first inequality in (1.1.28),

n∑
j=1
|tj−1 − tj| = n|a− b| ≤ 1.

Since x ∈ SBV there is some M > 0 independent of a, b and n such that
n∑
j=1
|x(tj−1)− x(tj)| ≤M.

By the second inequality in (1.1.28) we get

|x(a)− x(b)| = 1
n

n∑
j=1
|x(tj−1)− x(tj)| ≤

M

n
≤ 2M |a− b|,

and since a, b are arbitrary and M does not depend on a or b, x ∈ Lip. �

We remark that a similar phenomenon occurs in Definition 1.1.16. If we there drop the
assumption that the intervals are mutually nonoverlapping, then we also end up with
the space Lip [6, Exercise 3.8].
Even if BV -functions can be quite chaotic and may have many discontinuities, the
following result is very remarkable. It says that all discontinuities of a BV -function
can be “smoothed out” by a suitable change of variables.
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Theorem 1.1.23. A function x : [0, 1] → R belongs to BV if and only if it may be
represented as a composition x = y ◦ z, where y ∈ Lip with lip(y) ≤ 1 and z : [0, 1]→
[0, 1] is increasing.

Theorem 1.1.23 provides another way of how to define BV -functions. A proof can be
found in [58].

It is well known that the space Lip is a linear space. For a function x ∈ Lip we define
its Lipschitz constant by

lip(x) = sup
0≤s,t≤1
s 6=t

|x(s)− x(t)|
|s− t| . (1.1.29)

For functions x : [a, b]→ R we write lip(x, [a, b]) instead of lip(x). Similar notions are
defined for Lip(R).
One can easily show that lip is a seminorm on Lip and that the space Lip when endowed
with the norm ‖x‖ = |x(0)|+lip(x) is a Banach algebra. Moreover, lip satisfies (1.1.20)
with α = 1, and so Proposition 1.1.15 ensures that the norm

‖x‖Lip := ‖x‖∞ + lip(x) (1.1.30)

makes Lip a normalized Banach algebra.

Sometimes, functions x : R → R belong to a given function space X only when
restricted to an interval. In this case, we write

Xloc(R) :=
{
x : R→ R | x ∈ X[a, b] for any interval [a, b] ⊆ R

}
.

One prominent example of such a space is the family

Liploc(R) = {x : R→ R | x ∈ Lip[a, b] for any interval [a, b] ⊆ R}

of locally Lipschitz continuous functions that play an important role in the theory of
BV -functions. For instance, the composition g ◦ x of a function g : R → R with any
function x ∈ BV is again a BV -function if and only if g ∈ Liploc(R); we will investigate
this and related phenomena in the Chapters 2 and 4 in much more detail.
Observe that the spaces Liploc(R) and Lip(R) have to be strictly distinguished. For in-
stance, the function t→ t2 for t ∈ R belongs to Liploc(R) but not to Lip(R). Similarly,
convergence of a function sequence (xn) in Liploc(R) now cannot be considered with
respect to the norm (1.1.30) anymore. Instead, we say that (xn) converges in Liploc(R)
if and only if (xn) converges in Lip[a, b] for any two real numbers a < b.

Example 1.1.24. The functions xn : R → R, defined by xn(t) = max{|t| − n, 0}
are Lipschitz continuous throughout R with lip(xn,R) = 1 for all n ∈ N. However,
xn(t) = 0 for all t ∈ [−n, n]. This implies that xn ∈ Liploc(R) with lip(xn, [a, b]) = 0
for all [a, b] ⊆ [−n, n] and n ∈ N. We conclude that (xn) converges in Liploc(R) to 0,
but diverges in Lip(R). ♦
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It is clear that Lip is a subspace of AC. One could ask if the characterization given
in Theorem 1.1.17 still holds if one replaces x′ ∈ L1 with the requirement that x′ is
(bounded and) Riemann integrable. Such functions are due to the formula (1.1.23) also
Lipschitz continuous with lip(x) = ‖x′‖L∞ . However, not every Lipschitz continuous
function has a Riemann integrable derivative, even if the function is differentiable
everywhere.

Example 1.1.25. In 1881 Vito Volterra constructed in [149] an everywhere differen-
tiable function v : [0, 1]→ R with v(0) = v(1) = 0 and a bounded (and hence Lebesgue
integrable) but not Riemann integrable derivative. But this function v is then clearly
Lipschitz continuous. ♦
Moreover, there are functions that are absolutely continuous but not Lipschitz contin-
uous.

Example 1.1.26. The function x : [0, 1] → R, defined by x(t) =
√
t, is absolutely

continuous which can be shown easily with the help of Theorem 1.1.20. But it is not
Lipschitz continuous, since otherwise we had

|x(0)− x(t)| =
√
t ≤ Lt

and hence 1/L ≤
√
t for some L > 0 and all t ∈ (0, 1] which is not possible. ♦

Thus, Lipschitz continuous functions are precisely absolutely continuous functions with
essentially bounded derivative.
In fact, the square root function from Example 1.1.26 is only Hölder continuous with
exponent 1/2; this means that it satisfies an estimate of the form

|x(s)− x(t)| ≤ L|s− t|α for s, t ∈ [0, 1] (1.1.31)

with α = 1/2. Functions x satisfying (1.1.31) for arbitrary 0 < α ≤ 1 are called Hölder
continuous with exponent α, and we write Lipα for the space of such functions. Observe
that this definition makes sense for 0 < α ≤ 1 only, because for α ≤ 0 the condition
(1.1.31) would not necessarily imply that x is continuous, and for α > 1 any function
satisfying (1.1.31) must be constant.

Even if AC-functions are differentiable only almost everywhere, formula (1.1.23) allows
us to recover some regularity properties from their derivatives. This we will be very
useful in Section 5.1.

Lemma 1.1.27. Let x : [a, b] → R be absolutely continuous, and let D ⊆ [a, b] be the
points of differentiability of x. Then the following statements hold.

(a) If x′|D is uniformly continuous, then x ∈ C1[a, b] and x′ is uniformly continuous
on [a, b].

(b) If x′|D is Lipschitz continuous, then x ∈ C1[a, b] and x′ is Lipschitz continuous
on [a, b].
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(c) If x′|D is constant, then x is affine on [a, b].

(d) If x′|D is zero, then x is constant on [a, b].

Proof. (a) By [142, Section 13, Theorem D] the restriction x′|D : D → R has a (unique)
uniformly continuous extension y : [a, b]→ R. Using formula (1.1.23) we obtain

x(t) = x(a) +
∫ t

a
x′(τ) dτ = x(a) +

∫ t

a
y(τ) dτ for t ∈ [a, b].

But the Fundamental Theorem of Calculus now says that x indeed belongs to C1[a, b]
and x′ = y is uniformly continuous on [a, b].
(b) As shown in (a), the function x belongs to C1[a, b] and x′ = y is uniformly con-
tinuous, where y is again the unique uniformly continuous extension of x′|D. In order
to show that y is even Lipschitz continuous, fix s, t ∈ [a, b]. Since D is dense in [a, b]
we find sequences (sn) and (tn) in D converging to s and t, respectively. Since x′|D is
Lipschitz continuous on D, we find some L > 0 independent of s and t such that

|y(sn)− y(tn)| = |x′(sn)− x′(tn)| ≤ L|sn − tn| for all n ∈ N.

Letting n→∞ yields due to the continuity of y that

|y(s)− y(t)| ≤ L|s− t|.

But this shows nothing else than that x′ = y is indeed Lipschitz continuous on [a, b].
(c) By (a) we conclude that x is continuously differentiable on [a, b]. Thus, if x′(t) = c

for all t ∈ D, then x′ ≡ c throughout [a, b], because D is dense and x′ is continuous.
This implies that x is affine.
(d) follows immediately from (c), because in the proof of (c) we can now put c = 0. �

Note that in Lemma 1.1.27 we cannot get a better result than (a), that is, we cannot
replace “uniformly continuous” by “continuous” there. The first example illustrating
this is a function that is even Lipschitz continuous but not everywhere differentiable.

Example 1.1.28. The function x : [0, 1] → R, t 7→ max{2t, 1}, is absolutely (even
Lipschitz) continuous on [0, 1] and differentiable at every point of the union D =
[0, 1/2)∪ (1/2, 1] with x′ = 2χ(1/2,1]. In particular, x′ is continuous at every point of D.
However, x is not continuously differentiable. Note that x′ is not uniformly continuous
on D, since ∣∣∣x′(1/2− δ)− x′(1/2 + δ)

∣∣∣ = 2
for all δ ∈ (0, 1/2). ♦
The second example is a function that is everywhere differentiable but has a discon-
tinuous yet Lebesgue integrable derivative.

Example 1.1.29. The function x : [0, 1]→ R, defined by

x(t) =

t
2 cos 1

t
− 2

∫ t

0
s cos 1

s
ds for 0 < t ≤ 1,

0 for t = 0,
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is differentiable with

x′(t) = sin 1
t

= ϕ0,0,1(t) for 0 < t ≤ 1,

where the notation is borrowed from (1.1.1). At t = 0 we obtain with the help of de
L’Hospital’s rule

x′(0) = lim
t→0+

x(t)− x(0)
t

= lim
t→0+

(
t cos 1

t
− 2
t

∫ t

0
s cos 1

s
ds
)

= lim
t→0+

t cos 1
t

= 0,

and consequently x′ = ϕ0,0,1 on [0, 1]; in particular, x′ is measurable and |x′| ≤ 1 on
[0, 1] which shows x′ ∈ L∞. However, by Proposition 1.1.12 (c), the function x′ = ϕ0,0,1
is not continuous (at t = 0). ♦
Finally, the last classes we discuss here in this section are the classes Cn of n-times
continuously differentiable functions on [0, 1], where we set C0 = C. As usual, limits
at the boundary points of [0, 1] are considered to be one-sided. It is clear that

Cn ⊆ Cm for m ≤ n,

and the inclusions are strict for m < n which is shown by the following example.

Example 1.1.30. For n ∈ N0 consider the function xn : [0, 1]→ R, defined by

xn(t) = 1
(n+ 1)!

(
t− 1

2

)n ∣∣∣∣t− 1
2

∣∣∣∣ ,
where we agree on 00 = 1. Then it is straightforward to show that xn is n-times
continuously differentiable with k-th derivative

x(k)
n = xn−k for 0 ≤ k ≤ n.

In particular, the n-th derivative

x(n)
n (t) =

∣∣∣∣t− 1
2

∣∣∣∣ for 0 ≤ t ≤ 1

is continuous, but not differentiable. This shows xn ∈ Cn\Cn+k for all n, k ∈ N. ♦
With the help of the Mean Value Theorem it is easily shown that

C1 ⊆ Lip.

However, this inclusion is also strict, as the function x0(t) = |t − 1/2| from Example
1.1.30 shows.

In total, we have the chain of strict inclusions

Cn ( C1 ( Lip ( AC ( C ∩BV ( BV ( R ( B ∩ L∞ ( L∞ ( Lp (1.1.32)

for n ∈ N with n > 1 and p ∈ R with p > 1.
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1.2 Classes of Functions of Generalized Bounded
Variation

In this section we introduce spaces of functions of generalized bounded variation that
will be studied in this thesis. Since those variations are more complicated to define
than the Jordan variation to construct examples and counterexamples we will consider
not the “smooth” functions ϕα,β,n defined in (1.1.1) but the following “jump” functions
instead. For a real sequence (αj) we define the function J(αj) : [0, 1]→ R by

J(αj)(t) =
αj if t = 1

2j for some j ∈ N,
0 otherwise.

(1.2.1)

It is clear that J(αj) belongs to L∞ and hence to all Lebesgue spaces for any sequence
(αj) and to either of the spaces C and D only if αj = 0 for all j ∈ N. So for these
spaces the functions (1.2.1) are of no interest. However, J(αj) ∈ B if and only if (αj)
is bounded, and J(αj) ∈ BV if and only if ∑∞j=1 αj converges absolutely. To be more
precise, supp(J(αj)) ⊆ {1

2 ,
1
4 ,

1
6 , . . .} and by Proposition 1.1.8,

Var
(
J(αj)

)
= 2

∞∑
j=1
|αj|. (1.2.2)

For further reference, we summarize this as

Corollary 1.2.1. The function J(αj) belongs to BV if and only if

∞∑
j=1
|αj| <∞.

Its variation can be calculated explicitly by (1.2.2).

As a special case we write for α ∈ R

Jα := J(aj) for αj = 1
jα

and all j ∈ N. (1.2.3)

Then Corollary 1.2.1 says that Jα ∈ BV if and only if α > 1. In this case, (1.2.2)
yields

Var(Jα) = 2
∞∑
j=1

1
jα

= 2ζ(α),

where ζ denotes the Riemann zeta function. In particular, Var(J2) = 2ζ(2) = π2/3.

Since functions with countable support will be of great importance later on, we put a
particular emphasis in investigating such functions in this section.
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The Wiener Variation
We start with a self-evident generalization of Definition 1.1.7.
Definition 1.2.2. For a function x : [0, 1] → R and a real number p ≥ 1 we call the
possibly infinite number

Varp(x) = sup
P

n∑
j=1
|x(tj−1)− x(tj)|p (1.2.4)

the Wiener variation of x on [0, 1], where the supremum is taken over all finite parti-
tions P : 0 = t0 < . . . < tn = 1 of [0, 1]. If Varp(x) < ∞, we say that x has bounded
Wiener variation and write x ∈ WBVp.
Note that for p = 1 the space WBVp reduces to BV . Thus, unless otherwise stated we
always tacitly assume p > 1.
We test Definition 1.2.2 on functions with countable support. Naively, our intuition
might make us believe that there is a perfect analogue to formula (1.1.12), namely
something like

Varp(x) = |x(0)|p + |x(1)|p + 2
∑

τ∈supp(x)\{0,1}
|x(τ)|p (1.2.5)

for functions x ∈ Sc. However, this is not true, and one indication for this might be
that according to Proposition 1.1.8 we had Varp(x) = Var

(
|x|p

)
which looks weird.

Let us make this a little more explicit.

Example 1.2.3. Let us consider the function x := J(αj) with α1 = 1, α2 = −1 and
αj = 0 for all j ≥ 3. Then the right hand side of (1.2.5) becomes 4. However, if we
take the partition t0 := 0, t1 := 1/4, t2 := 1/2, t3 := 1, then

Varp(x) ≥ |x(0)− x(1
4)|p + |x(1

4)− x(1
2)|p + |x(1

2)− x(1)|p = 2 + 2p

which is larger than 4 for p > 1. Thus, formula (1.2.5) cannot be true in general.
A little more scrutiny shows Varp(x) = 2 + 2p. Indeed, for an arbitrary partition
0 = t0 < . . . < tn there are two possibilities: Either there exists some k ∈ {1, . . . , n−1}
with 1

4 = tk−1 < tk = 1
2 , or there is no such k. If such a k exists, then

n∑
j=1
|x(tj−1)− x(tj)|p =

k−1∑
j=1
|x(tj−1)− x(tj)|p + |x(tk−1)− x(tk)|p + |x(tk)− x(tk+1)|p

+
n∑

j=k+2
|x(tj−1)− x(tj)|p

= 2 + 2p.

If not, then for each k ∈ {1, . . . , n} we have tk−1 6= 1
4 or tk 6= 1

2 . But in this case,
n∑
j=1
|x(tj−1)− x(tj)|p ≤ 4 ≤ 2 + 2p.

Consequently, since Varp(x) is the supremum of all such sums, Varp(x) = 2 + 2p. ♦
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In contrast to Proposition 1.1.8 we can now not calculate the Wiener variation of a
function with countable support explicitly but get at least some estimates from above
and below.

Proposition 1.2.4. For x ∈ Sc we have

Var
(
|x|p

)
= Varp

(
|x|
)
≤ Varp(x) ≤ 2p−1 Var

(
|x|p

)
, (1.2.6)

where

Var
(
|x|p

)
= |x(0)|p + |x(1)|p + 2

∑
τ∈supp(x)\{0,1}

|x(τ)|p

according to (1.1.12). In particular, x ∈ WBVp if and only if |x|p ∈ BV .

Proof. To see this first note that t 7→ |t|p is convex and thus superadditive; in particular,
|a − b|p ≤ |ap − bp| for all a, b ≥ 0. From this it follows that Varp(|x|) ≤ Var(|x|p).
By considering the same special partition as in the proof of Proposition 1.1.8 one can
show that also Varp(|x|) ≥ Var(|x|p). This shows the equality in (1.2.6).
Since

∣∣∣|a| − |b|∣∣∣ ≤ |a− b| for all a, b ∈ R, also the first inequality in (1.2.6) is proven.
For the right inequality consider an arbitrary partition 0 = t0 < . . . < tn = 1 of [0, 1].
Again, since t 7→ |t|p is convex, we have |a − b|p ≤ 2p−1

(
|a|p + |b|p

)
for all a, b ∈ R.

This implies
n∑
j=1

∣∣∣x(tj−1)− x(tj)
∣∣∣p ≤ 2p−1

n∑
j=1

(
|x(tj−1)|p + |x(tj)|p

)

≤ 2p−1

|x(0)|p + |x(1)|p + 2
∑

τ∈supp(x)\{0,1}
|x(τ)|p

 = 2p−1 Var
(
|x|p

)
,

again by Proposition 1.1.8. This yields the claim. �

For our functions J(αj) this means the following.

Corollary 1.2.5. The function J(αj) satisfies

2
∞∑
j=1
|αj|p ≤ Varp

(
J(αj)

)
≤ 2p

∞∑
j=1
|αj|p; (1.2.7)

in particular, it belongs to WBVp if and only if the series in (1.2.7) converges.

Example 1.2.3 has shown that we cannot expect equality in either of these two inequal-
ities in (1.2.7). However, observe that (1.2.7) contains (1.2.2) for p = 1.

For functions with countable support we deduce from (1.2.6) for p = 1 that Var(|x|) =
Var(x). However, even for p = 1 the right inequality in formula (1.2.6) is false for
functions x having uncountable support.

Example 1.2.6. The function x := 2χQ∩[0,1] − 1 is clearly of unbounded variation on
[0, 1], but |x| is equal to 1 and thus has variation 0. Note that supp(x) = [0, 1]. ♦
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One can show that the equivalence x ∈ BV ⇔ |x| ∈ BV is true for continuous functions
[6].

In can be shown that WBVp when endowed with the norm

‖x‖ = |x(0)|+ Varp(x)1/p (1.2.8)

is a Banach algebra, and that this norm satisfies the estimate (1.1.20) with Φ(x) =
Varp(x)1/p and α = 1. Therefore, by Proposition 1.1.15, WBVp together with the norm

‖x‖WBVp
:= ‖x‖∞ + Varp(x)1/p (1.2.9)

is a normalized Banach algebra.

It is clear that BV ⊆ WBVp for any p ≥ 1. More generally, we have

BV ⊆ WBVp ⊆ WBVq ⊆ R for 1 ≤ p ≤ q. (1.2.10)

All those inclusions are in fact continuous embeddings. For instance, for the last
inclusion we have

|x(t)| ≤ |x(0)|+
(
|x(t)− x(0)|p

)1/p ≤ |x(0)|+ Varp(x)1/p

and hence

‖x‖∞ ≤ |x(0)|+ Varp(x)1/p ≤ ‖x‖WBVp
; (1.2.11)

in particular, the two norms in (1.2.8) and (1.2.9) are equivalent by Proposition 1.1.15.
That for 1 < p < q the inclusions in (1.2.10) are strict can now also be seen with the help
of the functions Jα introduced in (1.2.3). Corollary 1.2.5 says that Jα belongs toWBVp
if and only if αp > 1. In particular, for 1 < p < q we have J1/p ∈ (R∩WBVq)\WBVp.
In addition to the inclusions in (1.2.10) we also have

Lip1/p ⊆ WBVp for p ≥ 1,

which is a generalization of the inclusion Lip ⊆ BV .
In this context the following analogue to Theorem 1.1.23 is noteworthy.

Theorem 1.2.7. A function x : [0, 1] → R belongs to WBVp if and only if it may
be represented as a composition x = y ◦ z, where y ∈ Lip1/p and z : [0, 1] → [0, 1] is
increasing.
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The Young Variation
Even more general than the Wiener variation is the Young variation which has been
introduced 1937 by Laurence Chisholm Young in [160, 161]. The weighting function
t 7→ |t|p that has been used to weight the absolute values |x(tj−1)− x(tj)| in Definition
1.2.2 is now replaced by a general convex function.
Definition 1.2.8. A function ϕ : [0,∞) → [0,∞) is said to be a Young function (or
ϕ-function) if it is convex and such that ϕ(t) = 0 if and only if t = 0.
Note that according to this definition every Young function is continuous, strictly
increasing and so that ϕ(t)→∞ as t→∞. Moreover, due to convexity, ϕ(st) ≤ sϕ(t)
for all s ∈ [0, 1], t ∈ [0,∞), as well as ϕ(st) ≥ sϕ(t) for all s ∈ [1,∞), t ∈ [0,∞).
Using the notion of a Young function the Young variation is now defined as follows.
Definition 1.2.9. For a function x : [0, 1] → R and a Young function ϕ : [0,∞) →
[0,∞) we call the possibly infinite number

Varϕ(x) = sup
P

n∑
j=1

ϕ
(
|x(tj−1)− x(tj)|

)

the Young variation (or ϕ-variation) of x on [0, 1], where the supremum is taken over
all finite partitions P : 0 = t0 < . . . < tn = 1 of [0, 1].
Finally, we denote by

Y BVϕ := {x : [0, 1]→ R | Varϕ(λx) <∞ for some λ > 0}

the space of functions of bounded Young variation.
Observe that ϕ(t) = tp for p ≥ 1 is a Young function, and in this case, Y BVϕ = WBVp.

As in the Propositions 1.1.8 and 1.2.4 we will also for the Young variation consider
functions with countable support.

Proposition 1.2.10. Let ϕ be an arbitrary Young function. For x ∈ Sc we have

Var
(
ϕ(|x|)

)
= Varϕ

(
|x|
)
≤ Varϕ(x) ≤ 2−1 Var

(
ϕ(2|x|)

)
, (1.2.12)

where

Var
(
ϕ(λ|x|)

)
= ϕ(λ|x(0)|) + ϕ(λ|x(1)|) + 2

∑
τ∈supp(x)\{0,1}

ϕ
(
λ|x(τ)|

)
for λ > 0

according to (1.1.12). In particular, x ∈ Y BVϕ if and only if ϕ
(
λ|x|

)
∈ BV for some

λ > 0.

Proof. We proceed as in the proof of Proposition 1.2.4. First note that ϕ is convex and
hence superadditive; in particular, ϕ(|a− b|) ≤ |ϕ(a)−ϕ(b)| for all a, b ≥ 0. From this
it follows that Varϕ

(
|x|
)
≤ Var

(
ϕ(|x|)

)
. By considering the same special partition
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as in the proof of Proposition 1.1.8 one can show that also Varϕ
(
|x|
)
≥ Var

(
ϕ(|x|)

)
.

This shows the equality in (1.2.12).
Since ϕ is increasing and

∣∣∣|a| − |b|∣∣∣ ≤ |a− b| for all a, b ∈ R, also the inequality in the
middle of (1.2.12) is proven.
For the remaining inequality consider an arbitrary partition 0 = t0 < . . . < tn = 1 of
[0, 1]. Again, since ϕ is increasing and convex we have ϕ(|a−b|) ≤ 2−1

[
ϕ(2|a|)+ϕ(2|b|)

]
for all a, b ∈ R. This implies
n∑
j=1

ϕ
(
|x(tj−1)− x(tj)|

)
≤ 2−1

n∑
j=1

[
ϕ
(
2|x(tj−1)|

)
+ ϕ

(
2|x(tj)|

)]

= 2−1

ϕ(2|x(0)|
)

+ ϕ
(
2|x(1)|

)
+ 2

n−1∑
j=1

ϕ
(
2|x(tj)|

)
≤ 2−1

ϕ(2|x(0)|
)

+ ϕ
(
2|x(1)|

)
+ 2

∑
τ∈supp(x)\{0,1}

ϕ
(
2|x(τ)|

)
= 2−1 Var

(
ϕ(2|x|)

)
,

where the last equality comes from (1.1.12). Thus, also the right inequality in (1.2.12)
is true, and this completes the proof. �

For our functions J(αj) this means the following.

Corollary 1.2.11. The function J(αj) satisfies

2
∞∑
j=1

ϕ
(
λ|αj|

)
≤ Varϕ

(
λJ(αj)

)
≤
∞∑
j=1

ϕ
(
2λ|αj|

)
for λ > 0. (1.2.13)

Moreover, it belongs to Y BVϕ if and only if at least one of the two series in (1.2.13)
converges for some λ > 0.

Proposition 1.2.10 explains why we have not defined the space Y BVϕ by the set

Y BV ∗ϕ := {x : [0, 1]→ R | Varϕ(x) <∞}
as we have done so for the other variations. The reason is that Y BV ∗ϕ is not a linear
space, since it is not closed under multiplication with scalars.

Example 1.2.12. The function ϕ : [0,∞)→ [0,∞), defined by

ϕ(t) =
t exp(−1/t) for t > 0,

0 for t = 0,

is a Young function. Putting α1 := 0 and αj := 1
4 log(j) for j ∈ N, j ≥ 2, the function

x := J(αj), given by (1.2.1), is nonnegative and has countable support. Moreover, by
(1.1.12) we have with τj = 1/(2j),

Var
(
ϕ(λx)

)
= 2

∞∑
j=2

ϕ
(
λx(τj)

)
= 2λ

∞∑
j=2

x(τj) exp
(
−1

λx(τj)

)

= λ

2

∞∑
j=2

1
j4/λ log(j) . (1.2.14)
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For λ = 2 the series in (1.2.14) converges which means that Var
(
ϕ(2x)

)
< ∞. Thus,

by (1.2.12), also Varϕ(x) < ∞, that is, x ∈ Y BV ∗ϕ . However, for λ = 4 the series in
(1.2.14) diverges which means that Var

(
ϕ(4x)

)
= ∞. Again by (1.2.12) we get that

Varϕ(4x) =∞ which implies 4x /∈ Y BV ∗ϕ . ♦
In general, one only has Y BVϕ = Span(Y BV ∗ϕ ), that is, Y BVϕ is the linear hull of
Y BV ∗ϕ . However, if ϕ satisfies a so-called δ2-condition, that is,

lim sup
t→0+

ϕ(2t)
ϕ(t) <∞, (1.2.15)

then Y BV ∗ϕ is a linear space. In fact, the δ2-condition is not only sufficient but also
necessary for this [121]. This is exactly analogous to the properties of Orlicz spaces.
Observe that the function ϕ in Example 1.2.12 does not satisfy a δ2-condition, since

lim sup
t→0+

ϕ(2t)
ϕ(t) = 2 lim sup

t→0+
exp

( 1
2t

)
=∞.

The δ2-condition, however, has also some other benefits, because it makes explicit
calculations easier. For ϕ satisfying a δ2-condition, the function M : [0,∞] → [0,∞],
set by M(0) := 0, M(∞) :=∞ and

M(T ) := sup
0<t≤T

ϕ(2t)
ϕ(t) for T > 0 (1.2.16)

is well-defined and increasing. We then have

Varϕ(2x) ≤M
(
2 ‖x‖∞

)
Varϕ(x) for x ∈ Y BVϕ, (1.2.17)

and Proposition 1.2.10 reduces to the following familiar form.

Corollary 1.2.13. Let ϕ be a Young function satisfying a δ2-condition. For x ∈ Sc we
have

Var
(
ϕ(|x|)

)
= Varϕ

(
|x|
)
≤ Varϕ(x) ≤ 2−1M

(
2 ‖x‖∞

)
Var

(
ϕ(|x|)

)
, (1.2.18)

where M is as in (1.2.16) and

Var
(
ϕ(|x|)

)
= ϕ(|x(0)|) + ϕ(|x(1)|) + 2

∑
τ∈supp(x)\{0,1}

ϕ
(
|x(τ)|

)
according to (1.1.12). In particular, x ∈ Y BVϕ if and only if ϕ ◦ |x| ∈ BV .

Note that for the special Young function ϕ(t) = tp we have M(T ) = 2p for all T > 0
and hence Corollary 1.2.13 reduces to Proposition 1.2.4.

In order to equip Y BVϕ with a norm, we consider the set {x ∈ Y BVϕ | Varϕ(x) ≤ 1}
which is absorbing, balanced and convex. Thus, the Minkowski functional

M : Y BVϕ → [0,∞), x 7→ inf{λ > 0 | Varϕ(x/λ) ≤ 1} (1.2.19)

is a seminorm on Y BVϕ [116] which exhibits the following properties.
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Proposition 1.2.14. If three functions x, y, z : [0, 1]→ R with x, y ∈ Y BVϕ for some
constants α, β ≥ 0 and each s, t ∈ [0, 1] satisfy the estimate

|z(s)− z(t)| ≤ α|x(s)− x(t)|+ β|y(s)− y(t)|,

then z ∈ Y BVϕ with M(z) ≤ αM(x) + βM(y).

We do not give the proof here because we will prove a much more general result in
Lemma 1.2.26 below. Nevertheless, from Proposition 1.2.14 follows that the Minkowski
functional satisfies

M(xy) ≤ ‖x‖∞M(y) + ‖y‖∞M(x)

for all x, y ∈ Y BVϕ, because∣∣∣x(s)y(s)− x(t)y(t)
∣∣∣ ≤ ‖x‖∞ |y(s)− y(t)|+ ‖y‖∞ |x(s)− x(t)|

holds for any s, t ∈ [0, 1]. In particular, this shows that the space Y BVϕ is closed under
multiplication. Finally, equipped with the norm

‖x‖ = |x(0)|+ M(x), (1.2.20)

the space Y BVϕ is a Banach algebra which becomes normalized by Proposition 1.1.15
when (1.2.20) is replaced by

‖x‖Y BVϕ := ‖x‖∞ + M(x). (1.2.21)

Similarly to BV the reciprocal of a function x ∈ Y BVϕ also belongs to Y BVϕ if x is
bounded away from zero. More precisely, if suppδ(x) = [0, 1] for some δ > 0, then

Varϕ(1/x) ≤ Varϕ(x/δ2);

in particular,
Varp(1/x) ≤ δ−2p Varp(x).

For the special case ϕ(t) = tp it is easily verified that

‖x‖Y BVϕ = ‖x‖∞ + Varp(x)1/p = ‖x‖WBVp
.

Since the norm ‖·‖Y BVϕ is defined via the unhandy Minkowski functional, it is difficult
to estimate norms of Y BVϕ-functions. If a δ2-condition is assumed, we can consider
the variations themselves instead.

Proposition 1.2.15. Let ϕ be a Young function and let (xn) be a sequence in Y BVϕ.
The following statements hold.

(a) (
∀λ > 0 : lim

n→∞Varϕ(λxn) = 0
)
⇐⇒ lim

n→∞M(xn) = 0.
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(b) If ϕ satisfies a δ2-condition and (xn) is a bounded sequence in B, then

lim
n→∞Varϕ(xn) = 0 ⇐⇒ lim

n→∞M(xn) = 0.

Proof. Part (a) has been proven in [120]. For (b) note that we only have to prove
“⇒”, because the converse follows from (a). To this end, fix ε > 0 and pick m ∈ N
so large that 2−m ≤ ε. Let (xn) be a sequence in Y BVϕ which is bounded in B with
Varϕ(xn)→ 0 as n→∞. Then there areN ∈ N and C > 0 such that ‖xn‖∞ ≤ C/2 and
Varϕ(xn) ≤ M(2mC)−m for all n ≥ N , where M denotes the function in (1.2.16). For
a partition 0 = t0 < . . . < tk = 1 of [0, 1] we obtain |xn(tj−1)− xn(tj)| ≤ 2 ‖xn‖∞ ≤ C,
and from that we get

k∑
j=1

ϕ
(
2m|xn(tj−1)− xn(tj)|

)
≤M(2mC)m

k∑
j=1

ϕ
(
|xn(tj−1)− xn(tj)|

)
≤M(2mC)m Varϕ(xn).

Consequently, Varϕ(2mxn) ≤M(2mC)m Varϕ(xn) ≤ 1 and hence M(xn) ≤ 2−m ≤ ε for
all n ≥ N . This shows M(xn)→ 0 as n→∞. �

Finally, in order to compare two spaces Y BVϕ and Y BVψ for two Young functions ϕ
and ψ, we write ψ � ϕ if

lim sup
t→0+

ψ(λt)
ϕ(t) <∞ for some λ > 0, (1.2.22)

and we also write ψ ≺ ϕ if ψ � ϕ and ϕ 6� ψ. With this notation at hand it was shown
in [42] that Y BVϕ ⊆ Y BVψ if and only if ψ � ϕ. In particular, two Young spaces Y BVϕ
and Y BVψ coincide if and only if ψ � ϕ and ϕ � ψ, and so ψ ≺ ϕ is equivalent to the
strict inclusion Y BVϕ ( Y BVψ. For instance, the functions ϕ(t) = t and ψ(t) = t2 are
both Young functions with ψ ≺ ϕ. This means that Y BVϕ = BV ( Y BVψ = WBV2,
in accordance with (1.2.10).
In general, the chain of strict inclusions

BV ( Y BVϕ ( Y BVψ ( R (1.2.23)

is true for ψ ≺ ϕ ≺ ι, where ι(t) := t and Y BVι = BV , and it can be shown that all
inclusions are continuous embeddings. For instance, for x ∈ Y BVψ and λ > 0 with
Varψ(x/λ) ≤ 1 we have

|x(t)| ≤ |x(0)|+ λψ−1
(
ψ(|x(t)− x(0)|/λ)

)
≤ |x(0)|+ λψ−1

(
Varψ(x/λ)

)
≤ |x(0)|+ λψ−1(1).

Taking the infimum over all such λ gives |x(t)| ≤ |x(0)|+ ψ−1(1)M(x) and hence

‖x‖∞ ≤ |x(0)|+ ψ−1(1)M(x) ≤ max{1, ψ−1(1)} ‖x‖Y BVψ ; (1.2.24)
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in particular, the two norms (1.2.20) and (1.2.21) are equivalent by Proposition 1.1.15.
Note that if ψ(t) = tp we have ψ−1(1) = 1 and hence (1.2.24) reduces to (1.2.11).

Due to the immense generality of Young functions it is much more difficult to prove that
all inclusions in (1.2.23) are strict if ψ ≺ ϕ ≺ ι. But since we need a similar argument
later in Section 3.2 we give here a proof. First note that it is easy to find a decreasing
sequence (βj) of positive numbers βj tending to 0 such that ∑∞j=1 ψ(βj) = ∞. Set
αj :=

√
βj for all j ∈ N and fix λ > 0. Since αj → 0 as j → ∞ there is some n ∈ N

such that λ ≥ αj for all j ≥ n. This implies
∞∑
j=1

ψ(λαj) ≥
∞∑
j=n

ψ(α2
j ) =

∞∑
j=n

ψ(βj) =∞.

According to Corollary 1.2.11 the function J(αj) does not belong to Y BVψ yet it belongs
to R as (αj) converges to 0. This shows that the last inclusion in (1.2.24) is strict.
For the first and middle inclusion we would like to find a real sequence (αj) in such a
way that J(αj) ∈ Y BVψ\Y BVϕ. According to Corollary 1.2.11 this would be the case
if we can arrange (αj) so that

∞∑
j=1

ψ(αj) <∞ and
∞∑
j=1

ϕ(λαj) =∞ for all λ > 0. (1.2.25)

The following quite technical Lemma provides a solution and we show how to apply it
after its proof.

Lemma 1.2.16. Let Φ : (0,∞)× [0,∞)→ [0,∞) satisfy the following conditions.

(i) For each t ≥ 0 the function Φ(·, t) is increasing.

(ii) For each λ > 0 we have lim sup
t→0+

Φ(λ, t)
t

=∞.

Then for each α > 0 there exists a sequence (tj) of positive real numbers such that for
all fixed λ > 0

∞∑
j=1

Φ(λ, tj) =∞ and
∞∑
j=1

tj ≤ α.

Proof. First assume that for each λ > 0

m(λ) := lim sup
t→0+

Φ(λ, t) > 0. (1.2.26)

Then pick a monotonically decreasing sequence (λj) converging to zero such that
∞∑
j=1

m(λj) =∞.

For each j ∈ N we find due to (1.2.26) some 0 < tj ≤ α/2j so that Φ(λj, tj) ≥ m(λj)/2.
Then ∞∑

j=1
tj ≤ α

∞∑
j=1

1
2j = α.
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For fixed λ > 0 there is some k ∈ N such that λ ≥ λj for each j ≥ k. Then with the
help of (i) we obtain

∞∑
j=1

Φ(λ, tj) ≥
∞∑
j=k

Φ(λj, tj) ≥
1
2

∞∑
j=k

m(λj) =∞,

as desired.
Now assume that (1.2.26) does not hold. Then there exists some λ0 > 0 such that

lim
t→0+

Φ(λ0, t) = 0.

By replacing Φ(s, t) by Φ(s/λ0, t) we can assume that λ0 = 1. Moreover, we get from
assumption (i)

lim
t→0+

Φ(λ, t) = 0 for all λ ∈ (0, 1]. (1.2.27)

Define
β := 2

α
+ 2.

We are going to define two sequences (nk) in N and (τk) in (0,∞) recursively as follows:
We start with n1 := 1 and choose τ1 > 0 so small that

1 ≥ Φ(1, τ1) > βτ1.

This is possible because of (1.2.27) and (ii). Once nk and τk have been constructed,
we first choose nk+1 ∈ N so that

2k
Φ(1/nk, τk)

+ nk − 1 < nk+1 ≤
2k

Φ(1/nk, τk)
+ nk.

Afterwards we choose τk+1 so small that

1 ≥ Φ(1/nk+1, τk+1) > βk+1τk+1

holds. Again, this is possible because of the conditions (1.2.27) and (ii).
In total, this construction ensures, that (nk) and (τk) satisfy the relations

1 ≥ Φ(1/nk, τk) > βkτk and (1.2.28)
2k

Φ(1/nk, τk)
+ nk − 1 < nk+1 ≤

2k
Φ(1/nk, τk)

+ nk for all k ∈ N; (1.2.29)

in particular,

nk+1 − nk ≥ 2k − 1 ≥ 1 (1.2.30)

and nk →∞ as k →∞.
Rearranging (1.2.29) gives

Φ(1/nk, τk) >
2k

nk+1 − nk + 1 and 2k
nk+1 − nk

≥ Φ(1/nk, τk). (1.2.31)
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Using the first inequality of (1.2.31) leads to

1
nk+1 − nk

= 1
2k ·

2k
nk+1 − nk

<
1
2k ·

nk+1 − nk + 1
nk+1 − nk

· Φ(1/nk, τk), (1.2.32)

and using (1.2.30) yields

1
2k ·

nk+1 − nk + 1
nk+1 − nk

= 1
2k

(
1 + 1

nk+1 − nk

)
≤ 1

2k
(

1 + 1
2k − 1

)
= 1

2k − 1 ≤ 1.

This and (1.2.32) gives
1

nk+1 − nk
< Φ(1/nk, τk). (1.2.33)

Finally, if we compare the second inequality of (1.2.31) with (1.2.33), we find - taking
(1.2.28) into account - by the Intermediate Value Theorem some sk ∈ [1, 2] such that

Φ(1/nk, τk) = skk
nk+1 − nk

≥ βkτk. (1.2.34)

We now define the sequence (tj) by

tj = τk for nk ≤ j ≤ nk+1 − 1 and j, k ∈ N.

Fix λ > 0. Then there is some ` ∈ N such that λ ≥ 1/nk for all k ≥ `. By using the
equality in (1.2.34) and (i) we obtain

∞∑
j=1

Φ(λ, tj) =
∞∑
k=1

nk+1−1∑
j=nk

Φ(λ, τk) ≥
∞∑
k=`

nk+1−1∑
j=nk

Φ(1/nk, τk)

=
∞∑
k=`

(nk+1 − nk)Φ(1/nk, τk) =
∞∑
k=`

skk ≥
∞∑
k=`

1 =∞

which shows that ∑∞j=1 Φ(λ, tj) = ∞. On the other hand, by using the inequality in
(1.2.34) we get similarly

∞∑
j=1

tj =
∞∑
k=1

(nk+1 − nk)τk ≤
∞∑
k=1

skk
βk
≤
∞∑
k=1

(
2
β

)k
= α

which shows that ∑∞j=1 tj ≤ α. This completes the proof. �

We are going to show in the following how to use Lemma 1.2.16 to achieve (1.2.25).
Let ϕ and ψ be two Young functions satisfying ϕ 6� ψ which means

lim sup
t→0+

ϕ(λt)
ψ(t) =∞ for all λ > 0. (1.2.35)

Since ψ is a homeomorphism of [0,∞) with ψ(0) = 0 we can substitute with s = ψ(t)
and obtain

lim sup
s→0+

ϕ
(
λψ−1(s)

)
s

=∞ for all λ > 0. (1.2.36)
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We now define Φ : (0,∞)× [0,∞)→ [0,∞) by

Φ(λ, t) := ϕ
(
λψ−1(t)

)
.

Since ψ−1 and ϕ are increasing, condition (i) of Lemma 1.2.16 is met, and (1.2.36)
takes care of condition (ii). Consequently, Lemma 1.2.16 delivers us a sequence (tj) of
positive real numbers such that

∞∑
j=1

tj ≤ 1 and
∞∑
j=1

Φ(λ, tj) =∞ for all λ > 0.

Substituting again αj := ψ−1(tj), we obtain a sequence (αj) of positive real numbers
such that

∞∑
j=1

ψ(αj) ≤ 1 and
∞∑
j=1

ϕ(λαj) =∞ for all λ > 0. (1.2.37)

But Corollary 1.2.11 now says that the function J(αj) belongs to Y BVψ\Y BVϕ, as
desired.
Later in Section 3.2 we will use the same idea to investigate multiplier sets in spaces
of functions of bounded Young variation.

The Waterman Variation
Another generalized type of variation is that of Waterman which has been introduced
in 1972 by Daniel Waterman [151].
Definition 1.2.17. A sequence Λ = (λj) of positive real numbers λj is called a Water-
man sequence if it is decreasing, converging to 0 as j →∞ and so that ∑∞j=1 λj = +∞.
A particularly simple Waterman sequence is given by λj = 1/jq for 0 < q ≤ 1, and the
special case λj = 1/j was originally considered by Waterman.

Definition 1.2.18. The possibly infinite number

VarΛ(x) = sup
∞∑
j=1

λj|f(aj)− f(bj)|,

where the supremum is taken over all countably infinite collections ([aj, bj]) of mutually
nonoverlapping closed subintervals of [0, 1], is called the Waterman variation (or Λ-
variation) of the function x over the interval [0, 1].
Finally, we denote by ΛBV := {x : [0, 1] → R | VarΛ(x) < ∞} the space of functions
of bounded Waterman variation.
Observe that this definition remains the same if only finite interval collections are
considered.
For the special sequence λj = 1/jq we write ΛqBV instead of ΛBV . Functions in
Λ1BV are of particular interest and called functions of bounded harmonic variation.
The first big difference in Definition 1.2.18 compared to the Definitions 1.1.7, 1.2.2 and
1.2.9 is that we here use (finite or infinite) collections of intervals. However, there is
another possibility to calculate the Waterman variation using partitions.
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Proposition 1.2.19. Let Λ = (λj) be a Waterman sequence and x : [0, 1]→ R be any
function. Then

VarΛ(x) = sup
σ,P

n∑
j=1

λσ(j)|x(tj−1)− x(tj)|, (1.2.38)

where the supremum is taken over all partitions P : 0 = t0 < . . . < tn = 1 of [0, 1] and
all permutations σ of N.

Proof. Let us denote the quantity on the right hand side of (1.2.38) by v. We need to
show that VarΛ(x) = v.
Let σ be a permutation of N and let 0 = t0 < . . . < tn = 1 be a partition of [0, 1].
Define [aσ(j), bσ(j)] := [tj−1, tj] for j = 1, . . . , n and [aσ(j), bσ(j)] := [0, 0] = {0} for j > n.
The collection ([aj, bj]) then consists of mutually disjoint subintervals of [0, 1], and we
obtain

n∑
j=1

λσ(j)|x(tj−1)− x(tj)| =
n∑
j=1

λσ(j)|x(aσ(j))− x(bσ(j))| ≤
∞∑
j=1

λj|x(aj)− x(bj)|

≤ VarΛ(x).

Taking the supremum with respect to the partitions and permutations on the left hand
side yields v ≤ VarΛ(x).
For the reverse inequality take a countably infinite collection ([aj, bj]) of mutually
disjoint intervals and fix n ∈ N. Then the first n intervals can be ordered in the sense
that there is some permutation τ of {1, . . . , n} such that

bτ(j) ≤ aτ(j+1) for j ∈ {1, . . . , n− 1}.

We now define the permutation σ of N by σ(2j) := τ(j) and σ(2j − 1) := n + j for
j ∈ {1, . . . , n} and σ(j) := j for j > 2n. We also define a partition 0 =: t0 ≤ . . . ≤
t2n+1 := 1 by t2j := bτ(j) and t2j−1 := aτ(j) for j ∈ {1, . . . , n}. Then,

n∑
j=1

λj|x(aj)− x(bj)| =
n∑
j=1

λτ(j)|x(aτ(j))− x(bτ(j))| =
n∑
j=1

λσ(2j)|x(t2j−1)− x(t2j)|

≤
2n∑
j=1

λσ(j)|x(tj−1)− x(tj)| ≤ v.

Letting n→∞ yields
∞∑
j=1

λj|x(aj)− x(bj)| ≤ v,

and taking the supremum with respect to the collections of intervals gives VarΛ(x) ≤ v.
This completes the proof. �

We now test Definition 1.2.18 on functions with countable support. More generally
speaking, for arbitrary functions with countable support we have an analogue to the
Propositions 1.2.4 and 1.2.10.
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Proposition 1.2.20. Let Λ = (λj) be a Waterman sequence. For x ∈ Sc we have

sup
σ,n

∑
pairwise distinct
τ1,...,τn∈supp(x)

λσ(j)|x(τj)| ≤ VarΛ(x) ≤ 2 sup
σ,n

∑
pairwise distinct
τ1,...,τn∈supp(x)

λσ(j)|x(τj)|, (1.2.39)

where the supremum is taken over all natural numbers n ≤ # supp(x) and all permu-
tations σ of N.
In particular, x ∈ ΛBV if and only if the supremum in (1.2.39) is finite.

Proof. For the left inequality in (1.2.39) we assume for simplicity that supp(x) ⊆ (0, 1);
the other case is similar. Fix n ≤ # supp(x), pick numbers τ1, . . . , τn−1 ∈ supp(x),
bring them in increasing order and relabel them by t2, t4, t6, . . . , t2n−2. Set t0 := 0 and
t2n := 1, and pick for each j ∈ {1, . . . , n} numbers t2j−1 ∈ (t2j−2, t2j)\ supp(x). Fix
a permutation σ of N and define another permutation % of N by %(2j) = σ(j) and
%(2j − 1) = σ(n + j) for j ∈ {1, . . . , n} and by %(j) = σ(j) for j > 2n. Then, by
Proposition 1.2.19,

VarΛ(x) ≥
2n∑
j=1

λ%(j)|x(tj−1)− x(tj)|

=
n−1∑
j=0

λ%(2j+1)|x(t2j)− x(t2j+1)|+
n∑
j=1

λ%(2j)|x(t2j−1)− x(t2j)|

=
n−1∑
j=1

(
λ%(2j+1) + λ%(2j)

)
|x(τj)| ≥

n−1∑
j=1

λσ(j)|x(τj)|.

Taking the supremum with respect to σ and the partitions we obtain, again with
Proposition 1.2.19, the left inequality in (1.2.39).
We now show the right inequality. To do this let n ≤ # supp(x), and consider an
arbitrary finite collection ([aj, bj])1≤j≤n of nonoverlapping subintervals of [0, 1] and any
permutation σ of N. We have

n∑
j=1

λj|x(aj)− x(bj)| ≤
n∑
j=1

λj|x(aj)|+
n∑
j=1

λj|x(bj)|

≤ sup
σ

n∑
j=1

λσ(j)|x(aj)|+ sup
σ

n∑
j=1

λσ(j)|x(bj)|

≤ 2 sup
σ,n

∑
pairwise distinct
τ1,...,τn∈supp(x)

λσ(j)|x(τj)|.

By taking the supremum on the left hand side with respect to interval collections we
obtain the remaining inequality. �

For our functions J(αj) defined by (1.2.1) this reads as follows.

Corollary 1.2.21. Let Λ = (λj) be a Waterman sequence. The function J(αj) satisfies

sup
σ

∞∑
j=1

λσ(j)|αj| ≤ VarΛ
(
J(αj)

)
≤ 2 sup

σ

∞∑
j=1

λσ(j)|αj|; (1.2.40)

in particular, it belongs to ΛBV if and only if the supremum in (1.2.40) is finite.
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In particular, the function Jα = J(1/jα) introduced in (1.2.3) belongs to ΛBV if and
only if ∑∞j=1 λj/j

α converges which is possible only for α > 0. The supremum over
permutations σ in Corollary 1.2.21 can then be dropped, because the two sequences
(λj) and (1/jα) are both decreasing for α ≥ 0 and hence the supremum is attained if
σ(j) = j for all j ∈ N.
However, in general it is not sufficient to drop the permutation σ in (1.2.39) or in
(1.2.40) and simply consider

Var∗Λ(x) :=
∞∑
j=1

λj|x(τj)| (1.2.41)

for functions having countable support, because (1.2.41) depends on how supp(x) is
actually enumerated. In particular, Var∗Λ(x) is simply not well-defined as an expression
that is supposed to only depend on x. The following example illustrates this.

Example 1.2.22. Let Λ = (λj) = (αj) be defined by λj := αj := 1/
√
j for j ∈ N, and

let x := J(αj). If supp(x) = {1
2 ,

1
4 , . . .} = {τ1, τ2, . . .} is given in decreasing order, then

Var∗Λ(x) =
∞∑
j=1

λjαj =
∞∑
j=1

1
j

=∞.

However, we now show that Var∗Λ(x) may be finite if the τj are ordered “properly”.
We first define P := {2k | k ∈ N0} to be the set of all powers of 2, and write the
set N\P = {k1, k2, k3, . . .} = {3, 5, 6, 7, 9, . . .} in increasing order. We now define an
injective function σ1 : N\P → P as follows. First, pick σ1(k1) = σ1(3) ∈ P so large
that λ3λσ1(3) ≤ 2−3, and then pick the numbers σ1(kj) ∈ P successively so large that
they exceed σ1(kj−1) and satisfy λkjλσ1(kj) ≤ 2−kj . This is possible since λk → 0 as
k →∞. We then have

λjλσ1(j) ≤ 2−j for all j ∈ N\P.

Since P and N\σ1(N\P ) have the same cardinality, we may find a bijective function
σ2 : P → N\σ1(N\P ). The function σ : N→ N, defined by

σ(j) =
σ1(j) for j ∈ N\P,
σ2(j) for j ∈ P,

is a permutation of N. If we now define τ̃j := τσ(j), we obtain

Var∗Λ(x) =
∞∑
j=1

λjx(τ̃j) =
∑

j∈N\P
λjλσ1(j) +

∑
j∈P

λjλσ2(j) ≤
∑

j∈N\P
2−j +

∑
k∈N0

λ2k

≤
∑
j∈N

2−j +
∑
k∈N0

√
2−k = 3 +

√
2 <∞.

Thus, if supp(x) is enumerated in a clumsy way, Var∗Λ cannot decide whether x has
bounded Λ-variation. ♦
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In total, one could understand Var∗Λ to be a “variation” of x ∈ Sc with respect to one
particular enumeration of supp(x), whereas VarΛ(x) denotes the supremum of all such
variations.

One can show that VarΛ(·) is a seminorm which makes ΛBV a Banach space when
equipped with the norm

‖x‖ = |x(0)|+ VarΛ(x). (1.2.42)

For two functions x, y ∈ ΛBV and a collection of nonoverlapping intervals ([aj, bj])j∈N
one obtains the estimates
∞∑
j=1
λj|x(aj)y(aj)− x(bj)y(bj)| ≤

∞∑
j=1

λj
(
‖x‖∞ |y(aj)− y(bj)|+ ‖y‖∞ |x(aj)− x(bj)|

)

= ‖x‖∞
∞∑
j=1

λj|y(aj)− y(bj)|+ ‖y‖∞
∞∑
j=1

λj|x(aj)− x(bj)|

≤ ‖x‖∞VarΛ(y) + ‖y‖∞VarΛ(x)

from which
VarΛ(xy) ≤ ‖x‖∞VarΛ(y) + ‖y‖∞VarΛ(x)

follows. In particular, ΛBV is even an algebra and, when equipped with the norm

‖x‖ΛBV := ‖x‖∞ + VarΛ(x), (1.2.43)

a normalized Banach algebra by Proposition 1.1.15. Again, as we have seen for the
Jordan, Wiener and Young variation, if x ∈ ΛBV is bounded away from zero, that is,
suppδ(x) = [0, 1] for some δ > 0, then 1/x ∈ ΛBV with

VarΛ(1/x) ≤ δ−2 VarΛ(x).

We are now going to compare two Waterman spaces ΓBV and ΛBV for two arbitrary
Waterman sequences Γ = (γj) and Λ = (λj). It was shown in the paper [129] that
ΛBV ⊆ ΓBV if and only if

lim sup
n→∞

n∑
j=1

γj

n∑
j=1

λj
<∞; (1.2.44)

we will write Γ � Λ in this case. Similarly as for Young functions we write Γ ≺ Λ if
Γ � Λ and Λ 6� Γ. In general, one has the chain of inclusions

BV ⊆ ΛBV ⊆ ΓBV ⊆ R. (1.2.45)

for Γ � Λ, where all inclusions are continuous embeddings. For instance, we have

|x(t)| ≤ |x(0)|+ |x(0)− x(t)| ≤ |x(0)|+ γ−1
1 VarΓ(x)
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and hence

‖x‖∞ ≤ |x(0)|+ γ−1
1 VarΓ(x) ≤ max{1, 1/γ1} ‖x‖ΓBV (1.2.46)

which shows on the one hand the right embedding in (1.2.45) and on the other hand
with the help of Proposition 1.1.15 that the two norms (1.2.42) and (1.2.43) are equiv-
alent.

The left and right inclusion in (1.2.45) are strict, and for Γ ≺ Λ also the middle is.
To show this, the following auxiliary result is helpful and will also be needed later in
Section 3.2.

Lemma 1.2.23. Let (aj) and (bj) be sequences of positive real numbers such that

∞∑
j=1

aj =∞ =
∞∑
j=1

bj and lim sup
n→∞

n∑
j=1

aj

n∑
j=1

bj
=∞.

Then for each α > 0 there exists a monotonically decreasing sequence (uj) of positive
real numbers tending to zero such that ∑∞j=1 ajuj remains divergent, whereas ∑∞j=1 bjuj
becomes convergent with limit α.

Before we turn to the proof let us quickly mention why this result might be surprising.
If we define An := ∑n

j=1 aj, Bn := ∑n
j=1 bj and γn := An/Bn, then An = γnBn and

lim supn→∞ γn =∞. If (aj) is bounded, then An grows at most linearly. Therefore,

lim
n→∞

γn
n

= lim
n→∞

1
n
An
Bn

= 0,

which means that γn grows slower than linearly. Therefore, An grows only a little faster
than Bn; nevertheless, there is always a suitable sequence (uj) such that ∑∞j=1 ajuj
diverges while ∑∞j=1 bjuj converges to any positive number we choose!

Proof of Lemma 1.2.23. Let An and Bn be defined as before, that is,

An :=
n∑
j=1

aj and Bn :=
n∑
j=1

bj for n ∈ N,

and set A0 := B0 := 0. Then the assertion states that lim supn→∞ An
Bn

= ∞, and from
this we obtain

lim sup
n→∞

An − Am
Bn −Bm

=∞

for each fixed m ∈ N0. This is why we can find a strictly increasing sequence (nk) of
nonnegative integers with n1 := 0 such that

Bnk+2 −Bnk+1 ≥
1
2

(
Bnk+1 −Bnk

)
and

Ank+1 − Ank
Bnk+1 −Bnk

≥ 2k for all k ∈ N.
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Writing Ak := Ank+1 − Ank and Bk := Bnk+1 −Bnk , this reads

Bk+1 ≥
1
2Bk, (1.2.47)

Ak
Bk
≥ 2k (1.2.48)

for all k ∈ N. We now define

uj := α

2kBk
for nk + 1 ≤ j ≤ nk+1 and j, k ∈ N.

Then we obtain from (1.2.47) that (uj) is monotonically decreasing. Moreover, with
the help of (1.2.48),

∞∑
j=1

ajuj =
∞∑
k=1

nk+1∑
j=nk+1

ajuj =
∞∑
k=1

α

2kBk

nk+1∑
j=nk+1

aj =
∞∑
k=1

α

2k
Ak
Bk
≥ α

∞∑
k=1

1 =∞,

and this proves that ∑∞j=1 ajuj diverges. On the other hand we get similarly

∞∑
j=1

bjuj =
∞∑
k=1

nk+1∑
j=nk+1

bjuj =
∞∑
k=1

α

2kBk

nk+1∑
j=nk+1

bj =
∞∑
k=1

α

2k
Bk
Bk

= α
∞∑
k=1

1
2k = α,

which shows that ∑∞j=1 bjuj converges to α.
Finally, since

α ≥
n∑
j=1

bjuj ≥ Bnun

and Bn →∞, we must have limj→∞ uj = 0, as desired. �

With the help of Lemma 1.2.23 we can now show that all inclusions in (1.2.45) are
strict for Γ ≺ Λ. For the first inclusion put aj := 1 and bj := λj for j ∈ N in Lemma
1.2.23. Then

lim sup
n→∞

∑n
j=1 aj∑n
j=1 bj

= lim sup
n→∞

n∑n
j=1 λj

=∞.

Consequently, Lemma 1.2.23 gives us a decreasing sequence (uj) of positive real num-
bers such that

n∑
j=1

uj =∞ and
n∑
j=1

λjuj <∞.

But this means that the function J(uj) does not belong to BV by Proposition 1.1.8.
But since the uj are in decreasing order, we have for any permutation σ of N that

∞∑
j=1

λσ(j)uj ≤
∞∑
j=1

λjuj <∞;

in particular, Proposition 1.2.20 ensures J(uj) ∈ ΛBV , and so the first inclusion in
(1.2.45) is indeed strict. To show that also the second inclusion is strict is similar;
we will skip this because we use a very similar argument in more detail in Section
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3.2. For the last inclusion simply consider J(1/Γj) for a Waterman sequence (γj), where
Γj := γ1 + . . . + γj. Then J(1/Γj) belongs to R, since Γj → ∞ as j → ∞, but it does
not belong to ΓBV by the Abel-Dini-Theorem [50, 77].

One might wonder why we did not give an instance of a function that belongs to R but
to none of the spaces ΓBV for any Waterman sequence Γ. The reason is the following
remarkable relation which shows how “close” the Waterman spaces are to the space
BV of functions of bounded Jordan variation and to the space R of regular functions.
It says that

BV =
⋂
Λ

ΛBV and R =
⋃
Λ

ΛBV, (1.2.49)

where the intersection and union are taken over all Waterman sequences Λ. In partic-
ular, every continuous function belongs to a suitable Waterman space!
Let us remark that there is a link between the Wiener space WBVp, the Young space
Y BVϕ and the special Waterman space ΛqBV . One may show that for p > 1 and
1 − 1/p < q ≤ 1 the inclusion WBVp ⊆ ΛqBV holds, whereas the reverse inclusion
ΛqBV ⊆ WBVp holds for p > 1 and 0 < q ≤ 1− 1/p. Similarly, it can be proved that
Y BVϕ ⊆ ΛqBV holds for an arbitrary Young function ϕ, if ϕ1−q ∈ L1.

The Riesz Variation
The last space we are dealing with is the space of functions of bounded variation in
the sense of Riesz which has been introduced in 1910 by Frigyes Riesz in [135, 136].
Definition 1.2.24. Let p ∈ (1,∞) and let x be a real-valued function defined on [0, 1].
The possibly infinite number

RVarp(x) = sup
P

n∑
j=1

∣∣∣∣∣x(tj−1)− x(tj)
tj−1 − tj

∣∣∣∣∣
p

(tj − tj−1),

where the supremum is taken over all finite partitions P : 0 = t0 < . . . < tn = 1 of
[0, 1], is called the Riesz variation of the function x over [0, 1].
Moreover, we denote by RBVp := {x : [0, 1] → R | RVarp(x) < ∞} the space of
functions of bounded Riesz variation.
Recall that in [135] Riesz proved the following characterization of RBVp.

Theorem 1.2.25 (Riesz). The class RBVp for 1 < p <∞ coincides with the class AC
of absolutely continuous functions with derivatives in the Lebesgue space Lp. Moreover,
in this case the Riesz variation can be calculated explicitly by the formula

RVarp(x) = ‖x′‖pLp =
∫ 1

0
|x′(t)|p dt. (1.2.50)

In particular, functions with countable support which play an important role in the
spaces WBVp, Y BVϕ and ΛBV behave calmly in RBVp for p > 1. Indeed, such a
function belongs to RBVp for p > 1 if and only if it is zero everywhere. This implies
that also J(αj) ∈ RBVp for p > 1 if and only if αj = 0 for all j ∈ N.
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For p = 1, the Riesz variation formally reduces to the Jordan variation, but the formula
(1.2.50) is then no longer true, as we have seen in (1.1.24) and the example thereafter.
However, it still holds for the class of all absolutely continuous functions which is
a subclass of BV , and then we again end up with Theorem 1.1.20. We agree that
whenever we use the symbol RBVp we tacitly assume p > 1, unless stated otherwise.
Formula (1.2.50) also implies that RVarp(x)1/p is a seminorm satisfying

RVarp(xy)1/p ≤ ‖x‖∞RVarp(y)1/p + ‖y‖∞RVarp(x)1/p,

and hence that RBVp is an algebra which is complete when equipped with the norm

‖x‖ = |x(0)|+ RVarp(x)1/p. (1.2.51)

By Proposition 1.1.15, RBVp becomes a normalized Banach algebra with respect to
the norm

‖x‖RBVp := ‖x‖∞ + RVarp(x)1/p (1.2.52)

which is equivalent to (1.2.51). This is because

|x(t)| ≤ |x(0)|+ |x(t)− x(0)| ≤ |x(0)|+
(
|x(t)− x(0)|p

tp−1

)1/p

≤ |x(0)|+ RVarp(x)1/p.

Thus,

‖x‖∞ ≤ |x(0)|+ RVarp(x)1/p ≤ ‖x‖RBVp . (1.2.53)

Similar to the space C of continuous functions the reciprocal 1/x of a function x ∈
RBVp belongs again to RBVp if x has no zeros, because then it must be bounded away
from zero automatically. In this case, suppδ(x) = [0, 1] for some δ > 0, and we obtain

RVarp(1/x) ≤ δ−2p RVarp(x).

There is a remarkable interconnection between the Riesz spaces RBVp and the Sobolev
space W 1,p = W 1,p[0, 1]: It can be shown that a function x : [0, 1]→ R belongs to W 1,p

for 1 < p <∞ if and only if there is some y ∈ AC with y′ ∈ Lp such that x = y almost
everywhere [56]. Consequently, x ∈ W 1,p if and only if x agrees almost everywhere
with a function in RBVp. This means that RBVp consists precisely of the continuous
representatives of W 1,p. In this sense Riesz introduced Sobolev spaces, at least in the
scalar case, around 25 years prior to Sobolev.
Since the Lebesgue spaces are decreasing with respect to p, that is, Lp ( Lq for
1 < q < p < ∞ (and even for 1 = q < p ≤ ∞) we immediately obtain the first three
strict inclusions in

Lip ( RBVp ( RBVq ( AC ( BV. (1.2.54)

In this sense, the formal extension RBV∞ := Lip would be reasonable. The last
inclusion has been investigated in (1.1.24) and the example thereafter.
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A handy summary

As we have seen, all our BV -norms have the form ‖x‖∗X = |x(0)|+ ΦX(x) respectively
‖x‖X = ‖x‖∞ + ΦX(x), where ΦX is the corresponding seminorm. Since we do not
want to overburden the reader with cumbersome case distinctions we sometimes use a
general approach working for all BV -spaces. Table 1.2.1 summarizes which seminorm
belongs to which space.

Table 1.2.1: BV -spaces and their seminorms.

X = BV WBVp Y BVϕ ΛBV RBVp

ΦX = Var Var1/p
p M VarΛ RVar1/p

p

Using these notations the following auxiliary result is a generalization of Proposition
1.2.14.

Lemma 1.2.26. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp. Let
n ∈ N, x1, . . . , xn ∈ X and α1, . . . , αn ≥ 0, and let x : [0, 1] → R be a function
satisfying

|x(s)− x(t)| ≤
n∑
j=1

αj|xj(s)− xj(t)| for all s, t ∈ [0, 1]. (1.2.55)

Then x ∈ X and

ΦX(x) ≤
n∑
j=1

αjΦX(xj).

Proof. We first take care of the case X = Y BVϕ which includes the cases X = BV

and X = WBVp. The statement is clearly true if α1 = . . . = αn = 0, so we can assume
that αl > 0 for at least one l ∈ {1, . . . , n}. For each k ∈ {1, . . . , n} let λk > 0 be so
that Varϕ(xk/λk) ≤ 1. For ν := α1λ1 + . . . + αnλn > 0 and γk := αkλk/ν ∈ [0, 1] we
have αk/ν = γk/λk and γ1 + . . .+ γn = 1, and thus we obtain from the convexity of ϕ
that for any partition 0 = t0 < . . . < tm = 1 of [0, 1],

m∑
j=1
ϕ

(
|x(tj−1)− x(tj)|

ν

)
≤

m∑
j=1

ϕ

(
n∑
k=1

αk|xk(tj−1)− xk(tj)|
ν

)

=
m∑
j=1

ϕ

(
n∑
k=1

γk|xk(tj−1)− xk(tj)|
λk

)
≤

n∑
k=1

γk

 m∑
j=1

ϕ

(
|xk(tj−1)− xk(tj)|

λk

)
≤

n∑
k=1

γk Varϕ(xk/λk) ≤ 1.

Consequently, M(x) ≤ ν = α1λ1 + . . . αnλn, and taking the infimum over all such λk
yields the claim.
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For X = ΛBV fix a permutation σ of N and a partition 0 = t0 < . . . < tm = 1 of [0, 1].
Then from (1.2.55) we get

m∑
j=1

λσ(j)|x(tj−1)− x(tj)| ≤
m∑
j=1

λσ(j)

(
n∑
k=1

αk|xk(tj−1)− xk(tj)|
)

=
n∑
k=1

αk
m∑
j=1

λσ(j)|xk(tj−1)− xk(tj)|

≤
n∑
k=1

αk VarΛ(xk) =
n∑
k=1

αkΦΛBV (xk),

where the last inequality comes from Proposition 1.2.19. Taking the supremum with
respect to σ and partitions we obtain by another application of Proposition 1.2.19 that

ΦΛBV (x) = VarΛ(x) ≤ α1ΦΛBV (x1) + . . .+ αnΦΛBV (xn),

as claimed.
Finally, for X = RBVp, we get from (1.2.55) that m∑

j=1

|x(tj−1)− x(tj)|p
|tj−1 − tj|p−1

1/p

≤
 n∑
k=1

1
|tj−1 − tj|p−1

 m∑
j=1

αk|xk(tj−1)− xk(tj)|
p1/p

=
 m∑
j=1

(
n∑
k=1

αk|xk(tj−1)− xk(tj)|
|tj−1 − tj|(p−1)/p

)p1/p

.

With the help of Minkowski’s inequality this can be further estimated by

n∑
k=1

 m∑
j=1

(
αk|xk(tj−1)− xk(tj)|
|tj−1 − tj|(p−1)/p

)p1/p

≤
n∑
k=1

αk

 m∑
j=1

|xk(tj−1)− xk(tj)|p
|tj−1 − tj|p−1

1/p

≤
n∑
k=1

αk RVarp(xk)1/p.

Taking the supremum with respect to partitions, the desired estimate follows and
completes the proof. �

We remark that it is not sufficient to replace (1.2.55) by the simpler estimate

|x(t)| ≤ α1|x1(t)|+ . . .+ αn|xn(t)| for t ∈ [0, 1],

because then x may have unbounded variation. Here is an example.

Example 1.2.27. The characteristic function x = χQ∩[0,1] does not belong to BV yet
satisfies |x(t)| ≤ 1 = |1(t)| for all t ∈ [0, 1] and 1 ∈ BV . ♦

Since RBVp ⊆ AC for p > 1, see (1.2.54), one cannot expect that the space RBVp
contains some Hölder space Lipγ for a suitable γ < 1. In fact, one may show that
there are functions which belong to each Hölder space Lipγ for γ < 1, but not to BV .
Consequently, such functions cannot belong to the smaller space RBVp for any p > 1.
A comparison of our results on the Wiener space WBVp and the Riesz space RBVp
shows that these spaces have quite different properties.
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• The space RBVp is decreasing in p, while the space WBVp is increasing in p.

• The space RBVp is contained in C for any p > 1, while the space WBVp contains
BV and hence also discontinuous functions.

• The space RBVp is contained in BV , while the space WBVp contains functions
of unbounded Jordan variation.

• The space WBVp contains all Hölder continuous functions for γ ≤ 1/p, while the
space RBVp contains functions which are not Hölder continuous for any γ.

Table 1.2.2 gives an overview about when our functions J(αj) and their special cases
Jα = J(1/jα) for α ∈ R introduced in (1.2.1) and (1.2.3) belong to certain BV -spaces.

Table 1.2.2: The functions J(αj) and Jα and when they belong to our BV -spaces.

X J(αj) ∈ X if and only if Jα ∈ X if and only if

BV
∞∑
j=1
|αj| <∞ α > 1

WBVp
∞∑
j=1
|αj|p <∞ αp > 1

Y BVϕ ∃λ > 0 :
∞∑
j=1

ϕ
(
λ|αj|

)
<∞ ∃λ > 0 :

∞∑
j=1

ϕ

(
λ

jα

)
<∞

ΛBV sup
σ

∞∑
j=1

λσ(j)|αj| <∞
∞∑
j=1

λj
jα

<∞

RBVp ∀j ∈ N : αj = 0 never

Helly’s Selection Principle
We end this introductory chapter with an important result that all the BV spaces
discussed so far have in common.

Theorem 1.2.28 (Helly’s Selection Principle). Let X be one of the spaces BV , WBVp,
Y BVϕ, ΛBV or RBVp, and let (xn) be a bounded sequence in X. Then (xn) has a
subsequence that converges pointwise to some function x ∈ X.
Proof. The proof for BV was given in [71], for Y BVϕ and therefore also for WBVp in
[121], and for ΛBV in [152]. The proof for RBVp follows from that for BV . Indeed, if
(xn) is a bounded sequence in RBVp for p > 1, then it is also a bounded sequence in
BV by Jensen’s inequality and hence possesses a subsequence that converges pointwise
to x ∈ BV . We call this subsequence again (xn) and show that x in fact belongs to
RBVp. To see this fix a partition 0 = t0 < . . . < tm = 1 of [0, 1]. Since (xn) is bounded
in RBVp, there is some M such that

m∑
j=1

∣∣∣∣∣xn(tj−1)− xn(tj)
tj−1 − tj

∣∣∣∣∣
p

(tj − tj−1) ≤ RVarp(xn) ≤M for all n ∈ N.
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Letting n→∞ yields

m∑
j=1

∣∣∣∣∣x(tj−1)− x(tj)
tj−1 − tj

∣∣∣∣∣
p

(tj − tj−1) ≤M

and hence RVarp(x) ≤M . �

Helly’s Selection Principle may be viewed as a certain counterpart of the Arzelà-Ascoli
compactness criterion for BV -functions. Note that in general we cannot expect to find
a subsequence that converges in the BV -norm, because BV is infinite dimensional and
hence not compact, even for quite simple sequences.

Example 1.2.29. The functions xn := χ{1/(2n)} form a bounded sequence in BV and
converge pointwise to 0. But because of ‖xn‖BV = 3 for all n ∈ N there is no subse-
quence converging in the BV -norm to 0. ♦

One might think that since regular functions have only countably many discontinuities
a variant of Helly’s Selection Principle might be true also in the space R. Unfortunately,
it is not.

Example 1.2.30. Let (qn) be an enumeration of all rational numbers in Q ∩ (0, 1).
The functions xn := χ{q1,...,qn} with n ∈ N form a bounded sequence in R that cannot
have a pointwise convergent subsequence with limit in R. Indeed, let (xnk)k be any
subsequence of (xn) that converges pointwise to some function x ∈ B. Then x =
χ{qn1 ,qn2 ,qn3 ,...}, but x cannot belong to R. To see this note that the sequence (qnk)k
is bounded and hence has a subsequence converging to some r ∈ [0, 1]; we name this
subsequence (qnk)k again and assume without loss of generality that r ∈ [0, 1). Then
x(qnk) = 1 for all k ∈ N and hence lim supt→r+ x(t) = 1. But since Q is countable,
lim inft→r+ x(t) = 0. Consequently, x /∈ R. ♦
But even for simple sequences, a convergence of a subsequence stronger than pointwise
can in general not be achieved.
The following result is intermediate between Theorem 1.2.28 and Example 1.2.30 and
thus acts “between” BV and R. It illustrates once more the difference between these
spaces.

Theorem 1.2.31. Let (xn) be a bounded sequence in R. Assume that (xn) has uni-
formly bounded ε-variation, that is, for each ε > 0,

sup
n∈N

(
inf

{
Var(y) | y ∈ BV, ‖xn − y‖∞ ≤ ε

})
<∞. (1.2.56)

Then (xn) has a subsequence that converges pointwise to some function x ∈ R.

The proof and many more results in this direction about regular functions can be found
in [63]. We remark that the sequence (xn) of Example 1.2.30 is bounded yet not of
uniformly bounded ε-variation. Indeed, for ε = 1/4, any y ∈ BV and fixed n ∈ N with
‖xn − y‖∞ ≤ 1/4 we have |xn(qj) − y(qj)| = |1 − y(qj)| ≤ 1/4 for j ∈ {1, . . . , n} and
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|xn(r)− y(r)| = |y(r)| ≤ 1/4 for any r ∈ [0, 1]\Q. This means that |y(qj)− y(r)| ≥ 1/2
for those j and r. But since the qj are countable, Var(y) ≥ n which shows

inf
{

Var(y) | y ∈ BV, ‖xn − y‖∞ ≤ ε
}
≥ n.

Consequently, the supremum in (1.2.56) is infinite.



Chapter 2

Functions with Primitive

In this second chapter we will analyze the class of all functions which have a primitive
with respect to its size and its relations to other function classes. Apart from recall-
ing known and discussing new results we put a particular emphasis on examples and
counterexamples.

Interested and mindful students may ask the following question during a first semester
course:

Can one characterize those real functions which have a primitive?

In other words: Can we tell by looking at a function x : [0, 1] → R whether there is
a differentiable function f : [0, 1] → R with f ′(t) = x(t) for each t ∈ [0, 1]? Here, the
limits for f ′(0) and f ′(1) are considered to be one-sided. In what follows we will denote
the class of all such functions x by the symbol ∆.
An elementary answer to this problem is, at least to the best of our knowledge, not
known. Of course, there are easy conditions which are either only necessary or only
sufficient and which also arise naturally in first semester courses. For instance, every
continuous function belongs to ∆, and every function from ∆ is a Darboux function
by the Theorem of Darboux [72, 78]. With the notions introduced in Section 1.2 apart
from the inclusion (1.1.4) we have

C ⊆ ∆ ⊆ D. (2.0.1)

Thus, ∆ is situated between continuous and Darboux functions.

The goal of this chapter is an analysis of the class ∆ with respect to its size, its algebraic
properties and its relation to other function classes. For most examples the functions
ϕα,β,n introduced in (1.1.1) will serve as a key ingredient.
For instance, the function x given in Example 1.1.29 is differentiable with x′ = ϕ0,0,1.
In other words, ϕ0,0,1 ∈ ∆. However, by Proposition 1.1.12 (c), the function ϕ0,0,1 is
discontinuous. This shows that the first inclusion in (2.0.1) is strict. We now show by
means of another example that also the second inclusion in (2.0.1) is strict.
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Example 2.0.1. By Proposition 1.1.12 (d), the function x := ϕ0,0,2 belongs to D which
is intuitively clear. However, x has no primitive on the entire interval [0, 1]. In fact, x
has a primitive on (0, 1], to wit the function

f(t) = t

2 + t2

4 sin 2
t
− 1

2

∫ t

0
s sin 2

s
ds,

which is continuously extendable by f(0) = 0. Moreover, this extension is even differ-
entiable at t = 0 with

f ′(0) = lim
t→0+

f(t)− f(0)
t

= 1
2 − lim

t→0+

1
2t

∫ t

0
s sin 2

s
ds = 1

2 −
1
2 lim
t→0+

t sin 2
t

= 1
2

which, however, does not coincide with ϕ0,0,2(0). Although the function f is differen-
tiable on [0, 1], and f ′ = x on (0, 1], it is still no primitive for x on [0, 1], because it has
the “wrong value” at t = 0.
If g was a primitive of x = ϕ0,0,2 on [0, 1] with g(1) = f(1), then g would coincide with
f on (0, 1] by the Fundamental Theorem of Calculus. By continuity, f = g on [0, 1]
and hence 1/2 = f ′(0) = g′(0) = ϕ0,0,2(0) = 0 which is not possible. Consequently,
ϕ0,0,2 /∈ ∆. ♦

In Proposition 2.1.5 below, we will add another node to Proposition 1.1.12, namely a
characterization of those parameters (α, β, n) ∈ R2 × N for which ϕα,β,n belongs to ∆.
We then have in detail

ϕα,β,n ∈ ∆ if and only if one of the following three cases is true.

(i) α > 0, β = 0 and n is even,

(ii) α = 0, β = 1
π

∫ π

0
sinn t dt and n is even,

(iii) α > −1, β = 0 and n is odd.

This shows again that the f in Example 2.0.1 could not be a primitive of x = ϕ0,0,2,
because the correct value at t = 0 should have been

1
π

∫ π

0
sin2 t dt = 1

2
which was also calculated explicitly.
As we have seen in Section 1.2 the function classes C, B and BV are linear spaces,
but D is not, as was shown in Example 1.1.2. However, since differentiation is a linear
operator, the class ∆ is also a linear space. To be more precise, if x, y ∈ ∆ with
primitives f and g, respectively, then x+ λy ∈ ∆ with primitive f + λg for any λ ∈ R.

By that version of the Fundamental Theorem of Calculus which is taught in every
first semester calculus course a primitive can be reconstructed from its derivative by
integration. But this additionally needs the Riemann or Lebesgue integrability of the
derivative which in general is not given automatically. Here is an example of a function
that is differentiable everywhere, but its derivative is integrable neither in the sense of
Lebesgue nor in the sense of Riemann.
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Example 2.0.2. The function x : [0, 1]→ R, defined by

x(t) =

t
2 cos 1

t2
for 0 < t ≤ 1,

0 for t = 0,

is differentiable on [0, 1], and its derivative is given by

x′(t) =

2t cos 1
t2

+ 2
t

sin 1
t2

for 0 < t ≤ 1,

0 for t = 0.

However, x′ is not Lebesgue integrable: The term 2t cos t−2 is continuous and hence
Lebesgue integrable, but the second term 2

t
sin 1

t2
is not. Indeed, the substitution

t =
√
s would lead to the integral∫ 1

0

2
t

sin 1
t2

dt =
∫ 1

0

1
s

sin 1
s

ds =
∫ 1

0
ϕ−1,0,1(s) ds.

But it is easy to show that ϕα,β,n belongs to L1 if and only if α > −1. However, one can
also show (and we will do so in Proposition 2.1.5 below) that x′ is improperly Riemann
integrable.
In addition to the function x we consider again Volterra’s function v : [0, 1] → R
introduced in Example 1.1.25. Remember that v is differentiable with v(1) = 0 such
that v′ is bounded (and hence Lebesgue integrable) but not Riemann integrable on
[0, 1]. The function x+ v now is an example of a differentiable function the derivative
of which is neither (improperly) Riemann nor Lebesgue integrable. ♦
As the last example has shown in order to reconstruct a function from its derivative
neither the Riemann nor the Lebesgue integral is the right choice. The next and first
section of this chapter is therefore dedicated to another type of integration which is a
little more powerful.

2.1 The Kurzweil-Henstock Integral
It is tempting to recover a differentiable function by integrating its derivative. However,
Example 2.0.2 has shown that neither the Riemann nor the Lebesgue integral can do
that in a proper way. But the following notion of integration can.
Definition 2.1.1. A finite collection of pairs (τj, [tj−1, tj])1≤j≤n consisting of real points
τj ∈ [tj−1, tj] and closed intervals [tj−1, tj] with 0 = t0 < . . . < tn = 1 is called a tagged
partition of [0, 1]. For a function γ : [0, 1] → (0,∞) such a tagged partition is called
γ-fine if

0 < |tj−1 − tj| ≤ 2γ(τj)

holds for all j ∈ {1, . . . , n}.
Finally, a function x : [0, 1] → R is Kurzweil-Henstock integrable (KH-integrable) on
[0, 1] if there is some number A ∈ R with the following property: For each ε > 0
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there exists some function γ : [0, 1] → (0,∞) such that every γ-fine tagged partition
(τj, [tj−1, tj])1≤j≤n satisfies

∣∣∣∣∣∣
n∑
j=1

x(τj)(tj − tj−1)− A
∣∣∣∣∣∣ ≤ ε.

In this case, we write ∫ 1

0
x(t) dt := A

and name this number the Kurzweil-Henstock integral (KH-integral) of x over [0, 1].
The family of all functions which are KH-integrable over [0, 1] will be denoted by KH.
The KH-integral has all common properties such as monotonicity and linearity with
respect to the integrand as well as additivity with respect to the domain of integration
[68]. A nice and accessible introduction into integration theory using only the KH-
integral may be found in the recent book [61].

TheKH-integral is a true generalization of the Lebesgue integral in the following sense:
Every improperly Riemann integrable function and every Lebesgue integrable function
is also KH-integrable. The converse, however, is not true which is again shown by the
functions defined in (1.1.1):

Example 2.1.2. The function ϕ−1,0,1 is improperly Riemann integrable on [0, 1] and so
also KH-integrable, but not Lebesgue integrable as we have already seen in Example
2.0.2. Hence, the function x := ϕ−1,0,1+χQ∩[0,1] isKH-integrable yet neither improperly
Riemann nor Lebesgue integrable. ♦
One can show that a function x is Lebesgue integrable if and only if both x and |x|
are KH-integrable; the function |ϕ−1,0,1| may serve as an example of a (nonnegative)
function that is not KH-integrable.
In contrast to the Riemann integral there is no sense in considering improper KH-
integrals. Indeed, if x : [0, 1]→ R isKH-integrable on every interval [c, 1] for c ∈ (0, 1),
and if the limit

lim
c→0+

∫ 1

c
x(t) dt

exists and is finite, then x is KH-integrable on all of [0, 1], and its KH-integral is given
by the formula

∫ 1

0
x(t) dt = lim

c→0+

∫ 1

c
x(t) dt.

A similar reasoning works for the left sided limit. A proof can be found in [68].

With the help of the KH-integral, one has an improved version of the classical Funda-
mental Theorem of Calculus. In fact, the following pointwise version is true.
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Theorem 2.1.3. For x : [0, 1]→ R the following statements hold.

(a) If x ∈ KH, then the function f : [0, 1]→ R, given by

f(t) :=
∫ t

0
x(s) ds, (2.1.1)

is differentiable at t ∈ [0, 1] if and only if the limit

lim
δ→0

1
δ

∫ t+δ

t
x(s) ds

exists and is finite. In this case, its value coincides with f ′(t).

(b) If x ∈ KH and if x(t) = x(t+) for some t ∈ [0, 1), then

x(t) = lim
δ→0+

1
δ

∫ t+δ

t
x(s) ds. (2.1.2)

A similar result is true in the case x(t) = x(t−) for t ∈ (0, 1].

(c) If f : [0, 1] → R is a differentiable function with f ′(t) = x(t) for all t ∈ [0, 1],
then x ∈ KH with

f(t)− f(s) =
∫ t

s
x(τ) dτ for all s, t ∈ [0, 1].

(d) A function x : [0, 1]→ R possesses a primitive if and only if x ∈ KH and

x(t) = lim
δ→0

1
δ

∫ t+δ

t
x(s) ds (2.1.3)

holds for any t ∈ [0, 1]. The unique primitive f of x satisfying f(0) = 0 is then
given by (2.1.1).

Proof. Part (a) follows immediately from the equality

f(t+ δ)− f(t)
δ

= 1
δ

∫ t+δ

t
x(s) ds,

which holds for all t ∈ [0, 1] and δ ∈ R\{0} with 0 ≤ t+ δ ≤ 1.
For (b) fix ε > 0 and t ∈ [0, 1) so that x(t) = x(t+). Then there is some η > 0 with
x(t)− ε ≤ x(s) ≤ x(t) + ε for t ≤ s ≤ t+ η. For 0 < δ < η we deduce that

δ
(
x(t)− ε

)
=
∫ t+δ

t

(
x(t)− ε

)
ds ≤

∫ t+δ

t
x(s) ds ≤

∫ t+δ

t

(
x(t) + ε

)
ds = δ

(
x(t) + ε

)
,

and so
lim sup
δ→0+

∣∣∣∣∣1δ
∫ t+δ

t
x(s) ds− x(t)

∣∣∣∣∣ ≤ ε.

Since ε > 0 was chosen arbitrarily, (2.1.2) has been established.
Finally, a proof for (c) may be found in [68].
Part (d) is only a reformulation of the other statements. �
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Observe that a combination of (b) and (d) yields the well-known fact that every con-
tinuous function has a primitive.
Theorem 2.1.3 answers completely the aforementioned problem of characterizing func-
tions with primitives. In particular, part (d) shows that in order to prove f ∈ ∆ one
has to check two things: First, one needs to prove that the function is KH-integrable,
and second, one has to calculate the limit in (2.1.3) at each point and show that it
actually coincides with the corresponding value of the function. We will do exactly
this a couple times later on.

The problem of deciding whether a function has a primitive without using any too
technical tools is an old one. We give here two further characterizations of the functions
in ∆.
The first criterion uses a refinement of the notion of KH-integrability and works with-
out the limit (2.1.3). Let t0, . . . , tn, τ1, . . . τn points in [0, 1] with t0 = 0, tn = 1 and
τj ∈ [tj−1, tj] for 1 ≤ j ≤ n. Moreover, let γ : [0, 1]→ (0,∞) be an arbitrary function.
We call the partition induced by t0, . . . , tn γ-super fine if 0 < |tj − tj−1| ≤ 2γ(τj) for
all j = 1, . . . , n.
We call a function x : [0, 1] → R SKH-integrable on [0, 1] if there is some number
A ∈ R with the following property: For all ε > 0 and c > 0 there is a function
γ : [0, 1]→ (0,∞) such that for all γ-super fine partitions (τj, [tj−1, tj]) the implication

n∑
j=1
|tj − tj−1| ≤ c =⇒

∣∣∣∣∣∣
n∑
j=1

x(τj)(tj − tj−1)− A
∣∣∣∣∣∣ ≤ ε

holds. In this case, we call the number A the super KH-integral of x over [0, 1].
Let us make some comments to this definition. The subtle difference to Definition 2.1.1
is on the one hand that here the points tj do not have to be ordered as t0 < t1 < . . . <

tn−1 < tn, but that on the other hand this must be compensated by restricting the
total length of the intervals [tj−1, tj] by c. In other words, the variation of the (finite)
sequence (tj) must not exceed c. This condition makes no sense for c < 1 because
then the points tj cannot satisfy t0 = 0 and tn = 1. For c ≥ 1 it means that, roughly
speaking, the points tj may not jump back and forth too often. We now have

Theorem 2.1.4. A function x : [0, 1] → R belongs to ∆ if and only if x is SKH-
integrable.

The first one who proved the “if”-part of this theorem was Robbins in 1943 [137]; his
proof is short and elementary yet covers only continuous functions. Only recently in
2012, Thomson generalized the arguments and gave a proof for the version stated here
that is also true for not necessarily continuous functions [146].
Since the tagged partitions (τj, [tj−1, tj])1≤j≤n of [0, 1] have to satisfy stronger require-
ments than those in Definition 2.1.1, it is clear that an SKH-integrable function is
“better” than just an KH-integrable function. Indeed, Theorem 2.1.4 shows that
SKH encapsulates both the KH-integrability and the limit condition (2.1.3) which is
needed for the existence of a primitive according to Theorem 2.1.3 (d).
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Moreover, the difference between the requirements of Definition 2.1.1 and Theorem
2.1.4 reminds of the definition of absolutely continuous functions, see Definition 1.1.16:
There, one uses finitely many nonoverlapping subintervals of [0, 1]. If “nonoverlapping”
is dropped, then one ends up at the smaller class of Lipschitz continuous functions.
The second criterion we give is one attempt to characterize the functions in ∆ without
an integral. For instance, Freiling posed the following result [64]: A function ψ which
maps any interval I ⊆ [0, 1] to a real number ψ(I) is called additive if for any two
nonoverlapping closed intervals I, J ⊆ [0, 1] we have

ψ(I ∪ J)|I ∪ J | = ψ(I)|I|+ ψ(J)|J |,

where |I| denotes the length of I. In [64] the author shows that a function x : [0, 1]→ R
belongs to ∆ if and only if there is an additive interval function ψ such that

lim
I→t

ψ(I) = x(t) for 0 ≤ t ≤ 1.

Here, the notion I → t means that for any sequence (In) of intervals In ⊆ [0, 1] with
|In| → 0 and t ∈ In, the quantities ψ(In) converge to x(t) as n → ∞. Our Theorem
2.1.3 delivers such an interval function in virtue of

ψ([a, b]) = 1
b− a

∫ b

a
x(s) ds

for 0 ≤ a < b ≤ 1 and ψ(I) = x(t) for I = [t, t]. Freiling himself admits in [64] that
any such interval function hides some kind of integral and therefore does not really
represent a new tool to characterize ∆. We will mention other attempts below.

Let us come back to Theorem 2.1.3. The integral in (2.1.3) can be seen as an average
value of x along the interval [t, t+ δ]. Accordingly, part (d) of Theorem 2.1.3 says that
x has a primitive if and only if x is in the mean around t equal to x(t). In particular,
x can have only essential discontinuities, as, for instance, x = ϕα,β,n for α ≤ 0 at t = 0
shows. Moreover, if x oscillates around x(t), then this must happen in a more or less
symmetric manner. Part (b) of the following proposition illustrates that behavior for
our oscillatory functions (1.1.1). Here, the integral

σn :=
∫ π

0
sinn t dt =


2(n− 1)!!

n!! for odd n,

π
(n− 1)!!
n!! for even n,

(2.1.4)

will be of particular importance, where n!! denotes the double factorial which is defined
by

n!! =
dn2 e−1∏
k=0

(n− 2k) for n ∈ N

and gives the product of all integers from 1 up to n that have the same parity. We
then have
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Proposition 2.1.5. For the functions ϕα,β,n from (1.1.1) the following relations hold.

(a) ϕα,β,n ∈ KH if and only if α > −1 and n is even, or if α > −2 and n is odd.

(b) ϕα,β,n ∈ ∆ if and only if one of the following three cases is true.

(i) α > 0, β = 0 and n is even,

(ii) α = 0, β = σn/π, and n is even,

(iii) α > −1, β = 0 and n is odd.

Proof. (a) First, let n be even. Due to ϕα,β,n ≥ 0 the KH-integrability is equivalent
to the Lebesgue integrability. For α > −1 the function ϕα,β,n is dominated by the
Lebesgue integrable function t 7→ tα and therefore is Lebesgue integrable itself. For
α ≤ −1 the substitution t = 1/s leads to

∫ 1

0
tα sinn 1

t
dt ≥

∫ 1

0

1
t

sinn 1
t

dt =
∫ ∞

1

1
s

sinn s ds ≥
∞∑
j=1

∫ (j+1)π

jπ

1
s

sinn s ds

≥
∞∑
j=1

1
(j + 1)π

∫ (j+1)π

jπ
sinn s ds = σn

π

∞∑
j=1

1
j + 1 =∞,

where we have used the shortcut (2.1.4). In this case, ϕα,β,n cannot be KH-integrable.

Now, let n be odd and α > −2. With the same substitution as above we come to∫ 1

0
tα sinn 1

t
dt =

∫ ∞
1

1
sα+2 sinn s ds. (2.1.5)

Let u > 2π and k ∈ N be so that 2kπ ≤ u < 2(k + 1)π. Then

∫ u

1

1
sα+2 sinn s ds =


∫ 2π

1
+

k−1∑
j=1

∫ 2(j+1)π

2jπ
+
∫ u

2kπ

 1
sα+2 sinn s ds. (2.1.6)

Due to∫ (2j+1)π

2jπ

1
sα+2 sinn s ds ≤ 1

(2jπ)α+2

∫ (2j+1)π

2jπ
sinn s ds = σn

(2jπ)α+2 ,∫ (2j+1)π

2jπ

1
sα+2 sinn s ds ≥ 1(

(2j + 1)π
)α+2

∫ (2j+1)π

2jπ
sinn s ds = σn(

(2j + 1)π
)α+2

and ∫ 2(j+1)π

(2j+1)π

1
sα+2 sinn s ds ≤ 1

(2(j + 1)π)α+2

∫ 2(j+1)π

(2j+1)π
sinn s ds = − σn(

2(j + 1)π
)α+2 ,

∫ 2(j+1)π

(2j+1)π

1
sα+2 sinn s ds ≥ 1(

(2j + 1)π
)α+2

∫ 2(j+1)π

(2j+1)π
sinn s ds = − σn(

(2j + 1)π
)α+2
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we obtain

0 ≤
∫ 2(j+1)π

2jπ

1
sα+2 sinn s ds ≤ σn

(2jπ)α+2 −
σn(

2(j + 1)π
)α+2 (2.1.7)

and hence
k−1∑
j=1

∫ 2(j+1)π

2jπ

1
sα+2 sinn s ds ≤

k−1∑
j=1

 σn
(2jπ)α+2 −

σn(
2(j + 1)π

)α+2


= σn

(2π)α+2 −
σn(

2kπ
)α+2 .

Since α > −2, this implies that the series in (2.1.6) converges. Moreover, the last
integral in (2.1.6) tends to 0 as u → ∞, because then also k → ∞. Consequently,
ϕα,β,n is KH-integrable (even improperly Riemann integrable) in this case.
For α ≤ −2 and m ∈ N we have∣∣∣∣∣

∫ (m+1)π

mπ

1
sα+2 sinn s ds

∣∣∣∣∣ =
∫ (m+1)π

mπ

1
sα+2

∣∣∣ sinn s∣∣∣ ds ≥ ∫ (m+1)π

mπ

∣∣∣ sinn s| ds = σn > 0.

