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1. Introduction 

Pharmaceutical analysis is of utmost importance for the quality control in the pharmaceutical 

industry, since it comprises the qualitative and quantitative assessment of drug substances 

and drug products [1]. Among the analytical techniques available, high performance liquid 

chromatography (HPLC) [2, 3] stands out due to its high efficiency and robustness. Thus, 

HPLC is predominantly employed for the impurity analysis of drugs in the regulated 

environment [2, 4], e.g. pharmacopoeial procedures. The vast majority of the compendial 

methods in the European Pharmacopoeia (Ph. Eur.) [5] and the United States Pharmacopoeia 

(USP) [6] utilize HPLC coupled to a UV/VIS detector for the detection and quantitation of the 

impurities in active pharmaceutical ingredients (APIs). HPLC-UV is well suited for routine 

analysis purposes [7, 8] considering its broad linear range, the adequate sensitivity, and the 

convenient handling. However, the detection technique may suffer from poor sensitivity toward 

analytes without a decent chromophore. In addition, the sensitivity is highly dependent on the 

physico-chemical properties of the analyte, e.g. the respective molar extinction coefficient 

[9,  10].  

Techniques with a more universal detection scope may offer a solution to the limitations of 

UV/VIS as their response is almost independent of the analyte properties and roughly uniform 

at constant experimental conditions, though they all have their own specific drawbacks [8]. 

Besides the refractive index (RI) detector [11] and the mass spectrometer (MS) [12], the 

aerosol-based evaporative light scattering (ELS) [13] and condensation nucleation light 

scattering (CNLS) [14] detectors provide a quasi-universal response for nonvolatile analytes. 

The most recent representative of the aerosol-based detectors is the charged aerosol detector 

(CAD) [15, 16]. The older CAD models, however, suffer from less sensitivity and a limited 

linearity. The current models can, to some extent, provide an improvement in case of proper 

adjustment of the instrumental settings. Moreover, the hyphenation of UV-CAD techniques 

further extends the detection scope which enables the analysis of challenging impurity profiles 

in one single chromatographic run.  

The aim of this thesis is to evaluate the performance characteristics of the latest CAD model. 

Based on the obtained results, optimization strategies were developed which can serve as 

basis for the development of sensitive, robust, and straightforward methods for the impurity 

analysis of challenging amino acids and their derivatives for an intended compendial 

application. 
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1.1. Charged aerosol detection 

Charged aerosol detection is a universal detection technique for quantitative analysis 

employed in liquid chromatography [17]. Since its commercial introduction in 2005 [18], the 

technology and instrumentation has evolved resulting in the implementation of a heated 

evaporation tube and a power function algorithm for signal linearization. The detection process 

is depicted in Fig. 1. 

In brief, the solute containing column effluent is nebulized by a nitrogen stream to form a 

primary aerosol (1). The aerosol then passes an impactor, where droplets above a specific dcut 

are directed to the waste upon impaction, while the remaining droplets form the secondary 

aerosol, which enters an evaporation tube (2). The aerosol droplets are spray-dried to form a 

residue consisting of the nonvolatile analyte and mobile phase impurity particles (3). A 

separate nitrogen stream is ionized by corona discharge and collides with the opposing stream 

of residue particles in a mixing chamber, thereby transferring positive charge to the latter (4). 

Subsequent to the removal of excess charge by an ion trap, the particles charge is measured 

by a sensitive electrometer (5). 

Figure 1. Detection scheme of the Vanquish CAD. Modified with permission from [19]. 

CAD has been employed to solve analytical challenges in various application areas, e.g. the 

quality control of drugs [20], the analysis of lipids [21] and carbohydrates [22], and the 

assessment of natural products [23]. A comprehensive overview of the CAD applications areas 

is provided in Ref. [17]. 
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1.2. Performance characteristics of the CAD 
1.2.1. Uniformity 

Uniformity refers to a steady response/amount relationship for different analytes in the 

following context. Consequently, the signal of a detector with truly uniform response would be 

independent of the chemical structure or physicochemical properties of an analyte [24]. 

Uniform response is highly desirable for impurity profiling applications when the impurities are 

quantified relative to a single calibrator or when unknown impurities are to be determined 

[17,  25]. The response uniformity of the common aerosol-based detectors, which are often 

referred to as mass-dependent detectors [26, 27], is mainly affected by solvent gradients, 

analyte volatility and salt formation, analyte density, and the particle material of the 

residue  [17].  

The processes leading to the formation of residue particles are basically the same for all 

evaporative aerosol-based detectors [28, 29]. The initial diameter of a spherical droplet in the 

primary aerosol after nebulization (Sauter mean diameter, SMD) is described by the 

Nukiyama-Tanasawa [17, 30] equation: 

               SMD =  
585𝜎𝜎0.5

(𝜈𝜈𝑔𝑔 − 𝜈𝜈𝑙𝑙)𝜌𝜌0.5 + 597 �
𝜂𝜂

(𝜎𝜎𝜎𝜎)0.5�
0.45

× �1000 ×
𝑄𝑄𝑙𝑙
𝑄𝑄𝑔𝑔
�
1.5

                   Eq. (I) 

where σ is the surface tension, ρ is the density, and η the dynamic viscosity of the effluent. 

The liquid flow rate of the effluent is represented by Ql whereas the gas flow rate is Qg. The 

axial liquid and gas velocities, νl and νg, are defined by the respective flow rates and the 

nebulizer specifications. Since droplets above a specific dcut are removed to the waste upon 

impaction of the primary aerosol, it follows that the effluent composition is crucial for the 

formation of analyte particles and thus response. Organic solvents such as acetonitrile exhibit 

lower viscosities and surface tensions compared to aqueous solvent, consequently they 

produce droplets of smaller size according to Eq. 1. Moreover, highly organic droplets are more 

susceptible to pre-impactor evaporation, which is also beneficial for the aerosol transport as 

droplets above dcut are not removed by impaction when their size is previously reduced [17]. 

Due to the more efficient nebulization and aerosol transport processes for organic solvents, a 

higher proportion of the analyte enters the evaporation tube leading to an increased response, 

e.g. when an aqueous-organic gradient is applied. 
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The relationship between the diameter dp of a dried residue particle and the analyte 

concentration C is nonlinear according to Eq. II [29, 31]: 

𝑑𝑑𝑝𝑝 = 𝑑𝑑𝑑𝑑 �
𝐶𝐶
𝜌𝜌𝑝𝑝
�
1/3

                                                                   Eq. (II) 

where dd is the diameter of the initial primary aerosol droplet and ρp is the density of the analyte. 

It should be mentioned that both C and ρp may include nonvolatile impurities, which also 

contribute to the dried particle size [29]. The nonlinear relationship evident from Eq. II directly 

affects the aerosol-based detectors performance as will be further discussed in paragraph 

1.2.3. From Eq. 2 it follows that the size of the dried particle and, thus, the response is also 

dependent on the density of the analyte [32, 33].  

The decisive step in the detection process, which differs among the aerosol-based detectors 

and results in a more uniform CAD response, is the measurement of the dried particles. 

Charging of the dried aerosol particles by unipolar diffusion processes is almost independent 

on the residue particle material, e.g. the analyte properties [17, 18, 27, 34, 35], while the light 

scattering detection mechanisms of the ELSD [13, 36, 37] and the CNLSD [38] are more 

influenced by specific analyte characteristics, e.g. the refractive index. Consequently, a 

superior uniformity of response of the CAD has been demonstrated in numerous studies 

[39- 46] (Fig. 2). 

 

Figure 2. Uniform CAD response obtained by flow injection analysis for diverse nonvolatile compounds. 

Reprinted with permission from [24]. 
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In general, the volatility of an analyte is the most influential characteristic toward the CAD 

responsiveness [18, 27]. Although the volatility of a compound can be estimated by its vapor 

pressure or boiling point, there are no distinct boundaries between nonvolatile and semivolatile 

compounds; therefore, the classification requires experimental verification. While the salt 

formation of mobile phase additives with ionized nonvolatile analytes can negatively affect the 

response uniformity due to an increased response of the latter [47], the same effect improves 

the sensitivity for semivolatile analytes [48]. Low molecular mass mobile phase additives 

produce a more uniform response compared to higher mass additives [47, 49]. 

Several approaches exist to address a nonuniform CAD response. The most common 

approach to obtain a uniform response in gradient elution mode is the application of a gradient 

compensation technique [27, 50-54]. A second pump delivers an inverse gradient to the 

separation gradient resulting in a constant mobile phase composition, which significantly 

improves the uniformity of response. Different approaches aimed at establishing a CAD 

response model accounting for experimental variables and molecular properties of the 

analytes in order to predict the CAD response for varying conditions. Hutchinson et al. [34] 

constructed a three-dimensional model relating the CAD response to the analyte concentration 

and the mobile phase composition. The model allows, with some limitations, the quantitation 

of unknown nonvolatile analytes without using calibration standards. Robinson et al. [33] 

correlated the estimated relative surface area of the dried analyte particles to the CAD 

response instead of the injected mass, thereby improving the error of quantification for 50 

compounds with varying properties. The suggested surface area dependent response of the 

CAD is in accordance with the detection principle of the CAD [20] and further supported by 

incorporation of  a molecular descriptor into a QSPR model [55], which could adequately 

predict the CAD response of aminoglycoside antibiotics and sugars. A comprehensive QSPR 

model relating the CAD response to the molecular descriptors of diverse compound classes 

would be highly desirable. Machine learning algorithms are beneficial tools for the 

establishment of these rather complex models and are likely to be employed more frequently 

in the future. 

1.2.2. Sensitivity 

The comparison of the aerosol-based detectors sensitivity has been the subject to numerous 

studies. In most cases, the CAD provided lower sensitivity limits than the ELSD [25, 39, 41, 

42, 56-59]. Few studies compared the CAD’s sensitivity to the CNLSD, with divergent results 

[28, 29, 48, 60, 61]. However, the comparison studies were performed with the legacy cross-

flow design CAD models providing lower sensitivity compared to the recent concentric design 

models [17]. 
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As it is the case for all universal detectors, the mobile phase composition is a crucial factor for 

the sensitivity of a method. Besides the aforementioned response dependency on aqueous-

organic gradients, the purity of the mobile phase is a highly contributing factor toward sensitivity 

[17, 62-64], e.g. the concentration of present nonvolatile and semivolatile impurities. This also 

includes the applied mobile phase additives [26, 65], which need to be sufficiently volatile and 

of high purity. 

With the Corona Veo charged aerosol detector model introduced in 2015, the temperature of 

the evaporation tube can be adjusted. The evaporation temperature setting has a direct impact 

on the response of the analyte as well on the background noise of the CAD (Fig. 3). The optimal 

evaporation temperature is obtained for the best compromise of both, which depends on the 

analyte’s volatility and on the nature and concentration of the present mobile phase impurities. 

Thus, the optimal setting requires experimental verification because the response of the 

analytes is not always predictable solely based on their physicochemical properties [17, 33]. 

Figures 3a. and 3b. illustrate the influence of the evaporation temperature on the CAD 

performance for two general cases. 

 

Figure 3a. Influence of an elevated evaporation temperature (70 °C) on the response of nonvolatile 

analytes and on the the background noise. 

 

Figure 3b. Influence of a low evaporation temperature (30 °C) on the response of a semivolatile 

analyte. 
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A good practice is to choose the lowest evaporation temperature possible that still produces 

the required sensitivity [17], since a more uniform response is obtained here in most cases. In 

contrast, many compound classes behave as semivolatiles at elevated evaporation 

temperatures [47]. However, polar nonvolatile analytes often produce a constant response 

even at elevated temperatures, thus their signal-to-noise ratio (S/N) can be improved by 

increasing the evaporation temperature. 

1.2.3. Linearity 

Due to its principle of detection, the CAD’s response is inherently nonlinear, analogously to the 

other aerosol-based detectors. Two processes are predominantly contributing to the observed 

nonlinear response [17]. As described previously, the concentration of the nonvolatile residue 

after evaporation is proportional to the cubic root of the dried particle diameter (Eq. II). The 

second process with a substantial impact on the shape of the response curve is the charging 

of the dried residue particles. The mean charge per particle transferred by unipolar diffusion 

processes depends on the particle diameter d [16, 66-68] and is proportional to d1.133 for 

d>9  nm, while the exponent is d2.25 for d<9 nm.  

The shape of the response curve can be described by Eq. III [17]: 

𝐴𝐴 = 𝑎𝑎(𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖)𝑏𝑏                                                                            Eq. (III) 

where A is the peak area, a is sensitivity coefficient, minj the injected mass, and b a power law 

exponent derived from the two subprocesses described above. The a and b variables depend 

on the analyte properties and the experimental conditions. For b=1, a linear response is 

observed, whereas b>1 indicates supralinear response and b<1 sublinear response, 

respectively. It should be noted that the CAD response is often quasi-linear over concentration 

ranges up to two orders of magnitude [69-74], while a nonlinear response is observed for 

broader concentration ranges. Compared to the ELSD, the CAD’s power law exponent b 

deviates less from 1 due to the higher influence of the light scattering mechanisms (mean 

charge per particle proportional to ~d2-d6) involved in the particle measurement of the ELSD 

[13, 75]. 

A common linearization approach [34, 39, 76, 77] is the double-logarithmic transformation of 

Eq. III resulting in Eq. IV: 

log(𝐴𝐴) = 𝑏𝑏 × log�𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖� + log(𝑎𝑎)                                              Eq. (IV) 

where the power law b becomes the slope of the response curve and the coefficient a becomes 

the y-intercept. The double logarithmic transformation and other mathematical fitting options 

share one drawback. They require the subsequent manipulation of original calibration data 

which can be an issue in GMP regulated environment [78]. 
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A relatively new linearization approach makes use of the built-in power function value (PFV) 

setting of the recent CAD models [79]. The PFV is basically a correction factor to the power 

law exponent b of Eq. III [17], which directly alters the signal output of the CAD to improve the 

detector’s linearity in the desired range. Since this approach does not require a subsequent 

manipulation of data, it is of relevance for the regulated environment. Consequently, an 

increasing number of publications relies on the PFV optimization [44, 51, 52, 78, 80-84] to 

compensate the nonlinear CAD response.  

 

Figure 4. A nonlinear response of an analyte as indicated by the trend in the residual plot can be 

linearized either applying a double logarithmic transformation or a PFV of 1.25. 

1.3. Liquid chromatography techniques for the separation of small 
polar compounds 

High-performance liquid chromatography using a reversed-phase column (RP-HPLC) is a 

robust and powerful separation technique for a wide variety of compound types [85]. However, 

the technique only weakly retains small hydrophilic compounds in most cases [86]. 

Additionally, numerous small polar compounds, e.g. amino acids and sugars, do not possess 

a suitable chromophore for the routinely applied UV detection. Pre-column [87-89] and post-

column [90-92] derivatization techniques can help to overcome the separation issues and 

improve the detectability of weakly-chromophoric compounds by introduction of an UV- or 

fluorescence responsive group, however, they share several drawbacks such as unwanted 

side products of the derivatization reaction [93] and blindness to compounds without 

derivatizable group.  
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Ion pair chromatography (IPC), mixed-mode chromatography (MMC), and hydrophilic 

interaction chromatography (HILIC) represent more straightforward alternatives to the 

derivatization methods and will be described in more detail in the following also regarding their 

impact on the CAD performance. It should be mentioned that they usually comprise vastly 

different proportions of organic modifier and mobile phase additives, especially for IPC. 

Characteristic parameters of the separation techniques and their assumed influence on the 

CAD performance are illustrated in Table 1.  

Table 1. IPC, MMC, and HILIC characteristics and their assumed impact on the CAD response (+) and 

background current (*).  

Characteristic Parameter IPC MMC HILIC 
mobile phase  
compositiona 

 

organic 
percentage 
 

lowb 

(+) 
low-high 
(+−+++) 

high 
(+++) 

mobile 
phase 
additives 

volatile ion-pairing 
reagents 

(***) 

volatile buffers/ pH 
modifiers 

(*) 

volatile buffers/ pH 
modifiers 

(*) 
 

stationary 
phase 

column 
material  

RP columns, e.g. 
C18 

bimodal/trimodal 
functionalized 
columns, e.g. 

RP/IEX 

polar columns, e.g. 
silica-based 

amino/amide/diol 
columns 

 
 
 

column 
bleed 

low 
(*) 

low-high 
(*−***) 

high 
(***) 

 
MS 
compatibility  
 

 low high high 

sample 
solvent 
 

 aqueous/organic aqueous/organic 
 
 

≥ 50% organic 

selected CAD 
applications 

 amino acid 
analysis [69, 94, 
95], gentamicin 

[96], streptomycin 
[97] 

carbocisteine [98], 
aspartate [77], 
methionine and 

arginine [99] 

amino acid analysis 
[100, 101], 

glucosamine [73], 
apramycin [57], 

gabapentin [102] 
a When used with CAD. 
b With respect to the other separation techniques.  

 
1.3.1. IPC 

In IPC, the retention of ionized compounds on RP columns is increased by using ion-pairing 

reagents of opposite charge to form ion pairs. The structure of an ion-pairing reagent contains 

a lipophilic group, which interacts with the stationary phase and an ionizable moiety for the 

interaction with the analyte. Since multiple mechanisms contribute to the observed retention, 

the discussed theoretical retention models tend to be rather sophisticated [103, 104]. Key 

aspects of simplified models include the dynamic modification of the surface of the RP column 

by adsorption of the ion-pairing reagent, thereby creating ion exchange sites, the formation of 

neutral ion pairs able to partition into the hydrophobic stationary phase, and a combination of 
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both mechanisms [103]. IPC comes along with some drawbacks. RP columns used with ion-

pairing reagents should be dedicated to IPC applications due to the potential irreversible 

adsorption of the applied reagent. Further consequences of the adsorption mechanism are the 

relatively slow column equilibration [105, 106] and the time-consuming re-equilibration in 

methods with gradient elution. Perfluorinated carboxylic acids (PFCAs), which are widely 

employed as ion-pairing reagents, are environmentally persistent [107] and potentially 

toxic  [108].  

The preferred mobile phase for IPC is a water-rich eluent, because analyte retention decreases 

with increasing proportion of the organic modifier [103]. Thus, a lower CAD response is to be 

expected compared to highly organic mobile phases [109]. Furthermore, the salt formation of 

the applied ion-pairing reagent with the analyte as well with present mobile phase impurities 

has a direct impact on the analyte signal [47] and the background noise [24], respectively. With 

CAD, volatile ion-pairing reagents are required, i.e. PFCAs [94, 95, 97] for basic analytes and 

substituted alkylamines [48, 110, 111] for acidic analytes.  

1.3.2. MMC 

Some IPC related shortcomings can be avoided by using MMC instead. In MMC, the employed 

stationary phases are functionalized to have multiple retention mechanisms [112], e.g. RP and 

ion exchange (IEC). They can be classified [113] in accordance with the respective retention 

modes into RPC/HILIC, RPC/IEC, HILIC/IEC, and others, e.g. with a ternary retention mode. 

As different interactions contribute to the retention of the analytes, the simultaneous analysis 

of charged and neutral compounds becomes feasible without the usage of ion-pairing 

reagents. A wide variety of columns with diverse column chemistries and unique selectivities 

are commercially available [114]. The mobile phase composition is a more critical factor 

compared to RPC, because the type and the proportion of the organic modifier, the type of the 

mobile phase additive, the pH, and the ionic strength have a substantial impact on the 

chromatographic performance and retention of the analytes due to the concurrent separation 

mechanisms [115]. It was demonstrated [116] that the loading capacity for ionized bases is 

higher for MMC columns compared to RPC columns, which is of particular importance for 

impurity profiling methods, where concentrated samples have to be injected. However, the 

method development is less straightforward compared to RPC due to the multiple interactions 

involved between the analytes and the multimodal stationary phase, which requires a greater 

extent of optimization of the chromatographic conditions [114]. Moreover, the MMC columns 

lack of standardization due to the proprietary functionalization procedures, which means that 

even columns with identical functionalities from different manufacturers might not provide a 

comparable selectivity. However, some MMC columns are listed in the USP [6]. 
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Since MMC columns can be operated in the RPC mode as well as in the HILIC mode [114], 

the organic proportion in the mobile phase, and thus the CAD response, varies in dependence 

of the elution mode and the applied mobile phase additive. Typically, the mobile phases 

comprise a buffer or acidic modifier. However, the use of long chain ion-pairing reagents is not 

necessary due to the additional retention mode. Thus, the impact of the mobile phase additive 

on the analyte signal and the background noise of the CAD is presumably less pronounced 

compared to IPC. Column bleed is a relevant factor for the development of MMC-CAD methods 

in particular when a HILIC retention mode is involved [117].  

1.3.3. HILIC 

HILIC comprises polar stationary phases and highly organic mobile phases. It can be 

characterized as the chromatographic technique using a normal phase (NP) stationary phase, 

e.g. bare silica, neutral polar chemical bonded (amino, amide, diol, etc.), ion exchange, and 

zwitterionic stationary phases, in combination with a RP mobile phase, containing more than 

50% organic solvent in water [86]. According to present theory, retention in HILIC is mainly 

caused by partitioning of the analytes between the acetonitrile-rich mobile phase and a water-

enriched layer adsorbed onto the hydrophilic stationary phase. Electrostatic interaction and 

hydrogen bonding effects may also play a role [118, 119]. While the initial method development 

was solely based on univariate approaches [120], chemometric-assisted method development 

including quantitative structure-retention relationship models and computer-aided column 

classification could further facilitate the application of HILIC [121]. HILIC is well-suited for the 

separation of small polar compounds [122]; thus, it represents an alternative to IPC with a 

complementary selectivity. An increased sample loading capacity for HILIC compared to RPC 

has been reported [123]. Similar to MMC, the standardization of HILIC columns is not as far 

advanced as for RPC. However, HILIC columns are also listed in the USP [6]. A prerequisite 

for satisfactory chromatographic performance in HILIC is the solubility of the sample in highly 

organic diluent. For impurity profiling purposes, where the injection of highly concentrated 

samples of the main substance is inevitable, this represents a serious limitation. 

Due to the highly organic mobile phases employed in HILIC, the CAD response is significantly 

increased compared to the RPC conditions [109]. Volatile buffers such as ammonium formate 

and ammonium acetate are typically applied as mobile phase additives. The mobile phase 

requirements are identical to those of a mass spectrometer, enabling a straightforward method 

transfer of a HILIC-CAD method to MS. A HILIC-associated issue with an impact on the CAD 

performance is column bleed. As universal detector, the CAD is sensitive towards nonvolatile 

mobile phase impurities which may arise from dissolution of silica-based HILIC columns [124]. 

Consequently, significant levels of column bleed have been reported for several HILIC-CAD 
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applications [102, 125, 126]. Polymer-based [127] as well as coated silica [128] stationary 

phases show significantly less column bleed and might thus provide a solution.  

1.4. Hyphenated detection techniques with CAD 

The CAD is often referred to as universal detector, however, this holds true only for nonvolatile 

compounds. Thus, the hyphenation of detection techniques can be a great asset to extend the 

detection scope and to obtain complementary and comprehensive information on the 

challenging impurity profile of APIs. One promising strategy for the impurity profiling of drugs 

is the hyphenation of CAD and MS, which can easily be done, as the detectors share the same 

mobile phase requirements. Due to their destructive detection principle, flow splitting of the 

column effluent [129] or the usage of separate HPLC systems [101] is required. While the 

CAD’s almost uniform response for nonvolatile analytes allows the quantitation of unknown 

impurities without using a reference standard, the hyphenated MS detection provides structural 

information on unknown compounds [97, 130-132].  

In case of well-known impurity profiles and for routine analysis purposes, hyphenation of UV-

CAD is sufficient to benefit from the complementary detection techniques when dealing with a 

set of physico-chemical diverse analytes, e.g. volatile and weakly chromophoric impurities 

(Fig.  5). Hyphenation can easily be achieved by connecting the outlet of the non-destructive 

UV detector to the CAD and represents a robust and straightforward application. Thus, there 

is an increasing number of publications where UV-CAD [71, 133-137] was employed for a 

comprehensive analysis. UV-CAD coupled to HPLC analysis has also been introduced into the 

Ph. Eur. for the test of related substances of the drug vigabatrin [138]. However, the mobile 

phase composition is a crucial factor for the development of sensitive methods with 

hyphenated detection because the CAD is limited to volatile mobile phases, while the UV 

detector requires non-absorbing organic modifiers and mobile phase additives.  

 
Figure 5. Comprehensive impurity profiling of non-chromophoric and volatile compounds by hyphenated 

UV-CAD techniques. Here, the impurity profiling of vigabatrin is displayed. 
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1.5. Challenges in the analysis of amino acids and related 
compounds 

There are two main challenges in the analysis of amino acids and their derivatives using HPLC. 

One challenge is the separation of these small polar compounds. Due to their zwitterionic 

properties (pKCOOH ~2, pKamino ~9) they are permanently charged in aqueous solution; thus, 

RPC is not feasible in most cases. For impurity profiling purposes, potential impurities, e.g. 

organic acids, must be considered as well. The previously discussed IPC, MMC, and HILIC 

techniques are viable options. However, the selection of the most appropriate separation 

technique depends on the individual impurity profile of the API and on its physicochemical 

properties. Although HILIC is perfectly suited for the separation of small polar analytes, it is 

limited to applications where a concentrated solution of the API is soluble in highly organic 

(>50%, v/v) solvent. MMC columns with RP/SCX functionalities are a good choice for the 

separation of amino acids, however, they lack separation power towards organic acids without 

basic moiety. In IPC methods, the retention and selectivity must be optimized by the selection 

of the applied ion-pairing reagent(s). Consequently, the initial method development requires 

extensive experimentation, e.g. the screening of diverse separation techniques and column 

chemistries. 

Besides the challenging separation of the amino acids and their possible impurities, the 

coverage of the entire impurity profile in one single chromatographic run is not easily 

accomplished as well. Most of the amino acids do not possess an UV absorbing structural 

feature with the carboxylic moiety being the sole weak chromophore at short wavelength UV 

(<210 nm). In contrast, the CAD provides a reliable and sensitive detection of the nonvolatile 

amino acids. However, the impurity profile of the respective amino acid may not only contain 

weakly chromophoric compounds, but also volatile impurities not accessible with CAD. In this 

case, hyphenated UV-CAD can be employed to expand the detection scope.  

In this thesis, RPC, IPC, MMC, and HILIC methods for the impurity profiling of amino acids 

and their derivatives were elaborated (Table 2). The separation techniques were coupled to 

CAD or UV-CAD where appropriate.  
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Table 2. Selected compounds for the development and validation of impurity profiling methods. 

Compound Structure logDa 

(pH 5.5) 
Impurity 
profileb 

Analysis 
method 

 
 

L-aspartic acid 

 

 
 

−4.30 

 
 

semivolatile 
and weakly-

chromophoric 

 
 

IPC-UV-
CAD 

 
 

gabapentin 

 

 
 

−1.45 

 
 

volatile, 
semivolatile, 
and weakly-

chromophoric 

 
 

RPC-UV-
CAD 

 
glycine 

 

 
−3.20 

 
volatile and 

weakly-
chromophoric 

 
IPC-UV-

CAD 

 
 

L-valine 

 

 
 

−2.16 

 
 

weakly-
chromophoric 

 
 

HILIC-CAD 

 
vigabatrin 

 

 
−2.74 

 
volatile and 

weakly-
chromophoric 

 
MMC-UV-

CAD 

a Predicted by ACD labs software version 2020.2.0 (ACD Labs, Toronto, Canada). 

b With respect to the Ph. Eur. 10 [5]. 
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2. Aim of the thesis  

As a relatively new detection technique in liquid chromatography, charged aerosol detection is 

still evolving, which is reflected by the implementation of additional instrumental settings and 

the increasing use of CAD in hyphenated detection setups. Independently, novel 

chromatographic techniques for the separation of small polar molecules such as MMC and 

HILIC have been established over the last decade. The present doctoral thesis aimed at 

combining both developments for an optimized analysis of the challenging amino acids and 

their derivatives. It can be divided into two main objectives, which are of fundamental and 

applied nature, respectively, and build on one another.  

The first main objective aimed at exploring the basic detector capabilities and their potential 

optimization.  As fundamental aspects of the CAD technique, the performance characteristics 

uniformity, sensitivity, and linearity were evaluated and optimized considering the influence of 

the recently introduced CAD settings evaporation temperature and power function value (PFV). 

Another essential research topic was the systematic comparison of the impact of diverse 

chromatographic separation techniques accompanied by their individual mobile phase 

compositions on the CAD performance. Additionally, the applicability of hyphenated UV-CAD 

was investigated. 

The second main objective was the development of CAD methods for the impurity profiling of 

amino acids and amino acid-like APIs suited for a compendial application. Optimization 

procedures derived from the previously conducted performance evaluation served as basis for 

the method development to achieve the required sensitivity and linearity. The methods should 

represent more selective and straightforward alternatives to the derivatization and multi-

method approaches of the Ph. Eur. Each method was validated with respect to ICH guideline 

Q2(R1) to meet the compendial requirements. 

The main objectives can be subdivided into the following projects: 

• Uniformity: Investigation of significant chromatographic and molecular features towards 

the observed nonuniform CAD response for fatty acids ranging from C12 to C18 and 

accurate prediction of the CAD response by a machine learning approach; Evaluation 

of the influence of the CAD’s evaporation temperature setting on the response 

uniformity for fatty acids (C12 to C18) representing semivolatile and nonvolatile 

compounds. 

• Sensitivity:  Performance evaluation of IPC and HILIC coupled to the CAD by a 

response surface methodology approach and comparison of the sensitivity of IPC and 

HILIC methods for the impurity profiling of branched-chain amino acids; Studies on the 
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influence of the evaporation temperature setting and the filter constant setting on the 

response and limits of quantitation of semivolatile fatty acids. 

• Linearity: Comparison of double logarithmic transformation and experimental power 

function optimization as linearization procedures for the CAD response of fatty acids; 

Comparison of empirical and mathematical power function optimization strategies for 

the linearization of the CAD response for gabapentin and its impurities. 

• Hyphenation of UV-CAD: Studies on the influence of the mobile phase composition on 

the hyphenated detection for the impurity analysis of vigabatrin. 

• Development and validation of a method for the impurity analysis of gabapentin by 

RPC-UV-CAD. 

• Development of a generic method for the impurity analysis of branched-chain amino 

acids by IPC-CAD and HILIC-CAD, respectively, and validation of the HILIC method 

for L-valine. 

• Development and validation of a method for the impurity analysis of vigabatrin by MMC-

UV-CAD. 

• Development and validation of methods for the impurity analysis of L-aspartic acid and 

glycine by IPC-UV-CAD, respectively. 
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Abstract 

The analysis of polysorbate 80 is a challenge because all components lack a chromophore. 

Here, an ultra-high-performance liquid chromatography system equipped with a charged 

aerosol detector (UHPLC-CAD) was used to study the effect of systematic variation of the CAD 

settings, namely evaporation temperature, filter constant and power function value (PFV), on 

the detector response of fatty acid standards and manufacturing batches of polysorbate. 

Evaporation temperature and filter constant strongly affect the detection limits described by 

signal-to-noise (S/N) ratios. Although evaporation temperature can be increased to improve 

signal to noise ratios, analyte volatility at higher temperatures is an important limiting factor. 

The PFV was found to be a strong tool for optimizing response linearity, but the optimal PFV 

differed depending on analyte volatility. Because PFV optimization required some additional 

measurement time and because double-logarithmic transformation at the default PFV of 1.0 

yielded satisfying universal results with less measurement time over a range of two orders of 

magnitude for every homologue fatty acid from C14 to C18, use of the log-log transformation 

is the favored linearization strategy. Possible optimization procedures for semi volatile 

substances are presented. Overall, this new UHPLC method offers improved detection limits, 

as well as time savings of over 75% and eluent savings of more than 40% compared to the 

previously published HPLC-CAD method for polysorbate analysis. 
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1. Introduction 

Fatty acids play an important role in the pharmaceutical and cosmetic field as excipients [1]. 

They are present in various diverse substance classes as emulsifiers [2]. Polysorbates are 

esterified with a sorbitan backbone together with polyethylene glycols (PEGs) [3]. Furthermore, 

esters of fatty acids with fatty alcohols yield waxes and esters of fatty acids with glycerin form 

triglycerides which, as well as the free fatty acids themselves, are commonly used in 

dermatological formulations [4]. 

An in-depth comparison of currently applied methods for the analysis of fatty acids was given 

by Wu et al. [5], elaborating on advantages and disadvantages of the respective methods. Due 

to their physicochemical properties, fatty acids are mainly assessed by means of gas 

chromatography (GC) after derivatization with methanol to fatty acid methyl esters (FAMEs) 

[6, 7] as also described in the Ph. Eur. [8]. The most common approach involves a flame 

ionization detector (FID), whereas GC-mass-spectrometry (MS) can be used for  more 

selective and sensitive analysis [9]. Analytical methods such as capillary electrophoresis (CE) 

with indirect UV detection [10] or tedious pre-column derivatization with e.g. naphthoyl chloride 

and coupling to HPLC [11] have been described but rarely used. More recently, near-infrared 

spectroscopy [12] and NMR [13-15] as non-destructive methods of analysis have been 

reported; however, model establishment for NIR is tedious and both methods lack sensitivity 

[5]. HPLC-MS methods are accessible without derivatization procedures [16], yet are very 

costly [5]. 

Furthermore, aerosol-based detection methods utilizing either evaporative light scattering 

detection (ELSD) or charged aerosol detection (CAD) combined with HPLC have been 

reported [5, 17-20]. They are rather easy-to-use, cheap in comparison to MS analytics and not 

dependent on chromophores. The aerosol based detection of CAD and ELSD relies on 

nebulization of the effluent which, by evaporation of the solvent, forms particles [21]. These 

particles are then detected by measuring electrical charge that was transferred to the particles 

by a nitrogen stream passing a corona needle in case of the CAD. Alternatively, in case of the 

ELSD, the particles pass a light beam and the combined angular light-scattering in the 

detection flow path is analyzed. Thus, analytes do not need to possess a chromophore – as it 

is the case for fatty acids – but only need to be sufficiently non-volatile in order to ensure 

acceptable signals [21]. The ELSD is known to be inferior when it comes to dynamic range, 

sensitivity and signal irregularities when highly concentrated samples have to be used [22] as 

is the case for impurity profiling. This leaves the CAD as the more reliable and more suitable 

of the two quasi-universal aerosol detectors because it possesses a greater linear and dynamic 

range [23, 24]. Ilko et al. [25] presented a HPLC-CAD method for the analysis of free fatty acids 
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in polysorbate 80 batches after liquid-liquid extraction and for the fatty acid composition after 

hydrolysis and liquid-liquid extraction.  

To the best of our knowledge, no UHPLC-CAD method benefiting from the time and eluent 

saving and the capabilities of modern CAD detection for fatty acids has been established. 

Interestingly, although the semi-volatile character of the fatty acids significantly affects the 

detector signal, no systematic study of the settings of CAD parameters and their impact on the 

signal intensity of these homologues has been undertaken. The UHPLC method development 

is described shortly and a focus on the systematic evaluation of CAD settings is presented in 

this article. 

2. Experimental 

2.1. Chemicals and reagents 

Octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, petroselinic acid, oleic 

acid, linoleic acid, alpha-linolenic acid, stearic acid, HPLC grade acetonitrile, potassium 

hydroxide, tert.-butyl methyl ether (MTBE), HPLC grade methanol, HPLC grade 50% formic 

acid and 100% formic acid were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, 

Germany). Margaric acid was purchased from VWR international (Darmstadt, Germany). All 

chemicals used were of analytical grade unless otherwise stated. Ultrapure water was 

produced by a water purification system from Merck Millipore (Schwalbach, Germany) 

specified at a resistivity of 18.2 MΩ-cm. The polysorbate batches were from NOF (Tokyo, 

Japan), Kolb (Hedingen, Switzerland), Merck (Darmstadt, Germany) and Croda (East 

Yorkshire, UK). The batch coding does not necessarily match with the presented manufacturer 

order. 

2.2. Apparatus 

The UHPLC-CAD experiments were performed on a Thermo Scientific™ Vanquish™ Flex 

modular chromatographic system consisting of a binary flex pump with online degasser, a 

thermostatted split sampler, a thermostatted column compartment with integrated pre-heater, 

a variable wavelength detector and a Vanquish Horizon charged aerosol detector (Thermo 

Fisher Scientific, Germering, Germany). The charged aerosol detector was supplied with 

nitrogen gas from an ESA nitrogen generator (Thermo Fisher Scientific, Germering, Germany) 

connected to the in-house compressed air system. The instrument was controlled and runs 

were processed using the Chromeleon® Data System Version 7.2.6 software program (Thermo 

Fisher Scientific). 
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2.3. Chromatographic procedure 

A core-shell octadecylsilyl (C18) Kinetex column (100 x 2.1 mm i.d., with a particle size of 

2.6 µm and pore size of 100 Å) (Phenomenex, Aschaffenburg, Germany) was used as 

stationary phase. The chromatographic system was operated using gradient elution at a 

column compartment temperature of 25 °C ran in still air mode. Mobile phase A consisted of 

an aqueous 0.05% (v/v) formic acid solution, whereas mobile phase B was acetonitrile with 

addition of 0.05% (v/v) formic acid.  

The final gradient runs at a flow rate of 1.5 mL/min and utilizes 75% B from 0 to 0.8 min, linearly 

increases to 85% B within 1.7 min and holds at 85% B for 0.5 min, followed by a re-equilibration 

with a gradient to 75% B within 0.5 min and a 1 min hold, resulting in a total run time of 4.5 min. 

The injection volume was 10 µL. 

Detection was performed by means of the Vanquish® CAD with the evaporation temperature 

set to 30 °C, a power function value of 1.0, a filter constant of 1 s, a data collection rate of 

10 Hz and a gas inlet pressure of 56.4 psi unless specified otherwise. 

2.4. Preparation of solutions 

The stock solutions for the respective fatty acids were prepared by exactly weighing 10.0 mg 

of the fatty acid and dissolving in 10.0 mL of methanol. These stock solutions were stored in a 

freezer at -20 °C and diluted with a mixture of acetonitrile 75% and water 25% (v/v) to the 

appropriate concentration on a daily basis. The procedures for the preparation of the sample 

solutions were adopted from Ilko et al. [25] who modified a saponification process from Hu et 

al. [26] and a liquid-liquid extraction from Matyash et al. [27].  

2.4.1. Preparation of the sample solutions for the determination of the fatty acid 
composition in batches of polysorbate 80 

15.0 mg of the polysorbate was exactly weighed and dissolved in 1 M potassium hydroxide 

solution containing 10% (v/v) methanol and made up to 10.0 mL. Saponification was achieved 

after incubation at 40 °C for a minimum of 6 hours. 

50 µL of 100% formic acid was added to 250 µL of the solution after saponification in a glass 

centrifuge tube (VWR International, Darmstadt, Germany). After addition of 500 µL of MTBE 

the mixture was vortexed and centrifuged at 2700 rpm (EBA 20 centrifuge, Hettich, Tuttlingen, 

Germany) for 5 min. The entire organic phase was collected in a vial, dried under a gentle 

nitrogen gas stream and the residue reconstituted in 1000 µL of a mixture of acetonitrile 

75%/water 25% (v/v). 

Quantitative analysis of the fatty acid composition was performed using external standards and 

double logarithmic calibration curves for each individual fatty acid. 
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2.4.2. Preparation of the sample and reference solutions for the determination of the 
free fatty acids in batches of polysorbate 80 

100.0 mg of the polysorbate was exactly weighed in a 10.0 mL volumetric flask. After addition 

of 500 µL of the 1 mg/mL methanolic margaric acid stock solution as internal standard, the 

analyte was dissolved and made up to 10.0 mL with water. The internal standard is added in 

a concentration of about 0.5% (m/m). The exact concentration of the internal standard needs 

to be calculated referring to the sample weight. 

100 µL of 100% formic acid was added to 1000 µL of the polysorbate and internal standard 

solution in a glass centrifuge tube. After addition of 1000 µL of MTBE the mixture was vortexed 

and centrifuged at 2700 rpm for 45 min. 500 µL of the organic phase was collected, dried under 

a gentle nitrogen gas stream and the residue reconstituted in 500 µL of a mixture of acetonitrile 

75%/water 25% (v/v). 

The reference solution consisted of margaric acid and oleic acid at a concentration of 50 µg/mL 

each. It was obtained by diluting the respective stock solutions with a mixture of acetonitrile 

75%/water 25% (v/v). For the evaluation of the free fatty acids, the peak area ratio of this 

reference solution was determined and used in the batch analysis with the internal standard. 

