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Simple Summary: The BRENDA-Score provides an easy to use tool for clinicians to estimate the 

risk of recurrence in primary breast cancer. The algorithm has been validated via a second 

independent database and provides five recurrence risk groups. This grouping helps clinicians to 

encourage high risk patients to undergo the recommended treatment.  

Abstract: Background Current research in breast cancer focuses on individualization of local and 

systemic therapies with adequate escalation or de-escalation strategies. As a result, about two-thirds 

of breast cancer patients can be cured, but up to one-third eventually develop metastatic disease, 

which is considered incurable with currently available treatment options. This underscores the 

importance to develop a metastatic recurrence score to escalate or de-escalate treatment strategies. 

Patients and methods Data from 10,499 patients were available from 17 clinical cancer registries 

(BRENDA-project [1]. In total, 8566 were used to develop the BRENDA-Index. This index was 

calculated from the regression coefficients of a Cox regression model for metastasis-free survival 

(MFS). Based on this index, patients were categorized into very high, high, intermediate, low, and 

very low risk groups forming the BRENDA-Score. Bootstrapping was used for internal validation 

and an independent dataset of 1883 patients for external validation. The predictive accuracy was 

checked by Harrell’s c-index. In addition, the BRENDA-Score was analyzed as a marker for overall 

survival (OS) and compared to the Nottingham prognostic score (NPS). Results: Intrinsic subtypes, 

tumour size, grading, and nodal status were identified as statistically significant prognostic factors 

in the multivariate analysis. The five prognostic groups of the BRENDA-Score showed highly 

significant (p < 0.001) differences regarding MFS:low risk: hazard ratio (HR) = 2.4, 95%CI (1.7–3.3); 

intermediate risk: HR = 5.0, 95%CI.(3.6–6.9); high risk: HR = 10.3, 95%CI (7.4–14.3) and very high 

risk: HR = 18.1, 95%CI (13.2–24.9). The external validation showed congruent results. A multivariate 

Cox regression model for OS with BRENDA-Score and NPS as covariates showed that of these two 

scores only the BRENDA-Score is significant (BRENDA-Score p < 0.001; NPS p = 0.447). Therefore, 

the BRENDA-Score is also a good prognostic marker for OS. Conclusion: The BRENDA-Score is an 

internally and externally validated robust predictive tool for metastatic recurrence in breast cancer 

patients. It is based on routine parameters easily accessible in daily clinical care. In addition, the 
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BRENDA-Score is a good prognostic marker for overall survival. Highlights: The BRENDA-Score is 

a highly significant predictive tool for metastatic recurrence of breast cancer patients. The BRENDA-

Score is stable for at least the first five years after primary diagnosis, i.e., the sensitivities and 

specificities of this predicting system is rather similar to the NPI with AUCs between 0.76 and 0.81 

the BRENDA-Score is a good prognostic marker for overall survival.  

Keywords: breast cancer; risk; prediction; BRENDA; score; follow up 

 

1. Introduction 

As most breast cancer (BC) recurrences occur within the first 60 months [2], after 

diagnosis, patients have clinical follow-up (f/u) visits at 3 months intervals in the first three 

years, followed by two years with check-ups every 6 months, and then returning to an 

annual checkup schedule. In BC this is recommended for at least 10 years. This is a well-

established schedule in Germany. Several publications have investigated the clinical 

orientated follow-up versus more intense follow-ups (i.e., including further imaging 

technology like MRI or tumour markers) [3,4]. In 2016, a Cochrane review on follow-up 

strategies in early breast cancer did confirm annual mammography and physical exams 

[5] as sufficient.  

So, thus far, the optimal interval, methods, and parameters have not been determined 

by prospective randomised trials [3,6]. This might be due to the different health systems, 

cost and benefit considerations, available resources or the missing survival benefit of an 

earlier, smaller tumour detection [7].  

Even though it is known that the pattern of distant metastasis depends on the tumour 

biology [1,2,8–10], primary treatment, and tumour TNM. The follow up recommendations 

are still ‘one standard fits all’. 

To estimate the survival nomograms and prognosis, models have been validated 

[11,12]. These are used to identify patients with a bad prognosis. If these models are not 

decisive, gene panels can further differentiate the treatment benefit in defined subgroups. 

