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SUMMARY

Agrobacterium tumefaciens is the causal agent of crown gall dis-

ease in a wide range of plants via a unique interkingdom DNA

transfer from bacterial cells into the plant genome. Agrobacte-

rium tumefaciens is capable of transferring its T-DNA into differ-

ent plant parts at different developmental stages for transient

and stable transformation. However, the plant genes and mecha-

nisms involved in these transformation processes are not well

understood. We used Arabidopsis thaliana Col-0 seedlings to

reveal the gene expression profiles at early time points during

Agrobacterium infection. Common and differentially expressed

genes were found in shoots and roots. A gene ontology analysis

showed that the glucosinolate (GS) biosynthesis pathway was an

enriched common response. Strikingly, several genes involved in

indole glucosinolate (iGS) modification and the camalexin biosyn-

thesis pathway were up-regulated, whereas genes in aliphatic

glucosinolate (aGS) biosynthesis were generally down-regulated,

on Agrobacterium infection. Thus, we evaluated the impacts of

GSs and camalexin during different stages of Agrobacterium-

mediated transformation combining Arabidopsis mutant studies,

metabolite profiling and exogenous applications of various GS

hydrolysis products or camalexin. The results suggest that the

iGS hydrolysis pathway plays an inhibitory role on transformation

efficiency in Arabidopsis seedlings at the early infection stage.

Later in the Agrobacterium infection process, the accumulation

of camalexin is a key factor inhibiting tumour development on

Arabidopsis inflorescence stalks. In conclusion, this study reveals

the differential roles of GSs and camalexin at different stages of

Agrobacterium-mediated transformation and provides new

insights into crown gall disease control and improvement of plant

transformation.

Keywords: Agrobacterium-mediated transformation, Agrobac-

terium tumefaciens, camalexin, crown gall, glucosinolates, plant

defence, transcriptome.

INTRODUCTION

The plant pathogen Agrobacterium tumefaciens causes crown

gall disease by a process initiated when A. tumefaciens senses

phenolic compounds to induce the expression of virulence genes

(Stachel et al., 1985). The transferred DNA (T-DNA) located on the

tumour-inducing (Ti) plasmid is processed and transported from

the bacterium into the plant cell. On T-DNA integration into the

plant genome, the expression of T-DNA-encoded oncogenes

causes the exogenous production of auxin and cytokinin to pro-

mote plant cell proliferation and lead to tumour formation. In

addition to agrobacterial virulence genes that are required for

T-DNA translocation, a successful transformation also involves

several plant host factors (Gelvin, 2010; Gohlke and Deeken,

2014; Hwang et al., 2017; Pitzschke, 2013).

Although A. tumefaciens seems to be able to hijack host fac-

tors to promote T-DNA transfer and expression for crown gall

development, plant defence and hormone response systems are

also quickly activated to counteract Agrobacterium infection.

Microbe-associated molecular patterns, such as EF-Tu of Agrobac-

terium, are recognized by the pattern recognition receptor EFR to

activate rapid immune responses and compromise Agrobacterium

infection (Wu et al., 2014; Zipfel et al., 2006). The activation of

basal immune responses is highly regulated by a crosstalk

between salicylic acid (SA) and jasmonic acid (JA) (Pieterse et al.,

2009). Arabidopsis SA-deficient, but not JA-insensitive, mutants*Correspondence: Email: emlai@gate.sinica.edu.tw
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are more susceptible to Agrobacterium-mediated tumour forma-

tion, suggesting that SA, but not JA, is important for the control

of Agrobacterium transformation (Lee et al., 2009; Yuan et al.,

2007). In addition to SA, Agrobacterium-produced auxin (Kutacek

and Rovenska, 1991; Lee et al., 2009) and cytokinin (Regier and

Morris, 1982) also regulate immune responses and transformation

efficiency (Hwang et al., 2010, 2013; Sardesai et al., 2013; Yu and

Yang, 1979). These findings suggest that the regulation of plant

hormone and immune systems is crucial in the control of Agrobac-

terium transformation efficiency.

Compared with several studies on the role of plant hormones in

defence against Agrobacterium infection, little is known about

plant secondary metabolites in the Agrobacterium transformation

process. In the Brassicaceae family, to which Arabidopsis belongs,

glucosinolates (GSs) and the phytoalexin camalexin are key second-

ary metabolites in defence against pathogen infection. They are

synthesized from amino acids, such as tryptophan for indole gluco-

sinolates (iGSs) or camalexin and methionine for aliphatic glucosi-

nolates (aGSs). GSs and their hydrolysis enzymes, the myrosinases,

provide a unique defence system which, when plant tissues are

damaged, mixes and produces toxic hydrolysis products, typically

isothiocyanates (ITCs) and nitriles (Halkier and Gershenzon, 2006).

Moreover, the PEN2-mediated hydrolysis of 4-methoxyindol-3-

ylmethyl GS (4MOI3M) serves as a major signal that activates

innate immune responses to prevent fungal penetration (Bednarek

et al., 2009; Clay et al., 2009). Camalexin can inhibit the growth of

various plant pathogens by disrupting their cell membrane or

inducing programmed cell death (Ahuja et al., 2012; Rogers et al.,

1996; Shlezinger et al., 2011). Studies on GSs and camalexin defi-

ciency mutants have suggested that both GSs and camalexin are

crucial in protecting plants from microbial infection with a broad

spectrum of antifungal activity (Bednarek et al., 2009; Stotz et al.,

2011). Their role in bacterial pathogen defence has only been

reported for Pseudomonas syringae pv. tomato DC3000 with a

modest effect on bacterial growth in planta (Brader et al., 2006;

Clay et al., 2009; Fan et al., 2011; Glazebrook and Ausubel, 1994).

Although many studies have characterized the roles of GSs and

camalexin in plant defence against herbivores and various patho-

gens (Bednarek, 2012), to our knowledge nothing is known about

their roles in Agrobacterium–plant interaction. By transcriptome

analysis of Arabidopsis seedlings on infection with the virulent

A. tumefaciens wild-type strain C58, we noticed that several iGS

modifying genes and camalexin biosynthetic genes were up-

regulated, whereas genes in aGS biosynthesis were generally down-

regulated. Similar expression patterns have also been observed in

inflorescence stalks on Agrobacterium infection. Therefore, in this

study, we aimed to elucidate the impact of GS (or rather its hydroly-

sis products) and camalexin on Agrobacterium-mediated transfor-

mation in both seedling and mature plant stages. We discovered

that iGS hydrolysis products restrict Agrobacterium-mediated

transient transformation at an early infection stage, and that cama-

lexin plays a key role in the negative regulation of later stages of

the tumorigenesis process to inhibit tumour development.

RESULTS

Time course analysis of Agrobacterium infection in

Arabidopsis seedlings

In order to identify early responsive genes of Arabidopsis seed-

lings to Agrobacterium infection, the timing of gene expression of

T-DNA-encoded genes was monitored in seedlings infected with

the virulent Agrobacterium wild-type strain C58 carrying the

b-glucuronidase (GUS) reporter gene (Narasimhulu et al., 1996).

GUS staining of 7-day-old seedlings infected at 2, 8, 24, 48, 72

and 96 h post-infection (hpi) showed that GUS signals were first

detected as early as 48 hpi in both shoots and roots of seedlings

and then increased with longer infection time (Fig. S1a–e, see

Supporting Information). To determine whether T-DNA was trans-

located into plant cells, but not yet expressed prior to 48 hpi,

infected Arabidopsis seedlings were further recovered in timentin-

containing medium to abolish Agrobacterium cell growth, but

allow GUS expression. With timentin treatment, GUS signals could

be detected in both shoots and roots when seedlings at 24 hpi

were recovered for an additional 3 days in timentin-containing

medium (Fig. S1f–j). Our results suggest that T-DNA translocation

into plant cells occurs within 24 hpi, but the accumulation of

T-DNA-encoded gene products requires more than 1 day to reach

detectable levels. Because this study aims to identify early respon-

sive genes to Agrobacterium infection, i.e. prior to T-DNA gene

expression, we chose 2 and 24 hpi for transcriptome analysis.

