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Deutschsprachige
Zusammenfassung (Summary in
German Language)

Digitalisierung und künstliche Intelligenz führen zu enormen Veränderun-
gen in nahezu allen Bereichen von Wirtschaft und Gesellschaft. Grundlegend
für diese Veränderungen ist die Technologie des maschinellen Lernens (ML),
ermöglicht durch ein Zusammenspiel großer Datenmengen, geeigneter Algo-
rithmen und ausreichender Rechenleistung. Ein ML-System lernt auf Basis
eines großen Datensatzes von Beispielen, eine definierte Aufgabe zu lösen, bei-
spielsweise, Nachfragewerte für ein bestimmtes Produkt auf Basis historischer
Nachfragebeobachtungen vorherzusagen. Diese Technologie bildet die Basis für
die Entwicklung neuartiger Ansätze zur Lösung klassischer Planungsprobleme
des Operations Research (OR): Präskriptive Ansätze integrieren Methoden des
ML und Optimierungsverfahren des OR mit dem Ziel, Lösungen für Planungs-
probleme direkt aus historischen Observationen von Nachfrage und Features
(erklärenden Variablen) abzuleiten. Dadurch kann beispielsweise direkt die
optimale Bestellmenge oder Mitarbeiterkapazität bestimmt werden.

Mittels der digitalen Verarbeitung von Aufträgen können Unternehmen au-
tomatisiert Nachfragewerte und zugehörige Features (beispielsweise Datums-,
Feiertags-, oder Wetterdaten) erfassen und somit große Datensätze anlegen.
Eine zentrale Forschungsfrage besteht darin, wie diese Datensätze bestmög-
lich genutzt werden können, um bei klassischen Planungsproblemen bessere
Entscheidungen zu treffen. Präskriptive Verfahren setzen bei dieser Frage an,
indem sie Entscheidungen direkt auf Basis der Nachfrage- und Feature-Daten
vorhersagen, anstatt, wie klassische OR-Ansätze, eine Nachfrageverteilung zu
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schätzen und anhand dieser eine Entscheidung abzuleiten. Diese neuartigen
Lösungsansätze bieten ein enormes Potential zur Verbesserung von Planungs-
entscheidungen, wie erste numerische Analysen mit historischen Daten gezeigt
haben, und begründen damit ein neues Forschungsfeld innerhalb des OR.

In ersten Beiträgen zu diesem neuen Forschungsfeld wurden präskripti-
ve Verfahren für verhältnismäßig einfache Planungsprobleme aus dem Bereich
des Lagerbestandsmanagements entwickelt. Häufig weisen Planungsprobleme
aber eine deutlich höhere Komplexität auf, beispielsweise durch eine mehrstu-
fige Struktur, durch Elemente der Warteschlangentheorie oder durch mehrere
voneinander abhängige Entscheidungen, die auf der Grundlage vektor- oder
matrixwertiger Nachfragebeobachtungen zu treffen sind. Viele dieser komple-
xen Planungsprobleme gehören zum Bereich der Kapazitätsplanung. Daher
ist die Entwicklung präskriptiver Ansätze zur Lösung komplexer Probleme im
Kapazitätsmanagement das Ziel dieser Dissertation. In drei inhaltlich abge-
schlossenen Teilen werden neuartige präskriptive Ansätze konzipiert und auf
realistische Kapazitätsplanungsprobleme angewendet.

Im ersten Artikel, „Prescriptive Analytics for Flexible Capacity Manage-
ment“, werden zwei präskriptive Verfahren entwickelt, und zwar weighted Sam-
ple Average Approximation (wSAA) und kernelized Empirical Risk Minimiza-
tion (kERM), um ein komplexes, zweistufiges stochastisches Kapazitätspla-
nungsproblem zu lösen: Ein Logistikdienstleister sortiert täglich eintreffende
Sendungen auf drei Sortierlinien, für die die wöchentliche Mitarbeiterkapa-
zität geplant werden muss. Während wSAA eine Erweiterung des klassischen
Sample-Average-Approximation-Verfahrens (SAA) darstellt, basiert kERM auf
dem im ML etablierten ERM-Prinzip. Dieser Artikel ist der erste Beitrag, in
dem ein kERM-Verfahren zur direkten Lösung eines komplexen, zweistufigen
Planungsproblems mit matrixwertiger Nachfrage und vektorwertiger Entschei-
dung entwickelt, eine Obergrenze für die erwarteten Kosten für nichtlineare,
kernelbasierte Funktionen abgeleitet und die Universal Approximation Prop-
erty bei Nutzung spezieller Kernelfunktionen gezeigt wird. Die Ergebnisse der
numerischen Studie demonstrieren, dass präskriptive Verfahren im Vergleich
mit klassischen Lösungsverfahren (Two-step-Verfahren sowie SAA) zu signifi-
kant besseren Entscheidungen führen können und ihre Entscheidungsqualität
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bei Variation der exogenen Kostenparameter deutlich robuster ist.
Im zweiten Artikel, „Prescriptive Analytics for a Multi-Shift Staffing Prob-

lem“, werden wSAA und kERM auf ein Planungsproblem der klassischen
Warteschlangentheorie angewendet: Ein Dienstleister erhält über den Tag ver-
teilt Aufträge, deren Anzahl und Zeitpunkt des Eintreffens unsicher sind, und
muss die Mitarbeiterkapazität für zwei Schichten planen. Dieses Planungspro-
blem ist aus zwei Gründen komplexer als die bisher mit präskriptiven An-
sätzen gelösten Probleme: Zum einen werden Auftragseingang und Bearbei-
tung als Wartesystem modelliert, zum anderen folgt die Nachfrage innerhalb
einer Schicht einem nicht stationären Prozess, wodurch die Zeitstruktur der
Nachfrage entscheidungsrelevant wird. Diese Komplexität wird mit zwei Nähe-
rungsmethoden bewältigt, sodass das Planungsproblem mit wSAA und kERM
sowie einem neu entwickelten präskriptiven Verfahren – dem Optimization-
Prediction-Verfahren (OP) – gelöst werden kann. Numerische Analysen mit
realistischen Kostenparametern sowie einer Parametervariation, die verschie-
dene Servicelevel induziert, zeigen, dass wSAA bei diesem Problem zu den
besten Entscheidungen führt. Die in diesem Artikel entwickelte Methode legt
den Grundstein zur Lösung komplexer Warteschlangenmodelle mit präskripti-
ven Verfahren und schafft damit eine Verbindung zwischen den „Welten“ der
Warteschlangentheorie und der präskriptiven Verfahren.

Im dritten Artikel, „Explainable Subgradient Tree Boosting for Prescrip-
tive Analytics in Operations Management“, wird ein neues präskriptives Ver-
fahren zur Lösung der Planungsprobleme der ersten beiden Artikel entwickelt,
das neben guter Entscheidungsqualität insbesondere durch die Erklärbarkeit
der Entscheidungen attraktiv ist: Subgradient Tree Boosting (STB). Es kom-
biniert das erfolgreiche Gradient-Boosting-Verfahren aus dem ML mit SAA
und verwendet Subgradienten, da die Zielfunktion von OR-Planungsproblemen
häufig nicht differenzierbar ist. Der Artikel zeigt Methoden zur Ableitung eines
Subgradienten für gängige OR-Probleme inklusive der Klasse der zweistufigen
Planungsprobleme und führt eine umfassende numerische Analyse zum Ver-
gleich von STB mit wSAA und kERM durch, die zeigt, dass STB zu einer
vergleichbaren Entscheidungsqualität wie wSAA und kERM führen kann. Zu-
sätzlich wird demonstriert, wie Kapazitätsentscheidungen in Beiträge einzelner
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Features zerlegt und damit erklärt werden können. Das in diesem Artikel neu
entwickelte STB-Verfahren ist damit nicht nur aufgrund seiner Entscheidungs-
qualität attraktiv für Entscheidungsträger, sondern insbesondere auch durch
die inhärente Erklärbarkeit.

Die in diesen drei Artikeln präsentierten Ergebnisse zeigen, dass die Nut-
zung präskriptiver Verfahren, wie wSAA, kERM und STB, bei der Lösung
komplexer Planungsprobleme zu deutlich besseren Ergebnissen führen kann
als der Einsatz klassischer Methoden, die Feature-Daten vernachlässigen oder
auf einer parametrischen Verteilungsschätzung basieren. Mit der Entwicklung
der präskriptiven Verfahren für die Kapazitätsplanung, der theoretischen Ana-
lyse und den Ergebnissen der praktischen Anwendungen wird ein relevanter
Beitrag zu diesem neuen Forschungsfeld innerhalb des OR geleistet.
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1 Introduction

Digitization and artificial intelligence (AI) are radically changing virtually
all areas across business and society (Brynjolfsson and McAfee 2014, Wester-
man et al. 2014). Since the mid-1990s large productivity increases have been
captured by transferring simple and routine tasks to machines. For example,
robots are now commonly used in car manufacturing lines, and payroll pro-
cessing is often done by computer programs. Such uses of machines for jobs
once done by humans is described as the first phase of the second machine
age (McAfee and Brynjolfsson 2017). This phase is marked by the use of
computers that are preprogrammed with sets of commands that define how to
accomplish a certain task. Now we are experiencing the second phase of the
second machine age as machines take over even more tasks, particularly com-
plex cognitive tasks. Well-known examples of such machines include AlphaGo,
an AI program that defeated the human world champion of the board game
Go (Silver et al. 2017), and AI systems that are better at analyzing medical
images than human experts are, for example, in predicting breast cancer based
on mammograms (McKinney et al. 2020). Given the innumerable new techno-
logical opportunities that can be enabled through the use of AI, the economic
impact is expected to be enormous: AI could increase the global GDP by
13 trillion USD by 2030 (Bughin et al. 2018). Most of these developments are
driven by one sub-field of AI, machine learning, which focuses on algorithms
that learn from massive amounts of data (McAfee and Brynjolfsson 2017). In
contrast to the preprogrammed computers that enabled phase one of the sec-
ond machine age, these machines are not explicitly programmed but learn for
themselves how to accomplish a task (e.g., predicting breast cancer based on
a mammogram) from large amounts of training data.

The theoretical foundations of today’s machine learning approaches date
back to the early work of Vapnik and Chervonenkis (1968) on uniform conver-

1



1 Introduction

gence, which formed a cornerstone of statistical learning theory (Vapnik 1998,
Schölkopf et al. 2013). Vapnik and Chervonenkis developed the well-known
principle of Empirical Risk Minimization (ERM), which states that a predic-
tion function can be learned by minimizing the empirical counterpart of the
expected loss (commonly termed true risk) over a data set of observed real-
izations, which is necessary because the underlying true distribution is often
unknown. Although statistical learning theory and many machine learning
algorithms already existed in the late 1990s (e.g., support vector machines
and artificial neural networks, including Hochreiter and Schmidhuber’s (1997)
well-known Long Short-Term Memory architecture), phase two of the second
machine age started only about a decade ago, driven by the coming together
of statistical learning theory, sufficient computational power, and the required
amounts of training data to constitute the new age of AI (McAfee and Bryn-
jolfsson 2017). In particular, while the advent of cloud technologies has made
computational power widely available, data is a key asset in facilitating new
business opportunities (Otto et al. 2016, MIT Technology Review Custom
2016, Agrawal et al. 2018).

One area in which the amount of available data has been growing signifi-
cantly in the last decade is that of operations management (OM): observations
of demand (e.g., customer orders of a product or service) are often recorded
automatically by the computer systems that process the request (Choi et al.
2018). Examples from our project partners include a mail logistics provider
that automatically stores the number of mail items sorted each day, and an
aviation maintenance service provider that automatically records a timestamp
for each part that arrives for maintenance. Consequently, the opportunities
for the field of decision-making in OM under uncertainty through machine
learning methods are tremendous, and a completely new field of research is
arising around the question of how best to exploit these data sources to derive
better decisions in OM.

2



1.1 A New Field of Research in OM: Prescriptive Analytics

1.1 A New Field of Research in Operations
Management: Prescriptive Analytics

One of the main areas of machine learning is learning from historical observa-
tions of a quantity of interest (e.g., historical demand for a certain product) to
predict the future value of this quantity (e.g., tomorrow’s demand for the prod-
uct). From the perspective of traditional OM, predicting demand is one of the
key ingredients for decision-making (Agrawal et al. 2018), so straightforward
improvement in OM decision-making by means of machine learning follows the
two-step approach of first predicting demand using machine learning methods
and then solving the OM planning problem to derive the optimal decision.
Because this approach relies on data (historical observations of demand) and
machine learning algorithms, it may already improve decisions over those that
rely on the judgment of experienced or expert humans, so it may provide an
important advantage for companies (McAfee and Brynjolfsson 2017). How-
ever, such two-step approaches “can be problematic because demand model
specification is difficult in higher dimensions, and errors in the first step will
amplify in the optimization” (Ban and Rudin 2019, p. 90). In contrast, pre-
scriptive analytics approaches integrate prediction and optimization into a
single prescription step, so they learn from historical observations of demand
and a set of features (co-variates) and provide a model that directly prescribes
future decisions. This combination of optimization techniques—which have
long been the field of study of Operations Research (OR)—machine learning,
and large amounts of historical data is considered one of the largest oppor-
tunities for OR (Bertsimas 2017), and first case reports suggest that using
prescriptive analytics can reduce costs by 24 percent (Ban and Rudin 2019)
or even 88 percent (Bertsimas and Kallus 2020). Consequently, these new
prescriptive analytics approaches to solving classical OM problems like deter-
mining the optimal inventory of a certain product or the staff capacity needed
to fulfill customer demand constitute a new field of research in OM. The need
for research in this new field is evident from, for example, a call for papers for
a Management Science special issue on “Data-Driven Prescriptive Analytics”
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(Giesecke et al. 2018) and the formation of the new INFORMS Journal on
Optimization, which follows the vision of “science that starts with data and
builds models to derive optimal decisions that add value” (Bertsimas 2017,
p. 14)—the key idea of prescriptive analytics.

1.2 Prescriptive Analytics for Data-driven
Capacity Management

Prescriptive analytics constitutes a new field of research in OM, and first works
have studied new approaches to solving comparatively simple planning prob-
lems in the area of inventory management (e.g., Ban and Rudin 2019, Bertsi-
mas and Kallus 2020). However, common OM planning problems often have a
more complex structure, such as two-stage stochastic problems with recourse
and problems of queuing theory, and may require making multiple interdepen-
dent decisions depending on vector-valued or even matrix-valued observations
of demand. Many of these complex planning problems are within the domain
of capacity planning, so this dissertation focuses on developing new prescrip-
tive analytics approaches for complex capacity management problems. In the
most general terms, capacity can be defined as a “measure of processing abili-
ties and limitations” (Van Mieghem 2003, p. 269), and decisions with regards
to capacity must often be made under uncertainty of demand. Therefore, the
guiding research question of this dissertation is:

Guiding Research Question. How can prescriptive analytics approaches
combine methods of machine learning with OR optimization and exploit avail-
able demand and feature data to prescribe better decisions for complex capacity
planning problems?

Capacity planning under demand uncertainty is a classical OR problem
and Van Mieghem (2003) provides a comprehensive review of traditional ap-
proaches to capacity management, distinguishing between two classes of ca-
pacity models: newsvendor-type and queuing-type models. Newsvendor-type
models are “typically set in discrete-time and focus on the impact of multi-
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variate demand uncertainty” (Van Mieghem 2003, p. 281), often leading to
decisions that consist of a forecasted mean demand and an uncertainty hedge
in the form of a safety buffer that is structurally similar to the newsvendor
solution. Therefore, the first research question to be addressed by this disser-
tation can be stated as:

Research Question 1. How can prescriptive analytics approaches be used to
make better decisions for a complex newsvendor-type capacity planning problem
with uncertain demand?

In contrast, typical queuing models use continuous time (Van Mieghem
2003) and allow the decision-maker to define flow-related objectives like wait-
ing time or queue length, which often increases model complexity. The re-
spective research question for this type of capacity planning problem can be
stated as:

Research Question 2. How can prescriptive analytics approaches be used to
make better decisions for a complex queuing-type capacity planning problem
with uncertain demand?

The primary reason for using prescriptive analytics for decision-making
has been to make better decisions (e.g., Ban and Rudin 2019, Bertsimas and
Kallus 2020), but recently an additional aspect has emerged: the explainability
of prescribed decisions. While many decision-making tasks can be fully auto-
mated using prescriptive analytics, some still require human input or collabo-
ration between human and machine to achieve the best performance (Agrawal
et al. 2018). When humans need to collaborate with machines that prescribe
decisions, the machine should provide explanations for its prescriptions so the
human can understand the underlying causality and build trust in the model’s
prescriptions, both of which are common motivations for research on explain-
able AI (Lipton 2018). The growing research interest in explainable AI and
explainable prescriptive analytics for OM is also evident in Marsden et al.’s
(2020) recent call for papers. The third research question to be addressed by
this dissertation, then, focuses on explainable prescriptive analytics.
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Research Question 3. How can prescriptive analytics approaches to solving
complex capacity planning problems be used to derive explanations so decision-
makers can understand the reasons for the prescribed decisions?

The next section presents how this dissertation addresses the three research
questions.

1.3 Structure of the Dissertation
This dissertation consists of three independent articles that follow the Guiding
Research Question in an effort to contribute to the research on prescriptive
analytics for complex capacity planning problems.

The first article, “Prescriptive Analytics for Flexible Capacity Manage-
ment”1 (Chapter 2), addresses Research Question 1 by developing two prescrip-
tive analytics approaches, weighted sample average approximation (wSAA)
and kernelized empirical risk minimization (kERM), to solve a complex two-
stage capacity planning problem that has been studied extensively in the lit-
erature (Netessine et al. 2002, Bassok et al. 1999). In this problem, a logistics
service provider sorts daily incoming mail items on three service lines that
must be staffed on a weekly basis. This article is the first to develop a kERM
approach—which applies Vapnik’s ERM principle and uses the kernel trick to
incorporate non-linear function spaces—to solve a complex two-stage stochas-
tic capacity planning problem with matrix-valued observations of demand and
vector-valued decisions. The article compares wSAA and kERM analytically
by building on statistical learning theory, develops out-of-sample performance
guarantees for kERM and various kernels, and shows the universal approxima-
tion property when using a universal kernel. A comprehensive numerical study
is conducted using historical demand data from the case company, realistic
cost parameters, and a variation of cost parameters to induce various service
levels. The results of the numerical study suggest that prescriptive analytics
approaches may lead to significant improvements in performance compared to
traditional two-step approaches or SAA and that their performance is more
1This article is co-authored by Richard Pibernik.
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robust to variations in the exogenous cost parameters.
The second article, “Prescriptive Analytics for a Multi-Shift Staffing Prob-

lem”2 (Chapter 3), addresses Research Question 2 in using prescriptive analyt-
ics approaches to solve the (queuing-type) multi-shift staffing problem (MSSP)
of an aviation maintenance provider that receives customer requests of uncer-
tain number and at uncertain arrival times throughout each day and plans
staff capacity for two shifts. This planning problem is particularly complex
because the order inflow and processing are modelled as a queuing system,
and the demand in each day is non-stationary, which makes the time struc-
ture of demand arrivals an important factor in determining the optimal staff
capacity. The article addresses this complexity by deriving an approximation
of the MSSP’s queuing model formulation that enables the planning problem
to be solved using wSAA and kERM. In addition, the article proposes a novel
prescriptive analytics approach that is termed the Optimization Prediction
(OP) approach. A numerical evaluation using realistic cost parameters and
historical demand data from a case company demonstrates the applicability of
prescriptive analytics to this type of queuing problem. Additional numerical
experiments using a variety of cost parameters suggest that, while the OP
approach is an attractive choice because of its simplicity, wSAA may lead to
better performance, particularly for high or low service levels. The solution
method developed in this article builds a foundation for solving queuing-type
planning problems using prescriptive analytics approaches, so it bridges the
“worlds” of queuing theory and prescriptive analytics.

The third article, “Explainable Subgradient Tree Boosting for Prescriptive
Analytics in Operations Management” (Chapter 4), addresses Research Ques-
tion 3 by proposing a novel prescriptive analytics approach, termed Subgradient
Tree Boosting (STB), that allows decision-makers to derive explanations for
prescribed decisions. STB combines the machine learning method Gradient
Boosting with SAA and relies on subgradients because the cost function of OM
planning problems often cannot be differentiated. The methods with which
to derive subgradients for common OM problems that the article proposes in-

2This article is co-authored by Peter K. Wolf and Richard Pibernik.
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clude the class of two-stage stochastic problems. A comprehensive numerical
analysis is conducted that uses STB to solve the two capacity planning prob-
lems studied in the first and second articles; the results suggest that STB can
lead to a prescription performance that is comparable to that of wSAA and
kERM. The explainability of STB prescriptions is demonstrated by breaking
exemplary decisions down into the impacts of individual features. The novel
STB approach is an attractive choice not only because of its prescription per-
formance, but also because of the explainability that helps decision-makers
understand the causality behind the prescriptions.

An overview of each of the three articles’ scientific contributions is pre-
sented in Table 1.1. The proofs of the theoretical results presented in the
main part of this dissertation, along with additional theoretical and numerical
results, can be found in Appendices A, B, and C. A summary of the results
and insights is presented in Chapter 5, together with several avenues for future
research.

8



1.3 Structure of the Dissertation

Table 1.1: Overview of scientific contributions.

Article Methodological
contribution

Practical
contribution

Conceptual findings

Prescriptive
Analytics
for Flexible
Capacity
Manage-
ment
(Chapter 2)

• Development of
kERM to solve a
complex two-stage
problem

• Derivation of
performance
guarantees and the
universal
approximation
property for kERM

• Analytical
comparison of
kERM and wSAA

• Case study of a
mail logistics
provider

• Comparison of
approaches’
numerical
performance,
including cost
parameter
variations

• Prescriptive
approaches can
lead to significant
improvements in
performance over
those of traditional
approaches.

• Prescriptive
approaches’
performance is
more robust to
variations in cost
parameters than
traditional
approaches are.

Prescriptive
Analytics
for a
Multi-Shift
Staffing
Problem
(Chapter 3)

• Approximation of a
complex queuing
model (MSSP)

• Solution of the
AMSSP using
prescriptive
analytics
approaches

• Development of the
OP approach

• Case study of a
maintenance
service provider

• Numerical
comparison,
including
comprehensive
variations in
cost parameters

• wSAA may lead to
better performance
than kERM or OP.

• kERM may be
prone to a
regularization
effect, and OP may
be prone to a
service-level effect.

Explainable
Subgradient
Tree
Boosting for
Prescriptive
Analytics in
Operations
Manage-
ment
(Chapter 4)

• Development of the
STB approach

• Derivation of
subgradients for
common OM
problems,
including complex
two-stage problems

• Analytical
comparison of STB
and kERM

• Application of
STB to solve
two case studies
(mail logistics,
aviation
maintenance)

• Derivation of
explanations for
exemplary
prescriptions

• STB can lead to
performance
similar to those of
wSAA or kERM.

• Explanations of
STB prescriptions
can support
understanding of
the underlying
causality.
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2 Prescriptive Analytics for
Flexible Capacity Management

Motivated by the real-world problem of a logistics company, this paper
proposes a novel distribution-free prescriptive analytics approach—termed ker-
nelized ERM—to solve a complex two-stage capacity planning problem with
multivariate demand and vector-valued capacity decisions and compares this
approach both theoretically and numerically to an extension of the well-known
sample average approximation (SAA) approach termed weighted SAA. Both
approaches use integrated machine learning algorithms to prescribe capacities
directly from historical demand and numerous features (co-variates) without
having to make assumptions about the underlying multivariate demand distri-
bution. We provide extensive analytical insights into both approaches. Most
important, we prove the universal approximation property for the kernelized
ERM approach when using a universal (data-independent) kernel and show
how out-of-sample guarantees can be derived for various kernels.

We demonstrate the applicability of both approaches to a real-world plan-
ning problem and evaluate their performance relative to traditional paramet-
ric approaches that first estimate a multivariate demand distribution and
then solve a stochastic optimization problem, and a non-parametric approach
(SAA). Our results suggest that the two prescriptive analytics approaches can
result in substantial performance improvements of up to 58 percent compared
to these traditional approaches. Additional numerical analyses shed light on
the behavior and performance drivers of the various approaches and demon-
strate that, in our case, the prescriptive approaches are much more robust to
variations of exogenous cost parameters than traditional approaches are.3

3This paper is co-authored by Richard Pibernik and has been published in Management
Science (Notz and Pibernik 2021, https://doi.org/10.1287/mnsc.2020.3867). Repub-
lished with permission of INFORMS from “Prescriptive Analytics for Flexible Capacity
Management”, Pascal M. Notz, Richard Pibernik, Management Science, Articles In Ad-
vance, Copyright 2021; permission conveyed through Copyright Clearance Center, Inc.
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2 Prescriptive Analytics for Flexible Capacity Management

2.1 Introduction
In many manufacturing and service industries, companies have some flexibility
in using their resources to meet their customers’ uncertain demand for various
products or services. For example, car rental companies can use mid-sized
cars to meet unexpectedly high demand for compact cars, service technicians
with high skill levels can be employed to meet demand for tasks that require a
lower level of expertise (Netessine et al. 2002), and a logistics service provider
that has semi-automated sorting lines may use the workforce that operates
these sorting lines when there are more than the expected number of ship-
ments that require manual processing. In these and many other instances,
customers may be “upgraded” to a higher level of service—as in the car rental
example—or a more expensive resource that delivers the same level of service
without the customer’s incurring additional costs. Clearly, manufacturers and
service providers can benefit from this “upgrading flexibility” when demand is
not perfectly (positively) correlated. However, determining the right capaci-
ties for the various resources is difficult, especially because both the individual
capacity decisions and the (uncertain) demand for products and services are
interrelated. Moreover, capacity decisions are made for extended time peri-
ods, such as a week or a month, while the allocation of demand to available
resources is carried out for shorter time periods (e.g., daily or hourly). From
a mathematical perspective, the company has to solve a complex two-stage
stochastic optimization problem with recourse where the vector-valued deci-
sions are interrelated and uncertain demand follows some (known or unknown)
multivariate distribution. Researchers in operations management (OM) stud-
ied variants of this problem extensively almost two decades ago and developed
solution approaches, assuming that the true multivariate demand distribution
is known (e.g., Bassok et al. 1999, Netessine et al. 2002).

Motivated by the real-world capacity management problem of a logistics
service provider, this paper proposes and studies new data-driven, prescriptive
analytics approaches to the aforementioned capacity planning problem with
upgrading. These approaches use integrated machine learning algorithms to
prescribe capacities directly from historical demand and numerous features
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(independent/explanatory variables, co-variates), without having to make as-
sumptions about the multivariate demand distribution. Our approaches con-
trast with the traditional two-step approach of first estimating a (multivariate)
demand distribution based on some time-series and/or causal model and then
solving a stochastic optimization problem to determine the optimal capacities.
As Ban and Rudin (2019, p. 90; BR hereafter) pointed out, such two-step pro-
cesses “can be problematic because demand model specification is difficult in
higher dimensions, and errors in the first step will amplify in the optimiza-
tion.” In our setting, demand model specification is particularly difficult be-
cause: (i) the first and second moments of the (multiple) demand distributions
may depend on some or all of the features (e.g., the particular week during
a year or month, demand in the previous week, public holidays), so demand
may be non-stationary and heteroscedastic; (ii) the demands for the various
services may be correlated within individual periods, but correlations can be
feature-dependent, so they may not be constant across time; (iii) the number
of relevant historical observations is small, while the number of features may
be large, so we are likely to face the typical problems associated with high-
dimensional data (see Hastie et al. 2009, Chapter 18). We use data from a
case company to illustrate the practical relevance of the first two issues, which
make it particularly attractive to employ tailored distribution-free approaches
that prescribe (vector-valued) capacity decisions for a two-stage problem di-
rectly from historical demand observations and available feature data, even
when the number of features is large.

The research presented in this paper draws on and extends a recent stream
of work that proposes and studies prescriptive analytics approaches for solv-
ing problems in operations research and management science (OR/MS). Bert-
simas and Kallus (2020) (BK hereafter) developed a comprehensive frame-
work for prescriptive analytics in OR/MS, proposing a set of local learning
methods that rely on an intuitive integration of well-established predictive
machine learning methods (e.g., random forests) and traditional techniques
for data-driven optimization (i.e., sample average approximation). Our first
prescriptive analytics approach for solving the capacity planning problem
with upgrading—termed weighted sample average approximation (wSAA)—is

13
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based on BK’s local learning methods. We demonstrate how their methods can
be applied to our capacity planning problem and show that important prop-
erties of BK’s approaches (especially asymptotic optimality) are preserved in
our problem setting.

In addition to the wSAA approaches, BK considered prescriptive analyt-
ics approaches that are based on the well-grounded machine learning principle
of empirical risk minimization (ERM) that Vapnik (1991) introduced, but
they argued in favor of wSAA approaches especially because ERM-based ap-
proaches may lead to infeasible prescriptions and do not enjoy the universal
guarantees of asymptotic optimality. Despite BK’s arguments in favor of local
learning methods, we show that our second approach, termed kernelized ERM
(kERM hereafter), has properties that could make it an attractive choice in the
context of our capacity planning problem. We formulate the kERM approach
to solving our capacity planning problem and provide solution techniques for
non-linear function spaces defined by a kernel function that allow us to solve
the problem efficiently over a reproducing kernel Hilbert space. We explain
why this approach does not suffer from the limitations BK stated (Section 6
in BK) and develop strong theoretical results regarding our approach’s per-
formance, including a universal approximation property and out-of-sample
performance guarantees for various kernels. To the best of our knowledge,
this study is the first to employ a kERM approach for solving directly a com-
plex (two-stage) OM problem with vector-valued decisions and multivariate
demand and to apply this approach to a real-world problem. It draws on and
extends the theoretical results of BK by providing out-of-sample performance
guarantees for various kernels and by proving a universal approximation prop-
erty for kERM when employing a universal kernel. This is the main theoretical
contribution of our paper.

We cannot conclude based on our theoretical results how the prescriptive
analytics approaches perform in a practical setting with limited amounts of
historical data. To explore the performance of our prescriptive analytics ap-
proaches in a real-world application, we conduct a comprehensive case study
and compare these approaches’ performance to that of various (traditional)
benchmark approaches, including time-series and causal models and SAA.
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This case study is our main practical contribution. We find that both wSAA
and kERM lead to substantial improvements in out-of-sample performance
compared to traditional two-step methods, as for realistic cost parameters
they achieve cost reductions of up to 58 percent. We interpret the approaches’
outcomes and extend our insights by varying the exogenous cost parameters
of the capacity planning problem. Both prescriptive approaches appear to be
much more robust to variations of the exogenous parameters than their tra-
ditional counterparts are, with wSAA performing better in regimes with high
optimal service levels, and kERM performing better when service levels are in
the medium range. We use our numerical results to provide intuition about
the underlying dynamics that drive the behavior of the two approaches.

2.2 Literature Review
This paper proposes new prescriptive analytics approaches to solve a well-
known capacity planning problem. Our work builds directly on the capacity
planning problem with upgrading that Netessine et al. (2002) described, which
is based on Bassok et al. (1999), who studied a single-period multi-product
inventory management problem with downward substitution. Bassok et al.
(1999) formulated a two-stage stochastic profit maximization problem, char-
acterized the optimal policy, and—under the assumption of a known joint dis-
tribution of demand—provided an algorithm to solve the two-product problem.
Netessine et al. (2002) addressed a two-stage stochastic optimization problem
that is similar to that of Bassok et al. (1999) “in mathematical structure but
is different in interpretation” (Netessine et al. 2002, p. 377), as they study
a multi-service capacity planning problem with upgrading, as described in
Section 2.1. Restricting their model to single-level upgrading and assuming
a known multivariate demand distribution, Netessine et al. (2002) provided
analytical bounds on the optimal capacities based on newsvendor quantities
and developed an intuitive algorithm for determining these optimal capacities.
They also showed analytically how demand correlation affects the optimal so-
lution when demand follows a multivariate normal distribution. A number of
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contributions have extended Netessine et al.’s (2002) model, including Shum-
sky and Zhang (2009) and Yu et al. (2015). Our work extends Bassok et al.’s
(1999) and Netessine et al.’s (2002) models to a horizon of T periods with
a decay of unused capacity in each period. This choice is motivated by the
real-world capacity planning problem of a logistics service provider that we
detail in Section 2.6.1.

Apart from the obvious structural similarities, the aforementioned contri-
butions have in common that they require knowledge of the underlying mul-
tivariate demand distribution before optimal capacity decisions can be made.
While this assumption has been common in OM research, it is widely ac-
knowledged that the decision-maker typically does not know the true demand
distribution (see, e.g., Liyanage and Shanthikumar 2005, Akcay et al. 2011,
and Klabjan et al. 2013). The typical (parametric) approach is to assume that
the true demand distribution belongs to a parametric family of distributions
and to estimate the unknown parameters (Liyanage and Shanthikumar 2005).

Research on inventory management has demonstrated that the wrong
choice of a distribution and/or misspecification of its parameters can lead
to sub-optimal outcomes, even in cases of univariate demand distributions
(see Liyanage and Shanthikumar 2005 and Klabjan et al. 2013). We use our
real-world application to demonstrate that this problem can be particularly
pronounced in capacity planning with multivariate demand distributions and
vector-valued capacity decisions. In light of these problems, a number of
researchers have proposed alternatives that rely, for example, on Bayesian up-
dating or robust optimization (see BR and Liyanage and Shanthikumar 2005
for detailed reviews).

Distribution-free, data-driven approaches—to which we refer as non-para-
metric approaches—to solving stochastic optimization problems in OM have
gained increasing attention. The traditional non-parametric method is SAA,
where the true distribution is replaced by the empirical one (Shapiro and
Kleywegt 2002, Shapiro 2003). SAA has been widely applied in single- and
multi-period inventory control (see, e.g., Levi et al. 2015, Shi et al. 2016,
Cheung and Simchi-Levi 2019, and Ban 2020). SAA has traditionally been
used to solve two types of problems: those that are either difficult to solve
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analytically, although the underlying distribution is known, and those whose
objective functions would be easy to evaluate if the distribution were known,
but it is not (Levi et al. 2015). Our capacity planning problem exhibits both
properties. We use traditional SAA as a performance benchmark and adopt
an extension, wSAA, that was initially proposed by BK.

Our prescriptive approaches are non-parametric so they are related to the
stream of literature on SAA and other non-parametric approaches to solving
OM problems (see Bertsimas et al. 2018 and the discussion and references
provided in BK). The distinguishing aspect of our research is the direct incor-
poration of a (potentially) large set of auxiliary data (features). We propose
two prescriptive analytics approaches that integrate machine learning and op-
timization techniques to prescribe vector-valued capacity decisions directly, so
our work is closely related to BK’s and BR’s recent contributions. BK pro-
posed a set of prescriptive analytics approaches that combine local predictive
machine learning methods and traditional techniques for data-driven optimiza-
tion (i.e., SAA). All of these approaches are based on deriving weights from
the features by means of local predictive machine learning methods and “opti-
mizing the decision [...] against a reweighting of the data” (BK, p. 1030). We
term these approaches “weighted SAA” (wSAA). BK proposed a set of alter-
native weight functions and showed the tractability and asymptotic optimality
of their approach for most of these weight functions. We draw on this work
to propose a wSAA approach for our capacity planning problem. We demon-
strate that, in our problem setting, the property of asymptotic optimality is
preserved, that the rate of convergence to the full-information optimum may
decline exponentially in the number of features and that, at least for scalar-
valued decisions and a convex loss function, the approach interpolates between
decisions that would have been optimal in the past. While the focus of BK’s
paper lay on wSAA, they also proposed an alternative ERM-based approach
and provided a very general formulation with a linear function space. BK
explained that “the linear decision rule can be generalized [...] by embed-
ding in a reproducing kernel Hilbert space” (Section EC.1 in BK). We extend
this line of thought, develop an ERM-based approach specifically for our com-
plex capacity planning problem, and demonstrate how it can be solved over
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a reproducing kernel Hilbert space (Section 2.4.2). Drawing on BK’s gener-
alization of the standard function-space complexity theory and out-of-sample
guarantees to multivariate uncertainty and decisions (see Section EC.1 in BK),
we derive out-of-sample performance guarantees for the kERM approach using
data-independent kernels or the random forest kernel, using a sample-splitting
approach. We extend these results by proving a universal approximation prop-
erty for kERM when employing a universal kernel (Section 2.5).

BR developed two prescriptive analytics approaches to solving what they
termed the “Big Data Newsvendor”, that is, a newsvendor problem in which
the decision-maker “has access to a potentially large amount of relevant infor-
mation, such as customer demographics, weather forecasts, seasonality (e.g.,
day of the week, month of the year, and season), and economic indicators (e.g.,
the consumer price index) as well as past demands to inform the [decision-
maker’s] ordering decisions” (BR, p. 90). BR first proposed a linear ERM-
based approach (with and without regularization) to solving the newsvendor
problem, which is “equivalent to high-dimensional quantile regression” (p. 91),
and derived corresponding out-of-sample guarantees under the assumption of
a linear demand model. They further quantified the “value of feature infor-
mation” (BR, p. 97) by comparing the ERM decisions with those of SAA
for two exemplary demand models and also indicated how their ERM ap-
proach could be solved for non-linear function spaces by using kernels (see
Appendix A in BR). However, BR did not develop out-of-sample guarantees
for non-linear decision rules or provide numerical evidence for how a non-linear
ERM approach performs relative to a linear approach. We provide a kernel-
ized (non-linear) solution to our more complex, two-stage capacity planning
problem with multivariate uncertainty and vector-valued decisions and provide
out-of-sample guarantees for various kernels, including a non-standard random
forest kernel, using a sample-splitting approach. BR’s second approach, the
“Kernel Optimization Method”, is equivalent to wSAA in that it has a weight
function based on kernel methods. In their numerical evaluation, BR used
a Gaussian kernel and found that the wSAA approach outperforms the lin-
ear ERM approach. This finding highlights the need for a comparison of the
wSAA and kERM approaches because, in general, “there is no reason to expect
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that optimal solutions will have a linear structure” (BK, p. ec2, e-companion).
We pursue such a comparison of the two approaches using the same random
forest-based similarity measure for the weight and kernel functions, and we
study how these prescriptive approaches’ underlying mechanics contrast those
of traditional two-step and data-driven approaches.

2.3 Problem Statement and Model Formulation
This section provides a formal characterization of the capacity planning prob-
lem we address based on Netessine et al. (2002) and Bassok et al. (1999). Con-
sider a company that offers I services at a per-unit price of pi (i = 1, ..., I).
Demand for each service i in each planning period t ∈ {1, ..., T} (e.g., every
day of a week) is uncertain, and we model it as a random variable denoted
by Dt

i . The I × T distributions of Dt
i are unknown, but the company has

access to a set of data SN = {(d1, ~x1), ..., (dN , ~xN)} that contains the most re-
cent historical observations of demand dn = (~dn,1, ..., ~dn,T ) ∈ D ⊂ RI×T , with
daily demand ~dn,t = (dn,t1 , ..., dn,tI ), and corresponding observations of features
represented by vectors ~xn ∈ X ⊆ Rp. The features describe, for example,
seasonality (day, month, week, season), weather conditions, and other inde-
pendent observable variables that may be predictive of demand. To provide
the various services i, the company employs distinct resources j = 1, ..., I, to
which we refer as service lines.4 Service i is delivered by service line j = i, but
it can also be delivered by any service line j ≤ i, although at a lower profit
per unit. Hence, there is a hierarchy of service lines, with j = 1 the most
flexible service line, as it can deliver all services i = 1, ..., I. The company
has to determine the service lines’ capacities prior to the first period of the
T -period planning horizon, when demand for the services is unknown. In our
context, the capacities are the staffing levels for one week (i.e., T = 5), which
are constant for every day t of the week. We denote by ~q = (q1, ..., qI) the
constant capacities available in each period t ∈ {1, ..., T} of the planning hori-
zon, and by fj the fixed cost per unit of capacity j. In addition to this fixed

4The time for delivering one service equals one period.
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cost, we assume a variable cost vj that is incurred with the use of one unit
of capacity j. In each period t the company first observes the demand in the
period and then allocates the realized demands ~dt = (dt1, ..., dtI) to the given
capacities ~q. The company incurs a penalty cost ci per unit for not fulfilling
the demand for service i and realizes a per-unit contribution margin of ai,j
when service line j is used to fulfill demand for service i. The contribution
margin is defined as ai,j = pi−vj+ci, and we assume ai,i ≥ ai,j for j < i—that
is, it is more profitable to fulfill demand of type i with service line j = i and
less profitable if demand is upgraded and fulfilled with service line j < i. The
company’s objective is to determine the optimal capacities for the T -period
planning horizon to maximize expected profit under the assumption that re-
alized demands ~dt are allocated optimally to service lines j in each period t.
Let yi,j denote the amount of service i fulfilled by service line j once demand
is observed. The company’s capacity planning problem can be represented by
the following two-stage stochastic optimization problem:

Stage 1: max
~q,qj≥0

Π(~q) = max
~q,qj≥0

 T∑
t=1

E
(
π( ~Dt, ~q)

)
−
∑
j

fjqj


Stage 2: π(~d, ~q) = max

{yij}

∑
i,j

aijyij −
∑
i

cidi

s.t.
∑
j

yij ≤ di ∀i

∑
i

yij ≤ qj ∀j

yij ≥ 0 ∀i, j
yij = 0 if i < j.

(2.1)

This formulation differs in one minor aspect from that which Netessine
et al. (2002) proposed: While for reasons of tractability they assumed a single-
period allocation problem on stage 2, we model multiple allocation decisions
that are made independently in each period t ∈ {1, ..., T}, given the capac-
ities ~q determined on stage 1 and the demand realizations ~d t.5 Because the

5Because the allocation decisions on stage 2 are independent across the T periods, we can
assume that they are taken simultaneously after all demands ~d t are known.
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consecutive allocation decisions on stage 2 are independent, we can also show
that the profit function Π(~q) is concave.

Proposition 2.1. The profit function Π(~q), as defined in (2.1), is jointly
concave in ~q.6

The distribution of the non-stationary, feature-dependent demand D, giv-
en ~X = ~x is unknown in most practical settings, and a traditional approach
would be to first estimate the conditional distribution and to then solve Prob-
lem 2.1.

2.4 Prescriptive Analytics Approaches
In contrast to the traditional approach of first estimating a feature-dependent,
multivariate distribution of the demand D and then solving Problem 2.1, a
prescriptive analytics approach directly prescribes the optimal decision ~q(~x)
that minimizes the loss when given a new feature vector ~x.

In the case of our capacity planning problem, the loss function can be
defined as

L(~q,d) = Π∗(d)− Π(~q,d), (2.2)

where Π(~q,d) represents the profit associated with the capacity decision ~q

under demand realization d, and Π∗(d) = max~q Π(~q,d) is the ex-post optimal
profit. This definition ensures that L(~q,d) ≥ 0.

Proposition 2.2. The loss function L(~q,d) is jointly convex in ~q.

Two approaches have been proposed to solve the prescriptive analytics
problem of determining ~q(~x). The first seeks to minimize the true risk R(~q(·)),
which is defined as the expected loss over the joint distribution of ~X ×D, by
selecting from a function space F , which we assume to be a Banach space such
that a norm is defined and the minimum in Equation 2.3 exists, a function
~q(·) : X → Q that maps from the feature space X to a decision space Q:

min
~q(·)∈F

R(~q(·)) := min
~q(·)∈F

E ~X×D

[
L
(
~q( ~X),D

)]
. (2.3)

6All proofs can be found in Appendix A.1.
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Knowing such a function ~q(·) allows one to determine a capacity decision
~q(~x) ∈ Q for each new observation of a feature vector ~x ∈ X . The second
approach defines ~q(~x) point-wise, without the need to define a specific function
space, by solving

min
~q∈Q

ED

[
L (~q,D)

∣∣∣∣ ~X = ~x
]
, (2.4)

for each new ~x.
Because neither the joint probability distribution of ~X ×D nor the con-

ditional probability distribution of D, given ~X = ~x is known, (2.3) and (2.4)
cannot be solved directly. However, prescriptive analytics approaches to (2.3)
and (2.4) can be derived for a decision-maker who has access to a data set SN
that consists of historical observations of demand and features. The well-
established machine learning principle of ERM proposes that one can pre-
scribe capacities using the function ~q ERM(·) that minimizes the empirical risk
RN(~q(·)) instead of the true risk R(~q(·)) (see BK and BR):

min
~q(·)∈F

RN(~q(·)) := min
~q(·)∈F

1
N

N∑
n=1

L(~q(~xn),dn). (2.5)

BK proposed a number of alternatives to an ERM approach based on
local learning techniques that take the common form of deriving some weights
wn(~x) ∈ [0, 1] from the features and “optimizing the decision [~q ] against a
reweighting of the data” (BK, p. 1030), as expressed in (2.6):

~qwSAA(~x) = arg min
~q∈Q

N∑
n=1

wn(~x)L(~q,dn). (2.6)

In the most general terms, this approach approximates (2.4) and can be
viewed as a weighted form of SAA (wSAA). The weight function wn(·) can
be considered a similarity function; as such, it has strong similarities with
the kernel functions K(·, ·) used in kERM approaches, as we will see in Sec-
tion 2.4.2. Obviously, the performance of a wSAA approach is determined by
the choice of similarity function. BK constructed a number of weight func-
tions based on k-nearest-neighbor regression, kernel regression, local linear
regression, regression trees, and random forests.
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2.4 Prescriptive Analytics Approaches

We do not know a priori whether an ERM approach or a wSAA approach
is more appropriate for our particular capacity planning problem, and we can-
not make any claims regarding differences in their performance. BK made a
number of arguments in favor of local learning approaches and described the
limitations of ERM approaches applied to OR/MS problems. We show that
an ERM approach is suitable for solving the prescriptive analytics problem
stated in (2.3) and that it also has some properties—including the capabil-
ity to extrapolate, the universal approximation property, and performance
guarantees—that could make it a similarly attractive choice.

2.4.1 Weighted Sample Average Approximation Approach

Based on Problem 2.6, we state the wSAA approach for our capacity planning
problem as:

~qwSAA(~x) = arg min
~q∈Q

min
{ytnij }

N∑
n=1

wn(~x)
∑

j

fjqj −
T∑
t=1

∑
i,j

aijy
tn
ij −

∑
i

cid
tn
i


s.t.

∑
j

ytnij ≤ dtni ∀i, n, t∑
i

ytnij ≤ qj ∀j, n, t

ytnij ≥ 0 ∀i, j, n, t
ytnij = 0 if i < j ∀n, t.

(2.7)
We neglected Π∗(d) because it is independent of ~q.

Proposition 2.3. The objective function of the wSAA approach is jointly
convex in ~q.

For any given weight function wn(~x) ≥ 0, the wSAA approach (2.7) is a
linear program. Using the results presented in BK, we show the asymptotic
optimality7 of our particular wSAA approach for the same classes of weight

7A wSAA approach is considered asymptotically optimal when, in the limit of N →∞, the
expected cost of a decision ~q(~x) equals the minimum expected cost under full knowledge
of the distribution of D, given ~X = ~x. See Definition 1 in BK for details.
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2 Prescriptive Analytics for Flexible Capacity Management

functions as BK—that is, for weight functions that are based on k-nearest-
neighbors (kNN), (recursive) kernel methods, and local linear methods (see
Proposition A.1 in Appendix A.7.1).

Clearly, asymptotic optimality of a function ~q(~x) is a desirable property
of a prescriptive analytics approach. However, the convergence rate of these
wSAA approaches may be prone to the curse of dimensionality; that is, it
may decrease exponentially with the dimensionality p of the feature vector ~x.
We cannot prove this case for arbitrary distributions of ~X × D because a
general expression for the rate of convergence of ~qwSAA(~x) cannot be derived
(Györfi et al. 2002). However, we can show that the individual lower rate of
convergence8 decreases exponentially in p for a specific class of distributions
and a general loss function.

Proposition 2.4. Assume Q = D = R, and a data set SN drawn iid from
a distribution ( ~X,D) ∈ P(l,C). For a loss function L(q, d) = |q − d|2, an
individual lower rate of convergence of qwSAA is given as

aN = N−
2l+1
2l+p . (2.8)

Proposition 2.4 states that we cannot generally expect a convergence of
qwSAA(~x) that is faster than N−

2l+1
2l+p , which declines exponentially in p (see

Györfi et al. 2002 for details). Therefore, in big data regimes with a large
number of features p, convergence may be slow, and the number of observa-
tions N required to achieve a certain performance level may be high.

Therefore, in the context of our problem, where the number of historical
observations of demand data is relatively small—we cannot expect to have
more than N ≈ 260 relevant observations (assuming one observation describes
one week and that data older than five years is no longer relevant), and the
number of features p may be large—convergence may be slow and the property
of asymptotic optimality appears to have limited practical relevance. Results
of an experiment that BK reported for a stylized setting with only three fea-

8The individual lower rate of convergence is the fastest rate with which an approach can con-
verge to the optimal solution over all possible distributions of a class P. See Definition A.3
in Appendix A.1 for further details.
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tures suggested that their wSAA approaches converge to the full-information
optimum after more than 104 observations. For regimes with substantially
fewer observations, as is the case in our context, the property of asymptotic
optimality does not allow inferences to be made regarding the approaches’
performance.

In BK’s numerical experiments, a weight function based on random forests,
for which asymptotic optimality of wSAA could not be shown, led to the best
performance. In contrast to the weight functions for which asymptotic opti-
mality can be shown (see Proposition A.1), the random forest weight function
is learned from the data, implicitly identifies a subset of the features that
are most relevant, and can therefore provide a better measure of similarity,
especially in regimes with a small number of historical observations. Based
on these considerations and the numerical results BK presented, we propose
using the random forest weight function that BK introduced:

wRF
n (~x) = 1

L

L∑
l=1

1[Rl(~x) = Rl(~xn)]∑N
j=1 1[Rl(~x) = Rl(~xj)]

(2.9)

for a random forest with L trees and Rl(~x) the terminal node of tree l con-
taining ~x. The numerator in (2.9) captures the instances in which the feature
vectors ~x and ~xn are assigned to the same terminal node in tree l, while the de-
nominator captures the number of training samples in the terminal node of ~x.
The weight wRF

n (~x) is computed as an average of this fraction for all L trees of
the random forest. This definition ensures normalization of the weights, such
that ∑nw

RF
n (~x) = 1.

