
Computation of Belyi maps with

prescribed ramification and

applications in Galois theory

Dissertation zur Erlangung des naturwissenschaftlichen

Doktorgrades der Julius-Maximilians-Universität Würzburg

vorgelegt von

Andreas Wenz

Februar, 2021

Institut für Mathematik der Universität Würzburg

1

eingereicht am 08. Februar 2021

Contents

Chapter 1. Introduction 3

Chapter 2. Theoretical Background 7

2.1. Monodromy and ramification tuples 7

2.2. Function field setting 9

2.3. Belyi maps 10

Chapter 3. Known methods for Belyi map computation 17

3.1. Gröbner basis method 17

3.2. Computing Shabat polynomials 19

3.3. Computing Belyi maps using modular forms 22

Chapter 4. A new method for computing Belyi maps 25

4.1. Preparations 27

4.2. Fundamental domains 28

4.3. Obtaining an approximate dessin 34

4.4. Belyi map computation 44

4.5. Verification 51

Chapter 5. Main results 56

5.1. Belyi maps defined over Q 56

5.2. A theorem of Magaard 78

Chapter 6. Implementation 88

6.1. Instructions for use 89

6.2. Known issues and solutions 91

6.3. Codes 93

Index of terms 119

Acknowledgements 120

Bibliography 121

2

CHAPTER 1

Introduction

This dissertation deals with the explicit computation of high degree genus-

0 three-branch-point covers of P1C, also called Belyi maps, with prescribed

monodromy as well as the corresponding verification process.

The calculation of ramified covers of P1C with prescribed monodromy

groups is of great importance for the inverse Galois theory problem as mon-

odromy groups occur as Galois groups over the rational function field C(t).

In combination with well known theoretical descent criteria this also trans-

lates to function fields over small number fields. We therefore obtain explicit

defining equations for function field extensions with prescribed Galois groups.

Under certain conditions this yields explicit polynomials defining regular Ga-

lois extensions of Q(t) with prescribed Galois groups as well as extensions of

Q thanks to Hilbert’s irreducibility theorem. Under certain conditions upon

suitable specialization in t this also allows the regular realization of index-2

subgroups of the original Galois group.

The determination of large Belyi maps with prescribed ramification is con-

sidered to be a challenging problem, see [41]. Several powerful computational

approaches for computing Belyi maps beyond the standard techniques are in-

troduced by e.g. Klug, Musty, Schiavone, Voight [23], Roberts [39] and Monien

[35], [36].

We will introduce another technique for computing complex approxima-

tions of Belyi maps with prescribed ramification and present examples of de-

gree up to 280 using Magma [13] and Matlab [32]. As a consequence we are

able to determine polynomials having almost simple Galois groups over Q(t),

see Theorem 5.1. Furthermore, we give an explicit version of a theorem of Ma-

gaard, see Theorem 5.3, which theoretically characterizes all sporadic groups

occurring as a composition factor of the monodromy group of a rational func-

tion, namely the five Mathieu groups, the Higman-Sims group HS, the Janko

groups J1 and J2 as well as the Conway group Co3.

3

1. INTRODUCTION 4

In particular, we present the first (to the best of our knowledge) explicit

realizations of PSp(4, 4), PSp(4, 4):2, HS, Aut(HS), O+(8, 2) as Galois groups

over Q(t) and J1 as a Galois group over K(t) with K being a degree-7 number

field.

This dissertation is structured as follows: The theoretical background will

be introduced in chapter 2. Well established techniques for computing Belyi

maps with prescribed ramification are discussed in chapter 3. In chapter 4

we explain our newly developed computation method and present a detailed

documentation of the explicit realization of a degree-100 Belyi map having

monodromy group Aut(HS). In chapter 5 we present several more examples of

Belyi maps of large degree with rational coefficients as well as Belyi maps with

monodromy groups having sporadic composition factors. The final chapter 6

documents the code used for computations in the previous chapters.

All of the results were achieved in cooperation with Dominik Barth. The

entire collaboration has reached the following milestones:

• developing a new method for computing high degree Belyi maps with

prescribed ramification, explicit realization of Belyi maps over Q and

small number fields up to degree 280, see [10] (originally presented in

[5], [8], [6] and [7])

• calculation of multi-branch-point covers with prescribed ramification

(collaboration with J. König), Galois group verification for 2-transitive

groups, explicit realization of PSp6(2) of degree 28 and 36, PSp4(3) of

degree 27 and PSL6(2) of degree 63, see [4], [9], [11].

In his upcoming dissertation Dominik Barth will give a thorough survey on

computing multi-branch-points covers.

1. INTRODUCTION 5

Notation.

N set of natural numbers 1, 2, 3, . . .

N0 set of natural numbers including 0

Z ring of integers

Q field of rational numbers

R field of real numbers

C field of complex numbers

|M | cardinality of a finite set M

f−1(M) pre-image of a set or element M by a map f

[z]∼ equivalence class containing z in the equivalence relation ∼

K algebraic closure of a field K

P1K projective line over a field K

H upper complex half-plane

D complex unit disc

Aut(U) automorphism group of an open subset U ⊆ C

〈M〉 group generated by a set or element M

xG orbit of x of a group G acting on a set containing x

Sym(M) symmetry group of a set M

Sn symmetric group of {1, . . . , n}
An alternating group of {1, . . . , n}
Aut(G) automorphism group of a group G

NG(S) normalizer of a subset S in a group G

L/K field extension L ⊇ K

[L : K] degree of the field extension L/K

Aut(L/K) automorphism group of the field extension L/K

Gal(L/K) Galois group of a Galois extension L/K

Gal(f/K) Galois group of a polynomial f over K

R[X] ring extension of a ring R by an element X

K(X) field extension of a field K by an element X

deg(f) degree of a univariate polynomial or rational function

1. INTRODUCTION 6

z complex conjugate of a complex number z

Real(z) real part of a complex number z

Imag(z) imaginary part of a complex number z

|z| value of a complex number z

∂M border of a real or complex subset M

M◦ interior of a real or complex subset M

M closure of a subset of a real or complex subset M

[a, b] closed real interval from a to b

(a, b) open real interval from a to b

CHAPTER 2

Theoretical Background

This chapter is in parts taken over from [10, Chapter 2].

Let f ∈ C(X) be a rational function of degree n. An element a ∈ P1C is

called a critical value of f if |f−1(a)| < n holds. The ramification locus of f is

defined to be an ordered set of all critical values of f .

2.1. Monodromy and ramification tuples

Let f be a rational function of degree n with ramification locus

R := (r1, . . . , rm) ⊆ P1C

for some m ∈ N. For a fixed p0 ∈ P1C\R let π1(P1C\R, p0) be the topological

fundamental group of P1C \ R with base point p0. For the sake of simplicity

we will denote a path and its homotopy class by the same symbol. It is well

known that π1(P1C \ R, p0) is generated by closed paths γk for k = 1, . . . ,m

starting in p0 and turning counter-clockwise only around rk, respectively, such

that
∏m

k=1 γk = 1.

For any closed path γ in P1C \R starting in p0 let γq be the lifted path of

γ under f starting at some point q ∈ f−1(p0), i.e. γq is a path in P1C \ f−1(R)

such that f(γq) = γ. In a natural way the following homomorphism arises:

mon :

π1(P1C \ R, p0)→ Sym(f−1(p0)) ∼= Sn

γ 7→ (q 7→ end point of γq)

An embedding of the image of mon in Sn, denoted by mon(f), is called the

monodromy group of f and the tuple

(σ1, . . . , σm) := (mon(γ1), . . . ,mon(γm)) ∈ (Sn \ {1})m

up to simultaneous conjugation will be referred to as the ramification tuple of f

(with respect toR). In this context two tuples (s1, . . . , sm), (s̃1, . . . , s̃m) ∈ Snm

7

2.1. MONODROMY AND RAMIFICATION TUPLES 8

are called simultaneous conjugate if there exists an element g ∈ Sn such that

(s1, . . . , sm) = (g−1s̃1g, . . . , g
−1s̃mg).

Important properties are collected in the following lemma, see also [26,

Chapter 1.2].

Lemma 2.1. Let f ∈ C(X) be a rational function with ramification tuple

(σ1, . . . , σm) ∈ (Sn \ {1})m. Then the following conditions hold:

(a)
∏m

k=1 σk = 1.

(b) mon(f) = 〈σ1, . . . , σm〉.
(c) mon(f) is a transitive subgroup of Sn.

(d) Riemann-Hurwitz genus formula: 2(n − 1) =
∑m

k=1 ind(σk). Here, ind(σ)

for any σ ∈ Sn is defined to be n minus the number of cycles of σ.

Motivated by the previous lemma we will call (σ1, . . . , σm) ∈ (Sn \ {1})m a

genus-0 tuple for a transitive subgroup G of Sn if the following conditions are

satisfied:

•
∏m

k=1 σk = 1.

• G = 〈σk : k ∈ {1, . . . ,m}〉.
• 2(n− 1) =

∑m
k=1 ind(σk).

Riemann’s famous existence theorem, see e.g. [26, Theorem 1.8.14], guarantees

the existence of rational functions with prescribed ramification:

Theorem 2.2. For every genus-0 tuple (σ1, . . . , σm) for a transitive subgroup

G of Sn and every ordered m-element subset R of P1C there exists a unique

rational function f ∈ C(X) up to inner C-Möbius transformation with ramifi-

cation locus R and ramification tuple (σ1, . . . , σm).

Remark 2.3. Recall that K-Möbius transformations for any field K are given

by degree-1 rational functions in K(X). They are of type

AX +B

CX +D

for some A,B,C,D ∈ K fulfilling det

(
A B

C D

)
6= 0. It is well known that

these maps act sharply 3-transitive on P1K.

2.2. FUNCTION FIELD SETTING 9

2.2. Function field setting

Let K be a subfield of C and

f :=
p

q
∈ K(X)

with coprime polynomials p, q ∈ K[X] a rational function of degree n with

ramification locus R and ramification tuple (σ1, . . . , σm) for some m ∈ N.

Furthermore, let L be the splitting field of p(X) − tq(X) over K(t) with

t being a transcendental, K̂ the algebraic closure of K in L, and x a root of

the irreducible polynomial p(X)− tq(X) in L. In the function field extensions

L/K(t) and K(x)/K(t) the set of ramified places corresponds to R.

The groups A := Gal(L/K(t)) and G := Gal(L/K̂(t)) are called the arith-

metic monodromy group and the geometric monodromy group of f . Both

groups are considered as transitive permutation groups acting on the n roots of

p(X)−tq(X) contained in L. It is well known that G is normal in A. If K = K̂,

or equivalently G = A, then L/K(t) is called a regular Galois extension.

Decomposition and inertia subgroups of A carry valuable information, see

[24, Lemma 3.2, 3.6 and 3.7]:

Lemma 2.4. For a place in L extending a place P in K(t) let GZ be the cor-

responding decomposition group and GT the inertia group. Then the following

holds:

(a) GT is cyclic and normal in GZ.

(b) If a generator σ of GT has cycle lengths m1, . . . ,mk, then the specialization

of p(X)− tq(X) at the place P has roots of multiplicity m1, . . . ,mk.

(c) Assume P is of degree 1. If GZ has orbits O1, . . . , Or where each Oi is a

union of ki orbits of GT then the specialization of p(X)− tq(X) at P has

degree-ki factors in K[X] with multiplicity |Oi|
ki

.

Remark. If a specialization reduces the degree of the polynomial by k we will

consider ∞ to be a root of this polynomial with multiplicity k.

Note, that G and mon(f) are isomorphic in such a way that the conjugacy

classes of (σ1, . . . , σm) can be identified with the unique conjugacy classes of

the respective inertia group generators of any extension of ramified places in

K(t) to L.

2.3. BELYI MAPS 10

2.3. Belyi maps

A rational function f will be called a Belyi map if its ramification locus

is equal to (0, 1,∞). The elements of f−1(0), f−1(1) and f−1(∞) are called

zeros , ones and poles of f , respectively.

If (σ0, σ1, σ∞) denotes the ramification triple of f then each cycle of σ0,

σ1 or σ∞ corresponds to a zero, one or pole of f of multiplicity given by its

respective cycle length.

2.3.1. Dessin d’enfant.

The dessin d’enfant or dessin of a degree-n Belyi map f ∈ C(X) is defined to

be set f−1([0, 1]).

In a natural way the dessin of f can be considered as a bipartite graph

with n edges embedded in P1C where the vertices are given by the zeros and

ones of f and the edges are given by the connected components of f−1(]0, 1[).

Note that dessins are connected and all the edges meeting in a vertex locally

form a regular star configuration. We will label the edges from 1 to n in an

oriented counter clock-wise fashion such that the labelling corresponds to the

ramification triple of f , see also [26, Section 1.3.3].

Example 2.5. A dessin with ramification triple (σ0, σ1, σ∞) where

σ0 = (1, 2, 3, 4)(5, 8, 6, 7), σ1 = (3, 6)(4, 5), σ∞ = (1, 4, 7, 6, 2)(3, 8, 5)

including the poles (marked with blue crosses) is shown in the following figure:

-8 -6 -4 -2 0 2
-5

-4

-3

-2

-1

0

1

2

3

4

5

1

2

3

4

5

6

7
8

2.3. BELYI MAPS 11

For the sake of clarity we occasionally omit drawing the labels to our dessins

since we will be dealing with high degree Belyi maps.

Remark 2.6. The complex conjugate f̄ of a degree-n Belyi map f with ramifi-

cation triple (σ0, σ1, σ∞) is also a degree-n Belyi map. If its ramification triple

is denoted by (σ0, σ1, σ∞) it is easy to deduce that

(σ0, σ1, σ∞) =
(
σ0
−1, σ1

−1, (σ∞
−1)σ1

−1
)
.

2.3.2. Real Belyi maps.

According to [24, Section 4.1] the ramification triples of real Belyi maps can

be characterized as follows:

Lemma 2.7. Let (σ0, σ1, σ∞) ∈ Sn3 be a genus-0 tuple for a transitive subgroup

of Sn. Then there exists a real Belyi map f ∈ R(X) with ramification triple

(σ0, σ1, σ∞) if and only if there exists an involution ρ ∈ NSn(〈σ0, σ1〉) satisfying

the following conditions:

(a) (σ0
ρ, σ1

ρ, σ∞
ρ) = (σ0

−1, σ1
−1, (σ∞

−1)σ1
−1

).

(b) There exists at least one fixed point in ρ, ρσ1 or ρσ1σ∞.

We will take advantage of the following obvious geometric property of real

Belyi maps: The dessin of a real degree-n Belyi map f lies axially symmetric

to the real line and the element ρ from the previous lemma describes the

symmetry of the dessin of f : the fixed points of ρ reveal the real edges and

the cycles of length 2 of ρ tell us the complex conjugate pairs of edges.

Furthermore, the real zeros, ones and poles of f can be characterized in

the following way:

• A cycle O of σ0 or σ1 belongs to a real zero or one of f if and only if

{oρ : o ∈ O} = {o : o ∈ O}.

• A cycle O of σ∞ belongs to a real pole of f if and only if

{oσ0ρ : o ∈ O} = {o : o ∈ O}.

Consequently, we will call a cycle of σ0, σ1, σ∞ a real cycle if it belongs to

a real root, one or pole of f . Furthermore, two cycles of σ0, σ1, σ∞ are called

complex conjugate cycles if they belong to complex conjugate pairs of zeros,

ones or poles of f .

2.3. BELYI MAPS 12

2.3.3. Belyi maps defined over Q.

In the following we will apply the famous rational rigidity criterion, see [30,

Theorem I.4.8], for genus-0 triples which guarantees the existence of regular

Galois extensions of Q(t).

For elements a, b in a subgroup G of Sn we write a ∼G b if a is conjugate

to b in G. For (σ0, σ1, σ∞) ∈ G3 let `(σ0, σ1, σ∞) be the number of elements in

the set

{(s0, s1, s∞) ∈ G3 : G = 〈s0, s1〉, s0s1s∞ = 1, si ∼G σi}

up to simultaneous conjugation in G.

The triple (σ0, σ1, σ∞) is said to be rigid if `(σ0, σ1, σ∞) = 1. Furthermore,

a conjugacy class C of G is called rational if Ck = C for all integers k prime

to |G|.

Theorem 2.8. Let G be a transitive subgroup of Sn with trivial center and

(σ0, σ1, σ∞) a genus-0 triple for G with the following properties:

(a) (σ0, σ1, σ∞) is rigid.

(b) σ0, σ1 and σ∞ are contained in rational conjugacy classes of G.

(c) At least one exponent in the cycle structure description of σ0, σ1, σ∞ is odd.

Then there exists a Belyi map

f =
p

q
∈ Q(X)

with ramification triple (σ0, σ1, σ∞) such that

p(X)− tq(X) ∈ Q(t)[X]

defines a regular Galois extension of Q(t) with Galois group G.

Proof. Since (σ0, σ1, σ∞) is a genus-0 triple with properties (a) and (b)

the rational rigidity criterion [30, Theorem I.4.8] guarantees the existence of

a regular Galois extension L/Q(t) ramified only at (t), (t− 1) and (1
t
) with

G ∼= Gal(L/Q(t))

and the inertia groups over ramified places correspond to the conjugacy classes

of σ0, σ1 and σ∞ in G.

Let K be the fixed field of a point stabilizer of G in L. Then, according to

[30, Theorem I.9.1] and the Riemann-Hurwitz genus formula for function field

extensions [42, Theorem 3.4.13] the genus of K turns out to be 0. Furthermore,

2.3. BELYI MAPS 13

from (c) and again [30, Theorem I.9.1] we see that there exists a place of odd

degree in K. According to [43, Section 9.6.1] K must be a rational function

field, i.e. K = Q(x) for some x ∈ K. Since [Q(x) : Q(t)] = n we find a degree-n

rational function

f =
p

q
∈ Q(X)

with coprime polynomials p, q ∈ Q[X] such that t = f(x). In particular,

p(X)− tq(X) ∈ Q(t)[X]

is a minimal polynomial of x over Q(t) defining the regular Galois extension

L/Q(t) with Galois groupG. As L/Q(t) is only ramified at the places (t), (t−1)

and (1
t
) the rational function f turns out to be a Belyi map with ramification

triple contained in the same conjugacy classes as (σ0, σ1, σ∞). In combination

with (a) the ramification triple of f has to coincide with (σ0, σ1, σ∞). �

2.3.4. Index-2 subgroups.

The existence of Belyi maps defining regular extensions of Q(t) implies that

index-2 subgroups of the corresponding monodromy groups also occur regularly

over Q(t), see [40, Lemma 4.5.1]:

Lemma 2.9. Let G be the Galois group of a regular extension L/Q(t) ramified

at three places which are rational over Q, and let H be a subgroup of G of index

2. Then the fixed field of H is rational. In particular, H occurs regularly as a

Galois group over Q.

We will now turn the theoretical result of the previous lemma into an

explicit one: Again, let

f =
p

q
∈ Q(X)

be a Belyi map with coprime polynomials p, q ∈ Q[X] and ramification triple

(σ0, σ1, σ∞) such that

p(X)− tq(X) ∈ Q(t)[X]

defines a regular Galois extension L/Q(t) with Galois group G. Let H be an

index-2 subgroup of G with corresponding fixed field denoted by K.

We will now determine a polynomial with Galois group H by finding a

suitable specialization of p(X)− tq(X) in the variable t. Note, that

K = Q(t)(s) with s2 = P (t)

2.3. BELYI MAPS 14

for some unique square-free polynomial P ∈ Q[t] with leading coefficient 1
c

where c is a square-free integer.

Since exactly one element of the ramification triple of f is contained in H

we are in one of the following cases:

case 1: If σ0 ∈ H then only the places (t− 1) and (1
t
) are ramified in K/Q(t),

therefore

P (t) =
1

c
(t− 1).

Since t = cs2 + 1 we see Q(t)(s) = Q(s) and

H = Gal(p(X)− tq(X) | K)

= Gal
(
p(X)− (cs2 + 1)q(X) | Q(s)

)
.

case 2: If σ1 ∈ H we find in a similar fashion

P (t) =
1

c
t.

Obviously, Q(t)(s) = Q(s) and

H = Gal(p(X)− tq(X) | K)

= Gal
(
p(X)− cs2q(X) | Q(s)

)
.

case 3: If σ∞ ∈ H then

P (t) =
1

c
t(t− 1).

With r := s
t

we find

r2 =
s2

t2
=

1

c

(
1− 1

t

)
,

hence

t =
1

1− cr2
.

This implies t ∈ Q(r) and s = rt ∈ Q(r), therefore Q(t)(s) = Q(r)

and

H = Gal(p(X)− tq(X) | K)

= Gal

(
p(X)− 1

1− cr2
q(X) | Q(r)

)
.

In the following subsections we describe three different ways to explicitly cal-

culate c.

2.3. BELYI MAPS 15

2.3.4.1. Non-rational conjugacy classes.

We will assume the following:

• σ0 ∈ H (this will be the case for most of our examples).

• σ0 is contained in a non-rational conjugacy class in H.

Since we deal with case 1 from the previous section we have

K = Q(s) with s2 =
1

c
(t− 1)

for some square-free integer c ∈ Z.

The ramification of Q(s)/Q(t) and L/Q(s) which can be computed via [30,

Theorem I.6.3] is illustrated the following figure:

Q(t)

Q(s)

L

σ0 σ0
(σ1−1) σ∞

2σ1
2

1 2 2

(t) (t− 1) (1
t
)

(1 + s2c) (s) (1
s
)

s2 = 1
c
(t− 1)

Let γ ∈ Aut(Q/Q(
√
−c)) and ζ be a primitive |H|-th root of unity. If

m ∈ N is picked in such a way that

γ−1(ζ) = ζm

then as the ramification locus of LQ/Q(s) is pointwise fixed under γ the per-

mutation σ0 must be conjugate to σ0
m in H according to Fried’s branch cycle

lemma [44, Lemma 2.8]. In combination with the well known formula in [22,

Satz V.13.1] we find

γ(χ(σ0)) = χ(σ0
m) = χ(σ0)

for any character χ of H. This implies that the character values belonging to

σ0 are contained in Q(
√
−c). Since the class of σ0 in H is non-rational we can

determine c from the corresponding character values.

2.3. BELYI MAPS 16

2.3.4.2. Discriminant computation.

In the special case for H being an even and G an odd group we can obtain c

via a discriminant consideration:

Let δ be the discriminant of p(X) − tq(X) ∈ Q(t)[X], then K = Q(t,
√
δ)

since K is the fixed field of H = G∩An. In combination with K = Q(t,
√
P (t))

we find that the square-free parts of δ and P (t) coincide allowing us to compute

c by an explicit computation of δ.

2.3.4.3. Magma computation.

The value for c can also be determined via a Galois group computation in

Magma: Pick t0 ∈ Q such that

G = Gal(p(X)− t0q(X) | Q)

which can be checked with the Magma command GaloisGroup. Then apply

GaloisSubgroup to find the degree-2 number field corresponding to the index-2

subgroup H suggesting a square-free integer value for c denoted by c∗. As both

commands GaloisGroup and GaloisSubgroup do not return proven results we

still have to rigorously prove c = c∗ which will be accomplished in the following

way:

Let P ∗ be the polynomial P where c is replaced by c∗. Set

t� :=


c∗λ2 + 1 in case 1

c∗λ2 in case 2

1
1−c∗λ2 in case 3

for any λ ∈ Q such that t� 6∈ {0, 1,∞} then P ∗(t�) is a square in Q. If we

somehow confirm that Gal(p(X)− t�q(X) | Q) is a subgroup of H we find that

P (t�) must be a rational square. Therefore,

P (t�)

P ∗(t�)
=
c∗

c

is also a rational square. As both c and c∗ are square-free integers the latter

yields c∗

c
= 1, hence c = c∗.

