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Abstract
As a non-destructive testing method, X-ray imaging has proved to be suitable for the ex-
amination of a variety of objects. The measurement principle is based on the attenuation
of X-rays caused by these objects. This attenuation can be recorded as shades of intensity
using X-ray detectors and thus contains information about the inner structure of the in-
vestigated object. Since X-rays are electromagnetic waves, they also experience a change
of phase in addition to their attenuation while penetrating an object. In general, imaging
methods based on this effect are referred to as phase contrast imaging techniques. In the
laboratory, the two mainly used methods are the propagation based phase contrast or in-line
phase contrast and the grating interferometry.
While in-line phase contrast – under certain conditions – shows edge enhancement at in-
terfaces due to interference, phase contrast in the grating interferometry is only indirectly
measurable by the use of several gratings. In addition to phase contrast, grating inter-
ferometry provides access to the so-called dark-field imaging contrast, which measures the
scattering of X-rays caused by an object.
These two imaging techniques, together with a novel concept of laboratory X-ray sources,
the liquid-metal-jet, form the main part of this work. Compared to conventional X-ray
sources, the liquid-metal-jet source offers higher brightness. The term brightness is defined
by the number of X-ray photons per second, emitting area (area of the X-ray spot) and solid
angle at which they are emitted.
On the basis of this source, a high resolution in-line phase contrast setup was partially
developed in the scope of this work. Several computed tomographies show the feasibility
of in-line phase contrast and the improvement of image quality by applying phase retrieval
algorithms.
Moreover, the determination of optimized sample positions for in-line phase contrast imaging
is treated at which the edge enhancement is maximized. Based on primitive fiber objects,
this optimization has proven to be a good approximation.
With its high brightness in combination with a high spatial coherence, the liquid-metal-jet
source is also interesting for grating interferometry. The development of such a setup is also
part of this work. The overall concept and the characterization of the setup is presented as
well as the applicability and its limits for the investigation of various objects.
Due to the very unique concept of this grating interferometer it was possible to realize a
modified interferometer system by using a single grating only. Its concept and results are
also presented in this work.
Furthermore, a grating interferometer based on a microfocus X-ray tube was tested regarding
its performance. Thereby, parameters like the anode material, acquisition geometry and
gratings were altered in order to find the advantages and disadvantages of each configuration.
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Kurzzusammenfassung

Als zerstörungsfreie Prüfmethode hat sich die Röntgenbildgebung zur Untersuchung un-
terschiedlichster Prüfobjekte bewährt. Das Messprinzip beruht dabei auf der durch das
Prüfobjekt verursachten Schwächung der Röntgenstrahlung. Diese Schwächung kann als
Helligkeitsschattierungen mittels eines Detektors aufgenommen werden und beinhaltet somit
Informationen über das Innere des untersuchten Objekts. Da Röntgenstrahlen elektroma-
gnetische Wellen sind, erfahren sie beim Durchdringen eines Objekts neben der Schwächung
auch eine Veränderung ihrer Phase. Bildgebungsmethoden auf Grundlage dieses Effekts wer-
den allgemein als Phasenkontrastbildgebungsverfahren zusammengefasst. Im Bereich von
Laboraufbauten sind die zwei hauptsächlich genutzten Methoden der propagationsbasierte
Phasenkontrast, auch In-line Phasenkontrast genannt, und die Gitterinterferometrie.
Während sich beim In-line Phasenkontrast – unter gewissen Umständen – Kontrastüber-
höhungen an Grenzflächen auf Grund von Interferenzen ausprägen, ist der Phasenkontrast
bei der Gitterinterferometrie nur indirekt durch Verwendung mehrerer Gitter messbar.
Neben dem Phasenkontrast ermöglicht die Gitterinterferometrie den Zugang zu einem wei-
teren Kontrastmodus, dem sogenannten Dunkelfeldkontrast, welcher ein Maß für die Streu-
ung von Röntgenstrahlen an einer Probe darstellt.
Diese beiden Bildgebungsmethoden im Zusammenhang mit einem neuartigen Konzept von
Laborröntgenquellen, der Flüssigmetallanodenröhre, bilden den Kern dieser Arbeit. Im
Vergleich zu herkömmlichen Röntgenquellen bietet die Flüssigmetallanodenröhre eine höhere
Brillanz. Der Begriff der Brillanz ist definiert durch die Anzahl von Röntgenphotonen pro
Sekunde, emittierender Fläche (Fläche des Röntgenbrennflecks) und Raumwinkel, unter dem
diese abgestrahlt werden.
Auf Basis einer solchen Quelle wurde im Rahmen dieser Arbeit ein hochauflösender propa-
gationsbasierter Phasenkontrastaufbau mitentwickelt. Ausgewählte Anwendungsbeispiele
zeigen die Machbarkeit dieser Bildgebungsmethode und die Verbesserung der Bildqualität
durch Anwendung von Phasenrückgewinnungsalgorithmen.
Des Weiteren wird die Entwicklung einer Optimierung der Probenposition für den In-
line Phasenkontrast behandelt, mit dem Ziel, die Kontrastüberhöhungen zu maximieren.
Anhand experimenteller Überprüfung an Fasern erwies sich diese Optimierung als gute
Näherung.
Mit ihrer hohen Brillanz und räumlichen Kohärenz ist die Flüssigmetallanodenröhre eine
vielversprechende Röntgenquelle für den Einsatz an einem Gitterinterferometer, weshalb
auch die Entwicklung eines solchen Aufbaus im Fokus der Arbeit stand. Neben der Präsen-
tation des Gesamtkonzepts und der Charakterisierung des Systems konnten die Anwend-
barkeit aber auch die Grenzen dieses Aufbaus zur Untersuchung verschiedenster Materialien
gezeigt werden.
Auf Grund des sehr speziellen Gesamtkonzepts des Gitterinterferometers gelang es, ein abge-
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wandeltes Interferometersystem mit nur einem Gitter zu realisieren. Dessen Konzeption und
Ergebnisse werden im Rahmen dieser Arbeit ebenfalls dargestellt.
Des Weiteren wurde ein Gitterinterferometer unter Verwendung einer Mikrofokusröntgen-
quelle hinsichtlich seiner Eigenschaften erprobt. Dabei wurden Systemparameter wie An-
odenmaterial, Aufnahmegeometrie und Gitter variiert, um sowohl Vor- als auch Nachteile
einer jeden Konfiguration zu finden.
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Introduction

X-ray imaging Imaging with X-rays is typically used to obtain information of the inner
structure of a sample in a non-destructive way. Such samples can for instance be the chest
of a human patient in the field of medicine, animals or organic materials like plants in the
field of biology or mechanical components or composite materials in the field of material
science.
As X-rays are part of the electromagnetic spectrum, their interaction with matter can be
described by the complex refractive index

n = 1− δ + iβ

with 1 − δ describing the refraction and iβ the absorption of electromagnetic waves when
passing through matter. In the X-ray regime, the order of β is small enough for these waves
to not be completely absorbed and therefore deliver information encoded in the transmitted
intensity. This concept describes the conventional X-ray imaging. In terms of absorption,
the linear attenuation coefficient µ is commonly used, which is related to β.
Besides the attenuation of X-rays, it is possible to observe effects of the wave characteristics
of X-rays under certain conditions as well. These effects are described by the term phase
contrast imaging. In contrast to conventional X-ray imaging, where X-rays are attenuated,
phase contrast imaging is based on the manipulation of the phase of the wave field when it
passes through matter. This change in phase is induced by the real part of the refractive
index δ and therefore allows a different view on the investigated sample.
For materials with a low atomic number Z the absorption properties decrease for higher
energies and the achieved contrast of light materials is poor. In this sense, phase contrast
imaging offers an alternative and more suitable way to investigate such samples since the
relation δ/β reaches up to 103 for soft tissue and energies above 10 keV 1. This means, X-rays
are more sensitive to changes in phase induced by the sample rather than to the absorption
properties of the sample.
Phase contrast imaging comprises a variety of methods, which are described by Zhou and
Brahme 1. Nowadays, two of these methods are successfully applied in laboratory setups.
These methods are the “Propagation based phase contrast” or also commonly described as
“In-line phase contrast” and the “Grating interferometry”.
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Introduction

In-line phase contrast The in-line phase contrast is the simplest of all phase contrast
imaging techniques as it uses nothing but an X-ray source, a detector and a sample. Basi-
cally, such a setup does not differ from a conventional X-ray imaging setup. Phase contrast,
in form of diffraction fringes at interfaces of a sample, was first discovered by Cosslett and
Nixon 2 in the 50s of the last century when for the first time submicrometer focal spots were
used. Forty years later, phase contrast was rediscovered at synchrotron facilities 3,4 in high
resolution imaging setups. Also, at that time Wilkins et al. 5 reported on phase contrast
imaging with a polychromatic microfocus tube in a laboratory setup.
One key parameter for phase contrast imaging is a high spatial coherence. This can be
achieved by either a small size of the X-ray spot (microfocus X-ray source) or a rather large
X-ray spot in combination with long distances between the source and the object (syn-
chrotron) 5. Note that temporal coherence is of lower importance to in-line phase contrast
as it can be observed with polychromatic X-ray sources as well 5.
Another key parameter to detect phase contrast is a sufficient spatial resolution. While
micro computed tomography (micro CT) setups at the synchrotron employ a high resolution
detector, laboratory setups based on a microfocus source inherently achieve a high resolution
due to the small spot size in combination with geometric magnification.
In the beginning, the phenomenon of phase contrast was used to improve contrast in micro
CT 6–8. As mentioned above, absorption contrast becomes poor when using high energy
X-ray photons and further decreases in micro CT systems due to a typically small field of
view (FOV) in the range of a few millimeters and therefore small absorption lengths in the
sample.
In order to use the full potential of phase contrast, i.e. a phase tomography (also holoto-
mography), there was a need for phase retrieval algorithms that were developed by several
groups (e.g. Gureyev et al. 9 and Cloetens et al. 10).

Grating interferometry The basic concept of this imaging technique is the use of gratings.
A first grating imprints a periodic modulation onto the impinging wave-field. Due to this
periodicity, the wave-field is reproduced at certain distances, which was first described by
Talbot 11 in 1836. By introducing a sample into the beam path, the periodic wave-field is
distorted. This distortion is then analyzed by a second grating, which allows to measure
two additional contrast modes besides the attenuation (as in usual CT setups). These two
contrast modes are the differential phase contrast (DPC) and the dark-field image contrast
(DIC) representing the scattering of the wave-field caused by the sample.
Grating interferometry with its three contrast modes has experienced an increasing popu-
larity in laboratory setups since the first experiments at synchrotrons 12–14 in the beginning
of this century. Since then, it has become a common tool for medical imaging15, material
science16,17 and in the examination of biological samples18. The reason for the acceptance
of this technique is that, in terms of DPC, it allows to obtain phase information and a high
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field of view (FOV) at the same time. The FOV in in-line phase contrast setups is much
smaller due to the requirements for micrometer spatial resolution. In terms of DIC, grating
interferometry is very attractive since it allows to detect scatterers in the sample, which are
smaller than the underlying pixel sampling.
Understanding the information delivered by a grating interferometer, especially the dark-
field signal, was subject of a variety of studies. Such experiments have shown that the dark-
field depends not only on the size of the scatterers 19,20 but also on their orientation21,22

and on the thickness of the sample23.
Most grating interferometry setups use large spot X-ray sources in order to have a sufficient
photon flux. Unfortunately, large X-ray spots lead to a loss of coherence. Therefore, a
source grating has been introduced, which provides the required coherence 24. Such a setup,
consisting of three gratings, is referred to as a Talbot-Lau interferometer 24.

Motivation of this work Since the first publication on the feasibility of in-line phase con-
trast in the laboratory by Wilkins et al. 5 in 1996, such setups were operated with micro-
focus 25,26 and submicrofocus 27 X-ray sources providing for the required spatial coherence
and a high resolution at the same time.
The key parameter of X-ray sources is the brightness, which is defined as the number of
photons per second, emitting area (X-ray spot) and solid angle at which they are emitted.
As X-ray photons are generated by accelerated electrons impinging on the anode material,
the brightness scales with the electron-beam power density 28.
A new type of compact laboratory X-ray sources, the liquid-metal-jet X-ray source 29,30,
which was invented in the beginning of the last decade, is a promising candidate in terms of
high brightness X-ray sources. Due to its technical design, the power density (and therefore
the brightness) exceeds the ones obtained by conventional X-ray sources and shows potential
for even higher power densities 28,30. Tuohimaa et al. 28 demonstrated in 2007 that this
source provides the necessary spatial coherence together with a high X-ray flux for the
purpose of in-line phase contrast. Up to 2012 and the beginning of this work, only a
few liquid-metal-jet sources were employed for phase contrast imaging 28,31,32. Similar to
microfocus setups the imaging concept was based on geometric magnification, i.e. sample
position close to the source.
At the Chair of X-ray microscopy an alternative approach of micro CT was realized based
on the advantages of the liquid-metal-jet X-ray source regarding its high brightness. Here,
and in contrast to geometric magnification based (laboratory) setups, the high resolution of
1–2 µm33 is achieved by an indirectly converting scintillator based detector. This approach,
which was partially developed in the scope of this work, is similar to synchrotron micro CT
setups and was one of the first of this kind. Since phase contrast imaging benefits from a
high resolution, the image quality of CT scans can be improved by applying phase retrieval
algorithms.
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Furthermore, on the basis of this approach, a hybrid setup was built which allows to switch
between two scan modes without moving the sample. One of these modes is the above
described micro CT with micrometer resolution and a second nano CT mode with resolutions
down to 172 nm by using Fresnel zone plates 33.
One central aim regarding in-line phase contrast was the derivation of an optimization
formalism, which determines the best sample position for the purpose of phase contrast
imaging, i.e. to give the highest fringe contrast. The motivation of deriving such an opti-
mization results from the fact that a small fringe contrast is more likely to be wiped out
by noise than a fringe contrast of higher magnitude. In contrast to previous work 34, this
formalism optimizes the imaging geometry as a trade-off between image resolution and the
propagation distance. On the basis of fringe contrast of fiber objects, this optimization is
confirmed experimentally as an adequate approximation.
In terms of grating interferometry, the liquid-metal-jet source is an interesting alternative
to existing X-ray sources. As it provides a high spatial coherence in combination with
a high flux, a grating interferometer based on this source may omit the source grating.
Establishing such a grating interferometer in the existing hybrid setup was another aim of
this work. Although Thüring et al. 35 reported on a grating interferometer setup with a
liquid-metal-jet source in 2013, it is still an interesting and promising setup type – especially
when equipped with micrometer resolving detectors – in terms of investigation of the two
contrasts DIC and DPC, which will become apparent in the corresponding chapter.
If a high resolution detector is used, another concept of grating interferometry is possible,
which is based on a single grating, and was published for the first time by Takeda et al. 36.
Due to its small pixel size, the detector can be operated as the analyzer grating itself, allow-
ing shorter acquisition times. Such setups have been developed at synchrotron facilities 37,38

and laboratories 39,40. While the former used gratings with periods of several microns and
detector pixel sizes of 1 µm and less, the latter had completely different configurations (127
µm period and 30 µm pixel size). As the requirement concerning the detector resolution in-
creases with smaller periods, not much attention has been paid to single grating setups with
small periods. In this work, such a setup will be presented and its performance concerning
the three contrast modes will be shown.
Although grating interferometry is a well established method and the working principle is
well known, each grating is a custom-made product. Therefore, the performance may differ
from one interferometer to another, especially in combination with a specific imaging setup
(X-ray source, anode, detector, manipulation stage, etc...). The investigation of a grating
interferometer based on a microfocus X-ray tube in different configurations (setup geometry,
anode material and usage of a source grating) is treated in another part of this thesis.

Outline In the first chapter, the theoretical framework is given. It treats the basic formal-
ism for the propagation and evolution of electromagnetic wave-fields, which is necessary to
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describe the phenomenon of in-line phase contrast and the Talbot effect, the main principle
of grating interferometry. In the second chapter, a brief introduction to simulations is given,
which were employed in several parts of this work. The simulations are based on the math-
ematics of the first chapter. The third chapter provides an overview of the experimental
setups, which were used to generate the experimental data shown in this work. Chapters
four to seven show the results of this thesis. On the one hand, chapter four deals with the
optimization of in-line phase contrast 41, on the other hand it shows possible applications of
the high resolution phase contrast setup on the basis of computed tomographies of several
samples. Chapter five treats the characterization of the grating interferometer setup with the
liquid-metal-jet source 42 and shows results regarding radiographies and tomographies 42,43.
Chapter six treats a microfocus tube based grating interferometer setup and compares its
performance with varying system parameters. Chapter seven presents the concept of a sin-
gle grating interferometer setup in a 1–D and 2–D configuration 44, the data processing and
experimental results on the basis of both, radiographies and computed tomographies. A
summary and an outlook is given in the end of this work.
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1 Theory

This chapter is divided into three sections. The first section is an introduction to the
basic theory of Fresnel diffraction which is necessary to describe the phenomenon of phase
contrast. Subject of the second section are laboratory X-ray sources. Here, an overview
of different types of X-ray sources is given and the generation of X-rays and the concept
of partial coherence of X-ray sources is also treated. The third section is dedicated to the
detection of X-rays.

1.1 Image formation

This section treats the propagation of a wave-field in free-space (i.e. vacuum) by deriving the
Fresnel diffraction formalism. This derivation is adopted from the textbook of D. Paganin 45.
Further, it will be shown how X-rays interact with matter and that this interaction can
be described sufficiently by the complex refractive index. With the refractive index the
transmission function can be calculated, describing the propagation of a wave-field through
matter. The Fresnel scaling theorem shows an adaption of this image formation theory in the
case of spherical wave illumination (cone beam), which is important to describe the image
formation in laboratory X-ray setups. Besides that, a brief introduction to the Talbot effect
is given, which explains the phenomena of replication of a periodical wave-field at a distinct
distance, the Talbot distance. This replication is the basis of the grating interferometry
technique.

1.1.1 Free-space propagation

1.1.1.1 Free-space wave equation

The basis of the derivation of the Fresnel diffraction are the Maxwell equations in vacuum
(i.e. ρ = 0 and ~j = ~0 ),45

∇ · ~E(x, y, z, t) = 0 (1.1)

∇ · ~B(x, y, z, t) = 0 (1.2)

∇× ~E(x, y, z, t) + ∂

∂t
~B(x, y, z, t) = ~0 (1.3)

∇× ~B(x, y, z, t)− ε0µ0
∂

∂t
~E(x, y, z, t) = ~0 (1.4)

7



1 Theory

The free-space wave equation, also referred to as the d’Alembert equation, is obtained from
these equations by taking the curl of Eq. 1.3 and using Eqs. 1.1 and 1.4

(ε0µ0
∂2

∂t2
−∇2) ~E(x, y, z, t) = ~0 (1.5)

In the same manner one finds the wave equation for the magnetic induction

(ε0µ0
∂2

∂t2
−∇2) ~B(x, y, z, t) = ~0 (1.6)

In the absence of charges this vector theory may be reduced to a scalar field theory 45, hence
the electromagnetic disturbance may be expressed by a scalar wave-field U(x, y, z, t), which
is a solution to the d’Alembert equation

(ε0µ0
∂2

∂t2
−∇2) U(x, y, z, t) = 0 (1.7)

Substituting the spectral decomposition of this wave-field

U(x, y, z, t) = 1√
2π

∫ ∞
0

u(x, y, z)e−iωtdω (1.8)

into Eq. 1.7 with the identity c = 1√
ε0µ0

yields

∫ ∞
0

[(
∇2 + ω2

c2

)
u(x, y, z)

]
e−iωtdω = 0 (1.9)

This equation is fulfilled if the term inside the brackets is equal to zero, which leads to the
Helmholtz equation (

∇2 + ω2

c2

)
u(x, y, z) = 0 (1.10)

With k2 = k2
x+k2

y+k2
z the plane wave solution to this equation upw(x, y, z) = ei(kxx+kyy+kzz)

may be rewritten for propagation along z

upw(x, y, z) = ei(kxx+kyy) · eiz
√
k2−k2

x−k2
y (1.11)

1.1.1.2 Fresnel diffraction

Eq. 1.11 can be further rewritten assuming that the propagation of the wave-field in the
directions perpendicular to the optical axis (z-axis) is small compared to the propagation
downstream of the object, i.e.

√
k2 − k2

x − k2
y ≈ k −

k2
x + k2

y

2k (1.12)

8



1.1 Image formation

Applying this approximation on Eq. 1.11 results in

upw(x, y, z) ≈ ei(kxx+kyy)eikze−iz
k2
x+k2

y
2k (1.13)

The unpropagated wave-field may be decomposed in such elementary plane waves

u(x, y, z = 0) =
∫ ∫

ũ(kx, ky, z = 0)ei(kxx+kyy)dkxdky (1.14)

where ũ(kx, ky, z = 0) is the Fourier transform of u(x, y, z = 0) and ei(kxx+kyy) can be
identified as upw(x, y, z = 0). With Eq. 1.13 one finds the expression for the propagated
wave-field at z = d

u(x, y, z = d) =
∫ ∫

ũ(kx, ky, z = 0)ei(kxx+kyy)eikde−id
k2
x+k2

y
2k dkxdky (1.15)

= F−1
{
F{u(x, y, z = 0)} eikd e−id

k2
x+k2

y
2k

}
(1.16)

Using the convolution theorem, this shows that Eq 1.16 has the following form

ud(x, y) = u0(x, y) ∗ Pd(x, y) (1.17)

where ud(x, y) denotes the propagated wave-field u(x, y, z = d), u0(x, y) the unpropagated
wave-field u(x, y, z = 0) and Pd the Fresnel propagator

Pd (x, y) = eikd F−1
{
e−id

k2
x+k2

y
2k

}
= eikd

1
iλ d

ei
π
λd(x2+y2) (1.18)

Eq. 1.17 can be expressed in a more common way, namely the Fresnel diffraction integral
(its interpretation will be given in Sec. 1.1.4),

ud(x, y) = eikd
1
iλd

∫
σ
u0 (x0, y0) · ei

k
2d [(x−x0)2+(y−y0)2]dx0dy0 (1.19)

and is visualized in Fig. 1.1 showing an incident wave-field. Provided that the wave-field is
known at z = 0, the Fresnel diffraction formalism allows to calculate the wave-field in any
desired parallel plane that is located at a distance z = d. Although this result is not much
exciting, it allows to propagate any incident wave-field. This will be of higher interest in
combination with the formalism of Sec. 1.1.3, where it will be shown how an incident wave-
field at the entrance surface of an object is manipulated by its physical properties regarding
electromagnetic waves, arriving at an expression for the wave-field at the exit surface of
the object. This wave-field then may be used in order to calculate an intensity distribution
at a distant plane by the readily derived formalism, i.e. calculating interference patterns
introduced by the object.
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1 Theory

z

z=0 z=d

xy

Figure 1.1: Demonstration of the free-space propagation. Due to the Fresnel diffraction for-
malism the wave-field at any distance z = d may be calculated with the prior
knowledge of a wave-field at z = 0. Image based on D. Paganin 45

1.1.2 Interactions of X-rays with matter

1.1.2.1 Refractive index

This introduction to the refractive index can be found in more detail in the textbook of
D. T. Attwood 46. The starting point are the Maxwell equations in the presence of charges
and currents (cf. D. T. Attwood 46). The vector wave equation can be derived from these
equations (

∂2

∂t2
− c2∇2

)
~E(x, y, z, t) = − 1

ε0

[
∂ ~J(x, y, z, t)

∂t
+ c2∇ρ(x, y, z, t)

]
(1.20)

By using the Fourier-Laplace transformations and the equation of charge conservation, it
can be shown that the above mentioned wave equation has the form(

∂2

∂t2
− c2∇2

)
~ET(x, y, z, t) = − 1

ε0

∂ ~JT(x, y, z, t)
∂t

(1.21)

where the radiated electric field is only determined by the transverse components of the
current density with respect to the propagation direction ~k of the incident wave, denoted
by the subscript T. In a semi-classic model of an atom with a bound electron, the solution
of the differential equation of the motion ~x of the electron

m~a+mγ~v +mω2
s~x = −e( ~Einc + ~v × ~Binc) (1.22)

10



1.1 Image formation

is

~x(x, y, z, t) = e

m

1
(ω2 − ω2

s) + iγω
~E(x, y, z, t) (1.23)

~v(x, y, z, t) = e

m

1
(ω2 − ω2

s) + iγω

∂ ~E(x, y, z, t)
∂t

(1.24)

where the term ~v× ~B is negligible if the oscillation velocity ~v is small compared to the speed
of light c.
For a collection of electrons that are bound to atoms of a many atom system the current
density ~J = −en~v may be estimated as

~J = −ena
∑
s

gs~vs(x, y, z, t) (1.25)

where na is the average density of atoms and gs the number of electrons associated with
the resonance frequencies ωs (oscillator strengths) 46. By combining 1.24 and Eq. 1.25 and
substituting this resulting expression in Eq 1.21 gives the following differential equation(

∂2

∂t2
− c2∇2

)
~ET(x, y, z, t) = e2na

ε0m

∑
s

gs
(ω2 − ω2

s) + iγω

∂2 ~ET(x, y, z, t)
∂t2

(1.26)

Rearranging this equation yields[
n(ω)2 ∂

2

∂t2
− c2∇2

]
~ET(x, y, z, t) = 0 (1.27)

where the complex refractive index n(ω) is defined as

n(ω) =
[
1− e2na

ε0m

∑
s

gs
(ω2 − ω2

s) + iγω

]1/2

≈ 1− e2na
2ε0m

∑
s

gs
(ω2 − ω2

s) + iγω
(1.28)

the approximation leading to the right hand side of the last equation can be made if ω2 �
e2na
ε0m

which is true in the X-ray regime. With the complex atomic scattering factor

f0(ω) =
∑
s

gsω
2

(ω2 − ω2
s) + iγω

= f0
1 (ω) + if0

2 (ω) (1.29)

one can rewrite the refractive index with the use of the classical electron radius re = e2

4πε0mc2

by

n(ω) = 1− nareλ
2

2π [f0
1 (ω) + if0

2 (ω)] = 1− δ + iβ (1.30)

where λ is the vacuum wavelength. By assuming a solution for the wave equation 1.27 of

11



1 Theory

the form
~E(x, y, z, t) = e−i(wt−kxx+kyy+kzz) (1.31)

the complex dispersion relation is given as

k = ω

c
n = ω

c
(1− δ + iβ) (1.32)

1.1.2.2 Types of interaction

In the previous section the refractive index was discussed. The following section will give an
overview of the elementary processes that X-rays will undergo while passing through matter
and hereby suffering from attenuation. This effect is commonly known as the Lambert-Beer
attenuation law 47

I(d) = I0e
−µ·d (1.33)

giving the intensity I(d) of X-rays after passing through a homogeneous material of the
linear attenuation coefficient µ and of thickness d. Conveniently, the linear attenuation
coefficient µ, which depends on the density of an element or compound, is replaced by the
mass attenuation coefficient µ/ρ to avoid the dependence on density 48.
The attenuation of X-rays is caused by many processes. Their contributions are summed
up in the total mass attenuation coefficient 48

(µ/ρ)tot = (σpe + σincoh + σcoh + σpair + σtrip)/muA (1.34)

In this equation σ denotes the cross section of the processes of photoelectric effect (pe),
Compton effect or incoherent scattering (incoh), Rayleigh or coherent scattering (coh), pair
(pair) and triplet (trip) production. The cross section is simply related to µ/ρ by the factor
1/muA wheremu is the atomic mass unit and A is the standard atomic weight and is defined
as

σ = P̄scatt
S̄inc

(1.35)

The pair and triplet production is an effect that takes place at X-ray energies above 1MeV.
Since the photon energies of the imaging methods presented in this work are well below that
limit, these two effects will not be considered in the following.
Figure 1.2 illustrates the basic processes of the photoelectric effect, Compton scattering and
Rayleigh scattering.