3. Results and discussion 

3.1. UHPLC method optimization 

The initial LC method employing a conventional HPLC instrument reported by Ilko et al. [25] 

used a core-shell octadecylsilyl (C18) Kinetex (Phenomenex, Aschaffenburg, Germany) 

column in the dimensions 100 x 3.0 mm with 2.6 µm particles. The mobile phase flow-rate was 

set at 0.6 mL/min and a gradient method with a run time of 15 min consisting of an initial hold 

at 75% B for 5 min and a linear 10 min gradient step to 85% B was applied. Mobile phase A 

was aqueous 0.05% (v/v) formic acid, while mobile phase B consisted of acetonitrile with 

addition of 0.05% (v/v) formic acid. 

To keep the column’s selectivity and chemistry as close as possible to the original method, a 

Kinetex C18 column, was chosen for the method optimization to UHPLC as well. The standard 

Kinetex columns (i.d. 3.0 mm) are stable up to a backpressure of 600 bar, whereas the 

columns with an internal diameter of 2.1 mm are stable up to a backpressure of 1000 bar and 

thus suitable for UHPLC applications. Hence, a 100 x 2.1 mm column of the same chemistry 

and particle size was chosen. 

Since the smaller diameter column and the UHPLC system are capable of withstanding higher 

backpressure, it was the ultimate goal to save time and eluent consumption after the 

optimization. Because all column parameters aside from the i.d. are the same for both columns, 
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their correlation in column volume can be narrowed down to the formula shown in 

equation 1 [8]: 

     𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑐𝑐 = (𝐼𝐼𝐼𝐼1
𝐼𝐼𝐼𝐼2

)2         (1) 

VC : column volume; ID : internal diameter 

Using the resulting factor of 2, the mobile phases and percentage gradient levels were initially 

used according to Ilko et al. [25] as mentioned at the beginning of this section. In order to 

evaluate which flow-rate would be the most appropriate, flow-rates between 0.6 and 

1.5 mL/min were screened. A mixture of the main fatty acid, namely oleic acid, and the internal 

standard, namely margaric acid, was used. Additionally, a batch of polysorbate 80 was 

analyzed for its free fatty acids.  The initial method screening was performed with the default 

CAD settings of 35 °C evaporation temperature, a power function value (PFV) of 1.0 and a 

filter constant of 1 s. Upon method development, variations in the gradient steps and levels 

were examined as well. Since a decrease of mobile phase B to 70% resulted in a slightly better 

separation but inferior signal intensities, increased analysis time and increased backpressure, 

a gradient of initial 75% of mobile phase B up to 85% was considered more appropriate. 

Figure S1 illustrates the chromatograms of the reference solution containing 50 µg/mL of oleic 

acid (65-88% purity) and margaric acid in addition to the impurities of linoleic acid, palmitic 

acid, petroselinic acid and stearic acid at different flow rates. The injection volume was 

maintained to be 10 µL since no indicators of overloading of the column occurred. 

The final optimized method utilized a flow-rate of 1.5 mL/min with an initial hold at 75% B for 

0.8 min and a linear gradient to 85% B within 1.7 min. Resulting in a separation time lower 

than 3 minutes, with no backpressure problems. Reequilibration starting with 85% B for 

0.5 min, back to 75% B in 0.5 min, followed by 1 min of 75% B was found to be sufficient, 

resulting in a total run time of 4.5 min compared to the 19 min of the HPLC method when 

reequilibration is also considered. The time reduction of over 75% and an eluent consumption 

reduction of more than 40% compared to the HPLC method of Ilko et al. [25] underlines the 

superiority of the UHPLC method. 

The optimized CAD parameters used in batch analysis were: 30 °C evaporation temperature, 

a power function value of 1.0, a gas inlet pressure of 56.4 psi, a filter constant of 1 s and a 

data collection rate of 10 Hz. Double logarithmic transformation was applied to the calibration 

curves of the fatty acids. The optimization of the CAD instrument settings is presented in detail 

in section 3.2. Example chromatograms of a batch analysis with regard to its fatty acid 

composition and of injections near the LOQ are presented in Figure 1. 
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Fig. 1.  (a) Chromatogram of the fatty acid composition of batch D1. Linoleic acid, palmitic and stearic 

acid are present besides the main component oleic acid. Percentage contents (% m/m) are listed in 

Table 3, for chromatographic conditions: see section 2.3.; (b) Chromatogram of 5 ng on column of 

myristic acid, palmitic acid, oleic acid, petroselinic acid and margaric acid for LOQ determination. 

Linoleic acid and stearic acid were injected separately (chromatograms not shown), for chromatographic 

conditions: see section 2.3. 

3.2. Evaluation of CAD parameters for the detection of fatty acids 

Since CAD detection is based on the formation of analyte particles, non-volatility is crucial for 

the response of a substance [29]. Fatty acids show different volatilities depending on the chain 

length. The main fatty acid present in polysorbate 80 is oleic acid (C18:1) together with others 

ranging from C14 (myristic acid) to C18 (stearic acid). To include a broader range of fatty acids 

and to evaluate the CADs limits in this mobile phase composition, a selection of shorter chain 

length fatty acids was added. The fatty acids from C8 to C18 were chosen in an initial screening 

at the default CAD settings of 35 °C evaporation temperature, a PFV of 1.0 and a filter constant 

of 1 s at a concentration of 50 µg/mL. No peaks due to caprylic acid and capric acid could be 

detected using these conditions. Only fatty acids of C12 or longer are sufficiently non-volatile 

to give a measurable detector response at lower concentration levels. Additionally, fatty acids 

shorter than C12 are not well retained. Because of these two factors, this method is most 

applicable for analysis of C12 (lauric acid) and longer fatty acids.  

3.2.1. Evaluation of evaporation temperature based on sensitivity 

The evaporation temperature setting controls the temperature of the thermostatted evaporation 

tube in which, ideally, the mobile phase is quickly and completely evaporated. After eluent 

evaporation, the condensed phase analyte particles that remain undergo unipolar diffusion 

charging and produce a signal in the form of a current. The evaporation temperature setting 
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controls the relative solute partitioning between gas and condensed phases and is therefore 

of utmost importance for detection selectivity [30]. Whereas the evaporation tube temperature 

of the 2005 ESA Corona CAD cannot vary from ambient temperature, the evaporation tube 

temperature of the CAD used here can set anywhere between ambient temperature and 

100 °C. Since particle formation is based on the volatility, a higher temperature generally leads 

to a decrease of the signal intensity for semivolatile substances [31]. Figure 2 shows the 

correlation of peak height and the variation of evaporation temperature settings exemplarily for 

the series of saturated fatty acids and for the non-saturated C18:1 oleic acid for evaporation 

temperature settings between 25 °C and 50 °C. As expected, the signals decrease 

substantially upon raising the evaporation temperature. Temperatures higher than 50 °C do 

not give analyzable results, especially for the more volatile shorter chain length fatty acids. 

 

Fig. 2.  Peak height at different evaporation temperatures of injections of 10 ng on column of the 

respective fatty acid; for chromatographic parameters see section 2.3. 

For non-volatile analytes, the signal is depending on the size distribution of the dried aerosols. 

While this size distribution does vary with the cube root of the particle density, this effect is 

only minor in nature. In conjunction with the unipolar charging process which is virtually 

independent from the analytes` physicochemical properties the charged aerosol detector 

shows a highly similar response for all analytes. This behavior is often referred to as uniformity 

of response [29]. This is in contrast to ELSD, where a significant influence on the materials’ 

properties, like density, refractive index, absorption and fluorescence have been suggested 

and verified by experiments [32]. The mobile phase composition on the other hand has been 

found to have a severe impact on the generated aerosol, thus the uniformity of response can 

only be observed when the mobile phase composition entering the detector is constant, i.e. 

during isocratic elution or by utilizing an inverse gradient setup. With the non-compensated 

gradient elution described here, we expect an increased signal for later eluting peaks, as the 

signal intensity increases with higher acetonitrile content in acetonitrile-water mixtures. Even 
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with this consideration, the significantly reduced signal intensity for the shorter chain length 

lauric and myristic acid is more than would be expected due to the varying acetonitrile content 

and confirms that they possess a significantly higher volatility than the longer fatty acids. 

One may suggest that increasing the evaporation temperature does not bring any positive 

effects, but the opposite is the case. Sensitivity can be improved drastically by optimization. 

Detection limits as per definition of the ICH guidelines [28] are usually assessed through the 

S/N approach. The baseline noise mainly depends on the mass concentration of nonvolatile 

and semivolatile impurities in the effluent, which can be minimized by using ultra-pure solvents 

and additives but cannot be completely eliminated. If the impurities have a higher volatility than 

the analytes of interest, a modest increase in temperature can shift the ratio of analyte amount 

vs. impurities in the condensed phase and thus improve the observed S/N ratios. Lowest 

detection limits are therefore obtained at the best compromise between decreasing baseline 

noise and maintaining sufficient analyte signal. 

Figure 3 shows the correlation of the S/N-ratios for the same data shown in Figure 2 

representatively for myristic acid as a saturated short fatty acid (C14), margaric acid as a 

saturated long fatty acid (C17) and oleic acid as an unsaturated long fatty acid (C18:1). A 

maximum of S/N ratio could be identified at 30 °C for most of the analytes when injected at low 

level concentrations that are slightly above the LOQs of the original method.  

 

Fig. 3.  S/N ratios at different evaporation temperatures of injections of 10 ng on column of the respective 

fatty acid; for chromatographic parameters see section 2.3.                                                             

The experimental LOQs were determined using the S/N approach according to the ICH 

guideline [28] and injecting 1 ng, 5 ng and 10 ng on column. Table 1 displays the comparison 

of the LOQs obtained with the original HPLC method coupled to the “older” CAD [25] with the 
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UHPLC method. The superiority of detection for every analyte with the exception of the most 

volatile, myristic acid, using the CAD parameter optimized UHPLC-method can be clearly 

seen. RSD values calculated for 5 ng on column injections (n = 4) ranged from 0.84 to 1.82 %, 

except for myristic acid (9.17 %) where 5 ng on column is below its LOQ. The superiority of 

the LOQ for myristic acid in the previous method can be traced down to the ambient 

evaporation temperature of the older CAD used. Myristic acid showed improved S/N-ratios at 

lower temperatures in our measurements as well (see Figure 3). 

Table 1. LOQs of the transferred UHPLC-CAD method with optimized evaporation temperature at 30 °C 

compared to the HPLC method with the old CAD of Ilko et al. [25]. 

 
3.2.2. Evaluation of sensitivity in dependence on filter constant setting 

The filter constant has significant impact on the baseline noise and thus on the detection limits 

of a method. It is applied to the output current of the detector and affects the collection of the 

raw data and the data collection rate. Generally, a higher filter constant results in smoothed 

baseline, whereas a lower filter constant does not remove a lot or any baseline noise at all [33].  

This was confirmed by examining injections of 10 ng on column of a mixture of myristic acid, 

palmitic acid, oleic acid, petroselinic acid and margaric acid at different filter constant settings 

of 0.1 seconds (s), 1 s, 3.6 s, 5 s and 10 s with an evaporation temperature of 30, 35 and 

40 °C. An evaluation of the S/N-ratios for an evaporation temperature of 30 °C is shown in 

Figure 4. The trend was also analogous for the other evaporation temperatures (data not 

shown). 

Although these plain data show a significant baseline smoothing resulting from an increased 

filter constant and a tremendous gain in S/N-ratio obtained, it was no option to choose this filter 

setting from chromatographic point of view due to the loss of resolution by peak broadening 

effects. This makes the enormous S/N-ratio obtained with the higher filter constants less 

appealing when the separation efficiency is taken into consideration. Thus, a filter constant of 

1 s was chosen because best resolution was achieved. 

Analyte  LOQ [ng on column] of [25] 
using HPLC-CAD 

LOQ [ng on column] of 
optimized UHPLC-CAD 

Myristic acid (C14H28O2) 6.1 8.1 
Palmitic acid (C16H32O2) 4.0 2.2 
Stearic acid (C18H36O2) 3.4 1.3 
Linoleic acid (C18H32O2) 3.0 1.8 
Oleic acid (C18H34O2) 3.9 2.1 
Petroselinic acid (C18H34O2) 3.2 1.4 
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Fig. 4.  S/N ratios and resolution of the critical peak pair oleic acid - petroselinic acid, 10 ng on column 

of the mixture of the fatty acids at varied filter settings; for chromatographic parameters see section 2.3. 

3.2.3. Evaluation of power function value 

Similar to all aerosol-based detectors, the CAD is a non-linear detector and response can be 

described by a power law function equation [34] as shown in equation 2: 

     𝐴𝐴 = 𝑎𝑎(𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖)𝑏𝑏          (2) 

A linear response can be observed when b equals 1.0 and the sensitivity coefficient a then is 

the slope of the ratio of peak area/mass injected. With b > 1, the shape of the response curve 

is supralinear. Sublinear response is indicated by b < 1. Although CAD response is typically 

quasi-linear over about two orders of magnitude [34], it is advisable to have a closer look at 

the curve fit, especially for the lower calibration levels. By itself, a coefficient of determination 

close to 1 does not necessarily indicate good linearity over the whole range investigated [35]. 

In order to extend the quasi-linear dynamic range of the detector, newer CAD instruments 

allow for an alteration of the power function value in the range of 0.7-2.0, which affects signal 

output.  

To evaluate the optimal power function value for each analyte, calibration curves were 

established covering concentration levels of 1 µg/mL, 25 µg/mL, 50 µg/mL, 75 µg/mL and 

100 µg/mL at power function values ranging from 0.8 to 1.6. All measurements were performed 

at 30 °C, 35 °C and 40 °C evaporation temperature. The R2-values were established by means 

of linear regression (Table 2, values for evaporation temperature of 30 °C). Double logarithmic 

transformation was performed at the default PFV of 1.0. For a better estimation of linearity, the 

response factor (peak area/mass injected) was plotted against the respective concentration 

level (Fig. 5, shown for the example of palmitic acid). Response linearity is represented by the 

slope of the resulting regression line. The optimal power function value would then have a 

slope of zero [36]. The obtained regression lines either show a negative slope indicating 
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sublinear response, or a positive slope indicating supralinear response. The optimal power 

function value of the examined levels was determined by comparing the relative standard 

deviation of the response factors of each analyte for every power function as shown in Figure 

6. The lowest RSD indicates the best linearity of response [36].  

Table 2. Coefficients of determination obtained at 30 °C evaporation temperature; PFV 1.0 with lg-lg 

transformation was used for batch testing. 

Analyte/ 
PFV 

myristic 
acid 

palmitic 
acid 

margaric 
acid 

stearic 
acid 

oleic    
acid 

petrosel- 
inic acid 

linoleic 
acid 

alpha-
linolenic 

acid 
0.8 0.9999 0.9909 0.9891 0.9994 0.9876 0.9836 0.9994 0.9994 

0.9 0.9605 0.9935 0.9897 0.9883 0.9891 0.9861 0.9873 0.9955 

1.0 0.9981 0.9972 0.9947 0.9914 0.9937 0.9922 0.9929 0.9988 

1.1 0.997 0.999 0.9977 0.9979 0.9996 0.9973 0.9978 0.9975 

1.2 0.9938 0.9983 0.9994 0.9993 0.9993 0.9991 0.9994 0.9985 

1.3 0.9902 0.9983 0.9994 0.9996 0.9992 0.9999 0.9997 0.9942 

1.4 0.9804 0.995 0.9976 0.9979 0.9981 0.9994 0.9985 0.9936 

1.5 0.9782 0.9928 0.9947 0.9921 0.9953 0.9976 0.9949 0.9876 

1.6 0.9664 0.9878 0.9921 0.9906 0.9914 0.9949 0.9919 0.9843 

1.0 lg-lg 0.9998 0.9998 0.9995 0.9993 0.9994 0.9993 0.9995 0.9995 
 

 

Fig. 5.  Response factor versus analyte concentration plot for palmitic acid exemplarily at 30 °C 

evaporation temperature for power function values 0.8-1.6. 
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Fig. 6.  RSD of the response factors [%] at evaporation temperature 30 °C (n=5). 

The same experiments were performed at evaporation temperatures of 35 and 40 °C and used 

to assess power function values ranging from 0.8 to 1.6 in steps of 0.1 units (Supplementary 

material: Fig S2). The optimal power function value was then determined for each analyte as 

described above.  

After identifying a suitable power function value, different evaporation temperatures were 

evaluated. The evaluation was equivalent to the determination of the optimal power function 

value. Response factor versus concentration plots were obtained for evaporation temperatures 

of 30 °C, 35 °C and 40 °C at the same PFV. The optimal evaporation temperature for a given 

PFV was determined by comparison of the slopes of the regression lines as well as of the 

relative standard deviations of the corresponding response factors (Figure 7, restricted to five 

analytes for better readability). With exception of myristic acid, all fatty acids followed the same 

trend. Although the optimal power function value slightly differed for each analyte, a PFV of 

1.1 turned out to be beneficial in terms of linearity of response and coefficient of determination 

compared to the standard value of 1.0 (see Fig. 6). 



42 RESULTS – POLYSORBATE 80 
       

 

 

Fig. 7.  A: Slope of the response factors versus evaporation temperature plot for PFV 1.1; B: RSD of 

the response factors versus evaporation temperature plot for PFV 1.1 (n = 5). 

Of note, myristic acid, the most volatile fatty acid, did not follow that trend. Being a rather 

volatile compound, the best results are expected at a PFV <1.0 [37]. In accordance with this, 

optimal results for this analyte were found at a PFV of 0.8. For all fatty acids, response linearity 

at 30 °C and 35 °C was similar when maintaining a PFV of 1.1 (median RSD 5.21 % to 6.50 %), 

whereas response linearity at 40 °C and a PFV of 1.1 was not optimal (median RSD 15.37 %). 

For partially volatile analytes such as the fatty acids, it can therefore be concluded that an 

optimal PFV determined at a given temperature is no longer valid when evaporation 

temperature is changed (Figure 7). 

An alternative to using the power function value is a double logarithmic transformation of the 

calibration curve. The quality of the linear fit for every analyte, expressed as the coefficient of 

determination achieved by the double logarithmic transformation, was R² > 0.999. 

Furthermore, the obtained residuals for the calibration levels showed very satisfying results, 

even at low concentrations (Supplementary material: Fig S3), whereas residuals, especially at 

the lowest concentrations, varied drastically with changes in PFV. This shows that, for a 

multiple analyte mixture, it can be sufficient to use the default PFV of 1.0 and log-log 

transformation to achieve a linear fit of the response, rather than to apply a more complex 

fitting model.  

In many cases the application’s goal is to obtain satisfactory and low LOQs. Thus, for partially 

volatile analytes, it seems most appropriate to evaluate the optimal evaporation temperature 

before determining the best power function value to receive an appropriate fit. This conclusion 

arises from the facts that evaporation temperature strongly affects sensitivity (Fig. 3) and that 

the ideal PFV changes when altering evaporation temperature (Fig. 7). This is in contrast to 

the common approach of determining PFV before evaporation temperature for non-volatiles 

[34].  
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3.3. Validation and application of the optimized method 

3.3.1. Method validation 

The method was validated with regard to ICH guideline Q2(R1) [28]. Hereby, specificity, 

linearity and range, accuracy, precision, limit of quantitation (LOQ) and robustness were 

assessed. 

Specificity could be demonstrated by individual analysis and analysis of mixtures of reference 

standards of all possible sample compounds. Separation of the fatty acids from each other 

was achieved and the extraction procedure did not interfere with any peaks needed for 

quantitation as confirmed with the analysis of blank extractions. 

Linearity was shown by establishing calibration curves over a range of two orders of magnitude 

at concentration levels of 1, 25, 50, 75 and 100 µg/ml covering the estimated analyte amount 

of the sample. Application of linear regression after double logarithmic transformation of 

concentration and peak area resulted in coefficients of determination (R²) higher than 0.999 

for each analyte over the investigated range (Table 2).  

For demonstration of accuracy, recovery rates were calculated at 1, 25 and 100 µg/mL 

concentration levels for each fatty acid standard (n = 3) using calibration curves. Quantification 

was done by linear regression after double logarithmic transformation of concentration and 

peak area. The mean recoveries were satisfactory with values ranging from 94.3 to 107.1 %. 

Precision was assessed by injections of fatty acid standards in triplicate at concentration levels 

of 1, 25 and 100 µg/mL. RSD values ranging from 0.07 to 2.52 % were obtained indicating 

good precision with exception of the 1 µg/ml level of myristic acid showing an increased RSD 

of 6.61 %. Since myristic acid was not present in the current investigation and the method was 

still capable of meeting the requirements set by the Ph. Eur. (limit of 5 %), this was accepted. 

LOQs of the fatty acids were determined with respect to the S/N approach according to ICH 

guideline Q2(R1) [28]. A S/N ratio of 10, derived from analyte signal compared to a blank, was 

hereby defined as the LOQ. For linear extrapolation, standard solutions at 0.1, 0.5 and 

1.0 µg/mL concentration level were used. Ranging from 1.3 to 8.1 ng on column (Table 1), the 

LOQs were significantly affected by the chain length of the fatty acid as further elaborated in 

section 3.2.  

Robustness in terms of CAD parameter settings could be evaluated with regard to the 

systematic variations of the method optimization procedure and is elaborated in-depth in 

section 3.2., here especially evaporation temperature was found to be critical. 

Chromatographic robustness in general was evaluated for the following variations: column 

temperature ± 2.5 °C, initial percentage of mobile phase B ± 1 %, final percentage of mobile 
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phase B ± 1 % and flow rate ± 0.06 mL/min. Robustness is sufficient with recovery rates 

ranging from 96 to 102 % for all substances with exception of myristic acid having recovery 

rates between 103 and 110 % (Supplementary material: Table S1) which was acceptable due 

to its absence within the current batch analysis (Table 3). Separation was maintained for all 

examined variations. 

3.3.2. Polysorbate 80 batch analysis 

16 batches of polysorbate 80 analyzed by Ilko et al. [25] were subjected to analysis applying 

the optimized UHPLC method. The findings indicate sufficient stability of polysorbate 80 when 

stored at room temperature for four years with only rare exposure to light (Table 3). 

Table 3. Percentage (% m/m) content of fatty acids in polysorbate 80 batches, average of n=2 

extractions shown with standard error; n/a= error not available because only n=1 was evaluated. Values 

in brackets indicate the percentage change after four years of storage. 

 
Of note, the analysis of the fatty acid composition revealed an increase in linoleic acid for all 

batches except for the ones of manufacturer B and batch E3. Since linoleic acid is a double 

unsaturated fatty acid that can originate from oxidation of oleic acid, oxidative degradation 

during storage can be suggested because the increase in linoleic acid occurred upon a 

decrease of oleic acid content only. Batch E3 was stored in a brown glass bottle, which should 

prevent photo oxidation. Consequently, no formation of linoleic acid was observed in this batch, 

supporting the suggested degradation pathway. 

 Alpha-
linolenic 
acid 

Myristic 
acid 

Palmito-
leic acid 

Linoleic 
acid 

Palmitic 
acid 

Oleic acid Petrose-
linic acid 

Stearic 
acid 

Free fatty 
acids 

A1 - - -  
(-0.8) 

16.5±0.25 
(+9.9) 

4.9±0.16   
(-0.5) 

75.8±0.74 
(-9.4) 

1.5±0.02 
(+0.7) 

1.4±0.35 
(+0.2) 

0.7±0.02  
(+0.1) 

A2 - - -  
(-0.8) 

19.2±0.06 
(+9.6) 

4.8±0.09   
(-0.6) 

72.7±0.33 
(-9.2) 

1.8±0.00 
(+0.6) 

1.6±0.30 
(+0.2) 

0.8±0.07 
(+0.2) 

A3 - - -  
(-0.8) 

18.7±0.54 
(+8.6) 

4.4±0.08   
(-1.4) 

74.4±0.77 
(-6.2) 

1.7±0.09 
(+0.7) 

0.9±0.05   
(-0.8) 

0.8 n/a 
(-0.4) 

A4 - - - 
(-0.8) 

14.9±0.81 
(+8.1) 

4.2±0.12   
(-1.6) 

78.4±0.58 
(-5.7) 

1.7±0.05 
(+0.5) 

0.8±0.07   
(-0.8) 

1.1 n/a 
(+0.5) 

B1 - - - - - 
(-0.8) 

100±0.00 
(+3.3) 

- -  
(-0.4) 

0.3±0.00 
(+0.3) 

B2 - - - - -  
(-1.0) 

100±0.00 
(+3.6) 

- - 
(-0.5) 

0.2±0.00 
(+0.2) 

B3 - - - 
(-0.6) 

- - 
(-0.7) 

100±0.00 
(+4.7) 

- - 
(-0.4) 

0.1±0.03 
(+0.1) 

C1 - - - 
(-0.5) 

15.7±0.02 
(+6.3) 

9.4±0.12   
(-2.8) 

72.7±0.11 
(-1.3) 

1.0±0.21     
(-) 

1.1±0.04   
(-1.6) 

0.4±0.00 
(-0.3) 

C2 - - - 
(-0.7) 

15.2±0.26 
(+8.1) 

9.5±0.23   
(-1.1) 

72.3±0.41 
(-5.7) 

1.0±0.01 
(+0.1) 

2.0±0.06   
(-0.9) 

0.4±0.01 
(-) 

C3 - - - 16.0±0.19 
(+5.3) 

11.4± 
0.07 (-3.2) 

67.2±0.14 
(-0.6) 

3.3±0.06 
(+0.7) 

2.0±0.03   
(-1.6) 

0.3 n/a 
(-) 

D1 -  - 
(-0.2) 

- 17.4±0.88 
(+6.1) 

6.5±0.31   
(-1.8) 

75.1±0.73 
(-2.6) 

-  
(-0.3) 

1.0±0.46 
(1.0) 

0.5±0.06 
(+0.1) 

D2 -  - 
(-0.1) 

- 16.9±0.22 
(+5.3) 

6.2±0.37   
(-1.3) 

75.5±0.49 
(-2.7) 

- 
(-0.3) 

1.4±0.10   
(-0.5) 

0.4±0.00 
(+0.1) 

D3 - - - 18.5±0.07 
(+6.7) 

6.0±0.02   
(-1.4) 

74.4±0.10 
(-3.7) 

- 
(-0.3) 

1.1±0.04   
(-0.9) 

0.4±0.01 
(+0.1) 

E1 - - - 10.0±0.15 
(+8.9) 

1.6±0.01   
(-0.9) 

85.4±0.03 
(-7.0) 

1.6±0.08 
(+0.4) 

1.4±0.19   
(-1.3) 

0.1±0.01 
(+0.1) 

E2 - - - 8.5±0.13 
(+8.5) 

2.1±0.10   
(-0.9) 

86.1±0.12 
(-6.1) 

1.6±0.18 
(+0.6) 

1.6±0.10   
(-1.5) 

0.1±0.00 
(+0.1) 

E3 - - - - 3.4±0.05   
(-1.0) 

93.9±0.25 
(+1.6) 

0.8±0.25    
(-0.2) 

1.9±0.23   
(-0.9) 

0.8±0.05 
(+0.8) 
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Only three batches, namely A2, A3 and D3, were no longer within the specifications of the 

European Pharmacopoeia (Ph. Eur.) due to an excessive content of linoleic acid greater than 

18 % (m/m). 

4. Conclusion  

An UHPLC method for the analysis of polysorbate 80 was successfully optimized for use with 

the newest generation CAD resulting in time savings of over 75% and eluent consumption 

savings of more than 40%, respectively, while achieving superior LOQs when compared to a 

former method run on a conventional HPLC-CAD system. Moreover, the dependence of 

detector response on CAD settings was assessed in a systematic approach for a series of 

homologous fatty acids ranging from C14 to C18. It could be verified that the evaporation 

temperature of the detector has a significant impact on sensitivity. Furthermore, S/N ratios can 

be optimized by the choice of an appropriate evaporation temperature. Modern CAD detectors 

allow for the use of an integrated power function value which was evaluated here. Use of the 

power function value can drastically improve linearity of response, especially at the lower levels 

of the calibration curve. However, a double-logarithmic transformation proved to be superior 

and less time consuming for the investigated two order concentration range of rather volatile 

analytes. It was shown that linearity of response and limit of quantification vary greatly with 

different PFV and evaporation temperature settings. Thus, these two parameters should be 

chosen and optimized based on an application’s individual goal and depending on volatility of 

the analytes. 
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Supplementary material 

Table S1. Robustness of the UHPLC method. Percentage recovery rates of a 100 µg/mL solution for 

different chromatographic variations. 
 

No variation Temperature (°C ) Flow rate (ml/min) % Mobile Phase B at start % Mobile Phase B at end 
  22.5 27.5 1.44 1.56 74 76 84 86 

% Recovery 
         

Alpha-linolenic 100 99 99 101 96 98 98 100 98 

Myristic 100 108 109 110 103 104 105 107 110 

Linoleic 100 100 101 102 98 102 98 99 100 

Palmitic 100 99 97 102 96 98 97 96 96 

Oleic 100 99 96 98 96 100 98 99 99 

Petroselinic 100 101 97 99 96 96 96 98 98 

Stearic 100 100 99 98 97 99 100 97 97 

 

Fig. S1. Chromatograms and resulting maximum backpressure for variation of flow rate while adjusting 

hold and gradient time by the ratio of flow rates; 10 µL injection of a 50 µg/mL oleic acid (65 88% purity) 

and margaric acid solution; elution order: 1: linoleic acid, 2: palmitic acid, 3: oleic acid, 4: petroselinic 

acid, 5: margaric acid, 6: stearic acid.  

 

Fig. S2. RSD of the response factors [%] for PFV 0.8 to 1.6 at evaporation temperature 35 °C (n = 5). 
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Fig. S3. Residual plot of the relative amount deviation for each calibration level for lg-lg transformation 

at 30 °C evaporation temperature and a PFV of 1.0 (n = 5). 
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Abstract 

The charged aerosol detector (CAD) is the latest representative of aerosol-based detectors 

that generate a response independent of the analytes’ chemical structure. This study was 

aimed at accurately predicting the CAD response of homologous fatty acids under varying 

experimental conditions. Fatty acids from C12 to C18 were used as model substances due to 

semivolatile characterics that caused non-uniform CAD behaviour.  

Considering both experimental conditions and moleculardescriptors, a mixed Quantitative 

Structure-Property Relationship (QSPR) modeling was performed using Gradient Boosted 

Trees (GBT). The ensemble of 10 decisions trees (learning rate set at 0.55, the maximal depth 

set at 5, and the sample rate set at 1.0) was able to explain approximately 99% (Q2: 0.987, 

RMSE: 0.051) of the observed variance in CAD responses. Validation using an external test 

compound confirmed the high predictive ability of the model established (R2: 0.990, RMSEP: 

0.050). With respect to the intrinsic attribute selection strategy, GBT used almost all 

independent variables during model building. Finally, it attributed the highest importance to the 

power function value, the flow rate of the mobile phase, evaporation temperature, the content 

of the organic solvent in the mobile phase and the molecular descriptors such as molecular 

weight (MW), Radial Distribution Function - 080/weighted by mass (RDF080m) and average 

coefficient of the last eigenvector from distance/detour matrix (Ve2_D/Dt).  

The identification of the factors most relevant to the CAD responsiveness has contributed to a 

better understanding of the underlying mechanisms of signal generation. An increased CAD 

response that was obtained for acetone as organic modifier demonstrated its potential to 

replace the more expensive and environmentally harmful acetonitrile.  
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1. Introduction  

Among the various detectors used in high-performance liquid chromatography (HPLC), the UV 

detector is frequently referred to as the workhorse, being predominantly employed for quality 

control purposes and routine analysis. Though characterized by high a sensitivity, a broad 

linear dynamic range, and a user-friendly application, the prerequisite for the usage of the 

detector is the existence of UV absorbing structural features of the analytes known as 

chromophores, such as aromatic ring systems or conjugated double bonds. Thus, the detector 

suffers from poor sensitivity toward analytes lacking suitable chromophores like fatty acids and 

sugars. This shortcoming can be addressed by using universal detection techniques instead, 

e.g. aerosol-based detection techniques [1]. The most recent aerosol-based detector, the 

charged aerosol detector (CAD), stands out in terms of response uniformity due to its unique 

principle of detection. In contrast to the other aerosol-based detectors, the analyte particles 

obtained from evaporation of aerosol droplets that were previously generated by nebulization 

of the mobile phase, are charged by diffusion processes independent of the particle 

characteristics [2]. In comparison, the refractive index and thus the analyte characteristics 

comprising the dried particle is critical for the measurement of the light dispersion in 

evaporative light scattering detection (ELSD). This difference results in higher uniformity in 

CAD response compared to ELSD [3,4]. Condensation nucleation light scattering detection 

(CNLSD) dependence on particle characteristics is even more pronounced, further reducing 

response uniformity [5,3]. However, the response of the CAD is not truly uniform, as a mobile 

phase gradient, the analyte volatility, salt formation, and the analyte density also have an 

impact on signal generation [2]. Thus, the molecular properties of the analytes as well as the 

chromatographic conditions must be considered when developing methods to achieve uniform 

response of the analytes. Several approaches have been reported aimed at generating uniform 

CAD response, including the application of inverse gradient programs [6] and the 

establishment of models describing the influence of experimental parameters [7]. However, 

there is little evidence on the predominant analyte-related and experimental factors influencing 

CAD response when investigating a set of structurally similar analytes of varying volatility. 

In this study, a homologous series of chromophore-deficient fatty acids (Fig. 1) was selected 

to evaluate the influence of experimental parameters and molecular properties on the CAD 

response. Despite their similar structure, the molecular properties of the fatty acids, e.g. the 

volatility, vary as a function of chain length (Fig. 1). Thus, a comprehensive model accurately 

describing the influence of the chain length of the fatty acids on the CAD signal would 

contribute to a better understanding of the underlying mechanisms of signal generation. Such 

a mathematical tool could reliably estimate the most significant molecular characteristics 

contributing to the higher CAD responsiveness. To enable drawing valid conclusion on the 

influence of the experimental and molecular parameters on CAD response of the selected fatty 
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acids, a Mixed Quantitative Structure-Property Relationship (QSPR) approach was applied. 

The QSPR model was built with the aid of a Gradient Boosted Trees (GBT) machine learning 

algorithm (MLA). GBT algorithms combine predictors in a sophisticated manner that can reveal 

complex patterns that other techniques may miss. GBT utilizes boosting as a technique of 

building predictive models of elevated complexity that can be superior to other MLAs such as 

Artificial Neural Networks (ANNs) that were used in similar QSPR studies [8]. Thus, a mixed 

GBT-QSPR model was employed to accurately describe the influence of experimental 

parameters and molecular properties on the CAD response. The most significant factors were 

then evaluated comparing their individual impact on the CAD response. Special emphasis was 

placed on the environmentally friendly alternatives, acetone and ethanol (EtOH), to the more 

commonly used organic solvents acetonitrile (ACN) and methanol (MeOH). By validating the 

effectiveness of green solvents, CAD’s potential to be employed in green chromatography [9] 

could be demonstrated. 

 

Fig. 1. Structural formulas of the seven fatty acids utilized as model substances, with the corresponding 

vapor pressure and boiling point values.  

2. Materials and methods 

2.1. Chemicals and reagents 

Lauric acid (98%), linoleic acid (≥ 99%), margaric acid (≥ 98%), myristic acid (≥ 99%), oleic 

acid (≥ 99%), palmitic acid (≥ 99%), and stearic acid (≥ 98.5%) as well as formic acid (98-
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100%), HPLC plus grade acetone, HPLC gradient grade acetonitrile (ACN), HPLC grade 

ethanol (EtOH), and HPLC gradient grade methanol (MeOH) were purchased from Sigma 

Aldrich (Steinheim, Germany). Ultra-pure deionized (DI) water was delivered by a Milli-Q® 

system (Merck, Darmstadt, Germany).  

2.2. Instrumentation 

The experiments were performed on a Thermo Scientific Vanquish™ Flex modular 

chromatographic system (Thermo Fisher Scientific, Germering, Germany) consisting of a 

binary pump with online degasser, a thermostatted split sampler, a thermostatted column 

compartment with passive pre-heater, and a variable wavelength detector in-line with a 

Vanquish™ Horizon CAD. The CAD was supplied with nitrogen gas from an ESA nitrogen 

generator (Thermo Fisher Scientific) connected to the in-house compressed air system. The 

HPLC instrument was controlled and runs were processed using the Chromeleon® Data 

System Version 7.2.6 software program (Thermo Fisher Scientific). 

2.3. Preparation of solutions 

Stock solutions of the fatty acid standards were prepared by accurately weighing 5.0 mg of the 

respective fatty acid and dissolving in acetone, ACN, EtOH, and MeOH, respectively. The stock 

solutions were diluted to a concentration of 50 µg/mL with a mixture of DI water and organic 

solvent in proportions equivalent to the mobile phase composition used according to the 

experimental plan in each case (Table S1, hosted by figshare [10]). 

2.4. Flow injection analysis (FIA) 

The outlet capillary of the Vanquish™ sytem’s injection valve was linked to the inlet capillary 

of the UV detector by a connector (Viper™ union, Thermo Fisher Scientific) to perform the FIA 

at sufficient back pressure. Isocratic runs with a runtime of 2 min, an injection volume of 10 µl, 

and flow rates of 0.5 mL/min, 1.0 mL/min, and 1.5 mL/min, respectively, were carried out. The 

temperature of the column chamber was held constant at 25 °C, while the mobile phase 

consisted of 0.1% (v/v) formic acid in DI water and 0.1% (v/v) formic acid in either acetone, 

ACN, MeOH, or EtOH in various proportions (75%, 82.5%, 90% (v/v) organic solvent) 

according to the experimental plan (Table S1, hosted by figshare [10]. Prior to each new run, 

the system was equilibrated for 5 min at the upcoming mobile phase conditions. When 

switching the organic solvent, the system was flushed for at least 30 min at the upcoming 

mobile phase conditions until a stable baseline was obtained. CAD was employed for the 

detection of the fatty acids with the instrumental settings evaporation temperature (24 °C, 

36 °C, 48 °C) and power function value (PFV) (0.8, 1.2, 1.6) being altered according to the 

experimental plan (Table S1 [10]), whereas the filter constant was maintained at 1.0 s.  
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2.5. Selection of the experimental variables and their design levels 

To evaluate the influence of various experimental parameters on the CAD response, screening 

experiments by FIA based on a 25−1 fractional factorial design (FFD) were performed. The 

selected factors and their corresponding ranges were as follows: the organic solvent’s content 

in the mobile phase (70% – 90%, v/v), the flow rate of the mobile phase (0.5 mL/min – 

1.5 mL/min), the evaporation temperature (24 ℃ – 48 ℃), the PFV (0.8 – 1.6), and the filter 

constant (1 s – 5 s). The FIA experiments were conducted with four different organic solvents, 

namely ACN, MeOH, acetone and EtOH. In order to estimate the experimental error, 

4 additional runs at the central point of the experimental domain were included in the FFD plan. 

With lauric acid, palmitic acid, and stearic acid representing the low, medium, and high levels 

of the set of analytes investigated, 20 experiments with 4 different solvents were performed in 

a randomized order for each fatty acid. The significance of the examined factors’ influence was 

assessed using Student’s t-tests and Pareto diagrams. 

Response surface methodology (RSM) was subsequently employed for the thorough 

description of the experimental domain. The selection of parameters investigated with their 

respective ranges was based on the results of the screening phase, except for the content of 

the organic solvents. Their low levels were increased from 70% to 75% v/v, respectively, due 

to the insufficient solubility of stearic acid in higher aqueous proportion. The statistically 

significant factors derived from the screening experiments were varied according to the 

experimental plan created by Central Composite Design (CCD). Within the experimental plan, 

the type of the organic solvent used was coded by assigning the numbers 1-4 to ACN, MeOH, 

acetone and EtOH, respectively. The plan of the CCD is depicted  in Table S1 of the 

Supplemental Material [10]. The filter constant was maintained at 1 s, since it did not 

significantly influence the CAD response. The RSM experiments were carried out in random 

order. The magnitude of the CAD response was studied as the system’s response.  

Design-Expert 7.0.0. (Stat-Ease, Inc., Minneapolis, USA) was used to construct the 25−1 FFD 

and the CCD experimental plans.  

2.6. Computation of the molecular descriptors   

The chemical structures of lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, 

oleic acid, and linoleic acid were sketched in ChemDraw Ultra 8.0 software (PerkinElmer, 

Massachusetts, USA). Each structure was subjected to geometry optimization using the semi-

empirical MOPAC/PM3 method in Chem 3D® Ultra 8.0 (Cambridge Soft Corporation, 

Cambridge, USA). The compounds’ conformations with the minimum energy were used to 

calculate physico-chemical, topological, geometrical, and spatial structural descriptors in 

Dragon 6.0.7. software (Talete srl, Milano, Italy). To prevent potential correlation issues, 
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descriptors that were strongly correlated to the other descriptors (using a correlation coefficient 

│r│ > 0.90), descriptors with constant values (RSD <5%), i.e. descriptors that were not 

available for all analytes were excluded. After this step, the set of several thousand descriptors 

originally calculated was reduced to 60 molecular descriptors.  

