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Abstract: Fresh water is a vital natural resource. Earth observation time-series are well suited to
monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily
information on globally distributed inland surface water based on MODIS (Moderate Resolution
Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal
level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water
quantification is possible. To enhance the quantitative capabilities of this dataset, we systemati-
cally access subpixel information on fractional water coverage. For this, a linear mixture model
is employed, using classification probability and pure pixel reference information. Classification
probability is derived from relative datapoint (pixel) locations in feature space. Pure water and
non-water reference pixels are located by combining spatial and temporal information inherent
to the time-series. Subsequently, the model is evaluated for different input sets to determine the
optimal configuration for global processing and pixel coverage types. The performance of resulting
water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe,
by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water
fraction information is able to improve the product’s performance regarding mixed water/non-water
pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows
good overall performance. The approach enables the systematic provision of water fraction estimates
on a global and daily scale, using only the reflectance and temporal information contained in the
input time-series.
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1. Introduction

Global freshwater resources are vital for life and our society. Only 2.5% of the earth’s
hydrosphere is fresh water [1]. Of this, 0.3% can be found on the surface as lakes, wetlands
and rivers. This relatively small fraction is nonetheless highly important, as it constitutes
an essential human resource and interacts with climate and biodiversity [2—6]. The quan-
tification of surface water has become a major application in the field of remote sensing,
since large and remote regions of interest (ROIs) can be investigated efficiently [7,8]. The
utilization of spatial and temporal coherent time-series datasets furthermore offers unique
opportunities to analyze variability, dynamics and trends of water bodies [9-14]. On a
global level, such information can contribute significantly to the understanding of climate
change [15] and the effects of human activities [16]. Furthermore, knowledge of water
level variations (e.g., by altimetry time-series), in combination with surface water extent
dynamics, enables the approximation of waterbody bathymetry, subsequently allowing the
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quantification of storage change [17-23]. Thus, essential water variables can be monitored,
providing key indicators for the implementation of sustainable development goals [24].

A variety of methods to distinguish between water and non-water surfaces have been
developed in recent years. For instruments working within the range of RADAR (radio
detection and ranging) frequencies, generally a weaker backscatter signal can be expected
from water surfaces in comparison to most land surfaces [25-27]. RADAR-based sensors
have the advantage of being widely unaffected by atmospheric conditions (e.g., cloud
cover, water vapor, aerosols). However, increased roughness of an open water surface
can lead to stronger return pulses. In addition, land features of low backscatter similar
to smooth water (e.g., bare grounds, RADAR shadow, sand dunes) are prone to misclas-
sification [25]. In the optical domain, emphasis is given to visible (VIS), near infrared
(NIR) and shortwave infrared (SWIR) channels for classification, as water shows stronger
absorption in these wavelength ranges than typical land features [13,21,28-40]. However,
the accurate mapping of waterbodies is a non-trivial task, even on the basis of multispectral
data [41]. Land objects such as urban areas, volcanic materials, coal mines, burned areas
as well as cloud- or relief-induced shadows show similar reflectance properties as water
surfaces [31,37,42,43]. The spectral signature of water pixels is furthermore altered by water
depth and corresponding ground materials or contamination by hydrosols (e.g., sediments,
aquatic vegetation) [13,31,44,45]. Mixed pixels (water, non-water) also create an altered
spectral response, depending on the fractional occurrence of endmember surfaces [46,47].
Relatively small waterbodies or continuous water-land boundaries can intensify this effect,
especially when operating on coarse resolution images [48]. When targeting temperature
differences (thermal infrared) between water and non-water surfaces, results are strongly
dependent on prevalent weather and landcover conditions [49,50]. Furthermore, tempo-
ral diversities such as sun-sensor geometry and atmospheric conditions complicate the
generation of consistent time-series [31,45,51-53]. Especially for optical data, atmospheric
distortions (e.g., clouds, dust particles) influence radiation transfer and might result in
invalid observations for affected pixels and regions, thus reducing the temporal integrity
of a remote-sensing time-series.

According to dataset characteristics, specific applications are suitable. For instance,
static datasets provide information on the spatial extent of water bodies for specific points
in time, aggregations of longer time periods, or combinations from different sources [54—61].
In these cases, water surfaces are related to timely persistent (>1 year [62]) land cover.
In addition, several general-purpose land-cover datasets contain water classes [63—65].
Alternatively, a focus on rather rapid temporal changes (< 1 month) between land and
water states is able to reveal the dynamics of water bodies [10,13,33,66-70]. Typical ap-
plications are inundation [44,71,72] or near-real-time (NRT) flood monitoring [73-75]. As
changes in water surface extent can occur in different time scales, rapid changes might
be missed by monthly composites or relatively static annual averages [13,14,31,76]. In
addition, investigations focusing on the timing of hydrological events [77] require high
temporal resolution. An additional advantage of high temporal resolution is the avoidance
of the spatiotemporal inconsistencies of other models or remote sensing datasets (e.g.,
water budget estimation [7]).

