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Abstract

Significant advances in fluorescence imaging techniques enable life scientists today to
gain insights into biological systems at an unprecedented scale. The interpretation of
image features in such bioimage datasets and their subsequent quantitative analysis is
referred to as bioimage analysis. A substantial proportion of bioimage analyses is still
performed manually by a human expert - a tedious process that is long known to be
subjective. Particularly in tasks that require the annotation of image features with a
low signal-to-noise ratio, like in fluorescence images of tissue samples, the inter-rater
agreement drops. However, like any other scientific analysis, also bioimage analysis
has to meet the general quality criteria of quantitative research, which are objectivity,
reliability, and validity. Thus, the automation of bioimage analysis with computer-aided
approaches is highly desirable. Albeit conventional hard-coded algorithms are fully
unbiased, a human user has to set its respective feature extraction parameters. Thus,
also these approaches can be considered subjective.

Recently, deep learning (DL) has enabled impressive advances in computer vision re-
search. The predominant difference between DL and conventional algorithms is the
capability of DL models to learn the respective task on base of an annotated train-
ing dataset, instead of following user-defined rules for feature extraction. This thesis
hypothesized that DL can be used to increase the objectivity, reliability, and validity
of bioimage analyses, thus going beyond mere automation. However, in absence of
ground truth annotations, DL models have to be trained on manual and thus subjec-
tive annotations, which could cause the model to incorporate such a bias. Moreover,
model training is stochastic and even training on the same data could result in models
with divergent outputs. Consequently, both the training on subjective annotations and
the model-to-model variability could impair the quality of DL-based bioimage analy-
ses. This thesis systematically assessed the impacts of these two limitations experimen-
tally by analyzing fluorescence signals of a protein called cFOS in mouse brain sections.
Since the abundance of cFOS correlates with mouse behavior, behavioral analyses could
be used for cross-validation of the bioimage analysis results. Furthermore, this thesis
showed that pooling the input of multiple human experts during model training and
integration of multiple trained models in a model ensemble can mitigate the impact of
these limitations. In summary, the present study establishes guidelines for how DL can
be used to increase the general quality of bioimage analyses.
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Zusammenfassung

Fortschritte in den Methoden der fluoreszenz-basierten Bildgebung ermöglichen Biowis-
senschaftlern heutzutage noch nie dagewesene Einblicke in biologische Systeme. Die
Interpretation sowie die anschließende quantitative Analyse von Bildelementen in bi-
ologischen Bilddatensätzen wird in der Wissenschaft als bioimage analysis bezeichnet.
Ein wesentlicher Anteil der bioimage analysis wird noch immer von Experten per Hand
durchgeführt - ein mühsamer Prozess, von dem man seit langem weiß, dass er subjek-
tiv ist. Besonders bei Aufgabestellungen, welche die Annotierung von Bildelementen
mit einem geringen Signal-Rausch-Verhältnis erfordern, wie es beispielsweise bei Flu-
oreszenzbildern von Gewebeproben der Fall ist, sinkt die Übereinstimmung zwischen
den Bewertungen mehrerer Experten. Genauso wie jede andere wissenschaftliche Anal-
yse, muss jedoch auch die bioimage analysis den generellen Qualitätskriterien quantita-
tiver Forschung gerecht werden. Dies sind Objektivität, Zuverlässigkeit und Validität.
Die Automatisierung der bioimage analysis mit Hilfe von computer-basierten Ansätzen
ist somit erstrebenswert. Konventionelle, hartkodierte Algorithmen sind zwar vollkom-
men unvoreingenommen, jedoch legt ein menschlicher Benutzer jene Parameter fest,
die der Algorithmus für die Extraktion der relevanten Bildelemente nutzt. Aus diesem
Grund sind auch diese Ansätze zumindest partiell subjektiv.

In den letzten Jahren hat Deep learning (DL) zu beeindruckenden Fortschritten auf dem
Forschungsgebiet der computer vision beigetragen. Der vorherrschende Unterschied
zwischen DL und konventionellen Algorithmen besteht darin, dass DL Modelle in der
Lage sind die jeweilige Aufgabe auf Grundlage eines annotierten Trainingsdatensatzes
zu lernen, anstatt starr den Parametern zu folgen, die der Benutzer für die Extraktion
der relevanten Bildelemente vorgegeben hat.

In dieser Dissertation wurde die Hypothese untersucht, ob DL, neben der Möglichkeit
der automatischen Bildanalyse, auch dazu genutzt werden kann die Objektivität, die
Zuverlässigkeit und die Validität der Bildanalyse zu verbessern. Ohne eine objektive
Referenzannotierung muss das Training der DL Modelle jedoch auf händisch erstellten
und somit also subjektiven Annotierungen durchgeführt werden. Theoretisch könnte
dies dazu führen, dass das DL-Modell diese Vorgeingenommenheit übernimmt. Außer-
dem unterliegt das Training der Modelle stochastischen Prozessen und selbst Modelle,
die auf den gleichen Trainingsdaten trainiert wurden, könnten sich danach in ihren aus-

6



gegeben Analysen unterscheiden. Demzufolge könnten also sowohl das Training auf
subjektiven Annotierungen als auch die Variabilität von Modell zu Modell die Qualität
der DL-basierten Analyse von biologischen Bilddaten beeinträchtigen. In dieser Dis-
sertation werden die Einflüsse von diesen beiden Limitierungen auf Grundlage von
experimentellen Daten untersucht. In den experimentellen Bilddaten werden Fluo-
reszenzsignale des Proteins cFOS in Hirnschnitten von Mäusen dargestellt und hier
repräsentativ untersucht. Da das Vorkommen von cFOS mit dem Verhalten der Mäuse
korreliert, kann die Analyse des Verhaltens der Mäuse zur Kreuzvalidierung der Anal-
yse der biologischen Bilddaten herangezogen werden. Die Daten dieser Dissertation
zeigen, dass die Integration mehrerer Experten in das Training eines Modells sowie die
Integration mehrerer trainierter Modelle in ein Modell-Ensemble das Risiko einer sub-
jektiven oder nicht reproduzierbaren Bildanalyse abschwächen können. Diese Arbeit
etabliert Richtlinien dafür, wie DL verwendet werden kann, um die generelle Qualität
der Analyse biologischer Bilddaten zu erhöhen.
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1 Introduction

1 Introduction

Continuous advances in image acquisition techniques enable modern research through-
out the life sciences to increasingly gain information about biological systems from im-
age data (A. Li et al., 2010; Osten and Margrie, 2013; Boutros et al., 2015; Meijering et al.,
2016; Caicedo, Cooper, et al., 2017; McDole et al., 2018; Caicedo, Goodman, et al., 2019).
With the concomitant optimization of fluorescent probes, it is now possible, for instance,
to perform simultaneous in vivo calcium imaging of two brain regions in unrestrained
mice (Gonzalez et al., 2019; Groot et al., 2020), to run high-throughput image-based
morphological profiling (Caicedo, Cooper, et al., 2017), or to record the development of
an entire mouse embryo at single cell level (McDole et al., 2018). The corresponding,
ever increasing amount of acquired image data calls for the automatized and unbiased
image data analysis (Danuser, 2011; McQuin et al., 2018; Moen et al., 2019; Caicedo,
Goodman, et al., 2019). And yet, the development of computer-aided image analysis
strategies for the bioimaging community failed for a long time to keep up with the pace
of innovations in the designs of both microscopy and experimental setups (Danuser,
2011; Meijering, 2012; Meijering et al., 2016).

1.1 Bioimage analysis of fluorescence microscopy data

Today, the majority of quantitative bioimage datasets in the life sciences is based on flu-
orescence microscopy (Caicedo, Roth, et al., 2019), which allows the targeted imaging of
fluorescently labeled macromolecules. The analysis process of such datasets is known
as bioimage analysis and requires the annotation of biologically relevant image features
and their subsequent quantitative analysis in order to test an underlying experimental
hypothesis (Meijering et al., 2016). While the quantitative analysis of annotated features
is usually straightforward and can easily be automatized (Meijering et al., 2016), the
annotation of image features is challenging (Meijering, 2012; Meijering et al., 2016; Van
Valen et al., 2016). Human experts integrate several criteria like morphology or fluo-
rescence signal intensity for the annotation process and a substantial level of program-
ming knowledge is required to transfer these criteria into a conventional, hard-coded
computer-aided approach (LeCun et al., 2015; Chamier et al., 2019). While there is a
plethora of computer-aided approaches for image feature segmentation available, they
are often limited to a very specific task (Meijering, 2012; Van Valen et al., 2016), and their
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1 Introduction

adaptation to new datasets again necessitates computational expertise (Chamier et al.,
2019). However, with the advent of deep learning (DL) algorithms that are capable of
learning a specific task solely by being presented with pairs of raw input and the de-
sired output, this is about to change (LeCun et al., 2015; Van Valen et al., 2016; Chamier
et al., 2019).

1.2 The basic principles of deep learning

DL is a subclass of machine learning approaches based on representation learning meth-
ods (LeCun et al., 2015). In a DL algorithm, a multitude of non-linear modules are ar-
ranged in several layers as a neural network (LeCun et al., 2015; Chamier et al., 2019).
Each module transforms its respective input into a more abstract representation of the
data, which serves as input for the following module. Thus, increasingly higher lev-
els of representations are created. Particularly high-level representations could then be
responsive even to minor changes in features of the original input that are key for the
correct discrimination, and yet be unaffected by major fluctuations in irrelevant fea-
tures (LeCun et al., 2015). This is in stark contrast to conventional algorithms or other
machine learning approaches, where such representations had to be hand-engineered
as feature extractors by thoroughly designing appropriate data transformations (LeCun
et al., 2015; Moen et al., 2019). Importantly, concepts like backpropagation allow the
identification of such representations within the neural network. During supervised
training of a DL algorithm, a loss-function is used to evaluate the deviation of the al-
gorithms prediction from the correct result (LeCun et al., 2015; Moen et al., 2019). With
the goal of minimizing this deviation, a gradient of the loss-function can be calculated
which allows to change the weights of each module within one layer, propagating back-
wards from the output layer-by-layer towards the input (LeCun et al., 2015; Moen et al.,
2019). Ultimately, the weights of modules that entail representations that contribute to
the correct prediction will be increased, while the weights of less relevant modules will
be decreased. Thus, DL has the potential to learn even a complex coherence that might
be hidden in a high-dimensional representation of the data, solely on base of a train-
ing dataset (LeCun et al., 2015; Moen et al., 2019). Once the training of the algorithm
is finalized, the trained model can be used to perform the respective task on new data
(LeCun et al., 2015; Moen et al., 2019; Chamier et al., 2019).
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1 Introduction

1.3 Deep learning in the life sciences

Initiated by the triumph of a DL-based submission in the 2012 ImageNet Large Scale
Visual Recognition Challenge (Krizhevsky et al., 2012), DL revolutionized the field of
artificial intelligence research, including computer vision (LeCun et al., 2015). Since
DL opens new possibilities to perform automatized image analysis, it also attracted the
attention of the bioimaging community and is discussed to become the new state-of-
the-art method for the analysis of bioimaging data, or even to enable analyses that were
so far impossible (LeCun et al., 2015; Moen et al., 2019; Chamier et al., 2019). Support-
ing this assumption, several recent studies confirmed the remarkable capacities of DL
in the field of bioimaging (a comprehensive collection can be found at nature.com/
collections/cfcdjceech). For example, Buggenthin et al. (2017) demonstrate that
DL can identify the lineage choice of primary hematopoietic progenitors from bright-
field images, up to three generations prior to the expression of conventional molecular
markers (Buggenthin et al., 2017). Similarly, DL can also be used to predict fluorescent
labels directly from bright-field images, both in 2D and 3D (Christiansen et al., 2018;
Ounkomol et al., 2018). Furthermore, DL was shown to be capable of enhancing the res-
olution of fluorescence images, for instance to generate super-resolution images from
diffraction-limited confocal images (Wang et al., 2019). Notably, DL-based approaches
were already shown to outperform conventional, hard-coded algorithms for several ap-
plications (Caicedo, Roth, et al., 2019).

However, application of DL approaches throughout the life sciences remained restricted,
essentially due to the high demands for both computing power and computational ex-
pertise (Haberl et al., 2018). Embedding of DL in commonly used frameworks like Fiji
(Falk et al., 2019) and the CellProfiler (McQuin et al., 2018), or in cloud-computing envi-
ronments (Haberl et al., 2018; Nath et al., 2019) are crucial steps to lift these limitations.
Nevertheless, before DL can unfold its full potential in the life sciences, biomedical re-
searchers have to familiarize themselves with its basic principles (Moen et al., 2019). In
addition, critical evaluation of DL-based workflows is essential to establish trust in the
hidden computations of DL models (Chamier et al., 2019). So far, DL approaches for
fluorescent feature annotations were primarily evaluated by similarity measures like
precision, recall, or F1-scores (Falk et al., 2019; Haberl et al., 2018; Caicedo, Goodman,
et al., 2019), while the main goal of bioimage analysis is to test a certain hypothesis (Mei-
jering et al., 2016). The effects of DL on the objectivity and reproducibility of bioimage
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1 Introduction

analysis, however, have not yet been evaluated systematically, irrespective of their im-
portance.

1.4 Limitations of deep learning strategies for bioimage analysis

Manual image analysis by a human expert is a pre-requisite for the training of DL algo-
rithms. However, it is a tedious process and can introduce a subjective bias (Chamier et
al., 2019; McQuin et al., 2018; Caicedo, Roth, et al., 2019; Collier et al., 2003), especially in
case of image features with borders of low contrast (Niedworok et al., 2016). Computer-
aided automation of the annotation process can speed up the analysis, but the imple-
mentation and the visual performance inspection of conventional algorithms remains
user-based and can therefore still be considered subjective (Tadrous, 2010; Chamier et
al., 2019). Likewise, the subjectivity of manual annotations also causes a critical problem
for DL-based approaches, since the network is trained on pairs of fluorescence images
and the corresponding manual annotations. Consequently, a subjective bias present in
the annotations of the training dataset could become incorporated into the DL model
(Falk et al., 2019; Chamier et al., 2019; Moen et al., 2019). Moreover, the training of DL
algorithms is a stochastic process and even the output of models trained on the same
training dataset could vary significantly (Dietterich, 2000). A possible reason for this
could be that the models get trapped in different local optima during the training, for
instance due to the random initialization of the weights prior to the training or due
to the random sampling of images during the training process (Dietterich, 2000; Ron-
neberger et al., 2015). Intuitively, such discrepancies could also affect the reproducibility
of annotations and hence of the subsequent statistical analysis. Thus, using a DL model
trained on the annotations of a single human expert might therefore yield subjective
and irreproducible bioimage analysis results, particularly on image datasets with low
signal-to-noise ratios.

1.5 Aim of this thesis

The central hypothesis of this thesis was, that DL could also hold the potential to in-
crease both objectivity and reproducibility of bioimage analyses. Here, objectivity de-
scribes the neutrality of the evidence, which is negatively affected by personal prefer-
ences, emotions, or any other limitation that could introduce a bias during data acquisi-
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1 Introduction

tion or analysis (Frambach et al., 2013). In case of fluorescent feature annotations, such
limitations could also be the context in which manual annotation was performed, in ad-
dition to subjective biases and individual graphical perception capabilities (Segebarth,
Griebel, Stein, R von Collenberg, et al., 2020a; Cleveland and McGill, 1985). Reproducibil-
ity refers to the consistency of the evidence and how likely it is to obtain the same results
if a given study is repeated under slightly changed conditions (Frambach et al., 2013;
Taylor and Kuyatt, 1994). In this study, reproducibility is assessed by the repetitive
analysis of the same bioimage dataset with different DL models.

In order to adhere to both quality criteria, the aforementioned limitations of DL-based
bioimage analyses have to be addressed. For instance, DL algorithms are not limited
to be trained on the annotations of only a single human expert and the pooled input of
multiple human experts could be used instead. In such a way, mutual and hence less
subjective annotations might have a higher impact during training of the algorithm.
Following the same reasoning as above, this could then cause the algorithm to learn
more objective annotation criteria.

Similarly, the output of several trained models can be merged into a model ensemble,
which is then used for the bioimage analysis. Ensemble-formation is a well-established
method to gain prediction quality (Dietterich, 2000) and could reduce the impact of
randomness during the training. Consequently, this would enhance the reproducibility
of ensemble-based bioimage analysis results.

