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Vorwort

Die vorliegende Arbeit wurde am Lehrstuhl 2 für Mathematik an der Universität
Würzburg erstellt. Ein Forschungsschwerpunkt dieses Lehrstuhls ist die Entwicklung
von Optimierungsalgorithmen auf Mannigfaltigkeiten. Passend dazu war der Ursprung
dieser Arbeit, nämlich das Studium von Verfahren zur Bestimmung von orthogonalen
Matrizen, welche vorgegebene symmetrische Matrizen diagonalisieren. Die besondere
Schwierigkeit lag hierbei in der Tatsache, dass man sich nicht auf konstante Matrizen
beschränkte, sondern symmetrische Matrizen betrachtete, die stetig differenzierbar von
einem Parameter (der Zeit) abhingen. Für diese Problemstellung konnte man ein Ver-
fahren zur zeitvarianten Berechnung (”Tracking”) der gesuchten orthogonalen Trans-
formation durch einen rein euklidischen Ansatz herleiten. Es stellte sich jedoch schnell
heraus, dass der zugrunde liegende Trackingalgorithmus noch Verbesserungspotential
besitzt. Zunächst sollte das Verfahren für Mannigfaltigkeiten verallgemeinert werden
um strukturierte Trackingprobleme intrinsisch, d.h. direkt auf der Mannigfaltigkeit,
behandeln zu können. Weitere Motive für Erweiterungen und Modifikationen der
Trackingtheoreme waren die betrachteten Anwendungen. Dies waren zumeist Opti-
mierungsprobleme auf Mannigfaltigkeiten, die bereits am Lehrstuhl behandelt wurden
und welche man darüber hinaus in einem zeitvarianten Kontext untersuchen wollte.
Die Ausarbeitung dieser Ideen führte zu einigen Publikationen, die ich zusammen mit
Herrn Prof. Dr. Uwe Helmke verfasste. An dieser Stelle möchte ich mich bei ihm
ausdrücklich für seine Unterstützung bedanken. Ohne seine Erfahrung, sein Gespür für
viel versprechende Untersuchungen, seine (mit-) anpackende und im positiven Sinne
fordernde Art, wäre diese Arbeit nicht möglich gewesen. Weiteren Dank verdienen
meine Kollegen und Freunde vom Lehrstuhl, bei denen man sich stets Unterstützung
einholen konnte: Gunther Dirr, Jens Jordan, Martin Kleinsteuber und Christian Lage-
man sind hier in jedem Fall zu nennen. Besonderer Dank gilt auch Herrn Prof. Dr.
Malte Messmann vom Juliusspital Würzburg, der mich in den ersten drei Promo-
tionsjahren finanziell komfortabel ausgestattet hat. Leider konnten wir nicht wie ur-
sprünglich geplant, ein interdisziplinäres medizinisch-mathematisches Thema zu einer
Dissertation ausarbeiten. Trotzdem bekam ich genügend Freiheit, um dann ein rein
mathematisches Thema zu behandeln. Und schließlich bedanke ich mich bei meinen
Eltern, für ihre weit über das normale Maß hinausgehende Unterstützung während
meiner Studienzeit.
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Chapter 1

Introduction

1.1 Motivation

Many optimization problems for a smooth cost function f : M → R on a manifold
M can be solved by determining the zeros x∗ of a vector field F : M → TM on M ;
such as e.g. the gradient F of the cost function f . If F does not depend on addi-
tional parameters, numerous zero-finding techniques are available for this purpose. It
is a natural generalization however, to consider time-dependent optimization problems
that require the computation of time-varying zeros x∗(t) of time-dependent vector fields
F (x, t). Such parametric optimization problems arise in many fields of applied mathe-
matics, in particular path-following problems in robotics [49], recursive eigenvalue and
singular value estimation in signal processing, cf. [58], [59], [72], as well as numerical
linear algebra and inverse eigenvalue problems in control theory cf. [53], [57] and [60].
In the literature, there are already some tracking algorithms for these tasks, but these
do not always adequately respect the manifold structure. Hence, available tracking
results can often be improved by implementing methods working directly on the mani-
fold. For this reason, we develop in this thesis zero-finding techniques for time-varying
vector fields on Riemannian manifolds M . Thus we consider a smooth parameterized
vector field

F : M × R→ TM, (x, t) 7→ F (x, t) ∈ TxM, (1.1)

on a Riemannian manifold M . Hence F can be regarded as a time-depending family
of vector fields and the task is to determine a continuous curve x∗ : R→ M such that

F (x∗(t), t) = 0 (1.2)

holds for all t ∈ R. This will be achieved by studying an extension of the Newton flow
on manifolds. The discretization of the resulting ODE, which we will call time-varying
Newton flow, then leads to concrete zero-tracking algorithms.

1
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1.2 Previous work

Any numerical implementation of zero finding methods solving (1.2) requires discrete
update schemes to compute estimates xk of the exact zero x∗(tk), where tk = kh for
step size h > 0 and k ∈ N. In Euclidean space, a simple choice for a zero tracking
algorithm is obtained from the standard Newton method. The new estimate xk+1 of
x∗(tk+1) is thus determined by a Newton update step for F (xk, tk+1), i.e. via

xk+1 = xk −DF (xk, tk+1)
−1F (xk, tk+1). (1.3)

Thus, this method proceeds exactly as for time-invariant problems and therefore treat
the time-dependency effects of the map only implicitly. This procedure obviously works
as long as xk is in the domain of attraction of the zero of F (·, tk+1), which may not be
the case for all k ∈ N.
Continuation methods, cf. Allgower and Georg [4], [5], Garcia and Gould [26], Huitfeld
and Ruhe [37], are natural tools for computing parameter-depending zeros of nonlinear
maps. In the literature on continuation methods, the task of zero finding is mainly
addressed in Euclidean space, i.e. for maps

F : Rn × [0, 1] → Rn, (x, λ) → F (x, λ),

where the task is to find x∗(λ) such that F (x∗(λ), λ) = 0. This is achieved by studying
the differential equation

DF (x, t) · ẋ +
∂

∂t
F (x, t) = 0, (1.4)

where DF denotes the Fréchet derivative of F . Therefore, this approach may be
suitable to solve the problem (1.2), but the main difference is, that we consider an
unbounded interval for the second variable. Thus, known homotopy-type results can
not be directly applied to our zero-finding task on [0,∞).
This is in contrast to the work of Davidenko [16], where the same differential equation
(1.4) is considered on an unbounded time-interval for maps F : Rn × R→ Rn. Under
suitable full-rank conditions on DF , solutions x(t) of this differential equation exist
and are equal to the zero x∗(t) of F , provided x(0) = x∗(0). However, this algorithm
only works under perfect initial conditions and does not perform any error correction.
Thus, if one uses an Euler-step discretization of this algorithm to estimate the zero of
F at discrete times tk, k ∈ N, the integration error may accumulate at each step.
This leads us to the predictor/corrector methods, cf. [4], which calculate the zero x∗(t)
of F at discrete times tk via two basic steps. The new iterate xk+1 which approximates
x∗(tk+1) is obtained by

1. Compute a rough approximation x̃k+1 of the zero of F (·, tk+1) using xk (predictor
step).

2. Apply a zero-finding technique and the initial guess x̃k+1 to get an improved
estimate xk+1 ≈ x∗(tk+1) (corrector step).
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A valid choice for the first step is e.g. the Euler-discretization of (1.4), which is given
as

x̃k+1 = xk − hDF (xk, tk)
−1 ∂

∂t
F (xk, tk).

Hence, the evolution of x∗(t) is linearly approximated to ”predict” the new zero of F .
The corrector step then consists of one or more iterates of the conventional Newton
method:

xk+1 = x̃k+1 −DF (x̃k+1, tk+1)
−1F (x̃k+1, tk+1).

The local quadratic convergence of Newton’s algorithm guarantees that the resulting
sequence has a reasonable accuracy, i.e. xk is a good approximation of the exact zero
x∗(tk) for all k ∈ N.
As it will turn out, our derived discrete tracking algorithms combine these two steps
into one. This shows that our path-following method is closely related to such pre-
dictor/corrector algorithms. Moreover, our approach can be easily extended to a real
predictor/corrector method, since the required additional Riemannian Newton step can
be computed by a slight modification of our formulas.
Notably, our algorithms are derived for general problems on Riemannian manifolds and
are therefore path-following methods on Riemannian manifolds. An other difference to
the classical predictor/corrector methods is, that our tracking theorems are formulated
such that they work with fixed step sizes instead of requiring intermediate step size
adaptions.

The starting point of our work is the modified time-varying Newton flow

DF (x, t) · ẋ +
∂

∂t
F (x, t) = −F (x, t), (1.5)

which has been introduced in the PhD thesis of Getz [28], where the differential equation
was derived by using the concept of the so-called ”dynamic inverse”. Solutions of this
differential equation converge to the zero x∗(t), where in particular, no perfect initial
conditions are required. This is the benefit of inserting the additional feedback term
into (1.4), which stabilizes the dynamics around x∗(t). Hence, it is possible to introduce
discrete versions of the above ODE such that the accuracy of the resulting sequence
remains at a fixed level, cf. Section 2.3.1. An open question remained in how far one
can extend Getz’s method to a Riemannian manifold setting. This is exactly what will
be studied in this thesis.

In order to develop Newton-type algorithms on manifolds, one can profit from recent
publications about Riemannian optimization methods. For general information see
e.g. Udistre [68] and Smith [63], where the latter studies Riemannian Newton meth-
ods, which are of particular interest for this thesis. Further results about Newton’s
algorithms on Riemannian manifolds can be found in Adler et al. [3], Dedieu and
Priouret [17], Gabay [25], Ferreira and Svaiter [24] and in Mahony and Manton [46].
Since performing Newton-type methods on manifolds can be an expensive task, it
is useful to provide ways to reconsider the problems in Euclidean spaces, which can
sometimes be easier handled. The most popular way to do this, is to embed the
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intrinsic problem into the ambient Euclidean space by using Lagrange multipliers, see
e.g. Geiger and Kanzow [27] and Tanabe [65]. Note however, that such embeddings
are not always easily available, and even if they are, Lagrange multiplier techniques
may not work as defining equations for the manifolds are not always available.
An alternative to implement intrinsic Newton-type algorithms is to execute the zero-
finding method on the tangent space and using parameterizations to get the corre-
sponding updated point on the manifold, cf. Shub [61], Hüper and Trumpf [38] and
Manton [47]. This idea will be discussed and extended further in this thesis, in order
to obtain efficient implementations of the zero tracking algorithm. This allows even
for the possibility of designing root finding techniques on arbitrary manifolds without
referring to any Riemannian metric.

1.3 Results

As mentioned above, zero finding methods in the numerical literature have been mainly
developed in an Euclidean space setting. Thus the methods start on a Riemannian
submanifold M ⊂ Rn of Euclidean space and perform the computation steps in Rn.
In order to stay on a submanifold M ⊂ Rn such algorithms have to be combined
with projection operations that map intermediate solutions in Rn onto the constraint
set. This can be very cumbersome, technically involved and moreover, depends on an
artificial choice of a suitable embedding of M . Thus, intrinsic methods are of interest
that evolve during the entire computation on the manifold. It is the task of this thesis,
to develop such intrinsic zero finding methods. The main results of this thesis are as
follows:

• A new class of continuous and discrete tracking algorithms is proposed for com-
puting zeros of time-varying vector fields on Riemannian manifolds.

• Convergence analysis is performed on arbitrary Riemannian manifolds.

• Concretization of these results on submanifolds, including for a new class of
algorithms via local parameterizations.

• More specific results in Euclidean space are obtained by considering inexact and
underdetermined time-varying Newton Flows.

• Illustration of these newly introduced algorithms by examining time-varying
tracking tasks in three application areas.

The motivation of our studies is to provide continuous and discrete algorithms for
tracking the smooth zero x∗(t) of a time-varying vector field F : M × R → TM . We
introduce the Riemannian time-varying Newton flow

∇ẋF (x, t) +
∂

∂t
F (x, t) = M(x)F (x, t), (1.6)
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defined by the covariant derivative ∇ẋF of F along x(t) with respect to the first vari-
able. Here M denotes a stable bundle map, cf. Chapter 2 for details. Thus the setup is
a generalization of equation (1.5) and we are able to extend and generalize the results
and methods of Getz [28].
In Main Theorem 2.1, we derive sufficient conditions on F such that the solution x(t)
of (1.6) asymptotically converges towards the zero x∗(t) of F , i.e.

dist(x(t), x∗(t)) ≤ ae−bt,

for some a, b > 0 and all t ≥ 0. In particular, one does not need perfect initial con-
ditions, since the zero of F locally attracts solutions of the differential equation. This
implies the local robustness of solutions of the dynamical system under perturbations.
The discretization of the time-varying Newton flow leads to an update scheme produc-
ing approximations xk for x∗(t) at times tk = kh for step size h > 0 and k ∈ N. Hence,
the time-varying Newton algorithm is given for M(x) = − 1

h
I by

xk+1 = expxk

(
(∇F (xk, tk))

−1 · (−F (xk, tk)− hF h
τ (xk, tk)

))
, (1.7)

where expxk
is the exponential map of M at xk ∈ M , (∇F (xk, tk))

−1 : Txk
M → Txk

M
denotes the inverse of the covariant derivative of F at (xk, tk) and F h

τ (x, t) is a step
size-dependent approximation for ∂

∂t
F (x, t), cf. Chapter 2 for details.

The second major result is formulated in Main Theorem 2.2, showing that the sequence
(xk)k∈N of (1.7) has a guaranteed uniform accuracy holding in terms of the stepsize h.
I.e. there exists a c > 0 such that for h > 0 holds that

dist(xk, x∗(tk)) ≤ ch,

for all k ∈ N, provided that dist(x(0), x∗(0)) ≤ ch. This interesting feature is inherited
from the local stability of the zero of F , together with a suitable choice of the feedback
term MF in (1.6), and implies that the proposed algorithm has a convergence of order
h in t.
From these general results, more explicit versions of the continuous and discrete al-
gorithms are derived for specific constraint sets: submanifolds, Lie groups and the
Euclidean space. Even in the Euclidean case, it is useful to consider modifications of
the Newton method, such as e.g. inexact or quasi-Newton methods, since a major diffi-
culty of the tracking algorithms based on the time-varying Newton flow is the necessity
of inverting the (covariant) derivative of F . If F : Rn×n×R→ Rn×n is a matrix-valued
map, one usually needs to invert a matrix representation of DF (x, t), which has di-
mension n2 × n2. To reduce computational effort, we consider inexact Newton flows,
which are well studied in the time-invariant case, cf. [19]. We prove for time-varying
maps F : Rn × R → Rn, that it suffices to approximatively invert the derivative of F
in order to achieve the tracking task. Thus we obtain a tracking algorithm

xk+1 = xk −G(xk, tk)
(
F (xk, tk) + hF h

τ (xk, tk)
)
,

where G(x, t) : Rn → Rn is a suitable approximation for the inverse DF (x, t)−1 :
Rn → Rn. Again, the resulting sequence has a guaranteed uniform accuracy ≤ ch, cf.
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Chapter 2 for details. Since such approximations can be computed with significantly
less effort, this improves the applicability of the proposed algorithms. In particular,
the need of computing the matrix representation of DF may be dropped.
Finally, tracking results in Euclidean space are derived for underdetermined maps F :
Rn × R→ Rm, m < n. We call this the ”underdetermined case”, as the task becomes
to track zero sets instead of single points. Analogously to the full rank map, we
give conditions that the solutions of the underdetermined Newton flow asymptotically
converge to the zero set of F , i.e. the distance of the solution of the time-varying
Newton flow to the zero set decreases exponentially. Convergence properties are stated
in Main Theorem 2.4, where also the inexact approach is included.
The algorithms defined in Euclidean space can also be used to solve intrinsic tracking
tasks. The motivation for this is to circumvent the computation of the exponential
map and geodesics, which may be quite complicated. Thus, it helps sometimes, to
reformulate intrinsic tracking tasks in Euclidean spaces, either by including penalty
terms for violating the constraints or by using Lagrange multipliers. Note however,
that this requires a certain embedding of the original problem in an ambient Euclidean
space, which causes other difficulties. In particular, the dimension of the occurring
vectors in the algorithm usually increases.
Another way to implement intrinsic tracking algorithms may be used in the case where
F is the gradient of a cost function Φ : M × R → R. Here we make use of suitable
families of parameterizations (γx)x∈M and (µx)x∈M of M with γx : Vx → Ux ⊂ M ,
µx : Vx → U ′

x ⊂ M and γx(0) = µx(0) = x, where Vx ⊂ Rdim M . Then, the update
scheme to track x∗(tk) is given by

xk+1 = µxk

(−HΦ◦γ̂xk
(0, tk)

−1(∇(Φ ◦ γ̂xk
)(0, tk) + hGh

xk
(0, tk))

)
, (1.8)

where γ̂(y, t) := (γ(y), t), ∇(Φ ◦ γ̂xk
) is the Euclidean gradient of Φ ◦ γ̂xk

and Gh
x(0, t)

denotes an approximation of ∂
∂t
∇(Φ ◦ γ̂x)(0, t), cf. Chapter 2 for details.

We prove that under certain conditions for (γx)x∈M , (µx)x∈M and Φ, the accuracy of
the resulting sequence satisfies dist(xk, x∗(tk)) ≤ ch for some fixed c > 0 and all k ∈ N,
if dist(x0, x∗(0)) ≤ ch, cf. Main Theorem 2.3. A special benefit of this approach is,
that although it is an intrinsic algorithm, all computations are done with objects from
Euclidean space and the dimension of these magnitudes does not exceed the dimension
of the manifold.

The performance of these newly introduced methods is then evaluated by examining
specific time-varying tracking problems.
In our first application in Chapter 3, we consider the task of Intrinsic Subspace
Tracking, i.e. the computation of the principal (minor) subspace of a symmetric
matrix, defined by the eigenspace corresponding to its largest (smallest) eigenvalues.
Here, the natural state space for our algorithms is the Grassmann manifold Grass(m,n)
of m-dimensional subspaces in Rn.
For constant, time-invariant matrices, Edelman, Arias and Smith [23], Absil, Mahony
and Sepulchre [2] proposed Riemannian optimization algorithms on Stiefel and Grass-
mann manifolds for principal subspace analysis. Their approach proceeds by applying
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the Riemannian Newton method [63] to the Rayleigh quotient function. The same
technique has been subsequently used by Lundström and Elden [44] for intrinsic sub-
space tracking of time-varying symmetric matrices. These approaches are equivalent
to discretizations of the ordinary Newton flow, cf. (1.3). But due to the inherent lack
of any tracking ability of this differential equation, no theoretical tracking bounds have
been derived in [44].
In our approach, we go beyond that earlier work, by developing subspace tracking
algorithms via the time-varying Newton algorithm (1.7) of the Rayleigh quotient func-
tion on a Grassmann manifold. Our algorithm achieves tracking with provable track-
ing bounds. By implementing particularly convenient parameterizations of the Grass-
mannian into the formulas, we obtain significantly simpler expressions of the discrete
update scheme than given by [23, 44, 63]. Numerical experiments demonstrate the ap-
plicability and robustness of the proposed methods and a comparison with the methods
of [44] is done.
In Chapter 4, we study the task of Tracking Matrix Decompositions. At first we
consider the task of determining the eigenvalue and singular value decomposition of
time-varying symmetric and non-square matrices, respectively. Eigenvalue decomposi-
tions of time-varying symmetric matrices A(t) ∈ Rn×n have been studied by e.g. Dieci
[20]. The authors derived matrix differential equations to track orthogonal transforma-
tions X∗(t) ∈ O(n) such that X∗(t)>A(t)X∗(t) is diagonal. However, these differential
equations achieve asymptotic tracking of X∗(t) only if they are exactly initialized,
X(0) = X∗(0). Moreover, concrete numerical implementations are missing, i.e. no
discrete update scheme to compute the desired orthogonal matrices at discrete times
is given. Since that approach bases on the homotopy method (1.4), a discrete version
of the differential equation would require intermediate corrector steps, since discretiza-
tion errors occur and accumulate at each step. In contrast to this, by using our tools
of Chapter 2, robust update schemes are derived to perform the time-varying EVD
of symmetic matrices in the cases of simple and multiple eigenvalues. Using a well
known relation between the singular value and the symmetric eigenvalue problem, the
developed diagonalizing method for symmetric matrices with multiple eigenvalues can
be used to derive new SVD tracking algorithms of time-varying matrices M(t) ∈ Rm×n

for m ≥ n, t ∈ R. Notably, we used an approach basing on the inexact time-varying
Newton flow to derive the EVD and SVD tracking methods. Therefore we did not need
to vectorize the occurring matrices to obtain explicit update schemes, which consider-
ably extends the use of these algorithms. Thus the maximal dimension of the matrices
in the SVD tracking algorithm is m×m, instead of mn×mn. Numerical simulations
at the end of the chapter confirm the theoretical robustness and good performance of
the derived methods.
The polar decomposition of a full rank square matrix M ∈ Rn×n is the factorization
into an orthogonal and positive definite matrix. It is well-known, that a good method
to compute the polar decomposition works via the SVD. Thus we propose to use the
newly introduced SVD tracking algorithm for computing the polar factors. To assess
the quality of this method, we compare it with an algorithm for the time-varying
polar decomposition, which was introduced by Getz [28]. He derived a robust tracking
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method basing on the time-varying Newton flow. Since the author did not give a
concrete implementation, we applied our time-varying Newton algorithm to his setup.
This leads to relatively large matrices in the algorithms, whose dimension is up to
1
2
n(n + 1) ×1

2
n(n + 1). Unlike these formulas, our SVD-basing algorithm works with

matrices of the same dimension as M , i.e. n × n. As expected, our method showed a
better performance in the numerical examples and is therefore preferable.
In certain situations, it is not necessary to compute the whole eigenvalue decomposition
of a symmetric matrix. Thus, there exists a number of methods, which determine
only a few principal or minor eigenvectors of the matrix, cf. [55], [56], [58], [59]. In
particular, a gradient based algorithm for the minor and principal eigenvector analysis
was introduced in [48], which will be modified such that the time-varying Newton flow is
applicable. Then we obtain algorithms tracking the time-varying minor and principal
eigenvectors of time-varying symmetric matrices. Again, numerical results illustrate
the good performance of the derived methods. Since principal eigenvector tracking
algorithms can be employed to determine the principal eigenspace, we also compared
these algorithms with the subspace tracking algorithms of Chapter 3. It turned out,
that the algorithms of Chapter 3 have computationally advantages for general subspace
tracking problems. This is due to the fact, that in contrast to the specific subspace
tracking methods, the eigenvector tracking algorithms compute more information than
required.
In Chapter 5, we consider an optimization problem, which arises in the area of computer
vision: Pose Estimation. The task is to reconstruct the motion parameters Θ(t)
(rotation) and Ω(t) (translation) of a rigid object, by evaluating time-varying image
data. Our approach minimizes a suitable cost function on the manifold of so-called
essential matrices, in analogy to [32] in the time-invariant case. Here, the extrinsic
and intrinsic approaches as well as the parameterization method are applicable for the
tracking task. We compare the different tracking methods and examine their specific
difficulties and advantages while deriving the explicit update schemes. It turns out
that the task of motion reconstruction can be achieved by all the derived algorithms,
since all showed robust tracking results.



CHAPTER 1. INTRODUCTION 9

1.4 Notations

DF Fréchet derivative of a map F : Rn × R→ Rn

M Riemannian manifold
TxM Tangent space of M at x ∈ M
TM Tangent bundle of M
∇ẋF (x(s), t) Covariant derivative of a vector field F : M × R →

TM at (x(s), t) ∈ M × R along a curve x : I → M
with respect to the first variable.

∇F (x, t) : TxM → TxM Covariant derivative of a vector field F : M × R →
TM at (x, t) ∈ M×R with respect to the first variable

grad f Intrinsic Riemannian gradient of a function f : M ×
R→ R with respect to the first variable

Hf (x, t) : TxM → TxM Intrinsic Riemannian Hesse operator of f : M ×R→
R with respect to the first variable

Br(0) Neighborhood of 0 in the tangent space with radius
r, i.e. Br(0) := {v ∈ TxM : ‖v‖ < r}

Br(x) Intrinsic Riemannian neighborhood of x ∈ M with
radius r, i.e. Br(x) := {p ∈ M : dist(x, p) < r}

dist(x, y) Intrinsic Riemannian distance of x, y ∈ M
expx : TxM → M Riemannian exponential map at x ∈ M
ix(M) Injectivity radius of the exponential map at x ∈ M
i∗(M) Supremum of all r ≥ 0 such that expx : Br(0) → M

is a diffeomorphism for all x ∈ M
diag (d1, ..., dn) Diagonal matrix in Rn×n with entries d1, ..., dn

rk(A) Rank of a matrix A ∈ Rm×n

tr (A) Trace of a matrix A ∈ Rn×n

A⊗B Kronecker product of matrices A ∈ Rm×n and B ∈
Rp×q

VEC(A) Vectorizing operation of A ∈ Rm×n by stacking the
columns of A under each other

O(n) Orthogonal group in Rn×n

(A)Q The Q-factor of the QR-factorization A = (A)QR
Grass Grassmann manifold
Grm,n Isospectral representation of the Grassmann manifold

(Grassmannian)
ε3 Normalized essential manifold
Symn Vector space of all symmetric matrices of dimension

n× n
son Lie algebra of skew-symmetric matrices of size n× n
[, ] Lie bracket, defined for matrices A,B ∈ Rn×n by

[A,B] := AB −BA
ad P : Rn×n → Rn×n Adjoint representation at P , i.e. ad P (X) = [P, X]



Chapter 2

Time-varying Newton flow

In this section we introduce the time-varying Newton flow, which is the mathematical
basis of the zero tracking techniques considered in this work. At first, we study the
dynamical system in the general case of working on a Riemannian manifold (M, g).
This leads to a continuous and a discrete version of the abstract tracking algorithm.
Then we consider the special cases of M being a Riemannian submanifold of Rn and
a Lie group, leading to more concrete ODEs and update schemes. Thus, by using
additional assumptions on M , we try to find better implementations of the considered
tracking algorithms.
In the case of M being a Riemannian submanifold, techniques to reformulate the track-
ing task in Euclidean space are studied. This extends the applicability of our approach,
since one can use the Euclidean methods to solve the intrinsic tracking tasks then.
Finally, we also formulate the time-varying Newton flow in Euclidean space, leading
to the most expressive versions of the algorithms. In order to improve the use of the
studied methods, we show how to deal with inexact and underdetermined systems.
Hence, practical modifications of the standard algorithm are derived, which are needed
to implement the considered applications in the subsequent chapters.

2.1 Riemannian time-varying Newton flow

We now formulate the time-varying Newton flow on a Riemannian manifold. This
requires an extension of standard tools from Riemannian geometry to an analysis of
time-varying vector fields. Specifically, we discuss the Taylor formula for vector fields
along curves on a Riemannian manifold. Although this can be done in a straightforward
way, we summarize the required results in the next, preparatory section. For further
references and details we refer to standard textbooks on Riemannian geometry, such
as e.g. do Carmo [21].

2.1.1 Preliminaries on Riemannian manifolds

Let M be a k–dimensional smooth manifold, endowed with a Riemannian metric g.
A smooth vector field X on M then defines a smooth map from M into the tangent

10
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bundle TM that associates to each p ∈ M a vector X(p) ∈ TpM . We denote the set
of all smooth vector fields on M by V∞(M) and the set of all smooth functions on
M by C∞(M). If f : M → N denotes a smooth map between manifolds, then for
each point p ∈ M the associated tangent map is denoted as Tpf : TpM → Tf(p)N .
Let ϕ : U → V ⊂ Rk denote a smooth coordinate chart on an open subset U ⊂ M .
Given any smooth vector field Y on V , the pull back vector field ϕ∗Y : U → TU is the
smooth vector field on U defined by

(ϕ∗Y )(p) = (Tpϕ)−1(Y (ϕ(p))),

where Tpϕ : TpM → Tϕ(p)Rk denotes the tangent map of ϕ. Let
{

∂
∂y1

, ..., ∂
∂yk

}
denote

the standard basis vectors of Rk. Then a basis

{
∂

∂ϕ1

∣∣∣
p
, ..., ∂

∂ϕk

∣∣∣
p

}
of the tangent space

TpM , p ∈ U , is defined by

∂

∂ϕi

∣∣∣
p

:= (Tpϕ)−1 ∂

∂yi

, i = 1, ..., k. (2.1)

Using this basis of TpM for p ∈ M , any vector field X ∈ V∞(M) is locally uniquely
expressed as

X(p) =
k∑

i=1

ai(p)
∂

∂ϕi

∣∣∣
p
,

for p ∈ U and smooth functions ai : U → R, i = 1, ..., k.
The Lie derivative LX : C∞(M) → C∞(M) of a vector field X ∈ V∞(M) is an R–linear
operator acting on smooth functions f ∈ C∞(M) by LXf := Xf , defined by

(Xf)(p) = Tpf(X(p)), p ∈ M.

Recall, that the Lie bracket product [X, Y ] of two vector fields X,Y is the uniquely
determined vector field satisfying

[X,Y ]f = X(Y f)− Y (Xf)

for all f ∈ C∞(M).

Levi-Civita connection In order to define derivatives of vector fields on M , we
further need the concept of affine connections. We use the following notation. If X, Y ∈
V∞(M) are smooth vector fields on a Riemannian manifold (M, g), then 〈X,Y 〉 : M →
R is the smooth function defined by

〈X, Y 〉 (p) := g(p)(X(p), Y (p)), p ∈ M.

Definition 2.1. Let f : M → R be a smooth function on a Riemannian manifold
(M, g) and let df : M → T ∗M denote the associated differential one–form. The Levi-
Civita connection ∇ : V∞(M) × V∞(M) → V∞(M) on M assigns to each pair of
smooth vector fields X, Y on M a smooth vector field ∇XY with the properties:
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1. (X,Y ) 7→ ∇XY is R-bilinear in X, Y .

2. ∇fXY = f∇XY for all smooth functions f on M .

3. ∇X(fY ) = f∇XY + (dfX)Y for all smooth functions f on M .

4. ∇XY −∇Y X = [X,Y ] (torsion freeness).

5. d(〈Y, Z〉)X = 〈∇XY, Z〉+ 〈Y,∇XZ〉 (compatibility with the metric).

Note that a general affine connection does not require (4) and (5) of the previous defin-
ition. However, by including these additional assumptions, the Levi-Civita connection
is uniquely defined and satisfies the Koszul formula.

2 〈∇XY, Z〉 = X 〈Y, Z〉+ Y 〈X, Z〉 −Z 〈X,Y 〉 − 〈Y, [X, Z]〉 − 〈X, [Y, Z]〉+ 〈Z, [X,Y ]〉 .

Any affine connection defines in a unique way the associated notion of a covariant
derivative of differentiating a vector field along a smooth curve. Before turning to this
crucial concept we recall that the affine connection ∇XY is asymmetrically defined
with respect to X, Y . In fact, for any smooth vector fields X,Y and p ∈ M , the
value of ∇XY (p) depends only on the tangent vector X(p) and the values of Y on a
neighborhood of p. Thus, for any tangent vector v ∈ TpM and any smooth vector field
X ∈ V∞(M) with X(p) = v, the notation

∇vY (p) := ∇XY (p)

is well defined and independent of the choice of such X. Let c : I → M denote a
smooth curve. A smooth vector field X(t) denote along c is defined as a smooth map
X : I → TM , such that X(t) ∈ Tc(t)M holds for all t ∈ I. We denote the infinite–
dimensional vector space of all smooth vector fields along c by V∞(c).

Proposition 2.1. Let M be a smooth manifold with an affine connection ∇. Let
c : I → M a smooth curve and X,Y ∈ V∞(c). Then there exists an unique R–linear
map D

dt
: V∞(c) → V∞(c), called the covariant derivative along c, such that

1. D
dt

(X + Y ) = DX
dt

+ DY
dt

.

2. D
dt

(fX) = df
dt

X + f DX
dt

, where f : I → R is a smooth function.

3. If X is induced by a vector field X̂ ∈ V∞(M), i.e. X(t) = X̂(c(t)) holds for all
t ∈ I, then

DX

dt
(t) = ∇ċ(t)X̂(c(t)).

Moreover, for all n ∈ N and t ∈ I

DnX

dtn
(t) = ∇n

ċ(t)X̂(c(t)).
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Let X, Y ∈ V∞(c) be smooth vector fields along a smooth curve c : I → M , ex-
pressed by using coordinate frames for some ε > 0 and t ∈ [0, ε), i.e. X(c(t)) =∑k

i=1 Xi(c(t))
∂

∂ϕi

∣∣∣
c(t)

and Y (c(t)) =
∑k

i=1 Yi(c(t))
∂

∂ϕi

∣∣∣
c(t)

. Then we get the local expres-

sion of the covariant derivative

∇Y X(c(t)) =
∑

l

(∑
i,j

Xi(c(t))Yj(c(t))Γ
l
ij(c(t)) + dXl(c(t))Y (c(t))

)
∂

∂ϕl

∣∣∣
c(t)

, (2.2)

where Γl
ij denote the Christoffel symbols of ∇ for i, j, l ∈ {1, ..., k}.

Moreover, the covariant derivative of time-varying vector fields satisfies the following
chain rule

Lemma 2.1. Let X : M×R→ TM , (p, t) 7→ X(p, t), be a smooth time-varying vector
field and let c : I → M a smooth curve. Thus X(p, t) ∈ TpM for p ∈ M and all t ∈ R.
Then for X̃(t) := X(c(t), t) and Xt(p) := X(p, t)

D

dt
X̃(t) = ∇ċXt(c(t)) +

∂

∂t
X(c(t), t).

Proof. Let ϕ : U ⊂ M → V ⊂ Rk, p 7→ ϕ(p) a chart of M . Let c : I → U be a smooth
curve. Then locally X can be written as

X(p, t) =
k∑

i=1

ai(p, t)
∂

∂ϕi

∣∣∣
p
,

for some suitable smooth functions ai(p, t), i = 1, ..., k, cf. (2.1).
Thus for fixed t

∇ċXt(c(t)) =
D

ds
X(c(s), t) =

D

ds

k∑
i=1

ai(c(s), t)
∂

∂ϕi

∣∣∣
c(s)

=
k∑

i=1

D

ds

(
ai(c(s), t)

∂

∂ϕi

∣∣∣
c(s)

)
=

k∑
i=1

(
d

ds
ai(c(s), t)

)
∂

∂ϕi

∣∣∣
c(s)

+ ai(c(s), t)
D

ds

∂

∂ϕi

∣∣∣
c(s)

=

k∑
i=1

dai(c(s), t)ċ(s)
∂

∂ϕi

∣∣∣
c(s)

+ ai(c(s), t)
D

ds

∂

∂ϕi

∣∣∣
c(s)

Therefore we get

D

dt
X̃(t) =

D

dt

k∑
i=1

ai(c(t), t)
∂

∂ϕi

∣∣∣
c(t)

=
k∑

i=1

D

dt

(
ai(c(t), t)

∂

∂ϕi

∣∣∣
c(t)

)
=

k∑
i=1

(
d

dt
ai(c(t), t)

)
∂

∂ϕi

∣∣∣
c(t)

+ ai(c(t), t)
D

dt

∂

∂ϕi

∣∣∣
c(t)

=
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k∑
i=1

dai(c(t), t)ċ(t)
∂

∂ϕi

∣∣∣
c(t)

+
∂

∂t
ai(c(t), t)

∂

∂ϕi

∣∣∣
c(t)

+ ai(c(t), t)
D

dt

∂

∂ϕi

∣∣∣
c(t)

=

=
∂

∂t
X(c(t), t) +∇ċXt(c(t)).

Parallel translation Let Y be a smooth vector field along a smooth curve c :
[a, b] → M , t 7→ c(t). Then Y is called parallel along c(t) if

D

dt
Y (t) = 0, ∀t ∈ [a, b].

Proposition 2.2. Let M and c be as above. Let ξ ∈ Tc(a)M be a tangent vector of M
at c(a). Then there exists a unique parallel vector field V ∈ V∞(c) such that V (a) = ξ.

With the notation of above and p = c(a), q = c(s) for an arbitrary, but fixed s ∈ [a, b],
the parallel transport along c induces a vector space isomorphism τpq : TpM → TqM ,
called the parallel translation, such that τpqξ = Vξ(s) for all ξ ∈ TpM . Here Vξ is the
parallel vector field along c with Vξ(a) = ξ.
Since the Levi-Civita connection is compatible with the metric, one has the following
equation for vector fields X, Y along curves c : I → M :

d

dt
〈X, Y 〉c(t) = 〈DX

dt
, Y 〉c(t) + 〈X,

DY

dt
〉c(t), t ∈ I. (2.3)

In particular for the Levi-Civita connection, one has 〈X(t), Y (t)〉c(t) = const for any
smooth curve c : I → M and any pair of parallel vector fields X, Y along c.

Geodesics; complete manifold Let c : I → M be a smooth, regular and injective
curve. Here regularity means that ċ(t) 6= 0 for all t ∈ R. It is easily seen that there
exists then a smooth vector field X : M → TM such that ċ(t) = X(c(t)) for all t ∈ I.
Thus,

∇ċċ := (∇XX) (c(t))

and c is a geodesic, if ∇ċċ = 0 for all t ∈ I. Then ‖ċ(t)‖c(t) = ‖ċ(0)‖p for all 0 ≤ t ≤ 1,
which can be easily seen by using (2.3).
We always require that M is a geodesically complete manifold, i.e. for all p ∈ M , any
geodesic c(t) starting from p is defined for all t ∈ R. Hence, the exponential map at
p ∈ M is defined for any v ∈ TpM by

expp(v) = c(1),

where c : R → M is a geodesic with c(0) = p and ċ(0) = v. Note that every compact
Riemannian manifold is geodesically complete. The injectivity radius ip(M) at a point
p ∈ M is the supremum of r > 0 such that expp

∣∣
Br(0)

is injective. Here, Br(0) = {v ∈
TpM | ‖v‖p < r}. We further use the notation i∗p(M) at a point p ∈ M , which denotes
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the supremum of r > 0 such that expp

∣∣
Br(0)

is a diffeomorphism. Since ip(M) can vary

with the base point p, we need to define as well the global injectivity radius i(M) of
M by

i(M) := inf{ip(M)| p ∈ M},
as well as

i∗(M) := inf{i∗p(M)| p ∈ M}
for the largest radius of the ball, where expp is a local diffeomorphism for all p ∈ M .
Note that for a compact Riemannian manifold M , the global numbers i(M) and i∗(M)
are always positive.
We denote the intrinsic distance of p, q ∈ M by

dist(p, q) := inf

{∫ 1

0

‖ċ(t)‖c(t)dt
∣∣∣ c : R→ M piecewise C1 curve, c(0) = p, c(1) = q

}

Let p, q ∈ M and let c : R→ M be a geodesic form p to q with c(0) = p and c(1) = q.
If ‖ċ(0)‖p ≤ i∗p(M), then exp−1

p (q) is defined with

exp−1
p (q) = ċ(0).

Moreover, c is the unique length minimizing geodesic from p to q and

dist(p, q) = ‖ċ(0)‖p.

We define the intrinsic neighborhood of p ∈ M by BR(p) := {q| dist(p, q) < R} for
R > 0. If M is geodesically complete and 0 < R ≤ i∗p(M), then BR(p) = {expp v| v ∈
TpM, ‖v‖p < R}.

Riemannian Hesse operator Let f : M → R be a smooth function on a Rie-
mannian manifold (M, g). The gradient vector field of f is the uniquely defined smooth
vector field grad f on M , characterized by

df(p) · ξ = 〈grad f(p), ξ〉p ,

for all ξ ∈ TpM and p ∈ M . On a Riemannian manifold one also has the intrinsic
analogue of the second derivative, the Hessian. The Hesse operator of f is defined as
follows, cf. [34].

Definition 2.2. a) The Hesse form of a smooth function f : M → R at a critical
point p ∈ M is the symmetric bilinear form on the tangent space

Hf (p) : TpM × TpM → R,

(ξ, η) 7→ 1

2

(Hf (p)(ξ + η, ξ + η)−Hf (p)(ξ, ξ)−Hf (p)(η, η)
)

defined for tangent vectors ξ, η ∈ TpM via the quadratic form

Hf (p)(ξ, ξ) := (f ◦ α)′′(0).

Here α : I → M is an arbitrary curve with α(0) = p and α̇(0) = ξ.
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b) The Riemannian Hesse form of a smooth function f : M → R at an arbitrary
point p ∈ M is the symmetric bilinear form on the tangent space

Hf (p) : TpM × TpM → R,

(ξ, η) 7→ 1

2

(Hf (p)(ξ + η, ξ + η)−Hf (p)(ξ, ξ)−Hf (p)(η, η)
)

defined for tangent vectors ξ, η ∈ TpM via the quadratic form

Hf (p)(ξ, ξ) := (f ◦ c)′′(0).

Here c : I → M denotes the (locally) unique geodesic, with c(0) = p and ċ(0) = ξ.
The Riemannian Hesse operator then is the uniquely determined selfadjoint map

Hf (p) : TpM → TpM

satisfying
Hf (p)(ξ, η) = 〈Hf (p)ξ, η〉p

for all tangent vectors ξ, η ∈ TpM .

Remark 2.1. Note that the first part of the above definition applies only at critical
points. To define the Hessian at an arbitrary point, we need the additional structure
of a Riemannian metric to define geodesics, as done in the second part.
Note further that the above two definitions of the Hesse form coincide at a critical
point. In particular, the Riemannian Hesse form at a critical point is independent of
the choice of the Riemannian metric.

Instead of defining the Hessian in this way by using geodesics, one can also give an
equivalent definition in terms of the Levi-Civita connection.

Proposition 2.3. Let p ∈ M , ξ, η ∈ TpM be tangent vectors and X,Y be smooth
vectors fields on M with X(p) = ξ, Y (p) = η. Then the Riemannian Hesse form and
Hesse operator, respectively, are given as

Hf (p)(ξ, η) = X(Y f)(p)− ((∇XY )f)(p) (2.4)

and
Hf (p)ξ = (∇Xgrad f)(p). (2.5)

In particularly, for any smooth curve c : I → M

∇ċgrad f(c(t)) = Hf (c(t))ċ(t).
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Taylor’s formula on Riemannian manifolds In the sequel we will need to esti-
mate the difference of a vector field X at two different points p, q ∈ M . In order to do
so we use Taylor expansions on a manifold. The proof of the following characterization
of the covariant derivative in terms of parallel transport can be found in the book of
Helgason [31].

Theorem 2.1. Let M be a manifold with an affine connection ∇. Let p ∈ M and let
X,Y ∈ V∞(M). Let t 7→ c(t) be an integral curve of X through p = c(0) and τpc(t) the
parallel translation from p to c(t) with respect to the curve c. Then

∇XY (p) = lim
t→0

1

t
(τ−1

pc(t)Y (c(t))− Y (p)).

The following lemma uses this result to derive formulas for higher order covariant
derivatives.

Lemma 2.2. Let c : [a, b] → M be a smooth regular curve, i.e. ċ(t) 6= 0 for all t ∈ [a, b].
Let further X ∈ V∞(c). Then

τ−1
pc(t)

Di

dti
X(t) =

di

dsi
τ−1
pc(t+s)X(t + s)

∣∣∣
s=0

where p = c(a).

Proof. Let q = c(t), r = c(t + s). We prove the claim inductively for i: For i = 1, we
have

d

ds
τ−1
pr X(t + s)

∣∣∣
s=0

=
d

ds
τ−1
pq τ−1

qr X(t + s)
∣∣∣
s=0

= τ−1
pq

d

ds
τ−1
qr X(t + s)

∣∣∣
s=0

= τ−1
pq

D

dt
X(t).

Note that the last equality follows from the previous theorem.
Thus let the claim be true for some i ∈ N. Then

di+1

dsi+1
τ−1
pr X(t + s)

∣∣∣
s=0

=
di+1

dsi+1
τ−1
pq τ−1

qr X(t + s)
∣∣∣
s=0

= τ−1
pq

di+1

dsi+1
τ−1
qr X(t + s)

∣∣∣
s=0

=

τ−1
pq

d

ds

(
di

dsi
τ−1
qr X(t + s)

) ∣∣∣
s=0

= τ−1
pq

D

dt

Di

dti
X(t) = τ−1

pq

Di+1

dti+1
X(t),

which completes the proof.

Using this lemma, we derive Taylor’s formula for vector fields.

Theorem 2.2. Let X ∈ V∞(M) and let c : [0, r] → M a smooth regular curve from
p = c(0) to q = c(r). Let X̃(t) := X(c(t)). Then for all t ∈ [0, r] and n ∈ N

τ−1
pc(t)X̃(t) =

n−1∑
i=0

ti

i!

Di

dti
X̃(0) +

tn

(n− 1)!

∫ 1

0

(1− s)n−1τ−1
pc(ts)

Dn

dun
X̃(u)

∣∣∣
u=ts

ds.

In particular, we obtain Taylor’s formula for smooth vector fields

τ−1
pq X(q) =

n−1∑
i=0

ri

i!
∇i

ċ(0)X(p) +
rn

(n− 1)!

∫ 1

0

(1− s)n−1τ−1
pc(rs)∇n

ċ(rs)X(c(rs))ds. (2.6)



CHAPTER 2. TIME-VARYING NEWTON FLOW 18

Proof. Let Y : [0, r] → V be a smooth curve in a finite dimensional R-vector space V .
The Taylor Theorem implies

Y (t) = Y (0)+t
d

dt
Y (0)+...+

tn−1

(n− 1)!

dn−1

dtn−1
Y (0)+

tn

(n− 1)!

∫ 1

0

(1−s)n−1 dn

dun
Y (u)

∣∣∣
u=ts

ds

Hence for Y (t) := τ−1
pc(t)X̃(t) ∈ TpM and p = c(0) we obtain from Lemma 2.2

di

dsi
Y (0) = τ−1

pc(t)

Di

dti
X̃(t)

and therefore

τ−1
pc(t)X̃(t) =

X̃(0)+t
D

dt
X̃(0)+...+

tn−1

(n− 1)!

Dn−1

dtn−1
X̃(0)+

tn

(n− 1)!

∫ 1

0

(1−s)n−1τ−1
pc(ts)

Dn

dun
X̃(u)

∣∣∣
u=ts

ds.

Thus we get for t = r
τ−1
pq X̃(r) =

X̃(0) + r
D

dt
X̃(0) +

rn−1

(n− 1)!

Dn−1

dtn−1
X̃(0) +

rn

(n− 1)!

∫ 1

0

(1− s)n−1τ−1
pc(rs)

Dn

dun
X̃(u)

∣∣∣
u=rs

ds.

The result follows from claim 3) of Proposition 2.1.

Remark 2.2. (Estimate for 2 variables)
By using Taylor’s formula once more, we obtain an approximation formula for vector
fields, which depends on an additional variable t.
Thus let X : M×R→ TM be a time-varying vector field, defined by (p, t) 7→ X(p, t) ∈
TpM , and consider for q ∈ M

X(q, t1) = X(q, t0) +
∂

∂t
X(q, t)

∣∣
t=t0

h +

∫ 1

0

(1− s)
∂2

∂t2
X(q, t)

∣∣
t=t0+sh

h2ds,

where h = t1 − t0.
Let c : [0, r] → M a smooth regular curve from p = c(0) to q = c(r). Equation (2.6)
reads for n = 2 and X = X(p, t)

τ−1
pq X(q, t0) = X(p, t0) + r∇ċ(0)X(p, t0) + r2

∫ 1

0

(1− s)τ−1
pc(rs)∇2

ċ(rs)X(c(rs), t0)ds.

Hence

τ−1
pq X(q, t1) = X(p, t0) + r∇ċ(0)X(p, t0) + r2

∫ 1

0

(1− s)τ−1
pc(rs)∇2

ċ(rs)X(c(rs), t0)ds+

+
∂

∂t

(
X(p, t) + r

∫ 1

0

τ−1
pc(rs)∇ċ(rs)X(c(rs), t)ds

)∣∣∣∣
t=t0

h+
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τ−1
pq

∫ 1

0

(1− s)
∂2

∂t2
X(q, t)

∣∣
t=t0+sh

h2ds,

where we used the Taylor formula for n = 1, i.e.

τ−1
pq X(q, t) = X(p, t) + r

∫ 1

0

τ−1
pc(rs)∇ċ(rs)X(c(rs), t)ds.

Therefore, we get

τ−1
pq X(q, t1) = X(p, t0) + r∇ċ(0)X(p, t0) + h ∂

∂t
X(p, t0) +R (2.7)

where the remainder term is

R = r2

∫ 1

0

(1− s)τ−1
pc(rs)∇2

ċ(rs)X(c(rs), t0)ds + rh
∂

∂t

∫ 1

0

τ−1
pc(rs)∇ċ(rs)X(c(rs), t)ds

∣∣∣∣
t=t0

+

h2τ−1
pq

∫ 1

0

(1− s)
∂2

∂t2
X(q, t)

∣∣
t=t0+sh

ds

Inspecting the second order covariant derivative
In order to apply Theorem 2.2 to get estimates for the covariant derivatives, we need

some further examinations. Thus let p ∈ M , R ≤ i∗p(M) and ϕ :=
(
expp

∣∣
BR(0)

)−1

a chart of M . Let q ∈ BR(p) and v := exp−1
p q. Thus, ‖v‖p = dist(p, q) and c(t) :=

expp(tv) is a geodesic joining p and q for t ∈ [0, 1].
For any fixed w ∈ TqM we define a smooth vector field Yw on BR(p) by

Yw(p′) := τpp′τ
−1
pq w,

where τpp′ denotes the parallel transport along the unique geodesic joining p and p′ ∈
BR(p). Thus, along geodesics c : [0, 1] → M with c(0) = p, we have Yw(c(t)) =
τpc(t)τ

−1
pq w, which is a parallel vector field along c, i.e. D

dt
Yw(c(t)) = 0.

