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Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit der Untersuchung von heteroepitakti-
schem Kristallwachstum mit Hilfe von Monte Carlo Simulationen. Von besonde-
rem Interesse ist hierbei der Einfluss des Gitterunterschieds zwischen den Ad-
sorbatmaterialien und dem Substrat auf die Oberflächenstrukturen. Unter Ver-
wendung eines gitterfreien Modells betrachten wir die erste Monolage des Adsor-
bats und untersuchen die entstehenden Nanostrukturen sowie deren Entwicklung
während des Wachstums. Kapitel 1 gibt dazu eine kurze Einführung, welche die
Rolle von Computersimulationen im Gebiet der modernen Festkörperphysik be-
schreibt.

Kapitel 2 widmet sich einigen technischen Grundlagen der Molekularstrahle-
pitaxie und deren theoretischen Behandlung. Bevor ein Modell für die Simulation
erstellt werden kann, ist es notwendig einige Überlegungen über die einzelnen Pro-
zesse anzustellen, welche beim epitaktischen Wachstum in Erscheinung treten. Zu
diesem Zweck betrachten wir zunächst den experimentellen Aufbau und entneh-
men die wichtigsten mikroskopischen Prozesse. Danach wird ein kurzer Überblick
über die verschiedenen theoretischen Konzepte gegeben, die diese physikalischen
Vorgänge beschreiben.

In Kapitel 3 wird anschließend das in den Simulationen verwendete Modell
vorgestellt. Das Ziel dieser Arbeit ist die Untersuchung des Wachstums eines fcc
Kristalls in die [111] Richtung. Um die Simulationszeiten in realisierbaren Gren-
zen zu halten, wird ein einfaches Paar-Potential, das Lennard-Jones Potential,
mit kontinuierlichen Koordinaten verwendet, welche notwendig sind, um Effekte
zu beschreiben, die ihren Ursprung in der atomaren Fehlanpassung im Kristall
besitzen. Außerdem wird der detaillierte Algorithmus erläutert, welcher darauf
basiert zunächst die Barriere eines jeden Diffusionsereignisses zu berechnen, um
diese Barrieren dann in einem verwerfungsfreien Algorithmus zu verwenden.

Kapitel 4 beschäftigt sich mit der Simulation von Gleichgewichtskonfiguratio-
nen. Dabei wird der Einfluss verschiedener Parameter auf die entstehenden Struk-
turen in der ersten Monolage auf dem Substrat untersucht, welches vollständig
mit zwei Adsorbatmaterialien bedeckt ist. Besonders die Konkurrenz zwischen
Bindungsenergie und Verspannung führt zur Bildung äußerst interessanter Struk-
turen wie Inseln oder Streifen.

Im Anschluss werden in Kapitel 5 die Ergebnisse von Wachstumssimulatio-
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nen präsentiert. Zu Beginn stellen wir das Modell vor, das den gitterfreien Monte
Carlo Simulationen zu Grunde liegt. Da sich der numerische Aufwand in enormen
Simulationszeiten niederschlägt, werden einige Vereinfachungen bei der Berech-
nung der Diffusionsbarrieren notwendig und aus diesem Grund werden dem bis
dahin verwendetem Modell einige Elemente des sogenannten Ball and Spring Mo-
dells hinzugefügt. Der nächste Abschnitt widmet sich dann den Berechnungen der
Energiebarrieren, bevor die Ergebnisse der Wachstumssimulationen vorgestellt
werden. Dabei werden sowohl binäre Systeme mit nur einer Adsorbatsorte als
auch ternäre Systeme mit zwei Adsorbatkomponenten untersucht. Abschließend
wird ein Vergleich zu den Ergebnissen der Gleichgewichtssimulationen aus dem
Kapitel vorher gezogen.

Kapitel 6 beinhaltet schließlich einige zusammenfassende Bemerkungen und
bietet einen Ausblick auf mögliche weitere Untersuchungen.



Abstract

In this PhD thesis, we study the heteroepitaxial crystal growth by means of Monte
Carlo simulations. Of particular interest in this work is the influence of the lattice
mismatch of the adsorbates relative to the substrate on surface structures. In the
framework of an off-lattice model, we consider one monolayer of adsorbate and
investigate the emerging nanopatterns in equilibrium and their formation during
growth. In chapter 1, a brief introduction is given, which describes the role of
computer simulations in the field of the physics of condensed matter.

Chapter 2 is devoted to some technical basics of experimental methods of
molecular beam epitaxy and the theoretical description. Before a model for the
simulation can be designed, it is necessary to make some considerations of the
single processes which occur during epitaxial growth. For that purpose we look at
an experimental setup and extract the main microscopic processes. Afterwards a
brief overview of different theoretical concepts describing that physical procedures
is given.

In chapter 3, the model used in the simulations is presented. The aim is to
investigate the growth of an fcc crystal in the [111] direction. In order to keep
the simulation times within a feasible limit a simple pair potential, the Lennard-
Jones potential, with continuous particle positions is used, which are necessary to
describe effects resulting from the atomic mismatch in the crystal. Furthermore
the detailed algorithm is introduced which is based on the idea to calculate the
barrier of each diffusion event and to use the barriers in a rejection-free method.

Chapter 4 is attended to the simulation of equilibrium. The influence of dif-
ferent parameters on the emerging structures in the first monolayer upon the
surface, which is completely covered with two adsorbate materials, is studied.
Especially the competition between binding energy and strain leads to very in-
teresting pattern formations like islands or stripes.

In chapter 5 the results of growth simulations are presented. At first, we in-
troduce a model in order to realize off-lattice Kinetic Monte Carlo simulations.
Since the costs in simulation time are enormous, some simplifications in the cal-
culation of diffusion barriers are necessary and therefore the previous model is
supplemented with some elements from the so-called ball and spring model. The
next point is devoted to the calculation of energy barriers followed by the presen-
tation of the growth simulations. Binary systems with only one sort of adsorbate
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are investigated as well as ternary systems with two different adsorbates. Finally,
a comparison to the equilibrium simulations is drawn.

Chapter 6 contains some concluding remarks and gives an outlook to possible
further investigations.
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Chapter 1

Introduction

In recent decades, surface and interface physics has become an increasingly impor-
tant subdiscipline within the physics of condensed matter. Even though surface
phenomena have been studied and some basic theoretical concepts have been de-
veloped already afore, the inception of modern surface science dates back to the
early 1960s [1, 2], since which essential knowledge in the field of surface science
has been found and many experimental techniques have been developed. There
are several driving forces for the development of surface physics, among them,
e.g., semiconductor technology, the development of new materials and epitaxy.

Within the last decades, many possibilities in the experimental as well as in
the theoretical domain have arisen. Many experimental techniques enable the
production of very pure materials and the studies of them on a microscopic scale.
From the theoretical point of view the progress is related to the wide ability
of high-capacity computers and the immense increase of their power. Today,
theoretical methods in combination with the use of computers are very important
tools in support of design and development of new technical applications. But a
microscopic understanding of the growth processes requires the investigation of
the surface processes at an atomic level. In this context computer experiments
in form of simulations play a very important role.

In this work we treat the simulation of multi-component alloys on surfaces
growing by molecular beam epitaxy, which is a very important method to produce
high quality crystals with nanostructures on them. Even the use of materials with
different lattice constants could lead to interesting phenomena. We focus on the
question about the influence of some parameters like, e.g., the lattice mismatch
on the pattern formation, what can be conducive to a better understanding of
the microscopic processes occurring during the epitaxial production of crystals.

Chapter 2 gives a brief overview of the technical aspects of the molecular
beam epitaxy, the single processes which are occurring during this experimental
technique, and some concepts of theoretical description. In chapter 3, the model
used in the simulations and the basic methods are presented. Chapter 4 is devoted
to the pattern formation in equilibrium simulations and chapter 5 deals with the
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10 1. Introduction

results of growth simulations and draw a comparison to the findings in the chapter
before. Finally, chapter 6 gives a résumé of this work and an outlook on further
possible investigations in this field.



Chapter 2

Theoretical background

In this chapter the principles of molecular beam epitaxy, which forms the ex-
perimental basis of this work, are shortly described. After this some theoretical
methods for modeling this technique are presented.

2.1 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is an experimental technique to produce very
pure crystals [3], for example by deposition of a crystalline phase on a substrate
crystal. There, the growing layer is strongly influenced by the physical proper-
ties of the substrate [4]. In principle, one distinguish between homoepitaxy and
heteroepitaxy. In the case of homoepitaxy the grown layers consist of the same
material as the substrate, in contrast to heteroepitaxy, where different materials
are used which may have different properties like, e.g., the lattice constants.

MBE is used for the production of high-quality crystals and the engineering of
well controlled alloy compositions. Implementations of this technique are impor-
tant in many technical applications today, e.g. components in nanoelectronics,
computer technology, or telecommunication domain.

2.1.1 Experimental setup

Fig. 2.1 shows schematically the setup of an MBE chamber [5]. In the chamber,
an ultrahigh vacuum (UHV) is maintained in order to avoid unintended impurities
and for producing crystals as pure as possible. The solid source materials are
placed in effusion cells and the substrate is positioned on a heatable base, which
can be rotated to improve the growth homogeneity.

One very important aspect of MBE is the slow deposition rate (10−3 to 1
atom layers per second), which allows the films to grow epitaxially. However, the
slow deposition rates require excellent vacuum conditions in order to achieve the
same purity levels as other deposition techniques. The materials, which are to
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12 2. Theoretical background

Figure 2.1: Setup of an
MBE chamber with effusion
cells and substrate in an
ultrahigh vacuum environ-
ment.

be deposited on the substrate, are heated in the effusion cells until they begin
to evaporate. The evaporated elements then condense on the wafer, where they
may react with each other and build an adsorbation layer. The term “beam”
simply means that evaporated atoms do not interact with each other or any
other chamber gases until they reach the wafer, due to the long mean free paths
of the beams. The particle flux can be controlled by regulating the temperature
of the heating. The flux and the temperature of the substrate have an essential
influence on the growth of the crystal. Thereby, the growth can be regulated
very exactly, so single atom layers (so-called monolayers) can be deposited on the
substrate. During this process the growth can be well monitored in situ on an
atomic scale by reflection high-energy electron diffraction (RHEED), for instance.

2.1.2 Microscopic processes on crystal surfaces

When the evaporated adsorbate materials reach the substrate several microscopic
processes on the surface are possible [6, 7] as shown in Fig. 2.2. First, there is
the process of deposition, which results in the adsorption of the atom. After this,
the particle has the possibility to desorb and leave the crystal again or to diffuse
on the surface until a binding site is reached, which is energetic favorable. In
the following we give a conceptional description of the processes which play an
essential role in epitaxial growth.

Deposition

The molecular beam arrives with a certain flux F (usually measured in mono-
layers per second) the substrate and the particles of this beam can incorporate
or perform the so-called downhill funneling [8], whereas they slide down a slope
until they reach a position with a maximum number of neighbor particles.

After the deposition an adsorbed atom (adatom) can move on the surface,
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Figure 2.2: Schematic il-
lustration of the relevant
processes during MBE
growth: Deposition(1), des-
orption(2), and diffusion(3).

because the arriving particle usually has a considerable kinetic energy due to the
high temperature in the effusion cell.

Desorption

After a particle is deposited and bound to the crystal it might desorb again.
That means that the adatom leaves its binding site and evaporates into the MBE
chamber. This process depends on the binding energy Eb and occurs according
to the desorption rate Rdes defined by the Arrhenius law:

Rdes = ν0e
Eb
kT (2.1)

where k is the Boltzmann’s constant, T the temperature, and ν0 the attempt
frequency, which is on the order of the Debye frequency of the crystal (ν ≈
1012 s−1).

In comparison to the rates of deposition and diffusion the desorption rate is
small because of the high characteristic binding energies of about 2.5 eV . For this
reason, desorption can be neglected for many materials, provided the substrate
temperature is not too high.

Diffusion

Because of thermal fluctuations every adatom which is not completely enclosed
can diffuse on the surface, searching for energetically favorable positions. The
particle performs “jumps” from one binding site on the lattice to a neighboring
binding site. Every binding site corresponds to a minimum in the potential energy
surface of the crystal, and at this position the adatom is strongly bound to the
crystal. The surface diffusion is an activated process with a rate according to the
Arrhenius law:

Rdif = ν0e
−Ea

kT . (2.2)

The activation energy Ea is the barrier which has to be overcome for a step. This
energy depends on the energy of the binding site Eb at the beginning and the
energy at the transition state Et between the two sites:

Ea = Et − Eb. (2.3)
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The transition state corresponds to a saddle point of the potential energy of the
system. Depending on the configuration the particles might diffuse on the plane
surface or along step edges of islands.

In addition to the hopping diffusion there is a further possibility for movement
on the surface. A mobile particle can exchange its position with a particle which
is integrated in the lattice [9]. Then the, so far, immobile atom takes the role of
the adatom and diffuses on the surface. This process is called exchange diffusion
and its frequency depends on the local crystal configuration and the used mate-
rials [10–12]. In some materials this mechanism plays a big role at the movement
along step edges, for example.

But an adatom which is moving along a step edge can also break away from
this edge. The probability of this mechanism depends on the strength of the
bonds between the particle and the edge.