By targeting daily information on the distribution of water surfaces on a global level,
several optical sensors featuring medium spatial resolution can be considered. These
include the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared
Imaging Radiometer Suite (VIIRS), Ocean and Land Colour Instrument (OLCI) and Ad-
vanced Very-High-Resolution Radiometer (AVHRR) [31]. Among these, MODIS has the
advantage of long-term (2000—present) uninterrupted lifetime sensors with an onboard
calibration system.

Water fraction estimation has been applied frequently to resolve coarse spatial reso-
lution problems when quantifying surface water [29,34,78-83]. The identification of the
relative water and non-water content of a coarse pixel becomes increasingly relevant for
applications sensitive to the accuracy of areal estimations and their change dynamics (e.g.,
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rapid inundation changes). Typically, related applications are limited to distinctive sites
and have not been applied to comprehensive time-series data. This may be owing to
the requirement of prior knowledge concerning target regions (e.g., land cover, a priori
water/non-water state, elevation, endmember definition and samples for learning algo-
rithms) in order to apply subpixel methods [78,82,84]. This includes machine learning tech-
niques (e.g., decision trees [34], regression tree models [84], Gaussian Process Regression
model [83]) used for water fraction estimation. Thus, the constraint of training samples for
model building limits applications to distinct sites. In addition, neural networks have been
applied for water fraction estimation [85], facing similar constraints as machine learning
approaches. By implementing additional data (e.g., topographic, hydrographic data [60]),
the downscaling of coarse resolution images to a finer resolution is possible. Limitations to
downscaling techniques are due to the quality of original observations and ancillary data.
A further technique is the fusion of moderate- and high-resolution images [86]. However,
fusion techniques rely on the underlying assumption of spatiotemporal continuity, which
is not given for rapid changes. Many applications feature unmixing methods to estimate
water fraction, mainly based on the utilization of a linear mixture model [29,34,42,81,87].
Such approaches rely on the assumption that remotely sensed reflectance of a mixed pixel
can be expressed as a linear combination of spectral endmembers. Linear spectral mixture
modeling is often applied to hyperspectral data to determine the relative abundance of
predefined endmembers. A constraint is given by the prerequisite of a priori endmember
definition, which is critical for accurately extracting the fraction of endmembers [88]. Fur-
thermore, a sufficient number of bands is necessary to solve decomposition equations [81].
For the global and systematic application of a linear mixture model, two constraints need
to be considered [81,83]. Global endmembers have to be defined dynamically in space and
time; otherwise, they are not representative. Additionally, the number of bands provided
should be larger than the number of endmembers. MODIS only provides two bands at
250 m resolution; consequently, a rather simple and robust model has to be considered.

In this paper, we aim to systematically derive water fractions on pixel level, to improve
the quantification capabilities of a MODIS-based earth observation time-series for inland
surface water [31]. To achieve this in a consistent spatiotemporal manner, water fraction
is estimated on the basis of classification probability and spatial pixel relations, including
temporal coherences. Furthermore, we evaluate the optimal configuration of input features
and parameter settings for the global utilization of a linear mixture model [89]. The
performance of resulting subpixel water fraction estimates is assessed by comparison
to reference data gained from classified higher resolution optical data (Sentinel-2 and
Landsat 8). Finally, we show that water fraction estimates are able to enhance quantitative
capabilities concerning mixed pixels.

2. Materials and Methods

For this study, we use reflectance data from MODIS, GWP water/non-water classifica-
tions, and higher resolution optical images (Landsat 8 and Sentinel-2) as input data. Input
features for the linear mixture model are determined from GWP time-series information
and MODIS RED and NIR reflectance. Generated water fraction maps are evaluated utiliz-
ing reference data gained from higher resolution remote sensing images. By comparison
of model performance using different model parameters, the optimal setting considering
all reference data is determined. Outcomes of the final model are then evaluated together
with the original GWP time-series on pixel level (Figure 1).
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Figure 1. Workflow of the proposed method to systematically derive water fractions.