In summary, this thesis systematically evaluates the impact of subjective manual anno-
tations and of model-to-model variability on the performance of DL algorithms and on
the corresponding, DL-enabled bioimage analyses results. Moreover, by testing adapta-
tions to the DL-based workflow, it derives guidelines for how DL can be used in order
to obtain objective and reproducible bioimage analysis results.

12



2 Material and Methods

2 Material and Methods

2.1 Mice

All experiments were performed in accordance with the guidelines set by the Euro-
pean Union and by our local veterinary authority (Veterinäramt der Stadt Würzburg)
and were approved by our institutional Animal Care, the Utilization Committee, and
the Regierung von Unterfranken, Würzburg, Germany (License numbers: 55.2-2531.01-
95/13, 55.2.2-2532-2-558, 55.2.2-2532.2-918-15).

All mice were bred in the animal facility of the Institute of Clinical Neurobiology at
the University Hospital of Würzburg. Animals were housed in groups of three to five
individuals and under standard laboratory conditions, i.e. 12 hours light/dark cycle
(LD 12:12), at constant temperature (21 ± 1°C), and with access to food and water ad
libitum. Pathogen-screening was performed once per year according to the Harlan 52M
profile (Harlan laboratories, Netherlands). In addition, mice were tested quarterly ac-
cording to the Harlan 51M profile. All mice used for this thesis were healthy, free of
pathogens, and showed no apparent behavioral phenotypes. The allocation of mice to
the specific experimental groups was randomized wherever possible. The experimenter
was blinded to the genotype of the mice for all behavioral experiments.

All behavioral experiments were performed during the subjective day phase of the ani-
mals and exclusively with male mice at an age of eight to twelve weeks. Prior to behav-
ioral testing, mice were transferred into new cages and housed individually over the
course of the experiments, yet with visual, olfactory, and auditory contact to each other
inside a ventilated cabinet (Scantainer, Scanbur). All mice were handled twice a day for
at least two consecutive days before the start of behavioral testing to habituate them to
the male experimenter and to the experimental rooms. For each experimental session,
mice were transported in their homecages to the experimental room.

2.2 Contextual fear conditioning

Contextual fear conditioning (also called threat conditioning; LeDoux, 2014) was per-
formed with the multi conditioning setup (series 256060) by TSE (Bad Homburg, Ger-
many). The motion of the mice during all sessions was tracked using the TSE MSC
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2 Material and Methods

FCS-SQ MED software. A squared conditioning chamber with a metal grid floor was
used as training context and was cleaned with 70% ethanol prior to each use.

2.2.1 Acquisition session

Mice were allowed to freely explore the training context for an initial habituation phase
of 60 s. Afterwards, five electric foot shocks (unconditioned stimulus, US: 1 s, 0.7 mA)
were presented with a fixed inter-stimulus interval of one minute. 30 seconds after the
last US presentation, i.e. after a total exploration time of 335 s, mice were transferred
back into their homecage and their housing cabinet.

2.2.2 Retrieval session

Mice were re-exposed to the training context 24 hours after the acquisition session and
allowed to freely explore the context for 360 s without presentations of the US.

2.2.3 Extinction sessions

To assess extinction learning, mice were re-exposed to the training context (360 s explo-
ration, no US presentations) twice a day with an inter-session interval of three hours for
three consecutive days, i.e. a total of six extinction session (Ext1 - Ext6). The first extinc-
tion session was performed 24 hours after the retrieval session and, thus, 48 hours after
the acquisition session.

2.2.4 Analysis of freezing behavior

The TSE MSC FCS-SQ MED software was used to compute the freezing behavior of each
mouse during each session, based on the motion tracking data. For this, freezing was
defined as a period of at least two seconds of complete immobilization of the animal, as
determined by the motion tracking, barring respiratory movements (Fanselow, 1980).
Two freezing periods were combined, if the time-interval between the two periods was
shorter than 100 ms.
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2 Material and Methods

2.2.5 Experimental groups for bioimage analysis of cFOS

Three groups of mice were used for the bioimage analysis of cFOS (Figure 1). A first
group of mice underwent contextual fear conditioning acquisition and retrieval as de-
scribed above (C+). In a second group (context control group, C-), mice were exposed
for 335 s to the training context, just as C+ mice during the acquisition session, but with-
out the presentation of electrical foot shocks. The retrieval session was identical for both
groups (360 s, no US presentations). Mice of a third group (homecage control group, H),
remained in their homecages within the housing cabinet during both acquisition and re-
trieval sessions.

Figure 1: Experimental conditions for bioimage analysis of cFOS signals.
Three experimental groups were investigated: Mice kept in their homecage (H), mice that were trained to a context, but did not
experience an electric foot shock (C-) and mice exposed to five foot shocks in the training context (C+). 24 hours after the initial
training (Acq), mice were re-exposed to the training context for memory retrieval (Ret). Memory retrieval induces changes in cFOS
levels. Adapted from Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).

2.3 Brain sample preparation

2.3.1 Anaesthesia

All mice were deeply anaesthetized prior to perfusion. For C- and C+ mice, anaesthesia
was induced 90 minutes after the retrieval session and at a comparable point in time
during the day for homecage controls. At first, mice were quickly anaesthetized us-
ing a rodent anaesthesia setup (Harvard Apparatus) and the volatile narcotic isoflurane
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(airflow 0.4 L/min, 4% isoflurane, Iso-Vet, Chanelle). Then, deep anaesthesia was in-
duced with a mixture of ketamine (100 mg/kg; Ursotamin, Serumwerk) and xylazine
(16 mg/kg; cp-Pharma, Xylavet, Burgdorf, Germany), which was injected intraperi-
toneally (12 µl/g bodyweight).

2.3.2 Perfusion

After the tail reflex and the hind limb pedal reflexes were absent and the deep anaes-
thesia of the mice was ensured, mice were dissected and transcardially perfused using
a gravity perfusion setup after puncturing the left ventricle. At first, the blood was
washed out by perfusion for five minutes with 0.4% heparin (Table 1). Afterwards, the
fixation of the tissue was achieved by perfusion with 4% PFA (Table 1) for another five
minutes. Ultimately, brains were dissected and post-fixed in 4% PFA for two hours at
4°C. The brains were then washed using 1x PBS (Table 1) prior to embedding in 6%
Agarose (in 1x PBS) for sectioning at a vibratome.

2.3.3 Serial sectioning

The embedded brains were cut in 40 µm thick coronal sections with a vibratome (Leica
VT1200). Starting from Bregma -1.22 mm (according to Paxinos and Franklin, 2004),
the following 30 posterior sections were considered as dorsal hippocampus. For the
bioimage analysis of cFOS in the dorsal hippocampus, the 4th, 14th, and 24th section of
each brain were evaluated.

2.4 Immunohistochemistry

Immunohistochemistry was performed with up to three free floating sections per well
in 24-well plates in a volume of 400 µl under constant shaking. For quenching, brain sec-
tions were incubated in quenching solution (Table 1) for one hour at RT. Sections were
then permeabilized and blocked in blocking solution (Table 1) for one hour at RT, be-
fore they were incubated with the following primary antibodies at indicated dilutions in
blocking solution for 48 hours at 4°C (mouse anti-Parvalbumin, SWANT, PV235, 1:5,000;
rabbit anti-cFOS, SynapticSystems, 226003, 1:10,000 (lot# 226003/7); guinea-pig anti-
NeuN, SynapticSystems, 266004, 1:400). The primary antibodies were washed off thrice
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with washing solution (Table 1) for ten minutes at RT. The sections were then incubated
with the following, fluorescently labeled secondary antibodies at a concentration of 0.5
mg/ml in blocking solution for 1.5 hours at RT (goat anti-mouse Alexa-488 conjugated,
Life sciences, Thermo; donkey anti-rabbit Cy3 conjugated, Jackson ImmunoResearch;
donkey anti-guinea-pig Cy5 conjugated, Jackson ImmunoResearch). Following another
three washes with washing solution and one wash with 1x PBS for ten minutes at RT,
the free floating sections were stained with DAPI (2 mg/ml) for five minutes. After two
final washes for ten minutes with 1x PBS at RT, the sections were mounted on an object
slide using Aqua-Poly/Mount and stored at 4°C.

2.5 Image acquisition

An inverted Olympus IX81 microscope equipped with an Olympus FV1000 confocal
laser scanning system, an Olympus UPlan SAPO 20x/0.75 objective, a FVD10 SPD spec-
tral detector, and diode lasers of 473, 559 and 635 nm was used for image acquisition.
For the bioimage analysis of cFOS, 12-bit z-stack images covering 636 x 636 µm (1024 x
1024 pixel) and the entire thickness of the brain section with a step-size of 1.5 µm were
acquired of the dentate gyrus (DG), the Cornu ammonis 1 (CA1), and the CA3 region of
the dorsal hippocampus. Confocal z-stack images of all examined hippocampal sub-
regions were acquired - wherever possible - in each hemisphere of the three examined
sections of each brain, resulting in a maximum of six images (n) of each hippocampal
subregion per animal (N). The experimenter was blinded to the experimental condition
and the genotype of the mice during image acquisition. Image acquisition parameters
were kept constant within each experiment.

2.6 Image processing

ImageJ (Schneider et al., 2012) was used for all image processing steps except final figure
preparation, which was performed using Adobe Photoshop (version CS5).

At first, a grey-scale maximum intensity projection was computed for each channel of
the confocal image z-stack and was converted from 12-bit to 8-bit without adaptations
to brightness or contrast. A total of 45 images derived from WT mice was selected for
training (36 images) and testing (nine images) of the DL algorithms. The images of both
subsets were selected to represent equal amounts of images of each investigated hip-
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pocampal subregion (DG, CA3, and CA1) and of each examined experimental condition
(H, C-, and C+). Thus, the training dataset contained four images of each experimental
condition per hippocampal subregion (4 x 3 x 3), whereas the testing dataset contained
one representative image of each experimental condition per hippocampal subregion (1
x 3 x 3). The 36 images that were used for the training of the algorithms were excluded
from all bioimage analyses. The nine images of the test dataset were used to evaluate
the annotations of the human experts and of the trained models and model ensembles,
and were also included in the bioimage analyses.

2.7 Manual feature annotation

A group of five PhD-level neuroscientists with similar experience in immunofluores-
cence imaging was instructed to manually segment all relevant image features in the
selected 45 images according to their own criteria. In general, the relevant image fea-
tures were defined as cFOS-positive nuclei and as Parvalbumin-positive somata in the cor-
responding maximum intensity projections of the channel that showed the respective
immunofluorescence signals.

In addition, NeuN immunofluorescence signals were used to identify the area of the
granule cell layer of the dentate gyrus and of the pyramidal cell layers of CA3 and
CA1. The corresponding NeuN-positive regions were manually segmented as regions
of interest (ROIs) by one expert in all images that were used for the bioimage analyses
of cFOS-positive nuclei. All experts were blinded to the treatment conditions and to the
annotations of the other experts.

2.8 Deep learning approach

The design, the training, and the use of all DL-based algorithms, as well as the ground
truth estimations and the computation of similarity measures that are shown and dis-
cussed in this study were performed by and in close collaboration with Matthias Griebel
under the supervision of Prof. Christoph M. Flath at the Department of Business and
Economics at the University of Würzburg, Germany, as described in Segebarth, Griebel,
Stein, R von Collenberg, et al. (2020a). The respective source code is available in a Dryad
repository (www.doi.org/10.5061/dryad.4b8gtht9d; Segebarth, Griebel, Stein,
R. von Collenberg, et al., 2020b).
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2.9 Bioimage analyses of fluorescent features

All bioimage analyses are based on the predicted annotations (binary segmentation
masks) of the indicated models or model ensembles and were performed using custom
written code.

For the bioimage analysis of cFOS-positive nuclei, the analysis was restricted to those
features which were annotated within the NeuN-positive region of each image. To en-
sure the comparability of of quantified cFOS-positive nuclei across all images of the
same hippocampal subregion, the number of analyzed cFOS-positive nuclei was nor-
malized to the area of the corresponding NeuN-positive region for each image. These
data were pooled within each experiment for each experimental condition (H, C-, and
C+) and analyzed hippocampal subregion (the infrapyramidal blade of the DG, the
suprapyramidal blade of the DG, both blades of the DG as ’DG whole’, and the pyrami-
dal cell layer of CA3 and of CA1). All data of one experiment were normalized to the
corresponding mean value of the wildtypic homecage controls to enable the comparison
across experiments.

For the bioimage analysis of Parvalbumin-positive (Parv-positive) interneurons, the
number of Parv-positive somata and their mean signal intensity were quantified per
image. Again, these data were pooled within each experiment for each experimental
condition (H, C-, and C+) and for the analyzed hippocampal subregions (DG, CA3, and
CA1) and the mean signal intensities were normalized to the corresponding mean value
of the wildtypic homecage controls. In addition, Parv-positive somata were classified
as cFOS-positive or cFOS-negative, depending on whether the predicted annotation of
a Parv-positive soma contained an entire predicted annotation of a cFOS-positive nu-
cleus. This classification was used to calculate the ratio of cFOS-positive Parv-positive
somata among all Parv-positive somata within each image.

2.10 Statistical analyses

All statistical analyses were performed using custom written code (Python, version
3.7.3; SciPy, version 1.4.1; Pingouin, version 0.3.8). The data was plotted either with
OriginPro (version 2019b) or with custom written code (Python, version 3.7.3; mat-
plotlib, version 3.3.1; seaborn, version 0.11.0). The box area in boxplots was defined
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as the interquartile range (IQR, 1st to 3rd quartile) and the whiskers extend to the maxi-
mal or minimal values, but no longer than 150% of the IQR.

2.10.1 Statistical analysis of bioimage analyses

In all bioimage analyses, N represents the number of animals that were investigated
and n reflects the number of images that were analyzed. All datasets were tested for
significant outliers using Grubb´s test. Normal distribution and homoscedasticity of
the data were assessed with Shapiro-Wilk and Levene´s tests, respectively.

For the comparison of DL-based annotation strategies, an image was excluded from
the bioimage analysis if it was detected as significant outlier in several DL-based quan-
tification results and if an expert could identify any abnormalities in the image (e.g.
folding of the tissue). To ensure the comparability of the statistical results, exclusively
non-parametric tests (Kruskal-Wallis-ANOVA followed by two-sided Mann-Whitney-
U tests with Bonferroni correction for multiple comparisons) were used for all bioim-
age analyses to test for significant differences between the individual groups. If not
indicated otherwise, the related statistical data can be found in a Dryad repository
(www.doi.org/10.5061/dryad.4b8gtht9d; Segebarth, Griebel, Stein, R. von Col-
lenberg, et al., 2020b).

After consensus ensembles were identified as most reliable, one consensus ensemble was
used for the annotation of cFOS-positive nuclei and another one for the annotation of
Parvalbumin-positive somata in two bioimage datasets (see chapter 4). In these bioim-
age analyses, an image was excluded if it was detected as significant outlier. Depending
on the distribution of the data and the homogeneity of variances, parametric or non-
parametric tests were used. For parametric tests, One-way ANOVA followed by two-
sided t-tests with Welch-correction in case of unequal sample sizes and with Bonfer-
roni correction for multiple comparisons were used. For non-parametric tests, Kruskal-
Wallis-ANOVA followed by two-sided Mann-Whitney-U tests with Bonferroni correc-
tion for multiple comparisons were used. Detailed statistical information are provided
in the respective figure legend. In order to test for each analyzed parameter for a statisti-
cal difference based on the genotype (WT, cBdnf KO, or Ntrk2+/-), the data from all exper-
imental conditions of the indicated hippocampal subregion was pooled for each geno-
type and parametric (two-sided t-test with Welch-correction in case of unequal sample
sizes) or non-parametric tests (two-sided Mann-Whitney-U test) were used accordingly.
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Detailed statistical information are provided in the respective figure legend.