2.2 Surface alloying and segregation

The formation of surface alloys is of particular interest. Experimental studies
show that many materials which are immiscible in the bulk form stable alloy
layers if they are deposited as thin films on certain substrate materials. This
phenomenon can be observed in a variety of systems. Here, a very important
aspect is the influence of the different lattice constants of the involved materials on
the detailed structure. In order to minimize the energy, the lattice mismatch may
lead to formation of certain structures like, e.g., stripes on the nanometer scale.
The resulting formation can be explained by the interplay of two mechanisms:
strain relaxation and kinetic segregation [13–15].

The first one refers to achieving a low effective adsorbate misfit and hence
an energetically favorable state by an alternating arrangement of particles with
negative and positive misfit with respect to the substrate, see Fig. 2.3. This
configuration of the different adsorbate materials yields a state with less strain
and lowers the energy.

The second mechanism refers to the separation of the elements with a bound-
ary as short as possible, if the inter-species binding is weaker than that of same
species, see Fig. 2.4. The different binding energies can result in a strong kinetic

Figure 2.3: Side view of a ternary
system with a substrate (white) and
two adsorbates (in dark and light
gray). Strain relaxation provides an
energetically favorable state.
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Figure 2.4: Top view of an island ex-
isting of two adsorbates with a weak
interaction between particles of dif-
ferent materials. Due to the inter-
action energies a separation is pre-
ferred.

effect for diffusion along existing edges [14], which leads to domains containing
the same species because of an extra barrier for a particle trying to cross the inter-
face at the edge. Due to the different interaction energies islands with separated
areas of each material are energetically favorable. Thus, the different binding
energies would prefer a complete segregation of the different components, but in
fact the moves of the particles in non-equilibrium growth rather result in smaller
structures. If the adsorbate materials are deposited as thin films on the substrate
the adatoms move on the surface and try to segregate due to the interaction
energies. Clearly, in this context the deposition rate plays an important role and
influences essentially the emerging structures.

The interplay of both effects leads to interesting alloy structures like, e.g.,
stripes or islands. Examples of surface alloyings are systems like CoAg/Ru(0001)
[13, 16, 17], AgCu/Ru(0001) [18], PdAu/Ru(0001) [19], CoCu/Ru(0001) [20],
CoAg/Mo(110) and FeAg/Mo(110) [15].

2.3 Theoretical description of heteroepitaxial

growth

In addition to the practical application of the MBE, theoretical investigations of
epitaxial growth are very interesting and necessary for the comprehension of the
physical processes. In particular studying the influence of specific parameters is
important for a detailed understanding of the functioning of epitaxial growth.
By dint of theoretical research, particular mechanisms and their influence on the
emerging structures can be studied. The findings of these studies can help to
enhance experimental techniques and realize new applications in many different
domains.

Since MBE is far away from thermal equilibrium, most general theoretical
concepts are not suitable for description in this case and new methods of theo-
retical description are in demand [6, 7, 21–24]. In this work we use Monte Carlo
simulations for investigating heteroepitaxial growth [24]. In the following sec-
tions, this method and other important approaches providing good descriptions
are briefly presented.
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2.3.1 Density functional theory

The macroscopic growth is based on microscopic processes such as deposition, des-
orption or diffusion of particles. These processes are mainly affected by changing
or breaking chemical bonds. Ultimately, it is necessary to take quantum mechan-
ics into account.

In this context, the density functional theory (DFT) turned out to be a very
useful tool to describe growth mechanisms. Originally, DFT is a method which
determines the quantum mechanical ground state of a many-particle system from
the density of electrons. To this end it is not necessary to solve the complete
Schroedinger equation of the system. Instead, the interaction of the particles
is taken into account in the form of an exchange potential [25–28]. The basic
principle of DFT is the Hohenberg-Kohn theorem, which states that the ground
state properties of a system of N electrons can be represented in terms of only the
ground state density. All properties of the ground state can be calculated from the
position-dependent electron density n(r). Hence, the problem of solving the many
electron Schroedinger equation is replaced by finding the appropriate exchange
potential and solving the single particle equations, the Kohn-Sham equations [25,
28]. In these equations the so-called local exchange-correlation potential regards
the many-particle system. Due to the fact that the exchange-correlation potential
in the most cases cannot be determined exactly, approximations are required [29].

Growth mechanisms are essentially conditioned by activated processes with
rates depending on energy barriers and attempt frequencies, as described in Sec.
2.1.2. The frequencies may be obtained by using the transition state theory [22].
The DFT method allows for the calculation of energies as well as the exact deter-
mination of the positions of the particles on the surface. The resulting knowledge
of the barriers and surface configurations enables the description of surfaces or
their evolution under different conditions. So, all the relevant information re-
quired for describing growth processes can be calculated within the DFT formal-
ism, in principle.

A big problem of the DFT is the large computational effort. This fact limits
the method to relatively small systems. However, DFT is a very important
tool for the calculation of basic properties of molecules and solid state bodies,
like binding lengths, energies, oscillation spectra or magnetic properties, see e.g.
[30–34]. Many of these results can be used for further processing in other methods.

2.3.2 Molecular Dynamics simulations

In Molecular Dynamics (MD) simulations, used at the first time by Alder and
Wainwright in the 1950s [35,36], the evolution of a system of N interacting par-
ticles is calculated by numerical integration of the classical equations of motion
to trace the positions and velocities of the particles [21, 37, 38]. The system can
be completely described because all positions and velocities are well known. By
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dint of the statistical physics, in principle it is possible to calculate all interest-
ing properties of structure, dynamics and thermodynamics. This method allows
simulating systems both at equilibrium and away from equilibrium. Thereby,
the used forces are derived from DFT [39] or empirical potentials. Because of
computer demands often simple pair potentials are favored in the second case.
By use of DFT, correct quantum mechanical forces can be implemented as e.g.
in the simulations of Car and Parrinello [39]. There, the ionic forces are deter-
mined directly from the electronic structure of the system independently of any
empirical parameter.

A big problem of MD are the enormous run times, which restrict the time
and length scales that can be simulated. In general the simulated times range
from a few ps to hundreds ns and the typical system sizes are about 103 − 106

particles [38]. At massively parallel clusters it is possible to simulate systems
with up to 5×109 particles or up to times of 1µs for 3000 molecules, but the run
times are very long [40]. Indeed, simulations of crystal growth in general require
real time scales of minutes or hours. In order to circumvent this difficulty, very
often unrealistically high deposition rates are used in growth simulations.

In spite of these problems MD simulations are often used to simulate growth,
see e.g. [41–43]. Other possibilities of application are the estimation of rates for
different moves of an adatom or the calculation of energy barriers [44]. Further-
more, MD should be a good technique for simulating processes which cannot be
described as thermally activated, such as the deposition process. Finally, the
use of MD in combination with other methods in a multiscale approach seems
promising.

2.3.3 Monte Carlo simulations

In Monte Carlo (MC) simulations the processes are treated as stochastic events.
At the beginning of the simulation a catalogue of possible events and their rates
is set up. Then, at every simulation step one event is randomly chosen according
to its probability, in general given by the Arrhenius law (2.2). This procedure
can be realized by, e.g., the Metropolis algorithm [45].

Thermodynamic Monte Carlo simulations

MC can be used in equilibrium thermodynamics [21]. There, the system moves
from one state Sn to another Sm with every simulation step. Such a sequence
of configurations forms a Markov chain with a distribution which converges to a
stationary distribution P (S) in thermal equilibrium [46]. Here, the average value
of a quantity A is given by 〈A〉 =

∑

S A(S)P (S). For constructing the Markov
chain a matrix of transition probabilities, the Markov matrix W (Sn → Sm),
between two states is needed. These probabilities do not need relate to dynamical
transition probabilities, as long as the correct stationary density is achieved. The
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master equation describes the time dependence of P (S) [47, 48]:

∂P (Sn, t)

∂t
=

∑

m6=n

(W (Sm → Sn)P (Sm, t) − W (Sn → Sm)P (Sn, t)) , (2.4)

where the total probability is conserved (
∑

n P (Sn, t) = 1). This equation de-
scribes a main property of Markov processes: the knowledge of the state at time
t completely determines the future evolution. In equilibrium P (Sn) is constant
in time, ∂P (Sn, t)/∂t = 0, and the terms on the right-hand side of the equa-
tion must be equal. This demand is satisfied if the Markov chain fulfills detailed
balance:

W (Sn → Sm)P (Sn) = W (Sm → Sn)P (Sm), (2.5)

implying that the total rate of the transitions Sn → Sm is equal to the rate of
Sm → Sn. This is a sufficient, but not necessary condition for the convergence
of the Markov chain [21, 46]. Because the equilibrium distribution should be a
Boltzmann distribution, the values of P (Si) are chosen as Boltzmann probabilities
P (Si) = e−Ei/kT /Z with the partition function Z.

In MBE models, the implemented deposition and desorption processes often
violate detailed balance since deposition is not an activated process and des-
orption is an irreversible process because of the perfect UHV in an ideal MBE
chamber, where desorbed particles are removed immediately. Frequently attach-
ment processes are also considered to be irreversible and, hence, violate detailed
balance.

Kinetic Monte Carlo simulations

In contrast to simulations in thermodynamical equilibrium in the study of ki-
netic processes the implemented events and the transition probabilities corre-
spond to real physical events and probabilities, respectively. In Kinetic Monte
Carlo (KMC) methods real processes like e.g. diffusion are simulated [21,23,24].
Similar to the case of thermodynamical MC a Markov chain is generated by ran-
dom choice of events, but in KMC this chain represents a physically possible set
of events with probabilities proportional to their physical rates.

As discussed in Sec. 2.1.2 every event on the surface occurs according to a
rate given by the Arrhenius law,

R = ν0e
−Ea

kT , (2.6)

and the waiting time of an event is accordingly given by

τ = τ0e
Ea
kT , (2.7)

where the activation energy Ea is the barrier which has to be overcome by thermal
activation. At the process of diffusion a particle jumps from one binding site to a
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neighboring one and the activation energy results from the energy of the binding
state and the energy of the transition state: Ea = Et − Eb. The use of the
Arrhenius law is justified in the transition state theory based on the assumption
of thermal equilibrium situation at the occupation of binding and transition state
as discussed e.g. in [22].

By using the same attempt frequency ν0 in Eq. (2.6) for all diffusion processes
the condition of detailed balance (2.5) with Boltzmann probabilities is fulfilled:

Rn→m

Rm→n
= e−

Eb,m−Eb,n

kT , (2.8)

with the rate Rn→m of a jump from site n to the neighboring site m and the rate
Rm→n of the backward jump.

KMC simulations also can be combined with continuum methods. An exam-
ple of such a hybrid method is the method introduced by Russo, Sander, and
Smereka [49]. In this so-called quasicontinuum Monte Carlo method the motion
of adatoms is treated in continuum theory, but at attachment process the particle
is represented individually. The implementation of this technique could be inter-
esting if there is a large separation of time scales between the diffusion of adatoms
and fluctuations of island boundaries. A similar hybrid method is presented by
Schulze in [50].

The big advantage of MC is the realizable time scales of simulations, which
can range up to a few 1000s, although for larger systems the computer time effort
increases to high values. The MC method can be used, e.g., for investigating the
evolution of morphology, kinetics of growth or scaling exponents.

2.3.4 Continuum equations

The simplest growth model is the model of random deposition (RD). There,
a particle falls vertically from a randomly chosen site over the surface until it
reaches the surface, whereupon it is deposited and sticks to this position [7]. A
little bit more realistic is the random deposition model with surface relaxation.
In this model, the particle can diffuse after deposition until it finds the position
with the lowest height, but the diffusion is stopped if a maximum number of
moves is reached. Here, the surface becomes substantially smoother than in the
simpler RD model.

Simple growth processes like the above can be described by continuum equa-
tions [7] of the form

∂h(r, t)

∂t
= f(r, t) (2.9)

with the surface height h(r, t) and a function f(r, t) describing the number of
particles per unit which are incorporated at position r and time t on the surface.
Considering symmetry arguments [7] this function can be divided in a sum of
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two terms: a combination of powers of ∇nh and a noise term η(r, t) reflecting
the random fluctuations in the deposition process. Then, in the simplest case
the growth in the model with the surface relaxation can be described by the
Edwards-Wilkinson (EW) equation [7, 51]:

∂h(r, t)

∂t
= ν∇2h(r, t) + η(r, t). (2.10)

The first term of the right-hand side describes the smoothing effect of the interface
relaxation by a surface tension ν and η(r, t) is the noise term, which is a Gaussian
distribution.

If one adds a nonlinear term of form (∇h)2 to the EW equation one attains
to the Kardar-Parisi-Zhang (KPZ) equation [7, 52, 53]:

∂h(r, t)

∂t
= ν∇2h(r, t) +

λ

2
(∇h(r, t))2 + η(r, t). (2.11)

The second term is the lowest-order nonlinear term that can appear in the in-
terface growth equation and reflects the presence of lateral growth. Only by
implementation of this nonlinear term some properties of growing interfaces are
explainable. In general higher-order terms are not relevant and can be neglected
for describing growth.

2.3.5 Lattice gas vs. off-lattice models

Two major classes of models for the simulation of growth can be considered: on
the one hand lattice gas models with discrete binding sites [23] and on the other
hand more realistic off-lattice models using continuous coordinates [24, 54].

In the case of lattice gas models, see e.g. [55], the system provides discrete
sites and each particle can only be located on such a predefined site. Thus,
every lattice site is either empty or occupied. In the diffusion process a particle
jumps from one discrete binding site to another, i.e. the first site becomes empty
and the second becomes occupied. This method is ideal for use in simulations
in which all the particles have the same lattice constant, e.g. the simulation of
homoepitaxy. In general lattice gas models have a good computing performance
because it is not necessary to calculate the exact positions of the particles, but it
is only necessary to manage a set of integer variables representing the occupation
states of the sites. However, this method rules out some important effects like
the formation of dislocations.