Photoelectric effect If the incident X-ray photon has an energy which is sufficiently high to
ionize the atom, an electron is ejected (Fig. 1.2a)). One portion of the photon’s energy is used
to overcome the binding energy of the electron. Since the photon is absorbed completely, the
rest of its energy is transferred as kinetic energy to the electron. If the photon energy has
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Ze+Photon

e-

Ze+

Photon

Photon

Ze+

Photon

e-

Photona) b)b) c)

Figure 1.2: Different types of interaction. In the photoelectric absorption a) the photon is
absorbed completely which causes the ionization of a shell electron. The Compton
effect b) describes an incoherent scattering of an incident photon that liberates a
weakly bound electron and is then scattered with the energy Eph, scatt (Eph, inc >
Eph, scatt) depending on the scattering angle ϑ. The third process, shown in c),
is known as coherent or Rayleigh scattering of a photon. In this scattering event
the photon energy remains unchanged. Additionally, the scattered photon has the
same phase as the incident photon, thus coherent. Images based on T. Buzug 47

values that are very close to the binding energies of the atom’s shell electrons, the absorption
tends to increase rapidly. This is known as absorption edges.

Incoherent scattering, Compton effect Figure 1.2 b) shows the Compton effect which is
observed when photons interact with electrons of very small binding energy. In this case,
these electrons can be considered essentially as free electrons. Here, an incident photon ejects
an electron and is scattered under the angle ϑ with respect to the direction of incidence.
This scattering process is accompanied by a loss of energy of the scattered photon. Also,
the phases of the scattered and incident photon are not related to one another. For this
reason this process is also referred to as “incoherent scattering”.

Coherent scattering, Rayleigh scattering Figure 1.2 c) visualizes the coherent scattering,
where both the incident and the scattered photon have the same energy and phase. In
literature this effect is also called Rayleigh scattering 48.
The refractive index, derived in Sec. 1.1.2.1 and described by the complex atomic scattering
factor f0(ω) (see Eq. 1.30), is related to the contribution of the photoelectric effect of the
mass attenuation coefficient 49 by

σpe = 2λref0
2 (ω) (1.36)

The coherent scattering factor is defined for wavelength λ & 1 nm50 (≈ 1 keV) as

σcoh = 8
3πr

2
e

∣∣∣f0(ω)
∣∣∣2 (1.37)

Below that wavelength, numerical calculations have to be carried out for the coherent scat-
tering cross section σcoh as well as for the Compton scattering cross section σincoh, which
was done and tabulated by Hubbel et al. 48 Figure 1.3 shows the mass absorption coefficients
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of the different contributions of relevance in the range from 1 keV up to 70 keV. As can be
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Figure 1.3: Total attenuation and its individual contributions for the two materials a) copper
and b) carbon. While the total attenuation of copper is dominated by the pho-
toelectric effect over the shown energy range, the total attenuation of carbon is
dominated by the photoelectric effect only up to an energy of 20 keV. For higher
energies incoherent scattering is the main contribution to attenuation. Data taken
from XCOM database 51

seen from Fig. 1.3 a), (µ/ρ)tot for copper is dominated over the shown energy range only
by the photoelectric effect. As mentioned before, one can see the absorption edge for cop-
per (Z=29) at 8.9 keV, the binding energy of the K-shell electron. For lighter elements such
as carbon (Z=6) the total mass absorption coefficient is dominated by incoherent scattering
at higher energies (Fig. 1.3b)). However, the contribution itself is small. This means that
lighter elements are almost transparent for higher energies.
Note that these contributions only describe the loss of intensity of an incident beam as
implied by Eq. 1.33. If one is interested in interference effects occurring in a wave-field, one
has to consider the refractive index that describes how the wave-field is modulated by an
object. The refractive index is tabulated in form of the values f0

1 and f0
2 by Henke et al. 49

1.1.3 Transmission function

In this section the transmission function is introduced, giving a simple rule to calculate how
an electromagnetic wave-field is manipulated by matter and how this changed wave-field
is related to the primary wave-field impinging onto the object. This scenario is shown in
Fig 1.4 where the primary wave-field is denoted as uin and the outgoing wave-field as uout.
The derivation of the transmission function can be found in detail in the textbook of D.
Paganin 45, as it would go beyond the scope of this introduction. Here, only the results will
be stated. The wave-field uout(x, y) is given by the multiplication of the impinging wave-field
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uin(x,y) uout(x,y)

z

xy

Figure 1.4: Manipulation of an incident wave uin(x, y) by the object due to its complex re-
fractive index n = 1− δ + iβ. The resulting wave-field uin(x, y) can be calculated
by the transmission function as described in the text and has a phase advance of
∆Φ(x, y). Image based on D. Paganin45.

uin(x, y) with the transmission function T(x,y). Hence

uout(x, y) ≈eik
∫
n(x,y,z)dzuin(x, y)

≈eik
∫

(1−δ(x,y,z))dzeik
∫
iβ(x,y,z)dzuin(x, y)

≈T (x, y)uin(x, y) (1.38)

where the transmission function is defined as

T (x, y) = e−
2π
λ

∫
β(x,y,z)dz · ei

2π
λ

∫
1−δ(x,y,z)dz (1.39)

This transmission function T is commonly written as

T (x, y) = e−B(x,y) · eiΦ(x,y) (1.40)

with B(x, y) = 2π
λ

∫
β(x, y, z)dz (1.41)

and Φ(x, y) = 2π
λ

∫
1− δ(x, y, z)dz (1.42)

Whereas the phase advance (phase shift) with respect to the unscattered wave is

∆Φ(x, y) = φ(x, y) = −2π
λ

∫
δ(x, y, z)dz (1.43)

From this equation one can readily derive the well known Lambert-Beer attenuation formula
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for a single material with a thickness of d

Iout(x, y) = |uout(x, y)|2 = e−2k
∫
βdz |uin(x, y)|2 = e−2kβ·dIin(x, y) (1.44)

where the measurable intensity I(x, y) is defined as the squared modulus of u(x, y), i.e.
I(x, y) = |u(x, y)|2. The relation between the attenuation coefficient µ and the imaginary
part of the refractive index β is

µ = 2kβ (1.45)

1.1.4 Fresnel scaling theorem

Up until now, the propagation of a plane wave in free-space was described by the Fresnel
diffraction formalism (Eq. 1.17). This section will show how to adapt this formalism to
the case of an incident spherical wave rather than a plane wave, known as the Fresnel
scaling theorem. The derivation of this theorem is taken from D. Paganin 45. But first
an interpretation of the Fresnel diffraction integral (Eq. 1.19) is given for the plane wave
illumination and is depicted in Fig. 1.5. An incident plane wave uin is modulated by a thin

z

y
x

Object plane Detector plane

d

y0
x0

Figure 1.5: The figure illustrates the Fresnel diffraction integral (Eq. 1.19) for the case of a
plane wave impinging on a thin screen, placed at distance d before the detector.
Image is taken from a prior master thesis 52

screen. This modulation can be calculated by the transmission function (Eq. 1.38) resulting
in the wave-field uout at the exit surface of the screen as follows

u0(~x) = T (~x)uinc(~x) (1.46)

where, from now on, the outgoing wave-field uout and the incoming wave-field uin will be
denoted as u0 and uinc, respectively. Also, the transverse coordinates (x, y) will be denoted
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1.1 Image formation

in the following as ~x.
Substituting u0 from Eq. 1.46 into Eq. 1.19 (Fresnel diffraction integral) gives the wave-field
at a parallel plane at a distance d apart from the screen.

ud(~x) =eikd 1
iλd

∫
σ
u0(~x0) · ei

π
λd

(~x−~x0)2
d~x0

=eikdei
π
λd
~x2 1
iλd

∫
σ
uinc,plane(~x0) · T (~x0) · e−i

2π
λd
~x~x0 · ei

π
λd
~x2

0d~x0 (1.47)

The intensity distribution detected by a detector is given by Id (~x) = |ud (~x)|2, the squared
modulus of the wave-field ud, hence

Id,plane(~x) = |ud(~x)|2

= 1
λ2d2

∣∣∣∣∫
σ
uinc,plane(~x0) · T (~x0) · e−i

2π
λd
~x~x0 · ei

π
λd
~x2

0d~x0

∣∣∣∣2 (1.48)

Since the measurements described in this work are performed at laboratory sources that are
to be characterized as sources of spherical waves, one has to adapt the equations in order
to have a representation of the measured intensity for laboratory sources. A sketch of a
laboratory imaging setup is shown in Fig. 1.6. Here, an incident spherical wave uinc,sphere(~x)
is impinging on the object that manipulates this wave-field. The spherical wave is the only
difference between Figs. 1.6 and 1.5.

Object plane Detector plane

dl

yy0
xx0

z

Figure 1.6: The figure illustrates the Fresnel diffraction integral for the case of an incident
spherical wave. Here, the object, a thin screen, is the distance l downstream of
the source. The distance between the screen and the detector is d. Image is taken
from a prior master thesis 52

The above mentioned adaption of the Fresnel diffraction formalism is known as the Fresnel
scaling theorem 45 and will be derived in the following. Supposing that a spherical wave can
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be expressed as 45

uinc,sphere(~x) = uinc,plane(~x) · ei
π
λl
~x2 (1.49)

⇒ u0(~x) = T (~x) · uinc,sphere(~x) = T (~x) · uinc,plane(~x) · ei
π
λl
~x2 (1.50)

Proceeding in the same fashion, which led to Eq. 1.47, the wave-field at the position of the
detector d gives

ud,sphere =eikdei
π
λd
~x2 1
iλd

∫
σ
uinc,sphere(~x0) · T (~x0) · e−i

2π
λd
~x~x0 · ei

π
λd
~x2

0d~x0

=eikdei
π
λd
~x2 1
iλd

∫
σ
uinc,plane(~x0) · T (~x0) · e−i

2π
λd
~x~x0 · ei

π
λ ( 1

l
+ 1
d)~x2

0d~x0 (1.51)

The term 1
l + 1

d that occurs in the last exponential function in the last line of the above
equations can be rewritten in terms of geometric magnification M = l+d

l , i.e.

1
l

+ 1
d

= l + d

l · d
= M

d
= 1
D

(1.52)

Calculating the intensity distribution accordingly to Eq. 1.48 gives

Id,shpere(~x) = 1
M2

1
λ2D2

∣∣∣∣∫
σ
uinc (~x0) · T (~x0) · e−i

2π
λD

~x
M
~x0 · ei

π
λD

~x2
0d~x0

∣∣∣∣2 (1.53)

There are two remarks on the above stated equation. First, the intensity measured in
a laboratory setup is a general expression that contains the special case of plane wave
illumination of the sample implicitly. This can be seen by taking the distance l between
the source and the sample to infinity whereby the magnification M tends to M l→∞−→ 1 and
the propagation distance D l→∞−→ d. The resulting equation is exactly like the one given by
Eq. 1.48 for plane wave illumination.
The second remark is of more importance as it shows that the intensity distribution obtained
with spherical wave illumination, i.e. in the laboratory setup, is given by that of a plane
wave illumination by a simple transformation of the coordinates ~x and the propagation
distance d, hence

Id,sphere(~x) = 1
M2

1
λ2D2

∣∣∣∣∫
σ
uinc (~x0) · T (~x0) · e−i

2π
λD

~x′~x0 · ei
π
λD

~x2
0d~x0

∣∣∣∣2︸ ︷︷ ︸
ID,plane(~x′)

(1.54)

with the above mentioned transformations

d→ D = d · l
d+ l

(1.55)

~x→ ~x′ = ~x

M
(1.56)
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1.1 Image formation

In the following, the source-object distance (SOD) d and the object-detector distance (ODD)
l of a cone beam setup will be denoted as R1 and R2 while d will denote the object-detector
distance of a plane wave illumination scenario.

1.1.5 Talbot effect

The starting point for the Talbot effect 11 is the operator form of the Fresnel diffraction
integral (Eq. 1.16). Its derivation can be found in the textbook of D. Paganin 45.

ud = F−1
{
F {u0} · eikd e−id

k2
x+k2

y
2k

}
(1.57)

Assuming the incoming wave-field to be periodic in the transverse plane with respect to the
direction of propagation, the wave-field u0 may be written in Fourier series

u0 =
∑
m

∑
n

û(m,n)e
2πi
p

(xm+yn) (1.58)

where p is the period.
Substituting the above equation in Eq. 1.57 results in

ud = eikdF−1
{∑

m

∑
n

û(m,n)F
{
e

2πi
p

(xm+yn)
}
· e−id

k2
x+k2

y
2k

}
(1.59)

The Fourier transform of the term e
2πi
p

(xm+yn) gives

F
{
e

2πi
p

(xm+yn)
}

= 2πδ
(2πm

p
− kx

)
δ

(2πn
p
− ky

)
(1.60)

Taking into account the sifting property of the Dirac δ function in the inverse Fourier
transform leads to

ud =eikd
∑
m

∑
n

û(m,n)
∫ ∫

e−id
k2
x+k2

y
2k · ei(kxx+kyy)δ

(2πm
p
− kx

)
δ

(2πn
p
− ky

)
dkxdky

(1.61)

=eikd
∑
m

∑
n

û(m,n)e−id
2π2
p2

m2+n2
k · ei

2π
p

(mx+ny) (1.62)

If the argument of the propagator d2π2

p2
m2+n2

k in Eq. 1.62 is equal to an integer multiple of
2π, the whole equation reduces to the equation given in Eq. 1.58 except for the phase factor
eikd that will disappear by calculating the squared modulus of ud.
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Taking a closer look on the argument reveals that it is an integer multiple of 2π

d
2π2

p2
m2 + n2

k
= 2π(m2 + n2) (1.63)

if d assumes the value

d = p2k

π
(1.64)

That specific distance d is referred to as the Talbot distance dT

dT = 2p2

λ
(1.65)

with k = 2π
λ .

This result means that a periodic wave-field with the period p is reproduced at the Talbot
distance dT or at an integer multiple of it.
A periodic wave-field is realized by using a grating that is placed in front of an X-ray source
with a period p. It is obvious that such a grating can be made out of highly absorbing bars,
namely an intensity grating. As one may think, there are also other types of gratings that
provide for such a periodic modulation of the wave-field. These other types of gratings are
referred to as phase gratings and will be discussed in chapter 5.

1.2 Laboratory X-ray sources

All laboratory X-ray sources consist of three obligatory elements. The cathode, provid-
ing electrons by thermionic emission, a high voltage generator, accelerating the emitted
electrons, and an anode, decelerating the electrons. Additionally, in some X-ray tubes a
focusing optic is used to focus the electron-beam onto a certain area of the anode. Despite
this similarity, X-ray tubes can be grouped by their anode design: stationary, rotating and
– for several years – liquid anodes, first reported in the hard X-rays regime by Hemberg et
al. 29 In order to quantify the quality of a source, usually the brightness is employed which
is defined as 46

B = photons
∆A ·∆Ω · s (1.66)

It describes the power, or number of photons per second, emitted from an area ∆A into a
solid angle ∆Ω. This measure is proportional to the electron-beam power density 29 that
causes a heating of the anode. Obviously, the heat load applied to an anode is limited by
its melting point. Thus, dissipating the heat is the key in increasing the brightness.

Stationary anode In stationary anode X-ray tubes the heat dissipation is provided by a
water-cooled copper block thermally connected to the anode (see for example Ref. 53). In
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1.2 Laboratory X-ray sources

order to improve the brightness, these sources use the so-called “line focus principle” 53. This
means, the cathode emits an electron-beam with a rectangular shape onto the anode surface
which is tilted by a few degrees (with respect to the electron-beam). As a consequence,
the apparent X-ray spot size is reduced in one direction (from rectangular to square) and
therefore the effective electron-beam power density is increased 29.
Microfocus tubes use focusing optics in order to achieve small electron spots on the anode.
Since the electron-beam power density may be increased with smaller electron-beam size 54,
these sources have an improved brightness compared to standard stationary anode tubes.
The spot sizes vary from few micrometer to several tens of micrometer 55. On the basis of
modified electron microscopes, spot sizes in the range of several hundred nanometers may
be achieved, first employed by von Ardenne 56

Rotating anode Besides a water-cooled anode and the line focus principle, the dissipation
of heat is further increased by the rotation of the anode. In this way, the heat induced by
the electron-beam is applied on a much larger area, i.e. on a ring instead of a stationary
area. By introducing focusing optics and thus achieving smaller spots in the range of several
tens of micrometer 57, the brightness of these sources was further increased 58.

Liquid-metal-jet This new type of laboratory X-ray source uses a liquid alloy as an anode
which is pumped in a closed circuit. Its technical design (in more detail in Sec. 3.1.1) allows
a higher electron-beam power density applied to the metal-jet compared to microfocus and
rotating anode X-ray sources 28.

A comparison of most of the mentioned tube types regarding the specifications such as
applied power, spot size and brightness is given by Skarzynski 58.

1.2.1 Generation of X-rays

Although these above mentioned laboratory X-ray sources differ completely in their design,
the way X-rays are generated is identical for all these sources. One process is the deceleration
of the electrons (Fig. 1.7 a)) causing an emission of radiation due to the attractive force
induced by the nucleus of the atom.
The emitted radiation is related to the distance b (see Fig. 1.7 a)) which the electron initially
has to the atom. The closer it gets, the higher is the energy of the emitted X-rays. This
leads to a continuous spectrum of the X-ray emission, known as “Bremsstrahlung”. Fig.1.7
d) shows the broad intensity distribution from 6 keV up to 30 keV. Superimposed to this
continuous spectrum are the characteristic emission lines of the anode material. In this
case, the anode material is the mentioned alloy of the liquid-metal-jet source that consists
of the materials Gallium, Indium and Tin. These characteristic emission lines arise from the
absorption of an electron (Figs. 1.7 b)). The absorption process, similar to the photoelectric
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Figure 1.7: The interactions of electrons with an anode material and the generation of X-rays.
a) shows the deceleration process of an electron due to the attractive force of the
nucleus accompanied by the emission of an X-ray photon. b) shows the ionization
of a shell electron and c) the energy level diagram, explaining the characteristic
X-ray emission lines. These exist in almost every radiated spectrum of X-ray tubes
and are shown in d) together with the broad X-ray spectrum (“Bremsstrahlung”).
Images based on D. T. Attwood 46.

effect, ionizes the atom by liberating a shell electron. The resulting vacancy is filled with
electrons of higher shells, leading to a specific emission of radiation. The latter process is
commonly known as fluorescence. Fig. 1.7 c) shows a scheme of the transitions that lead to
the emission lines named K, L, M etc. depending on the shell of the liberated electron.
The subscripts α and β refer to the shell of the electrons that fill the vacancy. Due to the
orbitals’ fine structure, these emission lines are further classified as α1 and α2 (not shown
in Fig. 1.7 c).

1.2.2 Coherence

Phase contrast imaging is an interference phenomena that relies on the coherence of the
underlying wave-field. Coherence is a measure of the correlation of two wave-fields, being a
fundamental prerequisite to form an interference pattern. Usually, coherence is divided into
two aspects, i.e. the longitudinal (temporal) and transverse (spatial) coherence. These are
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1.2 Laboratory X-ray sources

given by59

LL = λ2

2∆λ (1.67)

LT = λz

2s (1.68)

and are depicted in Fig.1.8. The longitudinal and transverse coherence length refer to that
length when both waves are out of phase by a factor of π. While in-line phase contrast
allows a lack of temporal coherence 45, it is sensitive to the lack of spatial coherence. A
sufficient spatial coherence can be achieved by either a small source s or a large distance z
between the source and the object under investigation, as can be seen from Eq. 1.68.

s

z

2 LT

2 LLa) b)

Figure 1.8: Schematic illustration of the a) longitudinal and b) transverse coherence length.
In both cases the coherence length is defined as that length when both waves are
out of phase by a factor of π. Images based on Als-Nielsen and McMorrow 59

A mathematically more rigorous way of treating coherence is the mutual coherence function
Γ 60

Γ1,2(τ) = 〈u (~r1, t+ τ)u∗ (~r2, t)〉 (1.69)

where ~r denotes the spatial coordinates (x, y, z) and the brackets represent a time average.
It is convenient to define the complex degree of coherence γ 60, a normalized version of Γ,
as

γ1,2(τ) = Γ1,2(τ)√
Γ1,1(0)

√
Γ2,2(0)

= Γ1,2(τ)√
I1
√
I2

(1.70)

expressing the degree to which a correlation exists between the wave-field at two separated
points (~r1, t+ τ) and (~r2, t) in space and time.
In the limit of quasi-monochromatic illumination, γ1,2(τ) may be expressed by j1,260

γ1,2(τ) quasi mono-−−−−−−−−−→
chromatic limit

γ1,2(0) = j1,2 = 1√
I1
√
I2

∫
I(S)e

ik̄(z1−z2)

z1z2
dS (1.71)
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which is known as the van Cittert-Zernike theorem. A graphical interpretation of this
equation is given in Fig. 1.9. I1 and I2 are the average intensities at the points P1 and P2,
zi is the distance between a point in the source S and the point Pi, I(S) is the intensity
distribution of the source S, and k̄ the mean frequency of the quasi-monochromatic wave.

 

S z

z1

z2

x'

y'

x

y

P1

P2

p

Figure 1.9: Visualization of the van Cittert-Zernike theorem. S is the source with all elements
being mutually incoherent. There is still a degree of coherence of the two points
P1 and P2 according to Eq. 1.71. Image based on Born and Wolf 60

Although all elements in the source are mutually incoherent, there is still a degree of coher-
ence for the two points P1 and P2, determined by Eq. 1.71. With the assumption that the
source and the distance between P1 and P2 are small compared to z, it can be shown that
j1,2 is simply the normalized Fourier transform of the intensity distribution 60.
For instance, a pinhole of radius s and homogeneous intensity has the degree of coherence 46

j1,2 = 2J1(ν)
ν

(1.72)

where J1 is the Bessel function of the first kind of first order and ν = 2πs
λz p = pπ/LT. ν

includes the spatial coherence length, meaning that if the distance of the two points of P1 and
P2 becomes too big, no correlation is given between these two points, thus no interference
will occur.

1.3 X-ray detectors

There is a wide range of X-ray detectors from gas ionization chambers, gas proportional
chambers, scintillation and semiconductor detectors 61. While detectors based on gas cham-
bers (amongst others) are used for instance in the field of X-ray diffraction and scattering 62

and will not be treated in this work, the detectors mostly used in the field of X-ray imag-
ing are scintillator based CCD detectors 63,64, indirect-conversion flat panel detectors63,65,
direct-conversion flat panel detectors 63,65 and single photon counting detectors 66,67. These
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1.3 X-ray detectors

types of detectors can be categorized in indirect and direct converting detectors, referring
to the conversion of X-rays into an electronic signal.

Indirect converter Indirect-conversion detectors usually use a scintillating material which
converts X-ray photons into photons of visible light. This emitted light is then either coupled
to a CCD camera by optical lenses 63,64 (scintillator based CCD detectors) where the visible
light is converted into an electronic signal and stored in each pixel, or coupled to a TFT-
array by a photo diode 63,65 (indirect-conversion flat panel detector) that converts the visible
light into electrons which are stored in the TFT array.

Direct converter The working principle of direct converting detectors is, as implied, that
the X-ray photons are directly converted into an electron signal. This is achieved by using
a semiconductor absorption layer which is deposited on a TFT array (direct converting
flat panel detector). Mostly, an amorphous selenium semiconductor 63 is used. Another
type of direct conversion detectors are single photon counting detectors that also use a
semiconductor as an X-ray absorbing layer (e.g. Medipix66), but with the difference that
the read-out chip, consisting of an amplifier, comparator and a counter, allows to count
single photon incident events by comparing the amplified electron signal with a threshold 67.

1.3.1 Point spread function (PSF) and modulation transfer function (MTF)

In general, a detector can be characterized by several aspects like the detective quantum
efficiency (DQE), conversion rate and the spread of light in the scintillator, dark current
and noise of the readout electronics, etc. They all are very important but will not be
treated in this work. A main specification of a detector is its resolution. The modulation
transfer function (MTF) of a detector system determines the way of how specific features
are resolved. The MTF originates from the absolute value of the Fourier transform of the
PSF, describing how an infinitely small point (mathematically a Dirac δ function) is spread
by the imaging system.
As can be seen from Fig 1.10, the MTF describes how features of different sizes (modulations)
in the signal are transferred into the resulting image. Since the modulations increase linearly
in the ideal image, they are suppressed by the envelope of the Gaussian MTF function. Note
that both the signal and the MTF are defined in different spaces, i.e. the real space and
Fourier space.
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Figure 1.10: Illustration of the effect of an MTF. a) shows the ideal image, not yet changed
due to an imaging system. This ideal image consists of increasing modulations,
approximate structures of different size. b) shows the image after passing through
the imaging system. The MTF gives the magnitude of modulation of such struc-
ture sizes (damping).
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2 Simulation

Simulations are a powerful tool to predict experiments or to compare the expectations of
an experiment with measured data. To simulate the intensity distribution (image) of an
experiment, one has to apply the well-known formalisms of the Fresnel diffraction, the
transmission function and the Fresnel scaling theorem shown in Sec. 1.1. Although a basic
version of the simulation was developed in a prior master thesis 52, it was extended to an
object oriented framework (C++). For the sake of readability of some parts in this work the
simulation procedure is explained step-by-step and visualized in Fig. 2.1

T (~x)

��

δ, β
uu Calculating the

transmission
function T

u0(~x0) = A · T (~x)

F{u0}
��

ũ0(~ξ0)

��

P̃d(~ξ)

vv

Calculating
the Fresnel
propagator

ũd(~ξ) = ũ0(~ξ0) · P̃d(~ξ)

F−1{ũd}
��

ud(~x)

��
Id(~x) = |ud(~x)|2 Ideal intensity

Figure 2.1: Basic process of the simulation. Calculating the transmission function leads to
u0(~x0) and is Fourier transformed to give ũ0(~ξ0). Multiplying this with the Fres-
nel propagator P̃d(~ξ) results in the propagated wave-field ũd(~ξ) in Fourier space.
The ideal intensity Id(~x) = |ud(~x)|2, detected at the propagation distance d, is
calculated as the squared modulus of ud(~x), the inverse Fourier transform ũd(~ξ).
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2 Simulation

First, the transmission function of a desired object is calculated (Eq. 1.39). This result
is transformed in the Fourier space to use the advantage of the convolution theorem. In
a second step, the calculation of the propagator in Fourier space has to be carried out
(Eq. 1.18). A multiplication of the former and the latter gives ũd(~ξ). An inverse Fourier
transform leads to the wave-field propagated by a distance d from the object. The squared
modulus of this wave-field gives the ideal intensity Id,ideal.
The ideal intensity is a theoretically expected intensity, neither allowing for a polychromatic
spectrum of an X-ray source, its spot size, nor influences due to the blurring of a detector.
The last two effects are taken into account by using the concepts of the van Cittert-Zernike
theorem (Sec. 1.2.2), describing the degree of coherence of an X-ray source, and the point
spread function (Sec. 1.3.1), describing the blurring of a detector. The following part shows
how these concepts lead to the more realistic intensity distribution Id,experiment

Polychromatic sources A polychromatic spectrum may be considered by simply calculat-
ing the ideal intensity for all energies evident in the spectrum and adding up all of these
energies 5. This is a good approximation since the intensity is always measured as a time av-
erage of the detected – time dependent – intensity, if this integration time is long compared
to the coherence time of the polychromatic field45.

