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Introduction

The study of the class of regular languages and its subclasses has a long tradition, start-
ing with characterizations in terms of regular expressions, finite automata, finite monoids,
equivalence relations and monadic second order logic [Kle56, Myh57, Ner58, Tra58, Biic60].
This thesis looks at the subclass formed by star—free languages, i.e., languages that can
be described by regular expressions using only Boolean operations and concatenation. In
particular, iteration (the Kleene star) is not allowed. Also for this subclass various char-
acterizations have been obtained. A celebrated theorem by Schiitzenberger [Sch65] states
that a regular language is star—free if and only if it can be recognized by an aperiodic finite
monoid. Since a recognizing monoid can be computed from a given regular language, and
since its aperiodicity can be effectively determined, this yields a decision algorithm for the
membership problem of the class of star—free languages. Other characterizations in terms of
permutation—ree finite automata and first—order logic go back to the work of McNaughton
and Papert [MP71], while a characterization by loop—{ree alternating finite automata is given
in [SY00]. Moreover, several authors have drawn the connection to propositional temporal
logic [Kam68, MP71, GPSS80, CPP93, EW96, TW96, Wil99]. Along these lines, further
subclasses have attracted a lot of attention, among them the locally testable languages,
the piecewise testable languages and their variations, which are matter of classical results
[BS73, McN74, Sim75, BF80] as well as present work, e.g., [Tra99]. For an overview on star—
free languages we refer to [Pin95, Pin96, Tho96].

Brzozowski and Cohen were the first to ask the following natural question [CB71]. Suppose
we count the number of alternations in star—free expressions between Boolean operations on
one hand and concatenation on the other hand. Given a star—free language L, what is the
minimal number of such alternations needed to define L? The distinction between these
two kinds of operations reflects that Boolean operations are combinatorial in nature while
concatenation is a sequential operation. In fact, we can think of the number of unavoidable
alternations as a natural complexity measure for star—free languages. The question whether
there exists an algorithm that determines for a given language its alternation complexity
became famous as the dot—depth problem.

If we start with a class of languages having a neglectable complexity in these terms, we
obtain classes of more complex languages by taking repeatedly the closure of this class under
Boolean operations and concatenation. This leads to so—called concatenation hierarchies that
exhaust the class of star—free languages. Prominent examples are the dot—depth hierarchy,
first studied in [CB71], and the Straubing—Thérien hierarchy [Str81, Thé81, Str85] which both
formalize the dot—depth problem in terms of hierarchy classes: the dot—depth of a language
L is just the minimal level in the dot—depth hierarchy that contains L. Both concatenation
hierarchies are closely related to each other and it is known that there are languages of
arbitrary dot-depth [BK78, Tho84].
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A seemingly weaker form of the dot—depth problem is to solve the membership problem
of a fixed level of such a hierarchy. Clearly, if this can be done for all levels in some uniform
way, this also yields a solution to the dot—depth problem. A lot of effort has been invested
in the last thirty years to cope with the levelwise membership problems. However, it seems
to be a very difficult task and results are known only for some lower levels. The dot—depth
problem was considered recently as one of the most important open questions on regular
languages [Pin98]. To our knowledge, the membership problems of levels 1/2, 1 and 3/2 of
both hierarchies are known to be decidable [Sim75, Kna83, Arf87, PW97, GS00d] while the
question is open for any other level. Partial results are known for level 2 [Str88] and level 5/2
[GS00Db] of the Straubing—Thérien hierarchy which are decidable if a two—letter alphabet is
considered (among others, the latest results for level 3/2 of the dot—depth hierarchy and level
5/2 of the Straubing—Thérien hierarchy will be presented in this thesis). It should be noted
that—due to the difficulties to find a solution to the dot—depth problem—some researchers
tend to look for undecidability results. We do not follow these lines here, but think one should
have this in mind.

Levelwise connections have been exposed from concatenation hierarchies to other fields of
research, e.g., to finite model theory [Tho82, PP86], to the theory of finite semigroups [Str85,
PW97], to complexity theory [HLST93] and others. Consequently, the dot—depth problem can
be rephrased in these terms and various methods are at hand to attack the problem—however,
none of them being successful in general so far. On the other hand, the dot—depth problem
itself has stimulated a lot of research activities, resulting in new fundamental insights into
the class of regular languages. To begin with, mention must be made of the algebraic theory
of finite semigroups. Many of the results cited above have been obtained within this theory
([Pin96] gives an overview). For instance, in [Str85] it is shown that level n of the dot-depth
hierarchy (for integer n) is decidable if and only if level n of the Straubing—Thérien hierarchy
is decidable, which is a simplification of the dot—depth problem.

We may assume that regular languages are presented by deterministic finite automata
(DFA, for short). Note that there are standard algorithms to pass from a representation by
automata, expressions and semigroups one to another. Consider again the class of star—free
languages. It is shown in [MP71] that a language L is star—free if and only if the minimal DFA
M accepting L is permutation—free. The latter means that there is no word w that induces
a cycle of the following type in the transition graph of M: there are pairwise distinct states
81,82, ..., Sm for some m > 2 such that M moves on input w from s; to s;41 forall 1 <i <m
(with $p,4+1 =det $1)- So w induces a non—trivial permutation on a subset of states of M. This
type of cycle is in fact an example of a forbidden pattern (i.e., a forbidden subgraph) in the
transition graph of a DFA, and by the cited result, this forbidden pattern characterizes the
class of star—free languages. It is known that the problem to decide from a DFA whether it
has this pattern in its transition graph is complete for PSPACE [CH91].

We carry over in this thesis the forbidden pattern approach to subclasses of star—free
languages, i.e., we look for results of the type “L belongs to the class C if and only if an
accepting DFA does not have pattern P in its transition graph.” The major advantage of such
a characterization is that it implies decidability of the membership problem of C because the
existence of a certain subgraph can be effectively verified if a transition graph is given (at least
in all reasonable cases). But such a result says even more: it reflects the effect of language
operations in the structure of automata. One can understand a forbidden pattern as the
particular property that cannot be expressed due to the limited resources of the characterized
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class. In general, forbidden pattern characterizations are far from being easy to achieve.
However, we consequently follow this approach in connection with concatenation hierarchies.

There are more examples of forbidden pattern characterizations in the literature. In
[Ste85a] a levelwise characterization of dot—depth one languages is given, and in [CPP93]
conditions on certain varieties of finite semigroups are translated to forbidden patterns in or-
der to obtain decision procedures for these classes. In [Wil98, Wil99] syntactical fragments of
temporal logic are investigated, using forbidden patterns to determine their expressive power.
Finally, the known decidability results of level 1/2 and level 3/2 of the Straubing—Thérien
hierarchy from [Arf91], and of level 1/2 of the dot—depth hierarchy, are given in [PW97] in a
forbidden pattern manner. We come back to these results throughout the exposition.

Before we give a chapter overview, we want to make a general bibliographic remark. The
clarification of definitions in Section 1.2 and the results of Chapters 4, 5 and 6 were obtained
by the author in joint work with Christian Glafler, Wiirzburg. Chapters 2 and 3 and the
remaining parts of Chapter 1 are due to the author.

Overview

The thesis has two major parts. Besides the introductory Chapter 1, the larger first part com-
prises Chapters 2 to 4 which share a common viewpoint: we parameterize the relation between
the dot—depth hierarchy and the Straubing—Thérien hierarchy in terms of the number of con-
secutively specified letters in a language definition (taking up an idea from [Sim72, Str85]).
Using this together with the forbidden pattern approach, we look in the first part at the fine
structure of level 3/2 in these hierarchies. Hereby we provide alternative proofs of virtually
all previously known decidability results for concatenation hierarchies, we significantly re-
fine these results and obtain a complete overview on the structure of the lower levels. And
we make progress on the dot—depth problem by proving the decidability of level 3/2 of the
dot—depth hierarchy.

Chapters 5 and 6 form the second part. Here we generalize from what we have achieved
so far and develop an abstract theory of forbidden patterns. We apply this theory to the
dot—depth hierarchy and the Straubing—Thérien hierarchy and show a lower bound result for
the dot—depth problem. And we prove the decidability of level 5/2 of the Straubing—Thérien
hierarchy in case of a two-letter alphabet.

Each chapter starts with references to the main theorems. There is a discussion section at
the end of every chapter with more bibliographic notes and an outlook to further research.

Chapter One

This chapter has an introductory character. Fix some finite alphabet A with |A| > 2, denote
by Pol(C) the closure of a language class C under finite union and concatenation and let
BC(C) denote its closure under Boolean operations. We define the classes B,/ of the dot-
depth hierarchy (DDH, for short) and the classes L,, /5 of the Straubing-Thérien hierarchy
(STH, for short) as follows:

81/2 =def POI({ {’LU} ‘ w e A+ } U {A+}) £1/2 —def POI({ A*aA* ‘ a € A })
Bn+1 —def BC(Bn+1/2) for n Z 0 En—i—l —def BC(£n+1/2) for n Z 0
By 13/2 =def Pol(Bny1) forn >0 Ly+3/2 =def Pol(Lyy1) forn >0
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Starting with two different classes for level 1/2, the higher levels of both hierarchies are defined
via the alternating application of the same closure operations. We immediately obtain from
the definitions that both hierarchies are mutually comparable by inclusion. However, other
definitions of the DDH and STH can be found in the literature, e.g., in [PW97] and we show
that these coincide with ours (up to the empty word). As a consequence, we may carry over
known closure properties and normal form results from [Arf91, PW97, Gla98|.

Then we recall the dot—depth problem in terms of hierarchy classes, state the correspon-
dence to first—order logic from [Tho82, PP86] and draw connections to complexity theory via
the leaf language approach to define complexity classes [BCS92, Ver93, HLST93].

If we compare Ly /5 with B; /5 we see that we can specify two or more consecutive letters in
one case while only one letter may be fixed in the other. This observation leads in a natural
way to a parametrization of the relation between STH and DDH in terms of the maximal
block length k + 1 for £ > 0 that is allowed to specify. It is useful in this context to look
at words by taking together each k + 1 consecutive letters. We call the sequence of these
blocks the k-decomposition of a word (k indicates the number of overlapping letters). Then
we introduce classes Bz for k > 0 such that £/ = By and By /y is the union over all
By /o - For fixed k > 0, we take By, as level 1/2 of a concatenation hierarchy and define
for n > 1 classes B, /5, just as in the case of the DDH and STH. It holds for all n > 1
that £, 5 = B, /20 and B,, /5 is the union over all B, /5 for k& > 0. The idea of looking at a
parameterization in terms of block lengths is from [Sim72] for dot—depth one and from [Str85]
for the general case.

Finally, we turn in this chapter to deterministic finite automata. We make precise what we
understand under a forbidden pattern P in a transition graph and what we mean by FP(P):
it is the class of all regular languages L such that there exists some DFA accepting L which
does not have P in its transition graph. Results of the type ‘C = FP(P)’ for language classes
C are called forbidden pattern characterizations.

Chapter Two

We contribute in this chapter to the study of languages having dot—depth one. To our knowl-
edge, B; is the highest level of the DDH which is closed under Boolean operations and which
is known to be decidable. The decidability of B; was first shown with an algebraic approach
in [Kna83]. From characterizations via families of equivalence relations [Sim72] several sub-
hierarchies in By can be derived. One can show that the family of classes By j for k > 0 is the
so—called ~—hierarchy [Brz76], first studied in [Sim72]. The decision algorithms for B; have
been investigated in [Ste85a, Ste85b] and the membership problem is known to be complete
for NL [CH91]. Besides the connections to first—order logic and complexity theory there is
also a relation to Boolean circuits, recently studied in [MPTO00]. But it is not only its location
in the DDH that makes 1 an interesting class to look at. It can also be viewed as the natural
generalization of the two notions of local and piecewise testability which both have gained
much attention [BS73, McN74, Sim75, TW85, BP89, Str94]. In fact, By o = £; is the class of
piecewise testable languages, shown to be decidable in [Sim75].

We contribute in two ways. First, we look at the classes By/p; for k > 0. We recall a
generalization of the subword relation introduced in [Ste85a] and prove that these relations
=} for k > 0 have a fundamental property: <}, is a well partial order on A™. This generalizes
the well-known result of this type for the usual subword relation from [Hig52]. Then we show
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that By, is the class of all order ideals of (AT, =) and we provide a forbidden pattern
characterization: it holds that Byy; = FP(By/2) for a certain pattern By /o). With the
latter we show how the forbidden pattern L;/, for £/ turns in a natural way into the
forbidden pattern B/, for By, as k increases. We will observe and exploit this mechanism
again in Chapters 3 and 4.

Second, we consider the classes By i, for k > 0. We restate the main result from [Ste85a]
which gives various characterizations and which we refine in the following way. It is shown
in [Ste85a] that a language L belongs to B;  if and only if L induces only a finite number
of alternations in =<j-chains. We prove that the maximal number of such alternations with
respect to L determines the location of L in the Boolean hierarchy over B/, . This has
the mentioned finiteness condition as a corollary, and we use our characterization to obtain
strictness and decidability results for the Boolean hierarchy over Bj /5 j, (note that the Boolean
hierarchy over By, ;, exhausts By x). The decidability of these classes has been independently
studied using a logical approach in [Sel01]. Such results are also known for the Boolean
hierarchy over B/, [Gla99] and taking them into account we obtain a complete overview
over the Boolean structure of B;. In particular, we identify a landscape that allows to study
the question whether or not there exists a trade—off in By between the parameter k£ on one
hand and Boolean operations on the other hand. Both can be understood as a measure of the
descriptional complexity of dot—depth one languages. Finally, we derive a forbidden pattern
characterization of B; and show that B; = FP(B;) for some pattern B;.

Chapter Three

This chapter deals with deterministic languages and restricted temporal logic. Let us recall
right deterministic languages from [Eil76], see also [BF80, Pin86, CPP93]. A language is
called right deterministic if it is a finite union of languages Aja1 A} ---anA;, with 4; C A
and a; ¢ A;. We adapt with little modifications the notion of right deterministic languages
to k-decompositions of words and introduce right k-deterministic languages. For fixed k > 0
we prove a forbidden pattern characterization of the class D,r;ght of right k-deterministic

languages and show that D,r;ght = FP(Dyv) for some pattern Dje.

As it turns out, there are close connections to restricted temporal logic (RTL, for short).
The latter is a fragment of temporal logic (more precisely: propositional linear—time temporal
logic), a formalism to describe events occurring over time. The ability of temporal logic to
express temporal properties has been recently investigated and surveyed in [Wil99], see also
[Wil98]. There the expressive power of fragments obtained by omitting one or the other of
the usual temporal operators next (X), eventually (F) and until (U) have been studied. In
case of restricted temporal logic RTL the use of U is not allowed.

Several proofs are known for the fact that formulas involving all three operators together
with Boolean connectives (interpreted over finite words) yield the star—free languages [Kam68,
MP71, GPSS80, CPP93, Wil99]. A natural hierarchy of star—free languages emerges from
counting the nesting depth in U. This until-hierarchy was introduced and shown to be strict
in [EW96] while its decidability goes back to [TW96|. Interestingly, this is an example of
a strict hierarchy exhausting the class of star—free languages with decidable membership
problems. However, there is a family of languages in Bj/, separating all levels of the until-
hierarchy, so the necessity of a large nesting depth in U to define languages does not imply
a large dot—depth [EW96].
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Note that RTL is just the zero level of the until-hierarchy. Effective characterizations in
terms of forbidden patterns for RTL are known from [CPP93]. In case X is also forbidden this
was done in [CPP93, EW96]. Observe also that in the latter case we are not allowed to specify
the next event while in the former the unrestricted use of X is possible. A natural way to
further classify RTL is to restrict the nesting depth in the next operator X. We introduce the
so—called next hierarchy. It formalizes in terms of hierarchy classes the question of how many
nested uses of X are needed to express a certain property in restricted temporal logic. Then we
prove that the languages in level k of the next hierarchy are exactly the right k-deterministic
languages. As the main result of this chapter we show that the following concepts to define
languages in fact coincide:

(1) L is definable by an RTL formula having next depth at most k.
(2) L is a finite union of right k-deterministic languages.
(3) Any DFA accepting L does not have pattern D in its transition graph.

The third statement allows to give concise proof of strictness and decidability results for the
next hierarchy. Moreover, we see that our generalized deterministic languages are exactly the
languages definable in restricted temporal logic. We also investigate in detail the relation
of the next hierarchy to the DDH and STH. At the end of the chapter we come back to
complexity theory and show how languages definable in restricted temporal logic and the
complexity class AL are related.

Chapter Four

We turn to level 3/2 of the DDH and show its decidability which answers an open question
from [Pin96, PW97]. To obtain this result we recall from Chapter 2 how one can prove an
effective characterization of By using the forbidden pattern By 5 for By /s together with
a bound on k in the size of a given DFA. This is fairly easy in case of B,/ and something
similar can be observed in case of right k-deterministic languages. We follow this approach
one more time and consider the classes Bs/ , for fixed k > 0.

As a first step we carry over the normal form result for L3/, = Bs/ o known from [Arf91]
to Bsyy, for arbitrary k. One of the main technical contributions in this chapter is the proof
of a forbidden pattern characterization of Bs/y, i.e., we show that Bss; = FP(Bs/s) for
a certain pattern Bj s 1. It implies the decidability of Bs/ y, for fixed k£ > 0 and enables us to
prove the strictness of the hierarchy of classes Bs/y ), for k =0,1,2.... Since we encounter in
case k = 0 level 3/2 of the STH we provide as a by—product another proof of the decidability
result for this class. Note that the previous proofs in [Arf91l] and [PW97] use deep results
from [Has83] and [Sim90], respectively.

With help of our generalization to arbitrary k we identify a single forbidden pattern Bs/,
that must occur if k is large in comparison to the alphabet size and the size of the DFA.
This pattern characterizes B3/ and implies the announced result which extends the known
decidability results for the DDH. It has consequences in first-order logic and the algebraic
theory of finite semigroups. At the beginning of the chapter we develop a combinatorial tool
that allows to partition words of arbitrary length into factors of bounded length such that
every second factor u leads to a loop with label u in a given DFA.
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Chapter Five

We follow the idea of forbidden pattern characterizations in a more general way and develop a
method for a uniform definition of hierarchies via iterated patterns in transition graphs. Based
on the previous result for B3/, we observe how the forbidden pattern B, , characterizing B; /o
acts as a building block in the forbidden pattern Bj/, that characterizes Bs/y. Surprisingly,
we find this observation confirmed if we compare the pattern Iy /5 for £,/ with the pattern
L3/ for L35 after an appropriate rewriting of the latter. Note from the definition above that
we get in both cases with the same language operations from one level to the next. Together,
this motivates the introduction of an iteration rule IT on patterns which continues the just
observed formation procedure.

In general, starting with some initial pattern Z, our iterator generates for n > 0 classes
of patterns P; which in turn define language classes FP(PZ) as usual by prohibiting the
patterns [P} in transition graphs. For a class C of languages let coC denote the class of their
complements. We prove that

FP(P})UcoFP(P) C FP(Pr. 1) NcoFP(P; ;)
and as the main technical result in this chapter that
Pol(coFP(P;)) C FP(Py 1)

With the latter we relate in a very general way Boolean operations and concatenation to the
structural complexity of transition graphs. We show that the membership problems of the
classes FP(P%) for fixed n > 0 are efficiently decidable if that is true for n = 0.

Chapter Six

We consider in this chapter particular initial patterns B and £ such that FP(P§) = B; /2 and
FP(P§) = Ly 5. It follows from our general results in Chapter 5 and from our characterization
83/2 = fP(IBg/Q) in Chapter 4 that

Byj2 = FP(PF) L2 = FP(PF)
By = FP(PY) L3y = FP(PT)
Bn+1/2 - fP(Pz) £n+1/2 - fP(PfL)

Moreover, we see that all classes FP(P5) and FP(P%) have decidable membership problems
and that they form hierarchies that exhaust the class of star—free languages. The inclusions
above imply in particular a lower bound algorithm for the dot—depth of a given language L.
One just has to determine the class FP(P%) for minimal n to which L belongs, and it follows
that the dot—depth of L is strictly greater than n — 1/2 (another lower bound result for
dot-depth n is known from [Wei93]). Then we provide some arguments that the forbidden
pattern classes are not too large, e.g., if for n > 2 they were all equal to the class of star—free
languages nothing would be won. For this end, we provide more structural similarities between
the DDH and STH and the hierarchies of forbidden pattern classes: all hierarchies show the
same inclusion structure and, interestingly, the typical languages that separate the levels of
the DDH and STH also separate levelwise our forbidden pattern hierarchies. In particular, it
holds that FP(P;) does not capture By, 1.
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So here we introduce two strict and decidable hierarchies of star—free languages that are
comparable (at least in one direction) to the DDH and STH. Up to now we have no evidence
against the coincidence of the concatenation hierarchies and the respective forbidden pattern
classes which we state as a conjecture (note that this would solve the dot—depth problem).

In the second part of the chapter we prove that even L5, = FP(P5) holds if a two-
letter alphabet is considered, i.e., in this special case we can show the reverse inclusion. The
forbidden pattern characterization of L5/, implies in particular its decidability in the two—
letter case which extends the known results for the STH and has consequences in first—order
logic. To obtain this result we show something more general: whenever it holds that B,/ =
FP(Py) for some n > 1 and arbitrary alphabets then it follows that £, 3/ = FP (P, ;) in
case of a two—letter alphabet. Since the prerequisite of this implication holds for n = 1 by
our previous work we obtain L5/, = FP(P5) for two-letter alphabets.

The forbidden pattern approach turns out to be a useful method in the context of con-
catenation hierarchies. It leads to new insights in the structure of the classes at the lower
end and it allows to push the line of decidability in the DDH and in the STH a little higher
than previously known. Moreover, it provides several promising starting points for further
investigations and seems to have the capability to be successful in the general case.
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The following papers contain results presented in this thesis.

[GS00c]  C. GlaBler and H. Schmitz, Decidable hierarchies of starfree languages.
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Ontario, July 27-29, 2000.
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— Chapters 5 and 6 contain the material from [GS00b], partially published as [GS00c].



1. Concatenation Hierarchies

We start this introductory chapter with some basic notations, more will be given as we
continue. We fix some arbitrary finite alphabet A with |A| > 2. Elements of A are called
letters and a word over A is a finite (possibly empty) concatenation of letters from A. The
empty word is denoted by € and the set of all (non—empty) words over A is denoted by A*
(A™, respectively). For w € A* we denote by |w| its number of letters. A language L is a
subset of AT and we call a set of languages also a class of languages . If L may contain &
we explicitely mention that L is a subset of A*. Forthcoming definitions of languages will be
made with respect to our fixed alphabet A and we will take care that it is clear from the
context if we deal with a particular alphabet. If w € A* and L C A* we define the left and
right residuals of L as w™ L =gt {v € A*|wv € L } and Lw ™! =4t {v € A*|vw € L }. We
write P(B) for the powerset of an arbitrary set B. Moreover, for a class C of languages we
denote by coC =qet { AT\ L|L € C } the set of complements with respect to A™.

Regular languages over A are built up from the empty set and the singletons {a} for a € A
using Boolean operations (finite union, finite intersection and complementation), concatena-
tion and iteration. The subclass of star—free languages SF over A is of particular interest
for us. Here the iteration operation is not allowed, and—since we look at subsets of A*t—
complements are taken with respect to A™. For background on regular languages we refer to
any standard textbook, e.g., [HU79].

1.1 Definition of Concatenation Hierarchies

A natural approach to further classify star—free languages is to look at the two different
kinds of remaining operations: Boolean operations on one hand and concatenation on the
other hand. If we emphasize the number of their alternating uses, this leads to the notion of
concatenation hierarchies. The DDH and the STH are well-known concatenation hierarchies.
To state their definition below, we specify closure operations on language classes. Denote for
a class C of languages its closure under finite (possibly empty) union by FU(C). Moreover,
we set

POI(C) =def FU({ LoLy--- L, | n>0and L; € C })

as the polynomial closure of C. Note that Pol(C) is exactly the closure of C under finite
(possibly empty) union and finite (non—empty) concatenation. Furthermore, C is a subset of
the polynomial closure of C. For a second closure operation we consider Boolean operations.
We denote the Boolean closure of a class C of languages of AT by BC(C) (as before, taking
complements with respect to A™).
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Definition 1.1 (DDH). The classes of the dot—depth hierarchy are defined as

Bijs  =aet Pol({{w}|we AT JU{AT}),
Bri1 =det BC(B,41/2) for n > 0 and
Byis/2 =det  Pol(Bni1) for n > 0.

Definition 1.2 (STH). The classes of the Straubing-Thérien hierarchy are defined as

51/2 —def POl({ A*aA* | a € A }),
L1 =det BC(Lpy1/2) for n > 0 and
£n+3/2 —def P01(£n+1) for n Z 0.

Note that {w} and A" as the complement of the empty set, and also A*aA* can be considered
as simple languages in terms of alternation complexity with respect to Boolean operations
and concatenation. We call the introduced classes also the levels of the DDH and STH where
for integers n levels n are called full levels, and levels n + 1/2 are called half levels. The
discussion in the forthcoming section, Section 1.2, relates these definitions to other definitions
of concatenation hierarchies known from literature. The following inclusion relations in each
hierarchy are easy to see from the definitions.

Proposition 1.3. For n > 0 it holds that B, /5 UcoB, 12 C Bpi1 C Byiz/2 Moy, 3/
and Ly 1/2U oLy 179 C Lot1 € Lygg/a N oLy, 3/
We can also compare one hierarchy to the other by inclusion.

Proposition 1.4. For n > 1 it holds that

1. Ly 12 € By1/2 € Liyaye,
2. coLy,_1/2 C coB,_1/2 € coLyq1/2 and
3. En - Bn - £n+1~

Proof. Since for all a € A it holds that A*aA* = {a} UaAT UATa U ATaA" € By we
obtain Ly /5 C By /5. Moreover, it holds that A* = J,c4 A*aA* € L5, and for w € A* with
w=aj---ay, for letters a; € A and n > 1 we obtain

{w} = A*a1 A* - a, A* N <A+ VU A anA*) €Ly
b1,ey

€£1/2 bn+1€A

€Ly /o

In particular, AT € L3/ and w € L35 for all w € AT from which we get Bys C L3/5. So we
have seen L/ C By € L35 and the proposition follows from the monotony of Pol(-) and
BC(-), and complementation. O

It is easy to see that the classes B,, for n > 1 coincide with the ones studied in [Eil76]. In par-
ticular, it is shown in [Eil76, Chapter IX.4] that Unzl B, = SF. Together with Proposition 1.4
we see the following.

Proposition 1.5. It holds that Unzl L= Unzl B, 2 = SF.

Figure 1.1 gives an overview.
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Fig. 1.1. Concatenation hierarchies of star—free languages. Inclusions hold from bottom to top.

1.2 Alternative Definitions and Normal Forms

The dot—depth hierarchy and the Straubing—Thérien hierarchy have gained much attention
due to the still pending dot—depth problem (see Section 1.3 below). The purpose of this
section here is to make our work comparable to other investigations from the literature and
to take over known results to our notations. So we discuss alternative definitions and there
are two points to look at. First, one finds other versions of the polynomial closure operation
in the literature. Let C be a class of languages. Here are the definitions of the polynomial
closure as chosen, e.g., with an algebraic approach recently in [PW97].

Pol“(C) =qget FU({ Loa1Ly---anL,|n>0,L; €Cand a; € A })
Pol®(C) =get FU({woLiug--- Lyuy|n>0,L; € C,u; € A* and if n = 0 then ug # ¢ })

A second point is that languages may be defined in a way such that they contain the empty
word. So we also want to see if that makes any difference. It is pointed out, e.g., in [Pin95]
that this is a crucial point in the theory of varieties of finite semigroups. We denote the
Boolean closure of a class D of languages of A* by BC*(D) (here taking complements with
respect to A*). Moreover, let co"D =q4¢f { A* \ L| L € C } denote the set of complements with
respect to A*.
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Definition 1.6 (DDH due to [Pin96]). Let B;F/Q be the class of all languages of A™ that
can be written as finite unions of languages of the form ugA*uy --- AT u,, where m > 0 and

u; € A*. For n > 0 let B:;rl —def BC(B:{+1/2) and B:+3/2 —def POlB(B:LrJrl).

Definition 1.7 (STH due to [Str81, Thé81]). Let L”{/Z be the class of all languages of
A* that can be written as finite unions of languages of the form A*a1A* - - - a,, A* where m > 0

and a; € A. For n >0 let L; | =qet BC*(L and L* =def POl (L5, 1).

ni1/2)
n41/2 n+3/2

These definitions are local to the remainder of Section 1.2. For the approach we follow in this
thesis we find it suitable to have the inclusion relations from Proposition 1.4 at hand. We
show in this section the following theorem.

Theorem 1.8. It holds that

1. B:/z =B,y forn=>1,
2. 51(/2 = 51/2 U {A*} and

3. E:‘L/Q:EH/QU{LU{sﬂLEEn/Q} forn > 2.

So the classes B:{ , from Definition 1.6 and the classes B,, /; coincide, and the languages in £ /2
are up to the empty word the languages in L,, ;5. This enables us to carry over known normal
forms and closure properties to our definitions in Subsection 1.2.3. The proof of Theorem 1.8
is given in Subsection 1.2.2. Let us recall known closure properties of the just defined classes.

Lemma 1.9 ([Arf91, PW97, Gla98]). Letn > 1 and a € A.

1. The classes B:/Q, COB;'L’/Q, 52/2 and 00*52/2 are closed under finite union and intersection.

2. Let C be one of the classes B}, or coB . Then a *LNAY,La™' N AT €C for L €C.

n/2 /2
3. Let D be one of the classes 52/2 or co'L} 5. Then a 'L,La~' €D for L € D.

/2
1.2.1 Polynomial Closure and Boolean Closure

We investigate the relationships between the different notions of polynomial closure and
identify a condition for C under which these notions coincide.

Theorem 1.10. It holds that Pol(C) = Pol“(C) = Pol?(C) for a class of languages C satisfy-
ing the conditions

(a) {w} € C for we A" and
(b) a LN At €C and La ' N At €C for L € C and a € A.

The theorem is immediate from the following lemma.

Lemma 1.11. Let C be a class of languages.

1. Pol*(C) C Pol?(C)

2. Pol(C) C Pol®(C)

3. If {w} € C for all w € AT then Pol®*(C) C Pol(C).

4. If {fw},a*LN A", La N AT € C forw € A'UA2, a € A, L € C, then Pol(C) C Pol“(C).
5. If {a} € C for a € A then Pol“(C) C Pol(C).
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Proof. Statements 1, 2 and 5 can be easily verified, and we argue for statement 3. Let a
language of the form wgLiuy --- Lyuy, be given with n > 0, L; € C and u; € A* such that
if n = 0 then ug # €. Then we can take out every u; = € in this representation without
changing the language. By assumption, {w} € C for w € A", so we may replace all remaining
u; € A" by languages from C. We obtain an equivalent expression of the form LyL}--- L',
with n’ > 0 and L, € C (note that if n = 0 then {ug} € C). This shows statement 3.

Let us turn to statement 4. Here we have the assumption that {w} € C for w € A" with
length 1 or 2, and a ' LN AT, La ' N AT € C for a € A and L € C. It suffices to show that
LoL;--- L, € Pol*(C) for n > 0 and L; € C. We prove this by induction on n. The induction
base with n = 0 is trivial. Now we assume that we have proven LgL;--- L, € Pol“(C) for
n > 0 and we want to show that LoLy---L,y1 € Pol“(C). Since LyL; --- L, € Pol*(C) by
induction hypothesis, it suffices to show for some L’ =qe¢¢ Lyai1 L] -+ - ayLj with 1 > 0, L} € C
and a; € A that L =gqe¢ L' - Ly 41 € Pol®(C). We obtain

(UL’-a-(a‘an+1ﬂA+)>U( U L'-a)uL' . ife€ Loy

I — acA a€Llnp41NA
( UL-a (a'Lpan A+)> U L a) :  otherwise
acA a€Llnp41NA

By assumption we have a 'L, 1 N AT € C. It follows that
UL a (a7 L nAT) € Pol*(C).
acA

Since also L' € Pol*(C) it remains to show that L' - b € Pol“(C) for letters b € A. If [ > 1
then define L” =4¢¢ Lyay - - - Lj_,a;. Now consider the following case study of L’ - b.

(UL (Latnat)-ap)u( U L"-a-b)UL’-b : ifi=landec L

acA acLiNA

(UL (atnat)y-as)u( U I"-a-b) L ifl>1lande ¢ I
b — acA acLiNA

(U(L;cflﬂA*)-a-b)U( U {ab})u{b} . ifl=0ande e L

acA acLiNA

(U(L;a_lﬂfﬁ)-a-b)u( U {ab}) : ifl=0ande ¢ L]

a€A acLiNA

By assumption, {b},{ab} € C for letters a,b and L =4ef Lga_1 N A" € C. Hence for a,b€ A
it holds that

—if 1> 1then L” - (Lja ' N A*) -a-b=L"-L-a-{b} € Pol*(C),
—ifl>1then L"” -a-b=L"-{ab} € Pol*(C),

—if I > 1 then L” - b= L" - {b} € Pol*(C), and

— (Lja'*nA*)-a-b=L-a-{b} € Pol*(C).

Together with the case study this implies L' -b € Pol*(C), which completes the induction and
the proof of statement 4. O

If the languages of two classes C and D differ only by the empty word, we show that this
property is preserved by the polynomial closure operation. In other words, we obtain that
also Pol(C) is equal to Pol(D) up to the empty word.
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Lemma 1.12. Let C be a class of languages of AT and D be a class of languages of A*. If
{e} €D and D=CU{LU{e}|L €C} then it holds that

1. Pol(C) is a class of languages of AT and Pol(D) is a class of languages of A*,
2. {e} € Pol(D) and
3. Pol(D) =Pol(C)U{LU{e}| L € Pol(C) }.

Proof. Statements 1 and 2 follow immediately from the definition of Pol(-). First, we show
the inclusion Pol(D) C Pol(C) U { LU {e}|L € Pol(C) }. Since the right hand side is closed
under finite union, it suffices to prove the following claim.

Claim. It holds that Lg--- L, € Pol(C)U{LU{e}|L € Pol(C) } for n > 0 and L; € D.

We give a proof of the claim by induction on n. For the induction base let n = 0 and
observe that the claim holds. Now assume that we have proven the claim for some n > 0 and
we want to show it for n + 1. Let L =gef Lo~ - Lp+1 with L; € D. By induction hypothesis
there exists some L' € Pol(C), such that Ly--- L, = L' or Ly -+ L, = L'U{e}. Since L,,+1 € D
there exists an L” € C C Pol(C) such that L, 1 = L” or L,11 = L” U{e}. This leads to the
following four cases.

L'y . if Lo+ Lp=1L"and L, 1 = L"

L) vrur . if Lo+ Ly =1L and Lpy1 = L" U {e}
Lol : if Lo+ Lp=L'U{e} and Lpyq = L"
LL'"UL'UL'U{e} : if Lo+ Lyp=L'U{e} and L1 = L" U {e}

In any case there exists some L € Pol(C) with L = L or L = L U {¢}. This proves the claim.
Finally, we have to show the reverse inclusion. Since C C D we have Pol(C) C Pol(D). So
LU {e} € Pol(D) for L € Pol(C) because {¢} € Pol(D). This proves the lemma. O

We show the counterpart of Lemma 1.12 for Boolean closures.

Lemma 1.13. Let C be a class of languages of A* and D be a class of languages of A*. If
{e} €D and D=CU{LU{e}|L €C} then it holds that

1. BC(C) is a class of languages of AT and BC*(D) is a class of languages of A*,
2. {e} € BC*(D) and
3. BC*(D) =BC(C)U{LuU{e}|L € BC(C) }.

Proof. Statements 1 and 2 follow from the definition of BC(-) and BC*(-). First, we show the
inclusion BC*(D) C BC(C)U{ LU {e}|L € BC(C) }. Note that languages from BC*(D) can
be written as finite unions of finite intersections of literals, which in turn are of the form L
(positive literal) or A* \ L (negative literal) for some L € D. It is easy to see the right hand
side of the equation in statement 3 is closed under finite union and intersection. So it suffices
to show that all literals are elements of the right hand side. Since D C CU{LU{e}| L €C} C
BC(C)U{LU{e}|L € BC(C) } all positive literals are elements of the right hand side and
it remains to show the following claim.

Claim. It holds that A*\ L € BC(C)U{LU{e}|L € BC(C) } for L € D.

Let L € D. Then there exists an L' € C such that L = L' or L = L' U {e}. Since L' C A™
we obtain A* \ L = (AT \ L') U {¢} in the first case and A* \ L = (A" \ L') in the second
case. Because AT\ L' € BC(C) we conclude that A*\ L € BC(C) U{LU{e}|L € BC(C) }.
This proves the claim and it follows that BC*(D) C BC(C)U{ LU {e}|L € BC(C) }.



1.2 Alternative Definitions and Normal Forms 21

Finally, we turn to the reverse inclusion. From C C D, AT\ L = (4*\ L) N (A* \ {€}) for
L C A" and {e} € BC*(D) it follows that BC(C) C BC*(D) and { LU{e}|L € BC(C) } C
BC*(D). This proves the lemma. 0

1.2.2 Comparing Hierarchies: Proof of Theorem 1.8

Now we are ready to compare Definitions 1.1 and 1.2 with Definitions 1.6 and 1.7. First, we
apply our Theorem 1.10.

Proposition 1.14.

1. For n > 1 let C be one of the classes B:/Q or COB::/Z. Then Pol(C) = Pol*(C) = Pol?(C).

2. Forn > 2 let D be one of the classes L, or co"Ly, 5. Then Pol(D) = Pol*(D) = Pol?*(D).

Proof. To show the proposition we need to prove that the mentioned classes fulfill the two
conditions from Theorem 1.10:

(a) {w} €C for all w € AT and
(b) a'LNAt €Cand La !N At €Cfor L€ C and a € A.

In fact, it suffices to prove condition (a) for Bf/Q, col’)’f/2
in the respective higher levels. So let w € AT. Then we have {w} € B

we see that

and L] since these classes are included

+

12 by definition, and

{w} = AT\ < U vATe U U v) € 003;72.
v€ AT with vEAT\{w}
[v|=|w] with [v]<|w|
ij/z

If w=ay---ay, for n > 1 and letters a; € A we obtain (a) for £} with

{w} —A*alA*---anA*ﬂ<A*\ U A*blA*---bn+1A*> € L]

* b ,...,b EA
651/2 1 n+1

ec;

It remains to verify condition (b) for both statements. This is clear for statement 1 by
Lemma 1.9. We use the same lemma for statement 2 together with the closure under inter-
section. Note that AT € Uf/2 C L3 O

The next two propositions will serve as the induction base for the proof of Theorem 1.8 below.
Proposition 1.15. The following holds.
1. 81/2 == 8;72

2. Byjy is equal to the class of languages of AT that can be written as finite unions of
languages of the form ugA*uq - - - A*u,, where m > 0 and u; € A*.

Proof. Observe that languages from B/, are languages of AT that can be written as finite
unions of languages of the form ugA*u; - - - A u,, where m > 0 and u; € A* (add some u; = ¢

if necessary). It follows that B/, C B;F/T On the other hand, languages of AT having the
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form ugAtu; - - Atu, with m > 0 and u; € A*, can be written as concatenations of AT and
non-empty words (just drop all u; = ¢). This shows By /5 C Bf/2 and statement 1 follows.
Now we exploit statement 1 for the proof of statement 2. Therefore, it suffices to show
that for each language L C AT the following holds: L is a finite union of languages of the
form ugA*uy - - - A*u,, with m > 0, u; € A* if and only if L is a finite union of languages of
the form ugA*uy - -- AT, with m > 0, u; € A*. This is easy to see since we can replace A*
and AT vice versa, due to A* = {¢} UAT and A" = |J,.4 aA*. This shows statement 2. [

Proposition 1.16. The following holds.

1. Ly is equal to the class of languages of AT that can be written as finite unions of
languages of the form A*a1A*---a,, A* where m > 0 and a; € A.

2. Ly3 is a class of languages of At and C’{/Q =Ly U{A%}.

3. L1 is a class of languages of AT and L{ =L U{LU{e}|L € Ly }.

Proof. Clearly, L£;/5 and £ are classes of languages of AT, So to see statement 1 it suffices to
mention that (i) the case m = 0 cannot occur since we speak about languages of A and (ii)
A* = A*A*. Statement 2 follows immediately from statement 1 and the definition of L] /2

For statement 3 observe that £7 and £; U{ LU {e}|L € Ly } are classes being closed under
finite union and finite intersection. Furthermore, we have

{e} = A"\ ( U A*aA*) € co'L] )y C L]
acA
Thus it suffices to show that (i) L,A* \ L € L U{LU{e}|Le Ly} for L € L7, and

(ii) L',A* \ L' € L} for L' € Ly/5. Since by the second statement of the lemma we have
LY=LV {A*} and because

A* = | ] A*aAr U{e}
acA

N —
Gﬁl/g

it follows that £ , € £1 U {LU{e}|L €Ly} and Ly/5 C L]. Hence it remains to show that

L A*\LeLyU{LU{e}|LeLy}for LeL],and
2. AT\ L' € L} for L' € Ly 5.

First let L € D{/Z. If L ¢ L5 then L = A* and we obtain A*\ L € L/, C L;. Otherwise
we can write A*\ L = (A*\ L) U{e} € {LU{e}|Le Ly} Nowlet L' € L5 C L3 /-
Since AT € L7, and AT\ L' = (A*\ L') N A" we obtain AT \ L' € L}. This proves the

proposition. 0

We give a proof of Theorem 1.8. Recall with Proposition 1.16 that it remains to show that

LB,

2. LF

= B,; forn >1 and

2= LnjpU{LU{e}|L €Ly} forn=>2.
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Proof of Theorem 1.8. We show both statements by induction on n and start with state-
ment 1. By Proposition 1.15 the assertion holds for n = 1 which is the induction base. We
first assume that it holds for n > 1 with n = 1 mod 2 and we want to prove it for n + 1.
Then

By 11)/2 = BC(B,)2) = BC(B,

n/2) =B,

(n+1)/2

with the induction hypothesis B,, , = B:{ o- This shows in particular statement 1 for n = 2.
So now we assume that it holds for n > 2 with n =0 mod 2 and we want to prove it for n+1.
Then we have by definition By, 1)/2 = Pol(B,,/2) and from Proposition 1.14 we get B(J; )2 =

Pol® (B:{ﬂ) = Pol(B:lr/Q). The induction hypothesis provides Pol(B,,/5) = Pol(B:{ﬂ).

We turn to statement 2. The induction base n = 2 is given in Proposition 1.16. Again, we
first assume that the assertion holds for n > 2 with n = 0 mod 2 and we want to prove it for
n + 1. Then we have by definition /"‘>(kn+1)/2 = Pol‘(ﬁzﬂ) and L, 41)/2 = Pol(L,,/5). It holds
that £, 5 is a class of languages of At {eyeLic Lk /2 and from the induction hypothesis
we obtain L7 = Ly /5 U {Lu{e}|LeL, /2 }. This shows that the classes C =qef L;,/5 and

D =qet L}, /2 satisfy the assumptions of Lemma 1.12 and we obtain
Pol(L}, j5) = Pol(Ly2) U{ LU {e} | L € Pol(L,5) } .

Because n > 2 we get from Proposition 1.14 that Pol(ﬁfl/g) = Pol* (E;‘L/Q) = Li,11)/2-
This shows in particular statement 2 for n = 3. So now we assume that the assertion
holds for n > 3 with n = 1 mod 2 and we want to prove it for n + 1. Then we have by

definition L, .} 5 = BC*(E;/Z) and L,41)/2 = BC(Ly)2). It holds that L, /5 is a class
of languages of A%, {e} € L} C L /o> and from the induction hypothesis we obtain L}, , =
Ly, /2U {Lu{e} ‘ LeL,, }. This shows that the classes C =ger L,,/2 and D =qef E;/Q satisfy
the assumptions of Lemma 1.13 and we obtain

BC*(L},5) = BC(Ly,/2) U {Lu{e}|Le BC(L,)2) }-

So we get
?"+1)/2 = Lint1)/2 U {Lu{e} | Le Ly }
which finishes the induction. (End proof of Theorem 1.8.)

Let us carry over Theorem 1.8 to the classes of complements.

Corollary 1.17. It holds that

1. COB:+1/2 = coB,, 4172 forn > 0 and
2. co*£;+1/2 =coLy 12U { Lu{e} | L€ colyii/z } forn > 1.

Proof. Statement 1 is an immediate consequence of Theorem 1.8 from which we also get for
n > 1 that

languages with ¢ languages without &

cLyp={ANE|Le L) = TANEILE Loos FUTAT\LILE ra )
= {LU{E}‘LGCOEn_i_l/Q}UCO£n+1/2.

This shows the second statement. O



24 1. Concatenation Hierarchies

Note that £/, and L] /2 in Theorem 1.8 are some kind of exception since all classes £ /2
with n > 2 have the property LU {e} € Lo =L \ {e} € L} ) for all L € A*. This does
not hold for L] /2 because A* is the only language in L] /2 which contains the empty word.

However, we have the following uniform statement of this relation.

Corollary 1.18. For n > 1 it holds that Ly, /2 = L}, , N P(AT).

Proof. For n > 2 this follows from Theorem 1.8. By definition, £;/5 is a class of languages
of AT and if we intersect both sides of L7, = L2 U {A*} with P(AT) we get Ly =
L} 2N P(AT). O

1.2.3 Normal Forms and Closure Properties

Finally, we give in this section some normal forms and closure properties for the hierar-
chy classes £, /5 and B,, /5. They are adaptions of known results. We mention with the first
statement in the following proposition the normal form for L3/, known from [Arf87, Arf91].

Proposition 1.19. The following holds.

1. L35 1is equal to the class of languages of AT that can be written as finite unions of
languages of the form Ajai Af - - - anA;, where n >0, a; € A and A; C A.

2. L35 is equal to the class of languages of AT that can be written as finite unions of
languages of the form quful o A uy, where n >0, u; € A* and ) # A; C A.

Proof. In [Arf91] it is shown that L} /2 18 equal to the class of languages of A* that can be
written as finite unions of languages of the form AjaiAj - - anA;, where n > 0, a; € A and
A; C A. By Corollary 1.18 we have

Ly ={LeLs,|Lcat}

which shows statement 1. Observe that (* = {¢}, and for a € A and ) # A’ C A we have
A™ = A" U {e} and AT = J,c 4 aA™. So it is easy to see by mutual substitution that the
following statements are equivalent for every language L C A™.

(1) L is a finite union of languages Aja1Af - - anA;, with n >0, a; € A and 4; C A.

(2) L is a finite union of languages ugAjuy - - - AXu, with n >0, u; € A*, ) # A; C A.

(3) L is a finite union of languages ugA uy - A u, with n >0, u; € A*, 0 # A; C A.

This shows statement 2. 0

In [Gla98] normal forms for the levels n+1/2 of the dot—depth hierarchy and the Straubing—
Thérien hierarchy are given.

Lemma 1.20. For n > 1 it holds that

1. Ly 4172 = Pol(coL,,_1/2) and
2. Bn+1/2 = POl(COanl/Q).
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Proof. By definition, coLl, 1 C L, and coB,_1;3 C B, for n > 1. Thus we have
Pol(coL,,_1/2) € Ly41/2 and Pol(coB,_1/2) € Bjy1/2 for n > 1. It remains to show the
reverse inclusions. For this end, we recall the normal form result from [Gla98] which says for
n > 1 that

w12 = Pol“(cdLy /) and (1.1)
B:{Hﬂ = PolB(coB:lr_l/Q). (1.2)

First we consider statement 1 for n = 1. By Proposition 1.19 languages from L3/, can be
written as finite unions of languages of the form quful o A upy, where m > 0, u; € A*
and () # A; C A. Note that if m = 0 then ug # ¢ since languages from L3/, do not contain
the empty word. Hence it suffices to show that A’ {a} € coLyjpfor ) # A" C Aandac A
which can be seen as follows.

Al+ = AJr\ ( U A*CLA*> € CO£1/2

acA\A/

{a} = AT\ ( U A*d'A* U A*aA*aA* ) € coLly)s
a’€A\{a} words with >2 a’s
—_————

words of length >1
containing a letter a’/#a

This shows L3/, C Pol(coL;/3). Now we consider statement 1 for some n > 2. Here we have
CO'Ly /g =C0Lp_1/2U {LU{e}|L € coL, 15 } by Corollary 1.17. Since {e} € co' L)y ©
co' Ly /2 We can apply Lemma 1.12 as before and we obtain

Pol(co'L],_;5) = Pol(coL,,_1/2) U {LU{e}|L € Pol(coL, 1) }. (1.3)

From Proposition 1.14 we see that Pol(co* L*

n71/2) = Pol“(co" L*

n—1/2)~ So together with (1.1)

we can rewrite (1.3) as

L1720 = Pol(coL,, 1) U {LU{e}|L € Pol(coL,_1) }. (1.4)

languages without e languages with e

We can compare this to Theorem 1.8 where we have

Liiip=  Loyrp U{LU{e}|[LELpprya ) (1.5)
languages without & languages with e

Because the unions in (1.4) and (1.5) are disjoint we see that L, /9 = Pol(coL,,_/2) which
shows statement 1.

Let us consider statement 2 for n > 1. From (1.2) and Theorem 1.8 we obtain B, 1/, =
Pol? (COB:{_l /2). Together with Proposition 1.14 this yields B, 1/, = Pol(col’)’:{_1 /2). With
Corollary 1.17 we get B,,,1/2 = Pol(coB,,_12)- O

Finally, we translate the closure properties from Lemma 1.9 to our definitions.
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Lemma 1.21. Letn > 1.

1. The classes By, j2,coBy, j2, Ly, o and coL,, jo are closed under finite union and intersection.
2. Let C be one of the classes By, /3, coBy, ja, Ly,/5 or coLy, 5. Then a 'LNA*, La~'nAT cC
forae A and L € C.

Proof. For the classes B,, /5 and coB,, j, the lemma follows from Theorem 1.8 and Lemma 1.9.
The closure of £,, /; under finite union and intersection for n > 1 is immediate from Lemma 1.9
and Corollary 1.18. This carries over to coL,,a.

Nowlet n > 1,a € Aand L € L, /5. By Theorem 1.8 we have L,, /5 C 52/2' Thus L € 52/2

and we obtain La~!,a 'L € E:;/2 by Lemma 1.9. Since A" € L2 € Ly)2 it follows from

the closure under intersection and from Theorem 1.8 that La™' N AT,a 'L N AT € L, 5.
Analogously this can be shown for n > 1, a € A and L € coL,, 113 using Corollary 1.17 and
Lemma 1.9.

Finally let L' € coLy/, with L' = A*\ L for some L € Ly /5. Then we have

La'nAt={veAt|vael'} = {veA'|vac A"\ L}
{veAT|va¢ L} =A"\{ve AT |vae L}
A+\(LCL_1OA+) ECO£1/2.
—_——

€L1y2

Analogously one shows a~ 'L N AT € coLy . O

1.3 The Dot—Depth Problem

The dot—depth problem is the question whether there exists an algorithms that outputs for
a given language L C A" in the input the minimal n > 1 such that L € B, /2. We also say
that L has dot-depth n/2 if L € B,,/, for a minimal n. As pointed out in the introduction, a
reasonable way to approach the dot—depth problem is to consider the membership problems
of fixed levels in concatenation hierarchies. We do this for the classes B,, 5 and L,, /o and fixed
n > 1. Recall with Figure 1.1 how these classes are comparable by inclusion, so we say with
respect to these inclusions that one class has a higher concatenation complexity than another
one, e.g., in these terms B is more complex than coBs/,, and B/, is more complex than
L3/5. Note that in light of Theorem 1.8 we may consider the classes B,/ and L, /5 without
loss of generality: it is easy to determine from a given DFA M accepting some language L
whether it accepts the empty word, and we can construct some DFA M’ accepting L \ {}.

We make some remarks concerning the strictness of the inclusions pictured in Figure 1.1.
The strictness of the dot—depth hierarchy is shown in [BK78], a different proof by means of
first—order logic can be found in [Tho84]. The proof given there even shows that £, is strictly
included in B, for integers n > 1 from which we immediately get £,/ C B,,/; for all n > 1. It
is easy to see from this that also all inclusions B,, C B,, /3 for n > 1 and B, 1/ G By for
n > 0 are strict. The same holds for the classes of complements, and By, /3 # coB,, 1/, for
n > 0. So we derive from [Tho84] that in Figure 1.1 all inclusions between classes of the DDH
are strict. No new argument is needed to do all this for the STH since the result £,, C B,, for
n > 1 from [Tho84| also shows that £, C £,,41 for n > 1.
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1.3.1 Logical Characterizations

We recall a very natural connection between concatenation hierarchies and first—order logic.
For an introduction to the field we refer to [Tho96].