An alternative method is the use of off-lattice, continuous space models, in
which the particles can be located in continuous positions independent of any
lattice. Obviously, this is of particular importance in the simulation of heteroepi-
taxial systems where the lattice constants of the deposited adsorbates may differ
from that of the substrate. Some interesting phenomena like the formation of
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dislocations in crystal can only be simulated if the particles may move indepen-
dent from predefined sites, see e.g. [56,57]. But here it is not possible to describe
the system by use of a simple set of integer variables and the consequence of this
modeling are significantly larger simulation times.

In this work we focus on the simulation of heteroepitaxial systems. Hence,
it is necessary to use an off-lattice framework for reproducing very interesting
effects resulting from different lattice constants of the materials. Especially the
investigation of alloy structures caused by strain effects requires the use of off-
lattice models.
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Chapter 3

Model and methods

Many crystals, which are interesting for technical applications, build a face cen-
tered cubic (fcc) lattice, for example metals like Cu, Pt, Au, Al or Ni. Fur-
thermore, alloys of many metals are arranged in an fcc lattice. In this work we
simulate epitaxial growth of fcc crystals in the [111] direction.

In this chapter we explain the structure of the fcc lattice and the correspond-
ing construction of fcc crystals in computer simulations. Thereafter, the used
potential, the model, and methods are presented in detail.

3.1 Structure of the fcc lattice

In the fcc lattice, which is a Bravais lattice, eight atoms are collocated so that
they form the corners of a cube, and six further atoms are located in the center of
every face of this cube [58,59]. This configuration has the highest average density
of about 0.74, corresponding to a closed packing of spheres. Fig. 3.1 (a) shows
the according unit cell, which has four atoms in it: 1/8 atom in every corner and
1/2 atom on each face resulting in 8 × 1/8 + 6 × 1/2 = 4 atoms. In this crystal
structure the coordination number is twelve.

Each of the planes drawn in Fig. 3.1 (a) represents a layer of the crystal in
the [111] direction. In every layer there is a triangular lattice, but the lattices of
two successive layers are moved against each other.

Fig. 3.1 (b) shows a look in the [111] direction with a first layer A of gray-
colored particles and a few particles of a second layer B upside layer A, colored in
black. In a third layer, there are two possibilities to arrange the particles [60]. If
atoms are placed directly above the atoms of the first layer (e.g. the gray-colored
particle on the left-hand side) and the atoms of the fourth layer above the atoms of
the second layer etc., one get an ABABAB... stacking which accords to hexagonal
close-packed (hcp) structure. Another possibility is to put the atoms of the third
layer C above the spaces of the first layer (e.g. the white-colored particle on the
right-hand side) and subsequently the atoms of the fourth layer directly above the

23



24 3. Model and methods

(a) (b)

Figure 3.1: (a) Left-hand side: illustration of fcc lattice structure. The drawn
planes represent the crystal layers in the [111] direction pointing perpendicular
to the planes. (b) Right-hand side: hcp lattice (left) and fcc lattice (right).

atoms of the first layer etc. Thus, one gets an ABCABC... stacking representing
the fcc lattice.

3.2 The potential energy surface

Our method is based on the work by Schindler and Wolf [61] and the main idea is
to calculate the energy barriers for all occurring events and to use the according
rates in a rejection-free simulation. The energy surface resulting from the existing
structure and the potential has the essential influence on all processes upon the
crystal surface. As already described in Sec. 2 the activation energy in a diffusion
process is given by the difference of the energies at the transition state and the
binding site. The binding site corresponds to a minimum in the potential energy
surface (PES) [62] and the transition state is represented by a first order saddle
point in the energy landscape [29]. Therefore the knowledge of the geometry and
the form of the PES is very important for the calculation of the activation energy
and the rates for the diffusion events in the simulation.

Computing the PES requires the reconstruction of the crystal at first. For
that purpose a few layers of an fcc crystal are built up as depicted in Fig. 3.1.
After that a test particle is moved in small steps across the constructed surface
and after each step the total potential energy of the system is minimized by vari-
ation of all particle coordinates in the crystal plus the test particle’s z coordinate
perpendicular to the surface. The potential energy and the plane-parallel coor-
dinates of the test particle yield the PES. Fig. 3.2 shows an example of such an
PES for a plane surface. The minima in that landscape represent the possible
stable binding sites of the test particle and the intermediate saddle points the
metastable transition sites. The locations of the maxima indicate the positions of
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Figure 3.2: Potential energy sur-
face calculated for a test particle
on a plain crystal surface. The
crystal consists of an fcc lattice.

the particles incorporated in the upper substrate layer. Positioning directly onto
these particles is most unfavorable for the test particle. Therefore the adatom
would have its highest potential energy there represented by a maximum in the
PES.

In every diffusion step a particle jumps from one binding site to another
whereas a barrier according to the activation energy has to be overcome. There-
fore it is required to compute the location of the corresponding saddle point and
the energy at this position. Some geometrical considerations can simplify the
calculations and accelerate the simulation.

3.3 Interaction potential

The PES and consequently all relevant sites are the result of the potential used
in the simulations. To keep the computational effort within a feasible limit we
use simple pair potentials in all our simulations in this work. In the majority of
cases we choose the Lennard-Jones 12,6 potential [58]:

Uij = 4 Eij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

. (3.1)

Here, Eij is the potential depth and rij the distance between the two interact-
ing particles i and j. The potential is zero at rij = σij . Thus, the parameter
σij controls the equilibrium distance of two isolated particles r0

ij = 21/6σij and
depends on the interacting materials. Hence, the lattice constant in an undis-
turbed monoatomic system of element i would be directly proportional to σii.
For definition of the generalized Lennard-Jones n,m potential see appendix A.

In our simulations the potential is cut off at a distance rcut = 3 r0
ij, which is

justified due to the fact that the potential has a steep form and converges fast to
Uij = 0 for increasing rij . This approximation allows a cheaper computation of
the potential, especially if a system with many particles should be simulated.
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3.4 Calculation of the activation energy

The diffusion plays an essential role in epitaxial growth. Therefore the calculation
of diffusion rates is one of the main requests during the simulation. In the process
of surface diffusion the adatom moves from one binding site on the lattice to
another and according to the Arrhenius law (cf. Sec. 2.1.2) the activation energy
Ea = Et − Eb has to be overcome for each diffusion step. On that account the
goal is to compute the energies at the transition site Et and at the binding site
Eb.

As described in Sec. 3.2 the transition site corresponds to a saddle point
in the potential energy surface (PES). For this reason the exact location of the
saddle point between the two binding sites (and the energy at this position) has
to be calculated. In addition the minimum in the PES representing the binding
site has to be determined.

3.4.1 Search for the saddle point

For finding saddle points there are no general methods which are guaranteed to
work. However, the saddle search algorithm of the so-called activation-relaxation
technique (ART) turned out to be a good method in the case of our energy
landscapes. In this technique the saddle point is found by using an iterative
algorithm [63–65], the steps in detail are:

1. The adatom is slightly moved from its actual binding site in the estimated
direction of the next minimum.

2. The particle is moved a small step in direction of the redefined force

~G = ~F − (1 + α)
(

~F · ~e
)

~e (3.2)

with α > 0, the acting force ~F and the unit vector ~e pointing from the last
minimum to the current position of the particle. The force ~G points to the
saddle point, so that the particle is pushed into the wanted direction.

3. The last step is repeated until the saddle point is reached and ~F = ~G = 0.

The force ~F is resulting from the potential and is zero at minima, maxima and
saddle points in the energy landscape. The number α controls the increment in
each iteration step, values between α = 1.0 and α = 2.0 lead to good results. By
contrast, too small values result in too many iteration steps during saddle point
search and too high values in missing the saddle point.

In principle, it would be necessary to relax the whole system in every step
of the saddle point search. That means that in every step the positions of all
particles in the crystal should be changed so that the total energy reaches a local
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minimum and the crystal is relaxed. The frozen crystal approximation, in which
only the adatom’s position is varied and all other particles are fixed, leads mainly
to a small shift of all barriers to higher values [66]. However, this simplification
yields a big speed-up of simulation time. For this reason we use the frozen crystal
approximation during searching for the saddle point.

A computationally less demanding method of determining the transition en-
ergy is to calculate the energy at the saddle point by considering the number of
particles in the neighborhood. This method has its origin in the ball and spring
model, where the hopping activation energy depends on the bonding environment
and the elastic energy associated with strain [67–71]. In this technique the activa-
tion energy is calculated from bond and strain energy Ea = Ebond−Estrain. Here,
the strain energy Estrain is the elastic energy difference of the system when the
site is unoccupied and when the site is occupied. The elastic energy is given by
harmonic interactions between an atom and its neighbors, using spring constants.
However, the bond energy Ebond depends on the number of occupied nearest and
next-nearest neighbors. This model describes many phenomena, but it can not
be used for simulation of misfit dislocations.

However, the number of occupied nearest and next-nearest neighbors can be
used to determine the energy at the saddle point Et. With that information the
activation energy Ea = Et − Eb could be calculated, if the binding energy is
known. The advantage of this method (with the exact binding energy) is that
the determined barrier is more realistic than in the case of pure ball and spring,
but fast in comparison to calculating the exact saddle point.

3.4.2 Binding energy

In addition to the energy at the saddle point the energy at the binding site
has to be calculated. However, the binding energy is computationally much
easier to determine than the transition energy at the saddle point. In most
crystal configurations it is effortless to guess the position of the binding site
by geometrical considerations. After the adatom is placed to the approximate
position the particle reaches the exact binding site with the binding energy Eb

by relaxation of the system.
The diffusion process of an adatom influences the other particles of the system

around its position. Due to the new adatom the particles feel a different potential
than before and as a result their positions change. In consideration of this the
environment of the adatom has to be relaxed after every diffusion or deposition
event. This is done by minimizing the total potential energy of the system,

Etot =
∑

i<j

Uij, (3.3)

by using a standard conjugate gradient method as described e.g. in [72]. To
save computer time only a local relaxation is performed. Thereby, solely the
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particles within a sphere of radius rcut around the adatom are treated and their
positions are changed according to the potential energies. Taking into account
that the change of these positions influence the potential energies of particles
within a sphere of radius 2rcut, the diffusion barriers within this radius have to
be recalculated and the according rates have to be updated (see next section).

To avoid strain generated by using only the local relaxation, a global relax-
ation after a certain number of steps (1000 in the most cases) has to be performed.
This ensures a simulation without artificial strain caused by local relaxation, but
the computational effort is kept within a manageable range.

3.5 Monte Carlo simulations

There are different possibilities to realize the stochastic Monte Carlo kinetics. The
implementation of simple techniques, which simulate the Markov chain defined
in Sec. 2.3.3 directly, leads to a slowing down of the simulation. This originates
from the fact that in many simulation steps the state of the system remains the
same.

In methods like the Metropolis algorithm [45] in every step an event is selected
and its rate is calculated, but the event is accepted only with a certain probability
according to its rate. This procedure leads to many events which are rejected
and do not change the system at all. Thus, especially at low temperature the
probability of a not-modifying step is high and many events are calculated, but
not performed.

3.5.1 Rejection-free method

In order to avoid time-consuming computations of events which will be rejected,
continuous time algorithms are used, examples are presented in [46, 73, 74]. In
consideration of this aim in every simulation step an event is selected according
to its rate and performed. In this rejection-free method only steps modifying
the system are taken into account. The required bookkeeping slows down the
simulation, but the speed-up by avoiding rejected events outweighs and leads to
a larger saving in time, especially at low temperatures.

In our rejection-free algorithm a modifying event i is selected and performed
according to its probability

pi =
Ri

Rd +
∑

j

Rj
. (3.4)

Here, Ri is the rate of the event i and Rd the deposition rate. The physical time
τ this event would take is exponentially distributed with a probability density
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Figure 3.3: Environment of a
moved particle in 2 dimensions.
The particles within a radius of
rcut (colored in dark gray) have
to be relaxed and all rates of the
particles within the outer circle
(in light and dark gray) have to
be recalculated.

P (τ) = R e−Rτ , where R is the sum of the rates of all events [75], and is given by

τ = − ln ρ

Rd +
∑

j

Rj

(3.5)

with an uniformly distributed random number ρ ∈ ]0, 1].

3.5.2 Algorithm

At the beginning of the simulation a catalogue with the rates of all modifying
events, which could potentially occur, is set up. For that purpose the rates of all
possible events have to be calculated.

After computation of the binding energy Eb,i, the transition energy Et,i, and
the resulting activation energy Ea,i the rate of each possible diffusion or desorp-

tion event i could be calculated according to the Arrhenius law Ri = ν0 e−
Ea,i

kT .
Moreover, the rate of a deposition event Rd results from the particle flux.

Following the work of Ahr [76] the rates are saved in a complete binary tree,
from which particular events will be selected during the simulation. The rejection-
free method is realized as follows:

1. An event i is drawn according to its probability pi = Ri/R and performed.

2. The crystal is locally relaxed around the location of the event and the rates
of all events affected by the local relaxation are recalculated. The search
tree is updated.

3. The time is increased by the time interval τ = − ln ρ/R, Eq. (3.5).

4. If the condition for a global relaxation is met the complete system is relaxed
and all diffusion rates are recalculated. The search tree is updated.
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5. The steps 1 to 4 are repeated until a terminating condition is fulfilled.