2.7. Exploratory analyses 

Basic statistics (mean, min, max, etc.) of each feature are described in Table S2 of the 

Supplemental Material. The range (max - min) for the experimental factors was chosen to 

ensure the satisfactory CAD response of the tested compounds. Due to the DoE approach 

used and symmetrical placement of -1 and +1 levels around nominal (0) level, the mean and 

median were exactly the same for these attributes. As for other attributes (molecular 

descriptors), descriptive statistics was determined by the structure of the analytes. For 

instance, the higher representation of C18 than C12-C13 fatty acids in the dataset caused the 

MW descriptor to have a greater median than the mean. In the same way, other reported 

statistics was as expected. Also, no missing data were observed. 

2.8. Calculation of the skewness coefficients  

Skewness coefficients were obtained from the SKEW function in Excel 2010 (Microsoft Office, 

Redmond, Washington, USA). By the means of the SKEW function, skewness 𝐺𝐺1 of sample 𝑆𝑆 

containing 𝑛𝑛 number of random variables 𝑥𝑥 is estimated as follows (Eq. 1): 

                                                𝐺𝐺1 = 𝑛𝑛
(𝑛𝑛−1)(𝑛𝑛−2)

∑(𝑥𝑥𝑖𝑖− 𝑥̅𝑥
𝑠𝑠

)3                                                                    (1) 

In Eq. 1, 𝑠𝑠 is the standard deviation of a data set S, while 𝑥̅𝑥 is the mean. It should be applied 

only if 𝑛𝑛 >2. The skewness coefficients were calculated separately for the training and the test 

data.  

2.9. GBT algorithm 

Decision tree (DT) is a machine learning algorithm that splits a feature space by which objects 

are described,  into several different and mutually excluded subspaces by a recursive 

partitioning method [11,12]. It is usual accompanied by a tree-like diagram that displays 

different outcomes from a series of decisions. Among the available range of techniques utilized 

for real-world data, DT is favored for its easiness of interpretation and elegant ability to work 

with missing values [13-15]. Additionally, DT is capable of dealing with extensive datasets and 

neglecting redundant descriptors, which makes it quite useful in QSPR model building [16]. 

On the other hand, DTs are characterized as weak learners. Additionally, even a slight change 

within the training set could lead to a major change in the algorithm topology, making DTs 

unstable classifiers. Therefore, a concept of building additive tree structures based on 
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ensemble learning has been adopted [16,17]. Ensembles that probably achieve better 

predictive performance than individual constituent (base) algorithms are typically generated by 

using boosting and bagging techniques. GBT utilize boosting as a technique of building 

predictive models of elevated complexity. Boosting is regarded as one of the most powerful 

ideas introduced in the last few decades within the machine learning domain [18]. Within 

particular concept, the individual (base) algorithms are combined in a sequence in order to 

provide a solution to a demanding computational problem. Prevention of mutual correlations 

between trees, induced by the engagement of the same training set, is managed using certain 

“penalties”. These penalties, by repeatedly modifying original data, put emphasis on the errors 

made by the previous algorithms and, consequently, facilitate the process of learning for the 

currently added tree. At each step, the model employs the algorithm that best fits the current 

residuals. This process is usually repeated many times. During each step, parameters of 

existing trees are kept unchanged, giving rise to so-called stage-wise additive modeling. The 

purpose of this approach is to reduce the risk of overfitting. 

In order to detect the residuals, a loss function is used. GBT sequentially combines DTs in way 

that each new added instance minimizes arbitrarily chosen, differentiable loss functions in 

descent gradient fashion. In terms of mathematical principles, GBT model can be presented 

using Eq. 2:  

                                              𝑓𝑓𝑖𝑖(𝑥𝑥) =  𝑓𝑓𝑖𝑖−1(𝑥𝑥) +  𝜈𝜈𝑤𝑤𝑖𝑖𝐺𝐺𝑖𝑖(𝑥𝑥);     0 < 𝜈𝜈 ≤ 1                                  (2) 

In the Eq. 2  𝑓𝑓𝑓𝑓(𝑥𝑥)  and  𝑓𝑓𝑖𝑖−1(𝑥𝑥)  are models constructed at iteration 𝑖𝑖 and 𝑖𝑖 − 1, respectively. 

The term denoted as 𝑤𝑤𝑖𝑖 represents weight (“penalty”) while 𝜈𝜈  is a regularization parameter – 

shrinkage or learning rate.  The lower the learning rate, the slower the model learns. At the 

same time, it achieves better performance in terms of accuracy. However, if the learning rate is 

low, more trees are needed to be included in the ensemble. Engagement of too many trees 

indicates a high risk of overfitting. The identification of 𝐺𝐺𝑖𝑖(𝑥𝑥) required to be added to the model 

is the primary optimization problem. 

2.10. Predictive modeling workflow  

A QSPR modeling workflow was created using the Rapidminer Studio 9.1.000 (RapidMiner, 

Boston, MA, USA) software. The data related to margaric acid were excluded from the primary 

set and used as external test set. The remaining data were divided into 10 subsets of equal 

size by the Cross Validation Operator. This is a nested Operator that has two subprocesses. 

Inside the first subprocess of the Cross Validation Operator, the GBT algorithm was trained on 

9 of the 10 subsets. The trained model was then applied in the second subprocess where its 

performance was measured. The omitted subset was used as an input of the testing stage. 

This procedure was repeated 10 times, so that each subset was used one time as a test set. 
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The overall model’s performance was estimated by averaging the results (cross-validation 

correlation coefficient, Q2 and root mean squared error, RMSE) from 10 iterations. The subsets 

used in the Cross Validation procedure were made by shuffled sampling.  

After being trained and tested, the GBT-based QSPR model was applied to the external 

validation test set of the margaric acid data using the Apply model operator. The actual 

predictive power of a given model was quantified in terms of root mean squared error of 

prediction (RMSEP) and R2. The RMSEP and R2 estimates were obtained from the 

Performance operator. The detailed Rapidminer workflow is available as part of the 

supplementary material.The optimal performance of the model was achieved by grid tuning of 

hyperparameters, namely the learning rate (0.1 - 1.0, 30 steps); maximum depth (5-10, 6 steps) 

and sample rate (0.1 - 1, 9 steps). The number of decision trees (4-20, 9 steps) was adjusted 

by a trial-and-error approach. The number of trees was chosen to prevent overfitting. All 

hyperparmaters were adjusted to reduce the RMSEP. 

3. Results and disscussion  

3.1. Selection of the fatty acids investigated 

The uniform response of the CAD for non-volatile analytes has been demonstrated in multiple 

studies [19,7,20]. Thus, the selection of semi-volatile and non-volatile fatty acids that are 

structural homologues but differ significantly in their response was essential to develop a 

model that could accurately predict the CAD response based on a mixed model including the 

response-determining molecular descriptors. Previous studies on the CAD response of fatty 

acids revealed a pronounced decline in the response of myristic acid (C14) compared to its 

structural homologue palmitic acid (C16) [21]. With respect to this preliminary observation, fatty 

acids ranging from lauric acid (C12) to stearic acid (C18) were selected as test substances 

due to their estimated differences in CAD response. The differences in response were evident 

when comparing the average response values obtained for each fatty acid from the CCD based 

FIA runs as depicted in Table S1 [10]. Going from lauric acid (C12) to stearic acid (C18), the 

CAD response increased with the chain length of the fatty acids (Fig. 2).  

Interestingly, a pronounced decline in response could be observed between myristic acid (C14) 

and palmitic acid (C16), while the response for fatty acids >C16 did not significantly increase. 

Thus, fatty acids <C16 can be considered as semi-volatile compounds. These results strongly 

indicated the need for a mixed model as was employed here to include the molecular properties 

of the fatty acids in the modeling of the CAD response. 
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Fig. 2. Average CAD response for the fatty acids investigated obtained from FIA. The fatty acids are 

coded with their respective number of C-atoms. The degree of unsaturation is indicated in brackets 

where applicable.  

3.2. DoE assisted development of the QSPR dataset 

Design of experiments (DoE) is used to test versatile hypotheses in efficient manner. Within 

the DoE concept, independent variables (factors) are systematically varied in order to draw 

conclusion about factors’ influences toward the target response [22]. In this study, DoE was 

utilized with a two-fold purpose. To examine the impact of the five pre-selected experimental 

factors and their possible interactions on the response of interest using DoE, it was necessary 

to conduct 32 (25) screening experiments. However, with the general goal of preserving all 

possible resources in the first phase, it was decided to fractionalize the experimental plan. 

Application of FFD allowed valid conclusions to be drawn with only 16 experiments per 

4 different organic solvents. In the screening stage, the CAD responses were measured for 

three fatty acids (lauric acid, palmitic acid, and stearic acid). In accordance with their structural 

characteristics, lauric, palmitic and stearic acid were the representatives of the tested 

compounds. Therefore, in dependence of the fatty acid’s chain length, estimated CAD 

responses could be at low, medium, or high level. According to the applied tests, the most 

significant experimental parameters toward CAD response were the type of the organic 

solvent, its proportion in the mobile phase, the flow rate of the mobile phase, the evaporation 

temperature, and the PFV. 

The usage of 25−1 FFD enabled a preliminary assessment of the QSPR model’s performance 

that was subsequently conducted. Namely, if no screening has been carried out and an 

insignificant experimental variable (filter constant) had been included in the model 
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development, the GBT algorithm would have been loaded with identical cases in the training 

phase. The use of identical cases (that is, examples that differ in the values of insignificant 

factor) in the learning stage would likely lead to an overestimation of the QSPR model’s 

predictive ability.  

In the following CCD experiments, the examined levels of significant factors were retained from 

the screening stage along with the obligatory addition of a central level. As an exception, the 

low value of the organic solvents’ volume fraction was increased from 70% to 75% (v/v) due 

to the precipitation of stearic acid at 70% MeOH (v/v) proportion. The insignificant parameter 

filter constant was maintained at 1 s since it was associated with the lowest background noise. 

The CCD experiments were carried out in random order to minimize the effects of 

uncontrollable variables. 

Significant factors and a combination of their values according to CCD are incorporated in 

Table S1 [10], together with the results of the experiments. 

3.3. Distribution of the outcome variable 

Prior to the statistical analysis, the distribution of the experimentally obtained CAD responses 

was examined. Therefore, the skewness coefficient of the distribution was calculated in 

accordance with Eq. 1. In numerical terms, the skewness of a normal distribution is 

approximately zero. If the given coefficient is less than -1 or more than +1, the distribution is 

highly skewed, while the distribution is moderately skewed if the coefficient is between -1 and 

-1/2 or between +1/2 and +1. Positive coefficients indicate positive skewness and vice versa 

[23,24].  

From the machine learning perspective, a highly skewed distribution could impair the predictive 

performance of the models developed. This claim finds its support in the fact that machine 

learning algorithms try to minimize the prediction error by learning to predict the response in 

the densest region of endpoints. As an implication of this concept, it is less likely that these 

algorithms will successfully predict the response of those endpoints that do not reside in the 

densest area. The usual strategy for addressing this issue is the transformation of the skewed 

variable, that is, the application of the same function to each of its values [25]. 

Here, the target variable showed a highly skewed distribution with a skewness coefficient of 

+1.8 calculated from Eq. 1 (Fig. S1a of the Supplemental Material). Common transformations 

applied to positively skewed data include logarithmic, square-root, and cube-root 

transformation [25-29]. Given how logarithmic, square-root, and cube-root transformed data 

displayed a skew of -0.70, 0.79, and 0.36, respectively, it was decided to use the latter 

transformation in the QSPR model construction. Fig. S1b of the Supplemental Material shows 

the distribution of the target response after applying the cube root transformation to each value.  
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3.4. QSPR modeling 

The aim of this study was to develop a QSPR model that could predict the CAD response of 

fatty acids showing different volatility in a certain experimental domain with satisfying accuracy. 

In addition, the identification of the most important experimental and response-determining 

structural features would contribute to a comprehensive and mechanistic understanding of 

signal generation. 

The QSPR model was built by linking the molecular descriptors computed for 6 fatty acids 

representing semi-volatile and non-volatile compounds to their CAD responses via GBT. The 

responses were measured under 25 different experimental conditions for each of the four 

organic solvents. As stated in section 3.3, the output values were transformed using the cube-

root (see Table S1 [10]) to remove the skewness from the experimental data.  

To demonstrate the validity of the applied modeling approach, a conventional QSPR model 

and a RSM model that solely linked the experimental parameters to the transformed CAD 

responses were developed simultaneously. The competing models, however, showed poor 

predictive performance compared to established mixed QSPR model. These results supported 

the assumption that the CAD response depends on both the experimental parameters and the 

molecular properties of the tested compounds. Hence, only the inclusion of both independent 

variables in the model provided a large rate of explained variance as well as enough 

observations that could be used in the process of training a machine-learning algorithm [30,8].  

However, before any model can be used in practice, the reliability of its application must be 

confirmed by different validation procedures [31]. In this study, the GBT-based mixed model 

was validated via 10-fold cross-validation and, in addition, by an external validation set. The 

predictive ability of the developed QSPR relationships was evaluated using data related to 

margaric acid, which were not employed in the model generation. The test analyte was chosen 

with respect to its structural properties at the intermediate level of the fatty acids investigated 

and due to its similar distribution of CAD responses compared to the training set. The obtained 

responses for margaric acid were also included in Table S1 [10]. 

GBT was used as model building technique due to beneficial intrinsic attribute selection 

strategy and a pronounced ability to predict a target value that was close to the true response 

value for the given observations. The GBT-based QSPR model with the learning rate set at 

0.55, the maximal depth set at 5, and the sample rate set at 1.0, showed satisfactory 

performance in terms of low RMSE, i.e. RMSEP and high Q2, i.e. R2 values. By using the 

significant experimental parameters and descriptors listed in section 3.5., the ensemble of 

10 DTs was capable to explain approximately 99% (Q2: 0.987, RMSE: 0.051) of the observed 

variance in CAD responses. Low RMSE values of 0.050 and high R2 values of 0.990 for the 
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external validation set suggested the high predictive ability of the model developed. The 

consistency of the 10-fold CV with the external validation results clearly indicated that no 

overfitting occurred in the learning stage. The performance statistics are summarized in Table 

S3 of the Supplemental Material. 

Considering that the QSPR model development involved cube-root transformed output data, it 

was decided to examine whether the model’s performance was retained for the back 

transformed response values. In this regard, the correlation between the measured and the 

predicted CAD responses for the validation data set is visualized and presented in Fig. 3a. It 

can be noticed that there are few endpoints (with values of CAD response between 6 and 14) 

that have been poorly predicted by the GBT-QSPR model. It is possible that an estimation 

error occurred due to the utilized set of attributes. In other words, a different set of input 

variables might be able to better distinguish responses within the given range. It is equally 

probable that GBT did not show the best adaptation to the generated data and that some other 

machine learning algorithms could more accurately learn the patterns contained in the 

experimental results. Nonetheless, a comprehensive analysis of the observed phenomenon is 

going to be the subject of prospective studies. 

 

Fig. 3a. Regression plot of the optimized GBT-QSPR model. Fig. 3b. Residual plot of the optimized 

GBT-QSPR model. 
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To provide a more detailed discussion on the predictive performance of the developed model, 

the residuals of GBT regression were visually inspected. The residual plot (Fig. 3b) shows the 

distribution of overestimated and underestimated CAD responses. Ideally, all residuals should 

be small; this would indicate reasonable underlying assumptions and appropriateness of the 

fitted model [32]. As can be seen, the predictions met this criterion for low CAD response 

values (up to 4). However, as the fitted values increase, the residuals tend to deviate more 

from the 0% error line. Due to the investigated ranges of experimental variables, and, 

consequently, a much smaller number of observations with larger values of CAD response, 

this result was somewhat expected. 

3.5. Significant features 

In general, the model developed by GBT found non-linear patterns of molecular descriptors 

and experimental parameters that predicted the CAD response of the fatty acids investigated 

relatively well. However, the provided accuracy came at the cost of low interpretability. In order 

to address this issue, the variable importance tool was used.  

With the intrinsic strategy of attribute selection, the GBT algorithm makes use of all 

independent variables available while forming the model [33]. The attributes with the highest 

scaled importance were considered as most relevant toward the CAD response of the fatty 

acids investigated. The ten attributes (y-axis) with the highest scaled importance (x-axis) in 

descending order are shown in Fig. 4.  

 

Fig. 4. The independent variables (y-axis) and their importance (x-axis) toward CAD response.  

As it can be seen, GBT assigned great importance to the PFV, the flow rate of the mobile 

phase, and the molecular descriptors molecular weight (MW), Radial Distribution Function - 

080 / weighted by mass (RDF080m) and average coefficient of the last eigenvector from 

distance/detour matrix (Ve2_D/Dt). It should be noted that the signal generation of the CAD 
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was also influenced by the CAD’s evaporation temperature and the proportion of the organic 

solvent in the mobile phase, but to a much lesser extent. The impact of the significant factors 

on the CAD response is addressed thoroughly below, including graphical representations of 

the found patterns. The graphs provided are also part of a strategy to increase the 

interpretability of the GBT-based model.  

 

Fig. 5. Graphs showing the relationships between the predicted CAD response and a) flow rate  

b) evaporation temperature c) type of organic solvent: 1 – ACN; 2 – MeOH; 3 – Acetone; 4 – EtOH  

d) the content of organic solvent in the mobile phase (v/v). 

The PFV setting raises the CAD’s raw signal current to a specified power, thereby altering the 

signal output of the detector [34,35,2]. PFV other than the default value of 1.0 can be applied 

to improve the detector’s linearity in the range of interest [2]. Therefore, its influence on the 

CAD’s response is evident (Fig. S2 of the Supplemental Material), as the signal is directly 

modified by the respective PFV, which could be confirmed by its scaled importance value of 

1.0. Thus, despite no additional information on the underlying mechanisms of signal generation 

was obtained here, the result supports the validity of the applied model. The influence of the 

flow rate being the most important among the chromatographic parameters toward CAD 

response was in line with the principle of function of the detector. Low mobile phase flow rates 

produce initial droplets of smaller size; thus, their evaporation is sped-up compared to larger 
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droplets, which is beneficial for the subsequent detection process [36,37]. Consequently, the 

CAD response of all fatty acids examined increased with flow rate reduction (Fig. 5a). Besides 

the two most influential parameters, the evaporation temperature, as one of the adjustable 

CAD settings, also had an impact on the CAD response. The evaporation temperature setting 

can be altered to adjust the selectivity of the detector toward a certain analyte dependent on 

its volatility [2]. Hence, low evaporation temperatures lead to a broader detection range due to 

the improved detection of semi-volatile analytes. The optimal evaporation temperature for a 

certain analyte requires experimental optimization, as the background noise of the CAD also 

changes with evaporation temperature due to enhanced evaporation of mobile phase 

impurities. However, at higher evaporation temperatures, analytes with semi-volatile 

characteristics, such as the short/medium chain fatty acids lauric acid and myristic acid, are 

expected to suffer a substantial loss of response [21]. Therefore, lower evaporation 

temperatures are contributing to enhanced CAD response for these fatty acids, and, 

consequently, could result in improved S/N (Fig. 5b).  

Among the organic solvents commonly used with the CAD, ACN and MeOH are the 

predominantly applied solvents. The properties of the organic solvents applicable to the CAD, 

e.g. their low surface tension and viscosity, are beneficial for enhancing the detector’s 

response due to the more efficient nebulization and aerosol transport processes compared to 

aqueous solvent [2]. In the current study, four different solvents were investigated, namely 

ACN, MeOH, acetone and EtOH. Fig. 5c illustrates that there were no remarkable differences 

toward CAD response obtained with the different solvents. However, slightly higher CAD 

responses were obtained with acetone in comparison to the remaining solvents. This 

observation is in accordance with the properties of the organic modifier, since acetone has the 

lowest viscosity and highest vapor pressure among the organic solvents investigated, which 

promotes efficient nebulization and evaporation. The use of inexpensive and environmental 

friendly acetone in experiments with CAD (instead of ACN) was previously suggested by 

Hutchinson et al. [38]. Apart from the response-enhancing properties of the solvent itself, the 

content of the organic solvent in the mobile phase also influences the magnitude of response 

generation. The organic solvent content in the mobile phase was varied in a rather small range 

from 75% to 90% (v/v) in our experiments due to solubility issues of some fatty acids at higher 

aqueous proportions. In addition, the separation of fatty acids is often achieved using mobile 

phases with high organic contents on C18 stationary phases [39,21]. The CAD response did 

not notably change with organic solvent content, which was somewhat expected. Slightly 

higher CAD responses were obtained with 90% (v/v) of organic solvent in the mobile phase 

(Fig. 5d), but the investigated range was too narrow for significant results. However, the 

influence of the organic content on CAD response has been evaluated in multiple studies and 
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can therefore be regarded as evident [38,40,37]. It must be kept in mind, that the variation of 

the organic content in the mobile phase is limited due to the separation of analytes. 

A significant feature of the so-called universal detectors that justifies their use instead of the 

commonly applied UV detector, is the minor influence of the physicochemical properties of the 

analytes on the response. In fact, a relatively uniform response for non-volatile analytes has 

been demonstrated for the CAD in numerous studies [19,7,20]. However, there might be 

analyte-related properties influencing the CAD’s response at constant experimental settings, 

such as the density of the compounds, their charge, the hydrogen bond donor capability [41], 

and the number of electronegative atoms [8]. Consistent with these assumptions, the results 

of the study performed indicate that there are indeed certain molecular properties influencing 

the CAD responsiveness.  

Among the molecular properties that may have an impact on the response of aerosol-based 

detectors, the volatility of a compound, which is often characterized by its vapor pressure or 

boiling point, can be regarded as the most significant property toward detector responsiveness 

due to the mandatory evaporation step in the detection process of all aerosol-based detectors. 

The volatility of an analyte is strongly affected by its molecular weight [2]. Thus, the great 

importance attached to the MW descriptor by GBT is in accordance with the volatility 

requirements as stated above. However, there are no distinct limits determining the analyte as 

volatile, and, additionally, the volatility also depends on the experimental conditions, such as 

the CAD’s evaporation temperature or the formation of less volatile salts with mobile phase 

additives [2]. While the response for analytes with low molecular weight tends to be decreased 

and non-uniform due to their relatively high volatility, the response for analytes with a molecular 

mass >300 Da can be regarded as independent of volatility and more uniform [42]. Fig. 6 

confirms the positive correlation between molecular weight and CAD response, in case of the 

homologous fatty acids. As illustrated, the CAD response increases with chain length and thus 

molecular weight of the fatty acids. 

 

Fig. 6. Effect of the MW of the fatty acids investigated on the CAD response.  



RESULTS – QSPR 67 
   

 
 

RDF080m, the most significant among the utilized descriptors, belongs to the class of Radial 

Distribution Function (RDF) molecular descriptors. It represents a three-dimensional mass 

distribution calculated at a radius of 8 Å from the center of a geometrical representation of the 

molecule. The high importance of this descriptor points out a high contribution of steric factors 

at the radius of 8 Å from the molecules’ geometrical center to the observed response [43]. The 

different distance of the carboxyl groups from the geometrical center of the molecules 

investigated is most likely responsible for the distinct differences in CAD response 

corresponding to the chain length of the fatty acids. The respective distance of the carboxylic 

group from the geometric center of the fatty acids ranges from 4.77 to 10.52 Å. Stearic acid 

(C18) with a carboxyl group furthest from the geometric center showed the largest CAD 

response. It is followed by the response of margaric (C17, 9.36 Å) and palmitic acid (C16, 

9.28 Å). The geometric center and its distance (Du) from the carboxyl group are shown 

exemplarily for myristic acid (C14) in Fig.7. 

 

Fig. 7. Geometrical center of the 3D represented myristic acid.  

Ve2_D/Dt is categorized as a 2D matrix-based molecular descriptor. Here, it specifically 

defines the average coefficient of the last eigenvector from a distance/detour matrix. Basically, 

it indicates that the topological distribution of molecular charge and mass might have some 

impact on CAD responsiveness [44]. This descriptor negatively affects the intensity of the CAD 

response, according to graph constructed via GBT (Fig. S3 of the Supplemental Material). 

4. Conclusions 

The influence of the molecular properties and experimental conditions on the observed CAD 

response was investigated for a homologous series of fatty acids of varying volatility using a 

GBT-QSPR approach. The applicability of the QSPR patterns was studied in a 5-dimensional 

experimental space, comprising PFV (0.8 – 1.6), evaporation temperature (24 ℃ – 48 ℃), flow 

rate of the mobile phase (0.5 mL/min – 1.5 mL/min), organic solvent (ACN, MeOH, EtOH, 

acetone), and content of organic solvent in the mobile phase (70% – 90%, v/v).  



68 RESULTS – QSPR 
       

 

The reliability of the mixed QSPR model was confirmed by the 10-fold cross-validation and the 

external validation. The established pattern could explain 99% (Q2: 0.987, RMSE: 0.051) of 

the observed variations in CAD responses despite the fatty acids’ significant differences in 

volatility, and, thus, response. Low RMSEP values of 0.050 and high R2 values of 0.990 for 

the external validation set confirmed that the developed model was capable to predict the CAD 

response for previously untested structural homologues with satisfying accuracy. 

Though the CAD is often referred to as a detector producing a uniform response, the 

successfully established mixed model revealed the significance of MW, RDF080m and 

Ve2_D/Dt molecular descriptors toward the signal’s magnitude. The joint importance of 

molecular weight and evaporation temperature highlighted the dependence of the CAD 

response on the volatility of the respective analyte. The high impact assigned to the RDF080m 

descriptor pointed out a significant contribution of steric factors to the generated response. 

Due to the importance of the Ve2_D/Dt descriptor, the different CAD response for the fatty 

acids can be partially assigned to versatile topological distribution of charge and mass.  

The dependence of the CAD response on the operating conditions was once again confirmed. 

Thus, an advanced optimization of the corresponding parameters, such as evaporation 

temperature and flow rate, is highly recommended. Due to the slightly higher CAD responses 

obtained with acetone in comparison to the ACN, MeOH, and EtOH, its usage in CAD methods 

could be promising. However, as the elution strength and the background noise also differ 

among various organic modifiers, more detailed studies concentrated on method development 

are required to make valid conclusions.  
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Supplementary material 

Table S1. Data table for QSPR model building. 

Table S1. is available through Ref [10]. 

Table S2. Basic statistics of employed features. 

Feature/statistics Min Max Mean Median First 
Quartile 

Third 
Quartile 

Organic modifier 
content 75.000 90.000 82.500 82.500 75.000 90.000 

Flow rate 0.500 1.500 1.000 1.000 0.500 1.500 
Evaporation T 24.000 48.000 36.000 36.000 24.000 48.000 

Power f 0.800 1.600 1.200 1.200 0.800 1.600 
MW 200.360 284.540 255.470 268.490 228.420 282.520 
TIC4 146.692 245.668 191.741 178.274 160.547 240.989 

VE2_D/Dt 0.107 0.136 0.118 0.115 0.115 0.117 
VE2_B(m) 0.138 0.195 0.170 0.172 0.153 0.190 
MATS5m 0.000 0.006 0.003 0.004 0.003 0.004 
MATS4v 0.001 0.003 0.002 0.002 0.001 0.003 
MATS5v 0.001 0.008 0.003 0.002 0.001 0.003 

Eig15_EA(dm) 0.000 0.000 0.000 0.000 0.000 0.000 
SPAN 8.800 10.667 9.858 10.087 8.945 10.559 
DISPm 13.372 18.961 15.241 14.887 13.492 15.850 
DISPv 5.442 7.588 6.923 7.112 6.773 7.510 

TDB10m 0.090 0.115 0.106 0.109 0.101 0.114 
TDB10v 0.128 0.163 0.151 0.156 0.140 0.162 

RDF080m 0.014 1.040 0.498 0.543 0.015 0.832 
RDF090m 1.021 3.291 2.285 2.392 1.647 2.970 
RDF100m 2.979 7.255 5.352 5.848 3.014 7.166 
RDF115m 0.740 2.490 1.476 1.451 0.934 1.788 
Mor12u -2.755 -1.421 -2.075 -2.139 -2.344 -1.653 
Mor22u 0.885 1.131 1.021 1.023 0.931 1.131 
Mor23u -2.589 -2.060 -2.342 -2.328 -2.580 -2.170 
Mor26u 0.359 0.530 0.467 0.478 0.440 0.514 
Mor32u -0.537 0.283 -0.123 -0.057 -0.486 0.116 
Mor10m 0.342 0.749 0.535 0.515 0.489 0.602 
Mor15m -0.002 0.173 0.088 0.086 0.048 0.137 
Mor24m 0.070 0.258 0.157 0.149 0.142 0.177 
Mor29m -0.219 -0.081 -0.139 -0.119 -0.202 -0.093 
Mor04v -0.135 1.475 0.490 0.416 0.224 0.546 
Mor27v 0.256 0.557 0.480 0.533 0.450 0.554 
Mor30v -0.015 0.086 0.033 0.023 -0.001 0.083 
Mor08p 0.014 0.176 0.113 0.132 0.076 0.147 
Mor11s 0.312 1.379 0.818 0.758 0.562 1.139 
Mor22s 2.261 2.773 2.558 2.566 2.448 2.735 
Mor25s 0.673 2.052 1.169 1.101 0.854 1.234 
Mor28s -1.335 -0.925 -1.140 -1.128 -1.321 -1.002 
Mor32s -1.578 -0.438 -0.861 -0.811 -0.844 -0.684 

G1m 0.147 0.160 0.153 0.153 0.148 0.159 
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Table S2. (continued) 
G2m 0.169 0.211 0.184 0.181 0.174 0.188 
E3m 0.022 0.159 0.075 0.073 0.023 0.104 
G2v 0.157 0.200 0.180 0.187 0.163 0.188 
G2e 0.156 0.199 0.182 0.182 0.174 0.198 
E3e 0.362 0.641 0.480 0.474 0.382 0.549 
G2p 0.167 0.310 0.203 0.182 0.174 0.200 
G2s 0.148 0.245 0.196 0.203 0.155 0.220 
Dv 0.305 0.380 0.337 0.332 0.317 0.357 
Dp 0.320 0.387 0.360 0.372 0.335 0.376 
Ds 0.472 0.596 0.545 0.548 0.512 0.593 

H4u 2.153 3.326 2.717 2.646 2.506 3.023 
HATS0v 0.038 0.055 0.047 0.046 0.044 0.052 
HATS0p 0.049 0.063 0.056 0.056 0.055 0.060 
HATS5p 0.074 0.096 0.084 0.084 0.079 0.086 

R1u+ 0.079 0.123 0.103 0.102 0.093 0.119 
R3u+ 0.046 0.061 0.052 0.051 0.048 0.055 
R4u+ 0.041 0.047 0.045 0.046 0.042 0.046 
R5u+ 0.022 0.030 0.026 0.027 0.024 0.028 
R4m+ 0.014 0.017 0.015 0.015 0.014 0.015 
R1v+ 0.045 0.052 0.049 0.048 0.047 0.052 
R1e+ 0.099 0.122 0.111 0.114 0.100 0.116 
R3e+ 0.043 0.063 0.052 0.053 0.049 0.054 
R7e+ 0.017 0.022 0.019 0.019 0.018 0.019 
R1i+ 0.116 0.148 0.136 0.140 0.127 0.144 

Table S3. The results of 10-fold CV and external validation  

 10-fold CV External validation 

RMSE 0.051  

Q2 0.987  

RMSEP  0.050 

R2  0.990 
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Fig. S1. Distribution of dependent variable a) before cube-root transformation b) after cube-root 

transformation. 
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Fig. S2. Graph showing the relationships between the predicted CAD response and the PFV. 

 

Fig. S3. Graph showing the relationships between the CAD response of fatty acids and the values of 

Ve2_D/Dt molecular descriptor. 
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Abstract 

Charged aerosol detection (CAD) is a universal technique in liquid chromatography that is 

increasingly used for the quality control of drugs. Consequently, it has found its way into 

compendial monographs promoted by its simple and robust application. However, the 

response of CAD is inherently nonlinear due to its principle of function. Thus, easy and rapid 

linearization procedures, in particular regarding compendial applications, are highly desirable. 

One effective approach to linearize the detector’s signal makes use of the built-in power 

function value (PFV) setting of the instrument. The PFV is basically a multiplication factor to 

the power law exponent of the equation describing the CAD’s response, thereby altering the 

detector’s signal output to optimize the quasi-linear range of the response curve. The 

experimental optimization of the PFV for a series of analytes is a time-consuming process, 

limiting the practicability of this approach.  

Here, two independent approaches for the determination of the optimal PFV based on an 

empirical model and a mathematical transformation in each case, are evaluated. Both 

approaches can be utilized to predict the optimal PFV for each analyte solely based on the 

experimental results of a series of calibration standards obtained at a single PFV. The 

approaches were applied to the HPLC-UV-CAD impurity analysis of the drug gabapentin to 

improve the observed nonlinear response of the impurities in the range of interest. The 

predicted optimal PFV of both approaches were in good agreement with the experimentally 

obtained optimal PFV of the analytes. As a result, the accuracy of the method was significantly 

improved when using the optimal PFV (90 – 105% versus 81 – 115% recovery rate for 

quantitation by either single-point calibration or linear regression) for the majority of the 

analytes. The final method with a PFV adjusted to 1.30 was validated with respect to ICH 

guideline Q2(R1).  
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1. Introduction 

The charged aerosol detector was commercially introduced in 2005 [1] as an alternative to 

other aerosol-based detection techniques in liquid chromatography, e.g. evaporative light 

scattering detection (ELSD) [2], or condensation nucleation light scattering detection (CNLSD) 

[3]. With its user-friendly application and a comparatively high reproducibility [4-7], the detector 

has increasingly found recognition in the field of pharmaceutical quality control [8-13], often 

replacing low sensitivity methods for the detection of non-chromophoric analytes (detection 

wavelength <200 nm). Consequently, the CAD has been introduced into the European 

Pharmacopoeia (Ph. Eur.) for the compendial related substances test of the drugs vigabatrine 

and topiramate [14, 15]. One drawback of the detection principle that is shared by all aerosol-

based detectors, is the inherently nonlinear response. Since data integrity has become an 

essential element in the highly regulated environment of a quality control lab nowadays, the 

subsequent transformation of data for linearization purposes can be troublesome, or even 

prohibited. Thus, the calibration model that accurately describes the response–amount 

relationship of a certain analyte should preferentially be as simple as possible. A linear 

response–amount relationship is of particular importance when the quantitation of an analyte 

is done by means of relative quantitation procedures – as it holds true for the impurity analysis 

methods of the Ph. Eur. [16]. In many cases, the linearity of the CAD’s response is sufficient 

over the range of interest, as the reported quasi-linear range of the detector has typically a 

magnitude of 102 [17]. However, there may be applications where the response is nonlinear 

even over a narrow range, especially at the lower end of the investigated mass range. 

In particular, a nonlinear response was observed when developing an impurity analysis HPLC-

UV-CAD method for the drug gabapentin (Table 1) over a concentration range from 0.03% to 

0.24% with respect to the concentration of the main component. With the built-in power function 

value (PFV) setting of the recent model Vanquish™ Horizon CAD, there is an efficient way to 

linearize the response of the CAD so that no further data processing is required. The PFV is a 

correction factor that is applied to the exponent b of the equation describing the CAD’s signal 

generation (Eq. 1) [17]. Linear response can be assumed when b = 1.0. 

𝐴𝐴 = 𝑎𝑎(minj)𝑏𝑏          (1) 

with A being the peak area, a being an analyte specific sensitivity coefficient, and minj is the 

injected mass. For b >1, a supralinear response is observed, whereas b <1 indicates sublinear 

response of the detector. Since the response of the recent CAD models is sublinear over 

almost their entire dynamic range [17], PFV >1 are usually applied to shift the response curve 

to more linear regions. However, there may be cases where a PFV <1 can be beneficial to 

linearize the response, e.g. semivolatile compounds that show supralinear response at the low 

mass range. The most evident approach to determine the optimal PFV for a particular analyte 
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is to conduct a series of linearity experiments at various PFV. The feasibility of this approach 

is albeit limited by its time-consuming execution and the inaccurate results when not 

investigating sufficiently narrow PFV ranges. Another approach for the optimization of the PFV 

is based on an empirically derived equation predicting the CAD’s response at any PFV as 

proposed by Ahmad et al. [18] to linearize response for the antibiotic amikacin and the 

lysophosphatidylcholine 1-stearoyl-sn-glycero-3-phosphocholine, each of which were 

analyzed by different chromatographic methods. Assuming the general validity of the equation, 

the established constants can be used to estimate the response for any analyte at any PFV 

and any chromatographic method, enabling the subsequent evaluation of linearity. This 

approach is elucidated in more detail in section 3.1. Besides the aforementioned optimization 

strategies, there is also one based on a mathematical transformation. The CAD’s signal can 

be subsequently modified by a feature of the Chromeleon™ software (Thermo Fisher 

Scientific), allowing for the interpretation of the linearity data at various PFV.  

In this work, the two independent PFV optimization approaches described above were used to 

predict the optimal PFV for the impurities of gabapentin. The empirical approach of Ahmad et 

al. was validated on the most recent CAD model with data originated from a previously 

published method for the quantitation of fatty acids in polysorbate [19] and extended by its 

application to semivolatile analytes. Alternatively, the mathematical transformation approach 

was evaluated. The results of the two approaches were then compared to the experimentally 

obtained optimal PFV. To illustrate the benefit of an optimized PFV setting for the impurity 

analysis of gabapentin, the accuracy of a method with optimized PFV was compared to a 

method with a default PFV setting using either the compendial-favored single-point calibration 

or by linear regression for the quantitation of the impurities. The method containing the 

optimized PFV as indicated by both optimization approaches was validated with respect to ICH 

guideline Q2(R1) [20]. All compendial impurities [21] were separated and quantified in one 

chromatographic run using a C8 reversed phase column and UV-CAD detection.  
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Table 1. Impurity profile of gabapentin as depicted in the Ph. Eur. [21]. 

2. Experimental 

2.1. Chemicals and reagents 

Reference standards of the gabapentin impurities A, B, and D were obtained from the 

European Directorate for the Quality of Medicines & HealthCare (EDQM; Straßbourg, France), 

whereas the standards of the impurities E and G were purchased from Enamine (Riga, Latvia). 

The gabapentin samples were available from Polpharma (Warsaw, Poland), ammonium 

formate, formic acid, and the fatty acid standards from Sigma Aldrich (Steinheim, Germany). 

Ultra-pure deionized (DI) water was delivered by a Milli-Q® system (Merck, Darmstadt, 

Germany). HPLC grade acetonitrile (ACN) was supplied from Sigma Aldrich.  
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2.2. Apparatus 

The HPLC experiments were performed on a Vanquish™ Flex modular chromatographic 

system (Thermo Fisher Scientific, Germering, Germany) consisting of a binary pump with 

online degasser, a thermostatted split sampler, a thermostatted column compartment with 

passive pre-heater, and a variable wavelength detector in-line with a Vanquish™ Horizon CAD. 

The CAD was supplied with nitrogen gas from an ESA nitrogen generator (Thermo Fisher 

Scientific) connected to the in-house compressed air system. The instrument was controlled 

and runs were processed using the Chromeleon® Chromatography Data System Version 7.2.6 

software program (Thermo Fisher Scientific). 

2.3. Chromatographic procedures 

2.3.1. Fatty acid method [19]        

For the fatty acid method, a flow rate of 0.8 mL/min, a column temperature of 25 °C (run in still 

air mode), and an injection volume of 10 µL were applied. The fatty acids were separated on 

a C18 coreshell Kinetex column (100 x 2.1 mm, 2.6 µm) (Phenomenex, Aschaffenburg, 

Germany) using gradient elution. Mobile phase A consisted of an aqueous 0.05% (v/v) formic 

acid solution, whereas mobile phase B was acetonitrile with addition of 0.05% (v/v) formic acid. 

The gradient program started at 75% B from 0 to 0.8 min, linearly increased to 85% B within 

1.7 min and maintained at 85% B for 0.5 min, followed by a re-equilibration back to 75% B 

within 0.5 min and a 1 min hold, resulting in a total run time of 4.5 min. The fatty acids were 

detected by CAD using an evaporation temperature of 35 °C, a filter constant of 1 s, a data 

collection rate of 10 Hz, and various power function values ranging from 0.80 to 1.60.  