Consequently, the limit
lim
u→∞

∫ u

1

1
sα+2 sinn s ds

does not exist in R and so ϕα,β,n cannot be KH-integrable.
(b) We will combine part (a) with Theorem 2.1.3 (d). To this end, let n be even. By
part (a), the function ϕα,β,n is only KH-integrable for α > −1 and hence cannot have a
primitive for α ≤ −1 by Theorem 2.1.3 (d). Since ϕα,β,n is continuous on every interval
[ε, 1] it suffices according to Theorem 2.1.3 that the limit condition

lim
δ→0+

1
δ

∫ δ

0
ϕα,β,n(t) dt = ϕα,β,n(0) = β

holds precisely for the claimed values of α and β. For α ≥ 0 we obtain similarly as in
part (a) with the substitution t = 1/s for δ > 0 the estimates

0 ≤
∫ δ

0
tα sinn 1

t
dt =

∫ ∞
1/δ

1
sα+2 sinn s ds ≤

∫ ∞
1/δ

1
sα+2 ds = δα+1

α + 1 .

For α > 0 it follows that

0 ≤ 1
δ

∫ δ

0
tα sinn 1

t
dt ≤ δα

α + 1 −→ 0 as δ → 0+,

and this is why in this case ϕα,β,n has a primitive if and only if β = 0.
On the other hand, for −1 < α ≤ 0 and m ∈ N we get∫ 1/(mπ)

0
tα sinn 1

t
dt =

∫ ∞
mπ

1
tα+2 sinn t dt =

∞∑
j=m

∫ (j+1)π

jπ

1
tα+2 sinn t dt

≥ 1
πα+2

∞∑
j=m

1
(j + 1)α+2

∫ (j+1)π

jπ
sinn t dt = σn

πα+2

∞∑
j=m+1

1
jα+2

≥ σn
πα+2

∫ ∞
m+1

1
tα+2 dt = σn

πα+2(α + 1)(m+ 1)α+1 , (2.1.8)
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where we have used (2.1.4) again. Analogously, one can show for m ≥ 2 that
∫ 1/(mπ)

0
tα sinn 1

t
dt =

∫ ∞
mπ

1
tα+2 sinn t dt ≤ σn

πα+2(α + 1)(m− 1)α+1 . (2.1.9)

From (2.1.8) we deduce that for −1 < α < 0,

lim sup
δ→0+

1
δ

∫ δ

0
tα sinn 1

t
dt =∞,

which means that ϕα,β,n cannot have a primitive in this case.
For α = 0, m ∈ N, 0 < δ < 1 and δ(m − 1)π ≤ 1 ≤ δmπ we have again with the
substitution t = 1/s,

∫ δ

0
sinn 1

t
dt =

∫ ∞
1/δ

1
s2 sinn s ds =

∫ mπ

1/δ

1
s2 sinn s ds+

∫ ∞
mπ

1
s2 sinn s ds.

From (2.1.8) and (2.1.9) we obtain for m ≥ 2,

σn
π

m− 1
m+ 1 ≤

1
δ

∫ ∞
mπ

1
s2 sinn s ds ≤ σn

π

m

m− 1 .

Since m→∞ for δ → 0+, it follows that

lim
δ→0+

1
δ

∫ ∞
mπ

1
s2 sinn s ds = σn

π
.

Moreover, since

0 ≤ 1
δ

∫ mπ

1/δ

1
s2 sinn s ds ≤ δσn −→ 0 as δ → 0+,

we end in total at

lim
δ→0+

1
δ

∫ δ

0
sinn 1

t
dt = σn

π
.

In this case, ϕα,n,β has a primitive if and only if β = σn/π, as claimed.
We now handle the case when n is odd. By part (a), the function ϕα,β,n is KH-
integrable only for α > −2 and hence cannot have a primitive for α ≤ −2 by Theorem
2.1.3 (d). In addition, ϕα,β,n is continuous on every interval [ε, 1], by Theorem 2.1.3
(d) it again suffices to show that the limit condition

lim
δ→0+

1
δ

∫ δ

0
ϕα,β,n(t) dt = ϕα,β,n(0) = β

is satisfied precisely for α > −1 and β = 0. For α > −2 we get with the substitution
t = 1/s for 0 < δ < 1,

∫ δ

0
tα sinn 1

t
dt =

∫ ∞
1/δ

1
sα+2 sinn s ds.
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For α > −1 we deduce for 2(m− 1)π ≤ 1/δ ≤ 2mπ and m ∈ N,

1
δ

∫ δ

0
tα sinn 1

t
dt = 1

δ


∫ 2mπ

1/δ
+
∞∑
j=m

∫ 2(j+1)π

2jπ

 1
sα+2 sinn s ds. (2.1.10)

Since

1
δ

∣∣∣∣∣
∫ 2mπ

1/δ

1
sα+2 sinn s ds

∣∣∣∣∣ ≤ 2δα+1σn,

the first term in (2.1.10) goes to 0 as δ → 0+. For the sum in (2.1.10) we get from
(2.1.7),

0 ≤ 1
δ

∞∑
j=m

∫ 2(j+1)π

2jπ

1
sα+2 sinn s ds ≤ 1

δ

∞∑
j=m

 σn
(2jπ)α+2 −

σn(
2(j + 1)π

)α+2


= σn
δ(2mπ)α+2 ≤ δα+1σn,

and this implies that also the entire sum in (2.1.10) tends to 0 as δ → 0+. Consequently,
in this case, ϕα,β,n has a primitive if and only if β = 0.
Let −2 < α ≤ −1. Introducing the shortcut

aj :=
∫ (j+1)π

jπ

1
sα+2 | sin

n s| ds for j ∈ N0,

the sequence (aj) decreases to 0 as j → ∞. Moreover, due to the convexity of the
function t 7→ 1/tα+2 we get the estimate

aj + aj+2 =
∫ (j+1)π

jπ

1
sα+2 | sin

n s| ds+
∫ (j+3)π

(j+2)π

1
sα+2 | sin

n s| ds

=
∫ (j+2)π

(j+1)π

1
(t− π)α+2 | sin

n(t− π)| dt+
∫ (j+2)π

(j+1)π

1
(t+ π)α+2 | sin

n(t+ π)| dt

=
∫ (j+2)π

(j+1)π

(
1

(t− π)α+2 + 1
(t+ π)α+2

)
| sinn t| dt

≥ 2
∫ (j+2)π

(j+1)π

1
tα+2 | sin

n t| dt = 2aj+1

which implies
aj − aj+1 ≥ aj+1 − aj+2 for all j ∈ N0.

By a generalization of the error estimates for alternating series proved in [36] we have

am
2 ≤

∣∣∣∣∣∣
∞∑
j=m

(−1)jaj

∣∣∣∣∣∣ ≤ am−1

2 for all m ∈ N.

Since we have for m ∈ N,∫ 1/(mπ)

0
tα sinn 1

t
dt =

∞∑
j=m

∫ (j+1)π

jπ

1
sα+2 sinn s ds =

∞∑
j=m

(−1)jaj
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we obtain for even m ∈ N,∫ 1/(mπ)

0
tα sinn 1

t
dt =

∞∑
j=m

(−1)jaj ≥
am
2 ≥

σn

2
[
(m+ 1)π

]α+2

which in turn implies

lim sup
δ→0+

1
δ

∫ δ

0
tα sinn 1

t
dt ≥ σn

2 .

Similarly, one can show that

lim inf
δ→0+

1
δ

∫ δ

0
tα sinn 1

t
dt ≤ −σn2 .

Thus, by Theorem 2.1.3 (d) the function ϕα,β,n cannot have a primitive in this case. �

Note that the case α = 0 for even n in Proposition 2.1.5 (b) is special. Here we can
see that a function x has a primitive only if x oscillates at t around x(t) so that big
amplitudes compensate each other.
Since every continuous function has a primitive, Theorem 2.1.3 ensures the inclusions

C ⊆ ∆ ⊆ KH, (2.1.11)

which supplement the inclusions given in (2.0.1). The function ϕα,0,1 for −2 < α ≤ −1
shows, that the second inclusion is strict and that the inclusion D ⊆ KH does not
hold, while any function with finite support shows that the inclusion KH ⊆ D is also
false.
In addition, Proposition 2.1.5 (b) shows that for fixed α and n there is at most one
possibility for β to guarantee that ϕα,β,n has a primitive. Behind this observation hides
a more general result which can be stated as follows.

Theorem 2.1.6. If the two functions x, y ∈ ∆ agree almost everywhere, then they
agree in fact everywhere.

Proof. According to Theorem 2.1.3 we have that x, y ∈ KH, and by Theorem 9.9 of
[68] it follows that ∫

I
x(s) ds =

∫
I
y(s) ds

holds for any interval I ⊆ [0, 1]. From Theorem 2.1.3 (d) it then follows that

x(t) = lim
δ→0+

1
δ

∫ t+δ

t
x(s) ds = lim

δ→0+

1
δ

∫ t+δ

t
y(s) ds = y(t)

for every t ∈ [0, 1]. �

Theorem 2.1.6 shows that we cannot change the values of a function in ∆ at any
point we please, because then the function will no longer belong to ∆; we have seen
this already in Example 2.0.1. However, it is not surprising that the condition (a) in
Proposition 2.1.5 does not depend on β, because it is an integrability condition.
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Our considerations suggest that this phenomenon is also true for Darboux functions,
because if we change a function only at a single point it looses its intermediate value
property in general. The following example illustrates that this suspicion is not true.

Example 2.1.7. For arbitrary β ∈ R let us denote by xβ the function

xβ(t) := ϕ−1/2,β,1(t) =


1√
t

sin 1
t

for 0 < t ≤ 1,

β for t = 0.

By Proposition 1.1.12 (d) (v) this function xβ is a Darboux function for every β ∈
R. Moreover, xβ and xγ agree on (0, 1], but in case β 6= γ certainly not on [0, 1].
In particular, this shows that the assumption x, y ∈ ∆ in Theorem 2.1.6 cannot be
dropped, because by Proposition 2.1.5 (b) the function xβ belongs to ∆ for β = 0, but
not for any β 6= 0. ♦

An important problem in the theory of real functions is to determine whether a given
class of functions is closed under uniform convergence. The probably simplest examples
are the classes B and C, because every first semester student learns that the uniform
limit of a sequence of bounded respectively continuous functions on a compact interval
is again bounded respectively continuous. We will see in Section 6.1 that besides uni-
form convergence there are further weaker types of convergence with similar continuity
preserving properties.
A little more surprising might be that the same is true for the class ∆. A quite
elementary proof for this fact which uses the Mean Value Theorem for differentiable
functions can be found in [147]. We give here an alternative proof as a direct application
of our main Theorem 2.1.3 (d).

Theorem 2.1.8. Let (xn) be a sequence of real-valued functions that converges on [0, 1]
uniformly to some function x. If each xn belongs to ∆, then so does x.

Proof. By Theorem 2.1.3 (d), every xn belongs to KH and satisfies condition (2.1.3).
Due to the uniform convergence, we find for fixed ε > 0 some N ∈ N such that for all
t ∈ [0, 1] and n ≥ N we have

xn(t)− ε ≤ x(t) ≤ xn(t) + ε.

In particular, x is measurable as a limit of measurable functions and bounded from
above and below by the KH-integrable functions xn and so also KH-integrable by
Theorem 5.11 of [87]. For n ≥ N and t, t+ δ ∈ [0, 1] with δ 6= 0,

1
δ

∫ t+δ

t
xn(s) ds− ε ≤ 1

δ

∫ t+δ

t
x(s) ds ≤ 1

δ

∫ t+δ

t
xn(s) ds+ ε.

Letting δ → 0 yields together with Theorem 2.1.3 (d) that

xn(t)− ε ≤ lim inf
δ→0

1
δ

∫ t+δ

t
x(s) ds ≤ lim sup

δ→0

1
δ

∫ t+δ

t
x(s) ds ≤ xn(t) + ε,
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and letting n→∞ afterwards gives

x(t)− ε ≤ lim inf
δ→0

1
δ

∫ t+δ

t
x(s) ds ≤ lim sup

δ→0

1
δ

∫ t+δ

t
x(s) ds ≤ x(t) + ε.

Since ε > 0 was chosen arbitrarily, x satisfies indeed (2.1.3) and thus belongs to the
class ∆ again by Theorem 2.1.3 (d). �

One could ask whether Theorem 2.1.8 remains true if the uniform convergence is re-
placed by one of the other aforementioned weaker forms of convergence. We will con-
sider such types in more detail and answer this question in Section 6.1.

As mentioned above, there were further attempts in the literature to characterize the
functions in ∆ without using integrals; see [43, 53, 115], for instance. It is reasonable
to try to find a characterization by looking at sub- and superlevel sets of the form

Sα(x) := {t ∈ [0, 1] | x(t) < α} and Pα(x) := {t ∈ [0, 1] | x(t) > α}. (2.1.12)

Characterizing a class A of function on [0, 1] then means that there is a system S of
subsets of R such that

x ∈ A ⇐⇒ ∀α ∈ R : Sα(x), Pα(x) ∈ S. (2.1.13)

For some classes A this is easy to do. For instance, a function x : [0, 1] → R is
continuous if and only if the sets in (2.1.12) are all open (in this case, S consists of all
open sets in R), monotone if and only if the sets in (2.1.12) are all intervals (in this
case, S consists of all intervals in R) and measurable if and only if the sets in (2.1.12)
are all measurable (in this case, S consists of all Lebesgue measurable subsets of R).
However, it is not possible to find a set system S for the class A = ∆ such that (2.1.13)
is fulfilled.

Example 2.1.9. The function x := ϕ0,0,1+1 is nonnegative and belongs to ∆ according
to Proposition 2.1.5 (b). By Example 2.0.1 we get that x2(t) = ϕ0,0,2(t) + 2ϕ0,0,1(t) + 1
does not belong to ∆.
Assume now that there is a set system S for A = ∆ such that (2.1.13) is fulfilled. Then
Sα(x), Pα(x) ∈ S for any α ∈ R; in particular, ∅ = S−1(x) ∈ S and [0, 1] = P−1(x) ∈ S.
We now fix β ∈ R. If β ≥ 0, then

Sβ(x2) = S√
β

2(x2) = S√
β
(x) ∈ S and Pβ(x2) = P√

β
2(x2) = P√

β
(x) ∈ S.

If β < 0 we have

Sβ(x2) = ∅ ∈ S and Pβ(x2) = [0, 1] ∈ S.

Thus, we have shown that Sβ(x2), Pβ(x2) ∈ S for any β. According to (2.1.13) this
would imply that x2 ∈ ∆, a contradiction. ♦
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Generally speaking, if h : R → R is a strictly increasing homeomorphism of R and
Sα(x) belongs to some class S for any α ∈ R, then Sα(h ◦ x) = Sh−1(α)(x) also has to
belong to S for any α ∈ R, and a similar reasoning is true for the sets Pα. Thus, any
function class A satisfying (2.1.13) for some set system S must be closed under outer
compositions with strictly increasing homeomorphisms. As Example 2.1.9 has shown,
the class ∆ is not closed under the strictly increasing homeomorphism h(u) = u for
u < 0 and h(u) = u2 for u ≥ 0; we will revisit this and related problems later in Section
2.3.
In view of this last example, the following result is particularly surprising. Its proof
can be found in [132].

Theorem 2.1.10. A function x : R → R belongs to ∆(R) if and only if for each set
E ⊆ R there is a function y ∈ ∆(R) with x−1(E) = y−1(E).

Thus, a function x has a primitive on R if its preimages locally look like those of
another function with primitive. This last result is somewhat circular, because in
order to establish the existence of a primitive, we use the existence of a primitive of
another function. In other words: A function which does not have a primitive produces
the wrong kind of preimages; this observation was refined in [43].

We have seen that the Theorems 2.1.3 and 2.1.4 fully characterize the functions in the
class ∆. Moreover, ∆ exhibits some pleasant and unpleasant structural properties. For
instance, ∆ is closed under summation and uniform convergence, but it is not closed
under multiplication and composition, as Example 2.1.9 has shown. Therefore, the
following problems naturally arise.

Problem 2.1.11. Find a necessary and sufficient condition on g : [0, 1]→ R such that
xg ∈ ∆ for all x ∈ ∆.

Problem 2.1.12. Find a necessary and sufficient condition on g : R → R such that
g ◦ x ∈ ∆ for all x ∈ ∆.

Problem 2.1.13. Find a necessary and sufficient condition on g : [0, 1] → [0, 1] such
that x ◦ g ∈ ∆ for all x ∈ ∆.

The function g in any of these problems is in a sense universal: It has to withstand the
multiplication respectively outer composition respectively inner composition by any
function x ∈ ∆. We will discuss these and related problems in the next sections of this
chapter, and start with Problem 2.1.11.
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2.2 Products of Derivatives
While we have given a full characterization of the class ∆ of functions on [0, 1] having
a primitive, we will now discuss the structural properties of ∆ in more detail.
Since differentiation is a linear procedure, the sum of two functions of ∆ again belongs
to ∆. However, Example 2.1.9 has shown that the product of two functions in ∆
may not belong to ∆ anymore. We give here another example which might be more
interesting, since one factor will be continuous.

Example 2.2.1. The functions

x(t) = ϕ−1/2,0,1(t) =


1√
t

sin 1
t

for 0 < t ≤ 1,

0 for t = 0
(2.2.1)

and

y(t) = ϕ1/2,0,1(t) =


√
t sin 1

t
for 0 < t ≤ 1,

0 for t = 0
(2.2.2)

both have a primitive f respectively g by Proposition 2.1.5 (b), namely

f(t) = t
√
t cos 1

t
− 3

2

∫ t

0

√
s cos 1

s
ds and g(t) =

∫ t

0

√
s sin 1

s
ds.

The product xy, however, is the function ϕ0,0,2 which does not have a primitive, as we
have seen in Example 2.0.1 and in Proposition 2.1.5 (b). ♦
Recall that Problem 2.1.11 asks for a universal multiplier for ∆, that is, for a function
g : [0, 1] → R such that xg ∈ ∆ for all x ∈ ∆. Example 2.2.1 has shown that g ∈ C
is too weak for being a multiplier for ∆. Of course, as usual we can give stronger
conditions on at least one of the factors x, y ∈ ∆ to ensure xy ∈ ∆. Such conditions
will be given in the sequel1. Our first pair of conditions also sets the first bridge for
the interconnection between ∆ and BV .

Theorem 2.2.2. For x, y : [0, 1]→ R the following statements hold.

(a) If x ∈ ∆ and y ∈ BV ∩ C, then xy ∈ ∆.

(b) If x ∈ ∆ ∩B and y ∈ C, then xy ∈ ∆.

A proof of Theorem 2.2.2 using the approximation theorem of Weierstrass can be found
in [11]. We will give another proof later for the more general result in Theorem 2.2.12,
but use only the KH-integral.
Part (a) of Theorem 2.2.2 says that any y ∈ BV ∩ C is a multiplier for ∆. Moreover,
Example 2.2.1 shows that we cannot drop the assumption y ∈ BV in (a) and also not
x ∈ B in (b). On the other hand, Theorem 2.2.2 allows us to find other multipliers

1Compare to [6], Exercises 1.38, 1.41, 1.44, 1.45.
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g for ∆. For instance, it suffices that g is continuous and injective, because then it
is strictly monotone and thus belongs to BV . Even simpler, the condition g ∈ C1 is
sufficient, because C1 ⊆ BV ∩ C. If, in addition to g ∈ C1, one requires x to have
a bounded primitive, then xg ∈ ∆ can be deduced from Theorem 2.2.2 (b) instead of
(a). Indeed, if f is a bounded primitive of x, then from the product rule we obtain
xg = f ′g = (fg)′ − fg′ ∈ ∆, since g′ is continuous.

In order to tackle Problem 2.1.11 in a more systematic way, it is reasonable to formally
introduce the class of multipliers in a more general setting. For a function space X of
real-valued functions on [0, 1] we denote by

X/X := {g : [0, 1]→ R | xg ∈ X for all x ∈ X} (2.2.3)

the multiplier set of X. So our main interest is how the set ∆/∆ looks like. A
description of X/X for other spaces is also interesting. The next chapter is dedicated
to this problem in much more generality. In particular, we will investigate X/X and
related more general multiplier sets if the underlying function spaces are one of the
BV-type spaces introduced in Chapter 1. But for now, let us stay with X/X for some
classes X that have been considered so far. If X contains the constant function 1, then
clearly

X/X ⊆ X, (2.2.4)

and in case that X is not closed under multiplication the inclusion in (2.2.4) is strict.
Note that X/X is always closed under multiplication: Indeed, if g, h ∈ X/X are given
and x ∈ X is fixed, then xg ∈ X and hence xgh ∈ X which shows that then gh ∈ X/X.

For the classical spaces X ∈ {C,B,BV } we clearly have equality in (2.2.4), and The-
orem 2.2.2 (a) shows that BV ∩C ⊆ ∆/∆. The sets ∆/∆, KH/KH and D/D are far
more difficult to describe; we will discuss them in the sequel.
We start with KH/KH. From the Hölder Inequality we get that the multiplier set for
L1 is L∞. However, L∞ is not the multiplier set for KH.

Example 2.2.3. The function

g(t) := signϕ0,0,1(t) =


−1 if sin(1/t) < 0,
0 if sin(1/t) = 0,
1 if sin(1/t) > 0

belongs to L∞. But for x = ϕ−1,0,1 ∈ KH we have xg = |x| 6∈ KH, as we have seen
after Example 2.1.2. Thus, g /∈ KH/KH. ♦
The class KH/KH was fully described in [87]. The author proved the equality

KH/KH = BV ∗, (2.2.5)

where BV ∗ denotes the space of all functions x : [0, 1]→ R that are almost everywhere
equal to some function in BV . This explains that g of Example 2.2.3 could not be a
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multiplier for KH, since it can be transformed into a BV -function only if one changes
its values on a set of positive measure. From (2.2.5) and BV ⊆ BV ∗ it also follows
that for x ∈ KH and y ∈ BV we have xy ∈ KH. This has been proven for the
first time by Chelidze and Dzhvarsheishvili [39]; a proof can also be found in [87] and
[88]. Moreover, on every subinterval [a, b] of [0, 1] with 0 ≤ a ≤ b ≤ 1 a Hölder-type
inequality holds, namely∣∣∣∣∣

∫ b

a
x(t)y(t) dt

∣∣∣∣∣ ≤ ‖x‖KH[a,b] ‖y‖BV [a,b] , (2.2.6)

where
‖x‖KH[a,b] := sup

a≤c≤d≤b

∣∣∣∣∣
∫ d

c
x(t) dt

∣∣∣∣∣
is a natural norm on KH[a, b], and ‖·‖BV [a,b] is the usual norm for BV [a, b], introduced
in Chapter 1. With these tools we are now able to give the promised proof of Theorem
2.2.2.

Proof of Theorem 2.2.2. (a) Let x ∈ ∆ and y ∈ BV ∩ C. By Theorem 2.1.3 (c) we
have x ∈ KH, and from (2.2.5) follows xy ∈ KH. In order to prove xy ∈ ∆ we have to
check the limit condition (2.1.3) (with x replaced by xy). To this end, fix t ∈ [0, 1); the
case t = 1 is similar and will be omitted. Since x(s)y(s) = [x(s)− x(t)]y(s) + x(t)y(s)
for s ∈ [0, 1] we get from y ∈ ∆ and (2.1.3) that

lim
δ→0

1
δ

∫ t+δ

t
x(s)y(s) ds = lim

δ→0

1
δ

∫ t+δ

t
[x(s)− x(t)]y(s) ds+ x(t) lim

δ→0

1
δ

∫ t+δ

t
y(s) ds

= lim
δ→0

1
δ

∫ t+δ

t
[x(s)− x(t)]y(s) ds+ x(t)y(t).

Thus, we can assume that x(t) = 0. By (2.2.6) we obtain∣∣∣∣∣
∫ t+δ

t
x(s)y(s) ds

∣∣∣∣∣ ≤ σ(δ) ‖y‖BV ,

where we set
σ(δ) := sup

[u,v]⊆[t,t+δ]

∣∣∣∣∫ v

u
x(s) ds

∣∣∣∣ .
By Theorem 2.1.3 (a) and (d) the function f : [t, 1]→ R, defined by

f(u) =
∫ u

t
x(s) ds,

is differentiable at u = t with f ′(t) = x(t) = 0. This implies that we find for each ε > 0
some η > 0 so that |f(u)| ≤ ε|u− t| for |u− t| ≤ η. For |δ| ≤ η we get

σ(δ) = sup
[u,v]⊆[t,t+δ]

|f(u)− f(v)| ≤ ε sup
[u,v]⊆[t,t+δ]

(
|v − t|+ |u− t|

)
≤ 2εδ.

We deduce

lim
δ→0

1
δ

∫ t+δ

t
x(s)y(s) ds = 0,
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which is exactly (2.1.3) for xy and proves (a).
For (b) assume that x ∈ ∆ ∩B and y ∈ C. We approximate y uniformly by piecewise
linear and continuous functions. For instance, define yn on [0, 1] piecewise linear and
continuous by yn(k2−n) = y(k2−n) for k ∈ {0, . . . , 2n} and n ∈ N. Since y is continuous,
the functions yn converge indeed uniformly on [0, 1] to y, and since they are all piecewise
linear, all of them belong to BV ∩ C. By part (a), xyn ∈ ∆ for each n ∈ N. Since x
is bounded, the products xyn converge also uniformly to xy, and finally Theorem 2.1.8
ensures xy ∈ ∆. �

Note that we have not used the continuity of y in our proof of part (a), but merely
y ∈ ∆. However, this is not a real generalization: Any BV -function possesses only jump
discontinuities, but the Darboux property, which every function in ∆ has, excludes
them. Thus, BV ∩ ∆ = BV ∩ C. One could also argue that the proof of part (a) of
Theorem 2.2.2 remains valid if one replaces y almost everywhere with another function
y ∈ BV ∩ ∆. In other words, can we replace the assumption y ∈ BV ∩ C by the
apparently weaker assumption y ∈ BV ∗ ∩∆? The answer is given by

Theorem 2.2.4. The identity

BV ∗ ∩∆ = BV ∩ C (2.2.7)

holds.

Proof. Because of BV ⊆ BV ∗ and C ⊆ ∆ we only need to show the inclusion BV ∗ ∩
∆ ⊆ BV ∩ C. To this end, let x ∈ BV ∗ be a function with primitive. By definition of
BV ∗ there is a function h ∈ BV which agrees almost everywhere with x on [0, 1]. The
right regularization

h#(t) =


lim
s→t+

h(s) for t ∈ [0, 1),

x(1) for t = 1

has bounded variation, is right-continuous and almost everywhere equal to h, because
it differs from h in the (at most countably many) points of discontinuity of h. In
particular, h# agrees almost everywhere with x and satisfies h#(1) = x(1). As a BV -
function, h# is KH-integrable, and with the help of Theorem 2.1.3 (b) and (d) as well
as [68, Theorem 9.9] it follows for t ∈ [0, 1) that

h#(t) = lim
δ→0+

1
δ

∫ t+δ

t
h#(s) ds = lim

δ→0+

1
δ

∫ t+δ

t
x(s) ds = x(t).

Since h#(1) = x(1), the two functions h# and x are in fact equal everywhere on [0, 1].
Thus, x is a Darboux function of bounded variation and hence continuous. �

In Theorem 2.2.4 the set BV ∗ ∩ ∆ cannot be replaced by the larger set BV ∗ ∩ D.
In [45], the author constructed a bounded upper semicontinuous Darboux function
g : [0, 1] → R which is 0 almost everywhere but not everywhere. This function then
lies within BV ∗∩D, but neither in BV nor in C. Moreover, this g can also not belong
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to ∆ by Theorem 2.2.4. The same is shown by Theorem 2.1.6: If g had a primitive,
then it would be identically zero.

The multipliers in KH/KH are completely described by (2.2.5). In the literature there
can also be found some asymmetric conditions for being in KH/KH. For instance, the
authors of [67] show using the Hölder space Lipα the following: If a primitive of x ∈ ∆
belongs to Lipα, and if y ∈ Lipβ, then xy ∈ KH if α + β > 1. This description of
KH/KH is independent of our characterization using BV and BV ∗. In fact, g ∈ Lipβ
is not even necessary for g being in KH/KH, not even for g ∈ ∆/∆, as the following
example illustrates.

Example 2.2.5. The function g : [0, 1]→ R, defined by

g(t) =


1

log(2/t) for 0 < t ≤ 1,

0 for t = 0,

is increasing and hence of bounded variation. By (2.2.5), g belongs to KH/KH.
Moreover, g is also continuous, and so by Theorem 2.2.2 (a) it even belongs to ∆/∆.
However, a simple calculation shows that g does not belong to Lipβ for any β > 0. ♦

We now turn to the problem how the multipliers in ∆/∆ look like. First, the two
classes ∆ and ∆/∆ are different in structure: On the one hand and as we have seen
above, ∆/∆ is an algebra, whereas ∆ is not closed under multiplication by Example
2.1.9 or 2.2.1. On the other hand, ∆ is closed under uniform convergence by Theorem
2.1.8. However, ∆/∆ is not. To see this, first note that since ∆/∆ is closed under
multiplication, the assumption g ∈ ∆/∆ implies g ∈ ∆ and hence g2, g3, . . . , gn ∈ ∆/∆
for all n ∈ N. Therefore, as g(t) = t and any constant function belong to ∆/∆ by
Theorem 2.2.2 (a), also any polynomial is a member of ∆/∆. By the Approximation
Theorem of Weierstrass any continuous function can be uniformly approximated on
[0, 1] by polynomials. Now, if ∆/∆ was closed under uniform convergence, then any
continuous function would also belong to ∆/∆. However, in Example 2.2.1 we have
seen that the continuous function given in (2.2.2) serves as a counterexample.
From what we have seen so far, the class ∆/∆ must have the form

∆/∆ = X ∩∆, (2.2.8)

where X is a (for now unknown) class of functions which contains BV as a subclass.
Conversely, in the next theorem we give a superclass of X.

Theorem 2.2.6. The inclusion

∆/∆ ⊆ B (2.2.9)
holds.

Proof. Let g ∈ ∆/∆ be given; in particular, g ∈ ∆ and hence g ∈ KH by Theorem
2.1.3 (c), and thus g is Lebesgue measurable [68, Theorem 9.12 (c)]. We first show that
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g is essentially bounded in the sense of the Lebesgue measure. Since the statements
g ∈ L∞ and g2 ∈ L∞ are equivalent and since ∆/∆ is closed under multiplication,
we can assume that g is nonnegative throughout [0, 1]. To invoke a contradiction, we
assume that g /∈ L∞ and construct some function x ∈ ∆ with xg /∈ ∆; this proves
the theorem. Because g /∈ L∞, which means esssup g([0, 1]) = ∞, we find a strictly
monotone sequence (tn) in [0, 1] which converges to some c ∈ [0, 1] and satisfies

esssup g([tn, tn+1]) ≥ 5n for n ∈ N.

Without loss of generality we can assume that c ∈ [0, 1) and that (tn) is strictly
decreasing; the other cases are similar. Thus, we find sn ∈ [tn, tn−1] and measurable
sets An ⊆ [sn, sn + µn] of measure |An| = µn/2 > 0, so that

tn < sn − µn < sn < sn + µn < sn + 2µn < tn−1

and g(t) ≥ 4n for t ∈ An. We now define αn > 0 by

αn := tn − tn+1

2nµn
for n ∈ N,

as well as the function x : [0, 1]→ R by

x(t) =



0 for t ∈ {0, c, 1},
0 for t ∈ {tn, sn − µn, sn + 2µn}, n ∈ N,
αn for sn ≤ t ≤ sn + µn, n ∈ N,
linear otherwise.

The following picture shows x on some interval [tn, tn−1].

αn

tn sn − µn sn sn + µn sn + 2µn tn−1

Figure 2.2.1: The function x on a subinterval.

The function x is KH-integrable on [0, c] and on every interval [d, 1] for d ∈ (c, 1),
because x is piecewise linear on [0, 1]\{c}. For such a d and n ∈ N with tn < d ≤ tn−1
we have∫ 1

d
x(t) dt ≤

∫ 1

tn
x(t) dt =

n∑
j=1

∫ sj+2µj

sj−µj
x(t) dt = 2

n∑
j=1

µjαj =
n∑
j=1

tj − tj+1

j
≤ t1 − tn+1.

Since the right hand side remains bounded for d→ c+ and since x is nowhere negative,
we deduce that x is even Lebesgue integrable on [c, 1]. Moreover,∫ d

c
x(t) dt ≤

∞∑
j=n

∫ tj−1

tj
x(t) dt =

∞∑
j=n

∫ sj+2µj

sj−µj
x(t) dt = 2

∞∑
j=n

µjαj

=
∞∑
j=n

tj − tj+1

j
≤ tn − c

n
,
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and from that follows

1
d− c

∫ d

c
x(t) dt ≤ tn − c

(d− c)n ≤
1
n
.

Since d→ c+ implies n→∞, we obtain

lim
d→c+

1
d− c

∫ d

c
x(t) dt = 0 = x(c),

and as x(t) = 0 for 0 ≤ t ≤ c, Theorem 2.1.3 (d) shows indeed x ∈ ∆.

It remains to show that xg /∈ ∆, and for that we again use Theorem 2.1.3 (d). If
xg /∈ KH, we are done by Theorem 2.1.3 (c). Therefore we assume xg ∈ KH and have
to show that the limit condition (2.1.3) is violated. By construction of x we have

∫ tn

c
x(t)g(t) dt =

∞∑
j=n

∫ tj

tj+1
x(t)g(t) dt ≥

∞∑
j=n

∫
Aj
x(t)g(t) dt ≥ 2

∞∑
j=n

jµjαj

=
∞∑
j=n

(tj − tj+1) = tn − c.

However, from this estimates it follows that

lim sup
δ→0+

1
δ

∫ c+δ

c
x(t)g(t) dt ≥ 1 > 0 = x(0)g(0),

which means that (2.1.3) is indeed violated. We deduce xg /∈ ∆, contradicting the fact
that g ∈ ∆/∆.

Finally, we now show that g is really bounded. Due to g ∈ ∆/∆ we have g ∈ ∆, and
since g ≥ 0 and g ∈ L∞ we get g(t) ≤ ‖g‖L∞ for almost all t ∈ [0, 1]. From Theorem
2.1.3 (d) in combination with [68, Theorem 9.9] we obtain

g(t) = lim
δ→0

1
δ

∫ t+δ

t
g(t) dt ≤ lim

δ→0

1
δ

∫ t+δ

t
‖g‖L∞ dt = ‖g‖L∞

for each t ∈ [0, 1] and consequently g ∈ B, as claimed. �

In the proof of the last theorem we have deduced g ∈ B from g ∈ ∆ ∩ L∞. This
deduction does not work anymore if we replace g ∈ ∆ ∩ L∞ by g ∈ D ∩ L∞. We show
that there is a Darboux function which is zero almost everywhere (and in particular
essentially bounded with L∞-norm 0), but attains every real number in every proper
real interval (and so is dramatically unbounded). This example is similar to one found
in the introduction of the book [147], in which the authors construct a Darboux function
that maps any subinterval [a, b] onto the entire interval [0, 1] but has no primitive on
subintervals. Our example is an unbounded version of this idea.2

2Compare to Example 3.1.9.
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Example 2.2.7. Let In = [an, bn] ⊆ [0, 1] with an, bn ∈ Q and an < bn for n ∈ N be an
enumeration of all proper subintervals of [0, 1] with rational end points. Inductively,
one can extract pairwise disjoint Cantor sets Cn ⊆ In such that each has Lebesgue
measure zero. Since each such set Cn has the cardinality of R, there are bijective
functions gn : Cn → R for each n ∈ N. We put

g(t) :=
gn(t) for t ∈ Cn, n ∈ N,

0 otherwise.

Now, if an interval [a, b] ⊆ [0, 1] with a < b is given, then since Q is dense in R we find
some m ∈ N satisfying Im ⊆ [a, b]. From g(Im) ⊇ gm(Cm) = R we deduce g([a, b]) = R;
in particular, g is a Darboux function that attains every real number in any proper real
interval. Because all the sets Cn have measure zero, their union has measure zero, too,
and g is indeed zero almost everywhere. By Theorem 2.1.6, g cannot have a primitive
on some subinterval of [0, 1]. ♦
We are now going to answer the question on how the functions in ∆/∆ look like. In
order to do so, let us consider the following class of functions.

BV :=
{
g : [0, 1]→ R | ∀t ∈ [0, 1] : lim sup

δ→0
Var(g, [t+ δ, t+ 2δ]) <∞

}
. (2.2.10)

This class is situated between BV and L1, that is, the inclusions

BV ⊆ BV ⊆ L1 (2.2.11)

hold, where the first is obvious, and the second is shown in our next

Proposition 2.2.8. Every function in BV is Lebesgue integrable.

Proof. First note that any x ∈ BV is (Lebesgue) measurable since it can have only
countably many points of discontinuity. In order to show that x is Lebesgue integrable
it suffices to show that x is locally Lebesgue integrable on [0, 1], that is, x ∈ L1([t0 −
δ, t0 + δ] ∩ [0, 1]) for all t0 ∈ [0, 1] and suitable δ > 0 depending on t0. We only show
this for t0 = 0, the other cases are similar.
Since x ∈ BV there are M > 0 and N ∈ N such that

Var
(
x, In

)
≤M for n ≥ N,

where In := [2−n−1, 2−n]. For any t ∈ In we have |x(t)| ≤ |x(2−n)| + Var(x, In) ≤
|x(2−n)| + M ; in particular, |x(2−n−1)| ≤ M + |x(2−n)| for all n ≥ N . This implies
|x(2−n)| ≤ (n−N)M +m for all n ≥ N , where m := |x(2−N)|, and thus

|x(t)| ≤ (n−N + 1)M +m ≤ nM +m for t ∈ In, n ≥ N.

We obtain∫ 2−N

0
|x(t)| dt =

∞∑
n=N

∫ 2−n

2−n−1
|x(t)| dt ≤

∞∑
n=N

(
2−n − 2−n−1

)(
nM +m

)
= 2−N(m+M +MN)

which shows that x is indeed Lebesgue integrable on [0, 2−N ]. �
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The characteristic function χQ∩[0,1] which belongs to L1\BV shows that the second
inclusion in (2.2.11) is strict. Our next example proves that also the first inclusion in
(2.2.11) is strict. Moreover, it also illustrates that in contrast to BV the class BV is
not contained in B.

Example 2.2.9. The function

x(t) =
log(t) for 0 < t ≤ 1,

0 for t = 0

is unbounded and so certainly not in BV . Moreover, for t > 0 and t+ δ, t+ 2δ ∈ (0, 1)
we have

Var(x, [t+ δ, t+ 2δ]) = |x(t+ δ)− x(t+ 2δ)| = | log(t+ δ)− log(t+ 2δ)|

=
∣∣∣∣∣log t+ δ

t+ 2δ

∣∣∣∣∣ −→ 0 as δ → 0,

and for t = 0 and 0 < δ < 1/2 we get

Var(x, [δ, 2δ]) = |x(δ)− x(2δ)| =
∣∣∣∣log 1

2

∣∣∣∣ = log(2).

Consequently, x ∈ BV . ♦
One could argue that any function x ∈ BV ∩D must be bounded, since such a function
can have only finitely many discontinuities. Indeed, for any t ∈ [0, 1] the function x

must be of bounded variation on each interval [t+ δ, t+ 2δ] for sufficiently small δ > 0
and hence continuous there because of the Darboux property. This means that for
each t ∈ [0, 1] the function x must be continuous on [t − δ, t + δ]\{t} for small δ > 0,
and thus can have only finitely many discontinuities as [0, 1] is compact. However, the
following example shows that even if x ∈ BV ∩D is discontinuous at only one point,
then it may still be unbounded.

Example 2.2.10. Define the sequence of natural numbers (kn)n∈N0 by

k0, k1, k2, k3, . . . = 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, . . . ,

which, for instance, can be constructed explicitly as follows. For n ∈ N0 we set

in :=
⌊√

1 + 4n− 1
2

⌋
, an := in(in + 1) and bn := (in + 1)(in + 2).

Then

kn = bn − an
2 −

∣∣∣∣∣an + bn
2 − n

∣∣∣∣∣ .
We now define the function x : [0, 1] → R by x(0) = 0, and piecewise linear and
continuous on (0, 1] by x(2−n) = kn for n ∈ N0. Here is a picture of x on [2−12, 1],
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where the t-axis has partially been scaled in a logarithmic manner to make the line
segments more visible.

12−12−22−32−42−62−72−82−12

Figure 2.2.2: The function x on a partially logarithmic scale.

Then x ∈ BV [a, 1] for all a ∈ (0, 1) and Var(x, [2−(n+1), 2−n]) = |kn+1 − kn| = 1 for all
n ∈ N0, and this implies x ∈ BV . To see this, note that for δ ∈ (0, 1) we find some
n ∈ N such that 2−n ≤ δ ≤ 2−n+1. Therefore, 2−n+1 ≤ 2δ ≤ 2−n+2; we obtain

Var(x, [δ, 2δ]) ≤ Var(x, [2−n, 2−n+2]) = 2

and thus indeed x ∈ BV .
Moreover, since x is continuous and nonnegative on (0, 1], and since x([0, 2−n]) = [0,∞),
we conclude x ∈ D, but x /∈ B. ♦
As we have seen, the inclusion BV ∩D ⊆ B is false. But it turns true if we replace D
by the space ∆.

Proposition 2.2.11. The inclusion

BV ∩∆ ⊆ B

holds.

Proof. Fix x ∈ BV ∩ ∆, and assume that x is unbounded. Then there is a sequence
(tn) in [0, 1] such that |x(tn)| → ∞ as n→∞. Since [0, 1] is compact, we can assume
by passing to a suitable subsequence that (tn) converges monotonically to some t0. We
suppose that (tn) decreases to t0 ∈ [0, 1) and that x(tn) → ∞; the other cases are
similar. For each n ∈ N there is some k ∈ N such that tn ∈ Jk := [t0 + 2−k, t0 + 2−k+1].
For any s ∈ Jk we clearly have

x(tn) ≤ x(s) + Var(x, Jk). (2.2.12)

Since x ∈ ∆, by Theorem 2.1.3 (d) x is also KH-integrable and satisfies the limit
condition (2.1.3). Consequently, integrating (2.2.12) on both sides with respect to s
gives

x(tn) ≤ 1
2−k

∫ t0+2−k+1

t0+2−k
x(s) ds+ Var(x, Jk). (2.2.13)
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Since x belongs to BV , there is some M > 0 such that

lim sup
k→∞

Var(x, Jk) = M <∞, (2.2.14)

and since x satisfies (2.1.3) at t0 we get

lim
k→∞

1
2−k

∫ t0+2−k+1

t0+2−k
x(s) ds = x(t0). (2.2.15)

Letting n→∞ implies k →∞, and we obtain from (2.2.13), (2.2.14) and (2.2.15) that

∞ = lim
n→∞x(tn) ≤ lim sup

k→∞

(
1

2−k
∫ t0+2−k+1

t0+2−k
x(s) ds+ Var(x, Jk)

)

= lim
k→∞

1
2−k

∫ t0+2−k+1

t0+2−k
x(s) ds+ lim sup

k→∞
Var(x, Jk) = x(t0) +M <∞.

But this is impossible, and the claim is proven. �

Proposition 2.2.11 implies that the function x constructed in Example 2.2.10 while
having the Darboux property cannot possess a primitive. Moreover, the compactness
of the domain of definition is important: The function x = log on (0, 1] with x(0) = 0
from Example 2.2.9 belongs to C1(0, 1] and hence also to D(0, 1], ∆(0, 1] and BV (0, 1],
but not to B(0, 1] and BV (0, 1].

The specialty of the class BV is now that it is exactly that class X of functions we
were searching for in (2.2.8). More precisely, we have the following result.

Theorem 2.2.12. The identity

∆/∆ = BV ∩∆

holds.

Fleissner was the first, who characterized ∆/∆ completely in the sense of Theorem
2.2.12 using an improper Stieltjes integral and a similar type of bounded variation which
he called distant bounded variation [59]. Later, Mařík reformulated Fleissner’s results
and used only functions of bounded variation instead of Stieltjes integrals [111]. He
identified the missing class X in (2.2.8) to be the class of those functions g : [0, 1]→ R
which satisfy for all t ∈ [0, 1],

lim sup
n→∞

Var
(
g,
[
t+ 1

2n , t+ 2
2n
])

+ Var
(
g,
[
t− 2

2n , t−
1
2n
]) <∞. (2.2.16)

Mařík together with Bruckner and Weil then used the condition

lim sup
n→∞

Var
(
g,
[
t+ 1

n
, t+ 2

n

])
+ Var

(
g,
[
t− 2

n
, t− 1

n

]) <∞ (2.2.17)

instead of (2.2.16) [24]. However, it is easily seen that the classes characterized by
(2.2.16) and (2.2.17) in fact coincide with the class BV . This was also recognized by
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Mařík who gave an alternative proof for Theorem 2.2.12 and his original reformulation
of Fleissner’s result in the paper [113].
We summarize some of the ideas of Mařík’s first proof [111] to give a proof for the
inclusion “⊇” in Theorem 2.2.12. This will give another impression of how useful
Theorem 2.1.3 is for those kind of arguments. The other inclusion is more difficult and
technical to prove; we refer the reader to the literature mentioned above.

Proof of “⊇” of Theorem 2.2.12. Let g ∈ BV ∩ ∆ and x ∈ ∆; we have to show that
xg ∈ ∆. To this end, fix t ∈ [0, 1); as in our proof of Theorem 2.2.2 (a) we can assume
that x(t) = 0. For a given ε > 0 we find some η > 0 such that the function

f(u) :=
∫ u

t
x(s) ds

satisfies the estimate |f(u)| ≤ ε|u− t| for |t−u| ≤ η. Writing Ij := [t+2−(j+1), t+2−j],
we find due to g ∈ BV ∩∆ and Proposition 2.2.11 some M > 0 and N ∈ N with

g(s) + Var(g, Ij) ≤M for j ≥ N, s ∈ Ij.

From (2.2.6) follows xg ∈ KH(Ij) for all j ≥ N , as well as∣∣∣∣∣
∫
Ij
x(s)g(s) ds

∣∣∣∣∣ ≤Msj, (2.2.18)

where we put similarly to (2.2.6)

sj := sup
[u,v]⊆Ij

∣∣∣∣∫ v

u
x(s) ds

∣∣∣∣ .
From the estimate |f(u)| ≤ ε|u− t| we obtain

sj = sup
[u,v]⊆Ij

|f(u)− f(v)| ≤ ε

2j−1 .

For 2−(n+1) ≤ δ < 2−n < ε we have using (2.2.18)∣∣∣∣∣
∫ t+δ

t
x(s)g(s) ds

∣∣∣∣∣ ≤
∞∑
j=n

∣∣∣∣∣
∫
Ij
x(s)g(s) ds

∣∣∣∣∣ ≤M
∞∑
j=n

sj ≤Mε
∞∑
j=n

1
2j−1 = 4Mε

2n ≤ 8Mδε;

in particular, xg ∈ KH[t, t+ δ]. We deduce

lim sup
δ→0+

1
δ

∣∣∣∣∣
∫ t+δ

t
x(s)g(s) ds

∣∣∣∣∣ ≤ 8Mε,

and since ε > 0 had been chosen arbitrarily, we obtain

lim
δ→0+

1
δ

∫ t+δ

t
x(s)g(s) ds = 0 = x(t)g(t).
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Similarly, one can show that xg ∈ KH[t−δ, t] for t ∈ (0, 1] and sufficiently small δ > 0,
as well as

lim
δ→0−

1
δ

∫ t+δ

t
x(s)g(s) ds = 0 = x(t)g(t).

In total, we have shown that xg is KH-integrable in a neighborhood of any point
t ∈ [0, 1] and that it satisfies (2.1.3) there. Since [0, 1] is compact, xg ∈ KH, and an
application of Theorem 2.1.3 (d) yields indeed xg ∈ ∆. �

Fleissner’s and Mařík’s results encapsulated in Theorem 2.2.12 show, as mentioned
above, that the missing class in (2.2.8) is X = BV . We check this result immediately
in case of our test functions ϕα,β,n defined in (1.1.1).

Proposition 2.2.13. For the functions (1.1.1) the following relations hold.

(a) ϕα,β,n ∈ BV if and only if α ≥ 1.

(b) ϕα,β,n ∈ ∆/∆ if and only if α ≥ 1 and β = 0.
Proof. To prove (a) first note that ϕα,β,n ∈ BV if and only if α > 1 by Proposition
1.1.12 (b). Therefore, we focus on the case when α ≤ 1. Due to ϕα,β,n ∈ BV [ε, 1] ⊆
BV [ε, 1] for every ε ∈ (0, 1), we only need to investigate those triples (α, β, n) ∈
(−∞, 1]× R× N for which the condition

lim sup
δ→0+

Var(ϕα,β,n, [δ, 2δ]) <∞

is fulfilled. To this end, fix δ ∈ (0, 1/2). For tm := 1/(mπ + π
2 ) with m ∈ N and

tm ≤ 2δ ≤ tm−1 we have t2m+1 ≤ δ ≤ t2m−2. As the tm run through the local maxima
and minima of ϕα,β,n we get for α = 1

Var
(
ϕ1,β,n, [δ, 2δ]

)
≤ Var

(
ϕ1,β,n, [t2m+1, tm−1]

)
=

2m+1∑
j=m−1

|ϕ1,β,n(tj)| =
2m+1∑
j=m−1

tj

≤ tm−1 +
∫ 2m+1

m−1

1
πt+ π

2
dt

= 1
mπ − π

2
+ 1
π

log
(4m+ 3

2m− 1

)
−→ log 2

π
as m→∞.

Because δ → 0+ implies m→∞, we deduce that

lim sup
δ→0+

Var
(
ϕ1,β,n, [δ, 2δ]

)
≤ log 2

π
<∞,

and hence ϕ1,β,n ∈ BV .
For 0 ≤ α < 1 one shows similarly

Var
(
ϕα,β,n[δ, 2δ]

)
≥ Var

(
ϕα,β,n, [t2m−2, tm]

)
=

2m−2∑
j=m
|ϕα,β,n(tj)| =

2m−2∑
j=m

tαj

≥
∫ 2m−1

m

1
(πt+ π

2 )α dt ≥ 1
(2π)α

∫ 2m−1

m

1
tα

dt

= (2m− 1)1−α −m1−α

(2π)α(1− α) −→∞ as m→∞.
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Since again δ → 0+ implies m→∞, we obtain this time

lim sup
δ→0+

Var
(
ϕα,β,n, [δ, 2δ]

)
=∞

and hence ϕα,β,n /∈ BV .
Finally, we have for α < 0,

Var(ϕα,β,n, [δ, 2δ]) ≥ Var(ϕα,β,n, [t2m−2, tm]) =
2m−2∑
j=m
|ϕα,β,n(tj)| =

2m−2∑
j=m

tαj

=
2m−2∑
j=m

(jπ + π/2)|α| ≥ (mπ + π/2)|α| ≥ m|α|,

and so again ϕα,β,n /∈ BV . Consequently, part (a) is proven.
A proof of (b) is now immediate. Just combine part (a), Theorem 2.2.12 and Proposi-
tion 2.1.5 (b). �

Proposition 2.2.13 allows us to provide another example showing that the first inclusion
in (2.2.11) is strict. Indeed, combining Proposition 1.1.12 (b) with Proposition 2.2.13
(a) shows that ϕ1,β,n ∈ BV \ BV and, in addition, ϕ1,0,n ∈ (∆/∆)\BV . So there are
functions of unbounded variation that still belong to ∆/∆. At first glance it might be
surprising that ∆/∆ contains also discontinuous functions of unbounded variation; we
construct such a function in the following

Example 2.2.14. For n ∈ N put µn := 31−n/4 and tn := 2−n, and define g : [0, 1]→ R
by

g(t) =



0 for t ∈ {0, 1},
0 for t ∈ {tn, tn + 2µn}, n ∈ N,
1 for t = tn + µn, n ∈ N,
linear otherwise,

see the following graphic.

1

1

Figure 2.2.3: The function g on [0, 1].

Then g is continuous and piecewise linear on (0, 1] and attains values only in [0, 1].
However, g is discontinuous at t = 0, and of unbounded variation near 0, as

Var(g, [tn+k, tn]) = 2k for k ∈ N.
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As a measurable, bounded and nonnegative function, g is KH-integrable on [0, 1] and
satisfies for tn+1 ≤ δ ≤ tn the estimates

1
δ

∫ δ

0
g(t) dt ≤ 1

tn+1

∫ tn

0
g(t) dt = 2n+1 3

4

∞∑
j=n+1

1
3j = 3

4

(2
3

)n
−→ 0 as n→∞.

Since δ → 0+ implies n→∞, we obtain

lim
δ→0+

1
δ

∫ δ

0
g(t) dt = 0 = g(0),

and so g has a primitive by Theorem 2.1.3 (d).
For tn+1 ≤ δ ≤ tn we have tn ≤ 2δ ≤ tn−1, and this yields

Var(g, [δ, 2δ]) ≤ Var(g, [tn+1, tn−1]) = 4;

in particular,
lim sup
δ→0+

Var(g, [δ, 2δ]) ≤ 4 <∞,

which means nothing but g ∈ BV . Theorem 2.2.12 now says g ∈ ∆/∆. ♦
The zigzag function in Example 2.2.14 visualizes the subtle difference between the
classes ∆ and ∆/∆. In order to make a function g with peaks belong to ∆, its peaks
have to get slim sufficiently quickly, and in order to ensure g ∈ ∆/∆, the positions of
those peaks have to go to zero sufficiently fast. Roughly speaking, ∆ is responsible for
the width of the peaks, and ∆/∆ for their placement.
We thus have characterized the multiplier sets X/X for X ∈ {B,BV,C,KH,∆}. As
mentioned at the beginning of this chapter, the class D/D is also hard to handle. We
will investigate this class in much more detail in the next chapter, but we still give
some structural properties here and put a particular emphasis on its relation to ∆.
We first show by means of an example that D is also not closed under multiplication.

Example 2.2.15. In Example 1.1.2 we constructed two functions x, y ∈ D, the sum of
which does not lie within D. From that we easily obtain a corresponding example for
the product, namely the two functions x̃ = exp ◦x and ỹ = exp ◦y. They are Darboux
functions, but their product x̃ỹ = exp ◦ (x+ y) = exp ◦χ{0} is not. ♦
Even more interesting is the following example [24] which shows that the product of
two functions of ∆ does not necessarily belong to D anymore.

Example 2.2.16. Let x, y : [0, 1]→ R be defined by

x(t) = πmax
{
ϕ0,1/π,1(t), 0

}
and y(t) = πmin

{
ϕ0,−1/π,1(t), 0

}
.

Then both x and y are Lebesgue integrable and continuous on (0, 1]. Similarly as in
the proof of Proposition 2.1.5 one can show that both x and y have primitives. On the
other hand, xy = −χ{0} is not even a Darboux function. ♦
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By replacing y by −y in Example 2.2.15 we see that the fraction x/y of two functions
x, y ∈ D (with y(t) 6= 0 for t ∈ [0, 1]) also does not necessarily lie in D. A similar
modification for an analogue of Example 2.2.16, however, is not possible. Hruška has
shown in [11], that the quotient x/y of two functions x, y ∈ ∆ (again with y(t) 6= 0 for
t ∈ [0, 1]) surprisingly always belongs to D!
Because of our discussion of (2.2.4) and Example 2.2.15 we conclude that the strict
inclusion

D/D ( D (2.2.19)

must be true, and so the class D/D is certainly smaller than D. How small D/D
really is will be shown in Theorem 3.1.8 in the next chapter, according to which D/D
contains only constant functions!
In Figure 2.2.4 below we give a summary of identities and inclusions of the most
important function spaces that have been considered in this chapter. Here, A −→ B

means A ( B.

{const}
∆ ∩ BV

BV
KH

BV

B ∩ BV

BV ∗
L∞

L1

C

∆
D

BV/BV

KH/KH

C/C

D/D
∆/∆

Figure 2.2.4: Inclusions between classical sets.

The following example shows that none of the somewhat exotic sets BV and BV ∗ which
are both strict supersets of BV includes the other. The same is true if one replaces
BV by the smaller class B ∩BV .

Example 2.2.17. By Proposition 1.1.12 (a) and (b) and Proposition 2.2.13 (a) the
functions ϕ1,β,n belong to B ∩BV for arbitrary β ∈ R and n ∈ N, but not to BV and
hence also not to BV ∗. However, the function

x(t) :=
n for t = 1/n, n ∈ N,

0 otherwise

belongs to BV ∗, but not to BV let alone to B, as x(1/n) = n→∞ and

Var
(
x,
[ 1
2n,

1
n

])
≥
∣∣∣∣x( 1

2n

)
− x

( 1
n

)∣∣∣∣ = n

show. ♦
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In Table 2.2.1 below we gather all conditions on (α, β, n) ∈ R2 × N for which the
functions ϕα,β,n from (1.1.1) belong to a certain class of functions.

Table 2.2.1: Conditions under which ϕα,β,n belongs to certain function classes.
ϕα,β,n ∈ if α and β and n
B ≥ 0 arbitrary arbitrary
C > 0 = 0 arbitrary
D > 0 = 0 arbitrary

= 0 ∈ [0, 1] even
= 0 ∈ [−1, 1] odd
< 0 ≥ 0 even
< 0 arbitrary odd

BV > 1 arbitrary arbitrary
BV ∗ > 1 arbitrary arbitrary
BV ≥ 1 arbitrary arbitrary
∆ > 0 = 0 even

= 0 = 1
π

∫ π
0 sinn t dt even

> −1 = 0 odd
∆/∆ ≥ 1 = 0 arbitrary
L1 > −1 arbitrary arbitrary
KH > −1 arbitrary even

> −2 arbitrary odd
KH/KH > 1 arbitrary arbitrary

We close this section with a question that is important for applications: How does
the algebra Alg(∆) generated by ∆ look like? Of course, this question makes sense
only because the product of two functions with primitive does not necessarily have a
primitive.
It is easy to see that any function x ∈ ∆ belongs to the class B1 of Baire-1 func-
tions which are those functions that can be written as a pointwise limit of continuous
functions. Indeed, if f is a primitive of x ∈ ∆, then

x(t) = f ′(t) = lim
n→∞n

[
f(t+ 1/n)− f(t)

]
for 0 ≤ t ≤ 1,

where f has been continuously extended to [0, 2] by f(t) = f(1) + x(1)(t − 1) for
t ∈ (1, 2].
Thus, ∆ ⊆ B1, and since B1 is an algebra, we even have Alg(∆) ⊆ B1. A characteriza-
tion of those Baire-1 functions which can be expressed as a product of two (or, more
general, finitely many) functions from ∆ is to the best of our knowledge not known; we
only know that not every Baire-1 function can be written that way. Here is an example
of such a function, that even belongs to B1 ∩D.
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Example 2.2.18. By the Propositions 1.1.12 and 2.1.5 it is immediate that the func-
tion p : [0, 1]→ R, defined by

p(t) := 2 + ϕ0,−1,1(t) =

2 + sin 1
t

for 0 < t ≤ 1,

1 for t = 0,

is positive and belongs to B1∩D. However, by Proposition 2.1.5 (b) it has no primitive.
We now show that p cannot be written as a product of two functions from ∆.
Assume the opposite, that is, p = xy for some x, y ∈ ∆. Then both x and y are
Darboux functions, and since p is positive everywhere on [0, 1], both x and y are either
positive or negative throughout [0, 1], since a sign change of x or y implies that p has a
zero. Moreover, since 1 ≤ p ≤ 3 on [0, 1], we get from the Cauchy Schwarz Inequality
for 0 < δ ≤ 1,(

1
δ

∫ δ

0
p(t) dt

)2

≤ 3
δ2

(∫ δ

0

√
x(t)y(t) dt

)2

≤ 3
(

1
δ

∫ δ

0
x(t) dt

)(
1
δ

∫ δ

0
y(t) dt

)
.

Letting δ → 0+ yields together with Theorem 2.1.3 (d) and Proposition 2.1.5 (b),

4 ≤ 3x(0)y(0) = 3p(0) = 3,

a contradiction. ♦
In view of Example 2.2.18 the following result of Preiss proved in [131] is remarkable.

Theorem 2.2.19. The identity

B1 = {xy + z | x, y, z ∈ ∆} (2.2.20)

is true, that is, every Baire-1 function p can be written as a sum p = xy + z of a
product of two derivatives and another derivative. If p is bounded, then the functions
x, y, z can be chosen to be bounded, as well. In particular, Alg(∆) = B1.

Theorem 2.2.19 is indeed astonishing: Although there are many Baire-1 functions p
which cannot be expressed as a product of two functions form ∆ it suffices to add a
suitable function from ∆ to change that. We illustrate this with the following

Example 2.2.20. Let p : [0, 1]→ R be defined as in Example 2.2.18; we already know
that p cannot be written as a product of two derivatives. On the other hand, we have
seen in Example 2.2.16 that −χ{0} = xy with suitable x, y ∈ ∆. Finally the function

z(t) := 2 + ϕ0,0,1(t) =

2 + sin 1
t

for 0 < t ≤ 1,

2 for t = 0

has a primitive, because in contrast to p it has the correct value at t = 0. In total,

p = −χ{0} + z = xy + z,

in accordance with Theorem 2.2.19. ♦
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The determination of Alg(X) for a given function class X reminds of the well-known
problem from Linear Algebra to determine the linear hull Span(X) of a given set of
vectors X which itself is not a vector space. For instance, if M is the set of monotone
functions on [0, 1], then Span(M) = BV , and so this problem can be seen as the dawn
of the BV era. For X ∈ {B,BV,C,∆, KH} this problem is not of major interest, as
Span(X) = X in these cases. However, in view of Example 1.1.2, the question on how
Span(D) looks like, is interesting indeed. The answer is very surprising and given in
the following theorem. Since with Example 2.2.7 we now have all tools at hand we give
here a short proof based on an idea presented in the book [22].

Theorem 2.2.21. The linear hull Span(D) comprises all functions, since every func-
tion x : [0, 1] → R can be written as the sum x = y + z of two Darboux functions
y, z ∈ D.

Proof. Let x : [0, 1]→ R be an arbitrary function, and let g be the function constructed
in Example 2.2.7. We put

h(t) :=
log |g(t)| if g(t) 6= 0,

0 if g(t) = 0,

as well as

y(t) :=
h(t) if g(t) ≥ 0,
x(t)− h(t) if g(t) < 0

and z(t) :=
x(t)− h(t) if g(t) ≥ 0,
h(t) if g(t) < 0.

The two functions y and z then attain every real number in every proper interval. To
see this, fix [a, b] ⊆ [0, 1] with a < b and ξ ∈ R. Since g attains every real number
in [a, b] there is some t ∈ [a, b] such that g(t) = eξ > 0. Then h(t) = ξ and hence
y(t) = h(t) = ξ. Similarly, one shows that z also attains ξ by replacing eξ by −eξ.
Thus, the functions y and z are Darboux functions. The identity x = y+ z is clear. �

It seems that the first one who mentioned the result of Theorem 2.2.21 was Lindenbaum
[90]. Other proofs of Theorem 2.2.21 were also given by Sierpiński [141] and Fast [57].

2.3 Compositions of Derivatives
In this section we discuss the composition x ◦ y of two functions x and y and are
particularly interested in the case when x and y come from ∆, provided that x is
defined on the range of y. To be more specific, recall that Problem 2.1.12 asks for a
universal perturbation for ∆, that is, for a function g : R→ R such that g ◦ x ∈ ∆ for
all x ∈ ∆. Similar to the multiplier problem investigated in Section 2.2 we approach
this problem more rigorously and introduce

Π(X) := {g : R→ R | g ◦ x ∈ X for all x ∈ X}, (2.3.1)
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where X is a set of real-valued functions defined on [0, 1]. In other words, the class
Π(X) is the largest class of possible outer perturbations that do not leave X. Of course,
we are most interested in finding Π(∆).
Analogously, Problem 2.1.13 asks for a universal substitution for ∆, that is, for a
function g : [0, 1] → [0, 1] such that x ◦ g ∈ ∆ for all x ∈ ∆. We similarly introduce
the set

Σ(X) := {g : [0, 1]→ [0, 1] | x ◦ g ∈ X for all x ∈ X}, (2.3.2)

where X is as before. In other words, the class Σ(X) is the largest class of possible
inner substitutions that do not leave X. Again, the class Σ(∆) is of particular interest
for us.
In general, if X contains all3 affine functions x(t) = at+ b for arbitrary a, b ∈ R, then

Π(X) ⊆ Xloc(R), (2.3.3)

and if the identity function x(t) = t is contained in X, then

Σ(X) ⊆ X. (2.3.4)

For instance, it is obvious that the classes B, C and D are “closed under composition”
in the following sense:

Π(B) = Bloc(R), Σ(B) = {g : [0, 1]→ [0, 1]},
Π(C) = C(R), Σ(C) = {g : [0, 1]→ [0, 1] | g ∈ C},
Π(D) = Dloc(R), Σ(D) = {g : [0, 1]→ [0, 1] | g ∈ D},

or less mathematical and more as a mnemonic:

Π(B) = Σ(B) = B, Π(C) = Σ(C) = C, Π(D) = Σ(D) = D.

The classes BV , ∆ and KH, however, are not closed under outer composition; we
summarize three counterexamples in the following

Example 2.3.1. (a) Let g : R→ R and x : [0, 1]→ R be defined by g(u) =
√
|u| and

x(t) = ϕ2,0,4(t). Then we have g ∈ BVloc(R) and x ∈ BV by Proposition 1.1.12 (b),
but by the same Proposition g ◦ x = ϕ1,0,2 /∈ BV .
(b) Let g : R → R and x : [0, 1] → R be defined by g(u) = u2 and x(t) = ϕ0,0,1(t).
Then we have g ∈ ∆loc(R) and x ∈ ∆ by Example 1.1.29, but by Example 2.0.1 on the
other hand g ◦ x = ϕ0,0,2 6∈ ∆.
(c) Let g : R → R and x : [0, 1] → R be defined by g(u) = u2 and x(t) = ϕ−1/2,0,1(t).
Then we have g ∈ KHloc(R) and x ∈ KH by Proposition 2.1.5 (a), but by the same
Proposition g ◦ x = ϕ−1,0,2 6∈ KH. ♦

3In fact, it suffices to guarantee that affine functions of the form x(t) = 2at− a for infinitely many
arbitrarily large a > 0 are contained in X.
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Sometimes, describing Π(X) is not so obvious. For example, Josephy showed in 1987
in [75] that the perturbation set Π(BV ) precisely contains locally Lipschitz continuous
functions, that is

Π(BV ) = Liploc(R).

The function g(u) = u2, for instance, belongs to Π(BV ), but the function g(u) =
√
|u|

does not. This explains Example 2.3.1 (a).

We will now talk about the set Π(∆) which is most important for us in this section.
Recall that we have seen that ∆ is not an algebra, because it is not closed under
multiplication. The parts (b) and (c) in Example 2.3.1 illustrated that even in case
g ∈ C∞(R) from x ∈ ∆ (respectively x ∈ KH) it does not necessarily follow that
g ◦ x ∈ ∆ (respectively g ◦ x ∈ KH); we therefore have C∞ 6⊆ Π(∆) and also C∞ 6⊆
Π(KH). While we do not know how exactly Π(KH) looks like, the class Π(∆) is
known and will be given in Theorem 2.3.3 below. But first a remark is in order. As
Example 2.3.1 (b) shows, a continuous perturbation g may transform a function x with
primitive into a function g ◦ x without a primitive. If we replace the condition x ∈ ∆
with the condition x ∈ ∆/∆ (which is stronger, because the inclusion ∆/∆ ( ∆ is
strict), we get the following asymmetric result.

Theorem 2.3.2. From g ∈ C(R) and x ∈ ∆/∆ it follows that g ◦ x ∈ ∆.

Proof. By Theorem 2.2.6 the function x is bounded, that is, |x(t)| ≤M for someM > 0
and all t ∈ [0, 1]. By the Approximation Theorem of Weierstrass we find a sequence
(pn) of polynomials which converges on [−M,M ] uniformly to g. Then the sequence
(pn ◦x) converges uniformly on [−M,M ] to g ◦x. As we have seen after Example 2.2.5,
each composition pn ◦ x belongs to ∆/∆, and since ∆/∆ is a subset of ∆, also to ∆
itself. But then Theorem 2.1.8 ensures g ◦ x ∈ ∆, as claimed. �

The quite surprising solution for the perturbation problem for X = ∆ is contained in
the following theorem the proof of which can be found in [13].

Theorem 2.3.3. A function g : R→ R belongs to Π(∆) if and only if g is affine, that
is, g has the form g(u) = au+ b for some fixed numbers a, b ∈ R.

Theorem 2.3.3 explains why the class ∆ remains not invariant even under the extremely
smooth nonaffine function g(u) = u2 of Example 2.3.1 (b). We can formulate this result
more drastically as follows: If g is not affine, then we always find some function x with
primitive so that g ◦ x has no primitive. Moreover, from this it also follows that we
cannot decide whether a function x belongs to ∆ by just looking at its level sets (2.1.12).
Indeed, if we compose x : [0, 1] → R with the nonaffine smooth function g(u) = u3,
then the sets (2.1.12) for x and g ◦ x are the same, while x may have a primitive,
whereas g ◦ x may not.

We now turn to a discussion of Problem 2.1.13 and try to find (2.3.2) for several classes
X, especially for X = ∆. Within the upcoming Theorems 2.3.4 and 2.3.5 we give some
sufficient conditions for this case. In the first theorem we denote by BV 1 the set of
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all differentiable functions x : [0, 1] → R with x′ ∈ BV . Note that every function
from x ∈ BV 1 automatically belongs to C1, since by a theorem of Darboux, x′ is a
Darboux function, and hence can have only essential discontinuities which, however,
cannot occur, as x′ ∈ BV can have only jump discontinuities. Consequently, we have
the surprising inclusion BV 1 ⊆ C1, whereas the analogous inclusion BV ⊆ C is of
course not true.

Theorem 2.3.4. Let g : [0, 1]→ [0, 1] be in BV 1 with g′(t) 6= 0 for all t ∈ [0, 1]. Then
x ◦ g ∈ ∆ for all x ∈ ∆.

Proof. Let x ∈ ∆, and let f be a primitive of x. If we define

x̃ := (f ◦ g)′ = (x ◦ g)g′ and ỹ := 1
g′
, (2.3.5)

then we have x̃ ∈ ∆ (according to our construction), and ỹ ∈ C ∩ BV , because g′ is
bounded away from zero. Due to

x ◦ g = f ′ ◦ g = (f ◦ g)′
g′

= x̃ỹ

we can apply Theorem 2.2.2 (a) to x̃ and ỹ and obtain x ◦ g ∈ ∆, as claimed. �

Theorem 2.3.4 is a simple consequence of Theorem 2.2.2 (a). If we use part (b) of
Theorem 2.2.2 instead, we get new information yet can only take bounded functions
into account.

Theorem 2.3.5. Let g : [0, 1] → [0, 1] be in C1 with g′(t) 6= 0 for all t ∈ [0, 1]. Then
x ◦ g ∈ ∆ for all x ∈ ∆ ∩B.

Proof. Fix x ∈ ∆ ∩ B, let f be a primitive of x and define x̃ and ỹ as in (2.3.5). This
time, x̃ ∈ ∆ is bounded, since x is bounded, and g′ as a continuous function is also
bounded away from zero which ensures that ỹ is also continuous. Therefore, the same
calculation as in Theorem 2.3.4 shows that from Theorem 2.2.2 (b), applied to x̃ and
ỹ, the claim follows. �

The Theorems 2.3.4 and 2.3.5 raise the question whether the condition g ∈ C1 with
g′ 6= 0 is sufficient, that is, whether one can replace g ∈ BV 1 by g ∈ C1 in Theorem 2.3.4
or x ∈ ∆ ∩ B by x ∈ ∆ in Theorem 2.3.5. In fact, a much more general result is true.
In [112] and also in [132] the authors gave a detailed yet very technical characterization
of Σ(∆).

Theorem 2.3.6. Let g be an increasing homeomorphism of [0, 1], and let γ : [0, 1]→ R
be a function satisfying

Dg−1(t) ≤ γ(t) ≤ Dg−1(t) for 0 ≤ t ≤ 1, (2.3.6)

where Dg and Dg denote the respective lower and upper Dini derivatives of g. Then
g ∈ Σ(∆) if and only if

lim sup
δ→0

1
g−1(t+ δ)− g−1(t)

∫ t+δ

t
Var

(
γ, [t, s]

)
ds <∞
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is true for all t ∈ [0, 1].

In the light of Theorem 2.3.6 the hypothesis g ∈ BV 1 in Theorem 2.3.4 which might
look artificial at first glance makes now sense. Indeed, together with the assumptions
made in Theorem 2.3.4 the function g is even a diffeomorphism, and we can but γ(t) =
(g−1)′(t) in (2.3.6) which then satisfies the integral criterion of Theorem 2.3.6.
By the way, the substitution set Σ(BV ) is also known and was identified in [75], as well.
We call a function g : [0, 1]→ [0, 1] pseudo-monotone if there is some natural number
N ∈ N such that the preimage g−1[a, b] of any interval [a, b] ⊆ [0, 1] can be written as a
union of at most N intervals. Of course, every monotone function is pseudo-monotone,
and it can be shown that any pseudo-monotone function is of bounded variation [75].
The converse, however, is not true, and here is an Example illustrating this.

Example 2.3.7. By Proposition 1.1.12 (b), the function g := ϕ2,0,2 is of bounded
variation, but because of the identity

g−1({0}) =
{

0, 1
π
,

1
2π ,

1
3π , . . .

}
it is not pseudo-monotone. ♦
In [75] the author proves that Σ(BV ) precisely contains all pseudo-monotone functions.
The function g of Example 2.3.7 therefore belongs to BV \Σ(BV ). We will come back
to these functions in Section 4.2.
The following Table 2.3.1 gives an overview about the sets X/X, Π(X) and Σ(X) (as
far as we know) for the most important classes X.

Table 2.3.1: X/X, Π(X) and Σ(X) for important classes X.
X C B BV ∆ D KH

X/X C B BV ∆ ∩BV constant BV ∗

Π(X) C B locally Lipschitz affine D ???
Σ(X) C B pseudo-monotone Theorem 2.3.6 D ???

In the context of the perturbation and substitution of functions several problems con-
cerning the decomposition of given functions arise. Recall that from the theory of
BV -functions the following results are known.
(a) A function x : [0, 1] → R belongs to BV if and only if x can be written as a

composition x = g ◦ y, where y : [0, 1] → [0, 1] is increasing and g : [0, 1] → R is
Lipschitz continuous with lip(g) ≤ 1.

(b) For every function x ∈ BV ∩ C there is a function g : [0, 1] → [0, 1] such that
x ◦ g is differentiable at every point of [0, 1].

The first result shows that a given BV -function can be decomposed into two much
better BV -functions, whereas the second result means that a given continuous BV -
function can be improved by a suitable substitution. Analogously, for the classes ∆
and ∆/∆ questions for similar decompositions may be asked.
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Problem 2.3.8. Can one find classes X ⊆ ∆, such that for every function x ∈ X there
is a substitution g : [0, 1]→ [0, 1] so that x ◦ g belongs to ∆ or ∆/∆? For instance, is
this possible for X = D?

We remark that Problem 2.3.8 has been answered partially by Maximoff in 1947 for
X = D ∩ B1 [114]. He showed that every Baire-1 function x : [0, 1] → R with the
Darboux property can be transformed by an increasing homeomorphism g : [0, 1] →
[0, 1] so that x ◦ g has a primitive.
An analogue of Maximoff’s result cannot be true for functions which belong to D but
not to B1. For instance, let x be the Darboux function from Example 2.2.7 that attains
all real values on any proper real interval. Then x is nowhere continuous and therefore
no B1-function [128]. Now, if g : [0, 1]→ [0, 1] is any increasing homeomorphism, then
g is strictly increasing and by the Intermediate Value Theorem maps proper intervals
onto proper intervals. Consequently, the function x ◦ g also attains all real values on
every proper interval and hence cannot be continuous anywhere. Thus, again, x ◦ g
cannot be a Baire-1 function and, in particular, cannot have a primitive.



Chapter 3

Multiplier Spaces

In Example 2.1.9 we have seen that the class ∆ of all real-valued functions having a
primitive on [0, 1] is not closed under multiplication, and it therefore seemed natural
to search for functions g with the property that, for each x which is a derivative, the
product xg is a derivative, as well. According to (2.2.3) we denoted the set of those
functions by ∆/∆ and gave a characterization in Theorem 2.2.12. We will now continue
the discussion of X/X in both a more general and a more rigorous way.
Given two function classes X and Y of real-valued functions defined on [0, 1], can we
identify all functions g such that the product xg belongs to Y whenever x belongs to
X? Such a function g is said to be a multiplier of the set Y over the set X.
Definition 3.0.1. Let X and Y be two sets of functions [0, 1]→ R. We call the set

Y/X := {g : [0, 1]→ R | xg ∈ Y for all x ∈ X} (3.0.1)

the multiplier set of Y over X.
The following properties of Y/X are immediate consequences of the definition.

Proposition 3.0.2. Let X,X1, X2, Y, Y1, Y2 be sets of real-valued functions on [0, 1].
The following statements are true.

(a) If Y1 ⊆ Y2, then Y1/X ⊆ Y2/X.

(b) If X1 ⊆ X2, then Y/X2 ⊆ Y/X1.

(c) If 1 ∈ X, then Y/X ⊆ Y .

(d) If X ⊆ Y and Y is closed under multiplication, then Y ⊆ Y/X.

(e) If X ⊆ Y and X is closed under multiplication, then X ⊆ Y/X.

(f) If 1∈X ∩ Y and Y is closed under multiplication, then Y/X = Y if and only if
X ⊆ Y .

Although Proposition 3.0.2 follows immediately from the definition of Y/X, let us
quickly justify some of the results. For instance, if Y1 ⊆ Y2 and g ∈ Y1/X, then

92
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xg ∈ Y1 for all x ∈ X. But since Y1 ⊆ Y2 we also have that xg ∈ Y2 for all x ∈ X,
and this shows g ∈ Y2/X and hence (a). Part (b) is proven similarly, and (c) is clear.
For (d) fix g ∈ Y and x ∈ X. Since X ⊆ Y we also have x ∈ Y , and since Y is closed
under multiplication, xg ∈ Y . This shows g ∈ Y/X. Similarly, one can prove (e). For
(f) note that if X ⊆ Y , then Y/X = Y follows from (c) and (d). If, however, X 6⊆ Y ,
then there exists some function x belonging to X but not to Y . Since 1 belongs to Y ,
but x1 = x does not, we have 1 /∈ Y/X and hence Y 6⊆ Y/X. This shows (f).

As we have already seen in Section 2.2, the explicit calculation of Y/X for given sets
X and Y , in some cases is quite easy, in other cases - even if X = Y - surprisingly
difficult, and sometimes even leads to some kind of degeneracy if X 6⊆ Y . For example,
the Hölder inequality for Lebesgue spaces implies

Lq/Lp =
Lpq/(p−q) for 1 ≤ q ≤ p <∞,
{0 a.e.} for 1 ≤ p < q <∞;

in particular, Lp/Lp = L∞. For the sake of completeness we will give a short proof of
this well-known relation in Theorem 3.2.11.

More generally, the analogous problem has also been solved for Orlicz spaces (see e.g.
[3, 12, 127], and references therein). The first results have been obtained in the 1960ies
and state for example that, if LΦ, LΨ denote two Orlicz spaces defined by Young
functions Φ and Ψ, respectively, then

LΨ/LΦ = L∞ if 0 < lim sup
u→∞

Ψ(λu)
Φ(u) <∞ for all λ > 0;

in particular, LΦ/LΦ = L∞. For further references regarding multipliers in Lebesgue-
, Orlicz and other more abstract spaces we refer the reader to the papers of Lech
Maligranda and his coauthors [79, 80, 81, 97, 98, 99, 100].

In this chapter we will discuss the classes Y/X when X and Y are classical spaces like
B, C, D, ∆ and BV as well as other BV -type spaces like WBVp, Y BVϕ, ΛBV and
RBVp.
For our classical classes B and C apart from the obvious identities B/B = B and
C/C = C it is straightforward to show that

B/C = B and C/B = {0};

we will prove this at the beginning of the next section.
For the class ∆ of functions having a primitive that we have excessively studied in
Chapter 2 it is much harder to determine multiplier space Y/X if X or Y is equal to
∆. As we have seen in Theorem 2.2.12 even the class ∆/∆ is not so easy to describe.
We will discuss such classes in more detail in the next Section 3.1 and compare them
to BV . Section 3.2 is dedicated to functions of generalized bounded variation. To
be precise we will compare the classical spaces to each of the spaces Y BVϕ, ΛBV
and RBVp. Moreover, we will characterize ΓBV/ΛBV for two arbitrary Waterman
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sequences Γ and Λ, Y BVψ/Y BVϕ for two arbitrary Young functions ψ and ϕ, and
RBVq/RBVp for two arbitrary exponents 1 ≤ p, q < ∞. For the definitions of these
spaces we refer the reader to Section 1.2.

However, there are still open problems even for classical spaces; in particular, the
class D which is closely related to ∆ and has been investigated in Chapter 2 causes
many difficulties. Right after (2.2.19) we promised to prove that D/D contains only
constant functions; this will be done in Theorem 3.1.8 below. Moreover, a complete
characterization of the multiplier sets D/C and D/∆ - to our knowledge - is not known;
we discuss them in more detail. Since we can present only partial results regarding
these classes, we obtain as a consequence only partial results for D/RBVp and similar
classes in Section 3.2.

3.1 Multipliers in Classical Spaces
Recall from (2.0.1) that the (strict) inclusions C ( ∆ ( D hold which is sometimes
helpful in calculating multiplier sets involving one of these classes.

Our main interest of this section is to characterize Y/X for Y,X ∈ {B,C,D,∆}. Note
that since B and C are algebras with 1 and C ⊆ B, by Proposition 3.0.2 (f) we
immediately get C/C = C, B/B = B and B/C = B.
Our first result shows that if X compared to Y is too large, then Y/X only contains
the zero function. This is true for Y ∈ {C,D,∆} and certain spaces X:

Proposition 3.1.1. Let X be a class of real-valued functions on [0, 1] that contains all
characteristic functions of singletons.1 Then for g : [0, 1]→ R the following statements
are equivalent.

(a) g = 0. (b) g ∈ C/X. (c) g ∈ ∆/X. (d) g ∈ D/X.

Proof. Obviously, (a) implies (b). Since C ⊆ ∆ ⊆ D we obtain from Proposition 3.0.2
(a) the inclusions C/X ⊆ ∆/X ⊆ D/X, which show the implications “(b)⇒(c)” and
“(c)⇒(d)”. For “(d)⇒(a)” fix g ∈ D/X and t ∈ [0, 1]. Then x := χ{t} ∈ X and hence
xg = χ{t}g(t) ∈ D which is possible only if g(t) = 0. Since t was arbitrarily chosen,
g = 0. �

For instance, if we choose X = B in Proposition 3.1.1, then we obtain C/B = ∆/B =
D/B = {0}. However, the example C/C = C shows that we cannot drop the assump-
tion that X contains characteristic functions of singletons.

Our next result characterizes B/D and B/∆. Recall that the symbols Sf and Sc
denote the classes of real-valued functions on [0, 1] with finite and countable support,
respectively.

1Such spaces will become very important in Section 4.1 for the investigation of the linear multipli-
cation operator, see Definition 4.1.2 and below.
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Theorem 3.1.2. For g : [0, 1]→ R the following statements are equivalent.

(a) g ∈ Sf . (b) g ∈ B/D. (c) g ∈ B/∆.

Proof. If supp(g) is finite, then supp(xg) is also finite for any function x : [0, 1] → R;
in particular, xg ∈ B for all x : [0, 1]→ R, and this shows “(a)⇒(b)”. Since ∆ ⊆ D, it
follows from Proposition 3.0.2 (b) that B/D ⊆ B/∆ which shows “(b)⇒(c)”.
For the remaining part “(c)⇒(a)” assume that supp(g) is infinite. Then there is a
sequence (tn) in supp(g) of distinct numbers converging to some t ∈ [0, 1]. Without
loss of generality we may assume that the sequence (tn) is strictly decreasing, 0 < tn < 1
for all n ∈ N and t = 0, because the argument for the general case is basically the
same. Choose εn > 0 so that

εn ≤
g(tn)
n

(
t2n+1 − t2n+2

)
, (3.1.1)

tn+1 + εn+1 < tn − εn for all n ∈ N. (3.1.2)

Let us define the function x : [0, 1]→ R as follows: Let x(0) = x(1) = 0,

x(tn) = n/g(tn),
x(tn − εn) = x(tn + εn) = 0 for n ∈ N,

and let x be piecewise linear and continuous otherwise. Then x is well-defined by
(3.1.2) and nonnegative and continuous on the interval (0, 1], and for tn+1 < δ ≤ tn we
have by (3.1.1),

0 ≤
∫ δ

0
x(t) dt ≤

∞∑
j=n

εjx(tj) =
∞∑
j=n

jεj/g(tj) ≤
∞∑

j=n+1

(
t2j − t2j+1

)
= t2n+1 ≤ δ2.

In particular, x is Lebesgue and hence KH-integrable on [0, 1] with

lim
δ→0+

1
δ

∫ δ

0
x(t) dt = 0 = x(0).

Since x is continuous on (0, 1], it follows that x ∈ ∆ by Theorem 2.1.3 (b) and (d).
But x(tn)g(tn) = n for all n ∈ N showing xg /∈ B and hence g /∈ B/∆. �

As a consequence we get a result similar to Proposition 3.1.1: If Y compared to X is
a huge class of bounded functions, then the multiplier spaces Y/D and Y/∆ are again
very small.

Corollary 3.1.3. Let Y ⊆ B be a class of real-valued functions on [0, 1] that contains
all functions with finite support. Then for g : [0, 1] → R the following statements are
equivalent.

(a) g ∈ Sf . (b) g ∈ Y/D. (c) g ∈ Y/∆.
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Proof. If supp(g) is finite, then supp(xg) is also finite; in particular, xg ∈ Sf ⊆ Y for
any x : [0, 1]→ R, and this shows “(a)⇒(b)”. Since ∆ ⊆ D, it follows from Proposition
3.0.2 (b) that Y/D ⊆ Y/∆ which shows “(b)⇒(c)”. Since Y ⊆ B, Proposition 3.0.2
(a) yields Y/∆ ⊆ B/∆. But Theorem 3.1.2 gives that B/∆ and therefore also Y/∆
contains only functions with finite support. Consequently, “(c)⇒(a)” is proven. �

For instance, if we take Y = B, then Corollary 3.1.3 is exactly Theorem 3.1.2. How-
ever, the relation ∆/∆ = BV ∩∆ of Theorem 2.2.12 shows that we cannot drop the
assumption that Y contains all functions with finite support.

One of the most difficult problems in the framework of classical function spaces seems
to be a characterization of D/D which we will handle in the following.
If one replaces “multiplication” by “summation”, the following result due to Radaković
is known and was proven in [133].

Theorem 3.1.4. Let g : [0, 1] → R be such that x + g ∈ D for all x ∈ D. Then g is
constant.

Several authors claimed that Radaković proved in [133] the same statement for prod-
ucts. Others stated that the assertion for products can easily be deduced from Theorem
3.1.4 by taking logarithms [20, 23, 66, 123], but none of them proves this. We will show
in the sequel that the product version actually can be deduced from Theorem 3.1.4,
but its proof is, at least in our opinion, not as trivial as it might appear at first glance.
We start by treating a special case first, namely we assume that a multiplier g ∈ D/D
has no zeros in [0, 1] at all. Then, due to the Darboux property, g must be either
everywhere positive or everywhere negative on [0, 1]. Taking logarithms as suggested
then indeed yields that g must degenerate to a constant. In fact, the following slightly
more general result is true.

Lemma 3.1.5. Let 0 ≤ a < b ≤ 1 and g ∈ D/D be so that g(t) 6= 0 for all t ∈ (a, b).
Then g is constant on [a, b].

Proof. Fix g ∈ D/D. Then g ∈ D by Proposition 3.0.2 (c), and due to the Darboux
property we have that g is either strictly positive or strictly negative on (a, b). We
assume the first, the latter case is similar.
Pick δ > 0 so small that δ < (b− a)/2. Then [a+ δ, b− δ] ⊆ (a, b), and we can define
h : [0, 1] → [a + δ, b − δ] by h(t) = (b − a − 2δ)t + a + δ. Then h is linear and maps
[0, 1] bijectively onto [a+δ, b−δ] with linear inverse. Moreover, the function G := g ◦h
satisfies G(t) > 0 for all t ∈ [0, 1] and still belongs to D/D. To see this, fix F ∈ D and
define x : [0, 1]→ R by

x(t) =


F (0) for t ∈ [0, a+ δ),
F (h−1(t)) for t ∈ [a+ δ, b− δ],
F (1) for t ∈ (b− δ, 1].

Then x ∈ D, F = x ◦ h, and FG = (xg) ◦ h. Since g ∈ D/D, we have xg ∈ D and
hence FG ∈ D as claimed.
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For any x ∈ D we have exp ◦x ∈ D and now obtain x+logG = log(exG) ∈ D. Theorem
3.1.4 yields that the Darboux function logG and hence G is constant. But this means
that g is constant on [a+δ, b−δ]. Since δ can be chosen arbitrarily small, g is constant
on (a, b), and due to the Darboux property it is constant even on [a, b]. �

In particular, if g ∈ D/D has no zeros in [0, 1] at all, Lemma 3.1.5 shows, that it follows
indeed from Theorem 3.1.4 that g is constant. But if g has zeros, things are not at all
so obvious.
However, the general product case follows immediately from Theorem 2 of [123]. We
give an alternative proof and show how the product result can indeed be deduced from
Theorem 3.1.4, for which we need some technicalities that will be given in the following.
Definition 3.1.6. The symbol c := card(R) denotes the cardinality of the set R of real
numbers. Let I be any system of subintervals of [0, 1]. We call a set E ⊆ [0, 1] c-dense
with respect to I if card(E ∩ I) = c for all I ∈ I.
For instance, [0, 1] itself is c-dense with respect to any system of nondegenerate inter-
vals, whereas Q ∩ [0, 1] is never. A similar version of the following auxiliary result has
been proven in the paper [124].

Lemma 3.1.7. Let E ⊆ [0, 1] and let I = (In)n∈N , N ⊆ N, be the countable system
of all closed and nondegenerate subintervals of [0, 1] with rational end points. If E
is c-dense with respect to I, then there are pairwise disjoint sets (An)n∈N such that
An ⊆ E ∩ In and card(An) = c for all n ∈ N .

Proof. Let J be the system of all open subintervals of [0, 1] which intersect E. We first
prove that any set F ⊆ [0, 1] is c-dense with respect to I if and only if F is c-dense
with respect to the system J .
To see this assume that F is c-dense with respect to I and fix J ∈ J . Then there is
some t ∈ J ∩ E. Since J is open, we find some I ∈ I such that t ∈ I ⊆ J . Since F is
c-dense with respect to I, it follows that c = card(F ∩ I) ≤ card(F ∩ J) and therefore
card(F ∩ J) = c. This shows that F is also c-dense with respect to J .
For the opposite direction suppose that F is c-dense with respect to J and fix I ∈ I.
Since E is c-dense with respect to I, there is some t ∈ E ∩ I◦. But then I◦ ∈ J , and
since F is c-dense with respect to J we obtain card(F ∩ I) ≥ card(F ∩ I◦) = c which
implies card(F ∩ I) = c. Consequently, F is also c-dense with respect to I.
In particular, E is c-dense with respect to J . Thus, by [124], there are pairwise disjoint
sets B1, B2, B3, . . . ⊆ E, each of which being c-dense with respect to J (and therefore
also with respect to I), such that

E =
⋃
n∈N

Bn.

Define An := Bn ∩ In ⊆ E ∩ In for n ∈ N . Then An ⊆ Bn for all n ∈ N ; in particular,
the An are pairwise disjoint. Moreover, since each Bn is c-dense with respect to I,
card(An) = card(Bn ∩ In) = c, as desired. �

We are now ready to prove
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Theorem 3.1.8. A function g : [0, 1]→ R belongs to D/D, if and only if g is constant.

Proof. Obviously, any constant function belongs to D/D, so it remains to prove the
converse. To do this fix g ∈ D/D. First, let us note that then g ∈ D by Proposition
3.0.2 (c). Since D/D is closed under multiplication we have g2 ∈ D/D. Moreover,
because of g ∈ D, showing that g is constant is equivalent to showing that g2 is
constant. Therefore, we can assume that g ≥ 0.
Let

Z := g−1({0}) = {t ∈ [0, 1] | g(t) = 0}
be the set of zeros of g. If Z = ∅, that is, g(t) > 0 for all t ∈ [0, 1], then it follows
immediately from Lemma 3.1.5 that g is constant.
Assume now that Z 6= ∅. We would like to show that Z = [0, 1] which means that
g = 0 on [0, 1]. The proof for this will be divided into two parts. In the first part we
show that Z is a closed subset of [0, 1], and in the second part we show that Z is a
dense subset of [0, 1].
To prove the first part assume that Z is not closed. Then there exists some c ∈ [0, 1]
with g(c) > 0 and a sequence (tn) of elements of Z converging to c. Let us consider
the set

E :=
{
t ∈ [0, 1] | g(t) < g(c)/2

}
.

We claim that for each interval [a, b] ⊆ [0, 1] either E∩ [a, b] = ∅ or card(E∩ [a, b]) = c.
To see this, let us fix [a, b] ⊆ [0, 1] and assume that E ∩ [a, b] 6= ∅. Let s ∈ [a, b] ∩ E.
If g(t) < g(c)/2 for all t ∈ [a, b], then E ∩ [a, b] = [a, b] and our claim is proved. If,
however, g(τ) ≥ g(c)/2 for some τ ∈ [a, b], then, since the function g is a Darboux
function, it attains all real numbers between g(s) < g(c)/2 and g(τ) ≥ g(c)/2 on [a, b];
in particular, card(E ∩ [a, b]) = c, which again proves our claim.
Now, let (In)n∈N be the countable collection of all closed and nondegenerate subintervals
of [0, 1] with rational end points. Define

N := {n ∈ N | E ∩ In 6= ∅}.

As shown above, card(E ∩ In) = c for each n ∈ N , that is, E is c-dense with respect to
(In)n∈N . Therefore, by Lemma 3.1.7, we can choose pairwise disjoint sets An ⊆ E ∩ In
and surjections hn : An → (0, 1] for all n ∈ N . Then the set A := ⋃

n∈N An clearly
satisfies A ⊆ E.
Consider the function h : [0, 1]→ [0, 1], defined by the formula

h(t) =
hn(t) for t ∈ An and n ∈ N,

0 for t ∈ [0, 1]\A.