Common and distinct sets of genes are differentially

expressed in shoots and roots of Arabidopsis

seedlings in response to Agrobacterium infection

As transient GUS expression signals were stronger and more

detectable in shoots (100%) than in roots (no more than 25%) of

all infected seedlings (Fig. S1), we separated shoots and roots of

infected and non-infected (mock control) seedlings for gene

expression analysis with Affymetrix ATH1 chips. The genes with

an intensity higher than the background (value > 75), and with at

least two-fold changes determined by signals of infected plant tis-

sues versus mock controls in all three biological replicates, were

classified as differentially expressed genes (DEGs). This analysis

resulted in 25 DEGs in shoots (17 up, 8 down) and 107 DEGs in

roots (85 up, 22 down) at 2 hpi [false discovery rate (FDR),

P< 0.05; Fig. 1a and Datasheet S1, see Supporting Information].

At 24 hpi, 353 genes were differentially expressed in shoots (296

up, 57 down) and 1178 in roots (677 up, 501 down) (Fig. 1a and

Datasheet S1). Thus, more DEGs were found at 24 hpi than at

2 hpi in both shoots and roots. More than 50% of DEGs in shoots

GS in Agrobacterium-mediated transformation 1957
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and roots at 2 hpi were not identified at 24 hpi, suggesting that

these were only transiently regulated at an early infection stage of

Agrobacterium infection (Fig. 1b).

The number of DEGs in roots was higher than in shoots (Fig. 1a),

although transiently expressed GUS signals were not detected in

most roots (Fig. S1e,j). In shoots, more genes were up-regulated,

rather than down-regulated, whereas, in roots, the number of

down-regulated genes was increased and close to the number of

up-regulated genes (677 up and 501 down at 24 hpi). Strikingly,

only one of 25 DEGs (4%) in shoots was shared with DEGs in

roots at 2 hpi, whereas 92 of 353 DEGs (26%) in shoots were

shared with DEGs in roots at 24 hpi (Fig. 1c). The data suggest a

highly tissue-specific response to Agrobacterium infection. In

agreement with this notion, scatter plots illustrating whole

genome expression patterns showed low correlations between

shoots and roots (Fig. 1d).

We identified the majority of DEGs as distinct for shoots and

roots. Despite this, a gene ontology (GO) analysis using the 24-

hpi dataset revealed that most enriched GO categories were

shared by shoots and roots, except for the development GO,

which was only found in roots (Fig. 1e and Tables S1–S4, see Sup-

porting Information). However, the percentage and/or number of

gene counts in certain GO categories were significantly different

between roots and shoots. For example, both the percentage and

number of gene counts in the defence response GO were higher

in shoots (30.1%, 63) than in roots (8.7%, 53) at 24 hpi (Fig. 1e

and Tables S3 and S4). In contrast, a higher percentage and num-

ber of gene counts in the hormone response GO were found in

roots (17.8%, 109) than in shoots (11%, 23) (Fig. 1e). In roots,

many of the hormone response GO terms related to cytokinin,

abscisic acid (ABA), JA and auxin were enriched (Tables S1–S4),

with the most significant and abundant GO terms being related to

cytokinin. Taken together, these results show that defence

responses are regulated more significantly in shoots than in roots,

but roots display stronger responses to various hormones than

shoots, probably responsible for root growth and development.

Genes in GS and camalexin biosynthesis are regulated

in both Arabidopsis seedlings and inflorescence stalks

on Agrobacterium infection

Among the enriched GO terms in the secondary metabolism cate-

gory, we noticed that GS biosynthesis-related GO terms were

enriched in both shoots and roots (Tables S3 and S4), suggesting

Fig. 1 Transcriptional changes in shoots and roots of Arabidopsis seedlings

in response to Agrobacterium infection. Seven-day-old Arabidopsis Col-0

seedlings were infected with the virulent Agrobacterium tumefaciens strain

C58. The differentially expressed genes of shoots and roots of seedlings at 2

and 24 h post-infection (hpi) were identified by comparing infected seedlings

with the mock control from three independent biological replicate samples. (a)

The histogram presents the number of up-regulated (pink) and down-

regulated (green) genes with more than two-fold changes and Benjamini–

Hochberg test correction [false discovery rate (FDR), P < 0.05]. Venn

diagrams of differentially expressed genes between 2 and 24 hpi in the shoot

and root (b) and between shoots and roots at 2 and 24 hpi (c). (d) Scatter

plots of whole genome transcriptional changes (log2) between tissues at 2

and 24 hpi. The x-axis presents the changes in shoots and the y-axis presents

the changes in roots. (e) The distribution of enriched functional gene ontology

(GO) groups in shoots and roots at 24 hpi is shown in a pie chart in per cent

and number of gene counts in parentheses.

1958 P.-Y. SHIH et al .

MOLECULAR PLANT PATHOLOGY 19 (8 ) , 1956–1970 VC 2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBL ISHED BY BRIT ISH SOCIETY FOR

PLANT PATHOLOGY AND JOHN WILEY & SONS LTD

 13643703, 2018, 8, D
ow

nloaded from
 https://bsppjournals.onlinelibrary.w

iley.com
/doi/10.1111/m

pp.12672 by U
niversitsbibliothek, W

iley O
nline L

ibrary on [29/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



a common role of GSs in Arabidopsis seedlings in response to

Agrobacterium infection. Therefore, we analysed the expression

profiles of the genes involved in GS biosynthesis in

Agrobacterium-infected Arabidopsis seedlings, and found that

most key genes in iGS modification and camalexin biosynthesis

were highly up-regulated, especially at 24 hpi (Fig. 2a and

Datasheet S2, see Supporting Information). The gene encoding

CYP81F2, which converts indol-3-ylmethyl GS (I3M) to 4-

hydroxyindol-3-ylmethyl GS (4OHI3M), was induced at 2 hpi, and

further enhanced at 24 hpi, in roots (Fig. 2a and Datasheet S2).

The other genes encoding indole glucosinolate methyltransferase

1 and 2 (IGMT1 and IGMT2), converting 4OHI3M or 1OHI3M to

4MOI3M or 1MOI3M, respectively, were also up-regulated at

24 hpi in roots (IGMT1 and IGM2) and shoots (IGMT2) (Fig. 2a

and Datasheet S2). The camalexin biosynthesis genes, including

CYP71A12, CYP71A13 and PAD3, were highly up-regulated in

both plant parts at 24 hpi, although they were only identified to

be statistically significant in roots (CYP71A12 also in shoots)

(Fig. 2a and Datasheet S2). In contrast, most genes involved in

aGS biosynthesis were highly suppressed at 24 hpi in roots and

shoots (Fig. 2b and Datasheet S2).

Subsequently, we tested whether the observed differential

gene expression of GS and camalexin biosynthesis could also be

seen in mature plants and at a later stage of infection. According

to microarray data (Lee et al., 2009), the transcription of genes in

camalexin biosynthesis from tryptophan via indole-3-aldoxime

(IAOx) and indole-3-acetonitrile (IAN) was induced at 6 days post-

infection (dpi) and in crown gall tumours, whereas the transcrip-

tion of genes in iGS biosynthesis from IAOx to I3M was inhibited

mainly in tumours (Fig. S2a, see Supporting Information). All

genes in aGS biosynthesis were strongly down-regulated at the

later time points, similar to their expression in infected seedlings

(Figs 2b and S2b). These findings imply that GS and camalexin

may play important roles during Agrobacterium infection and may

modulate transformation efficiency. Therefore, we aimed to study

the impact of GS, camalexin and the derived metabolites on: (i)

Agrobacterium transient transformation; and (ii) crown gall

development.

iGS hydrolysis plays a negative role in Agrobacterium

transient transformation efficiency of Arabidopsis

seedlings

We first utilized a variety of Arabidopsis mutants impaired in iGS,

camalexin and aGS biosynthesis to determine their transient trans-

formation efficiencies at the seedling stage. On Agrobacterium

infection, no statistical difference could be identified in transient

GUS activity between Col-0 and the aGS biosynthesis mutant

myb28/29 (Fig. 3a,b). In contrast, the mutant cyp79B2/B3, defi-

cient in iGS and camalexin biosynthesis, showed significantly

Fig. 2 Gene expression profiles of

glucosinolate (GS) and camalexin

biosynthesis, as well as

modification pathways, in

response to Agrobacterium

infection. Indole glucosinolate

(iGS) and camalexin (a) and

aliphatic glucosinolate (aGS) (b)

pathways. The orange squares

mark iGSs (a) and aGSs (b). Four

squares next to the aGS pathway

present the fold changes of key

genes in shoots (top) and roots

(bottom) at 2 h post-infection (hpi)

(left) and 24 hpi (right). The fold

changes are shown in red for up-

regulation and green for down-

regulation as log2 values and

Benjamini–Hochberg test

correction [false discovery rate

(FDR), P < 0.05]. The expression

levels and P values of all the genes

are also shown in Datasheet S2.