2.3.2. Gabapentin method          

 The gabapentin method comprised a flow rate of 1.2 mL/min, a column temperature of 25 °C 

(run in still air mode), and an injection volume of 20 µL. The separation of gabapentin and its 

impurities was accomplished by a reversed phase C8 Agilent Zorbax-SB column (250 x 

4.6 mm, 5 µm) (Waldbronn, Germany) using gradient elution. Mobile phase A consisted of 

20 mM ammonium formate in DI water adjusted to pH 2.8 with formic acid. Mobile phase B 

contained a 20 mM ammonium formate buffer pH 2.8 in a mixture of 90% ACN and 10% DI 

water (v/v). The gradient program started with an isocratic step of 25% B for the first min, 

followed by a linear increase from 25% to 60% B in the next 4 min, a hold of 60% B from min 

5 to 11, and a re-equilibration step between min 11 and 12 from 60% to 25% B and a 25% B 

hold for 3 min resulting in a total run time of 15 min. The detector settings for the CAD were as 

follows: evaporation temperature 30 °C, filter constant 5 s, data collection rate 10 Hz, and a 

power function value of 1.30. UV detection was performed with a data collection rate of 20 Hz 

and a detection wavelength of 210 nm. 
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2.4. Preparation of solutions 

2.4.1. Standard solutions          

Stock solutions of the fatty acid standards were prepared by weighing 10.0 mg of the fatty acid 

and dissolving in methanol. The stock solutions were stored in a freezer at −20 °C and diluted 

with a mixture of acetonitrile 75% and water 25% (v/v) to the appropriate concentration. 

Stock solutions of the gabapentin impurity standards A, E, and G were prepared by weighing 

1.0 mg of the impurity and dissolving in 10.0 mL DI water. The stock solutions were used as 

calibration or external standards and for spiking of the sample solutions by appropriate dilution 

with mobile phase A. They were stored at 8 °C. For the stock solutions of gabapentin impurities 

B and D, 1.0 mg of the respective impurity was weighed and dissolved in 10.0 mL methanol. 

The stock solution of impurity B was stored at -20 °C and at 8 °C in case of impurity D. 

2.4.2. Sample solutions         

The sample solutions were freshly prepared on a daily basis by weighing 80 mg of gabapentin 

and dissolving in 10.0 mL mobile phase A. The sample solutions were stable for at least one 

day at room temperature. 

3. Processing of the calibration data 

3.1. Empirical PFV optimization approach  

This approach is based on Eq. 2 introduced by Ahmad et al. [18] that describes the PFV 

dependency of the CAD’s response using a PFV correction constant, y, and another constant, 

a. The constants follow a trend with increasing PFV, which enables the prediction of the 

response of a particular analyte at any given PFV based on the peak area response obtained 

at PFV = 1.0. 

(areaPFV=𝑥𝑥) = 𝑎𝑎 ×  (areaPFV=1)𝑥𝑥+𝑦𝑦             (2) 

with a, y being two PFV-dependent constants and x being a particular PFV. The a and y 

constants for an analyte can be modeled by the Excel add-in Microsoft Solver™. For this 

purpose, the Microsoft Solver™ settings were adjusted to minimize the difference between the 

observed experimental response factors (area/concentration) at a particular PFV and the 

calculated response factors obtained from the Eq. 2 with the PFV-dependent a and y constants 

for a series of calibration standards. An example of the Excel template used for the modeling 

is given in Table 2. The Solver parameters were set with the objective to minimize the average 

(|∆𝑅𝑅𝑅𝑅|/RFcalculated × 100) across the calibration levels by altering two variable cells representing 

the a and y constants, respectively. The constants derived from the modeling were then applied 

to calculate the peak areas and, subsequently, the response factors for the calibration 

standards of the gabapentin impurities based on the peak areas obtained for the impurities at 
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PFV = 1.00. To assess the quality of fit for each PFV, the RSD of the resulting response factors 

across the investigated range was evaluated. Moreover, the residual plots and the coefficients 

of determination (R2) obtained by linear regression of the predicted calibration points were 

examined to enable a meaningful comparison of the prediction results to the mathematical 

approach.  Complete workflows from constant modeling to the prediction of the optimal PFV 

are illustrated in detail in the supplementary material. 

Table 2. Example of the constant modeling by Microsoft Solver for myristic acid at PFV = 1.20 based 

on the response factors RF (concentration/peak area). 
Concentration  Peak area (PFV=1.00) Peak area (PFV=1.20) RF (PFV=1.20) |∆RF|

RFcalc.
 × 100 

 exp.a exp. calc.b exp. calc. 
0.01 0.007 0.002 0.002 0.22 0.21 5.06 x 10-5 

0.25 0.197 0.079 0.084 0.32 0.33 5.64 
0.50 0.425 0.189 0.198 0.38 0.40 4.34 
0.75 0.690 0.340 0.340 0.45 0.45 1.49 x 10-4 

1.00 0.936 0.498 0.478 0.50 0.48 4.23 
      

2.85c 

 optimized constants a → 0.51    
  y → -0.082    

a Experimentally obtained value. 
b Calculated value based on Eq. 2. 

c The average of the |∆RF|
RFcalc.

 × 100 across the concentration range. 

3.2. Mathematical PFV optimization approach  

For the mathematical PFV optimization approach, a feature of the proprietary Chromeleon™ 

software was used to transform the original calibration data of the gabapentin impurities 

obtained at PFV = 1.00. By this approach, the software creates a new signal channel where a 

certain power factor that corresponds to the PFV has already been applied to the original 

chromatogram (Fig. 1). The algorithm for the Chromeleon transformation is simply pAPF where 

each data point within a chromatogram in pA units is raised to a user-selected power factor 

(PF). The resulting chromatogram is output to a new channel.  Further details are provided in 

[22]. The applied power factor can be varied in increments of 0.05. The resulting 

chromatograms with transformed CAD signal were subsequently evaluated as calibration 

standards in terms of linearity. To assess the quality of fit at the respective applied power 

factor, the R2 obtained by linear regression as well as the RSD of the response factors across 

the concentration range and the residual plots of the resulting calibration data points were 

examined as illustrated in section 4.1.2.2.  
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Fig. 1. Overlay of a chromatogram for a 0.1% solution of gabapentin and its nonvolatile impurities at 

PFV = 1.00 and the modified chromatogram after applying a power factor of 1.20 (blue trace). The PFV 

of impurity B was optimized separately due to its possible hydrolysis to impurity E. 

4. Results and discussion 

4.1. Gabapentin method development 

4.1.1. Optimization of the chromatographic conditions other than PFV 

The anticonvulsant gabapentin is a ɣ-aminobutyric acid derivative; therefore, it is weakly 

retained on any reversed phase HPLC column. Its impurities, however, mostly lack of the 

partial amino acid structure, thus they can be separated on C18, C8, biphenyl, and CN 

stationary phases due to their moderate polarity [23-25]. One particular challenge regarding 

the detection of gabapentin and most of its impurities, is the absence of a suitable chromophore 

(Table 1) that causes the relatively low sensitivity of the reported UV methods [24, 25]. To 

improve the sensitivity for the weakly-chromophoric impurities, a HPLC method using in-line 

UV-CAD detection was developed instead. Reversed phase columns of different 

hydrophobicity (C18, C8, and Phenyl) were tested for their selectivity towards gabapentin and 

its impurities. A C8 Agilent Zorbax-SB column was then chosen for the further method 

development, since it provided the best resolution of all components and appropriate peak 

shape for the analytes using an ammonium formate buffer in a mixture of DI water and ACN 

as mobile phase. The pH of the ammonium formate buffer was adjusted to 2.8 to suppress the 

ionization of the acidic analytes (pKaCOOH = 3.7). However, the nitrile group of gabapentin 

impurity B is likely to hydrolyse in acidic medium, resulting in the formation of impurity E. Thus, 
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the linearity experiments described below were performed separately for impurity B. Mobile 

phase A was an aqueous 20 mM ammonium formate buffer pH 2.8, whereas mobile phase B 

also consisted of a 20 mM ammonium formate buffer pH 2.8 in a mixture of DI water and ACN 

10/90 (v/v). To facilitate the quantitation of all compendial impurities in one chromatographic 

run, a gradient program was applied as stated in section 2.3.2. For the simultaneous detection 

of all compendial impurities in gabapentin (Table 1), UV and charged aerosol detectors were 

coupled in-line to cover the weak-chromophoric (B, E, G) as well as the volatile impurities 

(impurity A). The evaporation temperature setting of the CAD was adjusted to 30 °C to improve 

the limit of quantitation (LOQ) of the semivolatile impurity B. In contrast to a previously 

published CAD method [23], impurity A could not be sensitively detected by CAD due to its 

high volatility. Its chromophore, however, enabled UV detection at 210 nm. The UV-active 

impurity D was also measured by CAD, since the CAD’s baseline was less affected by the 

applied gradient elution. 

4.1.2. Optimization of the PFV  

Although the R2 values of the impurity calibration curves obtained from linear regression at a 

default PFV of 1.00 suggested a good quality of fit (R2 >0.995) in the investigated range (0.03% 

– 0.24%), the residuals plots for each impurity showed a bias. In addition, the relative standard 

deviation (RSD) of the response factors (peak area/amount) was high across the 6 investigated 

concentration levels for all impurities (RSD ≥8.2%). As a consequence, the recovery rates of 

the spiked impurities deviated by more than 10% when using either single-point quantitation 

relative to a 0.1% solution of the impurity or by the above-described linear regression with 

greatest deviation at the lower end of the examined range. To address this unsatisfactory 

result, two independent PFV optimization approaches were evaluated with the objective to 

improve the accuracy of the method when using external standard quantitation. 

4.1.2.1. Empirical approach using the constants a and y 

Ahmad et al. [18] introduced an empirically derived equation  (Eq. 2) to calculate the CAD’s 

response at any PFV from the response obtained at PFV = 1.00. This approach is based on 

the assumption that the two constants of the equation modeled by the Excel tool Microsoft 

Solver™ as stated in section 3.1. follow a consistent trend as a function of PFV. With known 

values for the PFV-dependent a and y constants, the response of a particular calibration 

standard obtained at PFV = 1.00 can be used to predict the standard’s response at any PFV. 

The optimal PFV was then determined by comparing of the RSD of the resulting response 

factors across the investigated concentration levels. When assuming the universal validity of 

the proposed equation, the constants derived from a certain analyte should allow for the 

prediction of the response of all other analytes at any concentration range. Ahmad et al. 

described excellent correlation between experimental data and calculated results for two 
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analytes measured at various concentrations on different systems and using different 

chromatographic methods. In his study, the robustness of this modeling approach to different 

instrumentation and experimental conditions was further studied on the Vanquish™ Horizon 

CAD by application to a previously published analytical method for the determination of fatty 

acids in polysorbate [19] as described  in section 2.2.1. The a and y constants were modeled 

as depicted in section 3.1 using Microsoft Solver™ for the fatty acids myristic acid, palmitic 

acid, stearic acid, and oleic acid over a mass range of 10 ng to 1000 ng on column applying 

PFV between 0.80 and 1.60 based on the original calibration data obtained at PFV 1.00. The 

a constants followed an exponential trend (R2 >0.98), whereas the trend for the y values was 

linear (R2 >0.94) (Fig. 2). The two modeled constants of each fatty acid were then used to 

predict the CAD’s response for the gabapentin impurities B, D, E, and G, respectively, at PFV 

ranging from 0.80 to 1.60 based on the calibration data obtained at PFV 1.00. The quality of fit 

for calibration at each PFV was evaluated by comparing the RSD of the resulting response 

factors across the concentration levels in each case (Fig. 3).  

 

Fig. 2. Trend for the a and y constants modeled for palmitic acid across the investigated PFV range. 

 

Fig. 3. Comparison of the experimental optimal PFV for gabapentin to the one predicted by the constant 

modeling of palmitic acid based on the RSD of the response factors across the concentration range. 
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The predicted optimal PFV were in a narrow range when using the constants obtained from 

the nonvolatile fatty acids palmitic acid, stearic acid, and oleic acid, respectively (Table 3). For 

the semivolatile myristic acid, however, the predicted optimal PFV were slightly higher due to 

the higher values of the slope and y-intercept of the y constant’s equation. Unlike the sublinear 

nonvolatile gabapentin impurities (D, E, G), the semivolatile impurity B showed supralinear 

response in the investigated range. Thus, the predicted optimal PFV was <1 in contrast to the 

other impurities. To confirm the consistency of the prediction results of this approach, the a 

and y constants were also modeled for the gabapentin impurities B, G, and for gabapentin 

itself over a mass range between 50 ng and 400 ng on column at PFV 0.80 to 1.60. The 

constants equations followed the same trend as stated above and the gabapentin impurity 

derived predicted optimal PFV were in good agreement with the fatty acid derived optimal PFV 

(Table 3).  

Table 3. Optimal PFV prediction results for the empirical approach based on the %RSD of the response 

factors across the concentration range at each PFV. 

Constants derived from Predicted optimal PFV 
Compound Gabapentin Impurity B Impurity D Impurity E Impurity G 
Palmitic acid 1.28 0.83 1.18 1.23 1.25 
Stearic acid 1.27 0.88 1.18 1.22 1.24 
Oleic acid 1.26 0.86 1.18 1.21 1.23 
Gabapentin 1.23 0.90 1.16 1.19 1.21 
Gabapentin impurity G 1.25 0.86 1.17 1.21 1.23 
average 1.26 0.87 1.17 1.21 1.23 
%RSD 1.37 2.69 0.68 1.09 1.08 
experimentala 
mathematical approacha 

1.25 
1.22 

0.80 
0.77 

n.d.b 

1.17 
n.d. 
1.19 

1.22 
1.20 

Semivolatile compounds      
Myristic acid 1.35 0.78 1.23 1.28 1.31 
Gabapentin impurity B 1.37 0.83 1.26 1.31 1.33 

a The optimal PFV were estimated from the %RSD of the response factors across the investigated range at each 

PFV.  
b Not determined.  

Interestingly, deviations in the predicted optimal PFV observed for the semivolatile myristic 

acid before in the fatty acid method also occurred for the semivolatile impurity B in the 

gabapentin method. This result indicates that lower accuracy may be obtained when using the 

constants derived from a nonvolatile analyte to predict the optimal PFV for a semivolatile 

analyte and vice versa. The higher response curve variability of semivolatile analytes thus 

limits the general applicability of this approach primarily to analytes that behave as 

nonvolatiles. The prediction accuracy was excellent (RSD ≤2.69%, n = 5) when comparing the 

predicted optimal PFV derived from the constants of the nonvolatile fatty acids to those derived 

from the nonvolatile gabapentin impurities (Table 3). Our studies included experimental 

generation of response curves for certain gabapentin impurities at different PFV settings 
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ranging from 0.80 to 1.60. This allowed direct comparison of optimal PFV obtained 

experimentally to those predicted by the described model (Fig. 3). The predicted and 

experimentally obtained optimal PFV were in good agreement, further supporting the validity 

of the predictive model (Table 3). Visual inspection of the resulting residual plots also confirmed 

the consistency and accuracy of the model, since the indicated optimal PFV was between 1.25 

and 1.30 for each nonvolatile analyte when comparing the modeled with the experimental 

results, while the optimal PFV determined for the semivolatile impurity B between PFV 0.80 

and 0.90. The R2 results tended to support the residual plot observations, however, the global 

maxima were not always distinguishable and residual plots are generally regarded as a more 

robust parameter for the assessment of the quality of fit. 

4.1.2.2. Mathematical transformation approach using the Chromeleon™ software 

For the second approach, the calibration data obtained at PFV = 1.00 for the gabapentin 

impurities (mass range: 50 – 400 ng on column) were transformed by the Chromeleon™ 

software applying power factors from 0.80 to 1.40 in 0.05 increments. A new signal channel 

was generated for each power factor, enabling the parallel assessment of linearity. The 

resulting chromatograms were evaluated in terms of linearity by plotting the calibration curves 

and the residual plots. The coefficients of determination (R2) obtained from linear regression 

of the calibration curves were then plotted versus the corresponding PFV. The optimal PFV 

was indicated by the maximum of the resulting graph (Fig. 4). 

 

Fig. 4. Prediction of the optimal PFV for gabapentin and its impurities based on the R2 values obtained 

for the applied power factors. 

 In addition, the quality of fit was evaluated by visual inspection of the respective residual plot 

that illustrates the relative deviation (%) of a particular calibration point against the amount of 

the analyte. At the optimal PFV, the calibration points are expected to be evenly distributed 

around the 0% error line (Fig.  5).  
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Fig. 5. Residual plot for gabapentin impurity G at PFV = 1.00 (left) and the residual plot with an applied 

power factor of 1.25 (right). 

The indicated optimal PFV were in excellent agreement with the previous approach for all 

nonvolatile impurities when either applying the residual plots (optimal PFV 1.25 - 1.30), or the 

RSD of the response factors across the investigated range (Table 3) as parameter for the 

assessment of the quality of fit. In case of the semivolatile impurity B, the residual plot indicated 

an optimal PFV of 0.80, also corresponding to the empirical approach, whereas the R2 

optimization did not indicate a distinct maximum.       

4.1.3. Comparison of the accuracy of the PFV optimized method to the default method 

To demonstrate the benefit of a PFV adjusted method, the accuracy for the quantitation of the 

gabapentin impurities in the required range (0.03% - 0.24%) was evaluated at PFV = 1.00, 

1.20, and 1.30, since the predicted optimal PFV of both approaches were in a range from 1.20 

to 1.30 for the majority of the impurities. Sample solutions of gabapentin were spiked with 

0.03%, 0.1%, and 0.2% of each impurity with respect to the concentration of the main 

component to cover the range between the reporting limit and the specification limit of an 

intended compendial method. The recovery rates of the spiked impurities were determined by 

means of linear regression of the established calibration curves as well as by using a 0.1% 

solution of the respective impurity as external standard for single-point calibration. The results 

of both quantitation procedures are depicted in Table 4.  

When a PFV of either 1.20 or 1.30 was applied, the recovery rates of all nonvolatile impurities 

were substantially improved at the lower level for both quantitation procedures, and at the 

upper level in case of single-point calibration, compared to the default PFV setting of 1.00. The 

deviations in the recovery rates of both optimized PFV methods were comparable, however, 

the method with PFV = 1.20 performed slightly better for single-point calibration, whereas the 

quantitation by linear regression was more accurate at PFV = 1.30. These results confirm the 

validity of the prediction approaches, since they are in good agreement with the respective 

parameter applied for the linearity evaluation.  
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Table 4. Recovery rates (%) for the gabapentin impurities detected by CAD calculated by either linear 

regression or single-point calibration at PFV = 1.00, 1.20, and 1.30, respectively (n=3). 

Quantitation Concentration PFV  Recovery rate [%] 
   Impurity B Impurity D Impurity E Impurity G 
 
 
 
 
Single-point 
calibration 
 

 
0.03% 

1.00 103 (±5.7)a 

 
115 (±2.9) 

 
114 (±2.3) 

 
114 (±2.5) 

 1.20 n.d.b 89 
 

100 
 

103 
 1.30 65 (±8.6) 

 
90 (±1.1) 

 
93 (±4.0) 

 
 

95 (±2.1) 
  

0.10% 
1.00 101 (±5.8) 

 
100 (±0.6) 

 
100 (±1.1) 

 
101 (±2.0) 

 1.20 n.d. 103 
 

104 
 

101 
1.30 101 (±7.2) 

 
101 (±1.8) 

 
101 (±2.3) 

 
99 (±1.0) 

  
0.20% 

1.00 109 (±6.7) 
 

87 (±0.8) 
 

90 (±0.7) 
 

93 (±0.8) 
 1.20 n.d. 100 

 
100 

 
95 

 1.30 138 (±8.3) 
 

104 (±1.6) 
 

102 (±2.3) 
 

103 (±1.4) 
  

 
 
 
Linear 
regression 
 

 
0.03% 

1.00 108 (±4.6) 
 

93 (±3.6) 
 

85 (±2.8) 
 

81 (±3.2) 
 1.20 n.d. 97 

 
98 
 

91  
 1.30 98 (±6.5) 

 
102 (±1.1) 

 
105 (±3.9) 

 
98 (±2.0) 

  
0.10% 

1.00 88 (±4.6) 
 

109 (±0.7) 
 

108 (±1.3) 
 

104 (±2.3) 
 1.20 n.d. 103 

 
102 

 
102 

 1.30 93 (±5.6) 
 

102 (±1.7) 
 

103 (±2.2) 
 

97 (±1.0) 
  

0.20% 
1.00 90 (±5.3) 

 
99 (±1.0) 

 
103 (±1.0) 

 
103 (±0.9) 

 1.20 n.d. 99 
 

99 
 

100 
 1.30 112 (±6.3) 

 
102 (±1.5) 

 
101 (±2.2) 

 
99 (±1.3) 

 a The 95% confidence interval for the recovery rates at PFV 1.00 and 1.30 that were subjected to statistical analysis 

is given in brackets for each level. 
b Not determined. 

The recovery rates of the semivolatile gabapentin impurity B, however, were negatively 

affected by the application of a PFV >1.00 due to the supralinear response of the analyte in 

the investigated range. A PFV of 0.80, as indicated by the optimization approaches, also did 

not improve the recovery rate results compared to a PFV of 1.00. To allow for the simultaneous 

quantitation of the nonvolatile impurities and impurity B with an applied PFV of 1.30, impurity 

B should preferentially be quantified by means of linear regression, since the recovery rates 

obtained from this procedure were satisfactory (93% - 112%). A PFV of 1.30 was finally chosen 

for the method validation due to the best overall accuracy of the setting with deviations of 

≤ ±10% for the recovery rates of the nonvolatile impurities. To test for the statistical significance 

of the improvement in the recovery rates between the default method (PFV = 1.00) and a 

method with PFV 1.30, two-tailed F-tests, followed by left-tailed Student’s t-tests (ɑ = 0.05) 

with either equal or unequal variances, were performed for the mean absolute errors in the 

recovery rates. This was done at the 0.03% level for both single-point and linear regression 

calibration and at the 0.2% level for single-point calibration where differences were most 

pronounced. With exception of the recovery results for impurity B, the mean absolute error of 

the PFV = 1.30 method was found to be significantly reduced for each tested level and 

quantitation procedure with P(T≤t) <0.05 (data not shown). In case of impurity B, both methods 
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performed not significantly different for quantitation by linear regression, but the default method 

performed better for single-point calibration. 

4.2. Gabapentin method validation                                                             

The final method for the impurity analysis of gabapentin with a PFV setting adjusted to 1.30, 

as indicated by both optimization approaches, was validated with respect to the requirements 

outlined in ICH guideline Q2(R1) [20]. 

The specificity of the method was demonstrated by visual inspection of a chromatogram of a 

gabapentin sample solution (8 mg/mL) spiked with 0.1% of each impurity (Fig. 6). Baseline 

separation of gabapentin and all of its potential impurities was achieved with resolutions >1.5. 

The CAD signal was used for the identification of the gabapentin impurities B, D, E, and G, 

whereas impurity A was detected by UV. 

 

Fig. 6. Chromatogram of a gabapentin sample solution (8 mg/mL) spiked with 0.1% of each impurity. 

Impurity A is detected by UV. 

A range between 0.03% and 0.24% with respect to the concentration of the sample solution 

was chosen for the demonstration of linearity to cover the compendial reporting threshold for 

a drug with an average daily intake >2 g [26] as the lower limit as well as 120% of the 

compendial specification limit as the upper limit.  
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The linearity of the method was evaluated across the investigated range by means of linear 

regression as well as by visual inspection of the residual plots of the calibration points. With 

R2 >0.9993 for each impurity (Table 5) and evenly scattered calibration points around the 0% 

error line in the residual plots, the linearity can be regarded as sufficient for the intended 

purpose. 

Table 5. Validation results of the gabapentin method. 
Parameter Condition Gaba- 

pentin 
Impurity 

Aa 
Impurity 

B 
Impurity 

D 
Impurity 

E 
Impurity 

G 
Linearity  Equationb 

y = mx + t 
0.0017x  
- 0.0032 

0.0064x  
-  0.0145 

0.00017x 
- 0.0041 

0.0024x  
- 0.0213 

0.0021x  
- 0.0164 

0.0013x 
 - 0.0052 

R2 

SD slope  
SD intercept  

0.9995 
1.8 x 10-5 

0.0048 

0.9996 
6.5 x 10-5 

0.018 

0.9993 
2.3 x 10-6 

0.00057 

0.9999 
1.3 x 10-5 
0.0034 

0.9995 
2.4 x 10-5 

0.0065 

0.9996 
1.2 x 10-5 
0.0033 

LOQ 
 
LOD 

Injected mass (ng) 3 50 50 4 2 3 
S/N (n = 6) 
Injected mass (ng) 
S/N (n = 6) 

15.5 
1 

4.3 

15.7 
n.d.c 

- 

15.5 
n.d. 

- 

15.5 
2 

6.6 

15.0 
1 

6.7 

14.3 
1 

3.3 
Intra- and 
(Interday) 
Repeatability  

0.03%, n=6 (2)  
0.10%, n=6 (2) 

n.d. 
n.d. 

2.7 (3.8) 
1.3 (1.1) 

8.4 (8.2) 
7.7 (6.0) 

2.1 (1.9) 
1.2 (1.2) 

3.1 (2.8) 
1.6 (2.0) 

2.2 (4.7) 
1.6 (2.4) 

0.20%, n=6 (2) n.d. 0.8 (0.9) 5.4 (4.6) 1.0 (1.1) 1.4 (1.5) 1.1 (1.6) 
a Detected by UV. 
b Obtained from linear regression of the 6 calibration points. 
c Not determined. 

To evaluate the accuracy of the method, the recovery rates of sample solutions spiked with 

each impurity at 0.03%, 0.1%, and 0.2% concentration levels were determined by means of 

the calibration curves obtained from linear regression as well as by the single-point calibration 

procedure using a 0.1% dilution of the respective impurity. The CAD was employed for the 

quantitation of the gabapentin impurities B, D, E, and G, while the recovery rate of impurity A 

was determined by UV. The recovery rates for the CAD detected impurities are illustrated in 

Table 4. With recovery rates ranging from 90% to 105% (n = 3), the accuracy of both 

quantitation procedures was satisfactory for the nonvolatile impurities. In contrast, linear 

regression had to be applied to obtain reasonable results for the semivolatile impurity B (93% 

- 112%, n = 3). The recovery rate of the UV detected impurity A (99%) was solely assessed at 

the lower limit (0.03%) to stay within the investigated range (0.03% - 0.24%), since the impurity 

was already present in the gabapentin samples in substantial quantities without spiking 

(>0.1%).  

 The precision of the method was assessed by replicate injections (n = 6) of spiked sample 

solutions at concentrations levels of 0.03%, 0.1%, and 0.2% of each impurity with respect to 

the main component to determine the intraday repeatability (Table 5). Another six replicates 

were analyzed on the next day to address the interday repeatability of the method. The RSD 

of the intraday repeatability injections (0.8% – 3.1%, n = 6) were adequate for the nonvolatile 

impurities D, E, and G detected by CAD and for the volatile impurity A detected by UV. The 

same held true for the interday repeatability with RSD ranging from 0.9% to 4.7%. The 
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increased RSD for the intraday and interday repeatability of the semivolatile impurity B (4.6% 

- 8.4%, n = 6) compared to the nonvolatile impurities can be attributed to the limitations of 

detection principle. The accuracy results, however, were not too much impaired by the 

relatively high RSD.  

The quantitation limits (LOQs) of the gabapentin impurities were determined according to the 

S/N approach of ICH guideline Q2(R1). With exception of the UV detected impurity A, all other 

impurities were detected by CAD. The LOQ results are illustrated in Table 5 and Fig. 7. The 

LOQs of the nonvolatile impurities compare favorably to a previously published CAD method 

[23]. A reporting threshold of 0.03% claimed by the Ph. Eur. for drugs with an average daily 

intake >2 g was achieved for all impurities. 

 

Fig. 7. Chromatogram of a solution of gabapentin and its impurities at 50 ng on column injected mass 

equivalent to the compendial reporting threshold (0.03%). 

For the evaluation of the method’s robustness, the flow rate (1.1 – 1.3 mL/min) and column 

temperature (20 °C – 30 °C) were varied as well as the initial percentage of mobile phase B 

(23% – 27%) and the final percentage (60% – 62%) using a 0.1% solution of gabapentin and 

its impurities. The resolution was >1.5 for all impurities under each condition and >3 for the 

peak pair of gabapentin and impurity G. Thus, the method can be regarded as robust against 

these changes since the system suitability requirement defined below was met.  

As a system suitability test, a 0.1% solution of gabapentin spiked with 0.1% impurity G was 

chosen for the demonstration of compliance. The criterion to pass the system suitability test 
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was a resolution >3 for the peak pair of gabapentin and impurity G determined by the approach 

described in the Ph. Eur. [16]. 

5. Conclusion 

In this work, two independent approaches for the optimization of the PFV setting in charged 

aerosol detection were evaluated to improve the accuracy results of a HPLC-UV-CAD method 

for the impurity analysis of gabapentin. Both approaches solely require the calibration data 

obtained at PFV = 1.00 to predict the optimal PFV for each analyte. Thus, they greatly simplify 

the time-consuming experimental optimization of the PFV setting. The comparison of the 

prediction results of both approaches to the experimentally obtained optimal PFV confirmed 

the validity of the approaches for the intended purpose. However, more experimental evidence 

might be required to prove the general validity of the empirical approach, since the analyte’s 

properties also have an impact on the constant modeling as it was shown for the semivolatile 

analytes exhibiting higher response curve variability. Moreover, a generic method for the 

establishment of the constants used in this approach is necessary to allow for the prediction 

of the optimal PFV of other analytes. The mathematical approach, by contrast, is universally 

applicable, although its utilization being restricted to the Chromeleon software license. The 

adjusted PFV setting is a valuable tool to improve the accuracy of the detector as was 

demonstrated by the comparison of the PFV-optimized method for the purity analysis of 

gabapentin to the default one, though the simultaneous quantitation of semivolatile and 

nonvolatile analytes in one chromatographic run remains a challenge. A particular advantage 

of the linearization by means of the PFV setting with regard to the application of the CAD in a 

GMP regulated environment, is the inherent data integrity of this procedure, since no 

subsequent data transformation, e.g. double logarithmic transformation, is required.  
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Abstract 

The charged aerosol detector (CAD) is frequently employed in liquid chromatography for the 

analysis of small polar and ionizable compounds such as amino acids and amino sugars, which 

provide a weak chromophore only. Separation of these compounds is achieved by means of 

ion pair chromatography (IPC), and, more recently, hydrophilic interaction chromatography 

(HILIC) techniques. However, as the CAD’s response is highly dependent on the mobile phase 

composition, the substantial differences in the mobile phase composition of IPC and HILIC 

have a distinct impact on the detector’s performance. This study was aimed at systematically 

comparing the performance of IPC and HILIC when coupled to the CAD. Therefore, the 

separation techniques characterized by their specific mobile phase compositions were 

evaluated for their influence on the CAD response and the signal-to-noise ratio (S/N) of the 

amino acids L-alanine, L-leucine, and L-phenylalanine applying the response surface 

methodology (RSM). The RSM results derived from flow injection analysis (FIA) indicated that 

the CAD response and thus the obtainable S/N are significantly higher in HILIC compared to 

IPC where the S/N decreased with the chain length of the applied ion-pairing reagent.  

In addition, an IPC and a HILIC method, respectively, were developed for the impurity profiling 

of the branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The 

beneficial effects of the HILIC conditions on the S/N observed under FIA conditions were partly 

offset by moderate column bleed effects when using an amide functionalized column, which 

facilitates the separation in the HILIC method. Satisfactory LOQs (3-10 ng on column) were 

obtained with both methods; however, the HILIC method was found to be slightly superior in 

terms of sensitivity and separation efficiency. 
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1. Introduction 

Small polar molecules or molecules carrying charges like amino acids, carbohydrates, and 

inorganic ions are challenging analytes in many ways, as their detection and separation is 

often complicated by their physico-chemical properties. The commonly applied reversed phase 

(RP)-HPLC technique is not appropriate in many cases due to its insufficient separation power 

toward these mostly hydrophilic compounds. Ion pair chromatography [1, 2] is among the most 

established separation techniques applied in liquid chromatography for polar ionizable 

compounds by using ion-pairing reagents of opposite charge under RP conditions. As a 

relatively new separation technique that has increasingly been used for the analysis of polar 

compounds over the last decade, hydrophilic interaction chromatography [3-5] comprises polar 

stationary phases and highly organic, often buffered mobile phases. Besides the challenging 

separation of polar compounds, their detection also can be a difficult task, when their structures 

do not contain UV absorbing elements known as chromophores. Thus, the predominantly 

applied UV detection suffers from poor sensitivity toward these analytes.  

Alternatively, the charged aerosol detector [6], which is among the universal aerosol-based 

detectors, has been proven in numerous applications [7] to be well suited for the analysis of 

small compounds lacking chromophores such as carbohydrates [8], amino acids [9], lipids [10], 

or inorganic and organic ions [11]. IPC and HILIC with CAD have been used for multiple 

purposes, e.g. amino acid analysis [9, 12-14] and the assessment of aminoglycosides [15-17]. 

However, the low organic, ion-pairing reagent containing mobile phases typically applied in 

IPC differ significantly from the high organic buffered mobile phases that are commonly used 

in HILIC. Considering the substantial influence of the mobile phase composition on the CAD 

response [18], there is no evidence that the assumably beneficial HILIC conditions outperform 

IPC in terms of sensitivity when applied to the same objective. 

In this study, the impact of IPC and HILIC on the CAD response was evaluated for the amino 

acids L-alanine (Ala), L-leucine (Leu), and L-phenylalanine (Phe) (Table 1) by a response 

surface methodology (RSM) approach, which aims to describe the functional relationship of 

input variables on the (systems) response of interest using statistical techniques [19]. 

Characteristic mobile phase compositions of each separation technique comprising a 

homologous set of the volatile ion-pairing reagents trifluoroacetic acid (TFA), 

pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA), and nonafluoropentanoic 

acid (NFPA) for IPC and the commonly applied ammonium formate and acetate buffers in case 

of HILIC were subjected to systematic variations of the acetonitrile content (v/v) in the mobile 

phase (IPC: 0-20%; HILIC: 70-90%) and the CAD’s evaporation temperature (35-70 °C). The 

resulting CAD responses obtained for the amino acids from flow injection analysis (FIA) runs 
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based on the experimental plan created by RSM were subsequently evaluated statistically to 

identify the significant input variables. 

Table 1. Branched-chain amino acids (Ile, Leu, Val) and their possible impurities with respect to the 
Ph. Eur. [19-21]. 
Compound Structure logDa 

(pH 5.5) 
MW (g/mol) Impurities 

 
 
 
L-Alanine (Ala) 
  

 
 
 

-2.88 

 
 
 

89.09 

 
 
 

-b 

 
 
L-Proline (Pro) 

 

 
 

-2.76 

 
 

115.13 

 
 

Ala, Val 

 
 
 
L-Cysteine (Cys)  

 
 
 

-2.50 

 
 
 

121.15 

 
 
 
- 

 
 
L-Valine (Val) 

 

 
 

-2.16 

 
 

117.15 

 
 

Ala, Ile, 
Leu 

 
 
L-Methionine 
(Met)  

 
 

-1.92 

 
 

149.21 

 
 
- 

 
 
L-Isoleucine (Ile) 

 

 
 

-1.86 

 
 

131.18 

 
 

Cys, Leu, 
Met, Val 

 
 
L-Leucine (Leu) 

 

 
 

-1.86 

 
 

131.18 

 
 

Ile, Met, 
Phe, Val 

 
 
L-Phenylalanine 
(Phe) 

 

 
 

-1.45 

 
 

165.19 

 
 

Leu, Met, 
Tyr, Val 

a Predicted by ACD labs software version 2020.2.0 (ACD Labs, Toronto, Canada) 
b Not considered for impurity profiling. 

 In addition to the theoretical evaluation, an IPC-CAD and a HILIC-CAD method were 

developed for the impurity profiling of the branched-chain amino acids (BCAAs), i.e. Leu, L-

isoleucine (Ile), and L-valine (Val) to compare the performance of the techniques in a more 

realistic scenario. The impurity profile of the BCAAs as depicted in the European 

Pharmacopoeia 10 (Ph. Eur.)  [20-22] entirely consists of other amino acids mostly showing 

poor UV absorbance (Table 1). As the Ph. Eur. routinely employs tedious and error-prone 

derivatization procedures using sophisticated instrumentation for the purity testing of amino 

acids, called amino acid analyzer, which are also limited to the detection of amino group 

containing compounds, simple and more selective CAD methods could provide a 
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straightforward alternative and enable simultaneous detection of common impurities like 

organic acids. The sensitivity of the developed IPC and HILIC methods was then compared to 

the RSM derived results. The HILIC method was validated exemplarily for Val with respect to 

the ICH guideline Q2(R1) and compared to an IPC method proposed for compendial 

implementation [23]. 

2. Experimental 

2.1. Chemicals and reagents 

The amino acids Ala, L-cysteine (Cys), Ile, Leu, L-methionine (Met), Phe, L-proline (Pro), L-

tyrosine (Tyr) and Val as well as formic acid (FA) 98-100%, acetic acid ≥99.7%, TFA ≥99%, 

PFPA 97%, HFBA ≥99.5%, NFPA 97%, ammonium acetate ≥99.0%, ammonium formate 

≥99.0%, and HPLC grade acetonitrile (ACN) were purchased from Sigma Aldrich (Steinheim, 

Germany). Ultra-pure deionized (DI) water was delivered by a Milli-Q® system (Merck, 

Darmstadt, Germany). 

2.2. Apparatus 

The HPLC experiments were performed on a Vanquish™ Flex modular chromatographic 

system (Thermo Fisher Scientific, Germering, Germany) consisting of a binary pump with an 

online degasser, a thermostatted split sampler, a thermostatted column compartment with 

passive pre-heater, and a variable wavelength detector in-line with a Vanquish™ Horizon CAD. 

The CAD was supplied with nitrogen gas from an ESA nitrogen generator (Thermo Fisher 

Scientific) connected to the in-house compressed air system. The instrument was controlled 

and runs were processed using the Chromeleon® Chromatography Data System Version 7.2.6 

software program (Thermo Fisher Scientific). 

2.3. Chromatographic procedures            

2.3.1. IPC method 

For the IPC method, a flow rate of 0.8 mL/min, an injection volume of 10 µL, and a column 

compartment temperature of 25 °C were applied. Mobile phase A contained a mixture of 

11.5 mM HFBA and 6.5 mM TFA in water, mobile phase B was ACN. The gradient program 

started at 2% B for the first 2 min, followed by a linear increase from 2% B to 14% B between 

min 2 and 3, which was held constant until min 15. The chromatographic system was returned 

to the starting conditions from min 15 to 16 and 2% B were then maintained for 4 min to achieve 

reequilibration resulting in a run time of 20 min. Reequilibration was confirmed by comparing 

the retention times of multiple injections. The separation of the amino acids was achieved on 

a polar embedded C18 Acclaim Polar Advantage II column (150 x 4.6 mm i.d., 2.6 µm particle 

size, Thermo Fisher Scientific). The CAD settings were adjusted to a data collection rate of 
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10 Hz, a filter constant of 5 s, a power function value of 1.0, and the CAD’s evaporation 

temperature was set at 50 °C. 

2.3.2. HILIC method   

The HILIC method comprised a flow rate of 0.6 mL/min, an injection volume of 15 µL, and a 

column compartment temperature of 25 °C. The mobile phase included an aqueous 

ammonium formate buffer (50 mM) pH 2.8 in a mixture of buffer/ACN 20/80 (v/v). Runs were 

performed isocratically with a run time of 16 min using an Accucore™ 150 Amide HILIC column 

(150 x 4.6 mm i.d., 2.6 µm particle size, Thermo Fisher Scientific). The CAD settings were as 

follows: evaporation temperature 50 °C, filter constant 5 s, data collection rate 10 Hz, power 

function value 1.0.    

2.4. Preparation of solutions 

2.4.1. Standard solutions  

Standard solutions of the amino acids were prepared by weighing 10.0 mg of the respective 

substance, which were dissolved in 10.0 mL water. The standard solutions were diluted to the 

required concentration in a mixture equivalent to the respective mobile phase composition in 

case of the HILIC method. For the IPC method and the IPC FIA, the standard solutions were 

diluted with water. Standard solutions of the amino acids Ala, Leu, and Phe used for the FIA 

under HILIC conditions were prepared by dissolving 50.0 mg of the respective amino acid in 

water to a concentration of 5 mg/mL, which were then diluted with ACN to achieve a final 

concentration of 1 mg/mL. All standard solutions were stored at 8 °C. 

2.4.2. Sample solutions 

Sample solutions of Ile, Leu, Phe, Pro, and Val were prepared daily by weighing of 100 mg of 

the respective sample, which were dissolved in 10.0 mL water. The samples were injected 

without further dilution in the IPC method. For the HILIC method, the sample solutions were 

diluted with a mixture of ACN/water resulting in a sample concentration of 2.5 mg/mL and an 

ACN proportion of 70% (v/v).  