Here formulas are considered using the binary relation symbol <, the constant symbols min
and max, the function symbols S and P, and unary relation symbols 7, for each letter a € A.
They may also involve the equality symbol =, the Boolean connectives —, V, A and quantifiers
3,V bounding variables. Let ¥,, (IL,,) be the subclass of such formulas that have at most n—1
quantifier alternations, starting with an existential (universal, respectively) quantifier. We
say that a language L C AT is definable by a formula of the logic FO[<, min, max, S, P]
if there exists a sentence ¢ (i.e., a formula of the above type without free variables) such
that all words w € L satisfy ¢ under the following interpretation: variables hold positions
in w, < is the usual <-relation on {1,...,|w|}, min = 1, max = |w|, S (P) is the successor
(predecessor) function on {1,...,|w|}, and m,x means that the letter at position z is a. The
following levelwise correspondence between the classes of concatenation hierarchies and the
number of quantifier alternations are known.

Theorem 1.22 ([Tho82]). Letn >1 and let L C AT,

1. L € B,_1) if and only if L is definable by a %, formula of FO[<, min, max, S, P].

2. L € coB,,_1/ if and only if L is definable by a I1,, formula of FO[<, min, max, S, P].

3. L € B, if and only if L is definable by a Boolean combination of ¥, formulas of
FO[<, min, max, S, P].

Denote by FO[<] the restricted fragment, where the use of min, max, S and P in formulas
is not allowed.

Theorem 1.23 ([Tho82, PP86]). Letn > 1 and let L C AT.

1. L € L, 15 if and only if L is definable by a ¥y, formula of FO[<].
2. L € coL,,_y/9 if and only if L is definable by a I, formula of FO[<].
3. L € Ly, if and only if L is definable by a Boolean combination of ¥, formulas of FO[<].

Due to these characterizations our results in Chapters 4 and 6 have consequences in first—order
logic (cf. Corollaries 4.37 and 6.20).

1.3.2 Leaf Languages for Complexity Classes

There is also a close connection between concatenation hierarchies and complexity classes,
both related via the so-called leaf language approach to define complexity classes. This ap-
proach was introduced in [BCS92, Ver93| and led to a number of interesting results giv-
ing new insights into the structure of complexity classes between P and PSPACE, e.g.,
[HLS193, JMT94, KSV98, BV98, CHVW98]. We refer to these papers for a more compre-
hensive introduction, but briefly sketch the approach here. For undefined notions see [Pap94].

Let a nondeterministic polynomial-time Turing machine M output on every computation
path a symbol from A and assume a fixed ordering on the set of all paths. This leads in a
natural way to the notion of the leafstring of M on some input x when concatenating the
output symbols at the leafs of the computation tree of M. Now a language L C AT gives rise
to the class Leaf? (L) of all languages L' for which there exists a machine M of the above
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type such that for all z it holds that z € L’ if and only if the leafstring of M on input z
belongs to L. For some class C denote by Leaf”(C) the union of all classes Leaf” (L) with
L € C. As an example, let us look at the class NP. By definition, a language L’ € NP is given
by a nondeterministic polynomial-time machine M such that for all inputs  we have that
x belongs to L' if and only if there is at least one accepting path in the computation tree of
M on input z. Suppose that M outputs on accepting paths the symbol 1 and on rejecting
paths the symbol 0. Hence NP is defined by the leaf language L =ger 0¥1{0,1}". Note that
0°1{0,1}" = {0,1}"1{0,1}" € Ly, and it can be easily seen from Proposition 1.15 that in
fact NP = Leaf? (Bi/2). Interestingly, this relation holds in general between the levels of the
dot—depth hierarchy and the classes of the polynomial time hierarchy. Denote by X}, and I},
for n > 1 the classes of the polynomial time hierarchy [Sto73].

Theorem 1.24 ([HLS*93, BV98, BKS98]). Let n > 1.

1. 5 = LeafP(Bn,l/g)

2. TI}, = Leaf" (coB,,_1 )
3. BC(Zh) = Leaff (B,)

4. NP(n) = Leaf" (B; j2(n))

In the last statement NP(n) denotes the n-th level of the difference hierarchy over NP and
Bi/2(n) denotes the n-th level of the difference hierarchy over B, /5 (for a formal definition see
Definition 2.23). However, the above results are of the type that they deal with classes of leaf
languages. An important questions in this context is what complexity classes are definable by
a single leaf language. It is known that { Leaf” (L) | L non-trivial regular language } together
with the inclusion relation forms an upper semilattice [Bor95]. The structure of this semi-
lattice has been clarified in [Bor95, BKS98] for the classes at the lower end. Unfortunately,
it seems to be a difficult task to do this for higher levels, i.e., to prove results supporting
our intuition that more difficult regular languages lead to presumably broader complexity
classes—opposed to the possibility that they may refine the upper semilattice of leaf lan-
guage definable complexity classes. Such results cannot be achieved by union—style theorems
like the ones above.

Here forbidden patterns may help since they make a positive assertion about the structure
we find at least in the transiton graph of a DFA if the accepted language is not in some class
any more. So the occurrence of a pattern can help to identify complexity classes that are at
least included in the complexity class defined by the leaf language of the DFA having this
pattern. In this way, the forbidden pattern result for B; /5 from [PW97] is exploited in [BKS98]
to prove a gap theorem for the definability of complexity classes right above NP. To prove
gap theorems along these lines for higher levels of the polynomial time hierarchy prerequistes
forbidden pattern characterizations of the levels of the dot—depth hierarchy, clearly a difficult
task. As pointed out earlier, forbidden pattern characterizations usually imply decidability
of the respective membership problem.

We prove a result concerning the complexity class AY and identify leaf language definable
complexity classes in the upper semilattice around this class (cf. Theorem 3.31). As we will
also see in Section 3.5, there is a close relation of A} to regular languages definable in
restricted temporal logic. In Section 4.5 we discuss possible consequences of the forbidden
pattern characterization of B3/, given in Chapter 4.
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1.4 Connecting STH and DDH

In this section we introduce for k > 0 a family of hierarchies of classes B,, /5 ; for n > 1 such
that £,/ = B, /2,0 and B,, /3 is just the union over all B, 5, for k£ > 0.

Recall from Proposition 1.16 that a language L C A" is in £, /2 if and only if it can be
written as a finite union of languages of the form A*a;A* - - - a,, A* where m > 0 and a; € A.
On the other hand, we have by Proposition 1.15 that L belongs to By if and only if it
can be written as a finite union of languages of the form ugA*u; - - - A*u,, where m > 0 and
u; € A*. So the difference between the two classes L/, and B/, is the possibility to specify
a prefix and a suffix, and to fix two or more consecutive letters in the latter case. We have
already noted that these two classes are distinct and it is also intuitively clear that finite
unions cannot help to specify a longer block of consecutive letters within the resources of
Ly/2- A natural way to bridge these differences is to emphasize on the maximal block length.
The parameter k with k > 0 will play this role in the forthcoming chapters.

The idea of looking at a parameterization in terms of block lengths is from [Sim72] and
[Str85]. In the former, subhierarchies of B; are studied where besides k also the parameter
m, i.e., the number of specified blocks, is emphasized. Here each fixed pair (m, k) defines a
subclass of B;, which is a Boolean algebra and which is characterized in [Sim72] in terms of
certain equivalence relations on words (for an overview, see [Brz76]). A more general approach
is chosen in [Str85]. As mentioned in the introduction, it is shown in this paper that the
membership problems of B,, and L,, for integers n are equivalent with respect to decidability.
This is achieved with an algebraic approach relating certain products of varieties of finite
semigroups. We will take a careful look at the levels 1/2, 3/2 and intermediate classes, and
give positive answers to several membership problems with an automata—theoretic approach
in Chapters 2 to 4.

1.4.1 Block Decomposition of Words

Fix some k > 0. The set of all words from A* of length k is denoted by A*. Moreover, we
denote by A<F (A<k A>k ) the set of words from AT of length less or equal to k (less than
k, greater or equal to k, ... respectively). Note that none of these sets contains the empty
word, i.e., A<0 = A<0 = (). For x € A>* we denote by pi(x) the length-k prefix of z, and by
sx(z) the length-k suffix of . We call these the k-prefix and k-suffix of z. If z € A<* we set
() = 5(x) =qer 2.

The k-decomposition of a word x € AT is the sequence of each k + 1 consecutive letters

of x. In order to avoid confusion we denote elements from A**! as a, 3,7, ... and subsets of
ARl as BT, ... Let = ajas - - - appy € AT for some [ > 1. We call
/w\ —def (0517052, .. aal)

the k-decomposition of z if oy = a;--- a4y, for 1 < i < 1. If 2 € A<F then we set T =gef 2.
The value of k will always be clear from the context when we use the notation Z. Intuitively,
k indicates by how many letters from A consecutive o; overlap. For z € A=l we set
a(Z) =gef {Q1,2,...,q;} as the set of elements from A**! in the k-decomposition of z.

Next we want to define languages of words from A that admit the same k-decomposition
with respect to given elements and subsets of A1,
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Definition 1.25. Let k£ > 0. Let a,...,a, € A and 3¢, %4,...,%, € A*! for some
n > 0. For every z € AT we say = € (Xg,a1,%1,...,0Qn, Xp)k if and only if x| > k + 1,
= (f1,...,0) and there exist 0 = jo < j1 < jo < ... < jn < jnt+1 = | + 1 such that

(a) Bj, =a; for 1 <i<nand
(b) ﬂjEZiforOSignandj¢<j<j¢+1.

If we write an expression (3g,a1,31,..., 0y, Xy )r we understand this as a syntactical
object describing some language. While being aware of this, we do not distinguish between
such an object and the language it stands for, unless stated otherwise. So the language
(X0, a1, X1, 09,39, ..., Qp, Xy )i consists of those words = € A>F+1 whose k-decomposition
starts with a number (possibly zero) of elements from Xy, then «;, followed by a num-
ber (possibly zero) of elements from X1, then as and so on. A subset of A**1 in such an
expression stands for possibly multiple occurrences of its elements. Note that the defined
languages only contain words that admit a k-decomposition and that in case kK = 0 we deal
with the usual concatenation, e.g., (Ao,a1,A1,a2,A42)0 = Aja1AjazAS5 and (Ap)y = AS‘.
Without further definition we also use expressions of the form (aq,¥1,..., @11, Xnt1)r and
(X0, 21,21, ..., 2, ant1)r and thelike with the obvious meaning. We introduce other conve-
nient notations.

Definition 1.26. Let w,v € A*, a1,...,a, € A1 and %, ..., %, € A for some n > 0.
Then we write (w|Zo, a1, 21, ..., Qn, 5 |v)k instead of (wA*NA*vN(o, 01,51, . - ., O, B k).

Moreover, if all ¥; are equal to A**! we do not want to mention them repeatedly in an
expression. So we write (a1, ag, ..., )k instead of (AFF1 oy, AFF ag, ..., AFFL q,,, ARFL)L
for m > 1.

1.4.2 Connecting L/ and By /3

We introduce the classes By /g .
Definition 1.27. Let k£ > 0. The class By, is the class of all languages L C AT that can
be written as a finite union of languages L; such that L; C A<F or

L; = (w|ai,ag,...,0m|v)

where m > 1, a1, ..., 0, € A* and w,v € AF.

So here we are allowed to fix a prefix and a suffix of length k, and occurring blocks of length
k + 1 can be positively specified. Note that these blocks may overlap.

Proposition 1.28. Let k > 0. It holds that

1. 51/2 = 61/270 and
2. Bijax € B2 ks1-
Proof. The first statement is obvious from Proposition 1.16. Just note that the case m = 0

implies L = () since we deal with languages of A", and that (elai,as,...,anle)o =
A*a1A%ay - - - A*a,, A*.
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For the second statement let a language from By /3 for some k > 0 be given. It suffices
to show for some L =g¢f (w|ag, o, ..., am|v)p with m > 1, a1, ..., apm € A¥ and w,v € A*
that L € By j41. We distinguish two cases.

Case 1. Suppose that L N A**™ = (). We claim that

L = U(w/‘ﬁlaﬁ%'“’ﬁmw,)k_i_l (16)

where the union ranges over all n,w’,v" and (31,..., 3, with v’ € wA, v € Av, 0 < n < m,
O € qA for 1 <1l <nand g € Ag; for n < I < m. Clearly, this is a finite union.

We argue for the two inclusions. Let x be a word from the right hand side and fix some
member of the union containing x. Suppose z = c1-- ¢y and T = (y1,--.,|g|—k—1) for
suitable ci, ..., ¢, € Aand 71, ..., Vg|—k—1 € A¥+2_ Note that we have fixed with Z a (k-+1)-
decomposition of x. By definition, there exist indices 1 < j; < jo < -+ < jpm < || =k — 1
such that 8 = v;, for 1 <1 < m. Let

. Jio:oifl<n
b def J1+1 : otherwise

for 1 <l <m.Then 1 <4 <is < -+ <ip < |z|]— k. Because f; € oyA for 1 <[ < n and

B € Aoy for n < 1 < m we obtain oy = ¢;, -+ ¢j,4p for 1 <1 <m. Sox € (a1, q2,...,0m);
and since w’' € wA and v’ € Av we conclude z € L.
Conversely, let © € L. Choose suitable cy,...,c; € A and y1,...,Vz—k € AR such

that z = c1-+- ¢, and & = (71,...,7|s|—k)- Here the latter is a k-decomposition. Again by
definition, there are indices 1 <1 < ip < -+ < iy, < |2| — k such that oy = ;, for 1 <1 < m.
By assumption of this case we have |z| > k + m + 1, so there exists an index 1 <r < |z| — k
such that r # ¢; for all 1 <[ < m. Therefore, we obtain 1 < j; < jo < -+ < jm < |z| -k —1

with the definition
. o ifg<r
JUTdef 15— 1+ otherwise (i; > )

for 1 <1 < m. Let n =g max{1 <1 <m|j <r}U{0} and B =qef ¢j, - Cjj+kt1 for
1 <1 < m. Then we obtain §; € yA for 1 <[ < n and 8 € Aq; for n < I < m. With
W =get Pr+1(z) and v' =get Spy1(x) We conclude x € (w'|B1, B2, ..., Bm|v");4 - This shows
(1.6) and completes the first case.

Case 2. Now assume L N A¥*™ =£ (). Then this set has only one element z with Z =

(a1, a2,...,0m), w = pr(a1) and v = s(ay,). We show how we can modify the first case by
taking certain languages into the union on the right hand side in (1.6). If m = 1 then x = a3
and |z| = k + 1. So we can take {z} to the union in (1.6) and still have a language from

Bi/2,k+1- Now assume that m > 2 and let (1,72, -.,¥m-1) be the (k + 1)-decomposition of
x. Observe that for 1 <1 < m — 1 it holds that pr+1(v) = aq and Sk41(Ym—1) = m. We
claim that it suffices to add

(041|’Yla Y25 .- 57m71|am)]€+1

to the union in (1.6). Note that this is a language from By/; 1. Clearly, x is in the set
(1|15 -+ s Ym—1l0m)y4q since it has (k + 1)-prefix a1, (k + 1)-suffix oy, and (71,.., Ym-1)
is just its (k + 1)-decomposition. So it remains to show that (c1|y1,- .., Ym—1lm)p s € L.
Therefore, let u € (a1|v1,. .., Ym-1l0m)yq and let 1 <idip <idpg < - <dpg < Jul —k -1
such that for the (k + 1)-decomposition u = ((1,(2, .-, (y|—k—1) it holds that v = ¢;, for
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1 <1 <m—1. Now define j; =gef %y for 1 <1 < m — 1 and j,, =def tm—1 + 1. Then it
holds that 1 < j; < j2 < -+ < Jm—1 < Jm < |ul — k and pry1(¢j,) = pr+1(n) = o for
1 <1 < m—1. Recall that sx11(Vm-1) = @m, so we find «,, starting at position j,, in wu.

Together, the indices j; witness that u € (a1, ®2,...,®m—1,0m);. It remains to observe that
pr(u) = pp(a1) = w and sg(u) = sg(ay,) = v. This finishes the second case and the proof of
the proposition. 0

Next we see that the union of all classes B3, amounts to By o.

Lemma 1.29. It holds that Bl/2 = UkzO Bl/Z,kz'

Proof. We have to show two inclusions and need to swap between k-decompositions and the
usual concatenation. We argue first for the inclusion from right to left. So let £ > 0 and let
L € By 31 Since By 5 is closed under finite union and contains all finite sets, we may assume
that

L = (w|ai,ag,...,0m|v)

where m > 1, oy € A¥*1 and w,v € A¥. To show that L € By /o we have to consider that the
elements o; € A**1 in the description of L may overlap, and we have to express this with
usual concatenations.

For given [ > 1 and f,..., 3 € A¥T! we define the set sh(B, B2, ..., ) of shuffle words
as follows. A word x belongs to sh(81,B2,...,0) if and only if & = (v1,...,7,) for some
n > 1 and there exist 1 < j; < jo <...<ji <nwithvy;, = for 1 <i <l and ji;1—j; <k
for 1 < ¢ < [ — 1. The latter condition ensures that all occurrences of §; in z overlap,
e.g., for k = 2 and 1 =ger abb, B2 =qef bbc we have sh(abb,bbc) = A*abbcA* U A*abbbcA*.
Moreover, we see that each sh(f,..., ;) is a finite union of languages of the form A*zA* with
k+1<|z| < kl+1. Since k+1 > 1 we get from Proposition 1.15 that sh(81,...,8;) € By/s.

Now we want to express L in terms of concatenations of sets of shuffle words and therefore
rewrite L as (wA*T N Atv) N (L' Ush(ay,...,qn,)) where

L/ =def U sh(al,...,ail_l)sh(ail,...,ai2_1)---sh(ain,...,am).

1<n<m—1
2<i) <ig<...<ip<m

With the set L’ we guess a number of n positions where the a; from the description of L

do not overlap. Since By is closed under concatenation, finite union and intersection (cf.

Lemma 1.21) we obtain L € B 5.

We turn to the reverse inclusion, so let a language from B /; be given. In light of Propo-
sition 1.28 it suffices to show that for each language L =qof ugA*uy -+ - ATu, with u; € AT
and n > 0 there is some k > 0 such that L € By ;. We show this by induction on n and
prove the induction base for n = 0 and n = 1. In case n = 0 set kg =gef |ug| and we see that
{uo} € Bijak,- For the same reason we do not have to care about finite sets any more. Now
let n =1 and suppose L = ugA*u;y. Define k1 =qef |ug| + |u1]. We claim that

L= U (w] @ ‘U)kl

w,0,v

where the union ranges over all w € A" NugA*, v € A¥1 N A*uy and all o € AFFL To see
this we observe that L contains only words of length > ki + 1.
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For the induction step suppose for n > 1 that L = (DUL')- AT, 1 where D C A<F» and
L' = (w|ay, a9, . .., amy|V)g, withm > 1, w,v € AF» and a; € A¥»F1. We assume here that L’
is just a single such language again by Proposition 1.28. The case D - ATu, 1 was treated in
the induction base. We can also suppose that | =gef |un+1| < ki, since otherwise we get from
Proposition 1.28 a representation of L’ with a sufficiently large k,,. We claim that

LI'A+UTL+1 - U (w|alaa25"'aam7vaaﬁla"'7ﬂl|z)kn

where the union ranges over all a € A, z € A* with s;(z) = up+1 and over all §; € Akn+l
for 1 < j <. For the inclusion from left to right observe that [ is defined in a way that there
are at least [ occurrences of some 3; € Akt pight of va. On the other hand, the I-suffix of
z does not begin before va ends, which is due to the I occurrences of ;. This completes the
induction and the proof of the lemma. ]

1.4.3 More Concatenation Hierarchies

The aim of this subsection is to carry over the relation between L;,5 and By, to all other
levels of the STH and DHH. Therefore we define for all k > 0 a hierarchy over By .

Definition 1.30. Let k& > 0. The classes of the concatenation hierarchy over B/, are
defined as

Btk =det BC(Bpi1/2) for n >0 and

Bn+3/2,k =def POl(Bn_H’k) for n > 0.
The following proposition is the counterpart of Proposition 1.28.
Proposition 1.31. Let k >0 and n > 1. It holds that

1. £n/2 = Bn/Q,O and
2. Bujak C By st

Proof. The first statement is obvious from Proposition 1.28 because with L;/5 = By/p we
see that Definitions 1.2 and 1.30 coincide.

We show the second statement by induction on n. The induction base for n = 1 is given
by Proposition 1.28. We first assume that the statement holds for n > 1 with n =1 mod 2
and we want to prove it for n + 1. Then

Bini1y/2,6 = BC(Bpj2k) € BC(Byj2,k+1) = Bns1) /2,641

by the induction hypothesis B, /51 € By, /2 41 and the monotony of BC(-). This shows in

particular the second statement for n = 2. So now we assume that it holds for n > 2 with
n =0 mod 2 and we want to prove it for n+ 1. This is the same as before, just change BC(-)
to Pol(+). 0

There is also a general version of Lemma 1.29. To get this we first observe the following.

Proposition 1.32. For k > 0 let Cy, be a family of classes such that Cy, C Cy1. It holds that

BC(Ui>0Ck) = Up>0BC(Ck)  and  Pol(Uy>¢Cr) = Upso Pol(Cr)-
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Proof. Suppose L is a Boolean combination of finitely many languages L; € Cj, for k; > 0.
Then L is also a Boolean combination of languages L; € C, with k =g maxk; because
Cr, C Ci by assumption. Conversely, if L is in BC(Cy/) for some k' > 0 then it is also in
BC(Crr) € BC(Ug>oCk)- The second part of the proposition can be seen with the same
arguments. - 0

Lemma 1.33. It holds that B, 5 = Up>q Bnj2x for n > 1.

Proof. We show the lemma by induction on n. The induction base for n = 1 is given by
Lemma 1.29. We show the induction step for n + 1 with n > 1 and n = 1 mod 2, for the
other case just change BC(-) to Pol(-). It holds that

Biny1y2 = BC(By/2) = BC(Uk>0 Bry2.k) = Ups0 BC(Bry2k) = Upso Bnr1)/2,k

by the induction hypothesis B,, 5 = (J;>q Bn/2,x and Proposition 1.32 together with Proposi-
tion 1.31. B 0

It is easy to see that all these relations hold also for the classes of complements and that
for n > 0 it holds that B, 151 U coB, 112 € Buy1,k C Bpysjar M coB, 3/0% So we have
the inclusions given in Figure 1.2. It pictures the landscape of classes that we study from
Chapter 2 onwards.

1.5 Finite Automata and Forbidden Pattern Classes

A DFA M is given by M = (A, S,6,5s9,S5"), where A is the input alphabet, S is the set of
states, § : Ax S — S is the total transition function, sy € S is the starting state and S’ C S is
the set of accepting states. We denote by L(M) the language accepted by M and by |M| the
number of states of M. We say a DFA is minimal if for all s1, s5 € S with s; # so there exists
some z € A* such that 6(s1,2) € S’ < 6(sg,2) € S’. We can identify every M with its finite
transition graph by taking S as the set of nodes, while edges are drawn and labelled with
respect to the transition function. Since M is a deterministic automaton every w € A* and
s € S induce a unique path in the transition graph starting at s and labelled subsequently
by the letters of w.

For notational convenience we extend the transition function to input words and, corre-
spondingly, we look at the extended transition graph: the set of nodes is still S, but edges
are drawn with respect to the extended transition function and have labels from A*. This is
an infinite directed graph with a finite number of nodes. We say that a state s € S has a loop
w € A* (has a w-loop, for short) if and only if §(s, w) = s. This is just a cycle in the extended
transition graph at node s with label w. Every w € A* induces a total mapping 6* : S — S
with §"(s) =qef 6(s,w) which also has an interpretation in the extended transition graph: we
follow a path labelled w starting simultaneously at each node of the graph. Moreover, we say
that a total mapping ¢’ : S — S leads to a w-loop if and only if §'(s) has a w-loop for all
s € S. We may also say for short that v € A* leads to a w-loop if §” leads to a w-loop. We
consider only automata where each state is reachable from the starting state and where the
starting state is not accepting. Clearly, every DFA runs into a loop of w’s if there are enough
of them in the input.
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Fig. 1.2. Connecting STH and DDH via classes B,, /2, for k > 0.

Proposition 1.34. Let M be a DFA and r > |M|. Then w" leads to a w"™ -loop for all

w e A*.

Proof. Observe that w" leads to a w'-loop for some 1 < i < |M]|. This is because 7 > | M|, so
there must be a state appearing twice after input w®, w!,w?,...,w". The proposition follows
since every such w-loop can be considered as a w™-loop. O

It is also easy to find simultaneous loops between pairs of states if each two states of a pair
are connected by the same word of sufficient length.

Proposition 1.35. Let M = (A, S, 6, s0,5") be a DFA, let 1 > 1 and v € A* with |v| > |M|'.
Furthermore, let (s1,8]),...,(s1,5;) € S x S such that §(s;,v) = s for 1 <i < 1. Then there
exist §; € S, x,y € A* and v' € AT with v = zv'y and 6(s;, 2v'y) = 6(8;,v'y) = 8(3i,y) = s,
foralll1 <i <.

Proof. Let vj denote the prefix of v of length j with 0 < j < |v| and consider the sequence of
[-tuples of states
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(s?,sg,...,s?), (s%,s%,...,sll), - (s|1v|,s|2v|, .. .,sw)

with sg =def 0(s;,vj) for 1 <i <l and 0 < j < |v|. These are at least (]M|! + 1) tuples, so
there exist 0 < j; < ji < |v| with (s{',...,s7") = (s}°,...,5]*). Now rewrite v as v = zv'y
such that = v;, and zv' = vj,. O

A pattern is a subgraph of the extended transition graph with edges labelled by variables
for words from A*, denoted as u,v,w,z,.... Sometimes patterns come with side conditions
that must hold for the word variables. We define particular patterns by specifying the vari-
ables (eventually with a side condition) and by providing a figure of the subgraph (see Def-
inition 2.15 and Figure 2.1 as an example). In such a figure some states are labelled by +
(accepting) or by — (rejecting). If we want to express that one of two states is accepting if
and only if the other one is rejecting we write +/— and —/+. We say that a DFA M has
a certain pattern if there is a subgraph in the extended transition graph of M as specified
in the pattern definition, and if all side conditions hold when the labels are assigned to the
word variables.

Definition 1.36. Let P denote a pattern. Then FP(P) denotes the class of languages L C A™
such that there is some DFA M with L(M) = L and M does not have pattern P.

In all cases we consider in this thesis the classes FP(PP) will be well-defined, i.e., for any
two automata accepting L it holds that one has IP if and only if the other one has P. For a finite
number of patterns Py, Py, ... P, let FP(Pq,Po,...,P,,) denote the class of languages where
all patterns Py,Ps, ..., P, are simultaneously forbidden in an accepting DFA. A theorem
stating C = FP(P) or C = FP(Py,...,P,) for alanguage class C is called a forbidden pattern
characterization of C. As mentioned earlier, such a result usually implies the decidability of
the membership problem of C (even efficiently). To decide whether a given DFA has some
pattern we have to verify the respective graph reachability conditions in its transition graph.

Let NL denote the class of languages that are decidable by a nondeterministic algorithm
using space at most logarithmically in the input size (see, e.g., [Pap94] for details). It is known
that this class is closed under complement [Sze87, Imm88|. So to show that the membership
problem of some class FP(P) is in NL we may provide an algorithm that accepts if and
only if the DFA in the input has pattern P. We introduce some more notations to describe
algorithms that look for patterns in transition graphs. Let M = (A, S, 6, sg, S’) be some DFA.
Then we define for n > 1, s;, s, € S and u € A* that

(81, 8n) —= (80, ..., 8h) <=def O(sij,u) =s,forall1 <i<n
(815+++y8n) — (81,...,8),) <=>qer there exists some v € A* such that
(81, 8n) —=(87,...,50)
(81,.++,8,) — T (8},...,5)) <=>qet there exists some w € A* such that
(81, 8n) —= (8], .+, 50)

If n = 1 we write s; — s}, s — | and s; —7 s}, respectively. Assume that n > 1 is
fixed. On input (M, W) with W = {(s;,5;) € S x S|1 <i <n } we can verify if

(81y--+y8n) — (81,...,80)
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in nondeterministic logarithmic space NL. To see this we may guess w € A* letter by letter
and follow the paths which start in s1,...,s, and have label w with help of the transition
function 6. After each guessed letter we store the new states on these paths in variables
(t1,...,tn). Moreover, we guess in each step whether we have already reached the end of w,
and if so, we check whether ¢; = s; for all 1 < ¢ < n. Because n is a constant to this algorithm
the space needed is dominated by the space needed to store the tuple (¢i,...,t,) which is
logarithmic in the input size.

We recall the following theorem concerning star—free languages. It is the characterization
of this class mentioned in the introduction.

Theorem 1.37 ([Sch65, MP71]). Let M = (A,S,6,s0,5’) be a minimal DFA. Then
L(M) is star—free if and only if there is some m > 0 such that for all w € AT and for
all s € S it holds that 6(s,w™) = 6(s, w™1).

A minimal DFA M is called permutation—free if it has the above property. For later use we
restate the previous theorem as follows.

Proposition 1.38. Let M = (A, S, 6, s0,S") be a minimal DFA. Then L(M) is not star—free
if and only if there exist w € AT, some | > 2 and pairwise distinct states ro,r1,...,7—1 € S
such that 6(rj,w) = rit1 for 0 <i <1 —1 (with r; =4ef 70)-

An obvious property of permutation—free automata is that they run into a w-loop after input
of successive w’s. Otherwise the automaton is not permutation—free as can be seen with
Propositions 1.34 and 1.38.

Proposition 1.39. Let M be a permutation—free DFA and r > |M|. Then w" leads to a
w-loop for all w € A*.
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2. Dot—Depth One

We refer to the main results of this chapter. In
Section 2.1 we recall generalizations of the sub-
word relation introduced in [Ste85a] and prove
that these relations =<j for £k > 0 have a fun-
damental property: AT together with =< is a
well partial ordered set (cf. Theorem 2.10). This
is exploited in Section 2.2 where we show that
By /31 is the class of all order ideals of (AT, =p)
(cf. Theorem 2.12). We also give a forbidden pat-
tern characterization of the classes By (cf.
Theorem 2.18). In Section 2.3 we restate the
main result from [Ste85a] which gives various
characterizations of the classes Bjj and which
we refine in the following way.

First, we deal in Section 2.4 with the known
characterization of Bjj in terms of a finiteness
condition on the number of alternations in <-
chains. We prove that the maximal number of
such alternations with respect to a language L
determines the location of L in the Boolean hi-
erarchy over By, (cf. Theorem 2.30).

This has the mentioned finiteness condition as a corollary and we use our characterization
to obtain strictness and decidability results for the Boolean hierarchy over By /s (cf. Theo-
rems 2.31 and 2.33). Such results are also known for the Boolean hierarchy over B/, [Gla99].
Taking them into account we identify in Section 2.5 a landscape that allows to study the
question whether there exist trade—offs between the parameter k£ on one hand and Boolean
operations on the other hand. We obtain a complete overview over the Boolean structure of
B; (see Figure 2.6). Finally, we show in Section 2.6 a forbidden pattern characterization of

Bi (cf. Theorem 2.39).

2.1 Subword Relations

We start with a generalization of the well-known subword relation, here extended to k-

decompositions of words.

Definition 2.1. Let & > 0 and let u,v € Akl

(B1y ..., Bn) for m,n > 1. We define

/\

53/2 COB3/2

A

\7/\ 33/2 k COB3/2 k

/

51/2 CO51/2

o\
{\

31/2 k COB1/2 k
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L3/

coLsz/

v
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£1/2

colyo |

Suppose u = (aq,...,qp,) and U
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u<pv <=get thereexist 1< j; <j2...< jm < nsuchthat 3;, = a; and
U=pv >der u < v and pg(u) = py(v) and sg(u) = sg(v).

Moreover, if |u| < k we write u <y v or u <j v if and only if u = v.

Since the k-decomposition of u has to be a subsequence of the k-decomposition of v, both
relations are the usual subword relation in case k = 0. The relation <; was introduced in
[Ste85a] (see also the discussion in Section 2.7). Obviously, we have that u < v implies u <xv
and we see that both relations are reflexive and transitive. If u <p v we also say that v is a
k-extension of wu.

A sequence of words wi,ws,... is called a <-chain if w; <l w;y1 for all words in the
sequence (analogously, we define <j-chains). We say that a chain has an alternation with
respect to some given language L if w; € L < w;y1 ¢ L for some .

2.1.1 Basic Properties and Elementary k-Extensions

We give basic properties of the defined relations. For some w € A1 denote by w’ its reverse
and set LT =g {wR|w el }

Proposition 2.2. Let k > 0 and u,v € A*. Then u <\ v if and only if uf* <1 v, The same
holds for <.

Proof. The proposition is clear if |u| < k. So suppose u = (a1, ...,0y) and v = (B1,...,5n)
for appropriate m,n > 1. Observe that for every w € AZ¥*! with @ = (71,72, ..., it holds
that wh = (fle,fyfil,...,’yfz). Soif 1 < j1 < j2... < jm < n witness that u <y v we may
take ji =def M — jm—i+1 + 1 for 1 < i < m to see uf <, v, Finally, it suffices to note that
pr(w)® = s (wh) for all w € AT. 0

With the next two propositions we isolate some arguments used in forthcoming proofs.

Proposition 2.3. Let k > 0 and x,y,z € A*. It holds that

1. u <y zuy for every u € AZF+1
2. uy g uz = zuy < xuz for every u € A and
3. xu < yu = zuz < yuz for everyu € A=k,

Proof. Statement 1 is obvious. To see statement 2 note that if |uy| = k then y = z = e.
If Juy| > k then suppose 1 < j; < ja2... < jm < n for appropriate m,n > 1 witness that
uy <) uz. Since uy and uz have the same k-prefix we may take j. =qef ¢ for 1 < ¢ < |z| and
Ji =def Ji—|a| + || for 2] +1 <@ < |z[ +m to see that zuy < zuz. Statement 3 follows from
statement 2 using Proposition 2.2. O

Proposition 2.4. Let k > 0 and x,y,z € A*. It holds that

1. w1 X we = zwiy =<k Twoy for every wi,ws € AT,
2. xy <p vzy if pr(y) = pr(zy) € A and xy € AZFF and
8. wiT Sp Wk, TU] S TV => W1TV] Sk WexVy for every wi,ws, V1, Vs € At
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Proof. Statement 1 is clear for |w;| < k. For the other case note that from w; <} ws it follows
that both words have the same k-prefix and k-suffix. Hence, we may apply Proposition 2.3.2
and then 2.3.3 to get zwiy < xwyy. Since these words have again the same k-prefix and
k-suffix we get w1y < xway. For statement 2 we may take j; =ger @ for 1 < ¢ < |z| and
Ji =def @ + |2| for |z] +1 < i < |zy| — k as witnessing indices. Again, we see that both words
have the same k-prefix and k-suffix. Moreover, the letter at position jj,| in zy and in zzy is
followed by pi(y) = pr(zy). If we apply statement 1 twice we get wizv) < wexvy <) WoxVo
and obtain statement 3. U

One can understand u <1y v as a simultaneous insertion of factors at different positions in
u to obtain v, while respecting certain context conditions depending on k. As a special case,
there may only be one such insertion position. This gives rise to the notion of elementary
k-extensions introduced next.

Definition 2.5. Let & > 0 and let u,v € A>F*!. Suppose & = (a1,...,0qy,) and ¥ =
(B1y---,Bpn) for m;n > 1. We define

u<pv <=qef there exist r >0 and 0 <! < m such that

(ﬁlw”uﬁn) - (0417“‘704l7’71a~~~a7r704l+1a~~,04m)
for some v1,...,7 € A*! and

U= v =qef u<gvand pg(u) = pr(v) and sg(u) = sg(v).
As before, if |u| < k we write u <f v or u =< v if and only if u = v.

If u <5, v we say that v is an elementary k-extension of u. Clearly, if u <f v then u <} v
and if v =}, v then u =}, v. Note also that if u <1} v or u <} v then there are z,y,z € A* with
u = xy and v = xzy. What we have described in Proposition 2.4.2 is in fact an elementary
k-extension. We show with the following two propositions that we can decompose any k-
extension into a finite number of elementary ones.

Proposition 2.6. Let k > 0 and let u,v € AT, If u # v and u =}, v then there exists some
w e AT with w # u and u <§ w <y, v.

Proof. We may assume u <} v with u,v € AZ**1, Let @ = (a1,...,am) and 9 = (B4, ..., )
for some m,n > 1. By definition it holds that px(u) = px(v) and si(u) = sx(v) and there are
1<71<j2... <jm <nsuch that 8;, = a; for 1 <7 < m. Set jo = 0 and j,,11 =n+ 1. Fix
now a maximal [ with 0 <[ < m such that j; = and set r =4ef J1+1 — Ji — 1. Note that such
an [ exists since u # v, and that r» > 1. We claim that there is a word w € A>**1 such that

W= (al)- . ’alaﬁlJrla <o ’ﬁlJrTaalJrl’- . 7am)-

Let a; for 1 < i < m be the first letter of oy, and let b; for 1 < i < n be the first letter
of B;. Define w =qef a1 -+ aibj41 -~ byr@is1 -+ - mSg(m). If we show that w has the above
k-decomposition we immediately have u <} w. In fact, we only need to show that oy, 841
and G4, ap41 fit together in the sense that si(oq) = pr(Bi+1) and sk(Bi4r) = pr(ays1). To
see that si(a;) = pr(Bi+1) note that [ = j; and thus oy = ;. To see that sk(G4,) = pr(+1)
observe that | +r + 1 = j;41 and thus ag+1 = Bi4rt1-

If 0 < I < m then pg(w) = px(u) and si(w) = sg(u). If I = 0 then pg(w) = pr(v) and
hence py(w) = pi(u). The same holds for the k-suffix if [ = m. So u <§, w.
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We need to show w < v. In fact, we only need to show w <1 v. Due to the construction of
w we may take as a witnessing sequence of indices 1,2,... LI+ 1,... . 147 fiz1, 5142, -, Im-
Recall that jj1 =1+7r+ 1. u

Proposition 2.7. Let k > 0 and let u,v € AT with u # v and v <} v. Then there exist | > 1
and words wo, w1, ...,w; € AT with wg = u,w; = v such that for all 0 < i < [ it holds that
w; 2§ wiy1. Moreover, all w; are pairwise distinct.

Proof. Define wg =qer u. If v is already an elementary k-extension of u we are done with
w1 =qef V. Otherwise we apply Proposition 2.6, set w1 =qe¢f w and obtain wp X§ wi. Now we
start over again with w; and v, apply Proposition 2.6 if w; # v, and so on. This procedure
comes to an end since Proposition 2.6 provides a strict elementary k-extension and strict
extensions are length increasing. O

Remark 2.8. In case k = 0 we can assume that 7 = 1 in an elementary 0-extension, sim-
ply insert one letter after another. This is because we do not have to respect any context
conditions which is not true if £ > 1. Consider over alphabet A =g4¢ {a,b,c} for example
ab <§ abcb with ab = (ab) and abch = (ab,be, cb). We look for a word axb with z € A and
azh = (az,zb) such that ab <§ axb <{ abcb. But x = a (xr = b) is not possible because there
is no aa (bb, respectively) in cﬁ)a), and x = c is not possible since then there is no ab in ach.
This is a significant difference between k = 0 and arbitrary k.

2.1.2 Well Partial Ordered Sets

As it turns out, the word extensions we consider have a fundamental property: (A1, <y) for
k > 0 is a well partial ordered set (wpos, for short). The proof we give below is based on an
idea from [SS83] where A" and the usual subword relation are considered. A first proof of
the latter was given in [High2].

For several equivalent properties, which may be used for defining well partial ordered sets,
see [CK96, SS83]. We show here that in A there exists neither an infinite strictly descending
<lk-chain, nor an infinite set of pairwise incomparable elements with respect to <. This is
equivalent to saying that for every non—empty subset of A" the set of minimal elements with
respect to <y in this subset is non—empty and finite [CK96]. In case k = 0 (i.e., the subword
relation, also called division ordering) we encounter the fundamental theorem from Higman
[High2].

Theorem 2.9. Let k > 0. It holds that (AT, <) is a wpos.

Proof. First observe by a typical length argument (namely that u < v with u # v implies
lu| < |v|) that we only have to show that any set of pairwise incomparable elements is finite.
Assume to the contrary that there is an infinite subset of AT such that all its elements are
pairwise incomparable with respect to <lx. In particular, there exist infinite sequences {f;}
of words such that from i < j it follows that f; < f;. We will show that this is not true.
For this consider any such sequence {f;} and note that all words in such a sequence must be
different since <, is reflexive. We choose from all sequences {f;} an ‘earliest’ sequence {u;}
as follows (using the axiom of choice): let u; be a shortest word beginning some sequence
{fi}, then let us be a shortest second word of any sequence uy, fo, f3..., then let usg be a
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shortest third word of any sequence uq,us, f3..., and so on. Clearly, also for {u;} it holds
that from ¢ < j it follows that u; ¢ u;. Since we have a finite alphabet there are words
U, = awgi,u;, = awga, ... with i; < iy < ... for some a € A and some w € AF . Note that
none of these g; can be ¢ since aw <y, awv for arbitrary v.

Now we look at the sequence uy,ua,...,u;—1,WwWg1,Wyga, . .. Denote this new sequence as
{z;} which is ‘earlier’ than {u;} since |wgi| < |u;|. In order to obtain a contradiction to our
construction we need to show that for all ¢, j with ¢« < j we can conclude x; <f} x;. This is clear
ifi,7 € {1,...,i1 — 1} by the same property for {u;}. Now suppose i € {1,...,i; — 1} and
J =41 and assume x; < x; where z; = u; and x; = wg; for some [ > 1. Since wg; € Azk+1
we have by Proposition 2.3.1 that wg; < awg; = u;, and together u; < u;,, a contradiction.
Finally let 7,5 > 41 with ¢ < j. Assume z; < x; with z; = wg; and z; = wg,, for some | < m.
By Proposition 2.3.2 we have that awg; <} awgy,, so u;, < u;,,, again a contradiction. O

Theorem 2.10. Let k > 0. It holds that (A", =) is a wpos.

Proof. Suppose there exists an infinite subset of AT such that all its elements are pairwise
incomparable with respect to <. Then there is also an infinite subset L such that all words
in L have the same k-prefix and k-suffix. So the words in L are pairwise incomparable with
respect to <l contradicting Theorem 2.9. U

Interestingly, it seems to be difficult to find a direct proof for <. In fact, this is the reason
why we introduced <.

2.2 The Classes By/z

There are close connections of k-extensions to the classes B /3 .

2.2.1 Order Ideals and Closure Properties

The closure of v € A1 under k-extensions is denoted as (u)r =qer {v € AT |u 2 v }. If
u € AF then (u)r = {u}, so (u) € By If u e AR and @ = (aq,. .., qy,) for some
m > 1 then (u)r = (pr(u)|a1, . .., am|sp(u)),, so again (u)r € By k-

Proposition 2.11. Let k > 0 and u € A", It holds that (u)y € Byja .

Now we look at the closure of some L C AT under k-extensions, which we denote as (L) =gef
Uuer (w)k- A language L is called an order ideal of (AT, =) if and only if L = (L)y.

Theorem 2.12. Let k > 0 and L C A™. It holds that L € By a1 if and only if L is an order
ideal of (AT, <g)-

Proof. Suppose L = (L) = U, ,(u)r. We have seen before that (u)x € By /g . Since (A1, <)
is a wpos by Theorem 2.10 the set of distinct minimal elements v € L with respect to <y is
finite. Note that v < v if and only if (u)y 2 (v)x, so we may assume that the union (J,, o (u)x
is finite. Hence, L € By /y .

Conversely, it suffices to show that (L), C L. Suppose u € (L)j. Then there is some z € L
such that  <j u. If z € A<F then z = u. If z € A=F*1 then z is in some set of the form
(wlag,...,amv), € Lwithm > 1, w,v € AF and o; € A¥t1. By definition of <}, the words
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and u have the same k-prefix and k-suffix, so w = pg(z) = px(u) and v = si(x) = sg(u). More-
over, all elements of the k-decomposition of x appear in this ordering in the k-decomposition
of u, which holds in particular for oy, ..., apn,. This shows v € (w|aq,...,anv), C L. O

The theorem also shows that the closure of an arbitrary language under k-extensions is
in By . In particular, we obtain a regular language independent of the language we start
with.

Corollary 2.13. Let k > 0 and L C A*. It holds that (L) € By /.

We continue with closure properties of the classes By /5. The closure under right and left
residuals is shown already for all B,, 5}, with n > 1.

Lemma 2.14. Let k>0 and n > 1.

1. The classes By a1, and coBy . are closed under finite union and intersection.
2. It holds that a 'L N AT, La™' N AT ¢ By jar fora€ A and L € B, /g -

Proof. The closure of B3} under finite union is by definition. To prove the first statement
it suffices to show the closure of Bj/;; under finite intersection, since then both closure
properties translate to coBBy 3 by DeMorgan’s law. So suppose L, L' e B /2,k- We show that
LNL = (LNL') from which LNL" € By 9, follows with Theorem 2.12. It suffices to argue
for the inclusion (LN L"), C LNL'. For every u € (LN L'),, there is some x € LN L' such that
x = u. Since by Theorem 2.12 we have L = (L)}, and L' = (L')j there are y € L and ¢y € L’
such that y <p  <p v and ¢’ <y < u. So it holds that u € (L), = L and u € (L"), = L'.

We turn to the second statement which we show by induction on n. It suffices to argue
for the case of left residuals.

Induction base. Let n = 1. Since By/3 9 = L1/2 by Proposition 1.28 and together with
Lemma 1.21 it remains to show the case when k > 1. So let a language L € B /5 be given. By
definition, L is a finite union of a subset of A=¥ with languages of the form (w|az, ..., am|v), C
AZF+l where m > 1, w,v € A* and a; € AFtl. We can treat the members of this union
separately since a= (L1 U L) = a~'L; Ua~ 'Ly for arbitrary Ly, Ly € A*. Clearly, a='D N
AT C AsF for D C A=k, So fix some L' =g (w]a, ..., am|v), with m > 1, w,v € AF and
a; € A*T1 Note that k > 1 and that a 1L’ C A2%. So a 'L’ N At = ¢~ 1L’ and it remains to
show that a~ 'L’ € By 3 ;. Furthermore we may assume that w = aw’ for some w' € A* since
otherwise a L' = 0 € By o .

Case 1. Suppose aw’ # py(ay). Then a~'L' C AZ**+1 and there are no words x in L’ such
that aq is the first element in the k-decomposition of z. We obtain

a 'L = U(w’b\al,...,am|v)k € Bi/a -
beA

Case 2. Suppose aw’ = pi(ai) and m > 2. Then again a 'L’ C A=+l but the k-
decomposition of some z € L' may start with ;. In this case we see that

oL = LJ(w'b|al,...,ozm|v)1€ U (sk(a1)]az,...,am|v)r € Bijg -
beA

Case 3. Suppose aw’ = pg(ay) and m = 1. Then it holds that
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a 'L = Jwblaro)e U [J (selen)| Bk U {v]sk(on) =v} € Byjape
beA BEAk+1

Induction step. We first assume that the assertion holds for n > 1 with n =1 mod 2
and we want to prove it for n+1. Solet L € B(;,,1)/2 % and a € A. By definition, L is a Boolean
combination of languages from B,, 5} that we can write as a finite union of intersections of
sets £ and AT\ F with E € B, /2% Again note that a Y (LyULy) =a 'Ly U a 'Ly and
also a Y (LiNLy) =a 'Ly N a 'Ly for all Ly, Ly € A*. So a 'L N A" can be written as
a finite union of intersections of sets L1 =gef a 'E N A' and Ly =qs a 1(AT\ E) N A*.
By hypothesis, we have Ly € B, /3 C B(,11)/2,1 and it remains to show that Ly € B, 11)/2 k-
Note that £ C At and denote for this proof by L the complement of L with respect to A*.
Then we can carry out the following calculation.

Ly = a*(AT\E) n A"
= a' (A" N E)n A"
= a At na'En Af

= A*NalEn A"
(a——lE U F) n A"

= A"\ (a7'E n A")

By hypothesis, Ly € coB,, 21 € B(n11)/2,k- This shows in particular the second statement for
n = 2. So now we assume that it holds for n > 2 with n = 0 mod 2 and we want to prove
it for n + 1. Let L € B, 41)/2,%- By definition, L is a finite union of language LiLa--- Ly,
with m > 0 and L; € B, /3. It suffices to consider each member of the union separately. In
case m = 0 there is nothing to do and if m = 1 we can immediately apply the hypothesis. It
remains to show that a=! (LiLy---Ly,) N At =a 1 (LiLy---Ly,) € B(nt1)/2,% for m > 2.
Since L; C A" we can write a ! (L1La-+- Ly,) = ((ailLl)Lg---Lm). Now we use that
{b}, L1 € B, /5 which is a class closed under Boolean operations. So we can rewrite L1 as
Ly = L} U Ly with L] =qef L1 N A and LY =qer L1\ L7. Observe that again L', LY € B, /3 -
If we rewrite in

(@ 'Li)Ly--- L) = ((a 'Ly Ua ' L)Ly~ Lyy) = (@' Ly) Ly -+ Lyn U (a7 L)Ly~ L,

the set L) as the finite union of its elements, we encounter either the empty set or
Ly--+ Ly, which are both in B,11)/2%- In case of a_lL’l’ observe that LY C A2 and
a 'L} =a L] N At € B,, /2,1 by hypothesis. So also (a L)Ly -+ Ly, € B(n11y/2,c Which
completes the induction. O

2.2.2 Forbidden Pattern Characterization

We recall the forbidden patterns L/, and By, characterizing £/, and By /5, respectively.
Definition 2.15 ([PW97]).

1. Pattern L /5 is defined as the subgraph given in Figure 2.1 with z,w, z € A*.
2. Pattern B, 5 is defined as the subgraph given in Figure 2.2 with z,z € A* and v,w € At
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Fig. 2.1. Pattern L, /5. Fig. 2.2. Pattern B, /».

It is easy to see that FP(L;/y) is well-defined. The same holds for 7P (B, /3) which can be
shown using the arguments from the second part of the following proof.

Theorem 2.16 ([PW97],[Arf91]). It holds that

1. £1/2 = fP(Ll/Q) and
2. BI/Z - FP(IBl/Q)

Proof. To show the first statement we recall [PW97, Theorem 8.5]. After rewriting their
notations we obtain the following (together with Theorem 1.8). It is an automata—theoretic
version of [Arf91, Theorem 3.3].

(a) Let M be a minimal DFA with L(M) C A*. Then L(M) € Ly, U{A*} if and only
if M does not have a subgraph in its transition graph as depicted in Figure 2.1 with
r,w,z € A,

Suppose L € Ly, and let M = (4, 5,6, s0,5") be the minimal DFA with L(M) = L C A*.
Assume that M has pattern L, /5 via z,w,2 € A*. We apply (a) and see that L = L(M) ¢
L1/ U{A*}, a contradiction. It follows that there exists an DFA accepting L that does not
have pattern L, so L € FP(L;/3) (recall Definition 1.36).

Conversely, let L € FP(Ly2). So there exists some DFA M with L(M) = L € A" such
that M does not have pattern L,/,,. We assume that L ¢ Ly s2 and show that this leads
to a contradiction. Since L C A" we see that L ¢ L/, U {A*}. So by (a), the minimal
DFA M’ = (4, 5,6, s0,5’) accepting L has a subgraph in its transition graph as depicted in
Figure 2.1 with z,w, z € A*. Then zz € L = L(M) and zwz ¢ L = L(M) with z,w,z € A*,
which shows that M has pattern L; /5, a contradiction.

To see the second statement of the theorem we recall [PW97, Theorem 8.15]. After rewrit-
ing their notations we obtain the following (recall also by Theorem 1.8 that we talk about
the same class of languages By ;).

(b) Let M be a minimal DFA with L(M) C A*. Then L(M) € By, if and only if M does
not have a subgraph in its transition graph as depicted in Figure 2.2 with x € A* and
v,w,z € AT,

Suppose L € By, and let M = (A4, S,6,50,5") be the minimal DFA with L(M) = L C A*.
Assume that M has pattern B;/; via x,z € A* and v,w € AT. Then M also has pattern
Byjp via x € A* and v,w,2’ € A" with 2’ =ge¢ vz. So we can apply (b) and see that
L = L(M) ¢ By 3, a contradiction. It follows that there exists an DFA accepting L that does
not have pattern B 5, so L € FP (B, 5).
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Conversely, let L € FP(By/2). So there exists some DFA M with L(M) = L C A" such
that M does not have pattern B, ;. We assume that L ¢ By /2 and show that this leads to
a contradiction. By (b), the minimal DFA M’ accepting L has a subgraph in its transition
graph as depicted in Figure 2.2 with z € A* and v,w,z € AT.

Now let r =qer | M|, and define 2’ =gef 2, ' =gef TV", W' =gef wv" and v’ =qe; v™. Observe
that z’,2 € A* and v/,w’ € AT. We obtain from Proposition 1.34 that 2’ and w’ lead to a
v'-loop. Moreover, we see from M’ that 2’2 € L = L(M) and 2'w'z’ ¢ L = L(M). So M
has pattern B, /5, a contradiction. O

We show that the connection of £,/ and By, via the classes By has a natural coun-
terpart on the pattern side.

