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Abstract: Risk measures are commonly used to prepare for a prospective occurrence of an adverse
event. If we are concerned with discrete risk phenomena such as counts of natural disasters, counts of
infections by a serious disease, or counts of certain economic events, then the required risk forecasts
are to be computed for an underlying count process. In practice, however, the discrete nature of
count data is sometimes ignored and risk forecasts are calculated based on Gaussian time series
models. But even if methods from count time series analysis are used in an adequate manner, the
performance of risk forecasting is affected by estimation uncertainty as well as certain discreteness
phenomena. To get a thorough overview of the aforementioned issues in risk forecasting of count
processes, a comprehensive simulation study was done considering a broad variety of risk measures
and count time series models. It becomes clear that Gaussian approximate risk forecasts substantially
distort risk assessment and, thus, should be avoided. In order to account for the apparent estimation
uncertainty in risk forecasting, we use bootstrap approaches for count time series. The relevance and
the application of the proposed approaches are illustrated by real data examples about counts of
storm surges and counts of financial transactions.

Keywords: count time series; expected shortfall; expectiles; Gaussian approximation; mid quantiles;
tail conditional expectation; value at risk

1. Introduction

A risk is associated with the possible occurrence of an adverse event, such as a loss
in a financial context or a loss caused by a natural disaster. The corresponding probabil-
ity distribution is used to prepare for the case when this undesirable situation actually
arises (Klüppelberg et al. 2014; McNeil et al. 2015). A risk measure maps this probability
distribution onto a real number that is then used for a risk assessment (Emmer et al. 2015).
There are a couple of different risk measures that are commonly used in applications, all
having their advantages and disadvantages, see Emmer et al. (2015) for a recent survey
and evaluation. In what follows here, we consider risk measures in the context of a count
random variable (r. v.) X, i.e., with the range consisting of non-negative integers from the
set N0 = {0, 1, . . .}. More precisely, we distinguish between unbounded counts (having
full N0 as their range) and bounded counts (having the range {0, . . . , n} with given upper
bound n ∈ N = {1, 2, . . .}). We assume that increasing counts go along with an increasing
“loss,” e.g., X may express the number of defects in a (low volume) manufacturing con-
text, the number of infections in disease monitoring, or the number of insolvencies in an
economic study, see also the data examples discussed in Sections 2.3 and 5. Therefore, the
risk measures to be presented in Section 2 focus on the upper tail of the count distribution.
Such risk measures for count r. v., and their estimation from independent and identically
distributed (i. i. d.) sample data, were investigated by Göb (2011). Homburg (2020) used
risk measures to evaluate the goodness of an approximating count distribution (among
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other such measures), and Weiß and Testik (2019) applied them to the discrete run length
distribution of a control chart as a tool for performance analysis.

In this article, we do not concentrate on a count r. v. as such, but rather on count
time series x1, . . . , xT stemming from some autocorrelated count process (Xt)t∈Z with Z =
{. . . ,−1, 0, 1, . . .} (the data-generating process, DGP), see Weiß (2018) for a comprehensive
survey. This should not be confused with Lévy processes, which are often used in financial
applications (Cont and Tankov 2004), where the jumps evolve in continuous time and can
be real valued. A well-known Lévy process is the Poisson point process, which counts
the number of points along the time axis. However, the jumps generated by a Poisson
point process do not occur at fixed points in time. Further, Lévy processes have stationary
and (mutually) independent increments. By contrast, the count processes considered here
evolve in discrete time, have a discrete range, consisting of natural numbers, and may
exhibit serial dependence between successive count observations. These attributes are
not captured by Lévy processes. Furthermore, the field of potential applications is not
limited to financial time series, but covers many further areas such as those mentioned
in the previous paragraph. To our knowledge, the study of correlated count processes in
relationship to risk measures is a unique contribution to the risk research literature.

The available time series data are used for model fitting, and the fitted model is taken
as the base for forecasting the risk at some future time T + h with forecast horizon h ∈ N.
Here, we distinguish between two scenarios. If we fit a count time series model to these
data, and if we compute the risk forecasts by explicitly accounting for the integer nature
of the counts, then we refer to them as coherent risk forecasts, picking up the terminology
in Freeland and McCabe (2004) (The use of “coherent” in the context of risk forecasts
should not be confused with its use within “coherent risk measures” in the sense of
Artzner et al. (1999). A coherent risk forecast in the sense of Freeland and McCabe (2004)
accounts for the integer nature of counts, but it need not rely on a coherent risk measure.).
One may certainly ask why one should do it any differently at all. In practice, however,
it is still common to ignore the integer nature of autocorrelated count time series and to
apply, e.g., the ordinary Gaussian autoregressive moving-average (ARMA) models (see,
for example, Rahardja 2020). Such an approach might be motivated by readily available
implementations for ARMA model fitting in nearly all statistical software packages, or it
might be caused by inadequate communication of count time series models. If fitting a
Gaussian time series model to the counts x1, . . . , xT , and if using this model to compute the
risk forecast for time T + h (computed in the Gaussian way), we refer to it as an approximate
risk forecast in the sequel. The relevant definitions and computations for both coherent
and approximate risk forecasts are described in Section 2. Although approximate risk
forecasting might appear attractive at a first glance, because of simplified computations and
readily available software implementations (e. g., Chan and Nadarajah 2019), it is not clear
whether the obtained risk forecasts are indeed competitive to the coherent risk forecasts or
they lead to a serious misjudgment of the actual risk. The studies of Homburg et al. (2019,
2020) about point and interval forecasting of count time series may serve as a warning that
approximate approaches might end up in rather misleading results. Therefore, besides a
detailed analysis of coherent risk forecasting for various count processes in the presence of
estimation uncertainty, we also investigate the performance of approximate risk forecasting
in comparison to the coherent forecasting approach.

The outline of this article is as follows. First, we propose and discuss the relevant risk
measures for counts, and we compare their properties to the case in which the same types
of risk measure are applied to real-valued r. v., see Section 2. These analyses are then used
to explain the findings in our comprehensive simulation study, where the performance of
both coherent and approximate risk forecasts under estimation uncertainty is investigated
for diverse types of count processes. The general design of our simulation study as well
as our approaches for performance evaluation are presented in Section 3, whereas the
obtained results are discussed in Section 4. We consider quite different kinds of count
processes, unbounded vs. bounded counts, various types of autoregressive DGPs as well
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as non-stationary count processes having seasonality and trend (a brief summary of the
considered models is provided by Appendix A). Our analyses in Section 4 are illustrated
by means of selected figures and tables, while the full simulation results are offered
as supplemental material at https://www.hsu-hh.de/mathstat/en/research/projects/
forecastingrisk (accessed on 26 March 2021). In Section 5, we apply the coherent risk
measures to count time series about transactions of structured products at financial markets.
We use appropriate types of time series bootstrapping in order to account for the apparent
estimation uncertainty, and we also study the possible effect of model misspecification.
Finally, we conclude our work in Section 6.

2. Risk Measures for Count Random Variables

In what follows, we first introduce five different types of risk measures for count r. v.,
see Section 2.1 as well as Table 1 for a brief summary. When applying these measures to
continuously distributed r. v., two of them agree with other measures, i.e., the number
of different risk measures reduces to three, see Table 2. Not only do the number and
computation of risk measures differ between the discrete count case and the continuous
Gaussian case, there are also considerable differences in their properties, which are dis-
cussed in Section 2.2. We conclude with a first data example in Section 2.3, which serves as
a motivation for the subsequent analyses.

Table 1. Computation of risk measures presented in Section 2.1 for a count random variable X, where the required PMFs
are provided by Tables A1 and A2 in the Appendix A.

VaRρ = min
{

x ∈ N0 | P(X ≤ x) ≥ ρ
}

, see (1), where P(X ≤ x) = ∑x
y=0 P(X = y).

TCEρ =
E[X]− E

[
X 1(X < VaRρ)

]
1− P(X < VaRρ)

, see (2), where E
[
X 1(X < VaRρ)

]
= ∑

VaRρ−1
x=0 x · P(X = x).

ESρ = TCEρ + (TCEρ −VaRρ)
ρ− P(X < VaRρ)

1− ρ
, see (4).

EVaRρ is computed as the solution to Equation

ρ
(
E[X]− e

)
− (1− 2ρ)E

[
(e− X)1(X ≤ e)

]
= 0, see (8),

where E
[
(e− X)1(X ≤ e)

]
= ∑

bec
x=0(e− x) P(X = x).

MVaRρ =

 0 if ρ < π0,
κ k + (1− κ) (k + 1) if ρ = κ πk + (1− κ)πk+1 for some 0 < κ ≤ 1,
n if ρ > πn,

see (9).