2.5. Flow injection analysis (FIA)  

The FIA runs were performed randomly based on the RSM-derived design of experiments 

(DoE) plans (supplementary material) for IPC and HILIC conditions, respectively, except for 

the mobile phase additives that were not altered between consecutive runs for practical 

reasons. To generate sufficient back pressure for operation, the outlet capillary (0.1 x 380 mm) 

of the Vanquish system’s injection valve was linked by a connector (Viper union, Thermo Fisher 

Scientific) to the inlet capillary (0.1 x 350 mm) of the UV detector (flow cell volume 11 µL) in-

line with the CAD. The numeric factors investigated included the CAD’s evaporation 
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temperature (35 °C – 70 °C) and the ACN proportion (v/v) in the mobile phase (IPC: 0 – 20%; 

HILIC: 70 – 90%), whereas the mobile phase additives (IPC: FA, TFA, PFPA, HFBA, NFPA; 

HILIC: ammonium formate pH 3, ammonium acetate pH 5) at 10 mM concentration in the 

mobile phase, respectively, were selected as categoric factors. In total, 23 runs were carried 

out for each amino acid (Ala, Leu, Phe) at the IPC conditions, and 14 at the HILIC conditions, 

with a run time of 2 min, an injection volume of 10 µL, and a column compartment temperature 

of 25 °C. The amino acids were injected at a concentration of 1 mg/mL in water for the IPC 

experiments, and in a mixture water/ACN 20/80 (v/v) for the HILIC experiments. For 

determining the response of the amino acids and the background noise, the CAD’s 

instrumental parameters were set to a filter constant of 1s, a power function value of 1.0, and 

a data collection rate of 10 Hz. When switching between the mobile phase additives, the 

system was equilibrated for at least 60 min, until a stable baseline was obtained. Prior to each 

new run, the system was equilibrated for 5 min at the upcoming mobile phase conditions. 

2.6. Response surface methodology (RSM) 

The separate DoE plans (supplementary material) for conducting the FIA were derived from 

RSM [19, 24] for both IPC and HILIC conditions using the Design-Expert 12 software (Stat-

Ease Inc., MN, US). I-optimal design [25] was applied to describe the experimental domain by 

minimizing the average prediction variance within the predefined experimental space. The 

selection of the I-optimality criterion enabled the parallel assessment of numeric and categoric 

variables with minimal experimentation. A split-plot design had to be chosen as the categoric 

variable was hard to change between consecutive runs. The input variables evaluated included 

the evaporation temperature and ACN proportion (v/v) as numeric factors and the mobile 

phase additives as categoric factors (section 2.5.). The obtained peak area responses and S/N 

of the amino acids investigated were subjected to restricted maximum likelihood analysis 

(REML), which is employed to identify the significant factors in split-plot designs. Prior to the 

statistical analysis, the responses obtained from FIA were either log10 or square root 

transformed where appropriate to achieve normally distributed data (supplementary material). 

The validity of the models established was evaluated by visual inspection of the normal plot of 

residuals, residuals vs. predicted plot, and predicted vs. actual plot in each individual case. 

The adjusted R2 were >0.9 and the coefficients of variation <10% for all models established. 

3. Results and discussion 

3.1. Performance characteristics of IPC and HILIC evaluated by RSM 

Though IPC and HILIC can both be employed for the analysis of ionizable compounds, their 

respective mobile phases usually comprise distinct proportions of organic modifier and 

divergent mobile phase additives. Considering the response dependency of aerosol-based 
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detectors on the mobile phase composition [18, 26], significant differences of the CAD 

response between the IPC and HILIC modes are to be expected. The CAD responsiveness at 

IPC and HILIC conditions was investigated here for the amino acids Ala, Leu, and Phe. The 

test compounds represented the minimum, intermediate, and maximum levels in terms of 

molecular mass and hydrophobicity, respectively, based on the impurity profile of the BCAAs 

Ile, Leu, and Val (Table 1) analyzed afterwards by two separate IPC and HILIC methods 

(section 3.2.).  

The experimental domain was described by means of RSM (section 2.6.) performing FIA 

(section 2.5.) for the subsequent evaluation of the CAD response. The organic solvent 

proportion (v/v) in the mobile phase and the CAD’s evaporation temperature were set as 

numeric factors, while the respective mobile phase additives were selected as categoric 

variables. The ranges of the organic solvent content in the mobile phase were derived from 

preliminary experiments on the impurity profiling of the BCAAs and corresponded to the 

characteristic IPC and HILIC conditions. Volatile perfluorocarboxylic acids (PFCA) have been 

applied multiple times as ion-pairing reagents in IPC-CAD applications for the analysis of 

amino acids [9, 12, 14, 27]. Thus, a set of 5 homologous PFCAs ranging from TFA (C2) to 

NFPA (C5) were investigated here to simulate the IPC conditions and, in addition, FA for 

comparison purposes. The commonly applied mobile phase additives examined for the HILIC 

conditions were ammonium formate and ammonium acetate buffers. The evaporation 

temperature was examined in a range from the default value of 35 °C to a relatively high value 

of 70 °C, since the analytes investigated were all non-volatile amino acids allowing for higher 

evaporation temperatures, which reduce the background noise for improved S/N [27]. 

Moreover, elevated evaporation temperatures can compensate the additional background 

noise caused by the commercially available ion-pairing reagents of limit purity. Separate IPC 

and HILIC models were established for Ala, Leu, and Phe, respectively, based on the response 

data obtained from the FIA. The peak areas and S/N values were subsequently evaluated by 

REML to identify the significant factors toward the output variables.  

3.1.1. Influence of the IPC conditions on the CAD’s response and the S/N 

The trends for the CAD response obtained at the IPC conditions are illustrated in Fig. 1a for 

the individual factors. The IPC models were solely based on linear terms as the influence of 

the numeric factors on CAD response could accurately be described by linear trends 

(supplementary material). The general trend for the organic modifier was a significant (p<0.05) 

increase in the response of all analytes investigated with increasing ACN proportion. Organic 

modifiers such as ACN reduce the initial droplet size of the primary aerosol compared to 

aqueous solvent due to their lower surface tension and viscosity. The resulting aerosol 

transport process is more efficient as droplets above the dcut are directed to the waste, which 
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means that a greater fraction of the mobile phase and thus more analyte enters the evaporation 

tube [18]. The observed trend may be explained to some extent by the selected ranges for the 

ACN proportion, as it is in good agreement with previously published studies reporting a linear 

trend of the CAD response for low ACN ranges [28-30]. However, it should be noted that these 

studies were performed on other CAD models. The influence of the evaporation temperature 

on the analyte response was inverse compared to the ACN proportion as increasing the 

evaporation temperature resulted in a decreased response of all analytes (p<0.05). At elevated 

evaporation temperatures, higher proportions of analyte partition to the aerosol’s vapor phase 

during the evaporation step depending on the analyte’s volatility, thus lower responses are 

obtained [28, 31]. Interestingly, the impact of higher evaporation temperatures on the response 

of Ala was far more pronounced compared to Leu and Phe though being the most polar amino 

acid. The substantial loss of response at elevated evaporation temperatures for Ala is likely 

due to the relatively low molecular weight of the compound. A negative correlation between 

the CAD response and a compound’s molecular weight has already been demonstrated 

[28, 32], which can be attributed to an increased volatility. Thus, it seems reasonable that low 

molecular compounds are more susceptible to behave as semi-volatiles at higher evaporation 

temperatures.  

 

Fig. 1a. Influence of the ACN proportion, the evaporation temperature, and the chain length of the 

applied ion-pairing reagent on the CAD response of the amino acids Ala, Leu, and Phe at the IPC 

conditions. The trends are only illustrated for PFPA at the medium factor settings, but they were 

consistent for all ion-pairing reagents. 

The comparison of the influence of the ion-pairing reagents investigated on CAD response 

revealed the anionic ion-pairing reagents (pKacarboxylic<1.0) to increase the response due to salt 
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formation with the ionized basic moieties of the amino acids (pKaamino>9.0). While the salt 

formation effect appeared to be rather weak in case of the short-chain ion-pairing reagents 

TFA and PFPA, the formation of higher molecular mass salts between the longer-chain ion-

pairing reagents HFBA and NFPA further enhanced the CAD response resulting in a significant 

(p<0.05) increase.  

Since in IPC, the influence of chromatographic parameters on the CAD response could be 

described by linear terms, the resulting S/N responses followed linear trends as well (Fig. 2a). 

Though the ACN proportion in the mobile phase had a substantial impact on the CAD response 

as discussed above, its influence on the S/N of the amino acids was negligible (p>0.05), except 

for the S/N of Leu, which was moderately influenced (p=0.029). The enhanced response at 

higher ACN proportions was compensated by the simultaneously elevated background noise. 

The increased background noise might be attributed to the impurities being already present in 

the ACN as well as to the increased mass transport of the mobile phase impurities at higher 

organic contents. Considering the rather narrow ACN range investigated here (0-20%), it is 

likely that the other factors were more contributing to the observed S/N.  

 

Fig. 2a. Influence of the ACN proportion, the evaporation temperature, and the chain length of the 

applied ion-pairing reagent on the S/N of the amino acids Ala, Leu, and Phe at the IPC conditions. The 

trends are only illustrated for PFPA at the medium factor settings, but they were consistent for all ion-

pairing reagents. 

The evaporation temperature setting of the CAD has a direct impact on the detector’s 

sensitivity toward an analyte as it simultaneously affects the analyte response and the 

background noise. The optimal evaporation temperature for a specific analyte is then the best 

compromise between the analyte signal and the background noise. In general, low evaporation 
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temperatures are recommended [18, 28] since many analyte classes behave as semi-volatiles 

at elevated temperatures. In this case, the set of analytes entirely consisted of amino acids, 

which can be classified as non-volatile compounds due their physico-chemical properties, even 

though the BCAAs belong to the class of non-polar amino acids. Thus, higher S/N of the amino 

acids were obtained at elevated evaporation temperatures compared to the default setting of 

35 °C (p<0.05). One exception was the S/N of Ala that did not significantly benefit from higher 

evaporation temperatures, which can be explained by the substantial loss of response of the 

compound due to its comparatively high volatility at elevated evaporation temperatures. The 

effect of the chain length of the ion-pairing reagents on the background noise and thus S/N is 

evident from Fig. 2a. Though it was previously demonstrated that longer-chain ion-pairing 

reagents contribute to increased response for the amino acids, their effect on the S/N was 

inverse due to the simultaneously elevated background noise. The formation of higher 

molecular mass salts between mobile phase impurities and the long-chain ion-pairing reagents 

as well as the decreasing volatility of the latter are likely contributing factors to the increased 

noise levels.   

3.1.2. Influence of the HILIC conditions on the CAD’s response and the S/N 

For the HILIC models (Fig. 1b; Fig. 2b), the inclusion of the quadratic terms for the numeric 

factors was necessary to establish valid models (supplementary material).  

 

Fig. 1b. Influence of the ACN proportion and the evaporation temperature on the response of the amino 

acids Ala, Leu, and Phe at the HILIC conditions. The type of buffer used, namely ammonium formate 

(AmFm) and ammonium acetate (AmAc), was excluded from the models as it was not considered 

significant (p>0.05).  
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As discussed before, the response of all amino acids increased with the ACN proportion 

(p<0.05) due to the more efficient analyte mass transport. In case of the evaporation 

temperature, the trend was an analyte specific decrease (p<0.05) of the response at elevated 

temperatures as the salt formation effect is less influential here compared to IPC. No significant 

difference (p>0.05) in the CAD response was observed between the ammonium formate and 

acetate buffers used as mobile phase additives, which is in good agreement with the results 

of a previously published study [28] and can be explained by the negligible difference in the 

counterions of the respective buffers (MWformiate: 45.03 g/mol; MWacetate: 59.05 g/mol). 

Consequently, the categoric factor buffer type was excluded from the final models to improve 

their validity.  

 

Fig. 2b. Influence of the ACN proportion, the evaporation temperature, and the buffer type on the S/N 

of the amino acids Ala, Leu, and Phe at the HILIC conditions. The type of buffer used, namely ammonium 

formate (AmFm) and ammonium acetate (AmAc), was not considered significant, but included in the 

models. 

Regarding the S/N of the amino acids, the ACN proportion in the mobile phase was not 

considered as influential (p>0.05) analogously to the IPC models. In case of the evaporation 

temperature, however, the HILIC models showed a distinct maximum ranging between 55 and 

60 °C (Fig. 2b and 3). In HILIC, the utilized buffers contribute little to additional background 

noise when applied at a low concentration. Thus, elevated evaporation temperatures are less 

effective in further reducing the background noise compared to IPC while simultaneously 

decreasing the analyte response in both techniques. It should be noted that the effect of 

decreasing analyte response with increasing evaporation temperature is more pronounced for 

lower analyte levels than were investigated in the FIA. No significant difference (p>0.05) was 
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observed for the impact of the buffer type on the S/N, which is in good agreement with the 

response models that also indicated no significant difference.  

 

Fig. 3. Response surface plot for the S/N of Phe at the HILIC conditions. 

3.1.3. IPC vs. HILIC models 

According to a previous study [33], the CAD response is many times higher for HILIC 

conditions than for RP conditions, which is mainly due to the highly organic mobile phases 

employed in HILIC. In the present study, the average responses obtained in HILIC mode for 

both buffer types were 3.9-4.4 times higher compared to FA as mobile phase additive at the 

IPC conditions in the lowest region of the experimental design space and 2.4-2.8 times in the 

highest region (Fig. 4).  

 

Fig. 4. CAD responses of Ala, Leu, and Phe obtained for FA, NFPA, and the average of the buffers used 

in HILIC at the lowest (lowest ACN proportion and highest evaporation temperature) and highest 

(highest ACN proportion and lowest evaporation temperature) regions of the experimental design space.  
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The differences in the response were least pronounced for NFPA as IPC additive with 2.8-3.2 

and 1.9-2.1 times higher response in HILIC mode, for the lowest and highest regions of the 

experimental design space. A direct comparison of the S/N obtained by FIA between IPC and 

HILIC should be done with caution as additional effects such as column bleed are not 

considered but may have a substantial impact on sensitivity as demonstrated in section 3.2. 

Interestingly, the highest S/N were obtained for FA at IPC conditions concomitant with the 

lowest levels of background noise. The S/N obtained in HILIC mode were 2-3 times higher 

compared to IPC using TFA and more than 10 times higher when using NFPA as mobile phase 

additive. Since the RSM models served as basis for the subsequent method development of 

separate IPC and HILIC methods for the impurity profiling of BCAAs, two main conclusions 

could be drawn. For the IPC method, the usage of shorter-chain ion-pairing reagents should 

be favored as the chain length was the predominant factor toward sensitivity. The HILIC 

method could be optimized by adjusting the evaporation temperature. 

3.2. Comparison of IPC and HILIC for the impurity profiling of BCAAs 

3.2.1. Method development 

The RSM results clearly indicated that the HILIC conditions are favorable to CAD 

responsiveness and thus S/N under FIA conditions. However, other factors influencing the 

sensitivity, such as column bleed and column efficiency, are not considered in the RSM 

models. Consequently, a HILIC method and a separate IPC method, respectively, was 

developed to compare the impact of the separation techniques in a more realistic scenario. 

The aim was to develop generic methods for the impurity profiling of each BCAA (Ile, Leu, Val). 

Putative impurities that can arise from the production process by fermentation mainly include 

other amino acids such as Ala, Cys, Met, and Phe (Table 1) with respect to the Ph. Eur. 10 

[20-22] and by-products of biosynthesis such as organic acids [34]. LC analysis of these polar 

substances is challenging as they are poorly separated on RP columns and, for the greater 

part, are lacking chromophores for UV detection. Thus, IPC and HILIC hyphenated to the CAD 

are both viable options to solve the detection and separation related issues. 

3.2.1.1. IPC method 

A polar embedded C18 stationary phase was chosen for its compatibility with low organic 

mobile phases that are necessary for sufficient retention of the more polar amino acids. 

Additionally, the column showed good selectivity towards polar amino acids in previous studies 

when ion-pairing reagents were used to enhance retention [27]. Derived from the results of the 

RSM models, the initial method development started with TFA, since it was the ion-pairing 

reagent associated with the highest S/N. The influence of TFA concentrations of 10 mM, 

15 mM, 20 mM, and 25 mM, respectively, on the separation of all occurring amino acids (Ala, 

Cys, Ile, Leu, Met, Phe, Val) in the impurity profile of the BCAAs was investigated under 
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isocratic conditions at a minimal ACN content of 2% (v/v) in the mobile phase; ACN was 

necessary to elute the more hydrophobic Phe. Subsequently, the retention factors (k) of the 

amino acids (Fig. 5a) were determined for each TFA concentration. Additionally, the average 

responses of the amino acids were investigated, and the background currents were compared 

(Fig. 5b).  

 

Fig. 5a. Effect of the TFA concentration on the k values of the BCAAs and their impurities. Fig 5b. Effect 

of the TFA concentration on the average CAD response of the amino acids and on the CAD’s 

background current. 

Though the k values and the resolution of the amino acids increased from 10 mM to 25 mM 

TFA, the retention of the more polar amino acids Ala and Cys was still poor resulting in k values 

close to zero (Fig. S1). Even when applying a concentration of 25 mM TFA, Ala eluted close 

to the injection peak, which is undesirable for the selectivity of an intended purity analysis 

method. Moreover, Leu and Ile could not be separated from each other when injecting a spiked 

sample solution (10 mg/mL) of Ile. The background current and the average response of the 

amino acids both followed linear trends with increasing TFA concentration in the investigated 

range. However, when comparing the steepness of the slope of the respective trendlines, the 

background current was increasing at a higher rate indicating a decline in the S/N at higher 

TFA concentrations. This observation is in accordance with the RSM models where the 

increased response generated by the long-chain ion-pairing reagents was overcompensated 

by the simultaneously elevated background noise. Taking the selectivity and sensitivity 

observations together, the rationale for the further method development was to use the 

shortest-chain ion-pairing reagent at the lowest concentration possible that would still achieve 

sufficient selectivity. However, switching to a longer-chain ion-pairing reagent was inevitable 

to enhance the retention and separation of the amino acids as the retention of the latter 

increases with the chain length of the ion-pairing reagent [35]. The best compromise was 

obtained for a mobile phase comprising a mixture of 11 mM HFBA and 6.5 mM TFA in water 

as mobile phase A and ACN as mobile phase B. A shallow gradient from 2% to 14% B was 
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applied to improve the peak shapes of the late eluting Ile, Leu, and Phe and to achieve a 

reasonable run time of 20 min. Corresponding to the RSM results, the sensitivity of the method 

was improved at higher evaporation temperatures. However, the S/N decreased at evaporation 

temperatures higher than 50 °C for the low molecular mass amino acids Ala and Val, which 

was previously indicated by the RSM model that showed no significant benefit for Ala. Thus, 

the evaporation temperature was set at 50 °C. All BCAAs and their respective impurities could 

be separated by one generic method applicable to impurity analysis (Fig. 6). The method was 

also suitable for the impurity profiling of Phe and Pro due to their comparable impurity profile 

(Table 1). 

 

Fig. 6. Zoomed chromatograms of the IPC and HILIC methods for the impurity profiling of BCAAs. The 

sample concentration is 10 mg/mL for IPC and 2.5 mg/mL for HILIC. The individual impurities are spiked 

at a concentration of 0.1% (m/m). The chromatographic conditions are depicted in sections 2.3.1. and 

2.3.2., respectively. The peak referred to as blank in the HILIC chromatogram is a system peak. 

3.2.1.2. HILIC method 

The choice of the stationary phase is crucial in HILIC as the column chemistry not only 

determines the selectivity [36] but may also have a huge impact on the sensitivity of the method 

due to possible column bleed effects. Comparatively high levels of column bleed have been 

reported for silica-based HILIC columns in several studies, in particular when coupled to mass 

spectrometric (MS) detection [37]. Even though the CAD is less sensitive than MS, the 

universal detection can result in higher levels of background current and noise for relatively 
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low levels of non-volatile and semivolatile mobile phase impurities. Consequently, column 

bleed effects must be considered in the CAD method development as well [38-40].  

Among the HILIC stationary phases available, amide functionalized columns have been proven 

to be well suited for the separation of amino acids [13, 41]. Thus, a silica-based column with 

amide groups bonded to the solid core particles was chosen for the method development. The 

retention in HILIC is mainly dependent on the percentage of the solvent with the weaker elution 

power in the mobile phase, i.e. the organic solvent. Previous studies demonstrated that good 

selectivity is obtained on the selected column using ammonium formate buffered mobile 

phases at low pH values (2.8-3.0) and ACN proportions between 75-90% (v/v) [13]. 

Consequently, isocratic runs were performed at ACN proportions of 75%, 80%, and 85% ACN 

(v/v) in the mobile phase, respectively. The k values of the amino acids (Fig. 7a) as well as the 

average response and background current (Fig. 7b) were determined analogously to IPC to 

evaluate the impact of the ACN proportion on selectivity and sensitivity.  

 

Fig. 7a. Effect of the ACN proportion (v/v) on the k values of the BCAAs and their impurities. Fig. 7b. 
Effect of the ACN proportion (v/v) on the average CAD response of the amino acids and on the CAD’s 

background current. 

Sufficient separation of all amino acids investigated was achieved at 80% ACN (v/v) in a run 

time of less than 20 min (Fig. S2). Higher ACN proportions further increased the resolution, 

however, they negatively affected the sensitivity as broader peaks and increased levels of 

background current were obtained. In contrast to the IPC method, the initial levels of 

background current monitored under flow injection conditions were distinctly lower than the 

corresponding values when the HILIC column was used with the remaining chromatographic 

conditions kept constant. Thus, a column bleed effect contributing to the background noise 

with increasing impact at high ACN proportions could be confirmed for the HILIC method. It 

should be noted that the levels of background noise were still within an acceptable range, 

particularly at ACN proportions ≥80%. Considering the RSM model results, evaporation 

temperatures of 35 °C, 50 °C, and 70 °C were screened for their influence on the S/N. In good 
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agreement with the RSM models, the highest S/N were obtained for the medium setting of 

50 °C as at elevated temperatures the background current was not further reduced. With 

respect to the IPC method, the HILIC method likewise represents a generic approach for the 

impurity analysis of the amino acids Ile, Leu, Phe, Pro, and Val (Table 1; Fig. 6).  

3.2.2. Performance comparison of the IPC and HILIC methods 

The IPC and HILIC methods were compared in terms of selectivity, limits of quantitation 

(LOQs), and linearity. Both methods achieved sufficient separation of the BCAAs from each 

other and their putative impurities when spiked sample solutions were injected (Fig. 6). In 

accordance with the respective retention mechanisms, the amino acids were retained 

corresponding to their log D values (Table 1), thus the elution order of the IPC method was 

reversed compared to the HILIC method with the more polar amino acids eluting first. The 

HILIC method allowed isocratic separation of all amino acids in a run time of 16 min. In 

contrast, the IPC method required the usage of a gradient program since the low organic 

percentage initially applied for the separation of the more polar amino acids were not adequate 

to achieve reasonable peak shapes and appropriate retention times for the late eluting amino 

acids. The selectivity, however, was slightly better for the IPC method, because in the HILIC 

method Cys was not entirely separated from a system peak at min 12. Cys and Pro coeluted 

in the HILIC method, whereas Tyr and Ile coeluted in the IPC method, which was not an issue 

as their simultaneous occurrence is not expected in the relevant impurity profiles.  

 

Fig. 8. Chromatograms of a solution of the BCAAs and their impurities at 5 ng injected mass. The 

chromatographic conditions are depicted in sections 2.3.1. and 2.3.2., respectively. The second peak 

referred to as blank in the HILIC chromatogram is a system peak. 
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The sensitivity of both methods was compared by determining the S/N (n=6) and peak area 

%RSD (n=6) of a solution containing all amino acids at a mass of 5 ng on column (Fig. 8 and 

Table 2). The noise of the HILIC method was calculated using a blank injection according to 

the S/N approach depicted in the ICH guideline Q2(R1) [42]. For the noise calculation of the 

IPC method, a fixed interval at the initially isocratic conditions was chosen, which 

corresponded to roughly 20 times the peak half width to allow for a meaningful comparison. 

The S/N of the HILIC method were roughly twice as high for most of the amino acids except 

for Cys, which was poorly separated from the system peak. The superior sensitivity of the 

HILIC method was further supported by the %RSD of the peak areas showing an improved 

precision for all amino acids investigated. However, the differences in sensitivity were not as 

pronounced as indicated by the previous FIA experiments. The comparatively high column 

bleed and lower column efficiency of the HILIC method are likely contributing factors to the 

partial compensation observed. In general, the LOQs obtained with the HILIC method (Table 2) 

are superior compared to previously published CAD methods for the quantitation of amino 

acids [9, 12-14].  

Table 2. S/N and peak area %RSD of the amino acids obtained at 5 ng on column injected mass. The 

linearity parameters were determined for a mass range of 10-80 ng (HILIC) and 15-120 ng (IPC), 

respectively. 

a Injected ng on column, defined as S/N >10 for n=6. 
 b Not determined due to coelution with a system peak. 

For investigation of the methods linearity, calibration curves were established ranging from 10-

80 ng (HILIC) and 15-120 ng (IPC), respectively, considering the higher sensitivity of the HILIC 

method (Table 2). The ranges were chosen to meet the requirements for a compendial 

application [43] covering impurity concentrations of 0.03-0.24%, with respect to the main 

substance. With coefficients of determination (R2) ≥0.9990 and evenly scattered residuals (not 

shown), both methods can be regarded as sufficiently linear for the intended purpose. Both 

methods were capable to quantify the impurities at a reporting threshold of 0.03% (Fig. S3). 

 

 

 

 
S/N (n=6) %RSD (n=6) LOQa Equation (linear regression) R2 

 
IPC HILIC IPC HILIC IPC HILIC IPC HILIC IPC HILIC 

Ala 9.2 17.5 6.2 2.5 6 3 y=0.005x-0.0131 y=0.016x-0.0266 0.9999 0.9997 

Cys 6.7 n.d.b 9.7 n.d. 10 10 y=0.0036x-0.0045 y=0.0079x-0.0139 0.9993 0.9994 

Ile 14.3 19.8 3.8 1.6 5 3 y=0.0079x+0.0058 y=0.018x-0.0489 0.9990 0.9998 

Leu 10.2 19.8 3.1 2.3 5 3 y=0.008x+0.0036 y=0.0181x-0.0522 0.9993 0.9998 

Met 9.8 19.7 5.5 2.9 5 3 y=0.0063x+0.0021 y=0.0176x-0.0324 0.9998 0.9996 

Phe 5.8 26.9 5.9 1.8 10 3 y=0.0069x-0.0039 y=0.015x+0.0014 0.9999 0.9996 

Val 13.7 23.4 6.1 2.7 5 3 y=0.0076x-0.0024 y=0.0203x-0.1225 0.9996 0.9991 
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3.3. Validation of the HILIC method and comparison to a published IPC method 

The generic HILIC method was validated exemplarily for the impurity profiling of Val. Val was 

chosen as test substance for its challenging impurity profile consisting of the isomeric Ile-Leu 

pair and the most polar amino acid Ala. Moreover, another validated IPC method employing 

20 mM HFBA has been published for consideration as a substitute to the compendial 

derivatization method [23]. Thus, the validation of the HILIC method would allow a direct 

comparison of the methods performance.  

With respect to the ICH guideline Q2(R1) [42], specificity, range, linearity, accuracy, precision, 

and robustness were evaluated.   

The specificity of the method was proven by inspection of a chromatogram obtained from a 

sample solution (2.5 mg/mL) spiked with 0.1% of the impurities (Fig. S4). All impurities were 

well separated with resolution values >2.5. A range between 10-80 ng was chosen for the 

demonstration of linearity to cover the reporting threshold of 0.03% with respect to the main 

component (lower limit) as well as 120% of the specification limit (upper limit). 

 Sufficient linearity can be assumed as indicated in Table 2.  

The accuracy and precision of the method were assessed on samples already containing all 

impurities at relevant levels, and on samples spiked with 0.03%, 0.1% or 0.2% of each impurity, 

respectively. The recovery rates of the impurities and the %RSD of the peak areas are 

illustrated in Table 3. As the recovery rates did not exceed ±10% and the peak area %RSD 

was <5% in each case, the method can be regarded as appropriate for the intended purpose.  

Table 3. %Recovery rates of the Val impurities ±RSD (n=3) calculated by linear regression and peak 

area %RSD determined for the intraday repeatability and interday repeatability. 
 

%Recovery rate (n=3) %RSD (n=6;n=2) 
Concentrationa 0.03% 0.1% 0.2% 0b 0.1% 0.2% 
Ala 94.1±2.0 100.8±0.8 105.6±0.6 1.7(2.3)c 0.7(1.1) 1.0(1.4) 
Ile 100.1±4.3 99.8±1.7 96.7±0.6 1.0(1.4) 0.5(0.9) 0.7(1.5) 
Leu 101.0±3.0 103.4±0.3 100.9±0.6 2.2(3.8) 0.3(1.0) 1.0(1.6) 

a With respect to the concentration of the Val sample solution (2.5 mg/mL). 
b The sample solution was injected without spiked impurities since it already contained relevant amounts of each 

impurity. 
c For determining the interday repeatability, sample solutions were injected in sextuple on two consecutive days. 

To evaluate the method’s robustness, systematic variations of the column compartment 

temperature (20-30 °C), the flow rate (0.5-0.7 mL/min), the ACN proportion in the mobile phase 

(78-82%), and the concentration of the ammonium formate buffer (8-12 mM) were investigated. 

The method can be regarded as robust against these variations as the resolution of the critical 

peak pair Ile-Leu was >2.5 in each case (Table S1) and the peak shapes were not impaired.  
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The validated method was compared to a published IPC method with the same objective [23]. 

The proposed IPC method employed a mobile phase consisting of 20 mM HFBA in water/ACN 

(90/10, v/v). The initially poor sensitivity of the method was improved by the usage of a post-

column solution consisting of ACN, thereby increasing the analyte mass transport, and 

simultaneously decreasing the background noise.  However, this required the usage of a 

second pump and likely impairs the reproducibility of the method. Assuming a roughly linear 

CAD response, the extrapolated LOQs of the method were ranging between 13 and 67 ng on 

column. In contrast, the HILIC method yielded LOQs of 3 ng on column without the need for a 

post-column solution. The recovery rates (101.1-108.4%, n=3) and repeatability (%RSD <2.0, 

n=3) of the IPC method were comparable to the HILIC method (94.1-105.6%, n=3; %RSD <2.0 

at the corresponding level using 6 replicates). Consequently, the concentration of the sample 

solution was 4 times higher in the IPC method to achieve comparable performance due to the 

lower sensitivity. 

4. Conclusions 

IPC and HILIC are both commonly applied in liquid chromatography for the analysis of 

ionizable compounds lacking chromophores. Representative mobile phase compositions of 

the separation techniques were investigated here for their impact on the CAD response of 

amino acids, and, consequently, their influence on the S/N. The HILIC responses obtained at 

FIA conditions were more than twice as high compared to the IPC values, consequently the 

resulting S/N were greater as well. The comparison of the IPC method and the HILIC method 

developed for the impurity analysis of BCAAs demonstrated that column effects must also be 

considered as the relatively high column bleed of the HILIC column partly thwarted the 

increased response obtained by the HILIC method. Column bleed is a HILIC related issue of 

increasing relevance for the development of CAD methods as the recent detector models are 

more sensitive to both analyte and mobile phase impurities. However, LOQs of 3 ng on column 

were obtained for most of the amino acids with the HILIC method, which compared favorably 

to previously published methods. Thus, the HILIC method outperformed an IPC method 

proposed for compendial implementation and can be regarded as superior to the compendial 

applied derivatization methods as it is more selective and straightforward. 
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Supplementary material 

Table S1. Chromatographic variations and resulting resolution values for the amino acids. 
 Resolution 
variation Leu-Ile Ile-Val Val-Ala 
no variation 2.85 8.94 15.89 
20 °C column compartment temperature 2.89 9.28 16.49 
30 °C column compartment temperature 2.75 8.78 15.39 
0.5 ml/min flow rate 2.88 9.15 15.98 
0.7 ml/min flow rate 2.66 8.42 15.21 
78% ACN proportion (v/v) 2.52 7.52 13.35 
82% ACN proportion (v/v) 3.03 11.55 20.38 
8 mM ammonium formate pH 2.8 2.64 8.09 14.36 
12 mM ammonium formate pH 2.8 2.71 9.13 16.03 

 

 

Fig. S1. Chromatograms of a solution of the BCAAs and their impurities (100 ng on column) for TFA 

concentrations of 15 and 25 mM, respectively. Chromatographic conditions: flow rate 0.8 mL/min, 

mobile phase water/ACN 98/2 (v/v), isocratic elution mode, evaporation temperature 50 °C. 

 
Fig. S2. Chromatograms of a solution of the BCAAs and their impurities (75 ng on column) for ACN 

proportions of 75,80, and 85% (v/v), respectively. Chromatographic conditions: flow rate 0.6 mL/min, 

mobile phase 15 mM ammonium formate pH 2.8 in water/ACN, isocratic elution mode, evaporation 

temperature 50 °C. 
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Fig. S3. Chromatograms of a solution of the BCAAs and their impurities at 15 ng (IPC) and 10 ng 

(HILIC) concentration equivalent to the compendial reporting threshold of 0.03% (m/m). The 

chromatographic conditions are depicted in section 2.3.1. and 2.3.2. 

 

Fig. S4. Chromatogram of a Val sample solution (2.5 mg/mL) spiked with 0.1% of each impurity. The 

chromatographic conditions are depicted in section 2.3.2. 

Table S2. Experimental plan for the IPC response models. 
  Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 

Group Run A:ACN 

 

B:Evaporation 

 

c:C atoms 

 

R1 R2 R3 

  % °C  Response Ala Response 

 

Response Phe 

1 1 10 52,5 C5 3,60 3,03 2,75 
1 2 0 35 C5 2,24 2,06 1,75 
1 3 0 70 C5 1,65 1,69 1,6 
2 4 20 52,5 C2 3,78 2,97 2,59 
2 5 0 35 C2 1,92 1,55 1,40 
2 6 0 70 C2 1,27 1,44 1,27 
3 7 10 52,5 C4 3,33 2,63 2,53 
3 8 20 70 C4 3,11 3,11 2,92 
3 9 0 70 C4 1,51 1,62 1,49 
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Table S2. (continued) 
4 10 0 70 C3 1,46 1,55 1,41 

 4 11 10 52,5 C3 2,83 2,24 2,05 
4 12 20 70 C3 2,88 2,80 2,60 
4 13 10 35 C3 3,06 2,25 2,20 
5 14 10 70 C1 2,03 2,16 1,82 
5 15 20 52,5 C1 3,46 3,05 2,63 
5 16 10 35 C1 2,60 2,23 1,89 
5 17 0 52,5 C1 1,55 1,45 1,25 
6 18 20 70 C5 3,68 3,43 3,16 
6 19 20 35 C5 5,07 4,32 3,65 
6 20 10 52,5 C5 3,54 2,93 2,75 
7 21 10 52,5 C4 3,34 2,60 2,56 
7 22 0 35 C4 2,26 1,87 1,76 
7 23 20 35 C4 4,89 3,73 3,53 

Table S3. Build information of the IPC response models. 
File Version 12.0.10.0    

Study Type Response Surface  Subtype Split-plot 

Design Type I-optimal Point Exchange Runs 23.00 

Design Model Quadratic  Blocks No Blocks 

Groups 7.00  Build Time (ms) 249.00 

Table S4. Investigated factors and levels of the IPC response models. 

Factor Name Units Change Type Minimum Maximum 
Coded 

Low 
Coded 
High 

Mean 
Std. 
Dev. 

A 
ACN 

proportion 
% Easy Numeric 0.00 20.00 

-1 ↔ 

0.00 

+1 ↔ 

20.00 
9.57 8.25 

B 
Evaporation 

temperature 
°C Easy Numeric 3.00 70.00 

-1 ↔ 

35.00 

+1 ↔ 

70.00 
53.26 14.43 

c C atoms acid  Hard Categoric C1 C5   Levels: 5.00 

Table S5. Obtained responses and applied transformations for the IPC response models. 
Response Name Units Observations Analysis Minimum Maximum Mean Std. Dev. Ratio Transform Model 

R1 R1 Response Ala 23.00 Polynomial 1.27 5.07 2.83 1.05 3.99 Square Root Linear 

R2 R2 Leu 23.00 Polynomial 1.44 4.32 2.47 0.7837 3.00 Base 10 Log Linear 

R3 R3 Response Phe 23.00 Polynomial 1.25 3.65 2.24 0.7124 2.92 Base 10 Log Linear 

Table S6. Experimental plan for the IPC S/N models. 
  Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 
Group Run A:ACN proportion B:Evaporation temperature c:C atoms acid R1 R2 R3 

  % °C  S/N Ala S/N Leu S/N Phe 

1 1 10 52,5 C5 929,5 654,6 546,5 
1 2 0 35 C5 728,9 679,8 736.0 
1 3 0 70 C5 720,1 803,7 485,8 
2 4 20 52,5 C2 2502,8 3297,4 3391,2 
2 5 0 35 C2 4032,2 3527,1 3428,4 
2 6 0 70 C2 3701.0 4096,4 3684,8 
3 7 10 52,5 C4 2371,5 1779,7 1406,6 
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Table S6. (continued) 
3 8 20 70 C4 1776,7 1597,3 1755,9 
3 9 0 70 C4 1782,6 2205,4 2045,6 
4 10 0 70 C3 2370,8 2109,9 2585,8 
4 11 10 52,5 C3 2322,5 1504,4 1629,1 
4 12 20 70 C3 2879,8 2120,5 2765,2 
4 13 10 35 C3 1487,8 1249,9 1120,6 
5 14 10 70 C1 10356.0 11356,4 10261,5 
5 15 20 52,5 C1 11545,8 12333,8 12188,3 
5 16 10 35 C1 14122,1 11410,8 10803,4 
5 17 0 52,5 C1 14335.0 12117,4 10011,4 
6 18 20 70 C5 812,9 640,9 810,2 
6 19 20 35 C5 394,4 389,5 429,4 
6 20 10 52,5 C5 724,6 765,4 680,2 
7 21 10 52,5 C4 1804,7 1276,4 1620,2 
7 22 0 35 C4 2012,7 1457,4 1582,7 
7 23 20 35 C4 1470,2 947,3 1093,6 

Table S7. Build information of the IPC S/N models. 
File Version 12.0.10.0    

Study Type Response Surface  Subtype Split-plot 

Design Type I-optimal Point Exchange Runs 23.00 

Design Model Quadratic  Blocks No Blocks 

Groups 7.00  Build Time (ms) 249.00 

Table S8. Investigated factors and levels of the IPC S/N models. 

Factor Name Units Change Type Minimum Maximum 
Coded 

Low 
Coded 
High 

Mean 
Std. 
Dev. 

A 
ACN 

proportion 
% Easy Numeric 0.00 20.00 

-1 ↔ 

0.00 

+1 ↔ 

20.00 
9.57 8.25 

B 
Evaporation 

temperature 
°C Easy Numeric 35.00 70.00 

-1 ↔ 

35.00 

+1 ↔ 

70.00 
53.26 14.43 

c C atoms acid  Hard Categoric C1 C5   Levels: 5.00 

Table S9. Obtained responses and applied transformations for the IPC S/N models. 

Response Name Units Observations Analysis Minimum Maximum Mean 
Std. 
Dev. 

Ratio Transform Model 

R1 R1 
S/N 

Ala 
23.00 Polynomial 394.4 14335 3703.68 4329.64 36.35 

Base 10 

Log 
Linear 

R2 R2 
S/N 

Leu 
23.00 Polynomial 389.5 15453 3540.90 4406.68 39.67 

Base 10 

Log 
Linear 

R3 R3 
S/N 

Phe 
23.00 Polynomial 429.4 12188,3 3263.58 3685.65 28.38 

Square 

Root 
Linear 
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Table S10. Experimental plan for the HILIC response models. 
  Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 

Group Run a:ACN proportion B:Evaporation Temperature c:Buffer Type Ala Leu Phe 

  % °C     

1 1 70 70 10 mM AmAc pH 5 5.68 6.15 4.96 
1 2 70 52.5 10 mM AmAc pH 5 6.45 6.37 5.03 
2 3 80 35 10 mM AmAc pH 5 7.50 7.07 5.59 
2 4 80 52.5 10 mM AmAc pH 5 7.20 7.12 5.70 
3 5 80 35 10 mM AmAc pH 5 7.49 7.06 5.62 
3 6 80 70 10 mM AmAc pH 5 6.48 7.01 5.66 
4 7 70 70 10 mM AmFm pH 3 5.88 6.47 5.16 
4 8 70 35 10 mM AmFm pH 3 7.15 6.63 5.14 
5 9 90 70 10 mM AmFm pH 3 7.52 8.25 6.69 
5 10 90 35 10 mM AmFm pH 3 9.06 8.55 6.61 
6 11 90 70 10 mM AmAc pH 5 7.59 8.30 6.61 
6 12 90 52.5 10 mM AmAc pH 5 8.51 8.37 6.75 
7 13 80 52.5 10 mM AmFm pH 3 7.15 7.21 5.69 
7 14 80 52.5 10 mM AmFm pH 3 7.16 7.18 5.70 

Table S11. Build information of the HILIC response models. 
File Version 12.0.10.0    

Study Type Response Surface  Subtype Split-plot 

Design Type I-optimal Coordinate Exchange Runs 14.00 

Design Model Quadratic  Blocks No Blocks 

Groups 7.00  Build Time (ms) 24.00 

Table S12. Investigated factors and levels of the HILIC response models. 