Definition 2.17. Let k > 0. Pattern B, /5 is defined as the subgraph given in Figure 2.1
with x,w,z € A* and the side conditions

—|z| >k, |xzz| > k+ 1 and
— sp(z) = sp(zw).
Note that Ly, is the same pattern as By /; g since we look only at automata accepting lan-

guages from A*. It is easy to see that FP(Byy;) is well-defined. The following theorem
gives in particular another proof of the first statement of Theorem 2.16.

Theorem 2.18. Let k > 0. It holds that By s 1, = FP (B /1)

Proof. For the inclusion from left to right suppose L € By /5 and let M be a DFA accepting
L. If M has pattern By /5 with z,w,z € A*, then it is easy to see that rz =} zwz, e.g.,
apply Propositions 2.4.2 and 2.2. Since zz € L and zwz ¢ L we see that L is not an order
ideal of (A", <;). So by Theorem 2.12 we have L ¢ By 9, a contradiction.

For the reverse inclusion suppose L € FP(B; ). Then there exists some DFA M with
L(M) = L such that M does not have pattern By 5 . Assume to the contrary that L ¢ By 5 ;.-
Again by Theorem 2.12 there is some u € L and v ¢ L such that u <3 v. Note that |u| > k+1
since otherwise u = v. We want to exploit this situation to find pattern By /5 in M. First,
we apply the decomposition of k-extensions into elementary ones from Proposition 2.7. There
must be at least one position ¢ in the sequence of elementary k-extensions from w to v where
w; 2§ wip1 with w; € L and w;11 ¢ L. So we assume without loss of generality that u <, v.

Let u = (a,...,0uy,) for some m > 1 and U = (1,..., Q0 Y1y s Yoy Oty - -5 Q) foOr
some 0 <! <m,r>1and v € A¥*. Let a1,...,q; be the first letters of o, ..., qa;, and
let b1,...,b,,¢141,--.,cm be the last letters of vi,..., %, @i41,..., 0. Now define © =g4f

ai - qpg(71), W =def b1 -+ - by and z =gef €141+ - G- Then |z| > k, 22 = u, |zz| > k+ 1 and
zwz = v. First assume 0 < [ < m. Then it holds that sx(z) = sk(aq) = pr(ary1) = sp(yr) =
sp(zw). If 1 = 0 then = = pr(71) = pr(an) = sk(zw) since px(u) = pi(v). Analogously, if
I = m then sg(x) = sp(a;) = sk(vr) = sp(zw) since sk(u) = sk(v). Together we see that
z,w,z € A* give rise to pattern By /5 in M, a contradiction. So L € By - O

One can understand pattern By /5, as an elementary k-extensions in the transition graph
of M leading from L(M) to its complement, i.e., one alternation from + to —. It is clear that
we encounter pattern B 5 if k is large enough in comparison to M.

Proposition 2.19. Let M be a DFA and k > |M|%. If M has pattern By then M has
pattern By /o.
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Proof. Suppose M = (A, S,6,50,5") has pattern By /5, via x,w,z € A*. Then there are two
distinct pairs of states (s],s1) and (sh, s3) such that for v =qet sk(z) = sk(zw) we have
6(st,v) = s; for i = 1,2. We apply Proposition 1.35 which provides §; € S, z/,y’ € A* and
v € AY such that v = vy’ and 6(s}, 2'v'y’) = 6(8;,v'y) = 6(8;,y") = s; for i = 1,2. Tt is
easy to see that this yields pattern By /5 in M since §; and §3 have a non-empty v'-loop. 0

So we see how pattern L/, turns in a natural way to pattern B,/ as k increases. We
describe now another proof of the second statement of Theorem 2.16. Let L € B; /5 and let
M be some DFA accepting L. Then L is in By, for some k > 0 by Lemma 1.29 and hence
M does not have pattern B, /5 by Theorem 2.18. But then M does also not have pattern
B, o since B /5 is a special case of By 5, for all £ > 0. On the other hand, if L ¢ B; /5 then
it is in none of the classes By 3. So M has in particular pattern By /5, for k = |M|?%. From
Proposition 2.19 we see that M has pattern B ;.

Theorem 2.18 yields an NL-algorithm for the membership problem of By, for fixed
k > 0. We only have to look for pattern By, ;, in the transition graph of a given DFA. To do
so we guess states s1, 52,51, s~ and check whether s is accepting and s~ is rejecting. Then
we verify sg — s1 and (s1,82) — (s7,57). We can also store the needed suffixes of size k
because this is a contant to the algorithm.

There are similar NL-algorithm to find patterns L, , and B, /5 in transition graphs. Such
algorithms were also pointed out in [PW97] for the membership problems of £;/, and of
By /2. The bound on k from Proposition 2.19 allows the exact location of a language in the
hierarchy of classes Bj /3 ;. Just repeat the algorithm for By /5, with £ =0,1,..., |M|%. The
latter is an algorithm that also decides the membership problem of By /5.

2.3 Stern’s Theorem

We turn to the classes B; y which are by definition the Boolean closure of By /5 .. The forbidden
patterns By x, I@Bl,k and Iﬁ%rf‘,; characterize By j.

Definition 2.20 ([Ste85a]). Let k > 0.

1. Pattern By j is defined as the subgraph given in Figure 2.3 with z,y, v, u, v, w,v’, z € A*
and |w| = |[u'| = k.

2. Pattern I@Bl,k is defined as the subgraph given in Figure 2.4 with x,u,v,w,z € A* and
lw| = k.

3. Pattern I@Brfjc is defined as the subgraph given in Figure 2.5 with x,u,v,w,z € A* and
lw| = k.

The following is the main result from [Ste85a, Theorem 3.3] stated here in our notations.
We have already defined the notion of <g-chains at the beginning of Section 2.1.

Theorem 2.21 ([Ste85a]). Let k > 0, L C A" and let M be the minimal DFA accepting
L. The following statements are equivalent.

(1) L € By

(2) L € FP(B1, Bk, Br})

(8) Any =k-chain has a finite number of alternations with respect to L.

(4) Any =k-chain has at most 2 A2 kA2IMI g iternations with respect to L.
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Fig. 2.4. Pattern B, ;, with |w| = k. Fig. 2.5. Pattern Brfz with |w| = k.

Let us mention that the patterns IB%l % and IB%rf 1. are connected via taking reverse languages.
If M is some DFA then for any DFA M with L(M) = L(M)® it holds that M has pattern
B, 1 if and only if M has pattern IB%rf‘,’C Moreover, FP (B, i, By k,IB%rf}C) is well-defined. We
show both for very similar patterns in the forthcoming Proposmons 3.6 and 3.7 and give
proofs there. In case k = 0 we get a forbidden pattern characterization of By o = £ which
can be slightly simplified.

Proposition 2.22. It holds that L1 = .7:73(1@170,1331‘37‘6).

Proof. 1t suffices to prove FP(B1o,Biy) C FP(Byo, Bro, Biy). So let L € FP(Byo, Byy).
We need to show that there is some DFA accepting L that has none of the patterns B , I@Bl,o
and Bf‘(). For this consider the minimal DFA M with L(M) = L and assume to the contrary
that M has pattern B o. If s; # s in this pattern then we found pattern IFBLO because M
is minimal. If s; = s9 in this pattern then we found pattern Bre" So M has patterns Bl,O or

Brﬁ‘(), a contradiction. O

Note that this proof does not work for k > 1 since eventually w # w’ in pattern By ;. This
yields an NL-algorithm for the membership problem of £;. We guess in a straightforward
way the involved states and verify the reachability conditions given by the patterns. Similar
algorithms can be provided for the membership problem of By, for fixed k > 0, investigated
in [Ste85b, CH91]
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2.4 The Boolean Hierarchy over By

There is a natural connection between the class By j and the number of alternations in <j-
chains: the maximal number of such alternations determines the location of a language in the
Boolean hierarchy over By /5 ;. Our Theorem 2.30 below has the equivalence of (1) and (3) in
Theorem 2.21 as a corollary. We begin with the definition of Boolean hierarchies.

Definition 2.23 ([KSW87, CGH™88]). Let C be a class of languages closed under union
and intersection. The Boolean hierarchy over C is the family of classes C(I) and coC(l) for
[ > 1 such that

1. L € C(2l —1) if and only if there exist Ly, Lo,...,Loy1 € C with L1 D Ly D -+- D Loy
and L = Ui;% (Lgifl\L%) U Lgl_l and

2. L € C(2]) if and only if there exist L1, La,..., Ly € C with Ly D Ly D --- D Lo and
L=y (Lai1\La:).

It is known from these papers that every class defined via a fixed but arbitrary Boolean
combination of the languages from C coincides with one of the classes C(l) or coC(l). We have
taken this normal form result for the definition here. Moreover, the following inclusions are
known.

Lemma 2.24 ([KSW87, CGH"88]). Let C be a class of languages closed under union and
intersection. Then BC(C) = ;> C(1) and C(I) UcoC(l) C C(1+ 1) NcoC(l + 1) for I > 1.

The previous lemma can be applied in particular to the classes B /5 due to Lemma 2.14.

2.4.1 A Membership Criterion

We fix some k > 0 for this subsection. The Boolean hierarchy over By, is the family of
classes B 1 (l) and coBy s (1) for I > 1. We introduce a notation for alternating <j-chains.

Definition 2.25. Let L C AT, m > 0 and w,v € AT. We say that v is reachable from w

by a <g-chain having m alternations with respect to L, in notation w 220 v, if and only if
there exist wy, ..., w, € AT such that

1o w=wy 2w 2 wa = ... g Wy, =f v and
2. w; € Lifand only if wj4; € Lfor0<i<m—1.

If w; € L (w; ¢ L) we say that w; has signature + (—, respectively). Next we take a closer
look at such chains and define the sets of words that can be reached from a word (not) in a
given language L by m alternations.

Definition 2.26. For a language L C A" and m > 0 we define

L. ngJr(m) :def{U6A+‘3w (wEL/\wm:J;LU) } and

2. L (m) :def{U6A+‘3w (ngL/\wm:’l;Lv)}.

Here are some properties of these sets.
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Proposition 2.27. Let L C A" and m > 0. It holds that
1. Ly (m) = (A% \ D) (m),

2. LF(m+1)UL;, (m+1) C LS (m)NL; (m) and

3. Lif (m) and L;_ (m) are languages in By o .

Proof. To see statement 1 suppose v € L, (m) for some m > 0. If we look at the witnessing
=<g-chain with m alternations, then going from L to (A" \ L) just inverts its signature. Now
this chain witnesses v € (AT \ L); (m). The second statement is due to the fact that a <j-
chain with m + 1 alternations is also a k-chain with m alternations since =<; is transitive. For
statement 3 note from the definitions that Ly (m) and L, (m) are order ideals of (AT, <;). O

Any language L can be expressed as a possibly infinite union of set differences of sets
L} (m) and L (m).

Proposition 2.28. For L C AT the following holds.

1. L=Up>so (L 2m)\L} (2m + 1)) and
(AF\L) = (AN\LL(0) UUmsy (L (2m — DALY (2m)).

2. (AT\ L) = Unso (L, @m)\L;; (2m + 1)) and
L= (AN\L; (0)) UUmsy (Ly, (2m — D\L (2m)).

Proof. Tt suffices to prove statement 1 since the second statement follows from the first by
Proposition 2.27. Let m > 0 and v € L} (2m)\ L} (2m + 1). Because v € L} (2m) there exists

some w € L with w gL v. Now observe that if v € L then w ALk 1 v witnessed by the
same =-chain as before. But this is a contradiction to v ¢ L;(2m+ 1). So v € L. This shows
the inclusion from right to left.

For the other inclusion let v € L and look at all sequences of words wg,wr,...,w; € AT
with [ > 0 such that wg € L, w; = v, wg =g w1 Sk ... S wy, and w; # w41 for 0 <i <[ —1.
Note that at least one such sequence exists. In fact, there is only a finite number of them since
there are no infinite strictly descending <j-chains. We can associate with each such sequence
its number of alternations with respect to L. Let [,,,x be the maximal such number over all
considered sequences. First observe that I, = 2m for some m > 0 because wg,wy,,,, € L.
So we have v € LZ (2m) witnessed by the sequence with lax alternations. It cannot hold
that v € L (2m + 1) due to the maximality of Lyax.

To see the statement for (AT \ L) we can prove as before that v € L*(2m — 1)\L*(2m)

implies v € L for m > 1. Since for all v € A7 it holds that v %L v we have L C L} (0).
Hence v € AT\L'(0) implies v ¢ L. This shows the inclusion from right to left. On the other
hand, if v &€ L then there is no <g-chain starting with some w € L and ending with v, or
we may argue as before with the maximal number of alternations (which must be odd this
time). 0

In order to measure the number of inevitable alternations that occur with respect to a
given language L we look for the maximal m such that the sets L} (m) and L, (m) are not
empty.

Definition 2.29. For a language L C A" we define m:(L) =def SUP { m | L:(m) # ) } and
m;, (L) =qef sup { m ‘ Ly (m)#0}.
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Since the measure mz gives the maximal number of alternations in <g-chains it is the same
measure as used in Theorem 2.21. We relate the single classes of the Boolean hierarchy over
By /a1 to particular values of mz and my; .

Theorem 2.30. Let L C At and 1> 1. It holds that

1. L € Byp (1) if and only if m} (L) <l and
2. L € coBy (1) if and only if my (L) <.

Proof. We begin with statement 1 and we restrict ourselves to the case of even [, the other
case being proved completely analogously.
Let L C AT with m (L) < 2l. Then L; (i) = 0 for all i > 2. By Proposition 2.28 we can

write L as
-1

L=J (L{ @\L] (2i + 1))
i=0
and from Proposition 2.27 we see with Definition 2.23 that L € By 1,(20).

Now suppose L € By /s (2l). By definition there exist L1, La,..., Ly € By such that
Ll D) Lg DD Lgl and L = Uézl(mel\LZi)‘ With Lo —def A+ and L21+1 =def @ we obtain
(At \ L) = U._y(Lai\L2i+1). So each word from A* is contained in some set L;\L;y; for
some i € {0,...,2l}.

Assume to the contrary that L; (2) # 0. Then by definition of L (2l) there exist w € L,
some v € L$(2l) and wg, w1,...,wy € AT such that w = wy < w1 =<k ... <p Wy =k v
with we; € L and we;—1 ¢ L. For any ¢ € {0,1,...,2l — 1} there must be two indices
j,j, € {0, ... ,2[} with w; € L]’\LJ’+1 and w1 € Lj’\Lj’-i-l‘ Since w; € L < w;11 € L these
indices must be different. Note that (L;); = L; for all j. So from w; <} w;;1 we can conclude
that w;41 € Lj as well, which implies j' > j. Consequently, the words wp, w1, ..., wsy are in
20 + 1 different sets L;\L;yq1 with j > 1 (since wg € L C Ly). This is a contradiction since
there are only 2! such sets. Hence m; (L) < 2I.

Statement 2 follows from the first statement because m; (L) = m, (AT \ L) which is
immediate by Proposition 2.27. O

2.4.2 Strictness and Decidability Results

We give a strictness argument for the Boolean hierarchy over By /3 ; and show afterwards how
the measures m,:r and m, can be effectively computed.

Theorem 2.31. For every | > 1 it holds that B 9 (1) € coBy /o x(1).

Proof. Since |A| > 2 there are two different letters a,b € A. Let o =qer a**1. For a word
w € AZF! we define |wl|, to be the number of occurrences of « in the k-decomposition .
For r > 1 define

1. Mor_1 =gef {w € AZFH1 | |w|, is odd or |w|q > 2r — 1 } and
2. Moy =get {w € A%+l |lwl, is odd and |w|, < 27 }

We claim that for all { > 1 it holds that m, (M;) = [ and m} (M;) = | — 1. Then we obtain
from Theorem 2.30 that M; € By /5 (1) \coBi /9 (1) So it remains to prove this claim.
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We first show that my (M;) > I and m; (M;) > 1 — 1 for all [ > 1. Therefore we define
Yi =def ba¥a’ for all i > 0. It is easy to see that |y;|, = 7 and that y; =% i1 foralli > 0. Asin
the definition of the sets above we distinguish the cases of odd and even [. So let us assume first
that [ = 2r — 1 for some 7 > 1. We see that yo; & Mo,_1 and Y9541 € Ma,_q for 0 < j <r—1.
So we may take yo < y1 =<k ... =k Y2r—1 as a <g-chain having 2r — 1 alternations with
respect to Ms,_1 that witnesses m,;(Mgr_l) > 2r — 1. The same =<j-chain also witnesses that
mz(Mgr_l) > 2r — 2. Now let [ = 2r for some r > 1. Again we observe that yo; & M, and
y2j+1 € My, for 0 < j < r — 1. Since yo, € Mo, we may take yo =i y1 =k ... =k Y2r as
a =j-chain having 2r alternations with respect to Ms, that witnesses m, (My,) > 2r. The
same =j-chain also witnesses that m; (Ma,) > 2r — 1.

We prove next that my (M;) <1 and m; (M;) <l—1foralll > 1. For a <j-chain involving
words w; note that from w; <x w41 it follows that |w;|a < |wit1]a. Due to the definition of
the sets M, this inequality must be strict if there is an alternation with respect to these sets
between w; and w;41.

First assume again that [ = 2r — 1 for some r > 1. If m,, (Mayy—1) > 2r — 1 then there

are wg,wr,...,ws € AT such that wy =< w1 =i wa =<k ... =<k Wo, With we; & Mo,
and w1 € Ma,_1. It follows by the previous remark that |wa,|o > 2r — 1, a contradiction
to wo, & Moy._q. If mz(Mgr_l) > 2r — 2 then there are wg,wr,...,ws—1 € A" such that

wo jk w1 jk w2 jk e jk W2r—1 with wo; € M2T71 and W2i+4+1 ¢ Mg,«,l. Since in particular
|wola > 0 it follows that |wa,—1|o > 2r — 1, a contradiction to we,—1 & Ma,—_1.

Now let [ = 2r for some r > 1. Suppose m, (Ma,) > 2r. We may conclude as above that
in a witnessing <j-chain having (2r + 1) alternations we have |wa,4+1|o > 27, a contradiction
to wopy1 € Ma,. If m,j (Ms,) > 2r — 1 we obtain also as above for a witnessing <j-chain that
|war|o > 2r since |wgly > 0. This contradicts that we, € Mo, O

It follows immediately with the complements of the witnessing languages that also
coBy/21(1) € Bijax(l). So all classes of the Boolean hierarchy over By, are distinct. We
turn to the membership problems of these classes. Suppose some DFA M is given and fix
some [ > 1. We exploit the equivalence

L(M) € Byjai(l) <= mi (LM)) <l < LM){(1)=0

obtained from Theorem 2.30 and construct a nondeterministic finite automaton M; from
M that accepts L(./\/l);(l) An emptyness test will then provide the answer to the question
whether L(M) € By o ,(l). We carry out this construction in the following lemma where M,
realizes the idea of guessing a <j-chain having [ alternations with respect to L(M). We treat
here only the measure mz because this translates in an obvious way to m,_, just consider the
DFA for A*\ L(M). For nondeterministic finite automata (NFA) we let § : A x § — 2°.

Lemma 2.32. Let M be a DFA and let | > 1. Then there exists some NFA M; such that
IMi| < 2IM|APFF2)H3 and L(My) = LM)[ (D).

Proof. Let M = (A, S,6,s0,5") and set L =ger L(M). We are interested in the set of words v
that can be reached from some word w € L via a =<j-chain having at least [ alternations with
respect to L. Note that from I > 1 it follows that |v| > k + 1 and observe that L N Ask+1 C
L} (0)\L; (1). The automaton M, we have in mind guesses on input v a <lx-chain of sufficient
length and stores the k-prefix and the k-suffix of each word in the chain. It also remembers
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the states to which these words lead to in M. Then M; accepts v if and only if we find
[ alternations with respect to S’ in this sequence of states and if the stored k-prefixes and
k-suffixes match the ones of the input.

For each guessed word w; of the <x-chain we store a quadruple ¢; = (¢;,d;, fi, ;) where ¢;
(d;) is the current k-prefix (k-suffix, resp.) of w;, where f; denotes a 0/1-valued variable, and
r; is the state M reaches after input w;. The flag f; tells us whether there is already a w; in
the guessed chain (f; = 1) or whether the chain is still too short (f; = 0). We also store in a
variable ¢ (d) the k-prefix (k-suffix, resp.) of the input. So let the set of states 7" be defined
as the set of all tuples

[to,tl,. . ,tl,C,d]

such that for 0 < i <[ we have t; = (¢;, d;, fi,r:) with ¢;,d; € ASF U {e}, f; € {0,1}, r; € S
and ¢,d € A<F U {e}. Moreover, we set

S%) —def [(5555 07 80)7 (6555 07 80)7 ey (6555 07 80)5558]

(I41)—times

as the starting state. Let [to,t1,...,t;,¢,d], [t),t),...,t,c,d] € T be given with t, =
(¢, d;, fl,r}) for 0 < i < I. We define that [tg,t1,...,%,¢,d] € &§([ty,t),...,t,d,d],a) if

and only if ¢ = pi(c’a), d = si(d'a) and there exists some j with 0 < j <1+ 1 such that

1. for 0 <4 < j it holds that
a) if f/ =0 then t; = (si(d'a), sp(d'a),0,6(s0, sk(d'a))),
b) if f/ =1 then t; = t’,
2. and for j <14 <[ it holds that
a) d; =d and |d}| =k, and
b) t; = (¢}, sg(d'a),1,6(r, a)).

Let us comment a little bit on this definition before we continue. Clearly, on the next
letter a of the input we want to maintain the actual k-prefix and k-suffix of the input in
¢ and d. When reading the first k letters of the input there is no nondeterministic choice
possible for j because of 2.a, so it must be that j = [ 4+ 1. Since during this time all f; are
0, only the variables for the k-prefixes and k-suffixes are filled and the respective states of
M are stored (see 1.a). If the input is longer than k and if we have already guessed a chain
wo g wy g ... < w; < v, then we may guess a smallest index j such that the new last
element d'a of the k-decomposition of the actual input appears in w; first. We only obtain a
<j-chain again if all words wj, wji1,...,w;,v have the same k-suffix, ensured by 2.a. With
2.b we keep all old k-prefixes and set the new k-suffixes and states. The quadruples for the
words wyp, ..., w;_1 are not affected (see 1.b). It can also be the case that we have guessed
only a chain wy, < ... <k w; < v with m > 0 yet. If j > m we keep the actual values with
l.a and 1.b. If j < m then w; = wj1; = ... = wp_1 = d'a are the new first words of the
chain w; <, ... <g Wy <k ... < w; <g v and the flag variables f;,..., f,,—1 turn from 0 to 1
by 2.b.

We want to prove formally what we just described. Note that due to the definition of §;
only states [to,t1,...,t;,c,d] can be reached such that fof;--- f; € 0*1*. Moreover, it holds
that |T| < (2| M||A[2:+2)1+3,
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Claim. Let v € AZF*1 Then [tg,t1,...,1;,¢,d] € §(sh,v) if and only if
c = pr(v), d = sg(v) and there exist Wy, W11, ..., w; € AZFT! for some
m with 0 < m <[+ 1 such that

1. t; =(d,d,0,6(sp,d)) for 0 < i < m,
2. Wy g Wnt1 <g - .- < wp < v and
3. t; = (pr(wi), sp(w;), 1,6(s0,w;)) for m <i <.

Proof of Claim. We prove the claim by induction on the length of v.

Induction base. Let v = za with z € A, a € A and set s’ =g¢f 8(s0, 2). It is easy to see that
s1(sh, x) = {[(x,2,0,5),...,(x,2,0,5"), x,2]}. Now if [to,t1,...,t;,c,d] € &(s),v) then there
is some m with 0 < m <[+ 1 such that ¢; = (¢;,d;,0,7;) for 0 < i <m and t; = (¢;,d;, 1,7;)
for m < i < I. Since [tg,t1,...,1,c,d] must emerge from & (sh, ) by choosing j = m in the
definition of §;, we have that ¢ = pi(za), d = si(za), t; = (sk(xa), sk(za),0,(so, sk(za))) for
0 <i<mandt; = (x,sk(za),1,6(s',a)) for m < i <. Since za = v we obtain ¢ = pg(v),
d = sg(v) and t; = (d,d,0,6(sg,d)) for 0 < i < m. If we define w; =qef v for m < i <1 then
it holds that wy, < ... < w; <t v. For m <1i <[ we have x = pg(w;), sg(za) = sx(w;) and
because §(s’,a) = 6(8(so,x),a) = 6(s0,v) = 6(sp, w;) we have shown the ‘only-if’—part of the
induction base.

To see the ‘if’-part assume that ¢ = pi(v), d = sg(v) and there are wy,,...,w; € AZF+!
for some m with 0 < m < [ 4 1 such that w,, <k ... < w; < v. Then ¢ = pi(za), d =
sk(za) and we can conclude from |v| = k + 1 that in fact w,, = wpy1 = ... = w; = v.

So the assumptions translate to t; = (sk(xa), sx(za),0,d(so, sk(za))) for 0 < i < m and
t; = (px(za), sp(za),1,6(sp,xa)) for m < i < [. Now it can be seen that [tg,t1,...,%;, ¢, d]
is in (s}, v) by choosing again j = m in the definition of & when going from & (s}, z) to
6i1(sh, za).

Induction step. Let va be given with v € A**! and a € A. We show the ‘only-if’~part
first. Suppose we know that [to,t1,...,t;,¢,d] € §(s),va) for some [tg,t1,...,t,¢c,d] € T.
Then there is some m with 0 < m < [+ 1 such that ¢t; = (¢;,d;,0,7;) for 0 < ¢ < m and
t; = (ci,di, 1,7;) for m < i < I. Moreover, there is some [t},#;,...,t},c,d] € §(sh,v) with
t; = (¢, d;, fl,r}) for 0 < i < [ such that [to,t1,...,t,¢,d] € 6§([ty, th,...,t,c,d],a). Let j
with 0 < j <[+ 1 denote the nondeterministic choice of this transition.

By hypothesis, we have ¢ = pg(v) and d’ = si(v), and by definition of § it holds that
¢ = pr(da) and d = si(d'a). Hence d = si(va) and because |¢/| = k we have ¢ = ¢ = pi(v) =
pr(va). There also is some m' with 0 < m’ < [+ 1 such that f/ = 0 for 0 < i < m' and
fl=1form’ <i<lI. Since f; =0 for 0 < i < m it must be that m < m’ and also m < j. So
for 0 < i < m it holds by definition of é; that t; = (sg(d'a), sx(d’'a),0,6(so, sk(d'a))). Hence
t; = (d,d,0,6(sp,d)) for 0 < i < m which shows statement 1 of the claim.

If m < m/ then it must be that j = m because f;, = 0 and f,,, = 1. In this case the length
of the guessed <1j-chain strictly increases when going from v to va. If m = m’ then m’ < j <.
We distinguish these two cases. By hypothesis there exist w; ,,w], q,...,w; € AZk+1 gych
that w),, < w1 < ... <gw; <govand ) = (pp(w]), sp(wp), 1, 6(s0,w;)) for m" <i <.

Case 1. Suppose m < m’ and hence j = m. So by definition of 6 it holds that d; = d’
and |dj| = k for m < i <, and since f;, = f},.; = ... = fl.,_; = 0 we have by hypothesis
that ¢, = (d',d',0,6(so,d")) for m <i < m'. Define for m <i < m' words w; =qer d'a and for
m' <i <1 set w; =gt wja. For concise notations we set wy, ; =der v and wyy1 =ger va. Then
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for m <i <m’' —1 we have d'a = w; < wi11 = d'a. Moreover, for m’ < i <[ it holds that
sp(w)) = dj = d' = sp(v) and hence we have wja = w; < wip1 = wj,a for m" < i < by
Proposition 2.3. We also see that wy,/_; = d'a = si(w!,)a < w],,a = wy,. Together we have
obtained w,, < ... <l w; <x va which gives statement 2 of the claim.

For m < i < m/ we have by definition that w; = d'a and by hypothesis that ¢, = d,
d; = d and r;, = 6(sg,d'). By definition of & it holds that ¢; = (¢}, sg(d'a),1,6(r},a)) and
hence t; = (pg(w;), sk (w;), 1, 6(s0, w;)). For m’ < i <1 we have by definition w; = wia and by
hypothesis that ¢, = pi(w}), d} = sg(w}) and 7, = (s, w}). By definition of ¢ we have t; =
(¢, sp(d'a),1,6(r;,a)), and since d’ = d} it follows that ¢; = (pg(wia), sp(wia),1,6(so, wia)).
Together we see that t; = (px(w;), sk(w;), 1,6(so,w;)) for m < i <[ which gives statement 3
of the claim.

Case 2. Now assume m = m' and hence m’ < j < [. Define for m < i < j words
w; =dof w; and for j <4 <1 set w; =qef wia. Again, set for concise notations w;, | =det v and
Wi+1 =def Va. Statements 2 and 3 are clear for w; with m <4 < j by hypothesis and since by
definition of §; we have t; = t}. From w}-fl kag- we obtain wj_; = w}q kag- kag-a = wj by
Proposition 2.3. By hypothesis we have d; = sj(w}) and from the definition of §; it follows that
sp(wj) = d' for j < < 1. So we can conclude as in the first case that w; = wja<pwj, ;0 = wit1
for 7 <4 <. Together we have w,, < ... <p w; < va.

Additionally to d; = si(w}) it holds for j < i <[ by hypothesis that ¢, = pg(w}) and r} =
8(s0,w}). By definition of §; we have as before for j < i <1 that t; = (¢}, sg(d'a), 1,6(r}, a))
and it follows that t; = (pg(wia), sk(wia),1,8(so, wia)) = (pr(w;), sk(w;),1,6(so, w;)). This
completes the proof for statements 2 and 3 for the second case.

Next we show the ‘if’—part. Assume that ¢ = pg(va), d = si(va) and there exist
Wiy -+, w; € AZFHL for some m with 0 < m < [+ 1 such that t; = (d,d,0,(so,d)) for
0 <i<mand wy, <g ... <gw <gva and t; = (pr(w;), sk(w;), 1,6(so,w;)) for m < < 1. We
need to show [tg,t1,...,;,¢,d] € &(sh,va) and start with the construction of a <i;-chain for
v from the given <lg-chain for va in order to apply the hypothesis below.

Set wi1 =def V@, W), =def U, ¢ =def Pk(v) and d’ =qef sx(v). We give an algorithm that
computes a <lg-chain for v stepwise for n = [ downto m. During this computation we will
ensure that before each step n the following condition (C) holds.

(C) For n+1 < 4 < [+ 1 there are words w) such that w; = w}a and
sp(wj) = d', and for n +1 < i <1 it holds that w; < w; ;.

If we set initially n = [ then (C) holds. We proceed as follows.

Step n: (1) If n < m then sTOP.
(2) If wy, < wy,; then sTOP.
(3) If |lwpa™t| = k then sTOP.
(4) Set w!, =gef wpa~! and continue with Step n — 1.

Let us first argue why before Step n — 1 again (C) holds. After line (1) we know that n > m.
After line (2) we have wy, <} w;, . It follows that sj41(w,) = d’a since otherwise we obtain
from wy, <} w},ja and sp(w), ) = d' that w, < w;, . With the definition in line (4) we
have si(wy,) = d' and since we know that |wy,| > &k + 1 we obtain wy;, <x wj,; ;. The latter is
because w],a < w), 10 It is clear that the proposed algorithm stops. We distinguish in cases
where the algorithm stops.
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Case 1. Suppose our algorithm stops in line (1) or line (2). In the former case we have
by (C) that for m < i <[+ 1 there are words w} such that w; = wia and si(w}) = d’, and
for m <4 < [ it holds that w; <l wj, . In the latter case we have n > m and also by (C)
that for n +1 < ¢ < [+ 1 there are words w} such that w; = wia and si(w}) = d', and for
n+1 <4 <[ it holds that w] <y wj, . If we define for m < i < n words w; =gef w; we obtain
for m < i <1 that wj < wj; since w, < w;, ;.

Taking this together, we can state that for m < ¢ < [ there are words w} such that
wj < w;, ;. Moreover, for m < i < n it holds that w; = w; and for n +1 < i < [+ 1
we have si(w}) = d’ and w; = wla. Note that m = n + 1 is possible. By hypothesis we
know that [t(,t],...,t;,c,d] € &1(sh,v) with ¢, = (d',d’,0,6(sg,d’)) for 0 < i < m and t; =
(pr(wy), sk (w}), 1,6(s0,w})) for m < i < 1. Since for n+1 < i <141 we have d} = si(w}) = d’
we can apply 6 to [t,t],...,t},¢,d'] and input a with j =gef 7+ 1. Recall that by definition
of 6 we obtain a state [t7,t7,...,t/,¢",d"] with ¢ = py(ca), d’ = si(d'a) and

—t! = (sp(d'a), sk(d'a),0,6(so, sp(d'a))) for 0 < i < m,
—t! =t for m <i <nand
—t! = (¢}, sg(d'a),1,6(r},a)) forn+1 <7 <IL.

We have ¢/ = ¢ = pg(va) = ¢ and d’ = sg(va) = d. Moreover, it holds that ¢/ =
(d,d,0,6(sg,d)) for 0 < i < m and we have t] = (pg(w;), sk(w;), 1,6(s,w;)) for m <i < n
because we have defined w, = w;. Now let n + 1 < i < [. Then ¢, = pi(w}) = pr(wia) and
d' = d = sp(w}) implies si(d'a) = si(wja). Finally, from 6(r},a) = 6(6(so, w}),a) = 6(so, wia)
it follows that t! = (px(w;),sk(w;),1,8(s0,w;)) for n +1 < ¢ < [. Together this shows
[to,t1,- .., t, ¢, d] € §(sh,va).

Case 2. Assume our algorithm stops in line (3). Then n > m. Since it did not stop in line (2)
we have sgi1(wy,) = d'a and from |w,| = k + 1 it follows that w, = wpi1 = ... = w, = da.
Moreover, by (C) we have for n +1 < ¢ < [ + 1 that w; = wja and si(w}) = d’, and for
n+1 < i <1 that w]<xw] . By hypothesis we know that [t),t},...,t,c,d] € §(sh,v) with
t, = (d',d',0,6(s0,d")) for 0 < i < n and ¢, = (pr(w}), sk (w}),1,8(so,w))) for n +1 < i < I.
Since we have for m < i <n that d; =d' and for n +1 < i <[+ 1 that d; = sg(w}) = d' we
can apply & to [ty,t],...,t, ¢, d'] and input @ with j =ge¢ m. Similar to above, we obtain by
definition of ¢; a state [t7,t],...,t],c",d"] with ¢ = pr(ca), d’ = si(d'a) and

—t! = (sp(d'a), sp(d'a),0,6(s0, sk(d'a))) for 0 < i < m and
—t! = (¢, sg(d'a),1,6(r},a)) for m < i <.

We conclude as in the first case that ¢/ = ¢, d’ =d and that for 0 <i<mandn+1<i <]
we have t] =t;. For m < i <n we have ¢ = ¢, = d' = pi(d'a) and 6(r,a) = 6(6(so,d'),a) =
8(s0,d'a). Note for m < i < n that w; = d'a and hence ¢! = (pg(w;), sp(w;), 1, 6(so,w;)). This
shows [to,t1,...,1, ¢, d] € §(sh,va). (End proof of Claim.)

We specify the set of acccepting states for M;. Let [to,t1,...,t;,¢,d] € T with t; =
(i, di, fir;) for 0 < i < 1. We define [to,t1,...,%, ¢, d] € S] if and only if it holds for 0 <4 <1
that

—fi=1,¢ =c¢ d; =d and
-7, €8 —i=0 mod 2.

The first item ensures that we have guessed a <p-chain wy < w1 =<i ... =g w; =i v, while
the second one takes alternations with respect to the given DFA M into consideration. We
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set My =qef (A, T, &, 8), S7) and claim that L(M;) = L(M)z(l) To see this we conclude

veELM) = §(sh,o)nS £0

<= there exists some [to,t1,...,t,¢,d] € §(sh,v) N S

< ¢ =pr(v),d = sg(v) and there exist some wy, ..., w; such that
wo i ... < w; < v and for 0 < ¢ <[ it holds that
ti = (pe(wi), sp(wi), 1, 6(s0, ws)) with py(w;) = ¢, sp(wi) = d and
(6(s0,w;) € 8"~ i=0 mod 2)

<= there exist wy,...,w; such that wg < ... < w; <§ v and
(6(sp,w;) €S"—=i=0 mod2)for0<i<I

— ve LM

where the third equivalence is due to our claim and the definition of Sj. 1

We use this lemma to show the decidability of the membership problem of By, () for
fixed I > 1 and k > 0. There is even an efficient algorithm for this which we sketch in the
following proof.

Theorem 2.33. For fired | > 1 and k > 0 the membership problems for By (l) and
coB3; /2,k(l) are decidable in nondeterministic logarithmic space NL.

Proof. Suppose some DFA M is given. We consider the NFA M; from the proof of Lemma
2.32 and we need to determine whether L(M;) = (). This is equivalent with the non-existence
of a path in the transition graph of M; between the starting state and one of its accepting
states. Hence, we have to solve the graph non—accessibility problem for the transition graph
of M; = (A,T,&;,sh, S;). To do this, we start with the initial state sh and then continuously
guess a next input letter and a nondeterministic choice j for the transition function 6;. We
then determine with help of §; the next state of M;, overwrite the actual state and check
whether the new state is an accepting one. If so, the algorithm stops and accepts the input,
otherwise we continue this procedure. The space needed to do this is dominated by the space
needed to store a state of M;. Note that the needed counters to reconstruct §; remain small.
So this can be done in space < c- (k-1 -log|A|+1-log|M)]|) for some constant c. Since NL is
closed under complement this shows the theorem. 0

With help of Theorem 2.21 we can now bound [ for fixed k, which yields an algorithm that
determines for a regular language its exact location in the Boolean hierarchy over By ;.

Theorem 2.34. Let L C A" be a regular language. There is a recursive and monotone
decreasing function fr such that for k > 0 it holds that

L€ By if fu(k) =1,
L€ Bijar()\ Bijok(l—1) if fr(k) =1 forl>2 and
L ¢ Bk if fr(k) = oo.

Proof. Define fr,(k) =qef m;:(L) + 1 for k£ > 0. Observe that u <j,1 v implies u < v and
hence every =<ji-chain is also a <j-chain. It follows that mk++1(L) < mj (L) for all regular
languages L and all k£ > 0. So f;, is a monotone decreasing function.

Let M be a DFA such that L(M) = L and let £k > 0 be given. To compute fr(k) we

need to determine m;’ (L) = m; (L(M)). We may apply the algorithm from Theorem 2.33 for



2.5 The Boolean Structure of Dot—Depth One 59

1=1,2,..., 2242 (k+D)?IMI |1 apswering the questions mj (L(M)) < L. If the first positive
answer occurs then we output [ as the value for fr (k). If all answers are negative then we
output a special symbol for co. Note that this computation can be done by a binary search
since the answer string is monotonic. The remaining parts of the theorem are a consequence

of Theorems 2.30 and 2.21. O

For k = 0 the results of this subsection carry over to the classes L;/5(l) and coLly/5(l)
of the Boolean hierarchy over level 1/2 of the STH, i.e., it is a strict hierarchy of classes
with decidable membership problems. Due to the logical characterization which we recalled
in Theorem 1.23, this also holds for the Boolean hierarchy over the class of languages that
are definable by a ¥; formula of FO[<].

2.5 The Boolean Structure of Dot—Depth One

We have already seen that By/s = Uj>o B2k and Bi = Uy Bik. This relation holds for
every level of the Boolean hierarchy. Recall that we know from Lemma 1.21 that B /5 is closed
under union and intersection, so the classes By 5(l) and coB; j5(l) form the Boolean hierarchy
over By ;.

Proposition 2.35. Let [ > 1. It holds that

1. Bl/z(l) = Ukzo Bl/2,k(l) and
2. Bijax(l) C Bijgp41(l) for all k > 0.

Proof. For the first statement let L € Bj/y(l) via languages Li,Lo,...,L; € Bjjy. By
Lemma 1.29 we have L; € By, for 1 <14 <[ and suitable k; > 0. With Proposition 1.28
we see that L; € By for k =gef maxi<;<ik; and hence L € By 1(l). Conversely, let
L € By 91 (l) for some k > 0. Since By, C B/, we immediately have L € B j5(0).

To see the second statement we obtain By /o (1) € By/gp41(1) from Byjg i C Byjg i as
before. That this inclusion is strict follows from By /g 141 € By, which we show next.

Define for k > 0 languages Ly, 1 =gef a* 71 AT and note that there are at least two different
letters a,b € A. Then L1 € By s 41 because

L= |J U @ ealwka.

aEART2 e Ak+1

To see that Ly ¢ Bl,k let 9 =qet a2 and for i > 0 set T9;41 =def akbfbgi and xg;12 =def

azx2;+1. Then for all ¢ > 0 we have x; <} z;1+1 and it holds that xo; € Lyx11 and x9;11 & Lg11.
So xg 2 1 =k T2 =k ... 1is a <p-chain having an infinite number of alternations with respect
to Lyy1. Hence Ly & By i by Theorem 2.21. O

These relations hold also for the classes coB; /s (I) which can be proved completely analo-
gously. So the Boolean hierarchies over B 5 ) amount to the Boolean hierarchy over Bj ;.

We have already noted that m;", (L) < m; (L) and m, (L) < my (L).

Definition 2.36. For a language L C A" we define m™ (L) =qef ming>om; (L) and
m™ (L) =def ming>omy (L).
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Fig. 2.6. The fine Boolean structure of B

The measures m™* and m™ relate to the single classes of the Boolean hierarchy over B; /2-

Proposition 2.37. Let L C A" and let | > 1. It holds that

1. L € By)(l) if and only if m* (L) <1 and
2. L € coBy (1) if and only if m™(L) < L.

Proof. We only argue for the first statement. By Proposition 2.35 we have that L € B, j5(l) if
and only there exists some k > 0 such that L € By (). By Theorem 2.30 the latter holds
if and only if there exists some k > 0 such that m} (L) < [ which in turn is equivalent to
m™ (L) < I by the definition of m™. 0

Unfortunately, it is not clear how to compute m™ from m,:r although the latter is computable
for fixed k. Here a result from [Gla99] can help where the classes of the Boolean hierarchy
over By, are characterized as in Proposition 2.37 but in terms of a measure ma for a given
DFA M. This measure involves a relation on so—called structured words depending on M. It
follows that m™*(L(M)) = maq. It is shown in [Gla99] that the question if maq < [ for fixed
[ is decidable, which implies the decidability of the membership problem of B /5(l). Since the
membership problem of B; is decidable, one can compute the exact level of some language in
the Boolean hierarchy over B 5. A strictness argument for the Boolean hierarchy over B/,
is also given in [Gla99]. In fact, for the latter the languages M for k = 0 from Theorem 2.31
can be used.

Figure 2.6 gives the structure of B; in terms of Boolean combinations on one hand and
in terms of the sequential parameter k£ on the other hand. This is a refinement of the figure
at the beginning of this chapter. We show now how we can locate a given language L in
this two—dimensional landscape and further investigate how the function f; behaves (see
Theorem 2.34). Observe that for a regular language L and for [ > 1 it holds that L € B /5(1)
if and only if limy_, o fr(k) <. So for L € B; the function fr, reaches the exact level of L in
the Boolean hierarchy over B 5 as k goes to infinity, and fr(k) = oo for all k> 0 if L ¢ B;.
The following can be done for a given regular language L C A™T.
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1. Determine if L € B; by one of the algorithms provided in [Kna83, Ste85b, CH91]. If
L & By then fr(k) = oo for all k > 0, otherwise continue.

2. Determine I =gf m* (L) + 1 = limg_, fr.(k) with help of the results in [Gla99].

3. Compute for k = 0,1,2,... the value of f(k) (Theorem 2.34) until f;(k) =’ for some
k. Then also fr (k') =1 for all ¥’ > k.

All this can be carried out effectively. We may interpret the graph of f; as follows. As long as
fr(k) is infinite, it is not possible to describe L by combinations of blocks of length k+ 1. If L
is in B; then there is some minimal kg where this is possible. The minimal amount of Boolean
complexity we need to spend for L in case of this particular kg is given by ly =qef fr(ko). If
lo = I’ then ky is optimal in the sense that any larger k does not save Boolean combinations. If
lop > I’ then trade—offs are possible and we can use the above algorithm to select the amount of
descriptional complexity for L we like to spend — in terms of k versus Boolean combinations.

However, it remains to investigate if there are any trade—offs at all. For a partial answer we
consider the following example language. Recall from the proof of Theorem 2.31 the language
M; for k = 1 and define L =4¢¢ M3U {bb}. Then we can compute via the above procedure the
following table, in which we also provide witnessing <j-chains having the maximal number
of alternations.

k | fro(k) | witnessing <j-chain

0 00 aa =g aba =g aaba =<y ababa <y aababa < ...

1 5 bb <1 bbabb <1 bbaabb =<1 bbaabbaabb <1 bbaabbaabbaabb
2 3 b3aab® <9 b3aab3aab® <5 baab®aab®aab®
3 3 braab* <3 b*aab*aab* <3 b*aab*aab*aab*
s 3

Intuitively, there are no <g-chains having more alternations than our witnesses here, because
w =3, v implies that |w|, < |uly for all @ € A¥+1 (vecall that |w|, is the number of occurrences
of a in the k-decomposition @). Note that L is a language of infinite cardinality having
trade—offs in our setting. More precisely, the table says that L is not in Bjg, but it is in
Bi/2,1(5)\B1/2,1(4). We can do better if we choose k = 2, but no larger k has effects on the
Boolean complexity. In particular, we have L € Bj/5(3)\B;/2(2). The reason for the jump
between k = 1 and k = 2 here is that bb is too short to take part in <j-chains for k > 2.
More complicated stepwise functions can be obtained by similar constructions.

What we observed here in the example is a more general phenomenon: whenever we can
bound the length of at least one word in every =<j-chain having the maximal number of
alternations, then we can take for some k¥’ > k all these words into a finite set from By 2,k
This shortens all witnessing maximal chains and hence, reduces the level in the respective
Boolean hierarchy. In particular, we have this case when there is only a finite number of
=k-chains having a maximal number of alternations.

So the question remains whether we can still save Boolean combinations by increasing k if
the condition we described does not hold. We feel the answer should be no, but could not give
a proof yet. We think that this is an interesting point concerning dot—depth one languages
and leave it as an open question here.
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2.6 Forbidden Pattern Characterization of B,

We derive in this section a forbidden pattern characterization of B; using Theorem 2.21.

Definition 2.38.

1. Pattern B, is defined as the subgraph given in Figure 2.7 with z,y,v,u,v,z € A* and
w,w € AT,

2. Pattern D is defined as the subgraph given in Figure 2.8 with z,u,v,2 € A* and w € AT.

3. Pattern D' is defined as the subgraph given in Figure 2.9 with z, u, v,z € A* andw € A™.

© O O
O Q/V\O/RQ

+/—= —/+
Fig. 2.7. Pattern B; with w,w’ € AT,

E)— 6 &) D D ®

v v
W +/- ~/+
Fig. 2.8. Pattern D with w € A™T. Fig. 2.9. Pattern IF*¥ with w € A™.

To see that FP(B;) and FP(B1,D,D*) are well-defined we consider pattern B; since no
new argument is needed for the others. Suppose there is some DFA accepting some language
L and which has pattern By via z,y,y’,u,v,2 € A* and w,w’ € AT. Let M be an arbitrary
DFA with L(M) = L and set r =g¢ |[M|. If we substitute

— & =qet 2W", J =def Y(W')", ¥ =aer YW,

— 1 =gef u(W")", O =qef vw" and

—w —def wr!’ (i —def (wl)r! and 2 =def %

we see with Proposition 1.34 that we find the required loops in M and one verifies that these
words give rise to pattern By in M.

Theorem 2.39. It holds that By = FP(B1) = FP(Bq,D, D).
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Proof. Suppose L € B; and let M be a DFA with L(M) = L. Then there is some k > 0
such that L € By . By Theorem 2.21 we know that M has none of the patterns By g, Iﬁ%l,k
and Af‘,’g. Assume to the contrary that M has pattern B;. Since w,w’ € AT we may take
W =gt W and @' =gef (w')* to see that M has pattern B k, a contradiction. So M is a DFA
with L(M) = L which does not have pattern B;. This shows that L € FP(B;).

Now let L € FP(B1). Then there is some DFA M = (A, S, 6, s9,S") with L(M) = L and
which does not have pattern B;. Assume to the contrary that L ¢ FP(By,D, D), so M has
one of the patterns By, D or D*". It suffices to show that D and D™ are special cases of B1.
First suppose M has pattern D via z,u,v,z € A* and w € A" involving states s; and ss.
Then we set

A IN N
— X =def L5 Y =def U, Y =def U,

~ ~l ~
— W =def W, W =def W, 2 =def % and
— U =def €, U =def €-

These words give rise to pattern B; in M involving the states §; = §3 = 85 = s1 and
89 = 84 = 8¢ = s2. As the second case, assume that M has pattern D™ via x,u,v,z € A*
and w € AT involving states s; to s5. This time we just set ¥ =gef €, ¥ =def € and W' =qef W
to see together with x,u,v,w, z that M has pattern B;.

Finally, let L € FP(By,D,D*). Then there is some DFA M = (A,S,é,so,S’) with
L(M) = L and which does not have any of the patterns B;, D or D™. Assume to the
contrary that L ¢ By, so for all £ > 0 it holds that L ¢ Bj ;. It follows from Theorem 2.21
and because FP(B1,D, D) is well-defined that for all & > 0 the DFA M has one of the
patterns By , IFBLk or Iﬁ%f}c We look at the case k = |[M|° and show that pattern B x, Iﬁ%l,k
or Iﬁ%rfjc in M implies pattern By, D or D™ in M, respectively, which is a contradiction.

Case 1. Assume that M has pattern By ;, via z,y,vy',v,u,w,w’, z € A* with |w| = |u'| = k
(see Figure 2.3). We apply Proposition 1.35 to w’ and the three pairs of states

— (6(s0,zy), 6(s0, zyw")), (8(so,zu), (0, zuw’)) and (6(so, zyw'vwu), 6(so, ryw' vwuw')).

This provides states $2, §3 and §g, respectively, such that w’ = wjw'w), and §; has a w’-loop
for i = 2,3,6. We do the same thing for w and

— (6(s0, zyw'y’), 6(s0,x)), (6(s0, zuw'v), 6(sp, zuw'vw)) and (8(sp, zyw'v), 8(se, ryw'vw))

to get states §1, §5 and §4 having a w-loop where w = wiwws. Now we find pattern B,
involving states §; to 3¢ when considering

S 1,/ N Y 1o
— L =def TYW Y W1, Y =def W2YW1, Y =def WYy W1,

— U =def WoUW], U =def WhHvW1, 2 =gef Whvwuz and

~ ~

-, € AT.

Case 2. Assume that M has pattern Bl,k via x,u,v,w,z € A* with |w| = k (see Figure 2.4).
We apply Proposition 1.35 to w and

— (6(s0, zuwv), 6(sp, z)) and (6(sg, zu), 6(sp, zuw))

to get states §; and $§o, respectively, having a w-loop where w = wywws. We find pattern D
involving states §; and §o when considering

— T =gef TUWVWT, U =def WoUWT, T =gef W2VWT,
— 2 =gef woz and W € AT.
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Case 3. Assume that M has pattern Iﬁ%rf‘,; via z,u,v,w, z € A* with |w| = k (see Figure 2.5).
We apply Proposition 1.35 to w and

— (8(s0, ), 6(s0, zw)), (6(s0, zwu),(so, rwuw)), (8(so, zwv), 8(s0, rwOW)),
— (8(s0, zwuww), 6(sg, rwuwvw)) and (6(sg, zwvwu), §(sg, rwWVWUW))

to get states §; for 1 < ¢ < b, respectively, having a w-loop where w = wiww,. We find
pattern D™V involving states §; to §5 when considering

— T =gef TW1, U =qef W2UWT, U =def W2VWT,
— 2 =qef wovwuz and W € AT,

O

The previous theorem yields an NL-algorithm for the membership problem of 3; as follows.
Let a DFA M = (A4, S,6,50,5’) be given. We guess states si,...56,s7,s~ € S and check
whether st is accepting and s~ is rejecting. Then we verify sg — s; and (s3,s¢) —
(st,s7). If the latter fails we check (s3,s6) — (s7,s"). Now it remains to verify that
(s1,84,85) — T (81, 84,85), (82,83,86) — (s2,83,86), 51 — 82, S3 — 81, (85,84) —
(s3,56) and (s3,s6) — (S5, 54). Similar algorithms have been investigated in [Ste85b, CH91].