Since the sets An are pairwise disjoint, the function h is well-defined. We claim that
h ∈ D. To see this, fix [a, b] ⊆ [0, 1]. Assume that there exists some m ∈ N such that
Im ⊆ [a, b]. Then

[0, 1] ⊇ h([a, b]) ⊇ h(Im) ⊇ h(Am) = hm(Am) = (0, 1],
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and this shows that h([a, b]) is an interval.
Now assume that Ik 6⊆ [a, b] for all k ∈ N . Then E ∩ (a, b) = ∅, since otherwise there
was some t ∈ E ∩ (a, b), and therefore there was some m ∈ N such that t ∈ Im ⊆ (a, b).
But then we would have Im ∩ E 6= ∅ which means that m ∈ N , contradicting the
assumption that Ik 6⊆ [a, b] for all k ∈ N . Thus, we have E ∩ (a, b) = ∅, that is
g(t) ≥ g(c)/2 for all t ∈ (a, b). By Lemma 3.1.5 we infer that g(t) = d for some
d ≥ g(c)/2 and all t ∈ [a, b]; in particular, E ∩ [a, b] = ∅. Therefore, h(t) = 0 for all
t ∈ [a, b], because otherwise we would have h(s) > 0 for some s ∈ [a, b] ∩ A, and since
A ⊆ E we had s ∈ E ∩ [a, b] which is not possible. This means h([a, b]) = {0}. Thus,
we have shown that h maps closed intervals onto intervals which proves that indeed
h ∈ D.
Since c is an accumulation point of Z we may assume (by passing to a subsequence, if
necessary) that tn < c for all n ∈ N or tn > c for all n ∈ N. We are going to investigate
only the first case, because the second can be treated similarly. Let us define the
function x : [0, 1]→ R by the formula

x(t) =
h(t) for 0 ≤ t < c,

1 for c ≤ t ≤ 1.

We claim that x ∈ D. To see this, fix [a, b] ⊆ [0, 1] with a < b. If b < c, then x([a, b]) =
h([a, b]) is an interval, because h ∈ D. If c ≤ a, then obviously x([a, b]) = {1}. Now,
let a < c ≤ b. Since tn < c for all n ∈ N and tn → c, there exists some m ∈ N such
that a < tm < c and g(tm) = 0; in particular, tm ∈ E and there exists some n ∈ N
such that tm ∈ In ⊆ [a, c) ⊆ [a, b]. But then

[0, 1] ⊇ x([a, b]) ⊇ x([a, c]) ⊇ x(In) = h(In) ⊇ h(An) = hn(An) = (0, 1],

and again, x([a, b]) is an interval. Consequently, x ∈ D.
Now, we have

x(t)g(t) =
h(t)g(t) for 0 ≤ t < c,

g(t) for c ≤ t ≤ 1.

Then x(t)g(t) ≤ g(c)/2 for t < c and x(c)g(c) = g(c), showing that xg /∈ D and
contradicting the fact that g ∈ D/D. Thus, Z is closed and the first part of the proof
is completed.
We now pass to the second part of the proof in which we show that Z is dense. First
note that Z is not empty by assumption. Assume that Z is not dense. Then there is
an open nonempty interval I ⊆ [0, 1] such that g(t) > 0 for all t ∈ I. Fix s ∈ I and
define

a := s− dist
(
(Z ∩ [0, s]) ∪ {0}, s

)
and b := s+ dist

(
(Z ∩ [s, 1]) ∪ {1}, s

)
.

Then g(t) > 0 for all t ∈ (a, b) and hence, by Lemma 3.1.5, g(t) = d for some d > 0
and all t ∈ [a, b]. However, since Z is closed and not empty, it follows that a ∈ Z or
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b ∈ Z, which implies g(a) = 0 or g(b) = 0. In any case we end up with d = 0, and this
is our desired and final contradiction. �

Note that Theorem 3.1.8 also shows that D is not closed under multiplication, since if
it was, then Proposition 3.0.2 (f) implied D/D = D, a contradiction.

Lemma 3.1.7 can also be used to create well-known examples of functions which attain
every real number on every subinterval of [0, 1]. We have given an example of such a
function already in Example 2.2.7; we will present here another such function, but this
time we prove its existence with the help of Lemma 3.1.7.

Example 3.1.9. Indeed, if we apply Lemma 3.1.7 on E = [0, 1] we obtain pairwise
disjoint sets (An)n∈N such that An ⊆ In and card(An) = c for all n ∈ N, where (In) is
an enumeration of all closed proper subintervals of [0, 1] with rational end points. Due
to card(An) = c there are surjections ϕn : An → R for all n ∈ N. Define x : [0, 1]→ R
by

x(t) =
ϕn(t) for t ∈ An and n ∈ N,

0 otherwise.

If I ⊆ [0, 1] is any proper closed subinterval of [0, 1], then there is some n ∈ N such
that An ⊆ In ⊆ I. Since x(An) = ϕn(An) = R we obtain x(I) = R, and so x has the
desired property. In particular, x ∈ D, but x is continuous at no point of [0, 1] and
hence not even a Baire-1 function [128]. ♦
A consequence of the Theorems 3.1.2 and 3.1.8 is the following

Theorem 3.1.10. Let g : [0, 1]→ R. Then the following statements are equivalent.

(a) g = 0.

(b) g ∈ C/D.

(c) g ∈ C/∆.

(d) g ∈ ∆/D.

(e) g ∈ C/B.

(f) g ∈ ∆/B.

(g) g ∈ D/B.

Proof. Obviously, 0 belongs to each of the given multiplier classes which shows that
(a) implies all the other statements. Moreover, since C ⊆ ∆ ⊆ D it follows from the
parts (a) and (b) of Proposition 3.0.2 that C/D ⊆ C/∆ and C/X ⊆ ∆/X ⊆ D/X for
X ∈ {D,∆, B}, which shows the implications “(b)⇒(c)”, “(b)⇒(d)”, “(e)⇒(f)” and
“(f)⇒(g)”.
For “(c)⇒(a)” fix g ∈ C/∆. Due to C ⊆ B we get with the help of the parts (a) and
(c) of Proposition 3.0.2 that C/∆ ⊆ B/∆ and C/∆ ⊆ C. Thus, g ∈ C ∩B/∆, and by
Theorem 3.1.2, supp(g) is finite, which is possible only if g = 0.
For “(d)⇒(a)” fix g ∈ ∆/D and note that ∆/D ⊆ D/D, due to ∆ ⊆ D and Proposition
3.0.2 (a). Theorem 3.1.8 implies that g must be constant. The function x := ϕ0,1,1,
defined in (1.1.1), belongs to D\∆ by the Propositions 1.1.12 and 2.1.5, and so does
xg, unless g = 0.
The implication “(g)⇒(a)” is already covered by Proposition 3.1.1. �
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The Multiplier Spaces D/C and D/∆
While we have given the characterization of ∆/∆ in Theorem 2.2.12 which was found
by Fleissner and Mařík [59, 111], the class ∆/C was also identified by Mařík, who
proved in [112] that g belongs to ∆/C if and only if

g ∈ ∆ and lim sup
τ→t

1
τ − t

∫ τ

t
|g(s)| ds <∞ for 0 ≤ t ≤ 1. (3.1.3)

However, it is noteworthy that Theorem 2.2.2 together with Proposition 3.0.2 (c) and
(e) tells us that

∆/(C ∩BV ) = ∆, (3.1.4)

and Proposition 3.0.2 (b) says ∆/C ⊆ ∆/(C ∩BV ). Moreover, a comparison between
(3.1.3) and (3.1.4) suggests that ∆/C is strictly smaller than ∆/(C ∩ BV ). Indeed,
condition (3.1.3) forces g ∈ ∆/C to be Lebesgue integrable. Thus, any function g ∈ ∆
that is not Lebesgue integrable belongs to ∆/(C∩BV ), but not to ∆/C; the derivative
g = x′ of the function x of Example 2.0.2 is an instance of such a function.

The remaining two classes D/C and D/∆ are way more difficult to characterize, and
their exact form is - at least to our knowledge - unknown. In the following we will
discuss them in more detail and begin with D/C.
First note that C ⊆ D/C ⊆ D by (c) and (e) of Proposition 3.0.2; we will show
that both inclusions are strict in the sequel. In [122] and [144] it was shown that for
each nonconstant continuous function x there is some function gx with the following
properties:

• gx is a Darboux function,

• xgx is not a Darboux function, and

• the set of points of discontinuity of gx is meager.
In particular, such gx cannot belong to D/C, and so, indeed, D/C ( D. Moreover, the
function ϕ0,β,1, defined in (1.1.1), belongs to ∆\C for β = 0 by Proposition 1.1.12, and
to (D ∩ B1)\∆ for 0 < |β| ≤ 1 by the Propositions 1.1.12 and 2.1.5, where B1 denotes
the class of Baire-1 functions. This shows that we also have the strict inclusions
C ( ∆ ( D ∩ B1. It is therefore reasonable to ask whether the classes ∆ or even
D ∩ B1 fit somewhere into the chain of inclusions C ⊆ D/C ⊆ D. In order to answer
this question let us recall a characterization of the functions in D ∩ B1 that has been
given by Young in [162].

Theorem 3.1.11. Let g ∈ B1. Then g belongs to D ∩ B1 if and only if the following
two requirements are satisfied.
(i) For each t ∈ (0, 1] there exists a sequence (sn) in [0, 1] converging to t such that

sn < t for all n ∈ N and limn→∞ g(sn) = g(t).

(ii) For each t ∈ [0, 1) there exists a sequence (tn) in [0, 1] converging to t such that
t < tn for all n ∈ N and limn→∞ g(tn) = g(t).
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With the help of Theorem 3.1.11 we now obtain

Proposition 3.1.12. A function g : [0, 1]→ R belongs to the class (D ∩ B1)/C if and
only if g ∈ D ∩ B1.

Proof. By Proposition 3.0.2 (c), the inclusion (D∩B1)/C ⊆ D∩B1 holds, so it remains
to show that the reverse implication also holds. To show this assume that g ∈ D ∩B1,
and fix x ∈ C and t ∈ [0, 1]. Then xg ∈ B1. Without loss of generality let t ∈ (0, 1); the
cases t = 0 and t = 1 are treated similarly. By Theorem 3.1.11, there exist sequences
(sn), (tn) ⊆ [0, 1] both converging to t such that sn < t < tn for all n ∈ N and

lim
n→∞ g(sn) = g(t) = lim

n→∞ g(tn).

Since x ∈ C,
lim
n→∞x(sn)g(sn) = x(t)g(t) = lim

n→∞x(tn)g(tn).

Again by Theorem 3.1.11 we have xg ∈ D ∩ B1 showing that indeed g ∈ (D ∩ B1)/C,
as claimed. �

The last result simply says (D ∩ B1)/C = D ∩ B1; in particular D ∩ B1 ⊆ D/C by
Proposition 3.0.2 (a), and for g ∈ D ∩ B1 and x ∈ C ⊆ B1 we have that xg ∈ B1. This
suggests that D/C is strictly larger than D ∩ B1, which is indeed true and content of
the following

Proposition 3.1.13. There is a function g ∈ D/C that does not belong to B1.

Proof. In [57] it was proven that there exists a function g0 ∈ D such that for each
x ∈ C and each proper interval I ⊆ [0, 1] we have (x + g0)(I) = R. We now consider
the function g := eg0 which also belongs to D, since exp is continuous.
Fix x ∈ C and assume that x(t) > 0 for all t ∈ I and some interval I := [a, b] ⊆ [0, 1]
with a < b. Define y : [0, 1]→ R by

y(t) :=


x(a) for t ∈ [0, a),
x(t) for t ∈ I
x(b) for t ∈ (b, 1].

Then y ∈ C and y(t) > 0 for all t ∈ [0, 1]. Moreover,

(xg)(I) = (yg)(I) = elog(y)+g0(I) = (0,∞).

If, however, x(t) < 0 for all t ∈ I, then a similar argument shows that

(xg)(I) = (−∞, 0).

In particular, if we take x = 1, then g attains all positive real numbers in every interval.
But then g cannot be an element of B1 as it is discontinuous everywhere [128].
Now, fix any compact nondegenerate subinterval I of [0, 1] and again some x ∈ C.
Then x(I) = [c, d] for some c, d ∈ R with c ≤ d.
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We now distinguish eight cases. If 0 < c = d, then (xg)(I) = cg(I) = c(0,∞) = (0,∞),
if c = d < 0, then (xg)(I) = c(0,∞) = (−∞, 0), and for c = 0 = d we have (xg)(I) =
{0}. If 0 < c < d, then (xg)(I) = (0,∞). If c = 0 < d, then I contains an interval
J in which x attains only positive numbers. In this case we have (xg)(I) = [0,∞). A
similar argument shows that if c < 0 < d, then (xg)(I) = R, and if c < 0 = d, then
(xg)(I) = (−∞, 0]. Finally, if c < d < 0, then we obtain (xg)(I) = (−∞, 0). In either
case, (xg)(I) is an interval, and so xg ∈ D. But this means nothing else than g ∈ D/C,
as desired. �

Looking a little closer at the construction of g in the proof of Proposition 3.1.13 one
might think that D/C consists of those functions which attain every (positive) real
number in every interval. This is not true. In [133] was given an example of a function
g attaining all real numbers in every nondegenerate subinterval of [0, 1] such that
x+g /∈ D for some x ∈ C. Exponentiation gives a function g̃ attaining all positive real
numbers in each nondegenerate subinterval of [0, 1] such that xg̃ /∈ D for some x ∈ C
and hence g̃ /∈ D/C. In particular, this shows once again that D/C is a proper subset
of D. Conclusively, we have

C ( ∆ ( D ∩ B1 ( D/C ( D.

We now turn to D/∆. Note that by (a) and (b) of Proposition 3.0.2 we have ∆/∆ ⊆
D/∆ ⊆ D/C. In contrast to D/C the class D∩B1 is not a subclass of D/∆, and even
worse neither is ∆. In Example 2.2.16 were given two functions in ∆ ⊆ D ∩ B1 the
product of which does not belong to D; in particular, D/∆ ( D.
Again from (a) and (b) of Proposition 3.0.2 we get that M := (D ∩ B1)/(D ∩ B1) is
a subclass of D/∆. Here, the classM has been characterized more explicitly in [60].
Accordingly, M consists of all functions g in D ∩ B1 such that if s ∈ [0, 1] is a point
of right (left) discontinuity of g, then g(s) = 0, and there exists a sequence (tn) in
[0, 1] of zeros of g converging from the right (left) to s; in particular, any continuous
function belongs toM. Thus, both the class ∆/∆ and the classM are contained in
D/∆, although there is no inclusion between them.

Example 3.1.14. Recall that the functions x = ϕ−1/2,0,1 and y = ϕ1/2,0,1 which have
been considered in Example 2.2.1 both belong to ∆, but their product xy = ϕ0,0,2
does not, and so y is not an element of ∆/∆ which is also clear by Proposition 2.2.13.
Moreover, y is continuous and hence lies inM∩∆.
On the other hand the function g from Example 2.2.14 is neither continuous nor of
bounded variation but belongs to ∆/∆ with g(0) = 0. The function g̃ : [0, 1] → R,
defined by g̃(t) = g(t) + 1, then still belongs to ∆/∆ but cannot belong toM since g̃
is discontinuous at t = 0 with g̃(0) = 1 6= 0. ♦
In addition, this example also shows that both ∆/∆ andM are proper subsets of D/∆,
and that ∆ is no subset of M. Finally, M is also no subset of ∆, since the function
ϕ−1,0,1 belongs toM, but not to ∆ by Proposition 2.1.5.
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The following Figure 3.1.1 summarizes inclusions of most function classes that have
been considered so far. Here, A −→ B means A ( B.

C ∩ BV

C

∆

M

∆/∆

D/∆

D ∩ B1

D/C

D

Figure 3.1.1: Inclusions between classical sets.

Other inclusions than those shown in this diagram do not hold. The dashed arrow
indicates, however, that we were not able to decide wether the inclusion D/∆ ⊆ D∩B1
holds.

Multipliers in BV

In this last part of this section we are going to extend our considerations by comparing
each of the classical classes C,∆, D and B considered so far to the class BV of functions
of bounded Jordan variation introduced in Definition 1.1.7.
First note that since both BV and B are algebras with 1 and linked by BV ⊆ B, we
get by Proposition 3.0.2 (f) that BV/BV = BV , B/B = B and B/BV = B. Our next
result in this section characterizes BV/B and BV/C.

Theorem 3.1.15. Let g : [0, 1]→ R. Then the following statements are equivalent.

(a) g ∈ BV ∩ Sc. (b) g ∈ BV/B. (c) g ∈ BV/C.

Proof. “(a)⇒(b)”: Assume first that g ∈ BV and supp(g) is countable. Fix x ∈ B.
Then there exists M > 0 such that |x(t)| ≤ M for all t ∈ [0, 1]. It follows that
supp(xg) ⊆ supp(g), and by Proposition 1.1.8,

Var(xg) ≤ 2
∑

t∈supp(g)
|x(t)g(t)| ≤ 2M

∑
t∈supp(g)

|g(t)| ≤ 2M Var(g) <∞,

showing that xg ∈ BV . Consequently, g ∈ BV/B.
“(b)⇒(c)”: Since C ⊆ B we get by Proposition 3.0.2 (b) that BV/B ⊆ BV/C.
“(c)⇒(a)”: Assume g ∈ BV/C. Since 1 ∈ C, Proposition 3.0.2 (c) immediately yields
g ∈ BV . Now, suppose that supp(g) is uncountable. Then by Lemma 1.1.5 we find
somem > 0 and a strictly monotone sequence (tn) in (0, 1) converging to some t ∈ [0, 1]
such that |g(tn)| ≥ m for all n ∈ N. Without loss of generality we may assume that the
sequence (tn) is strictly decreasing and t = 0 . Let us pick sn ∈ (tn+1, tn) for n ∈ N and
let us define x : [0, 1]→ R piecewise linear and continuous on [0, 1] by x(0) = x(1) = 0,

x(sn) = 0 and x(tn) = 1/n for n ∈ N.
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Then x ∈ C and

Var(xg) ≥
∞∑
n=1
|x(tn)g(tn)| ≥ m

∞∑
n=1

1
n

=∞

which shows xg /∈ BV and contradicts g ∈ BV/C. �

Finally, another application of Proposition 3.1.1 with X = BV immediately gives
C/BV = ∆/BV = D/BV = {0}. Moreover, Corollary 3.1.3, applied to Y = BV ,
yields BV/D = BV/∆ = Sf .

Table 3.1.1 below summarizes all multiplier classes considered so far. Note that we
were not able to fully characterize the classes D/C and D/∆.

Table 3.1.1: Multipliers in classical spaces.
C/C = C ∆/C = (3.1.3) D/C = ??? B/C = B BV/C = BV ∩ Sc
C/∆ = {0} ∆/∆ = BV ∩∆ D/∆ = ??? B/∆ = Sf BV/∆ = Sf
C/D = {0} ∆/D = {0} D/D = 1R B/D = Sf BV/D = Sf
C/B = {0} ∆/B = {0} D/B = {0} B/B = B BV/B = BV ∩ Sc
C/BV = {0} ∆/BV = {0} D/BV = {0} B/BV = B BV/BV = BV

It is now reasonable to ask whether the results showing in this table remain true if we
replace BV by one of the other BV -spaces WBVp, Y BVϕ, ΛBV or RBVp. Moreover,
we are interested in investigating ΓBV/ΛBV for two arbitrary Waterman sequences Γ
and Λ, Y BVψ/Y BVϕ for two arbitrary Young functions ψ and ϕ and RBVq/RBVp for
two arbitrary exponents 1 ≤ p, q < ∞. These and related problems will be discussed
and answered in the next section.

3.2 Multipliers in Generalized BV -Spaces
In this section we are going to generalize the results of the previous section to spaces
of functions of generalized bounded variation. Let us start with the spaces of functions
of bounded Wiener and Young variation introduced in the Definitions 1.2.2 and 1.2.9,
respectively. Multiplier sets for the Wiener spaces WBVp have already been character-
ized in [40]. We will give here a more general argument for the Young spaces Y BVϕ
from which all results for Wiener spaces will follow.

Multipliers in WBVp and Y BVϕ

First note that since Y BVϕ for an arbitrary Young function ϕ is an algebra with 1, we
have Y BVϕ/Y BVϕ = Y BVϕ by Proposition 3.0.2 (f). Moreover, Y BVϕ ⊆ B implies
B/Y BVϕ = B, again by Proposition 3.0.2 (f).
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Another application of Proposition 3.1.1 for X = Y BVϕ for some Young function ϕ

immediately gives C/Y BVϕ = ∆/Y BVϕ = D/Y BVϕ = {0}. However, if we ap-
ply Corollary 3.1.3 to Y = Y BVϕ instead, we obtain that the spaces Y BVϕ/D and
Y BVϕ/∆ are the same and precisely consist of all functions having finite support, i.e.
Y BVϕ/D = Y BVϕ/∆ = Sf .

In the sequel we are going to describe the multiplier spaces of two arbitrary spaces
Y BVϕ and Y BVψ. Note that by Proposition 3.0.2 (f) we have Y BVψ/Y BVϕ = Y BVψ
if and only if Y BVϕ ⊆ Y BVψ. Consequently, for the general case we need to know when
one such space is contained in the other. But this has already been answered in (1.2.22)
and below. Accordingly, if ϕ and ψ are two Young functions, then Y BVϕ ⊆ Y BVψ if
and only if ψ � ϕ.

We will now turn to our main theorem concerning Young spaces which characterizes
the multiplier spaces Y BVψ/Y BVϕ. For this we need the technical result from Lemma
1.2.16.

Theorem 3.2.1. Let ϕ and ψ be two Young functions. Then the following statements
hold.

(a) If ψ � ϕ, then Y BVψ/Y BVϕ = Y BVψ.

(b) If ψ 6� ϕ, then Y BVψ/Y BVϕ = Y BVψ ∩ Sc.

Proof. (a) By (1.2.22), the condition ψ � ϕ implies Y BVϕ ⊆ Y BVψ, and so the result
follows immediately from Proposition 3.0.2 (f), as mentioned before.
(b) Assume first that g ∈ Y BVψ and supp(g) ⊆ {tj | j ∈ N} is countable, where
we arbitrarily pick tj ∈ [0, 1]\ supp(g) for j > # supp(g) if supp(g) is finite. Then
Varψ(λg) < ∞ for some λ > 0. If x ∈ Y BVϕ is given, then x is bounded by some
M > 0, say. Then supp(xg) is countable as well, and for µ := λ/(2M) we obtain by
Proposition 1.2.10,

Varψ(µxg) ≤
∞∑
j=1

ψ(2µ|(xg)(tj)|) ≤
∞∑
j=1

ψ(λ|g(tj)|) ≤ Varψ(λg) <∞.

Thus, xg ∈ Y BVψ which shows g ∈ Y BVψ/Y BVϕ.
We now prove the converse, i.e. Y BVψ/Y BVϕ ⊆ Y BVψ ∩ Sc. Due to ψ 6� ϕ we have
by (1.2.22) that

lim sup
t→0+

ψ(λt)
ϕ(t) =∞ for all λ > 0.

Since ϕ is an increasing homeomorphism of [0,∞), substituting s = ϕ(t) and defining
Φ(λ, s) := ψ

(
λϕ−1(s)

)
leads to

lim sup
s→0+

Φ(λ, s)
s

=∞ for all λ > 0.
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Moreover, Φ(·, s) is increasing for each fixed s ≥ 0. Thus, we can apply Lemma 1.2.16
with α = 1 and obtain a sequence (τj) in (0,∞) such that

∞∑
j=1

Φ(λ, τj) =∞ for all λ > 0 and
∞∑
j=1

τj ≤ 1.

The substitution uj := ϕ−1(τj) therefore yields a sequence (uj) in (0,∞) which satisfies
∞∑
j=1

ψ(λuj) =∞ for all λ > 0 and
∞∑
j=1

ϕ(uj) ≤ 1.

Assume now that g ∈ Y BVψ/Y BVϕ, but g /∈ Y BVψ ∩ Sc. By Proposition 3.0.2 (c) we
have g ∈ Y BVψ, so supp(g) must be uncountable. By Lemma 1.1.5 we get some m > 0
and a sequence (tj) in (0, 1) of pairwise distinct numbers such that |g(tj)| ≥ m for all
j ∈ N. Define the function x : [0, 1] → R by x(tj) := uj for all j ∈ N and x(t) = 0
otherwise. Then on the one hand, by Proposition 1.2.10,

Varϕ(x/2) ≤
∞∑
j=1

ϕ(|x(tj)|) =
∞∑
j=1

ϕ(uj) ≤ 1,

and so x ∈ Y BVϕ. However, for each λ > 0 we get again from Proposition 1.2.10,

Varψ(λxg) ≥
∞∑
j=1

ψ(λ|(xg)(tj)|) ≥
∞∑
j=1

ψ(λmuj) =∞

which shows xg /∈ Y BVψ and eventually g /∈ Y BVψ/Y BVϕ, a contradiction. �

We are now going to compare Y BVψ with the classical spaces B,D,∆ and C from the
first section of this chapter. Here we have again an analogue of Theorem 3.1.15.

Theorem 3.2.2. Let ψ be a Young function and let g : [0, 1]→ R. Then the following
statements are equivalent.

(a) g ∈ Y BVψ ∩ Sc. (b) g ∈ Y BVψ/B. (c) g ∈ Y BVψ/C.

Proof. For “(a)⇒(b)” assume that g ∈ Y BVψ and supp(g) ⊆ {tj | j ∈ N} is countable,
where we again choose tj ∈ [0, 1]\ supp(g) arbitrarily for j > # supp(g) if supp(g) is
finite; in particular, Varψ(λg) <∞ for some λ > 0. Fix x ∈ B. Then x is bounded by
someM > 0, say. Of course, we have supp(xg) ⊆ supp(g). Therefore, for µ := λ/(2M)
we obtain by Proposition 1.2.10,

Varψ(µxg) ≤
∞∑
j=1

ψ(2µ|x(tj)g(tj)|) ≤
∞∑
j=1

ψ(λ|g(tj)|) ≤ Varψ(λg) <∞

which shows xg ∈ Y BVψ and hence g ∈ Y BVψ/B.
Note that “(b)⇒(c)” immediately follows from Proposition 3.0.2 (b), since C ⊆ B.
We now prove the remaining part “(c)⇒(a)”. To this end, assume that g ∈ Y BVψ has
uncountable support. Then by Lemma 1.1.5 we find a strictly monotone sequence (tj)
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in (0, 1) converging to some t ∈ [0, 1] and a constant m > 0 such that |g(tj)| ≥ m for
all j ∈ N, and we may assume that (tj) is strictly decreasing and converges to t = 0.
Pick sj ∈ (tj+1, tj) for all j ∈ N. Note that since ψ is an increasing homeomorphism of
[0,∞) with ϕ(0) = 0, the numbers

uj :=

√√√√ψ−1
(

1
j

)
for j ∈ N

are well-defined and converge to 0 in such a way that

∞∑
j=1

ψ
(
u2
j

)
=
∞∑
j=1

ψ
(
ψ−1(1/j)

)
=
∞∑
j=1

1
j

=∞.

Since uj → 0 as j →∞, for each fixed λ > 0 there is some N(λ) ∈ N such that λ ≥ uj
for all j ≥ N(λ). Therefore, since ψ is increasing,

∞∑
j=1

ψ(λuj) ≥
∞∑

j=N(λ)
ψ
(
u2
j

)
=∞.

Define x : [0, 1]→ R piecewise linear and continuous by

x(0) := x(1) := 0, x(tj) := uj and x(sj) := 0 for all j ∈ N.

Then x ∈ C and for each λ > 0 we obtain

Varψ(λxg) ≥
∞∑
j=1

ψ(λ|(xg)(tj)− (xg)(sj)|) =
∞∑
j=1

ψ(λ|g(tj)uj|) ≥
∞∑
j=1

ψ(λmuj) =∞.

But this shows xg /∈ Y BVψ and hence g /∈ Y BVψ/C. �

Let us discuss some special cases of the Theorems 3.2.1 and 3.2.2. For ϕ(t) = tp

and ψ(t) = tq for 1 ≤ p, q < ∞, the spaces Y BVϕ and Y BVψ precisely coincide
with the spaces of functions of bounded Wiener variation, i.e. Y BVϕ = WBVp and
Y BVψ = WBVq. In this case, the condition ψ � ϕ is equivalent to p ≤ q, and Theorem
3.2.1 reads as follows.

Corollary 3.2.3. Let 1 ≤ p, q <∞. Then the following statements hold.

(a) If p ≤ q, then WBVq/WBVp = WBVq.

(b) If p > q, then WBVq/WBVp = WBVq ∩ Sc.

In particular, for p = 1 ≤ q we obtain WBVq/BV = WBVq, and for p > q = 1 we get
BV/WBVp = BV ∩ Sc. More generally, if only one of the Young functions is replaced
by t 7→ tp, then Theorem 3.2.1 yields the following four cases.
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Corollary 3.2.4. Let 1 ≤ p, q < ∞ and ϕ and ψ be Young functions. Then the
following statements hold.

(a) If lim sup
t→0+

ψ(t)
tp

<∞, then Y BVψ/WBVp = Y BVψ.

(b) If lim sup
t→0+

ψ(t)
tp

=∞, then Y BVψ/WBVp = Y BVψ ∩ Sc.

(c) If lim sup
t→0+

tq

ϕ(t) <∞, then WBVq/Y BVϕ = WBVq.

(d) If lim sup
t→0+

tq

ϕ(t) =∞, then WBVq/Y BVϕ = WBVq ∩ Sc.

Note that indeed Corollary 3.2.4 reduces to Corollary 3.2.3 for ϕ(t) = tp and ψ(t) = tq.
In general, if we put p = 1 in Corollary 3.2.4 (a) we obtain from the convexity of ψ
and ψ(0) = 0 that

lim sup
t→0+

ψ(t)
t
≤ lim sup

t→0+

tψ(1)
t

= ψ(1) <∞

and hence Y BVψ/BV = Y BVψ. Similarly, if ι 6� ϕ for ι(t) = t being the identity
function which is equivalent to

lim sup
t→0+

t

ϕ(t) =∞,

we get from (d) by putting q = 1 that BV/Y BVϕ = BV ∩ Sc. Note that on the other
hand the case ι � ϕ leads to Y BVϕ = BV and hence to BV/Y BVϕ = BV .
Moreover, the special case of Theorem 3.2.2 with ψ(t) = tq reads as follows.

Corollary 3.2.5. Let 1 ≤ q < ∞ and g : [0, 1] → R. Then the following statements
are equivalent.

(a) g ∈ WBVq ∩ Sc. (b) g ∈ WBVq/B. (c) g ∈ WBVq/C.

Note that for q = 1 Corollary 3.2.5 reduces to Theorem 3.1.15.

Multipliers in ΛBV
We now continue our generalizations to the spaces of functions of bounded variation in
the sense of Waterman introduced in Definition 1.2.18. We are particularly interested
in characterizing Y/ΛBV and ΓBV/X for X, Y ∈ {B,C,D,∆, BV,ΛBV }, where Γ
and Λ are arbitrary given Waterman sequences.
First notice that ΛBV is an algebra with 1, and so from Proposition 3.0.2 (f) we get
ΛBV/ΛBV = ΛBV .
Recall that equation (1.2.49) says that not only ΛBV ⊆ B holds for all Waterman
sequences Λ, but also that each Waterman space comprises BV , and that each regular
function belongs to at least one Waterman space. Because of that and Proposition
3.0.2 (f) we immediately get ΓBV/BV = ΓBV and B/ΛBV = B.
Let us now consider an analogue to Theorem 3.1.15.
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Theorem 3.2.6. Let g : [0, 1]→ R and Γ be a Waterman sequence. Then the following
statements are equivalent.

(a) g ∈ ΓBV ∩ Sc. (b) g ∈ ΓBV/B. (c) g ∈ ΓBV/C.

Proof. Throughout this proof let the Waterman sequence Γ be given by Γ = (γj).
“(a)⇒(b)”. Assume that g ∈ ΓBV has countable support. Fix x ∈ B. Then there exists
M > 0 such that |x(t)| ≤M for any t ∈ [0, 1]. Of course we have supp(xg) ⊆ supp(g) ⊆
{τ1, τ2, . . .} with τj ∈ supp(g), where we again pick arbitrary τj ∈ [0, 1]\ supp(g) for
j > # supp(g) if supp(g) is finite. By Proposition 1.2.20 we have

VarΓ(xg) ≤ 2 sup
σ

∞∑
j=1

γσ(j)|(xg)(τj)| ≤ 2M sup
σ

∞∑
j=1

γσ(j)|g(τj)| ≤ 2M VarΓ(g) <∞,

where σ runs through all permutations of N. Thus xg ∈ ΓBV and hence g ∈ ΓBV/B.

“(b)⇒(c)” follows directly from Proposition 3.0.2 (b), since C ⊆ B.
“(c)⇒(a)”. Assume now that g ∈ ΓBV/C. Certainly, 1 ∈ C, and so g ∈ ΓBV by
Proposition 3.0.2 (c). Suppose now that supp(g) is uncountable. By Lemma 1.1.5 we
obtain an m > 0 and some sequence (tn) in (0, 1) of pairwise distinct terms such that
|g(tn)| ≥ m for all n ∈ N. Without loss of generality we can assume that (tn) is strictly
decreasing and converging to 0. Pick sn ∈ (tn+1, tn) for n ∈ N, and let Γn := γ1+. . .+γn.
Now, define x ∈ C piecewise linear by x(0) = x(1) = 0, x(sn) = 0 and x(tn) = 1/Γn for
n ∈ N. Let us define a finite collection of nonoverlapping subintervals of the interval
[0, 1] by [aj, bj] = [sj, tj] for j ∈ {1, . . . , n}. Then

VarΓ(xg) ≥
n∑
j=1

γj|(xg)(aj)− (xg)(bj)| =
n∑
j=1

γj|(xg)(tj)| ≥ m
n∑
j=1

γj
Γj
.

By a result of Abel and Dini [77],
∞∑
j=1

γj
Γj

=∞,

and hence xg /∈ ΓBV , contradicting g ∈ ΓBV/C. �

An application of Proposition 3.1.1 for X = ΛBV for some Waterman sequence Λ
immediately gives C/ΛBV = ∆/ΛBV = D/ΛBV = {0}. Moreover, if we apply
Corollary 3.1.3 to Y = ΛBV instead, we obtain ΛBV/D = ΛBV/∆ = Sf .
In the sequel we are going to describe the multiplier spaces of two arbitrary Waterman
spaces ΓBV and ΛBV . Note that by Proposition 3.0.2 (f) we have ΓBV/ΛBV = ΓBV
if and only if ΛBV ⊆ ΓBV . Consequently, for the general case we need to know when
one such space is contained in the other. But this has already been answered in the
discussion around (1.2.44). Accordingly, if Γ and Λ are two Waterman sequences, then
ΛBV ⊆ ΓBV if and only if Γ � Λ.
We are now in position to prove the following
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Theorem 3.2.7. Let Γ and Λ be two Waterman sequences. Then the following state-
ments hold.

(a) If Γ � Λ, then ΓBV/ΛBV = ΓBV .

(b) If Γ 6� Λ, then ΓBV/ΛBV = ΓBV ∩ Sc.

Proof. Throughout this proof let Γ = (γj) and Λ = (λj).
Note that by (1.2.44) the assertion Γ � Λ is equivalent to ΛBV ⊆ ΓBV . Consequently,
(a) follows immediately from Proposition 3.0.2 (f), as mentioned before.
For (b) assume first that g ∈ ΓBV and supp(g) ⊆ {t1, t2, . . .} is countable, where we
pick arbitrary tj ∈ [0, 1]\ supp(g) for j > # supp(g) if supp(g) is finite. If x ∈ ΛBV
is given, then x is bounded by some M > 0, say. Then supp(xg) ⊆ supp(g), and we
obtain by Proposition 1.2.20,

VarΓ(xg) ≤ 2 sup
σ

∞∑
j=1

γσ(j)|x(tj)g(tj)| ≤ 2M sup
σ

∞∑
j=1

γσ(j)|g(tj)| ≤ 2M VarΓ(g) <∞,

and hence xg ∈ ΓBV which shows that g ∈ ΓBV/ΛBV .
For the reverse implication assume that supp(g) is uncountable. By Lemma 1.1.5 there
is a constant m > 0 and a sequence (tj) in (0, 1) such that |g(tj)| ≥ m for all j ∈ N.
Now apply Lemma 1.2.23 to aj = γj, bj = λj and α = 1 and obtain a monotonically
decreasing sequence (uj) in (0,∞) tending to zero such that

∞∑
j=1

γjuj =∞ and
∞∑
j=1

λjuj = 1.

Define x(tj) := uj and x(t) = 0 elsewhere. Then with the help of Proposition 1.2.20
we have

VarΛ(x) ≤ 2
∞∑
j=1

λjuj = 2,

that is, x ∈ ΓBV . Note that the sum on the right hand side of (1.2.39) is maximal for
the given ordering of (λj) and (uj) as both sequences are decreasing [6]. On the other
hand, again by Proposition 1.2.20,

VarΓ(xg) ≥
∞∑
j=1

γj|x(tj)g(tj)| ≥ m
∞∑
j=1

γjuj =∞

showing that xg /∈ ΓBV and hence g /∈ ΓBV/ΛBV . That each function g ∈ ΓBV/ΛBV
belongs to ΓBV follows from Proposition 3.0.2 (c). This completes the proof. �

In the light of (1.2.49) it is reasonable to ask how the “limit” spaces BV/ΛBV ,
ΓBV/BV , R/ΛBV and ΓBV/R look like. With the help of Proposition 3.0.2 we
obtain the following

Corollary 3.2.8. Let Λ be a Waterman sequence. Then BV/ΛBV = BV ∩ Sc.
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Proof. Let g ∈ BV have countable support. Then Theorem 3.1.15 yields g ∈ BV/B,
and since ΛBV ⊆ B we get by Proposition 3.0.2 (b) that g ∈ BV/ΛBV .
Suppose now that g ∈ BV/ΛBV for Λ = (λj); in particular, g ∈ BV by Proposition
3.0.2 (c). The sequence Γ = (γj), defined by γj :=

√
λj, clearly is a Waterman sequence,

and since BV ⊆ ΓBV we obtain from Proposition 3.0.2 (a) that g ∈ ΓBV/ΛBV .
However, since

lim
n→∞

γn
λn

= lim
n→∞

√
λn
λn

= lim
n→∞

1√
λn

=∞,

we obtain with the help of the Stolz-Cesàro-Theorem [119] that Γ 6� Λ. Finally,
Theorem 3.2.7 yields that supp(g) is countable. �

For the “flipped” space ΓBV/BV note that we already know ΓBV/BV = ΓBV . More-
over, since ΛBV ⊆ R we also obtain R/ΛBV = R from Proposition 3.0.2 (f). Finally,
since C ⊆ R ⊆ B, we have that ΓBV/B ⊆ ΓBV/R ⊆ ΓBV/C by Proposition 3.0.2
(b), and Theorem 3.2.6 eventually shows that ΓBV/R = ΓBV ∩ Sc.

Let us now discuss some special cases of the Theorems 3.2.6 and 3.2.7. For 0 < p, q ≤ 1
we consider the two Waterman sequences Λp = (1/np) and Λq = (1/nq) for which the
the condition Λq � Λp is equivalent to p ≤ q (again by the Stolz-Cesàro-Theorem
[119]). Consequently, Theorem 3.2.7 reads as follows.

Corollary 3.2.9. Let 0 < p, q ≤ 1. Then the following statements hold.

(a) If p ≤ q, then ΛqBV/ΛpBV = ΛqBV .

(b) If p > q, then ΛqBV/ΛpBV = ΛqBV ∩ Sc.

Recall that the space ΛpBV is of particular interest for p = 1 and called the space of
functions of bounded harmonic variation, abbreviated by the symbol HBV = Λ1BV .
In particular, for 0 < p ≤ 1 = q we obtain HBV/ΛpBV = HBV , and for p = 1 > q > 0
we get ΛqBV/HBV = ΛqBV ∩ Sc, both as a consequence of Corollary 3.2.9.

Analogously, Theorem 3.2.6 then reads as follows.

Corollary 3.2.10. Let 0 < q ≤ 1 and g : [0, 1] → R. Then the following statements
are equivalent.

(a) g ∈ ΛqBV ∩ Sc. (b) g ∈ ΛqBV/B. (c) g ∈ ΛqBV/C.

The spaces BV , WBVp, Y BVϕ and ΛBV have in common that they all contain func-
tions of finite and countably infinite support. In the next and final subsection we
consider multiplier spaces for the Riesz spaces RBVp that do not have this property,
as any function in RBVp is automatically continuous for p > 1.
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Multipliers in Lp and RBVp

As a final generalization we now consider functions of bounded variation in the sense
of Riesz as defined in Definition 1.2.24. Recall that for 1 < p < ∞ the class RBVp
coincides with the class AC of absolutely continuous functions with derivatives in the
space Lp. Moreover, in this case the Riesz variation can be calculated explicitly by the
formula (1.2.50).
If we write

L′p := {x ∈ AC | x′ ∈ Lp} for 1 ≤ p ≤ ∞,
then Riesz’ result states that

L′p =


AC for p = 1,
RBVp for 1 < p <∞,
Lip for p =∞,

whereas, by definition, RBV1 = BV 6= AC.
Recall that RBVp can be interpreted as the set of continuous representatives of the
Sobolev spaceW 1,p; in particular, for each function x ∈ W 1,p there is a function x̃ ∈ L′p
such that x = x̃ almost everywhere.
Thus, the Riesz spaces are closely related not only to Sobolev spaces but also to
Lebesgue spaces. In order to find multipliers for Riesz spaces, we therefore need mul-
tipliers for Lebesgue spaces. As adumbrated at the beginning of this chapter, Hölder’s
inequality is of good use here. We will prove in a little more detail the following
characterization of Lebesgue multipliers.

Theorem 3.2.11. Let 1 ≤ p, q ≤ ∞. Then

Lq/Lp =



L pq
p−q

for 1 ≤ q < p <∞,
Lq for 1 ≤ q < p =∞,
L∞ for 1 ≤ p = q ≤ ∞,
{0 a.e.} for 1 ≤ p < q ≤ ∞.

(3.2.1)

Proof. We first prove for 1 ≤ p <∞ the identity

L1/Lp =
L p

p−1
for 1 < p <∞,

L∞ for p = 1.
(3.2.2)

Note that for 1 < p < ∞ the inclusion L p
p−1
⊆ L1/Lp is a trivial consequence of

Hölder’s inequality. Indeed, if g ∈ L p
p−1

and x ∈ Lp are given, then Hölder’s inequality
guarantees immediately xg ∈ L1 as p

p−1 is the Hölder conjugate to p. The same
argument holds for p = 1 and shows L∞ ⊆ L1/L1.
For the converse there is a little more to do. For fixed g ∈ L1/Lp with 1 ≤ p <∞ we
also have |g| ∈ L1/Lp. On Lp we define the linear functional T : Lp → R by

Tx :=
∫ 1

0
x(t)|g(t)| dt
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which is well-defined due to |g| ∈ L1/Lp. We now show that T is bounded. If T is
unbounded, there is a sequence (xk) in Lp with ‖xk‖Lp = 1 and |Txk| ≥ 3k for all
k ∈ N. The function

x :=
∞∑
k=1

|xk|
2k

then belongs to Lp, because

‖x‖Lp ≤
∞∑
k=1

‖xk‖Lp
2k = 1.

On the other hand, the function x|g| does not belong to L1, because by the Monotone
Convergence Theorem,

∫ 1

0
x(t)|g(t)| dt =

∞∑
k=1

∫ 1

0

|xk(t)|
2k |g(t)| dt ≥

∞∑
k=1

|Txk|
2k =

∞∑
k=1

3k
2k =∞.

But this contradicts |g| ∈ L1/Lp. Consequently, T is a bounded linear functional
on Lp and therefore has, by a well-known theorem of Riesz (see [153] for a proof), a
representation of the form

Tx =
∫ 1

0
x(t)h(t) dt

for some function h ∈ Lq, where q is the Hölder conjugate to p, that is, q = p
p−1 for

1 < p < ∞ and q = ∞ for p = 1. Thus, |g| = h almost everywhere which implies
g ∈ Lq, as claimed. In total, formula (3.2.2) is established.
We are now going to deduce from (3.2.2) the remaining identities. Let 1 ≤ q < p <∞
and set r = p

q
and s = p

p−q . Then r, s > 1 and 1
r

+ 1
s

= 1. Fix g ∈ L pq
p−q

and x ∈ Lp.
Since (|x|q)r = |x|p ∈ L1 and (|g|q)s = |g|

pq
p−q ∈ L1, we have |x|q ∈ Lr and |g|q ∈ Ls, and

from Hölder’s inequality we obtain that |xg|q ∈ L1, hence xg ∈ Lq and thus g ∈ Lq/Lp.
The same argument works for 1 ≤ p = q < ∞. Finally, L∞/L∞ = L∞ follows from
Proposition 3.0.2 (f). This proves the first and third of the four identities in (3.2.1).
For the second note that for 1 ≤ q < ∞ the inclusion Lq ⊆ Lq/L∞ follows instantly
from Hölder’s inequality, and the inclusion Lq/L∞ ⊆ Lq is a consequence of Proposition
3.0.2 (c).
For the fourth and final identity in (3.2.1) fix 1 ≤ p < q ≤ ∞ and g ∈ Lq/Lp and assume
that g is not zero almost everywhere. Then there is some measurable set E ⊆ [0, 1] of
finite positive measure and some m > 0 such that |g(t)| ≥ m for all t ∈ E. For x ∈ Lp
we have x ∈ Lp(E) and

∞ >
∫ 1

0
|x(t)g(t)|q dt ≥ mq

∫
E
|x(t)|q dt,

and consequently x ∈ Lq(E). This shows Lp(E) ⊆ Lq(E) and hence p ≥ q, a contra-
diction. This proves g = 0 almost everywhere and completes the proof. �

Before we proceed with a characterization of the multipliers RBVq/RBVp, let us re-
mark another interpretation of Hölder’s inequality. It states that if x and y belong to
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conjugate Lebesgue spaces, the product belongs to L1. It is shown in [5] that this is
precise in the following sense: If 1/p+ 1/q = 1 and x ∈ Lp, then

‖x‖Lp = sup
{∫ 1

0
x(t)y(t) dt | y ∈ Lq, ‖y‖Lq ≤ 1

}
; (3.2.3)

in particular, the norm of the linear functional

y 7→
∫ 1

0
x(t)y(t) dt

is precisely the Lp-norm of x. In fact, one can show that the supremum in (3.2.3) is a
maximum for x ∈ Lp with 1 ≤ p < ∞. The following example shows that for p = ∞
this is no longer true [5].

Example 3.2.12. The function x : [0, 1]→ R, t 7→ t, belongs to L∞ with ‖x‖L∞ = 1.
If any y ∈ L1 with 0 < ‖y‖L1

≤ 1 is given, one can pick δ ∈ (0, 1) so that∫ 1−δ

0
|y(t)| dt ≥ 1

2 ‖y‖L1
,

as the Lebesgue integral is absolutely continuous with respect to the domain of inte-
gration. We now obtain∣∣∣∣∫ 1

0
x(t)y(t) dt

∣∣∣∣ ≤ ∫ 1−δ

0
t |y(t)| dt+

∫ 1

1−δ
t |y(t)| dt

≤ (1− δ)
∫ 1−δ

0
|y(t)| dt+

∫ 1

1−δ
|y(t)| dt

=
∫ 1

0
|y(t)| dt− δ

∫ 1−δ

0
|y(t)| dt ≤

(
1− δ

2

)
‖y‖L1

< 1 = ‖x‖L∞ .

Consequently, the number ‖x‖L∞ and hence the supremum in (3.2.3) cannot be attained
by values of the functional

∫ 1
0 x(t)y(t) dt, as long as y satisfies ‖y‖L1

≤ 1. ♦
We remark that there is another difference in this context, depending on the choice
of p: In case 1 < p < ∞, the supremum in (3.2.3) is attained by a unique function
y ∈ Lq. However, for p = 1 or p = ∞, even if the supremum in (3.2.3) is attained by
some function y ∈ Lq, this function must not be unique. This is illustrated by the next
two examples [5].

Example 3.2.13. Consider the functions x = y1 = χ[0,1/2] and y2 = 1. Then x ∈ L1
and y1, y2 ∈ L∞ with ‖y1‖L∞ = ‖y2‖L∞ = 1. Moreover,

‖x‖L1
= 1

2 =
∫ 1

0
x(t)y1(t) dt =

∫ 1

0
x(t)y2(t) dt,

but y1 is not equal to y2 almost everywhere. ♦
Example 3.2.14. Consider the functions x = 1, y1 = 2χ[0,1/2] and y2 = 2χ[1/2,1]. Then
x ∈ L∞ and y1, y2 ∈ L1 with ‖y1‖L1

= ‖y2‖L1
= 1. Moreover,

‖x‖L∞ = 1 =
∫ 1

0
x(t)y1(t) dt =

∫ 1

0
x(t)y2(t) dt,

but y1 is not equal to y2 almost everywhere. ♦
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We are now going to give a full characterization of the spaces RBVq/RBVp for arbitrary
exponents 1 ≤ p, q < ∞ which is an immediate consequence of Theorem 3.2.11. Note
that by Proposition 3.0.2 (f) we have RBVq/RBVp = RBVq if and only if RBVp ⊆
RBVq. Consequently, for the general case we need to know when one such space is
contained in the other. Recall that similar to Lebesgue spaces we have RBVp ⊆ RBVq
if and only if p ≥ q. In addition, note that RBVp ⊆ AC whenever p > 1. As a
consequence, we obtain

Theorem 3.2.15. Let 1 ≤ p, q <∞. Then the following statements hold.

(a) If p ≥ q, then RBVq/RBVp = RBVq.

(b) If p < q, then RBVq/RBVp = {0}.

(c) If q > 1, then RBVq/AC = {0}.
Proof. (a) Since p ≥ q, we have RBVp ⊆ RBVq, and (a) follows again immediately
from Proposition 3.0.2 (f), as mentioned before.
For (b) with p > 1 fix g ∈ RBVq/RBVp and y ∈ Lp. The function

x(t) =
∫ t

0
y(s) ds

is then absolutely continuous with x′ = y ∈ Lp and hence belongs to RBVp. From
Proposition 3.0.2 (c) follows g ∈ RBVq and thus g ∈ AC with g′ ∈ Lq. Moreover,
since g is a multiplier of RBVq over RBVp, we have xg ∈ RBVq and in particular
x′g + xg′ ∈ Lq. Because of x ∈ AC ⊆ L∞, the product xg′ belongs to Lq and hence
x′g = yg must belong to Lq, as well. As this is true for all y ∈ Lp we have shown that
g ∈ Lq/Lp. By Theorem 3.2.11 it follows that g is zero almost everywhere, and since
g is continuous, we conclude g = 0 everywhere, as desired.
For (c) repeat the argument used for (b) with p = 1 and RBVp replaced by AC. Since
AC ⊆ BV we obtain the remaining part of (b) for p = 1 from (c) and Proposition 3.0.2
(b). This completes the proof. �

We remark that the parts (b) and (c) of Theorem 3.2.15 can also be proven without
Theorem 3.2.11. Indeed, in order to prove (b) for p > 1 fix g ∈ RBVq/RBVp for p < q

and assume that g is not identically zero. Because of q > p ≥ 1 the function g is
continuous, and there is some proper interval [a, b] ⊆ (0, 1] and some constant m > 0
such that |g(t)| ≥ m for all t ∈ [a, b]. Now define

h(t) :=
(t− a)−2/(p+q) for t ∈ (a, b],

0 for t ∈ [0, a] ∪ (b, 1]
and x(t) :=

∫ t

0
h(s) ds.

Then h ∈ Lp\Lq, and therefore x ∈ RBVp\RBVq. By definition of g, the product xg
must belong to RBVq. However, we obtain for s ∈ (a, b],

RVarq(xg) ≥ (s− a)1−q |(xg)(s)|q ≥ mq(s− a)1−q |x(s)|q

= mq(p+ q)
p+ q − 2 (s− a)

p−q
p+q . (3.2.4)
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Since q > p, the exponent p−q
p+q in (3.2.4) is negative, and hence the right hand side in

(3.2.4) goes to infinity as s → a+. Consequently, RVarq(xg) = ∞ which contradicts
g ∈ RBVq/RBVp. The same argument works with p = 1 to prove (c).
Let us add some comments to this result. First of all, although part (b) of Theorem
3.2.15 looks different than the corresponding results for the other BV -spaces (Theorem
3.2.1, Corollary 3.2.3 and Theorem 3.2.7), it still fits perfectly. Since in part (b) we
assume q > 1, each function g ∈ RBVq/RBVp must be continuous, and the only
continuous function with countable support is the function 0.
Moreover, assertion (a) is of particular interest for q = 1, because then we obtain
BV/RBVp = BV for all p ∈ [1,∞). In particular, for p = 1 we obtain again BV/BV =
BV . On the other hand, from (b) for p = 1 we get that RBVq/BV = {0} for all q > 1,
and part (c) solves a conjecture that we made in [28].

We now compare RBVq for fixed q > 1 to the classical spaces B,C,∆ and D, and also
to Lip and AC; a first comparison of this kind was already given in Theorem 3.2.15
(c). First note that (1.2.54) implies

Lip ⊆ RBVq ⊆ AC ⊆ C ∩BV,

and we obtain the inclusions

Lip/C ⊆ RBVq/C ⊆ AC/C ⊆ C ∩ (BV/C)

and
Lip/BV ⊆ RBVq/BV ⊆ AC/BV ⊆ C/BV

by Proposition 3.0.2 (a). But the only continuous function in BV/C is the zero function
0 by Theorem 3.1.15, and the only function in C/BV is also the zero function, as has
been pointed out right after Theorem 3.1.15. Hence, Lip/C = RBVq/C = AC/C =
{0} and also Lip/BV = RBVq/BV = AC/BV = {0}, and since C ⊆ B and C ⊆ ∆ ⊆
D we obtain in total Lip/X = RBVq/X = AC/X = {0} for X ∈ {B,BV,C,∆, D} by
Proposition 3.0.2 (b). Moreover, RBVq/Lip = RBVq by Proposition 3.0.2 (f).
We are now considering Y/RBVp for fixed p > 1 and Y ∈ {B,BV,C,∆, D, Lip, AC}.
We already know that BV/RBVp = BV . Also note that since RBVp ⊆ C ⊆ B we have
B/RBVp = B and C/RBVp = C by Proposition 3.0.2 (f). Finally, since ∆/(C∩BV ) =
∆ by Theorem 2.2.2 and RBVp ⊆ C∩BV we obtain ∆/RBVp = ∆ by Proposition 3.0.2
(b) and (c). Similar relations hold for Y/Lip and Y/AC, namely Y/Lip = Y/AC = Y

for Y ∈ {C,∆, B,BV }. Moreover, since RBVp ⊆ AC, Proposition 3.0.2 (f) yields
AC/RBVp = AC. Finally, Lip/RBVp ⊆ RBV2p/RBVp = {0} by Proposition 3.0.2 (a)
and Theorem 3.2.15 (b), and thus this gives us Lip/RBVp = {0}.
However, the class D/RBVp and the analogous classes D/Lip and D/AC seem to be
much more complex, and we do not know how they look like. In addition to the
inclusions mentioned in Figure 3.1.1 at the end of Section 3.1, we only know that

D ∩ B1 ( D/C ⊆ D/(C ∩BV ) ⊆ D/AC ⊆ D/RBVp ⊆ D/Lip ⊆ D,

and we believe that all of the given inclusions are strict.
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The following tables summarize most of the multiplier classes under consideration.
Table 3.2.1 compares the results from Section 3.1 to the results about Waterman spaces
of Section 3.2.

Table 3.2.1: Multipliers in BV and ΛBV .
Jordan variation Waterman variation
C/BV = {0} C/ΛBV = {0}
∆/BV = {0} ∆/ΛBV = {0}
D/BV = {0} D/ΛBV = {0}
B/BV = B B/ΛBV = B

BV/ΛBV = BV ∩ Sc
BV/C = BV ∩ Sc ΓBV/C = ΓBV ∩ Sc
BV/∆ = Sf ΓBV/∆ = Sf
BV/D = Sf ΓBV/D = Sf
BV/B = BV ∩ Sc ΓBV/B = ΓBV ∩ Sc
BV/BV = BV ΓBV/BV = ΓBV

ΓBV/ΛBV = ΓBV for Γ � Λ
ΓBV/ΛBV = ΓBV ∩ Sc for Γ 6� Λ

Table 3.2.2 shows the new results from Section 3.2 about Wiener, Young and Riesz
spaces.

Table 3.2.2: Multipliers in Y BVϕ and RBVp.
Young variation Riesz variation (1 < p, q <∞)
C/Y BVϕ = {0} C/RBVp = C

∆/Y BVϕ = {0} ∆/RBVp = ∆
D/Y BVϕ = {0} D/RBVp = ???
B/Y BVϕ = B B/RBVp = B

BV/Y BVϕ = BV ∩ Sc for ι 6� ϕ BV/RBVp = BV

Y BVψ/C = Y BVψ ∩ Sc RBVq/C = {0}
Y BVψ/∆ = Sf RBVq/∆ = {0}
Y BVψ/D = Sf RBVq/D = {0}
Y BVψ/B = Y BVψ ∩ Sc RBVq/B = {0}
Y BVψ/BV = Y BVψ RBVq/BV = {0}
Y BVψ/Y BVϕ = Y BVψ for ψ � ϕ RBVq/RBVp = RBVq for q ≤ p

Y BVψ/Y BVϕ = Y BVψ ∩ Sc for ψ 6� ϕ RBVq/RBVp = {0} for q > p

Note that the results about Jordan, Waterman and Young variations are completely
similar, whereas the results for the Riesz variation are slightly different. This is because
functions in RBVp for p > 1 are continuous. Moreover, similar to the class D/C we do
not know how the classes D/RBVp for p > 1 look like.
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Finally, our last Table 3.2.3 below gives an overview about the other classes related to
BV -type spaces.

Table 3.2.3: Multipliers in other classes.
Other classes (1 < p, q <∞)

C/Lip = C C/AC = C RBVq/Lip = RBVq
∆/Lip = ∆ ∆/AC = ∆ Lip/RBVp = {0}
D/Lip = ??? D/AC = ??? RBVq/AC = {0}
B/Lip = B B/AC = B AC/RBVp = AC

BV/Lip = BV BV/AC = BV R/ΛBV = R

Lip/C = {0} AC/C = {0} ΛBV/R = ΛBV ∩ Sc
Lip/∆ = {0} AC/∆ = {0}
Lip/D = {0} AC/D = {0}
Lip/B = {0} AC/B = {0}
Lip/BV = {0} AC/BV = {0}



Chapter 4

Linear Operators between
BV -Spaces

The purpose of this chapter is to study several linear operators mainly in BV -spaces
X and Y , where the symbols X and Y represent one of the spaces BV , WBVp, Y BVϕ,
ΛBV or RBVp introduced in Chapter 1. In detail we will consider

• the multiplication operator Mg : X → Y , generated by a function g : [0, 1] → R
and defined by

Mgx(t) = x(t)g(t), (4.0.1)

• the substitution operator Sg : X → Y , generated by a function g : [0, 1] → [0, 1]
and defined by

Sgx(t) = x(g(t)), (4.0.2)

• the integral operator Ig : X → Y , generated by a function g : [0, 1] × [0, 1] → R
and defined by

Igx(t) =
∫ 1

0
g(t, s)x(s) ds. (4.0.3)

For all these operators we are particularly interested in analytic properties like act-
ing conditions, continuity and compactness, but we will also investigate set-theoretic
properties like injectivity, surjectivity and bijectivity.

4.1 Multiplication Operators
In this section we investigate the multiplication operator Mg : X → Y , defined by

Mgx(t) := x(t)g(t) for t ∈ [0, 1],

where X and Y are linear spaces of real-valued functions on the interval [0, 1], and
the generating function g : [0, 1] → R is given. In order to guarantee that Mg is well-
defined, we have to make sure by imposing proper conditions on g that Mg(X) ⊆ Y .

120
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That is, the product xg must belong to Y , whenever x belongs toX. Using the notation
for multiplier sets

Y/X = {g : [0, 1]→ R | xg ∈ Y for all x ∈ X}

introduced in (3.0.1) we have Mg(X) ⊆ Y if and only if g ∈ Y/X.

As we have seen in the previous chapter, in some spaces, especially when X = Y , the
classes Y/X are easy to find: For instance, we have seen in Section 3.1 that B/B = B

and C/C = C which means for our multiplication operator nothing but Mg(B) ⊆ B if
and only if g ∈ B and Mg(C) ⊆ C if and only if g ∈ C.
Generally speaking, if X = Y is closed under multiplication and contains 1 then
X/X = X by Proposition 3.0.2 (f) and therefore Mg(X) ⊆ X if and only if g ∈ X.
The spaces C and B clearly have both properties.
However, in other classes of functions which are not closed under addition or multipli-
cation, a characterization of X/X or even Y/X can be much harder. As we have seen
in Section 3.1 this is difficult especially if the class D of Darboux functions is involved.
For instance, the class D/C satisfies the chain of inclusions

C ( ∆ ( D ∩ B1 ( D/C ( D,

where B1 denotes the class of Baire-1 functions, but its exact characterization is - at
least to our knowledge - unknown.
If X and Y are different spaces, the assumption Mg(X) ⊆ Y can lead to a strong
degeneracy of the generator g. Roughly speaking, this is true whenever X is “large”
and Y is “small”. For example, the classes C/B, C/D and D/B contain only 0 by
Theorem 3.1.10. In terms of the multiplication operator this means that either of the
inclusions Mg(B) ⊆ C, Mg(D) ⊆ C and Mg(B) ⊆ D is possible only for g = 0.

In this section we investigate Mg for the case when X and Y are some of the BV -type
spaces BV , WBVp, Y BVϕ, ΛBV and RBVp, introduced in Chapter 1. Since all five
classes are closed under multiplication and contain the function 1, the multiplication
operator from one such space into itself is always well-defined if and only if g itself is
a member of that space. However, if X and Y are different spaces, the requirement of
Mg : X → Y to be well-defined may again lead to some degeneracy. For instance, as
we have seen in Corollary 3.2.3 and Theorem 3.2.15,

WBVq/WBVp =
WBVq for 1 ≤ p ≤ q,

WBVq ∩ Sc for 1 ≤ q < p,
(4.1.1)

RBVq/RBVp =
RBVq for 1 ≤ q ≤ p,

{0} for 1 ≤ p < q,
(4.1.2)

where Sc denotes the set of functions with countable support. According to the Theo-
rems 3.2.1 and 3.2.7, similar relations hold in Y BVϕ and ΛBV .
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We are going to start our investigations by giving general criteria for injectivity, sur-
jectivity and bijectivity for the multiplication operator Mg : X → Y . Most of them
can be expressed in terms of the support supp and suppδ of the generating function g
as defined in (1.1.8) and (1.1.9). Recall that if supp(g) is uncountable, then suppδ(g)
is infinite for some δ > 0. Conversely, if suppδ(g) is countable for each δ > 0, then
supp(g) is also countable as it is then a countable union of countable sets by (1.1.10).

Since Mg as a linear operator is injective if and only if its null space contains only the
zero vector, we immediately obtain a criterion for injectivity.

Proposition 4.1.1. For g ∈ Y/X, the operator Mg : X → Y is injective if and only
if for each x ∈ X\{0} there is some t ∈ supp(g) such that x(t) 6= 0.

This condition, however, is too broad and shows that an injectivity criterion in general
does not only depend on g but also on X. In some cases, namely if the space X is
sufficiently “large”, the dependence on X is redundant. We give two such cases and
introduce some terminology.
Definition 4.1.2. We say that a linear space X of real-valued functions on [0, 1]

• separates points if for each t ∈ [0, 1] there is some x ∈ X such that x(t) 6= 0,

• strongly separates points if X contains all characteristic functions of singletons,

• uniformly separates points if X ⊆ C and if for each t ∈ [0, 1] and each δ > 0
there is some x ∈ X such that t ∈ supp(x) ⊆ [t− δ, t+ δ].

Note that each space which separates points uniformly or strongly also separates points.
Other relations, however, do not hold. For instance, the spaces C, B, BV , ΛBV ,
WBVp, Y BVϕ and RBVp separate points. However, the spaces B, BV , WBVp, Y BVϕ
and ΛBV separate points strongly, but not uniformly, whereas the spaces C and RBVp
separate points uniformly, but not strongly. Finally, the space of constant functions
only separates points, but neither strongly nor uniformly.
With these definitions at hand, we obtain

Proposition 4.1.3. For g ∈ Y/X the following statements are true.

(a) If supp(g) = [0, 1], then the operator Mg is injective.

(b) If X strongly separates points, then the operator Mg : X → Y is injective if and
only if supp(g) = [0, 1].

(c) If X uniformly separates points, then the operator Mg : X → Y is injective if
and only if supp(g) = [0, 1].

(d) If Y separates points, then the operator Mg : X → Y is surjective if and only if
supp(g) = [0, 1] and 1/g ∈ X/Y .

(e) If Y separates points, then the operator Mg : X → Y is injective if it is surjective.
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Proof. (a) Clearly, xg = 0 for x ∈ X (if and) only if x = 0, and so the null space of
Mg only contains 0 which implies the desired injectivity.

(b) Let Mg be injective and fix t ∈ [0, 1]. Then x := χ{t} ∈ X, and since x 6= 0 and
Mg is injective, xg 6= 0. But this is possible only if g(t) 6= 0. Since t was arbitrary,
g(t) 6= 0 for all t ∈ [0, 1], i.e. supp(g) = [0, 1].
Conversely, if supp(g) = [0, 1], then Mg is injective by (a).

(c) Let Mg be injective and fix t ∈ [0, 1] such that g(t) = 0. For each δ > 0 there is
some x ∈ X such that t ∈ supp(x) ⊆ [t − δ, t + δ]. In particular, x 6= 0, and since
Mg is injective, xg 6= 0. But since supp(xg) ⊆ supp(x) ⊆ [t − δ, t + δ], there is some
s ∈ [t − δ, t + δ] ∩ [0, 1] such that g(s) 6= 0 and hence s ∈ supp(g). This shows that
supp(g) is dense in [0, 1].
Conversely, if supp(g) is dense in [0, 1], then Mg is injective. To see this, fix t ∈ [0, 1]
and x ∈ X such that xg = 0. If g(t) 6= 0, then x(t) = 0. If g(t) = 0, then since supp(g)
is dense in [0, 1], there is a sequence (tn) in [0, 1] converging to t such that g(tn) 6= 0
for each n ∈ N. Then x(tn) = 0 for each n ∈ N and due to continuity, x(t) = 0.
Consequently, x = 0.

(d) LetMg be surjective and fix t ∈ [0, 1]. Since Y separates points there is some y ∈ Y
such that y(t) 6= 0. Since Mg is surjective we find some x ∈ X such that xg = y; in
particular, g(t) 6= 0, and consequently g(t) 6= 0 for all t ∈ [0, 1], as t was arbitrary.
This shows supp(g) = [0, 1]. For any y ∈ Y we again find x ∈ X such that xg = y and
hence y/g = x ∈ X which proves 1/g ∈ X/Y .
For the converse assume that supp(g) = [0, 1] and 1/g ∈ X/Y . For y ∈ Y the function
x := y/g belongs to X and satisfies xg = y, i.e. Mg is surjective.

(e) follows instantaneously from (a) and (d). �

We remark that ifMg : X → X is surjective (or even bijective) andX does not separate
points, then g may have zeros.

Example 4.1.4. Let X = {x ∈ BV | x(0) = 0} and g = χ(0,1]. Then Mg maps X into
itself and is bijective, because Mgx = x for all x ∈ X. However, g obviously has a zero
at t = 0. ♦

Note that this example is not contradictory to Proposition 4.1.3 (d), because X does
not separate points. Even if the operator Mg is considered to be an operator from X

into BV instead of X itself, then it does not contradict Proposition 4.1.3 (d), because
in this case, Mg is not surjective anymore.

We now apply Proposition 4.1.3 to the spaces of our interest and obtain as a conse-
quence the following result. Recall that according to our agreement after Definition
1.2.24 the symbol RBVp implicitly means p > 1, unless otherwise stated. This implies
that functions inRBVp are automatically continuous, whereas functions inRBV1 = BV

are usually not.
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Corollary 4.1.5. For g ∈ Y/X the following statements are true.

(a) If X is any of the spaces B,BV,WBVp, Y BVϕ or ΛBV , then Mg : X → Y is
injective if and only if supp(g) = [0, 1].

(b) If X is any of the spaces C or RBVp, then Mg : X → Y is injective if and only
if supp(g) = [0, 1].

(c) If Y ⊆ X ⊆ B and Y is any of the spaces B,C,BV,WBVp, Y BVϕ,ΛBV or
RBVp, then Mg : X → Y is surjective if and only if inft∈[0,1] |g(t)| > 0. In this
case, Mg is also injective.

Proof. (a) follows from Proposition 4.1.3 (b), and (b) follows from part (c) of Propo-
sition 4.1.3.
For (c) assume that Mg is surjective. Then from Proposition 4.1.3 (d) we obtain that
supp(g) = [0, 1] and 1/g ∈ X/Y . Note that 1 belongs to all of the spaces B, BV ,
ΛBV , BVϕ, RBVp and C, and we obtain X/Y ⊆ X ⊆ B from Proposition 3.0.2 (c).
Thus, 1/g is bounded, and this is possible only if inft∈[0,1] |g(t)| > 0.
Conversely, assume that inft∈[0,1] |g(t)| > 0. Then supp(g) = [0, 1] and 1/g ∈ Y . Since
Y is closed under multiplication we have Y ⊆ X/Y by Proposition 3.0.2 (e) and hence
1/g ∈ X/Y . Again from Proposition 4.1.3 (d) we obtain that Mg is surjective, and
that it is also injective follows from Proposition 4.1.3 (e). �

In particular, for the special case X = Y , we have

Corollary 4.1.6. The following statements are true.

(a) If X = Y is any of the spaces B, BV , WBVp, Y BVϕ or ΛBV , then Mg : X → X

is injective if and only if supp(g) = [0, 1].

(b) If X = Y is any of the spaces C or RBVp, then Mg : X → X is injective if and
only if supp(g) = [0, 1].

(c) If X = Y is any of the spaces B, C, BV , WBVp, Y BVϕ, ΛBV , or RBVp, then
Mg : X → X is surjective if and only if inft∈[0,1] |g(t)| > 0.

(d) If X = Y is any of the spaces B, C, BV , WBVp, Y BVϕ, ΛBV , or RBVp,
then Mg : X → X is bijective if and only if inft∈[0,1] |g(t)| > 0. In this case,
M−1

g = M1/g.

Note that for these spaces, a surjective multiplication operator Mg : X → X is always
automatically injective and hence bijective. In this case, for the inverse operator the
relation

M−1
g = M1/g (4.1.3)

holds. However, this is no specialty of the particular space X, but of the operator
itself. Indeed, if X is any space of real-valued functions on [0, 1] and Mg : X → X is
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surjective, then it is always injective. To see this suppose by contradiction that there
is some x ∈ X with Mgx = 0, but x 6= 0. This means that there is some t ∈ [0, 1] such
that x(t) 6= 0. Due to xg = 0 we get g(t) = 0. But sinceMg is assumed to be surjective,
we must find some z ∈ X such that Mgz = x; in particular, 0 = z(t)g(t) = x(t) 6= 0, a
contradiction.
However, such an operator, even if it is bijective, does not have to satisfy the identity
(4.1.3) anymore, because in the situation of Example 4.1.4 the function 1/g is not even
defined.

We now turn to analytic properties of the multiplication operator Mg : X → X. Here,
we are particularly interested in continuity and compactness for X being one of the
spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Recall that for a linear operator L : X → Y between two normed linear spaces (X, ‖·‖X)
and (Y, ‖·‖Y ) the operator norm is defined by

‖L‖X→Y = sup
x 6=0

‖Lx‖Y
‖x‖X

= sup
‖x‖X=1

‖Lx‖Y .

Then L is bounded if and only if ‖L‖X→Y is finite. Note that in these cases, as a linear
operator, L is then even globally Lipschitz continuous.

We then have the following quite general result.

Proposition 4.1.7. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed linear spaces of real-valued
functions on [0, 1], where X ↪→ Y with embedding constant c > 0 and 1 ∈ X with
‖1‖X = 1, and suppose that Y is a normalized algebra. Then, for g ∈ Y/X, the
operator Mg : X → Y is bounded with

‖g‖Y ≤ ‖Mg‖X→Y ≤ c ‖g‖Y .

Proof. Since 1 ∈ X we have ‖Mg‖X→Y ≥ ‖Mg1‖Y ‖1‖X = ‖g‖Y which shows the first
inequality.
Since X ↪→ Y with embedding constant c > 0, that is, ‖x‖Y ≤ c ‖x‖X for all x ∈ X, we
have ‖xg‖Y ≤ ‖x‖Y ‖g‖Y ≤ c ‖x‖X ‖g‖Y , where we have used that Y is a normalized
algebra in the first estimate. From this follows ‖Mg‖X→Y ≤ c ‖g‖Y which shows the
second inequality.
Finally, we have g = g1 ∈ Y , and this ensures that the upper and lower bounds for
‖Mg‖X→Y are finite. �

For the special case that X = Y is one of our BV -spaces, we have X/X = X and
hence, since all those spaces contain the function 1 that has norm 1, we obtain the
following

Corollary 4.1.8. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Then for g ∈ X the operator Mg : X → X is well-defined and bounded with

‖Mg‖X→X = ‖g‖X .
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Proposition 4.1.7 allows us to compute the operator norm of Mg also for different
combinations of BV -spaces. Let us give some sample results in this direction. For
instance, we have for 1 ≤ p ≤ q <∞ that WBVp ↪→ WBVq with embedding constant
1, and thus Proposition 4.1.7 says

‖Mg‖WBVp→WBVq
= ‖g‖WBVq

. (4.1.4)

Similarly, we obtain from Proposition 4.1.7 for the Riesz spaces for 1 ≤ q ≤ p <∞,

‖Mg‖RBVp→RBVq = ‖g‖RBVq . (4.1.5)

However, the cases p > q for the Wiener spaces and q > p for the Riesz spaces are not
covered by Proposition 4.1.7, even though the estimates (4.1.4) and (4.1.5) remain valid.
Indeed, if p > q, then Corollary 3.2.3 yields that any g ∈ WBVq/WBVp degenerates
to a function in WBVq ∩ Sc. Thus, for x ∈ WBVp we have x ∈ B and

‖g‖WBVq
≤ ‖xg‖WBVq

≤ ‖x‖∞ ‖g‖WBVq
≤ ‖x‖WBVp

‖g‖WBVq

and hence (4.1.4).
The case q > p for the Riesz spaces is much more boring, because Theorem 3.2.15 then
says that any g ∈ RBVq/RBVp must be equal to 0, and then (4.1.5) is clearly true.
Other cases that are not covered by Proposition 4.1.7 either are sometimes also known.
For instance, one can show with the help of Hölder’s inequality that

‖Mg‖Lp→Lq = ‖g‖Lpq/(p−q)
for p ≥ q.

However, the operator Mg is not always bounded.

Example 4.1.9. Consider the space C1
0 := {x ∈ C1 | x(0) = 0} equipped with the

norm ‖·‖∞, and the function g : [0, 1]→ R, defined by

g(t) =


1
t

for 0 < t ≤ 1,

0 for t = 0.

Then g ∈ L1/C
1
0 , because for x ∈ C1

0 the function

x(t)g(t) =


x(t)
t

for 0 < t ≤ 1,

0 for t = 0

satisfies

‖Mgx‖L1
=
∫ 1

0
|x(t)g(t)| dt =

∫ 1

0

1
t

∣∣∣∣∫ t

0
x′(s) ds

∣∣∣∣ dt ≤ ‖x′‖∞ .
Consequently, the operatorMg : C1

0 → L1 is well-defined. However,Mg is not bounded.
Indeed, the functions xn : [0, 1]→ R, for n ∈ N defined by

xn(t) =
2nt− n2t2 for 0 < t ≤ 1/n,

1 for 1/n < t ≤ 1,
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belong to C1
0 with ‖xn‖∞ = 1 for all n ∈ N, but the functions Mgxn satisfy

‖Mgxn‖L1
=
∫ 1

0
|Mgxn(t)| dt =

∫ 1/n

0

(
2n− n2t

)
dt+

∫ 1

1/n

1
t

dt = 3
2 + log(n)

and hence form an unbounded sequence in L1. ♦
Note that the functions xn constructed in Example 4.1.9 do not contradict Proposition
4.1.7, because 1 /∈ C1

0 , even though C1
0 ↪→ L1 and (C1

0 , ‖·‖∞) is a normalized algebra.

Let us now pass to compactness. A first criterion which yields compactness of a linear
operator is that its range is finite dimensional. The following theorem states that the
multiplication operator has finite dimensional range if and only if supp(g) is finite.
This was first proven for X = Y = BV and X = Y = WBVp in the recent papers [17]
and [16], respectively, but it is also true in a more general setting. In fact, with the
same idea we prove that the dimension of the range of Mg coincides with the number
# supp(g) of points at which g is not zero.

Theorem 4.1.10. Let X be a linear space of real-valued functions on [0, 1] which sep-
arates points strongly, and let g ∈ Y/X. Then for Mg : X → Y we have dim Im(Mg) =
# supp(g).

Proof. We first show the inequality dim Im(Mg) ≥ # supp(g) which is obviously true
for g = 0. Thus we assume that g 6= 0 which implies # supp(g) ≥ 1, and fix n ∈ N
with n ≤ # supp(g). Then there are pairwise distinct numbers t1, . . . , tn ∈ supp(g); in
particular, g(tj) 6= 0 for 1 ≤ j ≤ n. The functions yj := χ{tj}g belong to Im(Mg), since
X contains all characteristic functions of singletons. For j ∈ {1, . . . , n} let λj ∈ R be
so that

n∑
j=1

λjyj = 0.

By evaluating this equation at t = tk for each k ∈ {1, . . . , n}, we get that

0 =
n∑
j=1

λjyj(tk) = λkχ{tk}g(tk) = λkg(tk) for 1 ≤ k ≤ n,

which implies λk = 0 for 1 ≤ k ≤ n. Thus, {y1, . . . , yn} is a linearly independent subset
of Im(Mg); in particular, dim Im(Mg) ≥ n. Since this is true for each n ≤ # supp(g),
we obtain dim Im(Mg) ≥ # supp(g).
In order to show the reverse inequality dim Im(Mg) ≤ # supp(g), we can assume
that # supp(g) < ∞, because otherwise the inequality is clearly true. This time,
let n := # supp(g) and write supp(g) = {t1, . . . , tn}. Since X contains all characteris-
tic functions of singletons, the functions yj := χ{tj}g for j ∈ {1, . . . , n} form a subset
of Im(Mg). Let y ∈ Im(Mg), that is, there is some x ∈ X such that y = xg. Then

y = xy =
∑
t∈[0,1]

x(t)g(t)χ{t} =
n∑
j=1

x(tj)yj
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which shows that the linear hull of {y1, . . . , yn} contains y. But since y was chosen
arbitrarily, it contains the entire range Im(Mg); in particular, dim Im(Mg) ≤ n =
# supp(g), and this completes the proof. �

Note that we cannot drop the word “strongly” in Theorem 4.1.10.

Example 4.1.11. Let X = 1R be the space of constant functions, let Y = C, and con-
sider Mg : X → Y , generated by g(t) = t. Then supp(g) = (0, 1] is even uncountable,
but

Im(Mg) =
{
y : [0, 1]→ R | y(t) = at, a ∈ R

}
= Span

(
{g}

)
is a one-dimensional subspace of C. ♦
We are now in position to prove the main result which provides a full characterization
of those g that generate a compact multiplication operator Mg : X → X. This result
has been proven for the special case when X = Y = WBVp for 1 ≤ p < ∞ also in
[16, 17].

Theorem 4.1.12. Let X be one of the spaces BV ,WBVp, Y BVϕ with ϕ ∈ δ2, or ΛBV ,
and let g ∈ X. Then Mg : X → X is compact if and only if supp(g) is countable.

Proof. First note that for all the spaces under consideration we have X/X = X and
hence Mg is well-defined.
We first prove the theorem for X = Y BVϕ and some fixed Young function ϕ. This also
implies the result for X = BV and X = WBVp for 1 < p <∞. To this end, we begin
by assuming that supp(g) is countable and show thatMg : Y BVϕ → Y BVϕ is compact.
If supp(g) is finite, then Mg has finite dimensional range by Theorem 4.1.10 and hence
is compact. If supp(g) is infinite, we can write E := {t1, t2, t3, . . .} = supp(g) ⊆ [0, 1].
Setting En := {t1, t2, . . . , tn}, the functions gn := χEng have finite support and thus
belong to Y BVϕ. By Theorem 4.1.10 the operators Mgn : Y BVϕ → Y BVϕ have finite
dimensional range and hence are compact. Moreover, since g ∈ Y BVϕ ⊆ B and ϕ ∈ δ2,
the variation Varϕ(g) is finite. Finally, gn − g = −χE\Eng. We obtain with the help of
Proposition 1.2.10,

Varϕ
(
gn − g

2

)
≤

∞∑
j=n+1

ϕ
(
|g(tj)|

)
. (4.1.6)

Since, again by Proposition 1.2.10,
∞∑

j=n+1
ϕ
(
|g(tj)|

)
≤
∞∑
j=1

ϕ
(
|g(tj)|

)
≤ Varϕ(g) <∞,

the right hand side of (4.1.6) and therefore also Varϕ
(
(gn−g)/2

)
and hence Varϕ(gn−g)

(due to ϕ ∈ δ2) go to 0 as n→∞. By Proposition 1.2.15 (b), also M(gn − g)→ 0 as
n→∞. Additionally, by Proposition 1.2.10,

ϕ
(
‖gn − g‖∞

)
= ϕ

(
sup
j>n
|g(tj)|

)
= sup

j>n
ϕ
(
|g(tj)|

)
≤

∞∑
j=n+1

ϕ
(
|g(tj)|

)
≤ Varϕ(gn − g).
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Consequently, ϕ
(
‖gn − g‖∞

)
, hence ‖gn − g‖∞ and eventually ‖gn − g‖Y BVϕ go to 0

as n→∞. Finally, by Corollary 4.1.8,

‖Mgn −Mg‖Y BVϕ = ‖gn − g‖Y BVϕ −→ 0 as n→∞,

and so Mg is compact, as well.
For the converse assume now that supp(g) is uncountable which implies that suppδ(g)
is infinite for some δ > 0. Then there is a sequence (tn) in suppδ(g) of pairwise disjoint
points; in particular, |g(tn)| ≥ δ for all n ∈ N. The functions xn := χ{tn} form a
bounded sequence in Y BVϕ, but for m,n ∈ N with m 6= n we have

‖Mgxm −Mgxn‖Y BVϕ ≥ ‖g · (xm − xn)‖∞ ≥
∣∣∣g(tn)

(
xm(tn)− xn(tn)

)∣∣∣ = |g(tn)| ≥ δ

and hence (Mgxn) cannot have a convergent subsequence. Thus, Mg cannot be com-
pact.
We now mimic this proof for X = ΛBV , where Λ = (λj) is a fixed Waterman sequence;
the ideas are the same. We first assume that supp(g) is countable. If supp(g) is finite,
then Mg has finite dimensional range by Theorem 4.1.10 and hence is compact. If
supp(g) is infinite, we can write E := {t1, t2, t3, . . .} = supp(g) ⊆ [0, 1]. Setting
En := {t1, t2, . . . , tn}, the functions gn := χEng have finite support and thus belong to
ΛBV . By Theorem 4.1.10 the operators Mgn : ΛBV → ΛBV have finite dimensional
range and hence are compact. Moreover, gn − g = −χE\Eng, and thus by Proposition
1.2.20,

VarΛ(gn − g) ≤ 2 sup
σ

∞∑
j=n+1

λσ(j)|g(tj)|, (4.1.7)

where the supremum is taken over all permutations σ of N. Since

sup
σ

∞∑
j=n+1

λσ(j)|g(tj)| ≤ sup
σ

∞∑
j=1

λσ(j)|g(tj)| ≤ VarΛ(g),

again by Proposition 1.2.20, the right hand side of (4.1.7) and therefore also VarΛ(gn−g)
goes to 0 as n→∞. Additionally,

‖gn − g‖∞ = sup
j>n
|g(tj)| ≤ λ−1

1 sup
σ

∞∑
j=n+1

λσ(j)|g(tj)| ≤ λ−1
1 Varϕ(gn − g).

Consequently, ‖gn − g‖∞ and eventually ‖gn − g‖ΛBV go to 0 as n → ∞. Finally, by
Proposition 4.1.7,

‖Mgn −Mg‖ΛBV = ‖gn − g‖ΛBV −→ 0 as n→∞,

and so Mg is compact as well.
For the converse assume now that supp(g) is uncountable which implies that suppδ(g)
is infinite for some δ > 0. Then there is a sequence (tn) in suppδ(g) of pairwise disjoint
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points; in particular, |g(tn)| ≥ δ for all n ∈ N. The functions xn := χ{tn} form a
bounded sequence in ΛBV , but for m,n ∈ N with m 6= n we have

‖Mgxm −Mgxn‖ΛBV ≥ ‖g · (xm − xn)‖∞ ≥
∣∣∣g(tn)

(
xm(tn)− xn(tn)

)∣∣∣ = |g(tn)| ≥ δ > 0

and hence (Mgxn) cannot have a convergent subsequence. Thus, Mg cannot be com-
pact. �

For the Riesz spaces RBVp we have a similar result. However, since each function in
RBVp is continuous, compactness of Mg leads to a stronger degeneracy.

Theorem 4.1.13. For g ∈ RBVp, the operator Mg : RBVp → RBVp is compact if and
only if g = 0.

Proof. If g = 0, the operator Mg is clearly compact. We now assume that g is not
identically zero. Since g is continuous, there is some interval [a, b] ⊆ [0, 1] with a < b

such that g(t) 6= 0 for all t ∈ [a, b]. The set

K :=
{
x ∈ RBVp | ∀t ∈ [0, 1]\[a, b] : x(t) = 0

}
is a closed infinite dimensional subspace of RBVp and hence complete. Obviously,
Mg(K) ⊆ K, and we have in fact Mg(K) = K. To see this fix y ∈ K and define
x : [0, 1]→ R by

x(t) =
y(t)/g(t) for t ∈ [a, b],

0 for t ∈ [0, 1]\[a, b].

Then clearly Mgx = xg = y. Since g is continuous on the compact set [a, b], it is
bounded away from zero which ensures RVarp(x) < ∞. Thus, the restriction Mg|K :
K → K is surjective and hence not compact, and so Mg is also not compact. �

Note that Theorem 4.1.13 also provides an analogue for Theorem 4.1.10 in RBVp: A
multiplication operator Mg : RBVp → RBVp has finite dimensional range if and only
if its generator degenerates to g = 0.

Recall that the essential norm of a bounded linear operator A between two Banach
spaces X and Y is defined by

‖A‖e := inf
{
‖A−K‖X→Y | K : X → Y linear and compact

}
(4.1.8)

and measures the distance from A to the closed subspace of compact linear operators.
In particular, ‖A‖e = 0 if and only if A itself is compact. Our previous discussions
suggest that in X = Y = BV the equality

‖Mg‖e = inf
{
δ > 0 | suppδ(g) is finite

}
(4.1.9)
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holds. We were not able to decide whether this conjecture is true. However, some
partial results are possible. Recall that the right regularization g# of a function g ∈ BV
is defined by

g#(t) =


lim
s→t+

g(s) for t ∈ [0, 1),

g(1) for t = 1.

Then Var(g#) ≤ Var(g), and h := g − g# belongs to BV and has countable support,
because g# differes by g only at the (at most countably many) points of discontinuity
of g. Thus, by Theorem 4.1.12, Mh : BV → BV is compact. Consequently,

‖Mg‖e = ‖Mg−h+h‖e =
∥∥∥Mg# +Mh

∥∥∥
e
≤
∥∥∥Mg#

∥∥∥
e

+ ‖Mh‖e =
∥∥∥Mg#

∥∥∥
e
.

This and interchanging the roles of g and g# show

‖Mg‖e =
∥∥∥Mg#

∥∥∥
e
.

We claim that the essential norm of Mg satisfies the upper estimate

‖Mg‖e ≤
∥∥∥g#

∥∥∥
BV

(4.1.10)

and, if g is bounded away from zero, also the lower estimate

‖Mg‖e ≥
∥∥∥1/g#

∥∥∥−1

BV
. (4.1.11)

In order to show (4.1.10) we obtain similarly as above and with the help of Corollary
4.1.8,

‖Mg‖e =
∥∥∥Mg#

∥∥∥
e
≤
∥∥∥Mg#

∥∥∥
BV→BV

= ‖Mg −Mh‖BV→BV = ‖Mg−h‖BV→BV
= ‖g − h‖BV =

∥∥∥g#
∥∥∥
BV

.

For the proof of (4.1.11) we assume that g is bounded away from zero. Then g# is
also bounded away from zero and hence by Corollary 4.1.6 (d) generates a bijective
operator Mg# : BV → BV with inverse M−1

g# = M1/g# . For any compact operator
K : BV → BV we must have, again with Corollary 4.1.8,∥∥∥Mg# −K

∥∥∥
BV→BV

≥ 1∥∥∥M−1
g#

∥∥∥
BV→BV

= 1∥∥∥M1/g#

∥∥∥
BV→BV

= 1
‖1/g#‖BV

,

since a compact operator in an infinite dimensional space cannot be invertible. The
estimate (4.1.11) now follows by taking the infimum over all compact operators K.

It is clear that equality holds simultaneously in (4.1.10) and (4.1.11) if and only if g# is
constant. In this case, the conjecture (4.1.9) is indeed true, since then g is of the form
g(t) = c+ h(t), where c ≡ g# is the constant and h ∈ BV is a function with countable
support. But since h ∈ BV , we must have that suppδ(h) is finite for all δ > 0 and
hence the quantity in (4.1.9) is just equal to c which then coincides with the bounds
given in (4.1.10) and (4.1.11). We illustrate this in the following example.
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Example 4.1.14. Let (rn) be any sequence of pairwise distinct numbers in (0, 1). For
fixed c ≥ 0 define g on [0, 1] by

g(t) =
c+ 1/n2 for t = rn,

c otherwise.

Then g ∈ BV with g# ≡ c. If c = 0, then g has countable support, and hence Mg

is compact by Theorem 4.1.12 with ‖Mg‖e = 0. For c > 0, the function g# ≡ c is
bounded away from zero, and the quantities (4.1.10) and (4.1.11) are all equal to c, i.e.
‖Mg‖e = c. Moreover, for arbitrary c ≥ 0 the set

suppδ(g) = {rn | 1/n2 ≥ δ − c, n ∈ N}

is finite for each δ > c and becomes infinite for δ ≤ c, and thus the quantity given in
(4.1.9) is equal to c, as well. So in this case our conjecture is true. ♦
If, however, g is not “essentially constant”, then the bounds in (4.1.10) and (4.1.11)
may drift apart the closer g comes to zero.

Example 4.1.15. For fixed α > 0, the function g(t) = t+α for t ∈ [0, 1] is continuous,
bounded away from zero and of bounded variation with g = g#. From (4.1.10) and
(4.1.11) we get

α(α + 1)
2 + α

= 1
‖1/g#‖BV

≤ ‖Mg‖e ≤
∥∥∥g#

∥∥∥
BV

= α + 2.

Consequently, since

lim
α→0+

1
‖1/g#‖BV

= 0 and lim
α→0+

∥∥∥g#
∥∥∥
BV

= 2,

the “gap” between (4.1.10) and (4.1.11) becomes 2 for our functions g as α→ 0+.
However, we clearly have

inf{δ > 0 | suppδ(g) is finite} = α + 1,

which sits almost in the middle between (4.1.10) and (4.1.11). ♦

4.2 Substitution Operators
In this section we investigate the substitution operator Sg : X → Y , generated by some
function g : [0, 1]→ [0, 1] and defined by

Sgx(t) = x(g(t)) for 0 ≤ t ≤ 1,

where X and Y are linear spaces of real-valued functions on [0, 1]. Although Sg is
a linear operator, not so much is known about it, even in case X = Y , particularly
if X = Y is one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp which have been
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introduced in Chapter 1. But since Sg is not the center piece of this thesis, we only
give a brief discussion.

First, Sg : X → X is well-defined if and only if x ◦ g belongs to X whenever x does,
and using the notation introduced in (2.3.2) this is equivalent to g ∈ Σ(X). For
instance, we have seen at the beginning of Section 2.3 that Σ(B) contains any function
g : [0, 1]→ [0, 1], while Σ(C) consists of all continuous functions g : [0, 1]→ [0, 1].
For our BV -type spaces things are more difficult. As we have already mentioned prior
to Example 2.3.7, the set Σ(BV ) is precisely the class of those functions g : [0, 1] →
[0, 1] which are pseudo-monotone, that is, g : [0, 1] → [0, 1] belongs to Σ(BV ) if and
only if there is some N ∈ N depending only on g, such that for any compact interval
J ⊆ [0, 1] the preimage g−1(J) can be written as the union of at most N intervals
which may be open, closed, half-open or singletons. Any monotone function is pseudo-
monotone (with N = 1), and any pseudo-monotone function is of bounded variation.
However, Example 2.3.7 has shown that not every function of bounded variation is also
pseudo-monotone.
That the operator Sg maps BV into itself if and only if g is pseudo-monotone was
shown by Josephy in [74]. In fact, the same had been proven later for BV replaced by
X = Y BVϕ with ϕ ∈ δ2 by Galkin [65]. In this case, the estimate

Varϕ(x ◦ g) ≤ 2N Varϕ(x) for x ∈ Y BVϕ (4.2.1)

holds, and we have ‖Sgx‖Y BVϕ ≤ 2N ‖x‖Y BVϕ for all x ∈ Y BVϕ which shows that the
operator Sg is automatically continuous. This, of course, is also true in the Wiener
spaces WBVp.
Unfortunately, we do not know what happens when X = ΛBV or X = RBVp. How-
ever, if Sg maps RBVp into itself, then g must belong to RBVp, and hence pseudo-
monotonicity alone is not sufficient as an acting condition between Riesz spaces.

Before we give general results concerning injectivity and surjectivity, we start by taking
a closer look at Sg : C → C. As said, this operator is well-defined if and only if
g : [0, 1] → [0, 1] is continuous, and in this case, calculating its norm is trivial: Since
the function 1 belongs to C, we immediately obtain

‖Sg‖C→C = 1

which is independent of g.
However, the following example shows that injectivity or surjectivity of g does not
imply the injectivity respectively surjectivity of Sg.

Example 4.2.1. The function g : [0, 1] → [0, 1], t 7→ t/2, is injective, but not sur-
jective. However, Sg is not injective, because the function x : [0, 1] → R, defined by
x(t) = t for t ∈ [0, 1/2] and arbitrary for t ∈ (1/2, 1] is mapped into the function
y(t) = t/2 for t ∈ [0, 1], no matter how exactly x is defined on (1/2, 1].
On the other hand, the function g : [0, 1] → [0, 1], t 7→ 4t(1− t), is surjective, but not
injective. However, Sg is not surjective, because there is no function x : [0, 1] → R
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satisfying x(g(t)) = t for all t ∈ [0, 1]. Otherwise, we had 0 = x(g(0)) = x(g(1)) = 1
which is clearly impossible. ♦
The last example shows that the surjectivity of Sg seems to force g to be injective.
That this is indeed true is shown by the following result.

Proposition 4.2.2. Let g : [0, 1]→ [0, 1] be continuous. Then the following statements
hold.

(a) The operator Sg : C → C is surjective if and only if g is injective.

(b) The operator Sg : C → C is injective if and only if g is surjective. In this case,
Sg is even an isometry, i.e.

‖Sgx‖∞ = ‖x‖∞ for x ∈ C.