To get an approximation formula for ∇ċ∇YwX(c(t)) we locally express the occur-
ring vector fields by the coordinate frames associated with ϕ. Hence consider the
smooth function Xi(p

′), Yi(p
′) and Ci(p

′) (i = 1, ..., k) on BR(p) such that X(p′) =∑k
i=1 Xi(p

′) ∂
∂ϕi

∣∣∣
p′
, Yw(p′) =

∑k
i=1 Yi(p

′) ∂
∂ϕi

∣∣∣
p′

and ċ(t) =
∑k

i=1 Ci(c(t))
∂

∂ϕi

∣∣∣
c(t)

.

Then we have

∇YwX(c(t)) =
∑

l

(∑
i,j

Xi(c(t))Yj(c(t))Γ
l
ij(c(t)) + dXl(c(t))Yw(c(t))

)
∂

∂ϕl

∣∣∣
c(t)

,

where Γl
ij denote the Christoffel symbols of ∇ on BR(p) for i, j, l ∈ {1, ..., k}, cf. (2.2).

Analogously, for a vector field Z(p′) :=
∑k

i=1 Zi(p
′) ∂

∂ϕi

∣∣∣
p′
,
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∇ċZ(c(t)) =
∑

l

(∑
i,j

Ci(c(t))Zj(c(t))Γ
l
ij(c(t)) + dZl(c(t))ċ

)
∂

∂ϕl

∣∣∣
c(t)

.

Combining these formulas shows that

∇ċ∇YwX(c(t)) =
∑

l

dl(c(t))
∂

∂ϕl

∣∣∣
c(t)

,

where
dl(c(t)) =

∑
i,j,r,s

Ci(c(t))Xr(c(t))Ys(c(t))Γ
l
ij(c(t))Γ

j
rs(c(t))+

∑
i,j

Ci(c(t))dXj(c(t))Yw(c(t))Γl
ij(c(t))+

∑
r,s

(
d

dt
(Xr(c(t)))Ys(c(t))Γ

l
rs(c(t)) + Xr(c(t))

d

dt
(Ys(c(t)))Γ

l
rs(c(t))+

Xr(c(t))Ys(c(t))
d

dt
(Γl

rs(c(t)))

)
+

d

dt
(dXl(c(t))Yw(c(t))).

We use the following abbreviations

1. |C| := max{|Ci(c(t))| : t ∈ [0, 1], i = 1, ..., k},
2. |X| := max{|Xi(c(t))| : t ∈ [0, 1], i = 1, ..., k},
3. |dX| := max{|dXi(c(t))v| : t ∈ [0, 1], v ∈ Tc(t)M, ‖v‖c(t) = 1, i = 1, ..., k},
4. |Y | := max{|Yi(c(t))| : t ∈ [0, 1], i = 1, ..., k},
5. |Γ| := max{|Γl

ij(c(t))| : t ∈ [0, 1], i, j, l = 1, ..., k},

6. |dΓ| := max{|dΓl
ij(c(t))

ċ(t)
‖ċ(t)‖c(t)

| : t ∈ [0, 1], i, j, l = 1, ..., k},

7. |d2X| := max{|HXi
(c(t))(v, w)| : t ∈ [0, 1], v, w ∈ Tc(t)M, ‖v‖c(t) = ‖w‖c(t) =

1, i = 1, ..., k},

8.
∣∣∣ ∂
∂ϕ

∣∣∣ := max

{∥∥∥∥ ∂
∂ϕi

∣∣∣
c(t)

∥∥∥∥
c(t)

: t ∈ [0, 1], i = 1, ..., k

}
.

We use the following estimates

i) dXj(c(t))Yw(c(t)) = 〈grad Xj(c(t)), Yw(c(t))〉c(t) ≤ (|d2X|‖ċ(0)‖p + |dX|)‖w‖q

This can be seen by noting that

dXj(c(t))Yw(c(t)) = dXj(p)Yw(p) +

∫ 1

0

d

dt
(dXj(c(rt))Yw(c(rt)))dr.
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ii) d
dt

(dXl(c(t))Yw(c(t))) = 〈HXl
(c(t))ċ, Yw(c(t))〉c(t) + 〈grad Xl(c(t)),

D

dt
Yw(c(t))

︸ ︷︷ ︸
=0

〉c(t)

≤ |d2X|‖ċ(0)‖p‖w‖q

iii) d
dt

(Ys(c(t))) = −∑
rl CrYlΓ

s
rl, since

0 = ∇ċYw =
∑

s

d

dt
(Ys(c(t)))

∂

∂ϕs

∣∣∣
c(t)

+
∑

rl

YlCrΓ
s
rl

∂

∂ϕs

∣∣∣
c(t)

Then we get

|dl| ≤ k4|C||X||Y ||Γ|2 + k2|C||Γ|(|dX|+ |d2X|‖ċ(0)‖p)‖w‖q + k2|Y ||Γ||dX|‖ċ(0)‖p+

k4|X||Y ||C||Γ|2 + k2|X||Y ||dΓ|‖ċ(0)‖p + |d2X|‖ċ(0)‖p‖w‖q,

for l = 1, ..., k.
Thus we can estimate the covariant derivative of the vector field ∇YwX(c(t)) w.r.t. ċ
as follows

‖∇ċ∇YwX(c(t))‖c(t) ≤ k

∣∣∣∣
∂

∂ϕ

∣∣∣∣
(
k4|C||X||Y ||Γ|2 + k2|C||Γ|(|dX|+ |d2X|‖ċ(0)‖p)‖w‖q+

k2|Y ||Γ||dX|‖ċ(0)‖p + k4|X||Y ||C||Γ|2 + k2|X||Y ||dΓ|‖ċ(0)‖p + |d2X|‖ċ(0)‖p‖w‖q

)
.

Let λ1(t), ..., λk(t) denote the eigenvalues of the gramian

G(t) =

(〈
∂

∂ϕi

∣∣∣
c(t)

,
∂

∂ϕj

∣∣∣
c(t)

〉k

i,j=1

)

and define
m := min{λi(t) : t ∈ [0, 1], i = 1, ..., k}.

Then we get

|C| ≤ ‖ċ(t)‖c(t)

m
=
‖ċ(0)‖p

m
and

|Y | ≤ ‖w‖q

m
,

which shows that there exists a constant κ > 0, depending on m, |Γ|, |Γ|2, |dΓ|, |X|,
|dX| and |d2X|, such that

‖∇ċ∇YwX(c(t))‖c(t) ≤ κ‖ċ(0)‖p‖w‖q.

Here,

κ ≤ k

∣∣∣∣
∂

∂ϕ

∣∣∣∣ ·
(

k4

m2
|X||Γ|2+

k2

m
|Γ|(|dX|+ |d2X|‖ċ(0)‖p) +

k2

m
|Γ||dX|+ k4

m2
|X||Γ|2 +

k2

m
|X||dΓ|+ |d2X|

)
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Corollary 2.1. Let M be a connected and complete Riemannian manifold and let
X : M → TM a smooth vector field. Then for 0 < R ≤ i∗p(M), there exists a chart ϕ

such that the vector field X
∣∣
BR(p)

can be expressed by

X(p′) :=
k∑

i=1

Xi(p
′)

∂

∂ϕi

∣∣∣
p′
,

where ∂
∂ϕ1

∣∣∣
p′
, ..., ∂

∂ϕk

∣∣∣
p′

is the coordinate frame associated with ϕ and Xi : BR(p) → R is

a smooth function for i = 1, ..., k.
Assume that the following suprema are finite

(A1) |X| := sup{|Xi(p
′)| : p′ ∈ BR(p), i = 1, ..., k},

(A2) |dX| := sup{|dXi(p
′)v| : p′ ∈ BR(p), v ∈ Tp′M, ‖v‖p′ = 1, i = 1, ..., k},

(A3) |d2X| := sup{|HXi
(p′)(v, w)| : p′ ∈ BR(p), v, w ∈ Tp′M, ‖v‖p′ = ‖w‖p′ = 1, i =

1, ..., k},
(A4) |Γ| := sup{|Γl

ij(p
′)| : p′ ∈ BR(p), i, j, l = 1, ..., k},

(A5) |dΓ| := sup{|dΓl
ij(p

′)v|}| : p′ ∈ BR(p), v ∈ Tp′M, ‖v‖p′ = 1, i, j, l = 1, ..., k},

(A6)
∣∣∣ ∂
∂ϕ

∣∣∣ := sup

{∥∥∥∥ ∂
∂ϕi

∣∣∣
p′

∥∥∥∥
p′

: p′ ∈ BR(p), i = 1, ..., k

}
,

(A7) m := min{λi(t) : t ∈ [0, 1], i = 1, ..., k}, where λ1(t), ..., λk(t) denote the eigen-

values of the gramian G(t) =

(〈
∂

∂ϕi

∣∣∣
c(t)

, ∂
∂ϕj

∣∣∣
c(t)

〉k

i,j=1

)

Then the following statements hold:

1. There exists a constant κ > 0 such that for q ∈ BR(p) and w ∈ TqM

‖∇ċ∇YwX(c(t))‖c(t) ≤ κ ‖ċ(0)‖p‖w‖q, (2.8)

where Yw : BR(p) → TM is defined by Yw(p′) = τpp′(τ
−1
pq w).

2. If M is compact and connected, then there exists r > 0 and κ > 0 such that (2.8)
holds uniformly for all p ∈ M , q ∈ Br(p) and w ∈ TqM .

This shows that one is able to bound higher order covariant derivatives by local expres-
sions of the vector field X via coordinate frames and the Christoffel symbols. From
now on, we assume the existence of such a bound on the covariant derivatives in order
to estimate the norm of the vector field.
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Lemma 2.3. Let M be a complete Riemannian manifold, X ∈ V∞(M), p ∈ M and
R = i∗p(M) and let (cq)q∈BR(p) denote the family of geodesic curves from p to q with
cq : [0, Rq] → M and Rq = dist(p, q) ≤ R for all q ∈ BR(p).
Assume the existence of constants c1, c2, c3 > 0 such that

1. c1 ≤ ‖∇vX(p)‖p ≤ c2, for all v ∈ TpM with ‖v‖p = 1.

2. ‖∇ċq∇YwX(cq(t))‖cq(t) ≤ c3 for all q ∈ BR(p), t ∈ [0, Rq] and w ∈ TqM with
‖w‖q = 1. Here Yw is a smooth vector field on BR(p) defined by Yw(p′) :=
τpp′τ

−1
pq w.

Then we get for r ≤ min{R, c1
2c3
} that

c1

2
dist(p, q) ≤ ‖τ−1

pq X(q)−X(p)‖p ≤ (c1/2 + c2)dist(p, q) (2.9)

for all q ∈ Br(p). Moreover, the covariant derivative of X at q ∈ Br(p) with respect to
w ∈ TqM with ‖w‖q = 1 satisfies

c1

2
≤ ‖∇wX(q)‖q (2.10)

Proof. Let d(p, q) ≤ r and let v̂ ∈ TpM such that q = expp v̂. Then the geodesic
curve cq : [0, Rq] → M from p to q with Rq = dist(p, q) and ‖ċq‖cq(t) = 1 is given by
cq(t) := expp (tv̂/‖v̂‖p). According to (2.6), we have for n = 2

τ−1
pq X(q) = X(p) + Rq∇ċq(0)X(p) + R2

q

∫ 1

0

(1− s)τ−1
pcq(Rqs)∇2

ċq(Rqs)X(cq(Rqs))ds. (2.11)

Note that for w := ċq(Rq) and 0 ≤ s ≤ 1 we have Yw(cq(Rqs)) = τpcq(Rqs)τ
−1
pq ċq(Rq) =

τpcq(Rqs)ċq(0) = ċq(Rqs). Thus, the right side of (2.9) gets obvious by noting that

∥∥∥∥Rq∇ċq(0)X(p) + R2
q

∫ 1

0

(1− s)τ−1
pcq(Rqs)∇2

ċq(Rqs)X(cq(Rqs))ds

∥∥∥∥
p

≤

dist(p, q)(c2 + dist(p, q)c3) ≤ dist(p, q)(c2 + c1/2),

where we used ‖∇2
ċq(Rqs)X(cq(Rqs))‖cq(Rqs) = ‖∇ċq(Rqs)∇YwX(cq(Rqs))‖cq(Rqs) ≤ c3 for

w = ċq(Rq), due to assumption (2).
On the other hand, (2.11) implies that

‖τ−1
pq X(q)−X(p)‖p ≥ ‖Rq∇ċq(0)X(p)‖p−

∥∥∥∥R2
q

∫ 1

0

(1− s)τ−1
pcq(Rqs)∇2

ċq(Rqs)X(cq(Rqs))ds

∥∥∥∥
p

Since dist(p, q) = Rq ≤ r ≤ c1
2c3

, we get

‖τ−1
pq X(q)−X(p)‖p ≥ dist(p, q)(c1 − rc3).
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And therefore
‖τ−1

pq X(q)−X(p)‖p ≥ dist(p, q)c1/2.

Equation 2.10 can be seen by applying Taylor’s formula to the vector field ∇YwX,
where Yw(p′) := τpp′τ

−1
pq w, p′ ∈ Br(p). Thus,

τ−1
pq ∇wX(q) = ∇YwX(p) + Rq

∫ 1

0

τ−1
pcq(Rqs)∇ċ(Rqs)∇YwX(cq(Rqs))ds,

which shows that

‖∇wX(q)‖q ≥ ‖∇YwX(p)‖p −Rqc3 ≥ c1 − c1/2.

2.1.2 The tracking algorithms

We now have the necessary tools to analyze the time-varying Newton flow on Rie-
mannian manifolds. This general approach is the basis of the subsequent chapters.
Let M be a connected and complete Riemannian manifold. We consider a smooth
time-varying vector field

F : M × R→ TM,

defined by
(x, t) 7→ F (x, t) ∈ TxM.

The object of interest is a smooth zero of F , which is a smooth curve x∗ : R → M ,
satisfying F (x∗(t), t) = 0 for all t. This smooth zero is called isolated, if there exists
a r > 0 such that for all t ∈ R and x ∈ Br(x∗(t)) holds: F (x, t) = 0 if and only if
x = x∗(t).
In order to determine x∗(t), we consider derivatives of the vector field F . As usual,
we use the notation ∇ẋF (x, t) representing the covariant derivative of F on M with
respect to ẋ ∈ TxM and the affine connection ∇ for (x, t) ∈ M × R.
To derive a differential equation on M , whose solution asymptotically tracks the smooth
zero of F , we further need the following concept.

Definition 2.3. Let M : TM → TM a smooth bundle map, defined by linear maps
M(x) : TxM → TxM for x ∈ M . M is called stable, if there exists b > 0 such that

〈M(x) · v, v〉x ≤ −b,

for all x ∈ M and v ∈ TxM with ‖v‖x = 1.

Examples for stable bundle maps are given by M(x) = −σI for σ > 0.

Now consider the ODE

∇ẋF (x, t) + ∂
∂t

F (x, t) = M(x)F (x, t), (2.12)
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and note that the left hand side of (2.12) equals D
dt

F (x(t), t), cf. Lemma 2.1. We
call the differential equation (2.12) time-varying Newton flow, as the Newton flow is
a special case of this equation in the time-invariant case, where F does not depend
explicitly on t.
It will be shown in the proof of the following theorem, that solutions x(t) of (2.12)
satisfy

‖F (x(t), t)‖x(t) ≤ ae−bt

for some a, b > 0 and all t > 0. However, this alone does not imply that x(t) converges
to the zero x∗(t) of F , which can be easily seen by considering the example F (x, t) :=
xe−t for M = R.
A further problem is, that the differential equation (2.12) is in an implicit form.
To overcome this, we need conditions which guarantee, that the covariant derivative
∇F (x, t) : TxM → TxM is invertible in a neighborhood of x∗(t), i.e. there exists a
r > 0 such that for t ∈ R

rk(∇F (x, t)) = dim M, ∀x ∈ Br(x∗(t)).

Then (2.12) can be rewritten in explicit form

ẋ = (∇F (x, t))−1
(M(x)F (x, t)− ∂

∂t
F (x, t)

)
. (2.13)

These examinations motivate the use of additional assumptions on F in our first main
result.

Main Theorem 2.1. Let M be a complete Riemannian manifold and R > 0 any real
number with i∗(M) ≥ R. Let F : M × R→ TM be a smooth time-varying vector field
on M and let t 7→ x∗(t) be a smooth isolated zero of F , i.e. F (x∗(t), t) = 0 for all
t ∈ R. Assume further the existence of constants c1, c2, c3 > 0 such that the following
conditions are satisfied for all t ∈ R

(i) c1 ≤ ‖∇vF (x∗(t), t)‖x∗(t) ≤ c2 for v ∈ Tx∗(t)M with ‖v‖x∗(t) = 1.

(ii) ‖∇ċx(s)∇YwF (cx(s), t)‖cx(s) ≤ c3 for all x ∈ BR(x∗(t)), s ∈ [0, Rx] and w ∈ TxM
with ‖w‖x = 1.

Here Rx := dist(x∗(t), x) and cx : [0, Rx] → M is a geodesic from x∗(t) to x with

‖ċx(s)‖cx(s) = 1 for s ∈ [0, Rx], defined by cx(s) = expx∗(t)

(
s

exp−1
x∗(t)(x)

‖ exp−1
x∗(t)(x)‖x∗(t)

)
and

Yw is a smooth vector field on BR(x∗(t)) defined by Yw(x′) := τx∗(t)x′τ
−1
x∗(t)xw.

Then for r ≤ min{R, c1
2c3
}, the linear map ∇F (x, t) : TxM → TxM is an isomorphism

for all x ∈ Br(x∗(t)), t ∈ R. Moreover, for all x ∈ Br(x∗(t)) and t ∈ R
c1

2
dist(x, x∗(t)) ≤ ‖F (x, t)‖x ≤ (c1/2 + c2)dist(x, x∗(t)). (2.14)
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Thus, if x(0) ∈ M is sufficiently close to x∗(0) and M is a stable bundle map, the
solution x(t) ∈ M of (2.13) converges exponentially to x∗(t), i.e. for some a, b > 0
holds for all t ∈ R

dist(x(t), x∗(t)) ≤ ae−bt.

Proof. Note that for t ∈ R equation (2.14) already has been shown in Lemma 2.3.
We moreover get, that the smallest singular value of the covariant derivative is lower
bounded by c1/2 on Br(x∗(t)).
Thus, solutions x(t) of (2.13) exist for x(0) ∈ Br(x∗(0)) at least locally for t ∈ [0, tm]
and the norm estimate of F (x(t), t) holds:

d

dt
‖F (x(t), t))‖2

x(t) =

d

dt
〈F (x(t), t), F (x(t), t)〉x(t) =

2

〈
∇ẋF (x(t), t) +

∂

∂t
F (x(t), t), F (x(t), t)

〉

x(t)

=

2 〈M(x)F (x(t), t), F (x(t), t)〉x(t) ≤ −2b‖F (x(t), t)‖2
x(t),

for some b > 0, cf. Definition 2.3. This implies that

‖F (x(t), t)‖x ≤ e−bt‖F (x(0), 0)‖x(0).

To guarantee the global existence of such a solution x(t), we have to show that x(t)
remains close to x∗(t): Assume, that there exists a tm > 0 such that dist(x(tm), x∗(tm))
> r.
If we choose x0 such that dist(x(0), x∗(0)) ≤ r c1

2(c1/2+c2)
, then

‖F (x(tm), tm)‖x(tm) ≤ ‖F (x(0), 0)‖x(tm) ≤ (c1/2 + c2)dist(x(0), x∗(0)) ≤ rc1

2
,

cf. (2.14). Thus, again using (2.14) shows that dist(x(tm), x∗(tm)) ≤ r, contradicting
the assumption.

2.1.2.1 Time-varying Riemannian Newton algorithm

In order to deduce an update scheme from the explicit time-varying Newton flow (2.13),
we employ a standard numerical discretization; see e.g. Stoer and Bulirsch [64] for
details.
Consider the ODE

ẋ = g(x, t), (2.15)

where g : Rn × R → Rn and let tk = kh for step size h > 0 and k ∈ N. A single-step
discretization of (2.15) is given by the rule:

xk+1 = xk + hΦ(xk, tk, h),
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where Φ is any map, chosen such that (xk) is an approximation of (x(tk)). A possible
choice for Φ is the familiar first order Euler method, defined in Euclidean space by

xk+1 = xk + hg(xk, tk). (2.16)

In our situation, we replace the Euler discretization (2.16) by its intrinsic variant

xk+1 = expxk
(hg(xk, tk)), (2.17)

where expxk
denotes the exponential map of M at xk ∈ M .

As we want to establish a realistic update scheme, we have to replace ∂
∂t

F (x, t) by a
step size-dependent approximation F h

τ (x, t) at discrete times tk = kh, k ∈ N for some
h > 0. How such approximations can be found is shown in Section 2.1.2.2.
Then the Riemannian update scheme (2.17) corresponding to the differential equation
(2.13), is given for M(x) = − 1

h
I by

xk+1 = expxk

(
(∇F (xk, tk))

−1
(−F (xk, tk)− hF h

τ (xk, tk)
))

, (2.18)

where expxk
denotes the exponential map of M at xk ∈ M . We call this formula the

time-varying Newton algorithm.
The next theorem gives conditions, which guarantee that the resulting sequence (xk)
is a good approximation of the smooth isolated zero x∗(t) of F (x, t) on M at discrete
times t = tk.

Main Theorem 2.2. Let M be a complete Riemannian manifold and R > 0 any real
number with i∗(M) ≥ R. Let F : M×R→ TM , (x, t) 7→ F (x, t) ∈ TxM a smooth time-
varying vector field and let t 7→ x∗(t) be a smooth isolated zero of F , i.e. F (x∗(t), t) = 0
for all t ∈ R. Assume further the existence of constants c1, c2, c3, c4, c5, c6, c7 > 0 such
that the following conditions are satisfied for all t ∈ R

(i) ‖∇F (x∗(t), t)‖x∗(t) ≤ c1, ‖ ∂
∂t

F (x∗(t), t)‖x∗(t) ≤ c2, ‖∇F (x∗(t), t)−1‖x∗(t) ≤ c3,

(ii) ‖∇ċx
x0

(s)∇YwF (cx
x0

(s), t)‖cx
x0

(s) ≤ c4 for all x0, x ∈ BR(x∗(t)), s ∈ [0, Rx
x0

] and

w ∈ TxM with ‖w‖x = 1.

Here Rx
x0

:= dist(x0, x) and cx
x0

: [0, Rx
x0

] → M is a geodesic from x0 to x, defined

by cx
x0

(s) = expx0

(
s

exp−1
x0

(x)

‖ exp−1
x0

(x)‖x0

)
and Yw is a smooth vector field on BR(x∗(t))

defined by Yw(x′) := τx∗(t)x′τ
−1
x∗(t)xw.

(iii) ‖ ∂2

∂t2
F (x, t)‖x ≤ c5, ‖ ∂

∂t
∇F (x, t)‖x ≤ c6 for all x ∈ BR(x∗(t)).

(iv) ‖F h
τ (x, t)− ∂

∂t
F (x, t)‖x ≤ c7h, for all x ∈ BR(x∗(t)), h > 0.

Then the following statements hold
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1. There exists 0 < r ≤ R and c8, c9, c10 > 0 such that for t ∈ R
dist(x, x∗(t)) ≤ c8‖F (x, t)‖x, (2.19)

‖F (x, t)‖x ≤ c9dist(x, x∗(t)), (2.20)

and
‖∇F (x, t)−1‖x ≤ c10 (2.21)

for x ∈ Br(x∗(t)).

2. The discretization sequence (xk) as defined in (2.18) with tk = kh, h > 0 satisfies
for some c11, c12 > 0

dist(xk+1, x∗(tk+1)) ≤ c11dist(xk, x∗(tk))2 + c12h
2 (2.22)

for xk ∈ Br(x∗(tk)), k ∈ N0.

3. Let c > 0 be constant and h > 0 sufficiently small. For any initial condition x0

with dist(x0, x∗(0)) < ch, the sequence (2.18) satisfies

dist(xk, x∗(tk)) ≤ ch

for all k ∈ N0. Thus, the update scheme (2.18) is well defined and produces
estimates for x∗(tk), whose accuracy can be controlled by the step size.

Proof. 1) These claims are direct consequences from Lemma 2.3.

2) Consider first the following formula, cf. equation (2.7),

τ−1
xkxk+1

F (xk+1, tk+1) = F (xk, tk) +
∂F

∂t
(xk, tk)h +∇F (xk, tk)w +R, (2.23)

where τxkxk+1
denotes the parallel transport along the geodesic from xk to xk+1 and R

satisfies

‖R‖xk
≤ c5h

2 + c4‖w‖2
xk

+ c6h‖w‖xk
≤

(
c4 +

c6

2

)
‖w‖2

xk
+

(
c5 +

c6

2

)
h2.

The update scheme (2.18) shows that w = exp−1
xk

(xk+1) is given in our situation as

w = h(∇F (xk, tk))
−1

(
−1

h
F (xk, tk)− F h

τ (xk, tk)

)
.

Hence, equation (2.23) turns into

τ−1
xkxk+1

F (xk+1, tk+1) =
∂F

∂t
(xk, tk)h− hF h

τ (xk, tk) +R, (2.24)

which implies

‖τ−1
xkxk+1

F (xk+1, tk+1)‖xk
=

∥∥∥∥
∂F

∂t
(xk, tk)h− hF h

τ (xk, tk) +R
∥∥∥∥

xk

,
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and therefore

‖F (xk+1, tk+1)‖xk
≤ c7h

2 +
(
c4 +

c6

2

)
‖w‖2

xk
+

(
c5 +

c6

2

)
h2. (2.25)

Now consider

‖w‖xk
=

∥∥(∇F (xk, tk))
−1

(
F (xk, tk) + hF h

τ (xk, tk)
)∥∥

xk
,

showing that

‖w‖xk
≤ c10(‖F (xk, tk)‖xk

+ h‖F h
τ (xk, tk)‖xk

). (2.26)

Note that ‖F h
τ (xk, tk)‖xk

≤ ‖ ∂
∂t

F (xk, tk)‖xk
+ c7h ≤ c2 + c6dist(xk, x∗(tk)) + c7h. Thus

(2.26) turns into

‖w‖xk
≤ c10

(‖F (xk, tk)‖xk
+ h(c2 + c6dist(xk, x∗(tk)) + c7h)

)
,

implying that

‖w‖xk
≤ c10

(
c9dist(xk, x∗(tk)) + h(c2 + c6r + c7h)

)
.

By using the abbreviations k1 = c10c9 and k2 = c10(c2 + c6r + c7h), this equation shows
that

‖w‖2
xk
≤ k2

1dist(xk, x∗(tk))2 + k2
2h

2 + 2k1k2dist(xk, x∗(tk))h,

and hence
‖w‖2

xk
≤ (k2

1 + k1k2)dist(xk, x∗(tk))2 + (k2
2 + k1k2)h

2.

Plug this into (2.25) and obtain

‖F (xk+1, tk+1)‖xk
≤ k3(k

2
1 + k1k2)dist(xk, x∗(tk))2 +

(
k3k

2
2 + k1k2k3 + c7 + c5 +

c6

2

)
h2,

where k3 = (c4 + c6/2). Using (2.19) shows the claim for c11 = c8k3(k
2
1 + k1k2) and

c12 = c8(k3k
2
2+ k1k2k3 + c7 + c5 + c6

2
).

3) Suppose
dist(xk, x∗(tk)) ≤ ch

holds for some k. By the estimate (2.22) then

dist(xk+1, x∗(tk+1)) ≤

c11dist(xk, x∗(tk))2 + c12h
2 ≤ c11c

2h2 + c12h
2 ≤ ch, (2.27)

for h < c
c11c2+c12

.
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Remark 2.3.

1. Standard estimates for the discretization error imply the above result 3) only for
a finite number of iterates xk. The new interesting feature therefore is that the
error estimate can be guaranteed to hold for all k ∈ N0. This is due to the fact,
that we have chosen M(x) = − 1

h
I. Without that choice we would not be able to

prove a similar estimate.

2. In the special case that F is the gradient of a function f : M × R→ R, i.e.

F (x, t) = grad f(x, t),

the update scheme (2.18) turns into

xk+1 = expxk

(−Hf (xk, tk)
−1 (grad f(xk, tk) + hGh(xk, tk))

)
, (2.28)

where Hf denotes the Riemannian Hesse operator and Gh(x, t) denotes an ap-
proximation of ∂

∂t
grad f(x, t).

Note that under the conditions of the previous theorem, the tracking property of the
update scheme defined in (2.18) even remains, if one uses the 0th order approximation
F h

τ (x, t) = 0 for ∂
∂t

F (x, t). This shows, that the conventional Riemannian Newton
algorithm can be used to track the zero of a time-varying vector field. We formulate
this in the following corollary.

Corollary 2.2. Assume (i)− (iii) of Theorem 2.2 and

(iv’)
∥∥ ∂

∂t
F (x, t)

∥∥
x
≤ c7 for some c7 > 0 and all x ∈ BR(x∗(t)), t ∈ R.

Then the Newton update scheme

xk+1 = expxk

(
(∇F (xk, tk))

−1 (−F (xk, tk))
)

satisfies the weak tracking property, i.e. for any 0 < r̂ ≤ r there exists h > 0 and
0 < r0 ≤ r̂ such that dist(xk, x∗(tk)) ≤ r̂ for all k ∈ N, provided dist(x0, x∗(0)) ≤ r0.

Proof. Note first, that with the notation of Theorem 2.2, the following equation holds
instead of (2.22)

dist(xk+1, x∗(tk+1)) ≤ c11dist(xk, x∗(tk))2 + c12h,

which can be immediately seen by considering the proof of the above theorem.
Thus it suffices to show, that for a, b, R > 0 and a real valued sequence (yk)k∈N0

satisfying for k ∈ N
0 ≤ yk+1 ≤ ay2

k + bh, (2.29)

there exists 0 < r < R such that yk ≤ r for all k ∈ N, provided that 0 ≤ y0 ≤ r and
h > 0 is sufficiently small.
For y0 ≥ 0, we get that yk ≥ 0 for all k ∈ N. Thus it remains to show, that for h
sufficiently small, there exists 0 < r ≤ R and 0 < A1 < r such that the following holds:
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1. yk ∈ [A1, r] implies that yk+1 ≤ yk,

2. If yk ∈ [0, A1), then yk+1 ≤ r.

Then the sequence (yk) can not leave the interval [0, r].

1) The sequence is not increasing if yk+1 ≤ yk, i.e.

ay2
k + bh ≤ yk,

which is equivalent to
ay2

k − yk + bh ≤ 0.

This equation is solvable, if D := 1− 4abh ≥ 0. This gives a first condition for h. The

set of solution of this inequality is then yk ∈ [A1, A2] ⊂ R+, where A1 = 1−√D
2a

and

A2 = 1+
√

D
2a

. Note that A1, A2 > 0 as D ∈ [0, 1). Choose h sufficiently small such that

A1 + bh ≤ R and bh ≤ 2
√

D
2a

. This is possible, as limh→0 D = 1 and limh→0 A1 = 0.
Then for r := A1 + bh holds [A1, r] ⊂ [A1, A2] and in this interval, the sequence (yk) is
monotonically decreasing.
2) Compute yk+1 for yk ∈ [0, A1].

yk+1 ≤ ay2
k + bh ≤ aA2

1 + bh

= A1

(
1−√D

2

)
+ bh ≤ 1

2
A1 + bh < A1 + bh = r

which shows that yk+1 ∈ [0, r].

2.1.2.2 Approximations for ∂
∂t

g(t)

In order to implement the discrete algorithms one needs an exact formula for the
partial derivatives ∂F

∂t
(xk, tk). Often this is a restriction, as the precise values may not

be available or corrupted by noise. Thus one has to replace the partial derivative by
suitable higher order Taylor approximations F h

τ (x, t, h) of ∂F
∂t

(x, t).
In general, one finds an mth-order approximations for a time-varying map g(t) by
considering its Taylor series:

g(t + h) = g(t) + g′(t)h +
1

2
g′′(t)h2 +

1

6
g′′′(t)h3 +

1

24
g′′′′(t)h4 + O(h5)

Similarly, we develop the Taylor series at further points:

g(t− h) = g(t)− g′(t)h +
1

2
g′′(t)h2 − 1

6
g′′′(t)h3 +

1

24
g′′′′(t)h4 + O(h5)

g(t + 2h) = g(t) + g′(t)2h +
4

2
g′′(t)h2 +

8

6
g′′′(t)h3 +

16

24
g′′′′(t)h4 + O(h5)

g(t− 2h) = g(t)− g′(t)2h +
4

2
g′′(t)h2 − 8

6
g′′′(t)h3 +

16

24
g′′′′(t)h4 + O(h5)
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Approximation for g′(t) Order
0 0

1
2h

(
g(t + h)− g(t− h)

)
2

1
12h

(
8g(t + h)− 8g(t− h)− g(t + 2h) + g(t− 2h)

)
4

Table 2.1: The order of different symmetric approximations for g′(t)

Approximation for g′(t) Order
1
h

(
g(t)− g(t− h)

)
1

1
2h

(
3g(t)− 4g(t− h) + g(t− 2h)

)
2

1
6h

(
11g(t)− 18g(t− h) + 9g(t− 2h)− 2g(t− 3h)

)
3

Table 2.2: The order of different approximations for g′(t)

The task is now to add these maps, such that only g′(t)h and some higher order terms
remain. This is equivalent to solving the linear equation




1 1 1 1
1 −1 2 −2
1
2

1
2

2 2
1
6
−1

6
4
3
−4

3


 x =




0
1
0
0


 ,

whose solution is x = 1
12

(8,−8,−1, 1)>. Therefore, 1
12

(8g(t+h)−8g(t−h)−g(t+2h)+
g(t−2h)) is an approximation of g′(t)h of at least order 4. The resulting approximation
formulas are given in Table 2.1.

We can get similar approximation formulas by only evaluating preceding points t−kh,
k ∈ N0, in order to have a real ”online algorithm”, where no future data is known.
Hence, we use g(t), g(t− h), g(t− 2h) and

g(t− 3h) = g(t)− g′(t)3h +
9

2
g′′(t)h2 − 27

6
g′′′(t)h3 +

81

24
g′′′′(t)h4 + O(h5).

This yields the formulas of Table 2.2.

2.1.3 Newton flows on Riemannian submanifolds

In this section, we consider the case of M being a Riemannian submanifold of Rn. This
additional assumption will lead to more explicit versions of the tracking algorithms,
since one has the useful Gauss formula for Riemannian submanifolds, which is given
in the next lemma.
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Lemma 2.4. Let ∇ be the Levi-Civita connection for a Riemannian submanifold
(M, gM) of a Riemannian manifold (N, g) with induced metric gM = g

∣∣
TM×TM

. Given

smooth vector fields X,Y : M → TM let X̂, Ŷ be any extensions to smooth vector fields
on N . Then the Levi-Civita connections ∇̂ on N and ∇ on M are related by

∇XY (x) = πTxM ◦ ∇̂X̂ Ŷ (x),

for all x ∈ M . Here πTxM ⊂ N denotes the projection onto the tangent space TxM of
M at x.

We will exploit this fact to obtain simple expressions for the Levi-Civita connection
on M . Thus, we now consider time-varying Newton flows on a smooth Riemannian
submanifold M ⊂ Rn, where we always assume that Rn has been endowed with the
Euclidean inner product and any Riemannian submanifold M ⊂ Rn will be endowed
with the induced Riemannian metric.
We consider a smooth map

F̂ : Rn × R→ Rn,

(x, t) 7→ F̂ (x, t)

and assume that its restriction
F := F̂

∣∣
M×R

is a vector field, i.e. F (x, t) ∈ TxM for all t ∈ R. We further assume, that there exists
a continuous curve x∗ : R→ M such that for all t ∈ R holds

F (x∗(t), t) = 0.

From the previous section, we get that the dynamical system to track the zero x∗(t) is
given by

πTxMDF̂ (x, t) · ẋ +
∂

∂t
F (x, t) = M(x)F (x, t), (2.30)

where M is a stable bundle map, πTxM denotes the projection onto the tangent space
TxM and DF̂ (x, t) is the usual derivative of F̂ with respect to x in the ambient space.
Thus, πTxMDF̂ (x, t) : TxM → TxM is the covariant derivative of F (x, t) with respect
to x ∈ M , cf. Lemma 2.4. We therefore get a more concrete version of the tracking
algorithm formulated in Main Theorem 2.1.

Theorem 2.3. Let M ⊂ Rn be a complete Riemannian submanifold and R > 0 any
real number with i∗(M) ≥ R. Let F̂ : Rn × R → Rn, (x, t) 7→ F̂ (x, t) be smooth, let
F = F̂

∣∣
M×R with F (x, t) ∈ TxM and let t 7→ x∗(t) ∈ M be a smooth isolated zero of F ,

i.e. F (x∗(t), t) = 0 for all t. Assume further the existence of constants c1, c2, c3 > 0
such that for all t ∈ R holds:

1. c1 ≤ ‖πTx∗(t)MDF̂ (x∗(t), t) · v‖ ≤ c2 for all v ∈ Tx∗(t)M with ‖v‖ = 1,

2. ‖πTxMD(πTxMDF̂ (x, t) · v) · w‖ ≤ c3 for all v, w ∈ TxM with ‖v‖ = ‖w‖ = 1,
x ∈ BR(x∗(t)).
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Then the solution x(t) of

ẋ =
(
πTxMDF̂ (x, t)

∣∣
TxM

)−1 (M(x)F (x, t) + ∂
∂t

F (x, t)
)

(2.31)

exists for all t ≥ 0 and converges exponentially to x∗(t), provided that x(0) is sufficiently
close to x∗(0).

Proof. We show that the conditions (i) and (ii) of Main Theorem 2.1 are satisfied.
Due to Lemma 2.4, (i) follows directly from (1). To see (ii), we use the notation of Main
Theorem 2.1. Thus, cx : [0, Rx] → M denotes a geodesic from x∗(t) to x ∈ BR(x∗(t))
with ‖ċx(s)‖ = 1 and Rx := dist(x∗(t), x) < R. Moreover, Yw is a smooth vector field
on BR(x∗(t)) defined by Yw(x′) := τx∗(t)x′τ

−1
x∗(t)xw for w ∈ TxM with ‖w‖ = 1.

Then we get by using Lemma 2.4 for t ∈ R and s ∈ [0, Rx]

∥∥∇ċx(s)∇YwF (cx(s), t)
∥∥ =

∥∥∥∇ċx(s)πTcx(s)MDF̂ (cx(s), t) · Yw(cx(s))
∥∥∥ =

∥∥∥πTcx(s)MD
(
πTcx(s)MDF̂ (cx(s), t) · Yw(cx(s))

)
· ċx(s)

∥∥∥ ≤ c3,

due to condition (2) and since ‖Yw(cx(s))‖ = ‖ċx(s)‖ = 1.

Time-varying Newton algorithm on submanifolds
The Euler discretization of the ODE (2.31) computes approximations xk of x∗(tk) for
tk = kh, k ∈ N and h > 0. It is given for M = − 1

h
I by

xk+1 = expxk

(
−(

πTxk
MDF̂ (xk, tk)

∣∣
Txk

M

)−1 (
F (xk, tk) + hF h

τ (xk, tk)
))

, (2.32)

where F h
τ (x, t) denotes an approximation for ∂

∂t
F (x, t). By applying Main Theorem 2.2

to the situation here, we immediately obtain the following result.

Theorem 2.4. Let M ⊂ Rn be a complete Riemannian submanifold with respect to the
standard Euclidean inner product on Rn. Let R > 0 any real number with i∗(M) ≥ R.
Let F̂ : Rn × R → Rn, (x, t) 7→ F̂ (x, t) be smooth, let F = F̂

∣∣
M×R with F (x, t) ∈

TxM and let t 7→ x∗(t) be a smooth isolated zero of F , i.e. F (x∗(t), t) = 0 for all
t. Assume further the existence of constants c1, c2, c3, c4, c5, c6, c7 > 0 such that the
following conditions are satisfied for all t ∈ R

(i) ‖πTx∗(t)MDF̂ (x∗(t), t)‖ ≤ c1, ‖ ∂
∂t

F (x∗(t), t)‖ ≤ c2,
∥∥∥πTx∗(t)MDF̂ (x∗(t), t)−1

∥∥∥ ≤ c3,

(ii) ‖(πTxMD)2F̂ (x, t)‖ ≤ c4, ‖ ∂2

∂t2
F (x, t)‖ ≤ c5, ‖ ∂

∂t
πTxMDF̂ (x, t)‖ ≤ c6 for x ∈

BR(x∗(t)),
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(iii) ‖F h
τ (x, t)− ∂

∂t
F (x, t)‖ ≤ c7h, for all x ∈ BR(x∗(t)), h > 0.

Then for c > 0 and sufficiently small h > 0, the sequence defined by (2.32) satisfies for
k ∈ N

dist(xk, x∗(tk)) ≤ ch,

provided that dist(x0, x∗(0)) < ch. Thus, the update scheme (2.32) is well defined and
produces estimates for x∗(tk), whose accuracy can be controlled by the step size.

Gradient Newton flows
We now consider the special case where F denotes the intrinsic gradient of a smooth
cost function Φ on a Riemannian submanifold M ⊂ Rn endowed with the constant
Riemannian metric In. Thus let

Φ : Rn × R→ R,

and let f := Φ
∣∣
M×R its restriction to the manifold. Then the intrinsic gradient of f

with respect to x, grad f(x, t) : M × R→ TM , is given by

grad f(x, t) = πTxM∇Φ(x, t),

where πTxM : Rn → Rn is the orthogonal projection onto TxM with kernel (TxM)⊥.
Hence the time-varying Newton flow turns into

Hf (x, t) · ẋ +
∂

∂t
grad f(x, t) = M(x)grad f(x, t), (2.33)

where Hf (x, t) : TxM → TxM denotes the Hessian operator with respect to x. It is
given by

Hf (x, t) = πTxMDgrad f(x, t),

cf. Lemma 2.4. Obviously, Theorem 2.4 also holds for F (x, t) := grad f(x, t) and the
update scheme (2.32) turns into

xk+1 = expxk
(−Hf (xk, tk)

−1 (grad f(xk, tk) + hGh(xk, tk))) , (2.34)

where Gh denotes an approximation of ∂
∂t

grad f .

2.1.3.1 Embedding the tracking task in Euclidean space

In order to implement the discrete algorithm (2.32) associated with the time-varying
Newton flow on a Riemannian submanifold M ⊂ Rn, one needs to compute the expo-
nential map and invert the covariant derivative for all k ∈ N. As these are often very
difficult tasks, we now develop techniques, which allow to solve the tracking problem on
the manifold by equivalent methods in Euclidean space. This possibly leads to simpler
algorithms to track x∗(t) at discrete times t = tk for k ∈ N.
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a. Using penalty terms
Let M be the fiber of a Cr-map g : Rn → Rm for m < n such that M := g−1(0).
Here, 0 is assumed to be a regular value of g, i.e. rkDg(y) = m for all y ∈ M and the
dimension of M thus is (m− n).
Let Φ : Rn × R → R and let x∗ : R → M be a continuous minimum of Φ, which
additionally satisfies

1. Φ(x∗(t), t) = 0 for all t ∈ R.

2. There exists r > 0 such that for x ∈ Ur(x∗(t))∩M holds: Φ(x, t) = 0 if and only
if x = x∗(t).

In order to construct an update scheme to track x∗(tk) for k ∈ N, we define a cost
function, which augments the constraints into the cost function for λ > 0 as

Φ̂(x, t) := Φ(x, t) +
λ

2
g(x)>g(x).

Then we have
Φ̂(x, t) = 0 ⇔ Φ(x, t) = 0 and g(x) = 0, (2.35)

and therefore, x∗(t) is an isolated minimum of Φ̂. We further define

F (x, t) := ∇Φ̂(x, t) = ∇Φ(x, t) +
λ

2
∇(g(x)>g(x)),

which is a vector valued map in Rn with smooth isolated zero x∗(t) ∈ M . Hence, we
can now use techniques working in Euclidean space to track the zero of F on M , cf.
Section 2.3.

b. Lagrangian multipliers
Here we inspect the classical Lagrangian multiplier technique. Let M be given as the
fiber of a smooth map g : Rn → Rm, i.e.

M = g−1(0),

where 0 is a regular value of g and m < n. Then M ⊂ Rn is a smooth Riemannian
submanifold of dimension n−m.
Let

Φ : Rn × R→ R, (x, t) 7→ Φ(x, t)

be smooth and let f denote the restriction to M × R, i.e.

f := Φ
∣∣
M×R.

Suppose that f has a smooth isolated critical point x∗(t) on M , which we want to
determine for all t. We therefore define

L(x, y, t) := Φ(x, t) +
m∑

i=1

yigi(x),
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which is for fixed t ∈ R a Lagrangian function and yi are the Lagrangian multipliers
for i = 1, ..., m. Thus, the gradient L with respect to (x, y), denoted by ∇L, is given
by

∇L(x, y, t) =

[ ∇Φ(x, t) +
∑m

i=1 yi∇gi(x)
g(x)

]
.

The following result is well known.

Lemma 2.5. Let L : Rn × Rm × R → R as above. Then ∇L(x, y, t) = 0 if and only
if x ∈ M and grad Φ(x, t) = 0, where grad Φ(x, t) = πTxM∇Φ(x, t) is the intrinsic
gradient of Φ.
Thus, if x∗(t) is a smooth smooth isolated critical point of Φ(x, t) on M , then there
exists a smooth map y∗(t) such that (x∗(t), y∗(t)) is a smooth isolated zero of ∇L(x, y, t).

Proof. ”⇒” If ∇L(x, y, t) = 0, then x ∈ M , since g(x) = 0. Since ∇Φ(x, t) +∑m
i=1 yi∇gi(x) = 0, we can conclude that ∇Φ(x, t) ∈ NxM , as gi(x) ∈ NxM for

i = 1, ..., m. Thus, x is a critical point of the intrinsic gradient of Φ
∣∣
M×R

”⇐” Consider for t ∈ R

∇L(x∗(t), y, t) =

[ ∇Φ(x∗(t), t) +
∑m

i=1 yi∇gi(x∗(t))
g(x∗(t))

]
=

[ ∇Φ(x∗(t), t) +
∑m

i=1 yi∇gi(x∗(t))
0

]
.

Since x∗(t) is a critical point of grad Φ(x, t), we have that∇Φ(x∗(t), t) ∈ Nx∗(t)M , which
implies the existence of y∗(t) ∈ Rm such that

∑m
i=1(y∗(t))i∇gi(x∗(t)) = −∇Φ(x∗(t), t),

as
Nx∗(t)M = span(∇g1(x∗(t)), ...,∇gm(x∗(t))).

Since ∇g(x∗(t)) and ∇Φ(x∗(t), t) are smooth maps, y∗(t) is also smooth in t.

This lemma shows, that one can determine a curve of critical points x∗(t) of Φ on M
by tracking a zero of ∇L(x, y, t) ∈ Rn+m. Thus, we can solve the optimization problem
on the manifold by using the tracking algorithms in Euclidean space, as specified in
Section 2.3.

c. Parameterized time-varying Newton algorithm
We now consider a newer technique, which allows one to pull-back the tracking prob-
lem via local coordinate parameterizations from the manifold to an associated tracking
problem in Euclidean space. The key feature here is that the coordinate transforma-
tions vary with each iteration point. This allows for considerable simplification in the
resulting formulas, rather than a fixed set of coordinate charts would do. It enables
us also to work on an arbitrary Riemannian manifold. However, for technical reasons
we restrict to the simplified situation, where M ⊂ Rn is a Riemannian submanifold
of Euclidean space. This idea of using local parameterizations has been first used by
Shub [61], Hüper and Trumpf [38] and by Manton [47] for time-invariant vector fields
and we now extend this approach to our situation.
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Thus let M ⊂ Rn be a smooth m-dimensional Riemannian submanifold endowed with
the constant Riemannian metric In. We consider families of smooth locally uniform
parameterizations (γx)x∈P on an open subset P of M , i.e. smooth maps

γx : Vx → Ux ⊂ M, γx(0) = x,

such that γx is a local diffeomorphism around 0. Moreover, we assume that there exists
R > 0 such that BR(0) ⊂ Vx ⊂ Rm holds for all x ∈ P . Thus (γx)x∈P is a system of
local coordinate charts around each x ∈ P that satisfy an uniformity constraint on the
sizes of their domains.
For R̃ > 0 now choose P := {x ∈ M | dist(x, x∗(t)) < R̃, t ∈ R} and a family (γx)x∈P

of smooth locally uniform parameterizations. Given x ∈ P , let γ̂x : Vx × R → Ux × R
be defined by γ̂x(y, t) := (γx(y), t) and consider the pull-back function

Φ ◦ γ̂x : Vx × R→ R,

defined by
(y, t) 7→ Φ(γx(y), t).

Hence, the y-gradient of Φ ◦ γ̂x is

∇(Φ ◦ γ̂x(y, t)) =

(
∂

∂y1

(Φ ◦ γ̂x(y, t)), ...,
∂

∂ym

(Φ ◦ γ̂x(y, t))

)>

and the y−Hessian of Φ ◦ γ̂x is given by

HΦ◦γ̂x(y, t) =

(
∂2

∂yi∂yj

(Φ ◦ γ̂x(y, t))

)m

i,j=1

Thus by using two families of smooth local parameterizations (γx)x∈P and (µx)x∈P , we
obtain the parameterized time-varying Newton algorithm, which is given by

xk+1 = µxk

(−HΦ◦γ̂xk
(0, tk)

−1(∇(Φ ◦ γ̂xk
)(0, tk) + hGh

xk
(0, tk))

)
, (2.36)

where xk ∈ P and Gh
xk

(0, t) denotes an approximation of ∂
∂t
∇(Φ ◦ γ̂xk

)(0, t), depending
on the step size.
In order to get good approximations for the smooth isolated critical points x∗(tk) ∈ M
of Φ(tk), it is necessary, that the two families of parameterizations are quite similar;
e.g. equality is allowed. The exact conditions are formulated in the following theorem.