2.1. Definition of Risk Measures

Let X be a count r. v. referring to an undesirable event (the “loss,” e.g., the number of
defects, of infections, or of insolvencies). The relevant types of probability mass function
(PMF) are summarized in Tables A1 and A2 in the Appendix A. For a fixed risk level
ρ ∈ (0, 1), the most basic risk measure is the value at risk (VaRρ), which is defined to be the
lower ρth quantile of the distribution of X,

VaRρ = min
{

x ∈ N0 | P(X ≤ x) ≥ ρ
}

. (1)

VaRρ is interpreted as a threshold that is only exceeded in at most (1− ρ) · 100% of all
cases. Later, we compute the VaRρ (as well as any other risk measure considered here) from
the conditional distribution of XT+h, given the past xT , . . . , x1, but to keep our notation
simple, we now just write X. (We do not further stress the term “conditional” here to avoid
confusion with another risk measure, which is sometimes referred to as the “conditional
VaR” (see Göb 2011; Rockafellar and Uryasev 2002) and which corresponds to the tail
conditional expectation or expected shortfall, respectively, in our terminology, given that

https://www.hsu-hh.de/mathstat/en/research/projects/forecastingrisk
https://www.hsu-hh.de/mathstat/en/research/projects/forecastingrisk
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the cumulative distribution function (CDF) of X is continuous.) Note that since X is a count
r. v., also its VaR can only take non-negative integer values. This differs from the remaining
risk measures to be considered here, which can take arbitrary positive real numbers as their
outcome.

Table 2. Computation of risk measures presented in Section 2.1 for the case of a normally distributed
random variable Y ∼ N(µ, σ2), i.e., where (Y − µ)/σ follows the standard normal distribution
N(0, 1). Here, φ(x) denotes the density function of N(0, 1), and Φ(x) its CDF.

VaRρ = MVaRρ = µ + σ Φ−1(ρ), where Φ−1(ρ) provides the ρ-quantile of N(0, 1).

TCEρ = ESρ = µ + σ
φ
(
Φ−1(ρ)

)
1− ρ

.

EVaRρ is computed as the solution to Equation

ρ (µ− e) + (1− 2ρ) (µ− e)Φ
( e− µ

σ

)
− (1− 2ρ) σ φ

( e− µ

σ

)
= 0.

If X ≥ VaRρ happens, which is referred to as a shortfall, the actual loss will often
be larger than the threshold value VaRρ itself (i.e., X > VaRρ with probability > 0).
Therefore, more refined risk measures, obtained by averaging VaRs or exceedances thereof,
have been proposed in the literature to express the “typical loss” one has to prepare
for if an exceedance of the VaR occurs, see Chan and Nadarajah (2019) for a survey.
Artzner et al. (1999) propose to use the tail conditional expectation (TCEρ), which is defined
as the conditional mean loss in the case of reaching or exceeding the VaRρ. More precisely,

TCEρ = E
[
X | X ≥ VaRρ

]
=

E[X]− E
[
X 1(X < VaRρ)

]
1− P(X < VaRρ)

, (2)

where the indicator function 1(A) takes the value 1 (0) if A is true (false). The last expression
in (2) is used for computing the value of TCEρ, with E

[
Xk 1(X < VaRρ)

]
being equal to

the finite sum ∑
VaRρ−1
x=0 xk · P(X = x). Note that the event “X = VaRρ” is included in the

condition (2), although some authors use the condition “X > VaRρ” instead (Göb 2011).
For the discrete count r. v. considered here, this makes a difference. For bounded counts,
the condition “X ≥ VaRρ” is advantageous if VaRρ equals the upper bound n of the range
{0, . . . , n}. In addition, note that (2) implies that TCEρ ≥ VaRρ.

An alternative risk measure related to the VaRρ is the expected shortfall (ESρ), proposed
independently by Acerbi and Tasche (2002) and Rockafellar and Uryasev (2002), which is
defined by averaging VaRs as

ESρ =
1

1− ρ

∫ 1

ρ
VaRu du. (3)

As shown in Proposition 3.2 of Acerbi and Tasche (2002), the ESρ can be computed
from VaRρ and TCEρ as follows:

ESρ = TCEρ + (TCEρ −VaRρ)
ρ− P(X < VaRρ)

1− ρ
. (4)

This shows that ESρ ≥ TCEρ ≥ VaRρ. While P(X < VaRρ) < ρ by (1) for discrete
r. v., we have that P(X < VaRρ) = ρ for continuously distributed r. v.. So ESρ and TCEρ

necessarily coincide in the continuous case (also see Table 2). In the discrete case, it may
happen for bounded counts that VaRρ agrees with the upper bound n, in which case ESρ
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and TCEρ agree with n as well. Otherwise, we have the strict inequality ESρ > TCEρ >
VaRρ. Note that (4) can be rewritten as

TCEρ =
1− ρ

1− P(X < VaRρ)︸ ︷︷ ︸
≤1

ESρ +
(

1− 1− ρ

1− P(X < VaRρ)

)
VaRρ,

(5)

which shows that TCEρ is a weighted mean of ESρ and VaRρ. Later in Section 2.2,
Equation (5) shall be helpful for explaining some properties of TCEρ. The application
of the risk measures VaRρ, ESρ, and TCEρ to count r. v. was also considered by Göb (2011)
and Homburg (2020), but both using a modified definition of TCEρ compared to (2). The
integer-valued VaRρ was also investigated by Homburg et al. (2019) as a non-central point
forecast for count time series.

Recently, expectiles have also been considered as an another type of risk measure, see
Bellini and di Bernardino (2017) and the references therein. Expectiles were developed by
Newey and Powell (1987) as an alternative to quantiles. In analogy to the VaRρ according
to (1), we define the expectile-VaRρ (EVaRρ) as the ρ-expectile of X. The latter, in turn, is
defined to be the (unique) minimizer of the following type of asymmetric quadratic loss,
provided that the second-order moment of X exist:

EVaRρ = arg min
e

E
[
ρ (X− e)2 1(X > e) + (1− ρ) (e− X)2 1(X ≤ e)

]
. (6)

By contrast, the ρ-quantile (i.e., the VaRρ) minimizes E
[
ρ (X − q)1(X > q) + (1−

ρ) (q− X)1(X ≤ q)
]

in q (provided that E[X] exists). While VaRρ is integer-valued for
count r. v., the EVaRρ can take any positive real number. The EVaRρ is also uniquely
characterized as the solution to the following equation (commonly referred to as the
“first-order condition”):

ρ E
[
(X− e)1(X > e)

]
= (1− ρ)E

[
(e− X)1(X ≤ e)

]
. (7)

Equation (7) shows that the EVaRρ can be interpreted as that threshold value e where
the ratio of the mean exceedance to the mean shortfall, E

[
(X − e)1(X > e)

]/
E
[
(e −

X)1(X ≤ e)
]
, equals the odds ratio (1− ρ)/ρ. For computations, it is advantageous to

rewrite (7) as
ρ
(
E[X]− e

)
− (1− 2ρ)E

[
(e− X)1(X ≤ e)

]
= 0, (8)

where the truncated mean is computed as the finite sum E
[
(e− X)1(X ≤ e)

]
= ∑

bec
x=0(e−

x) P(X = x). Equation (8) also shows that the 0.5-expectile is just equal to the mean E[X]. A
critical comparison of all aforementioned risk measures is provided by Emmer et al. (2015).

Finally, let us return to the VaRρ defined by (1). For the discrete count r. v. considered
here, VaRρ behaves fundamentally different to the other considered risk measures: While
TCEρ, ESρ, and EVaRρ are real-valued in general, VaRρ takes values from the set of non-
negative integers. This does not only constitute an additional difficulty if working with a
Gaussian approximation (see Table 2), it also causes problems if estimating the VaRρ from
given data. For example, we have a degenerate asymptotic distribution for the sample VaRρ,
see Theorem 6 in Jentsch and Leucht (2016). For these reasons, we propose to consider also
the following modification of VaRρ, which we refer to as the mid-VaRρ (MVaRρ). It is defined
as the ρ-mid-quantile of X, a concept dating back to Parzen (1997) and further investigated
by Ma et al. (2011) and Jentsch and Leucht (2016). Let πk = P(X < k) + P(X = k)/2
(“mid-probability”) for k = 0, 1, . . ., and let n denote the upper limit of the range of X (with
n = ∞ for unbounded counts). Then, we have that

MVaRρ =


0 if ρ < π0,
κ k + (1− κ) (k + 1) if ρ = κ πk + (1− κ)πk+1 for some 0 < κ ≤ 1,
n if ρ > πn.

(9)
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The last case is only relevant for bounded counts, i.e., if n < ∞. By using linear interpolation
in (9), MVaRρ is positive and real-valued, and much more suitable for statistical inference
(Jentsch and Leucht 2016; Ma et al. 2011). For a continuously distributed r. v., we set
MVaRρ = VaRρ, in analogy to the equality ESρ = TCEρ. Summaries of the discussed risk
measures are provided by Tables 1 and 2.

Remark 1. We are well aware that many further risk measures have been proposed in the lit-
erature. For example, several risk measures are related to the three-parameter family proposed
by Stone (1973), taking the form E

[
(X − a)k 1(X ≥ b)

]
with k ≥ 0 and a, b ≥ 0 (for count

r. v.). In fact, also the numerator of the TCE in (2), E
[
X 1(X ≥ VaRρ)

]
, has to be mentioned

in this context, which is obtained by setting k = 1, a = 0, and b = VaRρ. Other examples
are the semi-deviations discussed by Ruszczyński (2010, p. 242) in the context of dynamic risk
measures, i.e., E

[
(X − µ)k 1(X ≥ µ)

]1/k. To keep the scope of the present article manageable,
we refrain from including further risk measures into our study than those five defined before.
But we point out that also these Stone measures are easily computed in analogy to (2), i.e., as
E
[
(X− a)k]− E

[
(X− a)k 1(X < b)

]
, where the last term only requires to compute a finite sum.