Here, the sum of all rates is given by R = Rd +
∑

j Rj . In step 2 it is obvious that
the interaction energies of many particles may be changed by the local relaxation
and all affected rates have to be recalculated. Assuming that the particles around
a distance of rcut have been relaxed the rates of all particles within a radius of
2rcut have to be updated. Fig. 3.3 shows an illustration for the 2-dimensional
case.

3.6 Simplifications

To keep the computational effort within a manageable limit some simplifications
are required. As aforementioned only simple pair potentials are used to represent
the interactions between the particles and, due to the fact that the Lennard-Jones
potential is very weak for large distances, the interaction is cut off at a certain
distance rcut.

But further simplifications can be implemented in order to reduce the simu-
lation time. The frequency of some processes is very small in comparison to that
of others, so that these processes may be excluded explicitly. For instance, the
desorption process is neglected due to the fact that the desorption rate is small
compared to diffusion or deposition for many materials. Thus for large enough
flux the time required for adding a monolayer may be much smaller than the
waiting time for a desorption event.

In this work we focus on the simulation of growth in the first adsorbate layer.
Particles which are deposited upon an existing island of the first monolayer diffuse
on this island until they reach the step edge. The rate of a downward jump decides
on which probability the particle jumps down or not. But for a finite energy
barrier of this process the particle jumps down after a finite time and arrives
at the first monolayer. In addition upward jumps into the second layer may be
forbidden because of the very large barrier. Therefore all important activities of
the adatoms in our simulations take place in the first monolayer, in which every
particle ends up at any time at all, and the movement of second layer particles
can be excluded in our simulations.

3.7 Conclusions

In the beginning of this chapter we have described the fcc crystal structure. If
one focus on the growth in the [111] direction a triangular lattice is observed in
each layer. Here, the adatoms may occupy fcc or hcp sites which result from an
ABCABC... or ABABAB... stacking of the layers being located on top of each
other.
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The potential energy surface resulting from the particle interactions controls
all growth mechanisms. Minima in the energy landscape represent binding sites
on the crystal surface and the saddle points correspond to the transition sites
during diffusion processes. The particle interactions are realized by using the
Lennard-Jones potential which is cut off at a distance rcut due to the convergence
of the potential to zero for large ranges.

For the calculation of the rates it is necessary to compute the activation ener-
gies of the particular events which may occur. For this purpose the saddle point
search of the activation relaxation technique is implemented in our simulations.
Here, the saddle point is determined by moving a test particle step by step in
direction of a redefined force. Then the energy at the transition site and the
binding site can be calculated and yield the corresponding activation energy. A
faster, but less exact method for determining the transition energy is to calculate
the energy from the number of occupied nearest and next-nearest neighbors.

Our simulation of epitaxial growth is based on a rejection-free algorithm which
allows a computationally more convenient approach than simple straight forward
methods. Especially at low temperatures many rejections of randomly selected
events would occur and the simulation time would increase.

Some simplifications keep the computational effort of our simulations within
a manageable range. For many material systems the process of desorption can be
neglected due to its very small rates. Since we focus on growth in one monolayer
the movements of second layer particles are also neglected.
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Chapter 4

Equilibrium simulations

In metal epitaxy, the formation of surface alloys is of particular interest. Often,
the involved elements form alloys in thin films on the surface [77]. Here, typical
structures are arrays of single dots, so-called droplets, or stripes. In particular
multicomponent systems are promising with respect to technical applications.
Therefore, in experiments many material systems have been investigated in the
last years, examples are CoAg/Ru(0001) [13, 16, 17] or PdAu/Ru(0001) [19].

The emerging structures keep the system in a state with strain as small as
possible. In this context surface alloying is a strain reducing mechanism. As
described in chapter 2 the interplay between strain relaxation and kinetic segre-
gation results in structures with minimal energy. Lattice mismatches and different
chemical and elastic interactions can lead to formation of regular patterns [77],
e.g. droplets or stripes studied in [78–82], but further parameters like the con-
centrations of the different components or the temperature have also an essential
influence on the formation of structures.

The alloying can lead to a changing in the morphology of the grown films.
An example for such a behavior is CoAg/Ru(0001): if deposited alone onto the
substrate, both Co and Ag form compact islands. However, their co-deposition
leads to a formation of ramified islands [13] consisting of alternating veins, see
Fig. 4.1. As supposed in [13] the different interaction energies yield an extra
barrier for a particle trying to cross the interface at the edge of a vein structure.
Hence, the particles prefer the observed vein structure and the dendritic island
shape. In this context it is of particular interest which microscopic mechanisms
are involved in detail. Another important point is the investigation which role
the interplay between lattice mismatch and different interactions plays. Just the
combination of both effects leads to very interesting alloy structures observed in
many experimental studies.

In this chapter we focus on investigations of alloying in equilibrium. To get
results in a feasible time a special approach is required. We describe the used
simulation model in the next section and present some results afterwards. The
influence of different parameters on the emerging structures can be investigated

33
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Figure 4.1: 5000 nm x 5000 nm scan-
ning tunneling microscopy image of
a dendritic CoAg island on Ru(0001)
(taken from Ref. [13]).

excellently with Monte Carlo simulations: many different effects can be switched
on and off selectively. Hence, the consequences of single effects on the alloy
structures can be analyzed.

4.1 The Model

Our aim is to study the formation of alloy structures in 2+1 dimensions in a
single atomic layer on the substrate. At first a relaxed substrate crystal has to
be reconstructed. Here, we prepare an fcc crystal of seven layers in the [111]
direction, which are relaxed and without any strain. The exact composition is
described in Sec. 3.1. Here, the distance between two particles is determined to
r0
SS = 1.090 σSS, for detailed calculation of equilibrium distances in an fcc crystal

see appendix B. In the simulations the three bottom layers are kept fix in order
to stabilize the crystal structure. All particles in these layers are immobile and,
hence, are not relaxed after any step during the simulation.

We model a ternary system of a substrate and two adsorbate materials [83].
In the following, we denote the substrate as S and the adsorbates as A and B.

For calculating the interaction between the particles we use a simple pair
potential, namely the Lennard-Jones 12,6 potential:

Uij = 4 Eij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

, (4.1)

where the subscripts i, j ∈ {A, B, S} specify which elements are involved (see
Sec. 3.3). For comparison we use the generalized Lennard-Jones n, m potential
with exponents different from n = 12 and m = 6 (c.f. appendix A) in some cases.
In order to speed up the required calculations of potential energies, we cut off
the interactions for distances larger than rcut = 3 r0

SS.
In principle, we do not aim at material specific simulations, our goal is a

qualitative understanding of mechanisms that govern two-dimensional alloy for-
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mation in a ternary system. Hence, we restrict the choice of parameters Eij, σij

to simple situations which capture only the most essential features of the pattern
formation process. We use the briefer notation Ei = Eii and σi = σii. Thus, the
parameter σS = σSS defines the unit of length in the following, i.e. σS = 1.

Since the lattice spacing is proportional to σ [58] the relative misfit ε results
directly from σS and σA:

ε =
σA − σS

σS
. (4.2)

With respect to the misfit relative to the substrate we study symmetric con-
figurations with σA = 1− ε and σB = 1 + ε (ε > 0) for the two adsorbates A and
B. The adsorbate energies EA, EB are chosen equal and their magnitude is fixed
relative to ES:

EA = EB =
ES

6
. (4.3)

Due to this choice the interaction between substrate particles is very strong and
the diffusion of substrate particles, as well as interdiffusion of substrate and adsor-
bate, can be neglected. For this reason no intermixing of substrate and adsorbate
materials can occur.

In order to keep the number of free parameters small we follow a standard
approach and set for interaction involving different materials in the following way:

EiS =
√

EiES and σij =
σi + σj

2
where i, j ∈ {A, B, S}. (4.4)

The energy EAB is of special interest and varied separately instead of been cal-
culated by the square root.

In all our simulations we consider hexagonal substrate regions with fixed
boundary conditions and an edge length of 51 particles, reflecting the symmetry
of the lattice. At the beginning the (111) surface is covered by a complete layer
of randomly distributed A and B particles. The concentrations of the adsorbate
elements are fixed and denoted as ηA and ηB with ηA + ηB = 1.

The system is driven towards thermal equilibrium at temperature T by means
of a rejection-free Monte Carlo method [46,84]. The precise path towards equilib-
rium is of no interest here and therefore, we can implement any efficient dynamics,
which need not have a realistic microscopic counterpart. Hence, we consider the
non-local exchange of one A and one B particle on the surface with no limitation
on their distance. This results in a significantly faster equilibration than local
Kawasaki dynamics [46].

At the beginning the substrate crystal is randomly covered by a complete
layer of A and B particles of concentrations ηA and ηB, respectively. Then, in
every MC step an A particle at site i exchanges its binding site with a B particle
at site j. The pair is selected in each case according to the rates

Ri→j = e
∆Hi−∆Hj

2kT (4.5)
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Figure 4.2: Energies for different particles in a distance r at sites i and j. The
rate of an exchange event of the two particles depends on the energy differences
∆Hi = Hi(A) − Hi(B) and ∆Hj = Hj(A) − Hj(B).

which satisfy the detailed balance condition (2.5). Here ∆Hx = Hx(A) − Hx(B)
denotes the energy difference of the system with an A or B particle at site x,
respectively. Figure 4.2 shows the two configurations of a pair of particles at sites
i and j. In order to determine Hx(A) (Hx(B)) an A (B) particle is set at the
position x and all particles within the cut-off radius rcut around x are relaxed.
This state corresponds to a minimum of the total potential energy in the system.
The probability for an A particle on site i to exchange its site with a B particle
at site j is given by

pi→j = pA→B
i pB→A

j (4.6)

with the single probabilities

pA→B
i =

RA→B
i

∑

m

RA→B
m

and pB→A
j =

RB→A
j

∑

n

RB→A
n

. (4.7)

Here, the rate RA→B
i for a change from A to B particle at site i results from

RA→B
i = e∆Hi/2kT if the site is occupied by an A particle and zero otherwise.

Analogously it is essential that RB→A
j = e−∆Hj/2kT if site j is occupied by a B

particle and zero in other case.
Due to this factorization of probabilities for drawing a site i occupied by an

A particle and for drawing a site j occupied by a B particle in each case a binary
tree can be used. Both particle changes are selected according to the probabilities
pA→B

i and pB→A
j , respectively. Thus, two binary trees are implemented to select a

complete exchange event. To avoid complicated and time-consuming calculations,
an exchange process is only permitted if the distance between the involved sites
i and j is larger than rcut.

As described in Sec. 3.5 all particles around the two involved sites have to be
relaxed after the exchange process is performed. Furthermore, the affected rates
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concerning the particles within a distance of 2rcut have to be recalculated.

Hence, the complete algorithm is:

1. The substrate crystal is prepared and covered with a complete layer of
randomly distributed adsorbate particles.

2. An exchange event A → B at a site i is drawn according to its probability
pA→B

i and performed.

3. An exchange event B → A at a site j is drawn according to its probability
pB→A

j and performed.

4. The crystal is locally relaxed around the positions of the two particles and
the rates of all events affected by the local relaxation are recalculated. The
search tree is updated.

5. If the condition for a global relaxation is met the complete system is relaxed
and all diffusion rates are recalculated. The search tree is updated.

6. Steps 2 to 5 are repeated until a terminating condition is fulfilled.

After a large enough number of MC steps the system is in equilibrium and the
simulation can be stopped.

4.2 Influence of model parameters

Naturally, the main question of every simulation is which influence have the
particular parameters on the formation of structures. In this context we simulate
equilibrium configurations for different misfits, interaction energies, variations of
the potential, concentrations of components and temperatures.

4.2.1 Misfit and interaction energy

Simulations with various misfit values show that the misfit has, as expected, a
strong effect on the structure of surface alloy. Fig. 4.3 shows results for different
misfits ε = 0%, 5.5%, 7.5% (from left to right) at a temperature T = 250 K after
105 MC steps. This number of steps is sufficient to reach the equilibrium, see
appendix C. The edge length of the hexagon (system size) is set to 51 particles
and the energies for interaction between particles of same type are ES = 3.0 eV
and EA = EB = 0.5 eV , respectively. In the upper row the energy EAB is set to
0.35 eV and to 0.45 eV in the lower row. In all pictures the larger B particles are
drawn in black in contrast to the smaller A particles which are gray colored.

Since the misfit is zero the two adsorbate materials are strictly separated
in two regions (left column in Fig. 4.3). The reason for this effect is that the
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Figure 4.3: Upper row: Simulation results for Lennard-Jones interactions with
EAB = 0.7 ·EA = 0.35 eV and ε = 0%, 5.5%, 7.5% (from left to right), the particle
concentrations are ηA = ηB = 0.5. The bigger B particles are shown in black.
Lower row: Simulation results for EAB = 0.9 · EA = 0.45 eV , all other values as
above.
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Figure 4.4: Left: The average island size s consisting of B particles vs. absolute
value of misfit ε at the energies ES = 3 eV , EA = EB = 0.5 eV , EAB = 0.45 eV
and the particle concentrations ηA = ηB = 0.5, averaged over three independent
simulation runs. Right: The number of islands n vs. absolute value of misfit ε
at the same parameters.
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Figure 4.5: The average ratio between
the number of neighbor particles of
the same type and the total number
of neighbor particles vs. the abso-
lute value of misfit ε at the energies
ES = 3 eV , EA = EB = 0.5 eV ,
EAB = 0.45 eV and the particle con-
centrations ηA = ηB = 0.5, aver-
aged over three independent simula-
tion runs.
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Figure 4.6: The ratio between the
number of B particles at an island bor-
der and the total number of B parti-
cles vs. the absolute value of misfit
ε at the energies ES = 3 eV , EA =
EB = 0.5 eV , EAB = 0.45 eV and the
particle concentrations ηA = ηB = 0.5,
averaged over three independent sim-
ulation runs.

interaction between particles of the same type is stronger than between different
particles: EA = EB > EAB. Thus, in this case of no misfit the materials try
to find a configuration with minimal number of A/B nearest neighbor pairs and
separation can be observed for all values EAB < EA, EB, if ε = 0.