GS in Agrobacterium-mediated transformation 1959

VC 2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBL ISHED BY BRIT ISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD

MOLECULAR PLANT PATHOLOGY (2018) 19 (8 ) , 1956–1970

 13643703, 2018, 8, D
ow

nloaded from
 https://bsppjournals.onlinelibrary.w

iley.com
/doi/10.1111/m

pp.12672 by U
niversitsbibliothek, W

iley O
nline L

ibrary on [29/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



higher transient GUS activity than Col-0. Interestingly, the two iGS

hydrolysis mutants (pen2-1 and pen2-2) were also more suscepti-

ble to Agrobacterium transformation relative to Col-0, but there

was no detectable difference in transient GUS activity in the

camalexin mutants (cyp71A12, cyp71A13-1, cyp71A13-3 and

pad3-1). These results together suggest that the susceptible phe-

notype detected in the cyp79B2/B3 mutant should be a result of

the depletion of iGS hydrolysis products, but not the depletion of

camalexin.

Arabidopsis seedlings reduce the content of specific

GSs after Agrobacterium infection

To determine the impact of differential gene expression of GS

biosynthesis pathways in Arabidopsis seedlings on Agrobacte-

rium infection, we next analysed the GS profiles of Arabidopsis

Col-0 seedlings and selected GS mutants (myb28/29, cyp79B2/

B3 and pen2-1) with or without infection at 3 dpi (Figs 4 and

S3, and Table S5, see Supporting Information). The concentra-

tions of I3M, 4OHI3M, 4-methylsulfinylbutyl GS (4MSOB), 4-

methylthiobutyl GS (4MTB) and 8-methylthiooctyl GS (8MTO),

but no other iGSs and aGSs, were significantly reduced in

infected Col-0 seedlings (Figs S3c,d and 4a,b). The most basic

iGS, I3M, was significantly reduced from 72 to 32 nmol/g fresh

weight (FW) after infection (Fig. 4a). In the secondarily modified

iGSs, only 4OHI3M showed a significant reduction in Col-0

seedlings after infection, but the concentration was too low for

it to be considered as a main metabolite (Fig. 4a). No aGSs or

iGSs were detected in myb28/29 or cyp79B2/B3 mutants, con-

firming their functions in aGS and iGS biosynthesis, respec-

tively. Moreover, the iGS profile detected in myb28/29 and the

aGS profile detected in cyp79B2/B3 were similar to those in

Col-0 (Fig. 4a,b). Although the I3M concentration was also sig-

nificantly reduced in the pen2-1 mutant, the 4MOI3M concen-

tration was dramatically increased after Agrobacterium

infection (Fig. 4a). This observation is consistent with previous

reports (Bednarek et al., 2009; Clay et al., 2009), which suggest

that PEN2-mediated iGS hydrolysis functions in Agrobacterium-

infected Arabidopsis seedlings.

In Arabidopsis seedlings, aGSs are represented by two main

groups: the methylthioalkyl GSs and the methylsulfinylalkyl GSs

(Fig. 2b and Table S5). We found that two methylsulfinylalkyl GSs,

4MSOB and 8-methylsulfinyloctyl GS (8MSOO), and three methyl-

thioalkyl GSs, 4MTB, 7-methylthioheptyl GS (7MTH) and 8MTO,

were most abundant in Col-0 seedlings (Fig. S3d). At 3 dpi, only

the concentrations of 4MSOB, 4MTB and 8MTO were decreased,

but no significant change was observed for 8MSOO and 7MTH

(Figs S3d and 4b). Furthermore, a time course experiment with

Col-0 seedlings showed that most GSs did not change significantly

from 8 to 48 hpi, except for I3M, which was significantly reduced

Fig. 3 Agrobacterium

transformation efficiency assay of

Arabidopsis mutants impaired in

glucosinolate and camalexin

biosynthesis and in glucosinolate

hydrolysis. b-Glucuronidase (GUS)

staining (a) and quantitative GUS

activity assay (b) of Arabidopsis

seedlings after Agrobacterium

infection at 3 days post-infection

(dpi). All data are presented as the

mean 6 standard error of the

mean (SEM) from four

independent experiments

(n > 20), and asterisks indicate

significant changes [one-way

analysis of variance (ANOVA) with

Dunnett’s test, *P < 0.05,

**P < 0.01, ***P < 0.001]. Scale

bar, 1 cm. aGS, aliphatic GS; iGS,

indole GS.
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at 48 hpi (Fig. 4c,d). We also observed a reduction in 4MSOB and

8MTO concentrations, but the differences were not statistically

significant, probably as a result of variations amongst biological

replicates (Fig. 4d).

Exogenous applications of iGS and aGS products

impact Agrobacterium transient transformation

efficiency

Our GS profile data from Arabidopsis seedlings suggest that

PEN2-mediated iGS hydrolysis is activated in Arabidopsis seed-

lings on Agrobacterium infection (Fig. 4), which is consistent with

a negative role of PEN2 myrosinase in the transient transforma-

tion process (Fig. 3). Thus, we next directly treated the seedlings

with I3M during Agrobacterium infection, and found that the tran-

sient transformation efficiency was reduced in a dose-dependent

manner relative to methanol-treated control seedlings (Fig. 5a,b).

As exogenous application of I3M does not influence the number

of viable Agrobacterium cells grown in either co-cultivation

medium or associated with infected seedlings at 1 or 3 dpi

(Figs S5a,b, see Supporting Information) and has no impact on the

GUS enzymatic activity in vitro (Fig. S4a, see Supporting Informa-

tion), we suggest that the reduced transient transformation effi-

ciency on I3M application is probably caused by its impact on the

host plant.

Although we did not observe a clear statistical difference in

the transient transformation efficiencies between the myb28/29

mutant and Col-0, the mutant showed a tendency to a lower tran-

sient transformation efficiency in general (Fig. 3b). Thus, we

tested whether the most prevalent hydrolysis products from aGSs,

the ITCs (Wittstock and Burow, 2010), may have a direct impact

on Agrobacterium-mediated transient transformation efficiencies.

We tested the effect of ITCs derived from 4MSOB, 7MTH, 8MTO

and 8MSOO on the transient transformation efficiency of Col-0

seedlings by the application of ITCs in the co-cultivation medium

at 200 and 300 lM. The results showed that application of the ali-

phatic ITCs resulted in different effects, with the transient trans-

formation efficiency being inhibited when the seedlings were

treated with ITCs of 4MSOB (85% reduction) or 8MSOO (74%

reduction) (Fig. 5c,d), and enhanced when the seedlings were

treated with ITCs of 7MTH (�3–7-fold increase) and 8MTO

(>1.5-fold increase). It is notable that exogenous application of

these aGS-ITCs caused 10%–20% reduction in GUS enzymatic

activity in vitro (Fig. S4b). Thus, we conclude that 7MTH and

8MTO indeed play positive roles in promoting transient transfor-

mation efficiency, despite their modest effects in inhibiting GUS

enzymatic activity per se. However, the reduced transient GUS

expression of infected seedlings treated with 4MSOB-ITC and

8MSOO-ITC may be partly caused by their direct effects in inhibi-

ting GUS enzymatic activity.