Influences of spot size and detector The coherence of the source is taken into account by
multiplying the degree of coherence j1,2 with the Fourier transform of the ideal intensity 68

Ĩd,experiment = j1,2 · Ĩd,ideal (2.1)

This multiplication in Fourier space may be rewritten as a convolution in real space of the
detected ideal intensity with the intensity distribution of the source SDF(x), as j1,2 is the
Fourier transform of the latter, as stated in Sec. 1.2.2.
From a geometrical point of view the detected intensity can be interpreted as a sum of the
single projected intensities of single point sources of intensity si at the locations xi, hence

Id,experiment =
∑
i

siId,ideal(x− xi) (2.2)

Fig. 2.2 a) illustrates the recorded intensity by a single source, while b) shows the intensity of
three point sources. For a continuous function representing the SDF as shown in c), Eq. 2.2
may be rewritten as

Id,experiment =
∑
i

siId,ideal(x− xi) =
∑
i

SDF(xi) ·∆x · Id,ideal(x− xi) (2.3)
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with si = SDF(xi) ·∆x. In the limit ∆x → 0 the measured intensity Id,experiment approxi-
mates the convolution integral which is equivalent to Eq.2.1

lim
∆x→0

Id,experiment =
∫

SDF(x) · Id,ideal(x− xi)dx (2.4)

SDF

si
si+1

si+2

Δx

d)

b

R1 R2

Point sources

Detector Detector

DetectorDetectorPoint source

Object

ObjectObject

ObjectContinuous source Source

Figure 2.2: Geometrical interpretation of the convolution in Eq. 2.1. In a) a single point source
is shown, generating a shadow image of the object (blue box). In b) a set of point
sources is shown, each of which is located at x = xi with an intensity of si. This
set of point sources leads to a summation of intensities shown in a) displaced to
one another by the distance a. For a continuous source distribution, shown in c),
the summation approximates a convolution (cf. Eq.2.4). Image d) illustrates the
scaling factor R2/R1 which takes the geometric magnification into account.

For the sake of simplicity, the SDF may be often approximated as a Gaussian function of
standard deviation σS representing the extent of the source. Due to the geometric magnifica-
tionM as shown in Fig. 2.2 d), this parameter has to be scaled by the factorM−1 = R2/R1

where R1 is the source-object distance (SOD) and R2 is the object-detector distance (ODD).
The SDF and its Fourier transform j1,2 of a Gaussian function have the form

SDF(x) = 1√
2π(σS R2

R1
)2

exp[− x2

2(σS R2
R1

)2 ] (2.5)

j1,2(ξ) = F{SDF(x)} = exp[−2π2(σS
R2
R1

)2ξ2] (2.6)

The influence of the detector on a detected intensity is described by the PSF (cf. Sec. 1.3.1).
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Thus, the Fourier transform of the detected intensity is given in a similar way to Eq. 2.1

Ĩd,experiment = MTF · Ĩd,ideal (2.7)

where the MTF is the Fourier transform of the PSF. If the latter is assumed to be Gaussian
as well (with standard deviation σP ) for simplicity reasons, then both functions have the
following form

PSF(x) = 1√
2πσ2

P

exp[− x2

2σ2
P

] (2.8)

MTF(ξ) = F{PSF(x)} = exp[−2π2σ2
P ξ

2] (2.9)

By taking into consideration both the source and the detector, their Gaussian shaped con-
tributions may be combined in Fourier space to one Gaussian function, the total modulation
transfer function MTFtot

Ĩd,experiment = MTF · j1,2 · Ĩd,ideal = MTFtot · Ĩd,ideal (2.10)

⇒ MTFtot = exp[−2π2σ2
effξ

2] (2.11)

with the parameter σeff, defined as 69

σeff
2 = σP

2 + (σS ·R2/R1)2

M2 (2.12)

This parameter describes the setup resolution in dependence on the distances R1 and R2. As
the resolution is commonly given in length scales associated with the sample, the combined
parameter σ2

P + (σS ·R2/R1)2 in Eq. 2.12 is divided by 1/M2.
Fig. 2.3 a) depicts MTFtot as a function of the spatial frequency ξ and R1, while keeping the
source-detector distance SDD = R1+R2 fixed. For this plot, the parameters σS and σP were
set to 2 µm and 4 µm, respectively. The solid black curve in the bottom plane of Fig. 2.3 a)
represents the parameter σMTF, the standard deviation of MTFtot which is related to σeff
as follows

MTFtot(ξ) = exp[−2π2σ2
effξ

2] = exp[− ξ2

2σ2
MTF

]}

⇒ σ2
MTF = 1/(2πσeff)2 (2.13)

Both parameters σMTF and σeff express the resolution of the setup and are shown in
Fig. 2.3 b). As it is more intuitive to associate a maximum of a function with the high-
est resolution, the parameter σMTF will be chosen over σeff in the rest of this work when
addressing the resolution of a setup. Furthermore, from this parameter one can easily derive
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Figure 2.3: Image a) shows MTFtot (σS = 2 µm and σP = 4 µm) for the three distances
R1 = 50, 150 and 250mm as red, green and blue plots. Depending on R1, the
resolution has different values indicated by the different widths σMTF. A black
solid line is plotted in the bottom plane of image a) which is a projection of the
standard deviation σMTF of each specific MTFtot. The black plot in b) shows the
same function σMTF as a function of R1. The red curve is σeff which is related to
σMTF by σ2

MTF = 1/(2πσeff)2.

the resolution of a setup in lp/mm at 10 % of MTFtot by

ResMTF,10% =
√

2 ln(10) · σMTF = 2.14 · σMTF (2.14)

This basic model of the influences of the source and the detector together with the calcula-
tions of an ideal image, illustrated in Fig. 2.1, sets the framework for numerical simulations.
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3 Experimental setups

In this chapter the main experimental setups are shown, which where employed to gener-
ate the results in the following chapters. Since this work is based on measurements of two
different phase contrast imaging methods (i.e. in-line phase contrast and grating interfer-
ometry), it is worth explaining the conceptional differences of these two. The in-line phase
contrast is an imaging method which does not require any additional instruments, excluding
an X-ray source and an X-ray detector. In Fig. 3.1 a) the sketch of such a setup is shown.
The basic concept does not differ from conventional computed tomography setups, leading

Sample
 

Detector
plane

R2

Phase 
grating G1 xy

z

Analyzer
grating G2

R1

SOD

Source

Source
grating G0

xy

z

Detector
plane

ODD=R2SOD=R1

Sample
 

Source
 

a)

b)

Figure 3.1: Categorization of phase contrast imaging methods. a) shows an in-line phase con-
trast setup without additional instruments. b) shows a grating interferometer
setup, and is referred to as Talbot-Lau interferometer in this configuration with
three gratings.

to the question about the required conditions for phase contrast. One of these is the propa-
gation distance, given by the source-object distance (SOD) and the object-detector distance
(ODD), the coherence of the source and the resolution of the detector. The relations of
these three parameters will be subject of chapter 4.
The sketch of a grating interferometer setup is shown in Fig. 3.1 b). Typically, such a
setup consists of three gratings. Grating G0 is referred to as the coherence grating as it
provides for partial coherence, which is the basic requirement for the appearance of the
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Talbot effect 11. G1, the phase grating, imprints a periodicity on the wave-field, leading to
the Talbot effect. The analyzer grating G2 is placed at the earlier mentioned Talbot distance
dT , more specifically at fractional Talbot distances (discussed in chapter 5) due to limited
partial coherence. The detector stands right behind the analyzer grating. A setup with
three gratings is called Talbot-Lau interferometer 24. Note that the distances R1 and R2 are
restricted due to the magnification of G0 via G1 in order to match the grating periodicity
of G2 in projection.
If the necessary coherence is provided by the source, the coherence grating may be omit-
ted, as well as the analyzer grating in the case of a sufficient resolution of the detector.
These three types of grating interferometers will be discussed in chapter 5 (G1|G2), chapter
6 (G0|G1|G2) and chapter 7 (G1).

3.1 LMJ setup

The imaging setup at the Chair of X-ray microscopy in Würzburg was designed to allow
different imaging techniques. Its name – liquid-metal-jet setup – arises from the X-ray
source it is based on. This source uses a liquid-metal-jet (LMJ) as an anode instead of a
solid anode material (Sec. 3.1.1). Due to the mechanical design of the setup (Sec. 3.1.3), it
can be operated in a nano CT scan mode with Fresnel zone plates as well as in a micro CT
scan mode.
Conventionally, laboratory micro CT setups are based on small X-ray spots (1–20 µm spot
size) in combination with flat panel detectors with large pixels (several tens of micrometer).
Such setups achieve the best resolution (on the order of the X-ray spot size) in high geometric
magnifications, meaning the sample is put very close to the X-ray source (R1 � R2, cf.
Fig. 3.1 a)).
Instead of using a small X-ray spot and large detector pixels, a different approach of (lab-
oratory) micro CT exists, which is similar to micro CT setups operated at synchrotrons.
This approach uses a large X-ray spot size in combination with a high resolution detector.
Although these setups are operated in a (low) geometric magnification close to 1 (R2 � R1),
i.e. the sample is put close to the detector, a high resolution is achieved due to the small
pixel size.
The LMJ setup is built according to the latter approach. It uses an LMJ X-ray source with
a typical spot size of 10–20 µm and a high resolution detector with a pixel size of 0.62 µm
(see Sec. 3.1.2). Thereby, a resolution in the range of 1–2 µm 33 is achieved.
Both setup types, i.e. high and low magnification systems, have their advantages and
disadvantages 70, which will not be discussed here. However, the end of the next subsection
will focus on an estimate of the X-ray flux in both setup types and how this number is
affected by using an LMJ source.
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3.1 LMJ setup

3.1.1 Liquid-Metal-Jet (LMJ) X-ray source

This source consists, basically, of an electron gun and an electron focusing unit in order to
focus the electron-beam onto the jet of a liquid alloy of gallium, indium and tin (Gallinstan).
The alloy is pumped from a cooled reservoir through a closed circuit and is therefore con-
stantly refreshed. Due to this regenerative nature, the liquid jet is less sensitive to thermal
damage unlike solid anodes 30. Additionally, the metal-jet speed of approximately 100ms 71

is higher compared to rotating anodes (≈ 60 m
s
29). Both, the regenerative nature and the

higher anode speed result in an increased applicable power density (600–1300 kW
mm2

32) in
contrast to other types of X-ray sources 28.
In comparison, microfocus X-ray tubes with 10µm diameter are usually operated with 50–
100 kW

mm2
32 and rotating anode X-ray tubes in the range of 25–50 kW

mm2
72 with 700×70µm

spot size. However, taking into account the line focus principle (see Sec. 1.2), the apparent
electron-beam power density is increased by a factor of 10 due to a reduced effective X-ray
spot size 29.
As the brightness is proportional to the electron-beam power density, the LMJ exceeds
existing X-ray tubes in terms of brightness by a factor of 2–10. The former corresponds to
high-end rotating anodes with line focus principle and the latter to microfocus X-ray tubes.
The metal-jet itself has a diameter of approximately 180 µm. Fig. 3.2 a) illustrates the
focusing of the electron-beam (yellow) onto the jet causing an emission of X-rays (gray).

liquid-metal-jet

electrons X-rays

heat dissipation

b)

a)

c)

Figure 3.2: Illustration of the impact of the focused electron-beam with a certain spot size and
shape. The direction of X-ray emission is indicated by the gray cone.
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The user interface allows to vary the acceleration voltage (limit at 70 kV and 200W) as well
as the size and shape of the electron focus and its relative position with respect to the jet.
Hence, an X-ray spot of desired shape and size may be set. Fig 3.2 b) shows an X-ray spot
with unequal extents in the horizontal and vertical direction. When the relative position of
the electron spot approaches the center of the jet, one has to deal with an asymmetry of
the spot shape in the horizontal direction as shown in c). An asymmetric shape of the spot
may also be induced by approaching the edge of the jet. Both spots were imaged with a
zone plate.
The measured spectrum of the LMJ source is shown in Fig. 3.3. For this measurement an
acceleration voltage of 70 kV was applied. Unfortunately, it was not possible to measure the
whole energy range due to the spectrometer detection limit (Amptek X-123 Si-PIN). Despite
this fact, the main properties of the X-ray spectrum of the LMJ are visible. All emission
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Figure 3.3: X-ray spectrum of the liquid-metal-jet. The characteristic emission lines of gallium,
indium and tin are superimposed to the broad spectrum of “Bremsstrahlung”,
where the emission lines of gallium are dominating the spectrum.

lines of the alloy elements are present. The gallium emission lines Kα and Kβ cover more
than 40% of the spectrum in the range from 5–30 keV (blue area in Fig. 3.3).

Performance concerning X-ray flux An estimate of typical exposure times in imaging
setups can be given by the X-ray photon flux. This number can again be calculated from
the brightness B by the following relation (cf. Eq. 1.66)

Photons
s

= B · Ω ·A (3.1)

where the solid angle Ω can be approximated by a detector’s pixel size and the source-
detector distance (SDD). The area A is given by the X-ray source size.
Following the considerations of Ref. 70, a high as well as a low geometric magnification
system can have the same X-ray flux under the following conditions:
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3.1 LMJ setup

• Both setups use the same SDD.

• Both setups have the same resolution, which depends on the X-ray spot size and the
pixel size∗ (see Eq. 2.12).

• The brightness of both X-ray sources is independent of the X-ray spot size.

For example, let one setup (high geometric magnification) have an X-ray spot size of 1 µm
and a pixel size of 10 µm. A second setup (low geometric magnification) has an X-ray spot
size of 10µm and a pixel size of 1µm. As a result of the symmetrically chosen parameters
both setups will have the same resolution. According to Eq. 3.1, both setups will also have
the same X-ray flux if the brightness of both X-ray sources is independent of its spot size.
This is caused by the fact that the larger solid angle (Ω1 = 100 · Ω2) of the first setup is
completely compensated by the larger spot size of the second setup (A2 = 100 ·A1).
Of course, the brightness depends on the spot size and on the type of X-ray source. For
instance, the brightness (expressed in electron-beam power density) of a microfocus X-ray
tube with 1µm spot size can theoretically reach values in the range of 900 kW

mm2
54. An LMJ

source with 10µm spot size has a brightness of 1300 kW
mm2 . Therefore, when comparing the

(low magnification) LMJ setup with a high magnification setup based on a microfocus X-ray
tube like in the example above, the gain in X-ray flux (reduction in exposure time) is on
the order of 1.4.
By considering the detective quantum efficiency (DQE) of the utilized detectors, this factor
can further decrease.

3.1.2 Detector

Owing to the fact that this setup was under development from the very beginning, there
has been a variety of detector systems, however always on the basis of the same working
principle, i.e. an indirectly converting detector. This working principle together with the
latest layout of the detector are shown in Fig. 3.4. As described in Sec. 1.3, an indirectly
converting detector consists of a scintillating screen, converting X-ray photons into visible
light, which is then transmitted to a camera by an optical lens system.
The detectors of the first generation for medium and high resolution used a 5 µm thick
LSO:Tb and a Gadox powder screen as the scintillator, respectively. The visible light
is then transferred by a magnifying optic onto a CCD (FLI PL 9000, 12µm pixel pitch)
in the high resolution mode and onto a sCMOS (Andor NEO, 6.5µm pixel pitch) in the
medium resolution mode. The effective pixel sampling due to the optical magnification is
∆x = 1.2 µm (high res.) and ∆x = 6.2 µm (medium res.).
The detector of the second generation is similar to the high resolution detector of the first
generation except for the fact that both resolutions are combined in one device. It utilizes

∗For the sake of simplicity, it is assumed that the MTF of the detector is related to its pixel size
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LSO:Tb

LuAG:Ce

Andor Zyla
sCMOS

FLI PL9000
CCD Mirrors

Scintillator

Microscope
objective

Camera
lens

Camera

X-rays

b)a)

Figure 3.4: In a), the conceptional layout of an indirectly converting detector is shown. The X-
ray photons are converted into visible light by the scintillator. This light gets into
the microscope objective, producing a parallel beam that incidents on the camera
lens. b) shows the latest detector layout, combining two modes of resolution in one
device. This is possible due to the rotation axis in front of the camera. The visible
light, generated in the scintillator, is redirected by a mirror. A second mirror is
positioned in the beam path to use the Andor Zyla camera, or moved out to use
the FLI.

also an LSO:Tb screen with either the above mentioned CCD (FLI PL 9000) or an sCMOS
(Andor Zyla, 6.5µm pixel pitch) in the high resolution mode. In the medium resolution
mode, a 50 µm thick LuAG:Ce scintillator is used, also in combination with both camera
types (Andor Zyla, FLI PL 9000) which can be changed by a moving mirror as shown
in Fig. 3.4. The effective pixel sampling in the high resolution mode is ≈ 0.62/0.67 µm,
depending on the camera in use and is ≈ 3.1/3.3 µm in the medium resolution mode.
The specifications of the presented detectors of the first and the second generation are
summarized in table 3.1

Table 3.1: Technical specifications of the detectors (first and second generation) used at the
LMJ setup.

Detector 1st
generation

Camera pixel size eff. pixel size scintillator FOV
[µm] [µm] [mm]

High res. FLI PL9000 CCD 12 1.2 LSO:Tb 2.5
Medium res. Andor NEO sCMOS 6.5 6.2 Gadox 12.4

Detector 2nd
generation

High res. FLI PL9000 CCD 12 0.67 LSO:Tb 1.3
Andor Zyla sCMOS 6.5 0.62 1.3

Medium res. FLI PL9000 CCD 12 3.3 LuAG:Ce 6.8
Andor Zyla sCMOS 6.5 3.1 6.7
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3.1 LMJ setup

3.1.3 Mechanical system

The mechanical system of the LMJ setup is a customized structure that allows to mount
several optical elements in the X-ray beam. The system was designed to provide a very high
flexibility for several imaging methods. Although not relevant for in-line phase contrast, it is
a suitable system for X-ray microscopy with zone plates, compound refractive lenses 33 and
grating interferometry. Fig. 3.5 shows the mechanical setup. In the bottom plate, an axis is

Sample stage

Additional stage 1
Additional stage 2
 

SourceDetector

Figure 3.5: Mechanical system for alignment of optical elements at the LMJ setup. It consists
of one sample stage, where the sample may be mounted for computed tomography
purposes, and two additional stages for aligning optical elements. All three stages
provide six degrees of freedom.

mounted for the positioning of the sample along the optical path (connecting line between
source and detector), together with a rotation table for computed tomography purposes.
It also includes two tilting devices in order to correct the tilt and yaw of the rotation axis
and one axis perpendicular to the optical path. In total, it has six degrees of freedom. The
system also includes two additional stages with six degrees of freedom in order to align
optical elements, e.g. gratings or zone plates, to one another and especially onto the optical
path.

3.1.4 Realization of the in-line phase contrast and grating interferometer setup
at the LMJ

Figure 3.6 a) shows a photograph (panorama) of the in-line phase contrast setup mode
and b) of the grating interferometer setup mode. The sample can be placed in any position
between source and detector in the in-line phase contrast setup. Because of reasons explained
in chapter 5, the phase grating has to be mounted very closely to the intensity grating in
the grating interferometer setup (for the sake of clearness, the gratings have been placed
far away from the detector in this image). Hence, both gratings are mounted in front of
the detector. A specification of the gratings will also be given in this chapter. For the
same reason, the sample has to be mounted between the source and G1, which restricts the
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3 Experimental setups

minimal distance of the sample to the detector. In this setup, a coherence grating G0 is not
in use.

Detector Sample stage Source exit window Analyzer grating G2

Phase grating G1a) b)

Figure 3.6: Images of the in-line phase contrast setup in a) and the setup in the grating inter-
ferometer mode in b), where the gratings G1 and G2 are mounted on the additional
stages described in Sec. 3.1.3.

3.2 Subµ setup

The Subµ setup, located at the Fraunhofer EZRT in Fürth, consists of a microfocus source
and may be equipped with different detectors.
It is a microfocus source from Feinfocus and consists of a transmission type X-ray target
(anode) which allows to change the anode quickly. This was done for the experiments shown
here. The available anodes are a silver anode and a tungsten anode. The acceleration voltage
was set to 60 keV.
The utilized detector was an indirectly converting flat panel detector Dexela 2315 from
PerkinElmer (pixel pitch 74.8 µm) which is sensitive in an energy range of 12-225 keV.
The setup for the measurements is shown in Fig. 3.7. For convenience reasons, the analyzer
grating G2 was directly mounted onto the detector. More details to the gratings will be
given in chapter 6. Grating G1 is mounted on the positioning system 8095 from Newport
and provides six degrees of freedom.
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3.2 Subµ setup

Figure 3.7: Image of the grating interferometer setup (Subµ). Here the symmetric setup is
shown without the G0 grating (described in the text).
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4 Optimization of in-line phase contrast

An optimization method for in-line phase contrast will be presented in this chapter. More
specifically, the optimization of the position of the sample with respect to the source de-
tector distance SDD. After giving a motivation in the first section, the formalism of the
optimization will be derived in the second section. In the third section the experimental
setups will be presented that were used in order to confirm the optimization as well as some
basic methods applied to the measured data. Section four will show the comparison of this
optimization to experimental data and in section five computed tomographies with phase
retrieval will be shown. The results of this chapter are discussed in section six.

4.1 Motivation

Phase contrast is an interference phenomenon that occurs when waves with a correlated
relationship in phase interact with one another. This interference manifests as interference
fringes. In the regime of X-ray imaging, such interference fringes are illustrated in Fig. 4.1
a) based on simulations of an Al2O3 fiber of 20µm diameter. If there is no interference, one
has the pure absorption image shown in b) that is given by the Lambert-Beer attenuation
law. In c) a comparison of the line profiles is shown, taken from both images a) and b).
An optimization of phase contrast means to maximize these fringes. Indeed, Wu et al. 73

reported – based on simulations – the existence of an optimum position by moving the
sample between source and detector. An optimum position for in-line phase contrast was
also shown experimentally in cone beam illumination 69,74.
Taking into account the Fresnel diffraction integral (cf. Sec. 1.1.1.2)

ud(x, y) = eikd
1
iλd

∫
σ
u0 (x0, y0) · ei

k
2d [(x−x0)2+(y−y0)2]dx0dy0 (4.1)

that is capable of describing interference effects, it is obvious that the propagation distance
d or the effective propagation distance (cf. Sec. 1.1.4)

D = R1 ·R2
R1 +R2

(4.2)

in cone beam geometry is one of the parameters affecting the magnitude of such interference
fringes. This dependency of fringe contrast on geometrical factors like the source-object dis-
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Figure 4.1: a) shows a simulated image of a fiber including typical interference fringes occurring
in phase contrast imaging in the X-ray regime. In b), the corresponding image of
the same fiber is shown which would be measured if no interference effects are
involved (pure absorption). c) shows the comparison of line profiles taken from
images a) and b).

tance R1 or the object-detector distance R2 has already been shown 75–77. Other parameters
affecting phase contrast are the size of the source 78 and the resolution of the used detector.
The reason for improving the interference fringes is simply motivated by the fact that smaller
interference fringes are more likely to be wiped out due to noise than interference fringes of
higher magnitude.
On the one hand, one may conclude from Eq. 4.1 that the sample should be placed at the
position where the propagation distance is maximal. From Eq. 4.2 it can be seen that the
effective propagation distance reaches its maximum at Dmax = SDD/4 for R1 = R2 where
SDD = R1 + R2. With other words, the sample has to be placed in the middle between
the source and the detector in order to measure with the maximum effective propagation
distance.
On the other hand, an existing analytical approach given by Nesterets et al. 34 suggests to
place the sample at the position of highest resolution. The setup resolution is characterized
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4.1 Motivation

by the total modulation transfer function MTFtot (cf. chapter 2),

MTFtot(ξ) = exp[−2π2σ2
effξ

2] = exp[− ξ2

2σ2
MTF

]} (4.3)

which is assumed to be Gaussian. A consequence of the assumption that both the source
distribution function SDF and the point spread function PSF are Gaussian shaped.
As this function has an influence on the final image on the detector, it obviously has to be
taken into consideration as well as the propagation distance regarding the optimization of
phase contrast. This total MTF is determined by the width of the source σS , the width of
the detector PSF σP and the distances R1 and R2 since

σeff
2 = σP

2 + (σS ·R2/R1)2

M2 (4.4)

From the above equation, the position of highest resolution is given by setting the derivatives
of Eq. 4.4 ∂σeff

∂R1
and ∂σeff

∂R2
equal to zero as (cf. Nesterets et al. 34)

R1,br = SDD · σS
2

σS2 + σP 2 (4.5)

R2,br = R1 ·
σP

2

σS2 (4.6)

for constant SDD (laboratory) and constant R1 (synchrotron), respectively.
However, the positions of highest resolution and maximum propagation distance do not
necessarily coincide. This is only the case when the source parameter σS and the detector
parameter σP are of the same size. This concludes directly from Eq. 4.5 (σS = σP ⇒
R1,br = SDD/2 = R2). A setup realization such as this is unusual and in most laboratory
setups these parameters are rather of different size. Common configurations are R2 � R1

and D ≈ R1 that are operated in high resolution setups with a small source. But also
configurations with R1 > R2 and D ≈ R2 exist due to the symmetry of the effective
propagation distance Deff with respect to R1 and R2. Such a configuration is referred to as
the inverse geometry and was reported recently 79,80.
Therefore it is necessary to have an optimization that considers the propagation distances,
the size of the source and the resolution of the detector. The presented optimization formal-
ism will combine these aspects to one formula and optimize the position with these three
parameters. Furthermore, it will be shown that this position will differ in most cases from
that of the highest resolution (Eqs. 4.5 and 4.6).
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4 Optimization of in-line phase contrast

4.2 Formalism on optimizing in-line phase contrast

The starting point for the formalism that approximates the fringe contrast is the Fourier
transform of the intensity ID, measured at the effective propagation distance D downstream
of the sample. According to Guigay 81, one has

ĨD(~ξ) = F{‖ uD(~x′) ‖2} =

= e−ıπλD
~ξ2
∫
e−ı2π

~ξ~x′0 T (~x′0) T ∗(~x′0 + λD~ξ) d~x′0
(4.7)

The first exponential function of Eq. 4.7 is identified as the Fourier transform of free-space
propagator (cf. Eq. 1.18) except for the phase factor eikd

p̃D(~ξ) = F{PD(~x′)} = exp[−ıπλD~ξ2] (4.8)

The integral in Eq. 4.7 represents the Fourier transform of the squared modulus of the
transmission function T (Eq. 1.39 – 1.42).
By the assumptions of a slowly varying phase and a weak absorption of the object, Eq. 4.7
can be simplified to (cf. Cloetens et al. 68)

ĨD(~ξ) = δD(~ξ) + 2 sin(πλD~ξ2)Φ̃(~ξ)− 2 cos(πλD~ξ2)B̃(~ξ) (4.9)

The Dirac delta function δD(~ξ) describes the value for the intensity in the absence of any
object. Furthermore, one finds the contrast factor cos(α) for the Fourier transform of the
absorption B̃ (Eq. 1.41) and the contrast factor sin(α) for the Fourier transform of the phase
Φ̃ (Eq. 1.42). If the argument of these contrast factors α = πλD~ξ2 is small (α� 1), then a
linear relationship between the intensity modulations and α exists.
In order to find an analytical expression that approximates the fringe contrast, the spatial
frequency ~ξ present in α has to be dealt with. As explained earlier, the detected image is
influenced by the total modulation transfer function MTFtot, which is defined in Fourier
space and describes in what way the coefficients of the Fourier transform of an ideal image
are damped. Therefore, we can estimate a maximal spatial frequency ~ξmax from MTFtot

that scales with 1/(2πσeff)

MTFtot(~ξ) = F{PSFtot(~x′)} = exp[−2π2σ2
eff~ξ

2]

⇒ exp[−2π2σ2
eff~ξ

2]↔ exp[−
~ξ2

2σ2
MTF

]}

⇒ ~ξ2
max ∝ σ2

MTF = 1/(2πσeff)2 (4.10)

By having found this estimate for the maximum spatial frequency, α can be rewritten by
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4.2 Formalism on optimizing in-line phase contrast

using Eqs. 4.2, 4.4 and 4.10 as

α = λ ·R2
4π · M

σP 2 + (σS ·R2/R1)2 (4.11)

Figure 4.2 shows the above expression plotted against the source-object distance R1 for
several parameter sets of σP and σS , i.e. σP = 15 µm, σS = 5 µm (dashed), σP = σS =
15 µm (solid) and σP = 3 µm, σS = 15 µm (dash-dotted). Constant values were used for
SDD = 300mm and λ = 1.13 · 10−7 mm (=̂10.9 keV). Although the wavelength λ in Eq. 4.11
does not affect the position of the maximum of α, it affects the magnitude of phase contrast
very well, which holds also for the intrinsic parameter δ of the sample 82. It is evident from
the plots that the ratio of σS/σP plays an important role and that α has a maximum for
each configuration.
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Figure 4.2: In this figure α (Eq. 4.11) was plotted against the source-object distance R1 for
several parameter sets of σP and σS , while using fixed values for SDD = 300mm
and λ = 1.13 · 10−7 mm (=̂10.9 keV). The values of σP and σS were set to σP =
15 µm, σS = 5 µm (dashed), σP = σS = 15 µm (solid) and σP = 3 µm, σS = 15 µm
(dash-dotted).