CHAPTER 3

Known methods for Belyi map computation

In their survey [41] Sijsling and Voight discuss various techniques for com-

puting Belyi maps, including a Gröbner basis approach, complex analytic tech-

niques, modular form calculations and p-adic methods.

This chapter depicts some of the well established techniques for computing

Belyi maps with prescribed ramification that helped us developing the new

computation method presented in chapter 4.

3.1. Gröbner basis method

The standard method for explicitly computing Belyi maps with prescribed

ramification consist of Gröbner basis calculations:

Let f ∈ C(X) be a Belyi map of degree n with ramification triple

(σ0, σ1, σ∞) ∈ Sn3.

After applying a suitable inner Möbius transformation we may assume that

f(∞) ∈ C \ {0, 1}. Therefore, f is of type

(1) f = c · p
q

= 1 + (c− 1) · r
q

for some scalar c and polynomials p, q and r satisfying the following factoriza-

tion conditions:

• If σ0 has cycle structure (αA1
1 , . . . , αAuu) then there exist monic poly-

nomials pk ∈ C[X] with deg(pk) = Ak for k = 1, . . . , u such that

p = p1
α1 · · · · · puαu .

• If σ1 is of cycle structure (βB1
1 , . . . , βBvv) then there exist monic poly-

nomials rk ∈ C[X] with deg(rk) = Bk for k = 1, . . . , v and

r = r1
β1 · · · · · rvβv .

17

3.1. GRÖBNER BASIS METHOD 18

• If σ∞ is of cycle structure description (γC1
1 , . . . , γCww) then there are

monic polynomials qk ∈ C[X] with deg(qk) = Ck for k = 1, . . . , w and

q = q1
γ1 · · · · · qwγw .

Plugging the factorization of p, r and q into (1) yields

(2) c · p1
α1 · · · · · puαu − (c− 1) · r1

β1 · · · · · rvβv − q1
γ1 · · · · · qwγw = 0.

If we compare the coefficients of (2) and consider c as well as the coefficients of

the monic polynomials p1, . . . , pu, r1, . . . rv, q1, . . . , qw as unknowns we obtain a

system of non-linear polynomial equations consisting of n equations and n+ 3

unknowns.

From a theoretical perspective the solutions of this system are obtainable

by a Gröbner base computation using Buchberger’s algorithm allowing us to

calculate Belyi maps with prescribed ramification.

However, the Gröbner base approach comes with various problems:

• The explicit Gröbner base calculation quickly becomes rather expen-

sive as the permutation degree rises: computer experiments have

shown that the implementation feasibility reaches its limit at the per-

mutation degree somewhere around 20 using a clever differentiation

trick by Atkin and Swinnerton-Dyer, see [41, Chapter 2].

• The solutions of (2) include all Belyi maps with ramification triple

that only fit the cycle structure description of (σ0, σ1, σ∞) but not

necessarily have ramification triple (σ0, σ1, σ∞). In particular we may

obtain Belyi maps with different monodromy groups. From all of these

solutions one has to find the desired one.

• The polynomial system (2) also contains parasitic solutions , i.e. so-

lutions in which least two of the polynomials p1, . . . , pu, r1, . . . rv,

q1, . . . , qw have common complex roots. Parasitic solutions obviously

do not correspond to Belyi maps with prescribed ramification triple

(σ0, σ1, σ∞).

3.2. COMPUTING SHABAT POLYNOMIALS 19

3.2. Computing Shabat polynomials

Let (σ0, σ1, σ∞) be the ramification triple of a degree-n Belyi map f ∈ C[X],

also called Shabat polynomial . Then σ∞ must be equal to an n-cycle and the

dessin of f turns out to be a tree in P1C.

In 2014 Bishop [12] showed that this tree is balanced with respect to har-

monic measure. This result can be interpreted in the following way: a particle

starting at∞ travelling along a random path towards the tree is equally likely

to hit any edge of the tree on either side. In particular, as the complement of

such a tree in P1C is simply connected we can conformally map it onto D to

find out that the vertices of the tree are mapped uniformly distributed to ∂D.

This fact can be used to explicitly compute the dessins of Shabat polynomials

with prescribed ramification triple.

With the help of conformal mappings Marshall and Rohde, see [31], were

able to explicitly compute the dessins of Shabat polynomials with thousands of

edges using Marshall’s Zipper algorithm. A Matlab implementation by Barnes

can be found in [3].

Example 3.1. Following Bishop’s approach given in [12, Chapter 1] we con-

struct an approximate dessin of a Shabat polynomial with ramification triple

(σ0, σ1, σ∞) where

σ0 = (1, 4, 3, 2),

σ1 = (4, 5),

σ∞ = (1, 2, 3, 4, 5).

Our first step consists of sketching the expected dessin:

5

4

2
1

3

3.2. COMPUTING SHABAT POLYNOMIALS 20

Now, if we walk counter-clockwise around the dessin and write down the edges

we pass by along the way we obtain

(1, 4, 5, 5, 4, 3, 3, 2, 2, 1).

For the next step we draw the unit disc D, divide it into 10 (= length of

the circular walk) equal segments and label them in such a way that they fit

the above circular walk:

D
2

1
1

4

5

5

4
3

3

2

In the following step we conformally map the above labelled unit disc onto

H and weld adjacent real line segments having the same number using slit

maps of the following type:

slitA :

H→ H

z 7→ (z − A)A(z + 1− A)A−1

where 0 < A < 1 is a real number.

It is easy to see that slitA welds the line segments [A− 1, 0] and [0, A] into

H which is visualized in the figure below:

A− 1 0 A

H slitA7−→

slitA(A− 1) = 0 = slitA(A)

slitA(0)
H

The algorithmic approach for welding all the line segments having the same

number can be described in the following way:

3.2. COMPUTING SHABAT POLYNOMIALS 21

(i) Pick two adjacent real line segments having the same number.

(ii) Map these line segments onto [A−1, 0] and [0, A] using an automorphism

of H and then apply slitA.

Note that A is picked in such a way that the corresponding edges of

the resulting dessin form a star configuration.

(iii) If there are at least 2 pairs of edges left that needed to be welded jump

to step (i), otherwise continue.

(iv) Map H conformally onto D such that the upper semicircle of ∂D has to

be glued to the lower semicircle. Then then last welding step can be

achieved by applying the conformal map

ω :

D→ P1C

z 7→ z +
1

z

with the following obvious properties:

• ω(D) = (C ∪ {∞}) \ [−2, 2].

• ω(z) = 2 · Real(z) for z ∈ ∂D.

The resulting welded line segments become the edges of an approximate dessin

contained in P1C corresponding to (σ0, σ1, σ∞). After applying a Möbius trans-

formation we obtain the following dessin:

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

Using the coordinates of the zeros and ones, which can be read off from

the constructed dessin, one then can compute the corresponding Shabat poly-

nomial using Newton’s method for the system (2) from section 3.1.

3.3. COMPUTING BELYI MAPS USING MODULAR FORMS 22

3.3. Computing Belyi maps using modular forms

In [23] Klug, Musty, Schiavone and Voight describe a method using modu-

lar forms for computing Belyi maps with hyperbolic ramification triples up to

degree 50. Additional computation results are also presented in [38].

Using a similar approach Monien was also able to explicitly realize the

sporadic Janko group J2 of degree 100 and the sporadic Conway group Co3 of

degree 276, see [36] and [37].

In this section we give a brief description on how modular forms can be

used to explicitly compute Belyi maps with prescribed ramification, see also

[23] for a more detailed explanation.

3.3.1. Belyi maps between orbit spaces.

Let (σ0, σ1, σ∞) be a genus-0 triple for a transitive subgroup of Sn and

a := ord(σ0), b := ord(σ1), c := ord(σ∞).

Furthermore assume that (σ0, σ1, σ∞) is hyperbolic, i.e.

1

a
+

1

b
+

1

c
< 1.

The corresponding triangle group

∆ :=
〈
δa, δb, δc | δaa = δbb = δcc = δcδbδa = 1

〉
comes with the embedding

e∆ : ∆→ SL2(R)

such that

δa 7→

(
cos
(
π
a

)
sin
(
π
a

)
− sin

(
π
a

)
cos
(
π
a

)) and δb 7→

(
cos
(
π
b

)
µ sin

(
π
b

)
− 1
µ

sin
(
π
b

)
cos
(
π
b

))
where

λ :=
cos
(
π
a

)
cos
(
π
b

)
+ cos

(
π
c

)
2 sin

(
π
a

)
sin
(
π
b

) and µ := λ+
√
λ2 − 1.

3.3. COMPUTING BELYI MAPS USING MODULAR FORMS 23

Since we have a natural action of SL2(R) on H given by

θ :


SL2(R)→ Aut(H)A B

C D

 7→ (
z 7→ Az +B

Cz +D

)
we may also let ∆ act on H via:∆→ Aut(H)

δ 7→ (θ ◦ e∆)(δ)

Using the natural epimorphism

ϕ :

∆→ G := 〈σ0, σ1〉

where δa 7→ σ0 and δb 7→ σ1

let Γ the pre-image of a point stabilizer of G under ϕ.

The central object of investigation is then given by the following mapping:

Φ :

H/Γ→ H/∆

[z]Γ 7→ [z]∆

Here H/Γ and H/∆ denote the orbit spaces of H modulo Γ and ∆, respectively.

By construction the genera of both H/Γ and H/∆ are equal to 0.

The map Φ describes a degree-n cover ramified only over

[i]∆, [µi]∆ and [γ]∆

with monodromy group G = 〈σ0, σ1〉 where

γ :=
µ2 − 1

2(cot
(
π
a

)
+ µ cot

(
π
b

)
)

+ i

√√√√csc2
(π
a

)
−

(
µ2 − 1

2(cot
(
π
a

)
+ µ cot

(
π
b

)
)
− cot

(π
a

))2

.

The functional inverse of Φ can be locally expressed as the quotient of two

holomorphic functions that form a basis for the vector space of solutions to

a second order linear differential equation with well studied solutions. As a

consequence, a power series expression of Φ can be obtained.

3.3. COMPUTING BELYI MAPS USING MODULAR FORMS 24

3.3.2. Modular forms.

Recall that a modular form for Γ of weight k ∈ 2Z is a holomorphic function

f : H→ C such that

(3) f(γz) = j(γ, z)kf(z) for all z ∈ H and all γ ∈ Γ

where

j(γ, z) := cz + d for γ =

[(
a b

c d

)]
∈ PSL2(R).

In a natural way the set of all modular forms for Γ of weight k, denoted by

Sk(γ), forms a C-vector space. The dimension of Sk(Γ) can be computed

explicitly using the famous Riemann-Roch theorem.

In order to compute any element in Sk(Γ) write it in its Taylor series

expression and compare the coefficients of both sides in (3) after plugging in

a sufficient amount of z ∈ H and γ ∈ Γ. A truncation of the desired power

series equation is therefore obtainable by solving a system of linear equations.

For the explicit computation of Φ as a rational function pick k ∈ N such

that Sk(Γ) is at least 2-dimensional. Then two linearly independent elements

of Sk(Γ) can be used to describe an isomorphism

ι : H/Γ→ P1C.

The power series expression of Φ in combination with ι then allows the

computation of the desired Belyi map as a rational function.

CHAPTER 4

A new method for computing Belyi maps

In this chapter we explain our computation method that allows the explicit

realization of Belyi maps with prescribed ramification triples. Using this par-

ticular method we are able to calculate Belyi maps of degree up to 280. The

main idea combines elements from the methods described in the sections 3.2

and 3.3.

Let (σ0, σ1, σ∞) be a prescribed hyperbolic genus-0 triple for a transitive

group. Our main goal is to explicitly compute a Belyi map

f =
p

q
= 1 +

r

q

with ramification triple (σ0, σ1, σ∞).

The basic algorithm can be divided into the following four steps:

(i) Construct Φ from section 3.3.

(ii) Transform the dessin of Φ to an approximated dessin of f contained in

P1C.

(iii) Compute the coefficients of f by using the coordinates of the zeros, ones

and poles of the constructed approximate dessin.

(iv) Verify that the computed equation for f indeed describes a Belyi map

with ramification triple (σ0, σ1, σ∞).

In order to demonstrate our algorithm we give a detailed documentation

of the explicit realization of the sporadic group Aut(HS) of degree 100, see the

gray boxes in the upcoming pages. Note that segments of this documentation

are taken over from [10, Chapter 3].

25

4. A NEW METHOD FOR COMPUTING BELYI MAPS 26

Aut(HS)-realization, Part 1.

A genus-0 triple (σ0, σ1, σ∞) for Aut(HS) of degree 100 is given by

σ0 = (1, 23, 53, 86)(2, 36, 29, 43)(3, 15, 46, 6)(4, 80, 71, 81)(5, 75, 16, 47)

(7, 32, 60, 8)(9, 76, 100, 51)(10, 50, 49, 34)(11, 28, 74, 84)

(12, 72, 37, 52)(13, 21, 96, 88)(14, 41, 40, 87)(17, 42, 45, 79)

(18, 63, 19, 20)(22, 99, 39, 89)(24, 59, 77, 38)(25, 68, 26, 35)

(27, 69, 73, 48)(30, 92, 33, 82)(31, 56, 93, 58)(44, 98, 67, 64)

(54, 95, 85, 62)(55, 65, 94, 61)(57, 78, 83, 97)(66, 90, 70, 91),

σ1 = (1, 3)(2, 99)(4, 24)(6, 18)(7, 53)(8, 42)(11, 30)(12, 96)(13, 31)(15, 80)

(17, 38)(19, 83)(20, 100)(21, 69)(22, 70)(25, 67)(27, 28)(29, 52)(32, 93)

(33, 76)(34, 65)(35, 92)(36, 94)(37, 89)(40, 82)(41, 46)(44, 84)(45, 90)

(47, 71)(51, 97)(58, 68)(61, 88)(72, 79)(75, 86)(91, 95),

σ∞ = (1, 6, 20, 76, 92, 26, 68, 93, 7, 23)(2, 22, 90, 42, 60, 32, 56, 31, 88, 94)

(3, 86, 5, 47, 80)(4, 38, 79, 12, 21, 27, 11, 82, 41, 15)(19, 78, 57, 97, 100)

(8, 17, 77, 59, 24, 81, 71, 16, 75, 53)(9, 51, 83, 63, 18, 46, 14, 87, 40, 33)

(10, 34, 55, 61, 96, 52, 36, 65, 49, 50)(13, 58, 25, 98, 44, 74, 28, 48, 73, 69)

(29, 37, 39, 99, 43)(30, 84, 64, 67, 35)(45, 66, 91, 54, 62, 85, 95, 70, 89, 72).

This triple has the following cycle structure description:

σ0 σ1 σ∞

cycle structure 425 235.130 108.54

Note that (σ0, σ1, σ∞) is rigid and each permutation is contained in a rational

conjugacy class of Aut(HS). According to Theorem 2.8 there exists a Belyi

map

f =
p

q
∈ Q(X)

with ramification triple (σ0, σ1, σ∞) such that

p(X)− tq(X) ∈ Q(t)[X]

defines a regular extension of Q(t) with Galois group Aut(HS).

4.1. PREPARATIONS 27

4.1. Preparations

We stick to the notations from section 3.3 with the only exception of re-

placing H with D using the following conformal map:

w :

H→ D

z 7→ z − i
z + i

This enables us to consider ∆ as a subgroup of Aut(D). The elements δa, δb

and δc each describe hyperbolic rotations in D with the below properties:

hyberbolic rotation center angle

δa ma := w(i) = 0 2π
a

δb mb := w(µi) = µ−1
µ+1
∈ R 2π

b

δc mc := w(γ) π
c

Furthermore, instead of Φ from 3.3.1 we will work with:

ΦD :

D/Γ→ D/∆

[z]Γ 7→ [z]∆

Note that the orbit spaces D/Γ and D/∆ are both genus-0 Riemann surfaces

and the map ΦD shares similar properties as Φ: It is a degree-n cover ramified

over [ma]∆, [mb]∆ and [mc]∆ with ramification triple (σ0, σ1, σ∞).

We will define the dessin of ΦD to be the set{
Φ−1

D ([z]∆) : z ∈ [ma,mb]
}
.

Remark 4.1. The latter definition coincides with the traditional definition of

dessins to be the pre-image of [0, 1]. As D/∆ is of genus 0 there exists a

homeomorphism D/∆ → P1C with [ma]∆ 7→ 0, [mb]∆ 7→ 1 and [mc]∆ →
∞. Using this identification the notion of being the pre-image of [0, 1] then

translates to being the pre-image of [ma,mb].

4.2. FUNDAMENTAL DOMAINS 28

4.2. Fundamental domains

A crucial part for the upcoming dessin construction process heavily relies

on the choice of sufficiently nice fundamental domains for the orbit spaces D/∆
and D/Γ.

4.2.1. Fundamental domain for D/∆.

We will consider the hyperbolic kite ♦ in D with vertices ma, mc, mb, mc

containing the interior as well as the closed edges connecting ma with mc and

mc with mb:

ma

mc

mb

mc

D

According to the geometric properties of δa, δb and δc from the previous section

the inside angles of ♦ turn out to be 2π
a

, 2π
b

and π
c
.

It is easy to show that for every z ∈ D there exists an automorphism δ ∈ ∆

and a unique z∗ ∈ ♦ such that

zδ = z∗.

Therefore, ♦ is a fundamental domain for the orbit space D/∆.

Additionally note that the pre-image of the red line in the above figure

belongs to the dessin of ΦD.

4.2. FUNDAMENTAL DOMAINS 29

Aut(HS)-realization, Part 2.

For the triple (σ0, σ1, σ∞) from Part 1 we have

(a, b, c) = (4, 2, 10).

Then a fundamental domain ♦ for D/∆ is visualized in the following figure:

Note that in the case b = 2 the hyperbolic kite♦ turns out to be a hyperbolic

triangle.

4.2. FUNDAMENTAL DOMAINS 30

4.2.2. Fundamental domain for D/Γ.

We will enumerate the images of ♦ under elements of ∆ in the following way:

label(♦γ) := 1ϕ(γ).

Obviously, this kind of labelling is well defined.

As♦ is a fundamental domain for D/∆ we can derive the following sufficient

criterion for being a fundamental domain for D/Γ.

Lemma 4.2. A subset D ⊆ D is a fundamental domain for D/Γ if there exist

γk ∈ ∆ for k ∈ {1, . . . , n} such that:

• D =
⋃
k∈{1,...,n}♦γk .

• label(♦γk) = k for k ∈ {1, . . . , n}.

For γ ∈ ∆ the corresponding σ0-petal and σ1-petal are defined to be⋃
k∈{1,...,a}

(
♦(δa

k)
)γ

and
⋃

k∈{1,...,b}

(
♦(δb

k)
)γ
.

If the context is clear we just call them petals. A picked σ0-petal and a picked

σ1-petal are defined to be of type⋃
k∈{1,...,a}\{s,...,t}

(
♦(δa

k)
)γ

and
⋃

k∈{1,...,b}\{s,...,t}

(
♦(δb

k)
)γ

for some γ ∈ ∆ and s, t ∈ N such that:

• a > |{1, . . . , a} \ {s, . . . , t}| ≥ 2.

• b > |{1, . . . , b} \ {s, . . . , t}| ≥ 2.

Again, if the context is clear we just call them picked petals. If a petal is not

equal to a picked petal we call it a full petal .

For our approach we require sufficiently nice connected fundamental do-

mains D for D/Γ, see Remark 4.4. We will use the following:

• We say that D is k-picked or picked if D is equal to a union of full

petals and exactly k picked petals where the intersection of two dis-

tinct petals is either empty or equal to ♦γ for some γ ∈ ∆.

• D is called nice if D is 0-picked.

• An entry w ∈ {1, . . . , n} of a permutation σ ∈ Sn is called bad if

|w〈σ〉| 6= ord(σ).

4.2. FUNDAMENTAL DOMAINS 31

The following lemma guarantees that for all of the triples appearing in this

dissertation we find a sufficiently nice fundamental domain.

Lemma 4.3. Let (σ0, σ1, σ∞) ∈ Sn3 be a hyperbolic genus-0 triple with

ord(σ1) = 2.

Furthermore, let k be the number of cycles of σ0 that contain bad entries which

are fixed by σ1. Then there exists a connected fundamental domain D for D/Γ
which is k-picked.

Proof. Consider the directed Graph G = (V,E) where

V := set of cycles of σ0

and

E := {(v1, v2) ∈ V × V : v1 6= v2 and σ1(v1) ∩ v2 6= ∅} .

As ord(σ1) = 2 we obviously have (v2, v1) ∈ E for (v1, v2) ∈ E. This allows us

to consider G as an undirected graph. As (σ0, σ1, σ∞) is a transitive triple the

graph G must be connected.

We now pick a spanning tree of G which yields a connected `-picked funda-

mental domain, were ` denotes the number of cycles of σ0 having cycle length

smaller than ord(σ0) and greater than 1.

We can improve the value of ` arising from all picked σ0-petals that belong

to cycles that only contain bad entries which are not fixed by σ1. The reason

for that lies in the fact any picked σ0-petal with this property can be replaced

by full σ1-petals attached somewhere else. A proper rearranging process then

yields a connected k-picked fundamental domain for D/Γ. �

It is worth pointing out that the proof of the previous lemma gives an

explicit instruction for computing k-picked or nice fundamental domains with

k being small.

Also note that this lemma is also the reason why we permute (if possible!)

all triples in such a way that the second element is always of order 2.

4.2. FUNDAMENTAL DOMAINS 32

Remark 4.4. The significance of nice fundamental domain lies in the fact that

using our computation method these will lead to approximate dessins that at

least fulfil the expected geometric properties of the desired dessin. If we instead

have to work with a k-picked fundamental domain the resulting approximate

dessin will always have at least k wrong angles.

Assume we are given the following 1-picked fundamental domain where the

picked petal can be found to the right of the center:

Then the upcoming welding process will lead to an approximate dessin where

the edges at the coordinates (0, 0) do not meet at an expected angle of π:

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

4.2. FUNDAMENTAL DOMAINS 33

Aut(HS)-realization, Part 3.

Recall that the cycle structures of σ0 and σ1, see Part 1, are given by:

σ0 σ1

cycle structure 425 235.130

According to Lemma 4.3 there exists a nice fundamental domain for D/Γ
which we will now construct explicitly:

We begin with the arbitrarily chosen cycle (7, 32, 60, 8) from σ0 yielding

the starting σ0-petal centred at the origin in D. Since

σ1(7) = 53, σ1(32) = 93, σ1(60) = 60, σ1(8) = 42

its neighbours are given by (1, 23, 53, 86), (31, 56, 93, 58) and (17, 42, 45, 79).

The corresponding σ0-petals will be attached accordingly. Repeating this

procedure eventually yields a nice fundamental domain:

4.3. OBTAINING AN APPROXIMATE DESSIN 34

4.3. Obtaining an approximate dessin

Our goal is to transform the dessin of ΦD into a dessin of P1C using con-

formal mappings as they leave regular star configurations invariant.

4.3.1. Mapping a fundamental domain conformally onto H.

Assume that D is a fundamental domain for D/Γ such that D◦ is simply

connected and D is of type

D =
⋃

k∈{1,...,n}

♦γk

with ♦ being a hyperbolic kite and γk ∈ ∆ for k ∈ {1, . . . , n}. Thanks to

Riemann’s mapping theorem we can conformally map D◦ onto H.

Among all the techniques to explicitly compute such a map we choose to

work with the Schwarz-Christoffel mapping which conformally maps H onto

the interior of a given polygon, see for example [16, Theorem 2.1].