2.1. Data

The Global WaterPack (GWP) inland surface water time-series is based on bi-diurnal
moderate resolution acquisitions of MODIS sensors Aqua (MYD09GQ) and Terra (MOD09GQ).
A binary water mask is created in a dynamic thresholds-based procedure, utilizing NIR
and NIR-RED band reflectance. Additionally, several auxiliary layers (multi spectral infor-
mation, day-night difference, urban areas, relief shadows, thermal information) are used to
refine classification output and mask clouds and ocean (MODIS MYD10A1, MOD10A1).
To create a temporally consistent time-series, data gaps (mostly due to cloud cover) are
interpolated by a moving window approach, which utilizes the closest past and future valid
observations of a pixel. For this paper, we use GWP data of 23 MODIS tiles in conjunction
with 32 spatiotemporal matches of higher resolution reference datasets. Suitable reference
surface reflectance images are selected from Sentinel-2 (Level-2A) and Landsat 8 (OLI/TIRS
Level 2) archives. For this study, ROIs are defined by intersections of MODIS tiles and
selected Sentinel-2 /Landsat 8 tiles, which spread across different continents and climate
zones to represent global variability (Figure 2).
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Figure 2. Global distribution of regions of interest (ROIs) and climate classes [90].

2.2. Generation of Reference Data

Reference data was generated based on Sentinel-2 and Landsat 8 images (Table A1).
Spatiotemporal matches with MODIS data were selected, considering global distribution
and data integrity (low cloud coverage (<1%) and completeness). Accordingly, a selection
of 32 remote-sensing image pairs enabled the generation of approximately 622,900 km? of
reference area (15,260,357 reference pixels). Consequently, a wide range of surface cover
compositions accounted for method sensibility to variable surface reflectance properties.
Higher resolution (30 m for Landsat 8, 10 m for Sentinel-2) water /non-water masks were
generated by k-means segmentation [91,92] as well as tasseled cap transformation [93]. Af-
ter unsupervised classification, all reference images underwent rigorous visual verification
to ensure data quality. Subsequently, higher resolution water pixels were allocated to a
larger MODIS pixel, in case their pixel centers intersected. To minimize projection related
errors in the spatial matching of pixels, a MODIS pixel grid vector version was reprojected
from sinusoidal projection to the according spatial reference system of the reference image.
Finally, reference water fraction was determined by the ratio of allocated higher resolution
water and non-water pixels (Figure 3).
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Figure 3. Allocation of classified Sentinel-2 reference pixels to larger MODIS pixels to gain reference water fraction estimates.
Data: Sentinel-2 tile R048 T43TEM, 2019-10-23.

Furthermore, a reference water fraction pixel is only valid if the accumulated pixel
area of allocated higher resolution pixels amounts to at least 95% of the MODIS pixel area
(~59,375 m?).

2.3. Classification Probability

The classification probability of a remote-sensing product depends on the classification
methodology (e.g., fuzzy or soft classification). To determine the classification probability
of GWPD, relative datapoint locations in feature space were utilized. For every daily GWP
classification of sensor-specific data (MODIS Aqua and Terra), two thresholds (fyr and
tNIr-RED) Were derived from known water pixels. These water pixels were selected in the
original product based on additional tile-specific information from MOD44W (MODIS Terra
Land Water Mask) and MOD10A1/MYD10A1 products [31]. The resulting distribution
of NIR and NIR-RED values within training areas allowed the determination of daily
thresholds. To minimize the day-to-day noise, eventually an 8-day-mean temporal filter
was used for smoothing. Accordingly, water and non-water pixels were discriminated
based on NIR and RED reflectance. For GWP, classification probability relates to the
distance between pixel data points and scene-specific dynamically derived thresholds in
the NIR and NIR-RED feature space (Figure 4).

10000 A
8000 -
6000 -
o«
2
4000 A
2000 -
t Il Water
" NIR-RED [ Non-water
—2000 0 2000 4000 6000

NIR-RED

Figure 4. GWP classification feature space. Data: MODIS Terra h17v07, 2019-10-22.



Remote Sens. 2021, 13, 2675

7 of 21

2.4. Linear Mixture Model for Water Fraction Estimation

To facilitate systematic water fraction estimation, the linear mixture model of She-
ng et al. [89] was utilized. Accordingly, the reflectance of a mixed pixel (R,;;) for VIS
to SWIR wavelengths could be estimated by its fractional water coverage (WF) and the
approximated reflectance of pure water (Ryater) and non-water (Ryon-water) pixels:

Rmix = WF * Rwater + (1000/0 - WF) * Rnon—water (1)
solved for WF,
R.ix — Ryon—
WE = mix non—uwater 2
Rwater - Rnon—wat@r ( )
where

100% if Rjiy <R
WE — ) mix > Nwater ) 3
{ 0% if Ryyix > Ruon—water ®

Since this method was applied to Aqua and Terra data separately, outcomes were com-
bined based on spatial data availability. By using information from both MODIS sensors,
generally a higher quality of outcomes could be expected (e.g., MODIS Nadir Bidirectional
Reflectance Distribution Function (BRDF)-Adjusted Reflectance dataset MCD43A4 [70]).
Thus, in case both sensors were able to provide surface reflectance information for a pixel,
the average of model outputs was used; otherwise a single estimate depicted the combined
result. The number of included sensors (one, two or none) was stated in an additional
reliability band of the output raster.