2.7 Discussion and Bibliographic Notes

We want to make a few remarks concerning the major characterizations of B j from [Ste85a,
Theorem 3.3]. With the way we have cited this theorem as Theorem 2.21 we have translated
the notations from [Ste85a| as follows. Pattern Bl,k is given as the property of ‘k-stableness’,
i.e., a minimal DFA is k-stable if and only if it does not have pattern Iﬁ%l,k. The patterns
Af‘,’g and By ; are called ‘forks of type I' and ‘forks of type II’, respectively. For systematic
reasons we chose here a uniform treatment in terms of patterns. However, there is a little
difference in the pattern definitions. It is additionally required in [Ste85a] that the states
s3 and sg¢ in pattern B; ; and also the states s3 and sg in pattern I@Brﬁ must be in distinct
strongly connected components. It is easy to see that we can drop this condition if all three
patterns are forbidden: if s3 and sg are in the same strongly connected component then we
find pattern By 5 (in both cases).

Moreover, in [Ste85a] the classes B i, are defined differently, i.e., based on certain equiv-
alence relations from [Sim72]. To show that this definition coincides with our definition, one
has to show that L € B; if and only if there exists some m > 1 such that L is in the
Boolean algebra generated by languages L; with L; C A<*™ or L; = (w|a, ..., am|v)k
where a; € A¥1 and w,v € A*. For the ‘if’~part we only need to observe that languages
L; C A<Ft™ are in the Boolean closure of B; /2,k- This is due to the fact that we can express
words x with lengths > k 4+ 1 as

{z} = (@) \ |J W €BC(Bijy)
=LY
Ay
since the latter union is finite by Theorem 2.12. For the reverse implication one can show
that the mentioned Boolean algebras are included in each other for increasing m. This is very
similar to Proposition 1.28.
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The relation =< is introduced as so—called ‘k-embeddings’ in [Ste85a, Section 1.2]. Unfor-
tunately, the definition given there is misleading since it requires that u and v have the same
prefix of length 2k if there is a k-embedding from u to v (this is inconsistent with [Ste85a,
Theorem 3.3]). A look at the proofs in [Ste85a] shows that in fact k-embeddings are used
in the way we have defined <j here. We have not yet mentioned [Ste85a, Proposition 4.1]
which says that a language L is in B if and only if it is in By, with & < |M]3 and where
M is the minimal DFA accepting L. We want to remark that another proof of the remaining
statements of Theorem 2.21 can be concluded from [Sch99c]|.

The characterization of B; in terms of B; can be compared to the algebraic condition
from [Kna83] where the decidability of the membership problem of By was first shown. The
algebraic condition is reflected in a straightforward way in the structure of the subgraph
defined by B;.

The patterns D and D™ itself characterize the classes of languages that have locally R-
trivial and locally £L-trivial semigroups, respectively, which is a result from [CPP93]. It looks
like the authors have rediscovered these patterns since they do not mention [Ste85a]. We will
further investigate these classes in the following chapter.

Finally, we want to mention that for the case k = 0 the results of Subsection 2.4 can be
found in [SW98], where the usual subword relation and the Boolean hierarchy over level 1/2
of the STH are studied. The hint to look at [High2] for a connection of the subword relation
to order ideals is from Dietrich Kuske, Dresden.
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3. Deterministic Languages and Restricted Temporal Logic

We refer to the main results of this chapter. We

define the classes of k-deterministic languages in

Section 3.1 and isolate their main property (cf.

Lemma 3.3). For fixed k¥ > 0 we prove in Sec- ' .
tion 3.2 a forbidden pattern characterization of / \

these classes (cf. Theorem 3.5). In Section 3.3
we turn to restricted temporal logic, recall the — Bz coBs/ \L\

needed definitions and introduce fragments of \ \
. .. . ! Bs/zk coBsz ok
this logic in terms of the nesting depth < k of |
the next operator. These fragments give rise to  ~-__ \ £3/2 coLs)s
the so—called next hierarchy of classes of lan-
guages that are definable by formulas restricted

in this way. Then we show that the languages By 6051 /2 \’/\\
of level k of the next hierarchy are just the k-
deterministic languages (cf. Theorem 3.17). Our 51/2 K coBiz \L\
characterization in terms of forbidden patterns
allows to give concise proofs of decidability and

strictness results for the next hierarchy (cf. The-

orems 3.21 and 3.22).
In Section 3.4 we investigate the relation of k-deterministic languages to the DDH and

the STH, and we see how these classes fit into this landscape (cf. Figure 3.3). Finally, in
Section 3.5 we show that there are close connections between the complexity class A and
languages definable in restricted temporal logic (cf. Theorem 3.31).

£1/2 coLly

3.1 Generalized Deterministic Languages

Recall with Definition 1.25 that a language (X1, a1, ..., Yni1, 0pyi1)r With n >0, oz € AFH
and X; C AFt1 consists of those words z € A>F*1 whose k-decomposition starts with a
number (possibly zero) of elements from ¥, then a4, followed by a number (possibly zero) of
elements from X5, then s and so on, and ends with «,, 1. Of special interest in this chapter
are languages that admit a unique such decomposition.

Definition 3.1. Let K > 0 and L C AT.

1. L is left k-deterministic if and only if there exist n > 0, o; € A¥*1 and ¥; C A*! with
L=(31,00,...,%0,Qn, Xni1,nt1)k and for 1 < i < n it holds that a; ¢ %;.

2. L is right k-deterministic if and only if there exist n > 0, oy € A¥*! and ¥; C A**! with
L= (al, Y1,00,Y9,...,0m41, En—i—l)k and for 2 < i <n+ 1 it holds that a; & %;.
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Note that the requirement a; ¢ 3; does not range over the last (first) index. We refer to

these languages as k-deterministic languages. Deterministic languages for k = 0 and sets
ba1 A7 - - an A} were studied in [Eil76, Pin86].

Definition 3.2. Let £ > 0. Then Dleft is the class of languages that can be written as finite

unions of left k-deterministic languages. Moreover, D“ght is the class of languages that can

be written as finite unions of right k-deterministic languages. We may eventually take a finite

set D C A=F to each of these languages.

It is easy to see that a language belongs to DI if and only if its reverse belongs to D“ght due

to the symmetric definitions. The following lemma demonstrates the effect of the property
a; € ; in the representation of a language L. It basically says that the partitioning of a
word x that witnesses x € L must be the same for all zy € L.

Lemma 3.3. Let k,s > 0. Let ay,...,as € A and $q,..., 35,41 C A with oy € 55
for 1 < i < s. If x and xy belong to (X1,01,...,%s, s, Nst1)k with T = (B1,...,0) and
@ = (ﬁlw .- 7/6l7/61+17‘ .. aﬁl-ﬁ-m)) then /Bl-f—i S Es+l fOT' 1 S 1 S m.

Proof. Suppose all prerequisites of the lemma are given. Since z € L there are 1 < j1 < jo <

. < Js <l with 8j, = a; and §; € ¥; with j; < j < ji1 for all 0 < i < s (set jo =qef 0 and
Js+1 =def | +1). The same holds for zy € L, so there are 1 < j| < j, < ... < j, <1+ m with
Bj: = aj and §B; € X; with Ji < J < jipq forall0 <i <s(set jy =der 0and ji; =qer [+m+1).

We show j; = j; for all 0 < ¢ < s by induction on ¢. The induction base is clear by
definition, so assume that j;;1 # j;,; for some i with 0 <14 < s. Without loss of generality
we may suppose that j{_H > jit+1. Moreover, we know that BjHl, . ’ﬁfz"ﬂ*l € Y;4+1. Since
by hypothesis j; = j; this sequence in fact starts with elements Gj,41,...,08j, -1, 085, and
we get 3j,,, = a;11 € Yiy1, a contradiction.

Especially, we have js = ji <1 <l+ifor 1 <i<m.Sofrom f3; € ¥s1; for j, < j <l+m
we conclude fBj4; € Y41 for 1 <i <m. O

As a special case we have that if ¥s11 = () and z belongs to a language L as above,
then there is no y € A" such that xy is in L. A dual lemma holds for right k-deterministic
languages.

3.2 Forbidden Pattern Characterization of D;*™ and D et

We define the following patterns.
Definition 3.4. Let £ > 0.

1. Pattern Dy, is defined as the subgraph given in Figure 3.1 with z,u,v,w,z € A*, a € A
and |w| = k.

2. Pattern Dy is defined as the subgraph given in Figure 3.2 with z,u,v,w,z € A*,a € A
and |w| = k.

This definition for k = 0 can already be found in [EW96]. Note that the letter a € A makes
the difference to the definition of the patterns Bl % and Brf‘,; (see Definition 2.20). We come
back to this point in Section 3.4. In this section, we prove the following forbidden pattern
characterization of the classes Dleft and D“ght
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a w v a w O u U v w O v
G @/ \@/ \/ \

+/- ~/+ +/- ~/+
Fig. 3.1. Pattern Dy with |w| = k Fig. 3.2. Pattern D}¥ with |w| = k and a € A.
and a € A.

Theorem 3.5. Let k > 0. It holds that

1. Dt = FP(Dy) and
2. DY = FP(Dy).

Before we give a proof in Subsection 3.2.2 we observe some properties of the just defined
patterns. It follows from Proposition 3.7 below that FP(Dy) and FP (D)) are well-defined.

3.2.1 Basic Properties

We show with the next two propositions that the patterns Dy and D}" are related via the
reverse of the accepted languages, and that if some DFA has one of these patterns, then any
DFA accepting the same language also has this pattern.

Proposition 3.6. Let k > 0. Let M and M be two DFA’s such that L(M) = L(M)E. Then
M has pattern Dy if and only if M has pattern Dy~.

Proof. Let M = (A, S,6,50,5") and let M = (A, S,6,30,5") with L(M) = L(M)E. Set
L =get L(M).

First suppose M has pattern Dy for some k > 0 witnessed by x,u,v,w,z € A* and
a € A such that |w| = k. We assume without loss of generality that (so,zaz) € S’ and
§(s0, ruwaz) € S'. Then for all I > 0 we have z(uwvw)laz € L and z(vwvw)uwaz ¢ L.
So for all I > 0 we know that za(wfvRwluf)zf € LF and zPawful (wlolwfuf)lz? =

a(wluBwlolt) wlylief ¢ LE
Due to the finiteness of S there are 71,11,72,lo > 1 such that 6(5o, za(wfvBwRult)) =
(30, 2Ra(wlvRwlu®)1+l) and 6(5¢, 2la(wlulffwlv®)r2) = §(50, 2Ra(wluffwlo®)r2+iz),

Without loss of generality we may assume that {y > 7 and ly > 79 (otherwise consider
appropriate multiples of /; and ls). Let ¢ be the smallest common multiple of I; and ly. Then
it holds that

(50, 2R a(wow )t = 8(30, 2Ra(wivBwiu)r)

and
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(50, 2R a(wulwo ™)) = §(30, 2a(wufwle ™))

for all r > 1, because t > [y > r; and t > Iy > ry. We define

N R

T =def ?

B =gt (uRvaRwR)Qt LR,
A R, R, R, R\t, R

D =def (v wltyfiwf)iph

W =gof W and

5 _ R

2 =def L.

Then the state

3(§0,£a7j}ﬁ) = S(§072RawR(URwRURwR)2t ! R) S(So,ZRa(wRuRwRUR)Zt 1 RuR)

has a loop with label

w

RRRR)St vEwluEw

(wku R(RRRR)R

On the other hand, the state

(50, £ad) = 8(30, 2Raw? (VEwulwR) o) = §(50, 2 a(w o wult)

e
Z

has a loop with label

(RRRR)St

wlEuBwlo R(RRRR)Zth

uwfoltw R(RRRR)tR DD,

w w vwuw

One verifies that Z,4,0,w, 2 € A* and a € A with |w| = k witness that M has pattern ey,
Conversely, suppose that M has pattern Dy¥ witnessed by z, u,v,w, 2z € A* and a € A with
lw| = k. We assume without loss of generality (3o, zawuz) € S and 6(3¢, rawvwuz) ¢ S'.
Then for all I > 0 we have zawu(wvwu)'z € L¥ and za(wvwu)+1z ¢ L. So for all [ > 1 we
know that z®(uffwfvfwf)ufwRaz® € L and 28 (uPFwlvliw?) ezt ¢ L.
Due to the finiteness of S there are 7,t > 1 such that §(so, 2% (uffwfivBwf)) =
(50, 2R (ufwlvEwR)r+t). We define

& =qer 2 (uFwRoRw )",

U =def uR

B =aet (vaRuRwR)t LR
W —def wR and

Z —def .Q?R.

Then the state §(sg,2) = 6(so, 2% (ufwFvwh)") has a loop with label

R, R R R

(uPwloPwl)t = uft . wft - (VRwfulw®) R w? = awow.

It is easy to verify that Z,4,0,w,2 € A* and a € A with |@| = k witness that M has the
pattern Dy. O

Proposition 3.7. Let k > 0. Let M and M be two DFA’s such that L(M) = L(M). Then
M has pattern Dy, if and only if M has pattern Dy,. The same holds for Dy~.

Proof. Tt suffices to show one implication. So suppose M has pattern D, and let M’ be
some DFA with L(M’) = L(M)®. By Proposition 3.6 we see that M’ has pattern Dj*". Now
observe that L(M') = L(M)R so again by Proposition 3.6 we obtain that M has pattern
Dy. This can also be carried out for pattern Dj™. O
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3.2.2 Forbidden Pattern Characterization: Proof of Theorem 3.5

We show the two inclusions of the first statement of Theorem 3.5 in Lemma 3.8 and
Lemma 3.11. The second statement of Theorem 3.5 is an easy consequence of the first state-
ment and Proposition 3.6. Recall that the duality via reversion of languages holds also between
Dieft and DyE™

k koo

Lemma 3.8. Let k > 0. It holds that DI C FP(Dy).

Proof. Let M = (A, S, 6, s0,S") be some DFA with L(M) € Di*. We assume to the contrary
that M has pattern D; and show that this leads to a contradiction.

Suppose M has pattern Dy, via z,u, v, w, z € A* and a € A such that |w| = k. Without loss
of generality we may assume that 6(sg,zaz) € S" and 6(sg, zuwaz) ¢ S’. Then for all | > 0 it
holds that z(uwvw)laz € L(M) and z(uwvw)'uwaz ¢ L(M). Since L(M) is a finite union
of left k-deterministic languages, there is a one such language L such that z(vwvw)laz € L
for infinitely many I. By definition, there exist n > 0, a; € A*™! and ¥; C A**! such that
L= (31,a1,...,%,an, Xnt1,nt1)r and for 1 < ¢ < n it holds that «; ¢ 3;. We consider
the k-decompositions of the selected words z(uwvw)'az € L and look in particular at two
parts of it, namely at the k-decomposition of z(uwvw)’ and at the one of waz. Note that if
we put them together we get exactly the k-decomposition of z(uwvw)'az because |w| = k.
We want to determine the position of the last element of the k-decomposition of z(uwvw)!
in the left k-deterministic representation of L. At first glance, there are two possibilities: it
must be that there is some ¢ with 0 < ¢ < n such that for infinitely many [ we have

w(uwvw)l € (21,04, %i41)k and waz € (X1, Qit1y .-« Lint1s Untl)k (3.1)
or there is some @ with 1 < ¢ <n (i # n + 1 since az # ¢€) such that for infinitely many [
w(uwvw)l € (X1,..., 8, ) and waz € (Xj41, Qit1y- - Dint1s Untl)k- (3.2)

But Lemma 3.3 tells us that case (3.2) is not possible: it cannot be for two distinct values
of | that z(uwvw)! € (31,...,%;, o) since a;j ¢ Yjfor 1 < j<i.Soletl <l <l
such that x(uwvw)™, z(vwvw)? € (B1,..., 04, Xi11)r as stated in (3.1), and define z' =gt
r(uwvw) and 3y =g (vwvw)2~1. We can apply Lemma 3.3 to 2’ and z'y’ and obtain
that a(@) € ¥;y1. Since Iy — 1 > 1 we have in particular that o(wuw) € ¥;;1 from which

z(uwvw)tuw € (X1,. .., q;, Xis1)k follows. Now we recall from (3.1) that it holds that waz €
(Zit1, Qigts- - > Zng1, @np1)k- If we put these pieces together we finally get z(uwvw) vwaz €
(X1, @y Bty - oy Bt 1, Ant1)g © L(M) which is a contradiction. O

Let M = (4,5,6,s0,5") be some DFA. We start working our way towards the reverse
implication and give a finite decomposition of L(M) into subsets that remain in a strongly
connected component (SCC). To do so, we unfold the acyclic graph of SCC’s to a tree and
emphasize in each SCC on the entry state, the leaving state, and a prefix and suffix of
constant length. The absence of pattern D intuitively says that within an SCC it cannot
be distinguished between different occurrences of a word of length k& + 1. This will allow a
description of the languages in each SCC over AF*+1.

A strongly connected component of the transition graph of M is a maximal set of states
C C S such that there is a path between any two states in C. We allow this path to be empty,
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so S is a finite union of disjoint SCC’s. Let p € S and set L(p) =qet {7 € A1 |8(s0,z) =p }.
We immediately obtain

LM) = | L(s). (3.3)

ses’

If C is an SCC and p,q € C we define L(p,C,q) =gt {x € A*|6(p,z) = q } as the set of
words that remain in C' between two particular states. For any p € S we have

L(p) = JL(p1,C1, q1)a1 L(p2, C2, q2) -+ an L(ppy1, Cris1s Gns1) (3.4)

where the union ranges over any sequence of distinct SCC’s C1,...,Cy11 with n > 0 such
that p1 = s0, qny1 = P, Pi,q € C; for 1 < i < n+1 and 6(q;,a;) = piy1 for 1 < i < n.
Observe that for any x € L(p) we can find distinct witnesses C1,...,Cp41 on the path from
s to p given by z, and that the above union is finite. For k£ > 0 we define

k-1
L<k(P7 C, q) —def L(pa C, Q) N ( U Az) and LZk(pa C, Q) —def L(pa C, Q) N (Ak U A>k)
i=0

So we split the set L(p,C,q) in the set of words with lengths < k and in the set of words
with lengths > k. Note that also the empty word is considered. It holds that

L(p,C,q) = L<*(p,C,q) ULZ*(p, C, q). (3.5)

Let u,v € A* and define L>*(p,u,C,v,q) =qet LZ*(p,C,q) N (uA* N A*v) as the set of all
words in L>*(p, C,q) with prefix v and suffix v. Then it holds that

L*(p,Cq)= |J L7*(pu,C v,q). (3.6)

u, €Ak
Now we are ready to give the decomposition of L(M)

Lemma 3.9. Let M = (A, S,6,s0,5") be a DFA and let k > 0. Then L(M) can be written
as a finite union of languages woLiajwy Loasws - - - LyanwpLyt1 with n > 0, w; € A* for
0 < i < n and there exist distinct SCC’s C1,...,Cphy1 in the transition graph of M, states
pi,qi € C; for 1 < i < n+1, words uj,v; € A¥ for 1 < i < n and words u,,1 € A¥ and
Vng1 € AR such that

1. 6(so,wo) =p1 and Gny1 € 5,

2. 6(qi,a;w;) = piv1 and 6(gi,a;) € C; for 1 <i<n,

3. Li = L7*(p;, ui, Ci,vi,q;) for 1<i<n and

4o Lot = L (ppi1, Cupry o) U L2 (D, ng1s Ot Unts et -

Proof. To obtain the required representation, we start with (3.3), substitute the occurring
languages using (3.4) to (3.6), rewrite all finite sets as the finite unions of their elements and
apply the identity L(L' U L") = LL’ U LL". Note that we fix in C,, 4 the k-prefix u,1 and
the (k + 1)-suffix v,41, which we can do with a suitable adaption of (3.6). Note also that
we may ignore empty sets in the stepwise decomposition just described. So we obtain for
each language L; for 1 < i < n + 1 a witnessing SCC C; with the properties stated in the
lemma. U
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The following proposition isolates the pattern arguments used in the proof of Lemma 3.11.
For an SCC C set S(C) =qef { & € A¥™| there exists some g € C such that §(¢,a) € C }.

Proposition 3.10. Let M be a minimal DFA and fix a decomposition as given by Lemma 3.9.
Then M has pattern Dy, in all of the following cases.

1. There exist 1 <i <n and x € A*v; with §(p;,z) € C; and 6(p;, xa;) # 6(q;, a;)-
2. There exists some © € A*v, 41 with §(pp41,x) € Cpi1 and 8(Pn+t1, T) # qnt1-
3. There exist 1 <i<n+1 and xz € w;AT with o(z) C S(C;) and §(p;,z) & C;.

Proof. We additionally fix for 1 < ¢ < n + 1 some state ¢, € C; with 6(¢},v;) = ¢; (such
¢, exist since L; # 0). To see that M has Dy, we specify in each case some w € AF and
witnessing states sy, ..., s¢ (see Figure 3.1) in the SCC C;. Note that s3 is reachable from s,
and sy is reachable from so since they will be in the same SCC, and we only need to argue
that s5 and sg are distinct, because M is minimal.

1. Let x = 2'v; and set w =gef Vi, 51 =det 6(Di, ), 52 =det Gi» 53 =def @4 54 =det O(Pi, '),
85 =det 0(Ps, 2ai), S6 =det 6(qi,a;). By assumption, s5 # s¢.

2. Let ¢ = 2'vp 41, and v, 1 = wa for w € A* and a € A. Then set 51 =ger 6(Ppi1, W),
52 =det O(q11, W), 53 =def Tp1> 54 =def O(Pnt1,%"), 85 =det O(Pn+1,T), S6 =det qn+1- By
assumption, s5 # Sg.

3. Let wa for w € AF and a € A be the leftmost factor of = such that there is a state
s € C; with 6(s,w) € C; and 6(s,wa) ¢ C;. Such a factor exists because |z| > k + 1 and
because = has k-prefix u; with 6(p;,u;) € C;. Since wa € a(Z) C S(C;) there are also states
s', 8" € C; such that §(s’,wa) = s” and s’ # s. Set s1 =qer 6(8', W), $2 =gder 6(S, W), S3 =det S,
S4 =det 8’y 85 =det S, S6 =det 0(8, wa). Then s5 # sg because s5 € C; and sg & C;. O

Lemma 3.11. Let k > 0. It holds that FP(Dy) C Diett.

Proof. Let a language from FP (D) be given. We can consider the minimal DFA M ac-
cepting this language because FP(Dy) is well-defined. We show that any language L =gef
woLiaiwy Loasws - - - Lypyanwy L1 from Lemma 3.9 is in D}fft if M does not have pattern Dy.

Step 1. There is no need to fix g; in the sets L; for 1 < i < n since any path labeled v; in
C; and followed by a; must end in the same state, or we find pattern D. Therefore we define
for 1 <7 <n sets

Vi =det {33 € A%k ‘ 6(pi, ) € C; } N (u; A" N A%v;)
and do the same thing for C),; regarding just the (k + 1)-suffix. Let
Vit =def {az € AZk+1 ‘ 8(Pns1, ) € Crir } A (unp1 A* N A* vy 1) .
Clearly, L; C V;. With B =gt L*" Y (prs1, Cri1, @ny1) We obtain that
L = woViaiwi Vaasws - - - Vyanwn (B U V).

The inclusion from right to left is an easy consequence of the first and second statement of
Proposition 3.10.
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Step 2. We are interested in a description of the sets V; over A**1. Given some z with
z = (aq,...,q;) we write for short (...,Z,...); instead of (...,a1,0,a9,0,...,0,q,...) in
this proof. Let yo =gef Wou1, Yi =det Viaiw;uirq for 1 <i < n and B’ =g¢f vpanwy,B.

As the first case, assume that wy # ¢ and that n > 0. We claim that

L = U (%?S(Cl)’y/\lvs(CQ)ay/\Q""?S(Cn)ayﬁl)k U (37)

Yn4+1E€B’

(gbv S(Cl)ay/\l’ S(CQ)’Q\% cey S(Cn)’%’ S(Cn-i-l))vn—f—l)k .

For the inclusion from left to right in (3.7) it suffices to observe where we find the k-
decomposition of an arbitrary x € V; for 1 <i < n+ 1 on the right hand side. If || = k then
x = u; = v; and no element from S(C;) occurs. If |z| > k+ 1 then §(p;,x) € C; by definition,
and hence a(Z) C S(C;). The prefix u; and the suffix v; of z allow the connection to ;—1 and
y; before and after each S(C;) in the description.

For the inclusion from right to left in (3.7) we show for any = with k-prefix u;, with k-
suffix v; and with o(Z) C S(C;) (if |z| > k + 1) that 6(ps;, z) € C;, and hence z € V;. In case
1 <i<mnand |z| =k we have 6(p;,z) € C;, and if 1 <i < n and |w| > k+ 1 we can apply
the third statement of Proposition 3.10. Now we look at ¢ = n + 1. So let = be given with
z = (a1,...,-1,Vp41) such that o; € S(Cpryq) for 1 < j <1 —1. We can apply the third
statement of Proposition 3.10 again because vy, 11 € S(Chr1).

The remaining cases deal with little modifications due to lengths of words. No new argu-
ment is needed, so we just state the respective representation of L. For the second case let
wg = € and n > 0. If V] contains only words of length > k£ 4+ 1 we can state

L = U U (ulaaS(Ol)ay/\hS(CZ)w”7S(Cn)7yjl?1)k U (38)
ulaGS(Cl) Yn4+1E€B’
(U]_a, S(Cl)a y/\17 3(02)7 Q\Za teey S(Cn)7 @;a S(Cn+1)a /Un+1)k ] .
If V1 contains a word of length k then this word is u; = v; and we add to the union above

each set again, this time starting with (g1, S(C2), 92, . ..),-
The third case is n = 0 and wg # €. Then we have L = woB U wgV; and see that

L = (wBnA*)u U @), U(wour,S(Ch),v1),. (3.9)
z€wgB
|z| >k

Finally, for the last case suppose n = 0 and wg = €. Then L = B U V; and we have

L = BU U 0o, U U  (wa,S(C1),v1)- (3.10)
acViNAk+1 u1a€S(Ch)

Step 3. In any of the sets on the right hand side in (3.7) to (3.10) and for any 1 <i <n
it holds that v;a; € S(C;). Otherwise we can apply the first statement of Proposition 3.10
to find pattern D in C;. To see that L is left k-deterministic observe that we can insert in
(3.7) to (3.10) the empty set at any position in the description over A¥*1. Note that in case
of (...,a,0,5,...), we have fulfilled 3 ¢ (). Note that the last index is not subject to the
requirement «; ¢ ;. In our construction we have indeed v, 1 € S(Cj41). This completes
the proof of the lemma. O
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With help of the pattern characterization of D}fft it is easy to see that these classes are
in fact Boolean algebras. Just note that the part of the transition graph of a DFA where a
pattern can appear, does not change when inverting acceptance.

Proposition 3.12. Let k > 0. It holds that D}f& is closed under finite union, finite intersec-
tion and complementation. The same holds for D,I;lght.

3.3 Restricted Temporal Logic

We turn to temporal logic, and contribute to the study of the expressive power of its frag-
ments, which are obtained by omitting one or the other of the usual temporal operators next
(X), eventually (F) and until (U). With little modifications we use notations from [Wil99].
Formulas of temporal logic TL over an alphabet A are built up from the elements of A as
atomic formulas, using the Boolean connectives A, V, -, the unary operators X and F and
the binary operator U. We interpret formulas over finite words. A fragment TL[.] of TL is a
subset of TL where only the use of the temporal operators specified in brackets is allowed,
e.g., TL[] C TL[F] C TLX,F] C TL[X,F,U] = TL.

In Subsection 3.3.1, Theorem 3.14, we recall known forbidden pattern characterizations of
the fragments TL[F| and TL[X, F] from [CPP93, EW96]. The latter fragment is also known
as restricted temporal logic (RTL). Characterizations of this type allow to decide whether
or not a given language is definable when only the restricted formalism of the respective
fragment can be used. Note that in case of TL[F] we are not allowed to specify the next
event, while in case of TL[X, F] unrestricted use of X is possible. We fill the room between
these two positions and give a comprehensive answer to the question of how many nested uses
of X are needed to express a certain property in restricted temporal logic. As it turns out in
Subsection 3.3.2, if we put the bound & on the nesting depth of X we encounter exactly the
right k-deterministic languages (see Theorem 3.17). We subsume our characterizations and
discuss consequences in Subsection 3.3.3.

3.3.1 Definitions and Known Results

For a word * = ajas---a, € AT and some i € {1,...,n} we define what it means that an
RTL formula ¢ is true in x at position 4, in notation (z,%) = ¢.

1. (x,7) = a if and only if a; = a (for all a € A).

2. (z,1) = ¢ Vo if and only if (z,7) = ¢ or (z,i) = 9 (analogously for A, ).
3. (z,i) = Xy if and only if i < n and (z,i + 1) = ¢.

4. (z,i) = Fo if and only if there exists some j with i < j < n and (z,j) E ¢.

Given an RTL formula ¢ and a word = we say that x is a model of ¢, in notation z = ¢,
if and only if (z,1) | ¢. We write L(p) =qef {* € AT |2 |= ¢ } for the set of all models of
¢ and for a class of formulas ® C RTL we denote by L(®) =4er { L(¢) | ¢ € ® } the class of
®-definable languages. E.g., for the RTL formula ¢ = F(a A Xb) we have L(p) = AA*abA*.
Note that the eventually operator F is defined here in a way such that the quantified position
is strictly greater than the actual position.

So far we have defined the future version of restricted temporal logic. One can also think
of a past version simply by reversing the ordering. We will treat both cases in parallel and
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use in the proofs the formalism we find more suitable. An easy duality argument then allows
to carry over the results from one version to another. If we substitute the temporal operators
X by Y (previously) and F by P (eventually in the past) we obtain formulas of restricted
past temporal logic (RPTL). Again, we define for a given word w = ajas---a, € A" and
some i € {1,...,n} what it means that such a formula ¢ is true in w at position i (with 1.
and 2. as above).

3 (w,i) E Ygif and only if i > 1 and (w,i — 1) = .
4 (w,i) = Py if and only if there exists some j with 1 < j < i and (w, j) E ¢.

Given an RPTL formula ¢ and a word w we say that w is a model of ¢, in notation
w = @, if and only if (w, |w|) | . Furthermore we carry over all definitions introduced for
RTL formulas in an obvious way to RPTL formulas, e.g., the definition of fragments and
definable languages. We will ensure that it is always clear from the context with what kind
of formula we deal. Note that for the RTL formula a we have L(a) = aA* and for the RPTL
formula a it holds that L(a) = A*a. However, there is an easy way to turn an RTL formula
into an RPTL formula and vice versa, such that the defined languages are just the reverse
of one another, and such that the syntactic structure of the formula is maintained. The dual
of an RTL formula (RPTL formula) ¢ is the RPTL formula (RTL formula) % where each
occurrence of X is substituted by Y (Y by X) and each occurrence of F by P (P by F,
respectively).

Proposition 3.13. Let w € AT.

1. For any ¢ € RTL it holds that w |= ¢ if and only if w = .
2. For any ¢ € RPTL it holds that w |= ¢ if and only if wf = .

Proof. We only argue for the first statement, since ¢ = @. Let ¢ € RTL and fix some w =
aj---a, € AT. We show by induction on the structure of ¢ that for all 1 < i < n it holds that
(w,4) |= ¢ if and only if (wf,n —i+1) = . Note that the i-th letter of w is the (n —i+1)-th
letter of wf, so if p = a for some a € A then (w,i) Fa <= a; =a <= (w¥ n—i+1) |E=a.
If ¢ is a Boolean combination of formulas for which the induction hypothesis holds, there is
nothing to prove. Now assume ¢ = X1. Then

(w,i) EX¢Y <= i<nand (w,i+1) =9
e, n—i>0and (wf n—i) =y
= @Whn-i+1)EYy="0.
Finally, suppose ¢ = Fi. Then we can conclude

(w,i) EFy <= there exists some i < j < n with (w,j) | ¢

P there exists some 1 <n —j+1<n—i+1with (wfn—j5+1)E¢

= Win-i+1)E=EPy=20.
In particular, this shows (w, 1) = ¢ if and only if (w®,n) = . O

Now we recall the following.
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Theorem 3.14 ([CPP93, EW96]). Let k > 0. It holds that

1. L(TL[Y,P]) = FP(D),

2. L(TL[P]) = FP(Dy),

3. L(TLX,F]) = FP(D) and
4. L(TL[F]) = .7:73(]1))“”)

Note that L(TL[Y,P]) = L(RPTL) and L(TL[X,F]) = L(RTL). To take a closer look
at the fine structure of the class of RTL-definable languages we define the notion of the
next depth of an RTL formula, i.e., we count the number of nested uses of the X opera-
tor. If ¢ is an RTL formula then nd(yp) denotes its next depth. More precisely, we define
inductively nd(a) =gef 0 for all a € A, nd(p V ¢) = nd(p A1) =gef max{nd(y),nd(y)} and
nd(Xp) =qef nd(¢)+1 (- and F have no effect). Let k£ > 0 and denote with TL[X (k), F] =gt
{¢ € TLIX,F||nd(¢) <k } the set of all RTL formulas ¢ having next depth at most k.
One easily relates these definitions to Theorem 3.14 due to TL[F] = TL[X(0),F| and
RTL = TL[X, F| = U~ TL[X(k), F]. Within the next hierarchy { L(TL[X(k),F])|k >0}
a language has next depth k if it is in one of these classes for minimal k. Analogously, one
defines the previously depth of an RPTL formula and the previously hierarchy. Note that
a language L has next depth k if and only if L® has previously depth k, which is an easy
consequence of Proposition 3.13.

Fortunately the next operator X shows a nice property: it commutes with A,V and F (even
with U), and also in case of negation we can do something similar. The following switching
rules [Eme90] allow us to bring all X operators next to atomic formulas.

Proposition 3.15. Let p,9 € RTL and let w = a1 ---a, € AT. For all 1 < i < n it holds
that

1. (w,i) E XFp <= (w,1) = FXp,

2. (wni) = X(p V) = (w,i) E (XpVXp),

3. (wni) = X(pA) = (w,i) E (XpAX9) and

4 (w,0) | Xop = (w,i) | (-Xp) A(XV4ea0))

Proof. We only show the first and the last statement since the others are easily seen. Let
¢ € RTL and w = a1 ---a, € A" and suppose first that (w,i) = XF¢p for some i with
1 <i<n.Soi<n and there exists some j with i + 1 < j < n such that (w,j) = ¢. Then
J' =def j — 1 witnesses that (w,i) = FXp. Conversely, assume (w,i) = FXp. Then there is
some j with ¢ < j < n such that j < n and (w,j + 1) E ¢. For j/ =4t j + 1 it holds that
i+1<j <nand (w,j) E ¢, so (w,i) £ XFep.

To see the last statement, suppose (w,i) = X—p. Then i < n and it is not the case that
(w,i+1) = ¢. Additionally, since i < n it holds that (w,i) |= (X\/,c 4 a). Conversely, assume
(w,i) = (—-Xp) and (w,i) | (X\/,c4@). From the first part we known that i < n is not
true or it is not the case that (w,i + 1) = ¢. From the second part we conclude that i < n
so together we obtain ¢ < n and it is not the case that (w,i + 1) = ¢, so (w,q) = X—¢p. 0O

Observe that in statement 4 we have to ensure that there is at least one more letter right
to the actual position in order to establish the implication from right to left. It is important
to see that these rules preserve the next depth of the formula in question. This gives rise
to the definition of the set Xj =gef {X---Xa | a € 4,0 <1 <k} of all atomic formulas a

| times
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with a prefix of at most k next operators. Denote by (X) the set of all RTL formulas built
up from elements of Xj using V,A,— and F. The following proposition is a consequence of
Proposition 3.15.

Proposition 3.16. Let k > 0. It holds that L(TL[X(k),F]) = L((Xy)).

3.3.2 From Logic to Languages and Back
We prove in this subsection the following theorem.

Theorem 3.17. Let k > 0. It holds that
1. L(TL[Y (k),P]) = D" and
2. L(TL[X(k), F]) = D&,

Again due to the duality argument we may restrict ourselves to one statement. This time we
show the second one in Lemma 3.18 and Lemma 3.19 (together with Proposition 3.16).

Lemma 3.18. Let k > 0. It holds that L({X})) C Dp=".

Proof. Let ¢ € (Xj). We show L(p) € D,I:ght by induction on the structure of ¢. For the
induction base let ¢ € Xj, so ¢ = X---Xa for some a € A and 0 <[ < k. Then L(p) =

| times

AlaA*. For i,j > 0 we define B; j =def AtaAJ. One verifies that
L) = |J By U U (o, 45,

0<j<k—1 OéEBl,k_l

where we have a finite union of right k-deterministic languages on the right hand side.
By Proposition 3.12 it suffices to show the induction step for ¢ = F¢ with L(¢) € D,Zlght.
It holds that L(Fvy) = AA*L() = U,c 4 aA*L(v). Suppose L(¢) is a finite union of right
k-deterministic languages with some finite set D C A<k We are done if we prove for any
member L of this union that aA*L € D,?ght.
For L =D and D' =4 { 2 € A*"1|z € D } one verifies that

aA*D = (aA*DNAF) U U @0 v UJ U @A 20

acaA*D N Ak+1 B€aAk ~eD'

where again we have a finite union of right k-deterministic languages.
Now let L = (al, 21,042, 22, ey Opt1, En—i—l)k with n Z 0, o; € AkJrl and Ez g AkJrl such
that for 2 < i <n 41 it holds that a; & 3;. Obviously, aA*L is equal to

! k+1
L —def U (Oé,A + 7a17217"' 7an+172n+1)k‘
acaAk

We may not necessarily have a right k-deterministic representation of L’ on the right hand
side since possibly a; € X1. But we can choose in the k-decomposition of a word from L’ the
rightmost occurrence of a; in the sequence of elements from X;. So with X} =ger 31\{1}
we have
L/ = U (Oz,Ak—H,Oél,E,l,...,an+1,2n+1)k
acaAk
with a; ¢ 3; for 2 < i <n+ 1 by hypothesis and oy & X}. O
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Lemma 3.19. Let k > 0. It holds that D" C L((X})).

Proof. To define a finite set D with words of length at most k£ by a formula of next depth < k,
it suffices to show this for some w = a; - - - ay, with a; € A and n < k. We obtain L(p) = {w}
with
(p:def( /\ X"'Xai+1) AN ﬁ(\/XXa)
0<i<n—1 4 times a€A n times
Note that we can define the empty set with the second conjunct of ¢ setting n = 0.

It remains to prove for a non—empty right k-deterministic language L that there is an RTL
formula ¢ € (X%) with L(p) = L. Let us look at some L = (a1, %1,09,%2, ..., Qni1, 2nt1)k
with n > 0, oy € A¥*1 and ¥; C A1 such that for 2 < i < n + 1 it holds that a; & ¥;. For
a language L' denote by suf (L) =ger { y € A= | there exists some x € A* with zy € L' }
the set of all suffixes of length > k + 1 from words in L’. We make the following observation,
which ensures that we always find for certain suffixes y some x such that xy € L.

Suppose y € (@, Xj,y ...y Qpi1, 2pnt1)k for some 1 < i < n+ 1. Then there is some z € A*
such that zy € L since otherwise L = (). Moreover, if y € (8,%;,...,Qn+1, Xnt1)k for some
1<i<n+1andf € ¥; then we can also assume that there is always some x € A* such that
zy € L. To see this assume for the moment that there is some y for which there is no x € A*
such that zy € L. But then also for all ¥/ € (8,%;, ..., Qnt1, Xnt1)k it holds that there is no
x € A* such that xy € L because k-decompositions overlap by at most k letters. Hence, we
may take X} =gef X;\ {5} instead of 3; without changing the language. This procedure comes
to an end.

For notational convenience we write G¢ instead of =F—¢ for all ¢ € RTL. We define for
all @ = ay -+~ apy1 € AFT! formulas

P(a) =aer [\ Xo:Xar with L(g(a) = aA*
0<I<k | times
and for each ¥ C A*+1 formulas
$(E) =qer \/ (@) with L(y(3)) = DA™
a€Y

Moreover, set X =gef "(A*¥+1) with L(x) = A<F. Then 9 (a),¥(X), x € (Xi).
The proof is by induction on n. Additionally, we make available in each step a formula ¢’
defining suf(L(y)). For the induction base let n = 0. So L = (aq, 1), and we set

¢ =det Y(a1) ANG((21) Vx) and ¢ =ger (¥(a1) VY(51)) A G(1(E1) V x)-

Then ¢, ¢’ € (X}) and it holds that L(y) = L and L(¢') = suf (L(p)).
Now let n > 1 and L = (a1,%1,a2,39,...,0n+1, 2n+1)k- By hypothesis, there exist

01,9] € (Xg) such that L(p1) = (a2,X2,...,ant1, 2nt1)k and L(p)) = suf(L(e1)). We
define

@ =aef (V(1) AFp1) AG(EZ1) V@i V)  and
¢’ =det {((%D(Oél) Vp(21)) AFe1) AGH(S1) Vi Vx)| Vel

Then ¢, ¢" € (X) since ¢1,¢] € (Xk). Observe that L C L(yp) is easy to verify: every word
w in L starts with «; and there is a strict suffix of w from L(¢;). Moreover, for all positions
strictly greater than the first, it holds that there begins
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— some element from ¥, (between a; and as), or
— a suffix of length > k + 1 of L(p1), or
— some word of length < k.

Similarly, we see suf(L) C L(¢’). It remains to argue for the reverse inclusions.

Let w € L(p) with w = (84,...,0;) for some | > 1. Then $; = «a; and there is some
strict suffix z € L(p;) of w with z = (6;,...,0;) for some ¢ with 2 < ¢ < [. If i = 2 then
no element from ¥; occurs, si(a1) = px(az) and w € L. For ¢ > 3 we want to show that
the definition of ¢ ensures {(2,...,0;—1} € ¥1. Suppose that this is not the case. By the
formula G(...) in the definition of ¢ there is some j with 2 < j < i — 1 and some y € A"
such that yz = (8j,...,0;,...,3) and yz € L(¢}). Observe that y € A" because j < i — 1.
Since L(¢}) = suf(L(¢1)) there is some z € A* with zyz € L(¢1). Note with the observation
from the beginning of the proof that such an = always exists. So we obtain that z and xyz
are in L(p1) = (ag,X9, ..., Qnt1, Lnt1)k- Recall that for 2 < i <n+ 1 we have o; ¢ ¥; and
observe that |zyz| > |z|. This is a contradiction to the dual version of Lemma 3.3 for right
deterministic languages.

The same arguments prove L(¢") C suf(L). a

3.3.3 The Next Hierarchy

Taking together Theorems 3.5 and 3.17 we obtain the following characterization of the pre-
viously hierarchy and the next hierarchy.

Theorem 3.20. Let k > 0. It holds that
1. L(TL[Y (k), P]) = D" = FP(Dy) and
2. L(TL[X(k),F]) = D;;lght — FP(Dp).

We immediately obtain L(RPTL) = [J;so P and L(RTL) = Uy D,I;ight. Note also that
for £k = 0 we have given another proof of the second and fourth statement of Theorem 3.14.
Using Theorem 3.20 we obtain an NL-algorithm for the membership problem of ’D}fft for fixed
k as in case of the forbidden pattern characterizations before. We additionally guess some
letter a and a word w of length k (hence count to k, which is a constant to the algorithm),
and verify the required reachability conditions. There is a similar algorithm for the classes
D,r;ght so the levels of the previously hierarchy and of the next hierarchy have membership
problems decidable in NL.

Theorem 3.21. For fixred k > 0 the membership problem of D}fft is decidable in nondeter-
right

ministic logarithmic space NL. The same holds for D,.>.

Recall Proposition 2.19. The same proof shows that if & > |M]? and M has pattern Dy,
the M has pattern ID. As before, we see how pattern D turns in a natural way to pattern
D as k increases. The same holds for the patterns D} and ID*". Moreover, we can determine
the exact level of a language in the previously hierarchy and in the next hierarchy. We simply
apply the algorithm for the membership problems for k = 0, ..., |M]|?, which is an algorithm
that also decides the membership problems of L(RTL) and L(RPTL). In particular, this
yields another proof of the remaining statements of Theorem 3.14, in the same way as in case
of the patterns By 5 and By /,. Also a strictness result can be easily achieved with help of
our forbidden pattern characterization.
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Theorem 3.22. For all k > 0 it holds that D¢ C DI, and D™ C DY

Proof. Suppose a DFA M has D, for some k& > 0. Then it also has I; for 0 < [ < k. So
D}f& C D}fj_tl. We may assume that there are different letters a,b € A and define witnessing
languages as Ly 1 =gef A*bFTN\A*V*+2 A%, If we look at the minimal DFA accepting Ly we

observe that it has pattern Dy but it does not have pattern Dy ;. Thus, by Theorem 3.20 we

have Ly 1 € DY \Djef. We may take Lf, | to see D,I:ght # D;ifit. 0

3.4 Relations to Concatenation Hierarchies

We have already observed that the patterns Iﬁ%l,k and Dy, are very similar: they differ only
in the occurrence of the letter a (compare Figures 2.4 and 3.1). We discuss and clarify the
inclusion structure between the occurring classes. First, we give a formal language representa-
tion of FP (B, ;). Instead of fixing the last (first) element in the definition of k-deterministic
languages, let us fix only the k-suffix (k-prefix) of some last (first) element. We define that
L is weak left k-deterministic if and only if there exist v € A* aq,...,a, € A1 and
Y1y.ee, Bng1 € AR for some n > 0 such that L = (S, a1, .., %0, O, Bpy1)r N A*v) and
for 1 < < n it holds that a; ¢ ;. There is an analog definition for weak right k-deterministic
languages. We denote the classes of finite unions of such languages as D}t and ﬁ,zlght (again,
we may take some finite set D C A<* to each language). Slight modifications in the proof of
Theorem 3.5 allow to establish the following.

Theorem 3.23. Let k > 0. It holds that
1. 25}5& = ]:P(BM) and
2. D" = FP(Byy,).
Next we see that the difference in the pattern definitions really causes a difference in the
languages classes.

Proposition 3.24. Let k > 0. It holds that
1. 25}5& C Dt ¢ ﬁ}fj_tl and

Aright right Aright
2. DJE" C Dpeht ¢ pyEht,

Proof. We only show the first statement. It is an easy obseration that if a DFA has pattern
Iﬁ%kH then it also has pattern Dy, and if it has D then it also has pattern I@k To see that
these inclusions are strict we look again at the witnessing language from Proposition 3.22 and
observe that the minimal automaton accepting L1 has pattern Dy, but it does not even have
pattern Iﬁ%kﬂ. On the other hand, the minimal automaton accepting L} =qef A*F has By,
but it does not have . Analog arguments hold for the reverse patterns and languages. [

Figure 3.3 gives a summary of the structural results and refines the figure from the begin-
ning of this chapter. We have proved (or provided alternative proofs of) forbidden pattern
characterizations of all pictured classes (except for Bz M coBs/y and L35 N coLsz/y which
we treat in the next chapter). From this, efficient algorithms for their membership prob-
lems are easily derived. Since we have for a given DFA M a bound on k& we can exactly
locate any L(M) in this landscape. Note that if for some language classes C; and Co we have
Ci = fP(Pl) and Cy = fP(PQ) then C1 NCy = fP(Pl,PQ).
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Fig. 3.3. Classes of generalized deterministic languages. All inclusions are strict.

We turn to strictness issues. As pointed out in [EW96] it holds that L(RTL) C Bs/,.
Since the former is a Boolean algebra and the latter is closed under reversion of languages
it follows that L(RTL) U L(RPTL) C Bs/; N coBs/p. This inclusion is strict because the
languages from [EW96] that separate the levels of the until-hierarchy are in B3/, but not in
L(RTL) (the until-hierarchy is defined via the nesting depth of U in formulas from TL, see
[EW96, TW96]).

The case k = 0 in Figure 3.3 is somewhat special. Recall from Proposition 2.22 together
with Theorem 3.23 that £; = Dieft N f)élght. This equation is known as the fact that a finite
monoid is J-trivial if and only if it is R-trivial and L-trivial (see, e.g., [Pin86]), here expressed
in terms of forbidden patterns, and DI and f)(r)ight are the deterministic languages studied
in [Eil76].

In contrast, the inclusions By C ﬁzight N ﬁzight are strict for £ > 1 which is due to the
following example. Let M =gt (A, S, 6, s09,5") with A = {0,1,a,b}, S =ger {s0,-..,53} and
S" =get {s2}. The transition function § is given in Figure 3.4. Observe that M is minimal.
We claim that L(M) € Dleft 0 DI\ B, | If we set
— T =qef €, Z) =def &, gl =def &,

— U =def b, U =def @, Z =def €,
—w =def 0 and lf)/ —def 1

then Z,7,9,4,0,w,w',2 € A* and |w| = |@'| = 1 witness hat M has pattern By ;. So
L(M) & Bi1 by Theorem 2.21. Observe that M even has pattern B;j for all k& > 1, so
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Fig. 3.4. Automaton M with
L(M) € D 0 DIEM \ B, ;.

L(M) ¢ Bj. It remains to show that M has neither pattern B;; nor pattern Bf‘i. The
former is easily seen, because there is no strongly connected component C' in the transition
graph of M such that there is some letter ¢ € A and two distinct states s, s’ € C for which
8(s,c),6(s',c) € C. The same observation can be made when looking at the minimal DFA
accepting L(M)F, so with Theorem 3.23 and Proposition 3.6 we obtain L(M) € ﬁlleftﬂﬁ?ght.

It follows in particular that B; C L(RPTL) N L(RTL) and as demonstrated, this is not
hard to see once forbidden patterns are known. However, before a first proof of strictness was
given (by algebraic methods), it was conjectured for a while that equality might hold [Pin00].
We give an informal interpretation why we encounter strictness for k£ > 1 but not for k = 0.
Let k > 0 and recall from Theorem 2.21 that By ; is characterized by the finiteness condition
on the number of alternations in <j-chains. Pattern Iﬁ%l,k induces for ¢ > 1 a <g-chain

z(vwow)'z <§ z(uwow) vwz <§ z(vwow) vwvwz = x(vwvw) Tz

having an infinite number of alternations, where the next alternation happens right to the
position of the previous one, i.e., every inserted factor remains untouched. It is sufficient
here to have one word w of length k which ensures the needed context condition. The same
can be observed in case of pattern B}’} where insertion happens always left to the previous

alternation. These two types of <g-chains are forbidden for languages in ﬁ}fft N ﬁzight. But
there still exist languages in this class which lead to an infinite number of alternations, because
a third type of <i-chain is possible: also factors inserted just into a previously inserted factor
may cause alternation. To see this, we look at pattern B; ; which makes the difference between
By and Zi}fft N f)lr;ght. Here we obtain for i > 1 a <j-chain

z(yw'y'w) u(w'vwu)iz
=<¢  z(yw'y'w) yw vwu(w vwu)'z
<8 z(yw'y'w) yw'y' wuw vwu(w' vwu)z
— m(yw’y’w)i+1u(w’ku)i+1z

having an infinite number of alternations. Note that yw'vw is inserted into y/w - uw’ and
y'wuw’ is inserted into yw’ - vw and both insertions lead to an alternation. Moreover, w and
w’ ensure the needed context conditions. As we have pointed out in Remark 2.8, this third
type of <g-chain does not appear if £ = 0 but it cannot be avoided if £k > 1. If £k = 0 we can
insert one letter after another, since no context conditions have to be considered.
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3.5 RTL—definable Languages and their Relation to A}

We turn to the connection of regular languages to complexity classes defined via leaf languages
as mentioned in Subsection 1.3.2. First, we show a result of the type of Theorem 1.24, i.e.,
AY is just the class of all languages that can be accepted by leaf languages from the Boolean
closure of L(RTL) and L(RPTL). Then we make some progress on the question of what single
complexity classes are definable by regular leaf languages. If we consider the complexity class
defined by a leaf language that is neither in L(RTL) nor in L(RPTL), then this complexity
class contains at least A} or a class from a short list of other classes (cf. Theorem 3.31). With
the list we provide hereby, we identify more complexity classes in the upper semilattice of
leaf language definable classes. However, since the upper bound A} for leaf languages from
L(RTL) N L(RPTL) meets our lower bound for languages not in L(RTL) N L(RPTL), this
does not show a gap in terms of leaf language definability (as, e.g., in [Bor95, BKS98]). But it
draws a line such that leaf languages with higher concatenation complexity do not refine the
upper semilattice of leaf language definable complexity classes below this line. For background
on standard complexity classes we refer to [Pap94].

Lemma 3.25. It holds that A} = Leaf” (L(RTL)).

Proof. To see A} C Leaf” (L(RTL)) one may consider a characterization of A from [Wag90,
Theorem 6.5]. With help of this characterization it is easy to see that A) = Leaf¥ (L) with
L1 =gef A*10* and A =g4¢¢ {0, 1,2}. Since the minimal automaton accepting L; does not have
pattern D™ we have by Theorem 3.14 that L; € L(RTL). Interestingly, this automaton has
pattern D so Ly € L(RTL)\ L(RPTL). The language L; is in fact a weak right 0-deterministic
language. There is also a weak right 1-deterministic language over a two—letter alphabet which
can be used instead. _

Now let L € L(RTL). By our previous results, there is some k > 0 such that L € Dy&".
First suppose k = 0. Since A} is closed under union it is sufficient to show that Leaf® (L) C A}
for some right 0-deterministic language L. So let aq,...,an,4+1 € A and Aq,..., A1 C A for
some n > 0 such that for 2 < i < n+1it holds that a; ¢ A; and L = a1 AJas A3 - - any147 4.
Any language accepted by some nondeterministic polynomial time Turing machine M via
leaf language L can also be accepted by the following polynomial time algorithm using an
NP-oracle.