Impact of exogenous applications of aGS products on

Agrobacterium growth

To determine whether the different impacts of aGS-ITCs on trans-

formation efficiency may contribute to differences in Agrobacte-

rium growth during co-cultivation, we measured the viable

Fig. 4 Glucosinolate (GS) profiles of Agrobacterium-infected Arabidopsis

seedlings. Profiles of indole glucosinolates (iGSs) (a) and the major aliphatic

glucosinolates (aGSs) (b) in wild-type Col-0 and mutants at 3 days post-

infection (dpi) with Agrobacterium tumefaciens strain C58. Time course-

dependent profiles of the iGSs (c) and the major aGSs (d) in Col-0 seedlings

from 8 to 48 h post-infection (hpi). All data are presented as the

mean 6 standard error of the mean (SEM) from three independent

experiments (n 5 3), and asterisks indicate significant changes compared with

the mock sample (Student’s t-test, *P < 0.05). A reduction in (d) of 4-

methylsulfinylbutyl (4MSOB) GS (P 5 0.051) and 8-methylthiooctyl (8MTO)

GS (P 5 0.312) at 48 hpi was observed, but is not statistically significant.

GS in Agrobacterium-mediated transformation 1961
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Agrobacterium cell number in both the co-cultivation medium and

cells associated with seedlings at 1 and 3 dpi. The aGS-ITC treat-

ments did not affect the viable Agrobacterium cell number in the

co-cultivation medium at either 1 or 3 dpi, except for 4MSOB,

which caused a modest reduction in viable cell number at 1 dpi

(Fig. S5d). However, no difference in the seedling-associated

Agrobacterium cell number was observed for seedlings treated

with 4MSOB or dimethylsulfoxide (DMSO) control at 1 or 3 dpi

(Fig. S5c), suggesting that the reduced transient transformation

efficiency of the Col-0 seedlings treated with 4MSOB (Fig. 5c,d)

could not be attributed to the number of Agrobacterium cells. Sim-

ilarly, the reduced transient transformation efficiency of the Col-0

seedlings treated with 8MSOO (Fig. 5c,d) is probably not impacted

by Agrobacterium growth, as no reduced Agrobacterium cell num-

ber was observed in the medium or in planta in the presence of

8MSOO (Fig. S5c,d). However, the seedling-associated Agrobacte-

rium cells were significantly higher in number when treated with

7MTH-ITC or 8MTO-ITC than mock control at 1 and 3 dpi when a

higher concentration (300 lM) was applied (Fig. S5c,d). It is nota-

ble that more viable Agrobacterium cells were only observed

in planta, but not in co-cultivation medium, which contains one to

two orders more viable Agrobacterium cells than those in planta.

Thus, 7MTH-ITC and 8MTO-ITC do not have an impact on Agro-

bacterium growth, but can facilitate Agrobacterium association

with Col-0 seedlings and enhance transformation efficiencies.

Camalexin, but not GSs, contribute to Agrobacterium-

mediated tumour formation on Arabidopsis

inflorescence stalks

We next determined whether GS and camalexin biosynthesis path-

ways also impact tumorigenesis, the later stage of infection. Surpris-

ingly, tumours of cyp79B2/cyp79B3 were significantly smaller than,

and those on myb28/myb29 showed no difference from, those of

wild-type Col-0 at 4 weeks after inoculation of young inflorescence

stalks (Fig. 6a). The pad3-1 mutant developed significantly larger

crown galls relative to the wild-type. These results differed from the

transient transformation efficiencies detected in cyp79B2/cyp79B3

(increased) and pad3-1 (unchanged; Fig. 3). The quadruple mutant

qko (cyp79B2/cyp79B3/myb28/myb29) (devoid of GSs and cama-

lexin) developed very small tumours or none at all (Fig. 6b), which

is similar to cyp79B2/cyp79B3. Because the tumorigenesis efficiency

Fig. 5 The effects of indole

glucosinolate (iGS) and aliphatic

glucosinolate-isothiocyanates

(aGS-ITCs) on Agrobacterium

transformation efficiency. Seven-day-

old Col-0 seedlings were treated with

indol-3-ylmethylglucosinolate (I3M) (a,

b) and aGS-ITCs (c, d) during

Agrobacterium infection, followed by

analysis for b-glucuronidase (GUS)

staining (a, c) and GUS activity assay

(b, d). The results are presented as the

mean 6 standard error of the mean

(SEM) from three independent

experiments (n � 20), and the GUS

activity in (d) is presented as a log2

value. Significant differences from the

control groups methanol (MeOH) and

dimethylsulfoxide (DMSO) are

indicated [one-way analysis of

variance (ANOVA) with Dunnett’s test,

*P < 0.05, **P < 0.01,

***P < 0.001]. Scale bar, 1 cm.
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is a result of the combination of cell proliferation ability and trans-

formation efficiency, including steps of T-DNA translocation from

the bacterium into plant cells, T-DNA trafficking from the cytoplasm

into the nucleus, T-DNA integration and T-DNA gene expression, we

tested the callus induction ability of these mutants using Arabidop-

sis root explants following the methods described previously

(Hwang and Gelvin, 2004). We did not observe any significant dif-

ference between Col-0 and the tested mutants including cyp79B2/

B3, myb28/29 and pad3-1 (Fig. S6a, see Supporting Information).

Thus, cell proliferation ability is unlikely to be the key reason for the

reduced tumour size of the cyp79B2/cyp79B3 mutant and the

increased crown gall development of pad3-1.

We found a 6.9-fold higher concentration of aGSs in

tumours than in mock-inoculated inflorescence stalks at 28 dpi,

but no significant difference for iGSs (Fig. 7a). In tumours,

the major aGSs were 3-methylsulfinylpropyl GS (3MSOP),

5-methylsulfinylpentyl GS (5MSOP), 4MTB and 8MSOO,

whereas I3M, 4MOI3M and 1MOI3M were the major iGSs

(Fig. 7b). The myrosinase enzyme activity was significantly

lower in crown galls than in mock-inoculated tissues (Fig. 7c),

which suggests that crown gall tissues may not activate GS

hydrolysis like non-inoculated plant tissues.

Fig. 6 Tumorigenesis assay on inflorescence stalks of Arabidopsis Col-0 and

mutants lacking either camalexin and/or glucosinolates (GS). (a) The tumour

weight of the biosynthesis mutants for aliphatic GS (myb28/29), indole GS

(cyp79B2/B3) and camalexin (pad3-1). (b) The tumour weight of the GS-free

mutants (qko). The mean fresh weight 6 standard error of the mean (SEM) of

crown galls was calculated of three to six independent experiments with a

minimum of 11 plants per experiment. Significant differences from the control

plants are indicated [one-way analysis of variance (ANOVA) with Dunnett’s

test, ***P < 0.001].

Fig. 7 Glucosinolate (GS) and

camalexin content in crown galls.

Mean amounts of total aliphatic GSs

(aGSs) and indole GSs (iGSs) (a) and

the main aGSs and iGSs (b) in crown

galls and mock-inoculated

inflorescence stalk tissue. (c) Mean

myrosinase enzyme activity in crown

galls and mock-inoculated

inflorescence stalks of three

independent biological replicates with

two samples in each experiment. (d)

Camalexin content of Arabidopsis

inflorescence stalks inoculated with

Agrobacterium or mock-inoculated at

three different time points. The mean

values of three to four independent

biological replicates 6 standard error

of the mean (SEM) are shown. Each

replicate consisted of material from

more than 10 individual plants. dpi,

days post-infection; DW, dry weight;

hpi, hours post-infection.
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Camalexin accumulates after Agrobacterium infection

and inhibits transient transformation in Arabidopsis

seedlings when exogenously applied

Camalexin is a phytoalexin that inhibits the growth of various plant

pathogens and often negatively impacts pathogen infection (Ahuja

et al., 2012; Rogers et al., 1996). It is intriguing to note that the

pad3-1 mutant exhibited similar transient transformation efficiency

to the wild-type during the seedling stage, but was highly suscepti-

ble to tumorigenesis (Figs 3 and 6a). One plausible reason is that

the camalexin concentration may be different during different

developmental stages. Thus, we measured the camalexin concen-

trations in Arabidopsis seedlings during the course of Agrobacte-

rium infection and at later stages of tumorigenesis. Camalexin

could not be detected in seedlings before infection (0 dpi) and the

concentration gradually increased during the infection time, with

0.24 lg/g FW (1.2 lM) at 1 dpi, 1.64 lg/g FW (8.2 lM) at 2 dpi

and 3.44 lg/g FW (17.2 lM) at 3 dpi (Fig. 8a), and correlated with

the gene expression profile (Fig. 2a and Datasheet S2). In crown

galls, the camalexin concentration was also lower at 3 hpi, but sig-

nificantly higher at 6 dpi and further increased at 28 dpi (Fig. 7d).