With increasing misfit islands are formed and their number increases with
ε, see Fig. 4.4. The average size of the islands decreases accordingly. Due to
the interaction energy the particles prefer to build one large region of particles
of the same type which are located on lattice sites given by the substrate. But
due to the positive misfit the B particles are not able to form a large island
and simultaneously to be located at lattice sites. Therefore larger regions of
adsorbate B break apart with increasing misfit and form smaller islands enclosed
by A particles. Larger misfits intensify this effect and more islands are formed.

Fig. 4.5 shows the average ratio between the number of nearest neighbor
particles of the same type and the total number of nearest neighbor particles in
dependence on the misfit. The graphic demonstrates that the part of neighbor
particles of the same material decreases with increasing misfit. This result is
analogous to the average island size: if the size of islands decreases the B particles
have accordingly more and more neighbors of adsorbate A. Simultaneously the
number of B particles which are located at a border of an island increases with
increasing misfit, see Fig. 4.6. At smaller islands more B particles are located
next to A particles.
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Figure 4.7: Upper row: Snapshots for simple cubic lattice at T = 250 K with
EAB = 0.8 EA and ε = 4.5%, 5.0%, 5.5% (from left to right). Lower row: Snap-
shots for simple cubic lattice with ε = 5.5% and EAB = 0.6 EA, 0.8 EA, 0.9 EA

(from left to right). The panels show 80 x 80 sections (Taken from Ref. [56]).

However, the value at which the formation of islands starts depends on the
energy EAB. A larger value of EAB advances the generation of islands because
the interface becomes more and more favorable with stronger interaction between
particles of different materials. Therefore, the number of islands increases with
increasing EAB if the misfit is unequal to zero. The smaller EAB, the more energy
it costs to realize boundaries between A and B domains and the larger the clusters
will be.

Thus, misfit and the energy EAB have both an essential influence on sur-
face structures. Hence with both parameters the development of islands can be
controlled and appropriate combinations result in islands of various size.

A similar behavior has been observed in the case of a simple cubic lattice
[14, 56, 85]. However, due to the symmetry stripes instead of islands are formed,
see Fig. 4.7. Here, misfit and interaction energy control the stripe width.

So far we considered the case EAB < EA, EB. But if the interaction energy
between different adsorbates EAB is larger than between adsorbates of the same
sort EA and EB, respectively, the situation changes and completely new structures
emerge. As Fig. 4.8 shows, in this case stripe-like structures are formed. The
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Figure 4.8: Simulation results for Lennard-Jones interactions with ε = 5% and
energies EA = EB = 0.5 eV and EAB = 0.45 eV, 0.75 eV, 1.50 eV (from left to
right), the particle concentrations are ηA = ηB = 0.5. The panels show 50 x 50
sections, the bigger B particles are drawn in black.

large energy value of EAB takes care that the number of A/B nearest neighbor
pairs is maximal. Since the concentrations of A particles and B particles are
equal (ηA = ηB = 0.5) this is realized by stripes. The higher the energy EAB,
the stronger is this effect. Thus, higher energies lead to fewer bendings and more
straight stripe sections.

Fig. 4.9 also shows that the form of the stripes is affected by the misfit. Large
misfits result in more bendings and fewer straight stripe sections because high
misfits prefer having not too many particles in a line. Fig. 4.10 confirms the
optical impression. Here, the normalized distribution of the number of straight
stripe lengths for various misfits is plotted. The graphic shows the frequency of
straight parts of particle chains (sections without a bend), independent of the
direction of these straight lines. Lower misfits lead to more straight segments
in contrast to higher values, for which more bendings and hence shorter straight
segments are favored.

This formation is again a consequence of the competition between misfit and
particle location on lattice sites and originates from the fact that, for high positive
misfits, particles which are jammed between two neighbors of the same type try
to sidestep and build a bend. Hence, a meandering configuration has less strain
and becomes more favorable for increasing misfit.

4.2.2 Interaction potential

So far we considered Lennard-Jones potentials with exponents n = 12 and m = 6.
But we also studied generalized n, m potentials with other exponents according
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Figure 4.9: Simulation results for Lennard-Jones interactions with EA = EB =
0.5 eV , EAB = 1.5 eV and ε = 1%, 4%, 7% (from left to right), the particle
concentrations are ηA = ηB = 0.5. The panels show 50 x 50 sections, the bigger
B particles appear in black.
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Figure 4.10: Relative number nrel = n/ntotal of straight stripe lengths l in the
system for different misfits, other parameters as in Fig. 4.9.
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Figure 4.11: Surfaces for a modified Lennard-Jones potential with exponents
n = 10.5 and m = 6. The parameters are EA = EB = 0.50 eV , EAB = 0.40 eV
and ε = 0%, 5.5%, 7.5% (from left to right), the particle concentrations are ηA =
ηB = 0.5.
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with n > m [86, 87], see also Appendix A. By variation of the exponents more
realistic interactions can be implemented, examples for different metals are given
in [87]. Simulations with n 6= 12 and m 6= 6 lead to very similar results as the 12,
6 Lennard-Jones potential, but the computational effort strongly increases. As
an example, Fig. 4.11 shows surfaces in simulations with n = 10.5 and m = 5.5.
The qualitative findings do not depend on the detailed properties of the potential
considered and persist for a large variety of interactions.

4.2.3 Concentration of components

The variation of concentrations of the adsorbate components has essential con-
sequences on the formation of alloy structures. In the simulations presented up
to now the used concentrations have been ηA = ηB = 0.5. By contrast, Fig. 4.12
displays surfaces with interaction energies EAB < EA, EB, but different A parti-
cle concentrations ηA = 0.3, 0.5 and 0.7. The snapshots show that the average
island size changes with the adatom concentrations.

This effect can be quantified by calculating the average B island sizes and the
according number of B islands, see Fig. 4.13. The diagram on the left hand side
shows the average island size consisting of B particles, the diagram on the right
hand side the according number of islands. Small concentrations of A particles
ηA lead to big B islands, because the B particles have to form large clusters as
a result of their superior number. With increasing ηA the average island size
decreases, but for large concentrations of A particles the islands of B particles
becomes only slightly smaller. So, for high values of ηA the average size depends
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Figure 4.12: Surfaces for ηA = 0.3, 0.5, 0.7 (from left to right). The other param-
eters are EA = EB = 0.50 eV , EAB = 0.45 eV and ε = 4.5%.
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Figure 4.13: Left: The average island size s consisting of B particles vs. the
concentration of A particles ηA at the energies ES = 3 eV , EA = EB = 0.5 eV ,
EAB = 0.45 eV and misfit ε = 4.5%. Right: The number of B islands n vs. the
concentration of A particles ηA at the same parameters.
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Figure 4.14: Simulation results for Lennard-Jones interactions with particle
concentrations ηA = 0.3, 0.5, 0.7 (from left to right), the other parameters are
EA = EB = 0.5 eV , EAB = 0.75 eV , ε = 1% and T = 250 K. The panels show
50x50 sections, the bigger B particles appear in black.

only weakly on the concentration.
On the contrary, the number of B islands has a maximum at a concentration

ηA ≈ 0.55. For low values the number increases with increasing ηA according to
the average island size, until a maximum is reached, and for higher concentrations
the island number decreases again. The reason for this is the decreasing number
of B particles: at a certain point there are not enough B particles in the system
to build enough islands of the favored size and therefore the number of islands
decreases.

In addition, the average distance between B islands changes with ηA/ηB. With
decreasing number of islands their distances increases more and more, so that the
islands are dispersed over the whole crystal.

If the interaction between particles of different material is stronger than that
between particles of the same material, EAB > EA, EB, the variation of the
particle concentration from a low to a high value leads to an interesting evolution
of patterns. Fig. 4.14 illustrates the effect for three different concentrations
ηA = 0.3, 0.5, 0.7 with EAB = 0.75 eV > EA = EB = 0.5 eV , misfit ε = 1%
and temperature T = 250 K. At low concentrations of the smaller A adatoms,
each of them is surrounded by neighbors of B type only. For slightly larger ηA,
short linear clusters of B atoms begin to form, and for ηA ≈ ηB we observe
stripe formation all over the system cf. Fig. 4.14 (center panel). Finally, a
high concentration of A particles leads to the formation of structures which are
similar to the case of small ηA, but with the role of A and B exchanged. In
addition, one can recognize the formation of line defects at the right and the
left panels dominated by particles of different type respectively. Qualitatively,
the behavior resembles the evolution from 2D droplets to inverted 2D droplets
during deposition of Pb on Cu(111) investigated in [88–90].

For concentrations between ηA = 0.5 and ηA = 0.66 the particles with positive
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Figure 4.15: Surfaces for different temperatures T = 200 K, 400 K, 600 K (from
left to right). The other parameters are EA = EB = 0.50 eV , EAB = 0.45 eV ,
ε = 4.0% and ηA = ηB = 0.5.

misfit tend to form small islands with a few particles in a row. The emerging
small stripe-like shaped islands are evenly dispersed over the whole system. In
this case some structures are very similar to Pd0.72Au0.28 / Ru(0001) systems
studied in [19].

4.2.4 Temperature

The temperature has also an influence on the pattern formation. Fig. 4.15 shows
the change of island forms with temperature. At low temperatures the islands
are quite compact, but with increasing temperatures their structures meander
more and more, and the islands are rather elongated at higher temperatures.

However, number and size of islands depend only weakly on the temperature
in the observed interval, see Fig. 4.16. Only at temperatures higher than 400K
the fluctuations increase and a very small trend is visible: the average island size
increases a little bit and accordingly the number of islands decreases.

In Fig. 4.17 the average ratio between the number of neighbor particles of
the same type and the total number of neighbor particles in dependence on the
temperature is plotted. The part of B particles slightly decreases with increasing
temperature. This confirms the optical impression that the islands change their
shape, and the compact forms meander at higher values of T to ramified islands.
This effect becomes more evident in Fig. 4.18. The graphic shows the ratio
between the number of B particles, which are located at an island border, and
the total number of B particles in dependence on the temperature. The curve
progression demonstrates that more and more B particles become border particles
with increasing T and proves obviously the changing island shapes.

In the case of EAB > EA, EB, the form of stripes depends also on the temper-
ature as Fig. 4.19 illustrates. An increase of the temperature leads to a similar
effect as an increase of the misfit: At low temperatures the average length of
straight stripe sections is larger than at higher temperatures. Fig. 4.20 shows
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Figure 4.16: Left: The average island size s consisting of B particles vs. the
temperature T at the energies ES = 3 eV , EA = EB = 0.5 eV , EAB = 0.45 eV ,
misfit ε = 4.0% and concentrations ηA = ηB = 0.5. Right: The number of B
islands n vs. the temperature T at the same parameters.
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Figure 4.17: The average ratio be-
tween the number of neighbor parti-
cles of the same type and the total
number of neighbor particles vs. the
temperature T at the energies ES =
3 eV , EA = EB = 0.5 eV , EAB =
0.45 eV , misfit ε = 4.0% and concen-
trations ηA = ηB = 0.5.

Figure 4.18: The ratio between the
number of B particles at an island bor-
der and the total number of B parti-
cles vs. the temperature T at the en-
ergies ES = 3 eV , EA = EB = 0.5 eV ,
EAB = 0.45 eV , misfit ε = 4.0% and
concentrations ηA = ηB = 0.5.
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Figure 4.19: Surfaces for T = 250 K (left) and 600 K (right). The other pa-
rameters are ES = 3.00 eV , EA = EB = 0.50 eV , EAB = 0.75 eV , ε = 1% and
ηA = ηB = 0.5.
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Figure 4.20: Relative number nrel = n/ntotal of straight stripe lengths l in the
system for different temperatures. The other parameters are as above.
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the normalized distribution of the number of straight stripe lengths for different
temperatures. In contrast to low temperatures high values result in more bend-
ings and fewer straight sections and the structures are evocative of high misfits.
Thus, also in the case of EAB > EA, EB a meandering effect can be observed, if
the temperature increases.

4.3 Conclusions

In this chapter we have presented simulation results for systems in thermal equi-
librium. For this purpose we reconstructed an fcc crystal with three fixed bottom
layers. At the beginning the substrate was randomly covered with one layer of ad-
sorbate particles of two different materials and afterwards the system was driven
towards thermal equilibrium by using a rejection-free Monte Carlo method.

It was shown that the variation of misfit and interaction energies EAB leads
to different numbers of islands and different average island sizes. Thus, surface
confined alloying is a possible strain relaxation mechanism. Increasing misfit just
as large values of EAB result in small islands of B particles. If the interaction
between different adsorbate species is even stronger than that between same
species, EAB > EA, EB, stripe-like structures are formed. However, the detailed
forms of the stripes are influenced by the misfit. The time consuming use of
generalized Lennard-Jones potentials with exponents n 6= 12 and m 6= 6 yield
very similar results as the computationally advantageous 12,6 potential.