1. Find the first computation path p,41 from the right with output a,; using a binary
search and suitable oracle queries. The oracle answers questions of the type “does there
exist a path p right of p,41 with output a,417” One can check with one more oracle query
if all paths right of p,+1 produce an output from A, 1.

2. Repeat this procedure for ¢ = n,n—1,...,2, i.e., find the first path p; left from p; 1 with
output a; by a binary search as above. Again, one can check with one oracle query if all
paths between p; and p;11 produce an output from A;.

3. Check whether all paths between the first path and ps have a result from A; and whether
the first path has the result a; with one more oracle query.

Now suppose k > 1. We adapt the above algorithm and do not only check a single path, but
blocks of k+ 1 adjacent paths each time. Since k is a constant to this algorithm we only have
a polynomial time increase. O
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Since Leaf” (L) = Leaf" (L) for all L and because A} is closed under Boolean operations,
we immediately have the following corollary.

Corollary 3.26. It holds that A} = Leaf® (BC(L(RTL) U L(RPTL))).

This result can be strengthened to A) = Leaf® (B /2N coBsjs) [BSS99]. Now we implement a
catalogue of patterns in automata that are typical for certain complexity classes. We define
patterns of type 1 through type 4 by drawing their graph in Figures 3.5 to 3.8, respectively,
just as in case of forbidden patterns. Additionally, we require the side conditions

—z€ A*, d,e € AT and
— there is some w € AT such that §(s, w) = s for each pictured state s (except +/—,...).

Note that from the existence of a pattern of type 1 to 4 it follows that d # e.

e d d,e d,e
PENRG () ¢ ()
oo v ¢

+/- ~/+ +/- /+

Fig. 3.5. Pattern of type 1. Fig. 3.6. Pattern of type 2.

d d
Q‘\E/D d z¢ \;/ ‘Z d
e | +/- /4 e | +/- I+
O O
¢ ¢

_/_

Fig. 3.7. Pattern of type 3.

+/+
Fig. 3.8. Pattern of type 4.

We introduce the complexity class ACP which is closely related to the just defined patterns.

Definition 3.27. Set Ly =ger (0°10*2)*0*. We define ACP =4¢¢ Leaf? (Ls).

Proposition 3.28. Let L C A" and let M be a DFA with L(M) = L.

1. If M has a pattern of type 1 then A C Leaf” (L).

2. If M has a pattern of type 2 then AL C Leaf”(L).

3. If M has a pattern of type 3 then ACP C Leaf (L).
4. If M has a pattern of type 4 then coACP C Leaf® (L).
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Proof. All statements can be proved similarly. As an example, we show the first statement.
Let M = (A,S,6,50,5") be a DFA which has a pattern of type 1, and let L = L(M).
Moreover, let p,q € S, z € A* and d,e,w € AT witness that there is a pattern of type 1 in
the transition graph of M and suppose 6(sg,z) = p for some x € A*. We assume without
loss of generality that 6(p,z) ¢ S’ and 6(¢,2z) € S'. Recall now that Ab = Leaf® (B*10*)
with B =qef {0,1,2} and let L' € Leaf® (B*10*) for some language L' € A be witnessed
by a nondeterministic polynomial time Turing machine M. To see that L' € Leaf” (L) we
reconstruct M as follows. We add a leftmost path spanning a computation tree having x as
its leafstring, we add a rightmost path spanning a computation tree having z as its leafstring,
and for every path of M, if M outputs 0 (1, 2) we append a computation tree with leafstring
w (d, e, respectively). O

Note that we may consider the patterns of type 1 to 4 as DFA’s itself, which shows that the
complexity classes from Proposition 3.28 are leaf language definable. Now we prove that we
encounter one of the patterns of type 1 to 4 if some DFA has pattern D.

Lemma 3.29. Let L C A" and let M be the minimal DFA with L(M) = L. If M has
pattern D then L € SF or M has a pattern of type 1, 2, 3 or 4.

Proof. Let M = (A4, 5,6,s0,5") be the minimal DFA accepting L. We assume that M has
pattern D and that M is permutation—free, since otherwise L ¢ SF. By Theorem 1.37 there
is some ¢ > 1 such that for all s € S and all w € A* it holds that 6(s,w®) = §(s, w°*!). Under
these assumptions we show below by case distinction that we always find in M one of the
patterns of type 1 to 4.

In particular, let p,q € S and z,w, u,v,z € A* with |w| > 1 witness that M has pattern D.
So 8(so,z) = p = 8(p,w) = 8(q,v), 6(p,u) = q=b6(q,w), §(p,z) € S and 8(p,z) € S (or vice
versa). Since M is permutation—free it holds that u # v. As a first step we set v =qof uw®
and v’ =ger vw®. Then still §(p,u’) = ¢ and 6(q,v") = p, but now there is a w-loop at any
state in M that can be reached with u’ or v. We write u and v instead of v’ and v’ for short.

Case 1. Suppose 6(p,v) = p or 6(q,u) = q. Without loss of generality we assume 6(p,v) =
p. Then we found a pattern of type 1 with d =qef vu and e =gef v.

Case 2. Suppose 6(p,v) # p and 6(q,u) # q. We define d =g¢r (uv)u and e =ger (vu)v.
Our strategy will be as follows. Let s, be two distinct states such that 6(s,d) = r and
6(r,e) = s, and note that this holds in particular for p,q. We define two operations — g
(‘right’) and —, (‘left’) on such pairs (s,r) resulting in one of the desired patterns, in a
new pair (s',r’) fulfilling certain helpful properties, or in some case we have treated before.

We start with the operation — g on (s,r) having the above property, i.e., s and r are
distinct and 6(s,d) = r and 6(r,e) = s. Let pg =ger s and gop =ger 7. For 1 < i < ¢ set
¢i =def 0(¢i—1,d) and p; =qet 6(qi,€e). Then it holds for 0 < i < ¢ that 6(¢;,e) = p; and
8(pi,d) = ¢;- Additionally we have 6(g.,d) = ¢.. We distinguish two cases. Assume that
Pe # qe- Then, since F' is minimal, we found a situation as in Case 1. Otherwise we have
Pe = q. and we take the minimal j with 0 < j < ¢ such that p; # ¢;. Then 6(p;,d) = g,
6(gj,e) = p; and additionally 6(q;,d) = gj+1 = 6(gj+1,€) = 6(qj+1,d). We keep the pair
(pj,qj) with p; # g; as a result of operation — g on (s,r). Moreover, we see that there is
some 0 < [ < ¢ such that 6(r,d") = g;. We denote this operation by (s, ) LR (pj,q5)-

The operation —, on a pair (s,r) is a dual version of — . We investigate what happens
on input e at state s. Let pg =qer s and qg =ger . Similar as above, for 1 < ¢ < ¢ we set
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Di =det 0(pi—1,€) and q; =qef 0(pi,d). Then it holds for 0 < i < ¢ that §(p;,d) = ¢; and
8(¢i,e) = p;. Additionally we have 6(p.,e) = pe. If p. # q. we also find a situation as in
Case 1, and otherwise we keep for a minimal j such that p; # ¢; the pair (p;,q;), where
additionally é6(pj,e) = pj+1 = 6(pj+1,€) = 8(pj+1,d). There is some 0 < [ < ¢ such that
5(s, ') = pj. We denote this operation by (s, ) . (pj;q5)-

Now look at the sequence of pairs that results from alternating applications of the oper-
ations — g and —, to p and q, starting with —pg. Set pg =qet p and gg =ger q. Every
application produces a pair of distinct states having the described properties, or we are done.

So we may assume that for all ¢ > 0 there are pairs (po;,g2;) and (p2i+1,¢2i+1), and also

l i l 7 .
lai, lai41 > 0 such that (pa;, g2i) —>r (P2it1,@2i+1) —— 1 (Pa@ir1) Ga@irn)) With pa; # go; and

P2i+1 # Qit1-

Case 2.a. Suppose there is a pair (s,r) that appears in the sequence after an —p
operation and also after an — [, operation. Then there are states s’ and r’ such that §(s, e) =
s'=6(s",d) =6(s',e) and 6(r,d) =r' = 6(r',d) = 6(r',e). If ' # r' then we found a pattern
of type 2, witnessed by the states s’, s, and words e and dd. Now assume that s’ = v’ and
let z witness that s and r are distinct. If 6(s’,2) = 6(r/, z) & S’ then we found a pattern of
type 3 witnessed by s, r and s'. If §(s',z) = 6(r', 2) € S’ then this is a pattern of type 4.

Case 2.b. Any pair (s,r) of the sequence appears only after — i operations or it appears
only after — operations. Then there must be i,j with 1 < ¢ < j such that (pa;,q2i) =
(P2, q2j)- By construction, there are states ph; and gy, such that §(pa;, e) = ph; = 6(ph;, d) =
6(ph;,e) and 8(qoit1,d) = gy = 6(q9;41,d) = 6(ghiy1,€). Moreover, there is some ly; > 0
with 6(qa;, dl2") = @o2;41 and in fact ly; > 1 because otherwise we are in Case 2.a. There is
also a word ef with f € {d,e}* such that 6(q2i+1,ef) = p2; = pa2i. Furthermore, it must hold
that pe; # g2;41 since otherwise pa; = go; follows. Now we have a situation as in Case 2.a
witnessed by the states pa;, g2i1 1,05, g5, and words d' =qef dd? and € =g ef . O

We can show the same fact in case M has pattern D*°v.

Lemma 3.30. Let L C A" and let M be the minimal DFA with L(M) = L. If M has
pattern D™ then L & SF or M has a pattern of type 1, 2, 3 or 4.

Proof. Let M = (A, S,6,50,S5") be the minimal DFA accepting L. Let s1,...,s5 € S and
T, w,u,v,z € A* with |w| > 1 witness that M has pattern D*'. Suppose so # s4 or s3 # Ss.
Then we found pattern D and we can apply Lemma 3.29. On the other hand, if so = s4 and
s3 = s5 then u # v and we found a pattern of type 2. O

Finally, we obtain the following theorem.

Theorem 3.31. Let L C A" be a regular language.

1. If L € L(RTL) N L(RPTL) then Leaf” (L) C AD.
2. If L ¢ L(RTL) N L(RPTL) then Leaf” (L) contains one of the classes AL, ACP, coACP
or MOD,P for some prime p.

Proof. Let L = L(M) for the minimal DFA M. The first statement is a consequence of
Corollary 3.26. If L ¢ L(RTL) N L(RPTL) then M has one of the patterns D or D" by The-
orem 3.14. We may apply Lemma 3.29 or Lemma 3.30 to obtain that M is not permutation—
free or we find a pattern of type 1, 2, 3 or 4 in the transition graph of M. For the former case
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it is known that MOD,P C Leaf” (L) for some prime p [Bor95]. In the latter case we apply
Proposition 3.28. 0

The classes MOD,P do not come into place, if we consider only star—free languages.
Since there is evidence that MOD,P is not a subclass of some level of the polynomial time
hierarchy (otherwise the latter collapses, see [Tod91]), we may take a closer look at the
case of star—free leaf languages. The relation of ACP to the classes of the polynomial time
hierarchy is of particular interest. One can show that ACP C II} and that A} C ACP if and
only if ACP = II}. Certainly, there is more to investigate. In case of the first statement of
Theorem 3.31 we have no evidence that this is optimal in the sense that there exists some
L € L(RTL) N L(RPTL) such that Leaf® (L) = Ab. In fact, the typical languages with this
property are in L(RTL)\ L(RPTL) or L(RPTL) \ L(RTL) (see the proof of Lemma 3.25). So
also here it remains to investigate if there is a presumably smaller class than A} for which the
first statement holds. We have pointed out at the end of the previous section what properties
are typical for languages in L(RTL) N L(RPTL).

3.6 Discussion and Bibliographic Notes

We make some more remarks concerning the results of this chapter. Let us consider the gen-
eralized deterministic languages first, for which another characterization can be added, this
time derived from the theory of finite semigroups. We look only at one of the two dual cases.
Denote by R the variety of finite R-trivial monoids and by LR the variety of finite locally
R-trivial semigroups. It is shown in [Eil76] that ﬁ%)eft forms the language variety correspond-
ing to R, and we see from [CPP93] that L(RPTL) forms the language variety corresponding
to LR. Moreover, it is known from [Eil76, Chapter V.12] that LR = R * D, the variety
resulting from the right unitary, semidirect products of members from R and D (the variety
of definite semigroups). So the general results from [Str85] for varieties of this form can be
applied here: it holds that R # D is the union of all R * Dy (the latter is the variety of
k-definite semigroups) and each R * Dy, is characterized using certain generalizations of the
congruences corresponding to R. Now the following can be done. Starting with the congru-
ences for R known from [BF80], one can show that languages from Zi}fft can be described
by the generalized congruences used in [Str85]. It follows that Zi}fft is the language variety
corresponding to R * Dyg. So in this case we have additionally to Theorem 3.23 a levelwise
algebraic characterization. This sketches also a way to show that the unions of weak left
k-deterministic languages can be made disjoint.

Further investigations may involve, e.g., to find a logical characterization of f)}fft, or to
look for an algebraic characterization of D" (using the forbidden patterns, for instance). One
can also look at a non—strict version of F: this makes a difference if F is the only temporal
operator, while when arbitrary use of X is added, both versions have the same expressive
power [Wil98]. There are several characterizations known for the classes L3/, M coLs/o and
B3 o M coBs /s in terms of first-order logic restricted to two variables, in terms of restricted
temporal logic where future and past opertors are allowed to use at the same time, and in
terms of unambiguous languages [EVW97, PW97, TW98].

Recall with Theorem 2.39 the forbidden pattern characterization of B;. Together with
Theorem 1.24 this could be used to look for a theorem on leaf language definability similar
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to Theorem 3.31. However, to find pattern types that appear in a DFA having pattern B
seems to be difficult, because a lot more combinations are possible than in case of pattern ID.

The work done in this chapter was initiated by a proof of Theorem 3.17 for £ = 0, provided
by Klaus W. Wagner.



90 3. Deterministic Languages and Restricted Temporal Logic



4. Dot—Depth 3/2

In Chapter 2 we have generalized the forbid-
den pattern L, o characterizing L;/, to show a
forbidden pattern characterization of By ;) via
pattern By, ;. It was fairly easy to establish a
bound on k£ if a DFA is given, which in turn
yields the forbidden pattern characterization of
Bi/y (see Theorem 2.18 and Proposition 2.19
and the discussion following there). The same
observation can be made when going from D%)eft
via DI to L(RPTL) (see the discussion fol-
lowing Theorem 3.21). In these two cases, the
forbidden pattern characterizations of By, and
L(RPTL) were previously known, and our re-
finements lead to other proofs of these results. In
this chapter, we exploit this approach one more

/\

AN
By  coBys \L\ \

time: we restate the known forbidden pattern for 81/2 &Bl/“ \L\
L3/, characterizing L3/, from [PW97] (cf. Theo- Lijz  coliys
rem 4.2), define a generalized pattern B /2, and

provide a forbidden pattern characterization of

Bs/aj (cf. Theorem 4.22).

This yields the decidability of the membership problem of B3/; j (cf. Theorem 4.30) and
enables us to prove the strictness of the hierarchy of classes Bsy; for k& > 0 (cf. Theo-
rem 4.29). However, no forbidden pattern characterization of Bs/, (or any other effective
characterization) was known before and the situation is more involved than in the previous
chapters. We prove a bound on k from which we derive a forbidden pattern characterization of
Bs /o (cf. Theorem 4.32). This implies the decidability of the membership problem of B 5 (cf.
Theorem 4.35) and has consequences in first—order logic (cf. Corollary 4.37). In Section 4.5
we see that the forbidden pattern characterization of B/, has also an algebraic interpretation
(cf. Theorem 4.38) and we sketch consequences for complexity theory (cf. Theorem 4.40).

First, we develop in Section 4.1 a combinatorial tool that (for a given DFA M) allows to
partition words w of arbitrary length into factors w; of bounded length, such that every second
factor wo; is idempotent in M, i.e., wa; leads to a wyj-loop (cf. Theorem 4.3). Moreover,
we provide in Section 4.2 a normal form for languages in Bs/j (cf. Theorem 4.9) which
generalizes (and gives in case k = 0 another proof) of the normal form result from [Arf91]
stated in Proposition 1.19. Let us first recall the following.
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Definition 4.1 ([PW97]). Pattern L3/, is defined as the subgraph given in Figure 4.1
with z,2 € A*, v,w € AT and a(vwv) C avv).

Note that the subgraph in Figure 4.1 is the same as in case of pattern By 5, but has the
additional side condition a(vwv) C «a(vv) (recall also that a(z) denotes the set of letters
occurring in z for any = € A*). The latter is equivalent to a(w) C a(v) but in order to
have a uniform treatment with our generalizations below we state it this way. It holds that
FP(LLzy) is well-defined as can be seen with the arguments used in the following proof.

Fig. 4.1. Pattern L/, with
a(vwv) C a(vv).

Theorem 4.2 ([PW97]). It holds that L3/ = FP(LL3s).

Proof. To show the theorem we recall [PW97, Theorem 8.9]. After rewriting their notations
we obtain the following (together with Theorem 1.8).

(a) Let M be a minimal DFA with L(M) C A*. Then L(M) € L3 U{LU{e}|L € L3/, }
if and only if M does not have a subgraph in its transition graph as depicted in Figure 4.1
with z,v,w,z € A* and a(w) = a(v).

Suppose L € L3/, and let M = (4, 5,6, s0,5’) be the minimal DFA with L(M) = L C A*.
Assume that M has pattern L/, via 2 € A%, v,w € AT and a(vwv) C a(vv). Now let
w' =gef vwv and observe that M still has pattern L3/ via z,z € A*, v,w' € AT and
a(w') = a(v). We apply (a) and see that L = L(M) & L35 U {LU{e}|L€Lyp }, a
contradiction. It follows that there exists some DFA accepting L which does not have pattern
L3/5. Hence L € FP(LL3s).

Conversely, let L € FP(LLg/y). So there exists some DFA M with L(M) = L € A" such
that M does not have pattern LL3/,. We assume that L ¢ L3/, and show that this leads to
a contradiction. By (a), the minimal DFA M’ accepting L has a subgraph in its transition
graph as depicted in Figure 4.1 with z,v,w,z € A* and a(w) = a(v). Note that w € AT
because the states s; and s in the pattern are distinct. It follows that also v € A™T.

We argue as in the case of Theorem 2.16 for By /5. Let r =q¢f | M| and define 2’ =gt 2,
&' =get V", W =qof w" and v’ =ger v". Observe that 2/, 2’ € A*, v/,w’ € AT and that

a(v'w'v') = a(W"wo™) = a(vw) = a(v) = a@ ™) = a(vV).

We obtain from Proposition 1.34 that z’ and w’ lead to a v’-loop in M. Moreover, we see
from M’ that 2’2’ € L = L(M) and 2w’z ¢ L = L(M). So M has pattern Ly, a
contradiction. O
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This forbidden pattern characterization implies the decidability of the membership problem
of 53/2.

4.1 How to find Automata Loops in Words

A useful tool in further proofs is the fact that we can find factors in a word that lead to
loops in a given DFA. It is important here to analyse the length needed to find such a factor,
depending on the size of the DFA in question. For this end, we define a bounding function
K(n) as
(n+1)
lC(n) —def (n + 1)(n+1)

and prove in this section the following rather technical theorem. Let § denote the transition
function of the given DFA M.

Theorem 4.3. For every DFA M and for all vy,...,v, € A" there exist an m > 0 and
indices 0 =19 < 11 < -+ < lgmy1 = N+ 1 such that

1. 541 —i5 < K(M|) for 0 < j < 2m and
2. 6" = 6" for allu = Vi Vi1 Vij -1 with 1 < j<2m and j =1 mod 2.

The proof is given in Subsection 4.1.2. To give some intuition we state what this means for
factors of length one, i.e., letters.

Corollary 4.4. For every DFA M = (A, S,6,50,5’) and every w € A" there exist words
W0y e vvy Wiy Uy e v vy Uy € ASKUED sych that w = WoULWT * * * U Wy, and 6% = 6% for 1 <
1 < m.

We use Theorem 4.3 for arbitrary factors v; in the proof of Lemma 4.27 below. This is the
main lemma from which we derive the forbidden pattern characterization of Bs /g .

4.1.1 How to find One Loop

We first show with a rather rough estimation, that /C(n) does not become too small if we
repeatedly divide it by n"™. This will make the proof of Lemma 4.7 below better readable.

Proposition 4.5. Let n > 1, my =ge [K(n)/2] and mit1 =ger |mi/n"| — 1 for i > 1. For
1 <¢<n™4+1 it holds that
m; > (2nn)(n"+3—i).

Proof. We will prove the lemma by induction on ¢ with 1 < ¢ < n™ + 1. For the induction
base let ¢ = 1. We distinguish two cases, first suppose n = 1. By definition of K(n), we have
my = 8 = (2n™)(""+3-D_ Now let n > 2. By the binomial theorem we have in this case
(n+1)" >+ Dn"+(n+D)n+1>n" 42 +2and n" +n-n" < (n41)"
So the following estimation shows the induction base.
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(2n™) (" +37D = (n"+n- n”_l)(nnﬁfl) < (n+1)n0" 2
< (n+1)(D"-2)
< (T g
(n+ 1)( n+1))

-1

<

- 2
[K(n)/2] =
For the induction step, suppose that we have already shown m; > (2n")("n+3*k) with

1 < k < n"™ + 1. By definition, my11; = |my/n™] — 1. From the induction hypothesis we
obtain

IN

(2nn) (n™+3—k)

nn

Miy1 2> - 2.

Since n > 1 and k < n™ + 1 we have (2n™)(""+3=k) /p > 8. Tt follows that

nn)(n”-‘,—?)—k)

M1 = —2=2. (2nm)(M =) 9 > (gpn)(nH3=(RHD)

nn
u

The key argument for Lemma 4.7 below is the iterated use of the fact that there is only
a finite number of mappings ¢’ : S — S when a finite set S is given. We isolate the iteration
step in the following lemma. Let a word v be given with a factorization v = wvivg - --v; for
sufficiently large [. Among the mappings 6”*""%/ some coincide if [ is large enough. Suppose for
instance, there are x,, z,v’ such that v = zyzv’ and §* = §*¥ = §*¥%. Then 6% leads to a y-
loop and also to a z-loop. We repeat this selection procedure on the now coarser factorization
zyzv' = v = vyvy - - vy, and collect the hereby encountered mappings in the set A.

In order to make this precise, let vg,v1,...,v € AT and define v[¢, j| =def ViVi41 - Vj—1
for all 0 < i < j <1+ 1 as the concatenation of the respective words. We work with indices
19, ... ,im in order to allow iterated applications.

Lemma 4.6. Let M = (A, S,6,50,5") be a DFA and let vo,v1,...,v € AT be given. Fur-
thermore, let 0 < ig < i1 < -+ < iy, < | and suppose that A is a set of total mappings
8§ — S such that every &' € A leads to a v[ij,ij11]-loop for all 0 < j < m. Then there
exist indices iy < iy < --- < i, with n =qe |m/(|S|°1)] such that

1. {2'6,1'/1, ceyin Y C iy i1y -y im )

2. every &' € A leads to a vlig,i}]-loop (forn > 1) and

3. every 8 € AU {5”%”’/1}} leads to a v[i’;, i} ]-loop for all 1 < j < n.

Proof. First, set i =qef %0. This shows in particular the lemma for n = 0. If n = 1 we set
i1 =det 71 and we are done. Suppose n > 2 and set 0i; =def §vliosis] for 1 < 7 < m. Since
there are at most |S ||S | total mappings S — S, there exist mappings appearing several times
in the list 6;;,0i,,...,06;,. From these mappings we choose a mapping 6 that appears most
frequently, say 6 appears n’ times. So n’ > |m/(|S|I¥1)| = n. Let i}, ... i, € {i1,i2,...,im}
such that ¢} <y <--- <1, andé-&zj for 1 <j<n.
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Since {#},4b,...,i,} C {i1,92,...,im} we see the first statement. By assumption, every
8" € A leads to a v[ij,i41]-loop for all 0 < j < m. It follows that every 8’ € A leads also to a
u-loop, where u is an arbitrary concatenation of words v[ij, ;1] with 0 < j < m. Particularly,
every §' € A leads to a vl[i}, i}, 1]-loop for all 0 < j < n, thus the second statement follows.
The same argument shows also the third statement for 5’ € A.

It remains to show that 6*l%0-11] leads to a v[d! J-loop for all 1 < j < n. By the choice

J’ ]+1
of 8 we have that §°l0 %]l = § = §°lo%] for all 1 < j < n and we see that 6 leads to an
v[i}, i 4 ]-loop for all 1 < j < n. Since §*l0-%1] = § the third statement follows. 0

Note that the second statement in the previous lemma and also third statement for § € A
follow immediately from the first statement. We explicitely state them here to focus on what is
important in the following proof. We use the same finiteness argument as before: the mapping
we add to A in Lemma 4.6 cannot always be a new mapping. So if the number of factors we
start with is large enough to allow many applications of Lemma 4.6, then we find a mapping
6% that has already been added to ¢ before, say ¢'. But this means by the second statement
of Lemma 4.6 that ¢’ leads to a u-loop, and hence §' = §% = §%%.

Lemma 4.7. For every DFA M = (A, S,6,50,5") and for all vo,v1,...,v; € AT with | =qe¢
|[IC(|M])/2] there exist 0 < g < h <1 such that 6" = 6" with © =gef VgUg+1 - "+ Vh—1-

Proof. Let n =ger |M|. Initially, let m® =4 I, AD) =45 0 and z}(«l) =gt T for 0 < r < L.
We apply Lemma 4.6 the first time and obtain for n(!) =4 [m®)/n"] indices i’ﬁl) with
0<r< n(1) such that

L{NDM<T§MD}Q{N”O<r<mm}am

2. §°66" "] leads to a v[i’, '), i J-loop for all 1 < r < n(b,

r+1
Now we want to start over after position i’gl) and set m® =g nM — 1, A® =3 AD Uy
{6”[1/(1)”/(1)]} and i,(?) =def i’ﬁgl for 0 < r < n™). We apply Lemma 4.6 again.

In general, after the j-th application of Lemma 4.6, we obtain for n() =g [mU) /n™| the

indices gj ) with 0 < r < n0) such that

L {ilgj) [0<r<nl) } C {¢§j>|o§r§m0’> }

2. every & € AU leads to a v[i’(()j) "(j)]—loop (for nU) > 0) and

3. every & € AW U {6”[i,é])’ilgj)]} leads to a v[i (J), ,(21] loop for all 1 < r < n@).

Moreover, with mUTY =g nl) —1, AUTD =4 AU U {5”[i/éj)’i/§j)]} and VY — =def T 9431 for
0 <7 < nl) we can carry out the (j + 1)-st application of Lemma 4.6.

We chose [ at the beginning large enough such that we can apply Lemma 4.6 sufficiently
often to face the same mapping twice. This can be seen as follows. By Proposition 4.5 we
have that m() > (2n™)"+3-9) for 1 < j < n™ + 1. Tt follows that nU) = |m0U)/n?| >
(2n™)("+2-3) 1 > 1 for 1 < j < n™ + 1. Particularly, the indices 7’ (()J ) and ¢/ gj ) exist for
1<j<n"+1.

On one hand, at the end of each step j we take 5”[“( D] to AU) and obtain AU+, On
the other hand, there are at most n™ total mappings S — S. Therefore, there exists a step
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t with 1 < ¢ < n™ + 1 such that § =q¢ 6”[i’ét)’i,§t)] is already an element of A® . From the

second statement of Lemma 4.6 it follows that & leads to a v[i’ (()t), i gt)]—loop. With g =ger 7 (()t),

h =get i’gt) and u =def VgUg+1 -+ - Vp—1 We have u = v[i’(()t),i’gt)]. Thus 6 = 6% leads to a u-loop
and hence 6% = 6. O

4.1.2 Proof of Theorem 4.3

Now we give a proof of Theorem 4.3. If we do not have the particular number [ of words,
but factors vg,v1,...,v, for arbitrary n, we can partition them in a number of factors such
that in each factor there are only IC(|M|) words v;, and every second factor u has in fact the
property 6** = 6*. Note that we can understand vy, v1,...,v, as some word v = vyv1 - - - Uy
with n markers attached to it. So we obtain for words of arbitrary length a factorization with
the described properties.
Proof of Theorem 4.3. Let | =q¢¢ [K(IM])/2]. If n < K(|M]) then we set m =ger 0,
1o =def 0, 11 =getf m + 1 and we are done. Otherwise we partition the list vq,...,v, from
left to right into factors such that every factor contains [ + 1 words v;. We obtain m > 1
such factors Bj,..., By, and r < [ remaining words v,_,41,...,v,. For every factor B, =
(Vj,Vj415---,0j4) With j = (t = 1)({ + 1)+ 1 and 1 <t < m we apply Lemma 4.7 and
we obtain indices j < g; < hy < j + [ such that 0" = 6" with u =get Vg, Vg, 41" Vny—1-
Now let ig =get 0, t2m+1 =det 7 + 1 and i9s—1 =det Gt, b2t =def ht for 1 < ¢t < m. Since
0=7ip <i1 <--+ <igms1 =n+ 1 we already have the second statement of Theorem 4.3.

It remains to show the first statement. For 1 < ¢t < m it holds that 99 — 99,1 =
hi — g <1 < K(M|). For 1 <t < m we have B, = (vj,vj41,...,vj41) and By =
(Uj—l—l-i-l: Vjlg2y--- ,Uj+gl+1) with j = (¢ —1)(l + 1) + 1. Since

J<g<hi <j+l < j+l+1<gy1 <hgp1<j+2+1

it follows that gi41 —he < (5 4+20) — (j+1) =20 — 1 < K(JM]). Moreover i1 —ig = g1 <1<
K(|M]), so we have shown ij.1 —i; < K(JM]) for 0 < j < 2m — 1.

We are left with ;41 — %2,. Observe that By, = (Vn—r—1, Vn—r—i+1,---,Vn—r) and that
Tom = Ry >n—1—1. So

Pomt1 —lom =n+1—igy < n+l—-n+r+l=r+l+1<20+1<K(M]) +1

and hence 9,41 — lom < K(JM]). (End proof of Theorem 4.3.)

4.2 A Normal Form for Bg/

By definition, languages in B3/ ;. are finite unions of concatenations of languages, that are in
turn Boolean combinations of languages from By 5 ;. In case k = 0 we have Bs/y o = L3/ for
which the following normal form is known [Arf91]. Every language from L3/, can be written as
a finite union of languages of the form Aja1 Aj - - - a, A}, where n > 0, a; € A and A; C A (see
Proposition 1.19). The natural way to carry this over to arbitrary k is to look at expressions
of the form (Xo, a1, 31, . .., G, X )y, With a; € A¥H and 3; C A¥! (recall Definition 1.25).
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Definition 4.8. Let £ > 0. The class 2?3’13/2,,1g is the class of all languages L C A" that can be
written as a finite union of languages L; such that L; C A<F or

Li - (207a17217 R ,Oém,Em)k

where m > 1, aq, ..., am € A¥H and £, 24, ...,8,, C AL

Note that we require here m > 1 which is no restriction since (X¢)x contains only words of
length > k + 1 and hence (Xo)x = U[}GEO(EO,B, Y0)k (the latter is also true if g = 0)). We

show in this section that in fact Bs/ ), = Bs/a ), for all k > 0, which gives for the special case
k = 0 another proof of the result from [Arf91].

Theorem 4.9. Let k > 0. It holds that Byo 1, = Bajo -

The proof of this theorem is given in Subsection 4.2.3. While preparing this proof, we show
an even stronger result in the following subsection.

4.2.1 A Normal Form for E3/2,k

We show with the following theorem that we may assume in the expressions of the form
(X0,a1,21,...,0m, X)), that every § € ¥; appears first as some «; with j <.

Theorem 4.10. Let k > 0. Fvery L € gg/zk can be written as a finite union of languages
L; such that L; C A<k or L; = (X0, 1,31, .., 0, X)), where m > 1, aq, ..., 0, € ARHL
05+ Zm C AL such that for 0 < i < m it holds that

Eig{al7‘”aa’i}'

The proof of this theorem is immediate from the next lemma. Some more definitions are
needed. In order to distinguish between languages and their formal representation we use now
the term ezpression and mean the syntactical object (Xo, a1, X1, ..., 0n, Xy);, that describes
a language. Let us formally describe what we mean with the notion of first occurrence.

Definition 4.11. For every 3 € A*"! and every expression (Zo,a1,%1,...,0n, 3y), with
n >0, a; € AP and ¥; € A¥1 we define the position of the first occurrence of 3 as

Bain (X0, 01,81, ... ,00,50), =def min({1<i<n|[f=0q; }U{n+1}) and
Buin (X0, 00,81, .., 00, 50), =def Min({0<i<n|[BeX; }U{n+1}).

Here (3, is the leftmost position of 3 as some «a; in an expression, and By is the index
of the leftmost set ¥; in which ( is contained. Next we look at two cardinalities. The first
measures the size of an expression and the other one gives the number of words from A*+!
for which the property of first occurrence is violated, i.e., it measures the number of different
B € AFFL that occur in an expression at first in some set ;. We call this the number of
transpositions. These two cardinalities will be used in the proof of the following lemma by
two nested inductions.
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Definition 4.12. We define the size of an expression and its number of transpositions as

size(Xo, 1,21, ..., 0y X)), =def T+ Z |¥;| and
0<i<n

Tr (20,041,21,... 7an72n)k =def ‘{B € Ak+1 ‘ﬁMIN (EO)“‘ 7En)k < ﬁmin (EO)“- )En)k }‘ .

The following lemma says that we can always find equivalent expressions, i.e., expressions that
describe the same language, with zero transpositions. It applies in particular to the languages
from By j, and if the number of transpositions is zero, then it holds that ¥; C {a1,...,a;}.
So Lemma 4.13 proves Theorem 4.10.

Lemma 4.13. Let k > 0. Every language given by an expression (X¢, 01,21, ..., Qm, Xm)
with m > 0 can be written as a finite union of languages, each of which represented by
expressions of the form (I'o,v1,T'1,...,vn,I'n)y such that Tr (o, v1,T1,. .., v, ), = 0 and
n>m.

Proof. We show the lemma by induction on Tr (Xg, a1, %1, . .., 04n, L) The induction base
is trivial. Now assume that we have shown the lemma for all languages given by expres-
sions (O, 01,01,...,0,,0p), with Tr(0¢,01,01,...,0,,0,), < and we have to show the
following claim.

Claim. Every language given by an expression (Xg,a1,%1,...,0m,Sn), with
m > 0 and Tr (Xg, a1, X1,...,0m,25n), = [+ 1 can be written as a finite union
of languages represented by expressions of the form (I'g,v1,T'1,..., v, 'n), with
Tr (To, 1,11, ..., '), = 0 and n > m.
We will prove this claim by a second induction on size(Xq, o1, X1, . .., Qm, Xm). If it holds

that size(Xo,a1,%1,...,0m, Xm), = 0, then it must be that m = 0 and Xy = 0. Thus
Tr (Xo), = 0, which proves the induction base of the second induction. Now assume that
claim has been shown for all languages given by expressions (0o,601,01,...,0,,0,), with
Tr (@0, 01,04,... ,Gp, @p)k =[+1 and size(@o, 01,04,... ,9p, @p)k <r.

Let E =gef (X0, 1,21, ..., 0m, Xm), be an expression with Tr(E) =1+ 1 and size(E) =
r 4 1. Thus there exists some 8 € A**! and indices 0 < iy < iy < m + 1 with i; = By (E)
and i2 = B (E). We define the expressions

El —def (207a17215"'5ai172i1 \{/6}5 ai1+152i1+17“‘5am52m)k and
E2 =def (20,041, Ela sy Oy Eh \ {ﬁ} 757 Eipail-i-l’ Eil—f—la ceey Oy, E'm)]i; .

Since 8 € ¥;, it is easy to see that the language given by E is just the union of the languages
given by E; and Es. Moreover, the length (i.e., number of components) of F; and Fj is
greater or equal to the length of E and size(E7;) = r. The expression F; was obtained from
E by removing 8 from X;,, thus we have 3, (E) < '\ un(F1) and §', (F) = 5 ,...(F1) for
all B € A¥+1 Tt follows that Tr(E;) < Tr(E) =1+ 1. If Tr(FE;) < I + 1 then the language
given by E; can be written as a finite union of languages represented by expressions E’ with
Tr(E’) = 0 by the first induction hypothesis. If Tr(E7) = [+ 1 then the language given by F;
can be written as a finite union of languages represented by expressions E’ with Tr(E’) = 0
by the second induction hypothesis (because size(E;) = r).

Now we want to show that we reduced the number of transpositions with the construction
of Fy and hence Tr(Ey) < [+ 1. Let 3 € A¥1\ {3}. It follows from the definition of Fy that
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B vun(E2) # i1 + 1 because from 3’ € ¥;, also 3’ € ;, \ {8} would follow. Furthermore, we
have

ﬁl (E) = ﬁ/MIN(EQ) poif 5IMIN(E2) <11
M B (E2) —1 ¢ otherwise, i.e., if 8/, n(F2) > i1 + 2, and

ﬁ/ (E) — ﬂ,min(EZ) : lf ﬂ,min(EZ) S /L]-
min B w(E2) —1 @ otherwise, ie., if §/ , (F2) > i1 + 2.

Therefore, for every 3 € A¥*1\ {3} it holds that

IBIMIN(E2) < ﬁlmin(E2) = /BIMIN(E) < ﬁlmin(E)‘ (4‘1)

Since i1 = By (), we obtain
5MIN(E2) > ﬁmin(EQ)' (4.2)

From (4.1), (4.2) and from Sy (E) < Bum(E) it follows that Tr(Es) < Tr(E) =1+ 1. Hence
E, can be represented as a finite union of expressions E’ with Tr(E’) = 0 by the first induction
hypothesis. This completes our second induction and proves the claim. So the induction step
of the first induction is completed. O

4.2.2 Basic Properties of 53/2,k
We provide some auxiliary results concerning gg /2, and start with closure properties.

Proposition 4.14. Let k > 0. It holds that a 'L N At La™'1 N AT ¢ gg/zk fora € A and
L S 83/27k'

Proof. We show that a 'L N At € l§3/27,€ for L =ger (X0, 01,21, .., 0m, L)y, wWith m > 1,
a; € A1 and 3; C A1, The other case follows from the closure of 1§3 /2,1, under reversion,
which is easy to see from the definition. Note also that a=*D N AT C A<k for D C A<k, By
Theorem 4.10 we may assume without loss of generality that ¢ = () and that 31 € {{a1},0}.
Furthermore, we may also assume that L # (). So a; = aw for some a € A and w € A* since

otherwise a 'L = (). We distinguish two cases.
Case 1. Assume that m = 1. If £1 = 0) then L = (0,aw,0), and a 'L N AT = {w} N AT.

If k = 0 then the latter set is empty and belongs to Bs/s i, otherwise {w} C A=k and belongs

also to g3/27k. Now suppose X1 = {aw}. If px(aw) # w then we may set 1 = () without
changing the language. We have treated this before, so suppose pi(aw) = w. Then

a 'L NAY = a7 (0,aw, {aw}), NAT = ({w}U ({aw}),) NAT.

Note that ({aw}), contains only words of length > k + 1 and we argue as before that we
have obtained a set in By 1.
Case 2. Now let m > 2. It must be that py(ag) = w since otherwise L = (). If ¥; = () then

a 'L NAt = a! (0, aw, 0, a9, %2, . .., Am, B)y, NAT
= (Oég,ZQ,...,Oém,Zm)k ﬂA+
= (0,a2,%2,...,0m, Xm); € g3/2,k:-
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Finally, suppose X1 = {aw}. Again, if pg(aw) # w then we may set ¥; = () without changing
the language. We have treated this before, so suppose py(aw) = w and recall that pg(a2) = w.
Then

a 'L NAY = a (0, aw, {aw}, a9, Da, ..., am, S), NAT
= ({aw},a2,%9,...,0m, Xm); NAT
= ({(J/w},OZQ,EQ’...,am,Em)k - g3/27k

O

We show next that 53 /2, 18 closed under polynomial closure. Recall that the polynomial
closure is exactly the closure under finite union and concatenation since concatenation dis-
tributes over finite unions.

Proposition 4.15. Let k > 0. It holds that 2?3’13/2,,1g = Pol(g3/2’k).

Proof. We need to argue for the inclusion from right to left. It suffices show for any two
languages L1, Loy € 53/27,6 that Ly - Ly € l§3/27,€ since lf§3/27k is closed under finite union by
definition. For the same reason it remains to consider the following cases.

First, suppose Ly C A<F. If also L1 C A=F we consider (L;-Ly)NA=F and (L; - Ly) N AZF+1
separately. The former language is in gg, /2,k and to see this for the latter, note that for any
word w € AZFL we have {w} = (0, 1,0, a2, ... 0, am,0), if © = (a1, a9, . .., am).

If L1 = (So,a1,%1, .., Qm, Sm)y, with k > 0, m > 1, a; € A¥! and 8; C AL we see

that Ly - a € B3y, for some a € A by

Li-a= U (analazl"“?am?zm’ﬁ’w)k'
BeAk.q

This covers also the case that L; C AF and L has the form (g, a1,%1,. .., om, Em)j-
Finally, suppose L1 = (20, 01,%1,...,0m, Xm), and Ly = (To,y1,T'1,..., 9, ), with

E>0,m,n>1, a;,v € A¥1 and 3;,T; C A**! and we want to show L - Ly € g3/27k. All
we have to do is to ensure that there are exactly k£ elements in the k-decomposition of any
word in L; - Ly between the rightmost element from 3, (or a,,) and the leftmost element

from T'y (or 7). It holds that

Ll'L2: U (207a1721)---’amazm’ﬁh@’ﬁ%“"waﬁk’F077l’Fl""’fYn’Fn)k
BB €ARTL

where we have a language from gg /2,; on the right hand side. O
We can also isolate each single o; in (3o, a1,21,. .., 0m, Xm) g

Lemma 4.16. Let k > 0 and L = (S, a1,%1,...,Qm, %m), for m > 1, a; € A¥! and
Y, C AL For all 1 < h < m it holds that

L=0a5,%1 - an 1,50 1)ioe(en) ™ - an - si(an) ™ (Shy hit, Dhaty - -« Qmy B -
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Proof. For some fixed h with 1 < h < m we set L1 =ger (X0, @1, 21,...,0h-1,2p-1); and
Ly =det (Xhs ht15 Zht1s- -5 O,y X)) - We argue first for the inclusion from left to right, so
let w € L with w = a1---a;1 and @ = (By,...,0) for | > 1, a; € A and 3; € A**l. By
definition, there exist 0 = jop < j1 < j2 < ... < Jm < Jjm+1 = + 1 such that

(a) Bj, =a; for 1 <i<m and
(b) Bj€X;for0<i<mand j; <j<Jjis1.

: / /
With w1 =qef @102 - - - 5, -1, W2 =def gy, +k+104,+k+2 " " * AUk AN W] =def W1 - Pr(Qn), Wy =def
sk(ap,) - wy we obtain

/
w) = 0142+ Qj, 1 * G5, A5, 41" Gj, +k—1 and
/
Wy = Ay 1G5, 42~ Qjp+k * Qjp+k+105,+k+2 " Atk-
Hence w = wiapws, wi = (B1,...,0j,-1) and wh = (Bj,+1,--.,0). It follows that w| € Ly
and w} € Ly. Thus we obtain w; € Lipg(ap,)~! and wy € sp(ay) ' La. Therefore, we have
w e Llpk(ah)fl cQp Sk(Oéh)ilLQ-
1

Conversely, let w € Lipg(ap) ™t - ap - sp(ap) Lo, i.e., there exist words wy € Lipg(ayp)™?,
wa € s(a) T Ly such that w = wyoapws. Observe that wy,wy € A1 since Ly, Ly C AZFF1,

For suitable ay,...,a;,x € A and 3; € A¥*! we have w = a1---a; 1, W = (B1,...,3) and
Bi, = apn with iy =qet |wi1| + 1. Define w),wh € AT such that 1/1)\’1 = (b1,...,0i,-1) and
7,/02 = (Bi,+1,---,) and notice that such w},wj exist. It follows that w} = a1 ---aj, +x-1
and wh = a;, 41 - Qi1+, hence w) = wipk(ap) and why = sg(ap)ws. We obtain that w) €
L = (Eo,al,El,./.\.,ah,l,Eh,l)k and wé E/\Lg = (Eh,ahH,EhH,...,am,Em)k. Since
w = (ﬁl,...,ﬁl), w’l = (51,...,ﬁih_1) and w’2 = (Bih-l—lw"’ﬁl)a we conclude w € L =
(Eo,al,El,...,am,Em)k. O

In general, we must not distribute concatenation over intersections. The situation changes if
the concatenation is at a certain position, namely where some factor 8 occurs the first time.

Lemma 4.17. Let k > 0. Let Cy,C5, D1, Dy C A* and § € A*TY. FPurthermore, set v =qef
pr(B) and w =get sk(0B). If (C1 U D) C (A* \ A*BA*) then it holds that

(Cl N Dl) vl G- wt (CQ N Dg) = (Cﬂ)fl -0 wilcg) N (Dlvfl -0 wing) .
Proof. Tt suffices to show that
(Clv_l N Dw_l) -0 (w_ng N w_ng) = (Clv_l -0 w_ng) N (Dw_l -0 w_ng) .

We argue first for the inclusion from right to left. So let u be an element of the right hand
side. Then there exist words ¢; € Civ™!, ¢o € w1Cy, di € Dyv~! and dy € w Dy such
that u =c1 - B-co =dy - B - de. We want to show ¢; = di. Assume |c; - 8| < |d; - B]. Because
c1 - 0 is a proper prefix of dy - B there exists an [ > 1 and letters by,...,b € A such that
dq ﬂ =C1 'ﬁ'bl <o bl. Since dy € Dlvfl we have div = dlpk(ﬁ) =C ~ﬂ'b1 s bl,1 € D;. This
is a contradiction, because D; C (A* \ A*GA*) by assumption. We obtain |c; - 5] > |d; - 8],
and the same argument shows |c; - 8| < |dy - 8. Therefore, ¢; = d; and ¢y = dy. It follows
that v € (Cﬂfl N Dlvfl) -0 (w*102 N wing).

Conversely, let u € (Clv_l N Dlv_l) - G- (w_ng N w_ng). Then there exits some u; €
(Cﬂfl N Dlvfl) and ug € (w*102 N wing) such that u = uq-G-uo. It follows that uq-5-us
is an element of (Clv_l -3 - w_ng) and also of (Dlv_l -0 - w_ng). O
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4.2.3 Proof of Theorem 4.9

The crucial part in the proof of Theorem 4.9 is to show that gg /2,1 18 closed under intersection
with languages from coB; /5. This is stated in Lemma 4.20 below and we prepare the proof of
this lemma with the following two propositions. First, we turn certain languages from coB; /»

into finite unions of particular languages from gg /2,5~ Note that here no k-prefix and k-suffix
is specified.

Proposition 4.18. Let k > 0. Let L = (A" \ (ov,...,o4n); ) withm > 1 and o; € A¥1. It
holds that

L= (A'f“\{al},al, AN Tao) s, oy AR Lai 1}, a1, A’““\{ai})kUASk.

1<i<m

Proof. Let us first define for 1 < i < m the sets

Ly =aer (A" M\ {ar} a0, A5\ fag} 0z, oo A\ @i} @i, A\ fai})
The inclusion from right to left is easy to see. Just note that A<F¥ C L and that L; C
(A+\(a1,...,ai)k) for 1 <i<m. Hence L; C L for 1 <i<m.

We turn to the inclusion from left to right. Let w € L. If 1 < |w| < k then we are done.
Otherwise @ = (81,...,0) for suitable I > 1 and 3; € A**!. Let n > 1 be minimal such
that there do not exist indices 1 < i1 < iy < -+ < 1, < [ with ﬁij = qj for 1 < 5 < n.
Notice that n < m because otherwise w € (a1,...,an);, a contradiction. For ig =qer 0 and
j=1,...,n—11let ij =g min{h >i;_1|0, = ; } and observe that those minima exist.
Thus for 1 < j < n we have §;, = a; and 8, € A¥*\ {a;} for i1 < h < i;. It follows from
the definition of n that 8, € A**1\ {a,} for all i,y < h <. Therefore, w € L,,. O

With this representation at hand we show the following.

Proposition 4.19. Let k > 0. It holds that LN L' € l§3/27,€ for languages L € l§3/27,€ and
L'= (A" \ (ea,...,am);, ) withm >1 and o; € AFTL

Proof. Note that (AJr \ (al, e ,am)k) ND = D for every D C A<*. Thus by Proposition 4.18
and distributive laws it suffices to prove the following claim.

Claim. Let C = (To,71,T1,.-+,Yn,[n), withn > 1,v; € A¥L and I'; € AFFL. Let
D = (A"\{a}, o0, A\ {ao}, q0,..., A" \{omm_1}, am-1, A" \{am}),
with m > 1 and o; € A**1. Then CN D € g3/27k.

The proof is by induction on m.

Induction base. For m = 1 we have D = (A1 \ {al})k. By Theorem 4.10 and distributive
laws, we may assume without loss of generality that I'; C {71,...,7v} for 0 < i < n. So if
a1 ¢ {v,...,mrthen CND=C ¢ gg/zk and otherwise C N D =0 € 53/27,€.

Induction step. Suppose the claim holds for some m > 1 and we want to show it for m + 1.
Again by Theorem 4.10 and distributive laws, we may assume I'; C {71,...,7;} for 0 <i < n.
If oy & {71,...,7n} we have C C (AkJrl \ {al})k and CND = (). Note that a; appears in the
k-decomposition of every word in D. Otherwise, let j =qof min{i|7; = o1 }. By Lemma 4.16
we obtain with 8 =gef a1, v =qef pr(1) and w =qef Sx(1) that
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Cr=ger Ca=ger
C = (To,m,T1,- -1, Tm1), vt - B - w ' (T, %41, 0jst, -, o), and
D = (Ak+1\{a1}>kv_1-ﬁ-w_1<Ak+1\{a2},ag,...,Akﬂ\{am},am,AkH\{amH})k.
—_—
Di=ges Da=get

Since I'; C {v1,...,7i} for 0 <14 < n it follows from the definition of j that C; C (A*\ A*GA*)
and it also holds that Dy C (A*\ A*BA*). Thus we can apply Lemma 4.17 and obtain

CﬂD:(ClﬂDl)U_1~ﬂ~w_1(CgﬂD2).

Observe that Cy N Dy = Oy € gg/lk (if j = 1then C; = (0), = 0 € gg/gyk). We
see with the hypothesis that Co N Dy € 2?3’13/2,,1g (if 7 = n then Cy = Uwern (Try v, Tn)g)-
Because C1,C3, Dy, Dy C AR and o] = |w| = k it follows from Proposition 4.14
that (CyND1)v™! € Byjpy and w! (CoN Da) € Byjpy. Note with Proposition 4.15 that
Bs /2.1 is closed under concatenation and that {3} = (0,05,0)r € B, /2. We conclude that
CnDe 53 /2,1, Which proves the claim. O

Lemma 4.20. Let k > 0. It holds that LN L' € Byjy, for L € By )y, and L' € coBy /g .

Proof. By definition, languages from coB 5, are finite intersections of languages L; such that
L; = At \ D for some D C Ak or L; = (A" \ (w|a,...,am|v), ) where m > 1, a; € AFH!
and w,v € A*. It is easy to see that gg /2, 18 closed under intersection with languages of the
form AT\ D, so it remains to treat the other case. Let L' =gt (A" \ (w]a1, ..., aml|v), ) be
a language as above. By definition we have (w|a,...,am|v), = (a1,...,am), NWA* N A%
and it holds that ASF C (A" \ (ai,...,am); ). So we obtain

L= (A" \ (.. am),) U (AT \wA*) nAZFH) U (A1 A%) 0 AZRH).

By Proposition 4.19 it remains to show that g3 /2,k 18 closed under intersection with languages

(AT \wA*)n AZFH) - = U ©®84""), and
BeAktI\wA

(AT \ A*v) N AZFHY) = U (48,0,
BeAR+TI\ Ay

It suffices to show for C' =get (T'o, 71,115+ s Y, Ln)p With n > 1, ; € ARl and T; C AR
and D =gt (0, 8, A¥), with 8 € A¥ that C N D € By/p ;. The same arguments can also
be applied to languages (A**1, 3, ());. We obtain

(0757F0771)F17""f)/nar’n)kU (Q’VI’FI’-“”YTMFTL)A; : lfﬁ € FO /\’Yl :5
0,8, T0,7v, 1, ...,y ), = i BeloAM #6

(Q?Vl’rl"“’f)/n’rn)k : lfﬁ¢F0/\’71:5

0 : iB¢ELoAM #PB.