Further treatment recommendations take this into consideration. The same principle is 

applied for single organ metastasis and local recurrence normograms [13,14], but the 

clinical consequence is not yet established.  

Following Qi Wu [10], the BRENDA database was used to create a metastatic 

recurrence index (BRENDA-Index). The individual sum of the BRENDA-Index result in a 

score (BRENDA-metastatic recurrence score (BRENDA-Score)). This BRENDA-Score 

identifies the patients’ risk of general metastasis (very high/high/medium/low/very low 

risk) over time. Ideally, the results would enable the clinician to screen the organ just 

before or at its highest risk ‘for a recurrence. In order to be a reliable clinical tool the 

BRENDA-Score should be easy to use with clinical data available at primary diagnosis. 

2. Materials and Methods 

In this retrospective multicenter cohort study, data from the University of Ulm and 

16 partner clinics (all certified breast cancer centers) in Baden-Württemberg (Germany) of 

patients with breast cancer diagnosis between 2000 and 2008 were analysed. Prior 

analyses of this database named BRENDA (BRENDA breast cancer care under evidence-

based guidelines) have been published [15–17]. 

This database included a retrospective chart review to extract TNM-stage, histologic 

subtype, grading, lymphatic and vascular invasion, estrogen/progesterone/erbB-2-

expression, date of diagnosis, and all adjuvant therapies. Data on therapies, including 

surgery (date of surgery, BCT breast-conserving surgery, mastectomy, sentinel-node-

biopsy, and axillary lymph node dissection), adjuvant systemic chemotherapy, adjuvant 

endocrine therapy, and adjuvant radiotherapy, were collected. According to criteria 
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published by Schouten et al. the quality of these data is considered high [18]. Written and 

informed consent was obtained from all patients included in this study. The inclusion 

criterion was histologically confirmed invasive breast cancer. The exclusion criteria were 

carcinoma in situ, primary metastatic disease, bilateral breast cancer, primary occult 

disease, phyllodes tumour, and patients with incomplete follow-up. As most breast cancer 

recurrences occur within the first 2 to 5 years patients have follow up visits at 3 months 

intervals in the first three years, followed by two years with checkups every 6 months and 

then returning to an annual checkup schedule (optimal intervals, methods, and 

parameters have not been determined as yet by prospective randomised trials). Although 

the Kaplan-Meier curves were calculated for a metastatic free survival time of 110 months 

(approximately 9 years) to show the long term data. The strength of the BRENDA 

database lies in the detailed information on the actual treatment. Using this a subgroup 

analysis of the BRENDA-score with guideline-adherent and non-guideline-adherent 

treatment has been done to show the prediction value regardless of the treatment. 

3. Surrogate Definition of Intrinsic Subtypes 

To define the intrinsic breast cancer subtypes hormone receptor expression (HR), 

HER2 expression and cell proliferation marker Ki67 were generally used. As Ki67 was not 

available in the BRENDA database, we used grading as a surrogate parameter to include 

the cell proliferation, as described before, e.g., by Parise et al. [19], von Minckwitz et al. 

[20] and Lips et al. [21]. The 5 intrinsic subtypes were defined as follows: Luminal A 

(HR+/HER2−/grade1 or 2), luminal B-HER2-negative like (HR+/HER2−/grade 3), luminal 

B-HER2-positive like (HR+/HER2+, all grades); HER2-overexpressing (non-luminal, 

HR−/HER2+), and triple-negative (basal-like, HR−/HER2−). 

4. Statistical Analysis 

For descriptive purposes, continuous variables were presented as their mean ± 

standard deviation; skewed variables were presented as their median (interquartile 

range). Categorical variables were presented as frequencies and percentages. Multiple 

imputation was used for missing data. Univariate and multivariate analyses using Cox 

regression were carried out to build a predictive model for metastasis-free survival. All 

significant factors in the univariate analysis were entered into a multivariate analysis. A 

prognostic model was established by all factors found to be significantly associated with 

metastasis-free survival in the multivariate analysis. This model includes intrinsic 

subtypes, tumour size, grading, and nodal status as “baseline” factors. The beta 

coefficients of the Cox regression model were multiplied by 10 and rounded to the nearest 

integer (for 3 parameters with respect to 95% confidence interval of the beta coefficients) 

to determine the factors multiplying each factor. Taking, e.g., the nodal status N>3 the 

beta coefficient is 1.56 and the 95% C.I. 1.35–1.78. Taking into account the 95% C.I. we used 

1.5 multiplied by 10. In the case of grading the beta coefficient for G2 was 0.49 (95% C.I. 