In the following, the contrast values (Eq. 4.16) of simple objects (fibers, edges) measured at
several positions along the path between source and detector (R1) at several setups with
different parameters of source and detector will be compared to α, thereby testing whether
the maximum of α coincides with the maximum of the contrast values of the objects under
investigation.
Accordingly, an expression is needed for the position where α shows its maximum. By
setting the derivative of α equal to zero for fixed values of SDD, σP , σS and λ, the optimum
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position R1,α is given by

∂α

∂R1

∣∣∣∣
SDD

= 0 (4.12)

for R1,α = SDD · σS
σS + σP

(4.13)

In synchrotron setups, where R1 is fixed and very large, one finds the optimum position R2

in the same way

∂α

∂R2

∣∣∣∣
R1

= 0 (4.14)

for R2,α = R1 ·
σP

2 − σP
√
σP 2 + σS2

σS2 (4.15)

With these main results (Eq. 4.11, 4.13 and 4.15) we can proceed in testing the formalism in
terms of predictability of the position of the highest measured contrast. Before that, some
methods and experimental details are described in the following section.

4.3 Methods and experimental setups

4.3.1 Contrast Measurements

In order to proof the formalism described above, simple objects have been chosen to obtain
contrast values in a very easy way. The contrast is given by the common expression

C = Imax − Imin
Imax + Imin

(4.16)

Figure 4.3 a) shows a typical phase contrast image of a single glass fiber recorded at the
liquid-metal-jet CT setup. The red line indicates the line profile shown in Fig. 4.3 b). It
is also demonstrated how the values of Imin and Imax are defined to get a contrast value
according to Eq. 4.16. This calculation of contrast was repeated for each measurement at
the corresponding positions R1 for all setups.
As can be seen from Fig. 4.3 b), the fiber shows a non-negligible absorption. By measuring
the contrast this leads to an offset that would be measured even in the absence of interference
fringes. This offset due to absorption is considered by the following calculation

Cabsorption = 1−∑ gi(λi)e−µi(λi)·dfiber
1 +∑

gi(λi)e−µi(λi)·dfiber
(4.17)

The relative weight gi(λi) of each wavelength in an underlying normalized spectrum was
multiplied with the transmitted intensity e−µi(λi)·dfiber according to the Lambert-Beer law
for attenuation (Eq. 1.33), depending on the linear attenuation coefficient µi(λi) and the
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Imax
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a) b)

Figure 4.3: An exemplary radiography of a glass fiber is shown in a). The line profile, indicated
by the red line in a), is shown in b). The contrast is measured from the values
Imax and Imin according to Eq. 4.16. Image taken from Balles et al. 41.

thickness of the fiber dfiber. This results in the absorption profiles illustrated in Fig. 4.4. The
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e−µ3(λ3)·dfiber

e−µ2(λ2)·dfiber

Imin =
∑
gi(λi)e

−µi(λi)·dfiber

Imax = 1

Absorption profile of a fiber

Figure 4.4: Illustration of Eq. 4.17 that estimates the contrast offset induced by absorption.
Basically, the contrast is calculated by Eq. 4.16 together with the Lambert-Beer
attenuation law Eq. 1.33. If a polychromatic source is involved, the minimum inten-
sity has to be calculated by the weighted sum of the Lambert-Beer attenuation law.
The coefficients gi represent the relative weight of the corresponding wavelength
λi in the underlying spectrum.

sum over all existing wavelengths gives the total absorption of the fiber and is equivalent
to Imin indicated by the lowest line profile of Fig. 4.4. Since the relative frequencies are
normalized, i.e. ∑ gi(λi) = 1, the value of the intensity without an object is Imax = 1(C = 0).

4.3.2 Determination of source and detector parameter

Because α only relies on the propagation distanceD and the parameters of the source σS and
the detector σP , these parameters had to be determined in order to compare the measured
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contrast values to α.
One way of obtaining these information is performing numerical simulations that were calcu-
lated as described in Sec. 2. In more detail, the averaged line profiles described in Sec. 4.3.1
measured at the individual distances in each setup are compared to ideal numerical simula-
tions. The values for σS and σP are set for each setup to yield the best result between the
measured and simulated line profiles.
Another way of finding parameters of the source σS and the detector σP is by measuring the
absorption image of an edge. The process of determining these parameters by this method
is shown in Fig. 4.5. Figure a) shows a measured image of a pinhole of 56µm in diameter.
From this image, a line profile is extracted as shown in b). The numerical derivative of
this line profile represents the total point spread function PSFtot which is the real space
equivalent of MTFtot

PSFtot = F−1{MTFtot} = 1√
2πσ2

eff

exp[− ~x2

2σ2
eff

] (4.18)

This function is depicted in c) together with a Gaussian fit function giving the parameter
σeff. A brief explanation of why the derivative of the line profile is equal to PSFtot is shown
in the following.
It can be concluded from Eqs. 2.10 and 4.18 that an ideal image – in this case an ideal edge
– has to be convolved with the total PSFtot. Mathematically, an ideal edge can be expressed
by the Heaviside function Θ(x)

Θ(x) =

0 x < 0

1 x ≥ 0
(4.19)

The convolution integral with PSFtot results in

Id,experiment(x) =(PSFtot ∗Θ)(x) (4.20)

= 1√
2πσ2

eff

∫ ∞
−∞

Θ(x− τ) exp[− τ2

2σ2
eff

]dτ (4.21)

= 1√
2πσ2

eff

∫ x

−∞
exp[− τ2

2σ2
eff

]dτ (4.22)

⇒ d

dx
Id,experiment(x) =PSFtot(x) (4.23)

In other words, the measured image is the integral of a Gaussian function. Hence, the
derivative of this measured image is simply PSFtot.
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By applying this method at several distances along the beam path between source and
detector (SDD = const.), one obtains the parameters σMTF = 1/(2πσeff) that depend on
R1, and these values can be fitted by the following function as shown in Fig. 4.5 d).

σMTF = 1/(2πσeff) = 1
2π

M√
σP 2 + (σS ·R2/R1)2 (4.24)

As it is more intuitive, the notation and illustration of σMTF is chosen over σeff. Then,
the best resolution corresponds with a function that has a maximum at the same position.
Otherwise, in the case of σeff a minimum at the position of best resolution is found as
explained in chapter 2.
The fit parameters of σS and σP for the shown plot in d) were found to be 5.4 µm and
0.85µm.
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Figure 4.5: Illustration of the method of absorption edge measurement in order to find the
values of σS and σP . From the measured edge in a) – in this case a pinhole – a line
profile is extracted that is shown in b). By calculating the derivative of this line
profile numerically, one has the PSFtot as explained in the text. That derivative
can be fitted by Eq. 4.18 to find the value σeff. Applying this method to several
distances between the source and the detector, leads to the measured values of
σMTF = 1/(2πσeff) that can be fitted by the function given in Eq. 4.24.

4.3.3 Volume reconstruction and phase retrieval

Volume reconstruction The main advantage of X-ray imaging lies in its capability of
providing information of the inside of a sample because X-rays are attenuated by all parts
of the sample located in the beam path. The inner structure of the sample is therefore
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encoded in the detected intensity given by the Lambert-Beer attenuation law

I(x) = I0e
−
∫
µ(x,z)dz (4.25)

This is depicted in Fig. 4.6 a). By measuring this information of the sample from a plurality
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Figure 4.6: a) illustrates the Lambert-Beer attenuation law for an extended sample. The
detected intensity is given by Eq. 4.25, a line integral of the linear attenuation
coefficient µ(x, z) perpendicular to the x-axis. b) shows the basic concept of a
computed tomography. The line integral

∫
µ(r, s)ds is measured from multiple

projection angles. With this procedure the distribution µ(x, z) of the sample can
be reconstructed. Image based on T. Buzug 47.

of different angles one has the line integral of the linear attenuation coefficient µ(r, s) as a
function of the projection angle γ

− log
(
I(r)
I0

)
=
∫
µ(r, s)ds = pγ(r) (4.26)

as shown in Fig. 4.6 b). This procedure is the principle of a computed tomography (CT).
Such a data set makes it possible to reconstruct the whole volume of the sample which is
subject of volume reconstruction algorithms.
There exist plenty of reconstruction techniques such as the Algebraic Reconstruction Tech-
nique (ART), Simultaneous Iterative Reconstructive Technique (SIRT) and Simultaneous
Algebraic Reconstruction Technique (SART) 83. They are called – in short – algebraic re-
construction techniques.
The reconstruction technique that is used in this work is the filtered back projection (FBP),
and is described for example in the textbook of T. M. Buzug 47. The volume reconstructions
in chapter 5 are performed with a modification of this algorithm. For the understanding
of this modification, the basic concept of the standard algorithm will be presented in the
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following.
The line integral in Eq. 4.26 is also known as a 2–D Radon transformation of the sample.
According to the Fourier slice theorem 47,83, it can be shown that the Fourier transform of
this line integral is equal to the Fourier transform of the distribution of the linear absorption
coefficient µ(r, γ) in polar coordinates. Hence

F {pγ(r)} (q, γ) = P (q, γ) = F {µ(r, γ)} (q, γ) = µ̃(q, γ) (4.27)

Basically, µ(x, z) is given as the inverse Fourier transform of µ̃(ξx, ξz).

µ(x, z) =
∫ ∫

µ̃(ξx, ξz)ei2π(ξxx+ξzz)dξxdξz (4.28)

where q =
√
ξ2
x + ξ2

z .
Since µ̃ is given in polar coordinates (q, γ) in contrast to µ(x, z), which is expressed in
Cartesian coordinates, the FBP of µ(x, z) is defined as 47

µ(x, z) =
∫ ∞
−∞

∫ ∞
−∞

µ̃(ξx, ξz)ei2π(ξxx+ξzz)dξxdξz (4.29)

=
∫ π

0

∫ ∞
−∞
|q| · µ̃(q, γ)ei2πq(x cos(γ)+z sin(γ))dqdγ (4.30)

Due to the transformation from polar to Cartesian coordinates, the Jacobi determinant
J = |q| is involved and works as a linear filter, hence this algorithm is called filtered back
projection.
This method is commonly used for reconstructing volumes and is commercially available in
volume reconstruction software like “Octopus Imaging Software” 84 that was used for all CT
measurements in this chapter.

Phase retrieval As phase contrast imaging, compared to absorption imaging, delivers ad-
ditional information on the sample that is encoded in the interference fringes, it is the task
of phase retrieval algorithms to use this information and transform it into a map of the
phase shift on the basis of radiographies.
The phase shift (cf. Eq. 1.43) is represented by the line integral over the increment of the
real part of the complex refractive index δ

φ(x, y) = −2π
λ

∫
δ(x, y, z)dz (4.31)

which is equivalent to the line integral over the linear attenuation coefficient (compare
Eq. 4.26 and 4.31) and therefore can also be reconstructed by a volume reconstruction algo-
rithm.
A comparison of several phase retrieval algorithms was given by Burvall et al. 85. In the
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Fresnel diffraction regime, commonly used phase retrieval algorithms 86 are based on the
contrast transfer function10,87 (CTF) and on the transport of intensity equation 88 (TIE).
Phase retrieval algorithms such as the CTF are based on measurements of the same sample
at different propagation distances. In laboratory setups, images at different propagation
distances are always associated with different magnifications (for fixed SDD) and therefore
an interpolation of these images would be involved. Besides that, the total exposure time
would increase linearly by the amount of images.
Therefore, a retrieval algorithm, described by Paganin et al. 88 is very suitable for laboratory
setups as it requires only one image to retrieve – somewhat different than usual retrieval
algorithms – the projected thickness and is available as a software tool “ANKA phase”
developed by Weitkamp et al. 89. The basic equation is 88

T (~x) = − 1
µ

ln
(
F−1

{
µ
F {I(~x, z)/I0(~x, z)}

µ+ zδ~ξ2

})
(4.32)

where z is the propagation distance at which the image is recorded and δ and µ describe
the complex refractive index of the sample by which the absorption is separated from the
phase contrast. If these parameters are not known, they have to be chosen in a way to yield
the “best result”. Since this algorithm uses only one image and only these two parameters
it is quite robust but – strictly speaking – only applicable on single material samples.
An example of this phase retrieval algorithm is shown in Fig. 4.7. a) shows the projected
thickness of a simulated sample (stacked spheres) which is then used to simulate the radiog-
raphy shown in b). From this image, the projected thickness is retrieved by “ANKA phase”.
Figure d) is a comparison of the line profiles from simulated projected thickness in a) and
the retrieved projected thickness in c).
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Figure 4.7: Example of the “Paganin” phase retrieval algorithm performed with “ANKA
Phase”. In a) a simulated projected thickness of stacked spheres is shown and
serves as the reference. b) is a simulated radiography (with noise), based on the
simulated thickness of a). Applying the algorithm to image b) results in the re-
trieved projected image, shown in c). A comparison of the line profiles of the
reference and the retrieved projected thickness is shown in d).

This algorithm can be extended to work on 3–D volumes rather than on 2–D projections
that are reconstructed afterwards and was proposed by Ullherr and Zabler 90. The extension
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is based on the assumption that the phase retrieval and the volume reconstruction may
be interchanged when the logarithm of the intensity may be linearized 90. This method
is available as a software toolkit “pyXIT” and was developed by M. Ullherr. The phase
retrieval of the reconstructed volumes shown in the present work are performed with this
toolkit.

4.3.4 Experimental setups

For the comparison of α and the contrast C different setups were chosen. The experiments
have been performed at the liquid-metal-jet (LMJ) CT setup at the Chair of X-ray mi-
croscopy (University of Würzburg, Germany), at the X-ray shadow microscope (XRM I) in
Fürth (Fraunhofer EZRT Fürth, Germany) and at the synchrotron beamline “BAMline” in
Berlin (BESSY II Berlin, Germany).
The CT setup with the LMJ source is described in Sec. 3.1 with its utilized detectors.
The high-resolution detector (first generation) in use has an effective pixel sampling of
∆x = 1.2 µm with the CCD camera from FLI. With this detector fibers were measured at
two different sizes of focal spot with an acceleration voltage of 35 kV at 40W. This results in
two configurations, in the following referred to as LMJ-1 and LMJ-2. A third experiment
(LMJ-3) was conducted with a medium-resolution detector (first generation, ∆x = 6.2 µm)
and with an acceleration voltage of 70 kV at 20W. This detector consists of a sCMOS cam-
era (Andor NEO, 5MPixel of 6.5µm pixel pitch) connected to a 5µm thick Gadox powder
screen by lens optics.
The XRM I, a modified electron microprobe, uses thin X-ray targets (Tungsten) in trans-
mission geometry to generate X-rays 91. For this setup, the acceleration voltage was set to
30 kV at 3mW. The detector used for the measurements was a Medipix 2 (300µm thick Si
sensor) with a pixel size of ∆x = 55 µm.
Measurements at the BAMline at the synchrotron BESSY II were performed with an X-ray
energy of 17 keV and a high-resolution detector consisting of a CCD (PCO 4000, 10MPixel
of 9 µm pixel pitch) connected to a 4µm thick LuAG:EU scintillator via magnifying optics
and thereby achieving an effective sampling of ∆x = 0.6 µm.
These configurations as well as the basic parameters of the setups are listed in table 4.1.

Table 4.1: Summary of the investigated setups and their parameters
X-ray Detector σS σP ∆x Material Fiber-Ø
setup +Scintillator (µm) (µm) (µm) (µm)
LMJ-1 FLI + LSO:Tb 6.0 1.2 1.2 Glass ≈ 20
LMJ-2 FLI + LSO:Tb 8.1 1.2 1.2 Carbon ≈ 7
LMJ-3 NEO + Gadox 9.4 13 6.2 Glass ≈ 20
XRM I Medipix 2 0.3 30 55 Carbon ≈ 7
BAMline PCO + LuAG:Eu 70 0.77 0.6 Carbon ≈ 7
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4 Optimization of in-line phase contrast

4.4 Optimization formalism applied on radiographies

This section treats the testing of the formalism for the five different setups listed in table 4.1.
In Fig. 4.8 a) the contrast values of a glass fiber are plotted against the source-object distance
R1 (SDD = 334) that was measured at the LMJ-1 setup with the high resolution detector.
The propagator argument α is superimposed to that data represented by a line plot. The fig-
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Figure 4.8: a) shows the comparison of the measured contrast values of a glass fiber and α,
given by Eq. 4.11 at the LMJ-1 setup with the high resolution detector along the
source-object distance R1. The blue bar represents the offset due to absorption
contrast and was calculated according to Eq. 4.17. In this setup the parameters
σS and σP are 6.0 µm and 1.2 µm, respectively, leading to an optimum position
closer to the detector rather than to the source. The highest contrast is found
to be at R1,hc = 269mm, whereas the calculated optimum position is at R1,α =
(278± 7)mm. b) shows three radiographies at R1 = 319mm, 269mm and 119mm
with the corresponding line profiles. Image taken from Balles et al. 41.

ure also includes line plots of αmin and αmax. The latter were derived from the uncertainties
in the values of σS and σP and represent a confidence interval for α. If the propagator ar-
gument is given by α(λmean, σP , σS), these plots are obtained by αmax(λmean, σP,min, σS,max)
and αmin(λmean, σP,max, σS,min). Accordingly, an error estimate for R1/2,α can be calculated.
In this setup the parameters of the source and the detector are σS = 6.0 µm and σP = 1.2 µm.
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4.4 Optimization formalism applied on radiographies

Since the glass fiber shows a non-negligible absorption contrast, the contrast values were
compared to α above this offset of 0.053 that is given by Eq. 4.17. As a result, the position of
highest contrast R1,hc = 269mm is reproduced very well by the maximum of α. According
to Eq. 4.13, the optimum position is found at R1,α = (278 ± 7)mm. Fig. 4.8 b) shows three
radiographies of the fiber together with their corresponding averaged line profiles for the
positions R1 = 319mm, 269mm and 119mm.
At the LMJ-2 setup, the contrast of a carbon fiber was measured with the high reso-
lution detector for several distances R1 (SDD = 334mm). Fig. 4.9 a) shows the contrast
values together with α. The optimum position, i.e. the position of highest contrast of

a)

b) R1=319mm

N
or

m
. I

nt
.

R1=289mm

N
or

m
. I

nt
.

R1=189mm
0 3015
Position [µm]

N
or

m
. I

nt
.

0 3015
Position [µm]

0 3015
Position [µm]

Figure 4.9: In a) the measured contrast values are shown and compared to α (Eq. 4.11) at the
LMJ-2 setup with the high resolution detector. The calculated position R1,α =
(294± 5)mm, given by Eq. 4.13, is in good agreement with the position of highest
contrast R1,hc = 289mm. Here the parameters were found to be σS = 8.1 µm and
σP = 1.2 µm. The absorption contrast of 0.0012 is represented by the blue bar. b)
shows the radiographies and the associated line profiles at R1 = 319mm, 289mm
and 189mm. Image taken from Balles et al. 41.

R1,hc = 289mm, is in good agreement with the optimum position R1,α = (294± 5)mm pre-
dicted by Eq. 4.13. The values for σS and σP were found to be 8.1µm and 1.2µm, resulting
in an optimum slightly shifted towards the detector. Due to the weak absorption of carbon,
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4 Optimization of in-line phase contrast

the offset of the absorption contrast is only 0.0012. Three exemplary radiographies are il-
lustrated in Fig. 4.9 b) next to the line profiles at the positions R1 = 319mm, 289mm and
189mm. As can be seen in Fig. 4.9 b), the line profiles show some asymmetry that increases
when approaching the source. This is an effect of the asymmetric shape of the X-ray spot
on the jet as discussed in Sec. 3.1.1 (Fig. 3.2 c)).
Unlike the above mentioned setups, a medium resolution detector was used at the LMJ-3.
This leads to a value for the detector of σP = 13 µm, which is on the order of the used spot
size of σS = 9.4 µm. Hence, as can be seen in Fig. 4.10 a), the highest contrast of a glass
fiber at this setup is close to the middle between the source and detector at R1,hc = 320mm.
The calculated optimum position is R1,α = (386 ± 35)mm which matches with R1,hc more
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Figure 4.10: The measured contrast values of a glass fiber are plotted in a) against R1 together
with α at the LMJ-3 setup. Here, a medium resolution detector was used. The
optimum position was calculated to be R1,α = (386±35)mm by using the param-
eters of source σS = 9.4 µm and detector σP = 13 µm. The highest contrast was
found at R1,hc = 320mm. The absorption contrast induced offset is 0.025 and is
indicated by the blue bar. b) shows two radiographies of the fiber and the related
line profiles at the positions R1 = 693mm and 320mm. Image taken from Balles
et al. 41.

or less taking SDD = 920mm into account. Although using the same fiber as in the LMJ-1
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setup, the offset due to absorption contrast is 0.025. A consequence of both the different
acceleration voltage (30 kV vs 70 kV) and the use of different detectors (different spectral
acceptance of the thicker scintillator screen). Fig. 4.10 b) depicts two radiographies of the
fiber and the corresponding line profiles at R1 = 693mm and 320mm. As well as in the
LMJ-2 setup, the asymmetry of the line profiles is evident and is again induced by the shape
of the X-ray spot.
Figure 4.11 a) shows the contrast values of a carbon fiber plotted against R1 in the range
of 2mm to 10mm at the XRM I setup. As before, the propagator argument is compared
to these contrast values that exhibit an increase for an increasing R1 approximating the
calculated optimum position of R1,α = (7.5±1.6)mm. Due to mechanical limitations, larger
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Figure 4.11: In a) the measured contrast values of a carbon fiber are shown, measured at
the XRM I setup with the Medipix detector. The optimum position is R1,α =
(7.5 ± 1.6)mm, the highest contrast of the simulated and measured data was
found at R1,hc = 11.5mm and R1,hc = 9.7mm, respectively. The blue area
at the bottom in a) indicates the contrast offset due to absorption. For this
setup the parameters of source and detector were σS = 0.3 µm and σP = 30 µm,
respectively. The measured radiographies at the positions R1 = 4.1mm and
9.7mm of the carbon fiber are illustrated in b) together with the obtained line
profiles. Image taken from Balles et al. 41.
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distances could not be accessed in this setup. For this reason, simulated values are compared
to α as well. It is evident from Fig. 4.11 a) that the simulated contrast values match with
the measured contrast values and are also reproduced by α. However, the decrease of the
contrast indicated by α cannot be seen. Returning to the analysis of the simulated contrast
values, the highest contrast is found at R1,hc = 11.5mm, whereas the measured data shows
the highest contrast at R1,hc = 9.7mm. Both values do not match perfectly with the cal-
culated position R1,α although the deviation is small compared to SDD = 760mm. This
deviation will be addressed in Sec. 4.6. Two measured images of the fiber at R1 = 4.1mm
and 9.7mm are shown in Fig. 4.11 b) together with their line profiles.
Figure 4.12 a) illustrates the contrast values of a carbon fiber measured at the synchrotron
beamline BAMline at BESSY II. In contrast to the above shown setups, the source-object
distance R1 = 35m is fixed instead of the source-detector distance SDD, with a variable
object-detector distance R2. Therefore the contrast values are plotted against R2, that
varies from 10mm to 1130mm, together with α. The results show that the first eight values
are in good agreement with α whereas the last value is not. The highest contrast is found
at R2,hc = 530mm. The predicted position according to Eq. 4.15 is R2,α = (388 ± 36)mm.
Although these two numbers do not match (discussed in Sec. 4.6), the calculated value gives
an estimate of the position where the contrast increase is negligible. Figure 4.12 b) shows
the radiographies at the positions R2 = 10mm and 530mm.
The results of the above shown experiments are summarized in table 4.2

Table 4.2: Summary and comparison of calculated and measured positions with the highest
contrast. R1/2,hc is the position where the highest contrast was found in the ex-
periments. R1/2,α is the calculated optimum position (Eqs. 4.13, 4.15) and R1/2,br
represents the position of the best resolution according to Eqs. 4.5, 4.6.