Factor Name Units Change Type Minimum Maximum 
Coded 
Low 

Coded 
High 

Mean 
Std. 
Dev. 

a ACN proportion % Hard Numeric 70.00 90.00 
-1 ↔ 

70.00 

+1 ↔ 

90.00 
80.00 7.84 

B 
Evaporation 

Temperature 
°C Easy Numeric 35.00 70.00 

-1 ↔ 

35.00 

+1 ↔ 

70.00 
53.75 14.50 

c Buffer Type  Hard Categoric 
10 mM 

AmFm pH 3 

10 mM 

AmAc pH 5 
  Levels: 2.00 

 
Table S13. Obtained responses and applied transformations for the HILIC response models. 

Response Name Units Observations Analysis Minimum Maximum Mean 
Std. 
Dev. 

Ratio Transform Model 

R1 Ala  14.00 Polynomial 5.68 9.06 7.20 0.9091 1.60 None 
Reduced 

Quadratic 

R2 Leu  14.00 Polynomial 6.15 8.55 7.27 0.7927 1.39 None 
Reduced 

Quadratic 

R3 Phe  14.00 Polynomial 4.96 6.75 5.78 0.6369 1.36 None 
Reduced 

Quadratic 
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Table S14. Experimental plan for the HILIC S/N models. 
  Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 

Group Run a:ACN proportion B:Evaporation Temperature c:Buffer Type Ala Leu Phe 

  % °C     

1 1 70 70 10 mM AmAc pH 5 9682.4 10947.2 7643.9 
1 2 70 52.5 10 mM AmAc pH 5 9966.1 9812.7 8288.2 
2 3 80 35 10 mM AmAc pH 5 6343.8 6593.8 5402.9 
2 4 80 52.5 10 mM AmAc pH 5 10963.2 10551.4 9673.8 
3 5 80 35 10 mM AmAc pH 5 6884.9 6624.3 4770.8 
3 6 80 70 10 mM AmAc pH 5 9831.1 10927.9 8068.4 
4 7 70 70 10 mM AmFm pH 3 9335.6 9934.3 7465.3 
4 8 70 35 10 mM AmFm pH 3 7118.0 6839.0 5740.6 
5 9 90 70 10 mM AmFm pH 3 10249.1 11411.6 8947.5 
5 10 90 35 10 mM AmFm pH 3 7532.4 7717.4 5989.9 
6 11 90 70 10 mM AmAc pH 5 9586.0 10325.2 8115.4 
6 12 90 52.5 10 mM AmAc pH 5 10410.7 10805.4 8367.8 
7 13 80 52.5 10 mM AmFm pH 3 11340.2 10900.6 9381.0 
7 14 80 52.5 10 mM AmFm pH 3 11308.8 11679.0 8492.0 

Table S15. Build information of the HILIC S/N models. 
File Version 12.0.10.0    

Study Type Response Surface  Subtype Split-plot 

Design Type I-optimal Coordinate Exchange Runs 14.00 

Design Model Quadratic  Blocks No Blocks 

Groups 7.00  Build Time (ms) 24.00 

Table S16. Investigated factors and levels of the HILIC S/N models. 

Factor Name Units Change Type Minimum Maximum Coded 
Low 

Coded 
High 

Mean Std. 
Dev. 

a ACN proportion % Hard Numeric 70.00 90.00 
-1 ↔ 

70.00 

+1 ↔ 

90.00 
80.00 7.84 

B 
Evaporation 

Temperature 
°C Easy Numeric 35.00 70.00 

-1 ↔ 

35.00 

+1 ↔ 

70.00 
53.75 14.50 

c Buffer Type  Hard Categoric 
10 mM 

AmFm pH 3 

10 mM 

AmAc pH 5 
  Levels: 2.00 

Table S17. Obtained responses and applied transformations for the HILIC S/N models. 

Response Name Units Observations Analysis Minimum Maximum Mean 
Std. 
Dev. 

Ratio Transform Model 

R1 Ala  14.00 Polynomial 6343.8 11340.2 9325.16 1675,66 1.79 
Square 

Root 

Reduced 

Quadratic 

R2 Leu  14.00 Polynomial 6593.8 11679.0 9647.84 1859,33 1.77 
Base 10 

Log 

Reduced 

Quadratic 

R3 Phe  14.00 Polynomial 4770.8 9673.8 7596.25 1532,56 2.03 
Base 10 

Log 

Reduced 

Quadratic 
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Abstract 

Recently, charged aerosol detection (CAD), a universal detection technique in liquid 

chromatography, has been introduced into monographs of the European Pharmacopoeia 

(Ph. Eur.), which now employs HPLC-UV-CAD for assessing the impurities of the drug 

vigabatrin. The separation of vigabatrin and its impurities is facilitated by ion pair 

chromatography (IPC) in the compendial method using tridecafluoroheptanoic acid (TDFHA) 

as ion-pairing reagent. However, the subsequent detection of the impurities by UV-CAD is 

considerably impaired due to the substantial amount of ion-pairing reagent applied in the 

method generating high levels of background noise. 

In this study, the influence of the mobile phase composition on the background noise of the 

CAD was evaluated applying response surface methodology. The model’s results indicated 

that the chain length of the ion-pairing reagent is a predominant factor for noise generation. 

Thus, an alternative method for the impurity analysis of vigabatrin using mixed-mode 

chromatography (MMC) instead of IPC was developed. The dual separation mechanism of the 

MMC column enabled the choice of a mobile phase better suited for the individual requirements 

of the UV-CAD detectors, while maintaining excellent selectivity. The MMC method does not 

require the addition of a post-column solution to reduce the TDFHA concentration in the mobile 

phase, and, therefore, needs less instrumentation. Moreover, the sample concentration could 

be halved due to the improved LOQs of the impurities (<50 ng on column) and the analysis 

time could be shortened (30 to 20 min) due to improved separation efficiency. The MMC 

method was validated with respect to ICH guideline Q2(R1).  
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1. Introduction 

Drugs with a weak chromophore pose a challenge to regulatory authorities, e.g. the European 

Pharmacopoeia (Ph. Eur.), because their poor UV absorbance characteristics interfere with 

the development of sensitive impurity profiling methods for routine quality control purposes 

when solely using the commonly applied HPLC-UV detection. Alternatively, the UV detector 

can be coupled with a so-called universal detector, e.g. charged aerosol detector (CAD) [1, 2], 

to expand the detection scope and to obtain complementary information on the actual impurity 

profile of the drug [3-6]. The hyphenation of detectors, however, imposes further requirements 

on the mobile phase composition as each detector is limited to certain organic modifiers and 

additives. Polar drugs showing poor UV absorbance, e.g. amino acid derived active 

pharmaceutical ingredients (APIs) like vigabatrin, represent an even more challenging 

substance class, because the separation of the main substance from its impurities cannot be 

accomplished by the normally applied reversed phase (RP)-HPLC analysis. To address the 

unsatisfactory selectivity of RP-HPLC for polar drugs, the Ph. Eur. frequently applies ion pair 

chromatography (IPC) [7] instead to improve the separation of the analytes investigated. 

However, the use of long-chain ion-pairing reagents is poorly suited for the impurity profiling 

of chromophore-deficient polar drugs when detection is achieved by means of coupled 

detection techniques, such as UV-CAD, because the ion-pairing reagent can impair low 

wavelength (<220 nm) UV detection and simultaneously elevate the CAD’s background noise 

[8]. In addition, there are some renowned general drawbacks in IPC, such as extensive column 

equilibration times and strong adsorption of the ion-pairing reagent on the surface of the 

stationary phase [9, 10]. Over the last decade, mixed-mode chromatography (MMC) [11, 12] 

as well as hydrophilic interaction chromatography (HILIC) [13, 14] have been established as 

alternative separation techniques for the analysis of polar substances, thereby offering 

comparable selectivity without the need for ion-pairing reagents.  

This study was aimed at demonstrating the benefit of a MMC method for the impurity profiling 

of the drug vigabatrin over the compendial applied IPC method when using UV-CAD detection. 

In the 10th edition of the Ph. Eur., the related substances test of vigabatrin makes use of both 

detection techniques. The chromophore-deficient impurities (D, E) are quantified by CAD and 

the UV-active impurities (A, B) by UV (Fig. 1) [15]. The compendial method employs the ion-

pairing reagent tridecafluoroheptanoic acid (TDFHA) to facilitate separation of the polar 

impurities and the drug substance on a phenyl-hexyl column. However, the substantial amount 

of TDFHA (5.8 mM) used in the method and its relatively low volatility compared to shorter 

chain perfluorocarboxylic acids [9] is likely to produce elevated background noise in the CAD 

signal and thwarts low wavelength (<220 nm) UV detection. Therefore, a second pump is 

required to deliver a separate post-column solution consisting of methanol in order to dilute the 
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TDFHA-rich mobile phase. This procedure, however, limits the robustness of the method and 

increases the obtainable limits of quantitation (LOQs) resulting in the need for a higher sample 

concentration.  

Here, the influence of the ion-pairing reagent on the background noise of the CAD was 

evaluated by response surface methodology (RSM) using a flow injection analysis (FIA) setup 

for a homologous series of perfluorocarboxylic acids commonly applied with CAD. In addition, 

the evaporation temperature of the CAD and the acetonitrile (ACN) proportion of the mobile 

phase were investigated toward their influence on the background noise. Statistical analysis 

of the flow injection runs by restricted maximum likelihood (REML) indicated that the chain 

length of the ion-pairing reagent used was the most influential factor toward generating 

background noise. Alternatively, a MMC method on a reversed-phase/strong cation exchange 

(RP/SCX) column was developed utilizing TFA as an acidic modifier. The performance of the 

MMC method was then compared to the compendial IPC method regarding required 

instrumentation, analysis time, obtainable LOQs, and selectivity. In addition, the MMC method 

was validated with respect to ICH guideline Q2(R1) [16].  

 

Fig. 1. Impurity profile of vigabatrin as depicted in the Ph. Eur. [15]. 
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1. Experimental 

1.1. Chemicals and reagents 

 Reference standards of the vigabatrin impurities A, B, D, and E as well as the vigabatrin 

samples were obtained from the European Directorate for the Quality of Medicines & 

HealthCare (EDQM; Straßbourg, France). Formic acid (FA) 98-100%, trifluoroacetic acid (TFA) 

≥99%, pentafluoropropionic acid (PFPA) 97%, heptafluorobutyric acid (HFBA) ≥99.5%, 

nonafluoropentanoic acid (NFPA) 97%, tridecafluoroheptanoic acid (TDFHA) 99%, and HPLC 

grade acetonitrile (ACN) were purchased from Sigma Aldrich (Steinheim, Germany). Ultra-

pure deionized (DI) water was delivered by a Milli-Q® system (Merck, Darmstadt, Germany).  

1.2. Apparatus 

The HPLC experiments were performed on a Vanquish™ Flex modular chromatographic 

system (Thermo Fisher Scientific, Germering, Germany) consisting of a binary pump with 

online degasser, a thermostatted split sampler, a thermostatted column compartment with 

passive pre-heater, and a variable wavelength detector in-line with a Vanquish™ Horizon CAD. 

The CAD was supplied with nitrogen gas from an ESA nitrogen generator (Thermo Fisher 

Scientific) connected to the in-house compressed air system. The HPLC system was controlled 

and runs were processed using the Chromeleon® Chromatography Data System Version 7.2.6 

software program (Thermo Fisher Scientific). 

1.3. Background noise measurement by flow injection analysis (FIA) setup 

The outlet capillary of the Vanquish™ system’s injection valve was linked to the inlet capillary 

of the UV detector in-line with a CAD by a connector (Viper™ union, Thermo Fisher Scientific) 

to perform the FIA at sufficient back pressure (>80 bar). Isocratic runs with a run time of 2 min 

at a flow rate of 1.0 mL/min and a column compartment temperature of 25 °C were carried out. 

The mobile phase consisted of either 10 mM FA, or 10 mM perfluorocarboxylic acid (TFA, 

PFPA, HFBA, and NFPA) respectively, in a mixture of DI water and ACN in various proportions 

(0 %, 10%, and 20% (v/v) organic modifier) according to the experimental plan (Table S1). 

Prior to each new run, the system was equilibrated for 10 min at the upcoming mobile phase 

conditions. When switching to another ion-pairing reagent, the system was flushed for at least 

60 min using the upcoming mobile phase conditions, until a stable baseline was obtained. The 

background noise of the CAD was calculated for a fixed interval between min 1 and 2 of each 

run by the chromatographic software to prevent any interference of the injected blank solution. 

A fixed interval of 1 min was considered adequate as the peak half width of the injection peaks 

was roughly 0.030 min. The CAD’s evaporation temperature (35 °C, 52 °C, 70 °C) was altered 

according to the experimental plan, whereas the filter constant was kept at 1.0 s, and the data 

collection rate was held constant at 10 Hz.  
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1.4. Statistical analysis 

The experimental plan for conducting the FIA (Table S1) was based on a RSM study design 

created by the software Design-Expert 12 (Stat-Ease Inc., MN, US). The quadratic model was 

derived from I-optimal design, consisting of seven groups and 21 runs (Table S2). The choice 

of the I-optimality criterion enabled the simultaneous evaluation of numeric and categoric 

factors with minimal required experiments. The ACN proportion (0 – 20%) and evaporation 

temperature (35 – 70 °C) were chosen as numeric factors, while the number of C-atoms of the 

(perfluoro)carboxylic acid (C1 – C5) was selected as categoric factor (Table S3). Prior to the 

statistical analysis, the obtained response values were log10 transformed to obtain normally 

distributed data. The final model was solely based on linear terms as the inclusion of quadratic 

terms did not improve the model’s validity. The adjusted coefficient of determination (R2) of the 

predictive model obtained by restricted maximum likelihood (REML) analysis of the 

transformed responses was 0.9573 (Table S6). All factors were considered as significantly 

contributing to the background noise (p <0.05) (Table S5). Further details are given in the 

supplementary material.  

1.5. Chromatographic procedure of the MMC method 

The vigabatrin method comprised a flow rate of 1.2 mL/min, a column temperature of 25 °C 

(run in still air mode), and an injection volume of 30 µL. Runs were performed isocratically on 

a RP/SCX mixed-mode column, SIELC Primesep® 100 (250 mm × 4.6 mm i.d., with a particle 

size of 5 μm and pore size of 100 Å, SIELC Technologies, Wheeling IL, USA), with the mobile 

phase consisting of water/ACN 85/15 (v/v) and 0.1% TFA (v/v). The CAD settings were 

adjusted to a filter constant of 5s, a data collection rate of 10 Hz, and an evaporation 

temperature of 70 °C. UV detection was performed at a detection wavelength of 210 nm 

applying a data collection rate of 20 Hz.        

1.6. Preparation of solutions 

1.6.1. Standard solutions          

Standard solutions of the vigabatrin impurities (A, B, D, and E) were prepared by weighing 

1.0 mg of the respective impurity and dissolving in 10.0 mL water. The standard solutions were 

stored at 8 °C. 

1.6.2. Sample solutions  

Sample solutions of vigabatrin were prepared daily by weighing 5.0 mg of the substance and 

dissolving in 1.0 mL water.   
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3. Results and discussion 

3.1. Development of a MMC method as alternative to the compendial IPC method 

3.1.1. Influence of the mobile phase composition on UV-CAD detection 

 In-line coupling of UV-CAD can be applied to extend the detection scope for a set of analytes 

showing divergent physico-chemical properties [1-4]. A main advantage of hyphenated UV-

CAD techniques is that non-volatile analytes with weak chromophores and volatile 

chromophore-containing analytes can be detected simultaneously in one chromatographic run. 

However, with the CAD being restricted to volatile mobile phases and the UV detector’s 

dependence on the UV cut-off of the respective mobile phase, the deliberate choice of mobile 

phase additives and organic modifiers is of paramount importance. With the ion-pairing reagent 

being the crucial additive in IPC, the obtainable quantitation limits are highly dependent on the 

concentration and nature of the applied additive.  

To evaluate the influence of the ion-pairing reagent on the background noise of the CAD, flow 

injection analyses (FIA) based on RSM as depicted in section 2.4. were performed for a series 

of the homologous volatile perfluorocarboxylic acids TFA, PFPA, HFBA, and NFPA, which are 

frequently used in charged aerosol detection [8, 17, 18], and, for the purpose of comparison, 

FA at 10 mM concentration, respectively. RSM was chosen for its excellent predictive 

performance within a predefined experimental domain [19, 20]. I-optimal design aims to 

minimize the average variance of prediction over the whole experimental design space [21]. 

Besides the chain length of the ion-pairing reagent, the ACN proportion (0 – 20%) as well as 

the CAD’s evaporation temperature (35 – 70 °C) were varied according to the experimental 

plan (Table S1) due to their known influence on background noise [8]. The range of the numeric 

factors investigated was chosen with respect to the estimated extremes of an IPC method. 

Thus, the maximum ACN proportion of the mobile phase was limited to 20% (v/v), since the 

organic modifier decreases selectivity and retention for rather polar analytes like the amino 

acid derived vigabatrin impurities in IPC [7] and was therefore kept at a low level. For the 

evaporation temperature setting, a range from the default value of 35 °C to 70 °C was selected 

based on preliminary experiments that showed a benefit of elevated evaporation temperatures 

for the non-volatile impurities D and E as their response was relatively less decreased 

compared to the simultaneously decreased background noise. The FIA conditions are detailed 

in section 2.3. The results of the FIA experiments’ statistical analysis by REML are displayed 

in Fig. 2 and Fig. 3. where the trends for ACN proportion and evaporation temperature are 

shown for NFPA (C5) as mobile phase additive. It should be noted that these trends were 

consistent for all additives investigated (not shown).  
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Fig. 2. Influence of (a) ACN proportion (v/v), (b) evaporation temperature on the background noise of 

the CAD for NFPA as mobile phase additive. One numeric factor was kept constant at a medium value, 

as indicated by the dotted cross. (c) Influence of the chain length (C1 – C5) of the mobile phase additive 

on the background noise. 

 

Fig. 3. 3d surface plot showing the influence of the ACN proportion (factor A) and the evaporation 

temperature (factor B) on the CAD’s background noise for NFPA as mobile phase additive. 

Increasing the evaporation temperature resulted in a reduction of the background noise, which 

can be explained by the enhanced evaporation of mobile phase impurities that contribute to 

the instantaneous background current. By contrast, increasing the ACN proportion led to 

higher levels of background noise. This effect was more pronounced for the long-chain 
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perfluorocarboxylic acids and might be attributed to a combination of factors including: 

increased detector mass transport when spray-drying eluents with a higher proportion of ACN; 

higher impurity levels being already present in the ACN; and additional factors specifically 

related to these longer-chain ion pairing reagents as further discussed below. Conclusions on 

the influence of the ACN proportion toward the S/N of a certain analyte should be drawn with 

caution considering the FIA results, as the signal height of the analyte also increases with ACN 

and, in general, organic proportion [22, 23]. The same caveat holds true for the evaporation 

temperature setting, which likely decreases the response for a certain analyte at elevated 

temperatures depending on the analyte’s volatility [24]. Thus, optimization of these parameters 

should be based on the individual goal of the application and requires experimental verification. 

As the ACN content in the mobile phase simultaneously affects the separation of the analytes 

in most cases, improved sensitivity might be obtained at the cost of decreased selectivity. High 

evaporation temperatures may improve the sensitivity for non-volatile analytes, but they also 

reduce the detection scope as semi-volatile analytes are no longer detected. 

Although the evaporation temperature and the ACN proportion both significantly influenced the 

level of background noise (p <0.05, Table S5), the chain length of the ion-pairing reagent was 

found to be far more influential (Fig. 2c). Going from FA to NFPA, a substantial increase in 

background noise was observed. This may, in part, be related to the formation of salts between 

the anionic ion-pairing reagents and cationic impurities in the eluent during the droplet 

evaporation process [8]. Besides the formation of increasingly stable and higher mass ion-

pairing reagent-impurity salts with long-chain ion-pairing reagents, the boiling point of the ion-

pairing reagents increases from TFA (72 °C) to NFPA (140 °C). Thus, the formation of higher 

mass salts with mobile phase impurities as well as decreasing volatility of the ion-pairing 

reagent can likely be regarded as factors contributing to the enhanced noise generated by the 

long-chain ion-pairing reagents. Moreover, the purity of commercially available long-chain ion-

pairing reagents is limited (97% in case of PFPA and NFPA). A modest increase in response 

for basic analytes when using anionic ion-pairing reagents has been reported with highest 

response achieved for long-chain ion-pairing reagents [25]. However, the slight increase is 

likely to be overcompensated by the simultaneously elevated background noise caused by 

long-chain ion-pairing reagents, resulting in poor S/N for the analytes. Considering the even 

longer chain length of the TDFHA (boiling point 175 °C) used in the compendial vigabatrin 

method, the need for a post-column solution to dilute the noise generating mobile phase seems 

inevitable to allow for sensitive detection of the impurities. This is further supported by 

comparing the chromatograms of the background current obtained for a 10 mM solution of TFA 

and a 2.5 mM solution of TDFHA in water, respectively (Fig. 4). The background current was 

measured at the experimental conditions showing the lowest observed noise in the RSM model 

(0% ACN (v/v); 70 °C evaporation temperature). Though the TDFHA concentration 



136 RESULTS – VIGABATRIN 
       

 

investigated was 4 times lower than the TFA concentration, the observed background current 

was roughly 12 times higher for TDFHA.  In addition, the perfluorocarboxylic acids, in contrast 

to other commonly applied non-volatile ion-pairing reagents, such as alkylsulfonates, show 

significant UV absorbance [26], so that the performance of both detectors is impaired by the 

ion-pairing reagent.  

 

Fig. 4. Chromatograms of the CAD’s background current obtained for aqueous solutions of 2.5 mM 

TDFHA and 10 mM TFA at a flow rate of 1.0 mL/min and an evaporation temperature of 70 °C. 

Taking the FIA findings and the UV absorbance requirements together, the avoidance of ion-

pairing reagents, or at least, the restriction to shorter-chain ion-pairing reagents, is highly 

desirable. One possible approach could be to use a higher concentration of a medium-chain 

ion-pairing reagent available in high purity, such as HFBA, to achieve comparable selectivity 

to the compendial method without the simultaneously elevated background noise assuming 

that the chain length is a major factor toward noise generation.  However, the other common 

drawbacks of IPC like time-consuming system equilibration and the possible occurrence of 

memory effects would persist. Thus, it was aimed to develop a method not impeded by the 

interaction of the ion-pairing reagent with the column or the chromatographic system. As 

selectivity in IPC might decrease when switching to short-chain ion-pairing reagents [9], 

alternative separation techniques are required to maintain the separation of the main 

substance and its impurities. 

3.1.2. Method development on a RP/SCX column 

For the replacement of the compendial IPC method, MMC was chosen, since the multiple 

separation mechanisms in MMC enable the separation of polar and ionic compounds without 

using long-chain ion-pairing reagents [12]. Reversed-phase columns with embedded weak 
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cation exchange moiety (Primesep® 200) and strong cation exchange moiety (Primesep® 100) 

were tested for their selectivity toward vigabatrin and its impurities, since all impurities except 

the pyrrolidinone impurity A (Fig. 1) contain a primary amino group. The best separation was 

obtained using the Primesep 100® column; thus, the RP/SCX column was used for the further 

method development. Due to the dual separation mechanism of the column, selectivity can be 

adjusted by (I) the ionic strength and pH of the mobile phase and (II) the proportion of organic 

modifier. For the initial method development, an aqueous ammonium formate buffer was used 

as pH modifier, however, the lowest accessible pH of 2.8 was not sufficient to achieve full 

protonation of the dicarboxylic impurity E (pka1 propanedioic acid = 2.85), resulting in peak 

tailing and decreased retention of the latter (Fig. 5a). Moreover, the ionic strength of a 100 mM 

ammonium formate buffer was not sufficient to promote the elution of the analytes in a 

reasonable run time and the high buffer concentration already thwarted sensitive low 

wavelength UV detection at 210 nm. These issues could be overcome by using 0.1% TFA (v/v) 

instead, which makes pH adjustment to approximately 2 possible (Fig. 5b).  

 

Fig. 5. Chromatograms of a 0.1% solution of vigabatrin and its impurities. Mobile phase conditions: (a) 

water/ACN 85/15 (v/v), 100 mM ammonium formate pH 2.8. (b) water/ACN 85/15 (v/v), 0.1% TFA (v/v). 

Although TFA itself can be regarded as a short-chain ion-pairing reagent, the UV absorbance 

at the applied concentration (0.1%) was low enough to allow UV detection of the volatile 

impurity A at 210 nm, while the background noise of the CAD did not substantially increase. 

Furthermore, TFA does not require an extensive equilibration procedure as is the case for 

long-chain ion-pairing reagents, because TFA interacts only weakly with the stationary phase 

[10]. Therefore, using TFA as additive can be considered as the best compromise for achieving 

the required sensitivity for a compendial application (0.03% with respect to the main 

component). The ACN proportion was set at 15% (v/v), since the separation of vigabatrin and 

its impurities was adequate in this case and higher proportions led to increased levels of 

background noise in the CAD signal. The flow rate was set at 1.2 mL/min to achieve a 
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reasonable run time of 20 min. The CAD settings were optimized to improve the LOQs of 

impurities D and E by adjusting the evaporation temperature to 70 °C and the filter constant to 

5 s. The data collection rate was maintained at the default value of 10 Hz. The UV detection 

wavelength was set at 210 nm, allowing for the determination of the volatile impurity A and the 

UV-active impurity B.  

3.2. MMC method validation  

The MMC method was validated with respect to the requirements outlined in ICH guideline 

Q2(R1) [16] assessing specificity, range, linearity, accuracy, precision, LOQs, and robustness. 

In addition, a system suitability test was defined to ensure the reproducibility of the method. 

The specificity of the method was demonstrated by injection of a sample solution spiked with 

0.2% of each impurity (Fig. 6). The obtained resolution was >2.0 for all peak pairs. The 

impurities A and B were determined by UV, while the CAD was employed for the detection of 

impurities D and E. Besides vigabatrin and its impurities, sodium and potassium were 

monitored simultaneously, as they are always present in the chromatographic system 

originating from the used glassware and are detected by CAD. However, they did not interfere 

with the analysis, as they were well separated from all other components. 

 

Fig. 6. Chromatograms of a vigabatrin sample solution (5 mg/mL) spiked with 0.2% of each impurity. 

A range between 45 and 360 ng injected mass equivalent to 0.03 – 0.24% with respect to the 

concentration of the main substance was assessed for the impurities. The compendial 

reporting threshold marked the lower limit, while the upper limit was equivalent to 120% of the 

specification limit. 

To demonstrate the method’s linearity across the predefined range (0.03 – 0.24%), calibration 

curves for vigabatrin and its impurities were established based on six equally distributed 

calibration levels. The quality of fit was subsequently evaluated applying linear regression in 
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each case. With coefficients of determination (R2) ≥0.999 (Table 1) and evenly scattered 

residuals (data not shown), the linearity was considered as sufficient for the intended purpose. 

Table 1. Validation results for the vigabatrin impurities. 

Validation 
Parameter Condition 

 Impurity 
Concentrationa Ab Bb D E 

Linearity 
Equation: y=mx+t 

0.03 - 0.24% 
y = 

0.0074x + 
0.0603 

y = 
0.0364x + 

0.0528 

y = 
0.0053x + 

0.0386 

y = 
0.0028x + 

0.0023  
R2 1 0.9999 0.9996 0.9991  

Precision 

%RSD Intraday 
Repeatability (n=6) 

0.03% 0.9 0.4 4.0 3.7  

0.1% 0.5 0.2 0.9 0.9  

0.2% 0.4 0.4 1.0 1.0  

%RSD Interday 
Repeatability (n=2) 

0.03% 1.2 0.6 3.0 6.9  

0.1% 0.7 0.2 1.1 2.3  

0.2% 0.5 0.4 1.2 1.6  

LOQ injected mass (ng) 

 

9 6 12 18  

%a 0.006 0.004 0.008 0.012  
a With respect to the concentration of the main substance. 
b Detected by UV. 

The accuracy of the method was determined by spiked sample solutions at the 0.03%, 0.1%, 

and 0.2% concentration level for each impurity. The recovery rates (%) for the individual 

impurities were calculated by either applying single-point calibration, or linear regression 

(Table 2). With recovery rates ranging from 89 to 105%, the method’s accuracy was 

appropriate for the intended purpose. 

Table 2. Recovery rates (%, n=3) for the vigabatrin impurities at the 0.03%, 0.1%, and 0.2% 

concentration level calculated by linear regression and single-point calibration. 

Impurity Linear regression Single-point calibration 
 concentrationa concentration  

0.03% 0.1% 0.2% 0.03% 0.1% 0.2% 
Ab 99.3±0.4 100.2±0.8 96.2±0.2 105.3±0.8 99.8±0.4 98.2±0.2 
Bb 95.5±0.5 99.5±0.0 99.8±0.1 98.3±0.6 99.9±0.0 100.2±0.1 
D 91.4±2.6 103.1±0.6 102.4±0.2 101.3±0.6 100.0±0.9 97.0±0.2 
E 88.8±1.4 100.8±2.5 98.5±1.6 90.7±2.7 101.9±2.3 104.8±2.0 

a With respect to the concentration of the main substance. 
b Detected by UV. 

For evaluation of the method’s precision, the intraday repeatability was assessed by injection 

of spiked sample solutions (n = 6) at the 0.03%, 0.1%, and 0.2% concentration level for each 

impurity. Another six injections were performed on the next day to determine the interday 

repeatability. The relative standard deviations (RSDs) were acceptable for both intraday 

repeatability (0.2 – 4.0%, n = 6) and interday repeatability (0.2 – 6.9%, n = 2) (Table 1).  
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The limits of quantitation (LOQs) for the impurities were calculated according to the S/N 

approach of ICH guideline Q2(R1). The LOQ was defined as S/N >10 for a threefold 

determination. With LOQs ranging from 6 to 18 ng (0.004 – 0.012%) injected mass on column 

(Table 1), the method’s sensitivity was sufficient for the quantitation of all compendial impurities 

at the ICH claimed reporting threshold of 0.03% for drugs with an average daily intake of 

>2.0  g  [27] (Fig. 7) .  

 

Fig. 7. Chromatograms of a 0.03% solution of vigabatrin and its impurities. 

To evaluate the robustness of the method, a 0.1% solution of vigabatrin and its impurities was 

subjected to systematic variations of the chromatographic parameters after injection. The flow 

rate (1.0 – 1.4), column temperature (20 – 30 °C), ACN proportion (10 – 20%), and TFA 

proportion (0.08 – 0.12%) were varied. The method can be regarded as robust against these 

variations, since the resolution for each peak pair was still >1.5 at each variation (Table S7), 

and the peak shapes were not significantly impaired, either. 

A system suitability test was defined to ensure the reproducibility of the method. The 

requirements to pass the test were set to a minimum resolution of 1.5 for the most critical peak 

pair of potassium – impurity E and to a S/N of ≥10 for impurity E. For evaluation of the method’s 

performance, a 0.03% dilution of impurity E should be assessed.      

3.3. MMC and IPC method comparison 

The MMC method was compared to the IPC method published in the Ph. Eur. [15, 28] in terms 

of required instrumentation, obtainable LOQs, and selectivity. The most evident benefit of the 

MMC method is the avoidance of a post-column solution to dilute the poorly suited mobile 

phase. Therefore, there is also no need for an additional pump to deliver the flow for the post-

column solution. Moreover, the complexity of the chromatographic system is effectively 

reduced, which could improve the method’s robustness. Another advantage of the MMC 

method is the reduced column equilibration time. The equilibration times for TDFHA on various 

C18 columns of comparable size (125 x 4 mm) to the phenyl-hexyl column used in the 
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compendial method (Ascentis Express Phenyl-Hexyl, 100 x 4.6 mm) varied between 61 and 

80 min at a flow rate of 1.0 mL/min according to Petritits et al. [9]. It was also demonstrated 

that the column equilibration time is independent of the applied TDFHA concentration. In 

contrast, the column equilibration in MMC can be accelerated by initially using a highly 

concentrated buffer to replace the counterions of the column. As the MMC column used here 

is stored in a solution of 0.1% FA (v/v), the counterions must not be replaced when using TFA 

resulting in a column equilibration time of less than 30 min at the method’s flow rate of 

1.2 mL/min. Consequently, shorter column equilibration times are to be expected for the MMC 

method despite the MMC column’s greater dimensions (250 x 4.6 mm). 

The LOQs obtained by the MMC method of 12 – 18 ng on column are comparable to those 

commonly reported for the CAD [29, 30], while the IPC method’s sensitivity is substantially 

impaired by the elevated background noise. The improved LOQs are apparent when 

comparing the minimum required S/N for a 0.05% vigabatrin solution as part of the compendial 

system suitability test [15] to the S/N of a 0.1% solution of vigabatrin with the same injected 

mass of 150 ng obtained from the MMC method. While the compendial method demands a 

S/N of at least 15 for the vigabatrin peak, the MMC method yields a S/N of 40 when calculated 

by the approach depicted in the Ph. Eur. Further evidence is provided when comparing a 

chromatogram of a 0.1% solution of impurity E published by the EDQM [28] with the 

chromatogram of a 0.2% solution of impurity E obtained from the MMC method (Fig. 6). 

Although the injected mass (300 ng) is the same for the compendial chromatogram, the S/N 

of impurity E was higher for the MMC method chromatogram due to the smoother baseline 

when zoomed at the corresponding signal height. As further implication of the improved LOQs, 

the concentration of the sample solution could be reduced by 50% in the MMC method, while 

still achieving the required reporting threshold of 0.03% for specified impurities (A, B, D) and 

0.05% for unspecified impurities (E) (Fig. 7). In terms of selectivity and elution order, the MMC 

method performed comparable to the IPC one. However, the peak shape of the main 

substance vigabatrin obtained by MMC was improved and impurity B was less retained 

resulting in an analysis time reduction from 30 min to 20 min. 

4. Conclusion 

The use of hyphenated detection techniques in liquid chromatography for impurity profiling 

purposes offers numerous advantages, e.g. additional information on the impurity profile of the 

drug due to the complementary detection modes. However, mobile phase considerations play 

a crucial role for the development of robust methods as different detectors are restricted to a 

distinct selection of mobile phase additives and organic modifiers. IPC employing long-chain 

ion-pairing reagents negatively affects at least one detection process when using UV-CAD as 

coupled detection technique, as was demonstrated in this work. The performance of the 
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described MMC method was found to be superior in terms of simplicity (no post-column 

solution required), sensitivity (LOQs below the compendial claimed 0.03% reporting threshold), 

and analysis time (20 vs. 30 min). Moreover, the MMC method does not require extensive 

system equilibration or dedicated equipment as is often the case when using long-chain ion-

pairing reagents. With the establishment of MMC and HILIC for the analysis of polar 

substances, the IPC related shortcomings can be overcome, since the newer separation 

techniques feature low additive mobile phases suited for hyphenated detector setups. Another 

advantage of the MMC or HILIC techniques is the straightforward method transfer to LC-MS, 

which is of particular importance for the identification of unknown impurities.  
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Supplementary material 

Table S1. Experimental plan obtained from response surface methodology featuring I-optimal design. 
  Factor 1 Factor 2 Factor 3 Response 1 
Group Run A:ACN proportion B:Evaporation 

temperature 
c:C atoms acid Noise 

  % °C  pA 

1 1 10 52.5 C5 0.248 
1 2 0 35 C5 0.212 
1 3 0 70 C5 0.152 
2 4 20 52.5 C2 0.041 
2 5 0 35 C2 0.024 
2 6 0 70 C2 0.020 
3 7 10 52.5 C4 0.109 
3 8 20 70 C4 0.137 
3 9 0 70 C4 0.041 
4 10 0 70 C3 0.057 
4 11 10 52.5 C3 0.071 
4 12 20 70 C3 0.062 
4 13 10 35 C3 0.091 
5 14 10 70 C1 0.011 
5 15 20 52.5 C1 0.009 
5 16 10 35 C1 0.009 
5 17 0 52.5 C1 0.007 
6 18 20 70 C5 0.219 
6 19 20 35 C5 0.570 
6 20 10 52.5 C5 0.280 
7 21 10 52.5 C4 0.119 
7 22 0 35 C4 0.073 
7 23 20 35 C4 0.181 
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Table S2. Overview of the RSM parameters. 
File Version 12.0.10.0    

Study Type Response Surface  Subtype Split-plot 

Design Type I-optimal Point Exchange Runs 23.00 

Design Model Quadratic  Blocks No Blocks 

Groups 7.00  Build Time (ms) 249.00 

 

Table S3. Factors investigated. 

Factor Name Units Change Type Minimum Maximum Coded 
Low 

Coded 
High Mean Std. 

Dev. 

A ACN 
proportion % Easy Numeric 0.00 20.00 -1 ↔ 

0.00 
+1 ↔ 
20.00 9.57 8.25 

B Evaporation 
temperature °C Easy Numeric 35.00 70.00 -1 ↔ 

35.00 
+1 ↔ 
70.00 53.26 14.43 

c C atoms acid  Hard Categoric C1 C5   Levels: 5.00 

 

Table S4. Analysis of the response data. 
Response Name Units Observations Analysis Minimum Maximum Mean Std. Dev. Ratio Transform Model 

R1 Noise pA 23.00 Polynomial 0.007 0.57 0.1193 0.1282 81.43 Base 10 Log Linear 

 

Table S5. Factors’ influence on the background noise calculated by REML (Restricted Maximum 
Likelihood) analysis. 
Source Term df Error df F-value p-value  

Whole-plot 4 16.00 131.91 < 0.0001 significant 

c-C atoms acid 4 16.00 131.91 < 0.0001  

Subplot 2 16.00 17.30 < 0.0001 significant 

A-ACN proportion 1 16.00 25.87 0.0001  

B-Evaporation temperature 1 16.00 8.73 0.0093  

 

Table S6. Fit statistics. 
Std. Dev. 0,1034  R² 0,9728 

Mean -1,18  Adjusted R² 0,9573 

C.V. % 8,77    

 

 



144 RESULTS – VIGABATRIN 
       

 

 

 

Fig. S1. Normal Plot of Residuals of the background noise. 

 

Fig. S2. Residuals vs. predicted plot of the background noise. 

 

Fig. S3. Predicted vs. actual plot of the background noise. 
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Table S7. Robustness test and resulting resolution values. 
Variation Resolution 

      Na-Potassium       Potassium-Imp E Imp E-D Imp D-Vigabatrin Vigabatrin-Imp B 
no variation 4.25 2.53 2.97 6.33 7.85 
20 °C Column 4.36 2.74 3.00 6.37 7.86 
30 °C Column 4.16 2.40 3.01 6.25 7.82 
1 flow 4.38 2.70 3.05 6.26 8.19 
1,4 flow 4.24 2.50 2.91 6.08 7.30 
0.08 TFA 4.50 1.50 4.07 6.44 8.26 
0.12 TFA 4.04 3.12 2.20 5.86 7.84 
10 ACN 4.43 4.20 3.21 5.17 9.84 
20 ACN 4.46 1.46 2.74 4.55 4.23 

 
References 

[1] T. Vehovec, A. Obreza, Review of operating principle and applications of the charged 

aerosol detector, J. Chromatogr. A 1217(10) (2010) 1549-1556. 

[2] M. Ligor, S. Studzińska, A. Horna, B. Buszewski, Corona-charged aerosol detection: an 

analytical approach, Crit. Rev. Anal. Chem. 43(2) (2013) 64-78.  

[3] P. Sun, X. Wang, L. Alquier, C.A. Maryanoff, Determination of relative response factors of 

impurities in paclitaxel with high performance liquid chromatography equipped with ultraviolet 

and charged aerosol detectors, J. Chromatogr. A 1177(1) (2008) 87-91. 

[4] A.G. Pereira, F.B. D’Avila, P.C.L. Ferreira, M.G. Holler, R.P. Limberguer, P.E. Froehlich, 

Method Development and Validation for Determination of Cocaine, its Main Metabolites and 

Pyrolytic Products by HPLC–UV–CAD, Chromatographia 79(3-4) (2016) 179-187. 

