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Abstract

The main goal of this thesis is to elucidate the sense in which recent experimental progress
in condensed matter physics, namely the verification of two-dimensional Dirac-like materials
and their control in ballistic- as well as hydrodynamic transport experiments enables the
observation of a well-known ’high-energy’ phenomenon: The parity anomaly of planar quan-
tum electrodynamics (QED2+1). In a nutshell, the low-energy physics of two-dimensional
Quantum Anomalous Hall (QAH) insulators like (Hg,Mn)Te quantum wells or magnetically
doped (Bi,Sb)Te thin films can be described by combined response of two 2+1 space-time
dimensional Chern insulators with a linear dispersion in momentum. Due to their Dirac-like
spectra, each of those Chern insulator is directly related to the parity anomaly of planar
quantum electrodynamics. However, in contrast to a pure QED2+1 system, the Lagrangian
of each Chern insulator is described by two different mass terms: A conventional momentum-
independent Dirac massm, as well as a momentum-dependent so-called Newtonian mass term
B|k|2. According to the parity anomaly it is not possible to well-define a parity- and U(1)
gauge invariant quantum system in 2+1 space-time dimensions. More precisely, starting with
a parity symmetric theory at the classical level, insisting on gauge-invariance at the quantum
level necessarily induces parity-odd terms in the calculation of the quantum effective action.
The role of the Dirac mass term in the calculation of the effective QED2+1 action has been
initially studied in Phys. Rev. Lett. 51, 2077 (1983). Even in the presence of Dirac mass, the
associated fermion determinant diverges and lacks gauge invariance. This requires a proper
regularization/renormalizaiton scheme and, as such, transfers the peculiarities of the parity
anomaly to the massive case.
In the scope of this thesis, we connect the momentum-dependent Newtonian mass term of a
Chern insulator to the parity anomaly. In particular, we reveal, that in the calculation of the
effective action, before renormalization, the Newtonian mass term acts similarly to a parity-
breaking element of a high-energy regularization scheme. This calculation allows us to derive
the finite frequency correction to the DC Hall conductivity of a QAH insulator. We derive
that the leading order AC correction contains a term proportional to the Chern number. This
term originates from the Newtonian mass and can be measured via electrical or via magneto-
optical experiments. The Newtonian mass, in particular, significantly changes the resonance
structure of the AC Hall conductivity in comparison to pure Dirac systems like graphene.
In addition, we study the effective action of the aforementioned Chern insulators in external
out-of-plane magnetic fields. We show that as a consequence of the parity anomaly the QAH
phase in (Hg,Mn)Te quantum wells or in magnetically doped (Bi,Sb)Te thin films survives
in out-of-plane magnetic fields, violates the Onsager relation, and can therefore be distin-
guished from a conventional quantum Hall (QH) response. As a smoking-gun of the QAH
phase in increasing magnetic fields, we predict a transition from a quantized Hall plateau with
σxy = −e2/h to a not perfectly quantized plateau which is caused by scattering processes
between counter-propagating QH and QAH edge states. This transition is expected to be of
significant relevance in paramagnetic QAH insulators like (Hg,Mn)Te/CdTe quantum wells,
in which the exchange interaction competes against the out-of-plane magnetic field.
All of the aforementioned results do not incorporate finite temperature effects. In order
to shed light on such phenomena, we further analyze the finite temperature Hall response
of 2+1 dimensional Chern insulators under the combined influence of a chemical potential
and an out-of-plane magnetic field. As we have mentioned above, this non-dissipative trans-
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port coefficient is directly related to the parity anomaly of planar quantum electrodynamics.
Within the scope of our analysis we show that the parity anomaly itself is not renormalized
by finite temperature effects. However, the parity anomaly induces two terms of different
physical origin in the effective Chern-Simons action of a QAH insulator, which are directly
proportional to its Hall conductivity. The first term is temperature and chemical potential
independent and solely encodes the intrinsic topological response. The second term specifies
the non-topological thermal response of conduction- and valence band modes, respectively.
We show that the relativistic mass m of a Chern insulator counteracts finite temperature
effects, whereas its non-relativistic Newtonian mass B|k|2 enhances these corrections. In
addition, we are extending our associated analysis to finite out-of-plane magnetic fields, and
relate the thermal response of a Chern insulator therein to the spectral asymmetry, which is
a measure of the parity anomaly in out-of-plane magnetic fields.

In the second part of this thesis, we study the hydrodynamic properties of two-dimensional
electron systems with a broken time-reversal and parity symmetry. Within this analysis
we are mainly focusing on the non-dissipative transport features originating from a peculiar
hydrodynamic transport coefficient: The Hall viscosity ηH. In out-of-plane magnetic fields,
the Hall viscous force directly competes with the Lorentz force, as both mechanisms contribute
to the overall Hall voltage. In our theoretical considerations, we present a way of uniquely
distinguishing these two contributions in a two-dimensional channel geometry by calculating
their functional dependencies on all external parameters. We are in particular deriving that
the ratio of the Hall viscous contribution to the Lorentz force contribution is negative and that
its absolute value decreases with an increasing width, slip-length and carrier density. Instead,
it increases with the electron-electron mean free path in the channel geometry considered. We
show that in typical materials such as GaAs the Hall viscous contribution can dominate the
Lorentz signal up to a few tens of millitesla until the total Hall voltage vanishes and eventually
is exceeded by the Lorentz contribution. Last but not least, we derive that the total Hall
electric field has a parabolic form originating from Lorentz effects. Most remarkably, the
offset of this parabola is directly characterized by the Hall viscosity. Therefore, in summary,
our results pave the way to measure and to identify the Hall viscosity via both global and
local measurements of the entire Hall voltage.
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Zusammenfassung

Das zentrale Leitmotiv dieser Dissertation besteht darin, zwei unterschiedliche theoretische
Konzepte aus verschiedenen Teilbereichen der Physik zu verbinden, um dadurch neue Per-
spektiven zu erschließen. Im Wesentlichen zielt die Arbeit darauf ab, die quantenfeldtheoreti-
schen Konstrukte der Paritäts- als auch der chiralen Anomalie aus der Hochenergiephysik auf
die Festkörperphysik von sogenannten zwei-dimensionalen Quanten Anomalen Hall (QAH)
Isolatoren zu übertragen. Die Dirac-artige Bandstruktur dieser neuartigen Materialien ermög-
licht es, Effekte freier quantenelektrodynamischer Teilchen in 2+1 Raumzeit Dimensionen
im Festkörperlabor direkt messbar zu machen. Um die zentralen Erkenntnisse dieser Arbeit
nachvollziehen zu können ist das Verständnis zweier Konstrukte unumgänglich:

(i) Unter einer Quantenanomalie versteht man den Symmetriebruch einer klassischen Theo-
rie während des Quantisierungsprozesses. Um eine konsistente Quantentheorie formulie-
ren zu können, ist es in einem quanten-anomalen System nicht möglich, alle klassischen
Symmetrien auf der Quantenebene aufrechtzuerhalten.

(ii) Unter zwei-dimensionalen QAH Isolatoren versteht man planare Halbleiter mit einer
endlichen, transversalen (Hall-) Leitfähigkeit in der Abwesenheit eines externen Ma-
gnetfeldes. Derartige Halbleiter werden zum Beispiel in (Hg,Mn)Te/CdTe Schichtsyste-
men oder in dünnen magnetisierten (Bi,Sb)Te Filmen vorhergesagt und zum Teil bereits
experimentell nachgewiesena.

Die nieder-energie Theorie um die Bandlücke der oben genannten QAH Systeme wird ge-
meinsam durch die Physik zweier sogenannter Chern Isolatoren beschrieben. Jeder Chern
Isolator besitzt eine lineare Dispersion im Impulsraum und gleicht somit der Theorie quan-
tenelektrodynamischer Teilchen in 2+1 Raumzeit Dimensionen (QED2+1). Darauf basierend
ist jeder Chern Isolator für sich direkt mit der Paritätsanomalie verbunden. Um die effektive
Bandkrümmung im Festkörper zu charakterisieren unterscheidet sich das Modell eines Chern
Isolators von der entsprechenden QED2+1 Theorie um einen quadratischen Masse-Term im
Impuls, die sogenannte Newtonsche Masse B|k|2. Zusammen mit dem impulsunabhängigen
Dirac Massetermm definiert jene paritätsbrechende Masse die Energielücke eines Chern Isola-
tors. Wie bereits in (i) erwähnt tritt die Paritätsanomalie während der Quantisierung klassisch
paritätssymmetrischer Systeme auf. Quantisiert man beispielsweise eine masselose QED2+1
Theorie, so induziert man während der Berechnung der Fermion Determinante paritätsbre-
chende Terme in der zugehörigen effektiven Wirkung. Obgleich eine nichtverschwindende
Dirac-Masse die Paritätssymmetrie auf klassischer Ebene bricht, ist die zugehörige Fermion
Determinante UV divergent als auch Eichsymmetrie brechend und Bedarf daher eines geeig-
neten Regularisierung/Renormierungsschemas. Diese Eigenschaft erlaubt es Konsequenzen
der Paritätsanomalie ebenfalls in massiven Systemen zu identifizieren. Die Auswirkungen
einer Dirac-Masse für die Berechnung der effektiven Wirkung eines QED2+1 Systems wur-
den inertial in der wegweißenden Publikation Phys. Rev. Lett. 51, 2077 (1983) analysiert.
Im Rahmen dieser Dissertation eruieren wir die Implikationen der Newtonschen Masse eines
Chern Isolators auf die entsprechende Berechnung der Fermion Determinante und beleuchten
damit die effektive Bandkrümmung eines Festkörpers im Kontext einer diskreten Raumzeit

aDa Mangan paramagnetisch ist, benötigt ersteres System ein schwaches polarisierendes Magnetfeld um eine
QAH Phase aufzuweisen.



Anomalie. Wir zeigen insbesondere, dass die Newtonsche Masse vor dem unumgänglichen Re-
normierungprozess den paritätsbrechenden Elementen verschiedener hochenergetischer Regu-
larisierungsschemata ähnelt, wie zum Beispiel Wilson Fermionen. Mittels dieser Berechnung
leiten wir ebenfalls die Wechselstromleitfähigkeit der genannten QAH Isolatoren her. Wir
zeigen, dass die führende Frequenzkorrektur in diesen Systemen einen Term proportional zur
Chern Zahl enthält. Jener Beitrag basiert auf der zugrundeliegenden Galilei Invarianz und ist
insbesondere durch magneto-optische Experimente nachzuweisen. Weiter eruieren wir, dass
der genannte Term fundamental die Resonanzstruktur der Hall Leitfähigkeit beeinflusst, so-
dass diese maßgeblich von der entsprechenden Größe eines puren Dirac Systems wie Graphen
abweicht.

Zudem analysieren wir in dieser Arbeit die Physik von 2+1 dimensionalen Chern Isolatoren
in externen Magnetfeldern die orthogonal auf der zugrundeliegenden Raum-Mannigfaltigkeit
stehen -sogenannte orbitale Magnetfelder. Wir zeigen dass als direkte Konsequenz der Pa-
ritätsanomalie die QAH Phase in orbitalen Magnetfelder überlebt, darin die Onsager Re-
lationen bricht und somit von konventionellen QH Systemen unterschieden werden kann,
obgleich beide topologischen Phasen durch die selbe Chern Klasse beschrieben sind. Als
experimentelle Signatur der QAH Phase in adiabatisch zunehmenden orbitalen Magnetfel-
dern sagen wir den Übergang eines quantisierten Hall Plateaus mit σxy = −e2/h zu einem
nicht-quantisierten, rauschenden Hall Plateau vorher. Der Mittelwert des letzteren Plate-
aus hängt stark von Streuprozessen zwischen entgegengesetzt propagierenden QH und QAH
Randzuständen ab. Insbesondere in (Hg,Mn)Te/CdTe Schichtsystemen ist der vorhergesagte
Übergang von großem Interesse da in jenen Systemen die Austauschwechelwirkung mit dem
polarisierenden Magnetfeld konkurriert.

All die oben genannten Ergebnisse vernachlässigen thermische Effekte. Um den Einfluss einer
endlichen Umgebungstemperatur auf die Physik von QAH Isolatoren zu untersuchen, analy-
sieren wir im Rahmen dieser Dissertation ebenfalls die Hall Leitfähigkeit 2+1 dimensionaler
Chern Isolatoren bei endlicher Temperatur und unter dem Einfluss beliebiger chemischer Po-
tentiale sowie orbitaler Magnetfelder. Wie oben bereits erwähnt hängt dieser nicht dissipative
Transportkoeffizient direkt mit der Paritätsanomalie eines masselosen QED2+1 Systems zu-
sammen. Wir zeigen mittels unserer Analyse, dass die Paritätsanomalie an sich nicht durch
endliche Temperatureffekte beeinflusst wird. Allerdings induziert jene Anomalie in der ef-
fektiven Wirkung eines Chern Isolators zwei Beitrage unterschiedlichen physikalischen Ur-
sprungs. Einer der Terme ist unabhängig vom chemischen Potential und der Temperatur da
er ausschließlich die intrinsische topologische Phase des Systems codiert. Der andere Term
definiert die thermisch angeregten Zustände im Leitungs- bzw. im Valenzband und ist so-
mit nicht-topologischen Ursprungs. Insbesondere zeigen wir, dass in der topologisch nicht
trivialen Phase eines Chern Isolators die Dirac Masse den endlichen Temperatureffekten ent-
gegenwirkt, während die nicht-relativistische Newtonsche Masse jene Korrekturen verstärkt.
Neben diesen Effekten bei verschwindendem orbitalem Magnetfeld verallgemeinern wir unsere
thermischen Betrachtungen hinsichtlich der Effekte quantisierender orbitaler Magnetfelder.
Insbesondere verknüpfen wir die Leitfähigkeit von QAH Isolatoren bei endlicher Temperatur
zur sogenannten Spektralen Asymmetrie. Diese Größe kann als Signatur der Paritätsanomalie
in orbitalen Magnetfeldern interpretiert werden.

Im zweiten großen Kapitel dieser Dissertation analysieren wir den hydrodynamischen Ladungs-
transport in zwei-dimensionalen Elektronensystemen, in denen sowohl die Zeitumkehr- als
auch die Paritätssymmetrie gebrochen sind. Unseren Forschungsschwerpunkt legen wir hierbei
vor Allem auf nicht-dissipative Transporteigenschaften, die sich mittels der Hall Viskosität aus
den Navier-Stokes Gleichungen ergeben. In orbitalen Magnetfeldern konkurrieren aufgrund
dieses paritätsbrechenden Transportkoeffizient zwei transversale Kräfte miteinander: Die so-
genannte Hall viskose Kraft und die wohlbekannte Lorentzkraft. Zusammen definieren beide
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Kräfte die gesamte Hall Spannung des Systems. In den Ausführungen dieser Arbeit zeigen wir
wie die genannten unterschiedlichen Beiträge in zweidimensionalen Transportkanälen anhand
ihrer verschiedenen funktionellen Abhängigkeiten von den Systemparametern unterschieden
werden können. Wir eruieren, dass das Verhältnis zwischen dem Hall viskosen Beitrag und
dem Lorentz basierten Beitrag negativ ist und dessen Absolutbetrag mit zunehmender Ka-
nalbreite, Rutsch-Länge [engl. slip length] und Ladungsträgerdichte abnimmt. Im Gegensatz
dazu wächst jener Betrag mit der mittleren Elektron-Elektron Streulänge. Im Rahmen dieser
Dissertation zeigen wir, dass in typischen GaAs Fermi Flüssigkeiten der Hall viskose Beitrag
das Lorentz Signal bis hin zu einer orbitalen Magnetfeldstärke im zehnstelligen Milli-Tesla
Bereich dominieren kann. Im Anschluss nimmt das Verhältnis dieser Größen ab, verschwindet
bei einem kritischen Magnetfeld und wird schlussendlich durch das Lorentz Signal dominiert.
Zuletzt zeigen wir, dass das transversale elektrische Feld in den genannten Experimenten eine
parabolische Form besitzt, welche auf dem Lorentz Beitrag basiert. Im Gegensatz dazu ist der
konstante Offset dieser Parabel hauptsächlich durch die Hall Viskosität definiert. Zusammen
weisen die hier genannten Eigenschaften einen möglichen Weg zur experimentellen Bestim-
mung der Hall Viskosität mittels lokaler- oder globaler Spannungsmessungen auf.
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Acronyms and Physical Constants

Acronyms

QH Quantum Hall

QAH Quantum Anomalous Hall

QSH Quantum Spin Hall

QED2+1 Planar Quantum Electrodynamics

BHZ Bernevig-Hughes-Zhang

2DEG Two-Dimensional Electron Gas

LL Landau Level

AC Alternating Current

DC Direct Current

Constant Symbol Value

Vacuum Permittivity ε0 = 1 / c2
0 µ0 8.8542× 10−12 C2 s2/ kg m3

Vacuum Permeability µ0 1.2566× 10−6 kg m / C2

Vacuum Speed of Light c0 2.9979× 10 8 m / s

Planck Constant ~ 1.0546× 10−34 J s

6.5821× 10−16 eV s

Elementary Charge e 1.6022× 10−19 C

Fine-Structure Constant α = e2 / 4πε0~c0 7.2974× 10−3

Boltzmann Constant kB 1.3806× 10−23 J / K

8.6173× 10−5 eV / K

Electron Rest-Mass me 9.1094× 10−31 kg

1





1
Introduction

In the year 1980 Klaus von Klitzing discovered the so-called quantum Hall (QH) effect [1],
which can be understood as a quantum version of the classical Hall effect. In the QH phase the
Hall conductivity is a quantized value in units of e2/h as function of the chemical potential.
Only two years later D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs related
this experimental finding to an topologically invariant, the so-called TKNN invariant [2].
Based on this concept, a new branch of physics arose, namely the field of topological physics,
in which solid-state materials are classified in terms of so-called Chern numbers C [3–5].
The QH phase belongs to the Chern class CQH ∈ Z. In general, topology is a branch of
mathematics. Two objects belong to the same topological class if they can be continuously
deformed into each other. For instance, a coffee mug and a conventional doughnut (with one
hole only) belong to the same topological class according to their Euler characteristic [6].
In the scope of solid-state physics, two topological phases belong to a different class if their
band-structures can not be continuously transformed into each other without closing the
corresponding energy gap. Hitherto, several different topological phases of matter have been
predicted and measured. For the scope of this thesis, the discovery of topological insulators
[7–16] and Weyl- or Dirac [17–22] semimetals is of exceptional relevance. Their experimental
verification provides the exceptional opportunity to measure signatures of so-called high-
energy anomalies in the solid-state environment [23–30].

In a quantum field theory, an anomaly occurs, whenever a symmetry of a classical theory
cannot be maintained on the quantum level [6, 31, 32]. For instance, in 2+1 space-time
dimensions the parity anomaly results from the incompatibility of parity- and U(1) gauge
symmetry after quantization. More precisely, starting with a parity symmetric theory at
the classical level, insisting on gauge-invariance at the quantum level necessarily induces
parity-odd terms in the calculation of the quantum effective action. In the 1980s this high-
energy concept has been shown for quantum electrodynamics in 2+1 space-time dimensions
(QED2+1) [33–39]. A few years later F. D. M. Haldane proposed the first solid-state model
of a quantum anomalous Hall (QAH) insulator by adding a parity-breakingb Dirac mass
term to an otherwise gapless graphene structure [25]. In a nutshell, a QAH insulator is a
two-dimensional material with an insulator bulk gap but chiral edge modes at its topological
boundaryc. The name ’anomalous’ originates from the fact that such insulators have a quan-
tized Hall conductivity in units of e2/h even in the absence of Landau levels (LLs), CQAH ∈ Z.
Based on these principles, QAH insulators are from a high-energy perspective directly related
to the parity-anomaly of planar quantum electrodynamics. Even though Haldane’s seminal
work is labeled Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter
Realization of the ’Parity Anomaly’, the nomenclature ’realization’ requires further specifi-

bThe addition of a parity-even Dirac mass term has been initially studied by G. W. Semenoff in Ref. [23].
cHere and throughout this thesis, ’n+1-dimensional’ always refers to the entire space-time, whereas
’n-dimensional’ only encodes the spatial manifold, n ∈ N.
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Chapter 1 Introduction

cation in order to circumvent possible misunderstandings. Strictly speaking, the Haldane
model contains two 2+1 dimensional Dirac fermions, as it is based on the hexagonal lattice
structure of graphene. By fine-tuning the Haldane mass, one of the Dirac fermion mass gaps
can be closed, whereas the other one remains open. In this limit, the entire band-structure
contains a single gapless QED2+1 system with a non-zero Hall conductivity. Consequently, in
the Haldane model one of the Dirac fermions alone is suitable to realize the parity anomaly.
Up to date, an experimental realization of the Haldane model has not yet been achieved in
crystalline structuresa.

Nevertheless, another type of QAH insulators has been predicted in spin-polarized topological
insulators like (Hg,Mn)Te quantum wells [42, 43] or magnetically doped (Bi,Sb)Te thin films
[44–48]. In vicinity to the insulating bulk gap, these systems can be effectively described by
the superimposed signal of two 2+1 dimensional Chern insulators, which is commonly known
as the Bernevig-Hughes-Zhang (BHZ) model, CBHZ ∈ Z2 [8, 42]. Similar to the Haldane
model, the topological gap of one of the Chern insulators in the BHZ model can be closed by
magnetically doping the system, whereas at the same time the second Chern insulator remains
gapped. In this fine-tuned limit, the gapless Chern insulator realizes the parity anomaly as
its contribution to the Hall conductivity is in general non-zero. Based on this property,
the analysis of single Chern insulators allows us to study measurable consequences of the
parity anomaly in solid-state materials. However, as the aforementioned Chern insulators
do describe the low-energy physics of condensed matter materials, they are in contrast to
the Dirac fermions in the Haldane model characterized by two different parity-breaking mass
terms: A conventional Dirac mass m, as well as momentum-dependent so-called Newtonian
mass B|k|2 [49]. Above, we have already indicated that QAH insulators are directly related
to the parity anomaly in 2+1 space-time dimensions. This can be seen clearly by analyzing
their Chern number. In the topologically non-trivial regime the Chern number of a QAH
insulator results from the Chern number of one of the Chern insulators alone [43, 50]

CQAH = CCI = [sgn(m) + sgn(B)] /2 = ±1 . (1.1)

As a direct consequence of the parity anomaly, this quantity, which is related to the system’s
parity-odd Hall conductivity

σxy = CCI e2/h , (1.2)

does not vanish in parity-symmetric, zero-mass limit. Indicated by this crucial property the
Dirac-, as well as the momentum-dependent mass term of a single Chern insulator are both
directly related to the parity anomaly. In his seminal work, A. N. Redlich has specified the
concrete relation of the Dirac mass term to the parity anomaly by calculating the effective
action of a massive QED2+1 system [37]. The effective action of Chern insulator in the
presence of a momentum-dependent Newtonian mass has not yet been analyzed. To bridge
this gap, we calculate in this thesis the polarization operator of a Chern insulator. In the
corresponding calculation for a pure, massless QED2+1 system, the parity anomaly arises
from the particular regularization of the infinite Dirac sea. For instance this has been shown
for a lattice regularization with Wilson fermions in Ref. [51], for a Pauli-Villars approach
in Refs. [37, 52], for a ζ-function regularization in Ref. [53], and for or higher derivative
approachin the Refs. [54, 55]. In the scope of this thesis, we are going to compare the role
of the Newtonian mass term in the calculation of the effective action of a Chern insulator to
these parity-breaking regularization schemes. The calculation of the effective action allows
us to derive the AC Hall conductivity of a QAH insulator. The corresponding analysis for a
pure QED2+1 system has been executed for instance in the seminal works [56, 57].

aHitherto, this model has only been realized in optical lattices [40, 41].
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In the paragraphs above, we have already indicated that both, QH as well as QAH phases
are characterized by an integer Chern number C ∈ Z. Therefore they belong to the same
topological class [3]. This raises a fundamental question: Is it possible to distinguish these
two topological phases of matter in external out-of-plane magnetic fields? Especially for QAH
insulators which result from paramagnetic doping of two-dimensional topological insulators,
such as (Hg,Mn)Te/CdTe quatum wells [42, 43], this question is of particular relevance, as
these systems require a polarizing magnetic field to enter the QAH phase. In the scope of this
thesis, we demonstrate that QAH phases can in fact be distinguished from conventional QH
phases in quantizing out-of-plane magnetic fields, due to their parity-anomaly relation.

Up to date, finite temperature signatures of parity anomaly driven systems have been solely
studied in Dirac models with a purely linear spectrum in momentum [36, 57–61]. The quan-
tum effective action of these systems is characterized by a temperature dependent and thus
large gauge non-invariant Chern-Simons term originating from the parity anomaly when the
fermion determinant is evaluated perturbatively during the quantization process. It has been
shown that this non-invariance is absorbed by higher order non-perturbative corrections to
the quantum effective action [62–69]. This peculiar feature raises a fundamental question:
Does the parity anomaly get renormalized by thermal effects? Within the scope of this
thesis we answer this question in detail. We extend the calculations in the aforementioned
references to Chern insulators including both, a Dirac-, as well as a Newtonian mass, in
the presence and in the absence of quantizing magnetic fields, as well as with and with-
out particle-hole symmetry. Our considerations are of particular relevance for a wide class
of QAH insulators. Additionally to the material mentioned above, our calculations will in
particular shed light on QAH phases which arise at the interfaces between ferromagnetic
insulators and three-dimensional topological insulators, where a proximity-induced interface
magnetization has been experimentally observed at high temperatures [70, 71]. In such sys-
tems the out-of-plane magnetization implies a gap in the interface Dirac spectrum. This
induces a parity anomaly contribution on the surface of the topological insulator and, at the
same time, a magneto-electric torque in the Landau-Lifshitz equation [72–74]. A similar effect
also occurs on the surface of the recently discovered anti-ferromagnetic topological insulator
MnBi2Te4 [75, 76].

All the aforementioned phenomena do not rely on strong electron-electron interactions. In or-
der to analyze the consequences of electron interactions on the parity- and time-reversal odd
transport in 2+1 space-time dimensions, we are going to study the hydrodynamic transport
properties of two-dimensional Fermi liquids, as well as Dirac fluids in the second part of this
thesis. The idea of describing electrons in solid-state systems via hydrodynamics goes back
to the discovery of the Gurzhi effect in (Al)GaAs quantum wires [77–79]. Recently, hydrody-
namic transport has received renewed attention due to the accessibility of the hydrodynamic
regime in modern materials [80–83]. Two-dimensional systems that violate parity invariance
are of special interest, since they are described by novel non-dissipative transport coefficients,
such as the Hall viscosity [84–89]. Based on the principles which we have presented above,
we are in the scope of this thesis in particular interested in the parity-odd hydrodynamic
transport of two-dimensional Dirac materials such as graphene, in which recent experiments
have shown that the Hall viscosity may be of the same order of magnitude as the shear vis-
cosity [90–93]. As the current literature [94–97] does not provide a quantitative answer for
the functional dependency of Hall viscous transport on all system parameters, we are going
to clarify this outstanding issue in the course of this thesis.

Now, having motivated the main questionings of this thesis and embedded them in the current
scientific progress, let us make some remarks about the structure of this work:
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In Chap. 2, we present a comprehensive overview of several theoretical concepts which are
required to understand the outcomes of this thesis. We start with a discussion of the classical-
and quantum Hall effect in two spatial dimensions from a solid-state perspective. In order
to understand the corresponding physics in terms of a quantum field theory, we construct in
the subsequent section a 2+1 dimensional space-time manifold with an associated Clifford
algebra. After that, we discuss the classical conservation laws of Dirac systems and explain
the formation of quantum anomalies, such as the parity- and the chiral anomaly in suitable
space-times. We elucidate the Callan-Harvey mechanism behind the anomaly inflow, and
study anomaly driven currents in semi-infinite 2+1 dimensional space-time manifolds. We
close this chapter by comparing our findings to conventional quantum Hall phases.

In Chap. 3, we transfer our findings towards QAH insulators in 2+1 space-time dimensions.
We explain how these systems can be realized in the solid-state lab. Moreover, we clarify
in which sense QAH insulators can be interpreted as solid-state realizations of the parity
anomaly. In particular, we relate the Newtonian mass of a QAH insulator to the parity
anomaly of massless QED2+1 by calculating its effective action. We derive the AC Hall
conductivity of these peculiar states of matter and analyze differences to purely linear Dirac
systems like graphene. We extend our analysis to finite out-of-plane magnetic fields and
include finite temperatures effects as well as a finite particle-hole asymmetry. We clarify how
all of these factors affect the signatures of the parity anomaly in QAH insulators.

In Chap. 4, we study the hydrodynamic response of parity- and time-reversal breaking elec-
tron systems in two-dimensional channel geometries. We start our considerations by giving
a comprehensive introduction into the theory of hydrodynamic transport originating from
Fermi fluids, as well as Dirac liquids. We elucidate the corresponding transport coefficients,
the relativistic and non-relativistic equations of motion, and the most relevant experiments.
Based on these principles we shed light on the role of the Hall viscosity in the hydrodynamic
transport of two-dimensional electron systems in external out-of-plane magnetic fields. We
support our analytic calculations by numerical simulations and predict possible signatures of
this peculiar transport coefficient in materials like GaAs.

In Chap. 5, we summarize our main results and give an outlook over the most interesting
future research directions regarding our theoretical findings.

Before we end the introduction, let us make one more statement regarding the structure of
this thesis. The outcomes presented in Chap. 3 and Sec. 4.2 are to a large extend based on
my publications [P1, P2, P3, P4, P5]. In order to embed the associated results in the line of
arguments of the present thesis, these findings are substantially reorganized and extended,
such that they include my latest degree of knowledge. However, sometimes it was inevitable
to reformulate the line of reasoning and, therefore, I partially adapted some of the contents
of the mentioned publications. The corresponding passages are indicated clearly.
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Chapter 2 Hall Physics and Parity Anomaly

2.1 Classical Hall Effect
The classical Hall effect of a two-dimensional electron gas in an out-of-plane magnetic field
describes the formation of a transverse voltage VH across a Hall bar of widthW as a response
to an applied longitudinal current Ix. The corresponding experimental setup is schematically
shown in Fig. 2.1(a). Before we discuss the theoretical model, let us describe the physical
processes which are responsible for this effect. The longitudinal current Ix originates from
electrons moving in −ex-direction. Due to the out-of-plane magnetic field, these electrons are
deviated by the Lorentz force in ±ey-direction towards one of the sample edges (depending
on the magnetic field direction). The accumulation of charge carriers at this edge leads to a
transverse voltage across the Hall bar. In the steady state, this Hall voltage exactly compen-
sates the Lorentz force, such that electrons moving in -ex-direction are not deviated anymore.

VH

Ix

B

Magnetic Field B

Rxy 

Rxx 

(a) (b)

W

Rxx 

Rxy 

Ex

Swiss-Cheese Model

Figure 2.1: (a) Structural setup of a Hall measurement: A two-dimensional electron gas is
confined in a crossed electro-magnetic background. While B=Bez describes an out-of-plane
magnetic field, E=Exex defines a longitudinal electric field, which drives a current Ix in the
ex-direction. As a response to this current, the system shows a transverse Hall voltage VH.
(b) Longitudinal Rxx and off-diagonal Rxy resistance of the two-dimensional electron gas as
a function of the magnetic field strength B. While solid lines correspond to a continuous Hall
bar, dashed lines indicate the so-called Swiss-Cheese model. In this model, one cuts several
holes in the Hall bar, effectively reducing its area. This is also depicted in subfigure (a).

Theoretically, the classical Hall effect can be described by the Drude model [98–100]. In what
follows, our line of reasoning will roughly follow the discussions within these references. As
stated, let us consider a two-dimensional electron gas under the combined influence of an
out-of-plane magnetic field B=Bez

a and a longitudinal electric field E=Exex, which drives
the current Ix in the ex-direction. Moreover, we introduce the phenomenological momentum
relaxation time scale τ , originating from momentum non-conserving electron scattering pro-
cesses with impurities, lattice-defects or thermally excited phonons. The classical dynamics
of this system is described by the equations of motion [99, 100]

m∗
dv
dt = −eE− ev×B− m∗v

τ
. (2.1)

Here, m∗ and −|e| < 0 are the electron’s effective mass and charge. The left hand side
of this equation defines the total force acting on electrons in this system. The right hand
side encodes the electric driving force (first term), the Lorenz force (second term), and the
phenomenological momentum relaxation (third term). In the steady state, this equation
simplifies to

v + eτ
m∗

v×B = − eτ
m∗

E , (2.2)

aWithin the scope of this section, we restrict ourselves to positive magnetic field strengths B > 0.
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2.2 Quantum Hall Effect

which can be rewritten in terms of the charge current density j=−env, the particle density
n, and the cyclotron frequency ωB=eB/m∗:(

1 ωBτ
−ωBτ 1

)
j = e2nτ

m∗
E . (2.3)

This implies an associated conductivity tensor, which is implicitly defined by j = σE:

σ = σDrude
1 + ω2

Bτ
2

(
1 −ωBτ

ωBτ 1

)
, (2.4)

where σDrude =e2nτ/m∗ is the Drude conductivity [98–100]. The inverse of this conductivity
tensor defines the resistivity tensor

r = σ−1 = 1
σDrude

(
1 ωBτ

−ωBτ 1

)
=
(
rxx rxy
−rxy rxx

)
. (2.5)

Hence, we found the following values for the longitudinal and the off-diagonal resistivi-
ties

rxx = m∗

ne2τ
∧ rxy = B

ne . (2.6)

Since experimentally one measures the resistance instead of the resistivity, let us calculate
the corresponding values:

Rxx = Vx
Ix

=
∫ Lx

0 Ex dy∫W
0 Jx dy

= LxEy
WJx

= rxx
Lx
W

, (2.7)

Rxy = VH
Ix

=
∫W

0 Ey dy∫W
0 Jx dy

= WEy
WJx

= ryx = −rxy . (2.8)

where Lx and W define the length and the width of the Hall bar. Rxx is a constant function
in terms of the magnetic field, but depends on the momentum relaxing scattering time τ as
well as the particular geometry of the system. Instead, Rxy does not depend on these values
but scales linearly in the magnetic field. This is schematically shown in Fig. 2.1(b). Here
the solid lines correspond to a continuous Hall bar, whereas the dashed lines are associated
to the so-called Swiss-Cheese model. In this model one cuts holes in the Hall bar, such that
effectively Lx andW decreasea. However, this does not affect Rxy. This is the first indication
that the Hall voltage is a topological response, meaning that it does not depend on the details
of the geometry [99, 100]. In what follows, we are going to quantize the Hall effect, which
makes this property even more apparent.

2.2 Quantum Hall Effect
The quantum version of the classical Hall effect, the so-called quantum Hall effect, was dis-
covered by Klaus von Klitzing in 1980 [1]. Essentially, the quantum Hall effect fulfills the
same relations as the classical Hall effect with one subtle difference: For a fixed chemical
potential, the particle density n becomes a quantized value as a function of the magnetic
field. This results from the formation of Landau levels, which are broadened δ-peaks in the
density of states. The experimental consequence of this crucial property is shown in Fig. 2.2
[101]. The quantized values of the particle density lead to a step function in the off-diagonal

aIn a usual Hall bar Lx �W .
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Chapter 2 Hall Physics and Parity Anomaly

resistivity, and to a vanishing longitudinal resistivity along the quantum Hall plateaus as a
function of the magnetic field. In what follows, we will analytically derive the theory of the
quantum Hall effect, which allows us to physically understand the experimental data shown
in Fig. 2.2. Our line of reasoning will roughly follow the discussions within Refs. [100, 102].

Figure 2.2: The quantum Hall effect [1, 101]. The longitudinal resistivity rxx[Ω] and the off-
diagonal resistivity rxy[kΩ] of a GaAs-AlxGa1−xAs hetero-structure are plotted as a function
of the applied magnetic field B[T]. The Landau level indices (including spin σ =↑, ↓) are
shown as an inset. The figure is reprinted from Ref. [101] with permission from the APS.

2.2.1 Landau Levels
The classical Lagrangian of a free, spinless electron of effective mass m∗ and charge −e < 0
which moves in a background magnetic field B = εijk∂jAk ei is given by

L = 1
2m
∗ẋ2 − eẋA . (2.9)

Here, A defines the vector potential. With the canonical momentum p = ∂L/∂ ẋ = m∗ẋ−eA
one obtains the corresponding Hamiltonian function via a Legendre transformation

H = ẋp− L = 1
2m∗ (p + eA)2 . (2.10)

The conjugated variables xi and pj satisfy the Poisson brackets

{xi, pj}+ = δij ∧ {xi, xj}+ = {pi, pj}+ = 0 , (2.11)
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2.2 Quantum Hall Effect

where δij is the Kronecker-delta. We quantize this theory by requiring that the corresponding
quantum mechanical operators fulfill the canonical commutation relations [100]

[x̂i, p̂j ] = i~δij ∧ [x̂i, x̂j ] = [p̂i, p̂j ] = 0 , (2.12)

where ~ = h/(2π) is the reduced Planck constant. As a next step, let us define the generalized
momentum operator π̂ = p̂ + eÂ = m∗ ˙̂x, which fulfills the commutation relation

[π̂x, π̂y] = −ie~B . (2.13)

Moreover, we define the so-called ladder operators

â ≡ 1√
2e~B

(π̂x − iπ̂y) ∧ â† ≡ 1√
2e~B

(π̂x + iπ̂y) (2.14)

with [â, â†] = 1. In terms of these operators, the classical Hamiltonian in Eq. (2.10) implies
the quantum mechanical Hamilton operator

Ĥ = π̂2

2m∗ = ~ωB
(
â†â+ 1

2

)
. (2.15)

Let us derive the spectrum of this operator. To this end, we define a ground-state |0〉 with
â|0〉 = 0, and construct the rest of the Hilbert space by using the properties of the ladder
operators

â†|λ〉 =
√
λ+ 1|λ+ 1〉 ∧ â|λ〉 =

√
λ|λ− 1〉 . (2.16)

This implies that the λ-th excitation, the state |λ〉, has a quantized energy

Eλ = ~ωB
(
λ+ 1

2

)
with λ ∈ N0 . (2.17)

Hence, we found an equally spaced Landau level spectrum with groundstate energy E0 = ~ωB/2,
as it is exemplary shown in Fig. 2.3(a).

Momentum kx

(a)

E
ne

rg
y 

E

λ=0
λ=1
λ=2
λ=3

Momentum kx

(b)

E
ne

rg
y 

E

ℏωB
 

g*μBB 

 

Figure 2.3: Landau level spectrum in momentum space. Here, px = ~kx defines the electron
momentum in ex-direction which remains to be well-defined in the Landau gauge Â = −ŷBex.
Moreover, λ ∈ N defines the Landau level index and ωB is the cyclotron frequency. Subfigure
(a) shows the Landau level spectrum for a spinless system, whereas subfigure (b) takes into
account the finite Zeeman splitting g∗µBB resulting from the electron spin character. Further
explanations are given in the text.

Next, we explicitly derive the eigen-states of the Hamiltonian in Eq. (2.15). Therefore, we

11



Chapter 2 Hall Physics and Parity Anomaly

consider the so-called Landau gauge

Â = −ŷBex . (2.18)

While this gauge breaks translation invariance in ey-direction, it does not break this symmetry
in ex-direction. Hence, px remains a well-defined momentum in the Landau gauge, and
Hamilton operator in Eq. (2.15) is given by [cf. Eq. (2.10)]

Ĥ = 1
2m∗

(
(p̂x − eBŷ)2 + p̂2

y

)
. (2.19)

Due to the mentioned translation invariance in ex-direction, the real space representation of
the Hamiltonian’s eigen-states |λ〉, namely ψλ(x, y) = 〈r|λ〉, can be characterized by plane
waves of wave vector kx = px/~ in the ex-direction (separation of variables)

ψλ,kx(x, y) = eikxxfλ,kx(y) . (2.20)

In particular, we can replace p̂x in the Hamiltonian Eq. (2.19) by its eigenvalue ~kx, which
implies [100]

Hψλ,kx(x, y) = Hλ,kxψλ,kx(x, y) with Hkx = 1
2m∗ p̂

2
y + m∗ω2

B

2 (ŷ − k̂xl
2
B)2 . (2.21)

Here, lB=
√
~/(eB) is the magnetic length. This Hamiltonian describes a displaced harmonic

oscillator centered at y0 =kxl
2
B. Consequently, its eigen-states are described by [102]

ψλ,kx(x, y) ∝ eikxxHλ(y − kxl
2
B)e−(y−kxl2B)/(2l2B), (2.22)

where the functions Hλ define the common Hermite polynomials of order λ ∈ N0 [103–105].
Using these wavefunctions enables us to determine the degeneracy of each Landau level. Our
Hall bar has a finite length Lx, width W , and surface area A = LxW . Consequently, the
momentum kx is quantized in units of 2π/Lx and the center of mass of each wave-function
needs to fulfill 0 ≤ y0 ≤ W , implying 0 ≤ kx ≤ W/l2B. Therefore, the degeneracy of each
(spin polarized) Landau level is given by [100]

D =
W/l2B∫
0

dkx

/
2π
Lx

= LxW

2πl2B
= eBA

2π~ . (2.23)

The bulk particle density n in a quantum Hall sample is consequently quantized in terms of
eB/h. Namely, for NLL ∈ N+ filled Landau levels, the associated density is given by

n = eB
2π~NLL . (2.24)

Having determined the density, we can use Streda’s formula [106] to obtain the quantized
off-diagonal bulk conductivity

σxy = e ∂n
∂B

= NLL
e2

h . (2.25)

If the chemical potential is placed in between two Landau levels, all bulk modes are confined
to cyclotron orbits and the system is a bulk insulator and the diagonal conductivity vanishes,
σxx = 0. However, to entirely understand Fig. 2.2, we still need to include three more
ingredients in our analysis: (i) Edge states, (ii) disorder, and (iii) spin-splitting.
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2.2.2 Edge States
To derive the bulk Landau level spectrum in Fig. 2.3(a), we considered an infinite system with
periodic boundary conditions. From an experimental point of view this is well justified for
the longitudinal direction, since Lx �W , and the current contacts are attached at the edges
in ex-direction [101]. However, to obtain the edge modes associated to the quantized Hall
response in the Landau levels gaps, we need to add a confining potential Vconf(y) to the bulk
Hamiltonian in Eq. (2.19). While this potential does not influence the bulk modes, it bends
the Landau levels upwards at the sample’s edges, as it is shown in Fig. 2.4(a) for a single Lan-
dau level. Notice, that due to the relation y0 =kxl

2
B, which we derived in Eq. (2.21), there is

a one-to-one correspondence between the momentum in ex- and the real space in ey-direction.

W
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Figure 2.4: (a) Single Landau level under the influence of a confining potential Vconf(y). We
consider an infinite system with periodic boundary conditions in ex-direction and confine the
electron system to a finite widthW in ey-direction. This defines the cylinder geometry which
is shown as an inset. Notice, that due to the relation y0 = kxl

2
B [cf. Eq. (2.21)], there is an

one-to-one correspondence between the momentum in ex- and the real space in ey-direction.
At the sample’s edges, the Landau level bends upwards, leading to the chiral edge modes
ξ(L,R) (left, right). (b) If one applies a potential gradient ∆µ = EF(L)−EF(R) at both
edges, a net chiral edge current forms. (c) Two Landau level spectrum under the influence of
the confining potential Vconf(y). Here, we assume a constant chemical potential for NLL = 2
filled Landau levels. Filled states are shown in red, empty states are depicted in blue.

In Fig. 2.4(a), all states up to the Fermi energy EF are filled, which is encoded by red dots.
Due to the curvature of the Landau level at the sample’s boundaries, the chiral modes at
each edge of the Hall bar have a finite drift velocity in ex-direction [100]

vx = − 1
eB

∂V

∂y
. (2.26)

Introducing a chemical potential difference ∆µ in ey-direction causes a net charge transport,
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or equivalently a netto current Ix. The corresponding band-structure for a single Landau
level in Fig. 2.4(b) gives rise to the charge current

Ix = −e
∫ dkx

2π vx(kx) = e
2πl2B

∫
dy 1

eB
∂V

∂y
= e

2π~∆µ ⇒ σxy = e2

h . (2.27)

So far, we have only analyzed the edge modes of a single Landau level. However, as long as
we place the chemical potential in a Landau level gap, all our findings can be transferred to
the edge physics of multiple filled Landau levels. This is shown in Fig. 2.4(c). For a chemical
potential between NLL- and NLL + 1- filled Landau levels, there are exactly NLL chiral edge
states at each boundary, corresponding to σxy = NLLe2/h [100].

2.2.3 Disorder
As we have shown in Eq. (2.25), placing the chemical potential in between two Landau levels
leads to a quantized value of the Hall conductivity. In contrast, the longitudinal conductivity
vanishes in each Landau level gap, since each bulk mode is localized within its cyclotron
orbit, defining a bulk insulator. However, these properties alone do not explain the extended
Hall plateaus and peaks in the longitudinal resistance in Fig. 2.2. In a clean system one
experimentally cannot place the chemical potential in a Landau level gap since there are no
bulk modes to occupy. This changes as soon as one takes into account the effects of disorder,
which can be modeled by adding a random disorder potential Vdis(x, y) to the Hamiltonian
Eq. (2.19). Effectively, the disorder potential broadens the Landau level energies from discrete
values to a Gaussian distribution [100, 101]. In what follows, we assume the presence of a weak
disorder potential which does not close the Landau level gaps. In particular, the Gaussian
distributions corresponding to each Landau level do not overlap if the strength of the disorder
potential is much smaller the Landau level spacing

|Vdis(x, y)| � ~ωB . (2.28)

As shown in Fig. 2.5(a), a Gaussian distributed Landau level hosts two kind of bulk modes:
Localized and extended states.

V+

-

Density of States

(a)

E
ne

rg
y

extended

(b)

Equipotential Lines

localized

V

Figure 2.5: (a) Density of states of a quantum Hall system in the presence of a random
disorder potential Vdis(x, y). Each initially discrete Landau level (dashed lines) obtains a
Gaussian broadening. The inner parts of the distributions correspond to extended modes,
whereas the outer parts define localized states. (b) Equipotential lines corresponding to
the random disorder potential Vdis(x, y) with maximum V+ and minimum V−. Closed lines
encode localized states, whereas open lines define extended modes. These figures are inspired
by Figs. (18) and (19) in Ref. [100].
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In Fig. 2.5(b), we illustrate the equipotential lines of a disorder potential with a maximum
V+ and a minimum V−. Along these lines the cyclotron orbits of bulk modes can propagate.
Next to the extreme values there are closed equipotential lines defining localized states. These
modes correspond to the outer states in a disorder broadened Landau level [cf. Fig. 2.5(a)].
Open equipotential lines passing through the Hall bar define extended bulk states. These
modes correspond to the inner states in a disorder broadened Landau level [cf. Fig. 2.5(a)].
While the extended modes contribute to electron transport, filling localized states does not
change the conductivity. Consequently, the presence of disorder provides a regime in which
the chemical potential can be varied without changing the Hall conductivity. This eventually
explains the extended Hall plateaus in Fig. 2.2. Moreover, it also clarifies the peaks of the
longitudinal resistance whenever the Hall plateau changes. In this case, the chemical potential
passes the extended bulk states which contribute the charge transport [100].

2.2.4 Spin Splitting
To finally understand Fig. 2.2, we also need to take into account the electron’s spin σ =↑, ↓.
As mentioned above, the bulk Landau level spectrum in Eq. (2.17) was derived for spinless
modes. If one includes the spin character of the electrons in Eq. (2.17), one effectively needs
to add a Zeeman energy to the bulk Landau level spectrum, which implies [100]

Eλ = ~ωB
(
λ+ 1

2

)
± 1

2g
∗µBB with λ ∈ N0 . (2.29)

Here, ± defines the energy of spin-up (−) and spin-down (+) modes, µB = e~/(2me) is
the Bohr magneton, and g∗ is the effective g-factor of the electrons in a certain solid state
material. For instance in GaAs-AlxGa1−xAs hetero-structures this factor is given by g∗ ≈ 0.4
[107]. Consequently, all Landau levels are splitted in energy by a finite Zeeman term, as it is
schematically illustrated in Fig. 2.3(b).

2.2.5 Laughlin Argument
In Eq. (2.25), we derived the quantized off-diagonal conductivity of a quantum Hall sample
via Streda’s formula and the Landau level degeneracy D in Eq. (2.23). However, this deriva-
tion can be done in a more elegant fashion by virtue of the so-called Laughlin argument
[108]. Since we will use the theoretical concepts of this argument several times throughout
this thesis, let us review this famous argument in the following paragraphs based on the
Refs. [100, 102, 108].

As discussed in Sec. 2.276, in the scope of our analysis we consider Hall bar geometries
of length Lx and width W with periodic boundary conditions in ex-, as well as hard wall
boundary conditions in ey-direction. The latter is realized via the confining potential Vconf(y)
[cf. Fig. 2.4(a)]. Such geometries are defined by the surface of a cylinder, which is schemati-
cally illustrated in Fig. 2.6.

The out-of-plane magnetic field B is characterized by the magnetic flux ΦB. Again, we are
going to describe the magnetic field in terms of the Landau gauge A = −By ex. The cylinder
geometry in Fig. 2.6 enables us to define an additional artificial magnetic Laughlin flux ΦL
parallel to the cylinder symmetry axis. According to Faraday’s law [99], a time-dependent
variation of this flux induces a longitudinal constant electric field

Ex = −∂tΦL/Lx = −∂tAx . (2.30)
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As a consequence of the Hall conductivity, such a field induces the current density jy = σyxEx.

x

y

jy(Ex)
Ex

ΦB 
ΦL 

W
Lx

Figure 2.6: Cylinder geometry for the Laughlin argument [108]. We consider a Hall bar
of length Lx and width W with periodic boundary conditions in ex-, as well as hard wall
boundary conditions in ey-direction. The magnetic flux ΦB defines the quantizing magnetic
field which gives rise to the Landau level spectrum in Eq. (2.17). The Laughlin flux ΦL will
be tuned time-dependently which induces the longitudinal electric field E = Exex. Due to
the finite Hall conductivity σyx this generates a Hall current jy(Ex). Further explanations
are given in the text.

In what follows, let us derive the quantized values of the Hall conductivity by using the
Laughlin argument. According to Eq. (2.22), the center of mass of each eigenfunction is
given by y0 = kxl

2
B, and due to the finite length Lx the momentum kx is integer quantized in

units of 2π/Lx. Consequently, adjacent states in momentum- and real space are separated
by ∆kx = 2π/Lx and ∆y = 2πl2B/Lx, respectively. As mentioned above, a variation of the
Laughlin flux changes the vector potential Ax by

∆Ax = ∆ΦL/Lx . (2.31)

Thus, if we increase the Laughlin flux by one flux quantum Φ0 = h/e, the vector potential
evaluates to

A→ A+
(Φ0
Lx
, 0
)

= A+B∆y ex , since Φ0
Lx

= h∆y
e2πl2B

= B∆y . (2.32)

Effectively, this shifts the center of mass of each wavefunction by ∆y in real-, or equivalently
by ∆kx in momentum space. Increasing ΦL → ΦL +Φ0 in a time T therefore effectively shifts
one electron in each Landau level from the right (y = 0) to the left (y = W ) boundary of the
cylinder. For NLL ∈ N filled Landau levels, this implies

eNLL =
∫ T

0
dt jyLx = σyx

∫ T

0
dt ExLx = −σyx

∫ T

0
dt ∂tΦ = σxyΦ0 , (2.33)

which eventually leads to the quantized value of the Hall conductivity:

σxy = NLL
e2

h (2.34)
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2.3 Minkowski Space-Time and Clifford Algebra
2.3.1 2+1 Space-Time Dimensions
In this work, we are considering Dirac spinors ψ(x) and abelian U(1) gauge fields Aµ(x) in a
flat 2+1 dimensional bulk space-time, which is described by the Minkowski metric [109]

gµν =

1 0 0
0 −1 0
0 0 −1

 . (2.35)

The associated set of irreducible 2+1 dimensional Dirac matrices γ0,1,2 satisfies the Clifford
algebra with the anti-commutation rule [56, 57]

{γµ, γν}+ = 2gµν12 , (2.36)

where 12 is the 2 × 2 identity matrix. A common representation for these matrices via the
Pauli matrices [109]

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.37)

is the so-called Dirac representation [56, 57]

γ0 = σ3 =
(

1 0
0 −1

)
∧ γ1 = iσ1 =

(
0 i
i 0

)
∧ γ2 = iσ2 =

(
0 1
−1 0

)
. (2.38)

In particular, the Dirac matrices in 2+1 space-time dimensions satisfy the following trace
identities, which will be used several times throughout this thesis [56, 57]:

Tr [γµ] = 0 , (2.39)
Tr [γµγν ] = 2gµν ,

Tr
[
γµγνγλ

]
= −2iεµνλ ,

Tr
[
γµγνγλγρ

]
= 2

(
gµνgλρ − gµλgνρ + gµρgνλ

)
,

where εµνρ is the anti-symmetric Levi-Civita symbol with ε012 = 1. To prove the third
identity, which is special in 2+1 space-time dimensions, we used that

γµγν = gµν12 − iεµνργρ , (2.40)

which implies

Tr
[
γµγνγλ

]
= Tr

[
(gµν12 − iεµνργρ) γλ

]
= −iεµνρTr

[
γργ

λ
]

= −2iεµνλ . (2.41)

2.3.2 1+1 Space-Time Dimensions
The edge channels of our bulk theory are defined in a 1+1 dimensional Minkowski space-time
with the reduced metric tensor

gµν =
(

1 0
0 −1

)
. (2.42)
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In this space-time dimension we choose the following representation of the Dirac matrices [109]

γ0 = σ2 =
(

0 −i
i 0

)
∧ γ1 = iσ1 =

(
0 i
i 0

)
∧ γ5 = γ0γ1 = σ3 =

(
1 0
0 −1

)
. (2.43)

While there is no notion of chirality and thus no γ5 matrix in 2+1 space-time dimensions, this
concept is defined in 1+1 dimensions. In particular, γ5 has the following properties

γ5γ5 = 12, γ5γµ = −γµγ5, γµγν = gµν12 + εµνγ5 , (2.44)

where εµν is the reduced anti-symmetric Levi-Civita symbol with ε01 = 1. The eigenvalues
of γ5 are ±1. These values define the chiralities of the associated left- and right handed
Dirac spinors. In particular, the Dirac matrices have the following trace properties in 1+1
space-time dimensions

Tr [γµ] = 0 , (2.45)

Tr
[
γ5
]

= 0 ,

Tr [γµγν ] = 2gµν ,

Tr
[
γµγνγ5

]
= 0 ,

Tr
[
γµγνγλγρ

]
= 2

(
gµνgλρ + εµνελρ

)
, (2.46)

tr
[
γµγνγλγργ5

]
= 2

(
gµνελρ + εµνgλρ

)
.

2.3.3 Wick-Rotation
By a so-called Wick-rotation [109, 110], one can map every Minkowski metric to an Euclidean
space-time, which is in particular defined by the (positive) metric tensor

ηµν = 13 . (2.47)

Such a transformation rotates the time component of each space-time vector from the real-
to the imaginary axis

x0 → ix0 ∧ xi → xi . (2.48)

This changes the Minkowski- to an (negative) Euclidean norm

|x|2M = xµxνg
µν = x2

0 − x2
i → −|x|2E = −xµxνηµν = −x2

0 − x2
i . (2.49)

In solid state physics, this the Wick-rotation is frequently used in the framework of the
Masubara theory [111].

18



2.4 Symmetries

2.4 Symmetries
It is the goal of the present subsection to introduce and to analyze different (symmetry) trans-
formations in 2+1 space-time dimensions. In particular, we are going to discuss the parity P-,
the time-reversal T -, the charge conjugation C-, as well as the Lorentz transformation Λ. We
will analyze in which way the Dirac spinor ψ as well as the U(1) gauge field Aµ behaves under
such transformations, and will eventually derive the associated Noether currents.

2.4.1 Parity, Time-Reversal and Charge-Conjugation
Transformations

Let us start our discussion by analyzing the concept of parity transformations P. In 2+1
space-time dimensions a parity transformation changes just one of the spacial components,
since it needs to have a determinant of −1. Here, we choose the x1-direction. Thus, we define
the parity transformation via

P : x0 → x0 ∧ x1 → −x1 ∧ x2 → x2 . (2.50)

This is fundamentally different to its definition in 3+1 space-time dimensions, where it satis-
fies x→ −x. In second quantization, a parity transformation is a linear and unitary operator
which in the Dirac representation acts like [57]

P ψ(x0, x1, x2)P−1 = γ1 ψ(x0,−x1, x2) , (2.51)
P A0(x0, x1, x2)P−1 = A0(x0,−x1, x2) , (2.52)
P A1(x0, x1, x2)P−1 = −A1(x0,−x1, x2) , (2.53)
P A2(x0, x1, x2)P−1 = A2(x0,−x1, x2) . (2.54)

Instead, the time-reversal transformation T is an anti-linear and anti-unitary operator with
T iT −1 =−i. It changes the direction of time in the Minkowski space

T : x0 → −x0 ∧ x1 → x1 ∧ x2 → x2 . (2.55)

In the Dirac representation, the time-reversal operator acts like [57]

T ψ(x0, x1, x2) T −1 = γ2 ψ(−x0, x1, x2) , (2.56)
T A0(x0, x1, x2) T −1 = A0(−x0, x1, x2) , (2.57)
T A(x0, x1, x2) T −1 = −A(−x0, x1, x2) . (2.58)

The charge conjugation C is an unitary operator which converts particles ψ to anti-particles
ψc. Requiring that ψc satisfies the charge conjugated Dirac equation implies a certain form
for the charge conjugation matrix Uc:

ψc(x0, x1, x2) ≡ Ucγ
0ψ∗(x0, x1, x2) with (γµ)T = −U−1

c γµUc . (2.59)

In the Dirac representation, this condition can be fulfilled by choosing Uc = γ2 [57].

2.4.2 External Background Fields
So far, we have considered fluctuating U(1) gauge fields Aµ. Such fields for instance me-
diate the electron-electron (Coulomb) interactions in a solid state material. However, on a
theoretical level, we can also solely couple the Dirac spinors ψ to external background fields
Aext
µ . Their transformation rules are fixed by the experimental setup. For instance, the back-
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ground out-of-plane magnetic field Bext in a quantum Hall system can be treated as such
a field [cf. Sec. 2.2]. This leads to a subtlety. While the magnetic field B corresponding to
a fluctuating gauge field is a pseudo-scalar under parity- and time-reversal transformations,
an externally applied magnetic field Bext is a scalar under these operations, as it does not
change under internal (symmetry) transformations. In particular, we find

P B(x0, x1, x2)P−1 = P εij∂iAj(x0, x1, x2)P−1 (2.60)
= ε12(−∂1)A2(x0,−x1, x2) + ε21∂2(−A1(x0,−x1, x2))
= −εij∂iAj(x0,−x1, x2) = −B(x0,−x1, x2) ,

T B(x0, x1, x2) T −1 = T εij∂iAj(x0, x1, x2) T −1 (2.61)
= ε12∂1(−A2(−x0, x1, x2)) + ε21∂2(−A1(−x0, x1, x2))
= −εij∂iAj(−x0, x1, x2) = −B(−x0, x1, x2) ,

whereas for an external magnetic background field we require

P Bext(x0, x1, x2)P−1 = P εij∂iAext
j (x0, x1, x2)P−1 (2.62)

= ε12(−∂1)PAext
2 (x0, x1, x2)P−1 + ε21∂2PAext

1 (x0, x1, x2)P−1

!= Bext(x0,−x1, x2) ,

T Bext(x0, x1, x2) T −1 = T εij∂iAext
j (x0, x1, x2) T −1 (2.63)

= εij∂iT Aext
j (x0, x1, x2) T −1 != Bext(−x0, x1, x2) .

This implies the associated transformation rules

PAext
1 (x0, x1, x2)P−1 = Aext

1 (x0,−x1, x2) (2.64)
PAext

2 (x0, x1, x2)P−1 = −Aext
2 (x0,−x1, x2) (2.65)

TAext(x0, x1, x2)T −1 = Aext(−x0, x1, x2) . (2.66)

2.4.3 Lorentz and Galilean Symmetry
Beside the discrete transformations discussed above, there are several continuous symmetry
transformations which a 2+1 space-time dimensional Dirac system should satisfy. One of
these symmetries is the invariance under the Poincare group [38]. On the one hand, this group
consists of the Lorentz transformations Λµν , which map between different inertial systems via
boosts and rotations of the relativistic coordinates [109, 110]:

x′µ = Λ ν
µ xν . (2.67)

Since all inertial systems describe the same physics, Lorentz transformations do not change
the metric tensor:

xµxµ = xµgµνx
ν != x′µx′µ = xβΛ µ

β gµνΛναxα ⇒ ΛTgΛ = g . (2.68)

Consequently, with g−1 = g, the inverse Lorentz transformation Λ−1 is given by

g−1ΛTgΛΛ−1 = g−1gΛ−1 ⇒ Λ−1 = gΛTg . (2.69)
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Further, Eq. (2.68) implies detΛ = ±1. Our convention g00 = 1 additionally requires

Λ µ
0 gµνΛν0 = g00 = 1 ⇒ (Λ0

0)2 = 1 +
3∑
i=1

(Λi0)2 > 1 . (2.70)

In general, one distinguishes between proper- and improper Lorentz transformations with
detΛ = +1 and detΛ = −1, as well as between orthochronous and non-orthochronous Lorentz
transformations with Λ0

0 > 1 and Λ0
0 6 −1, respectively [109, 110]. Since boosts and ro-

tations are continuously connected to the identity, we are only considering proper- and or-
thochronous Lorentz transformations with Λµν ∈ SO(1,3). This group has several generators,
which are implicitly defined via [109, 112]

Λ = e−iαiKi−iβiLi = e−
i
2 ΩµνMµν

. (2.71)

Here Ki are the anti-hermitian generators for boosts along the ei-direction, and Ji generate
rotations around the ei-axis. Together, they define the anti-symmetric tensor:

Mµν = −Mνµ with Mi0 = Ki ∧ Mij = εijkJk . (2.72)

The coefficients which define the explicit Lorentz transformation in Eq. (2.71) are αi and βi,
or analogously

Ωµν = −Ωνµ with Ωi0 = αi ∧ Ωij = 1
2εijkβk . (2.73)

The generators of rotations and boosts form a Lie-Algebra with the anti-commutation rules

[Ji, Jj ] = iεijkJk , (2.74)
[Ji,Kj ] = iεijkKk , (2.75)

[Ki,Kj ] = −iεijkJk . (2.76)

In 2+1 space-time dimensions these generators are defined by [112]

J3 =

0 0 0
0 0 −i
0 i 0

 , K1 =

 0 −i 0
−i 0 0
0 0 0

 , K2 =

 0 0 −i
0 0 0
−i 0 0

 . (2.77)

The entire Poincare group consists of the Lorentz transformations Λµν and, additionally, of
the continuous space-time translations aµ, in total giving rise to

x′µ = Λ ν
µ xν + aµ . (2.78)

The generator of a continuous space-time translation aµ is the three-momentum

Pµ = i~∂µ . (2.79)

This operator allows us to construct the angular momentum operator

Lµν = xµPν − xνPµ with Ji = 1
2εijkL

jk ∧ Ki = L0i . (2.80)

Finally, the Lie Algebra of the entire Poincare group is given by [112]:

[P0, Ji] = 0 , [Pi, Jj ] = iεijkPk , [P0,Ki] = iPi , (2.81)
[Pµ, Pν ] = 0 , [Pi,Kj ] = iδijP0 , [Pµ, Lρσ] = i(gµρPσ − gµσPρ) , (2.82)
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[Lµν , Lρσ] = −i(gµρLνσ − gµσLνρ + gνσLµρ − gνρLµσ) . (2.83)

For the Lorentz transformation rules of the spinor- and vector fields ψ and Aµ, one needs to
derive the representation of the Lorentz group in their configuration space. While the vector
fields have a trivial representation and transform like [109]

Aµ(x)→ ΛµνAν(Λ−1x) , (2.84)

the spinor fields transform as

ψ(x)→ S[Λ]ψ(Λ−1x) . (2.85)

Here, S[Λ] is the spinor representation of the Dirac fields defined by [109]

S[Λ] = e−
i
2 ΩρσSρσ with Sρσ = i [γρ, γν ] /4 . (2.86)

For a detailed derivation of these transformation rules we refer the interested reader to the
References [109, 110, 112, 113].

2.4.4 Vector and Axial Gauge Symmetry
One of the most important symmetries of a physical system is the so-called U(1) gauge
symmetry [109]. Let us clarify this concept for a single Dirac system in 2+1 space-time
dimensions. Such a system is described by the Lagrangian

L0 = ψ̄(i/∂ −m)ψ , (2.87)

where ψ̄ = ψ†γ0, /∂ = ∂µγ
µ, and m is the electron mass. Experimentally it is only possible to

measure the expectation value of the electron density operator 〈ψ†ψ〉, but not the individual
phases of the Dirac spinors ψ and ψ†. Consequently, the underlying theory needs to be
invariant under continuous U(1) phase transformations of the form

ψ(x)→ e−iφψ(x) , (2.88)
ψ†(x)→ eiφψ†(x) . (2.89)

Here, φ ∈ R is an arbitrary space-time independent angle. This property is fulfilled by
the Dirac Lagrangian in Eq. (2.87). To ensure that this feature also holds for a space-time
dependent angle φ(x) ∈ R, we need to couple the Dirac system to a so-called vector gauge
field Aµ. Technically, this is done by replacing the partial derivative ∂µ by the covariant
derivative

Dµ = ∂µ + ieAµ . (2.90)

In the solid state community this procedure is also known as minimal coupling [24, 111].
The resulting Lagrangian describes the theory of quantum electrodynamics (QED) in 2+1
space-time dimensions

L = ψ̄(i /D −m)ψ . (2.91)

Under a local phase transformation vector gauge fields do only change by a total derivative [109]

Aµ → Aµ + 1
e∂µφ(x) . (2.92)
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Consequently, the measurable electric- and magnetic fields do not change under these trans-
formations. This is essentially the origin of the name ’gauge transformations’. The transfor-
mation property in Eq. (2.92) is constructed such that the entire Lagrangian in Eq. (2.91) is
locally gauge invariant, since

Dµψ = ∂µψ + ieAµ → ∂µ(e−iφ(x)ψ) + ie
(
Aµ + 1

e∂µφ(x)
)

(e−iφ(x)ψ) = e−iφ(x)Dµψ . (2.93)

In even space-time dimensions we are able to develop another gauge symmetry, namely the
invariance of the Lagrangian under chiral gauge transformations. To analyze this concept, let
us for the moment consider a massless Dirac Lagrangian in 1+1 space-time dimensions

L0 = ψ̄i/∂ψ . (2.94)

Again, we can make the system invariant under local U(1) gauge transformations by coupling
it to a vector gauge field Aµ. The presence of a γ5 matrix in even space-time dimensions,
with the properties [cf. Sec. 2.3.2](

γ5
)†

= γ5 ∧
(
γ5
)2

= 1 ∧
{
γ5, γµ

}
= 0 , (2.95)

allows us to construct the additional axial or chiral gauge symmetry. The eigen-states of γ5

define the left- and right handed spinors ψL/R with chiralities ±1,

ψL/R ≡ ψ± = P±ψ = 12 ± γ5

2 ψ with γ5ψ± = ±ψ± . (2.96)

Here, P± is the chiral projection operator with the properties

P+ + P− = 12, P 2
± = P±, P+P− = P−P+ = 0, P+γ

µ = γµP− . (2.97)

Analogously to the vector gauge transformations in Eq. (2.90), we can make the Lagrangian in
Eq. (2.94) invariant under both, local vector- and axial gauge transformations by introducing
an additional axial gauge field in the covariant derivative [114]

L = ψ̄i /Dψ = ψ̄ i
(
/∂ + ie /A+ ie /Bγ5

)
ψ . (2.98)

Tab. 2.1 summarizes the transformation rules of all spinor and gauge fields in Eq. (2.98)
under these symmetry transformations.

Vector Gauge Transformations Axial Gauge Transformation

ψ → e−iφ(x)ψ ψ → e−iϕ(x)γ5
ψ

ψ̄ → ψ̄eiφ(x) ψ̄ → ψ̄e−iϕ(x)γ5

Aµ → Aµ + 1
e∂µφ(x) Bµ → Bµ + 1

e∂µϕ(x)

Table 2.1: Transformation rules of spinors and gauge fields under the local vector- and axial
gauge transformations φ(x) and ϕ(x) [cf. Eq. (2.98)].

In a massless Dirac Lagrangian the left- and right handed chiralities due not mix, as a direct
consequence of the properties of the projection operator P± in Eq. (4.13). We can therefore
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decompose the Lagrangian in Eq. (2.98) into its chiral building blocks. Such a decomposition
allows us to define the corresponding gauge transformations for left- and right handed spinors
separately:

L = (P+ + P−)ψ̄i /D(P+ + P−)ψ = ψ̄L i
(
/∂ + ie /AL)

ψL + ψ̄R i
(
/∂ + ie /AR)

ψR , (2.99)

where we defined

AL
µ = Aµ +Bµ ∧ AR

µ = Aµ −Bµ . (2.100)

The two building blocks of the Lagrangian in Eq. (2.99) are separately invariant under the
local U(1) gauge transformations which are shown in Tab. 2.2.

Left Handed Right Handed

ψL → e−iθL(x)ψL ψR → e−iθR(x)ψR

ψ̄L → ψ̄LeiθL(x) ψ̄R → ψ̄ReiθR(x)

AL
µ → AL

µ + 1
e∂µθL(x) AR

µ → AR
µ + 1

e∂µθR(x)

Table 2.2: Transformation rules of left- and right handed spinors and gauge fields under the
local U(1) gauge transformations θL/R(x) [cf. Eq.(2.99)].

The special case θL = θR corresponds to the vector- gauge transformation, whereas the case
θL =−θR corresponds to the axial gauge transformation presented in Tab. 2.1 [114].

Having analyzed local vector- and local axial gauge transformations, let us discuss another
crucial property of continuous gauge transformations, namely the difference between small-
and large gauge transformations. For simplicity we will focus on vector gauge transformations
and neglect the adjective ’vector’ in the subsequent paragraphs.

As we discussed in Eq. (2.88), a gauge transformation only changes the phase of a Dirac
spinor. By construction the phase-factor e−iφ(x) is a single valued quantity. However, on
a compact base manifolda this is not necessarily true for the phase φ(x) itself. Let us for
simplicity consider a 0+1 space-time dimensional QED system where the time is defined
on a unit circle S1

time. For consistency, the Dirac spinor and the gauge field need to satisfy
anti-periodic as well as periodic boundary conditions, respectively [113, 115]:

ψ(x0 + 2π) = −ψ(x0) (2.101)
Aµ(x0 + 2π) = Aµ(x0) . (2.102)

Consequently, the gauge phase needs to satisfy

φ(x0 + 2π)− φ(x0) = 2πn with n ∈ Z . (2.103)

For instance, this can be achieved by choosing

φ(x0) = x0n . (2.104)

As the time x0 is defined on the unit circle S1
time, the quantity φ is not single valued. For

aThis statement does also hold for non-compact manifolds if the corresponding fields decay to zero at infinity.
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instance, for x0
0 = π = 3π, we find the deviating values

φ(x0
0 = π) = πn ∧ φ(x0

0 = 3π) = 3πn . (2.105)

As required by Eq. (2.103), these values differ by a factor of 2πn. The multi-valuedness of
φ(x) is schematically shown in Fig. 2.7 for n = 1, 2, 3. Here, we confined φ(x) to a circle
S1

phase of circumference 2πn.

n=1 n=2 n=3

S1time S1phase

Figure 2.7: Schematic illustration of a large gauge transformation with winding n ∈ Z.
The circle S1

phase, which defines the gauge phase φ(x0), winds around the circle S1
time, which

defines the compact base manifold. The phase φ(x0) is a multi-valued quantity, whereas the
phase factor e−iφ(x0) remains single-valued. Further explanations are given in the text.

The winding n ∈ Z defines how often S1
phase winds around S1

time. Theoretically, this originates
from the homotopy classification [6]

π1(S1) = Z . (2.106)

As a direct consequence of this property, the entire gauge group U(1)entire is not continuously
connected on a compact manifold. Small gauge transformations, by definition, only connect
gauge configurations which are defined by the same winding number n. Hence, the entire
gauge group has several sub-sectors which are linked by topologically non-trivial so-called
large gauge transformations U(1)entire/U(1)small = Z [116]. In particular, small and large
gauge transformations have distinct physical consequences, which we are going to discuss
within the scope of this thesis.

2.4.5 Noether Theorem
Suppose we have a system which is defined by fermionic and/or bosonic fields φa and
their space-time derives ∂µφa. Its action in n space-time dimensions is thus given by [113,
115]

S(φa, ∂µφa) =
∫

dnxL(φa, ∂µφa) . (2.107)

The equations of motion of each field φa can be derived by requiring that the action is
stationary and therefore satisfies

δS(φa, ∂µφa) =
∫

dnx δL(φa, ∂µφa) =
∫

dnx
[
∂L
∂φa

δφa + ∂L
∂(∂µφa)

∂µδφa

]

=
∫

dnx
[
∂L
∂φa
− ∂µ

∂L
∂(∂µφa)

]
δφa +

∫
dnx ∂µ

[
∂L

∂(∂µφa)
δφa

]
!= 0 , (2.108)
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where we partially integrated in the second line. Since the last term is the integral over a
total space-time derivative, this term is a boundary term and can be neglected in an infinite
systema. To fulfill, δS = 0 for every variation δφa, we need to require the so-called Euler
Lagrange equations

∂L
∂φa
− ∂µ

∂L
∂(∂µφa)

= 0 . (2.109)

These equations of motion can be used to prove the Noether theorem [117]:

Noether Theorem Every continuous symmetry transformation φa → φa + δφa of an action
S(φa, ∂µφa), which changes the Lagrangian only by a total space-time derivative δL(φa, ∂µφa) =
∂µX

µ(φa, ∂µφa), gives rise to a locally conserved current density

jµ(x) = ∂L
∂(∂µφa)

δφa −Xµ(φa, ∂µφa) with ∂µj
µ(x) = 0 . (2.110)

The proof of this theorem goes along the lines of the proof for the Euler-Lagrange equations:

δL(φa, ∂µφa) =
[
∂L
∂φa
− ∂µ

∂L
∂(∂µφa)

δφa

]
+ ∂µ

[
∂L

∂(∂µφa)
δφa

]

= ∂µ

[
∂L

∂(∂µφa)
δφa

]
!= ∂µX

µ(φa, ∂µφa) , (2.111)

where we used the equations of motion in the second equality. Throughout this thesis we
will make use of this theorem to determine the conserved currents of several Lagrangians.
Table 2.3 already predicts which symmetries imply which conserved currents [113, 115].