2.5. Feature Selection

R predictor variables in the linear mixture model can be substituted by specific features
related to reflectance [34]. Aspiring to model application on a global level, we tested a
variety of input parameters to determine the optimal setting, considering all ROI datasets
(Figure 1). As proxies for Ry, Ruwater, and Ryon-water, €ight features based on MODIS
reflectance and GWP classification thresholds were derived (Table 1):

Table 1. Input features for the linear mixture model.

Feature

RED
NIR
NIR-RED
NIR/RED
Distance NIR threshold
Distance NIR-RED threshold
Distance to threshold border
Distance to threshold point !

1 The threshold point is defined as the point of intersection between tyjr and fnr-RED-

For feature selection, significant linear correlation (v > 0.5, p < 1%) in the majority
of ROIs to known reference water fraction was a precondition. An example for a typical
distribution of pixel data points with given reference water fraction is shown in Figure 5.

For application in the linear mixture model, features are expected to show lower
values for water than for non-water pixels and vice versa. Consequently, distance features
are signed negative for pixels in the GWP water classification window (area beneath fyr
and left of tNjr-rED, Figures 4 and 5).
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Figure 5. Pixel data points (based on MODIS reflectance) with reference water fraction information
(based on Sentinel-2) and GWP classification thresholds. Data: MODIS Terra tile h10v08 and Sentinel-
2 tile T1I8PWR, 2019-02-08.

2.6. Selection of Pure Pixel Reference Features

To enable a systematic approximation of pure water and non-water features (Ryuter
and Ryon-water) We utilized spatial pixel relations and temporal information contained in the
time-series. Pure water pixels are typically part of larger coherent waterbodies. According
to this spatial relationship, a pixel that has water-covered neighbors is likely to contain pure
water coverage itself. The same principle applies for the determination of pure non-water
pixels. By considering the 8-pixel neighborhood of an evaluation pixel in the center, pure
pixel candidates were evaluated. As optical MODIS observations are often rendered invalid
by cloud coverage, we also determined monthly and yearly temporal averages (TAs) based
on future and past observations of the evaluation pixel. For this, the ratio of classified
water and valid observations for monthly (£15 days) and yearly (+182 days) temporal
windows was calculated to yield water probability (pw). To also consider the reliability of
averages, the ratio of valid observations and temporal window length (rw) was determined.
Consequently, invalid observations in the pixel neighborhood were primarily substituted
with monthly TA, given a valid observation in the monthly temporal vicinity. Otherwise,
the yearly TA was used (Figure 6):

1
1 N [N 1
| 1 ii TA EE TA E TA — temporal average
Rt Kt i
- T 1
! 1 ! 1 I ==\ ater
- '\ ____1 == Non-water

Do s zas) —— -=- 8 pixel neighborhood

750 m

Figure 6. Spatiotemporal relations based on neighborhood pixels. Here, three observations are
invalid and therefore substituted by temporal averages (TAs).

Finally, a purity probability (pp) and reliability (pr) were determined by averaging of
all n pixels in the neighborhood as well as the center pixel:

9
: w-
pp = 72“,11’7 : (4)
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18.5°S

19.0°S

= Not eligible

9

pr = % (5)

Hereby, valid water or non-water observations contributed with 100% or 0% prob-
ability, respectively, and 100% reliability. Subsequently, pixels could be considered as
pure if several criteria were met. First, pure water candidate pixels must exhibit a pp of
100% (completely surrounded by neighboring water pixels), with a pr value of at least
95%. Conversely, pure non-water pixels had to show a pp of 0%. Furthermore, only pure
pixels that had been classified as water or non-water based on a valid observation on the

respective day were selected (Figure 7).

50.0°W 50.5°W 50.0°W

s e o

H Pyre water m Water classified higher resolution pixel
™= Pure non-water 0 10 20 30 40 50km

L 1 1 Il 1 J

Figure 7. Selection of pure water and non-water pixels. Data: MODIS Terra tile h13v10 and Sentinel-2 tile R081 T22KEE,

2019-10-15.