We then treated the Col-0 seedlings with increasing concentra-

tions of camalexin in co-cultivation medium during Agrobacterium

infection to determine the impact of camalexin on the transient

transformation efficiency during the seedling stage. The GUS signal

was dramatically reduced in seedlings treated with 10 lM cama-

lexin, and almost no transiently expressed GUS activity could be

detected on application of 100 lM camalexin (Fig. 8b,c). As the

exogenous application of camalexin did not affect or only slightly

inhibited GUS enzymatic activity in vitro with higher dosage

(Fig. S4c), the negative impact of camalexin on transient GUS

expression in infected seedlings is probably the result of reduced

transient transformation efficiency rather than affecting GUS enzy-

matic activity per se. Because the application of camalexin did not

inhibit Agrobacterium cell growth in co-cultivation medium or asso-

ciated with infected seedlings at 1 or 3 dpi (Fig. S5e,f), the Agrobac-

terium cell number has no impact on the reduced transient

transformation efficiency of camalexin-treated seedlings. However,

although no difference in callus induction ability of root explants

could be detected with the camalexin-deficient mutant pad3-1,

exogenous application of camalexin can reduce the callus induction

rate of root explants and transient transformation efficiencies of

seedlings, both in a dose-dependent manner (Figs 8c and Fig. S6b).

These results suggest that camalexin exhibits negative effects on

both transformation efficiency and cell proliferation when the cama-

lexin concentration reaches the threshold of �10 lM, which can be

reached in seedlings at 2 dpi (Fig. 8a) and in wounded/infected

inflorescence stalks at 6 dpi (Fig. 7d). Taken together, these results

suggest that camalexin plays a negative role in both the early stage

of transformation and the later stage of tumorigenesis, which may

be partly a result of the reduced cell proliferation activity of plant

cells when the camalexin concentration is high.

DISCUSSION

In this study, the transcriptome analysis of Agrobacterium-infected

seedlings and crown galls of Arabidopsis plants led to the discov-

ery of DEGs involved in GS and camalexin biosynthesis pathways

Fig. 8 The effect of camalexin in Agrobacterium-mediated transformation of

Arabidopsis seedlings. (a) Camalexin quantification in mock or infected wild-

type Col-0 seedlings from 0 to 3 days post-infection (dpi). Only the mock

group was measured at 0 dpi. b-Glucuronidase (GUS) staining (b) and GUS

activity assay (c) for transient transformation after treatment with different

concentrations of camalexin for 3 days. The results are presented as the

mean 6 standard error of the mean (SEM) from three independent

experiments (n � 15), and significant differences from the mock infection

group (a, Student’s t-test, *P < 0.05, ***P < 0.001) or from the control

dimethylsulfoxide (DMSO) group [b and c, one-way analysis of variance

(ANOVA) with Dunnett’s test, *** P < 0.001] are indicated. Scale bar, 1 cm.
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MOLECULAR PLANT PATHOLOGY 19 (8 ) , 1956–1970 VC 2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBL ISHED BY BRIT ISH SOCIETY FOR

PLANT PATHOLOGY AND JOHN WILEY & SONS LTD

 13643703, 2018, 8, D
ow

nloaded from
 https://bsppjournals.onlinelibrary.w

iley.com
/doi/10.1111/m

pp.12672 by U
niversitsbibliothek, W

iley O
nline L

ibrary on [29/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



during the Agrobacterium infection process. Furthermore, func-

tional studies suggested a potential role of iGS hydrolysis products

in seedling defence against Agrobacterium infection at an early

stage, whereas camalexin plays a key role in the inhibition of

tumour development at a later stage of the Agrobacterium trans-

formation process.

Although the GS-related GO terms were enriched in both

shoots and roots of seedlings at 24 hpi (Tables S3 and S4), the

biosynthesis of iGSs and aGSs was differentially regulated. The

induction of genes in I3M modification (CYP81F2, IGMT1 and

IGMT2 which convert I3M into 4MOI3M) as early as 2 hpi (Fig. 2a

and Datasheet S2) was correlated with a reduced content of I3M

at later stages of infection (2 and 3 dpi; Fig. 4a,c). Previous studies

have suggested that the reduction in I3M is an early response to

pathogen infection, and that PEN2-mediated iGS hydrolysis pro-

vides defence signalling (Bednarek et al., 2009; Clay et al., 2009).

This is also supported by our findings of higher transient transfor-

mation efficiencies of Arabidopsis mutant seedlings deficient in

iGS biosynthesis and hydrolysis (Fig. 3). Furthermore, the transient

transformation efficiency was decreased when Col-0 seedlings

were treated with I3M (Fig. 5a,b). I3M did not inhibit agrobacte-

rial growth in co-cultivation medium or in planta (Fig. S5a,b), and

an in vitro study has shown that Agrobacterium is more resistant

to iGS than to aGS hydrolysis products (Aires et al., 2009). Thus,

the reduction in transformation efficiency by iGS was not a result

of the restriction of agrobacterial growth, but probably caused by

the immune response triggered by iGS hydrolysis. However, we do

not exclude the possibility that iGS hydrolysis may also impact other

physiological functions or signal transduction of A. tumefaciens and

its infected plant cells, which may then affect the transient transfor-

mation efficiency. Such studies are beyond the scope of this work

and await future investigations.

However, the myb28/29 mutant (which lacks aGSs) did not

show a statistically significant difference in either transient trans-

formation efficiency or tumour development (Figs 3 and 6a).

Beekwilder et al. (2008) have shown higher iGS concentrations in

this mutant than in Col-0 after insect attack, but such an increase

was not found in our seedling assay systems, as myb28/29 mutant

seedlings contained no aGSs and similar iGS amounts to wild-type

Col-0 (Fig. 4a). Thus, we suggest that iGSs do not have a negative

impact on the transformation efficiency of the myb28/29 mutant.

To this end, the biological significance of the reduced expres-

sion of aGS biosynthetic genes in Arabidopsis seedlings after

Agrobacterium infection and during crown gall development

remains unclear. The global reduction in gene expression of aGS

biosynthesis was reflected in the reduction in certain aGS amounts

at 3 dpi (Figs 2b and 4b,d). The aGSs with side chains of four car-

bon atoms (4C; 4MTB and 4MSOB), 7C (7MTH) and 8C (8MTO

and 8MSOO) were most abundant in 7–10-day-old Arabidopsis

seedlings (Fig. S3d). However, only 4MSOB, 4MTB and 8MTO

were significantly reduced after Agrobacterium infection (Fig. 4b),

which suggests a selective regulation of 4C and 8C aGS

biosynthesis.