2.10.2 Statistical analysis of behavioral analyses

Also in behavioral analyses, N represents the number of investigated animals. The trav-
elled distance and the percentage of time spent freezing of each mouse was computed
for each session based on the motion tracking data. Significant outliers (Grubbs test)
were excluded from the analyses and the data was assessed for normal distribution
(Shapiro-Wilk test) and for the equality of variances (Levene´s test), and parametric or
non-parametric tests were used accordingly. To test for an overall effect of genotype
and time (session) on the freezing levels of the mice during context extinction, a mixed-
ANOVA that takes repeated measures into account, was used (within factor: session,
between factor: genotype). For the discrete comparison of freezing levels in each ana-
lyzed session between two groups of mice, a parametric t-test (with Welch correction
for unequal sample-sizes) or a non-parametric Mann-Whitney-U test was conducted.
Detailed statistical information are provided in the respective figure legend.
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2.11 Material

The following tables list the solutions (Table 1), materials (Table 2), and chemicals (Table
3) that were used in this thesis.

Table 1: Buffers and solutions with their respective composition.

Buffer / solution Composition

0.4% heparin 0.4% heprin-sodium 25000 in 1x PBS

10x phosphate buffered saline 80g NaCl, 2g KCl, 2g KH2PO4, 11.75g Na2HPO4

x 2 H2O in 1 liter dH2O

1x phosphate buffered saline 100 ml 10x PBS in 900 ml dH2O

4% paraformaldehyde 4% (by weight) paraformaldehyde (PFA) was
dissolved in dH2O (half of final volume) with
few drops of 5M NaOH under constant stirring
for 20-30 min at 60°C. Dissolved PFA was passed
through a paper filter and phosphate buffer was
added to reach final volume. The pH was ad-
justed to 7.4

Blocking solution 0.3% Triton X100, 0.1% Tween 20, 10% horse
serum in 1x PBS

Phosphate buffer 82% (by volume) 0.2M Na2HPO4 x 2 H2O in
dH2O, 18% (by volume) 0.2M NaH2PO4 x 2 H2O
in dH2O

Quenching solution 100mM glycine in dH2O, pH was adjusted to 7.4
with Tris Base
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Table 2: Materials with product name and supplying company.

Material Company

24-well plates Sarstedt Scientific
Cage, 1264C Eurostandard TypII (267 x 207 x 140mm) Tecniplast
Injection needles 27G x 1/2” (0.4 x 13mm) Braun
Object slides (70 x 26mm) R. Langenbrick
Razorblades superior platinum double edge Astra
Syringe (1 ml) BD Plastipak
Venofix Safety 25 G x 3/4” (0.5 x 19 mm, length: 30 cm) Braun
Veterinary fluosorber Harvard Apparatus

Table 3: Chemicals with supplying company and product number.

Chemical Company Product number

Agarose Biozym 840004
Aqua-Poly/Mount Polysciences Inc. 18606
DAPI
(4’,6-diamidino-2-phenylindole) Sigma D9542
Di-sodium hydrogen phosphate Merck 106580
Ethanol Sigma 32205
Glycine Sigma 68898
Heparin-sodium 25000 Ratiopharm
Horse serum Linaris SHD3250KYA
Isoflurane Cp-pharma
Ursotamin (100 mg/ml) Serumwerk
Medical oxygen Rießner Gase
Paraformaldehyde Merck 1040051000
Potassium chloride Sigma P5405
Potassium di-hydrogen phosphate Merck 104873
Sodium chloride Sigma 31434
Sodium di-hydrogen phosphate Merck 106342
Tris Base Applichem A2264,1000
Triton X-100 Carl Roth 3051.2
Tween 20 Applichem A7932,0500
Xylavet Cp-pharma
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3 Results I - Evaluation of DL-based strategies for bioim-

age analysis

3.1 DL-based strategies to perform bioimage analysis

Three DL-based strategies were designed to disclose potential shortcomings of DL-
based bioimage analysis and to test whether these limitations can be overcome by ade-
quate adaptations of the workflow (Segebarth, Griebel, Stein, R von Collenberg, et al.,
2020a).

In the most straight-forward DL-based strategy, manual annotations of a single human
expert are used to train an expert-specific CNN model (Figure 2 - gray, expert models)
(Haberl et al., 2018; Falk et al., 2019). However, subjectivity among manual segmenta-
tions is known (Collier et al., 2003; Niedworok et al., 2016; Caicedo, Roth, et al., 2019;
McQuin et al., 2018), and could be incorporated in and be reproduced by such expert-
specific models (Falk et al., 2019; Chamier et al., 2019; Moen et al., 2019). Consequently,
this would limit the use of DL to the mere automation of a potentially subjective, labor-
intensive manual analysis approach (Segebarth, Griebel, Stein, R von Collenberg, et al.,
2020a).

Alternatively, the input of multiple experts can be pooled in one training dataset, for
instance by ground truth estimation algorithms (Warfield et al., 2004). Such a consen-
sus training strategy aims at decreasing the impact of individual annotations, while
increasing the impact of mutual segmentations, which are more likely to be objectively
true. Training of a CNN model on mutual annotations of multiple experts could there-
fore favor the model to incorporate and reproduce these rather objective criteria. Thus,
the use of training datasets based on ground truth estimations from multiple expert
annotations could enable the use of deep learning to increase the objectivity of fluores-
cent label segmentation, going beyond its mere automation (Figure 2 – blue, consensus
models). And yet, a certain degree of randomness during the training of DL algorithms
can result in a significant model-to-model variability (Dietterich, 2000). By using simi-
larity measures for the performance evaluation of trained models, this model-to-model
variability could even go unnoticed, since models can reach similar performance scores
on a common reference, yet by predicting non-identical segmentations. Consequently,
this could add an additional level of irreproducibility (Segebarth, Griebel, Stein, R von
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Figure 2: Schematic illustration of bioimage analysis strategies and corresponding hypotheses.
Four bioimage analysis strategies are depicted. Manual (white) refers to manual, heuristic fluorescent feature annotation by a
human expert. The three DL-based strategies for automatized fluorescent feature annotation are based on expert models (gray),
consensus models (blue) and consensus ensembles (orange). For all DL-based strategies, a representative subset of microscopy
images is annotated by human experts. Here, we depict labels of cFOS-positive nuclei and the corresponding annotations (pink).
These annotations are used in either individual training datasets (gray: expert models) or pooled in a single training dataset by
means of ground truth estimation from the expert annotations (blue: consensus models, orange: consensus ensembles). Next, deep
learning models are trained on the training dataset and evaluated on a holdout validation dataset. Subsequently, the predictions
of individual models (gray and blue) or model ensembles (orange) are used to compute binary segmentation masks for the entire
bioimage dataset. Based on these fluorescent feature segmentations, quantification and statistical analyses are performed. The
expert model strategy enables the automation of a manual analysis. To mitigate the bias from subjective feature annotations in the
expert model strategy we introduce the consensus model strategy. Finally, the consensus ensembles alleviate the random effects
in the training procedure and seek to ensure reliability and eventually, validity. Reproduced from Segebarth, Griebel, Stein, R von
Collenberg, et al. (2020a)

Collenberg, et al., 2020a).

The formation of model ensembles, for instance by averaging the output prediction
of several trained models, can be effective in reducing noise, which is present in the
predictions of individual models (Dietterich, 2000). In a third strategy, the output of
several consensus models was, therefore, merged to form a consensus ensemble. The use of
ensembles instead of individual models should decrease the discrepancies between pre-
dicted segmentations and consequently increase the reproducibility of DL-based bioim-
age analyses (Figure 2 – orange, consensus ensembles; Segebarth, Griebel, Stein, R von
Collenberg, et al., 2020a).
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3.2 Acquisition of a suitable bioimage dataset

In order to test the three DL-based strategies and the associated hypotheses, a bioim-
age dataset was used, which allows the quantification of changes in the abundance of
the activity-related transcription factor cFOS (Greenberg and Ziff, 1984; Holtmaat and
Caroni, 2016) in brain sections of mice after behavioral testing (Figure S1; Segebarth,
Griebel, Stein, R von Collenberg, et al., 2020a).

The low signal-to-noise ratio of cFOS-positive nuclei (Shuvaev et al., 2017) fosters the
presence of subjective manual annotations (Niedworok et al., 2016) and is thus well
suited to test their impact on the DL models. Furthermore, manual segmentations can-
not be used as a rigorously objective reference annotation (ground truth), which im-
pedes the validation of the DL-based annotations on the level of individual images.
Instead, correlations of changes in the abundance of cFOS with experimental treat-
ment conditions that are well-established in the scientific literature, could serve as a
secondary ground truth. The quantification of immediate-early genes, like cFOS, af-
ter behavioral testing is commonly used in the field of neuroscience (Gallo et al., 2018)
and the results of bioimaging studies with a similar design can, therefore, be used as
reference (Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

Two bioimage datasets of fluorescently labeled cFOS in brain sections of mice after con-
textual fear conditioning were acquired in the course of this thesis. Classical "Pavlo-
vian" conditioning refers to a type of behavioral experiments that trigger an associative
learning process. During contextual fear conditioning, exposure to a neutral context
(conditioned stimulus, CS) is paired with the presentation of an aversive stimulus (un-
conditioned stimulus, US). This leads to the formation of an associative, contextual fear
memory and re-exposure to the CS alone on the following day is sufficient to elicit a
species-specific defensive behavior, such as freezing in mice (LeDoux, 2000).

Each of the two bioimage datasets comprises three treatment groups (Figure 1). One
group of mice underwent Pavlovian contextual fear conditioning and was re-exposed
to the conditioning context 24 hours later (context with shocks, C+). A second group
of mice served as context control group and was also exposed twice to the context, but
without presentations of the aversive stimulus (context without shocks, C-). Mice that
were directly taken out of their home-cage served as naive learning control group (H).
Brain sections were prepared either 90 minutes after memory retrieval for C- and C+
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mice, or at a comparable point in time for home-cage controls. The neuronal activity-
related protein cFOS (Greenberg and Ziff, 1984; Holtmaat and Caroni, 2016), the calcium-
binding protein Parvalbumin (Hu et al., 2014), and the neuronal marker NeuN (Fox3)
were labeled by indirect immunofluorescence and images were acquired using a confo-
cal microscope. In each of the two bioimage datasets, wildtypic mice were compared to
a knock-out mouse model. The results of these comparisons are presented in detail in
chapter 4 of this thesis (Results II - Bioimage analysis of two datasets with consensus ensem-
bles). The following evaluation of the DL-based strategies is solely based on the data of
wildtypic mice (WT), which was pooled from both datasets. Wildtype mice that under-
went contextual fear conditioning (C+) showed significantly more freezing during the
training session (Acq), compared to context control mice (C-) (Figure 3). Furthermore,
the time in which the animals displayed freezing behavior during the retrieval session
was significantly higher in C+ mice, compared to the C- group (Figure 3). Similarly, C+
mice traveled significantly shorter distances during Ret than C- mice (Figure 3).

Figure 3: Behavioral analysis.
A. Fear acquisition was observed in conditioned mice (C+), while unconditioned controls (C-) did not show freezing behavior dur-
ing initial context exposure (Acq). In the memory retrieval session (Ret), conditioned mice showed strong freezing behavior, while
unconditioned mice did not freeze in response to the training context (X2(3)=20.894, p<0.001, N(Acq C-)=7, N(Acq C+)=6, N(Ret C-)=7,
N(Ret C+)=6, Kruskal-Wallis ANOVA followed by pairwise Mann-Whitney tests with Bonferroni correction, *: p<0.05). B. Distance
traveled in the training context is reduced in fear conditioned mice (F(3, 22)=19.484, p<0.001, N(Acq C-)=7, N(Acq C+)=6, N(Ret C-)=7,
N(Ret C+)=6, one-way ANOVA followed by pairwise t-tests with Bonferroni correction, **: p<0.01, ***: p<0.001). Adapted from
Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).
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3.3 Model training, selection, and validation

We used a set of 36 images and corresponding binary segmentation masks to train the
DL models (Figure S1). Depending on the strategy which was used to perform DL-
based bioimage analysis (Figure 2), the binary segmentation masks resembled either the
manual annotations of a single expert (for expert models), or the estimated ground truth
(est. GT) as the result of the ground truth estimation process (for consensus models and
consensus ensembles). In order to avoid any bias of the trained models due to imbalanced
representations of the classes in the training dataset (Moen et al., 2019), the set of 36
images was chosen to equally represent all analyzed hippocampal regions (DG, CA3,
and CA1: 12 images each) and the investigated treatment conditions (H, C-, and C+:
12 images each, four for each hippocampal region). To artificially increase the amount
of training data, data augmentation using image transformations and elastic deforma-
tions was performed, as suggested by Falk et al. (2019). Finally, the augmented training
dataset was split into a train and a validation set. Since the images of the validation set
are withhold during training of the algorithm, they allow the evaluation of the model
after each training epoch without the risk of information leakage (A. Zheng and Casari,
2018). For each model, the epoch with the highest performance on the validation set
was selected for further analyses, once the training was concluded (Segebarth, Griebel,
Stein, R von Collenberg, et al., 2020a).

Performance was assessed by comparing the predicted annotations of the model with
the corresponding reference annotations (e.g. est. GT for consensus models), using two
similarity measures that describe the quality of segmentations (IoU) and of feature de-
tection (F1-score). First, the intersection over union (IoU) was calculated for all overlap-
ping pairs of regions of interest (ROIs) of the two segmentation masks (Figure 4A). This
comparison allows to assess the overall similarity of annotations that are represented
in both segmentation masks (mean IoU). However, this metric is unaffected by ROIs
of the reference annotation that are missing in the predicted annotation, or by excessive
ROIs that are present solely in the predicted annotation. To account for this, the F1-score
was computed. For this detection metric, only pairs of ROIs with an IoU of at least 0.5
were considered as matching, while all other ROIs, including non-overlapping ROIs,
are considered as non-matching (Maška et al., 2014). The F1-score was then calculated
as the harmonic mean of precision and recall (Figure 4B). Thus, the F1-score includes a
comparison of segmentation accuracy and takes both excessive and missing ROIs into
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account. Therefore, model selection was eventually based on the median F1-score across
all validation images (Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

Figure 4: Illustration of the analyzed similarity measures.
A. Representative example of IoU calculations on a field of view (FOV) in a bioimage. Image raw data show the labeling of cFOS in
a maximum intensity projection image of the CA1 region in the hippocampus (brightness and contrast enhanced). The similarity of
estimated ground truth (est. GT) annotations (green), derived from the annotations of five expert neuroscientists, are compared to
those of one human expert, an expert model, a consensus model, and a consensus ensemble (magenta, respectively). IoU results of two
ROIs are shown in detail for each comparison (magnification of cyan box). Scale bar: 100 µm. B. F1 score calculations on the same
FOV as shown in A. The est. GT annotations (green; 53 ROIs) are compared to those of a consensus ensemble (magenta; 48 ROIs).
IoU-based matching of ROIs at an IoU-threshold of t = 0.5 is depicted in three magnified subregions of the image (cyan boxes 1-3).
Scale bar: 100 µm. Reproduced from Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).

In addition, the F1-scores of the selected consensus models were compared to those be-
tween the manual annotations of all human experts and the est. GT annotations on the
validation set. Importantly, a consensus model was only considered to be valid and subse-
quently used for the analyses, if its F1-score was higher than the lowest F1-score among
all experts on each validation image. This additional performance test is only possible,
if the annotations of multiple human experts are available and was, therefore, omitted
for expert models. In total, 20 expert models (four for each expert) and 36 valid consensus
models were created (Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

In order to determine how many consensus models are to be merged into one consensus
ensemble, the F1-scores among the predicted annotations of multiple consensus ensembles
with incrementally increasing numbers of pooled consensus models were compared (Fig-
ure 5). Here, the F1-scores between the predictions of ensembles consisting only of a
single consensus model consequently indicate the discrepancy between the predictions of
individual consensus models. Increasing the number of pooled consensus models led to in-
creased F1-scores between the annotations of the resulting consensus ensembles. On these
data, pooling of more than four consensus models into a single consensus ensemble did not
result in further increases of the F1-scores (Figure 5). Consequently, the size of consensus
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ensembles was defined as four consensus models for this study (Segebarth, Griebel, Stein,
R von Collenberg, et al., 2020a).