CND =

This shows C N D € gg/zk. O
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Proof of Theorem 4.9. We want to show now that Bz = 273;3/2,,1g for k > 0. For the
inclusion from right to left note that Bs /s ;, is closed under finite union and that any D C A<k
is in Byjpp C Bsjop. So it remains to show for languages (Xo,a1,¥1,. .., m, Xm), with
m > 1, a; € AT and %; C AF! that they belong to B/ ;. We do this a little more general
for L =qef (Do,71, 15+ -+ Yny ['n)y, With 45 € A¥ and I'; € AL, where we allow n > 0. The
proof is by induction on n.

For n = 0 we have

Top= () AT\ (wlal)) n (A7) 45)

aEAk+1\FO
w,vEAk

which shows that (I'g), € coBjjp C By For the induction step we suppose that L =
(To,v1,T1, -+, Ynt1, Tng1), which we can write by Lemma 4.16 as

L=To),pe(r)™ - m + se() ™ T1,72:T2, o, gt Do), -
~——

Li=gqef La=qet

By hypothesis, we have L1, Ly € Bs/p . Since Ly, Ly C AZk+1 we obtain from Lemma 2.14
that also Lipy(v1) ™!, sk(11) "' L2 € Bsja ). With the observation that {y1} € By we finally
get L € B3y -

We turn to the more difficult inclusion B/ ), C gg/zk and argue first that By /5, C gg/zk.
It suffices to show that L € l§3/27,f for L =qet (wlag,...,an|v), with n > 1, w,0 € A* and
a; € A¥1. By definition of l§3/27;f we know that L' =qe (AFT!, ay, AR ,an,Ak“)k €
g3/27k. Let L} =qef w (w™1L’) and observe that L} = L'NwA*. Since |w| = k and L' C AZ**1
we can apply Proposition 4.14 and obtain w™ 'L’ € gg/lk. Because {w} € gg/zk and 2?3’13/2,,1g
is closed under concatenation by Proposition 4.15 we have that L] € Bs /2, 1t follows that
L} € A**1 and we can do the same thing for the k-suffix v. Therefore, let L) =qgef (Ljv™!) v
for which the same arguments show that Lj = L7 N A*v and Ly € By ;. We conclude that
L=wA*NA*vNL" = Lj € Byyy, which shows By 51 C Bs/o -

Now we show that By C Bs/py. Recall from Lemma 2.14 that By /5 and coBjy) are
closed under intersection. So any language from Bjj can be written as a finite union of
languages C', D or C' N D with C' € Byp) and D € coBy/y . It follows from Lemma 4.20

that in particular coBj ;) C 5’3 /2,k» S0 with the same lemma we see that C, D and C N D
belong to 5’3 /2,k- Hence, By C [9’3/2 k- JTogether with Proposition 4.15 we finally obtain
Bs o1 = Pol(By ) C P01(83/27k) Bg/ﬂC (End proof of Theorem 4.9.)

4.3 Forbidden Pattern Characterization of Bz /s

Let us look again at the definition of the pattern LL3/, characterizing L3/, (see Definition 4.1).
It is defined as the subgraph in Figure 4.2 with the condition that a(vwv) C a(vv). We
generalize this condition to k-decompositions and make the following definition.

Definition 4.21. Let k > 0. Pattern B3y} is defined as the subgraph given in Figure 4.2
with z, 2 € A*, w € AT, v € A%+ and a(owv) C a(vv).
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o

Fig. 4.2. Pattern Bs/s
with a(twv) C a(vv).

Recall that «(Z) is the set of factors of length k 4 1 in the k-decomposition of x € A=F+1,
So in case k = 0 we encounter pattern Lg/; and no new argument is needed to see that also
FP(Bs/s,) is well-defined. We prove in this section the following theorem, which gives in the
special case k = 0 another proof of Theorem 4.2.

Theorem 4.22. Let k > 0. It holds that Bss 1, = FP(Bs/a 1)

The two inclusions are given in Lemma 4.24 in Subsection 4.3.1 and Lemma 4.28 in Subsec-
tion 4.3.2. We discuss consequences of Theorem 4.22 in Subsection 4.3.3.

4.3.1 The Easy Inclusion

If a language L = (X9, a1, 21, .., 0m, Xm);, is given, then there is some n such that we can
insert w with a(vwv) C «(vv) into xv"z € L and still have a word in L. This can be seen by
the following argument. If n is large enough then there must be some %; such that a(vv) C 3;.
It follows from a(vwv) C a(vv) that we do not leave %; if w is inserted.

Lemma 4.23. Let k > 0 and let L = (Yo, 1,31, ..., 0m, 2m);, withm > 1, a; € AL gnd
¥ C AL Moreover, let n > 4m + 3. Then for all x,z € A*, w € At and v € AZFT1 with
a(vwv) C a(vv) there exists some p with 1 < p < n such that

zv"z € L = xvPwv" Pz e L.

Proof. Let xzv"z € L and choose suitable I > 1, a1,...,a;4 € A and ; € AFT! such that
2"z =ay - - apq and zv"z = (B1,...,0;). By definition of L there exist 0 = jy < j1 < j2 <
oo < Jm < Jm+1 =1+ 1 such that

(a) Bj, =a; for 1 <i<m and
(b) Bj€%;for0<i<mand j; <j<Jjis1.

We denote the position in zv™z where the i-th v starts by g¢;, i.e., for 1 < i < n we set
¢i =def 1+ |z| + (¢ — 1)|v|. Since |v] > k + 1 we obtain n different positions such that
1<q1 <q <+ <@g, <land ¢ —gi—1 = |v| for 2 < i < n. By assumption we have
that n > 4m + 3, so at least 3(m + 1) of the positions ¢; are different from ji,...,jm. By
the pigeon hole principle there exist h,p with 0 < h < m and 1 < p < n — 2 such that
Jh < @p < @pt1 < Qpy2 < Jnt+1- We fix these positions and set X =qef Gm, U =def Gm+1 and
V =def Qm42- SINCE A\AA}1 *** Au—1 = Quayuy1 - ay—1 = v and |[v] > k + 1 we have

a(vv) C B, (4.3)
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Now we look at u =gef zvPwv™ P2z and choose suitable by, ..., b g4 € A, i € A1 such
that w = by byypqjw and u = (71, . ,7l+|w‘). Observe that
o b : o ifl1<i<pu-—1,
GT by fp<i<litk

and

v H1<j<p-k-1,

B = - L ifp<j<l

Yitw - LHS] S
Let I; =gt ji for 0 < i < h and l; =gef Ji + |w| for h < i < m+ 1. Since j, < A and jp41 > u,
we have I, < pu—k —1 and lp41 > p+ |w|. From (4.4) it follows that v; = 8; for 1 < j <1
and v; = Bj_ju| for lpy1 < j < 1+ |w|. Thus we have v, = 5, = 8, for 1 < i < h and

Yi; = Vji+w| = Bj; for h <@ < m. Therefore, we obtain

(4.4)

Y, = oy for i with 1 <4 <m, (4.5)

v =B € X for ¢, with 0 <i < hand l; =7 <j < jit1 = l;41 and

Yj = Bj—jw| € i for 4,7 with h <i <m and [; = j; + [w| < j < jit1 + || = li41.
To see that u € L = (29,01, %1,...,Qm, Xm), it remains to show v; € Xy, for I, < j < lp41.
This is clear for I, < j < pu — k and for all p+ |w| < j < lp41 due to (4.4). So we have to
show v; € ¥, for p — k < j < p+ |w|. Observe that

bu—tbpukr1bp—k12 - bpp k-1 = Sk(v) - w - pr(v).
So for p—k < j < p+ |w| we have v; € a(vwv) C a(vv) C Xp, by (4.3). This shows
v € B, for I}, < j < lpia. (4.6)

We summarize (4.5) and (4.6) as

(a) 7, = a4 for 1 <i<m and
(b) 7jEEiforogigmandli<j<li+1

which shows u € L. O

We immediately see that the insertion stated in Lemma 4.23 contradicts the occurrence of
pattern B3 /o ..

Lemma 4.24. Let k > 0. It holds that Bsjs ), € FP(Bs/a)-

Proof. Let L € Bsjy ), and let M be some DFA accepting L. By Theorem 4.9 we can write L
as

L= J(Zi0,061, 501, Cimys Dim;), U D

at

Il
—

(2
for some m > 0, m; > 1, oy ; € AkHL ¥i; C ARt and D C A<k, Assume to the contrary
that M has pattern B3/, witnessed by z,2 € A", w € AT and v € AZ**! such that
a(vwv) C a(vv). Then zv'z € L and xv'wv?!z ¢ L for all 4,j > 0. In particular, zv"z € L
with n =gef max {4m; + 3|1 <i<m }U{k+ 1}. Hence |zv"z| > k+ 1 and there exists an [
with 20"z € (810, 1,1, 21,15+ - - 5 Qg > Bmy ) .- Since n > 4my+3 we can apply Lemma 4.23 and
we obtain zvPwv" Pz € (X0, 1, 5115 - -+ Wy El,mz)k C L for a suitable p with 1 < p < n.
This is a contradiction to the occurrence of pattern B3 /s j, in M since the state we reach after
input zvPwv" Pz is rejecting. We conclude that M does not have pattern Bg /s ;. O
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4.3.2 The More Complicated Inclusion

We turn to the inclusion FP(Bs3/y) C Bsjgp which is more difficult to handle than the
reverse inclusion. The reason is that we can only use the fact that some DFA M does not
have a certain structure. We apply this argument to all words x € L(M) and derive for each
such x a subset of L(M) that can be described by expressions of bounded size. Due to this
bound we then conclude that L(M) itself can be described by a finite number of expressions.
We consider for £ > 0 expressions E of the form

wo - (1)1|Z]1|vi),€ cwp e (Un\En\v;)k Wy

where n >0, w; € AT, vj,vg- e A* and ¥ C ARl for 0 <i<mnand 1< j<n.In order not
to overload notations, we identify each such expression E with the language described by E
(recall Definitions 1.25 and 1.26). So at the same time we will make statements like ‘x € E’
and also talk about the size of E as a syntactical object. For fixed k > 0 we denote the set
of all such expressions by &. Observe also that if we start with an expression F € & and we
replace a factor of some w; by an expression E’ € &, then the resulting expression is again
in & (even if we replace w; completely by F’).

Definition 4.25. Let k > 0. For E € &, with E = wq - (v1|Z1]v]);, - w1 - - - (vp|Znlvy,)s - wn
we define the size of E as
[ E]| =qet |wows - - - wh.

Since the w; are non—empty words, there exist for fixed & > 0 only a finite number of
expressions in & having the same size. We define a function that helps to analyze the size
of expressions in the following lemma. The variables a,m and n will be associated with the
size of the alphabet A, the size of the automaton M and the cardinality of a(w) for a given
word w, respectively.

Definition 4.26.

k : ifn=0
S(k,a,m,n) =qef 2mm 4+ k+1 : ifn=1
3K(m) - (5m™a* +1) - S(k,a,m,n — 1) : otherwise

Recall that K(m) = (m+ 1)(m+1)(m+1) is defined at the beginning of Section 4.1 where it was
used to find automata loops in words. The following main lemma states, under the assumption
that a DFA M does not have pattern B3/, 1, that for any word x we can find an expression
E, of bounded size such that x € E, and if x € L(F') then E, C L(M). We consider also
prefixes x’ and suffixes z” in order to allow an inductive proof.

Lemma 4.27. Let k > 0. Let M be a DFA which does not have pattern Bss . For every
xz € A" there exists an expression E, € & with x € E, and | E,|| < S(k,|A|, M|, |a(Z)])
such that for all ', 2" € A* it holds that

v'zx" € LM) = 2'E,2" C L(M).
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Proof. Let M = (A, S, 6, 50,5") be a DFA which does not have pattern Bg/s ;. For this proof
we extend the definition of a(Z) to words = € A<F and set a(Z) =qef () for such z. The proof
is by induction on N =q¢f |a(Z)| with 0 < N < |A[FF1. For the induction base we consider
the cases N =0 and N = 1.

Induction base. For N = 0 we set E, =qef = and we are done. Now let x € AT with
N = |a(z)| = 1. If |x| < S(k, |A|,|M],1) we set again E,; =g4ef = and we are done. Otherwise,
we have |z| > 2|M|MI + &+ 1. Since |z| > k+2 we obtain by comparing letters that z = a/®!
for some a € A. We consider the mappings 5% ‘induced by prefixes a’ of z. There exist 4, j
with 1 < i < j < |[M|M 41 such that 6 = §*. So for all m > 0 it holds that

i+m(j—1)

59 = &9 (4.7)
We choose some [ with 1 <1 < j — i such that |z| —¢—1 =0 mod (j — ). From (4.7) we
obtain "
54 =6 (4.8)
Now define ‘
E, =gef a* - (ak| {ak+1} \ak)k -a!

and observe that 1 < 4,1 < |[M|Ml. Because |z| > 2|M|M 4k +1 we have |z| —i—1 > k4 1.
So it follows that = € E,. Moreover, it holds that E, € & and ||E,| =i+ 1 < 2IM|Ml <
S(k,|A|, M|, 1). ‘

Let 2/, 2" € A* be given such that z’zz” € L(M). Furthermore, set s; =ger 6(s0,2'a").
Then by (4.7) we have 6(s1,a™U~)) = s; for all m > 0. Assume that there exists some
h > k 4 1 such that 6(s1,aa'z”) ¢ L(M). Let sy =gef 6(51,a") and define & =q¢¢ 2'a’,
U =def a(k+1)(j_i), W =ef al and 2 —def alz”.

Then a(@/wN\TJ) - a(%) since only the letter a occurs, and 0| = (j —¢)(k+1) > k + 1.
Because s1 has a 9-loop and v is a sequence of a’s, we do not leave this loop with the word
a”, and we obtain that s, also has a #-loop. Furthermore, we have §(sg, %) = s1, 6(s1,2) € S’
by (4.8) and 6(s2,2) ¢ S’ by assumption. This shows that we found pattern Bg/, ) in M,
witnessed by 7,7 € A*, ® € At and & € AZF*! with a(5wd) C a(70), a contradiction.
So we have for all h > k + 1 that &§(sg, 2’a’aa'z") = 6(s1,a"a'z") € L(M). In particular,
' Eyx” C L(M) which shows the induction base.

Induction step. We state the induction hypothesis.

For all z € AT with 0 < |a(Z)] < N < |A[**! there exists some E, € & with
z € By and ||E;|| < S(k,|A|, |IM|,|a(Z)|) such that for all ', 2" € A* it holds that

v'zx" € LM) = 2'E,2" C L(M).

Let z € AT be given with a(Z) = N+ 1 and N > 1. We start with a decomposition of =
into so—called ‘sectors’, i.e., we decompose z into factors s; such that |«(s;)] < N (actually
we will have |a(8;)| = N for all sectors except for the last one). This is done in the following
way: we start with z and determine the longest prefix s; of x such that |a(51)] < N. Now
we start over with s; 'z, determine the longest prefix sy of s7 'z such that |a(53)] < N and
proceed with (sys9)~!x. If we continue this procedure, we obtain a factorization of z into
sectors si, So,...,s; for some [ > 2 such that
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1. z=s152---s with |s;| > k+1for 1 <i <1l (since |a(5)|=N>1for1<i<I),
2. a(5;) € aZ) for 1 <i<land
3. a(5;8i41) = a(T) for 1 <i < 1 (since we have chosen maximal prefixes s;).

Before we continue, we give an outline of the further argumentation. Sectors do not have to
be factors of x for which we know how to bound their length, and we can also not state a
particular bound on the number of sectors. The main task of the induction step is to replace
the unbounded number of consecutive sectors by a bounded number of terms of the form
(v|XJv"),, in a way such that (i) we do not leave L(M) if we started with z € L(M) and (ii)
we obtain an expression where only a bounded number of sectors and of terms of the form
(v|XJv"), are left. The induction hypothesis then provides expressions of bounded size for
the remaining sectors. Note that the closure under concatenation of the class in question is
necessary for this approach. Together, we obtain an expression of bounded size containing x
and being a subset of L(M) which will prove the lemma. We distinguish the two cases when
the number [ of sectors is already reasonable small, and when it is not.

Case 1. Assume for the number of sectors [ that I < 3K(|M]) - (5|M|MI .| A|¥ +1). Then
there is not much to do since [ is reasonable small and |«(5;)] < N for 1 < ¢ < [. Thus,
by induction hypothesis, we find for 1 < ¢ < [ expressions E,, € & such that s; € Ej,,
1B, < S(k, |AL,|F|,N) and

s;Eg, s C L(M) for all s,s! € A* with s}s;s! € L(M). (4.9)

121

We define E; =gef Es, - Es, - - - Es,. It follows that « € E, and ||Eg|| < S(k, |4, M|, N +1).

Now let /,2” € A* such that 2’zz” € L(M). We need to show that z’'E,z” C L(M).
Let y € E,. Then for 1 <14 < there exist y; € E,, such that y = y1y2 - - - y;. Starting with
2'za” = x's1s9--- 512" € L(M) we will step by step replace the sectors s; by y; without
leaving L(M). For the first step we define s] =qer 2's1--- 51 and s} =qer 2”. So we have
z'zx” = s;515) € L(M). From (4.9) it follows that s;E, s/ C L(M) and sjy;s] € L(M).
This shows x'sy---si_1y;2” € L(M). For the second step let s)_; =gef 2's1---5_2 and
s 1 =det yiz”. So we have s;_;s;_15]_ ; € L(M) by the previous step, and again from (4.9)
it follows that s;_,y;-15/ ; € L(M). This shows z's; - - - 5;_oy;_1y12” € L(M). If we continue
this procedure we finally obtain z'y; - - - yjz” = 2’ya” € L(M). Hence ' E2” C L(M).

Case 2. Suppose for the number of sectors [ that I > 3IC(|M]) - (5| M|MI.|A]F 4-1). Define
Vi =def 52i-182 for 1 < i < [1/2] — 1 and v);/3] =det S2(1/2/—1 - 51 Note that if [ is odd,
then v|; /o) contains three sectors. So x = vjvy - - - v|;/2) and every v; contains at least two and
at most three sectors with the effect that «(0;) = «(Z). Now we apply Theorem 4.3 to the
list of words vy,va, ... ,v|;/2) and obtain a new list of words g, x1, 1, 22, 5, . . . , T, Ty, With
m > 1 (since | > 3K(|M])) such that z = ayz 2] zo2h - - - 22}, and the following fact holds.

Fact 1.

1. Every z; (and also every xz}) is a concatenation of at least one and at most
K(|M|) words v;. Thus it contains at least two and at most 3/C(|]M|) sectors.
2. For every x; it holds that §%i%i = §%:.

Next we assign for 1 < i < m to each x; a tag representing the mapping 6; =qef §TOTLEY T
and also sj(z;), the k-suffix of z;. Note that there are at most |M|M| . |AJ* different tags.
Now the task is to find maximal factors between some z; and x; having the same tags. We
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call such a maximal factor a ‘region’ and we argue below, how the number of regions can be
bounded.

Let us start with an algorithm that describes how to determine regions. First we choose
some j1, j; with 1 < ji < ji < m such that z;,,z; have the same tag and j| — j1 is maximal.
With (j1,77) we have found the first region and we mark for j; < i < j] all z; as already
used, i.e., we mark all z; within this region. We call zj, (zj) the left border (right border,
respectively) and the word % xj, 12 - xji—lx;'ifl the content of the region (j1,7}). In a
second step, we choose ja, j5 with 1 < jo < j5 < m such that none of the z;,, zj,41,... y Ty 18
marked, z;, and z; have the same tag and jj — ja is maximal. With (ja, j3) we have found the
second region (with left border x;,, right border x;; and content %,z ;, 112}, 1 xjé,lx;é_l).
Again we mark all z; for jo <14 < j} as already used. Analogously, we proceed in the following
steps, until no more pairs of indices can be found that fulfill the selection condition. We obtain
non—intersecting regions (ji,j1), (52,75), - - - (Gns Ji)-

If we denote the left (right) borders of a region by r; (r], respectively), the content of a

region by b; and the gaps between consecutive regions by b}, we can write x as
T = b{) ribyiry by robory by .- rnbnr; bil.

We treat the content b; of a region below and show that we can give a short representation.
Before we do so, we want to establish a bound on the number of sectors that do not belong
to the content of some region (see statement 5 of the following fact). In order to keep the
argumentation transparent we also give some auxiliary statements.

Fact 2.

1. There do not exist two different regions (i,47') and (j,j') that both have the
same tags attached to their borders.

2. There do not exist 7 < j such that z;,z; are not marked and both have the
same tags attached.

3. The number of the x; that are not marked and the number n of regions is
bounded by |[M|Ml.|AF,

4. The total number of sectors which lie in some gap b} is bounded by 3/C(|JM]) -
(BIMMI AR 4 1).

5. The total number of sectors which lie in some r;, -, or b/, is bounded by 3/C(|M])-
(5IMMI AR 1)

6. For every r; it holds that 6™ = §™. The same holds for every r..

Proof of Fact 2. We begin to argue for the first statement of Fact 2. Suppose there exist
regions (4,7') and (j,j') such that ¢ < ¢’ < j < j' and z;,xy,x;, z;» have the same tags. If
there is no other region between (i,i') and (j,5’), we should have chosen (7,j') instead of
(i,7") and (4, 7') in order to maximize the size of the region. On the other hand, if there exist
a region (z,7') between (i,7') and (4,;'), we should have chosen (i, ;') instead of (i,4'), again
in order to maximize the size of the region. So in both cases we obtain a contradiction. This
shows the first statement, and the second can be seen analogously. The third statement is an
easy consequence of the first and second statement.

We turn to statement 4. Each b; has the form 2lz; 177 - --mj/m;., for j < 7’ by the
construction of regions. The number of last factors x;., can be bounded by the total number
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of gaps b; which is by statement 3 less then or equal to |M|MI.|A[F +1. Also by statement 3
there are at most |[M|™M| . |A|¥ factors x; in 2 that are not marked. This bounds also the
number of factors z) before some unmarked z;y; in z. Together, it follows that the total
number of all ; and z that lie in some gap is bounded by

20 (MM Al ) - (IMIM A 1) =3 MM A 1,

By statement 1 of Fact 1, every z; (and z}) contains at most 3/C(|M]) sectors, which in turn
gives statement 4.

By the definition of regions, every r; (and r}) consists of exactly one z;. So from statement 1
of Fact 1 and statement 3 of Fact 2 we obtain that the number of sectors that lie in some r;
or 7} is bounded by

BK(IM]) -2 (MM AR,

If we add this number to the quantity given in statement 4 we obtain what is required for
statement 5. From statement 2 of Fact 1 we obtain statement 6. (End proof of Fact 2.)

As an intermediate step we define an expression E!, for words z that satisfy the above
fact, where we replace each b; by (pi(bi)|a(Z)[sk (i) -

E, =daet by 1+ (pr(b1)|a(Z)|sk(b1)), -1 by -
ro - (pr(b2)|e(@)|sk(b2)), -1 by -

Tn - (pk(bn)|a(/m\)|8k(bn))k 'T;L b;L

Although the number of remaining sectors in the b, r; and r; is bounded (see statement 5
of Fact 2), we cannot bound the size of E! yet. This is because the size of each remaining
sector is still unbounded. We will treat these sectors below, using the induction hypothesis,
and then finally obtain the needed expression E, for z. Let us first prove that E! has the
properties stated in the lemma, except for the size requirement.

Since for 1 < i < n each b; is a factor of x and consists of at least one x; which in

~

turn consists of at least two sectors, we have a(b;) = a(Z) and hence x € E!. Now consider
arbitrary z/,z” € A* and suppose z'zz” € L(M). We will show z'E/z"” C L(M) using the
argument that M does not have pattern Bg ;. So let y € E!. Then there are for 1 <i <n
words y; € (pr(bi)|a(T)|sk(bi))r such that

/ / / / / !/ /
y = by - m1y1ry - by - royary - by - TRYnTy, - by,

Similar to Case 1 above, we turn z’zz” into x’yx” by showing that we can replace each b; in
x by y; for i = n downto 1, and always obtain a word in L(M). We demonstrate the first
step of this procedure and argue how it can be repeated. Define

/ / ! 1/ IR N / /! /
Yy, =def Dpr1b17101m2b2roby - - b, and Yy, =def Dy,

Then z'zx” = x'ylrp - by - rhylx” € L(M) and we assume to the contrary that it holds that
'y Yn - rpyna” & L(M). Define
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T =get mly;{rna
U =det T
W =def ynT‘;”
z =def YpT ,
1 =det 0(s0,Z) and

S2 =def 0(S0,ZW).

We claim that M has pattern By, ,, witnessed by Z,2 € A*, w € A%, € A1 and states
s1 and so. Observe that ¥ = 7/, which contains at least two sectors and hence & € AZ**! (only
the last sector of  may be shorter than k+1). Note also that by assumption 6(sg, z) € S’. By
the choice of regions, we know that 7, and r], have the same tags, hence y/,r, and y, r,b,7),
induce the same mappings on the states of M. It follows that 67 = §70»™_ In particular, it
holds that 8(sg, Zb,r}) = s1 and since 2’zz” = zb,r) 2 € L(M) we conclude 6(s1,2) € 5.
Moreover, statement 6 of Fact 2 holds for 7/, and hence both states s; and sy have a 9-loop
(note that s1 = 8(sg, £b,7),)). So we found a subgraph in the transition graph of M which is
a candidate for pattern By /g 1.

It remains to verify the condition for the respective k-decompositions, more precisely, we
need to show OZ(QNJ/IZJ\QNJ) - a(@) which is the same as a(r;ﬁr;) - a(rfnﬁl). By the choice of
r} each such word contains at least two successive sectors (see statement 1 of Fact 1). So by
the choice of sectors we have a(Z) = a( r) C a(r rl,). We show that o n/yn\) C a(7).

Since 77, is a factor of z the inclusion is clear for every element in the k-decomposition of
rl Y7y, which is a factor of r],. Also a(yn) C «a(7) is clear by definition of y,,. So we are left
with the factors of length k + 1 in r}y,r,, that contain letters from r] and also from y,. It
holds that

s (r)pk(yn)) = a(s(rn)pr(bn)) C a(7)

since 7, and 7, have the same k-suffix, y,, € (pg(bn)|(Z)|sk(by))x and sg(rn)pr(by) is a factor
of . We can also state

— —

a(sk(Yn)pr(r7,)) = a(sk(bn)pr(ry)) € a(Z)

with the same arguments. Together, we have shown a( En\r ) C a(z) C a(r r) and it fol-
lows that a(vwv) - a(vv) because |0| > k+1. Hence we found pattern Bs /5 1, a contradiction.
We conclude that =’y rnynr,ynea” € L(M).

The previous argumentation was independent of the particular prefix z’y], and the suffix
yrx”, so we can repeat this step for y,,_1. It is crucial here that we proceed from right to left,
SO all tags left to the actual substitution position remain valid, i.e., the tags still stand for the
mapping induced by the respective preﬁx If we define y;L 1 =def byribiribirabarsbl - - bl _,
and y' 1 =det bl,_1mnynrpbl, then 2’y rp_1bp_17)_qyi_,z” € L(M) by the previous step.
Now we want to substitute b,_1 by y,_1 and we observe that we have the same starting
position as in the previous step. In the same way we get 'y}, _17n_1Yn—17),_1yn_12" € L(M).
If we repeat this procedure n-times, we obtain x'yz” € L(M), which shows 2'E.z" C L(M).

The remaining task is to construct the expression E, with bounded size. We start with
expression E/, and apply the induction hypothesis to each sector s; in E’. Note that we have
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|a(5;)] < N by the construction of the sectors, so we may replace each remaining s; by Ej,
and obtain the expression F,.

Finally, let us verify what is required for E,. Since x € E/, and s; € Ej, for every sector s;
in E!, we obtain « € E/, C E,. Now let 2/, 2" € A* with 2’z2” € L(M). We already know that
2’ El 2" C L(M). Exactly as in Case 1 we can show that we do not leave L(M) if we replace
in 2’ E! 2" each sector s; by Fj,. This shows 2/ E,z” C L(M). Now we consider the size of E,.
By definition, E/, is a concatenation of sectors s; and terms of the form (pg(b;)|(Z)|sk(b;))k-
Since the latter terms do not influence the size of expressions, we obtain

1Bl =D Bl

sectors s;
in Eb
By induction hypothesis we have [|Es| < S(k,|A|,|M|,N) for all sectors s; of E.. By
statement 5 of Fact 2 we know that the number of sectors in E! is less than or equal to
3KC(IM|) - (B|M|MI - AR +1). Tt follows that

1E: || < 3IC(IMI) - (5| MM [A[* + 1) - S(k, AL, | M, N) = S(k, [A], M, N +1).
This completes the induction. il
We show the remaining inclusion.
Lemma 4.28. Let k > 0. It holds that FP (B3 1) C Bsja -

Proof. If L € FP(Bg/ ) then there exists some DFA M with L(M) = L which does not
have pattern Bg/y ;. We apply Lemma 4.27 to every x € L(M) and obtain corresponding
expressions E, with ¢ € E,. Since z = eze € L(M) we have E; = eEye C L(M). So it holds
that
LM)= |J E.
zeL(M)

Also by Lemma 4.27, the size of E, is bounded by S(k,|A|, |M]|,|a(Z)|), so in particular
S(k,|A|,|M|, |A[F*1) bounds the size of each E,. Because there is only a finite number of
expressions in & having the same size, the above union is finite.

It remains to show that languages described by expressions from & are in By /g ;, = gg, 2,k
Languages of the form {u} with u € AT are in gg, /2,k» because they can be written either as
{u} C AsF or as (0, 1,0, 02, ...,0,an,0), if &= (a1,as,...,ay). Let us consider languages
of the form (w|X|v), with w,v € AF and ¥ C A*"!. For k = 0 they can be written as
(%), € gg/zk. If K > 1 we have (w|Zv), = ((w(w™! (X),))v"1)v. Since |w| = |v] = k and
(%), € AzF*l we can apply Proposition 4.14. Together with Proposition 4.15 we obtain
(w|X]v), € g3/27k. Thus we have shown that languages of the form {u} and (w|X|v), are in
gg, /2,k- Again by Proposition 4.15 we conclude that languages described by expressions from
&, are in 53 /2,k- Together we see that L(M) is a finite union of languages from gg /2,k- Hence

L(M) S B3/2,k = B3/2,k by Theorem 4.9. O
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4.3.3 Strictness and Decidability Results

As in the case of the forbidden pattern characterizations we have obtained earlier, Theo-
rem 4.22 has the decidability of Bs /5, for fixed k as a consequence. Moreover, it follows that
the hierarchy of classes Bs/y, is strict, which we show first. We could provide a witnessing
language L and analyse that a DFA accepting L has pattern Bs/; ;, but not pattern B3 /s 1,1 1.

However, we use instead a easy counting argument and the normal form result Bs /s, = B3 /o
from Theorem 4.9 in the following proof.

Theorem 4.29. For all k > 0 it holds that Bz/o 1, & B3/a jt1-
Proof. It holds that Bz/y C Bsjg 41 for all K > 0 by Proposition 1.31. Let a,b € A be
different letters, let w; =gef (akﬂb)Z for ¢ > 1 and define

L =qef (ak+1b, { albak 1=t

Ogigk—i—l},ak“b) .
k+1

So L € 53/27,#1 and it is easy to see that L = {w;|i > 2 }. We assume that also L € g3/2,k
and show that this is not true. Since L C A2*+2_ we have

m
L=J 0 01,1, s Cimys D, )
i=1

for some m > 1, m; > 1, a;; € A¥1 and 2, ; € A**L. Let n be the maximum over all m;.
There exists some [ with 1 <[ < m such that wa,12 € (810,01, 2115 -+ ¥Lmys El,mz)k' The
k-decomposition of wa,, 1o consists of (2n+2)(k+2) —k > n+ (n+1)(k+2) elements of AF+1,
By the pigeon hole principle there exists some 1 < h < mj; such that at least k4 2 consecutive
elements of this k-decomposition are assigned to 3 j,. By definition of wg, 2 the element aktt
must appear in this sequence of words of length k£ + 1. Therefore, we can pump up the word
Wan+2 With letters a without leaving L. This is a contradiction, because in every word from
L the number of consecutive letters a is bounded by k + 1. So L € 33/2 k+1\l’3’3/2 k- u

Next we turn to decidability issues and give in the following proof an efficient algorithm for
the membership problem of Bs/y ;. for fixed k.

Theorem 4.30. For fized k > 0 the membership problem of Bs s, is decidable in nondeter-
mainistic logarithmic space NL.

Proof. Let some DFA M = (A, S, 6,50, 5") be given. Note that M does not have pattern Bg .
if and only if L(M) € B/ by Theorem 4.22 and since FP(Bg/y ) is well-defined. So it
suffices provide an algorithm that decides whether M has pattern Bz, ;.. If 2,2 € A*, w € AT
and v € AZ**1 witness the occurrence of pattern By /2, then we may assume that w has length
> k—+1, otherwise we take vwwv instead of w. Note that this does not affect the side condition.

1. Guess states s1, s2,5",s~ € S and store them. Check whether st € S, s~ ¢ S, sg — s1
and (s1,82) — (s7,s7). Reject if any of this fails.

2. Check (s1,s2) —T (s1,52) and while doing this, perform the following. Let v € AT
be the sequence of continuously guessed letters. Start guessing the end of v not before
|v| > k + 1 and store pg(v). While guessing v store also the actual value of si(v) and the
set M =qer (). If (51, 89) —=(s1, 52) then determine M =g o(v0) with help of M/,
pr(v) and sg(v), and store the sets M', M.
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3. Check s; — T s9 and while doing this, perform the following. Let w € AT be the sequence
of continuously guessed letters. As before, start guessing the end of w not before |w| >
k + 1, store pg(w), the actual value of si(w) and also the set N’ =qor (). If 51— s9
then determine the set N =gef a(vwv) from N’ with help of sx(v), px(v), sk (w), pp(w) and
the set M’. Store the set N.

4. Accept if N C M, otherwise reject.

It is easy to see that this algorithm accepts if and only if M has pattern Bg/y ;. The space
needed to store the states s1, 52,57, s~ and to check the reachability conditions is O(log | M]).
For the sets M', M, N', N the algorithm uses space at most O(k) - |A|**! which is a constant
to the algorithm. O

For the case k = 0 a similar algorithm is provided in [PW97].

4.4 Forbidden Pattern Characterization of Bs/;

Now we have the following interesting situation. Suppose some DFA M is given. If L(M)
is in B/, then it is in By/y for some k£ > 0 and we already know how to decide this for
k=0,1,2,.... On the other hand, if L(M) ¢ Bs/; then it has for all £ > 0 the patterns Bs 5 ;..
But due to the finiteness of M these patterns should not be all different, i.e., we can do
something similar as in case of B;/; and D}ceft: if k is sufficiently large in comparison to M
then we identify a single pattern B3 5 in M which characterizes Bs /5. As usual, the decidability
of the membership problem of B3/, follows from this forbidden pattern characterization.

@@= O5=Q - O~
SEECNC RN Cie

Fig. 4.3. Pattern Bs/».

Definition 4.31. Pattern B3/, is defined as the subgraph given in Figure 4.3 with m > 0,
x,z € A* and w;, l;,b; € AT.
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That FP(Bs/,) is well-defined follows from Proposition 5.14 together with Theorem 6.4 where
this is shown for generalized patterns of which B3/, is a special case. We prove in this section
the following theorem.

Theorem 4.32. It holds that Bs/, = FP(Bss).

The proof is given in Subsection 4.4.1 and consequences are discussed in Subsection 4.4.2.

4.4.1 Proof of Theorem 4.32
We prepare the proof with the following two lemmas.

Lemma 4.33. Suppose some DFA M has pattern Bg s, with k > K(|M|) witnessed by

z,2 € A%, w € AT and v € AZFHL. Then we may assume that v and w are of the form
v ="v"u and w = w'u such that 1 < |u| < K(|M]) and §"* = 6.

Proof. We define below words &, ¥, w, Z which show that M has another instance of pat-
tern B3y, having the properties required in the lemma. By Corollary 4.4 we can write v as
U = VULV] - - - U Uy such that g, v; € ASKIMD and §uv = §% . Since |v| > k+1 > K(|M])
it must be that m > 1. Therefore, with © =gef VoU1V1 * * - Um—1Vm—1, U =def Um and U =gef Um
we can rewrite v as v = 0ud with @, 9 € ASKIMD and §% = §% Now define

T =def VU,
U =gef V0L,
W —def Pwot and

t

=def V2.

With v/ =gef 90, W' =gef w0 we can write ¥ and @ as ¥ = v/ and w = w'¥ such that
1 < |u| < K(JM]) and 6** = 6. To see that &,v,w and Z give rise to pattern Bg/, in M

note that @ € A" and 9] = |v| > k + 1. Tt remains to verify a(fﬁb\f}) C a(ﬁ). Since dw0 is a
factor of vvwvv and [v| > k + 1 we obtain a(9wd) C a(vvwov) C a(vv). With the argument
that |v| = |0 > k + 1 one verifies that a(vv) = a(00). O

Lemma 4.34. Let M be a DFA and k > 3K(|M|). If M has pattern Bs o), then M has
pattern Bs/o.

Proof. First observe for yi,yo € AZ¥+1 and k¥’ > k that if a(y1) C a(y) with respect to
k'-decomposition then also a(71) C «(y2) with respect to k-decomposition. To see this note
that any factor of length k£ + 1 is a factor of some factor of length &’ + 1.

So we may suppose that the DFA M has pattern Bg /o, with k = 3KC(|M|) witnessed by
z,z € A*, w e AT and v € A2F+1. With Lemma 4.33 we assume that v and w are of the form
v = v'u and w = w'u such that 1 < |u| < K(|M]) and 6"* = §*. It follows that the states
s1 and s in pattern B3/ ) both have a u-loop. Next we obtain with help of Corollary 4.4 a
factorization of w’ with w' = whujw} - - - upmw!, such that w},u; € ASKIMD and guive = g,
Let uy =def v and Um41 =der u. Then we have wug, wj, u1, ..., w,, Umt1 € ASKIMI) and
ovi% = 6% for 0 < i< m + 1.

We want to see how the factors u;wju; 41 appear as factors in some loop at s; and at ss.
Observe that |u;wiu;y1| < 3K(M|) < k+1 for 0 < ¢ < m and that wowju; - - - W), Upmt1 =
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ww'u = uw is a factor of vw. So each w;wlu;1; for 0 < i < m appears in some element of the k-
decomposition of vwv. From the condition a(vwv) C «(vv) it follows that for 0 < i < m each
uwjwiuiyy is a factor of vv. Hence for 0 < ¢ < m there exist v}, v} such that vv = vju;wiu;1v] .
We make the following definitions in order to show that M has pattern By /5. Set m' =gef m+1
and l; =ger u; for 0 < i < m/. Furthermore, we define

b _ /
0 —def YpUo,
bi =def Vi qviu; for1<i<m' -1,
b _ "
m!  —def UmUm/,
Wy =def Up and

Wi =det W, _qu; for 1<i<m.

Observe for 0 < i < m/ that w;,l;,b; € AT and that there is a [;-loop in M after each
w;, b; € AT since they have suffix u; = [; and §%% = §“. It remains to show that s; and s
have a loop with label wgbyw1b1 - - - Wy by and that we get from s; to so with wowq -« - Wy
To see this we look at the factorizations

wo by wi b1 w2 b2 bim Wyt b,
/ / "/ / " " / / "
wobow1by -+ - bWy by = U Vo Wyt VoV UL W UL V] VUL * * * Uy 1 Uy U, Way Unn! Uy U
/ / "/ / /w4 " / / "
- UuQ Uouowoulvo UlulwluQU]_ U2u2 b ’Umi]_ Umumwmum+1vm Uy
~~ ~~
u VU VU K% u
/
= w’™u
and
wo Wi w2 Wm Wt
WoW1W2 * * * WnWyy — Uy WolUl WU * * * Wyy—1Um Wy, Uy
= Uy WHULW UL Wy Uy Wy Ut
~—~
u w! u
= uww'u.
Recall that s; and ss have a u-loop and that w = w'u. O

Proof of Theorem 4.32. We have to show B3/, = FP(Bj/y). For the inclusion from left
to right, let L € Bs; and let M be some DFA with L(M) = L. We assume that M has
pattern Bs/, and show that this leads to a contradiction. Suppose m > 0, z,2 € A* and
wi, l;, b; € AT witness that M has pattern B3/, and let k > 0. We define

v =ger wWo - IEblE - wy - IFbIE - wy, 1 b, IF and

k k k k
W =def Wo-lywy ] Wyl g W

Note that §(sg, x) = (s, zv), 6(s0, zw) = 8(sg, zWYV), 6(s0,z2) € S’ and that §(sp, zwz) € S’
Moreover, it holds that w € At because m > 0 and wg € A1, and v € A>**! because m > 0
and wol§ € AZF*+1. So with z,2z € A*, w € AT and v € AZ**! we have found a subgraph
in M that is of the form as required for pattern B/, ;. It remains to show a(vwv) C a(vv)
with respect to k-decomposition. For 8 € a(vwv) we distinguish three cases.
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Case 1: Suppose [ is a factor of v. Then § € a(vv).

Case 2: Suppose 3 is a factor of w. Since |l;| > 1, we have |I¥| > k for 0 < i < m. Because
|B] = k + 1 each occurrence of 3 in w overlaps at most with one of the w;. In particular,
is a factor of wollg or it is a factor of lf:wi+1l,{'€+1 for some 0 < 7 < m. From the definition of
v we see that wollg is a factor of v and that lwallfH for all 0 < 7 < m is a factor of v, so
B € a(vv).

Case 3: Suppose (3 is a factor of sp(v)pg(w) or sg(w)pg(v). In both cases is 3 a factor of
lﬁlwolé’. It follows that 3 is also a factor of vv, so 8 € a(vv).

Together, we have shown that an arbitrary DFA M with L(M) = L has pattern Bg /s j,
for arbitrary k > 0, if it has pattern B3 /5. By Theorem 4.22 we have L ¢ UkZO B3 o1 = B3 /o,
a contradiction. It follows that M does not have pattern Bs /s, so L € FP(Bj3)5).

Conversely, let L € FP(Bs3/,) and let M be some DFA with L(M) = L that does not have
pattern B3 /;. Assume to the contrary that L & B/ = (Jj>0 B3/, So for all k > 0 it holds
that M has pattern Bg/y ;. In particular, it has pattern Bs/y ), for k = 3IC(|M]). We apply
Lemma 4.34 and obtain that M has pattern B3y, a contradiction. It follows that L € Bss.

(End proof of Theorem 4.32.)

4.4.2 Decidability Results

Let some regular language L C A" be given via a DFA M with L(M) = L. Due to Theo-
rem 4.32 we can decide whether L € By, by looking at the transition graph of M as follows.
If M does not have pattern B3/, then L € B3/, by Theorem 4.32, and if M has pattern Bs/,
then L ¢ Bj/y because FP(By/,) is well-defined.

Theorem 4.35. The membership problem of B3y is decidable in nondeterministic logarith-
mic space NL.

We postpone the proof of this theorem until Chapter 5. There we show for classes defined
via certain generalized forbidden patterns that their membership problems can be decided in
NL. Since FP(B3/2) is a special case of these classes we refer here to the forthcoming proof
of Theorem 6.15. We give an informal description how we can find pattern B3/, in a given
transition graph.

As in case of the patterns treated earlier, we first guess states s1,s2,s" and s~ and see if
8o — 81, (81,82) — (sT,57) and if s is accepting and s~ is rejecting. Now we start a loop
in the algorithm, and guess states 1,79, 3 and verify (s1, s1,s2) —1 (r1,79,73), i.e., the lat-
ter are reachable by wg. Then we guess two more states g1, g2 and check (r1,7r2,73,q1,q2) —
(r1,72,73,q1,q2), i-e., they all have an ly-loop, and see if (ro,r3) — (q1,¢2), i.e., there is
some by between ro and g1, and also between rg and ¢o. If 71 = s2, g1 = 51 and g3 = s2 we
accept, otherwise we continue this procedure and start over again, this time with r1,q1, g2
instead of s1, s1, s2. Note that we only need to store a constant number of states at a time.

Now we know that Bs/, and also all classes Bj /s ), have decidable membership problems.
The following is an immediate consequence.

Theorem 4.36. There exists a recursive function which outputs for a given reqular language
L C A" the minimal k > 0 such that L € Bs /o1 (or some special symbol if L & Bss).

Finally, we draw the connection to first—order logic. Theorem 1.22 provides the following
corollary of Theorem 4.35.
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Corollary 4.37. Given a regular language L it is decidable whether L is definable by a Yo
formula of the logic FO[<, min, max, S, P].

4.5 Discussion and Further Consequences

In this section, we look at consequences of Theorem 4.35 for finite semigroups and leaf lan-
guages. We leave Theorem 4.38 and 4.40 below without proof, and understand them as
directions to further research.

First, we look at the algebraic approach to regular languages, which we do not follow in
this thesis. As mentioned in the introduction, many results — among them the forbidden
pattern characterizations of Ly /o, B2 and L3/ from [PW97] — have been obtained in this
theory. For an introduction to the field see [Pin96]. We have given other proofs of these
characterizations, and we sketch in what follows an algebraic interpretation of Theorem 4.35.

Let M = (A,S,6,s0,5") be some minimal DFA and denote by Thy =ger { 6% |w € AT }
the transition semigroup of M. In general, we can associate with a semigroup 7' an order
relation < (reflexive, transitive, antisymmetric) on 7" which respects the multiplication of T’
i.e., for every u,v,y € T with p < v we have py < vy and yu < «yv. This is called the ordered
semigroup (7, <). In particular, we define in case of T\ that u < v if and only if av(3(sg) € S’
implies auf(sg) € S’ for all o, 8 € T U {id} (where id denotes the identity mapping on T').
It is easy to see that (Taq, <) is an ordered semigroup, which we call the ordered transition
semigroup of L. We need one more notion from semigroup theory. For every element p of a
semigroup T we define the w-power of p as p¥ =qer p* where 4 = inf { j>1 | W= } Note
that for a finite semigroup 7 it holds that u“ is always an element of T'. Using Theorem 4.35
one can now show the following.

Theorem 4.38. Let L C A" be a regqular language and (Tr,<) be the ordered transition
semigroup of L. Then L € Bsy if and only if (Tam, <) satisfies all inequalities { Ep [m >0}
for any choice of 1;,3; and ~y; from Ty where

Em —def ﬁw’}/ﬂw S /Bw with
Y =det Y0To VITIN2TS *t YmTm and

B =det Y070 Boto ML BT V2Ts B2Ts - - YmTonBm Ty

These inequalities reflect in a straightforward way the subgraph given by pattern B3 /5. More-
over, they characterize the variety of finite ordered semigroups which corresponds to the
positive +—variety of languages as which Bs/, can be understood (see [Arf91, PW97]). An-
other characterization of this variety of semigroups can be found in [PW97]. However, the
decidability of the membership problem of B3/, could not be derived in [PW97] and was left
as an open question, which we answer with the work done in this chapter.

Let us look at leaf languages now and see what we can conclude from Theorem 4.35. We
already know that Leaf’ (L) C SPIfL € Bs /2 by Theorem 1.24. If L ¢ Bs/5 then a DFA
M with L(M) = L has pattern B3/, by Theorem 4.35, and we can exploit this to show
what complexity classes we encounter at least in Leaft (L). In order to state Theorem 4.40
below we need to recall some more notations from complexity theory. For the remainder of
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this section, let z,y denote strings over {0,1}. Moreover, for a set M let ||M| denote its
cardinality. For a language class C we define

L e 3%C <=qer there exists D € C and polynomial p such that

(@) Yz [[{(z,9)]lyl =p(z]) A (z,y) € D }| < 1] and
(b) ze L3y [lyl=p(z])A(x,y) € D]

L eV'C <=qer there exists D € C and polynomial p such that

(a) Va [ {(z,y)|lyl =p(|z]) A (z,y) € D }|| <1] and
(b) ze L& vy [lyl=p(z)) = (x,y) € D]
L edC <=gor there exists D € C and polynomial p such that
z € L < there exists exactly one y with [ |y| = p(|z|) A (z,y) € D |

For more background on these quantifiers we refer to [NR98]. If we drop condition (a) above
we obtain the quantifiers 3- and V- that build up the polynomial time hierarchy when applied
to P in an alternating way. For comparison, we state the main theorem from [BKS98].

Theorem 4.39 ([BKS98]). Let L C A" be a regular language.

1. If L € By, then Leaf? (L) C NP.
2. If L & Byy then LeafP(L) contains one of the classes V-P, cod!-P or MOD,P for some
prime p.

The first statement is known from [HLST93]. For the second statement, note that it is quite

easy to see from pattern B,/ that if L ¢ B,/ but star—free, then Leaf? (L) contains V"-P.

The main task carried out in [BKS98] is resolving the promise condition (a) in the quantor

V- which can be achieved by looking at the possible continuations of pattern B, /, in a DFA.
Now pattern B3/, for B/, is known, and we can show the following.

Theorem 4.40. Let L C A" be a regular language.

1. If L € By then Leaf” (L) C %5,
2. If L & Bg/o then LeafP(L) contains one of the classes V-3"-P, cod!-3%-P or MOD,P for
some prime p.

Here also the first statement is known from [HLS"93]. For the second statement note that it
is quite easy to see from pattern B3/, that if L ¢ Bs/; but star—free, then Leaf? (L) contains
v“3".P. Using the techniques from [BKS98] together with some additional constructions
we can resolve the promise condition of the outer quantor V"-. Certainly, there is more to
investigate in this direction.

Finally, we want to remark that the decidability of the membership problem of Bs; follows
also from very recently provided results in [PWO00] (although not explicitly mentioned there).
The authors extend the result from [Str85] to levels n + 1/2: for all n > 0 the membership
problem of B, /; is decidable if and only if the membership problem of £,, | ;5 is decidable.
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We refer to the main results of this chapter. First, we consider the patterns B, /, and B3, again
and observe how B, ; acts as a building block in B3 /5. Surprisingly, we find this confirmed if we
compare the patterns L; /5 and L3 /,. However, to reveal this relation in the latter case we need
to rewrite L35 in an appropriate way. If we continue the just observed formation procedure
this leads in a natural way to an iteration rule IT (cf. Definition 5.3). We consider this rule
for arbitrary initial patterns Z fulfilling some reasonable weak assumptions. In Section 5.1
we show how IT can be used to define classes of patterns PZ for n > 0 (cf. Definitions 5.1
to 5.5). After some technical results that allow to handle these patterns we give the main
result of this chapter: we prove that a complementation followed by a polynomial closure
operation on the language side is captured by our iteration rule on the forbidden pattern side
(cf. Theorem 5.13). Moreover, we investigate the inclusion structure between the forbidden
pattern classes (cf. Theorem 5.19) and we treat their decidability (cf. Theorem 5.25).

We recall pattern By, from Figure 2.2 and give the significant part of it in Figure 5.1
again. The loop—structure of the pattern is just the v-loop at s; and at so, and we call
p = (v,w) € AT x AT the bridge—structure since it forms the subgraph that bridges from s;
to ss.

Fig. 5.1. Forbidden pattern for B/,
with p = (v,w) € AT x A" and

loop—structure p’.

Now we look at pattern B3/, from Figure 4.3 and give its significant part in Figure 5.2
again. Here the loop—structure p’ is more complex: it is the sequence of words wg, w1, ..., W,
for m > 0 such that between each w;,w;+1 there is the bridge—structure p; from some pat-
tern By /5. Moreover, we get from s1 with wowy - - - wy, to s2 and after each prefix wow; - - - w;
we reach a state with the loop-structure p; (corresponding to the bridge-structure p; between
w; and wj41).

So how may a next iteration step look like? There should be two states s; and so both
having the same loop—structure as follows. There are words wq, w1, . . . , Wy, such that between
each w;, w; 1 there is the bridge-structure p’ now from some pattern B /2. Furthermore, we
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p

w1 \

Fig. 5.2. Forbidden pattern for Bz, with p = (wo,po,w1,p1,...,Wn,Pm)
and loop-structure p’. Note that p; € AT x AT are patterns of type B,/ with
loop—structure pj.

should find after every prefix wow; - - - w; a state with the loop—structure p’ from the respective
pattern B3/, that appeared between w; and w; 1. This formation procedure is made precise
in the next section.

However, if this should make any sense in connection with the DDH and STH in general,
we must look first at Ly, and L3/5. Recall from Lemma 1.20 that B3/, = Pol(coB, /) and
L3/5 = Pol(coL5). We give pattern LL; /5 from Figure 2.1 again in Figure 5.3. Here the loop—
structure is just an e-loop at s; and at s9, and the bridge—structure is p = (g, w) € {e} x A*.

Fig. 5.3. Forbidden pattern for £, /5
with p = (e, w) € {e} x A* and loop—
structure p’.