It is interesting to note that exogenous applications of differ-

ent aliphatic ITCs caused different impacts on the Agrobacterium

transformation efficiencies in Arabidopsis seedlings. The transient

transformation efficiencies were inhibited by exogenous applica-

tions of 4MSOB-ITC and 8MSOO-ITC, but enhanced with 7MTH-

ITC and 8MTO-ITC treatments (Fig. 5c,d). Although 7MTH-ITC and

8MTO-ITC caused about 10% reduction in the GUS enzymatic

activity per se (Fig. S4b), exogenous applications of 7MTH and

8MTO can still enhance transient GUS expression of infected seed-

lings. Thus, 7MTH and 8MTO indeed play positive roles in the pro-

motion of transient transformation efficiency. However, 4MSOB-

ITC and 8MSOO-ITC caused about 10%–20% reduction in GUS

enzymatic activity in vitro (Fig. S4b), but more than 70% reduction

in transformation efficiency, as reflected by the transient GUS

expression levels. This indicates that 4MSOB-ITC and 8MSOO-ITC

play a negative role in transient transformation, and the reduced

transient GUS expression of infected seedlings may be partly a

result of their negative influence on GUS enzymatic activity.

ITCs are known to be toxic to various pathogens, and a previ-

ous in vitro assay has shown that 4MSOB-ITC inhibits Agrobacte-

rium cell growth (Aires et al., 2009). Consistent with this finding,

our results also showed that 4MSOB-ITC caused a modest reduc-

tion in viable cell number at 1 dpi (Fig. S5d). However, all other

tested ITC compounds did not affect Agrobacterium growth in co-

cultivation medium (Fig. S5c,d). Interestingly, the presence of

7MTH-ITC and 8MTO-ITC facilitated Agrobacterium association to

Col-0 seedlings and enhanced transformation efficiencies, even

though it did not affect Agrobacterium cell growth in co-

cultivation medium. Because several Arabidopsis mutants with

enhanced defence responses showed reduced Agrobacterium

binding to their root explants (Gaspar et al., 2004; Sardesai et al.,

2013), we propose that 7MTH-ITC and 8MTO-ITC suppress the

defence responses of Col-0 seedlings, which then become more

susceptible to Agrobacterium attachment, thereby promoting

transformation efficiency.

Unlike the observations in Arabidopsis at an early Agrobacte-

rium infection stage, where the total amounts of iGS and aGS

were not increased relative to the mock control, crown galls

hyperaccumulated particularly the aGSs 3MSOP and 8MSOO. In

contrast, the content of iGSs was low and similar to the concen-

trations in mock-infected inflorescence stalks (Fig. 7a,b). Because

all genes in aGS biosynthesis were suppressed during tumour

development (Fig. S2b), the accumulation of aGSs in crown galls

probably comes from long-distance transport via the Arabidopsis

phloem (Chen et al., 2001). A similar observation was reported for

Arabidopsis phloem-feeding and chewing insects, which specifi-

cally caused a significant increase in the amounts of aGSs, but not

GS in Agrobacterium-mediated transformation 1965
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iGSs (Yan and Chen, 2007). The accumulated aGSs are probably

not degraded because of low myrosinase enzyme activity in crown

galls (Fig. 7c) and may not play a major role at the tumour stage.

However, cyp79B2/B3 and qko (quadruple cyp79B2/cyp79B3/

myb28/myb29 mutant which lacks iGSs and camalexin) showed

significantly reduced tumour size (Fig. 6a,b). Their similar tumour

sizes further support the conclusion that aGSs do not play a major

role at the tumour stage.

It remains unclear why the cyp79B2/B3 mutant was more sus-

ceptible to transient transformation, but developed smaller

tumours. Plant cell proliferation may not be a problem in this

mutant because it showed similar callus induction rates relative to

Col-0 (Fig. S6a). Previous reports have shown that cyp79B2/B3

double mutant plants contain wild-type levels of indole-3-acetic

acid (IAA) and grow in a similar manner to the wild-type under

normal growth conditions (Stepanova et al., 2011; Zhao et al.,

2002), which is consistent with our observation of no detectable

growth phenotype in this mutant. The reduced IAA contents and

growth phenotype in the cyp79B2/B3 mutant are temperature and

light dependent, and can be restored to wild-type levels by supply-

ing the IAA precursor indole-3-acetamide (IAM) (Sugawara et al.,

2009; Zhao et al., 2002). This suggests that the auxin signalling

and biosynthesis pathways remain active in the cyp79B2/B3

mutant. It is known that modifications in the biosynthetic pathway

to iGS affects auxin production, because more precursors are

available for IAA biosynthesis when the iGS pathway is inter-

rupted (Malka and Cheng, 2017). In Arabidopsis crown galls, IAA

can be produced via the agrobacterial enzymes IaaM and IaaH, in

addition to plant-specific pathways (Britton et al., 2008). Thus, in

crown galls of the cyp79b2/b3 double mutant, IAA may be over-

produced and cause growth inhibition of the tumour because the

iGS pathway is interrupted. An example for this hypothesis is the

sur1 mutant, which produces less iGS, but increasing amounts of

IAA, which causes growth inhibition of sur1 (Boerjan et al., 1995;

Malka and Cheng, 2017). Calli induced in cyp79B2/B3 do not

express the agrobacterial IAA biosynthesis pathway; therefore,

IAA is only produced by the plant-specific pathway, does not over-

accumulate and therefore callus growth is wild-type-like. There-

fore, we propose that the mis-regulation of endogenous free IAA

could be a possible reason for the small tumour in the cyp79B2/

B3 mutant, although a possible role of iGS or some indole-3-

acetaldoxime (IAOx)-derived metabolite in promoting tumour for-

mation cannot be excluded.

However, despite the finding that the camalexin biosynthesis

genes CYP71A12, CYP71A13 and PAD3 were up-regulated at

24 hpi, no significant change in the transient transformation effi-

ciency could be observed in these mutants relative to Col-0

(Fig. 3), probably because of the low levels of camalexin produced

in seedlings at the early stage of infection (Fig. 8a). However, Col-

0 seedlings showed reduced transient transformation efficiency

when camalexin was present in the co-cultivation medium at

10 lM (Fig. 8b,c), the concentration neither influencing GUS activ-

ity per se (Fig. S4c) nor inhibiting bacterial growth in medium or

the association with seedlings (Figs S5e and 5f). Interestingly,

exogenous application of camalexin can also reduce the callus

induction ability of Col-0 root explants at 10 lM or higher in a

dose-dependent manner (Figs 8c and S6b). Thus, we suggest that

larger tumour development in the pad3-1 mutant (Fig. 6a) is

caused by both higher T-DNA transformation efficiency at an early

stage and increased cell proliferation at a later stage of tumour

development because of the lack of camalexin.

In conclusion, this study provides transcriptomic data reveal-

ing both common and distinct genes expressed in shoots and

roots of Arabidopsis seedlings in response to Agrobacterium

infection. Focusing on the roles of GS and camalexin, we

showed that iGS hydrolysis plays a defensive role at the early

stage of Agrobacterium infection and causes reduced transient

transformation efficiency, whereas camalexin accumulates dur-

ing tumour development to restrict tumorigenesis. The findings

that I3M and camalexin inhibit, and that 7MTH-ITC and 8MTO-

ITC promote, transient transformation efficiency in Arabidopsis

seedlings may be applicable to crown gall control and improve

Agrobacterium-mediated transformation efficiency, respectively.

Because GSs and camalexin are found mainly in certain Brassica-

ceae species, it remains to be tested whether these compounds

can function in other crop species. It is worth studying the

underlying mechanisms of these chemicals in regulating Agro-

bacterium transformation.

EXPERIMENTAL PROCEDURES

Plant materials

Arabidopsis thaliana ecotype Col-0 was used for the seedling transforma-

tion assay, transcriptome assay and Agrobacterium inoculation assay. GS

mutants in the Col-0 background, including myb28/myb29 (SALK_136312

x GABI_868E02), cyp81F2-1 (SALK_073776), cyp81F2-2 (SALK_123882),

myb51-1 (SM_3_16332), myb51-2 (SALK_059765), cyp79B2/cyp79B3

(Zhao et al., 2002), pen2-1 (Lipka et al., 2005) and pen2-2 (GABI-KAT

134C04), the camalexin mutants, including cyp71A12 (GABI-KAT 127-

H03), cyp71A13-1 (SALK_105136), cyp71A13-3 (SALK_128994) and

pad3-1 (CS3805), and the cyp79b2/B3/myb28/29 quadruple (qko) mutant,

completely free of GSs and camalexin, were used in the transient seedling

transformation assay as described.