1 2 3 4 5 6 7 8 9 10
# of models per ensemble

0.0

0.5

1.0

F1
 s

co
re

 w
ith

in
 g

ro
up

0.0

0.05

0.1

F1
 s

co
re

 s
ta

nd
ar

d 
de

vi
at

io
n

f(x) = 0.096
x

Figure 5: Ensemble size and reliability.
To determine an appropriate size for the consensus ensembles, the homogeneity of the results was analyzed through a similarity
analysis. Therefore, the Mean F1-scores at an IoU matching threshold of t = 0.5 were calculated for each ensemble size i ∈
{1, ..., 10} on the holdout test set (n=9 images). Stratified on the cross validation splits the ensembles were randomly sampled
from a collection of trained consensus models. This procedure was repeated five times to mitigate the random effect of the ensemble
composition (Nensembles=5 for each i). The blue box (i = 1) depicts the variability between different consensus models. The orange
box (i = 4) shows the variability of the finally chosen size for the consensus ensembles, as no substantial reduction in variation can be
observed for larger i. In addition, i = 4 corresponds to the number of cross validation splits (k = 4), meaning that the ensembles
have seen the entire training set. The black line denotes the standard deviation of Mean F1-scores, which is scaled at the right

y-Axis. The dashed black line denotes the best fitting function of type f(x) =
a
√
x

with a = 0.096 for the standard deviation.

Reproduced from Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).

3.4 Performance evaluation on the level of similarity analysis

The initial evaluation of the three DL-based strategies was based on similarity mea-
sures. Since the models were selected on base of their performance on the validation
set, another set of nine images (test set, Figure S1B) was chosen to compare their per-
formance on new data with each other and to that of human experts. In addition, these
images were used to test for potential subjectivity among the annotations of the experts.
As expected, similarity analyses of the manual expert annotations revealed only mod-
est agreement between the experts (Figure 6D; Schmitz et al., 1999; Collier et al., 2003;
Niedworok et al., 2016; Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a. In ad-
dition, more detailed analyses indicate, that the agreement of human experts was cor-
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related with the relative intensity difference between the annotated features and their
surrounding background (Figure S2; Niedworok et al., 2016; Segebarth, Griebel, Stein,
R von Collenberg, et al., 2020a).

Figure 6: Similarity analysis of fluorescent feature annotations by manual or DL-based strategies.
A. Color coding refers to the individual strategies, as introduced in Figure 2 (white: manual approach, gray: expert models, blue:
consensus models, orange: consensus ensembles).
B. Mean F1-scores between individual manual expert annotations and their overall reliability of agreement given as the mean of
Fleiss‘ κ.
C. Mean F1-scores between annotations predicted by individual models and the annotations of the respective expert (or est. GT),
whose annotations were used for training. N(models per expert)=4.
D. Mean F1-scores between manual expert annotations, the respective expert models, consensus models, and consensus ensembles
compared to the est. GT as reference. A horizontal line denotes human expert average. N(models)=4, N(ensembles)=4.
E. Means of mean F1-scores of the individual DL-based strategies and of the human expert average compared to the est. GT plotted
for different IoU matching thresholds t. A dashed line indicates the default threshold t = 0.5. N(models)=4, N(ensembles)=4.
F.) Annotation reliability of the individual strategies assessed as the similarities between annotations within the respective strategy.
Mean IoU, mean F1-scores, and Fleiss‘ κ were calculated. N(experts)=5, N(models)=4, N(ensembles)=4. Adapted from Segebarth, Griebel,
Stein, R von Collenberg, et al. (2020a).

As during model selection on the validation dataset, the predicted segmentations of the
trained models were compared to the annotations of the respective coder (expert or est.
GT), whose annotations were used to train the model. In this comparison, all models
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reached similar F1-scores, indicating that all training datasets were representative of the
task and in general of equal quality (Figure 6E). Notably, the median F1-scores between
the predicted annotations and the reference annotations were, in most cases, higher than
those between the segmentations of the human experts (Figure 6D and 6E) (Segebarth,
Griebel, Stein, R von Collenberg, et al., 2020a).

However, only when all segmentations were compared with each other (Figure S3 and
Figure S4) or to the est. GT as common reference (Figure 6F and 6G), differences among
both, the experts and the DL-based strategies, became apparent. In case of manual
annotations for instance, particularly those of expert 1 showed low agreement with the
annotations of the other experts or with the est. GT (Figure 6, Figure S3, and Figure
S4). Interestingly, expert models shared the same tendencies in terms of agreement with
other segmentations as their respective coder, yet with overall lower F1-scores (Figure
6F and Figure S3). Consequently, the median F1-scores of all expert models were below
the expert average when compared to the est. GT (Figure 6E and 6G). In contrast, the
annotations of both consensus models and consensus ensembles were on par with human
experts, even at higher IoU thresholds (Figure 6F, 6G) (Segebarth, Griebel, Stein, R von
Collenberg, et al., 2020a).

Moreover, bioimage analysis has to be reliable and reproducible for researchers to draw
valid conclusions from their experiments. Therefore, image features should be anno-
tated with high consistency and there should, ideally, be no variability when the bioim-
age analysis process is reproduced. While inter- and intra-rater variability are known
phenomena for manual annotations (Collier et al., 2003), each model outputs the identi-
cal segmentations once its training is concluded. However, the consistency of predicted
segmentations across models trained on the identical training dataset remained elusive.
Consequently, the similarities between the predicted segmentations of all models or en-
sembles within each DL-based strategy, i.e. 20 expert models, 36 consensus models, and 9
consensus ensembles, were calculated. These analyses revealed significantly higher mean
IoU and F1-scores of all DL-based strategies, compared to the inter-rater agreement of
manual analyses (Figure 6H). Notably, the segmentations derived from consensus en-
sembles showed the highest within-group similarities among all tested strategies (Figure
6H). Fleiss‘ kappa is another metric to assess the reliability of agreement between sev-
eral coders, which also takes the chance of randomly overlapping ROIs into account
(Fleiss and Cohen, 1973). Again, consensus ensembles scored highest among all DL-based
strategies and compared to the human experts (Figure 6H) (Segebarth, Griebel, Stein, R
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von Collenberg, et al., 2020a).

Together, the initial characterization of the manual expert annotations and of the three
DL-based strategies on the level of similarity analyses supports the aforementioned hy-
potheses (Figure 2). First, these data show that manual annotations of human experts
on these images only have a "fair agreement", according to the interpretation of Fleiss‘
kappa values by Landis and Koch (1977). Furthermore, comparing all expert annota-
tions with each other and to the est. GT as a common reference indicates a substantial
level of subjectivity, particularly documented in the annotations of expert 1. As hy-
pothesized, individual expert models could learn and reproduce these biases, yet with
overall lower similarity measures (Figure 6F, Figure S3, and Figure S4). On the contrary,
the training on est. GT annotations resulted in consensus models and consensus ensem-
bles that reached expert-level performance (Figure 6F, Figure 6G, Figure S3, and Figure
S4). Notably, consensus ensembles significantly outperformed all other approaches in re-
producibility measures (Figure 6H; Segebarth, Griebel, Stein, R von Collenberg, et al.,
2020a).

3.5 Performance evaluation on the level of bioimage analysis

The main goal of bioimage analysis is the unbiased quantification of image features
and the subsequent statistical testing of a biological hypothesis (Meijering et al., 2016).
Notably, the results of the similarity analyses indicate that DL-based annotations can
be limited in both objectivity and reproducibility (Figure 6, Figure S3, and Figure S4),
which could impair the quality of bioimage analyses. However, it remains unclear
whether performance on the level of bioimage analysis can be inferred directly from
performance on the level of similarity analysis. Therefore, the final evaluation of the
three DL-based strategies was performed on the level of bioimage analysis (Segebarth,
Griebel, Stein, R von Collenberg, et al., 2020a).

For this, a total of 283 images showing cFOS signals in the hippocampus of wild type
mice after behavioral testing was used (Figure S1; Segebarth, Griebel, Stein, R. von Col-
lenberg, et al., 2020b). This bioimage dataset allows to test for significant differences
in the number of cFOS-positive nuclei and their mean signal intensities, between three
experimental conditions (H, C-, and C+) in a total of five hippocampal subregions (DG
as a whole, suprapyramidal DG, infrapyramidal DG, CA3, and CA1) (Figure 7B-D). For
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each model and model ensemble, these analyses were performed individually, based on
their predicted annotations. Eventually, the DL-based bioimage analysis results were
compared across all 30 pairwise comparisons, using the calculated p-values and effect
sizes (η2). Since both measures represent summary statistics, Figure 7E is dedicated to
illustrate the relationship between both measures and the underlying, individual data
points. Here, the number of cFOS-positive nuclei in the stratum pyramidale of CA1 is
compared between the three treatment groups as a representative example. For each
DL-based strategy, the analyses of two distinct models or model ensembles were se-
lected and represent the minimal and maximal effect sizes reported within each strat-
egy. All bioimage analyses reveal a significantly higher amount of cFOS-positive nuclei
in CA1 in mice after retrieval of a contextual memory (C- and C+), compared to home-
cage controls (H) (Figure 7E). Notably, these quantifications already indicate that the
variability of effect sizes is highest among expert models and lowest among the bioimage
analysis results based on the annotations of consensus ensembles (Figure 7E, Segebarth,
Griebel, Stein, R von Collenberg, et al., 2020a).

Next, this comparison was extended with the results of all 20 expert models, 36 consensus
models, and 9 consensus ensembles, for all 30 pairwise comparisons, to assess the variabil-
ity of bioimage analysis results within the three DL-based strategies (Figure 8). For in-
stance, the bioimage analyses results of cFOS-positive nuclei in the stratum pyramidale
of CA1 of all models and ensembles, instead of only the two most extreme examples
(Figure 7E), further highlights the low variability of effect sizes among consensus ensem-
bles, compared to the two alternative DL-based strategies (Figure 8A - #cFOS+ nuclei /
left). In turn, a high variability of effect sizes can eventually result in differences in the
reported statistical outcome between individual models or ensembles, like in the case
of the analyses of the mean cFOS signal intensity in CA1 based on the annotations of
expert models (Figure 8A - mean cFOS signal intensity / right). Here, four of the 20 ex-
pert models detect no significant differences in the mean cFOS signal intensity, another
two expert models indicate only a significant difference between H and C- mice, while
all other 14 expert models reveal a significant, context-dependent increase, in line with
all consensus models and consensus ensembles (Figure 8A - mean cFOS signal intensity /
right). Interestingly, all of these four models that detect no significant difference in the
mean cFOS signal intensity in CA1, were trained on the annotations of expert 1 (Fig-
ure 8A). Overall, DL-based bioimage analyses revealed significant context-dependent
increases in the abundance of cFOS in most of the investigated regions of the dorsal
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Figure 7: Application of different DL-based strategies for fluorescent feature annotation.
The figure introduces how three DL-based strategies are applied for annotation of a representative fluorescent label, here cFOS, in
a representative image data set. Raw image data show behavior-related changes in the abundance and distribution of the protein
cFOS in the dorsal hippocampus, a brain center for encoding of context-dependent memory.
A. Three experimental groups were investigated: Mice kept in their homecage (H), mice that were trained to a context, but did not
experience an electric foot shock (C-) and mice exposed to five foot shocks in the training context (C+). 24 hours after the initial
training (Acq), mice were re-exposed to the training context for memory retrieval (Ret). Memory retrieval induces changes in cFOS
levels.
Figure 7 continued on next page
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Figure 7 continued
B-D. Brightness and contrast enhanced maximum intensity projections showing cFOS fluorescent labels of the three experimental
groups (H, C-, C+) with representative annotations of a consensus ensemble, for each hippocampal subregion. The annotations are
used to quantify the number of cFOS-positive nuclei for each image (#) per mm2 and their mean signal intensity (mean int., in
bit-values) within the corresponding image region of interest, here the neuronal layers in the hippocampus (outlined in cyan). In
B: granule cell layer (supra- and infrapyramidal blade), dotted line: suprapyramidal blade, solid line: infrapyramidal blade. In C:
pyramidal cell layer of CA3; in D: pyramidal cell layer in CA1. Scale bars: 200 µm.
E. Analyses of cFOS-positive nuclei per mm2, representatively shown for stratum pyramidale of CA1. Corresponding effect sizes are
given as η2 for each pairwise comparison. Two quantification results are shown for each strategy and were selected to represent the
lowest (model 1 or ensemble 1) and highest (model 2 or ensemble 2) effect sizes (increase in cFOS) reported within each annotation
strategy. Total analyses performed: N(expert models)=20, N(consensus models)=36, N(consensus ensembles)=9. Number of analyzed mice (N)
and images (n) per experimental condition: N(H)=7, N(C-)=7, N(C+)=6; n(H)=36, n(C-)=32, n(C+)=28. ***: p<0.001 with Mann-Whitney-
U test. Statistical data are available in Segebarth, Griebel, Stein, R. von Collenberg, et al. (2020b). Adapted from Segebarth, Griebel,
Stein, R von Collenberg, et al. (2020a).

hippocampus (Figure 8A-D). Only the analyses of the infrapyramidal blade of the DG
did not show any significant differences between the three experimental groups (Figure
8E; Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

In addition, for each analysis and all 30 pairwise comparisons, the respective differ-
ence between two groups was classified as significant (p ≤ 0.05) or not significant (p >
0.05). These results were accumulated from all analyses within a DL-based strategy to
calculate a majority vote for each pairwise comparison within each strategy. Interest-
ingly, these majority votes were identical for all DL-based strategies, contrasting the
divergence among the results of individual models and model ensembles (Figure 8)
(Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

The variability of results among individual models or model ensembles was analyzed
in more detail as the variation per effect and as the variation per model. For the variation
per effect, the standard deviation of the effect sizes within each DL-based strategy was
calculated for each pairwise comparison. This revealed significantly lower standard de-
viations for the consensus ensembles compared to both alternative strategies (Figure 8F
- variation per effect). In addition to comparing the overall reliability of each DL-based
strategy, the variation per model was computed to assess the reliability of an individual
model or model ensemble. The variation per model is plotted as the interaction between
the number of pairwise comparisons, where the results of the corresponding model
(or ensemble) differed from the congruent majority votes, and the standard deviation
of centered effect sizes across all 30 analyzed effects. Strikingly, these analyses show
that all of the 20 expert models report the statistical significance of at least one pairwise
comparison differently from the majority votes (Figure 8F - variability per model). As
indicated by the variation per effect, the reliability of consensus models is increased com-

36



3 Results I - Evaluation of DL-based strategies for bioimage analysis

Figure 8: Consensus ensembles significantly increase reliability of bioimage analysis results.
A-E. Single data points represent the calculated effect sizes for each pairwise comparison of all individual bioimage analyses for
each DL-based strategy (gray: expert models, blue: consensus models, orange: consensus ensembles) in indicated hippocampal
subregions. Three horizontal lines separate four significance intervals (n.s.: not significant, *: 0.05 ≥ p > 0.01, **: 0.01 ≥ p > 0.001,
***: p ≤ 0.001 after Bonferroni correction for multiple comparisons). The quantity of analyses of each strategy that report the
respective statistical result of the indicated pairwise comparison (effect, x-axis) at a level of p ≤ 0.05 are given below each pairwise
comparison in the corresponding color coding. In total, we performed all analyses with: N(expert models)=20, N(consensus models)=36,
N(consensus ensembles)=9. Number of analyzed mice (N) for all analyzed subregions: N(H)=7, N(C-)=7, N(C+)=6. Numbers of analyzed
images (n) are given for each analyzed subregion. Source files including source data and statistical data are available in Segebarth,
Griebel, Stein, R. von Collenberg, et al. (2020b).
A. Analyses of cFOS-positive nuclei in stratum pyramidale of CA1. n(H)=36, n(C-)=32, n(C+)=28.
B. Analyses of cFOS-positive nuclei in stratum pyramidale of CA3. n(H)=35, n(C-)=31, n(C+)=28.
Figure 8 continued on next page
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Figure 8 continued
C. Analyses of cFOS-positive nuclei in the granule cell layer of the whole DG. n(H)=35, n(C-)=31, n(C+==27.
D. Analyses of cFOS-positive nuclei in the granule cell layer of the suprapyramidal blade of the DG. n(H)=35, n(C-)=31, n(C+)=27.
E. Analyses of cFOS-positive nuclei in the granule cell layer of the infrapyramidal blade of the DG. n(H)=35, n(C-)=31, n(C+)=27.
F. Reliability of bioimage analysis results are assessed as variation per effect (left side) and variation per model (right side). For the
variation per effect, single data points represent the standard deviation of reported effect sizes (η2), calculated within each DL-based
strategy for each of the 30 pairwise comparisons. Consensus ensembles show significantly lower standard (std.) deviations of η2 per
pairwise comparison compared to alternative strategies (X2(2)=26.472, p<0.001, N(effects)=30, Kruskal-Wallis ANOVA followed by
pairwise Mann-Whitney tests with Bonferroni correction, *: p<0.05, ***: p<0.001). For the variation per model, the standard deviation
of centered η2 across all pairwise comparisons was calculated for each individual model and ensemble (y-axis). In addition, the
number of deviations from the congruent majority vote (at p≤0.05 after Bonferroni correction for multiple comparisons) were
determined for each individual model and ensemble across all pairwise comparisons (x-axis). Visualizing the interaction of both
measures for each model or model ensemble individually reveals that consensus ensembles show the highest reliability of all three
DL-based strategies. The statistical data for the for variation per effect is available in Segebarth, Griebel, Stein, R. von Collenberg,
et al. (2020b). Reproduced from Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).

pared to expert models, but is highest for the bioimage analysis results of consensus ensem-
bles (Figure 8F - variability per model; Segebarth, Griebel, Stein, R von Collenberg, et al.,
2020a).