For the sake of a concise presentation, we also dispense with including additional cost consid-
erations, as it was done, for example, by Alwan and Weiß (2017). We may interpret the VaRρ as
assigning constant costs to the risk event X ≥ VaRρ, whereas the TCEρ assumes linearly increasing
costs. Power cost schemes could be achieved using adapting the aforementioned Stone approach.

2.2. Some Properties of Risk Measures for Counts

Let us have a first look at some properties of the five risk measures for counts from
Section 2.1 see Table 1), in contrast to their normal counterparts from Table 2. We start with
the normal case, as this is more familiar to most practitioners. The first graph in Figure 1
plots the risk measures for a normal distribution with mean µ and variance σ2 = µ (the
Poisson distribution discussed afterwards has the same equidispersion property), where
the risk level is given by ρ = 0.95. It can be seen that all risk measures are continuous
and strictly increasing functions in µ, with ES0.95 = TCE0.95 > VaR0.95 = MVaR0.95. For
the presented scenario, all these measures are also greater than EVaR0.95. Here and in the
remaining plots of Figure 1, we also recognize increasing spread between the different
measures for increasing µ, which is due to the variance being proportional to µ in all
scenarios.

normal Poisson negative binomial
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Figure 1. Different risk measures for distributions N(µ, µ), Poi(µ), and NB
(
µ/(I − 1), 1/I

)
with I = 2.4, respectively,

plotted against mean µ.

Next, we turn to the case of the Poisson (Poi) distribution with mean µ, Poi(µ), which
is the most common distribution for unbounded counts (see Table A1 in Appendix A for
computational details). As is well known, the shape of the Poi(µ) distribution approaches
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that of the normal distribution N(µ, µ) with increasing µ. So it is natural to expect that
also the risk measures computed for Poi(µ) are close to those for N(µ, µ). This, however, is
not true in general as can be seen from the second graph in Figure 1. First, we recognize
that ES0.95 > TCE0.95 in contrast to the normal case, and also VaR0.95 6= MVaR0.95 in those
cases where MVaR0.95 does not take an integer value (recall the discussion in Section 2.1).
Second, VaR0.95 is not continuous but a piecewise constant function in µ, taking only integer
outcomes, whereas the remaining measures are strictly increasing in the Poisson mean µ.
Third, the TCE0.95 behaves rather different from the normal case. It is only a piecewise
continuous function in µ, which can be explained by Equation (5): TCE0.95 is a weighted
mean of the continuous ES0.95 and the piecewise constant VaR0.95. In addition, the actual
values of TCE0.95 are often closer to those of VaR0.95 than of ES0.95, which is opposite to the
normal case with ES0.95 = TCE0.95 > VaR0.95. This happens if the weight 1−ρ

1−P(X<VaRρ)
in

(5) is much smaller than 1, i.e., if P(X < VaRρ) is much smaller than ρ. The reason for this
phenomenon is given by the rather low dispersion of the Poi distribution (equidispersion):
The upper tail of its PMF declines quickly towards 0, so we have rather large gaps between
the attainable tail probabilities. Finally, there are also a few analogies between the normal
and the Poi-case: ES0.95, MVaR0.95, and EVaR0.95 behave quite similarly at a first glance.
So, while there appears to be some chance that ES0.95, MVaR0.95, and EVaR0.95 relying on
a normal approximation might be close to their actual Poisson values, we cannot expect
that such an approximation works well for TCE0.95 and VaR0.95 (Homburg et al. (2019)
investigate discrete quantile forecasts and apply an additional discretization (ceiling) to the
approximate Gaussian quantiles. Nevertheless, the approximation quality turns out to be
very poor.).

In the third scenario shown in Figure 1, we consider counts stemming from a negative
binomial (NB) distribution with mean µ and dispersion index I = σ2/µ = 2.4, see Table A1.
So, while the Poi distribution is equidispersed (I = 1), the NB distribution exhibits overdis-
persion. This additional dispersion has the following consequences: We have a stronger
discrepancy between ES0.95, MVaR0.95, and EVaR0.95, and the measures TCE0.95 and VaR0.95
are now clearly separated. In fact, TCE0.95 is now more close to ES0.95 than to VaR0.95, so
these measures behave more similar to the normal case in this respect. This is explained
by (5) and by the additional probability mass in the NB’s upper tail, which implies that
P(X < VaRρ) is closer to ρ than in the Poi-case.

2.3. Data Example: Storm Surges in Norderney

At this point, let us look at a first real-world application. Storm surges have threatened
the German coasts since time immemorial, with increasing economic damage because
of an intensified use of the coastal areas, see Jensen and Müller-Navarra (2008) for a
comprehensive survey. The website “Storm Surge Monitor” at https://www.sturmflut-
monitor.de/index.php.en (accessed on 15 December 2020) provides information about
the temporal development of storm surges during the last decades at different locations
along the North and the Baltic Sea. As an illustrative example, let us analyze the last
hundred seasons of storm surges in Norderney (an island in the German Bight, North Sea),
where a season extends from July of the previous year to June of the current year. The
count time series x1, . . . , xT with T = 100 provides the numbers of storm surges for the
seasons 1921–2020, see the plot in Figure 2a. The corresponding sample autocorrelation
function (ACF) does not show significant deviations from 0, so it appears reasonable to
model the data as being i. i. d. Their sample mean equals µ̂ = 1.91, their sample dispersion
index Î ≈ 1.704. So we are concerned with a considerable degree of overdispersion such
that the NB distribution appears to be a plausible candidate model. The PMF P(X = x)
of the fitted NB(2.713, 0.587) distribution is compared to the sample PMF in Figure 2b,
showing a reasonable agreement. Thus, we shall model the storm surge counts as being
i. i. d. according to NB(2.713, 0.587).

https://www.sturmflut-monitor.de/index.php.en
https://www.sturmflut-monitor.de/index.php.en
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Figure 2. Plot of the storm surge counts (per season) in (a), their sample PMF (black) together with
an NB-fit (grey) in (b).

Since the potential for economic damages (loss) increases with an increasing number of
storm surges, we focus our risk analysis on the upper tail of the storm surges’ distribution.
For convenience, the risk level is again set at ρ = 0.95. We start by computing the five risk
measures for counts from Section 2.1 for the fitted NB-model (coherent risk forecasts). Here,
the VaR0.95 takes the value 5, i.e., in at most 5% of all seasons, we expect to observe more
than five storm surges. The MVaR0.95 can be understood as a refinement of the discrete
VaR0.95, leading to the value ≈ 5.533. If having a season with ≥5 storm surges, then we
actually expect TCE0.95 ≈ 6.025 storm surges on average according to the NB-fit, whereas
the ES0.95 leads to the even larger value ≈ 6.825. The EVaR0.95, in contrast, relying on
the concept of expectiles, leads to a clearly lower risk value, namely ≈4.444. These risk
assessments might be used for defining appropriate preparations and countermeasures in
practice. But here, they shall serve as the starting point for further statistical analyses.

First, we check what would have happened if we would have used a fitted normal dis-
tribution for computing the risk measures, recall Table 2. Then, VaR0.95 = MVaR0.95 ≈ 4.877,
i.e., these approximate risk forecasts would be lower than their coherent counterparts. The
same happens for TCE0.95 = ES0.95 ≈ 5.631 as well as for EVaR0.95 ≈ 3.967. So, using
the Gaussian approximation, the risk is always judged lower than if using the coherent
NB-model. For the considered application, such a risk underrating might lead to, e.g.,
insufficient capital reserves for dealing with the economic damages caused by the storm
surges. Given these discrepancies, the question arises whether risk predictions based on a
Gaussian approximation generally tend to underrate the risk, or whether we have found
only sporadic evidence in this data example. To answer this question, we present results
from a comprehensive simulation study later in Section 4.

Second, even if using the more “conservative” coherent risk forecasts, one has to
recall that these rely on a fitted model with T = 100 observations. The question arises to
what extent the apparent estimation uncertainty affects the computed risk forecasts. Let us
investigate this question with a bootstrap experiment. We generated 1000 i. i. d. samples
from the NB(2.713, 0.587) distribution (parametric bootstrap), fitted again a NB-model
to each of the bootstrap samples, and computed the five risk measures based on these
model fits. So for each risk measure, 1000 bootstrap replicates are available. Part (a) of
Figure 3 shows boxplots of the replicated risk forecasts, which exhibit a lot of dispersion.
Note that the boxplots of VaR and (slightly weakened) of TCE look degenerate because
of the discreteness pattern already discussed in Section 2.2. So for practice, it appears
to be advisable to account for the apparent estimation uncertainty before defining the
countermeasures. Since the risk measures express some kind of “worst-case” scenario,
a reasonable solution could be to compute an upper quantile from the bootstraped risk
forecasts and to use this quantile for decision making. The table in Figure 3b presents such
quantiles for the levels γ = 0.90, 0.95, 0.99 for illustration. The task of accounting for the
effect of estimation uncertainty on the coherent risk forecasts is further investigated in
Section 5 below.
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Figure 3. Boxplots of 1000 bootstrap replicates of VaR0.95, MVaR0.95, TCE0.95, ES0.95, and EVaR0.95 in
(a), their model-based forecasts (italic font) as well as their bootstrapped γ-quantile (Bootγ) in (b).