Main Theorem 2.3. Let M ⊂ Rn a complete Riemannian submanifold. Let Φ :
Rn ×R→ R, (x, t) 7→ Φ(x, t) be smooth and let t 7→ x∗(t) be a smooth isolated critical
point of Φ on M . Let for some R, R̃ > 0, γx : Vx → Ux ⊂ M and µx : Vx → U ′

x ⊂ M
denote for x ∈ P families of local parameterizations such that BR(0) ⊂ Vx, where
P := {x ∈ M | dist(x, x∗(t)) < R̃, t ∈ R}. Assume further the existence of constants
c1, c2, c3, c4, c5, c6, c7,m1,m2, m3 > 0 such that
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(i) ‖HΦ◦γ̂x∗(t)(0, t)‖ ≤ c1 for all t ∈ R,

(ii) ‖ ∂
∂t
∇(Φ ◦ γ̂x)(0, t)‖ ≤ c2, ‖HΦ◦γ̂x(0, t)

−1‖ ≤ c3 for all x ∈ BR̃(x∗(t)), t ∈ R,

(iii) ‖ ∂
∂y

HΦ◦γ̂x(y, t)‖ ≤ c4, ‖ ∂2

∂t2
∇(Φ ◦ γ̂x)(y, t)‖ ≤ c5, ‖ ∂

∂t
HΦ◦γ̂x(0, t)‖ ≤ c6 for all

x ∈ BR̃(x∗(t)) and y ∈ BR(0), t ∈ R,

(iv) (Gh
x)x∈P denotes a family of maps such that for t ∈ R, h > 0 and x ∈ BR̃(x∗(t))

∥∥∥∥Gh
x(0, t)−

∂

∂t
∇(Φ ◦ γ̂x)(0, t)

∥∥∥∥ ≤ c7h,

(v) σmin (Dγx(0)) ≥ m1, σmax (Dγx(0)) ≤ m2, ‖D2γx(y)‖ ≤ m3 for all x ∈ BR̃(x∗(t))
and y ∈ BR(0), where σmin (σmax) denotes the smallest (largest) singular value.

(vi) µx(0) = γx(0), Dµx(0) = Dγx(0), ‖D2µx(y)‖ ≤ m3 for all x ∈ BR̃(x∗(t)) and
y ∈ BR(0).

Then the following statements hold for R′ = min{R, m1

4m3
, 1

2c3c4
, c3

2c4
} and for R̂ =

min{3m1

4
R′, R̃}

1. For any x ∈ P , the parameterization γx satisfies for all y ∈ BR′(0)

σmin (Dγx(y)) ≥ 3

4
m1.

This moreover shows that Br(x) ⊆ γx(BR′(0)) for r = 3
4
m1R

′. Thus we have
x∗(t) ∈ γx(BR′(0)) for x ∈ BR̂(x∗(t)).

Note that the same claims hold for the parameterization µx, since µx satisfies the
same conditions as γx.

2. The following equation holds for all t ∈ R, x ∈ BR̂(x∗(t)) and y ∈ BR′(0)

m1

4
‖γ−1

x (x∗(t))− y‖ ≤ dist(γx(y), x∗(t)) ≤ (m2 + 2m3R
′)‖γ−1

x (x∗(t))− y‖.

3. There exists c8, c9 > 0 such that for t ∈ R, x ∈ BR̂(x∗(t)) and y ∈ BR′(0)

dist(γx(y), x∗(t)) ≤ c8‖∇(Φ ◦ γ̂x)(y, t)‖, (2.37)

and
‖∇(Φ ◦ γ̂x)(y, t)‖ ≤ c9dist(γx(y), x∗(t)). (2.38)

4. The discretization sequence (xk) as defined in (2.36) with tk = kh, h > 0 satisfies
for some c10, c11 > 0

dist(xk+1, x∗(tk+1)) ≤ c10dist(xk, x∗(tk))2 + c11h
2 (2.39)

for x∗(tk), x∗(tk + h), xk+1 ∈ BR̂(xk), k ∈ N0.
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5. Let c > 0 be constant and h sufficiently small. For any initial condition x0 with
dist(x0, x∗(0)) < ch we have

dist(xk, x∗(tk)) ≤ ch

for all k ∈ N0. Thus, the update scheme (2.36) is well defined and produces
estimates for x∗(tk), whose accuracy can be controlled by the step size.

Proof. 1) We have for ‖y‖ ≤ R′ ≤ m1

4m3

Dγx(y) = Dγx(0) +R,

where ‖R‖ ≤ ‖y‖m3. Thus

σmin (Dγx(y)) ≥ σmin (Dγx(0))−m3R
′ ≥ m1 −m3

m1

4m3

=
3

4
m1.

To prove the second claim, consider

γx(y) = γx(0) + Dγx(0)y +R,

where ‖R‖ ≤ m3‖y‖2. Thus,

γx(y)− γx(0) = Dγx(0)y +R,

which implies that

‖γx(y)− γx(0)‖ ≥ 3m1

4
‖y‖,

since ‖y‖ ≤ m1

4m3
. This moreover shows, that

dist(γx(y), γx(0)) ≥ 3m1

4
‖y‖. (2.40)

Now we consider for ε > 0 the border ∂BR′−ε(0) := {y ∈ Rm| ‖y‖ = R′ − ε} of
BR′−ε(0). Since γx is a local parameterization of M , γx(∂BR′−ε(0)) is the border of
γx(BR′−ε(0)) in M . Due to the above equation, we have for x̄ ∈ ∂γx(BR′−ε(0)) and
ȳ := γ−1

x (x̄) ∈ ∂BR′−ε(0)

dist(x, x̄) = dist(γx(0), γx(ȳ)) ≥ 3m1

4
‖ȳ‖ =

3m1

4
(R′ − ε),

which shows that B 3m1
4

(R′−ε)
(x) ⊆ γx(BR′−ε(0)). Since this relation holds for all ε > 0,

the claim follows.

2) To show the right inequality, let α : [0, 1] → Vx, s 7→ y + (y∗ − y)s be a curve from
y to y∗ := γ−1

x (x∗(t)). Thus

dist(γx(y), x∗(t)) ≤
∫ 1

0

‖ d

ds
(γx ◦ α)(s))‖ds =

∫ 1

0

‖Dγx(α(s))(y∗ − y)‖ds ≤
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≤ max
s∈[0,1]

‖Dγx(α(s))‖‖y∗ − y‖ ≤ (m2 + m3‖y∗ − y‖)‖y∗ − y‖ ≤ (m2 + 2m3R
′)‖y∗ − y‖,

since ‖y‖ ≤ R′ and ‖y∗‖ ≤ R′.
The left inequality of the claimed estimate can be seen by considering

γx(y∗) = γx(y) + Dγx(y)(y∗ − y) +R,

where ‖R‖ ≤ m3‖y∗ − y‖2. Thus,

γx(y∗)− γx(y) = Dγx(y)(y∗ − y) +R,

which implies that

‖γx(y∗)− γx(y)‖ ≥ m1

4
‖y∗ − y‖,

since ‖y∗ − y‖ ≤ 2m1

4m3
. This moreover shows, that

dist(γx(y∗), γx(y)) ≥ m1

4
‖y∗ − y‖. (2.41)

3) Let y∗ = γ−1
x (x∗(t)) and consider the Taylor series

∇(Φ ◦ γ̂x)(y∗, t) = ∇(Φ ◦ γ̂x)(y, t) + HΦ◦γ̂x(y, t)(y∗ − y) +R (2.42)

where R satisfies:
‖R‖ ≤ c4‖y∗ − y‖2.

Since ∇(Φ ◦ γ̂x)(y∗, t) = 0, equation (2.42) is equivalent to

∇(Φ ◦ γ̂x)(y, t) + HΦ◦γ̂x(y, t)(y∗ − y) +R = 0.

We therefore get

‖y∗ − y‖ ≤
∥∥HΦ◦γ̂x(y, t)−1(∇(Φ ◦ γ̂x)(y, t) +R)

∥∥ ,

implying that

‖y∗ − y‖ ≤ c3

2
(‖∇(Φ ◦ γ̂x)(y, t)‖+ c4‖y∗ − y‖2),

since ‖HΦ◦γ̂x(y, t)−1(∇(Φ ◦ γ̂x)(y, t)‖ ≤ c3
2

for ‖y‖ ≤ c3
2c4

(Taylor).
Hence the above equation is equivalent to

‖y∗ − y‖
(
1− c3c4

2
‖y∗ − y‖

)
≤ c3

2
‖∇(Φ ◦ γ̂x)(y, t)‖.

Hence, if ‖y∗ − y‖ ≤ 1
c3c4

, then

‖y∗ − y‖ ≤ c3‖∇(Φ ◦ γ̂x)(y, t)‖.

By taking claim 2) into account, (2.37) gets obvious.
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To see (2.38), we also use the second claim and note that equation (2.42) implies that

‖∇(Φ ◦ γ̂x)(y, t)‖ ≤ ‖HΦ◦γ̂x(y, t)(y∗ − y)‖+ ‖R‖ ≤ ‖y∗ − y‖(c1 + c4‖y∗ − y‖).

4) Let xk = γxk
(0) and xk+1 = µxk

(y) for some y ∈ Rm. Consider at first the Taylor
series:

∇(Φ◦γ̂xk
)(y, tk+1) = ∇(Φ◦γ̂xk

)(0, tk)+
∂

∂t
∇(Φ◦γ̂xk

)(0, tk)h+HΦ◦γ̂xk
(0, tk)y+R, (2.43)

where R satisfies:

‖R‖ ≤ c5h
2 + c4‖y‖2 + c6h‖y‖ ≤

(
c4 +

c6

2

)
‖y‖2 +

(
c5 +

c6

2

)
h2

The update scheme (2.36) requires that

y = −HΦ◦γ̂xk
(0, tk)

−1(∇(Φ ◦ γ̂xk
)(0, tk) + hGh

xk
(0, tk)).

Therefore, equation (2.43) simplifies to

∇(Φ ◦ γ̂xk
)(y, tk+1) =

∂

∂t
∇(Φ ◦ γ̂xk

)(0, tk)h− hGh
xk

(0, tk) +R, (2.44)

and thus

‖∇(Φ ◦ γ̂xk
)(y, tk+1)‖ ≤ c7h

2 +
(
c4 +

c6

2

)
‖y‖2 +

(
c5 +

c6

2

)
h2. (2.45)

Now consider

‖y‖ =
∥∥HΦ◦γ̂xk

(0, tk)
−1(∇(Φ ◦ γ̂xk

)(0, tk) + hGh
xk

(0, tk))
∥∥ ,

which shows that

‖y‖ ≤ c3(‖∇(Φ ◦ γ̂xk
)(0, tk)‖+ h‖Gh

xk
(0, tk)‖). (2.46)

Note that ‖Gh
xk

(0, tk)‖ ≤ ‖ ∂
∂t
∇(Φ◦ γ̂xk

)(0, tk)‖+ c7h ≤ c2 + c7h. Then (2.46) turns into

‖y‖ ≤ c3

(‖∇(Φ ◦ γ̂xk
)(0, tk)‖+ hc2 + h2c7)

)
,

which implies that

‖y‖ ≤ c3

(
c9dist(xk, x∗(tk)) + h(c2 + c7h)

)
.

By using the abbreviations k1 = c3c9 and k2 = c3(c2 + c7h), this equation implies that

‖y‖2 ≤ k2
1dist(xk, x∗(tk))2 + k2

2h
2 + 2k1k2dist(xk, x∗(tk))h,

hence,
‖y‖2 ≤ (k2

1 + k1k2)dist(xk, x∗(tk))2 + (k2
2 + k1k2)h

2.
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Plug this into (2.45) and obtain

‖∇(Φ ◦ γ̂xk
)(y, tk+1)‖ ≤

k3(k
2
1 + k1k2)dist(xk, x∗(tk))2 +

(
k3k

2
2 + k1k2k3 + c7 + c5 +

c6

2

)
h2,

where k3 = (c4 + c6/2). By using (2.37) we get

dist(γxk
(y), x∗(tk+1)) ≤

c8k3(k
2
1 + k1k2)dist(xk, x∗(tk))2 + c8(k3k

2
2 + k1k2k3 + c7 + c5 +

c6

2
)h2.

From this, we conclude that

dist(xk+1, x∗(tk+1)) = dist(µxk
(y), x∗(tk+1)) ≤

c8k3(k
2
1 + k1k2)dist(xk, x∗(tk))2 + (c8(k3k

2
2 + k1k2k3 + c7 + c5 +

c6

2
)h2+

m3((k
2
1 + k1k2)dist(xk, x∗(tk))2 + (k2

2 + k1k2)h
2),

since µxk
(y) = γxk

(y) +R, where ‖R‖ ≤ m3‖y‖2. This shows (4).

5) Note that for sufficiently small h > 0 holds that x∗(tk + h), xk+1 ∈ BR̂(xk) for

x∗(tk) ∈ BR̂/2(xk). Thus let for sufficiently small h > 0 and ch ≤ R̂/2,

dist(xk, x∗(tk)) ≤ ch,

for some k. By the estimate (2.39) then

dist(xk+1, x∗(tk+1)) ≤

c10dist(xk, x∗(tk))2 + c11h
2 ≤ c10c

2h2 + c11h
2 ≤ ch, (2.47)

for h < c
c10c2+c11

.

Remark 2.4.

1. Note that valid choices for approximations Gh
x(0, t) of ∂

∂t
∇(Φ ◦ γ̂x)(0, t) are given

in Section 2.1.2.2. For example,

Gh
x(0, t) :=

1

h
(∇(Φ ◦ γ̂x)(0, t)−∇(Φ ◦ γ̂x)(0, t− h))

is a 1st order approximation of ∂
∂t
∇(Φ ◦ γ̂x)(0, t).

2. On compact manifolds such parameterizations γx, x ∈ M , always exist, since
the exponential maps can be used to construct them; e.g. γx := expx ◦τx, where
τx : Rm → TxM is a linear map.
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2.2 Newton flows on Lie groups

In the case of working on a Lie group G one is tempted to consider Riemannian metrics
that are linked to the Lie group structure. These are the left-, right- or bi-invariant
Riemannian metrics. Of course, it is also possible to consider the Newton flow for an
arbitrary Riemannian metric on G. However, for invariant Riemannian metrics, there
are explicit expressions for the Levi-Civita connection that simplify the computations
of the Newton flow. We illustrate such possibilities by the examples below. Thus let
G denote a Lie group of dimension n, endowed with a left invariant metric 〈, 〉g and let
e1, ..., en denote a basis of the Lie algebra g.
Let further lg : G → G, h 7→ gh, denote the left translation by an element g ∈ G and
let Lg : g → TgG be the linear isomorphism defined by the tangent map at e of the left
translation, i.e.

Lg(X) = Telg(X).

Then one has a frame E1, ..., En of left invariant vector fields on G by setting

Ei(g) = Telg · ei, i = 1, ..., k.

A metric 〈, 〉g is said to be left invariant, if for all g ∈ M and u, v ∈ TgM holds

〈u, v〉g = 〈Tglg−1 · u, Tglg−1 · v〉e.

Analogously, one can define right invariant metrics by using the right translation rg,
which is needed to introduce bi-invariant metrics.

In order to derive explicit formulas, we have to study the relation between connections
on Lie groups and bilinear maps

ω : g× g → g.

According to [34], ω uniquely defines a left invariant connection ∇ on G by demanding
that

(∇Ei
Ej)(e) = ω(ei, ej)

for all i, j = 1, ..., n. Then ω is called the connection form of ∇ and for arbitrary vector
fields X =

∑n
i=1 φiEi, Y =

∑n
i=1 ψiEi, the connection is given as

∇XY (g) = Lg

(
ω

(
n∑

i=1

φi(g)ei,

n∑
j=1

ψj(g)ej

)
+

n∑
j=1

dψj(g)X(g)ej

)
.

Thus, by choosing special connection forms ω, one obtains different types of connec-
tions. For the Levi-Civita connection, in particular, one has the following result ([34]).

Theorem 2.5. Let G be a Lie group, endowed with a left invariant Riemannian metric
induced by an inner product 〈, 〉g on the Lie algebra g.
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(a) Then the Levi-Civita connection is the unique left invariant connection with con-
nection form

ω(x, y) =
1

2
([x, y]− (ad x)∗y − (ad y)∗x) .

(b) If 〈, 〉g defines a bi-invariant Riemannian metric on G, then (ad x)∗ = −ad x and
therefore the Levi-Civita connection has the connection form

ω(x, y) =
1

2
[x, y].

Here, (ad x)∗ : g → g denotes the adjoint operator to ad x with respect to the inner
product 〈, 〉g. Thus (ad x)∗ is uniquely defined by

〈(ad x)∗y, z〉g = 〈y, (ad x)z〉g = 〈y, [x, z]〉g.

The previous theorem shows that in the case of a bi-invariant metric 〈, 〉g, the Levi-
Civita connection ∇ is given by

∇XY (g) = Lg

(
1

2

[
n∑

i=1

φi(g)ei,

n∑
j=1

ψj(g)ej

]
+

n∑
j=1

dψj(g)X(g)ej

)
. (2.48)

Note that there always exist bi-invariant metrics on compact Lie groups, cf. Proposition
4.24 in [42].

Proposition 2.4. Let G denote a compact Lie group, endowed with a bi-invariant
metric 〈, 〉g. Then for Lg = g, ġ = gΩ(g) ∈ TgG and F (g) = gΩ̃(g) ∈ TgG the
Levi-Civita connection is given by

∇ġF (g) = g

(
1

2
[Ω, Ω̃] + DΩ̃(g) · ġ

)
. (2.49)

Proof. The claimed formula follows directly from (2.48) by noting that

ġ =
n∑

i=1

φi(g)Ei =
n∑

i=1

φi(g)gei = g

n∑
i=1

φi(g)ei := gΩ(g),

F (g) =
n∑

j=1

ψj(g)Ej = g

n∑
j=1

ψj(g)ej = gΩ̃,

and
n∑

j=1

dψj(g)X(g)ej =
n∑

j=1

dψj(g)ġ(g)ej = DΩ̃ · ġ.
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From now on we assume that G is a Lie group that is endowed with a bi–invariant
Riemannian metric. In order to simplify our notation we write gξ for the left translation
Lg(ξ) and gξg−1 for the adjoint action Ad(g)ξ on g. Let exp : g → G, exp(ξ) = eξ

denote the exponential map on the Lie algebra g. Since the connection form ω :
g× g → g for the Levi-Civita connection satisfies ω(ξ, ξ) = 1

2
[ξ, ξ] = 0 for all ξ ∈ g, we

see that the exponential curves c : R→ G

c(t) = getξ

are geodesics. Therefore, the Riemannian exponential map expg : TgG → G is given as

expg(gξ) = geξ

for all ξ ∈ g. We prove

Proposition 2.5. Let G denote a connected Lie group, endowed with a bi-invariant
Riemannian metric and let exp : g → G denote the exponential map. Then

(i) G is geodesically complete and the geodesics are c : R → G, c(t) = getξ for all
g ∈ G, ξ ∈ g. The Riemannian exponential map is

expg : TgG → G, expg(ζ) = g exp(g−1ζ), ∀ζ ∈ TgG.

Moreover, expg is surjective for any g ∈ G.

(ii) Let c : [0, 1] → G denote the unique geodesic with c(0) = g, c(1) = h. Thus
c(t) = getξ with eξ = g−1h. Then the unique parallel vector field V : [0, 1] → TG,
V (t) ∈ Tc(t)G, along c with V (0) = gη is given as

V (t) = c(t)e−tξ/2ηetξ/2.

In particular, the parallel translation along c from g to h in G is given as τgh :
TgG → ThG,

τgh(gη) = he−ξ/2ηeξ/2, ξ := g−1ċ(0).

Proof. For (i) note that the formulas for the geodesics and Riemannian exponential
map are already shown. Since the exponential map getξ exists for all t ∈ R it follows
that G is geodesically complete. The Hopf-Rinow theorem then implies that any two
points in G can be joined by a geodesic. This shows the surjectivity of expg. For (ii),
we have to show that the covariant derivative of V along c is identically zero. In fact,
for Ω = e−tξ/2ηetξ/2 we have Ω̇ = −1

2
[ξ, Ω] and therefore

∇ċV = c(t)

(
1

2
[ξ, Ω] + Ω̇

)
= 0.

This completes the proof.
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We now turn to the task of comparing the covariant derivative of a vector field along
a geodesic at two different points. Thus let X : G → TG denote a smooth vector field.
By left translation this yields a smooth map

Ω : G → g, Ω(g) := g−1X(g).

In the sequel we need to compute the second derivative of Ω. This is defined as follows.

Definition 2.4. The second derivative of a smooth map Ω : G → g at g ∈ G is the
symmetric bilinear map

D2Ω(g) : TgG× TgG → g

defined by polarization from the quadratic form

D2Ω(g)(gξ, gξ) :=
d2

dt2
Ω(c(t)),

where c is the geodesic c(t) = getξ.

Theorem 2.6. Let G be a compact Lie group, endowed with the bi-invariant Rie-
mannian metric defined by the Killing form. Let R denote the injectivity radius of G
and 0 < r < R. For any two elements g, h ∈ G with distance dist(g, h) ≤ r and any
tangent vector v ∈ TgG let w = τghv denote the parallel transport along the unique
geodesic c : [0, 1] → G connecting g with h. Let X be a smooth vector field on G such
that Ω : G → g, Ω(g) := g−1X(g) satisfies ||D2Ω(c(t))|| ≤ γ, for some constant γ > 0
and all t ∈ [0, 1]. Then

||τgh∇vX(g)−∇wX(h)|| ≤ Cdist(g, h)||v||

holds for
C := 3 max ||X(c(t))||+ 2||DΩ(c(0))||+ 3γ.

Proof. Let c : [0, 1] → G, c(t) = g exp(tξ) denote the unique geodesic connecting g with
h. Thus dist(g, h) = ||ξ||. Let V : [0, 1] → TG denote the unique vector field along c
obtained by parallel translation of the vector v along c. Thus

V (t) = c(t)e−tξ/2vetξ/2.

Let Ω(g) := g−1X(g) and Ω̃(t) := e−tξ/2vetξ/2. Then

∇V X = c(t)

(
1

2
[Ω̃, Ω] + DΩ̃(c(t))V (t)

)

and thus
∇ċ∇V X =

c(t)

(
1

4
[ξ, [Ω̃, Ω]] +

1

2
[ξ,DΩ(c(t))V (t)] +

1

2
[ ˙̃Ω, Ω] +

1

2
[Ω̃, Ω̇] + D2Ω(c(t))(c(t)ξ, V (t))

)
.
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Note that, for the Killing form, we have for Lie algebra elements x, y the estimate

||[x, y]|| ≤ 2||x||||y||.
Note further, that ||Ω̃|| = ||v||.
Therefore

||∇ċ∇V X|| ≤ ||ξ|||v|| (3||Ω(c(t))||+ 2||DΩ(c(t))||+ ||D2Ω(c(t))||) . (2.50)

By assumption,
||D2Ω(c(t))|| ≤ γ

and therefore also
||DΩ(c(t))|| ≤ ||DΩ(c(0))||+ γ.

The result follows.

Time-varying Newton flow on Lie groups
We consider a time-varying vector field F : G×R→ TG, (g, t) 7→ F (g, t). This vector
field can be rewritten as

F (g, t) =
n∑

i=1

ψi(g, t)Ei,

by using suitable functions ψi(g, t), cf. above.
We assume, that there exists a continuous map g∗ : R → G such that for all t ∈ R
holds

F (g∗(t), t) = 0.

We want to use the time-varying Newton flow, in order to track the zero g∗(t) of F .
Thus let further ġ(g) =

∑n
i=1 φi(g, t)Ei. Then the Levi-Civita connection is given by

∇ġF (g, t) = Lg

(
ω

(
n∑

i=1

φi(g, t)ei,

n∑
j=1

ψj(g, t)ej

)
+

n∑
j=1

dψj(g, t)ġ(g)ej

)
,

and the time-varying Newton flow (2.12) turns into

Lg

(
ω

(
n∑

i=1

φi(g, t)ei,

n∑
j=1

ψj(g, t)ej

)
+

n∑
j=1

dψj(g, t)X(g)ej

)
+

∂

∂t
F (g, t)

= M(g)F (g, t),

where M is a stable bundle map. In the case of a bi-invariant metric we have Lg = g,
ġ = gΩ(g, t) and F (g, t) = gΩ̃(g, t). The Newton flow turns into

g

(
1

2
[Ω(g, t), Ω̃(g, t)] + DΩ̃(g, t) · ġ

)
+

∂

∂t
F (g, t) = M(g)F (g, t). (2.51)

This is equivalent to

1

2
[Ω(g, t), Ω̃(g, t)] + DΩ̃(g, t) · ġ = g−1M(g)gΩ̃(g, t)− ∂

∂t
Ω̃(g, t),
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which shows, that an explicit expression of (2.51) is given by

ġ = gΩ(g, t), (2.52)

where Ω(g, t) satisfies

1

2
[Ω(g, t), Ω̃(g, t)] + DΩ̃(g, t) · gΩ(g, t) = MΩ̃(g, t)− ∂

∂t
Ω̃(g, t).

By reformulating Main Theorem 2.1 for this special case, we get at the following

Theorem 2.7. Let G denote a Lie group endowed with a bi-invariant metric and let
R > 0 be any real number with i∗(G) ≥ R . Let F : G× R → TG, (g, t) 7→ F (g, t) =:
gΩ̃(g, t) be a smooth vector field on G and let t 7→ g∗(t) denote a smooth isolated zero
of F on G, i.e. F (g∗(t), t) = 0. Assume further the existence of constants c1, c2, c3 > 0
such that the following conditions are satisfied for t ∈ R

1. c1 ≤ ‖∇vF (g∗(t), t)‖ ≤ c2 for all v ∈ Tg∗(t)G with ‖v‖ = 1,

2. ‖∇ċg(s)∇YwF (cg(s), t)‖ ≤ c3 for all g ∈ BR(g∗(t)), s ∈ [0, Rg] and w ∈ TgG with
‖w‖ = 1.

Here Rg := dist(g∗(t), g) and cg : [0, Rg] → G is a geodesic from g∗(t) to g with
‖ċg(s)‖ = 1 for s ∈ [0, Rg] and Yw is a smooth vector field on BR(g∗(t)) defined
via the parallel transport by Yw(g′) := τg∗(t)g′τ

−1
g∗(t)gw.

Then for g(0) sufficiently close to g∗(0), the solution g(t) of (2.52) exists for all t ≥ 0
and converges exponentially to g∗(t).

Remark 2.5. In the case of working on a compact Lie group endowed with the bi-
invariant metric defined by the killing form, we get from (2.50), that the following
estimate holds

||∇ċ∇V F (c(s), t)|| ≤ ||ξ|||v||
(
3||Ω̃(c(s))||+ 2||DΩ̃(c(s))||+ ||D2Ω̃(c(s))||

)
.

Here, c : [0, 1] → G, defined by s 7→ g∗(t) exp(sξ), is a curve from g∗(t) to g for some
ξ ∈ Tg∗(t)G, and V denotes the vector field along c, which is defined by using the
parallel transport of v ∈ Tg∗(t)G along c, i.e. V (s) := τc(0)c(s)v for s ∈ [0, 1].

This shows, that condition 2) can be replaced then by the assumption ‖D2Ω̃(g, t)‖ ≤ c3

for all g ∈ BR(g∗(t)).

Time-varying Newton algorithm on Lie groups
The update scheme, corresponding to the dynamical system (2.52), computes g∗(t) at
times tk = kh for M = − 1

h
, k ∈ N and step size h > 0. It is given by

gk+1 = expgk
(hgkΩ(gk, tk)), (2.53)
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where expgk
denotes the exponential map at gk and Ω(gk, tk) satisfies

1

2
[Ω(gk, tk), Ω̃(gk, tk)] + DΩ̃(gk, tk) · gkΩ(gk, tk) = −1

h
Ω̃(gk, tk)− Ω̃h

τ (gk, tk).

Here, Ω̃h
τ (gk, tk) denotes an approximation of ∂

∂t
Ω̃(gk, tk).

By applying Main Theorem 2.2 to the situation here, we immediately obtain the fol-
lowing result.

Theorem 2.8. Let G denote a Lie group endowed with a bi-invariant metric and
let R > 0 be any real number with i∗(M) ≥ R . Let F : G × R → TG, (g, t) 7→
F (g, t) =: gΩ̃(g, t) be a smooth vector field. Let t 7→ g∗(t) be a smooth isolated
zero of F , i.e. Ω̃(g∗(t), t) = 0 for all t. Assume further the existence of constants
c1, c2, c3, c4, c5, c6, c7 > 0 such that

(i) ‖DF (g∗(t), t)‖ ≤ c1, ‖ ∂
∂t

F (g∗(t), t)‖ ≤ c2, ‖DF (g∗(t), t)−1‖ ≤ c3 for all t ∈ R,

(ii) ‖∇ċg
g0

(s)∇YwF (cg
g0

(s), t)‖cg
g0

(s) ≤ c4 for all g0, g ∈ BR(g∗(t)), s ∈ [0, Rg
g0

] and w ∈
TgG with ‖w‖g = 1, t ∈ R.

Here Rg
g0

:= dist(g0, g), cg
g0

: [0, Rg
g0

] → G is a geodesic from g0 to g and Yw is
a smooth vector field on BR(g∗(t)) defined via the parallel transport by Yw(g′) :=
τg∗(t)g′τ

−1
g∗(t)gw.

(iii) ‖ ∂2

∂t2
F (g, t)‖ ≤ c5, ‖ ∂

∂t
DF (g, t)‖ ≤ c6 for all g ∈ BR(g∗(t)), t ∈ R.

(iv) ‖Ω̃h
τ (g, t)− ∂

∂t
Ω̃(g, t)‖ ≤ c7h, for all g ∈ BR(g∗(t)), t ∈ R, h > 0.

Then for c > 0 and sufficiently small h > 0, the sequence defined by (2.53) satisfies for
k ∈ N

dist(gk, g∗(tk)) ≤ ch

provided that dist(g0, g∗(0)) < ch. Thus, the update scheme (2.53) is well defined and
produces estimates for g∗(tk), whose accuracy can be controlled by the step size.

Example 2.1. Square roots
Let G = (0,∞) ⊂ R. Define a left-invariant Riemannian metric on G by

〈u, v〉g := 〈g−1u, g−1v〉e := mg−2uv, m > 0

and note, that it is also bi-invariant. Then let a(t) > 0 for all t and define F (g, t) =
gΩ̃(g, t) = a(t)− g2. We get

∇ġF (g, t) =
1

2
g[Ω, Ω̃] + gDΩ̃(g, t)ġ =

gDΩ̃(g, t)ġ = gD(g−1a(t)− g)ġ = g(−g−2a(t)− 1)ġ = (−g − g−1a(t))ġ.

Thus the time-varying Newton flow on G is given for M(g) = −σ (σ > 0) by
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(−g − g−1a(t))ġ = −σ(a(t)− g2)− ȧ(t).

Or explicitly,

ġ =
g

g2 + a(t)
(σa(t)− σg2 + ȧ(t)).

Note that the Newton flow in the ambient Euclidean space R is given by

DF (x, t) · ẋ = −σF (x, t)− ∂

∂t
F (x, t).

Thus we have
−2xẋ = −σa(t) + σx2 − ȧ(t),

which can be rewritten in explicit form by

ẋ =
1

2x
(σa(t)− σx2 + ȧ(t)).

Example 2.2. Cholesky factorization
Let A(t) ∈ Rn×n be a smooth family of symmetric positive definite matrices. Then for
any t ∈ R, there exists an unique lower triangular matrices L ∈ Rn×n such that

A(t) = LL>.

Thus for G = Bn :=








a11 ... a1n
...

. . .
...

0 ... ann




∣∣∣∣∣∣∣
aii > 0, i = 1, ..., n





, the time-varying task

is to determine g(t) ∈ G such that for all t holds

A(t) = g(t)>g(t).

We use the Riemannian metric

〈ξ, η〉g := tr ((g−1ξ)>g−1η) = tr (ξ>(gg>)−1η)

and note that it is left-invariant.
Let ġ = gΩ, F (g, t) = g>g − A(t) =: gΩ̃(g, t). To compute the affine connection, we
want to use Theorem 2.5 and consider

tr (((adx)∗y)>z) = tr (y>[x, z]) = tr (([y>, x]>)>z) = tr ([x>, y]>z).

Note that
[x>, y] = [x>, y]upper + [x>, y]lower,

where Aupper denotes the upper diagonal part including the diagonal of a square matrix
A, while Alower denotes the lower diagonal part of A. Since tr (([x>, y]lower)

>z) = 0, we
get that

tr ([x>, y]>z) = tr (([x>, y]upper)
>z),
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which shows that
(adx)∗y = [x>, y]upper.

Therefore, the connection form ω is given by ω(x, y) = 1
2
([x, y]−[x>, y]upper−[y>, x]upper)

and we obtain

∇ġF (g, t) =
1

2
g([Ω, Ω̃]− [Ω>, Ω̃]upper − [Ω̃>, Ω]upper) + gDΩ̃(g, t)ġ =

1

2
g([Ω, g−1(g>g − A(t))]− [Ω>, g−1(g>g − A(t))]upper − [(g>g − A(t))>g−T , Ω]upper)+

gD(g−1(g>g − A(t)))ġ.

Note that

D(g−1(g>g − A(t)))ġ = −g−1ġg−1(g>g − A(t)) + g−1(ġ>g + g>ġ) =

−g−1gΩg−1(g>g − A(t)) + g−1(Ω>g>g + g>gΩ).

Hence the time-varying Newton flow reads

1

2
g([Ω, g−1(g>g − A(t))]− [Ω>, g−1(g>g − A(t))]upper − [(g>g − A(t))>g−T , Ω]upper)−

Ωg−1(g>g − A(t)) + g−1(Ω>g>g + g>gΩ) = M(g)gΩ̃ + Ȧ(t).

Example 2.3. Symmetric eigenvalue problem
Let A(t) ∈ Rn×n be a smooth family of symmetric matrices with distinct eigenvalues.
To track the diagonalizing transformation g∗(tk) ∈ SO(n) of A(tk) at discrete times
tk = kh for k ∈ N and h > 0, we use the following approach.
Let G = SO(n), N ∈ Rn×n, 〈gξ, gη〉g := tr (ξ>η) for gξ, gη ∈ TgSO(n). Let

f : SO(n)× R→ R,

defined by
f(g, t) := tr (Ng>A(t)g).

Then

Df(g, t) ·H = tr (NH>A(t)g + Ng>A(t)H) = tr (H>A(t)gN + H>A(t)gN) =

2tr (H>A(t)gN),

and the intrinsic gradient with respect to g is given by

grad f(g, t) = πTgG(2A(t)gN) = 2g(g>A(t)gN)sk = g(g>A(t)gN −Ng>A(t)g) =

g[g>A(t)g, N ].

Note that for diagonal N with distinct eigenvalues, the gradient grad f(g, t) is zero
if and only if g>A(t)g is diagonal. Thus the solution of the Newton flow tracks the
diagonalizing orthogonal transformation of A(t).
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To compute the Newton flow, we use equation (2.49) and get for F (g, t) = grad f(g, t):

∇ġgrad f(g, t) = g

(
1

2
[g>ġ, [g>A(t)g, N ]] + D[g>A(t)g, N ] · ġ

)
.

By using the abbreviations Ω = g>ġ, B = g>A(t)g, this simplifies to

∇ġgrad f(g, t) =
1

2
g[Ω, [B, N ]] + g[ġ>A(t)g + g>A(t)ġ, N ] =

1

2
g[Ω, [B, N ]] + g[[B, Ω], N ] =

1

2
g
(
[[B, Ω, ]N ] + [[N, Ω], B]

)
.

Therefore, the intrinsic Newton flow is given by

1

2
g
(
[[B, Ω, ]N ] + [[N, Ω], B]

)
= M(g)grad f(g, t)− ∂

∂t
grad f(g, t). (2.54)

Approximative solution
Let for t ∈ R, g∗ ∈ SO(n) such that g>∗ A(t)g∗ =: D is diagonal. Thus, if g ≈ g∗, then
B ≈ D is almost a diagonal matrix. By approximating B by its diagonal part B̃, one
can explicitly solve (2.54). Hence, let

B̃ij =

{
(g>A(t)g)ii, i = j

0, i 6= j.

and consider
[[B̃, Ω, ]N ] + [[N, Ω], B̃] = R, (2.55)

to get a formula for Ω = −Ω>, where

R := 2g>
(
M(g)grad f(g, t)− ∂

∂t
grad f(g, t)

)
.

Equation (2.55) can be rewritten as

[B̃Ω− ΩB̃, N ] + [NΩ− ΩN, B̃] = R,

or equivalently,

B̃ΩN − ΩB̃N −NB̃Ω + NΩB̃ + NΩB̃ − ΩNB̃ − B̃NΩ + B̃ΩN = R.

Since N and B̃ are diagonal, we can now give a formula for the entries of Ω:

2(Njj −Nii)(B̃ii − B̃jj)Ωij = Rij. (2.56)

Note that R turns for M(g) = − 1
h

into

R := 2g>
(
−1

h
g[g>A(t)g, N ]− g[g>Ȧ(t)g, N ]

)
= −2[g>(

1

h
A(t) + Ȧ(t))g,N ].
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Thus

Rij = −2(g>(
1

h
A(t) + Ȧ(t))g)ij(Njj −Nii)

and equation (2.56) uniquely determines the entries of the skew symmetric matrix Ω

Ω(g, t)ij =

{
(g>( 1

h
A(t)+Ȧ(t))g)ij

B̃jj−B̃ii
, i 6= j

0, i = j.

By using this explicit expression of Ω, the update scheme to track the desired orthogonal
matrices g∗(tk) of the symmetric eigenvalue problem is given by

gk+1 = expgk

(
hgkΩ(gk, tk).

)

This shows, that the extrinsic approach to solve the eigenvalue problem in Chapter 4.1
leads to an update scheme, which extends the formula here, since it differs by additional
terms producing directions towards the manifold SO(n).

The previous example can be generalized to an arbitrary Lie group G with Lie algebra
g and a left-invariant Riemannian metric 〈, 〉g on G.
Choose a regular element n in the Lie algebra g. Given a differentiable curve a : I → g,
we want to find g(t) ∈ G, t ∈ I, such that

[n, Ad(g(t))a(t)] = 0 ∀t ∈ I.

Thus we consider the differentiable map

F : G× R→ TG,

defined by
F (g, t) := Lg[n, Ad(g(t))a(t)].

Then we get with the above notation and ġ = LgΩ

∇ġF +
∂

∂t
F =

Lg

(
1

2
[Ω, [n, Ad(g)a(t)]] + [n, [Ad(g−1a, Ω]] + [n,Ad(g−1)ȧ]

)
=

M(g)Lg([n, Ad(g−1)a]),

which is equivalent to

1

2
[Ω, [n, Ad(g)a(t)]] + [n, [Ad(g−1a, Ω]] + [n, Ad(g−1)ȧ] = L−1

g M(g)Lg([n, Ad(g−1)a]).

Thus the task is to solve the linear equation for Ω

F(Ω) = −[n, Ad(g−1)ȧ] + L−1
g M(g)Lg([n, Ad(g−1)a]),

where F : g → g is the linear operator on the Lie algebra, defined by

F(Ω) =
1

2
[Ω, [n, b]] + [n, [b, Ω]].

Note that F : g → g is invertible under suitable assumptions on n and a (such as
defining regular elements in the Lie algebra for any t).
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2.3 Euclidean time-varying Newton flow

In this chapter we consider the time-varying Newton flow in Euclidean space, which
is the simplest special case of the previously introduced Riemannian algorithms. The
resulting methods are therefore easier to understand, when applied to a particular
problem. We also derive modifications of the tracking theorems, where inexact and
underdetermined versions of the Newton flows are examined. It seems obvious to
study these variants in order to increase the applicability and the performance of the
proposed algorithms.

We consider a smooth map
F : Rn × R→ Rn,

defined by
(x, t) 7→ F (x, t).

Assume that there exists a smooth zero of F , i.e. a curve x∗ : R → Rn such that
F (x∗(t), t) = 0 holds for all t ∈ R. In order to determine this zero for all t, we use the
time varying Newton flow (2.12), which is given in this situation by

DF (x, t) · ẋ +
∂

∂t
F (x, t) = M(x)F (x, t). (2.57)

Here, DF denotes the ”usual” derivative in Rn and M is a stable bundle map, cf.
Definition 2.3.
To rewrite the above differential equation in an explicit form, we assume the existence
of r > 0 such that rkDF (x, t) = n, for all t ∈ R and x ∈ Br(x∗(t)). Then (2.57) is
equivalent to

ẋ = DF (x, t)−1
(M(x)F (x, t)− ∂

∂t
F (x, t)

)
. (2.58)

This assumption moreover implies that the smooth zero x∗(t) of F (x, t) is isolated, i.e.
for x ∈ Br(x∗(t)) holds: F (x, t) = 0 if and only if x = x∗(t).

2.3.1 The tracking algorithms in Euclidean space

At first we consider the continuous case and formulate the Euclidean version of the
Riemannian tracking Main Theorem 2.1. Note that the assumptions for the higher
order derivatives now turn into a quite simple form, compared to the original conditions.

Theorem 2.9. Let F : Rn × R → Rn be a smooth map and t 7→ x∗(t) be a smooth
isolated zero of F , i.e. F (x∗(t), t) = 0 for all t ∈ R. Assume further there exist
constants R, L1, L2, L3 > 0 such that for all t ∈ R holds:

1. ‖DF (x∗(t), t)‖ ≤ L1,

2. ‖DF (x∗(t), t)−1‖ ≤ L2,
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3. ‖D2F (x, t)‖ ≤ L3, for all ‖x− x∗(t)‖ ≤ R, t ≥ 0.

Then there exists 0 < r < R such that for any initial condition x(0) with ‖x(0) −
x∗(0)‖ ≤ r there exists a unique solution x(t), t ≥ 0 of (2.58) with the properties

1. ‖x(t)− x∗(t)‖ ≤ R for all t ≥ 0.

2. ‖x(t)− x∗(t)‖ converges exponentially to 0.

Euclidean time-varying Newton algorithm
The discretization scheme introduced in the previous section for the tracking algorithm
on Riemannian manifolds can be analogously employed in Euclidean space.
Thus the discrete version of (2.58) at discrete times tk = kh for M(x) = − 1

h
I, k ∈ N

and h > 0 is given by

xk+1 = xk −DF (xk, tk)
−1

(
F (xk, tk) + hF h

τ (xk, tk)
)
. (2.59)

As done in the previous chapters, we used an approximation F h
τ (x, t) of ∂

∂t
F (x, t), cf.

Section 2.1.2.2. The following result follows directly from Main Theorem 2.2 and gives
conditions guaranteeing that the above sequence tracks the smooth zero x∗(t) of F (x, t)
at discrete times tk.

Theorem 2.10. Let F : Rn × R → Rn, (x, t) 7→ F (x, t) be a smooth map and let
t 7→ x∗(t) be a smooth isolated zero of F , i.e. F (x∗(t), t) = 0 for all t ∈ R. Let further
there exist constants c1, c2, c3, c4, c5, c6, c7, R > 0 such that

(i) ‖DF (x∗(t), t)‖ ≤ c1, ‖ ∂
∂t

F (x∗(t), t)‖ ≤ c2, ‖DF (x∗(t), t)−1‖ ≤ c3 for all t ∈ R,

(ii) ‖D2F (x, t)‖ ≤ c4, ‖ ∂2

∂t2
F (x, t)‖ ≤ c5, ‖ ∂

∂t
DF (x, t)‖ ≤ c6 for all x ∈ BR(x∗(t)),

t ∈ R.

(iii) ‖F h
τ (x, t)− ∂F

∂t
(x, t)‖ ≤ c7h, for all x ∈ BR(x∗(t)), t ∈ R, h > 0.

Then the following statements hold

1. There exist 0 < r < R and c8, c9, c10 > 0 such that for t ∈ R

‖x− x∗(t)‖ ≤ c8‖F (x, t)‖, (2.60)

‖F (x, t)‖ ≤ c9‖x− x∗(t)‖, (2.61)

and
‖DF (x, t)−1‖ ≤ c10 (2.62)

for x ∈ Br(x∗(t)).
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2. The discretization sequence defined in (2.59) with tk = kh, h > 0 satisfies for
some c11, c12 > 0

‖xk+1 − x∗(tk+1)‖ ≤ c11‖xk − x∗(tk)‖2 + c12h
2 (2.63)

for xk ∈ Br(x∗(tk)), k ∈ N0

3. Let c > 0 be constant and h sufficiently small. For any initial condition x0 with
‖x0 − x∗(0)‖ < ch we have

‖xk − x∗(tk)‖ ≤ ch

for all k ∈ N0. Thus, the update scheme (2.59) is well defined and produces
estimates for x∗(tk), whose accuracy can be controlled by the step size.

It follows, that one can control the global tracking error of the discretization scheme
by varying the step size h. Note that, in general, one cannot expect more than such
a bound of the tracking error being hold, if one discretizes the Newton flow with a
fixed step size. In particular, one cannot in general guarantee that the tracking error
vanishes asymptotically for k →∞, as the next example shows.

Example 2.4. Let F (x, t) := x − sin t. Then x∗(t) := sin t is a smooth isolated zero
of F (x, t), DF (x, t) = idx and ∂F

∂t
(x, t) = − cos t. Hence, a Newton flow is given by

ẋ = −x + sin t + cos t.

Let tk = 2πl, for some k, l ∈ N, h > 0 and xk = x∗(tk) = sin tk = 0. Then

xk+1 = xk − (xk + sin tk + cos tk)h = − cos(2πl)h = −h,

and therefore
‖x∗(tk + h)− xk+1‖ = ‖x∗(2πl + h)− h‖ =

‖ sin(2πl + h)− h‖ = ‖ sin(h)− h‖ ≥ h3

6
.

2.3.2 Inexact time-varying Newton flow

The tracking of a smooth isolated zero of a map F by using the previously proposed
algorithms, requires either to invert a matrix DF or alternatively, to solve a linear
system

DF · ẋ = r

for ẋ ∈ Rn at each step for some r ∈ Rn. As the size of DF increases quadratically
with the dimension n of the image of F , these procedures are inappropriate for large n.
But the computational effort can be reduced significantly, if one only solves the as-
sociated linear system approximatively. In Chapter 4.1 and Chapter 4.3, there are
two situations, where useful approximations for the inverse of DF are available. This
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motivated to provide a theoretical basis for such approaches. Note that this idea is
closely related to the so-called inexact Newton method, where zeros of time-invariant
maps are determined by using a discrete Newton-type algorithm, cf. [19].
Hence, we now study the convergence properties of the approximative Newton flow of
a smooth map

F : Rn × R→ Rn,

defined by
(x, t) 7→ F (x, t).

Again, we assume that F has a smooth isolated zero x∗(t), i.e. t 7→ x∗(t) is a smooth
curve and F (x∗(t), t) = 0 for all t ∈ R.
At first, we consider the perturbed time-varying Newton flow

DF (x, t)ẋ +
∂

∂t
F (x, t) = M(x)F (x, t) + Π(x, t), (2.64)

where M is a stable bundle map and Π : Rn×R→ Rn denotes the perturbation. The
next lemma gives conditions such that the norm of F (x(t), t) converges exponentially
to zero, where x(t) is a solution of the above ODE.

Lemma 2.6. Let F : Rn × R → Rn and Π : Rn × R → Rn as above and assume the
existence of r, c > 0 such that

‖Π(x, t)‖ ≤ c‖F (x, t)‖,

for all x ∈ Br(x∗(t)), t ∈ R. Then for some a, b > 0, any solution x(t) of (2.64)
satisfies

‖F (x(t), t)‖ ≤ ae−bt, (2.65)

provided that M is a stable bundle map s.th. λ := supv∈Rn,‖v‖=1 〈M(x) · v, v〉 satisfies
λ < −c.

Proof.

d

dt
‖F (x, t)‖2 = 2〈 d

dt
F (x, t), F (x, t)〉 = 2〈DF (x, t) · ẋ +

∂

∂t
F (x, t), F (x, t)〉 =

2〈M(x)F (x, t) + Π(x, t), F (x, t)〉 = 2(〈M(x)F (x, t), F (x, t)〉+ 〈Π(x, t), F (x, t)〉).
Thus

d

dt
‖F (x, t)‖2 ≤ 2‖F (x, t)‖2(λ + c), (2.66)

where λ = supv∈Rn,‖v‖=1 〈M(x) · v, v〉 < 0. Thus,

‖F (x, t)‖ ≤ ‖F (x(0), 0)‖e(c+λ)t.
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We want to profit from this fact to deduce computationally easier systems to track
x∗(t).
If F satisfies the conditions of Theorem 2.9, DF (x, t) is invertible for t ∈ R and
x ∈ BR(x∗(t)) for some R > 0 and equation (2.64) can be rewritten as

ẋ = DF (x, t)−1

(
M(x)F (x, t)− ∂

∂t
F (x, t)

)
+ DF (x, t)−1Π(x, t). (2.67)

Hence, if we have an approximation G(x, t) : Rn → Rn of DF (x, t)−1 satisfying

DF (x, t)G(x, t)

(
M(x)F (x, t)− ∂

∂t
F (x, t)

)
= M(x)F (x, t)− ∂

∂t
F (x, t) + Π(x, t),

then

ẋ = G(x, t)
(M(x)F (x, t)− ∂

∂t
F (x, t)

)
(2.68)

is equivalent to (2.67) and we can extend Theorem 2.9 for inexact time-varying Newton
flows.

Theorem 2.11. Let F : Rn×R→ Rn be a smooth map and t 7→ x∗(t) be a continuously
differentiable isolated zero of F , i.e. F (x∗(t), t) = 0 for all t ∈ R. Assume further that
there exist constants R, L1, L2, L3, L4 > 0 and an approximation G(x, t) : Rn → Rn for
DF (x, t)−1 such that for all t ≥ 0 holds

1. ‖DF (x∗(t), t)‖ ≤ L1,

2. ‖DF (x∗(t), t)−1‖ ≤ L2,

3. ‖D2F (x, t)‖ ≤ L3, for all ‖x− x∗(t)‖ ≤ R,

4.
∥∥(DF (x, t)G(x, t)− I)

(M(x)F (x, t)− ∂
∂t

F (x, t)
)∥∥ ≤ L4‖F (x, t)‖, for all ‖x −

x∗(t)‖ ≤ R.