With the help of the Schwarz-Christoffel toolbox [15] implemented in Mat-

lab we are able to map D◦ onto H in the following way:

The border ∂D consists of circular line segments which we individually

approximate by a polygonal chain of length 2 with equidistant vertices, yielding

a polygon P . Via the Schwarz-Christoffel toolbox we can compute a numerical

approximation

Wapprox : P → H

of a conformal map

W : D → H

as well as its inverse.

We call two points z1, z2 ∈ H equivalent modulo ΓW if W−1(z1) and

W−1(z2) are equivalent modulo Γ yielding an equivalence relation ΓW on H.

The image of D under W respecting the quotient structure dictated by Γ

can be computed as

W(D/Γ) =W(D)/ΓW =W(D) ∪ (W(∂D)/ΓW) = H ∪ (∂H/ΓW) .

As P andWapprox approximate D andW the latter formula suggests a quotient

relation ΓWapprox on ∂H that approximates W(D/Γ):

W(D/Γ) ≈ Wapprox

(
P/Γ

)
= H ∪

(
∂H/ΓWapprox

)
.

4.3. OBTAINING AN APPROXIMATE DESSIN 35

Remark 4.5. As the number of edges rises and the shapes of fundamental do-

mains get more irregular the Schwarz-Christoffel toolbox in Matlab struggles to

compute approximation of conformal maps. In a significant number of exam-

ples the implementation fails to determine the Schwarz-Christoffel mapping

or is only capable of computing conformal maps of low numerical precision

such that the computed results are useless for further calculations. An exam-

ple of a complete dessin computation with a failed attempt at calculating the

Schwarz-Christoffel map is shown in the following figure:

-0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

If we ever had to deal with issues like this we simply chose other fundamental

domains even if they turn out to be not nice.

Alternatively one could also apply the Zipper algorithm [31] in order to

compute a conformal map from a fundamental domain onto H avoiding all the

issues that come with the Schwarz-Christoffel toolbox.

4.3. OBTAINING AN APPROXIMATE DESSIN 36

Aut(HS)-realization, Part 4.

Our approximated fundamental domain constructed in Part 3 is shown in

the following figure:

The conformal image of the above polygon onto D (instead of H) is visualized

below.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

4.3. OBTAINING AN APPROXIMATE DESSIN 37

4.3.2. Conformal welding.

For the sake of simplicity we will write ΓW instead of ΓWapprox .

Our next goal is to find an approximate conformal image of H onto P1C
minus a union of slits respecting the quotient relation dictated by ∂H/ΓW , i.e.

ΓW-equivalent points on ∂H are mapped to the same point. Recall that ∂H is

divided into pairs of equivalent line segments modulo ΓW .

In the following give a detailed explanation on how to weld these pairs of

equivalent line segments:

4.3.2.1. The first part of the welding process.

The key to successfully weld adjacent line segments on ∂H lies in use of slit

maps from section 3.2:

slitA :

H→ H

z 7→ (z − A)A(z + 1− A)A−1

for some A ∈ (0, 1).

The algorithmic approach for the first part of the welding process consists

of the following steps:

(i) Pick two adjacent real line segments that are equivalent modulo ΓW .

(ii) Apply an automorphism of H that maps these line segments onto [A−1, 0]

and [0, A] and apply slitA.

Note that A is picked in such a way that the corresponding edges of

the resulting approximate dessin form a regular star configuration.

(iii) If there are at least 2 pairs of equivalent line segments on ∂H remaining

jump to step (i), otherwise continue with the second part of the welding

process, see section 4.3.2.2.

Lemma 4.6. In step (i) we are always able to find two adjacent line segments

on ∂H that are considered equivalent modulo ΓW .

Proof. Assume this is not the case, then it is easy to see that there exist

real line segments e1, e2, f1, f2 with the following properties:

(a) e1 and e2 are equivalent modulo ΓW as well as f1 and f2.

(b) f1 and f2 are not contained in the same connected component of

∂H \ (e1
◦ ∪ e2

◦).

4.3. OBTAINING AN APPROXIMATE DESSIN 38

Now, let pe be a semicircle in H connecting any point of e1
◦ to its equivalent

point in e2
◦. Analogously, define pf . This configuration is sketched in the

below figure:

H

e1 f1 e2 f2

pe pf

∂H/ΓW

Due to (b) the semicircles pe and pf intersect in exactly one point in H. Thanks

to (a) the images of pe and pf in H/ΓW describe closed paths. These observa-

tions imply that H/ΓW contains closed paths properly intersecting in exactly

one point which is not possible on genus-0 Riemann surfaces. As H/ΓW is of

genus 0 we have a contradiction. �

4.3.2.2. The second part of the welding process.

In order to perform the second and final part of the welding process we will

apply a conformal map H→ D in such a way that the upper semicircle of ∂D
has to be glued to the lower semicircle. Then the last welding step can be

achieved by using the conformal map

ω :

D→ P1C

z 7→ z +
1

z

from section 3.2.

As a result we obtain the conformal image of H onto P1C minus a union of

slits respecting the quotient relations of ∂H/ΓW . In particular, this gives us

the transformed dessin of ΦD contained in P1C.

4.3. OBTAINING AN APPROXIMATE DESSIN 39

Aut(HS)-realization, Part 5.

Our goal is to glue the pairs of line segments shown in Part 4 having the

same label. Note that there are a total of 106 line segments, therefore the

first part of the welding process consists of 52 applications of slitA.

In the first welding step we glue the two adjacent real line segments la-

belled with 2. In order to achieve this we apply an automorphism of Aut(H)

that maps both real line segments to [−1
2
, 1

2
] followed by an application of

slit 1
2
. This first welding process is visualized in the following figures:

-1.5 -1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

2

2 234 36 44

-1.5 -1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

22

36 44

After applying 25 and 52 slit maps we end up with the following results:

-60 -50 -40 -30 -20 -10 0 10 20

-20

-10

0

10

20

30

40

-0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

4.3. OBTAINING AN APPROXIMATE DESSIN 40

In order to perform the second part of the welding process we start by

conformally mapping H onto D in such a way that the upper semicircle

needs to be glued to the lower semicircle:

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

After applying ω we finally get the desired dessin of ΦD contained in P1C:

-3 -2 -1 0 1 2 3 4 5 6 7

-3

-2

-1

0

1

2

3

4

5

4.3. OBTAINING AN APPROXIMATE DESSIN 41

4.3.3. Smoothing Dessins.

In some cases the dessins produced by the above procedure do not suffice for

a successful application of Newton’s method. In this situation it is still worth

trying to modify the constructed dessin in one of the following ways. This

deformation process will be called smoothing.

4.3.3.1. Symmetrizing real dessins.

For a given constructed dessin of a Belyi map defined over R we apply a Möbius

transformation such that three zeros, ones or poles belonging to real cycles are

mapped to real numbers. Then the resulting dessin is expected to be axially

symmetric to the real line.

By forcing supposedly real zeros, ones and poles to be on the real line

and averaging out complex conjugate pairs of vertices of the dessin to be

perfectly aligned to each other we obtain a proper real approximate dessin.

This symmetrization process will be done in the following way:

• Let x ∈ C be any point of the constructed dessin that belongs to a

real point of the dessin. Then, the symmetrized coordinates xsym of x

are given by

xsym := Real(x).

• Let x ∈ C be any point of the constructed dessin that belongs to a

point in H and xc its complex conjugate point on the dessin. Then,

the symmetrized coordinates xsym and xcsym of x and xc are obtained

via

xsym :=
1

2
(x+ xc) and xcsym := xsym.

4.3.3.2. Averaging out dessins.

This method comes into play if several approximate dessins of a fixed genus-

0 triple from different fundamental domains were computed. By applying

suitable Möbius transformations we align all the dessins at the same three

fixed points and average out the coordinates of the other remaining vertices.

4.3. OBTAINING AN APPROXIMATE DESSIN 42

Aut(HS)-realization, Part 6.

We will now establish the symmetry properties of the dessin of a real Belyi

map f with ramification triple (σ0, σ1, σ∞) from Part 1 as explained in

section 2.3.2. The symmetry of the dessin of f is described by

ρ = (1, 35)(2, 99)(3, 92)(4, 28)(5, 64)(6, 33)(7, 58)(8, 31)(9, 63)(10, 54)(11, 80)

(12, 72)(13, 42)(14, 87)(15, 30)(16, 98)(17, 21)(18, 76)(19, 51)(20, 100)

(22, 36)(23, 26)(24, 27)(25, 86)(29, 89)(32, 93)(34, 95)(37, 52)(38, 69)

(39, 43)(40, 41)(44, 47)(45, 88)(46, 82)(48, 59)(49, 85)(50, 62)(53, 68)

(55, 66)(56, 60)(57, 78)(61, 90)(65, 91)(67, 75)(70, 94)(71, 84)(73, 77)

(74, 81)(79, 96)(83, 97)

yielding the following symmetry data:

• As ρ does not fix any elements of {1, . . . , 100} the dessin of f does

not have any edges on the real line.

• The real zeros of f corresponds to the following cycles of σ0:

(12, 72, 37, 52), (14, 41, 40, 87), (57, 78, 83, 97).

• The real ones of f corresponds to the following cycles of σ1:

(2, 99), (32, 93), (20, 100).

• The real poles of f corresponds to the following cycles of σ∞:

(19, 78, 57, 97, 100),

(29, 37, 39, 99, 43),

(1, 6, 20, 76, 92, 26, 68, 93, 7, 23),

(2, 22, 90, 42, 60, 32, 56, 31, 88, 94),

(4, 38, 79, 12, 21, 27, 11, 82, 41, 15),

(9, 51, 83, 63, 18, 46, 14, 87, 40, 33).

We now pick three of these real zeros, ones or poles and compute a Möbius

transformation which maps them to −1, 0, 1.

4.3. OBTAINING AN APPROXIMATE DESSIN 43

If we apply this Möbius transformation to our approximate dessin we obtain

an ”almost” symmetrical dessin:

The symmetrization process from section 4.3.3.1 then yields the following

symmetrical dessin:

4.4. BELYI MAP COMPUTATION 44

4.4. Belyi map computation

In this section we will explain in greater detail on how we can use the

approximated dessin to compute the corresponding Belyi map via Newton’s

method. In preparation for this approach we need the following:

• For any permutation σ let Rσ be the ordered system of the smallest

representatives (sorted by size) of the orbits of 〈σ〉. Furthermore, let

|Rσ| denote the cardinality of Rσ, and Rk
σ the k-th entry of Rσ.

• Let || · || denote the Euclidean norm for polynomials with complex

coefficients:

||
m∑
k=0

pkX
k|| :=

√√√√ m∑
k=0

|pk|2.

Example 4.7. If σ = (1, 3)(2, 4, 5)(6) then Rσ = (1, 2, 6), and R3
σ = 6.

4.4.1. Assembling defining equations.

Similarly to section 3.1 we again establish defining equations for complex and

real Belyi maps with prescribed ramification.

4.4.1.1. Complex Belyi maps.

If f ∈ C(X) is a Belyi map with ramification triple (σ0, σ1, σ∞) ∈ Sn3, then

after applying a suitable inner Möbius transformation we may assume f(∞) 6∈
{0, 1}. Therefore, f is given by

(4) f = c · p
q

= 1 + (c− 1) · r
q

for some scalar c and monic complex polynomials p, q and r of type:

p =

|Rσ0 |∏
k=1

(X − nk)|(R
k
σ0

)〈σ0〉|,

r =

|Rσ1 |∏
k=1

(X − ok)|(R
k
σ1

)〈σ1〉|

and

q =

|Rσ∞ |∏
k=1

(X − wk)|(R
k
σ∞)〈σ∞〉|

4.4. BELYI MAP COMPUTATION 45

with mutually distinct complex numbers nk, ok and wk, see Lemma 2.4. Ob-

viously, nk are the zeros of f , ok are the ones of f , and wk are the poles of

f .

Using the notation

F
(
X, c, n1, . . . , n|Rσ0 |, o1, . . . , o|Rσ1 |, w1, . . . , w|Rσ∞ |

)
:= cp− q − (c− 1)r

equation (4) can be rewritten as

F = 0.

If we compare coefficients with respect to X in the latter equation and consider

c and all of the zeros nk, ones ok and poles wk as unknowns we obtain a complex

polynomial system consisting of n equations and n+ 3 unknowns.

4.4.1.2. Real Belyi maps.

If f turns out to be a real Belyi map we can express the above polynomials p,

q and r in the following way: Using the notation

Real(Rσ) := {k : Rk
σ belongs to a real cycle of σ}

and

Conj(Rσ) := {min{k, j} : Rk
σ and Rj

σ are in complex conjugate cycles of σ}

for σ ∈ {σ0, σ1, σ∞} we have:

p =

|Rσ0 |∏
k=1

k∈Conj(Rσ0)

(X2 − n1,kX + n2,k)
|(Rkσ0)〈σ0〉|

·
|Rσ0 |∏
k=1

k∈Real(Rσ0)

(X − nk)|(R
k
σ0

)〈σ0〉|,

r =

|Rσ1 |∏
k=1

k∈Conj(Rσ1)

(X2 − o1,kX + o2,k)
|(Rkσ1)〈σ1〉|

·
|Rσ1 |∏
k=1

k∈Real(Rσ1)

(X − ok)|(R
k
σ1

)〈σ1〉|

4.4. BELYI MAP COMPUTATION 46

and

q =

|Rσ∞ |∏
k=1

k∈Conj(Rσ∞)

(X2 − w1,kX + w2,k)
|(Rkσ∞)〈σ∞〉|

·
|Rσ∞ |∏
k=1

k∈Real(Rσ∞)

(X − wk)|(R
k
σ∞)〈σ∞〉|

with suitable real numbers c, nk, n1,k, n2,k, ok o1,k, o2,k, wk, w1,k, w2,k. Clearly,

nk, ok and wk are the real zeros, ones and poles of f , and (n1,k, n2,k), (o1,k, o2,k)

and (w1,k, w2,k) are the sum and product of pairs of conjugate zeros, ones and

poles of f .

In the same fashion as before we define

F := cp− q − (c− 1)r

where F is similarly considered to be a multivariate polynomial in X, c, nk,

n1,k, n2,k, ok o1,k, o2,k, wk, w1,k, w2,k. Again, by comparing the coefficients with

respect to X in the equation

F = 0

we obtain a real polynomial system with n equations and n+ 3 unknowns.

4.4.2. Approximate Belyi data from approximate dessins.

From an approximate dessin as constructed in the previous sections we can

read off the approximate coordinates of the zeros n∗k, ones o∗k and poles w∗k of

the desired Belyi map with respective multiplicities.

In order find a sufficiently good value for c, which is similarly denoted by

c∗ := a∗ + b∗i, we solve the following problem:

minimizea∗,b∗∈R ||F (a∗ + b∗i, n∗1, . . . , o
∗
1, . . . , w

∗
1, . . .) ||2

By a gradient computation of F the desired value for c∗ can be determined.

The collection of the coefficient c∗ and the zeros n∗k, ones o∗k and poles w∗k,

denoted by (c∗, p∗, r∗, q∗), will be called the approximate Belyi data of the given

dessin.

4.4. BELYI MAP COMPUTATION 47

4.4.3. Newton iteration.

Using Newton’s method we want to find a solution to

F = 0.

With the approximated dessin as a starting point we carry out the following

procedure:

(1) Apply any Möbius transformation to the approximated dessin such

that three zeros, ones or poles are mapped to −1, 0, 1 and calculate

the corresponding approximate Belyi data (c∗, p∗, r∗, q∗).

(2) Evaluate ||F ||2 at (c∗, p∗, r∗, q∗). If the resulting value is sufficiently

small continue, otherwise go back to step (1).

(3) Pick three zeros, ones or poles of (c∗, p∗, r∗, q∗) and consider them fixed

such that F = 0 is a system of n equations and n unknowns. Apply

Newton’s method to find a solution to F = 0 using the approximate

Belyi data (c∗, p∗, r∗, q∗) as the starting point.

If we want to compute a Belyi map with real coefficients we can use the

same approach with the following changes:

• In step (1) we only allow real zeros, ones or poles to be mapped to

−1, 0, 1.

• In step (3) we only choose real zeros, ones or poles to be fixed in the

real system F = 0.

If we observe quadratic convergence behaviour after several Newton itera-

tions we keep computing an approximate solution

(cNewton, pNewton, rNewton, qNewton)

of F = 0 having sufficiently high precision. In particular, we obtain a rational

function

fNewton = cNewton ·
pNewton

qNewton

= 1 + (cNewton − 1) · rNewton

qNewton

where the ramification behaviour above 0, 1 and ∞ has the same cycle struc-

tures as σ0, σ1, σ∞.

4.4. BELYI MAP COMPUTATION 48

Remark 4.8. Since our approximate Belyi data rarely suffice for a successful

application of Newton’s method we exhaustively repeat step (3). If this fails

we return to step (1) and compute new approximate Belyi data by starting

from a different fundamental domain.

4.4.4. Recognizing coefficients of Belyi maps.

Assume we were able to obtain via Newton’s method a complex approxima-

tion fNewton of a Belyi map belonging to the ramification triple (σ0, σ1, σ∞)

additionally satisfying the conditions stated in Theorem 2.8.

Pick a zero, one or pole, denoted by xk, of fNewton with label k ∈ {1, . . . , n}.
Further assume that fNewton is modified by an inner Möbius transformation

such that xk is mapped to ∞ and fNewton fulfils a normalization condition:

A Belyi map

f =
p

q
= 1 +

r

q
∈ K(X)

over any field K is said to fulfil a normalization condition if there

exists a divisor

d = anX
n + an−1X

n−1 + · · ·+ a1X + a0 ∈ K[X]

of p, q or r for some n ≥ 3 where an−1 = 0 and a1 = a0.

Additionally assume that the orbit of k in the corresponding decomposition

group GZ is a union of ` orbits of the inertia group GT . Then the coefficients

of fNewton are contained in a degree-` number field, see Lemma 2.4 (c).

Provided we are working with sufficiently high numerical precision we can

recognize the coefficients of the desired Belyi map as algebraic numbers.

4.4. BELYI MAP COMPUTATION 49

Aut(HS)-realization, Part 7.

Using the approximated symmetric dessin from Part 6 we are able to find

via Newton’s method a complex approximation

fNewton =
pNewton

qNewton

= 1 +
rNewton

qNewton

∈ C(X)

with ramification triple (σ0, σ1, σ∞). With regards to Lemma 2.4 we pick

a pole w of fNewton belonging to a cycle of length 5 of σ∞ and apply an

inner Möbius transformation to fNewton such that w is mapped to ∞ and

fNewton fulfils a normalization condition. This enables us to recognize the

coefficients of fNewton in the degree-4 number field Q(4
√

5).

In order to descend further to a Belyi map

f =
p

q
= 1 +

r

q
∈ Q(X)

we naively guess the degree-4 divisor q4 of q with multiplicity 5 having

small coefficients. In order to test if our guess is correct we have to check

whether there exists a Möbius transformation that transforms q4 to the

corresponding degree-3 factor of qNewton with multiplicity 5.

Fortunately, there indeed exists such a polynomial q4 having surprisingly

small coefficients, namely

q4 = X4 − 5.

If we modify fNewton by an inner Möbius transformation accordingly we are

able to determine the desired Belyi map

f =
p

q
= 1 +

r

q

consisting of the polynomials

p = (7X5 − 30X4 + 30X3 + 40X2 − 95X + 50)4

· (2X10 − 20X9 + 90X8 − 240X7 + 435X6 − 550X5

+ 425X4 − 100X3 − 175X2 + 250X − 125)4

· (2X10 + 5X8 − 40X6 + 50X4 − 50X2 + 125)4,

q = 28 · (X4 − 5)5

· (X8 − 20X6 + 60X5 − 70X4 + 100X2 − 100X + 25)10

4.4. BELYI MAP COMPUTATION 50

and

r = 213523 ·
(
X30 − 50

3
X29 + 535

4
X28 − 705X27 + 33125

12
X26 − 98935

12
X25

+ 562115
32

X24 − 465025
24

X23 − 1204025
48

X22 + 4117075
24

X21

− 38437675
96

·X20 + 5480375
12
·X19 + 924625

6
·X18

− 1678750X17 + 156003125
48

X16 − 32481875
12

X15 − 39794375
24

X14

+ 32584375
4

X13 − 176578125
16

X12 + 15528125
3

X11 + 22056250
3

X10

− 200265625
12

X9 + 1354578125
96

X8 − 40140625
24

X7 − 452640625
48

X6

+ 258546875
24

X5 − 437609375
96

X4 − 15546875
12

X3

+10703125
4

X2 − 4140625
3

X + 546875
2

)
·
(
X35 − 81

4
X34 + 385

2
X33 − 4545

4
X32 + 4585X31 − 51795

4
X30

+ 48615
2
X29 − 84585

4
X28 − 151925

4
X27 + 3222625

16
X26 − 3661625

8
X25

+ 9866325
16

X24 − 425125
2

X23 − 10719625
8

X22 + 15940125
4

X21

− 45347625
8

X20 + 7695625
4

X19 + 168171875
16

X18 − 208346875
8

X17

+ 434509375
16

X16 + 3018750X15 − 114028125
2

X14 + 94578125X13

− 71718750X12 − 49921875
4

X11 + 1672234375
16

X10 − 1129859375
8

X9

+ 1678421875
16

X8 − 66015625
2

X7 − 157578125
8

X6 + 106640625
4

X5

− 29453125
8

X4 − 64453125
4

X3 + 272265625
16

X2 − 62890625
8

X + 23828125
16

)2
.

4.5. VERIFICATION 51

4.5. Verification

In the following we will explain our general approach on how to verify that

a given rational function

f =
p

q
∈ K(X)

(with K being a number field) is a Belyi map with prescribed ramification

triple and compute its algebraic and geometric monodromy group A and G.

4.5.1. Belyi map property.

The first step consists of verifying that f is indeed a Belyi map. This can be

done by combining the Riemann-Hurwitz genus formula from Lemma 2.1 (d)

with the inseparability behaviour of the polynomials p, q, p− q.

4.5.2. Computing the subdegrees of A.

Let O1, . . . , Ok for some k ∈ N be the orbits of any point stabilizer of the

transitive group A. Then, A is called a rank-k group with subdegrees |O1|,
. . . , |Ok|.

In order to find the subdegrees of A we factorize the polynomial

5f := p(X)− f(t)q(X) ∈ K(t)[X].

Lemma 4.9. The subdegrees of A are given by the degrees of the irreducible

factors of 5f ∈ K(t)[X].

Proof. Let x be a root of p(X)− tq(X) ∈ K(t)[X]. Then

t =
p(x)

q(x)
= f(x)

and the corresponding point stabilizer in A leads to the fixed field K(t, x) =

K(x). This yields that the irreducible factors of

p(X)− tq(X) = p(X)− f(x)q(X)

in K(x)[X] describe the subdegrees of A. �

4.5.3. Primitivity of A.

According to Ritt’s theorem the arithmetic monodromy group A of f is prim-

itive if and only if f does not decompose non-trivially. Thanks to [1, Proposi-

tion 3.1] the rational function f decomposes of type f = g ◦ h for some h = r
s

4.5. VERIFICATION 52

with coprime polynomials r, s if and only if the polynomial

5h := r(X)− h(t)s(X) ∈ K(t)[X]

is a divisor of 5f in K(t)[X]. As 5h vanishes at t, deg(5h) = deg(h) and

deg(5h) divides deg(f) = deg(g) · deg(h) we obtain the following criterion

summarizing the previous results:

Lemma 4.10. Let S be the set of all proper divisors of5f ∈ K(t)[X] vanishing

at t of respective degree greater than 1 dividing deg(f). Then A is primitive if

and only if no elements in S are of type r(X)− r(t)
s(t)
s(X) where r, s ∈ K[X].

Using the conditions (9) and (10) in Proposition 4.3 from [2] one can easily

check whether any polynomial is of type r(X)− r(t)
s(t)
s(X).