Based on this pure pixel selection, samples for typical water/non-water feature values
(Table 1) were derived. Subsequently, respective reference statistics, including mean, median,
75th and 25th percentile were determined from these sample feature values. By utilizing
different numerical measures, more modest (25th percentile), optimistic (75th percentile)
and balanced (mean, median) water fraction estimates were available for evaluation.

2.7. Performance Evaluation and Determination of Optimal Settings

Water fractions were evaluated on pixel level in 32 ROIs (Figure 1). Results for
respective combinations of features and reference feature statistics were evaluated by
determining Pearson’s correlation (r), root mean square error (RMSE) and mean absolute
error (MAE) with regard to reference data:

B C 7)2%‘ ) : ©)
VI (-0 —7)
1 n
MAE = ; lei )

S| -

RMSE = , | i e2 )
i=1

where e is the difference between model estimate (x) and reference water fraction (y), and n
is the number of data points.

We chose two error metrics to further investigate error distribution. While the MAE
gives the same weight to all errors, the RMSE penalizes higher variability in the distribution
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of error magnitudes by assigning more weight to larger error values [94]. Typically, the
majority of pixels in an ROI exhibit no water coverage, biasing evaluation metrics towards
zero-water fraction conditions. To reveal coverage-specific performance, we grouped spa-
tiotemporal matches of model output and reference data in pixel coverage categories. Thus,
separate assessments were conducted for reference pixels showing full water coverage,
no water coverage and partial water coverage (0% < x < 100%). The distribution of all
generated reference pixels is shown in Figure 8:

80000 Total number of reference pixels: 15,260,357

70000

60000 A Pure water

50000 A )
Partial water

40000 A

Count

30000 Pure non-water
20000 A

10000 A1

0.0 0.2 0.4 0.6 0.8 1.0
Partial water fraction

Figure 8. Distribution of reference pixels according to coverage categories. The histogram shows only partial water fraction
pixels (0% < x < 100%).

To determine the best performing model configuration for respective coverage cate-
gories, all ROlI-specific outcomes per MODIS sensor were averaged.

2.8. Evaluation According to Water Permanence Types

To assess the influence of pixel cover permanence on model performance, we de-
termined the number of pixel state changes between water and non-water. This was
conducted based on the GWP time-series for a time span of 6575 days (2003-2020). The
resulting pixel variabilities of all pixels in the ROIs were grouped according to variability
percentiles. Therefore, each selected variability range represents 1% of the available data,
except the zero percentile (permanent pixels), which includes 94% of the data. Finally, the
MAE of the respective model estimates and reference water fractions provides information
on the influence of pixel change behavior on model performance.

3. Results

Best performing settings and corresponding results (lowest RMSE/MAE, highest
correlation) are shown in Table 2.

The global evaluation showed that each coverage category favors a specific parameter
setting. As most of the data is constituted by pure non-water pixels, the optimal setting for
all data is biased towards this coverage category (distance threshold point feature and 25th
percentile reference statistic). Larger errors occur in the partial coverage category, whereas
pure pixel coverage can be approximated more accurately (average of 13% lower error).

Using the optimal settings for all data (distance to threshold point, 25th percentile),
we evaluated model output together with raw (without refinement by auxiliary layers)
binary GWP classifications (Figure 9).

The comparison shows higher accuracy of water fraction model estimates for pixels
with partial water coverage. For entirely water or non-water covered pixels, binary GWP
classifications average to lower MAEs than model estimations, as only falsely classified
pixels lead to errors in pure pixel categories. The water fraction model tends to underes-
timate surface water in the pure water category (average of 16% MAE), and to a smaller
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extent overestimates water coverage for pure non-water reference pixels (average of 4%
MAE). Differences between ROI-specific RMSE and MAE error statistics indicate a gener-
ally smaller variance in the distribution of error magnitudes for model estimations than for
GWP. This is caused primarily by rare GWP misclassifications of pure pixels, which result
in large outlier errors of 100%. Model and GWP performance in the partial water category
is dependent on the ratio of pixel water and non-water coverage (Figure 10).

Table 2. Optimal parameter settings for pixel coverage categories.

Measure All Data Pure Water Pure Non-Water Partial Water
(Score) (Score) (Score) (Score)

RMSE DTP/25th NIR-RED/75th DTP/25th NIR/25th
(0.12) (0.11) (0.09) (0.24)

MAE DTP/25th NIR-RED/75th DTP/25th NIR/25th
(0.05) (0.06) (0.04) (0.17)

DTP/25th NIR/25th
4 (0.68) N/A N/A (0.67)

DTP = distance to threshold point feature, NIR = near infrared feature, NIR-RED = near infrared minus red
reflectance feature, 25th = 25th percentile reference statistic, 75th = 75th percentile reference-statistic, RMSE = root
mean squared error, MAE = mean absolute error, r = Pearson’s correlation coefficient, N/A = not applicable.