3. Simulation Study and Performance Evaluation

While the preliminary investigations of Section 2.2 provided some useful insights of
the theoretical properties of the different risk measures under certain scenarios, we now
turn to our main focus of this research, the performance of risk forecasting for count time
series under estimation uncertainty. For the considered type of count DGP (Xt), and for a
given time series x1, . . . , xT thereof, we fit either the actual count time series model to the
data (coherent modeling), or a corresponding Gaussian time series model (approximate
modeling), in analogy to Section 2.3. For the risk measure R of interest (one of the measures
discussed in Section 2) and for the forecast horizon h ∈ N, we compute

• the true risk RT+h at time T + h, given x1, . . . , xT , by using the DGP’s true model;
• the corresponding coherent risk forecast value R̂T+h,c by using the coherent model fit;
• and the approximate risk forecast value R̂T+h,a based on the approximate model fit.

Then, we look at the differences between the respective forecast and true risk value,
i.e., at

R̂T+h,c − RT+h and R̂T+h,a − RT+h, respectively.

The first of these differences, R̂T+h,c − RT+h, expresses the effect of estimation error
during coherent modeling, whereas R̂T+h,a−RT+h is the combined effect of both estimation
and approximation error. Generally, these differences should be close to zero to indicate a
reasonable forecast precision, but also the sign of the deviation is important: If R̂T+h,· −
RT+h < 0 (risk underrating), then the risk at time T + h is judged to be too low, which might
have severe consequences in practice. For example, if the counts Xt express the number
of infections by a severe disease and if the forecast value R̂T+h,· is used to determine the
capacity of the emergency room, then risk underrating may lead to the death of patients
because of insufficient medical care. More generally, risk underrating can lead to the capital
reserve being chosen too low, also see the discussion in Kerkhof et al. (2010) as well as the
storm surge example in Section 2.3. Risk overrating (i.e., R̂T+h,· − RT+h > 0), in contrast,
can be understood as a conservative risk forecast. For the disease example, it may cause
unnecessary costs (too much capacity of the emergency room) but does not endanger
human life. Since deviations are unavoidable if parameters are estimated, it is plausible
to get a balanced proportion of risk over- and underrating (50:50). Here, the frequency
of overrating (plus possibly exact matches) is just the counterfrequency to underrating,
i.e., it is sufficient to look at one of these frequencies. But in view of the above discussion
about possible consequences of risk under- and overrating, our primary focus is on risk
underrating here. Thus, both the actual extent of the deviations R̂T+h,· − RT+h as well as
the tendency to negative deviations (i.e., if R̂T+h,· − RT+h < 0 happens more often than
with frequency 50%) are important performance criteria.

In our simulation study to be presented in Section 4, we generated 1000 count time
series for each considered scenario, see Table 3. The model fitting was done by the method
of moments, using the moment formulae provided by Appendix A. For each time series,
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we computed all coherent and approximate risk forecasts (according to Table 2 in the
approximate case, and by plugging-in Table A2 into Table 1 in the coherent case) as well
as the corresponding deviations to the respective true risk values. For convenience, the
risk level was set to ρ = 0.95 and the forecast horizon to h = 1. The resulting deviations
are analyzed in various ways. As a visual tool, we compute lean types of boxplots for
each set of 1000 deviations. These boxplots show the median of the deviations as a black
dot, the quartiles are connected by a thick grey line, and the 10%- and 90%-quantiles by
a thin black line. Then, having fixed the remaining parameters, we plot these boxplots
against increasing values of the mean µ. The resulting graphs give insight into the absolute
extent of the deviations and they allow us to judge how frequently and how severely we
are concerned with a risk underrating.

Table 3. Scenarios for different DGPs of simulation study, with 1000 replications each.

Means µ ∈ {1, 1.075, . . . , 9.925, 10} for unbounded counts,
upper bounds n ∈ {10, . . . , 130} and probability π ∈ {0.15, 0.45} for bounded counts.

Dispersion ratios I ∈ {1.4, 2.4} if considering overdispersion.

Dependence parameter α in {0.33, 0.55, 0.8} (ACF at lag 1),
and α2 ∈ {0.25, 0.35, 0.45} as well as α1 = α (1− α2) for AR(2)-like models.

Sample sizes T ∈ {75, 250, 2500}.

These visual inspections are supported by tables (the full set of tables is presented in
the supplemental material) showing the following summarizing statistics:

• The relative frequency of risk underrating for each scenario, calculated as the sample
mean of 1(R̂T+h,· < RT+h), and

• the mean severity of risk underrating, calculated as the sample mean of (R̂T+h,· −
RT+h)1(R̂T+h,· < RT+h) divided by the mean of 1(R̂T+h,· < RT+h).

These statistics are calculated for fixed parameters α, I, T etc., recall Table 3, but across
all 121 different values of µ or n, respectively, and all 1000 replications, i.e., by averaging
across 121× 1000 deviation statistics.

4. Performance of Risk Forecasts for Count Processes

In this section, we present selected results from our simulation study regarding the
performance of coherent and approximate risk forecasting for count processes, while the
full set of tables with summarizing statistics is provided in the supplemental material. The
general design of our simulations and analyses are described in Section 3, the investigated
risk measures in Section 2, and the considered count time series models in Appendix A. The
full simulation results are available at https://www.hsu-hh.de/mathstat/en/research/
projects/forecastingrisk (accessed on 26 March 2021).

4.1. INAR(1) Count DGPs

The first type of DGP to be discussed follows the INAR(1) model (integer-valued
autoregressive, see Appendix A.1 for details), which is probably the most well-known
model for count time series. We consider both the equidispersed Poi-INAR(1) model
(having Poisson-distributed innovations) as well as the overdispersed NB- and ZIP-INAR(1)
models (having NB- and ZIP-distributed innovations, respectively), where ZIP abbreviates
the zero-inflated Poisson distribution. Thus, the INAR(1) models are parametrized by the
triple (µ, α, I), see Table 3. Note that for the ZIP model, overdispersion is caused by an
isolated point mass in zero, while the NB’s overdispersion is caused by a flattened PMF
compared to the Poi-case (also recall Figure 2b). It will be shown in this section that the
approximate risk forecasts perform considerably worse than their coherent counterparts,
and that additional overdispersion leads to a more or less disastrous performance.

https://www.hsu-hh.de/mathstat/en/research/projects/forecastingrisk
https://www.hsu-hh.de/mathstat/en/research/projects/forecastingrisk
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Figure 4 shows the lean type of boxplots described in Section 3 regarding the deviations
for the five risk measures of Section 2. Here, the INAR(1)-DGP is either equidispersed (Poi-
case, i.e., I = 1) or overdispersed with I = 2.4 (NB- and ZIP-case), and the risk forecasts
rely on a coherent model fit. Figure 5 is built up in the same way, but using a Gaussian
AR(1) approximation for risk forecasting. Figures 4 and 5 are limited to the case of medium
dependence (α = 0.55) and sample size T = 250, but further scenarios are covered by the
summarizing statistics in Tables 4 and 5 (the printed values for α = 0.55 and T = 250
correspond to the graphs in Figures 4 and 5), and by the supplemental material. Let us
start with the coherent risk forecasts in Figure 4. In contrast to the other risk measures
introduced in Section 2, the coherent VaR forecast is the only one being discrete-valued. As
a result, the boxplots of deviations either reduce to a single dot (so the large majority of
VaR forecasts exactly matches the true VaR), or the lines extend to ±1 (i.e., the true VaR
is missed by ±1); a similar pattern was observed for the VaR’s boxplot in Figure 3b. The
remaining risk measures are real-valued, so we will hardly observe an exact match. Instead,
it would be plausible to get a balanced proportion of risk over- and underrating (50:50).
The boxplots of the coherent ES, MVaR, and EVaR forecasts are indeed roughly symmetric
around 0, with ES showing more dispersion than MVaR and EVaR. The largest dispersion
is observed for the overdispersed NB-INAR(1) DGP, while the ZIP-INAR(1) DGP shows
clearly less dispersion though still more than in the equidispersed Poi-case. Finally, the
boxplots of TCE in Figure 4 show a conspicuous pattern. In the Poi-case, they nearly look
the same as for the VaR and differ notably from the ES boxplots, which agrees with our
findings in Sections 2.2 and 2.3. A similar pattern is observed in the ZIP case, which is
plausible as the ZIP’s upper tail is that of a Poi distribution. For the NB-INAR(1) DGP,
in contrast, the TCE’s boxplots of deviations are more similar to the ES than to the VaR
case, again being plausible in view of Section 2.2. Generally, due to the higher variation
among the TCE and ES values, these may produce risk forecasts deviating more from the
corresponding true risk values than EVaR and MVaR.