[5] C.-E. Zhang, L.-J. Liang, X.-H. Yu, H. Wu, P.-f. Tu, Z.-J. Ma, K.-J. Zhao, Quality assessment 

of Astragali Radix from different production areas by simultaneous determination of thirteen 

major compounds using tandem UV/charged aerosol detector, J. Pharm. Biomed. Anal. 165 

(2019) 233-241. 

[6] O. Wahl, J. Cleynhens, A.M. Verbruggen, U. Holzgrabe, Impurity profiling of N, N′-

ethylenebis-l-cysteine diethyl ester (Bicisate), J. Pharm. Biomed. Anal. 150 (2018) 132-136. 

[7] T. Cecchi, Ion pairing chromatography, Critical Reviews in Analytical Chemistry 38(3) 

(2008) 161-213. 

[8] P.H. Gamache, Charged aerosol detection for liquid chromatography and related 

separation techniques, John Wiley & Sons, 2017 

[9] K. Petritis, P. Chaimbault, C. Elfakir, M. Dreux, Ion-pair reversed-phase liquid 

chromatography for determination of polar underivatized amino acids using perfluorinated 

carboxylic acids as ion pairing agent, J. Chromatogr. A 833(2) (1999) 147-155. 



146 RESULTS – VIGABATRIN 
       

 

[10] P. Chaimbault, K. Petritis, C. Elfakir, M. Dreux, Ion-pair chromatography on a porous 

graphitic carbon stationary phase for the analysis of twenty underivatized protein amino acids, 

J. Chromatogr. A 870(1-2) (2000) 245-254. 

[11] Y. Yang, X. Geng, Mixed-mode chromatography and its applications to biopolymers, J. 

Chromatogr. A 1218(49) (2011) 8813-8825. 

[12] K. Zhang, X. Liu, Mixed-mode chromatography in pharmaceutical and biopharmaceutical 

applications, J. Pharm. Biomed. Anal. 128 (2016) 73-88. 

[13] B. Buszewski, S. Noga, Hydrophilic interaction liquid chromatography (HILIC)—a powerful 

separation technique, Anal. Bioanal. Chem. 402(1) (2012) 231-247. 

[14] B. Dejaegher, Y. Vander Heyden, HILIC methods in pharmaceutical analysis, J. Sep. Sci. 

33(6‐7) (2010) 698-715. 

[15] Council of Europe, European Pharmacopeia Online 10.5, EDQM, Strasbourg, France 

(2021) Monograph no. 2305. https://pheur.edqm.eu/app/10-5/content/10-5/2305E.htm. 

(Accessed 14.01.2021). 

[16] International Council for Harmonization, Guideline Q2 (R1) Validation of Analytical 

Procedures: Text and Methodology (2005). 

[17] S. Furota, N.O. Ogawa, Y. Takano, T. Yoshimura, N. Ohkouchi, Quantitative analysis of 

underivatized amino acids in the sub-to several-nanomolar range by ion-pair HPLC using a 

corona-charged aerosol detector (HPLC–CAD), J. Chromatogr. B 1095 (2018) 191-197. 

[18] U. Holzgrabe, C.-J. Nap, N. Kunz, S. Almeling, Identification and control of impurities in 

streptomycin sulfate by high-performance liquid chromatography coupled with mass detection 

and corona charged-aerosol detection, J. Pharm. Biomed. Anal. 56(2) (2011) 271-279. 

[19] A.I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev. 

Comput. Stat. 2(2) (2010) 128-149. 

[20] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: 

process and product optimization using designed experiments, John Wiley & Sons, 2016. 

[21] B. Jones, P. Goos, I-optimal versus D-optimal split-plot response surface designs, J. Qual. 

Technol. 44(2) (2012) 85-101. 

[22] J.P. Hutchinson, T. Remenyi, P. Nesterenko, W. Farrell, E. Groeber, R. Szucs, G. 

Dicinoski, P.R. Haddad, Investigation of polar organic solvents compatible with Corona 

Charged Aerosol Detection and their use for the determination of sugars by hydrophilic 

interaction liquid chromatography, Anal. Chim. Acta 750 (2012) 199-206. 

https://pheur.edqm.eu/app/10-5/content/10-5/2305E.htm


RESULTS – VIGABATRIN 147 
   

 
 

[23] J.P. Hutchinson, J. Li, W. Farrell, E. Groeber, R. Szucs, G. Dicinoski, P.R. Haddad, 

Universal response model for a corona charged aerosol detector, J. Chromatogr. A 1217(47) 

(2010) 7418-7427. 

[24] K. Schilling, R. Pawellek, K. Lovejoy, T. Muellner, U. Holzgrabe, Influence of charged 

aerosol detector instrument settings on the ultra-high-performance liquid chromatography 

analysis of fatty acids in polysorbate 80, J. Chromatogr. A 1576 (2018) 58-66 

[25] J.J. Russell, J.C. Heaton, T. Underwood, R. Boughtflower, D.V. McCalley, Performance 

of charged aerosol detection with hydrophilic interaction chromatography, J. Chromatogr. A 

1405 (2015) 72-84. 

[26] L. Wójcik, B. Szostek, W. Maruszak, M. Trojanowicz, Separation of perfluorocarboxylic 

acids using capillary electrophoresis with UV detection, Electrophoresis 26(6) (2005) 1080-

1088. 

[27] International Council for Harmonization,  Guideline Q3A (R2) Impurities in New Drug 

Products (2006). 

[28] Council of Europe, Knowledge Database, EDQM, Strasbourg, France (2021) Search item: 

Vigabatrin. https://extranet.edqm.eu/4DLink1/4DCGI/Web_View/mono/2305. (Accessed 

14.01.2021). 

[29] T. Gorecki, F. Lynen, R. Szucs, P. Sandra, Universal response in liquid chromatography 

using charged aerosol detection, Anal. Chem. 78(9) (2006) 3186-3192. 

[30] S. Almeling, D. Ilko, U. Holzgrabe, Charged aerosol detection in pharmaceutical analysis, 

J. Pharm. Biomed. Anal. 69 (2012) 50-63. 

 



148 RESULTS – ASPARTIC ACID/GLYCINE 
       

 

3.6. Impurity profiling of L-aspartic acid and glycine using high-
performance liquid chromatography coupled with charged 
aerosol and ultraviolet detection 
 

Ruben Pawellek, Klaus Schilling, Ulrike Holzgrabe 

 

 

Reprinted with permission from J. Pharm. Biomed. Anal. 2020, 183, 113149. 

Copyright (2020) Elsevier. 

 

 

Abstract 

For the compendial related substances test of L-aspartic acid (Asp) and glycine (Gly), two 

separate reversed-phase ion-pair high-performance liquid chromatography methods coupled 

with charged aerosol and ultraviolet detection were developed. Separation of all putative 

impurities, in particular of the related carboxylic and amino acids, was achieved using volatile 

perfluorocarboxylic acids as ion-pairing reagents on a polar embedded C18 stationary phase. 

It was shown that an adjustment of the evaporation temperature of the charged aerosol 

detector (CAD) was an efficient strategy for meeting the required quantitation limits, when 

dealing with non-volatile analytes. It was also demonstrated that the usage of a two-detector 

setup can be beneficial for extending the detection range and providing accurate quantitation 

of low-level impurities (LOQs from 5 to 50 ng on column). Both methods were validated with 

accordance to ICH guideline Q2(R1) assessing specificity, linearity, accuracy, precision, and 

robustness. Several batches of Asp and Gly were tested for related substances using the 

developed methods. The purity of each sample was higher than 99.7 %. Coupled charged 

aerosol and UV detection proved to be a more simple, robust and selective alternative to 

established derivatization procedures such as the Amino-Acid-Analyser (AAA) for the impurity 

profiling of amino acids and should thus be considered for implementation into pharmacopoeial 

monographs in the future. 
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1. Introduction 

Amino acids have numerous applications in the pharmaceutical and nutritional field serving as 

excipients in pharmaceutical and biopharmaceutical formulations, as starting materials for drug 

and protein synthesis, or directly as active pharmaceutical ingredients  e.g. clinical parenteral 

nutrition solutions and nutritional supplements [1-3]. Since amino acids and amino acid derived 

substances, such as aspartame, are usually administered with a high daily dose [4], their 

quality control is of paramount interest because even impurities that are only present in low 

amounts, are consumed in significant quantities. For drug substances with a daily intake of 

more than 2 grams per day, the ICH guideline Q3A(R2) requests a reporting threshold of 

0.03 % (m/m) for each impurity [5].  

The analysis of free amino acids requires the use of sensitive detection techniques. For the 

detection of underivatized amino acids, liquid chromatography coupled to mass spectrometry 

[6] or CAD [7, 8] has been frequently used over the last five years. The impurity profiling of 

amino acids is also predominantly performed by means of HPLC coupled to various detectors, 

such as UV detector [9], CAD [10], and mass spectrometry [11].  

The separation and detection of amino acids is a chromatographic challenge due to their polar 

nature and lack of a suitable chromophore, which usually prevents the application of RP-

HPLC-UV. As an alternative, derivatization procedures, such as the one used by Amino-Acid-

Analysers (AAA), were developed for quality control purposes [12]. Derivatization methods 

may solve some analyte specific challenges but are often prone to errors and are dedicated to 

the analysis of amino acids or amine-containing structures, making simultaneous detection of 

structural divergent impurities such as plain organic acids impossible.  

The charged aerosol detector (CAD) is an aerosol-based detector that has been used routinely 

for a wide variety of applications over the last decade [13]. Its detection principle is almost 

independent of the physicochemical properties of the analyte and therefore suitable for the 

analysis of the weak-chromophoric amino acids [14]. Analogous to other aerosol-based 

detectors, namely the evaporative light scattering detector (ELSD) and the condensation 

nucleation light scattering detector (CNLSD), the detection process starts by the nebulization 

of the column eluent into droplets, which are subsequently dried into particles. In case of the 

CAD, the particles are then charged through collision with an ionized gas stream. The 

aggregate charge is then measured by a highly sensitive electrometer, generating a signal 

directly proportional to the quantity of analyte present. Compared to the ELSD, the CAD is 

typically found to be more robust and sensitive [15]. Furthermore, it is cheaper, easier to use 

and its response is less dependent on analyte properties than the CNLSD [16]. A common 

drawback for all aerosol-based detectors is the restriction to non-volatile or semi-volatile 

analytes. The range of analytes measured can be extended by coupling to a complementary 
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detector, e.g., a UV detector. Another limitation of all aerosol-based detectors is the nonlinear 

response over extended concentration ranges. However, this is negligible when dealing with 

small ranges as it is the case with impurity profiling. 

Among the proteinogenic amino acids, the more polar ones are the most challenging analytes 

to measure, since their sole UV-absorbing structure is the carboxylic moiety, and the 

hydrophilic nature of these compounds causes coelution of many amino acids under RP-HPLC 

conditions. For this reason, the polar amino acids L-aspartic acid (Asp) and glycine (Gly) were 

chosen as subjects of this study, as they are currently tested for related substances by two 

different methods in the European Pharmacopoeia (Ph. Eur.): one being the test for ninhydrin 

positive substances by means of the AAA, the second covering the remaining impurities that 

are not accessible by means of the AAA [17, 18].            

The impurity profile of a particular amino acid strongly depends on the production process. The 

main industrial production routes comprise chemical synthesis, hydrolysis of proteins/peptides 

followed by chromatographic separation, enzyme synthesis and fermentation [19]. For Asp 

obtained by enzyme catalysis, the main production process according to available information 

[20], possible impurities are fumaric acid as a starting material, maleic acid as an impurity of 

fumaric acid, malic acid which may be produced enzymatically from fumaric acid, and L-alanine 

as a decarboxylation product of Asp (Table 1). In the case of production of Asp by protein 

hydrolysis, L-glutamic acid (Glu) is also a possible by-product. Since Glu and Asp are acidic 

amino acids, it is possible that Glu is not completely removed by a chromatographic purification 

step [10]. For the achiral Gly, the two main processes of production are amination of 

chloroacetic acid with ammonia [21] and the Strecker amino acid synthesis [20]. The impurity 

profile of Gly is structurally diverse, consisting of the related amino acids L-serine (Ser), 

sarcosine (Sar) and beta-alanine (ß-Ala), peptides diglycine (Gly-Gly) and triglycine (Gly-Gly-

Gly), carboxylic acids, chloroacetic acid and iminodiacetic acid, and also the apolar substances 

glycine anhydride and hexamethylentetramine (Urotropine) (Table 1) [18].  

The aim of this work was to develop HPLC methods with coupled charged aerosol and UV 

detection for the related substances test of either Asp or Gly, combining the currently applied 

separate methods for ninhydrin positive substances and other impurities to one single method. 

To the best of our knowledge this is the first approach that is capable of separating and 

quantifying all occurring impurities of both Asp and Gly in one single run at the required 

concentration level (0.03 %, with respect to the concentration of the sample solution). The 

presented methods can be considered for implementation into the monographs of the Ph. Eur. 

as they are less time consuming and are more specific and sensitive compared to the currently 

applied methods. 
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Table 1. Impurity profile of L-aspartic acid and glycine, respectively. 
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2. Experimental 

2.1. Chemicals and reagents 

Analytical grade amino acids, carboxylic acids, glycine anhydride and hexamethylentetramine 

as well as trifluoroacetic acid 99 % (TFA), pentafluoropropionic acid 97 % (PFPA), 

heptafluorobutyric acid 99 % (HFBA), nonafluoropentanoic acid 97 % (NFPA) and 

tridecafluoroheptanoic acid 99 % (TDFHA) were purchased from Sigma Aldrich (Steinheim, 

Germany). The amino acid test samples were obtained from Sigma Aldrich, Fluka (Neu-Ulm, 

Germany), Merck (Darmstadt, Germany) and Alfa Aesar (Karlsruhe, Germany). Ultra-pure 

deionized (DI) water was delivered by a Milli-Q® system (Merck). HPLC grade acetonitrile 

(ACN) was supplied by Sigma Aldrich.  

2.2. Apparatus 

The HPLC methods were developed and validated on a Thermo Scientific™ Vanquish™ Flex 

modular chromatographic system consisting of a binary pump with online degasser, a 

thermostatted split sampler, a thermostatted column compartment with passive pre-heater, 

and a variable wavelength detector in-line with a Vanquish™ Horizon CAD (Thermo Fisher 

Scientific, Germering, Germany). The CAD was supplied with nitrogen gas from an ESA 

nitrogen generator (Thermo Fisher Scientific) connected to the in-house compressed air 

system. The instrument was controlled and runs were processed using the Chromeleon® Data 

System Version 7.2.6 software program (Thermo Fisher Scientific). 

For both methods, a polar embedded C18 Polar Advantage II (150 x 4.6 mm i.d., 3 µm particle 

size and 100 Å pore size) column was used as stationary phase (Thermo Fisher Scientific, 

Runcorn, UK). 

2.2.1. Aspartic acid method         

The chromatographic conditions used a flow rate of 0.8 mL/min, a column temperature of 25 °C 

(run in still air mode), and isocratic elution. The mobile phase consisted of 7 mM NFPA and 

4 mM TFA in ultrapure water. The injection volume was 20 µL, and the run time was 

10 minutes. The detector settings for the CAD were as follows: evaporation temperature 50 °C, 

filter constant 5 s, data collection rate 10 Hz and a power function value of 1.0. For UV 

detection, a wavelength of 210 nm and a data collection rate of 20 Hz were used. 

2.2.2. Glycine  method                 

 In the case of the Gly method, a flow rate of 0.8 mL/min, a column temperature of 25 °C (run 

in still air mode), and gradient elution were used. Mobile phase A consisted of 1.25 mM TDFHA 

and 6.5 mM TFA in ultrapure water, mobile phase B was 1.25 mM TDFHA in I. The gradient 

program started with an isocratic stage of 1% B for the first 8 minutes, followed by a linear 
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increase from 1 % to 10 % B for the next two minutes, a hold of 10 % B from minutes 10 to 18 

and a re-equilibration step between minutes 18 and 20 from 10 % to 1 % B. To ensure complete 

re-equilibration of the chromatographic system, the column was flushed with the initial mobile 

phase composition for 15 minutes resulting in a total run time of 35 minutes. The CAD was set 

to an evaporation temperature of 70 °C, a filter constant of 10 s, a data collection rate of 10 Hz 

and a power function value of 1.0. UV detection was performed using a detection wavelength 

of 210 nm and a data collection rate of 20 Hz. 

2.2.3. Equilibration, Washing and Retention Time Reproducibility 

The observed column equilibration times of the methods varied when switching between the 

two methods depending on the chain length of the respective ion-pairing reagent. The use of 

NFPA as ion-pairing reagent led to significantly shorter equilibration times (teq ~ 25 min), 

compared to TDFHA (teq ~ 90 min), due to a lower extent of adsorption on the hydrophobic C18 

stationary phase [22]. To prevent irreversible modification of the surface of the stationary 

phase, the column was flushed with 25 column volumes of I and 15 column volumes of 

methanol as a regeneration procedure [28] before changing the ion-pairing reagent. Prior to 

the Gly testing, the column had to be equilibrated at the final gradient conditions of 10 % B to 

minimize retention time shifts. The retention time reproducibility was satisfactory after injection 

of three blank runs (RSD < 0.5 %). 

2.3. Preparation of solutions 

2.3.1. Standard solutions          

Stock solutions of each impurity standard were prepared by accurately weighing 10 mg of the 

impurity and dissolving in 10.0 mL ultrapure water. The stock solutions were used as calibration 

or external standards and for spiking of the sample solutions by appropriate dilution with mobile 

phase. The standard solutions were stored at 8 °C and found to be stable for at least one week. 

2.3.2. Sample solutions         

The sample solutions were freshly prepared on a daily basis by weighing 50 mg of Asp or 

100 mg of Gly and dissolving in 10.0 mL mobile phase. Due to low solubility, the sample 

solution of Asp had to be stirred and heated at 50 °C for about 10 minutes to achieve complete 

dissolution. No precipitation occurred after cooling to room temperature. The sample solutions 

were stable for at least one day at room temperature. 
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3. Results and discussion 

3.1. Method development 

3.1.1. Separation of the amino acids and other possible impurities    

Besides derivatization procedures, ion-pair chromatography [22], ion-exchange 

chromatography (IEC) [23],  hydrophilic interaction chromatography (HILIC) [24] and mixed-

mode chromatography [25] have successfully been applied to amino acid analysis. While IEC 

suffers from limited selectivity, HILIC and mixed-mode chromatography provide good 

resolution of polar amino acids due to multiple interaction mechanisms. However, the 

selectivity strongly depends on the nature of the stationary phase and there is a large number 

of different column chemistries. Even the same column chemistry from two separate 

manufacturers will result in different selectivity, which makes it impossible to obtain 

reproducible results, unless the exact same column is used [26, 27]. Moreover, some mixed-

mode columns were found to degrade faster than classical RP-HPLC columns [28]. In addition, 

the sample must be soluble in highly organic mobile phase for HILIC applications, which is not 

the case for Asp. Ion-pair chromatography on C18 reversed-phase columns coupled to 

aerosol-based detectors has already been used for the separation and detection of all 

proteinogenic amino acids as well as for impurity profiling of polar amino acids [10, 22]; thus it 

was the method of choice. At low concentrations, the common ion-pairing reagents show 

negligible UV-absorption, which was a prerequisite for the intended two-detector setup using 

low wavelength UV. 

A C18 reversed-phase column with embedded amide groups was chosen as the stationary 

phase. The amide functionality provides additional selectivity for polar analytes and is 

compatible even with 100 % aqueous conditions. Since the application of charged aerosol 

detection requires volatile mobile phase additives, perfluorocarboxylic acids were chosen as 

ion-pairing reagents. For the impurity testing of Asp (the impurity profile is displayed in Table 

1a), TFA, PFPA, HFBA and NFPA were evaluated as mobile phase additives in aqueous 

solution (Fig. 1).  For the retention factor “k” of the analytes, two general tendencies were 

observed. The retention times of the amino acids could be extended with increasing quantities 

of the ion-pairing reagent, as well as with their increasing chain length. In contrast, the retention 

of the organic impurities was reduced upon accumulation of the ion-pairing reagent on the 

surface of the stationary phase. NFPA was chosen for further development since it provided 

the best separation for the amino acids. However, the separation of Asn and Asp was impaired 

by the very broad sample peak of Asp, and fumaric acid coeluted with the late eluting amino 

acids. By addition of a small amount of the competing ion-pairing reagent TFA, the peak width 

of the Asp sample peak was significantly decreased and fumaric acid was well separated from 

Ala and Glu due to a reduced retention of the amino acids.  
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Fig. 1. Retention factor k of the impurities as a function of the mobile phase composition; concentration 

10 mM unless otherwise stated. The higher k values for fumaric acid are not shown for better clarity of 

the graph. 

The final ion-pairing reagent composition of 7 mM NFPA and 4 mM TFA represents the best 

compromise between resolution and sensitivity. NFPA only being commercially available in 

97 % purity led to elevated background noise with increasing concentration; thus, a reduction 

of the amount of the used ion-pairing reagents was necessary. The addition of organic modifier 

to the mobile phase was also investigated, but not taken into account for the final method 

conditions, as the selectivity was negatively affected.  

The Asp method was also tested for the impurity analysis of Gly, but NFPA was not selective 

enough to provide separation of the closely related amino acids Ser, Gly and Sar. On a C18 

column, the selectivity for amino acids increases with the chain length of the ion-pairing reagent 

[22], thus TDFHA was chosen instead of NFPA. Variations of the amount of TDFHA under fully 

aqueous conditions did not significantly affect the separation of the other impurities, therefore, 

the next method developments concentrated on the separation of the critical peak pairs Ser-

Gly and Gly-Sar. At 1 mM TDFHA, the critical peak pairs were all well resolved, the main peak 

of the Gly-sample, however, coeluted with Sar due to excessive peak fronting. Again, the 

addition of a small proportion of TFA (6.5 mM) to the mobile phase was necessary to obtain 

an appropriate peak shape of the main peak. As a consequence, the elution order of the Sar-

Gly peak pair was inverted and the retention times of the amino acids decreased. Separation 

of Gly and all potential impurities was achieved isocratically with 99 % 1.25 mM TDFHA, 

6.5 mM TFA in water (A) and a small organic proportion of 1 % 1.25 mM TDFHA in CAN (B). 

To facilitate a reasonable run time and improve the peak shape of the late eluting impurities, 

a gradient from 1 % to 10 % B was used. The final method was capable of separating all 
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impurities in 20 minutes, followed by 15 minutes of re-equilibration to recover the initial 

chromatographic conditions (the selectivity of the final methods is illustrated in Fig. 5 and 

Fig. 6). 

3.1.2. Optimization of CAD settings and other chromatographic parameters            

Among the adjustable CAD settings, the evaporation temperature is by far the most influential 

parameter regarding the detection performance, i.e., sensitivity limits [29]. As a consequence, 

optimization procedures become essential in method development, in particular when dealing 

with volatile perfluorinated ion-pairing reagents, which may produce elevated background 

noise levels under standard settings. Analyte response and background noise were 

investigated as a function of evaporation temperature in increments of 5 °C, with the default 

set point of 35 °C as a starting point (Fig. 2).  

 

Fig. 2. Influence of the evaporation temperature on the background noise and the response of Asp and 

potential impurities at a concentration of 0.03 % with respect to the concentration of the sample solution 

(Gln was not considered to be an impurity of Asp in the following, since it was not found in the 

investigated batches and it cannot derive from the production process [10]); evaporation temperatures 

of 35 °C, 50 °C and 60 °C, for further method conditions see section 2.3.1. 

It could be shown that sensitivity limits of polar nonvolatile analytes such as amino acids greatly 

profit from higher evaporation temperatures, since the loss of analyte response is less 

pronounced compared to the simultaneously reduced background noise. Another reason for 

the relatively low loss of analyte response is a decrease in volatility of the analyte due to the 

formation of analyte salts with the ion-pairing reagent. Analytes that do not interact with the 

ion-pairing reagent and are more volatile, e.g. malic acid, however, had a different evaporation 

temperature optimum than the non-volatile impurities, which was not relevant for the other 

organic acids since they were detected by UV. The optimal evaporation temperature for the 

Asp method was limited to 50 °C due to the more pronounced response drop of malic acid at 
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higher temperatures, while the response of the non-volatile Gly impurities was stable at even 

higher temperatures (Fig. 3). For the Gly method, an evaporation temperature of 70 °C was 

chosen, since it was the best compromise between sensitivity and resolution. 

 

Fig. 3. Influence of the evaporation temperature on the background noise and response of Gly and 

potential impurities at a concentration of 0.05 % with respect to the concentration of the sample solution; 

evaporation temperatures of 35 °C and 70 °C, for further method conditions see section 2.3.2. 

Another CAD setting influencing the chromatographic and the detection performance 

simultaneously is the filter constant. A higher filter constant reduces background noise by 

baseline smoothing, but, conversely, decreases the resolution of the analytes. The chosen 

filter constant was higher for Gly (10 s) compared to Asp (5 s) due to the elevated background 

noise of the Gly method. In addition, the power function value setting is primarily used for 

optimizing the linear range of the detector [29]. In this particular case, the response was 

demonstrated to be sufficiently linear over the required range (0.03-0.24 %), thus the default 

value of 1.0 was maintained. 

Further parameters that were considered for method development but found to be less 

influential to chromatographic performance were column temperature and flow rate. For both 

methods, flow rates of 0.8 mL/min and column temperatures of 25 °C were used. 

3.1.3. UV-CAD detection                 

In-line coupling of UV and CAD can be achieved easily by connecting the outlet of the UV 

module to the inlet of the CAD module via a capillary. Mobile phase considerations are the 

most important factor for combined method development, since the CAD is only compatible 

with volatile mobile phase additives, while the use of low wavelength UV is restricted to mobile 

phases that allow for the application of a detection wavelength below 220 nm. The use of low 

concentrations of volatile ion-pairing reagents as mobile phase additives and ACN (UV cutoff 

190 nm) as an organic modifier, enabled the application of the coupled detection mode, which 
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extended the range of analytes detected to include volatile analytes, e.g. chloroacetic acid, 

and analytes with weak chromophores, e.g. amino acids. Even very low levels of unknown 

impurities that were not detectable by UV could be detected and quantified using CAD, which 

underlines the benefit of complementary detection techniques in impurity profiling [1]. 

The impurity profile of Asp comprises the dicarboxylic acids malic acid, maleic acid and fumaric 

acid, as well as the polar amino acids Asn, Ala and Glu (Table 1). In general, the organic acids 

showed a reduced response compared to the amino acids using CAD detection (Fig. 4), which 

can be explained by their higher volatility and inability to form salts with the ion-pairing reagent. 

On the other hand, fumaric acid and maleic acid possess a suitable chromophore, making UV 

detection at 210 nm the method of choice. Malic acid, however, was also quantified with CAD, 

since its chromophore is too weak for sensitive UV detection.  

 

Fig. 4. Chromatogram of Asp and its impurities at 0.01 % concentration with respect to the concentration 

of the sample solution; for method conditions see section 2.3.1. 

The possible impurities of Gly are chemically diverse, ranging from amino acids or small 

peptides through organic acids to nonpolar substances (Table 1). Except for the volatile 

chloroacetic acid, all impurities were sufficiently non-volatile at higher evaporation 

temperatures enabling quantification by the CAD (Fig. 3). The measured response factors 

were in a relatively narrow range (0.68 – 2.38). Chloroacetic acid was quantified by using low 

wavelength UV detection at 210 nm. The obtained limits of quantitation for chloroacetic 

(0.05  %) acid and urotropine (0.05 %) were higher than for the other analytes (0.03 % or less) 

due to restrictions of the chromatographic system, but still sufficiently low for impurity profiling 

in routine analysis, since the currently applied methods for Gly have a reporting threshold of 

0.05  % [18]. 
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3.2. Method validation                                                             

Both methods were validated according to ICH guidline Q2(R1) [30]. Hence, specificity, 

linearity and range, accuracy, precision, limit of quantitation (LOQ) and robustness of the 

methods were assessed. In addition, system suitability criteria were established. A summary 

of the results is provided in the supplementary material. 

3.2.1. Aspartic acid                   

The presented validation parameters refer to CAD for malic acid, Asn, Asp, Ala and Glu. In the 

case of maleic acid and fumaric acid, UV detection was applied. 

Specificity of the method was demonstrated by injection of a sample solution spiked with each 

impurity at 0.1 % concentration with respect to the concentration of the sample solution 

(Fig. 5). Baseline separation could be achieved for all impurities and they were well separated 

from the main peak. 

 

Fig. 5. Sample solution of 5 mg/ml Asp spiked with 0.1 % of each impurity. 

The investigated range was between 0.03 and 0.24 % of the sample concentration, 

corresponding to the reporting threshold and 120 % of the specification limit, respectively.  

Linearity was determined by means of linear regression with six calibration points (n = 3) 

distributed equidistantly over the observed range. The obtained coefficients of determination 

(R2) were 0.998 or higher (Table 2a). 
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Table 2a. Linearity and LOQ results of L-aspartic acid (with respect to CAD unless otherwise stated). 

Compound R2 (linear regression) LOQ (ng on column) LOQa Correction factor 

Asp 0.9995 8 0.008 % 1 

Ala 0.9987 8 0.008 % 0.56 

Asn 0.9982 8 0.008 % 0.81 

Fumaric acid 0.9997 (UV) 5 (UV) 0.005 % (UV) n.d.b 

Glu 0.9991 10 0.010 % 0.85 

Maleic acid 0.9998 (UV) 10 (UV) 0.010 % (UV) n.d. 

Malic acid 0.9991 20 0.020 % 2.20 

 
Table 2b. Linearity and LOQ results of glycine (with respect to CAD unless otherwise stated). 

Compound R2 (linear regression) LOQ (ng on column) LOQc Correction factor 

Gly 0.9997 30 0.030 % 1 

ß-Ala 0.9983 30 0.030 % 0.42 

Chloroacetic acid 0.9992 (UV) 50 (UV) 0.050 % (UV) n.d. 

Glycine anhydride 0.9984 20 0.020 % 1.47 

Gly-Gly 0.9975 30 0.030 % 0.67 

Gly-Gly-Gly 0.9962 30 0.030 % 0.64 

Iminodiacetic acid 0.9987 25 0.025 % 1.22 

Sar 0.9972 30 0.030 % 0.97 

Ser 0.9978 30 0.030 % 1.04 

Urotropine 0.9967 50 0.050 % 1.47 
a With respect to an Asp sample solution of 5 mg/mL. 
b Not determined. 
c With respect to an Gly sample solution of 10 mg/ml. 

For accuracy testing, spiked sample solutions were used, covering the previously investigated 

range with spiked amounts of 0.03, 0.15 and 0.24 % of each impurity, respectively. The peak 

areas of some spiked impurities had to be corrected by those of blank samples, since all tested 

batches contained at least one impurity above the reporting threshold. The recovery rates 

(n = 3) were calculated using either the previously established calibration curves, a 0.1 % 

dilution of all impurities as external standard, or a 0.1 % dilution of the test substance as 

external standard, taking into account the correction factors obtained from the slopes of the 

calibration curves (method of choice of the Ph. Eur.). In case of maleic acid and fumaric acid, 

a 0.1 % dilution of fumaric acid was chosen as an external standard when using the correction 

factor approach. The recovery rates, ranging from 84 – 111 %, were satisfactory for the 

intended purpose, except for the 0.03 % level of malic acid using Asp as external standard 

(76 %), which can be explained by the relatively low response of malic acid compared to the 

amino acids. Therefore, a 0.1 % dilution of each impurity as external standard is suggested for 

quantitation. 
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Precision was evaluated in terms of intra- and inter-day repeatability. Intra-day repeatability 

was assessed in sextuple with spiked sample solutions at 0.03, 0.15 and 0.24 % concentration 

level of each impurity. For the inter-day repeatability, freshly prepared spiked sample solutions 

were injected on the next day. The obtained relative standard deviation (RSD) values ranged 

from 0.1 to 7.7 %, which is acceptable for the purpose of this method. 

The quantitation limits (LOQs) of Asp and its impurities were determined based on the 

signal-to-noise approach of ICH guideline Q2(R1). A S/N of at least 10, estimated from a 

0.03 % dilution and confirmed by appropriate dilution of impurity standards with increments of 

5 ng on column above 10 ng, or 1 ng below 10 ng (n = 3), was set as LOQ. All LOQs were 

below the reporting threshold of 0.03 %, allowing for accurate quantitation (Table 2a). 

Robustness was checked by systematic variations of flow rate (0.6 – 1.0 mL/min), column 

temperature (20 °C – 30 °C), ACN proportion (0 – 1 %), TFA concentration (0.02 – 0.04 %), 

NFPA concentration (6 – 8 mM), evaporation temperature (45 – 55 °C, CAD) and filter constant 

(1 s – 10 s, CAD). The resulting resolution and S/N of the impurity was then compared to the 

original method. The method can be regarded as robust to small changes, as long as the 

system suitability requirements described below are met. 

To ensure the reproducibility of the method, two system suitability criteria were defined. 

Sodium is always present in the chromatographic runs as an impurity because it is dissolved 

from the utilized glassware and is detected by CAD. The sodium peak eluted between Asn and 

Asp, leading to the formation of two critical peak pairs of Asn–sodium and sodium–Asp. For 

both of the critical separations, a minimum resolution requirement of 1.5 was set using a 0.1 % 

dilution of Asn and Asp as system suitability solution. Changes in the proportion of the ion-

pairing reagents also predominantly affected the separation of the critical peak pairs, 

underlining the importance of the introduced system suitability criteria. 

3.2.2. Glycine 

The presented validation parameters refer to the CAD, with exception of chloroacetic acid, 

which was detected by means of UV. 

Specificity of the method was demonstrated by injection of a sample solution, spiked with 

0.15 % of each impurity (Fig. 6). The impurity peaks were well separated from each other, as 

the resolution was > 1.5 for all impurities. The incomplete separation of Gly and Sar was 

controlled by the introduction of a system suitability requirement. 
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Fig. 6. Sample solution of 10 mg/mL Gly spiked with 0.15 % of each impurity. The overview plots are 

displayed in the right corner of the chromatogram. 

A range between 0.03 and 0.24 % of the sample concentration was evaluated. For linearity 

assessment, six-point (n = 3) calibration curves were established over the observed range, 

except for chloroacetic acid and urotropine (0.05 – 0.24 %). The R2 values obtained by linear 

regression were at least 0.996. 

Accuracy was demonstrated by determination of the recovery rates (n = 3) of spiked samples 

at 0.03, 0.15 and 0.24 % concentration level of the impurities. For chloroacetic acid and 

urotropine, a lower limit of 0.05 % was chosen since it was equivalent to the LOQs of the 

impurities. Either linear regression or external standard methodology, using a 0.1 % dilution of 

the impurities, was applied for calculation of the impurity contents. The recovery rates ranged 

between 82 and 119 % with one exception. For the 0.03 % level of Sar, the recovery rate 

calculated by linear regression was only 75 % due to insufficient resolution from the main peak. 

As a consequence, a system suitability criterion for the minimal peak-to-valley ratio was 

introduced. The recovery was satisfactory for Sar at the 0.03 % level using an external 

standard for calculation (87 %). 

Precision was investigated as described in the previous section. The RSD values for inter- and 

intra-day repeatability ranged from 0.9 to 8.2 %. 

The LOQs of Gly and its impurities were again determined with the previously described S/N 

approach, with exception of chloroacetic acid. For chloroacetic acid a RSD of 5 % or less of 

the peak area (n = 3) was set as LOQ, since the baseline drift of the method prevented the 

use of the S/N approach. The LOQs of chloroacetic acid and urotropine did not meet a 

reporting threshold of 0.03 %, thus a reporting threshold of 0.05 % was set instead, as it is also 

claimed in the currently applied methods in the Ph. Eur. (Table 2b). However, neither impurity 

was found in the investigated batches. 



RESULTS – ASPARTIC ACID/GLYCINE 163 
   

 
 

Robustness was assessed by systematic variations of flow rate (0.7 – 0.9 mL/min), column 

temperature (20 – 30 °C) and evaporation temperature (65 – 75 °C, CAD). The composition of 

the ion-pairing reagents was not changed since the Ph. Eur. does not permit alteration of the 

pH in gradient methods. The method can be regarded as robust against these small variations. 

A system suitability test with two requirements was defined. One requirement being a RSD of 

less than 0.5 % for the retention time of 3 injections of a 0.1 % solution of Gly, which conforms 

to the United States Pharmacopeia (USP). As a second criterion, a minimum peak-to-valley 

ratio of 1.5 for the Gly-Sar peak pair was claimed to ensure meaningful integration of the Sar 

peak. 

3.3. Batch analysis 

3.3.1. Aspartic acid 

Analytical grade batches of four different vendors were tested using the Asp method (Table 3 

and Fig. 7). With exception of maleic acid, all specified impurities (Ala, Asn, fumaric acid, Glu, 

maleic acid, and malic acid) were found in the examined samples at relevant levels. Impurities 

above the LOQ were quantified using the external standard method with a 0.1 % dilution of 

Asp as an external standard. One unspecified impurity could be monitored and quantified with 

the CAD using the same calculation method as for the other impurities. All investigated batches 

contained at least one specified impurity above the reporting threshold. The compendial 

requirements, however, were entirely met. 

 

Fig. 7. Sample no. 3 of Asp. 

 

 

 



164 RESULTS – ASPARTIC ACID/GLYCINE 
       

 

Table 3. Results of the batch testing of L-aspartic acid. 

Sample 
no. 

Ala Asn Fumaric 
acid 

Glu Malic acid Unsp. 
RRT 1.74 

Sum 

1 -a 0.050 % 0.024 % 0.028 % 0.126 % - 0.229 % 

2 0.010 % - 0.015 % 0.032 % - 0.033 % 0.090 % 

3 < LOQ 0.060 % 0.053 % 0.021 % 0.098 % - 0.233 % 

4 - 0.011 % 0.024 % 0.116 % 0.069 % 0.014 % 0.235 % 
a Not detected. 

3.3.2. Glycine 

Four batches of two different manufacturers were tested applying the Gly method (Table 4 and 

Fig. 8). Three batches were of analytical grade, one of synthesis grade. The only impurity found 

at relevant level was Sar, besides small quantities of iminodiacetic acid below the reporting 

threshold and traces of Gly-Gly and ß-Ala. One unspecified impurity could be detected with 

CAD and was quantified using an external standard solution of Gly at 0.1 % concentration. All 

investigated batches were of high purity (> 99.9 %) and met the compendial requirements. 

 

Fig. 8. Sample no. 1 of Gly. Only the CAD signal is shown because no other impurities were detected 

with UV.  

Table 4. Results of the batch testing of glycine. 

Sample no. ß-Ala Gly-Gly Iminodiacetic acid Sar Unsp. RRT 0.62 Sum 

1 -a - - 0.077 % - 0.077 % 

2 < LOQ < LOQ - 0.065 % - 0.065 % 

3 - - < LOQ - 0.012 % 0.012 % 

4 - - < LOQ - 0.051 % 0.051 % 
a Not detected. 
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4. Conclusion 

To obtain meaningful impurity profiles of Asp and Gly with single runs, two separate reversed-

phase ion-pair high-performance liquid chromatography methods with charged aerosol and UV 

detection were successfully developed and validated. Coupled charged aerosol and UV 

detection proved to be a useful detector setup to obtain complementary information about the 

actual impurity profile of the respective amino acid. The sensitivity of the CAD could be 

adjusted by altering the evaporation temperature to meet the required quantitation limits of 

0.03 % (relative to the concentration of the respective sample solution) in most cases. An 

increase of the evaporation temperature worked well for the non-volatile amino acids and other 

non-volatile impurities, while the more volatile analytes, which suffered from a significant loss 

of response, e.g. organic acids, were detected by UV, demonstrating another advantage of the 

two-detector setup. The developed methods represent a versatile alternative to the dedicated 

derivatization procedures of the AAA used in the Ph. Eur., as they are not restricted to the 

detection of amino acids. Batches of Asp and Gly from various manufacturers were tested for 

related substances applying the developed methods. All investigated samples, however, were 

of high purity (99.7 % or above). 
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Supplementary material 

Table S1. Recovery rate (n = 3) of the L-aspartic acid method at 0.03, 0.15 and 0.24 % concentration 

with respect to a 5 mg/mL sample solution of Asp in %. 

Calculation 
method 

Linear regression External standard 0.1 % 
dilution of the impurity 

External standard 0.1 % 
dilution of Asp 

Comp./Conc. 0.03% 0.15% 0.24% 0.03% 0.15% 0.24% 0.03% 0.15% 0.24% 
Ala 103 104 98 110 103 96 108 97 91 
Asn 92 101 94 110 102 94 98 91 84 
Fumaric acid 100 100 100 101 101 102 101 101 102 
Glu 111 101 98 105 99 96 103 97 94 
Maleic acid 104 100 101 99 101 101 97 99 99 
Malic acid 104 100 104 76 95 100 94 102 108 
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Table S2. RSD of the L-aspartic acid method at 0.03, 0.15 and 0.24 % concentration with respect to a 

5 mg/mL sample solution of Asp in %. 