Continuous Symmetry Transformation Conserved Current

Translation in space-time Energy-momentum current

Rotation in space Angular momentum

U(1) gauge symmetry Charge current

Chiral U(1) gauge symmetry Chiral charge current

Table 2.3: Implications of the Noether theorem: Symmetries and conserved currents.

aThis statement needs to be revised for topological field theories - like Chern-Simons forms - which will be
discussed in Sec (2.6.4).
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2.5 Quantum Anomalies
2.5.1 Definition
Having analyzed the possible symmetries of our system, we are now introducing the theoret-
ical concept of quantum anomalies. It is mandatory to understand the definition of such an
anomaly in detail, in order to grasp all of the results which are presented within the present
thesis.

Definition 1 If a symmetry of a classical system can not be maintained on the quantum
level, the theory has a quantum anomaly. The breakdown of the parity symmetry on the
quantum level is called parity anomaly. The breakdown of the chiral (gauge) symmetry
on the quantum level is called chiral or axial anomaly.

Before we derive the experimental consequences which result from such quantum anomalies,
let us explain how the non-conservation of a classical symmetry on the quantum level arises
in the Lagrangian formalism [114, 118–120].

2.5.2 Quantum Effective Action
Let us consider a classical system of Dirac spinors ψ and ψ̄, as well as gauge fields Aµ, which
is described by the Lagrangian

Lcl = L0(ψ, ψ̄) + L0(A) + LI(ψ, ψ̄, A) . (2.112)

Here, L0(ψ, ψ̄) and L0(A) define the Lagrangians of the free fermionic and bosonic systems,
whereas LI(ψ, ψ̄, A) encodes their interaction. Quantizing this theory can be done via the
path integral formalism [109, 110]. In particular, any time ordered Green’s function can
be calculated via the generating functional Z[η, η̄, jA], which plays the role of the partition
function in a quantum field theory [121]:

〈0|T
[
ψ(x1) . . . ψ̄(y1)...Aµ(z1)...Aµ(zn)

]
|0〉 (2.113)

= δ

i δη̄(x1) . . .
δ

−i δη(y1) . . .
δ

i δjµA(z1) . . .
δ

i δjµA(zn)Z[η, η̄, jA]
∣∣∣∣
η,η̄,jA=0

.

Here, the Grassmann functions η̄ and η are the source terms of ψ and ψ̄, whereas the current
jA represents the source term of the vector gauge field Aµ. All of the source terms are set
to zero after taking the functional derivatives. The generating functional itself is defined via
the path integral over all field configurations:

Z[η, η̄, jA] = 1
N

∫
dψdψ̄dA exp

[
i
∫

dx
(
Lcl + η̄ψ + ψ̄η +Aµj

µ
A

)]
(2.114)

with its normalization

N =
∫

dψdψ̄dA exp
[
i
∫

dxLcl

]
. (2.115)

To derive the non-interacting fermion propagator, let us calculate the free fermion Green’s
function 〈0|T

[
ψ(x1)ψ̄(x2)

]
|0〉. Therefore, we set the vector field and its source term to zero,

A = jA = 0. Assuming that L0(ψ̄, ψ) is bilinear in ψ̄ψ allows us to define a matrix M , such
that the fermionic part of the exponential in the generating functional becomes

ψ̄Mψ + η̄ψ + ψ̄η =
(
ψ̄ + η̄M−1

)
M
(
ψ +M−1η

)
− η̄M−1η . (2.116)
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This leads to (neglecting the space-time integral in the exponent for reasons of clarity)

ZF[η, η̄] = 1
NF

∫
dψdψ̄ eψ̄Mψ+η̄ψ+ψ̄η = 1

NF
e−η̄M−1η

∫
dψdψ̄ e(ψ̄+η̄M−1)M(ψ+M−1η) (2.117)

= 1
NF

e−η̄M−1η
∫

dψ′dψ̄′ eψ̄′Mψ′ = e−η̄M−1η ,

where NF = ZF[0, 0]. Next, we define the inverse of the matrix M , which will turn out to be
the free fermion propagator

MSF(x− y) = δ(x− y)⇒ Z[η, η̄, 0] = e−i
∫

dxdyη̄(x)SF(x−y)η(y) . (2.118)

According to Eq. (2.113), the time ordered two-point fermionic Green’s function is given
by

〈0|T
[
ψ(x1)ψ̄(x2)

]
|0〉 = δ2ZF[η, η̄]

iδη̄(x1)(−i)δη(x2)

∣∣∣∣
η=η̄=0

(2.119)

= δ

iδη̄(x1)(−)
∫

dxdy η̄(x)SF(x− y)δ(x2 − y)e−i
∫

dxdyη̄(x)SF(x−y)η(y)
∣∣∣∣
η=η̄=0

= δ

iδη̄(x1)(−)
∫

dx η̄(x)SF(x− x2)e−i
∫

dxdyη̄(x)SF(x−y)η(y)
∣∣∣∣
η=η̄=0

= iSF(x1 − x2) .

After this brief pedagogical excursus, let us come back to our full interacting model in
Eq. (2.114). The calculus of the generating functional allows us to totally get rid of the
fermionic modes by deriving the so-called effective action Seff . Technically, this is done by
executing the Grassman integration for the fermionic fields [122]:

Z[0, 0, jA] = 1
N

∫
dψdψ̄dA exp

[
i
∫

dx
(
L0(A) + L0(ψ, ψ̄) + LI(ψ, ψ̄, A) +Aµj

µ
A

)]
(2.120)

= 1
N

∫
dA exp

[
i
∫

dx (L0(A) +Aµj
µ
A)
] ∫

dψdψ̄ exp
[
i
∫

dx ψ̄M [A]ψ
]

= 1
Ñ

∫
dA exp

[
i
∫

dx (L0(A) + Leff(A) +Aµj
µ
A)
]
,

where we again assumed that the fermionic part of the full Lagrangian Lcl(ψ̄, ψ,A) is bilinear
in ψ̄ψ and revised the normalization Ñ ≡

∫
dA exp [i

∫
dxL0(A) + Leff(A)]. The effective

action Seff(A) =
∫

dx Leff(A) itself is implicitly defined by

eiSeff ≡
∫

dψdψ̄ exp
[
i
∫

dx ψ̄M [A]ψ
]

∫
dψdψ̄ exp

[
i
∫

dx ψ̄M [0]ψ
] = det (M [A])

det (M [0]) . (2.121)

In the second equality we used the Grassmann integration (neglecting the space-time integral
in the exponent for reasons of clarity):∫

dψ′1dψ̄′1 . . . dψ′ndψ̄′n eψ̄
′
iM

ij [A]ψ′j =
∫

dψ′1dψ̄′1 . . . dψ′ndψ̄′n
1
n!
(
ψ̄′iM

ij [A]ψ′j
)n

= det(M [A]) , (2.122)

due to the basic properties of Grassman fields∫
dψ′i(a+ bψ′j) = bδij ∧ ψ2

i = 0, ψiψj = −ψjψi . (2.123)
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Within this thesis, we are going to describe Dirac systems coupled to electromagnetic U(1)
gauge fields Aµ, which are experimentally applied. On the level of the generating functional
this means that the bosonic path integral can be solved by a saddle-point integration around
the electromagnetic field configuration. We are therefore interested in the partition function
of these systems as a function of the gauge field configuration:

Z[A] = det (M [A])
det (M [0]) = eiSeff(A) (2.124)

If we consider the 2+1 dimensional Dirac Lagrangian in Eq. (2.91) coupled to an abelian
electromagnetic gauge field Aµ, we can further simplify the fermion determinant [122]:

Z[A] = det
[
i /D −m+ iε

]
det

[
i/∂ −m+ iε

] = det
[
1− e

/A

i/∂ −m+ iε

]
(2.125)

= exp
(

tr
[
log

(
1− e

/A

i/∂ −m+ iε

)])
.

Thus, on the quantum level, such a system is described by the effective action

Seff [A] = −
∫

dx i tr
[
log

(
1− e

/A

i/∂ −m+ iε

)]
. (2.126)

To analyze the presence of a quantum anomaly, we need to evaluate the remaining expression
of Seff and analyze its symmetries in comparison to those of Lcl. This is the purpose of the
next section.

2.6 Parity and Chiral Anomaly of Quantum
Electrodynamics

2.6.1 Symmetries of the Classical Lagrangian
In what follows, we consider planar quantum electrodynamics, QED2+1, which describes
a single Dirac fermion in 2+1 space-time dimensions coupled to an electromagnetic U(1)
(vector) gauge field Aµ [cf. Eq. (2.91)]. On the classical level, such a system is described by
the Lagrangian:

Lcl(x) = ψ̄(x)
(
i /D −m

)
ψ(x) , (2.127)

where Dµ = ∂µ+ieAµ(x) is the covariant derivative [cf. Eq.(2.90)]. According to Sec. 2.4, this
Lagrangian is invariant under local U(1) (vector) gauge- and Lorentz transformations:

Lcl(x) φ(x)→ L′cl(x) = eiφ(x)ψ̄(x)
(
e−iφ(x)i /Dψ(x)− e−iφ(x)mψ(x)

)
= Lcl(x), (2.128)

Lcl(x) Λ→ L′cl(x′) = S[Λ]−1ψ̄(Λ−1x)
(
iS[Λ] /Dψ(Λ−1x)− S[Λ]mψ(Λ−1x)

)
(2.129)

= Lcl(Λ−1x) ,

where we used that S[Λ]−1γµS[Λ] = Λµνγν [109]. The different building blocks of the QED2+1
Lagrangian in Eq. (2.127) have the following transformation rules:
According to Eq. (2.51), they transform under parity operations P as

P ψ̄(x0, x1, x2)mψ(x0, x1, x2)P−1 = −ψ̄(x0,−x1, x2)mψ(x0,−x1, x2) , (2.130)
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P ψ̄(x0, x1, x2) /A(x0, x1, x2)ψ(x0, x1, x2)P−1 = ψ̄(x0,−x1, x2) /A(x0,−x1, x2)ψ(x0,−x1, x2),
P ψ̄(x0, x1, x2)/∂ψ(x0, x1, x2)P−1 = ψ̄(x0,−x1, x2)/∂ψ(x0,−x1, x2) .

According to Eq. (2.56), they transform under time-reversal operations T as

T ψ̄(x0, x1, x2)mψ(x0, x1, x2) T −1 = −ψ̄(−x0, x1, x2)mψ(−x0, x1, x2) , (2.131)
T ψ̄(x0, x1, x2) /A(x0, x1, x2)ψ(x0, x1, x2) T −1 = ψ̄(−x0, x1, x2) /A(−x0, x1, x2)ψ(−x0, x1, x2) ,

T ψ̄(x0, x1, x2)/∂ψ(x0, x1, x2) T −1 = ψ̄(−x0, x1, x2)/∂ψ(−x0, x1, x2) .

According to Eq. (2.59), they transform under charge conjugation operations C as

C ψ̄(x0, x1, x2)mψ(x0, x1, x2) C−1 = ψ̄(x0, x1, x2)mψ(x0, x1, x2) , (2.132)
C ψ̄(x0, x1, x2) /A(x0, x1, x2)ψ(x0, x1, x2) C−1 = ψ̄(x0, x1, x2) /A(x0, x1, x2)ψ(x0, x1, x2) ,

C ψ̄(x0, x1, x2)/∂ψ(x0, x1, x2) C−1 = ψ̄(x0, x1, x2)/∂ψ(x0, x1, x2) .

Consequently, a massless QED2+1 system is parity-, time-reversal- and charge-conjugation
symmetric on the classical level. In contrast, the first two symmetries are broken if the system
has a finite Dirac mass term m.

These are the classical symmetries of a QED2+1 system. If one of these symmetries gets
broken on the quantum level, a quantum anomaly is present [cf. Definition 1 in Sec. 2.5.1].
In what follows, we are going to show that a massless QED system in 2+1 space-time di-
mensions breaks the parity symmetry on the quantum level and, therefore, exhibits a parity
anomaly.

2.6.2 Fermion Propagator and Gauge-Matter Vertex
In order to derive the parity anomaly of planar quantum electrodynamics, we need to calculate
the associated effective action on the quantum level [cf. Sec. 2.5.2]. In particular, we need to
evaluate the fermion determinant in Eq. (2.125), which includes the free fermion propagator
and the gauge-matter vertex. From the non-interacting part of the QED2+1 Lagrangian in
Eq. (2.127) we can read off the free fermion propagator [cf. Eq. (2.119)]. With

/k/k = kµkνγµγν = 1
2k

µkν (γµγν + γνγµ) = gµνk
µkν = k2 , (2.133)

and k =
√
k2, the free fermion propagator in momentum space is given by

iSF(k) = i
/k −m

= i(/k +m)
(/k −m)(/k +m) = i(/k +m)

k2 −m2 . (2.134)

Moreover, the interaction part in the Lagrangian Eq. (2.127) implies the associated gauge-
matter vertex:

V µ = i δScl

δψ̄δAµδψ
= −ieγµ , (2.135)

where Scl =
∫

dxLcl(x) is the classical action. Knowing the free fermion propagator and
the gauge-matter coupling allows us to determine the fermion determinant in Eq. (2.125),
and thus the quantum effective action. In what follows we are going to calculate this quantity.
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2.6.3 Effective Action and Parity Anomaly in 2+1 Dimensions
According to Eq. (2.126), the effective action of quantum electrodynamics in 2+1 space-time
dimensions for Nf fermion species is given by

Seff [A] = −Nf

∫
dx i tr

[
log

(
1− e

/A

i/∂ −m+ iε

)]
. (2.136)

Since in QED the gauge-matter coupling is perturbatively small, let us Taylor expand the
effective action in terms of the coupling constant e. Up to second order in the electric charge
we obtain the expansion

Seff [A] = −Nf

∫
dx i tr

[
−e
(

/A

i/∂ −m+ iε

)
− e2

2

(
/A

i/∂ −m+ iε
/A

i/∂ −m+ iε

)]
+O(e3)

= Nf

∫
dx tr

[
ie
(
/A

1
i/∂ −m+ iε

)]
(2.137)

+Nf

∫
dx tr

[
ie2

2

(
/A

1
i/∂ −m+ iε

/A
1

i/∂ −m+ iε

)]
+O(e3) , (2.138)

where we used that log(1 + z) = z − 1
2z

2 +O(z3) for |z| � 1.
The first term, Eq. (2.137), is the contribution of the tadpole to the effective action and
defines the system’s charge density [109]. The second term, Eq. (2.138), encodes the vacuum
polarization operator. It defines the system’s conductivity and, in particular, leads to the
parity anomaly. Let us therefore focus on this term in the following:

S
(2)
eff [A] = Nf

2

∫
dx Aµ tr

[
ie2
(
γµ

1
i/∂ −m+ iε

γν
1

i/∂ −m+ iε

)]
Aν . (2.139)

Fourier transforming Eq. (2.139) to momentum space implies

S
(2)
eff [A] = Nf

2

∫ d3p

(2π)3 [Aµ(−p)Πµν(p)Aν(p)] , (2.140)

which implicitly defines the vacuum polarization operator

iΠµν(p) = −(−ie)2
∫ d3k

(2π)3
tr[γµi(/k +m)γν i(/k + /p+m)]

(k2 −m2)[(k + p)2 −m2] . (2.141)

Diagrammatically, this fermion loop operator is visualized in Fig. 2.8.

p p

k+p

k

V V
μ ν

<

<
Figure 2.8: Feynman diagramm of the vacuum polarization operator in Eq. (2.141) with the
internal loop momentum k, the external momentum p, and the gauge-matter vertices V µ,ν .

In what follows, we are going to calculate the vacuum polarization operator explicitly. Let
us first simplify the numerator in Eq. (2.141). Therefore, we use the trace-identities for 2+1
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dimensional Dirac matrices, which we introduced in Eq. (2.39):

tr[γµγλγνγξ]kλkξ = 4kµkν − 2gµνk2 , (2.142)
tr[γµγλγνγη]kλpη = 2kµpν + 2kνpµ − 2gµνkp ,

tr[γµγλγν ]kλm = −2iεµλνkλm ,

tr[γµγνγξ]kξm = −2iεµνξkξm ,

tr[γµγνγη]pηm = −2iεµνηpηm ,

tr[γµγν ]m2 = 2gµνm2 .

With these identities we obtain the simplified expression

iΠµν(p) = −2e2
∫ d3k

(2π)3
2kµkν + kµpν + kνpµ + gµν(m2 − k2 − kp)− iεµνηpηm

(k2 −m2)[(k + p)2 −m2] . (2.143)

As a second step, we rewrite the denominator in Eq. (2.141) in terms of the Feynman para-
meter x ∈ R [109, 110]. This parameter is defined by the integral identity ({A,B} ∈ C)

1
AB

=
∫ 1

0
dx 1

[A+ (B −A)x]2
. (2.144)

With A = k2−m2 and B = (k+ p)2−m2, the denominator of the polarization operator can
be rewritten in terms of

1
(k2 −m2)[(k + p)2 −m2] =

1∫
0

dx 1
(k2 + 2xkp+ xp2 −m2)2 (2.145)

=
1∫

0

dx 1
(l2 + x(1− x)p2 −m2)2 ,

where in the last step we shifted the loop momentum by kµ → kµ + pµx = lµ [109]. Under
this shift, the numerator in Eq. (2.143) evaluates to

2lµlν − gµν l2 − 2x(1−x)pµpν + gµν
(
m2 + x(1−x)p2

)
− iεµνηpηm+ linear terms in l .

(2.146)

Since the denominator is symmetric in l, the linear terms in the numerator do not contribute
to the (symmetric) integration in Eq. (2.143). Next, we perform a Wick-rotation to an
Euclidean space-time, l→ lE, as it was explained in Sec. 2.3.3:

iΠµν(p) = (2.147)

− 2ie2
1∫

0

dx
∫ d3lE

(2π)3
−2

3 l
2
Egµν + gµν l

2
E − 2x(1−x)pµpν + gµν

(
m2 + x(1−x)p2)− iεµνηpηm

(l2E − x(1−x)p2 +m2)2 .

Here, we used that due to the underlying Lorentz symmetry we can simplify lµlν = 1
2+1 l

2gµν [110].
The remaining integration over the n = 3 dimensional Euclidean space-time can be performed
explicitly by using the following identity [109]:

∫ dnlE
(2π)n

1
(l2E + ∆)2 =

∫ dΩn

(2π)n ·
∞∫
0

dlE
ln−1
E

(l2E + ∆)2 . (2.148)
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Here, the first factor resembles the integral over an n-dimensional unit sphere, given by∫
dΩn = 2π

n
2

Γ
(
n
2
) with Γ

(3
2

)
=
√
π

2 ⇒
∫

dΩ3 = 4π . (2.149)

By using Eqs. (2.148) and (2.149), we can simplify the expression for the vacuum polarization
operator in Eq. (2.147). In particular, we obtain

iΠµν(p) = (2.150)

− ie2

π2

1∫
0

dx
∞∫
0

dlE l2E
gµν(1

3 l
2
E − x(1−x)p2 +m2) + 2x(1−x)(gµνp2 − pµpν)− iεµνηpηm

(l2E − x(1−x)p2 +m2)2 .

Depending on their superficial degree of divergence and their tensor-structure, we distinguish
three different contributions to Eq. (2.150):

First, there is a UV divergent term proportional to the metric tensor:

− ie2

π2

1∫
0

dx
Λ∫

0

dlE l2E
gµν(1

3 l
2
E − x(1− x)p2 +m2)

(l2E − x(1− x)p2 +m2)2 (2.151)

= −
4ie2Λ3ArcCot

[√
4(Λ2 +m2)

p2 − 1
]

3π2
√

[(4(Λ2 +m2)− p2) p2]
gµν ≡ gµνΠ̃(0)(p,m) .

Here we introduced the hard momentum cut-off Λ in order to regularize the UV divergence.
Second, there is a convergent contribution proportional to the Levi-Civita symbol:

ie2

π2 iεµνηpηm
1∫

0

dx
∞∫
0

dlE
l2E

(l2E − x(1− x)p2 +m2)2 (2.152)

= − me2

2π
√
p2 εµνηp

ηArcCoth
(

2
√
m2√
p2

)
≡ −εµνηpηΠ̃(2)(p,m) .

This term defines the system’s off-diagonal (Hall) response.
Third, there is a convergent contribution proportional to (gµνp2 − pµpν):

− 2ie2

π2 (gµνp2 − pµpν)
1∫

0

dx
∞∫
0

dlE
x(1− x)l2E

(l2E − x(1− x)p2 +m2)2 (2.153)

= −2ie2

π2 (gµνp2 − pµpν) π

16
√
p23

[
−2
√
m2p2 +

(
4m2 + p2

)
ArcCoth

(
2
√
m2√
p2

)]

= − ie2

8π
√
p23 (gµνp2 − pµpν)

[
−2
√
m2p2 +

(
4m2 + p2

)
ArcCoth

(
2
√
m2√
p2

)]
≡ −(gµνp2 − pµpν)Π̃(1)(p2,m) .

Together these contributions specify the final form of the vacuum polarization operator:

iΠµν(p,m) ≡ gµνΠ(0)(p,m)− (gµνp2 − pµpν)Π(1)(p2,m)− εµνηpηΠ(2)(p,m) . (2.154)

To get rid of the divergent term gµνΠ(0)(p,m), we use a regularization/renormalization scheme
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called Pauli-Villars regularization [109, 110]. We do not discuss this scheme in detail at this
point. This will be the scope of Sec. 3.2.3. All we need to know for now is that in the Pauli-
Villars approach, we introduce a second Dirac field of massM with bosonic statistics. Hence,
this field comes along with a relative ’−’ sign in the polarization operator (only fermion loops
acquire a prefactor of −1). The response of this field needs to be added to Eq. (2.154). This
removes the divergent term from the effective action, since

lim
Λ→∞

(
Π̃(0)(p,m)− Π̃(0)(p,M)

)
= 0 . (2.155)

Eventually, we take the limit M → ∞ to decouple the Pauli-Villars fields from the theory.
Since we are interested in the response of initially massive-, as well as massless Dirac fermions
with m = 0, we are considering the following first order Taylor expansions:

Π(1)(m2 � p2) = ie2

12π
√
m2

∧ Π(1)(m2 � p2) = e2

16
√
p2 , (2.156)

Π(2)(m2 � p2) = e2

4π sign(m) ∧ Π(2)(m2 � p2) = − ie2m

4
√
p2 . (2.157)

These identities imply the subsequent regularized contributions to the vacuum polarization
operator of initially massless Dirac fermions with m = 0:

Π(1)
PV(p2,m = 0) = Π(1)(p2,m = 0)−Π(1)(p2,M →∞) = e2

16
√
p2 , (2.158)

Π(2)
PV(p2,m = 0) = Π(2)(p2,m = 0)−Π(2)(p2,M →∞) = − e2

4π sign(M) . (2.159)

The corresponding contributions for initially massive Dirac fermions with m 6= 0 are instead
given by:

Π(1)
PV(p2,m) = Π(1)(p2,m)−Π(1)(p2,M →∞) = Π(1)(p2,m) , (2.160)

Π(2)
PV(p2,m) = Π(2)(p2,m)−Π(2)(p2,M →∞) = Π(2)(p2,m)− e2

4π sign(M) . (2.161)

For p2 � m2, these expressions simplify in first order to

Π(1)
PV(p2 � m2) = Π(1)(p2 � m2)−Π(1)(p2,M →∞) = ie2

12π
√
m2

, (2.162)

Π(2)
PV(p2 � m2) = Π(2)(p2 � m2)−Π(2)(p2,M →∞) = e2

4π sign(m)− e2

4π sign(M) . (2.163)

According to the Eqs. (2.140) and (2.154), the off-diagonal part of the quadratic contribution
to the effective action of a QED2+1 system is described by a parity-odd Chern-Simons term
[56, 57]

S
(2), odd
eff ∝ εµνρAµ∂νAρ . (2.164)

As is it was shown above, the proportionality constant depends on the details of the regu-
larization scheme. In particular, this will be discussed in Sec. 3.2.3. Most remarkably, there
exists no regularization scheme in 2+1 space-time dimensions which ensures at the same time
gauge- as well as parity invariance. In the present calculation, we got rid of the non gauge
invariant cut-off dependent term by introducing a parity-odd massive Pauli-Villars field. As a
direct consequence, the quantum effective action of QED2+1 always contains a Chern-Simons
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2.6 Parity and Chiral Anomaly of Quantum Electrodynamics

term which is a parity-odd but gauge invariant tensor structure. We will prove this state-
ment in the beginning of the next section. Therefore, also a massless and hence classically
parity symmetric QED system, breaks parity on the quantum level. Hence, such a system
has a parity anomaly [cf. Sec. 2.5]. In what follows, we analyze the physics associated to
Chern-Simons terms in detail.

2.6.4 Chern-Simons Field Theory
In this section, we discuss the physics associated to Chern-Simons field theories in 2+1 space-
time dimensions. Our line of reasoning will roughly follow the corresponding discussions in
the References [100, 115, 123–125]. In 2+1 space-time dimensions, the Lagrangian of an
abelian U(1) Chern-Simons theory is given by

LCS(x) = κ

2 ε
µνρAµ(x)∂νAρ(x) , (2.165)

where κ ∈ R is the so-called Chern-Simons level. In the subsequent sections we are going to
show that κ matches the Hall conductivity σxy of two-dimensional Chern insulators.

Let us start our discussion by deriving the symmetries of the Chern-Simons Lagrangian in
Eq. (2.165). Under Lorentz transformations Λ [cf. Sec. 2.4], this term evaluates to

LCS(x) Λ→ L′CS(x′) = κ

2 ΛµζΛ
ν
ηΛ

ρ
ξε
ζηξΛ σ

µ Aσ(Λ−1x)Λ λ
ν ∂λΛ φ

ρ Aφ(Λ−1x) = LCS(Λ−1x) ,
(2.166)

where we used that the Levi-Civita symbol is a tensor of rank three. Hence, Eq. (2.165) is
Lorentz invariant. In contrast, the Chern-Simons Lagrangian is odd under time-reversal as
well as parity transformations [cf. Sec. 2.4.1]:

P εµνρAµ(x0, x1, x2)∂νAρ(x0, x1, x2)P−1 = −εµνρAµ(x0,−x1, x2)∂νAρ(x0,−x1, x2), (2.167)
T εµνρAµ(x0, x1, x2)∂νAρ(x0, x1, x2) T −1 = −εµνρAµ(−x0, x1, x2)∂νAρ(−x0, x1, x2), (2.168)

since either the x1-derivative and A1 change sign (parity-transformation), or the time deriva-
tive and both spacial gauge-field components Ai change sign (time-reversal). From this
perspective, the Chern-Simons term exactly transforms as the Dirac fermion mass term in
Sec. 2.6.1. It therefore shows up in the effective action of massive Dirac fermions in 2+1
space-time dimensions, as we have discussed in the last paragraph of the previous section.

Further, let us analyze the transformation rules of an abelian Chern-Simons term under U(1)
vector gauge transformations. According to Sec. 2.4, we find that under Aµ → Aµ + 1

e∂µϕ
the Chern-Simons Lagrangian in Eq. (2.165) transforms like

LCS = κ

2 ε
µνρAµ∂νAρ (2.169)

→ κ

2 ε
µνρAµ∂νAρ + κ

2eε
µνρ

(
∂µϕ∂νAρ +Aµ∂ν∂ρϕ+ 1

e∂µϕ∂ν∂ρϕ
)

= LCS + δLCS ,

with

δLCS = κ

2e∂µ(ϕεµνρ∂νAρ) . (2.170)
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In the last equality, we used that εµνρ∂ν∂ρ = εµνρ∂µ∂ν = 0. Hence, a Chern-Simons La-
grangian is only gauge invariant up to a total space-time derivative. On the level of the action

SCS =
∫

d3x LCS , (2.171)

Eq. (2.170) defines a boundary term which usually can be neglected. However, for topological
field theories like the Chern-Simons action this is not the case. Even in the absence of a
space-time boundary, the total derivative in Eq. (2.170) has highly non-trivial consequences
[100, 115].

To see this, let us consider a compact space-time S1 × S2, where the time is defined on a
circle S1 and the space manifold is defined on a compact two-sphere S2. This system has
no boundary by definition. Moreover, let us assume that one natural unit of magnetic flux
φ0 = h/e threads the surface of the two-sphere:

1
2π

∫
S2

d2xF12(x) = ~
e . (2.172)

Here, we used that the magnetic field strength B is given by B = F12 in terms of the field
strength tensor Fµν = ∂µAν − ∂νAµ. In what follows, we apply a large gauge transformation
in time, which winds around the S1 sphere with an integer winding number n ∈ N [cf. Fig. 2.7]
such that ∫

S1
dx0 ∂0ϕ(x0) = 2πn . (2.173)

Under such a gauge transformation the Chern-Simons action in Eq. (2.171) changes by

δSCS = κ

2eε
µνρ

∫
S2

d2x

∫
S1

dx0 ∂µ [ϕ(x0)∂νAρ(x)] (2.174)

= κ

e ε
0ij
∫
S2

d2x ∂iAj(x)
∫
S1

dx0 ∂0ϕ(x0)

= κ

e 2πn
∫
S2

d2xF12(x) = κ

e 2πnh
e = 2πnκ h

e2 ,

where in the second line we integrated by parts [115]. The generating functional [cf. Eq. 2.114]

Z[A] = eiSCS (2.175)

needs to be a gauge invariant object. This implies that the Chern-Simons level needs to be
integer quantized in units of e2/h [100, 115],

κ = ν × e2

h with ν ∈ Z . (2.176)

For small gauge transformations of zero winding, the Chern-Simons Lagrangian in Eq. (2.165)
is invariant on compact manifolds. However, this changes if one considers manifolds with
space-time boundaries. Before we mathematically analyze this case, let us briefly motivate
the physical outcome. In Sec. 2.4, we discussed the Noether theorem, stating that any
continuous symmetry transformation of our Lagrangian corresponds to a conserved current.
It was shown that the U(1) gauge symmetry implies a conserved electric charge current. The
corresponding current associated to the Chern-Simons action in Eq. (2.171) is given by

jµCS(x) = − δSCS
δAµ(x) = − δ

δAµ(x)

[
κ

2

∫
d3x′ ελξζAλ∂ξAζ

]
(2.177)
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= κ

2

∫
d3x′ ελξζ

[
− δ

δAµ(x)Aλ(x′)
]
∂ξAζ −

κ

2

∫
d3x′ ∂ξ

[
ελξζAλ

] [
− δ

δAµ(x)Aζ(x
′)
]
.

Here, we made use of a partial integration with a vanishing boundary term in the third line,
since for abelian U(1) gauge fields εξζAξAζ = 0. Executing the functional derivatives in
Eq. (2.177) in particular yields

jµCS(x) = −κ2 ε
µξζ∂ξAζ + κ

2∂ξ
[
ελξµAλ

]
= −κ2 ε

µξζ∂ξAζ + κ

2 ε
λξµ∂ξAλ (2.178)

= −κ2 ε
µνρ∂νAρ −

κ

2 ε
µξλ∂ξAλ = −κεµνρ∂νAρ .

This current is locally conserved, as

∂µj
µ
CS = −κεµνρ∂µ∂νAρ = 0 . (2.179)

If we naively confined our system in e2-direction via a Heaviside-Theta function Θ(x2), we
would instead obtain a non-conserved charge current

jµCS(x) = −Θ(x2)κεµνρ∂νAρ + κ

2 [∂2Θ(x2)] ε2µρAρ (2.180)

with

∂µj
µ
CS(x) = κ

2 [∂2Θ(x2)] ε2µρ∂µAρ . (2.181)

We will rigorously derive Eqs. (2.180) and (2.181) in Sec. (2.6.7). The underlying reason for
this current non-conservation is that we missed the source- or the sink- terms of the bulk
Chern-Simons current at the boundary of the system. The bulk theory alone does not provide
this information. For a consistent theory the bulk Chern-Simons action always comes along
with chiral edge degrees of freedom, as we are going to show in the following paragraphs.
Together both theories give rise to a locally conserved- and thus well-defined charge current.

In order to derive the existence of chiral edge modes living at the boundaries of a bulk
Chern-Simons system, let us consider a semi-infinite 2+1 dimensional space-time with a 1+1
dimensional edge, located at x2 = 0. For x2 < 0 our system is defined by a bulk Chern-Simons
action, whereas for x2 > 0 we consider a trivial vacuum. Moreover, we choose periodic bound-
ary conditions in e1-direction. Our subsequent discussion will go along the lines of Ref. [100].
Let us start our analysis by introducing a Chern-Simons action for a so-called statistical U(1)
gauge field aµ, which is coupled to the electromagnetic U(1) gauge field Aµ:

SCS[a] = −κ2

∫
d3x εµνρaµ∂νaρ −

∫
d3xAλj

λ
a = S0

CS + Sint , (2.182)

with jλa = −κ εληξ∂ηaξ. In a nutshell, the statistical gauge field aµ describes the quantum Hall
response of either non-relativistic fermions in a strong magnetic field (Landau level physics
[cf. Sec. 2.2]), or of massive Dirac fermions in 2+1 space-time dimensions [cf. Eq. (2.127)].
Integrating out the statistical gauge field aµ via a bosonic path integral [cf. Eq. (2.120)] leads
to the electromagnetic Chern-Simons action in Eq. (2.171). In the first part of our discussion
we neglect the coupling to the electromagnetic gauge field Aµ and consider a free Chern-
Simons theory defined by the statistical gauge field aµ alone. A variation of the action in
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Eq. (2.182) on our semi-infinite space manifold implies

δS0
CS = −κ2

∫
d3x εµνρ [δaµ∂νaρ + aµ∂νδaρ] = −κ2

∫
d3x εµνρ [δaµfνρ + ∂ν (aµδaρ)] .

(2.183)

In the absence of boundaries, minimizing the action, δS0
CS = 0, implies a flat gauge configu-

ration fνρ = 0. Even in the presence of a boundary, this condition holds if we require that
a0(x2 =0) = 0, a1(x2 =0) = 0, or that any linear combination [100]

(a0 − vFa1)
∣∣
x2=0 = 0 . (2.184)

Eventually, vF will be the (Fermi) velocity of the chiral edge excitation. As we have show in
Eq. (2.170), under a gauge transformation

aµ → aµ + 1
e∂µϕ (2.185)

the Chern-Simons action in Eq. (2.182) changes by a boundary term

S0
CS → S0

CS −
κ

2e

∫
d3x ∂µ(ϕεµνρ∂νaρ) (2.186)

= S0
CS −

κ

2e

∫
dx0 dx1 ϕ(∂0a1 − ∂1a0)

∣∣
x2=0 . (2.187)

We can make the Chern-Simons action gauge invariant if we only allow statistical gauge
transformations that vanish at the system’s boundary:

ϕ(x2 =0) = 0 . (2.188)

This set of gauge transformations does not alter the boundary condition in Eq. (2.184). In
what follows, we choose a gauge in which Eq. (2.184) holds for the entire system,

a0 − vF a1 = 0 . (2.189)

The above statistical gauge-restriction is highly non-trivial. Gauge transformations do relate
physically equivalent states. For instance, if two states |ψ〉′ and |ψ〉 are connected through a
local U(1) gauge transformation characterized by α(x) ∈ R,

|ψ(x)〉 = eiα(x)|ψ(x)〉 , (2.190)

these modes are physically equivalent. If one prohibits this kind of gauge transformations,
these modes are not equivalent anymore. Thus a restriction onto an allowed subset of gauge
transformations generates additional degrees of freedom. In the present case these degrees of
freedom are chiral edge excitations. To derive this analytically, we need to insert the fixed
boundary condition (2.189) into the Chern-Simons action Eq. (2.182). As a simplification,
let us introduce the light-cone coordinates

x′0 = x0 ∧ x′1 = x1 + vFx0 ∧ x′2 = x2 . (2.191)

The Chern-Simons action is invariant under such an coordinate transformation if we transform
the statistical gauge fields accordingly [100]

a′0 = a0 − vFa1 ∧ a′1 = a1 ∧ a′2 = a2 . (2.192)

38



2.6 Parity and Chiral Anomaly of Quantum Electrodynamics

Under this shift the boundary condition in Eq. (2.189) evaluates to:

a′0 = 0 . (2.193)

In particular, this condition implies solutions f ′12 = 0, which can be constructed by introduc-
ing a scalar bosonic field φ via

a′i = ∂′iφ with i = {1, 2} . (2.194)

The effective edge theory can now be evaluated by inserting these solutions in the Chern-
Simons action in Eq. (2.182):

S0
CS = −κ2

∫
d3x′ εi0ja′i∂

′
0a
′
j = κ

2

∫
d3x′ ∂′1φ∂

′
0∂
′
2φ− ∂′2φ∂′0∂′1φ (2.195)

= κ

2

∫
d3x′ ∂′1

[
φ∂′0∂

′
2φ
]
− φ∂′1∂′0∂′2φ− ∂′2

[
φ∂′0∂

′
1φ
]

+ φ∂′2∂
′
0∂
′
1φ

= −κ2

∫
d3x′ ∂′2

[
φ∂′0∂

′
1φ
]

= −κ2

∫
x′2=0

d2x′ φ∂′0∂
′
1φ

= κ

2

∫
x′2=0

d2x′ ∂′1
[
−φ∂′0φ

]
+ ∂′1φ∂

′
0φ = κ

2

∫
x′2=0

d2x′ ∂′1φ∂
′
0φ .

Due to the periodic boundary conditions in e1-direction terms like
∫

d3x′ ∂′1(. . . ) vanish. In
terms of the original coordinates, we eventually obtain the Chern-Simons edge theory

S0
CS = κ

2

∫
d2x (∂0φ− vF∂1φ) ∂1φ = κ

2

∫
d2x ∂0φ∂1φ− vF(∂1φ)2

= −κ2

∫
d2x φ

(
∂0∂1φ− vF∂

2
1φ
)
. (2.196)

This is the so-called Floreanini-Jackiw action [100] with the associated Euler-Lagrange equa-
tion [cf. Eq. (2.109)]

∂0∂1φ− vF∂
2
1φ = 0 . (2.197)

By defining an additional scalar field

ρ(x, t) = κ ∂1φ (2.198)

with SI units [C/m2], this equation evaluates to

∂0ρ− vF∂1ρ = 0 . (2.199)

Basically, Eq. (2.199) is the equation of motion of a chiral wave propagating in positive-, or
in negative e1-direction with the (Fermi) velocity vF. Hence, a U(1) gauge invariant Chern-
Simons theory has a chiral scalar field living on its boundary. In particular, ρ should be
interpreted as a charge density. In the remaining part of this section we are going to prove
this statement [100]. The statistical gauge field aµ, which characterizes the charge current in
the system, couples to the electromagnetic gauge field Aµ via [cf. Eq. (2.182)]

Sint = −
∫

d3x Aµj
µ
a = κ

∫
d3x εµνρAµ∂νaρ = κ

∫
d3x εµνρaµ∂νAρ . (2.200)

In the third equality, we integrated by parts and neglected the boundary term in order to
obtain a gauge invariant coupling with respect to the electromagnetic gauge field Aµ [100].
Next, let us choose a gauge in which A2 = 0 and ∂2A0,1 = 0. By using the gauge fixing
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condition in Eq. (2.189) we obtain

Sint = κ

∫
d3x′ a′2

(
∂′0A

′
1 − ∂′1A′0

)
(2.201)

= κ

∫
d3x′ ∂′2φ

(
∂′0A

′
1 − ∂′1A′0

)
= κ

∫
x2=0

d2x′ φ
(
∂′0A

′
1 − ∂′1A′0

)
= κ

∫
x′2=0

d2x′
[
−A′1∂′0φ+A′0∂

′
1φ+ ∂′0(φA′1)− ∂′1(φA′0)

]
= κ

∫
x′2=0

d2x′
[
A′0∂

′
1φ−A′1∂′0φ

]
.

According to Eq. (2.197), we know that ∂′0φ = ∂0φ−vF∂1φ is a constant. Setting this constant
to zero, implies

Sint = κ

∫
x2=0

d2x (A0 − vFA1) ∂1φ =
∫
x2=0

d2x (A0 − vFA1) ρ . (2.202)

Hence, ρ directly couples to A0 and is thus a charge density. Due to the coupling of ρ to A1,
this density propagates in a certain direction, characterized by the (Fermi) velocity vF [100].
In the following, we show that this chiral charge density is directly related to chiral Dirac
modes located at the 1+1 dimensional boundary of the 2+1 dimensional bulk theory. These
modes show a chiral anomaly which compensates the gauge anomaly of a 2+1 dimensional
Chern-Simons term at the system’s boundaries. To understand this statement in detail,
we are going to analyze the chiral anomaly of 1+1 dimensional Dirac fermions in the next
section.

2.6.5 Chiral Anomaly in 1+1 Dimension
In this section, we are going to discuss the concept of the chiral anomaly. Since this anomaly
requires the notion of chirality, and thus a γ5 matrix, it only occurs in even space-time
dimensions. In what follows, we restrict ourselves to massless QED systems in 1+ 1 space-
time dimensions, defined by the classical Lagrangian [cf. Eq.(2.98)]

Lcl = ψ̄(i/∂ + e /A)ψ . (2.203)

According to Sec. 2.4, this Lagrangian is invariant under vector and axial vector (so-called
chiral) gauge transformations. As a consequence, the Noether theorem [cf. Sec. 2.4.5] implies
the existence of two classically conserved currents

vector : jµ = ψ̄γµψ , (2.204)
axial vector : j5

µ = ψ̄γµγ
5ψ . (2.205)

The classical conservation laws of these currents can be seen easily by conjugating the Dirac
equation [114]

(i/∂ + e /A)ψ = 0 ∧ ψ̄(i
←
/∂ − e /A) = 0 , (2.206)

which implies

∂µjµ = ψ̄
←
/∂ψ + ψ̄ /∂ψ = iψ̄(−e /A)ψ + iψ̄(e /A)ψ = 0 , (2.207)

∂µj5
µ = iψ̄(−e /A)γ5ψ − iψ̄γ5(e /A)ψ = 0 . (2.208)
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2.6 Parity and Chiral Anomaly of Quantum Electrodynamics

Equation (2.208) will be violated on the quantum level, which implies the presence of a
quantum anomaly [cf. Sec. 2.5]. We prove this statement in the following. We start our
analysis with the definition of the left- and the right handed currents

jL
µ = 1

2
(
jµ + j5

µ

)
∧ jR

µ = 1
2
(
jµ − j5

µ

)
(2.209)

with

jµ = jL
µ + jR

µ ∧ j5
µ = jL

µ − jR
µ . (2.210)

By constructions, these currents are conserved classically

∂µjL
µ = ∂µjR

µ = 0 . (2.211)

In what follows, let us compactify our real-space dimension in e1-direction to a unit sphere
S1 of circumference L. In order to define a consistent theory, this compactification requires
(anti-)periodic boundary conditions for the gauge- and for the Dirac fields, respectively:

Aµ (x0, x1 = −L/2) = Aµ (x0, x1 = L/2) , (2.212)
ψ (x0, x1 = −L/2) = −ψ (x0, x1 = L/2) .

Within the scope of the present analysis we are going to consider a gauge configuration
which is only time-, but not space dependent. In particular, we choose A0 = 0 and A1(x0).
Moreover, the local gauge invariance requires that A1 = 0 is equivalent to A1 = 2π/(eL)
[cf. Eqs. (2.92) and (2.103)]. Specifically, the gauge field A1 is defined on a circle S1 of
circumference 2π/(eL). Due to the vector- and axial vector symmetry of the classial La-
grangian in Eq. (2.203), quantum electrodynamics in 1+1 space-time dimensions gives rise
to two classically conserved charges: The vector-, as well as the axial charge [114]

Q(x0) =
∫

dx1 j0(x0, x1) ∧ Q5(x0) =
∫

dx1 j
5
0(x0, x1) . (2.213)

As we have shown in Eq. (2.99), we can decompose the entire QED Lagrangian in Eq. (2.203)
into its chiral building blocks

L = ψ̄Li /DψL + ψ̄Ri /DψR , (2.214)

with the separately conserved chiral charges

QL,R(x0) =
∫

dx1 ψ̄L,R(x0, x1)γ0ψL,R(x0, x1) =
∫

dx1 ψ
†
L,R(x0, x1)ψL,R(x0, x1) , (2.215)

which satisfy

Q(x0) = QL(x0) +QR(x0) ∧ Q5 = QL(x0)−QR(x0) . (2.216)

Via a Legendre transformation our system is described by the Hamiltonian

H = ψ†i∂0ψ − L (2.217)

= −iψ†Lγ
0γ1D1ψL − iψ†Rγ

0γ1D1ψR

= −iψ†Lγ
5D1ψL − iψ†Rγ

5D1ψR

= −iψ†LD1ψL + iψ†RD1ψR

= −iψ†L(∂1 + ieA1)ψL + iψ†R(∂1 + ieA1)ψR
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= ψ†L(−i∂1 + eA1)ψL − ψ†R(−i∂1 + eA1)ψR .

The eigen-states of this Hamiltonian are plane waves ∝ eikn1 x1 with discretized momenta

kn1 = 2πn
L

with n ∈ Z (2.218)

due to the compact space dimension S1 [cf. Eq. (2.212)]. The system’s eigen-energies are
therefore given by [109]

ψL : EL
n = +(kn1 + eA1) , (2.219)

ψR : ER
n = −(kn1 + eA1) . (2.220)

Hence, on the quantum level each chiral fermion corresponds to an infinite set of equally
spaced energy levels. Let us for the moment occupy all levels of negative energy with fermionic
modes. We fill the so-called Dirac sea [109, 114]. If we now adiabatically change A1 by
∆A1 = 2π

eL in a period x0 ∈ [0, T ], both spectra map into their initial form. However, every
left-moving level EL

n is increased by ∆n = 1, whereas every right-moving level ER
n is reduced

by ∆n = −1. Thus, one additional left-moving fermion enters the theory, whereas one right-
moving fermion disappears (a hole enters). Hence ∆Q5 = 2, whereas ∆Q = 0. This is the
so-called Adler-Bell-Jackiw (ABJ) or chiral anomaly [126–128]. By calculating the quantum
effective action one can explicitly show that in 1+1 space time dimensions one finds the
(non-)conservation equation

∂µj
µ = 0 ∧ ∂µj

µ5 = e
π
εµν∂µAν , (2.221)

with

∫
d2x ∂µj

µ5 =
∫

d2x
e
π
εµν∂µAν =

T∫
0

L/2∫
−L/2

dx0dx1
e
π
∂0A1 = e

π
L∆A1 = 2 = ∆Q5 . (2.222)

The derivation of the quantum effective action will be the scope of the following section.

2.6.6 Effective Action of Chiral Edge Modes
In Sec. 2.6.4, we have shown that due to current-conservation, a bulk CS theory implies the
existence of chiral edge modes. In this section, we derive the effective action of chiral Dirac
fermions via their polarization operator in 1+1 space-time dimensions. We eventually incor-
porate the 2+1 dimensional bulk CS as well as the 1+1 dimensional chiral edge theory on
a 2+1 dimensional space-time with boundaries. This leads to a well-defined system without
gauge-anomalies.

We start our analysis with the derivation of the chiral gauge-matter coupling. The associated
vertex structure can be read off from the massless QED1+1 Lagrangian in Eq. (2.203)

Lcl = ψ̄i /Dψ = ψ̄iγµ(∂µ + ieAµ)ψ . (2.223)

In Sec. 2.4.4, we identified the chiral building blocks of this Lagrangian [cf. Eq.(2.96)]

ψL/R ≡ ψ± = P±ψ = 12 ± γ5

2 ψ with γ5ψ± = ±ψ± , (2.224)
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which are γ5 eigen-states of chirality ±1. Moreover,

P± = 1
2
(
12 ± γ5

)
(2.225)

defines the chiral projection operator with the associated properties [cf. Eq. (4.13)]

P+ + P− = 12, P 2
± = P±, P †± = P±, P+P− = P−P+ = 0, P+γ

µ = γµP− . (2.226)

With these identities we can decompose Eq. (2.223) into its chiral building blocks

L = ψ̄i /Dψ = ψ̄ (P+ + P−) iγµDµ (P+ + P−)ψ
= ψ̄P+iγµDµP−ψ + ψ̄P−iγµDµP+ψ = ψ̄Ri /DψR + ψ̄Li /DψL , (2.227)

where we made use of the identities

ψ̄P− = ψ†γ0P− = ψ†P+γ
0 = ψ†P †+γ

0 = (P+ψ)† γ0 = ψ†+γ
0 = ψ̄+ = ψL , (2.228)

ψ̄P+ = ψ̄− = ψR ∧ P+ψ = ψ+ = ψL ∧ P−ψ = ψ− = ψR . (2.229)

Equation (2.227) encodes the chiral free fermion propagator and the associated gauge-matter
coupling. However, in order to make use of the same techniques which we used for our
calculation of the vacuum polarization operator in Eq. (2.141), we decompose Eq. (2.223) in
a slightly different way:

L = ψ̄i /Dψ = ψ̄ (P+ + P−) iγµDµ (P+ + P−)ψ = ψ̄i/∂ψ − e
(
ψ̄P+ /AP−ψ + ψ̄P− /AP+ψ

)
= ψ̄i/∂ψ − e

(
ψ̄ /AP 2

−ψ + ψ̄ /AP 2
+ψ
)

= ψ̄i/∂ψ − e
(
ψ̄ /AP−ψ + ψ̄ /AP+ψ

)
(2.230)

= ψ̄i/∂ψ − e
2 ψ̄γ

µ
(
12 − γ5

)
Aµψ︸ ︷︷ ︸

right moving coupling

− e
2 ψ̄γ

µ
(
12 + γ5

)
Aµψ︸ ︷︷ ︸

left moving coupling

,

where V µ
± encodes the chiral vertex structure

V µ
± = − ie

2
(
12 ± γ5

)
. (2.231)

In terms of this vertex structure the chiral polarization operator Πµν
± for left- and right handed

spinors of chirality γ5 =±1 is given by [cf. Eq. (2.141)]

iΠµν
± (p) = −(−ie)2

4

∫ d2k

(2π)2

tr
[
γµ
(
12 ± γ5) γλγν (12 ± γ5) γζ] ikλi(k + p)ζ

k2(k + p)2 . (2.232)

Diagrammatically, this fermion loop operator is visualized in Fig. 2.9.

To evaluate Eq. (2.232), we first simplify the Dirac trace according to the 1+1 dimensional
trace identities in Eq. (2.45). In particular, these identities imply the relations:

(1) : tr
[
γµγλγνγζ

]
= 2

(
gµλgζν − εµλεζν

)
, (2.233)

(2) : tr
[
γµγ5γλγνγζ

]
= −tr

[
γµγλγνγζγ5

]
= 2

(
gµλεζν − εµλgζν

)
, (2.234)

(3) : tr
[
γµγλγνγ5γζ

]
= (2) , (2.235)

(4) : tr
[
γµγ5γλγνγ5γζ

]
= (1) , (2.236)
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p p

k+p

k

V± V±
μ ν

<

<
Figure 2.9: Feynman diagramm of the chiral vacuum polarization operator in Eq. (2.232)
with the internal loop momentum k, the external momentum p, and the chiral gauge-matter
vertices V µ,ν

± [cf. Eq.(2.231)].

where we used the cyclic properties of the Driac trace, as well as the anti-commutation rule of
the γ5 matrix [cf. Eq. (2.44)]. Consequently, the Dirac trace in the numerator of Eq. (2.232)
evaluates to

tr
[
γµ
(
12 ± γ5

)
γλγν

(
12 ± γ5

)
γζ
]

= (1)± (2)± (3) + (4) = 2 [(1)± (2)]

= 4
(
gµλ ∓ εµλ

) (
gζν ± εζν

)
≡ Tµνλζ± . (2.237)

To symmetrize the denominator with respect to the loop momentum, we use the Feynman
parameterization introduced in Eq. (2.144) with A = k2 and B = (k + p)2. Moreover, we
shift the loop momentum according to kλ → kλ + pλx = lλ [109]. Altogether, this simplifies
the form of the momentum integral in Eq. (2.232) [cf. Eq. (2.145)]

Intλζ =
∫

d2k
kλ(k + p)ζ
k2(k + p)2 =

∫
d2k

kλkζ + kλpζ
k2(k + p)2 =

1∫
0

dx
∫

d2l
lλlζ − x(1− x)pλpζ
(l2 + x(1− x)p2)2 .

(2.238)

Here, we neglected all linear terms in l since they do not contribute to the (symmetric) inte-
gration. After performing a Wick-rotation to an Euclidean space-time, l→ lE [cf. Sec. 2.3.3],
this integral evaluates to

Intλζ = i
1∫

0

dx
∫

d2lE
−1

2 l
2
Egλζ − x(1− x)pλpζ

(l2E − x(1− x)p2)2 = Int1
λζ + Int2

λζ , (2.239)

where we made use of lλlζ = 1
1+1 l

2gλζ , due to the underlying Lorentz symmetry [109]. Let
us first calculate the convergent part Int2λζ . Therefore, we will use the following identities for
the integration over an n-dimensional unit sphere in an Euclidean space-time [109]:

∫ dnlE
(2π)n

1
(l2E + ∆)2 =

∫ dΩn

(2π)n ·
∞∫
0

dlE
ln−1
E

(l2E + ∆)2 , (2.240)

∫
dΩn = 2π

n
2

Γ
(
n
2
) with Γ(1) = 1 ⇒

∫
dΩ2 = 2π . (2.241)

With these identities Int2λζ evaluates to

Int2
λζ = i

1∫
0

dx
∫

d2lE
−x(1− x)pλpζ

(l2E − x(1− x)p2)2 = 2πi
1∫

0

dx
∞∫
0

dlE lE
−x(1− x)pλpζ

(l2E − x(1− x)p2)2 (2.242)
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= −2πipλpζ
1∫

0

dx
∞∫
0

dlE lE
x(1− x)

(l2E − x(1− x)p2)2 = −2πipλpζ
2p2

1∫
0

dxx(1− x)
x(x− 1) = iπ pλpζ

p2 .

Consequently, the convergent part of the chiral 1+1 dimensional polarization operator in
Eq. (2.232) is given by

iΠµν
±,conv(p) = − e2

4(2π)2T
µνλζ
± Int2

λζ = − e2

4(2π)2T
µνλζ
± iπ pλpζ

p2 (2.243)

= − ie2

4π
(
gµλ ∓ εµλ

) pλpζ
p2

(
gζν ± εζν

)
.

We are still left with the calculation of the superficially divergent term in Eq. (2.239). In what
follows, we calculate this term by using the concept of dimensional regularization [109, 110].
Applying this technique leads to the generalized n-dimensional integral

Int1
λζ = i(2π)2

1∫
0

dx
∫ d2lE

(2π)2
− 1
n l

2
Egλζ

(l2E − x(1− x)p2)2 (2.244)

= i(2π)2
1∫

0

dx
∫ dnlE

(2π)n
− 1
n l

2
Egλζ

(l2E − x(1− x)p2)2 .

Before we execute this integration, let us contract the tensor structure Tµνλζ± Int1
λζ . This

avoids the mathematical problem of a ’0×∞’. In n dimensions we find the contractions:

(0) : εµλεζν =
[
gµνgλζ − gµζgλν

]
, (2.245)

(1) : gµλgλζg
ζν = gµζ g

ζν = gµν , (2.246)

(2) : gµλgλζε
ζν = εµν , (2.247)

(3) : εµλgλζg
ζν = εµν , (2.248)

(4) : εµλgλζε
ζν =

[
gµνgλζ − gµζgλν

]
gλζ = [n− 1] gµν . (2.249)

Consequently, one obtains

Tµνλζ± gλζ = 4
(
gµλ ∓ εµλ

) (
gζν ± εζν

)
gλζ = 4 [(1)± (2)∓ (3)− (4)] = 4 [2− n] gµν . (2.250)

Notice, that this expression vanishes for n = 2, which causes the ’0 × ∞’ in Eq. (2.244).
However, in combination we obtain the contribution

Tµνλζ± Int1
λζ = i(2π)2

1∫
0

dx
∫ dnlE

(2π)n
− 1
n l

2
E T

µνλζ
± gλζ

(l2E − x(1− x)p2)2 (2.251)

= i(2π)2
1∫

0

dx
∫ dnlE

(2π)n
− 1
n l

2
E4 [2− n] gµν

(l2E − x(1− x)p2)2

= 4i(2π)2 gµν
1∫

0

dx
∫ dnlE

(2π)n

(
1− 2

n

)
l2E

(l2E − x(1− x)p2)2

= 4i(2π)2 gµν
(
− 1

4π

)
= −4πi gµν ,
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where we made use Γ(1) = 1 and the n dimensional identity [109]

∫ dnlE
(2π)n

(
1− 2

n

)
l2E

(l2E + ∆)2 = 1
(4π)n/2

Γ
(

2− n

2

)( 1
∆

)2−n/2
(−∆) n=2→ − 1

4π . (2.252)

Thus, after dimensional regularization the former divergent part in Eq. (2.239) yields

iΠµν
±,div(p) = − e2

4(2π)2T
µνλζ
± Int1

λζ = − e2

4(2π)2 (−4πi) gµν = i e2

4π g
µν . (2.253)

So in total, we found the following regularized chiral polarization operator

iΠµν
±,reg(p) = i

4π e2
[
gµν −

(
gµλ ∓ εµλ

) pλpζ
p2

(
gζν ± εζν

)]
. (2.254)

This operator defines the associated quadratic part of the effective action

S
(2)
eff,± = 1

2

∫ d2p

(2π)2

[
Aµ(−p) Πµν

±,reg(p)Aν(p)
]

(2.255)

= e2

8π

∫ d2p

(2π)2

[
Aµ(−p)

(
gµν −

(
gµλ ∓ εµλ

) pλpζ
p2

(
gζν ± εζν

))
Aν(p)

]
= e2

8π

∫
d2x

[
Aµ

(
gµν −

(
gµλ ∓ εµλ

) ∂λ∂ζ
�

(
gζν ± εζν

))
Aν

]
,

where we made a Fourier transformation to the real space coordinates in the last equality
and introduced the D’Alambert operator � = ∂µ∂

µ. The chiral current associated to this
action is given by

jµ± = −
δS

(2)
eff,±
δAµ

= − e2

4π

[
gµν −

(
gµλ ∓ εµλ

) ∂λ∂ζ
�

(
gζν ± εζν

)]
Aν . (2.256)

Most remarkably, this current is not conserved

∂µj
µ
± = − e2

4π [(1)− (2)∓ (3)] = ± e2

4πε
ζν∂ζAν . (2.257)

Here, we made use of the following contraction rules

(1) : ∂µg
µνAν = ∂νAν , (2.258)

(2) : ∂µg
µλ∂λ∂ζ
�

gζνAν = ∂νAν , (2.259)

(3) : ∂µg
µλ∂λ∂ζ
�

εζνAν = εζν∂ζAν , (2.260)

(4) : ∂µε
µλ∂λ∂ζ
�

gζνAν = 0 , (2.261)

(5) : ∂µε
µλ∂λ∂ζ
�

εζνAν = 0 , (2.262)

where (4) and (5) vanish due to the contraction of a symmetric with an anti-symmetric tensor
structure, εµλ∂µ∂λ.

Essentially, the (vector-)current non-conservation in Eq. (2.257) counts one fourth of the
chiral anomaly equation which we have derived in Eq. (2.221). There are two reasons for
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this. One factor of two originates from the fact that Eq. (2.257) defines the vector gauge-
anomaly associated to each chiral left- or right moving mode separately [cf. Sec. 2.4.4]. In
combination the entire vector current anomaly vanishes, whereas the chiral anomaly manifests
itself:

∂µj
µ5 = ∂µ (jµL − j

µ
R) = ∂µ

(
jµ+ − j

µ
−
)

= e2

2πε
µν∂µAν . (2.263)

If there is only a single chiral mode living on the 1+1 dimensional edge of a 2+1 dimensional
bulk theory, the vector gauge anomaly in Eq. (2.257) gets compensated by the corresponding
bulk Chern-Simons gauge non-invariance [cf. Sec. 2.6.4]. It is the goal of the following sub-
section to rigorously proof and to visualize this statement.
Still, Eq. (2.263) differs from Eq. (2.221) by a factor of two. This factor originates from the
fact that in Eq. (2.263) we have derived the consistent anomaly, whereas Eq. (2.221) charac-
terizes the covariant anomaly [129]. As we will show in the next section, the (vector) gauge
non-invariance of a 2+1 dimensional Chern-Simons term on a manifold with 1+1 dimensional
boundaries gets compensated by the consistent anomaly of the associated chiral edge theory.
We are recommending Ref. [129] (especially section III) for a deeper discussion of the physical
difference between consistent and covariant anomalies.

2.6.7 Callan-Harvey Mechanism
The derivation of the chiral fermion Lagrangian in Sec. 2.6.6 finally allows us to construct a
consistent Chern-Simons theory on a 2+1 dimensional manifold with 1+1 dimensional bound-
aries. Such a geometry is exemplary shown in Fig. 2.10. Here, the 2+1 dimensional system
is wrapped up on a cylinder, such that we have periodic boundary conditions in e1-direction
and a finite system size W in e2-direction. Subfigures (a) and (b) show the current densitiesa
in such a system as a response to two different electric field configuration: (a) A perpendic-
ular electric field in e2-direction, as well as (b) a parallel electric field in e1-directionb. The
currents originating from a single bulk Chern-Simons theory are encoded by jµCS, bulk/edge,
whereas the currents associated to the chiral 1+1 dimensional edge degrees of freedom are
described by jµ1+1. In what follows, we are going to derive the form of these currents analyt-
ically. The line of reasoning within this section will roughly follow Ref. [130].

As it was shown in Sec. 2.6.4, a single 2+1 dimensional Chern-Simons theory is described by
the parity-odd action

SCS = σxy
2

∫
d3x εµνρAµ∂νAρ . (2.264)

In order to restrict this action to the finite-size geometry shown in Fig. 2.10, we introduce a
spatial confining function f in e2-direction with

f(x2) =
{

1 for −W/2 ≤ x2 ≤W/2 .
0 otherwise .

(2.265)

This allows us to confine Eq. (2.264) to the cylinder geometry in Fig. 2.10

SCS = σxy
2

∫
d3x f(x2) εµνρAµ∂νAρ . (2.266)

aWe neglect the description ’density’ in the following.
bThe nomenclature ’perpendicular’ and ’parallel’ defines the electric field direction with respect to the sys-
tem’s edges in e1-direction.
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Figure 2.10: Cylinder geometry of a 2+1 dimensional bulk Chern-Simons theory includ-
ing 1+1 dimensional chiral edge channels. The cylinder has a circumference L and a width
W . Subfigures (a) and (b) correspond to different applied electric field configurations: (a)
Perpendicular electric field, (b) Parallel electric fieldb. The assosiated bulk Chern-Simons
currents are encoded by jµCS, bulk/edge, whereas the response of the chiral edge theory is de-
scribed by the currents jµ1+1. Further explanations are given in the text.

The Chern-Simons current associated to this action is given by

jµCS(x) = − δSCS
δAµ(x) = − δ

δAµ(x)

[
σxy
2

∫
d3x′ f(x′2) ελκζAλ∂κAζ

]
(2.267)

= σxy
2

∫
d3x′ f(x′2) ελκζ

[
− δ

δAµ(x)Aλ(x′)
]
∂κAζ

− σxy
2

∫
d3x′ ∂κ

[
f(x′2) ελκζAλ

] [
− δ

δAµ(x)Aζ(x
′)
]
.

Here, we made use of a partial integration with a vanishing boundary term in the third line,
since for abelian U(1) gauge fields εκζAκAζ = 0. Executing the functional derivatives in
Eq. (2.267) in particular yields

jµCS(x) = −σxy
2 f(x2) εµκζ∂κAζ + σxy

2 ∂κ
[
f(x2) ελκµAλ

]
(2.268)

= −σxy
2 f(x2) εµκζ∂κAζ + σxy

2 f(x2) ελκµ∂κAλ + σxy
2 [∂κf(x2)] ελκµAλ

= −σxy
2 f(x2) εµνρ∂νAρ −

σxy
2 f(x2) εµκλ∂κAλ + σxy

2 [∂κf(x2)] εκµλAλ

= −σxyf(x2) εµνρ∂νAρ + σxy
2 [∂2f(x2)] ε2µρAρ = jµCS, bulk + jµCS, edge .

Notice that the edge current ∝ ∂2f(x2) only arises in a Chern-Simons theory with boundaries.
Since Eq. (2.266) is not (vector) gauge invariant due to the non-zero boundary contributions
[cf. Eq. (2.170)], its electric current is locally not conserved at the edges of the sample:

∂µj
µ
CS = −σxy [∂µf(x2)] εµνρ∂νAρ + σxy

2 [∂2f(x2)] ε2µρ∂µAρ (2.269)

= −σxy [∂2f(x2)] ε2νρ∂νAρ + σxy
2 [∂2f(x2)] ε2νρ∂νAρ

= −σxy
2 [∂2f(x2)] ε2νρ∂νAρ .

In Sec. 2.6.4, we have shown that a bulk Chern-Simons term implies the existence of chiral
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edge modes with chirality ±1. Their effective action was derived in Sec. 2.6.6. In particular,
we found [cf. Eq. (2.255)]

S(2)
eff,± = e2

8π

∫
d2x

[
Ai

(
gil −

(
gik ∓ εik

) ∂k∂j
�

(
gjl ± εjl

))
Al

]
. (2.270)

Within this section roman indices do encode the 1+1 dimensional space-time coordinates,
{i, j, k, l} ∈ {0, 1}, instead of the spatial coordinates of the underlying Minkowski metric.

A natural way to confine this action to the boundary of the 2+1 dimensional system consid-
ered is to generalize the chiral coupling in Eq. (2.270). The cylinder geometry in Fig. 2.10
defines two edge channels. In what follows, we are going to separately confine one chiral edge
mode in Eq. (2.270) to each boundary of the cylinder. We are thus distinguishing between
the left- and the right handed edge, without specifying their concrete localization. This con-
finement can be achieved mathematically by generalizing the chiral coupling in Eq. (2.270),
such that

g2
±(x2) =

{
e2 |∂2fL(x2)| for left handed modes of chirality + 1
e2 |∂2fR(x2)| for right handed modes of chirality − 1

. (2.271)

The subscripts L and R define the left- and the right handed edges. The associated functions
fL,R are step functions which are constructed such that they match the system’s confining
function f [cf. Eq. (2.265)] at the left- and the right handed edge, respectively. Otherwise
they remain constant, which gives rise to the definition

fL = f
∣∣
left handed edge ∧ fL = const.

∣∣
else , (2.272)

fR = f
∣∣
right handed edge ∧ fR = const.

∣∣
else . (2.273)

The concrete form of the confining function f in Eq. (2.265) in particular implies

sgn [∂2fL(x2)] = −sgn [∂2fR(x2)] , (2.274)
∂2f(x2) = ∂2fL(x2) + ∂2fR(x2) . (2.275)

As stated, the generalized chiral coupling in Eq. (2.271) allows us to attach modes of chirality
+1 and −1 to the left- and to the right handed edge of our sample, respectively:

S(2)
eff,± = 1

8π

∫
d3x g2

±(x2)
[
Ai

(
gil −

(
gik ∓ εik

) ∂k∂j
�

(
gjl ± εjl

))
Al

]
. (2.276)

The associated edge currents are given by [cf. Eq. (2.256)]

ji± = −
g2
±(x2)
4π

[
gil −

(
gik ∓ εik

) ∂k∂j
�

(
gjl ± εjl

)]
Al . (2.277)

As we have shown in Eq. (2.257), these current are not conserved as they have a divergence of

∂ij
i
± = ±

g2
±(x2)
4π εkl∂kAl . (2.278)

So neither the bulk Chern-Simons-, nor the chiral edge currents are locally conserved. In
order to characterize a well-defined theory this property needs to be satisfied by the system’s
entire current:

jµtot = jµCS + jµL + jµR = 0 , (2.279)
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with jµL/R = δµij
i
±. In what follows, we assume that the bulk Chern-Simons theory is charac-

terized by the Chern number C = sgn(∂2fL) = ±1, which corresponds to (~ = 1)

σxy = sgn(∂2fL) e2

2π = sgn(∂2fL) e2

2π~ = sgn(∂2fL)e2

h . (2.280)

This is for instance the conductivity of a single spin-polarized Landau level in a quantum Hall
sample [cf. Eq. (2.34)], or the off-diagonal response of a QAH insulator in the system’s bulk
gap [cf. Eq. (1.1)]. The sgn(∂2fL) dependence is required for a consistent relation between
the direction of the magnetic field and the associated chiralities at each spatial boundary of
our system, which can be most easily understood by analyzing the corresponding cyclotron
orbits. Therefore, we are in the following considering a system with a single filled ’Landau-
level’ in the bulk spectrum, as well as chiral edge movers at the boudaries of the sample. For
such a system the divergence of the entire current is given by:

∂µj
µ
tot = ∂µj

µ
CS + ∂µj

µ
L + ∂µj

µ
R (2.281)

= −σxy
2 (∂2f) ε2ζν∂ζAν + e2

4π |∂2fL|εkl∂kAl −
e2

4π |∂2fR|εkl∂kAl

= −σxy
2 (∂2fL + ∂2fR) ε2ζν∂ζAν + e2

4π |∂2fL|εkl∂kAl −
e2

4π |∂2fR|εkl∂kAl

= − e2

4π (|∂2fL| − |∂2fR|) ε2ζν∂ζAν + e2

4π |∂2fL|εkl∂kAl −
e2

4π |∂2fR|εkl∂kAl = 0 ,

where we made use of the Eqs. (2.274) and (2.280) in the last line. Consequently, the system’s
entire current is a locally conserved and therefore a well-defined quantity.

Now that we have shown how the gauge anomaly of a bulk Chern-Simons theory gets canceled
by the associated chiral edge modes, let us analyze the system’s total electric charge current as
a response to the two constant electric field configurations which are shown in Fig. 2.10:

(a) : E2 = −∂2A0(x2) ∧ A1 = A2 = 0 , (2.282)
(b) : E1 = −∂1A0(x1) ∧ A1 = A2 = 0 . (2.283)

Let us first calculate the Chern-Simons currents as a response to these field configurations.
According to Eq. (2.268), this response is in general given by

jµCS = −σxyf(x2) εµνρ∂νAρ + σxy
2 [∂2f(x2)] ε2µρAρ .

ForA1 = A2 = 0, this expression implies the following Chern-Simons current in e1-direction

j1
CS = −σxyf(x2)ε1ν0∂νA0 + σxy

2 [∂2f(x2)] ε210A0 (2.284)

= −σxyf(x2)ε120∂2A0 + σxy
2 [∂2f(x2)] ε210A0

= −σxyf(x2)∂2A0 −
σxy
2 [∂2f(x2)]A0 .

We consequently found the subsequent expressions for the two field configurations (a) and (b):

(a) : j1
CS = −σxyf(x2)∂2A0(x2)− σxy

2 [∂2f(x2)]A0(x2) (2.285)

= σxyf(x2)E2 −
σxy
2 [∂2f(x2)]A0(x2) ,

(b) : j1
CS = −σxyf(x2)∂2A0(x1)− σxy

2 [∂2f(x2)]A0(x1) (2.286)
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= −σxy
2 [∂2f(x2)]A0(x1) .