Proof. (a) Suppose that Sg : C → C is surjective and fix r, s ∈ [0, 1] with g(r) = g(s).
Since y(t) = t belongs to C, there is some function x ∈ C with x(g(t)) = y(t) = t for
all t ∈ [0, 1]. This implies r = x(g(r)) = x(g(s)) = s and hence the injectivity of g.
Conversely, assume that g is injective. Then K := g([0, 1]) ⊆ [0, 1] is a compact
interval, and the function g : [0, 1] → K is a homeomorphism. Given y ∈ C, the
function y ◦g−1 : K → R is continuous which can be extended to a continuous function
x on [0, 1]. Thus, x ∈ C and x ◦ g = y.
(b) If g is surjective, we have

‖Sgx‖∞ = sup
s∈[0,1]

|x(g(s))| = sup
t∈[0,1]

|x(t)| = ‖x‖∞ ,

showing that Sg is an isometry and in particular injective.
Conversely, assume that Sg is injective. Fix t ∈ [0, 1] and consider the functions xn ∈ C,
defined by

xn(s) = max
{

0, 1− n|s− t|
}

for all n ∈ N.

Then t ∈ supp(xn) ⊆ [t − 1/n, t + 1/n] for each n ∈ N. Since xn 6= 0 and Sg
is injective and linear, none of the functions Sgxn can be zero everywhere, and so
there are sn ∈ [0, 1] with Sgxn(sn) = xn(g(sn)) 6= 0 for each n ∈ N. This implies
g(sn) ∈ supp(xn) for each n ∈ N and hence g(sn)→ t as n→∞. But this shows that
g([0, 1]) is dense in [0, 1], and since g is continuous, g is surjective. �

Observe that the “crossover” between surjectivity and injectivity in our proposition is
perfectly symmetric. And on top of the injectivity of Sg we get the isometry property
in (b) for free. Also, this proposition shows that it was not accidental that the first
function g in Example 4.2.1 is not surjective, while the second one is not injective.
Our aim is now to see how we may imitate the proof to get a similar result in general
spaces X and Y of real-valued functions defined on [0, 1].
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Proposition 4.2.3. Let g : [0, 1]→ [0, 1] be so that Sg maps X into Y . The following
statements are true.

(a) If g is surjective, then Sg is injective.

(b) If X separates points strongly and Sg is injective, then g([0, 1]) = [0, 1], i.e. g is
surjective.

(c) If X separates points uniformly and Sg is injective, then g([0, 1]) = [0, 1]. If, in
addition, g is continuous, then g is even surjective.

(d) If Y contains at least one injective function and Sg is surjective, then g is injec-
tive.

Proof. For (a) fix x ∈ X with Sgx = 0. For t ∈ [0, 1] we find some s ∈ [0, 1] with
g(s) = t. This implies x(t) = x(g(s)) = Sgx(s) = 0, and since t was arbitrary, x = 0.
Since Sg is linear, Sg is injective.
For (b) assume that X separates points strongly. Then, for fixed t ∈ [0, 1], the function
x := χ{t} belongs to X. Since Sg is injective and x 6= 0, the function Sgx cannot be
zero everywhere. Thus, there must be some s ∈ [0, 1] such that Sgx(s) = x(g(s)) 6= 0
and hence g(s) = t which proves that g is indeed surjective.
If X separates points uniformly, then for fixed t ∈ [0, 1] and each n ∈ N we find xn ∈ X
such that

t ∈ supp(xn) ⊆ [t− 1/n, t+ 1/n].

Since Sg is injective and xn 6= 0, none of the function Sgxn is zero everywhere. Thus,
there must be sn ∈ [0, 1] such that Sgxn(sn) = xn(g(sn)) 6= 0 and hence

|g(sn)− t| ≤ 1/n for all n ∈ N

which shows that g(sn)→ t as n→∞. This proves g([0, 1]) = [0, 1].
If g is continuous, then we even have g([0, 1]) = [0, 1] which means that g is surjective.
This proves (c).
To prove (d) let y ∈ Y be an injective function. Since Sg is surjective, there must be
some x ∈ X such that Sgx = y. For fixed s, t ∈ [0, 1] with g(s) = g(t) we obtain

y(s) = Sgx(s) = x(g(s)) = x(g(t)) = Sgx(t) = y(t),

thus s = t as y is injective. But then g is also injective. �

Comparing Proposition 4.1.3 and Proposition 4.2.3, one can see that injectivity of Mg

is related to the support of g, while injectivity of Sg is related to the image of g.
Moreover, in contrast to the multiplication operator, there are surjective substitution
operators which map BV into itself and are not injective.
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Example 4.2.4. Define g : [0, 1] → [0, 1] by g(t) = t/2. Then g is strictly increasing
and hence injective, but not surjective. In particular, Sg maps BV into itself, but
cannot be injective by Proposition 4.2.3 (b). However, Sg is indeed surjective, since for
fixed y ∈ BV the function x : [0, 1]→ R, defined by

x(t) =
y(2t) for 0 ≤ t ≤ 1/2,
y(1) for 1/2 < t ≤ 1,

belongs to BV and satisfies x ◦ g = y. ♦
Let us have a look at Proposition 4.2.3 again and see what it tells us, apart from B

and C, about our BV -type spaces.

Corollary 4.2.5. Let g : [0, 1] → [0, 1] be so that Sg maps X into Y . The following
statements are true.

(a) If g is surjective, then Sg is injective, no matter what X and Y are.

(b) If X is one of the spaces B, BV , WBVp, Y BVϕ or ΛBV and if Sg is injective,
then g is surjective.

(c) If X is one of the spaces C or RBVp and if Sg is injective, then g([0, 1]) is dense
in [0, 1]. If, in addition, g is continuous, then g is surjective.

(d) If Y is one of the spaces B, C, BV , WBVp, Y BVϕ, ΛBV or RBVp and if Sg is
surjective, then g is injective.

By comparing the parts (b) and (c) in Corollary 4.2.5 one might ask if the stronger
statement (b) is also true if X is one of the spaces C and RBVp without putting further
constraints on g. In other words, one might ask why (b) and (c) have to be considered
separately. The reason is simple: If X is C or RBVp and Sg maps X injectively into
any function space Y , then we cannot expect g to be surjective, as illustrated by the
following example.

Example 4.2.6. Let g : [0, 1]→ [0, 1] be given by

g(t) =
t for 0 < t ≤ 1,

1 for t = 0.

Then the operator Sg maps the space C into the space B. Moreover, Sg is injective. To
see this, fix x ∈ C and assume Sgx = 0. For any 0 < t ≤ 1 we have g(t) = t and hence
0 = Sgx(t) = x(g(t)) = x(t), and due to the continuity of x we conclude x = 0. This
implies that Sg is indeed injective. But g is not surjective, because it has no zeros.
Note, however, that g([0, 1]) = (0, 1] is dense in [0, 1], and this is in total accordance
with part (c) of Corollary 4.2.5. ♦
Note that the injective and surjective criteria of Proposition 4.2.2 can be found entirely
within Corollary 4.2.5 (c) and (d). Also observe that all the spaces mentioned in
Corollary 4.2.5 (d) contain the injective function y(t) = t. The special case X = Y =
Y BVϕ with ϕ ∈ δ2 is included in our next set of consequences.
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Corollary 4.2.7. Let g : [0, 1] → [0, 1] be pseudo-monotone, and let X be one of the
spaces BV , WBVp or Y BVϕ with ϕ ∈ δ2. Then the following statements are true.

(a) The operator Sg : X → X is injective if and only if g is surjective.

(b) If the operator Sg : X → X is surjective, then g is injective.

(c) The operator Sg : X → X is bijective if and only if g is bijective and g−1 is
pseudo-monotone. In this case, S−1

g = Sg−1.

Proof. Indeed, part (a) follows immediately from Proposition 4.2.3 (a) and (b), whereas
part (b) can be deduced from (d) of Proposition 4.2.3. Note that the identity function
x(t) = t belongs to Y BVϕ and is injective.
To prove (c) note that if Sg is bijective, then it follows from (a) and (b) that g is
bijective. Let T be the inverse operator of Sg. Then

TSgx(t) = (Tx)(g(t)) = x(t) for all t ∈ [0, 1]

and hence
Tx(s) = x(g−1(s)) = Sg−1x(s) for all s ∈ [0, 1].

But then g−1 must be pseudo-monotone. Conversely, assume that g is bijective with a
pseudo-monotone inverse g−1. Then Sg−1 maps Y BVϕ into itself. Moreover,

SgSg−1x(t) = Sg−1x(g(t)) = x(g(g−1(t))) = x(t)

and similarly Sg−1Sgx(t) = x(t) for all t ∈ [0, 1] and x ∈ Y BVϕ. This completes the
proof. �

It is unclear whether the injectivity of g also implies the surjectivity of Sg for the spaces
considered in Corollary 4.2.7.

We will now discuss the last of the analytic properties of our interest, namely compact-
ness. For the multiplication operator we have seen in Theorem 4.1.12 that Mg : BV →
BV is compact if and only if g has countable support. This, however, cannot be true
for Sg : BV → BV , and here are three reasons: First, if the support of g is countable
but contains infinitely many elements, then the function g cannot be pseudo-monotone.
Second, the constant function g = 1 which has uncountable support obviously gener-
ates a compact operator Sg : BV → BV . And a third reason why the support of g is
not the appropriate tool for characterizing compactness may be found in Proposition
4.2.3, because we have seen there that the image set of g regulates mapping properties
of Sg. But even if the image of g is countable, the operator Sg still does not need to
be compact.

Example 4.2.8. Define g : [0, 1]→ [0, 1] by g(0) = 0 and g(t) = 1/n for t ∈ ( 1
n+1 ,

1
n
] =:

In for all n ∈ N. Then g is increasing and hence pseudo-monotone, but Sg which indeed
maps BV into itself, is not compact. To see this, consider the functions xn := χ{1/n}
for n ∈ N which clearly form a bounded sequence in BV with ‖xn‖BV ≤ 3 for all
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n ∈ N. However, Sgxn(t) = xn(g(t)) = 1 for t ∈ In and Sgxn(t) = 0 otherwise
which can be rewritten as Sgxn = M1χIn . By Theorem 4.1.12, Sg is not compact,
since supp(1) = [0, 1] is uncountable, although (χIn) is a bounded sequence in BV as
‖χIn‖BV ≤ 3 for all n ∈ N. ♦
Surprisingly, again in contrast to the multiplication operator, the only compact sub-
stitution operators are those with finite dimensional range.

Theorem 4.2.9. Let X be one of the spaces BV , WBVp, Y BVϕ or ΛBV , and let the
function g : [0, 1]→ [0, 1] be pseudo-monotone and so that Sg maps X into itself. Then
the following statements are equivalent.

(a) The operator Sg has finite dimensional range.

(b) The operator Sg is compact.

(c) The set g([0, 1]) is finite.

In this case, dim Im(Sg) = #g([0, 1]).

Proof. The implication “(a)⇒(b)” is obviously true. To prove “(b)⇒(c)”, assume that
the set g([0, 1]) is infinite from which we then can extract a sequence (sn) of pairwise
distinct numbers. Since each sn belongs to the image of g, there are numbers tn ∈ [0, 1]
such that g(tn) = sn. The functions xn := χ{sn} now form a bounded sequence in X,
but the sequence (Sgxn) cannot have a Cauchy subsequence in X, as for m 6= n,

‖Sgxm − Sgxn‖X ≥ ‖Sgxm − Sgxn‖∞ ≥ |Sgxm(tn)− Sgxn(tn)|
= |xm(g(tn))− xn(g(tn))| = |xm(sn)− xn(sn)| = 1.

Thus, the operator Sg is not compact.
For the last implication “(c)⇒(a)” assume that g([0, 1]) is finite and hence can be writ-
ten as g([0, 1]) = {s1, . . . , sn} for some numbers s1, . . . , sn ∈ [0, 1] and n = #g([0, 1]).
Then the points sj are pairwise distinct which ensures that the corresponding preim-
ages Aj := g−1({sj}) partition [0, 1]. Since g is pseudo-monotone, each set Aj has only
finitely many connected components which ensures that the functions xj := χAj =
Sgχ{sj} belong to X. Moreover, for any x ∈ X and t ∈ Aj we have

Sgx(t) = x(g(t)) = x(sj) = x(sj)χAj(t),

and so for arbitrary t ∈ [0, 1],

Sgx(t) =
n∑
j=1

x(sj)χAj(t) =
n∑
j=1

x(sj)xj(t).

Consequently, Sgx ∈ Span({x1, . . . , xn}) which shows that Sg has finite dimensional
range. Since the Aj are pairwise disjoint, the functions xj are linearly independent and
thus form a basis of the range of Sg. This shows dim Im(Sg) = #g([0, 1]). �
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Let us make two final remarks. First, we do not know if the fact that g is pseudo-
monotone is sufficient to guarantee that Sg maps also ΛBV into itself. This is why in
Theorem 4.2.9 we had to make that as an explicit assumption. Second, many linear
operators in functional analysis are proved to be compact by approximating them by
operators with finite dimensional range; for instance, we have done so in the proof of
Theorem 4.1.12. Remarkably, Theorem 4.2.9 shows that the operator Sg is compact in
many BV -spaces of our interest only if it has finite dimensional range itself.

4.3 Integral Operators
In this section we study the integral operator (4.0.3) in spaces of functions of bounded
variation. There is a vast literature on the behavior of this operator in the space of
continuous or measurable1 functions, but considerably less is known in the space BV
and its various generalizations.

Arbitrary Kernels

To begin with, we state two conditions on the kernel function g : [0, 1] × [0, 1] → R
which will be used over and over in this section. Here, the symbol ∀ ′s means “for
almost all s”.

∀t ∈ [0, 1] : g(t, ·) ∈ L1, (A)
∃m ∈ L1 ∀ ′s ∈ [0, 1] : Var

(
g(·, s)

)
≤ m(s). (B)

Condition (A) is needed for the integral in (4.0.3) to make sense. Condition (B)
guarantees, that the operator Ig acts in BV . Indeed, the following was shown in
[29].

Theorem 4.3.1. Under the conditions (A) and (B) the operator Ig maps the space
BV into itself and is bounded.

It turns out that the conditions (A) and (B) are too strong and can be relaxed as follows
in order to gain the same result. One can show that (B) and the weaker condition

∀t ∈ [0, 1] : g(t, ·) is measurable and g(0, ·) ∈ L1 (A’)

together imply (A). On the other hand, if we weaken (B) by

∃m ∈ L1 ∀ ′s ∈ [0, 1] : ‖g(·, s)‖∞ ≤ m(s), (B’)

that is, if we replace the majorization of the variation by a pointwise majorization,
then Theorem 4.3.1 may fail. Here is a simple example.

1Recall that the terms “measurable” and “almost everywhere” in this thesis are always understood
with respect to the Lebesgue measure.
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Example 4.3.2. Let g(t, s) = χQ(t). Then (A) and hence also (A’) holds even with
g(t, ·) = 1 ∈ L∞ for t ∈ Q ∩ [0, 1] and g(t, ·) = 0 ∈ L∞ for t ∈ [0, 1]\Q, and (B’)
holds with m = 1, because ‖g(·, s)‖∞ = 1 for all s ∈ [0, 1]. However, (B) does not
hold, because Var(g(·, s)) = Var(χQ) =∞ for all s ∈ [0, 1]. The operator Ig now maps
x = 1 ∈ BV onto Igx = χQ which is not in BV . ♦
In general, however, Theorem 4.3.1 only gives a sufficient condition on g that guarantees
Ig(BV ) ⊆ BV . This condition is not necessary as the following example shows.

Example 4.3.3. For fixed s, t ∈ [0, 1] we have s − t ∈ Q if and only if there is some
number q ∈ [−t, 1− t] ∩Q such that s = t+ q. We therefore define

Q(t) :=
{
t+ q | q ∈ Q ∩ [−t, 1− t]

}
⊆ [0, 1]

and have s − t ∈ Q if and only if s ∈ Q(t). Moreover, the set Q(t) is countable and
dense in [0, 1] for each fixed t ∈ [0, 1].
The function g : [0, 1] × [0, 1] → R, defined by g(t, s) = χQ(s − t) = χQ(t)(s), clearly
satisfies condition (A) and hence also (A’), because for each fixed t ∈ [0, 1] the set Q(t)
is countable and hence g(t, ·) = 0 almost everywhere. This also implies that Igx = 0

for any x ∈ BV , and so Ig maps BV into itself and is bounded.
But since χQ(s − t) = χQ(t − s) we also have g(t, s) = χQ(s)(t), and for each fixed
s ∈ [0, 1] the function g(·, s) = χQ(s) does not belong to BV . This means that (B) is
violated. However, (B’) is clearly satisfied with m = 1. ♦
In fact, the conditions (A) and (B) together are so strong that they are even sufficient
for Ig to map WBVp as well as L∞ continuously into BV . This statement was proven
for WBVp in [32]; for L∞ it is true, because for a partition 0 = t0 < . . . < tn = 1 of
[0, 1] and x ∈ L∞,

n∑
j=1

∣∣∣∣∫ 1

0
g(tj−1, s)x(s) ds−

∫ 1

0
g(tj, s)x(s) ds

∣∣∣∣ ≤ ∫ 1

0

n∑
j=1

∣∣∣g(tj−1, s)− g(tj, s)
∣∣∣|x(s)| ds

≤ ‖x‖L∞
∫ 1

0
m(s) ds,

where m ∈ L1 is the bound from condition (B). Thus,

Var
(
Igx

)
≤ ‖x‖L∞

∫ 1

0
m(s) ds <∞. (4.3.1)

We will see in Theorem 4.3.21 below that a similar result is true in all our BV -spaces.

In order to get a milder condition which is both necessary and sufficient, we introduce
another requirement for g:

sup
τ∈[0,1]

Var
(∫ τ

0
g(·, s) ds

)
<∞. (C)

For instance, the function g in Example 4.3.2 cannot satisfy (C), because for any
τ ∈ (0, 1] we have

Var
(∫ τ

0
g(·, s) ds

)
= Var

(
τχQ

)
=∞.
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Note, however, that (B) implies (C). Indeed, if (B) is satisfied, 0 = t0 < . . . < tn = 1
is a partition of [0, 1] and τ ∈ [0, 1] is fixed, then, similarly as before,

n∑
j=1

∣∣∣∣∫ τ

0
g(tj−1, s) ds−

∫ τ

0
g(tj, s) ds

∣∣∣∣ ≤ ∫ 1

0
m(s) ds

which implies

sup
τ∈[0,1]

Var
(∫ τ

0
g(·, s) ds

)
≤ ‖m‖L1

.

If we now combine (A) being the overall assumption on g with (C), we get exactly
what we want.

Theorem 4.3.4. Let g satisfy condition (A). Then the following conditions are equiv-
alent.

(a) The kernel function g satisfies condition (C).

(b) The operator Ig maps the space BV into itself and is bounded. In this case,

Var(Igx) ≤ 2 ‖x‖BV sup
τ∈[0,1]

Var
(∫ τ

0
g(·, s) ds

)
. (4.3.2)

A proof can be found in the paper [32]. In fact, there was proven the following slightly
more general result.

Theorem 4.3.5. Let g satisfy condition (A). Then the following conditions are equiv-
alent.

(a) The kernel function g satisfies condition (C) with Var replaced by Varp.

(b) The operator Ig maps the space BV into WBVp and is bounded.

This, however, is also bad news, because analogous conditions (C) for X being one of
the spaces Y BVϕ, ΛBV and RBVp may only yield that Ig maps BV continuously into
X and not X into itself. Indeed, for ΛBV , the following had been proven in [30].

Theorem 4.3.6. Let g satisfy condition (A). Then the following conditions are equiv-
alent.

(a) The kernel function g satisfies condition (C) with Var replaced by VarΛ.

(b) The operator Ig maps the space BV into ΛBV and is bounded.

Consequently, the (C)-type conditions seem to be too weak to be sufficient for Ig to map
a BV -space into itself, while the (B)-type conditions seem too strong to be necessary.
We will see in Theorem 4.3.21 and Corollary 4.3.23 below how strong the really are.
The treasure must be hidden somewhere in between, but we do not know where exactly.

For the Riesz spaces, however, the following result is known [7].
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Theorem 4.3.7. If the kernel function g satisfies the conditions (A), (B) and

∀ ′s ∈ [0, 1] : ∂1g(·, s) ∈ C and
(
s 7→ ‖∂1g(·, s)‖∞

)
∈ Lp, (D)

then Ig maps RBVp into itself and is bounded.

Condition (D) together with Riesz’ Theorem 1.2.25 implies that g(·, s) ∈ RBVp for
almost all s ∈ [0, 1] and any p ∈ (1,∞), because from ∂1g(·, s) ∈ C follows ∂1g(·, s) ∈
L∞ and hence

RVarp
(
g(·, s)

)
=
∫ 1

0

∣∣∣∂1g
(
t, s
)∣∣∣p dt <∞.

Moreover, the second condition in (D) then yields that the Riesz variation satisfies

RVarp
(
g(·, s)

)
≤ ‖∂1g(·, s)‖p∞ ,

where the right hand side is then an L1-bound with respect to s. Thus, condition
(D) seems to be an analogue to condition (B) for Riesz spaces and therefore not as
restrictive as it may appear at first glance. However, we will see later in Corollary
4.3.23 that the actual (B)-type condition for Riesz spaces is strictly weaker than (D)
yet more powerful as it is able to guarantee an even stronger result about compactness
of the operator Ig.

Let us come back to BV and the conditions (A) and (B) for a moment. Since for
t ∈ [0, 1] and x ∈ BV we get under the assumptions of Theorem 4.3.4 from (4.3.2) that

|Igx(t)| ≤ |Igx(0)|+ |Igx(t)− Igx(0)| ≤ ‖x‖∞ ‖g(0, ·)‖L1
+ Var(Igx)

≤ ‖x‖BV ‖g(0, ·)‖L1
+ 2 ‖x‖BV sup

τ∈[0,1]
Var

(∫ τ

0
g(·, s) ds

)
.

We obtain for the BV -norm of Ig,

‖Ig‖BV→BV ≤ ‖g(0, ·)‖L1
+ 4 sup

τ∈[0,1]
Var

(∫ τ

0
g(·, s) ds

)
. (4.3.3)

The authors of [31] gave an example of a function g : [0, 1]× [0, 1]→ R satisfying (A),
(B’) and (C), but not (B). We give here a simpler example.

Example 4.3.8. Let g : [0, 1] × [0, 1] → R be defined by g(t, s) = χQ(t − s) as in
Example 4.3.3. We have seen there that g satisfies (A), (A’) and (B’), but not (B).
Because of ∫ τ

0
g(t, s) ds = 0 for all t, τ ∈ [0, 1],

it satisfies condition (C). ♦

There are two special cases for the integral operator (4.0.3) that are important for
applications, namely those which are generated by separated kernels and by Volterra
kernels. We do not investigate Volterra kernels intensively in this thesis and only give
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some brief overview about some known results at the end of this chapter. Separated
kernels, however, that is, kernels g : [0, 1]× [0, 1]→ R given by

g(t, s) = g1(t)g2(s) (4.3.4)

with g1, g2 : [0, 1] → R may often be used to find counterexamples. For g2 ∈ L1, the
integral operator (4.0.3) then has the form

Igx(t) =
∫ 1

0
g(t, s)x(s) ds = g1(t)

∫ 1

0
g2(s)x(s) ds, (4.3.5)

but we point out that the integral in (4.0.3) may make sense also if only g1g2 ∈ L1. For
instance, if g1 = 0, then g2 can be any function whatsoever, and still Ig is well-defined
and maps any function x : [0, 1] → R onto the zero function 0. Let us see how the
conditions considered so far translate to separated kernels.

Proposition 4.3.9. The kernel function g : [0, 1]×[0, 1]→ R given in separated kernels
g(t, s) = g1(t)g2(s) for g1, g2 : [0, 1]→ R satisfies

(A) if and only if g1 = 0 or g2 ∈ L1.

(A’) if and only if g1 = 0, or g2 is measurable and g1(0)g2 ∈ L1.

(B) if and only if g1 is constant, or g2 = 0 almost everywhere, or g1 ∈ BV and
|g2| ≤ m for some m ∈ L1.

(B’) if and only if g1 = 0, or g2 = 0 almost everywhere, or g1 ∈ B and |g2| ≤ m for
some m ∈ L1.

Moreover, if g2 ∈ L1, then g satisfies

(C) if and only if g2 = 0 almost everywhere or g1 ∈ BV .

Proof. The first four cases follow immediately from the definitions of the conditions
(A), (A’), (B) and (B’). We only want to leave some words on (C). It is clear that if
g2 = 0 almost everywhere or g1 ∈ BV then g satisfies (C). For the converse assume
that g2 ∈ L1 is not zero almost everywhere. From Theorem 1.1.17 we obtain that

G(t) :=
∫ t

0
g2(s) ds

is absolutely continuous with G′ = g2 almost everywhere; in particular, G cannot be
constant. Thus, there is a τ ∈ (0, 1] with G(τ) 6= 0, and from (C) we obtain

∞ > Var
(∫ τ

0
g(·, s) ds

)
= |G(τ)|Var(g1)

and hence g1 ∈ BV . �

From Proposition 4.3.9 we immediately get that the kernel g from Example 4.3.2 cannot
satisfy condition (C).
Even for separated kernels there is a subtle yet significant difference between (A) and
(A’) as well as between (B) and (B’). It is clear that (A) implies (A’) and that (B)
together with g(0, ·) ∈ L1 implies (B’), but none of these inclusions may be inverted.
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Example 4.3.10. (a) Let g(t, s) = g1(t)g2(s) with g1 = χ(0,1] and

g2(s) =
1/s for 0 < s ≤ 1,

0 for s = 0.

Then Proposition 4.3.9 tells us that (A’) is satisfied, because g1 6= 0 and g2 is mea-
surable with g1(0)g2 = 0 ∈ L1, but (A) is not satisfied, because g2 /∈ L1. The same
proposition also guarantees that both conditions (B) and (B’) do not hold for this
kernel.
Condition (C) cannot be satisfied, because∫ τ

0
g(t, s) ds =∞ for 0 < t ≤ 1.

(b) If g(t, s) = g1(t)g2(s) with g1 = χQ and g2 = 1, then (B’) is satisfied, but (B) is
not, again by Proposition 4.3.9. For this kernel, the same proposition guarantees that
both conditions (A) and (A’) do hold, while (C) does not. ♦
Proposition 4.3.9 also tells us that for separated kernels the two conditions (A’) and
(B’) together imply (A). This is why we could not combine the two sample functions
in (a) and (b) of Example 4.3.10 into one function. More general, the two conditions
(A’) and (B’) indeed imply (A) also for arbitrary kernels. To see this, note that (B’)
gives

|g(t, s)| ≤ m(s) for all t ∈ [0, 1] and almost all s ∈ [0, 1],

and since g(t, ·) is measurable due to (A’) the condition (A) holds with ‖g(t, ·)‖L1
≤

‖m‖L1
; in particular, we even get that g(t, ·) is integrable uniformly in t.

However, if one replaces the supremum norm in (B’) with the L∞-norm, the two con-
ditions (A’) and (B’) together may no longer imply (A), as is shown by the following
example.

Example 4.3.11. Consider the kernel

g(t, s) =


1/s for t = 1, 0 < s ≤ 1,
1 for t = 1, s = 0,
1 for 0 ≤ t < 1, 0 ≤ s ≤ 1.

Then (A) is violated, because g(1, s) = 1/s for 0 < s ≤ 1 is not Lebesgue integrable
with respect to s on [0, 1]. In particular,

‖g(·, s)‖∞ = 1/s for 0 < s ≤ 1,

and so (B’) is also violated. Moreover, for any s ∈ (0, 1],

Var
(
g(·, s)

)
= 1/s− 1

which cannot be bounded by a function m ∈ L1 in the sense of (B), and so (B) is also
violated.
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However, (A’) holds as g(t, ·) is measurable for each fixed t ∈ [0, 1], and g(0, ·) = 1 ∈ L1.
Finally, ‖g(·, s)‖L∞ = 1 holds for any s ∈ [0, 1] and hence (B’) with ‖·‖∞ replaced by
‖·‖L∞ is true with m = 1 ∈ L1.
Note that (C) can also not be true, since

∫ τ

0
g(1, s) ds =∞

for any τ ∈ (0, 1]. ♦

Separated kernels (4.3.4) cannot generate an instance as in Example 4.3.8, because for
those kernels g = g1g2 with g2 ∈ L1 condition (C) is equivalent to (B). However, if
g2 = 0 almost everywhere, then neither (B) nor (C) implies g1 ∈ BV .

Example 4.3.12. The kernel function g(t, s) = g1(t)g2(s) with g1 = g2 = χQ satisfies
g1, g2 ∈ L1 with g1 = g2 = 0 almost everywhere and thus (A), (A’), (B), (B’) and (C)
by Proposition 4.3.9, but g1 = χQ is clearly not of bounded variation on [0, 1]. ♦
If g1 ∈ BV and g2 ∈ L1, we get an improved version of the estimate (4.3.3). Indeed,
with the help of (4.3.5) we have for x ∈ BV ,

‖Igx‖BV = ‖g1‖BV
∣∣∣∣∫ 1

0
g2(s)x(s) ds

∣∣∣∣ ≤ ‖g1‖BV ‖g2‖L1
‖x‖BV

and thus
‖Ig‖BV→BV ≤ ‖g1‖BV ‖g2‖L1

.

The study of solutions to integral equations, both linear and nonlinear, in BV -spaces
is motivated by numerous applications to real world problems; we give two examples
of such motivations at the beginning of Chapter 7. Sometimes it is useful or even
necessary to look for solutions in the space BV ∩ C, that is, to add continuity. So
there is some interest to find conditions which guarantee or are even equivalent to the
inclusion

Ig(BV ∩ C) ⊆ BV ∩ C.

To this end, we introduce another condition on the kernel function g.

∀ε > 0 ∃δ > 0 ∀t1, t2, τ ∈ [0, 1] :

|t1 − t2| ≤ δ ⇒
∣∣∣∣∫ τ

0
g(t1, s)− g(t2, s) ds

∣∣∣∣ ≤ ε. (E)

This new condition (E) is obviously satisfied if g : [0, 1] × [0, 1] → R is continuous,
because then g(·, s) is continuous for each s ∈ [0, 1] and uniformly with respect to
t ∈ [0, 1]. If this uniformity is dropped, that is, if g(·, s) is merely continuous for each
s ∈ [0, 1], then (E) may no longer be true.
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Example 4.3.13. Let g : [0, 1]× [0, 1]→ R be given by

g(t, s) =


1

t+ s
for 0 < s ≤ 1,

0 for s = 0.

Then g(·, s) is continuous for every fixed s ∈ [0, 1]. For τ = 1, t1 = t2 and t2 = t ∈ (0, 1]
we have ∫ 1

0

(
g
(
t2, s

)
− g(t, s)

)
ds =

∫ 1

0

( 1
t2 + s

− 1
t+ s

)
ds

= log
(

1 + t2

t+ t2

)
−→∞ as t→ 0+

showing that g cannot satisfy (E).
Also note that g cannot satisfy any of the other conditions (A)–(D). To see this observe
that g(0, s) = 1/s for 0 < s ≤ 1 is not Lebesgue integrable with respect to s on [0, 1]
showing that g cannot satisfy (A’) and hence also not (A). Moreover, for fixed s ∈ (0, 1]
we have ‖g(·, s)‖∞ = 1/s which cannot be bounded by a Lebesgue integrable function.
Thus, (B’) is violated. Similarly, for s ∈ (0, 1],

Var
(
g(·, s)

)
= 1
s
− 1

1 + s
= 1
s(1 + s)

cannot be bounded by an integrable function, and so (B) is also violated. Moreover,
(C) does not hold, because ∫ τ

0
g(0, s) ds =∞

for any τ ∈ (0, 1]. Condition (D) is also not satisfied, since

s 7→ ‖∂1g(·, s)‖∞ = sup
t∈[0,1]

∣∣∣∣∣− 1
(t+ s)2

∣∣∣∣∣ = 1
s2

does not belong to Lp for any p ≥ 1. ♦

We remark that besides the kernel in Example 4.3.13 none of the remaining kernels in
the examples considered so far does satisfy (D) as none of these kernels is differentiable
with respect to t for almost all s, with one exception: The kernel g(t, s) = χQ(t)χQ(s)
from Example 4.3.12 is zero for almost all s and hence satisfies (D).

The importance of this new condition (E) is now illustrated by the following result
which was proven in [32].

Theorem 4.3.14. Let g : [0, 1]× [0, 1]→ R satisfy condition (A). Then the following
statements are equivalent.

(a) The kernel function g satisfies the conditions (C) and (E).

(b) The integral operator Ig maps the space BV ∩ C into itself and is bounded, and
the set {Igx | x ∈ BV ∩ C, ‖x‖BV ≤ R} is equicontinuous for every R > 0.
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A quite similar but slightly stronger condition than (E) is

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] : |t1 − t2| ≤ δ ⇒ ‖g(t1, ·)− g(t2, ·)‖L1
≤ ε. (F)

It is clear that (F) implies (E). The converse, however, is not true, if we allow the
integral in (E) to be an improper Riemann integral.

Example 4.3.15. Let τn := 1 − 1/2n and µn := 1 − 3/2n+2 for all n ∈ N0. Then
τn < µn < τn+1 and (τn + τn+1)/2 = µn for all n ∈ N0. Therefore, the function
h : [0, 1]→ R, defined to be piecewise linear and continuous on [0, 1) by h(1) := 0 and
h(τn) := 0 and h(µn) := (−1)n2n/(n+ 1) for all n ∈ N0, is Riemann integrable on any
interval [0, a] for a ∈ (0, 1). We show that h is improperly Riemann integrable on [0, 1].
Observe that ∫ τn

τn−1
h(s) ds = τn − τn−1

2 h(µn−1) = (−1)n+1

4n ,∫ τn

τn−1
|h(s)| ds = τn − τn−1

2 |h(µn−1)| = 1
4n for n ∈ N.

Fix a ∈ (0, 1) and pick n ∈ N such that τn−1 ≤ a < τn. Then∣∣∣∣∫ a

0
h(s) ds−

∫ τn−1

0
h(s) ds

∣∣∣∣ ≤ ∫ τn

τn−1
|h(s)| ds = 1

4n

and ∫ τn−1

0
h(s) ds =

n−1∑
j=1

∫ τj

τj−1
h(s) ds =

n−1∑
j=1

(−1)j+1

4j .

Letting a→ 1− implies n→∞ and hence
∫ 1

0
h(s) ds = lim

a→1−

∫ a

0
h(s) ds =

∞∑
j=1

(−1)j+1

4j = log 2
4 .

However, h is not Lebesgue integrable on [0, 1]. Even worse, h /∈ Lp for any p ≥ 1.
Indeed, a straightforward but cumbersome calculation shows

∫ 1

0
|h(s)|p ds =

∞∑
j=1

∫ τj

τj−1
|h(s)|p ds =

∞∑
j=1

2jp−j−p
(p+ 1)jp

which is divergent for any p ≥ 1.
We now define the function g : [0, 1]× [0, 1]→ R by g(t, s) := th(s). Then

‖g(t1, ·)− g(t2, ·)‖L1
= |t1 − t2| ‖h‖L1

=∞ for all t1 6= t2 in [0, 1].

Thus, g does not satisfy (F). But it does satisfy (E), because

sup
τ∈[0,1]

∣∣∣∣∫ τ

0
g(t1, s)− g(t2, s) ds

∣∣∣∣ = |t1 − t2| sup
τ∈[0,1]

∣∣∣∣∫ τ

0
h(s) ds

∣∣∣∣ ,
and the right supremum is finite as h is improperly Riemann integrable on [0, 1].
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Note that this kernel g does not satisfy the conditions (A), (B) and (B’), while it does
satisfy the conditions (A’). This follows from Proposition 4.3.9 as g is given in separated
kernels.
Moreover, the variation

Var
(∫ τ

0
g(·, s) ds

)
=
∣∣∣∣∫ τ

0
h(s) ds

∣∣∣∣ ,
where the integral is meant in the sense of Riemann, is finite for each τ ∈ [0, 1]. In
particular, h is Kurzweil-Henstock integrable on [0, 1] in the sense of Definition 2.1.1,
and therefore the function

τ 7→
∫ τ

0
h(s) ds

is continuous [68] and hence bounded on [0, 1]. Consequently, condition (C) is satisfied.
Finally, (D) is not fulfilled, because the function s 7→ ‖∂1g(·, s)‖∞ = |h(s)| does not
belong to Lp for any p ≥ 1. ♦

Let us now check which of the kernels in the examples considered so far does satisfy the
conditions (E) and (F), respectively. The kernel g(t, s) = χQ(t) from the Examples 4.3.2
and 4.3.10 (b) cannot satisfy (E) and hence also not (F), because for any t ∈ [0, 1]\Q
we have ∫ 1

0
g(0, s)− g(t, s) ds = 1.

The kernel g(t, s) = χQ(t− s) = χQ(s− t) from the Examples 4.3.3 and 4.3.8, however,
does satisfy (F) and therefore also (E), because for any t1, t2 ∈ [0, 1] we have∫ 1

0

∣∣∣g(t1, s)− g(t2, s)
∣∣∣ ds =

∫ 1

0

∣∣∣χQ(t1 − s)− χQ(t2 − s)
∣∣∣ ds = 0,

as χQ(t− s) = 0 for fixed t ∈ [0, 1] and almost all s ∈ [0, 1].
The kernel g(t, s) = g1(t)g2(s) from Example 4.3.10 (a) with g1 = χ(0,1] and

g2(s) =
1/s for 0 < s ≤ 1,

0 for s = 0

cannot satisfy (E) and hence also not (F), because for any t ∈ (0, 1] we have∫ 1

0

(
g(t, s)− g(0, s)

)
ds =

∫ 1

0

1
s

ds =∞.

A similar reasoning holds for the kernel

g(t, s) =


1/s for t = 1, 0 < s ≤ 1,
1 for t = 1, s = 0,
1 for 0 ≤ t < 1, 0 ≤ s ≤ 1

from Example 4.3.11. Indeed, for t ∈ [0, 1) we obtain∫ 1

0

(
g(1, s)− g(t, s)

)
ds =

∫ 1

0

(1
s
− 1

)
ds =∞,
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showing that neither (E) nor (F) can hold.
For the kernel g(t, s) = χQ(t)χQ(s) from Example 4.3.12 we have that g(t, ·) = 0 almost
everywhere for fixed t ∈ [0, 1] and so (F) as well as (E) must be satisfied.
As we have seen in Example 4.3.13, the kernel

g(t, s) =


1

t+ s
for 0 < s ≤ 1,

0 for s = 0.

does not satisfy (E) and hence also not (F).

In general, condition (F) together with (A) now takes care for Ig to map L∞ into C.
But even more is true, namely, a perfect analogue to Theorem 4.3.14 which reads as
follows.

Theorem 4.3.16. Let g : [0, 1]× [0, 1]→ R satisfy condition (A). Then the following
statements are equivalent.

(a) The kernel function g satisfies the condition (F).

(b) The integral operator Ig maps the space L∞ into the space C and is bounded, and
the set {Igx | x ∈ L∞, ‖x‖L∞ ≤ R} is equicontinuous for every R > 0.

Proof. “(a)⇒(b)”: That the operator Ig is well-defined follows from (A), and that it
maps the space L∞ into C follows easily from (F). Indeed, for fixed ε > 0 we find
accordingly some δ > 0 such that |t1 − t2| ≤ δ implies ‖g(t1, ·)− g(t2, ·)‖L1

≤ ε. For
such t1, t2 ∈ [0, 1] and x ∈ L∞ it follows that

∣∣∣Igx(t1)− Igx(t2)
∣∣∣ ≤ ∫ 1

0
|g(t1, s)− g(t2, s)||x(s)| ds ≤ ‖g(t1, ·)− g(t2, ·)‖L1

‖x‖L∞
≤ ε ‖x‖L∞ ,

showing that the function Igx is continuous and that the set {Igx | x ∈ L∞, ‖x‖L∞ ≤ R}
is equicontinuous for any R > 0.
It remains to prove that Ig : L∞ → C is bounded. To do so, pick for ε = 1 according
to condition (F) some n ∈ N such that |t1− t2| ≤ 1/n implies ‖g(t1, ·)− g(t2, ·)‖L1

≤ 1.
Define τj := j/n for j ∈ {0, . . . , n} and fix t ∈ [0, 1]. Then there is some j ∈ {1, . . . , n}
such that τj−1 ≤ t ≤ τj. This gives for all s ∈ [0, 1],

|g(t, s)|
≤ |g(t, s)− g(τj−1, s)|+ |g(τj−1, s)− g(τj−2, s)|+ . . .+ |g(τ1, s)− g(τ0, s)|+ |g(0, s)|

= |g(t, s)− g(τj−1, s)|+
j−1∑
i=1
|g(τi−1, s)− g(τi, s)|+ |g(0, s)|

≤ |g(t, s)− g(τj−1, s)|+
n∑
i=1
|g(τi−1, s)− g(τi, s)|+ |g(0, s)|
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and consequently,

‖g(t, ·)‖L1
≤ ‖g(t, ·)− g(τj−1, ·)‖L1

+
n∑
i=1
‖g(τi−1, ·)− g(τi, ·)‖L1

+ ‖g(0, ·)‖L1
.

Since |τj−1 − τj| = 1/n and |t− τj−1| ≤ 1/n we obtain

‖g(t, ·)‖L1
≤ n+ 1 + ‖g(0, ·)‖L1

.

This implies for x ∈ L∞ the estimate

|Igx(t)| ≤ ‖g(t, ·)‖L1
‖x‖L∞ ≤

(
n+ 1 + ‖g(0, ·)‖L1

)
‖x‖L∞ .

Since this is true for any t ∈ [0, 1], we have shown that Ig : L∞ → C is bounded with

‖Ig‖L∞→C ≤ n+ 1 + ‖g(0, ·)‖L1
.

“(b)⇒(a)”: Assume that the set M := {Igx | x ∈ L∞, ‖x‖L∞ ≤ 1} is equicontinuous.
This means that for any fixed ε > 0 we find a δ > 0 such that |t1 − t2| ≤ δ and
‖x‖L∞ ≤ 1 imply |Igx(t1) − Igx(t2)| ≤ ε. We now fix such t1, t2 ∈ [0, 1] and consider
the function

h(s) := g(t1, s)− g(t2, s)

which is measurable due to condition (A). In particular, the sets

H− := {s ∈ [0, 1] | h(s) < 0} and H+ := {s ∈ [0, 1] | h(s) ≥ 0}

are measurable, and thus the function x := χH+ −χH− belongs to L∞ with ‖x‖L∞ ≤ 1
and hence x ∈M . We then have hx = |h| and also

‖g(t1, ·)− g(t2, ·)‖L1
=
∫ 1

0
|h(s)| ds =

∫ 1

0
h(s)x(s) ds = Igx(t1)− Igx(t2) ≤ ε.

But this is nothing else than condition (F), and the proof is complete. �

For the reader’s ease, let us recall in Table 4.3.1 which of the conditions (A)–(F) are
fulfilled by the examples considered so far in this section.

Table 4.3.1: Properties of g in the above examples.
Example (A) (A’) (B) (B’) (C) (D) (E) (F)
4.3.2 yes yes no yes no no no no
4.3.3 yes yes no yes yes no yes yes
4.3.8 yes yes no yes yes no yes yes
4.3.10 (a) no yes no no no no no no
4.3.10 (b) yes yes no yes no no no no
4.3.11 no yes no no no no no no
4.3.12 yes yes yes yes yes yes yes yes
4.3.13 no no no no no no no no
4.3.15 no yes no no yes no yes no
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In Chapter 7 we will apply some of the theoretical results developed in this section to
nonlinear integral equations involving linear integral operators like (4.0.3) and nonlinear
composition or superposition operators like (5.0.1) and (5.0.2); we will investigate the
latter two in the next chapter. In order to prove the existence of solutions of those
integral equations we will use fixed point theory, mostly Banach’s Fixed Point Theorem
for contractions and Schauder’s or Darbo’s Fixed Point Theorem for compact maps.
Since a bounded linear operator is always Lipschitz continuous, for applying Banach’s
theorem we have to ensure only a Lipschitz condition for the nonlinear operators; this is
a difficult problem, as we will see in the next chapter. On the other hand, for applying
Schauder’s or Darbo’s fixed point theorem we need (at least sufficient) conditions on g
guaranteeing that Ig is compact, since the nonlinear part is compact only under quite
exceptional assumptions.

The following result was proven in [31] and gives a compactness criterion for the oper-
ator Ig acting in the Wiener space WBVp.

Theorem 4.3.17. Under the conditions (A) and (B), the integral operator Ig maps
WBVp continuously into WBVq and is compact for any p, q ≥ 1.

The proof is based on Helly’s Selection Principle, see Theorem 1.2.28.

In order to achieve similar compactness results for other BV -spaces we introduce the
following conditions.

∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1] : Varϕ
(
θg(·, s)

)
≤ m(s), (Bϕ)

∀θ > 0 ∃mθ ∈ L1 ∀ ′s ∈ [0, 1] : Varϕ
(
θg(·, s)

)
≤ mθ(s), (B∗ϕ)

∃m ∈ L1 ∀ ′s ∈ [0, 1] : VarΛ
(
g(·, s)

)
≤ m(s), (BΛ)

∃m ∈ L1 ∀ ′s ∈ [0, 1] : RVarp
(
g(·, s)

)
≤ m(s). (Bp)

Note that the new conditions (Bϕ) respectively (B∗ϕ), (BΛ) and (Bp) act in the spaces
Y BVϕ, ΛBV and RBVp, respectively, as analogues to condition (B) in the space BV .
Since these conditions will play an important role in Chapter 7 and since we do not
want to repeat all proofs for each individual BV -space we take a uniform approach
and summarize the conditions (Bϕ), (B∗ϕ), (BΛ) and (Bp) for X being one of the spaces
BV , WBVp, Y BVϕ, ΛBV and RBVp in the following conditions.

∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1] : VarX
(
θg(·, s)

)
≤ m(s), (BX)

∀θ > 0 ∃mθ ∈ L1 ∀ ′s ∈ [0, 1] : VarX
(
θg(·, s)

)
≤ mθ(s), (B∗X)

where VarX denotes the variation of the space X, that is, VarBV = Var, VarWBVp =
Varp, VarY BVϕ = Varϕ, VarΛBV = VarΛ and VarRBVp = RVarp.
We make two comments on these conditions. It is clear that the (B∗X) condition implies
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(BX) in any BV -space X. For the converse, note that for x ∈ X and θ > 0 we have

Var(θx) = θVar(x),
Varp(θx) = θp Varp(x),
VarΛ(θx) = θVarΛ(x),

RVarp(θx) = θp RVarp(x).

As a consequence, the two conditions (BX) and (B∗X) are equivalent for X being one
of the spaces BV , WBVp, ΛBV or RBVp, and we can assume θ = 1 in (BX) for these
spaces. However, in the space X = Y BVϕ both of these conclusions are false; we give
an example.

Example 4.3.18. Let ϕ and J(αj) be as in Example 1.2.12 and consider g(t, s) :=
J(αj)(t). We have seen in that example that Varϕ(g(·, s)) ≤ c for all s ∈ [0, 1] and
some c > 0, but Varϕ(4g(·, s)) = ∞ for all s ∈ [0, 1]. Thus, g satisfies (Bϕ) but not
(B∗ϕ). Note that below Example 1.2.12 we have also seen that ϕ does not satisfy a
δ2-condition. ♦
If the Young function ϕ is given by ϕ(t) = tp and thus Y BVϕ = WBVp, then condition
(Bϕ) is equivalent to

∃m ∈ L1 ∀ ′s ∈ [0, 1] : Varp
(
g(·, s)

)
≤ m(s);

this is exactly the condition in Theorem 4.3.5. In particular, in this case the conditions
(Bϕ) and (B∗ϕ) are equivalent.
For separated kernels we have the following analogue to the (B)-part of Proposition
4.3.9.

Proposition 4.3.19. The function g : [0, 1] × [0, 1] → R given in separated kernels
g(t, s) = g1(t)g2(s) for g1, g2 : [0, 1]→ R satisfies

(BΛ) if and only if g1 is constant, or g2 = 0 almost everywhere, or g1 ∈ ΛBV and
|g2| ≤ m for some m ∈ L1.

(Bp) if and only if g1 is constant, or g2 = 0 almost everywhere, or g1 ∈ RBVp and
|g2| ≤ m for some m ∈ Lp.

One might wonder why there is no entry for the Young variation. The reason is that
for separated kernels with g2 not being zero almost everywhere the condition

g1 ∈ Y BVϕ and |g2| ≤ m for some m ∈ L1

is simply not equivalent to (Bϕ).

Example 4.3.20. Let g2 ∈ L1 be given by

g2(s) =
1/
√
s for 0 < s ≤ 1,

0 for s = 0,
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take ϕ and g1 = J(αj) as in Example 1.2.12 and set g(t, s) = g1(t)g2(s). There we
have seen that Varϕ(g1) < ∞ and hence g1 ∈ Y BVϕ. But we have also seen that
Varϕ(4g1) = ∞. Since g(·, s) ∈ Sc for any s ∈ [0, 1] we have for any fixed θ > 0 and
0 < s ≤ θ2/16 that

Varϕ
(
θg(·, s)

)
= Varϕ

(
g1θ/
√
s
)
≥ Varϕ

(
4g1

)
=∞.

But then (Bϕ) is violated, although g2 ∈ L1. ♦
The importance of the (B)-type conditions summarized in (BX) become now apparent
in one of our main theorems of this section. It generalizes the results of Theorem 4.3.1
to our other BV -spaces.

Theorem 4.3.21. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Under the conditions (A) and (BX) the integral operator Ig maps the space L∞ into
the space X and is bounded with

‖Ig‖L∞→X ≤‖g(0, ·)‖L1

+ θ−1



2 ‖m‖L1
for X = BV,

2 ‖m‖1/p
L1

for X = WBVp,(
ϕ−1(1) + 1

)
max

{
1, ‖m‖L1

}
for X = Y BVϕ,(

1 + λ−1
1

)
‖m‖L1

for X = ΛBV,
2 ‖m‖1/p

L1
for X = RBVp,


(4.3.6)

where θ is taken from condition (BX).

Note that, as pointed out before, in the spaces BV , WBVp, ΛBV and RBVp the
number θ in (BX) may be forced to be equal to 1 when m is adjusted properly. This,
however, is not true in the space Y BVϕ. Therefore, according to Theorem 4.3.21, the
operator norm ‖Ig‖L∞→X in general depends on both the bound m and the value of θ,
both coming from (BX).

Proof of Theorem 4.3.21. First note that

|Igx(0)| ≤ ‖g(0, ·)‖L1
‖x‖L∞ . (4.3.7)

For X = WBVp with 1 ≤ p < ∞ assume that g satisfies (BWBVp) with ϕ(t) = tp for
some θ > 0 and pick m ∈ L1 so that Varp

(
θg(·, s)

)
≤ m(s) for almost all s ∈ [0, 1].

Let 0 = t0 < . . . < tn = 1 be a partition of [0, 1] and fix x ∈ WBVp. From Jensen’s
inequality we obtain

n∑
j=1

∣∣∣Igx(tj−1)− Igx(tj)
∣∣∣p ds ≤

∫ 1

0

n∑
j=1

∣∣∣g(tj−1, s)− g(tj, s)
∣∣∣p|x(s)|p ds

≤ θ−p
∫ 1

0
m(s)|x(s)|p ds ≤ θ−p ‖x‖pL∞ ‖m‖L1

.
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Consequently Varp(Igx)1/p ≤ θ−1 ‖x‖L∞ ‖m‖
1/p
L1

, and with the help of (4.3.7) and
(1.2.11) we obtain

‖Igx‖WBVp
= ‖Igx‖∞ + Varp(Igx)1/p ≤ |Igx(0)|+ 2 Varp(Igx)1/p

≤ ‖x‖L∞
(
‖g(0, ·)‖L1

+ 2θ−1 ‖m‖1/p
L1

)
which means that Ig maps L∞ into WBVp, is bounded and satisfies (4.3.6). This also
shows the result and the desired estimate for the space BV .
ForX = Y BVϕ assume that g satisfies (BY BVϕ) for some θ > 0, pick accordinglym ∈ L1

so that Varϕ
(
θg(·, s)

)
≤ m(s) for almost all s ∈ [0, 1], and let 0 = t0 < . . . < tn = 1

be a partition of [0, 1]. For fixed x ∈ Y BVϕ (without loss of generality we may assume
‖x‖L∞ > 0), µ′ := ‖x‖L∞ max{1, ‖m‖L1

} and µ := θ−1µ′ we have with the help of
Jensen’s inequality

n∑
j=1

ϕ
(

1
µ
|Igx(tj−1)− Igx(tj)|

)
≤

n∑
j=1

ϕ

(
1
µ

∫ 1

0

∣∣∣g(tj−1, s)− g(tj, s)
∣∣∣|x(s)| ds

)

≤
∫ 1

0

n∑
j=1

ϕ

(
θ

µ′

∣∣∣g(tj−1, s)− g(tj, s)
∣∣∣|x(s)|

)
ds

≤ ‖x‖L∞
µ′

∫ 1

0

n∑
j=1

ϕ
(
θ
∣∣∣g(tj−1, s)− g(tj, s)

∣∣∣) ds

≤ ‖x‖L∞
µ′

∫ 1

0
m(s) ds ≤ 1.

Consequently M(Igx) ≤ µ = θ−1 ‖x‖L∞ max{1, ‖m‖L1
}, where the symbol M denotes

the Minkowski functional (1.2.19). With (4.3.7) and (1.2.24) we obtain

‖Igx‖Y BVϕ = ‖Igx‖∞ + M(Igx) ≤ |Igx(0)|+
(
ϕ−1(1) + 1

)
M(Igx)

≤ ‖x‖L∞
(
‖g(0, ·)‖L1

+ θ−1
(
ϕ−1(1) + 1

)
max{1, ‖m‖L1

}
)

which means that Ig maps L∞ into Y BVϕ, is bounded and satisfies (4.3.6).
For X = ΛBV it was shown in [30] that under the assumptions (A) and (BΛBV ) the
operator Ig maps L∞ into ΛBV and is bounded with

VarΛ(Igx) ≤ θ−1 ‖x‖L∞ ‖m‖L1
.

With the help of (1.2.46) and (4.3.7) we obtain

‖Igx‖ΛBV = ‖Igx‖∞ + VarΛ(Igx) ≤ |Igx(0)|+
(
1 + λ−1

1

)
VarΛ(Igx)

= ‖x‖L∞
(
‖g(0, ·)‖L1

+ θ−1
(
1 + λ−1

1

)
‖m‖L1

)
.

This shows that Ig maps L∞ into ΛBV and is bounded with (4.3.6).
For X = RBVp we proceed as in the proof for X = Y BVϕ, but this time, calculations
are much easier. Assume that g satisfies (BRBVp) for some θ > 0, pick accordingly m ∈
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L1 so that RVarp(θg(·, s)) ≤ m(s) for almost all s ∈ [0, 1], and let 0 = t0 < . . . < tn = 1
be a partition of [0, 1]. For fixed x ∈ RBVp we have with Jensen’s inequality

n∑
j=1

|Igx(tj−1)− Igx(tj)|p
|tj−1 − tj|p−1 ≤

∫ 1

0

n∑
j=1

|g(tj−1, s)− g(tj, s)|p
|tj−1 − tj|p−1 |x(s)|p ds

≤ θ−p
∫ 1

0
m(s)|x(s)|p ds ≤ θ−p ‖x‖pL∞ ‖m‖L1

.

Consequently, RVarp(Igx)1/p ≤ θ−1 ‖x‖L∞ ‖m‖
1/p
L1

. With (4.3.7) and (1.2.53) we obtain

‖Igx‖RBVp = ‖Igx‖∞ + RVarp(Igx)1/p ≤ |Igx(0)|+ 2 RVarp(Igx)1/p

≤ ‖x‖L∞
(
‖g(0, ·)‖L1

+ 2θ−1 ‖m‖1/p
L1

)

which means that Ig maps L∞ into Y BVϕ, is bounded and fulfills (4.3.6). �

Although the condition Ig(L∞) ⊆ X may seem somewhat annoying (as Ig(X) ⊆ X

seems more natural), it has the advantage that the nonlinear part of the fixed point
operators that we consider in Chapter 7 has to map onlyX into L∞ which in many cases
may be easily achieved. We give one sample criterion for the nonlinear superposition
operator in Theorem 5.2.34 in the next chapter.
As announced the conditions (A) and (BX) are too strong to be responsible only for
the boundedness of Ig. Indeed, we get compactness for free. Surprisingly, this is true
for the spaces BV , WBVp, ΛBV and RBVp, but probably not for the space Y BVϕ (we
do not know if (BX) is sufficient). For this space, we need the stronger condition (B∗X)
which is equivalent to (BX) in all the other BV -spaces. We then get an even stronger
result that has been proven in [32] for X = BV .

Proposition 4.3.22. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that (xn) is a bounded sequence in L∞ and converges almost everywhere to
some x ∈ L∞. If g : [0, 1] × [0, 1] → R satisfies the conditions (A) and (B∗X), then
(Igxn) is a sequence in X that converges in X to Igx.

Proof. By Theorem 4.3.21 the integral operator Ig maps L∞ into X, and this shows
that the functions Igxn belong to X for each n ∈ N. We now show that they converge
in X to Igx. Equivalently we show that the functions Igyn converge to 0 in X, where
yn := xn − x.
We start with the space X = Y BVϕ. Since g satisfies (B∗ϕ) we find for each θ > 0
a function mθ ∈ L1 so that Varϕ

(
θg(·, s)

)
≤ mθ(s) for almost all s ∈ [0, 1]. Let

0 = t0 < . . . < tk = 1 be a partition of [0, 1] and let λ > 0 be fixed. Since (yn) is
a bounded sequence in L∞ we find some µ > 0 such that λ|yn(s)| ≤ µ for all n ∈ N
and almost all s ∈ [0, 1]. Moreover, the convergence of the sequence (yn) to 0 almost
everywhere implies that the sequence also converges in measure which means that the
measures of the sets An := {s ∈ [0, 1] | |yn(s)| ≥ 1/λ} tend to 0 as n→∞. We obtain
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again with the help of Jensen’s inequality
k∑
j=1

ϕ
(
λ|Igyn(tj−1)− Igyn(tj)|

)
≤

k∑
j=1

ϕ
(
λ
∫ 1

0
|g(tj−1, s)− g(tj, s)||yn(s)| ds

)

≤
{∫

An
+
∫

[0,1]\An

}
k∑
j=1

ϕ
(
λ|g(tj−1, s)− g(tj, s)||yn(s)|

)
ds

≤
∫
An

k∑
j=1

ϕ
(
µ|g(tj−1, s)− g(tj, s)|

)
ds

+ λ
∫ 1

0
|yn(s)|

k∑
j=1

ϕ
(
|g(tj−1, s)− g(tj, s)|

)
ds

≤
∫
An
mµ(s) ds+ λ

∫ 1

0
|yn(s)|m1(s) ds. (4.3.8)

Since |An| → 0 as n→∞, the first integral in (4.3.8) goes to 0 as n→∞. Since (yn)
is bounded in L∞ and converges almost everywhere to 0, the second integral in (4.3.8)
goes also to 0 by the Dominated Convergence Theorem. Thus, we have shown that
Varϕ(λIgyn) → 0 as n → ∞ for each λ > 0. By Proposition 1.2.15 (a) we conclude
M(Igyn)→ 0 as n→∞.
Moreover, the Dominated Convergence Theorem also implies |Igyn(0)| → 0 as n→∞,
and with the help of (1.2.24) we finally obtain ‖Igyn‖Y BVϕ → 0 as n→∞.
Next, we give attention to the space X = ΛBV . Let ([aj, bj])1≤j≤k be a collection of
nonoverlapping intervals in [0, 1] and let m ∈ L1 be so that VarΛ(g(·, s)) ≤ m(s) for
almost all s ∈ [0, 1] according to (B∗Λ) with θ = 1. We have

k∑
j=1

λj|Igyn(aj)− Igyn(bj)| ≤
∫ 1

0

 k∑
j=1

λj|g(aj, s)− g(bj, s)|
 |yn(s)| ds

≤
∫ 1

0
m(s)|yn(s)| ds

and hence VarΛ(Igyn) ≤ ‖myn‖L1
. From the Dominated Convergence Theorem again

follows that ‖myn‖L1
→ 0 and hence VarΛ(Igyn) → 0 as n → ∞. Since |Igyn(0)| → 0

we conclude with (1.2.46) that ‖Igyn‖ΛBV → 0 as n→∞.
Finally, we deal with X = RBVp. We proceed as in the proof for X = Y BVϕ, but this
time, calculations are again easier. Let 0 = t0 < . . . < tk = 1 be a partition of [0, 1]
and let m ∈ L1 be so that RVarp(g(·, s)) ≤ m(s) for almost all s ∈ [0, 1] according to
(B∗p) with θ = 1. We have with Jensen’s inequality

k∑
j=1

|Igyn(tj−1)− Igyn(tj)|p
|tj−1 − tj|p−1 ≤

∫ 1

0

k∑
j=1

|g(tj−1, s)− g(tj, s)|p
|tj−1 − tj|p−1 |yn(s)|p ds

≤
∫ 1

0
m(s)|yn(s)|p ds.

Consequently, RVarp(Igyn)1/p ≤ ‖m|yn|p‖1/p
L1

. As above we conclude with the Domi-
nated Convergence Theorem and (1.2.53) that ‖Igyn‖RBVp → 0 as n→∞. �
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We remark that the sequence (xn) in Proposition 4.3.22 need not to converge in L∞ to
x. Otherwise, the result would have followed immediately from Theorem 4.3.21.
As a consequence of Proposition 4.3.22 we get the promised compactness criterion.

Corollary 4.3.23. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Under the conditions (A) and (B ∗X) the operator Ig maps the space X into itself and is
compact.

Proof. From Theorem 4.3.21 we get that the operator Ig maps L∞ and hence also
X into X. We now show that Ig : X → X is compact. To this end, let (xn) be a
bounded sequence in X. In view of Helly’s Selection Principle (Theorem 1.2.28) we
find a subsequence (xnk)k of (xn) which converges pointwise to some function x ∈ X.
Since (xn) is bounded in X it is also bounded in L∞. Proposition 4.3.22 now guarantees
that the sequence (Igxnk)k converges in X to Igx. Consequently, Ig is compact. �

For X = RBVp the result in Corollary 4.3.23 is indeed stronger than Theorem 4.3.7,
because we now get compactness. Even better, the condition (BRBVp) or equivalently
(Bp) is weaker than condition (D), as announced earlier. Note that (D) implies, as
already mentioned, that g(·, s) ∈ RBVp for almost all s ∈ [0, 1] and any p ∈ (1,∞) as
well as RVarp(g(·, s)) ≤ m(s) for some m ∈ L1. Thus, (D) indeed implies (Bp). But
condition (Bp) is strictly weaker than (D), as is shown by the following example.

Example 4.3.24. The function g : [0, 1]× [0, 1]→ R, given by

g(t, s) =
∫ t

0
χ[0,1/2](τ) dτ,

is for no s ∈ [0, 1] continuously differentiable with respect to t and thus cannot satisfy
(D). However, for all s ∈ [0, 1] we have by Riesz’ Theorem 1.2.25 that

RVarp
(
g(·, s)

)
=
∫ 1

0
χ[0,1/2](t) dt = 1

2
and hence condition (Bp) is met for any p ∈ (1,∞). ♦
As we have seen in Theorem 4.3.21, under the hypotheses of Corollary 4.3.23 the
operator Ig maps even L∞ into the respective spaces BV , WBVp, Y BVϕ, ΛBV and
RBVp. However, we cannot expect Ig : L∞ → X for X being one of these BV -spaces
to be compact. We illustrate this for the space X = BV .

Example 4.3.25. Let g : [0, 1] × [0, 1] → R be defined by g(t, s) := χ[0,t](s). Then
g clearly satisfies (A) and (B). Moreover, for n ∈ N and j ∈ {1, . . . , 2n} define the
intervals Ij,n := ( j−1

2n ,
j

2n ) and let xn ∈ L∞ be given by

xn(t) =
(−1)j+1 for t ∈ Ij,n,

0 for t ∈ {0, 1/2n, 2/2n, . . . , 1}.
The functions xn form a bounded sequence in Lp with ‖xn‖Lp = 1 for any p ∈ [1,∞].
But for the integrals we obtain

yn(t) := Igxn(t) =
∫ 1

0
g(t, s)xn(s) ds =

∫ t

0
xn(s) ds,
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and thus each yn ∈ AC is a piecewise linear “zigzag” function with ‖yn‖∞ = 1/2n; in
particular, (yn) converges uniformly to 0. But it cannot have a subsequence converging
in BV to 0, because Theorem 1.1.20 dictates Var(yn) = ‖y′n‖L1

= ‖xn‖L1
= 1 for each

n ∈ N. ♦
Note that the sequence (xn) in Example 4.3.25 is bounded in L∞ but not in BV ,
because Var(xn) = 2n+1 for each n ∈ N. Thus, Example 4.3.25 is not contradictory to
Corollary 4.3.23.

Since the (B)-type conditions will play the most important role in Chapter 7 we collect
them in Table 4.3.2 below to bring some structure into the thicket of formalism.

Table 4.3.2: Conditions (BX) and (B∗X) in our BV -spaces.

X (BX) (B∗X)

BV
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:
Var

(
g(·, s)

)
≤ m(s) Var

(
g(·, s)

)
≤ m(s)

WBVp
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:
Varp

(
g(·, s)

)
≤ m(s) Varp

(
g(·, s)

)
≤ m(s)

Y BVϕ
∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∀θ > 0 ∃mθ ∈ L1 ∀ ′s ∈ [0, 1]:

Varϕ
(
θg(·, s)

)
≤ m(s) Varϕ

(
θg(·, s)

)
≤ mθ(s)

ΛBV
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:
VarΛ

(
g(·, s)

)
≤ m(s) VarΛ

(
g(·, s)

)
≤ m(s)

RBVp
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:
RVarp

(
g(·, s)

)
≤ m(s) RVarp

(
g(·, s)

)
≤ m(s)

We remark that the integral operator Ig : X → X can never be injective if X is
one of the spaces BV , WBVp, Y BVϕ or ΛBV . Indeed, in all of these spaces lies the
characteristic function x = χ{0} which, albeit not being 0 itself, is mapped by Ig onto
the zero function 0.
Moreover, an integral operator with separated kernels g = g1g2 cannot be surjective
either, because from (4.3.5) we see that Igx = cg1 for a number c depending on x which
shows that the range of Ig is one-dimensional.
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Volterra Kernels
A particularly interesting case of linear integral operators is when the kernel function
g is a Volterra kernel which means

g(t, s) = 0 for 0 ≤ t < s ≤ 1. (4.3.9)

The corresponding operator Ig has then the form

Vgx(t) := Igx(t) =
∫ t

0
g(t, s)x(s) ds, (4.3.10)

and we call such operators Volterra operators in the sequel. Of course, all results
for integral operators from the first part of this section remain true also for Volterra
operators. Therefore, we present here how the conditions (A), (B) and their relatives
(BX) and (B∗X), (C), (D), (E) and (F) look like for Volterra kernels. Since Volterra
kernels can only attain values different from zero on the triangle

T = {(t, s) | 0 ≤ s ≤ t ≤ 1}

those conditions must take in account only points (t, s) ∈ T . Therefore, an arbitrary
kernel meeting these conditions only on T and hence satisfying the Volterra versions of
the conditions (A)–(F) does not have to satisfy the original conditions. For each such
situation we give here in this subsection an explicit example.
We start with condition (A) which is the overall basic assumption on the kernel. It
now reads

∀t ∈ [0, 1] : g(t, ·) ∈ L1[0, t]. (VA)

Arbitrary kernels satisfying (VA) do not need to also satisfy (A).

Example 4.3.26. Consider the kernel g, defined by

g(t, s) =
1/s for t = 0 < s ≤ 1,

0 otherwise.

Clearly, g(0, ·) ∈ L1[0, 0]. For t > 0 we have g(t, ·) = 0 and hence also g(t, ·) ∈ L1[0, t]
which shows that (VA) is true. However, g(0, ·) /∈ L1[0, 1] = L1 showing that g does
not satisfy condition (A). ♦
The second most important condition is (B) and its relatives (BX) and (B∗X) for our
various BV -spaces X. Condition (B) now reads for Volterra kernels

∃m ∈ L1 ∀ ′s ∈ [0, 1] : |g(s, s)|+ Var
(
g(·, s), [s, 1]

)
≤ m(s). (VB)

Note that the kernel g in Example 4.3.26 does satisfy (VB) but not (B). Indeed, for
s ∈ (0, 1],

Var
(
g(·, s)

)
= 1/s
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which cannot be bounded by a function m that is Lebesgue integrable on [0, 1] with
respect to s. However, since g(t, s) = 0 for all t ∈ [s, 1], we have

|g(s, s)|+ Var
(
g(t, s), [s, 1]) = 0,

and so (VB) is indeed satisfied.

Observe that if we require the majorant m in condition (VB) to belong not only to L1
but also to Lp for some p > 1, then g(t, ·) ∈ Lp for all t ∈ [0, 1]. This follows from
g(t, s) = 0 for 0 ≤ t < s ≤ 1 and from the estimate

|g(t, s)| ≤ |g(s, s)|+ |g(s, s)− g(t, s)| ≤ |g(s, s)|+ Var
(
g(·, s), [s, 1]) ≤ m(s)

for all t ∈ [s, 1] and almost all s ∈ [0, 1].
With these two modified conditions (VA) and (VB) Theorem 4.3.1 reads for Volterra
operators as follows.

Theorem 4.3.27. Under the conditions (VA) and (VB) the operator Vg maps the space
BV into itself and is bounded.

As we have seen in Theorem 4.3.4, condition (B) may be relaxed to condition (C) in
order to get the same result. For Volterra kernels g condition (C) becomes

sup
τ∈[0,1]

Var
(∫ min{τ,·}

0
g(·, s) ds

)
<∞. (VC)

This means that the Jordan variation of the function t 7→ ∫min{τ,t}
0 g(t, s) ds stays

bounded as τ runs through [0, 1]. The kernel g from Example 4.3.26 cannot satisfy (C)
or (VC), because g(0, s) = 1/s is not integrable near 0 with respect to s.

In the next example we show that an arbitrary kernel g may satisfy both (A) and (VC)
but not condition (C).

Example 4.3.28. Consider the kernel

g(t, s) =


1

s+ t
for 0 < t ≤ 1,

0 for t = 0.

Clearly, g satisfies (A) and hence also (VA). Since g(t, 0) = 1/t for t ∈ (0, 1] is un-
bounded, (B) cannot hold. And (VB) can also not be satisfied, as

|g(s, s)| = 1
2s for 0 < s ≤ 1

cannot be bounded by a Lebesgue integrable function on [0, 1]. On the other hand, g
satisfies (VC). To see this, define

h(t, τ) :=
∫ min{τ,t}

0
g(t, s) ds for 0 ≤ t, τ ≤ 1.
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Then we have h(0, τ) = 0 for all τ ∈ [0, 1]. For t > 0 and τ ∈ [0, 1] we have

h(t, τ) =
∫ min{τ,t}

0

1
s+ t

ds = log
(

1 + min{τ, t}
t

)
=
log 2 for 0 < t ≤ τ,

log(1 + τ/t) for τ < t ≤ 1

which implies

sup
τ∈[0,1]

Var
(
h(·, τ)

)
= sup

τ∈(0,1]
Var

(
h(·, τ)

)
= sup

τ∈(0,1]

(
2 log 2− log(1 + τ)

)
= 2 log 2.

Thus, (VC) is true. However, (C) is not, because for 0 < t ≤ 1 we have∫ 1

0
g(t, s) ds =

∫ 1

0

1
s+ t

ds = log(1 + 1/t)

and this becomes unbounded and hence of unbounded variation with respect to t when
t gets close to 0. ♦
The Theorems 4.3.4, 4.3.5 and 4.3.6 can now be reformulated and summarized in the
following Volterra version.

Theorem 4.3.29. Let X be one of the spaces BV , WBVp or ΛBV , and let the Volterra
kernel g satisfy condition (VA). Then the following conditions are equivalent.

(a) The Volterra kernel g satisfies condition (VC) with Var replaced by VarX .

(b) The operator Vg maps the space BV into X and is bounded.

Here, VarBV = Var, VarWBVp = Varp and VarΛBV = VarΛ.

In order to reformulate the Theorems 4.3.14 and 4.3.16 we need to translate the con-
dition (E) and (F) into the Volterra setting. If g is a Volterra kernel, then for fixed
t1, t2 ∈ [0, 1] we have

|g(t1, s)− g(t2, s)| =


|g(t1, s)− g(t2, s)| for 0 ≤ s ≤ min{t1, t2},∣∣∣g(max{t1, t2}, s)

∣∣∣ for min{t1, t2} < s ≤ max{t1, t2},
0 for max{t1, t2} < s ≤ 1.

Consequently, condition (E) reads

∀ε > 0 ∃δ > 0 ∀t1, t2, τ ∈ [0, 1] : |t1 − t2| ≤ δ

⇒
∣∣∣∣∣
∫ min{t1,t2}

0
χ[0,τ ](s)

(
g(t1, s)− g(t2, s)

)
ds

+ sign(t1 − t2)
∫ max{t1,t2}

min{t1,t2}
χ[0,τ ](s)g

(
max{t1, t2}, s

)
ds
∣∣∣∣∣ ≤ ε. (VE)

For instance, the kernel g from Example 4.3.28 does not satisfy this condition and
hence also not condition (E). Indeed, for τ = 1, t1 = 0 and t2 = t ∈ (0, 1], we have∣∣∣∣∣
∫ min{0,t}

0
χ[0,τ ](s)

(
g(0, s)− g(t, s)

)
ds+ sign(−t)

∫ max{0,t}

min{0,t}
χ[0,τ ](s)g

(
max{0, t}, s

)
ds
∣∣∣∣∣

=
∫ t

0

1
s+ t

ds = log 2
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which cannot be pushed arbitrarily close to 0 when t approaches 0.

Taking into account the special structure of an arbitrary Volterra kernel g condition
(VE) can be shortened to the condition

∀ε > 0 ∃δ > 0 ∀t1, t2,τ ∈ [0, 1] :

|t1 − t2| ≤ δ ⇒
∣∣∣∣∣
∫ max{t1,t2,τ}

0
g(t1, s)− g(t2, s) ds

∣∣∣∣∣ ≤ ε.

Again, condition (VE) is weaker than (E) for arbitrary kernels. For instance, the kernel
g from Example 4.3.26 does satisfy (VE), because g(t, s) = 0 whenever t ∈ (0, 1]. But
it cannot satisfy (E), since g(0, s) = 1/s is not integrable near 0 with respect to s.
However, even if an arbitrary kernel satisfies (A) and (VE), condition (E) does still not
have to be fulfilled. This is shown by the next example.

Example 4.3.30. The kernel

g(t, s) =


1

t+ s
for 0 < t < s ≤ 1,

0 for 0 = t < s ≤ 1,
0 for 0 ≤ s ≤ t ≤ 1

has the property that g(t, s) = 0 whenever 0 ≤ s ≤ t ≤ 1. In particular, all the Volterra
conditions (VA), (VB), (VC) and (VE) are satisfied. Moreover, (A) is fulfilled, because
g(0, s) = 0 and 0 ≤ g(t, s) ≤ 1/(t + s) for t ∈ (0, 1] and all s ∈ [0, 1]. However,
(B) is not satisfied, because for s ∈ (0, 1], we have Var

(
g(·, s)

)
= 2/s which cannot

be bounded by an L1-function. Similarly, (C) is not satisfied, because for τ = 1 and
t ∈ (0, 1) we have∫ 1

0
g(t, s) ds =

∫ 1

t

1
t+ s

ds = log t+ 1
2t −→∞ as t→ 0 + .

Finally, for 0 < t < 1/2 < 1 = τ ,∫ 1

0
g(t, s)− g(2t, s) ds =

∫ 1

t

1
t+ s

ds−
∫ 1

2t

1
2t+ s

ds = log t+ 1
2t − log 2t+ 1

4t
= log 2t+ 2

2t+ 1 −→ log 2 as t→ 0 + .

Thus, (E) is also not true. ♦
Theorem 4.3.14 now reads as follows.

Theorem 4.3.31. Let g : [0, 1]× [0, 1]→ R be a Volterra kernel satisfying (VA). Then
the following statements are equivalent.

(a) The Volterra kernel g satisfies the conditions (VC) and (VE).

(b) The Volterra operator Vg maps the space BV ∩C into itself and is bounded, and
the set {Vgx | x ∈ BV ∩ C, ‖x‖BV ≤ R} is equicontinuous for every R > 0.
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Similarly, condition (F) can be translated into

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] : |t1 − t2| ≤ δ

⇒
∫ min{t1,t2}

0

∣∣∣∣g(t1, s)− g(t2, s)
∣∣∣∣ ds+

∫ max{t1,t2}

min{t1,t2}

∣∣∣∣g(max{t1, t2}, s
)∣∣∣∣ ds ≤ ε. (VF)

Its shorter version for Volterra kernels g is

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] : |t1 − t2| ≤ δ ⇒
∫ max{t1,t2}

0

∣∣∣∣g(t1, s)− g(t2, s) ds
∣∣∣∣ ≤ ε.

The same kernel function as in Example 4.3.30 shows that (VF) does not imply (F)
for arbitrary kernels. Now, Theorem 4.3.16 in its Volterra version reads as follows.

Theorem 4.3.32. Let g : [0, 1]× [0, 1]→ R be a Volterra kernel satisfying (VA). Then
the following statements are equivalent.

(a) The Volterra kernel g satisfies the conditions (VF).

(b) The Volterra operator Vg maps the space L∞ into the space C and is bounded,
and the set {Vgx | x ∈ L∞, ‖x‖L∞ ≤ R} is equicontinuous for every R > 0.

As an analogue to Table 4.3.1 let us summarize our last three examples and which
properties they fulfill in Table 4.3.3 below.

Table 4.3.3: Properties of g in the above examples.
Example (A) (VA) (B) (VB) (C) (VC) (E) (VE)
4.3.26 no yes no yes no no no yes
4.3.28 yes yes no no no yes no no
4.3.30 yes yes no yes no yes no yes

We now turn to the most important conditions, namely the (B)-type conditions for one
of our BV -spaces X. For a Volterra kernel g in either of the spaces BV or ΛBV both
conditions (BX) and (B∗X) are equivalent and read

∃m ∈ L1 ∀ ′s ∈ [0, 1] : |g(s, s)|+ VarX
(
g(·, s), [s, 1]

)
≤ m(s), (VBX)

where again VarX denotes the variation of the space X, that is, VarBV = Var and
VarΛBV = VarΛ. In the general space X = Y BVϕ, however, the situation is more
complex. Condition (BY BVϕ)=(Bϕ) is now

∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1] : ϕ
(
θ|g(s, s)|

)
+ Varϕ

(
θg(·, s), [s, 1]

)
≤ m(s), (VBϕ)

and condition (B∗Y BVϕ)=(B∗ϕ) becomes

∀θ > 0 ∃mθ ∈ L1 ∀ ′s ∈ [0, 1] :
ϕ
(
θ|g(s, s)|

)
+ Varϕ

(
θg(·, s), [s, 1]

)
≤ mθ(s). (VB∗ϕ)
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In particular, for the Wiener space WBVp we get that both conditions are equivalent
and read

∃m ∈ L1 ∀ ′s ∈ [0, 1] : |g(s, s)|p + Varp
(
g(·, s), [s, 1]

)
≤ m(s). (4.3.11)

Since the Young variation often exhibits surprising properties, we give here a more
detailed argument for the equivalence of the conditions (B∗ϕ) and (VB∗ϕ) in the case of
Volterra kernels. The argument for condition (VBϕ) is similar and will be skipped.
Let g : [0, 1]×[0, 1]→ R be a Volterra kernel, assume that g satisfies (B∗ϕ) and fix θ > 0.
Because of (B∗ϕ), we find for our θ a function m ∈ L1 such that Varϕ

(
θg(·, s)

)
≤ m(s)

for almost all s ∈ [0, 1]. But this implies

Varϕ
(
θg(·, s), [s, 1]

)
≤ Varϕ

(
θg(·, s)

)
≤ m(s)

for almost all s ∈ [0, 1]. Moreover, since g(t, s) = 0 for 0 ≤ t < s, we have for almost
all s ∈ (0, 1] by Proposition 1.2.10 applied on [0, s],

ϕ
(
θ|g(s, s)|

)
= Var

(
ϕ(θ|g(·, s)|), [0, s]

)
≤ Varϕ

(
θg(·, s), [0, s]

)
≤ Varϕ

(
θg(·, s)

)
≤ m(s).

This gives (VB∗ϕ) with mθ := 2m.
Now, assume that the Volterra kernel g satisfies (VBϕ), that is, for any α > 0 there is
some mα ∈ L1 such that

ϕ(α|g(s, s)|) + Varϕ(αg(·, s)) ≤ mα(s)

for almost all s ∈ [0, 1]. Fix θ > 0 and s ∈ (0, 1] and a partition 0 = t0 < . . . < tn = 1.
Then there is some k ∈ {1, . . . , n} such that tk−1 < s ≤ tk; in particular, g(tj, s) = 0
for all j ∈ {0, . . . , k − 1}. We obtain

n∑
j=1

ϕ
(
θ|g(tj−1, s)− g(tj, s)|

)
= ϕ

(
θ|g(tk, s)|

)
+

n∑
j=k+1

ϕ
(
θ|g(tj−1, s)− g(tj, s)|

)
≤ ϕ

(
θ|g(tk, s)|

)
+ Varϕ

(
θg(·, s), [s, 1]

)
.

In addition, from the convexity and monotonicity of ϕ we get,

ϕ
(
θ|g(tk, s)|

)
≤ 2−1

[
ϕ
(
2θ|g(s, s)− g(tk, s)|

)
+ ϕ

(
2θ|g(s, s)|

)]
≤ 2−1

[
Varϕ

(
2θ|g(·, s)|, [s, 1]

)
+ ϕ

(
2θ|g(s, s)|

)]
.

In total, we obtain for almost all s ∈ [0, 1],

Varϕ
(
θ|g(·, s)|

)
≤ 2−1ϕ

(
2θ|g(s, s)|

)
+ 2−1 Varϕ

(
2θg(·, s), [s, 1]

)
+ Varϕ

(
θg(·, s), [s, 1]

)
≤ 2−1m2θ(s) +mθ(s)

and thus condition (Bϕ) holds with m = 2−1m2θ +mθ.
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Finally, condition (Bp) for the Riesz space translates to the following condition.

∃m ∈ L1 ∀ ′s ∈ [0, 1] : g(s, s) = 0 and RVarp
(
g(·, s), [s, 1]

)
≤ m(s). (VBp)

Here, the strong degeneracy g(s, s) = 0 almost everywhere along the line t = s comes
from the fact that each function in the Riesz space RBVp for p > 1 is continuous.

To overcome annoying case distinctions in what follows we will extend the symbol
(VBX) to the spaces X = Y BVϕ and X = RBVp by setting (VBY BVϕ)=(VBϕ) and
(VBRBVp)=(VBp). Analogously, we extend the symbol (VB∗X) by (VB∗Y BVϕ)=(VB∗ϕ) for
the space X = Y BVϕ and by (VB∗RBVp)=(VBp) for the space X = RBVp. Using this
uniform approach we are now in position to restate Theorem 4.3.21, Proposition 4.3.22
and Corollary 4.3.23 also for the Volterra operator. These three results now read as
follows.

Theorem 4.3.33. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp, and
let g : [0, 1] × [0, 1] → R be a Volterra kernel. Under the conditions (VA) and (VBX)
the Volterra operator Vg maps the space L∞ into the space X and is bounded with

‖Vg‖L∞→X ≤ θ−1



2 ‖m‖L1
for X = BV,

2 ‖m‖1/p
L1

for X = WBVp,(
ϕ−1(1) + 1

)
max

{
1, ‖m‖L1

}
for X = Y BVϕ,(

1 + λ−1
1

)
‖m‖L1

for X = ΛBV,
2 ‖m‖1/p

L1
for X = RBVp,


(4.3.12)

where θ is taken from condition (VBX).

Note that since any Volterra kernel g(t, s) vanishes for s > t, the norm ‖g(0, ·)‖L1
in

(4.3.6) does not appear here. Furthermore, the condition (VBp) for the Riesz space
is rather strong, because of the almost everywhere degeneracy g(s, s) = 0 occurring
therein. This condition is far from being necessary for the operator Vg to map L∞
continuously into RBVp.

Example 4.3.34. Consider the Volterra kernel g, defined by g(t, s) = 1 for 0 ≤ s ≤
t ≤ 1 and g(t, s) = 0 for 0 ≤ t < s ≤ 1. The corresponding Volterra operator

Vgx(t) =
∫ t

0
x(s) ds for 0 ≤ t ≤ 1

maps even Lp into RBVp and is bounded for 1 < p <∞, because for x ∈ Lp,

‖Vgx‖RBVp = ‖Vgx‖∞ + RVarp(Vgx)1/p ≤ ‖x‖L1
+
(∫ 1

0
|(Vgx)′(s)|p ds

)1/p
≤ 2 ‖x‖Lp .

However, g(s, s) = 1 for all s ∈ [0, 1]. ♦
Proposition (4.3.22) becomes
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Proposition 4.3.35. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g : [0, 1] × [0, 1] → R be a Volterra kernel. Assume that (xn) is a bounded
sequence in L∞ and converges almost everywhere to some x ∈ L∞. If g satisfies the
conditions (VA) and (VB ∗X), then (Vgxn) is a sequence in X that converges in X to
Vgx.

Its compactness criterion, namely Corollary 4.3.23 turns into

Corollary 4.3.36. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g : [0, 1] × [0, 1] → R be a Volterra kernel. Under the conditions (VA) and
(VB ∗X) the operator Vg maps the space X into itself and is compact.

Before we end this chapter with some additional remarks let us summarize the (B)-type
conditions in Table 4.3.4 below which is an analogue to Table 4.3.2.

Table 4.3.4: Conditions (VBX) and (VB∗X) in our BV -spaces.
X (VBX) (VB∗X)

BV
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:

|g(s, s)|+ Var
(
g(·, s), [s, 1]

)
≤ m(s) |g(s, s)|+ Var

(
g(·, s), [s, 1]

)
≤ m(s)

WBVp
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:

|g(s, s)|p + Varp
(
g(·, s), [s, 1]

)
≤ m(s) |g(s, s)|p + Varp

(
g(·, s), [s, 1]

)
≤ m(s)

Y BVϕ
∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∀θ > 0 ∃mθ ∈ L1 ∀ ′s ∈ [0, 1]:

ϕ
(
θ|g(s, s)|

)
+ Varϕ

(
θg(·, s), [s, 1]

)
≤ m(s) ϕ

(
θ|g(s, s)|

)
+ Varϕ

(
θg(·, s), [s, 1]

)
≤ mθ(s)

ΛBV
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:

|g(s, s)|+ VarΛ
(
g(·, s), [s, 1]

)
≤ m(s) |g(s, s)|+ VarΛ

(
g(·, s), [s, 1]

)
≤ m(s)

RBVp
∃m ∈ L1 ∀ ′s ∈ [0, 1]: ∃m ∈ L1 ∀ ′s ∈ [0, 1]:

g(s, s) = 0 and RVarp
(
g(·, s), [s, 1]

)
≤ m(s) g(s, s) = 0 and RVarp

(
g(·, s), [s, 1]

)
≤ m(s)

We remark that Volterra operators Vg have in general much nicer properties than just
ordinary integral operators Ig. For example, the operator Vg has often spectral radius
zero, for instance, if one of the iterated kernels is bounded, and this is useful in the
search for invariant balls for nonlinear operators of Volterra type. This is not true for
the general operator Ig and neither for an arbitrary Volterra operator Vg. We give two
examples to show this.

Example 4.3.37. Consider the kernel function g(t, s) = 1 for all t, s ∈ [0, 1] which
even satisfies (A) and (B). By Theorem 4.3.1, Ig : BV → BV is well-defined and
bounded. The function x = 1 belongs to BV and is mapped by Ig into itself. Thus, 1
is an eigenvector with corresponding eigenvalue 1. ♦
Example 4.3.38. Consider the Volterra kernel g, defined by

g(t, s) =


1

s+ t
for 0 ≤ s ≤ t ≤ 1,

0 for 0 ≤ t < s ≤ 1.
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Since this kernel coincides on the triangle T := {(t, s) | 0 ≤ s ≤ t ≤ 1} with the kernel
investigated in Example 4.3.28 it satisfies (VC) as we have seen therein. By Theorem
4.3.29 the Volterra operator Vg maps the space BV into itself and is bounded. As such,
the function x(t) = t belongs to BV and is mapped by Vg into the function (log 2)x.
Thus, x is an eigenvector of Vg with corresponding eigenvalue log 2. ♦
The following theorem shows that, due to the special structure (4.3.9) of the kernel
function g, a Volterra operator maps a quite large space continuously into BV [31].

Theorem 4.3.39. Suppose that g satisfies condition (A) and (VB), where m ∈ Lp
for some p ∈ [1,∞). Then the operator Vg maps the space Lp/(p−1) into BV and is
bounded.

So Theorem 4.3.39 shows that, the milder the condition on the majorant m in (VB)
with L1 replaced by Lp (i.e. the smaller p), the smaller we may choose the space of
departure Lp/(p−1) for Vg. It also implies that if (xn) is a sequence that converges in
Lp/(p−1) to 0 for some p ∈ [1,∞), then the sequence (Vg(xn)) converges to 0 in BV .
One may show that this is also true if (xn) converges merely almost everywhere to 0

and not necessarily in Lp/(p−1); see Proposition 4.3.22 and 4.3.35 for p = 1. However,
this is no longer true for p = ∞, that is, for Lp/(p−1) = L1, as the following example
shows [31]:

Example 4.3.40. For the kernel function take g(t, s) = χ[0,t](s) which satisfies (A)
and (VB). The sequence xn := nχ[0,1/n] is a bounded sequence in L1 with ‖xn‖L1

= 1
and converges almost everywhere but not in L1 to 0. But

Vgxn(t) =
∫ t

0
xn(s) ds = nmin{t, 1/n} for 0 ≤ t ≤ 1,

which shows ‖Vgxn‖BV = 2 for all n ∈ N. ♦
For Waterman spaces ΛBV an exact analogue of Theorem 4.3.39 holds where condition
(VB) is replaced by (VBΛBV ) [30].

Theorem 4.3.41. Suppose that g satisfies condition (A) and (VBΛBV ), where m ∈ Lp
for some p ∈ [1,∞). Then the operator Vg maps the space Lp/(p−1) into ΛBV and is
bounded.

Note that Example 4.3.25 may serve to show that in the Theorems 4.3.39 and 4.3.41
we cannot expect the operator Vg : Lp/(p−1) → BV respectively Vg : Lp/(p−1) → ΛBV
to be compact for any p ≥ 1.



Chapter 5

Nonlinear Operators between
BV -Spaces

The purpose of this chapter is to study two nonlinear operators mainly in BV -spaces
X and Y , where the symbols X and Y represent one of the spaces BV , WBVp, Y BVϕ,
ΛBV or RBVp introduced in Chapter 1. In detail we will consider

• the composition operator Cg : X → Y , generated by g : R→ R and defined by

Cgx(t) = g
(
x(t)

)
, (5.0.1)

• the superposition operator Ng : X → Y , generated by g : [0, 1] × R → R and
defined by

Ngx(t) = g
(
t, x(t)

)
. (5.0.2)

The superposition operator Ng is often called Nemytskij operator, especially in Russian
literature. This and the fact that the character S is reserved for the substitution
operator that we have studied briefly in Section 4.2 is the reason why we use the
symbol N for the superposition operator.
For both the composition and the superposition operator we are particularly interested
in analytic properties like acting conditions, continuity, boundedness and compactness.
But we will also investigate set-theoretic properties like injectivity, surjectivity and bi-
jectivity. Although the composition operator Cg is similarly defined as the substitution
operator Sg that we have studied in Section 4.2, it exhibits due to its nonlinearity a
completely different behavior than its linear counterpart. However, almost all its an-
alytic properties may be fully characterized in terms of the generating function g; we
will do this in Section 5.1 and give a summary at the end in Table 5.1.2.
The superposition operator Ng is only a slight generalization of the composition oper-
ator Cg, but the dependence on t leads to quite unexpected properties and will make
both the investigations and the formulation of results much more complicated. Not all
analytic properties are fully understood; we give a summary especially referring to the
disparities of the composition operator Cg and the superposition operator Ng at the
end of Section 5.2.
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5.1 Composition Operators
In this section we are going to investigate the composition operator Cg : X → Y ,
generated by some function g : R→ R, which is defined by

Cgx(t) = g
(
x(t)

)
for 0 ≤ t ≤ 1,

where X and Y are one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp which have
been introduced in Chapter 1. However, we primarily focus on the case when X and
Y are the same BV -space and give only a few results for X 6= Y . For X = Y , the
composition operator is well-defined if and only if g ◦ x belongs to X whenever x
does; in short: Cg(X) ⊆ X. For instance, it is easy to show that this is the case for
X = B and X = C if and only if g is locally bounded respectively continuous, and
we have given these and other examples in Section 2.3. Observe that, in contrast to
the substitution operator Sg, the operator Cg is nonlinear, and so boundedness and
continuity are independent here.
For our BV -type spaces, things are a little more difficult. Recall that Josephy proved
in [75] that Cg maps BV into itself if and only if g is locally Lipschitz continuous which
we denote by g ∈ Liploc(R), and the same had been proven later on for X = RBVp
by Marcus and Mizel [101]. Moreover, Ciemnoczolowski and Orlicz proved in [42] that
Cg maps WBVp into itself if and only if g ∈ Liploc(R). More generally, they proved
that g ∈ Liploc(R) is necessary and sufficient also in Y BVϕ, where for necessity the
assumption ϕ, ϕ−1 ∈ δ2 is needed. We do not know what happens when ϕ or ϕ−1 do
not satisfy a δ2-condition. Finally, Pierce and Waterman proved Cg(ΛBV ) ⊆ ΛBV if
and only if g ∈ Liploc(R) in [130]. We summarize these results in the following

Proposition 5.1.1. Let g : R→ R. The following statements are true.

(a) If X is one of the spaces BV , WBVp, ΛBV or RBVp, then Cg maps X into itself
if and only if g ∈ Liploc(R).

(b) If g ∈ Liploc(R), then Cg maps the space Y BVϕ into itself. If both ϕ and ϕ−1

satisfy a δ2-condition, the converse is also true.

Note that (a) for X = WBVp follows indeed from (b), since in this case ϕ(t) = tp has
the property that both ϕ and ϕ−1(t) = t1/p satisfy a δ2-condition.
We also remark that acting conditions for Cg : X → Y are sometimes also known
if X and Y are distinct spaces. For instance, Cg(WBVp) ⊆ WBVq holds for p ≤ q

if and only if g ∈ Lip
p/q
loc (R), where Lipαloc(R) denotes the space of all locally Hölder

continuous functions with exponent α ≤ 1.