Repeatability Intra-day (n = 6) Inter-day (n = 2) 
Compound/Concentration 0.03 % 0.15 % 0.24 % 0.03 % 0.15 % 0.24 % 
Ala 2.6 3.3 3.0 6.2 3.1 2.3 
Asn 3.2 1.6 2.6 4.2 2.6 2.5 
Fumaric acid 3.5 0.7 0.1 3.1 0.9 0.5 
Glu 3.4 3.1 2.4 3.7 3.4 2.1 
Maleic acid 2.7 2.3 0.9 2.5 2.3 1.0 
Malic acid 4.0 3.7 1.0 7.7 3.2 2.1 

 

Table S3. S/N and resolution of a spiked Asp sample solution at 0.1 % concentration of the impurities 

in dependence of systematic variations of the chromatographic conditions.   
   Flow rate 

(mL/min) 
Column 

temperature 
(°C) 

ACN 
(%) 

TFA (%) NFPA (mM) Evaporation 
temperature 

CAD (°C) 

Filter 
constant 
CAD (s) 

Comp./Variation No 
variation 

0.6 1.0 20 30 1 0.02 0.04 6 8 45 55 1 10 

Ala S/N 154 144 126 179 204 155 174 136 136 177 132 141 112 164 

Res. 2.19 2.28 2.13 2.51 2.08 1.58 1.45 2.46 2.24 1.81 2.31 2.29 2.33 2.15 

Asn S/N 281 225 210 245 294 210 193 265 175 258 191 264 174 210 

Res. b.s.a b.s. b.s. b.s. b.s. b.s. <b.s. b.s. <b.s. b.s. b.s. b.s. b.s. b.s. 

Fumaric acid 
(UV) 

S/N 302 315 332 302 307 348 304 466 189 124 n.a.b n.a. n.a. n.a. 

Res. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Glu S/N 110 104 85 120 140 110 121 149 88 126 91 101 78 112 

Res. 6.44 6.25 5.84 7.55 5.98 4.64 3.37 7.23 8.26 4.59 6.87 6.22 6.25 5.42 

Maleic acid (UV) S/N 111 101 115 144 123 217 96 162 103 54 n.a. n.a. n.a. n.a. 

Res. 3.43 3.40 3.60 3.43 3.56 5.75 3.37 4.17 2.81 4.49 n.a. n.a. n.a. n.a. 

Malic acid S/N 81 88 64 80 85 70 81 89 77 92 70 72 61 110 

Res. 10.5 11.2 9.61 10.3 10.5 10.4 10.8 10.3 9.53 11.5 10.4 10.6 11.3 8.36 

a Baseline separation obtained. The actual resolution value was below 1.5 due to the vast peak width of the main peak used for calculation. 
b Not applicable. 

Table S4. Recovery rate (n = 3) of the glycine method at 0.03 (0.05), 0.15 and 0.24 % concentration 

with respect to a 10 mg/mL sample solution of Gly in %. 
Calculation method Linear regression External standard 0.1 % dilution of the 

impurity 
Comp./Concentration 0.03 % 0.15 % 0.24 % 0.03 % 0.15 % 0.24 % 
ß-Ala 112 97 100 91 109 115 
Chloroacetic acid 90     

(0.05 %) 
96 97 82 85 88 

Glycine anhydride 98 104 100 119 92 87 
Gly-Gly 111 100 100 106 115 116 
Gly-Gly-Gly 112 97 100 107 101 104 
Iminodiacetic acid 107 103 97 91 92 83 
Sar 75 101 91 87 104 93 
Ser 111 98 100 109 101 102 
Urotropine 97    

(0.05 %) 
102 88 112 92 82 
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Table S5. RSD of the glycine method at 0.03 (0.05), 0.15 and 0.24 % concentration with respect to a 

10 mg/mL sample solution of Gly in %. 

Repeatability Intra-day (n = 6) Inter-day (n = 2) 

Comp./Concentration 0.03 % 0.15 % 0.24 % 0.03 % 0.15 % 0.24 % 

ß-Ala 4.7 1.5 1.1 4.6 2.8 1.6 
Chloroacetic acid 3.9   

(0.05 %) 
4.0 2.3 5.6 3.1 2.8 

Glycine anhydride 5.5 1.5 2.8 5.0 3.7 2.3 
Gly-Gly 6.6 2.5 1.5 4.1 0.9 1.3 
Gly-Gly-Gly 4.9 1.8 0.9 7.8 3.3 1.3 
Iminodiacetic acid 5.2 1.5 3.3 4.9 2.6 1.4 
Sar 7.3 3.4 4.3 8.2 0.9 2.8 
Ser 3.9 3.4 2.4 6.5 1.7 2.6 
Urotropine 4.9   

(0.05 %) 
2.6 1.7 3.9 1.2 2.4 

 

Table S6. S/N and resolution of a spiked Gly sample solution at 0.1 % concentration of the impurities in 

dependence of systematic variations of the chromatographic conditions.   

   Flow rate 
(mL/min) 

Column 
temperature (°C) 

Evaporation 
temperature 

CAD (°C) 
Component  No variation 0.7 0.9 20 30 65 75 
ß-Ala S/N 79 86 64 78 84 103 83 

Res. 14.99 14.58 14.14 13.64 13.94 16.08 13.53 
Chloroacetic 
acid (UV) 

S/N 23 20 22 22 23 n.a.a n.a. 
Res. 3.02 3.05 3.79 2.38 4.37 n.a. n.a. 

 Glycine 
anhydride 

S/N 56 60 49 50 54 58 69 
Res. 14.39 15.09 13.17 14.19 14.13 14.73 13.42 

Gly-Gly S/N 47 67 25 52 47 53 59 
Res. 2.81 2.46 3.16 2.71 2.67 2.84 2.73 

Gly-Gly-Gly S/N 61 67 41 61 62 69 76 
Res. 1.96 2.18 1.69 1.81 2.01 2.02 1.85 

Iminodiacetic 
acid 

S/N 50 50 46 45 50 49 66 
Res. 13.98 14.31 13.26 13.86 13.77 14.61 13.21 

Sar S/N 36 36 35 35 37 44 38 
Res. 9.94 8.83 9.09 9.87 9.35 10.71 9.39 

Ser S/N 45 46 44 41 47 47 62 
Res. b.s.b b.s. b.s. b.s. b.s. b.s. b.s. 

Urotropine S/N 22.6 22 19 20 20 19 62 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Res. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
a Not applicable. 
b Baseline separation obtained. The actual resolution value was below 1.5 due to the vast peak width of the main 

peak used for calculation. 
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4. Final discussion 

The studies performed in this thesis were aimed at evaluating the influence of recently 

implemented instrumental settings and various chromatographic separation techniques on the 

performance of the latest generation charged aerosol detector. The optimization strategies 

deduced from these insights served as basis for the development of impurity profiling methods 

for amino acids and amino acid-derived APIs intended for a compendial application. Amino 

acids lack chromophores in most cases and are poorly retained on conventional RP columns 

due to their hydrophilic and zwitterionic properties. Thus, the routinely employed HPLC-UV 

analysis is not feasible, which is also reflected in the compendial employed derivatization 

procedures [1]. The combination of CAD and modern separation techniques such as HILIC 

and MMC offers a solution to the detection and separation related issues. However, the 

optimization of the CAD settings and the chromatographic conditions, e. g. the mobile phase 

composition, is essential to meet the compendial requirements. Moreover, potential drawbacks 

of the novel techniques must be considered as well. 

4.1. Performance evaluation of the CAD 
4.1.1.  Uniformity 
The main factor towards uniform CAD response is the volatility of the compounds. While 

volatile compounds are in general not accessible to CAD, the response of semivolatile 

compounds is influenced by the instrumental and chromatographic parameters.  

Among the chromatographic parameters, the mobile phase additive can be considered as the 

most relevant factor towards nonuniform response at isocratic conditions. It was demonstrated 

in this thesis that the response of analytes with basic moiety increases with the chain length of 

the negatively charged perfluorocarboxylic acid applied as ion-pairing reagent. The salt 

formation between ionized analytes and high molecular mass mobile phase additives of 

opposing charge thus impedes a uniform response in analyses where uncharged analytes are 

present as well. For an improved uniformity of response, low molecular mass additives such 

as formic acid and ammonium formate should be favored. 

With respect to the CAD settings, it was shown that the uniformity of response is highest at 

low evaporation temperatures (<35 °C) for a set of homologous fatty acids (C12-C18) 

representing semivolatile and nonvolatile compounds. At elevated evaporation temperatures, 

the apolar fatty acids investigated behaved as semivolatile compounds indicated by a 

pronounced loss of response. Consequently, the use of higher evaporation temperatures 

should be restricted to the analysis of polar nonvolatile analytes such as amino acids, which 

are less affected by a loss of response. Additionally, the highly desirable quantitation of several 



172 FINAL DISCUSSION 
       

 

compounds by a single calibrant is impaired when some of the analytes behave as 

semivolatiles at high evaporation temperatures.  

The response dependency on the chain length of the fatty acids was further investigated by a 

machine learning approach to identify the significant molecular properties responsible for the 

observed differences. Since there are no distinct boundaries between a semivolatile and a 

nonvolatile compound [2], the development of quantitative structure property relationship 

(QSPR) models is beneficial for a better understanding of the response determining factors. In 

the case of the fatty acids investigated, it could be shown that steric factors as well as the 

molecular weight of the fatty acids contribute to the differences in response. Interestingly, the 

influence of the molecular descriptor associated with the steric information was more 

pronounced than the molecular weight of the fatty acids, considering that the molecular weight 

of a compound is highly correlated to its volatility. A comprehensive model incorporating 

diverse compound classes and various chromatographic conditions would be highly desirable 

for a universal quantitation approach. Machine learning algorithms such as artificial neural 

networks and gradient boosted trees represent powerful tools to accomplish this challenging 

task. 

4.1.2.  Sensitivity 

In accordance with the prerequisites for a uniform CAD response, the sensitive detection of 

volatile compounds is not feasible with the CAD and the response is generally reduced for 

semivolatile compounds. For the CAD’s application in the compendial impurity analysis 

methods, the required sensitivity limits depend on the specifications stated in the ICH guideline 

Q2(A1) [3]. Thus, the desired limits of quantitation (LOQs) for drugs with a daily intake of less 

than 2 g should be at least equal to 0.05% (m/m) with respect to the API. In the present thesis, 

the LOQs obtained for numerous nonvolatile and semivolatile compounds did not exceed 

50 ng injected mass on column (equivalent to a sample concentration of 5 mg/mL and an 

injection volume of 20 µL), which is sufficient for impurity analysis purposes. The LOQs 

determined with respect to the S/N approach of the ICH guideline Q2(R1) [4] as part of the 

method validation procedures are summarized Table 1. 

Table 1. LOQs of the compounds studied within this thesis and respective applied evaporation 

temperatures and retention modes.                                                                                                                             

Compound LOQ (ng on column) Evaporation 
temperature (°C) 

Retention mode 

alanine 8/6/3 50/50/50 IPC1/IPC2/HILIC 
asparagine 8 50 IPC 
aspartic acid 8 50 IPC 
cysteine 10/10 50/50 IPC/HILIC 
diglycine 30 70 IPC 
gabapentin 3 30 RPC 
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Compound LOQ (ng on column) Evaporation 
temperature (°C) 

Retention mode 

gabapentin impurity B 50 30 RPC 
gabapentin impurity D 4 30 RPC 
gabapentin impurity E 2 30 RPC 
gabapentin impurity G 3 30 RPC 
glycine 30 70 IPC 
glycine anhydride 20 70 IPC 
iminodiacetic acid 25 70 IPC 
isoleucine 5/3 50/50 IPC/HILIC 
leucine 5/3 50/50 IPC/HILIC 
linoleic acid 2 30 RPC 
malic acid 20 50 IPC 
methionine 5/3 50/50 IPC/HILIC 
myristic acid 8 30 RPC 
oleic acid 2 30 RPC 
palmitic acid 2 30 RPC 
petroselinic acid 1 30 RPC 
phenylalanine 10/3 50/50 IPC/HILIC 
sarcosine 30 70 IPC 
serine 30 70 IPC 
ß-alanine 30 70 IPC 
stearic acid 1 30 RPC 
triglycine 30 70 IPC 
urotropine 50 70 IPC 
valine 5/3 50/50 IPC/HILIC 
vigabatrin 25 70 MMC 
vigabatrin impurity D 
(γ-aminobutyric acid) 

12 70 MMC 

vigabatrin impurity E 18 70 MMC 
 
It was demonstrated that the evaporation temperature setting is an essential tool for the 

adjustment of a method’s sensitivity limits considering the analyte properties as well as the 

chromatographic conditions. This is illustrated by the broad evaporation temperature ranges 

(30-70 °C) selected for the individual method optimization. Analyses including semivolatile 

compounds require low evaporation temperatures, preferentially below the default value of 

35 °C. However, mobile phases of high purity are mandatory since the presence of semivolatile 

mobile impurities gives rise to elevated levels of background noise under these conditions. In 

contrast, the LOQs of analyses solely containing nonvolatile, evaporation-resistant analytes, 

e.g. amino acids, can be significantly improved by increasing the evaporation temperature. 

The benefit of higher evaporation temperatures is most pronounced for methods using 

additives with known adverse effect on the background noise, e.g. ion-pairing reagents. A 

potential drawback of higher evaporation temperatures in impurity profiling is the reduced 

sensitivity for unknown semivolatile impurities which might occur over time.  

It should be mentioned that the sensitivity of the recent generation CAD models is superior 

compared to the legacy CAD models, which is mainly due to the more efficient concentric 

nebulization process [5]. However, in case of the semivolatile compounds lauric acid and 

myristic acid, the LOQs obtained for the legacy Corona CAD models were superior compared 

to the current Vanquish CAD model. This can be explained by the ambient temperature 
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evaporation which takes place in case of the Corona CAD, whereas comparable low 

evaporation temperatures are not applicable to the Vanquish CAD due to the more sensitive 

detection of semivolatile mobile phase impurities. While semivolatile analytes may complicate 

method transfer between legacy and current CAD models, the sensitivity for nonvolatile 

compounds should be sufficient for all CAD models when a compendial application is intended. 

4.1.3. Linearity 

An inherently nonlinear shape of the response curve is characteristic for the CAD due to the 

involved nonlinear particle generation and subsequent particle charge measurement 

processes. However, for a compendial application, calibration ranges of less than 2 orders of 

magnitude (0.03%-0.24%) are sufficient, which complies with the quasi-linear range of the 

CAD. Consequently, the linearity was acceptable for an accurate quantitation of the impurities 

without the need for a more complex calibration model in most of the impurity analysis methods 

developed during the present thesis (Table 2). As the coefficient of determination (R2) obtained 

for the calibration curve is not a robust metric for the evaluation of linearity, visual inspection 

of the residual plot complemented the linearity assessment in each case. 

Table 2. Linearity parameters of the developed impurity analysis methods. 

Impurity analysis R2 range Calibration range  
(ng on column) 

Calibration type 

aspartic acid 0.9982-0.9995 30-240 linear 
gabapentin 0.9972-0.9989/0.9993-

0.9999 
50-400 linear/PFV 1.3 

glycine 0.9962-0.9997 50-400 linear 
polysorbate 0.9914-0.9988/0.9993-

0.9998/0.9970-0.9996 
10-1000 linear/log-log/PFV 1.1 

valine 0.9991-0.9998 10-80 linear 
vigabatrin 0.9991-0.9996 45-360 linear 

 
In case of nonlinear CAD response, data linearization by means of double logarithmic 

transformation is often adequate to obtain an improved quality of fit. However, the data is 

modified subsequently to its generation, which impairs the data integrity and can be 

troublesome in a GMP regulated environment [6]. A more straightforward approach is the use 

of an optimized PFV to obtain a linear signal without any additional data manipulation. Thereby, 

the instrumental setting directly alters the CAD’s signal output by application of a correction 

factor to the exponent of the power law equation which describes the nonlinear response. As 

the experimental determination of the optimal PFV is rather time-consuming and inaccurate, 

empirical, and mathematical PFV optimization approaches can be applied instead. Table 3 

illustrates the characteristics of the individual optimization approaches. 
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Table 3. PFV optimization approaches. 

 Optimization approach 
Parameter Experimental Empiricala Mathematical 
effort high low low 
accuracy low high high 
proprietary no no yes 
general applicability nonvolatile and 

semivolatile analytes 
nonvolatile analytes nonvolatile and 

semivolatile analytes 
preferred metric for 
linearity assessment 

residual plot/%RSD of 
the response factors 

%RSD of the response 
factors 

residual plot/R2 

a Based on Ref [7]. 

Mathematical PFV optimization by the proprietary Chromeleon software represents the most 

convenient approach and is generally applicable. An empirical approach introduced by Ahmed 

et al. [7] yields comparable results for nonvolatile analytes but is not generally applicable to 

semivolatile analytes since it relies on constants which depend on the shape of the response 

curve. In contrast to the sublinear response, which is obtained for nonvolatile analytes over 

almost the entire dynamic range of the current detector models [5], semivolatile analytes often 

produce a supralinear response. This represents a limitation of the PFV linearization method 

when nonvolatile and semivolatile analytes are to be investigated simultaneously, as PFV of 

>1 and <1 must be applied, respectively. Although a PFV “gradient” is technically applicable, 

the resulting chromatogram is questionable, as the PFV directly impacts the baseline noise. 

Thus, double logarithmic transformation or other mathematical operations such as quadratic 

fit might be better suited alternatives in this case. For analyses solely comprising nonvolatile 

analytes, the PFV optimization is a viable option to improve the CAD’s linearity in the range of 

interest and could thus be employed in the regulated environment. Since the optimal PFV 

depends on the chromatographic and instrumental conditions, the implementation of 

guidelines and thresholds is mandatory for a standardized application. 

4.2. Influence of IPC, MMC, and HILIC on the CAD performance 

The separation technique and, concomitantly, the composition of the mobile phase is an often 

neglected but crucial aspect toward CAD performance. In many cases, IPC, MMC, and HILIC 

can be used interchangeably to obtain the desired retention and separation of small polar 

analytes. Thus, the influence of the respective separation technique on the sensitivity of the 

CAD and on possible optimization strategies should be considered as well in the method 

development. 

The ion-pairing reagent used in IPC is decisive for the method’s sensitivity limits, because it is 

a highly contributing factor to additional background noise. While short chain ion-pairing 

reagents, e.g. TFA, are uncritical when applied in small concentrations, even slightest amounts 

of the long chain TDFHA acid have a substantial impact on the background noise due to the 

formation of nonvolatile salts of high molecular mass and the limited volatility of the acid. As a 
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general rationale for IPC method developed, the shortest chain ion-pairing reagent, which still 

facilitates sufficient retention and separation of the analytes, should be used. The usage of 

ion-pairing reagents available in high purity (≥99%) is essential to minimize additional 

background noise. The evaporation temperature of the CAD is a useful tool to improve the 

sensitivity in IPC methods, since the additional background noise is effectively reduced at 

elevated evaporation temperatures. Due to their polar nature and their formation of nonvolatile 

salts with the ion-pairing reagent, the response of the analytes is typically not impaired too 

much at higher evaporation temperatures. 

MMC and HILIC have comparable mobile phase requirements; thus, the optimization towards 

optimal CAD performance is similar. Commonly applied mobile phase additives include volatile 

buffers and pH modifiers. In contrast to IPC, the mobile phase additive can be considered as 

minor factor towards the generation of additional background noise. Consequently, the 

beneficial effect of the evaporation temperature on the background noise is less pronounced 

compared to IPC. A highly relevant factor towards obtainable sensitivity limits is column bleed, 

e.g. for silica-based columns [8]. Considering the higher sensitivity of the recent generation 

CAD models, the detection of nonvolatile mobile phase impurities originating from the column 

material can give rise to elevated levels of background noise. The selection of a column with 

low column bleed is a prerequisite for methods of adequate sensitivity and may require the 

screening of multiple columns of comparable selectivity from different manufacturers. Due to 

the highly organic modifier proportion required for the HILIC separation mode, the aerosol 

transport is more efficient compared to IPC, resulting in a higher response (Fig. 1). However, 

as the transport efficiency is likewise increased for mobile phase impurities, the purity of the 

organic modifier is of major importance.  

Figure 1. Overlay of chromatograms illustrating the influence of the mobile phase composition on the 

CAD response of alanine and on the background current. The evaporation temperature is 35 °C and the 

filter constant 1 s in each case. 
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4.3. Hyphenated UV-CAD 

Hyphenation of UV-CAD was essential for the development of purity analysis methods as part 

of the present thesis, since the impurity profiles of several APIs investigated comprised weakly-

chromophoric compounds as well as volatile compounds. The coupling of both detectors is 

suited for routine analysis purposes as it requires little additional effort. However, quantitation 

using a single calibrant is not feasible due to the noncomparable response factors. Thus, the 

respective UV and CAD chromatograms must be evaluated separately, also applying different 

calibration models where necessary. 

The choice of mobile phase additives and organic modifiers is severely limited when applying 

the hyphenated detection techniques. While the CAD is restricted to volatile mobile phases, 

UV detection requires mobile phases of low absorbance at the detection wavelength. When 

low wavelength UV detection (λ <220 nm) is needed, the requirements are even more strict. 

Modern separation techniques such as HILIC and MMC represent suitable options to meet 

these requirements, as they typically comprise mobile phases with low additive concentration 

(buffer/pH modifier) and ACN (UVcutoff = 190 nm) as organic modifier. Additionally, the usage 

of isocratic methods is highly desirable due to the distinct effect of the gradient on the baseline 

of each detector, which complicates the assignment and integration of the analyte peaks and 

possibly impairs the quantitation results. 

In some cases, even hyphenated UV-CAD is not sufficient to assess all possible impurities at 

the required sensitivity. Volatile compounds, which are also lacking a suitable chromophore, 

e.g. chloroacetic acid, elude both detection techniques [9]. Thus, the usage of orthogonal 

detection techniques such as NMR and MS is still indispensable. 

4.4. Charged aerosol detection in pharmaceutical analysis 

For the CAD’s further establishment in the field of pharmaceutical analysis, e.g. compendial 

monographs, the regulatory requirements must be met and the applicability confirmed by 

validation procedures. Based on the validation results of the present thesis, it can be stated 

that the CAD is suited for compendial impurity profiling purposes, with some limitations. 

For the general acceptance of a method, the demonstration of accuracy and precision is 

mandatory [4]. The results from the validation procedures within this thesis for the recovery 

rate and the intraday repeatability at 0.03% concentration level are depicted in Table 4. 
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Table 4. Recovery rates (%, n=3) and intraday repeatabilities (%RSD, n=6) of the assessed impurities 

at 0.03% (m/m) concentration, with respect to the API. Semivolatile impurities are listed separately. 

Impurity analysis Recovery ratea  
(%) 

Repeatability  
(%RSD) 

LOQ 
(%)b 

aspartic acid 92.2-111.5 2.6-3.4 0.008-0.01 
gabapentin 97.8-104.5 2.1-3.1 0.001-0.002 
glycine 97.5-112.4c 3.9-7.3 0.02-0.05 
polysorbate 95.9-99.2 0.6-2.5d n.d.e 

valine 94.1-101.0 1.0-2.2 0.009 
vigabatrin 88.8-91.4 3.7-4.0 0.008-0.01 
semivolatile impurities    
gabapentin impurity B 97.8 8.4 0.03 
malic acid 103.7 4.0 0.02 
myristic acid 90.4 6.6 n.d. 

a Obtained from linear regression. 
b With respect to the concentration of the API. 
c The recovery rate of sarcosine (75%) was not considered since it was impaired by coelution with the main peak. 
d n=3. 
e Not determined. 

Satisfactory accuracy and precision concomitant with low LOQs were obtained for all methods 

developed. Considering that the employed separation techniques included RPC, IPC, HILIC, 

and MMC, it could be confirmed that the CAD is generally applicable to the analysis of 

nonvolatile small polar compounds. However, the proper adjustment of the CAD settings is 

essential to achieve optimal performance, e.g. when the sensitivity limits are close to the 

compendial claimed reporting threshold. As these optimization tools are not available for the 

legacy CAD models, methods developed and adapted to meet the compendial requirements 

on a recent CAD model cannot easily be transferred to a legacy model.  

The impact of the different CAD models is probably most pronounced for semivolatile analytes. 

Due to its principle of detection, the CAD’s repeatability of response is inherently reduced for 

semivolatile compounds, which is reflected in a comparatively high %RSD (Table 4). For the 

semivolatile myristic acid and gabapentin impurity B, it was demonstrated that even a minor 

alteration of the evaporation temperature (5 °C) has a substantial effect on the analyte 

response. The evaporation temperature of the legacy CAD models is fixed at ambient 

temperature; thus, a reliable and reproducible quantitation of semivolatile compounds on 

different CAD models should be difficult to attain. 

To sum up, the CAD’s suitability as detector employed in pharmaceutical analysis for routine 

and quality control purposes is further enhanced by the implementation of new instrumental 

settings. The sensitivity and linearity of impurity analysis methods can be adjusted by proper 

selection of the evaporation temperature and PFV, respectively, to meet the requirements of 

the regulatory authorities. However, due to the novelty of the introduced instrumental 

parameters, the method development lacks standardization and the transferability between the 

CAD models can be troublesome. Harmonization and the provision of guidelines for method 
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development [10] should be addressed in the future to promote the detector’s use in the 

regulated environment. 

4.5. Conclusion 

Since the CAD’s commercial introduction in 2005, the detection technique has been 

established and stands out among the aerosol-based detectors due to its superior response 

uniformity [11] and the higher sensitivity compared to the main competitor ELSD [12]. Although 

the CAD is not as sensitive as the UV and MS detectors in most cases, it is of use in several 

application areas of pharmaceutical relevance such as the analysis of non-chromophoric APIs 

and excipients, the relative quantitation of unknown impurities, and polymer screening [13]. 

The implementation of the evaporation temperature and PFV settings in the recent generation 

CAD models addressed two main drawbacks of the detection principle, namely the response 

dependency on the analyte volatility, and the inherently nonlinear response. Hence, the 

sensitivity and linearity of the CAD can be adjusted to the individual goals and requirements of 

the intended application, which further extends the scope of the detector. The downside of the 

additional instrumental parameters is the current lack of standardization. General optimization 

strategies as they were developed and evaluated within this thesis are essential to facilitate 

the method development and to increase the acceptance in the regulated environment.  

Modern separation techniques such as HILIC and MMC further enhance the CAD capabilities, 

because their mobile phase conditions are beneficial to the CAD’s sensitivity and allow the 

usage of hyphenated detection techniques, e.g. UV-CAD and CAD-MS. The use of UV-CAD 

for the impurity analysis of vigabatrin in the Ph. Eur. confirms the applicability of the 

hyphenated techniques for compendial purposes [14].  

The combination of IPC/HILIC/MMC, a parameter adjusted CAD, and a complementary 

detection technique such as UV enables a sensitive and comprehensive analysis of 

challenging compounds, e.g. amino acids, which could be experimentally verified in this work. 

Compared to the compendial applied derivatization procedures and multiple method 

approaches, the IPC/HILIC/MMC-CAD-UV setup is more straightforward and selective. 

Moreover, it is less costly and easier-to-use in relation to the more sensitive MS. A soon 

replacement of the partly outdated compendial methods, however, is thwarted by the monopoly 

of the CAD manufacturer and the less advanced column standardization compared to RPC. 
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5. Summary 

The charged aerosol detector (CAD) is an aerosol-based detector employed in liquid 

chromatography which has become established in the field of pharmaceutical analysis due to 

its outstanding performance characteristics, e.g. the almost uniform response for nonvolatile 

analytes. Owing to its principle of detection, the response of the CAD depends on the volatility 

of a compound and is inherently nonlinear. However, the newly implemented instrumental 

settings evaporation temperature and power function value (PFV) are valuable tools to 

overcome some of these drawbacks and can even enhance the detector’s capabilities when 

adjusted properly. 

This thesis aimed to evaluate the impact of the new instrumental settings on the CAD 

performance. Additionally, the influence of modern separation techniques for small polar 

compounds on the CAD was assessed and the applicability of hyphenated UV-CAD 

techniques explored. The optimization strategies derived from the evaluation procedures and 

the conjunction of the instrumental and chromatographic techniques investigated were utilized 

for the challenging impurity profiling of amino acids and amino acid-like drugs.  

Studies on the uniformity of response were performed for fatty acids of different chain length 

(C12-C18) representing semivolatile and nonvolatile compounds. It was demonstrated that the 

CAD’s evaporation temperature setting is crucial for the response uniformity, with the highest 

uniformity being obtained at low evaporation temperatures. The studies on the fatty acids were 

extended to determine the response determining factors leading to the observed differences 

associated with the chain length. A mixed quantitative structure property relationship (QSPR) 

model incorporating chromatographic parameters as well as molecular descriptors was 

successfully established by means of a gradient boosted trees algorithm. The model could 

explain 99% of the observed variance in response and identified a steric factor corresponding 

to the chain length, followed by the molecular weight as most influential molecular descriptors 

towards response. A comprehensive model suitable of universal quantitation could be obtained 

by expanding this approach to diverse compound classes of varying physicochemical 

properties. 

Fatty acids also served as test substances to investigate the influence of the CAD parameters 

filter constant and evaporation temperature on the detector’s sensitivity limits. While the 

optimal evaporation temperature represents the best compromise between analyte signal and 

background noise, a higher filter constant improves the background noise but likewise reduces 

the resolution of the analytes. The significance of the separation technique towards the CAD 

response was illustrated by comparison of representative mobile phase compositions of ion 

pair chromatography (IPC) and hydrophilic interaction chromatography (HILIC) using a 

response surface model approach. While the obtainable sensitivity limits in IPC are mainly 
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dependent on the type of ion-pairing reagent applied, HILIC analyses of nonvolatile amino 

acids can be optimized by increasing the evaporation temperature. Theoretically, the highly 

organic mobile phases used in HILIC are beneficial to the sensitivity due to the increased CAD 

response obtained at these conditions. However, pronounced column bleed of silica based 

HILIC columns concomitant with high levels of background noise can potentially counteract 

the higher response. 

The PFV setting enables the linearization of nonlinear CAD response without subsequent data 

manipulation; thus, it is of relevance for the regulated environment. For the simultaneous 

analysis of semivolatile and nonvolatile analytes, double logarithmic transformation should be 

preferred to PFV optimization, because semivolatile analytes showing supralinear response 

require PFV <1, in contrast to nonvolatile analytes, which could be confirmed for the fatty acids 

investigated. As the experimental PFV optimization is time-consuming, empirical, and 

mathematical optimization approaches were compared for the response linearization of 

gabapentin and its impurities. Both optimization approaches yielded comparable results for the 

nonvolatile analytes, however the proprietary mathematical approach is also applicable to 

semivolatile analytes. The recovery rates of the gabapentin impurities were significantly 

improved when an optimized PFV was utilized, further supporting the benefit of the setting for 

impurity analysis. 

The CAD is increasingly used in hyphenated detection techniques for a comprehensive 

analysis. The consequences of the mobile phase composition on the hyphenated UV-CAD 

techniques were demonstrated for the impurity analysis of vigabatrin. Mobile phases with low 

additive concentration and the avoidance of long chain ion-pairing reagents are beneficial to 

the coupled detection mode as it was exemplified by the comparison of a developed mixed-

mode chromatography (MMC) method to a compendial IPC method. 

Previously discussed optimization strategies allowed the adaptation to the individual impurity 

profile and the present mobile phase composition in the development of methods for the 

impurity profiling of amino acids and their derivatives. Established separation techniques for 

small polar compounds, e.g. IPC, and modern techniques such as HILIC and MMC were 

coupled to the CAD and additionally, where applicable, UV detection. The results of the method 

validation procedures confirmed the broad applicability of the CAD in the pharmaceutical 

analysis of nonvolatile compounds, supported by satisfactory sensitivity and reproducibility for 

meeting the regulatory requirements with respect to the ICH guidelines Q2(R1) and Q3A(R2). 

The limits of applicability include the analysis of semivolatile compounds, and the method 

transfer between current and legacy CAD models. Further advances in the definition and 

standardization of allowed ranges for the instrumental settings and the establishment of 
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general optimization procedures in the method development could lead to a more widespread 

use of the detection technique in compendial methods.
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6. Zusammenfassung 

Der “charged aerosol detectorˮ (CAD) ist ein aerosol-basierter Detektor in der 

Flüssigchromatographie, der sich im Bereich der pharmazeutischen Analytik etabliert hat, da 

er über herausragende Leistungsmerkmale verfügt, wie das annährend einheitliche Signal für 

nichtflüchtige Analyte. Aufgrund des Detektionsprinzips ist das Signal des Detektors abhängig 

von der Flüchtigkeit einer Verbindung und zudem nichtlinear. Die neu eingeführten 

Geräteparameter Verdampfungstemperatur und „power function value” (PFV) stellen hierbei 

wertvolle Werkzeuge dar, um einige der mit dem Detektionsprinzip verbundenen Nachteile 

auszugleichen und können darüber hinaus die Detektionsmöglichkeiten erweitern, sofern sie 

auf geeignete Weise eingestellt wurden. 

Die vorliegende Arbeit hatte zum Ziel, die Auswirkungen der neuen Geräteparameter auf die 

Leistungsfähigkeit des Detektors zu untersuchen. Zusätzlich wurde der Einfluss moderner 

Trenntechniken auf den CAD beurteilt und die Anwendbarkeit gekoppelter UV-CAD Techniken 

erforscht. Die sich aus den Evaluierungsprozeduren ergebenden Optimierungsstrategien und 

die Verknüpfung der untersuchten instrumentellen und chromatographischen Techniken 

wurden anschließend verwendet, um Methoden für die herausfordernde 

Verunreinigungsanalyse von Aminosäuren und Arzneistoffen mit Aminosäurestruktur zu 

entwickeln. 

Es wurden Studien zur Uniformität des Signals von Fettsäuren (C12-C18) durchgeführt, bei 

denen es sich um halbflüchtige und nichtflüchtige Verbindungen handelt. Es konnte gezeigt 

werden, dass die Verdampfungstemperatur entscheidend für die Einheitlichkeit des Signals 

ist, wobei die größte Einheitlichkeit bei niedrigen Verdampfungstemperaturen erzielt wurde. 

Die Studien zu den Fettsäuren wurden im Folgenden ausgeweitet, um diejenigen Faktoren zu 

ermitteln, die entscheidend für die beobachteten Unterschiede in der Signalintensität sind und 

welche im Zusammenhang mit der Kettenlänge der Fettsäuren stehen. Ein gemischtes 

„quantitative structure property relationship” (QSPR)-Modell, das sowohl chromatographische 

Parameter also auch molekulare Deskriptoren beinhaltete, wurde erfolgreich unter 

Verwendung eines „gradient boosted trees“-Algorithmus konstruiert. Das Modell war in der 

Lage, 99 % der beobachteten Signalvarianz zu erklären und identifizierte einen sterischen 

Faktor, der im Zusammenhang zu der Kettenlänge der Fettsäuren steht, gefolgt vom 

Molekulargewicht, als molekulare Deskriptoren mit dem größten Einfluss auf das Signal. Ein 

umfassendes Modell, das für eine universelle Quantifizierung geeignet wäre, könnte erhalten 

werden, indem man diesen Ansatz auf verschiedene Verbindungsklassen mit 

unterschiedlichen physiko-chemischen Eigenschaften ausdehnt.  
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Fettsäuren dienten außerdem als Testsubstanzen, um die Auswirkungen der CAD-

Einstellungen Filterkonstante und Verdampfungstemperatur auf die Empfindlichkeitsgrenzen 

des Detektors zu untersuchen. Während die optimale Verdampfungstemperatur den besten 

Kompromiss aus Analytsignal und Hintergrundrauschen darstellt, verbessert eine hohe 

Filterkonstante das Hintergrundrauschen bei gleichzeitiger Verschlechterung der Auflösung 

der Analyte. Der Einfluss der verwendeten Trenntechnik auf das CAD-Signal wurde durch den 

Vergleich repräsentativer Zusammensetzungen von mobilen Phasen der 

Ionenpaarchromatographie (IPC) und der hydrophilen Interaktionschromatographie (HILIC) 

mittels eines „response surface“-Modells aufgezeigt. Während die erreichbaren 

Empfindlichkeitsgrenzen in der IPC hauptsächlich von der Art des verwendeten 

Ionenpaarreagenzes abhängen, konnte die Empfindlichkeit von HILIC-Analysen nichtflüchtiger 

Aminosäuren durch eine Erhöhung der Verdampfungstemperatur optimiert werden. In der 

Theorie sind die für die HILIC verwendeten mobilen Phasen mit hohem organischem Anteil 

förderlich für die Empfindlichkeit, da unter diesen Bedingungen ein stärkeres CAD-Signal 

erhalten wird. Jedoch kann das stärkere Signal potenziell durch ausgeprägtes Säulenbluten 

von mit Siliziumdioxid gepackten HILIC-Säulen, das mit hohem Grundrauschen einhergeht, 

konterkariert werden. 

Die PFV-Einstellung ermöglicht die Linearisierung eines nichtlinearen CAD-Signals ohne 

nachträgliche Datenmodifikation. Aus diesem Grund ist sie von Relevanz in einer regulierten 

Umgebung. Für die gleichzeitige Analyse von halbflüchtigen und nichtflüchtigen Analyten sollte 

die doppelt-logarithmische Transformation gegenüber der PFV-Optimierung vorgezogen 

werden, da halbflüchtige Analyte ein supralineares Signal aufweisen und daher, im Gegensatz 

zu nichtflüchtigen Analyten, PFV < 1 erfordern, was für die untersuchten Fettsäuren bestätigt 

werden konnte. Da die experimentelle Optimierung des PFV zeitraubend ist, wurden 

empirische und mathematische Optimierungsansätze verglichen, um das Signal von 

Gabapentin und möglichen Verunreinigungen zu linearisieren. Beide Optimierungsansätze 

erzielten vergleichbare Ergebnisse im Falle der nichtflüchtigen Analyten, allerdings ist der 

firmeneigene mathematische Optimierungsansatz auch auf halbflüchtige Analyte anwendbar. 

Die Wiederfindungsraten der Verunreinigungen von Gabapentin konnten signifikant verbessert 

werden, wenn der optimierte PFV genutzt wurde, wodurch der Mehrwert der Einstellung für 

die pharmazeutische Analytik unterstrichen wurde. 

Der CAD findet zunehmend Verwendung in gekoppelten Detektionstechniken für eine 

umfassende Analyse. Die Auswirkungen der Zusammensetzung der mobilen Phase auf die 

gekoppelten UV-CAD-Techniken wurden für die Verunreinigungsanalyse von Vigabatrin 

aufgezeigt. Mobile Phasen mit einer geringen Konzentration an Additiv und die Vermeidung 

langkettiger Ionenpaarreagenzien sind förderlich für den gekoppelten Detektionsmodus, was 
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anhand des Vergleichs einer neu entwickelten „mixed-mode“-Chromatographie-Methode mit 

einer IPC-Methode aus dem Arzneibuch veranschaulicht wurde.  

Die zuvor erörterten Optimierungsansätze ermöglichten die Anpassung an das individuelle 

Verunreinigungsprofil sowie an die vorliegende Zusammensetzung der mobilen Phase in der 

Methodenentwicklung für die Verunreinigungsanalyse von Aminosäuren und ihrer Derivate. 

Etablierte Trenntechniken für kleine polare Verbindungen, insbesondere IPC, sowie moderne 

Trenntechniken wie HILIC und MMC wurden mit dem CAD gekoppelt und zusätzlich, wenn 

notwendig, mit UV-Detektion. Die Ergebnisse der Validierungsverfahren bestätigten die 

weitgehende Anwendbarkeit des CAD in der pharmazeutischen Analyse nichtflüchtiger 

Verbindungen, unterstützt durch zufriedenstellende Empfindlichkeit und Reproduzierbarkeit, 

wodurch die Vorgaben der ICH-Leitfäden Q2(R1) und Q3A(R2) erfüllt werden konnten. 

Einschränkungen der Anwendbarkeit bestehen in der Analyse halbflüchtiger Verbindungen, 

sowie im Methodentransfer zwischen gegenwärtigen und alten CAD-Modellen. Weitere 

Fortschritte in der Definition und Standardisierung erlaubter Bereiche für die Einstellung der 

Geräteparameter und die Etablierung allgemeiner Optimierungsverfahren in der 

Methodenentwicklung könnten zu einer umfassenderen Nutzung der Detektionstechnik für 

Arzneibuchmethoden führen.  
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