Analogously, for A1 = A2 = 0, one obtains the Chern-Simons current in e2-direction

j2
CS = −σxyf(x2)ε210∂1A0 + σxy

2 [∂2f(x2)] ε220A0 = σxyf(x2)∂1A0 , (2.287)

which implies to the corresponding dependencies:

(a) : j2
CS = σxyf(x2)∂1A0(x2) = 0 , (2.288)

(b) : j2
CS = σxyf(x2)∂1A0(x1) = −σxyf(x2)E1 . (2.289)

In contrast, the time component of the Chern-Simons current in Eq. (2.284) vanishes for both
field configurations, as

(a) ∧ (b) : j0
CS = −σxyf(x2)ε0ν0∂νA0 + σxy

2 [∂2f(x2)] ε200A0 = 0 . (2.290)

Above, we have calculated the Chern-Simons response to the two electric field configurations
in Eq. (2.282). Let us now evaluate the corresponding response of the chiral 1+1 dimensional
edge modes in Eq. (2.276). The particular form of the chiral edge current as a response to
a general gauge configuration has been derived in Eq. (2.277). In order to circumvent the
problem of how the inverse D’Alambert operator acts on the vector potential, we proceed
with the corresponding edge current in momentum space

ji± = −
g2
±(x2)
4π

[
gil −

(
gik ∓ εik

) pkpj
p2

(
gjl ± εjl

)]
Al . (2.291)

First, we calculate the form of this current in e1- as well as in e0-direction:

j1
± = −

g2
±(x2)
4π

[
g10 −

(
g1k ∓ ε1k

) pkpj
p2

(
gj0 ± εj0

)]
A0 (2.292)

=
g2
±(x2)
4π

(
g1k ∓ ε1k

) 1
p2

(
pkp

0 ∓ pkp1
)
A0

=
g2
±(x2)
4πp2

(
g1k ∓ ε1k

) (
pkp

0 ∓ pkp1
)
A0 =

g2
±(x2)
4πp2

(
p1p0 ∓ p1p1 ∓ ε1kpkp0 + ε1kpkp1

)
A0

=
g2
±(x2)
4πp2

(
p1p0 ∓ p1p1 ± p0p

0 − p0p1
)
A0 =

g2
±(x2)
4πp2

(
±p0p

0 ∓ p1p1 − p0p1 + p1p0
)
A0

=
g2
±(x2)
4πp2

(
±
(
p0p

0 − p1p1
)
− p0p1 − p1p0

)
A0 =

g2
±(x2)
4πp2 (± (p0p0 + p1p1)− 2p1p0)A0

=
g2
±(x2)
4πp2 (± (p0p0 + p1p1 ∓ 2p1p0))A0 =

g2
±(x2)
4πp2

(
± (p0 ∓ p1)2

)
A0

= ±
g2
±(x2)
4π

(p0 ∓ p1)2

p2
0 − p2

1
A0 = ±

g2
±(x2)
4π

(p0 ∓ p1)2

(p0 + p1)(p0 − p1)A0 = ±
g2
±(x2)
4π

p0 ∓ p1
p0 ± p1

A0 ,

j0
± = −

g2
±(x2)
4π

[
g00 −

(
g0k ∓ ε0k

) pkpj
p2

(
gj0 ± εj0

)]
A0 (2.293)

= −
g2
±(x2)
4π

[
1− 1

p2

(
p0p0 − ε0kεj0pkpj ∓ 2ε0kpkp0

)]
A0

= −
g2
±(x2)
4π

[
1− 1

p2

(
p0p0 + p1p1 ∓ 2p1p

0
)]
A0
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= −
g2
±(x2)
4π

[
1− 1

p2 (p0p0 + p1p1 ∓ 2p1p0)
]
A0

= −
g2
±(x2)
4π

[
1− p0 ∓ p1

p0 ± p1

]
A0 .

As a next step in our calculation, let us derive the field configurations (a) and (b) in mo-
mentum space. Due to the non-interacting vacuum of our theory at x0 = ±∞, we need to
adiabatically turn the gauge potential A0 on and off. Mathematically this can be realized by
introducing a perturbatively small positive number 0 < a � 1, which we eventually remove
by executing the corresponding limit. This in particular leads to the Fourier transformed
gauge field configurations:

(a) : A0(x0, x1, x2) = −x2 e−a|x0| → A0(p0, p1, p2) = 2ia
√

2πδ(p1)δ′(p2)
a2 + p2

0
, (2.294)

(b) : A0(x0, x1, x2) = −x1 e−a|x0| → A0(p0, p1, p2) = 2ia
√

2πδ(p2)δ′(p1)
a2 + p2

0
. (2.295)

In order to derive the real-space current contribution for configuration (a), we insert Eq. (2.294)
into Eqs. (2.292) and (2.293), and inverse the Fourier transformation:

(a) : j1
± = ±

g2
±(x2)
4π

∫ dp0√
2π

dp1√
2π

dp2√
2π

p0 ∓ p1
p0 ± p1

2ia
√

2πδ(p1)δ′(p2)
a2 + p2

0
e−i(p0x0+p1x1+p2x2)

(2.296)

= ±
g2
±(x2)
4π

∫ dp0√
2π

dp1√
2π

p0 ∓ p1
p0 ± p1

−2ax2δ(p1)
a2 + p2

0
e−i(p0x0+p1x1)

= ±
g2
±(x2)
4π

∫ dp0√
2π

p0
p0

(
−x2

)√ 2
π

a

a2 + p2
0
e−i(p0x0)

= ±
g2
±(x2)
4π

(
−x2

) ∫ dp0√
2π

√
2
π

a

a2 + p2
0
e−i(p0x0) = ±

g2
±(x2)
4π

(
−x2

)
e−a|x0|

= ±
g2
±(x2)
4π A0(x0, x2) ,

j0
± = −

g2
±(x2)
4π [1− 1]A0(x0, x2) = 0 . (2.297)

In the last line we made use of the explicit relation between Eqs. (2.292) and (2.293). Finally,
in the limit a→ 0, we find the contribution

j1
+ + j1

− = e2

4π [|∂2fL| − |∂2fR|]A0(x2) . (2.298)

To derive the real-space current contribution for configuration (b), we insert Eq. (2.295)
into Eqs. (2.292) and (2.293), and subsequently inverse the Fourier transformation. For the
current in e1-direction this implies

j1
± = ±

g2
±(x2)
4π

∫ dp2√
2π

dp1√
2π

dp0√
2π

p0 ∓ p1
p0 ± p1

2ia
√

2πδ(p2)δ′(p1)
a2 + p2

0
e−i(p0x0+p1x1+p2x2) (2.299)

= ±
g2
±(x2)
4π

∫ dp1√
2π

dp0√
2π

p0 ∓ p1
p0 ± p1

2iaδ′(p1)
a2 + p2

0
e−i(p0x0+p1x1)

= ±
g2
±(x2)
4π

(
−x1e−a|x0| ± 2

a
sgn(x0)

[
1− e−a|x0|

])
.
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In the limit a→ 0 this result should not have an explicit time dependence. However, this is
not the case as

lim
a→0

(
−x1e−a|x0| ± 2

a
sgn(x0)

[
1− e−a|x0|

])
= ±2x0 − x1 . (2.300)

This property results from the ambiguity of our differential operator. If we find a function
φ, satisfying the differential equation (Differential operator D)

Dφ = ϕ , (2.301)

this function is ambiguous. We can always add zero modes φ0 to φ, which does not change
the outcome:

Dφ0 = 0 ⇒ D(φ+ φ0) = ϕ . (2.302)

Consequently, a differential operator which has zero modes cannot be inverted uniquely. A
famous example is the D’Alambert operator, which leads to the retarded or advanced Green’s
function, depending on the boundary conditions chosen [109]. Here, our differential operator
is given by D = ∂0 ± ∂1. Its zero modes are in particular given by (c ∈ R)

D c(x0 ∓ x1) = c (∂0x
0 ± (∓∂1x

1)) = c (1− 1) = 0 . (2.303)

We can therefore get rid of the current’s time dependence by adding the corresponding zero
mode to our former result (

±2x0 − x1
)
∓ 2(x0 ∓ x1) = x1 . (2.304)

The associated chiral edge currents for configuration (b) are thus given by

(b) : j1
± = ±

g2
±(x2)
4π

(
x1e−a|x0|

)
= ∓

g2
±(x2)
4π (−x1)e−a|x0|

= ∓
g2
±(x2)
4π A0(x0, x1) , (2.305)

j0
± = −

g2
±(x2)
4π [1 + 1]A0(x0, x1) . (2.306)

In the last line we made use of the explicit relation between Eqs. (2.292) and (2.293). Finally,
in the limit a→ 0, we find the current contributions

(b) : j1
+ + j1

− = − e2

4π [|∂2fL| − |∂2fR|]A0(x1) , (2.307)

j0
+ + j0

− = − e2

2π [|∂2fL|+ |∂2fR|]A0(x1) . (2.308)

Let us sum up all current contributions for the electric field configuration (a), which are given
in Eqs. (2.285), (2.288), (2.290), (2.298), and (2.297):

j1
tot = σxyf(x2)E2 −

σxy
2 [∂2f ]A0(x2) + e2

4π [|∂2fL| − |∂2fR|]A0(x2) (2.309)

= σxyf(x2)E2 −
σxy
2 [∂2fL + ∂2fR]A0(x2) + e2

4π [|∂2fL| − |∂2fR|]A0(x2)

= σxyf(x2)E2 −
e2

4π [|∂2fL| − |∂2fR|]A0(x2) + e2

4π [|∂2fL| − |∂2fR|]A0(x2)

= σxyf(x2)E2 .
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Here, we inserted Eq. (2.280) in the third line. The other two current contributions vanish
in this field configuration

j2
tot = 0 ∧ j0

tot = 0 . (2.310)

The corresponding current contributions for the electric field configuration (b) are given in
Eqs. (2.286), (2.289), (2.290), (2.307), and (2.308). Together, these expressions give rise to
the entire charge current

j1
tot = −σxy

2 [∂2f ]A0(x1)− e2

4π [|∂2fL| − |∂2fR|]A0(x1) (2.311)

= − e2

4π [|∂2fL| − |∂2fR|]A0(x1)− e2

4π [|∂2fL| − |∂2fR|]A0(x1)

= −σxy [∂2f ]A0(x1) ,
j2
tot = −σxyf(x2)E1 , (2.312)

j0
tot = − e2

2π [|∂2fL|+ |∂2fR|]A0(x1) . (2.313)

Here, we inserted Eq. (2.280) in the second and third line.

As expected, if we apply a constant electric field perpendicular to the boundaries of the
system, we induce a parallel Chern-Simons bulk current as it is described by Eq. (2.309). In
contrast, if we apply a constant electric field along the sample edges, we induce a parallel
edge- [cf. Eq.(2.311)], as well as a perpendicular bulk Chern-Simons current [cf. Eq. (2.312)].
Notice, that the entire current is locally consevered, due to the Callan Harvey mechanism
[131]:

(a) ∂µj
µ
tot = ∂0j

0
tot + ∂1j

1
tot + ∂2j

2
tot = ∂1 (σxyf(x2)E2) = 0 , (2.314)

(b) ∂µj
µ
tot = ∂1 (−σxy [∂2f(x2)]A0(x1)) + ∂2 (−σxyf(x2)E1)

= σxy [∂2f(x2)]E1 − σxy [∂2f(x2)]E1 = 0 . (2.315)

The non-conservation of the Chern-Simons current is compensated by the non-conservation of
the 1+1 dimensional edge theory. In Fig. 2.10, we schematically illustrated the single charge
currents for both field configurations and showed how their edge contributions cancel-, or
double each other.

We close this section by analyzing one more field configuration, which is in particular shown
in Fig. 2.11.

The following discussion will be crucial to understand the main results in Sec. 3.3. It
is the goal of the subsequent paragraphs to analyze the currents in our system as a re-
sponse to an adiabatically increasing out-of-plane magnetic field B(x0) = B(x0)e3 with field
strength

B(x0) = B0 + b(x0) . (2.316)

Here, B0 is a underlying static magnetic field which gives rise to a Landau level spectrum and
b(x0) is a time-dependent contribution. In the Landau gauge [cf. Eq. (2.18)], this magnetic
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x1

x2
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j1
1+1

j2
CS, bulk

ΦB 

j1
1+1

j2
CS, bulk

0

0

Figure 2.11: Cylinder geometry of a 2+1 dimensional bulk Chern-Simons theory including
1+1 dimensional chiral edge channels. The cylinder of circumference L and width W is
penetrated by an adiabatically increasing out-of-plane magnetic flux ΦB. The assosiated
bulk Chern-Simons currents are encoded by j2

CS, bulk, whereas the response of the chiral edge
theory is described by the currents j1

1+1. Further explanations are given in the text.

field can be described by the vector three-potential

Aµ(x0, x2) =

 0
−x2B(x0)

0

 . (2.317)

Due to Faraday’s law, a time-dependent magnetic field comes along with an induced rotating
electric field E, as [99]

∇×E = −∂B
∂t

= −∂b
∂t

. (2.318)

Together, electric- and magnetic fields are encoded by the system’s field strength tensor

Fµν = ∂µAν − ∂νAµ =

 0 E1 E2
−E1 0 B
−E2 −B 0

 , (2.319)

with c = 1 and

F01 = ∂0A1 − ∂1A0 = E1 = −x2∂tB(x0) = −x2∂tb(x0) , (2.320)
F02 = ∂0A2 − ∂2A0 = E2 = 0 , (2.321)
F12 = ∂1A2 − ∂2A1 = B(x0) . (2.322)

First let us calculate the bulk Chern-Simons currents according to Eq. (2.268)

j0
CS, bulk = −σxyf(x2) ε0νρ∂νAρ = −σxyf(x2) ε0ij∂iAj (2.323)

= −σxyf(x2)F12 = −σxyf(x2)B(x0) ,
j1
CS, bulk = −σxyf(x2) ε1νρ∂νAρ = +σxyf(x2)F02 = 0 , (2.324)
j2
CS, bulk = −σxyf(x2) ε2νρ∂νAρ = −σxyf(x2)F01

= −σxyf(x2)E1 = σxyf(x2)x2∂tb(x0) . (2.325)
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Moreover, according to Eq. (2.268) and A0 = A2 = 0, the edge Chern-Simons currents
yield

j0
CS, edge = +σxy

2 [∂2f(x2)] ε201A1 = −σxy
2 [∂2f(x2)]x2B(x0) , (2.326)

j1
CS, edge = +σxy

2 [∂2f(x2)] ε210A0 = 0 , (2.327)

j2
CS, edge = +σxy

2 [∂2f(x2)] ε220A0 = 0 . (2.328)

The associated 1+1 dimensional edge currents, predicted by Eq. (2.291), are given by

ji± = −
g2
±(x2)
4π

[
gi1 −

(
gik ∓ εik

) pkpj
p2

(
gj1 ± εj1

)]
A1 . (2.329)

This implies the following expressions in e0- as well as in e1-direction:

j0
± = −

g2
±(x2)
4π

[
g01 −

(
g0k ∓ ε0k

) pkpj
p2

(
gj1 ± εj1

)]
A1 (2.330)

=
g2
±(x2)
4π

(
g0k ∓ ε0k

) pkpj
p2

(
gj1 ± εj1

)
A1

=
g2
±(x2)
4π

(
g1j ∓ ε1j

) pjpk
p2

(
gk0 ± εk0

)
A1

=
g2
±(x2)
4π

(
g1k ∓ ε1k

) pkpj
p2

(
gj0 ± εj0

)
A1 = ±

g2
±(x2)
4π

p0 ∓ p1
p0 ± p1

A1 ,

j1
± = −

g2
±(x2)
4π

[
g11 −

(
g1k ∓ ε1k

) pkpj
p2

(
gj1 ± εj1

)]
A1 (2.331)

=
g2
±(x2)
4π

[
1 + 1

p2

(
g1k ∓ ε1k

) (
pkp

1 ± pkp0
)]
A1 .

=
g2
±(x2)
4π

[
1 + 1

p2

(
pkp

1g1k ∓ pkp1ε1k ± pkp0g
1k ∓±pkp0ε

1k
)]
A1

=
g2
±(x2)
4π

[
1 + 1

p2

(
p1p1 ± p0p

1 ± p1p0 + p0p0
)]
A1

=
g2
±(x2)
4π

[
1 + 1

p2 (p1p1 ∓ 2p0p1 + p0p0)
]
A1 .

=
g2
±(x2)
4π

[
1 + (p0 ∓ p1)2

(p0 + p1)(p0 − p1)

]
A1 =

g2
±(x2)
4π

[
1 + p0 ∓ p1

p0 ± p1

]
A1 ,

where we used Eq. (2.292) in the fifth equality. Analogously to the calculation in Eq. (2.296),
we obtain the associated real-space expressions

j0
± = ±

g2
±(x2)
4π A1(x0, x2) ∧ j1

± =
g2
±(x2)
4π [1 + 1]A1(x0, x2) , (2.332)

and hence

j0
+ + j0

− = e2

4π (|∂2fL| − |∂2fR|)A1 , (2.333)

j1
+ + j1

− = e2

2π (|∂2fL|+ |∂2fR|)A1 . (2.334)

We therefore found the following currents in our cylinder geometry as a response to an
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adiabatically increasing out-of-plane magnetic field B(x0):

j1
tot = e2

2π [|∂2fL|+ |∂2fR|]A1 , (2.335)

j2
tot = −σxyf(x2)E1 = σxyf(x2)x2∂tb(x0) , (2.336)

j0
tot = −σxyf(x2)B(x0) + σxy

2 [∂2f(x2)]A1 + e2

4π [|∂2fL| − |∂2fR|]A1 (2.337)

= −σxyf(x2)B(x0) + σxy
2 [∂2f(x2)]A1 + σxy

2 [∂2f(x2)]A1

= −σxyf(x2)B(x0) + σxy [∂2f(x2)]A1 ,

where we inserted Eq. (2.280) in the fourth equality. Let us make a few comments regarding
Eqs. (2.335)-(2.337). First, the system’s entire current is locally conserved as

∂µj
µ
tot =∂0 (−σxyf(x2)B(x0) + σxy [∂2f(x2)]A1) + ∂2 (−σxyf(x2)E1(x2))

=− σxyf(x2)∂0B(x0) + σxy [∂2f(x2)]E1

− σxy [∂2f(x2)]E1(x2)− σxyf(x2) [∂2E1(x2)] (2.338)
=− σxyf(x2)∂0b(x0)− σxyf(x2) [−∂0b(x0)] = 0 .

Second, Eq. (2.337) encodes an (anomalous) inflow/outflow of charge carriers from the bulk
to the edges of the sample, or vice versa, dependent on sgn(σxy) and the direction of the
applied magnetic field. Especially the U(1) vector gauge anomalies of the single bulk- and
edge theories cancel each other. This procedure is known as the Callan-Harvey mechanism
[131]. Moreover, let us emphasize that the bulk charge encoded in Eq. (2.337) is consistent
with the well-known Streda formula [106]

j0
bulk = −σxyB . (2.339)

Third, we schematically visualized all real-space current contributions in Eqs. (2.335) and
(2.336) in Fig. 2.11. We will in particular use this figure to supplement the discussion of our
results in Sec. 3.3.

2.6.8 Field Theoretical Approach to the Quantum Hall Effect
In the previous sections we have introduced the mathematical framework of Chern-Simons
field theories [cf. Sec. 2.6.4], as well as the concept of the parity- and the chiral anomaly
[cf. Secs. 2.6.3 and 2.6.6] in 2+1 dimensional systems with 1+1 dimensional boundaries.
Based on these concepts, we are now going to describe the quantum Hall effect, which we
introduced in Sec. 2.2, from a quantum field theoretic perspective. While our discussion will
roughly follow Ref.[132], we are recommending the Refs. [39, 133–136] for a more detailed
discussion.

As we have explained in Sec. 2.2, a conventional quantum Hall system originates from two-
dimensional electron gases which are confined to 2+1 space-time dimensions. As a function
of the magnetic field those systems show quantized Hall plateaus in their off-diagonal con-
ductivity σxy for low temperatures [cf. Fig. 2.2]. In general, the Lagrangian of a quantum
Hall sample is defined via a Legendre transformation of the corresponding Pauli Hamiltonian
HP [cf. Eq (2.29)]:

LQH = ψ† (i∂0 + µ−HP[A])ψ , (2.340)
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with ψ = (ψ↑, ψ↓)T, B = εij∂iAj and

HP[A] = 1
2m∗ (i∇ + eA)2 − g∗µB

σ3
2 B . (2.341)

Here, µ is the chemical potential, σ3 is the third Pauli matrix, µB = e~/(2me) is the Bohr
magneton, andm∗ as well as g∗ are the system’s effective mass parameter and g-factor. While
the first term in Eq. (2.341) encodes the kinetic energy of the two-dimensional electron gas,
the second term defines the corresponding Zeeman spin-splitting [cf. Sec. 2.2.4].

The eigenvalues of the Pauli Hamiltonian in Eq. (2.341) are the spin-splitted Landau levels
which we have derived in Eq. (2.29). With λ ∈ N0 and σ± = ±1/2, their energy values
are given by

E±λ = ~ωB
(
λ+ 1

2

)
− g∗µB

σ±
2 B , (2.342)

where ωB = |eB|/m∗ is the cyclotron frequency. In what follows, we are going to derive
the effective action of the quantum Hall system considered. In the Secs. 2.6.3 and 2.6.6 we
have achieved this goal by calculating the generating functional or, equivalently, the fermion
determinant perturbatively [cf. Eq. (2.121)]

Z[A] = 1
Z[0]

∫
dψdψ† exp

[
i
∫

d3x LQH

]
= det (i∂0 + µ−HP[A])

det (i∂0 + µ−HP[0]) = eiSQH
eff . (2.343)

(2.344)

In the scope of the present section we make use of the results which we derived in Sec. 2.2 and
evaluate the second order effective action by calculating the systems charge bubble instead
of the vacuum polarization operator. In general, Landau levels of energy E±λ are occupied by
electronic states if µ > E±λ or, equivalently, if

µ± = µ+ g∗µB
σ±
2 B > ~ωB

(
λ+ 1

2

)
. (2.345)

The amount of occupied spin-up or spin-down Landau levelsN±LL ∈ N is therefore given by

N±LL =
[
µ±
~ωB

+ 1
2

]
int

, (2.346)

where the bracket [. . . ]int defines the integral part of its argument. In Eq. (2.23), we have
further derived that every spin polarized Landau level has a degeneracy

D = |eB|A2π~ , (2.347)

where A is the system’s area. The entire bulk charge density of a quantum Hall system is
therefore given by (for ~ = 1)

j0 = −e |eB|2π (N+
LL +N−LL) = −sgn(eB) e2

2π (N+
LL +N−LL)B = −σxyB . (2.348)

Adiabatically increasing the underlying magnetic fieldBe3 → (B + δB) e3 for a fixed chemical
potential µ consequently leads to an anomalous in- or outflow of charge carriers, which is
described by Streda’s fomula [106]

δj0 = −σxyδB . (2.349)
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We have already analyzed the physical mechanism behind this process in Eq. (2.339). In
contrast, if we fix the magnetic field B and apply an electric probing field E in e1-direction,
we obtain the charge current density j2 by multiplying Eq. (2.348) with the drift velocity
vDrift = E1/B:

j2 = −sgn(eB) e2

2π (N+
LL +N−LL)E2 = −σxyE1 . (2.350)

The three-current density jµ is a vector under Lorentz transformations [cf. Sec. 2.4.3]. The
knowledge of the charge density in Eq. (2.348) or the current density in Eq. (2.350) as response
to the vector potential is therefore sufficient to deduce the system’s effective action:

jµ = −σxyε
µνρ∂νAρ = −δS

QH
eff

δAµ
. (2.351)

The second order effective action SQH
eff in particular defines a topological Chern-Simons field

theory [cf. Sec. 2.6.4]

SQH
eff =

∫
d3xLQH

eff = σxy
2

∫
d3x εµνρAµ∂νAρ . (2.352)

Due to the Callan-Harvey mechanism in Sec. 2.6.7, we can explicitly construct the 1+1
dimensional chiral edge theory of the 2+1 dimensional quantum Hall system. To ensure a
locally conserved charge current everywhere, the non-gauge invariance of the Chern-Simons
action at the system’s boundaries needs to be compensated by the corresponding edge theory.
If we consider the cylinder geometry shown in Fig. 2.11 with periodic boundary conditions
in e1-direction and a finite system size in e2-direction, this defines the 1+1 dimensional edge
theory [cf. Eq. (2.227)]

S1+1 =
Ns

LL∑
s=±,n=1

 ∫
left handed

edge

d2x χ̄sn,Li /Dχsn,L +
∫

right handed
edge

d2x χ̄sn,Ri /Dχsn,R

 , (2.353)

consisting of the left- and the right handed edges modes χsn,L/R of the n-th Landau level with
spin s/2. These modes are located at the left- or at the right boundary of the system, de-
pending on the sign of the magnetic field chosen and the sign of the effective mass parametera
[cf. Fig. 2.4(c)].

aWhile m∗ > 0 corresponds to conduction band Landau levels with a positive curvature at the system’s
edges, m∗ < 0 defines valance band Landau levels with a negative curvature at the system’s edges.
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3.1 Quantum Anomalous Hall & Chern Insulators
3.1.1 QAH Phase from two-dimensional Topological Insulators
The path towards finding the first experimental realization of a quantum anomalous Hall
(QAH) insulator started with the prediction of a directly related topological phase of matter,
namely the prediction of two-dimensional topological insulators. Such systems are invariant
under time-reversal transformations [cf. Sec. 2.4.1] and form the so-called quantum spin Hall
(QSH) phase. Roughly speaking, a QSH phase is described by two copies of Chern insulators
with different (pseudo-)spin polarization, which are related by a time-reversal transformation.
Consequently, they are characterized by a vanishing Hall conductivity σxy. Instead, they have
a finite spin Hall conductivity σs

xy:

σxy = σ+
xy + σ−xy = 0 , (3.1)

σs
xy = σ+

xy − σ−xy = ±2e2

h , (3.2)

where the ± index characterizes the (pseudo-)spin up- and down polarization, respectively.
The first theoretical prediction of a QSH insulator in two spatial dimensions goes back to
C. L. Kane and E. J. Mele, who predicted such a phase in the two-dimensional material
graphene [7, 137]. In Sec. 4.1.5, we give a pedagogical introduction into graphene’s band-
structure and electronic properties. All we need to know for now is that in the presence
of strong spin-orbit interactions the low-energy spectrum of graphene is described by two
massive Dirac cones. These cones are located at the two high-symmetry points of graphene’s
honeycomb lattice structure, at the K- and at the K′-point, respectively [cf. Sec. 4.1.5]. Most
remarkably, both of these Dirac cones are related by a time-reversal transformation, which
in particular implies Eq. (3.1). However, it turned out that the mass gap in graphene is on
the order off ≈ 10mK [138], which makes an experimental observation of this predicted QSH
phase exceptionally challenging.

Inspired by this idea, A. Bernevig, T. Hughes and S. Z. Zhang predicted another type of topo-
logical insulators in quantum wells made out of layered II-VI semiconductors [8]. In what
follows, we discuss their theoretical predictions for (Hg,Cd)Te quantum wells. The subse-
quent analysis can also be transferred to different two-dimensional topological insulators like
InAs/GaSb quantum wells [16], WTe2 [139], and Bismuthene on a SiC substrate [140].

Fig. 3.1(A) shows the low-energy band-structure of HgTe and CdTe close to the Γ-point with
k = 0. As Hg is an extremely heavy element, it has a strong spin-orbit interaction and a large
relativistic mass-velocity correctiona, which implies that the s-type Γ6-band of HgTe is below
its p-type Γ8-band [141, 142]. For this reason HgTe shows a so-called inverted band-structure
with a negative energy gap. In contrast, CdTe has a common band ordering as the Γ8-band
is energetically below the Γ6-band. Figure 3.1(B) schematically shows the low-energy band-
structure of a staggered (Hg,Cd)Te quantum well. In general, one distinguishes between two
cases: (i) Below a critical quantum well thickness, for d < dc, the band-structure of CdTe
mainly drives the band-structure of the quantum well. If we focus on the two lowest energy
bands, the lowest electron-like band |E1〉 is therefore energetically above the highest hole-like
band |H1〉. (ii) Above the critical value, for d > dc, the two lowest energy sub-bands invert

aThe relativistic mass-velocity correction is defined as the first order correction to the conventional kinetic
energy term |p|2/(2m) in the non-relativistic limit of the Dirac dispersion:√

|p|2c2
0 +m2

ec4
0 −mec2

0 = |p|2/(2m) − |p|4/
(
8m3c2

0
)︸ ︷︷ ︸

mass-velocity correction

+O
(
|p|6
)
. (3.3)
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3.1 Quantum Anomalous Hall & Chern Insulators

Figure 3.1: (A) Low-energy band-structure of HgTe and CdTe close to the Γ-point (k = 0).
(B) Schematic low-energy band-structure of a (Hg,Cd)Te quantum well in the trivial (left)
and in the inverted (right) regime. The figure is reprinted from Ref. [8] with permission from
the AAAS. Further explanations are given in the text.

and the QSH phase arises. For undoped (Hg,Cd)Te quantum wells, the critical thickness is
given by dc = 6.3 nm, as it is shown in Fig. 3.2 [8].

In the basis (|E1,+〉, |H1,+〉, |E1,−〉, |H1,−〉), the low-energy physics of (Hg,Cd)Te quantum
wells is described by the Bernevig-Hughes-Zhang (BHZ) Hamiltoniana [8]

HBHZ(k) =
(
H+(k) 0

0 H−(k)

)
, (3.4)

where H−(k) = H∗+(−k), and each (pseudo-)spin block is given by the Hamiltonian of a
single Chern insulator

H+(k) =
(
ε(k) +M(k) Ak+

Ak− ε(k)−M(k)

)
. (3.5)

Here, ε(k)=C−D|k|2, M(k)=m−B|k|2, |k|2 =k2
1 +k2

2, k±=k1± ik2, and A,B,C,D,m ∈ R
are material parameters characterizing the system’s band-structure. Both Chern insulators,
H+(k) and H−(k), are related by a time-reversal transformation [143]

U †TH+(k)UT = H∗+(−k) = H−(k) , (3.6)

aFor the scope of this work, bulk inversion asymmetry terms are unimportant. Therefore, they are neglected
throughout this thesis.
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Figure 3.2: The energy of the lowest sub-bands in a pure (Hg,Cd)Te quantum well are
shown as a function of the quantum well thickness d. For d < dc the lowest electron-like
band |E1〉 is energetically above the highest hole-like band |H1〉. For d > dc, the situation
is vice versa. The latter phase characterizes the QSH regime. For pure (Hg,Cd)Te quantum
wells, the critical quantum well thickness is given by dc = 6.3nm. The figure is reprinted
from Ref. [8] with permission from the AAAS.

where UT = −iσ2K, and K is the operator of complex conjugation [143]. This makes the
entire BHZ Hamiltonian in Eq. (3.4) time-reversal symmetric as

Ũ †THBHZ(k)ŨT = HBHZ(−k) . (3.7)

Here, the 4 × 4 time-reversal transformation associated to Eq. (3.4) is defined in terms of
ŨT = −i (τ2 ⊗ σ0)K, where τ2 is the second Pauli matrix acting on the (pseudo-)spin degree
of freedom [143].
According to Eq. (3.4), two-dimensional topological insulators which are described by the
BHZ Hamiltonian can be interpreted as two copies of Chern insulators. Each of those insu-
lators comes along with a chiral edge state, as we have shown in Sec. 2.6.7. Hence, the BHZ
Hamiltonian in Eq. (3.4) hosts helical edge modes which are protected from back-scattering
by the underlying time-reversal symmetry in Eq. (3.7).

To construct a QAH from a QSH phase, one necessarily needs to break the time-reversal
symmetry in order to obtain a finite Hall conductivity. In particular, one needs to invert the
topological gap of one of the time-reversal-, so-called Kramer’s partners [143]. Inspired by
this idea, F. D. M. Haldane predicted the first QAH phase in graphene by using a special
time-reversal odd mass term which opens the Dirac mass gaps at the K- and the K′-points
in a parity-odd manner [25]. This induces a finite Chern number and thus a QAH phase.
In Sec. 3.1.3, we further elaborate on the Haldane model and explain its relation to the
parity anomaly. Up to date, the Haldane mass term has not yet been realized in crystalline
structures. There exists however another theoretical prediction for a QAH phase which
originates from two-dimensional topological insulators like (Hg,Cd)Te quantum wells. By
magnetically doping such systems, one can invert the mass gap of one of the (pseudo)-spin
polarized Chern insulators in Eq. (3.4) [42]. Additionally to the BHZ Hamilton, the magnetic
dopants induce a finite energy splitting

Hg =


ge 0 0 0
0 gh 0 0
0 0 −ge 0
0 0 0 −gh

 , (3.8)
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Figure 3.3: Schematic illustration of how to construct a QAH- from a QSH insulator by
magnetically doping the system. The effective electron and hole g-factors GE < 0 and GH > 0
(a) invert the Dirac mass gap of one of the Chern insulators in the BHZ Hamiltonian (3.4)
and, consequently, (b) fuse the associated chiral edge states. Thus, the system transforms
from a QSH phase with helical edge states to a QAH phase with chiral edge modes. The
figure is reprinted from Ref. [42] with permission from the APS.

where ge,h are the effective electron and hole g-factors. As required, the entire Hamiltonian
HBHZ +Hg breaks the time-reversal symmetry as

Ũ †THgŨT = −Hg . (3.9)

Equation (3.8) most remarkably renormalizes the Dirac mass gap of the (pseudo-)spin polar-
ized Chern insulators in Eq. (3.4) differently:

m± = 2m± ge ∓ gh . (3.10)

Satisfying the conditions gegh < 0 and

m+m− < 0 , (3.11)

leads to a mass gap inversion of only one of the Chern insulators, which drives the system
into the QAH phase [42]. Schematically, this procedure is shown in Fig. 3.3. As one of the
Chern insulators inverts its Dirac mass gap, the associated chiral edge state disappears. We
mathematically describe the properties of such a system and further define its relation to the
parity anomaly [cf. Sec. 2.5] in the subsequent sections.

Let us close this introduction to topological- and QAH insulators by giving one further
remark. In (Hg,Cd)Te quantum wells the magnetic doping described by Eq. (3.8) is realized
via Manganese dopants which are paramagnetic. As such, the QAH phase in these systems
requires a small polarizing magnetic field. This directly raises the question: How does the
topology of the magnetic field and the intrinsic band inversion interact in these systems. We
answer this question in Sec. 3.3. Let us emphasize that this property is mainly related to
QAH insulators based on (Hg,Cd)Te quantum wells. Hitherto, there are several predictions
of the QAH phase in ferro-magnetically doped topological insulators, which do not require
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a finite polarizing magnetic field. For instance, such phases where predicted and measured
in Bi2Te3, Bi2Se3, and Sb2Te3 doped with Cr, Fe or Va [44–47]. The low-energy response of
these systems can be described by the BHZ model, as well.

3.1.2 Hall Conductivity and Edge States of a Chern Insulator
In what follows, we are going to analyze a single (pseudo-)spin block of the BHZ Hamiltonian
in Eq. (3.4). We have shown that each of these blocks is described by the Hamiltonian of a sin-
gle 2+1 dimensional Chern insulator, which in the presence of magnetic doping [cf. Eq. (3.10)]
can be written in three different forms

H±(k) =
(
ε(k) +M±(k) ±Ak±
±Ak∓ ε(k)−M±(k)

)
= ε(k)σ0 ±A(k1σ1 ∓ k2σ2) +M±(k)σ3 (3.12)

= ε(k)σ0 + d± · σ . (3.13)

Here, ε(k) = C − D|k|2 , M±(k) = m± − B|k|2, m± = m ± (ge − gh)/2, |k|2 = k2
1 + k2

2,
k± = k1±ik2, and d± = (±Ak1,−Ak2,M±(k))T. Moreover, σ is the vector of Pauli matrices.
In the remaining part of this thesis, we set the diagonal and momentum independent term
Cσ0 to zero as it only defines an energy off-set of the associated spectrum. It therefore does
not influence any topological quantity.

Let us first compare the Chern insulator in Eq. (3.12) with the QED2+1 system which we
have analyzed in Sec. 2.6. Analogously to the transformation rules of a massive QED2+1
system in Eq. (2.130), the Chern insulator in Eq. (3.12) breaks parity- and time-reversal
symmetry for m±, B 6= 0. With UP = σ2 and UT = −iσ2K [143], one in particular obtains
the transformation rules

U †PH±(k1, k2,m±, B,D)UP = H±(−k1, k2,−m±,−B,D) , (3.14)

U †TH±(k,m±, B,D)UT = H±(−k,−m±,−B,D) . (3.15)

Hence, both mass terms, the Dirac mass m±σ3 as well as the momentum dependent, so-called
Newtonian mass B|k2|σ3 are responsible for a broken parity- and time-reversal symmetry of a
single Chern insulator. From this perspective, both terms should characterize the associated
Hall conductivity. This will be shown in the following paragraphs.

The eigen-energies of the two-band model in Eq. (3.12) are given by

Es±(k) = ε(k) + s
√
A2|k|2 +M2

±(k) , (3.16)

where s = ± defines the valance and the conduction band, respectively. Moreover, the
corresponding eigen-states are given by [50]

φs±(k) =

M±(k) + s
√
A2|k|2 +M±(k)2

±Ak∓
1

 . (3.17)

The Hall conductivity of the Chern insulator in Eq. (3.12) at a general chemical potential µ
and a certain temperature T can be evaluated in terms of the Kubo Formula [50, 143]

σ±xy(µ, T ) = e2

2~

∫ d2k
(2π)2

fk,c(µ, T )− fk,v(µ, T )
d3
±

εαβγ
(
∂d±α
∂k1

)(
∂d±β
∂k2

)
d±γ , (3.18)

where d± = |d±| is the norm of the d±-vector in Eq. (3.13) and fk,c,v(µ, T ) encode the
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Fermi-Dirac distribution functions in the conduction and in the valence band, respectively.
Basically, Eq. (3.18) counts the winding of the mapping d±(k) : T 2 → S2 from the periodic
two-dimensional Brillouin zone, the torus T 2, to the two-sphere S2. For zero temperatures
and for chemical potentials in the Dirac mass gap the Fermi-Dirac distributions simplify to
Heaviside-Theta functions and Eq. (3.18) evaluates to [43, 50]

σ±xy(|µ| < |m|, T = 0) = ± e2

4h

∫
d|k|2

A2 (m±
2 +B|k|2

)(
A2|k|2 +

(m±
2 −B|k|2

)2)3/2

= ± e2

2h[sgn(m±) + sgn(B)] . (3.19)

Notice, that the D|k|2σ0 term in Eq. (3.12) does not influence the Hall conductivity as
it is a diagonal contribution to the Hamiltonian. It is even under parity transformations
[cf. Eq. (3.14)], but breaks the charge-conjugation symmetry of a single Chern insulator

U †CH±(k,m±, B,D)UC = −H±(−k,m±, B,−D) . (3.20)

Here, we used that for the Hamiltonian in Eq. (3.12) UC = σ1K [143].

Let us make one more remark regarding the Dirac limit of Eq. (3.19). For B=D=ge =gh =0,
Eq. (3.12) defines a purely 2+1 dimensional Dirac Hamiltonian with Fermi velocity A and
an energy offset C. In agreement with the quantum field theoretic calculations in Sec. 2.6.3,
we obtain a half-quantized Hall conductivity for such a system in units of e2/h:

σxy(|µ| < |m|, T = 0) = ± e2

2hsgn(m) . (3.21)

Hence, the B|k|2 term renormalizes the non-gauge invariant, half-quantized Hall conductivity
of a single Dirac fermion [cf. Eq. (2.176)]. Most importantly, the |k|2 dependence implies that
the d±-vector points in −sgn(B)e3 -direction for |k| → ∞. We can thus one-point compactify
the k-space at spatial infinity. For k = 0 and ge = gh = 0 the d±-vector points in sgn(m)e3 -
direction. Consequently, for m/B > 0 the d±-vector points in opposite e3-directions at k = 0
and |k| → ∞. This implies a finite integer Hall conductivity in Eq. (3.19). In contrast, for
m/B < 0 the d±-vector points in the same direction for k = 0 and |k| → ∞, implying a
vanishing Hall conductivity [49]. For a purely linear Dirac spectrum a compactification at
|k| → ∞ is not possible. As a consequence, the Hall conductivity is half-quantized. In such
a case both mass configurations m ≷ 0 are topologically non-trivial as the winding of the
d±-vector is not well-defined.

In the remaining part of this subsection, let us derive the edge theory of the Chern insulator
in Eq. (3.12) from a solid state perspective. The subsequent analysis will go along the lines
of the corresponding discussion in Ref. [49] and should serve as a complementary discussion
regarding the quantum field theoretic considerations in Sec. 2.6.4. In what follows, we consider
a semi-infinite two-dimensional space manifold with an one-dimensional edge at x1 = 0. For
x1 > 0 the system is characterized by the Chern-insulator in Eq. (3.12), whereas for x1 < 0
we consider a trivial vacuum.

In order to derive the topological edge states of such a geometry, we (partially) Fourier
transform Eq. (3.12) to the real-space, as the momentum k1 is not a well defined quantity
anymore. The topological boundary along the e2-direction breaks the translation symmetry
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in the e1-direction. For k1 → −i∂1 this implies the Schrödinger equation [49][
∓iA∂1σ1 −Ak2σ2 +

(
m± −Bk2

2 +B∂2
1

)
σ3
]
φ(x1, x2) = Eφ(x1, x2) , (3.22)

with the corresponding boundary conditions φ(x1 = 0, x2) = 0 and φ(x1 → ∞, x2) = 0.
According to our analysis in Sec. 2.6.4, we know that the system under consideration has a
chiral edge state with a linear dispersion in momentum k2. Let us therefore first set k2 = 0 and
search for zero energy solutions of the second order differential Eq. (3.22). As the geometry
under consideration is translation invariant in e2-direction, we are starting our calculation
by evaluating the confinement of the edge modes in e1-direction by solving[

∓iA∂1σ1 +
(
m± +B∂2

1

)
σ3
]
ψk2=0

edge (x1) = 0 , (3.23)

with the boundary conditions ψk2=0
edge (x1 = 0) = 0 and ψk2=0

edge (x1→∞) = 0. In order to find
a normalizable eigen-state close to the topological boundary of our system, we make the
ansatz:

ψk2=0
edge (x1) ∝ eλx1ξ , (3.24)

where ξ is a two-component spinor and Re[λ] ∈ R describes the decay of the wave-function
with respect to the topological boundary. Inserting this ansatz into Eq. (3.23) and multiplying
this equation with the third Pauli matrix σ3 from the left, implies[

m± +Bλ2
]
ξ ± [Aλσ2] ξ = 0 . (3.25)

It is as such natural to define the spinor ξ as a σ2 eigen-state with eigenvalue η = ±1:

σ2ξη = ηξη . (3.26)

Inserting this definition into Eq. (3.25) eventually implies a conditional equation for λ:

Bλ2 ± ηAλ+m± = 0 ⇒ λi(η) = 1
2B

(
∓ηA− (−1)i

√
A2 − 4Bm±

)
, (3.27)

with i ∈ {1, 2}, which satisfies the identity

λ1,2(−1) = −λ2,1(1) . (3.28)

This eventually leads to the zero-energy edge-state solution of Eq. (3.23) [cf. Eq. (3.24)]

ψk2=0
edge (x1) =

[
c+;1eλ̃1x1 + c+;2eλ̃2x1

]
ξ+ +

[
c−;1e−λ̃1x1 + c−;2e−λ̃2x1

]
ξ− , (3.29)

where we introduced the prefactors c η ; {1,2} ∈ C and normalized the solutions for λ1,2(η) due
to their symmetric property in Eq. (3.27)

λ̃1,2 = λ1,2(1) ∧ −λ̃1,2 = λ2,1(−1) . (3.30)

We can further simplify Eq. (3.29) by making use of our specific boundary conditions. Since
by definition ξ+ and ξ− are orthogonal spinors [cf. Eq. (3.29)], our first boundary condition
ψk2=0

edge (x1 =0) = 0 implies

c η ; 1 + c η ; 2 = 0 . (3.31)
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Under this condition Eq. (3.29) simplifies to

ψk2=0
edge (x1) = c+;1

[
eλ̃1x1 − eλ̃2x1

]
ξ+ + c−;1

[
e−λ̃1x1 − e−λ̃2x1

]
ξ− (3.32)

= c+;1e∓
A
2B x1

[
e
√
A2−4Bm±

2B x1 − e−
√
A2−4Bm±

2B x1

]
ξ+

+ c−;1e±
A
2B x1

[
e−
√
A2−4Bm±

2B x1 − e
√
A2−4Bm±

2B x1

]
ξ− .

In combination with the orthogonality of ξ+ and ξ−, the second boundary condition at spatial
infinity, ψk2=0

edge (x1→∞) = 0, only allows two different cases: For the (pseudo)-spin up case
we find

(i) A/B > 0 ∧ c−;1 = 0 , (3.33)
(ii) A/B < 0 ∧ c+;1 = 0 , (3.34)

whereas for the (pseudo)-spin up case we obtain

(i) A/B < 0 ∧ c−;1 = 0 , (3.35)
(ii) A/B > 0 ∧ c+;1 = 0 . (3.36)

However, all cases are accompanied by the topological criterion
m±
B

> 0 , (3.37)

in order to ensure ∣∣∣∣√A2 − 4Bm±
∣∣∣∣ < |A| . (3.38)

As a consequence, normalizable edge states do require a topologically non-trivial Chern insu-
lator in Eq. (3.12) [cf. Eq. (3.19)]. For such a system, we eventually found the spin-polarized
zero-energy edge states

(i) ψk2=0
edge (x1) = c+;1

(
eλ̃1x1 − eλ̃2x1

)
ξ+ with A/B > 0 , (3.39)

(ii) ψk2=0
edge (x1) = c−;1

(
e−λ̃1x1 − eλ̃2x1

)
ξ− with A/B < 0 , (3.40)

for the (pseudo-)spin up case, whereas we found

(i) ψk2=0
edge (x1) = c+;1

(
eλ̃1x1 − eλ̃2x1

)
ξ+ with A/B < 0 , (3.41)

(ii) ψk2=0
edge (x1) = c−;1

(
e−λ̃1x1 − eλ̃2x1

)
ξ− with A/B > 0 , (3.42)

for the (pseudo-)spin down case. Due to the fact that we considered an infinite manifold in
e2-direction the momentum k2 defines a good quantum number in the system considered.
Under the assumption that ψedge(x1) itself does not depend on k2 a natural finite energy
extension of Eqs. (3.39)-Eq. (3.42) yields [49]

φk2
edge(x1, x2) = ψk2=0

edge (x1)eik2x2 , (3.43)
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with the associated spectra up to linear order in momentum k2 [cf. Eq. (3.23)]:

E+(k2) =
{
−Ak2 with A/B > 0
Ak2 with A/B < 0

(3.44)

for the (pseudo-)spin up case and

E−(k2) =
{
−Ak2 with A/B < 0
Ak2 with A/B > 0

(3.45)

for the (pseudo-)spin down case. Hence, we derived the spectra of helical edge modes [49],
whose velocities are determined by the parameter A, the (pseudo-)spin polarization, and the
sign of the non-trivial Hall conductivity σ±,QAH

xy

sgn(B) Eq. (3.37)= 1
2 [sgn(m±) + sgn(B)] = ±sgn

(
σ±,QAH

xy

)
∈ {−1, 1} . (3.46)

Let us close this subsection by giving one further remark regarding the connection between
the two Chern insulators H±(k) together defining the BHZ Hamiltonian in Eq. (3.4). As
we have seen in the calculations for the Hall conductivity [cf. Eq. (3.19)], as well as for the
edge state dispersion [cf. Eqs (3.44) and (3.45)], it is possible to deduce the physics of one
of the (pseudo-)spin polarized Chern insulators from the other one, if one inverses the sign
of the corresponding mass terms. This does not come as a surprise. By using the unitary
transformation

U =
(
σ0 0
0 σ2

)
, (3.47)

we can rearrange the BHZ Hamiltonian in Eq. (3.4) such that it is described by the Hamil-
tonian of only one Chern insulator with oppositely signed mass terms in both (pseudo-)spin
blocks of the BHZ Hamiltonian

U †HBHZ(k)U =
(
H+(k, A,m+, B,D) 0

0 H+(k, A,−m−,−B,D)

)
. (3.48)

We will make use of this property several time throughout this thesis in order to deduce
the entire BHZ response from our calculations for a single (pseudo-)spin polarized Chern
insulator.

3.1.3 Relation of the BHZ- and Haldane Model to the Parity
Anomaly in 2+1 Space-Time Dimensions

In what follows, let us concretize in which way the BHZ model is related to the parity
anomaly of massless QED2+1. In order to clarify this point, we first study the Dirac- as
well as the Newtonian mass terms of a single (pseudo-spin) polarized Chern insulator from
a quantum field theoretic perspective by analyzing their contributions to the Chern-Simons
effective action. As we have explained in Sec. 3.1.1, the BHZ model consists of two copies of
(pseudo-spin) polarized Chern insulators. We already indicated that this property directly
relates the QAH Hall phase of the BHZ model to Haldane’s graphene model [25], which can
be seen as the first solid state connection to the high-energy concept ’parity-anomaly’. In
the second part of this section we elucidate this connection and specify in which sense the
response of a QAH system like (Hg,Mn)Te can be interpreted as a measurement of the parity
anomaly in 2+1 space-time dimensions.
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3.1 Quantum Anomalous Hall & Chern Insulators

Generating Functional and Fermion Determinant of a Chern Insulator

In what follows, we consider a single (pseudo-)spin polarized Chern insulator described by
Eq. (3.12) coupled to an abelian U(1) gauge field Aµ. As we have shown in Sec. 2.5.2,
such models can be quantized by calculating the partition function Z[A], or analogously the
effective action via integrating out the fermionic degrees of freedom [cf. Eq. (2.124)]

Z[A] = 1
Z[0]

∫
dψ̄ dψ eiS[ψ̄,ψ,A] = 1

Z[0] eiSeff [A] . (3.49)

Here, the bare and the effective action are defined by S[ψ̄, ψ,A] and Seff [A], respectively. If
Seff [A] has less symmetries than S[ψ̄, ψ,A], a quantum anomaly is present, as it was defined
in Sec. 2.5.1. For instance, massless QED2+1 is described by the parity-symmetric bare action
[cf. Eq. (2.127)]

S[ψ̄, ψ,A] =
∫

d3x iψ̄
(
/∂ + ie/A

)
ψ . (3.50)

According to Eq. (2.126), the associated action is given by

Seff [A] = −i log det
[
(/∂ + ie/A)//∂

]
. (3.51)

As it was shown initially in Ref. [52], the fermion determinant in Eq. (3.51) changes sign under
large gauge transformationsa of odd winding ω = 2n+1 with n∈Z [cf. Fig. 2.7 in Sec. 2.4.4]

det
[
(/∂ + ie/A)//∂

]
→ (−1)|ω| det

[
(/∂ + ie/A)//∂

]
⇒ Seff → Seff ± π|ω| . (3.52)

Hence, as it stands Seff [A] is not a well-defined and physically meaningful object. This can
also be seen by calculating the fermion determinant explicitly, which leads to a divergent
expression, as we have seen in Eq. (2.151). Consequently, the theory requires a regularization
scheme which needs to be chosen such that it ensures infinitesimal- as well as large gauge
invariance of Z[A] [cf. Sec. 2.4.4]. In particular, it was shown that each regularization scheme
needs to break parity symmetry to ensure gauge invariance. This is known as the parity
anomaly [33, 52]. The parity anomaly therefore results from the particular regularization
of QED2+1. Even though a massive QED2+1 system breaks parity on the classical level
[cf. Eq. (2.130)], the fermion determinant still diverges and lacks gauge invariance, as we
have shown in Eq. (2.151). Again, this requires a parity-breaking regularization scheme,
which ensures an integer quantized DC Hall conductivity associated to a gauge invariant
Chern-Simons term in the effective action. This property extends the peculiarities of the
parity anomaly to the massive case [33, 52, 53, 57]. The non-invariance of a half-quantized
Chern-Simons action [cf. Eq. (2.165)] in units of e2/h has been derived in Eq. (2.174). In
Eq. (3.19) we have shown that adding the Newtonian mass term to a massive QED2+1
Lagrangian leads to an integer quantized DC Hall conductivity, which is associated to a gauge
invariant Chern-Simons term. From this perspective the Newtonian mass term, provided
by the material, acts similar to a parity-breaking element of a mathematical regularization
schemeb. Its contribution to the Hall conductivity does not vanish in the parity-symmetric
limit m±, B → 0. Consequently, besides the Dirac mass also the Newtonian mass term is
directly related to the parity anomaly. Inspired by this property, we compare in Sec. 3.2
the role of the Newtonian mass term for the calculation of the effective action of a Chern
insulator to common parity-breaking regularization schemes of QED2+1.

aFor U(1) gauge fields such transformations only exist on compact non-trivial manifolds, such asM = T 2×S1.
bWith ’similar’ we mean that since the Newtonian mass is a real parameter of the theory, it does not vanish
during renormalization. This latter requirement needs to be fulfilled by any mathematical regulator.
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Relation of the BHZ Hamiltonian to the Haldane Model

Having discusses the role of the Dirac- and the Newtonian mass term of a Chern insulator
in the context of the generating functional and fermion determinant, let us now specify the
connection of the BHZ Hamiltonian to the Haldane model [25] and concretize the relation
of these models to the parity anomaly of a single massless Dirac fermion in 2+1 space-time
dimensions [cf. Sec. 2.6].

Even in the parity symmetric limit m±, B → 0, the Hall conductivity of a single Chern
insulator in Eq. (3.19), does not vanish for sgn(m±/B) > 0. As we have discussed in the
previous subsection, this effect is known as the parity anomaly of Dirac-like systems in odd
space-time dimensions. Initially, the parity anomaly has been predicted for a pure Dirac
spectrum in Ref. [52]. Due to the absence of a Newtonian mass term, the Chern number of
a pure Dirac system is given by

CQED = σQED
xy

h
e2 = ±1

2sgn(m) (3.53)

before regularization [cf. Eq. (2.157)]. Hence, it is half quantized and always non-zero. In
contrast, the Hall conductivity in Eq. (3.19) is integer quantized in units of e2/h and defines
two different phases: For m±/B > 0, the system is topologically nontrivial with Chern
number CCI = ±1, while form±/B < 0, the system is topologically trivial with CCI = 0.

In a solid state system with a crystal lattice, Dirac fermions in 2+1 space-time dimensions
always come in pairsa. The naive lattice discretization of a pure Dirac fermion leads to a
phenomenon called fermion-doubling, which predicts the existence of a second Dirac fermion
of opposite Chern number at the edge of the lattice Brillouin zone. Thus, the entire system has
zero Hall conductivity and the parity anomaly of a single Dirac fermion cannot be measured.
However, in his seminal work [25], Haldane found a way to circumvent this difficulty in a
condensed matter system. He proposed a way of realizing a single gapless Dirac fermion in
the bulk spectrum of graphene by separately manipulating the two Dirac gaps at the K and
K′ points of the hexagonal lattice structure via a complex hopping parameter. In Sec. 4.1.5,
we give a pedagogical introduction into graphene’s band-structure and electronic properties.
All we need to know for now is that this complex hopping parameter allows to close only one
of the Dirac gaps, whereas the other one remains open. Hence, his model suggests a way of
constructing a solid state system which has a single gapless Dirac fermion in 2+1 dimensions
but still a non-zero Hall conductivity proportional to the integer Chern number

CHM = [sgn(mK)− sgn(mK′)] /2 . (3.54)

Here,mK andmK′ are the Dirac mass terms at the K and K′ points in graphene, respectively.
While so far the Haldane model has not yet been realized in a solid state material, a closely
related QAH effect has been predicted in two-dimensional QAH insulators like (Hg,Mn)Te
quantum wells or magnetically doped (Bi,Sb)Te thin films, as we have discussed in Sec. 3.1.1.
In the vicinity of the bulk gap, these systems can be described by the BHZ Hamiltonian in
Eq. (3.4)b, which consists of two copies of Chern insulators, explicitly defined in Eq. (3.12).
The Dirac masses m± of each (pseudo-)spin polarized Chern insulator in Eq. (3.12) can be
tuned by magnetically doping the system, as explained in Sec. 3.1.1. In particular, it is
possible to drive one of the Chern insulators in the topologically trivial regime and to close,

aIf the 2+1 dimensional manifold is the boundary theory of a 3+1 dimensional bulk, there could also be an
odd number of Dirac fermions living at the boundary. For instance, this is the case at the boundary of 3+1
dimensional topological insulators. However, we are not considering such systems but focus our analysis
on pure 2+1 dimensional bulk materials.

bFor the scope of this work, off-diagonal bulk inversion asymmetry terms which couple the two Chern insu-
lators are unimportant, we are therefore neglecting them throughout this thesis.

72



3.2 Anomaly Induced AC Hall Conductivity of QAH Insulators

E
ne

rg
y k=K'

k=ΓMomentum Momentum

k=K
k=Γ  

Haldane Model
BHZ Model

CK = sgn(mK)/2 CK' = - sgn(mK')/2

C  =[sgn(m  )+sgn(B)]/2 C  = - [sgn(m  )+sgn(B)]/2
+ + - -

Figure 3.4: Schematic illustration of how a single Dirac fermion or Chern insulator realizes
the parity anomaly in the Haldane (blue) or BHZ (red) model. In the Haldane model, both
Dirac fermions at the K and K′ points of the hexagonal lattice structure contribute ±1/2 to
Chern number, whereas in the QAH phase of the BHZ model only one of the Chern insulators
is topologically nontrivial and has a finite Chern number CCI = ±1. More explanations are
given in the text. The figure is reprinted from Ref. [P5] with permission from the APS.

at the same time, the gap of the second non-trivial Chern insulator. Analogously to the
Haldane model, in this scenario the single gapless Chern insulator alone realizes the parity
anomaly of a Dirac-like system in 2+1 dimensions. Schematically, this limit is illustrated
in Fig. 3.4. However, while in the Haldane model both Dirac fermions contribute ±1/2 to
the Chern number, in the QAH phase of the BHZ model only one of the Chern insulators
has Chern number CCI = ±1. The other one is topologically trivial with CCI = 0. Hence,
studying a single Chern insulator in Eq. (3.12) is sufficient to analyze the consequences of
the parity anomaly in experimentally realizable systems like (Hg,Mn)Te quantum wells or
magnetically doped (Bi,Sb)Te thin films.

3.2 Anomaly Induced AC Hall Conductivity of
QAH Insulators

In what follows, we are combining the theoretical principles which we have introduced in
Chap. 2 and Sec. 3.1 in order

(i) to derive the AC response of QAH insulators which are described by the BHZ Hamil-
tonian [cf. Sec. 3.1.1], and

(ii) to relate this response to the parity anomaly of massless quantum electrodynamics in
2+1 space-time dimensions [cf. Secs. 2.6 and 3.1.3 ].

Within this section we are considering zero background magnetic fields, a particle-hole sym-
metric chemical potential at zero energy, as well as a vanishing temperature. While we are
studying the influence of an out-of-plane magnetic field in Sec. 3.3, we are going to analyze the
temperature and density dependence of our findings in Sec. 3.4. The subsequent discussion
will mainly go along the lines of the manuscript ’Momentum-dependent mass and AC Hall
conductivity of quantum anomalous Hall insulators and their relation to the parity anomaly’
(Phys. Rev. Research 2, 033193), which I published in August 2020 [P4]. It is the goal of the
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current section to discuss the theoretical findings associated to this work, which have been
obtained in collaboration with Dr. Jan Böttchera. While all analytic derivations have been
obtained by myself, Dr. Jan Böttcher supported this work via fruitful discussions concerning
the expected physical results.

In Sec. 3.1.1, we have shown that QAH insulators which are described by the BHZ model
[cf. Eq.(3.4)] are characterized by the combined response of two (pseudo-)spin polarized Chern
insulators, a topologically trivial as well as topologically non-trivial one [cf. Eq. (3.19)].
Each of these Chern insulators features Dirac-like physics in 2+1 space-time dimensions.
Consequently, QAH insulators like (Hg,Mn)Te are directly related to the parity anomaly of
planar quantum electrodynamics - a property which has been studied in Sec. 3.1.3. In what
follows, we elaborate further on this statement.

According to Eq. (3.12), a Chern insulator is in general characterized by two different mass
terms: A momentum independent Dirac mass m±, as well as a momentum dependent Newto-
nian mass term B|k|2. The relation of the Dirac mass to the parity anomaly was been initially
shown in Refs. [33, 52]. We discussed this relation in Secs. (2.6.3) and 3.1.3. However, up
to date the connection of the Newtonian mass to the parity anomaly has not yet been ana-
lyzed. To bridge this gap, we derive in this section the effective action of a QAH insulator.
In the corresponding calculation for a pure, massless QED2+1 system, the parity anomaly
arises from the particular regularization of its infinite Dirac sea [cf. Sec 2.6.3]. As already
indicated in Sec.3.1.3, we show that the Newtonian mass acts similar to a parity-breaking
regulator in the calculation of the effective action. It is as such directly related to the parity
anomaly. The non-quantized finite frequency corrections to the DC Hall conductivity of a
single Chern insulator will be derived during our calculation of the effective action, as well.
However, in order to understand our field theoretical analysis, let us start our discussion by
briefly recapitulating the most important theoretical concepts which we have studied in the
previous Secs. 2 and 3.1.

3.2.1 Band-Structure of a Chern Insulator:
Topological Phase Transition

In Sec. 3.1.1, we have shown that the low-energy physics of two-dimensional QAH insulators
like (Hg,Mn)Te quantum wells or magnetically doped (Bi,Sb)Te thin films can be described
by means of the BHZ Hamiltonian in Eq. (3.4)b. We have in particular discussed that the
BHZ model consists of two (pseudo-)spin polarized Chern insulators with Hamiltonian H±(k)
[cf. Eq. (3.12)], which in total give rise to [8]

HBHZ(k) =
(
H+(k) 0

0 H−(k)

)
. (3.55)

In general, the basis of the BHZ Hamiltonian depends on the condensed matter system.
For (Hg,Mn)Te quantum wells it is (|E1,+〉, |H1,+〉, |E1,−〉, |H1,−〉), as we have explained
above Eq. (3.4). The Hamiltonian of each of the two (pseudo-)spin polarized Chern insulators
in Eq. (3.55) has been extensively studied in Sec. 3.1.2:

H±(k) = −D|k|2σ0 ±A(k1σ1 ∓ k2σ2) +
(
m±−B|k|2

)
σ3 . (3.56)

aThis publication has been supervised by Dr. René Meyer and by Prof. Dr. Ewelina M. Hankiewicz
bFor the scope of this work, bulk inversion asymmetry terms are unimportant. Therefore, they are neglected
throughout this thesis.
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Figure 3.5: Band-structure corresponding to a single (pseudo-) spin block of the BHZ model
for k2 = D = 0 and for (a) a topologically non-trivial phase with m=A= 1 and B = 0.1.
The minimal gap 2|m| is located at the Γ-point. (b) For a topologically non-trivial phase
with m=A= 1 and B = 3. The minimal gap |∆| is located at |k| = ±|kmin|. The figure is
reprinted from Ref. [P4] with permission from the APS.

As each (pseudo-)spin block of the BHZ model is described by a single Chern insulator in 2+1
space-time dimensions, the physics originating from each of these blocks is directly related to
the parity anomaly of QED2+1. Let us briefly recapitulate that in Eq. (3.56), m± and B|k|2
are the parity-breaking mass terms [cf. Eq. (3.14)], and that the D|k|2 encodes a particle-hole
(charge-conjugation) asymmetry [cf. Eq. (3.20)]. In the QSH phase, Eq. (3.55) is invariant
under time reversal transformations, implying m+ = m− and a total Chern number CQSH = 0
[cf. Eqs. (3.1) and (3.6)]. In the QAH phase, only one of the two (pseudo-)spin polarized
Chern insulators is topologically non-trivial and has a finite Chern number [cf. Eq. (3.19)]
[43, 50]

CiCI = i [sgn(mi) + sgn(B)] /2 , i ∈ {+,−} . (3.57)

The trivial (pseudo-)spin polarized Chern insulator has zero Chern number. Therefore, the
entire topological response in the QAH phase is captured by a single Chern insulator in 2+1
space-time dimensions. If not stated otherwise, we focus on such a system in the remaining
part of this section. We will in particular neglect the (pseudo-)spin index ± in the following
analysis. Moreover, we will consider particle-hole symmetric Chern insulators, since the
D|k|2 term in Eq. (3.56) is parity-even and thus does not contribute to the parity anomaly
[cf. Eq. (3.20)]. The physics originating from the D|k|2 term has been studied explicitly by
Dr. Jan Böttcher and myself in Reference [P3]a.

As we have shown in Eq. (3.16), the spectrum associated to Eq. (3.56) forD=0 is given by

Es(k) = s
√
A2|k|2 + (m−B|k|2)2 , (3.58)

where s = ± encodes the conduction and the valence band, respectively. In Fig. 3.5, we show
the influence of the mass parameters on the band-structure. While the Dirac mass m defines
the mass gap at the Γ−point, the momentum dependent B|k|2 term acts like an effective
mass of a non-relativistic fermion system. Depending on the values for m, B, and A, the
band-structure significantly changes. For m/B > 0, the system is topologically non-trivial
with CCI = ±1. However, depending on the absolute values of the input parameters, the
minimal gap can either be located at the Γ-point [Fig. 3.5(a)], driven by the Dirac mass
alone, or apart from |k| = 0 [Fig. 3.5(b)] at kmin =±

√
2mB −A2/(

√
2B). The minimal gap

aThis publication has been supervised by Dr. René Meyer and by Prof. Dr. Ewelina M. Hankiewicz
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is therefore either defined by 2|m|, or by the absolute value of

∆ = A
√

4mB −A2/B . (3.59)

In contrast, for m/B < 0, the system is topologically trivial, characterized by CCI = 0. In
this case the minimal gap is always located at the Γ-point. At m = 0, the topological phase
transition occurs, which comes along with a gap closing at k=0. While in our plots we mostly
consider positive mass terms, the inverted Dirac mass of an experimental QAH insulator is
negative. Changing the overall sign of m and B alters the sign of the Chern number, but not
the underlying physics. Notice, that according to Eq. (3.58) the Newtonian mass term does
not make the spectrum bounded. It is from this perspective expected that the B|k|2 term
does not render the effective action of a Chern insulator UV finite.

Having discussed the particular influence of the mass terms on the band-structure, let us em-
phasize one more time that both of them explicitly break the parity symmetry in 2+1 space-
time dimensions, defined as invariance of the theory under P : (x0, x1, x2)→ (x0,−x1, x2)
[cf. Eq. (2.50)]. Explicitly, this was shown in Sec. 3.1.2. Hence, the Dirac and the Newtonian
mass term are both directly related to the parity anomaly of massless QED2+1. To concretize
this statement, let us briefly recapitulate the concept of quantum anomalies which we have
detailedly discussed in Sec. 2.6.

3.2.2 Effective Action of a Chern Insulator
In what follows, we perturbatively evaluate the effective action corresponding to a single
Chern insulator. The corresponding calculation for a pure QED2+1 system can be found in
Sec. 2.6.3. First, let us Taylor expand the fermion determinant in Eq. (2.124) to second order
in the U(1) gauge field Aµ. The free Lagrangian associated to Eq. (3.56)a can be obtained by
a Legendre transformation. For A=~= 1 and D= 0, this Lagragian is equivalent to a pure
QED2+1 Lagrangian [cf. Eq. (2.127)] except for an additional correction, which is quadratic
in spatial derivatives

L0 = ψ̄
(
i/∂ −m

)
ψ −Bγ0(∂iψ)†(∂iψ) . (3.60)

Here and in the following, we use the properties of the Dirac matrices given in Sec. 2.3.1.
Coupling L0 covariantly to the U(1) gauge field Aµ, leads to the Lagrangian

L = ψ̄
(
i /D −m

)
ψ −Bγ0(Diψ)†(Diψ) (3.61)

= L0 − eψ̄(/A+eBAiAi)ψ + ieBAi
(
ψ̄(∂iψ)−(∂iψ̄)ψ

)
,

where Dµ = ∂µ + ieAµ is the covariant derivative. From the interaction terms in L, we can
read off the vertex contributions. For an incoming electron of momentum k, incoming photons
of momentum p, and an outgoing electron of momentum k+p, we find the vertices

V µ
(1)(2k+p) = −ie(γµ −B δµi (2k+p)i) , (3.62)

V µν
(2) (k) = −2ie2B δµi δ

iν . (3.63)

Here, the subscript defines the number of involved photons. In comparison to pure QED2+1,
the extra B|k|2 term in the Lagrangian renormalizes the gauge-matter coupling. The original
QED vertex in Eq. (3.62) obtains a momentum dependent correction [cf. Eq. (2.135)]. Ad-
ditionally, Eq. (3.63) defines a new vertex structure, which is of second order in gauge fields.

aAs we have stated in Sec. 3.2.1, in our calculations we focus on a (pseudo-)spin up polarized Chern insulator
and neglect the identifying subscript.
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Figure 3.6: Feynman diagrams for the vacuum polarization operator of a single Chern
insulator with vertices V µ,ν

(1) and V µν
(2) . External momenta are denoted by p, loop momenta

by k. The figure is reprinted from Ref. [P4] with permission from the APS.

This vertex encodes the diamagnetic response of the Chern insulator in Eq. (3.56) [99]. The
fermion propagator associated to the Lagrangian L is given by

S(k) = i
/k − (m−B|k|2) + iε = i

/k +M(k)
k2 −M(k)2 + iε . (3.64)

Here, we defined the momentum dependent mass termM(k) = m−B|k|2 as it has been done
in Eq. (3.12) and used the Feynman prescription with ε→0+. To perturbatively obtain the
second order effective action in gauge fields, we need to calculate the vacuum polarization
operator Πµν(p) a,

Seff = 1
2

∫ d3p

(2π)3 Aµ(−p)Πµν(p)Aν(p) . (3.65)

Due to the vertex structure in Eqs. (3.62) and (3.63), the vacuum polarization operator is
obtained by the sum of two one-loop Feynman integrals

iΠµν(p) = iΠµν
2a (p) + iΠµν

2b (p) (3.66)

= −
∫ d3k

(2π)3 Tr
[
S(k)V µ

(1)(2k+p)S(k+p)V ν
(1)(2k+p) + S(k)V µν

(2) (k)
]
,

which are diagrammatically illustrated in Fig. 3.6. We start with the calculation of the
first term in Eq. (3.66), iΠµν

2a (p), which is the usual QED2+1 vacuum polarization operator
with renormalized vertex and propagator structure. As shown in Fig. 3.6(a), this tensor
is given by

iΠµν
2a (p) = e2

(2π)3

∫
d3k

1
(k2 −M(k)2 + iε)((k+p)2 −M(k+p)2 + iε) (3.67)

aSince we only consider zero chemical potential, the linear term in Aµ needs to vanish. Physically, this term
calculates the charge density, which is zero in the mass gap if there is no underlying magnetic field.
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× Tr
(
[γµ−B δµi(2k+p)i σ0]i[/k+M(k)][γν−B δνj(2k+p)j σ0]i[(/k+/p) +M(k+p)]

)
.

There are four different contributions to the Dirac trace Tr = Trγγ+Trγ0 +Tr0γ+Tr00, where
the subscript defines the Dirac and identity part of the vertex structure in Eq. (3.62). With
the trace identities in Eq. (2.39) in Sec. 2.3.1 and with Cµ = −B δµi(2k+p)i, we obtain

−1
2Trγγ = 2kµkν + kµpν + kνpµ + gµν

(
M(k)M(k+p)− k2 − kp

)
, (3.68)

− iεµνλ ([M(k+p)−M(k)] kλ −M(k)pλ) ,

−1
2Trγ0 = Cνgµλ [(M(k) +M(k+p)) kλ +M(k)pλ] + iCνεµλσkλ(k+p)σ ,

−1
2Tr0γ = Cµgνλ [(M(k) +M(k+p)) kλ +M(k)pλ]− iCµενλσkλ(k+p)σ ,

−1
2Tr00 = CµCν

[
gλσkλ (k+p)σ +M(k)M(k+p)

]
.

Since all physical response functions are given as functional derivatives of the effective action
at zero external spatial momentum, from now on we focus on the calculation of iΠµν(p0,p=0).
With this assumption, p2 = p2

0, εµνλpλ = εµν0p0, and M(k) = M(k+p). Next, we introduce
the Feynman parameter x ∈ [0, 1] and shift the loop momentum according to k= l−px. As we
have shown in Eq. (2.145), this gives the denominator in Eq. (3.67) a quadratic form, allowing
us to drop all linear terms in l in the numerator, due to an anti-symmetric integration over
symmetric boundaries [109]. With α = |l|2, this leads to

Tr =2gµν l2 − 4lµlν − 2x(1−x)p2
0 − 2gµν

[
M(α)2+x(1−x)p2

0

]
−2i[M(α) + 2Bα] εµν0p0

+ 4Bαδνmδµm
[
2M(α)−B

[
l20−α−x(1−x)p2

0+M(α)2
]]
. (3.69)

In the QED2+1 limitB→0, the Dirac trace in Eq. (3.69) reduces to the well-known result

Tr = 2gµν l2 − 4lµlν + 4x(1−x)p2
0 − 2gµν

(
m2 + x(1−x)p2

0

)
− 2imεµν0p0 , (3.70)

which has been derived in Eq. (2.146) [109, 110, 144]. Notice, that the off-diagonal Chern-
Simons contribution in Eq. (3.70) gets shifted by the renormalized vertex structure in Eq. (3.69).
As argued above, this will lead to an integer quantized DC Hall conductivity associated to a
gauge invariant Chern-Simons term.

Hall Response

To prove this statement, we evaluate the integral

iΠµν
CS(p0,p = 0) = e2

(2π)3

1∫
0

dx
∫

d3l
−2iεµν0 (M(α)+2Bα) p0

(l20 − α−M(α)2 + x(1−x)p2
0 + iε)2

= e2

8πε
µν0p0

1∫
0

dx
∞∫
0

dα m+Bα

(α+M(α)2 − x(1−x)p2
0 − iε)3/2 . (3.71)

Here, we used the Feynman parametrization and solved the complex time-integration via
the residue theorem. For Chern insulators, time and spatial momenta need to be integrated
separately since the B|k|2 term breaks the Lorentz symmetry [cf. Sec. 2.4.3]. Hence, it is
not possible to Wick-rotate and integrate over an Euclidean three-sphere as it was done in
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Sec. 2.6.3. Integrating the Feynman parameter x implies∫ 1

0
dx 1

(α+M(α)2 − x(1−x)p2
0 − iε)3/2 (3.72)

= 4√
α+M(α)2 − iε (4α+ 4M(α)2 − p2

0 − 4iε)
,

where we kept the iε-prescription to circumvent the poles for α>0, appearing if p0 exceeds the
gap. Finally, we perform the remaining α-integration for an arbitrary driving frequency p0
and subsequently set ε→ 0+. Due to its lengthy form, we present the general Chern-Simons
contribution and its AC Hall conductivity σxy(p0) later in Eq. (3.81),

iΠµν
CS(p0,p = 0) = σxy(p0)εµν0p0 . (3.73)

Instead, we first analyze the Taylor expansion of the AC Hall conductivity in terms of the
frequency p0,

σxy(p0) = σxy(0) +
σ′′xy(p0)|p0=0

2! p2
0 +O(p4

0) (3.74)

with the coefficients (reintroducing A and ~)

σxy(0) = e2

2h [sgn(m)+sgn(B)] = e2

h CCI , (3.75)

σ′′xy(p0)|p0=0 = e2

h

[
2 CCI
3∆2 −

A4

∆2B2
sgn(m)
24m2

]
. (3.76)

Equation (3.75) defines the DC Hall conductivity of the single Chern insulator given in
Eq. (3.56), which we have also obtained in Eq. (3.19). In the QAH phase, this value matches
the DC Hall conductivity of the entire system, as only one Chern insulator contributes to the
topological response [43, 50]. In comparison to a pure QED2+1 system with a half-quantized
σxy(0) [cf. Eq. (2.157)], the Newtonian mass term ensures an integer quantization. Hence,
the associated Chern-Simons term is gauge invariant a.