If X is one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp and ‖·‖X is its respective
norm, then the inequality

‖g ◦ x‖X ≤ |g(0)|+ lip
(
g, [−R,R]

)
‖x‖X
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holds for g ∈ Lip[−R,R] and x ∈ X with ‖x‖∞ ≤ R, where

lip
(
g, [−R,R]

)
= sup

{
|g(u)− g(v)|
|u− v| | u, v ∈ [−R,R], u 6= v

}

denotes the optimal Lipschitz constant of g on [−R,R]. This means that Cg is (lo-
cally) bounded in this case. Of course, the situation in Proposition 5.1.1 for Y BVϕ is
unsatisfactory because we have to deal with an additional δ2-condition. However, if we
additionally assume boundedness of Cg, then we can show that Cg maps any of our
spacesX into itself and is bounded if and only if g ∈ Liploc(R). We will reformulate and
prove this statement later in Theorem 5.1.19, when we talk about analytic properties
of Cg like compactness and continuity. Since Cg, in contrast to the multiplication and
substitution operator, is not linear, conditions on g characterizing pointwise, locally
uniform and locally Lipschitz continuity, may differ. We present a full characterization
of uniform and Lipschitz continuity on bounded sets and on the entire space. However,
pointwise continuity is a much harder problem and - as far as we known - only solved
in BV and RBVp; we will give some sample results at the end of this section. In
Theorem 6.2.8 in Section 6.2 we will present a new proof for the pointwise continuity
of Cg : BV → BV . But for the moment we will focus on more basic properties.

The following statements are almost immediate consequences of the definitions and the
fact that constant functions belong to either of the mentioned BV -spaces.

Proposition 5.1.2. Let X be any of the spaces BV , WBVp, Y BVϕ with ϕ, ϕ−1 ∈ δ2,
ΛBV or RBVp, and let g ∈ Liploc(R). Then the following statements are true.

(a) The operator Cg is injective if and only if g is injective.

(b) If the operator Cg is surjective, then g is surjective.

(c) The operator Cg is bijective if and only if g is bijective and g−1 ∈ Liploc(R). In
this case, C−1

g = Cg−1.

Proof. (a) Assume that Cg : X → X is injective and fix u, v ∈ R with g(u) = g(v). The
constant functions x ≡ u and y ≡ v belong to X and satisfy Cgx = g ◦x = g ◦y = Cgy,
and since Cg is injective, we conclude x = y and hence u = v. This shows that g is
also injective.
Conversely, assume that g is injective, and fix x, y ∈ X with Cgx = Cgy. For fixed
t ∈ [0, 1] we then have g(x(t)) = Cgx(t) = Cgy(t) = g(y(t)), and since g is injective, we
obtain x(t) = y(t). Since this is true for each t ∈ [0, 1], it follows that x = y and hence
the injectivity of Cg.
(b) Assume that Cg is surjective and fix v ∈ R. The constant function y ≡ v belongs
to X, and since Cg is surjective, there is a function x ∈ X with Cgx = y. In particular,
v = y(0) = g(x(0)) = g(u) with u := x(0) which shows that g is surjective, as well.
(c) If Cg is bijective, then from (a) and (b) follows that g must be bijective. If y ∈ X
is fixed, we find some x ∈ X such that Cgx = y. Consequently, x = g−1 ◦ y = Cg−1y,
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and since y was arbitrary we conclude that the operator Cg−1 maps X into itself. By
Proposition 5.1.1, g−1 ∈ Liploc(R), and since CgCg−1x = x for all x ∈ X, we obtain
C−1
g = Cg−1 .

If, conversely, g is bijective and satisfies g−1 ∈ Liploc(R), then the operator Cg−1 maps
X into itself. As CgCg−1x = x = Cg−1Cgx for all x ∈ X, the operator Cg must be
bijective with C−1

g = Cg−1 . �

We remark that the assumption ϕ, ϕ−1 ∈ δ2 is only needed for the “only if”-part (c) of
Proposition 5.1.2. The parts (a) and (c) fully characterize injectivity and bijectivity of
the operator Cg : X → X in all the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp. Condi-
tion (b), however, provides only a necessary condition on g that makes Cg surjective,
namely that g is surjective itself.
In Table 5.1.1 we summarize basic properties concerning injectivity and surjectivity of
the multiplication operator Mg from (4.0.1), the substitution operator Sg from (4.0.2)
and the composition operator Cg from (5.0.1) in the space BV .

Table 5.1.1: Some mapping properties of some operators in BV .
Mg is injective ⇐⇒ supp(g) = [0, 1]
Mg is surjective ⇐⇒ suppδ(g) = [0, 1] for some δ > 0
Sg is injective ⇐⇒ g is surjective
Sg is surjective =⇒ g is injective
Cg is injective ⇐⇒ g is injective
Cg is surjective =⇒ g is surjective

We have seen that if the operator Cg is surjective, then g must be surjective, as well.
But does a surjective g generate a surjective operator Cg? The answer for all our BV-
type spaces is negative, and we illustrate this by the composition operator Cg : X → X,
generated by g(u) = u3, and the functions J(αj), defined in (1.2.1). The first example
lives in X = BV .

Example 5.1.3. The function g : R → R, u 7→ u3, is surjective (even bijective), but
Cg is not surjective. Take, for instance y = J(1/j3), that is, y(1/(2j)) = 1/j3 for j ∈ N
and y(t) = 0 elsewhere on [0, 1]. Then y ∈ BV by Corollary 1.2.1.
But any x satisfying Cgx = y also satisfies x(t) = 3

√
y(t) for all t ∈ [0, 1] which gives

x(1/(2j)) = 1/j for j ∈ N and x(t) = 0 elsewhere on [0, 1], that is, x = J(1/j) which
does not belong to BV , again by Corollary 1.2.1. ♦
The next example treats the case X = Y BVϕ and therefore generalizes the idea of the
previous example.

Example 5.1.4. Let g(u) = u3 be as in Example 5.1.3. Define Φ : (0,∞)× [0,∞)→
[0,∞) by

Φ(λ, t) = ϕ
(
λ 3
√
ϕ−1(t)

)
.
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Then Φ(·, t) is increasing for each t ∈ [0,∞). Since ϕ is a homeomorphism of [0,∞),
we have for all λ > 0,

lim sup
t→0+

Φ(λ, t)
t

= lim sup
s→0+

ϕ(λs)
ϕ(s3) ≥ lim sup

s→0+

ϕ(s2)
sϕ(s2) =∞.

By Lemma 1.2.16 we find a sequence (uj) of positive numbers such that
∞∑
j=1

uj <∞ and
∞∑
j=1

Φ(λ, uj) =∞ for all λ > 0,

and the substitution vj := 3
√
ϕ−1(uj) yields

∞∑
j=1

ϕ
(
v3
j

)
<∞ and

∞∑
j=1

ϕ(λvj) =∞ for all λ > 0.

But this implies that the function y = J(v3
j ) belongs to Y BVϕ by Corollary 1.2.11, while

the only function x with Cgx = y is x = J(vj) which does not belong to Y BVϕ, again
by Corollary 1.2.11. Thus, Cg : Y BVϕ → Y BVϕ is not surjective. ♦
The third example in this series shows an analogous behavior of Cg in ΛBV .

Example 5.1.5. Let g(u) = u3 as in Example 5.1.3, and let (λj) denote the Waterman
sequence Λ. If we define Λn := λ1 + . . .+λn, then a theorem of Abel and Dini [77] says

∞∑
j=1

λj
Λ3
j

<∞ and
∞∑
j=1

λj
Λj

=∞.

This implies for any permutation σ of N that
∞∑
j=1

λσ(j)
1

Λ3
j

≤
∞∑
j=1

λj
Λ3
j

<∞,

as both sequences (λj) and (1/Λ3
j) are decreasing. Thus, the function y = J(1/Λ3

j )
belongs to ΛBV by Corollary 1.2.21, while the only function x with Cgx = y is x =
J(1/Λj) which cannot belong to ΛBV , again by Corollary 1.2.21. Thus, again, Cg :
ΛBV → ΛBV is not surjective. ♦
The last example handles the case X = RBVp.

Example 5.1.6. Let g(u) = u3 as in Example 5.1.3, and let p > 1 and q := 2(p−1)/p.
The function y : [0, 1]→ R, defined by y(t) = tq, belongs to RBVp, since y′(t) = qtq−1

belongs to Lp as p(q − 1) = 2(p − 1) − p = p − 2 > −1. Since g is bijective, the only
preimage of y is the function x(t) = tq/3. However, x does not belong to RBVp, since
y′(t) = q

3t
q/3−1 and (q/3 − 1)p = 2/3(p − 1) − p = −p/3 − 2/3 < −1. Consequently,

Cg : RBVp → RBVp cannot be surjective. ♦
The function g(u) = u3 used in the last four examples defined injective composition
operators by Proposition 5.1.2. These examples therefore also show that injectivity
of Cg does not imply surjectivity of Cg. However, in contrast to the multiplication
operator, where surjectivity implies injectivity, there are composition operators that
are surjective but not injective. We will give an example in BV below (see Example
5.1.8) for which we need some technical result in advance.
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Lemma 5.1.7. Let y be a member of one of the classes BV , WBVp, Y BVϕ or ΛBV ,
and let a, b, c ∈ R with a < b < c. Then there is a set A ⊆ [0, 1] with finitely many
connected components such that

y−1
(
[a, b]

)
⊆ A ⊆ y−1

(
[a, c)

)
.

Proof. For better readability we write Ab := y−1([a, b]) and Ac := y−1([a, c)). Let I be
the system of the connected components of Ac. Then the sets in I are pairwise disjoint
intervals. We show that

A :=
⋃{

I ∈ I | I ∩ Ab 6= ∅
}

has the desired properties. First, A is clearly a subset of Ac. Moreover, Ab is a subset
of A. To see this fix t ∈ Ab. Since b < c, we have Ab ⊆ Ac and hence t ∈ Ac; in
particular, there is some I ∈ I such that t ∈ I. But then I ∩ Ab 6= ∅ and hence I ⊆ A

which implies t ∈ A. This shows Ab ⊆ A ⊆ Ac.
We now show that A has only finitely many connected components. Assume the
opposite, that is, A has infinitely many connected components. Then we can extract
from them pairwise disjoint intervals I1, I2, I3, . . . ∈ I. By construction, Ij ∩ Ab 6= ∅
and this ensures that we can pick tj ∈ Ij ∩Ab for all j ∈ N; in particular, a ≤ y(tj) ≤ b

for all j ∈ N. Since the sequence (tj) is bounded, we can assume (after passing to a
suitable subsequence if necessary) that (tj) is strictly monotone, and without loss of
generality we may assume that (tj) is strictly increasing; the other case is similar.
We claim that for each j ∈ N there is some sj ∈ (tj, tj+1) with y(sj) ≥ c. If not, we
have y(s) < c for all s ∈ (tj, tj+1), and since y(tj) ≤ b < c and y(tj+1) ≤ b < c we even
have y(s) < c for all s ∈ [tj, tj+1] and consequently [tj, tj+1] ⊆ Ac. Since tj ∈ Ij and
[tj, tj+1] is connected, we must have [tj, tj+1] ⊆ Ij. But the same argument also shows
[tj, tj+1] ⊆ Ij+1 and hence [tj, tj+1] ⊆ Ij ∩ Ij+1 = ∅ which is clearly impossible. Thus,
we indeed find sj ∈ (tj, tj+1) with y(sj) ≥ c for all j ∈ N.
Now, if X = Y BVϕ, then for all λ > 0,

Varϕ(λy) ≥
∞∑
j=1

ϕ
(
λ|y(sj)− y(tj)|

)
≥
∞∑
j=1

ϕ
(
λ(c− b)

)
=∞

and hence y /∈ Y BVϕ, a contradiction. If X = ΛBV , then

VarΛ(y) ≥
∞∑
j=1

λj|y(sj)− y(tj)| ≥ (b− c)
∞∑
j=1

λj =∞,

and so again y /∈ ΛBV . �

We remark that Lemma 5.1.7 also holds for y ∈ RBVp, but this will not be needed in
the sequel.



174 5.1. Composition Operators

Now, here comes the promised example of a composition operator Cg : BV → BV

which is surjective, but not injective.

Example 5.1.8. Define the function g : R → R by g(u) := min{u + 2, |u|} which is
shown in Figure 5.1.1.

u
−3 −2 −1 1 2

1

Figure 5.1.1: The function g on [−3, 2].

Then for fixed v ∈ R we have

g−1({v}) =


{v − 2} for v < 0,
{v − 2,−v, v} for 0 ≤ v ≤ 1,
{v} for v > 1.

In particular, g is surjective but not injective, and so Cg : BV → BV is not injective by
Proposition 5.1.2 (a). However, we claim that Cg is surjective. To see this, fix y ∈ BV .
Then y([0, 1]) ⊆ [a, b] for some a, b ∈ R with a < 1/3 ≤ b. By Lemma 5.1.7 there is a
set A ⊆ [0, 1] with only finitely many connected components such that

y−1([a, 1/3]) ⊆ A ⊆ y−1([a, 2/3)).

Define x : [0, 1]→ R by

x(t) =
{
y(t)− 2 for t ∈ A,
y(t) for t ∈ [0, 1]\A

}
=
(
y(t)− 2

)
χA(t) + y(t)χ[0,1]\A(t).

Since A and hence [0, 1]\A have only finitely many connected components, both func-
tions χA and χ[0,1]\A belong to BV , and so does x, as BV is an algebra. Moreover, by
construction, g(x(t)) = y(t) for all t ∈ [0, 1]. ♦
The same example also works if the space BV is replaced by the other spaces WBVp,
Y BVϕ or ΛBV . However, we will see later on that it will not work in the Riesz space
RBVp.

The fact that for each v ∈ R there is some u ∈ R such that g(u) = v (and hence pure
surjectivity) is only necessary but not sufficient for Cg to be surjective, as was shown
by the Examples 5.1.3, 5.1.4, 5.1.5 and 5.1.6. We therefore need to impose more on
those u to ensure surjectivity of Cg.
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Definition 5.1.9. We call a function g : R→ R nonflat at u ∈ R if there are compact
intervals I, J ⊆ R such that u ∈ I◦, g|I : I → J is bijective and (g|I)−1 ∈ Lip(J).

Example 5.1.10. The function g1(u) = u3 from the Examples 5.1.3, 5.1.4, 5.1.5 and
5.1.6 which generates a surjective operator Cg1 in neither of the spaces BV , WBVp,
ΛBV and RBVp is nonflat at all u ∈ R\{0}, but not at u = 0 which is the only
preimage for v = 0.
The function g2(u) = min{u−2, |u|} from Example 5.1.8, however, which did generate
a surjective operator Cg2 : X → X in all the spaces BV , WBVp, Y BVϕ and ΛBV , is
nonflat at all u ∈ R\{−1, 0}, where g2(−1) = 1 and g2(0) = 0. But for v = 0 we can
choose u = −2 as a preimage at which g2 is nonflat, while for v = 1 we can choose
u = 1 where g2 is nonflat. Consequently, this function has the property that for each
v ∈ R there is always some u ∈ R that g2(u) = v and that g2 is nonflat at u. ♦
The last example suggests that the missing property for surjectivity of Cg is that for
each real number the generating function g has at least one preimage at which g is
nonflat. This is indeed true and content of the following result which gives at least a
sufficient condition for the surjectivity of Cg.

Theorem 5.1.11. Let X be one of the spaces BV , WBVp, Y BVϕ or ΛBV , and let
g ∈ Liploc(R). Assume that for each v ∈ R there is some u ∈ R at which g is nonflat
such that g(u) = v. Then Cg : X → X is surjective.

Proof. Fix y ∈ X and let [c, d] := y([0, 1]). By hypothesis, for each v ∈ [c, d] there
exists some u ∈ R at which g is nonflat such that g(u) = v. This means that for each
v ∈ R there is some u ∈ R and compact intervals Iv, Jv such that u ∈ I◦v , g(u) = v,
g|Iv : Iv → Jv is bijective and (g|Iv)−1 ∈ Lip(Jv). In particular, g|Iv is strictly monotone
on Iv which implies v = g(u) ∈ g(I◦v ) = J◦v . Hence, the system{

J◦v | v ∈ [c, d]
}

forms an open cover of [c, d], and since the interval [c, d] is compact, we need only
finitely many of these intervals to cover it. Let v1, . . . , vn ∈ [c, d] be points generating
these covering intervals, and let Ij := Ivj and Jj := Jvj = [cj, dj] with cj < dj be so
that g|Ij : Ij → Jj is bijective, (g|Ij)−1 ∈ Lip(Jj) and [c, d] ⊆ ⋃nj=1 J

◦
j ; in particular,

[0, 1] = y−1
(

[c, d]
)

=
n⋃
j=1

y−1
(
J◦j
)

=
n⋃
j=1

y−1
(

[cj, dj)
)
. (5.1.1)

Without loss of generality we can assume that

cj < dj−1 < cj+1 < dj for j ∈ {2, . . . , n− 1},
c1 ≤ c and cn ≤ d ≤ dn. (5.1.2)

Taking (5.1.2) into account we find by Lemma 5.1.7 sets Aj ⊆ [0, 1] with only finitely
many connected components such that

y−1
(

[cj, cj+1]
)
⊆ Aj ⊆ y−1

(
[cj, dj)

)
for j ∈ {1, . . . , n− 1}.
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Writing An := [0, 1], the sets Bj, recursively defined by

Bj :=
[0, 1]\

j−1⋃
i=1

Bi

 ∩ Aj for j ∈ {1, . . . , n},

also have only finitely many connected components and are pairwise disjoint.
We now show

[0, 1] =
n⋃
j=1

Bj. (5.1.3)

To see this first note that each Bj is a subset of [0, 1], and thus we only need to show
that [0, 1] ⊆ ⋃nj=1 Bj. But this is clear, since if t0 ∈ [0, 1]\⋃n−1

j=1 Bj, then

t0 ∈ [0, 1]\
n−1⋃
j=1

Bj =
(

[0, 1]\
n−1⋃
i=1

Bi

)
∩ An = Bn

which shows t0 ∈
⋃n
j=1Bj and hence (5.1.3). Consequently, the sets Bj form a partition

of the interval [0, 1].
Writing hj = (g|Ij)−1 : Jj → Ij for j ∈ {1, . . . , n}, each function ϕj : [c, d]→ R, defined
by

ϕj(v) :=


hj(v) for v ∈ Jj,
hj(cj) for v ∈ [c, cj),
hj(dj) for v ∈ (dj, d],

belongs to Lip[c, d] for j ∈ {1, . . . , n}. Let us now define the function x : [0, 1]→ R by

x(t) =
n∑
j=1

ϕj
(
y(t)

)
χBj(t).

Since each ϕj is Lipschitz continuous, we have ϕj ◦ y ∈ X for each j ∈ {1, . . . , n}, and
since each Bj has only finitely many connected components, we also have χBj ∈ X for
each j ∈ {1, . . . , n}. Finally, since X is an algebra, x ∈ X.
It remains to show that g(x(t)) = y(t) holds for each t ∈ [0, 1]. To this end, fix
t0 ∈ [0, 1]. Then there is exactly one j ∈ {1, . . . , n} such that t0 ∈ Bj. If j < n, then
t0 ∈ Aj and hence y(t0) ∈ [cj, dj) ⊆ Jj which implies

g
(
x(t0)

)
= g

(
n∑
k=1

ϕk
(
y(t)

)
χBk(t0)

)
= g

(
ϕj
(
y(t0)

))
= y(t0).

If j = n, then t0 /∈ Ak for all k ∈ {1, . . . , n − 1}, since otherwise we had t0 ∈ Ak
for some k ∈ {1, . . . , n − 1} and hence t0 ∈

(
[0, 1]\⋃k−1

i=1 Bi

)
∩ Ak = Bk which is not

possible. But this implies y(t0) /∈ [ci, ci+1] for all i ∈ {1, . . . , n− 1} and hence

y(t0) ∈ [c, d]\
n−1⋃
i=1

[ci, ci+1] = [c, d]\[c1, cn] = (cn, d] ⊆ [cn, dn] = Jn.
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Again we obtain

g
(
x(t0)

)
= g

(
n∑
k=1

ϕk
(
y(t)

)
χBk(t0)

)
= g

(
ϕn
(
y(t0)

))
= y(t0)

and this shows indeed Cgx = y and hence the surjectivity of Cg. �

It is, however, not clear if the condition given in Theorem 5.1.11 is also necessary. In
order to find out if weakening this condition slightly still remains sufficient, we need to
have a closer look at the term “nonflat”.
Recall that local Lipschitz continuity geometrically means that the slope of the function
is locally bounded. For a function to be nonflat at a point it is therefore reasonable to
ensure that the slope in a neighborhood of that point needs to be bounded away from
zero. This is indeed true and the content of the following

Proposition 5.1.12. A continuous function g : R → R is nonflat at u ∈ R if and
only if there are numbers δ,m > 0 such that |g(u1)− g(u2)| ≥ m|u1 − u2| for u1, u2 ∈
[u− δ, u+ δ].

Proof. Let g be nonflat at u. Then there exist compact intervals I, J such that u ∈ I◦,
g|I : I → J is bijective and h := (g|I)−1 ∈ Lip(J). Then there is some δ > 0 such
that [u − δ, u + δ] ⊆ I, and by replacing I with [u − δ, u + δ] and J with g(I) we can
assume that I = [u− δ, u+ δ] and J = g(I). Note that due to the continuity of g, the
set g(I) is again a compact interval. Since h ∈ Lip(J) there is some L > 0 such that
|h(v1)− h(v2)| ≤ L|v1 − v2| for all v1, v2 ∈ J . Substituting u1 = h(v1) and u2 = h(v2)
we obtain |u1 − u2| ≤ L|g(u1) − g(u2)| and hence |g(u1) − g(u2)| ≥ m|u1 − u2| for
m := 1/L and all u1, u2 ∈ I = [u− δ, u+ δ], as claimed.
Now assume that there are constants δ,m > 0 such that |g(u1)−g(u2)| ≥ m|u1−u2| for
u1, u2 ∈ [u−δ, u+δ]. Then g is injective on I := [u−δ, u+δ]. Since g is continuous, the
set J := g(I) is also a compact interval, and g|I : I → J is bijective. Let h be its inverse,
i.e. h = (g|I)−1 : J → I. Then for v1, v2 ∈ J we set u1 := h(v1) and u2 := h(v2).
By writing L := 1/m we obtain |h(v1) − h(v2)| = |u1 − u2| ≤ L|g(u1) − g(u2)| =
L|g(h(v1))−g(h(v2))| = L|v1−v2|, and this shows (g|I)−1 = h ∈ Lip(J). Consequently,
g is nonflat at u. �

Thus, g being nonflat at a point u0 means that the slope of g in a neighborhood of u0
is bounded away from zero. In particular,

lim inf
u→u0

|g(u)− g(u0)|
|u− u0|

> 0. (5.1.4)

It is now reasonable to ask whether the condition being nonflat at u0 = u in Theorem
5.1.11 may be replaced by the weaker condition (5.1.4). Surprisingly, the answer is
negative, even if this weaker condition is satisfied only at one single point while the
function remains nonflat at all other points. Even this case may cause the corresponding
operator Cg to be not surjective anymore. We illustrate this in the following example,
where we will construct a function g : R→ R with g(0) = 0 which is bijective, globally
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Lipschitz continuous and nonflat at every point of R except at u0 = 0, where it at least
satisfies (5.1.4), that is,

lim inf
u→0

∣∣∣∣∣g(u)
u

∣∣∣∣∣ > 0. (5.1.5)

Example 5.1.13. Consider g : R→ R, defined by

g(u) =



u

n
+ 2−nn− 1

n
for 2−n ≤ u < 2−n 3n−1

2n−1 and n ∈ N,

2u− 2−n+1 for 2−n 3n−1
2n−1 ≤ u < 2−n+1 and n ∈ N,

u for u ∈ (−∞, 0] ∪ [1,∞).

Figure 5.1.2 shows the relevant part of the graph of g.

1

2

0 1

2

u

Figure 5.1.2: Graph of g on [0, 1/2].

Then g is globally Lipschitz continuous with lip(g) = 2,

g(2−n) = 2−n and g
(

2−n3n− 1
2n− 1

)
= 2−n+1n

2n− 1 for n ∈ N.

Moreover, g is strictly increasing and bijective with inverse

g−1(v) =


nv − 2−n(n− 1) for 2−n ≤ v < 2−n+1n

2n−1 and n ∈ N,
v
2 + 2−n for 2−n+1n

2n−1 ≤ v < 2−n+1 and n ∈ N,

v for v ∈ (−∞, 0] ∪ [1,∞).

By Proposition 5.1.2 (a), the operator Cg : BV → BV is injective. If it was surjective
and so bijective, then by Proposition 5.1.2 (c) the function g had a locally Lipschitz
continuous inverse. However, g−1 is not locally Lipschitz continuous at v = 0.



5.1. Composition Operators 179

We also can see directly that Cg cannot be surjective. To this end, define Tn ⊆
[2−n, 2−n+1), yn > 0 and mn ∈ N so that

yn := 2−n−1

n
and mn ≤

1
2ynn2 < 2mn

and
Tn :=

{
2−n + 2−n

mn

· j | j = 0, . . . ,mn − 1
}
,

and set y : [0, 1]→ R by y(0) = 0, y(1) = 1/2 and

y(t) =
2−n + yn for t ∈ Tn,

2−n for [2−n, 2−n+1)\Tn.

Then y ∈ BV with

Var(y) =
∞∑
n=1

Var(y, [2−n, 2−n+1]) =
∞∑
n=1

(2ynmn + 2−n+1 − 2−n)

≤
∞∑
n=1

1
n2 + 1 = π2

6 + 1 <∞.

Moreover, y([2−n, 2−n+1]) ⊆ [2−n, 2−n+1n
2n−1 ), and hence the only function x : [0, 1] → R

satisfying Cgx = y is given by x(0) = 0, x(1) = 1/2 and

x(t) =
2−n + nyn for t ∈ Tn,

2−n for [2−n, 2−n+1)\Tn.

However, x /∈ BV , since

Var(x) =
∞∑
n=1

Var(x, [2−n, 2−n+1]) =
∞∑
n=1

(2nynmn + 2−n+1 − 2−n) ≥
∞∑
n=1

1
2n + 1 =∞.

Consequently, Cg : BV → BV cannot be surjective.
Finally, g is obviously nonflat at any u 6= 0 but cannot be nonflat at u = 0, as the
gray line segments near the origin (see Figure 5.1.2) have slopes that get arbitrarily
close to 0. However, g satisfies (5.1.5), because for u < 0 we have g(u) = u, and for
2−n ≤ u < 2−n+1 with n ∈ N we have due to the monotonicity of g,

g(u) ≥ g
(
2−n

)
= 2−n ≥ u/2.

Consequently,
lim inf
u→0

g(u)
u
≥ 1

2
and so (5.1.5) is indeed true. ♦
The last example shows that weakening the condition given in Theorem 5.1.11 only
slightly turns down the surjectivity of Cg. We therefore conjecture that this condition
is also necessary, but we were not able to prove it.
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The previous results referred to BV -spaces which contain characteristic functions and
therefore excluded our last space RBVp. Here, the situation is again different, but
apparently as complicated as in BV . However, the condition given in Theorem 5.1.11
is not sufficient to guarantee that Cg from RBVp into itself is surjective.

Example 5.1.14. Define g(u) := min{u + 2, |u|} as in Example 5.1.8. There we
have seen that Cg maps the space BV into itself and is surjective. However, since
g is Lipschitz continuous, Cg maps also the space RBVp into itself. But this time,
Cg : RBVp → RBVp is not surjective. Recall that for fixed v ∈ R,

g−1({v}) =


{v − 2} for v < 0,
{v − 2,−v, v} for 0 ≤ v ≤ 1,
{v} for v > 1.

The function y(t) = 3t−1 maps the interval [0, 1] bijectively onto [−1, 2]. If x ∈ RBVp
is a function satisfying Cgx = y, then x must be injective and continuous. But since
y(0) = −1 < 0 and y(1) = 2 > 1, we must have x(t) = y(t) − 2 for t ∈ [0, 2/3] but
simultaneously x(t) = y(t) for t ∈ [1/3, 1] which is not possible. ♦
The following result is a sufficient condition on g to ensure that Cg : RBVp → RBVp is
surjective. It says basically that those “zigzag” patterns like in Example 5.1.14 must
be compensated somewhere else.

Proposition 5.1.15. Let g ∈ Liploc(R). Then the composition operator Cg : RBVp →
RBVp is surjective if for any compact interval J ⊆ R we find a compact interval I ⊆ R
such that g|I : I → J is bijective and (g|I)−1 ∈ Lip(J).

Proof. Assume that g possesses the property that for any compact interval J ⊆ R we
find a compact interval I ⊆ R such that g|I : I → J is bijective and (g|I)−1 ∈ Lip(J).
Fix y ∈ RBVp. Then y is bounded and continuous, and by the Intermediate Value
Theorem, J := y([0, 1]) is a compact interval. By assumption, there is some compact
interval I ⊆ R such that g|I : I → J is bijective and g|−1

I ∈ Lip(J). Therefore, the
function x := g|−1

I ◦ y is well-defined, belongs to RBVp and satisfies g ◦ x = y, that is,
Cgx = y. Since y was arbitrary, Cg : RBVp → RBVp is surjective. �

The function g from the Examples 5.1.8 and 5.1.14 does not have the property assumed
in Proposition 5.1.15. Indeed, if one takes J = [−1, 3], then g maps no interval bi-
jectively onto J . This explains why g in Example 5.1.14 did not generate a surjective
operator Cg : RBVp → RBVp.
One could argue that the condition given in Proposition 5.1.15 is equivalent to g being
nonflat at any u ∈ R. This is not true. In fact, neither of these two conditions implies
the other. The next example shows that being nonflat at any u ∈ R does not imply
the condition given in Proposition 5.1.15.

Example 5.1.16. The function g(u) = eu is nonflat at any u ∈ R. However, for the
compact interval J = [−1, 0] there is no compact interval I ⊆ R such that g|I : I → J

is bijective. ♦
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The reason for this is that the condition in Proposition 5.1.15 implies the surjectivity
of g whereas being nonflat at each u ∈ R does not. However, if one requires g to
be nonflat at any u ∈ R while being surjective, then g must be a homeomorphism of
R with locally Lipschitz continuous inverse. On the other hand, there are functions
satisfying the condition of Proposition 5.1.15 which are not bijective on R.

Example 5.1.17. The function g : R → R, defined by g(u) := u2 cos(u), is locally
Lipschitz continuous, surjective but not injective. Therefore, it cannot be nonflat at
any u ∈ R. Indeed, g is differentiable with g′(0) = 0, and so (5.1.4) is violated at u = 0
(and, similarly, at the infinitely many locally extremal points of g).
However, g does meet the requirements of Proposition 5.1.15. Indeed, if J ⊆ R is a
compact interval, then one can choose k ∈ N so large that

J ⊆
(
g
(
kπ
)
, g
(
(k + 1)π

))
= g

((
kπ, (k + 1)π

))
.

But since g is injective on [kπ, (k+ 1)π], there is a compact interval I ⊆ [kπ, (k+ 1)π]
such that g maps I bijectively onto J with g−1 ∈ Lip(J). ♦

We now come back to analytic properties of Cg and formulate and prove the promised
result concerning the boundedness of Cg. For this and the rest of this section we need
the following technical auxiliary result.

Lemma 5.1.18. Let X be one of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp, and
let g : R → R be so that Cg maps X into itself. For fixed R ≥ 1 there is % > 0 such
that for u, v ∈ R, α ∈ (0, %], β ∈ [0, α] and γ ∈ (0, 1] there are functions x, y ∈ X

which satisfy

(i) ‖x‖X ≤ max{|u|, |u+ α|}+ 2R/γ and ‖y‖X ≤ max{|v|, |v + β|}+ 2R/γ,

(ii) ‖x− y‖X = |u− v| for α = β,

(iii)
∣∣∣∣∣g(u+ α)− g(u)

α
− g(v + β)− g(v)

α

∣∣∣∣∣ ≤ 16γ ‖Cgx− Cgy‖X .

The functions x and y can be chosen of the form x(t) = u+αh(t) and y(t) = v+βh(t),
where h ∈ X satisfies ‖h‖∞ = 1.

The most important inequality is of course the one given in (iii). It basically says that
the difference of the slopes of g at two prescribed points u and v can be estimated from
above by the norm of Cgx−Cgy, where x and y are suitably chosen functions that are
close to u and v, respectively. In this sense the growth of g may be estimated by the
mapping behavior of Cg; in particular, if Cgx stays close to Cgy, then g cannot grow
too rapidly. This is of course a very vague interpretation of Lemma 5.1.18, but it will
be of great use later on, where it will be applied in detail.
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Proof of Lemma 5.1.18. Fix u, v ∈ R and R ≥ 1. We handle the three cases X =
Y BVϕ, X = ΛBV and X = RBVp separately and start with X = Y BVϕ.
First, pick % > 0 so that 0 < ϕ(%) ≤ R. This is possible since ϕ(r) → 0 as r → 0+.
Fix α ∈ (0, %], β ∈ [0, α] and γ ∈ (0, 1]. Then we have R/ϕ(αγ) ≥ R/ϕ(%) ≥ 1, and
this is why we find some n ∈ N so large that

n ≤ R

ϕ(αγ) ≤ 2n. (5.1.6)

Define the functions x, y : [0, 1]→ R by

x := u+ J(αj) with αj :=
α for 1 ≤ j ≤ n,

0 for j > n,
(5.1.7)

y := v + J(βj) with βj :=
β for 1 ≤ j ≤ n,

0 for j > n,
(5.1.8)

where we use the functions defined in (1.2.1). Then x, y ∈ Y BVϕ with

‖x‖∞ = max{|u|, |u+ α|} and ‖y‖∞ = max{|v|, |v + β|}. (5.1.9)

Moreover, since R ≥ 1, we have due to the convexity of ϕ the estimate ϕ(αγ/R) ≤
ϕ(αγ)/R and hence by Corollary 1.2.11 and (5.1.6),

Varϕ
(

x

2R/γ

)
= Varϕ

(
u+ J(αj)

2R/γ

)
= Varϕ

(
J(αj)

2R/γ

)
≤ nϕ

(
αγ

R

)
≤ n

ϕ(αγ)
R

≤ 1,

Varϕ
(

y

2R/γ

)
= Varϕ

(
v + J(βj)

2R/γ

)
= Varϕ

(
J(βj)

2R/γ

)
≤ nϕ

(
βγ

R

)
≤ nϕ

(
αγ

R

)
≤ 1.

This implies M(x) ≤ 2R/γ and M(y) ≤ 2R/γ, and therefore

‖x‖Y BVϕ ≤ max{|u|, |u+ α|}+ 2R/γ, ‖y‖Y BVϕ ≤ max{|v|, |v + β|}+ 2R/γ,

which is property (i).
If α = β, then x − y ≡ u − v, and hence M(x − y) = 0. In this case, ‖x− y‖Y BVϕ =
‖x− y‖∞ = |u− v| which is property (ii).
To show (iii), let λ > 0 be so that

Varϕ
(
Cgx− Cgy

λ

)
≤ 1.

In order to estimate the Young variation of Cgx− Cgy, note that Cgx− Cgy − g(u) +
g(v) = J(ηj), where ηj = g(u + α) − g(u) − g(v + β) + g(v) for 1 ≤ j ≤ n and ηj = 0
for j > n. Thus, from Corollary 1.2.11 we obtain by using (5.1.6) and R ≥ 1,

1 ≥ Varϕ
(
g ◦ x− g ◦ y

λ

)
≥ 2nϕ

(
|g(u+ α)− g(u)− g(v + β) + g(v)|

λ

)

≥ 1
ϕ(αγ)ϕ

(
|g(u+ α)− g(u)− g(v + β) + g(v)|

λ

)
.
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Multiplying by ϕ(αγ), applying ϕ−1, dividing by αγ and multiplying by λ on both
sides gives

1
γ

∣∣∣∣∣g(u+ α)− g(u)
α

− g(v + β)− g(v)
α

∣∣∣∣∣ ≤ λ.

If we now take the infimum over all such λ, we get
1
γ

∣∣∣∣∣g(u+ α)− g(u)
α

− g(v + β)− g(v)
α

∣∣∣∣∣ ≤M(Cgx− Cgy) ≤ ‖Cgx− Cgy‖Y BVϕ ,

and this proves (iii).
We now prove the statement for X = ΛBV , where Λ = (λj) is the Waterman sequence
for ΛBV , and Λn := λ1 + λ2 + . . . + λn its partial sums. This time, choose % so that
R/% = λ1. Fix α ∈ (0, %], β ∈ [0, α] and γ ∈ (0, 1]. Then we have R/(αγ) ≥ R/% =
λ1 = Λ1, and this is why we find some n ∈ N so large that

Λn ≤
R

αγ
≤ 2Λn. (5.1.10)

Note that since (λj) is decreasing we have Λn+1 ≤ 2Λn for all n ∈ N, and this implies
that the intervals ([Λn, 2Λn])n∈N cover [Λ1,∞), because Λn →∞ as n→∞.
Define the functions x and y as in (5.1.7) and (5.1.8). Then x, y ∈ ΛBV with (5.1.9).
Moreover, by (5.1.10) and Corollary 1.2.21,

VarΛ(x) = VarΛ(J(αj)) ≤ 2
n∑
j=1

λjα = 2αΛn ≤
2R
γ
,

VarΛ(y) = VarΛ(J(βj)) ≤ 2
n∑
j=1

λjβ = 2βΛn ≤ 2αΛn ≤
2R
γ
.

These estimates imply property (i).
Property (ii) is again fulfilled as for α = β we have VarΛ(x− y) = 0.
To show (iii) we argue similarly as for X = Y BVϕ, but this time we use Corollary
1.2.21 and (5.1.10) together with R ≥ 1. Accordingly, we obtain

‖Cgx− Cgy‖ΛBV ≥ VarΛ(g ◦ x− g ◦ y) ≥ Λn

∣∣∣g(u+ α)− g(u)− g(v + β) + g(v)
∣∣∣

≥ 1
2γ

∣∣∣∣∣g(u+ α)− g(u)
α

− g(v + β)− g(v)
α

∣∣∣∣∣ ,
and so (iii) is established. Note that in the last two cases the functions x and y have
indeed the form x = u+αh and y = v+ βh, where h = J(ζj) with ζj = 1 for 1 ≤ j ≤ n

and ζj = 0 for j > n satisfies ‖h‖∞ = 1.
Finally, we show the statement for X = RBVp, but for that we need to proceed a little
different than before. First, we choose % so that R/(8%) = 1, because then we have
for α ∈ (0, %], β ∈ [0, α] and γ ∈ (0, 1] that R/(8αγ) ≥ 1. For such fixed α and γ we
therefore find an n ∈ N so large that

n2−1/p ≤ R

8αγ ≤ (n+ 1)2−1/p. (5.1.11)
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The function h : [0, 1]→ R, defined by

h(t) =
0 for 0 ≤ t ≤ 1

2n+1 ,[
cos( π2t)

]2
for 1

2n+1 < t ≤ 1,

belongs to RBVp, because h ∈ AC, and by Theorem 1.2.25,

RVarp(h)1/p =
(∫ 1

1/(2n+1)
|h′(t)|p dt

)1/p

= π

2

(∫ 1

1/(2n+1)

| sin(π/t)|p
t2p

dt
)1/p

≤ π

2

(∫ 1

1/(2n+1)

1
t2p

dt
)1/p

= π

2

(
(2n+ 1)2p − 2n− 1

(2n+ 1)(2p− 1)

)1/p

≤ 16n2−1/p.

Moreover, 0 ≤ h(t) ≤ 1 for all t ∈ [0, 1] with

h

(
1
2j

)
= 1 and h

(
1

2j − 1

)
= 0 for j ∈ {1, . . . , n};

in particular, ‖h‖∞ = 1. The functions x := u+ αh and y := v + βh then also belong
to RBVp and satisfy

RVarp(x)1/p = RVarp(αh) ≤ 16αn2−1/p ≤ 2R/γ,
RVarp(y)1/p = RVarp(βh) ≤ 16βn2−1/p ≤ 16αn2−1/p ≤ 2R/γ,

by (5.1.11). In addition, ‖x‖∞ ≤ max{|u|, |u+ α|} and ‖y‖∞ ≤ max{|v|, |v + β|}, and
this shows part (i).
Again, (ii) is satisfied for α = β as then RVarp(x− y) = 0.
For (iii) note that

‖Cgx− Cgy‖RBVp ≥

 n∑
j=1

∣∣∣(g ◦ x− g ◦ y)
(

1
2j−1

)
− (g ◦ x− g ◦ y)

(
1
2j

)∣∣∣p∣∣∣ 1
2j−1 − 1

2j

∣∣∣p−1


1/p

=
∣∣∣∣g(u)− g(u+ α)− g(v) + g(v + β)

∣∣∣∣
 n∑
j=1

(
4j2 − 2j

)p−1
1/p

≥ (n+ 1)2−1/p

2
∣∣∣g(u)− g(u+ α)− g(v) + g(v + β)

∣∣∣, (5.1.12)

where we have used the identity
n∑
j=1

(
4j2 − 2j

)p−1 ≥ (n+ 1)2p−1

2p (5.1.13)

which we are going to prove now by induction. For n = 1 the estimate (5.1.13) is
clearly true (even with equality). Assume that (5.1.13) has already been established
for some fixed n ∈ N. Then we obtain

n+1∑
j=1

(
4j2 − 2j

)p−1 ≥ (n+ 1)2p−1

2p + 2p−1
(
2n2 + 3n+ 1

)p−1
.



5.1. Composition Operators 185

We show that the inequality

(n+ 1)2p−1

2p + 2p−1
(
2n2 + 3n+ 1

)p−1 ≥ (n+ 2)2p−1

2p (5.1.14)

holds, because then (5.1.13) is proven for n replaced by n + 1. Note that (5.1.14) is
equivalent to the estimate

ψ(n+ 2)− ψ(n+ 1) ≤ 2p−1
(
2n2 + 3n+ 1

)p−1
, (5.1.15)

where ψ(t) := t2p−1/2p. From the Mean Value Theorem we obtain ψ(n+2)−ψ(n+1) =
ψ′(ξ) for some ξ ∈ [n+ 1, n+ 2], and this yields

ψ(n+ 2)− ψ(n+ 1) ≤ 2p− 1
2p

(
n2 + 4n+ 4

)p−1
. (5.1.16)

However,

(2p− 1)
(
n2 + 4n+ 4

)p−1 ≤ 22p−1
(
2n2 + 3n+ 1

)p−1
(5.1.17)

is true for our n. Indeed, if n = 1, then the inequality (5.1.17) reduces to 2p − 1 ≤
22p−1(2/3)p−1 which is true for all p ≥ 1, and if n = 2, then the estimate (5.1.17) reads
2p − 1 ≤ 22p−1(15/16)p−1 which again is true for all p ≥ 1. If n ≥ 3, then (5.1.17) is
also true as 2p − 1 ≤ 22p−1 and n2 + 4n + 4 ≤ 2n2 + 3n + 1. Consequently, (5.1.17)
holds for our n. Combining (5.1.17) and (5.1.16) we see that (5.1.15) and hence also
(5.1.14) is true. Finally, (5.1.13) is indeed established.
Using (5.1.11) and R ≥ 1, we obtain from (5.1.12),

‖Cgx− Cgy‖RBVp ≥
1

16γ

∣∣∣∣∣g(u)− g(u+ α)
α

− g(v)− g(v + β)
α

∣∣∣∣∣ ,
which again shows (iii) and finally completes the proof of the Lemma. �

We are now in a position to formulate our result about the acting conditions and
boundedness of Cg. Recall that

BR(X) =
{
x ∈ X | ‖x‖X ≤ R

}
denotes the closed ball around 0 with radius R in a normed vector space (X, ‖·‖X).

Theorem 5.1.19. Let g : R→ R, and let X be one of the spaces BV , WBVp, Y BVϕ,
ΛBV or RBVp. Then Cg maps X into itself and is bounded if and only if g ∈ Liploc(R).

Proof. We have already seen in the comments around Proposition 5.1.1 that if g ∈
Liploc(R), then Cg maps X into itself and is bounded. We now prove the converse
which, again by Proposition 5.1.1, is only necessary for X = Y BVϕ. To this end, fix
R ≥ 1 and consider

A := B34R(Y BVϕ) = {x ∈ Y BVϕ | ‖x‖Y BVϕ ≤ 34R}
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which is a bounded subset of Y BVϕ. Since Cg is assumed to be bounded, there is some
L > 0 such that ‖Cgx‖Y BVϕ ≤ L/2 for all x ∈ A.
By Lemma 5.1.18 there is some % ∈ (0, R] such that for u ∈ [−R,R], v = 0, α ∈ (0, %],
β = 0 and γ = 1/16 there are functions x, y ∈ Y BVϕ of the form x = u + αh and
y = v + βh = 0 with h ∈ Y BVϕ, ‖x‖Y BVϕ ≤ max{|u|, |u + α|} + 2R/γ ≤ 34R,
‖y‖Y BVϕ = 0 and∣∣∣∣∣g(u+ α)− g(u)

α

∣∣∣∣∣ ≤ ‖Cgx− Cgy‖Y BVϕ ≤ ‖Cgx‖Y BVϕ + ‖Cg0‖Y BVϕ ≤ L;

note that x, y ∈ A. We get |g(u + α) − g(u)| ≤ Lα or equivalently |g(u′) − g(u)| ≤
L(u′−u) for u, u′ ∈ [−R,R], 0 < u′−u ≤ %. This implies that g is Lipschitz continuous
on [−R,R], and since R was arbitrary, it is locally Lipschitz continuous on all of R. �

Lemma 5.1.18 can also be used to characterize compactness. Recall that an arbitrary
operator T : X → X from a normed space X into itself is compact if and only if
every bounded sequence is mapped by T into a sequence from which a convergent
subsequence may be extracted. It turns out that, in contrast to the multiplication
operator, compactness of the composition operator Cg leads to a very strong degeneracy
of g. Here and in the upcoming results we will frequently combine Lemma 5.1.18 with
Lemma 1.1.27.

Theorem 5.1.20. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g ∈ Liploc(R). Then Cg : X → X is compact if and only if g is constant.

Proof. It is clear that Cg : X → X is compact if g is constant, and so it remains to
prove the converse. To this end, let D ⊆ R be the set of points of differentiability of
g which has full measure as g ∈ Liploc(R). According to part (d) of Lemma 1.1.27
in order to show that g is constant it suffices to show that g′|D is zero. So let us
fix u ∈ D. By Lemma 5.1.18 (with v = u) we find for R = 1 some % > 0 and for
γ = 1/16, β = 0 and αn = 1/n, n ∈ N, n ≥ 1/% functions xn and yn with ‖xn‖X ≤
max{|u|, |u+ αn|}+ 32R ≤ |u|+ 1 + 32R and∣∣∣∣∣g(u+ αn)− g(u)

αn

∣∣∣∣∣ ≤ ‖Cgxn − Cgyn‖X , (5.1.18)

where xn = u + αnhn for proper hn ∈ X with ‖hn‖∞ = 1, and yn ≡ u. In particular,
the xn form a bounded sequence in X.
Since αn → 0 as n → ∞, the functions xn converge pointwise to y ≡ u. Moreover,
since g is continuous, the compositions Cgxn converge pointwise to Cgy ≡ g(u); in
particular, the limit function of any subsequence of (Cgxn) which converges in X must
be Cgy ≡ g(u).
But since Cg is compact, there must be a convergent subsequence (Cgxnk)k of (Cgxn)
in X, and since g is differentiable at u, we obtain from (5.1.18),

|g′(u)| = lim
k→∞

∣∣∣∣∣g(u+ αnk)− g(u)
αnk

∣∣∣∣∣ ≤ lim
k→∞
‖Cgxnk − Cgynk‖X

= lim
k→∞
‖Cgxnk − Cgy‖X = 0.
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Thus, g′(u) = 0, and as u ∈ D has been chosen arbitrarily, the result follows indeed
from part (d) of Lemma 1.1.27. �

We now turn to more delicate questions, a characterization of Lipschitz, uniform and
pointwise continuity of Cg : X → X for X being one of our BV -type spaces. We start
with Lipschitz continuity, both on the entire space and on bounded sets.

By a local Lipschitz continuity of Cg : X → X we mean a condition of the type

‖Cgx− Cgy‖X ≤ L(R) ‖x− y‖X for ‖x‖X , ‖y‖X ≤ R, (5.1.19)

that is, Lipschitz continuity on closed balls in X. It turns out that Cg satisfies an
estimate of the form (5.1.19) if and only if g is continuously differentiable with locally
Lipschitz continuous derivative. Denoting the space of such functions by Lip1

loc(R) the
following result is known.

Theorem 5.1.21. Let g ∈ Liploc(R), and let X be one of the spaces BV , WBVp,
Y BVϕ, ΛBV or RBVp. Then Cg : X → X is locally Lipschitz continuous in the sense
of (5.1.19) if and only if g ∈ Lip1

loc(R).

Proofs of this theorem can be found in [9] for BV , WBVp, Y BVϕ and RBVp, and even
for other BV -type spaces like, for instance, the space of functions of bounded variation
in the sense of Korenblum [117]. For our BV -spaces, the “if”-part can alternatively be
proved using Lemma 5.48 of [6] and Lemma 1.2.26; we will show how to do that in a
moment. However, the proofs for the “only if”-part in the aforementioned literature do
not cover all our variations at once or are quite complicated, because they are mostly
based on Helly’s Selection Principle. Therefore, we show that our all-round Lemma
5.1.18 also provides a quite short proof for all our BV -spaces X at once without any
additional ingredients.

Proof of Theorem 5.1.21. First assume that g ∈ Lip1
loc(R), fix R > 0 and x, y ∈ X

with ‖x‖X , ‖y‖X ≤ R; in particular, x(t), y(t) ∈ [−R,R] for all t ∈ [0, 1]. By Lemma
5.48 of [6] there are L1(R), L2(R) > 0 only depending on R such that∣∣∣∣g(x(s)

)
− g

(
y(s)

)
− g

(
x(t)

)
+ g

(
y(t)

)∣∣∣∣
≤ L1(R)

(∣∣∣x(s)− x(t)
∣∣∣+ ∣∣∣y(s)− y(t)

∣∣∣)(∣∣∣x(s)− y(s)
∣∣∣+ ∣∣∣x(t)− y(t)

∣∣∣)
+ L2(R)

∣∣∣x(s)− y(s)− x(t) + y(t)
∣∣∣

≤ 2L1(R)
(∣∣∣x(s)− x(t)

∣∣∣+ ∣∣∣y(s)− y(t)
∣∣∣) ‖x− y‖∞

+ L2(R)
∣∣∣x(s)− y(s)− x(t) + y(t)

∣∣∣ for all s, t ∈ [0, 1].

From Lemma 1.2.26 we obtain

ΦX(g ◦ x− g ◦ y) ≤ 2L1(R)
(
ΦX(x) + ΦX(y)

)
‖x− y‖∞ + L2(R)ΦX(x− y)

≤ 4RL1(R) ‖x− y‖∞ + L2(R)ΦX(x− y),
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where ΦX denotes the seminorm part of ‖·‖X as in Table 1.2.1.
Moreover, since g ∈ C1(R) and hence g ∈ Liploc(R) there is some L3(R) > 0 only
depending on R such that

‖g ◦ x− g ◦ y‖∞ = sup
t∈[0,1]

∣∣∣g(x(t)
)
− g

(
y(t)

)∣∣∣
≤ L3(R) sup

t∈[0,1]

∣∣∣x(t)− y(t)
∣∣∣ = L3(R) ‖x− y‖∞ .

In total, we obtain

‖Cgx− Cgy‖X = ‖g ◦ x− g ◦ y‖∞ + ΦX(g ◦ x− g ◦ y) ≤ L(R) ‖x− y‖X ,

where
L(R) := max

{
L3(R) + 4RL1(R), L2(R)

}
.

Since R was arbitrary, Cg is locally Lipschitz continuous.
We now show the converse and assume that Cg : X → X is locally Lipschitz continuous
in the sense of (5.1.19). In order to show that g is differentiable with locally Lipschitz
continuous derivative, by Lemma 1.1.27 (b) it suffices to show that g′|D is Lipschitz
continuous on [−R,R] for each R ≥ 1, where D is the set of points at which g is
differentiable. So let R ≥ 1 be fixed. Since the set

A := B34R(X) = {x ∈ X | ‖x‖X ≤ 34R}

is bounded in X, we find some L > 0 such that ‖Cgx− Cgy‖X ≤ L ‖x− y‖X for all
x, y ∈ A. By Lemma 5.1.18 we find some % ∈ (0, R] and for u, v ∈ [−R,R] ∩ D,
α = β ∈ (0, %] and γ = 1/16 functions x, y ∈ A with ‖x− y‖X = |u− v| and∣∣∣∣∣g(u+ α)− g(u)

α
− g(v + α)− g(v)

α

∣∣∣∣∣ ≤ ‖Cgx− Cgy‖X ≤ L ‖x− y‖X = L|u− v|.

But letting α → 0+ immediately yields |g′(u) − g′(v)| ≤ L|u − v|, and the claim is
proven. �

Thus, the local Lipschitz condition (5.1.19) imposed on Cg leads to a stronger regularity
condition of g, as expected. However, the natural question arises what happens when
Cg is supposed to be even globally Lipschitz continuous. This is possible only for highly
degenerate functions g, namely only if g is affine. This phenomenon has been discussed,
even in the nonautonomous case, for many function spaces and especially for spaces of
functions of bounded variation of various types. A detailed survey can be found in [6].
In many cases, especially in all our BV -spaces, this degeneracy occurs even if “globally
Lipschitz continuous” is replaced by “globally uniformly continuous”; we give a short
proof again with the help of Lemma 5.1.18.

Theorem 5.1.22. Let g ∈ Liploc(R), and let X be one of the spaces BV , WBVp,
Y BVϕ, ΛBV or RBVp. Then Cg : X → X is globally uniformly continuous if and only
if g is affine.
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Proof. If g(u) = au+ b is affine, then the uniform continuity is immediate. Indeed, for
all x, y ∈ X we have

Cgx− Cgy = Mh(x− y),

where h(t) = a for all t ∈ [0, 1]. By Corollary 4.1.8, ‖Cgx− Cgy‖X ≤ ‖h‖X ‖x− y‖X =
|a| ‖x− y‖X . Thus, we even have globally Lipschitz continuity in this case.

For the converse, assume that Cg : X → X is uniformly continuous on all of X. In
order to show that g is affine, it suffices to show that g′|D is constant, where D is
the set of points at which g is differentiable, according to Lemma 1.1.27 (c). Due to
the globally uniform continuity of Cg there is some δ > 0 such that for all x, y ∈ X
with ‖x− y‖X ≤ δ we have ‖Cgx− Cgy‖X ≤ 1. Now, fix u, v ∈ D with |u − v| ≤ δ.
By Lemma 5.1.18 (with R = 1) there is some % ∈ (0, 1] such that for u, v ∈ D

with |u − v| ≤ δ, α = β ∈ (0, %] and γ ∈ (0, 1] there are functions x, y ∈ X with
‖x− y‖X = |u− v| and∣∣∣∣∣g(u+ α)− g(u)

α
− g(v + α)− g(v)

α

∣∣∣∣∣ ≤ 16γ ‖Cgx− Cgy‖X .

But since |u− v| ≤ δ we have ‖x− y‖X ≤ δ, so ‖Cgx− Cgy‖X ≤ 1 and hence∣∣∣∣∣g(u+ α)− g(u)
α

− g(v + α)− g(v)
α

∣∣∣∣∣ ≤ 16γ.

Now, if we let first α → 0+ and afterwards γ → 0+, then we get g′(u) = g′(v). And
since the points u, v ∈ D have been chosen arbitrarily, g′|D is constant. �

The last question to answer in the framework of uniform continuity is what conditions
have to be imposed on g to guarantee that Cg : X → X is locally uniformly continuous,
that is, uniformly continuous on bounded subsets of X, where X is one of our BV -
spaces introduced in Chapter 1. The authors of [31] and [32] proved for X = BV and
X = ΛBV that g ∈ C1(R) generates a continuous operator Cg : X → X, and they did
that by approximating the operator Cg by locally Lipschitz continuous composition
operators uniformly converging on bounded subsets of X to Cg. We will come back to
this principle later in Section 6.2. However, they actually proved (but did not mention)
that this operator Cg is then even locally uniformly continuous. Another proof for this
was given earlier in 1969 for X = BV in [55]. We give here a more elementary proof
for this fact and show even more: g ∈ C1(R) is in fact equivalent to the locally uniform
continuity of Cg in all our BV -spaces.

Theorem 5.1.23. Let g ∈ Liploc(R), and let X be any of the spaces BV , WBVp,
Y BVϕ, ΛBV or RBVp. Then Cg : X → X is uniformly continuous on bounded subsets
of X if and only if g is continuously differentiable on R.

Proof. We first assume that Cg is uniformly continuous on bounded subsets of X. In
order to show that g is differentiable and has a continuous derivative, we show that
g′|D is uniformly continuous on [−R,R] for each R ≥ 1, where D is the set of points at
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which g is differentiable, in accordance with Lemma 1.1.27 (a). To this end, let R ≥ 1
and ε > 0 be fixed, and consider the ball

A := B34R(X) = {x ∈ X | ‖x‖X ≤ 34R}

which is bounded in X. Since Cg is uniformly continuous on A, there is some δ ∈ (0, R)
such that for all x, y ∈ A with ‖x− y‖X ≤ δ, we have ‖Cgx− Cgy‖X ≤ ε. Now, fix
u, v ∈ D with |u− v| ≤ δ. By Lemma 5.1.18 (with γ = 1/16) there is some % ∈ (0, R]
such that for all α = β ∈ (0, %] we get x, y ∈ A with ‖x− y‖X = |u− v| and∣∣∣∣∣g(u+ α)− g(u)

α
− g(v + α)− g(v)

α

∣∣∣∣∣ ≤ ‖Cgx− Cgy‖X ≤ ε.

Letting α→ 0+ yields |g′(u)− g′(v)| ≤ ε, and this proves the claim.
For the converse, assume that g is continuously differentiable in all of R, and fix ε > 0
and a bounded set A ⊆ X. Then there is some R > 0 such that ‖x‖X ≤ R for all
x ∈ A. Because of the continuity of g′, the function G : R2 → R, defined by

G(u, v) :=


g(u)− g(v)
u− v for u 6= v,

g′(u) for u = v,

is continuous with respect to the norm ‖(u, v)‖m := max{|u|, |v|} for R2 and the Eu-
clidean norm for R, and in particular uniformly continuous on compact subsets of R2.
Thus, we find a δ ∈ (0, ε] such that

|G(u1, v1)−G(u2, v2)| ≤ ε

for all (u1, v1), (u2, v2) ∈ [−R,R]2 with ‖(u1, v1)− (u2, v2)‖m ≤ δ, and why G is
bounded on [−R,R]2, i.e. |G(u, v)| ≤ M for some M > 0 and all u, v ∈ [−R,R].
Moreover, since g itself is uniformly continuous on [−R,R], we can assume that δ is so
small that |g(u)− g(v)| ≤ ε holds for all u, v ∈ [−R,R] with |u− v| ≤ δ.
We now fix x, y ∈ A with ‖x− y‖X ≤ δ; in particular, we have ‖x‖∞ , ‖y‖∞ ≤ R and
‖x− y‖∞ ≤ δ which implies x(t), y(t) ∈ [−R,R] and |x(t)− y(t)| ≤ δ for all t ∈ [0, 1].
For fixed s, t ∈ [0, 1] we write for abbreviation xs := x(s), ys := y(s), xt := x(t), yt :=
y(t). Then ‖(xs, xt)− (ys, yt)‖m ≤ ‖x− y‖∞ ≤ δ, and thus∣∣∣G(xs, xt)−G(ys, yt)

∣∣∣ ≤ ε.

This implies∣∣∣(Cgx− Cgy)(s)− (Cgx− Cgy)(t)
∣∣∣ =

∣∣∣g(xs)− g(ys)− g(xt) + g(yt)
∣∣∣

=
∣∣∣G(xs, xt)(xs − xt)−G(ys, yt)(ys − yt)

∣∣∣
≤
∣∣∣G(xs, xt)−G(ys, yt)

∣∣∣|xs − xt|+ ∣∣∣G(ys, yt)
∣∣∣|xs − xt − ys + yt|

≤ ε|x(s)− x(t)|+M
∣∣∣x(s)− y(s)− x(t) + y(t)

∣∣∣. (5.1.20)
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Let Φ be the seminorm part of ‖·‖X as in Table 1.2.1. Then by (5.1.20) and Lemma
1.2.26,

Φ(Cgx− Cgy) ≤ εΦ(x) +M Φ(x− y). (5.1.21)

Finally, by our choice of δ,

‖Cgx− Cgy‖∞ = sup
t∈[0,1]

∣∣∣g(x(t)
)
− g

(
y(t)

)
| ≤ ε. (5.1.22)

Combining (5.1.21) with (5.1.22) while taking δ ≤ ε into account gives

‖Cgx− Cgy‖X ≤ ε+ ε ‖x‖X +M ‖x− y‖X ≤ ε(1 +R +M),

and this completes the proof. �

As a last result, we discuss the most difficult problem which is a characterization of
pointwise continuity of Cg : X → X if X is one of our BV spaces. This problem is
far from being fully understood and seems to be extremely complicated. The first one
who discussed this problem was Morse [118] who proved 1937 that Cg : BV → BV

is pointwise continuous if and only if g ∈ Liploc(R). In other words, as soon as the
composition operator Cg : BV → BV is well-defined (that is, g ∈ Liploc(R)), we get
boundedness and pointwise continuity of Cg for free. However, Morse’s proof including
all auxiliary results is around 30 pages long which shows that the continuity problem
seems to be highly nontrivial indeed. In the recent paper [96], the author gives a more
straightforward and elegant proof. In Section 6.2 we will discuss this problem in more
detail and give a third proof in Theorem 6.2.8. We will follow another idea and give
some insight into the convergence behavior of sequences of composition operators in the
space BV . However, it seems that all the aforementioned ideas cannot be generalized
to ΛBV or Y BVϕ, not even to WBVp.
In the Riesz space RBVp, however, we may use a trick to get continuity. As was shown
by Marcus and Mizel [101], the composition operator Cg for g ∈ Liploc(R) maps the
Sobolev space W 1,p for p > 1 into itself and is continuous. Since RBVp contains the
continuous representatives of W 1,p, and since their RBVp-norms agree with their W 1,p-
norms, we conclude that Cg : RBVp → RBVp is also continuous. Summarizing these
observations, we obtain

Theorem 5.1.24. Let g ∈ Liploc(R), and let X be BV or RBVp. Then Cg : X → X

is continuous.

As said, we do not know if the same result is true for X being one of the spaces
WBVp, Y BVϕ or ΛBV . However, similar continuity results are known. For instance,
the authors of [31] proved that for g ∈ Liploc(R) the operator Cg maps BV into WBVp
and is continuous for any p > 1. The same authors achieved in [32] a particularly
noteworthy result: If g : R → R is continuous and Λ is a given Waterman sequence,
then one can construct another Waterman sequence Γ such that Cg maps ΛBV into
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ΓBV and is continuous. It is, however, not clear under which circumstances Λ = Γ
holds.
Finally, note that many of the mapping properties of the composition operator dis-
cussed here in both BV -spaces and other spaces may also be found in the survey paper
[8].

Table 5.1.2 summarizes what we know about the composition operator Cg : X → X

for X being one of our BV spaces BV , WBVp, Y BVϕ with ϕ ∈ δ2, ΛBV or RBVp:

Table 5.1.2: Mapping properties of Cg reflected by those of g.

Cg : X → X is if and only if
well-defined g ∈ Liploc(R)
bounded g ∈ Liploc(R)
continuous

g ∈ Liploc(R)(known only for X = BV and X = RBVp)

locally uniformly continuous g ∈ C1(R)
locally Lipschitz continuous g ∈ Lip1

loc(R)
globally uniformly continuous g is affine
globally Lipschitz continuous g is affine
compact g is constant

Although boundedness and continuity are in general independent for a nonlinear op-
erator, as mentioned before, the table shows that for the operator Cg they are in fact
equivalent, at least in the spaces BV and RBVp.

5.2 Superposition Operators

In this section we investigate the superposition operator Ng : X → Y defined by (5.0.2)
between two function spaces X and Y of real-valued functions on [0, 1], that is,

Ngx(t) = g
(
t, x(t)

)
for 0 ≤ t ≤ 1,

where g : [0, 1]×R→ R is a given function. The behavior of Ng is much more complex
than that of its little brother Cg which we have studied in the previous section. This
section is dedicated to investigate the superposition operator (5.0.2) in our BV -spaces
with respect to analytic properties like continuity and compactness. Unfortunately,
not so much is known in the spaces WBVp, Y BVϕ and RBVp, and the superposition
operator in contrast to the composition operator Cg reveals very often quite weird and
unexpected properties. We therefore focus ourselves mainly on the space BV and give
comments for the other BV -spaces.
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For making the presentation more coherent and for not overburdening the formula-
tion of the upcoming results, we collect here right from the beginning seven technical
conditions (A)–(G) on the generating function g : [0, 1]× R→ R.

∃L > 0 ∀u, v ∈ R : ‖g(·, u)− g(·, v)‖∞ ≤ L|u− v|, (A)

∀R > 0 ∃LR > 0 ∀u, v ∈ [−R,R] : ‖g(·, u)− g(·, v)‖∞ ≤ LR|u− v|, (B)

∃M > 0 ∀u ∈ R : Var
(
g(·, u)

)
≤M, (C)

∀R > 0 ∃MR > 0 ∀u ∈ [−R,R] : Var
(
g(·, u)

)
≤MR, (D)

∃M > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un−1 ∈ R :
n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ ≤M, (E)

∀R > 0 ∃MR > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un−1 ∈ [−R,R] :
n−1∑
j=1
|uj−1 − uj| ≤ R =⇒

n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ ≤MR, (F)

∀R > 0 ∃MR > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un ∈ [−R,R] :
n∑
j=1
|uj−1 − uj| ≤ R

=⇒
n∑
j=1

∣∣∣g(tj−1, uj)− g(tj, uj)
∣∣∣ ≤MR

and
n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj−1, uj)
∣∣∣ ≤MR. (G)

One could call (A) a Lipschitz condition for g(t, ·), uniformly in t, (B) a local Lipschitz
condition for g(t, ·), uniformly in t, (C) a variation condition for g(·, u), uniformly in
u, (D) a variation condition for g(t, ·), locally uniformly in u, (E) a mixed condition
for g, (F) a local mixed condition for g and (G) a local crossed mixed condition for g.

Note that for functions g not depending on its first argument, that is, g(t, u) = h(u) for
all t ∈ [0, 1], u ∈ R and some function h : R→ R, condition (A) reduces to h ∈ Lip(R),
(B) is the same as h ∈ Liploc(R), and the conditions (C)–(F) are always satisfied.
Condition (G) is equivalent to h ∈ SBV [−R,R], where SBV is the class of function
of super bounded variation introduced in Section 1.2. But in Theorem 1.1.22 we have
seen that SBV [−R,R] = Lip[−R,R] and so (G) is equivalent to h ∈ Liploc(R).
Let us come back to the general case when g depends on both arguments. There
are some obvious interconnections between the conditions (A)–(G) which we collect in
Figure 5.2.1. Here, (X)−→(Y) means that (X) implies (Y).



194 5.2. Superposition Operators

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Figure 5.2.1: Relations between the conditions (A)–(G).

None of these implications can be inverted, and we will show this in the sequel by a series
of examples. In order to give such examples, we will frequently consider generating
functions g that have the form

g(t, u) =
ϕj(u) for t = 1

2j , j ∈ N,
0 otherwise,

(5.2.1)

where ϕj : R → R for j ∈ N are arbitrary functions. In the following result we give
precise criteria on the sequence (ϕj) under which the function g in (5.2.1) satisfies the
conditions (A)–(G). Note that for fixed u ∈ R we have for g in (5.2.1) the identity

g(t, u) = J(
ϕj(u)

)(t), (5.2.2)

where J denotes the functions defined in (1.2.1).

Proposition 5.2.1. Let ϕj : R → R for j ∈ N be arbitrary functions. Then g in
(5.2.1) satisfies condition

(A) if and only if there is an L > 0 such that |ϕj(u)−ϕj(v)| ≤ L|u− v| for all j ∈ N
and all u, v ∈ R,

(B) if and only if for each R > 0 there is an LR > 0 such that |ϕj(u) − ϕj(v)| ≤
LR|u− v| for all j ∈ N and all u, v ∈ [−R,R],

(C) if and only if there is an M > 0 such that
∞∑
j=1

∣∣∣ϕj(u)
∣∣∣ ≤M for all u ∈ R,

(D) if and only if for each R > 0 there is anMR > 0 such that
∞∑
j=1

∣∣∣ϕj(u)
∣∣∣ ≤MR for all

u ∈ [−R,R],

(E) if and only if there is an M > 0 such that
∞∑
j=1

∣∣∣ϕj(uj)∣∣∣ ≤M for all sequences (uj)

in R,

(F) if and only if for each R > 0 there is an MR > 0 such that
∞∑
j=1

∣∣∣ϕj(uj)∣∣∣ ≤MR for

all sequences (uj) in [−R,R] satisfying ∑∞j=1 |uj−1 − uj| ≤ R,

(G) if and only if it satisfies (F).
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Proof. Let the conditions mentioned here in Proposition 5.2.1 be labeled by (A∗)–
(G∗). We need to prove that (A) ⇔ (A∗), (B) ⇔ (B∗) and so on. First note that the
equivalences (A) ⇔ (A∗), (B) ⇔ (B∗), (C) ⇔ (C∗) and (D) ⇔ (D∗) are clear, where
for the latter two we use (5.2.2) and (1.2.2). For the remaining proof let τj := 1/(2j)
for j ∈ N.
For “(E)⇒(E∗)” assume that g in (5.2.1) satisfies condition (E) with M > 0. Let (vj)
be a sequence in R and n ∈ N be fixed. For j ∈ {0, . . . , n−1} set t2j+1 := τn−j, t0 := 0,
t2n := 1 and then pick t2j ∈ (t2j−1, t2j+1) arbitrarily for j ∈ {1, . . . , n − 1}. Moreover,
set u2j := u2j+1 := vn−j for j ∈ {0, . . . , n− 1}. Condition (E) yields

M ≥
2n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ = 2

n∑
j=1

∣∣∣ϕj(vj)∣∣∣
and letting n→∞ gives (E∗).
For the converse assume that g satisfies (E∗) with M > 0 and fix a partition 0 = t0 <

. . . < tn = 1 of [0, 1] and numbers u0, . . . , un−1 ∈ R. If we set uj := 0 for j ≥ n, we get
by (E∗),

n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ ≤ n∑

j=1

∣∣∣g(tj−1, uj−1)
∣∣∣+ n∑

j=1

∣∣∣g(tj, uj−1)
∣∣∣

≤
∞∑
j=2

∣∣∣ϕj−1(uj−1)
∣∣∣+ ∞∑

j=1

∣∣∣ϕj(uj−1)
∣∣∣ ≤ 2M

which establishes (E).
For “(F)⇒(F∗)” assume that g in (5.2.1) satisfies condition (F) with MR > 0 for
R > 0. Let (vj) be a sequence in [−R,R] with ∑∞j=1 |vj−1 − vj| ≤ R, and let n ∈ N
be fixed. For j ∈ {0, . . . , n − 1} set t2j+1 := τn−j, t0 := 0, t2n := 1 and then pick
t2j ∈ (t2j−1, t2j+1) arbitrarily for j ∈ {1, . . . , n− 1}. Moreover, set u2j := u2j+1 := vn−j
for j ∈ {0, . . . , n− 1}. Then u0, . . . , u2n+1 ∈ [−R,R] with

2n−1∑
j=1
|uj−1 − uj| =

n∑
j=2
|vj−1 − vj| ≤

∞∑
j=1
|vj−1 − vj| ≤ R.

Consequently, condition (F) yields

MR ≥
2n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ = 2

n∑
j=1

∣∣∣ϕj(vj)∣∣∣
and letting n→∞ gives (F∗).
For the converse assume that g satisfies (F∗) with MR for fixed R > 0, and fix a
partition 0 = t0 < . . . < tn = 1 of [0, 1] and numbers u0, . . . , un−1 ∈ [−R,R] with∑n−1
j=1 |uj−1 − uj| ≤ R. Let T := {τj, | j ∈ N}, where the τj have been defined at the

beginning of this proof. From the numbers t0, . . . , tn we extract those which belong to
T and relabel them tj0 , . . . , tjm = τl0 , . . . , τlm ; note that tn /∈ T and hence m < n. The
numbers ujk as well as the numbers ujk−1 then satisfy

m∑
k=1
|ujk−1 − ujk |,

m∑
k=1
|ujk−1−1 − ujk−1| ≤

n−1∑
j=1
|uj−1 − uj| ≤ R.
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Consequently, we can apply (F∗) and obtain
n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ ≤ n∑

j=1

∣∣∣g(tj−1, uj−1)
∣∣∣+ n∑

j=1

∣∣∣g(tj, uj−1)
∣∣∣

=
m∑
k=0

∣∣∣g(tjk , ujk)
∣∣∣+ m∑

k=0

∣∣∣g(tjk , ujk−1)
∣∣∣ =

m∑
k=0

∣∣∣ϕlk(ujk)∣∣∣+ m∑
k=0

∣∣∣ϕlk(ujk−1)
∣∣∣ ≤ 2MR

which establishes (F).
Since in general (G) implies (F) we only have to prove that (F) also implies (G) for
the function (5.2.1). Thus, assume that g satisfies (F). We already know that then it
satisfies also (F∗). Because of

n∑
j=1

∣∣∣g(tj−1, uj)− g(tj, uj)
∣∣∣ ≤ n∑

j=1

∣∣∣g(tj−1, uj)
∣∣∣+ n∑

j=1

∣∣∣g(tj, uj)
∣∣∣

and
n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj−1, uj)
∣∣∣ ≤ n∑

j=1

∣∣∣g(tj−1, uj−1)
∣∣∣+ n∑

j=1

∣∣∣g(tj−1, uj)
∣∣∣

we can use the same argument as in the implication “(F∗)⇒(F)” to prove that g also
satisfies the condition (G). �

We can now use Proposition 5.2.1 to construct examples showing that none of the
implications given in Figure 5.2.1 can be inverted, with one exception: Since for the
function g in (5.2.1) the conditions (F) and (G) are equivalent, in order to show that
(F) does not imply (G) we need an example that has not the form (5.2.1). Here is one:

Example 5.2.2. It suffices to consider a function g which is independent of t. Indeed,
take any function ϕ : R → R and set g(t, u) := ϕ(u). Then (C), (D), (E) and (F) are
clearly satisfied, because g(s, u)− g(t, u) = 0 for all s, t ∈ [0, 1] and u ∈ R. Condition
(G) now translates to the following condition:

∀R > 0 ∃MR > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un ∈ [−R,R] :
n∑
j=1
|uj−1 − uj| ≤ R =⇒

n∑
j=1
|ϕ(uj−1)− ϕ(uj)| ≤MR.

By Theorem 1.1.22, this is equivalent to ϕ ∈ Lip[−R,R] for each R > 0. Thus, for
any function ϕ which is not locally Lipschitz continuous the corresponding generator g
will satisfy (F) but not (G). For instance, ϕ(u) =

√
|u| will do the job. Note that this

function cannot satisfy (A) or (B), because it is not locally Lipschitz continuous with
respect to u. ♦
None of the ostensibly strong conditions (A) and (B) does imply any of the other
conditions (C), (D), (E), (F) or (G).

Example 5.2.3. Let ϕj := 1 for j ∈ N and consider g in (5.2.1). Then clearly (A) and
(B) are met, but neither (C), (D), (E), (F) nor (G) hold, because none of the series in
Proposition 5.2.1 can converge. ♦
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The next example shows that neither (C), (D) nor (F) implies (E).

Example 5.2.4. Let ϕj := χ(j,j+1) for j ∈ N and consider g in (5.2.1). Any fixed
u ∈ R belongs to at most one interval (j, j + 1). Thus, ϕj(u) = 0 for all but at most
one j ∈ N; in particular, g satisfies (C) and (D) by Proposition 5.2.1 with M = 1 and
MR = 1, respectively.
Moreover, for fixed R > 0 and any sequence (uj) in [−R,R] we have that ϕn(uj) = 0
for all j ∈ N and n ≥ R; in particular, g satisfies (F) and hence (G) by Proposition
5.2.1 withMR = R. But by the same Proposition, g cannot satisfy (E), because for the
sequence uj := j + 1/2 we have that ϕj(uj) = 1 for all j ∈ N. Note that g can also not
fulfill (A) or (B), because none of the functions ϕj is locally Lipschitz continuous. ♦
A slight modification of the previous example shows that neither (C) nor (D) implies
any of the conditions (E), (F) and (G).

Example 5.2.5. Let ϕj := χ( 1
j+1 ,

1
j

) for j ∈ N and consider g in (5.2.1). Any fixed
u ∈ R belongs to at most one interval ( 1

j+1 ,
1
j
). Thus, ϕj(u) = 0 for all but at most

one j ∈ N; in particular, g satisfies (C) and (D) by Proposition 5.2.1 with M = 1 and
MR = 1, respectively.
Moreover, g cannot satisfy (E), (F) or (G), again by Proposition 5.2.1, because for
R = 1 and the sequence uj := 1

2

(
1
j+1 + 1

j

)
for j ∈ N in [−1, 1] = [−R,R] we have on

the one hand
∞∑
j=2
|uj−1 − uj| = u1 − lim

n→∞un = 3
4 ≤ 1 = R

and on the other hand ϕj(uj) = 1 for all j ∈ N. Finally, g cannot satisfy (A) and (B),
because none of the functions ϕj is locally Lipschitz continuous. ♦
The last example in this series proves that (D) does not imply (C) and that (A) cannot
be deduced from (B).

Example 5.2.6. Let ϕj(u) := u2/j2 for u ∈ R and j ∈ N. Then
∞∑
j=1

ϕj(uj) =
∞∑
j=1

u2
j

j2 (5.2.3)

for any real sequence (uj). In particular, if uj = u for some fixed u ∈ R and all j ∈ N,
(5.2.3) becomes

∞∑
j=1

ϕj(uj) = π2

6 u
2,

and so g in (5.2.1) satisfies (D) but not (C), as well as (B) but not (A) by Proposition
5.2.1. Moreover, (E) is not satisfied, because for the sequence uj := j the series in
(5.2.3) diverges. Condition (F) and hence also (G), however, are satisfied, because if
(uj) is bounded by R > 0, then the series in (5.2.3) is majorized by R2π2/6. ♦
We remark that even if (A) and (B) alone do not imply any of the other conditions,
(B) together with (F) implies (G). This explains why the function ϕ in Example 5.2.2
had to be chosen so that it was not locally Lipschitz continuous.
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We summarize in the following table which of the previous five example satisfies the
conditions (A)–(G).

Table 5.2.1: Conditions (A)–(G) in the above examples.

Example (A) (B) (C) (D) (E) (F) (G)
5.2.2 no no yes yes yes yes no
5.2.3 yes yes no no no no no
5.2.4 no no yes yes no yes yes
5.2.5 no no yes yes no no no
5.2.6 no yes no yes no yes yes

From this table we see immediately that none of the implications in Figure 5.2.1 can
be inverted. We therefore present the same diagram again here in Figure 5.2.2, but
this time, the numbers labeling the arrows refer to the examples which show that the
corresponding implications cannot be inverted.

(A)

(B)

(C)

(D)

(E)

(F)

(G)
5.2.6

5.2.4

5.2.6

5.2.4

5.2.5

5.2.2

Figure 5.2.2: Relations between the conditions (A)–(G).

We now come back to the general superposition operator Ng : BV → BV . Let us
check the sufficiency (or necessity) of the conditions (A)–(G) for the acting condition
Ng(BV ) ⊆ BV and the analytic properties of Ng. To begin with, we remark that
Lyamin [94] claimed that the conditions (B) and (D) together imply Ng(BV ) ⊆ BV .
However, Maćkowiak showed in [95] by means of a sophisticated example that this is
in fact false, even if (A) and (D) are assumed to be true. With the help of our special
functions (5.2.1) and Proposition 5.2.1 we can now give a much simpler example.

Example 5.2.7. For j ∈ N we define ϕj : R→ R by

ϕj(u) = max
{

0, 1/j −
∣∣∣|u| − 1/j

∣∣∣}.
Figure 5.2.3 shows the relevant part of ϕj for fixed j ∈ N.

−2/j −1/j 1/j 2/j

1/j

Figure 5.2.3: The function ϕj for fixed j ∈ N.
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Then the ϕj are globally Lipschitz continuous with lip(ϕj) = 1 for all j ∈ N; in
particular, the corresponding function g in (5.2.1) satisfies (A) by Proposition 5.2.1.
Moreover, ϕj(0) = 0 for all j ∈ N, and for fixed u ∈ R\{0} we have ϕj(u) = 0 if
|u| ≥ 2/j. Since 0 ≤ ϕj(u) ≤ |u| for all j ∈ N and u ∈ R we obtain in this case

∞∑
j=1

ϕj(u) ≤
∑

j≤2/|u|
|u| ≤ 2

which shows that g satisfies (C) and hence (D), again by Proposition 5.2.1. But Ng

does not map BV into itself. For instance, the function x(t) := t clearly belongs to
BV , but

Ng

(
t, x(t)

)
=
ϕj(

1
2j ) for t = 1

2j ,

0 otherwise,
=


1
2j for t = 1

2j ,

0 otherwise,
does not.
The same idea leads to the sequence uj := 1

2j for j ∈ N and u0 := 1 with ∑∞j=1 |uj−1 −
uj| = 1 and

∞∑
j=1

ϕj(uj) =
∞∑
j=1

ϕj

(
1
2j

)
=
∞∑
j=1

1
2j =∞.

Consequently, neither of the conditions (E), (F) and (G) can be satisfied, again by our
Proposition 5.2.1. ♦
The first correct sufficient conditions for the inclusion Ng(BV ) ⊆ BV have been ob-
tained by Bugajewska in 2010 [25] and Bugajewska et al. in 2016 [26] and read as
follows.

Theorem 5.2.8. If the generating function g : [0, 1] × R → R satisfies (A) and (E),
then Ng maps BV into itself.

Theorem 5.2.9. If the generating function g : [0, 1] × R → R satisfies (B) and (F),
then Ng maps BV into itself and is bounded.

Since (A)⇒(B) and (E)⇒(F), but neither (B)⇒(A) nor (F)⇒(E), Theorem 5.2.9 is
actually stronger than Theorem 5.2.8. Moreover, the Theorems 5.2.8 and 5.2.9 explain
why g in Example 5.2.7 could not satisfy (E) and (F), because Ng(BV ) 6⊆ BV in this
case.
However, the conditions given in the Theorems 5.2.8 and 5.2.9 are only sufficient for
the boundedness of the operator Ng. We illustrate this for the condition (B) by the
following simple

Example 5.2.10. Define ϕj : R → R by ϕ1(u) = min{
√
|u|, 1} and ϕj = 0 for j ≥ 2.

Then by Proposition 5.2.1 the corresponding function g in (5.2.1) satisfies (C), (D), (E),
(F) and (G), but neither (A) nor (B). Nonetheless, Ng maps BV into itself, because
for x ∈ BV we have

Ngx(t) = g
(
t, x(t)

)
=
min

{√
|x(1/2)|, 1

}
for t = 1/2,

0 for t ∈ [0, 1]\{1/2},
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and hence

‖Ngx‖BV = 3 min
{√
|x(1/2)|, 1

}
≤ 3

√
‖x‖BV

which also shows that Ng : BV → BV is bounded. ♦
However, the condition (B) and (D) are “almost” necessary for the boundedness of Ng.
The precise formulation is as follows [55].

Theorem 5.2.11. Let g : [0, 1] × R → R be so that Ng maps BV into itself and is
bounded. Then g can be written as

g(t, u) = g1(t, u) + g2(t, u),

where the functions g1, g2 : [0, 1]× R→ R have the following properties.

(a) The function g1 satisfies the conditions (B) and (D).

(b) The function g2 vanishes on ([0, 1]\C) × R, where C ⊆ [0, 1] is some countable
set.

It turns out that condition (G) alone is exactly what we need to characterize bounded
superposition operators in BV [26]:

Theorem 5.2.12. The superposition operator Ng maps BV into itself and is bounded
if and only if the generating function g : [0, 1]× R→ R satisfies condition (G).

This explains why the function g in Example 5.2.10 had to satisfy condition (G), in
contrast to the function g in Example 5.2.7.

The fact that boundedness is included in Theorem 5.2.12 is somewhat unsatisfactory:
One could ask whether or not condition (G) is also necessary for the mere inclusion
Ng(BV ) ⊆ BV without the boundedness requirement on Ng. This is not true, because
in contrast to the composition operator Cg which we have studied in the previous
section the superposition operator Ng need neither be bounded nor continuous if it
maps BV into itself. This is illustrated by the following example which is a slight
modification of Example 5.2.10.

Example 5.2.13. Define ϕj : R→ R by

ϕ1(u) =
1/u for u 6= 0,

0 for u = 0,

and ϕj = 0 for j ≥ 2. Then by Proposition 5.2.1 the corresponding function g in
(5.2.1) satisfies none of the conditions (A)–(G). Nonetheless, Ng maps BV into itself,
because for x ∈ BV with x(1/2) 6= 0 we have

Ngx(t) = g
(
t, x(t)

)
=
1/x(1/2) for t = 1/2,

0 for t ∈ [0, 1]\{1/2},
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and Ngx = 0 if x(1/2) = 0. This implies ‖Ngx‖BV = 3/|x(1/2)| for functions x ∈ BV
with x(1/2) 6= 0 and becomes infinitely large the closer x(1/2) gets to 0. Consequently,
in this case the operator Ng maps BV into itself but cannot be bounded. ♦
The previous example shows that neither of the condition (A)–(G) is necessary for the
acting condition Ng(BV ) ⊆ BV which again illustrates impressively the weird behavior
of the operator Ng in contrast to its quite well behaving little brother Cg.
As far as we know, a practical condition both necessary and sufficient for the acting
condition Ng(BV ) ⊆ BV is not known.1 Such a criterion should be weaker than (G),
but include the function g from Example 5.2.13.
Concerning boundedness of Ng, the following result seems to be of independent interest.
It shows that the boundedness of g is reflected in the boundedness of Ng [26].

Theorem 5.2.14. The following statements are true.

(a) Under the condition (B) the operator Ng is bounded in BV if and only if g is
locally bounded.

(b) If Ng(BV ) ⊆ BV , then the set

TR :=
{
t ∈ [0, 1] | sup

|u|≤r
|g(t, u)| =∞

}

is finite for each R > 0.

Part (b) of Theorem 5.2.14 says, roughly speaking, that the points t for which g(t, ·)
is unbounded on [−R,R] must be isolated. That TR can be nonempty for all R > 0
was shown in Example 5.2.13: For the function g therein we have TR = {1/2} for all
R > 0. For the functions g in all other examples considered in this section so far the
set TR is empty for any R > 0, as these functions are locally bounded with respect to
u ∈ R for each fixed t ∈ [0, 1]. However, even TR = ∅ for all R > 0 is not sufficient for
Ng(BV ) ⊆ BV , as Example 5.2.7 shows.

For Waterman spaces ΛBV an analogue of Theorem 5.2.9 is true where condition (F)
has to be replaced by the following condition.

∀R > 0 ∃MR > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un ∈ [−R,R] :

sup
σ

n∑
j=1

λσ(j)|uj−1 − uj| ≤ R =⇒ sup
σ

n∑
j=1

λσ(j)|g(tj−1, uj−1)− g(tj, uj−1)| ≤MR,

(FΛ)

and the suprema have to be taken over all permutations σ of N. In [30] the following
result was shown.

Theorem 5.2.15. If the generating function g : [0, 1]×R→ R satisfies (B) and (FΛ),
then Ng maps ΛBV into itself and is bounded.

1Actually, there is a condition both necessary and sufficient for Ng(BV ) ⊆ BV given in [31], but
it is far from being practical and extremely technical.
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Again, also for the Waterman space we have a perfect analogue to Theorem 5.2.12, but
condition (G) has now to be adjusted in the following way.

∀R > 0 ∃MR > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un ∈ [−R,R] :

sup
σ

n∑
j=1

λσ(j)|uj−1 − uj| ≤ R

=⇒


supσ

n∑
j=1

λσ(j)|g(tj−1, uj)− g(tj, uj)| ≤MR and

supσ
n∑
j=1

λσ(j)|g(tj−1, uj−1)− g(tj−1, uj)| ≤MR,
(GΛ)

where the suprema are taken over all permutations σ of N. In [30] the authors proved

Theorem 5.2.16. The superposition operator Ng maps ΛBV into itself and is bounded
if and only if g satisfies condition (GΛ).

We do not know if there are any conditions similar to (G) and (GΛ) for the spaces
Y BVϕ and RBVp. However, we prove a necessary condition for an operator Ng that
maps RBVp into itself and is bounded which will be needed in the sequel and might
be of its own interest.

Proposition 5.2.17. Let g : [0, 1]× R→ R be so that Ng maps RBVp into itself and
is bounded. Then g(t, ·) is continuous in R for each fixed t ∈ [0, 1].

Proof. Fix u ∈ R, s ∈ [0, 1] and ε > 0. We assume s ∈ [0, 1); the proof for s = 1 is
similar. Since Ng maps the space RBVp into itself the function g(·, u) is continuous at
s. This is why we find some δ > 0 such that

|t− s| ≤ δ ⇒ |g(s, u)− g(t, u)| ≤ ε/2. (5.2.4)

Moreover, since Ng is bounded there is some M > 0 such that

‖x‖RBVp ≤ |u|+ 2 ⇒ RVarp(Ngx)1/p ≤M/2. (5.2.5)

Fix v ∈ [u− 1, u+ 1]\{u} so that

|u− v| ≤ min
{

(1− s)(p−1)/p, δ(p−1)/p,
ε

M

}
, (5.2.6)

and define t := s + |u − v|p/(p−1) which implies 0 ≤ s < t ≤ 1 and 0 < t − s =
|u− v|p/(p−1) ≤ δ. From (5.2.4) we get

|g(s, u)− g(t, u)| ≤ ε/2. (5.2.7)

The function x : [0, 1] → R, defined to be piecewise linear and continuous by x(0) =
v = x(s) and x(t) = u = x(1), has norm

‖x‖RBVp = max{|u|, |v|}+ |u− v|
(t− s)(p−1)/p ≤ |u|+ 2.
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Therefore, by (5.2.5), RVarp(Ngx)1/p ≤M/2 which implies

M

2 ≥
∣∣∣g(s, x(s)

)
− g

(
t, x(t)

)∣∣∣
(t− s)(p−1)/p =

∣∣∣g(s, v)− g(t, u)∣∣∣
|u− v| .

From this, (5.2.6) and (5.2.7) we obtain

|g(s, v)− g(s, u)| ≤ |g(s, v)− g(t, u)|+ |g(t, u)− g(s, u)| ≤ M

2 |u− v|+
ε

2 ≤ ε,

and this finishes the proof. �

There are three questions naturally arising when we look at Proposition 5.2.17. The
first is whether the statement follows from the inclusion RBVp ⊆ C for p > 1. However,
this inclusion gives us that if Ng maps RBVp into itself, then g(·, u) is continuous on
[0, 1] for each fixed u ∈ R. Proposition 5.2.17, on the other hand, guarantees that under
the additional assumption that Ng is bounded in RBVp, also g(t, ·) is continuous on R
for each fixed t ∈ [0, 1]. Thus, g is continuous with respect to both of its arguments
separately.
Therefore, the second question is, whether under the hypotheses of Proposition 5.2.17
the function g as a function of two variables is continuous on [0, 1]×R. Unfortunately,
we do not know the answer.
However, the third question, namely whether Proposition 5.2.17 is true in other BV -
spaces like BV itself, is easily answered by a counterexample.

Example 5.2.18. The function g : [0, 1]× R→ R, defined by

g(t, u) =
1 for (t, u) = (0, 0),

0 for (t, u) 6= (0, 0),

generates a bounded operator Ng : X → BV on any function space X, since

Ngx =
χ{0} for x(0) = 0,
0 for x(0) 6= 0,

and thus ‖Ngx‖BV ∈ {0, 2}. However, g(0, ·) = χ{0} is discontinuous at u = 0. ♦
The previous example represents a more general fact about superposition operators.
Indeed, Proposition 5.2.17 is wrong in other “non-regular” BV -spaces, especially in
BV itself. The authors of [26] have shown that if Ng maps BV into itself, then nothing
can be said about the function u 7→ g(t, u) for fixed t ∈ [0, 1].

We now turn to continuity properties of the superposition operator Ng defined in
(5.0.2). As we have seen in the previous section, boundedness and continuity as well as
the pure acting condition are equivalent for the composition operator Cg : BV → BV

and also equivalent to a certain regularity on g, namely a local Lipschitz continuity in
R. Moreover, locally uniform continuity of Cg : X → X was characterized in Theorem
5.1.23 for all our BV -spaces. Accordingly, it is equivalent to g being continuously
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differentiable in R. Consequently, there is a nice symmetry in the regularity of g and
its operator Cg: The more regular g is, the more regular Cg is, as well, and we have
illustrated and summarized this in Table 5.1.2.
In the case of a superposition operator, however, things are completely different, not
to say much worse. It turns out that the regularity of the generating function seems to
have not so much to do with the regularity of the corresponding superposition operator
Ng. Maćkowiak showed in [96] that even a globally Lipschitz continuous function g :
[0, 1]× R→ R may generate a discontinuous superposition operator Ng : BV → BV .
His example is a piecewise linear function. In the following proposition we describe a
general technique on how to construct such functions. The idea is that g(·, un) = gn
is a Lipschitz function for each n ∈ N with a uniform Lipschitz constant but so that
its BV -norm is uniformly bounded away from 0, where the number sequence (un)
decreases sufficiently fast to 0. On the other hand, the functions gn have to converge
uniformly to 0. We can then take the sequence (xn) of constant functions xn :≡ un
that converges in BV to 0, but Ngxn(t) = g(t, xn(t)) = gn(t) has, as said, a BV -norm
that is bounded away from 0 and hence cannot converge to 0. This implies that Ng is
discontinuous as an operator from BV to BV . Here come the details.

Proposition 5.2.19. For every n ∈ N choose functions gn ∈ BV and numbers un ∈
(0, 1] such that the following requirements are all met.

(i) gn ∈ Lip[0, 1] with lip(gn) ≤ L for some L > 0 and all n ∈ N,

(ii) Var(gn) ≥ 1,

(iii) The sequence (un) strictly decreases to 0 as n→∞,

(iv) There is some M > 0 such that for all n ∈ N,

‖gn‖∞ + ‖gn+1‖∞
un − un+1

≤M.

Then the function g : [0, 1]× R→ R, defined by

g(·, u) =


g1 for u ≥ u1,
u− un+1

un − un+1
gn + un − u

un − un+1
gn+1 for un+1 ≤ u < un, n ∈ N,

0 for u ≤ 0,

(5.2.8)

is globally Lipschitz continuous and generates a superposition operator Ng : BV → BV

that is discontinuous.