0.09–1.08) and for G3 0.63 (95% C.I. 0.14-1.23). If we multiply these values by 10 and round 

to the nearest integer we obtain for G2 5, for G3 6 and the nodal status (N > 3) 16 as 

weights. Since these values are too high compared to other values, we have reduced them 

to 4 (G2) and 15 (Nodal status), respectively. These adjustments are each within the 95% 

confidence intervals. The cutoffs for the grouping were derived by “exhausted chaid” for 

5 year metastatic free survival. The proportional hazards (PH) assumption was checked 

using graphical diagnostics based on the scaled Schoenfeld residuals. For internal model 

validation we used bootstrap resampling techniques, to provide bias-corrected estimates 

of model performance, i.e., to obtain stable optimism-corrected estimates. The optimism 

is the decrease between model performance in the bootstrap sample and in the original 

sample. The bootstrap results were based on 1000 samples. The item points denote the 

beta coefficients for covariates in the Cox model, rounded to the nearest integer with 

respect to 95% CI of betas and multiplied by 10. The metastatic recurrence index 

(BRENDA-Index) of a patient is the sum of her item points. The BRENDA-Index (range 
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0–38) was divided into five risk groups (very low ≤ 4; low 5–14; intermediate 15–21; high 

22–26 and very high risk ≥ 27) by using exhausted chaid for 5 year metastasis-free survival. 

These groups define the metastasis recurrence score (BRENDA-Score). Outcome analysis 

of the BRENDA-Score was performed using Kaplan-Meier estimates and log-rank tests, 

as well as Cox regression analysis. In order to check whether the prognostic quality is 

constant over time we used the nearest neighbor estimation (NNE) method for ROC 

curves from censored survival data [22]. The NNE method guarantees in contrast to the 

Kaplan-Meier method that sensitivity and specificity were monotone in X for the bivariate 

distribution function of (X, T), where T represents survival time. In order to test the 

accuracy, quality and generalizability of this prediction model this model was validated 

externally with a cohort of 1883 patients (primary diagnosis between 2005 and 2015). The 

hazard ratios of the derivation and the evaluation sets were compared. In addition, 

Harrell’s C-index P(Zi > Zj|Tj > Ti), for Cox models was calculated (although it is known 

to be biased) to check calibration, a key component characterising the performance of the 

prediction model. Calibration is the agreement between prediction from the model and 

observed outcomes. Furthermore the nearest neighbour estimation was calculated and 

compared for both Cox models. Because metastasis-free survival (MFS) is a surrogate of 

overall survival (OS) we compared in addition the BRENDA-Index/Score as a possible 

prediction tool for overall survival to the Nottingham Prognostic Index/Score [23]. All 

tests were 2-tailed and statistical significance was defined as p < .05. Statistical analyses 

were performed using R (version 3.5) and IBM SPSS Statistics, version 26.0 (IBM Corp., 

Armonk, NY, USA). 

5. Results 

A total of 8566 patients with primary diagnosis from 2000 onwards were assigned to 

the development set in this study (Table 1). The median (maximum) observation time was 

4.3 y (12.0 y). The median age was 63 years (range, 18–89 years). The median tumour size 

was 1.9 cm (range, 0.1–28.0 cm). 5.2% (n = 443) of the patients had T3/T4 stage tumour. 

61.9% (n = 5305) were luminal A, 13.8% (n=1185) luminal B Her2-negative, 10.2% (n = 870) 

luminal B HER2-positive, 4.8% (n = 410) HER2 overexpressing and 9.3% (n = 796) triple-

negative. Furthermore 38.5% (n=3294) were nodal-positive, 28.6% (n = 2446) G3 (Table 1) 

and 1.7% (n=145) M1. 