As the degree of each divisor in S is equal to the sum of some subdegrees

of A containing 1 we obtain the following divisibility criterion as a special case

of Lemma 4.10:

Corollary 4.11. If there is no subset of the subdegrees containing 1 adding up

to a non-trivial divisor of the permutation degree then A is primitive.

4.5.4. Narrowing down the possible candidates for A and G.

By using the Magma database (and therefore the classification of finite simple

groups!) we obtain a list of all finite primitive groups having the desired

subdegrees. Clearly, A is equal to one of these groups.

This helps to narrow down the possibilities for G: Recall that G is normal

in A and G contains generating triples having the same cycle structure as

(σ0, σ1, σ∞). For every group appearing in the above list we look for genus-

0 triples of the desired cycle structures generating a normal subgroup. This

yields all possible candidates for G. Fortunately, in all of our cases we remain

with only one possibility for G.

Once G has been determined we check if G contains exactly one genus-0

triple (σ0, σ1, σ∞) (up to simultaneous conjugation) having the desired cycle

structure. In most of our examples this is the case and ensures that the

ramification triple is indeed given by (σ0, σ1, σ∞).

4.5. VERIFICATION 53

Aut(HS)-realization, Part 8.

The previously described verification process will be now applied to the

computed polynomials from Part 7.

Theorem 4.12. Let p, q and r be the polynomials from Part 7. Then the

following holds:

(a) The rational function

f :=
p

q
= 1 +

r

q

is a Belyi map with ramification triple (σ0, σ1, σ∞).

(b) The polynomial

p(X)− tq(X) ∈ Q(t)[X]

defines a regular extension of Q(t) with Galois group Aut(HS).

Proof. From the Riemann-Hurwitz genus formula (Lemma 2.1 (d)) in

combination with the inseparability behaviour of p, q and r we see that the

ramification locus of f is given by (0, 1,∞) with ramification triple of the

same cycle structure as (σ0, σ1, σ∞).

Since the polynomial

p(X)− f(t)q(X) ∈ Q(t)[X]

splits into irreducible factors of degree 1, 22, 77 we see using Lemma 4.9 and

4.11 that A is a primitive rank-3 group with subdegrees 1, 22, 77. According

to the classification of finite primitive rank-3 groups this implies A = HS or

A = Aut(HS). Due to the fact that G is normal in A we also have G = HS

or G = Aut(HS). As the even group HS does not contain elements having

the same cycle structure as σ1 we end up with G = Aut(HS) which implies

A = Aut(HS).

Recall that the monodromy group of f is isomorphic to G = Aut(HS)

with ramification triple having the same cycle structure as (σ0, σ1, σ∞). As

Aut(HS) only contains exactly one triple (up to simultaneous conjugation)

having the same cycle structures as (σ0, σ1, σ∞) the ramification triple of f

coincides with (σ0, σ1, σ∞). �

4.5. VERIFICATION 54

The proof of Theorem 4.12 relies on the classification of finite simple groups

which can be avoided by using the following graph-theoretical approach:

An undirected k-regular graph G with n vertices is called strongly regular

if there exist λ, µ ∈ N0 such that adjacent vertices have exactly λ common

neighbours and non-adjacent vertices have exactly µ common neighbours.

We say that G is of type srg(n, k, λ, µ) if G fulfils the latter conditions.

We firstly collect some well known properties of strongly regular graphs,

see [14, Theorem 1.1, Theorem 3.1].

Lemma 4.13. Let G be of type srg(n, k, λ, µ), then the following conditions

hold:

(i) k(k − λ− 1) = (n− k − 1)µ.

(ii) 1
2

(
n− 1± (n−1)(µ−λ)−2k√

(µ−λ)2+4(k−µ)

)
are non-negative integers.

Another key observation is the fact that rank-3 groups can be considered

as automorphism groups of strongly regular graphs, see [14, Theorem 6.1].

Lemma 4.14. Let A be a rank-3 subgroup of Sn having subdegrees 1, k,

` with 1 < k < `. Then there exists a strongly regular graph G of type

srg(n, k, λ, µ) for some λ, µ ∈ N0 such that A is a subgroup of Aut(G).

The following lemma replaces the usage of the classification of finite

simple groups in the proof of Theorem 4.12.

Lemma 4.15. Let A be a rank-3 group with subdegrees 1, 22, 77, then

A = HS or A = Aut(HS).

Proof. Due to Lemma 4.14 there exists a strongly regular graph G of

type srg(100, 22, λ, µ) for some λ, µ ∈ {0, . . . , 100} such that A is a subgroup

of Aut(G). According to Lemma 4.13 (i) the parameters λ and µ have to

satisfy the equation

22(22− λ− 1) = (100− 22− 1)µ

from which we find

(λ, µ) ∈ {(0, 6), (7, 4), (14, 2), (21, 0)}.

4.5. VERIFICATION 55

Among these pairs the condition (ii) from Lemma 4.13 is only fulfilled for

(λ, µ) = (0, 6),

therefore G is of type srg(100, 22, 0, 6). From [19] we find that G must be

isomorphic to the Higman-Sims graph with Aut(G) = Aut(HS), therefore

A is a subgroup of Aut(HS). As HS and Aut(HS) are the only subgroups

of Aut(HS) with subdegrees 1, 22, 77 we end up with A = HS or A =

Aut(HS). �

A Polynomial with the sporadic Galois group HS.

Note that HS is an even and Aut(HS) an odd group. A computer calculation,

e.g. in Magma, shows that the discriminant δ of

p(X)− tq(X) ∈ Q(t)[X]

is given by

δ = u2 · 1

−5
· t(t− 1)

for some u ∈ Q(t). As explained in section 2.3.4.2 we can deduce

HS = Gal

(
p(X)− 1

1 + 5r2
q(X) | Q(r)

)
.

CHAPTER 5

Main results

We will now apply the computation method from chapter 4 to find more

explicit Belyi maps with prescribed ramification. Note that all of the follow-

ing triples and rational functions are also available in the ancillary Magma-

readable files.

This chapter is taken over from [10, Chapter 4].

5.1. Belyi maps defined over Q

Our first goal is to explicitly realize triples satisfying the conditions stated

in Theorem 2.8. The following theorem contains a list of triples that theoreti-

cally lead to Belyi maps defined over Q.

Theorem 5.1. (a) Let G be a primitive and almost simple permutation group

of degree between 50 and 250 not equal to a symmetric or alternating group.

If there exists a rigid genus-0 triple (σ0, σ1, σ∞) for G where each element

is contained in a rational conjugacy class then G is isomorphic to one of

the following groups:

section group

primitive

group

identification

number of

triples up to

simultaneous

Sn-conjugation

5.1.1 Aut(PSL(3, 3)) [52, 1] 1

5.1.2 PGL(2, 11) [55, 2], [55, 3] 2

5.1.3 NS56(PSL(3, 4)) [56, 7] 1

5.1.4 Aut(PSU(3, 3)) [63, 3] 1

5.1.5 Aut(M22) [77, 2] 1

5.1.6 PSp(4, 4):2 [85, 2] 1

5.1.7 Aut(HS) [100, 36] 2

5.1.8 O+(8, 2) [135, 2] 1

56

5.1. BELYI MAPS DEFINED OVER Q 57

(b) Let (σ0, σ1, σ∞) be a genus-0 triple for a group G appearing in (a). Then

there exists a Belyi map

f =
p

q
∈ Q(X)

with ramification triple (σ0, σ1, σ∞) such that

p(X)− tq(X) ∈ Q(t)[X]

defines a regular Galois extension of Q(t) with Galois group G.

Proof. (a) By using Magma and its database for finite primitive groups

we are able to verify that the above almost simple groups are the only non-

symmetric and non-alternating groups containing the desired genus-0 triples.

(b) This follows from Theorem 2.8. The cycle structure description of each

triple is given in the respective sections. �

It is reasonable to expect that the above list is also complete if we ignore

the upper permutation degree bound of 250.

Theorem 5.2. The rational functions presented in the sections 5.1.1 - 5.1.8

are the Belyi maps from Theorem 5.1.

Proof. In each case we again follow the verification process from sec-

tion 4.5.

It is easy to see that the computed rational functions are indeed Belyi maps

with ramification triple of the same cycle structure as the desired ramification

triple.

The computation of the arithmetic and geometric monodromy groups A

and G can be found in the following sections.

Finally, as all groups from Theorem 5.1 only contain one generating genus-0

triple up to simultaneous conjugation with the prescribed cycle structure any

Belyi map with ramification triple of the same cycle structure as one of these

triples must already coincide with it. �

Additionally, we will also explicitly realize all index-2 subgroups of the

groups appearing in Theorem 5.1.

5.1. BELYI MAPS DEFINED OVER Q 58

5.1.1. Aut(PSL(3,3)) of degree 52. (ancillary file 52.txt)

We start with the the genus-0 triple (σ0, σ1, σ∞) for Aut(PSL(3, 3)) where

σ0 = (1, 41, 8, 9, 45, 32, 39, 44)(2, 13, 29, 21, 50, 26, 34, 6)(3, 35, 52, 30)

(4, 7, 22, 18, 33, 43, 10, 38)(5, 37, 27, 42, 25, 15, 12, 24)

(11, 51, 17, 47, 36, 31, 49, 40)(14, 20, 28, 48)(16, 19, 23, 46)

and

σ1 = (1, 20)(2, 34)(3, 7)(4, 16)(5, 17)(8, 41)(9, 13)(10, 52)(11, 40)

(12, 23)(14, 29)(15, 25)(18, 33)(19, 47)(21, 35)(22, 43)(26, 42)

(27, 45)(28, 36)(31, 39)(32, 49)(37, 51)(38, 48)(46, 50)

with cycle structure description:

σ0 σ1 σ∞

cycle structure 85.43 224.14 410.24.14

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 59

with resulting approximate dessin:

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

The corresponding Belyi map f = p
q

is given by

p = 33 · (X + 1)8 · (2X2 − 8X − 1)8 · (2X2 + 1)4 · (6X2 + 4X + 1)8,

q = 22 · (4X4 − 16X3 − 24X2 − 8X − 1)2

· (4X4 − 16X3 − 18X2 − 8X − 1) · (4X4 + 8X3 + 36X2 + 28X + 5)4

· (4X6 − 36X5 − 24X4 − 4X3 + 9X2 + 3X + 1)4.

Verification of monodromy.

The factorization of p(X) − f(t)q(X) over Q(t) yields that A has subdegrees

1, 6, 18, 27, thus A is primitive by Lemma 4.11. As there is only one primitive

group of degree 52 with these subdegrees we obtain A = Aut(PSL(3, 3)). Since

G is normal in A we have G = PSL(3, 3) or G = Aut(PSL(3, 3)). Since

PSL(3, 3) does not contain elements having the same cycle structure as σ∞ we

find G = A = Aut(PSL(3, 3)). �

Realization of PSL(3, 3).

Note that PSL(3, 3) is the only index-2 subgroup of Aut(PSL(3, 3)). From

σ0 ∈ PSL(3, 3) and the character values of the class in H containing σ0 we find

c = 2, see section 2.3.4.1, therefore

PSL(3, 3) = Gal(p(X)− (1 + 2s2)q(X) | Q(s)).

5.1. BELYI MAPS DEFINED OVER Q 60

5.1.2. PGL(2,11) of degree 55. (ancillary files 55a.txt and 55b.txt)

The first genus-0 triple (σ0, σ1, σ∞) for PGL(2, 11) is given by

σ0 = (1, 33, 17, 8, 41, 32)(2, 51, 45, 36, 55, 50)(3, 43, 47, 24, 44, 25)

(4, 40, 49, 52, 18, 6)(5, 7, 26, 16, 37, 23)(9, 21, 22, 38, 31, 20)

(10, 48, 29, 30, 35, 19)(11, 28, 54)(12, 15, 13, 34, 42, 27)

(39, 46, 53)

and

σ1 = (1, 26)(2, 41)(3, 51)(4, 32)(5, 29)(6, 37)(7, 20)(8, 47)(10, 44)(11, 50)

(12, 52)(13, 15)(14, 35)(17, 46)(18, 23)(19, 42)(21, 48)(24, 38)

(25, 45)(27, 30)(31, 39)(33, 53)(34, 36)(40, 54)(49, 55)

of type

σ0 σ1 σ∞

cycle structure 68.32.11 225.15 412.23.11

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 61

with resulting approximate dessin:

-10 -8 -6 -4 -2 0 2 4 6 8 10

-8

-6

-4

-2

0

2

4

6

8

This triple corresponds to the Belyi map f = p
q

where

p = 24 · (22X2 − 11X − 2)6 · (44X2 + 22X + 3)6 · (88X2 + 55X + 1)6

· (176X2 + 44X + 5)6 · (704X2 + 242X + 17)3,

q = 114 · (2X + 1) · (176X3 + 1056X2 + 330X + 31)4

· (264X3 + 154X2 + 22X + 1)4 · (352X3 + 264X2 + 99X + 14)4

· (704X3 + 132X2 + 1)4 · (1408X3 + 693X2 + 132X + 8)2,

see also file 55a.txt.

Verification of monodromy.

The polynomial p(X) − f(t)q(X) factorizes over Q(t) into irreducible poly-

nomials of degree 1, 6, 12, 12, 12, 12, thus A has the subdegrees 1, 6, 12, 12,

12, 12 and the primitivity of A follows from Lemma 4.11. The only primitive

group of degree 55 having these subdegrees is PGL(2, 11). Since G is normal

in PGL(2, 11) we have G = PGL(2, 11) or G = PSL(2, 11). The latter case

can be ruled out because PSL(2, 11) does not contain elements with the cycle

structure of σ1. We find G = A = PGL(2, 11). �

5.1. BELYI MAPS DEFINED OVER Q 62

There is another degree-55 permutation representation of PGL(2, 11) in

which the above triple (σ0, σ1, σ∞) is also of genus 0. It is given by

σ0 = (1, 36, 37, 16, 42, 22)(2, 31, 17, 19, 30, 9)(3, 48, 29, 12, 24, 34)

(4, 44, 28, 46, 18, 8)(6, 13, 53, 43, 40, 10)(7, 26, 33, 15, 27, 35)

(20, 39, 47, 38, 45, 23)(21, 52, 50, 41, 55, 32)(5, 49, 25)(11, 14)(51, 54)

and

σ1 = (1, 22)(2, 34)(3, 41)(4, 39)(5, 50)(6, 52)(8, 42)(9, 54)(10, 27)(11, 23)

(12, 24)(14, 44)(15, 49)(16, 33)(17, 35)(18, 37)(19, 32)(21, 40)(25, 46)

(26, 47)(28, 48)(29, 45)(31, 38)(43, 53)(51, 55)

of type:

σ0 σ1 σ∞

cycle structure 68.31.22 225.15 413.13

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 63

with resulting approximate dessin:

-2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

The computed results for this Belyi map f = p
q

are

p = 24 · (3X − 1)3 · (2X2 − 5X − 1)6 · (3X2 − 2X + 4)2

· (12X2 − 8X + 5)6 · (12X4 + 6X3 + 19X2 − 3X + 3)6

q = 33 · 115 · (4X3 − 4X2 + 5X − 3)4 · (6X3 + 5X2 + 2X + 1)4

· (12X3 − 56X2 + 15X − 9)

· (72X6 − 144X5 + 230X4 − 134X3 + 61X2 − 14X + 2)4.

Verification of monodromy.

The subdegrees of A are 1, 4, 6, 8, 12, 24. According to Lemma 4.10 the group

A must be primitive. It follows A = PGL(2, 11), therefore G = PGL(2, 11) or

G = PSL(2, 11). Since there are no elements having the same cycle structure

as σ1 in PSL(2, 11) we conclude G = A = PGL(2, 11). �

Note that both PGL(2, 11)-Belyi maps from this section define the same

Galois extension of Q(t).

Realization of PSL(2, 11).

Note that PSL(2, 11) = PGL(2, 11) ∩ A55 is the unique index-2 subgroup of

the odd group PGL(2, 11). For both polynomials p(X)− tq(X) the square-free

part of the discriminant is given by − 1
33

(t− 1). As described in section 2.3.4.2

we obtain

PSL(2, 11) = Gal(p(X)− (1− 33s2)q(X) | Q(s)).

5.1. BELYI MAPS DEFINED OVER Q 64

5.1.3. NS56(PSL(3,4)) of degree 56. (ancillary file 56.txt)

We work with the genus-0 triple (σ0, σ1, σ∞) for NS56(PSL(3, 4)) given by

σ0 = (1, 36, 2, 5)(3, 47)(7, 45, 33, 22)(8, 31, 55, 14)(9, 21, 50, 48)

(10, 16, 40, 39)(11, 54)(12, 19, 49, 23)(13, 41, 42, 15)

(17, 56, 24, 30)(18, 53, 44, 25)(20, 52, 28, 35)

(26, 29, 46, 37)(27, 34, 51, 43)

and

σ1 = (2, 11)(3, 29)(4, 7)(5, 27)(6, 40)(8, 9)(10, 46)(12, 35)(13, 34)

(14, 21)(16, 18)(17, 20)(19, 25)(23, 41)(24, 54)(26, 33)(28, 37)

(31, 44)(36, 43)(38, 47)(42, 49)(45, 53)(50, 51)(52, 55)

with cycle structure description

σ0 σ1 σ∞

cycle structure 412.22.14 225.16 86.41.22

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 65

with resulting approximate dessin:

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

The Belyi map f = p
q

consists of

p = (X2 − 6X − 1)2

· (3X4 − 468X3 − 258X2 − 60X − 5)

· (3X4 + 36X3 + 54X2 + 60X + 19)4

· (3X8 − 96X7 − 12X6 + 432X5 + 1498X4

− 320X3 − 348X2 − 80X − 5)4

and

q = − 22 · 55 · (X2 + 2X + 3)2 · (3X2 + 6X + 1)8

· (3X4 − 12X3 + 38X2 + 12X + 3)8.

Verification of monodromy.

The subdegrees of A turn out to be 1, 10, 45, thus A is primitive by Lemma

4.11. There are five primitive groups having these subdegrees, all between

PSL(3, 4) and NS56(PSL(3, 4)). These five groups are also the only possibili-

ties for the geometric monodromy group G from which only NS56(PSL(3, 4))

contains a generating triple with the desired cycle structures. It follows A =

G = NS56(PSL(3, 4)). �

5.1. BELYI MAPS DEFINED OVER Q 66

Realization of all index-2 subgroups of NS56(PSL(3, 4)).

There are exactly three index-2 subgroups of NS56(PSL(3, 4)) given by their

primitive group identification [56,3], [56, 4] = A56∩NS56(PSL(3, 4)) and [56, 5] =

PΣL(3, 4). We treat all these groups separately:

[56, 4]: Note that NS56(PSL(3, 4)) is an odd and [56,4] an even group. The

square-free factor of the discriminant of p(X) − tq(X) is given by
1
15

(t− 1). The approach in section 2.3.4.2 then yields

[56, 4] = Gal(p(X)− (1 + 15s2)q(X) | Q(s)).

[56, 5]: We see σ∞ ∈ [56, 5] and the computational approach established in

section 2.3.4.3 suggests c = −6. This would imply

[56, 5] = Gal(p(X)− 1
1+6r2

q(X) | Q(r)).

In order to show that c is correct it suffices to proof for r0 := 1 that

Gr0 := Gal(p(X)− 1
1+6r20

q(X) | Q) is a subgroup of [56, 5]. Note that

Gr0 is a transitive subgroup of NS56(PSL(3, 4)) by Dedekind’s theo-

rem. Let g be the irreducible degree-21 polynomial (obtained by using

the Magma command GaloisSubgroup for an index-21 subgroup of

[56, 5]) from the ancillary file 56.txt and α a root of g. A computer

calculation shows that p(X)− 1
1+6r20

q(X) factors into irreducible poly-

nomials of degree 16 and 40 over Q(α), therefore Gr0 contains a proper

subgroup of index dividing 21 with orbit lengths 16 and 40. This im-

plies that Gr0 must be a subgroup of [56, 5].

[56, 3]: Note that s1 :=
√

1
15

(t− 1) and s2 :=
√
−6t(t− 1) are Q(t)-primitive

elements for the fixed fields of [56, 4] and [56, 5]. By using the fact

that NS56(PSL(3, 4))/PSL(3, 4) is a Klein four-group the element s :=
s2
3s1

=
√
−10t turns out to be a primitive element for the fixed field of

the remaining index-2 subgroup [56, 3]. We find

[56, 3] = Gal(p(X) + 10s2q(X) | Q(s)).

Via specializing in p(X)− tq(X) we cannot reach the simple index-4 subgroup

PSL(3, 4), otherwise there would exist s1, s2 ∈ Q such that 1+15s1
2 = −10s2

2,

see the cases [56, 4] and [56, 3]. This is obviously not possible.

5.1. BELYI MAPS DEFINED OVER Q 67

5.1.4. Aut(PSU(3,3)) of degree 63. (ancillary file 63.txt)

We now study the genus-0 triple (σ0, σ1, σ∞) for Aut(PSU(3, 3)) given by

σ0 = (1, 43, 31, 39, 63, 35, 2)(3, 17, 24, 21, 20, 55, 53)(4, 29, 62, 11, 14, 45, 27)

(5, 38, 23, 32, 48, 18, 51)(6, 13, 36, 47, 25, 8, 61)(7, 9, 15, 56, 34, 28, 42)

(10, 33, 59, 60, 44, 19, 37)(12, 26, 52, 30, 54, 49, 41)

(16, 40, 57, 50, 22, 46, 58),

σ1 = (2, 53)(3, 9)(4, 38)(5, 29)(6, 51)(8, 25)(10, 19)(11, 20)(12, 44)(13, 43)

(14, 21)(16, 40)(17, 32)(18, 39)(22, 62)(23, 30)(24, 26)(27, 59)(33, 54)

(34, 63)(35, 56)(36, 55)(41, 49)(42, 48)(45, 60)(46, 61)(47, 50)(57, 58)

with cycle structure description

σ0 σ1 σ∞

cycle structure 79 228.17 412.26.13

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 68

with resulting approximate dessin:

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

The corresponding Belyi map is given by f = p
q

where

p = 28 · 312 · (X2 −X + 2)7 · (X3 + 2X2 −X − 1)7 · (X3 + 9X2 −X − 1)7,

q = (X3 + 30X2 + 27X + 6)

· (X6 + 18X5 + 93X4 + 169X3 + 144X2 − 75X − 62)2

· (X12 + 15X11 − 15X10 − 332X9 − 2766X8 + 4002X7 + 2002X6

− 2496X5 − 1215X4 + 1047X3 + 117X2 − 108X + 36)4.

Verification of monodromy.

The subdegrees of A are 1, 6, 24, 32. By applying Lemma 4.10 we see that

A is primitive and only three possibilities for A remain. Since G is normal

in A there are four possibilities for G. Fortunately, among these groups only

Aut(PSU(3, 3)) contains elements having the same cycle structure as σ1 and

σ∞. This yields G = A = Aut(PSU(3, 3)). �

Realization of PSU(3, 3).

The only index-2 subgroup of Aut(PSU(3, 3)) is given by PSU(3, 3). We

have σ0 ∈ PSU(3, 3) and from the corresponding character values, see sec-

tion 2.3.4.1, we obtain c = 7, hence

PSU(3, 3) = Gal(p(X)− (1 + 7s2)q(X) | Q(s)).