Then there exists 0 < r < R such that for any initial condition x(0) with ‖x(0) −
x∗(0)‖ ≤ r there exists a unique solution x(t), t ≥ 0 of (2.68) with the properties

1. ‖x(t)− x∗(t)‖ ≤ R for all t ≥ 0,

2. ‖x(t)− x∗(t)‖ converges exponentially to 0,

provided that λ := supv∈Rn,‖v‖=1 〈M(x) · v, v〉 < 0 satisfies λ < −L4.

Proof. Due to Proposition (2.5.6) of [1], p. 119, there exists a 0 < r̂ ≤ R such that for
any t the map x 7→ F (x, t) is a diffeomorphism on Ur̂(x∗(t)) := {x| ‖x − x∗(t)‖ ≤ r̂}.
This implies the existence of constants L′1, L′2 > 0 such that

‖DF (x, t)‖ ≤ L′1,
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‖DF (x, t)−1‖ ≤ L′2,

for all ‖x− x∗(t)‖ ≤ r̂, t ≥ 0.
From the mean value theorem we conclude the existence of some k1, k2 > 0 such that
for t ≥ 0

k1‖x− x∗(t)‖ ≤ ‖F (x, t)− F (x∗(t), t)‖ ≤ k2‖x− x∗(t)‖ (2.69)

holds for all x ∈ Ur̂(x∗(t)). Let x(t) denote the maximal solution of (2.68) for 0 ≤ t < t+
and T := sup{t < t+| ‖x(t)− x∗(t)‖ ≤ r̂}. Let r := min{k1r̂

k2
, r̂} and assume T < ∞.

Note that t 7→ ‖F (x(t), t)‖ is strictly monotonically decreasing, since

d

dt
‖F (x, t)‖2 = 2

〈
DF (x, t)ẋ +

∂

∂t
F (x, t), F (x, t)

〉

= 2

〈
DF (x, t)G(x, t)

(
MF (x, t)− ∂

∂t
F (x, t)

)
+

∂

∂t
F (x, t), F (x, t)

〉

= 2

〈
(DF (x, t)G(x, t)− I)

(
MF (x, t)− ∂

∂t
F (x, t)

)
+MF (x, t), F (x, t)

〉

≤ 2L4‖F (x, t)‖2 + 2λ‖F (x, t)‖2 = 2(L4 + λ)‖F (x, t)‖2 < 0,

where we used assumption 4 and (2.68).
Therefore

‖x(t)− x∗(t)‖ ≤ 1

k1

‖F (x(t), t)‖ <
1

k1

‖F (x(0), 0)‖ ≤ k2

k1

‖x(0)− x∗(0)‖ ≤ r̂, (2.70)

for all 0 ≤ t < T , ‖x(0) − x∗(0)‖ ≤ r. Thus ‖x(T ) − x∗(T )‖ < r̂, contradicting
the assumed finiteness of T . This shows that (2.70) holds for all t ≥ 0, provided
‖x(0)−x∗(0)‖ ≤ r. In particular, the solution x(t) exists for all t ≥ 0. Since ‖F (x(t), t)‖
converges exponentially to 0, cf. Lemma 2.6, this implies the exponential convergence
of x(t) to x∗(t).

Inexact time-varying Newton algorithm
We now consider the Euler discretization of (2.68), which yields a sequence approxi-
mating the exact zero of F at discrete times tk = kh for h > 0 and k ∈ N. The discrete
tracking algorithm is given by

xk+1 = xk −G(xk, tk)
(
F (xk, tk) + hF h

τ (xk, tk)
)
, (2.71)

where we formulated the update scheme by using an approximation F h
τ (xk, tk) of

∂
∂t

F (xk, tk). Note that we again setM(x) = − 1
h
I, which is crucial to prove the stability

result for (2.71) in the next theorem.

Theorem 2.12. Let F : Rn × R → Rn, (x, t) 7→ F (x, t) be smooth. Let t 7→ x∗(t) be
a smooth isolated zero of F , i.e. F (x∗(t), t) = 0 for all t ∈ R. Let further there exist
constants c1, c2, c3, c4, c5, c6, c7, R > 0 such that
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(i) ‖DF (x∗(t), t)‖ ≤ c1, ‖ ∂
∂t

F (x∗(t), t)‖ ≤ c2, ‖DF (x∗(t), t)−1‖ ≤ c3 for all t ∈ R,

(ii) ‖D2F (x, t)‖ ≤ c4, ‖ ∂2

∂t2
F (x, t)‖ ≤ c5, ‖ ∂

∂t
DF (x, t)‖ ≤ c6 for all x ∈ BR(x∗(t)),

t ∈ R.

(iii) ‖F h
τ (x, t)− ∂F

∂t
(x, t)‖ ≤ c7h, for all x ∈ BR(x∗(t)), t ∈ R, h > 0.

Let further G(x, t) denote an approximation for DF (x, t)−1 satisfying for some c, c̃ > 0
∥∥∥∥(DF (x, t)G(x, t)− I)

(
1

h
F (x, t) + F h

τ (x, t)

)∥∥∥∥ ≤ c̃‖F (x, t)‖, (2.72)

for all h > 0 and x ∈ Bch(x∗(t)), t ∈ R.
Then the following statements hold

1. There exists 0 < r ≤ R and c8, c9, c10 > 0 such that for t ∈ R
‖x− x∗(t)‖ ≤ c8‖F (x, t)‖, (2.73)

‖F (x, t)‖ ≤ c9‖x− x∗(t)‖, (2.74)

and
‖DF (x, t)−1‖ ≤ c10 (2.75)

for x ∈ Br(x∗(t)).

2. The discretization sequence (xk) as defined in (2.71) with tk = kh, h > 0 satisfies
for some c11, c12 > 0

‖xk+1 − x∗(tk+1)‖ ≤ c11‖xk − x∗(tk)‖2 + c12h
2 (2.76)

for xk ∈ Br(x∗(tk)) with r ≤ ch, k ∈ N0.

3. Let c > 0 be constant and h sufficiently small. For any initial condition x0 with
‖x0 − x∗(0)‖ < ch we have

‖xk − x∗(tk)‖ ≤ ch

for all k ∈ N0. Thus, the update scheme (2.71) is well defined and produces
estimates for x∗(tk), whose accuracy can be controlled by the step size.

Proof. This theorem is very similar to Theorem 2.10 such that claim 1) and 3) follow
from there. However, the proof of 2) differs by additionally perturbation terms.

We show (2.76) by bounding the norm of F at t = tk+1. Taylor’s Theorem shows that

F (xk+1, tk+1) = F (xk, tk) +
∂F

∂t
(xk, tk)h + DF (xk, tk)(xk+1 − xk) +R, (2.77)

where R satisfies for ∆ := ‖xk+1 − xk‖

‖R‖ ≤ (c4∆
2 + c5h

2 + c6∆h) ≤
(
c4 +

c6

2

)
∆2 +

(
c5 +

c6

2

)
h2.
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Using the update scheme (2.71) to replace xk+1, (2.77) turns into

F (xk+1, tk+1) = (2.78)

F (xk, tk) +
∂F

∂t
(xk, tk)h + DF (xk, tk)

(
hG(xk, tk)

(
−1

h
F (xk, tk)− F h

τ (xk, tk)

))
+R.

Estimate (2.72) implies that

DF (x, t)G(x, t)

(
1

h
F (x, t) + F h

τ (x, t)

)
=

(
1

h
F (x, t) + F h

τ (x, t)

)
− Π(x, t),

for some perturbation term Π(x, t) satisfying ‖Π(x, t)‖ ≤ c̃‖F (x, t)‖. Thus (2.78) is
equivalent to

F (xk+1, tk+1) =
∂F

∂t
(xk, tk)h− hF h

τ (xk, tk) + hΠ(xk, tk) +R,

and therefore

‖F (xk+1, tk+1)‖ ≤ c7h
2 +

(
c4 +

c6

2

)
∆2 +

(
c5 +

c6

2

)
h2 + hc̃‖F (xk, tk)‖

implying that

‖F (xk+1, tk+1)‖ ≤
(
c4 +

c6

2

)
∆2 +

(
c5 +

c6

2
+ c7

)
h2 + c̃c9h‖xk − x∗(tk)‖

and

‖F (xk+1, tk+1)‖ ≤
(
c4 +

c6

2

)
∆2 +

(
c5 +

c6 + c̃c9

2
+ c7

)
h2 +

c̃c9

2
‖xk − x∗(tk)‖2.

Using (2.73) shows that
‖xk+1 − x∗(tk+1)‖ ≤ (2.79)

c8

(
c4 +

c6

2

)
∆2 + c8

(
c5 +

c6 + c̃c9

2
+ c7

)
h2 +

c̃c8c9

2
‖xk − x∗(tk)‖2.

We now inspect ∆ and get

∆ = ‖xk+1 − xk‖ =

∥∥∥∥hG(xk, tk)

(
1

h
F (xk, tk) + F h

τ (xk, tk)

)∥∥∥∥ ≤
∥∥DF (xk, tk)

−1
(
F (xk, tk) + hF h

τ (xk, tk) + hΠ(xk, tk)
)∥∥ .

Therefore,

∆ ≤ c10(‖F (xk, tk)‖+ h‖F h
τ (xk, tk)‖+ c̃h‖F (xk, tk)‖). (2.80)

Note that ‖F h
τ (xk, tk)‖ ≤ ‖ ∂

∂t
F (xk, tk)‖+ c7h ≤ c2 + c6‖xk−x∗(tk)‖+ c7h. Thus (2.80)

turns into

∆ ≤ c10

(‖F (xk, tk)‖+ h(c2 + c6‖xk − x∗(tk)‖+ c7h) + c̃h‖F (xk, tk)‖
)
.
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It follows that

∆ ≤ c10

(
c9‖xk − x∗(tk)‖+ h(c2 + c6‖xk − x∗(tk)‖+ c7h) + c̃c9h‖xk − x∗(tk)‖

) ≤

c9c10‖xk − x∗(tk)‖+ c10(c2 + (c6 + c̃c9)r + c7h)h.

By using the abbreviations k1 = c9c10 and k2 = c10(c2 +(c6 + c̃c9)r+c7h), this equation
implies that

∆2 ≤ k2
1‖xk − x∗(tk)‖2 + k2

2h
2 + 2k1k2‖xk − x∗(tk)‖h,

and hence
∆2 ≤ (k2

1 + k1k2)‖xk − x∗(tk)‖2 + (k2
2 + k1k2)h

2.

Plug this into (2.79) and obtain

‖xk+1 − x∗(tk+1)‖ ≤
(
k3(k

2
1 + k1k2) + k4

) ‖xk − x∗(tk)‖2 +
(
k3k

2
2 + k1k2k3 + k5

)
h2,

where k3 = c8 (c4 + c6/2), k4 = c̃c8c9
2

and k5 = c8

(
c5 + c7 + c6+c̃c9

2

)
.

2.3.3 Underdetermined Newton flow

We now derive a tracking algorithm for time-varying zeros of non-invertible maps in
Euclidean space. This merges the Newton flow for underdetermined constant linear
systems, as studied by Tanabe [66], with the Euclidean time-varying Newton flow
introduced in this work. At the end of this paragraph, a discrete algorithm will be
given, which also includes the inexact case, i.e. we define an update scheme, which is a
discretization of an approximative underdetermined Newton flow. Analogously to the
previous chapters, the stability of the resulting tracking algorithm will be shown.
We consider a smooth map

F : Rn × R→ Rm,

defined for m < n by
(x, t) 7→ F (x, t).

For t ∈ R, let X (t) := {x ∈ Rn| F (x, t) = 0} denote the zero set of F and assume that
it is not empty. Assume further that

rkDF (x, t) = m

for all x ∈ X (t), t ∈ R. Then 0 is a regular value of x 7→ F (x, t) and X (t) ⊂ Rn is a
Riemannian submanifold of dimension n−m, t ∈ R.
Moreover, rk

(
DF (x, t) ∂

∂t
F (x, t)

)
= m for all x ∈ X (t), t ∈ R, showing that N̂ :=

F−1(0) is a smooth Riemannian submanifold of Rn+1 of dimension n−m+1. Obviously,
N̂ = {(x, t)| x ∈ X (t), t ∈ R}. Thus the zero sets considered here are smoothly
changing time-varying manifolds instead of isolated curves. This expression is clarified
in the next definition.
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Definition 2.5. Let M(t) ⊂ Rn be a family of k-dimensional Riemannian submanifolds
for t ∈ I. We call M(t) a smooth time-varying manifold, if the set

M̂ := {(x, t)| x ∈ M(t), t ∈ I}
is a smooth Riemannian submanifold of Rn+1 for all open intervals I ⊂ R.

It is obvious, that the family of manifolds X (t) as defined above, is a smooth time-
varying manifold. The goal is to construct a dynamical system, whose solution x(t)
converges exponentially to a connected component X∗(t) of X (t), i.e.

dist(x(t),X∗(t)) ≤ ae−bt,

for some a, b > 0. Thus, we consider again the time-varying Newton flow

DF (x, t) · ẋ +
∂

∂t
F (x, t) = M(x)F (x, t), (2.81)

where M is a stable bundle map. If there exists a R > 0 such that rkDF (x, t) = m
for all x ∈ UR(t) := {x ∈ Rn| dist(x,X∗(t)) < R}, t ∈ R, we can locally determine
DF (x, t)† : Rm → Rn, such that

DF (x, t)DF (x, t)† = Im,

and we then call DF (x, t)† a pseudo-inverse of DF (x, t). Note that such operators
exist under the above conditions, e.g. the Moore-Penrose inverse is given as

DF (x, t)† := DF (x, t)>(DF (x, t)DF (x, t)>)−1 ∈ Rn×m.

Moreover, the largest singular value of a pseudo-inverse DF (x, t)† satisfies for t ∈ R
and x ∈ Rn

σmax(DF (x, t)†) = 1/σmin(DF (x, t)).

Using a pseudo inverse, a solution of (2.81) can be found by determining a solution
x(t) to

ẋ = DF (x, t)†
(
M(x)F (x, t)− ∂

∂t
F (x, t)

)
, (2.82)

as any solution of (2.82) satisfies (2.81). Moreover, any solution x(t) of (2.81) (and
hence any solution of (2.82)) satisfies for all t ∈ R

‖F (x(t), t)‖ ≤ ae−bt, (2.83)

for some a, b > 0 since d
dt

F (x(t), t) = M(x(t))F (x(t), t).
To derive the tracking algorithm, we have to be able to estimate the distance of a point
to the zero set of F by using the norm of the map F . This can be achieved by using
the next lemma.

Lemma 2.7. Let F : Rn ×R→ Rm and X∗(t) as above. Let there exist M,R, S, s > 0
such that the following statements hold:
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1. For all x ∈ X∗(t), t ∈ R, the singular values σ1(x, t), ..., σm(x, t) of DF (x, t)>

satisfy
s ≤ σ1(x, t), ..., σm(x, t) ≤ S.

2. ‖D2F (x, t)‖ ≤ M for all x ∈ UR(t) := {x ∈ Rn| dist(x,X∗(t)) < R}, t ∈ R.

Then there exist constants κ1, κ2 > 0 such that for r = min{R, s
2M
} and all x ∈ Ur(t) =

{x ∈ Rn| dist(x,X∗(t)) < R}, t ∈ R holds

(i) κ1dist(x,X∗(t)) ≤ ‖F (x, t)‖ ≤ κ2dist(x,X∗(t)),
(ii) σmin(DF (x, t)>) ≥ s

2
.

Proof. The right side of claim (i) is obvious due to assumption 1) and 2). Therefore let
for t ∈ R, x∗ ∈ X∗(t) denote a point of minimal distance to x, where x ∈ Ur(t). Thus,

dist(x,X∗(t)) = ‖x− x∗‖

and the vector h := x − x∗ is in the normal space of X∗(t) at x∗ and is orthogonal to
the kernel of DF (x∗, t). Thus,

‖DF (x∗, t) · h‖ ≥ s‖h‖.

From Taylor’s Theorem, we have

F (x, t) = DF (x∗, t) · h + R1,

where R1 =
∫ 1

0
D2F (x∗ + τh, t) · (h, h)dτ . Therefore

‖F (x, t)‖ ≥ ‖DF (x∗, t) · h‖ − ‖R1‖

≥ s‖h‖ −M‖h‖2 = ‖h‖(s−M‖h‖).
Thus (i) holds with κ1 = s/2, since ‖h‖ = dist(x,X∗(t)) ≤ r ≤ s

2M
.

To prove (ii), let v⊥ ker DF (x, t) and consider

DF (x, t)v = DF (x∗, t)v +

∫ 1

0

D2F (x∗ + τw, t) · (w, v)dτ,

where w = x− x∗. Thus

‖DF (x, t)v‖ =

∥∥∥∥DF (x∗, t)v +

∫ 1

0

D2F (x∗ + τw, t) · (w, v)dτ

∥∥∥∥ ≥

≥ ‖DF (x∗, t)v‖ −
∥∥∥∥
∫ 1

0

D2F (x∗ + τw, t) · (w, v)dτv

∥∥∥∥ ≥ (s−M‖w‖)‖v‖.

Therefore, σmin(DF (x, t)>) ≥ s/2 for ‖w‖ ≤ r.

We now have the necessary tools to prove the following result.
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Theorem 2.13. Let F : Rn × R → Rm, m < n, be a smooth map and let X∗(t) be as
above, i.e. F (x, t) = 0 for x ∈ X∗(t), t ∈ R. Assume further the existence of constants
R,L1, L2, L3 > 0 such that for all t ∈ R holds:

1. ‖DF (x, t)‖ ≤ L1, for all x ∈ X∗(t),
2. σmin(DF (x, t)>) > L2, for all x ∈ X∗(t),
3. ‖D2F (x, t)‖ ≤ L3, for all x ∈ UR(t) := {x ∈ Rn| dist(x,X∗(t)) < R}.

Then there exists 0 < r < R such that for any initial condition x(0) with dist(x(0),
X∗(0)) ≤ r there exists a unique solution x(t) of

ẋ = DF (x, t)†
(M(x)F (x, t)− ∂

∂t
F (x, t)

)
, (2.84)

with the properties

1. dist(x(t),X∗(t)) < R for all t ≥ 0.

2. dist(x(t),X∗(t)) converges exponentially to 0.

Proof. Solutions x(t) of (2.84) satisfy for x(t) ∈ Ur(X∗(t))

‖F (x(t), t)‖ ≤ ae−bt,

for some a, b, r > 0, cf. (2.83). Therefore, these statements can be proven analogously
to Main Theorem 2.1 by using the results of the previous lemma.

Underdetermined and inexact time-varying Newton flow
Let F : Rn × R → Rm, m < n, as above and consider approximations G(x, t) for
DF (x, t)†, as described for m = n in the previous section. Hence let G(x, t) ∈ Rn×m

such that the perturbation term

Π(x, t) := (DF (x, t)G(x, t)− Im)

(
M(x)F (x, t)− ∂

∂t
F (x, t)

)

satisfies for some c̃, R > 0
‖Π(x, t)‖ ≤ c̃‖F (x, t)‖,

for all x ∈ UR(t) := {x ∈ Rn| dist(x,X∗(t)) < R}, t ∈ R. We then approximate the
ODE (2.84) by

ẋ = G(x, t)

(
M(x)F (x, t)− ∂

∂t
F (x, t)

)
. (2.85)

It is straightforward to show, that the claims made in the previous theorem for equation
(2.84) also hold qualitatively for (2.85), if M is a stable bundle map s.th. supv∈Rn,‖v‖=1

〈M(x) · v, v〉 < 0 is sufficiently small. We therefore formulate the discretization of the
underdetermined Newton flow such that it also includes the inexact case.
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Underdetermined and inexact time-varying Newton algorithm
Let tk = kh for h > 0 and k ∈ N0. The discretization of equation (2.85) is given for
M(x) = − 1

h
by

xk+1 = xk −G(xk, tk)
(
F (xk, tk) + hF h

τ (xk, tk)
)
, (2.86)

where we used an approximation F h
τ (xk, tk) of ∂

∂t
F (xk, tk). We arrive at our most

general tracking algorithm in Euclidean space.

Main Theorem 2.4. Let F : Rn × R→ Rm, (x, t) 7→ F (x, t) be smooth and let X∗(t)
as above such that F (x, t) = 0 for all x ∈ X∗(t), t ∈ R. Assume further the existence
of constants c1, c2, c3, c4, c5, c6, c7, R > 0 such that

(i) ‖DF (x, t)‖ ≤ c1, ‖ ∂
∂t

F (x, t)‖ ≤ c2, σmin(DF (x, t)>) > c3 for all x ∈ X∗(t), t ∈ R

(ii) ‖D2F (x, t)‖ ≤ c4, ‖ ∂2

∂t2
F (x, t)‖ ≤ c5, ‖ ∂

∂t
DF (x, t)‖ ≤ c6 for all x ∈ UR(t) := {x ∈

Rn| dist(x,X∗(t)) < R}, t ∈ R.

(iii) ‖F h
τ (x, t)− ∂F

∂t
(x, t)‖ ≤ c7h, for x ∈ UR(t), t ∈ R, h > 0.

Let G(x, t) denote an approximation for DF (x, t)† satisfying for some c, c̃ > 0

∥∥∥∥(DF (x, t)G(x, t)− Im)

(
1

h
F (x, t) + F h

τ (x, t)

)∥∥∥∥ ≤ c̃‖F (x, t)‖, (2.87)

for all h > 0 and x ∈ Uch(t), t ∈ R.
Then the following statements hold

1. There exists 0 < r ≤ R and c8, c9, c10 > 0 such that for t ∈ R

dist(x,X∗(t)) ≤ c8‖F (x, t)‖, (2.88)

‖F (x, t)‖ ≤ c9 dist(x,X∗(t)), (2.89)

and
‖DF (x, t)†‖ ≤ c10 (2.90)

for x ∈ Ur(t) := {x ∈ Rn| dist(x,X∗(t)) < r}.
2. The discretization sequence (xk) as defined in (2.86) with tk = kh, h > 0 satisfies

for some c11, c12 > 0

dist(xk+1,X∗(tk+1)) ≤ c11dist(xk,X∗(tk))2 + c12h
2 (2.91)

for xk ∈ Ur(t) with r ≤ ch, k ∈ N0.
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3. Let c > 0 be constant and h sufficiently small. For any initial condition x0 with
‖x0 − x∗(0)‖ < ch we have

dist(xk,X∗(tk)) ≤ ch

for all k ∈ N0. Thus, the update scheme (2.86) is well defined and produces
estimates for x∗(tk), whose accuracy can be controlled by the step size.

Proof. The first claim has been shown in Lemma 2.7. Therefore, claim 2) and 3) can
be shown analogously to the proof of the second and third claim of Theorem 2.12.



Chapter 3

Application I: Intrinsic Subspace
Tracking

In this chapter we apply the general tracking techniques of the previous chapter to
derive iterative algorithms for computing the principal subspace of time-varying sym-
metric matrices. The principal subspace of a symmetric matrix A ∈ Rn×n is the
m-dimensional eigenspace V , corresponding to the m largest eigenvalues of A for some
1 ≤ m ≤ n.
The proposed algorithms are defined directly on the manifold; i.e. they are constructed
either in a coordinate free way or via local coordinates. No Lagrange multiplier tech-
niques are used or needed, nor any projection techniques that attempt to find solutions
by projecting back suitable ambient space approximations. For this reason we refer
to our algorithms as intrinsic. Our approach is motivated by [33], where new intrinsic
implementations of the Newton method on Grassmann manifolds are introduced; thus
improving earlier constructions by [23]. This approach can be easily extended to the
time-varying problems, as is shown here. This leads us to particularly simple update
schemes which robustly perform the tracking task.

3.1 Time-varying Newton flow for principal sub-

space tracking

We now consider the task of determining the non-constant m-dimensional principal
subspace V (t) of a family of symmetic matrices A(t) ∈ Rn×n, t ∈ R, with eigenvalues
λ1(t) ≥ ... ≥ λn(t). In order to derive the subspace tracking algorithms, we make the
following assumptions:

A1 The map t 7→ A(t) ∈ Sym(n) is Cr for some integer r ≥ 2 and all t ∈ R.

A2 ‖A(t)‖, ‖Ȧ(t)‖ and ‖Ä(t)‖ are uniformly bounded for t ∈ R.

A3 The m largest eigenvalues of A(t) are well separated from the others, i.e. there
exists c > 0 such that

λi(t)− λj(t) ≥ c,

69
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for 1 ≤ i ≤ m and m + 1 ≤ j ≤ n, t ∈ R.

Note that conditions (A1) and (A3) imply the existence of a Cr-curve t 7→ R(t) ∈ O(n)
of orthogonal transformations such that

R(t)>A(t)R(t) = diag (D1(t), D2(t)),

where D1(t) ∈ Sym(m) has the eigenvalues λ1(t), ..., λm(t) and D2(t) ∈ Sym(n−m) has
the eigenvalues λm+1(t), ..., λn(t) cf. Dieci and Eirola [20]. Note, that the blocks D1, D2

are not assumed to be diagonal. Thus for [R1(t) R2(t)] := R(t) with R1(t) ∈ Rn×m we
get R1(t)

>R1(t) = Im and

R1(t)
>A(t)R1(t) = D1(t).

The span of the columns of R1(t) is therefore the principal subspace of A(t), i.e. V (t) =
Im(R1(t)). Note that for any Q ∈ O(m), the columns of R1(t)Q also span the principal
subspace of A(t).
To eliminate this ambiguity, we work on the Grassmann manifold, or more conveniently,
on the Grassmannian Grm,n. Recall, that the Grassmann manifold Grass(m,n) is
defined as the set of m-dimensional subspaces in Rn. It is well known that Grass(m,n)
is a compact smooth manifold of dimension m(n − m). In the sequel we prefer to
work with an alternative, equivalent definition of the Grassmann manifold via the so-
called Grassmannian Grm,n, which is defined as the set of rank m selfadjoint projection
operators in Rn:

Grm,n := {P ∈ Rn×n | P> = P, P 2 = P, tr P = m}. (3.1)

It is well known, cf. Helmke and Moore [35], that f : Grm,n → Grass(m,n), P 7→
Im(P ) defines a smooth diffeomorphism. Note, that the Grassmannian Grm,n is a
Riemannian submanifold of the vector space of all symmetric matrices Symn := {S ∈
Rn×n | S> = S}, endowed with the Frobenius inner product. Thus the Frobenius
inner product now assumes the role of the Euclidean inner product in Rn and defines
a Riemannian metric

< ξ, η >:= tr (ξη)

on each tangent space TP Grm,n, which is given by

TP Grm,n = {[P, Ω] | Ω ∈ son}. (3.2)

The information about the principal subspaces of a time-varying family of symmetric
matrices A(t) is now fully stored in the Cr-family of projection operators P∗(t) :=
R1(t)R1(t)

> ∈ Grm,n. Thus, in order to characterize the dominant subspaces of A(t),
we consider the trace function (Rayleigh quotient function) f : Grm,n×R→ R, defined
by

f(P, t) = tr (A(t)P ). (3.3)

It is well known that the maximum value of tr (A(t)P ) is
∑m

i=1 λi(t), implying that
P∗ maximizes f(P, t) if and only if P∗ = R1(t)R1(t)

>. Hence, the task of tracking
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the principal subspace of A(t) is equivalent to track the points maximizing f(P, t).
For this reason, we can characterize the invariant subspaces of A(t) via the zeros of
the time-varying gradient vector field grad f(P, t). From [33, 63], explicit forms for
the Riemannian gradient grad f and the Riemannian Hessian operator of the Rayleigh
quotient function (3.3) are

grad f(P, t) = [P, [P,A(t)]], (3.4)

Hf (P, t) ·X = [P, [X, A(t)]], X ∈ TP Grm,n (3.5)

The next lemma shows that the points of the curve P∗(t), which maximize f(P, t), are
well separated from other critical points.

Lemma 3.1. Let A(t) satisfy (A1)-(A3). Then for t ∈ R and P sufficiently close to
P∗(t), the condition grad f(P, t) = 0 holds if and only if P = P∗(t).

Proof. The result follows by assumption on P , since Im(P∗(t)) is an isolated invariant
subspace of A(t).

We next derive bounds for the norm of the Riemannian Hessian.

Lemma 3.2. Let A(t) satisfy (A1)-(A3). Then there exist constants M1,M2 > 0 such
that the Hessian Hf satisfies

M1 ≤ ‖Hf (P∗(t), t) · ξ‖ ≤ M2,

for all t ∈ R and all ξ ∈ TP∗(t)Grm,n with ‖ξ‖ = 1.

Proof. Here and in the following, substitute the symbol Î to the matrix

[
Im 0
0 0

]
. Let

P∗(t) =: ΘÎΘ>, Ω ∈ so(n) and ξ = [P∗(t), Ω]. Consider

Θ>(Hf (P∗(t), t) · ξ)Θ = −Θ>[P∗(t), [A, [P∗(t), Ω]]]Θ = −[Î , [Θ>AΘ, [Î , Θ>ΩΘ]]].

Note that Z := Θ>ΩΘ ∈ so(n) satisfies for Z =

[
Z1 Z2

−Z>
2 Z3

]

[Î , Z] =

[
0 Z2

Z>
2 0

]
∈ Sym(n).

Thus,

Θ>(Hf (P∗(t), t) · ξ)Θ = −[Î , [N,

[
0 Z2

Z>
2 0

]
]],

where N := Θ>AΘ ∈ Sym(n). By using N =

[
N1 N2

N>
2 N3

]
, we obtain

Θ>(Hf (P∗(t), t) · ξ)Θ =

[
0 Z2N3 −N1Z2

N3Z
>
2 − Z>

2 N1 0

]
,



CHAPTER 3. APPLICATION I: INTRINSIC SUBSPACE TRACKING 72

showing that

‖(Hf (P∗(t), t) · ξ)‖ = ‖Θ>(Hf (P∗(t), t) · ξ)Θ‖ =
√

2‖Z2N3 −N1Z2‖. (3.6)

Note that N1 = Θ>
1 A(t)Θ1 and N3 = Θ>

2 A(t)Θ2, where the columns of Θ1 span the
principal subspace of A(t), while Θ2 spans the complementary subspace of A(t). Thus

‖Z2N3 −N1Z2‖ ≥ min
1 ≤ i ≤ m

m + 1 ≤ j ≤ n

(λi(t)− λj(t)) ‖Z2‖,

which implies that
‖Z2N3 −N1Z2‖ ≥ c‖Z2‖,

for some c > 0, due to assumption (A3). Note further that ξ = [P∗(t), Ω] ∈ TP∗(t)Grm,n

satisfies

Θ>ξΘ = [Î , Z] =

[
0 Z2

Z>
2 0

]
,

which shows, that ‖Z2‖ = ‖ξ‖√
2
. Thus,

‖(Hf (P∗(t), t) · ξ)‖ ≥ c ‖ξ‖.

On the other hand, we get from (3.6), that

‖(Hf (P∗(t), t) · ξ)‖ ≤
√

2‖Z2‖ max
1 ≤ i ≤ m

m + 1 ≤ j ≤ n

(λi(t)− λj(t))

≤ ‖ξ‖ max
1 ≤ i ≤ m

m + 1 ≤ j ≤ n

(λi(t)− λj(t)) ≤ 2‖ξ‖‖A(t)‖.

The result follows, using assumption (A2).

We are now able to compute the time-varying Newton flow for the special situation
here. Hence, by using (3.4) and (3.5), the differential equation (2.33) becomes the
implicit differential equation

[P, [Ṗ , A(t)]] = −[P, [P, Ȧ(t)]]− σ[P, [P, A(t)]]. (3.7)

Thus, by applying Theorem 2.3 to this flow, we arrive at the following convergence
result for the solutions of (3.7) .

Theorem 3.1. Let A(t) satisfy assumptions (A1)-(A3). Then the solution P (t) of
(3.7) exists for all t > 0 and converges exponentially to P∗(t), provided that P (0) is
chosen sufficiently close to P∗(0).
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Proof. All we have to check is, whether the function (3.3) satisfies the conditions (1),
(2) of Theorem 2.3. This is easily done, using the above Lemma. Since Grm,n is
a compact Riemannian submanifold of Rn, Grm,n is complete with i∗(Grm,n) > 0.

Condition (1) follows directly from Lemma 3.2, since Hf (P, t) · ξ = πP DF̂ (P, t) · ξ for

F̂ (P, t) = grad f(P, t). Here, πP : Symn → TP Grm,n denotes the orthogonal projection
onto the tangent space.
To verify Condition (2), consider the derivative of Hf , which is given by

πP D(Hf (P, t) · ξ) · η = −πP [η, [A(t), ξ]],

where ξ, η ∈ TP Grm,n. Thus for ‖ξ‖ = ‖η‖ = 1, we get that

‖πP D(Hf (P, t) · ξ) · η‖ ≤ 4‖A(t)‖,
which completes the proof, since assumption (A2) holds.

3.2 Subspace tracking algorithms

The above differential equation for subspace tracking is implicit and thus hard to solve
numerically. In this section, we therefore abandon the idea of working directly with
the continuous time flow (3.7) and focus instead on suitable discretized algorithms.
Thus, we specify the general time-varying Newton and parameterized time-varying
Newton algorithm of Section 2 to the situation at hand. This leads us to explicit
new numerical algorithms (Algorithms 2-4) for subspace tracking. Algorithm 1 is well-
known from the work of [23], [44] and provides the benchmark for our subsequent
algorithms. It is implemented by iterative solutions to matrix Sylvester equations, in
conjunction with iterative computations of geodesics of the Grassmannian via singular
value decompositions. However, no time adaptation step is made, to compensate for
the time dependency of the vector fields. Algorithms 2-4 employ solutions to matrix
Sylvester equations for smaller scale matrices; Algorithms 3,4 also incorporate adaptive
terms to reflect time dependency effects. Instead of working with exact formulas for
the geodesics in Algorithms 2,4, we find it more convenient to use approximations of
the matrix exponential via the QR-factorization. This has the advantage that the
QR-factorization can be exactly computed in finitely many steps, while all algorithms
for computing matrix exponentials or singular value decompositions are inherently
iterative.

Algorithm 1: Riemannian Newton
This method uses the standard Riemannian Newton method to track the time-varying
extremum x∗(t) of a cost function f : Grass(m,n)×R→ R on the Grassmann manifold
and is due to Lundström and Elden [44]. The authors did not give explicit formulas,
but mentioned, that the standard Riemannian Newton algorithm was used to compute
the approximation xk+1 of x∗(tk+1). Hence, by using the notation of Section 2, the
update rule is given by

xk+1 = expxk

(−Hf (xk, tk+1)
−1grad f(xk, tk+1)

)
. (3.8)
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Note that the use of tk+1 in this update rule is crucial to perform a Newton update
step towards x∗(tk+1): If we used tk instead, then the step would go towards t∗(tk) and
would lead qualitatively to the same tracking algorithm (up to renumbering). If we
used both, i.e. tk in the Hessian and tk+1 in the gradient or vice versa, we would not
perform a real Newton update step but an inexact Newton method.
Thus the only possible implementation is given by formula (3.8), which obviously works,
if all iterates xk lie in the domain of attraction of the Newton method of grad f(·, tk+1)
for k ∈ N. The implementation of the algorithm in [44] then follows the computations in
Edelman, Arias and Smith [23]. However, the convergence properties of (3.8) for time-
varying problems have not been investigated in [44], nor in any previous publication
we are aware of.
Thus the Riemannian Newton tracking algorithm is described using matrices Y (t) ∈
Rn×m satisfying Y (t)>Y (t) = Im, where the principal subspace of A(t) is given by
Im(Y (t)). To compute Y (t) and the corresponding point P (t) on the Grassmannian
at discrete times tk = kh for k ∈ N and h > 0, the task is to maximize the function
f(Y, t) := 1

2
tr (Y >A(t)Y ).

As it turned out, this leads to the computation of the solution ∆k of the Sylvester
equation

ΠkA(tk+1)Πk∆k −∆kHk = −Rk,

where Πk = I − YkY
>
k , Hk = Y >

k A(tk+1)Yk and Rk = A(tk+1)Yk − YkHk. Then the
sequences (Yk) and (Pk) are defined by

Yk+1 = YkVk cos(Σk)V
>
k + Uk sin(Σk)V

>
k

Pk+1 = Yk+1Y
>
k+1,

(3.9)

where UkΣkV
>
k is the compact singular value decomposition of ∆k. Thus, this al-

gorithm requires at each step to solve a Sylvester equation for ∆ ∈ Rn×m and the
computation of the SVD of ∆. Therefore, this method uses an overparameterization
of the Grassmannian by the Stiefel manifold.
More efficient implementations of the Riemannian Newton algorithm are possible using
parameterized versions of the Newton method as in [33], which in turn is based on the
earlier work of [61], [38] and [47]. Since these implementations will also appear in our
subsequent algorithms we do not give a parallel treatment here.

Algorithm 2: Parameterized Riemannian Newton
We now consider a subspace tracking method, which originally was derived for op-
timization on the Grassmann manifold in [33]. In order to specify this approach
for maximization of the time-varying cost function f : Grm,n × R → R, defined by
P 7→ tr (A(t)P ), we consider arbitrary families of smooth local uniform parameteri-
zations γP : TP Grm,n → Grm,n and µP : TP Grm,n → Grm,n of the Grassmannian for
P ∈ Grm,n. The proposed parameterized Riemannian Newton update scheme then is

Pk+1 = µPk

(
−Hf◦γ̂Pk

(0, tk+1)
−1∇(f ◦ γ̂Pk

)(0, tk+1)
)

, (3.10)
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where γ̂P (v, t) := (γP (v), t) for P ∈ Grm,n, v ∈ TP Grm,n and t ∈ R. Note, that
if both families of parameterizations µP and γP are chosen to be equal to the Rie-
mannian exponential map expP : TP Grm,n → Grm,n, then (3.10) becomes equivalent to
the Riemannian Newton method (3.8). Other choices of local parameterizations there-
fore lead to modifications of the Riemannian Newton method. In the sequel, we find
it convenient to replace the Riemannian exponential map by QR-coordinates on the
Grassmannian. In contrast to this, the parameterization γP is set to the Riemannian
exponential map expP . Then, the parameterized gradient and parameterized Hessian
are equal to the Riemannian gradient and Hessian, cf. [33] for details. Thus, (3.10)
turns into

Pk+1 = µPk

(−Hf (Pk, tk+1)
−1grad f(Pk, tk+1)

)
, (3.11)

which leads to the following tracking algorithm for the principal subspace Pk of a
time-varying symmetric matrix A(t) at discrete times tk = kh for k ∈ N and h > 0.
Let P0 ∈ Grm,n with Θ0 ∈ O(n) such that

P0 = Θ0

[
Im 0
0 0

]
Θ>

0 .

Then, assuming that Θk has been computed already, we define
[

N1 N2

N>
2 N3

]
:= Θ>

k A(tk+1)Θk.

Let Zk ∈ Rm×(n−m) denote the solution to the Sylvester equation

N1Zk − ZkN3 = N2.

Then the next iteration step is given as

Pk+1 = Θk+1

[
Im 0
0 0

]
Θ>

k+1 (3.12)

where

Θk+1 = Θk

[
Im −Zk

Z>
k In−m

]

Q

Hence to use this algorithm, one needs at each step to solve a Sylvester equation for
Z ∈ Rm×(n−m) and the execution of the QR-algorithm for a m× n and a (n−m)× n
matrix, cf. Remark 3.1. Therefore, this algorithm has computationally advantages,
compared to Algorithm 1, which requires that a Sylvester equation is solved on matrix
space of dimension mn. In contrast, the Sylvester equation in Algorithm 2 has to
be solved on a matrix space of dimension m(n − m). Since the dimension of the
Grassmann manifold is m(n−m), this is the minimal number of parameters that have
to be computed. This property of working with the minimal number of parameters
is also true for the subsequent algorithms. The resulting advantages are confirmed by
numerical examples in the next section.
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Remark 3.1. The computation of

[
Im −Zk

Z>
k In−m

]

Q

can be effectively done by computing

the Q-factor of the block columns separately, i.e.

[
Im −Zk

Z>
k In−m

]

Q

=

([
Im

Z>
k

]

Q

[−Zk

In−m

]

Q

)
.

This relation holds since the first block column [Im Zk]
> is orthogonal to [−Z>

k In−m]>.

Algorithm 3: Time-varying Newton
In contrast to the previous two methods, this method is derived from a truly time-
varying approach. It comes from the discretization of the Newton flow (3.7) and com-
putes approximations Pk of the principal subspace P∗(tk) of A(tk) at discrete times
tk = kh for k ∈ N and step size h > 0. It is given by

Pk+1 = expPk

(−Hf (Pk, tk)
−1 (grad f(Pk, tk) + hGh(Pk, tk))

)
, (3.13)

where expPk
denotes the exponential map of Grm,n at Pk and Gh(P, t) is a suitable

approximation of ∂
∂t

grad f(P, t). Thus, by using an approximation Ah(t) of Ȧ(t), we
set Gh(Pk, tk) = [Pk, [Pk, Ah(tk)]].
To implement the discrete tracking algorithm (3.13) however, we need formulas for the
inverse Hessian operator and the exponential map. Note, that for ξ = [P, Ω] (Ω ∈ so(n))
the equation

Hf (P, t)ξ = −grad f(P, t)− hGh(P, t),

becomes equivalent to

[P, [A(t), [P, Ω]]] = [P, [P, A(t) + hAh(t)]],

and thus to

Θ>[P, [A(t), [P, Ω]]]Θ = Θ>[P, [P, A(t) + hAh(t)]]Θ, where Θ ∈ O(n).

Thus, for P =: ΘÎΘ>, the above equation turns into

[Î , [Θ>A(t)Θ, [Î , Θ>ΩΘ]]] = [Î , [Î , Θ>(A(t) + hAh(t))Θ]]. (3.14)

Let N := Θ>A(t)Θ ∈ Sym(n), N(t) =

[
N1 N2

N>
2 N3

]
and let M := Θ>(A(t) +

hAh(t))Θ ∈ Sym(n), M(t) =

[
M1 M2

M>
2 M3

]
. Note that Z := ΘΩΘ> ∈ so(n), Z =

[
Z1 Z2

−Z>
2 Z3

]
satisfies

[Î , Z] =

[
0 Z2

Z>
2 0

]
∈ Sym(n).

Thus, the equation (3.14) is equivalent to
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[Î , [N,

[
0 Z2

Z>
2 0

]
]] = [Î , [Î , M ]],

which shows, that the inverse of Hf is obtained by solving the following Sylvester
equation for Z2:

N1Z2 − Z2N3 = M2 (3.15)

This is the first result needed for the implementation of the discrete update scheme.
We also need the formula of the exponential map of Grm,n, which is given at P =

Θ

[
Im 0
0 0

]
Θ>, Θ ∈ O(n), by

expP (ξ) = Θ


 cos

√
Z2Z>

2

−sin
√

Z>2 Z2√
Z>2 Z2

Z>
2




[
cos

√
Z2Z>

2 −Z2
sin
√

Z>2 Z2√
Z>2 Z2

]
Θ>, (3.16)

cf. [33]. Here, Z2 is also defined for ξ = [P, Ω] ∈ TP Grm,n by Z := Θ>ΩΘ ∈ so(n) with

Z =

[
Z1 Z2

−Z>
2 Z3

]
.

Thus, the update scheme (3.13) can be rewritten as

Pk+1 = Θk


 cos

√
Z2Z>

2

−sin
√

Z>2 Z2√
Z>2 Z2

Z>
2




[
cos

√
Z2Z>

2 −Z2
sin
√

Z>2 Z2√
Z>2 Z2

]
Θ>

k , (3.17)

where Z2 solves the Sylvester equation (3.15) and Θk ∈ O(n) satisfies

Pk = Θk

[
Im 0
0 0

]
Θ>

k .

The convergence property of this update scheme is characterized in the next theorem.

Theorem 3.2. Let A(t) satisfy (A1)-(A3). Let Ah(t) = Ah(t)
>, t ∈ R, be an arbitrary

family of symmetric matrices such that ‖Ȧ(t)−Ah(t)‖ < c̃h holds for all h > 0, t ∈ R
and some constant c̃ > 0. Then for c > 0 and sufficiently small h > 0, the update
scheme (3.17) satisfies for k ∈ N

dist(Pk, P∗(tk)) ≤ ch,

provided that dist(P0, P∗(0)) ≤ ch.

Proof. With f defined as in (3.3), we obviously have that Gh(P, t) := [P, [P, Ah(t)]] is
an approximation of ∂

∂t
grad f(P, t) such that for some R, C̃ > 0

∥∥∥∥Gh(P, t)− ∂

∂t
grad f(P, t)

∥∥∥∥ ≤ C̃h,



CHAPTER 3. APPLICATION I: INTRINSIC SUBSPACE TRACKING 78

for all h > 0, P ∈ BR(P∗(t)), t ∈ R. Moreover, it has been already shown in
the proof of Theorem 3.1, that the assumptions of Theorem 2.3 are satisfied under
these conditions. Note that condition 1 of Theorem 2.3 implies in particular, that
‖πTx∗(t)MDF̂ (x∗(t), t)−1‖ is bounded for t ∈ R, where we used the notation of Theorem
2.3.
It remains only to establish bounds on the norm of some partial derivatives of the
gradient that appear in Theorem 2.4. But this follows immediately from the identities

∂

∂t
grad f(P, t) = [P, [P, Ȧ(t)]]

and
∂2

∂t2
grad f(P, t) = [P, [P, Ä(t)]],

together with the uniform boundedness of ‖P‖, ‖Ȧ(t)‖ and ‖Ä(t)‖ for P ∈ Grm,n and
t ∈ R. Thus the assumptions of Theorem 2.4 are satisfied and the result follows from
Theorem 2.4.

The update scheme (3.17) can be implemented as follows.
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Implementation of Algorithm 3 (Time-varying Newton)

1. Choose the step size h > 0 and P0 ≈ P∗(0) with P0 ∈ Grm,n and
set k = 0.

2. Pick an orthogonal matrix Θk ∈ O(n) such that

Pk = Θk

[
Im 0
0 0

]
Θ>

k .

3. Compute for tk = kh

[
N1 N2

N>
2 N3

]
= Θ>

k A(tk)Θk

and [
M1 M2

M>
2 M3

]
= Θ>

k (A(tk) + hAh(tk))Θk.

4. Solve the Sylvester equation

N1Zk − ZkN3 = M2.

for Zk ∈ Rm×(n−m).

5. Compute

Pk+1 = Θk


 cos

√
ZkZ>

k

−sin
√

Z>k Zk√
Z>k Zk

Z>
k




[
cos

√
ZkZ>

k −Zk
sin
√

Z>k Zk√
Z>k Zk

]
Θ>

k ,

6. Set k = k + 1 and proceed with 2).

Algorithm 4: Parameterized time-varying Newton
Here we introduce a tracking algorithm for the time-varying principal subspace P∗(t)
of A(t) by using parameterizations of the Grassmannian. It will turn out, that this ap-
proach leads to a much simpler update scheme than the formulas derived for Algorithm
3.
For P ∈ Grm,n, we consider the family of smooth local parameterizations

µP : TP Grm,n → Grm,n,

ξ 7→ (I + [ξ, P ])Q P (I + [ξ, P ])>Q ,
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where (A)Q denotes the Q factor of the QR-factorization A = QR = (A)QR of A. For
this reason, we also call this parameterization QR-coordinates on the Grassmannian.
It is easily seen, cf. [33], that the map µP is smooth on the tangent space TP Grm,n with
µP (0) = P and the derivative of the parameterization DµP (0) : TP Grm,n → TP Grm,n

is equal to the identity map id. Moreover,

d2

d ε2 µP (εξ)
∣∣∣
ε=0

= Θ

[−2ZZ> 0
0 0

]
Θ>, (3.18)

where ξ = Θ

[
0 Z

Z> 0

]
Θ> for P = Θ

[
Im 0
0 0

]
Θ>.

To generate a sequence {Pk}, which tracks the maximum P∗(t) of f at discrete times
t = tk for k ∈ N, h > 0, we consider the parameterized time-varying Newton algorithm

Pk+1 = µPk

(−Hf (Pk, tk)
−1(grad f(Pk, tk) + hGh(Pk, tk))

)
,

where Gh(Pk, t) denotes an approximation of ∂
∂t

grad f(Pk, t), cf. equation (2.36). Note
that we set the second parameterization γP in (2.36) to be equal to the Riemannian nor-
mal coordinates, which enabled us to replace the parameterized gradient and Hessian
of f by the Riemannian gradient and Hessian in the above formula, cf. [33] for details.
We now attempt to derive a more explicit form of this algorithm. Using an approx-
imation Ah(t) for Ȧ(t) and setting Gh(P, t) to [P, [P, Ah(t)]], the above equation is
equivalent to

Pk+1 = µPk

(
(ad P ◦ ad A(tk))

−1
(
[P, [P,A(tk) + hAh(tk)]]

))
.

In the previous section, it has been shown, that (ad P ◦ad A(t))
−1

(
[P, [P, A(t)+hAh(t)]]

)

equals Θ

[
0 Z

Z> 0

]
Θ>, where Z ∈ Rm×(n−m) solves equation (3.15). The update scheme

therefore simplifies to

Pk+1 = µPk

(
Θk

[
0 Z

Z> 0

]
Θ>

k

)
,

which can be conveniently rewritten as follows:

Pk+1 = Θk

[
Im −Z
Z> In−m

]

Q

[
Im 0
0 0

] [
Im −Z
Z> In−m

]>

Q

Θ>
k . (3.19)

The convergence properties of the algorithm are stated in the next result.