By design, wSAA approaches prescribe feasible solutions because they rely
on re-optimization over the feasible set Q for each new instance of ~x. While
this is clearly an attractive property, it may have a downside in our context,
where demand can have either a strong negative or a strong positive trend.
Assuming scalar-valued demand realizations and capacity decisions, we can
show that qwSAA(~x) is restricted to convex combinations of optimal solutions
for individual demand realizations dn (n = 1, ..., N)—see Proposition A.2 in
Appendix A.7.1—so it interpolates between feasible solutions that would have
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2 Prescriptive Analytics for Flexible Capacity Management

been optimal in the past. However, in the presence of a positive or negative
trend in demand, interpolation may lead to prescriptions that are inferior
to those that are based on an approach that allows for extrapolation (see
Appendix A.7.2 for additional illustrations and discussion). As we discuss
below, in contrast to wSAA, an ERM approach allows for extrapolation but
does not guarantee feasible solutions.

2.4.2 Kernelized Empirical Risk Minimization Approach

Based on the general description of the ERM approach (Problem 2.5), we
can formulate the following ERM model for our particular capacity planning
problem:

min
~q(·)∈F ,{ytnij }

λ||~q(·)||2F + 1
N

N∑
n=1

∑
j

fjqj(~xn)−
T∑
t=1

∑
i,j

aijy
tn
ij −

∑
i

cid
tn
i


s.t.

∑
j

ytnij ≤ dtni ∀i, n, t∑
i

ytnij ≤ qj(~xn) ∀j, n, t

ytnij ≥ 0 ∀i, j, n, t
ytnij = 0 if i < j ∀n, t

qj(~xn) ≥ 0 ∀j, n.
(2.10)

Because Problem 2.5 is ill-posed for many function spaces and is prone to
overfitting for function spaces of sufficient complexity, we follow the standard
procedure of Tikhonov regularization (Vapnik 1998) and include a regulariza-
tion term λ||~q(·)||2F in the objective function of (2.10).

Proposition 2.5. The objective function of the ERM approach is jointly con-
vex in ~q(·).

Solving the ERM model (2.10) requires choosing a function space F , which
we assume to be a Banach space (similar as for Equation 2.3). In the following
we provide a solution for linear and non-linear function spaces through kernel-
ization, which corresponds to an (implicit) projection of feature vectors into
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a reproducing kernel Hilbert space, employing the well-known machine learn-
ing kernel trick (e.g., as used in kernel ridge regression and support vector
machines, see Smola and Schölkopf 2004 or Hastie et al. 2009 for details).

Definition 2.1. A kernel K(~x1, ~x2) is a symmetric, positive semi-definite
function K : X × X → R.

The Moore-Aronszajn theorem states that each kernel K following this
definition is a reproducing kernel and that it defines a unique reproducing
kernel Hilbert space HK—see Part I, Section 2 (4) in Aronszajn (1950)—
which is a function space. In Appendix A.7.4 we provide a formulation of the
ERM model for a linear function space. The optimal solution (provided in
Theorem A.2) depends only on the inner product of feature vectors ~x, so an
implicit projection of these feature vectors into a reproducing kernel Hilbert
space can be accomplished by replacing the inner product with the kernel
function, leading to the solution stated in Theorem 2.1.

Theorem 2.1. Assume a reproducing kernel function K with reproducing ker-
nel Hilbert space HK. Then the optimal kernelized solution to the ERM ap-
proach is:

~q kERM(~x) =
N∑
n=1

~unK (~xn, ~x)−~b, (2.11)

for some ~b, where the components of ~un are defined as unj = 1
2λj

(∑T
t=1(βtnj ) +

εnj − fj
)
, and βtnj , εnj is the optimal solution to the kernelized dual problem

max
{αtni },{β

tn
j },{ε

n
j }
Ldual := −

I∑
j=1

λj
N∑

p,q=1

(
upju

q
jK(~xp, ~xq)

)
+

N∑
n=1

I∑
i=1

T∑
t=1

(ci − αtni )dtni

s.t. αtni , βtnj , εnj ≥ 0 ∀i, n, t
αtni + βtnj ≥ aij ∀i ≥ j, ∀n, t
N∑
n=1

unj = 0 ∀j.

(2.12)

Corollary 2.1. The objective function Ldual of the kernelized dual problem is
concave in the Lagrange multipliers αtni , βtnj , εnj .
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Problem 2.12 is a quadratic optimization problem that can be solved ef-
ficiently using standard non-linear programming techniques. Given the opti-
mal ~un, the offset ~b can be determined by applying (2.11) to (2.10) and solving
the resulting problem, which is linear in bj.

The performance of kERM and the applicable performance guarantees de-
pend on the choice of the kernel function that definesHK . Similar to the weight
functions used in wSAA, the kernel function K(~x1, ~x2) can be interpreted as
a similarity function that measures the similarity between feature vectors ~x1

and ~x2 (see Section 1.2.4 in Vert et al. 2004). In general, we can employ either
data-independent kernels, for which the kernel function K(~x1, ~x2), following
Definition 2.1, is not learned from the data, or data-dependent kernels, for
which the kernel function KSN (~x1, ~x2) depends on the training data SN (see,
e.g., Bengio et al. 2004). Note the similarity to the weight functions presented
in Section 2.4.1 that included data-independent weight functions—see Propo-
sition A.1 in Appendix A.7.1—and the random forest weight function (2.9),
which is learned from the data.

The class of data-independent kernels includes the well-known general-
purpose linear, polynomial, or radial basis function (RBF) kernels (see, e.g.,
Schölkopf and Smola 2002). When using these kernels, we can derive general
bounds on the Rademacher complexity of the respective function space for
the kERM approach, which allows us to establish out-of-sample performance
guarantees. In Section 2.5.1 we derive such guarantees for kERM using data-
independent kernels.

However, using these data-independent kernels for kERM may have two
limitations. First, kERM is restricted to the function space F , corresponding
to the chosen kernel K(~x1, ~x2), so it will determine the optimal ~q ∗(~x) ∈ F ,
which is not necessarily the optimal prescription function of all possible func-
tion spaces. Second, kERM with data-independent kernels may not perform
well in regimes with a small number of historical observations and a large
number of features because the data-independent kernels assign equal impor-
tance to all individual features, although some features are likely to have more
prescriptive content than others.

We can overcome the first limitation by employing a (data-independent)
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universal kernel (Micchelli et al. 2006), for which the associated reproduc-
ing kernel Hilbert space is dense in the space of continuous functions. In
Section 2.5.2 we show that such a kernel allows us to obtain the optimal pre-
scription function of all continuous functions for N → ∞, a characteristic
that is commonly termed universal approximation property (Micchelli et al.
2006, see Section 2.5.2 for further details). While this is clearly an attractive
theoretical property, we show that the rate of convergence may decline expo-
nentially in p, similar to our results in Proposition 2.4 for wSAA. Therefore, in
regimes where p is large, convergence may be slow, and for small numbers of
historical observations the universal approximation property appears to have
limited practical relevance—in such high-dimensional regimes ~q kERM(~x) based
on a universal kernel may be a poor approximation of the optimal prescription
function ~q ∗(~x), so it may lead to inferior prescriptions.

We therefore propose the random forest kernel, a kernel that is learned
from the training data and is similar to the random forest-based weight func-
tion defined in Section 2.4.1. This kernel reduces the dimensionality of the
problem through feature selection and, in contrast to data-independent ker-
nels, accounts for varying predictive contents of the individual features. There-
fore, it can lead to a better measure of the similarity between feature vectors,
which may translate into performance that is superior to that of kERM with
data-independent kernels. While for the random forest-based weight func-
tion we could propose only that feature selection enhances the performance of
wSAA, research in the domain of machine learning has provided more substan-
tial evidence of the importance of feature selection for kernelized approaches
(e.g., Weston et al. 2000 and Chen and Lin 2006). Breiman (2000) was first
to mention the random forest kernel, and its applicability has been demon-
strated in various studies (e.g., Vens and Costa 2011, Gray et al. 2013, Davies
and Ghahramani 2014, Scornet 2016). Analogous to the random forest-based
weight function (2.9), we define the random forest kernel as:

KRF(~x1, ~x2) = 1
L

L∑
l=1

1[Rl( ~x1) = Rl(~x2)]∑N
j=1 1[Rl( ~x1) = Rl(~xj)]

, (2.13)
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where Rl(~x) describes the terminal node of tree l for feature vector ~x.

Proposition 2.6. KRF(~x1, ~x2) is symmetric and positive semi-definite, so
KRF(~x1, ~x2) defines a reproducing kernel Hilbert space HKRF.

Based on Proposition 2.6, we can select KRF as a kernel function and use
the expression stated in Theorem 2.1 to obtain the kERM solution. For the
real-world application with multivariate demand presented in Section 2.6, we
found that using a multivariate random forest model leads to the best per-
formance. In Section 2.6.6 we present a performance comparison of kERM
with different kernel functions, including data-independent linear and polyno-
mial kernels and the universal RBF Gauss kernel. Unfortunately, the random
forest kernel does not exhibit the universal approximation property, and we
can only derive out-of-sample performance guarantees using a sample-splitting
approach (see Section 2.5.3).

In Section 2.4.1 we showed (for the case of scalar-valued demand real-
izations and capacity decisions) that wSAA interpolates between feasible so-
lutions that would have been optimal in the past and that this may be a
drawback in situations where demand has a strong positive or negative trend.
In contrast, kERM allows for extrapolation because it provides an explicit
function ~q kERM(~x) and does not rely on re-optimization for each new instance
of ~x. However, the ability to extrapolate also entails that the feasibility of
the prescribed solutions (i.e., ~q kERM(~x) ∈ Q) for a new instance ~x is not guar-
anteed when the decision space is constrained, so the prescriptions may turn
out to be infeasible (see BK). In our case, the solution space is only restricted
to RI

+, and negative capacity prescriptions can be corrected through postpro-
cessing, as BK described. In our numerical experiments we did not face any
negative capacity prescriptions.

Based on this brief discussion of the theoretical and practical properties
of kERM (that we detail in Sections 2.5 and 2.6), we perceive kERM to be
a promising approach to solving our complex capacity planning problem be-
cause it does not require re-optimization for every new instance of the feature
vector ~x but derives a prescription function ~q(·) that allows for extrapolation.
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2.5 Performance Guarantees for the Kernelized
ERM Approach

This section provides out-of-sample performance guarantees for kERM us-
ing data-independent kernels, the universal RBF Gauss kernel, and the data-
dependent random forest kernel, as defined in Section 2.4.2. We base our anal-
yses on the concept of multivariate Rademacher complexities and the general
performance guarantees introduced in BK, which we adapt to our capacity
management problem.

While the capacity planning problem stated in Section 2.3 does not include
upper bounds on the prescribed capacity, it is reasonable to assume some upper
bounds on capacity and demand, although they may be large.9

Definition 2.2. Let Q and D be defined as

Q = {~q = {qi} ∈ RI : 0 ≤ qi ≤ q̄ ∀i}

D = {d = {dti} ∈ RI×T : 0 ≤ dti ≤ d̄ ∀i, t}.
(2.14)

Based on this definition, we can show that the loss function L(~q,d) is
bounded and equi-Lipschitz, which allows us to apply the theoretical results
established by BK and derive out-of-sample performance guarantees for the
function spaces defined by the various data-independent kernels and the ran-
dom forest kernel (using a sample-splitting approach).

Lemma 2.1. The loss function L(~q,d) is

a) bounded over Q and D, and there is some l̄ <∞ such that

sup
~q∈Q,d∈D

L(~q,d) ≤ l̄, (2.15)

b) equi-Lipschitz in ~q over Q and D, and there is some MLip < ∞ such

9The assumption is reasonable, as the amount of reservable capacity is typically limited
because of factors like factory space, and the demand is typically limited by the current
market or the maximum number of customers and their demand.
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that
sup

~q,~q ′∈Q,~q 6=~q ′,d∈D

|L(~q,d)− L(~q ′,d)|
||~q − ~q ′||∞

≤MLip. (2.16)

2.5.1 Data-independent Kernels

When solving Problem 2.12 using a data-independent kernel K(~x1, ~x2) with
reproducing kernel Hilbert space HK , the function space, over which kERM
optimizes, is given as F = FU + FC , with

FU =
{
~qU(·) : X → RI : qU,j(·) ∈ HK

}
, and

FC =
{
~qC(·) : X → RI : ~qC(~x) = −~b

}
.

(2.17)

Theorem 2.2 provides an out-of-sample performance guarantee for the
kERM prescription function ~q kERM(·) by bounding the true risk.

Theorem 2.2. (Following BK) Assume SN , generated by iid sampling from
a joint distribution of ~X ×D, L(~q,d), as defined in (2.2); a function space
F = FU + FC with ||~b||∞ ≤ BC, ||qU,j||K ≤ BU ∀j; and let δ > 0. Then, with
probability of at least 1− δ for any function ~q(·) ∈ F , the true risk is bounded
as

R(~q(·)) ≤RN(~q(·)) + 3l̄
√

log(2/δ)
2N

+MLip

2
√

2IBCe√
π
√
N

+ 2IBU√
N

√√√√ 1
N

N∑
n=1

K(~xn, ~xn)
 , (2.18)

where l̄ is the bound and MLip is the Lipschitz constant of L(~q,d).

Theorem 2.2 provides a bound on the true risk R(~q(·)) when using a
prescription function ~q(·). The first term on the RHS of (2.18) is the in-
sample empirical risk, and the third term captures the complexity of the
function space F , measured as Rademacher complexity and scaled by the
Lipschitz-constant MLip of the loss function L(~q,d). These two terms reflect
the well-known bias-variance trade-off the decision-maker faces when choos-
ing the model complexity (see Hastie et al. 2009 for details). The second
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term in (2.18) expresses the finite sample bias; because the finite sample bias
depends only on the number of historical observations N and the aspired con-
fidence 1− δ (scaled by the bound on the loss function l̄), it is independent of
the function space F . It is straightforward to see that the performance bound
tends to be loose when the number of historical observations N is compara-
tively small.10 Therefore, similar to the guarantees of asymptotic optimality
(Section 2.4.1) or the universal approximation property (Section 2.5.2), these
performance guarantees do not allow inferences to be made regarding the per-
formance of the approach in small data regimes. This limitation appears to
be a general issue for many problems in OM, where one can hardly expect to
obtain a sufficiently large number of relevant observations of historical demand
and corresponding features.11

However, the out-of-sample guarantee ensures consistency of the ERM
principle; the risk of the estimated function ~q kERM(·) will converge in proba-
bility12 to the risk of the function ~q ∗F(·) ∈ F , which solves (2.3) for N →∞
—see Proposition A.6 in Appendix A.7.6—and allows us to bound the rate of
convergence. If the data-independent kernel function is bounded, the kERM
solution converges with 1/

√
N (see Appendix A.7.6 for details). While the

performance guarantees ensure convergence of kERM when a fixed function
space F is used, this convergence occurs only to the best function of F . The
next section presents a universal kernel that allows us to overcome this limi-
tation.

2.5.2 The Universal RBF Gauss Kernel

The reproducing kernel Hilbert space associated with a universal kernel is
dense in the space of continuous functions, so any continuous function can be

10The out-of-sample guarantees provided decrease with a rate of 1/
√
N . However, they also

contain a term ∝ l̄/
√
N , with l̄ being a bound on the loss function that requires a large N

to yield practically relevant bounds.
11We do not expect data to be relevant for more than five years, corresponding to a maximum
of 1500 daily observations.

12Convergence in probability of the true risk of ~q kERM(·) to the optimal true risk R(~q ∗(·))
means that the probability that the absolute difference is larger than some ε > 0 converges
to zero (see Section 1.11.1 in Vapnik 1998).
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approximated with arbitrarily high accuracy. This characteristic is also called
universal approximation property (Micchelli et al. 2006).

Proposition 2.7. The function space

FKRBFG =
{
~q(·) : X → RI : qj(~x) = qH,j(~x)− bj, qH,j(·) ∈ HKRBFG

}
(2.19)

is dense in C(X ,RI) for a reproducing kernel Hilbert space HKRBFG corre-
sponding to the RBF Gauss kernel KRBFG(~x1, ~x2) := exp (−γ2|~x1 − ~x2|2) and
compact X ⊂ Rp.

Proposition 2.8. Assume SN , generated by iid sampling from a joint distri-
bution of ~X ×D, L(~q,d), as defined in (2.2); a function space F = FU +FC
with ||~b||∞ ≤ BC,N , ||qU,j||K ≤ BU,N ∀j with sequences BU,N , BC,N that sat-
isfy limN→∞BU,N , BC,N = ∞ and limN→∞BU,N/

√
N,BC,N/

√
N = 0; and

KRBFG(~x1, ~x2) the RBF Gauss kernel. Then kERM fulfills the universal ap-
proximation property and the risk convergences for N → ∞ in probability
towards the risk of

~q ∗(·) = arg min
~q(·)∈C(X ,RI)

E ~X×D

[
L
(
~q( ~X),D

)]
. (2.20)

Clearly, the universal approximation property of kERM with the RBF
Gauss kernel is a desirable property. However, we find that the convergence
rate may decrease exponentially with dimensionality p; in fact, a similar indi-
vidual lower rate of convergence, as presented in Proposition 2.4, applies.

Proposition 2.9. Assume Q = D = R and a data set SN drawn iid from
a distribution ( ~X,D) ∈ P(l,C). For a loss function L(q, d) = |q − d|2, and
the RBF Gauss kernel KRBFG(~x1, ~x2) := exp (−γ2|~x1 − ~x2|2) with γ > 0, an
individual lower rate of convergence of R(qkERM(·)) → infq(·):X→RR(q(·)) is
given as

aN = N−
2l+1
2l+p . (2.21)

These results are similar to those presented in Section 2.4.1 for wSAA
with data-independent weight functions: We obtain a strong theoretical result
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regarding the performance of kERM using an RBF Gauss kernel in the limit
of N →∞, but the convergence may be slow, and the RBF Gauss kernel may
not be an appropriate choice in regimes with large p and small N . In such a
regime, a data-dependent kernel, such as the random forest kernel, may lead
to superior performance.

2.5.3 The Data-dependent Random Forest Kernel

The random forest kernel defined in (2.9) is data-dependent and, as such, is
not universal (see Appendix A.7.5), so the universal approximation property
does not apply to kERM using the random forest kernel; however, we can
derive out-of-sample performance guarantees. The out-of-sample performance
guarantee presented in Theorem 2.2 holds for all kernel functions that are
independent of the training data, so it does not apply to the random forest
kernel. One approach to establish performance bounds could be to consider the
training of kERM with the data-dependent random forest kernel as an instance
of kernel learning (Lanckriet et al. 2004), which considers the function space
of all possible kernel functions that can be learned from the data. However,
because our kernel function (2.13) depends on both the random forest and the
data set, due to the normalization, we would have to consider the function
space of all kernel functions defined by all possible random forests and all
possible data sets defining the normalization. The Rademacher complexity of
such a function space does not converge to zero for N →∞.

One way to circumvent this issue is to follow a sample-splitting approach,
which entails using NRF < N data samples of SN to train the random forest
and to derive the kernel function (2.13), including the normalization, and using
the remaining N − NRF data samples of SN to learn the kERM prescription
function. Then, from the perspective of kERM, the random forest kernel is
fixed and independent of the data set SN−NRF , and we can apply the results of
Theorem 2.2 to derive an out-of-sample performance guarantee (Theorem 2.3).

Theorem 2.3. (Following BK) Assume SN = SNRF ] SN−NRF , generated by
iid sampling from a joint distribution of ~X ×D, L(~q,d), as defined in (2.2);
a function space FRF = FKRF

U + FC with ||~b||∞ ≤ BC, ||qU,j||K ≤ BU ∀j,
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KRF(~x1, ~x2), as defined in (2.13) and computed using SNRF ; and let δ > 0.
Then, with probability of at least 1 − δ for any function ~q(·) ∈ FRF, the true
risk is bounded as

R(~q(·)) ≤RN−NRF (~q(·)) + 3l̄

√√√√ log(2/δ)
2 (N −NRF )

+MLip

(
2
√

2IBCe√
π
√
N −NRF

+ 2IBU√
N −NRF

)
,

(2.22)

where l̄ is the bound and MLip is the Lipschitz constant of L(~q,d).

In contrast to the performance guarantee presented in Theorem 2.2, the
terms that capture the finite sample bias and the complexity of the function
space (second and third term on the RHS of Equation 2.22) decrease with
the number of data samples (N −NRF ) used to compute the kERM prescrip-
tion function. A decision-maker that has N historical demand observations
therefore faces a trade-off in choosing the number of samples NRF to train
the random forest kernel: a large NRF increases the second and third term
on the RHS of (2.22), while a small NRF may lead to a larger in-sample
risk RN−NRF (~q(·)), because the random forest kernel is only trained on SNRF .

Based on the result of Theorem 2.3, we conclude that kERM with a ran-
dom forest kernel trained on a fixed SNRF is consistent; that is, the kERM
prescription function ~q kERM(·) will converge with 1/

√
N −NRF in probability

to a function that minimizes the true risk (see Appendix A.7.6 for further
details). For a fixed function space this rate of convergence is independent of
the number of features p, but convergence occurs only to the best function of
the function space FRF, not to the best prescription function of all continuous
functions, because a random forest kernel is not universal.
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2.6 A Real-World Application and Numerical
Insights

This section applies wSAA and kERM to the capacity planning problem of
a logistics service provider. We use historical demand data and realistic val-
ues of our case company’s cost parameters to demonstrate these approaches’
applicability and to compare their performance to two traditional two-step ap-
proaches and a conventional SAA approach that does not incorporate feature
data. To clarify the underlying drivers of the approaches’ performance and to
generate insights that go beyond the specific parameter settings of our case
company, we present the results of additional numerical analyses in which we
vary the (exogenous) cost parameters of our model while maintaining the case
company’s historical demand and feature data. The results of these analy-
ses provide insights into the approaches’ performance drivers and allow us to
evaluate their robustness.

2.6.1 Problem Statement and Motivation

Our research was inspired by our work with a logistics service provider in
Germany that collects, sorts, and delivers mail (letters, parcels), newspapers,
advertising material, and so on. We focus on the sorting operations that ap-
proximately fifteen workers carry out in the company’s main facility. The
company receives an average of approximately 175,000 items per day that are
sorted manually (service line 3), semi-automatically (service line 2), or on a
fully automated line (service line 1). While sufficient sorting-machine capacity
for each service line is available, the operation of these machines and the man-
ual sorting require a certain level of staffing (i.e., capacity). Labor costs and
the required skill levels differ among the three service lines, as operation of
the fully automated sorting machine requires highly skilled staff, while semi-
automatic and manual sorting have lower skill requirements. Since the staff
of service line 1 can also operate service lines 2 and 3, and the staff of service
line 2 can also operate service line 3, the company has an upgrade option,
as described in Section 2.3. Every week, the company has to determine the
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Table 2.1: Logistics provider parameter setting.

f v p c ai,i
200

150

75

 0


1000

100

20




500

50

10




1500

150

30



staffing levels (capacity) of each production line for the subsequent week that
will lead to a fixed and constant capacity for each service line on each day
(t = 1, .., T = 5). Demand that arrives on day t is processed by the staff des-
ignated to a service line, while demand that exceeds the staff capacity of the
designated service line can be “upgraded” to more expensive service line staff.
All items that arrive during day t must be processed by the end of the day—if
necessary, by employing overtime that is not only costly in terms of wages but
is also highly undesirable because of its negative impact on employee reten-
tion. The company faces a severe shortage in labor supply, so they want to
limit overtime operations to maintain employee satisfaction. In the past the
company used a relatively simple approach for taking their capacity decisions.
Based on historical demand they obtained an estimate of the number of differ-
ent mail items and converted these into capacity requirements for individual
weekdays, which served as a basis for the weekly capacity plans. This process
was carried in a mostly manual way and relied strongly on the planners’ previ-
ous experience and expertise; the company did not use sophisticated tools for
forecasting or capacity planning. Ad hoc capacity adjustments (by switching
or rescheduling shifts, or recruitment of additional temporal workers) occurred
frequently.

Using information provided by the company, we obtained estimates of
the company’s revenues and costs (Table 2.1). The revenue per item sorted
amounts to approximately 0.1 EURO. The (full) cost per worker ranges from
15 EURO to 40 EURO per hour, depending on the skill set and other factors.
Jointly with the company, we defined a penalty cost of 0.05 EURO per unsorted
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item to reflect the negative impact of overtime on employee satisfaction.13 We
also assumed a capacity usage cost of vj = 0 because planned capacity is fixed
and must be paid for during the entire week.

Because it is similar to the capacity planning problem described in Sec-
tion 2.3, we can employ the traditional two-step approach of estimating a
multivariate demand distribution and solving a two-stage stochastic optimiza-
tion model, as stated in (2.1), to determine the “optimal” capacities of the
three production lines for the subsequent week. The practical difficulties of
this approach are rooted primarily in the estimation of the multivariate de-
mand distribution as described in Section 2.1. We support our arguments in
Section 2.1 with some descriptive analyses of the case company’s demand data.
Figure 2.1a plots the daily demand of all three production lines (converted into
required man-hours) from 2014 to 2017.
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(a) Daily demand in required man-hours.
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(b) Residuals of daily demand.

Figure 2.1: Daily demand and residuals of de-trended and de-seasonalized time
series (2014-2017).

We observe trends and seasonal patterns in all three time series, suggest-
ing that demand is non-stationary. A more detailed analysis reveals that
the time series contain a superposition of seasonalities at differing frequen-
cies (Appendix A.2) and that variations in daily demand differ considerably
for the three production lines. To highlight these variations in daily demand,
13This choice of penalty cost results in a total penalty pj + cj of 150 percent of revenue,
which includes the cost of overtime and the intangible costs of employee dissatisfaction.
These penalty costs lead to imposition of high service-level targets.
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Figure 2.1b plots the de-trended and de-seasonalized time series that were
obtained using a TBATS model (see Appendix A.2 for details).

Across the four years, the coefficients of variation (CV) in the three service
lines’ daily demands are moderate to low, ranging from CV2 = 0.25 for service
line 2 to CV1 = 0.17 for service line 1. The coefficient of correlation (CC)
during the entire time period is comparatively low, amounting to CC ≈ 0.18
for all three combinations of service lines. Although CV and CC are low to
moderate across all observations, for shorter time periods we observe substan-
tial variations (see Appendix A.2), but we do not know whether they occur
at random or can be explained by certain features. Interviews with experts in
the company indicated that some of these variations may be predictable. For
instance, in weeks 50 and 51 of each year, demands for service lines 1 and 3
are typically highly correlated, as large amounts of year-end business mail
(service line 1) and private holiday mailings (service line 3) arrive. On the
other hand, proximity to public holidays often leads to a negative correlation
because private mailings increase, while business mailings decrease because
businesses’ employees tend to take vacation during that time. We expect
many such relationships and that they may be predictable, given appropri-
ate features. However, it is difficult to incorporate these relationships into an
estimate of the multivariate demand distribution, which illustrates the need
for prescriptive approaches that can implicitly incorporate feature-dependent
distributions.

2.6.2 Demand Data and Feature Engineering

The case company gave us a historical data set that contained demand dti

in number of mail items for each service line i for each day t between 2014
and 2017 to solve the planning problem we described. From this historical
data, we constructed a data set SN = {(d1, ~x1), ..., (dN , ~xN)}, with demand
matrices dn in units of man-hours for N = 209 weeks and feature vectors
~xn ∈ R162. As elements of the feature vectors ~xn, we first constructed date-
based features that describe the temporal dimension of the observed demand.
In particular, we used the year number and the half, quarter, and month of the
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year that contained the particular week as features. The week number may
also be a relevant feature, as we learned from interviews with experts that
demand is high in some weeks near the end of the year (see Section 2.6.1). We
included lagged demands (e.g., demand for each service line in the same week
one year ago) in the second group of features to account for the sequential
character of the time series. The third group of features encoded information
on public holidays, which are also known to affect demand (see Section 2.6.1).
We constructed indicators for public holidays and relative indicators (e.g., if
a public holiday is a few days before or after the week of interest). A detailed
description of the 162 features included in our analysis and an analysis of their
importance can be found in Appendix A.3.

2.6.3 Evaluation Procedure

We split the resulting data set SN into N = 157 weeks of training data (2014-
2016) and 52 weeks of test data (2017) to facilitate out-of-sample performance
evaluation. Because the number of features p > N , we face a high-dimensional
problem. We evaluated and compared the prescription performance of the
following approaches:

1. kERM: Estimate prescription function (2.11) by solving (2.12) with ran-
dom forest kernel (2.13) and prescribe capacity decisions for each week
of the test period.

2. wSAA: Solve (2.7) with random forest weights (2.9) for each week of the
test period.

3. SAA: Estimate the SAA prescription of the training data set by solv-
ing (2.7) for wn(~x) = 1/N .

4. SVR-SEO14: Train support vector regression models using the random
forest kernel (2.13), estimate CV and CC on in-sample residuals, and

14Traditional two-step approaches are also referred to as sequential estimation and opti-
mization (SEO).
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predict multivariate demand distributions for each week of the test pe-
riod. Solve (2.1) using Monte Carlo sampling and SAA on NMC = 300
samples.

5. ARIMA-SEO: Train ARIMA time series models, estimate CV and CC
on in-sample residuals, and predict multivariate demand distributions for
each week of the test period. Solve (2.1) following the same procedure
as for SVR-SEO.

We determined the maximum achievable profit for all prescribed capacity
decisions by solving the second stage of Problem 2.1 for each day of the test
period, with the total profit as the sum of weekly profits over all weeks. We
also calculated the ex-post optimal profit Π∗(d) for the test period, so we can
report the absolute gap to optimal profit ∆Π,abs = Π∗(d) − Π(~q,d) for all
approaches.15

2.6.4 Results and Discussion

Figure 2.2a shows the absolute gap to optimal profit in the 2017 test period
that is associated with the approaches’ capacity prescriptions.16 The results
suggest that, in our setting, the gap to optimality can be reduced by more
than half by using prescriptive analytics approaches (kERM, wSAA) instead
of traditional two-step approaches (ARIMA-SEO, SVR-SEO). wSAA leads to
the lowest performance gap, which is 3.6 percent lower than that of kERM, the
second-best approach, and more than 58 percent lower than that of ARIMA-
SEO, the approach with the worst performance. The potential improvements,
documented in Figure 2.2a, could lead to a substantial increase in the com-
pany’s financial performance. As a provider of basic logistics services, the

15While one could also use the relative gap ∆Π,rel = 1− Π(~q,d)
Π∗(d) between actual and optimal

profit to compare performances, this quantity is misleading in our real-world application,
as fixed costs (e.g., machine costs, factory rental costs) are not considered but are expected
to lower the profits Π and Π∗ substantially.

16The ex-post optimal profit Π∗ in 2017 amounts to 3.9 mio. Our calculations do not include
overhead costs, so the company’s true maximum achievable profit is substantially lower
than that reported here.
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Figure 2.2: Absolute gap to optimal profit for all approaches for the real-world
application.

company operates on low margins of 2-3 percent and had revenues of approxi-
mately EURO 4.3 mio. in 2017. Therefore, the increase in net profits achieved
through the use of prescriptive analytics instead of traditional methods could
amount to 30-50 percent.

The largest performance improvement occurs between the traditional para-
metric approaches (SVR-SEO, ARIMA-SEO) and the most basic non-para-
metric approach (SAA), which does not benefit from features. Comparing
the results of SAA and the prescriptive approaches allows us to assess the
additional value of incorporating features into the prescription. BK intro-
duced the coefficient of prescriptiveness to quantify “the prescriptive content
of data and the efficacy of a policy” (BK, p. 1025) in leveraging this prescrip-
tive content. The coefficient of prescriptiveness P measures the reduction of
the gap to optimal profit relative to SAA, which does not use features. Using
the results displayed in Figure 2.2a, we can directly compute the coefficients
of prescriptiveness PwSAA = .271 and PkERM = .208 for wSAA and kERM.
These values suggest that the features have substantial value and that wSAA is
more efficient in exploiting their prescriptive content than kERM is. However,
one must take care in drawing conclusions about the two approaches’ efficacy.
Section 2.6.5 shows that the performances of SAA, wSAA and kERM depend
heavily on the exogenous cost parameters and that we obtain PkERM > PwSAA
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Figure 2.3: Prescribed capacity of all approaches for the test period (with
upgrading). The label “100%” denotes the mean demand of the respective
service line for the test period.

for other parameter settings.
To elucidate the approaches’ performance and the underlying drivers, Fig-

ure 2.3 plots the approaches’ prescribed capacities for service lines 1 and 3
in the individual weeks of the test period.17 Figure 2.3 highlights structural
differences in capacity prescriptions, which can explain the large difference in
performance between traditional parametric approaches and non-parametric
approaches shown in Figure 2.2a. SAA, wSAA, and kERM prescribe capacities
for service line 1 that are substantially higher than the mean demand and the
prescriptions of the parametric approaches (ARIMA-SEO, SVR-SEO). How-
ever, they prescribe much lower capacities for service line 3. A traditional
perspective would assume that the capacity prescriptions are composed of two
elements: (i) an estimate of the mean demands ~̂µ (i.e., a forecast) and (ii) some
safety capacity ~Λ(~CO, ~CU , {ai,j}j<i, Σ̂) that depends on the overage and un-
derage costs ~CO and ~CU , the marginal profits for upgrading {ai,j}j<i, and the
estimate of the covariance matrix Σ̂.18 Following this basic newsvendor logic,
17Our analysis focuses on service lines 1 and 3 because service line 2 exhibits a superposition
of increased and decreased optimal capacity decisions as a result of “outgoing” (to service
line 3) and “incoming” (from service line 1) upgraded capacity.

18Technically, this decomposition holds true only for ARIMA-SEO and SVR-SEO because
they rely on an explicit estimate of a multivariate normal distribution’s mean demand and
covariance matrix, while the other approaches integrate estimation and optimization.
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we can approximate the overage and underage costs of the individual service
lines and infer approximate “optimal” service levels of 97 percent for service
line 1 and 50 percent for service line 3.19 Moreover, as Netessine et al. (2002)
showed for the case of single-level upgrading, the optimal capacity prescrip-
tion for the most flexible capacity (service line 1 in our case) should be higher
than its optimal newsvendor quantity, and the prescription for the capacity
with least flexibility (service line 3 in our case) should be lower than its opti-
mal newsvendor quantity (Proposition 3 in Netessine et al. 2002). While this
logic explains the higher (lower) prescriptions for service line 1 (3), it does
not explain why the non-parametric approaches prescribe substantially more
capacity for service line 1 and less for service line 3. We should be able to
explain the varying performances in Figure 2.2a by means of differences in the
accuracy of the estimated means ~̂µ or the safety capacities ~Λ(·). An analysis
of SVR-SEO’s and ARIMA-SEO’s forecasting performance reveals that SVR-
SEO produces more accurate estimates of ~̂µ than ARIMA-SEO does, as the
former’s out-of-sample RMSE is 18 percent lower than that of the latter. How-
ever, this higher forecast accuracy only partially translates into better overall
performance, as evidenced by the results in Figure 2.2a.

Following our previous line of reasoning, we attribute the differences in
capacity prescriptions and performance to varying safety capacities (i.e., ~Λ(·))
through which the various methods account for both uncertainty and upgrad-
ing effects. To disentangle the joint effect of uncertainty and upgrading, we
determined the approaches’ performance without allowing for upgrading. Fig-
ure 2.2b plots the corresponding performance gaps. Comparing the results
in Figures 2.2a and 2.2b, we observe a larger optimality gap when upgrad-
ing is not permitted, but the increase is roughly the same across all ap-
proaches under consideration; the change in performance from the traditional
parametric approaches (SVR-SEO, ARIMA-SEO) to the non-parametric ap-
proaches (SAA, wSAA, kERM) remains, so it cannot be explained by up-

19We calculate the approximate service level as SLi = CU,i

CU,i+CO,i
, with overage and underage

cost factors CO,i ≈ fi/5 and CU,i ≈ pi+ci−vi−fi/5. This approximation underestimates
the service level for service line 1, as the option to upgrade lowers the overage cost, thus
increasing the “optimal” service level.

45



2 Prescriptive Analytics for Flexible Capacity Management

grading effects. In fact, the results suggest that the differences in capacity
prescriptions and performance are driven by how the approaches explicitly
(SVR-SEO, ARIMA-SEO) or implicitly (SAA, wSAA, kERM) account for de-
mand uncertainty. To substantiate this conjecture, we compare SVR-SEO’s
and ARIMA-SEO’s estimated CVs for service line 1 with an implicit mea-
sure of uncertainty for SAA20 and observe a significant difference between
ARIMA-SEO (CV ARIMA-SEO

1 = 0.147) and SVR-SEO (CV SVR-SEO
1 = 0.151)

and SAA (CV SAA
1 = 0.221), which explains why SAA’s capacity prescrip-

tions are larger than those of the traditional parametric approaches for service
line 1 (Figure 2.3a).21 Although we cannot obtain implicit estimates for the
CVs of wSAA and kERM, we assume that, like SAA, their higher capacity
prescriptions can be explained by their implicit consideration of demand un-
certainty based on the empirical demand distribution. The initial results from
our case study suggest that the performance differences are rooted primarily
in how the approaches account for uncertainty in the multivariate demand,
which translates into differing safety capacities (via ~Λ(·)) and overall capacity
prescriptions.

2.6.5 The Impact of Service Levels and Upgrade
Profitability

The preceding section discussed the performance of our prescriptive analytics
approaches for the (cost) parameters of our case company and conjectured that
the performance differences are driven primarily by how the various approaches
account for demand uncertainty. In this section we determine whether this
conjecture holds under different cost parameters, leading to different implicit
service level targets (SL) and upgrade profitabilities αi = ai+1,i

ai,i
.

20We approximate the empirical distribution of historical demand for service line 1 using
a stationary normal distribution, calculate the mean µ̂SAA and standard deviation σ̂SAA,
and derive the CV as CV SAA = σ̂SAA/µ̂SAA.

21All CVs are estimated relative to the historical mean demand µ̂SAA as CV = σ̂/µ̂SAA.
Because the safety capacity for SVR-SEO and ARIMA-SEO ~Λ(·) is based on the uncer-
tainty of daily demand σ2

d = Σ̂i,i and the average variation of predicted demand values σ2
w

in each week, we use σ̃ =
√
σ2
d + σ2

w (see Appendix A.7.3 for details).
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Table 2.2: Parameters for the service level and upgrade profitability variation.
Figure f v p c ai,i SL α

2.4a)


2700..142

1130..60

500..26




40

30

20




600

260

120




10

7.5

5




570

238

105

 5%..95% 40%

2.5a)


94500..237

4750..250

263




40

30

20




37830..125

1920..123

120




10

7.5

5




37800..95

1900..100

105

 50% 5%..95%

2.5b)


18900..47

950..50

53




40

30

20




37830..125

1920..123

120




10

7.5

5




37800..95

1900..100

105

 90% 5%..95%

To carve out individual effects and to enhance comprehensibility, we first
study the impact of a service level variation for a fixed upgrade profitability.
Thereafter, we examine the effect of a variation of the upgrade profitability
for a fixed service level across all service lines. Table 2.2 shows the cost pa-
rameters used in these analyses and their corresponding approximate service
levels and upgrade profitabilities. We carried out extensive additional analy-
ses for heterogeneous service levels and for other combinations of α and SL.
The results are reported in Appendix A.8. All of our analyses use the same
demand and feature data as in Section 2.6.4.

The results in Figure 2.4a show the approaches’ optimality gaps for each
service level and provide a more differentiated picture of the approaches’ per-
formance than those presented in the preceding section. At a service level
of ≈ 50 percent the two featureless approaches (SAA, ARIMA-SEO) lead to
substantially lower performance than the approaches that account for feature
data (kERM, wSAA, SVR-SEO). Among the latter, kERM and SVR-SEO
lead to similar performance levels, and they both outperform wSAA. Because
the impact of the safety capacity ~Λ(·) is negligible in this service level regime22,

22Without upgrading, the safety capacity ~Λ(·) would be equivalent to the newsvendor safety
capacity in accounting for uncertainty in demand. While upgrading impacts the prescrip-
tions, all approaches’ performance levels are impacted similarly by upgrading, as shown
in Figure 2.5a for a service level of 50 percent. Therefore, we focus on the service level
effect to explain the performance differences.
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Figure 2.4: Variation of the service level for α = 40%.

the approaches’ performance is dominated by the accuracy of the estimation
of ~̂µ, which appears to be higher for kERM and SVR-SEO than for wSAA. At
a service level of 50 percent, we obtain PkERM = .53 and PwSAA = .43, which
suggests that the value of features is greater at this particular service level
than it is for the higher service levels considered in Section 2.6.4, and that
kERM is more efficient in exploiting this value (Figure 2.4b plots the coeffi-
cient of prescriptiveness of wSAA and kERM for the varying service levels).23

However, as we move to higher service levels, SAA’s performance improves sig-
nificantly; for high service levels (e.g., SL=95%), SAA achieves a performance
level similar to that of the prescriptive approaches kERM and wSAA, despite
being a featureless approach. Thus, the value of incorporating features de-
clines because it becomes more important to account for demand uncertainty
to improve safety capacity estimations ~Λ(·) (which increase non-linearly in the
service level) than it is to obtain accurate estimates of ~̂µ. This effect is also
reflected in decreasing values of the coefficient of prescriptiveness for service
levels higher than 60 percent (Figure 2.4b). This finding matches our ob-
servation in Section 2.6.4, where we considered a regime with comparatively
high service levels, and supports the conjecture that the non-parametric ap-
proaches are better at accounting for demand uncertainty, which leads to sub-
stantial performance improvements over those of traditional non-parametric

23Appendix A.8.3 explores the statistical confidence in these results.
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approaches. The results in Figure 2.4a and Figure 2.4b also show that, for
a service level range of 10-70 percent, kERM outperforms wSAA, while the
latter results in better performance for high or very low service levels. For ser-
vice levels of 90 percent and above, Figure 2.4b suggests that kERM no longer
exploits the prescriptive content of the features, resulting in PkERM ≈ 0. In
this regime, and at least for this particular data set, it appears for kERM
to be optimal to choose a higher regularization parameter, and therefore to
adapt less to the variations of the historical observations. Doing so has two
consequences: It leads to higher average capacity prescriptions, driven by a
higher (implicit) safety buffer, and a stronger regularization suppresses the
impact of features on (the implicit) estimates of ~̂µ.24 This leads to the in-
teresting effect that, at least in this particular instance, kERM results in the
same prescriptions and the same performance as SAA. At this service level,
wSAA can still exploit some of the prescriptive content of the features, which
leads to a slightly better performance compared to kERM and SAA. We will
see in Section 2.6.6 that this effect is mainly associated with the random forest
kernel.
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Figure 2.5: Variation of the upgrade profitability α.

Figures 2.5a and 2.5b plot the results for the variation of the upgrade prof-
24To explain this effect, consider the breakdown of kERM’s prescriptions into forecasting
and safety buffer estimations. Higher regularization leads to higher bias and, therefore,
to higher in-sample errors for the forecasting part, which leads, in turn, to higher safety
buffers.
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itability α at fixed service levels of 50 percent and 90 percent, respectively.
Because the optimal profits vary strongly across α, we scale the absolute gap
to optimal profit to obtain meaningful results.25 Overall, we find that all
approaches benefit similarly from an increase in the upgrade profitability. A
closer inspection of the capacity prescriptions revealed that all approaches pre-
scribe an increasing amount of capacity for service line 1 as α increases; at
higher levels of α it becomes more attractive to use the capacity of service line 1
to meet the demand of service lines 2 and 3. A similar argument as made before
can be made to explain the performance differences observable in Figures 2.5a
and 2.5b. At a service level of 50 percent (Figure 2.5a), an accurate estimate
of ~̂µ is central to achieving good capacity prescriptions, which explains why
the feature-based approaches (SVR-SEO, wSAA and kERM) outperform SAA
and ARIMA-SEO. In this setting, kERM dominates all other approaches. We
observe a different picture for a service level of 90 percent (Figure 2.5b), where
it is more important to obtain better estimations of the safety capacity ~Λ(·)
than it is to exploit the predictive content of the features to generate accu-
rate demand forecasts. In this setting, wSAA clearly outperforms all other
approaches, and kERM leads to almost identical performances as SAA for
α ≥ 40 percent, an outcome that is consistent with the results displayed in
Figure 2.4b, where we see PkERM ≈ 0 at a service level of 90 percent, which
again can be explained by the “regularization effect”.

In summary, all of our results indicate that the approaches’ performance
depends on how well they are able to (implicitly) estimate ~̂µ and ~Λ(·), that the
importance of estimating ~̂µ and ~Λ(·) depends predominantly on the service lev-
els, and that the upgrade profitability has a much less pronounced effect than
the service levels. However, we must be careful about generalizing this finding
beyond our specific case, as we found a relatively low demand correlation (see
Section 2.6.1) in our data set and cannot rule out that the performance effect
of upgrading may be more pronounced when the demand correlation is high

25Because a meaningful measure of performance is the gap to optimality in units of average
overage and underage costs, we divide the gap to optimal profit by the scaling factor

γScale = 1
2 (CU + CO) =

∑
i≤j

aijµi

2
∑

i≤j
µi

.
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and feature-dependent.
Our analyses and discussion in Sections 2.4 and 2.5 shed light on the

theoretical properties of wSAA and kERM, especially regarding their theo-
retical performance for N → ∞, and our numerical study provides clear evi-
dence that prescriptive approaches are superior to traditional parametric and
non-parametric approaches for a finite number of historical observations N .
However, our numerical study is inconclusive as to whether one should pre-
fer kERM or wSAA, because the former achieves better performance under
medium-range service levels, which we attribute to kERM’s superior ability to
exploit features’ prescriptive content, while the latter achieves superior per-
formance for very high or very low service levels. Additional numerical studies
showed that both approaches are fairly robust to an increase in the number of
features (see Appendix A.3), which we attribute to the feature selection im-
plicitly done by the random forest weight function or kernel. We did not find
evidence that wSAA suffers from interpolation in the presence of a slight pos-
itive demand trend or that kERM benefits from its ability to extrapolate. Of
course, we cannot rule out that this issue becomes important in other practical
instances with stronger positive or negative trend.

2.6.6 Performance Analysis of kERM with Alternative
Kernel Functions

In Sections 2.4.2 and 2.5 we discussed data-independent as well as data-
dependent kernel functions for the kERM approach and provided performance
guarantees for the different classes of kernels. While we were able to show that
a universal data-independent kernel (the RBF Gauss kernel) enjoys a univer-
sal approximation property, we argued that data-dependent kernels (such as
a random forest kernel) may lead to better performance in regimes with a
low number of historical observations and a large number of features, because
they allow for feature selection. This section explores, how the choice of a
particular (data-independent or data-dependent) kernel function impacts the
performance of kERM in our specific case example. In line with our discussion
in Sections 2.4.2 and 2.5, we compare the gap to optimal profit of kERM when
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using (i) data-independent linear and polynomial (homogeneous 3rd degree)
kernels, (ii) the data-independent, universal RBF Gauss kernel, and (iii) the
data-dependent random forest kernel.26 Figure 2.6 plots the absolute gap to
optimal profit for kERM with the alternative kernel functions across different
service levels.

40
60

80
10

0
12

0
14

0
16

0

Service level

A
bs

ol
ut

e 
ga

p 
to

 o
pt

im
al

 p
ro

fit
 in

 th
ou

sa
nd

s

10 % 30 % 50 % 70 % 90 %

Random Forest
RBF Gauss

Linear
3rd Polynomial

Figure 2.6: Absolute gap to optimal profit of kERM for various kernels across
service levels.

We observe that the random forest kernel leads to better performance than
all other kernels for service levels between 10 and 70 percent and that the linear
and polynomial kernels perform worse than the RBF Gauss kernel. At medium
range service levels the value of features is particularly high (see Section 2.6.5)
and the random forest kernel appears to benefit from its ability to account
for the varying predictive content of individual features and implicit feature
selection, as conjectured in Section 2.4.2. To support this conjecture and to
shed more light on the performance differences between data-dependent and
data-independent kernels, we analyzed the kernel values of the random forest
kernel and the various data-independent kernels and found that the random
forest kernel leads to very heterogeneous similarity measures—typically, few
data samples have a high kernel value, reflecting high similarity, while most
others have a low kernel value—and that the data-independent kernels lead
26Definitions and further details for these alternative kernel functions are provided in Ap-
pendix A.5.
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to more homogeneous similarities (see Appendix A.5 for details). This is
clearly a direct consequence of how the kernels account for the predictive
content of individual features. While the random forest kernel benefits from
this property under medium range service levels where forecast accuracy is
more important, the more heterogeneous similarities come at a disadvantage
for very high service levels because of the regularization effect identified in
Section 2.6.5. Due to the heterogeneous similarity measures, kERM needs to
regularize more to prescribe the required safety buffers when using a random
forest kernel. In contrast, the more homogeneous similarity measures of the
data-independent kernels induce a higher implicit uncertainty and therefore
also higher implicit safety buffers without the need for strong regularization.
In other words, the lower forecast accuracy of these kernels does not imply a
disadvantage at very high service levels where the value of features is lower,
but rather allows them to prescribe higher implicit safety buffers and overall
capacities, which translates into better performance compared to the data-
dependent random forest kernel. This finding is in line with our results and
discussions in Sections 2.6.4 and 2.6.5.

2.7 Conclusion
This work proposes and studies two data-driven, distribution-free prescrip-
tive analytics approaches for solving a complex two-stage capacity planning
problem with multivariate demand and vector-valued capacity decisions. Our
main theoretical contribution pertains to the kERM approach, for which we
provide solutions for linear and non-linear function spaces, demonstrate the
universal approximation property of the approach when using a universal ker-
nel, and derive out-of-sample guarantees for various kernels. The results of
our numerical study, using data from a logistics service provider, suggest that
substantial performance improvements can be achieved by our prescriptive an-
alytics approaches and that they are more robust to variations of exogenous
cost parameters than their traditional counterparts are—which is an attrac-
tive property for decision-makers in practice. Our interpretation of the results
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sheds light on the two approaches’ underlying dynamics and their performance
drivers.