Taken together, these data show that the reliability of DL-based bioimage analysis can
be heavily impaired, particularly if individual models are used and training data anno-
tations are derived from a single human expert. However, training on the pooled input
of multiple experts by means of ground truth estimation in conjunction with the for-
mation of model ensembles significantly reduced this variability and consequently in-
creased the reliability of bioimage analysis results by a large margin (Segebarth, Griebel,
Stein, R von Collenberg, et al., 2020a).

All together, the comprehensive evaluation of the three DL-based strategies on this
dataset confirmed all initial hypotheses, both on the level of similarity analyses and,
more importantly, also on the level of bioimage analyses. First, these results confirm
and extend the concerns put forward by previous studies, by demonstrating that an
ordinary level of subjectivity among five human expert neuroscientists is sufficient to
significantly impact the subsequent bioimage analyses of expert models (Falk et al., 2019;
Chamier et al., 2019). These analyses also show that the annotations of consensus models,
which are trained on the pooled input of multiple experts have, on average, a higher
validity than those of expert models. And yet, this resulted only in a modest increase in
the reliability of bioimage analysis. However, the formation of consensus model ensem-
bles led to a significant increase in the homogeneity of predicted segmentations and a
concomitant increase in the reliability of bioimage analyses (Segebarth, Griebel, Stein, R
von Collenberg, et al., 2020a).
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4 Results II - Bioimage analysis of two datasets with con-

sensus ensembles

The previous chapter (3 Results I - Evaluation of DL-based strategies for bioimage analysis)
compared three DL-based strategies for bioimage analyses with a focus on objectivity,
reliability, and validity. These data established that annotations of consensus ensembles
and the bioimage analyses derived from these annotations are less subjective and more
reliable than that of conventional DL-based strategies, such as creating individual mod-
els trained on the annotations of a single human expert (Segebarth, Griebel, Stein, R von
Collenberg, et al., 2020a).

In this chapter, consensus ensembles and their applicability to large bioimage datasets
are continuously assessed by using a combination of two consensus ensembles to ana-
lyze cFOS-positive nuclei and the somata of Parvalbumin-positive interneurons in two
bioimage datasets. Together, these data comprise a total of more than 650 images per
fluorescent label and were derived from two mouse models with defined genetic defects
in a learning-related neurotrophin signalling cascade.

4.1 Investigated mouse models

The most important neurotrophin signaling cascade in the central nervous system (CNS)
is the so-called BDNF-TrkB signaling cascade (Sasi et al., 2017). BDNF (brain-derived
neurotrophic factor) was identified in 1982 as a secretory protein that is involved in the
survival of a subtype of peripheral neurons (Y. A. Barde et al., 1982; Thoenen, 1995).
In the CNS, however, BDNF is predominantly involved in the regulation of neuronal
circuit functions (Sasi et al., 2017), and less in mediating neuronal survival (Rauskolb
et al., 2010; Sairanen et al., 2005). The tropomyosin-receptor kinase B (TrkB) is the phys-
iological, high-affinity receptor of BDNF and is the most abundant Trk receptor in the
CNS (Barbacid, 1994; Klein et al., 1989; Martin-Zanca et al., 1986). The investigated
mouse models allow to compare the distribution of cFOS immunofluorescence signals
after genetic manipulation of either BDNF or TrkB expression.

In one of the analyzed bioimage datasets, the data of wildtypic mice is compared to
that of conditional Bdnf knock-out mice (cBdnf KO; Sasi, 2020; Rauskolb et al., 2010).
The images of the second dataset were acquired from wildtypic and from heterozygous
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Ntrk2 (neurotrophic tyrosine kinase receptor type 2, the TrkB-encoding gene) knock-out
mice (Ntrk2+/-; Rohrer et al., 1999).

4.1.1 Conditional knock-out of BDNF from a sparse population of adult dentate
gyrus granule neurons

Recently, a mouse model was established to study the effects of the genetic deletion
of presynaptic BDNF from adult hippocampal mossy fiber terminals (cBdnf KO; Sasi,
2020). For this, the expression of Cre recombinase is restricted primarily to adult granule
neurons of the DG using the CNTF::Cre knock-in mouse model (C57BL/6-Tg(CNTF-
Cre)TMMsd), which was created by Dr. Yasuhiro Ito under the supervision of Prof.
Michael Sendtner at the Institute of Clinical Neurobiology, Würzburg. This knock-in
model was then combined with a mouse model that allows the Cre-mediated deletion
of the Bdnf gene (Rauskolb et al., 2010). This results in a robust deletion of BDNF from
a sparse population of adult DG granule neurons (Sasi, 2020).

Initial behavioral characterization of this mouse model included tests that assess gen-
eral behavior and appearance (SHIRPA), heat sensation via the paws (Hot Plate), neuro-
muscular function and muscle power (grip strength, rotor rod), hippocampal function
(Morris water maze), and anxiety-like behavior (Open Field, Elevated Plus Maze, Dark-
Light Box), but no apparent behavioral difference between cBdnf KO mice and wildtypic
controls could be observed (work by Dr. Cora Rüdt von Collenberg, Dr. Britta Wachter,
Dr. Thomas Seidenbecher, and Dr. Robert Blum). However, this work also revealed
that cBdnf KOs showed significantly less freezing during the retrieval of a contextual
fear memory, similarly to what can be observed in mice that express a human Bdnf
polymorphism that reduces the activity-related release of BDNF (Chen et al., 2006). In
addition, these mice showed delayed extinction learning after a cue fear conditioning
paradigm in a background context. Moreover, in vivo electrophysiological recordings
from freely moving mice during this extinction paradigm, revealed significantly higher
neuronal activity in the CA1 region of the dorsal hippocampus, while neuronal activity
in the infralimbic cortex was not altered.

Therefore, using a consensus ensemble for the bioimage analysis of cFOS signals could
add a second evidence for the elevated neuronal activity in CA1 in these cBdnf KO mice.
Moreover, it could also extend these results with the investigation of all hippocampal
subregions and of the population of Parvalbumin-positive interneurons. Vice versa, the
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detection of such effects could also serve as additional verification of the validity of the
DL-based bioimage analysis.

4.1.2 Heterozygous knock-out of TrkB

The Ntrk2 gene encodes the the high-affinity receptor of BDNF, TrkB (Rodriguez-Tebar
and Y. A. Barde, 1988). To gain more insights into the implications of aberrant BDNF-
TrkB signaling and to examine potential similarities to cBdnf KO mice, heterozygous
Ntrk2 knock-out mice (Ntrk2+/-, Rohrer et al., 1999) were also included in these bioimage
analyses. In this model, all variants of the high-affinity receptor for BDNF are knocked-
out (Rohrer et al., 1999).

4.2 Behavioral analysis in a contextual fear extinction paradigm

At first, a contextual fear extinction paradigm was used to examine, whether these mice
exhibit any behavioral phenotype in tests that specifically assess the processes and brain
networks that are involved in the acquisition, the retrieval, and the extinction of contex-
tual fear memories (LeDoux, 2000; Tovote et al., 2015).

For this, mice underwent contextual fear conditioning (acquisition session, Acq) in a
training context and were re-exposed to this context for a total of seven additional ses-
sions. The first re-exposure (retrieval session, Ret), took place 24 hours after the initial
Acq. Another 24 hours following this retrieval session, mice were re-exposed to the
training context twice per day for three consecutive days (extinction sessions 1-6, Ext1 -
Ext6).

After an initial increase of the freezing levels after the Acq, all mice showed a gradual
decrease of freezing behavior over time (significant main effect for time, Figure 9A and
Figure 10A). These freezing levels were not different between cBdnf KO mice and WT
littermate controls (no significant main effect for genotype, Figure 9). Heterozygous
Ntrk2knock-outs, on the contrary, displayed significantly higher freezing levels over the
course of the experiment compared to WT controls (significant main effect for genotype,
Figure 10). However, the gradual decrease of freezing levels was similar in both groups
and there was no significant interaction between time and genotype, indicating effective
extinction learning also in these mice (Figure 10).

41



4 Results II - Bioimage analysis of two datasets with consensus ensembles

Acq Ret Ext1 Ext2 Ext3 Ext4 Ext5 Ext6
Session

0

20

40

60

80

100

Fr
ee

zin
g 

[%
]

WT
cBdnf KO

WT cBdnf
KO

Genotype

0

20

40

60

80

100

Fr
ee

zin
g 

[%
]

Acq

WT cBdnf
KO

Genotype

0

20

40

60

80

100

Fr
ee

zin
g 

[%
]

Ret

WT cBdnf
KO

Genotype

0

20

40

60

80

100

Fr
ee

zin
g 

[%
]

Ext6A B

Figure 9: Freezing during contextual fear extinction of cBdnf KO mice compared to WT littermates.
A. Mean freezing levels in percent (95% confidence intervals) during all sessions. Statistical analysis was performed with a mixed-
ANOVA (within-factor: time, between-factor: genotype). Significant main effect of time (F(7,112)=23.828, p<0.001, partial η2=0.598),
no significant main effect for genotype (F(1,16)=0.388, p=0.542, partial η2=0.024), and no significant interaction of time x genotype
(F(7,112)=0.327, p=0.941, partial η2=0.020). N(WT)=9, N(cBdnf KO)=9.
B. Freezing levels in percent of individual mice in the indicated sessions (Acq, Ret, and Ext6) of A. There were no significant
differences between the groups detailed statistical data are provided in Table 4.

4.3 Bioimage analysis results

As described above (3.2 - Acquisition of a suitable bioimage dataset), mice were subdivided
into three experimental groups (H, C-, C+) and brain sections were prepared either 90
minutes after retrieval of a contextual memory (C- and C+), or at a comparable time
during the day (H). Three anatomically defined brain sections of each animal were
immunofluorescently labelled for cFOS, Parvalbumin (Parv), and NeuN, and confocal
image-stacks of the investigated subregions of the dorsal hippocampus were acquired.
Two consensus ensembles were trained on the estimated ground truth annotations de-
rived from the manual annotations of five human experts either of cFOS-positive nuclei,
or of Parv-positive somata. Validation of the predicted annotations against the annota-
tions of the five human experts confirmed expert-like performance of both ensembles.
These consensus ensembles were then used for the unbiased analyses of cFOS-positive
nuclei and Parv-positive somata.

In each bioimage dataset, wildtypic mice were included as reference, positive controls,
and for normalization purposes. In order to indicate for which of the two bioimage
datasets an individual WT mouse was used, a color coding within the group of WT
mice is used. Orange markers represent data derived from wildtypes that were in-
cluded in the bioimage dataset of cBdnf KO mice, and green markers indicate that the
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Figure 10: Freezing during contextual fear extinction of Ntrk2+/- mice compared to WT littermates.
A. Mean freezing levels in percent (95% confidence intervals) during all sessions. Statistical analysis was performed with a mixed-
ANOVA (within-factor: time, between-factor: genotype). Significant main effect of time (F(7,266)=53.433, p<0.001, partial η2=0.584),
significant main effect for genotype (F(1,38)=13.238, p=0.008, partial η2=0.258), and no significant interaction of time x genotype
(F(7,266)=1.770, p=0.094, partial η2=0.045). Results of post-hoc pairwise comparisons of freezing levels per session between the two
groups are indicated if significance was reached (*: p<0.05, **: p<0.01, ***: p<0.001) and detailed statistical data are provided in
Table 4. N(WT)=20, N(Ntrk2+/-)=20.

B. Freezing levels in percent of individual mice in the indicated sessions (Acq, Ret, and Ext6) of A. Ntrk2+/- mice showed significantly
more freezing during Acq and Ret, but there were no significant differences between the groups during the last extinction session
(Ext6). Detailed statistical data are provided in Table 4.

data originates from a WT mouse that was used as control in the bioimage dataset of
heterozygous Ntrk2knock-out mice.

In addition, the data of WT mice used for the analyses of DL-based strategies partially
overlaps with the data used in these analyses. In fact, all data derived from WT mice
that served as controls for cBdnf KO mice (orange), were also part of the dataset that
was used for the comparison of DL-based strategies. In addition, one WT control of each
treatment condition of the Ntrk2+/- bioimage dataset was also used for the comparison
of DL-based strategies, whereas the data of four wildtype mice (two H, one C-, and one
C+) was exclusively used in the subsequent bioimage data analyses. Moreover, three
WT mice (one of each treatment condition), which were used for the analyses of DL-
based strategies, had to be excluded from the bioimage analyses of the two knock-out
mouse models, since the Parvalbumin immunofluorescence staining was insufficient.

Behavioral analysis of the retrieval session (retrieval of learned fear) of all mice that
were used for the following bioimage analyses shows that context conditioned mice
(C+) displayed more freezing and travelled less distances compared to context controls
(C-), irrespective of the genotype (Figure 11). As already observed in the analysis of the
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Table 4: Statistical data of pairwise comparison of freezing levels between mice of the indicated genotypes in each session
of the contextual extinction paradigm. Data were tested for normal distribution and equality of variances and a two-sided two-
sample t-test or a two-sided Mann-Whitney-U-test was used, as indicated by the test statistic. For cBdnf KO analysis: N(WT)=9,
N(cBdnf KO)=9; for Ntrk2+/- analysis: N(WT)=20, N(Ntrk2+/-)=20.

WT x cBdnf KO WT x Ntrk2+/-

session test statistic p-val test statistic p-val

Acq T = 0.815 0.427 U = 86.0 0.006
Ret T = -0.478 0.639 T = -2.218 0.033
Ext1 T = -0.629 0.538 T = -2.581 0.014
Ext2 T = -0.509 0.618 U = 107.5 0.013
Ext3 T = -0.197 0.847 T = -4.011 <0.001
Ext4 T = -0.953 0.355 T = -2.831 0.007
Ext5 T = -0.796 0.438 T = -1.478 0.148
Ext6 U = 40.0 1.0 T = -0.757 0.454

retrieval session in the contextual extinction learning paradigm (Figure 10), heterozy-
gous Ntrk2knock-out mice showed comparably higher freezing rates (Figure 11A).

The combination of DL-enabled bioimage analyses of cFOS-positive nuclei and of Parv-
positive somata allows the automatized quantification of seven different measures: the
number of cFOS-positive nuclei within the NeuN-positive area (1), the mean cFOS-
signal intensities of cFOS-positive nuclei within the NeuN-positive area (2), the number
of Parv-positive somata (3), the mean Parv-signal intensities of all Parv-positive somata
(4), the percentage of how many Parv-positive somata are cFOS-positive (5), the ratio
of the mean Parv-signal intensities of cFOS-positive Parv-positive somata compared to
cFOS-negative Parv-positive somata (6), and the mean cFOS-signal intensities of cFOS-
positive nuclei within Parv-positive somata (7).

These analyses revealed, for instance, that there are no significant context-dependent
differences, or differences based on the genotype for the number of detected Parv-
positive somata (Figure S5, Figure S6, and Figure S7). Likewise, the mean Parv-signal
intensities did not differ between the investigated genotypes or experimental conditions
considering all Parv-positive somata (Figure S8, Figure S9, and S10). Calculating the ra-
tio of Parv-signal intensities between cFOS-positive and cFOS-negative Parv-positive
somata revealed no global difference between these two sub-populations (Figure S11,
Figure S12, and Figure S13).