Theorem 3.3. Under the same assumption as for Theorem 3.2, for c > 0 and suffi-
ciently small h > 0, the sequence (3.19) satisfies

dist(Pk, P∗(tk)) ≤ ch

for all k ∈ N and tk = kh, provided that P0 is sufficiently close to P∗(0).
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Proof. In order to apply Main Theorem 2.3, we check first the conditions regarding the
parameterization µP (ξ) = (I + [ξ, P ])Q P (I + [ξ, P ])>Q .
As mentioned before, the map µP is smooth on the tangent space TP Grm,n with µP (0) =
P and the derivative of the parameterization DµP (0) : TP Grm,n → TP Grm,n is equal to
the identity map id. Thus, it remains to check, if the ‖D2µP (ξ)‖ is uniformly bounded
for ξ ∈ BR(0), P ∈ Grm,n for some fixed R > 0.

For P = Θ

[
Im 0
0 0

]
Θ>, and ξ = Θ

[
0 Z

Z> 0

]
Θ>, we have [ξ, P ] = Θ

[
0 −Z

Z> 0

]
Θ>

and the parameterization turns into

µP

(
Θ

[
0 Z

Z> 0

]
Θ>

)
=

(
Θ

[
I −Z

Z> I

]
Θ>

)

Q

P

((
Θ

[
I −Z

Z> I

]
Θ>

)

Q

)>

,

which can be rewritten as

µP

(
Θ

[
0 Z

Z> 0

]
Θ>

)
= Θ

[
I −Z

Z> I

]

Q

[
I 0
0 0

] ([
I −Z

Z> I

]

Q

)>

Θ>.

Now let R : Rm×(n−m) → O(n) be defined by Z 7→
[

I −Z
Z> I

]

Q

and note that

[
I −Z

Z> I

]
is invertible for all Z ∈ Rm×(n−m). Since the QR factorization is smooth

for general invertible matrices, cf. [33], we conclude, that the derivatives of R ex-
ist and the norms of the derivatives DR(Z) : Rm×(n−m) → so(n) and D2R(Z) :
Rm×(n−m) × Rm×(n−m) → so(n) are uniformly bounded for Z ∈ BR(0) for arbitrary
but fixed R > 0. Since ‖Θ‖ = 1, we get that ‖D2µP (ξ)‖ is bounded for ‖ξ‖ ≤ √

2R
and all P ∈ Grm,n. This shows that the parameterization satisfies the necessary con-
ditions.

With f defined as in (3.3), we obviously have that Gh(P, t) := [P, [P,Ah(t)]] is an
approximation of ∂

∂t
grad f(P, t) such that for some R, C̃ > 0

∥∥∥∥Gh(P, t)− ∂

∂t
grad f(P, t)

∥∥∥∥ ≤ C̃h,

for all h > 0, P ∈ BR(P∗(t)), t ∈ R.
Hence, to employ Main Theorem 2.3, it remains to show for some R̃ > 0 the bounded-
ness of

1. ‖Hf (P∗(t), t)‖−1 for all t ∈ R,

2. ‖Hf (P∗(t), t)‖ for all t ∈ R,

3. ‖ ∂
∂t

grad f(P, t)‖ for all P ∈ BR̃(P∗(t)), t ∈ R,

4. ‖DHf (P, t)‖, ‖ ∂2

∂t2
grad f(P, t)‖, ‖ ∂

∂t
Hf (P, t)‖ for all P ∈ BR̃(P∗(t)), t ∈ R.
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To see (1) it suffices to note Lemma 3.2. The second claim (2) follows from (3.5) and
the boundedness of ‖A(t)‖ and ‖P∗(t)‖. The remaining conditions can be easily seen by
computing the derivatives of (3.4) and (3.5), since ‖Ȧ(t)‖ and ‖Ä(t)‖ are bounded.

Implementation of Algorithm 4 (Parameterized time-varying Newton)
The update scheme (3.19) defines the following tracking algorithm.

1. Choose the step size h > 0, P0 ≈ P∗(0) with P0 ∈ Grm,n and
pick an orthogonal matrix Θ0 ∈ O(n) such that

P0 = Θ0

[
Im 0
0 0

]
Θ>

0 ,

and set k = 0.

2. Compute for tk = kh

[
N1 N2

N>
2 N3

]
= Θ>

k A(tk)Θk

and [
M1 M2

M>
2 M3

]
= Θ>

k (A(tk) + hAh(tk))Θk.

3. Solve the Sylvester equation

N1Zk − ZkN3 = M2

for Zk ∈ Rm×(n−m).

4. Compute

Θk+1 = Θk

[
Im −Zk

Z>
k In−m

]

Q

and Pk+1 = Θk+1

[
Im 0
0 0

]
Θ>

k+1

5. Set k = k + 1 and proceed with 2).

Note that the implementation of this algorithm is considerably cheaper than the method
defined by Theorem 3.2. In particular, the computation of Θk+1 is much simpler than
in Algorithm 3.

Remark 3.2. Minor subspace tracking
Computing the minor components of a matrix frequently arises in signal processing
applications. Here the m-dimensional minor subspace of the symmetric matrix A(t),
is defined by the space spanned by the m smallest eigenvectors of A(t). Since the
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algorithms for the principal subspace tracking are derived by maximizing the cost
function f(P, t) = tr (A(t)P ), it is trivial to use such algorithms for minor subspace
analysis. In fact, we just have apply the above methods to the matrix −A(t), since
the principal subspace of −A(t) is the minor subspace of A(t). Therefore, the above
algorithms can be used both for principal and minor component analysis.

3.3 Numerical results

All simulations were performed in Matlab, version 6.5. If not stated otherwise, we used
N = 40 steps, step size h = 0.025, and considered the matrix

A(t) = X∗(t)K(t)X∗(t)> (3.20)

for K(t) = diag (a10 + sin(10t), ..., a1 + sin(1t)),

X∗(t) = R>




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I8


 R. (3.21)

Here, R ∈ O(10) is a fixed random orthogonal matrix and ai := 2.5i for i = 1, ..., 10.
We always used a 2nd order approximation Ah(t) for Ȧ(t).

Example 1: Investigation of the time-varying subspace tracking algorithms
In the first simulation, we track the 3-dimensional principal subspace of A(tk) at discrete
times tk = kh for k = 1, ..., 40. We applied the parameterized time-varying Newton
method (Algorithm 4) to track P∗(tk), which significantly simplifies the computations,
compared to Algorithm 3. In order to test the error correction of the method, we gen-
erate perturbed initial values P ′ := P∗(0)+B, where B is a random matrix with entries
in (−0.2, 0.2). Then the perturbed starting point P0 is obtained by orthogonalizing P ′

via the QR-algorithm.
From the error plot, where ‖Pk − P∗(tk)‖ is shown, we observe a fast convergence to
zero, cf. Figure 3.1, indicating the robustness of the chosen method. The mean error
1
10

∑40
k=31 ‖Pk − P∗(tk)‖ of the 10 last points was about 1.2 · 10−4.

In Figure 3.2, the trace of A(tk)Pk is compared to the sum of the first three principal
eigenvalues λ1(tk), ..., λ3(tk). We observe that after a few initial steps, these magnitudes
are practically equal, confirming that Pk approximatively maximizes tr (A(tk)P ).

Note that Algorithm 4 computes a matrix Θk and sets Pk = Θk

[
Im 0
0 0

]
Θ>

k . This

orthogonal matrix Θk has the property, that the leading columns Θk[I3 0]> ∈ R10×3 ap-
proximatively span the principal subspace of A(tk). We therefore computed the eigen-
values of [I3 0]Θ>

k A(tk)Θk[I3 0]> and compared them with the dominant eigenvalues of
A(tk), cf. Figure 3.3. Here fast convergence of the eigenvalues of [I3 0]Θ>

k A(tk)Θk[I3 0]>

to the principal eigenvalues of A(tk) is observed.
Next, we investigate the influence of the step size on the accuracy of Algorithm 4 by
changing the step size after each run. We use perfect initial conditions, i.e. P0 = P∗(0)
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Figure 3.1: The evolution of the error ‖Pk − P∗(tk)‖. The parameterization method
(3.19) was used.

Step size h 0.01 0.02 0.03 0.04 0.05 0.1
Accuracy 2.1 · 10−5 7.0 · 10−5 1.4 · 10−4 3.4 · 10−4 4.7 · 10−4 6.1 · 10−3

Table 3.1: The accuracy of Algorithm 4 for different step sizes.
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Figure 3.2: The evolution of tr (PkA(tk)) (dotted) compared to the sum of the principal
eigenvalues λ1(tk), λ2(tk), λ3(tk), corresponding to Figure 3.1.

and define the accuracy by 1
40

∑40
k=1 ‖Pk − P∗(tk)‖. The results are given in Table 3.1

and show, that the error is increasing overproportionally to the step size.

Example 2: Behavior near coalescing principal and minor eigenvalues
Note that we needed to assume that the smallest principal eigenvalue is well separated
from the minor eigenvalues, to prove the convergence of the tracking algorithms. Thus,
we also checked the algorithm’s behavior in the case of ”almost coalescing principal and
minor eigenvalues”. Since the algorithm also works in case of some identical eigenvalues
we considered the following setup:
The matrix A(t) was defined as in (3.20), where now K(t) = diag (a1(t), ..., a10(t)) for
a1(t) = a2(t) = a3(t) = 2.001 − sin(t) and a4(t) = ... = a10(t) = sin(t). We computed
the 3-dimensional principal subspace Pk ≈ P∗(tk) of A(tk) for k = 1, ..., 80 by using
Algorithm 4. For t = π/2, we have λ3(t) = 1.001 and λ4(t) = 1. Thus for k = 63, we can
expect a perturbation in the algorithm’s output, since t63 = 63× 0.025 = 1.575 ' π/2.
Figure 3.4 exhibits the error ‖Pk−P∗(tk)‖ of the algorithm’s output. In fact, we observe
a perturbation behavior around k = 63, which, however, does not cause a breakdown
of the algorithm. This again reflects the robustness of the used method.

Example 3: Subspace tracking using the parameterized Newton algorithm
Using the same setups as in the above numerical examples, we checked, if the parame-
terized Newton algorithm (Algorithm 2) is also able to track the time-varying principal
subspace of A(t). It turned out, that this is true for all considered examples, and in
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addition, the accuracy of the computed values was better than the results of Algorithm
4. E.g. for step size 0.025 and A(t) as defined in Example 1, we observed an accuracy
of 3.2 · 10−6 which is significantly better than 1.2 · 10−4 for Algorithm 4.
This is a phenomenon, which we have observed also in other simulations: if the situation
is such, that the standard (parameterized) Newton method is also able to perform the
tracking task, then the results have a better accuracy than those based on the time-
varying approach. The main advantage of the time-varying Newton update scheme is,
that it is more robust under perturbations and allows larger step sizes.
We therefore increased the step sizes to 0.1 and increased the time-dependency of the
principal subspace by 5 times; i.e. we used X̃∗(t) := X∗(5t) instead of X∗(t) in equation
(3.20). We computed 40 steps for 100 test runs using different random matrices R in
(3.21) and started with perfect initial conditions in each test.
Then we observed exactly what is expected: The time-varying Newton algorithm is still
able to perform the tracking task with an accuracy of 1.1 · 10−1 in all test runs. The
parameterized Newton algorithm (Algorithm 2) showed in 75% of all cases a higher
accuracy, but in the remaining 25%, the algorithm completely failed. The failure could
be observed in the error plots, where the values arbitrarily varied between 0 and 1.
In order to combine the robustness of the time-varying Newton (Algorithm 4) with the
accuracy of the parameterized Newton update scheme (Algorithm 2), we suggest to
merge these methods. Thus Algorithm 4 is extended by an additional corrector step.
The implementation is as follows:

Algorithm 4’: Extended parameterized time-varying Newton

For Pk ∈ Grm,n and Θk ∈ O(n) with Pk = Θk

[
Im 0
0 0

]
Θ>

k , compute Pk+1 and Θk+1 in

two steps:

1. Obtain estimates P ′
k+1 and Θ′

k+1 of Pk+1 and Θk+1 by applying one step of Algo-
rithm 4 (i.e. by evaluating equation (3.19)).

2. Pk+1 and Θk+1 are given for

[
N1 N2

N>
2 N3

]
= (Θ′

k+1)
>A(tk+1)Θ

′
k+1 by

Pk+1 = Θk+1

[
Im 0
0 0

]
Θ>

k+1 (3.22)

and

Θk+1 = Θ′
k

[
Im −Zk

Z>
k In−m

]

Q

where Zk ∈ Rm×(n−m) solves the Sylvester equation

N1Zk − ZkN3 = N2.

Example 4: Comparison of different subspace tracking methods
We have seen in the previous examples, that the methods based on the time-varying
and time-invariant Riemannian Newton algorithm are well suitable for tracking. We



CHAPTER 3. APPLICATION I: INTRINSIC SUBSPACE TRACKING 88

Riemannian Newton
(Algorithm 1)

Parameterized
Newton (Algorithm

2)

Extended
parameterized

time-varying Newton
(Algorithm 4’)

n Comp.timeMean error Comp.timeMean error Comp.timeMean error

10 0.06 5.7 · 10−6 0.02 3.2 · 10−6 0.06 2.4 · 10−8

20 0.09 6.9 · 10−6 0.06 1.2 · 10−6 0.09 2.5 · 10−8

40 0.28 5.6 · 10−7 0.17 5.0 · 10−7 0.38 2.9 · 10−8

80 1.38 1.2 · 10−6 0.92 1.3 · 10−6 2.15 4.5 · 10−7

160 8.99 6.3 · 10−7 6.89 6.5 · 10−7 14.6 6.2 · 10−7

Table 3.2: The computing time and mean error of the algorithms for different n. We
used m = 3.

therefore compare the tracking results of Algorithm 1, Algorithm 2 and Algorithm 4’
with each other, where we observe the computing time and accuracy.
In order to do so, we used different n,m ∈ N, step size h = 0.025, tk = kh, k = 1, ..., 40,
and

A(t) = X∗(t)K(t)X∗(t)> ∈ Rn×n,

for K(t) = diag (an+sin(nt), ..., a1+sin(1t)), X∗(t) = R>




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 In−2


 R.

Here, R ∈ O(n) is a fixed random orthogonal matrix and ai := 2.5i for i = 1, ..., n.
As before, the task is to compute estimates Pk of the principal subspace P∗(tk) of A(tk).
To measure the accuracy of the algorithm’s output, we use the formula 1

40

∑40
k=1 ‖Pk −

P∗(tk)‖.
In Table 3.2, we see the computing time and accuracy of the algorithms for fixed m = 3
and perfect initial conditions, whereas in Table 3.3, we modified m for fixed n = 80.
We observe, that all algorithms are able to track the subspace of A(tk) at a reasonable
accuracy. However, Algorithm 2 shows the best performance regarding the computing
time and Algorithm 4’ yields the most accurate results.
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Riemannian Newton
(Algorithm 1)

Parameterized
Newton (Algorithm

2)

Extended
parameterized

time-varying Newton
(Algorithm 4’)

m Comp.timeMean error Comp.timeMean error Comp.timeMean error

3 1.38 1.2 · 10−6 0.92 1.3 · 10−6 2.15 4.5 · 10−7

6 9.16 2.2 · 10−6 3.70 1.9 · 10−6 8.80 5.7 · 10−7

12 67.2 1.4 · 10−6 21.3 1.5 · 10−6 39.4 2.1 · 10−7

24 500 3.3 · 10−6 82.4 4.2 · 10−6 195 2.7 · 10−7

Table 3.3: The computing time and mean error of the algorithms for different m. We
used n = 80.



Chapter 4

Application II: Tracking Matrix
Decompositions

In this chapter we apply the previously introduced tracking methods to the task of
determining certain decompositions of time-varying matrices. At first we consider the
eigenvalue decomposition (EVD) of time-varying symmetric matrices in the case of
simple eigenvalues. Robust tracking algorithms for this purpose will be derived by
using the time-varying Newton flow. Since it is a common situation to have symmetric
matrices with distinct groups of eigenvalues of constant multiplicities, we will further-
more investigate this case. Then we are able to use a well known relation between the
singular value decomposition (SVD) and the EVD to modify these algorithms such that
they determine the time-varying SVD of non-square matrices. The resulting tracking
algorithm then can be used to derive related matrix factorizations. Thus we give a
SVD-based method to compute the polar decomposition of a family of invertible ma-
trices. At the end of this chapter we reexamine the minor and principal eigenvector
tracking of time-varying matrices.
In the following sections, some well known conditions guaranteeing the existence of
a smooth SVD (EVD) of time-varying (symmetric) matrices will be cited. To get
efficient tracking algorithms for the decomposition, however, the standard eigenvalue
algorithms for constant matrices, see e.g. Horn [36] are not suited to track the desired
orthogonal factors, since these methods are not designed to profit from the smoothness
of the orthogonal factors.
Differential equations to track the time-varying EVD and SVD can be found in numer-
ous publications, see e.g. Wright [70], Bell [9] or in the paper of Dieci [20], where the
latter provides a good overview for such methods. By using discretization techniques,
recursive update schemes can be derived from these ODEs. To guarantee a reasonable
accuracy of the algorithm’s output, however, one needs to execute intermediate correc-
tor methods, since the discretization error accumulates at each step. Otherwise, the
update scheme would produce senseless results after a number of steps, depending on
the setup of the problem and the discretization technique chosen.
In contrast to this, the methods derived in this chapter for the EVD and SVD auto-
matically perform error correction up to a certain accuracy. In particular, the tracking

90
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error does not accumulate at each step but remains at a fixed level, which is a major
benefit of using an approach based on the time-varying Newton flow.

4.1 Eigenvalue and singular value decomposition

In this section we initially consider the problem of diagonalizing a smooth family of
symmetric matrices A(t). Thus, we want to determine a smooth map t 7→ X(t) ∈ O(n)
such that for all t ∈ R holds

A(t) = X(t)D(t)X(t)>,

where D(t) is a diagonal matrix. In the case, that A(t) has distinct eigenvalues, the
desired transformations are locally unique and can be determined via our theory by
applying the standard (approximative) Newton flow to a suitable vector field, cf. [6].
Subsequently, we extend this first result to symmetric matrices with a group of equal
eigenvalues. As the diagonalizing transformations are not uniquely determined then,
we have to modify the original approach and use the tracking algorithm for underde-
termined systems. Finally, these results are used to derive an update scheme, which
performs the singular value decomposition of a sequence of non-square matrices.

4.1.1 Diagonalization of symmetric matrices with distinct
eigenvalues

Let t 7→ A(t) ∈ Rn×n, be a Cr-family (r ≥ 2) of real symmetric matrices, with
eigenvalues λ1(t), ..., λn(t), t ∈ R. If these eigenvalues are distinct for all t ∈ R, there
exists a Cr-family of real orthogonal transformations X∗(t), such that X∗(t)>A(t)X∗(t)
is diagonal for all t ∈ R, cf. [62]. Our goal is to track such transformations by using
the time-varying Newton flow.
In order to do so, we further require that A(t) satisfies the following conditions:

1. ‖A(t)‖, ‖Ȧ(t)‖ and ‖Ä(t)‖ are uniformly bounded on R.

2. There exists a constant c > 0 such that |λi(t)−λj(t)| ≥ c for i 6= j and all t ∈ R.

We now reformulate the original eigenvector tracking task into a zero-finding problem.
Consider therefore the time-varying vector field

F : Rn×n × R→ Rn×n (4.1)

defined by
F (X, t) = [N,X>A(t)X] + X>X − I, (4.2)

where I is the identity matrix, N = diag (1, ..., n) and [, ] is the Lie-Bracket product
defined as [A,B] := AB −BA for A,B ∈ Rn×n.

Lemma 4.1. F (X, t) = 0 if and only if X is an orthogonal matrix such that X>A(t)X
is diagonal.
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Proof. Note that the first summand of F is skew symmetric while the second one is
symmetric. Thus F vanishes if and only if the two summands vanish, i.e. if and only
if X is orthogonal and

[N,X>A(t)X] = 0.

Since N is diagonal with distinct eigenvalues, the result follows.

Hence, the task of finding an orthogonal transformation X such that X>A(t)X is
diagonal, is equivalent to that of finding a zero of F (X, t). In order to use the time-
varying Newton flow, certain technical assumptions have to be checked. This is done
in the next lemma.

Lemma 4.2. Let A(t) and F : Rn×n×R→ Rn×n be as above. There exists a continu-
ously differentiable isolated solution X∗(t) to F (X, t) = 0. F (X, t) is C∞ in X and C2

in (X, t). There exist constants M1,M2,M3,M4 > 0 such that

1. ‖D2F (X, t)‖ ≤ M1, for all X ∈ Rn×n

2. ‖DF (X∗(t), t)‖ ≤ M2,

3. ‖ ∂
∂t

DF (X, t)‖ ≤ M3, for all X ∈ Br(X∗(t)) for some r > 0.

4. ‖DF (X∗(t), t)−1‖ ≤ M4,

holds for all t ∈ R.

Proof. The claim concerning the differentiability properties of F (X, t) is obvious.
The first and second partial derivatives of F w.r.to X are the linear and bilinear maps
DF (X, t) and D2F (X, t) respectively, given as

DF (X, t) ·H = [N,H>A(t)X + X>A(t)H] + H>X + X>H, (4.3)

D2F (X, t) · (H, Ĥ) = [N, H>A(t)Ĥ + Ĥ>A(t)H] + H>Ĥ + Ĥ>H, (4.4)

and the partial derivatives of F (X, t) and DF (X, t) w.r.to t are

∂

∂t
F (X, t) = [N, X>Ȧ(t)X], (4.5)

and
∂

∂t
DF (X, t) ·H = [N, H>Ȧ(t)X + X>Ȧ(t)H]. (4.6)

From this we deduce the operator norm estimates

‖DF (X, t)‖ ≤ 2(1 + 2a‖N‖)‖X‖, (4.7)

∥∥∥∥
∂

∂t
DF (X, t)

∥∥∥∥ ≤ 4d‖N‖‖X‖, (4.8)
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and ‖D2F (X, t)‖ ≤ 2(1+2a‖N‖), where a denotes the infinity-norm of A and d denotes
the infinity-norm of Ȧ. This shows 1)-3).
We next show, that the partial derivative operator DF (X∗, t) is invertible for any
solution (X∗, t) of F (X, t) = 0. In particular, X∗ is orthogonal and

DF (X∗, t) ·H = [N,H>A(t)X∗ + X>
∗ A(t)H] + H>X∗ + X>

∗ H. (4.9)

Substituting H = X∗ · ξ, for ξ ∈ Rn×n arbitrary, we obtain

DF (X∗, t) · (X∗ξ) = [N, ξ>X>
∗ A(t)X∗ + X>

∗ A(t)X∗ξ] + ξ>X>
∗ X∗ + X>

∗ X∗ξ. (4.10)

= [N, ξ>D + Dξ] + ξ> + ξ,

where D = X>
∗ A(t)X∗ is diagonal. Thus X∗ξ is in the kernel of DF (X∗, t) if and only

if ξ is skew symmetric and [N, [D, ξ]] = 0. Hence [D, ξ] must be diagonal and since
D has distinct diagonal entries we conclude that ξ = 0. This shows that DF (X∗, t)
is invertible for any zero of F . By the implicit function Theorem it follows that for
every orthogonal X0 with X>

0 A(0)X0 diagonal, there exists a unique C2-curve X∗(t) of
orthogonal matrices with X∗(0) = X0. This shows the first claim.
To prove 4), we derive a lower bound for the singular values of DF (X∗, t). Let ξpq

denote the entry of ξ with the largest absolute value. Assuming that the norm of ξ
is equal to one, the absolute value of ξpq is at least 1

n2 . The smallest singular value of
DF (X∗, t) is lower bounded by the sum of squares

(ξpqλp(p− q) + ξqpλq(p− q))2 + (ξpq + ξqp)
2

of the pq-entries of [N, ξ>D + Dξ] and ξ> + ξ. For p = q this is lower bounded by 4
n4 ,

while otherwise it is lower bounded by (ξpqλp + ξqpλq)
2 + (ξpq + ξqp)

2.
The latter is a quadratic function in ξqp with minimum:

ξ2
pq(λp − λq)

2

1 + λ2
q

≥ (λq − λp)
2

n4(1 + λ2
q)

.

This is the desired lower bound for the singular values of DF (X∗, t). Thus 4) follows
with

M4 = n2max

(
1

2
,
1 + a

m

)
.

It follows, that F satisfies the conditions of Theorem 2.9. Thus, the solution X(t) of
the differential equation

Ẋ = DF (X, t)−1

(
M(X)F (X, t)− ∂

∂t
F (X, t)

)
(4.11)

exists for all t ∈ R and converges exponentially to X∗(t), provided X(0) is sufficiently
close to X∗(0) and M is a stable bundle map.
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Moreover, the necessary conditions of the discrete Newton flow are satisfied, cf. The-
orem 2.10. Recall that the algorithms works at discrete times tk = kh for h > 0,
M(X) = − 1

h
I and k ∈ N.

Therefore, the sequence

Xk+1 = Xk −DF (Xk, tk)
−1

(
F (Xk, tk) + hF h

τ (Xk, tk)
)

(4.12)

is well defined and produces estimates Xk for X∗(tk), whose accuracy can be controlled
by the step size. Here, the approximation F h

τ (X, t) of ∂
∂t

F (X, t) can be chosen as
described in Section 2.1.2.2.

Vectorizing the algorithm
In order to implement the above algorithm, we need a way to compute the inverse of
DF . One possibility is to employ the well known VEC operation and the Kronecker
product, cf. appendix.
Consider the vectorization of equation (4.12)

VEC(Xk+1) = VEC(Xk)−H(Xk, tk)
−1VEC

(
F (Xk, tk) + hF h

τ (Xk, tk)
)
, (4.13)

where, H is a matrix representation of DF , which can be determined by considering

H(X, t) · VEC(H) = VEC
(
[N,H>A(t)X + X>A(t)H] + H>X + X>H

)
=

VEC
(
NH>A(t)X + NX>A(t)H −H>A(t)XN −X>A(t)HN + H>X + X>H

)
=

(
(X>A(t)⊗N)π + I ⊗NX>A(t)− (NX>A(t)⊗ I)π −N ⊗X>A(t)+

+(X> ⊗ I)π + I ⊗X>)
VEC(H),

where ⊗ denotes the Kronecker product and π ∈ Rn2×n2
is such that for all Z ∈ Rn×n

holds
πVEC(Z) = VEC(Z>).

Hence, the matrix representation of DF is given as

H(X, t) =

(
X>A(t)⊗N −NX>A(t)⊗ I + X> ⊗ I

)
π + I ⊗NX>A(t)−N ⊗X>A(t) + I ⊗X>.

By noting the results from Lemma 4.2, the next theorem directly follows from Theorem
2.10.

Theorem 4.1. Let A(t), N and F : Rn×n × R→ Rn×n as above and let X∗(t) denote
a C2-family of orthogonal matrices such that F (X∗(t), t) = 0 for all t. Let further
F h

τ (X, t) denote an approximation of ∂
∂t

F (X, t) of order p ≥ 1 and let

H(X, t) :=

(
X>A(t)⊗N −NX>A(t)⊗ I + X> ⊗ I

)
π + I ⊗NX>A(t)−N ⊗X>A(t) + I ⊗X>.
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Then the sequence (Xk)k∈N, defined by

VEC(Xk+1) = VEC(Xk)−H(Xk, tk)
−1VEC

(
F (Xk, tk) + hF h

τ (Xk, tk)
)
. (4.14)

satisfies for fixed c > 0 and sufficiently small h > 0

‖Xk −X∗(tk)‖ ≤ ch

for all k ∈ N, provided that ‖X0 −X∗(0)‖ < ch.

Note that the above defined algorithm needs the inversion of a matrix of size n2 ×
n2 which implies, that this procedure is not practical for large n. Therefore, it will
be studied in the following, how to approximatively invert the linear map DF (X, t)
without computing its matrix representation.

Solving the Sylvester equation
To replace the differential (4.11) equation by one of the form Ẋ = XΩ, consider

DF (X, t) ·XΩ = [N, Ω>X>A(t)X + X>A(t)XΩ] + X>XΩ + Ω>X>X = K + Y,(4.15)

where K,Y are given skew symmetric and symmetric matrices, respectively.
Equation (4.15) is equivalent to the following equations

X>XΩ + Ω>X>X = Y, (4.16)

[N, Ω>X>A(t)X + X>A(t)XΩ] = K. (4.17)

According to [3], a general solution to (4.16) is given by

Ω = (X>X)−1

(
Z +

1

2
Y

)
, (4.18)

where Z = −Z> is the only remaining variable. We insert this equation for Ω into
(4.17) and obtain

[
N, (−Z +

1

2
Y )X−1A(t)X + X>A(t)(X−1)>(Z +

1

2
Y )

]
= K,

which is equivalent to

[N,−ZX−1A(t)X + X>A(t)(X−1)>Z] = (4.19)

K − 1

2
[N, Y X−1A(t)X + X>A(t)(X−1)>Y ].

We use an approximation for ∂
∂t

F (X, t), which is given by F h
τ = [N, X>Ah

τ (t)X], where

Ah
τ (t) is a step size-dependent approximation of Ȧ(t). Note further, that in our sit-

uation, K, Y are the skew symmetric and symmetric part of − 1
h
F (X, t)− F h

τ (X, t),
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respectively. Thus, K = [N,− 1
h
X>A(t)X − X>Ah

τ (t)X], Y = − 1
h
(X>X − I) and

(4.19) can be written as

[N,−ZX−1A(t)X + X>A(t)(X−1)>Z] = (4.20)

[N,−1

h
X>A(t)X −X>Ah

τ (t)X − 1

2
(Y X−1A(t)X + X>A(t)(X−1)>Y )].

This yields the following condition for the off-diagonal entries:

−ZX−1A(t)X + X>A(t)(X−1)>Z = R, (4.21)

where R = − 1
h
X>A(t)X −X>Ah

τ (t)X − 1
2
(Y X−1A(t)X + X>A(t)(X−1)>Y ).

Since R is symmetric, this is a set of n(n − 1)/2 linear equations in the entries of Z,
which uniquely determines the skew symmetric matrix Z.
For t ∈ R, let X∗ = X∗(t). Then (4.21) turns for X = X∗ into

−ZX>
∗ A(t)X∗ + X>

∗ A(t)X∗Z = R∗, (4.22)

R∗ = − 1
h
X>
∗ A(t)X∗ −X>

∗ Ah
τ (t)X∗ − 1

2
(Y X>

∗ A(t)X∗ + X>
∗ A(t)X∗Y ), and therefore

Zij =

{
(R∗)ij

λi−λj
, i 6= j

0, i = j
(4.23)

This shows in particular, that the linear system (4.21) is solvable and well conditioned
in X = X∗, since the eigenvalues λi of X>

∗ A(t)X∗ are well separated. Thus (4.21) is
robust under small changes of the left and right sides, for X sufficiently close to X∗.
For this reason, we replace in (4.21) X−1 by the approximation X> and X>A(t)X by
its diagonal part D := diag ((X>A(t)X)11, ..., (X>A(t)X)nn) and obtain an explicit
formula for the approximation Z̃ of Z:

Z̃ij =

{
Rij

Dii−Djj
, i 6= j

0, i = j.
(4.24)

We arrive at the following tracking algorithm. Note that the corresponding algorithm of
Dieci [20] only consists of the first summand Ωe

ij of our algorithm. Thus, the additional
terms stabilize the algorithm s.th. it is robust under perturbations.

Theorem 4.2. Let A(t) as above and let Ah
τ (t) denote an approximation of Ȧ(t) of

order p ≥ 1. Let further t 7→ X∗(t) denote a C2 curve of orthogonal matrices such that
X∗(t)>A(t)X∗(t) is diagonal. Define for X ∈ Rn×n, t ∈ R and h > 0, Y (X, t) := 1

h
(I−

X>X), di(X, t) := (X>A(t)X)ii for i = 1, ..., n, D(X, t) := diag (d1(X, t), ..., dn(X, t))
and

Ω(X, t) := Ωe(X, t) + Ωd(X, t) + Ωo(X, t),

where

1. Ωe
ij(X, t) =

{
(X>Ah

τ (t)X)ij

dj(X,t)−di(X,t)
, i 6= j,

0 , i = j.
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2. Ωd
ij(X, t) =

{
( 1

h
X>A(t)X+ 1

2
(Y (X,t)D(X,t)+D(X,t)Y (X,t)))ij

dj(X,t)−di(X,t)
, i 6= j

0 , i = j

3. Ωo(X, t) = 1
2
Y (X, t).

Then for c > 0 and sufficiently small h > 0, the sequence

Xk+1 = Xk + hXkΩ(Xk, tk) (4.25)

satisfies for k ∈ N and tk = kh

‖Xk −X∗(tk)‖ ≤ ch,

provided X0 is sufficiently close to X∗(0).

Proof. We have derived an explicit expression X(Z̃ + 1
2
Y ) for G(X, t)

(
F h

τ (X, t)+
1
h
F (X, t)

)
, where F (X, t) = [N,X>A(t)X] + X>X − I, F h

τ (X, t) = [N, X>Ah
τ (t)X]

and G denotes the used approximation for DF−1.
In order to apply Theorem 2.4 for the derived tracking algorithm, we consider the
perturbation term, which is given by

Π(X, t) = (I −DF (X, t)G(X, t))

(
F h

τ (X, t) +
1

h
F (X, t)

)
. (4.26)

We have to show, that
‖(Π(X, t))‖ ≤ c‖F (X, t)‖, (4.27)

for some constant c > 0 and all ‖X − X∗(t)‖ ≤ r, t ≥ 0. By Lemma 4.2, there exist
constants M, R > 0 such that for all ‖X −X∗(t)‖ ≤ R, t ≥ 0 holds

‖DF (X, t)‖ ≤ M. (4.28)

Therefore, using (4.26)

‖Π(X, t)‖ =

∥∥∥∥DF (X, t)(DF (X, t)−1 −G(X, t))

(
F h

τ (X, t) +
1

h
F (X, t)

)∥∥∥∥ ≤

M

∥∥∥∥(DF (X, t)−1 −G(X, t))

(
F h

τ (X, t) +
1

h
F (X, t)

)∥∥∥∥ =

M

∥∥∥∥(X>)−1(Z +
1

2
Y )−X(Z̃ +

1

2
Y )

∥∥∥∥ ,

where DF (X, t)−1
(− 1

h
F (X, t)− F h

τ (X, t)
)

= (X>)−1(Z + 1
2
Y ), cf. equation (4.18)

and also G(X, t)
(− 1

h
F (X, t)− F h

τ (X, t)
)

= X(Z̃ + 1
2
Y ), since G is an approximation

of DF−1.
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We get that

‖Π(X, t)‖ ≤ M

(∥∥∥∥
1

2

(
(X>)−1 −X

)
Y

∥∥∥∥ + ‖X(Z − Z̃) + ((X>)−1 −X)Z‖
)

, (4.29)

where Z and Z̃ are skew symmetric matrices satisfying

offdiag (−ZX−1A(t)X + X>A(t)(X>)−1Z) = (4.30)

offdiag

(
−1

h
X>A(t)X −X>Ah

τ (t)X − 1

2
(Y X−1A(t)X + X>A(t)(X−1)>Y )

)

and
offdiag (−Z̃diag(X>A(t)X) + diag(X>A(t)X)Z̃) = (4.31)

offdiag

(
−1

h
X>A(t)X −X>Ah

τ (t)X − 1

2
(Y X>A(t)X + X>A(t)XY )

)
,

respectively. We assume that for some c, h > 0 and all t ∈ R, ‖X −X∗(t)‖ =: δ ≤ ch.
Then we can estimate the terms in (4.29) as follows:

1. ‖(X>)−1 −X‖ ≤ c1δ for some c1 > 0:

We use that X = X∗(t)(I + E), where ‖E‖ ≤ δ. Thus

(X>)−1 −X = X∗(t)(I + E)−T (I + E)−T −X∗(t)(I + E) =

X∗(t)((I + E)−T − I − E) = X∗(t)
(
(I + E)−T − (I + E)−T (I + E)T − E

)
=

X∗(t)
(
(I + E)−T (I − (I + E)T )− E

)

Thus

‖(X>)−1 −X‖ ≤ ‖(I + E)−T ET‖+ ‖E‖ ≤ ‖E‖(‖(I + E)−1‖+ 1) ≤

‖E‖
(

1

1− ‖E‖ + 1

)
≤ δ

(
1

1− δ
+ 1

)
,

provided δ ≤ 1.

2. ‖Y ‖ ≤ c2 for some c2 > 0:

X>X = (I + E>)X∗(t)>X∗(t)(I + E) = I + E>E + E> + E

Hence,

‖Y ‖ =
1

h
‖I −X>X‖ =

1

h
‖E>E + E> + E‖ ≤ δ

h
(δ + 2) ≤ c(δ + 2).
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3. ‖Z‖ ≤ c3 for some c3 > 0:

Z is the solution of the linear system (4.30), which is of the form

L(X, t) · Z = B(X, t).

As mentioned before, this system is well conditioned in X = X∗(t). Moreover, it is
easily seen that DL(X∗(t), t) and D2L(X, t) are uniformly bounded on BR(X∗(t)),
t ∈ R. Thus ‖L(X, t)−1‖ is bounded for X ∈ Br(X∗(t)) for some r > 0 and all
t ∈ R. Since B(X, t) = offdiag

(− 1
h
X>A(t)X −X>Ah

τ (t)X − 1
2
(Y X−1A(t)X+

X>A(t)(X−1)>Y )
)

and the off-diagonal elements of X>A(t)X and hY are of
order h, the norm of B is bounded. This shows the boundedness of ‖Z‖ =
‖L(X, t)−1 ·B(X, t)‖.

4. ‖Z − Z̃‖ ≤ c4δ, for some c4 > 0

First notice that Z̃ is the solution of the linear system (4.31), which is of the form

L̃(X, t) · Z̃ = B̃(X, t).

Then we use the familiar estimate for solutions of linear systems (see e.g. [64])
and get:

‖Z − Z̃‖ ≤ ‖L−1‖‖B − B̃‖+
‖L−1‖‖B̃‖‖L− L̃‖

1− ‖L− L̃‖ .

From this inequality we conclude the claim, as ‖B − B̃‖ = O(δ) and ‖L− L̃‖ =
O(δ).

Thus (4.29) implies that

‖Π(X, t)‖ ≤ δM

(
1

2
c1c2 + c4‖X‖+ c1c3

)

for all ‖X −X∗(t)‖ ≤ ch, t ≥ 0. Thus

‖Π(X, t)‖ ≤ δM

(
1

2
c1c2 + c4

1

1− ch
+ c1c3

)
.

Note that under the assumptions on F , we have that ‖F (X, t)‖ ≥ κ‖X − X∗(t)‖ for
some κ, r > 0 for all t and X ∈ Br(X∗(t)) (cf. Theorem 2.12, claim 1).
We get that

‖Π(X, t)‖ ≤ M

κ
‖F (X, t)‖

(
1

2
c1c2 + c4

1

1− ch
+ c1c3

)
.

This shows that the necessary conditions of Theorem 2.12 are satisfied, which proves
the stability claim for (4.25).

Note that X∗(t) is no longer uniquely defined, if A(t) has multiple eigenvalues, as
eigenspaces of dimension > 1 occur. Thus, the tracking algorithm of Theorem 4.2 is
not applicable in this form and needs further modifications. These are derived in the
following section.
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4.1.2 Diagonalization of symmetric matrices with multiple
eigenvalues

An important extension of the previously introduced EVD tracking algorithms for time-
varying symmetric matrices is to derive methods, working also with multiple eigenval-
ues. This is an obvious demand, since it is a natural situation to have one or more
groups of identical eigenvalues. We therefore make the following assumptions for the
time-varying matrix A(t).

A1 The map t 7→ A(t) ∈ Sym(n) is Cr with r ≥ 2.

A2 For some fixed m ∈ N,m < n, the eigenvalues of A(t) satisfy for all t ∈ R

λ1(t) 6= ... 6= λm+1(t)

and
λm+1(t) = ... = λn(t).

A3 The norms ‖A(t)‖, ‖Ȧ(t)‖ and ‖Ä(t)‖ are uniformly bounded on R.

A4 There exists a constant c > 0 such that for all t ∈ R holds

|λi(t)− λj(t)| ≥ c, for i 6= j and 1 ≤ i, j ≤ m + 1.

The next proposition shows, that under the conditions A1 and A2 , there exists a
Cr-map t 7→ Q(t) ∈ O(n), such that Q(t)>A(t)Q(t) = diag (λ1(t), ..., λn(t)) for all
t ∈ R.

Proposition 4.1. Let A(t) ∈ Rn×n, t ∈ R denote a family of symmetic matrices with
eigenvalues λ1(t), ..., λn(t).

1. If t 7→ A(t) is Cr, r ≥ 1, and λi(t) 6= λj(t) for i 6= j and t ∈ R, then there
exists a Cr-eigenvalue decomposition, i.e. there exists a Cr-family of orthogonal
matrices Q(t), such that Q(t)>A(t)Q(t) is diagonal.

2. In the case that A(t) has q groups of identical eigenvalues, we subsumize the
identical eigenvalues by defining λ1(t) = ... = λp1(t) =: Λ1(t),..., λpq−1+1(t) =
... = λppq

(t) =: Λq(t) for 1 ≤ p1 < ... < pq = n for some 1 ≤ q ≤ n.

If t 7→ A(t) is Cr, r ≥ 1, and Λi(t) 6= Λj(t) for i 6= j and t ∈ R, then there exists
a Cr-eigenvalue decomposition of A(t).

3. If A(t) is real analytic in t, then there exist a real analytic eigenvalue decompo-
sition.

Proof. The first and second claim can be found in Sibuya [62], while the last one has
been shown by Kato [41].
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Our goal is to track a diagonalizing Cr-transformation Q(t) of A(t), which, however,
is neither unique nor isolated: Any curve

Q̃(t) := Q(t)

[
Im

R

]
,

where R ∈ O(n − m) yields an other diagonalizing transformation of A(t). But the
first m columns of Q(t) are unique except for their sign. It is therefore appropriate to
define the set of curves, which contain Q(t) and whose elements all diagonalize A(t):

X∗(t) :=

{
Q(t)

(
Im

R

) ∣∣∣ R ∈ O(n−m)

}
. (4.32)

Thus, X>A(t)X is diagonal for all X ∈ X∗(t), t ∈ R. Other orthogonal matrices
diagonalizing A(t) are well separated from X∗(t), since they have at least one different
sign in one of the first m columns.
In the sequel, we construct a dynamical system, whose solution X(t) converges expo-
nentially to X∗(t), i.e.

dist(X(t),X∗(t)) ≤ ae−bt for some a, b > 0.

We therefore consider the map

F : Rn×m × Rn×(n−m) × R→
(

Rm×m Rm×(n−m)

R(n−m)×m Sym(n−m)

)
,

defined by

F (X1, X2, t) =

[
N,

(
X>

1 A(t)X1 X>
1 A(t)X2

X>
2 A(t)X1 0

)]
+ (X1 X2)

>(X1 X2)− In, (4.33)

where In is the identity matrix, N = diag (1, ..., n), [, ] denotes the Lie bracket and
(X1 X2) denotes the n× n matrix, which results from concatenating X1 and X2.
The next lemma shows that the zeros of F (·, t) are the desired diagonalizing transfor-
mations of A(t).

Lemma 4.3. Let A(t) satisfy the assumptions A1-A4, let F (X1, X2, t) and X∗(t) as
above and let (X∗

1 X∗
2 ) ∈ X∗(t) for some t ∈ R. Then for sufficiently small r > 0

and X1 ∈ Br(X
∗
1 ) holds that F (X1, X2, t) = 0 if and only if (X1 X2) is orthogonal and

X1 = X∗
1 .

Proof. As the first summand of F is skew symmetric and the second is symmetric,
F vanishes only, if the summands themselves vanish. The second one is zero, if and
only if (X1, X2) is orthogonal, while the first one vanishes, if N commutes with G :=(

X>
1 A(t)X1 X>

1 A(t)X2

X>
2 A(t)X1 0

)
, i.e. G is diagonal. This is fulfilled, if the columns of

(X1 X2) are pairwise orthogonal eigenvectors of A(t). In particular, the columns of
X1 are the eigenvectors of A(t) to the pairwise distinct eigenvalues λ1(t), ..., λm(t),
whose multiplicity is 1. They are therefore locally unique, i.e. X1 = X∗

1 . Since the
eigenspace of λm+1(t) has dimension n−m, X2 can be any matrix such that (X1 X2)
is orthogonal.
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In order to track the zero of F , we want to employ the time-varying Newton flow and
need therefore the following result.

Lemma 4.4. Let A(t) satisfy the assumptions A1-A4, let F (X1, X2, t) and X∗(t) as
above. Then there exist some M1, M2,M3,M4 > 0 such that following statements hold:

1. ‖D2F (X1, X2, t)‖ ≤ M1, for all (X1, X2) ∈ Rn×m × Rn×(n−m), t ∈ R.

2. ‖DF (X∗
1 , X

∗
2 , t)‖ ≤ M2, for all (X∗

1 X∗
2 ) ∈ X∗(t), t ∈ R.

3. ‖ ∂
∂t

DF (X1, X2, t)‖ ≤ M3, for all (X1 X2) ∈ Ur(t) = {X ∈ Rn×n| dist(X,X∗(t)) <
r}, t ∈ R and some fixed r > 0.

4. ker(DF (X∗
1 , X

∗
2 , t)) =

{
(X∗

1 X∗
2 )

(
0 0
0 Z

) ∣∣∣Z ∈ so(n−m)

}
, for all (X∗

1 X∗
2 ) ∈

X∗(t), t ∈ R.

5. rkDF (X∗
1 , X

∗
2 , t) = n2 − 1

2
(n−m)(n−m− 1), for all (X∗

1 X∗
2 ) ∈ X∗(t), t ∈ R.

6. σmin(DF (X∗
1 , X

∗
2 , t)

>) ≥ M4 for all (X∗
1 X∗

2 ) ∈ X∗(t), t ∈ R.

Here, DF and D2F denote the derivatives of F with respect to (X1 X2) and σmin(B)
denotes the smallest singular value of B ∈ Rn×m.

Proof. Consider at first the derivatives of F with respect to (X1 X2) =: X, where
H := (H1 H2) denotes a tangent vector of Rn×m × Rn×(n−m).

DF (X1, X2, t) ·H = DF (X1, X2, t) · (H1 H2) =

[
N,

(
H>

1 A(t)X1 + X>
1 A(t)H1 H>

1 A(t)X2 + X>
1 A(t)H2

H>
2 A(t)X1 + X>

2 A(t)H1 0

)]
+ H>X + X>H.

D2F (X1, X2, t) · ((H1 H2), (Ĥ1 Ĥ2)) =
[
N,

(
H>

1 A(t)Ĥ1 + Ĥ>
1 A(t)H1 H>

1 A(t)Ĥ2 + Ĥ>
1 A(t)H2

H>
2 A(t)Ĥ1 + Ĥ>

2 A(t)H1 0

)]
+ H>Ĥ + Ĥ>H.

Moreover,

∂

∂t
DF (X1, X2, t) · (H1 H2) =

[
N,

(
H>

1 ȦX1 + X>
1 ȦH1 H>

1 ȦX2 + X>
1 ȦH2

H>
2 ȦX1 + X>

2 ȦH1 0

)]
.

Thus, the claims 1)-3) are obvious, as ‖(X1 X2)‖, ‖A(t)‖ and ‖Ȧ(t)‖ are uniformly
bounded for (X1 X2) ∈ Ur(t), t ∈ R.
To show 4) we use for tangent vectors H =: Xξ with X = (X1 X2) and ξ = (ξ1 ξ2)
and consider

DF (X1, X2, t) ·H = DF (X1, X2, t) · (H1 H2) =
[
N,

(
H>

1 A(t)X1 + X>
1 A(t)H1 H>

1 A(t)X2 + X>
1 A(t)H2

H>
2 A(t)X1 + X>

2 A(t)H1 0

)]
+ H>X + X>H =
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[
N,

(
ξ>1 X>A(t)X1 + X>

1 A(t)Xξ1 ξ>1 X>A(t)X2 + X>
1 A(t)Xξ2

ξ>2 X>A(t)X1 + X>
2 A(t)Xξ1 0

)]
+ξ>X>X+X>Xξ.

Let D = diag (λ1(t), ..., λn(t)) and consider for t ∈ R the derivative of F in X =
(X∗

1 X∗
2 ) ∈ X∗(t):

DF (X∗
1 , X

∗
2 , t) · (X∗

1 X∗
2 )(ξ1 ξ2) =

[
N,

(
ξ>1 (X∗)>A(t)X∗

1 + (X∗
1 )>A(t)X∗ξ1 ξ>1 (X∗)>A(t)X∗

2 + (X∗
1 )>A(t)X∗ξ2

ξ>2 (X∗)>A(t)X∗
1 + (X∗

2 )>A(t)X∗ξ1 0

)]
+ξ>+ξ

=: K + Y

This is a sum of a skew symmetric (K) and a symmetric term (Y ), which is zero, if each
summand vanishes. To have Y = 0 we need ξ> = −ξ. Now consider K and use D1 =

diag (λ1(t), ..., λm(t)), D̂1 :=

(
D1

0

)
∈ Rn×m and D2 = diag (λm+1(t), ..., λm+1(t)) ,

D̂2 :=

(
0

D2

)
∈ Rn×(n−m):

K =

[
N,

(
ξ>1 D̂1 + D̂>

1 ξ1 ξ>1 D̂2 + D̂>
1 ξ2

ξ>2 D̂1 + D̂>
2 ξ1 0

)]
.

By using ξ1 =

(
ξ11

ξ21

)
and ξ2 =

(
ξ12

ξ22

)
, where ξ11 ∈ Rm×m and ξ22 ∈ R(n−m)×(n−m)

are skew symmetric and ξ>12 = −ξ21 ∈ R(n−m)×m, the above equation is equivalent to

K =

[
N,

(
ξ>11D1 + D1ξ11 ξ>21D2 + D1ξ12

ξ>12D1 + D2ξ21 0

)]
.