Our work has a number of limitations that should be addressed by future
research in this relatively new field of prescriptive analytics (in Operations
Management). First and foremost we face the problem of generalization. Al-
though we can provide theoretical performance guarantees, especially for our
kernelized ERM approach, we cannot make inferences as to which of the pre-
scriptive analytics methods under consideration should be employed in “small
data” regimes that are common in OM. In addition to the common machine
learning issue of generalization beyond a specific data set that we also face,
the application of prescriptive analytics approaches to OM problems raises an-
other issue related to generalization: Because these approaches typically rely
on non-standard (asymmetric) loss functions, the results may be sensitive to
the choice of the loss function and its (exogenous) parameters, making gener-
alization even more difficult. This issue should be addressed in future work
that applies prescriptive analytics in OR/MS.
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3 Prescriptive Analytics for a
Multi-Shift Staffing Problem

Motivated by the work with a leading maintenance service provider in the
aviation industry, this paper examines novel data-driven approaches to solving
a certain type of capacity-sizing problem—the multi-shift staffing problem—
with uncertain, time varying arrival rates and patient “customers” that do
not abandon the queue while waiting for a service, but who must be served by
a pre-defined time. Drawing on established methods in both capacity man-
agement and prescriptive analytics, we propose to use fluid and stationary
approximations to apply tailored prescriptive analytics approaches to deter-
mine staffing levels for multiple interrelated shifts. The prescriptive analytics
approaches rely on machine learning techniques that incorporate a detailed
representation of the non-stationary structure of arrivals and leverage exten-
sive auxiliary data that may be predictive of demand. In particular, we adapt
established prescriptive analytics approaches—weighted sample average ap-
proximation and kernelized empirical risk minimization—and propose a new
optimization prediction approach to solving the multi-shift staffing problem.
Using a case study that is based on extensive data from our project partner,
the maintenance service provider, we demonstrate the applicability of these
approaches, highlight their benefits over traditional “estimate then optimize”
approaches, and shed light on their structural properties and performance
drivers. In the context of our real-world application, we derive a clear recom-
mendation for the choice of method with which to solve the multi-shift staffing
problem.27

27This paper is co-authored by Peter K. Wolf and Richard Pibernik.
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3.1 Introduction
This paper proposes and examines novel data-driven approaches to solve a
certain class of capacity-sizing problems, where a company has to staff multiple
shifts for each workday in the presence of uncertain arrival rates that vary
throughout the day and patient “customers” that do not abandon the queue
while waiting for a service, but who must be served by some pre-defined time
(for example, all those who arrive before 5 p.m. must be processed by the end
of the day). This problem is common among logistics companies and other
service providers, such as those in online fulfillment or bring-in maintenance.
We term this problem the multi-shift staffing problem (MSSP).

The research presented in this paper is motivated by our work with Luft-
hansa Technik Logistik Services, a subsidiary of Lufthansa Technik, a leading
provider of maintenance, repair, and overhaul (MRO) services in the aerospace
industry. The company faces an MSSP in its inbound logistics operations,
where new, refurbished, and defective parts arrive throughout the day and
must be processed by the end of the day. How long the individual parts
“wait” before being processed is largely irrelevant, as long as they are pro-
cessed the same day. The company currently operates a morning shift and an
afternoon shift of employees who process the incoming parts. If the company
cannot process all of the parts that arrive on one day during the day’s regular
working hours, it has to use costly overtime to process any remaining parts or
incur a penalty cost.

The company has access to a time series of historical demand observations
in the form of individual daily demand arrivals and associated time stamps,
and to a data set that contains numerous co-variates (“features”) that cor-
respond to the time series of historical demand observations. These features
may be predictive of the arrival rates on a certain day and can include the day
of the week, indicator variables for public holidays, and process-related vari-
ables like the number of advanced shipping notifications. In other cases, such
as in online fulfillment, features may also be derived from weather data, click
streams, and other available data sources. The company wants to determine
staffing levels for the two shifts every day in such a way that personnel costs
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Figure 3.1: Average hourly arrival rate by weekday.

and overtime/penalty costs are minimized.
The arrival rates are time-varying and uncertain and may be correlated

throughout the day. For example, Figure 3.1 displays the mean arrival rates
for our case company for time periods of one hour on all weekdays based on
89 weeks of data. Although the patterns are similar across weekdays, arrival
rates clearly depend on the day of the week. Moreover, the arrival rates during
individual time periods vary substantially. Table 3.1 contains estimates of
the mean number of arrivals (λ̄) in the period from 9 a.m. to 10 a.m. on
each weekday, along with their empirical coefficient of variation (CVλ̄) and an
estimate of the latter (CVPoisson) that assumes that the underlying process is
Poisson. We observe that the empirical CV is much larger than the CV under
the Poisson assumption, suggesting considerable parameter uncertainty.

Although the MSSP may seem simpler than many other queuing problems,
especially because it does not have to deal with abandonments, it is difficult
to solve for two main reasons: i) when formulated as a queuing model with
a time-varying, doubly stochastic arrival process, the MSSP is analytically
intractable and difficult to solve numerically, even with the assumption that
the distribution of the arrival rates is known; ii) in most practically relevant
cases, where the availability of historical demand is limited to a certain pe-
riod of time (e.g., three years), the decision-maker cannot derive an accurate
estimate of the arrival rates’ feature-dependent and time-varying multivari-
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Table 3.1: Mean arrivals between 9 a.m. and 10 a.m. by weekday with esti-
mated processing rate for 10 servers processing all demand in one day.

Day λ̄ in % of maximum CV λ̄ in % CV Poisson in % 1/
√
Eλ in % D̄

Monday 98.9 44.2 7.4 19.8 3158.54

Tuesday 78.0 48.0 8.3 22.3 3097.63

Wednesday 88.7 54.6 7.8 20.9 4666.42

Thursday 99.5 48.7 7.3 19.7 4083.87

Friday 100.0 48.5 7.3 19.7 4059.97

Saturday 16.1 114.1 18.2 48.7 3745.33

ate distribution from the available demand and feature data. We overcome
both of these difficulties by following a two-step approach: first deriving an
approximated MSSP (AMSSP) that can be solved and then using appropri-
ate prescriptive analytics approaches that derive capacity decisions directly
from the available demand and feature data without estimating an underlying
demand distribution. We outline these two steps in what follows.

Our representation of the AMSSP is based on a fluid approximation,
which is a valid approximation when the parameter uncertainty of the doubly
stochastic arrival process is the dominant source of uncertainty (“uncertainty-
dominated regime”; Bassamboo et al. 2010). In fact, Lufthansa Technik Lo-
gistik Services operates under an “uncertainty-dominated regime” because the
empirical CV is much larger than 1/

√
Eλ, where Eλ = λ/µ is the load of the

system and µ its empirical service rate.28 Bassamboo et al. (2010) show that,
under these conditions a (single-shift) capacity optimization problem can be
effectively reduced to a newsvendor problem, where “the logic underlying this
28One can also employ the dispersion test to estimate the goodness-of-fit of a Poisson distri-
bution for the arrivals within a single time period for a single weekday, as Kim and Whitt
(2014) propose. Under the Poisson assumption, the index of dispersion D̄ = (N − 1)σ̄2/λ̄
with mean arrival rate λ̄ and standard deviation of arrival rates σ̄ for N data samples
“is distributed as χ2

N−1, a chi-squared random variable with N − 1 degrees of freedom”
(Kim and Whitt 2014, p. 475). Because the observed dispersion values D̄ are well above
χ2
N−1;1−α ≈ 136 for a 1% significance level and 100 degrees of freedom (Table 3.1), we

reject the null hypothesis of observed arrivals’ being independent Poisson-distributed vari-
ables. In Appendix B.4, we demonstrate that these findings also extend to almost all other
time periods.
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reduction germinates in viewing stochastic variability as a ‘lower order’ effect
in comparison with parameter (demand) uncertainty” (Bassamboo et al. 2010,
p. 1670). However, in our case, matters are more complicated because we have
to make interrelated staffing decisions for multiple shifts under time-varying
arrival rates (Figure 3.1). Therefore, we introduce a stochastic fluid model that
splits the planning horizon of length τmax into multiple periods with length
∆τ = τmax/T , for which we can assume stationary arrival rates. While this
approach is similar to the stationary independent period-by-period (SIPP) ap-
proach, we cannot optimize the capacity levels independently for each period;
instead, we want to determine staffing levels for longer shifts that typically
span multiple periods, and we have to account for the carry-over between sub-
sequent periods and the fact that arrival rates may not be independent. As a
result, we intend to solve a multi-period stochastic optimization problem with
a T -dimensional distribution of the arrival rates. Solving such a problem with
conventional means is impractical or even infeasible: Even under the highly
restrictive assumption of a T -dimensional normal distribution, estimating the
parameters of the arrival rate distribution (i.e., the means and the covariance
matrix) in particular is difficult because the arrival rates depend on other
factors, such as the day of the week (as evidenced by Figure 3.1), whether
a particular week includes one or more public holidays, and so on. While
these challenges render the approach impractical, the problem also becomes
intractable from an analytical and computational viewpoint—even for a small
number of periods T and a given T -dimensional distribution (see Section 3.3).

Instead of following the traditional approach of first estimating a (state-
dependent) multivariate distribution and then trying to solve a stochastic opti-
mization problem with some approximate (dynamic programming) approach,
we propose three data-driven prescriptive analytics approaches that solve the
AMSSP by “learning” a prescription rule that derives prescriptions directly
from the available demand and feature data without estimating an underlying
demand distribution. Two of these approaches adapt methods proposed in
Bertsimas and Kallus (2020) (weighted sample average approximation, wSAA)
and Notz and Pibernik (2021) (kernelized empirical risk minimization, kERM).
We also propose and study an additional approach—the Optimization Predic-
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tion (OP) approach—that first derives decisions that would have been optimal
in the past and then learns a prescription function from these ex-post optimal
decisions. These approaches have two attractive properties: First, they facil-
itate an efficient computation of a vector-valued capacity prescription while
allowing for a detailed representation of the underlying stochastic system with
time-varying, uncertain, and potentially correlated arrival rates and a non-
continuous cost function. In fact, we can show that our approaches allow for
an arbitrarily large T that is restricted only by the time resolution of the data
set that contains the historical arrivals. Thus, we can solve the problem over
historical observations of the arrival process and overcome what we term the
(negative) time-structure effect that is typically associated with fluid and sta-
tionary approximations. The second and perhaps more attractive property is
that prescriptive analytics approaches make full use of the prescriptive value
of a potentially large set of features, so they can overcome a (negative) feature
effect that is caused by omitting some or all of the relevant features when
estimating an arrival rate distribution, as traditional approaches to solving
problems with a similar structure have done.

To determine whether these purported advantages translate into improved
prescriptions, we conduct a comprehensive case study based on historical data
from Lufthansa Technik Logistik Services and compare the performance of
our prescriptive analytics approaches to that of two (traditional) benchmark
approaches—Partitioned Distribution Estimation (PDE), which relies on esti-
mating demand distributions for the T periods of our planning horizon and
solving the AMSSP numerically, and sample average approximation (SAA).
We provide structural insights into the time-structure effect and the feature
effect and show that prescriptive analytics approaches have clear advantages
over traditional approaches in overcoming these effects. Based on the results
of additional analyses in which we vary the MSSP’s relevant cost parameters,
we can also explain differences in performance across the three prescriptive
analytics approaches. We find that, among these approaches, wSAA outper-
forms the others across a wide range of parameter settings, and conclude that,
at least in our example, wSAA should be preferred over all other approaches
in terms of its performance, intuitiveness, and ease of use.
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3.2 Literature Review
The MSSP can be represented by an M(τ)/M/b(τ) queuing model with an
uncertain arrival rate that is varying in continuous time τ . Such a model is an
extension of the M/M/b + M model Bassamboo et al. (2010) study because
it assumes a non-stationary τ -dependent distribution of the arrival rate Λτ

and a capacity b(τ) that can vary in time. Bassamboo et al. (2010) show
that their stationary queuing model cannot be solved analytically because of
difficulties in characterizing the distribution of the number of customers in
the system under steady state. While the MSSP is simpler than Bassamboo
et al.’s (2010) model in one regard—only the queue length at the end of the
workday is relevant because customers do not abandon the queue—it is also
not analytically tractable because the queue length at the end of the workday
depends on the uncertain, non-stationary arrival rates and the multiple shifts’
staffing levels (we provide details in Section 3.3). This is one reason to depart
from traditional queuing approaches for solving the MSSP and to apply pre-
scriptive analytics approaches instead. However, the more important reason
is that, in our setting, we cannot assume we have an accurate estimate of the
arrival process—an assumption that is typically made by traditional queuing
approaches. We have a data set that contains only historical observations of
demand arrivals and potentially predictive features, so obtaining an accurate
estimate of a non-stationary arrival rate process with significant parameter
uncertainty and feature-dependence is impossible or at least impracticable,
especially when there are many features (as in our case) and a comparatively
small number of historical observations (e.g., two or three years of daily arrival
processes).

As we described in Section 3.1, we follow a two-step approach in solving the
MSSP. The first step draws on the literature that addresses capacity planning
problems under parameter uncertainty and the literature on capacity plan-
ning under non-stationary demand in order to obtain an approximation of the
MSSP that can then be solved by means of prescriptive analytics approaches
without having to make assumptions about the arrival rate distribution. We
review the literature that is relevant to our work and clarify our contribution
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in what follows.
Defraeye and Van Nieuwenhuyse (2016) provide a comprehensive overview

of queuing approaches for staffing under non-stationary demand—which is fre-
quently the case in real-life settings, as exemplified by our case company (Fig-
ure 3.1)—and identify several metrics that are commonly used to evaluate the
performance of a capacity configuration that includes fluid approximations,
stationary approximations, and simulation. Our derivation of the MSSP first
uses a fluid approximation because we experience temporal overload when
the queue is building up, and fluid models are “particularly useful to assess
performance in systems that are temporarily overloaded” (Defraeye and Van
Nieuwenhuyse 2016, p. 15) and because we face significant parameter uncer-
tainty. In such fluid models, in which “the discrete processes of customer ar-
rivals and service completions are replaced by continuous processes” (Stolletz
2008, p. 482), the focus shifts from the stochasticity of the arrival and server
processes to the uncertainty in the estimated parameters, that is, the arrival
rate. Harrison and Zeevi (2005) study a call center staffing problem with var-
ious pools of customers and agents, and use a stochastic fluid model to obtain
a newsvendor formulation with linear overage and underage costs. Bassamboo
et al. (2010) build on this fluid model approximation and develop an analytical
justification: In the “uncertainty-dominated” regime, defined by CVλ �

√
µ
λ
,

where µ is the processing rate and λ is the arrival rate, the variability of the
arrival process can be neglected and the fluid approximation is justified, lead-
ing to newsvendor-like solutions with an uncertainty hedge that is “extremely
accurate” (see Bassamboo et al. 2010, p. 1669). This observation closes the
gap between two common ways of formalizing capacity planning problems:
queuing models that typically “focus on flow times and responsiveness” (Van
Mieghem 2003, p. 280) and newsvendor models that “focus on the impact
of multivariate demand uncertainty, while assuming deterministic processing”
(Van Mieghem 2003, pp. 281-282). Therefore, our work draws on Bassamboo
et al. (2010), demonstrates that the conditions for applying a fluid approxi-
mation are fulfilled in the case of Lufthansa Technik Logistik Services—the
company operates under an uncertainty-dominated regime (Section 3.1 and
Table 3.1)—and derives the AMSSP using a fluid model approach.
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However, because the uncertain arrival rate is non-stationary during each
day and each shift, we cannot employ a simple newsvendor model. Therefore,
we use a stationary approximation, which is “by far the most widely adopted
approach for performance evaluation in non-stationary systems” (Defraeye and
Van Nieuwenhuyse 2016, p. 12). Similar to the common SIPP approach, we
assume the arrival rate is stationary for small periods of time and derive a
multi-period stochastic optimization problem termed the AMSSP. As we show
in Section 3.3.2, the AMSSP remains analytically intractable even for small
numbers of periods T and a known T -dimensional demand distribution, but
it can be solved efficiently using various prescriptive analytics approaches or
a Monte Carlo sampling approach (as proposed by, for example, Shapiro and
Homem-de-Mello 1998) that we will use as a benchmark for the prescriptive
analytics approaches.

The stream of research on “prescriptive analytics”, which evolved only re-
cently in the operations research and management science (OR/MS) domain,
proposes a variety of new solution approaches to stochastic optimization prob-
lems, where the objective function is difficult to evaluate because it has a com-
plex functional form, and the decision-maker has access to a potentially large
set of feature data that may be predictive of the random variable of interest
(e.g., demand). Bertsimas and Kallus (2020) provide a motivation for and
a comprehensive overview of prescriptive analytics methods, while Ban and
Rudin (2019) propose two prescriptive analytics methods for solving what they
term the “Big Data Newsvendor Problem”. The idea behind these prescriptive
analytics methods is that, instead of solving the decision-making problem by
first estimating a distribution of the variable of interest (e.g., demand), and
then solving a potentially complex stochastic optimization problem (with a
non-linear objective function and/or a very large state space), one considers
the empirical counterpart of the problem and uses machine learning techniques
to “learn” a prescription rule that derives prescriptions directly from the avail-
able demand and feature data without estimating a probability distribution.
A variety of such prescriptive analytics approaches have performed well on
real-world data sets (Ban and Rudin 2019, Bertsimas and Kallus 2020, Notz
and Pibernik 2021).
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In contrast to previous work in the domain of prescriptive analytics, our
problem setting has a number of complexities that have not been addressed
yet and that make it difficult to apply prescriptive analytics approaches that
have previously been proposed directly to the MSSP: We face a queuing-type
problem in which demand during a day (and, more important, during a shift)
may be highly non-stationary (as Figure 3.1 demonstrates), which differs from
previous applications of prescriptive analytics, where the time-structure of de-
mand arrivals during a planning period was of no concern, or at least of little
concern (e.g., Bertsimas and Kallus 2020, Notz and Pibernik 2021). One ap-
proach to such a queuing situation is proposed in Taigel et al. (2019), who
study the staffing problem of a public service office and use a decision tree
to prescribe optimal staffing levels. This approach is also applied to a call
center staffing problem, where Taigel and Meller (2020) use an approximate
cost function that solves the queuing problem numerically and train a de-
cision tree to prescribe a staffing decision for a single shift. However, this
approach is not applicable to multi-shift problems, so it cannot be applied to
the MSSP, where we make multiple interrelated capacity decisions with poten-
tially complex constraints during a single planning period (day). Taigel and
Meller’s (2020) approach is also restricted to training decision trees and cannot
be extended easily to random forests. Bertsimas and Kallus (2020) observed
that—at least when one is using wSAA—random forest weight functions can
provide significantly better performance than decision tree weight functions
can.

We propose three prescriptive analytics approaches to solving the AMSSP.
The first approach, wSAA, was initially proposed by Bertsimas and Kallus
(2020), who demonstrated, based on a real-world application, that it can lead
to superior performance over traditional approaches. Notz and Pibernik (2021)
were the first to apply wSAA to a capacity management problem and, inspired
by the work of Bertsimas and Kallus (2020), Notz and Pibernik (2021) devel-
oped and studied a second prescriptive analytics approach, termed kERM.
They found that both prescriptive analytics approaches can have good re-
sults when they are used to solve a two-stage capacity planning problem with
multivariate demand and upgrading. In contrast to the MSSP, the problem
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Notz and Pibernik (2021) studied did not require detailed modelling of the
demand-arrival process, and they did not face the problem of staffing multiple
shifts for each workday. We adapt both wSAA and kERM to the requirements
of the AMSSP and provide a structural comparison and numerical evidence
regarding their performance. We also introduce and study a new prescriptive
analytics approach, the OP approach, that appears attractive because of its
simplicity relative to the other two approaches; it requires only solving a deter-
ministic optimization problem and employment of standard machine learning
methods.

To the best of our knowledge, this paper is the first to propose solving a
practical queuing type of problem by deriving a formulation (the AMSSP) so
we can employ wSAA and kERM, both of which can account for time-varying
demand and vector-valued decisions and exploit the prescriptive value of ex-
tensive data available to the decision-maker. Our approach may also be useful
in solving more complex queuing problems, such as those that include aban-
donments. While we contribute to the field of prescriptive analytics, especially
by providing a new approach and providing insights into the behavior of pre-
scriptive analytics approaches under uncertain and time-varying demand, the
main contribution of our paper lies in the combination of both “worlds”: that
of queuing theory and that of prescriptive analytics.

3.3 The (Approximated) Multi-Shift Staffing
Problem

Section 3.1 outlined the two steps of our approach to solving the MSSP. This
section describes the first step, the derivation of the AMSSP. We provide a
queuing formulation of the MSSP and demonstrate how fluid and stationary
approximations can be used to reformulate this problem so it can be solved
with traditional numerical techniques (assuming that the demand distribution
is known) or by means of prescriptive analytics approaches (if the decision-
maker has access only to historical demand and feature data and does not
know the demand distribution).
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3.3.1 Queuing Formulation of the Multi-Shift Staffing
Problem

Let us assume, in the most general terms, that demand follows a non-station-
ary doubly stochastic Poisson process (similar to Bassamboo et al. 2010),
with variability and an uncertain and time-dependent arrival rate Λτ with
distribution FΛτ , and τ = 0...τmax representing the operating time of one day.
Going forward, assume that the decision-maker knows FΛτ (e.g., estimated
from the historical data).

Assuming that demand processing occurs at rate µ by b(τ) identical staff
members, we have an M(τ)/M/b(τ) queuing model with an uncertain arrival
rate. At τ = 0, the queue contains M0 items of demand, which arrived before
the beginning of the work day (e.g., during the night). The decision-maker
wants to staff S non-overlapping shifts, where shift s operates from times τs−1

to τs with bs identical staff members:

b(τ) = bs for τ ∈ [τs−1, τs), (3.1)

such that the total expected costs are minimized.
Therefore, the decision-maker intends to solve the optimization problem:

min
~b={bs}

C(~b) := 1
τmax

∫ τmax

0
c1bτdτ + c2E[Mτmax ]

s.t. bτ := b(τ) = bs for τ ∈ [τs−1, τs) ∀s = 1...S,
(MSSP)

where Mτmax is the random variable that describes the number of customers
in the queue at τ = τmax, c1 is the staffing cost factor, and c2 is the overtime
cost factor.

The objective function of the MSSP is similar to Equation 1 in Bassamboo
et al. (2010), but it accounts for time-dependent uncertain arrival rates and
does not consider the costs that are associated with abandonments. The con-
straint ensures a constant staffing level in each shift. In practice, additional
constraints and/or parameters may be required, for example, to account for
upper bounds on the capacity of an individual shift or to ensure that work-
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loads between shifts are balanced, but for the purpose of our exposition, this
generic formulation will suffice. Despite its simplicity, the MSSP cannot be
solved analytically, even if we assume to know Λτ , because of the difficulty in
characterizing the distribution of Mτmax , which depends on the capacities of
all S shifts and the non-stationary uncertain arrival rate Λτ .

3.3.2 Approximated Multi-Shift Staffing Problem

Because we cannot solve the MSSP, we propose an approximation based on
fluid and stationary approximations that can be solved using prescriptive an-
alytics and traditional numerical approaches. The MSSP can be simplified
using the fluid approximation (Bassamboo et al. 2010) if the number of ar-
rivals has an empirical CV that is much larger than 1/

√
Eλ, indicating that

the “uncertainty-dominated regime” applies so we can neglect the variabil-
ity (Appendix B.4 shows that this requirement is fulfilled in our real-world
application). Based on this fluid model approximation, which assumes a con-
tinuous flow with uncertain rate Λτ and continuous processing with rate µ,
the distribution of the number of demand items in the queue Mτ at time τ is
determined by the non-continuous differential equation

dMτ =
[
(Λτ − µbτ )+ − 1Mτ>0 · (µbτ − Λτ )+

]
dτ, (3.2)

where (Λτ − µbτ )+ is the uncertain queue build-up rate, and (µbτ − Λτ )+ is
the uncertain rate at which demand is removed from the queue, given that
Mτ > 0. Because the RHS of this differential equation is non-continuous at
Mτ = 0 when µbτ − Λτ > 0, we cannot obtain an analytical expression for
E[Mτmax ] at time τmax for non-stationary Λτ in a system in which the queue
length may be zero.

Therefore, we further simplify the model using a stationary approximation
that partitions the planning horizon into T periods of duration ∆τ = τmax/T

and assumes that Λτ = Λt and bτ = bt are constant within each period t. This
approximation allows us to derive an expression for E[Mτmax ] = E[MT ] and
transition from uncertain arrival rates Λt to uncertain demand Dt = Λt∆τ

67



3 Prescriptive Analytics for a Multi-Shift Staffing Problem

within a time period t of length ∆τ .
The choice of the number of periods T determines the accuracy of this

approximation: For T →∞, the duration ∆τ , for which Λτ and bτ are assumed
to be constant, becomes arbitrarily small, corresponding to the continuous
non-stationary setting. We provide a more detailed discussion on the impact
of T on accuracy and problem complexity in Section 3.4. Based on (3.2), we
can express the uncertain demand in the queue Mt at the end of each discrete
period t = 1...T as

Mt = Mt−1 + dMt/dt ·∆τ = (Mt−1 + Λt∆τ − µbt∆τ)+

= (Mt−1 +Dt − qt)+,
(3.3)

where qt := µbt∆τ is the capacity in period t, expressed as the number of
units that can be processed in period t. Using this recursive expression, we
can formulate the approximated multi-shift staffing problem (AMSSP) as:

min
~q∈Q

C(~q) := 1
T

S∑
s=1

cq(ts+1 − ts)qs + c2E[MT ]

s.t. Mt = (Mt−1 +Dt − qs)+ ∀t ∈ [ts, ts+1) ∀s = 1...S,
(AMSSP)

where cq := c1/(µ∆τ) is the cost of processing capacity per time period,
~q = (q1, ..., qS) ∈ Q ⊂ RS is the capacity of all shifts, and ts is the time period
in which shift s starts. By definition, ts+1 > ts ∀s, t1 = 1, and tS+1 = T + 1,
such that the shifts are non-overlapping and span across all time periods. The
AMSSP has the structure of a stochastic inventory-like problem with demand
backlogging.

Proposition 3.1. The cost function C(~q) of the AMSSP is jointly convex
in ~q.29

The classical approach to solving the AMSSP analytically requires deriving
the distribution of MT and then solving the optimization problem. While the
fluid and stationary approximations allow us to derive the expected queue
length of the last period E[MT ], the resulting optimization problem can still
29All proofs can be found in Appendix B.1.
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not be solved analytically. However, this approximation is still useful because
it provides the foundation for prescriptive analytics approaches to solving the
MSSP.

Proposition 3.2 provides an expression for E[MT ] for T = 2 with S = 2
shifts and independent normally distributed demands Dt.

Proposition 3.2. Assume S = T = 2, an empty queue at the beginning of the
horizon (M0 = 0) and independent, normally distributed demands D1, D2 with
mean µ1, µ2 and standard deviation σ1, σ2. Then the expected queue length at
the end of the horizon is given as:

E[MT ] =
∫ ∞

0
m

FD1(q1)fD2(m+ q2) +
exp

[
− (m−µ1−µ2+q1+q2)2

2(σ2
1+σ2

2)

]
2
√

2π
√
σ2

1 + σ2
2

·

1 + Erf
σ2

1(m− µ2 + q2) + σ2
2(µ1 − q1)

√
2σ1σ2

√
σ2

1 + σ2
2


 dm,

(3.4)

where FD1(d) =
∫ d
−∞

1√
2πσ2

1
exp

[
− (d̃−µ1)2

2σ2
1

]
dd̃ is the cumulative distribution

function of D1; fD2(d) = 1√
2πσ2

2
exp

[
− (d−µ2)2

2σ2
2

]
is the density distribution func-

tion of D2; and Erf[·] is the error function.

The results presented in Proposition 3.2 show that, even under the re-
strictive assumption of only T = 2 periods with S = 2 shifts and independent
normal demand, the estimation of E[MT ] becomes complex and results in a
non-linear problem that cannot be solved analytically. To solve the AMSSP
for T ≥ 2, one must resort to numerical approaches, as presented in the next
section.

3.3.3 Monte Carlo Sampling Solution to the AMSSP

This section uses a numerical solution approach to solve the AMSSP based on
Monte Carlo sampling, as Shapiro and Homem-de-Mello (1998) and Shapiro
(2003) propose. This numerical approach is used to establish a benchmark for
evaluating the prescriptive analytics approaches presented in the next section.
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In Section 3.3.1, we assumed that the decision-maker knows the distribu-
tion of Λτ for all τ . Analogous to the transition from the MSSP to the AMSSP,
we can define the T -dimensional uncertain demand ~D as:

Dt =
∫ t∆τ

(t−1)∆τ
Λτdτ ∀t = 1...T. (3.5)

Assuming the decision-maker knows the T -dimensional distribution F ~D, the
Monte Carlo sampling approach draws NMC samples ~dn from F ~D and then
solves the sample average approximation problem:

~q ∗ := arg min
~q∈Q

1
NMC

NMC∑
n=1

[
1
T

S∑
s=1

cq(ts+1 − ts)qs + c2m
n
T

]

s.t. mn
t = (mn

t−1 + dnt − qs)+ ∀n ∀t ∈ [ts, ts+1) ∀s = 1...S
mn

0 = M0 ∀n.

(3.6)

Assuming that the NMC samples are drawn iid from F ~D and that Q is
compact, then, because |MT (~q, ~D)| ≤ ∑

tDt ∀~q (dominating function), the
uniform strong Law of Large Numbers holds (Lemma 2.4 in Newey and Mc-
Fadden 1994). Consequently, 1

NMC

∑NMC
n=1 mn

T converges in probability to E[MT ]
for NMC →∞ and so is a consistent estimator (see, e.g., Shapiro and Homem-
de-Mello 1998). Therefore, if the decision-maker knows F ~D, the accuracy of
this numerical approach is determined only by the number of samples NMC

drawn from F ~D.

3.4 Prescriptive Analytics Approaches to the
AMSSP

The derivation of the AMSSP and the numerical solution approach described
in Section 3.3.3 are based on the assumption that the distribution F ~D of the
demand arrivals in each period t is known. Although theoretically appealing,
this assumption does not hold in most practical settings. When demand is
non-stationary during a single planning period (e.g., one day) and depends on
numerous “features”, the decision-maker is not likely to obtain an accurate
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estimate of the distribution F ~D.
In this section, we relax the assumption that the distribution F ~D is known

and consider the more practical case described in Section 3.1, where the
decision-maker has access only to a set of historical demand observations and a
data set of corresponding features (explanatory variables) but does not know
the relationship between the features and the uncertain arrival rate. More
formally, we denote the available data set by S̃N = {(~δn, ~xn)}, where ~δn is the
vector of arrivals that occurred on an individual day n (e.g., as time stamps),30

and ~xn denotes the associated p-dimensional feature vector. The p elements of
this feature vector ~x are variables that describe the day of the week, whether
the day is close to a public holiday, lagged demands from the previous day or
from the same day in the previous week, etc.31

For the purpose of solving the AMSSP, which is based on a discrete T -
period time structure, we transform the data set S̃N as follows: We assign all
arrivals to their respective time period t and denote the number of arrivals in
period t by dt. The resulting data set STN = {(~dn, ~xn)} contains the number of
demand arrivals ~dn = {dnt } in each period t on day n, and the same correspond-
ing feature vectors ~xn as in S̃N . The transformation from S̃N to STN ensures
that the level of aggregation of the demand data in STN is aligned with the
AMSSP’s T -period time structure. This alignment of the data structure with
the model structure is a precondition for employing traditional data-driven
and prescriptive analytics approaches to solve the AMSSP.

The data set STN is assumed to contain N iid samples from the underlying
joint distribution F ~X× ~D of the T -dimensional uncertain demand ~D and the
p-dimensional feature vectors ~x ∈ X ⊆ Rp. However, because the joint distri-
bution F ~X× ~D is (T + p)-dimensional, and demand and features may exhibit a
complex functional relationship that is driven by interaction effects of multiple
features, the limited number of data samples N contained in STN is typically
not sufficient to characterize the joint distribution F ~X× ~D. If the decision-maker

30The dimensionality of the vector ~δn of the arrivals on day n equals the number of arrivals
on this day, and the individual entries of this vector denote the time stamps of the arrivals.

31See Appendix B.2 for a detailed description of features used in our real-world numerical
analyses.
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cannot infer F ~X× ~D or F ~D| ~X=~x from STN , the AMSSP cannot be readily solved
using the Monte Carlo sampling solution outlined in Section 3.3.3. A simple
way to deal with the problem that is caused by F ~X× ~D being high-dimensional
is to reduce the dimensionality of the feature vector ~x: Simply speaking, the
decision-maker can, for example, identify the most “important” feature x̂ con-
tained in ~x (e.g., the day of the week) and neglect the prescriptive value of
the remaining features. This simplification allows the decision-maker to esti-
mate conditional distributions F ~D|X̂=x̂ by partitioning the data set STN along x̂
and fitting a T -dimensional distribution to each partition, and to solve the
AMSSP for each x̂ using F ~D|X̂=x̂ instead of the distribution of ~D, as outlined
in Section 3.3.3—that is, the PDE approach. We provide additional details on
PDE in Appendix B.3.5 and use this approach as a benchmark in our numer-
ical analyses. Clearly, the number of features that can be taken into account
when PDE is employed is limited by the number of observations N contained
in STN .32 Therefore, the PDE approach will inevitably forgo some of the pre-
scriptive value of the features contained in the feature vectors ~x, which can
result in lower performance than that of an approach that considers all rel-
evant features and interaction effects. We term the performance dependence
on the number of features the solution approach accounts for as the feature
effect, which we illustrate in Section 3.5.3.

Moreover, PDE requires estimating a T -dimensional conditional demand
distribution, and a limited number of observations N may require the decision-
maker to choose a small T to avoid issues that occur when fitting a high-
dimensional distribution based on a small number of demand observations.33

Choosing a small number of periods T can imply that the demand arrivals’ non-
stationary structure cannot be modeled appropriately, which may lead to lower
performance than that of an approach that can incorporate the non-stationary
32In practical situations we cannot expect more than 1,000 relevant observations of demand
and corresponding feature values. What’s more, partitioning, such as by the weekday
and some continuous feature like lagged demand using a 10-class binning rule will reduce
the number of observations in each partition to an average of less than 17, limiting the
accuracy of the estimated conditional distribution.

33In addition, the natural assumption of normally distributed total demand arrivals within
a time period (as the sum of several random variables) becomes less accurate when T is
large and the time periods are short.
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structure in more detail. We term the dependence of the performance on T

the time-structure effect.
As an alternative to this comparatively “hands-on” PDE approach, pre-

scriptive analytics approaches work to exploit the (potential) prescriptive value
of all of the p features in the feature vectors ~x without estimating a T -
dimensional conditional distribution F ~D| ~X=~x. Instead, they directly prescribe
decisions based on the data set STN by deriving a prescription function ~q(~x)
that maps from the feature space X to the decision space Q. Knowing such a
prescription function allows the decision-maker to derive a capacity prescrip-
tion for each new feature vector. As shown in the next section, prescriptive
analytics approaches overcome both limitations of the PDE approach by being
able to incorporate a large number of features simultaneously, so they are more
suitable to exploiting the prescriptive value of the features ~x contained in the
data set STN , and by supporting an arbitrarily high time resolution (reflected
by very high values of T ) that is constrained only by the granularity of the
demand data in S̃N .

Next, we introduce and discuss three prescriptive analytics approaches
that prescribe staffing levels directly based on the data set STN .

3.4.1 Weighted Sample Average Approximation

This section adopts the wSAA approach introduced by Bertsimas and Kallus
(2020) to solve the AMSSP. In contrast to the PDE approach, wSAA derives
prescriptions using an implicit estimate of the conditional demand distribu-
tion based on a weight function wn(~x) that represents the similarity between
feature vectors. As such, it fully exploits the prescriptive content of STN . More-
over, because it relies on the empirical demand distribution, and the weight
function wn(~x) is independent of T , the choice of T is restricted only by the
time resolution of the data set S̃N , which allows for a detailed representation of
the non-stationary arrival rates. Therefore, it can overcome the time-structure
effect that is associated with a small T . The approach is presented in Algo-
rithm 3.1.

In Steps 1 and 2, the decision-maker selects the number of time periods T
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Algorithm 3.1 Weighted SAA
1: Choose the number of time periods T .
2: Transform the data set S̃N into STN .
3: Select the weight function wn(·).
4: for each new feature vector ~x do
5: Compute the weights wn(~x) for all n = 1...N .
6: Solve:

~qwSAA(~x) = arg min
~q∈Q

N∑
n=1

wn(~x)
[

1
T

S∑
s=1

cq(ts+1 − ts)qs + c2m
n
T

]
s.t. mn

t = (mn
t−1 + dnt − qs)+ ∀n ∀t ∈ [ts, ts+1) ∀s = 1...S

mn
0 = M0 ∀n.

(3.7)
7: end for

and transforms the data set S̃N according to our description in the previous
section. The feature-based weight function wn(~x) (selected in Step 3, evaluated
in Step 5) computes a measure of similarity between the feature vectors ~xn in
the data set STN and a new feature vector ~x. These weights are then used in
the subsequent optimization (Problem 3.7 in Step 6), where the total costs as-
sociated with demand observations ~dn are weighted depending on how similar
their corresponding feature vector ~xn is to ~x.

Bertsimas and Kallus (2020) point out that, whenever the weights are non-
negative, they can be understood to correspond to an estimated conditional
distribution of ~D, given ~X = ~x. Thus, wSAA is based on an implicit estimate
of the conditional distribution based on the similarity of the data samples and
is in contrast to PDE, which is based on a partitioning of the data set STN
into similar observations along individual features and an explicit estimate of
a conditional distribution.

The performance of a wSAA approach is determined by the choice of the
weight function wn(~x). Weight functions can be broadly classified into data-
independent weight functions, which have a pre-defined functional form, and
weight functions that are learned from a specific data set such that the function
itself is data-dependent. Bertsimas and Kallus (2020) proved asymptotic opti-
mality of a wSAA approach using data-independent weight functions based on,
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for example, k-nearest-neighbors, kernel methods, and local linear regression.
Asymptotic optimality can also be shown for the wSAA approach in (3.7)
when it is based on data-independent weight functions (Appendix B.7). In
regimes with a limited number of historical demand observations and a poten-
tially large number of features p, the property of asymptotic optimality is of
less practical relevance34, and data-dependent weight functions that are based,
for example, on regression trees or random forests may produce better perfor-
mance, especially because they implicitly identify a subset of the features that
are most relevant to predicting a variable of interest (e.g., demand). Data-
independent weight functions, on the other hand, assign equal importance to
all p features (see the discussion in Notz and Pibernik 2021 for details). How-
ever, asymptotic optimality could not be shown for data-dependent weight
functions.

In numerical experiments by Bertsimas and Kallus (2020) and Notz and
Pibernik (2021), the following data-dependent weight function based on ran-
dom forests (introduced by Bertsimas and Kallus 2020), leads to superior
performance:

wRF
n (~x) = 1

L

L∑
l=1

1[Rl(~x) = Rl(~xn)]∑N
j=1 1[Rl(~x) = Rl(~x j)]

(3.8)

for a random forest trained on the data set STN , containing L trees, and with
Rl(~x) the terminal node of tree l containing ~x. The numerator in (3.8) counts
the instances in which the feature vectors ~x and ~xn are assigned to the same
terminal node in tree l, while the denominator captures the number of training
samples in the terminal node of ~x. The weight wRF

n (~x) is computed as an aver-
age of this fraction for all L trees of the random forest. This definition ensures
normalization of the weights, such that ∑nw

RF
n (~x) = 1. Simply speaking,

similarity between ~xn and ~x is measured by how often these two feature vec-
tors are assigned to the same terminal nodes of a random forest. Because this
random forest is trained on the data set STN and uses only the most important
features (by selecting a single feature for each split), the weight function is

34Convergence may be slow when the number of features p is large; consequently, when N
is small, the performance achieved may be far from the optimum. See Notz and Pibernik
(2021) for additional details.
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data-dependent and based on (implicit) feature selection. The superior per-
formance of wSAA with the weight function wRF

n (~x) in other applications, a
limited number of historical observations of demand N = 425, and a large
number of features p = 142, which warrants a weight function with implicit
feature selection, lead us to use wRF

n (~x) as defined in (3.8) to solve the AMSSP
in our real-world application.

3.4.2 Kernelized Empirical Risk Minimization

This section introduces an alternative to wSAA that we term kERM. While
wSAA relies on re-optimization for each new feature vector ~x, the kERM
approach determines a prescription function ~q(·) : X → Q that directly maps
from the feature space X to the decision space Q so that, for any new ~x,
the function ~q(·) outputs a prescription ~q(~x). The approach selects such a
function ~q(·) from a function space F , which is often restricted to the space
of linear functions for reasons of tractability and interpretability. However,
“there is no reason to expect that optimal solutions will have a linear structure”
(Bertsimas and Kallus 2020, p. ec2, e-companion), so we choose to solve the
AMSSP for non-linear function spaces through kernelization. Kernelization
corresponds to an (implicit) projection of feature vectors into a reproducing
kernel Hilbert space, employing the well-known machine learning kernel trick
(e.g., as used in kernel ridge regression and support vector machines, see Smola
and Schölkopf 2004 or Hastie et al. 2009 for details).

The kernel Hilbert space HK is defined by a kernel function K(~x1, ~x2).35

Similar to the weight function wn(~x) used for wSAA, the kernel function of
kERM provides a measure of similarity between two feature vectors ~x1 and ~x2.
Algorithm 3.2 summarizes the kERM approach.

Steps 1 and 2 are identical to Steps 1 and 2 of the weighted SAA algo-
rithm, while Step 3 selects the kernel function that defines the reproducing
kernel Hilbert space HK . The problem of selecting a kernel function is similar
to the problem of selecting a weight function for wSAA. As is common in

35See, for example, Schölkopf and Smola (2002) for the theoretical foundations of using
reproducing kernel Hilbert spaces.
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Algorithm 3.2 Kernelized ERM
1: Choose the number of time periods T .
2: Transform the data set S̃N into STN .
3: Select the kernel function K(·, ·).
4: Determine the regularization parameter ~λ.
5: Compute the coefficients uns = 1

2λs

(∑
t∈[ts,ts+1) α

n
t + δns −

cq(ts+1−ts)
NT

)
by

solving:

max
{αnt },{δns }

−
S∑
s=1

λs
N∑
p=1

N∑
q=1

(upsuqsK(~x p, ~x q)) +
∑
n,t

αnt d
n
t +

∑
n

αn1M0

s.t. αnt , δns ≥ 0 ∀t, n, s
αnt+1 ≥ αnt ∀t, n

αnT ≤
c2

N
∀n.

(3.9)

6: Compute the parameter ~b by solving:

~b = arg min
~b

min
{mnt }∈RT×N

1
N

N∑
n=1

 1
T

S∑
s=1

cq(ts+1 − ts)

·

 N∑
p=1

upsK(~x p, ~xn)− bs

+ c2m
n
T


s.t. mn

t ≥ mn
t−1 + dnt −

 N∑
p=1

upsK(~x p, ~xn)− bs


∀n ∀t ∈ [ts, ts+1) ∀s = 1...S

mn
t ≥ 0 ∀n, t

mn
0 = M0 ∀n
N∑
p=1

upsK(~x p, ~xn)− bs ≥ 0 ∀n, s.

(3.10)

7: Compute the prescription ~q kERM(~x) = ∑N
n=1 ~u

nK(~xn, ~x)−~b for each new
feature vector ~x.

machine learning, we select Tikhonov regularization (Vapnik 1998) to restrict
the complexity of the function space HK . In Step 4, the regularization param-
eter ~λ is obtained through validation and is used in the subsequent steps. In
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Step 5 the coefficients uns and in Step 6 the parameters bs of the prescription
function are computed. For this computation, a linearized equivalent of the
cost function is required, which we present in Proposition 3.3.36

Proposition 3.3. The cost function of the AMSSP can be linearized as:

C(~q, ~d) = 1
T

S∑
s=1

cq(ts+1 − ts)qs

+ min
{mt}∈RT

c2mT

s.t. mt ≥ mt−1 + dt − qs ∀t ∈ [ts, ts+1) ∀s = 1...S
mt ≥ 0 ∀t
m0 = M0.

(3.11)

Proposition 3.4. The linearized cost function C(~q, ~d), as stated in (3.11), is
jointly convex in ~q.

Based on this linearized cost function, we can solve the kERM approach to
the AMSSP for a non-linear reproducing kernel Hilbert space HK . We provide
the solution in Proposition 3.5, which forms the basis for Algorithm 3.2’s
Steps 5 and 6.

Proposition 3.5. Assume a kernel function K(~x1, ~x2). Then the kERM so-
lution to the AMSSP is given as

~q kERM(~x) =
N∑
n=1

~unK(~xn, ~x)−~b, (3.12)

where uns = 1
2λs

(∑
t∈[ts,ts+1) α

n
t + δns −

cq(ts+1−ts)
NT

)
and αnt , δns being the solution

36The linearized cost function ensures that the primal Lagrangian is differentiable.
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to

max
{αnt },{δns }

−
S∑
s=1

λs
N∑
p=1

N∑
q=1

(upsuqsK(~x p, ~x q)) +
∑
n,t

αnt d
n
t +

∑
n

αn1M0

s.t. αnt , δns ≥ 0 ∀t, n, s
αnt+1 ≥ αnt ∀t, n

αnT ≤
c2

N
∀n.

(3.13)

Step 7 of Algorithm 3.2 uses (3.12) and the coefficients uns and param-
eters bs (computed in Steps 5 and 6) to derive prescriptions for new feature
vectors ~x. Similar to the possible choices of weight functions for wSAA, kERM
allows the decision-maker to select from a variety of kernel functions. We can
distinguish between data-independent kernels—among which linear, polyno-
mial, or Gaussian radial basis function kernels are the most popular—and ker-
nels that are learned from the data. Analogous to the property of asymptotic
optimality, some of the data-independent kernels may allow for the universal
approximation property of the kERM approach. The universal approximation
property implies that, in the limit of N →∞, the kERM approach determines
the optimal prescription function of all continuous functions. However, this
property is again of limited practicality in settings with a small number of his-
torical observations of demand (e.g., N = 425 in our real-world application)
and a large number of features (p = 142). In such “small data” regimes, a
data-dependent kernel may lead to superior performance (see Appendix B.7 for
theoretical properties for a number of kernel functions, and Notz and Pibernik
2021 for a more detailed discussion of the choice of the kernel function).

For the same reasons as stated in Section 3.4.1 in favor of a data-dependent
weight function in small data regimes, a data-dependent kernel function is
likely to lead to better performance in our real-world application. Therefore,
we use a random forest kernel, which is similar to the random forest weight
function in Algorithm 3.1, for our numerical experiments:

KRF(~x1, ~x2) = 1
L

L∑
l=1

1[Rl( ~x1) = Rl(~x2)]∑N
j=1 1[Rl( ~x1) = Rl(~xj)]

, (3.14)
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where Rl(~x) describes the terminal node of tree l for feature vector ~x.
We cannot establish the universal approximation property of the kERM

approach when using the random forest kernel KRF(~x1, ~x2), but we can de-
rive out-of-sample performance guarantees that bound the expected costs that
are associated with staffing levels determined by the prescription function
~q kERM(·) based on a sample-splitting approach (see Appendix B.7).

3.4.3 Optimization Prediction Approach

As an alternative to the two prescriptive approaches presented in Sections 3.4.1
and 3.4.2, which entail re-optimization for each new prescription (wSAA) or
complexity in deriving the prescription function (kERM), this section presents
an easier approach—the OP approach, which relies only on solving a deter-
ministic optimization problem once and applying a standard machine learn-
ing method to predict optimal decisions. More specifically, the OP approach
computes ex-post optimal decisions ~q ∗

STN
(~xn) for each ~xn and then, based on

these ex-post optimal decisions, learns a prescription function ~qOP (·) that pre-
scribes decisions for new feature vectors ~x. The approach is summarized in
Algorithm 3.3.

Algorithm 3.3 Optimization Prediction Approach
1: Choose the number of time periods T .
2: Transform the data set S̃N into STN .
3: Compute the ex-post optimal decisions for all training data samples ~xn by

solving:

~q ∗STN
(~xn) := arg min

~q∈Q

1
T

S∑
s=1

cq(ts+1 − ts)qs + c2mT

s.t. mt = (mt−1 + dnt − qs)+ ∀t ∈ [ts, ts+1) ∀s = 1...S
m0 = M0.

(3.15)
4: Select a machine learning method (e.g., random forest) and learn the pre-

scription function ~qOP (·) that minimizes 1
N

∑N
n=1

∣∣∣~qOP (~xn) − ~q ∗
STN

(~xn)
∣∣∣2.

5: Compute the prescription ~qOP (~x) for each new feature vector ~x.
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Steps 1 and 2 are the same as those in Algorithms 3.1 and 3.2, but in Step 3
the OP approach computes the ex-post optimal decisions ~q ∗

STN
(~xn) for each ~xn

of the training data set STN . The ~q ∗
STN

(~xn) can be regarded as supporting
points of the prescription function ~qOP (·), which is learned using a standard
machine learning method (Step 4). For learning this prescription function,
we use the l2 norm as loss function so we can employ any standard machine
learning technique, including random forests, neural networks, and support
vector machines. The prescription function ~qOP (·) is then used to prescribe
staffing levels ~qOP (~x) for new observations ~x (Step 5).

The attractiveness of this approach lies in its simplicity, comprehensibil-
ity, and low implementation effort. Because the learning problem described in
Step 4 is based on a standard loss function, the OP approach does not require
the problem-specific development and implementation of machine learning al-
gorithms. In contrast to wSAA and kERM, which require non-standard im-
plementations, the OP approach can be solved directly with standard solvers
and common machine learning techniques for regression problems (e.g., neural
networks, gradient boosting, or random forests) that are widely available in
standard packages. Therefore, the OP approach is most suitable for rapid
deployment of prescriptive analytics.

In the next section we explore whether and when this intangible benefit
comes at the cost of lower prescriptive performance.

3.5 A Real-World Application and Additional
Numerical Insights

This section applies wSAA, kERM, and the OP approach to the MSSP faced
by Lufthansa Technik Logistik Services. We use their historical demand data
and realistic values of the company’s cost parameters to demonstrate the ap-
proaches’ applicability and to compare their performance to two traditional
PDE approaches and a conventional SAA approach that does not incorporate
feature data. To elucidate the underlying drivers of the approaches’ perfor-
mance along the time-structure and feature effects (Section 3.4), we vary the

81



3 Prescriptive Analytics for a Multi-Shift Staffing Problem

number of time periods T and study the importance of including an extensive
set of features. Using additional experiments with varying cost parameters, we
are able to shed light on the robustness of the approaches and to explain differ-
ences in their performance. We conclude this section with a recommendation
on which approach to choose for solving the MSSP, at least in the context of
our particular real-world application.

3.5.1 Problem Statement

This section adapts the general MSSP presented in Section 3.3 to the real-life
problem of Lufthansa Technik Logistik Services. The case company has two
shifts (S = 2), the first of which (s = 1) runs from 6 a.m. to 2 p.m., and the
second (s = 2) from 2 p.m. to 8 p.m. We specify the staffing levels of the
shifts for the AMSSP as:

q1 for t = 7, ..., 14
q2 for t = 15, ...., 20.