  



Cancers 2021, 13, 3121 5 of 14 
 

 

Table 1. Basic characteristics. 

 

A Cox proportional hazard model was carried out for assessing the association 

between various clinicopathologic parameters and metastasis-free survival rate. A 

prognostic model was established by all factors found to be significantly associated with 

metastasis-free survival in the multivariate analysis. This model includes intrinsic 

subtypes, tumour size, grading, and nodal status (Table 2).  

Table 2. Cox regression model for metastasis-free survival including intrinsic subtypes, tumour size, grading and nodal 

status. B beta coefficient; SE standard error; Sig. significance; HR hazard ratio; CI confidence interval with lower and upper 

limit. 

 

Bootstrap validation based on 1000 samples was used to estimate the performance 

(internal validation) (Table 3). 

  



Cancers 2021, 13, 3121 6 of 14 
 

 

Table 3. Bootstrap results based on 1000 bootstrap samples (internal validation) B beta coefficients. 

 

The beta coefficients of the original model and the bootstrap model were identical. 

The metastatic recurrence index (BRENDA-Index) of a patient was derived by summing 

the item points of each prognostic factor in the model. The item points denote the round 

estimates of beta coefficients for covariates in the Cox model with respect to 95% CI of 

betas multiplied by 10.  

The BRENDA-Index was calculated using the following formula: BRENDA-Index = 

5*luminal B-HER2-negative like + 4*luminal B-HER2-positive like +7*HER2-

overexpressing + 8*triple-negative + 5*tumour size 2 + 9*tumour size 3/4 + 4*grading 2 + 

6*grading 3 + 8* nodal status (1≤ N ≤ 3) + 15*nodal status (N > 3). The values of the 

covariates were 1 if valid, otherwise 0.  

The BRENDA-Index (range 0–38) was divided into five risk groups (very low ≤ 4; low 

5-14; intermediate 15-21; high 22-26 and very high risk ≥ 27). These risk groups define the 

BRENDA-Score. In total, 30.0% of the 8566 patients were very low risk, 31.1% low risk, 

20.1% intermediate risk, 9.5% high risk, and 9.4% very high risk. The 5-years metastatic 

free recurrence rates for the various risk groups were: very low risk 98%, low risk 95%, 

intermediate risk 90%, high risk 82%, and very high risk 70%. Figure 1 shows the Kaplan-

Meier curves stratified by BRENDA-Score.  
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(a) 

 

(b) 

 

(c) 

Figure 1. (a) Kaplan-Meier metastasis-free survival (MFS) curves of the derivation set stratified by BRENDA-Score 

(BRENDA DB) with 110 months. Very low risk = light green, low risk = green, intermediate risk = yellow, high risk = 

orange, very high risk = blue line. (b) and (c) Subgroup analysis with guideline adherent (b) and non-adherent (c) 

treatment Kaplan-Meier metastasis-free survival (MFS) curves of the derivation set stratified by BRENDA-Score 

(BRENDA DB) with 110 months. Very low risk = light green, low risk = green, intermediate risk = yellow, high risk = 

orange, very high risk = blue line. 

Taking the very low risk patients as reference group, we obtained the following 

hazard ratios (HR) for low risk: HR = 2.4, 95% CI. (1.7–3.3), p < 0.001; intermediate risk: 

HR = 5.0, 95% CI. (3.6–6.9), p < 0.001; high risk: HR = 10.3, 95% CI. (7.4–14.3), p < 0.001, and 

very high risk: HR = 18.1, 95% CI. (13.2–24.9); p < 0.001. 
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6. External Validation 

In total, 1883 patients with primary diagnosis from 2005 to 2015 from the certified 

breast cancer center in Dachau (Germany) were assigned to the validation set in this study. 