If we compare next Figure 4 to Figure 5, it becomes clear that risk forecasting based on
a Gaussian approximation might be very misleading. While in the Poi-case, the boxplots
vary roughly around a constant value (although this constant is negative for VaR, ES, MVaR,
and EVaR, i.e., we have a tendency to risk underrating), they show a severely non-constant
behavior (against µ) in both overdispersion scenarios (this effect is already apparent for
a more moderate extent of overdispersion such as I = 1.4). In the NB-case, we have a
strong risk underrating throughout (As discussed by Homburg et al. (2019, p. 13), the
normal distribution’s upper tail is too light compared to the NB-case, explaining the strong
tendency to risk underrating. It is clear that the underrating would even be intensified if
we would consider a superlinear cost scheme, recall Remark 1.). By contrast, the ZIP case
turns from underrating to overrating with increasing µ (these observations are in line with
the analysis of the ceiled VaR in Section 4.1 of Homburg et al. (2019)). This behaviour is
more extreme for TCE and ES than for the MVaR and EVaR. For VaR and TCE, we also
have an additional discreteness pattern.

Finally, let us look at the summarizing statistics in Tables 4 and 5, recall Section 3
for their definition. Generally, to save some space, we provide such tables solely in the
supplemental material. But since this is the first time where we refer to such tables, we
show the tables for I = 2.4 in the main manuscript for illustration. The discrete coherent
VaR forecasts have high frequencies of exact matches (especially in the Poi-case), going
along with the low frequencies of underrating in Table 4. If, however, an underrating
happens, it is at least −1 due to the integer nature of the coherent VaR forecast, explaining
the values ≤ −1 in Table 5. Because of this discreteness feature, it is difficult to directly
compare these values to the corresponding statistics of the real-valued approximate VaR
forecasts. But it is apparent from Table 4 that the Gaussian VaR forecasts underrate the true
VaR with high frequency in most cases.
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Figure 4. Boxplots of deviations for VaR0.95, TCE0.95, ES0.95, MVaR0.95, and EVaR0.95. One-step-ahead forecasts based on
coherent model fit for Poi-, ZIP-, and NB-INAR(1) DGP with α = 0.55 and sample size T = 250.

The remaining risk measures are real-valued. Their coherent forecasts usually show a
rather well-balanced proportion of risk over- and underrating (close to 50:50, see Table 4),
being quite similar for the different risk measures. Exceptions happen for strong depen-
dence (α = 0.8) and sample sizes T ≤ 250, then underratings are clearly less frequent than
50% in the Poi-case (conservative risk forecasting), whereas their frequency is increased in
the overdispersion scenarios. The underrating frequencies of the approximate risk forecasts
are usually much larger than those of their coherent counterparts (often ≥ 80%), with a few
exceptions for the TCE. The differences between coherent and Gaussian approximation
are, for most cases, made more profound with increasing sample size. Compared to the
coherent model, the approximate risk forecasts do not only lead to a more frequent but also
a more severe underrating, see Table 5, especially in the presence of overdispersion (and in
the ZIP case, also more pronounced with increasing autocorrelation). The mean severities
of the coherent TCE, ES, MVaR, and EVaR forecasts in Table 5 get considerably reduced for
increasing T, while this happens much more mildly for their approximate counterparts.



J. Risk Financial Manag. 2021, 14, 182 13 of 25

Po
i-

IN
A

R
(1

)
−

4
−

3
−

2
−

1
0

1
2

VaR0.95 TCE0.95 ES0.95 MVaR0.95 EVaR0.95

Z
IP

-I
N

A
R

(1
)

−
4

−
3

−
2

−
1

0
1

2

VaR0.95

I=2.4

TCE0.95

I=2.4

ES0.95

I=2.4

midVaR0.95

I=2.4

EVaR0.95

I=2.4

N
B-

IN
A

R
(1

)

2 4 6 8 10

−
4

−
3

−
2

−
1

0
1

2

VaR0.95

I=2.4

2 4 6 8 10

TCE0.95

I=2.4

2 4 6 8 10

ES0.95

I=2.4

2 4 6 8 10

midVaR0.95

I=2.4

2 4 6 8 10

EVaR0.95

I=2.4

µ

Figure 5. Boxplots of deviations for VaR0.95, TCE0.95, ES0.95, MVaR0.95, and EVaR0.95. One-step-ahead forecasts based on
Gaussian approximation for Poi-, ZIP-, and NB-INAR(1) DGP with α = 0.55 and sample size T = 250.

In summary, EVaR and MVaR appear to be less affected by estimation and approx-
imation error than TCE and ES. The boxplots show that the coherent risk forecasts are
generally close to the true risk forecast, and the estimation error creates a rather balanced
under- and overrating of the true risk. The performance of these measures is difficult to
compare to that of the VaR, because the VaR is the only discrete risk measure. But also
the TCE shows strong discreteness effects in the Poi- and ZIP-case. The Gaussian AR(1)
approximation leads to a much more frequent and severe underrating of the actual risk,
and it is not able to mimic the integer-valued VaR. In particular, additional overdispersion
leads to a severe deterioration of the approximation quality, with different patterns in the
NB- and the ZIP-case. Since the coherent VaR forecasts and, to some degree, also the TCE
forecasts are clearly affected by discreteness, a Gaussian approximation of these measures
has an inherent significant disadvantage. The coherent VaR and TCE forecasts also show a
rather different performance than the coherent ES, MVaR, and EVaR forecasts. Therefore,
we shall concentrate the following discussion on the latter three risk measures, while the
supplemental material provides full results on all risk measures.
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Table 4. Relative frequency of risk underrating for Poi-, ZIP, and NB-INAR(1) DGPs, coherent (“Coh”) vs. approximate
(“Gau”) forecasts, for different (α, T), I = 2.4 in case of overdispersion and forecast horizon h = 1, computed across all
simulation runs and all levels of µ.

Poi-INAR(1) DGP ZIP-INAR(1) DGP NB-INAR(1) DGP
α = 0.33 α = 0.55 α = 0.80 α = 0.33 α = 0.55 α = 0.80 α = 0.33 α = 0.55 α = 0.80

Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

VaR0.95

T = 75 0.171 0.631 0.142 0.587 0.076 0.485 0.269 0.572 0.293 0.708 0.383 0.850 0.388 0.797 0.397 0.775 0.365 0.674
T = 250 0.099 0.663 0.086 0.608 0.061 0.498 0.158 0.574 0.176 0.769 0.240 0.947 0.261 0.897 0.266 0.872 0.249 0.747
T = 2500 0.034 0.685 0.030 0.619 0.026 0.505 0.051 0.575 0.057 0.813 0.072 0.990 0.083 0.988 0.086 0.968 0.078 0.828

TCE0.95

T = 75 0.475 0.527 0.408 0.458 0.284 0.328 0.524 0.423 0.542 0.589 0.656 0.841 0.579 0.916 0.598 0.920 0.624 0.894
T = 250 0.482 0.525 0.443 0.435 0.373 0.299 0.513 0.388 0.527 0.604 0.600 0.936 0.548 0.987 0.567 0.988 0.603 0.970
T = 2500 0.495 0.526 0.480 0.418 0.461 0.281 0.503 0.368 0.509 0.604 0.534 0.985 0.513 1.000 0.524 1.000 0.541 0.992

ES0.95

T = 75 0.495 0.758 0.440 0.697 0.308 0.603 0.523 0.558 0.537 0.716 0.628 0.919 0.572 0.959 0.592 0.961 0.630 0.952
T = 250 0.497 0.861 0.464 0.779 0.388 0.682 0.514 0.549 0.522 0.768 0.580 0.987 0.541 0.998 0.557 0.998 0.591 0.997
T = 2500 0.499 0.964 0.489 0.863 0.466 0.763 0.504 0.533 0.506 0.801 0.525 1.000 0.511 1.000 0.518 1.000 0.533 1.000

MVaR0.95

T = 75 0.500 0.752 0.456 0.727 0.333 0.719 0.524 0.618 0.537 0.756 0.601 0.888 0.562 0.826 0.572 0.807 0.559 0.723
T = 250 0.499 0.854 0.474 0.820 0.404 0.829 0.515 0.640 0.523 0.837 0.565 0.978 0.534 0.939 0.547 0.919 0.551 0.826
T = 2500 0.500 0.962 0.492 0.910 0.470 0.928 0.505 0.639 0.505 0.900 0.522 0.997 0.509 1.000 0.514 0.999 0.516 0.931

EVaR0.95

T = 75 0.501 0.661 0.467 0.626 0.362 0.556 0.518 0.580 0.527 0.700 0.587 0.847 0.557 0.841 0.572 0.846 0.599 0.836
T = 250 0.500 0.748 0.480 0.690 0.420 0.610 0.512 0.602 0.516 0.782 0.555 0.962 0.532 0.951 0.545 0.955 0.573 0.952
T = 2500 0.500 0.891 0.494 0.788 0.477 0.682 0.504 0.597 0.502 0.862 0.518 1.000 0.509 1.000 0.514 1.000 0.526 1.000

Table 5. Mean severity of risk underrating for Poi-, ZIP, and NB-INAR(1) DGPs, coherent (“Coh”) vs. approximate (“Gau”)
forecasts, for different (α, T), I = 2.4 in case of overdispersion and forecast horizon h = 1, computed across all simulation
runs and all levels of µ.