(3.16)

We track demand from midnight to 8 p.m. and initially set T = 20 with
t = 1, ..., 20 having a duration of ∆τ = 1 hour. Based on data provided by the
company, including an average personnel cost of 25 EUR/hour and a process-
ing rate of µ ≈ 7.2 units/hour, we determined the average personnel costs of
processing one unit of demand and set the capacity cost to cq = 3.5 EUR/unit,
which is the same for both shifts.37

The second shift can be extended to process any remaining workload at
8 p.m. but at a surcharge of 50 percent, so that c2 = 5.25 EUR/unit. Because
demand arrivals after 8 p.m. will be backlogged for the next day, we add any
of these late arrivals to the demand of the first period of the next day. As
indicated in Section 3.3.2, a real-world application of an approach to solve
the MSSP typically requires additional capacity constraints. Without such
constraints, the solution to the AMSSP is trivial because it would be optimal to
set q1 = 0 and to simply solve a newsvendor problem to determine the optimal
37Capacity qt is expressed as the number of units that can be processed in period t:
qt := µbt∆τ .
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q2 > 0 (see Appendix B.5 for additional details). However, this trivial solution
is often not an option in practice because, for example, the storage capacity
of unprocessed demand is limited, and congestion needs to be prevented. In
our particular case, the company wants to ensure employee satisfaction, so
it wants to staff both shifts in a more or less balanced way to accommodate
the preferences of its workers. We incorporate this soft workload-balancing
constraint by including an intangible cost, denoted by c3, that penalizes carry-
over from the first to the second shift. We acknowledge that there are other
ways to account for such load-balancing objectives, such as by enforcing a
minimum capacity for the first shift, but we found the carry-over penalty to
be the most flexible way to model such a constraint, especially because it
allows us to quantify the consequences of more or less load-balancing between
the shifts on the overall capacity required, as well as the total costs. For
our initial analyses, we set c3 to a relatively low value of 0.45 EUR/unit and
study how higher values of c3 impact the optimal staffing levels in additional
analyses. Based on these specifications, we formulate the AMSSP for our
real-world application as:

min
~q=(q1,q1)

C(~q) := cq ((t2 − t1)q1 + (t3 − t2)q2) + E[c2MT + c3M14]

with Mt =



0 for t = 0

(Mt−1 +Dt)+ for 1 ≤ t ≤ 6

(Mt−1 +Dt − q1)+ for 7 ≤ t ≤ 14

(Mt−1 +Dt − q2)+ for 15 ≤ t ≤ 20,

(3.17)

with t2 − t1 = 8 hours and t3 − t2 = 6 hours the duration of the two shifts,
and M14 the queue length at the end of the first shift.

3.5.2 Demand Data, Feature Engineering and Evaluation
Procedure

We received from the case company a data set S̃N with demand arrivals ~δn on
N = 532 days between February 2016 and November 2017 with a one-minute
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time resolution. From this raw data we constructed a data set STN with demand
values ~dn for T = 20 time periods of one hour for each day. For each day, we
constructed a feature vector ~xn ∈ R142 with features based on the date, public
holidays, lagged demands, and features related to the company’s processes. A
detailed description of the 142 features we constructed for our analysis can be
found in Appendix B.2.

We split the data set STN of 532 days into N = 425 days of training data,
and Ntest = 107 days of evaluation data. We evaluated the performance of the
following prescriptive approaches:

1. Weighted SAA: Apply Algorithm 3.1 with random forest weight func-
tion (3.8) to the specific capacity planning problem (3.17).

2. Kernelized ERM: Apply Algorithm 3.2 with random forest kernel (3.14)
and use (3.12) to solve the specific capacity planning problem (3.17).

3. OP Approach: Apply Algorithm 3.3 using random forest models to the
specific capacity planning problem (3.17).

These three prescriptive analytics approaches are compared to three bench-
mark approaches:

4. SAA: Apply Algorithm 3.1 with wn(~x) = 1/N to the specific capacity
planning problem (3.17) to obtain the SAA prescription (constant for
the test period).

5. PDE-T2 Approach: Estimate a single bivariate normal demand distri-
bution for each weekday and solve (3.17) using Monte Carlo simulation
with NMC = 300 samples.

6. PDE-T20 Approach: Estimate T = 20 independent normal demand
distributions for each weekday (resulting in a total of 120 demand distri-
butions) and solve (3.17) using Monte Carlo simulation with NMC = 300
samples.

Our first benchmark approach, SAA, is an attractive, data-driven, but fea-
tureless approach; the second and third benchmark approaches are traditional
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PDE approaches that were presented in Section 3.4. We used PDE first, with
T = 2 (PDE-T2), which corresponds to the number of shifts to be planned.
Then we used PDE with T = 20 to incorporate a higher time resolution but
assumed independence between the demands of the individual time periods
and so fit one normal distribution for each weekday and hour. Appendix B.3
provides a more detailed description of all of the approaches we considered.

We evaluated each approach’s prescriptive performance in terms of the
gap to optimal cost, that is, in comparison to the ex-post optimal cost

C∗(~d) = min
~q∈Q

C(~q, ~d). (3.18)

3.5.3 Base Line Results

Figure 3.2 plots the gap to optimal cost of all approaches for the test period
using the realistic cost parameters specified in Section 3.5.1. The largest per-
formance gap is between SAA and all other approaches: Compared to SAA,
the prescriptive approaches wSAA and kERM reduce the gap to optimal cost
by 52.1 percent and 48.3 percent, respectively. kERM performs similar to the
PDE-T20 approach, which outperforms its two-period counterpart, PDE-T2,
by almost 10 percentage points.
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Figure 3.2: Absolute gap to optimal cost for realistic cost parameters.
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The results for this particular parameter setting, presented in Figure 3.2,
point to the time-structure effect and the feature effect introduced in Sec-
tion 3.4: The difference between the traditional PDE-T2 approach and the
PDE-T20 approach in terms of performance reflects the time-structure effect
because the two methods are identical, apart from their time resolution of de-
mand. The extent of the feature effect becomes most obvious when SAA and
wSAA are compared; both approaches are based on the same time resolution
of demand (T = 20), but while wSAA accounts for the prescriptive contents of
the feature data contained in STN (by re-optimizing against the weights wn(~x)),
SAA is featureless and based only on historical demand observations. These
clear-cut comparisons provide quantitative evidence for the time-structure and
the feature effect, but only for these particular instances with a low vs. high
time resolution (of PDE-T2 vs. PDE-T20) and featureless vs. feature-based
approaches (SAA vs. wSAA).

The next two sections provide a more nuanced picture of the two effects and
how they impact the various approaches’ overall performance. These analyses
also substantiate our claim that prescriptive analytics approaches have an
advantage over traditional approaches in terms of both the time-structure
effect and the feature effect.

3.5.4 The Time-structure Effect

The time-structure effect becomes most obvious when PDE-T2 and PDE-T20
are compared. To facilitate an in-depth discussion of the various approaches
with regard to the time-structure effect, Figure 3 plots all approaches’ staffing
levels for shift 1 (Figure 3.3a) and shift 2 (Figure 3.3b), relative to the staffing
levels of SAA.

The staffing levels prescribed by PDE-T2 and PDE-T20 provide a straight-
forward explanation for the more than ten percentage-point differences in per-
formance shown in Figure 3.2. As Figure 3.3 shows, the PDE-T2 approach
prescribes higher staffing levels for shift 1 and substantially lower levels for
shift 2 than the PDE-T20 approach does consistently across all days of the
week. Both approaches face the trade-off between the cost incurred by idle ca-
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Figure 3.3: Staffing levels relative to SAA for real-world case.

pacity during shift 1, where we have a non-stationary demand structure with
increasing rates (Figure 3.1), and the cost incurred from backlogging demand
at the end of the first shift. Because the PDE-T2 approach assumes stationary
demand during the first shift, it ignores the idling cost during the ramp-up
phase at the beginning of shift 1 and so underestimates the overage cost. As
a consequence, it prescribes a higher staffing level for the first shift to avoid
the backlogging cost at the end of that shift. Because PDE-T20 and all other
approaches explicitly account for the increasing demand rates, they prescribe
lower staffing levels for shift 1 and higher staffing levels for shift 2 to balance
the cost of (idle) capacity with the cost of backlogging at the end of the first
shift.

While these results indicate that a low time resolution of demand (e.g.,
T = 2) leads to a (negative) time-structure effect on performance and that it is
more beneficial to choose a higher resolution (e.g., T = 20), the decision-maker
does not know, a priori, the “right” value of T . As discussed in Section 3.4,
a T set at either a value that is too low and one that is too high can have
adverse effects, depending on the solution approach. To shed light on how the
choice of the time resolution impacts the approaches’ performance, we carried
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out additional analyses in which we varied T from T = 2 to T = 1200.38 For
T = 1200, the length of each period t is equal to one minute.39 Figure 3.4
reports the gap to optimal cost for OP, kERM, wSAA, and PDE, dependent
on T .
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Figure 3.4: Absolute gap to optimal cost for a variation of T .

The results in Figure 3.4 indicate a time-structure effect for T < 12. Up to
T = 12, all approaches benefit from a higher time resolution of demand, while
for T > 12, there are no additional benefits associated with a more detailed
representation of the time structure. However, this finding is specific to our
problem setting, and the “right” number of time periods T that is required
for optimal staffing of the shifts depends heavily on the demand arrivals’ time
structure and the number of shifts. While, in our setting, T = 12 time periods

38In our case, the two shifts have a length of eight and six hours, respectively. To account
for the different shift lengths, we define T as the number of time periods between 0 a.m.
and 8 p.m., as in Problem 3.17, for T ≥ 20. When T < 20, T refers to the number of
time periods in which the two shifts are separated, that is, when each shift is separated
into T/2 time periods, which guarantees that both shifts extend over an integer number of
time periods. We evaluate the prescriptions using the empirical arrivals of the test period
with one-minute accuracy.

39Of course, the computational costs increase with the number of time periods, although
only polynomial in T . In case of, e.g., wSAA, when using the linearized cost function
(Proposition 3.3), we need to solve a deterministic linear program with S + T variables,
which can be done in polynomial time (Vaidya 1989).
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seem sufficient, in other instances (e.g., in online fulfillment) with possibly
multiple, short-term demand peaks throughout the day, an even higher time
resolution may be warranted, especially when shifts are shorter than they are
in our case.

The most relevant and interesting insight from the data shown in Fig-
ure 3.4 is that the performances of the three prescriptive analytics approaches
(OP, kERM, and wSAA) are robust to an increase in the number of peri-
ods T (for T > 12), even for extremely large values of T . For example, for
T = 1200, the prescriptive approaches effectively solve the problem over his-
torical observations of the arrival process. As such, they can overcome the
typical problems that are associated with stationary and fluid approximations
while still being computationally tractable. The results in Figure 3.4 suggest
that, when decision-makers use prescriptive analytics approaches, they may
sacrifice performance by choosing a time resolution that is too low but do not
suffer from choosing one that is unnecessarily high. We consider this a signif-
icant advantage over traditional approaches that rely on distribution fitting,
such as PDE. Figure 3.4 shows that the PDE approach’s performance dimin-
ishes for T > 20, which is intuitive because the number of demand arrivals in
each time period is small, and a normal distribution becomes a poor approxi-
mation of the true demand distribution in each period t. Of course, one could
try to use other theoretical distributions, but the well-known problems associ-
ated with fitting some theoretical distribution to a small number of historical
observations will persist.

3.5.5 The Feature Effect

In conjunction with the performance results in Figure 3.2, the feature effect
becomes most obvious when SAA is compared with wSAA. In our analysis,
SAA is the only approach that does not account for any features, while wSAA
can leverage all of the features contained in our data set STN . Therefore,
wSAA’s reducing the gap to optimal cost by 52.1 percent can be attributed to
the features’ prescriptive value and wSAA’s ability to leverage this prescriptive
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value.40

We carried out additional analyses to quantify the importance of various
classes of features and their prescriptive value and to clarify how the feature
effect is driven by the features’ prescriptive value. Figure 3.5 plots the im-
portance of several classes of features (e.g., weekday-related features, public
holiday-related features) based on the random forest model that was used for
kERM and wSAA.41 The results show that the features related to weekdays
are significantly more important compared to the other classes of features.
Figure 3.3 shows the consequences of SAA’s not accounting for weekday fea-
tures as, in contrast to all other approaches, it prescribes constant staffing
levels that are independent of the weekday. PDE-T2 and PDE-T20 rely on
weekday-specific demand distributions and prescribe staffing levels that vary
substantially across weekdays but are constant for each individual weekday.
wSAA leads to prescriptions with weekday-dependent levels and variations in
individual weekdays. Loosely speaking, we can attribute these within-weekday
variations to features that are not contained in the class of weekday-related
features. However, we must be careful with this interpretation because other
features, such as lagged demands, may be correlated with the weekday fea-
tures, preventing us from fully separating the effect that weekday-related fea-
tures and the remaining features have on wSAA’s prescriptions.

Beyond these structural effects regarding the prescribed staffing levels, we
are interested in how the importance of the class of weekday features and the
importance of the remaining features translate into prescription performance.
Therefore, we carried out an additional analysis in which we partitioned the
data set STN by the weekday and applied SAA to each partition. Comparing
the performances of SAA, “weekday-SAA”, and wSAA facilitates a consistent
evaluation of the weekday-related features’ and all other features’ prescriptive
40Bertsimas and Kallus (2020) introduce the “coefficient of prescriptiveness” as a measure
that quantifies “the prescriptive content of data and the efficacy of a policy”. In our
case, the coefficient of prescriptiveness of wSAA is equal its relative improvement over
SAA—that is, .521.

41We measure the importance of individual features as the decrease in node impurity based
on the residual sum of squares in the random forest that determines the weight or kernel
function of wSAA or kERM, respectively. A detailed analysis of the individual features’
importance is provided in Appendix B.2.
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Figure 3.5: Importance of feature classes, measured as a decrease in node
impurity in the underlying random forest model.

value. We find that the weekday-SAA approach’s performance improvement
over SAA is 50.7 percent, which suggests that the remaining features account
for performance improvement of only 1.4 percent. Therefore, the feature ef-
fect in our particular case example is driven primarily by a single class of
features, which is also reflected in the observation that wSAA’s prescriptions
(Figure 3.3) do not vary substantially on individual weekdays. An additional
insight comes from comparing PDE-T20 and the weekday-SAA approach: The
relatively good performance of PDE-T20 can be explained by its fitting a dis-
tribution for each weekday and each period t and, therefore, capturing most
of the features’ prescriptive value. However, using PDE-T20 leads to a lower
performance than using the weekday-SAA approach does (by 3.1 percent),
which can be explained only by the fact that PDE-T20 estimates theoreti-
cal demand distributions while the weekday-SAA approach solves the AMSSP
over the empirical distribution.

Our results on the feature effect raise the question concerning whether
the ability to incorporate a large set of features is a benefit of our prescrip-
tive analytics approaches. However, we must be careful not to generalize the
findings of our particular case study. Our situation, in which the weekday
proves to be by far the most important feature, appears to be an exception
when compared with other case studies presented in, for example, Bertsimas
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and Kallus (2020) and Notz and Pibernik (2021). Therefore, we conclude that
other features with a high prescriptive value may not be included in our data
set STN and that we cannot generally assume that the weekday features have
such a predominant effect. In online fulfillment, for example, other features,
such as variables for public or school holidays or variables that capture pro-
motional efforts may have much larger prescriptive values than the weekday
has in our particular maintenance case. The decision-maker does not know
a priori which combination of features drives the feature effect. When using
a traditional approach like PDE, the decision-maker has to identify the most
important features beforehand and is severely restricted in the number of fea-
tures that can effectively be incorporated (see our discussion in Section 3.4).
In contrast, the prescriptive analytics approaches considered in this paper can
deal with a larger set of features without having to make prior assumptions
about their prescriptive value. The performances of the kERM and wSAA ap-
proaches in Figure 3.2 suggest that while this does not always lead to a large
performance increase—as in our particular setting—it also does not come with
negative consequences.

3.5.6 Performance Comparison of Prescriptive Analytics
Approaches

The time-structure and feature effects described in the previous sections can
explain the gaps in the performance levels of the prescriptive approaches
(wSAA, kERM, and OP) and the (traditional) benchmark approaches (SAA,
PDE-T2, PDE-T20). We showed that the prescriptive analytics approaches
allow for a high time resolution of demand and the incorporation of a larger set
of features than the traditional approaches allow, and that these capabilities
can lead to superior performance. However, while all three prescriptive analyt-
ics approaches have these capabilities—they use the same high time resolution
of demand (T = 20) and can leverage all of the features contained in STN—we
saw substantial performance differences in our particular case. Figure 3.2 sug-
gests that using wSAA leads to the highest performance, followed by kERM
and OP, the last of which has a gap to optimal profit that is 8.4 percentage
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points larger than that of wSAA. In this section, we first explore whether our
results obtained for a particular scenario of cost parameters are sensitive to
variation in the cost parameters. Then we provide insights into and explana-
tions for performance differences among OP, wSAA, and kERM. We conclude
this section with a discussion of non-quantitative advantages and disadvan-
tages of three prescriptive analytics approaches and a recommendation for
practitioners who intend to use prescriptive analytics approaches to solve the
MSSP.

To explore the prescriptive approaches’ sensitivity to variations in the
cost parameters, we vary the staffing costs cq, the overtime costs c2, and the
backlogging costs c3 to induce approximate newsvendor-type service levels
(SL = CU

CU+CO = 1− cq
c2
) that range from 5 percent to 95 percent and different

load-balancing factors, defined as LB = 1 − cq
c3+cq . The load-balancing fac-

tor LB describes the propensity to fulfill demand that arrives in the first shift
within that shift, rather than backlogging the demand for the second shift. Ta-
ble 3.2 depicts the cost parameters of our analyses and Figure 3.6 shows the
performance of the three prescriptive analytics approaches that were trained
and evaluated for each cost scenario based on the real-world data set STN .

Table 3.2: Variations in Cost Parameters.

Figure cq c2 c3 Service Level SL Load Balancing LB

3.6a 5...0.3 5.25 0.6...0.06 5%...95% 0.1

3.6b 5...0.3 5.25 7.5...0.4 5%...95% 0.6

From the results presented in Figure 3.6, we observe that using wSAA
leads to the best performance across almost all service level regimes and that
using kERM leads to similar performance but that is slightly lower in most
instances. For service levels ranging from 40 percent to 70 percent, using
the OP approach achieves optimality gaps that are similar to those of wSAA
and kERM, but also leads to substantially lower performance for very high
or very low service levels. This finding is in line with the results reported in
Figure 3.2 for our realistic cost scenario, where the approximated service level
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(b) Load balancing LB = 0.6.

Figure 3.6: Absolute gap to optimal cost across service levels (SL) for different
levels of load-balancing (LB).

is low (SL = 33.3%) and using OP leads to a large gap to optimality relative
to that of using wSAA and kERM. Structurally, the results are similar under
low and high load-balancing factors. Appendix B.6 provides more extensive
explanations for the effect of the load-balancing factor and shows how that
factor impacts the traditional approaches’ performance.

The lower performance of the OP approach under very low or very high
service level regimes can be explained based on traditional newsvendor logic.
Simply speaking, a high service level (SL > 50%) requires that the optimal
staffing level includes a positive safety buffer that increases in both the service
level and the demand uncertainty. Likewise, a low service level (SL < 50%)
requires a negative safety buffer. While OP accounts for a potential asym-
metry in overage and underage costs (in Step 3 of Algorithm 3.3), demand
uncertainty is not involved in this optimization because it determines the ex-
post optimal staffing levels for (certain) historical observations of demand, so
the ex-post optimal staffing levels obtained do not include any (positive or
negative) safety buffers to hedge against demand uncertainty. In Step 4 of
Algorithm 3.3, the OP approach generalizes these ex-post optimal decisions
by learning a prescription function based on the common, symmetric l2 loss
function, which also does not provide for safety buffers because the symmetric
l2 loss implicitly induces an optimal service level of 50 percent. As a conse-
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quence, the OP approach does not adjust the staffing levels appropriately for
high or low service levels when demand is uncertain. This safety buffer effect
can also be observed in Figure 3.3b, where OP prescribes staffing levels that
are higher than those of either wSAA or kERM on each weekday. Intuitively,
this effect is negligible—or at least less pronounced—under medium-range ser-
vice level regimes, but it has a detrimental effect on performance when service
levels are either very high or very low and demand uncertainty is considerable,
as in our case example (Table 3.1).

We now turn to the differences in the performance that result from us-
ing wSAA and kERM. The results in Figure 3.6 suggest that using kERM
or wSAA leads to lower performance when the service levels are high or low.
However, the differences are much lower than they are for the OP approach.
We attribute this lower performance to a regularization effect that Notz and
Pibernik (2021) describe and that can also be explained using a traditional
newsvendor logic. Under high or low service level regimes, it is optimal for
kERM to choose a higher regularization parameter in Step 4 of Algorithm 3.2,
which causes the prescription function to adapt less well to variations in the
historical demand observations. This reduction in variation is generally desir-
able under high or low service level regimes, because it leads to a higher bias
and therefore to a higher positive or negative (implicit) safety buffer (see Notz
and Pibernik 2021 for additional details). However, in the case of our data
set it also suppresses the variations in the prescriptions between the week-
days. Figure 3.3b shows both effects: a reduced variation in prescriptions
for kERM (e.g., on Mondays) and a reduced variation between the weekdays;
for example, kERM prescribes lower capacities than wSAA on Mondays and
Wednesdays but higher capacities on Tuesdays and Saturdays.

Our numerical results lead us to conclude that, at least for our particular
case example, wSAA is preferable for solving the (A)MSSP because it allows
for a high time resolution, incorporates a large number of features, and is sub-
ject to neither the safety buffer effect nor the regularization effect. The supe-
rior performance of wSAA in our study supports the results of previous studies,
where wSAA leads to very good, if not superior, results, when it is applied
to other problems in Operations Management (see Bertsimas and Kallus 2020
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and Notz and Pibernik 2021). wSAA also has some clear intangible benefits,
especially over kERM, as it builds on the well-established SAA methodology in
combination with a weight function that is highly intuitive. As such, not only
does it have an intuitive logic and is fairly easy to explain to decision-makers,
but it also requires a limited implementation effort. Although wSAA requires
re-computation of the weights and re-optimization against these weights for
every new feature vector ~x, its computational complexity does not seem to
pose restrictions for practical applications.

kERM is more complex and difficult to implement than wSAA is, as ev-
idenced by Algorithm 3.2. In our setting, kERM’s greater complexity is not
compensated for by better performance because, in contrast to wSAA, kERM
suffers from a regularization effect that appears to be particularly relevant
because of the weekday structure in our data set.

As Section 3.4.3 explains, the OP approach’s attractiveness lies in its sim-
plicity and in its ability to be deployed rapidly and with little effort since it
does not require the problem-specific development and implementation of ma-
chine learning algorithms but can be solved with standard solvers and standard
machine learning packages. However, the approach suffers from a safety buffer
effect, so it performs well only when target service levels are close to 50 per-
cent, that is, service levels for which the safety buffer effect is not pronounced.
In our case, using the OP approach lead to good performance for service levels
between 40 percent and 70 percent, but because the safety buffer effect also
depends on the demand uncertainty, we cannot generalize this finding to other
problem instances. This issue limits the OP approach’s general applicability
to solving the (A)MSSP, despite its advantages in terms of comprehensibility
and ease of implementation.

3.6 Conclusion
This paper proposes new data-driven approaches for solving a multi-shift
staffing problem (MSSP) with uncertain, time-varying arrival rates and patient
“customers” that do not abandon the queue while waiting for service. Our ap-
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proaches have two steps: Derive an approximated MSSP (AMSSP) based on
fluid and stationary approximations, and solve the AMSSP by means of tai-
lored prescriptive analytics approaches, using machine learning techniques that
allow for a detailed representation of the non-stationary structure of arrivals
and that leverage extensive auxiliary data that may be predictive of demand.
We adapted two established prescriptive analytics approaches—weighted sam-
ple average approximation and kernelized empirical risk minimization—and
proposed a new optimization prediction approach to solve the (A)MSSP. We
show that our approaches have clear structural benefits over traditional ap-
proaches that first estimate the arrival rates’ distribution and then try to solve
a complex stochastic optimization problem: they can help overcome both a
negative time-structure effect and a negative feature effect that are likely to
be associated with traditional approaches. Using a real-world application and
additional numerical analyses, we exemplified and quantified these benefits.
The numerical analyses also provided insights into differences between the
performance levels of the three prescriptive analytics approaches we employ.
Based on an extensive discussion of the numerical results, we conclude that
prescriptive analytics approaches are superior to traditional approaches and
that, among the prescriptive analytics approaches, wSAA is the most suit-
able method in terms of both performance and intangible criteria like ease
of use, intuitiveness, and comprehensibility. Of course, we must be careful
in generalizing these results beyond the boundaries of our particular appli-
cation; additional comparative studies should be carried out to validate (or
invalidate) our findings. Nonetheless, we see prescriptive analytics approaches
as a promising avenue for solving complex capacity planning problems with a
queuing type of structure and see the primary contribution of our paper as its
combining both “worlds”—that of queuing theory and that of prescriptive ana-
lytics. Our approach may be the basis for solving capacity planning problems
that are richer and more complex than the MSSP by means of prescriptive
analytics approaches.
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4 Explainable Subgradient Tree
Boosting for Prescriptive
Analytics in Operations
Management

Motivated by the overwhelming success of gradient boosting approaches
in machine learning and driven by the need for explainable prescriptive ana-
lytics approaches in operations management (OM), we propose an explainable
prescriptive analytics approach to solving complex OM problems: subgradient
tree boosting (STB). The STB approach combines the well-known method of
subgradient descent in function space with sample average approximation, and
directly prescribes decisions from a problem-specific loss function, historical
demand observations, and prescriptive features. The approach is inherently
explainable and allows a decision-maker to derive detailed explanations for the
prescribed decisions, such as a breakdown of individual features’ impact that
clarifies the underlying drivers of the prescriptions, which is increasingly useful
in practice. We show how subgradients can be derived for many common OM
problems, demonstrate STB’s applicability to two real-world, complex capacity
planning problems in the service industry, benchmark its performance against
those of two prescriptive approaches—weighted sample average approximation
(wSAA) and kernelized empirical risk minimization (kERM)—and show how
STB’s prescriptions can be explained by estimating the impact of individual
features. The results suggest that STB’s performance is comparable to those
of wSAA and kERM but also provides explainable prescriptions.
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4.1 Introduction
Prescriptive analytics approaches to operations management (OM) problems
use integrated machine learning algorithms to prescribe decisions based di-
rectly on historical observations of demand and numerous features (co-vari-
ates), without making assumptions about underlying demand distributions.
These approaches have become popular (Bertsimas and Kallus 2020, Notz and
Pibernik 2021) and aim to improve prescriptive performance by prescribing de-
cisions that minimize expected costs or maximize expected profits. However,
“understanding why a model makes a certain prediction can be as crucial
as the prediction’s accuracy in many applications” (Lundberg and Lee 2017,
p. 4768). According to Rudin (2019), especially in domains like healthcare
and criminal justice, the explainability of prescription models can be of par-
ticular relevance to preventing incorrect decisions. Rudin (2019, p. 206) calls
for the use of “inherently interpretable models” in making high-stakes deci-
sions. However, this interpretability may come at the cost of performance,
and a decision-maker may face a trade-off between prescription performance
and explainability (Bertsimas et al. 2019).

Boosting approaches are particularly well-suited when both prescription
performance and explainability are required: Boosting has often led to supe-
rior performance and is often termed “one of the most significant advances
in machine learning” (as in Zhang and Yu 2005, p. 1538). Boosting is regu-
larly among the winning approaches in machine learning competitions, such
as those organized by Kaggle and others (see, e.g., Sandulescu and Chiru 2016
or Volkovs et al. 2017). At the same time, boosting models are generally ex-
plainable because they consist of an additive set of comparatively simple base
learners (e.g., simple decision trees), which can be interpreted. This additive
structure of a boosting model allows the decision-maker to derive explana-
tions for the prescribed decisions that build trust and enable the traceability
of decisions.

The foundations of boosting—that is, the improvement of a weak learn-
ing algorithm through iterative application and combination—date back to
Schapire (1990), who shows that weak learnability (which means that a learn-
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ing algorithm can perform at least slightly better than random guessing) is
equivalent to the notion of strong learnability; in other words, given enough
training data, “the learner with high probability is able to output an hypoth-
esis that is correct on all but an arbitrarily small fraction of the instances”
(Schapire 1990, p. 197). Freund and Schapire (1997) introduce the first boost-
ing algorithm, termed AdaBoost, that focuses on learning an improved classifier
based on weak classifiers. This algorithm opened up the field of research on
boosting methods and led to the development of a multitude of algorithms
for classification and regression problems (see, e.g., Schapire 2003, Bühlmann
and Hothorn 2007, and Schapire and Freund 2012). One of the boosting al-
gorithms that has been applied successfully is Gradient Boosting, introduced
by Friedman (2001) and extended to stochastic gradient boosting in Friedman
(2002). Stochastic gradient boosting led to one of the most popular gradient
boosting approaches in use today, XGBoost, a scalable tree boosting approach
proposed by Chen and Guestrin (2016). The concept of gradient boosting
is similar to that of gradient descent methods of convex optimization: After
initializing with a base hypothesis function, the algorithm performs “steps”
in the opposite direction of the gradient of a loss function toward the mini-
mum by adding base learners to the hypothesis function that approximate the
negative gradient.

When using decision trees as base learners, as XGBoost does, one can de-
rive Shapley additive explanation (SHAP) values that allow us to express any
prediction as the sum of individual features’ contributions. These SHAP val-
ues, proposed by Lundberg and Lee (2017), are shown to be the only possible
feature attribution method that provides local accuracy (the sum of SHAP val-
ues equals the prediction), consistency (between models with differing feature
attributions), and missingness (features that have no impact on the predic-
tion must have zero value). Because the computation of these values can lead
to a complexity that is exponential with the number of features, Lundberg
et al. (2020) introduce an algorithm they call TreeSHAP, which allows us to
compute the SHAP values efficiently in polynomial time.

Motivated by the success of boosting approaches in the domain of (tradi-
tional) machine learning and the inherent explainability of their predictions, we
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apply the boosting idea of combining a set of iteratively trained, weak, explain-
able learners to the domain of prescriptive analytics. While classic gradient
boosting approaches are based primarily on differentiable loss functions (e.g.,
the l2 loss), we require a generalization of these approaches to more complex,
non-differentiable loss functions that are common in OM, such as the well-
known newsvendor problem, which leads to a non-differentiable loss function.
Similar to the subgradient methods that generalize gradient descent algorithms
to be applicable to non-differentiable cost functions, gradient boosting can be
restated using subgradients, as in Ratliff et al. (2006) and Biau and Cadre
(2017). However, the application of these subgradient boosting approaches for
prescriptive analytics in OM raises two problems: First, such a generalized
approach (e.g., Algorithm 2 in Biau and Cadre 2017) is applicable only to loss
functions that are defined on a decision space Q = R. Such is not usually the
case in OM settings, where the loss function (or cost function) is often defined
only for a restricted decision space, such as Q = {q ∈ R : 0 ≤ q ≤ qmax} ⊂ R.
In such settings, when the loss function is defined only on Q, as in the case
of the real-world capacity problems presented in Section 4.5, the subgradients
are undefined for q /∈ Q, and the traditional (sub)gradient boosting approach
(as in Friedman 2001 and Biau and Cadre 2017) is not applicable. Second,
deriving a subgradient of OM loss functions is not trivial. Many OM prob-
lems lead to complex loss functions, such as the seemingly simple problem
of capacity planning with upgrading for a car rental provider, which leads
to a (two-stage) stochastic problem with recourse (Netessine et al. 2002), for
which a subgradient of the respective loss function cannot be obtained easily.
Another example of this class of problems is a two-stage shipment planning
problem, where products are allocated to individual warehouses under demand
uncertainty (the first stage), and once demand is realized, the decision-maker
chooses from which warehouse to ship products to satisfy it (second stage)
(Bertsimas and Kallus 2020). Deriving a subgradient for the loss function of
this complex, two-stage OM problem is, again, not trivial.

We address the first problem by proposing an approach we term Subgradi-
ent Tree Boosting (STB), which extends the (sub)gradient boosting approach
by using sample average approximation (SAA) to estimate the descent di-
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rection (in function space) and the step size, which guarantees that the pre-
scriptions for the training data samples are always feasible and the respective
subgradients are well-defined throughout the training procedure (Section 4.3).
We address the second problem by providing methods with which to derive
a subgradient of the loss functions for common OM problems; in particular,
we use perturbation theory to derive a subgradient for two-stage stochastic
problems with recourse (Section 4.4).

Our numerical analyses compare STB’s performance to those of two pre-
scriptive analytics approaches, weighted SAA (wSAA) and kernelized empiri-
cal risk minimization (kERM) (Bertsimas and Kallus 2020, Notz and Pibernik
2021), by means of two real-life case studies of capacity planning problems. We
derive SHAP values using the TreeSHAP algorithm (Lundberg et al. 2020),
provide exemplary breakdowns of prescriptions into individual features’ im-
pacts (based on their feature value), and use SHAP dependence plots to show
how the individual features’ value drives the prescription. These explanations
based on SHAP values mark a significant advancement from analyses of fea-
tures’ importance conducted for wSAA or kERM using a random forest weight
or kernel function (see, e.g., Notz and Pibernik 2021). Such analyses of im-
portance shed light only on which feature is most important to characterize
the similarity of training samples (e.g., the weekday could be more important
than lagged demand). In contrast, the SHAP values derived for STB allow us
to explain how the value of a feature impacts the decision; for example, be-
cause demand yesterday was 50 percent higher than average, we decrease our
capacity prescription by 7 percent (Figure 4.9b, aviation-maintenance case).

The main contributions of this paper can be summarized as follows:

1. We propose STB, a novel prescriptive analytics approach to OM prob-
lems based on a combination of well-known (sub)gradient boosting meth-
ods and SAA for estimating step size and direction, and compare its
prescription function structurally to that of kERM.

2. We show how a subgradient can be derived for many common OM prob-
lems, including the use of perturbation theory to derive a subgradient
for the large class of two-stage stochastic problems with recourse.
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3. We demonstrate the STB approach’s applicability to real-life OM prob-
lems by applying it to two capacity planning problems (of a mail logistics
provider and an aviation maintenance service provider) and benchmark
its performance against those of SAA, wSAA and kERM.

4. We show that STB’s prescriptions are explainable, compute the SHAP
values, break selected prescriptions down into the contributions of in-
dividual features, and analyze how individual features’ value drives the
prescription.

4.2 Literature Review
The research presented in this paper is related to three streams of literature:
the vast body of literature on boosting approaches for machine learning, the
recently evolved stream of research on prescriptive analytics approaches for
OM, and the stream of literature on explainable artificial intelligence (ex-
plainable AI).

The first stream, on boosting approaches for machine learning, begins with
the idea of boosting introduced in Schapire (1990), in which weak and strong
learnability are shown to be equivalent. Based on this insight, Freund and
Schapire (1997) propose AdaBoost, the first boosting algorithm for classifica-
tion. While research first considered boosting an iterative learning approach
in which each additional weak learner improves the overall hypothesis function
by successively correcting for prediction errors, Mason et al. (1999, p. 512)
provide the perspective of “boosting algorithms as gradient descent on cost-
functionals in an inner-product function space”. This understanding facilitated
Friedman’s (2001) development of an explicit formulation of gradient boost-
ing and its extension to stochastic gradient boosting in Friedman (2002). For
additional details, we refer the reader to comprehensive reviews, including the-
oretical perspectives and statistical insights on several boosting approaches in
Meir and Rätsch (2003), Bickel et al. (2006), Bühlmann and Hothorn (2007),
and Schapire and Freund (2012).

In addition to the classic prediction tasks of regression and classification,
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boosting has been applied to a variety of problems, including non-differentiable
loss functions. Ratliff et al. (2006) use boosting approaches to solve the maxi-
mum margin planning algorithm for imitation learning; in particular, to solve
their learning problem, they use “subgradient descent in the space of cost
functions” (Ratliff et al. 2006, p. 1153), described as a “convex, but non-
differentiable regularized risk function for the general margin” (Ratliff et al.
2006, p. 1154). The proposed methods are applied in Ratliff et al. (2007) and
Ratliff et al. (2009).

An even more general view on boosting for convex loss functions, pre-
sented in Grubb and Bagnell (2011) and Biau and Cadre (2017), has since
evolved. Grubb and Bagnell (2011) provide a general theory of functional gra-
dient descent over the L2(X ,Y , µ) Hilbert space of functions f : X → Y with
µ the probability measure. They propose two modified boosting algorithms
for which they derive convergence results for non-differentiable convex risk
functionals. However, Biau and Cadre (2017, p. 1) show that these modifi-
cations are not required and provide a “thorough analysis of two widespread
versions of gradient boosting”, including convergence results for these algo-
rithms, where the key difference between the two versions is the method by
which the functional (sub)gradient is projected onto the space of admissible
functions. The first algorithm they analyze is based on the scalar-product-
maximizing boosting steps originally proposed in Mason et al. (2000). Con-
vergence is demonstrated under the assumption of a bounded loss function
with a Lipschitz-continuous subdifferential in expectation (Theorem 3.1 in
Biau and Cadre 2017). The second algorithm uses an l2 norm minimization
to project the functional (sub)gradient onto the space of admissible functions
(originally proposed in Friedman 2001). In addition to the assumptions for
the first algorithm, strong convexity of the loss function is required to prove
convergence (Theorem 3.2 in Biau and Cadre 2017). Convergence is generally
a valuable property, but when boosting approaches are applied to real-world
problems and finite data sets, these properties are “numerical-analysis-type
results, which do not provide information on the statistical properties of the
boosting predictor” (Biau and Cadre 2017, p. 18). In fact, the boosting ap-
proaches may overfit when the iteration is continued until it converges, which
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leads to predictor functions that do not generalize well beyond the training
data set. Regularization methods that prevent overfitting include the popular
technique of early stopping and limiting the complexity of the linear span of the
base learners, which is the function space over which the boosting approaches
optimize when the number of iterations is not limited. Using a specific func-
tion space with limited complexity and a strongly convex risk functional, Biau
and Cadre (2017) show that, in such a setting, the boosting algorithm does
not overfit when the parameters are carefully selected.42

Applying these (sub)gradient boosting algorithms becomes difficult, when
the feasible region Q of the decision q is restricted (e.g., when 0 ≤ q ≤ qmax),
which is typically the case in OM problems. In such settings, the prescription
function may lead to infeasible decisions q during training, which can ren-
der the subgradient undefined and, consequently, the algorithm inapplicable.
Therefore, we propose a combination of the (stochastic) (sub)gradient boost-
ing algorithm with l2 norm minimization projection (Friedman 2001, Friedman
2002, Biau and Cadre 2017) with SAA to determine step size and direction,
which guarantees feasibility of the prescribed decisions q for the training data
and all boosting iterations during training (see Section 4.3.1 for details).

The second stream of related literature focuses on prescriptive analyt-
ics approaches to OM problems. Historically, planning problems in OM have
been solved either under the assumption of a known demand distribution (e.g.,
Netessine et al. 2002) or using a data set of historical demand observations,
with the implicit assumption of a stationary but unknown demand distribu-
tion (e.g., by employing the SAA approach, see Shapiro and Kleywegt 2002
and Shapiro 2003). When the demand distribution is neither known nor sta-
tionary, but the decision-maker has a set of historical demand observations
and feature data (co-variates), prescriptive analytics approaches may lead to
superior decisions. Key contributions to this stream of literature are those
of Ban and Rudin (2019), who study a newsvendor model with feature data;
Bertsimas and Kallus (2020), who propose a general prescriptive analytics

42The proposed function space is based on decision trees that are allowed to split only in
the center of a node—which is in contrast to regular decision trees, where the splitting
point is optimized—and partitions the feature space in equally sized hypercubes.
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framework based on a weighted adaption of SAA (wSAA); Notz and Pibernik
(2021), who compare a kERM approach to wSAA; and Notz et al. (2020), who
apply wSAA and kERM to a queuing capacity planning problem and propose
an additional approach they term Optimization Prediction (OP) approach.43

A more detailed review of this stream of literature can be found in Notz and
Pibernik (2021).

We extend this stream of literature by proposing STB as a novel prescrip-
tive analytics approach (in addition to wSAA and kERM) and demonstrate its
applicability using two complex capacity planning problems with vector-valued
decisions, multivariate demand, and multiple constraints. The first problem is
a capacity planning problem of a mail logistics provider that plans the (staff)
capacity for three service lines under demand uncertainty with an upgrading
option after demand has been realized (Bassok et al. 1999, Netessine et al.
2002, Notz and Pibernik 2021). The second problem is the multi-shift staffing
problem (MSSP) of a maintenance service provider in the aviation industry
that plans daily staff capacities for two shifts while facing uncertain hourly
demand arrivals (Notz et al. 2020).

A third stream of literature, focused on explainable AI, has evolved re-
cently. This research area follows the view that, in many applications, the “ex-
plainability” of a prediction can be as important as the prediction performance
(Lundberg and Lee 2017). Typical motivations for wanting to understand a
model include the need to trust the model’s predictions, to understand the
causality behind its decisions, and to ensure fair and ethical decision-making
(Lipton 2018). Foundational concepts of explainability (Gilpin et al. 2018)
and a perspective on what constitutes a good explanation based on research
in the social sciences (Miller 2019) elucidate what makes a model understand-
able or explainable. Abdul et al. (2018) provide a general overview of research
that is relevant to explainable AI across many domains. However, a model’s
interpretability may come at the cost of decreased prediction performance.
Bertsimas et al. (2019, p. 1) “quantify the ‘price’ of interpretability, i.e.,
the tradeoff with predictive accuracy” because requiring a model to be in-
43The OP approach leads to significantly lower performance for exceedingly low or high
service levels (Notz et al. 2020), so it is not included in our analysis.
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terpretable in addition to predicting accurately may lead to a dual-objective
problem. We may also face this trade-off in our research because, for example,
when STB leads to lower prescription performance than wSAA, a decision-
maker would have to choose between higher performance (wSAA) and more
explainable prescriptions (STB). We explore this trade-off numerically, derive
explanations of the STB prescriptions using SHAP values (Lundberg and Lee
2017, Lundberg et al. 2020), and present a detailed discussion in Section 4.5.5.

4.3 Subgradient Tree Boosting for Prescriptive
Analytics

This section introduces the STB approach under the assumption that a sub-
gradient of the loss function is known. The section also provides a structural
comparison of its prescription function to kERM and shows how SHAP values
can be derived (following Lundberg et al. 2020) to explain the STB prescrip-
tions. Section 4.4 provides methods with which to derive a subgradient for the
most common OM problems.

Assume a decision-maker has a historical data set SN of N data sam-
ples (~xn,dn) with historical demand observations dn ∈ D and feature vec-
tors (co-variates) ~xn ∈ X . The decision-maker faces the planning problem
of choosing a ~q ∈ Q (e.g., a capacity decision) to minimize a loss function
L(~q,d) : Q×D → R, which assigns an incurred loss to a decision ~q given a re-
alized demand d. For many OM problems in which the decision-maker wants
to minimize some (expected) costs associated with a decision, the loss is equal
to the cost reflected by the problem’s objective function (e.g., as in the case of
the aviation maintenance provider in Section 4.4.4). In other instances, where
the decision-maker wants to maximize the (expected) profit that is associated
with a decision, the loss can be expressed as the gap to the optimal profit
under full information (e.g., as in the case of the mail logistics provider in
Section 4.4.3).

One approach of prescriptive analytics is to determine a function ~q(·) of
a function space F that maps from X to Q, such that the true risk (which is
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defined as expected loss) is minimized:

min
~q(·)∈F

R(~q(·)) := min
~q(·)∈F

E ~X×D

[
L(~q( ~X),D)

]
. (4.1)

Because the joint distribution of ~X ×D is unknown, but the decision-maker
has a data set SN that consists of N iid samples of this joint distribution, the
principle of empirical risk minimization proposes to minimize the empirical
risk instead of the true risk:

min
~q(·)∈F

RN(~q(·)) := min
~q(·)∈F

1
N

N∑
n=1

L(~q(~xn),dn). (4.2)

Gradient boosting approaches solve (4.2) by applying a gradient descent
method in function space, which iteratively adapts a hypothesis function ~qk(·)
along the direction of the gradient of the loss function L(~q,d) with respect
to ~q. Because the loss function of OM problems is often convex but not dif-
ferentiable, we follow the generalized approach of subgradient boosting that
employs subgradients to determine the direction of descent. Next, we intro-
duce the concept of subgradients and subdifferentials for convex loss functions
(following Rockafellar 1970).

Definition 4.1. (Following Rockafellar 1970) A vector ~s ∈ Q is called a
subgradient of a convex function L : Q → R at ~q0 ∈ Q if

L(~q) ≥ L(~q0) + 〈~s, ~q − ~q0〉 ∀~q ∈ Q. (4.3)

Definition 4.2. (Following Rockafellar 1970) The subdifferential ∂L(~q0) of a
convex function L : Q → R at ~q0 ∈ Q is the set of all subgradients:

∂L(~q0) = {~s : L(~q) ≥ L(~q0) + 〈~s, ~q − ~q0〉 ∀~q ∈ Q}. (4.4)

Based on these definitions, we can state requirements that guarantee at
least one subgradient.

Proposition 4.1. (Following Rockafellar 1970) Let L : Q → R be a convex
function with Q convex and non-empty, L(~q) <∞ for at least one ~q ∈ Q, and
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L(~q) > −∞ for all ~q ∈ Q, and let ~q0 ∈ intQ. Then the subdifferential ∂L(~q0)
of L at ~q0 is a non-empty, bounded set.44

Proposition 4.1 implies that, when Q = RI , the subdifferential is non-
empty and at least one subgradient exists for each ~q ∈ Q. The subgradient
provides the foundation for the STB approach, which we describe in the next
section.

4.3.1 The Subgradient Tree Boosting Approach

In this section we propose the STB approach, which is a combination of
(stochastic) (sub)gradient boosting (Friedman 2001, Friedman 2002, Biau and
Cadre 2017) and SAA, for solving Problem 4.2. Similar to other boosting
approaches (e.g., XGBoost in Chen and Guestrin 2016), STB uses decision
(regression) trees as base learners.

As discussed in Section 4.1, in OM settings the space of feasible deci-
sions Q is almost always restricted by, for example, only allowing for positive
capacities q ≥ 0 and/or imposing an upper bound as q ≤ qmax. In such set-
tings, traditional (sub)gradient boosting approaches may lead to hypothesis
functions that prescribe decisions q /∈ Q during training for which the loss
function is not defined, so a subgradient cannot be derived, making the ap-
proach non-applicable. We propose to overcome this problem by using SAA
to estimate the step size and direction in each boosting iteration. This ad-
ditional SAA step, which builds on the idea of line search in classic gradient
descent algorithms, is an attractive choice because it guarantees that the pre-
scriptions remain feasible (q ∈ Q) throughout all training iterations while also
optimizing the descent step size (similar to line search in gradient descent).

In what follows, we first define the space of all possible prescription func-
tions, and then describe the STB approach in detail (Algorithm 4.1). Let K

44All proofs can be found in Appendix C.1.
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be the number of iterations45 and let each regression tree be defined as

~qTree(~x) =
L∑
l=1

~λl1~x∈Rl , (4.5)

where L is the number of terminal (leaf) nodes Rl of the tree, and ~λl is the
prescription corresponding to terminal node l. Then we can define the function
space that contains all possible prescription functions of STB as

FSTB =
~q(·) : X → Q

∣∣∣∣∣∣ ~q(~x) = ~q0 +
K∑
k=1

L∑
l=1

~λlk1~x∈Rlk

, (4.6)

where K equals the number of trees. Because solving Problem 4.2 over the
function space FSTB directly is not feasible in many cases, we follow the step-
wise greedy approach of iteratively learning tree after tree and updating the
hypothesis function ~qk(·), as in Friedman (2001). This procedure is similar to
the steepest descent method and the subgradient method, which are methods
for solving convex optimization problems by iteratively adapting the solution
hypothesis along the negative (sub)gradient direction (see Chapter 1.2 in Bert-
sekas 1995 and Chapter 8.9 in Bazaraa et al. 1993 for details).

In Step 1 the STB approach initializes the sequence of hypothesis func-
tions ~qk(·) by using an SAA prescription (the optimal constant prescription
for the training data set) as ~q0(·). Then, for each iteration k = 0...K − 1, a
random subset πk(n) of the training data is drawn (similar to stochastic gra-
dient boosting, see Friedman 2002) and an arbitrary subgradient ~sk(~x(πk(n)))
of the loss function L(~q,d) with respect to ~q is calculated for each data point
(~x(πk(n)),d(πk(n))) of the random subset (Steps 3 and 4). The size of the random
subset is determined by the fraction 0 < ξ ≤ 1. In Step 5 we train a regression
tree that minimizes the l2 loss so it best approximates the set of subgradi-
ents ~sk(~x(πk(n))). This step of the algorithm can be considered a projection of
the point-wise defined functional subgradient onto the function space of regres-
sion trees, which are our base learners: FTree = {~q(·)|~q(~x) = ∑L

l=1 ~γl1~x∈Rl}.

45See Appendix C.4 for details on how the number of iterationsK impacts STB’s prescriptive
performance.
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Algorithm 4.1 Subgradient Tree Boosting
1: ~q0(~x) = arg min~q

∑N
n=1 L(~q,dn) . Initialize hypothesis function.

2: for k = 0...K − 1 do
3: πk(n) = rand({1...N}) for n = 1...bξNc . Draw random subset.
4: ~sk(~x(πk(n))) ∈ ∂L(~q,d(πk(n)))|~q=~qk(~x(πk(n))) . Determine subgradient.

5: {Rlk} = arg min{Rl},{~γl}
∑bξNc
n=1

∣∣∣∣∣∣∣∣~sk(~x(πk(n)))−∑L
l=1 ~γl1~x(πk(n))∈Rl

∣∣∣∣∣∣∣∣2
. Learn decision tree.

6: for l = 1...L do
7: ~λlk = arg min~λ

∑N
n=1 L(~qk(~x) + ~λ1~xn∈Rlk ,d

n)
. Determine step size and direction.

8: end for
9: ~qk+1(~x) = ~qk(~x) + ν

∑L
l=1

~λlk1~x∈Rlk . Update hypothesis function.
10: end for

In Step 7, we use the partitioning of the feature space X into the terminal
nodes Rlk of the regression tree and solve the SAA problem of determining
the optimal ~λlk for each terminal node. Because this SAA step considers all
training data samples, in contrast to the random subset considered when learn-
ing the regression tree, it guarantees that ~qk(~xn) + ∑L

l=1
~λlk1~x∈Rlk ∈ Q ∀k, n.