In contrast, Eq. (3.76) defines the leading order AC correction to σxy(0), which contains two
terms of different origin. On the one hand, there is a term proportional to the Chern number
CCI. In the trivial phase m/B < 0, this term vanishes and the first order AC correction is
solely given by the second term in Eq. (3.76). Instead, for m/B > 0, this term contributes
to the first order AC correction. In experimental systems like (Hg,Mn)Te quantum wells
with m+ =−10meV, B=−1075meVnm2, and A= 365meVnm, the term proportional to CCI
defines ≈10% of the entire signal in Eq. (3.76). From a theoretical point of view, this term
is induced by a finite Newtonian mass, which breaks the Lorentz symmetry in Eq. (3.175).
Consequently, it vanishes in the QED limit B→0, since

lim
B→0

1
∆2 = 0 ∧ lim

B→0

A4

∆2B2 = −1 . (3.77)

In this limit, Eq. (3.76) reduces to the QED result

lim
B→0

σ′′xy(p0)|p0=0 = e2

h
sgn(m)
24m2 . (3.78)

Due to its unique relation to the Newtonian mass, the term proportional to the Chern number
aNotice, that the full renormalized effective action of QED2+1 is gauge invariant due to the presence of
non-analytic terms which cannot be derived perturbatively [145]
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in Eq. (3.76) is quadratically suppressed by the ratio of p0 over the gap |∆|. In contrast, the
second term in Eq. (3.76), which is the first order QED correction to the DC Hall conductivity,
is quadratically suppressed by p0 over the Dirac mass. According to the quadratic suppression
of both terms, the AC signal in Eq. (3.76) stays close to quantized values and matches the
AC Hall response of the entire QAH system for small driving frequencies p0.

Let us briefly comment on how to experimentally disentangle the QED from the Newtonian
part in the first order AC Hall correction. In QAH insulators like (Hg,Mn)Te quantum
wells the topological phase transition originates from a sign change of the Dirac mass of
one of the two Chern insulators [cf. Fig. 3.3]. In what follows, let us assume it is m+,
meaning that the topological phase transition takes place in the (pseudo-)spin up block of
the BHZ model [cf. Eq. (3.55)]. Due to the parameters above, this transition is associated
to an overall sign change of σ′′xy(p0)|p0=0, which is mainly driven by the QED correction in
Eq. (3.76). Consequently, measuring the AC Hall signal at ±m+

a, allows to substract the
QED correction and, therefore, to isolate the contribution to Eq. (3.76) which is induced
by the Newtonian mass. Moreover, σxy(p0) is related to the Faraday and the Kerr angle of
two-dimensional QAH insulators [146, 147]. The first term in Eq. (3.76) can be therefore
resolved by magneto-optical experiments, as well. Let us consider a linearly polarized electric
field, which incidents normally on the QAH system. For frequencies much smaller than the
gap, which justify Eq. (3.74), one finds [147]

ΘF(p0) = Arctan
[
πσxy(p0)
ε0c0

]
, (3.79)

ΘK(p0) = −Arctan
[

ε0c0
πσxy(p0)

]
. (3.80)

While these identities imply quantized values of the Faraday and Kerr angles in the DC limit,
they carry the information of how these angles change due to the contribution of the first
term in Eq. (3.76). To resolve this effect in one of these experiments, |p0|�Min(2|m|, |∆|).
For instance in inverted (Hg,Mn)Te/CdTe quantum wells, the gap is of the order of sev-
eral meV [148], depending on the particular Manganese concentration. This corresponds
to frequencies in the THz regime. For such frequencies, the first order correction to the
DC Faraday and Kerr angles is on the order of milli-rad, which can be resolved by recent
Faraday polarimeters [149].

Before we discuss the general solution of the AC Hall conductivity, note that the non-
quantized value for σxy(p0 6= 0) makes the associated Chern-Simons term (large) gauge non-
invariant. Since analogously to thermal effects, an AC driving field excites non-topological
degrees of freedom, this effect corresponds to the non-gauge invariance of finite temperature
Chern-Simons terms. For these theories, it was shown that the full effective action contains
non-perturbative corrections in Aµ, absorbing this non-invariance [58, 67]. These terms can-
not be found by the Taylor expansion of the fermion determinant Eq. (2.124). However, due
to the fact that they are higher order in gauge fields, they do not contribute to the conduc-
tivity.

Let us now analyze the general solution of the AC Hall conductivity corresponding to a single
Chern insulator.

σxy(p0) = −e2

h
∑
s=±1

[(1−4mB−∆p0) (Ln1 + Ln2)
4B∆p0 |p0|

+ (1−4mB+∆p0) (Ln3 + Ln4)
4B∆p0 |p0|

]
, (3.81)

aThroughout this experiment, m− needs to be fixed in the topologically trivial region.
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Figure 3.7: Hall conductivity σxy(p0) for (a) a QED2+1 system with m=A= 1 and B= 0,
(b) a non-trivial Chern insulator with m=A= 1 and B= 0.1, (c) a trivial Chern insulator
with m = A = 1 and B = −0.1 and (d) a non-trivial Chern insulator with m = A = 1 and
B = 3. While the spectrum associated to (a)-(c) has the minimal gap 2|m| at the Γ-point,
the spectrum related to (d) has the minimal gap |∆| at kmin [cf. Sec. 3.2.1]. Notice that
all discontinuities/singularities arise from the assumption of zero temperature and disorder.
Taking into account these ingredients makes all curves continuous. The figure is reprinted
from Ref. [P4] with permission from the APS.

where we defined ∆p0 = s
√

1− 4mB +B2p2
0 and abbreviate the four logarithms

Ln1 = Ln
[
−2sB2

]
,

Ln2 = Ln
[
s
(
1−4mB−2B2|m||p0|

)
∆p0 − s(1−2mB)∆2

p0

]
,

Ln3 = Ln [s (1−2mB+∆p0)] ,

Ln4 = Ln
[
2sB2

(
∆2
p0 −∆p0 |B||p0|

)]
. (3.82)

Notice, that exactly at p0 = ∆, ∆p0 evaluates to zero. Hence, this quantity encodes the
physics originating from the mass gap apart from the Γ-point.

Figure 3.7 shows the real and the imaginary part of σxy(p0) according to its general form in
Eq. (3.81). To study the influence of the Newtonian mass term, Fig. 3.7(a) shows σxy(p0)
for a pure QED2+1 system [cf. Eq. (2.152)]. At p0 = 0, one observes the characteristic half-
quantization. Moreover, the real part of σxy(p0) shows a resonance at p0 = ±2|m| and tends
to zero for larger frequencies. For |p0| ≥ 2|m|, the AC field excites particle-hole pairs which
can propagate unhindered for p0 = ±2|m|. This is the origin of the resonance [150–152].
For large frequencies, the AC field dominates the gap which protects the topological phase.
This leads to a vanishing AC Hall conductivity. The imaginary part of σxy(p0) satisfies the
Kramers-Kronig relation

Reσxy(p0) = 1
π

P
∫

dp′0
Im σxy(p′0)
p′0 − p0

. (3.83)
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It is zero in the mass gap, becomes finite for |p0| ≥ 2|m| and decreases afterwards. Since
Im σxy(p0) results from interband absorptions [146, 150], it is only non-zero if the applied
frequency is able to excite a finite density of states.

Figure 3.7(b) and 3.7(c) show the corresponding plots for a non-trivial and a trivial Chern
insulator with minimal gap size 2|m|. The AC Hall conductivity shows the same features as a
pure Dirac system, except for the integer quantization of its DC Hall conductivity. However,
for a minimal gap apart from the Γ-point, the situation differs, as shown in Fig. 3.7(d). Here,
the first resonance of the real part occurs at p0 = ±|∆|. The p0 = ±2|m| resonance persists,
but peaks in opposite direction since the density of states now decreases at p0 = ±2|m|. This
property can also be seen in Imσxy(p0), which resolves the Van Hove singularity at p0 = ±|∆|
and drops at p0 = ±2|m|. Consequently, measuring the AC conductivity informs whether the
minimal gap is defined by the Dirac mass at the Γ-point, or rather by an interplay between
the Dirac and the Newtonian mass apart from k = 0.

Above, we have discussed the AC Hall response of a single Chern insulator which is either
in the topologically trivial phase with m ≡ m−, or in the topologically non-trivial phase
with m ≡ m+. The entire QAH response of the two (pseudo-)spin blocks H±(k) in the
BHZ model [cf. Eq. (3.55)] corresponds to the superposition of both of these signals. In
contrast to the DC Hall conductivity, the AC Hall conductivity contains corrections of non-
topological origin. As such, also the topologically trivial (pseudo-)spin block of the BHZ
model significantly contributes to the entire QAH response if the frequency |p0| is not much
smaller than the trivial gap 2|m−|. As we have shown in Eq. (3.48), the physics of each
(pseudo-)spin polarized Chern insulators can be deduced from the other one by inverting the
sign of the corresponding mass terms.

Longitudinal Response

Having discussed the Hall response, we are still left with the calculation of the diagonal parts
in Eq. (3.69). Since our system is a bulk insulator, we physically expect that these terms
vanish for p = 0. The diagonal contributions can be calculated via the same techniques as
used above. This leads to

iΠµν
D,2a(p = 0) = ie2δµi δ

iν

4π|B|

[
1−2mB−2|m||B|−Ln

[
4B2Λ

1− 2Bm+ 2|m||B|

]]
, (3.84)

where Λ is a hard momentum cutoff in α = |l|2 [cf. Eq. (2.151)] and we used [153]:∫
dx 1

(ax2 + bx+ c)3/2 = − 2(b+ 2ax)
(b2 − 4ac)

√
c+ x(b+ ax)

, (3.85)∫
dx x

(ax2 + bx+ c)3/2 = 4c+ 2bx
(b2 − 4ac)

√
c+ x(b+ ax)

. (3.86)

So far, we focused on the contributions of the first Feynman diagram in Fig. (3.6). Using
analogous techniques and the quadratic vertex in U(1) gauge fields, Eq. (3.63), the second
Feynman diagram in Fig. (3.6) yields

iΠµν
D,2b(p = 0) = − ie2|B|Λδµi δiν

2π − iΠµν
D,2a(p = 0) , (3.87)

where we used [153]∫
dx x√

ax2 + bx+ c
= 1
a

√
ax2 + bx+ c− b

2a

∫
dx 1√

ax2 + bx+ c
, (3.88)
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∫
dx 1√

ax2 + bx+ c
=


1√
a

Ln
∣∣∣2√a(ax2+bx+c)+2ax+b

∣∣∣ for a > 0

− 1√
−a

Arcsin 2ax+ b√
b2 − 4ac

for a < 0
. (3.89)

This expression exactly cancels the finite and logarithmic divergent terms in Eq. (3.84).
Nevertheless, the full effective action still contains a term proportional to the UV cutoff
Λ which diverges during renormalization Λ → ∞. However, as stated above, the diagonal
contribution should be regularized/renormalized such that it vanishes for p= 0. Physically,
such a renormalization corresponds to a proper definition of the particle density. The second
term in Eq. (3.66), which corresponds to the quadratic vertex in gauge fields Eq. (3.63),
encodes the diamagnetic response of our system. This response is proportional to the particle
density and as such needs to vanish in the gap. Due to the fact that we did not renormalize
the Dirac sea contribution to the particle density, e.g. by anti-symmetrization, the divergence
in Eq. (3.87) persists. As a consequence of the underlying parity- anomaly each regularization
scheme for a single Chern insulator does either break parity or gauge symmetry. The naive
introduction of the hard momentum cutoff Λ in Eq. (3.84) breaks the gauge symmetry. To
preserve this symmetry, we should rather choose a parity-breaking regulator, such as a single
Pauli-Villars field [cf. discussion above Eq. (2.155)] with mass terms M and B a. While this
field by construction ensures

iΠµν
D,2a(p = 0) + iΠµν

D,2b(p = 0) = 0 , (3.90)

it contributes to the AC Hall response, as it breaks parity. For the entire system, this can
be resolved by introducing a second Pauli-Villars field for the regularization of the second
(pseudo-)spin block of the BHZ model. If this field is constructed such that both Pauli-Villars
fields are Kramers (time-reversal) partners [8], their combined contribution to the AC Hall
conductivity of the entire QAH system vanishes.

3.2.3 Newtonian Mass in the Context of Regularization
Albeit the Newtonian mass term in the Hamilton of a single Chern insulator [cf. Eq. (3.56)]
is a physical parameter provided by the material, before renormalization it acts similar to a
parity-breaking regulator of a pure QED2+1 system in the calculation of the effective actionb.
In what follows, let us concretize this statement.

In the context of quantum field theories there are plenty of different regularization schemes,
each breaking different symmetries. As discussed in Sec. 3.1.3, the regularization scheme
associated to an odd number of 2+1 dimensional Dirac fermionsc needs to break the parity
symmetry in order to ensure the gauge invariance of the effective action. Manifestly parity
breaking regularization schemes are for example Pauli-Villars regularization, lattice regular-
ization with Wilson fermions, and the ζ-function regularization. In what follows, we briefly
review these schemes [53, 57, 69, 145].

Lattice Regularization. A common way to regularize a quantum field theory is the introduction
aTo decouple the Pauli-Villars field during renormalization we eventually tune its mass gap to infinity,
M →∞.

bDuring renormalization each mathematical regulator needs to be removed from the theory. This is in strong
contrast to the Newtonian mass term which is a real parameter of the system. Therefore, any comparison
between the B|k|2 term and a regulator needs to be done before renormalization.

cAnother way to regularize the theory would be to add a second (staggered) Dirac fermion in total respecting
all symmetries. Since this is not the physical situation we are interested in, we do not consider this case
[37, 52].

83



Chapter 3 Consequences of the Parity Anomaly in Condensed Matter Systems

of a space-time lattice. In this method, the finite lattice spacing a introduces a momentum
cut-off Λlattice∝a−1. Lattice regularization explicitly breaks the parity symmetry of classical
QED2+1 [cf. Eq. (2.130)]. This is not a property of the lattice itself, but happens due the
mandatory introduction of additional terms in the Lagrangian which prevent artificial gap
closings at the high symmetry points of the lattice Brillouin zone. In particular, the Euclidean
lattice action Slatt(ψ̄, ψ,A) is given by [51, 154, 155]

Slatt(ψ̄, ψ,A) = −a3∑
x

ψ̄(x)(D −m)ψ(x) , (3.91)

where x = (an1, an2, an3) with nµ ∈ Z. Moreover,

D = 1
2γ

E
µ (∇∗µ +∇µ) + 1

2wa∇
∗
µ∇µ (3.92)

is the massless 3 dimensional lattice Dirac operator, ∇µ is the lattice covariant derivative, and
γE
µ =σµ are the Euclidean Dirac matrices. In comparison to continuum QED2+1, Slatt(ψ̄, ψ,A)

includes the so-called Wilson term, proportional to the Wilson parameter w = ±1. This term
acts like a momentum dependent fermion mass and therefore explicitly breaks the parity sym-
metry of the system. As a consequence, it induces a Chern-Simons term in the effective action,
proportional to sgn(w). Hence, this term acts very similar to the Newtonian B|k|2 term in
Eq. (3.56). However, there are two significant differences. One the one hand, the Wilson mass
is Lorentz covariant, while the Newtonian mass breaks this symmetry [cf. Sec. 2.4.3]. On the
other hand, the Wilson mass vanishes as a → 0, which is not the case for the Newtonian
mass term as it is a real parameter of the system.

Higher Derivative Regularization. The Lagrangian associated to the higher derivative regu-
larization of QED2+1 is given by [55, 128]:

LHD = ψ̄ (iγµ∂µ −m)
(

1 + ∂2

M2

)
ψ + e ψ̄γµAµψ , (3.93)

whereM is a parameter, allowing to remove the higher derivative correction during the renor-
malization process, M →∞. Notice, that by construction, the higher derivative term breaks
local gauge invariance [cf. Sec. 2.4.4]. However, this property is fixed during renormalization
[54]. If the higher derivative correction would come with covariant derivatives, it would not
reduce the superficial degree of divergence. Hence, the higher derivative regulator differs
significantly form the Newtonian mass in Eq. (3.56). While the Newtonian mass term is
parity-odd, breaks Lorentz symmetry and renormalizes the Dirac mass in a gauge invariant
fashion, the higher derivative term is Lorenz invariant, breaks local gauge symmetry and mul-
tiplies the full non-interacting QED2+1 part [cf. Sec. 2.4]. As such, it contains a parity even
as well as a parity odd contribution. Moreover, it vanishes during renormalization asM →∞.

Pauli-Villars Regularization. In contrast to the two schemes above, the Pauli-Villars regu-
larization adds additional bosonic particles χ to the classic QED2+1 Lagrangian:

LPV = ψ̄ (iγµDµ −m)ψ + χ̄ (iγµDµ −M)χ . (3.94)

Their mass term M breaks the parity symmetry and therefore induces a Chern-Simons term
in the effective action, proportional to sgn(M). During renormalization the Pauli-Villars field
decouples from the theory, M →∞. However, it still leaves its trace in the Chern number as
we have seen in Eq. (2.159) [37, 52]. Since this regularization scheme includes an additional
particle to ensure an integer quantized DC conductivity, it significantly differs from the New-
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tonian mass term in Eq. (3.56).

Zeta-Function Regularization. The ζ-function regularization completely differs from the
schemes introduced above [53]. It regularizes the generating functional via a certain cal-
culation scheme for the fermion determinant:

Z[A]reg = detD[A]
∣∣∣
reg

= e−
d
ds
ζ(D[A],s)

∣∣∣
s=0

. (3.95)

Here, the Euclidean Dirac operator with γE
µ = σµ and the ζ-function are defined via

ζ(D[A], s) = Tr
(
D−s[A]

)
with D[A] = γE

µ (i∂µ + eAµ) + im . (3.96)

By construction, this scheme is gauge invariant, but breaks the parity symmetry, which is
related to peculiarities during the associated contour integration (explicit path). It therefore
also leads to an integer quantized DC conductivity where one part comes from sgn(m) and
an additional contribution (±1) stems from the choice of the integration contour [53].

All the schemes introduced above induce a parity odd Chern-Simons term in the effective
action of a QED2+1 system, directly proportional to the sign of the regularization parameter
which breaks the parity symmetry. For the schemes considered, this is the Pauli-Villars mass,
the Wilson parameter, as well as the integration contour in the ζ-function regularization.
Together with the Chern-Simons contribution induced by the finite Dirac mass m, this leads
to an integer quantized DC Hall conductivity [51, 53]. For the Pauli-Villars scheme this can
be seen for instance in Eq. (2.163).

Adding the Newtonian mass term to a pure QED2+1 system also ensures this property
[cf. Eq. (3.75)]. Even if one would remove the physical parameter B → 0 in the end of
the calculation, its contribution to the DC Hall conductivity persists and the Chern number
remains integer quantized. From this perspective the B|k|2 term acts similar to a parity
breaking element of a certain regularization scheme. To concretize what we mean with ’sim-
ilar’, let us compare the role of the Newtonian mass term in the calculation of the effective
action to common parity-breaking regulators before renormalizationa. Since the B|k|2 term
provides a momentum dependent Dirac mass correction, it is natural to compare its role in
the calculation of the effective action to regularization schemes which add terms of higher or-
der derivatives to the bare Lagrangian. As discussed above, such approaches are for example
the lattice regularization with Wilson fermions [51] and the higher derivative regularization
[54]. However, except for the property that these schemes also yield an integer quantized
Chern number, there are several key differences to the B|k|2 term. By construction, each
regularization needs to render the effective action finite [109]. As shown in Eq. (3.87), adding
the Newtonian mass to a massive Dirac Lagrangian does not exhibit this property.

To reduce the superficial degree of divergence, the higher derivative regularization mul-
tiplies the entire non-interacting Dirac Lagrangian by (1 + ∂2/M2). This has two im-
plications. In contrast to the B|k|2 term, it circumvents the vertex renormalizations in
Eqs. (3.62) and (3.63), but as a price manifestly breaks local gauge invarianceb [cf. Sec. 2.4.4].
Moreover, by construction this approach also regularizes the kinetic part of the Lagrangian.

In a lattice approach, the inverse lattice spacing a−1 makes the theory finite. To avoid fermion

aDuring renormalization each mathematical regulator needs to be removed from the theory. This is in strong
contrast to the Newtonian mass term which is a real parameter of the system. Therefore, any comparison
between the B|k|2 term and a regulator needs to be done before renormalization.

bThis property is reestablished during renormalization.
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doubling and to break the parity, the lattice QED2+1 Lagrangian comes along with an addi-
tional Wilson mass term ∝wak2. Here, w = ±1 is the Wilson parameter and k is the lattice
three-momentum [51, 156, 157]. The Wilson mass is clearly related to the B|k|2 term. How-
ever, by construction the Wilson mass is Lorentz invariant, while the Newtonian mass breaks
this symmetry [cf. Sec. 2.4.3]. Further, the Wilson mass vanishes during renormalization,
a→ 0, which is not the case for the B|k|2 term since it is a material parameter.

Let us end this section by emphasizing that an extensive summary of the results which we
have obtained within the scope of this section can be found in Sec. 5.

3.3 Signatures of the Parity Anomaly in
Out-Of-Plane Magnetic fields

In Sec. 2.6.3, we have sown that in 2+1 space-time dimensions the parity anomaly results
from the incompatibility of parity- and U(1) gauge symmetry after quantization. We calcu-
lated the polarization operator of a massive QED2+1 system, illustrated how a parity-odd
Chern-Simons term arises in the system’s effective action, and discussed the peculiarities
of regularization schemes for the associated Hall conductivity. Further, in Sec. 3.1.3, we
explained in which sense both, the Dirac as well as the Newtonian mass term of a QAH
insulator, which is described by the BHZ model, are related to the parity anomaly of planar
quantum electrodynamics. We concretized this relation in Sec. 3.2.2 by analyzing the role
of the Newtonian mass term in the calculation of the quantum effective action, and, sub-
sequently, discussed this peculiar mass term of a QAH insulator in the context of common
high-energy regularization schemes in Sec. 3.2.3. In a nutshell, we performed all of these
analyses in order to understand the zero-field Chern number [cf. Eq. (3.19)]

CCI = [sgn(m) + sgn(B)]/2 (3.97)

of a single (pseudo-)spin polarized Chern insulator of the BHZ model in the context of the
parity anomaly of QED2+1. More precisely, it was the goal of the aforementioned studies to
shed light on possible signatures of the parity anomaly in QAH insulators like (Hg,Mn)Te
quantum wells or magnetically doped (Bi,Sb)Te thin films. In the present section, we extend
our considerations to finite out-of-plane magnetic fields. Especially in QAH insulators like
(Hg,Mn)Te quantum wells the application of such a field is mandatory to polarize the para-
magnetic Mn dopants, which drives the transition from the QSH to the QAH phase, as it has
been explained in Sec. 3.1.1.

In Sec. 2.2, we have elucidated the physics behind the conventional QH effect of two-dimensional
electron gases in quantizing out-of-plane magnetic fields. We in particular discussed in
Sec. 2.4.2 that such background fields classically break the parity symmetry in 2+1 space-
time dimensions and, therefore, give rise to a finite Chern number. Hence, by definition,
the parity anomaly is a zero magnetic field effect. This gives rise to the two fundamental
questions:

(i) Is it possible to measure signatures of the parity anomaly in quantizing out-of-plane
magnetic fields?

(ii) In which way does the magnetic field topology affect the intrinsic band-inversion of a
Chern insulator, Eq. (3.97). As we have shown in our previous analyses, this quantity
is directly related to the parity anomaly at zero magnetic fields.

We answered these seminal questions in our recent publication Survival of the quantum
anomalous Hall effect in out-of-plane magnetic magnetic fields as a consequence of the par-
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ity anomaly (Phys. Rev. Lett. 123, 226602) in November 2019 [P1]. In what follows, we
are elucidating the theoretical findings presented in this work, which have been obtained in
strong collaboration with Dr. Jan Böttchera. Both of us contributed equally to this pub-
lication. While the spectral asymmetry and the Landauer-Büttiker calculations have been
mainly developed by Dr. Jan Böttcher, I calculated the LL response for zero-, as well as finite
temperatures, derived the corresponding edge state theory including the anomaly inflow, and
supported our field theoretical results by determining the Hall conductivity of a single Chern
insulator in quantzing out-of-plane magnetic fields by a conventional solid-state Kubo formula
[158]. In order to make our field theoretic calculations more comprehensible for an interdisci-
plinary community, this calculation is, due to its lengthy and sophisticated form, presented in
App. 6.1. To simulate the experimental signatures of a Chern insulator under the influence of
an adiabatically increasing out-of-plane magnetic field, we solved the associated Schrödinger
equation numerically, by using a finite difference approach [159, 160]. The development of
the corresponding time-evolution code has been obtained in strong collaboration.

Before we start our discussion, let us briefly elaborate on an intuitive picture regarding the
answer to the aforementioned questions (i) and (ii). As is was explained in Sec. 2.2.1, an out-
of-plane magnetic field H adds a parabolic confinement to each wave-function of the system
[cf. Eq. (2.22)] and, for this reason, increases/decreases the energy of electron and hole-like
states, respectively. This property is in particular independent on the sign of the applied
magnetic field. Consequently, an out-of-plane magnetic field counteracts the intrinsic band-
inversion of a QAH insulator. As this band-inversion is protected by the system’s mass gap,
a critical out-of-plane magnetic field is needed in order to remove this inversion completely.
In what follows, we are going to show that this critical field is given by

Hcrit = sgn(eH) ~meB . (3.98)

Up to this field strength the QAH phase survives in materials like (Hg,Mn)Te quantum wells
or magnetically doped (Bi,Sb)Te thin films.

3.3.1 Eigen-System of a Chern-Insulator:
Magnetic Field Analysis

Zero Field Dispersion and Finite Difference Method

We start our analysis with the Hamiltonian of the (pseudo-)spin up block of the BHZ model in
Eq. (3.4). As explained in Sec. 3.1.1, this Hamiltonian corresponds to a single (pseudo-)spin
up polarized Chern insulator in 2+1 space-time dimensions, defined by [cf. Eq. (3.12)]

H+(k) = −D|k|2σ0 +A (k1σ1 − k2σ2) +
(
m+−B|k|2

)
σ3 . (3.99)

If it is not stated otherwise, we are neglecting the (pseudo-)spin index ± for simplification. In
what follows, we support our analytic calculations by numerical simulations via a standard
finite difference method [159, 160]. This allows us, for instance, to evaluate the energy
eigenvalues corresponding to Eq. (3.99) numerically, by mapping the Hamiltonian on a stripe
geometry with finite length L2 in the e2-direction and periodic boundary conditions along the
e1-direction [161]. In Fig. 3.8(a), the associated band-structure is shown in the topologically
non-trivial regime with Chern number C = −1. The bulk bands which are analytically given
by [cf. Eq. (3.16)]

Es (k) = −D|k|2 + s
√
A2|k|2 + (m−B|k|2)2 , (3.100)

aThis work has been supervised by Laurens W. Molenkamp and by Prof. Dr. Ewelina M. Hankiewicz.
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Figure 3.8: Dispersion of a single Chern insulator, k1 = kx, in an out-of-plane magnetic
field H = He3 (black lines) for m = −25meV, B = −1075meVnm2, D = −900meVnm2, and
A = 365meVnm. χ(L/R) and ξ(L/R) depict QAH and QH edge states at the left- and at
the right edge of our system, respectively. (a) Spectrum for H= 0 at half filling with chiral
QAH edge states traversing the bulk gap. The inset illustrates the sample geometry with a
finite system size in e2-direction, L2 = Ly, and periodic boundary conditions in e1-direction.
(a)-(c) Evolution of the spectrum and its filling with increasing H. Unoccupied and occupied
states are marked in blue and red, respectively. (d) Analogous analysis for an initially filled
conduction band LL. The figure is reprinted from Ref. [P1] with permission from the APS.

split into multiple subbands due to the finite system size. Again, s = ± defines the valance-
and the conduction band, respectively. Moreover, one observes chiral QAH edge statesa,
which traverse the Dirac mass gap. Since we are considering a finite particle-hole asymmetry
D 6= 0, the Dirac point is located close to the conduction band edge [162].

Next, we implement an out-of-plane magnetic field H = He3 in the Landau gauge via

A = −x2He1 . (3.101)

This has two main effects which are illustrated in Figs. 3.8(b)-(c). We separately analyze
these features in the two following subsections.

Bulk Landau Level Spectrum vs. Band Inversion

As a first effect, all bulk subbands evolve into LLs for lH � L2. This causes an asymmetric
spectrum which can be understood by analyzing the continuum model. Following the same
procedure which we have performed in Sec. 2.2.1, allows us to derive the continuum Landau
level spectrum. To this end, we perform a Peierls substitution, insert the gauge-independent
momentum operators πi = ki+eAi/~ in Eq. (3.99), and replace these operators by the ladder

aSince the chiral edge sates of a topologically non-trivial Chern insulator represent the chiral edge states
of the associated QAH insulator in the BHZ model (3.4), we label the edge states of a non-trivial Chern
insulator ’QAH edge states’ within this thesis.
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operators a and a† [cf. Eq. (2.14)]. Depending on the magnetic field, we therefore insert

π+ →
√

2
lH

{
a† for sgn(eH) > 0
−a for sgn(eH) < 0

∧ π− →
√

2
lH

{
a for sgn(eH) > 0

−a† for sgn(eH) < 0
(3.102)

in the zero-field Hamiltonian Eq. (3.99), where lH =
√
~/|eH| defines the magnetic length.

This gives rise to the Hamiltonian of a (pseudo-)spin polarized Chern insualtor in quantizing
out-of-plane magentic fields H = Hez. For sgn(eH) = 1, we find

H(a, a†) =

m− ω+

(
a†a+ 1

2

)
αa†

αa −m− ω−
(
a†a+ 1

2

)
 , (3.103)

where we defined the abbreviations

α =
√

2A/lH , ω± = δ ± β, β = 2B/l2H , δ = 2D/l2H . (3.104)

An appropriate ansatz to solve the corresponding Schrödinger equation for a general magnetic
field configuration is given by

ψsn,k1(x2) ∝



(m− βn− sgn(eH)δ
2 + s εn

)
〈x2|n, k1〉

sgn(eH)α
√
n〈x2|n− 1, k1〉

 for sgn(eH) > 0

(m− βn− sgn(eH)δ
2 + s εn

)
〈x2|n− 1, k1〉

sgn(eH)α
√
n〈x2|n, k1〉

 for sgn(eH) < 0 ,

(3.105)

and

ψ0,k1(x2) ∝



(
〈x2|0, k1〉

0

)
for sgn(eH) > 0

(
0

〈x2|0, k1〉

)
for sgn(eH) < 0 ,

(3.106)

where εn =
√
α2n+ (m− nβ − sgn(eH)δ/2)2. In the expressions above, we have neglected

the normalization constants for simplicity. The corresponding LL eigen-energies for an arbi-
trary magnetic field configuration are given by [163]

Esn6=0 = −sgn(eH)β/2− nδ + s εn , (3.107)
E0 = sgn(eH) (m− β/2)− δ/2 . (3.108)

A hallmark of the Dirac-like Hamiltonian in Eq. (3.103) is the relativistic structure of its LL
spinors, Eqs. (3.105) and (3.106). This structure follows from the off-diagonal contributions
∝ a and a† in Eq. (3.103), which couple the two conventional, diagonal pseudospin polar-
ized harmonic oscillators in the {|E1,+〉, |H1,+〉}-basis. Without hybridization, for A = 0,
the system would define two independent LL spectra with two decoupled n = 0 LLs. This
is exemplary shown in Fig. 3.9(a). For A 6= 0, the n-th E1 and the (n − 1)-th H1 LLs
hybridize [163]. It is this asymmetric coupling in out-of-plane magnetic fields which gives
rise to the asymmetric LL spectrum in Eqs. (3.107) and (3.108) [33, 39]. However, beside
the asymmetry in Eq. (3.107), all LLs with n ∈ N come in pairs, meaning that for each
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Figure 3.9: Hybridization process and Dirac mass gap closing in the LL spectrum of a
single Chern insulator in quantizing out-of-plane magnetic fields. Except for A, all system
parameters are defined in the caption of Fig. 3.8. The hybridization between the E1- and
the H1 LLs in out-of-plane magnetic fields is schematically illustrated in subfigure (a), where
red and cyan lines indicate the E1 and H1 pseudospin character, respectively. In subfigure
(b), the LL energies without coupling, meaning for A = 0, are depicted by solid lines and are
labeled by LL indices. Blue dotted lines illustrate the evolution of LLs in the presence of an
hybridization with A = 45 meVnm. The figure is reprinted from Ref. [P1] with permission
from the APS.

LL in the conduction band with E+
n , there exists a LL in the valence band with E−n . In

contrast, the zeroth LL completely decouples from the hybridization process, as it is shown
in Fig. 3.9(a). Consequently, its energy eigenvalue in Eq. (3.108) lacks a partner, and its LL
spinor in Eq. (3.106) is pseudospin polarized in the {|E1,+〉, |H1,+〉}-basis.

Having analyzed the asymmetry of the Landau level spectrum and the form of the corre-
sponding spinors, let us elaborate on the band ordering in out-of-plane magnetic fields. More
precisely, let us clarify in which sense the band inversion of a topologically non-trivial Chern
insulator, which has been extensively discussed in Sec. 3.1.1, persists in quantizing out-of-
plane magnetic fields.
For H = 0, the diagonal, parity-odd mass terms in Eq. (3.100) define the band ordering in
momentum space. Most remarkably, these elements characterize the band ordering of the
Chern insulator in out-of-plane magnetic fields, as well. To understand this statement in
detail, let us first study the evolution of the E1 and H1 LLs without hybridization, sepa-
rately. To this end, we first study the academic limit A = 0, implying that the system is
driven by its diagonal contributions. This illustrative model is illustrated by the solid lines
in Fig. 3.9(b). Here, we in particular find that each pair of LLs with opposite pseudospin po-
larization, but with the same LL index n, crosses at the very same energy Ecross = −mD/B.
This LL crossing is a signature of an inverted band-structure. The higher the LL index,
the earlier a pair of states crosses each other with respect to the corresponding out-of-plane
magnetic field strength. Without hybridization, the latest crossing would occur between the
two n = 0 LLs, exactly at the critical field given by Eq. (3.98), Hcrit = sign(eH)~m/(eB).
This transition defines the critical field at which all E1 LLs are above H1 LLs. Hence for
H > Hcrit, the band-structure becomes normally ordered. For a finite coupling parameter A,
however, this crossing is hidden, due to the hybridization between the n=1− E1 LL and the
n=0−H1 LL. This is explicitly shown by the blue dashed line in Fig. 3.9(b)a. According to
our discussion at zero magnetic fields, the band ordering in finite out-of-plane magnetic fields

aHere, we have chosen here a smaller value for the A-parameter than in Fig. 3.8, in order to make the
hybridization between adjacent LLs more evident.
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should still be solely determined by the parity-odd diagonal mass terms of the Hamiltonian.
The coupling parameter A only hides the critical magnetic field at which the band-structure
becomes normally ordered. We therefore deduce from our illustrative model that Hcrit defines
the critical magnetic field strength at which the magnetic field topology removes the intrinsic
band inversion.
In order to avoid any misunderstanding, let us emphasize once more that the argumentation
above has been given for a single (pseudo-)spin polarized Chern insulator in the BHZ model
Eq. (3.4). The derived crossing should not be mixed up with the one occurring in the full
BHZ model Eq. (3.4), where one would instead observe a crossing between two pseudospin
polarized n = 0 LLs [163], where each level belongs to a distinct (pseudo-)spin block.

QAH Edge States: Scattering and Hybridization

The second effect of an increasing out-of-plane magnetic field is that it gradually lowers the
energy of the Dirac point so that it enters the valence band at H = Hscat, as it is illustrated in
Figs. 3.8(a,c). The evolution of the QAH edge states as a function of H has been determined
by Zhou et al. in Ref. [162]:

E±edge (k1, H) = ED(0)− µBgeff (L2)H ± ~v1k1 , (3.109)

where v1 is the edge state velocity, ED(0) is the Dirac point energy at H = 0 and the effective
g-factor is given by

geff(L2) = m0 v1~−1
[
L2 − λ−1

1 − λ
−1
2 − 2(λ1 + λ2)−1

]
. (3.110)

In this expression, λ1,2 are the decay length scales of the edge states. For L2 � λ−1
1,2, we can

further simplify geff(L2) ≈ m0v1~−1L2. This approximately defines the evolution of the Dirac
point with increasing H at k1 = 0:

ED(H) ≈ ED(0)− geffµBH . (3.111)

As it is shown in Figs. 3.8(a,c), the QAH edge states survive (up to finite size gaps) even for
large magnetic field strength. This results from the property that these states are protected
from hybridization with bulk LL modes by their wave function localization. Let us analyze
this feature in detail:

For sgn(eH) > 0, the QAH edge states are successively lowered in energy with increasing
magnetic field strength H. Figure 3.10 simplifies this scenario by only taking into account
the flat bulk n = 0 LL, as well as the QAH edge states. We are going to use this proof-
of-principle model in order to estimate an upper limit until which the QAH edge states can
survive in finite out-of-plane magnetic fields. More precisely, with the nomenclature ’survival’
we mean that even for H 6= 0 the QAH edge states and bulk LLs remain decoupled up to
finite size gaps, which are exponentially suppressed in the limit L2 → ∞. We start our
analysis by studying the properties of the zeroth LL in greater detail. While the energy of
this level is given by Eq. (3.108), its degeneracy, and therefore its width in the momentum
space, increases linearly with the magnetic field strength:

kmax = eH L2
2~ . (3.112)

Here, 2 kmax is the full width of the zeroth LL, explicitely depicted in Fig. 3.10. The associated
wave functions, ψ0,k1(x2), are centered at x2(k1) = l2Hk1 and their spatial width decreases
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Figure 3.10: Energy gaps between a QAH edge state (blue) and the n = 0 LL (red). (a) The
QAH edge state is successively shifted down in energy with increasing out-of-plane magnetic
field strength H, and crosses the flat n = 0 bulk LL at k = kcross. (b) If kcross � kmax,
the wave functions of the n = 0 bulk LL, depicted as a solid red line, and of the QAH edge
state, depicted as a solid blue line, have an exponentially small overlap. The associated
hybridization gaps are therefore finite size gaps. Only if the crossing of the QAH edge state
and the n = 0 LL occur close to k = kmax, they would significantly start to hybridize causing
a finite gap in the spectrum. The associated QAH wave-function is indicated by a red dashed
line. The figure is reprinted from Ref. [P1] with permission from the APS.

linearly as we increase H. In Eq. (3.109), we have already approximated the evolution of the
QAH edge states in increasing out-of-plane magnetic fields. The crossing between the zeroth
LL and the QAH edge states in momentum space, as shown in Fig. 3.10 (a), is denoted by
kcross. It shifts to larger momenta with increasing magnetic fields. This originates from the
fact that the QAH edge states are pushed down in energy, while the n = 0 LL is pushed
up in energy as a function of H. Most remarkably, Fig. 3.10(b) (solid lines) schematically
illustrates that the wave functions of the QAH edge states and the bulk LL are protected
from hybridization due to their strong spatial localization. For momenta kcross � kmax, their
overlap is exponentially small such that their hybridization gap defines a finite size gap. If the
crossing between these states however occurs close to the maximal width of the LL, the bulk
wave functions start to strongly overlap with the QAH edge states and energy gaps larger
than finite size gaps emerge. As an estimate, the maximal momentum above which the QAH
edge states significantly start to hybridize with bulk LLs is, for this reason, determined by
kcross = kmax. Let us clarify at which magnetic field strength this is happening. Therefore,
we solve the equation

Eedge(kmax, H) = En=0(H) (3.113)

for H. Due to our discussion above, it is no surprise that the critical magnetic field strength,
above which the QAH edge states start to hybridize strongly with bulk LLs, is again given
by Eq. (3.98). Hence, our analysis shows that in general the QAH edge states can therefore
survive as long as the band inversion ’survives’ in quantizing out-of-plane magnetic fields.
Nevertheless, let us remark that hybridization gaps larger than finite size gaps might already
form for H < Hcrit as the given proof-of-principle only implies to an upper limita.

Let us end this section by computing the critical magnetic field Hscat at which the Dirac point
enters the valence band. Above this field scattering processes between counterpropagating

aThis might happen if, for instance, higher order terms in k1 or H in Eq. (3.109) become of significant
relevance.
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QH and QAH edges states [cf. Fig. 3.8(c)] become possible, as we will explain in Sec. 3.3.4
in detail. In order to derive an analytic expression for this field, we solve

E+
edge(0, Hscat) = En=0(Hscat) (3.114)

for Hscat, which implies

Hscat = m (B +D)
B (B +D) e

~ −
e
2Bv1~L2

∝ 1
L2

. (3.115)

3.3.2 Effective Action of a Chern Insulator in Magnetic Fields
To deeply understand the interplay between the parity anomaly and the magnetic field
topology from a field theoretic perspective, we derive in this section the low-energy effec-
tive bulk Lagrangian Lbulk

eff of a single Chern insulator in quantizing out-of-plane magnetic
fields. Within the scope of our analysis, we derive the system’s bulk particle number, re-
late this value to the so-called spectral asymmetry, which turns out to be a measure of
the parity anomaly in magnetic fields, and, eventually, derive from these quantities the sys-
tem’s bulk effective action by using the Lorentz symmetry of the relativistic three current.
Hitherto, similar calculations in the literature have been solely performed for pure QED2+1
systems [33, 34, 36, 38, 39], meaning for two-dimensional Dirac systems without a B|k|2 mass
term.

Bulk Particle Number and Spectral Asymmetry

As the Chern insulator in Eq. (3.99) is a Dirac-like system it has an infinite Dirac sea. We have
already seen several times throughout this thesis that this property causes infinite expressions
for many physical observables. For this reason, it requires an appropriate regularization- as
well as renormalization scheme, as it has been discussed in Sec. 3.2.3. For zero magnetic
fields, this can be achieved by the physical requirement that the fermion number needs to
vanish if the chemical potential is placed at the charge neutrality point Ez = −mD/B. For
a particle-hole symmetric Chern insulator with D = 0 the charge neutrality point is located
in the middle of the system’s bulk gap at Ez = 0. One possibility to satisfy the physical
constraint above, is to choose antisymmetrization as the appropriate operator ordering for
the bulk fermion number operator [36]:

N = 1
2

∫
V

dx
∑
α

[
ψ†α(x), ψα(x)

]
, (3.116)

where ψ(x) is a two-component fermionic field operator. In order to calculate the bulk fermion
number in finite out-of-plane magnetic fields, the renormalization scheme given by Eq. (3.116)
needs to be maintained for H 6= 0. In this case, the fermionic field operators can be expanded
in terms of the normalized LL spinors of the conduction band un,k1(x) = eik1xψ+

n,k1
(x2), as

well as the valence band vn,k1(x) = eik1xψ−n,k1
(x2), which we have introduced in Eq. (3.105).

In particular, we define:

ψ (x) =
∑
k1,n

bn,k1un,k1(x) +
∑
k1,n

d†n,k1
vn,k1(x) . (3.117)

In this expression bn,k1 destroys an electron in the n-th conduction band LL with momentum
k1, and d†n,k1

creates a hole in the n-th valence band LL with momentum k1. The associated
LL energies are determined by Eqs. (3.107) and (3.108). As we have discussed above, the
zeroth LL is special in the sense that it is either part of the valence- or of the conduction
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band, depending on its energy. As a result, for En=0 > Ez the first sum in Eq. (3.117) runs
from n = 0 . . .∞ and the second sum from n = 1 . . .∞. The situation is vice versa, if the
zeroth LL is located at an energy En=0 < Ez. In general, all fermionic operators fulfill the
conventional anti-commutation relations{

bn,k1 , b
†
m,q1

}
= δn,mδk1,q1 ∧

{
dn,k1 , d

†
m,q1

}
= δn,mδk1,q1 . (3.118)

Inserting Eq. (3.117) into Eq. (3.116) implies

N =1
2

∑
k1,n

[b†n,k1
, bn,k1 ] +

∑
k1,n

[dn,k1 , d
†
n,k1

]

 = N0 − ηH/2 , (3.119)

where we explicitly made use of Eq. (3.118). In Eq. (3.119), N0 and the so-called spectral
asymmetry ηH are given by [36]

N0 =
∑
k1,n

b†n,k1
bn,k1 −

∑
k1,n

d†n,k1
dn,k1 , (3.120)

ηH =
∑
E>Ez

1−
∑
E<Ez

1 =
∑
E

sgn (E − Ez) . (3.121)

Let us make some remarks on the spectral asymmetry ηH, as this peculiar quantity will be
of significant importance throughout the remaining part of this thesis. By definition, the
spectral asymmetry ηH quantifies the asymmetry of the entire eigenvalue spectrum. It counts
the difference in the amount of states in the valence and in the conduction band, respectively.
As this value is invariant under small, local perturbations, ηH is a topological quantity [36].
While we have explicitly shown in Ref. [P3] that the spectral asymmetry does not depend
on the particle-hole asymmetry parameter D, we consider, for simplicity, in the subsequent
calculation for ηH a particle-hole symmetric Chern insulator with D = 0.

The spectral asymmetry ηH vanishes at H=0, as the amount of states contributing to both
individual sums in Eq. (3.121) is symmetric. This line of reasoning breaks down at H 6= 0,
where this symmetry is violated. In this case every summand in Eq. (3.121) contributes to
ηH, as there is no symmetry argument which allows us to cancel summands from the first with
the second sum. Due to the fact that ηH consists of two infinite sums which are separately
divergent, a regularization scheme has to be introduced. In the scope of the present analysis
we are using a heat-kernel approach [6],

∀n ∈ N0 : 1→ e−κ|En| , (3.122)

where the regularization parameter κ>0 ensures the absolute convergence of both sums. At
the end of our calculation, during the renormalization procedure, we will perform the limit
κ→ 0+. Let us make use of Eq. (3.122) in order to rewrite Eq. (3.121):

ηH(κ) =
∑

k1,n=1
e−κE

+
n −

∑
k1,n=1

eκE
−
n +

∑
k1

ce−κ|E0|

= D

(∑
n=1

e−κE
+
n −

∑
n=1

eκE
−
n + c e−κ|E0|

)
, (3.123)

where c = sgn (eH) sgn (m− β/2). The last term marks the contribution of the zeroth LL
and, in the second equality, we made use of the momentum independence of the eigenvalue
spectrum to extract the LL degeneracy D =

∑
k1 1 = V/(2πl2H). Here, V is the area of

the system. To further simplify Eq. (3.123), we Taylor expand the eigen-energies for large
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n:

E±n = −sβ2 ± n|β|
√

1 + α2n+m2 − 2mβn
n2β2 ≈ −sβ2 ±

[
n|β|+ sgn(β)

(
α2

2β −m
)]

. (3.124)

Next, we insert this approximation in Eq. (3.123). While this step is only justified for small
values of κ, it becomes exact in the limit κ→ 0+ for which the heat-kernel regulator affects
solely large energy solutionsa. If we additionally use the geometric series, we are able to
recast Eq. (3.123) in the form

ηH(κ)/D ≈ 2s e
−κsign(β)

(
α2
2β−m

)
sinh (κβ/2)

[ 1
1− e−κ|β|

− 1
]

+ c e−κ|E0| . (3.125)

The spectral asymmetry is defined as the analytic continuation of Eq. (3.125) for κ → 0+.
This eventually implies

ηH = lim
κ→0+

ηH(κ) = D sgn (eH) [sgn (m− β/2) + sgn (B)] . (3.126)

Equations (3.120) and (3.126) finally enable us to calculate the bulk charge density j0
bulk(µ,H).

Let us first focus on the ground state with the chemical potential located at charge neutrality
µ = Ez. In this case, according to Eq. (3.119), the bulk charge density is given by

j0
bulk(µ = Ez, H) = −e〈vac|N |vac〉/V , (3.127)

where we defined |vac〉 = Πn,k1dn,k1 |0〉. Since in Eq. (3.120) the operators are normally
ordered with respect to Ez, N0|vac〉 = 0. Thus in the ground state, at µ = Ez, the bulk
charge carrier density is solely given by the spectral asymmetry

j0
bulk(µ = Ez, H) = e

2V ηH = e2H

2h [sgn (m− β/2) + sgn (B)] . (3.128)

This crucial feature is a hallmark of the parity anomaly in quantizing out-of-plane magnetic
fields [33, 38]. In contrast to the half-quantized Hall conductivity [cf. Eq. (3.21)] obtained for
a massive two-dimensional Dirac fermion [33, 39], we find that the effective mass parameter
B|k|2 acts similar than a high-energy regulator for the calculation of the bulk charge density,
resulting in the required integer quantization of the Hall conductivity [25]. In Sec. 3.2.2, we
have clarified this relation in detail for zero magnetic fields. The present analysis generalizes
our conclusions to quantizing out-of-plane magnetic fields.

Let us make some more remarks regarding our result in Eq. (4.114). The asymmetry of the
entire LL spectrum which originates from the Newtonian mass term acts as if effectively a
partner of the zeroth LL exists at large energies. Most remarkably, Eq. (3.126) implies that the
spectral asymmetry vanishes when the n = 0 LL crosses charge neutrality at En=0 = Ez. This
corresponds to the critical magnetic field Hcrit in Eq. (3.98) at which the LL spectrum loses all
its information about the band inversion. Last but not least let us emphasize that Eq. (4.114)
does not change if we include a finite particle-hole asymmetry in the calculation above. We
have rigorously proven this statement in Ref. [P3]. Basically, this property originates from
the fact that the D|k|2-term is not related to the parity anomaly [cf. Secs. 3.1.2 and 3.2], as
it is a parity-even contribution to the zero-field Hamiltonian.

Now that we have determined j0
bulk at charge neutrality, µ = Ez, let us proceed by calculating

the bulk charge density for arbitrary chemical potentials. As this response is in general
dependent on the particle-hole asymmetry, we will from now on again incorporate a finite D-

aTo proof this statement, we use the identity limκ→0+
[∑∞

n=1(κn−1)me−κcn
]

= 0 for m = 1, 2, 3, . . .
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parameter. With Eq. (3.119) the entire bulk charge density at an arbitrary chemical potential
µ is given by

j0
bulk(µ,H) = = − e

V
〈Φ(µ)|N0|Φ(µ)〉+ j0

bulk(µ = Ez, H) , (3.129)

where |Φ(µ)〉 defines a general many-particle state for which all states are filled up to µ. The
vacuum expectation value of the ordinary particle number operator N0 at a finite thermal
energy kBT = β−1

th and a chemical potential µ, is given by [36]

〈N0〉 =
∑
n∈N0

sgn(En − Ez)
( Θ(En − Ez)

eβth(En−µ) + 1
+ Θ(Ez − En)

e−βth(En−µ) + 1

)
, (3.130)

where kB is the Boltzmann constant and the sum over En runs over all eigen-energies in
Eqs. (3.107) and (3.108). Here, we are considering the zero temperature limit

lim
βth→∞

1
e−βth(En−µ) + 1

= Θ(En − µ) . (3.131)

An extension incorporating thermal effects will be discussed in Sec.3.4. First, let us calcu-
late the n 6= 0 LL contributions to Eq. (3.130). With the LL degeneracy |eH|/(2π) these
contributions are given by∑

n6=0
sgn(En − Ez) (Θ[En − Ez]Θ[µ− En] + Θ[−En + Ez]Θ[En − µ]) (3.132)

= |eH|2π
∑
n6=0

Θ[µ− E+
n ] +

∑
n 6=0

(−1)Θ[−(µ− E−n )] = |eH|2π
∑

n6=0,s=±
sΘ[s(µ− Esn)] ,

where E±n are the conduction and valence band energy solutions in Eq. (3.107). Next, we
are performing the same analysis for the n = 0 LL. The energy of this level is given by
[cf. Eq. (3.108)]

E0 = sgn(eH)(m− β/2)− δ/2 ≡ Ẽ0 − δ/2 . (3.133)

Here, Ẽ0 is the energy of the zeroth LL at zero particle-hole asymmetry, meaning for D =
δ = 0. Taking the zero temperature limit of Eq. (3.130) for the zeroth LL implies:

|eH|
2π sgn(E0 − Ez) [Θ(E0 − Ez)Θ(µ− E0) + Θ(−E0 + Ez)Θ(E0 − µ)] (3.134)

= |eH|2π sgn(E0 − Ez)
[
Θ(E0 − Ez)Θ(µ̄− Ẽ0) + Θ(−E0 + Ez)Θ(Ẽ0 − µ̄)

]
, (3.135)

where we introduced µ̄ = µ+δ/2. As we have shown in Sec. 3.3.1, the magnetic field at which
the zeroth LL crosses charge neutrality, namely Hcrit, exactly corresponds to the magnetic
field at which the band-inversion vanishes and the system becomes trivial [cf. Eq. (4.114)].
Consequently,

sgn(E0 − Ez) = sgn(Ẽ0) . (3.136)

While for D = 0 this identity is trivially satisfied, it needs to be proven for D 6= 0. On the one
hand, for Ez = −mD/B, both arguments in Eq. (3.136) change sign at the same magnetic
field strength as

Ẽ0 = 0 ⇒ Hcrit = sgn(eH)m
B

∧ E0 = Ez ⇒ Hcrit = sgn(eH)m
B
. (3.137)
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On the other hand, they have the same sign for small magnetic fields, assuming thatD/B < 1,
which means that the Dirac point, and hence charge neutrality, is located in the system’s
mass gap:

sgn(E0 − Ez)
small field= sgn [sgn(eH)m− (−mD/B)] (3.138)

= sgn [m(sgn(eH) +D/B)) = sgn(eHm] ,

sgn(Ẽ0) small field= sgn[eHm] . (3.139)

Using the identity in Eq. (3.136) implies the zeroth LL charge contribution

|eH|
2π sgn(Ẽ0)

[
Θ(Ẽ0)Θ(µ̄− Ẽ0) + Θ(−Ẽ0)Θ(Ẽ0 − µ̄)

]
(3.140)

= |eH|2π sgn(Ẽ0)
[
Θ(Ẽ0)Θ(µ̄− |Ẽ0|) + Θ(−Ẽ0)Θ(−|Ẽ0| − µ̄)

]
= |eH|2π sgn(Ẽ0)

[
Θ(Ẽ0)Θ(µ̄)Θ(|µ̄| − |Ẽ0|) + Θ(−Ẽ0)Θ(−µ̄)Θ(|µ̄| − |Ẽ0|)

]
= |eH|2π sgn(Ẽ0)

[
Θ(Ẽ0)Θ(µ̄) + Θ(−Ẽ0)Θ(−µ̄)

]
Θ(|µ̄| − |Ẽ0|)

= |eH|2π
1
2
(
sgn(µ̄) + sgn(Ẽ0)

)
Θ(|µ̄| − |Ẽ0|) .

Consequently, we found that the entire bulk charge density in our system is given by

j0
bulk(µ,H) = e2H

2h [sgn (m− β/2) + sgn (B)]− e|eH|
2h

(
sgn(µ̄) + sgn(Ẽ0)

)
Θ(|µ̄| − |Ẽ0|)

− e|eH|
h

∑
n 6=0,s=±

sΘ[s(µ− Esn)] . (3.141)

Bulk Effective Action: A Chern-Simons Analysis

Having determined the bulk charge density allows us to derive the effective bulk Lagrangian
Lbulk

eff (µ,H) of a single Chern insulator in quantizing out-of-plane magnetic fields, which
characterizes the response of our system to a small perturbing field aµ on top of the underlying
background field H. This small perturbation induces an additional bulk charge density
j0
ind = σxy∇×a on top of j0

bulk. From this expression we can deduce the entire induced three
current jµind by the requirement of Lorentz covariance [33]:

jµind(µ) = σxy(µ,H)εµνρ∂νaρ . (3.142)

From this expression we can derive the effective bulk Lagrangian using the property

jµind(µ) = δSbulk
eff (µ,H)
δaµ

with Sbulk
eff =

∫
d3xLbulk

eff . (3.143)

In particular, this implies the topological Chern-Simons Lagrangian [164]

Lbulk
eff (µ,H) = σxy(µ,H)

2 εµνρaµ∂νaρ , (3.144)

with the quantized Hall conductivity
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σxy =κQAH − κ
0
QHΘ

(
|µ+D/l2H |−

∣∣∣m−B/l2H ∣∣∣)− ∞∑
s=±, n=1

sκQHΘ [s(µ−Esn)] . (3.145)

The peculiarities of Chern-Simons field theories have been extensively discussed in Sec. 2.6.4.
According to their physical origin, we separated σxy into three parts:

κQAH = e2

2h
[
sgn(m−B/l2H) + sgn(B)

]
, (3.146a)

κ0
QH = e2

2h
[
sgn(eH) sgn(µ+D/l2H) + sgn(m−B/l2H)

]
, (3.146b)

κQH = e2

h sgn(eH) . (3.146c)

Let us remark that in order to make our field theoretic calculations more comprehensible
for an interdisciplinary community, we also determined the Hall conductivity in the sys-
tem’s Dirac mass gap, Eq. (3.146a), via a conventional solid-state Kubo formula [158]. This
calculation is, due to its lengthy and sophisticated form, presented in App. 6.1.

As we have discussed in Secs. 2.6 and 3.2, CS terms arise in the effective action of 2+1
dimensional Dirac-like systems as a consequence of a broken parity as well as time-reversal
symmetry [37, 164]. In our case, Eq. (3.146) originates from the parity-odd mass terms m
and B|k|2, as well as from the parity breaking magnetic field H [cf. Sec. 2.4.2]. In general,
we distinguish two types of CS terms in Eq. (3.146):

The first type, Eq. (3.146a), is defined by its exclusive relation to m and B|k|2, implying
a violation of the Onsager relation, σxy(−H) 6= −σxy(H)a. This term is a signature of the
parity anomaly atH = 0, which requires that a single, parity invariant Chern insulator cannot
exist in 2+1 space-time dimensions [37], as it has been elucidated in the Secs. 2.6.3 and 3.1.3.
This special origin of the first CS term is reflected by the fact that Eq. (3.146a) is solely
determined by the spectral asymmetry

ηH = 2Dh
e2 sgn(eH)κQAH , (3.147)

as we have proven in Eq. (4.114). Consequently, this CS contribution is a property of the
entire eigenvalue spectrum and, hence, does not come along with an Heaviside function.

The second type of CS terms, Eqs. (3.146b) and (3.146c), describes conventional QH physics
generated by a quantizing out-of-plane magnetic field, as it is indicated by their sgn(eH)-
dependence, implying the Onsager relation σxy(−H) = −σxy(H). In contrast to the first
type, each of these CS terms is related to a single LL, which is reflected by the fact that they
come along with cut-off Heaviside Theta functions. As such, these terms can only contribute
to the entire Hall conductivity for chemical potential satisfying |µ+D/l2H |> |m−B/l2H |.

Fig. 3.11 visualizes these statements by analyzing the Landau fan of our Chern insulator in
increasing out-of-plane magnetic fields H. Here, we assumed D = 0 for simplicity.

Let us first discuss our findings for the topologically trivial case with m/B < 0. In this
case only κ0

QH and κQH contribute to the entire Hall conductivity σxy as κQAH = 0. The
corresponding evolution of the LL energies in Eqs. (3.107) and (3.108) as a function of the
magnetic field strength H is shown in the Figs. 3.11 (a) and (b) for positive as well as for

aMore precisely, in the present thesis we define the Onsager relation as σxy(−H,m,B) = −σxy(H,m,B).
This property does not hold in the Dirac mass gap of a Chern insulator where Eq. (3.146a) describes the
system’s response. We call this feature a ’violation’ of the Onsager relation. Instead, a Chern insulator
fulfills the generalized definition σxy(−H,−m,−B) = −σxy(H,m,B).

98



3.3 Signatures of the Parity Anomaly in Out-Of-Plane Magnetic fields

(b)(a)

(c) (d)

0 2 4 6 12

-50

0

50

H [T]

E
 [

m
eV

]

Hcrit Hcrit

8 10 0 -2 -4 -6 -12

-50

0

50

H [T]

E
 [

m
eV

]

-8 -10

0 -2 -4 -6 -12

-50

0

50

H [T]
E

 [
m

eV
]

-8 -100 2 4 6 12

-50

0

50

H [T]

E
 [

m
eV

]

8 10

-1

-2

0

1
2

-1

0

1
2

-2

n=0

n=1

n=1

n=1

n=1

n=0

0

0

1

1
2

2

-1

-2

-2

-1

n=0

n=0

n=1

n=1n=1

n=1

Figure 3.11: The evolution of the bulk LL energies (3.107) and (3.108), the so-called LL-
fan, is depicted as a function of the out-of-plane magnetic field strength H. For (a) and (c)
H > 0, whereas for (b) and (d) H < 0. Black numbers indicate the entire Hall conductivity
σxy [e2/h] in the corresponding region. The Hall conductivity only changes if a LL (blue line)
is crossed. For (a) and (b) we use m = +10meV, B = −685meVnm2, D = 0meVnm2, and
A = 365meVnm, implying that κQAH = 0. For (c) and (d) the same parameters as in (a) and
(b) are used except for m = −10meV, implying κQAH = −e2/h for H < Hcrit. If the chemical
potential is placed such that |µ| < |E0| which is depicted by the green shaded areas, the Hall
conductivity remains invariant for H → −H below this critical field. For clarity, the n = 0
LL and the first pair of LLs with n = 1 are labeled in all subfigures. The figure is reprinted
from Ref. [P1] with permission from the APS.

negative magnetic fields, respectively. For n ≥ 1, all LLs come in pairs E±n6=0, indicating that
every conduction band LL has a partner in the valence band. According to Eq. (3.146c),
each of these valence (conduction) band LL contributes σxy = +e2/h (σxy = −e2/h) to the
entire Hall conductivity for H > 0. For H < 0, they contribute with the opposite sign.
This characteristic sgn(eH)-dependence is a feature of a conventional LL response. Let us
emphasize that the sgn(eH)-dependence does also hold for the n = 0 LL. However, as pointed
out before, the zeroth LL lacks a partner [25]. This implies that there is only one n = 0 LL
which is either part of the valence or of the conduction band, as can be seen by comparing
Fig. 3.11 (a) with (b). This asymmetry is reflected by Eq. (3.146b). One the one hand,
it shows the characteristic sgn(eH)-dependence, whereas on the other hand it contains the
information about the absence of a zeroth LL partner. Finally, let us remark that one would
need to shift the chemical potential from the conduction into the valence band (µ→ −µ) in
order to observe for H > 0 and H < 0 the same sign of the Hall conductivity.

Having discussed the trivial topology, let us now focus on the topologically non-trivial case
with m/B > 0. In this situation, all statements made for κQH and κ0

QH remain valid but,
in contrast to the trivial case, κQAH now contributes to the entire Hall conductivity. This
case is shown in Figs. 3.11 (c) and (d). Since κQAH 6= 0 for H < Hcrit, there is a range of
chemical potentials for which the Hall conductivity does not change its sign for H → −H.
To be precise, this regime is given by |µ| < |E0|, meaning that the chemical potential must
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be placed in the Dirac mass gap, which is indicated by the green shaded area in Fig. 3.11.
Physically, this implies that the conventional Landau level physics, described by κQH and
κ0

QH , comes on top of an overall underlying contribution κQAH . According to Eq. (3.126), this
contribution is related to the spectral asymmetry and shifts the Hall conductivity such that
it becomes σxy = −e2/h (for m,B < 0) in the Dirac mass gap. We identify this signature
as a hallmark of the QAH response which remains encoded even in quantizing out-of-plane
magnetic fields. This property is in accordance with Streda’s formula but implies that the
Onsager relation, σxy(−H) = −σxy(H), is violated in the Dirac mass gap due to the parity
anomaly.

Effective Edge Theory and The Callan-Harvey Mechanism

In order to derive the corresponding edge theory of our bulk CS Lagrangian in Eq. (3.144), we
have to add a new degree of freedom to Lbulk

eff . This can be inferred from the fact that any CS
term changes by a total derivative under a local gauge transformation, Lbulk

eff → Lbulk
eff +δLbulk

eff ,
causing a violation of the charge conservation, ∂µjµind 6= 0 |

∂Ω , at the boundary ∂Ω [164, 165].
We have extensively studied this property in the Secs. 2.165, 2.6.7, and 2.6.6. It was shown
that in order to cancel this U(1)-anomaly, we need to enlarge our description by an effective
edge Lagrangian L∂Ω

eff , which restores gauge invariance via anomaly cancellation between the
edge- and the bulk theory, respectively [102, 131, 165, 166]:

∂µj
µ
tot = ∂µ (jµind + jµL + jµR) = 0 (3.148)

⇒ ∂µj
µ
L/R

= σxy
2 δ

(
x2−xL/R

2

)
ε2νλ∂νaλ =−∂µjµind ,

where jµ
L/R

characterizes the induced currents at the left/right edge of our stripe geometry
[cf. Sec. 2.6.6]. This procedure, known as the Callan-Harvey mechanism [cf. Sec. 2.6.7], is the
field-theoretical analog to the bulk-boundary correspondence [121].

As it has already been shown in Fig. 2.11, Eq. (3.148) implies that an increasing out-of-plane
magnetic field induces a charge accumulation in the system’s bulk, which is compensated by
a charge depletion at its edges, if one assumes a fixed integrated charge density [38, 130, 167].
The amount of the induced bulk charge density is given by j0

ind = σxy∇×a. From Eq. (3.148),
one can deduce the effective edge theory [cf. Secs. 2.6.5 and 2.6.6]:

L∂Ω
eff = LL

eff δ (x2 − xL
2) + LR

eff δ (x2 − xR
2 ) ,

L
L
R
eff = χ† i

(
∂t ∓

h
e2κQAH D1

)
χ (3.149a)

+ ξ†0 i
(
∂t ∓

h
e2κ

n=0
QH D1

)
ξ0 Θ

(
|µ+ D

l2H
| − |m− B

l2H
|
)

(3.149b)

+
∞∑

n=1 , s=±
s ξ†n i

(
∂t ∓

h
e2κ

n
QH D1

)
ξnΘ [s(µ− Esn)] , (3.149c)

where χ (ξn) defines QAH (QH) edge states and D1 =∂1+ie aµ/~. Equation (3.149a) is linked
to Eq. (3.146a) and characterizes QAH edge states, persisting in quantizing out-of-plane
magnetic fields. The QAH edge states do not come along with an Heaviside Theta function
and are therefore not bound to a specific LL . In contrast, they bridge the gap between the
valence- and the conduction band. This finding is in accordance with our band-structure
calculations, shown in Fig. 3.8. Since Eq. (3.149a) is connected to the spectral asymmetry
ηH, charge pumping via anomaly cancellation can occur from the QAH edge states into any
LL. This pumping mechanism is therefore a signature of the parity anomaly and can, in
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general, exist until the Dirac mass gap is eventually closed at the critical field

Hcrit = (eH) ~e
m

B
. (3.150)

Equations (3.149b) and (3.149c) are related to Eqs. (3.146b) and (3.146c) and define conven-
tional QH edge states. These states are bound by single LLs, which is indicated by their Theta
functions. Therefore, the corresponding charge flow only appears between the individual edge
states and their associated LL.

3.3.3 Anomaly Induced Charge Pumping: QAH vs. QH Phase
In the present section, we are going to highlight the differences in the charge pumping be-
tween QAH- and QH phases. Therefore, we simulate the associated time-dependent charge
distributions as a function of an increasing out-of-plane magnetic field strength H(t) by solv-
ing the time-dependent Schrödinger equation numerically. Within the scope of this section,
we consider an impurity-free system. We will comment on effects originating from (in)elastic
scattering processes in the next section. As in typical experiments [168–170], we keep the
system’s integrated particle density instead of the chemical potential constant throughout
our simulations.

Time Evolution and Anomaly Inflow

In what follows, we elucidate the response of our system originating from an applied vector
potential A(t) = A(ti) + a(t) with t ∈ [ti = 0, tf ], where A(ti) is a time-independent gauge
field and a(t) = −x2H(t)e1 is a time-dependent perturbation. Since we apply the Peierls
substitution in the Landau gauge [cf. Eq. (3.101)], k1 remains a well-defined momentum in
the system considered. This enables us to write the time-dependent Hamiltonian and its
corresponding Hilbert space in terms of a direct sum:

H(t) =
⊕
k1

Hk1(t) . (3.151)

Consequently, our numerical simulations can be performed on each Hilbert subspace sepa-
rately. At the initial time ti, the system’s eigen-states are solutions of the time-independent
Schrödinger equation:

H(ti)|ψj,k1(ti)〉 = Ej,k1(ti)|ψj,k1(ti)〉 , (3.152)

where j labels the j-th lattice subband on our discretized space-time. Starting from this initial
configuration, the out-of-plane magnetic field is now increased as a function of the time, and
we trace the evolution of all eigen-states via the time-dependent Schrödinger equation,

i~∂t|ψj,k1(t)〉 = H(t)|ψj,k1(t)〉 . (3.153)

We compute the time-evolution of each eigen-state on our discretized time-line numerically,
by using an iterative approach [171]:

|ψj,k1(t+ ∆t)〉 = e−iH(t)∆t/~|ψj,k1(t)〉 = U(t+ ∆t, t)|ψj,k1(t)〉 , (3.154)

where U(t2, t1) denotes the unitary time evolution operator which mediates each state from
t1→ t2, and we choose the time discretization ∆t small enough to ensure the convergence of
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our simulations. After the period t, one obtains

|ψj,k1(t)〉 = U(t, ti)|ψj,k1(ti)〉 . (3.155)

We perform the above described iterative procedure in order to analyze the evolution of the
following non-interacting many-particle state in our field configuration:

|Φ(µ, t = ti)〉 =
∏

j≤jmax
k1≤kmax

|ψj,k1(ti)〉 . (3.156)

Here, all single-particle states satisfying j ≤ jmax and k1 ≤ kmax are filled by the (initial)
chemical potential µ. Tracing Eq. (3.156) via Eq. (3.155) enables us to determine two char-
acteristic, time-dependent quantities. On the one hand, we can compute the induced charge
density distribution in order to study the charge current in our Chern insulator:

j0
ind(x, t) = −e

∑
k1≤kmax
j≤jmax

ψ†j,k1
(x, t) ψj,k1(x, t)− j0

back , (3.157)

where j0
back ensures j0

ind(x, ti) = 0. On the other hand, we can identify the states which are
responsible for this peculiar charge flow. To this end, we trace the filling probabilities of each
instantaneous eigen-state at time t of the time-independent Schrödinger equation

H(t)|φi,k1(t)〉 = Ei,k1(t)|φi,k1(t)〉 . (3.158)

Notice that here t is not a dynamical variable defining the time evolution of states, as in
Eq. (3.155), but rather parametrizes the eigen-system of the Hamiltonian at time t. In
particular, the occupation probability of an eigen-state |φi,k1(t)〉 is given by:

Pi,k1(t)=
∑

j≤jmax

|〈ψj,k1(t)|φi,k1(t)〉|2 . (3.159)

This quantity can be used to rewrite Eq. (3.157) in the form

j0
ind(x, t) = −e

∑
i,k1

Pi,k1(t)|φi,k1(x, t)|2 − j0
back . (3.160)

In the following analysis we are going to distinguish two different cases: At initial time ti,
the ground state for

(I) the QAH phase is determined by A(ti) = 0 with a chemical potential µ which is placed
at the Dirac point Ez [cf. Fig. 3.8(a)], whereas for

(II) the QH phase we consider a finite background field A(ti) = −x2H0e1 and place the
chemical potential µ above the first LL [cf. Fig. 3.8(d)].

Let us start our discussion by analyzing the numerical results for the QAH phase under initial
condition (I). The occupation of the eigen-states and the evolution of the induced charge
density j0

ind(x, t) = −enind(x, t) with an increasing out-of-plane magnetic field strength H(t)
are shown in Figs. 3.8(a)-(c) and Fig. 3.12 with nind(x, t) =

∑
i,k1 Pi,k1(t)|φi,k1(x, t)|2−nback.

Here, nback ensures that nind(x, ti) = 0. At t = ti, the charge distribution is flat (zero).
An increase of H(t) essentially induces a net charge flow from the QAH edge states into all
valence band LLs. This causes a charge depletion at the system’s edge, whereas it induces a
charge accumulation in the system’s bulk. Since our system is a bulk insulator, this charge
redistribution is driven by polarization effects. As a function of the magnetic field strength
H(t) all occupied wave functions shift their spectral weight towards the middle of the sample.
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Figure 3.12: Evolution of nind(x, t) in an increasing out-of-plane magnetic field H(t),
corresponding to Figs. 3.8(a)-(c). An adiabatic increase of the magnetic field strength causes a
charge depletion (blue) at the system’s edges and a charge accumulation (red) in the system’s
bulk. The inset compares the induced bulk particle number Nind(t) =

∫
dx nind(x, t) between

the QAH (red) and the QH phase (green). Further explanations are given in the text. The
figure is reprinted from Ref. [P1] with permission from the APS.