Recall that N only commutes with diagonal matrices. Hence, it is a necessary condition
that the skew symmetric (sub-)matrix ξ11 = 0 to have K = 0, as the diagonal entries
of D1 are distinct. Now consider the position (i, j) of the matrix ξ>21D2 + D1ξ12:

(ξ>21D2 + D1ξ12)ij = −(ξ12)ij(D2)jj + (D1)ii(ξ12)ij =

−(ξ12)ijλm+1 + λi(ξ12)ij = (ξ12)ij(λi − λm+1).

This shows, that K = 0 only if ξ12 = 0. Hence, the only degree of freedom is the choice
of ξ22 = −ξ>22 and the kernel of DF is given by

ker(DF (X∗
1 , X

∗
2 , t)) =

{
(X∗

1 X∗
2 )

(
0 0
0 Z

) ∣∣∣ Z ∈ so(n−m)

}
.

Thus,

dim ker(DF (X∗
1 , X

∗
2 , t)) =

1

2
(n−m)(n−m− 1),

which shows 4).

5) follows immediately from 4).
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6) To show the last claim, let H⊥ ker(DF (X∗
1 , X

∗
2 , t)) and ‖H‖ = 1. H can be written

as

H = X∗ξ =: X∗

(
ξ11 ξ12

ξ21 ξ22

)
.

As H is orthogonal to the kernel of DF , we must have ξ22 = ξ>22, cf. above. Let (i, j)
denote the position of the biggest entry of ξ. As ‖H‖ = 1 and X∗ is orthogonal we
have ‖ξ‖ = 1 and thus |ξij| ≥ 1

n2 . With the notation of above, we have

DF (X∗
1 , X

∗
2 , t) ·X∗ξ = K + ξ + ξ>,

where K> = −K and

K =

[
N,

(
ξ>11D1 + D1ξ11 ξ>21D2 + D1ξ12

ξ>12D1 + D2ξ21 0

)]
.

Hence,

K =

[
N,

(
D1

D2

)(
ξ11 ξ12

ξ21 0

)
+

(
ξ>11 ξ>21

ξ>12 0

)(
D1

D2

)]
.

Note that ξ + ξ> is symmetric and therefore

‖DF (X∗
1 , X

∗
2 , t) ·X∗ξ‖2 = ‖K‖2 + ‖ξ + ξ>‖2,

since K⊥(ξ> + ξ). To lower bound the smallest singular value of DF (X∗
1 , X

∗
2 , t)

>, we
consider the entry of DF (X∗

1 , X
∗
2 , t) ·X∗ξ at position (i, j) and distinguish two cases:

(i) i ≤ m ∨ j ≤ m

Then
Kij = (i− j)(λiξij + λjξji),

where λi denotes the ith eigenvalue of A(t). Therefore,

(DF (X∗
1 , X

∗
2 , t) ·X∗ξ)ij = (i− j)(λiξij + λjξji) + ξij + ξji.

Let s denote the smallest singular value of DF>. Thus

s2 ≥ (i− j)2(λiξij + λjξji)
2 + (ξij + ξji)

2.

If i 6= j, then
s2 ≥ (λiξij + λjξji)

2 + (ξij + ξji)
2,

which is a quadratic function in ξji for |ξji| ≤ |ξij| with minimum

ξ2
ij(λi − λj)

2

1 + λ2
j

≥ (λj − λi)
2

n4(1 + λ2
j)

.

For i = j, then s2 ≥ (ξii + ξii)
2 ≥ 4

n4 .
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(ii) i > m ∧ j > m

Here Kij = 0 and since the (22) block of ξ (= ξ22) is symmetric we have that

(DF (X∗
1 , X

∗
2 , t) ·X∗ξ)ij = ξij + ξji = 2ξij ≥ 2

n2
.

Thus the smallest singular value s of DF> satisfies s2 ≥ 4
n4 .

The previous lemma shows that F satisfies the conditions of Theorem 2.13. Thus with
X = (X1 X2), the solution X(t) = (X1(t) X2(t)) of the differential equation

Ẋ = DF (X1, X2, t)
†
(
M(X)F (X1, X2, t)− ∂

∂t
F (X1, X2, t)

)
(4.34)

exists for all t ∈ R and converges exponentially to X∗(t), provided X(0) is sufficiently
close to X∗(0). Here DF † denotes a pseudo inverse of DF , cf. Chapter 2.3.3.

Furthermore, the discrete algorithm of Theorem 2.4 is applicable, which works at dis-
crete times tk = kh for h > 0 and k ∈ N. Hence for Xk = (X1

k X2
k), the sequence

Xk+1 = Xk −DF (Xk
1 , Xk

2 , tk)
† (F (Xk

1 , Xk
2 , tk) + hF h

τ (Xk
1 , Xk

2 , tk)
)

(4.35)

is well defined and the accuracy of Xk can be controlled by the step size. Note that
the approximation F h

τ (X1, X2, t) of ∂
∂t

F (X1, X2, t) is given by

F h
τ (X1, X2, t) =

[
N,

(
X>

1 Ah
τ (t)X1 X>

1 Ah
τ (t)X2

X>
2 Ah

τ (t)X1 0

)]
,

where Ah
τ (t) is an approximation of Ȧ(t).

Analogously to the previous section, one now has to vectorize the matrices Xk, Xk+1 and
(F (Xk

1 , Xk
2 , tk)+hF h

τ (Xk
1 , Xk

2 , tk)) and compute the pseudo-inverse of a matrix represen-
tation of DF , which can be done by employing the VEC-operation and the Kronecker

product. However, the matrix associated with DF has the size
(
n2 − (n−m)(n−m−1)

2

)
×(

n2 − (n−m)(n−m−1)
2

)
, which shows, that this way of implementing the algorithm is not

really practical. Thus, we now concentrate on solving the implicit linear equation,
associated with (4.35), without computing a matrix representation of DF .

Approximatively solving the implicit equation.
The implicit form of (4.34) can be written for M(X) = − 1

h
I as

DF (X1, X2, t) · Ẋ = −1

h
F (X1, X2, t)− F h

τ (X1, X2, t). (4.36)

Let K and Y denote the skew symmetric and symmetric part of − 1
h
F (X1, X2, t) −

F h
τ (X1, X2, t), respectively. Then the above equation reads

DF (X1, X2, t) · Ẋ = K + Y. (4.37)
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We now determine an approximative solution of equation (4.37) and then formulate
the tracking algorithm by using Theorem 2.4.
Let for t ∈ R, X∗ = (X∗

1 X∗
2 ) such that

X>
∗ A(t)X∗ = diag (λ1(t), ..., λn(t)).

Then the derivative of F with respect to X := (X1 X2) is a linear map, which acts on
elements of the tangent space (X1 X2)(ξ1 ξ2) in the following manner

DF (X1, X2, t) · (X1 X2)(ξ1 ξ2) =
[
N,

(
ξ>1 X>A(t)X1 + X>

1 A(t)Xξ1 ξ>1 X>A(t)X2 + X>
1 A(t)Xξ2

ξ>2 X>A(t)X1 + X>
2 A(t)Xξ1 0

)]
+ξ>X>X+X>Xξ

Thus for Ẋ = (X1 X2)(ξ1 ξ2) equation (4.37) can be written as

[
N,

(
ξ>1 X>A(t)X1 + X>

1 A(t)Xξ1 ξ>1 X>A(t)X2 + X>
1 A(t)Xξ2

ξ>2 X>A(t)X1 + X>
2 A(t)Xξ1 0

)]
+ξ>X>X+X>Xξ

= K + Y.

Inspecting the symmetry properties of the occurring terms shows, that the above equa-
tion is satisfied, if

[
N,

(
ξ>1 X>A(t)X1 + X>

1 A(t)Xξ1 ξ>1 X>A(t)X2 + X>
1 A(t)Xξ2

ξ>2 X>A(t)X1 + X>
2 A(t)Xξ1 0

)]
= K, (4.38)

and
ξ>X>X + X>Xξ = Y. (4.39)

A solution to (4.39) is given as

ξ = (X>X)−1

(
Z +

1

2
Y

)
, (4.40)

for an arbitrary skew symmetric matrix Z. To get a solution of (4.38), consider this
equation for X = X∗ = [X∗

1 X∗
2 ] and obtain

[
N,

(
ξ>1 D̂1 + D̂>

1 ξ1 ξ>1 D̂2 + D̂>
1 ξ2

ξ>2 D̂1 + D̂>
2 ξ1 0

)]
= K, (4.41)

where D̂1 = X>
∗ A(t)X∗

1 =

(
D1

0

)
, D1 = (X∗

1 )>A(t)X∗
1 and D̂2 = X>

∗ A(t)X∗
2 =

(
0

D2

)
, D2 = (X∗

2 )>A(t)X∗
2 . By using ξ1 =

(
ξ11

ξ21

)
and ξ2 =

(
ξ12

ξ22

)
, equation

(4.38) simplifies to

[
N,

(
ξ>11D1 + D1ξ11 ξ>21D2 + D1ξ12

ξ>12D1 + D2ξ21 0

)]
= K. (4.42)
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Due to equation (4.40), ξ = Z + 1
2
Y for Z> = −Z in X = X∗. Thus

(
ξ11 ξ12

ξ21 ξ22

)
=

(
Z11 Z12

−Z>
12 Z22

)
+

1

2

(
Y11 Y12

Y >
12 Y22

)
.

Plug this into (4.42) and get

[
N,

( −Z11D1 + D1Z11 −Z12D2 + D1Z12

Z>
12D1 −D2Z

>
12 0

)]
=

K − 1

2

[
N,

(
Y11D1 + D1Y11 Y12D2 + D1Y12

Y >
12D1 + D2Y

>
12 0

)]
. (4.43)

As K is the skew symmetric part of − 1
h
F (X1, X2, t)− F h

τ (X1, X2, t), we can use that

K = −
[
N,

1

h

(
X>

1 A(t)X1 X>
1 A(t)X2

X>
2 A(t)X1 0

)
+

(
X>

1 Ah
τ (t)X1 X>

1 Ah
τ (t)X2

X>
2 Ah

τ (t)X1 0

)]
,

where Ah
τ denotes an approximation of Ȧ. Therefore, (4.43) reads

[
N,

( −Z11D1 + D1Z11 −Z12D2 + D1Z12

Z>
12D1 −D2Z

>
12 0

)]
= (4.44)

−
[
N,

(
X>

1 ( 1
h
A(t) + Ah

τ (t))X1 X>
1 ( 1

h
A(t) + Ah

τ (t))X2

X>
2 ( 1

h
A(t) + Ah

τ (t))X1 0

)
+

1

2

(
Y11D1 + D1Y11 Y12D2 + D1Y12

Y >
12D1 + D2Y

>
12 0

)]

If we assume, (X∗ξ)⊥ ker(DF (X∗
1 , X

∗
2 , t)), then Z22 = 0, cf. Lemma 4.4. Thus, the

above equation uniquely determines the non-zero entries of the skew symmetric matrix
Z:

Zij =

{
Rij

Dii−Djj
, for i 6= j and i ≤ m ∨ j ≤ m

0, else.
(4.45)

Here, D = X>
∗ A(t)X∗ = diag (λ1(t), ..., λn(t)) and

R = −
(

X>
1 ( 1

h
A(t) + Ah

τ (t))X1 X>
1 ( 1

h
A(t) + Ah

τ (t))X2

X>
2 ( 1

h
A(t) + Ah

τ (t))X1 0

)
−

1

2

(
Y11D1 + D1Y11 Y12D2 + D1Y12

Y >
12D1 + D2Y

>
12 0

)
.

This shows that the solution Ẋ = Xξ of (4.37) is uniquely determined in X = X∗,
if one assumes that Ẋ is orthogonal to ker(DF (X∗

1 , X
∗
2 , t)). Moreover, this system is

well conditioned in X = X∗, as the differences |λi(t)− λj(t)| are assumed to be lower
bounded for i 6= j and i ≤ m ∨ j ≤ m.
Therefore, the solutions of (4.38) and (4.39) are robust under relatively small changes
of the entries. To be able to solve these equations for X 6= X∗, we replace X>X by I in
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(4.40) and in (4.38) we approximate X>A(t)X1 by

(
D̃1

0

)
, D̃1 = diag ((X>A(t)X1)1,1,

..., (X>A(t)X1)m,m) and X>A(t)X2 by

(
0

D̃2

)
where D̃2 = diag ((X>A(t)X2)m+1,1, ...,

(X>A(t)X1)n,(n−m)).

We therefore approximate Ẋ = (X>)−1
(
Z + 1

2
Y

)
by X

(
Z̃ + 1

2
Y

)
, for X sufficiently

close to X∗(t), where Z̃ = −Z̃> is given for D = diag ((X>A(t)X)11, ..., (X
>A(t)X)nn)

by

Z̃ij =

{
Rij

Dii−Djj
, for i 6= j and i ≤ m ∨ j ≤ m

0, else.
(4.46)

Note that we can determine the relevant entries of R by the equation

Rij = R̂ij for i ≤ m ∨ j ≤ m,

where R̂ = −X>( 1
h
A(t) + Ah

τ (t))X − 1
2
(Y D + DY ). The use of this formula simplifies

the explicit expression of the update scheme in the following theorem.
Note that also in the case of multiple eigenvalues, a similar algorithm can be found in
[20], which however lacks the corrector terms Ωd

ij, Ω0
ij in the formula.

Theorem 4.3. Let A(t) satisfy the assumptions A1-A4, let X∗(t) as defined in (4.32)
and let Ah

τ (t) denote an approximation of Ȧ(t) of order p ≥ 1. Define for X ∈ Rn×n,
t ∈ R and h > 0, Y (X, t) := 1

h
(I − X>X), di(X, t) := (X>A(t)X)ii, D(X, t) :=

diag (d1(X, t), ..., dn(X, t)) and

Ω(X, t) := Ωe(X, t) + Ωd(X, t) + Ωo(X, t),

where

1. Ωe
ij(X, t) =

{
(X>Ah

τ (t)X)ij

dj(X,t)−di(X,t)
, i 6= j and i ≤ m ∨ j ≤ m

0 , else.

2. Ωd
ij(X, t) =

{
( 1

h
X>A(t)X+ 1

2
(Y (X,t)D(X,t)+D(X,t)Y (X,t)))ij

dj(X,t)−di(X,t)
, i 6= j, i ≤ m ∨ j ≤ m

0 , else

3. Ωo(X, t) = 1
2
Y (X, t).

Then for c > 0 and sufficiently small h > 0, the sequence

Xk+1 = Xk + hXkΩ(Xk, tk) (4.47)

satisfies for k ∈ N and tk = kh

dist(Xk,X∗(tk)) ≤ ch,

provided X0 is sufficiently close to X∗(0).
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Proof. We have derived an explicit expression X(Z̃ + 1
2
Y ) for

G(X1, X2, t)

(
F h

τ (X1, X2, t) +
1

h
F (X1, X2, t)

)
,

where X = (X1 X2),

F (X1, X2, t) =

[
N,

(
X>

1 A(t)X1 X>
1 A(t)X2

X>
2 A(t)X1 0

)]
+ (X1 X2)

>(X1 X2)− In,

F h
τ (X1, X2, t) =

[
N,

(
X>

1 Ah
τ (t)X1 X>

1 Ah
τ (t)X2

X>
2 Ah

τ (t)X1 0

)]

and G denotes the used approximation for DF †.
In order to apply Theorem 2.4 for the derived tracking algorithm, we consider the
perturbation term, which is given by

Π(X1, X2, t) = (4.48)

(I −DF (X1, X2, t)G(X1, X2, t))

(
1

h
F (X1, X2, t) + F h

τ (X1, X2, t)

)
.

We have to show, that

‖(Π(X1, X2, t))‖ ≤ c‖F (X1, X2, t)‖, (4.49)

for some constant c > 0 and all ‖X −X∗(t)‖ ≤ r, t ≥ 0.
By Lemma 4.4, there exist constants M,R > 0 such that for all ‖X − X∗(t)‖ ≤ R,
t ≥ 0

‖DF (X1, X2, t)‖ ≤ M. (4.50)

Therefore, using (4.48)

‖Π(X1, X2, t)‖ =
∥∥DF (X1, X2, t)(DF (X1, X2, t)

† −G(X1, X2, t))·
(

F h
τ (X1, X2, t) +

1

h
F (X1, X2, t)

)∥∥∥∥ ≤

M

∥∥∥∥(DF (X1, X2, t)
† −G(X1, X2, t))

(
F h

τ (X1, X2, t) +
1

h
F (X1, X2, t)

)∥∥∥∥ =

M

∥∥∥∥(X>)−1(Z +
1

2
Y )−X(Z̃ +

1

2
Y )

∥∥∥∥ ,

where, cf. equation (4.40), DF (X1, X2, t)
† (− 1

h
F (X1, X2, t)− F h

τ (X1, X2, t)
)

= (X>)−1

(Z + 1
2
Y ) and G(X1, X2, t)·

(− 1
h
F (X1, X2, t)− F h

τ (X1, X2, t)
)

= X(Z̃ + 1
2
Y ).

Thus, we have the same situation as in the proof of Theorem 4.2 and the rest proceeds
as there.
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4.1.3 Singular value decomposition

We now consider the task of tracking the singular value decomposition (SVD) of a
Cr-family (r ≥ 2) of real matrices t 7→ M(t) ∈ Rm×n, where m ≥ n.
Thus, we want to determine a family of left singular vectors V∗(t) ∈ O(m) and right
singular vectors U∗(t) ∈ O(n) of M(t) such that

V >
∗ (t)M(t)U∗(t) = Σ̂(t),

where

Σ̂(t) =

[
Σ(t)

0(m−n)×n

]
, Σ(t) = diag (σ1(t), ..., σn(t)).

Note that in the case m > n, the orthogonal factor V∗(t) is not unique. To see this,
we use the partition V∗(t) =: [V ∗

1 (t) V ∗
2 (t)], where V ∗

1 ∈ Rm×n, V ∗
2 (t) ∈ Rm×(m−n) and

consider

[V ∗
1 (t) V ∗

2 (t)]>M(t)U∗(t) =

[
V ∗

1 (t)>M(t)U∗(t)
V ∗

2 (t)>M(t)U∗(t)

]
=

[
Σ(t)

0(m−n)×n

]
.

Hence, for any R ∈ O(m− n), the matrix

Ṽ∗(t) := V∗(t)
[

I
R

]
= [V ∗

1 (t) V ∗
2 (t)R]

is an other orthogonal matrix such that

Ṽ >
∗ (t)M(t)U∗(t) = Σ̂(t).

Therefore, we define for given V∗(t) = [V ∗
1 (t) V ∗

2 (t)] a family of sets of orthogonal
matrices

V∗(t) :=
{
[V ∗

1 (t) V ∗
2 (t)R]

∣∣ R ∈ O(m− n)
}

,

whose elements are all left singular vectors of M(t).

It is a well known fact, that the singular value decomposition of M(t) can be obtained
by determining an orthogonal diagonalizing transformation V̂∗(t) of the matrix

M̂(t) :=

[
0 M(t)

M(t)> 0

]
,

such that

V̂ (t)>∗ M̂(t)V̂∗(t) =




Σ(t)
−Σ(t)

0


 .

Then the orthogonal factors U∗(t), V∗(t) = [V ∗
1 (t) V ∗

2 (t)] for the SVD of M(t) are given
by

V̂∗(t) =
1√
2

[
V ∗

1 (t) V ∗
1 (t)

√
2V ∗

2 (t)
U∗(t) −U∗(t) 0

]
∈ R(m+n)×(m+n),
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where V ∗
1 (t) ∈ Rm×n and V ∗

2 (t) ∈ Rm×(m−n). In the case that the non-zero eigenvalues
of M̂(t) are pairwise distinct, the columns of V ∗

1 (t) and U∗(t) are uniquely determined,
up to their sign. Thus the (locally unique) set of orthogonal matrices, which diagonalize
M̂(t), and which contains V̂∗(t), is given by

W∗(t) =

{
1√
2

[
V ∗

1 (t) V ∗
1 (t)

√
2V ∗

2 (t)R
U∗(t) −U∗(t) 0

] ∣∣∣ R ∈ O(m− n)

}
. (4.51)

We now derive the SVD algorithm by using the EVD-results of the previous chapter for
M̂(t). In order to guarantee the applicability of Theorem 4.3, we have to assume, that
M̂(t) satisfies the assumptions A1-A4 made in the previous chapter, which implies,
that we have to impose the following conditions on M(t):

M1 The map t 7→ M(t) ∈ Rm×n, m ≥ n, is Cr with r ≥ 2.

M2 The singular values σ1(t), ..., σn(t) of M(t) satisfy σi(t) 6= σj(t) for i 6= j and
t ∈ R.

M3 ‖M(t)‖, ‖Ṁ(t)‖ and ‖M̈(t)‖ are uniformly bounded on R.

M4 There exists c > 0 such that the singular values of M(t) satisfy for all t ∈ R

|σi(t)− σj(t)| ≥ c, i 6= j.

The following result shows that a Cr-singular value decomposition of M(t) already
exists under weaker assumptions than M1 and M2.

Proposition 4.2. Let M(t) ∈ Rm×n, m ≥ n and let σ1(t), ..., σn(t) denote the singular
values of M(t), t ∈ R. In the case that M(t) has q groups of identical singular values,
we define σ1(t) = ... = σp1(t) =: σ̂1(t),..., σpq−1+1(t) = ... = σpq(t) =: σ̂q(t) for
1 ≤ p1 < ... < pq = n and some q ∈ N.

1. If t 7→ M(t) is Cr, r ≥ 1, and σi(t) 6= σj(t) for i 6= j and t ∈ R, then there exists
a Cr-singular value decomposition, i.e. there exists Cr-families of orthogonal
matrices V (t) ∈ Rm×m, U(t) ∈ Rn×n such that V (t)>M(t)U(t) = Σ̂(t) where

Σ̂(t) =

[
diag (σ1(t), ..., σn(t))

0n−m

]
.

2. If t 7→ M(t) is Cr, r ≥ 1, and has q groups of identically singular values satisfying
σ̂i(t) 6= σ̂j(t) for i 6= j and all t ∈ R, then there exists a Cr-singular value
decomposition of M(t).

3. If M(t) is real analytic, then there exist a real analytic singular value decomposi-
tion.

Proof. Claim 1 and 2 can be found in a publication of Dieci [20], while the 3rd has
been shown by Bunse-Gerstner [14].
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Note that in the case of dealing with the real analytic singular value decomposition,
we would have to allow negative singular values. Thus, we would have to modify
assumption M2 and M4 such that the absolute values of the singular values are assumed
to be different.
However, we assume M1-M4 and formulate the SVD tracking theorem for a Cr family
of matrices for r ≥ 2. This result is a generalization of the algorithm given in [6], since
the new method also works for non-square matrices M(t).

Theorem 4.4. Let M(t) satisfy M1-M4, let U∗(t) and V∗(t) as above and let Mh
τ (t)

denote an approximation of ∂
∂t

M(t) of order p ≥ 1. Let further for V1 ∈ Rm×n, V2 ∈
Rm×(m−n), U ∈ Rn×n, t ∈ R and h > 0,

Y1(V1, U) =
1

2
(2In − V >

1 V1 − U>U),

Y2(V1, U) =
1

2
(U>U − V >

1 V1),

Y3(V1, V2) = −
√

2

2
V >

1 V2,

Y4(V2) = Im−n − V >
2 V2,

B1(V1, U, t) =

1

2

(
U>(hMh

τ (t) + M(t))>V1 + V >
1 (hMh

τ (t) + M(t))U + D(t)Y1(V1, U) + Y1(V1, U)D(t)
)
,

B2(V1, U, t) =

1

2

(
U>(hMh

τ (t) + M(t))>V1 − V >
1 (hMh

τ (t) + M(t))U + D(t)Y2(V1, U)− Y2(V1, U)D(t)
)
,

B3(V1, V2, U, t) =

√
2

2
U> (

hMh
τ (t) + M(t)

)>
V2 +

1

2
D(V1, U, t)Y3(V1, V2),

where
D(V1, U, t) := diag

(
(U>M(t)>V1)11, ..., (U

>M(t)>V1)nn

)
,

and di(V1, U, t) = (D(V1, U, t))ii, i = 1, ..., n. Let moreover Z1(V1, U, t) = −Z1(V1, U, t)>

∈ Rn×n, Z2(V1, U, t) = −Z2(V1, U, t)> ∈ Rn×n and Z3(V1, V2, U, t) ∈ Rn×(m−n) be defined
as

(Z1(V1, U, t))ij =

{
(B1(V1, U, t))ij(dj(V1, U, t)− di(V1, U, t))−1, i 6= j

0, else

(Z2(V1, U, t))ij = −(B2(V1, U, t))ij(dj(V1, U, t) + di(V1, U, t))−1, i, j = 1, ..., n

(Z3(V1, V2, U, t))ij = −(B3(V1, V2, U, t))ijdi(V1, U, t)−1, i = 1, ..., n, j = 1, ..., m− n

Then for c > 0 and sufficiently small h > 0, the sequence (Vk, Uk), defined for Vk :=
[V k

1 V k
2 ] by
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V k+1
1 = V k

1 + V k
1

(
Z1(V

k
1 , Uk, tk) + Z2(V

k
1 , Uk, tk) + 1

2
(Y1(V

k
1 , Uk) + Y2(V

k
1 , Uk))

)
+

√
2V k

2

(−Z3(V
k
1 , V k

2 , Uk, tk)
> + 1

2
Y3(V

k
1 , V k

2 )>
)
,

V k+1
2 = V k

2 + 1
2

(√
2V k

1 (2Z3(V
k
1 , V k

2 , Uk, tk) + Y3(V
k
1 , V k

2 )) + V k
2 Y4(V

k
2 )

)
,

Uk+1 = Uk + Uk

(
Z1(V

k
1 , Uk, tk) + 1

2
Y1(V

k
1 , Uk)− Z2(V

k
1 , Uk, tk)− 1

2
Y2(V

k
1 , Uk)

)
,

satisfies for all k ∈ N
dist(Vk,V∗(tk))2 + ‖Uk − U∗(tk)‖2 ≤ c2h2,

provided (V0, U0) is sufficiently close to (V∗(0), U∗(0)).

Proof. To use Theorem 4.3, let V̂k = 1√
2

[
V k

1 V k
1

√
2V k

2

Uk −Uk 0

]
, Y = 1

h
(I − V̂ >

k V̂k),

M̂(t) =

[
0 M(t)

M(t)> 0

]
, D̂ := diag ((V̂kM̂(tk)V̂k)1,1, ..., (V̂kM̂(tk)V̂k)2n,2n, 0, ..., 0) ∈

R(n+m)×(m+n) and d̂i = D̂ii for i = 1, ..., n

Let M̂h
τ (t) =

[
0 Mh

τ (t)
Mh

τ (t)> 0

]
such that B := V̂ >

k (M̂h
τ (tk) + 1

h
M̂(tk))V̂k + 1

2
(Y D̂ +

D̂Y ), let W∗(t) as defined in (4.51) and let Z ∈ R(m+n)×(m+n) be defined by

Zij :=

{
Bij(d̂j − d̂i)

−1, i 6= j and i ≤ 2n ∧ j ≤ 2n
0, else.

Then for c > 0 and sufficiently small h > 0, the sequence

V̂k+1 = V̂k + hV̂k

(
Z +

1

2
Y

)
(4.52)

satisfies for k ∈ N
dist(V̂k,W∗(tk)) ≤ ch,

if V̂0 is sufficiently close to W∗(0), cf. Theorem 4.3.
Due to the fact, that each V̂k consists of the orthogonal factors for the SVD of M(tk),
we derive the claimed update scheme from the finding above. We therefore study the
structure of the terms in (4.52):

Let therefore V̂ = 1√
2

[
V1 V1

√
2V2

U −U 0

]
and we get that

V̂ >M̂V̂ =
1

2




U>M>V1 + V >
1 MU U>M>V1 − V >

1 MU
√

2U>M>V2

V >
1 MU − U>M>V1 −U>M>V1 − V >

1 MU −√2U>M>V2√
2V >

2 MU −√2V >
2 MU 0


 .
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Thus for D := diag ((U>M>V1)11, ..., (U
>M>V1)nn), the diagonal entries of V̂ >M̂V̂ are

given by

D̂ :=




D
−D

0


 .

We consider
hY = I − V̂ >V̂ =

I − 1√
2




V >
1 U>

V >
1 −U>√

2V >
2 0


 1√

2

[
V1 V1

√
2V2

U −U 0

]
=

1

2




2I − V >
1 V1 − U>U −V >

1 V1 + U>U −√2V >
1 V2

−V >
1 V1 + U>U 2I − V >

1 V1 − U>U −√2V >
1 V2

−√2V >
2 V1 −√2V >

2 V1 2I − 2V >
2 V2


 .

Thus, Y has the following structure:

Y =




Y1 Y2 Y3

Y >
2 Y1 Y3

Y >
3 Y >

3 Y4


 ,

where Y >
1 = Y1, Y

>
2 = Y2, Y

>
4 = Y4.

Moreover,

D̂Y + Y D̂ =




DY1 + Y1D DY2 − Y2D DY3

−DY >
2 + Y >

2 D −DY1 − Y1D −DY3

Y >
3 D −Y >

3 D 0


 .

Hence, the structure of

B := V̂ >
(

M̂h
τ (t) +

1

h
M̂(t)

)
V̂ +

1

2
(Y D̂ + D̂Y )

is as follows

B =




B1 B2 B3

B>
2 −B1 −B3

B>
3 −B>

3 0


 ,

where B1, B2 ∈ Rn×n, B3 ∈ Rn×(m−n) and B>
2 = −B2.

The non-zero entries of Z = −Z> =:




Z1 Z2 Z3

−Z>
2 Z4 Z5

−Z>
3 −Z>

5 0


 are determined by

D̂Z − ZD̂ = −B ⇔



DZ1 − Z1D DZ2 + Z2D DZ3

DZ>
2 + Z>

2 D −DZ4 + Z4D −DZ5

Z>
3 D −Z>

5 D 0


 = −




B1 B2 B3

B>
2 −B1 −B3

B>
3 −B>

3 0


 ,
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implying that Z4 = Z1, Z5 = Z3 and Z>
2 = −Z2, since B>

2 = −B2.
Now consider

√
2

h
(V̂k+1 − V̂k) =

1

h

[
V k+1

1 − V k
1 V k+1

1 − V k
1

√
2V k+1

2 −√2V k
2

Uk+1 − Uk −Uk+1 + Uk 0

]
,

and the update scheme (4.52) implies that

1

h

[
V k+1

1 − V k
1 V k+1

1 − V k
1

√
2V k+1

2 −√2V k
2

Uk+1 − Uk −Uk+1 + Uk 0

]
=
√

2V̂k

(
Z +

1

2
Y

)
.

This is equivalent to

1

h

[
V k+1

1 − V k
1 V k+1

1 − V k
1

√
2V k+1

2 −√2V k
2

Uk+1 − Uk −Uk+1 + Uk 0

]
=

[
V k

1 (Z1 + 1
2
Y1 − Z>

2 + 1
2
Y >

2 ) +
√

2V k
2 (−Z>

3 + 1
2
Y >

3 )
Uk(Z1 + 1

2
Y1)− Uk(−Z>

2 + 1
2
Y >

2 )

V k
1 (Z2 + 1

2
Y2 + Z1 + 1

2
Y1) +

√
2V k

2 (−Z>
3 + 1

2
Y >

3 )
Uk(Z2 + 1

2
Y2)− Uk(Z1 + 1

2
Y1)

V k
1 (Z3 + 1

2
Y3) + V k

1 (Z3 + 1
2
Y3) +

√
2V k

2 (1
2
Y4)

0

]
,

from where the claimed update schemes for Vk = [V k
1 V k

2 ] and Uk can be immediately
seen.

4.1.4 Numerical results

All simulations were performed in Matlab. We used N = 80 steps, step size h = 0.05,
A(t) = X∗(t)K(t)X∗(t)> for K(t) = diag (a1 + sin(t), ..., a10 + sin(10t)) and

X∗(t) = R>




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I8


 R,

where R ∈ O(10) is a fixed random orthogonal matrix and ai := 2.5i for i = 1, ..., 10.

EVD with simple eigenvalues
The definition of A(t) implies the existence of a smooth curve t 7→ X∗(t) ∈ O(10)
such that X∗(t)A(t)X∗(t) is diagonal for all t. We wanted to determine a sequence Xk,
which approximates X∗(t) at a reasonable accuracy for t = kh and k = 1, ..., N .
In the first simulation, we check the tracking ability of the algorithm as defined in
Theorem 4.1, and we used approximations for Ȧ(t) of order 2. Figure 4.1 shows the
computed (dashed) and exact (solid) time-varying eigenvalues of A(t). As it can be
seen in the corresponding error plot (Fig 4.2.), where ‖Xk − X∗(tk)‖ is depicted, we
did not use perfect initial conditions. The computed values converged fast towards
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Figure 4.1: EVD with simple eigenvalues: The diagonal entries of X>
k A(tk)Xk (dotted)

and of X∗(tk)>A(tk)X∗(tk) (solid).
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Figure 4.2: EVD with simple eigenvalues: The error plot, corresponding to Figure 4.1.
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Order p Mean error Alg. 1 (Thm 4.1) Mean error Alg. 2 (Thm 4.2)
0 4.5 · 10−2 4.6 · 10−2

1 4.1 · 10−3 4.6 · 10−3

2 1.4 · 10−3 1.4 · 10−3

3 1.2 · 10−3 1.2 · 10−3

Table 4.1: The mean error of the two algorithms, computed for different order approx-
imations of Ȧ

Dimension n× n Comp. time Alg. 1 Comp. time Alg. 2
10× 10 4.2 · 10−1 1.1 · 10−2

20× 20 2.3 · 101 2.5 · 10−2

40× 40 9.6 · 102 1.4 · 10−1

Table 4.2: The computing time of Algorithm 1 (Theorem 4.1) and Algorithm 2 (The-
orem 4.2) for different sizes of A(t) ∈ Rn×n

the exact solution and remained close to it. Note that not all 80 computed points are
shown in order to have a better resolution of the interesting initial behavior.
It is computationally much cheaper to implement the algorithm, which computes an
approximation instead of the exact inverse of the Hessian Hf , as defined in Theorem
4.2. We therefore used this modified algorithm to do another simulation with the same
initial conditions. Qualitatively, we observed the same behavior.
In order to compare this approach quantitatively with the original one from Theo-
rem 4.1, we define the mean error by

1

N

N∑

k=1

‖Xk −X∗(tk)‖,

where N denotes the number of steps. Table 4.1 shows the mean accuracy of both
algorithms for different choices of the order of the approximation for Ȧ.
Hence, using approximations of order p > 1 significantly improves the quality of the
results in both algorithms. Moreover, both algorithms have a comparable accuracy,
which implies, that the second algorithm is preferable, since it is much cheaper to
compute, cf. the computing times in Table 4.2.

EVD with multiple eigenvalues
In order to check the tracking property of the algorithm for symmetric matrices with
multiple eigenvalues, as defined in Theorem 4.3, we slightly modified the setting from
above. Instead of the above definition, we used K(t) = diag (a1 +sin(t), ..., a8 +sin(8t),
a8 + sin(8t), a8 + sin(8t)) ∈ R10×10, ai := 2.5i for i = 1, ..., 8.
It turned out, that the used update scheme from Theorem 4.3 produces a sequence of
matrices (Xk), which approximatively diagonalizes A(tk) for k = 1, ..., 40. Figure 4.3
shows the diagonal entries of X>

k A(tk)Xk, where perfect initial conditions were used.
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Note that we can not visually distinguish between these computed eigenvalues and the
exact ones. Only the line at the top of the panel seems to be thicker than the others.
This is caused by the fact, that there are 3 almost identical lines, which correspond to
the multiple eigenvalue λ8(tk).
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Figure 4.3: EVD with multiple eigenvalues: The diagonal entries of X>
k A(tk)Xk (dot-

ted) and of X∗(tk)>A(tk)X∗(tk) (solid).

Note further that we can not just compare the output Xk with X∗(tk), in order to
determine the accuracy of this algorithm, as X∗(tk) is not an isolated diagonalizing
transformation for A(tk). However, the first 7 columns of X∗(tk) are locally unique,
and therefore, we define the mean error by

1

N

N∑

k=1

√
‖X1

k −X1∗ (tk)‖2 + ‖(X2
k)>X2

k − I3‖2,

where we used the partitions Xk = (X1
k X2

k), X∗(tk) = (X1
∗ (tk) X2

∗ (tk)) and N denotes
the number of steps. Table 4.3 shows the computed mean error of the algorithm from
Theorem 4.3 for different order approximations of Ȧ. Thus the method is able to
track the desired transformation and, as expected, the error decreases for higher order
approximations.
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Order p Mean error
0 4.2 · 10−2

1 3.5 · 10−3

2 1.4 · 10−3

3 1.2 · 10−3

Table 4.3: The mean error of the algorithm form Theorem 4.3, computed for different
order approximations of Ȧ.

SVD of a non-square matrix
We now want to use the tracking algorithm of Theorem 4.4 to compute for a given
sequence of matrices M(tk) ∈ Rm×n, orthogonal matrices Uk, Vk, such that approxima-
tively holds

V >
k M(tk)Uk ≈

[
diag (σ1(tk), ..., σn(tk))

0(m−n)×n

]
.

We used m = 10, n = 7 and M(t) = V∗(t)Σ̂U>
∗ , where Σ̂(t) =

[
diag (σ1(t), ..., σ7(t))

0(m−n)×n

]
,

V∗(t) = R>
1




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I8


 R1, U∗(t) = R>

2




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I5


 R2. Here,

R1 ∈ O(10) and R2 ∈ O(7) are fixed random orthogonal matrices and σi(t) := 2.5i +
sin(it) for i = 1, ..., 7. We evaluated the algorithm at times tk = kh, k = 1, ..., N with
N = 20 and h = 0.05.
In a first simulation, we wanted to check the tracking properties of the derived al-
gorithm. We therefore used about 10% perturbed initial values for V0 ∈ R10×10 and
U0 ∈ R7×7 and an approximation for Ṁ(t) of order 2. As it can be seen in Figure
4.4, the diagonal entries of V >

k M(tk)Uk converged fast to the exact singular values
σ1(tk), ..., σ7(tk), which illustrates the robustness of the used method. The correspond-
ing error plot shows that the error initially decreased to a certain level (≈ 2 · 10−3),
where it remained for the rest of the simulation, cf. Figure 4.5.
Then we wanted to examine the accuracy of the tracking algorithm for different order
approximations of Ṁ and perfect initial conditions. Note that, analogously to the
EVD in the case of multiple eigenvalues, the component V2 of the orthogonal factor
V = [V1 V2] is not unique, cf. Chapter 4.1.3. Therefore, we used the following formula
to estimate the mean error of the algorithm

1

N

N∑

k=1

√
‖V 1

k − V 1∗ (tk)‖2 + ‖Uk − U∗(tk)‖2 + ‖(V k
2 )>V k

2 − Im−n‖2.

As it can be seen in Table 4.4, this algorithm produces factors Vk, Uk, which perform
the SVD of M(tk) at a reasonable accuracy, which increases proportionally to the order
of the used approximation for Ṁ .
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Figure 4.4: SVD: The diagonal entries of V >
k M(tk)Uk (dotted) and of Σ̂(tk) (solid).
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Figure 4.5: SVD: The total error of the SVD factors Uk, Vk, corresponding to Figure
4.4.
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Order p Mean error
0 6.2 · 10−2

1 4.8 · 10−3

2 1.7 · 10−3

3 1.5 · 10−3

Table 4.4: The mean error of the algorithm form Theorem 4.4, computed for different
order approximations of Ṁ .

4.2 Polar decomposition of time-varying matrices

The polar decomposition of a matrix M ∈ Rn×n is defined as the factorization of M
into a positive definite matrix P and an orthogonal matrix Z. For full-rank matrices
such factorizations always exist, which can be easily seen by considering the SVD of
M : If M = V ΣU> for some U, V ∈ O(n) and diagonal Σ ∈ Rn×n with positive diagonal
entries, then a polar decomposition of M is given by

M = V ΣV >︸ ︷︷ ︸
=:P

V U>︸ ︷︷ ︸
=:Z

. (4.53)

Here, we study the time-varying case, i.e. we consider the polar decomposition of a
family of square matrices M(t) ∈ Rn×n, t ∈ R. At first, we introduce a SVD-based
method to track the time-varying polar decomposition of M(t). We then revisit an
other tracking technique in order to have a benchmark for the subsequent numerical
examinations.

4.2.1 SVD-based polar decomposition

Let M : R → Rn×n, t 7→ M(t) be a smooth curve of full rank matrices and let there
exist smooth curves t 7→ U∗(t) ∈ O(n) and t 7→ V∗(t) ∈ O(n) such that

V >
∗ (t)M(t)U∗(t) = Σ(t),

where Σ(t) = diag (σ1(t), ..., σn(t)). We are able to decompose M(t) into an orthogonal
and a symmetric positive definite matrix as follows

M(t) = V∗(t)Σ(t)V∗(t)>︸ ︷︷ ︸
=:P∗(t)

V∗(t)U∗(t)>︸ ︷︷ ︸
=:Z∗(t)

. (4.54)

This shows that a SVD tracking algorithm provides all necessary components in order
to determine a smooth polar decomposition of M(t). From Proposition 4.2, we get the
following result.

Proposition 4.3. Let M(t) ∈ Rn×n with rk(M(t)) = n and singular values σ1(t), ...,
σn(t) for t ∈ R. In the case, that we have groups of identical singular values, we define
σ1(t) = ... = σp1(t) =: σ̂1(t),..., σpq−1+1(t) = ... = σpq(t) =: σ̂q(t) for 1 ≤ p1 < ... <
pq = n and some q ∈ N.



CHAPTER 4. APPLICATION II: TRACKING MATRIX DECOMPOSITIONS 122

1. If t 7→ M(t) is Cr, r ≥ 1, and σi(t) 6= σj(t) for i 6= j and t ∈ R, then there exists
a Cr-polar decomposition, i.e. there exist Cr-families of orthogonal and positive
definite matrices Z∗(t), P∗(t), respectively, such that M(t) = P∗(t)Z∗(t).

2. If t 7→ M(t) is Cr, r ≥ 1, and has q groups of identically singular values satisfying
σ̂i(t) 6= σ̂j(t) for i 6= j and all t, then there exists a Cr-polar decomposition of
M(t).

3. If M(t) is real analytic, then there exists a real analytic polar decomposition.

Proof. The claims follow directly from Proposition 4.2 by noting (4.54).

We therefore compute the polar decomposition of M(t) by applying the SVD tracking
algorithm of Theorem 4.4 to the special situation here. To do this, we have to impose
the following conditions on M(t), cf. Section 4.1.3.

M1 The map t 7→ M(t) ∈ Rn×n, is Cr with r ≥ 2.

M2 The singular values σ1(t), ..., σn(t) of M(t) satisfy σi(t) 6= σj(t) for i 6= j and
t ∈ R.

M3 ‖M(t)‖, ‖Ṁ(t)‖ and ‖M̈(t)‖ are uniformly bounded on R.

M4 There exists c > 0 such that the singular values of M(t) satisfy for all t ∈ R
|σi(t)− σj(t)| ≥ c, i 6= j.

We arrive at the following result.

Theorem 4.5. Let M(t) satisfy M1-M4, let t 7→ U∗(t) ∈ O(n) and t 7→ V∗(t) ∈ O(n)
be C2-curves satisfying V >

∗ (t)M(t)U∗(t) = Σ(t), where Σ(t) = diag (σ1(t), ..., σn(t)),
t ∈ R. Let Mh

τ (t) denote an approximation of ∂
∂t

M(t) of order p ≥ 1 and let for
U, V ∈ Rn×n, t ∈ R and h > 0,

Y1(V, U) =
1

2
(2In − V >V − U>U),

Y2(V, U) =
1

2
(U>U − V >V ),

B1(V, U, t) =

1

2

(
U>(hMh

τ (t) + M(t))>V + V >(hMh
τ (t) + M(t))U + D(t)Y1(V, U) + Y1(V, U)D(t)

)
,

B2(V, U, t) =

1

2

(
U>(hMh

τ (t) + M(t))>V − V >(hMh
τ (t) + M(t))U + D(t)Y2(V, U)− Y2(V, U)D(t)

)
,

where
D(V, U, t) := diag

(
(U>M(t)>V )11, ..., (U

>M(t)>V )nn

)
,
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and di(V, U, t) = (D(V, U, t))ii, i = 1, ..., n. Let further Z1(V, U, t) = −Z1(V, U, t)> ∈
Rn×n and Z2(V, U, t) = −Z2(V, U, t)> ∈ Rn×n be defined as

(Z1(V, U, t))ij =

{
(B1(V, U, t))ij(dj(V, U, t)− di(V, U, t))−1, i 6= j

0, else

(Z2(V, U, t))ij = −(B2(V, U, t))ij(dj(V, U, t) + di(V, U, t))−1, i, j = 1, ..., n

Let (Uk), (Vk) and (Σ)k be defined for k ∈ N by

Vk+1 = Vk + Vk

(
Z1(Vk, Uk, tk) + Z2(Vk, Uk, tk) +

1

2
(Y1(Vk, Uk) + Y2(Vk, Uk))

)
,

Uk+1 = Uk + Uk

(
Z1(Vk, Uk, tk) +

1

2
Y1(Vk, Uk)− Z2(Vk, Uk, tk)− 1

2
Y2(Vk, Uk)

)
,

Σk+1 := diag
(
(U>

k+1M(tk+1)
>Vk+1)11, ..., (U

>
k+1M(tk+1)

>Vk+1)nn

)
.

Then for c > 0 and sufficiently small h > 0, the sequences (Pk), (Zk) defined by

Pk+1 = Vk+1Σk+1V
>
k+1,

Zk+1 = Vk+1U
>
k+1,

(4.55)

satisfy for k ∈ N and tk = kh

‖Zk − Z∗(tk)‖ ≤ ch(2 + ch)

and
‖Pk − P∗(tk)‖ ≤ ch(2 + ch)(1 + ‖Σ∗(tk)‖(1 + 2ch + c2h2)),

provided (V0, U0) is sufficiently close to (V∗(0), U∗(0)).

Proof. Under the conditions of this theorem, we have for k ∈ N

‖Vk − V∗(tk)‖2 + ‖Uk − U∗(tk)‖2 ≤ c2h2,

for (V0, U0) sufficiently close to (V∗(0), U∗(0)), cf. Theorem 4.4.
Thus,

VkU
>
k = V∗(tk)U∗(tk)> + ε1,

where ‖ε1‖ ≤ 2ch + c2h2 and
Σk = Σ∗(tk) + ε′2,

where ‖ε′2‖ ≤ (2ch + c2h2)‖Σ∗(tk)‖, which shows that

VkΣkV
>
k = V∗(tk)Σ∗(tk)V∗(tk)> + ε2,

where ‖ε2‖ ≤ ‖Σ∗(tk)‖(1 + 2ch + c2h2)(2ch + c2h2) + (2ch + c2h2).
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4.2.2 Polar decomposition by square root tracking

We now consider an other method to determine the time-varying polar decomposition
of M(t) ∈ Gl(n).
In the work of Getz [28], the polar decomposition of M(t) is obtained by computing
the uniquely determined positive square root X∗(t) of Λ(t) := M(t)M(t)>. Then the
positive definite factor P (t) and the orthogonal factor Z(t) such that M(t) = P (t)Z(t)
are given by

P (t) = Λ(t)X∗(t), Z(t) = X∗(t)M(t).

Thus, the major problem is now the determination of the square root X∗(t) of Λ(t).
This can be solved by finding the zero of the function F : S(n) × R → S(n), defined
by

F (X, t) := XΛ(t)X> − I. (4.56)

Here S(n) ⊂ Rn×n denotes the set of all symmetric matrices. Obviously, dim S(n) =
n(n+1)

2
=: s(n).

The zero of F can be determined by using the time-varying Newton flow, i.e. by finding
a solution X(t) of

DF (X, t)Ẋ = −µF (X, t)− ∂

∂t
F (X, t), µ > 0.

One therefore needs to invert DF (X(t), t) ∈ Rs(n)×s(n) to get an explicit version of the
above differential equation. According to Getz [28], the solution Γ(t) of the differential
equation

Γ̇ = −µDF (X∗(t), t)>(DF (X∗(t), t)Γ− I)− Γ
∂

∂t
DF (X∗(t), t)Γ

converges exponentially to DF (X∗(t), t)−1, provided that µ > 0 is sufficiently large and
Γ(0) is sufficiently close to DF (X∗(0), 0)−1

Thus, Getz proposes to solve the following coupled system to compute X(t) ≈ X∗(t)

{
vec(Ẋ) = −µΓvec(XΛ(t)X − I)− Γvec(XΛ̇X)

Γ̇ = −µΓ(DF (X, t)Γ− I)− Γ( d
dt

DF (X, t))
∣∣
Ẋ=−Γvec(XΛ̇(t)X)

Γ
(4.57)

Here vec : S(n) → Rs(n) denotes a vectorizing operation to transform symmetric ma-
trices into equivalent vectors in Rs(n).
In particular, one has the following theorem ([28]).