Neurons expressing cFOS as a marker for activity-related plasticity and memory pro-
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Figure 11: Behavioral analysis during context re-exposure of mice that were analyzed for cFOS signals 90 minutes later.
A. Freezing levels in percent of individual mice of the indicated genotypes and conditions. In WT animals, marker color encodes the
bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO; green: Ntrk2+/-). N(WT C- green/orange)=2/5,
N(WT C+ green/orange)=2/4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3.
B. Travelled distance in cm of individual mice of the indicated genotypes and conditions. In WT animals, color coding discriminates
between WT mice that were used as controls for cBdnf KO mice (orange) and WT mice that served as controls for Ntrk2+/- mice
(green). In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange:
cBdnf KO; green: Ntrk2+/-). N(WT C-)=7, N(WT C+)=6, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3.

cessing are typically categorized as cFOS-positive or cFOS-negative (Murawski et al.,
2012; Tayler et al., 2013; Tonegawa et al., 2015; Josselyn et al., 2015; Holtmaat and Ca-
roni, 2016; Keiser et al., 2017). However, cFOS abundance, as given by cFOS-signal
intensities, also provide important information about memory traces (Ruediger et al.,
2011; Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

The quantifications of cFOS-positive nuclei in principal neurons of WT mice again re-
vealed significant, context-dependent increases in the numbers of cFOS-positive nuclei
in all analyzed subregions of the dorsal hippocampus (Figure S14A, Figure S15A, and
Figure 12A), confirming the results of the previous analyses on partially overlapping
data (Figure 8). However, a significant difference of the numbers of cFOS-positive nu-
clei in CA3 pyramidal neurons between C- and C+ WT mice could not be reproduced
(Figure S15A, Figure 8B).

Context-dependent effects in the numbers of cFOS-positive nuclei could also be ob-
served in the bioimage data of the two knock-out mouse models (Figure S14A, Figure
S15A, and Figure 12A). Pooling the data of all conditions per genotype revealed two
major differences in the amount of cFOS-positive nuclei within the NeuN-positive ar-
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Figure 12: Quantification of cFOS-positive nuclei in CA1 in WT, cBdnf KO, and Ntrk2+/- mice. In WT animals, marker color
encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO; green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=70.46, P <0.001; cBdnf KO: H(2)=48.09, P <0.001;
Ntrk2+/-: H(2)=27.90, P <0.001; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (***: p <0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=1882.0, p = 0.001; WT vs. Ntrk2+/-:
U=633.0, p=0.158.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=43, n(WT C-)=33, n(WT C+)=29, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=17, n(Ntrk2+/- C-)=18,
n(Ntrk2+/- C+)=17.

eas between WT mice and the respective knock-out mouse model. In cBdnf KO mice,
significantly more cFOS-positive pyramidal neurons were detected in both CA3 and
CA1 subregions of the dorsal hippocampus (Figure S15B and Figure 12B). These results
are in line with the increased neuronal firing activity that was recorded in vivo in CA1
in this mouse model. Notably, the number of cFOS-positive neurons in the DG of cBdnf
KO mice was not different from those of wildtype controls (Figure S14B).

In heterozygous Ntrk2knock-out mice (Ntrk2+/-), on the contrary, the levels of cFOS-
positive pyramidal neurons in CA3 and CA1 were not different from those of WT mice
(Figure S15B and Figure 12B). However, bioimage analyses revealed significantly less
cFOS-positive nuclei in the granule cell layer of the DG in these mice (Figure S14).
Moreover, only context conditioned, but not context control Ntrk2+/- mice showed sig-
nificantly higher numbers of cFOS-positive nuclei in the DG compared to Ntrk2+/- home
cage controls (Figure S14A).

The quantification of mean cFOS-signal intensities in WT mice in these bioimage anal-
yses fully reproduced the findings described earlier on partially overlapping data (Fig-
ure S16A, Figure S17A, Figure S18A, and Figure 8). In both knock-out mouse models,
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the context-dependent increase of mean cFOS-signal intensities in the dentate gyrus
was abolished (Figure S16A). Likewise, in both knock-out mouse models, a context-
dependent increase of the mean cFOS-signal intensities could be observerd, whereas
WT mice showed significantly lower mean cFOS-signal intensities in C+ compared to
C- mice (Figure S17A). Overall, no significant differences between the genotypes could
be observed when the data from all conditions was pooled per genotype (Figure S16B,
Figure S17B, and Figure S18B).

The use of a second consensus ensemble for the annotation of Parv-positive somata al-
lowed to extend the bioimage analyses of cFOS-signals from the population of hip-
pocampal principal neurons, as determined by the NeuN-positive area, to the popu-
lation of Parv-positive interneurons, as determined by the annotations of Parv-positive
somata. In WT mice, these analyses revealed a significantly higher proportion of cFOS-
positive Parv-positive somata in CA3 in context control mice, compared to both, home-
cage controls and context conditioned mice (Figure 13A). In cBdnf KO mice, this signif-
icantly lower percentage of cFOS-positive Parv-positive somata in C+ compared to C-
mice could not be observed. Instead, context conditioned mice showed a similarly in-
creased ratio as well (Figure 13A). Moreover, the differences in the percentage of cFOS-
positive Parv-positive somata between experimental conditions were completely abol-
ished in Ntrk2+/- mice (Figure 13A). Interestingly, all mice of this genotype showed an
overall elevated proportion of Parv-positive somata that were cFOS-positive, compared
to WT mice (Figure 13B).

Overall, genotype-related differences in the ratio of cFOS-positive Parv-positive somata
were limited to CA3. In CA1, the bioimage analyses of mice from all three genotypes
revealed a significant difference of this measure only for the comparison between C-
and H mice (Figure S19). In addition, Parv-positive somata in the DG were overall only
rarely classified as cFOS-positive, which limits the interpretation of all measures that are
derived from this classification. These are: the percentage of how many Parv-positive
somata are cFOS-positive in the DG (Figure S20), the ratio of the mean Parv-signal inten-
sities of cFOS-positive Parv-positive somata compared to cFOS-negative Parv-positive
somata in the DG (Figure S11), and the mean cFOS-signal intensities of cFOS-positive
nuclei within Parv-positive somata in the DG (Figure S21).

In WT mice, the mean cFOS-signal intensities of cFOS-positive nuclei within Parv-
positive somata largely resembled the effects that could be observed in the ratio of
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Figure 13: Percentage of cFOS-positive Parv-positive somata among all Parv-positive somata in CA3 in WT, cBdnf KO, and
Ntrk2+/- mice. In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control
(orange: cBdnf KO; green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=24.49, P <0.001; cBdnf KO: F(2, 69)=8.86, P <0.001;
Ntrk2+/-: H(2)=4.04, P=0.132; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (**: p <0.01; ***:
p <0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2156.5, p = 0.082; WT vs. Ntrk2+/-:
U=355.5, p <0.001.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=39, n(WT C-)=32, n(WT C+)=28, n(cBdnf KO H)=22, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=17,
n(Ntrk2+/- C+)=17.

cFOS-positive Parv-positive somata (Figure S22A, Figure S23A, Figure 13A, and Figure
S19A). While the analyses of cBdnf KOs did not show any significant differences in the
mean cFOS-signal intensities of cFOS-positive nuclei within Parv-positive somata, the
data of Ntrk2+/- mice revealed a context-dependent increase in CA1 (Figure S22, Figure
S23).

To gain a more comprehensive overview of the detected differences between the exper-
imental conditions and the respective genotypes on network-level, Figure 14 summa-
rizes the results of all bioimage analyses of the two main measures, i.e. the number of
cFOS-positive principal neurons and of the percentage of cFOS-positive Parv-positive
interneurons, in schematic drawings of the hippocampus. The summary of all signif-
icant differences between the treatment groups of the respective genotypes highlights
particularly the absence of any differences between C- and C+ mice in both genetically
modified mouse models (Figure 14B). In WT mice, these groups could be differentiated
by significantly lower percentages of cFOS-positive Parv-positive interneurons in CA3
of C+ mice (Figure 14B and Figure 13A). In addition, the comparison of WT mice with
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cBdnf KO mice revealed significantly higher amounts of cFOS-positive pyramidal neu-
rons in both CA3 and CA1, whereas the amount of cFOS-positive DG granule cells was
not affected (Figure 14C). The comparison between WT and heterozygous Ntrk2knock-
out mice showed less cFOS-positive DG granule cells and an elevated ratio of cFOS-
positive Parv-positive interneurons in CA3 of Ntrk2+/- mice, irrespective of treatment
condition (Figure 14D).

Figure 14: Network-level overview of bioimage analyses results of the two main measures in WT, cBdnf KO, and Ntrk2+/- mice.
Schematic drawings of the hippocampus summarize the results of the bioimage analyses of the two main measures: the number of
cFOS-positive principal neurons (#cFOS+ nuclei) and the percentage of cFOS-positive Parv-positive interneurons (%cFOS+ PVs).
A. In these drawings, the population of principal neurons in the granule cell layer of the DG and in the pyramidal cell layers of
CA3 and CA1 are visualized as thick lines and represent the quantifications of cFOS-positive principal neurons in the respective
subregion. In addition, three oval shapes visualize the population of Parv-positive interneurons in each hippocampal subregion and
represent the bioimage analysis results of the percentage of cFOS-positive Parv-positive interneurons in the respective subregion.
A color coding is used to indicate the directionality and the significance of pairwise comparisons of the respective measure between
indicated groups. Blue colors represent a significantly lower mean of group 2, whereas red colors indicate a significantly higher
mean of group 2. The level of significance is indicated by color intensity. If the pairwise comparison did not reveal a significant
difference of the respective measure between the two indicated groups, the corresponding feature is depicted in black. Grey features
in the schamtic drawings represent areas of the hippocampus that were not investigated. Detailed plotting of the respective data
can be found in Figures S14, S15, 12, S20, 13, and S19.
B. Pairwise comparisons of the indicated measures between two experimental conditions of mice with the indicated genotype (eg.
’WT H’ as group 1 vs ’WT C-’ as group 2 - grey box).
C. For these pairwise comparisons of the indicated measures between WT and cBdnf KO mice, the data of all conditions was pooled
per genotype.
D. For these pairwise comparisons of the indicated measures between WT and Ntrk2+/- mice, the data of all conditions was pooled
per genotype.
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5 Discussion

This thesis elaborates the limitations and the potentials of DL-based bioimage analyses
in terms of objectivity, reliability, and validity. For the evaluation of different DL-based
strategies, classical similarity measures and the comparison of bioimage analysis results
were used. This allowed to investigate not only the homogeneity of image feature an-
notations, but, more importantly, also of the biologically relevant statistical evaluation
of the image dataset. Quantitative analyses revealed significant differences between the
investigated DL-based strategies and provide an empirical basis that suggests, how DL
can improve the quality of bioimage data analyses.

5.1 Challenges for the analysis of fluorescence microscopy images

Recent advances in fluorescence labeling strategies and in image acquisition techniques
enable life scientists to gain increasing amounts of insights into biological systems from
image data (A. Li et al., 2010; Osten and Margrie, 2013; Boutros et al., 2015; McDole
et al., 2018; Groot et al., 2020). This necessitates the interpretation and quantitative
analysis of image features of interest throughout the entire image dataset in order to
test a hypothesis that underlies the respective experiment. This process is known as
bioimage analysis (Meijering et al., 2016). And just as any other empirical analysis, also
bioimage analyses must adhere to the common standards of quantitative research to
ensure the highest research quality possible. These standards are objectivity, reliability,
and validity (Frambach et al., 2013).

In the particular case of fluorescence microscopy image data, however, it is virtually
impossible to define a de facto ground truth, meaning a reference annotation that is fully
objective. Due to the physics of light, fluorescence signals do not have clear boundaries.
On an even larger scale, noise can be introduced to the signal during image acquisition,
for instance due to light scattering of the tissue. Nonetheless, the subsequent interpreta-
tion of relevant image features requires the definition of accurate signal-to-noise borders
and these annotations can be made either manually by a human expert, or by using a
computer-aided approach.

Manual image analysis by human experts is still frequently considered as the gold stan-
dard for bioimage analyses, like in histopathological analyses (Aeffner et al., 2017).
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However, manual analysis is a time consuming cognitive process that is both, influ-
enced and limited by the individual graphical perception capabilities and susceptible
to visual and cognitive traps (Cleveland and McGill, 1985; Aeffner et al., 2017). As a
consequence, the level of subjectivity of manual annotations increases with decreasing
signal-to-noise ratios (Niedworok et al., 2016; Segebarth, Griebel, Stein, R von Collen-
berg, et al., 2020a). Moreover, even if the same expert repeats the annotation process,
the corresponding intra-rater agreement, and thus the reliability, is limited (Collier et
al., 2003).

A computer-aided approach, on the contrary, will always reproduce the identical anno-
tation as long as its parameters are not changed. In addition, the automation of bioim-
age data analysis using computer-aided approaches can drastically reduce the workload
of the human experimenter and is, thus, highly desirable. And yet, it remained particu-
larly challenging to design transformations of the data that enable the computer-aided
approach to extract the desired image features of interest (Meijering et al., 2016; LeCun
et al., 2015). Thus, the use of conventional hard-coded approaches can require substan-
tial computational expertise (Chamier et al., 2019). Interestingly, also these approaches
are discussed as being inherently subjective, since the parameters of the algorithm are
chosen by a human as user (Tadrous, 2010).

In recent years, deep learning algorithms have proven their remarkable capacities in
image analysis tasks and are becoming increasingly popular, also in the life sciences
(Moen et al., 2019; Chamier et al., 2019). The underlying algorithmic architecture is
somewhat inspired from the organization and the computations of biological neuronal
networks and enables the DL model to learn a specific task solely on base of a training
dataset (LeCun et al., 2015; Moen et al., 2019; Chamier et al., 2019).

Importantly, this process does no longer require the user to develop appropriate feature
extractors, addressing a central challenge of computer vision (Meijering et al., 2016).
Instead, training facilitates that the DL model learns which of its data representations
can serve as feature extractor and causes the model to converge as close as possible to
the presented annotations (LeCun et al., 2015; Moen et al., 2019). However, this causes
a critical problem if there is no ground truth data available, like in case of fluorescence
images (Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a). For instance, train-
ing on inconsistent or subjective annotations could impair the training or lead to the
incorporation of a subjective bias into the trained model (Falk et al., 2019; Chamier et
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al., 2019; Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a). Moreover, model
training is a stochastic process and even models that are trained on the same data can
have divergent outputs (Dietterich, 2000). Ultimately, this could even cause divergent
bioimage analysis results and would therefore represent a major limitation for the use
of DL in bioimage analyses. Since recent efforts make DL-based image analysis tools
increasingly accessible also to non-AI experts (Haberl et al., 2018; Falk et al., 2019), the
need for a systematic evaluation of the impact of subjective manual annotations and
of model-to-model variability on the results of DL-based bioimage analyses increases
(Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

5.2 Impact of DL-based strategies on fluorescent feature annotations

To address this need, this study used bioimage datasets showing cFOS signals in the
hippocampus after behavioral testing of mice. Manual annotations of five P.hD.-level
neurobiologists were used to train DL-models either on the annotations of individual
experts (expert models), or on estimated ground truth annotations derived from the an-
notations of all five experts (consensus models). In a third strategy, the output of multiple
consensus models were combined to form consensus ensembles (Segebarth, Griebel, Stein,
R von Collenberg, et al., 2020a).

As expected, similarity analyses of the manual expert annotations revealed significant
inter-rater variability, which was inversely correlated with the signal-to-noise ratios of
the annotated features (Schmitz et al., 1999; Collier et al., 2003; Niedworok et al., 2016;
Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a). Yet, the training efficiency of
DL models was not affected by the different annotators (experts 1-5 or est. GT), since
all individual expert models and the consensus models reached similar F1-scores when
compared to the annotator they were trained on (Segebarth, Griebel, Stein, R von Col-
lenberg, et al., 2020a).