Now we look at pattern Lg/; from Figure 4.1 and do some rewriting before we state its
significant part in Figure 5.4. In fact, this figure looks just like Figure 5.2. The only difference
is that the loop—structures p) from some pattern L, /2 are e-loops. So the pattern given in
Figure 5.4 is equivalent to saying that for some m > 0 there are words wg,wy, ..., w, and
by, b1, . .., by, such that for 0 =ger wobow1by - - - Wy—1bmWy, and W =ger Wowy - - - Wy, We have

? ? W
s1 — 81 and s9 — $9 and s1 — $9.

We will prove formally in Theorem 6.4 that this is equivalent to pattern L/, but note for
now that a(w) C «(v).
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Fig. 5.4. Forbidden pattern for L3/, with p = (wo,po,w1,p1,. .., Wm,Pm)
and loop—structure p’. Note that p; € {e} x A* are patterns of type L,/ with
loop-structure p; = e.

5.1 Pattern Iteration

We make precise what we just observed, define the iteration rule IT and provide some useful
constructions that let us handle the iterated patterns. Everything in this chapter is valid for
an arbitrary initial pattern Z fulfilling some reasonable weak assumptions.

5.1.1 How to Define Iterated Patterns

Let us first say what an initial pattern is.

Definition 5.1. We define an initial pattern Z to be a subset of A* x A* such that for all
r >1and v,w € A* it holds that (v,w) € T = (v,v),(v",w-v") € .

Note that this requirement is just what is needed to show that FP(B;/5) is well-defined. In
order to cope with the inductive nature of the iteration rule we refine what we understand
under the notion “some DFA M has pattern P”. So far we had to find the particular subgraph
from the definition of PP in the transition graph of M. This will still be the case but we consider
P now to be a set of tuples of words, where each tuple is an instance of the pattern. We say
in Definition 5.5 below that a DFA M has pattern P if there exists some tuple p € P that
witnesses certain reachability condition, namely that a certain subgraph appears at some state
(the loop—structure) and that two states are connected by a certain subgraph (the bridge—
structure). This is consistent with our prior definitions of patterns since the witnessing word
variables are all existentially quantified. As the first step of an inductive definition we consider
an initial pattern.

Definition 5.2. For p = (v,w) € Z and given states s, s1, sy of some DFA M we say

— p appears at s <=4t s has a v-loop and
. . . D
— 81, S9 are connected via p (m notation sy ~~» 32) <=>4ef P appears at s; and sz, and s =5 S9.

It is easy to compare this definition to the patterns B/, and L;/, with 7 = A" x A" and
T = {e} x A*, respectively. Now we formalize the iteration rule.



124 5. A Theory of Forbidden Patterns

Definition 5.3. For every set P we define
IT(]P)) —def { (w05p07 s 7wm7pm) ‘ m > 07pl € ]P)yw’i € A+ } .

Moreover, for an initial pattern Z we set P =qet Z and P | =qer IT(IP) for n > 0 to obtain
iterated patterns starting with Z. We have to say what it means that we find an iterated
pattern in the transition graph of some DFA.

Definition 5.4. For some p = (wo, po, ..., Wm,Pm) € IT(P} ;) with n > 0 and given states
s, s1, s9 of some DFA M we say

— p appears at s <= qor there exist states qo, 7o, ..., @m, "m of M such that
wo Ppo w1 p1 w2 Wm, Pm
S—qo~~To—q1™™TL—— " dm "~ Tm = S$

— 81, S are connected via p (in notation s; 2 S2) <=>4et P appears at s; and sg, and there
exist states qq, ..., qmn of M such that p; appears at state ¢; for 0 <¢ < m and

wo w1 w2 Wm,
S$1—qo—q1—— " ——Qqm = 32.

If we compare the definition of P}, for 7 = A% x A* and Z = {e} x A* with the patterns B,
and L3/, as given in Figures 5.2 and 5.4, respectively, we see how our previous observations
are reflected. Finally, we define what it means that some DFA has pattern P7.

Definition 5.5. For a DFA M = (A, S,6,5s0,S’), an initial pattern Z and n > 0 we say
that M has pattern P? if and only if there exist s1,s2 € S, x,2z € A* and p € P} such that

8(so, ) = s1, 6(s1,2) € S, 6(s2,2) ¢ S and s1 > so.

5.1.2 Some Technical Results

We give two useful constructions to obtain from a given pattern p € P; a new pattern from
P? having certain nice properties. Before this, we fix a word p° obtained from the loop—
structure of p (call this the loop—word), and a word P derived from the bridge—structure of p
(the bridge—word).

Definition 5.6. Let Z be an initial pattern. For p = (v,w) € P§ we define p =gef w and
P’ =det v. For n > 0 and p = (wo,po, - - -, Wm,Pm) € Py, we define p =ger wo - - - wp, and
2_90 =def WOPO * * * WmPm-

We describe two constructions. First, for p € P7 some A(p) € P7 can be defined such that if p
appears at some state s then s, s are connected via A\(p) (cf. Definition 5.8 and Lemma 5.9).
Secondly, in Definition 5.10 we pump up the loop—structure of p to construct for given r > 3
some 7(p,r) € P} such that

— if two states are connected via p, then they are also connected via 7(p,r) (cf. Lemma 5.11)
and

— in every DFA M with |[M| < r the words 7(p,7) and 7(p,7) lead to states where m(p,7)
appears (cf. Lemma 5.12).

— in every DFA M with |[M| < r the words 7(p,7) and 7(p,r) m(p,7) lead to states that
are connected via w(p,r) (cf. Lemma 5.12).
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Let us begin with some easy to see statements. In particular the second and third statement
show why we call p the bridge-word and p° the loop—word of p.

Proposition 5.7. Let Z be an initial pattern, n > 0, p € PZ and let s,s1,s2 be states of
some DFA.

1. Ifn>1 thenp,p° € A™.
2. If s1 2 S9 then s1 2, so and p appears at s1 and at Ss.
3. If p appears at state s then s 2.

4. If p appears at state s and if p = (wo, po, - - . , Wi, Pm) with p; € PL_, forn > 1, then also
Pm appears at state s.

All statements are immediate from the definitions (for the third use the second statement).
We give the construction of A(p).

Definition 5.8. Let 7 be an initial pattern. For p = (v,w) € P} we define A\(p) =ger (v, v).
For n > 1 and p = (wo, po, - - - , Wm, Pm) € P}, we define A(p) =ger (7°, A(Pm))-

The following lemma states the announced property of \(p).
Lemma 5.9. For every initial pattern Z, n > 0 and p € PZ we have \(p) € PL. Moreover, if

A
p appears at state s of some DFA then s, s are connected via A(p), i.e., s «Eg) s.

Proof. We prove the lemma by induction on n. For n = 0 we have p = (v,w) € P§ = Z.
By Definition 5.1 it holds that A(p) = (v,v) € T = P§. If p appears at some state s we
have 6(s,v) = s by definition. Therefore, the states s,s are connected via A(p) = (v,v) by
Definition 5.2.

Assume the lemma holds for some n > 0 and we want to prove it for n + 1. Let p € P74
such that for some m > 0, p; € P% and w; € A" we have p = (wo,po, - - Wm,Pm). By
Proposition 5.7 we have p° € A™ and from induction hypothesis we know that \(p,,) € PZ.
So with Definition 5.3 we see that A(p) = (p°, A(pm)) € IT(P}) =P ;.

It remains to show that the states s, s are connected via A(p) = (p°, A(pr)) in some DFA if
p appears at state s. By Proposition 5.7 we know that p,, appears at state s so we get from the
induction hypothesis that s, s are connected via A(p,). Since 6(s,p°) = s by Proposition 5.7
we obtain that A(p) appears at state s. Now let s1 =ger S, S2 =det § and go =det S. Then
go = s2 and since p appears at state s it follows from Proposition 5.7 that 6(s1,2°) = qo.
We have already seen that s, s are connected via A(py,), particularly A(p,,) appears at state
s = qo by Proposition 5.7. This shows that s, s are connected via A(p). ]

The second construction, i.e., the construction of 7(p,r) is more involved.

Definition 5.10. Let Z be an initial pattern and r > 3. For p = (v,w) € P§ let 7(p, ) =det
(™, w-v™). For n > 1 and p = (wo, po, - - - , W, Pm) € PZ we define the following:

pi =det 7(pi,T)
_ ° T VAR o T
W =def W0 Py "Pop W1-P] P " Wm Py " Pm
o AW ~° —~©° / /
7['(]),7“) —def (wO'pO y Do, W1 *P1 P15+ s Wm " Doy ,pm,w,)\(pm),...,w,)\(pm))

(r! = 1) times “w, A(p,)”
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With the next lemma we show that pattern m(p,r) is equivalent to p in the sense that it
appears at a state and connects states in some DFA if p does.

Lemma 5.11. Let T be an initial pattern, r > 3, n > 0, p € PT and let s, sy, s2 be states of
some DFA.

1. It holds that w(p,r) € PE.

2. If p appears at some state s then also w(p,r) appears at s.

3. If s1 &32 then s1, sy are connected also via w(p,r), i.e., s1 ﬂ(&r) S9.

Proof. We show the three statements simultaneously by induction on n.

Induction base. For n = 0 we have p = (v,w) € PE = T and p/ =g¢¢ 7(p, 1) = (v, w - v™).
By Definition 5.1 we get p' € T = P§. Let M = (A, S, 6, s0,5’) be a DFA and s,s1,s2 € S.
If p appears at state s then §(s,v) = s. Hence 6(s,v™) = s and so p’ appears at state s. If
s1, 892 are connected via p, then s; = §(s1,v) and sy = 6(s1,w) = 6(s2,v). It follows that
s1 = 6(81,11’"!) and sg = 6(s1,w - v”) = 5(32,1}”). Thus s1, s9 are also connected via p’.
Induction step. Suppose we have shown the lemma for some n > 0 and we want to show
it for n + 1. Let p € P;,;, choose suitable m > 0, p; € P} and w; € AT such that p =
(Wo,P0, - - -, W, Pm) and set p’ =qer m(p,r). As in Definition 5.10 let p; =gef 7(pi, ) and
W =gef Wo -p_f)o -p_()- C Wi p_;no ph. Let M = (A, S,6,50,5") be some DFA. First we show the
following claim.

Claim. Let s’ € S such that p appears at s’. Then it holds that §(s',w) = ¢’

Proof of Claim. If p appears at s’ then there exist states qg, 7o, ..., qm, T m of M such that
w2 Pm

/ Wo Po w1 p1 W, /
S —qo~»Tro—q1™Tr1—— " —7qm ™~ Tm =S

By induction hypothesis we know that g;,r; are also connected via p; for 0 < i < m. From
Proposition 5.7 we see that 6(g;,p}) = r; for 0 < i < m. Again by Proposition 5.7 the state g;
—0 . —o — —0 — .
has a p. -loop for 0 < ¢ < m. It follows that 6(s',wo-p} -pj---w;-p; -pi) =rifor 0 <i < m.
This shows 6(s’,w) = ry, = §. (End proof of Claim.)

We use similar arguments to show the induction step. For the first statement observe
that by hypothesis we have pj,...,p), € PZ. By Lemma 5.9 it holds that A(p},) € PZ. Since

w € AT and also wop_{)o, . wppl € AT it follows that 7(p,r) € IT(PZ) = il
Let s, 51,52 € S. For the second statement assume that p appears at state s. By definition,
there exist states qg, 70, ..., Gm, m of M such that
wo po w1 p1 w2 Wm, Pm
S—qo~~To—q1™Tr1—— " ———qm "~ Tm = S.

Using the additional states ¢; =qef § and 7j =ger s for m+1 < j < m’ with m’ =q¢ m+r!—1
we show that also p’ appears at state s. Therefore we have to show that

w —7° ’ w 70 ’ w 7° —° ’ >\( ’ >\( ’
0Pg Py 1P} Py 2Py WmPhy P w D) w D)
S —qo~>To — q1~~T1 — - — qm > Tm —dm+1 ~ Tm41 " ———qm/ ~ Tm/.

Note that r,y = s and let 1 < j < m. Since qjgj-;rj we have by Proposition 5.7 that p;
appears at g;. We obtain from the hypothesis that p;- appears at ¢; and from Proposition 5.7

that 6(qj,p_;-o) = gj. So for 1 < j < m we see that
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wopy wip)
s — q and Tr;_1 —> gj

while the former is shown with the same arguments. By hypothesis we have that g¢;,r; are
connected via p; for 0 < ¢ < m. It remains to show that 6(s,w) = s and that s,s are
connected via A(p),). For the former we apply our claim from above, for the latter note with
Proposition 5.7 that p,, appears at r,,, = s. So by hypothesis we have that p/, appears at s
and Lemma 5.9 says that s, s are connected via A(pl,).

We turn to the third statement and assume that s1, so are connected via p. By definition,
p appears at s; and so, and there exist states qq, ..., ¢ of M such that p; appears at state
q; for 0 < i < m and

wo w1 w2 W,
81— qo——q1 — — @ = S2.

We already know from the second statement that p’ appears at s; and ss. Using the additional
states qj =def s2 for m +1 < j <m/ with m’ =gqe¢ m + r! — 1 we first show that

O

—° —° —7° —
wopg w1p) waph WmPhy, w w
— T dm ——dm+1 T ! -

S1 — 40 — Q1
Note that g,y = s2 and let 0 < ¢ < m. By assumption we know that p; appears at ¢; and
from the hypothesis we get that also p] appears at ¢;. So we have by Proposition 5.7 that
6(qi,}7;o) = ¢; and together with the assumption we see for 0 < i < m that

woply wip]
s — qo and ¢ — giy1-
Since p appears at s our claim shows for m < j < m/ that 6(g;,w) = 6(s2, w) = s2 = gj41.
We know that p; appears at ¢; for 0 < ¢ < m and by hypothesis we obtain that p, appears
at g;. In particular p/, appears at ¢, = s2. So from Lemma 5.9 together with Proposition 5.7
we obtain that A\(p,) appears at ¢; for m +1 < j <m/. O

With the construction of 7(p,r) we have obtained a possibility to find patterns from PZ in
automata for which we only require that their size is less or equal to r. Note in particular
that we do not require in the following lemma that p € P appears somewhere in M or that
it connects some states, we just have the size restriction.

Lemma 5.12. Let Z be an initial pattern, r > 3, n > 0, p € PZ and let M be a DFA with
|IM| < r. It holds that

1. w(p,r) leads to states in M where 7w(p,r) appears,
2. w(p,r) leads to states in M where w(p,r) appears and

3. w(p,r) and w(p,r) w(p,r) lead to states in M that are connected via 7(p,r).

Proof. We prove the lemma by induction on n.
Induction base. Let M = (A, S, 6, sg, S’) be some DFA with |[M| < r.If n = 0 then we have
p= (v,w) € P and 7(p,r) = (v",w-v"™). Since v" leads to v"-loops in M by Proposition 1.34

we obtain that m(p,7) = v™"-v" and 7(p,7) = w-v" " - v" lead to states where 7(p,)

appears. Hence 7(p,r) and m(p, r)o -7(p,r) lead to states which are connected via m(p, 7).
Induction step. Suppose we have shown the lemma for some n > 0 and we want to show
it for n + 1. Let M = (A4,85,6,50,5") be some DFA with |[M| < r. Furthermore, let p =
(wo,P0, - -+ s Wm, Pm) € PF,; and assume that w, p; are as in Definition 5.10. First we show
the following claim.
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Claim. It holds that w" ! leads to states in M where 7(p, ) appears.

Proof of Claim. Observe that w™ ! = w™~1="w" leads to a w™-loop in M by Proposi-
tion 1.34 since r > 3 and hence r! > r + 1. So let s be a state of M which has a w”—loop and
we will show that 7(p,r) appears at s. Define the following witnessing states.

. _
g0 =det 6(s,wo - Py ) 70 =def 6(q0,P)

@i =def O(ri—1,w; " p; ) Ti =aef 0(qi,p;) forl<i<m
Um+j =det O(Tm,w”) Tm+j =def Gm+; for 1 <j<rl—1

So we have the following situation where m’ =g m + r! — 1.

7° v 7° o 7° ~—5
wo- Py Do w1-py Py w2 Py Wm Py,

p/
§ = qo——T0 — Q1T — 0 — gm——Try and
w w w w
"Tm ——dm+1 = Tm+1 —dm+2 = Tm4+2 — " ——qm! = Ty’

It follows from induction hypothesis that ¢;, r; are connected via p for 0 < ¢ < m. Moreover,
the hypothesis also shows that p/, appears at ¢; for m +1 < j < m’ since pl, is a suffix of
w. From Lemma 5.9 we get that g;,r; are connected via A(p},). Finally, by the definition of
w we have 1, = 8(s,w) and rpy = 8(ry,, w" 1) = 6(s,w™) = s. Hence we have shown that

w 7° / 7° ’ —0° ——° ’
0°Pg Po w1-pPy D1 W2 Py Wm P, Pm
5§ — qo~Tro — 1Ty — 0 —— @m~> Ty and
w A(Phn) w Mpm w w A(Phn) B
™ —qm+1 ~ Tm4+l —qm+2 ~ Tm42 — " ——4m/ ~ Ty = S.
So 7(p,r) appears at s. (End proof of Claim.)

Since p), is a suffix of w it follows from the induction hypothesis that w leads to states
where p!,, appears. From Lemma 5.9 and Proposition 5.7 we obtain that w leads to a A(p),)-

loop in M. Hence our claim holds also for (w - )\(pgn))rl_l. Now observe that

= ° T |

w(p,r) = wo-ph W Py W and
— —o — —o — —\ 71
m(p,7) = Wo-pPy Py Wm Py, -p;f(w%(p%@)) :

So the claim says that 7(p,r) and 7r(p,7")O lead to states in M where 7(p,r) appears. This
shows statements 1 and 2 of the lemma.
We turn to statement 3 and choose an arbitrary state s of M. For s1 =get 6(s, m(p,r) ) and

S92 =det 0(s,7(p,r) -w(p,r)) we show that s1, so are connected via 7(p,r). Let m’ =qo¢ m+r!—1
and define the following witnessing states.

g0 =det 6(s1,wo - pjy )

I—O .
Qit1 =det 6(qi,wiy1-Pj, ) for0<i<m
Qj+1 =det 6(qj,w) form <j<m/

We have already seen that m(p,r) appears at s; and at sa. Observe that ¢,y = 6(s1,7(p, 7)) =
2. So it remains to show that p; appears at g; for 0 < ¢ < m and that A(p),) appears at g;
form+1<j<m.

By induction hypothesis we have that 17;0 leads to states in M where p, appears. Hence
p}; appears at state ¢; for 0 <4 < m. Since p! is a suffix of w the induction hypothesis shows
that p], appears at g; for all j with m +1 < j < m’. With Lemma 5.9 we see that g, g; are
connected via A(p),), so in particular A(p),) appears at state g;. O
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5.2 Pattern Iterator versus Polynomial Closure

We relate in this section in a general way Boolean operations and concatenation to the
structural complexity of transition graphs, i.e., we show with the following theorem that a
complementation followed by a polynomial closure operation on the language side is captured
by our iteration rule on the forbidden pattern side.

Theorem 5.13. Let I be an initial pattern and let n > 0. It holds that
Pol(coFP(Py)) C FP(P; 1)

The proof is given in the next subsection, while we show in Subsection 5.2.2 what inclusion
relations hold between the forbidden pattern classes. Subsection 5.2.3 investigates under what
circumstances the classes FP(P%) have decidable membership problems. Let us begin with
the fact that for all n > 0 the classes FP(P}) are well-defined.

Proposition 5.14. Let Z be an initial pattern, n > 0 and let My and My be two DFA’s such
that L(M;) = L(Mz). Then it holds that My has pattern P% if and only Ms has pattern PZ.

Proof. It suffices to show one implication, so suppose M; has pattern P7. Then there are
states s, s2 in M that are connected via some p € PZ such that §(sg,z) = s1, 6(s1,2) € 5,
8(s2,2) ¢ S’ for suitable x,z € A* and if s¢ is the starting state of M; and if S’ is its set of
accepting states. Define r =qor |[Ms| and p’ =ger m(p, 7). We obtain from Lemma 5.11 that
s1, 89 in M are also connected via p’ € PZ. So by Proposition 5.7 we have zp/ 2z € L(M;) =
L(My) and zp" p'z & L(M;) = L(My). Now define s} and s to be the states in My that
can be reached from its starting state on input xp’ and zp’ p’, respectively. By Lemma 5.12
we get that s) and s are connected via p’ in Mj. Since we reach from s} (s5) with z an
accepting state of My (rejecting state, respectively) this shows that My has pattern P5. [

5.2.1 Proof of Theorem 5.13

We isolate the main argument of the proof in the following lemma. It says that under certain
assumptions we can replace bridge—words by their respective loop—words without leaving the
language of some DFA.

Lemma 5.15. Let T be an initial pattern, r > 3, n >0 and p € P} |. Let M be a DFA with
M| < r which does not have pattern PX. Then for all x,z € A* it holds that

z-7m(p,r)-z2€ LIM) = z-m(p,r) -z € L(M).

Proof. We choose suitable m > 0, w; € AT and p; € PZ such that p = (wo, po, - - - , Wi, Pm)-
For 0 < i < m let as before p, =qer m(pi, ) and w =qer wo -p_f)o -p{)---wm-gﬂo -pl.. By
Definitions 5.10 and 5.6 we have that

—0 —0 —aO0
p, =def 7['(]),7“) = (wo p6 ’p{)’wl pll sy W pin 7p;n’w7)‘(p;n)”wa)‘(p;n))
— — —5 __ ri—1
p7 = wo-py py-wi-p) "'wm'zﬂo-ph(w')\(ph)) and

— —©

1
- A A Lo . -l
p = wo-py wy - Py W, * Py w
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where the term “w, \(p},,)” in 7(p,r) is repeated (r! — 1) times. Now let x,z € A* such that
xp'z € L(M). First, we show that we can successively insert the p/ in p’. By assumption we
have

—o —o —0

=0 p1_1
Twy Py wipy waph - wmph, w2z € L(M).

T’ =def 2/ =def

We show that x’p_gop_{)i'oe_L(./\/l). From Lemma 5.12 we see that the states s1 =qef 6(50, a:'p_{)o)
and sy =def O(s0,2'p) pj) are connected via pf,. Note that p; € P% by Lemma 5.11. If
«'p ph7 ¢ L(M) then we have 8(so,z'ply ) = s1, 6(s1,2') € S, 8(s2,2') ¢ " and the states
s1, 82 are connected via pj, € PZ. It follows that M has pattern P7 which is a contradiction
to the assumption. Thus starting from

—0

— 0 —0 —o0 1_
Twop)  wip) waph - wpph, w1tz € L(M)

we have shown
g° . g°  ° o prl—1
Twop) Puwip) waph - WP, w "z € L(M).

With the same procedure we obtain:

— 00— —0 —0 —0 —0 —a0 |_1
Twop)y pywrp;  weph wspy  wapy o wmph, W'z € L(M)
— 00— — 00— —0 —0 —0 —a0 |_1
Twopy PHwip) plwaphy  wsph  waply - wyph, W'z € L(M)
— 00— — 00— —O0—F —0 —0 —a0 |71
Twop PRwip) plwaph phwsps  waply -+ wyph, W'z € L(M)
—o0— —0—F —0—F —0—F —0 —0 -1
Twop) phwip| Piwephy Phwspy pywaply -+ wmph, w" Tz € L(M)
—0— —0— —0— —o0— —0 — 00— -1
Twopy PoWip) Piwapy Powspsy Pswapy WP, PRrw’ 2 € L(M) (5.1)

Now we have to deal with the A(p/,). Note that by definition p/, is a suffix of w. From
Lemma 5.12 it follows that w leads to states in M where p/, appears. By Lemma 5.9 we get
for all s € S and s =qef (', w) that s, s are connected via A(p],). Now Proposition 5.7 says
that w leads to states in M which have a A(p/,,)-loop. So starting with (5.1) we concluded

— 0

—o0—— —o0—— —O0—— —O0— —_— [
Twoply Pywip| Piwaph Phwspl phwapl - WmPl, Ph wA(pL,) w22 € LIM).

We can repeat this argument for the remaining (r! — 2) occurrences of w to see that

—0—f —O0—F —O0—F —O0—F —0 —0——
T wopy PHwip) Piwaph Pywspy Pywaply - WD, PhaWA(Dh,) .. wA(D),) 2 € L(M)

o

where the term “w, A(p/, )" is repeated (r! — 1) times. This shows that 2p” z € L(M). O

Proof of Theorem 5.13. We assume that there exists an L € Pol(coFP(P%)) which is no
element of FP(PP7, ) and show that this leads to a contradiction. From L € Pol(coFP(Py,))

it follows that .

L=|JLioLiy-Lig,

i=1



5.2 Pattern Iterator versus Polynomial Closure 131

for some k > 0, k; > 0 and L;; € coFP(Py). Let M = (A,S,6,50,5’) be a DFA with
L(M) =L.For1<i<kand0<j<k;let M;; bea DFA with L(M,;) = L;; and let
M; ; be a DFA with L(M; ;) = A"\ L; ;. Furthermore, we define

7 =get max ({ [M;|,IMi;1|1<i<kA0<j<k JU{M|[3}U{ki+1[1<i<k}).

The DFA M has pattern P, since L ¢ FP(PP}, ;) by assumption. So there exist 1,52 € S,
r,z € A*, p € P | such that 6(sp,x) = s1, 6(s1,2) € 5, 6(s2,2) ¢ S’ and the states sq1, s2
are connected via p. It follows that L # () and k > 1. By Lemma 5.11 the states s1, so are
also connected via pattern p’ =qe¢ 7(p,r). From Proposition 5.7 it follows that :13(;(70)12 erL
for all ¢ > 0. Thus there exists an ¢/ with 1 < ¢’ < k such that

.
x (F) z€LyoLypy--Lyg,-

Since r > k; + 1 it follows with a pigeon hole argument that there exist 0 < 7/ < ky and
words z/, 2", 2, 2" € A* such that

1. z (170) z=a"2'p 22
—0 i —o\J
2. m”m’zw(p ) and 2'2" :<p’) z for some 7,5 > 0 and
3. 2" S Li’ OLi’ 1°° Li/ g =1 .’E,}?OZ, S Li/ i and 2" S Li’,j/JrlLi/,j’JrQ tee Li/’k,/.
Since My | < r the word P leads to states in M, jr where p/ appears by Lemma 5.12. In

particular, such a state has a p’ -loop by Propos1t10n 5 7. From z p 2" € Ly j it follows that
for all 4 > 1 we have

z (F)Z 2 € Li/J‘/. (5.2)

Because si, s2 are connected via p’ in M we have by Proposition 5.7 that 6(so,x"x’) = 51,

8(s2,2'2") = 6(82, z) and &(sy,p’) = sp. Assume to the contrary that 2'p” p/z’ € Ly ji. Then

"o J7° i

we obtain z"z'p’ p'2'2" € L. It follows that

11" 1N

8(s2,2) = 8(s0,2'2") = 6(s1, P 2'2") = 6(s1,p) P2'2") = 8(s0,a"a'p"p22") € S
This is a contradiction since 6(sg, z) ¢ S’. So we have seen that
2p & Ly jr.
In other terms, it holds that
a'p e € AT\ Ly = = L(Mj ;) (5.3)

because |2/p p/z'| > |#'p” 2| > 1. Recall that L(M;, ;) € FP(P}) and hence the DFA M;, ,
does not have pattern P%. Since |M; 3 /\ < r we can apply Lemma 5.15 and together with
(5.3) we obtain z'p" p” 2’ € L(M), 1) It follows that z'p” p” 2’ ¢ AT\ L(M ) = Lijr. This
is a contradiction to (5.2). So Pol(coFP(PZ)) C FP(P Ti1)

(End proof of Theorem 5.13.)
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5.2.2 Inclusion Relations

In this subsection we show that if some initial pattern Z satisfies a certain weak property
then the inclusion FP(P;,) U coFP(P}) € FP(P},1) N coFP(P}, ;) holds for all n > 0 (cf.
Theorem 5.19).

Definition 5.16. Let Z7,Z5 be initial patterns and let n1,n9 > 0. We define that IP’Z'JI =< IP’Z?Q
if and only if for every py € P2 there exists a p; € Py such that for every DFA M =
(A, S,6,50,5") and all states s, s1, s2 € S the following holds:

1. If p appears at s then p; appears at s.
P2 p1
2. If 51 ~5 89 then s~ s9.

If the relation < holds on one level, then it also holds on the next.

Proposition 5.17. Let 71,15 be initial patterns and let ni,no > 0. It holds that
Z Z.
P =P = P P2,

Z- Z . Z .
Proof. Suppose Py} =< Prn3. So for given pa = (w2,0,p2,0 - -, Wam;P2,m) € P21 with wa; €

At and py; € PPL there exist P1,05- - Plm € PPy;, such that for every DFA M = (A, S, 6, s, S")
and all states s, s1,s2 € S the following holds:
a. If po; appears at s then p;; appears at s.

D2,i DP1,i
b. If s1 ~> s9 then s1 ~> s9.

Define p1 =qer (w2,0,P1,0---,W2,m,P1,m) and observe that p; € Pilﬁl. Now let M =

(A, S,6,50,5") be some DFA and s, s1,s2 € S. We have to show the following:
(i) If po appears at s then p; appears at s.

(ii) If 1 2 55 then s1 % so.
Suppose that ps appears at s in M. Then there exist states qo, 70, - - - » ¢m, "m of M such that

w2,0 p2,0 w21 Pp2,1 w2,2 w2,m p2,m
S—>qo ™ To——q1 T ——>qm ~ T'm = S.

Using b. from above this implies that

w2,0 P1,0 w2,1 P11 w2,2 w2, m P1,m
S—qo~~To—q1 T ——= " ——q4m ~ I'm =35

which shows that p; appears at s.
Now assume that si, sy are connected via py. Then po appears at s; and s9, and there
exist states qo, ..., qmn of M such that py; appears at state g; for 0 <7 < m and

w2,0 w21 w2 2 w2, m
S1—qo——q1—— " — gm = S2.

From (i) we obtain that p; appears at s; and sg, and if we apply a. we get that p; ; appears

at state g; for 0 < ¢ < m. This shows that s1, so are connected via p1. So IP?IH = IP)?QH. O
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Proposition 5.18. Let 71,75 be initial patterns and let ni,ny > 0. It holds that
P <P — FP(P;.) C FP(P2).

Proof. Suppose Py < P;2. For any language L ¢ FP(P;2) we show that L ¢ FP(Pl).
Let M = (A,S,6,50,5") be a DFA with L(M) = L. Observe that M has pattern P;2 by
assumption. So there exist s1,s0 € S, 2,2 € A* and py € P;2 such that 8(sg,2) = s1,
6(s1,2) €8, 6(s2,2) ¢ S" and the states s1, so are connected via py. Because Py} < P72 there
exists some p; € Pﬁll such that the states si, so are connected via p;. It follows that M has
also pattern Py}. This shows L ¢ FP(Py}) and hence FP(Py) C FP(Py3). 0

The proof of the following theorem is an immediate consequence of these propositions.

Theorem 5.19. Let T be an initial pattern with P§ < P{. For n > 0 it holds that
FP(Pr)UcoFP(Py) C FP(P; 1) NcoFP (P} ).

Proof. From Proposition 5.17 we obtain with the assumption P§ =< P7 that P, < P,
for all n > 0. By Proposition 5.18 this implies FP(P;,) € FP(P} ) for all n > 0. We
conclude that also coFP(P;,) C coFP(Pf, ) for all n > 0. Observe from Theorem 5.13 that
coFP(P;) C Pol(coFP(P})) € FP(P},,) which also implies FP(P}) = co(coFP(P})) C
coF PP, ) 0

5.2.3 Decidability of Pattern Classes

We show that the membership problem of the class FP(P}) for fixed n > 0 is decidable in
nondeterministic logarithmic space NL whenever the following can be done for the initial
pattern Z in these space bounds: decide for a given DFA M and a constant number of
states whether 7 appears at these states and whether they are connected via Z. Note that
the decidability of FP(PP}) has to depend on the initial pattern, since an undecidable set Z
(which can be easily constructed) may lead to undecidable pattern classes.

We define two problems addressing the question of the existence of paths and patterns
that appear simultaneously in a DFA. The first problem REACH; has already been considered
in Section 1.5, however, we have not fixed a notation yet.

Definition 5.20. Let & > 1. We define REACH} to be the set of pairs (M, W) such that

1. M =(A,8,6,s0,5") is a DFA,

2. WCS xS with |W| <k and

3. (s1,-- -y 8wp) — 7T (81,5 Sjy)) for (s, 57) € W

We have argued in Section 1.5 that for fixed £ > 0 it holds that REACH, is in NL: start at
(S1y.-+y s|W‘), guess a non—empty path and continuously compare the actual tuple of states
with (s],... ’3\/W|)'

)

Proposition 5.21. Let k > 1. It holds that REACH, € NL.

The second problem has two parameters, additionally to & bounding the number of states as
before, there is a parameter n refering to FP(P%).
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Definition 5.22. Let Z be an initial pattern, n > 0 and k > 1. We define PATTERNik to be
the set of all triples (M, T, T3) such that

1. M= (A4,5,6,s0,5") is a DFA,

2. T, C S with [Ty| < k,

3. Ty C S x S with |T3| < k and

4. there exists some p € P; such that for all s € T7 and all (s1,s2) € T it holds that
a) p appears at s and
b) 51 & S9.

Before we continue, we need to make a remark concerning our computation model. Our
algorithm in the forthcoming proof works on nondeterministic Turing machines having a read—
only input tape and a read—write working tape. We prerequisite some standard enconding of
a DFA and of the respective set of states. Moreover, a Turing machine represents a single
state of a DFA on its working tape by the number of the state in binary. Note that the space
needed to do this for a contant number of states is bounded logarithmically in the input size.

Furthermore, the type of Turing machine we have in mind have access to an oracle via
an additional write—only query tape. The restrictions for the query tape are as follows. From
the moment where the machine writes the first letter on the query tape, it is not allowed to
make nondeterministic choices until the oracle is asked. It receives the answer whether the
string on the query tape belongs to the oracle set by changing to a respective state. After
doing this the query tape is empty. When we determine the amount of space the machine
uses then only the working tape is considered. For details about this computation model we
refer to [RST82], an introduction to oracle computation can be found in [Pap94].

The next lemma says that the problem PATTERNik is decidable in nondeterministic log-

arithmic space when the machine has access to PATTERN(In_l) 35, @s an oracle. Note that the
first index is reduced to n — 1.

Lemma 5.23. Let T be an initial pattern, n > 1 and k > 1. It holds that

T
PaTTERNE , € NLPATTERN 1) 01

Proof. We give an algorithm for PATTERNik in Table 5.1. This algorithm has access to a

REACHy; oracle and to a PATTERN%n71)73k oracle. The notations in the table are adopted
from Figures 5.5 and 5.6 where we give an example of the case that a pattern appears at
some state and of the case that two states are connected via a pattern, respectively. We show
that this algorithm works in logarithmic space and decides PATTERNik. By Proposition 5.21
we have REACH,, € NL. Since the access to an oracle from NL does not rise the power of an
NL machine, i.e., NLN* = NL [Sze87, Imm88|, we can do the same computation without the
REACHy; oracle and obtain the required algorithm.

First we observe that the algorithm accesses the oracle in the way as described above.
For this we only have to consider step 4. Since on one hand we have already computed the
sets W, T] and T (and stored on the working-tape) and on the other hand M is stored
on the input—tape, we can actually write down the queries (M, W) and (M, T}, Ty) on the
query—-tape without making any nondeterministic choices.

Let us analyse the space on the working—tape which is needed on input (M, T3, T5). Note
that our algorithm uses only a constant number of variables which is bounded by O(k).
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Moreover, all variables except 7, Ty, W contain numbers of states of M, which can be stored
in logarithmic space. Each of the variables T], T4, W contains a set consisting of at most 4k
(pairs of ) numbers of states. This shows that our algorithm works in logarithmic space.

In the remaining part of the proof we argue that our algorithm really decides PATTERNi e
First we want to see that the computation has an accepting path if (M, Ty, T3) € PATTERNi k-
For this let p = (wo,po, .- -, Wm,Pm) € PL be a witnessing pattern. We denote the involved
states in the occurrence of p at s; as in Figure 5.5, and we denote the involved states of
the connection of ¢;,7; via p as in Figure 5.6. Now consider that particular path of the
computation, where we carry out exactly m + 1 passes of the loop and where we guess the
states @; 1, Vi1, 1, B, Vi 04,15 Aj at the beginning of the [-th pass of the loop (starting with
pass 0). It can be easily verified that this is an accepting path.

Now suppose that the computation on input (M, T},T5) has an accepting path, and fix
one of these paths. Choose m such that on this path the loop is passed m + 1 times. Note
that in each pass of the loop we receive positive answers to the queries (M, W) € REACHy
and (M, T}, T}) € PATTERN(In—l),Sk because otherwise the fixed path would be rejecting. It
follows that for each pass | there exists a word w; € AT witnessing (M, W) € REACHg
and there exists a pattern p; € P;_,; witnessing (M, T],Ty) € PATTERN(In—l),3k‘ Now define
P =def (W0, D0, - - -, Wm, Dm)- Using the states ¢; 1,51, 51, 351,751,651, Aj; which were guessed
at the beginning of the I-th pass of the loop, we can verify that a) p appears at all s; € T}
and b) all ¢;,r; with (g;,7;) € T5 are connected via p. O

The following corollary is immediate, just note again that NLNY = NL [Sze87, ImmS88].

Corollary 5.24. Let I be an initial pattern such that PATTERN&,€ € NL for all k > 1. Then
PATTERNg,k € NL for alln >0 and k > 1.

Finally, we obtain the efficient decidability of the membership problem of FP(P}) for fixed
n > 0 under the assumptions that the appearance (and connection) of the initial pattern can
be efficiently verified at a constant number of states.

Theorem 5.25. Let Z be an initial pattern with PATTERN& x € NL for k > 1. For fizedn > 0
the membership problem of FP(PL) is decidable in nondeterministic logarithmic space NL.

Proof. Let a DFA M = (4, S,6,50,5’) be given. We first guess states s, s2,57,5~ € S and
check whether s (s7) is accepting (rejecting, respectively), and if s9 — s1, (s1,82) —
(st,s7), ie., we test if (M, {(s0,51)}) € REACH; and (M, {(s1,5T),(s2,57)}) € REACH;.
This is possible in nondeterministic logarithmic space by Proposition 5.21. It remains to check
whether (M, 0, {(s1,52)}) € PATTERN%A which is also possible in NL by Corollary 5.24. [

5.3 Discussion

We want to mention that our result Pol(coFP(PP;)) € FP(P; ) generalizes the usually easier
to prove inclusion in forbidden pattern characterizations. Of course we are also interested in
the reverse inclusion. Further investigations may involve to look for particular initial patterns
7 for which the reverse inclusion holds — or does not hold: it is possible that the iteration
rule is too strong in the sense that FP(P} ) is a much broader class than Pol(coFP(P},)).
However, the applications in the next chapter give some evidence that this is not true in case
of the concatenation hierarchies we are interested in.
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Step, Command

Label
1. Let t1 := |Ti|, t2 := |T2| and let s;,q;,7;
such that Th = {s1,...,8} and T>
{(q17 7"1)7 ey (Qt27 th)}.
2. For1<i<tiand 1< j <tz let
d)ftart = s Js_tart = ;
6§tart = )\;tart =g
=7 = g
3. Guess states ¢;,1; for 1 < ¢ < t;, states
loop: aj,Bi,75,05,A; for 1 < j <tz and let
T = {N]1<j<t}
Ty = {(¢p¢i)[1<i<ti}U

{(@;B5)|1<j<t2 }U
{(75,65,) 11 <j <t}
{(

{(5;

{6, v)[1<j<t }U
{5 ) 1<j<t}

4. Ask the following queries and reject when a

negative answer is given.

(M, W) € REACH4
(M, T{,T3) € PATTERN(,, 1) 3k

5. For1<i<tiand 1< j <tz let
d)ftart = 1,[)1. Js_tart = 6]
5;tart = 5] A;tart = A]
6. Jump nondeterministically to loop or to
exit.
7. Accept if and only if the following conditions
exit: hold for all 1 <i<t; and 1 < j < ta:
vi=si  Bi=q
§j =Ty )\j =Ty

Table 5.1. An algorithm which decides (M, T1,T5) € PATTERNﬁ,C on input of a DFA M =
and sets 71 C S and T> C S x S with |T1|, |T2| < k.

start7¢z |1<Z<t1}U
B )| 1<j<t }U
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Remark

Note that t1,t2 are bounded by the constant k. We
have to decide whether there is a p € P% such that
a) p appears at all s; (Figure 5.5) and b) all g;,7;
are connected via p (Figure 5.6).

Variables marked with ‘start’ contain the starting
point from where we have to guess and check the
next fragment of the pattern.

The guessed states correspond to Figures 5.5 and
5.6. In the I-th pass of this loop (starting with
pass 0) the wvariables ¢, %, a;, 85,775,065, \;
used in  the algorithm  correspond to
i1, Vi1, 50, B, Vi, 04,0, Aj 1, respectively. More-
over, at the beginning of the [-th pass we have a
correspondence between ¢5tart, gEtart gstart \start
and ¥ 1—1, 85,1—1,05,1—1, A\j,i—1, respectlvely Usmg
T{ and T35 we ask the oracle whether there is a
pattern p; that connects (and appears at) the
guessed states. With W we test the existence of a
word w;.

If at least one negative answer is given then the
states guessed in the previous step do not witness
that there is a pattern from PZ.

Here we set the next starting points after a success-
full check of the previous fragment of the pattern.

Guess whether we have already checked the right
number of fragments of the pattern, i.e., whether
the number of passes equals m.

It remains to check whether the guessed loops have
reached their starting points, and whether the path
which was guessed via A; leads from g; to r;.

(A,5,6, 50,5
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6. Lower Bounds and a Decidability Result for the STH

We consider in this chapter two special initial patterns £ and B corresponding to the con-
catenation hierarchies we are interested in. For notational convenience we write FPy and
FPE instead of FP(P%) and FP(PE), respectively.

The main results of this chapter are as follows. In Section 6.1 we see what consequences of
our previous results can be derived for the DDH and STH. We provide the inclusion relations
between forbidden pattern classes (cf. Theorem 6.3) and the inclusion relations between the
STH and DDH and forbidden pattern classes (cf. Theorem 6.4). All classes FPy and FPL
contain only star—free languages (cf. Theorem 6.7) and can be separated using languages
that also separate the DDH and STH (cf. Corollary 6.11). Then we show that all pattern
classes have decidable membership problems (cf. Theorem 6.15) and derive from this a lower
bound algorithm for the dot—depth of a given regular language. In Section 6.2 we show that
even L5, = FPj holds if a two-letter alphabet is considered (cf. Corollary 6.18). This
implies in particular the decidability of L5/, in the two-letter case (cf. Corollary 6.19) and
has consequences in first-order logic (cf. Corollary 6.20). In fact, we show more general that
whenever By, ,1/y = FPy;, for some n > 1 and arbitrary alphabets then £, 3/, = FPy,; in
case of a two-letter alphabet (cf. Theorem 6.17).

6.1 Consequences for Concatenation Hierarchies

In case of the pattern L/, for £, /5 it was required that there is some w € A* such that for
two states s1, s it holds that s; — so, while in case of pattern B; /2 for By /o there must be

v,w € AT such that for two states s1, so we have s; N s2, and s1 and s both have a v-loop.
Definition 6.1. We define the following initial patterns.

L =def {6} x A*
B =def A+ ><AJr

It is easy to see that £ and B are indeed initial patterns. Figure 6.1 summarizes the results
of Section 6.1.

6.1.1 DDH and STH versus Pattern Classes

Let us consider the inclusion relations between classes of concatenation hierarchies and for-
bidden pattern classes.

Proposition 6.2. It holds that P§ < P{, P <X PT, P§ <X P§ and P§ < Pf.
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star-free

]'-Pg ‘ |
S :
FP§ B>
/ L2
FP§__ /
N P—
FP§ Bs/>
T\
/ Ls/2
FPT— Bs /o
NIl N
FP1 — L3/
fp(l); DR Bl/g
B AN
FPy———— L2

Fig. 6.1. Concatenation hierarchies and forbidden pat-
tern classes. Doubled lines stand for equality.

Proof. We show P§ < Pf first. Let p = (wo,po, - ., W, Pm) € P{ with m > 0, w; € AT and
pi € P5 = L = {e} x A* for 0 < i < m. Define p =qef (p°, D). Note that p € PE =B = AT x A"
because p°,p € AT by Proposition 5.7. Now let s, s1, s3 be states of some DFA. If p appears
at s then s has a p°-loop by Proposition 5.7, so p appears at s. If s1,s2 are connected via
p then p appears at s; and at sy and so does p. Moreover, s; L5 by Proposition 5.7 and
hence s1, s are connected via p.

We give the constructions that witness the remaining relations. In case of Pj < P§ let p =
(v,w) € P§ = AT x AT and define p =gef (£, w). For P§ < P¥ let p = (wo, po, - - - s Wi, Pm) € P
and set p =ger (p°,P). Finally, to see P§ < Pf let p = (wo,po, - - ., Wm,Pm) € P and define
P =def (5’1_7)- U

So the following theorem is an immediate consequence of Theorem 5.19 and Propositions 5.17
and 5.18.

Theorem 6.3. For n > 0 the following inclusions hold.
1. FP;UcoFPy C FPr,1NcoFPr q

2. FPy UcoFPy C FPr i NcoFPr

3. FPr C FP:

4. FP;, C FPyr4
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If we compare these relations to Proposition 1.3 and 1.4 we see the same inclusion structure
as in case of the STH and DDH. However, the connections between pattern classes and classes
of concatenation hierarchies are even closer.

Theorem 6.4. For n > 0 it holds that
1. £1/2 = .7:'P6, £3/2 = .7:'Pf and £n+1/2 g .7:'P£ and

n
2. Bl/2 == .7:735, 83/2 = .7:73? and Bn+1/2 Q prl
We prepare the proof with the following two propositions. Recall from Proposition 5.7 that
if some p € P}, appears at some state s then s has a p°-loop. In case of P also the reverse
implication holds.

Proposition 6.5. Let p € P{. For every state s of some DFA it holds that p appears at s if
and only if s has a P°-loop.

Proof. We need to show the ‘if’—part. Let p = (wo, po, - - - , W, Pm) € P§ withm > 0, w; € AT
and p; = (e,b;) € P§ = {e} x A* for 0 < ¢ < m. It holds that p° = wopow1DP1 - - - WP, and

D; = b;. So for any state s of some DFA that has a p°-loop there are states qo, 70, - -, @m,"m
such that
wo bo w1 by w2 Wm, bm
S—qo—ro—q1—Tr1—" " ——~qm ——Tm =S.

Since p; = (g,b;) for 0 < i < m we have in fact

wo po w1 p1 w2 Wm, Pm
S—=qoTro— @ T 2 dm T = S
which shows that p appears at s. ]

Next we see that a pattern p € P§ with an additional alphabet condition is in fact a pattern
from P7.

Proposition 6.6. Let p = (I,b) € P§ such that a(b) C «(l) and | and b have the same first
letter. Then there is some p' € P with P o= 1" for n =qef |b| such that for every DFA

M= (A4,8,6,50,5") and s1,s2 € S it holds that s1 L5 s implies s1 % ss.

Proof. Recall that p = (I,b) € AT x AT and let b = apay - a,, for m > 0 and a; € A.
Because {ag,...,am} € a(l) we can rewrite [ for all 0 < i < m as | = [;a;l}. Since [ and
b start with the same first letter by assumption we may assume that lp = . Now define
P =det (W0, D0, -+, W, Pm) With w; =ger a; for 0 < i < my, p; =qef (5,lg-lj+1) for0<j<m
and p,, =qet (¢,1,,). Then p; € P§, w; € AT and hence p’ € P§. Observe also that

/

P Ly = 1"

= WoPoW1PT -+ WP = o - lol1 - @y - Ny -+ am - Iy, = loaoly - Larll -+ - lpanm,
and m+1 = |b|.

Let us first show that p’ appears at s; and at s9. Since p appears at s; and at sy we know
that these states have an l-loop. So they also have a F—loop and hence p’ appears at s; and
at s9 by Proposition 6.5. Because p;° = ¢ for 0 < ¢ < m and p’ = wowy - wy, = b we see

b .
from s; — s9 that sq, so are connected via p'. O



142 6. Lower Bounds and a Decidability Result for the STH

Proof of Theorem 6.4. It is easy to see that FP§ = FP(LL/9) and FP§ = FP(By /) just
by comparing definitions. For I, /5 and B, /5 see Definition 2.15, for P§ and P§ consider £ and
B and Definitions 5.2 and 5.5. Actually, we have set—up the definition of % in order to obtain
this. For the same reason we see that also FP} = FP(B; /2)- Here we look at Definition 4.31
and consider the first iteration step IT(P§) = P] in Definition 5.4. So by Theorem 2.16 we
have Ly = FP(Lys2) = FPg and By = FP(By)2) = FPg, and Theorem 4.32 yields
By, = FP(Bsjy) = FPE. The inclusions L, 15 € FPy, and B, 19 & FP, forn > 0
follow from Theorem 5.13 and Lemma 1.20 together with £,/ = FPg, By /o = FPg and the
monotony of Pol(-) and BC(-). It remains to argue that FP{ C Lg/5.

We have by Theorem 4.2 that L3/, = FP(L3/) so it suffices to show that if some DFA
M = (4,8,6,s0,5") has pattern L3/ then it has pattern P{. So assume that M has pat-
tern L3/ witnessed by z,z € A*, 51,50 € S and v,w € AT with a(vwv) C a(vv). Define
| =ger vv and b =g vwv and observe that p =g (I,b) € P§. By assumption we have
a(b) C a(l) and by definition it holds that [ and b start with the same first letter. Note that
s1, S2 are connected via p since s; and sy have an [-loop and 6(s1,b) = so. Hence we may
apply Proposition 6.6 and obtain that s, sy are connected via some p’ € Pf. It follows that
M has pattern Pf. (End proof of Theorem 6.4.)

6.1.2 Pattern Classes are Starfree

We show that all classes FPr and FP. contain only star—{ree languages. To do this, we
prove that if some minimal DFA M is not permutation—free, then M has all patterns P% for
arbitrary n > 0. Recall that SF denotes the class of star—free languages.

Theorem 6.7. It holds that Unzo FPE = Unzo FP5 =SF.

Note that we already have SF C Unzo Ly, 1/2 by Proposition 1.5, that £,, /5 C FPr by
Theorem 6.4 and that FP5 C FPL by Theorem 6.3. So the proof of the previous theorem is
immediate from Lemma 6.9 below. We show the first the following auxiliary lemma.

Lemma 6.8. Letn > 0 and let M = (A, S, 6,50,5") be a DFA such that there ezist w € AT,
[ >2andrg,r1,...,1-1 € S with 6(r;j,w) =riy1 for 0 <i <1—1 (with r; =qet 70). Then for
allm with 1 < m < 1—1 there exists some py, € PE such that for all j,j" with 0 < j,j' <1—1

and wn rjr it holds that r; 2 Ty

Proof. Let M be a DFA with the properties states in the lemma. The proof is by induction
on n. For the induction base let n = 0 and let some m with 1 < m <[ — 1 be given. Define
Dm =def (wl,wm) and observe that p,, € P§ because [,m > 1. Since for 0 < i <[ —1 all
states r; have a w'-loop, we see that p,, appears at r; and also at rj. Due to 6(rj, w™) = rj
we have that r; and rj are connected via pp,.

Suppose the lemma holds for some n > 0 and we want to show it for n+ 1. Again, let some
m with 1 <m <[ —1 be given. Set m’ =gt [ — m. Then 1 < m’ <1 — 1 and the induction
hypothesis provides some p,,» € P;;. Now define p,,, =ge (W™, prn). Then py, € Py, | and we
have to show for given j,j" with 0 < j,7/ <1 —1 and 6(rj,w™) = r; that r; and rj are
connected via p,,. Since r; v, T wr, rj we obtain by hypothesis that

w™ Dyt
Ty =15~ T
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!

and hence p,, appears at r;. Because 7/ v, T(j'+m mod 1) ﬂrj/ we get by hypothesis that

w™ Dyt
7“]'/ —>T(]~/+m mod l) ~ 7“]'/
and hence p,, appears at r;. Finally, note that 6(r;,w™) = r;» and that p,, appears at r;.
So r; and r; are connected via py,. O

Lemma 6.9. For all n > 0 it holds that FPy C SF.