Proof. Condition (iii) guarantees that g is well-defined.
We first show that g is Lipschitz continuous on [0, 1] × R. Observe that with the
help of (i) we get lip(g(·, u)) ≤ L for all fixed u ∈ R\(0, u1), since for u ≥ u1 we
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have g(·, u) = g1, and g(·, u) = 0 holds for u ≤ 0. For fixed u ∈ (0, u1) we have
un+1 ≤ u < un for some n ∈ N and hence∣∣∣∂1g(t, u)

∣∣∣ ≤ u− un+1

un − un+1
|g′n(t)|+ un − u

un − un+1
|g′n+1(t)| ≤ u− un+1

un − un+1
L+ un − u

un − un+1
L = L

by (i) for almost all t ∈ [0, 1]. This implies∣∣∣g(s, u)− g(t, u)
∣∣∣ ≤ L|s− t| for all s, t ∈ [0, 1], u ∈ R.

Conversely, for fixed t ∈ [0, 1] the function g(t, ·) is constant on R\(0, 1) and hence
∂2g(t, ·) = 0 there. On each interval (un+1, un) we have

|∂2g(t, ·)| ≤ ‖gn‖∞ + ‖gn+1‖∞
un − un+1

≤M

by (iv) and hence∣∣∣g(t, u)− g(t, v)
∣∣∣ ≤M |u− v| for all t ∈ [0, 1], u, v ∈ R.

This gives in total∣∣∣g(s, u)− g(t, v)
∣∣∣ ≤ L|s− t|+M |u− v| for all s, t ∈ [0, 1], u, v ∈ R

showing that g ∈ Lip([0, 1]× R).
The sequence (xn) of functions xn ∈ BV , defined by xn(t) := un for all t ∈ [0, 1],
converges in BV to 0, due to ‖xn‖BV = |un| and (iii). Moreover, Ngxn(t) = g(t, un) =
gn(t) and thus,

‖Ngxn −Ng0‖BV = ‖gn‖BV ≥ Var(gn) ≥ 1,

by (ii). But this means nothing than that the operator Ng is not continuous at 0 with
respect to the BV -norm. �

We now give a practical example of such a construction.

Example 5.2.20. For n ∈ N the functions

gn(t) := sin(2nπt)
2n+1 together with the numbers un := 1

2n (5.2.9)

satisfy all four conditions (i)–(iv) of Proposition 5.2.19. Indeed,

|g′n(t)| = π| cos(2nπt)|/2 ≤ π/2 for t ∈ [0, 1]

and hence (i) is fulfilled with L = π/2. Moreover, by Theorem 1.1.20 we have

Var(gn) =
∫ 1

0

∣∣∣g′n(t)
∣∣∣ dt = π

2

∫ 1

0

∣∣∣ cos(2nπt)
∣∣∣ dt = 1

for all n ∈ N which proves (ii). The sequence (un) clearly decreases to 0, and finally

‖gn‖∞ + ‖gn+1‖∞
un − un+1

≤ 2−n−1 + 2−n−2

2−n − 2−n−1 = 3
2 .
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This shows that also (iii) and (iv) are met with M = 3/2.

Figure 5.2.4: Lipschitz continuous g generating a discontinuous operator Ng in BV .

Figure 5.2.4 shows g of (5.2.8) generated by the gn defined in (5.2.9) on [0, 1] ×
[1/64, 1/2]. The thick black waves represent the functions g1, . . . , g6, where g1 is in
the back and g6 is in the front.
Let us now check which of the conditions (A)–(G) are satisfied by g. Note that since
g is globally Lipschitz continuous we find some K > 0 such that

|g(s, u)− g(t, v)| ≤ K
(
|s− t|+ |u− v|

)
for s, t ∈ [0, 1], u, v ∈ R. (5.2.10)

In particular, ‖g(·, u)− g(·, v)‖∞ ≤ K|u − v| for all u, v ∈ R showing that (A) and
hence (B) are satisfied. Moreover, for a partition 0 = t0 < . . . < tn = 1 of [0, 1] and
arbitrary numbers u0, . . . , un−1 ∈ R we have

n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj, uj−1)
∣∣∣ ≤ K

n∑
j=1
|tj−1 − tj| = K

and thus condition (E) withM = K. But this implies that also the conditions (C), (D)
and (F) are fulfilled, and that the operator Ng maps BV into itself and is bounded by
Theorem 5.2.8. Furthermore, by Theorem 5.2.12, condition (G) must also be satisfied.
Indeed, if R > 0, a partition 0 = t0 < . . . < tn = 1 of [0, 1] and numbers u0, . . . , un ∈
[−R,R] with ∑n

j=1 |uj−1 − uj| ≤ R are given, then we obtain from (5.2.10) that
n∑
j=1

∣∣∣g(tj−1, uj)− g(tj, uj)
∣∣∣ ≤ K

n∑
j=1
|tj−1 − tj| = K,

n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj−1, uj)
∣∣∣ ≤ K

n∑
j=1
|uj−1 − uj| ≤ KR,

and this proves that g also satisfies (G) with MR = max{K,KR}. ♦
We have now a method to construct functions g : [0, 1]×R→ R that are globally Lip-
schitz continuous yet generate a discontinuous operator Ng : BV → BV . Conversely,
we now give an example of a discontinuous function g : [0, 1]× R→ R that generates
a constant (and therefore an utmost smooth) operator Ng.
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Example 5.2.21. Let ϕj : R → R for j ∈ N be defined by ϕ1 = 1 and ϕj = 0 for
j ≥ 2. Then the function g, defined by (5.2.1), has the form g(t, u) = χ{1/2}(t) and is
discontinuous at each point (1/2, u) ∈ [0, 1]×R. For an arbitrary function x : [0, 1]→ R
we have Ngx = χ{1/2} and so Ng is constant. In particular, this operator Ng maps any
function space X whatsoever into any of the spaces BV , WBVp, Y BVϕ and ΛBV and,
if X is normed, is globally Lipschitz continuous. ♦
Interestingly, a function g ∈ C1 does not only generate a locally uniformly continuous
composition operator (see Theorem 5.1.23), but also a locally uniformly continuous
superposition operator [96].

Theorem 5.2.22. If g : [0, 1] × R → R is continuously differentiable, then Ng maps
BV into itself and is uniformly continuous on bounded subsets of BV .

As we have seen in Example 5.2.21, the converse of Theorem 5.2.22 is far from being
true. This is again in contrast to the composition operator Cg : BV → BV , where g :
R→ R being continuously differentiable is equivalent to Cg being uniformly continuous
on bounded subsets of BV (see Theorem 5.1.23).

Sometimes one is not interested in global continuity on the entire space, but rather in
continuity at a particular point. For fixed x ∈ BV we impose the following condition.

∀ε > 0 ∃δ > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un ∈ [−δ, δ] :
n∑
j=1
|uj−1 − uj| ≤ δ

=⇒
n∑
j=1

∣∣∣∣[g(tj−1, uj + x(tj−1)
)
− g

(
tj, uj + x(tj)

)]

−
[
g
(
tj−1, x(tj−1)

)
− g

(
tj, x(tj)

)]∣∣∣∣ ≤ ε

and
n∑
j=1

∣∣∣∣g(tj−1, uj−1 + x(tj−1)
)
− g

(
tj−1, uj + x(tj−1)

)∣∣∣∣ ≤ ε. (H(x))

For the special case that Ng0 = 0, condition (H(0)) reduces to the following condition.

∀ε > 0 ∃δ > 0 ∀0 = t0 < . . . < tn = 1 ∀u0, . . . , un ∈ [−δ, δ] :
n∑
j=1
|uj−1 − uj| ≤ δ

=⇒
n∑
j=1

∣∣∣g(tj−1, uj)− g(tj, uj)
∣∣∣ ≤ ε and

n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj−1, uj)
∣∣∣ ≤ ε. (H0)

The conditions (H0) and (G) look very similar yet neither of them implies the other.

Example 5.2.23. Let g : [0, 1]× R→ R be defined by g(t, u) = h(u) with

h(u) =
u for |u| ≤ 1,

0 for |u| > 1.

In particular, Ng = Ch, that is, the superposition operator is in fact a composition
operator with generator h and satisfies Ng0 = 0.
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We now show that g satisfies (H0) but not (G). For ε > 0 pick δ := min{ε, 1}. Then
for any partition 0 = t0 < . . . < tn = 1 and any collection u0, . . . , un ∈ [−δ, δ] of real
numbers with

n∑
j=1
|uj−1 − uj| ≤ δ

we have
n∑
j=1

∣∣∣g(tj−1, uj)− g(tj, uj)
∣∣∣ =

n∑
j=1

∣∣∣h(uj)− h(uj)
∣∣∣ = 0 ≤ ε

and, as |uj| ≤ δ ≤ 1 for all j ∈ {0, . . . , n},
n∑
j=1

∣∣∣g(tj−1, uj−1)− g(tj−1, uj)
∣∣∣ =

n∑
j=1

∣∣∣h(uj−1)− h(uj)
∣∣∣ =

n∑
j=1

∣∣∣uj−1 − uj
∣∣∣ ≤ δ ≤ ε.

Thus, g satisfies (H0). However, for R := 3 and vj := 1 + (−1)j2−j for j ∈ N0 we have

2n∑
j=1
|vj−1 − vj| = 3− 3

4n ≤ 3 = R for n ∈ N,

but, as vj > 1 for even j and 0 < vj < 1 for odd j,

2n∑
j=1

∣∣∣g(tj−1, vj−1)− g(tj−1, vj)
∣∣∣ =

2n∑
j=1

∣∣∣h(vj−1)− h(vj)
∣∣∣ = 2

n∑
j=1

(
1− 2−2j+1

)
≥ n

which becomes unbounded as n increases. Consequently, g cannot satisfy condition
(G). This is also clear by the fact that for composition operators Ch condition (G) is
equivalent to h ∈ Liploc(R). But our h here is not even continuous. ♦
In a moment we will see that also (G) does not imply (H0). But first we mention the
following result which states that (H(x)) provides a pointwise continuity criterion for
Ng [96].

Theorem 5.2.24. Let g : [0, 1] × R → R be so that Ng maps BV into itself, and let
x ∈ BV be fixed. Then Ng is continuous at x ∈ BV if and only if for each t ∈ [0, 1]
the function g(t, ·) is continuous at u = x(t) and (H(x)) holds.

Let us have a quick look back again at the function g of Example 5.2.20 which has been
constructed in such a way that Ng is discontinuous at x = 0. As we have seen there,
g satisfies all the conditions (A)–(G) and hence generates a superposition operator
Ng that maps BV into itself and is bounded. Moreover, since g is globally Lipschitz
continuous, the function g(t, ·) is continuous at u = 0 for each fixed t ∈ [0, 1]. However,
by Theorem 5.2.24, condition (H(x))=(H0) cannot be satisfied at x := 0. Indeed, let
gn be the functions defined in (5.2.9), and set ε := 1/2. Pick δ > 0 arbitrarily and
choose k ∈ N so large that v := 1/2k ≤ δ. Since Var(gk) = 1 we find a partition
0 = t0 < . . . < tm = 1 of [0, 1] such that

m∑
j=1
|gk(tj−1)− gk(tj)| >

1
2 .
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Now, consider uj := v = 1/2k for j ∈ {0, . . . ,m}. Then uj ∈ [−δ, δ] for all j ∈
{0, . . . ,m} and ∑m

j=1 |uj−1 − uj| = 0, but
m∑
j=1

∣∣∣g(tj−1, uj)− g(tj, uj)
∣∣∣ =

m∑
j=1

∣∣∣g(tj−1, v)− g(tj, v)
∣∣∣ =

m∑
j=1

∣∣∣gk(tj−1)− gk(tj)
∣∣∣ > 1

2 = ε.

Thus, (H0) cannot hold. In particular, none of the conditions (A)–(G) implies (H0).

We now consider the global Lipschitz condition of Ng, i.e. a condition of the form

‖Ngx−Ngy‖BV ≤ L ‖x− y‖BV for x, y ∈ BV, (5.2.11)

where L > 0 is a constant independent of x and y. The following result is similar to
Theorem 5.1.22 and was proven in [108].

Theorem 5.2.25. Let Ng map the space BV into itself.

(a) If Ng is Lipschitz continuous in the sense of (5.2.11), then

|g(t, u)− g(t, v)| ≤ L|u− v| for t ∈ [0, 1], u, v ∈ R, (5.2.12)

and the right regularization g#, defined by

g#(t, u) =
lims→t+ g(s, u) for 0 ≤ t < 1,
g(1, u) for t = 1,

(5.2.13)

is affine, that is, there are two functions a, b ∈ BV such that

g#(t, u) = a(t)u+ b(t) for t ∈ [0, 1], u ∈ R. (5.2.14)

(b) Conversely, if g coincides with g# defined by (5.2.13) and is of the form (5.2.14)
for two functions a, b ∈ BV , then Ng is Lipschitz continuous in the sense of
(5.2.11).

Let us remark that, unfortunately, there is a tiny gap between the statements (a) and
(b) of Theorem 5.2.25. Part (a) says that from (5.2.11) it follows that g# is affine with
respect to u. However, part (b) states that if g# is affine with respect to u and g = g#,
then Ng satisfies (5.2.11). In particular, the function g from Example 5.2.21 generating
a constant and hence globally Lipschitz continuous operator Ng : BV → BV does not
contradict Theorem 5.2.25, because although being not affine itself, g# ≡ 0 is. Thus,
g# being affine is only necessary for the global Lipschitz condition for Ng. We show in
the following example, that it is not sufficient, and that (5.2.12) cannot be dropped.

Example 5.2.26. The function g : [0, 1]× R→ R, defined by

g(t, u) =
u

2 for t = 0,
0 for 0 < t ≤ 1,

does not satisfy (5.2.12) and hence generates an operator Ng that cannot be globally
Lipschitz continuous in the sense of (5.2.11). Moreover, g#(t, u) = 0 for all t ∈ [0, 1]
and u ∈ R, and so g# has the form (5.2.14) with a = b = 0. ♦
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It is clear that in the autonomous case g(t, ·) = g̃ for all t ∈ [0, 1] and some function
g̃ : R→ R there is no difference between g# and g̃ since the regularization refers only
to the variable t. In this case, Theorem 5.2.25 reduces to Theorem 5.1.22.
One might ask whether under the hypothesis of part (a) of Theorem 5.2.25 the function
g itself must be affine with respect to u and not only its regularization g#. We give
here an example which shows that the answer is negative. Our example is a slight
simplification of the example given in [108].

Example 5.2.27. Let g be as in (5.2.1) with ϕj(u) := 2−j sin(u) for all j ∈ N. By
Proposition 5.2.1 the function g satisfies the conditions (B) and (F) (even (A) and (E))
and therefore generates an operator Ng that maps BV into itself and is bounded by
Theorem 5.2.9. For any partition 0 = t0 < . . . < tn = 1 and x, y ∈ BV we have

n∑
j=1

∣∣∣Ngx(tj−1)−Ngy(tj−1)−Ngx(tj) +Ngy(tj)
∣∣∣ ≤ 2

n∑
j=1

∣∣∣Ngx(tj)−Ngy(tj)
∣∣∣

≤ 2
∞∑
j=1

∣∣∣∣∣g
(

1
2j , x

(
1
2j

))
− g

(
1
2j , y

(
1
2j

))∣∣∣∣∣ = 2
∞∑
j=1

2−j
∣∣∣∣∣sin x

(
1
2j

)
− sin y

(
1
2j

)∣∣∣∣∣
≤ 2

∞∑
j=1

2−j
∣∣∣∣∣x
(

1
2j

)
− y

(
1
2j

)∣∣∣∣∣ ≤ 2 ‖x− y‖∞
∞∑
j=1

2−j ≤ 2 ‖x− y‖BV .

Moreover,

‖Ngx−Ngy‖∞ = sup
t∈[0,1]

∣∣∣∣g(t, x(t)
)
− g

(
t, y(t)

)∣∣∣∣ ≤ sup
t∈[0,1]

∣∣∣ sin x(t)− sin y(t)
∣∣∣ ≤ ‖x− y‖∞

≤ ‖x− y‖BV

which gives in total ‖Ngx−Ngy‖BV ≤ 3 ‖x− y‖BV . This proves that Ng is globally
Lipschitz continuous in BV . However, g( 1

2j , u) is clearly not affine with respect to u
for any j ∈ N. ♦
Note that g#(t, u) = 0 for all t ∈ [0, 1] and u ∈ R for g in the last example, in
accordance with Theorem 5.2.25 (a).
We point out that a stronger degeneracy phenomenon has been proved for many other
normed function spaces X, namely, if Ng maps X into itself and is globally Lipschitz
continuous, then g is affine with respect to u, that is, g(t, u) = a(t)u+b(t) for functions
a, b ∈ X. For instance, this has been proved for X = Cn in [104, 105], for the Sobolev
space X = W 1,p in [106] and for the space X = WBV 2

p of functions of bounded
(p, 2)-variation in [107]. Likewise, an analogous result was shown in [103] for the space
X = Lipα of Hölder continuous functions with exponent α ≤ 1 and in [93] for the space
X = Cn,α of functions with Hölder continuous n-th derivative.

As we have seen in Theorem 5.1.22, already uniform continuity of Cg leads to a strong
degeneracy of g. In fact, a similar result is true for the superposition operator in all our
BV -spaces. The degeneracy of g is then expressed in terms of its right regularization
as in Theorem 5.2.25.



5.2. Superposition Operators 211

Theorem 5.2.28. Let X be any of the spaces BV , WBVp, Y BVϕ or ΛBV . If Ng

maps X into itself and is uniformly continuous, then g# is of the form (5.2.14) for
a, b ∈ X.

In fact, Theorem 5.2.28 remains true if the operator Ng is merely uniformly bounded
[6].
In [1] the authors have shown that for the Riesz space an even stronger degeneracy
occurs. To be more precise, they proved the following.

Theorem 5.2.29. If Ng maps RBVp into itself and is uniformly continuous, then g is
of the form g(t, u) = a(t)u+ b(t) for some functions a, b ∈ RBVp.

It is clear that the converse of Theorem 5.2.29 is also true, even for all our BV -spaces
X. Indeed, if g is of the form g(t, u) = a(t)u + b(t) for a, b ∈ X, then for x, y ∈ X we
have

Ngx(t)−Ngy(t) = g
(
t, x(t)

)
− g

(
t, y(t)

)
= a(t)

(
x(t)− y(t)

)
for t ∈ [0, 1]

and hence
‖Ngx−Ngy‖∞ ≤ ‖a‖∞ ‖x− y‖∞ .

Moreover,∣∣∣∣Ngx(s)−Ngy(s)−Ngx(t) +Ngy(t)
∣∣∣∣ =

∣∣∣∣a(s)
(
x(s)− y(s)

)
− a(t)

(
x(t)− y(t)

)∣∣∣∣
=
∣∣∣∣a(s)

[
x(s)− y(s)− x(t) + y(t)

]
+
[
a(s)− a(t)

][
x(t)− y(t)

]∣∣∣∣
≤ ‖a‖∞

∣∣∣x(s)− y(s)− x(t) + y(t)
∣∣∣+ ∣∣∣a(s)− a(t)

∣∣∣ ‖x− y‖∞
for any s, t ∈ [0, 1]. Using the symbol ΦX for the seminorm part of our BV -norms as
summarized in Table 1.2.1 we obtain by Lemma 1.2.26,

ΦX

(
Ngx−Ngy

)
≤ ‖a‖∞ΦX(x− y) + ΦX(a) ‖x− y‖∞

and thus in total ‖Ngx−Ngy‖X ≤ ‖a‖X ‖x− y‖X . This shows that Ng : X → X is
even globally Lipschitz continuous.
The following is an extension of Example 5.2.26 and shows that the converse of Theorem
5.2.28 is not true in general.

Example 5.2.30. Let g be as in Example 5.2.26, and let X be any of the spaces BV ,
WBVp, Y BVϕ or ΛBV . Then Ng maps X into itself and is bounded, because for any
x ∈ X we have

Ngx(t) = χ{0}x(0)2.

Moreover, g#(t, u) = 0 for all t ∈ [0, 1] and u ∈ R, as we have seen in Example 5.2.26.
But Ng cannot be uniformly continuous. To see this, pick any δ, u > 0. The constant
functions x ≡ u and y ≡ u+ δ belong to X with ‖x− y‖X = δ, but

‖Ngx−Ngy‖X ≥ ‖Ngx−Ngy‖∞ = (u+ δ)2 − u2 = 2uδ + δ2

which gets infinitely large as u→∞. ♦
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Uniform continuity of Ng implies that g(t, ·) is uniformly continuous for each fixed
t ∈ [0, 1] (which is not true for the function g in the previous example), and so this and
probably something else is missing in Theorem 5.2.28 to gain a necessary and sufficient
condition for the uniform continuity of Ng in X. But we do not know what exactly.

Later in Chapter 7 we apply some of the theoretical results presented here to integral
equations which we will solve with fixed point theorems. For most applications the
Banach-Caccioppoli Fixed Point Theorem will do the job. However, applying it to
the entire space would require the underlying superposition operators to be globally
Lipschitz continuous which in most cases is too restrictive, as we have seen before.
Therefore, we will use it only locally in order to gain solutions that are at least locally
unique. The advantage is that then the corresponding superposition operators need to
be only locally Lipschitz continuous. As in (5.1.19) we mean by that a condition of the
form

‖Ngx−Ngy‖X ≤ LR ‖x− y‖X for ‖x‖X , ‖y‖X ≤ R, (5.2.15)

where X is one of our BV -spaces. As far as we know apart from trivial sufficient
conditions there are no conditions known for g to make Ng satisfy (5.2.15). We now
give here a sufficient condition which is very similar to Theorem 5.1.21. Therein we have
seen that the composition operator Ch maps any of our BV -spaces locally Lipschitz
continuously into itself if and only if h ∈ Lip1

loc(R). A similar result is also true for the
superposition operator.

Theorem 5.2.31. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that g : [0, 1]× R→ R satisfies the following conditions.

(i) g(·, 0) ∈ X,

(ii) g(t, ·) ∈ C1(R) for each fixed t ∈ [0, 1],

(iii) ∂2g(·, 0) ∈ B,

(iv) For each R > 0 there is some AR > 0 such that

|∂2g(t, u)− ∂2g(t, v)| ≤ AR|u− v|

whenever t ∈ [0, 1], u, v ∈ [−R,R].

(v) For each R > 0 there is some BR > 0 and a function zR ∈ X such that

|g(s, u)− g(s, v)− g(t, u) + g(t, v)| ≤ BR|zR(s)− zR(t)||u− v|

whenever s, t ∈ [0, 1] and u, v ∈ [−R,R].

Then Ng maps X into itself and is locally Lipschitz continuous in the sense of (5.2.15).
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Proof. First note that once (5.2.15) has been established, it follows from (i) that Ng

maps X into itself, because

‖Ngx‖X ≤ ‖Ngx−Ng0‖X + ‖Ng0‖X ≤ LR ‖x‖X + ‖Ng0‖X <∞.

We thus have to focus only on (5.2.15). For that fix R > 0. We first show that g
satisfies for fixed u1, u2, v1, v2 ∈ [−R,R] and s, t ∈ [0, 1] the estimate

|g(s, u1)− g(s, v1)− g(t, u2) + g(t, v2)|
≤ AR

(
|u1 − u2|+ |v1 − v2|

)(
|u1 − v1|+ |u2 − v2|

)
+MR|u1 − v1 − u2 + v2|+BR|zR(s)− zR(t)||u2 − v2|, (5.2.16)

where MR is given by

MR := RAR + ‖∂2g(·, 0)‖∞ ; (5.2.17)

note that (iii) guarantees thatMR is finite. To this end, first note that for u1, u2, v1, v2 ∈
[−R,R] and s, t ∈ [0, 1],

|g(s, u1)− g(s, v1)− g(t, u2) + g(t, v2)|
≤ |g(s, u1)− g(s, v1)− g(s, u2) + g(s, v2)|

+ |g(s, u2)− g(s, v2)− g(t, u2) + g(t, v2)|
≤ |g(s, u1)− g(s, v1)− g(s, u2) + g(s, v2)|+BR|zR(s)− zR(t)||u2 − v2|

by (v). To estimate the remaining term |g(s, u1)−g(s, v1)−g(s, u2)+g(s, v2)| consider
the function h(u) := g(s, u) for fixed s ∈ [0, 1]. This function is continuously differen-
tiable in R by (ii) and satisfies |h′(u)− h′(v)| ≤ AR|u− v| by (iv). By [6, Lemma 5.48]
we obtain

|h(u1)− h(v1)− h(u2) + h(v2)|
≤ AR

(
|u1 − u2|+ |v1 − v2|

)(
|u1 − v1|+ |u2 − v2|

)
+ M̃R(s)|u1 − v1 − u2 + v2|, (5.2.18)

where
M̃R(s) := ‖h′‖[−R,R] = sup

|u|≤R
|∂2g(s, u)|.

Since |∂2g(s, u)| ≤ |∂2g(s, u)− ∂2g(s, 0)|+ |∂2g(s, 0)| ≤ AR|u|+ ‖∂2g(·, 0)‖∞ ≤MR for
|u| ≤ R by (iv), the estimate (5.2.16) follows.
For functions x, y : [0, 1]→ R and s, t ∈ [0, 1] we obtain from (5.2.16),∣∣∣Ngx(s)−Ngy(s)−Ngx(t) +Ngy(t)

∣∣∣
=
∣∣∣∣g(s, x(s)

)
− g

(
s, y(s)

)
− g

(
t, x(t)

)
+ g

(
t, y(t)

)∣∣∣∣
≤ AR

(
|x(s)− x(t)|+ |y(s)− y(t)|

)(
|x(s)− y(s)|+ |x(t)− y(t)|

)
+MR

∣∣∣x(s)− y(s)− x(t) + y(t)
∣∣∣+BR

∣∣∣zR(s)− zR(t)
∣∣∣∣∣∣x(t)− y(t)

∣∣∣
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and thus,

|Ngx(s)−Ngy(s)−Ngx(t) +Ngy(t)|

≤ 2AR ‖x− y‖∞
(
|x(s)− x(t)|+ |y(s)− y(t)|

)
+MR|x(s)− y(s)− x(t) + y(t)|+BR ‖x− y‖∞ |zR(s)− zR(t)|. (5.2.19)

By Lemma 1.2.26 we get for x, y ∈ BR(X),

ΦX(Ngx−Ngy) ≤ 2AR ‖x− y‖∞
(
ΦX(x) + ΦX(y)

)
+MR ΦX(x− y) +BR ‖x− y‖∞ΦX(zR)

≤
(
4RAR +BRΦX(zR)

)
‖x− y‖∞ +MR ΦX(x− y), (5.2.20)

where ΦX is as in Table 1.2.1. Moreover, for s = t ∈ [0, 1] we obtain from (5.2.16) with
u1 = x(t), v1 = y(t), u2 = v2 = 0,∣∣∣Ngx(t)−Ngy(t)

∣∣∣ =
∣∣∣g(t, x(t)

)
− g

(
t, y(t)

)∣∣∣
≤ AR

(
|x(t)|+ |y(t)|

)
|x(t)− y(t)|+MR|x(t)− y(t)|

≤
(
2RAR +MR

)
‖x− y‖∞ . (5.2.21)

Combining (5.2.20) and (5.2.21) yields

‖Ngx−Ngy‖X ≤
(
6RAR +BRΦX(zR) +MR

)
‖x− y‖∞ +MRΦX(x− y)

≤
(
6RAR +BRΦX(zR) +MR

)
‖x− y‖X .

Finally, taking (5.2.17) into account, we obtain for any of our BV -spaces X,

‖Ngx−Ngy‖X ≤
(

7RAR +BRΦX(zR) + ‖∂2g(·, 0)‖∞
)
‖x− y‖X (5.2.22)

which is the desired estimate (5.2.15) with

LR = 7RAR +BRΦX(zR) + ‖∂2g(·, 0)‖∞ .

The proof is complete. �

As we have seen, under the assumptions of Theorem 5.2.31 the superposition operator
Ng satisfies the estimate

‖Ngx−Ngy‖X ≤
(

7RAR +BRΦX(zR) + ‖∂2g(·, 0)‖∞
)
‖x− y‖X (5.2.23)

for all x, y ∈ X with ‖x‖X , ‖y‖X ≤ R, where ΦX is as in Table 1.2.1.
We remark that condition (iv) in Theorem 5.2.31 says that ∂2g satisfies condition (B).
Moreover, any g ∈ C2([0, 1]×R) satisfies all the hypotheses of Theorem 5.2.31. Indeed,
for such g the conditions (i)–(iv) are clearly fulfilled. Moreover, the function

G(t, u, v) :=


g(t, u)− g(t, v)

u− v for u 6= v,

∂2g(t, u) for u = v,
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belongs to C1([0, 1]×R×R); in particular, for each R > 0 there is some BR > 0 such
that |G(s, u, v) − G(t, u, v)| ≤ BR|s − t| for all s, t ∈ [0, 1], u, v ∈ [−R,R], and this
implies (v) with z(t) = t. Thus, the hypotheses of Theorem 5.2.31 are not as artificial
as they may appear at first glance.
However, Theorem 5.2.31 may also be applied to discontinuous functions g satisfying
the conditions (i)–(v). For instance, the function g in Example 5.2.21 is discontinuous
yet meets all the conditions of Theorem 5.2.31 for X = BV . Indeed, we have seen that
this g generates a constant operator Ng : BV → BV . Here is another more general
example that deals with separated variables in one of our BV -spaces X.

Example 5.2.32. If g : [0, 1]× R→ R is given by g(t, u) = g1(t)g2(u) for g1 ∈ X and
g2 ∈ Lip1

loc(R), then the conditions (i)–(iv) of Theorem 5.2.31 are satisfied. Indeed,
g(·, 0) = g1g2(0) and ∂2g(·, 0) = g1g

′
2(0) are in X and bounded, because g1 is, and so

(i) and (iii) are fulfilled with

‖∂2g(·, 0)‖∞ = |g′2(0)| ‖g1‖∞ .

Moreover, g(t, ·) = g1(t)g2 belongs to C1(R) for each t ∈ [0, 1] which is (ii). The partial
derivatives with respect to the second argument fulfill

|∂2g(t, u)− ∂2g(t, v)| = |g1(t)||g′2(u)− g′2(v)| ≤ ‖g1‖∞ lip
(
g′2, [−R,R]

)
|u− v|

for u, v ∈ [−R,R] and thus (iv) holds with

AR = ‖g1‖∞ lip
(
g′2, [−R,R]

)
.

Finally,

|g(s, u)− g(s, v)− g(t, u) + g(t, v)| = |g1(s)− g1(t)||g2(u)− g2(v)|

for s, t ∈ [0, 1], u, v ∈ [−R,R], and because of g1 ∈ X and g2 ∈ Liploc(R) condition (v)
is satisfied with

zR = g1 and BR = lip
(
g2, [−R,R]

)
.

In particular, Ng : X → X is locally Lipschitz continuous by Theorem 5.2.31, but g1
and hence also g can be discontinuous. ♦
As a special case of Example 5.2.32, let g1 ∈ X be arbitrary and g2(u) = u for all
u ∈ R. Then Ng = Mg1 with

‖Mg1x−Mg1y‖X ≤ ‖g1‖X ‖x− y‖X for x, y ∈ X,

and this shows that Theorem 5.2.31 covers Corollary 4.1.8.
If we take g1 = 1 and g2 ∈ Lip1

loc(R) in Example 5.2.32 instead, then Ng = Cg2 with

‖Cg2x− Cg2y‖X ≤
(

7R lip
(
g′2, [−R,R]

)
+ |g′2(0)|

)
‖x− y‖X for x, y ∈ BR(X),

and this shows that Theorem 5.2.31 also covers Theorem 5.1.21. However, in contrast
to Theorem 5.1.21 the hypotheses of Theorem 5.2.31 are not necessary.
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Example 5.2.33. Consider the function g : [0, 1] × R → R, defined by g(t, u) =
χ{0}(t)|u|. Then g(0, u) = |u| is not differentiable with respect to u, and so g does
not meet (ii) in Theorem 5.2.31. However, g generates an even globally Lipschitz
continuous superposition operator Ng : BV → BV . To see this, note that for any
x, y ∈ BV ,

Ngx(t)−Ngy(t) = g
(
t, x(t)

)
− g

(
t, y(t)

)
=

∣∣∣x(0)

∣∣∣− ∣∣∣y(0)
∣∣∣ for t = 0,

0 for 0 < t ≤ 1;

in particular, ‖Ngx‖BV = 2|x(0)|, and so Ng maps BV into itself. Moreover,

‖Ngx−Ngy‖BV = 2
∣∣∣|x(0)| − |y(0)|

∣∣∣ ≤ 2 ‖x− y‖∞ ≤ 2 ‖x− y‖BV

for any x, y ∈ BV , and thus Ng is indeed globally Lipschitz continuous in BV . ♦
Note that Example 5.2.33 is not contradictory to Theorem 5.2.25, because for the
generator g(t, u) = χ{0}(t)|u|, any t ∈ [0, 1] and u ∈ R we have g#(t, u) = 0 which is
affine in the sense of (5.2.14).

Instead of considering operators Ng from a BV -space X into itself it will be of great
use later on in Chapter 7 to also consider Ng as an operator from a BV -space X into
L∞. In order to find conditions for the local Lipschitz continuity of such operators one
needs to find for each R > 0 a number LR > 0 such that

‖Ngx−Ngy‖L∞ ≤ LR ‖x− y‖X for ‖x‖X , ‖y‖X ≤ R. (5.2.24)

To establish that one can give much milder conditions on g than those given in Theorem
5.2.31. We end up with

Theorem 5.2.34. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g : [0, 1] × R → R be given. Then the operator Ng maps the space X into L∞
and is locally Lipschitz continuous in the sense of (5.2.24) if g satisfies the following
two conditions.

(i) g(·, u) is measurable for each u ∈ R, and g(·, 0) ∈ L∞.

(ii) For each R > 0 there is some aR ∈ L∞ such that
∣∣∣g(t, u)− g(t, v)

∣∣∣ ≤ aR(t)|u− v|
for all t ∈ [0, 1] and all u, v ∈ [−R,R].

Proof. Assume that g satisfies (i) and (ii) and fix R > 0. Since aR ∈ L∞, there is some
constant LR > 0 such that aR(t) ≤ LR for almost all t ∈ [0, 1]. For x, y ∈ X with
‖x‖X , ‖y‖X ≤ R we then have for almost all t ∈ [0, 1] by (ii),∣∣∣g(t, x(t)

)
− g

(
t, y(t)

)∣∣∣ ≤ LR|x(t)− y(t)|.

Thus, since ‖z‖L∞ ≤ ‖z‖∞ ≤ ‖z‖X for all z ∈ X,

‖Ngx−Ngy‖L∞ ≤ LR ‖x− y‖L∞ ≤ LR ‖x− y‖X .
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This shows that (5.2.24) is satisfied. Moreover, from this and (i) we obtain

‖Ngx‖L∞ ≤ ‖Ngx−Ng0‖L∞ + ‖Ng0‖L∞ ≤ RLR + ‖g(·, 0)‖L∞ ,

and thus Ng maps the space X into L∞. �

Clearly, Theorem 5.2.34 remains true if one replaces L∞ by the space B of bounded
functions; one then just has to replace (ii) by condition (B). Moreover, under the
hypothesis of Theorem 5.2.34 the operator Ng maps even L∞ into itself and is locally
Lipschitz continuous.

At this point we remark that condition (i) in Theorem 5.2.34 together with condition
(ii) implies that g(t, ·) is continuous for (almost) all t ∈ [0, 1]. This means in particular
that g is a so called Carathéodory function which guarantees that the superposition
operator Ng maps the space of measurable functions into itself [37]. However, being a
Carathéodory function is only sufficient but not necessary for this acting condition on
the space of measurable functions, and the problem of finding sufficient and necessary
conditions is delicate. For a detailed discussion of this and related problems see also
[12].
Moreover, we remark that Theorem 5.2.34 only provides a sufficient condition for the
local Lipschitz continuity of Ng : X → L∞, and we do not know if it is also necessary.
The crucial part in condition (ii) is that the function aR ∈ L∞ must be independent of
u and v, that is, (ii) is equivalent to the condition that for each R > 0 there is some
LR > 0 and some null set N ⊆ [0, 1] such that∣∣∣g(t, u)− g(t, v)| ≤ LR|u− v| (5.2.25)

for all t ∈ [0, 1]\N and all u, v ∈ [−R,R]; in particular, N is independent of u and v.
Therefore, one might think that (ii) could be weakened by

∀R > 0 ∃LR > 0 : ‖g(·, u)− g(·, v)‖L∞ ≤ LR|u− v|, (5.2.26)

because this means that only for each fixed u, v ∈ [−R,R] there is a null set N depend-
ing on u and v such that (5.2.25) holds for all t ∈ [0, 1]\N . By considering constant
functions it is easy to show that (5.2.26) is necessary for Ng : X → L∞ to be locally
Lipschitz continuous. However, as the following example shows, it is not sufficient,
even when (i) is added.

Example 5.2.35. Let g : [0, 1]× R→ R be defined by

g(t, u) =
1/t for 0 < t = u ≤ 1,

0 otherwise.

Then g(·, u) is measurable for each u ∈ R, and g(t, 0) = 0 for any t ∈ [0, 1] showing
that (i) in Theorem 5.2.34 is satisfied. Moreover, for fixed u, v ∈ R we have g(t, u) = 0
for all t ∈ [0, 1]\{u, v} and hence ‖g(·, u)− g(·, v)‖L∞ = 0. Thus, (5.2.26) is also
satisfied. However, the function x(t) = t clearly belongs to any of our BV -spaces X,
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but g(t, x(t)) = 1/t for 0 < t ≤ 1 does not belong to L∞. Thus, Ng does not map X
into L∞. Note that g does also not satisfy (ii) of Theorem 5.2.34, because otherwise
we had |g(t, t) − g(t, 0)| ≤ a1(t)t for some function a1 ∈ L∞ and all t ∈ (0, 1] which
would imply a1(t) ≥ 1/t2 for such t. But this is impossible. ♦
The following example shows that we cannot drop assumption (i) in Theorem 5.2.34.

Example 5.2.36. Let g : [0, 1]× R→ R be defined by

g(t, u) = u+
1/t for 0 < t ≤ 1,

0 for t = 0.

Then |g(t, u)−g(t, v)| = |u−v| for all u, v ∈ R and t ∈ [0, 1] and hence (ii) of Theorem
5.2.34 (even globally) is satisfied.
However, condition (i) fails for g, because g(t, 0) = 1/t for 0 < t ≤ 1 is not essentially
bounded; in particular, Ng0 /∈ L∞, although 0 ∈ X. This also shows that even if g is
globally Lipschitz continuous Ng does not have to map any linear function space into
the space L∞. ♦

Let us now take a closer look at compactness. As Theorem 5.1.20 shows, the composi-
tion operator Cg is compact only if the generating function g degenerates to a constant
function. The situation is of course different for superposition operators. To see this,
let us again have a look back at the linear multiplication operator that we have ex-
haustively studied in Section 4.1. This is because a multiplication operator Mh can be
considered as a superposition operator Ng with g(t, u) = h(t)u, and we have already
done so in Example 5.2.32 and the special cases thereafter. According to Theorem
4.1.12 such operators are compact in BV if and only if supp(h) is countable. In par-
ticular, there are many compact superposition operators Ng where g is not constant.
Here is an example.

Example 5.2.37. Our function g in (5.2.1) with ϕj(u) = u for all j ∈ N generates
a superposition operator which is in fact a multiplication operator Ng = Mh with
generating function h = χA and support A := {1/(2j) | j ∈ N}. By Theorem 4.1.12,
Ng is compact. ♦
One could conjecture that the result for multiplication operators carries over to super-
position operators, requiring that supp g(·, u) is countable for each u ∈ R. However, the
following two examples show that this condition is not necessary for the compactness
of Ng, and it even does not guarantee the acting condition Ng(BV ) ⊆ BV .

Example 5.2.38. The function g(t, u) ≡ 1 generates a constant and hence compact
operator Ng : BV → BV , but supp g(·, u) = [0, 1] for all u ∈ R. ♦
Example 5.2.39. The support supp g(·, u), where g is as in (5.2.1) with ϕj = χ1/(2j)
for all j ∈ N, has either only one element or is empty. But Ng does not map BV

into itself, since the identity function x(t) = t which belongs to BV is mapped to the
function g(t, t) = χA(t) with A := {1/(2j) | j ∈ N} which does not belong to BV . ♦
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The last two examples have shown that we cannot expect supp g(·, u) to be countable
for every u ∈ R if Ng is compact. However, if we shift g(·, u) into g(·, u)− g(·, 0), then
we obtain the following result.

Theorem 5.2.40. Let X be any of the spaces BV , WBVp, Y BVϕ and ΛBV , and let
the generator g : [0, 1]×R→ R be so that Ng maps X into itself and is compact. Then

supp
(
g(·, u)− g(·, 0)

)
(5.2.27)

is countable for each u ∈ R.

Proof. Fix t ∈ [0, 1] and u ∈ R and let (τn) be a sequence in (0, 1)\{t} that converges
to t. The functions xn = uχ{τn} form a bounded sequence (xn) in X. Indeed, we
have ‖xn‖∞ = |u| for all n ∈ N. For X = Y BVϕ we have by Proposition 1.2.10 for
λ = 2|u|/ϕ−1(1),

Varϕ
(
xn
λ

)
≤ ϕ

(
2|u|
λ

)
= 1.

and hence M(xn) ≤ 2|u|/ϕ−1(1). In total, this gives ‖xn‖Y BVϕ ≤
(
1 + 2/ϕ−1(1)

)
|u| for

all n ∈ N in this case.
For X = ΛBV we get from Proposition 1.2.20 that VarΛ(xn) ≤ 2λ1|u| and hence
‖xn‖ΛBV ≤

(
1 + 2λ1

)
|u| for all n ∈ N.

In any case, the sequence (xn) is mapped by Ng into the sequence

yn(s) = g
(
s, xn(s)

)
=
g(s, u) for s = τn,

g(s, 0) for s 6= τn.

Since Ng is compact in X, the sequence (yn) has a subsequence (ynk)k that converges
in X and hence also pointwise to some function y ∈ X. For fixed s ∈ [0, 1]\{t} we have
s 6= τn for sufficiently large n ∈ N as the τn converge to t, and hence ynk(s) = g(s, 0)
for sufficiently large k ∈ N. For s = t we have s 6= τn even for all n ∈ N and thus again
ynk(s) = g(s, 0) for all k ∈ N. Consequently, y(s) = g(s, 0) for all s ∈ [0, 1].
The convergence of (ynk) to y in X = Y BVϕ implies that M(ynk − y)→ 0 as k →∞.
Therefore, there exists a sequence (µk) of positive real numbers tending to 0 such that

1 ≥ Varϕ
(
ynk − y
µk

)
≥ ϕ


∣∣∣ynk(t)− y(t)− ynk(τnk) + y(τnk)

∣∣∣
µk


= ϕ


∣∣∣g(τnk , u)− g(τnk , 0)

∣∣∣
µk

 = ϕ

(
|h(τnk)|
µk

)

and thus
|h(τnk)| ≤ µkϕ

−1(1)
for all k ∈ N, where h(s) := g(s, u) − g(s, 0). For k → ∞ the right hand side goes to
zero, and thus taking the limit inferior on both sides with respect to k yields

lim inf
s→t

|h(s)| = 0. (5.2.28)
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For X = ΛBV we obtain

VarΛ(ynk − y) ≥ λ1
∣∣∣ynk(t)− y(t)− ynk(τnk) + y(τnk)

∣∣∣ = λ1
∣∣∣g(τnk , u)− g(τnk , 0)

∣∣∣
= λ1|h(τnk)|

for all k ∈ N. Again, for k → ∞ the left hand side goes to zero, and thus taking the
limit inferior on both sides with respect to k yields also in this case (5.2.28).
Since t was picked arbitrarily, (5.2.28) holds in fact for all t ∈ [0, 1]. By assumption, Ng

maps X into itself which implies that h belongs to X. Thus, h has at most countably
many points of discontinuity. But at every point t ∈ [0, 1] of continuity, (5.2.28) implies
that h(t) = 0. Consequently, h has countable support, and this was exactly what we
had to establish. �

First, let us quickly discuss the weird looking condition that (5.2.27) is countable for
each u ∈ R in Theorem 5.2.40. If Ng maps BV into BV , the function g(·, u) belongs
to BV and possesses one-sided limits at each point in [0, 1] for every fixed u ∈ R. If,
in addition, these limits coincide with the values of the function at the corresponding
points, that is,

g(t, u) = lim
s→t+

g(s, u) for 0 ≤ t < 1 or g(t, u) = lim
s→t−

g(s, u) for 0 < t ≤ 1

and
lim
s→0+

g(s, u) = g(0, u) and lim
s→1−

g(s, u) = g(1, u)

holds true for each u ∈ R, then the countability of (5.2.27) actually implies g(t, u) =
g(t, 0) for all t ∈ [0, 1] and u ∈ R which means that g does not depend on u whatsoever!
In particular, Theorem 5.1.20 is a special case of Theorem 5.2.40 which in turn covers
the necessity in Theorem 4.1.12. Indeed, if Ng is a multiplication operator in BV ,
that is, g(t, u) = h(t)u for some h ∈ BV , then the countability of (5.2.27) implies that
supp(h) is countable. Observe that Example 5.2.38 is now also covered by Theorem
5.2.40.

Theorem 5.2.40 does not cover the Riesz spaces which we will consider now. In Theorem
4.1.13 we have seen that the multiplication operator Mg : RBVp → RBVp is compact
if and only if g ≡ 0. In Theorem 5.1.20 we have shown that the composition operator
Cg : RBVp → RBVp is compact if and only if g is constant. Thus, it is reasonable to
suspect that a compact superposition operator Ng : RBVp → RBVp which enshrines
the properties of both the multiplication and the composition operator should behave
in a similar way. Indeed, our suspicion is correct.

Theorem 5.2.41. Let g : [0, 1] × R → R be so that Ng maps RBVp into itself. Then
Ng is compact if and only if there is some h ∈ RBVp such that g(·, u) = h for all u ∈ R.

Proof. It is clear that if g(·, u) = h for some h ∈ RBVp and all u ∈ R, then Ng is
compact since Ngx = h for all x ∈ RBVp.
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For the converse let Ng : RBVp → RBVp be well-defined and compact. We show that
g does not depend on its second argument and hence has the predicted form. In order
to do so fix τ ∈ [0, 1] and u ∈ R and let

S := lim sup
v→0

∣∣∣∣∣g(τ, u+ v)− g(τ, u)
v

∣∣∣∣∣ .
Then there is a sequence (vn) in [−1, 1]\{0} converging to 0 such that

lim
n→∞

∣∣∣∣∣g(τ, u+ vn)− g(τ, u)
vn

∣∣∣∣∣ = S.

Consider the functions zn : R → R, defined to be continuous and piecewise linear by
zn(t) = u for |τ − t| ≥ ηn and zn(τ) = u + vn, where ηn := |vn|p/(p−1); in particular,
ηn → 0 as n→∞. The functions xn := zn|[0,1] then form a bounded sequence in RBVp,
since ∫ 1

0
|x′n(t)|p dt ≤

∫ τ+ηn

τ−ηn

∣∣∣∣∣vnηn
∣∣∣∣∣
p

dt = 2 |vn|
p

|ηn|p−1 = 2

which implies

‖xn‖RBVp = ‖xn‖∞ + RVarp(xn)1/p ≤ |u|+ |vn|+ 21/p ≤ |u|+ 1 + 21/p for n ∈ N.

Since the operator Ng is compact it is also bounded which implies that the function
g(τ, ·) is continuous in R by Proposition 5.2.17. Moreover, the compactness of Ng also
tells us that the functions yn := Ngxn must have a subsequence (ynk) that converges in
RBVp to some y ∈ RBVp. For fixed t ∈ [0, 1]\{τ} we have yn(t) = g(t, xn(t)) = g(t, u)
for sufficiently large n and hence y(t) = g(t, u). At τ we have

y(τ) = lim
k→∞

g
(
τ, xnk(τ)

)
= lim

k→∞
g(τ, u+ vnk) = g(τ, u),

and here we used the continuity of g(τ, ·) and the fact that vnk → 0 as k →∞. Thus,
y(t) = g(t, u) for all t ∈ [0, 1].
We now obtain

RVarp(ynk − y)1/p ≥
∣∣∣ynk(τ + ηnk)− y(τ + ηnk)− ynk(τ) + y(τ)

∣∣∣
η

(p−1)/p
nk

=

∣∣∣∣g(τ + ηnk , xnk(τ + ηnk)
)
− g

(
τ + ηnk , u

)
− g

(
τ, xnk(τ)

)
+ g(τ, u)

∣∣∣∣
η

(p−1)/p
nk

=

∣∣∣g(τ, u+ vnk
)
− g

(
τ, u

)∣∣∣
|vnk |

for sufficiently larke k ∈ N; if τ = 1 we have to replace τ + ηnk by τ − ηnk .
Since RVarp(ynk − y)1/p goes to 0 as k →∞ we obtain

0 = lim
k→∞

∣∣∣∣∣∣
g
(
τ, u+ vnk

)
− g

(
τ, u

)
vnk

∣∣∣∣∣∣ = S.
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This shows ∂2g(τ, u) = 0 for all u ∈ R and hence g(τ, u) =: h(τ) for all u ∈ R. Since τ
was arbitrary and Ng maps RBVp into itself we conclude g(t, u) = h(t) for all t ∈ [0, 1]
and u ∈ R with h ∈ RBVp. �

Let us now come back to the space BV . The natural question is now if the countability
of (5.2.27) for each u ∈ R is in fact equivalent to compactness of Ng. Unfortunately,
the answer is negative, and we give three examples to illustrate this. The first shows
that the countability of (5.2.27) alone (without the requirement Ng(BV ) ⊆ BV ) is
not sufficient to guarantee that we can always extract from (Ngxn) a subsequence
converging in BV even if both (xn) and (Ngxn) are bounded sequences in BV .

Example 5.2.42. Let g(t, u) := χ{0}(t− u), that is,

g(t, u) =
1 for t = u,

0 for t 6= u.

In particular, for u = 0 we have g(t, u)− g(t, 0) = 0 for all t ∈ [0, 1], and for u 6= 0 we
get

g(t, u)− g(t, 0) =


−1 for t = 0,
1 for t = u,

0 for t ∈ [0, 1]\{0, u},

and thus supp
(
g(·, u) − g(·, 0)

)
∈
{
∅, {0}, {0, u}

}
which shows that (5.2.27) is even

finite for each u ∈ R. The functions xn(t) := tnχ{tn}(t) with tn := 1/(2n) for all
n ∈ N (or any other bounded sequence of pairwise distinct numbers tn ∈ (0, 1)) form a
bounded sequence in BV , since ‖xn‖BV = 3tn for all n ∈ N. Moreover, since xn(t) = t

if and only if t ∈ {0, tn} we have

Ngxn(t) =
1 for t ∈ {0, tn},

0 for t ∈ (0, 1]\{tn},

and so (Ngxn) is also a bounded sequence in BV with ‖Ngxn‖BV = 4 for all n ∈ N.
However, (Ngxn) cannot have a subsequence converging in BV , since it cannot have a
Cauchy subsequence in BV . This is, because for m 6= n we have

Ngxm(t)−Ngxn(t) =


1 for t = tm,

−1 for t = tn,

0 for t ∈ [0, 1]\{tm, tn},

and thus ‖Ngxm −Ngxn‖BV = 5 for all m 6= n.
Finally, Ng does not map BV into BV . To see this, consider the function x(t) =
ϕ3,0,1(t) + t which was defined in (1.1.1). It is easy to verify that x is continuously
differentiable on [0, 1] and hence belongs to BV . Moreover, x(t) = t if and only if
t ∈ {0} ∪ {1/(πn) | n ∈ N} =: A. But x is mapped by Ng into the function χA which
is not an element of BV . ♦
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The next example shows that even an operator Ng which maps BV into BV with
countable set (5.2.27) for each u ∈ R may not be compact.

Example 5.2.43. Define g : [0, 1]× R→ R by

g(t, u) =
n for t = 0, u = 1

n
, n ∈ N,

0 otherwise.

For any function x : [0, 1] → R we then have g(·, x) = nχ{0} if x(0) = 1/n for some
n ∈ N and g(·, x) = 0 if x(0) 6= 1/n for all n ∈ N. Clearly, the sets (5.2.27) contain
at most t = 0 for each u ∈ R, and Ng maps any space of real-valued functions on
[0, 1] into BV . But Ng as an operator from BV into itself is not compact, because the
constant functions xn ≡ 1/n form a bounded (even convergent) sequence in BV , but
the functions Ngxn = nχ{0} cannot have a convergent subsequence in BV . Note that
Ng is also discontinuous and unbounded. ♦
The last example of this series is more complicated but presents a bounded but not
compact operator Ng : BV → BV generated by a function g that has finite sets (5.2.27)
for each u ∈ R.

Example 5.2.44. For n ∈ N put An := {k/2n | k ∈ {1, . . . , 2n − 1}} and define the
functions gn := 2−nχAn . Consider g : [0, 1]× R→ R, defined by

g(t, u) =
gn(t) for u = 2−n, n ∈ N,

0 otherwise.

Figure 5.2.5 shows those points (t, u) ∈ [0, 1]× [0, 1/2] at which g is not zero. At these
points the value of g is u.

t

u

1

2

1

4

1

8

0 1
3

4

1

2

1

4

Figure 5.2.5: The points at which g is not zero.

We first show that g generates a bounded operator Ng : BV → BV which is the hardest
part. In order to do so fix x ∈ BV and set y(t) := g(t, x(t)). Then ‖y‖∞ ≤ 1/2, and
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Var(y) being finite or infinite is given by

Var(y) = 2
∑

t∈supp(y)
y(t)

according to Proposition 1.1.8, because g has countable support, and so has y. If
supp(y) is finite, y ∈ BV and we are done. We therefore assume that supp(y) is infinite.
Note that then for each such t ∈ supp(y) we find m ∈ N and k ∈ {1, . . . , 2m − 1} such
that

t = k

2m and x(t) = 1
2m .

We now pick n ∈ N and pairwise distinct t0, . . . , tn ∈ supp(y); without loss of gen-
erality we may assume 0 ≤ t0 < · · · < tn ≤ 1. Defining uj := x(tj) and J := {j ∈
{1, . . . , n} | uj−1 6= uj} gives

n∑
j=1

y(tj) =
n∑
j=1

g(tj, uj) =
∑
j∈J

g(tj, uj) +
∑
j /∈J

g(tj, uj). (5.2.29)

To estimate the last sum in (5.2.29) we fix j ∈ {1, . . . , n}\J . Then uj−1 = uj, and we
find numbers m, kj−1, kj ∈ N, kj−1 < kj, such that tj−1 = kj−1/2m, tj = kj/2m and
uj−1 = uj = 1/2m. Then

g(tj, uj) = 1
2m ≤

kj − kj−1

2m = tj − tj−1

and consequently ∑
j /∈J

g(tj, uj) ≤
∑
j /∈J

tj − tj−1 ≤ 1. (5.2.30)

We now take care of the second to last sum in (5.2.29) and fix j ∈ J . Since uj−1 6= uj,
either uj−1 ≥ 2uj or uj−1 ≤ uj/2. In the first case we get uj−1 − uj ≥ uj and in the
latter we obtain uj − uj−1 ≥ uj/2. But in any case we have

uj ≤ 2|uj−1 − uj|,

and this leads to ∑
j∈J

g(tj, uj) ≤ 2
∑
j∈J
|uj−1 − uj| ≤ 2 Var(x). (5.2.31)

Thus, putting (5.2.29), (5.2.30) and (5.2.31) together yields
n∑
j=1

y(tj) ≤ 2 Var(x) + 1,

and since n has been picked arbitrarily, this is true for any n ∈ N. Consequently,

Var(y) ≤ 4 Var(x) + 2.
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Finally,
‖Ngx‖BV = ‖y‖BV = ‖y‖∞ + Var(y) ≤ 4 ‖x‖BV + 5/2

which shows that Ng is indeed a bounded operator from BV into itself.
However, Ng is not compact: The sequence (xn) of constant functions xn ≡ 2−n is
mapped into the sequence (gn) with ‖gn‖∞ = 2−n → 0 as n ∈ N. Therefore, any
subsequence of (gn) must (uniformly) converge to 0. However, such a subsequence
cannot converge with respect to the BV -norm, since

Var(gn) = 21−n#An = 2n − 1
2n−1 = 2− 1

2n−1 ≥ 1 for n ∈ N.

Consequently, Ng : BV → BV cannot be compact. ♦

We now give some examples of compact superposition operators in BV . First, let us
mention that if Ng has the form

Ng = Cf ◦Mµ ◦ Ch, (5.2.32)

that is,

Ngx(t) = f
(
µ(t)h

(
x(t)

))
for 0 ≤ t ≤ 1,

where Cf and Ch are composition operators generated by functions f, h : R → R,
respectively, andMµ is a multiplication operator generated by a function µ : [0, 1]→ R,
then the operator Ng : BV → BV is compact if f, h ∈ Liploc(R) and µ ∈ BV ∩ Sc.
Indeed, if h ∈ Liploc(R), then Ch is bounded by Theorem 5.1.19, and µ ∈ BV ∩ Sc
implies that Mµ is compact by Theorem 4.1.12. Consequently, Mµ ◦ Ch is compact in
BV . Again, f ∈ Liploc(R) yields together with Theorem 5.1.24 that Cf is continuous
in BV and so in total Ng is compact as an operator from BV into itself.

Based on these general observations we give now two examples of compact superposition
operators Ng : BV → BV . The first one is generated by a function g in separated
variables which cannot be written as a multiplication operator. The second one is
generated by a function g which cannot be written in separated variables.

Example 5.2.45. Let g(t, u) = χQ∩[0,1](t)u2 be given in separated variables. Writing
f(u) = u, µ(t) = χQ∩[0,1](t) and h(u) = u2 we have f, h ∈ Liploc(R) and µ ∈ BV ∩ Sc,
and we conclude by what we have observed above that Ng = Cf ◦Mµ ◦ Ch maps BV
into itself and is compact. However, since h is not linear, the operator Ng is not a
multiplication operator. ♦
Example 5.2.46. The function g(t, u) = sin(χQ∩[0,1](t)u) cannot be written in sepa-
rated variables. Setting f(u) = sin(u), µ(t) = χQ∩[0,1](t) and h(u) = u, we again have
f, h ∈ Liploc(R) and µ ∈ BV ∩Sc and conclude that Ng = Cf ◦Mµ ◦Ch maps BV into
itself and is compact. ♦
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It is now time to summarize what we know about the disparities between the compo-
sition operator Cg and the superposition operator Ng in the space BV .

• Whenever the composition operator Cg maps BV into itself, it is automatically
bounded; this is not true for the superposition operator Ng, see Example 5.2.13.

• Whenever the operator Cg maps BV into itself, it is automatically continuous;
this is not true for the superposition operator Ng, see Example 5.2.20.

• The acting condition Cg(BV ) ⊆ BV holds precisely for locally Lipschitz contin-
uous functions g : R → R; the acting condition Ng(BV ) ⊆ BV may hold even
for discontinuous functions g : [0, 1]× R→ R, see Example 5.2.18.

• The local Lipschitz continuity of g : R → R guarantees the continuity of Cg in
BV ; not even the global Lipschitz continuity of g : [0, 1]×R→ R guarantees the
continuity of Ng in BV , see Example 5.2.20.

• Only affine functions g : R→ R generate globally Lipschitz continuous operators
Cg in BV ; this is not true for the superposition operator Ng for g : [0, 1]×R→ R,
see Example 5.2.21.

• Only constant functions g : R → R generate compact operators Cg in BV ; this
is not true for the superposition operator Ng for g : [0, 1]×R→ R, see Example
5.2.37.

On the last pages of this section we make some remarks concerning so called locally
defined operators which are defined as follows.
Definition 5.2.47. Let X and Y be spaces of real-valued functions on [0, 1]. A (linear
or nonlinear) operator T : X → Y is called locally defined if for each open interval
I ⊆ R the implication

x|I∩[0,1] = y|I∩[0,1] =⇒ (Tx)|I∩[0,1] = (Ty)|I∩[0,1]

holds for all functions x, y ∈ X.
Locally defined operators are also called operators with memory in the literature.
Clearly, any multiplication, composition and superposition operator is locally defined
as long as it is well-defined. Indeed, from x(t) = y(t) for t ∈ I ∩ [0, 1] it follows that
Mgx(t) = g(t)x(t) = g(t)y(t) = Mgy(t) and Cgx(t) = g(x(t)) = g(y(t)) = Cgy(t) and
Ngx(t) = g(t, x(t)) = g(t, y(t)) = Ngy(t) for all t ∈ I ∩ [0, 1], respectively.
Here are three examples of operators from the space BV into itself which are not locally
defined.

Example 5.2.48. The substitution operator Sg : BV → BV , defined in (4.0.2) and
generated by g : [0, 1]→ [0, 1], t 7→ 1, is not locally defined. The functions x := χ[1/2,1]
and y := 2χ[1/2,1] both belong to BV and agree on the open interval I := (0, 1/2), but
Sgx(t) = x(g(t)) = x(1) = 1 6= 2 = y(1) = y(g(t)) = Sgy(t) for any t ∈ [0, 1]. ♦
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Example 5.2.49. The integral operator Ig : BV → BV , defined in (4.0.3) and gen-
erated by g : [0, 1] × [0, 1] → R, (t, s) 7→ 1, is not locally defined. The functions
x := χ[0,1/2] and y := 2χ[0,1/2] both belong to BV and agree on the open interval
I := (1/2, 1), but

Igx(t) =
∫ 1

0
g(t, s)x(s) ds =

∫ 1/2

0
1 ds = 1

2

6= 1 =
∫ 1/2

0
2 ds =

∫ 1

0
g(t, s)y(s) ds = Igy(t)

for any t ∈ [0, 1]. ♦
Example 5.2.50. The Volterra operator Vg : BV → BV , defined in (4.3.10) and
generated by g : [0, 1]× [0, 1]→ R, given by

g(t, s) =
1 for 0 ≤ s ≤ t ≤ 1,

0 for 0 ≤ t < s ≤ 1,

is not locally defined. The functions x := χ[0,1/2] and y := 2χ[0,1/2] both belong to BV
and agree on the open interval I := (1/2, 1), but

Vgx(t) =
∫ t

0
g(t, s)x(s) ds =

∫ 1/2

0
1 ds = 1

2

6= 1 =
∫ 1/2

0
2 ds =

∫ t

0
g(t, s)y(s) ds = Vgy(t)

for any t ∈ I. ♦
The point is now that if X and Y are certain spaces of continuous functions, then any
locally defined operator T : X → Y is in fact a superposition operator. For instance,
the following has been established in [89].

Theorem 5.2.51. For each locally defined operator T : C → C there is exactly one
continuous function g : [0, 1]× R→ R such that T = Ng.

In [89] it was also shown that the same result remains true if C is replaced by C1.
Surprisingly, in this case, the function g may not be continuous anymore.
Similar representation results have been achieved for other function spaces. For in-
stance, if T : X → C is locally defined on X = Cn, the space of n-times con-
tinuously differentiable functions, it was shown in [89] that then T has the form
Tx(t) = g(t, x(t), x′(t), . . . , x(n)(t)) for some function g ∈ [0, 1] × Rn+1 → R. Other
results in this direction are also known for X = Lipα, the space of Hölder contin-
uous functions [157], and for X being the space of Whitney differentiable functions
[109, 110, 156].
It turns out that we have a similar result if X is one of our BV -spaces intersected with
the space C.

Theorem 5.2.52. Let X be any of the spaces Lip, BV , WBVp, Y BVϕ, ΛBV or
RBVp. Then for any locally defined operator T : X ∩ C → C there is exactly one
function g : [0, 1]× R→ R such that T = Ng.
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Theorem 5.2.52 was proven in [158] for X = Y BVϕ and hence also for X = WBVp
and X = BV and in [18] for X = RBVp. Theorem 5.2.52 remains true even for other
BV -type spaces like X = WBVp(·), the space of functions of bounded Wiener variation
with variable exponent p : [0, 1] → (1,∞) [69] . The proofs for all these results are
very similar. We present here the proof for X = Lip and for X = ΛBV for which we
could not find a reference.

Proof of Theorem 5.2.52 for X = ΛBV and X = Lip. We begin by showing
Claim 1: The following implication holds.

∀x, y ∈ X ∩ C ∀τ ∈ (0, 1) : x(τ) = y(τ) =⇒ Tx(τ) = Ty(τ). (5.2.33)

To this end, fix x, y ∈ X ∩ C and τ ∈ (0, 1) with x(τ) = y(τ). Then the function
z : [0, 1]→ R, defined by

z(t) =
x(t) for 0 ≤ t ≤ τ,

y(t) for τ < t ≤ 1,

belongs to X∩C. Moreover, z coincides on [0, τ ] with x and on [τ, 1] with y. Therefore,
there is some η > 0 such that the open intervals Iε := (τ − 2ε, τ) and Jε := (τ, τ + 2ε)
are contained in [0, 1] and satisfy x|Iε = z|Iε and y|Jε = z|Jε for all ε ∈ (0, η). Since T
is locally defined on X ∩ C it follows that

(Tx)|Iε = (Tz)|Iε and (Ty)|Jε = (Tz)|Jε for all ε ∈ (0, η).

But this implies

Tx(τ − ε) = Tz(τ − ε) and Ty(τ + ε) = Tz(τ + ε) for all ε ∈ (0, η),

and since Tx, Ty and Tz are continuous at τ we conclude by letting ε → 0 that
Tx(τ) = Tz(τ) = Ty(τ). Thus, (5.2.33) is true, indeed.

Claim 2: For x, y ∈ X ∩ C with x(0) = y(0) there are sequences (sn) and (tn) in (0, 1]
both decreasing to 0 and a function z ∈ X∩C such that z(sn) = x(sn) and z(tn) = y(tn)
for all n ∈ N.
Claim 2 follows for X = ΛBV from [158]. Therein it was shown that z can be con-
structed in such a way that z ∈ BV ∩C, even if x and y are merely continuous without
having bounded Waterman variation.
We now show Claim 2 for X = Lip. To this end, let sn := 22−2n and tn := 21−2n

for n ∈ N. Then both (sn) and (tn) are sequences in (0, 1] that converge to 0 so
that sn+1 < tn < sn for all n ∈ N. Consider the function z : [0, 1] → R, defined by
z(0) = x(0) = y(0) as well as by z(sn) = x(sn), z(tn) = y(tn) and linear between sn+1
and tn and between tn and sn for all n ∈ N; Figure 5.2.6 shows how the function z

(thick black lines) “zigzags” between x and y.



5.2. Superposition Operators 229

s1 = 1

x

0

y

z

t1

s2

t2s3t3

Figure 5.2.6: The function z “zigzagging” between x and y.

Since x, y ∈ Lip we also have x− y ∈ Lip, and since x(0)− y(0) = 0,

|x(s)− y(s)| ≤
(

lip(x) + lip(y)
)
s for s ∈ [0, 1].

Thus, for all n ∈ N we have

|z(sn)− z(tn)|
sn − tn

= |x(sn)− y(tn)|
sn − tn

≤ |x(sn)− x(tn)|
sn − tn

+ |x(tn)− y(tn)|
sn − tn

≤ lip(x) +
(

lip(x) + lip(y)
)

tn
sn − tn

= 2 lip(x) + lip(y)

and
|z(tn)− z(sn+1)|

tn − sn+1
= |y(tn)− x(sn+1)|

tn − sn+1
≤ |y(tn)− x(tn)|

tn − sn+1
+ |x(tn)− x(sn+1)|

tn − sn+1

≤
(

lip(x) + lip(y)
)

tn
tn − sn+1

+ lip(x) = 3 lip(x) + 2 lip(y).

Consequently, z ∈ X ∩C with lip(z) ≤ 3 lip(x) + 2 lip(y), and Claim 2 is established.

Claim 3: The implication 5.2.33 holds also for τ ∈ {0, 1}.
Let τ = 0 (the argument for τ = 1) is similar. Fix x, y ∈ X ∩ C with x(0) = y(0). By
Claim 2 there are sequences (sn) and (tn) in (0, 1] both decreasing to 0 and a function
z ∈ X ∩ C such that

z(sn) = x(sn) and z(tn) = y(tn) for all n ∈ N.

Without loss of generality we may assume that 0 < sn, tn < 1 for all n ∈ N. Then by
Claim 1 it follows that

Tx(sn) = Tz(sn) and Ty(tn) = Tz(tn) for all n ∈ N.

Finally, the continuity of Tx, Ty and Tz yields Tx(0) = Tz(0) = Ty(0).

Claim 4: There is exactly one function g : [0, 1]× R→ R such that T = Ng.
Define g : [0, 1]× R→ R which generates the desired superposition operator by

g(t, u) := T (u1)(t).

For any function x ∈ X ∩ C and fixed τ ∈ [0, 1] we have x(τ) =
(
x(τ)1

)
(τ), where

both x and x(τ)1 belong to X ∩ C. We get with the help (5.2.33) and Claim 3,

g
(
τ, x(τ)

)
= T

(
x(τ)1

)
(τ) = Tx(τ).
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This shows the existence of g. If h : [0, 1] × R → R is another function with T = Nh,
then for any t ∈ [0, 1] and u ∈ R,

g(t, u) = T (u1)(t) = h
(
t, (u1)(t)

)
= h(t, u).

This shows the uniqueness of g and completes the proof. �

We end this section with two examples of locally defined operators which cannot be
represented as superposition operators.

Example 5.2.53. Define T : BV → R by Tx := x#, where x# denotes the right
regularization of x defined in (1.1.18). To show that T is locally defined, fix x, y ∈ BV
and an open interval I ⊆ R such that x|I∩[0,1] = y|I∩[0,1]. Without loss of generality we
may assume that I ∩ [0, 1] 6= ∅. Fix τ ∈ I ∩ [0, 1]. Since I is open and x and y coincide
on I ∩ [0, 1] they also coincide in a neighborhood of τ . In particular, x# = y# in that
neighborhood. Since τ was chosen arbitrarily in I∩ [0, 1] we conclude Tx = x# = y# =
Ty on I ∩ [0, 1]. Consequently, T is locally defined.
However, T is not a superposition operator. To see this assume the opposite, that is,
assume that there is a function g : [0, 1]×R→ R such that x#(t) = Tx(t) = g(t, x(t))
for all x ∈ BV and t ∈ [0, 1]. If we take x = χ{0} ∈ BV then g(0, 1) = g(0, x(0)) =
x#(0) = 0, but on the other hand g(0, 1) = g(0, 1(0)) = 1

#(0) = 1, a contradiction. ♦
This example also shows that we cannot drop the requirement in Theorem 5.2.52 that
the domain and the target space of T are subsets of C. The same is true if X ∩ C
in Theorem 5.2.52 is replaced by a space that contains all functions that agree with a
continuous function almost everywhere, even if the operator T maps this space into C.
This is illustrated by our last example in this chapter.

Example 5.2.54. Let X := {y + z | y ∈ C, z = 0 almost everywhere}, and define the
operator T : X → C by

Tx(t) = lim
δ→0

1
δ

∫ t+δ

t
x(s) ds. (5.2.34)

Then T is well-defined, because X ⊆ L1, and if x ∈ X, then x can be written as
x = y + z for some y ∈ C and z : [0, 1]→ R with z = 0 almost everywhere. Such x is
then mapped by T into the function y, because

Tx(t) = lim
δ→0

1
δ

∫ t+δ

t

(
y(s) + z(s)

)
ds = lim

δ→0

1
δ

∫ t+δ

t
y(s) ds = y(t)

holds for all t ∈ [0, 1], where the last equality follows from Theorem 2.1.3 (b).
Moreover, it is clear that T is locally defined, because the integral in (5.2.34) needs
to know only how x looks like in a neighborhood of t. But T is not a superposition
operator. Otherwise we had Tx(t) = g(t, x(t)) for some function g : [0, 1] × R → R
and all t ∈ [0, 1]. For the two functions 1 and χ{0} both belonging to X this would
imply on the one hand g(0, 1) = g(0, 1(0)) = T1(0) = 1(0) = 1, but on the other hand
g(0, 1) = g(0, χ{0}(0)) = Tχ{0}(0) = 0(0) = 0, a contradiction. ♦
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We remark that the fixed points of the operator T in Example 5.2.54 are precisely all
continuous functions.
If therein X is replaced by the space KH of all Kurzweil-Henstock integrable functions,
then T is no longer well-defined, for two reasons: First, the limit in (5.2.34) may
not exist at some t ∈ [0, 1]. Second, the resulting function Tx does not have to be
continuous. However, T can be replaced by the operator T̂ : KH → KH, defined by

T̂ x(t) =

lim
δ→0

1
δ

∫ t+δ

t
x(s) ds if the limit exists and is finite,

0 otherwise,

which can be considered as an extension of T onto KH that is now well and still locally
defined. It can be shown that T̂ x = x almost everywhere [84]. In this setting the fixed
points of T̂ in the subspace

KH0 :=
{
x ∈ KH | ∀t ∈ [0, 1] : lim

δ→0

1
δ

∫ t+δ

t
x(s) ds exists and is finite

}

of those KH-integrable functions x for which the limit (5.2.34) exists and is finite
are precisely those functions which have a primitive, and this is exactly the assertion
of Theorem 2.1.3 (d). The fact that T and hence also T̂ cannot be represented as
superposition operators might be one tiny of the many reasons why the class ∆ of
functions with primitive is still entangled by some mysteries.



Chapter 6

Types of Convergence which
Preserve Continuity

It is a well-known fact that a locally uniformly convergent sequence of continuous func-
tions always has a continuous limit function. That is, the continuity is preserved under
locally uniform convergence. In probably every Analysis course it is also pointed out
by means of the example fn(x) = xn for x ∈ [0, 1] that the locally uniform convergence
cannot be replaced by pointwise convergence. However, continuity of the limit function
is not equivalent to locally uniform convergence.

Example 6.0.1. Consider the continuous “hump”-functions fn(x) = n2x2 exp
(
−n2x2

)
for n ∈ N and x ∈ R. For x 6= 0 we have fn(x) → 0 as n → ∞, and fn(0) = 0 and
fn(1/n) = 1/e for each n ∈ N. Consequently, (fn) converges pointwise but not locally
uniformly on R to the continuous function 0. ♦

Note that these “hump”-functions form a bounded sequence with respect to the supre-
mum norm that has no locally uniformly convergent subsequence.

This raises the question what additional assumption on top of pointwise convergence
can be made in order to guarantee that the limit function of a sequence of continuous
functions is always continuous. The first one who solved this problem was Arzelà
in 1883, who introduced in [14] and [15] the term piecewise uniform convergence1

and investigated series of continuous functions on compact real intervals which was
also discussed in [155]. His term was later renamed into quasi uniform convergence
and generalized and modified in many directions, for instance, for a discussion of the
same question in topological spaces [2]. A detailed survey including Arzelà’s original
definition and the historical development of this type of convergence can be found in
[38]. Nowadays, the term quasi uniform convergence seems to be used not consistently;
we will give the definition of which we will make use at the beginning of Section 6.1
below.

1His original Italian notion is convergenza uniforme a tratti. In English literature, one sometimes
finds the translation uniform convergence by segments.

232
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In this chapter which will also be published as [134] we investigate - in addition to
pointwise and locally uniform convergence - three further types of convergence in met-
ric spaces which are, besides a variant of the classical quasi uniform convergence, also
semi uniform and continuously uniform convergence. We give criteria under which a
sequence converges in one of these types and keep our eyes on those which preserve
continuity. In addition, we give some conditions on sequences of functions and their un-
derlying spaces under which convergent subsequences can be extracted and recall that
several types of convergence considered herein can be used to characterize compactness
of the domains the functions under consideration live in. Eventually, we compare all
five types of convergence with each other and give a summary of the relations among
them at the end of Section 6.1. However, we will focus our attention on semi uniform
convergence which will be of particular importance in Section 6.2.
Therein we are going to apply some of the results from Section 6.1 to the (autonomous)
composition operators in the space BV which we have discussed in detail in Section
5.1. As we have seen in Proposition 5.1.1 there are known criteria under which such
operators map the space BV into itself. Moreover, we gave criteria under which the
composition operator is locally Lipschitz continuous (Theorem 5.1.21), globally uni-
formly continuous (Theorem 5.1.22) and uniformly continuous on bounded subsets of
BV (Theorem 5.1.23). But as we have already mentioned at the end of Section 5.1 the
question of whether the composition operator is automatically pointwise continuous in
the space BV has an interesting history. Its positive answer has two quite technical
proofs, the first of which given in [118] is almost 30 pages long, and the second was
given quite recently in [96]. In Section 6.2 we will apply some of the theoretical results
developed in Section 6.1 and present a new and short proof for this fact. We also give
criteria under which sequences of composition operators converge locally uniformly and
semi uniformly in the space BV .

6.1 Five Types of Convergence in Comparison
In what follows, let (X, dX) and (Y, dY ) be metric spaces. Just for the sake of com-
pleteness, let us start with recalling the definition of locally uniform convergence.
Definition 6.1.1. Let fn, f : X → Y for n ∈ N be functions, and let x ∈ X be fixed.
We say that the sequence (fn) converges locally uniformly to f at x if there is some
δ > 0 such that for each ε > 0 there is N ∈ N such that for all n ≥ N and y ∈ X with
dX(x, y) ≤ δ we have dY

(
fn(y), f(y)

)
≤ ε.

Using quantifiers, this reads

∃δ > 0 ∀ε > 0 ∃N ∈ N ∀n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε.

Moreover, we say that (fn) converges locally uniformly to f in X if (fn) converges
locally uniformly to f at each x ∈ X.
It is clear from this definition that locally uniform convergence implies pointwise con-
vergence.
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As written at the beginning of this chapter, a necessary and sufficient condition on top
of pointwise convergence of a sequence (fn) of continuous functions to guarantee that
f is continuous is that the convergence is not only pointwise but also quasi uniform.
Since there are many different definitions for this term, we state the definition we will
work with here in detail. It is a pointwise version of Arzelà’s original definition2 and
was also used in [54, Definition 1] under the name “almost uniform convergence”; for
metric spaces it reads as follows.
Definition 6.1.2. Let fn, f : X → Y for n ∈ N be functions, and let x ∈ X be fixed.
We say that the sequence (fn) converges quasi uniformly to f at x if for each ε > 0
and each N ∈ N there are δ > 0 and n ≥ N such that for all y ∈ X with dX(x, y) ≤ δ

we have dY
(
fn(y), f(y)

)
≤ ε.

Using quantifiers, this reads

∀ε > 0 ∀N ∈ N ∃δ > 0 ∃n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε.

Moreover, we say that (fn) converges quasi uniformly to f in X if (fn) converges quasi
uniformly to f at each x ∈ X.
Let us make five comments on this definition. First, locally uniform convergence clearly
implies quasi uniform convergence, but quasi uniform convergence does not imply point-
wise and hence also not locally uniform convergence:

Example 6.1.3. The functions fn ≡ (−1)n for n ∈ N converge quasi uniformly in R
to the constant function 1, but not pointwise and thus also not locally uniformly. ♦
Second, and more surprising, Example 6.1.3 also shows that the limit function of a
quasi uniformly convergent sequence may not be unique! Indeed, f̃ = −1 is another
quasi uniform limit (in the above Definition 6.1.2 just take even n for f and odd n

for f̃); in particular, the quasi uniform convergence cannot be induced by a metric.
Third, the functions fn ≡ ((−1)n + 1)n for n ∈ N converge quasi uniformly to the
zero function 0 and show that a quasi uniformly convergent sequence may neither be
bounded nor a Cauchy sequence, not even pointwise. Fourth, the same example shows
that an arbitrary subsequence of a quasi uniformly convergent sequence may not be
quasi uniformly convergent anymore (consider the subsequence f2n ≡ 2n). Lastly, a
sequence which has a quasi uniformly convergent subsequence must be quasi uniformly
convergent itself. Therefore, quasi uniform convergence behaves completely different
than ordinary types of convergence and always requires caution when used.
Let us come back to continuity. With Definition 6.1.2 at hand one can show

Theorem 6.1.4. Let (fn) be a sequence of continuous functions fn : X → Y , let
f : X → Y be a function and let x ∈ X be fixed. Then the following statements are
equivalent.

(a) The sequence (fn) converges quasi uniformly to f at x.

(b) The function f is continuous at x and f(x) is a limit point of (fn(x)).

2See [14] and [15] and also [38] for his original definition.
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Proof. “(a)⇒(b)”: Fix ε > 0. Since (fn) converges quasi uniformly to f at x, we find
for each N ∈ N some δ > 0 and m ≥ N such that

dX(x, y) ≤ δ ⇒ dY
(
fm(y), f(y)

)
≤ ε

3 .

In particular, for y = x, we obtain dY (fm(x), f(x)) ≤ ε
3 , and this shows that f(x) is a

limit point of (fn(x)).
Now, for N = 1 we pick δ and m accordingly and keep it fixed. Since fm is continuous
at x, we find some η > 0 such that

dX(x, y) ≤ η ⇒ dY
(
fm(x), fm(y)

)
≤ ε

3 .

Thus, we obtain for y ∈ X with dX(x, y) ≤ min{δ, η} that

dY
(
f(x), f(y)

)
≤ dY

(
f(x), fm(x)

)
+ dY

(
fm(x), fm(y)

)
+ dY

(
fm(y), f(y)

)
≤ ε,

which shows the continuity of f at x.
“(b)⇒(a)”: To show that (fn) converges quasi uniformly to f at x, fix ε > 0 and
N ∈ N. Since f(x) is a limit point of (fn(x)), we find some m ≥ N such that

dY
(
fm(x), f(x)

)
≤ ε

3 .

Since fm is continuous at x we find some η > 0 such that

dX(x, y) ≤ η ⇒ dY
(
fm(x), fm(y)

)
≤ ε

3 ,

and since f is continuous at x we find some δ > 0 such that

dX(x, y) ≤ δ ⇒ dY
(
f(x), f(y)

)
≤ ε

3 .

Thus, we obtain for y ∈ X with dX(x, y) ≤ min{δ, η} that

dY
(
fm(y), f(y)

)
≤ dY

(
fm(y), fm(x)

)
+ dY

(
fm(x), f(x)

)
+ dY

(
f(x), f(y)

)
≤ ε,

which shows the quasi uniform convergence of (fn) at x. �

Note that the additional requirement in (b) of Theorem 6.1.4, namely, that f(x) is
a limit point of (fn(x)), is a natural requirement for the implication “(b)⇒(a)”, and
interconnects the limit function with the sequence.

Theorem 6.1.4 implies that the limit function of a pointwise convergent sequence of
continuous functions is continuous if and only if the convergence is quasi uniform,
and this is just Arzelà’s original result mentioned at the beginning; in particular, the
sequence (fn) given in Example 6.0.1 converges quasi uniformly.
Moreover, Theorem 6.1.4 also says that the convergence cannot be quasi uniform if the
pointwise limit function of a sequence of continuous functions is discontinuous. We
illustrate this explicitly in the following
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Example 6.1.5. The continuous functions fn : [0, 1] → R, defined by fn(x) = xn,
converge pointwise to the discontinuous characteristic function f := χ{1} on [0, 1].
Theorem 6.1.4 now implies that the convergence cannot be quasi uniform at x = 1.
This can be seen also directly: Note that

∣∣∣fn(y)− f(y)
∣∣∣ =

y
n for 0 ≤ y < 1,

0 for y = 1.

For ε = 1
2 , N = 1 and arbitrary δ > 0 and n ∈ N we can pick y := max{1−δ/2, 2−1/n} ∈

(0, 1). Then |y− 1| = 1− y ≤ δ/2 < δ and |fn(y)− f(y)| = yn ≥ 1
2 = ε, and this shows

that (fn) does not converge quasi uniformly to f at x = 1. ♦
However, even if a sequence of everywhere discontinuous functions converges pointwise
to a continuous function the convergence may not be quasi uniform:

Example 6.1.6. Denote by pn the n-the prime number, and let

An :=
{
m

pkn
| m ∈ Z, k ∈ N, gcd(m, pn) = 1

}
for n ∈ N.

Then the sets An are all dense in R. To see this, fix n ∈ N, x ≥ 0 and ε > 0. Choose
k ∈ N so large that pkn(x + ε) − pknx = pknε ≥ 2. Then the interval

[
pknx, p

k
n(x+ ε)

]
contains at least two consecutive integers, of which at least one is coprime to pn. If we
call this integer m, we obtain pkn(x+ ε) ≥ m ≥ pknx and hence m/pkn ∈ [x, x+ ε] ∩ An,
as desired. The same reasoning works for x < 0.
To prove that the An are pairwise disjoint, assume that x ∈ An1∩An2 for some n1 6= n2.
Then there are m1,m2 ∈ Z, k1, k2 ∈ N such that

m1

pk1
n1

= x = m2

pk2
n2

with gcd(m1, pn1) = 1 = gcd(m2, pn2).

This implies m1p
k2
n2 = m2p

k1
n1 , and thus m1 must be dividable by pn1 , as pn1 and pn2 are

distinct prime numbers, contradicting gcd(m1, pn1) = 1.
We now consider the everywhere discontinuous functions fn := χAn on R; these satisfy
fn(0) = 0 for all n ∈ N, as 0 /∈ An for all n ∈ N. Moreover, each fixed x ∈ R\{0}
belongs to at most one An as the sets An are pairwise disjoint. Thus, fn(x) 6= 0 for that
x and at most one n ∈ N. This shows that (fn) converges pointwise to the everywhere
continuous function 0. However, the convergence to 0 can nowhere be quasi uniform,
since for each x ∈ R, n ∈ N and δ > 0 we have

sup
|x−y|≤δ

|fn(y)| = sup
|x−y|≤δ

|χAn(y)| = 1,

as each An is dense in R. ♦
Also observe that Example 6.1.5 shows that only the second assertion in Theorem 6.1.4
(b), that is, the limit point part, alone does not suffice to imply (a), while Example
6.1.6 shows that only assertion (b) in Theorem 6.1.4 without the overall assumption
that the sequence consists of continuous functions does also not suffice to imply (a).
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A tiny modification of Definition 6.1.2 leads to another type of convergence which in
contrast to quasi uniform convergence does imply pointwise convergence.
Definition 6.1.7. Let fn, f : X → Y for n ∈ N be functions, and let x ∈ X be fixed.
We say that the sequence (fn) converges semi uniformly to f at x ∈ X if for each ε > 0
there exist N ∈ N and δ > 0 such that for all n ≥ N and y ∈ X with dX(x, y) ≤ δ we
have dY

(
fn(y), f(y)

)
≤ ε.

Using quantifiers, this reads

∀ε > 0 ∃N ∈ N ∃δ > 0 ∀n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε.

We say that (fn) converges semi uniformly to f in X if (fn) converges semi uniformly
to f at each x ∈ X.
This new definition has some benefits. First, the major difference between Definition
6.1.1 and Definition 6.1.7 is that the δ in the definition of semi uniform convergence
may depend on ε. Second, it is clear from that definition that semi uniform conver-
gence implies both pointwise and quasi uniform convergence and hence always ensures
uniqueness of the limit function. In particular, the two sequences constructed in the
Examples 6.1.5 and 6.1.6 can neither converge semi uniformly nor locally uniformly,
since they do not converge quasi uniformly. Moreover, it is also clear from the def-
inition that any subsequence of a semi uniformly convergent sequence is again semi
uniformly convergent. Thus, the definition of semi uniform convergence recovers most
of the familiar properties a “nice” type of convergence should have. But we pay a price
for this. Semi uniform convergence is indeed stronger than quasi uniform convergence
which is again shown by the functions fn ≡ (−1)n of Example 6.1.3. They converge
quasi uniformly to either 1 or −1, but they cannot converge semi uniformly, because
they do not even converge pointwise. Thus, semi uniform convergence requires more
restrictive assumptions on the sequence. However, semi uniform convergence is weaker
than locally uniform convergence, and we give three examples for this, the first one
being a sequence of functions which are everywhere discontinuous on R.

Example 6.1.8. Let the sets An be defined for all n ∈ N as in Example 6.1.6 and
consider the modifications gn : R → R of the functions in the same example, defined
by

gn(x) =
xχAn(x) for x 6= 0,

1
n

for x = 0.

Since the χAn converge pointwise to 0, as we have seen in Example 6.1.6, and gn(0) =
1
n
→ 0 as n→∞, also (gn) converges pointwise to 0. Moreover, since each An is dense

in R, for fixed n ∈ N and δ > 0 we have

sup
|y|≤δ
|gn(y)| = max

{
1
n
, sup
|y|≤δ
|yχAn(y)|

}
= max

{ 1
n
, δ
}
,

and (gn) fails to converge locally uniformly at x = 0.
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If, however, for fixed ε > 0 we choose δ = ε, then we have for |y| ≤ δ and n ≥ 1
δ
,

|gn(y)| ≤ max
{ 1
n
, δ
}

= ε,

and this shows that (gn) converges semi uniformly to 0 at x = 0. But for the same
reason as in Example 6.1.6 at every other point x 6= 0 the convergence again cannot
be semi uniform. ♦
The next example consists of functions which are everywhere continuous and, exactly
as in Example 6.1.8, converge semi uniformly but not locally uniformly to 0 at x = 0.

Example 6.1.9. For n ∈ N define gn : R→ R by

gn(x) =
2n+2x(1− 2nx) for 0 ≤ x ≤ 2−n,

0 otherwise.

Then each gn is continuous everywhere on R and attains values different from zero
only for x ∈ (0, 2−n) and its global maximum 1 at x = 2−n−1. Moreover, the sequence
(gn) converges pointwise on R to 0. We now consider the sequence (fn) of functions
fn : R→ R, defined by

fn(x) =
xgn

(
2kx− 1

)
for 2−k < x ≤ 2−k+1 and k ∈ N,

0 for x ∈ R\(0, 1].

Then the functions fn while being continuous on R for each n ∈ N converge pointwise
to 0.
For fixed δ > 0 we find k ∈ N such that 2−k+1 ≤ δ and obtain for all n ∈ N,

sup
|y|≤δ
|fn(y)| ≥ sup

2−k<y≤2−k+1
ygn

(
2ky − 1

)
≥ 2−k,

which shows that (fn) cannot converge locally uniformly to 0 at x = 0.
However, the convergence is semi uniform at x = 0. To see this fix ε > 0 and choose
δ = ε. Then we obtain

sup
|y|≤δ
|fn(y)| ≤ sup

|y|≤δ
|y| = δ = ε

which holds for all n ∈ N. ♦
Since semi uniform convergence implies quasi uniform convergence, the two sequences
constructed in the Examples 6.1.8 and 6.1.9 converge quasi uniformly, as well.
We will give a third example showing that semi uniform convergence is indeed weaker
than locally uniform convergence in Example 6.2.9 in the next section.
As we have seen, semi uniform convergence is situated between locally uniform and
pointwise convergence. The following result gives a comprehensive and pointwise cri-
terion for semi uniform convergence of continuous functions.

Theorem 6.1.10. Let (fn) be a sequence of continuous functions fn : X → Y , let
f : X → Y be a function and let x ∈ X be fixed. Then the following statements are
equivalent.



6.1. Five Types of Convergence in Comparison 239

(a) The sequence (fn) converges semi uniformly to f at x.

(b) The sequence (fn) is equicontinuous at x, the function f is continuous at x and
(fn(x)) converges to f(x).

Proof. “(a)⇒(b)”: Since semi uniform convergence implies quasi uniform convergence,
we obtain from Theorem 6.1.4 that f is continuous at x. To show that (fn) is equicon-
tinuous at x, fix ε > 0 and pick according to the continuity of f at x some δ∞ > 0 such
that

dX(x, y) ≤ δ∞ ⇒ dY
(
f(x), f(y)

)
≤ ε

3 . (6.1.1)

Since (fn) converges semi uniformly to f at x, we find δ > 0 and N ∈ N such that

∀n ≥ N : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε

3 . (6.1.2)

Finally, since each function fn is continuous at x, we find for each n < N some δn > 0
such that

dX(x, y) ≤ δn ⇒ dY
(
fn(x), fn(y)

)
≤ ε.

Letting η := min{δ1, δ2, . . . , δN−1, δ, δ∞} implies for n < N and y ∈ X with dX(x, y) ≤
η that dY (fn(x), fn(y)) ≤ ε. For n ≥ N we obtain for those y

dY
(
fn(x), fn(y)

)
≤ dY

(
fn(x), f(x)

)
+ dY

(
f(x), f(y)

)
+ dY

(
f(y), fn(y)

)
≤ ε

and hence the equicontinuity of (fn) at x. Here we have estimated the first and last
term by (6.1.2) and the middle term by (6.1.1). That (fn(x)) converges to f(x) follows
also from (6.1.2). Consequently, (b) is proven.
“(b)⇒(a)”: To show that (fn) converges semi uniformly to f at x, fix ε > 0. Since
(fn(x)) converges to f(x), we find some N ∈ N such that

∀n ≥ N : dY
(
fn(x), f(x)

)
≤ ε

3 . (6.1.3)

Since (fn) is equicontinuous at x we find some η > 0 such that

∀n ∈ N : dX(x, y) ≤ η ⇒ dY
(
fn(x), fn(y)

)
≤ ε

3 , (6.1.4)

and since f is continuous at x we find some δ > 0 such that

dX(x, y) ≤ δ ⇒ dY
(
f(x), f(y)

)
≤ ε

3 . (6.1.5)

Thus, we obtain for y ∈ X with dX(x, y) ≤ min{δ, η} and n ≥ N that

dY
(
fn(y), f(y)

)
≤ dY

(
fn(y), fn(x)

)
+ dY

(
fn(x), f(x)

)
+ dY

(
f(x), f(y)

)
≤ ε.

Here we have used (6.1.4) for the first, (6.1.3) for the second and (6.1.5) for the last
term. This shows (a) and completes the proof. �
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Let us compare the requirements (b) of Theorem 6.1.4 and of Theorem 6.1.10. Quasi
uniform convergence at a point x implies that the limit function is continuous at x,
and that the limit function can be approximated at x at least by a subsequence. From
semi uniform convergence at x, however, we get in addition that the limit function can
be approximated by the entire sequence at x. But more important is that the sequence
itself must be equicontinuous at x. Thus, in contrast to quasi uniform convergence, the
limit function of a pointwise convergent sequence of continuous functions is continuous
if - but not necessarily only if - the convergence is semi uniform.
Note that since the pointwise limit of an everywhere equicontinuous sequence of func-
tions is continuous, the “global” version of Theorem 6.1.10 reads as follows.

Corollary 6.1.11. Let (fn) be a sequence of continuous functions fn : X → Y and let
f : X → Y be a function. Then the following statements are equivalent.

(a) The sequence (fn) converges semi uniformly to f .

(b) The sequence (fn) is equicontinuous and converges pointwise to f .

Of course, we cannot expect the implication “(b)⇒(a)” in Corollary 6.1.11 to remain
true if we drop the pointwise convergence in part (b); the functions fn ≡ n may serve
as a counterexample. Moreover, the same example shows that we even cannot extract
a semi uniformly convergent subsequence if we only assume (fn) to be equicontinuous
and not necessarily pointwise convergent. However, if we make sure that the spaces
X and Y are sufficiently “small”, then we indeed find a semi uniformly convergent
subsequence. Note that the following result is very similar to the famous and well-
known theorem of Arzelà and Ascoli.