X-ray setup R1,hc [mm] R1,α [mm] R1,br [mm]
LMJ-1 269 278± 7 321± 4
LMJ-2 289 294± 5 330± 2
LMJ-3 320 386± 35 316± 64
XRM I 11.5 7.5± 1.6 0.11± 0.03

X-ray setup R2,hc [mm] R2,α [mm] R2,br [mm]
BAMline 530 388± 36 4.2± 1.0

4.4.1 Validation of source and detector parameters

The theoretical prediction of the optimum position for phase contrast is very sensitive to
the source and detector parameters σS and σP . This dependency was shown in Fig. 4.2.
The parameters in the above shown experiments have been obtained through comparison
with ideal simulations as described in Sec. 4.3.2. In order to validate the optimization formal-
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Figure 4.12: The contrast values of a carbon fiber are shown in a) and are compared to α
measured at the BAMline at BESSY II using a high resolution detector. The
parameters of source is σS = 70 µm and that of the detector is σP = 0.77 µm. The
optimum position, given by Eq. 4.15, is R2,α = (388± 36)mm and the measured
highest contrast was found at R2,hc = 530mm. The images of the fiber taken
at the positions R2 = 10mm and 530mm are shown in b) together with their
corresponding line profiles. Image taken from Balles et al. 41.

ism with experimentally determined source and detector parameters, a further experiment
was made. In this experiment an absorbing structure (pinhole) and a glass fiber were im-
aged at several distances simultaneously in order to obtain σS and σP and the values of
phase contrast C of the fiber as well. Fig. 4.13 shows a plot of the values σMTF against
the source-object distance R1 as red dots measured with the high resolution detector (see
Sec. 3.1.2, second generation). The process of measuring this data from a pinhole image was
described in Sec. 4.3.2 (Fig. 4.5). The red solid line represents the fitted curve (Eq. 4.24) to
these measured values of σMTF. By this fit the parameters of the source and the detector
were found to be σS = (7.3± 0.7) µm and σP = (0.85± 0.09) µm and were used to generate
the solid black line of α which is compared to the measured contrast values of the fiber
(blue crosses). The blue area represents the absorption contrast as explained earlier. The
experimental data of σMTF and the theoretical curve are in good agreement. Note that the
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Figure 4.13: Plot of the measured value σMTF (red dots) and the corresponding fitted curve
(solid red) leading to the values σS = 7.3 µm and σP = 0.85 µm. These parameters
are used to generate the plot of α (black solid line). The measured contrast (blue
crosses) are compared to this plot of α. The blue bar represents the absorption
contrast (measured from line plots). The calculated optimum position is R1,α =
(267.7± 4.0)mm, while the position of highest contrast is R1,hc = 263mm.

setup resolution at 10% MTF may be calculated from σMTF by ResMTF,10% = 2.14·σMTF, as
mentioned in chapter 2. Also the optimum of the contrast at R1,hc = 263mm is well repro-
duced by the propagator argument α, which has its maximum at R1,α = (267.7± 4.0)mm.
The discrepancy of both values is ≈ 1.6% compared to SDD = 299mm.

4.5 CT results

This section presents the results of computed tomographies (CT) measured at the LMJ
setup. In the first subsection, a comparison of two CTs of the same sample will be shown
but measured at two different sample positions, namely at the position of best resolution
and at the position predicted by the optimization formalism described in the first part of
this chapter.
In the second subsection, a selection of CT scans will be shown, also measured at the LMJ
setup, showing the advantage of phase contrast imaging over absorption contrast.
The intention of measuring a CT is to gain a 3–D information of a sample’s structure.
Furthermore, in order to analyze this volume information of the sample, it is of immense
importance to be able to separate the sample from the surrounding air on the one hand
and also to separate the components of the sample (if the sample is composed of more than
one material) on the other hand. This process – segmentation as it is called – is basically
performed by setting a threshold on the gray values contained in the reconstructed volume.

62



4.5 CT results

Therefore, the possibility of separating individual components from one another is indicated
by a histogram of the actual gray values. In the following, such histograms will be compared
to obtain a quantitative measure of whether a volume may be segmented or not.

4.5.1 Comparison of best resolution and optimal phase contrast

The results shown below were measured with the following setup configuration. The utilized
source was the LMJ and it was operated with 70 kV acceleration voltage and with a power of
75W. The electron spot was set in a way to give the most symmetric shape. The measured
spot size σS was 7.2 µm and the parameter of the detector was found to be σP = 0.85 µm.
The source-detector distance was 208mm.
The position of highest resolution was calculated to be R1,br = 205mm according to Eq. 4.5
and to the measured values for σS and σP . The optimum position for phase contrast was
R1,α = 186mm according to Eq. 4.13.
At both positions, a CT of a matchstick was measured and the results of both measurements
are show in Fig. 4.14. The images on the left hand side (a) and e)) are volume reconstructions
of the CT data set measured at the predicted optimum position according to Eq. 4.13. While
a) shows the slice of a reconstructed absorption volume, e) is the reconstruction of the same
volume but was further processed by the phase retrieval algorithm as mentioned in Sec. 4.3.3.
As can be seen by comparing a) and b), the slice of the tomography in a) shows more phase
contrast indeed. This fact is also expressed by the broader histogram in a) arising from more
intense fringes. A line profile, depicted in c) and d), shows a comparison of the measured
fringes. Furthermore, the resolution in a) is worse, which is a consequence of moving the
sample from position of highest resolution (b)) to the position of optimal phase contrast
(a)).
When comparing the slices of the phase retrieved volumes, one notices that the gray values
in the histogram split up into three different groups. These are the surrounding air, the
wood itself and a third material, probably a fluid that is applied to the matchsticks.
A comparison of the histograms of image e) and f) makes it obvious that the increase in
fringe contrast evident in a) has more or less no effect on the phase retrieved volume. On
the contrary, the splitting of gray values in f) is more explicit than in e) allowing a better
segmentation of the three materials of the sample.
As the optimized distance has obviously not the desired improvement on a CT scan, the
following examples of CT are measured in the position of best resolution. Note that this
position can only be approximated as close as possible to avoid damage to the scintillator
by the sample.
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Figure 4.14: Slices of a reconstructed volume of a CT measurement of a matchstick. In a)
and b), the reconstruction of the absorption volume is shown. These slices result
from measurements made at the position of optimal phase contrast (a)) and at
the position of highest resolution (b)). c) and d) show the line profile from the
red lines indicated in the corresponding slices a) and b). e) and f) show the slices
of the phase retrieved volume of the corresponding absorption volumes a) and b).
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4.5.2 Examples of phase contrast CT

This subsection shows some selected CT measurements that were performed at the LMJ
setup. All shown CTs were measured with the same detector, which was the high resolution
detector of the second generation. The camera in use was the Andor Zyla (effective pixel
size ∆x = 0.62 µm). The source was operated with 70 kV at 200W. The electron spot was
set to a higher extent compared to the aforementioned CT scan in order to operate the
source in a safe way, i.e. a reasonable applied power density onto the gallium jet. This, of
course, results in a bigger X-ray spot, leading to a shift of the sample position for the highest
resolution towards the detector. Hence, the sample was positioned as close as possible to
the detector.
The first sample shown in Fig. 4.15 is an example for material science. In this CT a piece
of paper was measured with 1032 projections over 360◦ and an exposure time of 15 s per
projection (total exposure time ≈ 5 h). The source-object distance R1 and source-detector
distance SDD were 137mm and 143mm, leading to a geometric magnification of ≈ 1.05.
The figure shows a comparison of slices (parallel to the rotation axis) from the reconstructed
absorption in a) and of the phase retrieved volume in b). Although the camera has 2160
pixels, the slices depict a snippet of the reconstructed volume and have a length of 670µm.
The histogram of the phase retrieved slice shows a two phase distribution compared to that
of the slice of the absorption volume, which shows a continuous gray value distribution,
allowing to segment the fibers of the paper and the surrounding air. As a consequence of
this splitting the rendered image shown in c) exhibits a very clear structure of the paper.
This splitting is supported by the fact that the sample consists of only one material, which
is the basic assumption of the Paganin retrieval algorithm (cf. Sec. 4.3.3).

a) b) c)
−800 −200 400 1000 0 40 80 120

Figure 4.15: In a), the slice of the reconstructed absorption volume of paper is shown. The
slice is oriented parallel to the rotation axis. The benefit from phase retrieval is
clearly visible in b) and is clarified by the histograms, revealing the splitting of
the gray values. c) shows the rendered (phase retrieved) volume.

The next sample is more complex than paper and is also an example of material science.
The results are shown in Fig. 4.16. The sample of investigation is a carbon fiber reinforced
plastic (CFRP, by courtesy of Lars Appel, ITA RWTH Aachen) and was measured with
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760 projections and 15 s of exposure time. The distances of R1 and SDD were 131mm
and 138mm. Image a) shows a slice (perpendicular to the rotation axis) of the absorption
volume and b) the corresponding slice of the phase retrieved volume. The slices have a
length of 744µm. A separation of the gray values in the histogram is clearly visible when
comparing a) and b). Nevertheless, this splitting allows to distinguish the surrounding air
from the sample similar to the paper sample. Unfortunately, the separation of the fibers
from the surrounding resin is not improved by the phase retrieval. In fact, the difference in
gray value of the resin and the carbon fibers is more or less the same in the absorption and
in the phase retrieved volume. Due to this fact, the fiber structure of the sample illustrated
in the rendered image in c) appears to be fuzzy.
Despite this fact, the investigation of this sample reveals an interesting detail of CFRP.
The front of the sample in c) seems to have a woven structure of fiber bundles, oriented
perpendicular to one another. The tomography reveals that this is just a top layer and that
the main structure of the CFRP is made of unidirectional fibers.

a)

b) c)

10000 14000 18000

12500 14500 16500

Figure 4.16: Slices of the reconstructed volume of a carbon fiber reinforced plastic. a) rep-
resents the reconstructed absorption and b) the phase retrieved equivalent. Al-
though a splitting of gray values is evident due to the phase retrieval, it represents
the separation of the sample from air. The separation of the fibers and the sur-
rounding resin is not improved by the phase retrieval algorithm. c) shows an
image of the rendered and phase retrieved volume.

The next sample is a small piece of a root and is an example for biological investigations.
For this measurement 1032 projections were taken with an exposure time per projection of
15 s resulting in a total exposure time of ≈ 5 h. The distances of R1 and SDD were the same
as for the CT of the paper. Some exemplary slices of the reconstructed absorption volume
and of the phase retrieved volume are compared in Fig 4.17 and also a render image of the
phase retrieved volume is shown. Image a) shows a slice that is oriented perpendicular to
the rotation axis and b) shows a slice that is oriented parallel to the rotation axis. The
length (and height) of the slice shown in a) and b) is 1.3mm (2160 pixels · 0.62µm). In c)
and d) magnified snippets from the upper slices are shown. The length of these snippets is
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4.5 CT results

220 µm in c) and 296 µm in d). The insets in a) represent histograms of the slice showing

a) b)

e)
c) d)

0 100 200

0 100 200

Figure 4.17: Results of the CT of a piece of a root. a) and b) show slices of the absorption
volume (upper part of a) and b)) which are compared to the phase retrieved
absorption volume (lower part of a) and b)). As indicated by the histograms
(insets in a)), the gray values of the surrounding air and of the sample do split
up in the phase retrieved volume, whereas they have almost the same value in
the absorption volume. This fact is also clearly visible in the snippets shown in
c) and d). The volume rendering after phase retrieval is given in e).

that the gray values of the surrounding air and the sample have almost the same value in the
absorption image (upper part of a) and b)) whereas the gray values of the phase retrieved
volume split up into two groups. These benefits of applying a phase retrieval are emphasized
by the snippets shown in c) and d).
The next example is a small part of a wheat grain (containing the germ) that was measured
with 2076 projections and an exposure time of 7.5 s. The total exposure time was also ≈ 5 h.
The distances of R1 and SDD were the same as in the above mentioned measurement.
Fig 4.18 a) and b) show slices (perpendicular and parallel) of the reconstructed absorption
volume (left hand side) and of the phase retrieved volume (right hand side). As before,
the inset histograms represent the gray values of the slices. The splitting represents the
separation of the sample from the air. This improved separation of gray values is shown
in c). But also other improvements due to the phase retrieval are present. When taking a
closer look at the snippets in d) and e), one notices that the coarsely structured parts of
the germ are more visible in the phase retrieved slice (right hand side).
Although only the separation into two groups is indicated in the histograms, another ma-
terial component of the germ is clearly distinguishable from the endosperm represented by
the bright areas in f). The lengths (and heights) of the shown images are 1.3mm for a) and
b), 285 µm in c), 513µm in d), 190 µm e) and 348 µm in f).
In g) the rendered image of the wheat grain is shown.
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a) b)

g)

c) d)

e) f)

0 100 200 0 100 200

Figure 4.18: Results of a CT of a wheat grain (one part of it). a) and b) represent two slices
(perpendicular and parallel) of the absorption volume (left hand side) and of the
phase retrieved volume (right hand side). A clear separation of the gray values is
visible in the inset histograms. Images c) to f) show magnified snippets from a)
and b). The rendered volume (after phase retrieval) of the sample is shown in g).

4.6 Discussion

Optimization The results presented in Sec. 4.4 showed the existence of an optimum po-
sition for each of the setups under investigation. The existence was reported by several
works 34,69,73,74. However, it was found that this optimum position differs from the position
of highest resolution according to the results summarized in table 4.2. Although stated dif-
ferently by Nesterets et al. 34, the optimum position is not only defined by the relationship
between σS and σP , which determines the position of best resolution (Eqs. 4.5, 4.6), but also
the effective propagation distance affects this position. As was discussed in the motivation
of this chapter, both positions R1,br and R1,hc coincide if the setup may be characterized by
symmetric parameters of σS and σP and is considered to be ideal since this configuration
achieves the highest resolution and maximum propagation distance simultaneously.
The presented formalism takes into account both the effective propagation distance and the
the relation σS/σP . It predicts the optimum position reliably as can be seen from table 4.2
and it reproduces the contrast values quite well.
Although the optimum position for phase contrast is not exclusively determined by the
factor σS/σP , it still has an immense impact on it. This fact was already shown in Fig. 4.2.
Here, three types of setup configurations are illustrated. One of these was a configuration
with σS > σP resulting in an optimum position close to the detector. This was confirmed
by the measurements shown in the high resolution setups LMJ-1 and LMJ-2 (Fig. 4.8 and
4.9).
Another configuration was the case of equal parameters for the source and the detector
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(σS ≈ σP ), showing an optimum position in the middle between the source and the detector.
A candidate for such a configuration was the medium resolution setup LMJ-3 (Fig. 4.10),
which confirms this statement. Note that also the position of highest resolution matches
the optimum position as a consequence of similar parameters of σS and σP .
The third setup configuration is the counterpart of the first, i.e. the parameters of the source
and the detector are σP > σS . In such a configuration the optimum position is found close
to the source and this was shown experimentally by the XRM I setup (Fig. 4.11).
The comparison between α and the simulated contrast values of XRM I setup revealed a
disagreement, which can be explained by the size of the fiber associated with the resolution
of the XRM I setup. In Fig. 4.19 simulated contrast values of four carbon fibers varying in
diameter (1 µm, 4 µm, 7 µm and 10µm) are plotted against R1 together with the propagator
argument α. The simulations were performed with the parameters given in table. 4.1 of the
XRM I setup. While the simulated contrast values of the fiber with 1 µm diameter are in
good agreement with α, the other plots differ a lot from α. The resolution of the setup is
higher when the sample approaches the source, and is less if the sample is farther away from
it. By this difference in resolution at different positions the line profiles of fibers of a certain
diameter may appear differently, shown exemplary for the 7 µm thick fiber in Fig. 4.19 b),1
and b),3. An intermediate region, where the two types of shapes mix up, leading to a loss
in contrast, also exists.
Figure 4.19 c) shows the shape of the 1µm thick fiber that has the same shape over all
distances, hence following the curve of α more accurately.
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Figure 4.19: a) shows simulated contrast values for four carbon fibers with diameters of 1 µm,
4 µm, 7 µm and 10µm. The contrast values of the 1 µm thick fiber are in good
agreement with α, whereas the plots of the other fibers are not. This is due to
the change of the line profile shape as indicated in b) for the 7 µm fiber. The line
plots of the 1 µm fiber do not change as depicted in c). Image taken from Balles
et al. 41.

To prove that this is a problem related to fibers, simulations have been made for carbon
edges of different thicknesses (1µm, 4µm, 7µm and 10 µm). These contrast values are
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plotted against R1 in Fig. 4.20. Indeed, the results show that the absence of the influence

edge

Figure 4.20: Simulated contrast values of four carbon edges of 1 µm, 4µm, 7µm and 10 µm
thickness. Due to the fact that a mix of line profile shapes is impossible for edge
objects, the contrast values match perfectly with α for all simulated edges. Image
taken from Balles et al. 41.

of the line profiles due to different resolutions leads to an almost perfect match between the
simulated contrast values and the prediction by α for all four edges.
It is obvious from Figs. 4.19 and 4.20 that the optimization of phase contrast is also related
to the sample itself. This fact was recently reported by Ullherr et al. 92 Therefore, the
prediction of the optimum position of α has to be considered as an estimate rather than an
absolutely determined position.
In the synchrotron setup, a deviation of α and the measured contrast values is evident for
higher values of R2. As stated in the derivation of the formalism in Sec. 4.2, the linear
relation of α and the propagator is given only for α � 1. As can be seen from Fig. 4.12, α
reaches values of the order of π and is therefore violating the above mentioned assumption.
This behavior was not found for the presented laboratory setups, which is an important fact
in terms of phase retrieval with the one distance approach suggested by Paganin. Weitkamp
et al. 89 stated the existence of a critical distance Dmax for this phase retrieval algorithm,
which is respected when α < π since

α < π ⇒ λDξ2
max < 1⇒ D < 1/(ξ2

maxλ) = Dmax (4.33)

where the maximum frequency determined by the Nyquist-frequency was replaced by the
maximum frequency defined by Eq. 4.10.

70



4.6 Discussion

Since the parameters of the source and the detector for all setups shown in table 4.1 were
obtained by simulations, the results in Sec. 4.4 could be confirmed by the measurement
shown in Sec. 4.4.1, which clearly proves that the formalism predicts the optimum position
for phase contrast, also when independently measuring the parameters of the source and
the detector.
A basic assumption of the formalism was to approximate the MTF of the detector and the
SDF of the source by Gaussian functions. Fig. 4.21 shows that even in the case of a non-
Gaussian shaped source distribution, the formalism still holds although a small deviation is
visible. In a) the measured contrast values are plotted against R1 together with α as well as
the measured values of σMTF and the corresponding fit function (Eq. 4.24). The inset in a)
shows the asymmetric shape of the line profile of a fiber at the position that is indicated by
the red circle. This asymmetry arises from the asymmetrically shaped X-ray spot (imaged
with a Fresnel zone plate as described by Fella et al. 93) depicted in b). c) shows a line
profile through this X-ray spot.
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Figure 4.21: The prediction of the optimal position for phase contrast with a non-Gaussian
shaped source distribution. Image a) shows the plot of the measured contrast
values and the prediction by α. Furthermore, the measured values of σMTF and
the fitted function to the measured values is shown as well. b) shows an image
of the X-ray spot, taken with a Fresnel zone plate and c) illustrates a line profile
of the X-ray spot. The asymmetry of the line profile depicted in the inset of a)
is due to the asymmetrically shaped X-ray spot. It corresponds to the position
marked by the red circle.

Computed tomography The results of the computed tomography in Sec. 4.5.1 show that
the reconstructed absorption volume measured at the position of optimal phase contrast
has indeed fringe contrast of higher magnitude than the measurement at the position of
highest resolution. This is confirmed by comparing the line profiles shown in Fig. 4.14 c)
and d). Despite this fact, by applying the above mentioned 3–D phase retrieval algorithm
by Ullherr and Zabler 90, an improvement of the separation of gray values could not be seen.
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4 Optimization of in-line phase contrast

On the contrary, the histogram from the measurement at the position of highest resolution
shows an even clearer separation. In addition to this fact, the slice obviously has a higher
resolution. More experiments have to be made in order to understand why the separation
of gray values was not improved despite an increased fringe contrast. Probably the fringe
contrast from the measurement at the position of highest resolution was already sufficient
to yield a good result in the phase retrieval.
Due to this unexpected outcome, the CT scans shown in Sec. 4.5.2 were made with the
highest possible resolution. The four examples showed the importance of phase contrast
in CT scans on the micrometer scale. Applying a phase retrieval algorithm on these scans
leads to an improvement in terms of contrast and segmentation. Furthermore, the results
show that the liquid-metal-jet X-ray source in combination with a high resolution detector
is suited for phase contrast imaging and achieves good results in a reasonable scan time (3
– 5 hours).
As was pointed out in the end of Sec. 3.1.1, laboratory imaging setups employing an LMJ
X-ray source theoretically benefit from the increased brightness in terms of reduced exposure
time. But this strongly depends on the specific setups and on the differences in brightness.
A hypothetical comparison to a setup based on a microfocus X-ray source with equivalent
resolution showed that the gain was on order of 1.4. However the DQE of the detector has
to be taken into account as well. In case of a poor efficiency this advantage may completely
vanish.
In order to get an impression on the achievable image quality with the LMJ CT setup,
Fig. 4.22 compares two slice of CT scans. While image a) shows a piece of wood measured

a) b)

Figure 4.22: Comparison of the CT scan of wood at the synchrotron (ID 19 ESRF) in a)
and at the LMJ CT setup in b). Although the image quality of the synchrotron
measurement is visually better, the LMJ CT achieves comparable results. Image
a) is used with permission (by courtesy of Jonas Dittmann).
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by Jonas Dittmann at the synchrotron imaging beamline ID 19 of the ESRF (European
Synchrotron Radiation Facility), image b) shows a matchstick measured at the LMJ. Both
images (≈ 700 µm in width) are cut to have the same spatial dimensions. The image
quality (SNR and resolution) of the synchrotron measurement is obviously better than the
measurement in the laboratory, especially when considering the total exposure time (several
seconds vs. several hours). This result is not very surprising since synchrotron imaging
beamlines represent the state-of-the-art micro CT imaging setups. However, the achieved
results at the LMJ setup are still of comparable quality.
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5 Grating Interferometry

In this chapter, the LMJ setup equipped with a two-grating interferometer is presented.
The first section treats different types of gratings which are commonly used in grating in-
terferometers. Furthermore, the experimental setup is explained together with the actual
gratings. A brief explanation of how to interpret the interferometer data is given. Also
an introduction of different filter kernels is given which are used for volume reconstruction
of CT scans. The alignment of the gratings will be presented as well. In the second sec-
tion, the characterization of the interferometer is given in terms of coherence which is the
prerequisite for a grating interferometer. Moreover, the visibility and the sensitivity of the
interferometer will be given quantitatively. The third section shows the results obtained
with this interferometer in radiographic mode and in the tomographic mode of selected ex-
amples showing the capabilities of the interferometer in high and medium resolution. These
results, together with the characterization of the setup, are discussed in the last section of
this chapter.

5.1 Materials and methods

5.1.1 Types of gratings

In Sec. 1.1.5 it was shown that a periodic wave-field is reproduced at certain distances,
namely the Talbot distances dT = n2p2

λ , where n is an integer number. Such a periodicity
can be imprinted on an unmodified plane wave-field by using an absorption grating. As the
name suggests, this grating has bars made of a highly absorbing material. Figure 5.1 shows
the simulated diffraction pattern of a single absorption grating. This intensity is plotted
against the grating-detector distance d (in units of dT ) and varies from zero up to one, the
first Talbot distance. This simulation is carried out as described in chapter 2 assuming a
perfect detector and a perfectly coherent plane wave. The representation of the recorded
intensity in this way is often referred to as the Talbot carpet.
As already mentioned, the periodic wave-field, and thus the intensity, is reproduced at
the Talbot distance dT , which becomes evident by comparing the left and the right plot
of the line profile at the indicated position in Fig. 5.1. An important result arising from
this simulation is that in the middle of the carpet, i.e. when the distance between grating
and detector reaches dT /2, another reproduction is visible, known as the fractional Talbot
effect 94. The corresponding distances are called fractional Talbot distances and will be of
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Figure 5.1: Illustration of the Talbot effect by simulation of the intensity distribution recorded
by an ideal detector. An incident plane wave, represented by gray lines on the
left hand side is modulated by an absorption grating (black bars). The intensity
is plotted against an increasing grating-detector distance d (bottom). This kind
of illustration is referred to as the Talbot carpet. In the upper part, line profiles
are shown at three distances d = 0 dT , 0.5 dT and 1.0 dT . A reproduction of the
grating pattern occurs also at the fractional Talbot distance d = 0.5 dT but with a
shift of half a period.

importance concerning other types of gratings i.e. phase gratings. These will be treated in
the following.
In principle, a phase grating is very similar to an absorption grating as it has the same
layout (bars and valleys). But it is different in terms of the used materials and the height
of the grating bars. The chosen material has to keep the attenuation to a minimum, while
its height has to introduce a specific phase shift (Eq. 1.43). Usually, phase gratings with a
phase shift of either φ = π/2 or φ = π are used.
The Talbot carpet of a π/2-shifting and a π-shifting grating are shown in Figs. 5.2 and 5.3
both for the same grating period. These simulations are carried out in the same way as for
Fig. 5.1 (plane waves and gratin bars are not shown). As a phase grating only imprints a
periodicity onto the phase, which is not detectable, the intensity at d = 0 is unity, as can
be seen in the left line plot of Fig. 5.2. This is also the case for the reproduced image at
d = dT . Fortunately, one can use the fractional Talbot distances d = 1

4dT or 3
4dT (π/2 phase

grating).
The advantage of using a phase grating becomes obvious when comparing the middle line
profile of Fig. 5.2 with the middle line plot of Fig. 5.1. The intensity of the interference
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Figure 5.2: Talbot effect of a π/2 phase grating. In contrast to the absorption grating, the
phase grating shows no modulation at d = 0 dT due to the (ideally) absence of ab-
sorption. However, the phase shift induced by the grating results in a reproduction
at the fractional Talbot distances d = 0.25 and 0.75 dT . Note that the intensity is
twice as high as for the absorption grating.

pattern doubled. The reason for this is that in contrast to the phase grating, the absorption
grating blocks half of the incident energy contained in the wave-field, whereas the phase
grating only shifts the phase without attenuating the wave-field. A property of the π phase
grating is that in addition to the doubling of the intensity a doubling of the frequency occurs
(see middle line profile of Fig 5.3).
In laboratory setups, two effects occur which are not present in the above shown simulations.
One of these effects is induced by magnification, which is due to the cone beam characteristic
of a laboratory source. The second effect is due to coherence. A perfectly coherent beam in
laboratory setups would require an infinitely small X-ray spot. Therefore perfect coherence
is just a mathematical term. In practice, one has to deal with partially coherent beams as
the source size is always of finite extent.
Both effects are shown in Fig. 5.4 for an absorption grating. The magnifying character of
a laboratory source is visible by the divergence of the Talbot carpet, which is divided into
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Figure 5.3: Simulation of the Talbot effect of a π phase grating. The reproduction of the
interference pattern occurs at several fractional Talbot distances. Apart from the
doubled intensity, the period of the pattern also doubled.

two parts in the vertical direction. The upper part shows the evolution of the interference
pattern with increasing grating-detector distance R2 in the case of a perfectly coherent
wave-field. According to the Fresnel scaling theorem (Eq. 1.55), the effective propagation
distance Deff scales with 1/M , where M is the magnification. Therefore the carpet seems
to be stretched along and perpendicular to the direction of propagation compared to the
one in Fig. 5.1. The lower part shows the effect of partial coherence, due to a finite source
size of 2 µm, leading to a reduction of resolution and more importantly to a reduction of
the interference amplitude. This effect becomes more intense with increasing R2, which is
why the line profile of the partial coherent illumination on the left hand side in Fig.5.4 does
not differ much from that with perfectly coherent illumination, but differs most in the line
profile on the right hand side.