This feasibility guarantee of the prescriptions for the training data ensures that
the loss function is defined, which is a requirement for estimating a subgra-
dient. Finally, a new element of the sequence of hypothesis functions ~qk+1(·)
is calculated by adding the regression tree function with ~λlk to the preceding
element of the sequence ~qk(·) (Step 9). The parameter ν is a shrinkage factor
with 0 < ν ≤ 1, which determines the learning rate. After completion of K
iterations, the STB prescription function ~q STB(·) = ~qK(·) is determined and
can be used to prescribe capacities for new feature vectors ~x.

4.3.2 Structural Comparison of STB and kERM

This section addresses the structural similarity between the prescription func-
tions determined by STB and kERM when using a random forest kernel. The
aim of both kERM and STB is to determine a prescription function ~q(·) that
solves Problem 4.2 over a function space F . STB uses an iterative greedy ap-
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proach to determine the prescription function (Algorithm 4.1), while kERM
solves Problem 4.2 directly for a kernel-based function space. One of the sim-
plest function spaces for which Problem 4.2 can be solved directly is the space
of linear functions, leading to a linear ERM solution. However, because the
relationship between the feature vector ~x and the optimal decision ~q ∗ is often
non-linear (Bertsimas and Kallus 2020), a decision-maker may achieve better
results using non-linear function spaces. One way to incorporate non-linearity
efficiently is kernelization based on a kernel function K(~x1, ~x2), which can be
interpreted as a measure of similarity between the feature vectors ~x1 and ~x2.
Using kernelization, the kERM approach solves Problem 4.2 over the non-
linear reproducing kernel Hilbert space HK , providing a prescription function
as:

~q kERM(~x) =
N∑
n=1

~unK (~xn, ~x)−~b. (4.7)

This prescription function’s dependency on ~x is defined by the kernel
function K(~x1, ~x2) and, for example, for a linear kernel K(~x1, ~x2) = 〈~x1, ~x2〉,
the structure of ~q kERM(·) differs markedly from the elements of the function
space FSTB that STB uses. However, the prescription functions ~q kERM(·) and
~q STB(·) become structurally similar when the decision-maker chooses the ran-
dom forest kernel proposed in Notz and Pibernik (2021) as:

KRF(~x1, ~x2) = 1
K

K∑
k=1

1Rk( ~x1)=Rk(~x2)∑N
j=1 1Rk( ~x1)=Rk(~xj)

, (4.8)

consisting of K trees. In particular, we can state the kERM prescription
function as:

~q kERM(~x) =
N∑
n=1

~un
(

1
K

K∑
k=1

1Rk(~x)=Rk(~xn)∑N
j=1 1Rk(~x)=Rk(~xj)

)
−~b

=
K∑
k=1

Lk∑
l=1

1~x∈Rk
l

 1
K

N∑
n=1

~un
1~xn∈Rk

l∑N
j=1 1~xj∈Rkl

−~b
=:

K∑
k=1

Lk∑
l=1

1~x∈Rk
l
~αkl −~b,

(4.9)
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for an ensemble of K trees with Lk leaf nodes Rk
l with value ~αkl in each node l

of tree k. This expression is structurally similar to the prescription function
determined by STB

~q STB(~x) = ~q0 +
K∑
k=1

L∑
l=1

ν~λlk1~x∈Rlk , (4.10)

as the constant offset −~b in (4.9) corresponds to the STB initialization ~q0

in (4.10), and the kERM leaf node values ~αkl in (4.9) correspond to the STB leaf
node values ν~λlk in (4.10). Despite the similarity in structure, the prescriptive
approaches’ training methodologies differ significantly: all decision trees of
the random forest that defines the kernel function KRF(~x1, ~x2) are trained
simultaneously using historical observations of demand, so the tree structure is
independent of the problem-specific loss function. In contrast, STB’s decision
trees are trained sequentially, each depending on the subgradient of the loss
function with respect to the hypothesis function of the previous iteration. In
addition to these differences in the partitioning Rlk of the trees, kERM and
STB also differ in terms of the number of free parameters that are optimized
during training. In the case of kERM, the training procedure optimizes N
parameters (~un), which equals the number of training data samples, while
STB’s iterative learning algorithm determinesK×L parameters (~λlk), whereK
is the number of iterations and L is the number of each decision tree’s leaf
nodes.

4.3.3 Explaining STB Prescriptions using SHAP Values

Explainable prescriptions that allow decision-makers to understand decisions
are increasingly required when prescriptive analytics approaches are applied in
practice. Most prescriptive analytics approaches provide only a decision ~q(~x)
for each new feature vector ~x and no further justification, which may limit
human decision-makers’ ability to trust the results. Explanations that are
provided in addition to a prescribed decision can overcome this limitation and
support building trust in the prescriptions.

The well-known prescriptive analytics approaches, kERM and wSAA, are
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based on potentially complex, non-linear kernel and weight functions. In ad-
dition, wSAA does not provide an explicit prescription function but relies on
re-optimization for each new feature vector. Consequently, there is no general
method with which to derive explanations for the prescriptions of kERM and
wSAA directly, and the best approach to generating insights into the under-
lying mechanics is to analyze the importance of individual features in deter-
mining the similarity measure provided by the kernel and weight functions.
However, such feature importances (e.g., as provided in Notz and Pibernik
2021) can only be assumed to apply similarly to the actual prescriptions and
do not provide insights beyond which features generally play an important role
in determining prescriptions.

In contrast, because its prescription function has an additive structure of
simple decision trees that are inherently explainable, STB allows the decision-
maker to derive detailed explanations for each individual prescription. In
particular, with STB, a breakdown of individual prescriptions into individual
features’ impacts (e.g., increases or decreases of a capacity prescription by
a certain amount) and SHAP dependence analyses that show how the value
of an individual feature drives the prescription value can be derived. These
explanations are derived after the iterative training of the STB prescription
function has been completed.

Assuming feature vectors that consist of p real-valued features—that is,
~x ∈ X ⊆ Rp—then an individual prescription ~q(~x) is considered to be explain-
able if it can be written as the sum of the effects ~φm(~q(·), ~x) of the individual
features m = 1...p (following Lundberg et al. 2020):

~q(~x) = ~φ0(~q(·)) +
p∑

m=1

~φm(~q(·), ~x), (4.11)

where ~φ0(~q(·)) is a constant offset. Lundberg et al. (2020) term this the prop-
erty local accuracy and additivity. In addition to local accuracy, Lundberg
et al. (2020) propose that the feature effects ~φm(~q(·), ~x) should fulfill the prop-
erties of consistency between models and missingness, which ensures that the
assigned effects of features that have no impact on a model vanish. As Lund-
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berg and Lee (2017) show, these properties can be guaranteed only by defining

~φm(~q(·), ~x) :=
∑
U∈U

1
p!
[
~q~x(V U

m ∪m)− ~q~x(V U
m )
]
, (4.12)

where U is the set of all orderings of the p features, V U
m is the set of all features

before feature m in ordering U , and ~q~x(V U
m ) is the expected model prescription

for ~x when only the features V U
m are present. These effects ~φm(~q(·), ~x), which

can be understood as individual impacts of features on the prescription value,
are rooted in the game theoretic Shapley values, so they are termed SHapley
Additive exPlanation (SHAP) values (Lundberg and Lee 2017).

For a single decision tree, a simple way to calculate ~q~x(V U
m ) is to follow

the decision path in the tree for all features xi ∈ V U
m toward the respective

leaf node and to average the prescription value over the child nodes when a
decision feature is not an element of V U

m . This approach, which is outlined in
Algorithm 1 in Lundberg et al. (2020), can be applied to all K trees of the
STB prescription function because of the SHAP values’ additivity. However,
this approach to calculating the SHAP values has a complexity of O(KLp2p)
(Lundberg et al. 2020), making the approach impractical for use with a large
number of features p. Lundberg et al. (2020) resolve this problem by propos-
ing the TreeSHAP algorithm, which allows us to calculate the SHAP values in
polynomial time (see Algorithm 2 in Lundberg et al. 2020). In Section 4.5.5 we
demonstrate how STB prescriptions can be explained by deriving individual
prescriptions’ SHAP values in both the mail logistics provider and the avia-
tion maintenance provider case studies. We also analyze numerically how an
individual feature’s value impacts the prescription.

4.4 Estimating Subgradients of OM Loss
Functions

In Section 4.3.1 we proposed the STB approach for use under the assumption
that a subgradient for the OM problem is known. However, it is often not
trivial to obtain a subgradient when the OM loss function is complex, such as
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in the case of stochastic problems with recourse. In this section we address this
problem and derive subgradients for the most common OM problems, includ-
ing the well-known newsvendor and complex (two-stage) stochastic problems
with recourse. When STB is applied, it is sufficient to determine an arbitrary
subgradient ~sL(~q,d) ∈ ∂L(~q,d) of the loss function L(~q,d) at a specific point ~q,
which is commonly termed weak subgradient calculus. Like numerical differen-
tiation, numerical approaches to estimating a subgradient have been proposed
(e.g., Studniarski 1989), but the required calculations may be computation-
ally expensive.46 Therefore, we focus on deriving the required subgradients
analytically.

4.4.1 Subgradients for Common OM Loss Functions

Many common convex OM loss functions are not differentiable at certain
points; for example, the loss function of the well-known newsvendor model
LNV (q, d) = co(q − d)+ + cu(d − q)+ with decision q, demand d, and over-
age and underage cost factors co, cu > 0 is not differentiable at q = d. This
property is rooted in the (·)+ operator, which, like the absolute value | · |,
is not differentiable when the argument vanishes. For such loss functions,
Proposition 4.2 provides a piecewise-defined subgradient.

Proposition 4.2. Let L(q) be a convex loss function that is differentiable at
q ∈ R/q0; then a subgradient sL(q) ∈ ∂L(q) of the loss function is given as

sL(q) =

L
′(q) for q 6= q0

s0 for q = q0,
(4.13)

where L′(q) = dL(q)
dq

and s0 ∈ R is a subgradient of L(q) at q0, such that
L(q) ≥ L(q0) + s0(q − q0) ∀q.

For the newsvendor loss function, this result allows us to derive a subgra-

46For example, the algorithm presented in Studniarski (1989) may require about twenty
iterations to estimate a single subgradient.
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dient sLNV (q, d) ∈ ∂qLNV (q, d) with respect to decision q as

sLNV (q, d) =


co for q > d

0 for q = d

−cu for q < d.

(4.14)

Setting sLNV (q, d) = 0 for q = d is arbitrary, as any value of [−cu, co] is
sufficient for weak subgradient calculus. Similarly, we can use the results of
Proposition 4.2 to derive a subgradient of the loss function L1(q) = (q)+:

sL1(q) =


0 for q < 0

0.5 for q = 0

1 for q > 0,

(4.15)

or of the loss function L2(q) = |q|:

sL2(q) =


−1 for q < 0

0 for q = 0

1 for q > 0.

(4.16)

Based on the results of Proposition 4.2 and these illustrative examples for
common non-differentiable operators, one can derive a subgradient for many
convex but non-differentiable OM loss functions.

4.4.2 Subgradients for Stochastic Problems with Recourse

Besides the OM loss functions that contain the non-differentiable operators
presented in Section 4.4.1, many common OM problems follow the structure
of (two-stage) stochastic problems with recourse: In the first stage, a decision-
maker makes a decision under (demand) uncertainty; when demand is realized,
a recourse action is taken in the second stage. Imagine the illustrative example
of a car rental company that plans its (long-term) capacity in terms of com-
pact and mid-sized cars under demand uncertainty (Netessine et al. 2002).
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Each day, once demand is realized, the company has the option to upgrade by,
for example, offering a mid-sized car to a customer who requests a compact
car “to satisfy unexpectedly high demand for compact cars” (Netessine et al.
2002, p. 375). Netessine et al. (2002) mention other examples that follow this
problem structure, including business class upgrades in commercial aviation,
upgrades in time-shared executive jets, or experience-level upgrades when allo-
cating hardware technicians in the telecommunication industry. A large class
of two-stage shipment planning problems has a similar structure, such as the
problem of allocating products in a warehouse network (Bertsimas and Kallus
2020).

All of these examples have in common a decision-maker who wants to
minimize costs (or maximize profits) at both stages. Therefore, we define a
general form of the loss function for such (two-stage) stochastic optimization
problems with recourse as

Ld(~q) = f0,d(~q) + f ∗1,d(~q)
with f ∗1,d(~q) = min

z∈Z
f1(z,d)

s.t. gj(z,d) ≤ qj ∀j

h1,l(z,d) ≤ ul ∀l

h2,m(z,d) = vm ∀m,

(4.17)

where f0,d(~q) is convex and differentiable, f ∗1,d(~q) is jointly convex in ~q, and
ul, vm ∈ R are constant. Assuming that ~q is a capacity decision made at the
first stage (e.g., the number of compact and mid-sized cars to be purchased by
the car rental company), we can interpret the second-stage variable z as the
allocation of this capacity ~q to the realized demands d. The functions h1,l(z,d)
and h2,m(z,d) allow us to include additional constraints at the second stage
(recourse action). Despite the generality of this formulation, which allows
us to represent the most common two-stage stochastic OM problems, we can
derive a subgradient that makes STB applicable. We use perturbation theory
of convex optimization, as presented in Boyd and Vandenberghe (2004) and
Boyd et al. (2018), to derive an arbitrary subgradient ~sL,d,~q of Ld(~q) with
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respect to the decision ~q.

Proposition 4.3. (Rockafellar 1970) Assume a loss function Ld(~q) : Q → R
of the form defined in (4.17) with Q ⊂ RI , relintQ 6= ∅, f0,d(~q) convex
and differentiable, f ∗1,d(~q) jointly convex in ~q, and ul, vm ∈ R. Assume also
f ∗1,d(~q) <∞ for at least one ~q ∈ Q and f0,d(~q) <∞, f0,d(~q), f ∗1,d(~q) > −∞ for
all ~q ∈ Q. Then the subdifferential ∂Ld(~q) can be expressed as

(∂Ld(~q))j = ∂f0,d(~q)
∂qj

+ (∂f ∗1,d(~q))j. (4.18)

The result of Proposition 4.3 allows us to express all subgradients as the
sum of the gradient of the differential part f0,d(~q) and a subgradient of the
non-differentiable part f ∗1,d(~q) of the loss function.

Theorem 4.1. Assume a loss function Ld(~q) : Q → R of the form defined
in (4.17) with Q ⊂ RI , relintQ 6= ∅, f0,d(~q) convex and differentiable, f ∗1,d(~q)
jointly convex in ~q, and ul, vm ∈ R. Assume also f ∗1,d(~q) <∞ for at least one
~q ∈ Q and f0,d(~q) < ∞, f0,d(~q), f ∗1,d(~q) > −∞ for all ~q ∈ Q, and that for the
minimization defining f ∗1,d(~q), strong duality holds with the dual optimum at ~q
given as (~α∗~q , ~β∗1,~q, ~β∗2,~q). Then a subgradient of Ld(~q) is given as

(~sL,d,~q)j = ∂f0,d(~q)
∂qj

− (~α∗~q)j. (4.19)

Theorem 4.1 combines the result of Proposition 4.3 with perturbation
theory (Boyd and Vandenberghe 2004, Boyd et al. 2018) and provides a sub-
gradient of the loss function Ld(~q) that can be used for STB. In the following
sections we derive subgradients for the mail sorting and the aviation mainte-
nance capacity planning problems introduced in Section 4.1.

4.4.3 Mail Sorting Capacity—A Two-Stage Capacity
Planning Problem

In this section we present a mail logistics provider’s two-stage capacity plan-
ning problem, which Notz and Pibernik (2021) study using prescriptive an-

120



4.4 Estimating Subgradients of OM Loss Functions

alytics and was originally introduced (in a similar formulation) by Netessine
et al. (2002) and Bassok et al. (1999). We revisit the loss function and use the
results of Theorem 4.1 to derive a subgradient for STB.

Consider a company that provides I services using I types of capacities. At
the first stage, the company plans the capacities qj for a horizon of T periods
at a reservation cost fj, which are allocated to demands di on a period-by-
period basis in the second stage. The company has the option of upgrading;
that is, demand of type i can be fulfilled using capacity of type j ≤ i, which
achieves a marginal profit aij = pi − vj + ci, where pi is the revenue from
fulfilling demand of type i, vj is the cost of using capacity of type j, and ci

is the penalty cost for not fulfilling demand of type i (see Notz and Pibernik
2021 for a more detailed description).

This problem can be stated as a two-stage stochastic optimization problem:

Stage 1: max
~q,qj≥0

Π(~q) = max
~q,qj≥0

 T∑
t=1

E
(
π( ~Dt, ~q)

)
−
∑
j

fjqj


Stage 2: π(~d, ~q) = max

{yij}

∑
i,j

aijyij −
∑
i

cidi

s.t.
∑
j

yij ≤ di ∀i

∑
i

yij ≤ qj ∀j

yij ≥ 0 ∀i, j
yij = 0 if i < j.

(4.20)

Because this planning problem aims at maximizing profit, we define the
loss function as gap to optimal profit (Notz and Pibernik 2021), that is,
as the difference between the achieved profit Π(~q,d) and the optimal profit
Π∗(d) := max~q Π(~q,d):

L(~q,d) = Π∗(d)− Π(~q,d) = Π∗(d) +
T∑
t=1
−π(~dt, ~q) +

∑
j

fjqj, (4.21)
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where the negative allocation profit for each period is defined as:

−π(~d, ~q) = min
{yij}

∑
i

cidi −
∑
i,j

aijyij

s.t.
∑
j

yij ≤ di ∀i

∑
i

yij ≤ qj ∀j

yij ≥ 0 ∀i, j
yij = 0 if i < j.

(4.22)

Proposition 4.4. (Notz and Pibernik 2021) The loss function L(~q,d), as
defined in (4.21), is jointly convex in ~q.

Proposition 4.5. Assume Q ⊂ RI
+ convex, open, and non-empty; then for

all ~q ∈ Q, the subdifferential ∂Ld(~q) is non-empty and at least one subgradient
exists.

Because this loss function is convex (Proposition 4.4), we can prove the
existence of a subgradient (Proposition 4.5). Using the result of Theorem 4.1,
we derive in Proposition 4.6 a subgradient of the loss function that allows us
to apply the STB approach to Problem 4.20.

Proposition 4.6. Assume Q ⊂ RI
+ convex, open, and non-empty; then for

all ~q ∈ Q, a subgradient of the loss function (4.21) is given as:

(~sL,d,~q)j = fj −
T∑
t=1

β∗
j,~dt,~q

, (4.23)

where {β∗
j,~d,~q
} is the solution to

max
{αi},{βj}

∑
i

(ci − αi) di −
∑
j

βjqj

s.t. αi, βj ≥ 0 ∀i, j
αi + βj ≥ aij ∀i ≥ j.

(4.24)
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4.4.4 Aviation Maintenance Capacity—A Two-Shift
Capacity Planning Problem

In this section we present the two-shift staffing problem originally studied by
Notz et al. (2020) and use the results of Theorem 4.1 to derive a subgradient
for the STB approach.

Consider a company that faces uncertain hourly demand arrivals in T = 20
time periods between 0 a.m. and 8 p.m. each day. The company wants to
plan staff capacity for processing unknown demand in a two-shift structure.
Capacity reservations incur a cost of cq per hour, while the first (second) shift
has a duration of τa = 8 (τb = 6) hours. Unfulfilled demand backlogged
between the shifts incurs a cost c3 per item, and leftover demand at the end of
the second shift incurs an overtime cost of c2 per item. See Notz et al. (2020)
for additional details and the derivation of the following problem statement:

min
~q=(qa,qb)

C(~q) := cq (τaqa + τbqb) + E[c2M20 + c3M14]

s.t. Mt =



0 for t = 0

(Mt−1 +Dt)+ for 1 ≤ t ≤ 6

(Mt−1 +Dt − qa)+ for 7 ≤ t ≤ 14

(Mt−1 +Dt − qb)+ for 15 ≤ t ≤ 20,

(4.25)

where Mt is the length of the queue at the end of time period t. Following
Notz et al. (2020), the corresponding linearized loss function can be defined
as:

L(~q, ~d) = cq (τaqa + τbqb) + Cbacklog(~q, ~d), (4.26)
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where the backlogging cost is given as

Cbacklog(~q, ~d) = min
{mt}∈R21

(c2m20 + c3m14)

s.t. mt ≥


mt−1 + dt for 1 ≤ t ≤ 6

mt−1 + dt − qa for 7 ≤ t ≤ 14

mt−1 + dt − qb for 15 ≤ t ≤ 20

mt ≥ 0 ∀t
m0 = 0.

(4.27)

Proposition 4.7. (Notz et al. 2020) The loss function L(~q, ~d), as stated
in (4.26), is jointly convex in ~q.

Proposition 4.8. Assume Q ⊂ R2
+ convex, open, and non-empty; then for

all ~q ∈ Q, the subdifferential ∂L~d(~q) is non-empty and at least one subgradient
exists.

Using the convexity of the loss function (Proposition 4.7), we can prove
the existence of a subgradient (Proposition 4.8). Similar to Section 4.4.3,
we derive in Proposition 4.9 a subgradient of the loss function (4.26) using
Theorem 4.1, which allows us to apply STB.

Proposition 4.9. Assume Q ⊂ R2
+ convex, open, and non-empty; then for

all ~q ∈ Q, a subgradient of the loss function (4.26) is given as:

~sL,~d,~q =

 cqτa −
∑14
t=7 β

∗
t,~d,~q

cqτb −
∑20
t=15 β

∗
t,~d,~q

 , (4.28)
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where {β∗
t,~d,~q
} is the solution to

max
{βt}

20∑
t=1

βtdt −
14∑
t=7

βtqa −
20∑
t=15

βtqb

s.t. βt+1 ≥ βt ∀t 6= 14, 20
β15 ≥ β14 − c3

β20 ≤ c2.

(4.29)

4.5 Numerical Evaluation
This section applies the STB approach to the mail sorting capacity plan-
ning problem (Section 4.4.3) and the aviation maintenance capacity planning
problem (Section 4.4.4); benchmarks its performance against those of wSAA,
kERM, and the traditional (feature-less) SAA approach; and demonstrates
how its prescriptions can be explained using SHAP values. We study STB’s
performance using historical demand data from two case companies and cost
parameters that lead to a variety of optimal service levels.

4.5.1 Problem Statement and Parameter Settings

Our analysis of the mail sorting capacity planning problem is inspired by our
work with a German logistics provider that collects, sorts, and delivers mail.
The provider has to plan the capacity ~q of I = 3 service lines, which is con-
stant for a horizon of one week (T = 5). After the demand arrives on each
day t of the horizon, the decision-maker allocates the planned capacities to
the demand, giving consideration also to the upgrading option. This capacity
planning problem is formally stated in Problem 4.20, and we use cost parame-
ters (shown in Table 4.1) that induce a variation of the optimal service level47

(Notz and Pibernik 2021).
Our second analysis is inspired by our work with a German aviation main-

tenance provider that maintains aircraft parts for various airlines. In particu-

47We define the approximate optimal service level as SLi = CU,i

CU,i+CO,i
, with CO,i ≈ fi/5 and

CU,i ≈ pi + ci − vi − fi/5.
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Table 4.1: Mail Sorting Capacity—Parameter setting.

f v p c ai,i
2700..142

1130..60

500..26




40

30

20




600

260

120




10

7.5

5




570

238

105



lar, we study the problem of planning staff capacity for two shifts in the facility
where the aircraft parts arrive and are processed. The first (second) shift has
a duration of τa = 8 (τb = 6) hours, while parts arrive throughout the day. In
addition to the capacity cost cq, we assume a cost c3 for backlogging demand
between the two shifts (which is the intangible cost of congestion and can be
tuned for load-balancing between the shifts) and an overtime cost c2 (which is
incurred to process remaining demand at the end of the day). This planning
problem is formalized in Problem 4.25. We use cost parameters (shown in
Table 4.2) that induce a variation of the optimal service level48 (Notz et al.
2020).

Table 4.2: Aviation Maintenance Capacity—Parameter setting.

Capacity cost cq Overtime cost c2 Backlogging cost c3

5...0.3 5.25 0.6...0.06

4.5.2 Demand Data and Feature Engineering

All numerical analyses of both capacity planning problems are based on his-
torical demand data that we received from the case companies and features
(co-variates) that we constructed. In the mail logistics provider’s case, we
received historical demand data for the 2014-2017 period, based on which we
constructed a data set SMail

N = {(d1, ~x1), ..., (dN , ~xN)} with N = 209 weeks,
feature vectors ~xn ∈ Rp consisting of p = 162 features, and demand matri-

48The approximate optimal service level is defined as SL = CU

CU +CO
= 1− cq

c2
.
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ces dn ∈ RI×T , which represent demand for each service line i on each day t
of the week. The feature vectors ~xn include date-based features (e.g., the year
and the week number), lagged demand features (e.g., demand in the same
week one year ago), and public holiday features (e.g., indicators of a public
holiday that was a few days before or after the week in focus). A detailed
description of all features can be found in Appendix C in Notz and Pibernik
(2021).

For the analysis of the aviation maintenance capacity planning problem,
we received historical demand data for the 2016-2017 period, based on which
we constructed a data set SAviationN = {(~d1, ~x1), ..., (~dN , ~xN)} with N = 532
days, feature vectors ~xn ∈ Rp consisting of p = 142 features, and demand
vectors ~dn ∈ RT , which represent the demand for each hour t of the day
in focus. Similar to the mail sorting case, the feature vectors ~xn include
date-based features, lagged demand features, and public holiday features. In
addition, the feature vectors contain business-related features like expected
demand for the day in focus. A detailed description of all features used in our
analyses can be found in Appendix B in Notz et al. (2020).

4.5.3 Evaluation Procedure

We split the data sets into training data (N = 157 weeks for the mail sorting
case and N = 425 days for the aviation maintenance case) and test data
(NTest = 52 weeks for the mail sorting case and NTest = 107 days for the
aviation maintenance case) and evaluate STB and the benchmark approaches
by comparing the performance of their prescriptions for the test data:

1. STB: Use Algorithm 4.1 (Section 4.3.1) with loss functions defined in
(4.21) and (4.26) and subgradients (4.23) and (4.28) to determine the
STB prescription function, which is used to prescribe capacities for each
week/day of the test period.

2. wSAA: Apply wSAA with the random forest weight function to Prob-
lems 4.20 and 4.25, as presented in Notz and Pibernik (2021) and Notz
et al. (2020).
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3. kERM: Apply kERM with the random forest kernel to Problems 4.20
and 4.25, as presented in Notz and Pibernik (2021) and Notz et al.
(2020).

4. SAA: Solve the wSAA approach with wn(~x) = 1/N for both capacity
planning problems to obtain the SAA capacity prescription, which is
constant for the test period.

A more detailed description of all approaches is provided in Appendix C.3.
For the mail sorting case, all approaches’ levels of performance are evaluated
in terms of the gap to optimal profit: ∆Π,abs = Π∗(d)− Π(~q,d), where Π∗(d)
is the optimal profit for a given demand d. For the aviation maintenance
case, we use the gap to optimal cost: ∆C,abs = L(~q, ~d) − C∗(~d), where C∗(~d)
is the optimal cost for a given demand ~d, to evaluate the approaches’ levels of
performance.

4.5.4 Performance Results

Figure 4.1 shows the absolute gap to optimal profit for the mail sorting case
for optimal service levels in the range of 5-95 percent. Across the range of
services levels, all prescriptive analytics approaches outperform SAA49, which
is the only approach that does not incorporate feature data, demonstrating
the features’ prescriptive value. Among the prescriptive approaches, STB leads
to comparable or better results than kERM and wSAA for all service levels
above 40 percent. Therefore, we conclude that, at least in this instance (and
for service levels above 40 percent), STB is the preferable approach, because
it provides at least a similar level of performance and is inherently explainable
(Section 4.5.5).

However, the conclusion we draw for the mail sorting case does not apply
to the aviation maintenance case. Figure 4.2 plots the absolute gap to optimal
cost for all approaches across various service levels. While STB’s performance
is comparable to that of kERM, both approaches’ level of performance is lower

49For very high service levels, kERM’s performance is comparable to that of SAA because
of the regularization effect (Notz and Pibernik 2021).
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Figure 4.1: Absolute gap to optimal profit for the mail sorting case.

than that of wSAA. The performance gap between wSAA and STB is particu-
larly significant for low or high service levels. We explain this result in terms of
the regularization effect, which Notz et al. (2020) introduce to explain kERM’s
inferior performance compared to that of wSAA: for low or high service levels,
it appears optimal to choose a higher regularization parameter, which leads
to a higher (negative or positive) safety buffer and allows kERM to adapt
its prescription according to the service-level regime. However, this increased
regularization reduces the variance between the weekdays, which results in
performance that is inferior to that of wSAA. This regularization effect ap-
plies similarly to STB, where stronger regularization corresponds to choosing
a smaller number of iterations K and, therefore, a smaller number of base
learners that define the prescription function. Because STB’s performance
level is lower than that of wSAA, we face in this instance a trade-off between
prescription performance and explainability. While wSAA is the preferable
approach in terms of performance, STB has the advantage of being inherently
explainable.

The next section shows how the STB prescriptions can be explained using
SHAP values.
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Figure 4.2: Absolute gap to optimal cost for the aviation maintenance case.

4.5.5 Explaining STB Prescriptions

In this section we derive the SHAP values for STB prescriptions and demon-
strate these prescriptions’ explainability by breaking capacity prescriptions
down into individual features’ impacts and SHAP dependence diagrams that
show how a feature’s value drives the prescription.

To contrast the STB explanations with the insights that can be generated
for wSAA and kERM, Figure 4.3 plots feature importance analyses that are
carried out based on the weight or kernel functions of wSAA and kERM,
respectively.50 These analyses show the degree to which an individual feature
affects the prescription function but do not explain individual prescriptions.

Remaining 152 Features

1 week Lag, Day 3, Service Line 1
1 Week Lag, Day 1, Service Line 3
1 Week Lag, Day 5, Service Line 2

Week Number (ISO)
1 Week Lag, Day 4, Service Line 3

1 Week Lag, Week Sum, Service Line 1
2 Weeks Lag, Day 3, Service Line 3

1 Week Lag, Week Sum, Service Line 3
Time in Seconds after Beginning of 1970

1 Year Lag, Week Sum, Service Line 3

0 % 20 % 40 % 60 % 80 % 100 %

(a) Mail sorting case.

Remaining 132 Features

6 Day Lag, Sum of Day
6 Day Lag, Sum of Hours 0−13 (Morning)

1 Day Lag, Sum of Day
1 Day Lag, Sum of Hours 0−13 (Morning)

1 Day Lag, Sum of Hours 14−19 (Afternoon)
Expected Demand based on Agreed Delivery Date

Weekday Av. of Expected Demand (Contracted Delivery Date)
Weekday Av. of Expected Demand (Agreed Delivery Date)

Saturday Indicator Variable
Day of the Week

0 % 20 % 40 % 60 % 80 % 100 %

(b) Aviation maintenance case.

Figure 4.3: Feature importance analyses for mail sorting and aviation mainte-
nance cases.

50A feature’s importance is measured as the decrease in the node impurity of the random
forests that define the wSAA weight function and the kERM kernel function.
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In contrast, the explanations that can be derived for the STB prescrip-
tions shed light on which feature and feature value impact the prescription
and by how much. We aggregate the impact of several similar features be-
cause using the large number of features (162 for the mail sorting case or
142 for the aviation maintenance case) leads to overly complex explanations
where many similar features have a comparatively small impact.51 Based on
this aggregation, we present several illustrative examples of breaking the pre-
scriptions down into a base value—the average prescription of the STB model
with no features, mostly driven by the SAA initialization—and the impacts of
individual aggregated features.
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(a) Service line 1, week 42 (test period).
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(b) Service line 3, week 30 (test period).

Figure 4.4: Breakdown of prescriptions for the mail sorting case (SL=50%).

Figure 4.4 shows the breakdown of two exemplary prescriptions into ag-
gregated feature impacts for the mail sorting case (week 42 in Figure 4.4a
and week 30 in Figure 4.4b). The depiction of the breakdown in Figure 4.4a
suggests that the prescription for service line 1 increases by 7.2 percent with

51We add the SHAP values of a group of features and average the percentage deviation
of their feature values from the features’ mean values (of the training data). A detailed
description of the aggregated features can be found in Appendix C.2.
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respect to the base value because the demand for the same service line in
the preceding week was 37.9 percent above average. The prescription also in-
creases because of, for example, an above-average demand for service lines 1
and 2 in the same week of the preceding year. Similarly, Figure 4.4b shows
how the prescription for service line 3 decreases because of, for example, an
average demand that is 4.3 percent below average in the preceding week for
the same service line. These breakdowns also demonstrate the interdepen-
dency among the three service lines, as the prescription for service line 1 (Fig-
ure 4.4a) depends on lagged demand for service line 2, and the prescription
for service line 3 (Figure 4.4b) depends on lagged demand for service line 1.
This interdependency can be explained by correlations between the demands
and the upgrading option (Notz and Pibernik 2021). These explanations help
a decision-maker to understand the rationale behind a certain prescription,
which is often a prerequisite of acceptance and trust.
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Figure 4.5: SHAP dependence plots: feature impact (relative to base value)
depending on the feature value (relative to mean) for the mail sorting case.

In addition, the SHAP values allow us to elucidate how the individual
features’ values drive STB’s prescriptions. Figure 4.5 plots the impact on
prescriptions of the feature “One-week lagged demand for service line 3” and
the week number. These depictions are SHAP dependence plots (Lundberg
et al. 2020). Figure 4.5a shows that a higher demand for service line 3 in
the preceding week leads to a lower prescription for service line 2 capacity,
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Figure 4.6: SHAP dependence plots: feature impact (relative to base value)
depending on the feature value (relative to mean) with interaction for the mail
sorting case.

suggesting a correlation between the demands for the two service lines. The
impact of the week number on service line 3’s capacity, shown in Figure 4.5b,
suggests a non-linear relationship with slightly lower (negative) impact on the
capacity prescription at the beginning of a year, almost zero impact between
weeks 10 and 40, and a positive impact toward the end of each year.

The impact on service line 3’s prescription, depicted in Figure 4.5b, ap-
pears to vary little for a given week number, but such is not always the case.
For many SHAP dependence plots (e.g., Figure 4.5a), the variance along the
vertical axis is significant, so the impact of a given feature’s value varies widely.
This variance can often be explained by a second feature, which suggests that
interaction effects between features may be present. To explain such interac-
tion effects, Figure 4.6 shows SHAP dependence plots that depict the value of a
one-week lagged demand for service line 1 as a second feature (as in Lundberg
et al. 2020).

The impact of a one-week lagged demand for service line 3 on the pre-
scription for the same service line (Figure 4.6a) suggests that, in the medium
range of −10 percent to +10 percent, the lagged demand for service line 3
has a higher (more positive) impact when the lagged demand for service line 1
is lower, and a lower (less positive) impact when the service line 1 lagged
demand is higher. We explain this interaction between the two features by
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means of the upgrading option: A higher lagged demand for service line 1
may lead to higher capacity in service line 1, which can also satisfy the de-
mand for service line 3 (through upgrading), so less dedicated service line 3
capacity is required. A similar interaction effect can be seen in the service
line 1 prescription depicted in Figure 4.6b.

100%

−12.6%

−11.9%

−11.9%

−11.5% 9.3% −8.9%

−5.2%

−19.1%

28.29%

B
as

e 
va

lu
e

W
ee

kd
ay

: +
69

.9
%

E
xp

ec
te

d 
de

m
an

d:
 −

88
.4

%

W
ee

kd
ay

 a
v.

 e
xp

ec
te

d 
de

m
an

d:
 −

60
.9

%

P
ar

ts
 s

hi
pp

ed
 (

U
S

):
 +

16
6.

6%

1 
da

y 
la

g,
 to

ta
l d

em
an

d:
 −

92
.5

%

D
em

an
d 

w
ith

 p
ro

ce
ss

 ID
 c

re
at

ed
: +

4.
5%

7 
da

y 
la

g,
 to

ta
l d

em
an

d:
 −

62
.3

%

O
th

er
 fe

at
ur

es

P
re

sc
rip

tio
n 

va
lu

e

(a) Shift 2, day 7 (test period, Saturday).
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(b) Shift 2, day 8 (test period, Monday).

Figure 4.7: Breakdown of prescriptions for the aviation maintenance case
(SL=50%).

One can obtain similarly structured explanations of the STB prescriptions
in the aviation maintenance case. Figure 4.7 shows the breakdown of the
capacity prescriptions for shift 2 for a Saturday (Figure 4.7a) and a Mon-
day (Figure 4.7b). Several of the features that have large impacts on the
prescription are related to the day of the week (e.g., the weekday feature,
the weekday average expected demand, the one-day lagged demand feature),
which is consistent with Notz et al.’s (2020) finding that the weekday is the
most important feature. In addition to the weekday, features that describe
the demand for which a process ID was created or that describe the parts
that were shipped before the date in focus have significant impacts on the
prescription.
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Figure 4.8: SHAP dependence plots: feature impact (relative to base value)
depending on the feature value (relative to mean) for shift 2’s capacity pre-
scription for the aviation maintenance case.

The SHAP dependence plot depicted in Figure 4.8a shows that higher
expected demand (based on the estimated delivery date that was updated after
shipping) leads to a larger capacity prescription; the plot shows a non-linear
step at ≈ −30 percent, where smaller expected demand leads to a significantly
smaller (more negative) impact on the capacity prescription. Figure 4.8b shows
that the weekday feature points to a strongly reduced capacity on Saturdays,
which we explain by the smaller average demand on Saturdays (Notz et al.
2020).

Figure 4.9a depicts, for the individual weekdays, the impact on the pre-
scription of the feature describing demand for which a process ID was created.
Without the weekday differentiation, the prescription impact of a feature value
of −20 percent ranges between −20 percent and +20 percent, a high variance.
This range can be reduced significantly by including the weekday feature,
which suggests an interaction effect between both features: On Mondays, the
feature value of −20 percent increases the prescription by about 15 percent,
while on Saturdays, the same feature value decreases the prescription by about
15 percent. A similar interaction effect can be observed in Figure 4.9b, where
the impact of the one-day lagged demand feature is typically higher (more
positive) on Saturdays than it is on, for example, Tuesdays.

We conclude that the explanations derived for the STB prescriptions pro-

135



4 Explainable Subgradient Tree Boosting for Prescriptive Analytics in OM

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●●

●

●

Demand with process ID created, relative to training data

F
ea

tu
re

 im
pa

ct

−50 % −40 % −30 % −20 % −10 % 0 %

−
20

%
−

10
%

0%
10

%
20

%

● Mo Tu We Th Fr Sa

(a) Demand with process ID created.

●●●●●
●
●●●●
●●

●
●●●●●

One−day lagged demand, relative to training data

F
ea

tu
re

 im
pa

ct

−100 % −50 % 0 % 50 % 100 %

−
8%

−
4%

0%
4%

8%
12

% ● Mo Tu We Th Fr Sa

(b) One-day lagged demand.

Figure 4.9: SHAP dependence plots: feature impact (relative to base value)
depending on the feature value (relative to mean) with interaction for shift 2’s
capacity prescription for the aviation maintenance case.

vide valuable insights into the model’s mechanics and allow the decision-maker
to understand the rationale behind individual prescriptions, thus facilitating
acceptance and building trust. In addition, SHAP dependence plots provide
insights into the dependence between features’ value and the impact on pre-
scriptions and shed light on complex interaction effects between features.

In the case of the mail logistics provider, STB’s performance is compa-
rable to those of wSAA and kERM. In combining this observation with the
explainability of its prescriptions—the derived explanations provide signifi-
cantly more valuable insights than those that can be derived for wSAA and
kERM using feature importance analyses—, we can conclude that STB is the
preferable approach for this particular instance. However, in the case of the
aviation maintenance service provider, wSAA performs better than STB across
all service levels, which leads to a trade-off between prescription performance
and explainability. Overall, then, STB leads to a gap to optimal cost that
averages 13.6 percent higher than that of wSAA; however, depending on the
service level, the increase can be as low as 2 percent, which is what it is at
a service level of 70 percent. Even so, in contrast to wSAA, STB provides
detailed explanations of its prescriptions. Which approach is preferable de-
pends on the decision-maker’s particular requirements regarding prescription
performance and explainability.
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4.6 Conclusion
This paper proposes a novel data-driven and explainable prescriptive analyt-
ics approach to solving complex OM problems. STB combines methods of
(sub)gradient descent in function space with SAA, provides a function that
prescribes decisions directly based on a data set of historical demand obser-
vations and predictive features, and allows a decision-maker to find detailed
explanations for these prescriptions. We demonstrate how a subgradient can
be derived for the most common OM problems, including the large class of
two-stage stochastic problems with recourse, and we compute the SHAP values
that allow decision-makers to explain individual prescriptions.

Using historical demand and feature data from two case companies—a
mail logistics provider and an aviation maintenance provider—we demonstrate
STB’s applicability to two complex capacity planning problems and bench-
mark its performance against those of two other prescriptive approaches—
wSAA and kERM—and SAA for a variety of cost parameter settings. We
find detailed explanations for several exemplary prescriptions of both plan-
ning problems by determining the impact of individual features on the pre-
scription, and use SHAP dependence plots to shed light on how individual
features’ value and the interaction effects between features drive the prescrip-
tion. The results of the mail sorting case suggest that STB’s performance is at
least comparable to those of wSAA and kERM, while also providing explain-
able prescriptions. However, in the case of the aviation maintenance provider,
wSAA’s performance is superior, and a decision-maker faces the trade-off be-
tween prescription performance (wSAA) and explainability (STB).

Our study’s limited scope—only two planning problems, two data sets,
and a variety of cost parameters—demonstrates the difficulty of generalizing
performance-related results of prescriptive analytics approaches beyond a par-
ticular instance: While STB’s prescriptions provide detailed explanations in
both settings, wSAA has superior performance in one of the settings. There-
fore, additional studies that use a variety of OM problems and data sets are
needed.
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The rise of AI and machine learning, which impacts almost all areas in
business and society, and the recent availability of large amounts of data,
such as historical observations of demand, have led to the development of
novel prescriptive analytics approaches to solving classical OM planning prob-
lems. These new approaches represent a significant opportunity to improve
OM decision-making, so they constitute a new field of research within OM.
With a focus on capacity planning, which entails solving complex OM plan-
ning problems, this dissertation addresses the guiding research question, in-
troduced in Chapter 1, on how prescriptive analytics approaches to solving
complex capacity planning problems can improve decision-making. This dis-
sertation, which consists of three independent research articles, develops novel
prescriptive analytics approaches (kERM, wSAA, OP, STB) to solving two
realistic capacity planning problems (those of a mail logistics provider and
an aviation maintenance provider) and derives analytical properties, including
out-of-sample performance guarantees and the universal approximation prop-
erty for kERM. The dissertation’s comprehensive numerical studies benchmark
the prescriptive approaches against traditional contenders, including two-step
approaches and SAA; shed light on the underlying performance drivers; and
demonstrate how explainable prescriptions help decision-makers understand
the causality behind the decisions.

The first article (Chapter 2) addresses Research Question 1, introduced
in Chapter 1, by developing two prescriptive analytics approaches, wSAA
and kERM, to solving the complex two-stage capacity planning problem of
a mail logistics service provider that observes multivariate demand and makes
vector-valued capacity decisions. On the theoretical side, the article provides
solutions for the kERM approach for non-linear function spaces, derives out-
of-sample performance guarantees for kERM when using various kernels, and
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shows kERM’s universal approximation property when using a universal ker-
nel. On the numerical side, comprehensive performance analyses are con-
ducted using data from the logistics service provider and realistic cost parame-
ters and parameter settings that vary the service level. The results suggest that
the prescriptive approaches can lead to significant performance improvements
compared to those of traditional contenders like SAA and two-step approaches.
Our analyses shed light on the two prescriptive approaches’ underlying perfor-
mance drivers, and while the performance improvements depend on the service
level, the prescriptive approaches appear to be much more robust to variations
in the exogenous cost parameters than the traditional approaches are. This
robustness is an important property, and prescriptive analytics approaches are
attractive choices for solving a capacity planning problem.

Research Question 2 is addressed in Chapter 3 by using prescriptive ana-
lytics approaches to solve the MSSP of a maintenance service provider in the
aviation industry, a complex queuing-type capacity planning problem with
uncertain, time-varying rates of demand arrival without abandonment. The
article first derives an approximated MSSP (AMSSP) by applying fluid and
stationary approximations before solving the AMSSP using the prescriptive
approaches wSAA and kERM. In addition, a novel prescriptive analytics ap-
proach, termed OP approach, is proposed, which has the advantage of sim-
plicity because it requires the decision-maker only to solve a deterministic op-
timization problem and to use standard predictive machine learning tools to
derive a prescription function. The results of numerical experiments conducted
using historical observations of demand suggest that all three prescriptive ap-
proaches (wSAA, kERM, OP) overcome both the time-structure and feature
effects that are likely to be associated with traditional approaches. The anal-
yses shed light on the differences between the approaches’ performance and
show that wSAA appears to be the most suitable method for solving the
AMSSP. This research demonstrates how a queuing-type capacity planning
problem can be solved using prescriptive analytics, so it provides a foundation
for connecting the “worlds” of queuing theory and prescriptive analytics.

The third article (Chapter 4) proposes a novel prescriptive analytics ap-
proach that provides explainable decisions, termed subgradient tree boosting
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(STB), in answering Research Question 3. The STB approach is motivated
by the success of gradient boosting methods in machine learning and the need
for explanations for prescribed decisions. The paper’s main methodological
contributions are the proposed STB approach, which combines (sub)gradient
descent in function space with SAA, and the demonstration of ways to derive
a subgradient for the most common OM problems, including the large class
of two-stage stochastic problems with recourse. The STB approach is used in
numerical experiments to solve the capacity planning problems introduced in
Chapters 2 and 3 (those of a mail logistics provider and an aviation mainte-
nance provider), and its performance is benchmarked against those of wSAA
and kERM. In addition, detailed explanations for several exemplary prescrip-
tions are derived that help decision-makers to understand the causality behind
the decisions. The results for the case of the mail logistics provider suggest
that STB is the preferable approach because it leads to a performance that
is at least comparable to those of wSAA and kERM while also providing ex-
plainable prescriptions. However, this observation does not hold for the case
of the aviation maintenance provider, where wSAA had the best performance,
resulting in a trade-off between performance and explainability.

In conclusion, prescriptive analytics approaches—in particular, wSAA,
kERM and STB—provide promising new ways to solve complex capacity man-
agement problems. While the research presented in this dissertation makes an
effort to characterize and study these approaches both theoretically and nu-
merically, opportunities for future research remain.

The two case studies demonstrate that prescriptive approaches can lead
to significant performance improvements compared to traditional approaches’
performance. As in the domain of machine learning, which focuses on classi-
fication and regression tasks, the generalizability of these results remains an
issue, as whether the approaches lead to the same relative levels of perfor-
mance for different sets of historical observations in the same problem domain
remains unclear. In addition, because the prescriptive analytics approaches
rely on non-standard (asymmetric) cost functions, the results can be sensi-
tive to variations in the (exogenous) parameters, making generalization even
more difficult. Since the numerical results cannot be generalized beyond the
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boundaries of the specific case studies presented here, one avenue for future
research is to apply prescriptive analytics approaches to other sets of demand
and feature data in the same problem domain.

A second direction for future research is to apply prescriptive analytics
approaches to even more complex OM problems, such as the multi-period ca-
pacity management problems Shumsky and Zhang (2009) and Yu et al. (2015)
addressed, multi-period inventory management problems, and more complex
queuing-type problems, such as queuing models that include abandonment.
Future research is needed that explores how prescriptive analytics approaches
can be applied to these more complex classes of OM problems, and that stud-
ies the performance improvements relative to traditional approaches for these
problem classes.

A third direction for future research lies in the areas of modern machine
learning methods like deep reinforcement learning (DRL) (Mnih et al. 2013),
which combines deep neural networks and reinforcement learning, and gen-
erative adversarial networks (GAN) (Goodfellow et al. 2014), which consist
of two opposing neural networks. Such research may fuel the development of
additional prescriptive analytics approaches to OM problems. For example,
DRL has been applied to intractable inventory management problems in a
stationary setting, where a large number of demand samples could be drawn
from a known distribution (Gijsbrechts et al. 2019). However, when the de-
mand distribution is unknown, the large amounts of training data required
for DRL are typically not available because of a limited number of relevant
historical observations. Therefore, the question concerning how to use such a
DRL approach in non-stationary settings with feature-dependent demand and
where only a limited number of historical observations is available remains
unanswered. Generative models like GANs may help decision-makers gener-
ate realistic data samples from an unknown joint distribution of features and
demand based on a training data set, but how best to exploit such enriched
data sets for decision-making also remains an open research question. Con-
sequently, new prescriptive analytics approaches driven by, for example, DRL
and GAN methodologies or combinations of both mark a promising avenue for
future research.
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A Appendix of Chapter 2

A.1 Proofs
Proof of Proposition 2.1

The proof of Proposition 2.1 follows a similar structure as the proof of Propo-
sition 1 in Netessine et al. (2002). The profit π(~d, ~q) is determined by solving
a linear program and therefore concave. Because taking the expectation pre-
serves concavity, Π(~q) is a sum of concave and linear functions, and therefore
jointly concave in ~q.

Proof of Proposition 2.2

π(~d, ~q) is jointly concave in ~q (Proposition 2.1), therefore Π(~q,d) is concave
as sum of concave and linear functions. With −Π(~q,d) convex and Π∗(d)
constant with respect to ~q, the loss function L(~q,d) is a sum of convex and
constant functions, and therefore jointly convex in ~q.

Proof of Proposition 2.3

Because L(~q,d) is jointly convex in ~q (Proposition 2.2) and the weights wn(~x)
are non-negative by definition, the objective function of wSAA is a weighted
sum of convex functions, and therefore jointly convex in ~q.

Proof of Proposition 2.4

To prove that N−
2l+1
2l+p is an individual lower rate of convergence we apply the

general results of Theorem 3.3 in Györfi et al. (2002) to our loss function and
wSAA.
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Following Györfi et al. (2002), we define the class of distributions ( ~X,D)
with an (l, C)-smooth function mapping from features to mean demand and
the notion of the lower individual rate of convergence for an approach.

Definition A.1. (Following Definition 3.3 in Györfi et al. 2002) A function
f : Rp → R is called (l, C)-smooth with C > 0 if for every α = (α1, ..., αp),
αi ∈ N0,

∑p
i=1 αi = k with some k ∈ N0, such that l = k + β with 0 < β ≤ 1,

the partial derivative ∂kf

∂x
α1
1 ...∂x

αp
p

exists and satisfies

∣∣∣∣∣ ∂kf

∂xα1
1 ...∂x

αp
p

(~x)− ∂kf

∂xα1
1 ...∂x

αp
p

(~z)
∣∣∣∣∣ ≤ C||~x− ~z||β ∀~x, ~z ∈ Rp. (A.1)

Definition A.2. (Following Definition 3.4 in Györfi et al. 2002) Let P(l,C) de-
note the class of distributions ( ~X,D) with ~X ∼ U [0, 1]p and D = m( ~X) + Estd,
where Estd ∼ N (0, 1) is noise independent of ~X, and m( ~X) is an (l, C)-smooth
function.