The median (maximum) observation time was 8.5yr (14.3yr). The median age was 60 years 

(range, 29–89 yr). In total, 75.7% (n = 1425) of the patients were luminal A, 5.9% (n = 1112) 

luminal B Her2-negative, 7.6% (n=143) luminal B HER2-positive, 3.2% (n = 60) HER2 

overexpressing, and 7.6% (n = 143) triple-negative. Furthermore 28.9% (n = 545) were 

nodal-positive, 13.9% (n = 261) G3 and all patients M0. In total, 45.6% of the 1883 patients 

were very low risk with respect to the BRENDA-Score, 30.3% low risk, 14.1% intermediate 

risk, 5.6% high risk, and 4.4% very high risk. Figure 2 shows the Kaplan-Meier curves of 

the validation set stratified by BRENDA-Score.  

 

Figure 2. Kaplan-Meier metastasis-free survival (MFS) curves of the validation set stratified by 

BRENDA-Score (Dachau DB) with 110 months follow up. Very low risk = light green, low risk = 

green, intermediate risk = yellow, high risk = orange, very high risk = blue line. 

Taking again the very low risk patients as reference group, we obtained the following 

hazard ratios (HR) for low risk: HR = 3.1, 95% CI. (2.0–4.6), p < 0.001; intermediate risk: 

HR = 4.5, 95% CI. (2.9–7.1), p < 0.001; high risk: HR = 7.7, 95% CI. (4.7–12.7), p < 0.001; and 

very high risk: HR = 14.6, 95% CI. (9.1–23.6); p < 0.001. 

To validate the predictive ability of the survival model, we calculated Harrell’s c-

index (concordance-index), a “global” index for evaluating risk models in survival 

analysis. Harrell’s c-index (se = standard error): Derivation data 0.77 (se 0.01); derivation 

data without M1-patients 0.76 (se 0.01) and validation data 0.74 (se 0.02). The Harrell’s c-

indexes were all between 0.7 and 0.8 indicating that the BRENDA Index is a good model 

for metastasis-free survival.  

Next, we calculated time-dependent receiver operating characteristic (ROC) curves 

at various time points for the derivation and the validation data to evaluate the time-

varying performance of the BRENDA-Index by the area under the curve (AUC). We used 

the nearest neighbour estimation (NNE). The sensitivities and specificities of these 

predicting systems were rather similar with the area under the curve values falling 

between 0.76 and 0.81. The AUCs of the BRENDA-Index for 1, 3, and 5 years for the 

derivation set (evaluation set) were as follows: 1yr 0.81(0.76); 3yr 0.79 (0.78); and 5yr 0.76 

(0.76). This shows that there was close agreement between the AUCs of both datasets for 

the first five years after primary diagnosis and the values were quite stable. 

Metastasis-free survival is a strong surrogate of overall survival. Therefore, the 

BRENDA-Score should also be a predictor for overall survival. Figure 3 shows the Kaplan-
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Meier overall survival curves of the deviation set stratified by BRENDA-Score (log rank 

(Mantel-Cox) test: p < 0.001). Taking the very low risk patients as reference group, we 

obtain the following hazard ratios (HR) for low risk: HR = 1.6, 95% CI. (1.3–2.0), p < 0.001; 

intermediate risk: HR = 2.7, 95% CI. (2.2–3.4), p < 0.001; high risk: HR = 4.5, 95% CI. (3.6–

5.6), p < 0.001; and very high risk: HR = 7.6, 95% CI. (6.2–9.4); p < 0.001). There were highly 

significant differences (p < 0.001) between the corresponding overall survival curves 

(Figure 3). 

 

Figure 3. Kaplan-Meier curves of overall survival curves of the deviation set stratified by BRENDA-

Score (BRENDA DB) with 10 years follow up. Very low risk = light green, low risk = green, 

intermediate risk = yellow, high risk = orange, very high risk = blue line. 

This result was again externally validated. For the validation set of 1883 patients we 

obtained the following hazard ratios for overall survival (very low risk is the reference): 

low risk: HR=2.0, 95% CI. (1.5–2.8), p < 0.001; intermediate risk: HR = 2.5, 95% CI. (1.7–3.6), 

p < 0.001; high risk: HR = 4.3, 95% CI. (2.8–6.4), p < 0.001; and very high risk: HR = 8.2, 95% 

CI. (5.6– 12.1); p < 0.001. Harrel’s c-index for overall survival is 0.688 for the derivation 

data and 0.715 for the evaluation data [24]. 