Poi-INAR(1) DGP ZIP-INAR(1) DGP NB-INAR(1) DGP
α = 0.33 α = 0.55 α = 0.80 α = 0.33 α = 0.55 α = 0.80 α = 0.33 α = 0.55 α = 0.80

Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau Coh Gau

VaR0.95

T = 75 −1.034 −0.582 −1.020 −0.538 −1.005 −0.424 −1.133 −0.777 −1.148 −0.926 −1.244 −1.066 −1.384 −1.283 −1.365 −1.240 −1.247 −0.985
T = 250 −1.002 −0.444 −1.001 −0.416 −1.000 −0.332 −1.016 −0.599 −1.017 −0.734 −1.068 −0.915 −1.084 −0.984 −1.074 −0.939 −1.042 −0.737
T = 2500 −1.000 −0.378 −1.000 −0.357 −1.000 −0.292 −1.000 −0.520 −1.000 −0.641 −1.004 −0.865 −1.000 −0.844 −1.000 −0.787 −1.000 −0.578

TCE0.95

T = 75 −0.402 −0.553 −0.386 −0.499 −0.304 −0.371 −0.622 −0.776 −0.681 −0.948 −0.934 −1.216 −1.339 −1.959 −1.427 −2.003 −1.431 −1.773
T = 250 −0.224 −0.384 −0.219 −0.352 −0.190 −0.256 −0.336 −0.607 −0.376 −0.750 −0.555 −1.043 −0.757 −1.721 −0.810 −1.777 −0.868 −1.597
T = 2500 −0.074 −0.294 −0.071 −0.272 −0.067 −0.195 −0.109 −0.542 −0.123 −0.663 −0.178 −0.979 −0.242 −1.674 −0.266 −1.731 −0.299 −1.539

ES0.95

T = 75 −0.381 −0.676 −0.347 −0.597 −0.289 −0.426 −0.619 −0.899 −0.676 −1.100 −0.894 −1.443 −1.349 −2.317 −1.433 −2.371 −1.427 −2.150
T = 250 −0.212 −0.506 −0.203 −0.437 −0.190 −0.295 −0.335 −0.726 −0.369 −0.899 −0.521 −1.330 −0.755 −2.157 −0.804 −2.222 −0.861 −2.052
T = 2500 −0.068 −0.418 −0.067 −0.350 −0.070 −0.226 −0.105 −0.663 −0.116 −0.801 −0.167 −1.315 −0.239 −2.134 −0.256 −2.197 −0.272 −2.029

MVaR0.95

T = 75 −0.350 −0.589 −0.307 −0.547 −0.229 −0.449 −0.576 −0.794 −0.614 −0.941 −0.738 −1.090 −0.945 −1.301 −0.925 −1.254 −0.772 −0.995
T = 250 −0.193 −0.436 −0.177 −0.405 −0.146 −0.342 −0.312 −0.609 −0.332 −0.746 −0.426 −0.962 −0.525 −1.006 −0.510 −0.953 −0.452 −0.738
T = 2500 −0.061 −0.355 −0.058 −0.331 −0.054 −0.289 −0.098 −0.531 −0.104 −0.650 −0.134 −0.942 −0.165 −0.911 −0.161 −0.836 −0.145 −0.587

EVaR0.95

T = 75 −0.323 −0.441 −0.284 −0.402 −0.202 −0.309 −0.505 −0.617 −0.514 −0.713 −0.561 −0.807 −0.809 −1.100 −0.816 −1.096 −0.745 −0.962
T = 250 −0.178 −0.292 −0.160 −0.264 −0.124 −0.193 −0.275 −0.429 −0.277 −0.520 −0.311 −0.662 −0.449 −0.866 −0.451 −0.870 −0.437 −0.778
T = 2500 −0.057 −0.200 −0.052 −0.181 −0.044 −0.128 −0.086 −0.340 −0.086 −0.416 −0.096 −0.630 −0.141 −0.800 −0.143 −0.806 −0.138 −0.717

4.2. Further Autoregressive Count DGPs

In this section, we do not further stress the overdispersion phenomena considered
in Section 4.1, but take a closer look at the autocorrelation structure. It shall become clear
that for DGPs with higher-order dependence, the discrepancies between the coherent and
approximate forecasts’ performance are even intensified compared to the INAR(1) case.
Note that the INAR(1) model of Section 4.1 is not the only AR-type model for unbounded
counts, also see Appendix A.1. Thus, it is important to check to what extent the performance
results for coherent and approximate risk forecasting can be transferred to other types
of AR-like count DGPs. More precisely, we consider higher-order Poi-INAR models,
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alternative AR-like models from the Poi-INARCH family, and non-stationary extensions
(with trend or seasonality) of the ll-Poi-AR(1) model, see Appendix A.1 for details.

We start by extending the Poi-INAR(1) model to a second-order model, the Poi-
INAR(2) model, to see whether an increased AR-order has an effect on the risk measures’
performance. With exceptions for high autocorrelation and small sample sizes (α = 0.8,
T = 75), where the Poi-INAR(2) model’s frequency for risk underrating is more close
to 0.5 than in the first-order case (see Tables S5, S7 and S9 in the supplement, first block of
columns), there is no noticeable difference in the performance of the coherent risk measures.
In contrast, the approximate risk forecasts are clearly affected by the additional dependence
parameter. We notice a further deterioration in performance, especially for a moderate to
strong autocorrelation (α ≥ 0.55) and for the mean severity of underrating (see Tables S6, S8
and S10). More generally, for given µ value, the variation among the approximate forecast
values clearly increases for the second-order INAR model, as illustrated by Figure 6 (second
row compared to first row of boxplots).

The INARCH family constitutes a common alternative to the INAR family. The
corresponding summarizing statistics are provided in Tables S5–S10 of the supplemental
material (second and third block of columns), while boxplots of deviations are presented in
the third and fourth row of Figure 6. For the coherent risk forecasts, the variation among
the risk forecasts and, along with this, the severity of risk underrating slightly increase for
the Poi-INARCH DGPs (somewhat stronger for the second-order than for the first-order
case). At the same time, the frequencies of risk under- and overrating are rather balanced
for both INARCH models. In contrast to their coherent counterparts, the approximate risk
forecasts of the INARCH models show a strong increase in variation and, thus, also in
the severity of risk underrating. We recognize a more heterogeneous pattern of variation
among the deviations for the Poi-INARCH(1) DGP (both coherent and approximate) in the
third row of Figure 6. As an interim conclusion, the findings of Section 4.1, regarding a
much more frequent and severe risk underrating if using a Gaussian approximation, also
hold true for the other types of stationary and AR-like count DGPs.

Finally, we investigate the performance of risk forecasting for another AR-like regres-
sion model, the ll-Poi-AR(1) model, but now in the additional presence of deterministic
trend or seasonality, i.e., we are concerned with non-stationary count DGPs. For approxima-
tion, we use a Gaussian regression model with ARMA innovations, including a linear trend
and harmonic oscillation like the ll-Poi-AR(1) DGP (an approximation with a SARIMA
model having stochastic trend or seasonality did considerably worse). For different param-
eter values of γ0 (intercept), γ1 (trend), (γ2, γ3) (seasonality), α, and T, we simulated 1000
time series and computed the corresponding risk forecasts, see Tables S11 and S12 in the
supplement for summarizing statistics. Despite having additional trend or seasonality, the
performance of the coherent risk forecasts is not considerably worse if compared to the
stationary DGPs: Although trend and seasonality (going along with additional parameters
to be estimated) as well as an increase of the intercept cause more variation among the
coherent forecast values, the underrating frequencies are rather balanced throughout (like
for the INARCH models). The approximate risk forecasts, in contrast, underrate the true
risk far more frequently, with ES and MVaR performing worst in this matter. While risk
underrating happens more often and more severely with increasing trend γ1, an increasing
seasonality (γ2, γ3) leads to more severe but less frequent underrating. Altogether, the
mean severity of risk underrating is 2–6 times higher for the approximate risk forecasts
than for the coherent ones.
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Figure 6. Boxplots of deviations for ES0.95, MVaR0.95, and EVaR0.95. One-step-ahead forecasts based on the coherent models
of the Poisson INAR(1), INAR(2), INARCH(1) and INARCH(2) DGP (left column) and their Gaussian approximations
(right column) with α = 0.55, α2 = 0.45 in case of of the second-order models, and sample size T = 250.

In summary, for all the alternative types of AR-like count DGP discussed in this section,
the approximate risk forecasts perform considerably worse than the coherent ones, with
even larger discrepancy than for the Poi-INAR(1) DGP of Section 4.1. While an increasing
sample size T leads to more balanced (and less severe) deviations in the coherent case, such
an effect cannot be generally observed if using a Gaussian approximation: In case of the
Poi-INARCH models, for example, the underrating frequencies of the approximate risk
forecasts often increase far beyond 0.5 with increasing T. As already observed in Section 4.1,
the ES is most affected by the approximation error, while the approximate EVaR generally
exhibits the lowest variation, though still clearly more than in the coherent case.