Corollary 6.1.12. Let (fn) be an equicontinuous sequence of functions fn : X → Y ,
where X is separable and Y is compact. Then (fn) has a semi uniformly convergent
subsequence with a continuous limit function.

Proof. Since X is separable, there is a set D := {x1, x2, x3, . . .} which is countable
and dense in X. Since Y is compact, we find a subsequence (fn,1) of (fn) such that
(fn,1(x1)) converges. Again, since Y is compact, we find a subsequence (fn,2) of (fn,1)
such that (fn,2(x2)) converges. Continuing this process, we obtain for each k ∈ N and
k > 1 a subsequence (fn,k) of (fn,k−1) such that (fn,k(xk)) converges. By a diagonal
argument, the sequence (gn), defined by gn := fn,n, converges at each xk.
Fix x ∈ X and ε > 0. First, since (fn) and hence (gn) is equicontinuous at x, we find
a δ > 0 so that

∀n ∈ N : dX(x, y) ≤ δ ⇒ dY
(
gn(x), gn(y)

)
≤ ε

3 .

Second, since D is dense in X, we find some k ∈ N such that dX(xk, x) ≤ δ. Lastly,
since (gn(xk)) converges, it is also a Cauchy sequence, and we find some N ∈ N such
that

∀m,n ≥ N : dY
(
gm(xk), gn(xk)

)
≤ ε

3 .
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By combining all the three arguments we obtain for m,n ≥ N ,

dY
(
gm(x), gn(x)

)
≤ dY

(
gm(x), gm(xk)

)
+ dY

(
gm(xk), gn(xk)

)
+ dY

(
gn(xk), gn(x)

)
≤ ε,

showing that (gn(x)) is a Cauchy sequence in Y . Since x was arbitrary and Y is
compact and hence complete, (gn) converges pointwise to some function f : X → Y .
Finally, f must be continuous as a pointwise limit of an equicontinuous sequence. By
Corollary 6.1.11, (gn) converges semi uniformly to f . �

The following two examples show that Corollary 6.1.12 turns wrong ifX is not separable
or Y is not compact. The first example is of particular interest, since it provides another
sequence of functions that converges quasi uniformly but not semi uniformly.

Example 6.1.13. Let X be the metric space of all functions on R with values in
[−1, 1], equipped with the supremum norm ‖·‖∞, and let Y = [−1, 1] be equipped
with the Euclidean norm. Then X is not separable, but Y is compact. The functions
fn : X → [−1, 1], x 7→ x(n), form an (even uniformly) equicontinuous sequence, since

|fn(x)− fn(y)| = |x(n)− y(n)| ≤ ‖x− y‖∞ for x, y ∈ X,n ∈ N,

but cannot have a semi uniformly convergent subsequence. Even worse, they cannot
have a pointwise convergent subsequence. Indeed, assume that the subsequence (fnk)k
converges pointwise, where n1 < n2 < n3 < . . .. The function ξ : R → [−1, 1], defined
by

ξ(t) =
(−1)k for t = nk, k ∈ N,

0 otherwise,

belongs to X. But then (fnk(ξ))k is divergent, since

fnk(ξ) = ξ(nk) = (−1)k

diverges as k → ∞. In particular, (fn) converges neither locally uniformly nor semi
uniformly nor pointwise.
We now show that (fn) converges quasi uniformly to the function

f : X → [−1, 1], x 7→ lim sup
n→∞

x(n).

Note that f is well-defined since for x ∈ X the sequence (x(n))n∈N taking values only
in [−1, 1] has a finite limit superior in [−1, 1]. Observe that if x ∈ X is fixed, then
there is a subsequence (x(nk))k of (x(n))n such that the numbers x(nk) converge to

lim sup
n→∞

x(n) = f(x).

This means that f(x) is a limit point of (fn(x)). If ε > 0 is fixed and y ∈ X so that
‖x− y‖∞ ≤ ε, then

x(n)− ε ≤ y(n) ≤ x(n) + ε
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for large n ∈ N, and taking the limit superior on both sides yields
∣∣∣f(x)− f(y)

∣∣∣ =
∣∣∣∣lim sup
n→∞

x(n)− lim sup
n→∞

y(n)
∣∣∣∣ ≤ ε.

This shows that f is continuous at x. By Theorem 6.1.4, (fn) converges quasi uniformly
to f at x. As x had been chosen arbitrarily, the quasi uniform convergence on X is
established. ♦
We remark that the same idea as presented in Example 6.1.13 shows that (fn) also
converges quasi uniformly to the function

f̃ : X → [−1, 1], x 7→ lim inf
n→∞ x(n).

This function is different from f in Example 6.1.13, as the function x(t) = cos(πt) that
belongs to X shows, because we have

f(x) = lim sup
n→∞

cos(nπ) = lim sup
n→∞

(−1)n = 1

6= −1 = lim inf
n→∞ (−1)n = lim inf

n→∞ cos(nπ) = f̃(x).

This again illustrates that a quasi uniform limit may not be unique.

Example 6.1.14. Let X = R and Y = (0, 1] be equipped with the Euclidean norm.
Then X is separable, but Y is not compact. The functions fn : R → (0, 1], x 7→ 1

n
,

form an equicontinuous sequence, since |fn(x)− fn(y)| = 0 for all x, y ∈ R and n ∈ N,
but cannot have a semi uniformly convergent subsequence. Even worse, they cannot
have a pointwise convergent subsequence, since any subsequence (fnk)k of (fn) would
pointwise (even uniformly) converge to 0 which does not belong to Y = (0, 1].
The same reasoning works to show that (fn) neither converges quasi uniformly nor has
a quasi uniformly convergent subsequence. ♦

We add another notion of convergence which appears sometimes in books even for
beginners3. This definition is also only a tiny modification of Definition 6.1.7, but
exhibits some weird properties.
Definition 6.1.15. Let fn, f : X → Y for n ∈ N be functions, and let x ∈ X be fixed.
We say that the sequence (fn) converges continuously uniformly to f at x ∈ X if for
each ε > 0 there exist N ∈ N and δ > 0 such that for all n ≥ N and y ∈ X with
dX(x, y) ≤ δ we have dY (fn(y), f(x)) ≤ ε.
Using quantifiers, this reads

∀ε > 0 ∃N ∈ N ∃δ > 0 ∀n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(x)

)
≤ ε.

We say that (fn) converges continuously uniformly to f in X if (fn) converges contin-
uously uniformly to f at each x ∈ X.

3See, for instance, [91].
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Note that continuously uniform convergence is in the literature often just called “con-
tinuous convergence” or “α-convergence”, and similar to the definition of pointwise
continuity, defined via sequences [73, 91]. But both definitions are equivalent, as the
following result shows.

Proposition 6.1.16. Let fn, f : X → Y for n ∈ N be arbitrary functions, and let
x ∈ X be fixed. Then the following statements are equivalent.

(a) The sequence (fn) converges continuously uniformly to f at x.

(b) For each sequence (xn) in X converging to x the sequence (fn(xn)) converges to
f(x).

Proof. “(a)⇒(b)”: Let (fn) be continuously uniformly converging to f at x, fix a
sequence (xn) in X which converges to x, and pick ε > 0. Due to the continuous
convergence of (fn) to f at x we find some N ∈ N and some δ > 0 such that

∀n ≥ N : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(x)

)
≤ ε.

Since (xn) converges to x, we find some M ∈ N such that

∀n ≥M : dX(x, xn) ≤ δ.

For n ≥ max{M,N} we therefore obtain dY
(
fn(xn), f(x)

)
≤ ε which proves (b).

“(b)⇒(a)”: Assume that (fn) does not converge continuously uniformly to f at x.
Then there exists some ε > 0 such that for all m ∈ N and δ = 1/m we find nm ≥ m

and ym ∈ X with

dX(ym, x) ≤ 1/m and dY
(
fnm(ym), f(x)

)
> ε.

The sequence (xk), defined by

xk =
ym for k = nm,m ∈ N,
x for k /∈ {n1, n2, n3, . . .},

converges to x, since (ym) does, but dY
(
fnm(xnm), f(x)

)
> ε, and consequently (fn(xn))

cannot converge to f(x). �

Proposition 6.1.16 (b) can be used to show that the sequence (fn) in Example 6.0.1 does
not converge continuously uniformly. Indeed, if we choose xn = 1/n which converges
to 0, we have fn(xn) = 1/e which cannot converge to 0 = f(0).

The only but very subtle difference between the Definitions 6.1.7 and 6.1.15 which
differ only by one letter is that continuously uniform convergence directly measures
the distance from fn(y) to f(x) and not to f(y). In particular, continuously uniform
convergence implies pointwise convergence. This has a surprising consequence: The
limit function of a continuously convergent sequence is always continuous, no matter if
the functions forming the sequence are continuous. Even more is true: The following
result shows how continuously and semi uniform convergence are related.
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Theorem 6.1.17. Let fn, f : X → Y for n ∈ N be arbitrary functions, and let x ∈ X
be fixed. Then the following statements are equivalent.

(a) The sequence (fn) converges continuously uniformly to f at x.

(b) The sequence (fn) converges semi uniformly to f at x, and f is continuous at x.

Proof. “(a)⇒(b)”: To show that f is continuous at x, fix ε > 0. Since (fn) converges
continuously uniformly to f at x we find some N ∈ N and δ > 0 such that

∀n ≥ N : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(x)

)
≤ ε

3 . (6.1.6)

For fixed y ∈ X with dX(x, y) ≤ δ, the sequence (fn(y)) converges to f(y), and that is
why we can find some n ≥ N such that dY (fn(y), f(y)) ≤ ε/3. Using (6.1.6) we obtain

dY
(
f(x), f(y)

)
≤ dY

(
f(x), fn(y)

)
+ dY

(
fn(y), f(y)

)
≤ 2

3ε ≤ ε,

that is, f is continuous at x. Moreover, for all n ≥ N , we get again with (6.1.6),

dY
(
fn(y), f(y)

)
≤ dY

(
fn(y), f(x)

)
+ dY

(
f(x), f(y)

)
≤ ε,

and this shows that (fn) converges also semi uniformly to f at x and proves (b).
“(b)⇒(a)”: Fix ε > 0. Since (fn) converges semi uniformly to f at x, we find some
N ∈ N and δ > 0 such that

∀n ≥ N : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε

2 . (6.1.7)

Moreover, since f is continuous at x, we find some η > 0 such that

dX(x, y) ≤ η ⇒ dY
(
f(y), f(x)

)
≤ ε

2 . (6.1.8)

For y ∈ X with dX(x, y) ≤ min{δ, η} and n ≥ N we therefore obtain from (6.1.7) and
(6.1.8) that

dY
(
fn(y), f(x)

)
≤ dY

(
fn(y), f(y)

)
+ dY

(
f(y), f(x)

)
≤ ε

holds which proves (a). �

Theorem 6.1.17 shows that continuously uniform convergence always implies semi uni-
form convergence; in particular, the sequences constructed in the Examples 6.1.3, 6.1.5,
6.1.6, 6.1.13 and 6.1.14 cannot converge continuously uniformly as they do not converge
semi uniformly. However, the implication “(b)⇒(a)” of Theorem 6.1.17 applied to the
Examples 6.1.8 and 6.1.9 shows that the two sequences given therein converge not
only semi uniformly but also continuously uniformly at x = 0. In addition, since the
sequence (fn) of Example 6.0.1 does not converge continuously uniformly but point-
wise to a continuous limit function, we get from Theorem 6.1.17 that it does also not
converge semi uniformly.
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Furthermore, Theorem 6.1.17 also shows that continuously uniform convergence of
(fn) always implies the continuity of the limit function, even if every function fn is
discontinuous everywhere. For example, the everywhere discontinuous functions fn :=
1
n
χQ converge (continuously) uniformly on R to the everywhere continuous function 0.

One could also naively argue that with the help of Theorem 6.1.17 every function f can
be shown to be continuous everywhere by just taking fn = f for all n ∈ N. However,
such a sequence converges semi uniformly (even uniformly) to f , but only continuously
uniformly if f is continuous. This leads to another interesting fact: constant sequences
of functions being all equal to a function f do converge pointwise, (locally) uniformly,
semi uniformly and quasi uniformly on the entire space, but they may not converge
continuously uniformly, namely if the limit function f is discontinuous. Such a sequence
is given in our last example of this section.

Example 6.1.18. The functions fn = χQ do not converge continuously uniformly on
R by Theorem 6.1.17, since the pointwise limit f = χQ is discontinuous everywhere.
However, as a constant sequence, it clearly converges locally, semi and quasi uniformly
as well as pointwise. ♦

After the proof of Theorem 2.1.8 we raised the question whether the set ∆ of derivatives
is closed under not only uniform convergence but also under one of the weaker types of
convergence considered in this section. Since the interval [0, 1] on which the functions
in ∆ live is compact, we first check how the types of convergence of this section behave
on compact metric spaces in general.
For instance, it is well known that locally uniform convergence coincides with uniform
convergence if we impose compactness on the metric space X. Surprisingly, in this case
continuously and semi uniform convergence not only do behave calmly, they can even
be used to characterize compactness.

Theorem 6.1.19. The following statements are equivalent.

(a) The space X is compact.

(b) Each sequence (fn) of arbitrary functions fn : X → Y which converges semi
uniformly to a function f : X → Y also converges uniformly to f .

(c) Each sequence (fn) of arbitrary functions fn : X → Y which converges continu-
ously uniformly to a function f : X → Y also converges uniformly to f .

Proof. To show “(a)⇒(b)”, fix ε > 0 and let (fn) be a sequence of arbitrary functions
fn : X → Y which converges semi uniformly to a function f : X → Y . Then for each
x ∈ X there is some N(x) ∈ N and some δ(x) > 0 such that

∀n ≥ N(x) ∀y ∈ X : dX(x, y) ≤ δ(x) ⇒ dY
(
fn(y), f(y)

)
≤ ε.

Since the open balls B(x) := {z ∈ X | dX(z, x) < δ(x)} cover X and X is compact,
we find x1, . . . , xm ∈ X such that the balls B(x1), . . . , B(xm) are sufficient to cover X.
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For fixed y ∈ X we therefore find some k ∈ {1, . . . ,m} such that y ∈ B(xk), and hence
for n ≥ max{N(x1), . . . , N(xm)} we obtain dY

(
fn(y), f(y)

)
≤ ε which shows that (fn)

indeed converges uniformly to f .
For “(b)⇒(c)”, let (fn) be a sequence of arbitrary functions fn : X → Y which con-
verges continuously uniformly to a function f : X → Y . By Theorem 6.1.17, the
sequence (fn) also converges semi uniformly to f , and by (b), (fn) converges even
uniformly to f .
Finally, the implication “(c)⇒(a)” follows from [73, Theorem 3.2] and Proposition
6.1.16. �

Note that if X is not necessarily compact the implication “(b)⇒(c)” in Theorem 6.1.19
is still true, whereas the implication “(c)⇒(b)” is true if f in part (b) is additionally
assumed to be continuous; this follows immediately from Theorem 6.1.17. Thus, for
continuous limits f the statements (b) and (c) are in fact equivalent, no matter whether
X is compact. This also explains why the sequences constructed in the Examples
6.1.8 and 6.1.9 cannot converge semi respectively continuously uniformly in an entire
neighborhood of x = 0, since then they would need to converge also uniformly in this
neighborhood by Theorem 6.1.19, but they do not converge locally uniformly at x = 0.

Caution within non compact spaces: In this case, Theorem 6.1.19 only says, that
there exist sequences of functions which converge semi/continuously uniformly but not
uniformly. It does not say that any sequence which does not converge uniformly also
not converges semi/continuously uniformly. For instance, the functions fn(x) = xn on
[0, 1) converge pointwise and semi uniformly (even locally uniformly) but not uniformly
to 0, although [0, 1) is certainly not compact.
In the next section we will investigate sequences of functions which do converge semi
uniformly but not locally uniformly. The spaces such sequences live in therefore cannot
be compact by Theorem 6.1.19. In our case, this will be balls in the space BV which
- as BV is an infinite dimensional vector space - cannot be compact, indeed.

Let us now compare all notions of convergence considered so far at a fixed point x ∈ X.
Here is a compact comparison between pointwise convergence

(P) ∀ε > 0 ∃N ∈ N ∀n ≥ N : dY
(
fn(x), f(x)

)
≤ ε,

as well as locally (L), semi (S), continuously (C) and quasi uniform convergence (Q)
at x:

(L) ∃δ > 0 ∀ε > 0 ∃N ∈ N ∀n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε,

(S) ∀ε > 0 ∃N ∈ N ∃δ > 0 ∀n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε,

(C) ∀ε > 0 ∃N ∈ N ∃δ > 0 ∀n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(x)

)
≤ ε,

(Q) ∀ε > 0 ∀N ∈ N ∃δ > 0 ∃n ≥ N ∀y ∈ X : dX(x, y) ≤ δ ⇒ dY
(
fn(y), f(y)

)
≤ ε.
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In particular, (L)⇒(S)⇒(Q), and (L), (S) and (C) imply (P). Theorem 6.1.17 proved
that (C) implies (S) and hence also (Q). We end up with the following diagram.

semi uniform

pointwise

locally uniform

continuously uniform

quasi uniform

Figure 6.1.1: Relations between types of convergence.

Other implications than those in Figure 6.1.1 do not hold, as was shown by our exam-
ples. To make this a little more visible, let us collect the convergence properties of the
sequences constructed in all the examples in Table 6.1.1 below. A “yes” means that the
sequence converges at least at a particular point and not necessarily globally. Similarly,
a “no” means that the sequence diverges at a particular point under consideration.

Table 6.1.1: Convergence properties of example sequences.

Example
locally
uniform

continuously
uniform

semi
uniform

quasi
uniform pointwise

6.0.1 no no no yes yes
6.1.3 no no no yes no
6.1.5 no no no no yes
6.1.6 no no no no yes
6.1.8 no yes yes yes yes
6.1.9 no yes yes yes yes
6.1.13 no no no yes no
6.1.14 no no no no no
6.1.18 yes no yes yes yes

This table can now be used to show that none of the implications in the above diagram
may be inverted. For instance, Example 6.0.1 shows that neither (P) nor (Q) implies
any of the types (S), (L) and (C). Example 6.1.18 proves that (S) does not imply (C)
which in turn is not implied by (L). Conversely, (L) can also not be deduced from (C)
or (S), as is shown by the Examples 6.1.8 and 6.1.9. Finally, (P) does not imply (Q)
due to the Examples 6.1.5 and 6.1.6, and (Q) does not imply (P), as we have seen in
Example 6.1.3.
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6.2 Continuity of Composition Operators in BV

In this section we are going to apply Theorem 6.1.10 to composition operators Cg :
BV → BV as defined in (5.0.1) in the space BV of functions of bounded Jordan
variation. By Proposition 5.1.1 (a) such operators Cg are well-defined if and only if
g ∈ Liploc(R).

A key ingredient in the proof for the continuity of Cg will be the following generalization
of Definition 1.1.7.
Definition 6.2.1. For a set U ⊆ R, a partition P : 0 = t0 < . . . < tn = 1 of [0, 1] and
some function x : [0, 1]→ R we define the index set

J(x, U, P ) :=
{
j ∈ {1, . . . , n} | [x(tj−1), x(tj)] ⊆ U

}
as well as the short cut

rVar(x, U, P ) :=
∑

j∈J(x,U,P )

∣∣∣x(tj−1)− x(tj)
∣∣∣.

Moreover, we define the variation of x restricted to U by

rVar(x, U) := sup
P

rVar(x, U, P ) = sup
P

∑
j∈J(x,U,P )

∣∣∣x(tj−1)− x(tj)
∣∣∣,

where the supremum is taken over all partitions P of [0, 1]. Here, we agree that the
sums are 0 if J(x, U, P ) = ∅.
Observe that Definition 6.2.1 comprises Definition 1.1.7 as we have Var(x) = rVar(x,R)
for any function x : [0, 1]→ R.

The restricted variation measures the variation of those parts of the function x whose
values lie in U . It is clear from the definitions that rVar(x, ·) is increasing in the sense
that rVar(x, U) ≤ rVar(x, V ) whenever U ⊆ V .

Example 6.2.2. Each monotone function x : [0, 1] → R is of bounded variation, and
for any Lebesgue measurable set U ⊆ R we have

rVar(x, U) ≤ min{|U |,Var(x)},

where |U | denotes the Lebesgue measure of U . However, we cannot expect equality.
In fact, for x(t) = t and U = R we clearly do have equality, but for U = R\Q we have
rVar(x, U) = 0 < 1 = min{|U |,Var(x)}. ♦
The last example not only shows that the restricted variation only makes sense for
sets U which are not too “thin”, so, for instance, for open sets, because in general we
always have rVar(x,R\Q) = 0, no matter what x is. Moreover, if the range of x does
not lie within U , then the restricted variation cannot reflect the overall behavior of x
in a proper way. In particular, rVar(x, U) = 0 does not mean that x is constant, in
contrast to the ordinary variation, where Var(x) = 0 implies that x is constant.
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In Example 6.2.2 it is shown that we may have rVar(x, U, P ) = 0 for every partition
P of [0, 1] and an appropriate U lying dense in R, although x is not constant. The
following dual example is of interest which shows that we may have rVar(x, U, P ) = 0
for every U and infinitely many partitions P whose mesh size shrinks down to 0.

Example 6.2.3. Consider the characteristic function x := χQ∩[0,1] and the partitions
Pn : 0 = t0,n < . . . < tn,n, given by tj,n := j/n for j ∈ {0, . . . , n} and n ∈ N. Then the
mesh size of Pn tends to zero as n→∞. But

rVar(x,R, Pn) =
n∑
j=1

∣∣∣x(tj−1,n)− x(tj,n)
∣∣∣ = 0

for each n ∈ N, and this gives rVar(x, U, Pn) = 0 for any set U ⊆ R and all n ∈ N,
although x is of unbounded Jordan variation! ♦
Example 6.2.2 also suggests that the restricted variation of a given function becomes
smaller and smaller, the smaller |U | gets, and hence decreases to zero if |U | does so.
This also makes perfect sense, since then less and less of the values of x belong to U .
However, we can do better. The restricted variation is also continuous with respect to
x and U , even when the size of U is measured with the Lebesgue outer measure |U |∗.

Lemma 6.2.4. Let x ∈ BV . Then rVar(x, U) is continuous with respect to x and U
in the following sense: For each ε > 0 there is some δ > 0 such that for all y ∈ BV
and all sets U ⊆ R we have

‖x− y‖BV ≤ δ and |U |∗ ≤ δ =⇒ rVar(y, U) ≤ ε.

Proof. Fix ε > 0 and x ∈ BV . Then there is a partition 0 = s0 < . . . < sp = 1 of [0, 1]
such that

p∑
j=1
|x(sj−1)− x(sj)| ≥ Var(x)− ε

4 . (6.2.1)

Choose δ := ε
4(p+2) and fix y ∈ BV with ‖x− y‖BV ≤ δ. Then

Var(y) = ‖y‖BV − ‖y‖∞ ≤ ‖x− y‖BV + Var(x) + ‖x‖∞ − ‖y‖∞
≤ δ + Var(x) + ‖x− y‖∞ ≤ δ + Var(x) + ‖x− y‖BV
≤ 2δ + Var(x), (6.2.2)

and for all s, t ∈ [0, 1],

|x(s)− x(t)| ≤ |x(s)− y(s)− x(t) + y(t)|+ |y(s)− y(t)|
≤ Var(x− y) + |y(s)− y(t)| ≤ δ + |y(s)− y(t)|. (6.2.3)

From (6.2.1) we obtain with the help of (6.2.2) and (6.2.3)
p∑
j=1
|y(sj−1)− y(sj)|

(6.2.3)
≥

p∑
j=1
|x(sj−1)− x(sj)| − pδ

(6.2.1)
≥ Var(x)− pδ − ε

4
(6.2.2)
≥ Var(y)− (p+ 2)δ − ε

4 = Var(y)− ε

2 . (6.2.4)
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Fix a set U ⊆ R with |U |∗ ≤ δ, and let P : 0 = t0 < . . . < tm = 1 be a partition of
[0, 1]. We now consider the partition T : 0 = τ0 < . . . < τN = 1 created by putting the
sj and tj together. For a chain sk−1 ≤ ti < ti+1 < . . . < ti+l ≤ sk we have[
y(sk−1), y(sk)

]
\U

⊆
([
y(sk−1), y(ti)

]
\U
)
∪

l⋃
j=1

([
y(ti+j−1), y(ti+j)

]
\U
)
∪
([
y(ti+l), y(sk)

]
\U
)
,

hence
p∑

k=1

∣∣∣y(sk−1)− y(sk)
∣∣∣− p|U |∗ ≤ p∑

k=1

∣∣∣∣[y(sk−1), y(sk)
]
\U
∣∣∣∣∗ ≤ N∑

j=1

∣∣∣∣[y(τj−1), y(tj)
]
\U
∣∣∣∣∗

and therefore
p∑

k=1

∣∣∣y(sk−1)− y(sk)
∣∣∣− p|U |∗ ≤ ∑

j /∈J(y,U,T )

∣∣∣y(τj−1)− y(τj)
∣∣∣. (6.2.5)

Moreover, for k ∈ J(y, U, P ) we have two possibilities. The first is that there exists an
index j ∈ {1, . . . , p} such that tk−1 < sj < tk. In this case, we have∣∣∣y(tk−1)− y(tk)

∣∣∣ ≤ |U |∗.
The second case is that there is no such index j. Then tk−1 = τl−1 < τl = tk for some
l ∈ {1, . . . , N}, and in this case, l ∈ J(y, U, T ) and∣∣∣y(tk−1)− y(tk)

∣∣∣ =
∣∣∣y(τl−1)− y(τl)

∣∣∣.
But since there are only p points sj, the first case can occur at most p times. Thus,
we obtain ∑

j∈J(y,U,P )

∣∣∣y(tj−1)− y(tj)
∣∣∣ ≤ ∑

j∈J(y,U,T )

∣∣∣y(τj−1)− y(τj)
∣∣∣+ p|U |∗. (6.2.6)

By adding (6.2.5) and (6.2.6) and using (6.2.4) we reach the final estimate∑
j∈J(y,U,P )

∣∣∣y(tj−1)− y(tj)
∣∣∣ ≤ ∑

j∈J(y,U,T )

∣∣∣y(τj−1)− y(τj)
∣∣∣+ ∑

j /∈J(y,U,T )

∣∣∣y(τj−1)− y(τj)
∣∣∣

−
p∑

k=1

∣∣∣y(sk−1)− y(sk)
∣∣∣+ 2p|U |∗

≤ ε

2 + 2p|U |∗ ≤ ε

which eventually proves rVar(y, U) ≤ ε and hence the claim. �

Since Lipschitz continuity is a fundamental requirement on the generating function
g : R→ R of the composition operator Cg : BV → BV to be well-defined, we need to
investigate it in a little more detail. Recall that we denote by lip(f, [a, b]) the optimal
Lipschitz constant of a function f : [a, b]→ R.
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Note that by a result of Dini4, the Lipschitz constant can also be calculated by the
formula

lip(f, [a, b]) = sup
y∈[a,b]

lim sup
x→y

|f(x)− f(y)|
|x− y| . (6.2.7)

If f ∈ Lip[a, b] and x : [0, 1]→ [a, b] belongs to BV , it is easy to see that

Var(f ◦ x) ≤ lip(f, [a, b]) Var(x). (6.2.8)

The following is a certain converse of this inequality.

Proposition 6.2.5. Let R > 0, f ∈ Lip[−R,R], α ∈ (0, 1) and β > 0. Then there
exists some x : [0, 1]→ [−R,R] with Var(x) ≤ 2β and

Var(f ◦ x) ≥ αβ lip(f, [−R,R]).

Proof. Due to Dini’s formula (6.2.7) we find u, v ∈ [−R,R] such that 0 < |u− v| ≤ β

and ∣∣∣∣∣f(u)− f(v)
u− v

∣∣∣∣∣ ≥ α lip(f, [−R,R]). (6.2.9)

Choose k ∈ N so that
β

2k ≤ |u− v| ≤
β

k
(6.2.10)

and define x ∈ BV by

x(t) =
u for t ∈

{
1
2 ,

1
3 ,

1
4 , . . . ,

1
k+1

}
,

v otherwise.

Then x(t) ∈ {u, v} ⊆ [−R,R] for all t ∈ [0, 1] and Var(x) = 2k|u − v| ≤ 2β due to
(6.2.10). We obtain with (6.2.9) and (6.2.10)

Var(f ◦ x) = 2k|f(u)− f(v)| ≥ α · 2k|u− v| lip(f, [−R,R]) ≥ αβ lip(f, [−R,R]),

as claimed. �

At this point we recall another link between BV -functions and Lipschitz continuous
functions, given by Theorem 1.1.23: A function belongs to BV if and only if it can be
written as a composition of a nonexpansive function (i.e. lip ≤ 1) and a monotonically
increasing function.

We are now approaching the main result of this section, the proof of the continuity of
the operator Cg : BV → BV , defined in (5.0.1), provided that g ∈ Liploc(R).
The idea is as follows. Given Cg for some fixed g ∈ Liploc(R), approximate Cg by
other continuous composition operators Cgn such that the convergence transmits the

4The first proof was given by Dini in 1878 in [51], but it can also (and perhaps more elegantly) be
deduced from a theorem of Zygmund [138, Chapter VI, §7].
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continuity of Cgn to Cg. Recall that in Theorem 5.1.21 we have proven that a compo-
sition operator Cf is continuous (even locally Lipschitz continuous) if the generating
function f is of class C1 in R and has a locally Lipschitz continuous derivative. In
particular, if we choose gn to be of class C∞ on R, each Cgn would be continuous, and
an appropriate continuity preserving type of convergence would make Cg continuous
as well. Of course, uniform convergence on balls would do the job. However, we have
the following

Theorem 6.2.6. Let gn, g ∈ Liploc(R) for n ∈ N and R > 0 be given. The following
statements are equivalent.

(a) (Cgn) converges uniformly to Cg on the set{
x ∈ BV | ‖x‖∞ ≤ R and Var(x) ≤ 2R

}
.

(b) The relations lim
n→∞ ‖gn − g‖[−R,R] = 0 and lim

n→∞ lip(gn − g, [−R,R]) = 0 hold.

In [31] the authors proved that (b) implies the uniform convergence of (Cgn) to Cg on
the closed ball BR(BV ) = {x ∈ BV | ‖x‖BV ≤ R} for the special case when gn are
certain Bernstein polynomials approximating g. With the same idea one obtains (a)
with the general assumptions made in (b):

Proof. For this proof we set

B :=
{
x ∈ BV | ‖x‖∞ ≤ R and Var(x) ≤ 2R

}
.

To show “(a)⇒(b)”, note that the Cgn converge uniformly to Cg on B. That is why
the numbers

sn := sup
x∈B
‖Cgnx− Cgx‖BV

converge to 0 as n→∞.
The function x : [0, 1]→ [−R,R], defined by x(t) = 2Rt−R, belongs to B, maps [0, 1]
homeomorphically to [−R,R] and gives

‖gn − g‖[−R,R] = ‖gn ◦ x− g ◦ x‖∞ ≤ ‖Cgnx− Cgx‖BV ≤ sn

which proves the first claim of (b). Proposition 6.2.5, applied with α = 1/2 and β = R

to f = gn − g, yields for each n ∈ N a function xn ∈ B such that

lip(gn − g, [−R,R]) ≤ 2R−1 Var(gn ◦ xn − g ◦ xn) ≤ 2R−1 ‖Cgnxn − Cgxn‖BV
≤ 2R−1sn,

and thus proves the second claim of (b). Consequently, (b) is established.
For the reverse implication “(b)⇒(a)” note that for x ∈ B we have on the one hand

‖Cgnx− Cgx‖∞ = ‖gn ◦ x− g ◦ x‖∞ ≤ ‖gn − g‖[−R,R] , (6.2.11)
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and on the other hand

Var(Cgnx− Cgx) ≤ lip(gn − g, [−R,R]) Var(x) ≤ 2R lip(gn − g, [−R,R]) (6.2.12)

by (6.2.8). Since the right hand sides of (6.2.11) and (6.2.12) converge to 0 by (b), and
since they do so independently of x, (a) is proven. �

The condition (b) of Theorem 6.2.6 means that the gn converge in the topology of the
space Liploc(R) to g, but this is a strong requirement: If gn is of class C1 for each
n ∈ N, then g must also be of class C1, since C1(R) is a closed subspace of Liploc(R).
This is why the authors in [31] only got that Cg is continuous in BV if g ∈ C1(R),
because they approximated g by Bernstein polynomials. In order to get continuity of
Cg for g ∈ Liploc(R), we need another weaker type of convergence which still preserves
continuity. It turns out that semi uniform convergence is exactly what we are looking
for, and this is the content of our next

Theorem 6.2.7. Let gn, g ∈ Liploc(R) for n ∈ N and R > 0 be given. The following
statements are equivalent.

(a) (Cgn) converges semi uniformly to Cg at each x ∈ BV with ‖x‖∞ < R and
Var(x) < 2R.

(b) The relations lim
n→∞ ‖gn − g‖BV [−r,r] = 0 and sup

n∈N
lip(gn − g, [−r, r]) < ∞ hold for

each r ∈ (0, R).

In particular, if (b) holds for all r > 0, then the sequence (Cgn) converges in BV semi
uniformly to the operator Cg.

Proof. “(a)⇒(b)”: Fix r ∈ (0, R). We first show that ‖gn − g‖BV [−r,r] → 0 as n→∞.
To this end, define x(t) := 2rt − r on [0, 1]. Then x maps [0, 1] strictly increasingly
and bijectively onto [−r, r] with ‖x‖∞ = r < R and Var(x) = 2r < 2R. Because of (a),
the sequence (Cgn) converges semi uniformly to Cg at x, and this implies that (Cgn(x))
converges in BV to Cg(x). This means

0 = lim
n→∞ ‖Cgn(x)− Cg(x)‖BV = lim

n→∞ ‖gn − g‖BV [−r,r] .

We now write fn := gn − g for n ∈ N and show that

sup
n∈N

lip(fn, [−r, r]) <∞. (6.2.13)

For each n ∈ N pick un, vn ∈ [−r, r] with un 6= vn and so that

|fn(un)− fn(vn)|
|un − vn|

≥ 1
2 lip(fn, [−r, r]) and |un − vn| ≤

1
n
, (6.2.14)

where (6.2.14) is justified by Dini’s formula (6.2.7).
Since [−r, r] is compact, we can assume by passing to suitable subsequences that un →
w and vn → w for some w ∈ [−r, r]. The constant function x ≡ w for t ∈ [0, 1] belongs
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to BV with ‖x‖∞ = |w| ≤ r < R and Var(x) = 0 < 2R; hence by (a) we find for ε = 1
some N1 ∈ N and δ ∈ (0, 4R) such that

∀n ≥N1 ∀y ∈ BV :
‖x− y‖BV ≤ δ ⇒ ‖Cgny − Cgy‖BV = ‖fn ◦ y‖BV ≤ 1. (6.2.15)

Since both (un) and (vn) converge to w, there is some N2 ∈ N such that

∀n ≥ N2 : max
{
|un − w|, |vn − w|

}
≤ δ

2 .

For each n ∈ N let xn : [0, 1]→ [−r, r] be the BV -function constructed in the proof of
Proposition 6.2.5 with α = 1/2, β = δ/4, u = un, v = vn and R replaced by r. Then
‖xn‖∞ ≤ r < R and Var(xn) ≤ δ/2 < 2R, and thus

‖xn − x‖BV = ‖xn − x‖∞ + Var(xn − x) = max{|un − w|, |vn − w|}+ Var(xn) ≤ δ

for n ≥ N2, and additionally

lip
(
fn, [−r, r]

)
≤ Var(fn ◦ xn)

αβ
≤ 8 ‖fn ◦ xn‖BV

δ
.

From this follows with the help of (6.2.15) lip
(
fn, [−r, r]

)
≤ 8/δ for n ≥ max{N1, N2}

which proves (6.2.13).
“(b)⇒(a)”: Write fn := gn−g, fix ε > 0 and x ∈ BV with ‖x‖∞ < R and Var(x) < 2R.
Choose r > 0 so that ‖x‖∞ < r < R. Because of (b),

L := sup
n∈N

lip
(
fn, [−r, r]

)
<∞.

By Lemma 6.2.4 there is some δ ∈ (0, r − ‖x‖∞] such that for all y ∈ BV and all
subsets U ⊆ R,

‖x− y‖BV ≤ δ and |U |∗ ≤ δ =⇒ rVar(y, U) ≤ η := ε

L+ 4R. (6.2.16)

Fix y ∈ BV with ‖x− y‖BV ≤ δ. Then ‖y‖∞ ≤ ‖x− y‖∞ + ‖x‖∞ ≤ δ + ‖x‖∞ ≤ r

and thus y(t) ∈ [−r, r] for all t ∈ [0, 1].
Again by (b), ‖fn‖BV [−r,r] → 0 as n → ∞, and that is why we find some N ∈ N such
that

‖fn‖BV [−r,r] ≤
ηδ

5 for all n ≥ N.

Fix such n ≥ N and let I be the system of intervals

I :=
{

[s, t] ⊆ [−r, r] | |fn(s)− fn(t)| > η|s− t|
}
.

By Vitali’s Covering Lemma we find some countable subsystem {Ij | j ∈ J} with index
set J ⊆ N of pairwise disjoint intervals of I such that

U :=
⋃
I ⊆

⋃
j∈J

5Ij,
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where for a compact interval I = [s, t] with s < t the symbol 5I denotes the compact
interval [s−2(t−s), t+2(t−s)]. Consequently, U is a set with outer Lebesgue measure

|U |∗ ≤
∞∑
j∈J
|5Ij| = 5

∞∑
j∈J
|sj − tj| ≤

5
η

∞∑
j∈J
|fn(sj)− fn(tj)|

≤ 5
η
‖fn‖BV [−r,r] ≤ δ. (6.2.17)

Now, let P : 0 = t0 < . . . < tm = 1 be a partition of [0, 1]. Therefore, borrowing the
notation from Definition 6.2.1,

m∑
j=1

∣∣∣∣fn(y(tj−1)
)
− fn

(
y(tj)

)∣∣∣∣
=

∑
j∈J(y,U,P )

∣∣∣∣fn(y(tj−1)
)
− fn

(
y(tj)

)∣∣∣∣+ ∑
j /∈J(y,U,P )

∣∣∣∣fn(y(tj−1)
)
− fn

(
y(tj)

)∣∣∣∣
≤ L

∑
j∈J(y,U,P )

∣∣∣y(tj−1)− y(tj)
∣∣∣+ η

∑
j /∈J(y,U,P )

∣∣∣y(tj−1)− y(tj)
∣∣∣

≤ L rVar(y, U) + ηVar(y) ≤ η(L+ 4R) ≤ ε. (6.2.18)

Here we have used (6.2.16) and Var(y) ≤ ‖y‖BV ≤ ‖x− y‖BV +‖x‖BV ≤ δ+3R ≤ 4R.
This shows Var(fn ◦ y) ≤ ε for all y ∈ BV with ‖x− y‖BV ≤ δ.
Finally, for n ≥ N and such y,

‖fn ◦ y‖BV = ‖fn ◦ y‖∞ + Var(fn ◦ y) ≤ ‖fn‖BV [−r,r] + ε ≤ ε

(
δ

5(L+ 4R) + 1
)

≤ ε

(
R

5(L+ 4R) + 1
)
.

This completes the proof. �

Let us make two comments. First note that condition (b) of Theorem 6.2.7 is indeed
weaker than condition (b) of Theorem 6.2.6, since in Theorem 6.2.7 we only need
convergence of (gn) in BV and boundedness of the Lipschitz constants, whereas in
Theorem 6.2.6 we need convergence of (gn) in Liploc(R); Example 6.2.9 at the end of this
section will illustrate this difference. Second, note that condition (b) of Theorem 6.2.7
gives with the help of Theorem 6.1.10 a criterion under which composition operators
are locally equicontinuous in BV .

As a consequence we reach the goal of this section and obtain a new proof for the fact
that the composition operator generated by a locally Lipschitz continuous function is
continuous in BV .

Theorem 6.2.8. Let g ∈ Liploc(R). Then the operator Cg : BV → BV is continuous.

Proof. Fix R > 0. Since g ∈ Liploc(R) we have g ∈ AC[−R,R] and g′ ∈ L∞[−R,R].
The function h := g′χ[−R,R] then belongs to L∞(R). The functions constructed in
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Chapter II of [140] are C∞-functions hn : R→ R and satisfy

‖hn − h‖L1[−R,R] ≤
1
n

and

‖hn‖L∞[−R,R] ≤ ‖h‖L∞[−R,R] = ‖g′‖L∞[−R,R] = lip
(
g, [−R,R]

)
.

We now define gn : R→ R by

gn(u) = g(0) +
∫ u

0
hn(t) dt.

Then each gn is of class C∞ with g′n = hn on R and satisfies

‖gn − g‖BV [−R,R] = ‖gn − g‖[−R,R] + Var(gn − g, [−R,R]) ≤ 2 ‖g′n − g′‖L1[−R,R]

= 2 ‖hn − h‖L1[−R,R] ≤
2
n
.

Moreover,

lip
(
gn, [−R,R]

)
= ‖g′n‖L∞[−R,R] = ‖hn‖L∞[−R,R] ≤ lip

(
g, [−R,R]

)
for each n ∈ N. Hence, each gn generates a composition operator Cgn which maps BV
into itself and is continuous (even locally Lipschitz continuous) by Theorem 5.1.21.
Finally, the Cgn converge semi uniformly to Cg at each x ∈ BV with ‖x‖BV < R by
Theorem 6.2.7, and this leads to the desired continuity of Cg at those x by Theorem
6.1.10. �

Eventually reaching the end of this section we would like to keep our promise made
in Section 6.1 to give a third example of a sequence of functions which converges semi
uniformly but not locally uniformly.

Example 6.2.9. Consider the functions

g(u) := |u| and gn(u) =
√
u2 + 1/n for u ∈ R, n ∈ N.

Then g is Lipschitz continuous on R, but not differentiable at u = 0, and each gn is of
class C∞ on R with

g′n(u) = u√
u2 + 1/n

.

We obtain for fixed R > 0 and n ∈ N,

‖gn − g‖[−R,R] = sup
|u|≤R

∣∣∣∣√u2 −
√
u2 + 1/n

∣∣∣∣ ≤ 1√
n
,

lip(gn − g, [−R,R]) = ‖g′n − g′‖L∞[−R,R] = sup
0<|u|≤R

∣∣∣∣∣∣ |u|√
u2 + 1/n

− 1
∣∣∣∣∣∣ = 1,

‖gn − g‖BV [−R,R] = ‖gn − g‖[−R,R] + ‖g′n − g′‖L1[−R,R]

≤ 1√
n

+ 2
∫ R

0

∣∣∣∣ u√
u2 + 1/n

− 1
∣∣∣∣ du =

3 + 2
(√

nR2 −
√
nR2 + 1

)
√
n

≤ 3√
n
.
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Thus, condition (b) of Theorem 6.2.6 fails for any R > 0 and hence Cgn cannot converge
in the space BV locally uniformly to Cg at x = 0 ∈ BV . However, condition (b) of
Theorem 6.2.7 holds for any R > 0 and thus the Cgn converge in the space BV semi
uniformly to Cg at x = 0. ♦
Note that the function g as well as each function gn from the previous example are
Lipschitz continuous and therefore generate composition operators Cg and Cgn which
are continuous in BV by Theorem 6.2.8.

The question is now if the theory developed in this section might be transferred to
other BV -spaces. Unfortunately, we do not know the answer to this question, but
we conjecture that Theorem 6.2.7 is still true in the spaces WBVp, Y BVϕ and ΛBV ,
when BV in part (a) is replaced by one of the respective spaces and (b) is kept. If
this conjecture is true, then the continuity of Cg in other BV -spaces would follow
exactly as in the proof of Theorem 6.2.8. However, the main ingredient for the relevant
implication “(b)⇒(a)” in Theorem 6.2.7 is Lemma 6.2.4 and thus the continuity of the
restricted variation. It is not at all clear how to prove an analogue of this lemma in
other BV -spaces, although its statement seems to be true in such spaces, at least from
a (perhaps naive) geometric or graphic point of view.



Chapter 7

Integral Equations

Integral equations often describe specific real world phenomena and are therefore of
great interest. For instance, the authors of [102] introduced a second order boundary
value problem the solution of which describes the temperature distribution of an adi-
abatic chemical reactor of length 1. These solutions may be found by rewriting the
problem into the nonlinear Hammerstein integral equation

u(t) = 1
λ
eλ(t−1)Hu+

∫ 1

0
k(t, s)f

(
u(s)

)
ds,

where

k(t, s) =
1 for 0 ≤ s ≤ t ≤ 1,
eλ(t−s) for 0 ≤ t < s ≤ 1

and f(u) =
µ(β − u)eu for u ≤ β,

0 for u > β.

The constants λ is the Peclet number, µ is the Damkohler number, β is the dimension-
less adiabatic temperature rise, and the function u represents the local temperature at
a point t of the tube in which the reaction happens. The (possibly nonlinear) func-
tional H models a feedback control system on the reactor that adds or removes heat
according to the temperatures detected by some sensors located along the tube, see
[41] and references therein for details.
Another example is given by the author of [21] who discusses a model describing the
nonlinear age-depending growth of a single population under harvest which generalizes
the original model introduced in [70]. The total population P (t) at time t can be
described under certain assumptions by a nonlinear Volterra integral equation of the
form

P (t) = p(t)− h(t) +
∫ t

0
exp

(
−
∫ t−s

0
µ(τ) dτ

)
P (s)β

(
P (s)

)
ds,

where p, µ and h are parameters depending on time and β is a parameter depending
on the population size.
Especially the last example motivates the search for BV -solutions to integral equations,
because functions of bounded variation may have jumps which then can be interpreted
as sudden deaths or births of the population. Moreover, the total increment and
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decrement of the population is bounded as there is only a finite amount of biomass in
the system under consideration. We will mention two further examples of applications
of solutions to integral equations at the beginning of Section 7.1 below.
While there exists a large literature on continuous or integrable solutions of integral
equations of the aforementioned type, considerably less is known on BV -solutions.

In this last chapter we apply some of the results from the previous chapters to solve
integral equations in the spaces of functions of bounded variation of various types. We
will prove existence and sometimes also uniqueness of solutions to either Hammerstein
or Volterra integral equations. Our main tool is fixed point theory, so we will impose
suitable conditions on the data which make it possible to apply well-known fixed point
theorems. Although those conditions have been already considered in the Chapters 4
and 5, we will repeat them here to make the presentation self-contained.
In the first section we will focus on nonlinear Hammerstein integral equations, first
only in the space BV and later also in other BV -spaces. The second section is devoted
to nonlinear Volterra integral equations where we mainly rewrite our results of the first
section. In the third and final section we make some remarks on boundary and initial
value problems in the space BV where the boundary and initial conditions are given
in a nonclassical coupled setting. Based on Schauder’s fixed point theorem we give a
simple sufficient condition under which such boundary and initial value problems may
be solved and simultaneously generalize the ideas and results developed in the paper
[27] that served as a point of departure for many considerations presented here.

7.1 Hammerstein Integral Equations
The first equation that we consider in this chapter is

x(t) = h(t) + λ
∫ 1

0
k(t, s)g

(
x(s)

)
ds for 0 ≤ t ≤ 1, (7.1.1)

where the functions h : [0, 1] → R, k : [0, 1] × [0, 1] → R and g : R → R are given
and the function x : [0, 1]→ R is unknown. We point out that the role of λ in (7.1.1)
is very important. For example, in the problems concerning calculation of either free
pulsation of harmonic vibrations of a string or a critical speed of a shaft is reduced
to calculating such values of λ for which the corresponding integral equation, being
special cases of (7.1.1), have a nontrivial solution.
As mentioned above, in this section we are going to look for solutions x of equation
(7.1.1) in the space BV . Borrowing the notation from the Chapters 4 and 5 we may
write (7.1.1) equivalently as the operator equation

x = h+ λ(Ik ◦ Cg)x, (7.1.2)

where Ik denotes the integral operator (4.0.3) generated by k : [0, 1]× [0, 1]→ R, and
Cg denotes the composition operator (5.0.1) generated by g : R→ R.
For convenience of the reader we will repeat here some assumptions which appear in
previous chapters and will be needed in the study of these equations; we denote them
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by (H1), (H2), ... without referring to similarly labeled in the Chapters 4 and 5. The
following conditions will be used throughout the sequel; as before, the symbol ∀ ′s
means the indicated property holds only for almost all s.

∀t ∈ [0, 1] : k(t, ·) ∈ L1, (H1)
∃m ∈ L1 ∀ ′s ∈ [0, 1] : Var

(
k(·, s)

)
≤ m(s), (H2)

g ∈ Liploc(R). (H3)

Note that condition (H1) is condition (A), and (H2) is (B) for the integral operator
Ik of Section 4.3. Condition (H3) is the fundamental acting condition for Cg from
Theorem 5.1.19.
The above conditions suffice to obtain the first existence and uniqueness result that
has been proven in [29]. Recall that for any of our BV -spaces X we denote by

BR(X) =
{
x ∈ X | ‖x‖X ≤ R

}
the closed ball in X with respect to the norm ‖·‖X with radius R > 0 and centered at
the function 0.

Theorem 7.1.1. Assume (H1), (H2) and (H3), and let h ∈ BV be fixed. Then for
each R > ‖h‖BV there is some % > 0 such that equation (7.1.1) has for fixed λ ∈ (−%, %)
a unique solution in BR(BV ).

To be more precise, if R > ‖h‖BV is given, the number % can be chosen to be

% = min
R− ‖h‖BV‖g‖[−R,R]

,
1

lip(g, [−R,R])

 1
‖2m+ |k(0, ·)|‖L1

. (7.1.3)

This also shows that if g grows faster than linear, the number ‖g‖[−R,R] grows also
faster than linear and hence makes % smaller the larger R is chosen. This means that
if we want to make the domain BR(BV ) of possible solutions large, we have to pay
the price that the set of admissible parameters λ for which uniqueness or solvability
can be achieved becomes small. We illustrate this in the following two examples. The
first shows generally how the minimum in (7.1.3) looks like if the kernel is given in
separated kernels. The second is a concrete example of an integral equation with such
a kernel and h = 0.

Example 7.1.2. If the kernel k(t, s) = k1(t)k2(s) is given in separated kernel with k1 ∈
BV and k2 ∈ L1, then by Proposition 4.3.9 the conditions (H1) and (H2) are fulfilled,
and we can simply put m(s) = Var(k1)|k2(s)|. Moreover, the norm ‖2m+ |k(·, 0)|‖L1

occurring in (7.1.3) is then

‖2m+ |k(0, ·)|‖L1
=
∫ 1

0

∣∣∣∣2 Var(k1)|k2(s)|+ |k1(0)k2(s)|
∣∣∣∣ ds

=
(
2 Var(k1) + |k1(0)|

)
‖k2‖L1

.
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Thus, (7.1.3) becomes

% = min
R− ‖h‖BV‖g‖[−R,R]

,
1

lip(g, [−R,R])

 1(
2 Var(k1) + |k1(0)|

)
‖k2‖L1

.

Observe that the “larger” k1, k2 and g are the smaller becomes % and hence the corre-
sponding set of admissible parameters λ. ♦
As a further example which will frequently serve as a test animal in the sequel we
consider for several values of α > −1 and β ∈ R the integral equation

x(t) = λt
∫ 1

0

(
(α + 1)|x(s)|α + 2βs

)
ds for 0 ≤ t ≤ 1 (7.1.4)

in the space BV . This equation is of the form (7.1.1) with the functions h = 0,
k(t, s) = t and g(u) = (α + 1)|u|α if and only if β = 0. The structure of (7.1.4)
dictates that any solution must be of the form x(t) = ct for some c ∈ R and is
therefore automatically continuous (even analytic). Plugging this into (7.1.4) reveals
the characteristic equation

c = λ
(
|c|α + β

)
(7.1.5)

which means that a function x ∈ BV is a solution of (7.1.4) if and only if it has the
form x(t) = ct with c satisfying (7.1.5). Theorem 7.1.1 is now applicable if and only
if α ≥ 1 and β = 0 and guarantees in this case that for |λ| smaller than % in (7.1.3)
equation (7.1.5) can be solved for c. We illustrate this in the next two examples. We
start with α = 1 and β = 0 for which (7.1.4) is a special case of (7.1.1).

Example 7.1.3. For α = 1 and β = 0 equation (7.1.4) reduces to

x(t) = 2λt
∫ 1

0
|x(s)| ds. (7.1.6)

In the notation of (7.1.1) we can take h = 0, g(u) = 2|u| and k(t, s) = k1(t)k2(s) in
separated kernels with k1(t) = t and k2(s) = 1. Obviously, the conditions (H1), (H2)
and (H3) are satisfied with Var(k1) = 1, k1(0) = 0, ‖k2‖L1

= 1, ‖g‖[−R,R] = 2R and
lip(g, [−R,R]) = 2. With the help of Example 7.1.2 we obtain for any R > 0 that
% = 1/4. In particular, Theorem 7.1.1 says that for any λ ∈ (−1/4, 1/4) equation
(7.1.6) has only one solution in BV , and clearly, this must be the function 0. Indeed,
the characteristic equation (7.1.5) reads c = λ|c| which has for |λ| < 1/4 only one
solution, namely c = 0. ♦
We make two comments on the bound % = 1/4 in the previous example. First, this
bound and in general the bound given in (7.1.3) is not optimal in the sense that equation
(7.1.1) may have a unique solution even for |λ| ≥ %. This is easily seen again in the
previous example, because the characteristic equation c = λ|c| has for any |λ| 6= 1
the unique solution c = 0. Even worse, for λ = 1 every c ≥ 0 and for λ = −1 every
c ≤ 0 is a solution which means that (7.1.6) has uncountably many different solutions
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in BV . Second, since % = 1/4 is independent of R the set of admissible parameters λ
is also independent of R which means that for these λ there can be only one solution
x to (7.1.6) in the entire space BV . This is of course not always so, and the set of
those λ may become small when R is chosen to be large. We illustrate this in the next
example.

Example 7.1.4. Consider again equation (7.1.4), but now for α = 2 and β = 0. It
then reads

x(t) = 3λt
∫ 1

0
x(s)2 ds. (7.1.7)

In the notation of (7.1.1) we can again take h = 0 and k(t, s) = k1(t)k2(s) with k1(t) = t

and k2(s) = 1, but this time, g(u) = 3u2. Again, the conditions (H1), (H2) and (H3)
are satisfied with Var(k1) = 1, k1(0) = 0 and ‖k2‖L1

= 1. Moreover, ‖g‖[−R,R] = 3R2

and lip(g, [−R,R]) = 6R. With the help of Example 7.1.2 we obtain for any R > 0,

% = min
{
R

3R2 ,
1

6R

}
· 1

2 = 1
12R.

In particular, % gets smaller the larger R is chosen. ♦
As we have seen, the bound % for the admissible parameters λ for which equation
(7.1.1) has a BV -solution is in general strongly related to the radius R of the ball in
which solutions can be guaranteed. One may enlarge the bound % and therefore also
the set of λ by replacing the norm ‖·‖BV by a smaller norm. For instance, if we use the
norm ‖x‖∗BV = |x(0)|+Var(x) instead of the equivalent norm ‖x‖BV = ‖x‖∞+Var(x),
then it is shown in [29] that % can be chosen to be

% = min
R− ‖h‖

∗
BV

‖g‖[−R,R]
,

1
lip(g, [−R,R])

 1
‖m+ |k(0, ·)|‖L1

Therefore, % can be enlarged by a factor of up to 2. For instance, the bound % in
Example 7.1.4 would now be % = 1/(6R). However, for the rest of this thesis we stick
to the norm ‖·‖BV , because many estimates are then a little simpler.

Before we turn to a more general equation than (7.1.1), we point out that one might
think that Theorem 7.1.1 could also be formulated in the following way.

Theorem 7.1.1∗. Under the assumptions (H1), (H2) and (H3) there exists a number
% > 0 such that for every λ satisfying |λ| < %, the equation (7.1.1) has a unique solution
in BV .

Here, % can be any number strictly less than the minimum in (7.1.3). This formulation,
however, is not true, because it pretends that equation (7.1.1) has only one unique
solution in the entire space BV for |λ| < %. But the following example shows that
under the hypothesis of Theorem 7.1.1 there can be more than one solution in BV .
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Example 7.1.5. Consider again the integral equation (7.1.7) from Example 7.1.4. We
have seen there that all the conditions (H1), (H2) and (H3) are fulfilled. Theorem
7.1.1∗ would now say that equation (7.1.7) has only one solution in BV for all |λ| < %

and some % > 0. However, there are in fact two BV -solutions for every λ 6= 0. To see
this, we solve again the characteristic equation (7.1.5) for fixed λ 6= 0 which now is

c = λc2.

The first obvious solution c = 0 generates the function x = 0 which clearly is a
solution to (7.1.7). However, also c = 1/λ being the second solution of the characteristic
equation generates the solution xλ(t) := t/λ with norm ‖xλ‖BV = 2/|λ| and so Theorem
7.1.1∗ cannot be true.
From Example 7.1.4 we get % = 1/(12R) for any R > 0. Thus, if 0 < |λ| < %, then
‖xλ‖BV = 2/|λ| > 24R > R. This means that if R > 0 is chosen arbitrarily, % is given
by (7.1.3) and 0 < |λ| < % is fixed, then equation (7.1.4) has two distinct BV -solutions,
but the second one, namely xλ, does not lie within the ball BR(BV ) and hence is not
covered by Theorem 7.1.1. ♦
As the previous example shows, Theorem 7.1.1 yields uniqueness of the solution x of
(7.1.1) indeed only in the ball BR(BV ). There may be other solutions outside of that
ball.

Theorem 7.1.1 has been proved by showing that the operator T = h + λ(Ik ◦ Cg) has
a fixed point in the ball BR(BV ) that is invariant under T . The conditions given in
Theorem 7.1.1 to ensure the existence of such invariant balls have been generalized
in the literature. We cite a sample result which uses milder a priori estimates. For
example, in [33] the authors impose the following conditions:

• There exists a function ψ : [0,∞)→ [0,∞) with ψ(u) > 0 for u > 0 and

|g(u)| ≤ ψ
(
|u|
)

for u ∈ R.

• For each R > 0 there exists a continuous increasing function ψR : [0,∞)→ [0,∞)
with

|g(u)− g(v)| ≤ ψR
(
|u− v|

)
for |u|, |v| ≤ R.

It is then shown that under additional appropriate assumptions, for each sufficiently
large R there is some % > 0 such that equation (7.1.1) has a solution in BR(BV ) for
every |λ| < %. Clearly, by putting ψ(r) := ‖g‖[−r,r] and ψR(r) := lip(g, [−R,R])r in
the above conditions, one can recover Theorem 7.1.1.
More general choices for ψR, however, are also possible. For instance, one could
choose ψR(r) = a(R) arctan(r) or ψR(r) = a(R) log(1 + r) for appropriate functions
a : (0,∞) → (0,∞) and therefore enlarge the range of applications of the results
presented in [33].
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We now consider a slightly more general nonlinear Hammerstein equation by replacing
Cg in (7.1.2) by a superposition operator Ng, defined in (5.0.2) and generated by a
function g : [0, 1]× R→ R. Then (7.1.1) reads

x(t) = h(t) + λ
∫ 1

0
k(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1; (7.1.8)

note that our sample equation (7.1.4) has this form. The operator equation (7.1.2)
becomes

x = h+ λ(Ik ◦Ng)x. (7.1.9)

Again, we impose three further conditions.

sup
t∈[0,1]

‖k(t, ·)‖L1
<∞, (H4)

sup
τ∈[0,1]

Var
(∫ τ

0
k(·, s) ds

)
<∞, (H5)

g ∈ Liploc([0, 1]× R). (H3∗)

Note that (H3∗) is a natural generalization of (H3) to two dimensions. Also note that
(H4) implies condition (A) while (H5) coincides with condition (C) of Section 4.3.
Moreover, (H1) and (H2) together imply (H4). This is, because if

|k(t, s)| ≤
∣∣∣k(0, s)− k(t, s)

∣∣∣+ |k(0, s)| ≤ Var
(
k(·, s)

)
+ |k(0, s)| ≤ m(s) + |k(0, s)|

holds for all t ∈ [0, 1] and almost all s ∈ [0, 1] and some function m ∈ L1, then

‖k(t, ·)‖L1
≤ ‖m‖L1

+ ‖k(0, ·)‖L1
,

and so the supremum in (H4) becomes at most ‖m‖L1
+ ‖k(0, ·)‖L1

. Also, observe
that (H3∗) implies condition (G) of Section 5.2 which plays a crucial role in Theorem
5.2.12, because for R > 0, any partition 0 = t0 < . . . < tn = 1 of [0, 1] and points
u0, . . . , un ∈ [−R,R] with

n∑
j=1
|uj−1 − uj| ≤ R

we obtain
n∑
j=1
|g(tj−1, uj)− g(tj, uj)| ≤ LR

n∑
j=1
|tj−1 − tj| = LR,

n∑
j=1
|g(tj−1, uj−1)− g(tj−1, uj)| ≤ LR

n∑
j=1
|uj−1 − uj| ≤ RLR,

where

LR := lip(g, [0, 1]× [−R,R])

= sup

∣∣∣g(s, u)− g(t, v)

∣∣∣
|s− t|+ |u− v| | s, t ∈ [0, 1], u, v ∈ [−R,R], (s, u) 6= (t, v)

 . (7.1.10)

Thus, (G) follows with MR := max{LR, RLR}.
With these new conditions at hand the following result was proven in [32].
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Theorem 7.1.6. Assume (H3 ∗), (H4) and (H5), and let h ∈ BV be fixed. Then for
each R > ‖h‖BV there is some % > 0 such that equation (7.1.8) has for fixed λ ∈ (−%, %)
a unique solution in BR(BV ).

To be more precise, if R > ‖h‖BV , the number % can be chosen so that

% = min


R− ‖h‖BV(

2S1 + ‖k(0, ·)‖L1

)(
LR +RLR + |g(0, 0)|

) , 1
LRS2

 , (7.1.11)

where S1 is the supremum in (H5), S2 is the supremum in (H4) and LR = lip(g, [0, 1]×
[−R,R]) is defined as in (7.1.10).

A few remarks are in order. First, an analogue to Theorem 7.1.6 in the sense of Theorem
7.1.1∗ is also wrong, as we have seen in Example 7.1.5. Nevertheless, Theorem 7.1.6
as stated here has a wider range of applications than Theorem 7.1.1, for two reasons.
First, superposition operators are of course more general than composition operators.
Second, there are kernel functions which satisfy the condition (H4) and (H5) but not
condition (H2).

Example 7.1.7. Let k(t, s) = χQ(t − s) be the kernel function that we have already
studied in the Examples 4.3.3 and 4.3.8. We have seen there that k satisfies (H1) and
(H5) but not (H2). Since, for fixed t ∈ [0, 1], we have

‖k(t, ·)‖L1
=
∫ 1

0
χQ(t− s) ds = 0,

the kernel function k also satisfies (H4). In particular, Theorem 7.1.6 is applicable
provided that g ∈ Liploc([0, 1] × R), but Theorem 7.1.1 is not. However, for this
particular kernel, the integral equations (7.1.1) and (7.1.8) have only the solution x = h,
since the integral vanishes in both equations. Note that in this case, Theorem 7.1.6
yields indeed uniqueness of solutions in the entire space BV , because % =∞ in (7.1.11)
for any R > ‖h‖BV . ♦

It is clear that Theorem 7.1.6 is applicable to our test equation (7.1.4) with k(t, s) = t

and g(t, u) = (α + 1)|u|α + 2βt if and only if α ≥ 1 and β is arbitrary.
As we have seen in Example 7.1.3 the integral equation (7.1.6) can have infinitely many
solutions. We now consider a similar example which has for β > 0 at most two solutions
and illustrates the bound (7.1.11).

Example 7.1.8. This time, we have a look at (7.1.4) for α = 1 and arbitrary β which
now reads

x(t) = 2λt
∫ 1

0

(
|x(s)|+ βs

)
ds. (7.1.12)

In the notation of (7.1.8) we have h = 0, k(t, s) = t and g(t, u) = 2|u| + 2βt. Thus,
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‖k(0, ·)‖L1
= 0, |g(0, 0)| = 0 and

S1 = sup
τ∈[0,1]

Var
(∫ τ

0
k(·, s) ds

)
= 1,

S2 = sup
t∈[0,1]

‖k(t, ·)‖L1
= 1,

LR = lip
(
g, [0, 1]× [−R,R]

)
= 2 max{1, |β|}.

We obtain from (7.1.11),

ρ(R) = min
{

R

4(1 +R) max{1, |β|} ,
1

2 max{1, |β|}

}
= R

4(1 +R) max{1, |β|} <
1
4

for R > 0. Since ρ(R) → 1/(4 max{1, |β|}) =: %0 > 0 as R → ∞, Theorem 7.1.6 now
even states that equation (7.1.12) has for every λ ∈ (−%0, %0) a unique solution in the
entire space BV .
Indeed, the characteristic equation of (7.1.12) is

c = λ(|c|+ β). (7.1.13)

For β > 0 it has no solution if |λ| ≥ 1 and a unique solution if |λ| < 1, namely
c = λβ/(1− |λ|). For β = 0 is has only c = 0 as a solution if |λ| 6= 1, but any c ≤ 0 if
λ = −1 and any c ≥ 0 if λ = 1, as we have seen in the discussion after Example 7.1.3.
In this case, (7.1.13) and therefore (7.1.12) have infinitely many solutions. For β < 0,
equation (7.1.13) has one or two solutions, namely c = λβ/(1 − λ) for λ /∈ (0, 1] and
c = λβ/(1 + λ) for λ /∈ [−1, 0].
As before, the bound %0 ≤ 1/4 is not optimal. ♦
In contrast to equation (7.1.6) from Example 7.1.3 which has a unique solution for every
|λ| 6= 1 and infinitely many solutions for |λ| = 1, equation (7.1.12) has no solutions
whatsoever for |λ| ≥ 1 and β > 0.

We have now solved (7.1.4) for α = 1 and arbitrary β. In the next example we will
solve it also for α = 2 and arbitrary β. Since then the characteristic equation (7.1.5)
reduces to a simple quadratic equation, we do not need so many case distinctions as in
Example 7.1.8.

Example 7.1.9. Consider (7.1.4) for α = 2 but arbitrary β, that is,

x(t) = λt
∫ 1

0

(
3x(s)2 + 2βs

)
ds (7.1.14)

with characteristic equation c = λ(c2 +β) which is equivalent to the quadratic equation

λc2 − c+ λβ = 0. (7.1.15)

For λ = 0 there is only the solution c = 0. For λ 6= 0, this quadratic equation has two
solutions if 4λ2β < 1, namely

c = 1±√1− 4λ2β

2λ ,
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only one if 4λ2β = 1, namely c = 1/(2λ), and no (real) solution if 4λ2β > 1. In
particular, for β = 0 we regain the two solutions c = 0 and c = 1/λ found in Example
7.1.5. ♦

Let us come back for a second to condition (H3∗) which states that g : [0, 1]× R→ R
is locally Lipschitz continuous with respect to both arguments. We will see later that
for our purposes this condition is too restrictive. Thus, we will rather use the following
weaker condition

∀R > 0 ∃LR > 0 ∀t ∈ [0, 1] ∀u, v ∈ [−R,R] :
∣∣∣g(t, u)− g(t, v)

∣∣∣ ≤ LR|u− v| (H6)

which is precisely condition (B) of Section 5.2 and may be reformulated equivalently
as

∀R > 0 ∃LR > 0 ∀u, v ∈ [−R,R] : ‖g(·, u)− g(·, v)‖∞ ≤ LR|u− v|.
It imposes a local Lipschitz condition on the second variable, uniformly in the first,
but does not impose a Lipschitz condition on the first variable. Clearly, (H6) is indeed
weaker than (H3∗), and here is an explicit

Example 7.1.10. The function g(t, u) =
√
t u for t ∈ [0, 1] and u ∈ R satisfies (H6)

with LR = 1 for all R > 0, but it does not satisfy (H3∗), because t 7→
√
t is not

Lipschitz continuous near t = 0. ♦
We will see later in our main Theorem 7.1.16 that it suffices to require the inequality
in (H6) to be true for only almost all t ∈ [0, 1].

Since the interest in finding solutions to equations like (7.1.1) and (7.1.8) is moti-
vated by problems from physics, biology, economics and other sciences, sometimes it is
necessary to consider continuous BV -solutions.
Here we impose the following two conditions

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] ∀ ′s ∈ [0, 1] :
|t1 − t2| ≤ δ ⇒

∣∣∣k(t1, s)− k(t2, s)
∣∣∣ ≤ ε, (H7)

∀ε > 0 ∃δ > 0 ∀t1, t2, τ ∈ [0, 1] :

|t1 − t2| ≤ δ ⇒
∣∣∣∣∫ τ

0
k(t1, s)− k(t2, s) ds

∣∣∣∣ ≤ ε. (H8)

Note that (H8) is precisely condition (E) from Section 4.3 and is crucial in Theorem
4.3.14 which provides a necessary and sufficient condition for the integral operator Ik
to be bounded on BV ∩ C. Moreover, it is clear that (H7) implies (H8). The reverse
implication, however, does not hold in general.

Example 7.1.11. Consider a kernel in separated kernels with k(t, s) = k1(t)k2(s),
where k1 is injective and continuous and k2 ∈ L1\L∞. Then∣∣∣k(t1, s)− k(t2, s)

∣∣∣ = |k1(t1)− k1(t2)||k2(s)|
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gets unbounded for fixed t1 6= t2, because k2 is essentially unbounded. Thus, (H7)
fails. However, (H8) is satisfied. To see this fix ε > 0 and pick δ > 0 so small that
|k1(t1)− k1(t2)| ≤ ε/ ‖k2‖L1

for |t1 − t2| ≤ δ; note that k1 is also uniformly continuous
and k2 /∈ L∞ implies ‖k2‖L1

> 0. Then∣∣∣∣∫ τ

0
k(t1, s)− k(t2, s) ds

∣∣∣∣ = |k1(t1)− k2(t2)|
∣∣∣∣∫ τ

0
k2(s) ds

∣∣∣∣ ≤ |k1(t1)− k2(t2)| ‖k2‖L1
≤ ε,

and (H8) is established.
For a sturdy example take, for instance, k1(t) = t and k2(s) = 1/

√
s for 0 < s ≤ 1 and

k2(0) = 0. ♦
The stronger condition (H7) is now essential for the following result that has been
proven in the paper [29].

Theorem 7.1.12. Assume (H1), (H2), (H3) and (H7), and let h ∈ BV ∩ C be fixed.
Then for each R > ‖h‖BV there is some % > 0 such that equation (7.1.1) has for fixed
λ ∈ (−%, %) a unique solution in BR(BV ∩C), where BV ∩C is equipped with the norm
‖·‖BV .

Since the kernel k(t, s) = t clearly satisfies (H7), our test equation (7.1.4) can be solved
using Theorem 7.1.12 if and only if α ≥ 1 and β = 0. As we have seen, any solution to
(7.1.4) must be of the form x(t) = ct and hence is automatically continuous.

The proofs of all the preceding existence results heavily base on the Banach-Caccioppoli
Contraction Principle, which explains why we also obtain uniqueness of solutions. We
now present a result that has been proven with the fixed point theorem of Schauder.
The advantage is that we may impose weaker conditions on g and that we get existence
of solutions for every λ ∈ R. But of course, we have to pay a price for this: We loose
uniqueness of solutions in balls.
The first result in this direction deals with equation (7.1.1) for h = 0, that is, with fixed
points of the operator λ(Ik ◦ Cg). For this we need to impose the following conditions
on g : R→ R.

∃q > 1 ∀R > 0 : g ∈ RBVq[−R,R], (H9)

lim
|u|→∞

|g(u)|
|u| = 0. (H10)

Here, RBVq denotes the Riesz space introduced in Definition 1.2.24. Condition (H10)
means that g obeys a strictly sublinear growth for large values of the argument. The
following result was proven in [31].

Theorem 7.1.13. Under the assumptions (H1), (H2), (H9) and (H10) the equation
(7.1.1) has for h = 0 and every λ ∈ R a solution x ∈ BV .

For our test equation (7.1.4) with β = 0 the condition (H9) is equivalent to α ≥ 0
whereas condition (H10) restricts α to be less than 1. Thus, in total, Theorem (7.1.13)
can be applied to (7.1.4) if and only if 0 ≤ α < 1 and β = 0. We give an explicit
example for the case α = 1/2.
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Example 7.1.14. Equation (7.1.4) reads for α = 1/2 and β = 0,

x(t) = 3
2λt

∫ 1

0

√
|x(s)| ds (7.1.16)

with characteristic equation (7.1.5)

c = λ
√
|c|.

This equation has for every λ ∈ R at most two solutions, namely the unique solution
c = 0 for λ = 0, the two solutions c = 0 and c = λ2 for λ > 0, and the two solutions
c = 0 and c = −λ2 for λ < 0. ♦
Thus, Example 7.1.14 shows that we cannot expect uniqueness of the solutions given
by Theorem 7.1.13.

In fact, the authors of [32] proved a more general result, namely Theorem 7.1.13 for
arbitrary h ∈ BV and the nonautonomous case g : [0, 1] × R → R. More precisely,
they showed that

H(τ, x)(t) := τh(t) + τλ
∫ 1

0
k(t, s)g

(
s, x(s)

)
ds for 0 ≤ t, τ ≤ 1

defines (under some additional hypothesis) an admissible compact homotopy joining
the operator H(1, x) = h + λ(Ik ◦ Ng)x and the operator H(0, x) = 0 on a suitable
ball in BV , and then applied the Leray-Schauder degree on that ball. The growth
condition (H10) has then to be replaced by its nonautonomous version

lim
|u|→∞

‖g(·, u)‖L∞
|u| = 0. (7.1.17)

The following example which generalizes Example 7.1.14 shows that even under the
hypothesis (7.1.17) solutions to the integral equation (7.1.8) may not be unique.

Example 7.1.15. Consider again (7.1.4) for α = 1/2, but this time for arbitrary β. It
reads

x(t) = λt
∫ 1

0

(3
2
√
|x(s)|+ 2βs

)
ds (7.1.18)

with corresponding characteristic equation

c = λ
(√
|c|+ β

)
. (7.1.19)

To solve this equation we consider for β ∈ R the function ϕβ, defined by

ϕβ : Dβ → R, t 7→ t√
|t|+ β

and Dβ :=
R for β > 0,
R\{−β2, β2} for β ≤ 0.

For β > 0 the function ϕβ : R → R is bijective justifying why the equation ϕβ(c) = λ

and hence also (7.1.19) has for given λ ∈ R exactly one solution c. For β = 0 equation
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(7.1.19) has at most two solutions, namely one for λ = 0 and two for λ 6= 0, as we have
seen in Example 7.1.14. We therefore focus on β < 0; Figure 7.1.1 shows ϕβ for some
fixed β < 0.

t0

−t0

m0

−m0

β2

−β2

Figure 7.1.1: The function ϕβ for β < 0.

Since the function ϕβ is symmetric with respect to (0, 0), we only consider it for t > 0.
As

lim
t→β2+

ϕβ(t) =∞ = lim
t→∞

ϕβ(t),

the function ϕβ must have a minimum in (β2,∞). Since

ϕ′β(t) = 2β +
√
t

2
(
β +
√
t
)2 for t > 0,

this minimum must be located at t0 := 4β2 at which ϕβ is

m0 := ϕβ(t0) = 4β2/(β + 2|β|) = −4β > 0,

and ϕβ is strictly decreasing in (β2, t0) and strictly increasing in (t0,∞). Consequently,
for λ < m0 equation (7.1.19) has no solution c > β2, for λ = m0 it has exactly one
solution c > β2, namely c = t0, and for λ > m0 it has two solutions c > β2. Since

ϕβ(0) = 0 and lim
t→β2−

ϕβ(t) = −∞ and ϕ′β(t) < 0 for t ∈
(
0, β2

)
,

ϕβ is strictly decreasing from 0 to −∞ on [0, β2). Thus, for λ ≤ 0 equation (7.1.19)
has one further solution in [0, β2).
Due to the symmetry we conclude that for λ > −m0, equation (7.1.19) has no solution
c < −β2, for λ = −m0 it has exactly one solution c < −β2, namely c = −t0, and for
λ < −m0 it has two solutions c < −β2. Moreover, for λ > 0 equation (7.1.19) has one
further solution in (−β2, 0). ♦
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Since we now have fully solved equation (7.1.4) for the three cases α ∈ {1/2, 1, 2} we
organize in Table 7.1.1 the number of solutions for all combinations of the parameters
α, β and λ.

Table 7.1.1: Number of solutions of equation (7.1.4) for α ∈ {1/2, 1, 2}.
parameters number of solutions

α = 2 β = 0 λ 6= 0 2
λ = 0 1

β 6= 0 λ = 0 1
0 < 4βλ2 < 1 2

4βλ2 = 1 1
4βλ2 > 1 0

α = 1 β > 0 |λ| < 1 1
|λ| ≥ 1 0

β = 0 |λ| = 1 ∞
|λ| 6= 1 1

β < 0 |λ| > 1 2
|λ| ≤ 1 1

α = 1/2 β > 0 λ ∈ R 1
β = 0 λ 6= 0 2

λ = 0 1
β < 0 |λ| > −4β 3

|λ| = −4β 2
|λ| < −4β 1

We now generalize the previously discussed equations (7.1.1) and (7.1.8) and consider
the equation

x(t) = h
(
t, x(t)

)
+ λf

(
t, x(t)

) ∫ 1

0
k(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1 (7.1.20)

which can be written as the operator equation

x = Nhx+ λNfx(Ik ◦Ng)x. (7.1.21)

Clearly, one can recover (7.1.1) by setting h(t, u) = h̃(t), f(t, u) = 1 and g(t, u) = g̃(u)
and (7.1.8) by letting h(t, u) = h̃(t) and f(t, u) = 1.
In order to solve equation (7.1.20) in its full generality we use the fixed point theorem
of Banach-Caccioppoli. Since we do not know any nontrivial condition for compactness
of the superposition operator we also solve (7.1.20) - but only special cases - with a
variant of Darbo’s fixed point theorem which is also a generalization of Krasnoselskii’s
fixed point theorem. The former will get us a unique solution but only for small λ
while the latter lets us find solutions for any λ which may not be unique. However,
in any case we need due to the generality of the equation (7.1.20) a lot of conditions
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on the data involved. Although all these conditions have been presented in previous
chapters we will repeat them here for the convenience of the reader.
For a function g : [0, 1] × D → R with D ∈ {[0, 1],R} and a space X of real-valued
functions on [0, 1] and a space Y of real-valued functions on D we impose

g(·, 0) ∈ X, (H11(X))
∀u ∈ R : g(·, u) ∈ X, (H11∗(X))
∀t ∈ [0, 1] : g(t, ·) ∈ Y, (H12(Y ))

as well as

∀R > 0 ∃LR > 0 ∃zR ∈ X ∀s, t ∈ [0, 1] ∀u, v ∈ [−R,R] :
|g(s, u)− g(s, v)− g(t, u) + g(t, v)| ≤ LR|z(s)− z(t)||u− v|, (H13(X))

where the last condition has been recovered from (v) of Theorem 5.2.31. Observe that
(H12(L1)) is precisely condition (H1). Moreover, we define

∀R > 0 ∃aR ∈ L∞ ∀t ∈ [0, 1] ∀u, v ∈ [−R,R] :
|g(t, u)− g(t, v)| ≤ aR(t)|u− v|, (H6∗)

and that is a light generalization of condition (H6) which was defined as

∀R > 0 ∃LR > 0 ∀u, v ∈ [−R,R] : ‖g(·, u)− g(·, v)‖∞ ≤ LR|u− v|. (H6)

So, for measurable g clearly (H6) implies (H6∗) with aR ≡ LR, but not vice versa,
because in (H6∗) the function aR may be unbounded. Finally, for a function k :
[0, 1] × [0, 1] → R and a BV -space X we recall the (B)-type conditions of Section 4.3
which we have summarized as follows (also see Table 4.3.2).

∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1] : VarX
(
θk(·, s)

)
≤ m(s), (H14)

where VarX stands for the variation of the space X, that is, VarBV = Var, VarWBVp =
Varp, VarY BVϕ = Varϕ, VarΛBV = VarΛ and VarRBVp = RVarp. As we have seen in
Section 4.3 the scaling factor θ is relevant only in the space Y BVϕ when ϕ is arbitrary,
because (H14) is precisely condition (BX) from that section. In all other BV -space
BV , WBVp, ΛBV and RBVp we can always assume θ = 1; nevertheless, Table 4.3.2
lists (H14) in all BV -spaces separately. Armed with this arsenal of conditions we are
now in position to formulate and proof our main result of this section.

Theorem 7.1.16. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let f, g, h : [0, 1]× R→ R and k : [0, 1]× [0, 1]→ R be functions. Assume that

(i) k satisfies (H12(L1)) and (H14),

(ii) g satisfies (H11 ∗(L∞)) and (H6 ∗),

(iii) f satisfies (H11(X)), (H12(C1(R))) and (H13(X)),
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(iv) ∂2f satisfies (H11(B)) and (H6),

(v) h satisfies (H11(X)), (H12(C1(R))) and (H13(X)) with

|h(s, u)− h(s, v)− h(t, u) + h(t, v)| ≤ ER|wR(s)− wR(t)||u− v|

and wR ∈ X,

(vi) ∂2h satisfies (H11(B)) and (H6) with

‖∂2h(·, u)− ∂2h(·, v)‖∞ ≤ CR|u− v|.

Then for each R > 0 satisfying

sup
‖x‖X≤R

∥∥∥h(·, x(·)
)∥∥∥

X
< R and 7RCR + ERΦX(wR) + ‖∂2h(·, 0)‖∞ < 1 (7.1.22)

there is some % > 0 such that equation (7.1.20) has for fixed λ ∈ (−%, %) a unique
solution in BR(X), where ΦX is as in Table 1.2.1.

Before we give the proof, let us summarize and comment the requirements (i)–(vi) in
Theorem 7.1.16 even at the risk of being redundant in a more accessible and compressed
way. The (H11)-type conditions in (ii)–(vi) mean nothing but

g(·, u) ∈ L∞ ∀u ∈ R, f(·, 0), h(·, 0) ∈ X, ∂2f(·, 0), ∂2h(·, 0) ∈ B. (7.1.23)

The (H12)-type conditions in (i), (iii) and (v) read

∀t ∈ [0, 1] : k(t, ·) ∈ L1, f(t, ·), h(t, ·) ∈ C1(R) (7.1.24)

and justify simultaneously the existence of ∂2h and ∂2f in (7.1.23). The condition
(H14) in (i) is again

∃θ > 0 ∃m ∈ L1 ∀ ′s ∈ [0, 1] : VarX
(
θk(·, s)

)
≤ m(s). (7.1.25)

The (H6)-type and (H13)-type conditions in (ii)–(vi) can be summarized as follows:
For each R > 0 there are constants AR, BR, CR, DR, ER > 0 and functions zR, wR ∈ X
such that

∀ ′t ∈ [0, 1] ∀u, v ∈ [−R,R] :
∣∣∣g(t, u)− g(t, v)

∣∣∣ ≤ AR|u− v|, (7.1.26)

as well as for all u, v ∈ [−R,R],

‖∂2f(·, u)− ∂2f(·, v)‖∞ ≤ BR|u− v|, (7.1.27)
‖∂2h(·, u)− ∂2h(·, v)‖∞ ≤ CR|u− v|, (7.1.28)

∀s, t ∈[0, 1] :
|f(s, u)− f(s, v)− f(t, u) + f(t, v)| ≤ DR|zR(s)− zR(t)||u− v|, (7.1.29)

∀s, t ∈[0, 1] :
|h(s, u)− h(s, v)− h(t, u) + h(t, v)| ≤ ER|wR(s)− wR(t)||u− v|. (7.1.30)
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These conditions together with the Theorems 4.3.21, 5.2.31 and 5.2.34 will then guar-
antee that the single components Nh, Nf and Ik ◦ Ng in equation (7.1.21) satisfy a
Lipschitz condition in such a way that the entire operator Nh + λNf · (Ik ◦ Ng) maps
the ball BR(X) into itself and is a contraction provided that λ is sufficiently small and
R is sufficiently large.
Let us now take a deep breath for the

Proof of Theorem 7.1.16. Fix R > 0 so that (7.1.22) holds and let the quantities
AR, BR, CR, DR, ER > 0 and zR, wR ∈ X be as in (7.1.26)–(7.1.30). We start with
Ik ◦ Ng and define γX = γX(k,m, θ) to be the bound on the norm of Ik as in (4.3.6),
that is,

γX := ‖k(0, ·)‖L1
+ θ−1



2 ‖m‖L1
for X = BV,

2 ‖m‖1/p
L1

for X = WBVp,(
ϕ−1(1) + 1

)
max{1, ‖m‖L1

} for X = Y BVϕ,(
1 + λ−1

1

)
‖m‖L1

for X = ΛBV,

2 ‖m‖1/p
L1

for X = RBVp,

where θ and m are as in (H14). Then γX is well-defined and finite by (i). By Theorem
4.3.21 the integral operator Ik maps L∞ into X and satisfies

‖Ikx‖X ≤ γX ‖x‖L∞ for x ∈ L∞. (7.1.31)

By (ii) the function g satisfies all conditions of Theorem 5.2.34 with the Lipschitz
constant AR given in (7.1.26). Accordingly, the operator Ng maps X into L∞ with

‖Ngx−Ngy‖L∞ ≤ AR ‖x− y‖X for x, y ∈ BR(X).

This, the linearity of Ik and (7.1.31) imply for such x and y,

‖(Ik ◦Ng)x− (Ik ◦Ng)y‖X ≤ γXAR ‖x− y‖X , (7.1.32)

as well as

‖(Ik ◦Ng)x‖X ≤ ‖(Ik ◦Ng)x− (Ik ◦Ng)0‖X + ‖IkNg0‖X
≤ γXAR ‖x‖X + γX ‖g(·, 0)‖L∞
≤ γX

(
RAR + ‖g(·, 0)‖L∞

)
. (7.1.33)

We now turn to the operators Nf and Nh. By (iii)–(vi) the functions f and h satisfy
all hypotheses of Theorem 5.2.31 with the necessary constants given in (7.1.27) and
(7.1.29) for f and in (7.1.28) and (7.1.30) for h. Accordingly, the operators Nf and Nh

map the space X into itself, and by (5.2.23) they satisfy the estimates

‖Nfx−Nfy‖X ≤
(
7RBR +DRΦX(zR) + ‖∂2f(·, 0)‖∞

)
‖x− y‖X , (7.1.34)

‖Nhx−Nhy‖X ≤
(
7RCR + ERΦX(wR) + ‖∂2h(·, 0)‖∞

)
‖x− y‖X (7.1.35)
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for all x, y ∈ BR(X). Moreover,

‖Nfx‖X ≤ ‖Nfx−Nf0‖X + ‖Nf0‖X
≤ 7R2BR +RDRΦX(zR) +R ‖∂2f(·, 0)‖∞ + ‖f(·, 0)‖X (7.1.36)

for these x. Setting

L1 := 7RCR + ERΦX(wR) + ‖∂2h(·, 0)‖∞ ,
M1 := sup

‖x‖X≤R

∥∥∥h(·, x(·)
)∥∥∥

X
,

L2 := 7RBR +DRΦX(zR) + ‖∂2f(·, 0)‖∞ ,
M2 := 7R2BR +RDRΦX(zR) +R ‖∂2f(·, 0)‖∞ + ‖f(·, 0)‖X ,

L3 := γXAR,

M3 := γX
(
RAR + ‖g(·, 0)‖L∞

)
,

as well as T1 := Nh, T2 := Nf and T3 := Ik ◦Ng, we thus have in total

‖Tjx− Tjy‖X ≤ Lj ‖x− y‖X and ‖Tjx‖X ≤Mj for x, y ∈ BR(X), j ∈ {1, 2, 3}.
This follows for j = 1 from (7.1.35) and the definition of M1, for j = 2 from (7.1.34)
and (7.1.36), and for j = 3 from (7.1.32) and (7.1.33).
By (7.1.22), we have M1 < R and L1 < 1, and we can therefore pick % > 0 so that

M1 + %M2M3 ≤ R and L1 + %(M2L3 +M3L2) ≤ 1. (7.1.37)

Any fixed λ ∈ (−%, %) then satisfies

M1 + |λ|M2M3 < R and L1 + |λ|(M2L3 +M3L2) < 1. (7.1.38)

It remains to show that T := T1 + λT2 · T3 maps BR(X) into itself and is a contraction
for λ ∈ (−%, %). On the one hand, for fixed x ∈ BR(X) we obtain from the left part of
the estimates in (7.1.38),

‖Tx‖X = ‖T1x+ λ(T2x)(T3x)‖X ≤ ‖T1x‖X + |λ| ‖T2x‖X ‖T3x‖X
≤M1 + |λ|M2M3 ≤ R;

in particular, T maps BR(X) into itself. Note that we have here used the fact that X
is a normalized algebra. On the other hand, for x, y ∈ BR(X) we get

‖Tx− Ty‖X
= ‖T1x− T1y + λ(T2x)(T3x)− λ(T2y)(T3y)‖X
≤ ‖T1x− T1y‖X + |λ| ‖(T2x)(T3x)− (T2x)(T3y)‖X

+ |λ| ‖(T2x)(T3y)− (T2y)(T3y)‖X
≤ L1 ‖x− y‖X + |λ| ‖T2x‖X ‖T3x− T3y‖X + |λ| ‖T2x− T2y‖X ‖T3y‖X
≤ L1 ‖x− y‖X + |λ|M2L3 ‖x− y‖X + |λ|M3L2 ‖x− y‖X
=
(
L1 + |λ|

(
M2L3 +M3L2

))
‖x− y‖X ; (7.1.39)
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in particular, T is a contraction because of the right estimate in (7.1.38). Thus, the
Banach-Caccioppoli Fixed Point Theorem guarantees the existence of a unique solution
to (7.1.20) in BR(X). The proof is complete. �

The crucial condition in Theorem 7.1.16 is of course (7.1.22) and we make some remarks
on that condition. It guarantees that there exists at least one radius R such that the
operator Nh maps the ball BR(X) into itself and is a contraction on that ball. This is
a mandatory requirement, because Theorem 7.1.16 shall also be applicable for f ≡ 0.
But in this case, equation (7.1.20) reduces to the fixed point problem Nhx = x which
is solvable with the Banach-Caccioppoli Fixed Point Theorem only if Nh itself meets
all its requirements.
Furthermore, the interplay between the radius R and the bound % for the admissible
parameters λ is given by (7.1.37). To find such % depending on R, one has to calculate
the parameters L1, L2, L3,M1,M2,M3 and then pick % so that (7.1.37) is satisfied. We
illustrate this on our test equation (7.1.4) in the following

Example 7.1.17. Consider again the equation (7.1.4) for the parameters α > −1
and β ∈ R in the space BV . In the notation of (7.1.20) we can put h(t, u) = 0,
f(t, u) = 1, k(t, s) = t and g(t, u) = (α + 1)|u|α + 2βt. This implies for the quantities
in (7.1.26)–(7.1.30) that AR = (α + 1)|α|Rα−1, BR = CR = DR = ER = 0 and
zR = wR = 0; in particular, Theorem 7.1.16 is applicable only if α ≥ 1. Due to
γBV = γBV (k,m, θ) = γBV (1, 1) = 2, the numbers L1, L2, L3,M1,M2,M3 then become

L1 = 0, L2 = 0, L3 = 2(α + 1)|α|Rα−1,

M1 = 0, M2 = 1, M3 = 2
(

(α + 1)|α|Rα + 2|β|
)
.

Therefore, condition (7.1.37) now reads

2%
(

(α + 1)|α|Rα + 2|β|
)
≤ R, (7.1.40)

2%(α + 1)|α|Rα−1 ≤ 1. (7.1.41)

This explains that for α = 1 the bound % may be chosen independently of R as we have
seen in Example 7.1.3 and the discussion thereafter, because in this case (7.1.40) grows
linearly while (7.1.41) remains constant as R→∞. For α > 1, however, (7.1.40) grows
faster than linearly while (7.1.41) becomes unbounded as R→∞. To compensate this,
% has to be picked smaller the larger R is chosen. ♦
In case that Nh is a constant operator, that is, h(t, u) = h̃(t) for some h̃ ∈ X, condition
(7.1.22) reduces to

∥∥∥h̃∥∥∥
X
< R which is the condition R > ‖h‖BV in the Theorems 7.1.1

and 7.1.6. Moreover, if g does not depend on t, that is, g(t, u) = g̃(u), then the
condition (H6∗) posed in Theorem 7.1.16 reduces to g ∈ Liploc(R) which is exactly
(H3) of Theorem 7.1.1. In this sense, our very general Theorem 7.1.16 covers both
Theorem 7.1.1 and Theorem 7.1.6. However, this is not entirely true, as in Theorem
7.1.6 the conditions (H4) and (H5) required for the kernel function k are milder1 than

1See Example 7.1.7.
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(H2) used in Theorem 7.1.1. Nevertheless, Theorem 7.1.16 has a much wider range of
applications due to its generality.

We now look for (possibly unique) continuous solutions to (7.1.20) in our BV -spaces
and impose the following additional condition on the kernel function k : [0, 1]× [0, 1]→
R of the integral operator Ik.

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] : |t1 − t2| ≤ δ ⇒ ‖k(t1, ·)− k(t2, ·)‖L1
≤ ε. (H15)

This is precisely condition (F) from Section 4.3. We then have the following variant of
Theorem 7.1.16 which generalizes Theorem 7.1.12.

Theorem 7.1.18. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that all hypotheses of Theorem 7.1.16 are met. Moreover, assume in addition
that the functions f and h therein are continuous and that the kernel k satisfies the
additional assumption (H15). Then for each R > 0 satisfying (7.1.22) there is some % >
0 such that equation (7.1.20) has for fixed λ ∈ (−%, %) a unique solution in BR(X ∩C).
Here, the space X ∩ C is equipped with the norm ‖·‖X .

Proof. As we have seen in the proof of Theorem 7.1.16 for any R > 0 satisfying (7.1.22)
there is some % > 0 such that the operator Tλ, defined by

Tλx := Nhx+ λNfx(Ik ◦Ng)x,

maps the ball BR(X) into itself and is a contraction on that ball for every λ ∈ (−%, %).
Now, since we assume in addition that f and h are continuous, the superposition
operators Nh and Nf map C into itself. Moreover, since Ng maps X into L∞ by
Theorem 5.2.34, it clearly also maps X ∩C into L∞. The additional assumption (H15)
on the kernel k now guarantees that Ik maps L∞ into C by Theorem 4.3.16. Thus,
Tλ maps even the ball BR(X ∩ C) into itself and is a contraction on that ball for
every λ ∈ (−%, %). The claim follows now from the Banach-Caccioppoli Fixed Point
Theorem. �

Note that Theorem 7.1.18 can be applied to our test equation (7.1.4) if and only if
α ≥ 1.

We illustrate again the interplay between the different quantities AR, BR, CR, DR and
ER, but now on a more abstract level by investigating the following special case of
equation (7.1.20) which is still a slight generalization of (7.1.8).