All data - Pure water Pure non-water Partial water
0.9 0.9 0.9 0.9 -
0.8 0.8 0.8 0.8
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Figure 9. Model and GWP performance according to coverage categories for all ROIs.

Larger errors in GWP were found for pixels with a balanced water/non-water ratio,

whereas model estimates show lower accuracy for nearly full pixels (0.8 < x < 0.9 water
fraction). A general skewedness towards low water fraction indicates a more reliable
approximation of minorly water-covered pixels.

To assess the goodness of fit of the proposed approach, we also determined the Nash-
Sutcliffe efficiency (NSE), percent bias (PBIAS) and RMSE, considering all datapoints given
by the reference data.

n e
NSE=1- ==+ ©)
i (vi—v)
PBIAS — izt (¥i —%i) (10)
7‘171 Yi

A NBSE of 0.61 indicates a generally good match between model and reference data [95,96].
With a negative PBIAS of —62.34%, the model tends overestimate actual water fraction [97].
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The total RMSE of 0.11 indicates a good overall performance, considering a standard
deviation of 0.19 of all reference water fractions [98]. The evaluation according to water
permanence types showed larger MAEs for change-intensive pixels than for more perma-
nent ones. In the range of moderate pixel variability (34 to 186 state changes in 6575 days),
only minor differences in model performance can be observed. Figure 11 shows MAEs for
pixels in specific pixel variability ranges, based on variability percentiles.
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Figure 10. Model and GWP performance in all ROIs for specific intervals of partially water-
covered pixels.
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Figure 11. MAEs of model estimates and reference data for specific pixel variability (x) ranges
representing 1% of all available data, except the zero percentile (94% of the data).
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To illustrate the improvements achieved by water fraction estimation, Figure 12 shows
a comparison of original GWP and higher resolution water masks, model and reference
water fractions, as well as corresponding variability and true color information for the

Songhua Lake and River.
126.6€ 126 8° 127.0°€ 126.6° 126.8°F 127.0°
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Figure 12. Comparison of original GWP binary classification, estimated water fraction and reference

water fraction based on Sentinel-2 for Songhua Lake and River (China) on 2019-07-10. Water variabil-

ity refers to the 10-year time-series of MODIS tile h27v04 and illustrates typical extent variations.

4. Discussion

For geospatial raster datasets such as GWDP, total surface water extent can be approx-
imated by accumulation of water-classified pixels. Limitations given by the moderate
spatial resolution of a product induce quantification errors. A single pixel in the highest
spatial resolution of MODIS accounts for approximately 62,500 m? of classified area. Ac-
cordingly, relatively coarse spatial resolution results in discrete areal quantification steps
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for the estimation of the actually continuous extent of waterbodies such as lakes, reser-
voirs or rivers. This can lead to erratic changes in estimated surface water extent, given a
change-pixel constitutes a relatively large part of a study site or waterbody. Furthermore,
subpixel-scale water extent variations are able to move respective mixed pixel data points
just across classification threshold boundaries, thus overemphasizing actual extent changes.
As a consequence, derived temporal behavior can be misleading. The extent to which this
affects estimations of total surface water area strongly depends on the investigation scale
and waterbody characteristics. Accordingly, water fraction estimates become increasingly
relevant if extent changes are a matter of small-area variations (few pixels to subpixel scale,
e.g., shoreline pixels of relatively stable waterbodies).

We showed that by considering GWP classification probability and spatiotemporal
time-series information, subpixel water fractions can be approximated in an automated
fashion. Accordingly, subpixel-scale water or non-water surfaces are accounted for; they
otherwise would be disregarded. Especially for waterbodies with jagged shoreline charac-
teristics (large shore-to-area ratio) as shown in Figure 12, the approach enables an enhanced
estimation of surface water extent compared to binary classification.