4.3. DGPs for Bounded Counts

In the previous sections, we discussed DGPs of unbounded counts, i.e., where the
range consists of the full set of non-negative integers, N0. In this section, we turn our
attention to bounded counts having the range {0, . . . , n}, where the upper bound n ∈ N
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cannot be exceeded. As a consequence, also the corresponding risk measures can never
exceed the upper bound n ∈ N. We consider two types of DGP for bounded counts: the
thinning-based BinAR(1) model as well as the regression-type BinARCH(1) model, both
exhibiting an AR(1)-like ACF (see Appendix A.1 for details). Besides the illustrative graphs
with boxplots shown in Figure 7 below, the full set of summarizing statistics is provided by
Tables S13–S16 in the supplemental material.
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Figure 7. Boxplots of deviations for ES0.95, MVaR0.95, and EVaR0.95. One-step-ahead forecasts based on the coherent models
of the BinAR(1) and BinARCH(1) DGP (left column) and their Gaussian approximations (right column) with α = 0.55,
π ∈ {0.15, 0.45}, and sample size T = 250.

Let us start with the BinAR(1) DGP (see the first block of columns in Tables S13–S16).
For a low “success probability” (π = 0.15, see Tables S13–S14), the coherent and approxi-
mate risk forecasts perform similar to the Poi-INAR(1) case, which is not surprising in view
of the Poisson limit theorem. For π = 0.45 (Tables S15–S16), in contrast, the BinAR(1) pro-
cess has a nearly symmetric and bell-shaped marginal distribution. While the proportion of
underrating for the coherent risk forecasts is not affected by the rise in π, the underrating
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becomes more severe. This differs from the case of approximate risk forecasts, where
the deviations of ES and EVaR from their true risk values become more balanced (and
less severe for large T) if π = 0.45, which might be explained by the de Moivre–Laplace
theorem. It can also be recognized from the third row in Figure 7 that for π = 0.45, there
is not much difference between the approximate and the coherent forecast approach. For
π = 0.15 (first row), in contrast, the approximate forecasts’ boxplots look clearly misplaced,
with a particularly severe extent of underrating for the MVaR with small n.

Next, we turn to the BinARCH(1) model (second block of columns in Tables S13–S16).
In analogy to the Poi-INARCH DGPs of Section 4.2, the coherent risk forecasts of the
BinARCH(1) DGP show very balanced proportions of risk over- and underrating for all
parametrizations (more balanced than in the BinAR(1) case). The approximate forecasts of
the BinARCH(1) DGP, in contrast, behave quite similar to the BinAR(1) case: they tend to
frequently underrate the true risk, especially for increasing T, and MVaR performs much
worse than ES and EVaR. The mean severities are even considerably worse than in the
BinAR(1) case (especially for π = 0.15), which can also be seen from the second and fourth
row in Figure 7, showing much more variation among the approximate risk forecasts than
in any other scenario of Figure 7. Altogether, we conclude that for both bounded-counts
DGPs, the coherent risk forecasts always outperform the approximate ones, although the
difference is less pronounced in the nearly symmetric situation with π = 0.45.

5. Application: Risk Forecasts for Transaction Counts Data

Risk analysis plays an important role at the financial markets. Measuring the value at
risk or calculating the expected risk-adjusted rate of return is a typical example, but there
are many other financial applications (see, e.g., Hull 2018; McNeil et al. 2015). Several
financial examples have also been reported in articles on count time series analysis, such as
Brännäs and Quoreshi (2010), who analyze time series of intra-day counts of transactions on
the Stockholm stock exchange, or Jung and Tremayne (2011), who consider daily counts of
so-called “iceberg orders” concerning shares being traded on the Frankfurt stock exchange.
Our data examples to be discussed below are provided by the Deutsche Börse Group, which
is an international exchange organisation, a market infrastructure provider, and the opera-
tor of the Frankfurt stock exchange. As part of its services, Deutsche Börse offers real-time
risk alerts to inform traders “about unusual price and order book behaviour,” which are
“triggered, when certain thresholds for changes in traded prices, bid-ask spreads and order
book resilience are exceeded. Thresholds are calibrated on a daily basis so that messages
are only generated when exceptional order book situations could occur.” (Retrieved 15
December 2020, from https://www.deutsche-boerse.com/dbg-en/media/press-releases/
Deutsche-B-rse-supports-traders-with-real-time-risk-alerts-for-most-liquid-Eurex-futures-
683428).

Inspired by such risk analyses, we applied our approaches for coherent risk forecasting
to time series of daily counts of transactions (number of trades by settlement date) of
structured products from on-market (e.g., Xetra) and off-market trading (over the counter,
OTC), as offered by the Cascade-Turnoverdata of Deutsche Börse (Retrieved 15 December
2020, from https://datashop.deutsche-boerse.com/reference-data). The different types
of one-step-ahead risk forecasts (again, we use the risk level ρ = 0.95 for convenience)
provide threshold values on a daily basis, which refer to the maximal trading activity in
95% of all cases. For illustration, let us consider the two example time series shown in
Figure 8. Both refer to factor long certificates with leverage, i.e., the daily return of the
underlying asset is multiplied by a constant positive factor (a “bet on rising prices” in a
sense); see Anic (2020) for detailed background on leverage certificates. The first data set
comprises the T1 = 381 counts for the trading days between February 2017 and July 2018
for model fitting, see Figure 8a, whereas the 23 counts from August 2018 are later used for
out-of-sample forecasting. The second data set includes one additional year of data, i.e.,
the T2 = 636 counts from February 2017 to July 2019 from Figure 8c are used for model
fitting, and the 22 counts from August 2019 for forecasting.

https://www.deutsche-boerse.com/dbg-en/media/press-releases/Deutsche-B-rse-supports-traders-with-real-time-risk-alerts-for-most-liquid-Eurex-futures-683428
https://www.deutsche-boerse.com/dbg-en/media/press-releases/Deutsche-B-rse-supports-traders-with-real-time-risk-alerts-for-most-liquid-Eurex-futures-683428
https://www.deutsche-boerse.com/dbg-en/media/press-releases/Deutsche-B-rse-supports-traders-with-real-time-risk-alerts-for-most-liquid-Eurex-futures-683428
https://datashop.deutsche-boerse.com/reference-data
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Figure 8. Two data sets of transaction counts: their time series plots in (a) and (c), respectively, and their sample PACFs in
(b) and (d), respectively.

The two data sets do not only differ in their sizes, but also in their properties. The
second data set consists of much lower counts than the first one (samples means µ̂1 ≈ 1.493
vs. µ̂2 ≈ 0.719), and also exhibits less dispersion (samples dispersion indexes Î1 ≈ 1.518 vs.
Î2 ≈ 0.913). And while the first data set has a clearly AR(1)-like partial ACF (PACF), the
second PACF indicates that an AR(2)-like model might be a better solution, see Figure 8b,d.
Using the dispersion test in (2.14) of Weiß (2018) with level 5%, we conclude on significant
overdispersion for data set 1, but we do not observe a significant violation of equidispersion
for data set 2. Altogether, an NB-INAR(1) model appears to be a reasonable choice for
data set 1, and Poi-INAR(1) or Poi-INAR(2) for data set 2. To check for possible effects of
model misspecification on risk forecasting, we try out both candidate models for data set 2,
and we additionally consider a Poi-INAR(1) model also for data set 1.

In Figure 9, we applied both types of candidate models to compute the one-step-
ahead risk forecasts (plotted as lines) for the respective hold-out sample (shown by dots).
Especially for data set 1, a rather strong effect of model choice can be recognized. This is
plausible as the models differ in their dispersion behavior, and as the risk measures are
computed from the upper tail of the forecast distribution. For data set 2, the models differ
in the length of their memory. It can be seen that the risk forecasts of the second-order
model sometimes decay later than their first-order counterparts. Certainly, we do not
know the true DGP behind the data, but the aforementioned sample properties indicate
that for data set 1 (2), the NB-INAR(1) (Poi-INAR(2)) model should be preferred. The
corresponding risk forecasts are represented by the darker curves in Figure 9.

Before using these risk forecasts for decision making, it would be wise to account for
estimation uncertainty; recall our analyses of Section 4. For this purpose, after having fitted
the respective INAR model to the data sets, a corresponding parametric INAR bootstrap
(see Jentsch and Weiß 2019) with B = 104 replications is done to account for the estimation
uncertainty. That is, for each bootstrap replication, the model parameters are estimated
anew and used to compute the risk forecasts. Thus, each point forecast value in Figure 9 is
accompanied by B bootstrap replicates. These can be used, for example, to approximate
the quantiles of the forecast’s sample distribution. In analogy to the lean boxplots used in
Section 4, we computed the 10%-, 25%-, 50%-, 75%-, and 90%-quantiles from the bootstrap
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replicates and plotted them as lines in Figure 10. The width of these quantile bands
expresses the strength of estimation uncertainty, which is more pronounced for data set 1
where only T1 = 381 instead of T2 = 636 counts were available for model fitting. If,
for example, the risk measures are applied as thresholds for generating risk alerts, then
especially the observations at times t = 12, 17 for data set 2 appear to be exceptionally large,
see Figure 10. This could give rise to inform traders about an unusual order book behavior.
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Figure 9. Two data sets of transaction counts: out-of-sample risk forecasts for different candidate models.
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Figure 10. Two data sets of transaction counts: bootstrapped quantiles (“Qγ” refers to γ-quantile) of out-of-sample risk
forecasts for given model.