5.1. BELYI MAPS DEFINED OVER Q 69

5.1.5. Aut(M22) of degree 77. (ancillary file 77.txt)

This time we work with the genus-0 triple (σ0, σ1, σ∞) for Aut(M22) where

σ0 = (1, 14, 3, 53, 31, 27, 71, 62, 10, 65, 61)(2, 50, 46, 29, 12, 7, 56, 19, 63, 28, 25)

(4, 36, 38, 44, 17, 13, 66, 43, 39, 9, 72)(5, 49, 68, 51, 58, 59, 70, 15, 11, 23, 33)

(6, 55, 42, 67, 32, 21, 45, 64, 48, 77, 57)(8,41,60,20, 26, 74, 76, 24, 69, 52, 40)

(16, 22, 54, 35, 34, 37, 18, 73, 75, 30, 47),

σ1 = (1, 54)(2, 59)(3, 48)(4, 20)(6, 32)(7, 29)(11, 38)(13, 43)(14, 51)(15, 19)

(18, 37)(21, 57)(22, 46)(24, 73)(30, 44)(31, 40)(33, 45)(34, 52)(35, 71)

(36, 64)(39, 75)(47, 56)(49, 77)(50, 58)(53, 60)(62, 65)(63, 70)(72, 76).

with cycle structures

σ0 σ1 σ∞

cycle structure 117 228.121 416.26.11

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 70

with resulting approximate dessin:

-1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

The corresponding Belyi map is f = p
q

is given by

p = 222 · (X2 +X + 3)11

· (X5 − 3X4 − 14X3 + 15X2 +X − 1)11,

q = − 114 · (X4 + 2X3 + 7X2 − 16X − 2)4

· (X6 + 14X5 + 34X4 + 8X3 − 30X2 + 60X + 16)4

· (4X6 +X5 + 15X4 + 10X3 − 10X2 − 2X − 2)4

· (16X6 − 29X5 + 71X4 − 136X3 + 92X2 − 8X − 8)2.

Verification of monodromy.

The subdegrees of A are 1, 16, 60, therefore A is primitive according to

Lemma 4.11. The classification of finite primitive rank 3 groups yields A = M22

or A = Aut(M22). Since M22 does not contain elements with the same cycle

structure as σ1, we conclude G = A = Aut(M22). �

Note that a degree-22 polynomial having the same splitting field as q(X)−
(1− t)p(X) over Q(t) was already computed by Malle in [29].

Realization of M22.

The only index-2 subgroup of Aut(M22) is given by M22. We have σ0 ∈ M22

and using the method described in section 2.3.4.1 yields c = 11, thus

M22 = Gal(p(X)− (1 + 11s2)q(X) | Q(s)).

5.1. BELYI MAPS DEFINED OVER Q 71

5.1.6. PSp(4,4) : 2 of degree 85. (ancillary file 85.txt)

We now consider the genus-0 triple (σ0, σ1, σ∞) for PSp(4, 4) : 2 where

σ0 = (1, 85, 49, 26, 15, 39, 65, 24, 37, 4, 23, 3, 28, 19, 76)(9, 57, 83, 78, 17)

(2, 82, 64, 74, 52, 58, 20, 70, 43, 7, 68, 12, 53, 40, 16)(29, 38, 61, 75, 32)

(5, 81, 51, 67, 54, 44, 41, 77, 30, 21, 71, 63, 33, 66, 18)

(6, 42, 46, 50, 60, 22, 73, 80, 47, 45, 14, 31, 13, 55, 79)

(8, 62, 56, 36, 72, 69, 35, 25, 10, 84, 48, 34, 59, 27, 11),

σ1 = (3, 70)(5, 29)(6, 17)(7, 68)(8, 27)(9, 74)(14, 23)(15, 39)(16, 57)(18, 33)

(19, 52)(20, 58)(22, 35)(24, 31)(25, 60)(26, 65)(30, 71)(32, 81)(34, 56)

(36, 51)(38, 53)(40, 63)(41, 78)(42, 84)(43, 61)(44, 48)(45, 75)(46, 50)

(47, 72)(49, 55)(54, 67)(64, 82)(73, 80)(76, 79)(77, 83).

Its cycle structure description is given by

σ0 σ1 σ∞

cycle structure 155.52 235.115 416.27.17

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 72

with resulting approximate dessin:

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

This leads to the Belyi map f = p
q

where

p = 224 · (5X2 + 5X + 2)5 · (5X4 + 10X3 − 5X − 1)15

q = X · (5X3 + 20X2 + 20X + 6)2 · (5X4 + 10X3 − 14X − 10)4

· (5X4 + 10X3 − 8X − 4)2

· (5X6 + 30X5 + 60X4 + 8X3 − 48X2 − 24X − 4)

· (625X12 + 3750X11 + 7500X10 + 3500X9 − 3750X8 − 1500X7

+ 2700X6 + 3000X5 + 2100X4 + 1040X3 + 240X2 − 8)4.

Verification of monodromy.

Again, A is a primitive rank 3 group with subdegrees 1, 20, 64. Thus, we

either have A = PSp(4, 4) or A = PSp(4, 4):2. As PSp(4, 4) does not contain

elements with the cycle structure of σ1, we obtain A = G = PSp(4, 4):2. �

Realization of PSp(4, 4).

We find σ0 ∈ PSp(4, 4) and from the corresponding character values we obtain

c = −5 as described in section 2.3.4.1, thus

PSp(4, 4) = Gal(p(X)− (1− 5s2)q(X) | Q(s)).

5.1. BELYI MAPS DEFINED OVER Q 73

5.1.7. Aut(HS) of degree 100. (ancillary files 100a.txt and 100b.txt)

The Belyi map for the first genus-0 triple (σ0, σ1, σ∞) for Aut(HS) is given in

Part 7 in the computation chapter and in file 100a.txt. The second genus-0

triple (σ0, σ1, σ∞) for Aut(HS) is given by

σ0 = (1, 64, 8, 54, 37)(2, 20, 81, 42, 49)(3, 98, 32, 73, 89)(4, 96, 86, 15, 79)

(5, 22, 28, 78, 48)(6, 67, 97, 40, 14)(7, 58, 82, 59, 18)(9, 16, 87, 85, 60)

(10, 70, 41, 56, 55)(11, 77, 36, 25, 68)(12, 17, 19, 21, 80)(13, 35, 90, 33, 91)

(23, 50, 66, 84, 27)(24, 72, 95, 52, 76)(26, 99, 100, 57, 93)(29, 71, 38, 69, 65)

(30, 74, 94, 53, 51)(31, 45, 47, 75, 34)(43, 63, 44, 46, 62),

σ1 = (1, 20)(2, 64)(3, 76)(4, 45)(5, 83)(6, 26)(7, 13)(8, 74)(9, 41)(10, 63)(11, 25)

(12, 66)(14, 21)(15, 52)(16, 62)(17, 33)(18, 35)(19, 42)(22, 60)(23, 58)

(24, 73)(28, 98)(29, 82)(30, 53)(31, 61)(32, 59)(34, 67)(36, 95)(37, 85)

(38, 47)(39, 51)(40, 80)(43, 92)(44, 78)(46, 99)(48, 55)(49, 94)(50, 91)

(54, 90)(65, 88)(69, 72)(71, 75)(77, 79)(81, 87)(84, 97)(86, 100)(93, 96)

of type

σ0 σ1 σ∞

cycle structure 519.15 247.16 610.310.25

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 74

with resulting approximate dessin:

-2 -1 0 1 2 3 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

The resulting Belyi map f = p
q

consists of

p = 33 · (X4 − 8X3 − 6X2 + 8X + 1)5 · (X5 − 5X4 + 50X3 + 70X2

+ 25X + 3)5 · (3X5 − 5X4 − 5X3 + 35X2 + 40X + 4)

· (9X10 − 30X9 + 55X8 − 200X7 + 210X6 + 924X5

− 890X4 − 360X3 + 1925X2 − 1070X + 291)5,

q = (3X5 − 35X4 + 90X3 − 50X2 + 15X + 9)2

· (9X10 − 120X9 + 10X8 − 1960X7 − 1090X6 + 3304X5

− 760X4 − 920X3 + 145X2 + 80X + 6)3

· (3X10 − 10X9 − 65X8 + 160X7 − 90X6 − 932X5

− 330X4 + 880X3 + 1255X2 + 830X + 27)6.

Verification of monodromy.

One can use the exact same proof as for Theorem 4.12. �

Another realization of HS.

Up to squares the discriminant of p(X)− tq(X) is equal to 1
2
(t− 1), therefore

HS = Gal(p(X)− (1 + 2s2)q(X) | Q(s)).

5.1. BELYI MAPS DEFINED OVER Q 75

5.1.8. O+(8,2) of degree 135. (ancillary file 135.txt)

We work with the genus-0 triple (σ0, σ1, σ∞) for O+(8, 2) where

σ0 = (1, 94, 65, 71, 134, 80, 107, 98, 4)(2, 104, 58, 121, 97, 116, 88, 8, 23)

(3, 69, 36, 32, 29, 73, 102, 128, 106)(5, 14, 124, 105, 67, 18, 49, 117, 34)

(6, 28, 100, 41, 135, 31, 48, 109, 17)(7, 133, 112, 53, 91, 15, 25, 122, 129)

(9, 62, 99, 96, 131, 77, 10, 81, 52)(11, 56, 110, 13, 115, 111, 95, 89, 54)

(12, 64, 113, 108, 20, 76, 50, 22, 55)(16, 61, 83, 118, 75, 66, 39, 35, 132)

(19, 85, 68, 126, 40, 125, 74, 130, 43)(21, 47, 79, 78, 72, 84, 24, 37, 57)

(26, 38, 70, 90, 92, 103, 63, 120, 44)(27, 119, 127, 42, 87, 82, 101, 93, 45)

(30, 59, 86, 51, 33, 60, 123, 46, 114),

σ1 = (3, 118)(4, 110)(5, 132)(7, 36)(9, 33)(10, 46)(12, 112)(13, 129)(16, 65)

(17, 106)(20, 113)(21, 107)(22, 55)(25, 61)(26, 27)(28, 30)(29, 37)(31, 109)

(32, 98)(35, 130)(40, 42)(43, 99)(44, 125)(45, 90)(47, 49)(50, 91)(51, 93)

(52, 60)(54, 56)(58, 116)(59, 128)(62, 82)(63, 73)(64, 69)(66, 96)(67, 78)

(71, 117)(72, 105)(74, 124)(75, 135)(76, 83)(77, 121)(80, 134)(84, 120)

(85, 87)(86, 103)(88, 104)(89, 94)(95, 122)(97, 114)(100, 131)(119, 127).

The cycle structure of (σ0, σ1, σ∞) is given by

σ0 σ1 σ∞

cycle structure 915 252.131 430.26.13

A fundamental domain is given by

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

labelled fundamental domain

5.1. BELYI MAPS DEFINED OVER Q 76

with resulting approximate dessin:

-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

The computed Belyi map f = p
q

consists of

p = 222 · (3X3 − 9X2 − 9X − 2)9

· (3X3 + 9X2 + 6X + 1)9

· (27X9 + 243X8 + 567X7 + 513X6 + 162X5

− 27X4 + 9X3 + 27X2 + 9X + 1)9

and

q = (3X3 − 9X − 2) · (6X3 + 9X2 − 1)2

· (3X3 + 27X2 + 27X + 7)2

· (36X6 + 189X5 + 189X4 + 96X3 + 36X2 + 9X + 1)4

· (81X12 + 1944X11 + 11178X10 + 27648X9 + 29403X8 − 1944X7

− 39150X6 − 44712X5 − 25434X4 − 8088X3 − 1332X2 − 72X + 4)4

· (648X12 + 3888X11 + 11907X10 + 15120X9 + 13365X8 + 14580X7

+ 11772X6 + 3240X5 − 1782X4 − 1632X3 − 504X2 − 72X − 4)4.

5.1. BELYI MAPS DEFINED OVER Q 77

Verification of monodromy.

We find that A is a primitive rank-3 group with subdegrees 1, 64, 70. Therefore

we have A = O+(8, 2) or A = O+(8, 2).2 and due to normality G = O+(8, 2)

or G = O+(8, 2).2. Note that G is generated by permutations of cycle struc-

ture 915, 252.131, 430.26.13 and by inspecting the sizes of conjugacy classes of

O+(8, 2) and O+(8, 2).2 we can conclude that there are no elements with these

cycle structures in O+(8, 2).2 \ O+(8, 2). It follows G = O+(8, 2). Because

O+(8, 2) contains only one genus-0 triple (up to simultaneous conjugation)

having the desired cycle structure description the ramification triple is given

by (σ0, σ1, σ∞).

We will now prove that p(X)− tq(X) defines a regular Galois extension of

Q(t) with Galois group O+(8, 2): Let

f ∗ =
p∗

q∗
∈ Q(X)

be the map from Theorem 5.1 belonging to the genus-0 triple (σ0, σ1, σ∞) for

O+(8, 2). Since the normalizer of 〈σ1〉 in O+(8, 2) has a unique fixed point

we may assume f ∗(∞) = 1 after applying an inner Q-Möbius transformation

due to Lemma 2.4 (a) and (c). Furthermore we find α, β ∈ Q such that

f ∗(αX + β) = f(X).

This is possible: Since ∞ is the unique rational pre-image of 1 under

f and both f and f ∗ have the same ramification triple there exist

α, β ∈ C such that f ∗(αX+β) = f(X) by the uniqueness property of

Riemann’s existence theorem, see Theorem 2.2. The explicit determi-

nation of α and β boils down to solving a linear system defined over

Q. As the existence of a complex solution guarantees the existence of

a rational solution the assertion follows.

Since p∗(X) − tq∗(X) defines a regular extension of Q(t) with Galois group

O+(8, 2) the same must also hold for the translated polynomial p(X)− tq(X).

�

5.2. A THEOREM OF MAGAARD 78

5.2. A theorem of Magaard

Another natural question to ask is which groups occur as the monodromy

group of rational functions, or equivalently, which transitive groups contain

generating genus-0 tuples.

The Guralnick-Thompson conjecture [20] (proven by Frohardt and Mag-

aard in [18]) states that only finitely many non-abelian and non-alternating

simple groups occur as composition factors of monodromy groups of rational

functions. In the special case for sporadic groups a complete list is delivered

by Magaard [28]:

Theorem 5.3. Let G be a sporadic finite simple group. Then there exists a

rational function f ∈ C(X) such that G is a composition factor of the mon-

odromy group of f if and only if :

G ∼=

M11, M12, M22, M23, M24,

HS, J1, J2,Co3

As discovered by König [24, Proposition 9.2] the sporadic group HS is

missing in Magaard’s original publication.

Several explicit rational functions with monodromy groups isomorphic to

the above Mathieu groups were calculated by Matzat [33], [34], König [25],

Malle [29], Elkies [17], Hoyden-Siedersleben and Matzat [21].

For the remaining groups HS, J1, J2 and Co3 there exist genus-0 triples for

permutations groups of degree ≥ 100 having one of these sporadic groups as a

composition factor.

5.2.1. The sporadic Higman-Sims group HS of degree 100.

Rational functions with Aut(HS) as a monodromy group are presented in

Part 7 and section 5.1.7.

5.2. A THEOREM OF MAGAARD 79

5.2.2. The sporadic Janko group J1 of degree 266.
Let (σ0, σ1, σ∞) be the genus-0 triple for J1 of degree 266 where

σ0 = (1, 263, 66, 201, 120, 150, 247)(2, 212, 109, 156, 234, 62, 253)(3, 93, 226, 139, 259, 160, 92)

(4, 52, 5, 145, 152, 239, 248)(6, 246, 88, 233, 173, 111, 209)(7, 124, 117, 260, 166, 81, 119)

(8, 188, 86, 37, 32, 112, 170)(9, 11, 102, 154, 89, 65, 163)(10, 101, 182, 223, 13, 158, 115)

(12, 123, 54, 100, 122, 192, 224)(14, 80, 28, 171, 230, 255, 262)(15, 258, 242, 20, 26, 236, 187)

(16, 219, 227, 206, 237, 58, 129)(17, 202, 55, 71, 116, 24, 169)(18, 252, 159, 198, 34, 82, 238)

(19, 64, 23, 60, 70, 203, 77)(21, 106, 235, 245, 43, 50, 229)(22, 68, 218, 76, 157, 63, 194)

(25, 72, 178, 134, 103, 228, 213)(27, 175, 256, 40, 47, 35, 132)(29, 97, 33, 79, 240, 56, 176)

(30, 131, 42, 216, 38, 210, 193)(31, 225, 46, 45, 67, 78, 121)(36, 94, 264, 149, 91, 199, 147)

(39, 251, 104, 174, 204, 87, 177)(41, 249, 185, 164, 254, 137, 197)(44, 143, 110, 221, 191, 184, 135)

(48, 148, 142, 266, 74, 85, 208)(49, 114, 167, 217, 61, 244, 220)(51, 162, 95, 222, 133, 99, 90)

(53, 126, 181, 232, 195, 138, 141)(57, 231, 155, 84, 144, 140, 59)(69, 205, 250, 113, 257, 168, 151)

(73, 190, 83, 265, 189, 165, 75)(96, 215, 172, 108, 118, 214, 180)(98, 127, 186, 261, 196, 207, 243)

(105, 130, 128, 107, 136, 125, 179)(146, 211, 161, 153, 241, 200, 183);

σ1 = (1, 170)(2, 253)(3, 243)(4, 121)(5, 208)(6, 177)(7, 97)(8, 80)(9, 254)(10, 189)(11, 108)

(12, 94)(13, 266)(14, 190)(15, 145)(16, 163)(17, 134)(18, 40)(19, 158)(20, 127)(21, 131)

(22, 109)(23, 105)(24, 193)(25, 144)(26, 133)(27, 132)(28, 247)(29, 119)(30, 37)(31, 198)

(32, 116)(33, 176)(34, 248)(35, 46)(36, 59)(38, 244)(39, 82)(41, 212)(45, 173)(47, 111)

(48, 141)(49, 245)(50, 220)(51, 246)(52, 53)(54, 213)(55, 147)(56, 240)(57, 202)(58, 218)

(60, 136)(61, 250)(62, 249)(63, 156)(64, 142)(65, 195)(66, 242)(67, 241)(68, 197)(69, 169)

(70, 154)(71, 196)(72, 260)(73, 188)(74, 201)(75, 235)(76, 192)(77, 217)(78, 126)(81, 124)

(83, 101)(84, 166)(85, 258)(86, 106)(87, 162)(88, 160)(89, 107)(90, 92)(91, 93)(95, 236)

(96, 100)(98, 99)(102, 257)(103, 151)(110, 185)(112, 261)(113, 203)(114, 165)(115, 167)

(117, 155)(118, 164)(120, 223)(122, 184)(123, 140)(125, 179)(128, 138)(129, 137)

(130, 148)(135, 180)(143, 214)(146, 226)(149, 211)(150, 255)(152, 174)(153, 181)

(157, 191)(159, 256)(161, 227)(168, 172)(171, 230)(175, 225)(178, 231)(182, 262)

(183, 259)(186, 263)(187, 204)(199, 207)(200, 233)(205, 210)(206, 264)(209, 238)

(215, 228)(216, 229)(219, 232)(221, 234)(224, 237)(239, 251)

with cycle structure description

σ0 σ1 σ∞

cycle structure 738 2128.110 387.15

5.2. A THEOREM OF MAGAARD 80

and the following properties:

• The permutations σ0, σ1, σ∞ are each contained in rational conjugacy

classes of J1.

• (σ0, σ1, σ∞) is not rigid with `(σ0, σ1, σ∞) = 7.

A nice fundamental domain for (σ0, σ1, σ∞) is given by

with resulting approximate dessin:

0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6 8

10-3

-4

-2

0

2

4

6

8
10-3

5.2. A THEOREM OF MAGAARD 81

The computed Belyi map

f =
p

q
= 1 +

r

q

defined over the number field K = Q(α) where

α7 − α6 − 2α4 − α3 + 2α2 + 2α + 2 = 0

is presented in file 266.txt.

Theorem 5.4. (a) f = p
q

is a Belyi map with ramification triple of the same

cycle structure description as (σ0, σ1, σ∞).

(b) The arithmetic and geometric monodromy group A and G of f are both

isomorphic to J1. In particular,

p(X)− tq(X) ∈ K(t)[X]

defines a regular extension of K(t) with Galois group J1.

Proof. (a) The inseparability behaviour of p, q and r in combination with

the Riemann-Hurwitz genus formula (Lemma 2.1 (d)) implies the assertion.

(b) According to Lemma 4.10 the group A is primitive as condition (10)

in Proposition 4.3 from [2] is not satisfied modulo p := (5, 2 + α). By the

classification of finite primitive groups A is isomorphic to J1, A266 or S266.

Since
p(X)− f(t)q(X)

X − t
∈ K(t)[X]

has a degree-11 divisor, see ancillary file 266divisor.txt, the group A cannot

be 2-transitive and we remain with A = J1. We also find G = J1 because G is

normal in A and J1 is simple. �

The degree-11 divisor of p(X) − f(t)q(X) in the previous proof was com-

puted via interpolation by using sufficiently enough specializations in t and

factorizing the resulting polynomials.

5.2. A THEOREM OF MAGAARD 82

5.2.3. The sporadic Janko group J2 of degree 280.

Note that there exists a degree-100 genus-0 triple for J2 which was first realized

by Monien in [36].
There is also a degree-280 permutation representation of the group J2 in

which Monien’s triple (σ0, σ1, σ∞) ∈ S280
3 where

σ0 = (1, 69, 269, 102, 88, 71, 83)(2, 254, 143, 226, 117, 238, 134)(3, 163, 30, 174, 181, 162, 152)

(4, 131, 154, 160, 230, 249, 158)(5, 54, 46, 245, 111, 184, 231)(6, 256, 132, 201, 200, 15, 271)

(7, 161, 229, 136, 171, 29, 34)(8, 141, 209, 133, 223, 240, 66)(9, 207, 126, 156, 191, 261, 228)

(10, 185, 129, 100, 97, 58, 147)(11, 225, 39, 220, 41, 192, 27)(12, 265, 241, 110, 144, 42, 151)

(13, 280, 48, 124, 237, 108, 224)(14, 187, 266, 193, 72, 67, 85)(16, 103, 47, 264, 135, 186, 19)

(17, 114, 227, 20, 53, 148, 80)(18, 98, 65, 118, 274, 89, 257)(21, 244, 157, 276, 250, 32, 62)

(22, 242, 116, 25, 208, 56, 267)(23, 87, 127, 79, 45, 221, 239)(24, 195, 251, 44, 189, 95, 94)

(26, 64, 168, 40, 278, 199, 155)(28, 169, 275, 172, 243, 125, 194)(31, 93, 81, 183, 253, 204, 37)

(33, 120, 35, 74, 279, 115, 203)(36, 232, 59, 259, 91, 113, 61)(38, 236, 233, 247, 99, 170, 260)

(43, 175, 121, 202, 57, 196, 78)(49, 146, 197, 235, 206, 277, 234)(50, 137, 86, 263, 128, 217, 55)

(51, 77, 138, 139, 248, 76, 255)(52, 164, 212, 112, 214, 123, 198)(60, 178, 246, 176, 75, 218, 101)

(63, 268, 122, 145, 166, 177, 130)(68, 90, 182, 210, 82, 167, 272)(70, 153, 92, 150, 159, 215, 252)

(73, 142, 106, 104, 180, 219, 188)(84, 119, 258, 179, 273, 216, 211)

(96, 173, 190, 109, 213, 105, 165)(107, 222, 262, 140, 270, 205, 149),

σ1 = (1, 230)(2, 48)(3, 8)(4, 77)(5, 96)(6, 46)(7, 215)(9, 122)(11, 226)(13, 100)(14, 161)(15, 52)

(16, 151)(17, 80)(18, 251)(19, 265)(20, 209)(21, 24)(22, 139)(23, 74)(25, 232)(26, 118)

(27, 66)(28, 54)(29, 34)(30, 128)(31, 234)(32, 195)(33, 87)(35, 120)(36, 83)(37, 146)

(38, 218)(39, 229)(40, 149)(41, 217)(42, 43)(44, 266)(45, 157)(47, 95)(51, 63)(53, 248)

(55, 67)(56, 114)(57, 244)(58, 119)(59, 242)(60, 237)(61, 249)(64, 104)(65, 180)(68, 185)

(69, 173)(70, 81)(71, 208)(72, 137)(75, 125)(76, 141)(78, 103)(79, 188)(82, 153)(84, 182)

(85, 220)(86, 89)(88, 227)(90, 147)(91, 158)(92, 264)(93, 167)(94, 196)(97, 270)(98, 250)

(99, 263)(101, 199)(102, 133)(105, 177)(106, 203)(107, 279)(108, 278)(111, 238)(112, 134)

(115, 168)(117, 240)(121, 262)(123, 271)(124, 212)(126, 233)(127, 142)(129, 206)(130, 131)

(132, 176)(135, 210)(136, 183)(138, 259)(140, 258)(143, 204)(144, 273)(145, 191)(148, 267)

(150, 189)(152, 255)(154, 213)(155, 260)(156, 172)(159, 187)(160, 190)(162, 268)(163, 192)

(164, 178)(165, 169)(166, 275)(170, 274)(171, 252)(174, 247)(175, 179)(181, 207)(184, 223)

(186, 211)(193, 257)(194, 256)(197, 254)(200, 246)(202, 221)(205, 224)(214, 245)(216, 241)

(219, 276)(222, 239)(225, 253)(228, 261)(231, 269)(235, 280)(236, 243)(272, 277)

5.2. A THEOREM OF MAGAARD 83

also turns out to be a genus-0 triple with cycle structure description

σ0 σ1 σ∞

cycle structure 740 2134.112 392.14

and the following properties:

• σ0, σ1, σ∞ are each contained in rational conjugacy classes of J2.