Definition A.3. (Following Definition 3.5 in Györfi et al. 2002) A sequence
aN ≥ 0 is called an individual lower rate of convergence of qwSAA for a class
P of distributions if

inf
{wn}

sup
( ~X,D)∈P

lim sup
N→∞

ESN [||qwSAA − q∗||2]
aN

> 0 (A.2)

with
||qwSAA − q∗||2 = E ~X

[(
qwSAA( ~X)− q∗( ~X)

)2
]
.

Definition A.3 introduces the concept of an individual lower rate of con-
vergence, which is the fastest rate with which an approach can converge to
the optimal solution over all possible joint distributions of ~X ×D within the
class of distributions P . While such a rate aN does not prevent an approach
to converge faster to the optimal solution for a fixed distribution of ~X ×D, it
states that for each approach there is at least one distribution within P such
that the approach does converge faster than aN .

Theorem 3.3 in Györfi et al. (2002) states that an individual lower rate of
convergence of any approach qN for the class P(l,C) is given as bNN−

2l
2l+p for
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an arbitrary positive sequence bN with limN→∞ bN = 0:

inf
{qN}

sup
( ~X,D)∈P(l,C)

lim sup
N→∞

ESN [||qN −m||2]
bNN

− 2l
2l+p

> 0. (A.3)

We need to prove that m(~x) = q∗(~x), then we define bN = N−
1

2l+p and choose
the subset {qwSAA} ⊆ {qN}, with qwSAA being parameterized through {wn},
to obtain the expression to be proven.
Because the loss function L(q, d) = |q−d|2 is strictly convex in q, its minimum
is unique at q = d and the optimal prescription function is given by

q∗(~x) = arg min
q∈Q

E[L(q,D)| ~X = ~x] = E[D| ~X = ~x]. (A.4)

By definition, E[D| ~X = ~x] = m(~x), therefore we obtain

inf
{wn}

sup
( ~X,D)∈P(l,C)

lim sup
N→∞

ESN [||qwSAA − q∗||2]
N−

2l+1
2l+p

> 0, (A.5)

which concludes the proof.

Proof of Proposition 2.5

The expression ||~q(·)||2F is jointly convex in ~q(·), because the norm is by def-
inition convex and positive, and (·)2 is non-decreasing for positive numbers.
Therefore, as the loss function is convex (Proposition 2.2), the objective func-
tion of the ERM approach is a weighted sum of convex functions with positive
weights λ, 1/N ≥ 0, and therefore jointly convex in ~q(·).

Proof of Theorem 2.1

The derivation of the kernelized ERM approach is based on the ERM solu-
tion for a linear function space (see Appendix A.7.4). This linear solution is
kernelized by mapping the feature vectors ~x into HK and showing that the
scalar product between the mapped feature vectors can be expressed using the
kernel function K.
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Let RX = {f(·) : X → R} be a space of functions and let Φ : X → RX

be a feature map with Φ(~x)(·) = K(·, ~x), then one can construct a vector
space VK ⊇ {Φ(~x)(·) : ~x ∈ X} and define a scalar product such that (see Sec-
tion 2.2.2 in Schölkopf and Smola 2002):

〈Φ(~x1),Φ(~x2)〉 = 〈K(·, ~x1), K(·, ~x2)〉
= K(~x1, ~x2).

(A.6)

The vector space VK can be turned into a Hilbert space HK by defining a
norm based on the scalar product, as presented in Section 2.2.3 in Schölkopf
and Smola (2002).

We kernelize the linear solution to the capacity planning problem (The-
orem A.2) by projecting each feature vector ~x into HK using the feature
map Φ(~x). As both the dual Lagrangian Ldual (A.81) and the solution func-
tion (A.80) only depend on the scalar product of feature vectors, the feature
map effectively replaces these scalar products by the kernel function as

〈~xp, ~xq〉 → 〈Φ(~xp),Φ(~xq)〉
= K(~xp, ~xq),

(A.7)

from which we obtain the kernelized solution. This application of the implicit
feature map is usually referred to as “kernel trick” (see Remark 2.8 in Schölkopf
and Smola 2002, p. 34).

Proof of Corollary 2.1

The primal Lagrangian Lprimal with feature vectors ~x mapped into HK as Φ(~x)
is by definition affine and therefore concave in the Lagrangian multipliers αtni ,
βtnj , εnj . The dual Lagrangian is the point-wise infimum of a collection of
concave functions:

Ldual({αtni }, {βtnj }, {εnj }) = inf
W,~b,{ytnij }

Lprimal(W,~b, {ytnij }, {αtni }, {βtnj }, {εnj }),

(A.8)
and therefore concave in αtni , βtnj , εnj .
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Proof of Proposition 2.6

To prove that KRF defines a reproducing kernel Hilbert space, we first show
symmetry and positive semi-definiteness of KRF, and then apply the Moore-
Aronszajn Theorem. Let

kRl(~x1, ~x2) := 1[Rl(~x1) = Rl(~x2)] (A.9)

indicate if ~x1 and ~x2 are assigned to the same terminal node of tree l. Then, by
definition, kRl(~x1, ~x2) is symmetric, and also positive semi-definite as shown
in the proof of Lemma 3.1 in Davies and Ghahramani (2014). Therefore,

KRF(~x1, ~x2) =
L∑
l=1

1
L
∑N
j=1 1[Rl( ~x1) = Rl(~xj)]

kRl(~x1, ~x2) (A.10)

is a weighted sum of positive semi-definite functions with non-negative weights,
and therefore also positive semi-definite (see Observation 7.1.3 in Horn and
Johnson 2013).
Because ∀~x1, ~x2, kRl(~x1, ~x2) > 0 : 1[Rl( ~x1) = Rl(~xj)] = 1[Rl( ~x2) = Rl(~xj)] ∀j
the random forest kernel KRF(~x1, ~x2) is symmetric, and therefore a kernel by
Definition 2.1.
Based on the Moore-Aronszajn Theorem (see Part I Section 2 (4) in Aron-
szajn 1950, p. 344), which states that “to every positive matrix K(x, y) there
corresponds one and only one class of functions [...], forming a Hilbert space
and admitting K(x, y) as a reproducing kernel”, we conclude that KRF(~x1, ~x2)
is a reproducing kernel with reproducing kernel Hilbert space HKRF .

Proof of Lemma 2.1

To prove that L(~q,d) is bounded (part a of Lemma 2.1), we first derive bounds
on π(~d, ~q), which then allows to bound Π(~q,d) and Π∗(d).
Because aii ≥ aij ∀j < i (see Section 2.3), we obtain

π(~d, ~q) = max
{yij}

∑
i,j

aijyij −
∑
i

cidi ≤
∑
i

aiidi. (A.11)
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Because max{yij}
∑
i,j aijyij ≥ 0, as yij = 0 is always a feasible solution, we

derive as lower bound:

π(~d, ~q) = max
{yij}

∑
i,j

aijyij −
∑
i

cidi ≥ −
∑
i

cidi. (A.12)

Using these results, we obtain bounds for the optimal profit:

Π∗(d) = max
~q

 T∑
t=1

π(~dt, ~q)−
∑
j

fjqj

 ≤ T d̄
∑
i

aii, (A.13)

and for the profit:

Π(~q,d) =
T∑
t=1

π(~dt, ~q)−
∑
j

fjqj ≥ −T d̄
∑
i

ci − q̄
∑
j

fj. (A.14)

Therefore, we obtain as bound on the loss function:

L(~q,d) = Π∗(d)− Π(~q,d)
≤ T d̄

∑
i

(aii + ci) + q̄
∑
j

fj =: l̄ <∞. (A.15)

To show that the loss function is equi-Lipschitz (part b of Lemma 2.1),
we first derive a bound on the change in profit π caused by an increase in
capacity ~q, and then show that this bounds the change in loss. To bound the
change in π, we consider, in a first step, a change in capacity qj for a single
service line j, while keeping all other capacities constant. In a second step we
generalize the bound to arbitrary changes in capacity.

Assume q′j ≥ qj, without loss of generality, so that the capacity increase
from qj to q′j relaxes the constraint ∑i yij ≤ qj on stage 2 of the planning
problem. Therefore, the allocation yij that yields π(~dt, ~q) is also a feasible
solution to π(~dt, ~q ′) = maxy′ij

∑
ij aijy

′
ij −

∑
i cid

t
i, hence

π(~dt, ~q) ≤ π(~dt, ~q ′). (A.16)

Because aii ≥ aij ∀j < i (see Section 2.3), the maximum achievable profit for
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the additional capacity q′j − qj is given as ajj(q′j − qj), which yields

|π(~dt, ~q ′)− π(~dt, ~q)| ≤ ajj|q′j − qj|, (A.17)

which also holds for q′j ≤ qj, as ~q and ~q ′ are interchangeable in (A.17). Be-
cause ~q and ~q ′ may differ in several of the I dimensions, we generalize the
bound by defining a finite sequence ~ql with l = 0..I and ~q0 = ~q, ~qI = ~q ′, such
that ~ql and ~ql−1 only differ in dimension l. Using this sequence, we bound the
change in π as

|π(~dt, ~q ′)− π(~dt, ~q)| =
∣∣∣∣∣
I∑
l=1

(
π(~dt, ~ql)− π(~dt, ~ql−1)

)∣∣∣∣∣
≤

I∑
l=1

all|q′l − ql| ≤ Iamax||~q ′ − ~q||∞,
(A.18)

where amax := maxj ajj.
Based on this bound, we show that L(~q ,d) is equi-Lipschitz:

|L(~q ′,d)− L(~q ,d)| =
∣∣∣∣∣∣
T∑
t=1

(
π(~dt, ~q ′)− π(~dt, ~q)

)
−
∑
j

fj
(
q′j − qj

)∣∣∣∣∣∣
≤

T∑
t=1

∣∣∣π(~dt, ~q ′)− π(~dt, ~q)
∣∣∣+∑

j

fj
∣∣∣q′j − qj∣∣∣

≤

TIamax +
∑
j

fj

 ||~q ′ − ~q||∞
=: MLip||~q ′ − ~q||∞,

(A.19)

which concludes the proof.

Proof of Theorem 2.2

To prove the stated out-of-sample performance guarantee, we use a general
out-of-sample performance guarantee provided by BK and bound the Radema-
cher complexity. To be able to bound the Rademacher complexity, we assume
a bounded function space F where ||~b||∞ ≤ BC and ||qU,j||K ≤ BU ∀j. Such
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a bound is necessary for learning (e.g., an unbounded RKHS would lead to
overfitting and the prescription function would not generalize), and standard
in statistical learning when deriving out-of-sample performance bounds, see,
e.g., Bartlett and Mendelson (2002).

Because out-of-sample performance guarantees depend on the richness of
the function space F over which the kERM approach is solved, we use the
empirical Rademacher complexity of F , given SN , to quantify this richness.

Definition A.4. (Following Shalev-Shwartz and Ben-David 2014) A random
variable σ ∈ {±1} is called Rademacher random variable if

P (σ = +1) = P (σ = −1) = 1/2. (A.20)

Definition A.5. (BK) The empirical multivariate Rademacher complexity for
F = {f : X → RI} over a training data set SN is defined as

RadN(F , SN) = E

 2
N

sup
~q∈F

N∑
n=1

I∑
j=1

σjnqj(~xn)
∣∣∣∣∣∣~x1, ..., ~xN

 , (A.21)

where σjn are independent Rademacher variables.

Theorem A.1. (Following BK) Assume SN , generated by iid sampling from a
joint distribution of ~X ×D, L(~q,d), as defined in (2.2), and let δ > 0. Then,
with probability of at least 1 − δ for any function ~q(·) ∈ F , the true risk is
bounded as

R(~q(·)) ≤ RN(~q(·)) + 3l̄
√

log(2/δ)
2N +MLip RadN(F , SN), (A.22)

where l̄ is the bound and MLip is the Lipschitz constant of L(~q,d).

Proof of Theorem A.1: Because L(~q ,d) is bounded and equi-Lipschitz
(Lemma 2.1), the results of Theorem 8 in BK apply, which proves the stated
out-of-sample performance guarantee.

Theorem A.1 bounds the true risk by expressions that can be evaluated
using the data set SN and the function space F , so (A.22) can be considered
an out-of-sample performance guarantee.
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In the following we derive bounds on the Rademacher complexity for the
function spaces used by kERM.

Definition A.6. Let the sum of two function spaces be the element-wise sum:

F + G := {(f + g)(·) = f(·) + g(·)|f ∈ F , g ∈ G}. (A.23)

Lemma A.1. Assume function spaces F = FU + FC. Then the empirical
multivariate Rademacher complexity over SN of F is given as:

RadN(F , SN) = RadN(FU , SN) + RadN(FC, SN). (A.24)

Proof of Lemma A.1: Using Definition A.5 of the empirical multivariate
Rademacher complexity and Definition A.6 of the sum of function spaces, we
obtain

RadN(F , SN) = RadN(FU + FC , SN)

= E

 2
N

sup
~f U∈FU , ~f C∈FC

N∑
n=1

I∑
j=1

σjn
(
fUj (~xn) + fCj (~xn)

) ∣∣∣∣∣∣~x1, ..., ~xN


= E

 2
N

sup
~f U∈FU

N∑
n=1

I∑
j=1

σjnf
U
j (~xn)

∣∣∣∣∣∣~x1, ..., ~xN


+ E

 2
N

sup
~f C∈FC

N∑
n=1

I∑
j=1

σjnf
C
j (~xn)

∣∣∣∣∣∣~x1, ..., ~xN


= RadN(FU , SN) + RadN(FC , SN),

(A.25)
which concludes the proof of Lemma A.1.

The result of Lemma A.1 allows us to separate the Rademacher complexity
of the function space F (defined in Section 2.5.1) into the complexities of FU
and FC , for which we present bounds in the following.

Lemma A.2. The empirical Rademacher complexity of FC inside a ball of
radius BC, with ||~b||∞ ≤ BC, is bounded as

RadN(FC , SN) ≤ 2
√

2IBCe√
π
√
N

(A.26)
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with Euler constant e.

Proof of Lemma A.2: To bound the empirical multivariate Rademacher
complexity of FC , we use Definition A.5 to obtain:

RadN(FC , SN) = E

 2
N

sup
~qC∈QC

N∑
n=1

I∑
j=1

σjnqC,j(~xn)
∣∣∣∣∣∣~x1, ..., ~xN


≤ 2
N

I∑
j=1

E
(

sup
|bj |≤BC

(−bj)
N∑
n=1

σjn

)

= 2I
N

E
(

sup
|b0|≤BC

(−b0)
N∑
n=1

σ0,n

)
.

(A.27)

Because ∑N
n=1 σ0,n follows a binomial distribution, we bound the Rademacher

complexity as:

RadN(FC , SN) ≤ 2I
N2N

N∑
k=0

sup
|b0|≤BC

(−b0)
(
N

k

)[
(+1) · k + (−1) · (N − k)

]

= 2IBC

N2N
N∑
k=0

(
N

k

)
|2k −N |.

(A.28)
To further bound ∑N

k=0

(
N
k

)
|2k −N |, we assume N even, without loss of gen-

erality:

N∑
k=0

(
N

k

)
|2k −N | =

N/2∑
k=0

(
N

k

)
(N − 2k) +

N∑
k=N/2

(
N

k

)
(2k −N)

= −
N/2∑
k=0

(
N

k

)
2k +

N∑
k=N/2

(
N

k

)
2k

+
N/2∑
k=0

(
N

k

)
N −

N∑
k=N/2

(
N

k

)
N

= 2
− N/2∑

k=1

(
N

k

)
k +

N∑
k=N/2

(
N

k

)
k

 .

(A.29)
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Using
(
N
k

)
k =

(
N−1
k−1

)
N , we obtain

N∑
k=0

(
N

k

)
|2k −N | = 2N

− N/2∑
k=1

(
N − 1
k − 1

)
+

N∑
k=N/2

(
N − 1
k − 1

)
= 2N

−N/2−1∑
k=0

(
N − 1
k

)
+

N−1∑
k=N/2

(
N − 1
k

)
+
(
N − 1
N/2− 1

)
= N

(
N

N/2

)
≤ N

e√
2π
√
N

2N+1,

(A.30)
where we used the bounds on N ! for all N ∈ N based on Stirling’s formula as
presented in Robbins (1955):

√
2πNN+1/2e−Ne1/(12N+1) ≤ N ! ≤

√
2πNN+1/2e−Ne1/(12N). (A.31)

The Rademacher complexity of FC is therefore bounded as

RadN(FC , SN) ≤ 2
√

2IBCe√
π
√
N

, (A.32)

which concludes the proof of Lemma A.2.
For a data-independent kernel K(~x1, ~x2) we can bound the Rademacher

complexity of FU as presented in Lemma A.3.

Lemma A.3. The empirical Rademacher complexity of FU with all compo-
nents qU,j inside a ball of radius BU , with ||qU,j||K ≤ BU , is bounded as

RadN(FU , SN) ≤ 2IBU√
N

√√√√ 1
N

N∑
n=1

K(~xn, ~xn). (A.33)

Proof of Lemma A.3 : To bound the empirical multivariate Rademacher
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complexity of FU , we use Definition A.5 to obtain:

RadN(FU , SN) = E

 2
N

sup
~qU∈FU :||qU,j ||K≤BU

N∑
n=1

I∑
j=1

σjnqU,j(~xn)
∣∣∣∣∣∣~x1, ..., ~xN


= E

I 2
N

sup
qU,1∈HK :||qU,1||K≤BU

N∑
n=1

σ1,nqU,1(~xn)
∣∣∣∣∣∣~x1, ..., ~xN


= I RadN(FU,1, SN),

(A.34)
where

FU,1 = {qU,1(·) : X → R : qU,1(·) ∈ HK , ||qU,1||K ≤ BU}. (A.35)

The result of Lemma 22 in Bartlett and Mendelson (2002) allows us to
bound the Rademacher complexity of this ball of radius BU in the reproducing
kernel Hilbert space as

RadN(FU,1, SN) ≤ 2BU√
N

√√√√ 1
N

N∑
n=1

K(~xn, ~xn), (A.36)

and the bound to be proven for Lemma A.3 directly follows.
We combine the general out-of-sample guarantee of Theorem A.1 with the

results for the empirical Rademacher complexity presented in Lemmas A.1,
A.2 and A.3 to obtain the out-of-sample guarantee stated in Theorem 2.2,
which concludes the proof.

Proof of Proposition 2.7

To prove that the stated function space FKRBFG is dense in C(X ,RI), we
first establish universality of the RBF Gauss kernel (following Steinwart and
Christmann 2008), then show that FKRBFG is equivalent to the reproducing
kernel Hilbert space of a vector-valued kernel and use the results of Theorem 12
in Caponnetto et al. (2008) to prove universality.

Definition A.7. (Following Steinwart and Christmann 2008 and Caponnetto
et al. 2008) A continuous kernel K(~x1, ~x2) on a compact space X is called

154



A.1 Proofs

universal if the corresponding reproducing kernel Hilbert space HK is dense in
the space C(X ,R) of all continuous, real-valued functions over X , that is

∀g ∈ C(X ,R), ε > 0 ∃f ∈ HK : ||f − g||∞ ≤ ε. (A.37)

In the following lemma we introduce the most popular universal kernel,
the Gaussian RBF kernel.

Lemma A.4. (Following Steinwart and Christmann 2008) The RBF Gauss
kernel

KRBFG(~x1, ~x2) := exp
(
−γ2|~x1 − ~x2|2

)
(A.38)

is universal for any γ > 0, ~x1, ~x2 ∈ X and compact X ⊂ Rp, and bounded as
KRBFG(~x1, ~x2) ≤ 1.

Proof of Lemma A.4: The universality of the RBF Gauss kernel has been
shown in Micchelli et al. (2006) and in Corollary 4.58 in Steinwart and Christ-
mann (2008). The bound on the kernel function KRBFG(~x1, ~x2) ≤ 1 directly
follows from −γ2|~x1 − ~x2|2 ≤ 0 ∀~x1, ~x2.

The function space

F0 =
{
~q(·) : X → RI : qj(~x) = qH,j(~x) =

∞∑
n=1

unjK (~xn, ~x)
}

(A.39)

is equivalent to the reproducing kernel Hilbert space corresponding to the
vector-valued kernel K(~x1, ~x2) := K(~x1, ~x2)I with I the identity matrix (see
in Álvarez et al. 2012):

F1 =
{
~q(·) : X → RI : ~q(~x) =

∞∑
n=1

K (~xn, ~x) ~un =
∞∑
n=1

K (~xn, ~x) I~un

=
∞∑
n=1

K (~xn, ~x) ~un
}
.

(A.40)

Because the identity matrix I is positive definite, and the scalar-valued RBF
Gauss kernel is universal (Lemma A.4), the assumptions of Theorem 12 in
Caponnetto et al. (2008) are fulfilled, the vector-valued kernel is universal and
its reproducing kernel Hilbert space is dense in C(X ,RI).
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Because the function space FKRBFG equals the reproducing kernel Hilbert
space of K(~x1, ~x2)I when setting bj = 0, it is also dense in C(X ,RI), which
concludes the proof.

Proof of Proposition 2.8

To prove the convergence of kERM, we show that the deviation in risk from the
optimal prescription function ~q ∗F(·) within each function space F approaches
zero for N →∞ and that the function space F equals FKRBFG in the limit of
N → ∞. Similar as in Theorem 2.2, we assume a bounded function space F
where ||~b||∞ ≤ BC,N and ||qU,j||K ≤ BU,N ∀j, which allows us to bound the
Rademacher complexity (see Proof of Theorem 2.2 for details). To show the
universal approximation property, however, we need to expand these bounds
slowly with the number of data samples N , such that a) in the limit of N →∞
the function space is unbounded (BU,N , BC,N = ∞) and therefore dense in
C(X ,RI), and b) our out-of-sample performance guarantees, which contain
BU,N/

√
N and BC,N/

√
N , still converge (limN→∞BU,N/

√
N,BC,N/

√
N = 0).

One example for such sequences is BU,N = BC,N = (N) 1
3 .

The RBF Gauss kernel is data-independent and bounded (Lemma A.4) as
KRBFG(~x1, ~x2) ≤ 1, therefore we obtain an out-of-sample performance guaran-
tee (using Theorem 2.2) as

R(~q(·)) ≤ RN(~q(·)) + 3l̄
√

log(2/δ)
2N +MLip

(
2
√

2IBC,Ne√
π
√
N

+ 2IBU,N√
N

)
. (A.41)

Let ∆N(~q kERM
F (·)) denote the deviation of ~q kERM

F (·) from the optimal so-
lution ~q ∗F(·) within function space F in risk such that

∆N(~q kERM
F (·)) := R(~q kERM

F (·))−R(~q ∗F(·)). (A.42)
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Because RN(~q kERM
F (·)) = min~q(·)∈F RN(~q(·)) ≤ RN(~q ∗F(·)), we obtain

∆N(~q kERM
F (·)) = R(~q kERM

F (·))−RN(~q kERM
F (·)) +RN(~q kERM

F (·))−R(~q ∗F(·))
≤
[
R(~q kERM

F (·))−RN(~q kERM
F (·))

]
+ [RN(~q ∗F(·))−R(~q ∗F(·))] .

(A.43)
While R(~q kERM

F (·))− RN(~q kERM
F (·)) is bounded by (A.41), we derive a bound

on the term RN(~q ∗F(·))−R(~q ∗F(·)) in the following.
Because the loss function is bounded (Lemma 2.1), we can apply Hoeffding’s
inequality for ε > 0 (similar as in Expressions 5.7 and 5.8 in Vapnik 1998,
p. 186) and obtain:

P (RN(~q ∗F(·))−R(~q ∗F(·)) > ε) ≤ exp

(
−2ε2N
l̄2

)
, (A.44)

from which we derive, by defining δ := exp
(
−2ε2N
l̄2

)
:

P

RN(~q ∗F(·))−R(~q ∗F(·)) ≤ l̄

√
log(1/δ)

2N

 ≥ 1− δ. (A.45)

Therefore, we obtain for the deviation in risk with probability of at least 1−2δ:

∆N(~q kERM
F (·)) ≤ 3l̄

√
log(2/δ)

2N +MLip

(
2
√

2IBC,Ne√
π
√
N

+ 2IBU,N√
N

)
+ l̄

√
log(1/δ)

2N

=: Cδ√
N

+ C2BC,N√
N

+ C3BU,N√
N

,

(A.46)
where Cδ, C2, C3 are constant with respect to N .

Because limN→∞BU,N/
√
N,BC,N/

√
N = 0 by assumption, we obtain that

lim
N→∞

∆N(~q kERM
F (·)) = 0 (A.47)

with probability of at least 1− 2δ.
In addition, because limN→∞BU,N , BC,N =∞, we obtain for the function

space
lim
N→∞

F = FKRBFG , (A.48)
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and because FKRBFG is dense in C(X ,RI) (Proposition 2.7), we obtain that the
risk of kERM converges in probability toward the risk of ~q ∗(·), which concludes
the proof.

Proof of Proposition 2.9

The proof of Proposition 2.9 follows a similar structure as the proof of Propo-
sition 2.4—we apply the general results of Theorem 3.3 in Györfi et al. (2002)
to the stated loss function and the kERM approach. Similar to Proposition 2.4
we assume a class of distributions P(l,C) where the relationship between fea-
tures and mean demand is an (l, C)-smooth function (see Definition A.2 and
Györfi et al. 2002 for details).

Theorem 3.3 in Györfi et al. (2002) states that an individual lower rate of
convergence of any approach qN for the class P(l,C) is given as bNN−

2l
2l+p for an

arbitrary positive sequence bN with limN→∞ bN = 0; we define bN = N−
1

2l+p

to obtain:
inf
{qN}

sup
( ~X,D)∈P(l,C)

lim sup
N→∞

ESN [||qN −m||2]
N−

2l+1
2l+p

> 0. (A.49)

Because m(~x) = q∗(~x) (Proposition 2.4), we obtain, for choosing the subset
{qkERM} ⊆ {qN}, with qkERM being parameterized through kernel K(·, ·):

inf
K(·,·)

sup
( ~X,D)∈P(l,C)

lim sup
N→∞

ESN [||qkERM − q∗||2]
N−

2l+1
2l+p

> 0, (A.50)

which concludes the proof.

Proof of Theorem 2.3

To prove the out-of-sample performance guarantee stated in Theorem 2.3, we
show that the kernel function KRF(~x1, ~x2) as defined in (2.13) is bounded for
any data set SNRF and any random forest trained on SNRF , and then apply the
results of Theorem 2.2 for training kERM on the data set SN−NRF . Similar
as in Theorem 2.2, we assume a bounded function space F where ||~b||∞ ≤ BC

and ||qU,j||K ≤ BU ∀j.
Because every leaf node Rl of every tree l of the random forest contains
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at least one data sample of SNRF , we obtain:

NRF∑
j=1

1[Rl(~x) = Rl(~xj)] ≥ 1 ∀l, ~x ∈ X . (A.51)

There we obtain, following (2.13):

KRF(~x1, ~x2) = 1
L

L∑
l=1

1[Rl( ~x1) = Rl(~x2)]∑NRF
j=1 1[Rl( ~x1) = Rl(~xj)]

≤ 1
L

L∑
l=1

1[Rl( ~x1) = Rl(~x2)]

≤ 1.

(A.52)

Applying this bound to the result of Theorem 2.2, we obtain the expression
to be proven.

A.2 Characteristics of the Historical Demand
Data

In this section we present a descriptive analysis of the historical demand data
provided by the logistics service provider with whom we collaborated.

Figure A.1 illustrates the variations of CV and CC by plotting each for
a moving time window of ten weeks (panels (a) and (b)) and for the same
week in each year (e.g., for all observations in the first week in 2014-2017, see
panels (c) and (d)). As stated in Section 2.6.1, we observe periods with higher
and lower CVs and CCs, which may be explained by certain features related
to the time series.

Because interviews with experts suggested that demand may contain com-
plex seasonalities with different frequencies, we use a TBATS52 model, which
was introduced by De Livera et al. (2011) as an extension to the common
BATS model for time series modelling with multiple seasonalities.

52The acronym TBATS stands for Trigonometric (for multiple seasonalities), Box-Cox trans-
formation, ARMA errors, Trend, Seasonality.
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(a) CV for 10 weeks moving window.
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(b) CC for 10 weeks moving window.
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(c) CV for single week across 2014-2017.
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(d) CC for single week across 2014-2017.

Figure A.1: CV and CC of daily demand, estimated for 10 weeks moving
window (top) or a single week (bottom).

The time series of daily demands is prepared such that all days (Monday to
Friday) of the period 2014-2017 are single entries, resulting in a time series of
1043 entries. The seasonal periods are set to 5 (week), 21 (month), 65 (quarter
year), 130 (half year) and 260 (year), and a TBATS model is fitted using
the Akaike information criterion (AIC, see Akaike 1974) for model selection.
Figure A.2 displays the components identified by the TBATS model, which
shows strongest seasonality for quarter-yearly and yearly frequencies.
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A.2 Characteristics of the Historical Demand Data
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Figure A.2: Decomposition of total daily demand using a TBATS model. Note
that the depicted time frame is reduced for weekly and monthly seasonal com-
ponents due to the high frequency.
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A.3 Details on the Features used for Numerical
Experiments in Section 2.6

This section provides further details on the elements of the feature vector
~xn ∈ R162. As mentioned in Section 2.6.2, features are constructed in three
groups, date-based, lag-demand-based, and public-holiday based. In the first
group we construct features describing

• the year (2014-2017),

• the half of the year (1-2),

• the quarter of the year (1-4),

• the month of the year (1-12),

• the week number (1-53) by US and ISO standards,

• the week number within the month (1-5),

• the week number modulo 2, 3, or 4 (0-1, 0-2, 0-3), and

• the time, in terms of a continuously increasing index (number of seconds
after the beginning of 1970, in the range 1388620800-1514505600).

All of these 11 date-based features are constructed using the timetk package
in R.
In the second group, we construct 140 features representing lagged demand as

• 1-3 weeks lag, by service line and day,

• 1 month lag, by service line and day,

• 1 year lag, by service line and day,

• 1-3 weeks lag, summed across service lines, by day,

• 1 month lag, summed across service lines, by day,

• 1 year lag, summed across service lines, by day,
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A.3 Details on the Features used for Numerical Experiments in Section 2.6

• 1-3 weeks lag, summed across days of the week, by service line,

• 1 month lag, summed across days of the week, by service line,

• 1 year lag, summed across days of the week, by service line,

• 1-3 weeks lag, summed across service lines and days of the week,

• 1 month lag, summed across service lines and days of the week,

• 1 year lag, summed across service lines and days of the week,

• sum of 1-2 weeks lag, summed across service lines and days of the week,

• sum of 1-3 weeks lag, summed across service lines and days of the week,

• difference between 1 and 2 weeks lag, by service line and day

• difference between 1 and 2 weeks lag, summed across service lines and
days of the week,

• difference between 1 and 3 weeks lag, summed across service lines and
days of the week, and

• difference between 2 and 3 weeks lag, summed across service lines and
days of the week.

For the third group, based on interviews with experts, we construct 11 indi-
cator variables representing the relation to public holidays, indicating if

• a day of the week is a public holiday (0-1),

• there is a public holiday 1-3 days before the week of interest (0-1), or

• there is a public holiday 1-3 days after the week of interest (0-1).

This yields a total of 162 features.
Because we use a large number of features in our analyses, it is important

to understand which features drive the prescription performance the most, and
how the approaches react to an overly large number of features. Because both
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of our prescriptive approaches use a random forest kernel or weight function,
which is based on a random forest model, we analyse the feature importance
by means of the decrease in node impurity (residual sum of squares) achieved
by splitting using this variable, averaged over the three service lines.

Remaining 152 Features

1 week Lag, Day 3, Service Line 1
1 Week Lag, Day 1, Service Line 3
1 Week Lag, Day 5, Service Line 2

Week Number (ISO)
1 Week Lag, Day 4, Service Line 3

1 Week Lag, Week Sum, Service Line 1
2 Weeks Lag, Day 3, Service Line 3

1 Week Lag, Week Sum, Service Line 3
Time in Seconds after Beginning of 1970

1 Year Lag, Week Sum, Service Line 3

0 % 20 % 40 % 60 % 80 % 100 %

Figure A.3: Feature importance.

The results are depicted in Figure A.3. While the importance of the week
number and lagged demands was expected (due to the yearly structure of
demand which exhibits similarity from year to year), the importance of the
time in seconds (which is a continuously increasing number) mainly stems
from the demand structure of the first service line. In the majority of cases
the random forest splits using this feature in June 2014, separating the first
six months of training data from the rest—which can be understood by the
differing demand structure visible in Figure 2.1a.

To study the impact of using only few (the most important features) up
to a very large number of features (including higher-order features, e.g. the
square of existing features), we plot the performance of wSAA and kERM, in
Figure A.4, for varying numbers of features.53

Clearly, neither of the approaches suffers greatly from a large number
of features—both approaches lead to a comparably stable performance even
53For simplicity we use a kernel based on three scalar random forest models that predict
the average demand over one week for each service line (trained using the caret R-package
as described in Kuhn (2008) with cross validation parameter tuning, varying the number
of variables to select for each tree between 5 and 140). Using these three random forest
models we calculate the kernel matrix by averaging over all three random forest models.
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Figure A.4: Performance of wSAA and kERM for a varying number of features.

in the high-dimensional regime of p = 810� N = 157. This observation is
not surprising, because the random forest includes feature selection by design
(see Section 2.4.2). The results are further consistent with similar numerical
experiments conducted by BK (BK, p. 1028).

We further observe that wSAA already performs well with a very small
number of features (the most important features), while kERM—at least for
higher service levels—appears to require more features, and that the opti-
mal number of features appears to depend on the optimal service level (and
therefore on the planning problem itself).

A.4 Detailed Description of Approaches for
Numerical Evaluation

In this section we describe the implementation of each of the approaches pre-
sented in Section 2.6.3 in more detail.

A.4.1 Kernelized ERM

The implementation of kERM (2.11) using the random forest kernel (2.13)
consists of two parts: the computation of the kernel matrix KRF

pq , and the
estimation of the prescription function ~q kERM(·) by solving (2.12). To calcu-
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late KRF
pq , we train a multivariate random forest model to predict the demands

for each service line and each day of one week using the RandomForestRegres-
sor class of the scikit-learn package for python.54 Using this random forest
model we calculate the kernel matrix for training KRF

train,pq with p, q = 1...N
for N training samples by implementing (2.13). Similarly, we calculate the
kernel matrix for evaluation KRF

eval,pq with p = 1...N and q = 1...Ntest for Ntest

samples of the evaluation period. Then, in the second step, we solve Prob-
lem 2.12 using Gurobi Optimizer. Based on the estimated βtnj and εnj we derive
the optimal values for unj , and from these we derive the prescription function
~q kERM(·) as stated in (2.11). To estimate the remaining parameters bj we solve
Problem 2.10, which is linear in bj when applying (2.11), using Gurobi Opti-
mizer. Based on the function ~q kERM(·) we estimate the capacity prescriptions
for the evaluation period.

The prescription functions are optimized by tuning the cost parameters λj,
which is accomplished using simple cross validation, with 2/3 of the training
data used to train the model, and the remaining 1/3 of the training data
to evaluate the achieved profit. As the cost parameters need to balance the
variation of the prescription function and the achieved profit, while the latter
scales approximately with ajj, we set λj = c0 · ajj and tune c0 = 10−4...104

using the procedure described above. For each set of exogenous parameters,
the cost parameter with the highest validation profit is chosen.

A.4.2 Weighted SAA

wSAA is implemented in two steps, with the first step being identical to kERM:
we use the same matrixKRF

eval,pq (see Appendix A.4.1) as weight function, which
implements wRF

p (~xq) as defined in (2.9) with p = 1...N for N training samples
and q = 1...Ntest for Ntest samples of the evaluation period. Based on this
weight function, we solve Problem 2.7 using Gurobi Optimizer.

54Because demand is multivariate, a multivariate random forest is more appropriate than a
combination of scalar random forest models.
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A.4.3 SAA

The SAA approach is a simplified version of wSAA, and can be derived by
setting wn(~x) := 1/N in Problem 2.7:

~q SAA(~x) = arg min
~q∈Q

min
{ytnij }

N∑
n=1

1
N

∑
j

fjqj −
T∑
t=1

∑
i,j

aijy
tn
ij −

∑
i

cid
tn
i


s.t.

∑
j

ytnij ≤ dtni ∀i, n, t∑
i

ytnij ≤ qj ∀j, n, t

ytnij ≥ 0 ∀i, j, n, t
ytnij = 0 if i < j ∀n, t.

(A.53)
This problem is solved using Gurobi Optimizer.

A.4.4 SVR-SEO

The SVR-SEO approach represents the class of traditional parametric ap-
proaches, and has been selected as benchmark approach due to its structural
similarity to kERM. Because support vector regression is kernel-based, we use
KRF

train,pq as calculated for kERM (see Appendix A.4.1) to train 15 epsilon-SVR
models using the kernlab R-package with simple cross validation parameter
tuning, similar to kERM.55 We further use KRF

eval,pq to predict demand values
for all service lines and all days of the evaluation period and calculate the
in-sample residuals to evaluate the covariance matrix Σ, from which we derive
the coefficients of variation and correlation, which are assumed to be constant.
Combining the predicted demand values with these coefficients we obtain a set
of multivariate normal distributions of demand for each day of the evaluation
period. We approach the stochastic optimization problem (2.1) using Monte
Carlo simulation and sample average approximation by taking NMC = 300
samples of the multivariate normal distributions for each day and solving the
55The cost parameter is tuned across the range C = 10−4...104, while the epsilon parameter
is estimated as ε = 3σ

√
lnN/N (see Cherkassky and Ma 2002) with σ being the demand

noise level, estimated using random forest models.
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resulting problem using Gurobi Optimizer.

A.4.5 ARIMA-SEO

The ARIMA-SEO approach represents the class of traditional parametric, time
series-based approaches. We selected ARIMA because it lead to a higher per-
formance than other popular approaches (see Appendix A.6 for a performance
comparison of ARIMA and ETS models). We train three ARIMA models to
the demand values for the three service lines, with the model parameters being
estimated using the automatic fitting approach as described in Hyndman and
Khandakar (2008) and implemented in the R-package forecast. Similar to the
SVR-SEO approach we use the in-sample residuals to estimate the covariance
matrix Σ and the coefficients of variation and correlation. Combining the fore-
casted demand values with these coefficients we obtain a set of multivariate
normal distributions of demand for each day of the evaluation period. From
here we follow the exact same procedure as for SVR-SEO to solve Problem 2.1.

A.5 Definition and Details of Alternative Kernel
Functions

In Section 2.6.6 we analyze the performance of kERM when using alternative
kernels, including a linear kernel

KLin(~x1, ~x2) = 〈~x1, ~x2〉, (A.54)

and a polynomial kernel (homogeneous 3rd degree)

KPoly3(~x1, ~x2) = 〈~x1, ~x2〉3, (A.55)

which are both data-independent kernels. The performance analysis further
includes the universal RBF Gauss kernel as defined in Section 2.5.2, and the
random forest kernel presented in Section 2.5.3.

We conjectured, in Section 2.6.6, that the higher performance of kERM
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at very high service levels when using an RBF Gauss kernel is rooted in the
more homogeneous similarity values that induce a higher implicit uncertainty
such that kERM does not exhibit a significant regularization effect. To further
elucidate on this property, we plot, in Figure A.5, the standard deviation of
the normalized kernel values Kij with

∑N
j=1Kij = 1 for each data sample i.
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Figure A.5: Standard deviation of kernel values for all training data samples.

The standard deviation of the kernel values is clearly higher for the random
forest kernel than for all other kernels, which are data-independent. This
suggests that the random forest kernel assigns a higher similarity to a few
samples, while most others exhibit a low similarity value.

A.6 Performance Comparison of ARIMA and ETS
Models

To compare the prescription performance of ARIMA and ETS models in terms
of gap to optimal profit, we follow the same procedure as described in Sec-
tion 2.6. Figure A.6 shows that ARIMA models outperform ETS models for
the data set at hand over the full range of service levels. We therefore choose an
ARIMA model as time series-based benchmark for the numerical evaluation.
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Figure A.6: Absolute gap to optimal profit across service levels.

A.7 Additional Theoretical Insights

A.7.1 Analytical Results for Weighted SAA

This section presents two analytical results for wSAA—asymptotic optimality
for a number of weight functions and, for scalar-valued decisions, the restric-
tion of the prescriptions to convex combinations of decisions that would have
been optimal for past observations.

Proposition A.1. (Following BK) ~q wSAA(~x) is asymptotically optimal over
closed, bounded, non-empty decision space Q̃ ⊂ RI

+ and bounded, non-empty
demand space D̃ ⊂ RI×T

+ for SN generated by iid sampling and any of the
following weight functions:

a) Based on kNN:

wkNN
n (~x) = 1

k
1[~xn is a kNN of ~x], (A.56)

with k = min(dCN δe, N − 1) for some C > 0, 0 < δ < 1.

b) Based on kernel methods:

wK
n (~x) = K((~xn − ~x)/hN)∑N

k=1 K((~xk − ~x)/hN)
, (A.57)

with hN = CN−δ for some C > 0, 0 < δ < 1/p with ~x ∈ Rp, and K being
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one of the following kernels: naïve K(~x) = 1[||~x|| ≤ 1], Epanechnikov
K(~x) = (1−||~x||2)1[||~x|| ≤ 1], Tri-cubic K(~x) = (1− ||~x||3)31[||~x|| ≤ 1],
or Gaussian K(~x) = exp(−||~x||2/2).

c) Based on recursive kernel methods:

wrK
n (~x) = K((~xn − ~x)/hn)∑N

k=1K((~xk − ~x)/hk)
, (A.58)

with hn = Cn−δ for some C > 0, 0 < δ < 1/(2p) with ~x ∈ Rp, and K
being the naïve kernel K(~x) = 1[||~x|| ≤ 1].

d) Based on local linear methods:

wLL
n (~x) = w̃n(~x)∑N

k=1 w̃k(~x)
, (A.59)

with

w̃n(~x) = kn(~x)
(

1−
N∑
l=1

kl(~x)(~xl − ~x)TΞ(~x)−1(~xn − ~x)
)
,

Ξ(~x) =
N∑
n=1

kn(~x)(~xn − ~x)(~xn − ~x)T ,

kn(~x) = K((~xn − ~x)/hN),

(A.60)

and hN = CN−δ for some C > 0, 0 < δ < 1/p with ~x ∈ Rp, and K being
one of the following kernels: naïve K(~x) = 1[||~x|| ≤ 1], Epanechnikov
K(~x) = (1−||~x||2)1[||~x|| ≤ 1], Tri-cubic K(~x) = (1− ||~x||3)31[||~x|| ≤ 1],
or Gaussian K(~x) = exp(−||~x||2/2), if the distribution of feature vec-
tors ~x is absolutely continuous and the probability density f(~x) is bounded
away from 0 and ∞ over X .

Proof of Proposition A.1: To prove asymptotic optimality of ~qwSAA(~x),
we apply Theorems 2-5 presented in BK to our loss function. Because any
bounded Q̃ and D̃ are subsets of Q and D (Definition 2.2), we obtain the
following properties for our loss function L:

171



A Appendix of Chapter 2

• Existence (Assumption 1 in BK): The loss function is bounded (see
Lemma 2.1), therefore E(|L(~q,D)|) ≤ l̄ <∞, and the feasible region is
Q 6= ∅.

• Continuity (Assumption 2 in BK): The loss function is equi-Lipschitz
(Lemma 2.1).

• Regularity (Assumption 3 in BK): Q 6= ∅ is closed, bounded and non-
empty by definition.

In addition, because 0 ≤ L(~q,d) ≤ l̄ (Lemma 2.1), the following holds:

E[|L(~q,D)|max(log |L(~q,D)|, 0)] ≤ l̄ log l̄ <∞.

Therefore, the results of Theorems 2-5 (BK) can be applied to our loss func-
tion, proving asymptotic optimality of wSAA for any of the weight functions
presented in Proposition A.1.

Proposition A.1 states that wSAA is asymptotically optimal for a num-
ber of classes of weight functions and certain conditions, e.g., for kNN the
parameter k needs to be chosen accordingly.

Proposition A.2. Assume Q = D = R, and a loss function L(q, d) strictly
convex in q. Let

Qint = {qn := arg min
q∈Q

L(q, dn);n = 1, ..., N} (A.61)

denote the set of optimal solutions for individual demand realizations dn and
conv(Qint) its convex hull. Then

qwSAA(~x) ∈ conv(Qint) ⊂ Q ∀~x ∈ X . (A.62)

Proof of Proposition A.2: To prove qwSAA(~x) ∈ conv(Qint) ∀~x ∈ X , we first
define g~x(q) := ∑N

n=1wn(~x)L(q, dn). Because qwSAA(~x) = arg minq∈Q g~x(q), we
need to show that

∀q ∈ Q, q /∈ conv(Qint) ∃q′ ∈ conv(Qint) : g~x(q′) < g~x(q), (A.63)

172



A.7 Additional Theoretical Insights

meaning that the minimizer of g~x(q) is in conv(Qint).
Assume, without loss of generality, that the minimizers of the loss function

qn = arg minq∈Q L(q, dn) for the individual demand realizations dn are ordered
as q1 ≤ q2 ≤ ... ≤ qN . Consequently, q1 ≤ q ≤ qN ∀q ∈ conv(Qint). Let ∆ > 0,
so that

q1 −∆ < q1 ≤ qn ∀qn. (A.64)

Then there exists a 0 ≤ λn < 1 such that q1 = λn(q1−∆)+(1−λn)qn. Because
L(q, d) is convex, we know that

L(q1, d
n) ≤ λnL(q1 −∆, dn) + (1− λn)L(qn, dn) (A.65)

for all n = 1...N . Because the optimal solutions qn are unique (L(q, d) strictly
convex), we know that L(qn, dn) < L(q1 −∆, dn), and

L(q1, d
n) < λnL(q1 −∆, dn) + (1− λn)L(q1 −∆, dn) = L(q1 −∆, dn).

(A.66)
Therefore,

g~x(q1 −∆) =
N∑
n=1

wn(~x)L(q1 −∆, dn) >
N∑
n=1

wn(~x)L(q1, d
n) = g~x(q1).

(A.67)
In the same way we can show g~x(qN + ∆) > g~x(qN), therefore,

g~x(q) > g~x(q1) ∀q < q1 and g~x(q) > g~x(qN) ∀q > qN , (A.68)

which was to be proven.
Proposition A.2 demonstrates that wSAA, assuming scalar-valued deci-

sions and an l2 loss function, is restricted to interpolations between optimal
solutions for historical observations of demand. In the following section we
study how this may lead to sub-optimal decisions in case of strong trends.
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A.7.2 Characteristics of kERM and wSAA for a Linear
Demand Model

We illustrate the characteristics of kERM and wSAA concerning extrapolation
and guaranteed feasibility of prescriptions by considering a strongly simplified
version of our capacity planning problem. In particular, we consider the prob-
lem of planning the capacity for a single service line and a decision horizon of
T = 1 day, which reduces the problem to a newsvendor-like situation. Let CO
and CU denote the overage and under cost factors, and assume a feature-driven
linear demand model, as provided in BR:

D|(X = x) = βx+ ε, (A.69)

where ε ∼ N (0, σε) is independent noise with cdf Fε.

Proposition A.3. Assume a linear demand model as in (A.69) with β > 0, a
service level CU/(CU+CO) > 0.5, and a training data set SN = {(xn, dn)} with
x1 ≤ x2 ≤ ... ≤ xN−1 ≤ xN . Let k0 denote the number of nearest neighbors,
let 0 < δ < 1− (1/2)k0, and let ∆ ≥ 2β−1F−1

ε

(
(1− δ)1/k0

)
.

Then

a) the prescription of wSAA, using a k0 nearest neighbors weight function,
for a new feature xN+1 = xN + ∆ will deviate from the optimal deci-
sion q∗(xN+1) as

∣∣∣∣qwSAA(xN+1)− q∗(xN+1)
∣∣∣∣ ≥ β

∆
2 (A.70)

with probability of at least 1− δ,

b) kERM, using a linear kernel (corresponding to a linear function space),
converges asymptotically to the optimal solution

qkERM(x)→ q∗(x) = βx+ F−1
ε

(
CU

CU + CO

)
. (A.71)

Proof of Proposition A.3: The convergence of qkERM(x) toward the op-
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timal solution has been shown in Theorem 3 in BR. To prove the deviation
of qwSAA(xN+1) from the optimal solution, we show that wSAA cannot pre-
scribe capacities larger than its largest training demand value, while demand
increases according to the linear model.
Because qwSAA(x) ∈ conv(Qint) (see Proposition A.2) and the single-instance
solution qn = arg minq∈Q L(q, dn) = dn for the newsvendor problem, we obtain

qwSAA(x) ≤ max
n≤N

dn ≤ max
n≤N

(βxn + εn) ∀x (A.72)

with εn being the nth realization of the random variable ε.
Let ε̄ := F−1

ε ((1 − δ)1/k0), then Fε(ε̄) = (1 − δ)1/k0 , which means that
εn ≤ ε̄ with probability (1 − δ)1/k0 . Let K0 be the set of the k0 nearest
neighbors of xN+1, then with probability of at least 1− δ:

qwSAA(xN+1) ≤ max
n∈K0

(βxn + εn) ≤ βxN + ε̄ ≤ β
(
xN + ∆/2

)
. (A.73)

Therefore, with probability of at least 1− δ, we obtain for the deviation of the
wSAA prescription:

q∗(xN+1)− qwSAA(xN+1) ≥ β
(
xN + ∆

)
− β

(
xN + ∆/2

)
= β

∆
2 > 0, (A.74)

from which we derive the statement to be proven.
Proposition A.3 shows that for the case of linear demand with trend, the

restriction of wSAA to the convex hull of optimal decisions for past observa-
tions may lead to deviations from the optimal decision.