This effectively gives rise to the charge redistribution which is shown in Fig. 3.12. Notice,
that during this process, all valence band LLs, including the n = 0 LL, remain filled. As it is
illustrated in the inset of Fig. 3.12, this causes a linear increase of the integrated bulk charge
density ∫

d2x j0
ind =

∫
d2xσxy∇× a =

∫
d2xκQAHH(t) . (3.161)

Since this type of charge pumping is restricted to the existence of QAH edge states, it can
only exist for H < Hcrit [cf. Eq. (3.150)]. Let us emphasize that these results are consistent
with our field theoretic calculations based on the Callan-Harvey mechanism which we have
briefly discussed around Eq. (3.148) and extensively studied in Sec. 2.6.7.

The results for the QH phase under initial condition (II) are shown in Fig. 3.8(d) and in
the inset of Fig. 3.12, respectively. In agreement with our field-theoretical approach, we find
that the bulk charge originates purely from the associated QH edge states in Eq. (3.149),
implying a saturation of the charge accumulation already for small magnetic fields. There-
fore, our numerical studies provide further evidence that the QAH edge states are related
to a distinct CS term which is connected to the spectral asymmetry ηH and not to a single LL.

Time Scales and Finite Size Gaps

Let us give one further remark regarding the time-scales for our charge pumping procedure.
In the numerical approach presented above, we increase H(t) within the finite time interval
[ti =0, tf ], which corresponds to a certain ramping speed

vramp = Hmax
tf

with Hmax = H (tf) . (3.162)
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For a fixed value of Hmax, we are able to simulate different ramping speeds by varying tf .
In general, the results which have been presented in the Figs. 3.8 and 3.12, fulfill the two
following requirements: On the one hand, the ramping time tf and, therefore, the ramping
speed vramp have to be chosen such that

tmin
f

(i)
� tf

(ii)
� tmax

f , (3.163)

where (ii) only needs to be fulfilled for H>Hscat [cf. Fig.1 (c)]. (i) The lower (upper) bound
on tf (vramp) results from the fact that states should not be excited between different bulk
bands. As a consequence, H(t) has to be increased on a time scale which is adiabatic with
respect to any bulk energy gap Eg. This, in particular, implies that tmin

f � tf with

tmin
f = ~

Eg
. (3.164)

In general, Eg can be on the order of a few tenth of meV. In order to overcome such a value
for Eg, we would need to ramp up Hmax (a few Tesla) on a very small time scale tf � 10−13s.
(ii) The upper (lower) bound on tf (vramp) is caused by the fact that, for H >Hscat, unoc-
cupied QAH edge states and occupied bulk LLs form finite hybridization gaps ∆Hyb as the
QAH edge states are lowered in energy with increasing H(t) [cf. Fig. 1(c)]. In order to ensure
that the QAH edge states and all bulk LLs separately maintain their initial filling proba-
bilities throughout our simulation process, we need to choose tf , for H > Hscat, such that
we diabatically overcome ∆Hyb. The nomenclature ’diabatically’ is meant in the sense that
neither the filling probabilities, nor the local densities of the QAH edge states and the bulk
LL wave functions change, if they pass each other with increasing magnetic field strength.
Analogous to Eq. (3.164), this implies that tf � tmax

f with

tmax
f = ~

∆Hyb
. (3.165)

If the hybridization gaps ∆Hyb are finite size gaps, which by definition satisfy

∆Hyb(L2) = ∆0 e−λL2 with λ > 0 , (3.166)

time-scales which are possible to reach experimentally become accessible, as tmax
f increases

exponentially. As shown in Fig. 3.13, we find that for Hscat < H <Hcrit and k1 = 0 a, the
energy gaps between the QAH edge states and the n=0 LL are exponentially suppressed. In
a typical macroscopic Hall bar the system length can be on the order of L2≈ 100µm [172].
This implies that tmax

f can be approximately infinite in comparison to all other experimental
time scales. From this perspective, even for H > Hscat the QAH charge pumping could,
in principle, be experimentally observable in macroscopically large systems, if it would be
possible to strongly suppress scattering processes between QAH and QH edge states. It is,
however, expected that in a conventional device elastic- and inelastic scattering processes
between the QAH and the QH edge states eventually cause a relaxation of our simulated
charge redistribution. In the following section, we are going to study those experimental
signatures of our system which persist even after such a charge relaxation.

aThe same conclusions do also hold for k1 6=0.
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Figure 3.13: Finite size gap ∆Hyb(L2) for k1 = 0 and Hscat < H<Hcrit, forming between
QAH edge states and the n = 0 LL, as a function of the system length L2. The figure is
depicted in Log-Lin fashion. The system parameters are given in the caption of Fig. 3.8. The
linear behavior of log(∆Hyb)(L2) shows that ∆Hyb exponentially decreases with L2 = Ly, as
it is described by Eq. (3.166). For the fit-parameters in this equation, we found that here
∆0 = 100meV and λ = 0.05 nm−1. We obtain analogous results for k1 6= 0. The figure is
reprinted from Ref. [P1] with permission from the APS.

3.3.4 Experimental Signatures & the Entire BHZ Response
So far our analysis has been restricted to an impurity-free system. As a natural extension
we are going to take into account a finite disorder in this section. In particular, we are going
to study the experimental consequences of (in)elastic scattering processes on the theoretical
prediction which we have derived above.

QAH-QH Edge State Scattering: A Landauer-Büttiker Approach

As long as the Dirac point is above the n=0 LL, for H < Hscat, there is no charge inversion
in spectrum and the system is in its energetic ground state. As such, scattering processes
cannot cause a relaxation of the induced bulk charge density. The presence of disorder can
therefore not affect the results which we have presented in the Figs. 3.8(b) and 3.12. As a
hallmark of the QAH phase in the Dirac mass gap we find a quantized Hall plateau with
σxy = κQAH starting at H(ti) = 0. The length of this plateau scales with Hscat ∼ L−1

2 , as it
has been derived in Eq. (3.115). This feature is encoded by region I in Fig. 3.14 and results
from geff ∼ L2 [cf. Eq. (3.110)].

Experimentally realistic systems are imperfect in the sense that they have a finite disorder
and impurity mean free path. From this perspective, it is expected that in(elastic) scattering
processes between occupied QH and unoccupied QAH edge states cause a momentum and an
energy relaxation for H > Hscat, as it is indicated by region II in Fig. 3.14. For this reason,
it is expected that eventually any charge inversion in the system’s spectrum relaxes, until a
common chemical potential has set in. In such a ground state, counterpropagating QAH and
QH edge states coexist at a single boundary. This is exemplary shown in the inset of region
II, where for instance at the right edge, due to the slope of the dispersion, the QAH edge
state has a positive velocity, whereas the QH edge state has a negative velocity. Similarly
to Ref. [173], which uses the Landauer-Büttiker formalism [174, 175], we expect deviations
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Figure 3.14: Schematic evolution of σxy for a Chern insulator in an out-of-plane (orbital)
magnetic field in the presence of elastic- and inelastic scattering. The insets schematically
illustrate the underlying band-structure according to Fig. 3.8(a)-(c), using the same color
code. In region II, scattering processes between counterpropagating QH ξ(L/R) (red) and
QAH χ(L/R) (blue) edge states allow for a momentum- and an energy relaxation. Further
explanations are given in the text. The figure is reprinted from Ref. [P1] with permission
from the APS.

from a perfectly quantized Hall plateau arising from scattering between QH and QAH edge
states, as explained in the next paragraph. When the transmission probability Ti,j between
the contacts i and j on a typical Hall bar is symmetric, meaning for Ti,i+1 = Ti+1,i, it is
expected that σxy = 0. However, in the case that scattering processes between the coexisting
edge states microscopically differ on both edges of the Hall bar, we expect deviations from a
perfectly quantized Hall plateau. This is indicated by the wiggly line in region II of Fig. 3.14
and will be shown in the next paragraph by developing a simplistic model. Most remarkably,
for Ti,i+1 6= Ti+1,i, the average value of this Hall plateau can significantly deviate from zero.
In large (Hg,Mn)Te Hall bars, such direction-dependent transmission probabilities can arise
from a large charge puddle [176–178] density, as we will show in the scope of the subsequent
analysis.

In region III of Fig. 3.14, for H > Hcrit, the Dirac mass gap has been closed. This eventually
implies a perfectly vanishing σxy = 0 plateau.

In what follows, we are substantiating the above statements by an analytic derivation. In the
Landauer-Büttiker formalism [173, 175], the current in the i-th contact is given by

Ii = − e
h

N∑
j=1

[Tijµj − Tjiµi] , (3.167)

where Tij defines the transmission probability from contact j to contact i, N ∈ N is the
entire number of contacts, and µi defines the local chemical potential in the i-th probe. The
inset in Fig. 3.15(a) schematically illustrates a typical Hall bar with N = 6 contacts. In
such a setup, contact I and IV act as source and drain of currents with I1 = −I4, and the
four remaining contacts are voltage probes satisfying Ij = 0. In general, we distinguish two
resistance contributions, namely the Hall resistance RH = R26/I1, as well as the longitudinal
resistance RL = R23/I1.
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Figure 3.15: Illustration of the entire phase space for (a) the longitudinal and (b) the
Hall resistance predicted by Eq. (3.168) for T12, T21 ≤ 1. The conventional six-terminal Hall
bar is schematically depicted in the inset of (a). The current flows between contacts I and
IV. The particular color code highlights the absolute value of the resistance. White areas
indicate that the resistance is out of scale. For clarity, we plotted the contour lines (a)
RL = 0.5, 1, 1.5, 2, 2.5, 3 and (b) RH = 0, 1, 2, 3 in units of h/e2. The figure is reprinted from
Ref. [P1] with permission from the APS.

In what follows, let us analyze the transport signatures of our system defining the transmission
probabilities in clockwise- and in anticlockwise direction as Ti+1,i = Tc and Ti,i+1 = Ta,
respectively. Solving the linear system of equations in Eq. (3.167), yields the following analytic
expressions for the Hall and the longitudinal resistance,

RH = h
e2

Tc − Ta
T 2

c − TaTc + T 2
a
∧ RL = h

e2
TcTa

T 3
c + T 3

a
. (3.168)

In Fig. 3.15, we illustrate the full parameter space for the Hall- and for the longitudinal
resistance, considering Tc, Ta ≤ 1. If Tc = Ta = 1, we find the characteristic values of a QSH
phase, RH = 0 and RL = h/2e2 [163]. If Tc = 1 and Ta = 0, or analogously Tc = 0 and
Ta = 1, we find the transport signatures of a single chiral edge mode. As explained, our system
can contain counterpropagating QH and QAH edge states which are, most remarkably, not
protected by symmetry a. Therefore, the associated transmission probabilities of these states
can deviate from the limiting cases Ta,c = 1 in realistic experiments. Nevertheless, as it is
shown by Fig. 3.15, in the vicinity of the contour lines the resistance values can be still close to
quantized values for a wide range of parameters. Most remarkably, Fig. 3.15(b) demonstrates
that small deviations from the symmetric case Tc = Ta can cause large deviations from
RH = 0, if Tc, Ta � 1. Inspired by this property, let us investigate the peculiarities of QH
- QAH edge state scattering processes at the same edge of the sample in more detail. As
these counterpropagating modes are not protected by symmetry, point-like impurities can
already give rise to backscattering. Due to the unitarity of the S-matrix, we find that for
these kind of processes the scattering probabilities are symmetric, Tc = Ta, both tending to
zero in the large system limit. However, let us highlight a peculiarity: Any small difference
in the scattering processes between the two edges of the Hall bar can cause slight deviations
from a perfectly quantized Hall plateau. This is schematically illustrated by the wiggly line
in regime II of Fig. 3.14.

aThis is for instance the case for counterpropagating QSH edge states, as discussed in Sec. 3.1.1.
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Backscattering through Charge Puddles

So-called charge puddles are another prominent source for backscattering [176]. Especially in
HgTe based two-dimensional topological insulators these charged islands represent a major,
if not the dominant, source for backscattering [177]. The characteristic value of RL = h/2e2

in QSH insulators, therefore, has been solely measured in micro-structured Hall bars. In
the present analysis, we instead want to focus on large samples with L1 > n

−1/2
p , where np

is the charge puddle density [176]. In this limit it was shown that the bulk conductivity
cannot be neglected if the system size exceeds the leakage length L∗1 = 1/σBρe [176]. In
this expression, σB is the bulk conductivity and ρe is the edge resistivity. If L1 > L∗1, the
top and the bottom edge can be connected via a puddle-to-puddle hopping. To elaborate
on a better understanding of this feature, let us study a toy model by using the Landauer-
Büttiker approach once more. For simplicity, we assume that the top and the bottom edge are
connected by a single charge puddlea. Schematically, this situation is depicted in Fig. 3.16(a).
On a theoretical level, the scattering from the edge states onto the considered charge puddle
can be described by the following S-matrix:

S =

r11 t12 t13
t21 r22 t23
t31 t32 r33

 , (3.169)

where tij and rij define the transmission and reflection amplitudes from the j-th incoming to
the i-th outgoing scattering state, respectively. For the top edge, scattering states are labeled
according to Fig. 3.16(a). For the bottom edge, we assume the same type of scatterer but
both, QH and QAH edge states switch their propagation direction, as it is shown in regime
II of Fig. 3.14. This model describes partially coherent transmission [174] of QH and QAH
edge states (t12 and t21), where only a fraction of the current is transmitted onto the charge
puddle (t31 and t32). Since charge puddles act like inelastic scatterers, they cause dephasing
and, consequently, can be modeled as fictious voltage probes [175]. Let us emphasize that
QH and QAH edge states have different spin character and wave function localization. For
this reason, the QH-to-puddle tunneling probability |t31|2 can be significantly different than
the QAH-to-puddle tunneling probability |t32|2.

Let us study a proof-of-principle model in order to derive asymmetric transmission proba-
bilities Tij . If we choose r11 = r22 = t32 = t13 = 0, the unitarity of the S-matrix requires
that

TQH = 1 , TQAH + Tp = 1 , Rp + Tp = 1 , (3.170)

where TQAH = |t21|2, TQH = |t12|2, Tp = |t31|2 = |t23|2, and Rp = |r33|2. Most importantly,
Tp denotes the transmission probability from the chiral QH edge state to the charge puddle.
Without loss of generality, we take µ1 > µ2 and µ2 = 0. The current into the charge puddle
is for this reason given by

Ip = − e
h [(2− 2Rp)µp − Tp µ1] . (3.171)

With Ip = 0, Eq. (3.171) implies that µp = µ1/2. The current which flows along the top edge
into contact II is instead given by

I2 = − e
h (TQAH µ1 + Tp µp) = − e

h (1− Tp/2)µ1 . (3.172)

aInstead, in a realistic situation, an electron needs to hop several times between adjacent puddles in order
to reach the other edge of the sample
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Figure 3.16: Schematic illustration of a two-terminal channel, where counterpropagating QH
and QAH edge states are encoded by red and black arrows at the top and the bottom edge,
respectively. Triangles indicate scattering events with charge puddles which are described
by the scattering matrix S. They partially transmit states coherently and partially scatter
states into a fictitious contact with chemical potential µp, which is indicated by a wiggly
line. The fictitious contacts model inelastisc scattering events which connect the top with
the bottom edge of the channel. In (a), we consider a proof-of-principle model with a single
charge puddle, whereas in (b) we generalize our approach including N ∈ N charge puddles.
In (a), incoming ai and outgoing bi scattering states are labeled for clarity at the top edge.
The figure is reprinted from Ref. [P1] with permission from the APS.

Consequently, we can interpret 1 − Tp/2 as the effective transmission coefficient between
contact I and II, namely T21. Since T12 = TQH = 1 and T21 < 1 for Tp 6= 0, the presented
model proves the possibility of having asymmetric transmission coefficients when the top and
bottom edge states are connected via a puddle-to-puddle hopping.

As Tp is in general a small number, it is interesting to look at the case of multiple charge
puddles, a situation which is schematically depicted in Fig. 3.16(b). Following an analogous
calculation as the one presented above, it is straightforward to generalize Eq. (3.172) to the
situation of N ∈ N puddles:

I2 = − e
h

2− Tp
2 + (N − 1)Tp

µ1 . (3.173)

In a nutshell this model shows that for L1 > L∗1 a system which contains counterpropagating
QH and QAH edge states can still have a finite Hall conductivity which deviates from zero,
and, in principle, can even approximate values of σxy ≈ e2/h. Let us again emphasize that the
above presented toy model serves as a proof-of-principle. The experimental scaling behavior
in realistic QAH insulators can deviate from the analytic form shown in Eq. (3.173). The
derivation of an appropriate microscopic model is subject of future studies.
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Entire BHZ Response

In the discussion above, we have explained the experimental signatures originating from a
single non-trivial Chern insulator. As such a system only defines one (pseudo-)spin block of
the entire BHZ model, we also need to incorporate the response of the second Chern insulator
to make reliable predictions for typical materials such as (Hg,Mn)Te/CdTe quantum wells
[8, 42, 179].

So far, we considered the (pseudo-)spin up block of the BHZ model and assumed that the
(pseudo-)spin down block is in the topologically trivial phase in order to describe the physics
of a QAH insulator. As we have shown in Eq. (3.48) of Sec. 3.1.2, our previous analysis can
be easily transferred to the (pseudo-)spin down block by replacing (m+, B)→(−m−,−B) in
all our formulas. We have explained in Sec. 3.1.1 that due to the paramagnetic doping of
(Hg,Mn)Te/CdTe quantum wells [180], a finite magnetic field is required to close the Dirac
mass gap of the (pseudo-)spin down block of the BHZ model and, equivalently, to drive the
system from the QSH to the QAH phase. For this reason, we are expecting that the (pseudo-)
spin down block of the BHZ model causes an additional transition from the QSH phase with
σxy = 0 to region I with σxy = −e2/h in Fig 3.14.

Let us end this section by emphasizing that in Bi-based QAH insulators, one should be able to
observe similar transitions as the ones shown in Fig. 3.14. However, we expect two significant
differences in comparison to (Hg,Mn)Te/CdTe quantum wells. On the one hand, due to
the ferromagnetic doping of Bi-based systems, there is no QSH to QAH phase transition
expected with increasing H(t). On the other hand, measuring conventional QH physics in
these systems is challenging due to a short impurity mean free path [45–48].

Finally, let us emphasize that an extensive summary of the results which we have obtained
within the scope of this section can be found in Sec. 5.

3.4 Temperature and Density Dependence of the
Parity Anomaly

In Sec. 3.2, we have analyzed the relation of the Dirac- as well the Newtonian mass of a
QAH insulator to the parity of planar electrodynamics. Further, in Sec. 3.3, we have shown
that even in quantizing magnetic fields the signatures of the parity anomaly persist in QAH
insulators like (Hg,Mn)Te quantum wells or magnetically doped (Bi,Sb)Te thin films. It
has been shown that the associated features in particular remain encoded in the spectral
asymmetry ηH [cf. Eq. (3.121)] [34]. However, all these findings do not incorporate thermal
effects. So far, finite temperature signatures in parity anomaly driven systems are restricted
to pure Dirac models. Calculating the quantum effective action of these systems induces a
temperature dependent and thus large gauge non-invariant Chern-Simons term originating
from the parity anomaly [36, 57–61]. While it was shown that this non-invariance is absorbed
by higher order non-perturbative corrections to the effective action [62–69], this feature still
gives rise to a fundamental question:

Does the parity anomaly get renormalized by thermal effects? (3.174)

We answered this basic question within the manuscript Temperature and chemical potential
dependence of the parity anomaly in quantum anomalous Hall insulators (Phys. Rev. B 102,
205407), which has been published in November 2020 [P5]. It is the goal of the present
section to discuss the theoretical findings associated to this work, which have been obtained
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in collaboration with Dr. Flavio S. Nogueira and Dr. Christian Northea. While all analytic
derivations have been obtained by myself, Dr. Flavio S. Nogueira supported this work with
several fruitful discussions and remarks regarding the influence of a finite temperature on
the parity anomaly in 2+1 space-time dimensions. Dr. Christian Northe contributed to this
work with critical questions rendering the associated results accessible for a broad- and in-
terdisciplinary community.

Before we start our analysis, let us emphasize that answering the question (3.174) is in par-
ticular not only relevant for the QAH effect in the aforementioned materials. It is especially
important in the case of interfaces between ferromagnetic insulators and three-dimensional
topological insulators, where a proximity-induced interface magnetization has been experi-
mentally observed at high temperatures [70, 71]. In this case the out-of-plane magnetization
causes a gap opening in the interface Dirac spectrum, which induces a parity anomaly on
the TI surface and a concomitant magnetoelectric torque in the Landau-Lifshitz equation
[72–74]. A similar effect is expected to occur on the surface of the recently discovered antifer-
romagnetic TI MnBi2Te4 [75, 76], where the gap in the surface Dirac spectrum is an intrinsic
feature of the system.

By definition [cf. Sec. 2.5.1], the parity anomaly only implies the breakdown of the parity
symmetry at the quantum level. This dictates a certain form of the band-structure, which is
temperature independent b. Hence, the parity anomaly cannot obtain any finite temperature
correction. In contrast, the prefactor of the anomaly induced Chern-Simons term in the
effective action corresponds to the finite temperature Hall conductivity. In what follows,
we are going to calculate this non-dissipative transport coefficient for single (pseudo-)spin
polarized Chern insulators including both, a Dirac- as well as a momentum-dependent mass
term [cf. Sec. 3.1.2]. We will study these systems in the absence and presence of an out-of-
plane magnetic field, as well as with and without particle-hole symmetry. In a nutshell, this
will lead us to the following results:

(i) The parity anomaly induces a topological part in the Hall conductivity of a QAH
insulator which is temperature as well as chemical potential independent and solely
described by the system’s Chern number.

(ii) The non-quantized finite temperature and chemical potential corrections to the Hall
conductivity also originate from the parity anomaly, since they also depend on the
band-structure. However, they do not depend on its topology, being rather related to
the temperature-dependent filling of the valence and conduction bands. As expected,
an increasing Dirac mass counteracts finite temperature effects. On the other hand,
we show that in the nontrivial phase an increasing Newtonian mass enhances the finite
temperature corrections.

(iii) In quantizing out-of-plane magnetic fields, the thermal LL response renormalizes the
parity anomalous part of the Hall conductivity. In the Dirac mass gap it adds to
the otherwise quantized parity anomaly related contribution which has been rigorously
derived in Eq. (3.146a).

In order to understand the finite temperature analysis in this section, we start our discussion
by briefly recapitulating the most important theoretical concepts which we have studied in
the previous Secs. 3.1, (3.2.1), and (3.3).

aThis work has been supervised by Prof. Dr. Jeroen van den Brink and by Prof. Dr. Ewelina M. Hankiewicz
bRigorously, this statement is only true for small temperatures. For very large temperatures the system can
deform, which essentially changes the band-structure. However, this scenario is beyond the scope of our
analysis.
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3.4.1 Band-Structure of a Chern Insulator: Camel-Back Gap

In what follows, we describe the anomaly related finite temperature and density response of
QAH insulators in the presence and in the absence of quantizing out-of-plane magnetic fields.
As we have explained in Sec. 3.1, we are therefore analyzing (pseudo-)spin polarized 2+1
dimensional Chern insulators which are defined by two different mass terms: A momentum
independent Dirac mass m±, as well as a momentum dependent Newtonian mass term B|k|2
[cf. Eq. (3.12)]. The free Lagrangian of a single particle-hole symmetric Chern insulator in
2+1 space-time dimensions has been derived in Eq. (3.60):

L0 = ψ̄
(
A/k −m± +Bkik

i
)
ψ . (3.175)

In comparison to a pure Dirac Lagrangian, the additional Newtonian mass term in Eq. (3.175)
breaks the Lorentz symmetry as it only involves spatial momenta [cf. Sec. 2.4.3]. Let us re-
mark at this point that a similar Lagrangian can also be used for the description of 2+1
dimensional superfluid Fermi liquids, as it is for instance described in Ref. [181]. The first-
quantized Hamiltonian associated to Eq. (3.175) can be derived by a Legendre transforma-
tion. Within the upcoming analysis we are considering the (pseudo-)spin up block of the
BHZ Hamiltonian in Eq. (3.4) and neglect the characterizing subindex. We are therefore
considering the Hamilonian in Eq. (3.12)

H(k) = −Dασ0 +A(k1σ1 − k2σ2) + (m−Bα)σ3 , (3.176)

where we introduced the abbreviation α = k2
1 + k2

2 and reintroduced the particle-hole asym-
metry term Dασ0. As we have already emphasized several times throughout this thesis, both
of the mass terms in Eq. (3.176), m and Bα, break the parity symmetry of the Hamilton
[cf. Eq. (3.14)]. Consequently, the Dirac-, as well as the Newtonian mass contribute to the
integer Chern number [cf. Eq.(3.19)] [5, 50]

CCI = [sgn(m) + sgn(B)] /2 . (3.177)

Notice, that adding higher-order momentum dependent mass corrections to the Hamiltonian
of a Chern insulator affects the analytic form of its Chern number. To respect the Galilean
invariance of the system, any additional mass correction needs to be of even order in momen-
tum. Essentially, the prefactor of the highest order mass correction replaces the Newtonian
mass parameter B in the Chern number Eq. (3.177). Since higher order mass corrections
do change the band-curvature, they will also alter the nonquantized Hall response at finite
temperatures and chemical potentials. However, they will only change this response quanti-
tatively. In particular, they do not prevent the possible gap closing apart from the Γ-point
which drives the low-energy response studied in this section [cf. Eq. (3.192)].

As we have shown in Eq. (3.16), the spectrum associated to Eq. (3.176) forD=0 is given by

Es(α) = s
√
A2α+ (m−Bα)2 , (3.178)

where s = ± encodes the conduction and the valence band, respectively. In Fig. 3.17, we
show the influence of the mass parameters on the band-structure. Depending on the values
for m, B, and A, the band-structure changes significantly. For m/B > 0, the system is
topologically nontrivial with CCI = ±1. The minimal gap can be either located at the Γ-
point or at αmin = (2mB−A2)/(2B2), corresponding to a camel-back structure. Thus, it is
defined by 2|m| or by the absolute value of

∆ = A
√

4mB −A2/B . (3.179)
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Figure 3.17: Band-structure of a Chern insulator for zero magnetic field and D=0. Red and
blue curves encode topologically non-trivial phases with m=A= 1, and B = 5 (red, camel-
back), or m= 1, A= 3, and B= 0.1 (blue). The yellow curve corresponds to a topologically
trivial phase with m=1, A=5, and B=−0.1. The minimal gap is either defined by 2|m| at
the Γ-point or by |∆| at α = αmin, indicated by the black or green arrow, respectively. The
figure is reprinted from Ref. [P5] with permission from the APS.

Increasing |m| or |B| in the nontrivial phase leads to a camel-back structure if 2mB >A2,
associated to αmin > 0. This property has partially also been analyzed in Sec. 3.2.1. The
camel-back gap |∆| increases with m but decreases with B. For 4mB=A2, ∆ vanishes and
the spectrum simplifies to,

Es(α) = s|(m+Bα)| . (3.180)

For m/B < 0, the system is topologically trivial. In this case the minimal gap is always
located at the Γ-point.

If we include an out-of-plane magnetic field H, a LL spectrum forms if the magnetic length
lH =

√
~/|eH| is smaller than the system size [163]. As we have shown in Sec. 3.3.1, for a

finite particle-hole asymmetry D, one obtains

Esn6=0 = −sgn(eH)β/2−nδ + s εn , (3.181)
E0 = sgn(eH) (m− β/2)−δ/2 . (3.182)

Here, we defined α̃=
√

2A/lH , β=2B/l2H , δ=2D/l2H , and

εn =
√
α̃2n+ (m− nβ − sgn(eH)δ/2)2 with n ∈ N+. (3.183)

As shown in Eq. (3.146a), H renormalizes the zero-field Chern number CCI in Eq. (3.177)
to

CCI(H) =
[
sgn

(
m−B/l2H

)
+ sgn (B)

]
/2 . (3.184)

Hence, a magnetic field counteracts the parity anomaly related contribution to the Chern
number, Eq. (3.184), which survives the parity symmetric limit m,B,H → 0. In particular,
the magnetic field closes the Dirac mass gap at Hcrit =sgn(eH)m/B [cf. Eq. (3.98)]. Beyond
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this critical magnetic field the parity anomaly vanishes. The parity anomaly of a single
Chern insulator is a zero magnetic field effect. It is directly related to the parity breaking
elements of the zero-field Hamiltonian in Eq. (3.176) and its band-structure in Fig. 3.17. In
quantizing magnetic fields, the Chern number of each LL only results from the magnetic
field as it only depends on the magnetic length lH . Nevertheless, the parity anomaly still has
significant consequences in magnetic fields. Namely, it defines the Chern number in the Dirac
mass gap, Eq. (3.184), resulting from the spectral asymmetry of the entire LL spectrum. In
particular this has been shown and discussed in Sec. 3.3. Since for |H| > |Hcrit|, the spectral
asymmetry vanishes, there are no measurable consequences of the parity anomaly beyond
this value. In what follows, we are going to study finite temperature and density effects on
the parity anomaly induced transport by calculating the Hall conductivity in zero, as well as
in finite out-of-plane magnetic fields.

3.4.2 Zero Magnetic Field
In what follows, we calculate the finite temperature Hall conductivity σxy corresponding to
a particle-hole symmetric Chern insulator at zero magnetic field. As we have extensively
discussed in Sec. 3.4.1, this parity-odd and non-dissipative transport coefficient is directly
related to the parity anomaly in 2+1 space-time dimensions as it does not vanish in the
parity symmetric limit m,B → 0±. In our calculation, we disentangle topological from
non-topological contributions to σxy, the latter originating from thermal effects. For D= 0,
the finite temperature Hall conductivity of the Chern insulator in Eq. (3.176) is given by
[cf. Eqs. (3.19) and (3.71)]

σxy(T, µ) = e2

h

∞∫
0

dα A
2(m+Bα) [fv(T, µ)−fc(T, µ)]

4(A2α+ (m−Bα)2)3/2 , (3.185)

where fc,v(T, µ) = [e(Es=±(α)−µ)/(kBT ) + 1]−1 are the conduction and valence band Fermi
functions [60]. This result is obtained by calculating the vacuum polarization operator or,
analogously, the current-current correlation function, as it has been done in Sec. 3.2.2. In
the language of quantum field theory, this corresponds to the evaluation of the one-loop
Feynman diagram in Fig. 3.6(a), whereas in the solid-state community Eq. (3.185) results
from the Kubo-formalism. In order to disentangle topological from thermal contributions to
σxy, we use that

fv(T, µ) = 1− Θ(−E) e(E−µ)/(kBT )

e(E−µ)/(kBT ) + 1
, (3.186)

where E(α) encodes the entire spectrum and Θ is the Heaviside step function. With this
identity, Eq. (3.185) decomposes into two building blocks,

σxy(T, µ) = σ0
xy − σ1

xy(T, µ) , (3.187)

with

σ0
xy = e2

2h [sgn(m) + sgn(B)] , (3.188)

and

σ1
xy(T, µ) = e2

h

∫
dα A

2(m+Bα) sgn(E)
4πE3

( Θ(E)
e(E−µ)/(kBT ) + 1

+ Θ(−E)
e−(E−µ)/(kBT ) + 1

)
. (3.189)
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Notice, that due to the parity anomaly, neither Eq. (3.188) nor Eq. (3.189) necessarily vanishes
in the parity-symmetric limit m,B → 0. Equation (3.188) encodes the topological part of
the Hall conductivity. In Eq. (3.19), we have shown that this contribution can be interpreted
as a winding number. In contrast, Eq. (3.189) defines the corrections originating from a
finite temperature and chemical potential. These non-topological and thus non-quantized
corrections are based on particle-hole excitations in the conduction and in the valence band,
respectively. To solve Eq. (3.189), we use the assumption of a particle-hole symmetric Chern
insulator with D=0. In particular, this implies

σ1
xy(T, µ) = σcorr

xy (T, µ) + σcorr
xy (T,−µ) . (3.190)

In order to determine σcorr
xy (T, µ) in the energy space, we need to solve Eq. (3.178) for α. Due

to the possible camel-back structure, this leads to the two solutions

α± = αmin ±
√
E2 −∆2

|B|
with dα±

dE = ± E

|B|
√
E2 −∆2

. (3.191)

With these identities, we in particular find the correction

σcorr
xy (T, µ) = e2

2hΘ[αmin]

√
m2∫
|∆|

A2 + 2|B|∆2
√
E2 −∆2

BE2 (e(E−µ)/T + 1
) dE + e2

4h

∞∫
√
m2

A2 + 2|B|∆2
√
E2 −∆2

BE2 (e(E−µ)/T + 1
) dE .

(3.192)

While in Eq. (3.192) the second term captures the correction from a monotonic band-
structure, the first term encodes a possible camel-back correction. For 4mB = A2 with
∆=0, σcorr

xy (T, µ) reduces to

σcorr
xy (T, µ) = me2

h

∞∫
√
m2

A2

E2 (e(E−µ)/(kBT )+1
) dE , (3.193)

which is twice the QED2+1 result with B = 0. Analogously to Eq. (3.188), the Newtonian
mass provides a factor of two to the thermal corrections of the QED2+1 conductivity. For the
solution in Eq. (3.193), we can define the corrections in terms of the Gamma function Γ(x)
and the reduced Fermi-Dirac integral

Fj(x, b) = 1
Γ(j + 1)

∞∫
b

dt tj

et−x + 1 . (3.194)

In total, this leads to

σ1
xy(T, µ) = e2

h
∑
s=±

A2 Γ(−1)F−2
(
sµ

kBT
, |m|kBT

)
kBT

kBT�|m|= e2

h
A2 Γ

(
−1, |m|kBT

)
kBT

. (3.195)

In Eq. (3.195), we approximate the result for low temperatures in comparison to the gap and
for a vanishing chemical potential. Moreover, Γ(s, b) is the incomplete Gamma function

Γ(s, b) =
∫ ∞
b

dt ts−1e−t . (3.196)

The general correction in Eq. (3.192) cannot be expressed via the integral functions above
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since ∆ 6=0. In Fig. 3.18, we plot the functional dependence of σxy(T, µ) for different choices
of m and B. While increasing the Dirac mass always counteracts the temperature, increasing
B enhances temperature effects in the topologically nontrivial phase. As discussed below
Eq. (3.179), this originates from the property that B decreases the camel-back gap. Thus,
both masses contribute equally to the topological part of the Hall conductivity in Eq. (3.188),
while they counteract each other in the thermal corrections, Eq. (3.189), for m/B > 0.
Notice, that even in the topologically trivial phase m/B < 0 the system has a finite Hall
conductivity in the Dirac mass gap [cf. Figs. 3.18(c) and (d)]. This is also directly related to
the parity anomaly since it arises from the broken parity symmetry of the band-structure,
which is independent of sgn(m/B). However, in the topologically trivial phase the Newtonian
mass cannot generate a camel-back structure. In this case both, the Dirac and the Newto-
nian mass term counteract the finite temperature broadening of the Fermi-Dirac distribution.
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Figure 3.18: Finite temperature Hall conductivity of a Chern insulator with A = 1 and
D = 0. In (a) and (c), we vary the Dirac mass while B = ±0.1, respectively. In (b) and
(d), we vary the Newtonian mass for m = 1. In all sub-figures we consider zero chemical
potential. Sub-figures (a) and (b) correspond to the topologically non-trivial regime, while
sub-figures (c) and (d) correspond to the topologically trivial regime. The figure is reprinted
from Ref. [P5] with permission from the APS.

3.4.3 Finite Magnetic Fields
Having analyzed a particle-hole symmetric Chern insulator at zero magnetic field, we now
include a particle-hole asymmetry and an out-of-plane magnetic field H, where the latter
gives rise to the LL spectrum in Eq. (3.181). As we have shown in Sec. 3.3.2, the Hall
conductivity can be calculated by means of Streda’s formula via the expectation value of the
charge operator 〈N〉T,µ [36, 106]. In terms of N0 [cf. Eq. (3.120)] and the spectral asymmetry
ηH [cf. Eq. (3.121)] Eq. (3.119) in particular implies

σxy(T, µ) = −∂〈eN〉T,µ
∂H

= e
2
∂ηH
∂H
− ∂〈eN0〉

∂H
. (3.197)
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Here, Ez = −mD/B is the charge neutrality point, and, according to Eq. (3.126), one
obtains

ηH =
∑
n

sgn(En−Ez) = −eH
h [sgn(m−β/2) + sgn(B)] , (3.198)

〈N0〉 =
∑
n

sgn(En−Ez)
[

Θ(En−Ez)

e
En−µ
kBT +1

+ Θ(Ez − En)

e−
En−µ
kBT +1

]
.

By definition, the spectral asymmetry counts the difference in the number of conduction
and valence band states. Therefore, as long as the band-structure is not changed, it is
temperature and chemical potential independent and solely carries the information of the
topological contribution of the parity anomaly to σxy in magnetic fields. This enables the
connection between the Hall conductivity and the parity anomaly even at finite magnetic
fields, as discussed in Sec. 3.3. In contrast, 〈N0〉 encodes the thermal LL response, as it
defines the thermal occupation of the valence and the conduction band. Due to the associated
flat dispersion relation, this response entirely originates from the magnetic field topology and
no more from the parity anomaly. All LLs with n∈N+ come in pairs. With the degeneracy
|eH|/h, their contribution to the charge operator is given by

〈N0〉n6=0 = |eH|h
∑

n6=0,s=±

s

e
s(Esn−µ)

kBT + 1
. (3.199)

Additionally to this conventional LL response for finite µ and T , the zero LL also needs to
compensate its contribution to ηH outside of the Dirac mass gap. In particular, it needs to
cancel the term ∝ sgn(m−β/2) in Eq. (3.198) for |µ+ δ/2|> |m−β/2| [cf. Eq. (3.145)]. Since
the zero LL can either be part of the conduction or of the valence band, we can simplify its
contribution to 〈N0〉. By using the properties of the hyperbolic tangent, we find for the zero
LL with n = 0

〈N0〉0 = −|eH|sgn(E0−Ez)
2h

[
Θ(E0−Ez)

[
tanh

(
E0−µ
2kBT

)
−1
]

Θ(Ez−E0)
[
tanh

(
E0−µ
2kBT

)
+1
]]
.

(3.200)

This expression can be simplified further via the identities

sgn(E0 − Ez)=sgn(E0 + δ/2)=sgn(eH) sgn(m−β/2) , (3.201)
Θ(E0 − Ez)−Θ(−E0 + Ez) = sgn(E0 − Ez) , (3.202)
Θ(E0 − Ez) + Θ(−E0 + Ez) = 1 . (3.203)

Eventually, this implies the zero LL contribution

〈N0〉0 = |eH|2h

[
sgn(eH) sgn(m−β/2)−tanh

(
E0−µ
2kBT

)]
, (3.204)

which reduces for T → 0 and µ̄ = µ+D/l2H to Eq. (3.146b)

〈N0〉0 = |eH|2h Θ(|µ̄|−|m−β/2|) [ sgn(eH) sgn(m−β/2) + sgn(µ̄) ] . (3.205)

For T =0, the zero LL contribution to ηH clearly gets compensated outside of the Dirac mass
gap. As expected, finite temperature effects soften this property. Let us briefly comment on
how to derive Eq. (3.205) from Eq. (3.204). In the zero temperature limit, the hyperbolic
tangent in Eq. (3.205) becomes a sign-function, limT→0 tanh(x/T ) = sgn(x). Due to this
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Chapter 3 Consequences of the Parity Anomaly in Condensed Matter Systems

property, we need to distinguish two cases. The chemical potential is either located (i) inside
or (ii) outside of the Dirac mass gap:

(i) |µ+ δ/2| < |m− β/2| , (3.206)
(ii) |µ+ δ/2| > |m− β/2| . (3.207)

For case (i), the hyperbolic tangent in Eq. (3.205) reduces to sgn(eH)sgn(m−β/2) and con-
sequently leads to 〈N0〉0 = 0. Instead, for case (ii), it reduces to sgn(µ+ δ/2), eventually
implying Eq. (3.205). While the first, temperature independent term in Eq. (3.205) describes
the asymmetry of the zero LL with respect to zero energy, the second term encodes its
temperature-dependent response. This term ensures that at T = 0 the zero LL only con-
tributes outside of the Dirac mass gap, exactly compensating its contribution to the spectral
asymmetry. As expected, this property becomes softened by finite temperature effects.
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Figure 3.19: Finite temperature Hall conductivity of a Chern insulator in a magnetic field
H=3T with: A=1, m=−1, B=−0.1, and D=−0.05. The response of each valence (blue)
and conduction band (red) LL is shown separately. The zero LL response is illustrated in
black, the parity anomaly related contribution is depicted in green. The combined signal
is shown in orange. Dashed lines correspond to kBT = 0, solid lines are associated to
kBT = 0.01. The Dirac mass gap is shown in grey. The figure is reprinted from Ref. [P5]
with permission from the APS.

In Fig. 3.19, we used Eq. (3.197) to connect the charge operator to σxy and plotted the Hall
conductivity corresponding to the parity anomaly and to each LL, separately. Moreover, we
show the entire signal as a function of the chemical potential. While the Hall conductivity
contribution related to the parity anomaly is T and µ independent, each LL comes along with
an exponentially suppressed temperature broadening. Consequently, all LLs contribute to the
Hall conductivity in the Dirac mass gap. This renormalizes the zero temperature violation
of the Onsager relationa, as it has been discussed below Eq. (3.146). Let us emphasize that
the Hall plateau originating from the parity anomaly is much more robust than LL plateaus

aAt T = 0, the only contribution to the Hall conductivity in the Dirac mass gap is given by the parity
anomaly in terms of the spectral asymmetry ηH [cf. Eq. (3.197)]. Due to Eq. (3.198) this contribution
clearly violates the Onsager relation defined as σxy(−H) = −σxy(H). In contrast, this identity is fulfilled
by any (thermal) LL contribution.
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with respect to finite temperature effects. In the Dirac mass gap all LL contributions to the
Hall conductivity are exponentially suppressed. Due to the lack of a zero-LL partner, the
parity anomaly response is approximately unaltered even beyond this gap, until the chemical
potential comes close to the n= 1 conduction or valence band LL, depending on the sign of
the magnetic field. Quantitatively, this means

|E+
1 − E0| > |E±n+1 − E

±
n | ∀n ∈ N+ , (3.208)

assuming that the zero-LL is part of the valence band [cf. Fig. 3.19]. Therefore, finite temper-
ature effects firstly smear out the LL steps before they eventually prevent any quantization
of the finite temperature Hall conductivity.

Let us end this section by emphasizing that an extensive summary of the results which we
have obtained within the scope of this section can be found in Sec. 5.
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Chapter 4 Hydrodynamic Transport in Solid State Materials

4.1 Hydrodynamic Electron Transport
Hydrodynamic transport is a macroscopic theory which crucially relies on the conservation
laws for the particle density, the energy-, as well as the momentum flow. It is applicable
to any fluid in which the momentum conserving scattering length in between its microscopic
constituents defines the shortest length scale presenta. For instance, it can be used to describe
the flow of water through a pipe, as the H2O molecules mostly collide with each other and
only rarely interact with the boundaries of the pipe. Due to its general assumptions, the
theory of hydrodynamics is also applicable to condensed matter systems. If the electron-
electron scattering length is the shortest length scale present, the hydrodynamic transport
theory can be used to derive the charge current in response to an applied perturbation which
only varies slowly in space and time [81]. Essentially, the hydrodynamic transport theory
is applicable to both, weakly- as well as strongly interacting solid state systems, as long as
electron-electron scattering processes dominate [182].

4.1.1 Characteristic Length Scales
In what follows, we discuss the hydrodynamic regime in a solid state material by analyzing
the different length scales present. Let us consider a two-dimensional electron liquid which is
confined to a rectangular channel geometry of width W and length L�W . Since collisions
with impurities as well as with thermally excited phonons are momentum non-conserving,
the impurity and phonon mean free path limp and lph together define the bulk momentum
relaxing length scale

lmr ≡ (l−1
imp + l−1

ph )−1 . (4.1)

In the hydrodynamic regime, this length scale needs to be much larger than the momentum
conserving electron-electron mean free path lee � lmr. The hydrodynamic transport theory
assumes the existence of a local thermal equilibrium. Since the length scale of thermaliza-
tion is defined by lee, another requirement for the applicability of hydrodynamics is that
the electron-electron mean free path is much shorter than the thermal fluctuations of any
thermodynamic state variable V. Quantitatively, this means that

lee � ltfl ≡
(
∂µV
|V|

)−1
with ∂µ = (∂t/vF, ∂i) . (4.2)

Here, vF is the Fermi velocity of the electron liquid. In general, the interplay between lee, lmr
and W defines the three different transport regimes which are listed in Tab. 4.1 [183].

Condition Dominating Scattering Process Transport Regime

lmr �W, lee Impurity or Phonon Ohmic

W � lee, lmr Boundary/Wall Ballistic

lee �W � lmr Electron-Electron Hydrodynamic

Table 4.1: Transport regimes for a different order of scattering length scales [86].

In the ohmic regime, the most prominent scattering process is scattering from impurities
or phonons. Electron-electron and boundary scattering processes can be neglected and the

aWhile this statement is rigorously true for a continuous theory, in a solid-state system the underlying lattice
spacing defines a consistent lower bound for the momentum conserving scattering length.
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4.1 Hydrodynamic Electron Transport

velocity profile of the fluid is approximately flat. Instead, in the ballistic regime electrons
mainly scatter at the channel boundaries. However, if the electron-electron mean free path is
the shortest length scale present the fluid behaves hydrodynamically, and it is characterized
by a Poiseuille-like velocity profile [80].

If one applies an out-of-plane magnetic field to the channel geometry another characteristic
length scale enters our analysis, namely the cyclotron radius rc. As long as the electron-
electron mean free path defines the shortest length scale present - in particular satisfying
lee � rc -, the electron liquid remains in the hydrodynamic regime. Hence, a hydrodynamic
description of a condensed matter system is only justified for weak out-of-plane magnetic
fields. Roughly speaking, it is required that electrons collide several times with each other be-
fore they would have completed their corresponding non-interacting cyclotron orbit [184, 185].

4.1.2 Constitutive Relation and Conservation Equations
As stated above, hydrodynamic transport is a macroscopic long-wavelength and small fre-
quency theory, which only relies on the conservation of mass, energy and momentum. In
a relativistic notation, these conserved quantities can be encoded in the particle number
current density Nµ, as well as in the energy-momentum tensor Tµν . Here and in the follow-
ing, Greek indices correspond to the 2+1 dimensional space-time coordinates µ = {0, 1, 2},
whereas Roman indices solely correspond to the two-dimensional space indices i = {1, 2}.
Moreover, we work in a flat 2+1 dimensional Minkowski space, characterized by the metric
tensor gµν = diag(−1, 1, 1). In a relativistic notation, the conservation of mass, energy, and
momentum is given by the two conservation equations (in the absence of electromagnetic
fields):

∂µN
µ = 0 and ∂µT

µν = 0 . (4.3)

In what follows, we derive explicit forms of the particle number current density as well as
for the energy-momentum tensor, and derive from these expressions the relativistic and non-
relativistic hydrodynamic equations of motion. Our subsequent discussion will roughly follow
the references [186], [80] and [187]

The Ideal Non-Dissipative Fluid

Let us consider for the moment an ideal rotational- and parity invariant fluid, characterized
by the fluid velocity

uµ = Γ(vF,v) with Γ = 1√
1− v2/v2

F

, (4.4)

which is a time-like vector of norm uµu
µ = −v2

F. As a relativistic three-vector in 2+1 space-
time dimensions, the particle current density is in general given by ([Nµ]SI = m−1s−1)

Nµ = (N0,N) = (vFn,N) , (4.5)

where N is the spatial particle current density and n is the particle density. In the local
rest frame of an ideal or analogously non-dissipitive fluid, defined by v|LR = 0 and thus by
uµ|LR = (vF, 0), the particle current density is given by

Nµ|LR = (vFn, 0) = nuµ|LR . (4.6)
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Chapter 4 Hydrodynamic Transport in Solid State Materials

In any reference frame related by a Lorentz transformation, the particle current density is in
general given by

Nµ = nuµ . (4.7)

The energy-momentum tensor Tµν encodes the densities and currents of energy and momen-
tum. In particular, T 00 defines the energy density ε, vFT

0i defines the i-th component of the
energy flux density jE, v−1

F T i0 defines the i-th component of the momentum density np and
T ij is the stress or analogously momentum flux-density tensor. More precisely, T ij encodes
how much momentum in the ei-direction threats through a two-dimensional surface with a
normal vector which points in ej-direction. In general, one defines [187]

Tµν =
(

ε v−1
F jE

vFnp Πij

)
(4.8)

with SI units

[Tµν ]SI = J
m2 = kg m2

s2 m2 = kg
s2 . (4.9)

For isotropic space-times the energy-momentum tensor is symmetric

Tµν = T νµ , (4.10)

which implies that v−1
F jE = vFnp

a. In the local rest frame of an ideal fluid, the energy current
density vanishes and the energy-momentum tensor becomes diagonal:

Tµν |LR =
(
ε 0
0 Pδij

)
= ε+ P

v2
F

uµuν |LR + Pgµν . (4.11)

Here, P is the (isotropic) pressure. Analogously to the particle current, one can Lorentz
transform this expression to any reference frame, obtaining the general expression

Tµν = ε

v2
F
uµuν + P∆µν , (4.12)

where we defined the projection operator

∆µν = gµν + uµuν

v2
F

. (4.13)

In particular, this operator projects to the space orthogonal to the fluid velocity uµ, implying
the identities

uµ∆µν = 0 ∧ ∆µ
ρ∆ρ

ν = ∆µν . (4.14)

The Dissipative Fluid - First Order Gradient Expansion

So far, we assumed an ideal non-dissipative fluid. Beyond this academic limit, the particle
current density as well as the energy momentum tensor acquire dissipative corrections. For

aWe agree with the presented form of the energy-momentum tensor in Eq. (4.8) for isotropic systems. If
the energy-momentum tensor is not symmetric the off-diagonal entries in Eq. (4.8) should be interchanged
in order to consistently interpret the energy-momentum conservation equation. In the remaining part of
this thesis we stick to the definition in Eq. (4.8) to enable an easy comparison of our results to the recent
literature.
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small thermal fluctuations it is in general possible to expand the particle current density as
well as the energy-momentum tensor in terms of a small parameter κ which characterizes
the deviation from an ideal fluid. Since thermalization is driven by lee, and since thermal
fluctuations are encoded by ltfl [cf. Eq.(4.2)], this small expansion parameter can be naturally
defined via

κ ≡ lee/ltfl � 1 . (4.15)

In what follows, we expand the particle current density as well as the energy-momentum
tensor up to first order in κ, which introduces the corrections δNµ and δTµν :

Nµ = Nµ
0 + δNµ, Tµν = Tµν0 + δTµν . (4.16)

For an ideal fluid, the particle current density and the energy density always move in the same
direction. This property changes as soon as one includes dissipative effects, which makes the
fluid velocity uµ an ambiguous quantity. On the one hand, uµ can be chosen such that it
describes the flow of the total energy flux throughout the system. This choice is the so-called
Landau frame with Tµνuν,Landau = Tµν0 uν,Landau = −εLandauu

µ. On the other hand, uµ can
be chosen such that it describes the total particle flow throughout the system, defining the
so-called Eckart frame via Nµ

Eckartuµ,Eckart = −v2
FnEckart. These frames essentially can be

realized by choosing [186]

uµEckart = Nµ

√
−NνNν

or uµLandau = Tµνu
ν
Landau√

−uλLandauT
ρ
λ TρσuσLandau

. (4.17)

Since both of these frames are physically equivalent we solely consider the Landau frame
within this work and neglect the corresponding subscript in the following. One crucial prop-
erty of the Landau frame is that within this frame-choice the heat current vanishes, which
implies that

uµδT
µν = 0 . (4.18)

Moreover, we assume that N0 is proportional to the particle density in the lab-frame of our
system, n, which implies uµδNµ = 0. The hydrodynamic assumption of a local thermody-
namic equilibrium implies the existence of a local entropy current density sµ whose divergence
is non-zero (second law of thermodynamics),

∂µs
µ ≥ 0 . (4.19)

This property can be used to derive the most general forms of δNµ and δTµν in the first
order gradient expansion of the constitutive relations in Eq. (4.16) [80]. In order to calculate
these tensor combinations, we will make use of the energy-momentum conservation equation
in Eq. (4.3), which implies

0 = uµ∂νT
µν = −uµ∂µε− (ε+ P )∂µuµ + uµ∂νδT

µν (4.20)
= −uµ∂µε− (ε+ P )∂µuµ − δTµν∂µuν , (4.21)

where we made use of

uν∂µδT
µν = ∂µ (uνδTµν)︸ ︷︷ ︸

=0 cf. Eq. (4.18)

− δTµν∂µuν = −δTµν∂µuν . (4.22)
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As a next step in our calculation we make use of the Gibbs-Duhem relation for a fixed area
dV = 0

ε+ P = µn+ Ts ∧ dε = Tds+ µdn , (4.23)

where µ(r) is the local chemical potential and T (r) is the local temperature. Inserting this
identity in Eq. (4.21) implies the equality

0 = −uµ∂µε− (ε+ P )∂µuµ − δTµν∂µuν = −µuµ∂µn− Tuµ∂µs− (µn+ Ts)∂µuµ − δTµν∂µuν
= −µ ∂µ(nuµ)︸ ︷︷ ︸

=−∂µδNµ cf. Eq. (4.3)

− T∂µ(suµ)− δTµν∂µuν (4.24)

= µ∂µδN
µ − T∂µ(suµ)− δTµν∂µuν .

This identity can be rewritten in the intuitive form

∂µs
µ ≡ ∂µ

(
suµ − µ

T
δNµ

)
= − 1

T
δTµν∂µuν − δNµ∂µ

µ

T
. (4.25)

The left hand side of this equation defines the divergence of the entropy current density sµ
up to first order in the hydrodynamic derivative expansion. It consists of the ideal convective
term suµ and a dissipative particle current density correction ∝ δNµ [80, 186]. In order to
ensure that the entropy current density has a positive divergence, the first order corrections to
Nµ

0 and Tµν0 in general need to satisfy the following functional dependencies [188, 189]

δNµ = −σQ
e2 T∆µν∂ν

µ

T
∧ δTµν = −ηΣµν − ζ∂αuα∆µν , (4.26)

where we introduced the traceless disspiative shear stress tensor

Σµν = ∆µρ∆νσ (∂ρuσ + ∂σuρ − gρσ∂αuα) . (4.27)

Here, the positive constants σQ ≥ 0, η ≥ 0, and ζ ≥ 0 define the quantum-critical conductiv-
ity, the shear viscosity and the bulk viscosity, respectively.

Coupling the hydrodynamic system to an electromagnetic field Aµ mainly has two effects.
On the one hand, the electromagnetic field modifies the conservation equation of the energy-
momentum tensor

∂νT
µν = eFµνNν , (4.28)

where ([Fµν ]SI = kg/(Cs))

Fµν = ∂µAν − ∂νAµ =

 0 (c/vF)Ex/c (c/vF)Ey/c
−(c/vF)Ex/c 0 B
−(c/vF)Ey/c −B 0


=

 0 Ex/vF Ey/vF
−Ex/vF 0 B
−Ey/vF −B 0

 (4.29)

is the anti-symmetric ’improved’ field-strength tensor [187, 188], consisting of the electric
field components Ei and the out-of-plane magnetic field strength B. The prefactor (c/vF),
where c is the speed of light in the medium, originates from the redefinition of the space-time
coordinates in terms of the ’causal’ (Fermi) velocity vF [cf. Eq.(4.2)].
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On the other hand, the electromagnetic field enters the dissipative particle current density
correction in the first order gradient expansion [189]

δNµ = σQ
e

(
Fµνuν −

1
eT∆µν∂ν

µ

T

)
≡ σQ

e V µ , (4.30)

with the electric field Eµ = Fµνuν and magentic field B = −1
2ε
µνρuµFνρ/vF in the fluid frame.

Before we also allow for parity breaking terms in the first order gradient expansion, let us
emphasize that one can naturally include impurity scattering in our analysis by adding a
phenomenological correction to the right hand side of the energy-momentum conservation
equation (4.28) [187]:

∂νT
µν = eFµνNν + 1

limp

(
δµν + uµuν

v2
F

)
T νγ

uγ
vF

, (4.31)

where limp is the impurity mean free path. The phenomenological scattering term in Eq. (4.31)
is constructed such that in the laboratory frame impurity scattering only relaxes the momen-
tum density v−1

F T i0 [188].

The Breakdown of Parity Symmetry

Next, let us analyze the concept of parity breaking hydrodynamics in 2+1 space-time dimen-
sions. The parity can be broken extrinsically for instance by an applied out-of-plane magnetic
field, or intrinsically by adding a parity-odd (mass) term to the Hamiltonian which describes
the electron fluid. Within the scope of this thesis we are mainly interested in two different
parity-breaking transport coefficients:

(i) The quantum anomalous Hall conductivity σQAH ∈ R, which we already studied in the
previous chapter from a quantum field theoretic perspective, and

(ii) the Hall viscosity ηH ∈ R [84] which is the analogon of the electrical Hall conductivity
in the scope of (transverse) momentum transport [190].

Both of these non-dissipative transport coefficients arise in the constitutive relations for
parity-breaking hydrodynamics in 2+1 space-time dimensionsa [189]

Nµ = nuµ + σQ
e V µ + σQAH

e V̄ µ (4.32)

Tµν = ε

v2
F
uµuν + (P − ζ ∂αuα) ∆µν − ηΣµν − ηHΣ̄µν . (4.33)

Here, we included the dual forms

V̄ µ = εµνρ
uν
vF
Vρ ∧ Σ̄µν = 1

2vF

(
εµαρuαΣ ν

ρ + εναρuαΣ µ
ρ

)
. (4.34)

The Kubo formulas for the bulk-, shear-, and Hall viscosity, as well as for the quantum
critical- and quantum anomalous Hall conductivity are in particular given by the following
relations [189]

ζ = lim
ω→0

1
4ωδijδkl ImGij,klR (ω,p=0) , (4.35)

η = lim
ω→0

1
8ω (δikδjl − εikεjl) ImGij,klR (ω,p=0) , (4.36)

aIn the scope of our analysis we neglect contributions from parity-odd thermodynamic transport coefficients.
Their origin and physical implications are in particular discussed within the references [189] and [191].
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ηH = lim
ω→0

1
4ωδikεjl ImGij,klR (ω,p=0) , (4.37)

σQ = lim
ω→0

1
2ωδij ImGi,jR (ω,p=0) , (4.38)

σQAH = lim
ω→0

1
2ωεij ImGi,jR (ω,p=0) . (4.39)

Here, εµνρ defines the three-dimensional Levi-Civita symbol with ε012 = 1, εij = ε0ij defines
the two-dimensional Levi-Civita symbol, and GR(ω,p) denotes the frequency ω and spatial
momentum p dependent retarded current - current, or energy momentum - energy momentum
correlation function in thermal equilibrium

Gµ,νR = e2 〈NµNν〉R, Gµν,ρσR = 〈TµνT ρσ〉R . (4.40)

The Non-Relativistic Limit

In the previous subsection we have derived general expressions of the energy-momentum
tensor and the particle current density in the context of relativistic hydrodynamics. If the
fluid velocity v of the hydrodynamic system considered is much smaller than its ’causal’
(Fermi) velocity vF, the constitutive relations (4.32), as well as the conservation equations
(4.3) and (4.28) approximate their non-relativistic expressions. It is the goal of the present
subsection to derive the hydrodynamic constitutive relations and conservation equations in
the non-relativistic limit

v = |v| � vF . (4.41)

We start our calculation by separating the non-relativistic part from the rest energy contri-
bution to the entire energy density

ε = nmv2
F + εnr . (4.42)

Moreover, we boost the rest-energy density via a Lorentz transformation in order to derive
hydrodynamic expressions in terms of the (co-)moving rest-energy density

ρv2
F = Γnmv2

F . (4.43)

In order to obtain the non-relativistic particle number conservation and Navier-Stokes equa-
tions, we need to Taylor expand the energy-momentum tensor as well as the particle current
density in the constitutive relations Eq. (4.32) in terms of the small expansion parameter
v/vF � 1. Therefore, we particularly need the following Taylor expansions of the space-time
dependent Lorentz factor Γ, which we introduced in Eq. (4.4):

Γ = 1 + 1
2

(
v

vF

)2
+ 3

8

(
v

vF

)4
+O

[(
v

vF

)6
]
, (4.44)

Γ−1 = 1− 1
2

(
v

vF

)2
− 1

8

(
v

vF

)4
+O

[(
v

vF

)6
]
, (4.45)

Γ2 = 1 +
(
v

vF

)2
+

(
v

vF

)4
+O

[(
v

vF

)6
]
, (4.46)

Γ3 = 1 + 3
2

(
v

vF

)2
+ 15

8

(
v

vF

)4
+O

[(
v

vF

)6
]
, (4.47)

∂µΓ = Γ3 vk ∂µvk
v2

F
=
(
v

vF

)2 ∂µv

v
+O

[(
v

vF

)4
]

= O
[(

v

vF

)2
]
. (4.48)
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For the corresponding Taylor expansions of the dimensionless fluid velocity ũµ ≡ uµ/vF
[cf. Eq. (4.4)], these identities imply:

ũ0ũ0 = Γ2 = 1 +
(
v

vF

)2
+O

[(
v

vF

)4
]
, ũ0ũi = Γ2 v

i

vF
= vi

vF
+ v2vi

v3
F

+O
[(

v

vF

)5
]
,

ũiũj = Γ2 vivj

v2
F

= vivj

v2
F

+O
[(

v

vF

)4
]
, ∂0ũ0 = 1

vF
∂tΓ = O

[(
v

vF

)3
]
, (4.49)

∂iũ0 = ∂iΓ = vk∂ivk
v2

F
+O

[(
v

vF

)4
]
, (4.50)

∂0ũi = 1
v2

F
∂t(Γvi) = 1

v2
F

(vi∂tΓ + Γ∂tvi) = ∂tvi
v2

F
+O

[(
v

vF

)4
]
, (4.51)

∂iũj = 1
vF
∂i(Γvj) = 1

vF
(vj∂iΓ + Γ∂ivj) = ∂ivj

vF
+O

[(
v

vF

)3
]
, (4.52)

∂µũ
µ = ∂0ũ

0 + ∂iũ
i = ∂iv

i

vF
+O

[(
v

vF

)3
]
. (4.53)

Moreover, with the metric tensor gµν = diag(−1, 1, 1), the Taylor expansion of the projection
operator ∆µν , which we defined in Eq. (4.13), yields

∆00 = ũ0ũ0 + g00 = 1 +
(
v

vF

)2
+O

[(
v

vF

)4
]
− 1 =

(
v

vF

)2
+O

[(
v

vF

)4
]
, (4.54)

∆0i = ũ0ũi = vi

vF
+O

[(
v

vF

)3
]
, (4.55)

∆ij = ũiũj + gij = vivj

v2
F

+ δij +O
[(

v

vF

)4
]
. (4.56)

With these identities we can Taylor expand the bulk viscosity term in the first order dissipative
correction to the energy-momentum tensor in Eq. (4.26). In particular, we find that

−ζ∂αuα = −vFζ∂αũ
α = −vFζ

(
∂iv

i

vF
+O

[(
v

vF

)3
])

= −ζ∂ivi +O
[(

v

vF

)2
]
, (4.57)

which implies the following bulk viscous contributions to Eq. (4.26)

−ζ∂αuα∆00 = O
[(

v

vF

)2
]
, (4.58)

−ζ∂αuα∆i0 = −ζ∂αuα∆0i = − ζ

vF
vi∂kv

k +O
[(

v

vF

)3
]
, (4.59)

−ζ∂αuα∆ij = −ζδij∂kvk +O
[(

v

vF

)2
]
. (4.60)

Next, let us Taylor expand the dissipative shear stress tensor Σµν , which we defined in
Eq. (4.27). We start our calculation by analyzing its spatial components normalized to the
Fermi velocity vF

Σij/vF = ∆iρ∆jσ (∂ρũσ + ∂σũρ − gρσ∂αũα) . (4.61)
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In particular, we need to distinguish several cases:

ρ = σ = 0 : O
[(

v

vF

)2
](
O
[(

v

vF

)3
]

+O
[(

v

vF

)3
]

+O
[(

v

vF

)])
= O

[(
v

vF

)3
]
,

ρ = 0 ∧ σ = j : O
[(

v

vF

)] (
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)3
]
,

ρ = 0 ∧ σ = l 6= j : O
[(

v

vF

)3
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)5
]
,

ρ = i ∧ σ = 0 : O
[(

v

vF

)] (
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)3
]
,

ρ = k 6= i ∧ σ = 0 : O
[(

v

vF

)3
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)5
]
,

ρ = i ∧ σ = l 6= j : O
[(

v

vF

)2
](
O
[(

v

vF

)]
+
[(

v

vF

)]
+
[(

v

vF

)])
= O

[(
v

vF

)3
]
,

ρ = k 6= i ∧ σ = j : O
[(

v

vF

)2
](
O
[(

v

vF

)]
+
[(

v

vF

)]
+
[(

v

vF

)])
= O

[(
v

vF

)3
]
,

ρ = k 6= i ∧ σ = l 6= j : O
[(

v

vF

)4
](
O
[(

v

vF

)]
+
[(

v

vF

)]
+
[(

v

vF

)])
= O

[(
v

vF

)5
]
.

The only case which significantly contributes to Σij is given by ρ= i and σ=j, implying

Σij/vF = 1
vF

(
∂ivj + ∂jvi − δij∂kvk

)
+O

[(
v

vF

)3
]
. (4.62)

Let us further understand the scaling of

Σi0/vF = ∆iρ∆0σ (∂ρũσ + ∂σũρ − gρσ∂αũα) (4.63)

in terms of the small Taylor expansion parameter v/vF. In order to derive this scaling, we
need to analyze the different cases

ρ = σ = 0 : O
[(

v

vF

)3
](
O
[(

v

vF

)3
]

+O
[(

v

vF

)3
]

+O
[(

v

vF

)])
= O

[(
v

vF

)4
]
,

ρ = i ∧ σ = 0 : O
[(

v

vF

)2
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)4
]
,

ρ = l 6= i ∧ σ = 0 : O
[(

v

vF

)4
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)6
]
,

ρ = 0 ∧ σ = k : O
[(

v

vF

)2
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)4
]
,

ρ = l 6= i ∧ σ = k : O
[(

v

vF

)3
](
O
[(

v

vF

)]
+O

[(
v

vF

)]
+O

[(
v

vF

)])
= O

[(
v

vF

)4
]
.

The only case which significantly contributes to Σi0 is given by ρ= i and σ=k, implying

Σi0/vF = vk

v2
F

(
∂ivk + ∂kv

i − δik∂nvn
)

+O
[(

v

vF

)4
]
. (4.64)
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Last but not least, let us understand the scaling behavior of

Σ00/vF = ∆0ρ∆0σ (∂ρũσ + ∂σũρ − gρσ∂αũα) (4.65)

in terms of the small Taylor expansion parameter v/vF. In order to derive this scaling, we
again need to analyze different cases

ρ = σ = 0 : O
[(

v

vF

)4
](
O
[(

v

vF

)3
]

+O
[(

v

vF

)3
]

+O
[(

v

vF

)])
= O

[(
v

vF

)5
]
,

ρ = 0 ∧ σ = j : O
[(

v

vF

)3
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)5
]
,

ρ = i ∧ σ = 0 : O
[(

v

vF

)3
](
O
[(

v

vF

)2
]

+O
[(

v

vF

)2
]

+ 0
)

= O
[(

v

vF

)5
]
,

ρ = i ∧ σ = j : O
[(

v

vF

)2
](
O
[(

v

vF

)]
+O

[(
v

vF

)]
+O

[(
v

vF

)])
= O

[(
v

vF

)3
]
.

Hence, we found that

Σ00/vF = O
[(

v

vF

)3
]
. (4.66)

With the scalings in Eqs. (4.62), (4.64) and (4.66), we finally can calculate the overall con-
tributions to the dissipative part of the energy momentum tensor in Eq. (4.26):

−ηΣij = −η
(
∂ivj + ∂jvi − δij∂kvk

)
+O

[(
v

vF

)2
]
, (4.67)

−ηΣi0 = −ηΣ0i = −η v
k

vF

(
∂ivk + ∂kv

i − δik∂nvn
)

+O
[(

v

vF

)3
]
, (4.68)

−ηΣ00 = −vF ηO
[(

v

vF

)3
]

= O
[(

v

vF

)2
]
. (4.69)

In particular, these identities directly imply the scaling of the Hall viscous contribution to the
first order correction of the energy-momentum tensor in terms of the expansion parameter
v/vF [cf. Eq. (4.34)]:

−ηHΣ̄ij = −ηH
2
(
εiαρũαΣ j

ρ + εjαρũαΣ i
ρ

)
= −ηH

2
(
εi0kũ0Σ j

k + εj0kũ0Σ i
k

)
+ O

[(
v

vF

)2
]

= ηH
2
(
εi0kΣ j

k + i↔ j
)

+O
[(

v

vF

)2
]

= −ηH
(
εikδjm + i↔ j

)
vkm +O

[(
v

vF

)2
]
,

−ηHΣ̄i0 = −ηH
2
(
εiαρũαΣ 0

ρ + ε0αρũαΣ i
ρ

)
= −ηH

2
(
εi0kũ0Σ 0

k + ε0jkũjΣ i
k

)
+O

[(
v

vF

)2
]

= −ηH
2

(
εik

vj
vF

Σ j
k + εjk

vj
vF

Σ i
k

)
+O

[(
v

vF

)2
]

= − ηH
2vF

vj
(
εikΣ j

k + εjkΣ i
k

)
+O

[(
v

vF

)3
]
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= −ηH
vF
vj
(
εikδjm + i↔ j

)
vkm +O

[(
v

vF

)3
]
,

−ηHΣ̄00 = −ηH
2
(
ε0αρũαΣ 0

ρ + ε0αρũαΣ 0
ρ

)
= −ηHε

0αρũαΣ 0
ρ = −ηHε

0ij ũiΣ 0
j = O

[(
v

vF

)2
]
.

where we introduced the symmetrized velocity derivative

vmn = 1
2 (∂mvn + ∂nvm) . (4.70)

Equipped with the scalings of the bulk, shear, and Hall viscous contributions to the energy
momentum tensor in terms of v/vF, we are able to perform the Taylor expansion for this
operator. In what follows, we separately expand the different components of the energy
momentum tensor, starting with the calculation of T 00:

T 00
0 = ε

v2
F
u0u0 + P∆00 (4.71)

=
(
nmv2

F + εnr
)(

1 +
(
v

vF

)2
+O

[(
v

vF

)4
])

+ P

((
v

vF

)2
+O

[(
v

vF

)4
])

= nmv2
F

(
1 +

(
v

vF

)2
)

+ εnr +O
[(

v

vF

)2
]

= Γ−1ρv2
F + Γ−1ρv2 + εnr +O

[(
v

vF

)2
]

= ρv2
F −

ρ

2v
2 + ρv2 + εnr +O

[(
v

vF

)2
]

= ρv2
F +

[
εnr + 1

2ρv
2
]

+O
[(

v

vF

)2
]
,

δT 00 = −ζ∂αuα∆00 − ηΣ00 − ηHΣ̄00 = O
[(

v

vF

)2
]
, (4.72)

T 00 = T 00
0 + δT 00 = ρv2

F +
[
εnr + 1

2ρv
2
]

+O
[(

v

vF

)2
]
. (4.73)

We are proceeding with the calculation of T i0:

T i00 = ε

v2
F
u0ui + P∆0i =

(
nmv2

F + εnr
)( vi

vF
+ v2 vi

v3
F

+O
[(

v

vF

)5
])

+ P
vi

vF
+O

[(
v

vF

)3
]

= Γ−1ρv2
F

(
vi

vF
+ v2 vi

v3
F

)
+ (εnr + P ) v

i

vF
+O

[(
v

vF

)3
]

= ρvFv
i + 1

vF

(
(εnr + P ) + 1

2ρv
2
)
vi +O

[(
v

vF

)3
]

(4.74)

= ρvFv
i + 1

vF

(
wnr + 1

2ρv
2
)
vi +O

[(
v

vF

)3
]
,

δT i0 = −ζ∂αuα∆i0 − ηΣi0 − ηHΣ̄i0

= − ζ

vF
vi∂ku

k − η

vF
vj
(
∂ivj + ∂jvi − δij∂kvk

)
(4.75)

− ηH
vF
vj
(
εikδjm + i↔ j

)
vkm +O

[(
v

vF

)3
]
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= − vj
vF
δT ijnr +O

[(
v

vF

)3
]
, (4.76)

T i0 = T i00 + δT i0 = ρvFv
i + 1

vF

[(
wnr + 1

2ρv
2
)
vi − δT ijnrvj

]
+O

[(
v

vF

)3
]
, (4.77)

where wnr = εnr+P is the non-relativistic enthalpy density and we defined the non-relativistic
viscosity tensor

δT ijnr = η(∂ivj + ∂jvi − δij∂kvk)− ηH
(
εikδjm + i↔ j

)
vkm + ζδij∂kv

k . (4.78)

Last but not least, let us calculate the spatial components T ij :

T ij0 = ε

v2
F
uiuj + P∆ij =

(
nmv2

F + εnr
)

v2
F

(
vivj +O

[(
v

vF

)2
])

+ Pδij +O
[(

v

vF

)2
]

= Γ−1ρv2
F
vivj

v2
F

+ Pδij +O
[(

v

vF

)2
]

= ρvivj + Pδij +O
[(

v

vF

)2
]
, (4.79)

δT ij = −ζδij∂kvk − η
(
∂ivj + ∂jvi − δij∂kvk

)
− ηH

(
εikδjm + i↔ j

)
vkm +O

[(
v

vF

)2
]

= −δT ijnr +O
[(

v

vF

)2
]
, (4.80)

T ij = T ij0 + δT ij = ρvivj + Pδij − δT ijnr +O
[(

v

vF

)2
]
. (4.81)

In order to derive the non-relativistic equations of motion, we also need to Taylor expand the
particle current density Nµ in Eq. (4.32). Therefore, we first need to evaluate the following
identities [cf. Eq. (4.29)]:

F 0νuν = F 00u0 + F 0iui = Ei
1
vF

Γvi = 1
vF
Eivi +O

[(
v

vF

)3
]
, (4.82)

F iνuν = F i0u0 + F ijuj = Ei
1
vF

ΓvF +BεijΓvj = Ei +Bεijvj +O
[(

v

vF

)2
]
, (4.83)

∆0ν∂ν = ∆00∂0 + ∆0i∂i = vi

vF
∂i +O

[(
v

vF

)3
]
, (4.84)

∆iν∂ν = ∆i0∂0 + ∆ij∂j = δij∂j +O
[(

v

vF

)2
]
. (4.85)

In particular, these scalings imply the following contributions to the particle current density
correction δNµ:

σQ
e V 0 = σQ

e

(
F 0νuν −

T

e ∆0ν∂ν
µ

T

)
= σQ

e
vi

vF

(
Ei −

T

e ∂i
µ

T

)
+O

[(
v

vF

)3
]
, (4.86)

σQ
e V i = σQ

e

(
F iνuν −

T

e ∆iν∂ν
µ

T

)
= σQ

e

(
Ei +Bεijvj −

T

e δ
ij∂j

µ

T

)
+O

[(
v

vF

)2
]
, (4.87)
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σQAH
e V̄ 0 = σQAH

e ε0ij
ui
vF
Vj = σQAH

e ε0ij
vi
vF

(
Ej+Bεjkvk−

T

e δjk∂
k µ

T

)
+O

[(
v

vF

)2
]
, (4.88)

σQAH
e V̄ i = σQAH

e εiνρ
uν
vF
Vρ = σQAH

e

(
εi0m

u0
vF
Vm + εim0um

vF
V0

)
(4.89)

= σQAH
e εij

(
Ej +Bεjkv

k − T

e δjk∂
k µ

T

)
+O

[(
v

vF

)2
]
.