• (σ0, σ1, σ∞) is not rigid with `(σ0, σ1, σ∞) = 10.

A fundamental domain for (σ0, σ1, σ∞) is given by

with resulting approximate dessin:

-3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

-0.1

0

0.1

0.2

0.3

0.4

0.5

5.2. A THEOREM OF MAGAARD 84

The computed Belyi map

f =
p

q
= 1 +

r

q
,

see file 280.txt, is defined over the number field K = Q(α) where

α10 − α9 − 4α8 − 2α7 + 65α6 + 27α5 + 11α4 − 89α3 + 25α2 − 13α + 1 = 0.

Theorem 5.5. (a) f is a Belyi map with ramification triple having same cycle

structure description as (σ0, σ1, σ∞).

(b) The arithmetic monodromy group A of f is isomorphic to Aut(J2) and the

geometric monodromy group G of f is isomorphic to J2.

Proof. (a) This follows from the inseparability behaviour of p, q and r in

combination with the Riemann-Hurwitz genus formula, see Lemma 2.1 (d).

(b) Let OK be the ring of integers in K and p := (283, 167 + α) the prime

ideal in OK lying over 283. Since all coefficients of p and q are contained in the

localization of OK at p we can reduce them modulo p to obtain polynomials

p̄, q̄ ∈ F283[X] leading us to study

AF := Gal(p̄(X)− tq̄(X) | F283(t)).

Computing the irreducible factors of

p̄(X)− p̄(t)

q̄(t)
q̄(X) ∈ F283(t)[X]

enables us to determine the subdegrees of AF which turn out to be 1, 36, 108

and 135. With the help of Corollary 4.11 we see that AF must be primitive.

According to the Magma database for finite primitive groups and the fact that

the discriminant of p̄−tq̄ is not a square in F283(t) only one possibility remains:

AF = Aut(J2). Thanks to Dedekind reduction [27, Theorem VII.2.9] this

implies: A is primitive and Aut(J2) is a subgroup of A, therefore A = Aut(J2)

or A = S280. Since

p(X)− p(t)

q(t)
q(X) ∈ K(t)[X]

has a divisor of degree 36, see ancillary file 280divisor.txt, A is not 2-

transitive, thus A = Aut(J2).

Taking into account that G is normal in A and J2 is simple we also find

G = J2 or G = Aut(J2). Because G is generated by elements having the same

cycle structures as σ0, σ1 and σ∞ we can conclude that G must be an even

group, therefore G = J2. �

5.2. A THEOREM OF MAGAARD 85

5.2.4. The sporadic Conway group Co3 of degree 276.

Complex approximations of a Belyi map with monodromy group Co3 were

independently computed Barth/W. and Monien.
A genus-0 triple for Co3 is given by (σ0, σ1, σ∞) ∈ S280

3 where

σ0 = (1, 59, 221, 174, 190, 137, 96)(2, 86, 51, 27, 245, 275, 111)(3, 104, 11, 131, 136, 155, 25)

(4, 211, 8, 161, 80, 83, 79)(5, 23, 20, 239, 168, 145, 147)(6, 126, 71, 95, 122, 15, 143)

(7, 19, 31, 16, 201, 246, 40)(9, 158, 271, 253, 202, 12, 251)(10, 276, 100, 97, 84, 42, 175)

(13, 207, 194, 173, 109, 85, 152)(14, 219, 115, 261, 274, 159, 146)(17, 62, 119, 259, 170, 256, 192)

(18, 216, 26, 61, 183, 267, 151)(21, 67, 160, 223, 110, 88, 150)(22, 196, 156, 181, 72, 265, 225)

(24, 116, 66, 258, 105, 92, 222)(28, 209, 44, 117, 269, 74, 58)(29, 30, 141, 41, 218, 179, 149)

(32, 198, 235, 208, 262, 182, 164)(33, 180, 128, 244, 266, 68, 272)(34, 212, 247, 242, 103, 91, 125)

(35, 215, 139, 45, 236, 254, 185)(36, 121, 98, 101, 78, 50, 176)(37, 230, 153, 47, 206, 217, 234)

(38, 65, 132, 184, 273, 166, 227)(39, 214, 114, 87, 204, 90, 118)(43, 210, 135, 228, 270, 241, 76)

(46, 189, 255, 48, 130, 89, 120)(49, 56, 197, 205, 144, 70, 123)(52, 199, 142, 93, 124, 54, 250)

(53, 113, 112, 73, 224, 107, 69)(55, 231, 134, 220, 167, 260, 163)(57, 193, 243, 94, 129, 63, 77)

(64, 99, 162, 75, 268, 238, 237)(81, 178, 106, 108, 229, 169, 102)(82, 200, 171, 138, 248, 195, 188)

(127, 187, 264, 249, 252, 148, 263)(133, 172, 154, 165, 157, 186, 226)

(177, 240, 191, 203, 233, 232, 257),

σ1 = (1, 162)(2, 96)(3, 184)(4, 248)(5, 102)(6, 26)(7, 73)(8, 149)(9, 256)(10, 222)(11, 132)

(12, 63)(13, 240)(14, 85)(15, 234)(16, 116)(17, 270)(18, 126)(19, 174)(20, 84)(21, 167)

(23, 125)(24, 263)(25, 115)(27, 226)(28, 197)(29, 71)(30, 151)(31, 199)(32, 154)(33, 121)

(34, 169)(35, 163)(36, 44)(37, 171)(38, 276)(39, 250)(40, 53)(41, 253)(42, 91)(45, 74)

(46, 193)(47, 113)(48, 141)(49, 254)(50, 271)(51, 200)(52, 66)(54, 76)(55, 67)(56, 128)

(58, 144)(59, 259)(60, 107)(61, 264)(62, 135)(64, 158)(65, 92)(68, 268)(69, 224)(70, 139)

(72, 232)(75, 111)(77, 189)(78, 218)(80, 164)(81, 203)(82, 133)(83, 195)(86, 230)(87, 251)

(88, 260)(89, 247)(90, 136)(93, 119)(94, 155)(95, 211)(97, 177)(98, 245)(99, 170)(100, 207)

(101, 186)(103, 187)(105, 131)(106, 191)(108, 152)(109, 166)(110, 215)(112, 190)(114, 192)

(117, 238)(118, 258)(120, 274)(122, 138)(123, 223)(124, 210)(127, 175)(129, 204)(130, 267)

(134, 213)(137, 153)(140, 235)(142, 221)(143, 249)(145, 265)(146, 229)(147, 233)(148, 201)

(156, 225)(157, 179)(159, 212)(160, 185)(161, 165)(168, 181)(172, 262)(176, 237)(180, 209)

(182, 188)(183, 242)(194, 227)(198, 208)(202, 255)(206, 246)(214, 241)(217, 252)(219, 273)

(220, 231)(236, 244)(239, 257)(243, 261)(266, 269)(272, 275)

5.2. A THEOREM OF MAGAARD 86

with cycle structure description

σ0 σ1 σ∞

cycle structure 739.13 2132.112 392.14

and the following properties:

• σ0, σ1, σ∞ are each contained in rational conjugacy classes of Co3.

• (σ0, σ1, σ∞) is not rigid with `(σ0, σ1, σ∞) = 12.

A fundamental domain is given by:

with resulting approximate dessin:

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

-0.04

-0.02

0

0.02

0.04

0.06

In [37] Monien presented such a Co3-Belyi map of degree 276 with coef-

ficients recognized in a degree-12 number field. A strict verification of the

corresponding geometric and algebraic monodromy group by Barth/W. can

be found in [11].

CHAPTER 6

Implementation

In this chapter we present the implementation files that are used in the

computations from chapter 4, consisting of:

• Magma:

– Step1 ComputeFundamentalDomains.txt

• Matlab:

– Step2 DrawDessin.m

– Welding.m

– CreateHyperbolicKite.m

– CreatePolygonAndGluingData.m

In the following sections we give an explanation on how to use the above

files, discuss known issues and provide the code. The above files are available

in the ancillary data of this disseration as well as in the accompanying files

from [10].

Preparations.

In order to run the above codes download the Schwarz-Christoffel toolbox, also

called SC-toolbox , for Matlab from

https://github.com/tobydriscoll/sc-toolbox,

extract the files and add the SC-toolbox folder to your Matlab path. Make

sure that all Magma and Matlab files are contained in the same folder.

87

https://github.com/tobydriscoll/sc-toolbox

6.1. INSTRUCTIONS FOR USE 88

6.1. Instructions for use

The provided code computes an approximate dessin corresponding to a

Belyi map with a prescribed hyperbolic ramification triple (σ0, σ1, σ∞).

Step 1: Magma

• open Magma, load Step1 ComputeFundamentalDomains.txt

• define the permutations σ0, σ1 and apply the command

ComputeFundamentalDomains(σ0,σ1);

• this will create the Matlab-readable file matlab input.m

Step 2: Matlab

• open Matlab, load file Step2 DrawDessin.m

• run Step2 DrawDessin.m

• set the variable index to any allowed number

• Matlab will return three to four figures as well as the coordinates

of the constructed dessin:

– figure(1) visualizes the fundamental domain with the cor-

responding quotient structure

– figure(2) shows the conformal image of the fundamental

domain onto the unit disc with quotient structure

– figure(3) presents the resulting dessin after the welding

process, if possible the dessin is transformed in such a way

that it appears to be symmetric to the real line, the coor-

dinates of the zeroes, ones and poles are accessible via

∗ zeros dessin

∗ ones dessin

∗ poles dessin

– figure(4) shows the symmetrized dessin from figure(3)

(only if possible), the coordinates of the zeroes, ones and

poles are available at

∗ zeros dessin sym

∗ ones dessin sym

∗ poles dessin sym

6.1. INSTRUCTIONS FOR USE 89

The Matlab-output will be presented in the following form:

6.2. KNOWN ISSUES AND SOLUTIONS 90

6.2. Known issues and solutions

Unfortunately, the above codes may occasionally run into some problems.

We will discuss all of the known issues:

Computation problems in Magma.

problem: cannot compute a fundamental domain in Magma

solution: make sure that order(σ1) = 2 and σ0, σ1 generate a transitive

group

reason: our method for computing a fundamental domain only works

if both of the above conditions are satisfied, if order(σ1) is not

equal to 2 one can still produce manually fundamental domains

to be used in the Matlab file Step2 DrawDessin.m

Computation issues regarding the Schwarz-Christoffel map.

problem: - numerically singular matrices during the SC-map computation

- it takes too long to compute the SC-map

- a lot of severe crowding warnings during the computation of

the SC-map

- computed SC-map is of low numerical precision

- it takes too long to compute the pre-images of points under the

computed SC-map

- the computed dessins have zigzagways edges

solution: - try another index in the Matlab file Step2 DrawDessin.m

- re-compute the fundamental domains in Magma as the com-

puted fundamental domains are constructed randomly

- instead of (σ0, σ1, σ∞) switch the roles of σ0 and σ∞, this will

lead to a different dessin with the same monodromy group

reason: computational issues coming with the SC-toolbox, one can instead

work with any other method that conformally maps the interior

of the fundamental domain to the unit disc

6.2. KNOWN ISSUES AND SOLUTIONS 91

Odd-looking dessins.

problem: dessin appears to have a significant amount of false angles

solution: instead of (σ0, σ1, σ∞) switch the roles of σ0 and σ∞, this will

lead to a different dessin with the same monodromy group

reason: this problem occurs if the number of cycles of σ0 of length

order(σ0) is 0 or very low, computer experiments have shown

that some of these dessins still lead to a successful application

of Newton’s method when it comes to compute a complex

approximation for the corresponding Belyi map

problem: in the symmetrized dessin there seems to exist an edge on the real

line crossing all other edges meeting the real line

solution: nothing to worry about

reason: such edges appear if the approximated dessin is mapped via a

Möbius transformation in such a way that an edge goes around in-

finity (on the Riemann sphere), the symmetrization process maps

such edges to the real line, this is no issue when it comes to using

the computed dessin for Newton’s method

problem: symmetrized dessins from figure 4 have unwanted crossing edges

solution: - pick another index

- do not work with the symmetrized dessin (figure 4)

reason: a regular occurence when we force complex conjugate pairs of

edges to be perfectly aligned

problem: there is no pole in the unbounded component in the symmetrized

dessin (figure 4)

solution: - pick another index

- use only the data from figure 3

- manually adjust the coordinates of this bad pole

reason: this only happens if the pole in the unbounded component lies

directly above or below the dessin, in a symmetrized setting such

a pole is expected to have large value lying on the real line

6.3. CODES 92

6.3. Codes

Step1 ComputeFundamentalDomains.txt

1 /*

2 Appl ies the permutation xˆword [1] * yˆword [2] * xˆword [3] * . . . to the

element s t a r t .

3 */

4 f unc t i on c a l c (word , x , y , s t a r t) ;

5 s s := s t a r t ;

6 i f IsOdd(#word) then

7 Append(˜ word , 0) ;

8 end i f ;

9 f o r cc in [1 . . # word /2] do

10 s s ˆ:= xˆword [2* cc =1] ;

11 s s ˆ:= yˆword [2* cc] ;

12 end f o r ;

13 re turn s s ;

14 end func t i on ;

15

16 /*

17 Given permutations x , y gene ra t ing a t r a n s i t i v e permutation group

and y having order 2 ,

18 t h i s f u n c t i o n s uses a s p e c i a l p e t a l l i n g approach to compute some

fundamental domains

19 corre spond ing to the permutation t r i p l e x , y , (x*y) ˆ=1.

20

21 P r i o r i t y i s g iven to x=p e t a l s having s i z e order (x) .

22 */

23 f unc t i on CompFD(x , y)

24

25 a s s e r t Parent (x) eq Parent (y) ;

26 a s s e r t Order (y) eq 2 ;

27 a s s e r t I s T r a n s i t i v e (sub<Parent (x) | x , y>) ;

28

29 deg := Degree (Parent (x)) ;

30 Gx := sub<Sym(deg) | x>;

31 Orb := Orbits (Gx) ;

32

6.3. CODES 93

33 V := { Min(o) : o in Orb | #o eq Order (x) } ;

34 G := Graph< V | {{e1 , e2} : e1 , e2 in V | not I s D i s j o i n t (Orbit (Gx,

e1) , Orbit (Gx, e2) ˆy) and e1 ne e2} >;

35

36 comps := Components (G) ;

37 Sort (˜ comps , func< x , y | #y=#x >) ;

38 i f #comps ge 1 then

39 Gmax,Vmax,E := sub< G | comps [1] >;

40 Vset := Support (Gmax) ;

41 end i f ;

42

43 i f #comps ge 1 then

44 STARTLIST := Sort ([a : a in Vset]) ;

45 e l s e

46 STARTLIST := Sort ([Min(o) : o in Orb]) ;

47 end i f ;

48

49 FD List := [] ;

50 f o r s t a r t in STARTLIST do

51

52 b f s t r e e := [] ;

53

54 i f #comps ge 1 then

55

56 // randomized breadth= f i r s t search in the graph G s t a r t i n g at the

ver tex s t a r t

57 done := { Minimum(Orbit (Gx, s t a r t)) } ;

58 oldgen := [Minimum(Orbit (Gx, s t a r t))] ;

59 repeat

60 newgen := [] ;

61 f o r e l e in [o ldgen [k] : k in [1 . . # oldgen] ˆRandom(Sym(#oldgen))

] do

62 f o r kk in { i : i in Vset | Vmax! i in Neighbours (Vmax! e l e) } do

63 i f kk not in done then

64 Append(˜ newgen , Minimum(Orbit (Gx, kk))) ;

65 done j o i n := {Minimum(Orbit (Gx, kk)) } ;

66 Append(˜ b f s t r e e , [Minimum(Orbit (Gx, e l e)) ,Minimum(

Orbit (Gx, kk))]) ;

6.3. CODES 94

67 end i f ;

68 end f o r ;

69 end f o r ;

70 oldgen := newgen ;

71 u n t i l #newgen eq 0 ;

72 end i f ;

73

74 LISTWAY := [] ;

75

76 // f i r s t p e t a l

77 f o r cc in [0 . . # Orbit (Gx, s t a r t)=1] do

78 index := s t a r t ˆ(xˆ cc) ;

79 LISTWAY[index] := [cc] ;

80 end f o r ;

81

82 // adds a l l p o s s i b l e x=p e t a l s to the f i r s t p e t a l

83 f o r l in b f s t r e e do

84 a := l [1] ; b := l [2] ;

85 f o r cc in [0 . . #Orbit (Gx, a)=1] do

86 i f not I s D i s j o i n t (Orbit (Gx, a ˆ ((xˆ cc) *y)) , Orbit (Gx, b)) then

87 c := a ˆ(xˆ cc) ;

88 break cc ;

89 end i f ;

90 end f o r ;

91 f o r cc in [0 . . Order (x)=1] do

92 index := c ˆ(y*(xˆ cc)) ;

93 i f not I sDe f ined (LISTWAY, index) then

94 LISTWAY[index] := LISTWAY[c] cat [1 , cc] ;

95 end i f ;

96 end f o r ;

97 end f o r ;

98

99 done := { c a l c (w, x , y , s t a r t) : w in LISTWAY} ;

100

101 // adds a l l remaining k i t e s to the cur rent c o l l e c t i o n r e g a r d l e s s

o f the p e t a l property

102 whi le #done l t deg do

103 f o r e l e in { 1 . . deg} d i f f done do

6.3. CODES 95

104 i f e l e ˆy in done then

105 i f IsOdd(#LISTWAY[e l e ˆy]) then

106 LISTWAY[e l e] := LISTWAY[e l e ˆy] cat [1] ;

107 e l s e

108 LISTWAY[e l e] := LISTWAY[e l e ˆy] cat [0 , 1] ;

109 end i f ;

110 done j o i n := { e l e } ;

111 end i f ;

112 end f o r ;

113 repeat

114 stop := true ;

115 f o r e l e in { 1 . . deg} d i f f done do

116 i f e l e ˆ(xˆ=1) in done then

117 i f IsEven(#LISTWAY[e l e ˆ(xˆ(=1))]) then

118 LISTWAY[e l e] := LISTWAY[e l e ˆ(xˆ(=1))] cat [1] ;

119 e l s e

120 LISTWAY[e l e] := LISTWAY[e l e ˆ(xˆ(=1))] cat [0 , 1] ;

121 end i f ;

122 done j o i n := { e l e } ;

123 stop := f a l s e ;

124 end i f ;

125 end f o r ;

126 u n t i l stop ;

127 end whi le ;

128

129 LISTWAY := [m cat [0 : k in [0 . . Maximum([#m : m in LISTWAY])=#m]]

: m in LISTWAY] ;

130

131 FD := [] ;

132 f o r m in LISTWAY do

133 FD[c a l c (m, x , y , s t a r t)] := m;

134 end f o r ;

135

136 a s s e r t #FD eq deg and [c a l c (m, x , y , s t a r t) : m in FD] eq [1 . . deg] ;

137

138 Append(˜ FD List ,< s ta r t ,FD>) ;

139

140 end f o r ;

6.3. CODES 96

141

142 re turn FD List ;

143

144 end func t i on ;

145

146 /*

147 Given a fundamental domain FD (corre spond ing to permutat ions x , y

and c e n t r a l k i t e s t a r t)

148 t h i s func t i on computes the border edges o f the fundamental domain

and the quot i ent s t r u c t u r e on the border .