6. Conclusions

We considered five types of risk measures for evaluating a possible prospective “loss”
related to a count process. Besides the widely used VaR, TCE, and ES, the more recent
EVaR based on expectiles was also included in our investigations, as well as the newly
proposed MVaR based on mid-quantiles. The real-valued ES, EVaR, and MVaR are less
affected by discreteness, and are thus advantageous for estimation and forecasting. For our
comprehensive simulation study, we considered a broad variety of count DGPs, covering
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the most important features of count time series as they may occur in real applications. It
turned out that risk forecasting relying on a Gaussian approximation to the count DGP
causes rather misleading risk assessments, with a strong tendency to risk underrating. By
contrast, while coherent risk forecasting suffers from estimation uncertainty, too, and is
also affected by count phenomena such as overdispersion or zero inflation, we observed a
rather balanced risk performance throughout. In our real applications, we accounted for
the effect of estimation uncertainty by using parametric bootstrap approaches for count
time series.

Supplementary Materials: The following are available online at https://www.hsu-hh.de/mathstat/
en/research/projects/forecastingrisk (accessed on 26 March 2021), S1: Figures with Boxplots for
Section 4; S2: Tables with Summarizing Statistics for Section 4.
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Appendix A. Summary of Considered Count DGPs

In what follows, we summarize those models that were used as a DGP in our numerical
and simulation studies; see Table 3 for the considered parametrizations. These models
belong either to the group of thinning-based models or the group of regression models.
The respective definition and relevant properties are briefly listed below. More details
and references on these and further count time series models can be found in the book by
Weiß (2018).

Table A1. Relevant count distributions and their PMF.

Bin(n, π) with n ∈ N, π ∈ (0, 1) P(X = x) =

(
n
x

)
· πx · (1− π)n−x for 0 ≤ x ≤ n

Poi(λ) with λ > 0 P(X = x) = e−λ λx

x!
for x ∈ N0

NB(n, π) with n ∈ (0, ∞), π ∈ (0, 1) P(X = x) =

(
n + x− 1

x

)
· (1− π)x · πn for x ∈ N0

ZIP(λ, ω) with λ > 0, ω ∈ [0, 1) P(X = x) = 1(x = 0) ·ω + (1−ω) e−λ λx

x!
for x ∈ N0

Appendix A.1. Thinning-Based Models

The thinning-based models have AR-like DGPs, where the AR model’s multiplications
are substituted by the integer-valued random operation of binomial (Bin) thinning: For
α ∈ (0, 1) and a count r. v. X, it is defined by requiring α ◦ X

∣∣X ∼ Bin(X, α), see Table A1.
The following models assume that all thinnings are executed independently of each other,
of the i. i. d. count innovations (εt), and of past observations.

INAR(1) model: Model recursion Xt = α ◦ Xt−1 + εt with µε = E[εt] and σ2
ε := V[εt].

Mean µ = E[Xt], variance σ2 = V[Xt], and ACF r(k) = Corr[Xt, Xt−k], respectively,
are given by

µ =
µε

1− α
, I =

σ2

µ
=

σ2
ε

µε
+ α

1 + α
, and r(k) = αk.

The model constitutes a Markov chain with transition probabilities p(x|xT) = p(XT+1 =
x|XT = xT) given by

p(x|xT) = ∑
min{x,xT}
s=0 (xT

s )α
s(1− α)xT−s · P(εt = x− s).

It is referred to as Poi-, NB-, or ZIP-INAR(1) model, respectively, if εt follows a
Poisson, negative binomial, or zero-inflated Poisson distribution (see Table A1).

INAR(2) model: Model recursion Xt = α1 ◦t Xt−1 + α2 ◦t Xt−2 + εt with α1 + α2 < 1,
constitutes a second-order Markov process with transition probabilities

p(x|xT , xT−1) = ∑
min {x,xT}
j1=0 ∑

min {x−j1,xT−1}
j2=0

(xT
j1
) α

j1
1 (1− α1)

xT−j1 · (xT−1
j2

) α
j2
2 (1− α2)

xT−1−j2 · P(εt = x− j1 − j2).

The ACF satisfies r(1) = α1/(1− α2), and r(k) = α1 r(k− 1) + α2 r(k− 2) for k ≥ 2.

BinAR(1) model for bounded range {0, . . . , n} with some n ∈ N.
Let π ∈ (0, 1) and α ∈

(
max{− π

1−π ,− 1−π
π }, 1

)
and define β := π(1 − α) and

γ := β + α. The BinAR(1) model recursion is

Xt = γ ◦ Xt−1 + β ◦ (n− Xt−1) with X0 ∼ Bin(n, π).
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It constitutes a Markov chain with marginal distribution Bin(n, π), and with ACF
r(k) = αk, and with transition probabilities

p(x|xT) =
min{x,xT}

∑
m=max{0,x+xT−n}

(xT
m )(n−xT

x−m ) γm(1− γ)xT−m βx−m(1− β)n−xT+m−x.

Table A2. Forecast distributions p(x|xT , xT−1) = p(XT+1 = x|XT = xT , XT−1 = xT−1, . . .) of
relevant count time series models.

INAR(1) model p(x|xT) = ∑
min{x,xT}
s=0 (xT

s )α
s(1− α)xT−s · P(εt = x− s) for x ∈ N0.

INAR(2) model
p(x|xT , xT−1) = ∑

min {x,xT}
j1=0 ∑

min {x−j1,xT−1}
j2=0

(xT
j1
) α

j1
1 (1− α1)

xT−j1 · (xT−1
j2

) α
j2
2 (1− α2)

xT−1−j2 · P(εt = x− j1 − j2)
for x ∈ N0.

BinAR(1) model p(x|xT) =
min{x,xT}

∑
m=max{0,x+xT−n}

(xT
m )(n−xT

x−m ) γm(1− γ)xT−m βx−m(1− β)n−xT+m−x for 0 ≤ x ≤ n.

Poi-regression p(x|mT+1) = exp(−mT+1)
mx

T+1
x! for x ∈ N0, where

mT+1 = E[XT+1|xT , xT−1, . . .] satisfies
• mT+1 = β + α xT for Poi-INARCH(1) model;
• mT+1 = β + α1 xT + α2 xT−1 for Poi-INARCH(2) model;
• ln mT+1 = ln µT+1 + α1

(
ln (xT + 1)− ln (µT + 1)

)
for ll-Poi-AR(1) model,

with ln µt = γ0 + γ1 t + γ2 cos(ωt) + γ3 sin(ωt).

Bin-regression p(x|pT+1) = (n
x) px

T+1
(
1− pT+1

)n−x for 0 ≤ x ≤ n, where
pT+1 = 1

n E[XT+1|xT , xT−1, . . .] satisfies PT+1 = β + α xT
n for BinARCH(1) model.

Appendix A.2. Regression Models

We consider the AR-type INARCH models (integer-valued autoregressive conditional
heteroskedastic) as well as the log-linear Poisson AR(1) model (ll-Poi-AR(1) model).

Poi-INARCH(1) model: Model recursion Xt|Xt−1, . . . ∼ Poi(β + α Xt−1)
with β > 0 and α ∈ (0, 1). Mean, variance, and ACF, respectively, are given by

µ =
β

1− α
, σ2 =

µ

1− α2 , and r(k) = αk.

This model constitutes a Markov chain with transition probabilities

p(x|xT) = exp(−β− α xT)
(β + α xT)

x

x!
.

Poi-INARCH(2) model: Model recursion Xt|Xt−1, . . . ∼ Poi(β + α1 Xt−1 + α2 Xt−2)
with α1 + α2 < 1 and ACF like for the INAR(2) model. The transition probabilities
are

p(x|xT , xT−1) = exp(−β− α1 xT − α2 xT−1)
(β + α1 xT + α2 xT−1)

x

x!
.

BinARCH(1) model: Model recursion Xt|Xt−1, . . . ∼ Bin
(

n, β + α
Xt−1

n

)
with β, β + α ∈ (0, 1) and transition probabilities

p(x|xT) =

(
n
x

) (
β + α xT

n
)x (1− β− α xT

n
)n−x.
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ll-Poi-AR(1) model with linear trend and harmonic oscillation (period p, angular fre-
quency ω = 2π/p). This leads to a model recursion Xt|Xt−1, . . . ∼ Poi(Mt) with

ln Mt =

=: ln µt︷ ︸︸ ︷
γ0 + γ1 t + γ2 cos(ωt) + γ3 sin(ωt) + α1

(
ln (Xt−1 + 1)− ln (µt−1 + 1)

)
.

Additional dispersion can be incorporated by using a conditional NB distribution:
The ll-NB-AR(1) model relies on the recursion Xt|Xt−1, . . . ∼ NB

(
1, n

Mt+n

)
, where

the parameter n controls the dispersion level.
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