Thus, the Taylor expansion for the entire particle current density Nµ is given by

N0 = nu0 + σQ
e V 0 + σQAH

e V̄ 0 (4.90)

= ρ

m
Γ−1ΓvF + σQ

e
vi

vF

(
Ei −

T

e ∂i
µ

T

)
+ σQAH

e ε0ij
vi
vF

(
Ej +Bεjkv

k − T

e δjk∂
k µ

T

)
+O

[(
v

vF

)2
]

= ρ

m
vF + vi

evF

[
σQδ

ij
(
Ej −

T

e ∂j
µ

T

)

+ σQAHε
ij
(
Ej +Bεjkv

k − T

e δjk∂
k µ

T

)]
+O

[(
v

vF

)2
]
,

N i = nui + σQ
e V i + σQAH

e V̄ i (4.91)

= ρ

m
vi + σQ

e

(
Ei +Bεijvj −

T

e δ
ij∂j

µ

T

)
+ σQAH

e εij
(
Ej +Bεjkv

k − T

e δjk∂
k µ

T

)
+O

[(
v

vF

)2
]

= ρ

m
vi + 1

e
(
σQδ

ij + σQAHε
ij
)(

Ej +Bεjkv
k − T

e δjk∂
k µ

T

)
+O

[(
v

vF

)2
]
.

Since the above calculations have been very long, let us summarize our findings:

T 00 = v2
Fρ+

[
εnr + 1

2ρv
2
]

+O
[(

v

vF

)2
]
, (4.92)

T 0i = ρvFv
i + 1

vF

[(
wnr + 1

2ρv
2
)
vi − δT ijnrvj

]
+O

[(
v

vF

)3
]
, (4.93)

T ij = ρvivj + Pδij − δT ijnr +O
[(

v

vF

)2
]
≡ Πij

nr +O
[(

v

vF

)2
]
, (4.94)

N0 = ρvF
m

+ vi
evF

[
σQδ

ij
(
Ej −

T

e ∂j
µ

T

)
(4.95)

+ σQAHε
ij
(
Ej +Bεjkv

k − T

e δjk∂
k µ

T

)]
+O

[(
v

vF

)2
]
,

N i = ρ

m
vi + 1

e
(
σQδ

ij + σQAHε
ij
)(

Ej +Bεjkv
k − T

e δjk∂
k µ

T

)
+O

[(
v

vF

)2
]
, (4.96)

where Πij
nr is the non-relativistic stress tensor [cf. Eq. (4.8)]. With these identities, the

relativistic particle current conservation ∂µN
µ = 0 in the non-relativistic limit v/vF → 0
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reduces to

∂t

(
ρ

m

)
+ ∂i

(
ρ

m
vi + 1

e
(
σQδ

ij + σQAHε
ij
)(

Ej +Bεjkv
k − T

e δjk∂
k µ

T

))
= 0 , (4.97)

and the energy-momentum conservation ∂νT
µν = eFµνNν in Eq. (4.28) implies the non-

relativistic Navier-Stokes equations [187, 191]

∂t

(
εnr+ 1

2ρv
2
)

+ ∂ij
i
E = (4.98)

eρ
m
Eivi +

[
Ei + mv2

F
e ∂i

] [
(σQδij + σQAHεij)

(
Ej +Bεjkvk −

T

e δ
jk∂k

µ

T

)]
,

∂t(ρvi) + ∂jΠij
nr = eρ

m

(
Ei +Bεijvj

)
+Bεij (σQδjk + σQAHεjk)

(
Ek +Bεklvl −

T

e δ
kl∂l

µ

T

)
,

(4.99)

with the i-th component of the energy flux density [cf. Eq.(4.8)]

jiE =
([
εnr + 1

2ρv
2
]
vi − δT ijnrvj

)
. (4.100)

For this result, we also performed the non-relativistic limit v/vF → 0, and used the sub-
sequent expressions for the right-hand side of the energy-momentum conservation equation
[cf. Eq. (4.29)]:

eF 0νNν = eF 00N0 + eF 0iNi (4.101)

= e
vF
Ei
[
ρ

m
vi + 1

e (σQδij + σQAHεij)
(
Ej +Bεjkvk −

T

e δ
jk∂k

µ

T

)]
,

eF iνNν = eF i0N0 + eF ijNj (4.102)

= eE
i

vF

ρ

m
vF + eBεij

[
ρ

m
vj + 1

e (σQδjk + σQAHεjk)
(
Ek +Bεklvl −

T

e δ
kl∂l

µ

T

)]
= eρ
m
Ei + eBεij

[
ρ

m
vj + 1

e (σQδjk + σQAHεjk)
(
Ek +Bεklvl −

T

e δ
kl∂l

µ

T

)]
= eρ
m

(
Ei +Bεijvj

)
+Bεij (σQδjk + σQAHεjk)

(
Ek +Bεklvl −

T

e δ
kl∂l

µ

T

)
.

Moreover, we used the following identities for the space-time derivatives of the energy-
momentum tensor:

∂νT
0ν = ∂0T

00 + ∂iT
0i = vF

(
∂tρ+ ∂i(ρvi)

)
(4.103)

+ 1
vF

[
∂t

[
εnr+ 1

2ρv
2
]
+∂i

([
εnr+ 1

2ρv
2
]
vi − δT ijnrvj

)]
+O

[(
v

vF

)2
]
,

= −mvF
e ∂i

[(
σQδ

ij + σQAHε
ij
)(

Ej +Bεjkv
k − T

e δjk∂
k µ

T
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iν = ∂0T
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nr +O
[(

v

vF

)]
, (4.104)

where we used Eq. (4.97) in the second equality.
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4.1.3 Transport Coefficients
The Quantum Critical Conductivity σQ

The quantum critical conductivity σQ, which was introduced in Eq. (4.26), contributes to the
longitudinal part of the electrical conductivity tensor σ̂.
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Figure 4.1: Schematic illustration of electron-electron, hole-hole, and electron-hole scatter-
ing processes. While electron-electron and hole-hole scattering processes are charge current
conserving, electron-hole collisions can drastically change their combined current contribu-
tion. Electron- and hole momenta are encoded by pe,h and the charge currents at time ti are
denoted by J(ti). This figure is inspired by Fig. 2 of Ref. [192].

In terms of a Kubo formula, this conductivity is given by a retarded charge current-current
correlation function [cf. Eq. (4.35)]

σQ = lim
ω→0

1
2ωδij ImGi,jR (ω,p = 0) with Gi,jR = e2 〈N iN j〉R . (4.105)

The quantum critical conductivity is a dissipative transport coefficient and arises from electron-
hole scattering processes [193]. As it is schematically shown in Fig. 4.1, electron-electron
as well as hole-hole scattering processes do not change the associated charge current and
therefore do not contribute to the electrical conductivity tensor. In contrast, electron-hole
scattering can change the charge current drastically. This originates from the fact that an
electron-hole pair can carry a finite charge current even without transporting a finite momen-
tum. Consequently, the charge current related to an electron-hole pair is even able to reverse
under electron-hole scattering processes.

The Bulk Viscosity ζ

In Eq. (4.27), we introduced the so-called bulk viscosity ζ, which encodes the dissipation of
energy under an isotropic fluid expansion or compression. This mechanism is schematically
illustrated in Fig. 4.2.

According to Eq. (4.35), the bulk viscosity is defined by the retarded correlation function of
two energy momentum tensors

ζ = lim
ω→0

1
4ωδijδkl ImGij,klR (ω,p = 0) with Gij,klR = 〈T ijT kl〉R . (4.106)
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y

 

Figure 4.2: Schematic illustration of the bulk viscosity ζ, which encodes the dissipation of
energy under an isotropic fluid expansion or compression. Further explanations are given in
the text.

For an isotropic system with T xx = T yy this expression significantly simplifies to

ζ = lim
ω→0

1
ω

Im Gxx,xx
R (ω,p = 0) . (4.107)

In the scope of this thesis we are solely considering incompressible hydrodynamic fluids which
are associated to a vanishing bulk viscosity term [84].

The Shear Viscosity η

In Eq. (4.27), we have also introduced the shear viscosity η, which defines the required force
to generate a certain velocity gradient transverse to the fluid flow. Let us consider for the
moment a translationally invariant velocity profile v(y) in ex-direction through a rectangular
channel of widthW . To obtain a certain velocity gradient G⊥ ≡ ∂v/∂y, the upper (or lower)
plate which confines the two-dimensional channel needs to be accelerated by the force

F = ηG⊥W . (4.108)

This process is schematically shown in Fig. 4.3. Notice, that the shear viscosity of a strongly
interacting fluid is smaller than the one of a weakly interacting system. By definition, η is a
measure for the efficiency of momentum transfer transverse to the flow direction. It is there-
fore directly related to the fluid’s internal friction. The stronger the interactions, the smaller
is the unhindered transverse momentum transfer in the fluid, and thus the shear viscosity
itself. According to Eq. (4.108), this means that in a strongly interacting system, a smaller
force is required to generate the same velocity gradient than in a weakly interacting system
[194].

According to Eq. (4.35), the shear viscosity is, analogously to the bulk viscosity, given by the
retarded correlation function of two energy momentum tensors

η = lim
ω→0

1
8ω (δikδjl − εikεjl) Im Gij,klR (ω,p = 0) with Gij,klR = 〈T ijT kl〉R . (4.109)

For an isotropic system with T xx = T yy, the symmetry of the energy momentum tensor,
Tµν = T νµ, further implies

η = lim
ω→0

1
2ω Im Gxy,xyR (ω,p = 0) . (4.110)
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Figure 4.3: Schematic illustration of the shear viscosity η, which encodes the transverse
gradient of the fluid’s velocity profile, ∂yv, as a response to a force F, which accelerates
the upper plate of the rectangular channel geometry considered. We assumed a translation
invariant fluid flow along the ex-direction, which is associated to a shear viscosity induced
velocity gradient along the ey-direction. More explanations are given in the text.

In 2+1 space-time dimensions the shear viscosity η, which appears in the first order gradient
expansion of Tµν , has SI units

[η]SI = kg
s . (4.111)

More specifically, η defines the so-called dynamical or absolute shear viscosity. If one nor-
malizes this viscosity to the system’s mass density m∗n, one obtains the so-called kinematic
shear viscosity

ν = η

m∗n
with SI units kg

s ·
m2

kg = m2

s . (4.112)

Within the scope of this thesis we are also studying the hydrodynamic behavior of massless
Dirac systems like graphene, which do not posses a conventional mass density [cf. Sec. 4.1.5].
In such systems it is common to normalize the dynamic shear viscosity to the enthalpy density
w = ε+ P in order to define an analogous kinematic shear viscosity [187]

ν = η v2
F

ε+ P
with SI units kg

s ·
m2

s2 ·
s2

kg = m2

s . (4.113)

Here, we used that [ε+ P ]SI = kg/s2.

The Hall Viscosity ηH

In Eq. (4.35), we additionally introduced the Hall viscosity ηH via the retarded correlator of
two energy momentum tensors

ηH = lim
ω→0

1
4ωδikεjlIm Gij,klR (ω,p = 0) with Gij,klR = 〈T ijT kl〉R . (4.114)

For an isotropic system with T xx = T yy, the symmetry of the energy momentum tensor,
Tµν = T νµ, in particular implies

ηH = lim
ω→0

1
ω

Im Gxx,xy
R (ω,p = 0) . (4.115)

As the Hall viscosity is a non-dissipative, parity- and time-reversal odd transport coefficient,
these discrete symmetries are required to be broken in order to allow for an non-zero value
of ηH [189]. This can for instance be realized by applying an out-of-plane magnetic field to
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the system considered.

The physical interpretation of the Hall viscosity can be most intuitively read off from the
Navier-Stokes equations (4.98). According to these equations, the Hall viscosity gives rise to
a Hall viscous force acting transverse to the fluid flow if parity- and time reversal symmetry
are broken [195]

FηH = ηH∇2v× ez . (4.116)

Consequently, the Hall viscosity defines the amount of transverse momentum pumped across
a channel of width W as a response to a certain curvature of the velocity profile [84, 196].

The Slip Length ls

Solving the hydrodynamic conservation equations for the charge-, energy-, and momentum
flow, which are given in Eqs. (4.3) and (4.28), implies a certain form of the velocity profile. A
hydrodynamic flow in the absence of impurities or defects through a two-dimensional channel
of width W corresponds to a Poiseuille-like velocity profile which is translationally invariant
along the flow direction. Such a velocity profile is exemplary shown in Fig. 4.4.

y

x

y=0 y=W

vx(y)

l s l s

x=0

Figure 4.4: Schematic illustration of a hydrodynamic fluid flow through a two-dimensional
channel of widthW . The velocity profile is translationally invariant in longitudinal-, whereas
it is characterized by a Poiseuille-like curvature in transverse direction. Here, we allowed for
a finite slip length ls, which characterizes the fluid velocity at the system’s edges [197].

Since the velocity profile arises from the differential equations in Eqs. (4.3) and (4.28),
it requires certain boundary conditions to fix its value at the edges of the system. These
boundary conditions are encoded by the so-called slip length ls via

vx(−ls) = vx(W + ls) = 0 . (4.117)

For no-slip boundary conditions, characterized by ls = 0, the velocity profile vanishes at the
system’s edges. In contrast, for no-stress boundary conditions, characterized by ls →∞, the
velocity profile becomes flat, even though the flow is still hydrodynamic [90, 197].
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4.1.4 Two-Dimensional Electron Gases
In this section, we are going to introduce the microscopic theory of two-dimensional electron
gases and derive their corresponding macroscopic quantities, which are entering the hydro-
dynamic derivative expansion in Eq. (4.32).

The transport properties of conventional two-dimensional semiconductors in vicinity to the
insulating gap can be described by the parabolic Hamiltonian of a two-dimensional electrons
gas

Ĥ = |p̂|
2

2m∗ = ~2k̂2

2m∗ . (4.118)

Here, p̂ = ~k̂ is the two-dimensional momentum operator with |p̂|2 = p̂2 = p̂2
x + p̂2

y, k̂ is the
assosiated wave-vector, and m∗ is the effective mass parameter defining the curvature of the
parabolic dispersion

E(k) = p2

2m∗ = ~2k2

2m∗ . (4.119)

In particular, m∗ < 0 characterizes the valence-, whereasm∗ > 0 characterizes the conduction
band.

Charge-, Energy, and Pressure Densities

In general, the density of states g(E) in D-space dimensions encodes the amount of available
states per unit volume and energy. Assuming a two-dimensional isotropic material with
periodic boundary conditions quantizes the allowed momenta in both space directions, since
the solutions of the Schrödinger equation are required to be periodic at the boundaries of the
system:

kx = n1 π

Lx
, ky = n2 π

Ly
with n1, n2 ∈ Z . (4.120)

Here, Lx and Ly are the length and the width of the material, together defining its area
A = LxLy. In the corresponding two-dimensional k-space, this defines a discrete amount of
grid points per unit area (

Lx
2π

)(
Ly
2π

)
= A

4π2 . (4.121)

The equilibrium occupation of states in the k-space is in general encoded by the equilibrium
Fermi-Dirac distribution:

f0(k, µ, T ) = 1
1 + e(E(~k)−µ)/(kBT )

, (4.122)

where µ is the chemical potential. In the scope of this analysis, we are considering two-
dimensional electron gases with a positive effective mass parameter m∗, and thus a positive
dispersion relation [cf. Eq. (4.119)]. Therefore, if it is not stated otherwise, we also assume
positive chemical potentials µ > 0 in the following. At zero temperatures, the chemical
potential equals the Fermi energy EF = µ(T = 0), which defines the largest energy of an
electron with respect to the bottom edge of the (conduction) band Ec = 0. At T = 0 the
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equilibrium Fermi-Dirac distribution reduces to a Heaviside-Theta function:

f0(k,EF, T = 0) = Θ [EF − E(k)] , (4.123)

which implies that all momenta up to the Fermi-surface are occupied. In two space dimen-
sions, the Fermi surface at T = 0 is given by a circle of radius kF, which defines the Fermi
momentum. For a two-dimensional electron gas this momentum is given by

EF = ~2k2
F

2m∗ ⇒ kF =
√

2m∗EF
~

. (4.124)

This implies the following relation for the corresponding Fermi velocity

vF = ∂E(p)
∂p

∣∣∣∣∣
p=pF

= pF
m∗

= ~kF
m∗

=

√
2EF
m∗

. (4.125)

The number of (occupied) states per area which is enclosed by the Fermi circle at T = 0
defines the zero temperature electron density ([n] = m−2)

n(T =0) = Nf
A

4π2
πk2

F
A

= Nf
k2

F
4π , (4.126)

where Nf encodes the fermion species in the system. For a two-dimensional electron gas,
Nf = 2 takes into account the underlying spin degeneracy. At finite temperatures the (equi-
librium) charge density n needs to be evaluated by solving the integral over the Fermi-Dirac
distribution either in momentum-, or in energy space

n = Nf

∫ d2k

(2π)2 f0(k, µ, T ) =
∫

dE g(E) f0(E,µ, T ) . (4.127)

The latter equality implicitly defines the two-dimensional density of states g(E). Together,
our assumption of an isotropic and thus rotational invariant system, as well as the mathe-
matical identity

∫ d2k

(2π)2 =
∞∫
0

kdk
2π =

∞∫
0

k(E)
2π

dk
dE dE, (4.128)

imply a general expression for the two-dimensional density of states

g(E) = Nf
k(E)
2π

dk
dE . (4.129)

In the case of a two-dimensional electron gas with dE/dk = ~2k/m∗ [cf. Eq. (4.119)], one
obtains

g(E) = m∗

π~2 . (4.130)

This functional dependency gives rise to the following form of the system’s Thomas-Fermi
screening wave-vector [198]

qTF = 2πe2

4πε0εr
g(EF) = m∗e2

2πεrε0~2 . (4.131)
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Moreover, inserting Eq. (4.130) into Eq. (4.127) implies the corresponding temperature and
chemical potential dependent equilibrium charge density

n =
∞∫

Ec=0

dE g(E) f0(E,µ, T ) = m∗

π~2 kBT ln
(

1 + e
µ

kBT

)
. (4.132)

In consistency with the Eqs. (4.124) and (4.126), this expression reduces to

n(T = 0) = m∗

π~2µ(T = 0) = m∗

π~2EF (4.133)

in the zero temperature limit. Here, we used that for µ > 0,

lim
T→0

kBT

µ
ln
(

1 + e
µ

kBT

)
= 1 . (4.134)

Experimentally, the charge density does not change by only varying the temperature of the
system. To ensure this property, the chemical potential has to change with the temperature,
as it is implicitly described by Eq. (4.132). In order to derive the functional dependence of
this scaling, we fix the density in Eq. (4.132) at its zero temperature value, which is given by
Eq. (4.202). In particular, this implies

m∗

π~2EF = m∗

π~2 kBT ln
(

1 + e
µ

kBT

)
⇒ µ = kBT ln

(
e
EF
kBT − 1

)
. (4.135)

Hence, for a fixed density the chemical potential decreases as a function of an increasing
temperature. If one would instead fix the chemical potential µ = µ0 under an increasing
temperature, one would induce a thermal density. According to Eq. (4.132), this density is
given by

nth(µ0, T ) = n(µ0, T )− n(µ0, 0) = m∗

π~2 kBT ln
(

1 + e
µ0

kBT

)
− m∗

π~2µ0 (4.136)

= m∗

π~2 kBT

[
ln
(

1 + e
µ0

kBT

)
− ln

(
e
µ0

kBT

)]
= m∗

π~2 kBT ln
(

1 + e−
µ0

kBT

)
.

For chemical potentials much larger than the thermal energy, the thermally induces density
approximately yields

nth(µ0, T ) = m∗

π~2 kBT ln
(

1 + e−
µ0

kBT

)
≈ m∗

π~2 kBT e−
µ0

kBT . (4.137)

Here, we used that ln(1 + x) ≈ x+O(x2) for 0 < x� 1.

Analogously to the charge density, the density of states in Eq. (4.130) allows us to calculate
the system’s energy density. In a local equilibrium this quantity is given by

ε =
∞∫

Ec=0

dE E g(E)f0(E,µ, T ) = m∗

π~2

∞∫
Ec=0

dE E 1
1 + e(E−µ)/(kBT ) (4.138)

= −m
∗

π~2 (kBT )2 Li2
(
−e

µ
kBT

)
. (4.139)

Here, Li2(z) =
∑∞
k=1 z

k/k2 encodes the poly-logarithm of order two. In the zero temperature
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limit the equilibrium energy density is in particular given by [cf. Eq. (4.123)]

ε0 =
∞∫

Ec=0

dE E m∗

π~2 Θ(EF − E) = m∗

π~2

EF∫
Ec=0

dE E = m∗E2
F

2π~2 = π~2n2

2m∗ . (4.140)

Hence, the average kinetic energy per charge carrier at small temperatures approximately
yields

Ē2DEG
kinetic = ε0A

nA
= π~2

2m∗n . (4.141)

We close this section by calculating the pressure P of a two-dimensional electron gas, which is
defined as the average momentum flux through a perpendicular unit surface. For an isotropic
two-dimensional electron gas this definition implies (with D = 2)

P = 1
D

∞∫
Ec=0

dE v(E)p(E) g(E)f(E,µ, T ) = 1
2

∞∫
Ec=0

dE ∂E

∂p
p(E) g(E)f(E,µ, T ) (4.142)

=
∞∫

Ec=0

dE p2(E)
2m∗ g(E)f(E,µ, T ) =

∞∫
Ec=0

dE E g(E)f(E,µ, T ) = ε . (4.143)

Hence, the pressure matches the energy density in two-dimensional electron gases. With this
identity we can approximate the enthalpy density w. For chemical potentials much larger
than the thermal energy, this quantity is approximately given by:

w = ε+ P = 2ε
µ�kBT≈ 2ε0 = 2m

∗E2
F

2π~2 = nEF = 1
2nm

∗

√2EF
m∗

2

= 1
2nm

∗v2
F , (4.144)

For this estimate we used Eqs. (4.140), (4.202) and (4.125), respectively.

Electron-Electron Scattering Time τee

As we have discussed in Sec.4.1.1, the most relevant criterion to observe hydrodynamic charge
transport in a two-dimensional electron system is that the electron-electron mean free path
lee = vFτee is the shortest length scale present. In what follows, we will elaborate on an intu-
itive picture which demonstrates the phase-space scaling of the electron-electron scattering
rate in a two-dimensional electron liquid.

Figure 4.5 schematically shows the zero temperature relaxation process of a single electron
state due to interactions with the filled Fermi two-sphere. At T = 0, the equilibrium Fermi-
Dirac distribution is described by a Heaviside-Theta function [cf.Eq. (4.123)] and all electron
states up to the (circular) Fermi surface are filled. If one adds an additional electron of energy
ξ1 > EF above the Fermi surface, this electron needs to scatter with a second electron of en-
ergy ξ2 < EF in order to relax its energy. However, the phase space for this scattering process
is strongly suppressed as a consequence of the energy conservation equation and the Pauli
principle. While energy conservation predicts that that the overall scattering mechanisms
needs to satisfy

ξ1 + ξ2 = ξ′1 + ξ′2 , (4.145)
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Figure 4.5: Schematic electron-electron relaxation process. An excited state |1〉 with energy
ξ1 relaxes its energy and momentum via scattering with another state |2〉 of energy ξ2, which
is initially located in the Fermi two-sphere. The scattering process is indicated by a curly
line, the final states are encoded by |1′〉 and |2′〉. Further explanations are given in the text.

the Pauli principle additionally requires

ξ2 < EF, ξ′1 > EF ∧ ξ′2 > EF , (4.146)

as only states above the Fermi surface are initially unoccupied. Equations (4.145) and (4.146)
in particular imply that ξ′1 and ξ2 are only allowed to vary within the distance |ξ1−EF| around
the Fermi surface. Quantitatively this means that

|ξ2 − EF| < |ξ1 − EF| , (4.147)
|ξ′1 − EF| < |ξ1 − EF| . (4.148)

In contrast, the third energy ξ′2 is fixed by energy conservation once the other energies have
been chosen. Consequently, the phase space for all allowed scattering processes scales as
|ξ1 − EF|2, which implies that the corresponding relaxation time scales as

τee ∝ |ξ1 − EF|−2 . (4.149)

Notice, that for ξ1 → EF the scattering time diverges, which corresponds to the existence of
long-lived excitations.
This divergence disappears as soon as we turn on a finite temperature T 6= 0 which softens the
Fermi-Dirac distribution around the Fermi surface [cf. Eq. (4.122)]. Crucially, this also allows
electron-electron relaxation process for ξ1 = EF, since it provides a temperature dependent
phase-space volume of the order O[(kBT )2]. Hence, the electron-electron relaxation time for
ξ1 = EF is given by

τee ∝ (kBT )−2 . (4.150)

For ξ1 > EF both of these effects are present and a dimensional analysis implies that the
overall electron-electron scattering rate is approximately given by

τ−1
ee = a

|ξ1 − EF|2

~EF
+ b

(kBT )2

~EF
, (4.151)
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where a and b are some dimensionless constants [198].

A more sophisticated calculation of the electron-electron relaxation rate based on a rigorous
evaluation of Fermi’s Golden rule for interacting electron liquids can be found in the Refer-
ences [199] and [200]. According to these references, the two-dimensional relaxation rate of
excitations close to the Fermi surface (ξ1 ≈ EF), is given by

τ−1
ee = (πkBT )2

32π~EF

(
3− 4 rs√

2(rs +
√

2)2

)
ln
[2EF

kBT

]
, (4.152)

where the Wigner-Seitz radius

rs = (πn)−1/2 (4.153)

takes into account finite screening effects of the free charge carrier density n.

Transport Coefficients

As explained in Sec. 4.1.3, the quantum critical conductivity σQ is a part of the longitudinal
conductivity tensor. In particular, it arises from electron-hole scattering processes which can
reverse the charge current, even though they conserve the overall momentum. Therefore, the
quantum critical conductivity can only be of significant relevance if the electron- and hole-
densities are comparable in the system considered. Since in a two-dimensional electron gas,
the majority of charge carriers is either defined by electrons (m∗ > 0) or by holes (m∗ < 0),
the contribution of the quantum critical conductivity to the entire conductivity tensor can
be neglected [80],

σQ ≈ 0 . (4.154)

The Bulk viscosity, introduced in Sec. 4.1.3 defines the dissipation of energy under an isotropic
fluid expansion or compression. In the scope of the this thesis we are considering incompress-
ible electron liquids, which are by definition characterized by a vanishing bulk viscosity term
[84]

ζ = 0 . (4.155)

In Sec. 4.1.3, we have conceptually introduced the shear viscosity η. As we have seen, the
shear viscosity is a measure of the fluid’s layer interaction and thus significantly depends on
its internal ’friction’ τee. In particular, it encodes the efficiency of the momentum transfer
transverse to the fluid flow. The stronger the fluid layers interact, the more transversal
momentum can be relaxed and the shear viscosity decreases. One source of transversal
momentum relaxation is impurity and/or phonon scattering, together giving rise to the bulk
momentum relaxation time scale τmr [cf. Eq. (4.1)]. Even though electron-electron scattering
processes conserve the overall momentum, they might transfer transverse- to longitudinal
momentum, dependent on the explicit scattering geometry. According to Matthiessen’s rule
[198], the shear viscosity is thus given by [86, 201]

η0 = 1
4nm

∗v2
Fτ2,ee , (4.156)
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where τ2,ee is the transverse moment relaxation time

τ−1
2,ee = AFL

ee
(kBT )2

~EF

(
ln
[
EF

kBT

])−2
+ τ−1

2,0 . (4.157)

Here, the coefficient AFL
ee is a cumbersome function of Landau interaction parameters. Since

its explicit form does not contribute to the physical understanding of the transverse momen-
tum relaxation time, we only refer the interested reader to Ref. [201], where its closed analytic
form in a kinetic theory approach can be found explicitly. Instead, let us detailedly discuss
the physical origin of the two terms together giving rise to 1/τ2,ee.
On the one hand, the term 1/τ2,0 defines the transverse momentum relaxation time originat-
ing from electron interactions with phonons or static defects. Within the scope of our analysis
we only consider the latter, temperature independent source term for 1/τ2,0, as we are solely
interested in the hydrodynamic low-temperature transport theory of two-dimensional elec-
tron liquids. In this regime phonon contributions to 1/τ2,0 are strongly suppressed.
On the other hand, the first term in Eq. (4.157) measures the transverse momentum relaxation
originating from electron-electron scattering processes. As such, this term is directly related
to the total electron-electron scattering rate 1/τee, which we derived in Eq. (4.152). However,
in comparison to 1/τee the first term in Eq. (4.157) is logarithmically suppressed, as not all
electron-electron collisions do satisfy the constraint of transverse momentum relaxation [201].

In order to compare the (shear) viscosities of different materials, it is common to normalize
this values to the system’s (effective) mass density [cf. Eq.(4.112)]. In particular, this gives
rise to the so-called kinematic shear viscosity

ν0 = η

nm∗
= 1

4vFl2,ee . (4.158)

To get an intuition for experimental values of the transverse momentum relaxation time, the
kinematic shear viscosity, as well as the impurity mean free path of two-dimensional elec-
tron liquids, Tab. 4.2 shows these quantities in a GaAs channel of width W = 5µm [90–92].
The authors of the cited references executed magneto-electrical transport measurements in
mesoscopic GaAs quantum wells of thickness ≈14.2nm. In particular, they measured the
temperature dependent local- and non-local (Hall) resistivity in Hall-bar shaped geometries.
The values in Tab. 4.2 have been obtained by fitting the experimental data with the theoret-
ical predictions presented above.

EF [meV] T [K] τ2,0 [s] AFL
ee vF [m/s] l2,ee [µm] lmr [µm] ν0 [m2/s]

32.5 1.4 6.90× 10−12 2.6 4.1× 105 2.8 40 0.3

Table 4.2: Experimentally measured and theoretically fitted system parameters of a GaAs
channel of width W = 5µm and effective mass m∗ = 0.067me [90–92]. Further explanations
are given in the text.

As we have discussed in Sec. 4.1.3, the Hall viscosity is a parity- and time-reversal odd trans-
port coefficient. As such, both of these symmetries are required to be broken in order to
allow for ηH 6= 0. In two space dimensions this can be done for instance by applying an
out-of-plane magnetic field B with cyclotron radius rc = m∗vF/|eB| and cyclotron frequency
ωc = |eB|/m∗.
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With increasing magnetic field, rc localizes the electron orbits and consequently reduces
the layer-layer interaction in the two-dimensional electron liquids considered. The cyclotron
radius in particular provides an additionally relaxation length scale for the transverse mo-
mentum transfer. Therefore, the shear viscosity η is expected to decrease monotonically as
a function of the magnetic field.
The Hall viscosity defines the amount of momentum transfer transverse to the fluid flow as
a response to a certain curvature of the velocity profile [cf. Eq. (4.116)]. For zero magnetic
fields, such an effect is prohibited by parity- as well as time reversal symmetry. In finite
out-of-plane magnetic fields these symmetries are broken, which implies an initial increase of
the Hall viscosity ηH as a function of B. However, since the transverse momentum transfer is
hindered by the same mechanisms which contribute to the shear viscosity, the Hall viscosity
should exhibit a maximum and eventually decrease in the large magnetic field limit.
The particular scaling of the dynamical shear- and Hall viscosities in an external magnetic
field can be calculated by using the mathematical framework of the kinetic Boltzmann theory.
Initially, this has been done in Ref. [86], which predicts the following dependencies

η = η0

1 + (2τ2,eeωc)2 = η0

1 +
(2l2,ee

rc

)2 , (4.159)

ηH = (2τ2,eeωc) η0

1 + (2τ2,eeωc)2 =

(2l2,ee
rc

)
η0

1 +
(2l2,ee

rc

)2 ,

where l2,ee =vFτ2,ee is the transverse momentum relaxation length introduced in Eq. (4.157).
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Figure 4.6: The kinematic shear- and Hall viscosities ν (red) and νH (blue), as well as
their rescaled ratio νH/(10ν) (green) are shown as a function of the magnetic field B in a
GaAs sample. While the shear viscosity monotonically decreases as a function of B, the Hall
viscosity initially increases, reaches a maximum at Bmax = m∗vF/(2el2,ee), and eventually
decreases as a function of the magnetic field. The ratio νH/ν linearly depends on the magnetic
field. The GaAs parameters for this plot are taken from Tab. 4.2. Further explanations are
given in the text.

In Fig. 4.6, we plot the corresponding kinematic shear- and Hall viscosities

ν = η

nm∗
∧ νH = ηH

nm∗
(4.160)
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as a function of the magnetic field B for the GaAs sample considered above [cf. Tab. 4.2]. As
expected from physical grounds, the (kinematic) shear viscosity decreases monotonically as
a function of the magnetic field. In contrast, the (kinematic) Hall viscosity initially increases
with the magnetic field before it reaches a maximum at

Bmax = m∗vF
2e l2,ee

where rc = 2l2,ee (4.161)

and eventually decreases again. While both viscosities vanish in the large magnetic field
limit

lim
B→∞

ν(B) = 0 ∧ lim
B→∞

νH(B) = 0 , (4.162)

their ratio νH/ν linearly increases as a function of B, since

νH
ν

= ηH
η

= 2l2,ee
rc

= 2l2,ee|eB|
m∗vF

. (4.163)

This ratio will be of significant importance in Sec. 4.2, where we derive the hydrodynamic
response of two-dimensional electron liquids. Hence, we will frequently refer to Eq. (4.163)
in the subsequent sections of our analysis.

In the scope of this thesis we are mostly interested in small magnetic fields which justify the
condition l2,ee � rc. However, let us close this section by explicitly discussing the strong
magnetic field limit of Eq. (4.159), since it encodes an interesting feature. In this limit, the
kinematic Hall viscosity approximates

νH
rc�l2,ee= rc

2l2,ee
ν0 = rc

2l2,ee

vFl2,ee
4 = 1

8vFrc (4.164)

= 1
8
m∗v2

F
|eB|

= 1
8

~2k2
F

m∗|eB|
= 1

8
~ 4πn l2B
Nfm∗

= 1
4
~NLL
m∗

,

where we (re-)introduced (spin-)degeneracyNf , the magnetic length l2B = ~/|eB|, and rewrote
the density n in terms of the Landau level filling factor [cf. Eq. (2.23)]

NLL = 2π~n
Nf |eB|

= πnl2B
Nf

⇒ n = Nf
NLL
2πl2B

. (4.165)

Equation (4.164) makes two interesting predictions: On the one hand, the kinematic Hall
viscosity becomes independent of l2,ee as the cyclotron orbits prohibit the layer-layer inter-
actions in strong magnetic fields. On the other hand, Eq. (4.164) shows that in the large
magnetic field limit the dynamical Hall viscosity approximates

ηH = nm∗νH = 1
4n~NLL = Nf

8π
~N2

LL
l2B

, (4.166)

which is exactly the Hall viscosity related to NLL filled Landau levels of (spin-)degeneracy
Nf [85, 183, 190].
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4.1 Hydrodynamic Electron Transport

Experimental Evidence of Hydrodynamic Transport

Back in the 1990s, the authors of Refs. [77], [78], and [79] observed the first hydrodynamic
electron flow in (Ga,Al)As hetero-structures. In these systems, they measured the so-called
Gurzhi effect. The Gurzhi effect is an electron transport phenomenon which is observable
in clean systems with an adjustable electron-electron mean free path. In what follows, we
briefly review their experimental findings. Let us therefore consider two-dimensional channels
of width W � limp, which are characterized by diffusive boundary conditions. If lee � W ,
electron transport is ballistic and particles mostly collide with the diffusive channel walls
[cf. Tab. 4.1]. With decreasing lee the electron-electron scattering probability increases. As a
result, more and more particles are deviated towards the diffusive walls of the system, where
they partially relax their longitudinal momentum. This leads to an increasing differential
resistivity dV/dI with decreasing lee. Further reducing lee drives the system eventually in
the hydrodynamic regime, associated to a Poiseuille-like fluid profile. In this regime, par-
ticles mostly collide with each other and only rarely interact with the channel walls. The
enhanced electron-electron collision rate with decreasing lee reduces the electron-boundary
scattering rate and therefore leads to a decreasing differential resistivity. The transition from
the ballistic, so-called Knudsen transport regime to the hydrodynamic Poiseuille flow regime
as a function of the electron mean free path (or the density) is known as the Gurzhi effect [202].

Channel Length L [µm] Width W [µm] Density n [1011cm−2] limp [µm]

I 20.2 3.5 2.2 12.4

II 63.7 3.6 2.7 19.7

III 127.3 3.6 2.7 19.7

Table 4.3: System parameters of the GaAs channels which are studied in the Refs. [77], [78]
and [79].

The system parameters of the different channels which are studied in the experiments men-
tioned above, are listed in Tab. 4.3. Within these channels, the electron-electron mean-free
path is adjustable by applying a longitudinal heat current. While the lattice temperature
Tlatt is fixed by an external cryostat, applying the heat current I allows to vary the electron
temperature Te (nearly) independently from the lattice temperature. For I < 40µA and
Tlatt < 2K, one obtains

Te = Tlatt + C I2

σ11W 2 , (4.167)

where σ11 is the longitudinal channel conductivity and C ≈ 0.05 m2K/W is a material spe-
cific constant. As mentioned, a variation of the electron temperature via the heating current
can be used to vary the electron-electron mean free path lee = vFτee. Here, τee(Te, n) is
the temperature and density dependent electron-electron scattering time which we defined
in Eq. (4.152). In Fig. 4.7, the differential (longitudinal) resistances of the channels I, II,
and III are shown as a function of the heating current I. In Fig. 4.7(a), this value is mea-
sured for several lattice temperatures in channel I. Tlatt decreases from the top to the bottom
curve. The top curve shows a nearly quadratic increase of the dV/dI characteristic as a
consequence of strong electron-phonon scattering. Lowering the lattice temperature allows
to observe the Gurzhi (decreasing dV/dI) regime, as well as the Knudsen (increasing dV/dI)
regime for small heating currents. The ballistic Knudsen regime requires a large phonon
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Figure 4.7: (a) Differential resistance dV/dI of the GaAs channel I [cf. Tab. 4.3] as a
function of the heating current I for lattice temperatures (from top to bottom) 24.7, 20.4,
17.3, 13.6, 10.4, 8.7, 4.4, and 1.5 K. (b) dV/dI as a function of I for (i) the GaAs channel
II and (ii) the GaAs channel III, for lattice temperatures (from top to bottom) 4.5, 3.1,
and 1.8 K. With decreasing lattice temperature and increasing impurity mean free path the
Gurzhi-effect becomes apparent. Further explanations are given in the text. The figures are
adapted from Ref. [78] with permission from the APS.

and impurity mean free path. Consequently, it can be only observed in the very low lattice
temperature regime. Heating the lattice increases the electron-phonon coupling, but reduces
lee at the same time. This makes the Gurzhi regime much more robust than the Knudsen
regime. Since the channels II and III are characterized by a smaller value of W/limp, the
Gurzhi effect is much clearer to observe in these systems. In particular, the absolute Gurzhi
effect in channel III is twice as strong than it is in channel II. The measured effect is thus
directly proportional to the system length and does not rely on the contact resistance [77–79].
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4.1.5 The Fermi Liquid- and The Dirac Fluid Phase in Graphene
In the previous subsection, we have analyzed the hydrodynamic properties and transport
coefficients of weakly interacting electron- or hole liquids in 2+1 space-time dimensions. In
particular, these systems are characterized by a large Fermi surface in comparison to kBT ,
which reduces the available phase-space for electron-electron scattering processes [cf. Fig. 4.5].
In the absence of a large Fermi surface, the physics of interacting electron- or hole liquids
significantly changes. Such a phase is for instance realized in graphene close to the charge
neutrality point, where the total charge density vanishes [203]. Quantitatively, this happens
for |µ| � kBT . Adjusting the chemical potential such that this requirement is fulfilled leads
to the formation of a so-called Dirac fluid phase. A Dirac fluid is a strongly coupled material
consisting of electrons and holes with a relativistic (linear) dispersion. In what follows, we
introduce the band-structure of graphene [204–206], analyze its Fermi liquid- as well as Dirac
fluid phase [80, 184, 207], and discuss different signatures of these regimes in recent thermo-
electric experiments [97, 208].

Lattice Structure, Brillouin Zone and Dispersion Relation

Monolayer graphene is a purely two-dimensional material made out of carbon atoms which
are bounded in a hexagonal honeycomb lattice. The electronic configuration of an isolated
carbon atom is given by 1s22s22p2. While the 1s-electrons are approximately inert, the 2s-
and 2p-orbitals hybridize in condensed matter systems. In graphene monolayers, the 2s- and
2px,y-orbitals hybridize into three sp2-orbitals, which arrange themselves in-plane at angles
of 120◦. This gives rise to the two-dimensional honeycomb lattice which is shown in Fig. 4.8.
In addition to these orbitals which define the so-called chemical σ-bonding, each carbon atom
hosts a free out-of-plane pz-orbital, which allows for π-bonds and can be used for electron-
or hole transport.

δ2

δ1δ3 B

A

Ri
B

A

Ba

a1

a2

Figure 4.8: Hexagonal real space lattice structure of graphene. A (red) and B (blue) indicate
the two inequivalent sublattices, the lattice constant a ≈ 14.2 nm defines the carbon atom
spacing, a1,2 encode the primitive lattice vectors, and δ1,2,3 are the nearest-neighbor hopping
vectors with respect to Ri, which characterizes the i-th unit cells in the A sublattice.

Figure 4.8 shows the real space hexagonal lattice structure of graphene. The lattice constant
a ≈ 14.2 nm defines the carbon atom spacing, and blue as well as red dots indicate the two
inequivalent sublattices A and B. We choose our Bravais lattice such that it has the primitive
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lattice vectors

a1 = a
2
(
3,
√

3
)
∧ a2 = a

2
(
3,−
√

3
)
. (4.168)

The associated reciprocal lattice vectors, defined by aibj = 2πδij , are given by

b1 = 2π
3a
(
1,
√

3
)
∧ b2 = 2π

3a
(
1,−
√

3
)
. (4.169)

For our subsequent notation in real space, we use the relative coordinates δ1,2,3, defined via
ri = Ri + δi. Here, Ri characterizes the i-th unit cell with respect to the A sublattice. The
three nearest-neighbor vectors δ1,2,3 are given by

δ1 = a
2
(
1,
√

3
)
, δ2 = a

2
(
1,−
√

3
)
, δ3 = −a(1, 0) . (4.170)

For the sake of completeness, all these vectors are illustrated in Fig. 4.8. Fourier transforming
the real space lattice to momentum space leads to a honeycomb structure which is rotated
by an angle of π/6, as it is shown in Fig. 4.9.

K

K'

Г

Figure 4.9: Graphene’s first Brillouin zone. The K- and K′-points, as well as the Γ-point
are highlighted in blue, red, and black, respectively. Further explanations are given in the
text.

Due to the underlying C3-symmetry, the six corners of the first Brillouin zone can be devided
into two groups of three equivalent points. The two nonequivalent corners are commonly
labeled by

K = 2π
3a

(
1, 1√

3

)
∧ K′ = 2π

3a

(
1,− 1√

3

)
. (4.171)

Having analyzed the real- and the momentum space lattice structures, let us now derive
graphene’s eigen-spectrum. As mentioned above, transport in graphene is mediated via the
non-hybridized out-of-plane pz-orbitals. Due to their spin degree of freedom σ =↑, ↓, this
gives rise to the nearest neighbor (NN) hopping Hamiltonian

ĤNN = −t
∑

i,j=NN,σ

(
a†iσbjσ + h.c.

)
. (4.172)

Here, t ≈ 2.8 eV is the hopping energy and a†iσ as well as b†iσ are electron creation operators of
spin σ in the A and B sublattices of the unit cell i. The eigenfunctions of the NN Hamiltonian
in Eq. (4.172) can be written in terms of a

(
αk
βk

)
=
∑
i

eik·Ri

(
a†ie−ik·δ1/2

b†ieik·δ1/2

)
. (4.173)

aHere, we neglect the real spin degree of freedom σ =↑, ↓, which is considered as a degeneracy in the following.
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In this basis, the corresponding k-space Hamiltonian becomes purely off-diagonal

Ĥk =
(

0 ∆k
∆∗k 0

)
with ∆k = −t

3∑
l=1

eik·δl = −t e−ikxa
(
1 + 2e3ikxa/2 cos

(√
3kya/2

))
.

(4.174)

The eigen-spectrum of this Hamiltonian is given by [209]

Ek = ±|∆k| = ±t
(
1 + 4 cos(3kxa/2) cos

(√
3kya/2

)
+ 4 cos2

(√
3kya/2

))1/2
. (4.175)

In Fig. 4.10, we show this dispersion relation in the first lattice Brillouin zone. While the
spectrum is gapped at the Γ-point, it becomes gapless at the K- and K′-points.

Figure 4.10: Dispersion relation of graphene in the first lattice Brillouin zone. The spectrum
is gapped at the Γ-point, whereas it is gapless at the C3 high-symmetry points K and K′.
The valence band is shown in blue, the conduction band is depicted in red.

In order to derive the low-energy physics of graphene, we need to Taylor expand the spectrum
around the K- and the K′-point, respectively. We start with the expansion around the K-
point. In particular, let us define the relative coordinate q = k −K and expand ∆k up to
first order in the momentum q around the expansion point q0 = 0:

∆K(q) ≈ 2te−iKxaq ·∇k
(
e3ikxa/2 cos

(√
3kya/2

))
k=K

= −3ta
2 e−iKxa(iqx − qy) . (4.176)

Since overall phase-factors do not change the underlying physics, we are allowed to drop the
exponential prefactor −ie−iKxa in Eq. (4.176). In particular, this implies

∆K(q) ≈ ~vF(qx + iqy) with vF = 3ta/(2~) ≈ c0/300 ≈ 106 m/s . (4.177)

Here, we introduced the (bare) Fermi velocity in graphene, vF, which is approximately 300
times smaller than the speed of light in vacuum. According to Eq. (4.177), graphene’s low-
energy spectrum close to the K-point is effectively described by a relativistic Dirac Hamilto-
nian with a causal Fermi velocity vF:

ĤK = ~vF

(
0 qx + iqy

qx − iqy 0

)
= ~vF σ̂ · q with σ = (σx, σy) , EK = λ~vFq , (4.178)

λ = ±1, and q = |q|. The eigenfunctions of the Dirac Hamiltonian in Eq. (4.178) are given
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by

ψλK(q) = 1√
2

(
e−iθq/2

λ eiθq/2

)
with θq = arctan(qx/qy) . (4.179)

Performing the same (linear) Taylor expansion around the K′-point with K ′x = Kx, K ′y =
−Ky, and q = k−K′ yields

∆K′(q) = ∆∗K(q) ≈ ~vF(qx − iqy) , (4.180)

which implies the associated Dirac Hamiltonian

ĤK′ = ~vF

(
0 qx − iqy

qx + iqy 0

)
= ~vFσ̂

∗ · q with EK′ = EK = λ~vFq (4.181)

and the corresponding eigenfunctions

ψλK′(q) = 1√
2

(
eiθq/2

λ e−iθq/2

)
. (4.182)

Hence, the entire low-energy physics of graphene is described by the superposition of two
Dirac spectra, one at the K- and one at the K′-point. These two Dirac Hamiltonians are in
particular related by a time-reversal- [ĤK′(qx, qy) = Ĥ∗K(qx, qy)], or by a parity transformation
[ĤK′(qx, qy) = ĤK(qx,−qy)] in 2+1 space-time dimensions [cf. Eq. (2.51)]. As a consequence,
the low-energy theory of graphene is time-reversal- as well as parity invariant [204–206]. In
what follows, we are going to study the physics originating from the low-energy Dirac spectra
in graphene.

Charge-, Imbalance-, Energy- and Pressure Density

As discussed in the previous subsection, the amount of fermion species in graphene is given by
Nf = 2× 2 = 4, resulting from the two (real) spin- and the two valley degrees of freedom (K
and K′). With the linear dispersion relation dE/dk = λ~vF, the low-energy two-dimensional
density of states in graphene is given by [cf. Eq. (4.129)]:

g(E) = Nf
k(E)
2π

dk
dE = 2|E|

π~2v2
F
. (4.183)

Moreover, the Fermi momentum and -energy, as well as the Thomas-Fermi screening wave-
vector [205] are given by [cf. Eq. (4.126)]:

kF =
√

4π|n|
Nf

=
√
π|n| , (4.184)

EF = sgn(n)~vFkF = sgn(n)~vF

√
π|n| , (4.185)

qTF = 2πe2

4πε0εr
g(EF) = e2

4πε0εr
4|EF|
~2v2

F
= 4α0kF with α0 = e2

4πε0εr~vF
. (4.186)

Here, n is the system’s charge carrier density ([n] = m−2) relative to the charge neutrality
point with nCP = 0 and εr = (εabove

r +εbelow
r )/2 defines the average relative dielectric constant

of the materials above and below the two-dimensional graphene monolayer.

Having calculated the density of states allows us to derive the macroscopic quantities ap-
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pearing in the hydrodynamic derivative expansion (4.32) as a function of the chemical po-
tential and the temperature. The low-energy Dirac dispersion in graphene is a two-band
model with λ = ±1. It is common to define the (quasi-)particle densities associated to each
band separately. Under the assumption of a local equilibrium, these densities are given by
[187, 207]

n+ =
∞∫
0

dE n+(E) =
∞∫
0

dE g(E)f0
+(E,µ+, T ) = −2k2

BT
2

π~2v2
F

Li2
[
−e

µ+
kBT

]
, (4.187)

n− =
0∫

−∞

dE n−(E) =
0∫

−∞

dE g(E)
[
1− f0

−(E,µ−, T )
]

= −2k2
BT

2

π~2v2
F

Li2
[
−e−

−µ−
kBT

]
. (4.188)

Here, µ± is the local chemical potential of (quasi-)particles in the conduction- and valence
band, associated to the local equilibrium Fermi-Dirac distributiona

f0
λ(E,µλ, T ) =

[
1 + exp

(
E(r)− µλ(r)

kBT (r)

)]−1
. (4.189)

Moreover, Lim[z] =
∑∞
k=1 z

k/km defines the poly-logarithm of order m, which satisfies the
limit

lim
x→∞

Lim(−e−x) = 0 ∀m ∈ N . (4.190)

The two different linear combinations of the (quasi-)particle densities n± give rise to the
charge density n, as well as the imbalance density nimb, which defines the entire particle
density:

n = n+ − n− = −2k2
BT

2

~2πv2
F

(
Li2

[
−e

µ+
kBT

]
− Li2

[
−e−

µ−
kBT

])
, (4.191)

nimb = n+ + n− = −2k2
BT

2

~2πv2
F

(
Li2

[
−e

µ+
kBT

]
+ Li2

[
−e−

µ−
kBT

])
. (4.192)

In Fig. 4.11, we illustrated n±(E) for different values of µ/(kBT ) in the equilibrium situation
µ± = µ. In the Fermi liquid regime mainly one band contributes to the entire charge and
imbalance density. Hence, these two densities become degenerated [cf. Eq. (4.190)] and it is
possible to approximate them by Taylor expanding Eq. (4.191) in terms of the small expansion
parameter kBT/µ:

n(|µ| � kBT ) = nimb(|µ| � kBT ) = µ2

π~2v2
F

+ 2π(kBT )2

3~2v2
F

+O
[(kBT

µ

)3
]
. (4.193)

Here, we used that

Li2
[
−e

µ
kBT

]
± Li2

[
−e−

µ
kBT

]
= − µ2

2(kBT )2 −
π2

6 +O
[

(kBT )2

µ2

]
. (4.194)

In the Dirac fluid phase both bands significantly contribute to the charge density, implying

aIn the scope of this thesis, we are only interested in small hydrodynamic fluid velocities in comparison to
the Fermi velocity vF. Therefore, we neglect the background contribution v · k/(kBT ) to the exponential
function in Eq. (4.189).
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Figure 4.11: The (quasi-)particle densities nλ(E) in the conduction- (λ = +, reddish) and
the valence band (λ = −, bluish) are shown as a function of the energy E for µ± = µ. While
all curves are calculated at T = 100 K, they correspond to different chemical potentials. The
ratios µ/(kBT ) = 0.1, µ/(kBT ) = 0.6 and µ/(kBT ) = 1.2 are visualized from yellow to red in
the conduction- and from green to blue in the valence band, respectively. In the Fermi liquid
regime mainly one band contributes to the overall charge density, whereas in the Dirac fluid
phase both bands are of equal relevance.

that n 6= nimb. Exactly at charge neutrality, for µ = 0, one finds

n(µ = 0, T ) = 0 (4.195)

nimb(µ = 0, T ) = 2(kBT )2

π~2v2
F

π2

6 = π

3
(kBT )2

~2v2
F

, (4.196)

where we made use of the limiting cases

lim
µ→0

(
Li2

[
−e

µ
kBT

]
− Li2

[
−e−

µ
kBT

])
= 0 (4.197)

lim
µ→0

(
Li2

[
−e

µ
kBT

]
+ Li2

[
−e−

µ
kBT

])
= −π

2

6 . (4.198)

Usually the hydrodynamic equations are given by the conservation of the charge current
as well as the energy-momentum flow. However, in graphene n+ and n− are assumed to
be separately conserved, which leads to another (quasi-)conservation equation. Beside the
charge density, it is also the imbalance density which is (approximately) conserved

∂tn+ ∂r · j = 0 (4.199)

∂tnimb + ∂r · jimb = −nimb − n0
imb

τimb
. (4.200)

Here, n0
imb is the equilibrium imbalance density, τimb is the (long) imbalance relaxation time,

and the charge and imbalance currents are defined via

j = j+ − j− ∧ jimb = j+ + j− . (4.201)

According to Reference [210], τimb � τee for small temperatures, since in this regime Auger
processes, three-particle collisions and electron-phonon interactions are sub-leading [207].
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Fixing the charge density n and changing at the same time the temperature T alters the
corresponding chemical potential. In order to derive the functional dependence of this scaling,
let us fix the charge density in the equilibrium situation µ± = µ and express it in terms of
the Fermi energy. Therefore, we perform the zero temperature limit of Eq. (4.191)

lim
T→0

n(T ) = sgn[µ(T = 0)] µ
2(T = 0)
π~2v2

F
= sgn(EF) E2

F
π~2v2

F
. (4.202)

Notice, that this result is consistent with Eq. (4.185). Inserting Eq. (4.202) in the left hand
side of Eq. (4.191) implicitly defines the scaling of the chemical potential as a function of the
temperature for µ± = µ if the charge density is fixed:

−sgn(EF)
2

(
EF

kBT

)2
= Li2

[
−e

µ
kBT

]
− Li2

[
−e−

µ
kBT

]
. (4.203)

Analogously to the charge- and imbalance densities, the two-dimensional density of states in
Eq. (4.183) allows us to calculate the (low-)energy density ε and the pressure P in the local
equilibrium of a graphene monolayer [187, 207]:

ε =
∞∫
0

dE E g(E) f0
+(E,µ+, T ) +

0∫
−∞

dE E g(E)
[
1− f0

−(E,µ−, T )
]

= −4k3
BT

3

π~2v2
F

(
Li3

[
−e

µ+
kBT

]
+ Li3

[
−e−

µ−
kBT

])
. (4.204)

Again, in the Fermi liquid regime mainly one band contributes to the overall energy density
as a direct consequence of Eq. (4.190). The associated Taylor expansion in terms of the small
expansion parameter kBT/µ is given by

ε = 2µ3

3π~2v2
F

+ 2πµ(kBT )2

3~2v2
F

+O
[(kBT

µ

)3
]
, (4.205)

where we made use of

Li3
[
−e

µ
kBT

]
+ Li3

[
−e−

µ
kBT

]
= − µ3

6(kBT )3 −
π2µ

6T +O
[

(kBT )2

µ2

]
. (4.206)

In particular, the zero temperature limit of Eq. (4.204) implies

ε0 = lim
T→0

ε = 2
3π~2v2

F
E3

F = 2
(
π~2v2

Fn
)3/2

3π~2v2
F

= 2
√
π~vFn

√
π|n|

3 . (4.207)

Hence, the average kinetic energy per charge carrier at small temperatures is given by

ĒGraphene
kinetic = ε0A

nA
= 2~vF

√
π|n|

3 = 2
3EF , (4.208)

where A defines the area of the graphene monolayer. Moreover, in a linear spectrum the
pressure P is directly proportional to the energy density ε. Since pressure is defined as the
amount of momentum flux through a perpendicular unit surface, one obtains for an isotropic
two-band system in D space dimensions

P = 1
D

∫ ∞
0

dE v(E) p(E) g(E)f+(E,µ+, T ) + 1
D

∫ 0

−∞
dE v(E) p(E) g(E)f−(E,µ−, T ) .

(4.209)
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For graphene in D = 2 space dimensions with an energy and momentum independent single
particle velocity v(E) = vF, this formula implies

P = 1
2

(∫ ∞
0

dE ~vF k(E) g(E)f+(E,µ+, T ) +
∫ 0

−∞
dE ~vF k(E) g(E)f−(E,µ+, T )

)
= ε

2 .

(4.210)

Hence, due to graphene’s low-energy Dirac spectra, the energy density ε and pressure P only
differ by a factor of two. This property enables us to derive enlightening expressions for
the enthalpy density in the Fermi liquid (|µ| � kBT ) as well as in the Dirac fluid regime
(|µ| � kBT ):

(ε+ P )FL ≈
3
2

4(kBT )3

π~2v2
F

µ3

6(kBT )3 ≈
E3

F
π~2v2

F
= ~3v3

Fk
3
F

π~2v2
F

= ~vFkFk
2
F

π
≈ µ|n| (4.211)

(ε+ P )DF ≈
3
2

4(kBT )3

π~2v2
F

3ζ(3)
2 = 9ζ(3)

π2
π(kBT )2

~2v2
F

kBT = 27ζ(3)
π2 nimbkBT ≈ πkBTnimb .

(4.212)

Here, we made use of the Fermi liquid Taylor expansion in Eq. (4.193), as well as the Dirac
liquid limits Eq. (4.196) and

lim
µ→0

(
Li3

[
−e

µ
kBT

]
+ Li3

[
−e−

µ
kBT

])
= −3 ζ(3)

2 . (4.213)

In this expression, ζ(x) is the Riemann zeta function with ζ(3) ≈ 1.2.

We close this section by emphasizing that in the Fermi liquid regime it is common to rewrite
the low-energy Dirac dispersion around each Dirac point in graphene via an effective quadratic
dispersion in momentum. In contrast to conventional two-dimensional electron systems with
a quadratic spectrum, the effective mass parameter in graphene is by definition density de-
pendent:

EF = sgn(n)~vFkF
!= ~2k2

F
2m∗ ⇒ m∗ = sgn(n) ~kF

2vF
= sgn(n) ~

√
π|n|

2vF
. (4.214)

Fermi Liquid vs. Dirac Fluid Regime

In the previous two subsections we have analyzed the band-structure of graphene and derived
its equilibrium charge-, imbalance-, energy- and pressure densities. In what follows, we dis-
cuss the Fermi liquid- as well as the Dirac fluid phase within this two-dimensional material.
The line of reasoning in the present subsection roughly follows the discussions within the
References [80, 184, 207, 211].

In Sec. 4.1.5, we have shown that the low-energy physics of graphene is captured by the
superposition of two Dirac Hamiltonians located at k = K and k = K′, respectively. So far,
our analysis did not take into account electron-electron (Coulomb) interactions. An naive
approach to estimate the relevance of electron-electron interactions in graphene is to analyze
the ratio of the average unscreened potential- and kinetic energy per charge carrier. This
dimensionless quantity is commonly known as the system’s bare interaction parameter or
’fine-structure’ constant α0. In a two-dimensional electron- or hole system with a quadratic
dispersion in momentum and an effective mass parameter m∗ [cf. Sec. 4.1.4], this ratio is
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density dependent and tends to zero in the high density limit

α2DEG
0 = Ē2D

Coulomb
Ē2DEG

kinetic
= e2√|n|

4πε0εr

/ ~2πn

2m∗ = e2|m∗|
2π2~2ε0εr

√
|n|

. (4.215)

Here, we inserted the average unscreened potential energy as a function of the charge carrier
density |n| = 1/r̄2, where r̄ is the average distance between charge carriers:

Ē2D
Coulomb = e2

4πε0εrr̄
= e2√|n|

4πε0εr
. (4.216)

Moreover, we used the density-dependent form of the average kinetic energy per charge carrier
Ē2DEG

kinetic which was derived in Eq. (4.141) of Sec. 4.1.4. Even though Eq. (4.215) neglects the
effect of screening and renormalization, it already predicts the existence of a weakly coupled
electron liquid at high densities.

In two-dimensional Dirac materials with a linear dispersion in momentum the bare ’fine-
structure’ constant is instead density independent. Let us derive this quantity for the Dirac
dispersion in graphene

αGraphene
0 = Ē2D

Coulomb
ĒGraphene

kinetic
= e2√|n|

4πε0εr

/ 2~vF
√
π|n|

3 = e2

4πε0εr~vF

3
2
√
π
≈ 1.85

εr
. (4.217)

Here, we used the average kinetic energy per charge carrier ĒGraphene
kinetic which was derived

in Eq. (4.208). For the last approximation in Eq. (4.217), we used that vF ≈ c0/300
[cf. Eq. (4.177)]. Dependent on the substrate, the relative dielectric constant in Eq. (4.217)
is in between 1 < εr < 5. For instance, it is εr ≈ 1 for suspended graphene, whereas it is
εr ≈ 4 for graphene sandwiched between two hexagonal Boron Nitrid (hBN) layers [93]. In
comparison to a free QED2+1 system with

α
QED2+1
0 = Ē2D

Coulomb

Ē
QED2+1
kinetic

= e2√|n|
4πε0

/ 2~c0
√
π|n|

3 = e2

4πε0~c0

3
2
√
π
≈ 6.17× 10−3 , (4.218)

the relative dielectric constant εr slightly reduces the ratio

αGraphene
0

α
QED2+1
0

= c0
vF

1
εr
. (4.219)

However, since the causal (Fermi-) velocity in graphene is much slower than the speed of
light in vacuum, vF ≈ c0/300, unlike in QED2+1 the bare electron-electron interactions are
not perturbatively small. In particular, one obtains

αGraphene
0 ≈ 1.85 for suspended graphene , (4.220)

αGraphene
0 ≈ 0.46 for graphene encapsulated by hBN . (4.221)

In summary, the density independence and the large value of αGraphene
0 in comparison to

α
QED2+1
0 makes graphene a promising candidate to observe strong interacting electron-hole

dynamics. However, so far our analysis did not take into account the screening of Coulomb
interactions by free charge carriers in the system, as well as the running of the ’fine-structure’
constant with respect to energy. These two effects will be studied in the following paragraphs.
In order to directly relate our analysis to the recent literature on graphene [80, 207] and to
the actual definition of the fine-structure constant α, we will subsequently use the following
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definition of graphene’s bare ’fine-structure’ constant:

α0 = e2

4πε0εr~vF
. (4.222)

In comparison to the estimate in Eq. (4.217) this definition only differs by a factor of
3/ (2

√
π) ≈ 0.85.

The Fermi Liquid Phase As estimated in Eq. (4.217), the bare electron interactions in
graphene are strong. However, for large values of |µ|/(kBT ), these interactions are screened
by a large Fermi surface in comparison to the thermal energy. This effect can be incorporated
by shifting the unscreened Coulomb potential in momentum space by the Thomas-Fermi
screening wave-vector qTF, which we defined in Eq. (4.186) [184]:

V Coloumb
unscreened(q) = − e

2εrε0q
screening→ V Coloumb

screened (q) = − e
2εrε0 (q + qTF) = − e

2εrε(q)q
.

(4.223)

For the concrete form of the Coulomb potential in momentum space used above, we performed
a Fourier transformation in two space dimensions. In particular, we made us of∫

d2r
1
r

e−iqr = 2π
q
. (4.224)

Moreover, in Eq. (4.223) we introduced the generalized momentum dependent dielectric func-
tion

ε(q) =
(

1 + qTF
q

)
ε0 . (4.225)

Adding the Thomas-Fermi screening vector to the unscreened Coulomb energy in Eq. (4.217)
reduces the value of α0 with increasing density. However, the Fermi liquid regime in graphene
becomes most apparent when calculating the quasi-particle life time τee for |µ|/(kBT ) � 1.
In this parameter regime, the large Fermi surface in comparison to the thermal energy
kBT reduces the phase space available for electron-electron scattering processes drastically
[cf. Fig. 4.5]. As a consequence, long-lived quasi-particles arise and the Fermi liquid the-
ory applies. According to Refs. [212–214], the quasi-particle life time in a random phase
approximation for |µ|/(kBT )� 1 is on the order of

τee,FL ≈ −
Nf
π

~µ
(kBT )2 ln

(
χ

kBT

|µ|

)−1
. (4.226)

with χ = 3/
√

5. In what follows, we calculate an exemplary value of the electron-electron
scattering time for a typical chemical potential and temperature in the Fermi liquid regime.
We choose µ = 100meV and T = 60K, which corresponds to a ratio of |µ|/(kBT ) ≈ 19. For
these values one obtains

τee,FL ≈ 1.2× 10−12 s . (4.227)

This result is in particular independent on the substrate which encapsulates the graphene
monolayer [212–214].
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The Dirac Fluid Phase In order to obtain a reliable estimate for graphene’s electron-electron
scattering time in the Dirac fluid regime, we need to calculate the so-called running of α with
respect to the chemical potential and the temperature. As it is shown in Ref. [184, 207],
a sophisticated renormalization-group (RG) analysis implies that graphene’s effective ’fine-
structure’ constant for general µ and T is given by

α(µ, T ) = α0/RΛ(µ, T ) with RΛ(µ, T ) = 1 + α0
4 ln

( kBTΛ
max (|µ|, kBT )

)
. (4.228)

Here, TΛ ≈ 8.34× 104 K is the energy scale at which deviations from the linear spectrum be-
come significant. The running of α originates from the renormalization of the Fermi velocity,
since neither the spinor fields nor the electric charge become renormalized in the RG flow
of graphene’s effective action [80]. In particular, the running of the Fermi velocity is given
by

vF(µ, T ) = v0
FRΛ(µ, T ) , (4.229)

where v0
F ≈ 106 m/s is the high-density Fermi velocity derived in Eq. (4.177). This theoretical

prediction has in particular been measured in Ref. [215]. The renormalization function RΛ
has its highest relevance in the Dirac fluid regime |µ| � kBT . In particular, Eq. (4.228)
implies that at charge neutrality the coupling strength α becomes marginally irrelevant as
one lowers the temperature

α(µ = 0, T ) = α0

1 + α0
4 ln

[
TΛ
T

] with lim
T→0

α(µ = 0, T ) = 0 . (4.230)

At reasonable temperatures graphene nevertheless forms a strongly coupled Dirac fluid close
to the charge neutrality point, as the logarithmic running is very slow. The Dirac fluid regime
becomes most apparent when calculating the quasi-particle life time τee for |µ|/(kBT ) � 1.
In this limit the Fermi surface effectively vanishes in comparison to the thermal energy, and
there is no effective screening of the Coulomb interactions. As a direct consequence, the
quasi-particle life time in graphene for |µ|/(kBT )� 1 is approximately given by [184]

τee,DF ≈ 0.274 1
α(0, T )2

~
kBT

. (4.231)

As an exemplary value let us calculate this time scale for a typical temperature in the Dirac
fluid regime [208]. For T = 60K, Eqs. (4.230) and (4.231) yield the values

RΛ(0, 60K) = 6.2, α(0, 60K) = 0.35, τee,DF ≈ 2.8× 10−13 s , (4.232)

for suspended graphene, and

RΛ(0, 60K) = 2.3, α(0, 60K) = 0.24, τee,DF ≈ 6.2× 10−13 s (4.233)

for graphene encapsulated by hBN.

In summary, Fig. 4.12 schematically illustrates the formation of Fermi liquid- and Dirac fluid
phases in graphene dependent on the ratio |µ|/(kBT ).

We close this paragraph by emphasizing that even in the Fermi liquid regime RG effects are
of significant relevance if kBT � |µ| � kBTΛ. In agreement with the findings in Ref. [207],
we obtain the following values for the renormalization function RΛ at µ = 100meV and
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Figure 4.12: The formation of Fermi liquid- and Dirac fluid phases in graphene is schemat-
ically illustrated as a function of the chemical potential µ and the temperature T . For
simplicity the spectrum of only one of the Dirac cones at k = K (or k = K′) is depicted.
If |µ|/(kBT ) � 1 (grey shaded region) the large Fermi surface provides a strong screening
mechanism. In this case, the system forms an electron- or hole-like Fermi liquid. Instead, if
|µ|/(kBT ) � 1 (sandy shaded region) the Fermi surface approximately vanishes and an un-
screened Dirac fluid arises. While the temperature independent part of the carrier density is
schematically encoded in red, thermally excited states are highlighted in blue [cf. Fermi-Dirac
distribution in Eq. (4.189)]. This figure is inspired by Fig. 5 in Ref. [80].

T = 60K:

RΛ(100meV, 60K) = 4.6 for suspended graphene , (4.234)
RΛ(100meV, 60K) = 1.9 for graphene encapsulated by hBN . (4.235)

Hydrodynamic Transport Above, we have discussed the formation of Fermi liquid- and
Dirac fluid phases in graphene as a function of |µ|/(kBT ). To realize hydrodynamic trans-
port within these regimes, the electron-electron mean free path lee = vFτee needs to be the
shortest length scale present. In particular, the electron-electron scattering time τee needs to
be short in comparison to the impurity- and phonon scattering time, or, if a magnetic field is
applied, in comparison to the typical cyclotron frequency ωth

c of thermally excited states [185].

At temperatures below T ≈ 100K, electron-phonon scattering in graphene does not play an
essential role [80]. The dominant mechanism for bulk momentum relaxing scattering processes
originates from (charged) impurity scattering. Even though the hexagonal lattice structure
of graphene can be realized approximately ’defect-less’, charged impurities in the substrate
induce local density fluctuations in the graphene monolayer. The interactions of electrons
with these so-called charge puddles define the bulk momentum relaxing scattering time τmr.
The higher the chemical potential (density) or temperature, these scattering processes become
less important, since underlying density fluctuations become less relevant. For weak disorder,
the scattering time associated to charged impurities in the substrate of charge q = Ze and
density nimp is to leading order given by [184]

τimp = ~
nimp

(
πZe2

εr

)−2
ε+ P

nimb
≈ ~
nimp

(
πZe2

εr

)−2

max[πkBT, |µ|] , (4.236)

which incorporates all of the effects mentioned above. Here, we used the Fermi liquid- as well
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as the Dirac fluid approximation of the enthalpy density which we derived in Eq. (4.211) and
Eq. (4.212), respectively. In Tab. 4.4 we listed recently measured values of τmr at different
densities and temperatures [97, 208].

τmr [10−12s] lmr [µm] n [-1011 cm−2] T [K]

6.3 12 2 7.5

12.6 23 6 7.5

3.7 7 2 75

4.4 8 6 75

2.1 4 2 150

2.2 4 6 150

1.5 1.5 0.1 60

Table 4.4: Experimental values of the bulk momentum relaxing scattering time τmr and
mean free path lmr = vFτmr for different graphene monolayers encapsulated in hexagonal
boron nitride. These values are shown for different charge densities n and temperatures T
[97, 208].

As mentioned above, for low temperatures phonon scattering can be neglected and impurity
scattering is the dominant source of bulk momentum relaxation. According to Eq. (4.236),
τimp is a density dependent quantity in the Fermi liquid regime as µ ∝ kF ∝

√
|n|. For

T = 7.5K the density dependence of τimp can be seen in Tab. 4.4. For higher temperatures
phonon scattering becomes relevant and suppresses the density dependence of τmr. Notice,
that especially at small densities in the Dirac fluid regime (here at T = 60K) hydrodynamic
transport can be realized as τmr is an order of magnitude larger than the typical electron-
electron scattering time, which we estimated in Eq. (4.233).