149 */

150 f unc t i on ComputeBorderAndGluingData (FD, x , y , s t a r t) ;

151

152 a := Order (x) ; b := Order (y) ; c := Order (x*y) ;

153 RR := Rea lF ie ld (50) ;

154 CC<i> := ComplexField (50) ;

155 lambda := (Cos (Pi (RR) /a) * Cos (Pi (RR) /b) + Cos (Pi (RR) /c)) /(Sin (Pi (

RR) /a) *Sin (Pi (RR) /b)) ;

156 mu := lambda + Sqrt (lambdaˆ2 = 1) ;

157 DA := Matrix (RR, 2 , 2 , [Cos (Pi (RR) /a) , Sin (Pi (RR) /a) , =Sin (Pi (RR) /a) ,

Cos (Pi (RR) /a)]) ;

158 DB := Matrix (RR, 2 , 2 , [Cos (Pi (RR) /b) , mu*Sin (Pi (RR) /b) , =(Sin (Pi (RR)

/b)) /mu , Cos (Pi (RR) /b)]) ;

159

160 // computes the ” cente r ” o f the k i t e cor re spond ing to word

161 f unc t i on WordToKiteCenter (word)

162 s s := Matrix (RR, 2 , 2 , [1 , 0 , 0 , 1]) ;

163 i f IsOdd(#word) then

164 Append(˜ word , 0) ;

165 end i f ;

166 f o r cc in [1 . . # word /2] do

167 s s := s s * DAˆword [2* cc =1] ;

168 s s := s s * DBˆword [2* cc] ;

169 end f o r ;

170 mat := s s ;

171 c := (i+i *mu) /2 ;

172 s s := (mat [1 , 1] * c + mat [1 , 2]) /(mat [2 , 1] * c + mat [2 , 2]) ;

173 re turn (ss=i) /(s s+i) ;

6.3. CODES 97

174 end func t i on ;

175

176 c e n t e r l i s t := [WordToKiteCenter (word) : word in FD] ;

177

178 border := [] ;

179 f o r e l e in FD do

180

181 maxpos := Maximum ([1] cat [i : i in [1 . . # e l e] | e l e [i] ne 0]) ;

182 l 1 := e l e ; l 2 := e l e ; l 3 := e l e ; l 4 := e l e ;

183

184 i f IsOdd (maxpos) then

185 l 1 [maxpos] :=(e l e [maxpos]+1) mod a ;

186 l 2 [maxpos] :=(e l e [maxpos]=1) mod a ;

187 l 3 [maxpos+1]:=(e l e [maxpos+1]+1) mod b ;

188 l 4 [maxpos+1]:=(e l e [maxpos+1]=1) mod b ;

189 e l s e

190 l 1 [maxpos] :=(e l e [maxpos]+1) mod b ;

191 l 2 [maxpos] :=(e l e [maxpos]=1) mod b ;

192 l 3 [maxpos+1]:=(e l e [maxpos+1]+1) mod a ;

193 l 4 [maxpos+1]:=(e l e [maxpos+1]=1) mod a ;

194 end i f ;

195

196 i f l 1 not in FD and Abs(WordToKiteCenter (l 1) = c e n t e r l i s t [c a l c (l1 , x

, y , s t a r t)]) gt 10ˆ=10 then

197 Append(˜ border , [c a l c (e l e , x , y , s t a r t) , c a l c (l1 , x , y , s t a r t) , maxpos

mod 2 ,(=1) ˆ(maxpos+1)]) ;

198 end i f ;

199 i f l 2 not in FD and Abs(WordToKiteCenter (l 2) = c e n t e r l i s t [c a l c (l2 , x

, y , s t a r t)]) gt 10ˆ=10 then

200 Append(˜ border , [c a l c (e l e , x , y , s t a r t) , c a l c (l2 , x , y , s t a r t) , maxpos

mod 2,=(=1) ˆ(maxpos+1)]) ;

201 end i f ;

202 i f l 3 not in FD and Abs(WordToKiteCenter (l 3) = c e n t e r l i s t [c a l c (l3 , x

, y , s t a r t)]) gt 10ˆ=10 then

203 Append(˜ border , [c a l c (e l e , x , y , s t a r t) , c a l c (l3 , x , y , s t a r t) , (maxpos

+1) mod 2 ,(=1) ˆ(maxpos)]) ;

204 end i f ;

6.3. CODES 98

205 i f l 4 not in FD and Abs(WordToKiteCenter (l 4) = c e n t e r l i s t [c a l c (l4 , x

, y , s t a r t)]) gt 10ˆ=10 then

206 Append(˜ border , [c a l c (e l e , x , y , s t a r t) , c a l c (l4 , x , y , s t a r t) , (maxpos

+1) mod 2,=(=1) ˆ(maxpos)]) ;

207 end i f ;

208

209 end f o r ;

210

211 r e s u l t := [] ;

212 counter := 1 ;

213 whi le #border gt 0 do

214 e l e := border [1] ;

215 Exclude (˜ border , e l e) ;

216 t a r g e t := [e l e [2] , e l e [1] , e l e [3] ,= e l e [4]] ;

217 Exclude (˜ border , t a r g e t) ;

218 Append(˜ r e s u l t , e l e cat [counter]) ;

219 Append(˜ r e s u l t , t a r g e t cat [counter]) ;

220 counter +:= 1 ;

221 end whi le ;

222

223 re turn r e s u l t ;

224 end func t i on ;

225

226 /*

227 Given permutations x , y such that

228 = x , y generate a t r a n s i t i v e permutation group

229 = x , y , z :=(x*y)ˆ=1 i s hype rbo l i c

230 = y has order 2

231 t h i s func t i on computes fundamental domains cor re spond ing to the

permutation t r i p l e x , y , z

232 as we l l as the g lu ing data on the border o f the fundamental

domains .

233

234 By d e f a u l t the output i s wr i t t en to the f i l e matlab input .m.

235 I f the parameter WriteToFile i s s e t to f a l s e or the f i l e can not

be wr i t t en

236 then the output i s i n s t ead pr in ted in the conso l e and can be saved

to a f i l e or

6.3. CODES 99

237 d i r e c t l y i n s e r t e d in to Matlab manually .

238 */

239 procedure ComputeFundamentalDomains (x , y : WriteToFile := true)

240

241 a s s e r t Parent (x) eq Parent (y) ;

242 G := sub<Parent (x) | x , y >;

243 deg := Degree (G) ;

244 a s s e r t Order (y) eq 2 ;

245 a s s e r t I s T r a n s i t i v e (G) ;

246 z := (x*y) ˆ=1;

247 a:= Order (x) ; b:= Order (y) ; c := Order (z) ;

248 a s s e r t 1/a+1/b+1/c l t 1 ;

249

250 pr in t ”computing fundamental domains f o r a t r i p l e (x , y , z) with

c y c l e s t r u c t u r e s : ” ;

251 Cyc leStructure (x) ; Cyc leStructure (y) ; Cyc l eSt ructure (z) ;

252

253 out := ”%” cat S p r i n t f (” Cyc leSt ructure (x) = ’%o ’ ;\ n” ,

Cyc l eStructure (x)) ;

254 out cat := ”%” cat S p r i n t f (” Cyc leStructure (y) = ’%o ’ ;\ n” ,

Cyc l eStructure (y)) ;

255 out cat := ”%” cat S p r i n t f (” Cyc leStructure (z) = ’%o ’ ;\ n\n” ,

Cyc l eStructure (z)) ;

256

257 out cat := S p r i n t f (”permx = %o ;\n” , [j ˆx : j in [1 . . deg]]) ;

258 out cat := S p r i n t f (”permy = %o ;\n” , [j ˆy : j in [1 . . deg]]) ;

259 out cat := S p r i n t f (”permz = %o ;\n\n” , [j ˆz : j in [1 . . deg]]) ;

260

261 out cat := ” permx cyc les = {” ;

262 f o r orb in Orbits (sub<G | x>) do

263 out cat := Spr int ([j : j in orb]) ;

264 out cat := ” , ” ;

265 end f o r ;

266 out := Prune (out) cat ” } ;\n” ;

267

268 out cat := ” permy cyc les = {” ;

269 f o r orb in Orbits (sub<G | y>) do

270 out cat := Spr int ([j : j in orb]) ;

6.3. CODES 100

271 out cat := ” , ” ;

272 end f o r ;

273 out := Prune (out) cat ” } ;\n” ;

274

275 out cat := ” permz cyc l e s = {” ;

276 f o r orb in Orbits (sub<G | z>) do

277 out cat := Spr int ([j : j in orb]) ;

278 out cat := ” , ” ;

279 end f o r ;

280 out := Prune (out) cat ” } ;\n\n” ;

281

282 out cat := S p r i n t f (”a = %o ;\n” , a) ;

283 out cat := S p r i n t f (”b = %o ;\n” ,b) ;

284 out cat := S p r i n t f (”c = %o ;\n\n” , c) ;

285

286 Sigma := f a l s e ;

287 NG := Normal izer (Sym(Degree (G)) ,G) ;

288 f o r a in [b : b in Normal izer (NG, sub<NG| x>) meet Normal izer (NG, sub<

NG| y>) | Order (b) l e 2] do

289 i f xˆa eq xˆ=1 and yˆa eq yˆ=1 then

290 Sigma := a ;

291 break a ;

292 end i f ;

293 end f o r ;

294 i f Sigma cmpeq f a l s e then

295 out cat := S p r i n t f (” ConjugateEdges = %o ;\n\n” , []) ;

296 e l s e

297 i f 1 in [#o : o in Orbits (sub<NG| Sigma>) cat Orbits (sub<NG|
Sigma*y>) cat Orbits (sub<NG| Sigma*y*z>)] then

298 out cat := S p r i n t f (” ConjugateEdges = %o ;\n\n” , [j ˆSigma : j

in [1 . . deg]]) ;

299 e l s e

300 out cat := S p r i n t f (” ConjugateEdges = %o ;\n\n” , []) ;

301 end i f ;

302 end i f ;

303

304 FDList := CompFD(x , y) ;

305 pr in t ”number o f computed fundamental domains : ” , #FDList ;

6.3. CODES 101

306

307 counter := 1 ;

308 f o r obj in FDList do

309 s t a r t , FD := Explode (obj) ;

310 out cat := S p r i n t f (”FDList{%o}=%o ;\n\n” , counter ,FD) ;

311 out cat := S p r i n t f (” GluingDataList{%o}=%o ;\n\n” , counter ,

ComputeBorderAndGluingData (FD, x , y , s t a r t)) ;

312 counter +:= 1 ;

313 end f o r ;

314

315 SetColumns (0) ;

316 p r i n t s t r i n g := true ;

317 i f WriteToFile then

318 t ry

319 Write (” matlab input .m” , out : Overwrite := true) ;

320 pr in t ” fundamental domains were saved to f i l e matlab input .m. ”

;

321 pr in t ” p l e a s e run Step2 DrawDessin .m in Matlab now . ” ;

322 p r i n t s t r i n g := f a l s e ;

323 catch e

324 pr in t ” Error : Could not wr i t e to f i l e matlab input . txt . ” ;

325 end try ;

326 end i f ;

327 i f p r i n t s t r i n g then

328 pr in t ” p l e a s e copy the f o l l o w i n g output in to a f i l e c a l l e d

matlab input .m and run Step2 DrawDessin .m in Matlab

a f t e rwards . ” ;

329 pr in t ”%============ BEGIN matlab input .m ============ ” ;

330 pr in t out ;

331 pr in t ”%============ END matlab input .m ============ ” ;

332 end i f ;

333

334 end procedure ;

6.3. CODES 102

Step2 DrawDessin.m

This is the main file that requires all of the other Matlab files.

1 c l e a r ; c l o s e a l l ; c l c ; warning (’ on ’ , ’ a l l ’) ;

2

3 %%

4 %% number o f chosen fundamental domain

5 index = 1 ;

6 %%

7 %% output data

8 %

9 % f i g u r e (1) : l a b e l l e d fundamental domain

10 % with the corre spond ing quot i ent s t r u c t u r e

11 %

12 % f i g u r e (2) : c l o s u r e o f fundamental domain mapped to the un i t d i s c

13 % with the corre spond ing quot i ent s t r u c t u r e

14 %

15 % f i g u r e (3) : d e s s i n in the complex plane , the coo rd ina t e s o f the

16 % zeroes , ones and po l e s :

17 % z e r o s d e s s i n

18 % o n e s d e s s i n

19 % p o l e s d e s s i n

20 %

21 % f i g u r e (4) : (op t i o na l) symmetrized d e s s i n in the complex plane ,

22 % coord ina t e s o f the zeroes , ones and po l e s :

23 % zero s de s s i n sym

24 % ones des s in sym

25 % po l e s de s s i n sym

26 %

27 %%

28

29 % load Magma=computed fundamental domains , g lu ing data from f i l e

30 c l e a r (’ mat lab input .m’)

31 run (’ matlab input .m’)

32

33 degree = s i z e (permx , 2) ;

34 f p r i n t f (’ degree : %d\n ’ , degree) ;

35 f p r i n t f (’ number o f computed fundamental domains : %d (choose index

between 1 and %d) \n ’ , s i z e (FDList , 2) , s i z e (FDList , 2)) ;

6.3. CODES 103

36

37 FD = FDList{ index } ;

38 GluingData = GluingDataList { index } ;

39

40 %% Computing a fundamental domain

41 % Create hype rbo l i c k i t e in H

42 [z1 , z2 , z3 , cz1 , cz2] = CreateHyperbo l i cKite (a , b , c) ;

43

44 % d e f i n e hype rbo l i c r o t a t i o n matr i ce s DA and DB

45 lambda = (cos (p i /a) * cos (p i /b) + cos (p i /c)) /(s i n (p i /a) * s i n (p i /b))

;

46 mu = lambda + s q r t (lambdaˆ2 = 1) ;

47 DA = [cos (p i /a) s i n (p i /a) ; =s i n (p i /a) cos (p i /a)] ;

48 DB = [cos (p i /b) mu* s i n (p i /b) ; =(s i n (p i /b)) /mu cos (p i /b)] ;

49

50 % Assemble t rans fo rmat ion matr i ce s (products o f DA and DB)

51 % accord ing to the chosen fundamental domain

52 [m, n] = s i z e (FD) ;

53 T = c e l l (1 ,m) ;

54 f o r j =1:m

55 T{ j } = eye (s i z e (DA)) ;

56 s = 1 ;

57 f o r h=1:(n/2)

58 T{ j } = T{ j }*DAˆFD(j , s) ;

59 T{ j } = T{ j }*DBˆFD(j , s+1) ;

60 s = s +2;

61 end

62 end

63

64 % Apply t rans fo rmat ion matr i ce s to the hype rbo l i c k i t e to

65 % obta in the fundamental domain

66 moz1 = c e l l (1 ,m) ; moz2 = c e l l (1 ,m) ; cmoz1 = c e l l (1 ,m) ; cmoz2 =

c e l l (1 ,m) ; cz3 = c e l l (1 ,m) ;

67 f o r j =1:m

68 moz1{ j } = w(mo(T{ j } , z1)) ;

69 moz2{ j } = w(mo(T{ j } , z2)) ;

70 cmoz1{ j } = w(mo(T{ j } , cz1)) ;

71 cmoz2{ j } = w(mo(T{ j } , cz2)) ;

6.3. CODES 104

72 cz3 { j } = w(mo(T{ j } , z3)) ;

73 end

74

75 % plo t the l a b e l l e d fundamental domain

76 f i g u r e (1)

77 c l f

78 t i t l e (’ l a b e l l e d fundamental domain ’)

79 hold on

80 a x i s equal

81 f o r j =1:m

82 p lo t (r e a l (moz1{ j }) , imag (moz1{ j }) , ’ b lack ’ , ’ LineWidth ’ , . 1 5)

83 p lo t (r e a l (moz2{ j }) , imag (moz2{ j }) , ’ b lack ’ , ’ LineWidth ’ , . 1 5)

84 p lo t (r e a l (cmoz1{ j }) , imag (cmoz1{ j }) , ’ b lack ’ , ’ LineWidth ’ , . 1 5)

85 p lo t (r e a l (cmoz2{ j }) , imag (cmoz2{ j }) , ’ b lack ’ , ’ LineWidth ’ , . 1 5)

86 p lo t (r e a l (cz3 { j }) , imag (cz3 { j }) , ’ red ’ , ’ LineWidth ’ , 1 . 5)

87 t ex t (r e a l (cz3 { j } (100)) , imag (cz3 { j } (100)) , num2str (j))

88 end

89 p lo t (cos (0 : 0 . 0 1 : 2 * pi) , s i n (0 : 0 . 0 1 : 2 * pi) , ’ k ’)

90

91

92 %% mapping the fundamental domain to the un i t d i s c

93

94 d e s s i n e d g e s = ze ro s (m, s i z e (z3 , 2)) ;

95 f o r j = 1 :m

96 d e s s i n e d g e s (j , :) = cz3 { j } ;

97 end

98

99 matcmoz1 = ce l l 2mat (cmoz1 ’) ;

100 d e s s i n p o l e s = matcmoz1 (: , end) ;

101

102 border edges = ze ro s (s i z e (GluingData , 1) , s i z e (z1 , 2) +1) ;

103 f o r j = 1 : s i z e (GluingData , 1)

104 edge = GluingData (j , :) ;

105 i f edge (3) == 0 && edge (4) == 1

106 border edge = cz2 ;

107 end

108 i f edge (3) == 0 && edge (4) == =1

109 border edge = z2 ;

6.3. CODES 105

110 end

111 i f edge (3) == 1 && edge (4) == 1

112 border edge = cz1 ;

113 end

114 i f edge (3) == 1 && edge (4) == =1

115 border edge = z1 ;

116 end

117 border edges (j , :) = [edge (5) ,w(mo(T{ edge (1) } , border edge))] ;

118 end

119

120 [p o l y g o n v e r t i c e s , L] = CreatePolygonAndGluingData (border edges) ;

121 poly = polygon (f l i p l r (p o l y g o n v e r t i c e s . ’)) ;

122

123 % plo t quot i ent s t r u c t u r e on the border o f the fundamental domain

124 pv = p o l y g o n v e r t i c e s ;

125 %plo t (r e a l (pv) , imag (pv) , ’ x ’ , ’ co lo r ’ , [0 0 . 3 0]) ;

126 q = s i z e (pv , 1) ;

127 f o r j = 1 : s i z e (L , 1)

128 f o r j j = [1 , 2]

129 p1 = pv (L(j , j j)) ;

130 p2 = pv (mod(L(j , j j)=2,q) +1) ;

131 m=(p1+p2) /2 ;

132 t ex t (r e a l (m) , imag (m) , num2str (j) , ’ c o l o r ’ , [0 0 . 3 0])

133 end

134 end

135

136 f p r i n t f (’ computation o f SC map f o r a polygon with %d edges s t a r t s

. . . \ n ’ , l ength (poly))

137 sc map = diskmap (poly) ;

138 f p r i n t f (’ accuracy o f computed SC map : %d\n ’ , accuracy (sc map))

139

140 f p r i n t f (’ mapping fundamental domain and d e s s i n to D. . . \ n ’)

141 p o l y g o n v e r t i c e s = eva l i nv (sc map , p o l y g o n v e r t i c e s) ;

142 d e s s i n e d g e s = eva l i nv (sc map , d e s s i n e d g e s) ;

143 d e s s i n p o l e s = eva l i nv (sc map , d e s s i n p o l e s) ;

144

145 %% plo t the c l o s u r e o f fundamental domain mapped to the

146 %% unit d i s c with the corre spond ing quot i ent s t r u c t u r e

6.3. CODES 106

147 f i g u r e (2)

148 c l f

149 t i t l e (’ fundamental domain mapped to the un i t d i s c ’)

150 hold on

151 a x i s equal

152 % plo t c i r c l e

153 p lo t (cos (0 : 0 . 0 1 : 2 * pi) , s i n (0 : 0 . 0 1 : 2 * pi) , ’ Color ’ , ’ k ’)

154 % plo t d e s s i n

155 f o r j =1: s i z e (de s s in edge s , 1)

156 p lo t (r e a l (d e s s i n e d g e s (j , :)) , imag (d e s s i n e d g e s (j , :)))

157 t ex t (r e a l (d e s s i n e d g e s (j , end /2)) , imag (d e s s i n e d g e s (j , end /2)) ,

num2str (j))

158 end

159 % plo t po l e s

160 p lo t (r e a l (d e s s i n p o l e s (: , 1)) , imag (d e s s i n p o l e s (: , 1)) , ’ bx ’)

161 % plo t border o f the fundamental domain

162 pv = p o l y g o n v e r t i c e s ;

163 p lo t (r e a l (pv) , imag (pv) , ’ x ’ , ’ c o l o r ’ , [0 0 . 3 0]) ;

164 q = s i z e (pv , 1) ;

165 f o r j = 1 : s i z e (L , 1)

166 f o r j j = [1 , 2]

167 p1 = pv (L(j , j j)) ;

168 p2 = pv (mod(L(j , j j)=2,q) +1) ;

169 m = (p1+p2) /2 ;

170 m = m/norm(m) ;

171 t ex t (r e a l (m) , imag (m) , num2str (j) , ’ c o l o r ’ , [0 0 . 3 0])

172 end

173 end

174

175 %% Welding proce s s

176 di sp (’ s t a r t welding ’)

177 [zz , po l e s] = Welding (p o l y g o n v e r t i c e s , de s s in edge s , d e s s i n p o l e s , L)

;

178 di sp (’ welding f i n i s h e d ’)

179

180 %% Symmetrizing proce s s (i f p o s s i b l e)

181 i f s i z e (ConjugateEdges , 2)>0

182 r e a l e d g e s = f i n d (˜ (ConjugateEdges = (1 : degree))) ’ ;

6.3. CODES 107

183 nonrea l edge s = f i n d ((ConjugateEdges = (1 : degree))) ’ ;

184 edges = [r e a l e d g e s ; nonrea l edge s] ;

185 i f s i z e (r e a l e d g e s , 1) > 0

186 vektor = [edges (1) , edges (1) , edges (2)] ;

187 r1 = vektor (1) ; r2 = ConjugateEdges (r1) ;

188 A = (zz (r1 , 1)+zz (r2 , 1)) /2 ;

189 r1 = vektor (2) ; r2 = ConjugateEdges (r1) ;

190 B = (zz (r1 , end)+zz (r2 , end)) /2 ;

191 r1 = vektor (3) ; r2 = ConjugateEdges (r1) ;

192 C = (zz (r1 , 1 00)+zz (r2 , 1 0 0)) /2 ;

193 zz = moeb(zz ,A,B,C,=1 ,0 ,1) ;

194 po l e s = moeb(po les ,A,B,C,=1 ,0 ,1) ;

195 e l s e

196 r1 = edges (1) ; r2 = ConjugateEdges (r1) ;

197 A = zz (r1 , 1 00) ;

198 B = zz (r2 , 10 0) ;

199 r1 = edges (end) ; r2 = ConjugateEdges (r1) ;

200 C = (zz (r1 , end)+zz (r2 , end)) /2 ;

201 zz = moeb(zz ,A,B,C, 1 i ,=1 i , 1) ;

202 po l e s = moeb(po les ,A,B,C, 1 i ,=1 i , 1) ;

203 end

204 end

205

206 %% computing the po l e s

207 po l e s2 = po l e s ;

208 f o r j = 1 : s i z e (permz cyc les , 2)

209 c = ce l l 2mat (permz cyc l e s (j)) ;

210 f o r k = ce l l 2mat (permz cyc l e s (j))

211 po l e s2 (k) = mean(po l e s (c)) ;

212 end

213 end

214 po l e s = po l e s2 ;

215 polesneu = ze ro s (s i z e (permz cyc les , 2) , 2) ;

216 f o r j = 1 : s i z e (permz cyc les , 2)

217 c = ce l l 2mat (permz cyc l e s (j)) ;

218 polesneu (j , :) = [mean(po l e s (c)) , s i z e (c , 2)] ;

219 end

220

6.3. CODES 108

221 %% plo t the r e s u l t i n g d e s s i n in the complex plane

222 f i g u r e (3) ;

223 c l f

224 t i t l e (’ d e s s i n ’)

225 hold on

226 a x i s equal

227

228 % plo t d e s s i n

229 f o r j =1: s i z e (zz , 1)

230 p lo t (r e a l (zz (j , :)) , imag (zz (j , :)))

231 t ex t (r e a l (zz (j , end /2)) , imag (zz (j , end /2)) , num2str (j))

232 end

233

234 % plo t po l e s

235 p lo t (r e a l (po lesneu (: , 1)) , imag (po lesneu (: , 1)) , ’ bx ’)

236

237 % output data

238 z e r o s d e s s i n = zz (: , 1) ;

239 o n e s d e s s i n = zz (: , end) ;

240 p o l e s d e s s i n = po l e s ;

241

242 %% Smoothing proce s s (i f p o s s i b l e) , i . e . averag ing out complex

conjugate po in t s o f the d e s s i n

243 i f s i z e (ConjugateEdges , 2) > 0

244 zz smooth = ze ro s (s i z e (zz)) ;

245 f o r count = 1 : degree

246 A = zz (count , :) ; B = zz (ConjugateEdges (count) , :) ;

247 zz smooth (count , :) = r e a l (1/2 * (A + B)) + 1 i *(imag (1/2 *

(A = B))) ;

248 end

249 LC = 1 : s i z e (polesneu , 1) ;

250 po l e s2 = ze ro s (s i z e (po l e s)) ;

251 f o r j = 1 : s i z e (polesneu , 1)

252 i f ismember (j ,LC)

253 c = ce l l 2mat (permz cyc l e s (j)) ;

254 t t = ConjugateEdges (permx (c (1))) ;

255 f o r j j =1: s i z e (permz cyc les , 2)

256 c = ce l l 2mat (permz cyc l e s (j j)) ;

6.3. CODES 109

257 f = f i n d (c==t t) ;

258 i f s i z e (f , 2) > 0

259 break

260 end

261 end

262 i f j j == j

263 po l e s2 (ce l l 2mat (permz cyc l e s (j))) = r e a l (po lesneu (

j , 1)) ;

264 e l s e

265 A = polesneu (j , 1) ; B = polesneu (j j , 1) ;

266 r r = r e a l (1/2 * (A + B)) + 1 i *(imag (1/2 * (A = B)

)) ;

267 po l e s2 (ce l l 2mat (permz cyc l e s (j))) = r r ;

268 po l e s2 (ce l l 2mat (permz cyc l e s (j j))) = conj (r r) ;

269 end

270 LC = s e t d i f f (LC , [j , j j]) ;

271 end

272 end

273 po l e s3 = ze ro s (s i z e (permz cyc les , 2) , 2) ;

274 f o r j = 1 : s i z e (permz cyc les , 2)

275 c = ce l l 2mat (permz cyc l e s (j)) ;

276 po l e s3 (j , :) = [mean(po l e s2 (c)) , s i z e (c , 2)] ;

277 end

278

279 %% plo t the r e s u l t i n g symmetrized d e s s i n in the complex plane (i f

p o s s i b l e)

280 f i g u r e (4) ;

281 c l f

282 t i t l e (’ symmetrized d e s s i n ’)

283 hold on

284 a x i s equal

285 % plo t r e a l d e s s i n

286 f o r j =1: s i z e (zz smooth , 1)

287 p lo t (r e a l (zz smooth (j , :)) , imag (zz smooth (j , :)))

288 t ex t (r e a l (zz smooth (j , end /2)) , imag (zz smooth (j , end /2)) ,

num2str (j))

289 end

290 % plo t po l e s

6.3. CODES 110

291 f o r j =1: s i z e (po les3 , 1)

292 p lo t (r e a l (po l e s3 (j , 1)) ,+imag (po l e s3 (j , 1)) , ’ bx ’)

293 end

294 % output data

295 z e ro s de s s i n sym = zz smooth (: , 1) ;

296 ones des s in sym = zz smooth (: , end) ;

297 po l e s de s s i n sym = po l e s2 ;

298 end

299

300 %%

301 %%

302

303 f unc t i on r e s = mo(M, z)

304 % computes the image o f z under the Moebius t rans fo rmat ion given

by a 2x2

305 % matrix M

306 r e s = (M(1 ,1) *z + M(1 ,2)) . / (M(2 , 1) *z + M(2 ,2)) ;

307 end

308

309 f unc t i on r e s = w(z)

310 % maps the upper h a l f p lane to the un i t d i s c v ia z => (z=i) /(z+i)

311 r e s = (z=1 i) . / (z+1 i) ;

312 end

313

314 f unc t i on r e s = moeb(z , z1 , z2 , z3 , w1 , w2 , w3)

315 % computes the image o f z o f a Moebius t rans fo rmat ion mapping [z1 ,

z2 , z3] to [w1 , w2 , w3]

316 r e s = (w1*(=w2*(z1 = z2) *(z = z3* ones (s i z e (z))) + w3*(z = z2* ones (

s i z e (z))) *(z1 = z3)) = . . .