Example 7.1.19. Consider the equation

x(t) = a(t)x(t) + b(t) + λ
∫ 1

0
k(t, s)g

(
s, x(s)

)
ds (7.1.42)

with the given data a, b : [0, 1]→ R, k : [0, 1]× [0, 1]→ R and g : [0, 1]×R→ R. This
equation is indeed a special case of (7.1.20) with f(t, u) = 1 and h(t, u) = a(t)u+ b(t).
In particular, ∂2f(t, u) = 0 and ∂2h(t, u) = a(t), as well as h(·, 0) = b and f(·, 0) = 1.
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We now check the hypothesis of Theorem 7.1.16 and work ourselves through the list
(7.1.23)–(7.1.30) of required conditions. Line (7.1.23) is satisfied if g(·, u) ∈ L∞ for
each u ∈ R, a ∈ B and b ∈ X. (7.1.24) is satisfied if k(t, ·) ∈ L1 for each t ∈ [0, 1].
Condition (7.1.25) holds if VarX(θk(·, s)) ≤ m(s) for some m ∈ L1, some θ > 0 and
almost all s ∈ [0, 1]. Additionally, we need∣∣∣g(t, u)− g(t, v)

∣∣∣ ≤ AR|u− v| for almost all t ∈ [0, 1] and all u, v ∈ [−R,R]

in order to fulfill (7.1.26). The lines (7.1.27), (7.1.28) and (7.1.29) are satisfied with
BR = CR = DR = 0 and zR = 0. Finally, (7.1.30) holds with ER = 1 and wR = a, and
so a ∈ B needs to be replaced by the stronger requirement a ∈ X.
Since h(t, x(t)) = a(t)x(t) + b(t) we have ‖h(·, x(·))‖X ≤ ‖a‖X R+ ‖b‖X for ‖x‖X ≤ R.
For (7.1.22) we also need 7RCR +ERΦX(wR) + ‖∂2h(·, 0)‖∞ = ΦX(a) + ‖a‖∞ = ‖a‖X .
If now ‖a‖X < 1, then (7.1.22) is satisfied for all sufficiently large R, and Theorem
7.1.16 says that for each such R there is some % > 0 such that (7.1.42) has for fixed
λ ∈ (−%, %) a unique solution in BR(X). ♦

As we have seen in Example 7.1.3 and the comments thereafter an integral equation of
the form (7.1.20) may have more than one solution. The question is now if we can get
uniqueness of solutions in the entire space with the help of the fixed point theorem of
Banach-Caccioppoli. Of course, this is possible only if the operator Nh + λNf (Ik ◦Ng)
is a contraction on the entire space; in particular, Nh and Nf should be contractions,
and Nf should map the entire space into a ball of fixed radius if we want to impose as
less restrictions to k and g as possible. According to the Theorems 5.2.28 and 5.2.29
this is doable only if the generating functions f and h degenerate to “almost” affine
functions; we therefore consider only the equation (7.1.42) for this purpose.

Theorem 7.1.20. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that the functions g : [0, 1]× R→ R and k : [0, 1]× [0, 1]→ R satisfy (i) and
(ii) of Theorem 7.1.16 and the additional condition

lim
R→∞

AR <∞, (7.1.43)

where AR is as in (7.1.26). Finally, assume that the functions a, b : [0, 1] → R belong
to X and satisfy ‖a‖X < 1. Then there is some % > 0 such that equation (7.1.42) has
for fixed λ ∈ (−%, %) a unique solution in the entire space X.

Note that AR is increasing with respect to R, and this justifies that the limit in (7.1.43)
exists at least in the extended sense.
By Example 7.1.19, all conditions on the data in Theorem 7.1.16 are satisfied. Ac-
cordingly, there is some % > 0 such that equation (7.1.42) has for every λ ∈ (−%, %) a
solution in X. However, % may depend on the radius R of the ball in which solutions
exist. In order to show that there is for each such λ only one solution in the entire
space X we need to prove that % can be chosen to be the same for infinitely many
arbitrarily large values of R, and this is what we are going to do now.
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Proof of Theorem 7.1.20. As we have discussed in Example 7.1.19, we have h(t, u) =
a(t)u + b(t) and f(t, u) = 1. From (7.1.43) we see that there is a number A > 0 such
that γXAR ≤ A for all R > 0, where γX is as in the proof of Theorem 7.1.16. Because
of ‖a‖X < 1 we can pick % > 0 so that

‖a‖X + %A ≤ 1, (7.1.44)

In the proof of Theorem 7.1.16, we also have considered the numbers Mj(R) = Mj and
Lj(R) = Lj for j ∈ {1, 2, 3}, and we do so here again. For these we have with the
results found in Example 7.1.19,

L1(R) = ΦX(a) + ‖∂2h(·, 0)‖∞ = ‖a‖X ,
M1(R) = sup

‖x‖X≤R

∥∥∥h(·, x(·)
)∥∥∥

X
≤ ‖a‖X R + ‖b‖X ,

L2(R) = 0,
M2(R) = ‖f(·, 0)‖X = 1,

L3(R) = γXAR,

M3(R) = γX
(
RAR + ‖g(·, 0)‖L∞

)
.

We now fix λ ∈ (−%, %) and get

M1(R) + λM2(R)M3(R) ≤ ‖a‖X R + ‖b‖X + λγX
(
RAR + ‖g(·, 0)‖L∞

)
≤ R

(
‖a‖X + λA

)
+ λγX ‖g(·, 0)‖L∞ + ‖b‖X .

Because of (7.1.44) we have ‖a‖X + λA < 1, and this is why we can find an R0 > 0
such that

M1(R) + λM2(R)M3(R) ≤ R for all R ≥ R0. (7.1.45)

Moreover, for all R > 0 we also have

L1(R) + λ
(
M2(R)L3(R) +M3(R)L2(R)

)
≤ ‖a‖X + λγXAR ≤ ‖a‖X + λA

< ‖a‖X + %A ≤ 1. (7.1.46)

From (7.1.45) and (7.1.46) we conclude similarly as in the proof of Theorem 7.1.16 that
the operator T : X → X, defined by

Tx(t) = a(t)x(t) + b(t) + λ
∫ 1

0
k(t, s)g

(
s, x(s)

)
ds,

has a unique fixed point in the ball BR(X) for every R ≥ R0; in particular, equation
(7.1.42) has exactly one solution in the entire space X. �

For our test equation (7.1.4) we have seen in Example 7.1.17 that AR = (α+1)|α|Rα−1.
In particular, we can apply Theorem 7.1.20 to this example if and only if α = 1, because
(7.1.43) forces AR to stay bounded as R→∞.
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Applying the Banach-Caccioppoli Contraction Principle to equation (7.1.20) is also
interesting from a computational point of view, because it provides an explicit method
on how to actually find the solution. Indeed, if the existence of a solution is guaranteed
on a ball BR(X) one may calculate it explicitly by an iterative process: Starting with
x0 := 0 the recursively defined sequence (xn) of functions, defined by

xn+1 = Nhxn + λNfxn(Ik ◦Ng)xn,

converges in the BV -type norm ‖·‖X to the unique solution x ∈ BR(X). Moreover, the
speed of convergence is given by the a priori estimate

‖xn − x‖X ≤
qn

1− q ‖x1‖X ,

where, as we have seen in (7.1.39), the number q = L1 + |λ|(M2L3 +M3L2) is a contrac-
tion constant of the operator Nh +λNf · (Ik ◦Ng) and the quantities M2,M3, L1, L2, L3
are as in (7.1.38). Let us illustrate this in the following example in the space BV .

Example 7.1.21. Let

h(t) =


− 1

240 for 0 ≤ t ≤ 1
2 ,

1
4 −

1
240e1/16 for 1

2 < t ≤ 1,

and consider the integral equation

x(t) = h(t) + 1
30e

−x(t)2
∫ 1

0
x(s) ds. (7.1.47)

In the notation of (7.1.20) we have f(t, u) = e−u
2 , g(t, u) = u and k(t, s) = 1. Therefore,

for R = 1 the quantities in (7.1.25)–(7.1.30) become

m = 0, θ = 1, AR = 1, BR = 2, CR = DR = ER = 0, zR = wR = 0.

Since γBV = γBV (k,m, θ) = 1 in this case, the numbers in (7.1.37) are

L1 = 0, M1 = ‖h‖BV = 121
240 −

1
120e1/16 , L2 = 14, M2 = 15, L3 = 1, M3 = 1.

Thus, for λ = 1/30, we have

M1 + λM2M3 = 121
240 −

1
120e1/16 + 1

2 < 1 = R,

L1 + λ(M2L3 +M3L2) = 29
30 < 1. (7.1.48)

Consequently, the requirements in (7.1.38) are satisfied which means that (7.1.47) has
a unique solution x ∈ B1(BV ) by Theorem 7.1.16.
In order to find the solution x explicitly, one may now compute the iterates

xn+1(t) = h(t) + 1
30e

−xn(t)2
∫ 1

0
xn(s) ds for n ∈ N0,
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where x0 := 0. Note that we already know from the Banach-Cacciopolli Fixed Point
Theorem that (xn) converges in BV to x. Since h is of the form

h(t) =
a1 for 0 ≤ t ≤ 1

2 ,

b1 for 1
2 < t ≤ 1,

a1 = − 1
240 , b1 := 1

4 −
1

240e1/16 ,

each iterate xn is also of this form, that is,

xn(t) =
an for 0 ≤ t ≤ 1

2 ,

bn for 1
2 < t ≤ 1,

for n ∈ N0,

where the sequences (an) and (bn) satisfy the coupled recurrence relation

an+1 = a1 + 1
60e

−a2
n(an + bn) and bn+1 = b1 + 1

60e
−b2

n(an + bn)

and the initial states a0 = b0 = 0. Computing the first iterates of (an) and (bn) gives
the numbers listed in Table 7.1.2.

Table 7.1.2: Approximate values of (an) and (bn) for n ∈ {0, . . . , 5}.
n 0 1 2 3 4 5
an 0.000000 −0.004167 −0.000135 −0.000004 0.000000 0.000000
bn 0.000000 0.246086 0.249881 0.249996 0.250000 0.250000

This suggests that the solution x is given by

x(t) =
0 for 0 ≤ t ≤ 1

2 ,
1
4 for 1

2 < t ≤ 1,

and it is easy to check that x is indeed the (unique) solution in B1(BV ).
Note that a contraction constant q of the operator defining the right hand side of
(7.1.47) is given by (7.1.48), that is, q = 29/30. In particular, the speed of convergence
of the iterates xn to the solution x may be estimated by

‖xn − x‖BV ≤ 30
(29

30

)n
‖h‖BV .

As Table 7.1.2 shows, in this example the convergence seems to be much faster. ♦

In order to solve equation (7.1.20) we have used the Contraction Principle of Banach-
Caccioppoli. As we have seen in the discussion around Theorem 7.1.13 one is temped
to try other fixed point theorems to solve (7.1.20), and this is what we are going to do
in the following.
The operator T = Nh + λNf · (Ik ◦ Ng) in (7.1.21) is the sum of the two operators
T1 = Nh and T2 = λNf · (Ik ◦Ng). If we can manage to arrange that T1 is a contraction
and T2 is continuous and compact such that its sum maps a closed ball into itself, then a
variant of Darbo’s fixed point theorem would deliver a fixed point and hence a solution



282 7.1. Hammerstein Integral Equations

to (7.1.20) in that ball. The advantage of this ansatz is that the operator T2 may
now only be continuous and not necessarily a contraction which allows us to impose
milder conditions on g. The price we pay is then again that we cannot expect to get
uniqueness of solutions. Unfortunately, there is another problem we have to overcome:
We do not have a (nontrivial) sufficient condition on the superposition operator Nf to
be compact, except those letting Nf degenerate to either a multiplication or a constant
operator. This way, we can only solve special cases of (7.1.20), and we will focus on
one in particular which reads

x(t) = h
(
t, x(t)

)
+ λ

∫ 1

0
k(t, s)g

(
s, x(s)

)
ds. (7.1.49)

Here is the formulation of the Darbo like fixed point theorem we were talking about.

Theorem 7.1.22. Let E be a nonempty, bounded, closed and convex subset of a Banach
space X. Assume that the operators T1, T2 : E → X satisfy the following conditions.

(i) T1 is a contraction,

(ii) T2 is continuous and compact,

(iii) T1x+ T2x ∈ E for all x ∈ E.

Then the operator T = T1 + T2 has a fixed point in E.

Observe that Theorem 7.1.22 indeed follows from the classical fixed point theorem of
Darbo, because if T1 is a contraction with contraction constant L ∈ [0, 1), and if T2
is compact, then µ((T1 + T2)(M)) ≤ Lµ(M) for all M ⊆ E and µ being either the
Kuratowski or the Hausdorff measure of non-compactness [47, 83]. Also note that
Theorem 7.1.22 is a stronger version of a fixed point theorem of Krasnoselskii [82].
Therein, condition (iii) is replaced by the much more restrictive condition T1x+T2y ∈ E
for all x, y ∈ E.
We also remark that the continuity requirement in (ii) cannot be dropped.

Example 7.1.23. Set X = E = [0, 1] and T1 := 0 and T2 := χ{0}. Then T1 is a
contraction, T2 is compact but not continuous on E, and T1x + T2x = x ∈ {0, 1} ⊆ E

for all x ∈ E. However, T = T1 + T2 has no fixed point in E, because Tx = x is
equivalent to χ{0}(x) = x which has no solution in E. ♦
To use Theorem 7.1.22 for equation (7.1.49) we impose the following new conditions
on g : [0, 1]× R→ R.

∀R > 0 ∃MR > 0 ∀ ′t ∈ [0, 1] ∀u ∈ [−R,R] :
∣∣∣g(t, u)

∣∣∣ ≤MR, (H16)

∀ ′t ∈ [0, 1] : g(t, ·) ∈ C(R). (H17)

In addition, we need the following condition on the kernel function k : [0, 1]×[0, 1]→ R.

∀θ > 0 ∃mθ ∈ L1 ∀ ′s ∈ [0, 1] : VarX
(
θk(·, s)

)
≤ mθ(s), (H18)
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where VarX denotes again the respective variation in the space X as in (H14). This
condition is precisely condition (B∗X) in Section 4.3 and equivalent to (H14) for any
of our BV -spaces except for X = Y BVϕ, as we have seen in Example 4.3.18. For a
precise formulation of (H18) for each individual BV -space we refer the reader to Table
4.3.2. With these new conditions at hand, we obtain

Theorem 7.1.24. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g, h : [0, 1]× R→ R and k : [0, 1]× [0, 1]→ R be functions. Assume that

(i) k satisfies (H12(L1)) and (H18),

(ii) g satisfies (H11∗(L∞)), (H16) and (H17),

(iii) h satisfies (H11(X)), (H12(C1(R))) and (H13(X)) with

|h(s, u)− h(s, v)− h(t, u) + h(t, v)| ≤ ER|wR(s)− wR(t)||u− v|

and wR ∈ X,

(iv) ∂2h satisfies (H11(B)) and (H6) with

‖∂2h(·, u)− ∂2h(·, v)‖∞ ≤ CR|u− v|.

Then for each R > 0 satisfying

sup
‖x‖X≤R

∥∥∥h(·, x(·)
)∥∥∥

X
< R and 7RCR + ERΦX(wR) + ‖∂2h(·, 0)‖∞ < 1 (7.1.50)

there is some % > 0 such that equation (7.1.49) has for fixed λ ∈ (−%, %) a solution in
BR(X).

Proof. For R > 0 let

SR := sup
‖x‖X≤R

∥∥∥h(·, x(·)
)∥∥∥

X
.

Condition (7.1.50) together with (iii), (iv) and Theorem 5.2.31 guarantees that the
operator T1 := Nh maps the ball BR(X) into itself with

‖T1x‖X = ‖Nhx‖X ≤ SR for x ∈ BR(X). (7.1.51)

Moreover, T1 is a contraction on BR(X) by (5.2.23) and (7.1.50).
We now deal with the operator T2 := Ik ◦Ng and show first that T2 maps the space X
into itself. If γX = γ(k,m, θ) denotes the same constant as in the proof of Theorem
7.1.16, we have by (i) and Theorem 4.3.21 that Ik maps the space L∞ into X and is
bounded with

‖Ikx‖X ≤ γX ‖x‖L∞ for x ∈ L∞.
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Moreover, (ii) implies that for each R > 0 there is some MR > 0 such that |g(t, u)| ≤
MR for almost all t ∈ [0, 1] and all u ∈ [−R,R]. In particular, Ng maps the space X
into L∞ with

‖Ngx‖L∞ ≤MR for x ∈ BR(X). (7.1.52)

This means that T2 = Ik ◦Ng maps the space X into itself and is bounded with

‖T2x‖X = ‖(Ik ◦Ng)x‖X ≤ γXMR for x ∈ BR(X). (7.1.53)

We now show that T2 : X → X is continuous. To this end, fix x ∈ X and take a
sequence (xn) of functions in X that converges in X to the function x. In particular,
the sequence (xn) lies in a ball BR(X) for some R > 0 and converges pointwise to x.
By (ii), g(t, ·) is continuous for almost every fixed t ∈ [0, 1]; in particular, the functions
Ngxn = g(·, xn(·)) converge to Ngx = g(·, x(·)) almost everywhere on [0, 1], and because
of (7.1.52) they form a bounded sequence in L∞. By Proposition 4.3.22 we conclude
that the functions T2xn = (Ik ◦Ng)xn converge in X to T2x = (Ik ◦Ng)x. This shows
that T2 is continuous.
A similar argument yields that T2 is compact. Indeed, if (xn) is a bounded sequence in
X we find by Helly’s Theorem 1.2.28 a subsequence (xnj)j which converges pointwise
to some function x ∈ X. Exactly as above we get that the functions T2xnj = Ik ◦Ngxnj
converge in X to T2x = Ik ◦Ngx as j →∞.
We now fix R > 0 with (7.1.50). Then SR < R, and this is why we can pick % > 0 so
that

SR + %γXMR ≤ R. (7.1.54)

Using the estimates (7.1.51) and (7.1.53) this implies for Tλ := T1+λT2 with λ ∈ (−%, %)
fixed,

‖Tλx‖X ≤ ‖T1x‖X + |λ| ‖T2x‖X ≤ SR + |λ|γXMR

≤ SR + %γXMR ≤ R for x ∈ BR(X)

which means that Tλ maps the ball BR(X) into itself. By Theorem 7.1.22, applied with
E = BR(X), we obtain that Tλ has a fixed point which is a solution to (7.1.49) in the
ball BR(X). �

Of course, if we impose additionally that h is continuous and that k satisfies (H15)
we get an analogue of Theorem 7.1.18. The proof is exactly the same as before. The
additional hypothesis on h and k guarantee that the operators Nh and Ik ◦Ng map the
space C into itself. We therefore obtain

Theorem 7.1.25. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that all hypotheses of Theorem 7.1.24 are met. Moreover, assume in addition
that the functions h therein is continuous and that the kernel k satisfies the additional
assumption (H15). Then for each R > 0 satisfying (7.1.50) there is some % > 0 such
that equation (7.1.49) has for fixed λ ∈ (−%, %) a solution in BR(X ∩ C). Here, the
space X ∩ C is equipped with the norm ‖·‖X .
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The two differences between the Theorems 7.1.16 and 7.1.24 and the Theorems 7.1.18
and 7.1.25 is that in the latter two the conditions on g are milder for the price that
we loose uniqueness of solutions. In particular, the latter two theorems are applicable
to our test equation (7.1.4) if and only if α ≥ 0. As we have seen in Example 7.1.15,
unique solutions cannot be guaranteed.

As a last existence result concerning equation (7.1.49) we give criteria under which it
has at least one solution in X for every λ ∈ R.

Theorem 7.1.26. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that the functions g, h : [0, 1] × R → R and k : [0, 1] × [0, 1] → R satisfy all
conditions of Theorem 7.1.24 and the additional assumptions

∀R > 0 : LR < 1 and lim sup
R→∞

R− SR
MR + 1/R =∞, (7.1.55)

where

LR := 7RCR + ERΦX(wR) + ‖∂2h(·, 0)‖∞ ,
MR := sup

|u|≤R
‖g(·, u)‖L∞ and SR := sup

‖x‖X≤R
‖h(·, x(·))‖X .

Then equation (7.1.49) has for every λ ∈ R a solution in X.

Proof. Fix λ ∈ R and let γX be as in the proof of Theorem 7.1.24. Due to (7.1.55)
there is some R > 0 such that LR < 1 and R− SR ≥ γX |λ|(MR + 1/R) which implies

SR + |λ|γXMR ≤ R.

As a consequence, the operator Tλ := T1 + λT2, where T1 := Nh and T2 := Ik ◦ Ng,
maps the ball BR(X) into itself, T1 is a contraction on that ball and λT2 is continuous
and compact, as we have shown in the proof of Theorem 7.1.24. Theorem 7.1.26 is now
an immediate consequence of Theorem 7.1.22. �

Theorem 7.1.26 can be understood as a generalization of Theorem 7.1.13. Let us now
check how the condition (7.1.55) looks like for our test equation (7.1.4).

Example 7.1.27. Let α ≥ 0. As we have seen in Example 7.1.17, LR = SR = 0, where
LR and SR are now as in Theorem 7.1.26. Moreover, since g(t, u) = (α+ 1)|u|α + 2βt,
we get

(α + 1)Rα − 2|β| ≤MR ≤ (α + 1)Rα + 2|β|,
where MR is also as in Theorem 7.1.26. We obtain

R

(α + 1)Rα + 2|β|+ 1/R ≤
R− SR

MR + 1/R ≤
R

(α + 1)Rα − 2|β|+ 1/R
and hence

lim
R→∞

R− SR
MR + 1/R =


∞ for 0 ≤ α < 1,
1/2 for α = 1,
0 for α > 1

which means that (7.1.55) is satisfied if and only if 0 ≤ α < 1. ♦
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Thus, Theorem 7.1.26 is applicable to equation (7.1.4) if and only if 0 ≤ α < 1 and β is
arbitrary. This explains why the equations (7.1.12) and (7.1.14) do not have solutions
for every λ as we have seen in the Examples 7.1.8 and 7.1.9, respectively, whereas
equation (7.1.18) has solutions for every λ (for β < 0 and |λ| ≥ −4β even more than
one), as we have found out in Example 7.1.15.
The following Table 7.1.3 shows the combinations of parameters α and β for which the
theorems discussed so far may be applied to solve our test equation (7.1.4).

Table 7.1.3: Parameters in (7.1.4) for which the preceding theorems may be applied.
Theorem parameters
7.1.1 α ≥ 1 β = 0
7.1.6 α ≥ 1 β ∈ R
7.1.12 α ≥ 1 β = 0
7.1.13 0 ≤ α < 1 β = 0
7.1.16 α ≥ 1 β ∈ R
7.1.18 α ≥ 1 β ∈ R
7.1.20 α = 1 β ∈ R
7.1.24 α ≥ 0 β ∈ R
7.1.25 α ≥ 0 β ∈ R
7.1.26 0 ≤ α < 1 β ∈ R

Especially for boundary and initial value problems which we will discuss briefly in
Section 7.3, the following more abstract equation will turn out to be very handy. Let
us consider

x(t) = Ax(t) + λ
∫ 1

0
k(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1 (7.1.56)

in a BV -space X, where A : X → X is a linear operator. In order to solve this
equation, we need a variant of Darbo’s Theorem 7.1.22 for balls. The idea for the
proof is taken from [49] and relies on the fixed point theorem of Schauder.

Theorem 7.1.28. Let (X, ‖·‖) be a Banach algebra. Assume that the operators A, S :
X → X have the following properties.

(i) A is linear and bounded with ‖An‖X→X < 1 for some n ∈ N.

(ii) S is continuous and compact with S
(
BR(X)

)
⊆ BR′(X).

If the radii R and R′ are related by

R′

1− ‖An‖X→X

n−1∑
j=0

∥∥∥Aj∥∥∥
X→X

≤ R, (7.1.57)

then the operator A+ S has a fixed point in BR(X).
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Proof. Because of (i) the Neumann series of A converges, and I −A is invertible with

(I − A)−1 =
 ∞∑
j=0

Ajn

 n−1∑
j=0

Aj.

In particular, (I − A)−1 is bounded with

∥∥∥(I − A)−1
∥∥∥
X→X

≤ 1
1− ‖An‖X→X

n−1∑
j=0

∥∥∥Aj∥∥∥
X→X

.

Since S maps the ball BR(X) into the ball BR′(X) by (ii), the composition T :=
(I − A)−1 ◦ S maps the ball BR(X) into the ball BR′′(X), where R′′ is given by

R′′ = R′

1− ‖An‖X→X

n−1∑
j=0

∥∥∥Aj∥∥∥
X→X

.

Consequently, if R′′ ≤ R, and this is just the relation (7.1.57), the operator T maps
the ball BR(X) into itself. Moreover, since S is continuous and compact and (I−A)−1

is linear and bounded, the operator T is also continuous and compact. By Schauder’s
Fixed Point Theorem, T has a fixed point x ∈ BR(X) which means (I − A)−1Sx = x.
Equivalently, Sx = (I − A)x = x − Ax and hence Ax + Sx = x. This completes the
proof. �

Using Gelfand’s Formula
R(A) = lim

n→∞ ‖A
n‖1/n

X→X

for the spectral radius R(A) of a linear operator A : X → X on a Banach space
X (see [85]) one may replace condition (i) of Theorem 7.1.28 by R(A) < 1. While
R(A) < 1 is equivalent to ‖An‖X→X < 1 for some n ∈ N, it is not equivalent to
‖A‖X→X < 1. Furthermore, having spectral radius less than one does not mean that
the operator norm is bounded somehow in terms of the spectral radius. We show both
in the following example.

Example 7.1.29. For c ∈ R consider the linear operator Ac : BV → BV , defined by
Acx(t) = ctx(0). Then ‖Ac‖BV→BV = 2|c|, but since

A2
cx(t) = Ac(Acx)(t) = ct(Acx)(0) = 0 for all x ∈ BV, t ∈ [0, 1],

we have ‖A2
c‖BV→BV = 0. By picking c arbitrarily large we see that the norms of the

operators Ac may become arbitrarily large although the operators Ac themselves still
have spectral radius 0. ♦
Note that if ‖A‖X→X < 1 which means that A itself is a contraction, then the relation
(7.1.57) reduces to R′ ≤ R(1 − ‖A‖X→X). We can now apply Theorem 7.1.28 to
equation (7.1.56).
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Theorem 7.1.30. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that the functions g : [0, 1] × R → R and k : [0, 1] × [0, 1] → R satisfy (i)
and (ii) of Theorem 7.1.24. Moreover, assume that A : X → X is a bounded linear
operator with ‖An‖X→X < 1 for some n ∈ N. Then for each R > 0 there is some % > 0
such that equation (7.1.56) has for fixed λ ∈ (−%, %) a solution in BR(X).

Proof. As we have seen in the proof of Theorem 7.1.24 the operator S̃ := Ik ◦Ng maps
the space X into itself, is continuous and compact and satisfies the estimate (7.1.53),
that is, ∥∥∥S̃x∥∥∥

X
≤ γXMR for x ∈ BR(X), R > 0, (7.1.58)

where γX is as in the proof of Theorem 7.1.16 and MR := sup|u|≤R ‖g(·, u)‖L∞ .
The inequality (7.1.58) means that S̃ maps the ball BR(X) into the ball BγXMR

(X) for
any R > 0. Note that MR is finite for each R > 0 as g satisfies (H16). We now fix
R > 0. Since ‖An‖X→X < 1 we may pick % > 0 so that

%
γXMR

1− ‖An‖X→X

n−1∑
j=0

∥∥∥Aj∥∥∥
X→X

≤ R. (7.1.59)

Then, for each λ ∈ (−%, %) the operator S := λS̃ maps the ball BR(X) into the ball
BR′(X), where R′ = |λ|γXMR. Because of (7.1.59), the two radii R and R′ satisfy
(7.1.57). Thus, A+ S = A+ λS̃ has a fixed point in BR(X) by Theorem 7.1.28. �

As an application we look at the following

Example 7.1.31. Consider the integral equation

x(t) = ω

2 t
∫ 1

0
x
(

sin2(ωs)
)

ds+ λ
∫ 1

0
sin(ts) cos

(
ωx(s) + s

)
ds (7.1.60)

in the space BV for a constant ω > 0. In the notation of (7.1.56) we have k(t, s) =
sin(ts) which clearly satisfies (H12(L1)) and (H18), g(t, u) = cos(ωu + t) ≤ 1 for all
t ∈ [0, 1] and u ∈ R which obviously fulfills (H11∗(L∞)), (H16) and (H17), as well as

Ax(t) = ω

2 t
∫ 1

0
x
(

sin2(ωs)
)

ds

which defines a linear operator A : BV → BV with

‖Ax‖BV = ‖Ax‖∞ + Var(Ax) = ω
∣∣∣∣∫ 1

0
x
(

sin2(ωs)
)

ds
∣∣∣∣ ≤ ω ‖x‖BV .

Consequently, ‖A‖BV→BV ≤ ω, and the function x = 1 shows even ‖A‖BV→BV = ω.
Since, by Theorem 1.1.20,

Var
(
θk(·, s)

)
= θ

∫ 1

0

∣∣∣∂1k(t, s)
∣∣∣ dt = θ

∫ 1

0
s
∣∣∣cos(ts)

∣∣∣ dt ≤ θs

we can take θ = 1 and m(s) = s in (H14) and get

γBV = γBV (k,m, θ) = ‖k(0, ·)‖L1
+ 2θ−1 ‖m‖L1

= 1,
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as well asMR = 1, where γBV andMR are as in the proof of Theorem 7.1.30. Moreover,
the estimate (7.1.59) is certainly satisfied if ω ∈ (0, 1) and 0 < % ≤ (1− ω)R, because
then A is a contraction. Thus, for ω ∈ (0, 1) Theorem 7.1.30 says that for any R > 0
and |λ| < (1− ω)R equation (7.1.60) has a solution x ∈ BR(BV ). ♦
Note that equation (7.1.60) cannot be written in the form (7.1.49) and hence cannot
be solved using Theorem 7.1.24 or one of its successive results. Later in Example 7.3.4
we will see that integral equations of type (7.1.56) may indeed be solved with Theorem
7.1.30 even when A is not a contraction.

If one replaces X in Theorem 7.1.30 by X ∩ C and adjusts the requirements on the
data, we obtain the following result which is very similar to Theorem 7.1.25.

Theorem 7.1.32. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that the functions g : [0, 1]× R→ R and k : [0, 1]× [0, 1]→ R satisfy (i) and
(ii) of Theorem 7.1.24 and that k meets in addition (H15). Moreover, assume that
A : X ∩ C → X ∩ C is a linear operator with ‖An‖X∩C→X∩C < 1 for some n ∈ N.
Then for each R > 0 there is some % > 0 such that equation (7.1.56) has for fixed
λ ∈ (−%, %) a solution in BR(X ∩ C). Here, X ∩ C is equipped with the norm ‖·‖X .

The proof rests on the same ideas as presented in the proofs of the Theorems 7.1.25
and 7.1.30 and will be omitted. Observe that since k and A in Example 7.1.31 even
satisfy the hypotheses of Theorem 7.1.32, any solution to (7.1.60) must be continuous.
Let us summarize in Table 7.1.4 which of the preceding theorems may be applied to
the various Hammerstein integral equations considered in this section. As always, X
serves as a placeholder for one of the spaces BV , WBVp, Y BVϕ, ΛBV and RBVp.

Table 7.1.4: Theorems solving Hammerstein integral equations of several types.
By Theorem equation has solution in for
7.1.1 (7.1.1) exactly one BR(BV ) small |λ|
7.1.6 (7.1.8) exactly one BR(BV ) small |λ|
7.1.12 (7.1.1) exactly one BR(BV ∩ C) small |λ|
7.1.13 (7.1.1) at least one BV all λ and h = 0

7.1.16 (7.1.20) exactly one BR(X) small |λ|
7.1.18 (7.1.20) exactly one BR(X ∩ C) small |λ|
7.1.20 (7.1.42) exactly one X small |λ|
7.1.24 (7.1.49) at least one BR(X) small |λ|
7.1.25 (7.1.49) at least one BR(X ∩ C) small |λ|
7.1.26 (7.1.49) at least one X all λ
7.1.30 (7.1.56) at least one BR(X) small |λ|
7.1.32 (7.1.56) at least one BR(X ∩ C) small |λ|
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7.2 Volterra Integral Equations

In this short section we translate the theorems discussed in the previous section onto
Volterra integral equations, that is, equations of the form

x(t) = h
(
t, x(t)

)
+ λf

(
t, x(t)

) ∫ t

0
ν(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1, (7.2.1)

for given data f, g, h : [0, 1]×R→ R and a Volterra kernel ν : [0, 1]× [0, 1]→ R, that is,
ν(t, s) = 0 for 0 ≤ t < s ≤ 1. Note that any Volterra integral equation (7.2.1) can be
understood as a Hammerstein integral equation (7.1.49) where the kernel k is replaced
by the Volterra kernel ν. Therefore, each result of the previous section remains true for
the equation (7.2.1) and its various special cases. However, due to the special structure
of the Volterra kernel, conditions imposed on the kernel k in Section 7.1 may now be
rephrased in a more relaxed form, and we already did so for most of the conditions
considered so far in Section 4.3. For convenience of the reader we again repeat the
needed conditions here to make the presentation self-contained.

Let us begin with the Volterra version of equation (7.1.1) which is

x(t) = h(t) + λ
∫ t

0
ν(t, s)g

(
x(s)

)
ds for 0 ≤ t ≤ 1 (7.2.2)

and the two corresponding conditions (H1) and (H2). Since these two conditions are
precisely (A) and (B) of Section 4.3, their Volterra equivalent is given by

∀t ∈ [0, 1] : ν(t, ·) ∈ L1[0, t], (V1)
∃m ∈ L1 ∀ ′s ∈ [0, 1] : |ν(s, s)|+ Var

(
ν(·, s), [s, 1]

)
≤ m(s), (V2)

and these are the conditions (VA) and (VB) of Section 4.3.

With (H1) and (H2) replaced by (V1) and (V2) we obtain from Theorem 7.1.1,

Theorem 7.2.1. Assume (V1), (V2) and (H3), and let h ∈ BV be fixed. Then for
each R > ‖h‖BV there is some % > 0 such that equation (7.2.2) has for fixed λ ∈ (−%, %)
a unique solution in BR(BV ).

The bound % for the admissible parameters λ given in (7.1.3) is now

% = min
R− ‖h‖BV‖g‖[−R,R]

,
1

lip(g, [−R,R])

 1
2 ‖m‖L1

, (7.2.3)

because ν(0, s) = 0 for all s ∈ (0, 1]. This may enlarge the set of the λ, as the following
example demonstrates.
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Example 7.2.2. We consider the Hammerstein and Volterra equation

x(t) = λ
∫ 1

0
κ(t, s)x(s) ds and x(t) = λ

∫ t

0
κ(t, s)x(s) ds (7.2.4)

in the space BV , where

κ(t, s) =

max
{
s− t
s

,
t− s
1− s

}
for 0 < s < 1,

1 for s ∈ {0, 1}
which is shown in the picture below as a function of t only.

t
s 1

1

0

Figure 7.2.1: κ(·, s) for some s ∈ (0, 1).

In the notation of (7.1.1) and (7.2.2) we can put h(t) = 0 and g(u) = u. Then
‖g‖[−R,R] = R and lip(g, [−R,R]) = 1. For fixed s ∈ (0, 1) we have Var

(
κ(·, s)

)
= 2.

For s ≤ t ≤ 1 we have κ(t, s) = t−s
1−s and thus |κ(s, s)| + Var(κ(·, s), [s, 1]) = 1.

Consequently, we take m1 ≡ 2 for m in (H2) and m2 ≡ 1 for m in (V2). Due to
κ(0, ·) = 1 the corresponding % become %1 = 1/5 in (7.1.3) and %2 = 1/2 in (7.2.3). ♦
Since the assumptions on the kernel in Theorem 7.1.13 are the same as in Theorem
7.1.1, the Volterra equivalent of the former becomes

Theorem 7.2.3. Under the assumptions (V1), (V2), (H9) and (H10) equation (7.2.2)
has for h = 0 and every λ ∈ R a solution x ∈ BV .

Observe that we could not expect uniqueness of solutions in Theorem 7.1.13 and neither
can we here.

Example 7.2.4. Consider the Volterra equation

x(t) = 3
2λt

∫ t

0

√
|x(s)| ds (7.2.5)

which is a Volterra equivalent to (7.1.16). Obviously, x = 0 is a solution. However,
the ansatz x(t) = ctp for p > 0 yields that p = 4 and 2c = λ

√
|c|. This equation has

for any λ ∈ R a solution, namely c = λ2/4 for λ ≥ 0 and c = −λ2/4 for λ < 0. In
particular, (7.2.5) has for any λ 6= 0 at least two distinct solutions. ♦
The slightly more general equation (7.1.8) reads in the Volterra version

x(t) = h(t) + λ
∫ t

0
ν(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1. (7.2.6)

The kernel conditions (H4) and (H5) turn into

sup
t∈[0,1]

‖ν(t, ·)‖L1[0,t] <∞, (V3)

sup
τ∈[0,1]

Var
(∫ min{τ,·}

0
ν(·, s) ds

)
<∞. (V4)
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Here, (V4) is precisely (VC) of Section 4.3 and means that the Jordan variation of the
function t 7→ ∫min{τ,t}

0 ν(t, s) ds stays bounded as τ runs through [0, 1]. As we have seen
in Example 4.3.28 an arbitrary kernel satisfying (H1) and (V4) does not have to satisfy
(H5). In the next example we show that an arbitrary kernel k may satisfy (H1), (V3)
and (V4) but not (H5).

Example 7.2.5. Consider the kernel k : [0, 1]× [0, 1]→ R, defined by

k(t, s) =
1/
√
st for 0 < st ≤ 1,

0 for st = 0.

For each t ∈ [0, 1] we have k(t, s) = 0 if t = 0 and k(t, s) = t−1/2/
√
s for 0 < s ≤ 1.

Thus, k(t, ·) ∈ L1 for each t ∈ [0, 1] and so k fulfills (H1). Furthermore,

sup
t∈[0,1]

‖k(t, ·)‖L1[0,t] = sup
t∈(0,1]

1√
t

∫ t

0

1√
s

ds = 2

showing that k meets (V3).
Letting

h(τ, t) :=
∫ min{τ,t}

0
k(t, s) ds

we have for any τ ∈ [0, 1] and t ∈ (0, 1],

h(τ, t) =
∫ min{τ,t}

0

1√
st

ds = 2
√

min{τ/t, 1},

and for t = 0 we get h(τ, 0) = 0. Consequently,

sup
τ∈[0,1]

Var
(
h(τ, ·)

)
= sup

τ∈[0,1]

(
4− 2

√
τ
)

= 4

showing that k satisfies (V4). However, for t, τ ∈ (0, 1],∫ τ

0
k(t, s) ds = 2

√
τ√
t

which is unbounded with respect to t. Consequently, (H5) cannot hold. ♦
With the respective Volterra versions (V3) and (V4) for (H4) and (H5) at hand, The-
orem 7.1.6 reads as follows.

Theorem 7.2.6. Assume (H3 ∗), (V3) and (V4), and let h ∈ BV be fixed. Then for
each R > ‖h‖BV there is some % > 0 such that equation (7.2.6) has for fixed λ ∈ (−%, %)
a unique solution in BR(BV ).

The number % from (7.1.11) bounding the set of parameters λ for which Theorem 7.2.6
may be applied is then

% = min


R− ‖h‖BV

2S1

(
LR +RLR + |g(0, 0)|

) , 1
LRS2

 , (7.2.7)
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where S1 is the supremum in (V4), S2 is the supremum in (V3) and LR = lip(g, [0, 1]×
[−R,R]) is defined as in (7.1.10).

For searching continuous BV -solutions to (7.2.6) we have to adapt condition (H7) to
Volterra kernels. Let us assume for a moment that ν is a Volterra kernel satisfying
(H7), and let ε > 0 be given. Then there is some δ > 0 such that for each t1, t2 ∈
[0, 1] with |t1 − t2| ≤ δ there is a measurable set I ⊆ [0, 1] of measure 1 so that
|ν(t1, s)− ν(t2, s)| ≤ ε for all s ∈ I. For t1 < s ≤ t2 this implies |ν(t2, s)| ≤ ε, and for
t2 < s ≤ t1 it gives |ν(t1, s)| ≤ ε. Therefore, (H7) implies the following two conditions.

∀ε > 0 ∃δ > 0 ∀t ∈ [0, 1] ∀ ′s ∈
[
0, 1] :

0 ≤ t− s ≤ δ ⇒ |ν(t, s)| ≤ ε (V5a)

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] ∀ ′s ∈
[
0,min{t1, t2}

]
:

|t1 − t2| ≤ δ ⇒ |ν(t1, s)− ν(t2, s)| ≤ ε. (V5b)

For a Volterra kernel ν these two conditions together imply in turn (H7). To see this
pick for a given ε > 0 a number δ > 0 such that (V5a) and (V5b) hold simultaneously.
Let t1, t2 ∈ [0, 1] be so that |t1 − t2| ≤ δ. Then by (V5a) there are measurable sets
Ia,1, Ia,2 ⊆ [0, 1] of measure 1 such that |ν(t1, s)| ≤ ε for all s ∈ Ia,1 and |ν(t2, s)| ≤ ε

for all s ∈ Ia,2. By (V5b) we find another measurable set Ib ⊆ [0,min{t1, t2}] of full
measure |Ib| = min{t1, t2} such that |ν(t1, s) − ν(t2, s)| ≤ ε for all s ∈ Ib. Then
J := Ia,1 ∩ Ia2 ∩

(
Ib ∪ (min{t1, t2}, 1]

)
has measure 1. Now, fix s ∈ J . If s ≤ t1 ≤ t2 we

have s ∈ Ib and thus |ν(t1, s)−ν(t2, s)| ≤ ε. For t1 < s ≤ t2 we have s ∈ Ia,2 and hence
|ν(t1, s) − ν(t2, s)| = |ν(t2, s)| ≤ ε. Similarly, |ν(t1, s) − ν(t2, s)| = |ν(t1, s)| ≤ ε for
t2 < s ≤ t1, because then s ∈ Ia,1. Finally, for t1, t2 < s we have |ν(t1, s)− ν(t2, s)| =
0 ≤ ε. Consequently, (H7) holds.
An arbitrary kernel k satisfying (V5a) and (V5b) does not have to satisfy (H7). Here
is an example of such a kernel.

Example 7.2.7. Define k : [0, 1] × [0, 1] → R by k(t, s) = χ{0}(t). For t ∈ (0, 1] we
have |k(t, s)− k(0, s)| = 1 for all s ∈ [0, 1] and hence (H7) is violated.
However, (V5a) and (V5b) hold. To see this fix t ∈ [0, 1]. If t > 0 then k(t, s) = 0 for
all s ∈ [0, 1]. If t = 0, the set of all s with 0 ≤ s ≤ t contains only s = 0 and hence is a
null set. Thus, (V5a) is satisfied. For (V5b) fix t1, t2 ∈ [0, 1]. If m := min{t1, t2} > 0,
then t1, t2 ≥ m > 0, and for s ∈ [0,m] we have k(t1, s) = k(t2, s) = 0. If m = 0, the
set [0,m] contains only s = 0 and hence is a null set again. Consequently, also (V5b)
is satisfied. ♦
With the condition (H7) replaced by (V5a) and (V5b) and the kernel k replaced by a
Volterra kernel ν, Theorem 7.1.12 can now be reformulated as follows.

Theorem 7.2.8. Assume (V1), (V2), (H3), (V5a) and (V5b), and let h ∈ BV ∩C be
fixed. Then for each R>‖h‖BV there is some % > 0 such that equation (7.2.2) has for
fixed λ∈(−%, %) a unique solution in BR(BV ∩C), where BV ∩C is equipped with the
norm ‖·‖BV .
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We now come to the main result, namely Theorem 7.1.16 which solves the most general
Hammerstein integral equation (7.1.20). In order to translate this theorem onto the
equation (7.2.1) we have to look only at the conditions made in part (i) of Theorem
7.1.16. Besides (H12(L1)) which is equivalent to (H1) we also imposed (H14) which is
equivalent to (BX) from Section 4.3. For Volterra kernels, (H1) is precisely (V1), and
the Volterra version of (BX) is just (VBX) from Section 4.3 again which may be found
for each BV -space individually in Table 4.3.4. Therefore, we say that a Volterra kernel
ν satisfies (V6) if and only if it satisfies condition (VBX) given in that table. We then
obtain from Theorem 7.1.16 the following Volterra version.

Theorem 7.2.9. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp, and
let f, g, h : [0, 1]× R→ R be functions and ν : [0, 1]× [0, 1]→ R be a Volterra kernel.
Assume that f, g and h satisfy (ii)–(vi) of Theorem 7.1.16. Moreover, assume that ν
satisfies (V1) and (V6). Then for each R > 0 satisfying (7.1.22) there is some % > 0
such that equation (7.2.1) has for fixed λ ∈ (−%, %) a unique solution in BR(X).

For the Volterra equivalent of equation (7.1.42) which is given by

x(t) = a(t)x(t) + b(t) + λ
∫ t

0
ν(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1 (7.2.8)

we get the following version of Theorem 7.1.20.

Theorem 7.2.10. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that the Volterra kernel ν : [0, 1]×[0, 1]→ R satisfies (V1) and (V6). Moreover,
assume that the function g : [0, 1] × R → R satisfies (ii) of Theorem 7.1.16 and the
additional condition

lim
R→∞

AR <∞,

where AR is as in (7.1.26). Finally, assume that the functions a, b : [0, 1] → R belong
to X and satisfy ‖a‖X < 1. Then there is some % > 0 such that equation (7.2.8) has
for fixed λ ∈ (−%, %) a unique solution in the entire space X.

In order to translate Theorem 7.1.18 we need a Volterra equivalent of condition (H15)
which is precisely condition (F) of Section 4.3. In the Volterra setting it is equivalent
to condition (VF) of the same section and reads

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] : |t1 − t2| ≤ δ

⇒
∫ min{t1,t2}

0

∣∣∣∣g(t1, s)− g(t2, s)
∣∣∣∣ ds+

∫ max{t1,t2}

min{t1,t2}

∣∣∣∣g(max{t1, t2}, s
)∣∣∣∣ ds ≤ ε. (V7)

As we have already seen in Example 4.3.30 and the remark prior to Theorem 4.3.32 an
arbitrary kernel satisfying (V7) does not have to satisfy (H15). With this condition at
hand we obtain the following Volterra version of Theorem 7.1.18.
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Theorem 7.2.11. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let f, g, h : [0, 1] × R → R be functions and ν : [0, 1] × [0, 1] → R be a Volterra
kernel. Assume that f, g and h satisfy (ii)–(vi) of Theorem 7.1.16. Moreover, assume
that f and h therein are continuous and that the kernel ν satisfies (V1), (V6) and
(V7). Then for each R > 0 satisfying (7.1.22) there is some % > 0 such that equation
(7.2.1) has for fixed λ ∈ (−%, %) a unique solution in BR(X∩C). Here, the space X∩C
is equipped with the norm ‖·‖X .

We pass to equation (7.1.49) which in Volterra style is given by

x(t) = h
(
t, x(t)

)
+ λ

∫ t

0
ν(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1. (7.2.9)

Since the Theorems 7.1.24, 7.1.25 and 7.1.26 concerning this equation have been proven
with Darbo’s Fixed Point Theorem 7.1.22 which needed condition (H18) instead of
(H14) we now replace (H18) by its Volterra equivalent. As we have seen in Section 4.3
this is precisely condition (VB∗X) given in Table 4.3.4, and so we say that a Volterra
kernel ν satisfies (V8) if and only if it satisfies condition (VB∗X) given in that table.
If we now replace (H18) in the Theorems 7.1.24, 7.1.25 and 7.1.26 by (V8) we obtain
their Volterra versions.

Theorem 7.2.12. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp.
Assume that the functions g, h : [0, 1] × R → R satisfy (ii)–(iv) of Theorem 7.1.24.
Moreover, assume that the Volterra kernel ν : [0, 1] × [0, 1] → R satisfies (V1) and
(V8). Then for each R > 0 satisfying (7.1.50) there is some % > 0 such that equation
(7.2.9) has for fixed λ ∈ (−%, %) a solution in BR(X).

Theorem 7.2.13. Let X be any of the spaces BV , WBVp, Y BVϕ or ΛBV , and let
g, h : [0, 1]×R→ R be functions and ν : [0, 1]× [0, 1]→ R be a Volterra kernel. Assume
that that g and h satisfy (ii)–(iv) of Theorem 7.1.24. Moreover, assume in addition
that the function h therein is continuous and that the kernel ν satisfies (V1), (V7) and
(V8). Then for each R > 0 satisfying (7.1.50) there is some % > 0 such that equation
(7.2.9) has for fixed λ ∈ (−%, %) a solution in BR(X ∩ C). Here, the space X ∩ C is
equipped with the norm ‖·‖X .

Theorem 7.2.14. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g, h : [0, 1]×R→ R be functions and ν : [0, 1]× [0, 1]→ R be a Volterra kernel.
Assume that the functions g, h : [0, 1]×R→ R satisfy (ii)–(iv) of Theorem 7.1.24 with
(7.1.55). Moreover, assume that the kernel ν satisfies (V1) and (V8). Then equation
(7.2.9) has for every λ ∈ R a solution in X.

Finally, we consider equation (7.1.56). Its Volterra version is

x(t) = Ax(t) + λ
∫ t

0
ν(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1. (7.2.10)

We obtain the following Volterra variant of Theorem 7.1.30.
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Theorem 7.2.15. Let X be any of the spaces BV , WBVp, Y BVϕ, ΛBV or RBVp,
and let g : [0, 1]× R→ R be a function, A : X → X be a linear and bounded operator
and ν : [0, 1]× [0, 1]→ R be a Volterra kernel. Assume that g satisfies (ii) of Theorem
7.1.24, that ‖An‖X→X < 1 for some n ∈ N and that ν satisfies (V1) and (V8). Then
for each R > 0 there is some % > 0 such that equation (7.2.10) has for fixed λ ∈ (−%, %)
a solution in BR(X).

Similarly, one may get a Volterra version of Theorem 7.1.32 by replacing (H1) by (V1),
(H15) by (V7) and (H18) by (V8).

We end this section with two further comments. If the solution of a nonlinear equation,
like those considered in this chapter, is not unique, it is of some interest to have infor-
mation on the topological structure of the solution set. One prominent example is the
Rδ-property which means that the set of solutions is homeomorphic to the intersection
of a decreasing sequence of absolute retracts.
Below we cite a sample result of this type for solutions x ∈ ΛBV ∩ C of the Volterra
integral equation (7.2.6). Since this equation can be reformulated as a fixed point
problem (7.1.9) where the integral operator Ik induced by a kernel k has to be replaced
by a Volterra operator Vν induced by a Volterra kernel ν, our discussion will rely upon
the following structural result on fixed point sets of continuous operators in C which
was proven in [145].

Proposition 7.2.16. Let T : C → C be a continuous operator which satisfies the
following four conditions.

(i) The set T (C) ⊆ C is equicontinuous.

(ii) There exist t0 ∈ [0, 1] and y0 ∈ R such that Tx(t0) = y0 for all x ∈ C.

(iii) The operator T is locally defined2.

(iv) Every sequence (xn) in C satisfying

lim
n→∞ ‖xn − Txn‖∞ = 0

has an accumulation point in C.

Then the fixed point set of T is a compact Rδ-set.

Condition (i) in Proposition 7.2.16 suggests to use some Arzelà-Ascoli type result, while
condition (iv) is usually called a Palais-Smale condition; this is an important ingredient
of topological and variational methods in nonlinear analysis.
In order to apply Proposition 7.2.16 to the solution set of equation (7.2.6) recall that a
function g : [0, 1]×R→ R is said to satisfy an Lp-Carathéodory condition if t 7→ g(t, u)
is Lebesgue measurable for each u ∈ R, u 7→ f(t, u) is continuous for almost each

2See Definition 5.2.47.
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t ∈ [0, 1], and |f(t, u)| ≤ mp(t) for almost all t ∈ [0, 1] and some function mp ∈ Lp.
Moreover, we need the following technical hypothesis

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ [0, 1] :

0 ≤ t2 − t1 ≤ δ =⇒
∫ t1

0

∣∣∣k(t1, s)− k(t2, s)
∣∣∣mp(s) ds ≤ ε (V9)

which is some modification of (V7) and involves the functionmp from the Carathéodory
condition. The following result was proven in [30].

Theorem 7.2.17. Suppose that g : [0, 1] × R → R satisfies an Lp-Carathéodory con-
dition for some p ∈ (1,∞], and let h ∈ BV ∩ C and λ ∈ R. Assume that the Volterra
kernel ν satisfies (V1), (V6) with m ∈ Lq and 1/p + 1/q = 1 and (V9). Then the set
of all x ∈ BV ∩ C solving (7.2.6) is a compact Rδ-set.

The proof basically rests on showing that the operator T = h + Iν ◦ Ng satisfies all
the conditions imposed in Proposition 7.2.16. Note that (ii) is satisfied for t0 = 0 and
y0 = h(0) and (iii) is clearly true as we have seen at the end of Section 5.2. The most
restrictive condition is of course condition (i), and this is the reason why Theorem 7.2.17
cannot be generalized so easily to equation (7.2.1). This is because if h : [0, 1]×R→ R
generates a superposition operator Nh from C into itself such that the set Nh(C) is an
equicontinuous subset of C, then Nh actually degenerates to a constant operator. To
see this, first note that the acting condition Nh(C) ⊆ C implies that h is continuous
with respect to its first argument. Second, the equicontinuity of Nh(C) implies

∀t ∈ [0, 1] ∀ε > 0 ∃δ > 0 ∀x ∈ C ∀τ ∈ [0, 1] :
|t− τ | ≤ δ =⇒

∣∣∣Nhx(t)−Nhx(τ)
∣∣∣ ≤ ε. (7.2.11)

We now fix u, v ∈ R, t ∈ [0, 1] and ε > 0. Then we pick δ > 0 according to (7.2.11) and
choose τ ∈ [0, 1] so that 0 < |t − τ | ≤ min{ε, δ}. The function x : [0, 1] → R, defined
by

x(s) = t− s
t− τ v + τ − s

τ − t u,

belongs to C and satisfies x(t) = u and x(τ) = v. Consequently, from (7.2.11) we now
obtain |h(t, u)−h(τ, v)| ≤ ε. Since h(·, v) is continuous at t, it follows by letting ε→ 0
that τ → t and hence h(t, u) = h(t, v). But this means that h is actually independent
of its second argument and hence Nh degenerates to a constant operator, as claimed.

As a final remark we point out that every result in this section guarantees a solution
of a Volterra integral equation that lives on the entire interval [0, 1]. Due to the special
structure of the Volterra operator it is sometimes possible to achieve solutions only
on a subinterval [0, T ] of [0, 1] with the benefit that the underlying Volterra integral
equation may have solutions on that subinterval for a larger set of parameters λ. One
sample result concerning equation (7.2.2) was proven in [29]: Indeed, the author has
shown that under the assumptions (V1), (V2) and (H3) for each R > ‖h‖BV there is
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some T ∈ (0, 1] and % > 0 such that the Volterra integral equation (7.2.2) has a unique
solution x ∈ BR(BV [0, T ]) for any |λ| < %. The interplay between % and T is given by
the relation

% = min
R− ‖h‖BV‖g‖[−R,R]

,
1

lip(g, [−R,R])

 1
2 ‖m‖L1[0,T ]

.

Note that the only difference to formula (7.2.3) is that here the L1-norm of m is taken
only on [0, T ]. This shows that since ‖m‖L1[0,T ] → 0 as T → 0+ one can make % large
by taking T small. In particular, equation (7.2.2) now has solutions for every λ, but
the larger |λ| is chosen the smaller may be the domain on which the solutions live.

7.3 Boundary and Initial Value Problems
It is well known that boundary value problems are closely related to Hammerstein
integral equations like (7.1.1) and initial value problems are closely related to Volterra
integral equations like (7.2.2). In this section we give examples illustrating these rela-
tions in more detail. We discuss some problems which may be solved by means of our
results obtained in the Theorems 7.1.30 and 7.2.15. While there is a vast literature
on continuous solutions of such problems, considerably less is known on BV -solutions.
We will be interested in solutions primarily in the spaces BV equipped with ‖·‖BV .

Boundary Value Problems
We start with a boundary value problem in a nonclassical setting. Consider the second
order equation

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1, (7.3.1)

subject to the coupled boundary conditions

x(0) = A0x and x(1) = A1x, (7.3.2)

where A0, A1 : BV → R are given linear functionals. In the following we refer to
the boundary value problem (7.3.1) together with the boundary conditions (7.3.2) by
the symbol (BVP). In order to solve (BVP) with Theorem 7.1.30, we consider the
Hammerstein integral equation

x(t) = Ax(t) + λ
∫ 1

0
κ(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1, (7.3.3)

where

κ(t, s) =
t(1− s) for 0 ≤ t < s ≤ 1,

(1− t)s for 0 ≤ s ≤ t ≤ 1,
(7.3.4)
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is the usual Green’s function of the second order derivative and A is a linear operator
from BV into itself. The bridge between (7.3.3) and our (BVP) is now built by our
next result. Denoting by

AC1 := {x ∈ C1 | x′ ∈ AC}

the space of all continuously differentiable functions with derivative in AC, it says that
any x ∈ BV solving (7.3.3) automatically belongs to AC1, provided that the linear
operator A : BV → BV is defined by

Ax(t) = (1− t)A0x+ tA1x for 0 ≤ t ≤ 1, (7.3.5)

where A0 and A1 are the linear functionals used in (7.3.2).

Proposition 7.3.1. Let g : [0, 1] × R → R satisfy (H11 ∗(L∞)), (H16) and (H17),
and let A : BV → BV be defined by (7.3.5). Then any function x ∈ BV solving
(7.3.3) is differentiable in [0, 1] and has an absolutely continuous derivative. Moreover,
it satisfies (7.3.2) and solves (7.3.1) almost everywhere.
If, in addition, g is continuous in [0, 1] × R, then x is of class C2 and solves (BVP)
everywhere on [0, 1].

Proof. Assume that (7.3.3) is satisfied for some x ∈ BV and some λ ∈ R. First
observe that h(s) := g(s, x(s)) belongs to L∞ because of (H11∗(L∞)), (H16) and (H17).
Moreover, we set

ϕ(t) :=
∫ 1

0
κ(t, s)g

(
s, x(s)

)
ds

=
∫ t

0
(1− t)sh(s) ds−

∫ t

1
t(1− s)h(s) ds for 0 ≤ t ≤ 1.

By [150], the function ϕ belongs to AC with

ϕ′(t) = −
∫ t

0
sh(s) ds−

∫ t

1
(1− s)h(s) ds for almost all t ∈ [0, 1],

but since the right hand side is again in AC we conclude that ϕ ∈ C1 with ϕ′ ∈ AC.
Moreover, we obtain

ϕ′′(t) = −th(t)− (1− t)h(t) = −h(t) for almost all t ∈ [0, 1].

In addition, by definition of A the function Ax is affine and hence of class C2 with
(Ax)′′ = 0. From (7.3.3) follows

x(t) = Ax(t) + λϕ(t) for 0 ≤ t ≤ 1;

in particular, this shows that (7.3.1) holds indeed almost everywhere in [0, 1]. Moreover,
since ϕ(0) = ϕ(1) = 0, we obtain x(0) = Ax(0) = A0x and x(1) = Ax(1) = A1x.
Consequently, the first part of the proof is complete.
If, in addition, g is continuous, then so must be x′′ which means that x is of class C2

and solves (BVP) everywhere on [0, 1]. �
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According to Proposition 7.3.1, in order to find a solution x ∈ AC1 of (BVP) - and by
this we mean a function x ∈ AC1 that satisfies the boundary conditions (7.3.2) and
the equation (7.3.1) almost everywhere on [0, 1] - all we have to do is to make sure
that the norms of the two linear functionals A0 and A1 behave in such a way that the
norm of the iterate operator An shrinks below 1 for some n ∈ N. We give two sufficient
conditions for this in the following theorem the ideas of which come from [27].

Theorem 7.3.2. Assume that the function g : [0, 1] × R → R satisfies (H11 ∗(L∞)),
(H16) and (H17). Moreover, assume that the linear functionals A0, A1 : BV → R are
bounded and satisfy one of the following two conditions.

(a) ‖A0‖BV→R + 2 ‖A0 − A1‖BV→R < 1.

(b) A01 = A11 = 0 and |A0w − A1w| < 1, where w(t) := t for t ∈ [0, 1].

Then for each R > 0 there is some % > 0 such that (BVP) has for fixed λ ∈ (−%, %) a
solution x ∈ BR(AC1). Here, the space AC1 is equipped with the norm ‖·‖BV .
If, in addition, g is continuous in [0, 1]× R, then every such solution is of class C2.

Proof. Define A as in Proposition 7.3.1, that is, Ax = (1 − w)A0x + wA1x. Since
A0 and A1 are supposed to be bounded and linear, then so is A. We show for either
of the two options (a) and (b) that there is some n ∈ N such that ‖An‖BV→BV <

1. Once this is done, Theorem 7.1.30 tells us that for each R > 0 there is some
% > 0 such that the integral equation (7.3.3) has for fixed λ ∈ (−%, %) a solution
x ∈ BR(BV ). By Proposition 7.3.1, the solution x belongs to AC1, has the correct
boundary values according to (7.3.2) and satisfies (7.3.1) almost everywhere. Note that
κ satisfies (H12(L1)) and (H18), because Var(κ(·, s)) = 2s(1− s) for all s ∈ [0, 1], and
hence Theorem 7.1.30 is applicable. If g is continuous, then x is twice continuously
differentiable.
It remains to show ‖An‖BV→BV < 1 for some n ∈ N provided that A0 and A1 satisfy
(a) or (b). Let us start with (a). We have for any x ∈ BV ,

‖Ax‖BV = ‖1A0x+ w(A1 − A0)x‖BV ≤ ‖1‖BV |A0x|+ ‖w‖BV
∣∣∣(A1 − A0)x

∣∣∣
≤ ‖A0‖BV→R ‖x‖BV + 2 ‖A0 − A1‖BV→R ‖x‖BV .

Consequently,

‖A‖BV→BV ≤ ‖A0‖BV→R + 2 ‖A0 − A1‖BV→R < 1

by (a), showing that A is a contraction. In this case, we may take n = 1.
We now assume that A0 and A1 satisfy option (b). Note that in this case, A1 = 0. By
induction, we first prove that the iterates of A are given by

An+2x =
(
(1− w)A0w + wA1w

)(
A1w − A0w

)n(
A1x− A0x

)
(7.3.6)
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for x ∈ BV, n ∈ N0, where we set 00 := 1. First, we have

A(Ax) = A
(
(1− w)A0x+ wA1x

)
= A(1− w)A0x+ AwA1x = Aw(A1x− A0x)

=
(
(1− w)A0w + wA1w

)
(A1x− A0x),

and this is (7.3.6) for n = 0. Moreover,

A1(Ax)−A0(Ax)
= (A1 − A0)

(
(1− w)A0x+ wA1x

)
= (A1 − A0)(1− w)A0x+ (A1 − A0)wA1x = (A1 − A0)w(A1x− A0x)
= (A1w − A0w)(A1x− A0x).

From this we deduce that if (7.3.6) has been proven for some n ∈ N0, then

An+3x = An+2(Ax) =
(
(1− w)A0w + wA1w

)(
A1w − A0w

)n(
A1(Ax)− A0(Ax)

)
=
(
(1− w)A0w + wA1w

)(
A1w − A0w

)n+1
(A1x− A0x).

By induction, (7.3.6) is established. As a consequence we get for n ≥ 2,

‖An‖BV→BV ≤ ‖(1− w)A0w + wA1w‖BV
∣∣∣A1w − A0w

∣∣∣n−2( ‖A0‖BV→R + ‖A1‖BV→R

)
,

and since |A1w − A0w| < 1 by (b) we find some n ∈ N such that ‖An‖BV→BV < 1. �

Let us now pass to some example showing how to apply Theorem 7.3.2. The following
is similar to an example from [27] and builds on option (a) of Theorem 7.3.2.

Example 7.3.3. Consider the boundary value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = 1
7x(1/2) + 1

6x(2/3),

x(1) = 1
7x(1/4) + 1

6x(4/5)

 (7.3.7)

with g satisfying (H11∗(L∞)), (H16) and (H17). We are interested in finding a solution
x ∈ AC1. In the notation used in (7.3.2) we define our functionals A0 and A1 by

A0x := 1
7x(1/2) + 1

6x(2/3) and A1x := 1
7x(1/4) + 1

6x(4/5).

Then A0 and A1 are bounded linear functionals on BV with

|A0x| ≤ 1
7 ‖x‖∞ + 1

6 ‖x‖∞ ≤ 13
42 ‖x‖BV

and

|A0x− A1x| =
∣∣∣17(x(1/2)− x(1/4)

)
+ 1

6

(
x(2/3)− x(4/5)

)∣∣∣
≤ 1

7 Var(x) + 1
6 Var(x) ≤ 13

42 ‖x‖BV .
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Thus,
‖A0‖BV→R + 2 ‖A0 − A1‖BV→R ≤

39
42 < 1

which means that A0 and A1 satisfy option (a) of Theorem 7.3.2. Accordingly, (7.3.7)
has for small |λ| an AC1-solution. Observe that A0 and A1 do not satisfy option (b),
as A01 = A11 = 13/42 6= 0. ♦
The next example shows that in some cases only option (b) in Theorem 7.3.2 can be
used.

Example 7.3.4. Consider the boundary value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = 3x(1/2)− 3x(2/3),

x(1) = 2x(1/4)− 2x(4/5)

 (7.3.8)

with g satisfying (H11∗(L∞)), (H16) and (H17). We are interested in finding a solution
x ∈ AC1. In the notation used in (7.3.2) we define our functionals A0 and A1 by

A0x := 3x(1/2)− 3x(2/3) and A1x := 2x(1/4)− 2x(4/5).

Then A0 and A1 are bounded linear functionals on BV with A01 = A11 = 0 and,
writing w(t) = t as in Theorem 7.3.2,

|A0w − A1w| =
∣∣∣∣32 − 2− 1

2 + 8
5

∣∣∣∣ = 3
5 < 1

which means that A0 and A1 satisfy option (b) of Theorem 7.3.2. Accordingly, (7.3.8)
has for small |λ| an AC1-solution. Observe that A0 and A1 do not satisfy option (a),
because

A0χ[0,1/2]∥∥∥χ[0,1/2]
∥∥∥
BV

= 3
2

and so ‖A0‖BV→R ≥ 3/2 > 1. ♦
Unfortunately, in some cases, neither option (a) nor option (b) of Theorem 7.3.2 can
be used. We give a third example.

Example 7.3.5. Consider the boundary value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = x(1/3) + x(2/3),

x(1) = −1
2x(1/3)− 1

2x(2/3),

 (7.3.9)

with g satisfying (H11∗(L∞)), (H16) and (H17). In the notation used in (7.3.2) we
define our functionals A0 and A1 by

A0x := x(1/3) + x(2/3) and A1x := −1
2x(1/3)− 1

2x(2/3).

Then A0 and A1 are bounded linear functionals on BV . However, A01 = 2 6= 0, and
so option (b) of Theorem 7.3.2 cannot be used. But (a) cannot be used either, because
the same equality also shows ‖A0‖BV→R ≥ 2. ♦
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We therefore generalize the ideas of Theorem 7.3.2. Due to the special structure of
the linear operator A defined in (7.3.5) it is possible to give an exact formula for its
spectral radius. For this purpose we prove first an abstract result about the spectral
radius of linear operators of a slightly more general form than (7.3.5) which might be
of its own interest.

Proposition 7.3.6. Let (X, ‖·‖) be a real Banach space, let A0, A1 : X → R be bounded
linear functionals and let v, w ∈ X be fixed. Then for the spectral radius R of the
operator A : X → X, defined by

Ax = vA0x+ wA1x for x ∈ X, (7.3.10)

we have the relationship

R(A) = R

(
A0v A1v

A0w A1w

)
. (7.3.11)

Proof. For this proof we set

C :=
(
A0v A1v

A0w A1w

)
.

We first prove the “≤”-part in (7.3.11) and begin by showing that the iterates of A can
be written in the form

Anx = vanx+ wbnx for x ∈ X, (7.3.12)

where an, bn : X → R are linear functionals satisfying for all x ∈ X the linear recursions

an+1x = anvA0x+ anwA1x and a1x := A0x, (7.3.13)
bn+1x = bnvA0x+ bnwA1x and b1x := A1x. (7.3.14)

Indeed, once the formula (7.3.12) for An has been established for some n ∈ N, we get

An+1x = An(Ax) = van(Ax) + wbn(Ax)
= v ·

(
anvA0x+ anwA1x

)
+ w ·

(
bnvA0x+ bnwA1x

)
(7.3.15)

= van+1x+ wbn+1x.

Plugging v and w for x into the recursion formulas (7.3.13) and (7.3.14) we see that
the four numbers anv, anw, bnv and bnw put into the matrix

Bn :=
(
anv bnv

anw bnw

)

in turn satisfy the matrix recursion Bn+1 = CBn for all n ∈ N with B1 = C. Thus,
Bn+1 = CBn and hence

Bn = Cn for all n ∈ N. (7.3.16)
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Setting

M := max
{
‖v‖ ‖A0‖X→R , ‖v‖ ‖A1‖X→R , ‖w‖ ‖A0‖X→R , ‖w‖ ‖A1‖X→R

}
we obtain from (7.3.15)

∥∥∥An+1
∥∥∥
X→X

≤ ‖v‖
(
|anv| ‖A0‖X→R + |anw| ‖A1‖X→R

)
+ ‖w‖

(
|bnv| ‖A0‖X→R + |bnw| ‖A1‖X→R

)
≤M

(
|anv|+ |anw|+ |bnv|+ |bnw|

)
≤ 2M ‖Bn‖∞ = 2M ‖Cn‖∞ ,

where ‖·‖∞ denotes the row sum norm of a matrix. Consequently, by Gelfand’s formula,

R(A) = lim
n→∞

∥∥∥An+1
∥∥∥1/n

X→X
≤ lim

n→∞

(
2M ‖Cn‖∞

)1/n
= lim

n→∞ ‖C
n‖1/n
∞ = R(C),

and this is the inequality “≤” in (7.3.11).

We now prove the remaining inequality “≥” in (7.3.11) and distinguish between the
cases when v and w are linearly dependent respectively independent in X.
Case 1: Assume w = λv for some λ ∈ R. In this case, we have

C =
(
A0v A1v

λA0v λA1v

)

with R(C) = |A0v + λA1v|. Moreover, we get for the linear functional L := A0 + λA1,

Ax = v(A0 + λA1)x = vLx,

A2x = A(Ax) = vL(vLx) = vLvLx,

A3x = A2(Ax) = vLvL(vLx) = v(Lv)2Lx

and inductively

Anx = v(Lv)n−1Lx for all n ∈ N, x ∈ X, (7.3.17)

where we set 00 := 1 again. If v = 0, we also have w = 0 and hence A = 0 and C = 0
which implies R(A) = R(C) = 0. We therefore assume v 6= 0. If Lx = 0 for all x ∈ X,
we have A0 = −λA1 which implies on the one hand Ax = 0 for all x ∈ X and hence
R(A) = 0, and on the other hand

C =
(
−λA1v A1v

−λ2A1v λA1v

)

with R(C) = 0 = R(A). We therefore suppose that there is some y ∈ X with Ly 6= 0
and ‖y‖ = 1. Consequently, by (7.3.17),

‖An‖X→X ≥ ‖Any‖ = ‖v‖ |A0v + λA1v|n−1|Ly|
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and hence by Gelfand’s formula

R(A) = lim
n→∞ ‖A

n‖1/n
X→X ≥ |A0v + λA1v

∣∣∣ = R(C).

This proves the “≥”-part in (7.3.11) for Case 1.
Case 2: Assume w 6= µv for all µ ∈ R. By definition, the spectral radius of the operator
A on the real space X is the spectral radius of its complexification A : XC → XC,
defined by A(x + iy) := A(x) + iA(y), where XC := {x + iy | x, y ∈ X} denotes the
complexification of X equipped with the norm

‖x+ iy‖XC
= max

t∈[0,2π]
‖cos(t)x+ sin(t)y‖

and the common addition and multiplication with complex scalars. In addition, we
have

‖x‖ = ‖x‖XC
= ‖ix‖XC

for all x ∈ X and ‖A‖X→X = ‖A‖XC→XC
.

Similarly, we complexify the functionals A0 and A1 by extending them to the functionals
A0, A1 : XC → C via

A0(x+ iy) = A0x+ iA0y and A1(x+ iy) = A1x+ iA1y.

By splitting into real and imaginary parts we see that then

Az = vA0z + wA1z for all z ∈ XC.

Let now λ ∈ C be an eigenvalue of CT with eigenvector u = (u1, u2) ∈ C2\{(0, 0)},
that is,

uTC = λuT

which means

u1A0v + u2A0w = λu1 and u1A1v + u2A1w = λu2. (7.3.18)

Since v and w are linearly independent in X, there are x, y ∈ X with

Ax = Re(u1) v + Re(u2)w and Ay = Im(u1) v + Im(u2)w.

Setting z := x+ ix ∈ XC, this leads to

Az = A(x+ iy) = Ax+ iAy = vu1 + wu2,

and since v and w are linearly independent in X and u = (u1, u2) 6= (0, 0), we conclude
Az 6= 0. We obtain from (7.3.18)

A(Az) = vA0(Az) + wA1(Az) = v(u1A0v + u2A0w) + w(u1A1v + u2A1w)
= λ(u1v + u2w) = λAz.

Since Az 6= 0 we conclude that Az is an eigenvector and λ is an eigenvalue of (the
complexification of) A. Consequently, R(A) ≥ R(CT ) = R(C). �

Let us look at an example in the very simple case that X = R.
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Example 7.3.7. For X = R consider the functional Ax = vA0x + wA1x, where
A0x := ax, A1x := bx and a, b, v, w ∈ R are constants. Then Ax = (av + bw)x, and
the iterates of A are given by Anx = (av + bw)nx. Thus, R(A) = |av + bw|. On the
other hand it is easy to see that the matrix

C =
(
A0v A1v

A0w A1w

)
=
(
av bv

aw bw

)

has the two eigenvalues 0 and av + bw. Again, R(C) = |av + bw|, in accordance with
Proposition 7.3.6. ♦
The following refinement of Theorem 7.3.2 is now immediate.

Theorem 7.3.8. Assume that the function g : [0, 1] × R → R satisfies (H11 ∗(L∞)),
(H16) and (H17). Moreover, assume that the linear functionals A0, A1 : BV → R are
bounded with

R

(
A0v A1v

A0w A1w

)
< 1, (7.3.19)

where the functions v, w ∈ BV are defined by v(t) = 1− t and w(t) = t for t ∈ [0, 1].
Then for each R > 0 there is some % > 0 such that (BVP) has for fixed λ ∈ (−%, %) a
solution x ∈ BR(AC1). Here, the space AC1 is equipped with the norm ‖·‖BV .
If, in addition, g is continuous on [0, 1]× R, then every such solution is of class C2.

Proof. The argument is similar as in the proof of Theorem 7.3.2. Accordingly, we only
need to show that the operator Ax = vA0x+wA1x satisfies ‖An‖BV→BV < 1 for some
n ∈ N. But this is clear, because (7.3.19) in combination with Proposition 7.3.6 yields
that R(A) < 1. �

Before we turn back to Example 7.3.5, let us mention that Theorem 7.3.2 is completely
covered by Theorem 7.3.8. Indeed, in the proof of Theorem 7.3.2 we have shown that
under the option (a) or (b) we have R(A) < 1 and thus

R

(
A0v A1v

A0w A1w

)
< 1

by Proposition 7.3.6. Moreover, Theorem 7.3.8 has three further advantages: First,
since it uses the spectral radius of the operator A and not its norm, Theorem 7.3.8 is
independent of the norm used in BV . Indeed, one may show that Theorem 7.3.2 still
holds if BV is equipped with the smaller norm ‖x‖∗BV = |x(0)|+ Var(x). In this case,
option (a) can be replaced by

‖A0‖∗BV→R + ‖A0 − A1‖∗BV→R < 1, (a∗)

where ‖·‖∗BV→R is the operator norm for linear functionals from (BV, ‖·‖∗BV ) into (R, |·|);
for instance, this was done in [27] in the subspace BV ∩ C of BV , equipped with the
norm ‖·‖∗BV for functionals A0 and A1, defined via Riemann-Stieltjes integrals.
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Second, (7.3.19) is easier to varify than the options given in Theorem 7.3.2. And third,
in the following example, in which we come back to Example 7.3.5, we show that
neither Theorem 7.3.2 nor its modification with (a∗) may be applied to (BVP) while
Theorem 7.3.8 may be, indeed. So Theorem 7.3.8 is stronger than Theorem 7.3.2.

Example 7.3.9. Consider again the boundary value problem from Example 7.3.5 with
the functionals

A0x := x(1/3) + x(2/3) and A1x := −1
2x(1/3)− 1

2x(2/3).

There we have seen that A01 = 2 6= 0 holds and hence that Theorem 7.3.2 cannot be
applied. But neither can its modification with (a∗), because the same equality shows
‖A0‖∗BV→R ≥ 2, as ‖1‖BV = ‖1‖∗BV = 1.
However, the matrix in (7.3.8) becomes(

A0v A1v

A0w A1w

)
=
(

1 −1/2
1 −1/2

)

and has the eigenvalues 0 and 1/2. Thus, Theorem 7.3.8 may be applied. ♦
Summarizing the previous examples, we always considered boundary conditions of the
form

x(0) = ax(τ1) + bx(τ2) and x(1) = cx(σ1) + dx(σ2), (7.3.20)

where a, b, c, d ∈ R and τ1, τ2, σ1, σ2 ∈ [0, 1] are given. The estimate (7.3.19) now says
that Theorem 7.3.8 may be applied if and only if

R

(
a(1− τ1) + b(1− τ2) c(1− σ1) + d(1− σ2)

aτ1 + bτ2 cσ1 + dσ2

)
< 1. (7.3.21)

Instead of considering “local” boundary conditions of type (7.3.20), we may - of course
- also look at “global” boundary conditions like, for instance,

x(0) =
∫ 1

0
k0(s)x(s) ds and x(1) =

∫ 1

0
k1(s)x(s) ds,

where k0, k1 ∈ L1. Then A0 and A1 are defined by

A0x =
∫ 1

0
k0(s)x(s) ds and A1x =

∫ 1

0
k1(s)x(s) ds

and thus Theorem 7.3.8 may be applied if and only if

R


∫ 1

0
k0(s)(1− s) ds

∫ 1

0
k1(s)(1− s) ds∫ 1

0
k0(s)s ds

∫ 1

0
k1(s)s ds

 < 1.
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Example 7.3.10. Consider the boundary value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = x(1) = 1
2

∫ 1

0
x(s) ds.

 (7.3.22)

We then have k0 = k1 ≡ 1/2 and

R


∫ 1

0
k0(s)(1− s) ds

∫ 1

0
k1(s)(1− s) ds∫ 1

0
k0(s)s ds

∫ 1

0
k1(s)s ds

 = R

(
1/4 1/4
1/4 1/4

)
= 1

2 < 1.

Thus, under the assumptions of Theorem 7.3.8 we find for small |λ| a solution x ∈
AC1. ♦
Before we turn to initial value problems we point out that condition (7.3.19) is not
necessary for (BVP) to have a solution in AC1.

Example 7.3.11. Consider the boundary value problem

x′′(t) = λx(t)
(
2 + 4t2

)
for 0 ≤ t ≤ 1,

x(0) = e−1/4x(1/2),

x(1) = e3/4x(1/2).

 (7.3.23)

In the notation of (7.3.20) we have a = e−1/4, b = d = 0, c = e3/4 and τ1 = σ1 = 1/2.
Thus, the spectral radius of the matrix in (7.3.21) becomes

R

[
1
2

(
e−1/4 e3/4

e−1/4 e3/4

)]
= 1 + e

2e1/4 > 1.

Nevertheless, it is easy to check that the function x(t) = exp(t2) is an (even analytic)
solution to the boundary value problem (7.3.23) for λ = 1. ♦

The theory developed in this section may be applied to other similar boundary value
problems than those we have considered in the examples so far. Instead of inundating
the reader in too much technicalities, we skip the details and will be brief, because the
arguments are similar as those used before.
Consider the third order boundary value problem

x′′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x′(0) = A0x,

x′(1) = A1x,

 (7.3.24)

where A0, A1 : BV → R are bounded linear functionals. We are looking for solutions
x in the space

AC2 := {x ∈ C2 | x′′ ∈ AC}
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by which we mean a function x ∈ AC2 that satisfies the differential equation

x′′′(t) = −λg
(
t, x(t)

)
almost everywhere in [0, 1] and has the correct boundary values x′(0) = A0x and
x′(1) = A1x. In order to find such a solution we solve the integral equation

x(t) = Ax(t) + λ
∫ t

0

∫ 1

0
κ(τ, s)g

(
s, x(s)

)
ds dτ for 0 ≤ t ≤ 1 (7.3.25)

instead of (7.3.3) in the space BV , where κ is again the Green’s function (7.3.4), and
the linear operator A : BV → BV is now given by

Ax := −1
2(1− t)2A0x+ 1

2t
2A1x = vA0x+ wA1x,

where
v(t) = −1

2(1− t)2 and w(t) = 1
2t

2 for 0 ≤ t ≤ 1.

For x ∈ AC2 the outer integral in (7.3.25) defines a differentiable function. Similarly
as in Proposition 7.3.1 one may show that any function x ∈ BV satisfying (7.3.25)
is a solution in AC2 to the boundary value problem (7.3.24). Note that for the first
derivative we have

x′(t) = (1− t)A0x+ tA1x+ λ
∫ 1

0
κ(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1 (7.3.26)

and so indeed x′(0) = A0x and x′(1) = A1x.
Now, in order to solve (7.3.25) we can use Fubini’s Theorem to reduce the double
integral to a single one and transform the integral equation into

x(t) = Ax(t) + λ
∫ 1

0
κ̂(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1, (7.3.27)

where

κ̂(t, s) =
∫ t

0
κ(τ, s) dτ = 1

2

s
(
(2− t)t− s

)
for 0 ≤ s ≤ t ≤ 1,

t2(1− s) for 0 ≤ t < s ≤ 1.

Consequently, under the hypotheses of Theorem 7.3.8 (with v and w as above), we may
solve (7.3.27) and therefor also (7.3.25) exactly as we solved (BVP), namely with the
help of Theorem 7.1.30.
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Initial Value Problems
The theory developed so far in this section can also be used to solve initial value
problems with coupled nonclassical initial conditions. Such problems will be treated
now. Consider again the second order equation (7.3.1), that is,

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1, (7.3.28)

but this time subject to the coupled initial conditions

x(0) = A0x and x′(0) = A1x, (7.3.29)

where A0, A1 : BV → R are given linear functionals. In the following we refer to
the initial value problem (7.3.28) together with the initial conditions (7.3.29) by the
symbol (IVP). In order to solve (IVP) we proceed similarly as we did to solve (BVP),
but this time we use Theorem 7.2.15 instead of Theorem 7.1.30. To this purpose we
consider the Volterra integral equation

x(t) = Ax(t) + λ
∫ t

0
ν(t, s)g

(
s, x(s)

)
ds for 0 ≤ t ≤ 1, (7.3.30)

where the Volterra kernel ν is given by

ν(t, s) =
s− t for 0 ≤ s ≤ t ≤ 1,

0 for 0 ≤ t < s ≤ 1,
(7.3.31)

and A is a linear operator from BV into itself. The bridge between (7.3.30) and
our (IVP) is now built by the following proposition which is a perfect analogue to
Proposition 7.3.1.

Proposition 7.3.12. Let g : [0, 1] × R → R satisfy (H11 ∗(L∞)), (H16) and (H17),
and let A : BV → BV be defined by

Ax(t) = A0x+ tA1x for 0 ≤ t ≤ 1. (7.3.32)

Then any function x ∈ BV solving (7.3.30) is differentiable in [0, 1] and has an abso-
lutely continuous derivative. Moreover, it satisfies (7.3.29) and solves (7.3.28) almost
everywhere.
If, in addition, g is continuous in [0, 1] × R, then x is of class C2 and solves (IVP)
everywhere on [0, 1].

Proof. Assume that (7.3.30) is satisfied for some x ∈ BV and some λ ∈ R. First
observe that h(s) := g(s, x(s)) belongs to L∞ because of (H11∗(L∞)), (H16) and (H17).
Moreover, we set

ϕ(t) :=
∫ t

0
ν(t, s)g

(
s, x(s)

)
ds =

∫ t

0
(s− t)h(s) ds for 0 ≤ t ≤ 1.
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By [150], the function ϕ belongs to AC with

ϕ′(t) = −
∫ t

0
h(s) ds for almost all t ∈ [0, 1],

but since the right hand side is again in AC we conclude that ϕ ∈ C1 with ϕ′ ∈ AC.
Moreover, we obtain

ϕ′′(t) = −h(t) for almost all t ∈ [0, 1].

In addition, by definition of A the function Ax is linear and hence of class C2 with
(Ax)′′ = 0. From (7.3.30) follows

x(t) = Ax(t) + λϕ(t) for 0 ≤ t ≤ 1;

in particular, this shows that (7.3.28) holds indeed almost everywhere in [0, 1]. More-
over, since ϕ(0) = ϕ′(0) = 0, we obtain x(0) = Ax(0) = A0x and x′(0) = (Ax)′(0) =
A1x. Consequently, the first part of the proof is complete.
If, in addition, g is continuous, then so must be x′′ which means that x is of class C2

and solves (IVP) everywhere on [0, 1]. �

Proposition 7.3.12 says that any x ∈ BV solving (7.3.30) automatically belongs to
AC1. Consequently, in order to find a solution x ∈ AC1 of (IVP) - and by this we
mean a function x ∈ AC1 that satisfies the initial conditions (7.3.29) and the equation
(7.3.28) almost everywhere on [0, 1] - all we have to do is to make sure that the norms of
the two linear functionals A0 and A1 behave in such a way that the norm of the iterate
operator An, where A is now given by (7.3.32), shrinks below 1 for some n ∈ N. In
Theorem 7.3.2 (a) we have given such a criterion which was so strong that the operator
A in (7.3.5) was a contraction. A similar criterion for the operator A in (7.3.32) would
now read

max
{
‖A0‖BV→R , ‖A0 + A1‖BV→R

}
+ ‖A1‖BV→R < 1. (7.3.33)

Indeed, since t 7→ Ax(t) for fixed x ∈ BV parameterizes a straight line through the
points (0, A0x) and (1, A0x+A1x) we can calculate its BV -norm explicitly and obtain

‖Ax‖BV = ‖Ax‖∞ + Var(Ax) = max
{
|A0x|, |A0x+ A1x|

}
+ |A1x|

≤
(

max
{
‖A0‖BV→R , ‖A0 + A1‖BV→R

}
+ ‖A1‖BV→R

)
‖x‖BV .

Thus, the estimate (7.3.33) guarantees ‖A‖BV→BV < 1, that is, A is a contraction.

Example 7.3.13. Consider the initial value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = 1
7x(1/2) + 1

6x(2/3),

x′(0) = 1
7x(1/4) + 1

6x(4/5),

 (7.3.34)
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with g satisfying (H11∗(L∞)), (H16) and (H17). Note that the “right hand sides” of
(7.3.34) are the same as in (7.3.7). Exactly as in Example 7.3.3 we define

A0x := 1
7x(1/2) + 1

6x(2/3) and A1x := 1
7x(1/4) + 1

6x(4/5).

Then A0 and A1 are bounded linear functionals on BV with

|A0x|, |A1x| ≤ 1
7 ‖x‖∞ + 1

6 ‖x‖∞ ≤ 13
42 ‖x‖BV ,

|A0x+ A1x| = 1
7

∣∣∣x(1/2) + x(1/4)
∣∣∣+ 1

6

∣∣∣x(2/3) + x(4/5)
∣∣∣

≤ 2
7 ‖x‖∞ + 1

3 ‖x‖∞ ≤ 13
21 ‖x‖BV .

Thus,

max
{
‖A0‖BV→R , ‖A0 + A1‖BV→R

}
+ ‖A1‖BV→R ≤

13
14 < 1

which means that A0 and A1 satisfy (7.3.33). Accordingly, (7.3.34) has for small |λ| an
AC1-solution, analogously to the boundary value problem (7.3.7). ♦

One may now think that option (a) of Theorem 7.3.2 always implies (7.3.33) or vice
versa. But no such implication is true, as the following example shows.

Example 7.3.14. Define the two functionals A0, A1 : BV → R by

A0x := A1x := 1
2x(τ)

for some τ ∈ [0, 1]. Then ‖A0‖BV→R = ‖A1‖BV→R = 1/2, ‖A0 − A1‖BV→R = 0 and
‖A0 + A1‖BV→R = 1. Thus, the estimate (7.3.33) is violated, while (a) of Theorem
7.3.2 is fulfilled.

On the other hand, if we instead define

A0x := 1
3x(τ) and A1x := −1

3x(τ)

again for some fixed τ ∈ [0, 1], then ‖A0‖BV→R = ‖A1‖BV→R = 1/3, ‖A0 − A1‖BV→R =
2/3 and ‖A0 + A1‖BV→R = 0. In this case, (a) of Theorem 7.3.2 is violated while
(7.3.33) is fulfilled. ♦

We now jump to Theorem 7.3.8 and see how it looks like in the setting of (IVP). Since
the structure of the linear operator A in (7.3.32) is covered by Proposition 7.3.6 we
have a general method to calculate the spectral radius of A. Accordingly, we have the
following analogue to Theorem 7.3.8.
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Theorem 7.3.15. Assume that the function g : [0, 1]× R → R satisfies (H11 ∗(L∞)),
(H16) and (H17). Moreover, assume that the linear functionals A0, A1 : BV → R are
bounded with

R

(
A01 A11

A0w A1w

)
< 1, (7.3.35)

where the function w ∈ BV is defined by w(t) = t for t ∈ [0, 1].
Then for each R > 0 there is some % > 0 such that (IVP) has for fixed λ ∈ (−%, %) a
solution x ∈ BR(AC1). Here, the space AC1 is equipped with the norm ‖·‖BV .
If, in addition, g is continuous on [0, 1]× R, then every such solution is of class C2.

Proof. The argument is similar as in the proof of Theorem 7.3.8; we just have to change
four things. The first is that we now consider the linear operator A : BV → BV ,
defined by

Ax = 1A0x+ wA1x for x ∈ BV,

where w(t) = t. Second, we now use (7.3.35) together with Proposition 7.3.6 to guaran-
tee that R(A) < 1 and that we therefore find some n ∈ N such that ‖An‖BV→BV < 1.
Third, Theorem 7.2.15 yields a solution x ∈ BV of the Volterra equation (7.3.30).
Fourth and finally, Proposition 7.3.12 tells us that x in fact belongs to AC1 and solves
(IVP). Moreover, it also tells us that if g is continuous, then x is of class C2 and
therefore a classical solution to (IVP). �

Let us have a look back at Example 7.3.14.

Example 7.3.16. Consider the initial value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = 1
2x(1/2),

x′(0) = 1
2x(1/2),

 (7.3.36)

with g satisfying (H11∗(L∞)), (H16) and (H17). Using the functionals A0x := 1
2x(1/2)

and A1x := 1
2x(1/2) which are precisely the functionals used in Example 7.3.14 for

τ = 1/2 we have seen there that (7.3.33) is violated; even worse, the operator Ax =
1A0x+ wA1x with w(t) = t is no contraction in BV , as ‖A1‖BV = 1. However,

R

(
A01 A11

A0w A1w

)
= R

(
1/2 1/2
1/4 1/4

)
= 3

4 < 1

and so Theorem 7.3.15 tells us that (7.3.36) has for small |λ| an AC1-solution. ♦
Let us again look at the general kind of initial value problems we have considered so
far in the previous examples. Similar to (7.3.20) they have the form

x(0) = ax(τ1) + bx(τ2) and x′(0) = cx(σ1) + dx(σ2), (7.3.37)
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where a, b, c, d ∈ R and τ1, τ2, σ1, σ2 ∈ [0, 1] are given. The estimate (7.3.35) now says
that Theorem 7.3.15 may be applied if and only if

R

(
a+ b c+ d

aτ1 + bτ2 cσ1 + dσ2

)
< 1. (7.3.38)

From this it is easily seen that there is also no inclusion between the two estimates
(7.3.21) and (7.3.38).

Example 7.3.17. Let τ1 = σ1 = 1/3, τ2 = σ2 = 2/3 and c = d = 0. Then the matrix
in (7.3.21) becomes (

2a/3 + b/3 0
a/3 + 2b/3 0

)
with spectral radius |2a+ b|/3, whereas the matrix in (7.3.38) turns into(

a+ b 0
a/3 + 2b/3 0

)
with spectral radius |a + b|. Consequently, for a = −1/2 and b = 5/2 the spectral
radius of the first matrix is 1/2 while that of the second matrix is 2. For a = 11/2 and
b = −5, however, it is exactly the other way round. ♦
Similarly as we did for boundary value problems instead of considering “local” initial
conditions of type (7.3.37), we may also look at “global” initial conditions like, for
instance,

x(0) =
∫ 1

0
k0(s)x(s) ds and x′(0) =

∫ 1

0
k1(s)x(s) ds,

where k0, k1 ∈ L1. Then A0 and A1 are defined by

A0x =
∫ 1

0
k0(s)x(s) ds and A1x =

∫ 1

0
k1(s)x(s) ds

and thus Theorem 7.3.15 may be applied if and only if

R


∫ 1

0
k0(s) ds

∫ 1

0
k1(s) ds∫ 1

0
k0(s)s ds

∫ 1

0
k1(s)s ds

 < 1.

Example 7.3.18. Consider the initial value problem

x′′(t) = −λg
(
t, x(t)

)
for 0 ≤ t ≤ 1,

x(0) = x′(0) =
∫ 1

0
sx(s) ds.

 (7.3.39)

We then have k0(s) = k1(s) = s and

R


∫ 1

0
k0(s) ds

∫ 1

0
k1(s) ds∫ 1

0
k0(s)s ds

∫ 1

0
k1(s)s ds

 = R

(
1/2 1/2
1/3 1/3

)
= 5

6 < 1.

Thus, under the assumptions of Theorem 7.3.15 we find for small |λ| a solution x ∈
AC1. ♦
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As a last remark we point out that condition (7.3.35) is not necessary for (IVP) to
have a solution in AC1.

Example 7.3.19. Consider the initial value problem

x′′(t) = −4λ
(
4t2x(t) +

√
1− x(t)2

)
for 0 ≤ t ≤ 1,

x(0) =
√

2 x
(√

π/8
)
,

x′(0) = 0.

 (7.3.40)

In the notation of (7.3.37) we have a =
√

2, b = c = d = 0 and τ1 =
√
π/8. Thus, the

spectral radius of the matrix in (7.3.38) becomes

R

( √
2 0√
π/2 0

)
=
√

2 > 1.

Nevertheless, it is easy to check that the function x(t) = cos
(
2t2
)
is an (even analytic)

solution to the initial value problem (7.3.40) for λ = 1. ♦
To conclude, the situation here is basically the same as for (BVP).
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