The variation of particle concentrations also has an influence on the emerging
structures. A small concentration of A particles leads to the formation of only
a few big B islands, but with increasing ηA the average island size decreases.
However, for high concentrations of adsorbate A the size varies only weakly. If
EAB > EA, EB at low concentrations of one sort single islands of this material are
formed. The evolution from low to high concentrations resembles qualitatively the
evolution from 2D droplets to inverted 2D droplets observed e.g. in experimental
studies of Pb / Cu(111) systems [88–90].

Different temperatures indeed hardly change the number of formed islands,
but the temperature controls the shape of the islands. Higher values result in
more meandering structures with ramified islands.

Due to the self-organization of the involved particles, promising nanostruc-
tures could be produced just by controlling the parameters. In this context the
pattern formation for further lattices in equilibrium simulations can be of inter-
est. Therefore, it is necessary to investigate the behavior of ternary systems with
other realistic lattice symmetries. Another interesting point is the use of more
realistic potentials, like e.g. empirical bond order incorporating potentials [91,92]
or tight-binding potentials [93].
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Chapter 5

Growth simulations

In the last chapter we have presented which structures are built on the surface
if the system is in equilibrium. In this chapter we investigate how structures are
emerging in the first adsorbate monolayer onto the substrate.

Similar to the case of equilibrium, alloying structures can be formed to reduce
strain in growth simulations of ternary systems with two adsorbate materials.
Strain relaxation and kinetic segregation are also the two main mechanisms lead-
ing to energetically favorable configurations. In this context the calculation of
different energy barriers for various parameters is of particular interest. Here, an
important point is how the activation barriers and the resulting structures are
influenced by the different parameters like interaction energy or misfit.

For simulating epitaxial growth the particular processes, which are playing
the essential role, have to be implemented. In the first section we describe the
model used in our simulations and how the processes are realized. After that we
present some results of the Kinetic Monte Carlo (KMC) simulations and draw a
comparison to the equilibrium simulations of the previous chapter.

5.1 The growth model

The main goal is to investigate the influence of different parameters on the growth
and the structure formation. For that purpose we use a basic setup similar to
that of the equilibrium simulations as introduced in Sec. 4.1. At the beginning
of the simulation an fcc crystal consisting of substrate particles is constructed
and the interactions of all particles in the simulations are realized by the 12,6
Lennard-Jones potential, which is cut off at the distance rcut = 3 r0

S.

However, the simulation of realistic growth processes needs another approach
than in the case of equilibrium simulations. Therefore we use an off-lattice Kinetic
Monte Carlo method to realize the growth dynamics. As in the equilibrium
simulations every event gets a certain rate and all rates are saved in a binary tree.
But in contrast to the equilibrium simulations only one binary tree is necessary

51
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and each event therein represents a realistic microscopic process.

5.1.1 Off-lattice Kinetic Monte Carlo simulations

In every simulation step one event from the binary tree is drawn. Since desorption
is neglected the only possible mechanisms are deposition and diffusion.

The deposition event occurs with a certain rate Rd and the sort of the de-
posited particle is chosen with a probability of pA for adsorbate A and pB for
adsorbate B. The deposition rate depends on the flux which reaches the sur-
face. In binary systems only one adsorbate is deposited and accordingly pA or
pB, respectively, is set to 1, while the other value is zero. By contrast in ternary
systems the probabilities are in general chosen as pA = pB = 0.5.

If a deposition event is drawn, a new adsorbate particle, which is arriving at
the crystal surface, is set on a random free position on the substrate and then
the adatom is positioned at the next energetic favorable binding site by local
relaxation. After that the rates of all particles in the neighborhood have to be
recalculated and the binary tree has to be updated.

The rate of a diffusion event depends on the activation energy which results
from the binding energy and the energy at the saddle point, see Sec. 3.4. There-
fore it is evident that for every possible diffusion process the saddle point has to
be determined.

Naturally for every new configuration the activation energies and the accord-
ing rates of the affected region have to be recalculated and the binary tree has to
be updated, so that all events are drawn with the correct probability.

5.1.2 Ball and spring model

An disadvantage of the off-lattice Kinetic Monte Carlo method described in the
last section is the enormous computational effort for calculating the saddle points.
In many cases this slows down the simulation heavily and a simplification is
necessary to obtain significant results.

An idea adumbrated in Sec. 3.4 is to use a ball and spring like method
for determining the energy at the transition state without calculating the exact
position of the saddle point. In this method the number of occupied nearest
and next-nearest neighbors is counted and with this information the energy at
the saddle point is estimated. For that purpose energies at the correct saddle
points are measured by using the activation-relaxation technique for different
configurations and parameters and a catalogue is set up. This list can be used
for getting the approximate energy at the transition site between two binding
sites in the growth simulations.

In contrast to the pure ball and spring model, as used e.g. in [67], the energy
at the binding site is calculated exactly. This approach allows a faster simulation
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Figure 5.1: Top view on an fcc
surface: Particle 1 located on an
fcc site has three possible neigh-
boring sites (all are hcp sites) to
which it can jump. Particle 2
positioned on a hcp site can at-
tain one of the three adjacent fcc
sites.

than in the case of an exact calculation of the saddle point energies, but yields
more precise values of the activation energies than pure ball and spring.

5.2 Energy barriers

Since the rates of all diffusion events depend on the energy barriers the study of
these barriers is of particular interest. Thus the energy barriers control the dy-
namics and, consequently, the formation of structures in epitaxy. In this context
the main question is how different parameters influence the energy values.

In principle every particle on an fcc surface may be located on an fcc or a hcp
site. Both positions are binding sites resulting from the lattice as demonstrated
in Sec. 3.1. During the growth process an adatom jumps from an fcc site to a
hcp site or vice versa, respectively, because every fcc site is surrounded only by
hcp sites and every hcp site only by fcc sites. Fig. 5.1 illustrates this fact. Since
the adatom diffuses on the flat surface without any islands or step edges it has
three adjacent sites to which it can jump.

5.2.1 Diffusion on plane surfaces

Due to its essential effect on the growth behavior the influence of the misfit on
the energy values is a subject which is worthwhile to study. Therefore we deal at
first with the interesting question how the binding energies and diffusion barriers
on the plane substrate surface depend on the misfit.

Fig. 5.2 shows the binding energy Eb of an isolated particle placed on an fcc
site in dependence on the misfit. The bigger the misfit the stronger is the binding
to the surface and the binding energy constantly decreases with increasing misfit.
Similar results with decreasing energy are presented in [94–98]. The transition
energy Et displayed in Fig. 5.3 shows a very similar behavior. Here, the saddle
point is determined by ART. The diffusion barrier resulting from transition energy
and binding energy, Ea = Et −Eb, also decreases linearly with increasing ε, as it
is demonstrated in Fig. 5.4.
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Figure 5.2: Binding energy of
a particle on an fcc site on
the plane surface vs. misfit.
The interaction energies in the
used Lennard-Jones 12,6 poten-
tial are ES = 3.00 eV and EA =
0.50 eV .
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Figure 5.3: Transition state en-
ergy of a particle on an fcc site
vs. misfit. The interaction ener-
gies are the same as above.
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Figure 5.4: Diffusion barrier of a
particle on an fcc site vs. misfit.
The interaction energies are the
same as above.
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Figure 5.5: Diffusion barrier of a
particle on a hcp site vs. misfit.
The interaction energies are the
same as above.
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Figure 5.6: Potential energy for
a test particle diffusing on the
surface in direction of the x axis.
The misfit is ε = 3%.

The behavior on hcp sites is the same: both binding and transition state
energy decrease with increasing misfit. The activation energy for a diffusion
event from a hcp to an fcc site is plotted in Fig. 5.5, the curve progression is
almost the same as in the case of fcc site described before.

In this context it is noticeable that an adatom on an fcc site and an adatom on
a hcp site have almost the same binding energy. The value on an fcc site is a little
bit lower, but the difference between the two sites is very small: ∆E(fcc−hcp) ≈
2 meV . Fig. 5.6 shows the potential energy for a test particle diffusing on the
surface in direction of the x axis. The two minima in the curve represent the
fcc and the hcp site having almost the same energy. The maximum in the figure
separating the two binding sites corresponds to the saddle point in the three-
dimensional PES. Thus, there is nearly no energetic preference for fcc sites on
the surface of the fcc substrate crystal.

In experimental and theoretical studies it is shown that it depends on the
used materials which site is preferred. In the case of Cu on Cu(111) [99], Pt
on Pt(111) [100], and Ag on Al(111) [101] an fcc site preference was found, in
the case of Ir, Re, and W on Ir(111) and Al on Al(111) [102] it is determined
single adatoms to be located on hcp sites [103, 104]. A rule predicting the site
preference was developed for metals having a partly filled d band [105]. Another
aspect which has an influence on the favored site is the cluster size of adatoms, as
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Figure 5.7: Top view of an is-
land placed on an fcc(111) sur-
face with the two characteristi-
cal kinds of step edges A and B.

was demonstrated for Ir/Ir(111) [106]. Nevertheless, in most cases the difference
of the binding energies is very small for single adatoms and the particles can
occupy the fcc as well as the hcp site. The dynamics of jumps out of fcc versus
hcp sites are much the same. Thus, the results in our simulations are comparable
with experimental behavior.

5.2.2 Barriers at step edges

Another point to be considered are the energy barriers at step edges. There are
two different kinds of island edges on an fcc(111) surface, see Fig. 5.7. The illus-
tration shows so-called A-steps which form {100} microfacets at the step edge and
B-steps corresponding to {111} microfacets. Due to the different configurations
different diffusion behaviors can be observed at the different edges [22,96,107,108].
In order to investigate the growth behavior it is of particular interest to study
barriers at different edges and positions at the island.

For such investigations we constructed a hexagonal island on the substrate and
set a particle of the same type at the step edge. In Fig. 5.8 the binding energy of
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Figure 5.8: Binding energy of a
particle positioned at a step edge
vs. misfit. The interaction ener-
gies in the used Lennard-Jones
12,6 potential are ES = 3.00 eV
and EA = 0.50 eV .
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Figure 5.9: Diffusion barrier of a
particle positioned at a step edge
vs. misfit. The interaction ener-
gies are the same as in Fig. 5.8.

the particle in dependence on the misfit is plotted. The curves for a position at
an A-step and for a position at a B-step show a very similar progression. Since
the misfit is negative the behavior is the same as on a plane surface and the
binding energy decreases with increasing misfit. However, at a certain value of ε
a minimum is reached and the binding energy begins to increase.

The reason for that behavior is that the island expands with increasing posi-
tive misfit and pushes the single particle into an energetic less favorable position.
At a certain value this effect is stronger than the effect of decreasing energy de-
tected on a plane surface and the binding energy increases. In the studied system
the minimum is at about ε = 3.5% in the case of an A-step and at about ε = 2.0%
in the case of a B-step.

The diffusion barriers decrease with increasing misfit as shown in Fig. 5.9 for
an A-step and for a B-step, respectively. In the first case the energy barrier for
a jump weakly decreases at the beginning and begins to diminish almost linearly
at ε ≃ −2.0%. At the B-step the curve is smooth at the beginning and crosses
over to a parabola with increasing misfit. For values of ε & 5% the barriers at
B-steps are smaller than at A-steps.

At ε ≃ 5.5% for an A-step and at ε ≃ 5.0% for a B-step, respectively, the
barrier becomes smaller than that on the plane surface and step edge diffusion
becomes more favorable in energetic respect. A similar effect is observed in a
simulation of growth on a bcc(100) surface [98].

5.3 Influence of misfit and interaction energy

In the following we present and discuss results obtained in off-lattice KMC sim-
ulations. The calculation of saddle point energies by means of ART would be
very time consuming, and to keep the times of our growth simulations within a
feasible limit we use the ball and spring like model described in Sec. 5.1. Since
we are only interested in the submonolayer regime, we ignore particles deposited
onto other particles and jumps of particles onto others are suppressed.

As in the case of equilibrium the attempt frequency is set to ν0 = 1012 Hz
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Figure 5.10: Upper row: Simulation results for Lennard-Jones interactions with
ES = 3.00 eV , EA = 0.75 eV , and ε = −5.0% with n = 200, 400, 800 adsorbate
particles (from left to right). The temperature is set to T = 700 K and the
deposition rate to Rd = 0.0005 ML/s. Lower row: Simulation results for ε =
+5.0%, all other parameters are the same.

for all simulation runs. Unless otherwise mentioned the temperature is chosen as
T = 700 K, the edge length of the hexagon (system size) as 25 particles and the
deposition rate as Rd = 0.0005 ML/s for each type of adsorbate.

5.3.1 Binary systems

At first we consider a system with only one adsorbate. The upper row of Fig.
5.10 shows the formation of particles with negative misfit ε = −5.0%. The
interaction energies in the Lennard-Jones potential are set to ES = 3.00 eV and
EA = 0.75 eV , respectively.

The three pictures of different stages of development clearly illustrate the
process of coarsening. In the beginning of the simulation only few particles exist,
which form small compact islands. Since the binding energies on fcc and hcp sites
have almost the same value, islands both on fcc and hcp sites emerge. In further
progression more and more adatoms are deposited and the size of the islands
increases. As a consequence the islands merge to larger islands, until finally only
one large island exists.

Another point to be considered is that the value of misfit affects a lot the
formation of structures. At lower absolute values of misfit the adsorbate tends
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Figure 5.11: Surfaces
with 400 adsorbate parti-
cles at ε = −7.0% (left)
and ε = −1.0% (right).
All other parameters are
as in Fig. 5.10.