317 w2* w3* (z = z1* ones (s i z e (z))) * (z2 = z3)) . / (w3* (z1 = z2) * (z =

z3* ones (s i z e (z))) = . . .

318 w2* (z = z2* ones (s i z e (z))) * (z1 = z3) + w1* (z = z1* ones (s i z e (z)

)) * (z2 = z3)) ;

319 end

6.3. CODES 111

Welding.m

1 % The f o l l o w i n g code i s ex t rac t ed from the weld .m f i l e a v a i l a b l e

at

2 % https : // github . com/ o e l a r n e s / t reewe ld

3

4 f unc t i on [zz , po l e s] = Welding (z , zz , po les , L)

5

6 z = exp (p i /30*1 i) *z ;

7 po l e s = exp (p i /30*1 i) * po l e s ;

8 zz = exp (p i /30*1 i) * zz ;

9

10 n = s i z e (z , 1) /2 ;

11

12 % new degree data f o r welding

13 d = ones (2 * n , 1) ;

14

15 z = (z = 1) . / (z + 1) ;

16 zz = (zz = 1) . / (zz + 1) ;

17 po l e s = (po l e s = 1) . / (po l e s + 1) ;

18

19 z = [z ; 1] ;

20

21 %% the welding loop

22 f o r j = 1 : s i z e (L , 1)=1

23 % i1 , i2 , i3 , i 4 are the i n d i c e s o f the endpoints o f the next

i n t e r v a l to

24 % be welded

25 i 1 = L(j , 1) ;

26 i 2 = mod(L(j , 1)=2, 2 * n) + 1 ;

27 i 3 = L(j , 2) ;

28 i 4 = mod(L(j , 2)=2, 2 * n) + 1 ;

29 % the va lue s on the c i r c l e

30 x1 = z (i 1) ;

31 x2 = . 5 * z (i 2) + . 5 * z (i 3) ;

32 x3 = z (i 4) ;

33 % the ang le to evenly space the new vertex

34 alpha = d(i 4) / (d(i 4) + d(i 1)) ;

35 % perform the weld

6.3. CODES 112

36 z = alpha moeb (z , x1 , x2 , x3 , alpha) ;

37 zz = alpha moeb (zz , x1 , x2 , x3 , alpha) ;

38 po l e s = alpha moeb (po les , x1 , x2 , x3 , alpha) ;

39 z = s l i t map (z , alpha) ;

40 zz = s l i t map (zz , alpha) ;

41 po l e s = s l i t map (po les , alpha) ;

42 % degree o f new vertex

43 d(i 1) = d(i 1) + d(i 4) ;

44 d(i 4) = d(i 1) ;

45 end

46

47 % back to the un i t c i r c l e

48 z = (z + 1) . / (z = 1) ;

49 zz = (zz + 1) . / (zz = 1) ;

50 po l e s = (po l e s + 1) . / (po l e s = 1) ;

51

52 i 1 = L(end , 1) ;

53 i 2 = mod(L(end , 1)=2, 2 * n) + 1 ;

54 i 3 = L(end ,2) ;

55 i 4 = mod(L(end , 2)=2, 2 * n) + 1 ;

56

57 x1 = . 5 * z (i 1) + . 5 * z (i 4) ;

58 x2 = . 5 * z (i 2) + . 5 * z (i 3) ;

59

60 % two remaining endpoints map to =1, 1

61 z = (x1 + x2 + 1 i * (z = x1) * abs (x1 + x2) = x1 * z * conj (x1 +

x2)) . / . . .

62 (x1 + x2 = 1 i * (z = x1) * abs (x1 + x2) = x1 * z * conj (x1 +

x2)) ;

63

64 zz = (x1 + x2 + 1 i * (zz = x1) * abs (x1 + x2) = x1 * zz * conj (x1

+ x2)) . / . . .

65 (x1 + x2 = 1 i * (zz = x1) * abs (x1 + x2) = x1 * zz * conj (x1 +

x2)) ;

66

67 po l e s = (x1 + x2 + 1 i * (po l e s = x1) * abs (x1 + x2) = x1 * po l e s *

conj (x1 + x2)) . / . . .

6.3. CODES 113

68 (x1 + x2 = 1 i * (po l e s = x1) * abs (x1 + x2) = x1 * po l e s *

conj (x1 + x2)) ;

69

70 % weld the c i r c l e

71 z = z + ones (s i z e (z)) . / z ;

72 zz = zz + ones (s i z e (zz)) . / zz ;

73 po l e s = po l e s + ones (s i z e (po l e s)) . / po l e s ;

74

75 x = z (2 * n + 1) ;

76

77 % normal ize by r e s e t t i n g i n f i n i t y

78 zz = ones (s i z e (zz)) . / (zz = x) ;

79 po l e s = ones (s i z e (po l e s)) . / (po l e s = x) ;

80 end

81

82 f unc t i on value = s l i t map (z , alpha)

83 % s l i t map used f o r welding

84 value = (z+1 i * alpha) . ˆ (alpha) .* (z+1 i *(alpha=1)) .ˆ(1= alpha) ;

85 end

86

87 f unc t i on value = alpha moeb (z , x1 , x2 , x3 , alpha)

88 % alpha moeb r e s e t s the po in t s on the imaginary a x i s so that

89 % the po in t s x1 , x2 , x3 map to i (1=alpha) , 0 , = i * alpha .

90 value = moeb(z , x1 , x2 , x3 ,=1 i *(alpha=1) ,0 ,=1 i * alpha) ;

91 end

92

93 f unc t i on r e s = moeb(z , z1 , z2 , z3 , w1 , w2 , w3)

94 % computes the image o f z o f a Moebius t rans fo rmat ion mapping [z1 ,

z2 , z3] to [w1 , w2 , w3]

95 r e s = (w1*(=w2*(z1 = z2) *(z = z3* ones (s i z e (z))) + w3*(z = z2* ones (

s i z e (z))) *(z1 = z3)) = . . .

96 w2* w3* (z = z1* ones (s i z e (z))) * (z2 = z3)) . / (w3* (z1 = z2) * (z =

z3* ones (s i z e (z))) = . . .

97 w2* (z = z2* ones (s i z e (z))) * (z1 = z3) + w1* (z = z1* ones (s i z e (z)

)) * (z2 = z3)) ;

98 end

6.3. CODES 114

CreateHyperbolicKite.m

1 f unc t i on [z1 , z2 , z3 , cz1 , cz2] = CreateHyperbo l i cKite (a , b , c)

2 %% computes the f i r s t hype rbo l i c k i t e with parameters a , b , c

3

4 lambda = (cos (p i /a) * cos (p i /b) + cos (p i /c)) /(s i n (p i /a) * s i n (p i /b))

;

5 mu = lambda + s q r t (lambdaˆ2 = 1) ;

6 G = (muˆ2=1) /(2* (cot (p i /a) + mu* cot (p i /b))) ;

7

8 % number o f segments approximating the a r c s o f the k i t e

9 segments = 20 ;

10

11 t = l i n s p a c e (0 , 1 , segments) ;

12

13 % edge1 i s the lower arc o f the k i t e

14 edge1 = arc ((mu=1)/(mu+1) ,w(G/2+1 i * f 2 (G/2 , a , b ,mu)) ,w(G+1 i * f 1 (G, a , b

,mu)) , segments) ;

15 % edge2 i s the upper arc o f the k i t e

16 edge2 = conj (f l i p l r (edge1)) ;

17 % edge4 i s the lower l i n e o f the k i t e

18 edge4 = f l i p l r (t *w(G+1 i * f 1 (G, a , b ,mu))) ;

19 % edge3 i s the upper l i n e o f the k i t e

20 edge3 = conj (f l i p l r (edge4)) ;

21 % edge5 i s the d iagona l o f the k i t e

22 edge5 = l i n s p a c e (0 , (mu=1)/(mu+1) ,200) ;

23

24 % mapping the k i t e to the upper ha l f=plane

25 z1 = w inv (edge4) ;

26 z2 = w inv (edge1) ;

27 z3 = w inv (edge5) ;

28 cz1 = w inv (edge3) ;

29 cz2 = w inv (edge2) ;

30 end

31

32 f unc t i on r e s = arc (A,B,C, n)

33 % Computes a c i r c u l a r arc conta in ing the po in t s A,B,C approximated

by a

34 % polygona l chain o f l ength n (counter c lock=wise)

6.3. CODES 115

35

36 xA = r e a l (A) ; xB = r e a l (B) ; xC = r e a l (C) ;

37 yA = imag (A) ; yB = imag (B) ; yC = imag (C) ;

38

39 Matrix = [yB=yC , =yA+yB ; xC=xB , xA=xB] ;

40 b = 1/2* [xA=xC ; yA=yC] ;

41 s o l = Matrix\b ;

42 tau = s o l (1) ;

43

44 cente r = 1/2*(xB+xC)+tau *(yB=yC)+1 i *(1/2*(yB+yC)+tau *(xC=xB)) ;

45 rad iu s = abs (B=cente r) ;

46

47 phiA = mod(ang le (A=cente r) ,2* pi) ;

48 phiC = mod(ang le (C=cente r) ,2* pi) ;

49

50 tAC = l i n s p a c e (phiA , phiC , n) ;

51 r e s = cente r + rad iu s *exp (1 i *tAC) ;

52 end

53

54 f unc t i on y = f1 (x , a , ˜ , ˜)

55 y = s q r t ((c s c (p i /a)) ˆ2* ones (s i z e (x)) = (x=cot (p i /a)) . ˆ 2) ;

56 end

57

58 f unc t i on y= f2 (x , ˜ , b ,mu)

59 y = s q r t (muˆ2* c sc (p i /b) ˆ2* ones (s i z e (x)) = (x + mu* cot (p i /b))

. ˆ 2) ;

60 end

61

62 f unc t i on r e s = w(z)

63 % maps upper ha l f=plane to the un i t d i s c v ia z => (z=i) /(z+i)

64 r e s = (z=1 i) . / (z+1 i) ;

65 end

66

67 f unc t i on r e s = w inv (z)

68 % i n v e r s e o f w

69 r e s = 1 i *(1+z) . / (1=z) ;

70 end

6.3. CODES 116

CreatePolygonAndGluingData.m

1 f unc t i on [v e r t i c e s , L] = CreatePolygonAndGluingData (border edges)

2 %% t h i s func t i on c r e a t e s a polygon corre spond ing to border edges

and computes

3 %% the g lu ing data f o r the welding proce s s

4

5 % rear rang ing border edges

6 f o r j = 1 : s i z e (border edges , 1)=1

7 [˜ , minimum index] = min (abs (border edges (: , 2) = border edges (j

, end))) ;

8 tmp = border edges (j +1 , :) ;

9 border edges (j +1 , :) = border edges (minimum index , :) ;

10 border edges (minimum index , :) = tmp ;

11 end

12

13 % compute g lu ing data in L

14 L = ze ro s (s i z e (border edges , 1) /2 ,2) ;

15 f o r j = 1 : s i z e (border edges , 1) /2

16 L(j , :) = f i n d (border edges (: , 1)==j) ;

17 end

18

19 L (1 , :) = f l i p l r (L (1 , :)) ;

20 L2 = ze ro s (s i z e (L)) ;

21

22 % s o r t L with regard to d i s t anc e o f edges

23 ct = 1 ;

24 f o r j = 1 : s i z e (border edges , 1) /2

25 f o r i = 1 : s i z e (L , 1)

26 i f mod(L(i , 1)=L(i , 2) , s i z e (border edges , 1)) == mod(j , s i z e (

border edges , 1)) | | mod(L(i , 2)=L(i , 1) , s i z e (border edges

, 1)) == mod(j , s i z e (border edges , 1))

27 L2(ct , :) = f l i p l r (L(i , :)) ;

28 ct = ct + 1 ;

29 end

30 end

31 end

32 L = L2 ;

33

6.3. CODES 117

34 f o r j = 1 : s i z e (L , 1)

35 i f mod(L(j , 1)=L(j , 2) , s i z e (border edges , 1)) > mod(L(j , 2)=L(j , 1)

, s i z e (border edges , 1))

36 L(j , :)=f l i p l r (L(j , :)) ;

37 end

38 end

39

40 v e r t i c e s = border edges (: , end) ;

41 end

Index of terms

Sk(γ), 24

`(σ0, σ1, σ∞), 12

Rσ, 44

ind(σ), 8

σ0-petal, 30

σ1-petal, 30

approximate Belyi data, 46

arithmetic monodromy group, 9

bad, 30

Belyi map, 10

complex conjugate cycles, 11

critical value, 7

dessin, 27

dessin d’enfant, 10

full petal, 30

genus-0 tuple for a transitive

subgroup, 8

geometric monodromy group, 9

hyperbolic, 22

modular form, 24

Möbius transformations, 8

nice, 30

normalization condition, 48

ones, 10

parasitic solutions, 18

picked, 30

picked σ0-petal, 30

picked σ1-petal, 30

poles, 10

ramification locus, 7

ramification tuple, 7

rational, 12

real cycle, 11

regular Galois extension, 9

Riemann-Hurwitz genus formula, 8

rigid, 12

SC-toolbox, 87

Schwarz-Christoffel mapping, 34

Shabat polynomial, 19

simultaneous conjugate, 8

topological fundamental group, 7

weight, 24

zeros, 10

Zipper, 19

118

Acknowledgements

I would like to thank my supervisor Peter Müller for introducing me into

the subject of this work and providing valuable suggestions throughout the

course of this dissertation project.

I am also particularly grateful to Dominik Barth for patiently enduring

many of my questions and sharing his expertise in this collaboration as well

as reading earlier versions of this work.

119

Bibliography

[1] Cesar Alonso, Jaime Gutierrez, and Tomas Recio. A rational function decomposition

algorithm by near-separated polynomials. J. Symb. Comput., 19(6):527–544, 1995.

[2] Mohamed Ayad and Peter Fleischmann. On the decomposition of rational functions. J.

Symb. Comput., 43(4):259–274, 2008.

[3] Joel Barnes. Conformal welding of uniform random trees. PhD thesis, 2014.

[4] Dominik Barth, Joachim König, and Andreas Wenz. An approach for computing fami-

lies of multi-branch-point covers and applications for symplectic Galois groups. Journal

of Symbolic Computation, 101:352–366, Nov 2020.

[5] Dominik Barth and Andreas Wenz. Explicit Polynomials Having the Higman-Sims

Group as Galois Group over Q(t), 2016, 1611.04314.

[6] Dominik Barth and Andreas Wenz. Belyi map for the sporadic group J1, 2017,

1704.06419.

[7] Dominik Barth and Andreas Wenz. Belyi map for the sporadic group J2, 2017,

1712.05268.

[8] Dominik Barth and Andreas Wenz. Explicit Belyi maps over Q having almost simple

primitive monodromy groups, 2017, 1703.02848.

[9] Dominik Barth and Andreas Wenz. A family of 4-branch-point covers with monodromy

group PSL(6, 2), 2020, 2004.10997.

[10] Dominik Barth and Andreas Wenz. Computation of Belyi maps with prescribed rami-

fication and applications in Galois theory. J. Algebra, 569:616–642, 2021.

[11] Dominik Barth and Andreas Wenz. On Elkies’ method for bounding the transitivity

degree of Galois groups. J. Symb. Comput., 108:17–22, 2022.

[12] Christopher J. Bishop. True trees are dense. Invent. Math., 197(2):433–452, 2014.

[13] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I.

The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra

and number theory (London, 1993).

[14] Peter J. Cameron. Strongly regular graphs. In Topics in algebraic graph theory, pages

203–221. Cambridge: Cambridge University Press, 2004.

[15] Tobin A. Driscoll. Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel Map-

ping. ACM Trans. Math. Softw., 22(2):168–186, June 1996.

[16] Tobin A. Driscoll and Lloyd N. Trefethen. Schwarz-Christoffel mapping, volume 8. Cam-

bridge: Cambridge University Press, 2002.

120

BIBLIOGRAPHY 121

[17] Noam D. Elkies. The complex polynomials P (x) with Gal(P (x)− t) ∼= M23. ANTS X.

Proceedings of the tenth algorithmic number theory symposium, San Diego, CA, USA,

July 9–13, CA: Mathematical Sciences Publishers (MSP), pages 359–367, 2013.

[18] Daniel Frohardt and Kay Magaard. Composition factors of monodromy groups. Ann.

Math. (2), 154(2):327–345, 2001.

[19] Allan Gewirtz. Graphs with maximal even girth. Canadian Journal of Mathematics,

21:915–934, 1969.

[20] Robert M. Guralnick and John G. Thompson. Finite groups of genus zero. J. Algebra,

131(1):303–341, 1990.

[21] Gudrun Hoyden-Siedersleben and B. Heinrich Matzat. Realisierung sporadischer ein-

facher Gruppen als Galoisgruppen über Kreisteilungskörpern. Journal of Algebra,

101:273–286, June 1986.

[22] Bertram Huppert. Endliche Gruppen. I., volume 134. Springer, Berlin, 1967.

[23] Michael Klug, Michael Musty, Sam Schiavone, and John Voight. Numerical calculation

of three-point branched covers of the projective line. LMS Journal of Computation and

Mathematics, 17(1):379–430, 001 2014.

[24] Joachim König. The inverse Galois problem and explicit computation of families of

covers of P1C with prescribed ramification. doctoral thesis, Universität Würzburg, 2014.

[25] Joachim König. On rational functions with monodromy group M11. J. Symb. Comput.,

79:372–383, 2017.

[26] S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications. Appendix

by Don B. Zagier. Berlin: Springer, 2004.

[27] Serge Lang. Algebra. 3rd revised ed., volume 211. New York, NY: Springer, 3rd revised

ed. edition, 2002.

[28] Kay Magaard. Monodromy and sporadic groups. Commun. Algebra,

21(12):4271–4297, 1993.

[29] Gunter Malle. Polynomials with Galois Groups Aut(M22), M22, and PSL3(F4) over Q.

Mathematics of Computation, 51(184):761–768, 1988.

[30] Gunter Malle and B. Heinrich Matzat. Inverse Galois theory. Berlin: Springer, 2nd

edition, 2018.

[31] Donald E. Marshall and Steffen Rohde. Convergence of a variant of the zipper algorithm

for conformal mapping. SIAM J. Numer. Anal., 45(6):2577–2609, 2007.

[32] MATLAB. version 9.6.0 (R2019a). The MathWorks Inc., Natick, Massachusetts, 2019.

[33] B. Heinrich Matzat. Konstruktion von Zahlkörpern mit der Galoisgruppe M11 über

Q(
√
−11). manuscripta mathematica, 27(1):103–111, Mar 1979.

[34] B. Heinrich Matzat. Konstruktion von Zahlkörpern mit der Galoisgruppe M12 über

Q(
√
−5). Archiv der Mathematik, 40(1):245–254, Dec 1983.

[35] Hartmut Monien. How to calculate rational coverings for subgroups of PSL2(Z) effi-

ciently. In Embedded Graphs 2014, 2014.

[36] Hartmut Monien. The sporadic group J2, Hauptmodul and Belyi map. 2017,

arXiv:1703.05200.

BIBLIOGRAPHY 122

[37] Hartmut Monien. The sporadic group Co3, Hauptmodul and Belyi map, 2018,

arXiv:1802.06923.

[38] Michael Musty, Sam Schiavone, Jeroen Sijsling, and John Voight. A database of Belyi

maps. The Open Book Series, 2(1):375–392, Jan 2019.

[39] David P. Roberts. Hurwitz-Belyi maps, 2016, arXiv:1608.08302.

[40] Jean-Pierre Serre. Topics in Galois theory. Notes written by Henri Darmon. 2nd ed.

Wellesley, MA: A K Peters, 2nd ed. edition, 2007.

[41] Jeroen Sijsling and John Voight. On computing Belyi maps. In Numéro consacré au

trimestre “Méthodes arithmétiques et applications”, automne 2013, pages 73–131. Be-

sançon: Presses Universitaires de Franche-Comté, 2014.

[42] Henning Stichtenoth. Algebraic function fields and codes. 2nd ed., volume 254. Berlin:

Springer, 2nd ed. edition, 2009.

[43] Gabriel Daniel Villa Salvador. Topics in the theory of algebraic function fields. Boston,

MA: Birkhäuser, 2006.

[44] Helmut Völklein. Groups as Galois groups: an introduction., volume 53. Cambridge:

Cambridge Univ. Press, 1996.

	Chapter 1. Introduction
	Chapter 2. Theoretical Background
	2.1. Monodromy and ramification tuples
	2.2. Function field setting
	2.3. Belyi maps

	Chapter 3. Known methods for Belyi map computation
	3.1. Gröbner basis method
	3.2. Computing Shabat polynomials
	3.3. Computing Belyi maps using modular forms

	Chapter 4. A new method for computing Belyi maps
	4.1. Preparations
	4.2. Fundamental domains
	4.3. Obtaining an approximate dessin
	4.4. Belyi map computation
	4.5. Verification

	Chapter 5. Main results
	5.1. Belyi maps defined over Q
	5.2. A theorem of Magaard

	Chapter 6. Implementation
	6.1. Instructions for use
	6.2. Known issues and solutions
	6.3. Codes

	Index of terms
	Acknowledgements
	Bibliography