Finally, the BRENDA-Score was compared to the classic Nottingham prognostic 

score (NPS), a very good prognostic marker for overall survival [12]. A multivariate Cox 

regression model for overall survival with BRENDA- and Nottingham prognostic score 

(NPS) showed that in this Cox model only the BRENDA-Score is significant (BRENDA-

Score p < 0.001; NPS p = 0.447). Therefore, the BRENDA-Score is at the moment a good 

prognostic marker for overall survival. 

7. Discussion 

Once the initial short term breast cancer treatments with surgery, radiotherapy, and 

systemic treatment are finished, most patients receive a course of anti-hormonal or 

antibody treatments for a longer time. Despite these treatments this is the transition period 

into the follow up time. The national guidelines initially recommend a clinical exam every 

three months for two to three years, followed by bi-annual exams and visits, and then 

after 5 years annual controls. Mammography and breast ultrasound should be used, 

alternating yearly [25]. 

Unfortunately there were no prospective randomized trials, nor trials showing a 

benefit for more intensive follow up examinations [25] in the general breast cancer 

population. This may be due to the heterogeneous disease which breast cancer is and the 

consecutive varying metastasis pattern. Various publications have published risk factors 

and survival analyses according to the known variables [26–28]. 

Using administrative data to estimate the cancer recurrence was systematically 

reviewed by Izci et al. [29]. They report of 17 articles with accuracy averaging at 92.2% 

(95% CI 88.4% to 94.8%). The results show the need for more standardisation and 
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validation of such models. A combination of rule-based approaches with machine 

learning algorithms is seen as an interesting approach.  

A review [30] found 58 models which predicted mortality and recurrence for breast 

cancer patients. Only 17 models were externally validated by comparing the predicted 

outcomes with observed outcomes. Some of these models have very good predictive 

values in a well-defined subgroup. For example Huang et al for a Taiwan population [31]. 

Though validated with a large external database, prognosis for Black and Caucasian was 

significantly under- or overestimated at certain follow up periods. 

Another model called PREDICT is available in its original form and an updated 

version [32]. The update improved the figures for young breast cancer patients 

significantly but an external evaluation with three databases left the overall AUC at 0.752 

for the update. This was—overall—not significantly better than the AUC of the original 

version. 

Widely known and used is the Nottingham prognostic index (NPI) by Haybittle [33]. 

Initially designed for primary operable breast cancer it takes tumour size in mm, nodal 

stage and tumour grading into considerations. Over time it has been improved by adding 

further prognostic factors and differentiating into more subgroups [12]. Due to its wide 

usage and evaluation in various populations it may be considered the gold standard of 

prognosis estimation.  

In 2010, Sanghani et al. [34] published the IBTR 1.0 for 10 year ipsilateral breast 

recurrences. Though this is well validated and improved to version 2.0 by Kindts [35] in 

2016 the clinical relevant recurrences were more likely the distant metastasis as local 

recurrence might be palpated or found via routine mammography or ultrasound. 

Witteveen published a similar model in 2015 [36] for local recurrences. Here an estimation 

is provided for year 1, 3, and 5 after initial treatment. Witteveen herself proposed an age 

and risk adapted follow up to improve the outcome for patients and health care providers. 

Her data suggests benefits by additional visits around the second year but otherwise twice 

annual examinations. The focus of this study was again on local recurrences and does not 

take other distant metastasis into account. Based on this model for local recurrence 

Draeger et al simulated an individualised follow up [37] on a historic population. This 

resulted in less patient visits, cost savings, and a delay in diagnosis of local recurrence, 

but earlier detection of local recurrence might benefit the survival of the patients [38]. So 

the question regarding the overall benefit remains unanswered. 

Our model is based on a European Caucasian population and real world data. It is 

known that survival depends on guideline adherent treatment and, therefore, this may 

influence the model calculation. The BRENDA database consists of high quality data from 

certified breast centers and guideline adherence is a quality indicator monitored regularly 

in those centers. Further, the BRENDA database was designed to evaluate the guideline 

adherence. This could result in an ‘ideal’ world model regarding treatment status of the 

survival data. Of course, such a database cannot contain every current variable with a long 

term follow up. Parameters like complete pathological response, tumour stage, post-

neoadjuvant systemic treatment or the latest immune therapy options can be used to 

improve the BRENDA-Score once sufficient numbers and sufficient follow-up data are 

available. As with each grouping of variables, information is lost the tumour stage is used 

via the original parameters at that time (tumour seize, nodal status, and distant 

metastasis).  