Theorem 4.6. Let M(t) be in Gl(n) for all t ∈ R. Let the polar decomposition of
M(t) be M(t) = P (t)Z(t) with P (t) ∈ S(n) the positive definite symmetric square
root of Λ(t) := M(t)M(t)> and Z(t) ∈ O(n) for all t ∈ R. Let vec(X) ∈ Rs(n),
Γ ∈ Rs(n)×s(n) and let (vec(X(t)), Γ(t)) denote the solution of (4.57), where F is defined
by (4.56). Then for µ > 0 sufficiently large and (vec(X(0)), Γ(0)) sufficiently close to
(vec(X∗(0)), DF (X∗(0), 0)−1) the following statements hold:
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1. X(t)Λ(t) exponentially converges to P (t),

2. X(t)M(t) exponentially converges to Z(t),

3. M(t)>X(t)2 exponentially converges to M(t)−1.

Discrete tracking method
Since Getz’ approach bases on the continuous version of the Euclidean time-varying
Newton flow, we use the corresponding discrete tracking algorithm (2.59) to determine
Pk and Zk, approximating the polar decomposition of M(t) = P∗(t)Z∗(t) at discrete
times tk = kh for k ∈ N and step size h > 0. Thus for (P0, Z0) sufficiently close to
(P∗(0), Z∗(0)), the sequences (Pk) and (Zk) are recursively given by

Pk+1 = Xk+1Λ(tk+1)

Zk+1 = Xk+1M(tk+1),
(4.58)

where Xk is obtained by discretizing the ODE (4.57) for µ := 1
h
. Hence,

{
vec(Xk+1) = vec(Xk)− Γkvec(XkΛ(tk)Xk − I)− hΓkvec(XkΛ

h
τ (tk)Xk)

Γk+1 = Γk − Γk(DF (Xk, tk)Γk − I)− hΓk(
d
dt

DF (Xk, tk))
∣∣
Ẋk=−Γkvec(XkΛh

τ (tk)Xk)
Γk

Here, Λh
τ (t) denotes an approximation of Λ̇(t).

In the next section, we will compare the results of this tracking algorithm with that
one defined in Theorem 4.5.

4.2.3 Numerical results

At first, we computed the polar decomposition of a sequence of matrices M(tk) ∈ Rn×n

by using the algorithm of Theorem 4.5. To be able to compare the computed values
with the exact ones, we defined (Mk) in the following way.
We set n = 10, Σ(t) = diag (σ1(t), ..., σ10(t)), where σi(t) := 2.5i+sin(it) for i = 1, ..., 10
and tk := kh for k = 1, ..., N . Here h := 0.05 is the step size and N = 40 is the number
of steps.
Then M(tk) is given by

M(tk) = V∗(tk)Σ(tk)U∗(tk),

where

V∗(t) = R>
1




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I8


 R1, U∗(t) = R>

2




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I8


 R2

for fixed random orthogonal matrices R1, R2 ∈ O(10). In all simulations, we used a
second order approximation Mh

τ for Ṁ .
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Since our algorithm works by determining the SVD of M(t), we used about 10% per-
turbed initial values V0, U0 to demonstrate the robustness of the used method. Figure
4.6 reflects the error plots of this simulation, where we observe an initial convergence
of the errors to zero, where they remain at a small level (≤ 0.08).
Note that the error of the orthogonal factor ‖Zk − Z∗(tk)‖ = ‖VkU

>
k − V∗(tk)U∗(tk)>‖

is considerably smaller than the error of the positive definite factor ‖Pk − P∗(tk)‖ =
‖VkDkV

>
k − V∗(tk)Σ(tk)V∗(tk)>‖. This is as expected from the error estimates in The-

orem 4.5, where the error of the positive definite factor is about ‖Σ∗(tk)‖ times higher.
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Figure 4.6: The errors of the factors of the polar decomposition of Mk: ‖Pk − P∗(tk)‖
and ‖Zk − Z∗(tk)‖ (dashed). Our algorithm of Theorem 4.5 was used to compute Pk

and Zk.

Next, we wanted to evaluate the second algorithm (Getz), as defined in (4.58). We used
the same setup as above and computed the factors Pk, Zk of the polar decomposition
of Mk. To check the robustness of this method, we used a 10% perturbed initial value
for X0.
Note that in order to implement this algorithm, one particularly needs to vectorize
symmetric matrices and use the corresponding matrix representation of DF . For ex-
ample, we can use the standard vectorizing operation for matrices in Rn×n. Then the
matrix representation H ∈ Rn2×n2

of DF can be easily determined, and is given by

H(Xk, tk) = (XkΛ(tk))⊗ I + I ⊗ (XkΛ(tk)),

where ⊗ denotes the Kronecker product.
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If one chooses a vectorizing operation without redundancies, one obtains a matrix
representation of DF of dimension n(n+1)

2
× n(n+1)

2
, which possibly leads to a faster

working algorithm. However, since the accuracy of such an algorithm would not be im-
proved, our particular choice of the vectorizing operation is valid to check the tracking
properties of this approach.
The resulting magnitudes Pk, Zk of this algorithm are compared to the exact ones
P∗(tk) and Z∗(tk), which is shown by the error plot in Figure 4.7. Similarly to the
first algorithm of Theorem 4.5, one also observes a fast initial convergence of the errors
towards zero, where they remain for the rest of the simulation. Although we used
comparable initial conditions to the first algorithm, the final error level is about twice
as high (≤ 0.17). An other advantage of the first algorithm is, that it works with

matrices of dimension n× n instead of (at least) n(n+1)
2

× n(n+1)
2

.
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Figure 4.7: The errors of the factors of the polar decomposition of Mk: ‖Pk − P∗(tk)‖
and ‖Zk−Z∗(tk)‖ (dashed). The discrete version of Getz’ algorithm, defined in (4.58),
was used to compute Pk and Zk.

4.3 Minor and principal eigenvector tracking

Many problems in control and signal processing require the tracking of certain eigenvec-
tors of a time-varying matrix; the eigenvectors associated with the largest eigenvalues
are called the principal eigenvectors and those with the smallest eigenvalues the minor
eigenvectors.
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In statistical analysis, the principal components of a covariance matrix C are projec-
tions of the data vectors on the directions of the principal eigenvectors of C. Therefore,
the major task in PCA is the determination of the principal eigenvectors of the covari-
ance matrix.
Here, we consider the more general task of determining minor or principal eigenvectors.
One interesting feature, inherited from a recently proposed minor eigenvector flow upon
which part of this work is based, is that the algorithm can be used also for tracking
principal eigenvectors simply by changing the sign of the matrix whose eigenvectors are
being tracked. The other key feature is that the algorithm has a guaranteed accuracy,
which bases on the particular choice of the tracking method.

We now consider the task of determining for t ∈ R the minor and principal eigenvectors
of a time-varying symmetric matrix A(t) ∈ Rn×n. These are defined as the n×p-matrix
consisting of eigenvectors of A(t) associated with the p smallest or largest eigenvalues,
respectively.
In the paper of Manton et al. [48] a method was introduced, which was able to extract
the minor and principal eigenvectors of a constant matrix A ∈ Rn×n. This was achieved
by finding the minimum or maximum of a suitable cost function. The minimization of
this function leads to a method, which determines the minor eigenvectors, hence the
eigenvectors associated to the smallest eigenvalues. We follow this approach in order
to derive a minor/principal eigenvector flow for time-varying matrices A(t).
In principal component analysis for time-varying data one is concerned with the as-
sociated eigenvector estimation task for a time-varying covariance matrix A(t). There
are at least two interpretations.

1. Let x(τ) ∈ Rn a curve of data points for τ ≥ 0. Then define for t ≥ 0

A(t) :=
1

t

∫ t

0

x(τ)x(τ)>dτ.

2. Let x1(t), ..., xm(t) ∈ Rn curves of data points for t ≥ 0. Then

A(t) :=
1

m

m∑
i=1

xi(t)x(t)>.

The subsequent analysis will not depend on any such statistical interpretation of A(t).
Thus, the developed eigenvector tracking techniques are also suitable to compute the
time-varying principal components of any covariance matrix A(t).

Consider the smooth cost function f : Rn×p × R→ R

f(X, t) =
1

2
tr (A(t)XNX>) +

µ

4
‖N −X>X‖2, (4.59)

where N ∈ Rp×p, µ ∈ R. To ensure that the extrema X∗(t) of f correspond to the
minor/principal eigenvectors of A(t), we make the following assumptions, cf. [48].
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A1 The scalar µ is strictly positive.

A2 A(t) ∈ Rn×n is symmetric for all t ∈ R.

A3 N = diag (n1, ..., np) ∈ Rp×p with n1 > ... > np > 0.

A4 A(t) has exactly p minor (principal) eigenvectors and the corresponding eigen-
values are pairwise distinct for all t ∈ R.

A5 µ does not equal any eigenvalue of A(t) for all t ∈ R.

Assumption A1 implies that the cost function (4.59) has compact sublevel sets and
therefore a global minimum X∗(t) exists for any t ∈ R. Furthermore, for fixed t ∈ R,
assumptions A1-A3 imply that each column of a critical point X∗ = [x1...xp] of f is
either the null-vector or an eigenvector of A(t) with eigenvalue λi, i = 1, ..., p. The
following lemma holds.

Lemma 4.5. [48] Assume A1-A5 hold. For t ∈ R, let λ1(t) < ... < λp(t) < λp+1(t) ≤
· · · ≤ λn(t) be the eigenvalues of A(t) in ascending order and let v1(t), ..., vn(t) be the
corresponding normalized eigenvectors. Then for any t ∈ R, X∗(t) = [x1(t) ... xp(t)] is
a local minimum of f(X, t) if and only if

xi(t) = ±γi(t)vi(t) (4.60)

where

γi(t) =

{ √
Nii(1− λi(t)/µ) if λi(t) < µ

0 otherwise

for i = 1, ..., p.

Let M denote an upper bound for λi(t) for all t ∈ R and i = 1, ..., p. If µ > M , then the
previous lemma shows, that for any t ∈ R, X∗ = [x1 ... xp] is a minimum of f(X, t) if
and only if its columns are the non-trivial eigenvectors of A(t), which correspond to the
p smallest eigenvalues. Thus the global minimum of f gives the minor eigenvectors of
A. In contrast, the maxima of f correspond to the principal eigenvectors of A, i.e. the
minima of the cost function f− obtained by replacing A by −A. Thus, by replacing A
by −A in the subsequent formulas, all results about minor eigenvectors are immediately
reformulated into equivalent results about principal eigenvectors. Thus, from now on,
we restrict ourselves to the minor eigenvector case. This duality between minor and
principal eigenvectors does not hold for the previously proposed cost functions for
principal eigenvector analysis and motivates our choice of the specific cost function
(4.59).

Proposition 4.4. Let t 7→ A(t) be a smooth matrix valued map satisfying A1-A5.
Assume that ‖A(t)‖, ‖Ȧ(t)‖ and |λi(t) − λj(t)|−1 for i 6= j are uniformly bounded on
R. Then there exists a smooth map t 7→ X∗(t) ∈ Rn×p, which is a smooth isolated
minimum of f(X, t). Moreover, if µ > M , then the rows of X∗(t) are the p non-trivial
eigenvectors, associated to the p smallest eigenvalues.
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Proof. Under the conditions above, there exists a smooth map t 7→ V (t) ∈ St(n, p)
such that V (t)>A(t)V (t) is a diagonal matrix with diagonal entries λ1(t) < ... < λp(t),
cf. [41]. Here St(n, p) denotes the Stiefel manifold of orthogonal n × p matrices V .
Let the columns v1(t), ..., vp(t) of V (t) be ordered, such that they correspond to the
eigenvalues λ1(t) < ... < λp(t).
Then define x1(t), ..., xp(t) as in (4.60). Thus X∗ := [x1(t) ... xp(t)] is a critical point
of f(X, t). If for some k ∈ {1, ..., p} and some t ∈ R

µ < λk(t),

then this relation holds for all t ∈ R, due to A5. Hence, the corresponding row xk(t) = 0
for all t. This proves the claim.

Remark 4.1. The previous proof shows also, that the minimum of f(X, t) is unique,
except for arbitrary time-varying signs and possible permutations of its columns.

4.3.1 Minor eigenvector tracking

Let A(t) and f as above and let X∗(t) denote a time-varying minimum of f , i.e.
f(X∗(t), t) is minimal for all t. We want to track this minimum by using the time-
varying Newton flow. Hence, we need to determine the ”X-gradient” and ”X-Hessian”
of f . Thus we consider for fixed t the function X 7→ f(X, t) and determine its gradient,
which is given as

∇f(X, t) = A(t)XN − µXN + µXX>X. (4.61)

Moreover, the Hessian (with respect to X) reads

Hf (X, t) · ξ = A(t)ξN − µξN + µ(ξX>X + Xξ>X + XX>ξ). (4.62)

In order to use the Newton flow for the tracking of the zero of the gradient, we have
to compute an inverse of the Hessian operator.
In the special case p = 1, X and ξ are vectors of length n and (4.62) can be rewritten
as

Hf (X, t) · ξ = A(t)ξ − µξ + µ(X>X + 2XX>)ξ, (4.63)

where we choose N = 1. Hence, the matrix representation of the Hessian is just given
as A(t)− µIn + µ(X>X + 2XX>).

But if p > 1, one needs more effort to determine the Hessian operator and we show
two different approaches.

4.3.1.1 Vectorizing the matrix differential equation

In this paragraph, we vectorize ξ and ∇f(X, t) by using the VEC operation and com-
puting a matrix representation for Hf by employing the Kronecker product, denoted
by ⊗, cf. appendix. Thus

Hf (X, t) = N ⊗ (A(t)− µIn) + µ(X>X ⊗ In + (X> ⊗X)πT + Ip ⊗XX>), (4.64)
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where πT is such that vectorized matrices are mapped onto vectors, which equal the
vectorized transposed matrix, i.e.

πT · VEC(X) = VEC(X>), X ∈ Rn×p.

Therefore, πT is a permutation matrix, which is for p = 1 given as πT = In.

Once having determined the Hessian, we arrive at the tracking algorithm for vector-
valued Xk, k ∈ N.

Algorithm 1: Choose a starting point X0 close to the exact minimum X∗(0) of f(X, 0),
tk := kh. For k ∈ N, the new point Xk+1, which approximates the minimum of f at
tk+1 is determined by

Xk+1 = Xk −H−1
f (∇f(Xk, tk) + hGh(Xk, tk)) (4.65)

Here Gh denotes an approximation to ∂
∂t
∇f(Xk, tk) of order m ≥ 1. Some valid choices

for this are given in Section 2.1.2.2. The following theorem gives necessary conditions
for the applicability of this algorithm.

Theorem 4.7. Let f(X, t) as defined in (4.59) and assume A1-A5. Let further t 7→
A(t) be a smooth map and let ‖A(t)‖, ‖Ȧ(t)‖, ‖Ä(t)‖, |λi(t) − λj(t)|−1 be uniformly
bounded on R for i 6= j and i ≤ p ∨ j ≤ p and let µ > sup{λi(t)| 1 ≤ i ≤ p, t ∈ R}.
Then there exists a smooth isolated zero X∗(t) of ∇f(X, t), whose columns are the
eigenvectors of A(t), associated with the p smallest values of the eigenvalues.
Moreover, for any sufficiently small step size h and c > 0 with ‖X0−X∗(0)‖ ≤ ch, the
sequence Xk defined by Algorithm 1 satisfies for all k ∈ N

‖Xk −X∗(tk)‖ ≤ ch. (4.66)

Proof. The existence of such a zero X∗(t) is clear due to Proposition 4.4.
To show (4.66), we have to check the necessary conditions of Theorem 2.10. Therefore,
we consider the derivatives of ∇f(X, t) = A(t)XN − µXN + µXX>X:

∂

∂t
∇f(X, t) = Ȧ(t)XN

Hf (X, t) · ξ = A(t)ξN − µξN + µ(ξX>X + Xξ>X + XX>ξ)

∂2

∂t2
∇f(X, t) = Ä(t)XN

D2∇f(X, t) · (ξ, η) = µ(ξη>X + ξX>η + ηξ>X + Xξ>η + ηX>ξ + Xη>ξ)
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∂

∂t
Hf (X, t) · ξ = Ȧ(t)ξN

Lemma 4.5 shows that supt∈R ‖X∗(t)‖ is finite. This shows, that for some r > 0 these
derivatives are bounded for all t ∈ R and X ∈ Br(X∗(t)).
The only estimate which remains to show is, that there exists a M > 0 such that for
all t ∈ R

‖Hf (X∗(t), t)−1‖ ≤ M (4.67)

According to [48], the eigenvalues of the Hessian at a critical point X∗(t) are

{2Nii(µ− λi(t)), i = 1, ..., p} ∪ {Nii(λj(t)− λi(t)), i = 1, ..., p, j = p + 1, ..., n} ∪

{(Nii −Njj)(λj(t)− λi(t)), 1 ≤ i < j ≤ p}∪
{Nii(µ− λi(t)) + Njj(µ− λj(t)), 1 ≤ i < j ≤ p}.

As we assumed the distances |λj(t) − λi(t)|, 1 ≤ i 6= j ≤ n to be uniformly bounded
in t, the smallest absolute value of the eigenvalues of Hf (X∗(t), t) is lower bounded for
all t, which shows (4.67).

Note that the matrix representation of Hf (X, t) is of dimension np× np, which shows,
that standard way to employ the Newton flow by solving a linear system

Hf (X, t)Ẋ = −∇f(X, t) + hGh(X, t)

for Ẋ might, however, not be practical for large n and p. This motivates to look for
an other way to invert Hf .

4.3.1.2 Approximately solving the implicit differential equation

In order to derive a practical inversion formula for Hf ,we consider the following equa-
tion for ξ

Hf (X, t)ξ := A(t)ξN − µξN + µ(ξX>X + Xξ>X + XX>ξ) = R, (4.68)

where R ∈ Rn×p. If X∗(t) denotes a minimum of f , we determine Q ∈ O(n) such that
QD = X∗, where D ∈ Rn×p satisfying Dij = 0 for i 6= j. Such matrices Q,D exist,
as the columns of X∗ are pairwise orthogonal. Hence, Dii = ±‖xi‖, and qi = xi/‖xi‖
where xi, qi denotes the ith column of X∗, Q, respectively for i = 1, ..., p. The remaining
n− p columns Y of Q have to be chosen such that Q is an orthogonal matrix, and the
columns of Y span the eigenspace of the n− p principal eigenvectors.
This is a quite restrictive assumption, however, if the n− p principal eigenvectors are
all equal, then Y ∈ Rn×(n−p) can be any matrix with orthonormal columns such that
X>Y = 0. Note further, that in the case of p = n, this assumption is not a restriction,
either.
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By defining η := Q>ξ, we can rewrite the above equation in X = X∗(t) = QD as

(A(t)− µIn)QηN + µ(QηD>Q>QD + QDη>Q>QD + QDD>Q>Qη) = R (4.69)

Multiply both sides with Q>. Then

Q>(A(t)− µIn)QηN + µQ>(QηD>D + QDη>D + QDD>η) = Q>R, (4.70)

which is for orthogonal Q and diagonal K = Q>(A(t)− µIn)Q equivalent to

KηN + µ(ηD>D + Dη>D + DD>η) = Q>R (4.71)

This is a linear equation which we want to solve for η. As we have assumed that X∗ is
a minimum of f(X, t), the matrix K = Q>(A(t)−µIn)Q = Q>A(t)Q−µIn is diagonal
with distinct eigenvalues. Thus, we can solve equation (4.71) by considering the entries
on position (i, j) and (j, i) for 1 ≤ i, j ≤ p. We have

c1ηij + c2ηji = (Q>R)ij

and
c3ηij + c4ηji = (Q>R)ji

Here c1 = KiiNjj +µ(D2
jj +D2

ii), c2 = DiiDjj, c3 = KjjNii +µ(D2
ii +D2

jj), c4 = DjjDii.
If i > p then Dij = 0 for all j = 1, ..., p. Hence, (Dη>D)ij = 0 and we have only to
consider one equation to determine ηij:

(c1 + c5)ηij = (Q>R)ij,

where c5 = µD2
jj. Therefore, we get the following formula for η:

ηij =





(
(Q>R)ij − c2

c3
(Q>R)ji

)(
c1 − c2c4

c3

)−1

, for 1 ≤ i, j ≤ p

(Q>R)ij

c1+c5
, for 1 ≤ j ≤ p, p + 1 ≤ i ≤ n

(4.72)

Noting that ξ = Qη shows that we have now found an explicit form of (4.68) in
X = X∗(t).

If X is not the exact minimum of f , then Q = [XD Y ] is not orthogonal, where
D,Y are chosen as described above. Moreover, Q>(A(t) − µIn)Q is not diagonal and
hence, K := diag (Q>(A(t)− µIn)Q) is only approximation for that matrix. However,
by using this simplification, one can approximatively solve (4.70) by solving equation
(4.71), whose solutions in η are given by (4.72). Since the original system (4.70) is
well-conditioned in X = X∗(t), these approximative solutions are expedient.
We arrive at the following tracking algorithm. Note that the implementation of this
algorithm is considerably cheaper than the previous one, as there is no need to compute
the exact inverse of the Hessian.
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Algorithm 2:
1. Choose a starting point X0 close to the exact minimum X∗(0) of f(X, 0) and use a
sufficiently small step size h and tk := kh.
2. For k ∈ N, suppose that Xk is given. Choose a matrix Qk ∈ Rn×n, whose first
p columns result from the normalization of the columns of Xk. The remaining n − p
columns Y of Q have to be chosen such that they are normalized and approximatively
span the eigenspace Y∗ ∈ Rn×(n−p) of the n− p principal eigenvectors, i.e. there exists
a k > 0 such that if X = X∗ + ε, then ‖Y − Y∗‖ ≤ k‖ε‖.
3. The new point Xk+1, which approximates the minimum of f at tk+1 is defined by

Xk+1 = Xk −Qkη, (4.73)

where η ∈ Rn×p is as defined in (4.72) for R = ∇f(Xk, tk)+hGh(Xk, tk) and Gh denotes
the approximation to ∂

∂t
∇f(Xk, tk) of order m ≥ 1.

Theorem 4.8. Let f(X, t) as defined in (4.59) and assume A1-A5. Let further t 7→
A(t) be a smooth map and let ‖A(t)‖, ‖Ȧ(t)‖, ‖Ä(t)‖, |λi(t) − λj(t)|−1 be uniformly
bounded on R for i 6= j and i ≤ p ∨ j ≤ p and let µ > sup{λi(t)| 1 ≤ i ≤ p, t ∈ R}.
Then there exists a smooth isolated zero X∗(t) of ∇f(X, t), whose columns are the
eigenvectors of A(t), associated with the p smallest values of the eigenvalues.
Moreover, for any sufficiently small step size h and c > 0 with ‖X0−X∗(0)‖ ≤ ch, the
sequence Xk defined by Algorithm 2 satisfies for all k ∈ N

‖Xk −X∗(tk)‖ ≤ ch. (4.74)

Proof. The existence of such a zero X∗(t) is clear due to Proposition 4.4. To show
(4.74), we have to check the conditions of Theorem 2.12.
As the boundedness properties of ‖Hf (x∗(t), t)‖, ‖ ∂

∂t
∇f(x∗(t), t)‖, ‖Hf (x∗(t), t)−1‖,

‖DHf (x, t)‖ and ‖ ∂2

∂t2
∇f(x, t)‖ already have been shown in the proof of Theorem 4.7,

we only show the additional assumptions.
The fact, that ‖ ∂

∂t
Hf (x, t)‖ is uniformly bounded for all t ∈ R and x ∈ BR(x∗(t)), can

be immediately seen by considering

∂

∂t
(Hf (X, t) · ξ) = Ȧ(t)ξN.

Thus it remains to show that the used approximation operator G(X, t) of DF (X, t)−1

satisfies for some c̃ > 0
∥∥∥∥(I −DF (X, t)G(X, t))

(
1

h
∇f(X, t) + Gh(X, t)(X, t)

)∥∥∥∥ ≤ c̃‖∇f(X, t)‖, (4.75)

for all t ∈ R and x ∈ BR(x∗(t)t).
It holds for R(X, t) :=

(
1
h
∇f(X, t) + Gh(X, t)(X, t)

)

‖(I −DF (X, t)G(X, t))R(X, t)‖ ≤ ‖DF (X, t)(DF (X, t)−1 −G(X, t))R(X, t)‖ ≤
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M‖DF (X, t)−1R(X, t)−G(X, t)R(X, t)‖
for some M > 0. Let v = DF (X, t)−1R(X, t) and w = G(X, t)R(X, t). Thus v is a
solution of (4.70), which is of the form

L(X, t) · η = Q>R(X, t).

while w solves (4.71), which is of the form.

L̃(X, t) · η = Q>R(X, t).

Note that L(X∗(t), t) = L̃(X∗(t), t) and moreover

(L(X, t)− L̃(X, t)) · η =

offdiag (Q>(A(t)− µI)Q)ηN + µ(Q>Q− I)(ηD>D + Dη>D + DD>η).

Let X = X∗ + ε. By construction,

QD = X = X∗ + ε,

for some matrix D ∈ Rn×n−p, defined by

Dij =

{ ‖X i‖, i = j
0, i 6= j

Here, X i denotes the ith column of X. Note that if X = X∗, then we have that
‖X i‖ =

√
Nii(1− λi(t)/µ), where λi(t) denotes the ith eigenvalue of A(t).

Note that ‖L(X, t)− L̃(X, t)‖ = O(‖ε‖), since the following conditions hold:

1. offdiag (Q>A(t)Q) = O(‖ε‖)
Note that Q = [XD Y ] with Y = Y∗ + ε′, where ‖ε′‖ ≤ k‖ε‖ for some k > 0.

Thus,

offdiag (Q>A(t)Q) =

[
offdiag (D>X>A(t)XD) D>X>A(t)Y

Y >A(t)XD offdiag (Y >A(t)Y )

]
.

Now consider the (1, 1) submatrix

offdiag (D>X>A(t)XD) = offdiag (D>(X>
∗ AX∗ + X>

∗ Aε + ε>AX∗ + ε>Aε)D) =

offdiag (D>(X>
∗ Aε + ε>AX∗ + ε>Aε)D).

The (2, 1) submatrix is the transposed of the (1, 2) submatrix, which is given by

D>X>A(t)Y = D>X>
∗ A(t)Y∗ + D>X>

∗ A(t)ε′ + D>εA(t)Y∗ + D>εA(t)ε′ =

D>X>
∗ A(t)ε′ + D>εA(t)Y∗ + D>εA(t)ε′.

Finally the (2, 2) submatrix can be rewritten as

offdiag (Y >A(t)Y ) = offdiag (Y >
∗ A(t)Y∗ + ε′>A(t)Y∗ + Y∗A(t)ε′ + ε′>A(t)ε′>) =

offdiag (ε′>A(t)Y∗ + Y∗A(t)ε′ + ε′>A(t)ε′>).

This shows that offdiag (Q>A(t)Q) = O(‖ε‖), as |Dii| is bounded for 1 ≤ i ≤ p.
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2. Q>Q− I = O(‖ε‖)
It holds

Q>Q− I =

[
D>X>XD − Ip D>X>Y

Y >XD Y >Y − In−p

]
.

By remembering that Y satisfies ‖Y − Y∗‖ = O(‖ε‖), where Y∗ consists of the
(n− p) principal eigenvectors, the claim gets obvious.

Since L(X, t) is well conditioned in X = X∗, we can conclude that the solution w of
the approximative system is close to the exact solution v, i.e.

‖v − w‖ ≤ k1‖X −X∗‖ ≤ k2∇f(X, t),

for some k1, k2 > 0 which shows (4.75). Note that the right estimate follows from the
assumptions on f , cf. Theorem 2.12.

4.3.2 Principal eigenvector tracking

As mentioned above, the principal eigenvectors of A(t) are minima of

f−(X, t) := −f(X, t) = −1

2
tr (A(t)XNX>)− µ

4
‖N −X>X‖2. (4.76)

Therefore, by replacing ∇f by −∇f and Hf by −Hf in Algorithm 1 and Algorithm 2,
the resulting update schemes track p time-varying principal eigenvectors of A(tk) for
tk = kh, h > 0. Obviously, these modified Algorithms keep their original properties.
In particular, the claims regarding the accuracy of the update rules are preserved.

4.3.3 Numerical results

All simulations were performed in Matlab.
In the first simulation, we checked the tracking ability of algorithm (4.65) and we used
approximations Gh for ∂

∂t
∇f of order 2. Moreover, we set h = 0.02, n = 10, p = 3 and

A(t) = Θ(t)K(t)Θ(t)>, where K(t) = diag (a1, ..., a10) and

Θ(t) = R>




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 I8


 R.

Here, R ∈ O(10) is a fixed random orthogonal matrix and ai := 2.5i + sin(it) for
i = 1, ..., 10. We moreover used N = diag (p, ..., 1).
Figure 4.8 shows the computed (dashed) and exact (solid) 3 minor time-varying eigen-
values. As it can be seen in the corresponding error plot (Fig 4.9), where ‖Xk−X∗(tk)‖
is depicted, we did not use perfect initial conditions but the computed values converged
fast towards the exact solution.
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Figure 4.8: The evolution of the minor eigenvalues. Solid: exact eigenvalues, dotted:
computed values of Algorithm 1.
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Figure 4.9: The error plot, corresponding to Figure 4.8.
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Order m Mean error Algorithm 1 Mean error Algorithm 2
0 1.9 · 10−2 1.8 · 10−2

1 6.2 · 10−4 5.2 · 10−4

2 3.3 · 10−4 2.6 · 10−4

3 2.5 · 10−4 2.0 · 10−4

Table 4.5: The mean error of the two algorithms, computed for different order approx-
imations of ∂

∂t
∇f(Xk, tk)

As mentioned in the previous section, it is of much less effort to compute an ap-
proximation instead of the exact inverse of the Hessian Hf , which, however does
not work in the general case. Thus, we replaced in the simulation K(t) by K̃(t) =
diag (a1 + sin(t), ..., a3 + sin(3t), a4 + sin(4t), ..., a4 + sin(4t)) ∈ R10×10. We computed
100 steps for h = 0.02 and tmax = 2.
Table 4.5 shows the mean accuracy of both algorithms (4.65) and (4.73) for different
choices of Gh(x, t). Here the mean error is given by 1

N

∑N
i=1 ‖Xk −X∗(tk)‖, where N

denotes the number of steps.
Hence, using approximations for ∂

∂t
F (Xk, tk) of order m > 1 significantly improves the

quality of the results in both algorithms. Note further, that the second algorithm pro-
duces more precise results, although it only uses an approximatively inverted Hessian.
Next, we wanted to check the computational effort of both methods. Therefore, we
made several simulations of both algorithms for different matrix dimensions n2 and
number of minor eigenvectors p. We used a second order approximation for ∂

∂t
F (Xk, tk)

and set K(t) = diag (a1 + sin(t), ..., ap + sin(pt), ap+1 + sin((p + 1)t), ..., ap+1 + sin((p +
1)t) ∈ Rn×n, N = 100, h = 0.02. We observed the computing time t1 of Algorithm 1
and compared it with the elapsed time t2 of Algorithm 2 for the same computation.
The results in Table 4.6 show, that the second algorithm has computational advantages,
which increase with the matrix size n2 and the number of tracked minor eigenvectors p.

In our first application, we derived subspace tracking methods in Chapter 3. Since this
task is closely related to the problems considered here, we wanted to compare these
methods with each other. Note that the subspace tracking algorithms work under less
restrictive assumptions than the algorithms derived in this chapter. Thus, we used
the following setup, to assure, that Algorithm 1 and Algorithm 2 of this chapter are
applicable.
We used different n, p ∈ N, step size h = 0.01, tk = kh, k = 1, ..., 100, and

A(t) = X∗(t)K(t)X∗(t)> ∈ Rn×n,

for K(t) = diag (an, ..., a1), X∗(t) = R>




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 In−2


 R. Here, R ∈ O(n)

is a fixed random orthogonal matrix, ai := 2.5i + sin(it) for i = 1, ..., p and ai :=
2.5(p + 1) + sin((p + 1)t) for i = p + 1, ..., n.
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n p t1 (Algorithm 1) t2 (Algorithm 2)

10 3 0.1 0.1
10 6 0.2 0.1
10 9 0.5 0.1
20 3 0.3 0.2
20 6 0.7 0.2
20 9 1.8 0.2
20 12 4.2 0.2
20 20 21 0.3
40 3 0.8 0.7
40 6 4.3 0.7
40 9 16 0.7
40 12 34 0.7
40 20 143 0.9
40 40 1033 0.9

Table 4.6: The computing time the two algorithms, determined for different values of
n and p

As done in Chapter 3, the task is to compute estimates Pk of the principal subspace
P∗(tk) of A(tk). Note that the isospectral representation P∗ of the principal subspace is
determined by the principal eigenvectors X∗ via P∗ = X∗X>

∗ . To measure the accuracy
of the algorithm’s output, we use the formula 1

100

∑100
k=1 ‖Pk −P∗(tk)‖. Table 4.7 shows

the results of different test runs, where perfect initial conditions were used. It turns
out, that the subspace tracking algorithm of Chapter 3 shows the best performance
regarding the accuracy and it is faster than the general MCA Algorithm 1. Note that
Algorithm 2 is the fastest one, but, as mentioned before, it does not work for general
subspace tracking problems.

In the case that p = n, Algorithm 1 and Algorithm 2 perform a complete eigenvalue

MCA Algorithm 1 MCA Algorithm 2 Subspace Algorithm 4

p Comp.timeMean error Comp.timeMean error Comp.timeMean error

20 2.5 4.8 · 10−4 0.3 4.7 · 10−4 0.2 1.0 · 10−5

40 20.7 2.3 · 10−4 0.8 2.4 · 10−4 2.7 1.5 · 10−5

80 140.3 2.0 · 10−4 3.2 1.7 · 10−4 27.0 1.6 · 10−5

Table 4.7: The computing time and mean error of the minor eigenvector tracking
algorithms and the 4th subspace tracking algorithm of Chapter 3 (parameterized time-
varying Newton algorithm). We used n = 10 and different values for p.
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MCA Algorithm 2 EVD Algorithm

n Comp.time Mean error Comp.time Mean error

10 0.10 5.2 · 10−4 0.03 2.0 · 10−4

20 0.26 8.7 · 10−4 0.04 2.7 · 10−4

40 1.0 6.1 · 10−3 0.16 3.2 · 10−4

Table 4.8: The computing time and accuracy of Algorithm 2 for p = n vs. the EVD
algorithm of Section 4.1.

decomposition. Therefore, we finally wanted to check, whether the faster Algorithm
2 can keep up with the EVD algorithm, as described in Theorem 4.2. The calculated
results show, that this is not the case, as the original EVD algorithm produces more
precise results (for the same matrix A(t)) at lower computational costs, cf. Table 4.8.



Chapter 5

Application III: Pose Estimation

In this section, we consider the problem of time-varying motion reconstruction, which
arises in the area of computer vision. Since we are able to formulate the particular task
as a time-varying optimization problem, the previously introduced tracking algorithms
are applicable. At first, we need some preparatory results.
Assume that we have a sequence of image points of a rigid object, which results by
either a motion of this object or equivalently, a motion of the camera.

image

camera

camera

image

focal length

z

y

x

optical axis

pose (R,t)

frame 2

frame 1

x’

y’z’

plane 2plane 1

Figure 5.1: Epipolar geometry.

Thus we have for each time t ∈ R two sets of N camera image points (x′1, ..., x
′
N)

and (x1(t), ..., xN(t)), and we assume that the correspondence between image points
x′i ↔ xi(t), 1 ≤ i ≤ N , is known. The goal is to reconstruct the 6 Euclidean mo-
tion parameters of τ(t) (translation) and of Θ(t) (rotation) by evaluating the two sets
of image points. As corresponding points of the same scene are related by epipolar

141
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geometry as depicted in Figure 5.1, we have for i = 1, ..., N the fundamental relation
(Longuet-Higgins):

xi(t)
>Ω(t)Θ(t)x′i = 0, (5.1)

where

Ω(t) :=




0 −τ3(t) τ2(t)
τ3(t) 0 −τ1(t)
−τ2(t) τ1(t) 0


 , Θ(t) ∈ SO(3).

This formula shows, that one can obtain the direction of τ(t) := (τ1(t), τ2(t), τ3(t))
>

but not its length by this approach: if Ω̂Θ̂ satisfies (5.1) for some t ∈ R, then cΩ̂Θ̂ is
as well a solution for any c ∈ R.
Due to relation (5.1) we define essential matrices, which can be also considered for
dimensions n 6= 3.

Definition 5.1. An essential matrix is of the form

E = ΩΘ,

where Ω is n× n skew symmetric and Θ is n× n orthogonal.

These essential matrices can be characterized as follows.

Proposition 5.1. A matrix E ∈ Rn×n admits a factorization

E = ΩΘ, Ω ∈ so(n), Θ ∈ O(n)

if and only if the nonzero singular values of E have even multiplicities.
If zero is a singular value of E, Θ can be chosen from SO(3).

Proof. ”⇒” Let E = ΩΘ, where Θ ∈ O(n) and Ω is skew symmetric. Thus, the non-
zero eigenvalues of Ω are all purely imaginary and come in pairs ±λi for i = 1, ..., k,
k ≤ n/2. This shows, that the SVD of Ω is given as

Ω = UΣV >, (5.2)

for some U, V ∈ O(n) and Σ = diag (σ1, σ1, σ2, σ2, ..., σk, σk, 0, ..., 0︸ ︷︷ ︸
n−2k

) ∈ Rn×n, where

σi = |λi| for i = 1, ..., k. Thus,
E = UΣ(V >Θ)

is a singular value decomposition of E, which shows the claimed property of the singular
values of E.
”⇐” Let

E = UΣV >

for some U, V ∈ O(n) and Σ = diag (σ1, σ1, σ2, σ2, ..., σk, σk, 0, ..., 0︸ ︷︷ ︸
n−2k

) ∈ Rn×n.
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Define R :=

[
0 −1
1 0

]
and Bi :=

[
0 σi

−σi 0

]
for i = 1, ..., k. Then, BiR =

[
σi 0
0 σi

]

and we get Σ = BR̂, where R̂ = diag (R, ..., R︸ ︷︷ ︸
k

, 1, ..., 1︸ ︷︷ ︸
n−2k

) and B = diag (B1, ..., Bk, 0, ..., 0︸ ︷︷ ︸
n−2k

).

Thus,
E = UBU>UR̂V >,

where UBU> is skew symmetric and UR̂V > ∈ O(n). Moreover, if n > 2k then 0 is
a singular value of E and we can choose U, V such that U, V ∈ SO(n), which implies
Θ ∈ SO(n), as det R̂ = 1.

Since we are interested into smooth decompositions of time-varying essential matrices
E(t), we also need the following proposition.

Proposition 5.2. Let E(t) ∈ Rn×n with rk E(t) = 2k for all t ∈ R and let the non-zero
singular values of E(t) have even multiplicity, s.t. they are given by (σ1(t), σ1(t), σ2(t),
σ2(t), ..., σk(t), σk(t)). We further assume, that the non-zero singular values satisfy for
i 6= j either σi(t) ≡ σj(t) for all t or σi(t) 6= σj(t) for all t.
Then for smooth t 7→ E(t), there exist smooth curves Ω(t) ∈ so(n) and Θ(t) ∈ O(n)
such that

E(t) = Ω(t)Θ(t).

Proof. According to Proposition 4.2, there exists a SVD of E(t), i.e.

E(t) = U(t)Σ(t)V (t)>,

where U(t), Σ(t), V (t) are smooth curves in t.

Let R :=

[
0 −1
1 0

]
, R̂ = diag (R, ..., R︸ ︷︷ ︸

k

, 1, ..., 1︸ ︷︷ ︸
n−2k

) and B(t) := Σ(t)R̂−1. Thus, Ω(t) :=

U(t)B(t)U(t)> and Θ(t) := U(t)R̂(t)V (t)> are smooth, as well. By construction,
E(t) = Ω(t)Θ(t), which shows the claim.

Now we have the necessary tools to reconsider the original problem (5.1), where we
want to reconstruct the motion parameters Ω(t) ∈ so(3) and Θ(t) ∈ SO(3).
Recall that we can not compute the length of the translation, which motivates to define
the normalized essential manifold:

ε3 := {ΩΘ| Ω ∈ so(3), ‖Ω‖ =
√

2, Θ ∈ SO(3)},

which can be equivalently characterized as

ε3 =

{
U

[
I2

0

]
V >

∣∣∣ U, V ∈ SO(3)

}
.

cf. Proposition 5.1. Moreover, it has already been shown in [35], that ε3 is a smooth
5-dimensional manifold, which is diffeomorphic to {X ∈ so(3)| ‖X‖2 = 2} × SO(3).
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By using these concepts, we can reformulate the time-varying pose estimation problem
into a minimization problem: Find E(t) ∈ ε3 such that

1

2

N∑
i=1

(xi(t)
>E(t)x′i)

2 (5.3)

is minimal for all t ∈ R. Note that in that case where the image points xi(t) are exactly
determined (called noise free case), the minimum of (5.3) is zero, due to relation (5.1).
For fixed t ∈ R, this is a quadratic optimization problem on the manifold of 3 × 3
matrices with fixed singular values 1, 1 and 0, cf. above. Geometric optimization
algorithms for solving this problem have been recently proposed by Helmke et al. [32]
and Ma et al. [45]. For time-varying data however, such methods cannot be directly
used and different approaches are required. Therefore, tracking methods basing on
the Newton flow will be used to derive different algorithms to solve the minimization
problem (5.3) for time-varying image points xi(t), i = 1, ..., N . This is equivalent to
determine (Ω(t), Θ(t)) ∈ {X ∈ so(3)| ‖X‖2 = 2} × SO(3) such that

Φ(Ω, Θ, t) =
1

2

N∑
i=1

tr 2(Ai(t)Ω(t)Θ(t)) (5.4)

is minimal for all t ∈ R, where Ai(t) := x′ixi(t)
> for i = 1, ..., N . Subsequently, we

derive extrinsic and intrinsic methods to get a solution of this time-varying optimiza-
tion problem by employing the time-varying Newton algorithm to modifications of the
cost function (5.4). At the end of this chapter, numerical results demonstrate the
applicability of these approaches.

5.1 Working in the ambient space

At first we want to solve the time-varying minimization problem (5.4) on a manifold
by using an extrinsic method, i.e. we embed the algorithm into the ambient Euclidean
space. Hence, we work in so(3) × R3×3 (instead of ε3), which can be identified with
R12 and we define for µ > 0 the modified cost function f : so(3)× R3×3 × R→ R by

f(Ω, Θ, t) =
1

2

N∑
i=1

tr 2(Ai(t)ΩΘ) +
µ

4
(‖Ω‖2 − 2)2 +

µ

4
‖Θ>Θ− I‖2. (5.5)

Note that this function differs from (5.4) by including a so-called penalty term to
produce a flow towards the manifold. The following two Lemmas are necessary to
justify this particular choice of f .

Lemma 5.1. For t ∈ R and µ > 0 the function f has compact sublevel sets and a
minimum exists.
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Proof. For any c > 0 and t = t0 ∈ R,

c ≥ f(Ω, Θ, t) ≥ µ

4
(‖Ω‖2 − 2)2

implies

(‖Ω‖2 − 2)2 ≤ 2

√
c

µ

and thus the sublevel sets

f≤c := {(Ω, Θ) ∈ so(3)× R3×3
∣∣ f(Ω, Θ, t0) ≤ c}

are compact. The result follows.

Minima of f are not exactly the minima of Φ (5.4), as we added penalty terms to
the original function. However, it is easy to see, that f(Ω, Θ, t) = 0 if and only if
Φ(Ω, Θ, t) = 0 and (Ω, Θ) ∈ ε3, which shows, that the global minima coincide in the
noise-free case.
We now prepare to apply Theorem 2.9 to the function f . Hence, we need the differential
of f(Ω, Θ, t) with respect to (Ω, Θ), which is given for fixed t as

df(Ω, Θ, t) · (η, Θ̇) = µ(‖Ω‖2 − 2)tr (Ω>η) + µtr (Θ>Θ− 1)tr (Θ>Θ̇) + (5.6)
N∑

i=1

tr (Ai(t)ΩΘ)tr ((ΘAi(t))skη) +
N∑

i=1

tr (Ai(t)ΩΘ)tr (Ai(t)ΩΘ̇),

where Bsk := 1
2
(B −B>).

To compute a gradient of f , we use the standard Riemannian metric in Euclidean
space. Thus for tangent vectors ξ1 = (η1, Θ̇1), ξ2 = (η2, Θ̇2) we set

〈ξ1, ξ2〉 := tr (η>1 η2) + tr(Θ̇>
1 Θ̇2)

and the gradient of f is given by

∇f(Ω, Θ, t) =

[
µ(‖Ω‖2 − 2)Ω−∑N

i=1 tr (Ai(t)ΩΘ)(ΘAi(t))sk

µΘ(Θ>Θ− I)−∑N
i=1 tr (Ai(t)ΩΘ)(ΩAi(t)

>)

]
. (5.7)

It is a necessary condition, that (5.7) is equal zero, to have a minimum of (5.5). This
enables us to reformulate the original minimizing problem into a more general zero-
finding problem, as isolated minima (Ω∗(t), Θ∗(t)) of (5.5) are isolated zeros of (5.7),
i.e.

∇f(Ω∗(t), Θ∗(t), t) = 0 ∀t ∈ R. (5.8)

The following lemma reveals some more properties of the critical points of f .

Lemma 5.2. For t ∈ R, any critical point (Ω∗, Θ∗) of f satisfies

(i) µ(‖Ω∗‖2 − 2)‖Ω∗‖2 = −∑N
i=1 tr 2(Ai(t)Ω∗Θ∗),
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(ii) µ(‖Θ>
∗ Θ∗‖2 − ‖Θ∗‖2) = −∑N

i=1 tr 2(Ai(t)Ω∗Θ∗).

In particular
0 < ‖Ω∗‖ ≤

√
2.

Note that for N > 5 and generic Ai(t), the right side of (i) and (ii) is smaller than
zero, which implies ‖Ω∗‖ �

√
2.

Proof. Use the critical point condition (5.8) and obtain

(i) µ(‖Ω‖2 − 2)Ω =
∑N

i=1 tr (Ai(t)ΩΘ)(ΘAi(t))sk,

(ii) µΘ(Θ>Θ− I) =
∑N

i=1 tr (Ai(t)ΩΘ)(Ω>Ai(t)
>),

The result follows by multiplication on both sides with Ω in (i) and with Θ> in (ii) and
applying the trace function to both sides of the equation.

For the purpose of deriving the Newton flow, we determine the derivative of∇f(Ω, Θ, t).
Thus

D1∇f(Ω, Θ, t) · η =
[

2µtr (Ω>η)Ω + µ(‖Ω‖2 − 2)η −∑N
i=1 tr (ΘAi(t)η)(ΘAi(t))sk

−∑N
i=1 tr (ΘAi(t)η)(ΩAi(t)

>)−∑N
i=1 tr (Ai(t)ΩΘ)(ηAi(t)

>)

]
,

D2∇f(Ω, Θ, t) · Θ̇ =
[ −∑N

i=1 tr (Ai(t)ΩΘ̇)(ΘAi(t))sk −
∑N

i=1 tr (Ai(t)ΩΘ)(Θ̇Ai(t))sk

µΘ̇(Θ>Θ− I) + µΘ(Θ̇>Θ + Θ>Θ̇)−∑N
i=1 tr (Ai(t)ΩΘ̇)(ΩAi(t)

>)

]
.

Let
Hf (Ω, Θ, t) := [D1∇f(Ω, Θ, t) D2∇f(Ω, Θ, t)] (5.9)

denote the Hessian of f(Ω, Θ, t). Now we are able to formulate the tracking algorithm,
as a consequence of Theorem 2.9. To preserve readability, we first give a matrix-valued
form of the differential equation. A way to vectorize the occurring ODE is shown later
in this section.

Theorem 5.1. Let f as above and let Ai(t) a C2-map such that for some c > 0,

‖Ai(t)‖ ≤ c,
∥∥ ∂

∂t
Ai(t)

∥∥ ≤ c and
∥∥∥ ∂2

∂t2
Ai(t)

∥∥∥ ≤ c for i = 1, ..., N and t ∈ R. Let

t 7→ (Ω∗(t), Θ∗(t))> be a smooth isolated solution of (5.8) and let M be a stable bundle
map. Assume further, that Hf (Ω∗(t), Θ∗(t), t) is invertible and ‖Hf (Ω∗(t), Θ∗(t), t)−1‖
is uniformly bounded for all t ∈ R.
Then the solution (Ω(t), Θ(t)) of the ODE

[
Ω̇

Θ̇

]
= Hf (Ω, Θ, t)−1

(
M(ΩΘ)∇f(Ω, Θ, t)− ∂

∂t
∇f(Ω, Θ, t)

)
(5.10)

converges exponentially to (Ω∗(t), Θ∗(t)), provided that (Ω(0), Θ(0)) is sufficiently close
to (Ω∗(0), Θ∗(0)).
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Proof. As ∇f is a polynomial in Ω and Θ, the assumptions regarding the derivatives
of ∇f in Theorem 2.9 are obviously satisfied. The claim follows.

Discrete tracking algorithm
We now give a discrete version of the continuous tracking algorithm of Theorem 5.1,
where a matrix-valued dynamical system is considered. Thus, before we discretize
the occurring ODE, we give an equivalent vector-valued equation by employing some
vectorizing operations to transform matrices into vectors, cf. appendix. Note that we
particularly use different notations VEC(·) and vec(·), where the first one applies to all
matrices, while the latter is only defined for skew symmetric matrices X ∈ so(3) ⊂ R3×3

by
vec(X) :=

√
2(X12, X13, X23)

>.

We further need ṼEC : R3×3 × so(3) → R12, defined by ṼEC(Ω, Θ) :=

[
vec(Ω)

VEC(Θ)

]
.

By using these tools, we transform the differential equation (5.10), which is defined in
matrix space so(3)× R3×3 into an equivalent ODE in R12, i.e.