5.1.2 Experimental setup

The gratings that were used in the experiments presented in this section are made by
Microworks GmbH in Karlsruhe with a fabrication technology named LIGA (LIthographie,
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Figure 5.4: Simulation of the Talbot effect with a perfectly coherent wave-field (upper part)
and with a partially coherent wave-field (lower part) as a result of an extended
X-ray source. A degradation of the interference pattern appears due to the partial
coherence.

Galvanik und Abformung). As the LMJ setup has a FOV of ≈ 7mm, the gratings have a
diameter of 6mm.
The phase grating is a π/2-shifting phase grating made of photoresist (SU-8) and has a
height of 10.4µm. This way, it can meet the required π/2 phase shift for the Kα line of
gallium at 9.25 keV, shown in Fig. 5.5 a). The absorption grating in Fig. 5.5 b) is made of
gold with a height of ≈ 17µm. Both gratings have a period of p = 2.4 µm. According to
Eq. 1.65 the Talbot distance of these gratings is dT ≈ 86mm and the first fractional Talbot
distance dT /4 ≈ 21.5mm. Note that the grating bars are oriented from left to right and are
not continuous due to stability issues. The substrate material of the gratings is a polyimide
membrane, which is almost transparent to the Kα line of gallium.
The experimental setup of the grating interferometer at the LMJ is illustrated in Fig. 5.6.
The used source was the liquid-metal-jet and the detector of the second generation (cf.
Sec. 3.1.2) was utilized. The detector for radiographies was used in the high-resolution
mode (FLI PL 9000, pixel size 0.67µm) and for the computed tomography in the high and
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a) b)

Figure 5.5: Images of the gratings used at the LMJ setup. a) shows the π/2 phase grating and
b) the absorption grating. Both gratings have a period of 2.4 µm. The scale bar is
equal to 12µm. Images taken from Balles et al. 42.

medium resolution mode (Andor Zyla, pixel size 0.62/3.1µm). The acceleration voltage of
the source was set to 70 keV at 50W with an electron spot of 20x5µm2 resulting in an X-ray
spot (FWHM) of 7-8 µm in direction perpendicular to the grating bars.
In the radiography mode, the phase grating (G1) is placed at R1 = 255mm away from the
source. The analyzer grating (G2) is placed at R2 = 25mm apart from G1. The detector is
positioned as close as possible to G2. The sample is mounted at SOD = 230 between the
source and G1. For the computed tomography the distances R1, R2 and SOD were set to be

Sample
 

Detector
plane

R2

Phase 
grating G1 xy

z

Analyzer
grating G2

R1

SOD

Source

Figure 5.6: Interferometer setup at the LMJ. The source-object distance is denoted by SOD,
the distance between source and the phase grating G1 by R1 and the distance
between G1 and G2 is denoted by R2. Note that no source grating is involved.
Image taken from Balles et al.42

176mm, 15mm and 162mm in order to have shorter exposure times but with a reasonable
coherence. In fact, the distance R2 is much smaller as in the radiographic mode resulting
from coherence issues that will be discussed below (Sec. 5.4).

5.1.3 Evaluation of interferometer data

The data recorded in an interferometer setup is usually generated by a phase stepping 13,16.
This procedure is illustrated in Fig. 5.7. The incoming periodic intensity caused by the first
grating G1 is either transmitted, blocked or partially blocked by G2 as depicted by the black
arrows in Fig. 5.7. The resulting intensity is then collected by a detector pixel, which mea-
sures a signal according to the transmitted intensity, represented by the blue area. Hence,
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Figure 5.7: Concept of the phase stepping method. The periodic intensity, due to the Talbot
effect of grating G1, is analyzed by the grating G2 (absorption grating). The mea-
sured intensity by the corresponding pixel depends on the relative position between
the periodic signal at the entrance of G2 and G2 itself. The recorded intensity is
represented by the blue area and results in a triangular-shaped modulation.

after the phase stepping is completed, one pixel measures the signal shown in the graph at
the bottom of Fig. 5.7, which is – mathematically – a convolution of two rectangular signals.
In reality, this triangular-shaped curve has the form of a sinusoidal function as shown in
Fig. 5.8. Here, a real measurement is shown, made at the LMJ-setup with the high res-
olution detector of a sample consisting of glass spheres. The black curve is the reference
measurement, which has to be done in all measurements of a grating interferometer. The
extracted data of this measured curve is the mean intensity (Iref), the amplitude (Aref) and
the phase of the curve (ϕref). In the second measurement the sample is put in the beam
path, leading to a distortion of the periodic wave-field impinging onto the analyzer grating
G2, shown as the red graph in Fig. 5.8. Analogous to the reference measurement the same
data is extracted from the measurement with the sample.
This extraction is done by a 1–D Fourier transform of the phase stepping curve provid-
ing all required information. From this extracted data, the following four numbers can be
calculated in each pixel.

• Differential Phase Contrast 16

DPC = ∂φ

∂x
= p2
λR2

(ϕref − ϕsamp) , (5.1)
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Figure 5.8: Phase stepping curve of an experimental measurement. The shape tends towards
a sinusoidal modulation instead of a triangular-shaped curve (cf. Fig. 5.7). Besides
the curve, the extracted data is shown, i.e. the mean intensities Iref and Isamp,
the amplitudes Aref and Asamp and the relative displacement of both curves ϕref−
ϕsamp.

• Absorption 16

Abs = Isamp
Iref

, (5.2)

• Visibility 17

V = A

I
, (5.3)

• Dark-field Image Contrast 17

DIC = Vsamp
Vref

(5.4)

The differential phase is a measure of the change of the phase shift φ (cf. Eq. 1.43) induced
by the sample along the axis of the phase stepping. Therefore, the interferometer is only
sensitive to phase shift changes along this axis. The displacement s of the wave-field in the
plane of the analyzer grating G2 for small deflection angles θ is given as

s = θ ·R2 (5.5)
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where θ is defined as 24

θ = λ

2π
∂φ

∂x
(5.6)

Expressing this displacement in radians, i.e. ϕref − ϕsamp, one has

ϕref − ϕsamp = 2π
p2
s = λR2

p2

∂φ

∂x
(5.7)

where p2 is the period of the analyzer grating G2. If the sample is not placed at the phase
grating G1 but at a different position, i.e. SOD 6= R1, the differential phase induced by the
sample is related to the measured differential phase (Eq. 5.1) by 95

∂φmeasured
∂x

= SOD
R1
· ∂φsample

∂x
(5.8)

The absorption is a measure of the attenuation of the intensity by the sample and contains no
additional information compared to a simple projection image of the sample. The visibility
represents the magnitude of the interference fringes (the amplitude A) with respect to the
mean intensity I, and a high visibility is desirable. In the ideal case shown in Fig. 5.7, the
visibility is V = 1, whereas in the real measurement shown in Fig. 5.8, the value of the
visibility is Vref = 0.27. The dark-field is a measure of the “unscattered” intensity with
respect to the reference beam and is defined as the ratio of the visibility of the sample and
of the reference. A strongly scattering sample produces a low visibility and therefore a low
dark-field signal. Note that, although not used in this work, there is an alternative definition
of the dark-field in literature defined inversely as

DICinv = 1− Vsamp
Vref

(5.9)

5.1.4 Filter kernels for CT reconstruction

The CT scans shown in Sec. 5.3.2 were reconstructed with the filtered back projection (FBP)
technique that was already introduced in Sec. 4.3.3.
As seen in the previous subsection, the data of an interferometer is threefold (absorption,
DPC and DIC) and therefore the filter kernel for the reconstruction of the two additional
contrast modes has to be adapted.
The correct filter – mathematically speaking – for the absorption is the linear (ramp) filter
kernel Kabs = |q| which is shown in Fig. 5.9 a). This filter was used for the volume recon-
struction of the phase tomographies in Sec. 4.5.
Although the DIC signal follows an exponential attenuation law 19 (cf. Sec. 5.2.3) as well as
the absorption, a different filter kernel was chosen that proved to be more appropriate than
the ramp filter Kabs. This filter kernel is shown in Fig. 5.9 and is defined as KDIC = 1−e−a|q|
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Figure 5.9: Comparison of the applied filter kernels for the reconstruction with the FBP algo-
rithm. Image a) shows the ramp filter Kabs = |q| that is used for reconstructing
the absorption contrast. In b), the filter kernel KDIC = 1−e−a|q| for DIC is shown
and c) illustrates the filter kernel KDPC = −i · sgn(q) that is used for the DPC
contrast. A closer explanation of the kernels is given in the text. Image taken from
Balles et al. 43

where the parameter a was set to 15/qNyqu.. The main benefit of this filter compared to Kabs

is its ability to weight lower frequencies more than higher frequencies by which a reduction
in noise is attained as will be shown in Sec. 5.4.
It was demonstrated in Sec. 4.3.3 that one may apply a conventional FBP and hence the
conventional filter kernel (Kabs) to the phase information when it exists in the form

φ(x, y) = −2π
λ

∫
δ(x, y, z)dz. (5.10)

However, the phase information obtained by a grating interferometer is only available as
the derivative of the phase shift, i.e. ∂φ

∂x . In order to avoid a numerical integration of the
obtained signal, one may use a modified filter kernel.
Considering the Fourier derivative theorem

F {(f(x)} ↔ f̃(q) (5.11)

F
{
f ′(x)

}
↔ i2πqf̃(q) (5.12)

it becomes evident that an appropriate filter kernel transforms the inherent “filter” i2πq →
|q|. Such a transformation is given by the sign function multiplied with the imaginary unit
i, i.e.

H = −i · sgn(q) =
{
i if q < 0
−i if q > 0

(5.13)

This filter is also known as the Hilbert filter H and is shown in Fig. 5.9 c) (blue solid line).
It flips the inherent function i2πq (dashed red line) on the negative side of the frequency
axis to give the required filter kernel |q| (solid black line).
When using adapted filter kernels, it is often easier to use own reconstruction software, that
allows to redefine the filter kernel, than to use commercially available software. For the
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reconstructions shown in this chapter the software toolkit of Jonas Dittmann was used.

5.1.5 Alignment of the gratings

The alignment of the gratings is not too difficult and is basically straight forward as one
receives the feedback directly from the projections of the gratings. The alignment procedure
is shown in Fig. 5.10. The first step is to align the phase grating in parallel to the detector.
Then the rotation is adjusted in order to reduce the shadowing due to the misalignment of
the grating bars (absorption grating) with respect to the beam path. In a final step, the
tilt of the absorption grating is adjusted in order to have a Moiré pattern parallel to the
detector.

1.

2.

3.

Source

1.

2.

3.

Detector
plane

Phase 
grating G1 xy

z

Analyzer
grating G2

Figure 5.10: Alignment procedure at the LMJ. The direct feedback coming from the high
resolution of the detector allows for a very quick and straight forward alignment
procedure. First the tilt of G1 is corrected, then the rotation of G2 and finally
the tilt of the G2 is adjusted to give a Moiré pattern parallel to the detector.
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5.2 Characterization of the LMJ setup

5.2.1 Coherence and Talbot carpet

The resolution of the detector described in Sec. 3.1.2 allows to visualize the gratings shown
in Sec. 5.1.1 due to an effective pixel size of 0.67µm. Thanks to this fact it is possible to
measure the Talbot effect of the used gratings. Similar results have been shown in Balles
et al. 42 although here the detector was moved instead of the grating. Also more detailed
measurements are presented for three different spot sizes.
By a Fourier transform of the line profiles perpendicular to the grating bars at several
grating-detector positions and by measuring the amplitude of the normalized Fourier com-
ponent |Fnorm(ν)| at the spatial frequency of ν = 1/2.4 µm, the magnitude of the interference
pattern can be obtained. In order to keep the results comparable to one another, the mag-
nitude of interference is given in visibility ∗. Figure 5.11 shows the visibility plotted against
the grating-detector distance for the absorption grating. In the upper part the radiographies
of the corresponding propagation distances are shown. For this measurement the X-ray spot
size was σS = (2.8±0.5) µm. The spot size is determined by edge measurements equal to the
method described in Sec. 4.3.2. It is clearly visible that the images and visibility alternate
between disappearing and reappearing at the expected distances although the maxima and
minima do not coincide perfectly.
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Figure 5.11: Measured Talbot effect of an absorption grating. In the upper part, radiographies
of the grating are shown for several grating-detector distances. Note the inversion
of the interference pattern at fractional Talbot distances. In the lower part, the
visibility is plotted against R2, showing a decay of the visibility and resolution
with increasing R2.

Figure 5.12 shows the Talbot effect for the phase grating (same spot size). The measure-
∗The visibility is calculated by V = 2|F(ν)|/|F(0)| = 2|Fnorm(ν)|, which is equivalent to Eq. 5.3.
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ments show the expected behavior of a π/2-shifting phase grating, and compared to the
absorption grating, the maxima and minima match perfectly with the expected distances.
Note the inversion of the grating pattern at fractional Talbot distances for both the absorp-
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Figure 5.12: Measured Talbot effect of a π/2-shifting phase grating. The upper part shows
the radiographies of the grating at the positions indicated by the red arrows. In
the lower part, the visibility is plotted against R2.

tion (0.5 dT and 1.5 dT ) and the phase grating (0.75 dT and 1.75 dT ).
Although not shown here, the (normalized) mean intensity of the phase grating is twice as
high as the mean intensity of the absorption grating, which is in perfect agreement with the
findings from the simulations (Imean,phase = 0.89, Imean,abs = 0.44).
As discussed earlier, the existence of interference fringes, i.e. the Talbot effect is crucial
to the coherence of the incident X-ray beam. In Fig. 5.13 a) the degradation of the Tal-
bot effect (measurement) is shown for three different X-ray spot sizes σS = (2.8± 0.5) µm,
(3.3 ± 0.5) µm and (4.9 ± 0.8) µm of the absorption grating, and in b) of the phase grat-
ing as the detector is moved farther away from the grating. Note the shift of the peak at
Deff = 0.5 dT for the absorption grating and the peak at Deff = 0.75 dT for the phase grating
with increased source size.
Not only the decrease due to different spot sizes is visible, but also the amplitude of the
modulation decreases for increased R2 for each spot size. This is owed to the scaling fac-
tor of the source size R2/R1 (cf. Eq. 2.6) which leads to an increased effective spot size
when increasing R2 (with constant R1). The highest amplitude of the phase grating is at
R2 = 23mm which corresponds to the first fractional Talbot distance Deff = R1R2

R1+R2
= dT /4,

with R1 = 348mm. For this reason, the phase grating is mounted very closely to the ab-
sorption grating as mentioned in Sec. 3.1.4.
The measurement shown in Fig. 5.14 shows the correlation between the spot size and the
corresponding coherence (van Cittert-Zernike theorem, Sec. 1.2.2). In a) three projection
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Figure 5.13: Effect of the spot size on the Talbot effect for the absorption grating a) and the
phase grating b). The bigger the spot size becomes, the less the Talbot effect is
measurable for distances farther away from the detector.

images are shown, where the spot size has been reduced by focusing the electron-beam more
and more on the anode material. As the spot size determines not only the coherence but
also the resolution of the setup, small particles located directly in front of the source become
more and more observable. With this decrease of spot size, the coherence increases and so
does the resolution, which is directly visible from the Moiré pattern in the detector, induced
by the more and more coherent illumination of G1. In b) the modulation is visible and the
corresponding visibility is given in the graphics. The line profiles are generated from the
red lines in a).

5.2.2 Visibility

In order to have a number for the quality of the dark-field and differential phase data, it is
important to determine the visibility of the grating interferometer.
The visibility measurement (high resolution radiography mode) is done by simply evaluating
the reference image according to the procedure mentioned in Sec. 5.1.3. In Fig. 5.15 two
histograms are shown, representing the distribution of visibility of the pixels lying either in
region A or B. As can be seen from the insets of Fig. 5.15, region A includes the discontinuity
of the grating bars, whereas region B includes only the continuous part of the grating. As
expected, the visibility distribution of region B has a higher mean value of 38% with smaller
variance than the histogram of region A with a mean value of 30%42.
At this point, one may think that this value is constant for a specific grating interferometer
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Figure 5.14: Illustration of the relationship between the spot size and the resulting coherence.
Image a) shows three pictures of an interferometer setup that will be presented
in chapter 6 where the spot size is reduced from top to bottom. By reducing
the spot size, small particles right in front of the source become more and more
observable and the coherence is increased simultaneously, evident from the Moiré
pattern inside of the area of the two gratings G1 and G2. Image b) shows the
corresponding line profiles and the increase in visibility. The line profiles are
generated from the red lines in a).

setup. That is unfortunately not correct since the visibility is affected by several factors. In
the previous subsection, the decrease of the coherence was shown when increasing the spot
size on the one hand and increasing the ration R2/R1 on the other hand (cf. Fig. 5.13).
The visibility of the CT scans in the high resolution mode, for instance, was V = 24 %
compared to V = 30 % in the high resolution radiography mode. While the source size in the
CT mode was the same, the distance SDD was reduced for the purpose of shorter exposure
time as mentioned earlier. This also includes a smaller R1 compared to the radiography
mode which caused a shift and a reduction of the maximum of the visibility similar to the
shift visible in Fig. 5.13 for different spot sizes. For this reason, the optimum position in the
CT mode was not found to be at the fractional Talbot distance Deff = dT /4 = 21.5mm but
at a smaller effective distance Deff = dT /6.2 = 13.8mm.
Although in the medium resolution mode for CT the distances were kept the same, the
visibility further decreased to V = 12 %. This may be explained by the usage of a thicker
scintillator (LuAG:Ce, 50µm thick) that detects more of the “Bremsstrahlung” than the
5 µm thick LSO:Tb scintillator. This results in a higher mean intensity I (cf. Eq. 5.3)
while the amplitude A is unchanged. Hence, the visibility decreases compared to the high
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Figure 5.15: Visibility distribution of two different regions. Region A includes discontinuity of
the grating bars, whereas region B only includes the continuous part of the grat-
ing. The resulting distributions of the visibility, calculated according to Eq. 5.3,
are shown in the histograms. The histogram of region A has a broader distribu-
tion with a mean value of 30% and the histogram of region B has a more narrow
distribution with a mean value of 38%. Image taken from Balles et al. 42.

resolution analogue.
The visibilities of the above mentioned configurations are summarized in table 5.1.

Table 5.1: Overview of the three grating interferometer setup configurations. The best visibility
of 30% was achieved with the high resolution detector in the radiography mode.
Due to a smaller distance R1, the visibility dropped to 24%. For the medium
resolution CT the distances were kept the same as for the latter. Nevertheless, the
visibility again decreased to a value of 12% due to the different detector.

Detector Mode R1 R2 Visibility
[mm] [mm] %

High res Radiography 255 25 30
High res. CT 176 15 24
Medium res. CT 176 15 12

5.2.3 Sensitivity

In terms of dark-field imaging it is also important to know which feature sizes the interferom-
eter is sensitive to. This can be done by measuring scatterers of different sizes. A theoretical
treatment of the expected dark-field signal DIC depending on the size of the scatterers, on
the material, on the grating period and on the chosen Talbot distance is described in the
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work of Yashiro et al. 19 and is given by †

DIC ≈ exp(−σ2(x, y) · [1− γ(x, y,−pd)]) (5.14)

The basic assumption is that many spherical scatterers contribute randomly to the wave-
front, which results in a Gaussian distribution of the wavefront20. The dark-field signal is
then determined by Eq. 5.14, where σ is the width of the Gaussian distribution and γ the
normalized autocorrelation function along the phase stepping axis. σ and γ are defined
analytically for spheres as20

σ2 = Ft ·
(3

2a∆ρ2r2
eλ

2
)

(5.15)

γ(−Np1) =
(

1 + R2

2

)√
1−R2

+
(

2R2 − R4

2

)
log

( |R|
1 +
√

1−R2

)
(5.16)

In the above given equations the term F · t represents the volume fraction of the spheres
embedded in a volume multiplied by the thickness of the volume in the direction of the
beam path. a is the radius of the spheres, ∆ρ the difference in electron density between the
spheres and the surrounding volume, re the classical electron radius and λ the wave length
of the X-rays. The parameter R is defined as R = R2λ

2p2a
, where R2 is the distance between

G1 and G2 and p2 the period of G2.
This theoretical framework was confirmed 19 by the authors with experiments and predicts
the sphere size at which the interferometer is most sensitive. At the presented LMJ setup,
experiments were conducted with two types of samples to have an estimate for the particle
size of highest sensitivity, and the results together with the theoretical expectation are plot-
ted in Fig. 5.16 a) and b). Note that a low dark-field signal is related to a high scattering
of the sample.
One of these samples were powders of spheres of five different diameters ranging from
0.25µm, 0.8µm and 1.2µm (glass, Al2O3) up to 10µm, 20 µm (PMMA, Polymetylmetaacry-
late). For the powder experiments, three samples of each diameter size were prepared, re-
sulting in three points per radius in a).
The second sample was a carbon aerogel with an inherent gradient of pore size in the range
from 70 nm up to 4µm, shown in Fig. 5.16 c). The gradient of pore size is indicated by the
change of color. The characterization of a very similar sample was reported by Hemberger
et al. 96. As the correlation of the position in the aerogel sample to the local pore sizes were

†Although Yashiro uses the term “normalized visibility V” instead of “dark-field” (DIC), both expressions
are defined identically.
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Figure 5.16: Sensitivity measurements of the grating interferometer setup as a function of the
diameter of the scatterer size. Image a) shows the comparison of the expected
dark-field sensitivity and measured dark-field of five powder samples with diam-
eters of 0.25 µm, 0.8µm and 1.2 µm (glass, Al2O3) and 10 µm, 20 µm (PMMA).
The same comparison is shown in b) for an aerogel sample that has an inherent
gradient, shown in c). The pore diameter is in the range of 70 nm up to 4 µm.
Image d) shows an exemplary fit with a spherical model for the SAXS data. The
SAXS measurements were employed to estimate the pore sizes of the sample.

unknown, “Small Angle X-ray Scattering” (SAXS) measurements have been employed at
the in-house SAXS facility in Würzburg, with the help of Bernhard Schummer and Benedikt
Sochor. An exemplary fit of the SAXS data with a spherical model is shown in Fig. 5.16 d).
Although this measurements are not absolutely reliable due to the fact that the SAXS setup
is only suitable for measuring pore sizes up to 200 nm in diameter, the extracted values of
the effective pore size were taken as an estimate to correlate the position in the sample to
the pore size. The range of these pore sizes of 70 nm up to several micrometers is in good
agreement with the results of the examined sample reported by Hemberger et al. 96.
The results of the two samples reveal the existence of a pore size where the dark-field signal
has an optimum (minimum). However, both experiments are not in agreement with one
another and do not follow the theoretical expectation, either. In the measurements of the
powders, the highest sensitivity can be estimated for a sphere radius in the range of 0.6–
1.0 µm, whereas the predicted size is around 1.2 µm. From the measurement of the gradient
sample, the highest sensitivity is estimated at 0.1–0.2 µm and differs from the expectation
by the factor of 10.
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Some notes have to be made concerning the evaluation of the data. Since the width of the
Gaussian broadening depends on the parameter F · t, which is not equal for all the sam-
ples under investigation, the dark-field signals of all samples had to be normalized. This
normalization was done with the help of the transmitted intensity of the samples and their
(theoretical) absorption coefficient. This assumption arises from the fact that the volume
fraction multiplied by the thickness (F · t) of the sample is the same number that leads to
the attenuation according to the Lambert-Beer law (Eq. 1.33)

I = I0e−µ·Ft

⇒ Ft = − log(I/I0)/µ (5.17)

The linear attenuation coefficients were taken from XOP 97 (v.2.3) for the energy E =
9.25 keV for glass, PMMA and Resorzin-Formaldehyd (aerogel).
In addition to this parameter, it is necessary to normalize the dark-field signal by the elec-
tron density ∆ρ in order to allow a comparison of glass and PMMA spheres and also to
compare the measured dark-field signal to the theoretical expectation. These electron den-
sities may be calculated according to Als-Nielsen and McMorrow 59 and were found to be
ρglass = 6.6 · 1020 1

mm3 , ρPMMA = 3.8 · 1020 1
mm3 and ρaerogel = 4.95 · 1020 1

mm3 .
Although the discrepancies of the measurements to one another and to the theoretical ex-
pectation will be discussed in Sec. 5.4, some possible reasons will be stated at this point.
One of these are the parameters (absorption coefficient and electron density) that were
used for the normalizations of the dark-field signal. Regarding the aerogel sample, the
discrepancies may be traced back on the correlation between the position in the sample and
the pore size, since the SAXS instrument is only reliable for pore sizes below 200 nm. Also,
it is very likely that the sample does not consist of spherical pores as was assumed for the
model used in the evaluation of the SAXS data, but rather has a structure similar to a
sponge.

5.3 Results

This section presents the results of radiographies taken with the grating interferometer at
the LMJ setup. The CT scans of several samples will be shown, taken at the same setup in
the medium and high resolution mode.