To analyze the feasibility of the prescriptions obtained from kERM and
wSAA, assume a feasible region for our simplified model that is restricted as
Q̂ = {q ∈ R : q ≤ qmax}, for example because of limitations of working space
or machine capacity. In this setting, wSAA will obey the restriction on Q̂ and
prescribe qwSAA(x) ≤ qmax, even for x > qmax/β. The kERM approach, in
contrast, will only obey this restriction when learning the prescription func-
tion qkERM(·). Assuming dn ≤ qmax ∀n ≤ N and CU/(CU + CO) = 0.5, kERM
will therefore still converge toward q∗(x) = βx + F−1

ε

(
CU

CU+CO

)
= βx. How-
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ever, this function may prescribe infeasible solutions for xN+1 > qmax/β as
qkERM(xN+1) > qmax, which need to be corrected by post-processing.

A.7.3 Analysis of Intra-Week Variation Structure

While the capacity planning problem as stated in (2.1) is based on a set of T
daily demands ~Dt, each of which follows a distribution with density ft, we can
restate the relevant part of the problem using the average of the distribution
densities f̃ = 1

T

∑
t ft as follows:

T∑
t=1

E
(
π( ~Dt, ~q)

)
=

T∑
t=1

∫ ∞
−∞

π(~x, ~q)ft(~x)d~x

= T
∫ ∞
−∞

π(~x, ~q)f̃(~x)d~x = TE
(
π( ~̃D, ~q)

)
.

(A.75)

To characterize the distribution of ~̃D with density function f̃ , we estimate
mean µ̃ and variation σ̃2 for the simplified case of D̃ ∈ R. With mean µt and
variation σ2

t of the individual daily demands Dt ∈ R we obtain:

µ̃ =
∫ ∞
−∞

xf̃(x)dx = 1
T

T∑
t=1

∫ ∞
−∞

xft(x)dx = 1
T

T∑
t=1

µt. (A.76)

The mean µ̃ of D̃ is therefore the mean of the individual µt for each day
t = 1...T . We further obtain that the variation σ̃2 consists of two components:

σ̃2 =
∫ ∞
−∞

(x− µ̃)2f̃(x)dx = 1
T

T∑
t=1

∫ ∞
−∞

((x− µt) + (µt − µ̃))2 ft(x)dx

= 1
T

T∑
t=1

σ2
t + 1

T

T∑
t=1

(µt − µ̃)2 = 1
T

T∑
t=1

σ2
t + σ2

w.

(A.77)

We call σ2
w the intra-week variation, which is the variance of the individual

daily mean demands µt around µ̃. For a constant daily demand variation
σ2
t = σ2

d for all days t, we have σ̃ =
√
σ2
d + σ2

w.
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A.7.4 ERM Solution for a Linear Function Space

For solving the ERM approach over a linear function space, we define

F = {~q(·) : ~q(~x) = W~x−~b}, (A.78)

where W = (~w1, ~w2, ..., ~wI) is the matrix representing the linear mapping of ~x,
and ~b = (b1, b2, ..., bI) represents a constant offset56.

For this particular function space, Problem 2.10 can be stated as:

min
W,~b,{ytnij }

I∑
j=1

λj‖~wj‖2 +
N∑
n=1

∑
j

fj(~wj · ~xn − bj)−
T∑
t=1

∑
i,j

aijy
tn
ij −

∑
i

cid
tn
i


s.t.

∑
j

ytnij ≤ dtni ∀i, n, t∑
i

ytnij ≤ (~wj · ~xn − bj) ∀j, n, t

ytnij ≥ 0 ∀i, j, n, t
ytnij = 0 if i < j ∀n, t

~wj · ~xn − bj ≥ 0 ∀j, n.
(A.79)

In (A.79) we use the norm ∑I
j=1 ||~wj||2 for regularization so that we do not

penalize shifts in the mean by the constant offset ~b.57 We also included a
regularization parameter λj for each capacity (service line) j, which becomes
important when profitabilities ai,j vary widely across capacities j. In such
situations, a constant regularization parameter could lead to high variance for
highly profitable capacities and high bias for capacities with low profitability
at the same time.

Proposition A.4. The objective function of the linear ERM approach is
jointly convex in {~wj} and ~b.

56We introduce a constant offset to allow for a feature-independent term (e.g., allowing
functions with non-zero mean for X centered around 0). Alternatively, one could add a
constant entry x0 = 1 to the feature vector, which would integrate the constant offset bj
as the first entry of each ~wj (e.g., as in Section 2.3.1 in BR).

57The approach of not penalizing shifts in the mean is commonly chosen in regression
problems. See for example Evgeniou et al. (2000) or Smola and Schölkopf (2004).
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Proof of Proposition A.4: Because the objective function of the ERM
approach (2.10) is convex (Proposition 2.5) and convexity is invariant under
affine maps, such as ~q(W,~b, ~x) = W~x−~b, the objective function of the linear
ERM approach is jointly convex in {~wj} and ~b.

Theorem A.2. The optimal solution to Problem A.79 is:

~q ERM(~x) =
N∑
n=1

~un (~xn · ~x)−~b, (A.80)

where the components of ~un are defined as unj = 1
2λj

(∑T
t=1(βtnj ) + εnj − fj

)
,

and βtnj , εnj is the optimal solution to the dual problem of (A.79):

max
{αtni },{β

tn
j },{ε

n
j }
Ldual := −

I∑
j=1

λj
N∑

p,q=1

(
upju

q
j(~xp · ~xq)

)
+

N∑
n=1

I∑
i=1

T∑
t=1

(ci − αtni )dtni

s.t. αtni , βtnj , εnj ≥ 0 ∀i, n, t
αtni + βtnj ≥ aij ∀i ≥ j, ∀n, t
N∑
n=1

unj = 0 ∀j.

(A.81)

Proof of Theorem A.2: To prove the solution stated in Theorem A.2 we
derive the primal Lagrange function and prove strong duality, which allows to
express the solution to Problem A.79 using the Lagrange dual function.

Let αtni , βtnj , γtnij , δtnij and εnj be Lagrange multipliers, then we obtain for
the primal Lagrangian:

Lprimal =
I∑
j=1

λj‖~wj‖2 +
N∑
n=1

∑
j

fj(~wj · ~xn − bj)−
T∑
t=1

∑
i,j

aijy
tn
ij −

∑
i

cid
tn
i


+
∑
i,n,t

αtni

∑
j

ytnij − dtni

+
∑
j,n,t

βtnj

(∑
i

ytnij − (~wj · ~xn − bj)
)

−
∑
i,j,n,t

γtnij y
tn
ij +

∑
n,t,i<j

δtnij y
tn
ij −

∑
j,n

εnj (~wj · ~xn − bj) ,

(A.82)
where i, j = 1...I, t = 1...T , and n = 1...N .
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Because the objective function of the linear ERM approach is convex
(Proposition A.4), all constraints of Problem A.79 are affine in the primal
variables W,~b, {ytnij }, and W,~b, {ytnij } = 0 is a feasible solution with 0 be-
ing a relative interior point of the domain of definition Rν with dimension
ν = I × dimX + I + I × I ×N × T , the Slater condition is fulfilled and we
obtain that strong duality holds (see Section 5.2.3 in Boyd and Vandenberghe
2004). Therefore, the Karush-Kuhn-Tucker (KKT) conditions, which state
that the partial derivatives of Lprimal with respect to the primal variables ~wj,
bj, and ytnij equal zero, provide necessary and sufficient conditions for optimal-
ity (Boyd and Vandenberghe 2004, p. 244):

∂Lprimal

∂ ~wj
= 2λj ~wj +

N∑
n=1

(
fj −

∑
t

βtnj − εnj

)
~xn = 0

∂Lprimal

∂bj
=

N∑
n=1

(
−fj +

∑
t

βtnj + εnj

)
= 0

for i < j: ∂Lprimal

∂ytnij
= −aij + αtni + βtnj − γtnij + δtnij = 0

for i ≥ j: ∂Lprimal

∂ytnij
= −aij + αtni + βtnj − γtnij = 0.

(A.83)

Defining

unj := 1
2λj

(∑
t

(βtnj ) + εnj − fj
)
, (A.84)

we obtain
~wj =

N∑
n=1

unj ~x
n, 0 =

N∑
n=1

unj ∀j, and

γtnij = −aij + αtni + βtnj +

δ
tn
ij for i < j

0 otherwise,

(A.85)

which allows us to state the primal Lagrangian as

Lprimal =−
I∑
j=1

λj
N∑
p=1

N∑
q=1

(
upju

q
j(~xp · ~xq)

)
+
∑
i,n,t

(ci − αtni )dtni . (A.86)

Because Lprimal is independent of the primal variables, we obtain for the dual
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Lagrangian:
Ldual = inf

W,~b,{ytnij }
Lprimal = Lprimal, (A.87)

from which we derive for the dual problem:

max
{αtni },{β

tn
j },{ε

n
j }
Ldual

s.t. αtni , βtnj , εnj ≥ 0 ∀i, n, t
αtni + βtnj ≥ aij ∀i ≥ j, ∀n, t
N∑
n=1

unj = 0 ∀j,

(A.88)

which concludes the proof.

Corollary A.1. The objective function Ldual of the dual problem (A.81) is
concave in the Lagrange multipliers αtni , βtnj , εnj .

Proof of Corollary A.1: Similarly as in the proof of Corollary 2.1, the
primal Lagrangian Lprimal is by definition affine and therefore concave in the
Lagrangian multipliers αtni , βtnj , εnj . The dual Lagrangian is the point-wise
infimum of a collection of concave functions:

Ldual({αtni }, {βtnj }, {εnj }) = inf
W,~b,{ytnij }

Lprimal(W,~b, {ytnij }, {αtni }, {βtnj }, {εnj }),

(A.89)
and therefore concave in αtni , βtnj , εnj .

Problem A.81 is a quadratic optimization problem that can be solved
efficiently using standard non-linear programming techniques. Given the op-
timal ~un, the offset ~b can be determined by solving Problem A.79, which is
linear in bj.

A.7.5 Non-universality of the Random Forest Kernel

While our numerical experiments suggest that the random forest kernel may
lead to superior performance in practical settings, a natural question is whether
the random forest kernel is also universal. To shed light on this aspect, we
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consider Simon-Gabriel and Schölkopf (2018), who showed that universality
of a kernel is equivalent to a generalized definition of strictly positive definite-
ness (s.p.d.) for kernels (Theorem 6 in Simon-Gabriel and Schölkopf 2018).
Because this generalized notion of s.p.d. contains (and therefore requires) the
classical notion of s.p.d. of matrices and kernel matrices (see Definition 5 in
Simon-Gabriel and Schölkopf 2018)—that is ~γTK~γ > 0 ∀~γ 6= 0—we can show
by contradiction that the random forest kernel is not generally universal, and
that the universal approximation property of kERM does not apply. The intu-
ition behind the non-universality of the random forest kernel is that, because
it is trained on a particular data set, a random forest may not distinguish
between different feature vectors ~x across some region R ⊂ X , given that the
demand does not differ across R. Consequently none of the functions of the
corresponding reproducing kernel Hilbert space distinguish between these dif-
fering feature vectors ~x and the function space is therefore not dense in the
space of all continuous functions C(X ,Q).

Proposition A.5. The random forest kernel as defined in (2.13) is not gen-
erally universal.

Proof of Proposition A.5: To prove the stated result, we show that the
random forest kernel may lead to a kernel matrix that is not s.p.d., while
being s.p.d. is a requirement for universality (Simon-Gabriel and Schölkopf
2018). Assume D = X = R and two feature vectors x1 < x2, which define the
set R = {x ∈ X |x1 ≤ x ≤ x2} ⊂ X . Further assume a joint distribution of
X ×D and that there is no difference in D over R, such that the conditional
probability distributions ofD are f(d, x) = f(d, x1) = f(d, x2) ∀x ∈ R. Letm0

be the mean of D over R. Further assume the sets Ra = {x ∈ X |x < x1} ⊂ X
and Rb = {x ∈ X |x > x2} ⊂ X with ma, mb the means of D over Ra and Rb.

When learning the random forest model for a data set SN = {(xn, dn)},
each tree will determine the optimal splitting point s for each split to minimize
the remaining sum of residual squares of the demand values dn of the data set:

min
s

∑
R1:={n|xn≤s}

(dn −m1)2 +
∑

R2:={n|xn>s}
(dn −m2)2, (A.90)
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where m1, m2 are the mean values of the left and right child nodes R1 and R2

of the tree. When considering a split within R, that is x1 ≤ s ≤ x2, we show
in the following that splitting at either s = x1 or s = x2 is optimal, and the
tree therefore does not split within R.

Assume that Ra contains a data points xn, that Rb contains b data points,
and that R contains c data points and let j be the number of data points
xn ∈ R assigned to R1.

Then, for large N , the means m1 and m2 are given as:58

m1 = maa+m0j

a+ j
(A.91)

m2 = mbb+m0(c− j)
b+ c− j

(A.92)

and the optimal splitting j is determined by solving:

min
j
M(j) := min

j

[
a(ma −m1)2 + j(m0 −m1)2+

b(mb −m2)2 + (c− j)(m0 −m2)2
]
.

(A.93)

Because the second derivative of M(j) is negative:

∂2

∂j2M(j) = −2a2(ma −m0)2

(a+ j)3 − 2b2(mb −m0)2

(b+ c− j)3 (A.94)

the function M(j) is concave and takes its minimum at the boundaries of
the domain, that is either at j = 0 (corresponding to s = x1) or at j = c

(corresponding to s = x2).59 Therefore, the trees of the random forest do not
split within R. Consequently, the random forest model assigns two feature
vectors xa 6= xb ∈ R to the same leaf node in all trees, the corresponding
columns of the kernel matrix K = {K(xp, xq)} are identical, and at least
one eigenvalue of the kernel matrix is zero, implying that the random forest

58In the limit of N →∞, the mean demand of the data points in Ra equals ma, the mean
demand of the data points in Rb equals mb, and each subset of the data points in R has
the mean demand m0.

59In case ∂2

∂j2M(j) = 0, we obtain m1 = m2 = m0 independent of j. Consequently, the sum
of residual squares cannot be reduced by splitting within R, and the tree would not split.
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kernel is not s.p.d. Therefore, the random forest kernel is not universal, which
concludes the proof.

A.7.6 Consistency and Rate of Convergence of kERM

Based on the out-of-sample performance guarantees for kERM presented in
Theorems 2.2 and 2.3 for data-independent kernels and the data-dependent
random forest kernel, we show that kERM is consistent and we bound the rate
at which the risk of ~q kERM(·) converges to the risk of optimal solution of the
function space F .

Definition A.8. (Following the definition presented in Vapnik 1998, p. 80)
An ERM approach is called consistent for a function space F if R(~qN(·)) and
RN(~qN(·)), with ~qN(·) = arg min~q(·)∈F RN(~q(·)), converge to inf~q(·)∈F R(~q(·)) in
probability; that is ∀ε > 0:

lim
N→∞

P

(∣∣∣∣R(~qN(·))− inf
~q(·)∈F

R(~q(·))
∣∣∣∣ > ε

)
= 0

lim
N→∞

P

(∣∣∣∣RN(~qN(·))− inf
~q(·)∈F

R(~q(·))
∣∣∣∣ > ε

)
= 0.

(A.95)

Proposition A.6. Assume a function space F = FU + FC with a data-
independent bounded kernel K(~x, ~x) ≤ K̄ ∀~x ∈ X , or F = FRF with the
random forest kernel, and ||~b||∞ ≤ BC and ||qU,j||K ≤ BU ∀j. Then the kERM
approach defined by Problem 2.10 is consistent for the function space F .

Proof of Proposition A.6: To prove consistency of kERM we derive a
bound on the probability that the empirical risk RN deviates by more than ε
from the true risk R, prove one-sided convergence and apply Theorem 3.1 of
Vapnik (1998). To derive a bound on the probability of deviation in risk, we
restate the out-of-sample performance guarantee presented in Theorem 2.2 for
all ~q(·) ∈ F = FU + FC as:

P
(
R(~q(·))−RN(~q(·)) > CN,δ

)
≤ δ, (A.96)

183



A Appendix of Chapter 2

where, setting δ = 1/N ,

CN,δ ≤ 3l̄
√

log(2N)
2N +MLip

(
2
√

2IBCe
2

√
π
√
N

+ 2IBU√
N

√
K̄

)
=: CN , (A.97)

using the bound on the kernel function K. In case of the random forest kernel,
we restate the out-of-sample performance guarantee presented in Theorem 2.3
as:

P
(
R(~q(·))−RN−NRF (~q(·)) > CN,δ

)
≤ δ (A.98)

and set δ = 1/(N −NRF ) to obtain

CN,δ = 3l̄

√√√√ log(2(N −NRF ))
2(N −NRF ) +MLip

(
2
√

2IBCe√
π
√
N −NRF

+ 2IBU√
N −NRF

)
=: CN

(A.99)
for all ~q(·) ∈ F = FRF with NRF constant. Observe that, in both cases,
limN→∞CN = 0 and CN decreases monotonically for N ≥ 2 or N −NRF ≥ 2
respectively. Consequently,

∀ε > 0 ∃N0 s.t. ∀N ≥ N0 : CN < ε. (A.100)

Therefore, and because (A.96) holds for all ~q(·) ∈ F , we obtain

∀ε > 0 ∃N0 s.t. P
(

sup
~q(·)∈F

[
R(~q(·))−RN(~q(·))

]
> ε

)
≤ 1
N
∀N ≥ N0, (A.101)

and therefore

lim
N→∞,N≥N0

P

(
sup
~q(·)∈F

[
R(~q(·))−RN(~q(·))

]
> ε

)
= 0 (A.102)

for data-independent kernels, and similarly for the random forest kernel. This
proves uniform one-sided convergence following Expression 3.14 in Vapnik
(1998, p. 90). Therefore, and because R(~q(·)) is bounded as

0 ≤ R(~q(·)) ≤ l̄, (A.103)
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based on the bound of the loss function (Lemma 2.1), the results of Theo-
rem 3.1 of Vapnik (1998) apply, stating that the kERM approach is consistent,
which concludes the proof.

Proposition A.7 states that the risk of the kernelized solution presented
in Theorem 2.1 with a data-independent kernel or with the random forest
kernel (2.13) converges at least as fast as 1/

√
N or 1/

√
N −NRF respectively

toward the risk of the optimal solution, with probability of at least 1− 2δ.

Proposition A.7. Assume a function space F = FU + FC with a data-
independent bounded kernel K(~x, ~x) ≤ K̄ ∀~x ∈ X , or F = FRF with the
random forest kernel, ||~b||∞ ≤ BC and ||qU,j||K ≤ BU ∀j, and let δ > 0. Then
the risk of the kERM approach converges with probability of at least 1 − 2δ
at least as fast as 1/

√
N or 1/

√
N −NRF respectively toward the risk of the

optimal solution ~q ∗(·) = arg min~q(·)∈F R(~q(·)), and there is some Cδ <∞ such
that

sup
N>0

∣∣∣R(~q kERM(·))−R(~q ∗(·))
∣∣∣

1√
N

≤ Cδ (A.104)

for data-independent kernels and

sup
N−NRF>0

∣∣∣R(~q kERM(·))−R(~q ∗(·))
∣∣∣

1√
N−NRF

≤ Cδ (A.105)

for the random forest kernel.

Proof of Proposition A.7: To bound the rate of convergence of kERM, we
bound the deviation in risk of ~q kERM(·) from the optimal solution and show
that it converges with 1/

√
N or 1/

√
N −NRF respectively. In the following

we only provide the derivation for the data-independent kernel, where kERM
is trained using N data samples—the proof works similarly for the random
forest kernel, where kERM is trained on (N −NRF ) data samples.

Let ∆(~q kERM(·)) denote the deviation of ~q kERM(·) from the optimal solu-
tion ~q ∗(·) in risk such that

∆(~q kERM(·)) := R(~q kERM(·))−R(~q ∗(·)). (A.106)
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Because RN(~q kERM(·)) = min~q(·)∈F RN(~q(·)) ≤ RN(~q ∗(·)), we obtain

∆(~q kERM(·)) = R(~q kERM(·))−RN(~q kERM(·)) +RN(~q kERM(·))−R(~q ∗(·))
≤
[
R(~q kERM(·))−RN(~q kERM(·))

]
+ [RN(~q ∗(·))−R(~q ∗(·))] .

(A.107)
While

[
R(~q kERM(·))−RN(~q kERM(·))

]
is bounded by some CN,δ (Theorems 2.2

and 2.3), we derive a bound on the term [RN(~q ∗(·))−R(~q ∗(·))] in the follow-
ing.

Because the loss function is bounded (Lemma 2.1), we can apply Hoeffd-
ing’s inequality for ε > 0 (similar as in Expressions 5.7 and 5.8 in Vapnik 1998,
p. 186) and obtain:

P (RN(~q ∗(·))−R(~q ∗(·)) > ε) ≤ exp

(
−2ε2N
l̄2

)
, (A.108)

from which we derive, by defining δ := exp
(
−2ε2N
l̄2

)
:

P

RN(~q ∗(·))−R(~q ∗(·)) ≤ l̄

√
log(1/δ)

2N

 ≥ 1− δ. (A.109)

Therefore, we obtain for the deviation in risk with probability of at least 1−2δ:

∆(~q kERM(·)) ≤ CN,δ + l̄

√
log(1/δ)

2N ≤ Cδ√
N
, (A.110)

for some Cδ independent of N , where we used that

CN,δ = 3l̄
√

log(2/δ)
2N +MLip

2
√

2IBCe
2

√
π
√
N

+ 2IBU√
N

√√√√ 1
N

N∑
n=1

K(~xn, ~xn)


≤ 3l̄
√

log(2/δ)
2N +MLip

(
2
√

2IBCe
2

√
π
√
N

+ 2IBU√
N

√
K̄

)
(A.111)

for all ~q(·) ∈ F = FU + FC (Theorem 2.2), using the bound on the kernel
function K.

Because ~q ∗(·) = arg min~q(·)∈F R(~q(·)), we know ∆(~q kERM(·)) ≥ 0. There-
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fore, and because Cδ is independent of N , we obtain for all N > 0:

|∆(~q kERM(·))|
1√
N

≤ Cδ <∞ (A.112)

with probability of at least 1− 2δ, which concludes the proof.

A.8 Additional Numerical Analyses

A.8.1 Variation of the Service Level under Heterogeneous
Service Levels

Building on the numerical experiments presented in Section 2.6.5, in which
we study the performance of the prescriptive approaches for various homo-
geneous service level settings, this section presents an analysis for varying
heterogeneous service levels. The cost parameters used to induce the service
level variations are depicted in Table A.1, while demand and feature data are
the same as used in Section 2.6.

Table A.1: Parameter settings for the service level variation with heterogeneous
service levels.
Figure f v p c ai,i SL α

A.7a


2700..710

1010..178

390..26




40

30

20




600

260

120




10

7.5

5




570

238

105




5%..75%

15%..85%

25%..95%

 40%

A.7b


2700..1280

890..297

289..26




40

30

20




600

260

120




10

7.5

5




570

238

105




5%..55%

25%..75%

45%..95%

 40%

A.7c


2130..142

1010..178

500..131




40

30

20




600

260

120




10

7.5

5




570

238

105




25%..95%

15%..85%

5%..75%

 40%

A.7d


1560..142

890..297

500..236




40

30

20




600

260

120




10

7.5

5




570

238

105




45%..95%

25%..75%

5%..55%

 40%
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Figure A.7 depicts the absolute gab to optimal profit for settings with
service line 1 having the lowest service level (top line, Figures A.7a and A.7b),
and settings in which service line 1 has the highest service level (bottom line,
Figures A.7c and A.7d).
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Figure A.7: Variation of the service level under heterogeneous service levels.

Overall we observe similar effects as in Section 2.6.5, e.g., that the perfor-
mance of SAA is similar to the performance of the prescriptive approaches for
very high service levels—especially when service line 1 exhibits a high service
level, due to the upgrading structure (service line 1 capacity can be employed
to provide service on all service lines).
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A.8.2 Variation of the Upgrade Profitability under
Heterogeneous Service Levels

In this section we study the performance of the prescriptive approaches for
varying upgrade profitabilities under heterogeneous service levels. The cost
parameters used to induce the upgrade profitability variations are depicted in
Table A.2, while demand and feature data are, again, the same as used in
Section 2.6.

Table A.2: Parameter settings for the upgrade profitability variation with het-
erogeneous service levels.
Figure f v p c ai,i SL α

A.8a


75600..189

3800..200

210




40

30

20




37830..125

1920..123

120




10

7.5

5




37800..95

1900..100

105




60%

60%

60%

 5% .. 95%

A.8b


75600..240

4750..280

315




40

30

20




37830..150

1920..134

120




10

7.5

5




37800..120

1900..112

105




60%

50%

40%

 5% .. 85%

A.8c


132300..332

4750..250

158




40

30

20




37830..125

1920..123

120




10

7.5

5




37800..95

1900..100

105




30%

50%

70%

 5% .. 95%

A.8d


94500..237

2850..150

53




40

30

20




37830..125

1920..123

120




10

7.5

5




37800..95

1900..100

105




50%

70%

90%

 5% .. 95%

Because the marginal profits vary significantly across α, Figure A.8 plots
the scaled absolute gap to optimal profit, similar as in Section 2.6.5. Com-
paring all plots of Figure A.8, we observe that the impact of the upgrade
profitability on the performance of the approaches remains structurally simi-
lar for all service level regimes. Only the ordering of the approaches changes
dependent on the service level regime, as seen before: for medium-range service
levels, kERM outperforms wSAA independent of the upgrade profitability and
for high service levels (Figure A.8d) (and a high upgrade profitability) wSAA
leads to better performance.
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(c) SL1 = 30%, SL2 = 50%, SL3 = 70%
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Figure A.8: Variation of the upgrade profitability α in various service level
settings.

A.8.3 Statistical Confidence of Prescription Performance

While our numerical evaluation shows a significant performance improvement
from the feature-less approach SAA to the prescriptive approaches wSAA and
kERM, a natural question is how certain we are of this improvement.

In our experiments we evaluate the prescriptive approaches on a test set
containing 52 data points, based on which we can calculate a performance
difference. While the underlying distribution of the performance improvement
is unknown, the sample mean follows a normal distribution for large enough
sample sizes, e.g. Ntest > 30 (see Hogg et al. 2015, p. 303), and we can use the
Student’s t-distribution, introduced by W. S. Gosset, to estimate the approx-
imate confidence interval of the true mean of the improvement distribution
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(see Section 5.6 in Precht et al. 2005 for details).
Let ∆k with k = 1...52 be the observed performance differences between

the prescriptive approaches and SAA for Ntest = 52 data samples and ∆̄ the
mean performance improvement, and let s2

test = 1/(Ntest− 1)∑Ntest
k=1 (∆k − ∆̄)2

be the sample variance.
Then, for a significance level of p = 1 − α, we estimate the approxi-

mate confidence interval [∆̄− dDelta, ∆̄ + dDelta] with dDelta = t stest√
Ntest

and t

the 1− α/2-fractile of the t-distribution with 1−Ntest degrees of freedom for
the true mean of the performance improvement (see Section 5.6 in Precht et al.
2005).
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Figure A.9: Mean performance improvement of prescriptive approaches over
SAA including 95% approximate confidence interval.

Following the service level variation setting, as described in Section 2.6.5,
we estimate the p = 95% approximate confidence intervals for the true mean
of the performance improvement, using t = 2.0076 for 51 degrees of freedom.
As depicted in Figure A.9, the lower bound of this interval is above zero for
all service levels across both approaches, with the exception for kERM with a
very large service level of 90%, where the mean performance difference between
kERM and SAA is close to zero. These results provide support for a statisti-
cally significant performance improvement of the prescriptive approaches over
SAA for almost all service levels.

We use the same approach to estimate the p = 95% approximate confi-
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Figure A.10: Mean weekly absolute gap to optimal profit for real-world case
including 95% approximate confidence interval.

dence intervals for the true mean of the weekly absolute gap to optimal profit
for the real-world application presented in Section 2.6.4. The results, de-
picted in Figure A.10, show a significantly larger confidence interval for the
two parametric approaches (ARIMA-SEO, SVR-SEO) compared to the pre-
scriptive approaches and SAA.
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B.1 Proofs
Proof of Proposition 3.1

The cost function of the AMSSP consists of a linear expression that is con-
vex in qs ( 1

T

∑S
s=1 cq(ts+1 − ts)qs) and the expectation of the queue length

E[MT ] at the end of the final period. Because MT is recursively defined by
Mt = (Mt−1 +Dt − qs)+, which is convex in qs for each Dt because of the lin-
earity in qs and the convexity of the (·)+ = max(·, 0) function, the expectation
value E[MT ] is also convex in qs. Consequently, the cost function is a sum of
two convex functions and therefore jointly convex in ~q.

Proof of Proposition 3.2

To derive the expression for E[MT ] stated in Proposition 3.2, we first pro-
vide, in Proposition B.1, a method to recursively calculate the distribution
of MT and then apply this result to T = 2 independent normally distributed
demands.

Proposition B.1. Assume demands Dt independently distributed for all t;
then the distribution function fMT

(m) of MT can be calculated by recursively
solving:

fM0(m) = δ(m−M0)

fMt(m) = δ(m)
∫ ν1=0

ν1=−∞

∫ ν2=∞

ν2=−∞
fMt−1(ν2)fDt(ν1 + qs(t) − ν2)dν2dν1

+

0 for m < 0∫∞
−∞ fMt−1(ν)fDt(m+ qs(t) − ν)dν for m ≥ 0,

(B.1)
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where δ(m) is the Dirac delta function and s(t) = s : t ∈ [ts, ts+1).

Proof of Proposition B.1: To prove the stated expression for the recursive
calculation of the distribution of MT , we start from the recursive expression
for Mt stated in the AMSSP:

Mt = (Mt−1 +Dt − qs)+. (B.2)

The calculation of this recursion can be separated into three steps by intro-
ducing the variables M̃t and M̂t as

M̃t = Mt−1 +Dt,

M̂t = M̃t − qs,

Mt = (M̂t)+.

(B.3)

For the distribution functions of the variables M̃t and M̂t we obtain:

fM̃t
(m̃) =

∫ ∞
−∞

fMt−1(ν)fDt(m̃− ν)dν, (B.4)

fM̂t
(m̂) = fM̃t

(m̂+ qs), (B.5)

where we used Theorem 5.2.9 in Casella and Berger (2002) for Equation B.4
and assumed Mt−1 and Dt to be independent continuous random variables.
To estimate the distribution function of Mt, we first estimate the cumulative
distribution function (cdf) FMt(m) using Expression 2.1.4 provided in Casella
and Berger (2002):

FMt(m) =
∫
{ν∈R: (ν)+≤m}

fM̂t
(ν)dν =

0 for m < 0

FM̂t
(m) for m ≥ 0

, (B.6)

because

{ν ∈ R : (ν)+ ≤ m} =

∅ for m < 0

{ν ∈ R : −∞ < ν ≤ m} for m ≥ 0.
(B.7)
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This cdf can be expressed as follows, using the Heaviside function Θ(m):

FMt(m) = FM̂t
(0) ·Θ(m) +

0 for m < 0

FM̂t
(m)− FM̂t

(0) for m ≥ 0.
(B.8)

Then, using the Dirac Delta function δ(m) = dΘ(m)/dm, the distribution
function fMt(m) is obtained as:

fMt(m) = dFMt(m)
dm

= FM̂t
(0) · δ(m) +

0 for m < 0

fM̂t
(m) for m ≥ 0

= δ(m)
∫ 0

−∞
fM̂t

(ν)dν +

0 for m < 0

fM̂t
(m) for m ≥ 0,

(B.9)

with fM0(m) = δ(m−M0), from which we obtain the expression to be proven.
We apply this result (Equation B.1) to the case of T = 2 independent,

normally distributed demands D1, D2 withM0 = 0, such that fM0(m) = δ(m),
and obtain for M1:

fM1(m) = δ(m)
∫ ν1=0

ν1=−∞

∫ ν2=∞

ν2=−∞
δ(ν2)fD1(ν1 + q1 − ν2)dν2dν1

+

0 for m < 0∫∞
−∞ δ(ν)fD1(m+ q1 − ν)dν for m ≥ 0

= δ(m)
∫ 0

−∞
fD1(ν1 + q1)dν1 +

0 for m < 0

fD1(m+ q1) for m ≥ 0

= δ(m)FD1(q1) +


0 for m < 0

1√
2πσ2

1
exp

[
− (m+q1−µ1)2

2σ2
1

]
for m ≥ 0.

(B.10)
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Applying Equation B.1 again, we obtain the distribution function for M2 as:

fM2(m) = δ(m)
∫ ν1=0

ν1=−∞

∫ ν2=∞

ν2=−∞
fM1(ν2)fD2(ν1 + q2 − ν2)dν2dν1

+

0 for m < 0∫∞
−∞ fM1(ν)fD2(m+ q2 − ν)dν for m ≥ 0

= δ(m)aM2 +



0 for m < 0

FD1(q1)fD2(m+ q2) +
exp
[
− (m−µ1−µ2+q1+q2)2

2(σ2
1+σ2

2)

]
2
√

2π
√
σ2

1+σ2
2

·
(

1 + Erf
[
σ2

1(m−µ2+q2)+σ2
2(µ1−q1)

√
2σ1σ2
√
σ2

1+σ2
2

])
for m ≥ 0,

(B.11)
where aM2 =

∫ ν1=0
ν1=−∞

∫ ν2=∞
ν2=−∞ fM1(ν2)fD2(ν1 + q2−ν2)dν2dν1 is irrelevant for the

expectation value because of the factor δ(m). We calculate the expectation
value of MT = M2 as:

E[MT ] =
∫ ∞
−∞

mfM2(m)dm

=
∫ ∞

0
m

FD1(q1)fD2(m+ q2) +
exp

[
− (m−µ1−µ2+q1+q2)2

2(σ2
1+σ2

2)

]
2
√

2π
√
σ2

1 + σ2
2

·

1 + Erf
σ2

1(m− µ2 + q2) + σ2
2(µ1 − q1)

√
2σ1σ2

√
σ2

1 + σ2
2


 dm,

(B.12)
which concludes the proof.

Proof of Proposition 3.3

To prove the equivalency of the linearized version of the cost function, we
first apply a linear version of the (·)+ function, and then solve the iterative
approach by global minimization over the queue length in each period. The
recursive equation of the queue length mt

mt = (mt−1 + dt − qs)+ (B.13)
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can be expressed as optimization problem

mt = min
ut∈R

ut

s.t. ut ≥ mt−1 + dt − qs
ut ≥ 0,

(B.14)

where s : t ∈ [ts, ts+1) and with the final queue length mT = minuT∈R uT .
While this expression requires iterative minimization, we simplify the calcula-
tion by showing equivalency to a single global minimization as:

v∗T = min
{vt}∈RT

vT

s.t. vt ≥ vt−1 + dt − qs ∀t ∈ [ts, ts+1) ∀s = 1...S
vt ≥ 0 ∀t
v0 = M0.

(B.15)

To prove equivalency, we need to show that {ut} that iteratively solves
Problem B.14 is a feasible solution to Problem B.15, and that it is an opti-
mal solution. The feasibility of {ut} is obvious due to identical constraints.
Because mt = minut ut =: u∗t at each time step t, we know that for any other
feasible solution {ṽt} to Problem B.15 we have ṽt ≥ u∗t , leading to ṽt+1 ≥ u∗t+1

due to the first constraint. Therefore, ṽT ≥ u∗T by induction, from which we
conclude that {ut} is an optimal solution to Problem B.15, andmT = v∗T = u∗T ,
from which we derive the expression to be proven.

Proof of Proposition 3.4

The linearized cost function (Equation 3.11) consists of the convex expression
1
T

∑S
s=1 cq(ts+1 − ts)qs (see Proposition 3.1) and min{mt} c2mT . The minimiza-

tion min{mt} c2mT is determined by solving a linear program with qs deter-
mining the right-hand side, and therefore convex. Consequently, the linearized
cost function C(~q, ~d) is a sum of convex functions and, therefore, jointly convex
in ~q.
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Proof of Proposition 3.5

To prove the stated expression for the kERM approach, we first provide an ex-
pression for a linear function space by deriving the primal Lagrangian, showing
strong duality, and expressing the problem using the Lagrange dual function,
and then kernelize the solution.

Assume a space of linear functions F = {~q(·) : ~q(~x) = W~x − ~b} with
W = (~w1, ~w2, ..., ~wS) and ~b = (b1, b2, ..., bS). Then, the ERM approach can be
stated as

min
W ,~b,{mnt }∈RT×N

S∑
s=1

λs||~ws||2 + 1
N

N∑
n=1

[
1
T

S∑
s=1

cq(ts+1 − ts)(~ws · ~xn − bs) + c2m
n
T

]

s.t. mn
t ≥ mn

t−1 + dnt − (~ws · ~xn − bs) ∀n ∀t ∈ [ts, ts+1) ∀s = 1...S
mn
t ≥ 0 ∀n, t

mn
0 = M0 ∀n

~ws · ~xn − bs ≥ 0 ∀n, s,
(B.16)

where we introduced a regularization term∑S
s=1 λs||~ws||2 to prevent overfitting,

similar as in Notz and Pibernik (2021).
Because the objective function of this minimization problem is a sum of

convex and linear functions, it is convex in W , ~b and {mn
t }. All constraints

are affine in W , ~b and {mn
t }, and W = 0, ~b = 0, mn

t = M0 + ∑t
τ=0 d

n
τ is a

feasible solution and a relative interior point of the domain of definition Rν

with ν = S × dimX + S + T ×N . Therefore, the Slater condition is fulfilled
and strong duality holds (see Section 5.2.3 in Boyd and Vandenberghe 2004).

Let αnt , βnt , γn, δns be Lagrangian multipliers, then we derive the primal
Lagrangian as

Lprimal =
S∑
s=1

λs||~ws||2 + 1
N

N∑
n=1

[
1
T

S∑
s=1

cq∆ts(~ws · ~xn − bs) + c2m
n
T

]

+
∑
n,t

αnt

(
mn
t−1 + dnt − (~ws(t) · ~xn − bs(t))−mn

t

)
−
∑
n,t

βnt m
n
t

+
∑
n

γn
(
mn

0 −M0

)
−
∑
n,s

δns

(
~ws · ~xn − bs

)
,

(B.17)
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where t = 1...T , n = 1...N , ∆ts := ts+1 − ts, and s(t) = s : t ∈ [ts, ts+1).
Because strong duality holds, we use the Karush-Kuhn-Tucker (KKT)

conditions, which provide necessary and sufficient conditions for optimality,
to simplify the expression for the primal Lagrangian (Boyd and Vandenberghe
2004, p. 244). The KKT conditions state:

∂Lprimal

∂ ~ws
= 2λs ~ws +

N∑
n=1

cq∆ts
NT

−
∑

t∈[ts,ts+1)
αnt − δns

 ~xn = 0

∂Lprimal

∂bs
=

N∑
n=1

−cq∆ts
NT

+
∑

t∈[ts,ts+1)
αnt + δns

 = 0

for 1 ≤ t < T : ∂Lprimal

∂mn
t

= αnt+1 − αnt − βnt = 0

for t = 0: ∂Lprimal

∂mn
0

= αn1 + γn = 0

for t = T : ∂Lprimal

∂mn
T

= −αnT − βnT + c2

N
= 0.

(B.18)
We define

uns := 1
2λs

 ∑
t∈[ts,ts+1)

αnt + δns −
cq∆ts
NT

 (B.19)

and obtain
~ws =

N∑
n=1

uns~x
n,

0 =
N∑
n=1

uns ∀s,
(B.20)

and
for 1 ≤ t < T : αnt+1 = αnt + βnt

for t = 0: γn = −αn1
for t = T : αnT + βnT = c2

N
.

(B.21)

We can therefore state the primal Lagrangian as

Lprimal =−
S∑
s=1

λs
N∑
p=1

N∑
q=1

(upsuqs(~xp · ~xq)) +
∑
n,t

αnt d
n
t +

∑
n

αn1M0. (B.22)
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The primal Lagrangian Lprimal is independent of the primal variables, therefore,
we obtain for the dual Lagrangian:

Ldual = inf
W,~b,{mnt }

Lprimal = Lprimal, (B.23)

from which we derive for the dual problem:

max
{αnt },{δns }

Ldual

s.t. αnt , δns ≥ 0 ∀t, n, s
αnt+1 ≥ αnt ∀t, n

αnT ≤
c2

N
∀n.

(B.24)

Because Problem B.24 (with the dual Lagrangian as in Equation B.22) depends
on the feature vectors ~xn only in the form of the scalar product between two
feature vectors, we can employ the kernel trick and replace the scalar product
by a kernel function:

(~xp · ~xq)→ K(~xp, ~xq), (B.25)

which allows us to solve the ERM approach over non-linear reproducing kernel
Hilbert spaces.

The resulting expression is

max
{αnt },{δns }

−
S∑
s=1

λs
N∑
p=1

N∑
q=1

(upsuqsK(~xp, ~xq)) +
∑
n,t

αnt d
n
t +

∑
n

αn1M0

s.t. αnt , δns ≥ 0 ∀t, n, s
αnt+1 ≥ αnt ∀t, n

αnT ≤
c2

N
∀n,

(B.26)

with
~q kERM(~x) = W~x−~b =

N∑
n=1

~unK(~xn, ~x)−~b, (B.27)

where ~un = (un1 , un2 , ..., unS), which concludes the proof.
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B.2 Detailed Description of Features and
Importance Analysis

This section provides further details on the 142 features used in our numerical
analyses presented in Section 3.5 and on their individual importance. As
described in Section 3.5.2, the features are constructed based on the date,
public holidays, lagged demands and related to the case company’s processes.
In the first group, we constructed date-based features describing

• the year (2014-2017),

• the half of the year (1-2),

• the quarter of the year (1-4),

• the month of the year (1-12),

• the day of the month (1-31),

• the day of the month integer-divided by 7 (0-4)60

• the day of the week (1-6),

• the day of the week as indicator features (0-1),

• the day of the quarter year (1-92),

• the day of the year (1-366),

• the week number (1-53) by US and ISO standards,

• the week number within the month (1-5),

• the week number modulo 2, 3, or 4 (0-1, 0-2, 0-3), and

• a time index as continuously increasing value (number of seconds after
1970, in the range 1454976000-1509753600).

60This represents a different (non-calendar-week) measure for the week of the month.

201



B Appendix of Chapter 3

Most of these 22 date-based features were constructed using the timetk package
in R.
For the second group, we constructed 12 features indicating the relation to
public holidays:

• a public holiday (in Germany or US) is 1-3 days before the day in focus
(0-1), and

• a public holiday (in Germany or US) 1-3 days after the day in focus
(0-1).

In the third group, we constructed 36 features representing lagged demand as

• 1-7 days lagged demand as totals for first and second shift,

• 14, 21, and 28 days lagged demand as totals for first and second shift,

• 1-7 days lagged demand as daily totals,

• 14, 21, and 28 days lagged demand as daily totals,

• sum of 1-3 days lagged demand as totals for first and second shift,

• sum of 1-7 days lagged demand as totals for first and second shift,

• sum of 1-3 days lagged demand as daily totals, and

• sum of 1-7 days lagged demand as daily totals.

For the fourth group, 72 features have been created based on the company’s
processes, including

• demand for which a process ID was created 1-29 days before the day in
focus,

• summed demand for which a process ID was created 1-29 days before
the day in focus,

• expected demand based on contracted delivery date,
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• expected demand based on updated (agreed) delivery date,

• weekday average of expected demand for contracted and updated deliv-
ery date,

• percentage difference of actuals to weekday average for contracted and
updated delivery date,

• parts shipped 1-7 days before the day in focus by four country groups,

• sum of parts shipped between 8-29 days before the day in focus by four
country groups, and

• sum of parts shipped between 1-29 days before the day in focus by four
country groups.

Following this procedure, we created a total of 142 features.

Remaining 132 Features

6 Day Lag, Sum of Day
6 Day Lag, Sum of Hours 0−13 (Morning)

1 Day Lag, Sum of Day
1 Day Lag, Sum of Hours 0−13 (Morning)

1 Day Lag, Sum of Hours 14−19 (Afternoon)
Expected Demand based on Agreed Delivery Date

Weekday Av. of Expected Demand (Contracted Delivery Date)
Weekday Av. of Expected Demand (Agreed Delivery Date)

Saturday Indicator Variable
Day of the Week

0 % 20 % 40 % 60 % 80 % 100 %

Figure B.1: Feature importance, measured as a decrease in node impurity in
the random forest model.

The importance of several classes of features has been presented in Sec-
tion 3.5.5. Figure B.1 shows the importance of individual features, measured
as a decrease in node impurity based on the residual sum of squares in the
random forest model used for wSAA or kERM. The feature that describes the
day of the week is of largest importance, however, all four most important
features are—at least to some extent—correlated with the weekday. It can,
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therefore, be expected that the random forest model uses all of these features
to distinguish between Saturdays and the rest of the week (which form the
two groups between which demand differs most significantly).

B.3 Detailed Description of Approaches for
Numerical Evaluation

This section describes in more detail the approaches used in our numerical
analyses.

B.3.1 Weighted SAA

For the wSAA approach, we first train a random forest model using the caret
R-package (Kuhn 2008) and cross validation parameter tuning with 10...142
variables to be selected for each tree. Based on this random forest model we
implement (3.8) to calculate the weights wRF

n (~xj) between all training data
samples (n = 1...N) and all test data samples (j = 1...Ntest). Finally, we
adapt the wSAA approach (Algorithm 3.1) to the specific capacity planning
problem (3.17):

~qwSAA(~x) = arg min
~q∈Q

min
{mnt }∈RT×N

N∑
n=1

wn(~x)
[
cq
(
(t2 − t1)q1 + (t3 − t2)q2

)
+ c2m

n
T + c3m

n
14

]

s.t. mn
t ≥


mn
t−1 + dnt for 1 ≤ t ≤ 6 ∀n

mn
t−1 + dnt − q1 for 7 ≤ t ≤ 14 ∀n

mn
t−1 + dnt − q2 for 15 ≤ t ≤ 20 ∀n

mn
t ≥ 0 ∀t, n

mn
0 = 0 ∀n,

(B.28)
and solve the resulting problem using Gurobi Optimizer for each day of the
test period.
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B.3.2 Kernelized ERM

Similar as in Proposition 3.3, we derive a linearized cost function for the
specific capacity planning problem (3.17):

C(~q, ~d) =cq
(
(t2 − t1)q1 + (t3 − t2)q2

)
+ min
{mt}∈RT

(c2mT + c3m14)

s.t. mt ≥


mt−1 + dt for 1 ≤ t ≤ 6

mt−1 + dt − q1 for 7 ≤ t ≤ 14

mt−1 + dt − q2 for 15 ≤ t ≤ 20

mt ≥ 0 ∀t
m0 = 0.

(B.29)

Proposition B.2. The specific linearized cost function C(~q, ~d), as stated in
(B.29), is jointly convex in ~q.

Proof of Proposition B.2: The specific linearized cost function (B.29) con-
sists of a linear and therefore convex expression (cq ((t2 − t1)q1 + (t3 − t2)q2))
and min{mt} (c2mT + c3m14). The minimization min{mt} (c2mT + c3m14) is de-
termined by solving a linear program in which ~q determines the right-hand
side, and therefore convex. Consequently, the specific linearized cost func-
tion C(~q, ~d) is a sum of convex functions and, therefore, jointly convex in ~q.

To apply the kERM approach, we first adapt the solution presented in
Proposition 3.5 to the specific capacity planning problem stated in (B.29).
The resulting dual Lagrangian can be stated as

Ldual =−
2∑
s=1

λs
N∑
p=1

N∑
q=1

(upsuqsK(~xp, ~xq)) +
t=20∑
n,t=7

αnt d
n
t +

t=6∑
n,t=1

αn7d
n
t , (B.30)

where
un1 = 1

2λ1

( 14∑
t=7

αnt + δn1 −
cq(t2 − t1)

N

)

un2 = 1
2λ2

( 20∑
t=15

αnt + δn2 −
cq(t3 − t2)

N

)
.

(B.31)
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The dual problem can be stated as

max
{αnt },{δns }

Ldual

s.t. αnt , δns ≥ 0 ∀s, t, n
αnt+1 ≥ αnt ∀n, t 6= 14

αnt+1 ≥ αnt −
c3

N
∀n, t = 14

αn20 ≤
c2

N
∀n,

(B.32)

where n = 1...N , s = 1...2 and t = 7...20.
We use the same random forest model as for the wSAA approach and

calculate the random forest kernel KRF
pq = KRF(~xp, ~xp) by solving (3.14) for

p = 1...N , q = 1...N . Similarly we calculate the kernel matrix for the test data
sample, with q = 1...Ntest. The tuning parameter λs is estimated in the range
of 5 · 10−7...5 · 10−3 using simple cross validation with 3/4 of the training data
being used for model training, and 1/4 of the training data for validation.

Based on the kernel matrices we solve Problem B.32 using Gurobi Opti-
mizer to determine ~un. We then use

~q kERM(~x) =
N∑
n=1

~unK(~xn, ~x)−~b (B.33)

and solve the primal problem for ~b, which is a linear problem, using Gurobi
Optimizer. The resulting function is used to prescribe capacity decisions for
the test period.

B.3.3 Optimization Prediction Approach

The OP approach consists of two steps, first, the estimation of the ex-post
optimal decisions for the training data set, and second, the training of random
forest models to predict optimal decisions.

We use Gurobi Optimizer to solve Problem 3.17 for each day of the training
data set. These ex-post optimal capacity decisions q1, q2 form, together with
the features, the training data set for two random forest models. We train two
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random forest models using the caret R-package (Kuhn 2008) and determine
the optimal number of variables to be selected for each tree from the range of
20...140 by cross validation parameter tuning. The random forest models are
used to prescribe capacity decisions for the test period.

B.3.4 SAA

We solve Problem B.28 with wn(~x) = 1/N using Gurobi Optimizer to deter-
mine a capacity prescription, which is constant for the test period.

B.3.5 PDE-T20 Approach

The PDE-T20 approach is based on estimating a large number of demand
distributions, and then solving Problem 3.17 using Monte Carlo simulation,
as described in Section 3.3.3.