However, by comparing all annotations to the est. GT as a common reference, or by
assessing all possible pairwise combinations, individual differences became apparent.
Most strikingly, these analyses revealed pronounced deviations of the annotations of
expert 1, which were closely mimicked by all four expert 1 models. Thus, these data
provide experimental evidence for the incorporation of a subjective bias from manual
annotations into a deep learning model. Moreover, despite the annotations of expert
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1 were also included into the ground truth estimation process, the resulting consensus
models did not show similar deviations. Instead, consensus models performed best among
individual models when compared to est. GT annotations on new data. This indicates,
that pooling the annotations from multiple human experts into a single training dataset
by means of ground truth estimation was an effective strategy to reduce the risk of
incorporation of a subjective bias into the trained models. Furthermore, these analyses
also highlight the importance of using the annotations from multiple experts for the
evaluation, since such effects could otherwise go unnoticed (Segebarth, Griebel, Stein,
R von Collenberg, et al., 2020a).

Similarity analyses of the annotations within each strategy showed that expert models
and consensus models had a similar annotation reliability. Notably, the annotation relia-
bility was drastically higher in consensus ensembles. Therefore, these data also confirm
that ensemble formation was an effective strategy in order to reduce model-to-model
variability and to increase the reliability of DL-based image feature annotations (Sege-
barth, Griebel, Stein, R von Collenberg, et al., 2020a).

5.3 Impact of DL-based strategies on the results of bioimage analyses

The comparison of the three DL-based strategies was then extended to an bioimage
dataset with a total of 283 images to investigate, whether subjective manual annota-
tions and model-to-model variability can also impact the results of bioimage analyses.
Notably, the majority votes for each pairwise comparison (significantly different or not
at p<0.05) was identical across the three strategies and generally in line with the neu-
roscientific literature (Campeau et al., 1997; Guzowski et al., 2001; Huff et al., 2006;
Ramamoorthi et al., 2011; Murawski et al., 2012; Tayler et al., 2013; Keiser et al., 2017).
However, the data of individual expert models revealed that none of their bioimage anal-
yses results was in full accordance with the congruent majority votes. This variance
was only modestly reduced in consensus models. In line with the increased annotation
reliability of consensus ensembles, the bioimage analysis results derived from their out-
put were most often in full accordance with the congruent majority votes (Segebarth,
Griebel, Stein, R von Collenberg, et al., 2020a).

In conclusion, the choice of how DL is trained and used to perform bioimage analyses
can have a strong impact on the objectivity, reliability, and validity of the results. The
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present study suggests to integrate the annotations of several human experts into the
training dataset, e.g. by means of ground truth estimation. Furthermore, evaluation
of the trained models should also include the annotations of multiple experts. More-
over, the formation of model ensembles proofed to be an effective and yet easily im-
plementable feature to increase annotation reliability (Segebarth, Griebel, Stein, R von
Collenberg, et al., 2020a).

In addition, the evaluation of the DL-based strategies on four additional bioimage datasets
that were independently acquired in four different laboratories, validated the results
presented in this thesis (Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a). These
datasets comprise various image acquisition parameters and techniques, analyze the
two main cellular compartments (nuclei and somata), and are derived from two com-
monly used model organisms, i.e. mice and zebrafish (Segebarth, Griebel, Stein, R von
Collenberg, et al., 2020a). These analyses indicate that the conclusions and recommen-
dations derived from the extensive comparison of the DL-based strategies on the initial
bioimage dataset, which is presented in this thesis, can be generalized to similar bioim-
age datasets and that the use of consensus ensembles can improve the quality of bioimage
analyses results.

5.4 Extended validation of consensus ensembles on the bioimage anal-

yses of two genetically modified mouse models

Moreover, this study used a combination of two consensus ensembles for the annotation
of different fluorescent features in a large collection of bioimages. This offered insights
into the performance of the consensus ensemble strategy under complex and variable
experimental conditions. For this, cFOS fluorescence signals were analyzed in two sub-
populations of hippocampal neurons (principal neurons and Parvalbumin-positive in-
terneurons) in two genetically modified mouse models that cause an altered BDNF-TrkB
signaling in the hippocampus.

5.4.1 BDNF-TrkB signaling

Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophins, which
is comprised of small secretory proteins that are predominantly involved in the regu-
lation of neuronal cell survival, cell death, and differentiation (Y. A. Barde et al., 1982;
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Yves Alain Barde, 1989; Chao, 2003; Sasi et al., 2017). BDNF was discovered as the pre-
dominant neurotrophin in the adult mammalian brain (Y. A. Barde et al., 1982; Yves
Alain Barde, 1989; Thoenen, 1995). Like the other neurotrophins, BDNF promotes neu-
ronal growth and survival, particularly in the peripheral nervous system (Y. A. Barde
et al., 1982; Yves Alain Barde, 1989; Sendtner et al., 1992; Erickson et al., 1996), but to
some extent also in the central nervous system (CNS; (Sairanen et al., 2005; Bergami et
al., 2008). However, the main function of BDNF in the CNS is the regulation of neuronal
circuit functions, like neuronal differentiation and synaptic function (Sasi et al., 2017).
As a consequence, the lack of BDNF in the CNS results only in a modest loss of neurons
and causes region-specific dysregulations of neuronal circuits instead (Nikoletopoulou
et al., 2010; Rauskolb et al., 2010; Y. Li et al., 2012; Park and Poo, 2013; Sasi et al., 2017).
In the hippocampus, the deletion of BDNF leads for instance to an impaired long-term
potentiation, one of the key molecular mechanisms of learning and memory, in both
CA1 and CA3 (Korte et al., 1995; Blum and Konnerth, 2005; Schildt et al., 2013).

BDNF signalling is mediated via two types of receptors, the high-affinity tropomyosin-
receptor-kinase B (TrkB, Rodriguez-Tebar and Y. A. Barde, 1988; Barbacid, 1994; Klein
et al., 1989; Martin-Zanca et al., 1986) and the low-affinity p75 pan-neurotrophin recep-
tor (Chao, 2003; Blum and Konnerth, 2005). Upon binding of a BDNF homodimer to its
physiological receptor TrkB, the receptor dimerizes, which triggers an autophosphory-
lation cascade and consequently initiates downstream signalling pathways that mediate
the physiological effects of BDNF (Blum and Konnerth, 2005; Park and Poo, 2013; Sasi
et al., 2017).

BDNF and TrkB are both abundant in the hippocampus (Conner et al., 1997; Minichiello
et al., 1999). One source of BDNF in the hippocampus are granule cells of the dentate
gyrus, whose axons, the the so-called mossy fibers, project to CA3 (Conner et al., 1997;
Deng et al., 2010; Wiera and Mozrzymas, 2015). In CA3, they form several large mossy-
fiber terminals (LMTs) that represent huge bouton-like structures, which comprise mul-
tiple active-zones and engulf the dendritic structures of CA3 pyramidal neurons. In
addition, there are filopdia protruding from LMTs. These filopodia are, in turn, able to
form synapses with CA3 pyramidal neurons, but also with inhibitory interneurons, like
Parvalbumin-positive interneurons (Wiera and Mozrzymas, 2015; Martin et al., 2017).
Parv-positive interneurons and CA3 pyramidal neurons both express the TrkB receptor
and BDNF was detected in LMTs and the protruding filopodia (Danzer and McNAmara,
2004; Huang et al., 2008; K. Zheng et al., 2011; Schildt et al., 2013; Sasi et al., 2017).
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5.4.2 Analyses of cBdnf KO mice

Previous work by Dr. Manju Sasi, Dr. Cora Rüdt von Collenberg, Dr. Britta Wachter,
Dr. Thomas Seidenbecher, and Dr. Robert Blum revealed that the deletion of Bdnf from
a sparse population of DG granule cells does not cause apparent behavioral deficits in
these mice, but results in an increased neuronal activity in CA1 during fear extinction
learning. Using a consensus ensemble to analyze cFOS labelings in these mice revealed
elevated numbers of cFOS-positive nuclei in CA1 and, thus, confirmed these results.
Moreover, this effect was also observed in CA3, while activity-dependent cFOS labels
in the DG were not altered. Consequently, these findings support the role of BDNF as
an anterograde signalling molecule in the hippocampus (Conner et al., 1997; Dieni et al.,
2012; Andreska et al., 2014).

Since BDNF signaling acts excitatory (Sasi et al., 2017), these increases in neuronal ac-
tivity of principal neurons upon conditional loss of BDNF could be explained best by a
loss of excitation of inhibitory neurons in cBdnf KO mice. For this, the analysis of Parv-
positive interneurons was included, since these inhibitory interneurons express TrkB
and have already been shown to be important for the precision of contextual memory
encoding (Ruediger et al., 2011; K. Zheng et al., 2011).

Interestingly, bioimage analyses of WT mice showed significantly more cFOS-positive
Parv-positive interneurons in CA3 only of context-control mice, but not of context-
conditioned mice, when compared to homecage controls. In fact, the pairwise compar-
ison of C- and C+ wildtype mice revealed a significantly smaller proportion of cFOS-
positive Parv-positive interneurons in C+ mice. Overall, the levels of cFOS-positive
Parv-positive somata were not reduced in cBdnf KO mice. Instead, the significant dif-
ference of cFOS-positive Parv-positive interneurons between C+ and C- in CA3 was
even absent in these mice and levels of cFOS-positive Parv-positive interneurons were
elevated also in C+ cBdnf KO mice. However, Parvalbumin-positive interneurons rep-
resent only a sub-population of all inhibitory neurons in the hippocampus and the lack
of BDNF in these mice could also affect another class of inhibitory neurons. In addition
to deficits in acute molecular signalling, the conditional deletion of BDNF could also
induce morphological changes in the network, for instance alterations in the connec-
tivity of DG granule neurons. Ongoing work using viral tracing tools will address this
question and compare the morphology of LMT filopodia after retrieval of a contextual
memory between WT and cBdnf KO mice.
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5.4.3 Analyses of Ntrk2+/- mice

In a second mouse model, one copy of the TrkB-encoding gene Ntrk2 was deleted (Rohrer
et al., 1999). In contrast to the conditional knock-out of Bdnf, Ntrk2+/- mice did not show
significantly elevated numbers of cFOS-positive principal neurons. Instead, activity-
dependent cFOS labels were significantly less in the DG of Ntrk2+/- mice compared to
wildtype controls. However, somewhat similar to the cBdnf KO mice, Ntrk2+/- mice
displayed no significant reduction of the proportion of cFOS-positive Parv-positive in-
terneurons in CA3 between C- and C+ mice. Instead, also homecage control mice of this
genotype showed activation levels of CA3 Parv-positive interneurons that were compa-
rable to the significantly elevated levels that were found in WT C-, cBdnf KO C-, or cBdnf
KO C+ mice. The small groups of mice that were used for the investigation of cFOS (N=3
per experimental condition) demands caution in terms of reliability and reproducibility
of the results and make additional experiments necessary. However, behavioral anal-
ysis of a bigger cohort of these mice in a contextual fear extinction paradigm revealed
significantly higher freezing levels of Ntrk2+/- mice and thus strengthens the hypothesis,
that BDNF-TrkB signalling constitutes a role in the processes of fear and anxiety.

In summary, the combined use of two consensus ensembles for the annotation of cFOS-
positive nuclei and of Parv-positive somata confirmed their reliable and consistent per-
formance also in this large bioimage dataset. Moreover, the correlation of significantly
increased numbers of cFOS-positive nuclei with the increased neuronal firing activity
in CA1 of cBdnf KO, which was revealed with in vivo electrophysiological recordings,
provides a second line of evidence for the validity of these DL-based bioimage analyses.

5.5 Conclusion and outlook

Implemented in the right way, deep learning has the potential to improve objectivity,
reliability, and validity of bioimage analyses, going beyond the mere automation of the
image annotation process (Figure 15; Segebarth, Griebel, Stein, R von Collenberg, et al.,
2020a). Current work in progress will provide a user-friendly, open access toolbox that
comprises all core elements of the suggested consensus ensemble workflow, like ground
truth estimation or ensemble formation (www.github.com/matjesg/deepflash2).
Moreover, the explorative analyses of four bioimage datasets provided by independent
laboratories also confirm the advantages of transfer learning on these data (Segebarth,
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Griebel, Stein, R von Collenberg, et al., 2020a; Falk et al., 2019). Transfer learning de-
scribes a concept, in which a model that was already trained on a specific task is used
as starting point for the training on a similar task (Moen et al., 2019). In fact, using a
model with pre-trained weights can significantly reduce the computational effort dur-
ing training, compared to starting with randomly initialized weights (Falk et al., 2019).
Importantly, bioimage analyses are often focused on highly similar image features, like
the analysis of nuclear labels. Consequently, an open access library that contains val-
idated consensus ensembles that were pre-trained on a specific cellular feature, would
enable other researchers with similar image data to re-use them. Ultimately, this would
foster the use of DL by reducing the efforts required for model training. Furthermore,
sharing of pre-trained model ensembles may represent a form of sharing annotation
expertise, such that it becomes freely available and accessible for the entire life science
community (Segebarth, Griebel, Stein, R von Collenberg, et al., 2020a).

Figure 15: Schematic conclusion. Today, tedious manual analysis of bioimages by human experts frequently resembles the current
state-of-the-art of bioimage analyses in research and diagnostics. This thesis hypothesized, that DL could be used to automatize this
process with an concomitant increase of objectivity, reliability, and validity. Experimental evaluation of three DL-based strategies
suggests to integrate the pooling of the input of multiple experts for the training (e.g. via ground truth estimation) and the formation
of model ensembles in any DL-based approach for bioimage analyses to establish objectivity and reliability. Moreover, model
ensemble performance should be validated on base of the annotations of multiple experts. Implemented in such a way, DL has
the potential to increase the quality of bioimage analyses, going beyond mere automation. Researchers can share their annotation
expertise with the entire life science community via sharing of validated pretrained models and model ensembles in open access
libraries. Here, the pictogram of a robot symbolizes a deep learning model and a group of robots symbolizes a model ensemble.
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7 Supplementary Figures

Figure S1: Illustration of the bioimage dataset which was used for the comparison of DL-based strategies.
A. A total of 319 images showing cFOS immunoreactivity in the dorsal hippocampus of wildtype mice was split up in 105 images
of the Dentate gyrus, 106 images of CA3 and 108 images of CA1. To create a balanced training dataset, four images of each
experimental condition were randomly selected (H, C-, C+) from each hippocampal subregion (DG, CA3, CA1; 4 x 3 x 3 = 36
images).
B. Five expert neuroscientists (experts 1-5) manually annotated cFOS-positive nuclei in the selected 36 images of the training dataset
and in nine additional images (test dataset). The test images represented one image per region and condition (3 x 3). Annotation
was performed independently and on different computers and screens. The training dataset was used to train either expert specific
models (only annotations of a single expert were used) or consensus models (est. GT annotations computed from the annotations
of all five experts were used). Using k-fold cross-validation during the training, we were able to test the model performance and to
ultimately select only those models that reached human level performance. The final evaluation of all models was then performed
on the additional nine images of the test dataset. For bioimage analyses, we used the remaining 274 images and the nine test images.
C. On average, each consensus ensemble annotated∼ 10,000 cFOS-positive feature within the NeuN-positive areas in all 283 images
used for bioimage analysis, which is equivalent to ∼ 35 features per image. Reproduced from Segebarth, Griebel, Stein, R von
Collenberg, et al. (2020a).
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Figure S2: Extended subjectivity analysis.
The subjectivity analysis depicts the relationship between the relative intensity difference of a florescent feature (ROI) to the back-
ground and the annotation count of human experts. A visual interpretation indicates that the annotation probability of a ROI
is positively correlated with its relative relative intensity. The relative intensity difference is calculated as µinner−µouter