Agrobacterium transformation of Arabidopsis

seedlings and GUS assays

The virulent A. tumefaciens wild-type strain C58 was used for the infection

of Col-0 seedlings. Seeds were germinated in 2 mL of half-strength Mura-

shige and Skoog (MS) (Basal Salt Mixture, PhytoTechnology Laboratories,

Kansas City, Kansas, USA) liquid medium [half-strength MS salt supple-

mented with 0.5% sucrose (w/v), pH 5.7] in each well of a six-well plate.
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Germination and growth took place in a growth room at 22 8C under a 16-

h/8-h light–dark cycle (100 mmol/m2/s). Virulence of A. tumefaciens was

pre-induced by 200 mM acetosyringone in AB-MES (AB Minimal Medium

plus MES salt, pH 5.5) (Wu et al., 2014) at 25 8C for 16 h prior to infection.

The Arabidopsis seedlings were infected with pre-induced A. tumefaciens

C58 cells at an optical density at 600 nm (OD600) 5 0.02 in half-strength

MS medium. If the removal of agrobacterial cells was necessary, co-

cultivation medium was removed after the chosen infection time and

replaced with 2 mL of freshly prepared half-strength MS medium contain-

ing 100 mM timentin, and incubated for recovery before analysis.

For the monitoring of the transient transformation efficiency, the

T-DNA vector pBISN1 carrying the gusA-intron genes (Narasimhulu

et al., 1996) was transformed into A. tumefaciens strain C58 for infec-

tion of Arabidopsis seedlings. GUS staining and activity assays were

carried out as described at the chosen infection time (Salinas and

S�anchez-Serrano, 2006; Wu et al., 2014). In brief, seedlings were

stained by incubation in GUS staining solution containing 5-bromo-4-

chloro-3-indolyl glucuronide (X-Gluc), and incubated at 37 8C in the

dark overnight, followed by destaining in 90% ethanol (EtOH). For the

GUS activity assay, liquid nitrogen-frozen seedlings from each well

were ground into a fine powder to extract total protein. The GUS activ-

ity in 20 mg of protein per 200-lL reaction was quantified with the fluo-

rescence substrate 4-methylumbelliferyl-b-D-glucuronide (MUG). The

fluorescence intensity (excitation, 365 nm; emission, 455 nm; filter at

430 nm) was measured using a Microplate Reader (BioTek, Taipei, Tai-

wan) at 37 8C for 1 h. GUS activity was normalized to the protein

amount and 4-methylumbelliferone standard curve. For statistical anal-

ysis, one-way analysis of variance (ANOVA) with Dunnett’s test was

performed. To determine the effects of GS-derived metabolites and

camalexin on GUS enzyme activity in vitro, the selected compounds

and DMSO control were each incubated with 5 ng of recombinant GUS

protein (Sigma-Aldrich, St. Louis, MO, USA) in GUS extraction buffer

containing 1 mM MUG. The reaction mixture was measured for GUS

activity at 37 8C for 1 h.

Transcriptome analysis

For gene expression profiling of Agrobacterium-infected seedlings, the

shoots and roots of Col-0 seedlings (infected or mock control) were sepa-

rated by cutting with a micro-scissor and immediately frozen in liquid

nitrogen. Total RNA was extracted according to the phenol (pH 4.5)/

chloroform protocol, followed by gene expression analysis with Affymetrix

ATH1 chips (Affymetrix, Santa Clara, CA, USA). The chips of three biologi-

cal repeats were normalized by the MAS5.0 algorithm using GeneSpring

software (Agilent Technologies, Santa Clara, CA, USA), and the genes

with an intensity higher than the background value (value > 75), which

passed the asymptotic unpaired t-test with Benjamini–Hochberg test cor-

rection (FDR, P < 0.05), were selected for further analysis. The fold

changes were determined from the signals of infected plant tissues versus

mock infection controls under the same conditions, and two-fold changes

were used as cut-off to determine Agrobacterium-responsive genes.

GOBU software (Lin et al., 2006) was used to analyse GO. The significant

GO items were calculated with elim Fisher’s exact test (P < 0.01) based

on gene counts (Alexa et al., 2006).

Crown gall growth assay

For the crown gall growth assay, the A. thaliana wild-type Col-0 and

mutants were cultivated in growth cabinets (Percival, CLF, Wertingen,

Germany) under short-day conditions at 22 8C (8 h of 80–100 mmol/m2/s

light; Osram 400 W, Power Star HQI-E 400W/DV, 380–780 nm) (Wuerz-

burg, Germany) and 16 8C during the dark period (16 h) with a relative

humidity of 50%–60%. Tumour development was induced by streaking

virulent A. tumefaciens strain C58 into a wound of 1.5 cm in length,

scratched into the base of young 5-cm-long inflorescence stalks. Tumour

tissue was harvested 28 days after infection using a scalpel and a binocu-

lar. Wounded, but uninfected, tumour-free inflorescence stalk sections of

the same age served as reference tissues.

GS and camalexin analysis in Arabidopsis seedlings

Extraction and analysis of seedling GSs and camalexin were performed and

modified as described previously (Glauser et al., 2012; Zandalinas et al.,

2012). In total, 100 mg FW of Arabidopsis seedlings were homogenized

and dissolved in 1 mL of 70% high-performance liquid chromatography

(HPLC)-grade methanol containing 12.5 ng/lL sinalbin (4-hydroxybenzyl

GS) as an internal standard. The supernatants obtained were heated at

80 8C for 20 min and subjected to a UPLC-Synapt G1 high-definition mass

spectrometry (HDMS) system (Waters, Taipei, Taiwan). GSs were separated

on an Acquity CSH C18 column (length, 100 mm; 2.1 mm i.d.; 1.7 lm;

Waters) at a flow rate of 400 lL/min. The GSs were eluted by solvent A

(2% acetonitrile and 0.05% formic acid) and solvent B (100% acetonitrile

and 0.05% formic acid) for 8 min in 1%–45% solvent B and 1 min in

45%–100% solvent B. The fractions were injected for MS analysis, and

negative ion data were recorded in MS1 mode. The peak area was calcu-

lated by MassLynx software (Waters), and then normalized to nanomoles

for GSs or micrograms for camalexin per gram FW. The GSs were quanti-

fied with the given references, including I3M for iGSs, 4MTB for methyl-

thioalkyl GSs and 4MSOB for methylsulfinylalkyl GSs, purchased from

AppliChem (Darmstadt, Germany). Camalexin was quantified with pure

camalexin (Sigma-Aldrich, St. Louis, MO, USA).

GS and camalexin analysis in Arabidopsis

inflorescence stalks

For GS analysis of infected Arabidopsis inflorescence stalks, 100 mg (FW)

were lyophilized, thoroughly homogenized and extracted three times with

1 mL of 80% (v/v) methanol. For the first extraction step, benzyl GS (Phy-

toplan, Heidelberg, Germany) was added to each sample as internal

standard. GSs were desulfonated as described previously (Agerbirk et al.,

2001), and separated on a Grom-Sil 80 ODS 7 pH column (length, 60 mm;

4 mm i.d.; 4 lm; Alltech) (Wuerzburg, Germany) by HPLC (Agilent 1200,

Waldbronn, Germany; flow rate, 0.25 mL/min). The desulfo GSs were

eluted as follows: 0.3 min in 0%–5% solvent A (water), 7 min with

1.2 min hold in 5%–95% solvent B (methanol) and 3.5 min in 95%–5%

solvent B. Desulfo-GSs were determined via UV diode array detection

(229 nm), identified and quantified using particular response factors

(aGSs, 1; iGSs, 0.26) (Gonz�ales-Meg�ıas and M€uller, 2010).

Camalexin was extracted from lyophilized tissue (50 mg FW) by the

addition of 400 lL of 85% methanol. The samples were thoroughly

homogenized with a metal ball in a Mixer Mill 301 (Retsch, Haan,

GS in Agrobacterium-mediated transformation 1967
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Germany) for 1.5 min at a frequency of 30 Hz. The extract was incubated

at 42 8C for 60 min with addition of 0.3 lg/lL camalexin as an external

standard. For the identification and quantification of camalexin, HPLC was

applied as described by Mikkelsen et al. (2009).