To accurately capture the distinct temporal extent dynamics of highly variable wa-
terbodies (e.g., dam regulated reservoir), the residual water or non-water fraction of
change-intensive shoreline pixels (Figure 12, left bottom) must not be neglected. Therefore,
the presented approach enables a systematic provision of water fraction along with the
product’s spatiotemporal extent. Nonetheless, several arbitrary factors influence model
accuracy. Since the relative pixel location in the NIR/NIR-RED feature space mainly deter-
mines its water fraction content, surface types with similar spectral properties in respective
wavelengths can lead to an overestimation of water fraction (e.g., urban areas; Figure 12,
top right). However, as problematic surface types are already masked by auxiliary layers in
GWP, the handling of overestimations caused by urban areas, cloud shadows, burned areas
or relief shadows is straightforward. On the other hand, water properties such as depth, in
conjunction with ground materials, turbidity and vegetation content, can corrupt water
fraction estimation. The other variable parameters in the linear mixture model are the
feature reference values for pure water and non-water pixels. As they are determined from
a selection of reference pixels, derived values per scene are dependent on the availability
(e.g., by cloud cover location) and the current state (e.g., land cover type phenological
state) of these pixels. Nevertheless, information for the determination of model input data
is collected dynamically in time from a respective large-area MODIS tile. Consequently,
the approach is robust to certain randomness, as a relatively large amount of pure pixel
reference information is used to derive model parameters. If certain applications demand
surface water estimation in more detail, a customization of model settings for specific tiles
or even smaller ROIs is feasible. Similar strategies, along with the use of auxiliary data,
have led to highly accurate applications in previous studies [29,34,81,82]. The effect of
different model settings on the performance regarding specific pixel coverage categories
can be seen when comparing the error scores of Table 2 and Figure 9. Here, better results
can be achieved in pure water and partial water coverage categories if other parameter
settings are chosen than the optimal setting for all data.

The comparison to reference water fractions derived from higher resolution data
showed that the proposed model is able to improve quantification accuracy of the product.
This results in a better approximation of the true water coverage of mixed water/non-
water pixels. Consequently, the ability to estimate residual contents in otherwise binary
classified pixels is gained. The extent to which this improves the accuracy of surface
water estimations depends on the relative area of partially water-covered pixels in an ROI,
as well as the coverage ratio of those pixels (Figure 10). Thus, applications focusing on
known waterbodies and their areal dynamics in time benefit from more comprehensive
consideration of mixed shoreline pixels (Figure 12). The evaluation of optimal settings
resulted in a modest (25th percentile reference statistic) approach, which promotes the
estimation of minorly water-covered pixels (Figure 10). Although GWP surpasses model
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performance in pure pixel categories (Figure 9) considering MAE, larger RMSEs on the
other hand suggest that the distribution of error magnitudes is more variable. Consequently,
model estimations can be expected to not feature as extraordinarily large errors in single
cases as GWP.

The evaluation of model performance according to water permanence types showed
that higher error occurs for pixels that change their water /non-water state more frequently
(Figure 11). As the model accuracy is generally higher for pixels exhibiting near to complete
water or non-water coverage (Figures 9 and 10), these findings correspond with the fact
that change-intensive pixels are more likely to be in a transition state and therefore depict
considerable water and non-water coverage. Furthermore, such pixels can be expected to
not feature deep (blue) water. Consequently, actually (shallow) water-covered pixels do not
exhibit distinct water-like reflectance properties, eventually falsifying model predictions.
On the other hand, relatively permanent pixels are more likely to show distinct water or
non-water reflectance signatures.

The limitations of the evaluation results have to be considered critically. Clearly,
the higher resolution of Landsat 8 and Sentinel-2 as well as the increased number of
spectral bands enables a highly accurate classification of reference water and non-water
pixels. However, discrepancies can emerge from projection-based deviations, difference
in acquisition time (<12 h), pixel-based quantification and not ideally overlapping tile
and pixel grids (diverging granules). Furthermore, sampling of reference datasets was
very restrictive due to the high requirements to obtain reliable data. Consequently, only a
fraction of global spatiotemporal surface composition (land cover, seasonal state) variability
was considered.

For the estimation of extent dynamics of coherent waterbodies, a combined use of
original binary product and water fraction estimates is recommended. As most inner pixels
(not in contact with the shoreline) of a waterbody are completely water covered, higher
accuracy can be expected for such pixels using a binary classification. On the other hand,
water fraction information on shoreline pixels (outer fringe of the waterbody) can lead to a
more accurate approximation of the true overall extent.

Using our approach, we addressed major limitations of systematic global water frac-
tion estimation. Accurate definition of endmembers (pure pixels) in space and time could
be achieved by utilization of the binary water/non-water classifications of GWP time-series
and inherent temporal information. Consequently, the high temporal resolution of one day
enables rapid monitoring of large and diverse areas in an automated fashion. However,
this comprehensive spatiotemporal availability comes with the cost of a simplified linear
unmixing formulation. We show the feasibility of our approach in diverse ROIs around the
globe and that an improved estimation of surface water can be achieved compared to a
hard classification.