5.3.1 Radiographies

The results shown below were taken with the high resolution detector (see chapter 3.1.2,
2nd generation). The phase step size was 0.3 µm, i.e. eight phase steps were performed with
an exposure time of 1min. The images were processed as described in Sec. 5.1.3.
Figure 5.17 shows the experimental results of the interferometer in the high resolution mode
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for a nylon fiber. In 5.17 a), the projection image of the nylon fiber is shown, which contains
edge enhancement due to phase contrast. Figures 5.17 b) – d) show the absorption (Eq. 5.2),
the differential phase shift (Eq. 5.1) and the dark-field (Eq. 5.4) of the nylon fiber.

a) b)

c) d)

Figure 5.17: Results of the nylon fiber. a) represents the radiography with edge enhancement
induced by in-line phase contrast, whereas b) shows the generated absorption
image. c) and d) are the differential phase shift and the dark-field image. The
scale bar is equal to 260 µm. Images taken from Balles et al.42

Interestingly, the absorption image (Fig. 5.17 b)) features edge enhancement besides the
attenuation similar to the projection image in a), which is not common for grating inter-
ferometers. The dark-field signal in d) shows only an appreciable signal at the inner and
outer edges of the nylon fiber, whereas the material itself has almost no signal. This indi-
cates that the dark-field signal is dominated by the missing intensity which is located in the
interference fringes due to phase contrast.
The DPC and the DIC of a carbon fiber reinforced polymer (CFRP) is shown in Fig. 5.18
a) and b), respectively. The DIC signal is not homogeneous, which is usually the case for
interferometers, but is rather evident at the interfaces of the single fibers in the CFRP.
In Fig. 5.19 a) a line plot over the nylon fiber is indicated. This line profile is a mean
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a) b)

Figure 5.18: Results of the CFRP sample. a) is the differential phase shift and b) the dark-field
signal. The scale bar is equal to 260 µm. Images taken from Balles et al.42

value of the differential phase, calculated according to Eq. 5.8, and is compared with the
simulated differential phase of a nylon fiber in b). This simulation calculates the phase
shift according to Eq. 1.43 that is shown in the inset of b). A homogeneous δ of the nylon
material (N1H11C6O1) was assumed. This phase shift is then numerically differentiated and
compared to the experimentally obtained differential phase. As can be seen, there is a very
good agreement between measurement and the expectation.

a) b)

Figure 5.19: Comparison of the measured differential phase shift ∂φ
∂x with a simulation. a)

shows the nylon fiber from Fig. 5.17 c). The red area indicates the region that
was averaged to give the line profile in b). The comparison in b) shows a very
good agreement of theory and measurement. Images taken from Balles et al.43.

5.3.2 Computed tomography

In the upcoming section, computed tomographies are presented, taken at the LMJ setup in
the medium resolution mode as well as in the high resolution mode. The setup parameters
concerning the distances are noted in Sec. 5.1.2 and are the same for all CT scans. But the
measurements differ in the amount of recorded projections, exposure time and number of
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phase steps. The reconstruction was performed with a filtered back projection algorithm
combined with the specific filter kernels introduced in Sec. 5.1.4.
In the medium resolution mode, the exposure time per phase step was set to 5 s but with a
pixel binning of 2x2 (1 pixel equals 4 pixels of the initial image), resulting in a pixel sampling
of 6.2µm. Every projection angle is recorded with six phase steps, where the total amount
of projections was chosen to be 608. The reference measurements that are obligatory for
grating interferometry were taken with six phase steps as well after each ten projections in
order to reduce the total time of the computed tomography.
The high resolution computed tomography was measured with 496 projections and ten phase
steps, while the references were taken every ten projections as well. The exposure time of
every phase step image was set to 30 s. A 4x4 binning was applied to the images in order
to have a pixel sampling that matches the grating period of p = 2.4 µm.
As shown in the previous subsection, the absorption signal of this interferometer also includes
edge enhancement. Therefore the Paganin-type phase retrieval (3–D, cf. Sec. 4.3.3) may
be applied to the absorption signal as was done in chapter 4. This contrast type will be
referred to as “Paganin filtered absorption” (PFA). In principle, the PFA has the same origin
as the DPC contrast, i.e. the phase shift, and is therefore supposed to contain the same
information. In the following, these two contrast types will be compared to one another and
also to the DIC signal.

Tomography with medium resolution Four samples have been investigated in the medium
resolution mode. These samples comprise an acetylsalicylic acid pill (ASA), a stack of filter
papers, a piece of bacon and the stem of a rose.
Slices of the first sample, the stem of a rose, are shown in Fig. 5.20. The three images
correspond to PFA, DIC and DPC. Below, magnified snippets of these slices are shown.
As supposed, the PFA contrast does not contain additional information about the sample
compared to the DPC contrast, except for the bright spots in the outer bark of the stem
that are identified as calcium oxalate crystals and the difference in gray value between the
rose and the surrounding paraffin film. Furthermore, it is less polluted by noise than the
CT slice of the DPC. In the DIC, one notices a bright ring underneath the epidermis of the
stem. This ring cannot be seen in neither the PFA nor the DPC. Obviously, this dark-field
signal is caused by a cellular structure that scatters the X-rays more than any other part
of the rose. This highly scattering area can be identified as an accumulation of micrometer
sized chloroplasts and is only visible in that contrast mode. A microscopic image of the rose
in Fig. 5.21 shows those chloroplasts (green) underneath the surface of the stem.
A stack of filters is shown in Fig. 5.22 as vertical slices of the reconstructed volumes of PFA,
DIC and DPC. The different sheets of filters with pore sizes ranging from 0.25 µm to 1.2 µm
are glued to one another by a double-sided adhesive tape, visible as highly porous sheets
in between the filters. Additionally, in the upper right corner three sheets are glued by hot

96



5.3 Results

PFA DIC DPC

Figure 5.20: Slices of the stem of a rose from the PFA, the DIC and the DPC signal. The
surrounding paraffin film has a different gray value compared to the rose in the
PFA image, which is not present in the DPC contrast. Also bright spots are visible
identified as calcium oxalate crystals. The slice of the DIC reveals additional
information of the rose compared to PFA and DPC, i.e. a bright ring underneath
the surface of the rose. These higher scattering components are chloroplasts (cf.
Fig. 5.21). The FOV is 4.11mm (upper images) and 1.61mm (magnified images
below), respectively. Images taken from Balles et al.43.

Figure 5.21: Microscopic image of the rose, showing chloroplasts, that cause the bright ring in
the DIC slice of Fig. 5.20. Images taken from Balles et al.43.

glue. By investigating the PFA contrast one finds that although the sheets may not be
separated from one another, there are differences in the gray values of some sheets. Also,
the porosity of the filters is not resolved by the medium resolution setup in contrast to
the porosity of the adhesive tape. In the DPC, all filter sheets do not differ in their gray
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Figure 5.22: Sheets of filter papers of different pore sizes are stacked to one sample. A vertical
slice of that sample is shown in three different contrast modes, i.e. PFA, DIC
and DPC. While some of the filters are distinguishable from one another in the
PFA image, they are not in the other two contrast modes. These modes, however,
allow to discern the glue and the filters. The FOV in the images is 2.05mm (short
side). Images taken from Balles et al.43.

values. Unexpectedly, the hot glue has almost the same gray value as the two sheets of filter
underneath it in the PFA, but is easy to discern from the filters in the DPC signal. In the
DIC image the filter papers show the highest scattering signal in comparison to the weaker
signal of the adhesive tape and to the not existing signal from the bulk of hot glue. Only
the contour is visible.
A vertical slice of the ASA pill is depicted in Fig. 5.23. The three images correspond to the
three contrast types PFA, DIC and DPC. The PFA contrast consists mainly of one material
(gray) and shows some small features like cracks in the material. Moreover, some areas
are visible in the specimen, indicating a different type of material or a different density in
this region (white area). More importantly, these details are present in the whole area of
the slice. This is not the case in the DIC or DPC slices. Small details are visible only in
the outermost area of the two slices, illustrated in magnified images in the lower part of
the figure. However, the DIC slice is dominated by scattering contrast from cracks in the

98



5.3 Results

PFA DIC DPC

Figure 5.23: Slices of the three different contrast modes of ASA pill. While in the PFA image
features are present in the whole slice (cracks and differences in the material), this
is not the case for the other two contrast modes. Nevertheless, the DIC contrast
reveals that the sample consists of more interfaces than visible in the PFA image.
The FOV in the upper images is 4.97mm and 3.14mm in the magnified images
below (long side).

sample. It also reveals that more cracks are present in the sample – at least in the outer
parts – than indicated by the PFA contrast.
A piece of bacon was investigated with the interferometer and the results are shown in
Fig. 5.24. This time, a comparison is shown between a slice from the absorption CT and the
same slice from the DPC signal. Magnified images of the corresponding images are depicted
below. The concentric features in the absorption image are ring artifacts.
Similar to the ASA sample, in the slice of the absorption CT, details are visible in all areas
of the sample. These details are fat tissue (gray) surrounded by the muscle tissue of the
piece of bacon. In the differential phase CT, these details are only visible in the outer parts
of the sample.
The reason for this loss in information concerning the DIC and DPC of the ASA pill and
the bacon will be discussed in Sec. 5.4.

Tomography with high resolution The ASA sample and the bacon sample were further
investigated with the grating interferometer in the high resolution mode as the results with
the medium resolution mode of these samples were not satisfying. Note that the samples
had to be cut in order to fit the smaller field of view and are therefore much smaller.
Similar to the medium resolution mode, the slices of the PFA, DIC and DPC are displayed
in Fig. 5.25. Because of the higher resolution, the cracks of the ASA sample are visible in
more detail in the PFA image. In addition, the brighter area implying a different type of
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Absorption DPC

Figure 5.24: Slices from the reconstructed absorption and DPC volume of a piece of bacon
are shown, respectively. Details of the sample are visible in the whole slice in
the absorption signal, while those details are only visible in the outer parts of
the sample in the slice of the DPC image. This becomes clearer by taking a look
at the corresponding magnified images below. The FOV in the upper images is
2.85mm and the long side in the magnified images below is 1.31mm.

material or material of different density. In contrast to the medium resolution, the same
details are present in the slice of the DIC and DPC in the whole area of the sample. The
DPC image shows more or less the same information as the PFA signal. From the whole
FOV of 1.02mm, an average grain size can be estimated to hundreds of micrometers. The
DIC contrast is mainly dominated by scattering due to interfaces of the grains instead of
scattering of the grains themselves.
A comparison of two slices of the DPC of the bacon sample is shown in Fig. 5.26. Here,
the DPC of the high resolution mode (a)) is compared to that of the medium resolution
mode (b)). Obviously, as well as for the ASA sample, the high resolution mode improves
the visibility of details inside the sample, which is not only due to the higher resolution, as
will be discussed in the following section.

5.4 Discussion

The results of the Talbot carpet in Figs. 5.11 and 5.12 demonstrated that the Talbot effect
can be measured in a laboratory setup and that the reproduction of the periodic wave-field
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PFA DIC DPC

Figure 5.25: Slices of the three contrast modes (PFA, DIC and DPC) are shown. The use of
the high resolution mode is an improvement in the visibility of details in the DIC
contrast mode as well as in the DPC contrast mode, as the details are visible not
only in the outermost parts of the sample. Also the PFA image benefits from the
higher resolution. The FOV in the images is 1.02mm. Images taken from Balles
et al.43.

a) b)

Figure 5.26: Slice of the DPC contrast of bacon from the high resolution mode in a) and from
the medium resolution mode in b). The detailed structures of the muscle and fat
tissue are visible in the whole sample. This fact is not only owed to the higher
resolution. The FOV is 1.13mm in a) and 2.85mm in b).

is given at the expected positions, taking into account the effective propagation distance
(Eq. 1.55). Also, the advantage of the doubled intensity of the phase grating compared to
the absorption grating, as predicted by the simulations (cf. Figs. 5.2 and 5.1), could be
measured (not shown). The mean intensity of the phase grating as well as the amplitude
were doubled, leading to the same visibility as expected.
The measurements of the Talbot carpet also showed a damping of the visibility, hence a
reduction of coherence with an increasing spot size and also with an increased distance
between the gratings and the detector at higher fractional Talbot distances (constant R1)
as the effective spot size scales with M − 1 = R2/R1. The latter result is in good agree-
ment with the findings of Pfeiffer et al. 98. Since the highest visibility of this interferometer
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will be achieved if the absorption grating is placed at the first fractional Talbot distance
(Deff = 0.25 dT ), the distance between G1 and G2 is chosen that short.
Concerning the visibility, a real improvement would be achieved if the gratings were manu-
factured without the discontinuities shown in the insets of Fig. 5.15. Avoiding these discon-
tinuities would increase the visibility by almost 10%.
By considering the measured visibility of 30% in the LMJ setup, one may notice that the
visibility of the Talbot carpet at the first fractional Talbot distance reaches only 24% and
is not in agreement with the 30% visibility. This is simply caused by the fact that the
analyzer grating has a “higher resolution” than the detector, which has a limited resolution
due to its MTF.
The visibility of 30% of radiography mode is only valid for the specific distances R1 and R2

which were set to 255mm and 25mm (SDD = 280mm) since the ratio of R2/R1 has to be
taken into account, in this case R2/R1 ≈ 0.1.
In the high resolution CT setup mode the visibility was measured to be 24% although
the spot size was the same. This reduction of visibility is caused by the shorter dis-
tance R1 = 176mm. Placing G2 at Deff = dT /4 (⇒ R2 = 24.5mm) leads to the ratio
of R2/R1 = 0.14, hence to a bigger effective spot size.
This increase of the effective spot size due to an increase of R2 has a second very inter-
esting effect, i.e. the shift (and reduction) of the maximum of the visibility. The visibility
at Deff = dT /4 is stronger damped than the (the theoretically lower) visibility at smaller
R2. A similar effect was observed in Fig. 5.13 for different spot sizes. This is the reason for
choosing R2 = 15mm instead of R2 = 24.5mm in the CT mode. The CT setup is therefore
a tradeoff between exposure time and visibility.
The sensitivity was also investigated for the LMJ setup, and the results seem to be incon-
sistent to one another. First of all, from the theoretical point of view, a pore size was found
which the interferometer is most sensitive to. However, these pore sizes for the two experi-
ments do not coincide with the expected pore size from the theoretical model. The reason
for this is not completely understood but a possible explanation is given by Malecki et al. 99.
The authors take also into account the distance between the sample and the phase grating
G1. This was not considered by the work of Yashiro 19. This distance seems to introduce a
shift on the feature size of highest sensitivity. Unfortunately, this theory was only developed
for a plane wave illumination and therefore not suitable for laboratory setups.
Although the distances of sample to G1 were different for the powder samples and the aero-
gel sample, they differ more than expected. As explained in Sec. 5.2.3, possible reasons
are the normalization of the DIC signal, the method of determining the pore size (SAXS
measurement) and finally the eventual non-spherical pores of the aerogel sample.
The nylon fiber, measured at the LMJ setup is qualitatively in agreement with measure-
ments of a Teflon tube, done by Pfeiffer et al. 17, concerning the DIC and the DPC images.
In contrast, the absorption image shows a remarkable result. The absorption image also
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features edge enhancement caused by in-line phase contrast, which is unusual because this
information is supposed to be contained either in the DIC or in the DPC signal. Another
remarkable result is the inhomogeneity of the CFRP sample. Usually, such samples have
a homogeneous DIC signal that depends on the direction of the fiber with respect to the
direction of the gratings. In our setup, the DIC signal arises from the interfaces of the
single fibers rather than from the orientation of a bunch of fibers, a consequence of the high
resolution of the detector.
Concerning the reconstruction of the CT scans, an exponential filter KDIC was chosen for
the DIC signal in order to reduce noise. To illustrate this fact, a comparison is shown in
Fig. 5.27. The reconstruction of the DIC is shown with the filter kernel KDIC in a) while the
reconstruction with the conventional ramp filter Kabs is shown in b). Obviously, the noise
is reduced leading to an improved image quality. This reduction in noise comes on the loss
of spatial resolution. However, this loss in image resolution is not noticeable because of the
low SNR, extinguishing any information in the higher frequencies.

a) b)
Figure 5.27: Comparison of two different filter kernels. Image a) shows a slice from the re-

constructed volume using the filter kernel KDIC while b) shows the same volume
reconstructed with the ramp filter kernel Kabs. The improved image quality is
visible in a) due to the reduction in noise by KDIC. Images taken from Balles et
al.43.

The tomography results of the LMJ setup show both positive and negative aspects. First
of all, with the DIC, information of the sample induced by scatterers on a sub-pixel scale
is visualized that was neither present in the absorption nor in the DPC. Examples are the
rose (Fig. 5.20) and the ASA pill (Fig. 5.23) demonstrating the advantage of this technique:
the detection of cracks in a bulk material.
In the case of the stack of filter papers, a difference in the DIC was expected for the different
filter sheets since they vary in the their pore size. This was not observed. Reasons for this
may be an insufficient SNR or a difference in the density of the scatterers which may result
in similar DIC signals. However, a strong DIC was seen from all sheets, illustrating the
capability of detecting highly porous materials (in contrast to the hot glue in Fig. 5.22).
Unfortunately, such information was not available in the whole sample, as was shown in the
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case of the ASA pill (Fig. 5.23) and the piece of bacon (Fig. 5.24). The reason for this is
simple. The grating interferometer works only for energies around 9.25 keV. Intensities of
other energies are passed through the grating and registered as an offset (cf. Fig. 5.8) and do
not contribute to the amplitude of the signal. Thus, if the intensity of 9.25 keV is completely
absorbed by the sample, the information from the interferometer vanishes completely.
For this reason, the measurements were repeated with the high resolution setup that needs
samples with small dimensions because of the small field of view. This required small extent
of the sample also reduces the absorption of the intensity of 9.25 keV. The results of the high
resolution setup are of good quality in both dark-field and differential phase.
The comparison of PFA of the stack of filters (Fig. 5.22) with the DPC volume showed
discrepancies between the two contrast modes, although one would expect the same infor-
mation. As seen from the comparison of the simulated and measured differential phase of
a nylon fiber in Fig. 5.19, the contained information in the differential phase is as expected.
Provided that the reconstruction algorithm of the differential phase did not violate any
limitations, the discrepancy can only be explained by such violations of the phase retrieval
algorithm. In fact, one does violate the “single material” assumption (cf. Sec. 4.3.3) by in-
troducing several materials in the sample. Nevertheless, both contrast modes may be used
to separate different materials of the sample from one another.

104



6 Comparison of grating interferometer setup
configurations

This chapter focuses on the performance of a grating interferometer operated in differ-
ent configurations and on the comparison of these configurations to one another. This is
necessary as each set of gratings is a custom-made product. On the one hand, the main
characteristics of an interferometer, i.e. visibility and sensitivity, are investigated. On the
other hand, this chapter treats how the main contrast modes – dark-field image contrast
(DIC) and differential phase contrast (DPC) – are influenced by these numbers. In contrast
to chapter 5, this interferometer is operated with a microfocus X-ray tube combined with a
flat-panel detector.

6.1 Subµ setup

At the Subµ setup (cf. Fig. 3.7) four different configurations were tested and are introduced
in the following. In total, three different types of gratings are involved, all with the same
layout as shown in Fig. 5.5. However, with a diameter of 70mm the gratings are much larger
compared to those used in the LMJ setup (compare Figs. 3.6 b) and 3.7). All gratings used
at the Subµ setup are made from the same material (gold) but are different in periodicity
and height. While the source grating G0 and the analyzer grating G2 differ only slightly
in their heights of 60µm and 70 µm, they have the same period of p = 4.8 µm. Two phase
gratings were used, one of which was a π-shifting grating of 4.8 µm period and the other
was a π/2-shifting grating of 4µm period. The heights of these two gratings (4.2µm and
2.1 µm) were designed to induce the desired phase shift for the Kα emission line of silver at
22.16 keV. The π-shifting grating also introduces a doubling in the frequency (cf. Figs. 5.2
and 5.3) which matches the analyzer grating period of 4.8µm considering the magnification
M = 2.
The source was a microfocus source from Feinfocus and was operated at 60 keV and a power
of 1.5-1.8W. It allows to change the anode material in a very short time which was done
for one of the setup configurations. The available anode materials were silver and tungsten.
The basic setup for all configurations is depicted in Fig. 6.1.
In the first and second configuration the silver anode was used and the distances were chosen
symmetric (necessarily), i.e. R1 = R2 = 309mm. They simply differ in their spot size.
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Figure 6.1: Scheme of the basic interferometer setup operated at the Subµ. The source-object
distance is denoted by SOD. R1 denotes the distance between the source and the
phase grating G1 and R2 is the distance between G1 and G2. Components like
the anode material, gratings and distances were changed for the different configu-
rations.

In the first configuration, referred to as “Symmetric G0”, the electron-beam was (purposely)
focused behind the target leading to a large X-ray spot size but also to the need for a source
grating.
In the second configuration (“Symmetric”), the electron-beam was focused in the way it is
meant to, i.e. a smaller spot size was achieved and therefore the source grating could be
omitted.
The third and fourth configuration were operated with asymmetric distances R1 = 855mm
and R2=172mm and utilized different anode materials, i.e. a silver anode (“Asymmetric
Silver”) and a tungsten anode (“Asymmetric Tungsten”). A source grating was not involved
in both configurations.
Table 6.1 summarizes the different configurations.

Table 6.1: Overview of the four different interferometer configurations employed at the Subµ
setup together with their basic parameters.

Configuration R1 R2 G0 G1 G2 Anode[mm] [mm] [µm] [µm] [µm]
Symmetric G0 309 309 4.8 4.8 (π) 4.8 Silver
Symmetric 309 309 None 4.8 (π) 4.8 Silver
Asymmetric Silver 855 172 None 4 (π2 ) 4.8 Silver
Asymmetric Tungsten 855 172 None 4 (π2 ) 4.8 Tungsten

Alignment The alignment procedure is more complicated and not as straight forward as
at the LMJ setup (cf. Sec. 5.1.5) caused by the fact that one has no direct feedback because
of the coarser resolution and that the actuators of the mechanical stage provide a very
bad repeatability. Therefore the gratings could not be aligned perfectly to one another.
Two exemplary images in Fig. 6.2 show the final alignment of the gratings of configuration
Symmetric G0 and Asymmetric Silver. Note that, in contrast to the LMJ setup, the Moiré
pattern should not be present in the projection images at the Subµ setup since the gratings
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a) b)

Figure 6.2: Projection images of the final interferometer alignment at the Subµ setup (Sym-
metric G0 in a) and Asymmetric Silver in b)).

are supposed to have the same period at the detector plane. However, measurements with
such a “misaligned” system are still possible.

6.2 Results

In this section the results of measurements at the Subµ setup are presented. As mentioned
in Sec. 6.1, four different types of configurations have been tested. For these measurements,
twelve phase steps were taken and the exposure time of a single phase step image was 10 s.
Fig. 6.3 is a comparison of the visibility of all four configurations. In a), the visibility of
configuration Asymmetric Silver is shown. The red rectangular box indicates the region
that was evaluated to give the according histogram in e). The visibility of this configuration
has its mean value at 11.5%. The visibility of configuration Asymmetric Tungsten was

Figure 6.3: Visibility comparison of the four configurations at the Subµ setup. a) to d) illus-
trates the visibility map (grating diameter is 70mm) that was calculated according
to Eq. 5.3 for the configuration Asymmetric Silver, Asymmetric Tungsten, Sym-
metric G0 and Symmetric. The red box in each of the images represents the area
for the histograms e) to h) in the lower part of the figure.
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found to be 12% and is displayed in b) with its corresponding histogram in f). The two
configurations Symmetric G0 and Symmetric are shown with their histograms in c), g) and
d), h), respectively. Both symmetric setup configurations have a much smaller visibility of
5.8% and 2.5%.
All images (a) to d)) seem to have a horizontal gradient and show the best visibility in the
center and the worst at the rim. This effect comes from a shadowing which is introduced by
the planar gratings (G2) with non-negligible height of the grating bars. This effect is more
intense in the symmetric configurations because of the shorter distance R1 +R2. It can be
compensated by bending the gratings to the corresponding source-grating distance.
In Fig. 6.4 a) to c) the dark-field signals (DIC) of three samples are illustrated at the setup
configurations Asymmetric Silver, Asymmetric Tungsten and Symmetric G0. These sam-
ples are powders consisting of monodisperse glass spheres of different sizes in diameters
(0.25 µm, 0.8 µm and 1.2µm). They were also used for the sensitivity measurements de-
scribed in Sec. 5.2.3. As can be seen from the histogram in Fig. 6.4 f), the dark-field signal
of the three samples from configuration Symmetric G0 is more or less constant, whereas
the histograms of the two other configurations (Asymmetric Silver and Tungsten) show a
separation of the sample with 1.2µm diameter from the others (0.8µm and 0.25µm).

Figure 6.4: DIC of three powder samples with diameter varying from 0.25 µm, 0.8 µm up to
1.2 µm, measured at the three setup configurations Asymmetric Silver in a), Asym-
metric Tungsten in b) and Symmetric G0 in c). The histograms of the DIC signals
of the three samples are shown below for each configuration in d) to e).

Another sample measured at the Subµ setup is a sea star. In Fig. 6.5 the DIC of the setup
configurations Asymmetric Silver, Symmetric G0 and Symmetric is compared. Obviously,
the image in a) reveals more details as in b) and even more than in c). While the signal in
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b) does not suffer too much from noise and shows a strong DIC signal induced by the sea
star, the image in c) has an overall bad signal-to-noise ratio (SNR), destroying almost all
the details of the sample. In the line profiles d) to f), indicated by the red lines in a) to c),
the increase of noise is visible as well as the decrease of detectability of details.

a)

Asymmetric Silver, DIC

b)

Symmetric G0, DIC

c)

Symmetric, DIC
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Figure 6.5: DIC measurements of a sea star at the configurations Asymmetric Silver, Sym-
metric G0 and Symmetric in a), b) and c), respectively. While the details of the
sample are visible in a), they disappear in c). Additionally, the noise is much less
in a) than in b) and is the strongest in c). This is also evident in the line plots (d)
to f)) of the corresponding images.