Proof. Let L € FPL for some n > 0. Then the minimal DFA M = (A, S, 6, so,S5") with
L(M) = L does not have pattern P% since P}, is well-defined. Assume to the contrary that
L ¢ SF. By Proposition 1.38 there exist w € A", some | > 2 and pairwise distinct states
70,71, .--,71—1 € S such that 6(r;,w) = riy; for 0 < ¢ <1 —1 (with 7, =qef 70). Since we
deal with distinct states in a minimal DFA there exists some z € A* and 0 < j <k <[—-1
such that 6(rj,z) € S’ < 6(rg,2) ¢ S’. By renaming states we can assume that j = 0 and
1 < k <1— 1. Moreover, we may suppose that 6(rg,z) € S" and 6(rg, z) ¢ S’ because if it is
the other way round, then we rename again and take ry as rg, 741 s 71, ..., Tg—1 @S Tj_1.
Since §(rg, w*) = 1, we can apply Lemma 6.8 for m = k and obtain that ro, 7 are connected
via some p € PZ. Taking some = € A* with 6(sp,x) = r¢ into account shows that M has
pattern P2 which is a contradiction. So L € SF. O

6.1.3 Strictness of Pattern Hierarchies

We want to show the strictness of the forbidden pattern hierarchies in a certain way, namely
we take witnessing languages from [Tho84] that were used there to separate the classes of
the dot—depth hierarchy. As remarked in [Tho84], these languages can also be used to show
that the Straubing—Thérien hierarchy is strict. A first proof of strictness of the DDH was
given in [BK78| using similar languages. We could also do our separation here with these
languages, but to facilitate the exposition we stick to [Tho84]. We assume in this subsection
that A = {a,b} and we separate our hierarchies when defined over A. This can also be done
for larger alphabets, see Remark 6.14 below. We show the following theorem.

Theorem 6.10. For all n > 0 it holds that FPL C FPE.

The proof is given at the end of this subsection where it remains to argue for the strictness due
to Theorem 6.3. We immediatly have the following corollary. Observe with Theorem 6.10 and
Theorem 6.3 that for n > 1 we have FP._ C FPhL_, C FPr and FPL_, C FPr C FPr.

Corollary 6.11. For all n > 1 it holds that FPy,_; C FPy, and FP,_; C FPr.
Inspired by [Tho84] we define a family of patterns W,, for n > 1.
Definition 6.12. Let n > 1. Pattern W, is defined as the subgraph given in Figure 6.2.

Lemma 6.13. Let n > 2. There exist p,p’ € PL_, such that for every DFA M =
(A, S,6,5s0,S") and for every occurrence ro,71,...,1, € S of W, in M it holds that

P P
ro~>ry and 11~ 71Q.
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a a a a
T@Fb@kb T 7Fb@
Fig. 6.2. Pattern W,, with n > 1.

Proof. The proof is by induction on n. For the induction base let n = 2 and define p =gef
(ab,a) and p' =qet (ab,abb). Because all involved words are in A™ it holds that p,p’ € P§.
We may apply Proposition 6.6 to see that there are p,p’ € Pt such that if two states are
connected via p or p' in a DFA M then they are connected via p or p’, respectively. The
definition of p and p’ does not depend on M so it suffices to show the induction base for p
and p'.

Let the states rg,r1,72 € S witness that some DFA M = (A, S, 6, s, S’) has pattern Ws.
Then rg and 71 have an ab-loop and hence p appears at rg and 71, and p’ appears at ro and
r1. Since §(rg,a) = r1 and 6(r1,abb) = ry we see that ro,r; are connected via p, and that
r1,To are connected via p’.

Suppose the lemma holds for some n > 2 and we want to show it for n + 1. By hypothesis
there are p,p’ € P5_, for some n > 2 having the properties stated in the lemma. We define

P =aef (a,p) and p' =ger (ab,p,b, A(p)).

Then it holds that p,p’ € P% since also A\(p) € P5_; by Lemma 5.9. Now let some DFA
M = (4,8,6,s0,5") be given such that rg,r1,...,rn,"he1 € S witness an occurrence of
pattern W,,, 1 in M. Since rg,...,r, and rq,...,7r,+1 Witness two ocurrences of pattern W,
in M we can apply the induction hypothesis and obtain that

D D
a. ro~>r1~>7r9 and
b. T2 g—> 1 g—) ro.

It follows that p appears at r¢ and at r1. So Lemma 5.9 shows that

A(p) A(p)
c. rg ~ rog and r1 ~ 71.

Let us verify that rg,r, are connected via p. We obtain with b. that p appears at ¢ and also
at r1 because

a Jid a Jid
rg—ri~rg and rp—rg~ery.

It follows that p’ appears at r1, so 6(rg,a) = 1 implies that ro,r; are connected via p. Now
we want so see that 71,79 are connected via p’. We obtain from a. and c. that p’ appears at
r1 and at ry because

ab D b A(D) ab P b A(P)
r —ri~»rog—m7r1 ™ 7T and To —>To~»T1 —T9 ~ T0.
It follows that p appears at 71 and that A\(p) appears at 9. So

ab b
r —7ry —7g

shows that 71,7y are connected via p’. O
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Proof of Theorem 6.10. We need to show FP; C FP~r for all n > 0. The case n = 0
is easily seen since FP§ = L 2 G Bijp = FPg§ by Theorem 6.4 and Proposition 2.35. Also
the case n = 1 is already settled since FPT = L35 C Bs, = FPT by Theorem 6.4 and
Theorem 4.29. So we may assume n > 2. We consider witnessing languages L, such that
L, € FPE\ FPL. Therefore, we recall the definition of a particular family of languages from

[Tho84]. For n > 2 let L,, be the set of words w € A" such that

— |w|y — |w|p =n and
— for every prefix v of w it holds that 0 < (Jv|, — |v|p) < n.

Recall that |w|, for a letter a € A denotes the number of occurrences of a in w. It is shown
in [Tho84] that L, € B, (these languages are denoted as L, there). With Theorem 6.4 we
have L, € B, C By,11/2 € FPj, for all n > 1 and it remains to prove that L, ¢ FPy. For
this we define a DFA M,, with L(M,,) = L, as follows. Let M,, =gt (A, S, 6,70, {rn}) with
S =qef {ro,71,...Tn,7" } and

— (i, a) =def Ti+1 and 6(ri41,b) =qef 75 for 0 < i <n—1,

— 8(rp,a) =get 7~ and 6(rg,b) =gef ¥~ and
—6(r—,a) =6(r=,b) =get 7.

a a a a
kb T@T 777$@

©

@

a,b
Fig. 6.3. Automaton M, with L(My) = L.

The DFA M,, is given in Figure 6.3 and it is easy to see that L(M,,) = L,. We show for all
n > 2 that M,, has pattern P4. It follows from this that L(M,) = L,, & FPE.

Observe that M, has pattern W,, witnessed by rg,71,...,7,. S0 from Lemma 6.13 we
obtain that there exists some p € Pr_, such that 79,r; are connected via p. Now define
P =det (ab,p,b, \(p)) as in the induction step in the proof of Lemma 6.13. Then p € P~ and
we show that rg,r~ are connected via p.

We obtain that p appears at ry because

ab D b (D)
ro—ro~»7r1 ——7rg9 ~ T0.

Here we use that g, 71 are connected via p from Lemma 6.13 and that rg, 7y are connected
via A(p) by Lemma 5.9 since p appears at 7. It also holds that p appears at 7~ because this
is a sink state and one can show with a trivial induction that for all n > 0 and all p € P%
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it holds that p appears at a sink. For the same reason also A\(p) appears at r~ and we have
already noticed that p appears at ry. Together with

ab b _
rTo —— T ——7T

this shows that rg,r~ are connected via p. Finally we define © =q4or € and z =ger a™ to see
that M,, has pattern Ps. (End proof of Theorem 6.10.)

Remark 6.14. Suppose we deal with some alphabet A such that |A] > 3, eg., A =
{a,b,c1, -+ ,¢} for some | > 1. If we define M,, such that 6(s,¢;) = r~ for 1 < i <
and for all s € S, we still find the required patterns. This means on the language side that we
intersect the expressions for L, with {a,b}* = AT\ J,;<; A*¢;A* € coBy 5. The latter does
not increase the dot-depth since L, € B, which is a Boolean algebra that includes coB; ;.
Together this allows to prove Theorem 6.10 also in case of a larger alphabet.

6.1.4 Decidability, Lower Bounds and a Conjecture for the Dot—Depth Problem

We carry over our general decidability result for pattern classes.

Theorem 6.15. For fized n > 0 the membership problems of FPr, and FPy are decidable
in nondeterministic logarithmic space NL.

Proof. It holds that PATTERN& k> PATTERNg x € NL for each k > 1. To see this observe that
due to the definition of the initial patterns the problems PATTERN& , and PATTERNS ;. are just

reachability problems very similar to REACH; which can be solved in NL. Now the theorem
follows from Theorem 5.25. 0

Since membership to SF is decidable, Theorem 6.15 yields an algorithm to determine the
minimal n such that a given regular language is in FP5. This is in fact a lower bound
algorithm for the dot—depth of a given language: if L € FPL \ FPL_, then the dot—depth of
L is strictly greater than n — 1/2 by Theorem 6.4.

We have seen many structural similarities between the STH and DDH on one hand, and
the hierarchies of the forbidden pattern classes FP;, and FP,, on the other hand. Among
them we have shown strictness and the upper bound SF. At this point we have no evidence
against the following conjecture.

Conjecture 6.16. For all n > 0 it holds that B, 1/o = FPy, and Ly 1) = FPy,.

Note that this conjectures an effective characterization of all levels n + 1/2 of the DDH and
STH. As stated in Theorem 6.4 we already now that the conjecture is true for n € {0,1}.
If we look at the witnessing language L, from Theorem 6.10 again we see that L, € By, 112
but L, & FPy,. So B,y1/2 € FPy, which shows that 7Py captures L,/ but not B, /.
We may conclude that our pattern classes are not too ‘broad’.



6.2 L5/ is Decidable for Two-Letter Alphabets 147

6.2 L5/3 is Decidable for Two—Letter Alphabets

We prove in this section the following theorem.

Theorem 6.17. Letn > 1. If B, 15 = FPE for arbitrary alphabets, then Lyy3/2 = FPria
in case of a two-letter alphabet.

With the latter we mean that we consider the STH defined over some alphabet A with
|A| = 2, and correspondingly we consider for Py ; only automata with input alphabet A.
Note that the inclusion £,, 3/ € F Py, is from Theorem 6.4 and holds unconditionally. The
proof of Theorem 6.17 is given at the end of Subsection 6.2.3. From Theorem 6.4 we know
that B/, = FPT. Here we had no restrictions on the size of the alphabet over which Bg/, is
defined.

Corollary 6.18. It holds that L5/5 = FP5 in case of a two-letter alphabet.

We give P4 in Figure 6.4. The following corollary is an immediate consequence of Theo-
rem 6.15.

o
I 7 j’
0 0
4 o o/
T | ° T~
0 S S
N [ .
O N
bl \\
lo oo %U ' | 0"~
A /
At Lo}
o T
O—=
lO , © C\ bm O//C)/O\o

/ \O

o 4 =

AW
/o ~.._..O

@) o o ol
s T " ~, Wo e N, W1 o
Q/ C}O Q/ C}O
L L
Im lo

Fig. 6.4. Forbidden pattern for FP5 with p = (wo,po, - - - , Wm,pm) € P5 where w; € A*, p; € P{ and
Pi = b; and p;° = li. It holds that L5/, = FP3 if |[A] = 2.

Corollary 6.19. The membership problem of Ly, defined over a two-letter alphabet is de-
citdable in nondeterministic logarithmic space NL.

Finally, we draw the connection to first—order logic with help of Theorem 1.23.

Corollary 6.20. Given a language L C {0,1}" it is decidable whether L is definable by a
Y3 formula of the logic FO[<].
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6.2.1 Changing the Alphabet

Let A =gef {a, b} for the remainder of this section. We want to show for n > 1 the inclusion
FPri1 C Lois /2 when both classes are defined with respect to A. To do so, we reduce this
case to the assumption FP: = B,, | /2 from Theorem 6.17 where F Pr and B, 11 /2 are defined
with respect to some arbitrary large but fixed alphabet. The reduction is as follows. Note with
Theorem 6.7 and Theorem 1.37 that there exists for every L € FPy_ | some permutation—free
DFA accepting L. So let us fix some arbitrary permutation—free DFA M = (A, S, 6, s, S")
and set r =ger |[M|. The idea in this section is straightforward: nothing new happens in M
if the same letter appears > r times consecutively in the input (see Proposition 1.39). We
encode the behaviour of M in these finitely many cases over some larger alphabet. Therefore,
we define Ay =ger A%, U AB’M with

A(/Ivl —def {al,. .. ,ar} and A?\A —def {bl,. .. ,bT}

and some function f,, : AT — (A" that achieves the encoding. The function f,, will map
every block from {a}* U {b}* of maximal length to a single letter from A,,, where the index
of the letter corresponds to the block size up to threshold r. First, we write every w € AT as
w = wyws - - - wy, for some k > 1 and factors w; of maximal length such that w; € {a}TU{b}*.
Call this the A-factorization of w and observe that this factorization is unique due to the
maximality condition.

Definition 6.21. Let w € AT and let w = wyws - - - wy, for some k > 1 be the A-factorization
of w. Then fy(w) =gef c102° - g € (Ay) T with

l

Gmindl : w; =a

Ci =def { bmm{ rh : !
min{l,r} : Wi =

forl1<i<kandl>1.

We say that ¢ € A, has type a if ¢ € A%, and it has type b if ¢ € A%,. Observe that
w; € {a}t if and only if ¢; has type a and w; € {b}T if and only if ¢; has type b. Note also
that |fr(w)| = k if and only if the A-factorization of w has k factors w;. Moreover, we define
for L C A" and for a class of languages C that

Fa(@) =aet | J {fmu(w)} and  fu(C) =qet { fmu(L) | L €C}.

weL

Since the definition of f,, is based on the single factors of an A-factorization we can also
concatenate the fy(w;) and obtain f,,(w).

Proposition 6.22. Let w € A" and let w = wiwy---wy for some k > 1 be the A-
factorization of w. Then fy(w) = fu(wr) fa(wa) -+ fa(wg) with fu(w;) € Ap.

Proof. By definition, fi(w) = cica--- ¢ such that for 1 < i < k we have ¢; = aping, ) if

w; =db or ¢ = brin{l;,ry if wi = bli for some l; > 1. Fix some i with 1 < i < k and assume

without loss of generality that w; € {a}+. Then the A-factorization of w; is just w; = ali
and by definition we have fu(w:) = min{i;r}- SO € = Aming; 1y = fm(wi). It follows that

Fra(w) = fr(wr) fau(wz) - -+ fra(wy). O
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We will use the previous proposition without further reference. Let us also note that we can
take factors of w that respect its A-factorization and obtain the respective factor of fu,(w).

Proposition 6.23. Let w € AT and let w = wyws---wy be the A-factorization of w for
some k > 1. If fup(w) = cica---cx for ¢; € Ay then for all j,7" with 1 < j < j' < k it holds
that fM (ijj+1 et wj/) = CjCj+1 et Cj/.

Proof. It holds that f.(w;) = ¢; for 1 < i < k. Since wjw;41---wj is an A-factorization we
have

¢jcjar- - ¢t = faa(wy) fanlwjgn) -+ frawyr) = faalwjwjps - - wyr).

O

Next we see that f,, does what we intended, namely that M cannot distinguish words having
the same encoding.

Proposition 6.24. Let w,v € A" with fy(w) = fu(v). Then §(s,w) = 6(s,v) foralls € S.
In particular, it holds that w € L(M) < v € L(M).

Proof. By assumption, fy(w) = ciea---cx = fum(v) for some k > 1 and ¢; € A,y Let
w = wiws - - - wy and let v = v1vs - - - v be the A-factorizations of w and v, respectively. Fix
some s € S and some ¢ with 1 < i < k. We argue that §(s,w;) = 6(s,v;). Assume without
loss of generality that ¢; is of type a and hence w;,v; € {a}™. If ¢; = a; with 1 <j <r—1
then w; = o/ = v; and §(s,w;) = 6(s,v;). If ¢; = a, then w; = o' and v; = a’ with 1,1’ > r.
By Proposition 1.39 we have that 6(s,a') = 6(s,a”) = 8(s,a"). It follows inductively that
8(s,wiwa - - - w;) = 6(s,vivy---v;) for all s € S and 1 <7 < k. Hence, 6(s,w) = é(s,v) and in
particular §(sg,w) = 6(sg,v). O

However, not all words from (A,,)" can appear in the range of f,,. The maximality condition
in A-factorizations ensures that the types of letters in f,(w) alternate between a and b. We
call these words well-formed.

Definition 6.25. Define WF\; =qef fr(AT) as the set of well-formed words of (A,,)". For
w € WFy let L, =qef {ve A+|fM(7J) =pu}

By definition, none of the sets L, is empty. The alternation condition of letter types is
characteristic for WF),.

Proposition 6.26. It holds that pn € WF,, if and only if the letters in pu alternate between
type a and b.

Proof. Let p = cicg---cp € (Ay)" for some k > 1. If p = fy(w) for some w € A"
then the letters ¢; alternate between A%, and A%, due to the maximality condition in the
A-factorization of w. Conversely, we may consider w =qef wiws ---wy with w; =qef a if
c; = aj € A%, and w; =qef b oif ¢; = bj € Ai’w Then w = wywsy - - - wy, is the A-factorization of
w with fa(wi) = ¢;. So fa(w) = faulwr) faa(w2) -+ faa(wr) = crcz - - and hence fu(w) =
we WFE,,. O

Since this condition holds also for factors of well-formed words, these are again well-formed.

Proposition 6.27. Every non—empty factor of a well-formed word is well-formed.
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Finally, we see that well-formed words behave nicely with fy,.

Proposition 6.28. Let w,v € AT. It holds that

Fr(w)fm(v) € WEy <= fa(w) fra(v) = fra(wo).

Proof. It suffices to argue for the ‘only-if’—part. Suppose w = w; - - - wy, and v = Wiy - - - W4y
for k,1 > 1 are the A-factorizations of w and v, respectively. Since fu,(w)fr(v) € WFy, we
have by Proposition 6.26 that wy, € {a}" < wiy1 € {b} . So the A-factorization of wv is
WU = Wy WeWkt1 o Wil Henee, fa(wo) = fa(wi) -+ faalwr) fra(wrs1) - faa(wier) =

Sam(w) fa(v). 0

6.2.2 Transformation of Patterns

The goal of this subsection is to prove Lemma 6.29 below. It says that if L(M) € FPj 4
for n > 1 and for some permutation—free DFA M with a two-letter input alphabet, then
fm(L(M)) € FPy. In the rather technical proof we do the following. Starting with the given
DFA M we define another DFA M with L(M) = fuy(L(M)). Then we show that if M
had pattern P}, then M would have even pattern P ;. The fact that |A| = 2 and that only
well-formed words appear in pattern P% in the transition graph of M are the main arguments
to see that the loops in the innermost bridge—structures of pattern P% in M have letters of
type a and of type b. It follows from this that the innermost bridge—structures of the pattern
in M satisfy a certain alphabet condition, hence M has in fact pattern P, ; (similar to By
versus Lz /s).

Lemma 6.29. Let n > 1 and let M be a permutation—free DFA with input alphabet A =
{a,b}. If L(M) € FP5,, then fu(L(M)) € FPr.

Proof. Let M = (A, S, 6,s0,5"), set 7 =gef |[M| and L =4er L(M). We use the notations from
the previous subsection. The proof has three steps.

Step 1: Construction of M. The automaton M we have in mind has input alphabet
A, and simulates M as follows. If M reads for instance a; for 1 < j < r from the input
then it behaves like M on input a/. Since we want that M rejects whenever the input is not
well-formed, we have to store the type of the previous input letter in a second component in
order to ensure the alternation of letter types. We introduce a rejecting sink state L for all
non well-formed inputs to M. As we will see, this construction preserves the structure of the

transition graph of M in a way such that we can conclude from a pattern in M to a pattern
in M. Now define M =4¢¢ (A, S, 6, (S0,€),5") with

S :def {S X {aa b}} U {(8055)7J—}7

" =4et 8" x {a, b},

1,¢) =qef L for all c € Ay,

(50,€),a5) =def (5(so,a.j),a) for all a; € AS,,

( 0,6),1)]') =def (5(80,b7),b) for all b]' S A?\A,

(s,a),a;) =qef L for all a; € A%, and s € §,

(s,a),bj) =qet (6 (s,bj.),b) for all b; € A%, and s € S,
(5,b),a;) =def (6(s,a?),a) for all a; € A%, and s € S and
(5,0),b) = efJ_forallb € A%, and s € S.
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We set L =gt L(M). With the following two claims we make precise the relation between
M and M, i.e., we show how we find a path of the transition graph of M in the transition
graph of M and vice versa.

Claim 1. Let w € A" and s — s’ in M for some s,s' € S. Let t; € A

(t; € A) be the first letter (last letter, respectively) of w. For ¢’ € AU {e}

with ¢ # t and (s,¢') € § it holds that (s, ') "% (s",#;) in M.
Proof of Claim 1. Let w = wyws - - - wy, with k > 1 be the A-factorization of w. Moreover,
let fu(w) = c1co--- ¢, and define t; € A to be the type of ¢;. Hence, tits - - -t} consists of
alternating a’s and b’s, and in particular ¢; = t; and ¢, = t;. For 1 <7 < k define v; =ger a’
if ¢; = aj and v; =gt V if ¢; = b;. Since fu(w;) = ¢; = fr(vi) we have §(p,w;) = 6(p,v;) for
all p € S by Proposition 6.24. Now assume that ¢’ € AU {e} with ¢’ # t; and (s,t') € S. We
show inductively that 6((s,#),c1---¢;) = (8(s,wy - - wy), t;) for 1 < i < k.

Induction base. Let i = 1 and assume without loss of generality that ¢; = ¢; = a. Hence,
c1 = a; and v; = a’ for some 1 < j <r, and t' € {b,e} by assumption. First suppose ¢’ = ¢.
Since we require that (s,#’) € S we only make an assertion in case s = sy9. We conclude from
8(so, w1) = 6(sg,v1) and from d. in the definition of M that

5((s,t'),cl) = 5((30,6),aj) = (5(so,aj),a) = (6(s0,v1),a) = (6(sp,w1),t1).

Now assume that ¢ = b. Then we see with §(s,w1) = 6(s,v1) and h. in the definition of M
that

5((s,t'),cl) = 5((s,b),aj) = (5(s,aj),a) = (6(s,v1),a) = (6(s,w1),t1).

The case {1 =ty = b is completely analogously involving e. and g. from the definition of M.
Induction step. Suppose we have 6((s,t'),c1---¢;) = (6(s,wy -+ - w;), t;) for some ¢ with
1 < ¢ < k and we want to show this for ¢ + 1. Let us assume without loss of generality that
t; = a. Hence, ¢; = a;, v; = a/ and t; 1 = b, ciy1 = bir, Viy1 = v’ for some 1 < j,5' <.
We conclude from the hypothesis, from 6(r,w;+1) = 6(r,v;11) for arbitrary r € S and
from g. in the definition of M that
O((s,t"),c1 -+ ciciya)

o(s,wy -+ w;), i), Cit1)

Il
Hr Ot O
~—~

(

(

6(s,wi -+ w;),a),bjr)
(s0, w1 - --w;), b)), b)

6(s0, w1 -+ w;),viy1),b)
(

6(6(s0, w1 -+ w;), wit1), tiy1)

(
(
=
(

The case of ¢; = b is completely analogously involving h. from the definition of M. This
completes the induction and it follows that

8((s,), faa(w)) = 8((s,t),c1 -+ cx) = (8(s, w1 -+ wy), 1) = (8(s,w), 1) = (s, 1)

(End proof of Claim 1.)
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Claim 2. Suppose (s,t) ——(s',t') in M for some p € (A,)" and (s, 1), (s, ') € §
with 5,5’ € S, t € AU{e} and t € A. Then p € WF,, and s — s’ in M for all
w € Ly.

Proof of Claim 2. Let u = cyco - - - ¢ for some k£ > 1 and define t; as before to be the type
of ¢;. Note that if ¢; = ¢ then 6((s,t),¢1) = L due to f. and i. in the definition of M, and
6((s,t), ) = L due to c. So t; # L.

Now assume to the contrary that u ¢ WF,,. Then we get from Proposition 6.26 that there
is some minimal ¢ with 1 < ¢ < k such that ¢;,c;1 € A%, or ¢, ci41 € A?\A. So t; = t;41 and
cicy---c; € WF,,. Hence, there is some v € AT with first letter ¢; and last letter ¢; such
that fy(v) = ¢1---¢; and there is some s” € S with §(s,v) = s”. Because t; # t we have
all prerequisites of Claim 1 and obtain from it that 6((s,t),cica-- - ¢;) = (s”,t;). From f. and
i. in the definition of M we see that 5((8",ti),ci+1) = 1 since t; = t;11, and from c. we get
6((s,t), ) = L, a contradiction to our assumption in Claim 2 that &((s,t), u) = (s, #'). This
shows that € WF),,.

Now let w € L,. Then fy(w) = p and w has first letter ¢; and last letter ¢;. Moreover,
there is some s” € S such that §(s, w) = s”. Since we know that t; # ¢t we can apply Claim 1
again and obtain

(s',¢) = 6((s,1), 1) = 6((5,1), Faa(w)) = (5", tw).
So 6(s,w) =s" =4 (End proof of Claim 2.)

We immediately obtain from these claims that L = L(M) = fu(L(M)) = fu(L). To
see this suppose first p € L. Then 6((so,€), 1) = (s,d) € S’ for some s € S and d € A
by b. in the definition of M. We can apply Claim 2 to see u € WF),. So there exists some
w € AT with 4 = fu(w) and again by Claim 2 we obtain w € L from 6(sp,w) = s.
Conversely, suppose w € L. Then 8(sg,w) = s for some s € S’ and by Claim 1 we see that

6((s0,€), fau(w)) = (s,t) € §' for some t € A. Hence fr(w) € L.

So we have seen in this first step that L = fm(L) CWEF,,.

Step 2: Pattern transformation. We show in this second step that if two states
(s,t),(s',t') are connected in M via some j € P5 for n > 0 then there exists some p € Pr
such that s, s’ are connected in M via p. We require here as an assumption that the two states
that are connected via p in M are not L. It is shown in Step 3 that this is no restriction.

Claim 3. Let n. > 0 and § € P2 such that (s, t) < (s t') in M for some (s,t), (s',t') € S
with s, € S and ¢, € AU {5} Then there exists some p € Py, such that for all
(Sl,tl),(SQ,tg),(Sg,tg) S S with s1,89,83 € S and tq,t2,t3 € AU {8} the following
holds.

1. Ifp appears at (s1,t1) in M, then p appears at s; in M.
2. If (52,t2) (s3,t3) in M, then 55~ s3 in M.

Proof of Claim 3. The proof is by induction on n.

Induction base. Let n = 0. Then p = (v,u) € P§ for some v,u € (Ap)'. Since
(s,t),(s',t') € S are connected via p it follows that 6((s,t),v") = (s,t) for all 4 > 1 and
5(( t), ;) = (s',t'). We obtain from Claim 2 that v*, u € WF,, for i > 1. So we can consider

and L, and there are v € L, and w € L, with fuy(v) = v and fu(w) = p. Note that
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v,w € AT and define p’ =g¢f (vv,vwv). Then p’ € P§ (with respect to A), and vv and vwv
start with the same letter. Moreover, it holds that a(vv) = A. To see this suppose a(vv) # A.
Then all letters of v have the same type a(v) and v? ¢ WF,,, a contradiction. It follows that
a(vwv) C A = a(vv). We apply Proposition 6.6 with | =4¢f vv and b =4ef vwv and obtain
some p € Pf such that p° = vl"w?l and if any two states in M are connected via p’ then they
are also connected via p.

To show the first statement suppose p appears at (s1,t1) in M. Then 5((31, t1),v) = (s1,t1)
and we obtain from Claim 2 that §(s1,v) = s1. So 6(s1,P°) = s; and Proposition 6.5 shows
that p appears at s; in M. For the second statement assume that (s2,t2), (s3,t3) are connected
via p in M. By definition, 6((s2,t),v) = (sa,t2), 6((s3,t3),v) = (s3,t3) and 6((sa,ta), 1) =
(s3,t3). We get from Claim 2 that 6(s2,v) = s2 = 6(s2,vv), 6(s3,v) = s3 = 6(s3,vv) and
8(s2, vwv) = 6(s2,wv) = 6(s3,v) = s3. So sg,s3 are connected via p’ in M and we have
already noted from Proposition 6.6 that they are also connected via p.

Induction step. Suppose the lemma holds for some n > 0 and we want to show it for
n+1. So let p = (1o, Do, - - -, bm> Pm) € Ph; with p; € (Ar)" and p; € P5 for 0 < i < m. By
assumption, there are (s, t), (s',#') € S that are connected via p, and in particular j appears
at (s,t). So there exist states go,70,- - -, Gm, Tm Of M such that

(s, t)—WJogﬂ“oLm&ﬁi “—m”jmlzfﬂ“m— (s,t)

Note that ¢ —= 7; in M for 0 < i < m. Since (s,t) # L and because of c. in the definition
of M it follows that the states Gi, 7 for 0 <7 < m are not L. So we can rewrite these states
as ¢; = (gi,tg,) and 7; = (r;,ty,) for 0 < i < m, for suitable ¢;,7; € S and t,,,t,, € A. Due to
the construction of M the latter are not ¢ and we have

(Tl’tﬁ) ﬁ’ T H—m>(Qm’tqm)

i3

(Pms tr,) = (8, 1).

3

(T07 tro) £>(qla tth)

iz

(5,8) = (q0, tgo)

We see that each p; connects some states in M that are not L. So the induction hypoth-
esis provides for each p; some p; € Pr,; such that for all (s7,t}), (s5,t5),(s3,15) € S with
sh,8h,s5 € S and t,th,t5 € AU {e} the following holds.

H1) 1If p; appears at s|,t]) in M, then p; appears at s} in M.
1 1
(H2) If (sh,th) L5 (sh, t5) in M, then s %5 s in M.

Moreover, we get from Claim 2 that 5 € WF),. So with Proposition 6.27 we have pu; € WFE,
for 0 <4 < m. In particular, there are w; € L, such that fu(w;) = p; for 0 <4 < m. Define
Now P =qef (W0,P0; - - - Wm, Pm) and observe that p € Py,

We turn to the first statement. Suppose p appears at (s1,%1) in M. Then there exist states
Qb5 Ths - -+ s Aoy Ty OF M such that

HO .~y DO ~f M1 Pl ~/ M2 Hm_ ~ Dm ~
(s1,81) == o~ 70— G1 Ty =+ == {pyy ~ Ty = (51, %1)

With the same argument as above, we can rewrite these states as §; = (q;,t,) and 77 = (1}, tr)
for 0 <4 < m, for suitable ¢},r, € S and ty st € A. So we have

Do

(slatl) (qO,tq )M—)(To’t ) b1 n2 Hm ,

4, (qll,tqll) W(Tll,tr/l) —>---—>(q;n,tq;n) J»”(rm,trin) = (s1,t1).
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From Claim 2 and the induction hypothesis (H2) we obtain that

wo PO/wl/PI/w2 Wm_ ) Pm
51—”10”"7“0—“11 L= —7qm " T, =981

which shows that p appears at s; in M.

Next we want to prove the second statement. Therefore assume that (se,t2), (s3,t3) are
connected via p in M. Then jp appears at (so,t2) and also at (s3,t3), and there are states
q; € S with 0 < i < m such that p; appears at state ¢; for 0 < ¢ < m and

(s2,t2) 25 Go 5 Gy 22 - B Gy = (53, 13).
As before, none of the states ¢; for 0 <7 < m can be L, so we can rewrite them as ¢; = (gi, ty;)
for 0 < ¢ < m, for suitable ¢; € S and ¢, € A. Then
(527 t2) ﬂ>((]Oa tqo) £>((]la t(h) & e H_m)(qm’ tqm) = (537 t3)'
From Claim 2 we obtain that
wo w1 w2 Wm,
Sg—>qo——>q1—— ' ——(qm = S3.

By the induction hypothesis (H1) we know that p; appears at state ¢; for 0 < ¢ < m and
for the first statement we obtain that p appears at s; and at s3. This shows that ss, s3 are
connected via p. (End proof of Claim 3.)

Note that Clalm 3 provides in particular for 5 € P2 with (s, t) % (s t') in M some p € Py,
such that s < s’ in M.

Step 3: From M to M. We prove in this final step the following claim.
Claim 4. Let n > 1. If M has pattern PZ then M has pattern PZ_,

Proof of Claim 4. Suppose that M has pattern P5. Then there exist §1, 52 € S,n,¢ e (Ar)*,
pePE st €S and 5~ ¢ S such that

(s0,6) 51 23 and & ——>5t and 8 -5 (6.1)
We may assume without loss of generality that n,{ € (Ax)T. To see this note that 3§
and §, have a p -loop by Proposition 5.7 (but (sp,e) has no loop by construction). Let
p = (1o, Pos - - - » em, Pm) for some m >0 with p; € (Ay)" and p; € P5_. We already now
that n-¢ € WFy because n- ¢ € L(M) = fu(L(M)) € WEy,. Now we want to show this for
n-p- (. Since p appears at §; there exist states Gy, 7o, - - - , Gm, ¥m of M such that

n Ko Po p1 P1 2 Hom, =~ Dm ¢ 5t
(80,5)—>81—>QOW7‘0—>Q1W7‘1—> C == Q> Ty = 81 — S

Note that ¢; P, 7 and that g; and 7; have a non—empty p; -loop for 0 < i < m because
n > 1. With the same argument as before we see that
nom- B cm PL ccpme Bm - ¢ CWEyand

=0 = O = 0O

N o Do Do Bo - H1 DL cPL-D1L cc fm Bm cDm o bm - ¢ C WF.
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To argue that
np-C = mpo-prcpm G € Why

we need to observe that the types of every two consecutive letters alternate. We see from
above that it suffices to show for 0 < ¢ < m that the type of the last letter of u; is the same
as the type of the last letter of p;. But this is clear because the type of the last letter of y; is
different from the type of the first letter of p; which in turn is different from the type of the
last letter of p;. Note that there are only two types a and b.

Because n- ( € WF,, and 1 - p - ( € WF,, none of the states 31, 52, 57 and 5~ is the sink
state 1. So we can rewrite them as

51 = (s1,ts,) and 59 = (s2,ts,) and 57 = (s, t,+) and 5~ = (s~ ,t,-)

for suitable s1,s9,s1,s7 € S with sT € §', s7 € S’ and ts,,ts,,ts+,ts— € A. It follows that
we can rewrite (6.1) as

(50,€) —Ls (51, ts,) Lo (82, tsy)  and  (s1,ts,) —=(st,ter) and (so,ts,) (s, ts-).

Furthermore, we have 7,{ € WFy,. So let z,z € A" such that fy(z) = n and fu(2) = C.
From Claim 2 and Claim 3 we obtain that

Jr

xr P z z —
Sg—— 81~ 89 and s —s and s9—s

for some p € P;; ;. This shows that M has pattern Py ;. (End proof of Claim 4.)

Now the proof of Lemma 6.29 is as follows. Assume fu(L(M)) ¢ FPy. Since L(M) =
fam(L(M)) by Step 1 this implies that M has pattern P>. From Claim 4 we obtain that
M has pattern P~ and hence L(M) ¢ FPy, . This shows that L(M) € FP;,, implies
fm(L(M)) € FPL as stated in the lemma. a

6.2.3 Transformation of Expressions

The main result of this subsection is Lemma 6.34 that allows together with Lemma 6.29 a
proof of Theorem 6.17. For some permutation—free DFA M with input alphabet A = {a, b}
denote for R C (A,)*t by fii (R) the set of all words w from A™ such that fu(w) € R. We
show in Lemma 6.34 that for n > 1 and for every R C WF), with R € B,/ we can find
a language T'(R) C A" such that T(R) = fy/(R). Moreover, T(R) does not have a much
higher concatenation complexity than R, i.e., T(R) € L, 3/2. To prepare the proof of this
we fix some permutation—free DFA M with input alphabet A = {a,b}. First, we observe the
following two propositions concerning L, and WF),.

Proposition 6.30. Let u € WFy. It holds that L, € L3/, and L, = fo/({u})-

Proof. Let p = cicq--- ¢, € WF, for some k > 1. Recall that by Definition 6.25 it holds that
L,={veA"| fu(v) = p }. So we immediately have L, = fy({x}) and it remains to show
that L, € L3/5. For ¢ € Ay define

al c=ajand 1 <j<r-—1
v c=bjand 1 <j<r—1
T(C) =def a’"-{a}* c:ajr

b - {b}* : c=b,
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and set T'(u1) =qet T'(c1) - T(c2) -+ T(ck). Note with Proposition 1.19 that T'(u) € L3/5. We
show that L, = T'(u).

Let w € A" be given and assume w € L,. Then fu(w) = p = ciez--- ¢, and w has
the A-factorization w = wiws---wy with fu(w;) = ¢; for 1 < ¢ < k. Now fix some ¢ with
1 <4 < k and suppose without loss of generality that ¢; = a; for some 1 < j < r. Since ¢;
has type a we have w; = a' for some [ > 1 with j = min{r,1}. If 1 < j <7 —1 then j = [ and
w; =a' =a’ =T(¢;). If j =7 then | > r and w; = a' € a” - {a}* = T(c;). We put all factors
together and see that w € T'(u).

Conversely, suppose w € T'(u). We can write w as w = vive - - - v with v; € T(¢;) (v; =
T(c;), respectively) for 1 < i < k. Since u € WF), the types of the ¢; alternate between a
and b. Tt follows that v; € {a}" < v;,1 € {b}T for 1 <i < k. So w = vjvg--- vy is the A-
factorization of w and fy(w) = fu(vive - vg) = fa(v) fa(v2) - -+ faa(v). The definition of
each T'(¢;) is such that v; € T'(¢;) (v; = T'(¢;), respectively) implies fr(v;) = ¢; for 1 <i < k.
Hence fu(w) = fa(vi)fmu(v2) -+ fru(vg) = cica -+ - ¢ = p which shows w € L. O

Proposition 6.31. It holds that WF,, € coB ;.

Proof. Consider the following definition.

T =aet (Ap)™\ ( U (Ap)™ v (AM)*)

ve A% Ag, UAL AY,

Note with Proposition 1.15 that T € coB;/; and we want to show T' = WFy. Let p =
cicg -+ ¢ € (Ap)™T for some k > 1 be given and recall from Proposition 6.26 that u € WF,,
if and only if ¢; € A, © cit1 € A?\A for 1 <4 < k. So if every two consecutive letters in p
have different type then p is in none of the sets subtracted from (A,,)" in the definition of

T. If two consecutive letters c;c;11 in p have the same type then c;c; 41 € A%, A%, U AS’MA?\A
and p &€ T. O

The following two lemmas will help to give the proof of Lemma 6.34. In particular,
Lemma 6.33 serves as a part of the induction base there. We treat in Lemma 6.32 languages
R that may contain words that are not well-formed.

Lemma 6.32. Let g, fi1,- - pm € (Ap)™ for m > 0 and let l1,7r1,l2,72,. .. Ly, rm € A

such that po - A%, A% - p; - Alf\:rl, AN - i, € WFy for 1 < i < m. For the language
R=pio - AL(AWY AL, - - AR(A) AT - - ARG (An) AT - i

there exists some T(R) C AT with T(R) € L35 such that T(R) = fy/(R).

Proof. We define the transformation of R as

T(R) —def LHO . llBlT‘l . Lul . lgBQ’I“Q . L“2 lmBmT‘m . Lum
with
A* . lz 75 T
Bi —def A*DA* lz =T;=a
A*aA* : Li=r;=b
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for 1 < ¢ < m. Proposition 6.30 shows that L,, € L3/ for 0 < ¢ < m and from Proposi-
tion 1.19 we see that also I; B;r; € L3/ for 1 <4 < m. Since L3/, is closed under concatenation
we obtain T'(R) € L3/5.

Now we want to show that T(R) = fy/(R). First let w € f,/(R) and we have to show
that w € T(R). Let w = wjws - --wy, € A" for some k > 1 be the A-factorization of w. Then
frm(w) =crea - - ¢ € WE,, for some ¢; € Ay and because fy(w) € R we can write it as

frm(w) = po - divier - py - davges - pig - - - Ay Vmem - i

with d; € A4 ,eiEAf\ilandl/iE(AM)*for1<i<m Let 1 < j1 < i <ja<yghe- <
Jm < jh, < k such that d; = ¢;,, v; = ¢j,41- Gl and e; = cjr for 1 <i < m, and u; =
Cjtp1 " Cjgyq—1 for 0 < i < m (set Jo =def 0 and Jpm41 =det k + 1) "We apply Proposition 6.23
and obtain fu(wjiy1 -+ Wjy-1) = ¢jry1 - Cjiy—1 = g for 0 < i < m. By Proposition 6.30
this implies that wj - wj,,,—1 € Ly, for 0 < i <m.

Also by Proposition 6.23 we see that fu(wj, -~ wy) = ¢j, -~ ¢ = divie; with wj e {l;}"
and wy € {r;}* for 1 <4 < m. Now fix some ¢ with 1 <i < m. Ifl # r; then wj, ---wy, €
I;A*r; = [; B;r;. If I; = r; we may assume without loss of generality that [; = r; = a and hence
wj;, Wit € {a}*. But since the latter are factors of maximal length and because j; < j. there
must be some j with j; < j < j/ and w; € {b}". So wj, - - - w; - wj € aA*bA%a = |;Bir;. We
put all factors together and see that w € T'(R).

Conversely, assume that w € T'(R) and we have to show that f.(w) € R. Since w € T'(R)
we can write w as

w = ug - liv1ir1 - ug - lavarg - U9 - LU Tm - Um
with v; € B; for 1 <7 < m and u; € L,, for 0 < i < m. We obtain from Proposition 6.30
that fa(u;) = p; for 0 <i <m.

Now fix some ¢ with 1 < i < m and let fy(l;v;r;) = fife--- fow for some n’ > 1 and
fj € Ay First suppose l; # r;. Then fi has type l; and f,/ has different type r;. So n' > 2
and fifo--- fr € Al;'/l (Ap)* A% If I; = r; we may assume without loss of generality that
l; = r; = a. Then f; and f,,y have both type a. By definition of T'(R) we see v; € B; = A*bA*.
It follows that there is some factor from {b}* in av;a. Hence there must be some j with
1 < j < n'such that f; hastype b. Son’ > 3and fifa--- fnr € A% (Am) A%, = Al (A )* AT

Define @; =gof fai(liviri) for 1 < i < m. We have just shown that ¢; € Alj',l (Ap)* A%, for
1 <4 < 'm and obtain with f(u;) = p; for 0 < i < m from above that

Kt =def fM(uO)'fM(llvlTl)'fM(ul) T fM(lmvmrm)fM(um) = MO QLML PmPm € R.
We argue that p is well-formed with a few observations. Let ¢(c) for ¢ € A, denote the type
of ¢ and recall that p;(z) (s1(z)) is just the first letter (last letter, respectively) of a word .
It holds that

— t(s1(n0)) # L = t(p1(ip1)) because pg - Al C Why,

— t(s1(03)) = i # t(p1 (i) and t(s1(psi)) # lir = t(p1(pir1)) because A%, - ;- A C WE,,
for 1 <i < m and

— t(51(pm)) = rm # t(p1(1tm)) because AL - jim © WF.
We apply repeatedly Proposition 6.27 and Proposition 6.28 to u € WF),, and obtain
Faauo) - frallivir) - faa(ua) -+ fralmVmrm) - faa(um) = faa(uo-livirs -un -« - lbpvmrm - um).

So fu(w) =p € R. 0
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Let B C A", C C (Ay)T. We write for short B instead of AT\ B and C instead of (A,,)"\C.

Lemma 6.33. Let R C WF), with R € coBy/y. There exists some T(R) C At such that
T(R) € coLs)y and T(R) = fi/(R).

Proof. Since R € B, /2 We can write R by Proposition 1.15 as a finite union of languages R’
of the form

R = po(Ap) T p(An) ™ - 1 (Ap) i

with m > 0 and p; € (Ap)* for 0 < ¢ < m. Let U denote the finite union of all letters in
A . We can assume without loss of generality that for 0 < ¢ < m we have u; # €. To see this
first assume that po = €. Then it must be that m > 1 and we rewrite the leftmost occurrence
of (Ap)T as UUU(Ay)T and distribute the concatenations over the occurring unions. If
Um = € we can do a similar thing. Finally, if p; = € for 0 < i < m we rewrite (A )" (Ar)™"
as U(A,)" and continue as before.

Moreover, we can rewrite each (A,)" as U U A, (Ar)* Ay and distribute again the
concatenations over the occurring unions. So we obtain as a first step that R is a finite union
of languages R’ of the form

R = po - (AR UAL) - (Ap)" - (AR U AR - i (AR U AR - (Ap)™ - (AL U AL - i

with m > 0 and p; € (Ay)™T for 0 < i < m. Now we distribute the concatenations over the
remaining unions (4%, U A%,) and find that R is a finite union of languages R’ of the form

R =g A% - (Ap)* - AT -y - A (Ap)* - A2 g Al (A ) - AT o, (6.2)

with m > 0, letters l;,7; € A and p; € (Ay)™ for 0 < i < m.
Observe that if for some R’ the condition

podl, U | ANwAN U Aun | 0 WEG # 0 (6.3)

1<i<m

is true then R’ C WF,, which can be seen as follows. Suppose v witnesses that (6.3) holds
and let us further assume without loss of generality that v € A, uiAljjl for some fixed ¢ with
1 <i < m (the cases v € u(_)Al,},l and v € A7y, can be seen analogously). Then also any
other v/ € Af\iluiAifjl is in WF,, since v and v/ have the same sequence of types of letters
from A,,. If there is some 3 € R' N WF,, then we have by definition of R’ that 8 has some
factor v/ € A;ﬁluiAljjl with v/ € WF,,. Because 3 € WF,, and non-empty factors are again
well-formed by Proposition 6.27 this is a contradiction.

Suppose that for £ > 0 the sets R}, R, ..., R}, of the form as stated in (6.2) occur in the
finite union describing R. We turn to the description of R now. Let I C {1,...,k} be the
set of indices such that R} does not satisfy (6.3) for all i € I and set I =g {1,...,k}\[.
As pointed out before, we have R C WF,, and hence WF,, C f; for all i € I. Recall that
R C WF,, is assumed in the lemma. So we have
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R = R N WF, since R C WF),
ﬂ1§i§k§§ N WFy
= ﬂz‘el ﬁ; N nz‘efﬁg N WFy
= Mies Bl N WEy, because WFy C ;7 R
Since for all ¢ € I the sets R} do not fulfil (6.3) it follows that we can apply Lemma 6.32

to each of them. Denote for all i € I by T(R}) the languages of A" with T'(R}) € L3/, and
T(R]) = fi (R!) provided by Lemma 6.32 and define

T(R) =at [ T(R))
iel

The class coL3/5 is closed under intersection by definition, so T'(R) € coL3/. To show that
T(R) = fi/(R) let w € A" be given. We observe that

we fu(R) <= fulw)e
< fu(w) € R; foralli €I and fo(w) € WFy
— fulw)e R, foralliecl since fu(w) € WFy,
< weT(R])foralliel since T'(R}) = o (R))
— weT(R).
U

Now we transfer this relation inductively to all higher levels of the DDH and STH.

Lemma 6.34. Let n > 1 and let M be a permutation—free DFA which has input alphabet
A ={a,b}.

1. For every R C WF,, with R € col3,,_1 /5 there exists some T(R) C A" such that T(R) €

coLy 12 and T(R) = fu/ (R).
2. For every R C WFy, with R € B, 1/5 there exists some T(R) C A% such that T(R) €

Lyy3/2 and T(R) = fu (R).

Proof. We prove both statements simultaneously by induction on n.

Induction base. Let n = 1. The first statement holds by Lemma 6.33 and we have to show
the second statement. Recall from Lemma 1.20 that Bs/, = Pol(coB3). So R can be written
as a finite union of languages R’ for which in turn there are languages Lo, L1, ..., Ly, C (Ap)™T

for some m > 0 such that
R =LyL,---L,,

with L; € coB 5 for 0 < i < m. From R C WF),, we see R' C WF,, for each member R’ of the
union. Moreover, for each R’ it holds that L; C WF),, for all 0 < ¢ < m since otherwise there
is a word in R’ (having a factor) that is not well-formed. Let us define the transformation
T(L;) € AT of L; to be the set from coLs/, with T(L;) = fi/(L;) provided by the first
statement. Now set
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T(R') =aet T(Lo)T(L1) - - T(Lyn)

and define T(R) to be the union of all T'(R') ranging over all R'. Because T'(L;) € coLs, for
0 < i < m we have T(R') € Pol(coL3/5) and also T'(R) € Pol(coLs/;). So T(R) € L5)5 by
Lemma 1.20.

It remains to show that T(R) = fy/(R) which we do for every member of the union
T(R') separately. First let w € fi/(R') and let w = wyws---wy € A" for some k > 1 be
the A-factorization of w. Then fy(w) € R and fy(w) = ci1co- - ¢ € WFy with ¢; € Ay,
We can write fy(w) as fu(w) = pops -« pom with p; € L for 0 < i < m. Let 1 = jp <
J1 < -+ < Jm < k such that p; = ¢j---cj -1 for 0 < i < m (set jpy1 =gef k + 1).
We apply Proposition 6.23 and obtain fu(wj, - --wj,,,—1) = pi € L; for 0 < i < m. Since
T(L;) = fu (Li) we obtain wy, - -~ wj,,,—1 € T(L;) for 0 < i < m. If we put these factors
together we get w € T'(R').

Conversely, let w € T(R'). We can write w as w = wuguy---uy, with u; € T(L;)
for 0 < i < m. Because T(L;) = fu'(L;) we have fy(u;)) € L; for 0 < i < m. So
Frm(uo) fau(ur) -+ fau(um) € R C WE,,. We apply repeatedly Proposition 6.27 and Propo-
sition 6.28 and obtain fr(ug)fam(u1) -+ fa(tm) = fau(uous -+ - um) = fru(w) € R'. Hence,
w e fi/(R)

Induction step. Assume the lemma holds for some n > 1 and we want to show it for n+1.
We begin with the first statement and suppose that R € coB3,,1 /5. Define R =4t RNWE,,.
It holds that R’ € B, /2 because WFy, € coBy/s C By, 1/ for n > 1 by Proposition 6.31
and since B, {1/ is closed under intersection by Lemma 1.21. Moreover, we have

So we see that
R = R N WEF,  since R C WF),

= R N WF, by (64).

Since R’ € B,,11/2 is a subset of WF), we can apply the induction hypothesis of the second
statement. Denote by T'(R’) the language of A* with T(R') € L,,13/5 and T(R') = fy/(R')
provided by the hypothesis and define

T(R) =gt T(R').

Note that T(R) € coL,,; 3/, and let some w € A* be given in order to show T(R) = fi/(R).
We observe that

we fu(R) < fuw)eR
— fulw) € R and fu(w) € WEy,
— fulw) e R since fu(w) € WFy,
— weT(R) since T(R') = fi/ (R
— weT(R).

This completes the induction step for the first statement and we turn to the second statement.
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Let R € By, 3/2 with R C WF), be given and recall from Lemma 1.20 that B, 3/ =
Pol(coB,,11/2). Now we can proceed exactly as in the proof of the induction base for the
second statement. Just apply what we have shown for coB3, 1/ in the induction step for the
first statement. O

Finally, we give the proof of Theorem 6.17.

Proof of Theorem 6.17. It suffices to show for n > 1 the inclusion FPj_,; C L, 3 /2 (defined
over A = {a,b}) under the assumption that B,/, = FPj for arbitrary alphabets. So let
L € FP;,, 1. By Theorem 6.7 and Theorem 1.37 there is some permutation-free DFA M with
L =L(M)C A*. It follows from Lemma 6.29 and our assumption that f.(L(M)) € FPE =
By, 41/2- Since fu(L(M)) € WF), we obtain from Lemma 6.34 some T'(fun(L(M))) € AT
with T(fu(L(M))) € Lyi3/2 such that T(fyu(L(M))) = fui (fm(L(M))). Tt holds that
L(M) C fil (fm(L(M))) and we want to argue that also the reverse inclusion holds. So let
w € fol(fm(L(M))) and hence fr(w) € fr(L(M)). It follows that there is some v € L(M)
with fy(v) = fu(w) and Proposition 6.24 shows that also w € L(M). Together we see that

L = LM) = f/ (fm(LM))) = T(fm(L(M))) € Lps3)2-

(End proof of Theorem 6.17.)

6.3 Discussion

We want to make a few more remarks concerning Conjecture 6.16. It may turn out that
the conjecture does not hold, which we think is certainly possible. However, we did not find
evidence against it and we even may interpret the results of Section 6.2 as another argument
supporting it. If an effective characterization of the DDH and STH is possible at all, and if
this can be done in terms of forbidden patterns, we believe that the work done in the last
two chapters is a step in this direction. Our approach is dynamic in the sense that we can
eventually learn from counter—examples and adjust the iteration rule respectively.

Independently from the validity of Conjecture 6.16 we have obtained with the forbidden
pattern classes two strict and decidable hierarchies of star—free languages that are comparable
(at least in one direction) to the DDH and STH. We think that it is an interesting task to
further investigate these hierarchies, i.e., to look for characterizations in terms of formal
languages, logic or finite semigroups.
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