5. Conclusions

Earth observation surface water time-series enable the quantification of surface water
extent dynamics on a global level. Providing this information in high temporal resolution
comes with the constraint of coarse spatial resolution. Consequently, quantification accu-
racy decreases due to mixed-pixel effects. By utilizing subpixel water fraction information,
corresponding errors can be reduced.

We demonstrated a systematic approach to estimate subpixel water fractions for a
global, daily surface water time-series dataset. Accordingly, shortcomings due to coarse
spatial resolution are addressed. The approach is independent of external datasets, as
only time-series inherent information is utilized. Thus, water fraction estimates are made
available alongside the spatiotemporal resolution of the original time-series on the pixel
level. In the case of the GWP surface water time-series product, this includes daily data
provision for the global MODIS tile grid and the full temporal range of mid-2002 to the
present day.
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Accurate results were achieved in 32 ROlIs across the globe by comparison to reference
data derived from classified Sentinel-2 and Landsat 8 images. Accordingly, water fractions
were validated for a total reference area of approximately 622,900 km?, considering various
surface type compositions and climate zones. Based on these results, we determined the
optimal model configuration for global application. The comparison of model output and
original binary product showed that by accounting for the water fraction content of mixed
pixels, the overall accuracy of the product on pixel level is enhanced (average of 11.6%
lower RMSE).

Given the results of this study, earth observation surface water time-series products can
be enhanced by the proposed methodology in order to achieve more detailed information
on surface water extent on the subpixel level. For an extension to other remote-sensing
surface water time-series, products have to feature inherent classification probability and
temporal information. Currently, satellite remote-sensing platforms offer either high spatial
or temporal resolution. Many higher spatial resolution datasets are unable to determine
true timing or even occurrence of hydrological events (e.g., floods, droughts) due to
longer data gaps in specific regions (e.g., tropical climates). By estimating water fractions
systematically, as proposed in this paper, from sensors such as MODIS, more detailed
results, including actual water coverage of mixed water/non-water pixels, are accessible in
shorter intervals. This increased spatiotemporal availability enables the investigation of
small-area and/or short-term changes on a global scale. Consequently, improved inferences
on temporal surface water dynamics can be achieved.
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Appendix A

Table A1. Regions of interest.

No. Continent (YYY]YDISItK/[DD) MODIS Tile  Reference Data Tile (Platform)
1 Europe 20180729 h19v02 187016 (L8)
2 Europe 20190216 h18v03 193023 (L8)
3 Europe 20190529 h17v04 203031 (L8)
4 Europe 20190902 h19v04 187028 (L8)
5 Europe 20190519 h19v02 R093 T36VVN (S2)
6 Europe 20190726 h18v03 R065 T32UQE (S2)
7 Europe 20191022 h19v04 R036 T34TDS (52)
8 North America 20160831 h11v05 019035 (L8)
9 North America 20190526 h11v03 045021 (L8)

10 North America 20190819 h11v04 032026 (L8)
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Table A1. Cont.

No. Continent (YYY]Y);/[tlt/[DD) MODIS Tile  Reference Data Tile (Platform)
11 North America 20150217 h0o9v04 044028 (L8)

12 North America 20190929 h11v05 015035 (L8)

13 North America 20190920 h11v05 016035 (L8)

14 North America 20190606 h11v04 R069 T15TXM (S2)
15 North America 20191106 h09v04 R113 T11TLM (S2)
16 North America 20191205 h11v05 R097 T17SPA (S2)
17 North America 20190507 h11v04 R069 T15TXM (S2)
18 South America 20191003 h13v14 228096 (L8)

19 South America 20190403 h12v12 RO10 T19HES (S2)
20 South America 20190819 h13v09 R124 T22MGV (S2)
21 South America 20191015 h13v10 R081 T22KEE (S2)
22 South America 20190208 h10v08 R025 T18PWR (S2)
23 Asia 20190821 h21v02 151014 (L8)

24 Asia 20190918 h21v04 171031 (L8)

25 Asia 20190426 h24v05 R048 T43SCS (S2)
26 Asia 20190710 h27v04 R046 T52TCP (S2)
27 Asia 20191023 h23v04 R048 T43TFM (S2)
28 Australia 20191211 h30v10 R031 T52KDG (S2)
29 Australia 20190302 h29v12 R116 T55HCV (S2)
30 Africa 20190724 h21v09 R035 T36MVB (S2)
31 Africa 20191022 h17v07 R108 T30QXD (S2)
32 Africa 20190425 h19v09 R107 T34MBC (S2)
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