The advantage of the DIC contrast mode is its sensitivity to scattering of small features,
even to those that are not detectable with conventional absorption images. This property
of dark-field imaging will be demonstrated by the next two results.
Fig. 6.6 shows the difference between the absorption image of a feather b) and the DIC
(a) and c)) measured with configuration Symmetric G0 and Symmetric. In these images,
three areas are highlighted by a red, blue and green box. Comparing the blue box in all
three images reveals that the central shaft (gray cylinder-shaped area in b)) of the feather
is hollow. This feature cannot be noticed from the absorption image. In the green box, the
barbs are clearly visible in a), whereas in b) the barbs are almost invisible. Although these
features are visible in c) as well, the worse SNR makes it difficult to detect them. In the
red box, the barbs are more or less invisible in all of the three images.
In Fig. 6.7, a piece of wool is shown. Analogous to Fig. 6.6, the absorption image is shown in
b) together with the DIC image in a) and c) extracted from the configurations Symmetric
G0 and Symmetric. The lower part of the figure compares the line profiles of the absorption
image to those from the DIC images (indicated by the blue and green lines). While the
absorption signal is almost constant (green line profile), the DIC numerically shows the
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a)

Symmetric G0, DIC

b)

Absorption image

c)

Symmetric, DIC

Figure 6.6: Demonstration of the capability of the DIC. The imaged sample is a feather and
is shown as an absorption image in b). In a) and c) the DIC of the same feather
is depicted with the configuration Symmetric G0 and Symmetric. The comparison
illustrates that certain features (red, blue and green box) can only be detected
with DIC (cf. according text).

difference between the sample and the adjacent air. Despite this fact, image c) suffers from
much higher noise, also visible in e) compared to the image in a).
The next part will focus on the differential phase contrast (DPC) of the grating interferom-
eter. Fig. 6.8 illustrates the DPC of the three glass powder samples from the configurations
Asymmetric Silver and Symmetric G0. The comparison shows that there is a difference be-

Air

Wool

Figure 6.7: Comparison of an absorption image (b)) and two DIC images of a piece of wool
in a) and c). It is not possible to distinguish between the sample and air from the
absorption image while the DIC shows a clear difference.

110



6.3 Discussion

a)

Asymmetric Silver, DPC

b)

Symmetric G0, DPC

Figure 6.8: A comparison of the DPC of the three glass powder samples is shown. In a) the
DPC extracted from configuration Asymmetric Silver is shown. In b) the same
contrast mode is depicted from configuration Symmetric G0. Both images feature
randomly located speckles, which are more intense in b) than in a).

tween the two configurations a) and b). While in a) the DPC shows no remarkable behavior,
a speckle pattern can be noticed in b). In fact, this speckle pattern is also evident in a) but
only in a subtle way.
Fig. 6.9 illustrates the DPC of a plastic tube from the two configurations Symmetric G0 and
Symmetric. Note that only one side of the tube is shown (cf. Fig. 5.19). Both images show
the same information, but again image a) (Symmetric) reveals a much higher noise level
than b) (Symmetric G0). This will be clearer by taking a closer look at the line profiles in
c) of the shown images indicated by the red and blue line.

6.3 Discussion

Four different configurations have been compared at the Subµ setup. Three of these had
appreciably different visibilities of ≈ 11.5% (Asymmetric Silver), 5.8% (Symmetric G0) and
2.5% (Symmetric). This result shows the great advantage of using a source grating as it
strongly improves the visibility (5.8% vs. 2.5%). Although no source grating was used
for the configuration Asymmetric Silver and Asymmetric Tungsten, the visibility was even
higher than for Symmetric G0 (11.5% vs. 5.8%). The reason for this increase is due to the
ratio of R2/R1. In the former case, the ratio was ≈ 0.2 and in the latter ≈ 1 resulting in a
smaller effective source size. This confirms the findings of Sec. 5.2.1, where a degradation of
visibility with increasing R2 (R1 fixed) was shown. In comparison to the grating interfer-
ometer using the LMJ (visibility ≈ 30 %, table 5.1) the asymmetric setups exhibit a lower
visibility of ≈ 11.5/12%. However, the ratio R2/R1 ≈ 0.1 as well as the smaller grating
period at the LMJ setup lead to an ab initio increased visibility.
The comparison of the configurations Asymmetric Silver and Asymmetric Tungsten also
reveals a very interesting point about the design energy of a grating interferometer. This
design energy was the Kα line of silver at 22.16 keV, hence perfectly suitable for the silver
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6 Comparison of grating interferometer setup configurations
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Figure 6.9: Differential phase contrast of a hollow plastic tube from configuration Symmetric
in a) and from configuration Symmetric G0 in b). The higher noise level of a)
compared to b) can be seen. The comparison of the line profiles in c) expresses
this fact quantitatively.

anode of the setup. The change of the anode material, which was done for the configuration
Asymmetric Tungsten, should decrease the visibility due to broad spectrum of tungsten
with no characteristic emission lines matching the design energy. Instead, the results show
that the visibility is more or less the same (≈ 12%).
Fig. 6.4 showed the DIC of three different powder samples. While these three powder types
have almost the same DIC signal in Symmetric G0 (f)), there is a difference in the DIC
signal of configuration Asymmetric Silver and Tungsten as the particle size changes (d) and
e)). This can be explained by the sensitivity of the different setup configurations, i.e. setup
geometries. The symmetric geometry leads to a saturation of the DIC signal for any of the
powder samples, whereas the powder samples in the asymmetric geometry show appreciable
differences in the DIC, hence a lower sensitivity. These results are similar to those found in
the LMJ setup, which is also an asymmetric setup, where all three powder samples showed
a different DIC signal.
The images of the sea star in Fig. 6.5 confirm this higher sensitivity of the symmetric setup
geometries. While the details of the body have almost vanished in configurations Symmetric
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G0 and Symmetric (b) and c)), they are clearly visible in the image recorded with configu-
ration Asymmetric Silver.
The higher sensitivity of the symmetric setups can also be noticed in the DPC signal of the
powder samples as well, shown in Fig. 6.8. The more intense speckles in b) are a result of the
higher sensitivity (and therefore higher DIC signal). This result is in good agreement with
Ref. 100, showing a sample made of powdered sugar. The powdered sugar leads to a strong
signal in the DIC and a DPC image completely filled with speckles. Note that speckles can
also arise from phase wrapping, which occurs when the differential phase exceeds the limit
of [−π,+π].
Figures 6.6 and 6.7 impressively show the advantage of using a grating interferometer. De-
tails of a feather (Fig. 6.6) are revealed, which are almost invisible from the absorption image.
In the case of the wool sample, the absorption contrast is more or less not present whereas
the micro structure of wool generates a much stronger contrast, allowing to distinguish
between the sample and surrounding air.
Furthermore, these examples confirm the importance of a high visibility. It can be noticed
that the lower visibility in configuration Symmetric (≈ 2.5%) is transferred into a higher
noise level in the DIC signal although the number of phase steps, the power of the source
and the exposure time remained the same. This can also be seen in the DIC signal of the
sea star (Fig. 6.5). But not only is the DIC signal affected by the visibility. The higher noise
level due to a lower visibility is also present in the DPC of a hollow plastic tube, as was
shown in Fig. 6.9.
Finally, table 6.2 summarizes the results described above for the different setup configura-
tions. Note that a low (or high) sensitivity can either be of advantage or disadvantage,
depending on the sample.

Table 6.2: Summary of the performance of the different interferometer configurations
Configuration Visibility Sensitivity
Symmetric G0 ++ +++
Symmetric + +++
Asymmetric Silver +++ +
Asymmetric Tungsten +++ +
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7 Single grating imaging

The basic idea of a single grating setup is to use only the phase grating and omit the
analyzer grating. In this chapter, two basic concepts of a single grating interferometer are
presented (1–D and 2–D). The evaluation of the data will be demonstrated, which must be
performed in order to obtain the absorption, the differential phase and the dark-field. The
results (radiographies and tomographies) from the two single grating setups will be shown
and discussed.

7.1 Experimental setup and methods

7.1.1 Experimental setup

The experimental setups of two single grating interferometers are illustrated in Fig. 7.1. In
general a single grating setup uses one grating, meaning that the analyzer grating is omitted,
as illustrated in a). This is possible if the detector provides the required resolution to work
as an analyzer itself. In b), two gratings are mounted perpendicular to one another in order
to retrieve the differential phase in both directions transverse to the beam path (black solid
line connecting the source with the detector). Although two gratings are used, it will be
referred to as a single grating setup because of the absence of the analyzer grating G2. In
order to avoid confusions with the Talbot interferometer which also utilizes two gratings,
the setup shown in a) will be referred to as 1–D setup and the setup in b) as 2–D setup.
The phase gratings in both cases a) and b) have been the same as described in Sec. 5.1.2.
The setup shown in b) was possible since the manufacturer delivers two sets of phase and
analyzer gratings.
For the radiographies, the distances have been set to R1 = 255mm. The detector is posi-
tioned at R2 = 25mm and the sample was mounted at SOD = 230mm.
In the computed tomography experiments the distances were R1 = 176mm, R2 = 15mm
and SOD = 162mm.

7.1.2 Evaluation of data

The evaluation of the data is the same compared to that of a conventional grating interfer-
ometer, except for the fact that a preprocessing is involved. This processing is illustrated
in Fig. 7.2. In the left part of the figure a snippet of a radiography is shown. In the middle
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Figure 7.1: Sketch of the experimental setup of two single grating interferometers. The high
resolution of the detector works itself as an analyzer and therefore allows to omit
the analyzer grating G2. In a) one grating is used and in b) two gratings mounted
perpendicularly to one another are used in order to have the differential phase of
two directions. Image a) is taken from Balles et al.42

a magnified part of this snippet is shown. Since the effective pixel size of the detector is
0.67 µm and the grating has a period of 2.4µm, the grating period is sampled with four
pixels (including magnification of M ≈ 1.1). The concept is to extract every fourth column,
thereby generating four images indicated by the red, green, blue and yellow square on the
right hand side of the figure. This results in four images that may be treated as four phase
step images. The data processing described in Sec. 5.1.3 for a conventional grating interfer-
ometer is then applied on these four phase step images.
As the 2–D setup delivers information in two directions, this procedure has to be performed
for both directions, combining either every fourth row or column to the four phase stepping
images.

7.1.3 Data processing for computed tomography

The filter kernels for the volume reconstruction algorithms of the three contrast types (ab-
sorption, differential phase and dark-field) described in Sec. 5.1.4 may be applied with no
modifications to the data obtained from the 1–D setup.
In the case of the 2–D setup (perpendicularly stacked 1–D gratings) the reconstruction
algorithm of the differential phase is not the same as for differential phase of the conventional
grating interferometer (use of a Hilbert filter, cf. Sec. 5.1.4). In the former case one may
take the same filter kernel (ramp filter) that is used for absorption CT. This is possible if
the phase shift of the sample is known for all rotation angles of a CT scan. This information
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1,5,9,...

2,6,10,...

3,7,11,...

4,8,12,...

Figure 7.2: The first step of data processing of the single grating setup. Every fourth line is
combined to one image resulting in four quasi phase step images illustrated by the
red, green, blue and yellow box. Image taken from Balles et al.42

may be obtained from the differential phase of both transverse directions by combining them
with the help of a Fourier-space integration. This method was proposed by Arnison et al.101

for data from a differential interference contrast microscope and will be briefly presented.
By using the Fourier shift theorem the phase gradients may be expressed as 101

F {∆φx(x, y)} = 2i sin(2π∆xm)φ̃x(m,n) (7.1)

F {∆φy(x, y)} = 2i sin(2π∆yn)φ̃y(m,n) (7.2)

where ∆φx(x, y) and ∆φy(x, y) are the phase gradients in each direction (equivalent to the
∂φ
∂x and ∂φ

∂y ). ∆x and ∆y are parameters that describe the displacement of the twin image
produced in a differential interference contrast imaging method. Since this parameter does
not exist in a grating interferometer, it was set empirically to 1µm in order to yield the best
result. m and n are coordinates in Fourier space.
Defining the function g(x, y) = ∆φx(x, y) + i∆φy(x, y) and calculating its 2–D Fourier
transform leads to the Fourier transform of the phase φ̃

φ̃(m,n) = g̃(m,n)
h̃(m,n)

(7.3)

with φ̃(0, 0) = 0 and h̃ = 2i[sin(2π∆xm) + i sin(2π∆yn)]. The phase, or more specific the
phase shift φ, is then simply calculated as the inverse Fourier transform of φ̃(m,n).
Fig. 7.3 shows the data of one exemplary projection. The input signals ∂φ

∂x and ∂φ
∂y , obtained

by the procedure mentioned in Sec. 7.1.2, are processed by the above stated algorithm to
give the desired phase shift φ(x, y).
This data is then treated as an usual projection obtained from a CT measurement, except
for the fact that one has to skip the step of calculating the negative logarithm of the data.
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+

Figure 7.3: Illustration of the reconstruction of the phase shift φ based on the input ∂φ∂x and ∂φ
∂y

from one exemplary projection. Both input images are processed by the algorithm
described by Eqs. 7.1, 7.2 and 7.3 to give the phase shift φ.

7.2 Radiographies

With the 1–D setup (Fig. 7.1 a)) a hollow nylon fiber was measured and the results are shown
in Fig. 7.4. The exposure time was 1min for the sample image as well as for the reference
image. The same sample was already shown in Sec. 5.3.1 (Fig. 5.17) and also the settings for
the electron spot (X-ray focal spot) and the distances were kept the same (R1 = 255mm,
R2 = 25mm). Despite this fact, the visibility of this 1–D single grating interferometer is
V ≈ 19% in contrast to the higher values from the conventional interferometer configuration
with two gratings of V ≈ 30% (cf. chapter 5). This is owed to the fact that the analyzer
grating was omitted (already discussed in Sec. 5.4).
In a) the absorption is illustrated, the differential phase is shown in b) and the dark-field
signal in c). Here (cf. Fig. 5.17), the edge enhancement caused by in-line phase contrast also
occurs in the absorption image. In the DPC the edges of the fiber exhibit discontinuities
which are most likely due to the smaller amount of “phase steps”. In the DIC the inner
edge in the top is not as clear as the inner edge in the bottom probably due to the above
mentioned reason.

7.3 Computed Tomography

A CT scan was recorded with both setup configurations (1–D and 2–D, cf. Fig. 7.1) with the
above stated distances. The exposure time for each projection was 2.5min and a reference
image was taken after ten projections. A total amount of 497 angular projections was taken
over 360◦ (reference images not included).
The visibility of the setup in the computed tomography setup was V ≈ 8.6% in the x-axis
direction and 4.3% in the y-axis direction. The reason for the smaller visibility is due to the
different distances R1 and R2 in the computed tomography in comparison to the radiography
mode as was discussed in sections 5.2.2 and 5.4.
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a) b)

c)

Figure 7.4: Results of the single grating setup. In a) the generated absorption image is shown.
b) is the differential phase shift and c) the dark-field image of the nylon fiber. The
scale bar equals 260 µm. Images taken from Balles et al.42

The same piece of bacon as shown in Fig. 5.26 was measured. The slices of the differential
phase volume are shown in Fig. 7.5. In a) the slice of the differential phase is shown which
was obtained with the 1–D setup, in b) the same slice is shown but obtained with the 2–D
setup and in c) the slice from the conventional interferometer setup (G1 and G2) described
in chapter 5 is shown.
It is clearly visible from the magnified images in d) to f) that the slice from the conventional
interferometer in f) shows more details of the sample than the slice in e). The slice shown in
d) has even less details than e). Obviously, including the information about the differential
phase of a second direction (y-axis) improves the image quality. However, image c) contains
more details, most likely because of a higher visibility.
The differential phase volume of the ASA pill is shown in Fig. 7.6 a) taken with the 2–D
setup. This data is compared to the ASA pill from the conventional interferometer setup
shown in b). In a) a higher noise level is evident which is caused by the lower visibility
of the setup, but, in general, the results from this setup give mainly the same information
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a) b) c)

d) e) f)

Figure 7.5: Slices of the reconstructed DPC volume. The results in a) are obtained from the
1–D setup, b) is obtained from the 2–D setup and c) from the conventional grating
interferometer. A more and more detailed picture is seen from a) to c) and also in
the corresponding magnified snippets below. Images partially taken from Balles et
al.44

about the structure of the sample.

a) b)

Figure 7.6: Slices of the DPC volume reconstructed from the CT scan of the ASA pill recorded
with the 2–D single grating setup (a)) and with the conventional grating interfer-
ometer (b)) with two gratings (G1 and G2).

In Fig. 7.7 the dark-field of the same sample is shown. Although the information of the
dark-field exists similar to the differential phase in both transverse directions x and y, the
information from both directions cannot be composed to one image as easily as for the
differential phase. Therefore, the figure shows the dark-field images of both directions,

120



7.4 Discussion

where a) corresponds to the dark-field signal in the y-direction and b) corresponds to the
x-direction. The image in c) represents the dark-field image obtained from the conventional
interferometer setup (cf. Fig. 5.25). Obviously, the dark-field of both directions is not of

a) b) c)

Figure 7.7: Slices of the DIC volume of the ASA pill recorded at the 2–D interferometer. Image
a) shows the result of the DIC in the y-axis direction, while b) shows the result
of the same measurement in the x-axis direction. Image c) shows the slice of the
sample from the conventional grating interferometer. Images partially taken from
Balles et al.44

the same quality as the one from image c). This is a result of the worse visibility. As the
visibility of the x-direction (b)) is twice as high as the visibility of the y-direction (a)),
the result of the y-direction dark-field signal is almost worthless. The dark-field in the
x-direction approximates the result of the conventional interferometer result.

7.4 Discussion

The visibility (≈ 19%) that was achieved at the 1–D single grating setup for the radiography
of the nylon fiber differs from that of the conventional interferometer setup (30%) which
is a result of using the detector as the analyzer instead of the analyzer grating that has a
“higher resolution”.
The reason for the smaller visibility in the tomography (8.6%) is the shorter distance R1

which reduces the coherence of the source as was already discussed in sections 5.2.2 and
5.4. In the 2–D setup, two visibilities were measured (8.6% and 4.3%) that were not in
agreement with one another. This is a result of the asymmetry of the source. The electron
spot on the jet in the y-axis was focused to the smallest possible extent, which was still
bigger than the extent in the x-axis. This results in a worse coherence in this direction and
in two different visibilities.
The results in the radiography mode of the 1–D single grating interferometer compared
to those from the conventional interferometer are very similar showing almost the same
information although there are some artifacts visible that might come from the reduced
amount “phase steps” as the exposure time and the distances (R1 and R2) remained the
same.
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In the computed tomography, the comparison in Fig. 7.5 reveals that the 2–D grating setup
is also suitable for differential phase measurements. Due to the less amount of phase steps
and worse visibility, the details of the sample are of worse quality but with the advantage
of a much shorter total exposure time (factor of 2). The 1–D setup gives also acceptable
results, but the use of a second perpendicularly mounted grating is preferable (2–D) as it
provides for more information about the sample, which is why the quality of the 2–D grating
interferometer is higher.
The CT of the ASA pill confirms that the information obtained with the 2–D setup con-
cerning the differential phase is basically reproduced by comparison with the conventional
grating interferometer. In the case of the dark-field image, the poor visibility in the y-
direction makes the dark-field signal useless. The information from the x-direction can be
used although it is also of poor quality.
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Summary and outlook

This thesis is mainly dedicated to two imaging techniques in the field of X-ray phase contrast
imaging. Both are commonly used in laboratory setups. These techniques are in-line phase
contrast and grating interferometry. The latter yields three contrast modes: absorption,
differential phase contrast (DPC) and dark-field imaging contrast (DIC). Based on the
liquid-metal-jet (LMJ) X-ray source, both types of imaging methods were realized in order
to explore new applications and optimal settings.
The LMJ setup, shown in chapter 3, unifies both techniques in one machine. A mechanical
system was designed to offer a maximum of flexibility by allowing to switch between both
imaging methods within a short period of time.

In-line phase contrast In chapter 4, the derivation of an optimization formalism for phase
contrast is shown. The aim of this formalism is to estimate the sample position at which
the magnitude of the edge enhancement due to phase contrast is maximal. To test this
prediction, interference fringes of single fiber objects were measured at five different setups
at multiple source-object distances. An optimum position was found at all setups, which
differ in their experimental parameters, e.g. the size of the X-ray spot σS , the resolution
of the detector σP and the source-detector distance. As the optimization depends only on
these three parameters, it is a simple and effective way to optimize phase contrast imaging
setups; in laboratory or synchrotron setups.
Although the optimal sample position is not completely independent from the sample itself,
the comparison of the contrast measurement with the analytical model shows a satisfying
correspondence for all experimental realizations.
Unlike stated by Nesterets et al. 34, it is found that the optimum position is not simply
determined by the size of the source and the resolution of the detector, but it depends on
the effective propagation distance Deff as well.
The analytic formalism is only valid under the assumption that the propagator argument
α� 1, i.e. short propagation distances. If this assumption is violated, the prediction fails.
This was the case for the synchrotron setup but not for any of the presented laboratory
setups. This condition is an important prerequisite if one is interested in Paganin-type
phase retrieval algorithms 88,90, because otherwise the critical propagation distance stated
by Weitkamp et al. 89 is exceeded. Furthermore, the optimization seems to be robust
regarding the shape of the X-ray spot as was shown by measurements with an extremely
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asymmetric focal spot.
Unfortunately, it could not be confirmed that the volume reconstruction of the phase benefits
from this optimized position. Although the fringe contrast of the reconstructed absorption
volume recorded at the position of highest contrast shows stronger edge enhancement, the
phase tomography was not visibly improved by this higher contrast. On the contrary, the
phase retrieval at the position of best resolution showed slightly better results in terms of
separating gray values of different materials of the sample.
From these results, it may be concluded that the optimization formalism is only applicable
within the scope of radiographic (2–D) examination of a sample.
However, when recording CT scans at the position of best resolution, as was shown on the
basis of several examples, it was seen that the LMJ source combined with a high resolution
detector is very well suited for phase tomography on the micrometer scale. The image quality
is comparable to those achieved by modern synchrotron imaging beamlines, although the
total exposure time in laboratory CT takes several hours for a scan compared to several
seconds (synchrotron).

Grating Interferometry A grating interferometer based on a LMJ is presented. Provided
that the phase grating is positioned not too close to the source, a sufficiently high coherence
is achieved. This was demonstrated with a two-grating interferometer (G1 and G2) reach-
ing a visibility of 30% despite the absence of a source grating G0. This visibility may be
even increased to almost 40% when avoiding discontinuities in the grating bars which were
necessary for mechanical stability of the micro structured grating.
Comparing the visibility of this setup with the results found in chapter 6 (V≈ 12%) for
a grating interferometer installed at a microfocus X-ray source confirms the observations
by Thüring et al.35. Accordingly to there, an improvement of the signal to noise ratio is
achieved at setups with a liquid-metal-jet source.
Thanks to the high resolution detector at this setup it is possible to measure the Talbot
effect and to prove the decrease of coherence by increasing the spot size directly and indi-
rectly by increasing the grating-detector distance R2 (effective spot size). The latter is in
good agreement with the results of Pfeiffer et al. 98.
Using a high resolution detector is not very common, but with such a setup (in combina-
tion with the used gratings) interesting and unexpected results were found. An example
is the CFRP sample from chapter 5 that shows, in comparison to the findings by other
groups 22,102, an inhomogeneous DIC signal. The reason on the one hand is the fine sam-
pling of the detector resolving the single fibers and on the other hand the sensitivity of the
interferometer to submicrometer scatterers.
On the basis of several examples (Rose and ASA pill, chapter 5) the benefit of the DIC was
seen, as it delivers information of cracks and particles that could not be observed in the
other two contrast modes. In addition, the DIC allows to distinguish between material with
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and without scattering interfaces that are below the resolution limit. This was seen from
the bunch of filter sheets.
Another benefit from using a high resolution detector is the appearance of edge enhance-
ment due to in-line phase contrast in the absorption images generated by the interferometer.
This leads to the possibility of applying phase retrieval algorithms to the reconstructed ab-
sorption volume (Paganin filtered absorption, PFA) and comparing it to the volume of the
DPC. Unexpectedly, both contrast modes differ quantitatively despite having the same ori-
gin (refractive index). Since the differential phase is in good agreement with the simulated
signal, it may be concluded that DPC signal is more reliable in terms of quantity, at least
for non-single material samples. Note that PFA assumes single material samples.
In summary, the three contrast modes DIC, DPC and PFA give different but complemen-
tary information on the sample. For all three contrast modes different filter kernels were
used for the filtered back projection reconstruction algorithm. For the DIC reconstruction a
suitable filter was found empirically to counter noise. The DPC volume was reconstructed
with a Hilbert filter. However, the CT scans reveal also the limits of grating interferometry.
These limits lie in the maximum thickness of the sample. Thicker samples result in a loss of
information if the Kα emission line of gallium is completely absorbed by the sample. This
issue occurred for two samples.
The experiments with grating interferometry at the Subµ setup (EZRT Fürth) showed the
significance of the visibility which is the most important quantity for the achievable image
quality. The comparison of different setup configurations revealed that using a source grat-
ing improves the visibility despite a small X-ray spot size, while the use of a silver anode
with an emission line matching the design energy of the interferometer had almost no effect
compared to the tungsten anode (only broad spectrum). Furthermore, the setup geometry
(with a different set of gratings) influences both the sensitivity and visibility of the interfer-
ometer.
Finally, another concept of grating interferometry was tested at the LMJ setup. The resolu-
tion of the detector allowed to omit the analyzer grating G2 and utilizing the detector as an
analyzer itself. Although this method delivers acceptable results, the outcomes reveal a loss
of details compared to those of the conventional (two-grating) interferometer. The positive
aspects of a single grating setup are: a) reduced exposure times as the phase stepping is
not necessary; b) a compact setup with only one manipulation stage; c) an easy handling
due to a simpler alignment process. Although the two latter aspects only apply to the 1–D
setup, the 2–D setup may at least omit the phase stepping motor.

Outlook In-line phase contrast imaging with the LMJ source is routinely feasible with
scan times of 1 – 5 hours (depending on the resolution). In order to use this setup more
efficiently for material science, improvements concerning the exposure time are desirable. A
higher detective efficiency of the used high resolution detector is one of these improvements.
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However, further developments on the LMJ X-ray source, allowing to use its full potential
in terms of brightness, would lead to a tremendous reduction of exposure times.
Although the optimization shows robust predictions concerning the sample position with
maximal edge enhancement, an improvement of a phase retrieved CT scan was not ob-
served. More analytical approaches in further experiments have to be carried out in order
to investigate if and how tomographic reconstructions in combination with phase retrieval
algorithms may benefit from increased edge enhancement.
The grating interferometer at the LMJ imaging setup was successfully established. The
achieved visibility, which is a key parameter for the image quality, was found to be ≈ 30 %.
Further improvements on the production process regarding the elimination of the discussed
discontinuities in the grating bars are expected to increase the visibilities up to 40 %.
Due to the opportunity of using edge enhancement in the absorption signal of this grating
interferometer it is worth to investigate algorithms for data fusion, i.e. combining data
generated from conventional phase retrieval algorithms from the absorption signal with the
information from the DPC signal.
Regarding grating interferometry at the Subµ setup, one step of improvement is to use
bent gratings in order to achieve a homogeneous FOV in the symmetric as well as in the
asymmetric acquisition geometry. Another step for increasing visibility, at least for the
asymmetric setup configuration, is to use a coherence grating. In this context, a different
duty cycle, describing the ratio between bars and valleys of a grating, could be a promising
development towards higher partial coherence and therefore higher visibility.
The single grating setup showed an improvement by using two perpendicular gratings, even
though the visibility in one of the lateral directions was poor. In further experiments, this
issue could be addressed by a smaller vertical extent of the X-ray spot.
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