Figure 5.12: Surfaces
with 400 adsorbate parti-
cles at ε = +1.0% (left)
and ε = +7.0% (right).
All other parameters are
as in Fig. 5.10.

to form more, but smaller and more elongated islands. By contrast at higher
values the formation of a few larger islands is preferred. An example of this
effect is shown in Fig. 5.11, where two systems with ε = −7.0% and ε = −1.0%,
respectively, are presented. Here the islands on the left surface with ε = −7.0%
are more compact and the coarsening is more advanced than on the right surface.

This effect originates from the higher diffusion barriers at step edges if the
misfit is lower, which is in good agreement with the results presented in Sec.
5.2.2. The adatoms tend to remain at a step edge position and form rough island
borders, at which further particles can find particularly favorable binding sites
with many neighbors and high binding energies. As a consequence the islands
are growing.

In the case of positive misfit, see ε = +5.0% in the lower row of Fig. 5.10, the
effect of coarsening is also evident. However, at small coverages in the beginning
many single particles are diffusing on the surface and at a later time one can still
find some single adatoms. In contrast to the case of negative misfit the islands do
not have that compact, but rather elongated forms. These structures lead to less
strain within the islands and are therefore favored. Nevertheless, all adsorbate
particles merge to one large island in the end. If the misfit is positive the adatoms
are not as well bound at step edges as particles with negative misfit and, thus,
the process of detachment from the step edge has a larger probability for particles
with positive misfit. Therefore, more single adatoms and small islands with only
a few particles are visible.

The variation of misfit has, in the case of positive misfit, also a strong influence
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on the emerging structures. Fig. 5.12 shows two systems with different ε. A
smaller value leads to compact islands, but at higher misfits the particles can not
form compact islands due to the fact that their preferred lattice is not suitable
to the lattice given by the substrate. Therefore, the islands are very elongated
and at some areas there are even rows of single adatoms.

Fig. 5.13 shows the ratio between the number of adsorbate particles at an
island border and the total number of adsorbate particles in dependence on the
misfit. The graphic confirms the optical impression: small misfits lead to more
compact islands with few particles at island borders and higher misfits result in
elongated structures with many border particles. In the case of high misfits the
particles need much space to form large compact islands, but this fact conflicts
with the lattice given by the substrate crystal. Therefore structures which are
less compact are preferred.

5.3.2 Ternary systems

In the following we study the growth of two adsorbates on a substrate crystal
and investigate how the effects which are observed in the binary systems become
noticeable in that case. In this context the influence of misfit and interaction
energies should play an essential role.

The panel in Fig. 5.14 shows the time evolution of a system with EAB =
0.10 eV and ε = 1.0%. The process of coarsening is quite evident: in the begin-
ning only a few islands exist, which merge in further course of the simulation.
Due to the strong interaction between particles of the same type the adatoms
form islands of only one sort. This separation in regions with particles of the
same type persists from the beginning of the simulation until late stages.

An important point to be considered is the dependence of the structures on
the misfit and the energy values in the Lennard-Jones potential. Analog to the
simulations with only one adsorbate small misfits lead to compact islands of
positive misfit and larger misfits result in elongated islands, as it is illustrated in
Fig. 5.15. The gaps and cracks between these islands provide less strain, because
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Figure 5.14: Simulation results for Lennard-Jones interactions with potential
depth EAB = 0.133 · EA = 0.10 eV , and ε = 1.0% at n = 250, 450, 650 deposited
adsorbate particles (from left to right). The temperature is set to T = 700 K
and the deposition rate to Rd = 0.0005 ML/s for both types of particles. The
particles with positive misfit are drawn in black.

the particles have more space to find an energetic favorable position. By contrast
the regions consisting of particles with negative misfit, displayed in gray, are large
at high absolute values of misfit. This behavior is in good agreement with the
results with only one adsorbate (see Sec. 5.3.1). Another mechanism reducing
strain is the forming of fcc and hcp islands. If two islands on different sites are
located side by side a small space between the two shapes exists and the border
particles can adapt their position to avoid strain within each island.

Another aspect is the influence of the interaction energy EAB between the
adsorbate materials. If EAB is small compared to EA and EB, the different ad-
sorbates have only a weak interaction with the other one resulting in a separation
of the both materials. Therefore islands of only one type, A or B, are formed.
The surfaces displayed in the upper row of Fig. 5.15 show that phase separation.

The lower row of the figure shows surfaces simulated with the same pa-
rameters, but with an interaction energy between the different adsorbates of
EAB = 0.8 · EA = 0.60 eV . Due to the strong interaction between particles of
different types the adsorbate materials tend to form elongated structures with a
large interface instead of large, compact islands of only one atom sort. Further-
more there are significantly more small winding gaps at high EAB than at lower
energies, at which a few larger regions without any particle between the islands
predominate.

However, one can observe an influence of the misfit on the island formation as
well as in the case of weak interaction. The higher the value of EAB the stronger
is the effect of meandering. Clearly noticeable are the many single atoms with
positive misfit which are surrounded by the smaller adatoms. The main reason
of this behavior is the interaction energy, but an increasing misfit amplifies this
effect. In the system with ε = 6% many single particles and dimers exist which
are enclosed by the adsorbate with negative misfit.
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Figure 5.15: Upper row: Simulation results for Lennard-Jones interactions with
EAB = 0.133 · EA = 0.10 eV , and ε = 1.0%, 4.0%, 6.0% (from left to right) at
n = 600 deposited adsorbate particles. The temperature is set to T = 700 K and
the deposition rate to Rd = 0.0005 ML/s for both types of particles. Lower row:
Simulation results for EAB = 0.8 · EA = 0.60 eV , all other parameters as above.
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Figure 5.16: The ratio between the number of A (B) particles at an island border
and the total number of A (B) particles vs. the absolute value of misfit |ε| at
the energies ES = 3 eV , EA = EB = 0.75 eV , EAB = 0.20 eV and the particle
concentrations ηA = ηB = 0.5.
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Figure 5.17: Left hand side: Simulation results for Lennard-Jones interactions
with EAB = 1.333 · EA = 1.00 eV , and ε = 1.0% at n = 600 deposited adsorbate
particles. The temperature is set to T = 700 K and the deposition rate to
Rd = 0.0005ML/s for both types of particles. Center: Results for the same
energies, but ε = 5.0%. Right hand side: Results for EAB = 2 · EA = 1.50 eV ,
and ε = 1.0%.

Analog to the results in the case of only one adsorbate material, the part of
border particles depends on the misfit. The measurement of the ratio between
the number of A (B) particles at an A (B) island border and the total number
of A (B) particles in dependence on the misfit leads to a curve displayed in Fig.
5.16. At low misfits the part of the larger B atoms, which are at a border, is
rather low, but increases with increasing misfit. On the other hand, the smaller
A particles show a contrary behavior in the graphic. Due to the fact that their
misfit decreases with increasing absolute value, the part of border particles of
them decreases. Hence the adatoms in a system with two sorts of adsorbates
form islands in a very similar manner like in systems with only one type of
adsorbate. However, the interaction of the different adsorbates influences this
effect pretty strongly.

If the interaction between particles of different type is stronger than between
adatoms of the same type, EAB > EA, EB, the situation changes and different
structures are emerging. Three examples of such a configuration at two different
misfits and energies are shown in Fig. 5.17. In all three cases many small islands
consisting of different adsorbates are formed. The islands have no compact shapes
and are rather craggy.

Due to the strong interaction between the two different adsorbate sorts A and
B every particle aspires to a position at which it has so many particles of the
other type in his neighborhood as possible. One consequence is that hardly any
adatoms have six neighbor particles of their own sort and hence no large islands
of only one sort are built. Instead, short stripes of one adsorbate are formed in
many islands. Particularly the rows of black particles, which are surrounded by
smaller gray particles, are evident.

The effect of interaction is very strong and as a result the misfit has no
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Figure 5.18: Simulation results for Lennard-Jones interactions with EAB =
0.2666 · EA = 0.20 eV , and ε = 2.0% at n = 600 deposited adsorbate particles.
The concentrations are ηA = 0.7, 0.5, 0.3 (from left to right) and the temperature
is set to T = 700 K and the deposition rate to Rd = 0.0005 ML/s for both types
of particles.

evident influence. Furthermore there is no appreciable difference between systems
with various energies EAB,1 6= EAB,2 if both energies are higher than EA and
EB. Already systems with energies EAB curtly above EA,B show this behavior
independent of the lattice mismatch. However, at lower energies the particles
with the negative misfit tend to build sometimes a little bit thicker stripes. By
contrast, at high energies the stripes have a thickness of only one particle. But
this effect is very small and, thus, the structures in all pictures in Fig. 5.17 are
very similar.

Up to now we considered only surfaces with approximately as many A par-
ticles as B particles. But it is an interesting point what happens at different
concentrations of adsorbates. To investigate according configurations we deposit
A and B particles with probabilities pd,A and pd,B, respectively. The resulting
adsorbate consists of the two types corresponding to the concentrations ηA and
ηB with ηA + ηB = 1.

Fig. 5.18 shows some simulation results of different adsorbate concentrations
in the case of EAB < EA = EB. At ηA = 0.7 and ηB = 0.3 (left picture) a
few small islands of B particles and some large, compact islands consisting of A
particles around them are grown. In the next graphic a surface with ηA = ηB =
0.5 is pictured. Here, the structures have the already described characteristics
depending on the energies and the misfit. Note that there are approximately the
same number of islands of each adsorbate sort. The last picture on the right
hand side shows a system with ηA = 0.3 and ηB = 0.7. The smaller adatoms
form compact islands in contrast to the B particles, which prefer a meandering
structure due to their positive misfit. In all three cases the smaller A particles
build compact islands similar to the structures in binary systems. By contrast
the B particles tend to elongated islands avoiding strain. These results are in
good agreement with the previous results of ternary systems at ηA = ηB = 0.5
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and binary systems at ηA = 1 or ηB = 1, respectively.

5.4 Comparison with equilibrium simulations

We have investigated the influence of different parameters on the form of struc-
tures both in equilibrium and growth simulations. In both cases large islands
of positive misfit are formed for small misfits and interaction energies EAB <
EA, EB. In equilibrium simulations, the smaller particles of negative misfit are
arranged around these islands and on the grown surfaces the smaller particles also
tend to this behavior. In both types of simulations the influence of the energy
is strong, but at growth the energy effect dominates the formation of adsorbate
structures. Nevertheless, an influence of the misfit can definitely be observed.

With increasing EAB the number of islands increases and their average size de-
creases in equilibrium simulations. By contrast, the variation of these parameters
in the growth model results in a change of the island form with more elongated
shapes. But in both cases the part of border particles increases and more parti-
cles of different sorts are side by side. Due to the energy value this configuration
is preferred.

A very similar effect can be observed if the lattice mismatch is varied. At
larger misfits the system has to reduce the emerging strain. This reducing of
strain can be realized by forming smaller islands (equilibrium) as well as elon-
gated islands (growth). In both scenarios the part of border particles increases.
However, in the case of growth the particles can switch from an fcc to a hcp site
and vice versa. The small space, which results from this step, leads to a reduction
of strain and enables the formation of large, but elongated islands also at higher
misfits.

If the interaction between particles of different type is higher than that of the
same sort in equilibrium simulations, EAB > EA, EB, the adsorbates form stripes,
whose number of bendings depends on the misfit. This effect results in a large
interface and is energetically favored. In growth simulations there are no large
islands of only one adsorbate type, but rather mixed islands consisting of short
stripes of one adsorbate and a couple of single particles surrounded by adatoms
of the other type. However, the misfit has almost no influence in this case.

If the concentration of both adsorbates A and B is varied, the previously
described formation of islands is disordered at certain configurations. In equilib-
rium large islands of B particles are formed at high ηB, but at low values the
average island size depends only weakly on the concentration. The behavior at
growth is analog: at small ηB small compact islands of B particles are embedded
in one large island of the smaller particles of adsorbate A. The size of B islands
is rather constant for small variations of the concentrations within this range. If
the value of ηB is high, large islands of B particles, which surround the A islands,
exist, but the shapes are elongated reducing the strain within the islands. The
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smaller adatoms of type A in contrast form always compact islands.
In summary, one can say that the equilibrium and the growth simulations

have a great deal in common. There exist many similarities, but there are also
some minor differences by nature.

5.5 Conclusions

In this chapter we have studied epitaxial growth on an fcc substrate crystal by
means of Kinetic Monte Carlo simulations and the influence of different param-
eters on the emerging structures. To keep the computational effort within a
feasible limit we have used a ball and spring like model.

At first we have investigated energies and diffusion barriers which play an
important role at growth. On plane surfaces both the binding energy and the
transition energy decrease with increasing misfit, and in the same way the diffu-
sion barrier diminishes. Here, the adatoms show the same behavior on fcc as well
as on hcp sites and the particles have on both sites almost the same energy value.
Indeed, at step edges the binding energy looks a little bit more complicated, but
the activation energy of a diffusion step decreases too.

On inspection of systems with only one adsorbate component it was shown
that small misfits lead to compact islands, while at large positive values of ε elon-
gated structures with many border particles are preferred. These island shapes
reduce strain and are favorable in respect of energy. At negative misfits the
particles have enough space to arrange side by side and are well bound by the
neighboring adsorbate particles. Therefore they form large compact islands. Due
to the fact that there exists almost no difference between the binding energies on
fcc and hcp sites, both fcc and hcp islands emerge.