Last but not least, in an external magnetic field B, the electron-electron scattering rate also
needs to exceed the typical cyclotron frequency of thermally excited states [184, 185]

ωth
c = neBv2

F
ε+ P

. (4.237)

Even though charge carriers are confined to cyclotron orbits in magnetic fields, this require-
ment ensures the existence of a local thermal equilibrium in each fluid cell. In the Fermi
liquid- as well as in the Dirac Fluid regime, we can approximate Eq. (4.237) by using the
corresponding expressions for the enthalpy density, which we derived in Eq. (4.211) and
Eq. (4.212), respectively:

ωth
c,FL ≈

eB v2
F

|µ|
, (4.238)

ωth
c,DF ≈

n

nimb

eB v2
F

πkBT
. (4.239)

In order to give exemplary values of these time scales in graphene encapsulated by hBN, let
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us assume a small magnetic field B ≈ 10mT. For such a field, Eq. (4.237) predicts

1/ωth
c (100meV, 60K) ≈ 2.8× 10−12 s (4.240)

in the Fermi liquid regime with µ/(kBT ) = 19, and

1/ωth
c (1meV, 60K) ≈ 2.0× 10−12 s (4.241)

in the Dirac fluid regime with µ/(kBT ) = 0.19.

Transport Coefficients

As we have discussed in the previous subsections, adjusting the temperature and chemical
potential in graphene such that lee is the shortest length scale present gives rise to hydrody-
namic transport within this two-dimensional material. For |µ| � kBT , this transport is very
similar to the hydrodynamic transport of common Fermi liquids with a quadratic dispersion
in momentum. Instead, for |µ| � kBT , a hydrodynamic Dirac fluid phase has been predicted
to arise in clean graphene samples [184]. It is the goal of the following (sub-)sections to
apply the hydrodynamic framework introduced in Secs. 4.1.2 and 4.1.3 to graphene, and to
analyze its hydrodynamic transport analytically, as well as numerically. We start our anal-
ysis with the discussion of graphene’s different transport coefficients. These quantities will
be used as input parameters for our subsequent hydrodynamic simulations. Recently, the
authors of Refs. [184, 207, 216] derived the dissipative transport coefficients of graphene by
using a kinetic Boltzmann approach. Strictly speaking, this mathematical framework is only
valid for weakly coupled systems with α � 1. As we have seen in the previous section the
’bare’ interaction parameter α0 in graphene does not necessarily have this property. How-
ever, in equation Eq. (4.230), we have shown that the effective coupling strength in graphene
is marginally irrelevant. Hence, taking into account graphene’s characteristic RG flow, the
(large) relative dielectric constant of its encapsulating material, as well as finite screening
effects for µ 6= 0, significantly increases the reliability of the kinetic theory approach men-
tioned above. In what follows, we are going to review the particular results for graphene’s
dissipative transport coefficients, which were initially derived in Refs. [184, 207, 216].

The Quantum Critical Conductivity σQ One of the transport coefficients which is left
undetermined by hydrodynamics is the quantum critical conductivity σQ, which was intro-
duced and discussed in Sec. 4.1.3. A general derivation of this quantity can be found in
Ref. [184]. Based on a kinetic Boltzmann approach and a random phase approximation, the
authors of this reference predict the following functional dependence of the quantum critical
conductivity and the electron-electron scattering time:

σQ(µ, ω) = 1
α2

4π
ĝ1(µ, T )

(
τee(µ, T )α

2kBT

~

)2 1
1− iωτee

e2

h , (4.242)

τee(µ, T ) = 1
α2
ĝ1(µ, T )

2

(
2 ln (2 cosh[µ/(2kBT )])

π
− n2(~vF)2

(ε+ P )kBT

)
~

kBT
. (4.243)

Here, ω encodes the AC frequency of an applied electric field and ĝ1(µ, T ) is a complicated
α-independent scattering function which needs to be evaluated numerically via the inversion
of a scattering matrix. In the scope of our analysis, we are mainly interested in the DC
limiting values of these quantities. In the Dirac fluid phase |µ| � kBT , the Fermi surface
vanishes and screening effects become negligible. This implies the following DC values at
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charge neutrality

σQ (0, 0) = 4π
α2 ĝ1 (0, T )

( ln(2)
π

)2 e2

h = 0.760
α2

e2

h , (4.244)

τee(0, 0) = 1
α2

~
kBT

ĝ1(0, T ) ln(2)
π

= 0.274 ~
α2kBT

, (4.245)

with ĝ1(0, T ) ≈ 1.24. In the Fermi liquid regime only one kind of (majority) charge carriers,
either electrons or holes, significantly contributes to the electric transport [cf. Fig. 4.11]. As
such, the quantum critical conductivity is negligible within this regime [184].

To get an intuition of how the quantum critical conductivity effects the thermo-electric re-
sponse in graphene, let us briefly discuss the longitudinal thermo-electric conductivities in
the presence of an AC driving field and a weak charged impurity density nimp [cf. Eq.(4.236)],
which will be encoded in the dimensionless parameter

∆ = π2
(

Ze2

kBTεr

)2

nimp . (4.246)

In general, the relation between the two-dimensional heat- Q and charge current J as a
response to an applied electric field E and a thermal gradient ∇T is given by(

J
Q

)
=
(
σ̂ α̂

T α̂ ˆ̄κ

)(
E
−∇T

)
, (4.247)

where σ̂ defines the electrical conductivity tensor, ˆ̄κ is the thermal conductivity tensor, and α̂
encodes the thermopower as well as the Peltier coefficient [184]. For k = 0, the hydrodynamic
conservation equations for the charge-, energy- and momentum flow [cf. Eqs. (4.3) and (4.28)],
imply the local response functions [80, 184]

σij(ω;µ,∆) = δij
[

e2

τ−1
imp − iω

nv2
F

ε+ P
+ σQ + δσ (∆, ω, µ)

]
, (4.248)

αij(ω;µ,∆) = δij
[

e
τ−1

imp − iω
snv2

F
ε+ P

− σQ
e
µ

T
+ δα (∆, ω, µ)

]
,

κ̄ij(ω;µ,∆) = δij
[

1
τ−1

imp − iω
s2Tv2

F
ε+ P

+ σQ
e2
µ2

T
+ δκ (∆, ω, µ)

]
,

where δσ, δα, δκ = O(∆/α2). The first terms in all these formulas represent the so-called
Drude peak which is proportional to the charge- or entropy density. In the DC limit ω → 0,
its upper bound is set by the impurity mean free path. The second terms originate from the
quantum critical conductivity and dominate the zero density response. With an increasing
charge density n or impurity scattering time τimp these terms become less and less relevant,
as they are associated to relativistic physics.

Equation (4.248) in particular allows us to derive graphene’s so-called Lorenz ratio L in the
hydrodynamic regime

L ≡ κ11(ω = 0)
Tσ11(ω = 0) , where κij = κ̄ij − Tαikσ−1

kl α
lj (4.249)
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is the electric contribution to the thermal conductivity. The latter tensor is defined as the pro-
portionality between the heat current and the thermal gradient at zero charge current,

Q = −κ̂∇T
∣∣
J=0 . (4.250)

The particular form of κ̂ is determined by Eq. (4.248). In the DC limit, one finds

κij(ω = 0) = δij
v2

F(ε+ P )τimp
T

σQ(ω = 0)
σ11(ω = 0) , (4.251)

which implies the hydrodynamic Lorentz ratio

L = LDF[
1 +

(
n

n0

)2
]2 with LDF = v2

F(ε+ P )τimp
T 2σQ

and n2
0 = (ε+ P )σQ

e2v2
Fτimp

. (4.252)

In weakly interacting electron systems in which impurity or phonon scattering dominates, e.g.
in non-hydrodynamic Fermi liquid transport, this ratio is predicted to satisfy the Wiedemann-
Franz law [98, 217–219]:

L = LWF = π2

3

(kB
e

)2
= 2.44× 10−8 WΩK−2 . (4.253)

The Wiedemann-Franz law predicts that the electric contribution to the longitudinal ther-
mal conductivity is directly proportional to the longitudinal electrical conductivity. This
originates from the fact that in such systems the charge- and thermal relaxation times are
directly proportional to each other, since electron-electron scattering processes are subleading
in these materials. However, once these interactions become relevant, they differently effect
the charge- and thermal relaxation time, such that the Wiedemann-Franz law gets violated
[213]. By definition, this effect is expected to be large in the hydrodynamic regime in which
τee is the most relevant time-scale. Equation (4.252) clearly encodes this breakdown. In the
zero density limit, the Lorentz ratio diverges as τimp → ∞. This property originates from
the fact that the longitudinal conductivity approximates a finite value at charge neutrality,
σ11 → σQ, whereas κ11 diverges as τimp → ∞ and n → 0. In the large density limit, the
Lorentz ratio tends to zero. This results from the fact that for n→∞ charge as well as heat
transport are both mediated via local momentum densities [80]. Initially, the experimental
evidence of both of these effects has been observed in Reference [208].

For the sake of completeness, we briefly review these experimental findings in the following.
The authors of Ref. [208] measured the normalized Lorentz ration R ≡ L/LWF as a function
of the induced charge density n and the temperature T in the three different graphene mono-
layers which are characterized in Tab. 4.5. The residual density at charge neutrality, nmin(T ),
originates from spatial fluctuations of the chemical potential caused by charged impurities in
the hexagonal boron nitride substrate [cf. Eq. (4.236)]. The presence of these charge puddles
sets an lower temperature boundary for measuring characteristics of the hydrodynamic Dirac
fluid regime, as it will be explained in the following.

Figure 4.13 illustrates the experimental result for the graphene monolayer ML1. While
dark blue values encode R . 2, close to the charge neutrality point for charge densities
|n| < nmin(T ) and for moderate temperatures Tdis < T < Tph, one can observe an order of
magnitude deviation from the Wiedemann-Franz law.
For temperatures smaller than the disorder temperature Tdis the underlying charge puddles
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Graphene Layer L [µm] W [µm] µmobility [105cm2V−1s−1] nmin(T =0) [109cm−2]

ML1 3 9 3 5

ML2 3 9 2.5 8

ML3 4 10.5 0.8 10

Table 4.5: Length L, width W , mobility µmobility, and residual density nmin(T = 0) of the
three graphene monolayers which are studied in the Reference [208].

prohibit the formation of a Dirac fluid phase. In particular, the local chemical potential
fluctuations µdis(r) do not satisfy |µdis(r)|/(kBT ) � 1 for T < Tdis, which sets a lower tem-
perature boundary for the observation of Dirac fluid physics. For the graphene monolayer
ML1, the disorder temperature Tdis ≈ 40K. For temperatures above the phonon tempera-
ture Tph the electron-phonon mean free path becomes comparable to the electron-electron
scattering length. In this case, momentum-relaxing phonon scattering processes lead to a
breakdown of the hydrodynamic regime. In the graphene monolayer ML1, the phonon tem-
perature Tph ≈ 80K.

Figure 4.13: Breakdown of the Wiedemann-Franz law in a graphene monolayer [ML1,
cf. Tab. 4.5]. The Lorentz ratio L is measured as a function of the temperature T = Tbath
and the charge density n. The data are normalized to the expected Wiedemann-Franz value
LWF = L0 in the Fermi liquid regime. Close to the charge neutrality point for |n| < nmin(T )
(green dots) and for intermediate temperatures Tdis < T < Tph, the Wiedemann-Franz law
is violated by an order of magnitude due to the formation of a hydrodynamic Dirac fluid
[cf. Eq. (4.252)]. Further explanations are given in the text. The figure is reprinted from
Ref. [208] with permission from the AAAS.

The largest deviation from the Wiedemann-Franz value RWF = 1 in the graphene monolayer
ML1 is measured at n = 0 and T ≈ 55K, namely R = 22. With increasing charge density |n|
the Lorentz ratio decreases as it is predicted by Eq. (4.252). This scaling becomes even more
apparent in Fig. 4.14, which illustratesR as a function of n at T = 60K for the three graphene
monolayers ML1 (blue), ML2 (red), and ML3 (green). While dots indicate measured values,
the dashed lines correspond to theoretical fits, which are based on Eq. (4.252). Within the hy-
drodynamic Dirac fluid regime, the theoretical curves perfectly match the experimental data.
Since ML1 has the highest mobility [cf. Tab. 4.5] it manifests the strongest deviation from
the Wiedemann-Franz law. However, for large |n| the theoretical fits strongly differ from the
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experimental data. Equation (4.252) predicts that in the hydrodynamic Fermi liquid regime
R → 0, whereas the experimental data approximate the Wiedemann-Franz value RWF = 1.
This difference results from the fact that the hydrodynamic assumptions break down with
increasing density. However, in the cleanest sample ML1 one can clearly observe that the
normalized Lorentz ratio approximates R = 0 with increasing density, before it eventually
raises again and approximates RWF = 1 in the non-hydrodynamic regime.

Figure 4.14: Scaling of the Lorentz ratio L as a function of the charge density n at T = 60K
for the three graphene monolayers ML1 (blue), ML2 (red), and ML3 (green) [cf. Tab. 4.5].
All values are normalized to the expected Wiedemann-Franz value in the Fermi liquid regime
LWF = L0. Dots indicate measured data, dashed curves correspond to theoretical fits, which
are based on Eq. (4.252). While in the Dirac fluid regime close to charge neutrality the
hydrodynamic theory applies, it strongly deviates in the non-hydrodynamic large density
limit. Further explanations are given in the text. The figure is reprinted from Ref. [208] with
permission from the AAAS.

As we have mentioned, Eq. (4.248) only encodes the local thermo-electric transport functions
at k = 0 and neglects O(k2) corrections, originating from the viscous transport coefficients
in the hydrodynamic expansion [85, 195, 220]. In what follows, we are going to analyze these
coefficients in the context of kinetic theory.

Shear-, Bulk-, and Hall Viscosities We start our discussion of the viscous transport coef-
ficients with the shear viscosity η, conceptually introduced in Sec. 4.1.3. In the framework
of a kinetic Boltzmann theory and a random phase approximation, this dissipative trans-
port coefficient in the screened Fermi liquid regime is predicted to have the following form
[207, 216]:

ηFL ≈
nµ

4 τ2,ee = 3
128π2~v2

F α
2 (ln [α−1]− δ2)

µ4

(kBT )2 , (4.254)

where τ2,ee is graphene’s transverse momentum relaxation time in the Fermi liquid regime
[cf. Sec. 4.1.3]

τ2,ee = 3~µ
32π(kBT )2α2(ln[α−1]− δ2) (4.255)

and δ2 ≈ 2.44. In the Dirac fluid phase where screening effects effectively vanish, the shear
viscosity is instead given by [207, 221]

ηDF ≈ 0.45× (kBT )2

~v2
Fα

2 . (4.256)
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In contrast to the shear viscosity, the bulk viscosity [cf. Sec. 4.1.3] in graphene vanishes at low
energies as a consequence of the scale invariance of the relativistic massless Dirac spectrum
[216]

ζ = 0 . (4.257)

Last but not least, the parity-odd Hall viscosity which we introduced in Sec. 4.1.3 vanishes
in low-energy graphene due to its parity-even gapless Dirac dispersion. This effect is in
particular independent of the chemical potential and the temperature. As an out-of-plane
magnetic field B breaks the parity symmetry, applying such a field allows for a non-zero
Hall viscosity. In particular, in the Fermi liquid regime, the shear- and Hall viscosities
[cf. Eq. (4.254)] renormalize to [207]

ηFL(B) = ηFL(B = 0)
1 + Γ2

B

∧ ηH,FL(B) = ΓB
1 + Γ2

B

ηFL(B = 0) , (4.258)

where

ΓB = 2ωB,FLτ2,ee ∧ ωB,FL = ev2
FB

|µ|
. (4.259)

Notice that these formulas have the same form than the ones which apply for two-dimensional
electron gases in Eq. (4.159). The only difference is that the classical cyclotron frequency of
quasi-free massive particles is replaced by its corresponding value in graphene, Eq. (4.238),
which takes into account the massless Dirac dispersion. Since in the Fermi liquid regime
graphene is essentially described by semi-classical single band physics [cf. Fig. 4.11], the
correspondence to Eq. (4.159) does not come as a surprise. This analogy does not hold it
the Dirac fluid regime, in which the relativistic effects of the linear dispersion in low-energy
graphene become most relevant. Exactly at the charge neutrality point, the electron-hole
symmetry implies two unique features: (i) Even in external out-of-plane magnetic fields
the Hall viscosity ηH ∝ sgn(eB) remains zero, as the Hall viscous force in magnetic fields
accelerates the thermally excited electrons and holes in different directions [cf. Eq.(4.116)].
Due to the electron-hole symmetry at n = 0 there is no net Hall viscous effect. (ii) The same
symmetry implies that the shear viscosity approximates a non-zero constant value in strong
classical magnetic fields BCS, after initially decreasing. In particular, one obtains

η(B,µ = 0) = (kBT )2

~v2
Fα

2
B + B1ω

2
B,DF

1 + B2ω2
B,DF

∧ ωB,DF = ev2
FB

α2(kBT )2 (4.260)

with B ≈ 0.45, B1 ≈ 0.0037, B2 ≈ 0.0274 and

lim
B→BCS

η(B,µ = 0) = B1
BB2

η(B = 0, µ = 0) ≈ 0.31 η(B = 0, µ = 0) . (4.261)

For chemical potentials above µ = 0 but below the Fermi liquid regime, the shear- as well
as the Hall viscosity can not be derived in a closed analytic form. Instead, these quantities
need to be calculated numerically by solving the corresponding expressions (B1a) and (B1b)
in Ref. [207].

In Eq. (4.229), we have shown that as a consequence of the RG flow in graphene, the Fermi
velocity vF is a chemical potential and temperature dependent quantity. In all of the expres-
sions above, this scaling is implicitly included.
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4.2 Hall Voltage in Two-Dimensional Fermi Liquids
In Sec. 4.1 we have discussed the theory of hydrodynamic charge transport in 2+1 space-time
dimensions. Based on these principles, I published the manuscript Functional dependence of
Hall viscosity induced transverse voltage in two-dimensional Fermi liquids (Phys. Rev. B 101,
045423) in January 2020 [P2]. It is the goal of the present section to discuss the theoreti-
cal findings associated to this work, which have been obtained in strong collaboration with
Ioannis Matthaiakakis and Dr. David Rodríguez Fernández (shared first-authorship)a. While
all analytic derivations have been obtained by Ioannis Matthaiakakis and myself, Dr. David
Rodríguez Fernández provided numerical results to supplement our theoretical findings and
to extend our results beyond the weak magnetic field regime where a closed analytic consid-
eration can not be derived in the framework of perturbation theory.

As we have discussed in Sec. 4.1.4, the idea of describing electrons in solid state systems
via hydrodynamics goes back to the discovery of the Gurzhi effect in (Al)GaAs quantum
wires [77–79]. Recently, hydrodynamic transport has received renewed attention due to the
accessibility of the hydrodynamic regime in modern materials [80–83]. In Sec. 4.1.5, we have
for instance discussed graphene’s hydrodynamic transport theory in both, the Fermi liquid
as well as the Dirac fluid regime [90–92]. In particular, two-dimensional systems that violate
parity invariance are of special interest, since they exhibit novel non-dissipative hydrodynamic
transport coefficients, such as the Hall viscosity ηH introduced in Sec. 4.1.3 [84–89]. Recent
experiments in graphene have shown that ηH may be of the same order of magnitude as
the shear viscosity η and therefore is expected to significantly affect the fluid transport [93].
However, current theoretical and experimental works [94–97] do not provide a quantitative
answer to the functional dependency of Hall viscous effects on all parameters describing the
system, including a finite slip length ls [cf. Sec 4.1.3] and impurity length limp [cf. Sec 4.1.1].

V

B

E
x

y

y=W

y=0

Δ μ
vx(y)

ls

ls

Ftot

Figure 4.15: Setup to distinguish Hall viscous from Lorentz force contributions to the total
Hall voltage. The red curve shows the hydrodynamic velocity profile vx(y) in a channel of
length L and width W�L in presence of an electric field E and an out-of-plane magnetic
field B. Momentum transfer to the boundaries, captured by the slip length ls, is shown by
the red dashed curve. The total Hall force Ftot induces a transverse pressure gradient, giving
rise to a gradient in the chemical potential ∆µ, illustrated (initially) by the (dashed) black
line. The figure is reprinted from Ref. [P2] with permission from the APS.

To address this open issue, we derived the Hall viscous contribution ∆VηH to the total Hall
voltage ∆Vtot = ∆VηH+∆VB measured across the two-dimensional channel shown in Fig. 4.15,

aThis work has been supervised by Prof. Dr. Ewelina M. Hankiewicz, Prof. Dr. Johanna Erdmenger, and
Dr. René Meyer.
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in the hydrodynamic regime. Here, ∆VB is the Lorentz force contribution. Up to first order
in the electric field, we calculate the complete functional dependency of ∆VηH and ∆VB on
all external parameters as a function of the transverse channel coordinate. In particular, we
evaluate the dependence of both voltage contributions on limp, ls, the wire width W , the
equilibrium carrier density n0 as well as on the magnetic field B. This allows to distinguish
∆VηH from ∆VB via measurements on two-dimensional Hall setups with varying W and n0.

Most remarkably, we derive that the two voltage contributions differ in sign and that the
ratio |∆VηH |/|∆VB| decreases with increasing |B|. Hence, the total Hall voltage cancels at a
certain critical magnetic field Bc, which is a smoking gun feature of Hall viscous transport.
Additionally, we show that local measurements of the Hall voltage are suitable to identify
the Hall viscosity. In particular, we analytically derive the parabolic form in the transverse
channel coordinate of the total Hall electric field, as was recently measured in Ref. [97]. While
the curvature of this parabola is mainly defined by the Lorentz contribution, its offset is ex-
plicitly characterized by ∆VηH and hence by the Hall viscosity. For both, weak and strong
magnetic fields as well as for clean systems our approach is analytical, whereas for interme-
diate field regimes we numerically solve the non-relativistic Navier-Stokes equations, derived
in Eq. (4.98)a. In particular, we demonstrate that ∆VB is proportional to the velocity profile
integrated over the channel width, and therefore proportional to the total fluid momentum.
In contrast, ∆VηH exclusively depends on the gradient of the velocity profile at the boundaries
of the system. Based on this, we analytically prove that for small fields and clean systems
with Poiseuille-like (parabolic) velocity profile the ratio ∆VηH/∆VB is determined completely
by the interplay of length scales defining the system [cf. Sec. 4.1.1]. While the modulus
of this ratio increases with the transverse electron-electron mean free path lee, it decreases
with W, ls and limp. Since lee and limp are density dependent, the ratio acquires a density
dependence, as well. In the absence of impurities ∆VηH/∆VB=O(n3

0), whereas for weak im-
purity strength there exists an additional O(n2

0) contribution. Hence, it is possible to achieve
|∆VηH |/|∆VB|>1 by tuning the width and density of the sample. For n0 =9.1×1011cm−1 and
W = 3µm, such a regime is for instance realized in GaAs for |B| ≤ 20mT. Beyond the weak
field limit, we show that increasing |B| strongly reduces |∆VηH |/|∆VB|, due to the suppression
of η and ηH by the magnetic field, which we have shown in Sec. 4.1.4. For large magnetic
fields, for example in GaAs for |B|& 0.5T, impurities dominate the transport, which causes
an Ohmic (flat) fluid profile with vanishing ∆VηH/∆VB. The critical field |Bc|, at which
∆VηH/∆VB =−1 and the total Hall voltage ∆Vtot = 0, increases with decreasing W, ls, limp
and l−1

ee . In particular, for GaAs we find |Bc| ' O(10mT), which makes our predictions
experimentally verifiable.

4.2.1 Model & Equations of Motion
We are going to derive these predictions in the following. Therefore, we analyze the hy-
drodynamic flow of non-relativistic electrons along the two-dimensional channel geometry in
Fig. 4.15 under the combined influence of a DC electric field E = −Exex and an out-of-plane
magnetic field B = −Bez

b. To justify our hydrodynamic approach, we assume that lee is the
shortest length scale in our system [182]. In particular, it is smaller than the cyclotron radius
rc =m∗vF/|eB| [cf. Sec. 4.1.1], which is defined in terms of the effective electron mass m∗,
the electron charge e < 0 and the Fermi velocity vF [cf. Sec. 4.1.4]. Additionally, we assume
that our system is incompressible and has translational invariance in longitudinal, as well as
vanishing current in transversal direction.

aThe definition of weak, intermediate and strong magnetic fields in terms of the Gurzhi length is given below.
bIn what follows, we assume that the screening length in our material is much shorter than the width of our
channel. Hence, the electric field sourced by the redistribution of charge carriers can be neglected.
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For this ansatz, the equations of motion are defined by the non-relativistic Navier-Stokes
equations which we derived in Eq. (4.98). For incompressible two-dimensional Fermi liquids
with σQ =σQAH = 0, these equations are, in the presence of impurity scattering [cf. Eq. (4.31)],
in particular given bya [222–224]

(∂t + v · ∇)n = −n∇ · v, (4.262)
m∗n (∂t + v · ∇) v = −∇p+ η∇2v + ηH∇2(v× ez)

+ en(E + v×B)− n0vFm
∗

limp
v, (4.263)

in the framework of linear response theory. In our analysis, we consider a steady, hydrody-
namic flow of electrons, which is translationally invariant along the ex-direction [cf. Fig. 4.15].
Moreover, we assume a vanishing current in the ey-direction, implying that the velocity pro-
file takes the form v = vx(y)ex. To obtain an inhomogeneous, non-trivial velocity profile,
our system needs to deviate from global thermal equilibrium. In order to be able to lin-
earize Eqs. (4.262) and (4.263), we assume that variations of the chemical potential and the
temperature are small compared to their global equilibrium values

µ(y) = µ0 + ∆µ(y) with ∆µ(y)� µ0 , (4.264)
T (y) = T0 + ∆T (y) with ∆T (y)� T0 .

For typical Fermi liquids, such as GaAs, µ0 = O(50meV) whereas T0 = O(1K). Notice,
that due to time- and translational invariance in ex-direction, ∆µ and ∆T solely vary in the
ey-direction. In addition, for T0 = O(1K) the pressure and density fluctuations in our system
are given in terms of µ(y) and T (y) by

n(y) = n0 + ∂n0
∂µ0

∆µ+ ∂n0
∂T0

∆T , (4.265)

p(y) = p0 + ∂p0
∂µ0

∆µ+ ∂p0
∂T

∆T = p0 + n0∆µ+ s0∆T ,

where s0 is the equilibrium entropy of our fluid. Under the assumption of a steady and uni-
directional fluid flow with vy = 0, Eq. (4.262) reduces to ∂xn = 0. This enforces a constant
density along the fluid flow, whereas it allows for density fluctuations in ey-direction. Explic-
itly, that is compatible with our incompressibility condition ∇ · v=0. Together, Eqs. (4.262)-
(4.265) dictate the dynamics of vx(y), ∆µ(y) and ∆T (y). For our system the gradient of the
temperature is negligible compared to the gradient of the chemical potential. To see this
explicitly, we write

∂yp = n0µ0∂y

(∆µ
µ0

)
+ s0T0∂y

(∆T
T0

)
. (4.266)

Due to the assumptions in Eq. (4.264), the dimensionless gradients ∂y(∆µ/µ0) and ∂y(∆T/T0)
are of the same order of magnitude. As a consequence, the relative strength of the chemical po-
tential contribution to the temperature contribution in Eq. (4.266) is given by U = n0µ0/s0T0.
If U � 1, the chemical potential gradient dominates over temperature fluctuations and vice
versa. For typical Fermi liquids at T = O(1K), such as GaAs, we find U ' 1016. Hence, in
those samples the gradient of temperature is clearly negligible. Thus, we assume T (y) = T0

aThe charge conservation equation ∂tn + ∇ · (nv) = 0, derived in Eq. (4.97), is trivially satisfied due to
our assumption of a steady and translational invariant flow v = vx(y)ex. In addition, since we restrict
ourselves to T = O(1K), phonons are negligible in our approach [77–79].
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and define

n(y) = n0 + ∂n0
∂µ0

∆µ(y) ∧ p(y) = p0 + n0∆µ(y) . (4.267)

Substituting this into Eq. (4.263), leads to

η∂2
yvx(y)=

(
n0 + ∂n0

∂µ
∆µ
)(

eEx + vFm
∗

limp
vx(y)

)
, (4.268)

∂yp =
[
eB
(
n0 + ∂n0

∂µ
∆µ
)
− ηH∂

2
y

]
vx(y) . (4.269)

Notice, that Eqs. (4.268) and (4.269) contain terms which are proportional to ∆µ(y)vx(y).
These terms induce non-linear corrections to our observables in terms of the electric field Ex.
In the framework of linear response theory, we are therefore allowed to drop them without
loss of generality. In particular, this leads to

η ∂2
y vx = e

(
n0 + ∂n0

∂µ
∆µ
)
Ex + n0vFm

∗

limp
vx(y) , (4.270)

∂y p = n0 ∂y∆µ =
(

eBn0 − ηH∂
2
y

)
vx(y) . (4.271)

Let us make some remarks concerning Eqs. (4.270) and (4.271).

First, we emphasize one more time that the incompressibility condition for our unidirectional
fluid flow, ∇ · v = 0, solely implies a constant density along the ex-direction. In particular,
vy = 0 allows for density fluctuations satisfying ∂yn ∝ ∂y∆µ 6= 0.

Second, Eq. (4.270) contains a term ∝ ∆µEx, which in particular is higher order in the
electromagnetic fields Ex as well as B. Therefore, it does not affect our linear response
results, which we present in the following. However, we kept this term because we want to
explicitly check that the Lorentz and the Hall-viscosity induced force influences the velocity
profile in the expected way. Namely, we expect vx(y) to deviate from its symmetric Poiseuille
form, corresponding to a fluid flow which concentrates towards one of the sides of the channel,
depending on the sign of the magnetic field. The simplest way to see this deviation is to take
into account the ∆µEx term since it only couples to the first order correction of the velocity
profile and decouples from the equations for v0

x(y). We will rigorously prove this statement
in Eqs. (4.279) and (4.292).

Third, we did not include the electric field sourced by the inhomogeneous density distribution
resulting from Eqs. (4.270) and (4.271). This is justified, since the Thomas-Fermi screening
length of our system is λTF ∝ n

−1/2
0 ' 0.01 µm [cf. Eq. (4.131)], which is about 100 times

smaller than the width of our channel (W ' 1µm). Therefore, we expect the corresponding
electric field to be effectively screened, and hence to be much smaller than Ex or ∂y∆µ/e.
This will be derived in the following.

In order to solve Eqs. (4.270) and (4.271) for the hydrodynamic variables, we supplement
these differential equations with the general boundary conditions

vx(−ls) = vx(W+ls) = 0, ∆µ
∣∣
y=0 = −∆µ

∣∣
y=W . (4.272)

As it was discussed in Sec. 4.1.3, the slip length ls characterizes the velocity profile at the
boundaries of the system. This property is exemplary shown in Fig. 4.15. For ls = 0 the
fluid flow is Poiseuille-like (parabolic), whereas ls→∞ defines the diffusive regime with a flat
velocity profile vx(y). Notice that we do not use standard Robin type boundary conditions
to define the slip length in our system [197]. This relies on the fact that our set of boundary
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conditions naturally describes the case of a finite drift velocity. However, in our channel
geometry, Robin-type boundary conditions [197] are equivalent with our choice of boundary
conditions, Eq. (4.272), as we will show in Sec. 4.2.4.

Let us close this section by emphasizing that in two space dimensions the dynamics of incom-
pressible, non-relativistic fluids is entirely captured by the magnetic field dependent shear
and Hall viscosities η and ηH, which have been introduced and discussed in Eq. (4.159)
[86, 183]

η = η0
1 + (2 lee/rc)2 ∧ ηH = 2 sgn(B) η0 lee/rc

1 + (2 lee/rc)2 . (4.273)

Here η0 =m∗n0vFlee/4 is the dynamic shear viscosity at zero magnetic field [cf. Eq. (4.156)].
The main goal of the following sections is to derive the total Hall voltage

∆Vtot = −
∫ W

0
dy ∂y∆µ/e = − (∆µ(W )−∆µ(0)) /e (4.274)

up to first order in Ex, and to separate Hall viscous from Lorentz force contributions therein.

4.2.2 The Global Hall Voltage
The total Hall voltage ∆Vtot =∆VηH + ∆VB consists of two different terms, namely the Hall
viscous- and the Lorentz force contributions. To analytically derive the functional depen-
dence of these building blocks, we first restrict ourselves to weak magnetic fields, defined
by lG/rc� 1. The Gurzhi length lG =

√
limpη/(n0m∗vF) quantifies the relative strength of

impurity to shear effects. While the flow is Poiseuille-like for lG/W � 1, it becomes Ohmic
for lG/W�1.

Analytic Solutions in the Weak Magnetic Field Regime In what follows, we provide an ex-
plicit solution of the Navier-Stokes Eqs. (4.270)-(4.271) under the boundary condition (4.272)
in the weak magnetic field limit rc � lG. The assumption of weak magnetic fields allows us to
expand the velocity profile and hence the Navier-Stokes equations in powers of B. Technically,
this expansion is achieved by introducing the dimensionless parameter ε, satisfying

B → εB, ηH → εηH, ∆µ→ ε∆µ , vx =v0
x + εv1

x. (4.275)

In particular, this assumes that to first order the system responds linearly in terms of the
magnetic field. With this ansatz the Navier-Stokes Eqs. (4.270)-(4.271) reduce toa

η∂2
yv

0
x(y)− m∗vFn0

limp
v0

x(y) = en0Ex , (4.276)(
eBn0 − ηH∂

2
y

)
v0

x(y) = n0∂y∆µ(y) , (4.277)

η∂2
yv

1
x(y)− m∗vFn0

limp
v1

x(y) = eEx
∂n0
∂µ

∆µ(y) . (4.278)

To find an explicit solution of this set of equations we first determine v0
x(y) by solving

Eq. (4.276), which is the zero-field Poiseuille flow equation in the presence of impurities.
Once we have obtained v0

x(y), we calculate ∆µ(y) by integrating Eq. (4.277). Substituting

aHere, we assumed that the Hall viscosity is approximately constant for small fluctuations of the magnetic
field.
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this quantity in Eq. (4.278) finally allows us to derive the first order velocity correction v1
x(y).

Explicitly, we find

v0
x(y)=−eExlimp

m∗vF

(
A1cosh

[
yl−1

G

]
+A2sinh

[
yl−1

G

]
+1
)

(4.279)

∆µ(y)= e limpEx
m∗vF

[
lG
(m∗vFηH

ηlimp
− eB

)
(4.280)

×
(
A1sinh

[
yl−1

G

]
+A2cosh

[
yl−1

G

])
−eBy

]
+ Γ,

where for clarity we defined

A1 = − cosh
[
W

2lG

]
sech

[2ls +W

2lG

]
, (4.281)

A2 = sinh
[
W

2lG

]
sech

[2ls +W

2lG

]
.

Γ = −e limpEx
2m∗vF

[
lG
(m∗vFηH

ηlimp
− eB

)(
A1sinh

[
Wl−1

G

]
+A2

[
cosh

[
Wl−1

G

]
+ 1

])
−eBW

]
.

Before we explicitly present our result for v1
x(y), let us emphasize that Eq. (4.280) predicts

the total Hall voltage ∆Vtot, measured across the sample

∆Vtot = −∆µ(W )−∆µ(0)
e (4.282)

= elimpEx
m∗vF

[
lG
(m∗vFηH

eηlimp
−B

) (
A1 sinh

(
Wl−1

G

)
+A2

[
cosh

(
Wl−1

G

)
−1
])
−BW

]
.

In the scope of our analysis, we are mainly interested in Poiseuille like velocity profiles which
are dominanted by shear effects. Since such fluid flows correspond to W/lG � 1, we further
Taylor expand the hyperbolic functions in Eq. (4.281) in terms of W/lG. As a result, we
find

∆VηH = ηH
η
Ex

[
W − 1

12l2G

(
W 3+6lsW 2+6l2sW

)]
, (4.283)

∆VB = −sgn(B)Ex
3rclee

(
W 3+6lsW 2+6l2sW

)
. (4.284)

For weak magnetic fields, this functional dependence implies the scaling

|∆VηH
|

|∆VB|
= l2ee

1
6W

2 + lsW + l2s
+ 2 lee

limp
. (4.285)

Hence, for lG/rc�1 and W/lG�1, this ratio is completely determined by the characteristic
length scales of the system. Its modulus decreases as a function of W , ls and limp, whereas
it increases with lee. While the hydrodynamic assumption lee� limp strongly suppresses the
second term in Eq. (4.285) a, the first term experimentally can be much larger than one
[90–92]. For very small ls and W in comparison to lee, engineered e.g. in Ref. [225], the Hall
viscous contribution can strongly dominate the Lorentz signal.

In addition, Eq. (4.283) provides the density dependence of each voltage contribution. For
temperatures much smaller than the Fermi energy, we obtain the dependence [99, 226]

∆VηH = f1 n0 + f2(nimp) ∧ ∆VB = f3 n
−2
0 , (4.286)

aIn this limit, according to Eq. (4.283), ∆VηH becomes insensitive to the form of the boundary conditions.
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where nimp is the impurity concentration and f1,2,3 are density independent functions which
will be derived in the next paragraph. Explicitly, Eq. (4.286) predicts

∆VηH

∆VB
= Oclean(n3

0) +Oimp(n2
0) . (4.287)

Hence, in the weak field limit and for W/lG � 1, the Hall viscous contribution becomes
strongly enhanced in comparison to the Lorentz force signal as the carrier density increases.

So far, we did not specify the functions f1,2,3. This will be the purpose of the following
paragraph. The linear, impurity independent scaling of ∆VηH is defined as the limp→∞ limit
of Eq. (4.283). The density dependence of this term is given by [cf. Eq. (4.273)]

∆V 0
ηH = ηH

η
ExW = 2leeExW

sgn(B)rc
= 2τeeExW |e|B

m∗
(4.288)

= 12~3ExW |e|B
F 2
π (m∗)2k2

BT
2 ln2

(
~2πn0
m∗kBT

)
n0 = f1n0 .

Here, τ2,ee is the transverse momentum relaxation time which has been introduced and dis-
cussed in Eq. (4.157) [86, 199, 201, 226]

τee = lee
vF

= 6~3

F 2
πm
∗k2

BT
2 ln2

(
~2πn0
m∗kBT

)
n0 , (4.289)

where kB is the Boltzmann constant and Fπ is a geometric factor, characterizing electron-
electron scattering amplitudes. Notice, that in comparison to Eq. (4.157) we neglected in
Eq. (4.289) density independent contributions to τ2,ee which originate from static impurities
or defects as we are considering the limp → ∞ limit in Eq. (4.288). Moreover, since den-
sity variations do not significantly change the ln2(µ/kBT ) terms in the Fermi liquid regime
µ�kBT , we treat f1 as a density independent function.

The dominant impurity contribution to ∆VηH is given by

∆V imp
ηH =−ηH

η
Ex

1
12l2G

(
W 3+6lsW 2+6l2sW

)
(4.290)

=−|e|B(m∗)2ν2
0nimpEx

3~5π

(
W 3+6lsW 2+6l2sW

)
=f2.

Here, we considered point like impurities with concentration nimp, scattering strength ν0 and
inverse momentum relaxation time τ−1

imp =vFl
−1
imp =m∗ν2

0~−3n0nimp [99]. In the same manner,
Eq. (4.284) evolves to

∆VB=−sgn(B)Ex
3rclee

(
W 3+6lsW 2+6l2sW

)
(4.291)

= −|e|m
∗BEx

6π~2n0τee

(
W 3+6lsW 2+6l2sW

)
= f3n

−2
0 .

After having clarified how to disentangle ∆VηH and ∆VB in terms of their width and density
dependence, let us proceed in presenting our solution for v1

x(y). Therefore, we substitute
Eq. (4.280) into Eq. (4.278), which leads to the first order velocity correction

v1
x(y) = (C1 + λ1 y) cosh

[
yl−1

G

]
+ (C2 + λ2 y) sinh

[
yl−1

G

]
−A3 +A4 y . (4.292)
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Here, for clarity, we defined the following functions

λ1,2 =
e2limpE

2
x
∂n0
∂µ

2m∗vF

(
eB − m∗vFηH

limp

)
A2,1 , A3 =

e limpEx
∂n0
∂µ

m∗vFn0
Γ , A4 =

e2l2impExB

(m∗)2v2
Fn0

,

C1 =csch[(2ls+W )l−1
G ]
(
sinh[(ls+W )l−1

G ]
[
A3−ls

(
λ2 sinh[lsl−1

G ]−λ1 cosh[lsl−1
G ]−A4

)]
− sinh[lsl−1

G ]
[
(λ2ls−A3+W ) sinh[(ls+W )l−1

G ]

+λ1(ls+W ) cosh[(ls+W )l−1
G ]+A4(ls+W )

])
, (4.293)

C2 =− csch[(2ls+W )l−1
G ]
(
2(A4W−A3) cosh[lsl−1

G ]+2A3 cosh[(ls+W )l−1
G ]

+ λ2W sinh[(2ls+W )l−1
G ]+sinh[Wl−1

G ]+λ1W
[
cosh[(2ls+W )l−1

G ]+cosh[Wl−1
G ]
]

+2ls
[
λ1
[
cosh[(2ls+W )l−1

G ] + cosh[Wl−1
G ]
]

+A4
[
cosh[(ls+W )l−1

G ]+cosh[lsl−1
G ]
]
+λ2 sinh[Wl−1

G ]
])
/2 .

Notice, that for ηH 6= 0, the first order correction v1
x(y) breaks the reflection symmetry of

the entire velocity profile with respect to y = W/2, as expected. Explicitly this is caused by
the linear terms in powers of y within Eq. (4.292). Moreover, since C1,2, λ1,2 and A1,2,3,4 are
non-linear in Ex and limp, Eq. (4.292) implies that the first order correction v1

x � v0
x in the

linear response regime.

Analytic Solutions in the Strong Magnetic Field Regime We now move on to the discussion
of strong magnetic fields, implicitly defined by rc � lG. In this limit, η and ηH tend to
zero [cf. Eq. (4.273)], which strongly simplifies Eqs. (4.270) and (4.271). In particular, these
equations yield

vx = −e limpEx
m∗vF

∧ ∂y∆µ = eBvx . (4.294)

Here, we dropped the term ∝∆µEx to make explicit predictions for our linear response
theory. In particular, the solution of Eq. (4.294) reads:

∆Vtot = −sgn(B)ExWlimp/rc . (4.295)

Hence, the Hall voltage solely depends on limp andW in the strong magnetic field limit.

Numerical Solutions in the Intermediate Field Regime Above, we have analytically shown
that in the limit of weak magnetic fields and clean systems the distinct dependence of ∆VηH

and ∆VB on n0,W, ls, limp and lee allows to experimentally distinguish these two contributions.
Beyond the weak magnetic field limit, the Hall viscous and Lorentz force contributions to
∆Vtot need to be evaluated numerically. By solving Eqs. (4.270) and (4.271) for the velocity
profile, we obtain

∆VB = −B
∫ W

0
dy vx(y) , (4.296)

∆VηH = ηH
en0

∫ W

0
dy ∂2

yvx(y) = ηH
en0

[∂yvx(y)]Wy=0 .
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In what follows, we numerically investigate the dependence of these voltage contributions on
B,W, ls, limp and lee. Notice, that while ∆VB is proportional to the integrated value of vx(y),
which characterizes the overall fluid momentum, ∆VηH is totally determined by the gradient
of the velocity profile at the boundaries of the channel.

In Fig. 4.16, we plot the velocity profile of a general Fermi liquid for different magnetic
fields in the context of our linear response theory. As a direct consequence, these profiles
are in particular symmetric with respect to reflections around y = W/2. Notice, that in
Eq. (4.292) we have explicitly evaluated their anti-symmetric correction beyond the linear
response regime, which is sourced by the ∆µEx term in Eq. (4.270). In particular, we have
shown that this anti-symmetric correction is dictated by the direction of the Lorentz as well as
Hall-viscosity induced force and is at least five orders of magnitude smaller than the leading
contribution, depending on the magnetic field strength.

0
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 1
0-4

]

Channel coordinate in ey-direction
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} }
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^
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Figure 4.16: Velocity profile vx(y) of a general Fermi liquid with n0 = 9.1 × 1011cm−2,
η0 =1.7×10−16Js/m2 and limp =40µm[90], derived up to first order in electromagnetic fields.
From the bottom up, the magnetic field is raised from B = 0T (blue) to B = 0.6T (red),
associated with an increase of the fluid velocity. The asymptotic flat velocity profile is caused
by impurities, since for large magnetic fields these provide the only mechanism for attaining
a steady fluid flow. The figure is reprinted from Ref. [P2] with permission from the APS.

Returning now to Fig. 4.16, we observe that with increasing |B|, the fluid is accelerated due to
the corresponding suppression of η [cf. Eq. (4.273)]. According to Eq. (4.296), this leads to an
enhancement of |∆VB|. For large fields, η vanishes and solely impurity scattering is respon-
sible for momentum relaxation, leading to an Ohmic velocity profile [cf. Eq. (4.279)].

The dependence of ∆VηH on the magnetic field is more subtle. Figure 4.16 shows that for
weak magnetic fields, the gradient |∂yvx(y)|y=0,W | increases as a function of |B|. According
to Eq. (4.296), this corresponds to an enhancement of |∆VηH |. As discussed above, impurity
scattering causes an Ohmic (flat) velocity profile for large magnetic fields. This decreases
|∂yvx(y)|y=0,W and therefore reduces |∆VηH |. Altogether, this implies that systems in which
Hall viscous effects dominate the weak magnetic field regime, are eventually always driven to
|∆VηH |/|∆VB| � 1. The transition from Hall viscous to Lorentz force dominated transport
occurs for ∆VηH/∆VB =−1, where ∆Vtot = 0. This happens at a certain critical magnetic
field Bc, which strongly depends on W , ls and lee. This is shown in Fig. 4.17, which displays
|∆VηH |/|∆VB| as a function of W, ls, lee and limp

a.

aNote that the system lies within the range of validity of the hydrodynamic regime, even though lee . W
[97].
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Figure 4.17: |∆VηH |/|∆VB| for different fluids at B = 10mT. In the left (right) panel, this
ratio is shown as a function of W vs. ls (lee vs. limp). For those parameters that are not
altered, we choose ls =0.5µm, W =3µm, n0 =9.1×1011cm−2, T =1.4K, η0 =1.7×10−16Js/m2

and limp = 40µm [90]. While |∆VηH |/|∆VB| strongly decreases with W and ls, the ratio is
rather unaffected by limp and increases as a function of lee. The black dashed curve, for which
∆VηH/∆VB =−1, shows the range of parameters where the total Hall voltage vanishes. The
figure is reprinted from Ref. [P2] with permission from the APS.

According to Eq. (4.296), the dependence of this ratio on these parameters can be explained
by analyzing the corresponding velocity profiles, depicted in Fig. 4.16. As ls increases, the
gradient |∂yvx(y)|y=0,W | decreases, leading to a reduction of |∆VηH |. In contrast, since the
overall fluid momentum is enhanced, |∆VB| increases as a function of the slip length. There-
fore, |∆VηH |/|∆VB| decreases with ls, as illustrated in Fig. 4.17. Increasing the channel width
leads to the same result, since it also increases the overall fluid momentum and at the same
time decreases |∂yvx(y)|y=0,W |. In contrast, |∆VηH |/|∆VB| increases with the electron-electron
mean free path. According to Eq. (4.273), the viscosities η, |ηH| as well as the ratio |ηH|/η
increase as a function of lee as long as lee�rc, implied by the hydrodynamic assumption. This
reduces the overall fluid momentum but increases |∆VηH |. Last but not least, Fig. 4.17 shows
that since lee � limp, the impurity length does not significantly change the ratio ∆VηH/∆VB
for weak magnetic fields.

To demonstrate the experimental relevance of our predictions, Fig. 4.18 finally shows |∆VηH |,
|∆VB| and |∆Vtot| in GaAs as a function of the magnetic field [90, 91]a. Since in this material
the slip length is highly dependent on the etching technique, we plot the corresponding
curves for ls = 0, 0.5, 1.0µm b. For |B| � |Bc|, the ratio |∆VηH |/|∆VB| � 1, giving rise to
a Hall viscosity dominated transport regime. As indicated by Eq. (4.285) and confirmed by
Fig. 4.17, this property is strongly pronounced if the slip length decreases. With the exception
of lee, it is possible to evaluate all parameters in Eqs. (4.270)-(4.273) precisely. Therefore,
measuring ∆VηH and ∆VB with increasing |B|, enables us to determine the electron-electron
mean free path in this sample by fitting theoretical and experimental data. In general, this
procedure works for any Fermi liquid and therefore is a powerful tool to evaluate the electron
interaction strength. For B=Bc, the two voltage contributions are equal in magnitude but

aNote that the system lies within the range of validity of the hydrodynamic regime, even though lee . W
[97].

bPrivate communication with Prof. Laurens Molenkamp, University of Wuerzburg
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Figure 4.18: Absolute values of the Lorentz ∆VB and Hall viscous contribution ∆VηH

to the total Hall voltage ∆Vtot in GaAs are shown as functions of the magnetic field B
for ls = 0, 0.5, 1.0µm. Parameters for this calculation are given in the caption of Fig. 4.17.
For B < Bc, we find |∆VηH |/|∆VB| > 1, whereas otherwise |∆VηH |/|∆VB| < 1. At B = Bc,
the ratio ∆VηH/∆VB =−1, which implies a vanishing Hall voltage ∆Vtot = 0. The figure is
reprinted from Ref. [P2] with permission from the APS.

opposite in sign, leading to ∆Vtot = 0. Experimentally, this smoking gun feature can be
used to prove our Hall viscous magnetotransport theory. For |B|�|Bc|, Fig. 4.18 shows that
transport is dominated by the Lorentz signal. Eventually, this leads to an Ohmic, impurity
driven velocity profile as we have shown in Eq. (4.294). Our present approach does not
incorporate the formation of Landau levels which in GaAs occurs beyond the applicability
of hydrodynamics for |B|&1T. Finally, we remark that the Hall voltage we predict depends
non-linearly on the magnetic field strength. Since ballistic transport predicts ∆VB ∝ B, this
non-linear behavior is a direct consequence of the hydrodynamic regime.

4.2.3 The Local Hall Voltage
So far, we have focused on global voltage measurements across the entire channel. In addition,
Eq. (4.296) predicts the local voltage contributions:

∆VηH = ηH
η
Ex

[
y− 1

12l2G
[6ls(ls+W )+y(3W−2y)] y

]

∆VB=−sgn(B)Ex
3rclee

[6ls(ls+W ) + y(3W−2y)] y . (4.297)

Hence, the total Hall voltage ∆Vtot scales as y3, whereas the Hall field Ey =−d∆Vtot/dy has
parabolic structure. For large limp, the curvature of this parabola,

κ=−4Ex [sgn(B)/rc + ηH/(ηlimp)]/lee , (4.298)

is mainly characterized by the Lorentz contribution. In contrast, the Hall viscous signal
significantly defines the offset of this parabola,

Ey(0) = Ex

[
2ls(ls+W )
sgn(B)rclee

−
(

1− 2ls(ls+W )
leelimp

)
ηH
η

]
. (4.299)

For ls� lee� limp, this relation becomes Ey(0)'ExηH/η.
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Recently, the authors of Ref. [97] measured the local Hall voltage in the hydrodynamic regime
of graphene, particularly satisfying ls ' lee�W . They explicitly reproduced the parabolic
form of the Hall field, as well as that |κ| decreases with increasing lee.

4.2.4 Discussion of Boundary Conditions
Below Eq. (4.272) we have already mentioned that our set of boundary conditions, which
supplements the Navier-Stokes equations (4.262) and (4.263), differs from conventional Robin
type boundary conditions. In particular, our definition of the slip length ls differs from the
one given in Ref. [197]. However, it is the purpose of this subsection to prove that in the
two-dimensional channel geometry considered [cf. Fig. 4.15], our set of boundary conditions
in Eq. (4.272) is equivalent to the standard Robin type boundary conditions

u0
x(0)− lR∂yux(0) = ux(W ) + lR∂yux(W ) = 0 . (4.300)

Here u0
x(y) defines the Robin velocity profile and lR is the corresponding slip length. As a

solution of the weak magnetic field Navier-Stokes Eqs. (4.276)-(4.278), u0
x(y) is given by

u0
x(y)=−eExlimp

m∗vF

(
C1 cosh

[
yl−1

G

]
+ C2 sinh

[
yl−1

G

]
+1
)
. (4.301)

Here, we define the amplitudes C1 and C2 via

C1 = −lG [lG + lR tanh [W/(2lG)]]−1 , (4.302)
C2 = lG [lR + lGcoth [W/(2lG)]]−1 . (4.303)

In order to prove the equivalence between the two types of boundary conditions, it is sufficient
to show that the velocity profiles u0

x(y) and v0
x(y) match each other. According to Eq. (4.301),

the Robin slip length is defined to be the normalized value of the inverse first derivative of
the velocity profile at the boundaries. Hence, let us define the effective Robin slip length for
our velocity profile

leff
R ≡

v0(0)
∂yv0

x(0) = − v0(W )
∂yv0

x(W ) . (4.304)

This quantity allows us to derive the equivalence of the two types of boundary conditions if
we are able to prove that

u0
x(y; lR = leff

R ) = v0
x(y; ls) . (4.305)

For weak magnetic fields, satisfying lG/rc � 1, Eq. (4.279) defines v0
x(y) analytically. In this

limit, Eq. (4.304) implies that for lR = leff
R

lR = lG csch[W/lG](cosh[(2ls+W )/lG]−cosh[W/(2lG)]) , (4.306)
ls = lGarcosh[sinh[W/(2lG)] (lGcoth[W/(2lG)]+lR)/lG]−W/2 .

This mapping identifies the velocity profiles u0
x(y) and v0

x(y), since it maps Eq. (4.301) onto
Eq. (4.279). In particular, the Robin type equivalents to the Hall viscous- and the Lorentz
force contribution to the total Hall voltage in Eqs. (4.283) and (4.284) are given by

∆V R
ηH = ηH

η
Ex

[
W − 1

12l2G

(
W 3+6lRW 2

)]
,
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∆V R
B = −sgn(B)Ex

3rclee

(
W 3+6lRW 2

)
. (4.307)

Since Eq. (4.283) and Eq.(4.284) are derived under the assumption W/lG � 1, Eq. (4.307)
is obtained by inserting the Robin slip length, given by Eq. (4.306) in the same limit,
lR ' ls + l2s/W . Beyond the weak magnetic field regime Eq. (4.305) is still justified. Since in
this limit lG/rc & 1, this can not be proven analytically. Instead, we confirmed the validity
of Eq. (4.305) by numerically evaluating the Robin slip length in Eq. (4.304). As soon as the
cyclotron radius rc � W , one enters the strong magnetic field regime. While in this limit
the Robin slip length diverges, our slip length remains constant by definition. Therefore, we
can not justify Eq. (4.305) for strong magnetic fields. However, in this limit the equivalence
of both types of boundary conditions is given trivially. Since the fluid layer interaction
decreases as function of rc, all our results become slip length and therefore boundary condition
independent for rc �W [cf. Eq. (4.295)].

4.2.5 Work in Progress & Future Research Directions
In the above analysis we have shed light on the Hall viscous transport of two-dimensional,
non-relativistic electron fluids in external out-of-plane magnetic fields. In particular, we have
presented a setup that allowed us to distinguish between the Hall viscous- and the Lorentz
force contributions to the entire Hall voltage of conventional Fermi liquids such as GaAs. An
extensive summary of our results can be found in Sec. 5.

Based on our theoretical considerations in Sec. 4.1.5, we are currently extending our anal-
ysis to two-dimensional Dirac systems such as graphene. More precisely, we are including
graphene’s linear Dirac dispersion in our analytic approach and, at the same time, develop
realistic numerical simulations for this material. In the Fermi liquid regime of graphene, for
µ/(kBT )� 1, the expected results should only quantitatively, but not qualitatively differ from
our results for conventional Fermi liquids with a quadratic dispersion in momentum [97]. This
is in stark contrast to the expected signatures in graphene’s Dirac fluid phase µ/(kBT )� 1.
It will we very interesting to understand in which way quantum critical effects like σQ 6= 0
enter the functional dependencies presented in the previous sections. Within the scope of this
thesis, the corresponding Navier-Stokes equations have been derived in Eq. (4.98). Moreover,
in Sec. 4.1.5, we elaborated on graphene’s transport coefficients in both, the Fermi liquid as
well as the Dirac fluid regime. In order to experimentally confirm our theoretical findings we
are currently closely collaborating with the group of Prof. Dr. Amir Yacoby at the Harvard
University.

Another extremely interesting extension of our work is to study massive Dirac systems in
which parity- and time-reversal symmetry are already broken in the absence of external mag-
netic fields. Such systems are in particular characterized by a finite quantum anomalous Hall
conductivity σQAH 6= 0 [P1], as well as a finite torsional Hall viscosity ηt

H 6= 0 [85, 227].
Analyzing the Hall response of such systems in particular sheds light on the role of the parity
anomaly [37, 52] in 2+1 dimensional hydrodynamic fluid flows. While Eq. (4.98) already
includes the contribution of the quantum anomalous Hall conductivity σQAH, a remaining
task is to include torsional effects to the non-relativistic Navier-Stokes equations. In order
to prepare these calculations, we will derive the torsional Hall viscosity of a single Chern
insulator in the remaining section of this thesis.
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4.3 Torsional Hall Viscosity in Dirac-Like Systems

4.3.1 Scientific Context

In what follows, we are going to calculate the so-called torsional Hall viscosity ηt
H of a massive

Dirac fermion in 2+1 space-time dimensions. Initially, the calculation of this non-dissipative,
parity-odd transport coefficient has been performed by T. L. Hughes, R. G. Leigh, O. Parrikar,
and E. Fradkin in Refs. [227–230]. In the subsequent sections, we are mainly following the
line of reasoning in these publications. Similar to the analysis of the QED2+1 polarization
operator in Sec. 2.6.3, and its generalization towards QAH insulators in Sec. 3.2.2, the present
considerations should serve as a starting point in order to transfer pure Dirac physics to QAH
insulators at finite temperatures, densities, and in quantizing out-of-plane magnetic fields. In
contrast to the Hall conductivity, the torsional Hall viscosity of a Dirac-like system cannot
be a quantized value in terms of the Dirac mass m, due to its mass dimension. Based on
this mass dimension and the relation of the Hall viscosity to the Hall conductivity [190],
which we has been studied in Sec. 3.1.2, we are expecting that ηt

H ∝ m2sgn(m) for a pure
Dirac fermion after proper renormalization. The latter statement originates from the fact
that in contrast to the Hall conductivity, the bare torsional Hall viscosity is expected to be a
divergent quantity, as it can be most easily seen by a power counting argument. The authors
of the aforementioned references renormalize their results by using a Pauli-Villars approach
[cf. Sec. 3.2.3]. They discretize their space manifold on an artificial lattice and add up the
different Dirac contributions originating from the fermion doubling at the high-symmetry
points of the lattice Brillouin zone. Also having in mind the derivation of the torsional Hall
viscosity of the BHZ model [cf. Sec. 3.1.1], each of the fermion doublers has a different mass
term, as it will be discussed in the subsequent analysis. In our follow-up calculation, which is
currently in progress, we are going to derive the torsional Hall viscosity of a planar Dirac-like
system in a fundamentally different way. Analogously to Sec. 3.2, our goal is it to derive
the stress-stress correlator for a single Chern insulator including both, a Dirac- as well as a
Newtonian mass term B|k|2. It is a future task to include finite density and temperature
effects. Based on our analysis in Sec. 3.3, we are expecting that for out-of-plane magnetic
field strengths H < Hcrit, due to the parity anomaly the zero field torsional Hall viscosity
adds a contribution to the entire LL response. Our calculations will significantly differ from
the aforementioned references. As it was explained in Sec. 3.1.1, the BHZ model is a low-
energy model close to the Γ-point of a QSH- or QAH insulator, respectively. Consequently, a
regularization scheme which relies on fermion doublers appearing at the edges of an artificial
lattice Brillouin-zone needs to be treated with caution. Our calculation should, in addition,
shed light into the low-energy AC response of QAH insulators in the continuum model. To
this end, it seems reasonable to incorporate the Newtonian mass term already at the level of
a Lorentz non-invariant action [cf. Eq. (3.60)]. In order to understand all of our extensions, it
is, however, inevitable to first understand the simplified calculation of a pure Dirac fermion
in 2+1 space-time dimensions. As a consequence, we are presenting this analysis in the
following paragraphs. Again, let us emphasize that this calculation is crucially related to the
aforementioned references [227–230].

As a generalization of the conventional Hall viscosity

ηH = lim
ω→0

1
4ωδikεjl ImGij,klR (ω,p=0) with Gµν,ρσR = 〈TµνT ρσ〉R , (4.308)

which we have introduced in Eq. (4.35), the torsional Hall viscosity is given by [85, 228]

ηt
H = lim

p0→0

1
4p0

δikεjl Im G̃ij,klR (p0,p = 0) , (4.309)
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where we defined p0 = ω in order to use a covariant notation for the three momentum. The
only difference between the conventional Hall viscosity in Eq. (4.308) and the torsional Hall
viscosity in Eq. (4.309) is that in the latter definition we have used the canonical instead of
the symmetric energy-momentum tensor for the retarded correlator

G̃µν,ρσR = 〈TµνcanonicalT
ρσ
canonical〉R . (4.310)

For a detailed discussion of this generalization we are referring the interested reader to
Ref. [85]. In what follows, we are going to derive the canonical energy-momentum tensor
of free Dirac fermion coupled to a general 2+1 dimensional space-time manifold. Within the
scope of this analysis we are neglecting effects originating form the spin connection as the
torsional Hall viscosity is a purely geometrical response, which corresponds to a quadratic
Chern-Simons form [cf. Sec. 2.6.4] in terms of the frame fields e µ

a on the level of the effective
action [227, 228]. We are in particular working in the framework of a linear-response theory
with respect to the frame fields. Their fluctuations are encoded in the Chern-Simons form of
the system’s effective action. The transport coefficients, however, need to be calculated on a
flat background in order to neglect higher order contributions of the torsional Hall response
in terms of e µ

a . Moreover, for reasons of clarity, we are neglecting the identifying subscript
’canonical’ in the subsequent calculations.

4.3.2 The Continuum Dirac Model
We start our analysis with the Lagrangian of a massive Dirac fermion coupled to a curved
2+1 dimensional space-time with non-zero torsion, which is described by the general metric
tensor gµν . In order to use the Clifford algebra of 2+1 dimensional Dirac matrices with
respect to a flat Minkowski space-time ηµν , as it is described in Sec. 2.3.1, we introduce the
so-called frame fields e µ

a which locally map between the ’curved’ and the ’flat’ metric. In
particular, we are considering the Lagrangian [227, 228]

L(x) = e ψ̄(x) (iγae µ
a ∂µ −m)ψ(x) with {µ, a} ∈ {0, 1, 2} . (4.311)

The factor e = det(e m
µ ) =

√
det(gµν) makes the space-time volume covariant under general

coordinate transformationsa. In the above notation, we have used latin subscripts to encode
’flat’ space-time indicies in the non-holonomic frame basis, whereas we have used ’curved’
greek subscripts to indicate the holonomic coordinate basis [231]. Be aware, that we are using
latin subscripts to indicate the spatial part of each space-time, as well. The concrete relation
clearly arises from the scientific context.

The canonical energy momentum tensor of a system which is invariant under space-time
translations can be calculated by means of the Noether theorem, which we have analyzed in
Sec. 2.4.5 in-depth [109]:

Tµν(x) = δL
δ[∂µψ(x)]∂νψ(x) + δL

δ[∂µψ̄(x)]
∂νψ̄(x)− L(x) δµν . (4.312)

In order to derive the torsional Hall viscosity in Eq. (4.309), we only need to consider the
spatial part of this tensor, the so-called canonical stress tensor [cf. Eq. (4.8)]. To this end,

aThe indices are written for clarity even though we do not want to specify the entries of the associated
tensors.
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we separate the Einstein convention in Eq. (4.311), which implies

L = e ψ̄(x)

i e0
aγ

a∂0 −m+ i
∑

i,a=1,2
eiaγ

a∂i

ψ(x) (4.313)

= e ψ̄(x)

i e0
aγ

a∂0 −m+ i
∑

i,a,c=1,2
ηace

c
iγ
a∂i

ψ(x) . (4.314)

With the definition in Eq. (4.312), the Lagrangian in Eq. (4.313) implies the following ex-
pression for the canonical stress tensor [227]

Tij(x) = ψ̄(x)i
[
ηace

c
(j∂i)γ

a
]
ψ(x) + δijL with {i, j} = {1, 2} . (4.315)

Here, and in the following, we are using the abbreviated notation:

A(µBν) = 1
2 (AµBν +AνBµ) . (4.316)

Off-Diagonal Contributions

Let us first neglect those contributions to Eq. (4.309) which originate from the diagonal terms
∝ δijL. Due to the tensor contraction in Eq. (4.309), these terms do not contribute to ηt

H,
as we will prove in Sec. 4.3.2. According to Eq. (4.315), we are therefore calculating the
retarded stress-stress correlator [227]

〈Tij(x)Tkl(0,0)〉 = −4Tr
([1

2ηace
c
(j i∂i)γ

a
]

iSF(x)
[1

2ηbde
d
(li∂k)γ

b
]

iSF(−x)
)
. (4.317)

As we have shown in Eq. (2.134), the free propagator of a massive Dirac fermion is given
by

iSF =
(
i/∂ −m

)−1
, (4.318)

where /∂ = γµ∂µ defines the Feynman slash notation. As we have mentioned above, we are
working in the framework of a linear-response theory with respect to the frame fields e µ

a .
Their fluctuation is encoded in the Chern-Simons form of the system’s effective action. The
transport coefficients, however, need to be calculated on a flat background in order to neglect
higher order contributions of the torsional Hall response in terms of e µ

a . For this reason, we
are considering e c

j = δ c
j in the following, which implies

ηace
c
(j∂i)γ

a = ηacδ
c
(j∂i)γ

a = δa(j∂i)γ
a = γ(j∂i) = ∂(iγj) . (4.319)

With this identity, we find the following expression for Eq. (4.317) in momentum space
[227]

〈TijTkl〉(p) = −4i4Tr
∫ d3q

(2π)3

[
1
2q(iγj)

]
(/q +m)

[
1
2r(kγl)

]
(/r +m)

(q2 −m2)(r2 −m2) , (4.320)

where rµ = pµ + qµ. As we have mentioned above, within the scope of this analysis we are
only interested in the parity-odd part of this integral. This contribution is proportional to
the Levi-Civita symbol, and, therefore, proportional to the trace of three Dirac matrices. The
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relevant terms are therefore given by

〈TijTkl〉odd(p) =−
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kTr γj)/qγl)

−
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kTr γj)γl)/r .

This expression can be simplified significantly as the spatial indices j, l ∈ {1, 2}. Conse-
quently, the only non-zero contributions to Eq. (4.321) are given by the terms proportional
to p0 and r0, respectively. With the identity Tr(γ0γiγj) = −2iε0ij we find the two non-zero
contributions

(1) = −
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kq0Tr γj)γ0γl) (4.321)

= −
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kq0Tr γ0γl)γj)

= −
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kq0(−2iεl)j)) = 2iε(l(j
∫ d3q

(2π)3
mqi)rk)q0

(q2 −m2)(r2 −m2) ,

and

(2) = −
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kTr γj)γl)/r (4.322)

= −
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kr0Tr γj)γl)γ0

= −
∫ d3q

(2π)3
m

(q2 −m2)(r2 −m2) q(ir(kr0(−2iεj)l)) = −2iε(l(j
∫ d3q

(2π)3
mqi)rk)r0

(q2 −m2)(r2 −m2) .

In combination, these contributions give rise to the entire parity-odd stress-stress correlation

〈TijTkl〉odd(p) = (1) + (2) (4.323)

= 2iε(l(j
∫ d3q

(2π)3
mqi)rk)q0

(q2 −m2)(r2 −m2) − 2iε(l(j
∫ d3q

(2π)3
mqi)rk)r0

(q2 −m2)(r2 −m2)

= 2iε(l(j
∫ d3q

(2π)3
mqi)rk)(q0 − r0)

(q2 −m2)(r2 −m2) = −2iε(l(j
∫ d3q

(2π)3
mqi)rk)p0

(q2 −m2)(r2 −m2) .

As a next step in our calculation we perform the limit p→ 0, as it is required by Eq. (4.309).
In this limit, one obtains the correlator

lim
p→0

[〈TijTkl〉odd(p0,p)] = −2iε(l(j
∫ d3q

(2π)3
mqi)qk)p0

(q2 −m2)(r2
0 − |q|2 −m2)

. (4.324)

In the scope of this section, we are interested in the low-frequency response originating from
the torsional Hall viscosity. As a consequence, we are evaluating the integral in Eq. (4.324)
under the assumption p0 � m2 + |q|2, by using the residuum theorem. In particular, we will
make use of the identity a

∫
dq0

1
(q2 −m2)(r2

0 − |q|2 −m2)
p0�m2+|q|2= − iπ

2(|q|2 +m2)3/2 . (4.325)

aThe overall minus sign in Eq. (4.325) results from the retarded integration contour.
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With this identity we can substantially simplify Eq. (4.324):

〈TijTkl〉exp
odd(p) = p0

2

∫ d2q

(2π)2
mε(l(jqi)qk)

(|q|2 +m2)3/2
(∗)= p0

4 ε(l(jδi)k)

∫ d2q

(2π)2
m |q|2

(|q|2 +m2)3/2

(∗∗)= π
p0
4 ε(l(jδi)k)

∫ d|q|2
(2π)2

m |q|2

(|q|2 +m2)3/2

(∗∗∗)= p0
16πε(l(jδi)k)

∫ ∞
0

dy my

(m2 + y)3/2

(∗∗∗∗)
≡ − p0

8πε(l(jδi)k)IT(m) . (4.326)

In the second equality, which is indicated by (∗), we used that the integration over qi and qj
vanishes if i 6= j due to symmetry reasons. In the third equality, which is indicated by (∗∗),
we introduced polar coordinates in order to use the identity∫

d2q =
∫∫
|q|d|q|dϕ = 2π

∫ d|q|2
2 = π

∫
d|q|2 . (4.327)

In the fourth equality, which is indicated by (∗ ∗ ∗), we substituted |q|2 = y. Eventually, the
fifth equality, which is indicated by (∗∗∗∗), introduces the divergent integral [227, 228]

IT(m) = −m2

∫ ∞
0

dy y

(m2 + y)3/2 . (4.328)

In order to regularize the divergence we introduce a hard momentum cut-off Λ = |qmax|, as it
has been done in Eqs. (2.151) and (3.84), as well. With the upper limit ymax = |qmax|2 = Λ2,
this procedure implies

IT(m) = −m2

∫ Λ2

0
dy y

(m2 + y)3/2 = −m2

[
2(2m2 + y)√

m2 + y

]Λ2

0
(4.329)

= −m2

(
2(2m2 + Λ2)√

m2 + Λ2
− 4m2
√
m2

)
Λ�m= −mΛ2

√
Λ2

+ 2m3

|m|
= −mΛ + 2 sgn(m)m2 . (4.330)

Inserting this identity into Eq. (4.326) implies the regularized parity-odd stress-stress correlation

〈TijTkl〉reg
odd(p) = − p0

8πε(l(jδi)k)
(
−mΛ + 2 sgn(m)m2

)
. (4.331)

In order to calculate the entire torsional Hall viscosity as it is defined in Eq. (4.309),

ηt
H = lim

p0→0

1
4p0

δikεjl Im G̃ij,klR (p0,p = 0) , (4.332)

we first contract the corresponding tensor structure

δikεjlε(l(jδi)k) = 1
2
(
δikεjlε(ljδik)

)
+
(
δikεjlε(liδjk)

)
(4.333)

= 1
4
(
δikεjl [εljδik + εkjδil]

)
+
(
δikεjl [εliδjk + εkiδjl]

)
= 1

4
(
εjl [2εlj + εlj ]

)
+
(
εjl [εlj + 0]

)
= −2 .
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Here, we used that δikδik = 2 and εljεlj = 2. Eventually, this implies the regularized torsional
Hall viscosity of single massive Dirac fermion in 2+1 space-time dimensions [227, 228]

ηt
H = 1

16πIT(m) = 1
16π

(
−mΛ + 2 sgn(m)m2

)
. (4.334)

As this result is infinite if one removes the cutoff Λ→∞, it requires a suitable renormalization
scheme [cf. discussion in Sec. 3.2.3]. This will be the scope of Sec. 4.3.3. However, let us first
check that we were allowed to neglect the diagonal parts in Eq. (4.315).

Diagonal Contributions

In Sec. 4.3.2 we have neglected all contributions to the torsional Hall viscosity in Eq. (4.309)
originating form the diagonal parts of the canonical stress tensor in Eq. (4.315) ∝ δijL. We
have claimed that these terms do not contribute to ηt

H. Let us prove this statement in the
following. For our line of reasoning, we will use the two following properties:

(1) : δikεjlδijδkl = δikδijε
jlδlk = δikεik = εii = 0 , (4.335)

(2) : L(q)iSF(q) =
(
/q −m

) (
/q −m

)−1
= 1 . (4.336)

Structurally, there are three possible contributions from the diagonal terms of the canonical
stress tensor to the general stress-stress correlation: First, there is a term proportional to

δikεjl Tr ([δijL(q)] iSF(q) [δklL(r)] iSF(r)) (4.337)
= δikεjlδijδkl Tr ([L(q)] iSF(q) [L(r)] iSF(r)) = 0 ,

where in the last equality we used Eq. (4.335). Second, there is a contribution proportional to

δikεjl Tr
(

[δijL(q)] iSF(q)
[1

2ηbde
d
(lirk)γ

b
]

iSF(r)
)

(4.338)

= δikεjlδij Tr
([1

2ηbde
d
(lirk)γ

b
]

iSF(r)
)
∝ δikεjlδijδkl = 0 .