µinner
, where

µinner is the mean signal intensity of the ROI and µouter the mean signal intensity of its nearby outer area. An IoU threshold of
t = 0.5 was used for ROI matching. The expert in the title of the respective plot was used to create the region proposals of the ROIs,
i.e., the annotations served as origin for the other pairwise comparisons.
A. Legend of color codes: blue depicts that a ROI was only annotated by one or more human experts; yellow depicts the ROIs that
were present in the estimated ground truth; green shows the ROIs that are only present in an exemplary consensus ensemble; pink
depicts ROIs that are present in both estimated ground truth and consensus ensemble.
B-I. All calculations were performed on the test set (n=9 images) which was withheld from model training and validation.
B-F. The individual expert analysis shows the effects of different heuristic evaluation criteria.
G. The analysis of the est. GT annotations revealed the limitations of the ground truth estimation algorithm, which is based on the
human annotations. An expert count of zero can result from merging different ROIs.
H. The analysis of a representative consensus ensemble showed that human annotators may have missed several ROIs (green) even
with a large relative difference to the background.
I. Cumulative summary of B-F. Reproduced from Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).
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Figure S3: Extended similarity analysis: F1 score. The heatmap shows the mean F1-scores at a matching IoU-threshold of t = 0.5 for
the image feature annotations of the indicated experts. Segmentation masks of the five human experts (N(expert)=1 per expert), the
estimated ground-truth (N(est. GT)=1), the respective expert models, the consensus models, and the consensus ensembles (N(models)=4 per
model or ensemble) are compared. The diagonal values show the inter-model reliability (no data available for the human experts
who only annotated the images once). The consensus ensembles showed the highest reliability (0.94) and perform on par with human
experts compared to the est. GT (0.77). Both expert 1 and the corresponding expert 1 models show overall low similarities to other
experts and expert models, while sharing a high similarity to each other (0.73). Reproduced from Segebarth, Griebel, Stein, R von
Collenberg, et al. (2020a).
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Figure S6

Figure S4: Extended similarity analysis: mean IoU. The heatmap shows the mean of mean IoU for the image feature annotations of the
indicated experts. Segmentation masks of the five human experts (N(expert)= 1 per expert), the estimated ground-truth (N(est. GT)=
1), the respective expert models, the consensus models, and the consensus ensembles (N(models)= 4 per model or ensemble) are compared.
The diagonal values show the inter-model reliability (no data available for the human experts who only annotated the images
once). Again, consensus ensembles showed highest reliability (0.91). Est. GT annotations are directly derived from manual expert
annotations, which renders this comparison favorable. Reproduced from Segebarth, Griebel, Stein, R von Collenberg, et al. (2020a).
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Figure S5: Quantification of Parv-positive somata in DG in WT, cBdnf KO, and Ntrk2+/- mice.
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: F(2, 96)=3.85, P=0.025; cBdnf KO: F(2, 65)=1.00, P=0.375;
Ntrk2+/-: H(2)=2.27, P=0.320; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p <0.05).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: T(138.74)=0.77, p=0.445; WT vs. Ntrk2+/-:
T(42.97)=-0.61, p=0.544.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=40, n(WT C-)=32, n(WT C+)=27, n(cBdnf KO H)=22, n(cBdnf KO C-)=24, n(cBdnf KO C+)=22, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=16,
n(Ntrk2+/- C+)=14.
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Figure S6: Quantification of Parv-positive somata in CA3 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: F(2, 96)=1.18, P=0.311; cBdnf KO: F(2, 70)=0.83, P=0.439;
Ntrk2+/-: H(2)=1.61, P=0.448.
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: T(142.76)=0.21, p=0.836; WT vs. Ntrk2+/-:
T(51.91)=1.05, p=0.296.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=39, n(WT C-)=32, n(WT C+)=28, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=17,
n(Ntrk2+/- C+)=17.
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Figure S7: Quantification of Parv-positive somata in CA1 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=2.90, P=0.234; cBdnf KO: H(2)=4.17, P=0.125; Ntrk2+/-:
F(2, 49)=5.86, P=0.005; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (***: p<0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2811.0, p=0.469; WT vs. Ntrk2+/-:
U=647.5, p=0.295.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=42, n(WT C-)=31, n(WT C+)=29, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=22, n(Ntrk2+/- H)=17, n(Ntrk2+/- C-)=18,
n(Ntrk2+/- C+)=17.
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Figure S8: Mean Parv-signal intensities of Parv-positive somata in DG in WT, cBdnf KO, and Ntrk2+/- mice.
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=0.63, P=0.729; cBdnf KO: F(2, 66)=1.46, P=0.241;
Ntrk2+/-: H(2)=1.62, P=0.444.
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2528.0, p=0.971; WT vs. Ntrk2+/-:
T(39.40)=0.42, p=0.677.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=40, n(WT C-)=32, n(WT C+)=27, n(cBdnf KO H)=22, n(cBdnf KO C-)=23, n(cBdnf KO C+)=24, n(Ntrk2+/- H)=15, n(Ntrk2+/- C-)=16,
n(Ntrk2+/- C+)=16.
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Figure S9: Mean Parv-signal intensities of Parv-positive somata in CA3 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: F(2, 96)=1.84, P=0.163; cBdnf KO: F(2, 70)=0.46, P=0.635;
Ntrk2+/-: H(2)=1.49, P=0.475.
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: T(144)=-1.63, p=0.104; WT vs. Ntrk2+/-:
T(49.91)=-1.18, p=0.243.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=39, n(WT C-)=32, n(WT C+)=28, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=17,
n(Ntrk2+/- C+)=18.
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Figure S10: Mean Parv-signal intensities of Parv-positive somata in CA1 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=3.76, P=0.152; cBdnf KO: F(2, 70)=3.28, P=0.043;
Ntrk2+/-: F(2, 49)=0.43, P=0.651.
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2787.0, p=0.633; WT vs. Ntrk2+/-:
T(62.20)=-2.00, p=0.050.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=41, n(WT C-)=33, n(WT C+)=29, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=17, n(Ntrk2+/- C-)=18,
n(Ntrk2+/- C+)=17.
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Figure S11: Ratio of mean Parv-signal intensities of cFOS-positive Parv-positive somata compared to cFOS-negative Parv-
positive somata in DG in WT, cBdnf KO, and Ntrk2+/- mice.
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=0.52, P=0.771; cBdnf KO: F(2, 11)=1.60, P=0.246;
Ntrk2+/-: F(2, 18)=0.43, P=0.659.
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: T(30.70)=-0.26, p=0.800; WT vs. Ntrk2+/-:
M=81.0, p=0.544.
N(WT H)=6, N(WT C-=6, N(WT C+)=5, N(cBdnf KO H)=3, N(cBdnf KO C-)=4, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=12, n(WT C-)=10, n(WT C+)=6, n(cBdnf KO H)=2, n(cBdnf KO C-)=5, n(cBdnf KO C+)=7, n(Ntrk2+/- H)=5, n(Ntrk2+/- C-)=6, n(Ntrk2+/- C+)=10.
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Figure S12: Ratio of mean Parv-signal intensities of cFOS-positive Parv-positive somata compared to cFOS-negative Parv-
positive somata in CA3 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=7.06, P=0.029; cBdnf KO: H(2)=5.18, P=0.075; Ntrk2+/-:
H(2)=0.57, P=0.751; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p <0.05).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2200.0, p=0.791; WT vs. Ntrk2+/-:
T(41.06)=1.72, p=0.092.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=28, n(WT C-)=29, n(WT C+)=27, n(cBdnf KO H)=19, n(cBdnf KO C-)=27, n(cBdnf KO C+)=22, n(Ntrk2+/- H)=15, n(Ntrk2+/- C-)=15,
n(Ntrk2+/- C+)=18.
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Figure S13: Ratio of mean Parv-signal intensities of cFOS-positive Parv-positive somata compared to cFOS-negative
Parv-positive somata in CA1 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=1.41, P=0.494; cBdnf KO: H(2)=2.60, P=0.272; Ntrk2+/-:
F(2, 41)=2.01, P=0.146
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=948.0, p=0.073; WT vs. Ntrk2+/-:
U=439.0, p=0.299.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=3, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=26, n(WT C-)=26, n(WT C+)=14, n(cBdnf KO H)=9, n(cBdnf KO C-)=21, n(cBdnf KO C+)=19, n(Ntrk2+/- H)=11, n(Ntrk2+/- C-)=16,
n(Ntrk2+/- C+)=17.

H C- C+
condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
l. 

#c
FO

S+
 n

uc
le

i

**

*

H C- C+
condition

*

*

H C- C+
condition

*

WT cBdnf
KO

genotype

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
l. 

#c
FO

S+
 n

uc
le

i

WT Ntrk2
+/

genotype

***

WT cBdnf KO Ntrk2+/ pooled by genotypeA B

Figure S14: Quantification of cFOS-positive nuclei in DG in WT, cBdnf KO, and Ntrk2+/- mice.
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=10.45, P=0.005; cBdnf KO: H(2)=10.65, P=0.005;
Ntrk2+/-: F(2, 45)=3.54, P=0.037; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p<0.05, **:
p<0.01).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2828.0, p=0.154; WT vs. Ntrk2+/-:
T(49.20)=4.69, p<0.001.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=40, n(WT C-)=32, n(WT C+)=27, n(cBdnf KO H)=20, n(cBdnf KO C-)=24, n(cBdnf KO C+)=24, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=16,
n(Ntrk2+/- C+)=16.
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Figure S15: Quantification of cFOS-positive nuclei in CA3 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=69.37, P<0.001; cBdnf KO: F(2, 70)=41.73, P<0.001;
Ntrk2+/-: F(2, 48)=73.03, P<0.001; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (***: p<0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=1981.0, p=0.008; WT vs. Ntrk2+/-: U=675.0,
p=0.891.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=39, n(WT C-)=32, n(WT C+)=29, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=17,
n(Ntrk2+/- C+)=18.
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Figure S16: Mean cFOS-signal intensities of cFOS-positive nuclei in DG in WT, cBdnf KO, and Ntrk2+/- mice.
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=9.49, P=0.009; cBdnf KO: F(2, 66)=1.08, P=0.346;
Ntrk2+/-: F(2, 45)=4.85, P=0.012; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p <0.05).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2925.0, p=0.097; WT vs. Ntrk2+/-:
T(42.17)=-1.04, p=0.306.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=40, n(WT C-)=32, n(WT C+)=27, n(cBdnf KO H)=21, n(cBdnf KO C-)=24, n(cBdnf KO C+)=24, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=16,
n(Ntrk2+/- C+)=16.
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Figure S17: Mean cFOS-signal intensities of cFOS-positive nuclei in CA3 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=33.56, P<0.001; cBdnf KO: F(2, 70)=11.70, P<0.001;
Ntrk2+/-: F(2, 48)=13.79, P<0.001; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p<0.05, **:
p<0.01, ***: p<0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2228.0, p=0.147; WT vs. Ntrk2+/-:
U=762.0, p=0.443.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=38, n(WT C-)=32, n(WT C+)=28, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=17,
n(Ntrk2+/- C+)=18.
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Figure S18: Mean cFOS-signal intensities of cFOS-positive nuclei in CA1 in WT, cBdnf KO, and Ntrk2+/- mice
In WT animals, marker color encodes the bioimage dataset for which the respective mouse was used as control (orange: cBdnf KO;
green: Ntrk2+/-).
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=30.41, P<0.001; cBdnf KO: F(2, 70)=11.16, P<0.001;
Ntrk2+/-: F(2, 49)=11.17, P<0.001; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (***: p<0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: T(144)=-0.40, p=0.691; WT vs. Ntrk2+/-:
T(52.94)=-1.75, p=0.087.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=42, n(WT C-)=32, n(WT C+)=29, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=17, n(Ntrk2+/- C-)=18,
n(Ntrk2+/- C+)=17.
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Figure S19: Percentage of cFOS-positive Parv-positive somata among all Parv-positive somata in CA1 in WT, cBdnf KO, and
Ntrk2+/- mice
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=7.65, P=0.022; cBdnf KO: H(2)=8.08, P=0.018; Ntrk2+/-:
H(2)=7.99, P=0.018; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p<0.05).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2629.0, p=0.673; WT vs. Ntrk2+/-:
U=621.5, p=0.191.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=43, n(WT C-)=32, n(WT C+)=29, n(cBdnf KO H)=23, n(cBdnf KO C-)=27, n(cBdnf KO C+)=23, n(Ntrk2+/- H)=17, n(Ntrk2+/- C-)=18,
n(Ntrk2+/- C+)=17.
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Figure S20: Percentage of cFOS-positive Parv-positive somata among all Parv-positive somata in DG in WT, cBdnf KO, and
Ntrk2+/- mice.
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=2.06, P=0.357; cBdnf KO: H(2)=6.27, P=0.044; Ntrk2+/-:
H(2)=5.38, P=0.068; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p<0.05).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2514.5, p=0.246; WT vs. Ntrk2+/-:
U=275.0, p<0.001.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=39, n(WT C-)=28, n(WT C+)=24, n(cBdnf KO H)=19, n(cBdnf KO C-)=24, n(cBdnf KO C+)=24, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=15,
n(Ntrk2+/- C+)=16.
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Figure S21: Mean cFOS-signal intensities of cFOS-positive nuclei in Parv-positive somata in DG in WT, cBdnf KO, and Ntrk2+/-

mice.
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=1.28, P=0.527; cBdnf KO: F(2, 10)=1.31, P=0.312;
Ntrk2+/-: H(2)=0.57, P=0.752.
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=153.0, p=0.921; WT vs. Ntrk2+/-: U=57.0,
p=0.016.
N(WT H)=6, N(WT C-=6, N(WT C+)=5, N(cBdnf KO H)=3, N(cBdnf KO C-)=4, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=11, n(WT C-)=10, n(WT C+)=5, n(cBdnf KO H)=2, n(cBdnf KO C-)=6, n(cBdnf KO C+)=5, n(Ntrk2+/- H)=2, n(Ntrk2+/- C-)=7, n(Ntrk2+/- C+)=11.
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Figure S22: Mean cFOS-signal intensities of cFOS-positive nuclei in Parv-positive somata in CA3 in WT, cBdnf KO, and Ntrk2+/-

mice
A. Comparisons of the treatment conditions within each genotype. WT: F(2, 82)=5.95, P=0.004; cBdnf KO: F(2, 65)=1.30, P=0.279;
Ntrk2+/-: F(2, 45)=2.15, P=0.129; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p<0.05, **:
p<0.01).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=2274.0, p=0.775; WT vs. Ntrk2+/-:
T(28.02)=0.57, p=0.571.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=4, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=28, n(WT C-)=31, n(WT C+)=26, n(cBdnf KO H)=19, n(cBdnf KO C-)=27, n(cBdnf KO C+)=22, n(Ntrk2+/- H)=16, n(Ntrk2+/- C-)=15,
n(Ntrk2+/- C+)=17.
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Figure S23: Mean cFOS-signal intensities of cFOS-positive nuclei in Parv-positive somata in CA1 in WT, cBdnf KO, and
Ntrk2+/- mice
A. Comparisons of the treatment conditions within each genotype. WT: H(2)=15.32, P<0.001; cBdnf KO: F(2, 46)=1.48, P=0.238;
Ntrk2+/-: H(2)=13.62, P=0.001; post-hoc pairwise comparisons with Bonferroni correction for multiple comparisons (*: p<0.05, **:
p<0.01, ***: p<0.001).
B. Data of all conditions was pooled within the indicated genotypes. WT vs. cBdnf KO: U=1263.0, p=0.793; WT vs. Ntrk2+/-:
U=275.0, p=0.017.
N(WT H)=8, N(WT C-=7, N(WT C+)=6, N(cBdnf KO H)=3, N(cBdnf KO C-)=5, N(cBdnf KO C+)=4, N(Ntrk2+/- H)=3, N(Ntrk2+/- C-)=3, N(Ntrk2+/- C+)=3;
n(WT H)=26, n(WT C-)=27, n(WT C+)=17, n(cBdnf KO H)=9, n(cBdnf KO C-)=22, n(cBdnf KO C+)=18, n(Ntrk2+/- H)=11, n(Ntrk2+/- C-)=16,
n(Ntrk2+/- C+)=17.
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I Abbreviations

Acq acquisition session
BDNF brain-derived neurotrophic factor (protein)
Bdnf brain-derived neurotrophic factor (gene)
C- context control (no shocks)
C+ context conditioned
CA Cornu ammonis
cBdnf KO conditional Bdnf knock-out
CS conditioned stimulus
DG Dentate gyrus
dH2O distilled water
DL deep learning
Ext extinction session
H homecage control
LD light-dark cycle
LMT large mossy fiber terminal
n number of analyzed images
N number of analyzed animals
Ntrk2 Neurotrophic tyrosine kinase receptor type 2 (gene)
Ntrk2+/- heterozygous TrkB knockout
PBS phosphate buffered saline
PFA paraformaldehyde
Parv parvalbumin
Ret retrieval session
ROI region of interest
RT room temperature
TrkB tropomyosin-receptor kinase B (protein)
WT wildtype
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