GS derived metabolites and camalexin treatment for

transient transformation assays and Agrobacterium

cell counts

The selected aGS-ITCs (LKT Laboratories, St Paul, MN, USA) and cama-

lexin were dissolved in DMSO, and I3M was dissolved in methanol. These

compounds were added to the seedling co-cultivation medium for Agro-

bacterium infection and GUS assays, as described above.

For the measurement of the viable Agrobacterium cell number, the

bacterial cells (C58 strain carrying pBISNI) in co-cultivation medium

and associated with seedlings at 1 and 3 dpi were collected. Six seed-

lings per well were washed by 2 mL of double-distilled H2O to remove

unbound bacteria and ground by a mortar in 1 mL of 0.9% NaCl solu-

tion. The bacterial cells in medium or associated with seedlings were

103 serially diluted and then plated on 523 medium (Kado and

Heskett, 1970) containing kanamycin, and incubated at 25 �C for

2 days to obtain colony-forming units (CFUs). The seedling-associated

Agrobacterium cell number was further normalized to the plant fresh

weight.

Myrosinase activity

Myrosinase activity was determined from 50–200 mg of frozen plant

material, which was purified from internal substrate. Activity was meas-

ured by the photometric quantification of the released glucose from stand-

ardized amounts of externally added substrate according to the protocol

developed by Travers-Martin et al. (2008).

Callus induction assay

Callus induction assay was performed and modified as described previ-

ously (Hwang and Gelvin, 2004). Col-0 and the tested mutants were

grown on half-strength MS agar plates for 3 weeks, and the roots were

cut into �1-cm segments. About 60 root explants were transferred to

agar plates containing callus induction medium (CIM), further incubated

for 4 weeks, followed by counting of the number of developing calli and

calculation of the rate of callus induction.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article at the publisher’s website:

Fig. S1 T-DNA-encoded genes are expressed at detectable lev-

els not before 24 h post-infection (hpi) of Arabidopsis seed-

lings. (a–d) Seven-day-old Col-0 seedlings were infected with

Agrobacterium tumefaciens wild-type C58 harbouring a b-

glucuronidase (GUS) construct, and analysed by GUS staining

at 2–96 hpi. Representative images of infected seedlings at

24 hpi (b) or 48 hpi (c) of shoots and at 48 hpi of roots (d) are

shown. (e) Percentage of shoots and roots with a GUS signal.

(f–i) Col-0 seedlings were transferred into timentin-containing

medium 2–72 h after infection with A. tumefaciens (infection

time) and further incubated for another 24–94 h as indicated

(recovery time), followed by GUS staining. Enlarged images

show infected seedlings at 24 hpi (g) or 48 hpi (h) of shoots

and at 24 hpi of roots (i). (j) Percentage of shoots and roots

with a GUS signal. Scale bar: 1 cm (a, f); 1 mm (b–d, g–i).

Fig. S2 Gene expression profiles of the glucosinolate (GS) and

camalexin biosynthesis pathways in Agrobacterium-infected

inflorescence stalks. Biosynthesis pathways of indole glucosino-

late (iGS) and camalexin (a) and of aliphatic glucosinolate

(aGS) (b). Orange squares mark iGSs (a) and aGSs (b). The

three squares next to the aGS pathway (b) present the fold

changes (inoculated versus non-inoculated) of key genes at 3 h

GS in Agrobacterium-mediated transformation 1969
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post-infection (hpi) (left), 6 days post-infection (dpi) (middle)

and 35 dpi (right). Differentially transcribed genes of four repli-

cates are shown in red for up-regulation and green for down-

regulation [false discovery rate (FDR), P < 0.05] as outlined in

Lee et al. (2009), and the fold changes are presented as log2

values.

Fig. S3 Glucosinolate (GS) profiles of Agrobacterium-infected

Arabidopsis seedlings at 3 days post-infection (dpi). Mock (a)

and infected (b) Col-0 seedlings were collected at 3 dpi for

ultra-pressure liquid chromatography-mass spectrometry (UPLC-

MS) analysis. The numbers marked above the peaks indicate

the GS compound listed in Table S5, and sinalbin was used as

an internal standard (IS). The peak area was calculated by

MassLynx software (Waters, Taipei, Taiwan), and quantified by

specific references. Concentrations of indole GSs (iGSs) (c) and

aliphatic GSs (aGSs) (d) for mock (black) and Agrobacterium-

infected (white) seedlings. Asterisks indicate significant changes

compared with the mock sample (Student’s t-test, *P < 0.05,

n 5 3). FW, fresh weight.

Fig. S4 Effects of the glucosinolate (GS)-derived metabolites

and camalexin on b-glucuronidase (GUS) enzyme activity. The

recombinant GUS protein was incubated with indol-3-

ylmethylglucosinolate (I3M) (a), aliphatic glucosinolate-

isothiocyanates (aGS-ITCs) (b) and camalexin (c) for the assay

of GUS enzymatic activity. The results are presented as the

mean 6 standard error of the mean (SEM) from three inde-

pendent experiments (n 5 9), and significant differences from

the control groups methanol (MeOH) and dimethylsulfoxide

(DMSO) are indicated [one-way analysis of variance (ANOVA)

with Dunnett’s test, **P < 0.01, ***P < 0.001].

Fig. S5 Viable Agrobacterium cell numbers in co-cultivation

medium and associated with the plant on indol-3-

ylmethylglucosinolate (I3M) (a, b), aliphatic glucosinolate-

isothiocyanate (aGS-ITC) (c, d) and camalexin (e, f) treatment

at 1 and 3 days post-infection (dpi). Agrobacterium colony-

forming units (CFU) obtained from six seedlings with similar

size per well (in planta) (a, c, e) and from the medium per well

(in medium) (b, d, f) at 1 and 3 dpi. Agrobacterium cell

numbers associated with the seedlings were normalized to the

plant fresh weight. Results are presented as the mean 6

standard error of the mean (SEM) and asterisks indicate signifi-

cant changes compared with the control groups methanol

(MeOH) and dimethylsulfoxide (DMSO) [one-way analysis of

variance (ANOVA) with Dunnett’s test, *P < 0.05, **P < 0.01,

***P < 0.001].

Fig. S6 Root callus induction assays in the mutants lacking glu-

cosinolates (GSs) and/or camalexin (a) and under camalexin-

treated conditions (b). (a) Root explants from 3-week-old Col-0

and mutant plants were incubated on callus induction medium

plates for 4 weeks. (b) Col-0 root explants were incubated on

callus induction medium plates containing different concentra-

tions of camalexin for 4 weeks. The number of root explants

producing callus was counted under a dissection microscope.

Results are presented as the mean 6 standard error of the

mean (SEM) from three experiments (n � 8), and asterisks

indicate significant changes compared with the control Col-0 or

dimethylsulfoxide (DMSO) treatment [one-way analysis of var-

iance (ANOVA) with Dunnett’s test, **P < 0.01,

***P < 0.001].

Table S1 The enriched gene ontology (GO) items in shoots of

C58-infected seedlings at 2 h post-infection (hpi).

Table S2 The enriched gene ontology (GO) items in roots of

C58-infected seedlings at 2 h post-infection (hpi).

Table S3 The enriched gene ontology (GO) items in shoots of

C58-infected seedlings at 24 h post-infection (hpi).

Table S4 The enriched gene ontology (GO) items in roots of

C58-infected seedlings at 24 h post-infection (hpi).

Table S5 The detected glucosinolates and camalexin in Arabi-

dopsis seedlings.

Datasheet S1 The Arabidopsis gene list of Agrobacterium-

responsive genes in shoots and roots at 2 and 24 h post-

infection (hpi).

Datasheet S2 Expression of the Arabidopsis Col-0 genes

involved in glucosinolate and camalexin biosynthesis, as well

as glucosinolate hydrolysis.
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