We set T = 20 and partition the demand data into a total of 120 empirical
demand distributions (for 20 time periods and 6 weekdays). For each of these
distributions we estimate mean and standard deviation, thereby fit a normal
distribution, and draw NMC = 300 samples from each distribution. We then
estimate the prescription ~q PDE−T20 for each weekday by solving

~q PDE−T20 = arg min
~q∈Q

min
{mnt }∈RT×N

1
NMC

NMC∑
n=1

[
cq
(
(t2 − t1)q1 + (t3 − t2)q2

)
+ c2m

n
T + c3m

n
14

]

s.t. mn
t ≥


mn
t−1 + dnt for 1 ≤ t ≤ 6 ∀n

mn
t−1 + dnt − q1 for 7 ≤ t ≤ 14 ∀n

mn
t−1 + dnt − q2 for 15 ≤ t ≤ 20 ∀n

mn
t ≥ 0 ∀t, n

mn
0 = 0 ∀n,

(B.34)
using Gurobi Optimizer.
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B.3.6 PDE-T2 Approach

The PDE-T2 approach follows a similar structure as the PDE-T20 approach.
However, we partition the demand data into a total of six two-dimensional
empirical distributions (for 6 weekdays and 2 time periods) and estimate the
vector-valued mean and the covariance matrix. We thereby fit a multivariate
normal distribution and draw NMC = 300 samples from each of the six dis-
tributions. We then estimate the prescription ~q PDE−T2 for each weekday by
solving

~q PDE−T2 = arg min
~q∈Q

min
{mnt }∈R2×N

1
NMC

NMC∑
n=1

[
cq
(
(t2 − t1)q1 + (t3 − t2)q2

)
+ c2m

n
2 + c3m

n
1

]
s.t. mn

1 ≥ dn1 − q1 ∀n

mn
2 ≥ nn1 + dn2 − q2 ∀n

mn
t ≥ 0 ∀t, n,

(B.35)

using Gurobi Optimizer.

B.4 Analysis of Demand Arrival Distributions
In our analysis of the historical demand data in Section 3.1, we observed an
empirical coefficient of variation CV λ̄ that was much larger than the CV Poisson

that would have been assumed by a Poisson distribution for the demand ar-
riving between 9 a.m. and 10 a.m. for each weekday, suggesting a doubly
stochastic demand process. This section first illustrates the mismatch of as-
suming a simple Poisson distribution for the demand arrivals in this time
period on Mondays and then extends this observation to all time periods on
all weekdays.

Figure B.2 illustrates the mismatch of assuming a Poisson distribution by
showing quantile-quantile plots (Q-Q plots) that compare the quantiles of the
observed empirical distribution with a theoretically fitted distribution. Fig-
ure B.2a shows that the Q-Q values for the Poisson distribution (black dots)
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(b) Normal distribution.

Figure B.2: Quantile-Quantile plots between empirical and fitted (theoretical)
demand distributions (black) for Monday, 9 a.m. - 10 a.m., with optimal fit
indicated as blue line (normalized).

deviate strongly from the optimal fit (blue line), indicating a low goodness-of-
fit. Moreover, the plot shows that the variance of the fitted Poisson distribu-
tion is much smaller than the empirical variance that can be measured from
the data set. In contrast, the Q-Q plot of a normal distribution (Figure B.2b)
demonstrates a much better fit to the empirical demand data.

In order to extend our observations for the particular time period from
9 a.m. to 10 a.m. to all time periods, we present in Table B.1 the empirical
and Poisson CVs for all weekdays and time periods. This table shows that
CV emp � CV Pois for all time periods, except for some early morning, late
evening or Saturday afternoon time periods, in which the demand is almost
zero. The assumption of an uncertainty-dominated regime is therefore valid.

B.5 Solution to the AMSSP without Further
Constraints

This section shows that, without any further constraints, assigning the full
required capacity to the last shift s = S is an optimal solution to the AMSSP.
To simplify the argument, we assume a service level larger than 50 percent
and the number of shifts S to equal the number of time periods T . Then, it
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Table B.1: Empirical CV emp and Poisson CV Pois for all weekdays and time
periods in percent.
Hour Monday Tuesday Wednesday Thursday Friday Saturday

CV emp CV Pois CV emp CV Pois CV emp CV Pois CV emp CV Pois CV emp CV Pois CV emp CV Pois

0 312.9 298.3 367.7 174.1 242.1 161.1 436.4 159.4 272.4 268.9 979.8 979.8

1 260.1 222.4 229.3 197.9 192.1 185.2 245.3 183.2 227.7 168.8 689.2 692.8

2 148.9 111.2 150.0 120.3 153.4 109.5 137.5 110.5 144.2 124.1 482.1 489.9

3 151.3 137.6 150.7 133.2 176.9 137.2 172.6 144.5 190.9 114.3 365.2 271.7

4 276.2 89.1 214.2 147.9 249.1 147.7 198.4 141.4 202.7 125.2 385.3 224.8

5 190.8 52.1 301.2 47.3 182.3 48.8 198.1 46.4 159.4 53.7 308.3 112.4

6 72.8 12.0 78.7 14.0 90.4 16.0 64.7 17.4 70.0 17.6 122.5 23.0

7 66.7 9.6 103.4 10.5 56.3 10.5 63.3 9.9 48.3 10.4 81.2 14.9

8 59.1 8.1 68.8 10.8 69.5 10.9 72.2 10.2 62.7 10.1 105.6 14.5

9 44.2 7.4 48.0 8.3 54.6 7.8 48.7 7.3 48.5 7.3 114.1 18.2

10 39.5 7.0 42.0 7.9 41.7 7.4 47.9 7.3 41.0 7.3 90.0 14.6

11 36.3 7.0 43.8 9.3 45.2 8.3 43.3 8.3 42.1 8.0 77.4 12.3

12 41.1 7.7 44.3 10.2 46.1 9.0 46.1 9.0 44.8 8.4 81.0 13.8

13 48.4 8.1 58.8 10.0 61.3 10.9 55.3 9.5 63.8 8.9 136.2 20.1

14 70.4 10.6 57.6 12.7 73.2 12.4 83.3 11.9 76.4 12.3 491.3 163.3

15 62.1 10.9 60.7 12.9 69.7 12.9 74.8 12.1 87.4 12.9 344.4 261.9

16 87.8 14.3 76.3 15.6 83.4 14.1 78.0 14.6 82.8 16.4 339.5 213.8

17 100.4 14.6 105.6 16.4 84.1 15.7 92.6 15.9 84.5 17.2 283.8 237.6

18 68.4 15.2 91.0 16.1 82.2 16.6 78.0 16.2 81.7 16.3 559.7 565.7

19 133.1 22.6 302.6 22.0 156.7 23.6 126.6 22.3 155.5 27.6 428.9 438.2

20 105.9 19.8 116.9 21.7 148.3 22.4 175.6 22.6 126.1 25.8 535.6 370.3

21 174.4 25.2 148.9 33.9 198.9 35.0 141.4 42.4 146.5 40.2 482.1 489.9

22 182.9 41.4 179.9 53.2 161.4 71.1 186.1 71.7 233.7 92.4 689.2 489.9

23 233.1 70.7 306.7 101.1 417.5 208.9 499.0 292.3 681.9 685.6 979.8 979.8

is optimal to only employ capacity in the last time period T :

qt = 0 ∀t < T

qT = arg min
q

cqq + c2E

(M0 +
T∑
t=1

Dt − q
)+ , (B.36)

where qT is determined by a single-period newsvendor-type problem.
The reason for this being an optimal solution is that the standard deviation

of the sum of arriving demands D = ∑T
t=1Dt, which equals the standard

deviation of MT−1 if qt = 0 ∀t < T , is always smaller or equal than the sum
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of the standard deviations of each arriving demand:

σD =

√√√√ T∑
t=1

σ2
Dt + 2

∑
t1<t2

Cov(Dt1 , Dt2)

≤

√√√√ T∑
t=1

σ2
Dt + 2

∑
t1<t2

σDt1σDt2 =
T∑
t=1

σDt ,

(B.37)

where equality holds only for perfect correlation. Therefore, in all cases, except
for perfect correlation, it is more profitable to only use capacity qT , because
planning for the total demand D requires less safety buffer due to the reduced
standard deviation.

B.6 Robustness Analysis
This section analyses the robustness of all approaches by comparing their
performance for various cost parameter settings (Table B.2) that induce ser-
vice levels between 5 and 95 percent and load-balancing factors between 0.05
and 0.95.

Table B.2: Variations in Cost Parameters for Robustness Analysis.

Figure cq c2 c3 Service Level Load Balancing

B.3a 5...0.3 5.25 0.6...0.06 5%...95% 0.1

B.3b 5...0.3 5.25 7.5...0.4 5%...95% 0.6

B.4a 2.63 5.25 0.14...50 50% 0.05...0.95

B.4b 1.05 5.25 0.06...20 80% 0.05...0.95

Figure B.3 shows the performance of all approaches in terms of the gap to
optimal cost for load-balancing factors LB = 0.1 (Figure B.3a) and LB = 0.6
(Figure B.3b). In addition to the discussion in Section 3.5.6, we observe that,
when comparing Figures B.3a and B.3b, the PDE-T2 approach leads to a
significantly lower performance than PDE-T20 for LB = 0.1. This difference
in performance can be explained by the time-structure effect (Section 3.5.4).
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(b) Load balancing LB = 0.6.

Figure B.3: Absolute gap to optimal cost across service levels (SL) for all
approaches and different levels of load-balancing (LB).

● ● ● ●
● ●

● ● ● ●
●

●
●

●

●

●

●

●

●

Load balancing

A
bs

ol
ut

e 
ga

p 
to

 o
pt

im
al

 c
os

t i
n 

th
ou

sa
nd

s

● ● ●
● ● ● ● ●

● ●
●

●
●

●
●

●

●

●

●

0.1 0.3 0.5 0.7 0.9

50
10

0
15

0
20

0
30

0 ●

●

OP
kERM

wSAA
SAA

PDE−T2
PDE−T20

(a) Service level SL = 50%.

●
● ● ●

● ●
● ● ● ● ●

●
●

●
●

●

●

●

●

Load balancing

A
bs

ol
ut

e 
ga

p 
to

 o
pt

im
al

 c
os

t i
n 

th
ou

sa
nd

s

● ● ● ● ●
● ●

●
● ● ● ●

●
●

●

●

●

●

●

0.1 0.3 0.5 0.7 0.9

40
60

80
10

0
14

0 ●

●

OP
kERM

wSAA
SAA

PDE−T2
PDE−T20

(b) Service level SL = 80%.

Figure B.4: Absolute gap to optimal cost across levels of load-balancing (LB)
for different service levels (SL).

Figure B.4 shows the performance of all approaches in terms of the gap to
optimal cost in logarithmic scale for service levels of SL = 50% (Figure B.4a)
and SL = 80% (Figure B.4b). The prescriptive approaches’ and PDE-T20’s
performance vary similarly with the load-balancing factor LB, which is in line
with all of these approaches’ incorporation of the full time structure (T = 20).
In contrast, the performance of the PDE-T2 approach is significantly lower
than that of PDE-T20 for very small or very large levels of load-balancing,
which, again, can be explained by the time-structure effect. When LB is
comparably large, it is most cost-effective to increase the capacity of shift 1,
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such that (almost) no demand is backlogged between the shifts, while accepting
idle capacity at the beginning of shift 1. Similarly, it is most cost-effective to
decrease the capacity of shift 1 when LB is very small. PDE-T2, because it
neglects the time structure of demand within the shifts, does not adapt the
shift 1 capacity adequately, and thus leads to lower performance for a very
small or very large LB.

B.7 Analytical Results for Prescriptive Analytics
Approaches

In this section we provide a bound on the cost function C(~q, ~d) and show its
Lipschitz-continuity, which allows us to establish analytical results including
asymptotic optimality for wSAA and out-of-sample performance guarantees
for kERM.

We begin by defining demand and decision sets:

Definition B.1. Let Q and D be defined as

Q = {~q = {qs} ∈ RS : 0 ≤ qs ≤ q̄ ∀s}

D = {~d = {dt} ∈ RT : 0 ≤ dt ≤ d̄ ∀t}.
(B.38)

Clearly, demand and capacity can only take on positive values, which jus-
tifies the lower bound. The upper bounds can be large, however demand is
typically limited by the market, and capacity may be limited by the over-
all available staff. Based on this definition, we can derive a bound and the
Lipschitz property for the cost function (3.11).

Proposition B.3. The linearized cost function, stated in (3.11), is positive-
valued:

0 ≤ C(~q, ~d) ∀~q ∈ Q, ~d ∈ D (B.39)

and bounded over Q, D as

sup
~q∈Q,~d∈D

C(~q, ~d) ≤ l̄. (B.40)
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Proof of Proposition B.3: Because the cost factors are positive (cq, c2 ≥ 0)
and qs,mt ≥ 0 ∀s, t, the cost function is defined as the sum of positive values
and, consequently, positive-valued.

To prove the upper bound of the cost function, we first derive a bound on
the overtime cost, which, for given ~q and ~d, can be defined as

Covertime(~q, ~d) = min
{mt}∈RT

c2mT

s.t. mt ≥ mt−1 + dt − qs ∀t ∈ [ts, ts+1) ∀s = 1...S
mt ≥ 0 ∀t
m0 = M0.

(B.41)

We bound this overtime cost as

Covertime(~q, ~d) ≤ Covertime(0, ~d) ∀~d ∈ D, (B.42)

because the solution {mt} of Covertime(0, ~d) is also feasible for Covertime(~q, ~d)
(the first constraint in Problem B.41 is weaker when setting ~q ≥ 0 compared
to ~q = 0), and, therefore, when ~q ≥ 0, the minimum of c2mT can only be
smaller or equal compared to a setting in which ~q = 0.

Similarly, we obtain

Covertime(~q, ~d) ≤ Covertime(~q, {d̄}) ∀~q ∈ Q (B.43)

by the respective argument, because dt ≤ d̄ ∀t, ~d ∈ D.
Therefore, we obtain a bound on the overtime cost as

Covertime(~q, ~d) ≤ Covertime(0, {d̄}) = c2
(
M0 + T d̄

)
, (B.44)

which allows us to bound the cost function:

C(~q, ~d) = 1
T

S∑
s=1

cq(ts+1 − ts)qs + Covertime(~q, ~d)

≤ cq q̄ + c2
(
M0 + T d̄

)
=: l̄,

(B.45)
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which concludes the proof.

Proposition B.4. The linearized cost function, stated in (3.11), is equi-
Lipschitz in ~q over Q and D, and there is some MLip <∞, such that

sup
~q,~q ′∈Q,~q 6=~q ′,~d∈D

|C(~q, ~d)− C(~q ′, ~d)|
||~q − ~q ′||∞

≤MLip. (B.46)

Proof of Proposition B.4: To prove the equi-Lipschitz property of the lin-
earized cost function, we need to show that Covertime(~q, ~d), as defined in (B.41),
is equi-Lipschitz, because the linear part of the cost function is equi-Lipschitz:

|C(~q, ~d)− C(~q ′, ~d)| =
∣∣∣∣∣∣ 1T

S∑
s=1

cq(ts+1 − ts)(qs − q′s)

+ Covertime(~q, ~d)− Covertime(~q ′, ~d)
∣∣∣∣∣∣

≤
∣∣∣∣∣ 1T

S∑
s=1

cq(ts+1 − ts)(qs − q′s)
∣∣∣∣∣

+
∣∣∣Covertime(~q, ~d)− Covertime(~q ′, ~d)

∣∣∣
≤ cq||~q − ~q ′||∞ +

∣∣∣Covertime(~q, ~d)− Covertime(~q ′, ~d)
∣∣∣ .
(B.47)

To show the equi-Lipschitz property of the overtime cost, we define a
sequence of capacity configurations ~qτ with τ = 0...S such that ~q0 = ~q, ~qS = ~q ′

and ~qτ , ~qτ+1 differing only in dimension τ + 1. Then, we obtain

∣∣∣Covertime(~q, ~d)− Covertime(~q ′, ~d)
∣∣∣ =

∣∣∣∣∣
S−1∑
τ=0

[
Covertime(~qτ , ~d)− Covertime(~qτ+1, ~d)

]∣∣∣∣∣
≤

S−1∑
τ=0

∣∣∣Covertime(~qτ , ~d)− Covertime(~qτ+1, ~d)
∣∣∣ .

(B.48)
Assuming (~qτ )τ+1 ≥ (~qτ+1)τ+1 (both differ only along dimension τ+1), without
loss of generality, we know for the queue length {m∗t} (defined as solution to
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Problem B.41) that

m∗t (~qτ , ~d) = m∗t (~qτ+1, ~d) for t < tτ+1, (B.49)

because shift τ + 1 begins at tτ+1, and

m∗tτ+1(~qτ , ~d) ≤ m∗tτ+1(~qτ+1, ~d) (B.50)

with the difference being bounded as

m∗tτ+1(~qτ+1, ~d)−m∗tτ+1(~qτ , ~d) ≤ (~qτ − ~qτ+1)τ+1. (B.51)

Then, by iteratively applying the first condition of (3.11), we obtain

m∗T (~qτ+1, ~d)−m∗T (~qτ , ~d) ≤ (tτ+2 − tτ+1)(~qτ − ~qτ+1)τ+1, (B.52)

because the remaining qs and dt are identical for both ~qτ and ~qτ+1. Conse-
quently,

Covertime(~qτ+1, ~d)− Covertime(~qτ , ~d) ≤ c2(tτ+2 − tτ+1)(~qτ − ~qτ+1)τ+1

≤ c2(tτ+2 − tτ+1)||~q − ~q ′||∞,
(B.53)

from which we obtain

|C(~q, ~d)− C(~q ′, ~d)| ≤ cq||~q − ~q ′||∞ +
∣∣∣Covertime(~q, ~d)− Covertime(~q ′, ~d)

∣∣∣
≤ cq||~q − ~q ′||∞ +

S−1∑
τ=0

∣∣∣Covertime(~qτ , ~d)− Covertime(~qτ+1, ~d)
∣∣∣

≤ (cq + Tc2) ||~q − ~q ′||∞ =: MLip||~q − ~q ′||∞,
(B.54)

which concludes the proof.
In the following we show that the results of Bertsimas and Kallus (2020)

on asymptotic optimality of wSAA also apply to our wSAA approach for our
particular cost function.

Proposition B.5. (Following Bertsimas and Kallus 2020) Assume a closed,
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bounded, non-empty decision space Q̃ ⊂ RT
+, a bounded, non-empty demand

space D̃ ⊂ RT
+, and a data set STN generated by iid sampling from a joint distri-

bution of ~X× ~D. Then, the wSAA approach that solves the linearized AMSSP
is asymptotically optimal when using any of the following weight functions:

a) Based on k-nearest-neighbors (kNN):

wkNN
n (~x) = 1

k
1[~xn is a kNN of ~x], (B.55)

with k = min(dCN δe, N − 1) for some C > 0 and 0 < δ < 1.

b) Based on kernel methods:

wK
n (~x) = K((~xn − ~x)/hN)∑N

k=1K((~xk − ~x)/hN)
, (B.56)

with hN = CN−δ for some C > 0, 0 < δ < 1/p with ~x ∈ Rp, and K being
one of the following kernels: naïve K(~x) = 1[||~x|| ≤ 1], Epanechnikov
K(~x) = (1−||~x||2)1[||~x|| ≤ 1], Tri-cubic K(~x) = (1− ||~x||3)31[||~x|| ≤ 1],
or Gaussian K(~x) = exp(−||~x||2/2).

c) Based on recursive kernel methods:

wrK
n (~x) = K((~xn − ~x)/hn)∑N

k=1K((~xn − ~x)/hn)
, (B.57)

with hn = Cn−δ for some C > 0, 0 < δ < 1/(2p) with ~x ∈ Rp, and K
being the naïve kernel K(~x) = 1[||~x|| ≤ 1].

d) Based on local linear methods:

wLL
n (~x) = w̃n(~x)∑N

k=1 w̃k(~x)
, (B.58)
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with

w̃n(~x) = kn(~x)
(

1−
N∑
l=1

kl(~x)(~xl − ~x)TΞ(~x)−1(~xn − ~x)
)
,

Ξ(~x) =
N∑
n=1

kn(~x)(~xn − ~x)(~xn − ~x)T ,

kn(~x) = K((~xn − ~x)/hN),

(B.59)

and hN = CN−δ for some C > 0, 0 < δ < 1/p with ~x ∈ Rp, and K being
one of the following kernels: naïve K(~x) = 1[||~x|| ≤ 1], Epanechnikov
K(~x) = (1−||~x||2)1[||~x|| ≤ 1], Tri-cubic K(~x) = (1− ||~x||3)31[||~x|| ≤ 1],
or Gaussian K(~x) = exp(−||~x||2/2), if the distribution of feature vec-
tors ~x is absolutely continuous and the probability density f(~x) is bounded
away from zero and ∞ over X .

Proof of Proposition B.5: To prove asymptotic optimality of the wSAA
approach, we show that all assumptions of Theorems 2-5 in Bertsimas and
Kallus (2020) are fulfilled, from which the statement to be proven follows. For
any Q̃ and D̃ we find Q and D that follow Definition B.1, such that Q̃ and D̃
are subsets of Q and D. Therefore, the following assumptions are fulfilled:

• Existence (Assumption 1 in Bertsimas and Kallus 2020): Proposition B.3
establishes the bound on the cost function, therefore we obtain that
E(|C(~q, ~D)|) ≤ l̄ <∞, and Q̃ is non-empty by definition.

• Continuity (Assumption 2 in Bertsimas and Kallus 2020): Proposi-
tion B.4 establishes the equi-Lipschitz property of the cost function.

• Regularity (Assumption 3 in Bertsimas and Kallus 2020): Q̃ is closed,
bounded and non-empty by definition.

In addition, using the bound on the cost function provided in Proposition B.3,
we obtain

E[|C(~q, ~D)|max(log |C(~q, ~D)|, 0)] ≤ l̄ log l̄ <∞.

Therefore, the results of Theorems 2-5 in Bertsimas and Kallus (2020) apply,
which concludes the proof.

218



B.7 Analytical Results for Prescriptive Analytics Approaches

For kERM, we can, based on the bound and the Lipschitz-property of the
cost function, obtain (following the results presented in Notz and Pibernik
2021) an out-of-sample performance guarantee when using the random forest
kernel and the universal approximation property when using a universal kernel.

An out-of-sample performance guarantee is a bound on the true risk,
which is defined as the expected cost over the (unknown) joint distribution
of ~X × ~D: R(~q(·)) := E ~X× ~D

[
C(~q( ~X), ~D)

]
, based on the (measurable) empir-

ical risk RT
N(~q(·)) := ∑N

n=1

[
C(~q(~xn), ~dn)

]
over the data sample STN . Because

the random forest kernel is data-dependent, we need to use a sample-splitting
approach to derive an out-of-sample performance guarantee for kERM when
using the random forest kernel. In particular, we use NRF data samples to
compute the random forest kernel function, and the remaining N −NRF data
samples to train the kERM approach.

Proposition B.6. (Following Notz and Pibernik 2021) Assume a data set
STN = STNRF ] S

T
N−NRF , generated by iid sampling from a joint distribution

of ~X × ~D, C(~q, ~d), as defined in (3.11), ||~b||∞ ≤ BC, ||qU,s||K ≤ BU ∀s,
K(~x1, ~x2) = KRF(~x1, ~x2), as defined in (3.14) and computed using STNRF ; and
let δ > 0. Then, with probability of at least 1− δ for any function ~q(·) ∈ FRF,
the true risk is bounded as

R(~q(·)) ≤RT
N−NRF (~q(·)) + 3l̄

√√√√ log(2/δ)
2(N −NRF )

+MLip

(
2
√

2IBCe√
π
√
N −NRF

+ 2IBU√
N −NRF

)
,

(B.60)

where l̄ is the bound and MLip is the Lipschitz constant of C(~q, ~d).

Proof of Proposition B.6: The proof follows a similar structure as the
proofs of Theorems 2 and 3 in Notz and Pibernik (2021). The cost function
C(~q, ~d) is bounded and equi-Lipschitz (Propositions B.3 and B.4), therefore
the results of Theorem 8 in Bertsimas and Kallus (2020) apply. Combining
these results with the results of Lemmas 2, 3, and 4 in Notz and Pibernik
(2021) and the bound on the random forest kernel function KRF(~x1, ~x2) ≤ 1
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shown in the proof of Theorem 3 in Notz and Pibernik (2021), we obtain the
expression to be proven.

Limiting the function space as in Proposition B.6 leads to a rate of con-
vergence of 1/

√
N −NRF , however, the prescription function ~q kERM(~x) only

converges to the best function within the function space. In contrast, using
universal kernels, such as the Gaussian RBF kernel, allows for convergence to
the best of all continuous functions without any limitations on the function
space, as shown in Proposition B.7. However, the same limitation on the speed
of convergence as for wSAA applies (see Notz and Pibernik 2021 for details).

Proposition B.7. (Following Notz and Pibernik 2021) Assume a data set STN
containing N iid samples of a joint distribution ~X × ~D, C(~q, ~d), as defined in
(3.11), ||~b||∞ ≤ BC,N , ||qU,s||K ≤ BU,N ∀s, and K(~x1, ~x2) = KRBFG(~x1, ~x2) the
RBF Gauss kernel. Assume also regularization sequences BC,N , BU,N such that
limN→∞BC,N , BU,N = ∞ and limN→∞BC,N/

√
N,BU,N/

√
N = 0. Then the

kERM approach fulfills the universal approximation property and the associated
true risk converges in probability for N →∞ toward the minimum risk

R∗ = min
~q(·)∈C(X ,RS)

R(~q(·)), (B.61)

where C(X ,RS) is the space of continuous functions that map from X to RS.

Proof of Proposition B.7: The proof of Proposition B.7 follows a similar
structure as the proof of Proposition 8 in Notz and Pibernik (2021). Combin-
ing the results of Theorem 8 in Bertsimas and Kallus (2020) (because C(~q, ~d)
is bounded and equi-Lipschitz, Propositions B.3 and B.4) with the results of
Lemmas 2, 3, and 4 in Notz and Pibernik (2021) and the bound on the RBF
Gauss kernel function KRBFG(~x1, ~x2) ≤ 1, we obtain an out-of-sample per-
formance guarantee as provided in Equation 61 in Notz and Pibernik (2021).
Based on this Equation 61, Notz and Pibernik (2021) show that the differ-
ence ∆N(~q(·)) between the risk associated with the kERM prescription func-
tion and the minimum risk R∗ converges to zero forN →∞, while the function
space over which kERM optimizes converges to C(X ,RS), which proves the
universal approximation property and, therefore, concludes the proof.
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C.1 Proofs
Proof of Proposition 4.1

To prove that ∂L(~q0) is a non-empty, bounded set, we first observe that L(~q) is
a proper convex function, because L(~q) <∞ for at least one ~q and L(~q) > −∞
for all ~q ∈ Q (see definition of proper convex functions in Chapter 4 in Rock-
afellar 1970). Because L(~q) is proper convex, the results of Theorem 23.4
in Rockafellar (1970) apply, stating that the subdifferential ∂L(~q0) is a non-
empty, bounded set for all ~q0 ∈ intQ.

Proof of Proposition 4.2

The unique subgradient of a convex differentiable function (L(q) for q 6= q0) is
given as the gradient of the function: L′(q) = dL(q)

dq
(Theorem 25.1 in Rockafel-

lar 1970). Furthermore, s0 is a subgradient of L(q) at q = q0 (Definition 4.1),
therefore, the subgradient of L(q) can be expressed as the piecewise-defined
function specified in Proposition 4.2.

Proof of Proposition 4.3

To prove the stated expression for the subdifferential ∂Ld(~q), we show that
both elements of the loss function f0(~q,d) and f ∗1,d(~q) are proper convex, and
then use the results of Theorem 23.8 in Rockafellar (1970).

Because by assumption f0,d(~q), f ∗1,d(~q) < ∞ for at least one ~q ∈ Q and
f0,d(~q), f ∗1,d(~q) > −∞ for all ~q ∈ Q, both f0,d(~q) and f ∗1,d(~q) are proper convex
functions (Chapter 4 in Rockafellar 1970). Furthermore, because the relative
interior set relintQ is non-empty and both f0,d(~q) and f ∗1,d(~q) are defined on Q,
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the results of Theorem 23.8 in Rockafellar (1970) state that

∂Ld(~q) = ∂f0,d(~q) + ∂f ∗1,d(~q) ∀~q ∈ Q. (C.1)

Because f0,d(~q) is proper, finite (|f0,d(~q)| <∞) and differentiable for all ~q ∈ Q,
the gradient ∇f0,d(~q) is the unique subgradient of f0,d(~q) for all ~q ∈ Q (Theo-
rem 25.1 in Rockafellar 1970), and consequently

(∂f0,d(~q))j = ∂f0,d(~q)
∂qj

, (C.2)

which concludes the proof.

Proof of Theorem 4.1

Because all assumptions of Proposition 4.3 are fulfilled, a subgradient of Ld(~q)
is given as

(~sL,d,~q)j = ∂f0,d(~q)
∂qj

+ (~sf∗1 ,d,~q)j, (C.3)

where ~sf∗1 ,d,~q is a subgradient of f ∗1,d(~q).
We derive such a subgradient ~sf∗1 ,d,~q by using the Lagrange formalism and

applying perturbation theory as presented in Chapter 5.6.2 in Boyd and Van-
denberghe (2004) and in Boyd et al. (2018). Let

g̃j(z,d) := gj(z,d)− (~q0)j
∆~q := ~q − ~q0

h̃1,l(z,d) := h1,l(z,d)− ul
h̃2,m(z,d) := h2,m(z,d)− vm

(C.4)

and let f̃ ∗1,d,~q0(∆~q) := f ∗1,d(∆~q + ~q0) = f ∗1,d(~q), then we can express f ∗1,d(~q)
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defined in (4.17) as

f̃ ∗1,d,~q0(∆~q) = min
z∈Z

f1(z,d)

s.t. g̃j(z,d) ≤ (∆~q)j ∀j
h̃1,l(z,d) ≤ 0 ∀l
h̃2,m(z,d) = 0 ∀m.

(C.5)

The primal Lagrangian corresponding to Problem C.5 can be expressed as

LPrimal = f1(z,d) +
∑
j

αj [g̃j(z,d)− (∆~q)j]

+
∑
l

β1,lh̃1,l(z,d) +
∑
m

β2,mh̃2,m(z,d),
(C.6)

where αj, β1,l ≥ 0 and β2,m are the Lagrange variables. Because, by assump-
tion, strong duality holds and the dual optimum at ∆~q = 0 (i.e., ~q = ~q0)
is attained at (~α∗~q0 ,

~β∗1,~q0 ,
~β∗2,~q0), all assumptions required for Inequality 5.57 in

Boyd and Vandenberghe (2004) to hold are fulfilled, and we obtain

f̃ ∗1,d,~q0(∆~q) ≥ f̃ ∗1,d,~q0(0)− 〈~α∗~q0 ,∆~q〉, (C.7)

which is equivalent to

f ∗1,d(~q) ≥ f ∗1,d(~q0)− 〈~α∗~q0 , ~q − ~q0〉. (C.8)

Because Inequality C.8 holds for any ~q, ~q0 ∈ Q and f ∗1,d(~q) is jointly convex
in ~q by assumption, −~α∗~q0 is a subgradient of f ∗1,d(~q) at ~q0 by Definition 4.1.
Therefore, setting ~sf∗1 ,d,~q = −~α∗~q in Equation C.3, we obtain the expression to
be proven.

Proof of Proposition 4.4

Convexity of the loss function defined in (4.21) has been shown in Proposition 2
in Notz and Pibernik (2021).
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Proof of Proposition 4.5

To prove the existence of at least one subgradient, we show that all assump-
tions of Proposition 4.1 are fulfilled, which guarantees that ∂Ld(~q) is non-
empty.

By definition the loss function is positive: L(~q,d) ≥ 0 > −∞. Further-
more, for any ~q,d exist Q̃, D̃ bounded as in Definition 2 in Notz and Pibernik
(2021), such that ~q ∈ Q̃,d ∈ D̃. Therefore, following Lemma 1 in Notz and
Pibernik (2021), the loss function is bounded: ∀~q ∈ Q̃,d ∈ D̃ :L(~q,d) <∞.

With these bounds, and because the loss function is convex (Proposi-
tion 4.4), all assumptions of Proposition 4.1 are fulfilled and ∀~q ∈ intQ the
subdifferential is non-empty. Because Q is open, all elements are interior
points such that ~q ∈ Q ⇒ ~q ∈ intQ, which concludes the proof.

Proof of Proposition 4.6

To obtain the stated expression for a subgradient of the loss function, we first
derive the primal Lagrange function of Problem 4.22 and prove strong duality,
and then use the results of Theorem 4.1.

Let αi, βj, γij and δij be Lagrange multipliers, then we obtain for the
primal Lagrangian of (4.22):

Lprimal =
∑
i

cidi −
∑
i,j

aijyij

+
∑
i

αi

∑
j

yij − di

+
∑
j

βj

(∑
i

yij − qj
)

−
∑
i,j

γijyij +
∑
i<j

δijyij,

(C.9)

where i, j = 1...I. Because the objective function is linear in {yij} and there-
fore convex, all constraints of Problem 4.22 are affine in the primal vari-
ables {yij}, and {yij} = 0 is a feasible solution with 0 being a relative in-
terior point of the domain of definition RI×I , the Slater condition is fulfilled
and strong duality holds (see Section 5.2.3 in Boyd and Vandenberghe 2004).
Therefore, by the Karush-Kuhn-Tucker (KKT) conditions, the partial deriva-
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tives of Lprimal with respect to the primal variables yij vanish, which is a nec-
essary and sufficient condition for optimality (Boyd and Vandenberghe 2004,
p. 244):

for i < j: ∂Lprimal

∂yij
= −aij + αi + βj − γij + δij = 0

for i ≥ j: ∂Lprimal

∂yij
= −aij + αi + βj − γij = 0.

(C.10)

Therefore, we can express the primal Lagrangian as

Lprimal =
∑
i

(ci − αi) di −
∑
j

βjqj. (C.11)

Because Lprimal is independent of the primal variables, we obtain for the dual
Lagrangian:

Ldual = inf
{yij}

Lprimal = Lprimal, (C.12)

from which we derive for the dual problem:

max
{αi},{βj}

∑
i

(ci − αi) di −
∑
j

βjqj

s.t. αi, βj ≥ 0 ∀i, j
αi + βj ≥ aij ∀i ≥ j,

(C.13)

with the solution β∗
j,~d,~q

.
We further observe that the loss function (4.21) follows the form of (4.17)

with f0,d(~q) = Π∗(d)+∑j fjqj convex in ~q and differentiable, and |f0,d(~q)| <∞
for all finite d and ~q; and f ∗1,d(~q) = ∑

t−π(~dt, ~q) jointly convex in ~q (Proposi-
tion 4.4), with |f ∗1,d(~q)| <∞ for all d and ~q.

Then, because
∂f0,d(~q)
∂qj

= fj, (C.14)

and because a subgradient of f ∗1,d(~q) is given as (~sf∗1 ,d,~q)j = −∑t β
∗
j,~dt,~q

(Theo-
rem 4.1), we obtain the expression to be proven.
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Proof of Proposition 4.7

Convexity of the loss function defined in (4.26) has been shown in Proposition 7
in Notz et al. (2020).

Proof of Proposition 4.8

Similar as in the proof of Proposition 4.5, we show that all assumptions of
Proposition 4.1 are fulfilled, which guarantees that at least one subgradient
exists.

For any ~q with ||~q||∞ <∞ and any ~d ≥ 0 with ||~d||∞ <∞, we can bound
the loss function by bounding the backlogging cost. A feasible solution to
Problem 4.27 is given as

mt =
t∑

τ=1
dτ , (C.15)

which allows us to bound the backlogging cost as

Cbacklog(~q, ~d) ≤ (c2 + c3)
∑
t

dt. (C.16)

Therefore, the loss function is bounded as

|L(~q, ~d)| ≤ cq(τa + τb)||~q||∞ + (c2 + c3)
∑
t

dt <∞. (C.17)

Based on this bound, and because the loss function is convex (Proposi-
tion 4.7), all assumptions of Proposition 4.1 are fulfilled and ∀~q ∈ intQ the
subdifferential ∂L~d(~q) is non-empty. Because Q is open, all elements are inte-
rior points ~q ∈ Q ⇒ ~q ∈ intQ, which concludes the proof.

Proof of Proposition 4.9

Similar as in the proof of Proposition 4.6, we first derive the primal Lagrange
function of Problem 4.27 and prove strong duality, and then use the results of
Theorem 4.1.

Let βt, γt and δ0 be Lagrange multipliers, then we obtain for the primal
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Lagrangian:

Lprimal =c2m20 + c3m14

+
6∑
t=1

βt (mt−1 + dt −mt) +
14∑
t=7

βt (mt−1 + dt −mt − qa)

+
20∑
t=15

βt (mt−1 + dt −mt − qb)−
20∑
t=1

γtmt + δ0m0.

(C.18)

Because the objective function is linear in {mt} and therefore convex,
all constraints of Problem 4.27 are affine in the primal variables {mt}, and
mt = ∑t

τ=1 dτ—which equals a continuous queue build-up with all arriving
demand being added to the queue—is a feasible solution and a relative interior
point of the domain of definition RT , the Slater condition is fulfilled and strong
duality holds (see Section 5.2.3 in Boyd and Vandenberghe 2004). Therefore,
the KKT conditions, which state that the partial derivatives of Lprimal with
respect to the primal variables {mt} equal 0, provide necessary and sufficient
conditions for optimality (Boyd and Vandenberghe 2004, p. 244):

for t = 0: ∂Lprimal

∂mt

= β1 + δ0 = 0

for t = 14: ∂Lprimal

∂mt

= β15 − β14 − γ14 + c3 = 0

for t = 20: ∂Lprimal

∂mt

= c2 − β20 − γ20 = 0

for t 6= 0, 14, 20: ∂Lprimal

∂mt

= βt+1 − βt − γt = 0.

(C.19)

Using these results, the primal Lagrangian can be expressed as

Lprimal =
20∑
t=1

βtdt −
14∑
t=7

βtqa −
20∑
t=15

βtqb. (C.20)

Because Lprimal is independent of the primal variables, we obtain for the dual
Lagrangian:

Ldual = inf
{mt}

Lprimal = Lprimal, (C.21)
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from which we derive for the dual problem:

max
{βt}

20∑
t=1

βtdt −
14∑
t=7

βtqa −
20∑
t=15

βtqb

s.t. βt+1 ≥ βt ∀t 6= 14, 20
β15 ≥ β14 − c3

β20 ≤ c2,

(C.22)

with the solution {β∗
t,~d,~q
}.

We observe that the loss function (4.26) follows the form of (4.17) with
f0,~d(~q) = cq(τaqa + τbqb) convex in ~q and differentiable, |f0,~d(~q)| < ∞ for all
finite ~d and ~q. Also, f ∗1,~d(~q) = Cbacklog(~q, ~d) with f ∗1,~d(~q) jointly convex in ~q

(Proposition 4.7) and |f ∗1,~d(~q)| <∞ for all ~d and ~q. We further obtain

∂f0,~d(~q)
∂qi

= cqτi, (C.23)

and a subgradient of f ∗1,~d(~q) as

(~sf∗1 ,~d,~q)j =

−
∑14
t=7 β

∗
t,~d,~q

for j = 1

−∑20
t=15 β

∗
t,~d,~q

for j = 2,
(C.24)

using the results of Theorem 4.1, which concludes the proof.

C.2 Detailed Description of Aggregate Features
A detailed description of the 162 (mail sorting case) and 142 (aviation mainte-
nance case) features used in our numerical analyses can be found in Notz and
Pibernik (2021) and Notz et al. (2020). In the following, we provide details
on the feature aggregation used in Section 4.5.5 to obtain explanations of the
prescribed capacities based on SHAP values.
For the mail sorting case we define the following aggregate features:

• 1-3 weeks lag, by service line and total of all service lines: aggregate of
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daily lagged demands and total week lagged demand,

• 1 month lag, by service line and total of all service lines: aggregate of
daily lagged demands and total week lagged demand,

• 1 year lag, by service line and total of all service lines: aggregate of daily
lagged demands and total week lagged demand,

• difference between 1 and 2 weeks lagged demand, by service line: aggre-
gate of daily differences.

This yields a total of 23 aggregate features. Combined with the remaining
11 date-based features, the 11 indicator features representing the relation to
public holidays, and 5 features describing sums of lagged demands (1-2 weeks
and 1-3 weeks) and summed differences between weeks (see Appendix C in
Notz and Pibernik 2021 for details), we obtain a total of 50 features used to
derive SHAP value-based explanations for the mail sorting case.
For the aviation maintenance case we define the following aggregate features:

• 1-7 days lagged demand: aggregate of both shifts and totals,

• 14, 21, and 28 days lagged demand: aggregate of both shifts and totals,

• sums of 1-3 or 1-7 days lagged demand: aggregate of both shifts and
totals,

• indicator if a public holiday is 1-3 days before the day of interest: ag-
gregate of Germany and US,

• indicator if a public holiday is 1-3 days after the day of interest: aggre-
gate of Germany and US,

• weekday average of expected demand: aggregate of contracted and up-
dated delivery date,

• parts shipped before day of interest by four country groups: aggregate
across 1-29 days before day of interest,
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• demand for which a process ID was created: aggregate across 1-29 days
before day of interest.

This yields a total of 24 aggregate features. Combined with the remaining 22
date-based features and 4 features describing expected demand based on con-
tracted or updated delivery date and the percentage difference to the weekday
average (see Appendix B in Notz et al. 2020 for details), we obtain a total of
50 features used to derive explanations based on SHAP values for the aviation
maintenance capacity case.

C.3 Detailed Description of Approaches for
Numerical Evaluation

In this section we describe the implementation of each of the approaches pre-
sented in Section 4.5.3 in more detail.

C.3.1 Subgradient Tree Boosting

We implement Algorithm 4.1 presented in Section 4.3.1 to obtain the prescrip-
tion function ~q STB(·). In particular, we implement the loss functions (4.21)
and (4.26) and use Gurobi Optimizer for the sample average approximation in
Steps 1 and 7 of Algorithm 4.1. The subgradients of the loss functions ~sL are
calculated as described in (4.23) and (4.28), by solving Problems 4.24 and 4.29
using Gurobi Optimizer.61 The decision tree learning (Step 5) is done using
the DecisionTreeRegressor class of the scikit-learn package for python, which
allows us to learn bi- and trivariate regression trees with a maximum of five leaf
nodes.62 For the mail sorting case, the hyper parameters ξ = 0.3...1.0 (frac-
tion of data samples used for tree learning in each iteration), ν = 0.001...0.5
61In case of ~q STBk (~xn) = 0 in one dimension j, we approximate the subgradient by setting

(~q STBk (~xn))j = 0.001, because the subgradient is not defined for vanishing ~q STBk (~xn).
However, assuming ν < 1, this can only occur when the initialization (SAA) assigns zero
capacity to a service line (mail sorting case) or shift (aviation maintenance case), which
is almost never the case in realistic settings.

62Hastie et al. (2009) describe a number of 4 to 8 leaf nodes for a base learner as common
range (see Hastie et al. 2009, p. 363).
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(shrinkage factor or learning rate) and K = 1...4000 (number of iterations and
trees in final model) are tuned using simple cross-validation with 2/3 of the
training data used to train the model, and the remaining 1/3 of the training
data to evaluate the achieved profit. The hyper parameters are tuned simi-
larly for the aviation maintenance case, where ξ = 0.3...1.0, ν = 0.001...0.5
and K = 1...2000 with 3/4 of the training data used to train the model, and
the remaining 1/4 of the training data used to evaluate the incurred cost of
the prescriptions.

We use the estimated prescription function ~q STB(·) to determine the ca-
pacity decisions for each week (mail sorting case) or each day (aviation main-
tenance case) of the test period.

C.3.2 Weighted SAA

The implementation of the wSAA approach consists of two steps: we first
calculate the random forest weights, and then solve the wSAA optimization
problem. To calculate the weights, we train random forest models and use the
weight function

wRF
n (~x) = 1

K

K∑
k=1

1[Rk(~x) = Rk(~xn)]∑N
j=1 1[Rk(~x) = Rk(~x j)]

, (C.25)

as described in Notz and Pibernik (2021) and Notz et al. (2020).
We then solve the wSAA optimization problem

~qwSAA(~x) = arg min
~q∈Q

N∑
n=1

wRF
n (~x)L(~q,dn) (C.26)

with the loss functions L(~q,d) defined in (4.21) and (4.26) for each instance
of the test period using Gurobi Optimizer.

C.3.3 Kernelized ERM

Similar to the implementation of wSAA, we first calculate the kernel function
defined in (4.8) using the same random forest models as for wSAA, and then
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solve the kERM approach for the loss functions L(~q,d) defined in (4.21) and
(4.26) using Gurobi Optimizer. The kERM prescription function is given as:

~q kERM(~x) =
N∑
n=1

~unK (~xn, ~x)−~b, (C.27)

where, for the mail sorting case, the components of the coefficients ~un are
defined as unj = 1

2λj

(∑T
t=1(βtnj ) + εnj − fj

)
and βtnj , εnj are the solution to

max
{αtni },{β

tn
j },{ε

n
j }
Ldual := −

I∑
j=1

λj
N∑

p,q=1

(
upju

q
jK(~xp, ~xq)

)
+

N∑
n=1

I∑
i=1

T∑
t=1

(ci − αtni )dtni

s.t. αtni , βtnj , εnj ≥ 0 ∀i, n, t
αtni + βtnj ≥ aij ∀i ≥ j, ∀n, t
N∑
n=1

unj = 0 ∀j,

(C.28)
as described in Notz and Pibernik (2021). Similarly, for the aviation mainte-
nance case, we define the components of ~un as

un1 = 1
2λ1

( 14∑
t=7

αnt + δn1 −
cqτa
N

)

un2 = 1
2λ2

( 20∑
t=15

αnt + δn2 −
cqτb
N

)
,

(C.29)

where αnt and δnj are the solution to

max
{αnt },{δnj }

Ldual := −
2∑
j=1

λj
N∑
p=1

N∑
q=1

(
upju

q
jK(~xp, ~xq)

)
+

t=20∑
n,t=7

αnt d
n
t +

t=6∑
n,t=1

αn7d
n
t

s.t. αnt , δnj ≥ 0 ∀j, t, n
αnt+1 ≥ αnt ∀n, t 6= 14

αnt+1 ≥ αnt −
c3

N
∀n, t = 14

αn20 ≤
c2

N
∀n,

(C.30)

232



C.4 Impact of the Number of STB Iterations on Performance

where n = 1...N , j = 1...2 and t = 7...20, as described in Notz et al. (2020).
We then apply the prescription function ~q kERM(·) to each instance of the test
period.

C.3.4 SAA

To estimate the SAA prescriptions we solve

~q SAA(~x) = arg min
~q∈Q

1
N

N∑
n=1

L(~q,dn) (C.31)

with the loss functions L(~q,d) defined in (4.21) and (4.26) using Gurobi Op-
timizer. This optimization problem is equivalent to that of wSAA when set-
ting wn(~x) = 1/N .

C.4 Impact of the Number of STB Iterations on
Performance

In this section we study the dependence of the prescription performance of
STB on the number of iterations K. First, we analyze the dependence the-
oretically, based on out-of-sample performance guarantees, and second, we
conduct numerical experiments, in which we vary K and determine the pre-
scription performance.

The theoretical analysis is based on the concept of Rademacher complexi-
ties, which was extended to multivariate OM settings in Bertsimas and Kallus
(2020). We show in the following that the empirical Rademacher complexity
of the function space used by STB increases with K, which emphasizes the
requirement to limit K in practical applications.

Proposition C.1. Let F0 be the function space of the STB base learners (e.g.,
decision trees) with empirical Rademacher complexity RadN(F0, SN) over SN ,
let K be the number of STB iterations, ν > 0 the constant shrinkage factor,
and let F = ∑K

k=1 νF0 be the prescription function space of the STB approach.
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Then, the empirical Rademacher complexity of F is bounded as

RadN(F , SN) ≤ νK RadN(F0, SN). (C.32)

Proof of Proposition C.1: Following Theorem 12 Part 7 in Bartlett and
Mendelson (2002), the empirical Rademacher complexity of a sum of function
spaces Fk is bounded as

RadN
(

K∑
k=1
Fk, SN

)
≤

K∑
k=1

RadN(Fk, SN). (C.33)

Furthermore, following Theorem 12 Part 3 in Bartlett and Mendelson (2002),
the empirical Rademacher complexity of scalar multiplication of a function
space F is given as

RadN(νF , SN) = |ν|RadN(F , SN). (C.34)

Combining both, we derive for the Rademacher complexity of F :

RadN(F , SN) = RadN
(

K∑
k=1

νF0, SN

)

≤ ν
K∑
k=1

RadN(F0, SN)

= νK RadN(F0, SN),

(C.35)

which concludes the proof.
We observe that this bound on the empirical Rademacher complexity

RadN(F , SN) increases linearly in the number of STB iterations K, there-
fore, the function space complexity increases with K. Proposition C.2 shows
how this leads to a bound on the out-of-sample performance that increases
with K.

Proposition C.2. (Following Bertsimas and Kallus 2020) Assume SN , gen-
erated by iid sampling from a joint distribution of X × D, L(~q,d) the loss
function of the mail sorting case (4.21) or the loss function of the aviation
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maintenance case (4.26), and let δ > 0. Then, with probability of at least 1−δ
for any function ~q(·) ∈ F = ∑K

k=1 νF0, the true risk is bounded as

R(~q(·)) ≤ RN(~q(·)) + 3l̄
√

log(2/δ)
2N +MLipνK RadN(F0, SN), (C.36)

where l̄ is the bound and MLip is the Lipschitz constant of L(~q,d).

Proof of Proposition C.2: When combining the results of Proposition C.1
with Theorem 4 in Notz and Pibernik (2021) for the mail sorting case or
Theorem 8 in Bertsimas and Kallus (2020) and Propositions 8 (cost function
is bounded) and 9 (cost function is equi-Lipschitz) in Notz et al. (2020) for the
aviation maintenance case, the stated bound on the true risk directly follows.

The RHS of the result of Proposition C.2 demonstrates the common bias-
variance trade-off between i) choosing a low complexity of the function space F
(small Rademacher complexity, high bias), which leads to a large empirical
(in-sample) risk RN(~q(·)), and ii) choosing a high complexity of the function
space F (large Rademacher complexity, high variance), which leads to a small
RN(~q(·)). This trade-off can be tuned by varying K, which determines the
complexity of the function space F (Proposition C.1). The result of Proposi-
tion C.2 therefore underlines the need for early stopping, which is a strategy
to prevent overfitting by choosing a finite number of STB iterations K < ∞,
because the bound on the out-of-sample performance grows with K.
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Figure C.1: Absolute gap to optimal profit for the mail sorting case.
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Our numerical experiments on the dependence of the STB prescription
performance on the number of iterations K lead to consistent results. Fig-
ure C.1 shows the absolute gap to optimal profit for the mail sorting case for
cost parameters that induce optimal service levels of 50 percent (Figure C.1a)
and 80 percent (Figure C.1b). For both cost parameter settings the out-of-
sample performance of STB first increases with the number of iterations K
(most strongly for up to 500 iterations), which indicates the high bias regime,
then reaches a minimum gap to optimal profit, and finally decreases with K,
which indicates the high variance regime and suggests that the STB approach
overfits the data for large K. The optimal value of K depends on the plan-
ning problem, the cost parameters and the data set, and is therefore typically
determined through hyper parameter tuning.
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