As expected ternary systems show a very similar behavior to the binary sys-
tems in terms of compactness. The energy EAB has a very strong influence on
the structure evolution. Small values EAB < EA, EB result in separation of both
components with islands of only one adsorbate sort in contrast to higher ener-
gies which cause mixed islands. Simultaneously, a high absolute value of the
lattice mismatch |ε| leads to a reduction of the compactness of the B islands
and, hence, lowers the adsorbate separation. If the interaction energy of het-
erogeneous adatoms exceeds the interaction between two particles of the same
type, EAB > EA, EB, mixed islands consisting of particles of both adsorbates
are emerging. Small rows of particles of one sort and single particles frequently
appear in this configuration. A variation of the adsorbate concentrations leads
to expectable results similar to binary systems. At small ηB the average size of
B islands is quite constant.

Altogether, the results of the growth simulations are in good agreement to
those of the equilibrium simulations in chapter 4. In both cases the interac-
tion energy EAB and the misfit play an essential role in the formation of struc-
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tures. Large values of both interaction energy and misfit tend to smaller or more
elongated islands of B particles in contrast to smaller values, which result in a
separation of the two adsorbates.
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Chapter 6

Conclusions and outlook

In this thesis, simulations of fcc crystals grown by molecular beam epitaxy has
been studied. Today, computer simulations are a very powerful tool for the design
of novel technical applications. The aim of this work has been the investigation
of the pattern formation on a flat surface, if two adsorbate materials with differ-
ent lattice constants are deposited. The results can give important information
about the influence of the different single parameters on the emerging structures.
The knowledge of such facts can help to understand which procedures are of
significance at the production of high quality crystals.

In our simulations we have used an off-lattice model, which allows the inves-
tigation of crystals consisting of materials with different lattice constants. The
goal has been the investigation of the emerging structures in the first monolayer
upon a [111] substrate. In order to simulate the interaction between the particles
we have used a simple pair potential: the Lennard-Jones potential. Due to the
high computational costs of off-lattice simulations some simplifications has been
necessary in order to realize the study of crystals at a certain size.

In the case of equilibrium simulations, the interplay between misfit and inter-
action energy results in different structures. By variation of ε and EAB configu-
rations like the complete separation of the adsorbates or different forms and sizes
of islands are realizable. If the interaction energy between different adsorbates
is larger than that between same species, EAB > EA, EB, stripe-like structures
are formed. Other parameters which have a large influence on the grown struc-
tures are the adsorbate concentrations, whereas the temperature plays only a
secondary role in this context. A convenient choice of adsorbate concentrations
and interaction energies results in the formation of 2D droplets.

To keep the simulation times of the growth simulations within a feasible limit,
we have used a ball and spring like model with precalculated transition energies
depending on the number of neighboring particles. Further on, we use continuous
coordinates in order to take the lattice mismatch into account. This approach
allows determining energy barriers in a fast way and permits the simulation of
growth at interesting crystal sizes and temperatures. With the misfit and the

69
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interaction energy between two different adsorbate materials the island forms
can be controlled and the emerging structures show a similar behavior to analog
systems in the equilibrium simulations.

We observe qualitatively the same dependence on misfit and interaction energy
both in the case of equilibrium simulations and in the case of growth simulations.
Both approaches leads to very similar results and show how some parameters
influence the epitaxial growth of crystals, whereas the impact of other variables
is rather of small importance. Thus, we have been able to show that parameters
like the interaction energy, the misfit and the particle concentrations are the
determining factors in our model of molecular beam epitaxy with two different
adsorbates, naturally in consideration of the fact that many simplifications have
been necessary to realize off-lattice Monte Carlo simulations.

Further investigations should aim at larger system sizes, since some structures
need more space to develop and to become evident. However, that large systems
are hardly realizable actually, but in the future better computer power should
help to tackle this problem.

Another point to be considered could be the implementation of more processes
like, e.g., the exchange diffusion. However, in this context it is necessary to
look after the considered components. Different material combinations can even
cause different processes. Thus, it is possible to adapt the simulation to specific
materials and to get results which are closer to real structures. In this context
more realistic and more sophisticated potentials are of particular interest. The
difficulty in the use of such potentials are the enormous costs in simulation time,
which limit the actual feasibility.

In the face to technical applications the simulation of multi-layer systems
plays a very important role. Therefore it would be very promising to expand
our simulations, which have been limited to one monolayer, to a few layers.
Then further important aspects of crystal growth like, e.g., the generation of
dislocations in three dimensions can be explored. The simulation of other crystal
structures and surfaces will require further modifications of the models.

The used method of Monte Carlo simulations provides important insights at
the study of epitaxial growth and bridges the gap between Molecular Dynamics
simulations and lattice-gas models. Therefore, that approach should also play
an essential role in future investigations in the field of condensed matter and
material science.



Appendix A

Lennard-Jones potential

In computer simulations of metals simple pair potentials are widely used although
the interatomic forces are not simple. One of the most used potentials in this
context is the Lennard-Jones potential consisting of two parts: an attractive one
at long distances and a repulsive one at short distances. If the distance of two
interacting particles is large, the attractive forces preponderate, but in a certain
distance the repulsive part begins strongly to increase, representing the Pauli
repulsion. Due to its simplicity the Lennard-Jones potential is often used to
describe the interactions of gases or neutral atoms, but it yields also a rough
approximation for metals.

In many cases the Lennard-Jones 12,6 potential [58, 86, 87]

U(rij) = 4 Eij
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is used. Here, rij is the distance between the two particles i and j, −Eij the depth
of the potential and σij the distance at which the interparticle force is zero.

The attractive long-range part ∝ r−6

ij represents the Van der Waals attractions

in inert gas crystals, but the repulsive term ∝ r−12

ij is not motivated by physical
reasons. However, it is very convenient due to the efficient computing of r−12 as
a square of r−6.

A more generalized form of the Lennard-Jones n,m potential [87] is given by

U(rij) = Eij

[

m

n − m

(

r0
ij

rij

)n

− n

n − m

(

r0
ij

rij

)m
]

(n > m) (A.2)

with the equilibrium distance r0
ij between the particles and their dissociation

energy Eij . Two further parameters are n and m. The adaption of these four
parameters based on experimental data yields more realistic results.
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Figure A.1: Lennard-Jones n, m potentials for Eij = 1 and r0
ij = 1.

The equilibrium distance is proportional to σij and for the case n = 2m the
minimum is reached at the distance

r0

ij = n−m

√

n

m
σij . (A.3)

Fig. A.1 shows Lennard-Jones potentials for different values of n and m. The
parameters n and m affect the form of the graph around the equilibrium distance,
but for large distances the differences decrease and the potentials converge to
U(rij) = 0 for rij → +∞.



Appendix B

Equilibrium distances

The equilibrium distances of the atoms in a lattice depend on the number of
neighbors and their distances [58, 109]. In the case of the fcc structure every
atom has 12 nearest neighbors in a distance a/

√
2 with the length of the unit

cell a and in distance a there are 6 particles and so on (see Sec. 3). We look at
a particle and write the distance to another particle j as Rj = rjR so that rj is
the distance in units of a/

√
2, the distance between nearest neighbors. Thus, the

summation over all interactions in the Lennard-Jones 12,6 potential yields

∑

j

1

R6
j

=
1

R6

∑

j

1

r6
j

=
1

R6

(

12
1

1
+ 6

1
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+ 12

1

64
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)
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14.45 (B.1)

and

∑

j

1

R12
j

=
1

R12

∑

j

1

r12
j

=
1

R12

(

12
1

1
+ 6

1

64
+ ...

)

=
1

R12
12.13. (B.2)

Hence the interaction energy results in

U(R) =
1

2

∑

ij

Uij(Rij) = 2Nε

[

12.13
(σ

R

)12

− 14.45
(σ

R

)6
]

(B.3)

with the number of atoms N in the system. The equilibrium distance R0 is
calculated by minimization of the energy:

dU

dR
|R0

= −2Nε

[

12 · 12.13
σ12

R13
0

− 6 · 14.45
σ6

R7
0

]

= 0 (B.4)

145.56 σ6 = 86.7 R6

0 (B.5)

This leads to the equilibrium distance R0 ≈ 1.09 σ.
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Appendix C

Evolution into equilibrium

An interesting point with regard to the results of our simulations is the question
how many MC steps are needed until the systems are in equilibrium. For that
purpose we have a look at the surfaces after different numbers of steps. Fig.
C.1 shows an example of such an evolution of a system with EAS = 0.45 eV and
ε = 4.5% during the equilibrium simulation. In the beginning, the adsorbate
particles are randomly arranged, but at this parameter set the equilibrium is
reached very fast and after that there are only a few small changes in the surface
structures.

The optical impression is proved by the plots in Fig. C.2. Already after a
few thousand steps, the average island size as well as the number of islands are
both quite constant and the graphics show only a few fluctuations. In the case
of EAS = 0.35 eV and ε = 5.5%, which is displayed in Fig. C.3, the systems
need more steps to attain the equilibrium, but after 100 · 103 steps the number of
islands and their average size is constant with almost no fluctuations due to the

Figure C.1: Simulation results for Lennard-Jones interactions with ES = 3.00 eV ,
EA = 0.50 eV , EAS = 0.45 eV , and ε = 4.5%: initial configuration and the
configurations after 60 · 103 and after 140 · 103 MC steps (from left to right). The
temperature is set to T = 250 K. The particles with positive misfit are drawn in
black.
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Figure C.2: Left: The average island size s consisting of B particles vs. the
number of MC steps at EAB = 0.45 eV and ε = 4.5%. Right: The number of B
islands n vs. the number of MC steps at the same parameters.
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Figure C.3: Left: The average island size s consisting of B particles vs. the
number of MC steps at EAB = 0.35 eV and ε = 5.5%. Right: The number of B
islands n vs. the number of MC steps at the same parameters.
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large island sizes. At the beginning of the simulation, many steps are necessary
in order to form the large islands appropriate to this set of parameters.

The smaller the islands the stronger are the influences of the fluctuations on
the structures since smaller islands can completely decay by small fluctuations.
Thus, the number of islands strongly fluctuates if the average island size is very
small.

In almost all our simulations the equilibrium is reached after 105 steps at
the latest and the simulation can be stopped. However, in the most cases the
equilibrium is reached even earlier.
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[81] B. D. Krack, V. Ozoliņš, M. Asta, and I. Daruka. “Devil’s Staircases” in
Bulk-Immiscible Ultrathin Alloy Films. Phys. Rev. Lett., 88(18):186101,
2002.

[82] Y. Ni, L. H. He, and J. Song. Strain-driven instability of a single island and
a hexagonal island array on solid substrates. Surf. Sci., 553(1–3):189–197,
2004.

[83] S. Weber, M. Biehl, M. Kotrla, and W. Kinzel. Simulation of self-assembled
nanopatterns in strained 2D alloys on the face centered cubic (111) surface.
J. Phys.: Condens. Matter, 20:265004, 2008.

[84] M. Ahr and M. Biehl. Flat (001) surfaces of ii-iv semiconductors: a lattice
gas model. Surf. Sci., 505:124–136, 2002.

[85] M. Kotrla, S. Weber, F. Much, M. Biehl, and W. Kinzel. Self-organised
nano-patterns in strained 2D metallic alloys: droplets vs. stripes. Acta
Metallurgica Slovaca, 13:70–75, 2007.

[86] J. E. Jones. On the Determination of Molecular Fields. II From the Equa-
tion of State of a Gas. Proc. Roy. Soc., A106(738):463–477, 1924.

[87] S. Zhen and G. J. Davies. Calculation of the Lennard-Jones n-m Potential
Energy Parameters for Metals. Phys. Stat. Sol. (a), 78(2):595–605, 1983.

[88] R. Plass, J. A. Last, N. C. Bartelt, and G. L. Kellogg. Nanostructures:
Self-assembled domain patterns. Nature, 412:875, 2001.

[89] R. Plass, N. C. Bartelt, and G. L. Kellogg. Dynamic observations of
nanoscale self-assembly on solid surfaces. J. Phys.: Condens. Matter,
14:4227–4240, 2002.

[90] R. van Gastel, R. Plass, N. C. Bartelt, and G. L. Kellogg. Thermal Motion
and Energetics of Self-Assembled Domain Structures: Pb on Cu(111). Phys.
Rev. Lett., 91(5):055503, 2003.

[91] J. Tersoff. New empirical model for the structural properties of silicon.
Phys. Rev. Lett., 56(6):632–635, 1986.

[92] J. Tersoff. New empirical approach for the structure and energy of covalent
systems. Phys. Rev. B, 37(12):6991–7000, 1988.

[93] F. Cleri and V. Rosato. Tight-binding potentials for transition metals and
alloys. Phys. Rev. B, 48(1):22–33, 1993.

[94] M. Schroeder. Diffusion und Wachstum auf Kristalloberflächen. PhD thesis,
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seinem Lehrstuhl anzufertigen

• Dr. Miroslav Kotrla für die Gastfreundschaft an der Tschechischen Akade-
mie der Wissenschaften in Prag und die fruchtbare Zusammenarbeit

• Markus Walther für die hilfreichen Diskussionen und die fachliche sowie
freundschaftliche Zusammenarbeit

• David Hartmann für das gründliche Korrekturlesen dieser Arbeit

• den Systembetreuern der Universität Würzburg für die gute Wartung des
Computersystems

• allen Mitgliedern unseres Lehrstuhls für das freundliche und kreative Ar-
beitsklima

• der Deutschen Forschungsgemeinschaft für die Finanzierung dieser Arbeit
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