Special subgroups, like TNBC or young patients, have not been explicitly tested. 

Mainly because the BRENDA database consists of real world data with an epidemiological 

mixture of breast cancer patients. Any subgroup testing from within this database can 

statistically not contribute to the improvement of the model. As there were various 

subgroups possible the authors encourage scientists to validate the model with their 

specific patient subgroup.  

However, some of those weaknesses might be just theoretical and may not be 

clinically relevant. The model was created using high quality data. The database contains 
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unused information on guideline adherent treatment and high quality follow-up. The 

effect of guideline-adherent treatment on survival in this dataset has been published prior 

[16]. This information was not taken into consideration during the primary analysis for 

the development of the index As the BRENDA-score is a clinical tool used at the time of 

diagnosis to show the long term risk of recurrences this risk can be lowered by guideline-

adherent treatment [16]. To strengthen the predictive value of the model it was evaluated 

via two different methods. First, a bootstrap evaluation was done and confirmed the initial 

results. The second evaluation with an external independent database of a certified breast 

center reproduced again highly significant outcomes and the initial prognostic value of 

our model. Time dependent ROCs were calculated and compared to published ROC 

results by Sejben et al. [39]. The authors determined for TNBC the ROC for the NPI, 

PrognosTILs and Predict model. The NPI was the highest with 0.781. Here our results 

were very similar. 

As mentioned before, a nomogram can enable clinicians to identify the high risk 

patients and ensure the optimal treatment. In order to individualise the f/u the model 

needs to be more precise. Ideally, the results would indicate the time period for the organs 

at the highest risk, enabling the clinician to monitor this organ more intensively (i.e., blood 

sample or imaging). However, thus far, a more detailed model is needed. Additionally, 

this theoretic individualisation of the f/u needs to be evaluated for its patients and health 

care cost benefit in clinical trials. The current S3 guideline points out the lack of evidence 

regarding individualised follow up [25].  

Our model seems to be superior to the NPI for risk of recurrence in distant organs. 

Even though new methods, like liquid biopsy, were published [40,41] clinically those 

methods were not available widely. Despite the unavailability for most caretakers the cost 

and benefit is still unknown. Here the BRENDA-Score might be helpful. Sparano et al. [42] 

proposed the implementation of ‘liquid biopsy’ or circulating tumor cells in prospective 

follow-up. Considering the cost and unknown benefit of such tools our algorithm could 

be used to identify patients with a very high recurrence risk for study participation, thus 

helping the conducting scientists to optimise the available resources and reducing the 

number patients needed to recruit and possibly the follow up time. With a risk 

distribution per primary tumour data the clinician could easily identify patients at risk 

and could monitor the patient more closely or encourage the participation in studies 

evaluating surveillance methods. The authors encourage the validation of the BRENDA-

Score on different subgroups and research questions. 

8. Conclusions 

In this retrospective study, with a derivation set of 8566 patients and an evaluation 

set of 1883 patients, all from certified breast cancer centers, a metastatic recurrence score 

(BRENDA-Score) and respective index (BRENDA-Index) were developed and internally 

and externally evaluated. The main findings of this study were: 

(1). The BRENDA-Score is a highly significant predictive tool for metastatic recurrence of breast 

cancer patients;  

(2). It is based on routine parameters, easily accessible in daily clinical care; 

(3). The BRENDA-Score is stable over at least the first five years after primary diagnosis, i.e., the 

sensitivities and specificities of this predicting system is rather similar with AUCs between 

0.76 and 0.81; 

(4). Internal and external validations confirmed these results; 

(5). Finally, the BRENDA-Score is in addition a good prognostic marker for overall survival. This 

confirms that metastatic free survival is a strong surrogate parameter for overall survival;  

(6). A multivariate Cox regression model for overall survival with BRENDA- and Nottingham 

prognostic score (NPS) showed that only the BRENDA-Score is statistically significant. 
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