Here, we use Tr(γµ) = 0, Tr(γµγν) ∝ ηµν , and Eq. (4.335) in the last equality. Last but not
least, there is a contribution proportional to

δikεjl Tr
([1

2ηace
c
(j iqi)γ

a
]

iSF(q) [δklL(r)] iSF(r)
)

= 0 , (4.339)

which vanishes with an analog line of reasoning as the one which we have used in Eq. (4.338).

4.3.3 Pauli-Villars Approach for a Chern Insulator
In order to regularize Eq. (4.334) for a QAH insulator which is described by the BHZ model,
the authors of Ref. [227–230] made use of a finite difference method. In particular, they add
up the pure Dirac contributions of each Dirac cone in the lattice Brillouin zone of a Dirac-like
system, arising from the fermion doubling at its high-symmetry points [8]. By having in mind
an application for a QAH system, they performed their calculations for a Chern insulator
[single (pseudo-)spin block of the BHZ model, cf. Sec. 3.1.2] including a Dirac- as well as a
Newtonian mass term. As it was explained in Sec. 3.1.1, the BHZ model is a low-energy model
close to the Γ-point of a QSH- or QAH insulator, respectively. Consequently, a regularization
scheme which relies on fermion doublers appearing at the edges of an artificial lattice Brillouin-
zone needs to be treated with caution. In Sec. 4.3.1, we motivated our scientific road-map
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of how to circumvent this debatable issue. Nevertheless, in order to understand the results
derived in the aforementioned references, let us comment on the torsional Hall viscosity of a
Chern insulator on an artificial lattice Brillouin zone.

We start our calculation by discretizing the Hamiltonian of a single 2+1 dimensional Chern
insulator, defined in Eq. (3.12). Within the scope of this analysis we are restricting our-
selves to the (pseudo-)spin up block of the BHZ model and neglect the identifying subscript
[cf. Sec. 3.1.1]. In order to perform our finite difference method, we replace the momenta
according to

ki →
1
a

sin (kia) ∧ k2
i →

2
a2 [1− cos (kia)] , (4.340)

where a is the artificial lattice constant. For simplicity, we assume a = 1 in the following.
This implies the lattice Hamiltonian of a single Chern insulator

Hlatt = σ · dlatt with dlatt =

 A sin(k1)
A sin(k2)

m− 2B (2− cos(k1)− cos(k2))

 . (4.341)

Similar to Eq. (3.18), let us calculate the lattice Chern number of this Hamiltonian in terms
of the Kubo Formula [190]. For zero temperature and zero chemical potential this Chern
number is given by [50, 143]

C = 1
4π

∫
d2k d̂ ·

(
∂k1d̂× ∂k2d̂

)
with d̂ ≡ d

|d| , (4.342)

which implies

C = 1
4π

∫
BZ

d2k
A2 (2B cos(k2) + cos(k1) [2B + (−4B +m) cos(k2)])(

[−4B +m+ 2B(cos(k1) + cos(k2))]2 +A2 [sin(k1)2 + sin(k2)2]
)3/2 .

(4.343)

Figure 4.19 shows the corresponding topological phases.
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Figure 4.19: Lattice Chern number of a single Chern insulator as a function of the Dirac
mass m for A = B = a = 1. We observe three topologically different phases: (i) m/B < 0
and m/B > 8 with Chern number C = 0, (ii) 0 < m/B < 4 with Chern number C = 1, (iii)
4 < m/B < 8 with Chern number C = −1. Further explanations are given in the text.
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In general, one identifies three topological phase transitions, which can be most easily un-
derstood by analyzing the corresponding spectra at the phase transition points. These are
shown in Fig. 4.20. Effectively, a lattice Chern insulator consists of four pure Dirac fermions
at the high symmetry points of the lattice Brillouin zone. The first order Taylor expansions
in the momenta ki of the lattice Hamiltonian in Eq. (4.341) around these points imply the
four Dirac Hamiltonians [8]

H(0,0) = +Ak1σ1 +Ak2σ2 +mσ3 , (4.344)
H(±π,0) = −Ak1σ1 +Ak2σ2 + (m− 4B)σ3 , (4.345)
H(0,±π) = +Ak1σ1 −Ak2σ2 + (m− 4B)σ3 , (4.346)

H(±π,±π) = −Ak1σ1 −Ak2σ2 + (m− 8B)σ3 . (4.347)

Here, the subscript corresponds to the k1 and k2 values, respectively [a = 1]. All of these pure
Dirac Hamiltonians contribute ±1/2 to the Chern number, as we have discussed in Sec. 3.1.2.
However, due to the B|k|2 mass term in the continuum model, each Dirac Hamiltonian at the
high-symmetry points of the artificial lattice closes at different values of m/B. The original
Dirac Hamiltonian of the continuum theory is located at the Γ-point. The additional Dirac
fermions located at the edge of the Brillouin zone result from fermion-doubling, as it was
explained above. They are a direct consequence of the artificial lattice.

Figure 4.20: Dispersion of the lattice Chern insulator in Eq. (4.341) with A = B = a = 1 at
the topological phase transition points m/B ∈ {0, 4, 8} and in the topologically trivial phase
m/B = −4. The spectra in momentum space are visualized in the first lattice Brillouin zone
from [−π/a, π/a]. More explanations are given in the text.

The continuum model of a single Chern insulator only has one topological phase transition
when m/B changes sign [cf. Eq. (3.19)],

Ccont = [sgn(m) + sgn(B)] /2 . (4.348)

This transition originates from the band inversion of a single Dirac-like fermion located at
the Γ-point in the continuum Brillouin zone. Instead, on the artificial lattice, there are four
sources of Berry potential at all high symmetry points of the Brillouin zone [cf. Eqs.(4.344)-
(4.347)], each contributing ±1/2 to the entire Chern number. In the trivial phase, the ±1/2
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coming from the Dirac fermion at the Γ-point is compensated by the other Dirac fermions.
While their contribution to the entire Chern number does not change when m/B changes
sign, the contribution at the Γ-point flips its sign, leading to an integer Chern number for
m/B > 0. The same scenario happens at the remaining phase transitions at m/B = 4 and
m/B = 8. These transitions are pure lattice artifacts and do not occur in the continuum
model. At these points, either Eqs. (4.345) and (4.346) change their contribution to the
entire Chern number [m/B = 4], or Eq. (4.347) changes its contribution [m/B = 8]. Since all
these artificial transitions arise from the lattice discretization, they need to disappear as one
approximates the continuum. If we would have not assumed a = 1, these phase transitions
would occur at m/B = 4/a2 and m/B = 8/a2. Thus, in the continuum limit a → 0, these
artificial transitions are shifted towards an infinitely large Dirac mass. Summarizing, the
lattice discretization of a Chern insulator needs to be treated with caution. While it gives
the same Chern number and also the correct spectrum up to first order in momentum close
to the Γ-point if one assumes |m/B| � 1, it has several artificial effects far from the Γ-point
and for m/B > 1, which need to be analyzed and interpreted very carefully.

Based on Eqs. (4.344)-(4.347), it seems natural to regularize the torsional Hall viscosity in
Eq. (4.334) by superimposing the Dirac responses of all sources of Berry potential on the
artificial lattice Brillouin zone described above. Technically, this implies [227, 228]

ηt
H = 1

16π

3∑
i=0

ciIT(Mi) ∧ IT(Mi) = −MiΛ + 2 sgn(Mi)M2
i , (4.349)

with ci = {+,−,−,+} and

M0 = m, M1 = m− 4B, M2 = m− 4B, M3 = m− 8B , (4.350)

describing the Chern number of the single Dirac cones in Eqs. (4.344)-(4.347). If we calculate
the torsional Hall viscosity via Eq. (4.349), we obtain

ηt
H = −m|m|+ (8B −m) |−8B +m|+ 2 (−4B +m) |−4B +m|

16πA2 . (4.351)

Let us emphasize that this ansatz is not equivalent to a usual Pauli-Villars approach which,
commonly, adds fields of opposite statistics to the bare Lagrangian [cf. Sec. 3.2.3]. The
aforementioned procedure does not have this property. Nevertheless, as it is required for
any reliable renormalization, the ansatz considered cures the divergence in Eq. (4.334), since
[227, 228]

3∑
i=0

ciMi = 0 . (4.352)

Let us now simplify Eq. (4.351) close to the phase transition points.

Phase Transition at m = 0

First, we focus on the phase transition at m = 0 where the sign of m/B changes if we do
not change the sign of B. As we have mentioned above, this is the physical topological phase
transition in the sense that it describes the phase transition of the continuum model of a
Chern insulator [cf. Eq. (3.1.1)]. To analyze this transition, we need to consider Eq. (4.351)
in the limit |m| � |4B|, which implies

ηt
H(m ≈ 0) = −sgn(m)m2 + sgn(B) (m− 8B)2 − 2 sgn(B) (m− 4B)2

16πA2 (4.353)
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=
(
32B2 −m2) sgn(B)−m2 sgn(m)

16πA2 .

In order to derive the change of the torsional Hall viscosity throughout this phase transi-
tion, we subtract the non-trivial phase with sgn(m) = sgn(B) from the trivial phase with
sgn(m) = −sgn(B). This in particular implies

∆ηt
H(m ≈ 0) = ηt,triv

H (m ≈ 0)− ηt,non−triv
H (m ≈ 0) = m2 [sgn(m) + sgn(B)]

16πA2 . (4.354)

Let us make two remarks regarding Eq. (4.354). First, the change of the torsional Hall
viscosity is propotional to the Chern number of the system, which is defined by both, the
Dirac- as well as the Newtonian mass term. Due to the relation between the Hall viscosity
and the Hall conductivity [190] studied in Sec. 4.1, this does not come as a surprise. Second,
Eq. (4.354) is only proportional to a quantized number, as expected due to its mass dimension.
This property has been elucidated in Sec. 4.3.1.

Even though the artificial topological phase transitions on the lattice Brillouin zone atm/B =
4 and m/B = 8 do not describe the continuum model, it is enlightening to study the change
of the torsional Hall viscosity throughout these transition points, as we will show in the
following.

Phase Transition at m = 8B

In order to analyze this phase transition, we need to consider Eq. (4.351) in the limit
|m| � |4B|:

ηt
H(m ≈ 8B) = −sgn(m)m2 + (8B −m) |−8B +m|+ 2 sgn(m) (m− 4B)2

16πA2 . (4.355)

Throughout this topological phase transition, we subtract the non-trivial phase with from
the trivial phase, implying

∆ηt
H(m ≈ 8B) = ηt,triv

H (m ≈ 8B)− ηt,non−triv
H (m ≈ 8B) (4.356)

= −(m− 8B)2 [sgn(m) + sgn(B)]
16πA2 .

Phase Transition at m = 4B

Last but not least, in order to analyze the phase transition at m = 4B, we need to consider
Eq. (4.351) in the limit 0� |m| � |8B|, which implies

ηt
H(m ≈ 4B) = −sgn(m)m2 + sgn(B) (m− 8B)2 + 2 (−4B +m) |−4B +m|

16πA2 . (4.357)

Throughout this phase transition, we subtract the non-trivial phase with Chern number
C = −1 from the non-trivial phase with Chern number C = 1, implying

∆ηt
H(m ≈ 4B) = ηt,C=1

H (m ≈ 4B)− ηt,C=−1
H (m ≈ 4B) (4.358)

= −2(m− 4B)2 [sgn(m) + sgn(B)]
16πA2 .

Notice, that essentially Eqs. (4.356) and (4.358) show the same features as Eq. (4.354). The
change of the torsional Hall viscosity is proportional to the system’s Chern number and, in
particular, proportional to the squared Dirac mass term of those Hamiltonians which close
their mass gap at the corresponding phase transition points.
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4.3.4 Finite Difference Result for a Chern Insulator
In the above calculation we have used a Pauli-Villars approach in the sense that we superim-
posed all Dirac responses of a discretized Chern insulator on an artificial lattice. This allowed
us to derive a well defined change of the torsional Hall viscosity throughout the corresponding
topological phase transitions. In order to obtain the entire response of a Chern insulator on
a discretized space lattice, one needs to calculate the stress-stress correlator by using a finite
difference method form the start. This calculation has been explicitly done in Ref. [232], or,
with a slight discrepancya, in Ref. [233]. Starting with the discretized lattice Hamiltonian
in Eq. (4.341), it is straightforward to show that one obtains for the lattice stress tensor
[232]

T11 = − sin(k1) [A cos(k1)σ1 − 2B sin(k1)σ3] , (4.359)
T12 = − sin(k1) [A cos(k2)σ2 − 2B sin(k2)σ3] , (4.360)
T21 = − sin(k2) [A cos(k1)σ1 − 2B sin(k1)σ3] , (4.361)
T22 = − sin(k2) [A cos(k2)σ2 − 2B sin(k2)σ3] . (4.362)

Again, for reasons of simplicity, we have chosen a lattice spacing of a = 1.
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Figure 4.21: (a) Lattice Chern number of a Chern insulator as a function of the Dirac mass
m for A = B = a = 1. This subfigure has already been shown in Fig. 4.19. Here, it should
support the understanding of subfigure (b): Torsional Hall viscosity of a Chern insulator on
a discretized space lattice in units ~/a2 as a function of the Dirac mass m with B = a = 1.
The black arrow indicates an increasing A parameter, A ∈ {0.25, 0.5, 1, 2}. Subfigure (b) has
been inspired by Fig. 6 of Ref. [232]. More explanations are given in the text.

With the eigen-vectors and eigen-energies of Eq. (4.341), the torsional Hall viscosity can be
calculated on the underlying space lattice via the Kubo formula [232]

ηt
H = lim

p0→0

1
p0

1
V

∫
dx0 eip0x0 〈[

T lattice
11 (x0), T lattice

12 (0)
]〉

(4.363)

= − 2
V

Im
∑

ν(ν′)∈(un)occupied

〈
ν
∣∣∣T lattice

11

∣∣∣ ν ′〉〈ν ′ ∣∣∣T lattice
12

∣∣∣ ν〉
(Eν′ − Eν)2 ,

where V is the area of the system. Our result is shown in Fig. 4.21(b) for different values
aThe authors of Ref. [233] found a nonphysical discontinuity in the torsional Hall viscosity at the topological
phase transition points, which originates from an additional factor of two in their lattice integrals.
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of A ∈ {0.25, 0.5, 1, 2}. In order to compare the functional dependency of ηt
H to the sys-

tem’s lattice Chern number, Fig. 4.21(a) shows the latter quantity as it was illustrated in
Fig. 4.19.

Essentially, we identify the same features which we have already obtained in the continuum
limit in Sec. 4.3.3. The torsional Hall viscosity is directly proportional to the system’s Chern
number, which dictates the sign and the topological phase transitions of ηt

H. Moreover, the
torsional Hall viscosity is a continuous quantity. It vanishes at the phase transition points,
as in their vicinity it is proportional to the Dirac mass terms of those Hamiltonians which
close their gaps at the corresponding values of m/B.
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5
Summary, Conclusions and Outlook

In the course of thesis we shed light on the parity-odd ballistic- as well as hydrodynamic trans-
port features of two-dimensional electron systems. We clarified in which sense the transport
coefficients of Dirac-like materials in 2+1 space-time dimensions are related to the parity
anomaly of planar quantum electrodynamics.

In the first part of this thesis, we have analyzed the physics of two-dimensional quantum
anomalous Hall (QAH) insulators in the context of the parity anomaly in 2+1 space-time di-
mensions. In Chap. 2 we have presented a self contained introduction into the quantum Hall
effect, as well as into the field theoretic description of 2+1 dimensional quantum electrody-
namics (QED2+1). We have in particular discussed how the parity anomaly of QED2+1 arises
in the calculation of the effective action and in which way this anomaly is related to the chiral
anomaly if the system is confined on a 2+1 dimensional manifold with a 1+1 dimensional
boundary. In such a system the Callan-Harvey mechanism becomes apparent. Moreover, in
Sec. 3.1 we have introduced and explained the solid-state concepts of two-dimensional topo-
logical insulators, quantum anomalous Hall insulators, the Bernevig-Hughes-Zhang (BHZ)
as well as the Haldane model, and the concept of two-dimensional Chern insulators. We
have shown that the low-energy physics of two-dimensional QAH insulators like (Hg,Mn)Te
quantum wells or magnetically doped (Bi,Sb)Te thin films can be described by the combined
response of two 2+1 space-time dimensional Chern insulators with a linear dispersion in mo-
mentum. Due to their Dirac-like spectra, each of those Chern insulators is directly related to
the parity anomaly of planar quantum electrodynamics. Based on these theoretical principles
we worked out in which sense the recent progress in condensed matter physics, namely the
verification of two-dimensional Dirac-like materials and their experimental control, enables
the observation of signatures of the parity anomaly in the solid-state lab.

More specifically, in Sec. 3.2 we related the physics originating from the Newtonian mass
term of a QAH insulator to the parity anomaly of planar quantum electrodynamics. We
have in particular shown that before renormalization the Newtonian B|k|2 mass term acts
similar to a parity-breaking high-energy regulator in the calculation of the quantum effective
action. As a direct consequence, we clarified that this mass term is directly related to the
regularization of QED2+1 and, as such, to the parity anomaly itself. It was proven that the
Newtonian mass alone does not render the effective action UV finite, but ensures an integer
quantized DC Hall conductivity which ensures the gauge-invariance of the associated effective
Chern-Simons action. Our comparison of the Newtonian mass term to several QED2+1 regu-
larization schemes has demonstrated that before renormalization, the B|k|2 term acts similar
to a Wilson mass term, which avoids the fermion doubling in a lattice approach. Moreover,
during our calculation of the effective action, we have derived the AC Hall conductivity of
QAH insulators described by the BHZ Hamiltonian. We have in particular shown that the
leading order AC correction to the DC Hall conductivity contains a term proportional to
the Chern number. This term originates from the broken Lorentz symmetry, and, therefore,
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from the Newtonian mass term. It was proven that this correction can be measured by purely
electrical means, or by determining the leading order frequency corrections to the associated
DC Faraday- and Kerr angles. We revealed that the B|k|2 mass term significantly changes
the resonance structure of the AC Hall conductivity in comparison to pure Dirac systems
such as graphene.

In Sec. 3.3, we extended our field theoretical analysis to quantizing out-of-plane magnetic
fields: In a nutshell, we revealed three novel transport features directly originating from the
parity anomaly of planar quantum electrodynamics:

(i) A violation of the Onsager relation for chemical potentials in the Dirac mass gap.

(ii) A special type of charge pumping in the QAH phase, the so-called anomaly inflow, with
an increasing out-of-plane magnetic field. This charge pumping significantly differs from
the corresponding charge flow described by conventional QH physics.

(iii) For large out-of-plane magnetic fields [H > Hcrit] we found the formation of counter-
propagating QH and QAH edge states if the chemical potential is placed in the conduction-
or in the valance band, depending on the sign of the magnetic field.

In summary these three hallmarks underline the different physical origin of the QH- and
QAH phase. In particular our results can be used to make these two phases experimentally
distinguishable, even though they are described by the same Chern number [C ∈ Z]. For
instance, as a smoking-gun of the QAH effect in finite out-of-plane magentic fields, we pre-
dicted a transition from the σxy = −e2/h plateau [QAH effect] to a noisy QH plateau with
increasing magnetic field strength. By using a Landau-Büttiker approach, it was shown that
the average value of this noisy plateau significantly depends on the physical details of the
QH-QAH edge state scattering [e.g. asymmetric charge-puddle scattering].

All of the aforementioned results do not incorporate finite temperature effects. In order to
shed light on such phenomena, we further analyzed in Sec. 3.4 the finite temperature Hall
response of 2+1 dimensional Chern insulators under the combined influence of a chemical
potential and an out-of-plane magnetic field. As mentioned several times throughout this
thesis, this non-dissipative transport coefficient is directly related to the parity anomaly of
planar quantum electrodynamics as it persists in the parity-symmetric limit at zero magnetic
fields [m,B → 0±]. Due to this crucial property we were able to show that the parity anomaly
itself is not renormalized by finite temperature effects. Instead, it was proven that the parity
anomaly induces two terms of different physical origin in the effective action of a single Chern
insulator, which together define the total Hall conductivity of the entire QAH system:

(i) The first term is temperature and chemical potential independent and only defines the
intrinsic topological response of the QAH phase.

(ii) The second term characterizes the non-topological thermal response of the associated
conduction- and valence band excitations.

In our analysis we have rigorously proven that in the topologically nontrivial phase, an
increasing relativistic mass termm of a Chern insulator counteracts finite temperature effects,
whereas an increasing non-relativistic mass term B|k|2 instead enhances these corrections.
On the other hand, in the topologically trivial phase, both of these mass terms counteract
the finite temperature broadening of the Fermi-Dirac distribution as the Newtonian mass
cannot cause a camel-back gap-structure in this topological phase. Last but not least, we
have derived the thermal response of single Chern insulators in an out-of-plane magnetic
field and clarified their relation to the spectral asymmetry. It was explicitly shown that this
peculiar quantity is a measure of the parity anomaly in finite out-of-plane magnetic fields.
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We have in particular derived in which way the thermal LL response renormalizes the parity
anomalous part of the Hall conductivity in magnetic fields. Especially in the Dirac mass gap,
this response superimposes the otherwise quantized and temperature independent part of the
Hall conductivity arising from the parity anomaly. Most remarkably, it was demonstrated
that the anomalous part of the Hall response in the Dirac mass gap of a QAH insulator
is much more robust than the common LL contributions with respect to finite temperature
effects.

As we have mentioned several times throughout this thesis all of the aforementioned results
are in principle verifiable in QAH insulators like (Hg,Mn)Te quantum wells, magnetically
doped (Bi,Sb)Te thin films, or bilayer structures of three-dimensional topological- and ferro-
magnetic insulators.

Let us close the first part of our summary by giving an outlook of exceptionally interesting
future research directions. As the classification of three-dimensional topological insulators
is also given by the interplay between their Dirac- and Newtonian mass terms, a natural
extension of our work would be to derive the effective action of 4+1 space-time dimensional
Dirac-like systems including both, a Dirac as well as a momentum-dependent term. This
will shed light on the anomaly induced transport described by a 4 + 1 dimensional Chern-
Simons theory [43]. Another interesting extension would be to study signatures of quantum
anomalies beyond the BHZ model in various space-time dimensions. For instance, the chiral-,
the gravitational-, and the conformal anomaly should not depend on thermal effects. How-
ever, similar to the parity anomaly, these anomalies are expected to induce a temperature
dependence in the quantum effective action. Last but not least, another promising future
direction of our analysis would be to study the physics originating from counter-propagating
QH and QAH edge states in greater depth, in order to further understand the response of
QAH insulators in an electromagnetic background. Our predictions are also expected to be
of significant relevance for fractional Chern insulators. The response of these systems in
the presence of quantizing out-of-plane magnetic fields will give rise to fundamentally new
insights into the relation between non-commutative geometries, non-abelian statistics and
the parity anomaly in 2+1 space-time dimensions. As this possible extension has a highly
innovative and field-opening character, its development is currently in progress.

In the second part of this thesis, we have studied the hydrodynamic transport of two-
dimensional electron systems with a broken time-reversal and parity symmetry. In Sec. 4.1,
we gave a coherent introduction into the properties of different hydrodynamic solid-state
materials. We pedagogically elucidated both, the hydrodynamic features of two-dimensional
Fermi liquids like GaAs, as well as the corresponding properties of Dirac fluids, such as
graphene, in which the dispersion is linear in momentum. This attribute enables the ob-
servation of relativistic hydrodynamics in the solid-state lab. In Sec. 4.1.2, we derived the
non-relativistic Navier-Stokes equations from the relativistic conservation laws for the particle
current and the energy-momentum tensor. In the scope of this analysis we derived in which
way the quantum critical-, as well as the quantum anomalous Hall conductivity contribute
to the hydrodynamic response of non-relativistic fluid profiles.

Moreover, in Sec. 4.2, we derived the hydrodynamic transport in Fermi liquids which orig-
inates from a peculiar non-dissipative transport coefficient, namely from the Hall viscosity.
More specifically, we analyzed the solutions of the non-relativistic Navier-Stokes equations
for Fermi liquids in external out-of-plane magnetic fields. In such fields the parity-odd Hall
viscosity generates a Hall viscous force which directly competes against the Lorentz force.
While together both of these forces contribute to the entire Hall voltage in charged Fermi
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liquids, we present a way of how to unambiguously distinguish the Hall viscous- from the
Lorentz force contributions to the entire Hall voltage in a two-dimensional channel geometry.
It was shown that this distinction relies on the different scaling of both voltage contributions
with the corresponding system parameters. We elucidated that the ratio of the Hall viscous-
to the Lorentz force induced voltage contribution is negative, and that in clean systems its
modulus decreases with the width, slip-length and the carrier density. In contrast, this mod-
ulus increases with the electron-electron mean free path. For typical Fermi liquids such as
GaAs, we found that the Hall viscous signal dominates over the Lorentz force contribution
up to a critical magnetic field, which is on the order of a few tens of millitesla. At this field,
the total Hall voltage vanishes, which is a smoking-gun signature of Hall viscosity induced
transport. Moreover, we have shown that the identification of both voltage contributions is
possible by measuring the system’s local Hall voltage. We predicted the for the setup under
consideration the total Hall electric field is parabolic in the transverse channel coordinate.
This property has been recently measured in Ref. [97]. While the curvature of this parabola
essentially originates from Lorentz force, its offset is substantially characterized by the Hall
viscosity. All in all, our predictions pave the way to experimentally identify Hall viscous
effects. As such, they can be used to identify the electron-electron interaction strength in
the systems considered. Hitherto, we performed our analysis solely for Fermi liquids in the
non-relativistic fluid velocity limit. Based on the theoretical principles presented in Sec. 4.1,
the extension of our Fermi liquid analysis towards the Dirac liquid regime is currently in
progress.

Let us close this thesis by giving an outlook of exceptionally interesting future hydrodynamic
research directions. On the one hand, we are currently extending of our analysis towards
the (gap-less) Dirac fluid phase for instance in graphene, where quantum critical effects
become most relevant. In order to experimentally confirm our theoretical predictions, this
work is developed in close collaboration with the group of Prof. Dr. Amir Yacoby at the
Harvard University. Another highly interesting possible future direction of our approach is
to generalize our analysis towards anomaly driven systems in 2+1 space-time dimensions.
Relying on our results in the first part of this thesis, an extension towards two-dimensional
QAH insulators would be of extraordinary relevance. As a consequence a broken parity and
time-reversal symmetry even at zero magnetic fields, the hydrodynamic transport of these
systems is characterized by a special Hall viscous effect, namely by the torsional Hall viscosity
[85, 227]. Relying on this property, the predicted extension will shed light onto possible
signatures of the parity anomaly in 2+1 dimensional hydrodynamic electron transport.
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6
Appendix

6.1 Hall Conductivity of Chern Insulators in
Magnetic Fields: A Solid-State Perspective

It is the goal of the present appendix to support our field theoretic calculations in Sec. 3.3
by a solid-state approach for determining the Hall conductivity of a single Chern insulator in
quantizing out-of-plane magnetic fields H. The present analysis will mainly follow the line
of reasoning in Ref. [158]. We are in particular deriving Eq. (3.146a) of the main text from a
solid-state perspective, by using the Kubo formula [50, 99]. For this reason, the subsequent
analysis might by enlightening for condensed matter physicists, which are more familiar
with the Kubo formalism in comparison to our field theoretic calculations in Sec. 3.3. This
appendix should make our theoretical findings for QAH insulators in quantizing out-of-plane
magnetic fields more comprehensible for an interdisciplinary community.

6.1.1 Hamiltonian and Eigen-System
In Sec. 3.1.2, we have studied the eigen-system as well as the Chern number of a single Chern
insulator in 2+1 space-time dimensions. In what follows, we are incorporating in our analysis
a quantizing out-of-plane magnetic field, which is implemented in the Landau gauge

A = (−Hx2, 0, 0) . (6.1)

As explained in Sec. 3.3, the Hamiltonian of a Chern insulator in such a background field is
given by [163]b

H+(a, a†) =

m+ + ω+

(
a†a+ 1

2

)
αa†

αa −m+ + ω−

(
a†a+ 1

2

)
 , (6.2)

where α =
√

2A/lH , ω± = δ ± β, β = −2B/l2H , δ = −2D/l2H , and lH is the magnetic
lengthc. Within the present analysis, we are considering positive magnetic field strength
with sgn(eH) = 1. As explained in Sec. 3.3.1, the Hamiltonian in Eq. (6.2) has been ob-
tained form the zero-field model by Peierls substituting the momenta and by introducing the
ladder operators a and a† [cf. Eq. (2.14)]. The degenerated Landau level eigen-energies in

bNotice, that in comparison to Sec. 3.3, we changed the sign of β and δ in order to enable an easy comparison
of our calculation to the one which is presented in Ref. [158].

cIn the scope of this analysis we are only considering the (pseudo-)spin up block of the BHZ model. Analogous
results for the (pseudo-)spin down block can be derived by inverting the sign of the mass terms (m+, B)→
(−m−,−B), as it has been shown in Eq. (3.48).
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the momentum k1 of Eq. (6.2) are given by [cf. Eqs (3.107), (3.108)] [158, 163]

En,k1,s = 1
2

(
β + 2nδ + s

√
(δ + 2(m+ + nβ))2 + 4nα2

)
, (6.3)

E0,k1 = m+ + 1
2(β + δ) . (6.4)

For the corresponding eigen-states, we made the ansatz [cf. Eqs. (3.105) and (3.106)]

|ψsn,k1〉 =
(

Cn,s|n, k1〉
Sn,s|n− 1, k1〉

)
for n ∈ N ∧ |ψ0,k1〉 =

(
|0, k1〉

0

)
for n = 0 . (6.5)

6.1.2 Chern Number and Hall Conductivity
In what follows, we calculate the Chern number CCI associated to the Hamiltonan in Eq. (6.2)
from a solid-state perspective via the Kubo formula [50, 158]

CCI = −2π~2

V

∑
k1,k′1

∑
n,s 6=n′,s′

Im
[
v1;ns,n′s′v2;n′s′,ns

] [
f(En,k1,s − µ)− f(En′,k′1,s′ − µ)

]
(
En,k1,s − En′,k′1,s′

)2 . (6.6)

Here, V is the system’s area and we introduced the matrix elements

vi;ns,n′s′ ≡ 〈n, k1, s|vi|n′, k1, s
′〉 , (6.7)

which consist of the velocity operators [158]

v1 = ~−1∂k1H0[k] = − lH√
2~

(
ω+(a† + a) α

α ω−(a† + a)

)
, (6.8)

v2 = ~−1∂k2H0[k] = ilH√
2~

(
ω+(a† − a) −α

α ω−(a† − a)

)
. (6.9)

In the second equality of each line we again used the Peierls substitution and introduced
the ladder operators a and a†. In what follows, we are neglecting finite temperature effects
and assume T = 0. We are in addition considering a chemical potential in the system’s
mass gap at charge neutrality µ = Ez = −mD/B [cf. Sec. 3.3.2]. Hence, we assume that all
conduction band Landau levels with s = + are unoccupied, whereas all valence band Landau
levels with s = − are occupied. This is essentially encoded by the Fermi-Dirac distribution
functions

f(En,k1,+ − Ez) = 0 ∧ f(En,k1,− − Ez) = 1 ∀n ∈ N . (6.10)

All Landau levels with n ∈ N come in pairs, one level in the conduction band and one level
in the valence band, respectively. The single zeroth Landau level is special. For E0,k1 > Ez it
belongs to the conduction band, whereas for E0,k1 < Ez it belongs to the valence band.

In Eq. (6.6), the summation over k1 can be performed trivially, as all summands are degener-
ated in this momentum. One solely needs to take into account the degeneracy D = V/(2πl2H)
of each Landau level [cf. Eq. (2.23)], which implies

CCI = −~2

l2H

∑
n,n′

(
Im
[
v1;n−,n′+v2;n′+,n−

](
En,k1,− − En′,k1,+

)2 − Im
[
v1;n+,n′−v2;n′−,n+

](
En,k1,+ − En′,k1,−

)2
)

(6.11)
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= −2~2

l2H

∑
n,n′

Im
[
v1;n−,n′+v2;n′+,n−

](
En,k1,− − En′,k1,+

)2 .

In the last equality we used

Im

∑
n,n′

〈n, k1, s|v1|n′, k1, s
′〉〈n′, k1, s

′|v2|n, k1, s〉

 (6.12)

=

Im

∑
n,n′

〈n, k1, s|v1|n′, k1, s
′〉〈n′, k1, s

′|v2|n, k1, s〉

† ,
which can be further simplified to

= −Im

∑
n,n′

(
〈n, k1, s|v1|n′, k1, s

′〉〈n′, k1, s
′|v2|n, k1, s〉

)† (6.13)

= −Im

∑
n,n′

〈n, k1, s|v1|n′, k1, s
′〉†〈n′, k1, s

′|v2|n, k1, s〉†


= −Im

∑
n,n′

〈n′, k1, s
′|v†1|n, k1, s〉〈n, k1, s|v†2|n

′, k1, s
′〉


= −Im

∑
n,n′

〈n′, k1, s
′|v1|n, k1, s〉〈n, k1, s|v2|n′, k1, s

′〉


= −Im

∑
n,n′

〈n, k1, s
′|v1|n′, k1, s〉〈n′, k1, s|v2|n, k1, s

′〉

 .

In Eq. (6.12) we have explicitly inserted the assumption in Eq. (6.10). After having performed
the summations over s and k1, we are left with the summation over the Landau level index n
in Eq. (6.11). To this end, we need to distinguish several cases. We start with the calculation
of the matrix elements associated to n > 1 and n′ > 1:

v1;ns,n′s′ = − lH√
2~

(
〈n|Cn,s, 〈n− 1|Sn,s

)(ω+(a† + a) α
α ω−(a† + a)

)(
Cn
′,s′ |n′〉

Sn
′,s′ |n′ − 1〉

)

= − lH√
2~

(
〈n|Cn,s, 〈n− 1|Sn,s

)(ω+(a† + a)Cn′,s′ |n′〉+ αSn
′,s′ |n′ − 1〉

αCn
′,s′ |n′〉+ ω−(a† + a)Sn′,s′ |n′ − 1〉

)

= − lH√
2~

[
〈n|Cn,s

(
ω+(a† + a)Cn′,s′ |n′〉+ αSn

′,s′ |n′ − 1〉
)

(6.14)

+ 〈n− 1|Sn,s
(
αCn

′,s′ |n′〉+ ω−(a† + a)Sn′,s′ |n′ − 1〉
)]

= − lH√
2~

[
ω+C

n,sCn
′,s′〈n|(a† + a)|n′〉+ αCn,sSn

′,s′〈n|n′ − 1〉

+ αSn,sCn
′,s′〈n− 1|n′〉+ ω−S

n,sSn
′,s′〈n− 1|(a† + a)|n′ − 1〉

]
.

Here and in the following we are neglecting the k1 index as we have already incorporated the
corresponding degeneracy. Due to the assumption n, n′ > 1, we can simplify this expression
further by using the identities

〈n|(a† + a)|n′〉 =
√
n′ + 1〈n|n′ + 1〉+

√
n′〈n|n′ − 1〉 =

√
n′ + 1δn,n′+1 +

√
n′δn,n′−1
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=
√
n′ + 1δn−1,n′ +

√
n′δn+1,n′ ,

〈n− 1|(a† + a)|n′ − 1〉 =
√
n′δn−1,n′ +

√
n′ − 1δn+1,n′ , (6.15)

〈n′|(a† − a)|n〉 =
√
n+ 1〈n′|n+ 1〉 −

√
n〈n′|n− 1〉 =

√
n+ 1δn′,n+1 −

√
nδn′,n−1

=
√
n+ 1δn′,n+1 −

√
nδn′,n−1 ,

〈n′ − 1|(a† − a)|n− 1〉 =
√
nδn′,n+1 −

√
n− 1δn′,n−1 ,

which imply

v1;ns,n′s′ = − lH√
2~

[
ω+C

n,sCn
′,s′(
√
n′ + 1δn−1,n′ +

√
n′δn+1,n′) + αCn,sSn

′,s′δn+1,n′ (6.16)

+ αSn,sCn
′,s′δn−1,n′ + ω−S

n,sSn
′,s′(
√
n′δn−1,n′ +

√
n′ − 1δn+1,n′)

]
.

Analogously, we can evaluate the matrix element

v2;n′s′,ns = ilH√
2~

(
〈n′|Cn′,s′ , 〈n′ − 1|Sn′,s′

)(ω+(a† − a) −α
α ω−(a† − a)

)(
Cn,s|n〉

Sn,s|n− 1〉

)

= ilH√
2~

(
〈n′|Cn′,s′ , 〈n′ − 1|Sn′,s′

)(ω+(a† − a)Cn,s|n〉 − αSn,s|n− 1〉
αCn,s|n〉+ ω−(a† − a)Sn,s|n− 1〉

)

= ilH√
2~

[
〈n′|Cn′,s′

(
ω+(a† − a)Cn,s|n〉 − αSn,s|n− 1〉

)
+ 〈n′ − 1|Sn′,s′

(
αCn,s|n〉+ ω−(a† − a)Sn,s|n− 1〉

) ]
(6.17)

= ilH√
2~

[
ω+C

n′,s′Cn,s〈n′|(a† − a)|n〉 − αCn′,s′Sn,s〈n′|n− 1〉

+ αSn
′,s′Cn,s〈n′ − 1|n〉+ ω−S

n′,s′Sn,s〈n′ − 1|(a† − a)|n− 1〉
]

= ilH√
2~

[
ω+C

n′,s′Cn,s(
√
n+ 1δn′,n+1 −

√
nδn′,n−1)− αCn′,s′Sn,sδn′,n−1

+ αSn
′,s′Cn,sδn′,n+1 + ω−S

n′,s′Sn,s(
√
nδn′,n+1 −

√
n− 1δn′,n−1)

]
.

Thus, we obtain in combination:

i2~
2

l2H

∑
n,n′>1

v1;ns,n′s′v2;n′s′,ns = (6.18)

∑
n′

[
ω+C

n,sCn
′,s′(
√
n′ + 1δn−1,n′ +

√
n′δn+1,n′) + αCn,sSn

′,s′δn+1,n′

+ αSn,sCn
′,s′δn−1,n′ + ω−S

n,sSn
′,s′(
√
n′δn−1,n′ +

√
n′ − 1δn+1,n′)

]
×
[
ω+C

n′,s′Cn,s(
√
n+ 1δn′,n+1 −

√
nδn′,n−1)− αCn′,s′Sn,sδn′,n−1

+ αSn
′,s′Cn,sδn′,n+1 + ω−S

n′,s′Sn,s(
√
nδn′,n+1 −

√
n− 1δn′,n−1)

]
.

To further simplify this expression, let us analyze the terms proportional to δn′,n−1. For these

202



6.1 Hall Conductivity of Chern Insulators in Magnetic Fields: A Solid-State Perspective

terms, we obtain∑
n>2,n′>1

δn′,n−1
(
ω+C

n,sCn
′,s′
√
n′ + 1 + αSn,sCn

′,s′ + ω−S
n,sSn

′,s′
√
n′
)

(6.19)

×
[
−ω+C

n′,s′Cn,s
√
n− αCn′,s′Sn,s − ω−Sn

′,s′Sn,s
√
n− 1

]
=
∑
n>2
−
(
ω+C

n,sCn−1,s′√n+ αSn,sCn−1,s′ + ω−S
n,sSn−1,s′√n− 1

)
×
[
ω+C

n−1,s′Cn,s
√
n+ αCn−1,s′Sn,s + ω−S

n−1,s′Sn,s
√
n− 1

]
=
∑
n>2
−
(
ω+C

n,sCn−1,s′√n+ αSn,sCn−1,s′ + ω−S
n,sSn−1,s′√n− 1

)2
.

Analogously, we can simplify all contributions coming along with δn′,n+1:

∑
n,n′>1

δn′,n+1
(
ω+C

n,sCn
′,s′
√
n′ + αCn,sSn

′,s′ + ω−S
n,sSn

′,s′
√
n′ − 1

)
(6.20)

×
[
ω+C

n′,s′Cn,s
√
n+ 1 + αSn

′,s′Cn,s + ω−S
n′,s′Sn,s

√
n
]

=
∑
n>1

(
ω+C

n,sCn+1,s′√n+ 1 + αCn,sSn+1,s′ + ω−S
n,sSn+1,s′√n

)
×
[
ω+C

n+1,s′Cn,s
√
n+ 1 + αSn+1,s′Cn,s + ω−S

n+1,s′Sn,s
√
n
]

=
∑
n>1

(
ω+C

n,sCn+1,s′√n+ 1 + αCn,sSn+1,s′ + ω−S
n,sSn+1,s′√n

)2
.

So all in all, we found the expression

i2~
2

l2H

∞∑
n,n′>1

v1;n−,n′+v2;n′+,n−(
En,− − En′,+

)2 = (6.21)

∑
n>1

1
(En,− − En+1,+)2

(
ω+C

n,−Cn+1,+√n+ 1 + αCn,−Sn+1,+ + ω−S
n,−Sn+1,+√n

)2

−
∑
n>2

1
(En,− − En−1,+)2

(
ω+C

n,−Cn−1,+√n+ αSn,−Cn−1,+ + ω−S
n,−Sn−1,+√n− 1

)2
.

Next, we analyze the contribution to Eq. (6.11) originating from n > 0 and n′ = 0. We
therefore need to consider the matrix elements:

v1;ns,0s′ = − lH√
2~

(〈n|Cn,s, 〈n− 1|Sn,s)
(
ω+(a† + a) α

α ω−(a† + a)

)(
|0〉
0

)
(6.22)

= − lH√
2~

(〈n|Cn,s, 〈n− 1|Sn,s)
(
ω+(a† + a)|0〉

α|0〉

)

= − lH√
2~

[
〈n|Cn,sω+(a† + a)|0〉+ 〈n− 1|Sn,sα|0〉

]
= − lH√

2~
[Cn,sω+〈n|1〉+ Sn,sα〈n− 1|0〉]

= − lH√
2~

[Cn,sω+δn,1 + Sn,sαδn,1] = − lH√
2~

[Cn,sω+ + Sn,sα] δn,1 ,
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v2;0s′,ns = ilH√
2~

(〈0|, 0)
(
ω+(a† − a) −α

α ω−(a† − a)

)(
Cn,s|n〉

Sn,s|n− 1〉

)
(6.23)

= ilH√
2~

(〈0|, 0)
(
ω+(a† − a)Cn,s|n〉 − αSn,s|n− 1〉
αCn,s|n〉+ ω−(a† − a)Sn,s|n− 1〉

)

= ilH√
2~

[
〈0|
(
ω+(a† − a)Cn,s|n〉 − αSn,s|n− 1〉

)]
= ilH√

2~

[
ω+C

n,s〈0|(a† − a)|n〉 − αSn,s〈0|n− 1〉

= ilH√
2~
(
−
√
nω+C

n,s − αSn,s
)
δn,1 .

In combination, this implies

i2~
2

l2H

∞∑
n>0

v1;ns,0s′v2;0s′,ns =
∞∑
n>0

[Cn,sω+ + Sn,sα] δn,1 (−ω+C
n,s − αSn,s) δn,1 (6.24)

=
∞∑
n>0
− (Cn,sω+ + Sn,sα)2 δn,1 =

1∑
n=1
−
(
Cn,sω+

√
n+ Sn,sα

)2
.

Next, we analyze the contributions to Eq. (6.11) originating from n = 0 and n′ > 0. We
therefore need to consider the matrix elements:

v1;0s,n′s′ = − lH√
2~

(〈0|, 0)
(
ω+(a† + a) α

α ω−(a† + a)

)(
Cn
′,s′ |n′〉

Sn
′,s′ |n′ − 1〉

)
(6.25)

= − lH√
2~

(〈0|, 0)
(
ω+(a† + a)Cn′,s′ |n′〉+ αSn

′,s′ |n′ − 1〉
αCn

′,s′ |n′〉+ ω−(a† + a)Sn′,s′ |n′ − 1〉

)

= − lH√
2~

[
〈0|
(
ω+(a† + a)Cn′,s′ |n′〉+ αSn

′,s′ |n′ − 1〉
)]

= − lH√
2~

[
ω+C

n′,s′〈0|(a† + a)|n′〉+ αSn
′,s′〈0|n′ − 1〉

]
= − lH√

2~

[
ω+C

n′,s′〈0|(
√
n′ + 1|n′ + 1〉+

√
n′|n′ − 1〉) + αSn

′,s′δn′,1
]

= − lH√
2~

[
ω+C

n′,s′ + αSn
′,s′
]
δn′,1 ,

v2;n′s′,0s = ilH√
2~

(
〈n′|Cn′,s′ , 〈n′ − 1|Sn′,s′

)(ω+(a† − a) −α
α ω−(a† − a)

)(
|0〉
0

)
(6.26)

= ilH√
2~

(
〈n′|Cn′,s′ , 〈n′ − 1|Sn′,s′

)(ω+(a† − a)|0〉
α|0〉

)

= ilH√
2~

[
〈n′|Cn′,s′ω+(a† − a)|0〉+ 〈n′ − 1|Sn′,s′α|0〉

]
= ilH√

2~

[
Cn
′,s′ω+ + Sn

′,s′α
]
δn′,1 .

Thus, in combination, we found

i2~
2

l2H

∞∑
n′>0

v1;0s,n′s′v2;n′s′,0s =
∞∑
n′>0

[
ω+C

n′,s′ + αSn
′,s′
] [
Cn
′,s′ω+ + Sn

′,s′α
]
δn′,1
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=
∞∑
n′>0

(
ω+C

n′,s′ + αSn
′,s′
)2
δn′,1 . (6.27)

In contrast the contribution to Eq. (6.11) originating from n = 0 and n′ = 0 vanishes, as

v1;0s,0s′ = − lH√
2~

(〈0|, 0)
(
ω+(a† + a) α

α ω−(a† + a)

)(
|0〉
0

)
(6.28)

= − lH√
2~

(〈0|, 0)
(
ω+(a† + a)|0〉

α|0〉

)
= − lH√

2~

[
〈0|ω+(a† + a)|0〉

]
= 0 ,

and therefore

i2~
2

l2H
v1;0s,0s′v2;0s′,0s = 0 . (6.29)

The contribution to Eq. (6.11) originating from n = 1 and n′ = 1 vanishes as well, due
to

v1;1s,1s′ = − lH√
2~

[
ω+C

1,sC1,s′〈1|(a† + a)|1〉+ αC1,sS1,s′〈1|0〉+ αS1,sC1,s′〈0|1〉

+ ω−S
1,sS1,s′〈0|(a† + a)|0〉

]
= 0 . (6.30)

In contrast, for n = 2 and n′ = 1, we find

v1;2s,1s′ = − lH√
2~

[
ω+C

2,sC1,s′〈2|(a† + a)|1〉+ αC2,sS1,s′〈2|0〉+ αS2,sC1,s′〈1|1〉

+ ω−S
2,sS1,s′〈1|(a† + a)|0〉

]
(6.31)

= − lH√
2~

[
ω+C

2,sC1,s′〈2|a†|1〉+ αS2,sC1,s′ + ω−S
2,sS1,s′〈1|a†|0〉

]
= − lH√

2~

[
ω+C

2,sC1,s′√2 + αS2,sC1,s′ + ω−S
2,sS1,s′

]
,

which in particular implies

v2;1s′,2s = ilH√
2~

[
ω+C

1,s′C2,s〈1|(a† − a)|2〉 − αC1,s′S2,s〈1|1〉+ αS1,s′C2,s〈0|2〉

+ ω−S
1,s′S2,s〈0|(a† − a)|1〉

]
(6.32)

= ilH√
2~

[
ω+C

1,s′C2,s〈1|(−a)|2〉 − αC1,s′S2,s + ω−S
1,s′S2,s〈0|(−a)|1〉

]
= ilH√

2~

[
− ω+C

1,s′C2,s√2− αC1,s′S2,s − ω−S1,s′S2,s
]
.

Hence, one obtains the following contribution to Eq. (6.11) for this case:

i2~
2

l2H
v1;2s,1s′v2;1s′,2s =

[
ω+C

2,sC1,s′√2 + αS2,sC1,s′ + ω−S
2,sS1,s′

]
(6.33)

×
[
− ω+C

1,s′C2,s√2− αC1,s′S2,s − ω−S1,s′S2,s
]

= −
(
ω+C

2,sC1,s′√2 + αS2,sC1,s′ + ω−S
2,sS1,s′

)2
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= −
2∑

n=2

(
ω+C

2,sC1,s′√n+ αS2,sC1,s′ + ω−S
2,sS1,s′√n− 1

)2
.

Last but not least, let us analyze the contribution to Eq. (6.11) which originates from the
Landau level indices n = 1 and n′ = 2. In this case, one in particular obtains

v1;1s,2s′ = − lH√
2~

[
ω+C

1,sC2,s′〈1|(a† + a)|2〉+ αC1,sS2,s′〈1|1〉+ αS1,sC2,s′〈0|2〉 (6.34)

+ ω−S
1,sS2,s′〈0|(a† + a)|1〉

]
= − lH√

2~

[
ω+C

1,sC2,s′〈1|a|2〉+ αC1,sS2,s′ + ω−S
1,sS2,s′〈0|a|1〉

]
= − lH√

2~

[
ω+C

1,sC2,s′√2 + αC1,sS2,s′ + ω−S
1,sS2,s′

]
,

and

v2;2s′,1s = ilH√
2~

[
ω+C

2,s′C1,s〈2|(a† − a)|1〉 − αC2,s′S1,s〈2|0〉+ αS2,s′C1,s〈1|1〉 (6.35)

+ ω−S
2,s′S1,s〈1|(a† − a)|0〉

]
= ilH√

2~

[
ω+C

2,s′C1,s〈2|a†|1〉+ αS2,s′C1,s + ω−S
2,s′S1,s〈1|a†|0〉

]
= ilH√

2~

[
ω+C

2,s′C1,s√2 + αS2,s′C1,s + ω−S
2,s′S1,s

]
.

Thus, one obtains the entire contribution:

i2~
2

l2H
v1;1s,2s′v2;2s′,1s =

[
ω+C

1,sC2,s′√2 + αC1,sS2,s′ + ω−S
1,sS2,s′

]
(6.36)

×
[
ω+C

2,s′C1,s√2 + αS2,s′C1,s + ω−S
2,s′S1,s

]
=
(
ω+C

1,sC2,s′√2 + αC1,sS2,s′ + ω−S
1,sS2,s′

)2

=
1∑

n=1

(
ω+C

n,sCn+1,s′√n+ 1 + αCn,sSn+1,s′ + ω−S
n,sSn+1,s′√n

)2
.

As the above calculation has been lengthy and sophisticated, let us briefly summarize our
intermediate result. Altogether, we have determined the following contributions to Eq. (6.11)
originating from the Landau level indices n, n′ > 0:

i2~
2

l2H

∞∑
n,n′>0

v1;n−,n′+v2;n′+,n−(
En,− − En′,+

)2 (6.37)

=
∑
n>0

1
(En,− − En+1,+)2

(
ω+C

n,−Cn+1,+√n+ 1 + αCn,−Sn+1,+ + ω−S
n,−Sn+1,+√n

)2

−
∑
n>1

1
(En,− − En−1,+)2

(
ω+C

n,−Cn−1,+√n+ αSn,−Cn−1,+ + ω−S
n,−Sn−1,+√n− 1

)2

=
∑
n=1

1
(En,− − En+1,+)2

(
ω+C

n,−Cn+1,+√n+ 1 + αCn,−Sn+1,+ + ω−S
n,−Sn+1,+√n

)2

−
∑
n=1

1
(En+1,− − En,+)2

(
ω+C

n+1,−Cn,+
√
n+ 1 + αSn+1,−Cn,+ + ω−S

n+1,−Sn,+
√
n
)2
.
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Notice, that in the last line we shifted the index of summation. A remaining task of our
calculation is to include the contribution of the zeroth Landau level. If it is part of the
valence band, for E0 < Ez , this contribution is given by

i2~
2

l2H

∞∑
n′>0

v1;0−,n′+v2;n′+,0−(
E0,− − En′,+

)2 =
∞∑
n′>0

1(
E0,− − En′,+

)2 (ω+C
n′,+ + αSn

′,+
)2
δn′,1

=
0∑

n=0

1
(En,− − En+1,+)2

(
ω+C

n+1,+√n+ 1 + αSn+1,+
)2

(6.38)

=
0∑

n=0

1
(En,− − En+1,+)2

(
ω+C

n,−Cn+1,+√n+ 1 + αCn,−Sn+1,+ + ω−S
n,−Sn+1,+√n

)2
,

where we defined

S0,+ = 0 ∧ C0,+ = 1 ∧ S0,− = 0 ∧ C0,− = 1 . (6.39)

If the zeroth Landau level is part of the conduction band, for E0 > Ez, this contribution is
instead given by

i2~
2

l2H

∞∑
n>0

v1;n−,0+v2;0+,n−

(En,− − E0,+)2 = −
∞∑
n>0

1
(En,− − E0,+)2

(
ω+C

n,− + αSn,−
)2
δn,1

= −
1∑

n=1

1
(En,− − E0,+)2

(
ω+C

n,−√n+ αSn,−
)2 (6.40)

= −
0∑

n=0

1
(En+1,− − En,+)2

(
ω+C

n+1,−√n+ 1 + αSn+1,−
)2

= −
0∑

n=0

1
(En+1,− − En,+)2

(
ω+C

n+1,−Cn,+
√
n+ 1 + αSn+1,−Cn,+ + ω−S

n+1,−Sn,+
√
n
)2
.

All in all, we therefore found the following expression for the Kubo formula in Eq. (6.11):

i2~
2

l2H

∞∑
n,n′=0

v1;n−,n′+v2;n′+,n−(
En,− − En′,+

)2 (6.41)

=
∞∑
n=0

1
(En,− − En+1,+)2

(
ω+C

n,−Cn+1,+√n+ 1 + αCn,−Sn+1,+ + ω−S
n,−Sn+1,+√n

)2

︸ ︷︷ ︸
valence band states

−
∞∑
n=0

1
(En+1,− − En,+)2

(
ω+C

n+1,−Cn,+
√
n+ 1 + αSn+1,−Cn,+ + ω−S

n+1,−Sn,+
√
n
)2

︸ ︷︷ ︸
conduction band states

.

Let us emphasize again that the zeroth Landau level solely contributes to one of the sums. If
it belongs to the valence band, it contributes to the first sum. If it belongs to the conduction
band, it contributes to the second sum.

In order to further simplify Eq. (6.41), we make use of the system’s explicit eigen-states,
introduced in Eq. (6.5). In particular, we can rewrite these states in terms of [158]

|ψ+
n 〉 =

(
cos (Θn) |n〉

sin (Θn) |n− 1〉

)
∧ |ψ−n 〉 =

(
− sin (Θn) |n〉

cos (Θn) |n− 1〉

)
∧ |ψ0〉 =

(
|0〉
0

)
, (6.42)
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where we have defined the generalized angle Θn which is implicitly defined by

cos (Θn) =

√√√√√1
2

1 + δ + 2 (m+ + nβ)√
(δ + 2 (m+ + nβ))2 + 4nα2

 , (6.43)

sin (Θn) =

√√√√√1
2

1− δ + 2 (m+ + nβ)√
(δ + 2 (m+ + nβ))2 + 4nα2

 . (6.44)

In particular, this angle allows us to rewrite the amplitudes Cn,± and Sn,± for n > 0 via

Cn,+ = cos (Θn) ∧ Sn,+ = sin (Θn) , (6.45)
Cn,− = − sin (Θn) ∧ Sn,− = cos (Θn) . (6.46)

Inserting those identities into Eq. (6.41) implies [158]

CCI = −
∞∑
n=0

1
(En+1,+ − En,−)2 (6.47)

×
(
ω+ cos(Θn+1) sin(Θn)

√
n+ 1− ω− sin(Θn+1) cos(Θn)

√
n+ α sin(Θn+1) sin(Θn)

)2

+
∞∑
n=0

1
(En+1,− − En,+)2

×
(
ω+ cos(Θn) sin(Θn+1)

√
n+ 1− ω− sin(Θn) cos(Θn+1)

√
n− α cos(Θn) cos(Θn+1)

)2
.

(6.48)

From now on, we assume a particle-hole symmetric Chern insulator with D = 0, which
in particular implies µ = Ez = 0. As explained in Sec. 3.1.2, the D|k|2σ0 term in the
Hamiltonian of a single Chern insulator is even under parity-transformations. As such, it
cannot contribute to the system’s zero-field Chern number. In Sec. 3.3 we have shown that
this property extends to quantizing out-of-plane magnetic fields for chemical potentials in
the Dirac mass gap. We have analyzed the effects of a particle-hole asymmetry in detail in
Ref. [P3]. The assumption of D = 0 simplifies the eigen-energies of the Hamiltonian (6.2) in
Eq. (6.3):

En,s = β

2 + s εn ∧ E0 = m+ + β/2 , (6.49)

with

εn =
√

(m+ + nβ)2 + nα2 . (6.50)

Consequently, one obtains the following identities

ε2n = (m+ + nβ)2 + nα2 , (6.51)
ε2n+1 − ε2n = α2 + β (2m+ + (2n+ 1)β) , (6.52)
ε2n+1 + ε2n = (2n+ 1)α2 + (m+ + nβ)2 + (m+ + (n+ 1)β)2 , (6.53)

as well as

En+1,+ − En,− =
(
β

2 + εn+1

)
−
(
β

2 − εn
)

= (εn+1 + εn) , (6.54)
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En+1,− − En,+ =
(
β

2 − εn+1

)
−
(
β

2 + εn

)
= − (εn+1 + εn) , (6.55)

(En+1,+ − En,−)2 = (En+1,− − En,+)2 = (εn+1 + εn)2 . (6.56)

These identities enable us to simplify the Θn-angles in Eq. (6.43) for D = 0. In particular,
we obtain

cos (Θn) =

√√√√√1
2

1 + 2 (m+ + nβ)√
(2 (m+ + nβ))2 + 4nα2

 , (6.57)

sin (Θn) =

√√√√√1
2

1− 2 (m+ + nβ)√
(2 (m+ + nβ))2 + 4nα2

 , (6.58)

with

cos2 (Θn) = εn + (m+ + nβ)
2εn

∧ sin2 (Θn) = εn − (m+ + nβ)
2εn

, (6.59)

and thus

cos2 (Θn) cos2 (Θn+1) = εn + (m+ + nβ)
2εn

εn+1 + (m+ + (n+ 1)β)
2εn+1

(6.60)

= εnεn+1 + (m+ + nβ) εn+1 + (m+ + (n+ 1)β) εn + (m+ + nβ) (m+ + (n+ 1)β)
4εnεn+1

,

sin2 (Θn) sin2 (Θn+1) = εn − (m+ + nβ)
2εn

εn+1 − (m+ + (n+ 1)β)
2εn+1

(6.61)

= εnεn+1 − (m+ + nβ) εn+1 − (m+ + (n+ 1)β) εn + (m+ + nβ) (m+ + (n+ 1)β)
4εnεn+1

,

cos2 (Θn) sin2 (Θn+1) = εn + (m+ + nβ)
2εn

εn+1 − (m+ + (n+ 1)β)
2εn+1

(6.62)

= εnεn+1 + (m+ + nβ) εn+1 − (m+ + (n+ 1)β) εn − (m+ + nβ) (m+ + (n+ 1)β)
4εnεn+1

,

sin2 (Θn) cos2 (Θn+1) = εn − (m+ + nβ)
2εn

εn+1 + (m+ + (n+ 1)β)
2εn+1

(6.63)

= εnεn+1 − (m+ + nβ) εn+1 + (m+ + (n+ 1)β) εn − (m+ + nβ) (m+ + (n+ 1)β)
4εnεn+1

,

sin2 (Θn) cos2 (Θn+1) = εn − (m+ + nβ)
2εn

εn+1 + (m+ + (n+ 1)β)
2εn+1

(6.64)

= εnεn+1 − (m+ + nβ) εn+1 + (m+ − (n+ 1)β) εn − (m+ + nβ) (m+ + (n+ 1)β)
4εnεn+1

,

cos2 (Θn) sin2 (Θn+1) = εn + (m+ + nβ)
2εn

εn+1 − (m+ + (n+ 1)β)
2εn+1

(6.65)

= εnεn+1 + (m+ + nβ) εn+1 − (m+ + (n+ 1)β) εn − (m+ + nβ) (m+ + (n+ 1)β)
4εnεn+1

.
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Consequently, we found the following identities:

ω2
+ cos2 (Θn) sin2 (Θn+1)− ω2

+ sin2 (Θn) cos2 (Θn+1) = 2ω2
+

(m+ + nβ) (εn+1 − εn)− βεn
4εnεn+1

,

ω2
− sin2 (Θn) cos2 (Θn+1)− ω2

− cos2 (Θn) sin2 (Θn+1) = −2ω2
−

(m+ + nβ) (εn+1 − εn)− βεn
4εnεn+1

,

α2 cos2 (Θn) cos2 (Θn+1)− α2 sin2 (Θn) sin2 (Θn+1) = 2α2 (m+ + nβ) (εn+1 + εn) + βεn
4εnεn+1

.

(6.66)

Equipped with these identities, we can evaluate the square brackets in Eq. (6.41). This leads
to the six different terms

(1) : ω2
+

(
cos2(Θn) sin2(Θn+1)− cos2(Θn+1) sin2(Θn)

)
(n+ 1) , (6.67)

(2) : ω2
−

(
sin2(Θn) cos2(Θn+1)− sin2(Θn+1) cos2(Θn)

)
n , (6.68)

(3) : α2
(
cos2(Θn) cos2(Θn+1)− sin2(Θn+1) sin2(Θn)

)
, (6.69)

(4) : ω+ω−
(

[cos(Θn) sin(Θn+1) sin(Θn) cos(Θn+1) ] (6.70)

− [cos(Θn+1) sin(Θn) sin(Θn+1) cos(Θn)]
)√

n
√
n+ 1 = 0 ,

(5) : −ω+α
(

[cos(Θn) sin(Θn+1) cos(Θn) cos(Θn+1)] (6.71)

+ [cos(Θn+1) sin(Θn) sin(Θn+1) sin(Θn)]
)√

n+ 1

= −ω+α ([sin(Θn+1) cos(Θn+1)] + [cos(Θn+1) sin(Θn+1)])
√
n+ 1

= −2ω+α ([sin(Θn+1) cos(Θn+1)])
√
n+ 1 = −2

√
n+ 1ω+α

√
n+ 1α
2εn+1

= −(n+ 1)ω+α
2

εn+1
,

(6) : ω−α
(

[sin(Θn) cos(Θn+1) cos(Θn) cos(Θn+1)] (6.72)

+ [sin(Θn+1) cos(Θn) sin(Θn+1) sin(Θn)]
)√

n

= 2ω−α (sin(Θn) cos(Θn))
√
n = 2ω−α

√
n

√
nα

2εn
= nω−α

2

εn
.

Here, we used that

sin(Θn) cos(Θn) =
√
εn − (m+ + nβ)

2εn
εn + (m+ + nβ)

2εn
=

√
ε2n − (m+ + nβ)2

4ε2n
(6.73)

=

√
ε2n − (m+ + nβ)2

2εn
=
√
ε2n − (ε2n − nα2)

2εn
=
√
nα2

2εn
=
√
nα

2εn
,

with ε2n = (m+ + nβ)2 + nα2. Analogously, one finds

sin(Θn+1) cos(Θn+1) =
√
n+ 1α
2εn+1

. (6.74)

As a last step, we are using the identity

ω± = ±ω1 + ω2 = ±β ⇒ ω2
+ = ω2

− = β2 (6.75)
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in order to derive an explicit, simplified expression for Eq. (6.41):

6∑
i=1

(i) = 2β2 (m+ + nβ) (εn+1 − εn)− βεn
4εnεn+1

(6.76)

+ 2α2 (m+ + nβ) (εn+1 + εn) + βεn
4εnεn+1

− (n+ 1)βα2

εn+1
− nβα2

εn

= 2β2 ((m+ + nβ) (εn+1 − εn)− βεn)
4εnεn+1

+ 2α2 ((m+ + nβ) (εn+1 + εn) + βεn)
4εnεn+1

− 4(n+ 1)βα2εn
4εnεn+1

− 4nβα2εn+1
4εnεn+1

= 1
4εnεn+1

[
2β2 ((m+ + nβ) (εn+1 − εn)− βεn)

+ 2α2 ((m+ + nβ) (εn+1 + εn) + βεn)− 4(n+ 1)βα2εn − 4nβα2εn+1
]

= 1
4εnεn+1

[
2β2 (m+ + nβ) (εn+1 − εn)− 2β3εn

+ 2α2 (m+ + nβ) (εn+1 + εn) + 2α2βεn − 4nβα2 (εn + εn+1)− 4βα2εn
]

= 1
4εnεn+1

[
2β2 (m+ + nβ) (εn+1 − εn)− 2β3εn + 2α2 (m+ − nβ) (εn+1 + εn)− 2α2βεn

]
= 1

(εn+1 + εn)2

[εn+1 − εn
4εnεn+1

(
α2β + (2m+ + (2n+ 1)β)β2

)
+ εn+1 + εn

4εnεn+1

(
α2(2m+ − (2n+ 1)β)− β3

) ]
= 1

(εn+1 + εn)2

[εn+1 − εn
4εnεn+1

(
β[α2 + β(2m+ + (2n+ 1)β)]

)
+ εn+1 + εn

4εnεn+1

(
α2(2m+ − (2n+ 1)β)− β3

) ]
= 1

(εn+1 + εn)2

[
εn+1 − εn
4εnεn+1

(
β[ε2n+1 − ε2n]

)
+ εn+1 + εn

4εnεn+1

(
2m+α

2 − (2n+ 1)α2β − β3
)]

= 1
(εn+1 + εn)2

[
(εn+1 − εn)2

4εnεn+1
(β[εn+1 + εn]) + εn+1 + εn

4εnεn+1

(
2m+α

2 − (2n+ 1)α2β − β3
)]

= β(εn+1 − εn)2 + 2α2m+ − β3 − (2n+ 1)βα2

4εnεn+1(εn+1 + εn) .

In the sixth equality, we used that

−2β3εn − 2α2βεn = (εn+1 − εn)(2β3εn + 2α2βεn) + (εn+1 + εn)(−2β3εn − 2α2βεn) .

This expression for the Chern number can be further simplified by using the identity

ω1(εn+1 − εn)2 + 2η2m+ − ω3
1 − (2n+ 1)ω1η

2 (6.77)
= 2 [(m+ + nω1)εn+1(εn + εn+1)−m+ [m+ + (n+ 1)ω1] εn(εn + εn+1)] ,

since

ω1(εn+1 − εn)2 + 2η2m+ − ω3
1 − (2n+ 1)ω1η

2 (6.78)
= ω1(ε2n + ε2n+1 − 2εnεn+1) + 2η2m+ − ω3

1 − (2n+ 1)ω1η
2

= ω1
[
(2n+ 1)η2 + (m+ + nω1)2 + (m+ + (n+ 1)ω1)2

]
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− 2ω1εnεn+1 + 2η2m+ − ω3
1 − (2n+ 1)ω1η

2

= 2
[
m2

+ω1 + n(n+ 1)ω3
1 +m+

(
η2 + (1 + 2n)ω2

1

)
− ω1εnεn+1

]
,

and

(m+ + nω1)εn+1(εn + εn+1)−m+ [m+ + (n+ 1)ω1] εn(εn + εn+1) (6.79)

= m+(ε2n + ε2n+1)− ω1εnεn+1 + ω1
[
nε2n+1 − (n+ 1)ε2n

]
= m+[η2 + ω1(2m+ + ω1 + 2nω1)]− ω1εnεn+1 + ω1

[
−m2

+ + n(n(1 + n)ω2
1)
]

= m2
+ω1 + n(n+ 1)ω3

1 +m+[η2 + ω2
1(2n+ 1)]− ω1εnεn+1 .

With Eq. (6.77), we find the following Chern number contribution originating from all Landau
levels with n ∈ N [158]:

Cn>0
CI = 1

2

∞∑
n=1

(
m+ + nβ

εn
− m+ + (n+ 1)β

εn+1

)
. (6.80)

However, for the entire Chern number, we still need to include the contribution originating
from the zeroth Landau level. If it belongs to the valence band, this contribution is given by

− f(E0)
(E1,+ − E0)2

(
ω+C

1,+ + αS1,+
)2

= − f(E0)
(E1,+ − E0)2 (ω+ cos (Θ1) + α sin (Θ1))2 (6.81)

= − f(E0)((
β

2 + ε1

)
−
(
β

2 +m+

))2 (ω+ cos (Θ1) + α sin (Θ1))2

= − f(E0)
(ε1 −m+)2 (ω+ cos (Θ1) + α sin (Θ1))2

= − f(E0)
(ε1 −m+)2

(
ω2

1 cos2 (Θ1) + 2ω1α cos (Θ1) sin (Θ1) + α2 sin2 (Θ1)
)

= − f(E0)
(ε1 −m+)2

(
ω2

1
ε1 + (m+ + β)

2ε1
+ 2ω1α

α

2ε1
+ α2 ε1 − (m+ + β)

2ε1

)
= − f(E0)

2ε1 (ε1 −m+)2

(
β2 (ε1 +m+ + β) + 2βα2 + α2 (ε1 −m+ − β)

)
= − f(E0)

2ε1 (ε1 −m+)2

(
β2 (ε1 −m+) + α2 (ε1 −m+) + β3 + 2β2m+ + 2βα2 − βα2

)
= − f(E0)

2ε1 (ε1 −m+)2

(
β2 (ε1 −m+) + α2 (ε1 −m+) + β

(
β2 + 2βm+ + α2

))
= − f(E0)

2ε1 (ε1 −m+)2

(
β2 (ε1 −m+) + α2 (ε1 −m+) + β

(
ε21 −m2

+

))
= − f(E0)

2ε1 (ε1 −m+)
(
β2 + α2 + β (ε1 +m+)

)
= − f(E0)

2ε1 (ε1 −m+)
(
(β2 + α2 + 2βm+) + β (ε1 −m+)

)
= − f(E0)

2ε1 (ε1 −m+)
(
(ε21 −m2

+) + β (ε1 −m+)
)

= −f(E0) (ε1 +m+ + β)
2ε1

= −f(E0)
[1

2 + m+ + β

2ε1

]
,
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where we used that ε21 = (m+ + β)2 + α2 = m2
+ + β2 + 2m+β + α2 twice.

In contrast, if the zeroth Landau level belongs to the conduction band, one obtains

1− f(E0)
(E1,− − E0)2

(
ω+C

1,− + αS1,−
)2

= 1− f(E0)
(E1,− − E0)2 (−ω+ sin (Θ1) + α cos (Θ1))2 (6.82)

= 1− f(E0)
(E1,− − E0)2

(
β2 sin2 (Θ1)− 2βα sin (Θ1) cos (Θ1) + α2 cos2 (Θ1)

)
= 1− f(E0)

(ε1 +m+)2

(
β2 ε1 − (m+ + β)

2ε1
− 2βα α

2ε1
+ α2 ε1 + (m+ + β)

2ε1

)
= 1− f(E0)

2ε1 (ε1 +m+)2

(
β2 (ε1 −m+ − β)− 2βα2 + α2 (ε1 +m+ + β)

)
= 1− f(E0)

2ε1 (ε1 +m+)2

(
β2 (ε1 +m+) + α2 (ε1 +m+)− 2βα2 + βα2 − β3 − 2β2m+

)
= 1− f(E0)

2ε1 (ε1 +m+)2

(
β2 (ε1 +m+) + α2 (ε1 +m+)− β

(
α2 + β2 + 2βm+

))
= 1− f(E0)

2ε1 (ε1 +m+)2

(
β2 (ε1 +m+) + α2 (ε1 +m+)− β

(
ε21 −m2

+

))
= 1− f(E0)

2ε1 (ε1 +m+)
(
β2 + α2 − β (ε1 −m+)

)
= 1− f(E0)

2ε1 (ε1 +m+)
([
β2 + α2 + 2βm+

]
− β (ε1 +m+)

)
= 1− f(E0)

2ε1 (ε1 +m+)
([
ε21 −m2

+

]
− β (ε1 +m+)

)
= 1− f(E0)

2ε1
(ε1 −m+ − β) = 1− f(E0)

[1
2 + m+ + β

2ε1

]
.

So the general zeroth Landau level contribution to the system’s Chern number is given by

Cn=0
CI = −f(E0)

[1
2 + m+ + β

2ε1

]
+ (1− f(E0))

[1
2 −

m+ + β

2ε1

]
= 1

2

[
1− 2f(E0)− m+ + β

2ε1

]
.

(6.83)

Thus, in total we found

σxy = σn=0
xy + σn>0

xy = e2

h C
n=0
CI + e2

h C
n>0
CI (6.84)

= e2

2h

([
1− 2f(E0)− m+ + β

2ε1

]
+
∞∑
n=1

[
m+ + nβ

εn
− m+ + (n+ 1)β

εn+1

])

= e2

2h

(
1− 2f(E0)− lim

n→∞
m+ + (n+ 1)β

εn+1

)
= e2

2h

(
1− 2Θ [−β/2−m+]− lim

n→∞
m+ + (n+ 1)β

εn+1

)
= e2

2h (sgn(m+ + β/2) + sgn(B))

= e2

2h
(
sgn(m+ −B/l2H) + sgn(B)

)
. (6.85)

Here, we used the properties of the telescoping series in the third line and introduced the
Heavyside Theta function f(E0) = Θ(−E0) in the fourth line. Notice, that Eq. (6.85) exactly
matches Eq. (3.146a) of the main text.
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