ṼEC

([
Ω̇

Θ̇

])
= H−1

f (Ω, Θ, t)ṼEC

(
M(ΩΘ)∇f(Ω, Θ, t)− ∂

∂t
∇f(Ω, Θ, t)

)
, (5.11)

where Hf (Ω, Θ, t) :=

[
H1 H2

H3 H4

]
∈ R12×12 is the matrix representation of the Hessian

of f with respect to the used vectorial representation. Thus
[

H1 H2

H3 H4

]
·
[

vec(η)

VEC(Θ̇)

]
=

[
vec(D1∇f(Ω, Θ, t) · η)

VEC(D2∇f(Ω, Θ, t) · Θ̇)

]
,

and the submatrices of Hf are given by

H1 = 2µvec(Ω)vec>(Ω) + µ(‖Ω‖2 − 2)I +
N∑

i=1

vec((ΘAi(t))sk)vec>((ΘAi(t))sk) (5.12)

H2 =
N∑

i=1

vec((ΘAi(t))sk)VEC>(ΩAi(t)
>) (5.13)

−1

2

N∑
i=1

tr (Ai(t)ΩΘ)L(Ai(t)
> ⊗ I − I ⊗ Ai(t)

>πT )

H3 =
N∑

i=1

VEC(ΩAi(t)
>)vec>((ΘAi(t))sk)−

N∑
i=1

tr (Ai(t)ΩΘ)(Ai(t)⊗ I)L′ (5.14)

H4 = µ(Θ>Θ− I)⊗ I + µΘ> ⊗ΘπT + µ(I ⊗ΘΘ>) (5.15)

+
N∑

i=1

VEC(ΩAi(t)
>)VEC>(ΩAi(t)

>)
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Here, L is a linear map such that

LVEC(Ω) = vec(Ω)

for a skew symmetric matrix Ω and πT maps VEC(X) onto VEC(X>), cf. appendix.
We arrive at the following discrete tracking algorithm, which is a direct consequence
of Theorem 2.10. The proposed update scheme computes approximations (Ωk, Θk) of
the exact minimum (Ω∗(t), Θ∗(t)) of f at discrete times tk = kh for k ∈ N and h > 0.

Theorem 5.2. Let f as above and let Ai(t) a C2-map such that for some c > 0,

‖Ai(t)‖ ≤ c,
∥∥ ∂

∂t
Ai(t)

∥∥ ≤ c and
∥∥∥ ∂2

∂t2
Ai(t)

∥∥∥ ≤ c for i = 1, ..., N and all t ∈ R.

Let t 7→ (Ω∗(t), Θ∗(t))> satisfy (5.8) and let Gh(Ω, Θ, t) denote an approximation of
∂
∂t
∇f(Ω, Θ, t) satisfying for some R, c > 0

∥∥∥∥Gh(Ω, Θ, t)− ∂

∂t
∇f(Ω, Θ, t)

∥∥∥∥ ≤ ch

for all (Ω, Θ) with dist((Ω, Θ), (Ω∗(t), Θ∗(t))) ≤ R, t ∈ R and h > 0. Assume fur-
ther, that the Hessian Hf (Ω∗(t), Θ∗(t), t) is invertible and ‖Hf (Ω∗(t), Θ∗(t), t)−1‖ is
uniformly bounded for all t ∈ R.
Then for c > 0 and sufficiently small h > 0, the sequence

[
Ωk+1

Θk+1

]
=

[
Ωk

Θk

]
− ṼEC

−1 (
Hf (Ωk, Θk, tk)

−1ṼEC(∇f(Ωk, Θk, tk) + hGh(Ωk, Θk, tk))
)

satisfies for k ∈ N and tk = kh

‖Ωk − Ω∗(tk)‖2 + ‖Θk −Θ∗(tk)‖2 ≤ c2h2,

provided (Ω0, Θ0) is sufficiently close to (Ω∗(0), Θ∗(0)).

5.2 Intrinsic pose estimation

In this section we derive an algorithm, which works directly on the manifold in order
to track the minimum of the cost function (5.4).
Recall that the normalized essential manifold ε3 can be described as

ε3 = S × SO(3),

where S := {Ω| Ω ∈ so(3), ‖Ω‖ =
√

2} ∼= S2. We therefore consider the task of
minimizing the function

Φ : S × SO(3)× R→ R,
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defined by

Φ(Ω, Θ, t) :=
1

2

N∑
i=1

tr 2(Ai(t)ΩΘ) (5.16)

where Ai(t) := x′ixi(t)
> for i = 1, ..., N . In order to employ the time-varying Newton

flow for this optimization problem, we need to compute the intrinsic gradient and
Hessian of Φ. Let therefore (ηi, Θψi) ∈ T(Ωi,Θi)ε3, i = 1, 2 denote tangent vectors of
ε3. We define a Riemannian metric by

〈(η1, Θψ1), (η2, Θψ2)〉 := tr (η>1 η2) + tr (ψ>1 ψ2). (5.17)

To derive formulas for the intrinsic gradient and Hessian of Φ, we will use the same
approach as Ma [45], who used Newton’s method to compute the minimum of Φ(Ω, Θ, t)
for fixed t ∈ R. We extend this approach by using the time-varying Newton flow in
order to derive a tracking algorithm for the time-varying minimum of Φ.
At first, we need the description of an orthogonal basis B of the tangent space of ε3,
which is given in the following lemma.

Lemma 5.3. Let (Ω, Θ) ∈ S × SO(3) = ε3. Let mat : R3 → so(3) denote the
inverse of the vec operation (cf. appendix) and let u = vec(Ω), v = (v1, v2, v3)

> and
w = (w1, w2, w3)

> such that v>w = 0, w>u = 0, v>u = 0 and ‖v‖ = ‖w‖ = 1.
Then B̂1 := {mat(v), mat(w)} is a orthogonal basis of the tangent space TΩS of S and
a basis of the tangent space TΘSO(3) of SO(3) is given by B̂2 :=

{
Θmat(1, 0, 0)>,

Θmat(0, 1, 0)>, Θmat(0, 0, 1)>
}
.

Proof. As S ⊂ so(3) can be identified with S2 ⊂ R3, we obtain the basis B̂1 by
considering the situation in S2. For u ∈ S2 holds u>y = 0 if and only if y ∈ TuS2.
Therefore, we get an orthonormal basis of the tangent space TuS2 by using vectors
v, w ∈ R3 satisfying v, w 6= 0, v>w = 0, v>u = 0 and w>u = 0. Thus, TuS2 =
span(v, w), which shows the structure of B̂1.

Lemma 5.4. Let (Ω, Θ) ∈ ε3, let {B1, B2} denote an orthogonal basis of TΩS and let
{B3, B4, B5} denote an orthogonal basis of TΘSO(3) as defined in Lemma 5.3. Then
for any t ∈ R, the intrinsic gradient of Φ(Ω, Θ, t) in terms of B is given as

grad Φ(Ω, Θ, t) =
5∑

i=1

bi(t)Bi,

where

bi(t) =

{ ∑N
i=1 tr (Ai(t)ΩΘ)tr (Ai(t)BiΘ) i = 1, 2∑N
i=1 tr (Ai(t)ΩΘ)tr (Ai(t)ΩBi) i = 3, 4, 5

Proof. We use that the gradient of Φ is uniquely determined by

dΦ(Ω, Θ, t)(η, Θψ) =
N∑

i=1

tr (Ai(t)ΩΘ)tr (Ai(t)ηΘ + Ai(t)ΩΘψ) =
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〈grad Φ(Ω, Θ, t), (η, Θψ)〉 .
The claim gets obvious by noting that η ∈ span(B1, B2), while Θψ ∈ span(B3, B4, B5).

Recall, that for fixed t the Hessian form of Φ : ε3 → R at a point (Ω, Θ) ∈ ε3 is the
quadratic form

HΦ(Ω, Θ) : T(Ω,Θ)ε3 × T(Ω,Θ)ε3 → R

defined for any (η, Θψ) ∈ T(Ω,Θ)ε3 by

HΦ(Ω, Θ)((η, Θψ), (η, Θψ)) := (Φ ◦ x)′′(0).

Here x : I → ε3 denotes the geodesic x(s) =: (Ω(s), Θ(s)) with (Ω(0), Θ(0)) = (Ω, Θ)
and velocity x′(0) = (Ω′(0), Θ′(0)) = (η, Θψ). It is given by

(Ω(s), Θ(s)) =

(
Ω cos(σs) + U sin(σs), Θ

(
I +

sin(sϑ)

ϑ
ψ +

1− cos(sϑ)

ϑ2
ψ2

))
, (5.18)

where σ = ‖η‖√
2

and U =
√

2 η
‖η‖ , ϑ =

√
ψ2

12 + ψ2
13 + ψ2

23, cf. [45].
By using these expressions, we obtain explicit formulas of the Hessian form and Hessian
operator.

Lemma 5.5. Let (Ω, Θ) ∈ ε3, let {B1, B2} denote an orthogonal basis of TΩS and let
{B3, B4, B5} denote an orthogonal basis of TΘSO(3) as defined in Lemma 5.3.
The bilinear form, associated with the Hessian form of Φ is given as

HΦ(Ω, Θ, t) · ((η1, Θψ1), (η2, Θψ2)
)

=

1

4

( N∑
i=1

tr 2(Ai(t)((η1+η2)Θ+ΩΘ(ψ1+ψ2)))−
N∑

i=1

tr 2(Ai(t)((η1−η2)Θ+ΩΘ(ψ1−ψ2)))+

N∑
i=1

tr (Ai(t)ΩΘ)tr
(
Ai(t)(−Ω(‖η1+η2‖2−‖η1−η2‖2)Θ+4ΩΘψ1ψ2+4(η1Θψ2+η2Θψ1))

))

Moreover, the 5 × 5 matrix representation with respect to the basis {B1, ..., B5} of the
Hessian operator of Φ is determined by

(HΦ(Ω, Θ, t))ij = HΦ(Ω, Θ, t) · (Bi, Bj), 1 ≤ i, j ≤ 5.

Proof. Let (Ω, Θ) ∈ ε3 and let (η, Θψ) ∈ T(Ω,Θ)ε3 denote a tangent vector. Let fur-
ther (Ω(s), Θ(s)) denote a geodesic on ε3 with (Ω(0), Θ(0)) = (Ω, Θ) and velocity
(Ω′(0), Θ′(0)) = (η, Θψ), i.e. (Ω(s), Θ(s)) is as given in (5.18).
Then we consider the quadratic form HΦ(Ω, Θ, t)

HΦ(Ω, Θ, t) · (η, Θψ) =
(
Φ(Ω, Θ, t) ◦ (Ω(s), Θ(s), t)

)′′
(0) =
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N∑
i=1

tr 2(Ai(t)(Ω
′(0)Θ + ΩΘ′(0)))+

tr (Ai(t)ΩΘ)tr
(
Ai(t)(Ω

′′(0)Θ + ΩΘ′′(0) + 2Ω′(0)Θ′(0))
)

=

N∑
i=1

tr 2(Ai(t)(ηΘ + ΩΘψ)) + tr (Ai(t)ΩΘ)tr
(
Ai(t)(−Ω‖η‖2Θ + ΩΘψ2 + 2ηΘψ)

)
,

since Ω′(0) = η, Θ′(0) = Θψ, Ω′′(0) = −Ω‖η‖2 and Θ′′(0) = Θψ2.

Furthermore, the corresponding bilinear form is given by

HΦ(Ω, Θ, t) · ((η1, Θψ1), (η2, Θψ2)
)

=

1

4

(HΦ(Ω, Θ, t) · (η1 + η2, Θ(ψ1 + ψ2)
)−HΦ(Ω, Θ, t) · (η1 − η2, Θ(ψ1 − ψ2)

)
=

1

4

( N∑
i=1

tr 2(Ai(t)((η1 + η2)Θ + ΩΘ(ψ1 + ψ2)))

+
N∑

i=1

tr (Ai(t)ΩΘ)tr
(
Ai(t)(−Ω‖η1 + η2‖2Θ + ΩΘ(ψ1 + ψ2)

2 + 2(η1 + η2)Θ(ψ1 + ψ2))
)

−
N∑

i=1

tr 2(Ai(t)((η1 − η2)Θ + ΩΘ(ψ1 − ψ2)))

−
N∑

i=1

tr (Ai(t)ΩΘ)tr
(
Ai(t)(−Ω‖η1−η2‖2Θ+ΩΘ(ψ1−ψ2)

2 +2(η1−η2)Θ(ψ1−ψ2))
))

=

1

4

( N∑
i=1

tr 2(Ai(t)((η1+η2)Θ+ΩΘ(ψ1+ψ2)))−
N∑

i=1

tr 2(Ai(t)((η1−η2)Θ+ΩΘ(ψ1−ψ2)))+

N∑
i=1

tr (Ai(t)ΩΘ)tr
(
Ai(t)(−Ω(‖η1+η2‖2−‖η1−η2‖2)Θ+4ΩΘψ1ψ2+4(η1Θψ2+η2Θψ1))

))

The last claim follows by noting that the Hessian operator is the linear map

HΦ(Ω, Θ, t) : T(Ω,Θ)ε3 → T(Ω,Θ)ε3

uniquely defined by

HΦ(Ω, Θ, t)(ξ, η) = 〈HΦ(Ω, Θ, t)ξ, η〉 ∀ξ, η ∈ T(Ω,Θ)ε3.
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Discrete tracking algorithm
We now give a discrete tracking algorithm, which computes approximations (Ωk, Θk)
of the exact pose (Ω∗(t), Θ∗(t)) at discrete times tk = kh for k ∈ N and h > 0. The
sequence (Ωk, Θk)k∈N is defined as follows:

1. For (Ωk, Θk) ∈ ε3 choose the basis {B1, B2} of TΩk
S and the basis {B3, B4, B5}

of TΘk
SO(3), as described in Lemma 5.3.

2. By using Lemma 5.4, compute b := (b1, ..., b5)
> and c := (c1, ..., c5)

> such that

grad Φ(Ωk, Θk, t) =
5∑

i=1

biBi

and

Gh(Ωk, Θk, t) =
5∑

i=1

ciBi,

where Gh(Ωk, Θk, t) denotes an approximation for ∂
∂t

grad (Ωk, Θk, t).

3. Determine the matrix representation of the Hessian operator HΦ(Ωk, Θk, t) ∈
R5×5 with respect to the basis {B1, ..., B5}, cf. Lemma 5.5.

4. Compute
a := −HΦ(Ωk, Θk, tk)

−1(b + hc),

and set v := a1B1+a2B2, w = (a3, a4, a5)
>, σ = ‖v‖√

2
, U =

√
2

‖v‖mat(v), ψ = mat(w)

and ϑ =
√

ψ2
12 + ψ2

13 + ψ2
23.

5. The new point is determined by

(Ωk+1, Θk+1) =
(
Ωk cos σ + U sin σ, Θk

(
I + sin ϑ

ϑ
ψ + 1−cos ϑ

ϑ2 ψ2
))

. (5.19)

Theorem 5.3. Let Φ as above and let Ai(t) a C2-map such that for some c > 0,

‖Ai(t)‖ ≤ c,
∥∥ ∂

∂t
Ai(t)

∥∥ ≤ c and
∥∥∥ ∂2

∂t2
Ai(t)

∥∥∥ ≤ c for i = 1, ..., N and all t ∈ R. Let

t 7→ (Ω∗(t), Θ∗(t))> be a smooth isolated zero of grad Φ(Ω, Θ, t) and let Gh(Ω, Θ, t)
denote approximation of ∂

∂t
grad Φ(Ω, Θ, t) satisfying for some R, c > 0

∥∥∥∥Gh(Ω, Θ, t)− ∂

∂t
grad Φ(Ω, Θ, t)

∥∥∥∥ ≤ ch

for all (Ω, Θ) ∈ ε3 with dist((Ω, Θ), (Ω∗(t), Θ∗(t))) ≤ R, t ∈ R and h > 0. Assume
further, that HΦ(Ω∗(t), Θ∗(t), t) is invertible and ‖HΦ(Ω∗(t), Θ∗(t), t)−1‖ is uniformly
bounded for t ∈ R.
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Then for c > 0 and sufficiently small h > 0, the sequence (5.19) satisfies for k ∈ N
and tk = kh

dist
(
(Ωk, Θk), (Ω∗(tk), Θ∗(tk))

) ≤ ch,

provided (Ω0, Θ0) is sufficiently close to (Ω∗(0), Θ∗(0)).

Proof. In order to apply Theorem 2.4, we show that ‖(πD)2grad Φ(Ω, Θ, t)‖ is bounded,
where π = π(Ω,Θ) is the projection operator onto the tangent space of ε3 at (Ω, Θ). The
boundedness of the other derivatives of grad Φ is obvious then.
Note that the tangent space of ε3 = S × SO(3) is the direct product of the tangent
space of S and SO(3). The tangent space of S at Ω ∈ S consists of all skew-symmetric
matrices, which are orthogonal to Ω. Moreover, the elements ψ of the tangent space of
SO(3) at Θ ∈ SO(3) are characterized by the condition Θ>ψ ∈ so(3).
Thus for (η, ψ) ∈ so(3)× R3×3, the projection operator at (Ω, Θ) ∈ ε3 is given by

π(Ω,Θ)(η, ψ) =

(
η − 1

2
tr (η>Ω)Ω,

1

2
Θ(Θ>ψ − ψ>Θ)

)
. (5.20)

Hence, we can compute the gradient of Φ by using the Euclidean gradient ∇Φ(Ω, Θ, t)
∈ so(3)× R3×3, i.e.

grad Φ(Ω, Θ, t) = π(Ω,Θ)∇Φ(Ω, Θ, t).

Note that ∇Φ(Ω, Θ, t) is determined for (η, ψ) ∈ so(3)× R3×3 by

〈∇Φ(Ω, Θ, t), (η, ψ)〉 = dΦ(Ω, Θ, t)(η, ψ),

which is equivalent to

〈∇Φ(Ω, Θ, t), (η, ψ)〉 =
N∑

i=1

tr (Ai(t)ΩΘ)tr ((ΘAi(t))skη)+
N∑

i=1

tr (Ai(t)ΩΘ)tr (Ai(t)Ωψ).

This shows that

∇Φ(Ω, Θ, t) =

[ −∑N
i=1 tr (Ai(t)ΩΘ)(ΘAi(t))sk

−∑N
i=1 tr (Ai(t)ΩΘ)ΩAi(t)

>

]
.

Therefore, the intrinsic gradient is given by

grad Φ(Ω, Θ, t) =

[ −∑N
i=1 tr (Ai(t)ΩΘ)

(
(ΘAi(t))sk + 1

2
tr ((ΘAi(t))skΩ)Ω

)
−∑N

i=1 tr (Ai(t)ΩΘ)Θ(Θ>ΩAi(t)
>)sk

]
.

A simple calculation shows that Dgrad (Ω, Θ, t)(ψ, η) is a polynomial in Ω, Θ, ψ, η,
where coefficients of the form tr (p(Ω, Θ, ψ, η)) occur. Here, p(Ω, Θ, ψ, η) is a polynomial
in Ω, Θ, ψ, η.
Equation (5.20) implies that π(Ω,Θ)Dgrad (Ω, Θ, t)(ψ, η) is also a polynomial in Ω, Θ, ψ,
η, where coefficients of the form tr (p(Ω, Θ, ψ, η)) occur with polynomials p(Ω, Θ, ψ, η).
These reflections show that (π(Ω,Θ)D)2grad Φ(Ω, Θ, t)·((ψ1, η1), (ψ2, η2)

)
is a polynomial

in Ω, Θ, ψ1, η1, ψ2, η2, where coefficients of the form tr (p(Ω, Θ, ψ1, η1, ψ2, η2)) occur with
polynomials p(Ω, Θ, ψ1, η1, ψ2, η2).
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Hence,
‖(π(Ω,Θ)D)2grad Φ(Ω, Θ, t) · ((ψ1, η1), (ψ2, η2)

)‖
is bounded for (Ω, Θ) ∈ ε3 and ‖ψ1‖ = ‖η1‖ = ‖ψ2‖ = ‖η2‖ = 1, t ∈ R.

5.3 Further approaches for time-varying pose esti-

mation

Here we develop alternative methods to derive update schemes to solve the time-varying
pose estimation problem. As they are closely related to the previously introduced
methods, we restrict to a short description.

5.3.1 Partially intrinsic method

The original optimization problem is defined on the normalized essential manifold ε3,
which can be considered as the direct product of S × SO(3), where S := {Ω| Ω ∈
so(3), ‖Ω‖ =

√
2} ∼= S2. Hence, ε3 is a Riemannian submanifold of M := so(3)×SO(3)

and we can embed the original minimization problem (5.4) into M by including penalty
terms into the cost function.
Thus the optimization task turns into finding Ω(t) ∈ so(3) and Θ(t) ∈ SO(3) for given
matrices Ai(t), i = 1, ..., N , such that for µ > 0

Φ(Θ, Ω, t) :=
µ

4
(‖Ω‖2 − 2)2 +

1

2

N∑
i=1

tr 2(Ai(t)ΩΘ) (5.21)

is minimal for all t ∈ R.
Obviously, dim M = 6 and the tangent vectors at (Ω, Θ) ∈ M are (η, Θψ) for η, ψ ∈
so(3).
In order to minimize Φ, we need to compute an intrinsic gradient. Let therefore
(ηi, Θψi) ∈ T(ΩiΘi)M , i = 1, 2 and define a Riemannian metric by

〈(η1, Θψ1), (η2, Θψ2)〉 := tr (η>1 η2) + tr (ψ>1 Θ>Θψ2) = tr (η>1 η2) + tr (ψ>1 ψ2). (5.22)

The derivative of Φ(Ω, Θ, t) with respect to (Ω, Θ) is given as

DΦ(Ω, Θ, t)(η, Θψ) =

µ(‖Ω‖2 − 2)tr (Ω>η) +
N∑

i=1

tr (Ai(t)ΩΘ)tr (Ai(t)ηΘ + Ai(t)ΩΘψ) =

µ(‖Ω‖2 − 2)tr (Ω>η) +
N∑

i=1

tr (Ai(t)ΩΘ)tr
(
(ΘAi(t))skη + (Ai(t)ΩΘ)skΘ

>Θψ
)
,

where we used, that Θ>Θψ ∈ so(3) and Bsk := 1
2
(B −B>).
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Lemma 5.6. For any t ∈ R, the intrinsic gradient of Φ(Ω, Θ, t) on M is given as

grad Φ(Ω, Θ, t) =

[
µ(‖Ω‖2 − 2)Ω−∑N

i=1 tr (Ai(t)ΩΘ)(ΘAi(t))sk

−Θ
∑N

i=1 tr (Ai(t)ΩΘ)(Ai(t)ΩΘ)sk

]
. (5.23)

Proof. Let for t ∈ R, grad Φ(Ω, Θ, t) :=

[
G1

G2

]
. Thus,

tr (G>
1 η) + tr (G>

2 Θψ) =

tr

(
µ(‖Ω‖2 − 2)Ω>η +

N∑
i=1

tr (Ai(t)ΩΘ)(ΘAi(t))skη

)
+

tr

(
N∑

i=1

tr (Ai(t)ΩΘ)(Ai(t)ΩΘ)skΘ
>Θψ

)

= µ(‖Ω‖2 − 2)tr (Ω>η) +
N∑

i=1

tr (Ai(t)ΩΘ)tr (ΘAi(t)η)+

N∑
i=1

tr (Ai(t)ΩΘ)tr (Ai(t)ΩΘΘ>Θψ)

= µ(‖Ω‖2− 2)tr (Ω>η) +
N∑

i=1

tr (Ai(t)ΩΘ)tr (ΘAi(t)η) +
N∑

i=1

tr (Ai(t)ΩΘ)tr (Ai(t)ΩΘψ)

= dΦ(Ω, Θ, t)(η, Θψ).

To derive a Newton flow, we furthermore need to determine the Hessian operator which
is given by the following formula:

HΦ(Ω, Θ, t) = πT(Ω,Θ)MDgrad Φ(Ω, Θ, t), (5.24)

where πT(Ω,Θ)M denotes the projection operator onto the tangent space T(Ω,Θ)M .
We compute at first the derivative of grad Φ. Let therefore

Dgrad Φ(Ω, Θ, t)(η, Θψ) =:

[
A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ
B1(Ω, Θ, t)η + B2(Ω, Θ, t)Θψ

]
.

Hence, the components of Dgrad Φ are as follows:

A1(Ω, Θ, t)η = 2µtr (Ω>η)Ω + ηµ(‖Ω‖2 − 2)−
N∑

i=1

tr ((ΘAi(t))skη)(ΘAi(t))sk (5.25)
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A2(Ω, Θ, t)Θψ = −
N∑

i=1

tr (Ai(t)ΩΘψ)(ΘAi(t))sk−
N∑

i=1

tr (Ai(t)ΩΘ)(ΘψAi(t))sk (5.26)

B1(Ω, Θ, t)η = (5.27)

−Θ
N∑

i=1

tr ((ΘAi(t))skη)(Ai(t)ΩΘ)sk −Θ
N∑

i=1

tr (Ai(t)ΩΘ)(Ai(t)ηΘ)sk

B2(Ω, Θ, t)Θψ = −Θψ

N∑
i=1

tr (Ai(t)ΩΘ)(Ai(t)ΩΘ)sk − (5.28)

Θ
N∑

i=1

tr (Ai(t)ΩΘψ)(Ai(t)ΩΘ)sk −Θ
N∑

i=1

tr (Ai(t)ΩΘ)(Ai(t)ΩΘψ)sk

Using these formulas, we obtain the following equation for the Hessian operator

HΦ(Ω, Θ, t) · (η, Θψ) =

[
P1(A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ)
P2(B1(Ω, Θ, t)η + B2(Ω, Θ, t)Θψ)

]
,

where P1 and P2 are projection operators such that HΦ(Ω, Θ, t) · (η, Θψ) ∈ T(Ω,Θ)M .
Thus,

P1(A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ) ∈ so(3),

P2(B1(Ω, Θ, t)η + B2(Ω, Θ, t)Θψ) ∈ TΘSO(3).

Since A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ ∈ so(3), we have

P1(A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ) = A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ.

Since P2 is given by
P2 : X 7→ Θ(Θ>X)sk,

the Hessian operator turns into

HΦ(Ω, Θ, t) · (η, Θψ) =

[
A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ

Θ(Θ>B1(Ω, Θ, t)η + Θ>B2(Ω, Θ, t)Θψ)sk

]
=

[
A1(Ω, Θ, t)η + A2(Ω, Θ, t)Θψ

B1(Ω, Θ, t)η + B̃2(Ω, Θ, t)Θψ

]
,

where

B̃2(Ω, Θ, t)Θψ = −Θ
N∑

i=1

tr (Ai(t)ΩΘ)(ψ(Ai(t)ΩΘ)sk)sk − (5.29)

Θ
N∑

i=1

tr (Ai(t)ΩΘψ)(Ai(t)ΩΘ)sk −Θ
N∑

i=1

tr (Ai(t)ΩΘ)(Ai(t)ΩΘψ)sk



CHAPTER 5. APPLICATION III: POSE ESTIMATION 157

By vectorizing these magnitudes (cf. appendix), we could derive a 12 × 12 matrix
representation Ĥ of the Hessian operator. Having found a matrix representation of the
Hessian, we can use the time-varying Newton flow to obtain a dynamical system to
track the minimum of Φ. This leads to a linear equation

ĤΦ(Ω, Θ, t)

(
vec(η)

VEC(Θψ)

)
=

(
vec(R1)

VEC(R2)

)
, (5.30)

where R1, R2 are the first and second component of M(ΩΘ)grad Φ(Ω, Θ, t) + ∂
∂t

grad Φ
(Ω, Θ, t). As this linear equation is restricted to the 6 dimensional tangent space of M ,
we can transform it into a simpler form. We have

ĤΦ(Ω, Θ, t)

[
I

I ⊗Θ

](
vec(η)

VEC(Θ>Θψ)

)
=

[
I

I ⊗Θ

](
vec(R1)

VEC(Θ>R2)

)
,

which is equivalent to

ĤΦ(Ω, Θ, t)

[
I

(I ⊗Θ)L>

](
vec(η)
vec(ψ)

)
=

[
I

(I ⊗Θ)L>

](
vec(R1)

vec(Θ>R2)

)
,

where L ∈ R3×12 satisfies vec(η) = Lvec(η) for η ∈ so(3), cf. appendix. This implies
that

[
I

L(I ⊗Θ>)

]
ĤΦ(Ω, Θ, t)

[
I

(I ⊗Θ)L>

]

︸ ︷︷ ︸
=: H̄Φ(Ω, Θ, t) ∈ R6×6

(
vec(η)
vec(ψ)

)
=

(
vec(R1)

vec(Θ>R2)

)
,

and therefore

H̄Φ(Ω, Θ, t)

(
vec(η)
vec(ψ)

)
=

(
vec(R1)

vec(Θ>R2)

)
.

We obtain a linear equation, which has a non-singular system matrix H̄Φ ∈ R6×6. Since
H̄Φ is nothing but a matrix representation of the Hessian operator with respect to a
suitable basis of the tangent space of M , the solutions of the reduced system also solve
the original system (5.30).
By using the equations (5.25), (5.26), (5.27) and (5.29), we get the matrix representa-

tion H̄Φ(Ω, Θ, t) :=

[
G1 G2

G3 G4

]
of the Hessian operator by considering

1. G1vec(η) = vec(A1(Ω, Θ, t)η)

2. G2vec(ψ) = vec(A2(Ω, Θ, t)Θψ)

3. G3vec(η) = vec(Θ>B1(Ω, Θ, t)η)

4. G4vec(ψ) = vec(Θ>B̃2(Ω, Θ, t)Θψ)
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Hence, the submatrices G1, ..., G4 of H̄Φ are given by

G1 = 2µvecΩvec>Ω + µ(‖Ω‖2 − 2)I +
N∑

i=1

vec(ΘAi(t))skvec>(ΘAi(t))sk, (5.31)

G2 =
N∑

i=1

vec(ΘAi(t))skvec>(AiΩΘ)sk (5.32)

−1

2

N∑
i=1

tr (Ai(t)ΩΘ)L(Ai(t)
> ⊗Θ + Θ⊗ Ai(t)

>)L>,

G3 =
N∑

i=1

vec(Ai(t)ΩΘ)skvec>(ΘAi(t))sk (5.33)

−1

2

N∑
i=1

tr (Ai(t)ΩΘ)L(Θ> ⊗ Ai(t) + Ai(t)⊗Θ>)L>,

G4 =
N∑

i=1

tr (Ai(t)ΩΘ)L((Ai(t)ΩΘ)sk ⊗ I + I ⊗ (Ai(t)ΩΘ)sk)L
> (5.34)

+
N∑

i=1

vec(Ai(t)ΩΘ)skvec>(Ai(t)ΩΘ)sk

−1

2
L

N∑
i=1

tr (Ai(t)ΩΘ)(I ⊗ (Ai(t)ΩΘ) + (Ai(t)ΩΘ)⊗ I)L>.

Discrete tracking algorithm
We now formulate the resulting discrete tracking algorithm, which computes approxi-
mations (Ωk, Θk) of the exact pose (Ω∗(t), Θ∗(t)) at discrete times tk = kh for k ∈ N
and h > 0.

1. For k ∈ N, compute the gradient grad Φ(Ωk, Θk, t) and an approximation
Gh(Ωk, Θk, t) of ∂

∂t
grad (Ωk, Θk, t).

2. Compute the Hessian operator H̄Φ(Ωk, Θk, t) ∈ R6×6 as described above and set

a := −H̄Φ(Ωk, Θk, tk)
−1

[
vec(h(Gh)1(Ωk, Θk, t) + (grad Φ)1(Ωk, Θk, t))

vec(Θ>(h(Gh)2(Ωk, Θk, t) + (grad Φ)2(Ωk, Θk, t)))

]
,

where (Gh)i(Ωk, Θk, t) and (grad Φ)i(Ωk, Θk, t) denote the upper or lower subma-
trix of Gh(Ωk, Θk, t) and grad Φ(Ωk, Θk, t) for i = 1 or i = 2.
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3. For η = mat(a1, a2, a3) and ψ = mat(a4, a5, a6) the new point is given by

(Ωk+1, Θk+1) =
(
Ωk + η, Θk

(
I + sin ϑ

ϑ
ψ + 1−cos ϑ

ϑ2 ψ2
))

, (5.35)

where ϑ =
√

ψ2
12 + ψ2

13 + ψ2
23.

Theorem 5.4. Let M = so(3) × SO(3) and let Φ : M → R as above. Let Ai(t) be a

C2-map such that for some c > 0, ‖Ai(t)‖ ≤ c,
∥∥ ∂

∂t
Ai(t)

∥∥ ≤ c and
∥∥∥ ∂2

∂t2
Ai(t)

∥∥∥ ≤ c for

i = 1, ..., N , t ∈ R. Let t 7→ (Ω∗(t), Θ∗(t))> be a smooth isolated zero of grad Φ(Ω, Θ, t)
and let Gh(Ω, Θ, t) denote an approximation of ∂

∂t
grad Φ(Ω, Θ, t) satisfying for some

R, c > 0 ∥∥∥∥Gh(Ω, Θ, t)− ∂

∂t
grad Φ(Ω, Θ, t)

∥∥∥∥ ≤ ch,

for all (Ω, Θ) ∈ M with dist((Ω, Θ), (Ω∗(t), Θ∗(t))) ≤ R, t ∈ R and h > 0. Assume
further, that HΦ(Ω∗(t), Θ∗(t), t) is invertible and ‖HΦ(Ω∗(t), Θ∗(t), t)−1‖ is uniformly
bounded for all t ∈ R.
Then for c > 0 and sufficiently small h > 0, the sequence (5.35) satisfies for k ∈ N
and tk = kh

dist
(
(Ωk, Θk), (Ω∗(tk), Θ∗(tk))

) ≤ ch,

provided (Ω0, Θ0) is sufficiently close to (Ω∗(0), Θ∗(0)).

Proof. It can be easily seen, that the conditions of Theorem 2.4 are satisfied. This
shows that the sequence defined by

(Ωk+1, Θk+1) =
(
Ωk + η, expΘk

ψ
)

satisfies
dist

(
(Ωk, Θk), (Ω∗(tk), Θ∗(tk))

) ≤ ch

provided (Ω0, Θ0) is sufficiently close to (Ω∗(0), Θ∗(0)). Here, η and ψ are defined as
in step 3. By using Rodrigues’ formula for matrix exponentials in R3×3, the update
scheme turns into (5.35), which proves the claim.

5.3.2 Parameterization method

Again we consider the task of solving the pose estimation problem by minimizing a
cost function Φ on the essential manifold. Here we use the following representation of
the manifold

ε3 =

{
U

[
I2

0

]
V >

∣∣∣ U, V ∈ SO(3)

}
,
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and we define the cost function Φ : ε3 × R→ R by

Φ(E, t) :=
1

2

N∑
i=1

tr 2(Ai(t)E).

According to Helmke ([32]), a family of parameterizations (γE)E∈ε3
of the normalized

essential manifold is given as follows:
Let

R1 : R5 → so(3),




y1
...
y5


 7→ 1√

2




0 − y3√
2

y2
y3√
2

0 −y1

−y2 y1 0


 ,

and

R2 : R5 → so(3),




y1
...
y5


 7→ 1√

2




0 y3√
2

y5

− y3√
2

0 −y4

−y5 y4 0


 .

Let further Σ =

[
I2

0

]
and U, V ∈ SO(3) such that E = UΣV >. Then a parame-

terization γE : N (0) → ε3 of ε3 with γE(0) = E is given by

γE(y) := UeR1(y)Σe−R2(y)V >. (5.36)

Here, N (0) ⊂ R5 is a sufficiently small neighborhood of the origin.
The derivative of γE reads for h = (h1, ..., h5)

> ∈ R5

DγE(y) · h = U · (5.37)

eR1(y) 1√

2




0 − h3√
2

h2
h3√

2
0 −h1

−h2 h1 0


 Σe−R2(y) − 1√

2
eR1(y)Σe−R2(y)




0 h3√
2

h5

− h3√
2

0 −h4

−h5 h4 0







·V >

and particularly,

DγE(0) · h =
1√
2
U




0 −√2h3 −h5√
2h3 0 h4

−h2 h1 0


 V >. (5.38)

Lemma 5.7. There exists a r > 0 such that for all E ∈ ε3 the parameterization γE is
injective on Br(0) ⊂ R5. In particular, there exist constants m1, m2, m3 > 0 such that

σmin(DγE(y)) ≥ m1,

σmax(DγE(y)) ≤ m2,

and
‖D2γE(y)‖ ≤ m3,

for all y ∈ Br(0).
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Proof. The injectivity of the parameterization is implied if the smallest singular value
of DγE(y) is lower bounded by m1 > 0 for all y ∈ Br(0).
The claim regarding the largest singular value gets obvious by considering (5.37).
To bound ‖D2γE‖, consider

D2γE(y) · (h, h) = U ·
(
eR1(y)H2

1Σe−R2(y) − eR1(y)H1Σe−R2(y)H2 − eR1(y)H1Σe−R2(y)H2 + eR1(y)Σe−R2(y)H2
2

)
V >

where H1 = 1√
2




0 − h3√
2

h2
h3√

2
0 −h1

−h2 h1 0


 and H2 = 1√

2




0 h3√
2

h5

− h3√
2

0 −h4

−h5 h4 0


. This shows

the existence of m2 > 0 such that ‖D2γE(y)‖ ≤ m2 for all y ∈ N (0) and E ∈ ε3.
Note that (5.38) shows that σmin(DγE(0)) ≥ c, for some c > 0 and all E ∈ ε3.
We use the following equation (Taylor):

DγE(y) = DγE(0) + R,

where ‖R‖ ≤ m3‖y‖. This shows that for r := c
2m3

, we get that

σmin(DγE(y)) ≥ c/2

for all E ∈ ε3 and y ∈ Br(0) ∩N (0).

The previous lemma showed that the family of parameterizations (γE)E∈ε3
is such that

we can use Main Theorem 2.3 to track the minimum E∗(t) of the cost function Φ. In
order to do so, we still need formulas for the gradient and Hessian of (Φ ◦ γ̂E)(0, t)
w.r.t. the first component, where γ̂E(y, t) := (γE(y), t). These magnitudes also have
been computed in [32] and are given for y ∈ R5 by

∇(Φ ◦ γ̂E)(0, t)> · y =
N∑

i=1

tr (Ai(t)E)tr
(
Ai(t)U(R1(y)Σ− ΣR2(y))V >)

(5.39)

and

y>HΦ◦γ̂E
(0, t)y =

N∑
i=1

tr 2
(
Ai(t)U (R1(y)Σ− ΣR2(y)) V >)

+ (5.40)

N∑
i=1

tr
(
Ai(t)E)tr (Ai(t)U(R2

1(y)Σ + ΣR2(y)2 − 2R1(y)ΣR2(y))V >)
.

In order to get an explicit vector-valued representation of the gradient, we vectorize
the above formulas. Thus we need operations L1, L2 such that for y ∈ R5 holds

VEC(R1(y)) = L1y,

and
VEC(R2(y)) = L2y,
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implying that

L1 =
1√
2




0 0 0 0 0
0 0 1√

2
0 0

0 −1 0 0 0
0 0 − 1√

2
0 0

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0




and

L2 =
1√
2




0 0 0 0 0
0 0 − 1√

2
0 0

0 0 0 0 −1
0 0 1√

2
0 0

0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −1 0
0 0 0 0 0




.

Then the gradient in R5 can be computed and is given by

∇(Φ ◦ γ̂E)(0, t) = (5.41)

N∑
i=1

tr (Ai(t)E)
(
L>1 VEC(U>Ai(t)

>V Σ)− L>2 VEC(ΣU>Ai(t)
>V )

)
.

Moreover, the matrix representation of the Hessian in R5×5 reads

HΦ◦γ̂E
(0, t) =

N∑
i=1

vi(t)
>vi(t)− tr (Ai(t)E)L>1 ((U>Ai(t)

>V Σ)⊗ I)L1 (5.42)

+
N∑

i=1

tr (Ai(t)E)
(−L>2 ((ΣU>Ai(t)

>V )⊗ I)L2 + 2L>1 ((U>Ai(t)
>V )⊗ Σ)L2

)
,

where vi(t) = VEC(U>Ai(t)
>V Σ)>L1 − VEC(ΣU>Ai(t)

>V )>L2.

Now we define the sequence (Ek) tracking the minimum E∗(t) of Φ at discrete times
tk = kh for k ∈ N, h > 0, by

Ek+1 = γEk

(
−HΦ◦γ̂Ek

(0, tk)
−1(∇(Φ ◦ γ̂Ek

)(0, tk) + hGh
Ek

(0, tk))
)

, (5.43)

where Gh
E(0, t) denotes an approximation of ∂

∂t
∇(Φ ◦ γ̂E)(0, t).
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Theorem 5.5. Let Φ and (γ̂E)E∈ε3
as above, let Ai(t) be a C2-map such that for

some c > 0, ‖Ai(t)‖ ≤ c,
∥∥ ∂

∂t
Ai(t)

∥∥ ≤ c and
∥∥∥ ∂2

∂t2
Ai(t)

∥∥∥ ≤ c for i = 1, ..., N , t ∈ R.

Let t 7→ E∗(t) be a smooth isolated minimum of Φ(E, t) and let Gh
E(0, t) denote an

approximation of ∂
∂t
∇(Φ ◦ γ̂E)(0, t) satisfying for R, c > 0

∥∥∥∥Gh
E(0, t)− ∂

∂t
∇(Φ ◦ γ̂E)(0, t)

∥∥∥∥ ≤ ch

for all E ∈ BR(E∗(t)) := {E ∈ ε3| dist(E, E∗(t)) < R}, t ∈ R and h > 0. Assume
further, that the Hessian HΦ◦γ̂E

(0, t) is invertible and that the norm of the inverse is
uniformly bounded for all E ∈ BR(E∗(t)), t ∈ R.
Then for c > 0 and sufficiently small h > 0, the sequence (5.43) satisfies for k ∈ N
and tk = kh

dist(Ek, E∗(tk)) ≤ ch,

provided E0 is sufficiently close to E∗(0).

Proof. We want to employ Main Theorem 2.3, where we only use one parameterization
instead of two (i.e. we use µE := γE). In order to do so, we have to show for some
R̂, R̃ > 0 the boundedness of

1. ‖HΦ◦γ̂E∗(t)(0, t)‖ for all t ∈ R,

2. ‖ ∂
∂t
∇(Φ ◦ γ̂E)(0, t)‖ for all E ∈ BR̃(E∗(t)), t ∈ R,

3. ‖ ∂
∂y

HΦ◦γ̂E
(y, t)‖, ‖ ∂2

∂t2
∇(Φ ◦ γ̂E)(y, t)‖, ‖ ∂

∂t
HΦ◦γ̂E

(0, t)‖ for all E ∈ BR̃(E∗(t)) and

y ∈ BR̂(0), t ∈ R.

These statements can be easily seen by considering (5.40) and computing the derivatives
of (5.39) and (5.40).

Remark 5.1. Note that the update scheme (5.43) can be efficiently implemented by
using additional sequences (Uk), (Vk) ∈ SO(3) as described in the sequel.

1. For Ek = UkΣV >
k , compute ∇(Φ ◦ γ̂Ek

)(0, t), Gh
Ek

(Φ ◦ γ̂Ek
)(0, t) and HΦ◦γ̂Ek

(0, t)
by using equations (5.41) and (5.42).

2. Solve
HΦ◦γ̂Ek

(0, tk) · y = −∇(Φ ◦ γ̂Ek
)(0, tk)− hGh

Ek
(0, tk)

for y ∈ R5.

3. Determine
Uk+1 := Uke

R1(y),

and
Vk+1 := Vke

R2(y),
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where the occurring matrix exponentials eψ, ψ ∈ so(3) can be computed by using
the Rodrigues formula eψ = I + sin ϑ

ϑ
ψ + 1−cos ϑ

ϑ2 ψ2, for ϑ =
√

ψ2
12 + ψ2

13 + ψ2
23.

Then the new point is given by

Ek+1 = Uk+1ΣV >
k+1.

5.4 Numerical results

We choose random values (xi, yi, zi)
> ∈ [−1, 1] × [−1, 1] × [2, 4] for i = 1, ..., N and

t ∈ R and set u′i = (xi, yi, zi)
>. In order to compute v′i(t) = Θ(t)u′i + τ(t), we moreover

used

Θ(t) = R




cos t − sin t 0
sin t cos t 0
0 0 1


 and τ(t) =




5− 0.1 · t
1 + t

5 + sin t




for a fixed random orthogonal matrix R ∈ SO(3). Then the camera image points are
given by ui = u′i/(u

′
i)3 and vi(t) = v′i(t)/(v

′
i(t))3, where (u′i)3 and (v′i(t))3 denote the

3rd entry of u′i and v′i(t), respectively.
The task was to reconstruct the rotation Θ(t) and the translation τ(t) by employing
the different algorithms which evaluate Ai(t) := uivi(t)

>.
At first, we checked the tracking ability of the intrinsic algorithm as defined in Theorem
5.3. We used step size h = 1/100, n = 200 steps and perfect initial conditions to
evaluate N = 20 image points at discrete times t = tk := kh for k = 1, ..., n.
Figure 5.2 depicts the error plot, i.e. the norm of the differences of the exact values
of E∗(tk) = Ω∗(tk)Θ∗(tk) and the computed value Ek = ΩkΘk. This shows that the
computed values stay close to the exact values E∗(tk), up to a small error < 8 · 10−5.
The next graph (Figure 5.3) shows the same simulation for about 10% perturbed initial
conditions. Then one observes a fast convergence of the error ‖Ek − E∗(tk)‖ to zero
where it remains for the rest of the simulation.
At next we wanted to compare the different algorithms with each other, i.e. we used the
extrinsic (Theorem 5.2), intrinsic (Theorem 5.3), partially intrinsic (Theorem 5.4) and
parameterization method (Theorem 5.5) and computed the accuracy of each algorithm,
where the same values for Ai(tk) and exact initial values were used for each method.
The results are shown in Table 5.1, Table 5.2 and Table 5.3, where we used different
numbers of points N or different step sizes h in each table. In the tables, the mean
error is defined as

1

n

n∑

k=1

‖Ek − E∗(tk)‖,

where n denotes the number of steps. It turns out, that all presented methods are
able to track the desired transformation. The parameterization method however, has
significant computationally advantages regarding computing time, while the intrinsic
algorithms work at a higher accuracy.
These simulations also confirm the expectation, that increasing the number of evaluated
points N or decreasing the step size h improves the accuracy of each algorithm.
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Figure 5.2: The error ‖Ek −E∗(tk)‖ during the algorithm, where perfect initial condi-
tions were used.

Method Computing time Mean error
Extrinsic 1.0 1.8 · 10−2

Intrinsic 6.3 4.3 · 10−4

Partially intrinsic 1.7 4.1 · 10−4

Parameterization 0.9 5.5 · 10−4

Table 5.1: The computing time and mean error of different pose estimation methods.
We used N = 10, n = 100 and h = 0.01.

Method Computing time Mean error
Extrinsic 1.9 7.4 · 10−3

Intrinsic 12.8 6.7 · 10−5

Partially intrinsic 3.4 5.5 · 10−5

Parameterization 1.7 1.2 · 10−4

Table 5.2: The computing time and mean error of different pose estimation methods.
We used N = 20, n = 100 and h = 0.01.
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Figure 5.3: The error ‖Ek − E∗(tk)‖ during the algorithm. Here, perturbed initial
values were used.

Method Computing time Mean error
Extrinsic 1.9 7.6 · 10−4

Intrinsic 12.6 1.5 · 10−5

Partially intrinsic 3.3 1.5 · 10−5

Parameterization 1.7 1.8 · 10−5

Table 5.3: The computing time and mean error of different pose estimation methods.
We used N = 20, n = 100 and h = 0.005.



Chapter 6

Appendix

Here we give some tools which are necessary to work with vectorized matrices.
At first we introduce the VEC-Operation in Rm×n which transforms matrices into
vectors by stacking the columns of the matrix under each other, cf. Horn and Johnson
[36]. Thus for X = [X1 ... Xn] ∈ Rm×n,

VEC(X) :=




X1

...
Xn


 ∈ Rmn.

To deal with skew symmetric matrices X ∈ so(n) ⊂ Rn×n, we define a modified opera-

tion vec : so(n) → Rn×n, which maps skew-symmetric matrices bijectively onto R
n(n−1)

2

by

vec(X) :=
√

2




X̃1

...

X̃n−1


 ∈ Rn(n−1)

2 .

Here, X̃ i denotes the upper diagonal part of the (i + 1)th column of X, i.e. X̃1 =
X1,2, X̃

2 = (X1,3, X2,3)
>, ..., Xn−1 = (X1,n, ..., Xn−1,n)>. Note that we used the

√
2-

factor to ensure
‖VEC(X)‖ = ‖vec(X)‖,

where ‖ · ‖ denotes the Euclidean norm in Rn.
For the particular case n = 3, we need the inverse of the vec operation, denoted by
mat : R3 → so(3). Thus for matrices

Ω =




0 Ω1 Ω2

−Ω1 0 Ω3

−Ω2 −Ω3 0


 ∈ so(3),

we have
Ω =

√
2 mat(Ω1, Ω2, Ω3)

>.
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In the area of computer vision, we further need to vectorize tuples of matrices (S, A) ∈
so(3)× R3×3, which we define as follows

ṼEC

([
S
A

])
:=

[
vec(S)

VEC(A)

]
∈ R12.

To vectorize matrix-valued functions, we moreover use the following known formulas
for matrices X ∈ Rm×n, Y ∈ Rn×r, Z ∈ Rr×s

VEC(XY ) = (I ⊗X)VEC(Y ) = (Y > ⊗ I)VEC(X), (6.1)

VEC(XY Z) = (Z> ⊗X)VEC(Y ), (6.2)

where ⊗ denotes the Kronecker product. We further need an operation L such that
for any skew symmetric matrix S ∈ so(n) holds

vec(S) = LVEC(S) (6.3)

and
VEC(S) = L>vec(S). (6.4)

Note, that LL> = I and for n = 3,

L =
1√
2




0 −1 0 1 0 0 0 0 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0


 .

Note further, that for A ∈ Rm×n and B ∈ Rn×p holds

tr (AB) = VEC>(A>)VEC(B), (6.5)

and for A ∈ Rn×n, S ∈ so(n)

tr (AS) = tr (AskS) = vec>(A>
sk)vec(S) = −vec>(Ask)vec(S). (6.6)

Here, Ask = 1
2
(A− A>) denotes the skew symmetric part of A.

Finally, we need a matrix π ∈ Rmn×mn such that

πVEC(Z) = VEC(Z>),

for all Z ∈ Rm×n. Hence, π is a permutation matrix with 1’s at positions
(
(i− 1)n + j, (j − 1)m + i

)
, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In the case n = m = 3, π is given by

π =




1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1




.
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