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Abstract

We employ the AdS/CFT correspondence and hydrodynamics to analyze the
transport properties of 2 + 1 dimensional electron fluids. In this way, we use
theoretical methods from both condensed matter and high-energy physics
to derive tangible predictions that are directly verifiable in experiment.

The first research topic we consider is strongly-coupled electron flu-
ids. Motivated by early results by Gurzhi on the transport properties of
weakly coupled fluids, we consider whether similar properties are manifest
in strongly coupled fluids. More specifically, we focus on the hydrodynamic
tail of the Gurzhi effect : A decrease in fluid resistance with increasing tem-
perature due to the formation of a Poiseuille flow of electrons in the sample.
We show that the hydrodynamic tail of the Gurzhi effect is also realized in
strongly coupled and fully relativistic fluids, but with modified quantitative
features. Namely, strongly-coupled fluids always exhibit a smaller resistance
than weakly coupled ones and are, thus, far more efficient conductors. We
also suggest that the coupling dependence of the resistance can be used to
measure the coupling strength of the fluid. In view of these measurements,
we provide analytical results for the resistance as a function of the shear
viscosity over entropy density η/s of the fluid. η/s is itself a known function
of the coupling strength in the weak and infinite coupling limits.

In further analysis for strongly-coupled fluids, we propose a novel strongly
coupled Dirac material based on a kagome lattice, Scandium-substituted
Herbertsmithite (ScHb). The large coupling strength of this material, as
well as its Dirac nature, provides us with theoretical and experimental ac-
cess to non-perturbative relativistic and quantum critical physics. A highly
suitable method for analyzing such a material’s transport properties is the
AdS/CFT correspondence. Concretely, using AdS/CFT we derive an esti-
mate for ScHb’s η/s and show that it takes a value much smaller than that
observed in weakly coupled materials. In turn, the smallness of η/s implies
that ScHb’s Reynolds number, Re, is large. In fact, Re is large enough
for turbulence, the most prevalent feature of fluids in nature, to make its
appearance for the first time in electronic fluids.

Switching gears, we proceed to the second research topic considered in
this thesis: Weakly coupled parity-breaking electron fluids. More precisely,
we analyze the quantitative and qualitative changes to the classical Hall ef-
fect, for electrons propagating hydrodynamically in a lead. Apart from the
Lorentz force, a parity-breaking fluid’s motion is also impacted by the Hall-
viscous force; the shear-stress force induced by the Hall-viscosity. We show
that the interplay of these two forces leads to a hydrodynamic Hall voltage
with non-linear dependence on the magnetic field. More importantly, the
Lorentz and Hall-viscous forces become equal at a non-vanishing magnetic
field, leading to a trivial hydrodynamic Hall voltage. Moreover, for small
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magnetic fields we provide analytic results for the dependence of the hydro-
dynamic Hall voltage on all experimentally-tuned parameters of our simula-
tions, such as temperature and density. These dependences, along with the
zero of the hydrodynamic Hall voltage, are distinct features of hydrodynamic
transport and can be used to verify our predictions in experiments.

Last but not least, we consider how a distinctly electronic property,
spin, can be included into the hydrodynamic framework. In particular, we
construct an effective action for non-dissipative spin hydrodynamics up to
first order in a suitably defined derivative expansion. We also show that
interesting spin-transport effects appear at second order in the derivative
expansion. Namely, we show that the fluid’s rotation polarizes its spin.
This is the hydrodynamic manifestation of the Barnett effect and provides
us with an example of hydrodynamic spintronics.

To conclude this thesis, we discuss several possible extensions of our
research, as well as proposals for research in related directions.

All original research presented in this thesis is based on my publications

[1] J. Erdmenger, I. Matthaiakakis, R. Meyer, and D. Rodŕıguez
Fernández, “Strongly coupled electron fluids in the Poiseuille regime,”
Phys. Rev. B, vol. 98, no. 19, p. 195143, 2018, discussed in chapter
4,

[2] D. Di Sante, J. Erdmenger, M. Greiter, I. Matthaiakakis, R. Meyer,
D. Rodŕıguez Fernández, R. Thomale, E. van Loon, and T. Wehling,
“Turbulent hydrodynamics in strongly correlated Kagome metals,”
Nature Commun., vol. 11, no. 1, p. 3997, 2020, discussed in chapter
5,

[3] I. Matthaiakakis, D. Rodŕıguez Fernández, C. Tutschku, E. M.
Hankiewicz, J. Erdmenger, and R. Meyer, “Functional dependence
of Hall viscosity induced transverse voltage in two-dimensional Fermi
liquids,” Phys. Rev. B, vol. 101, no. 4, p. 045423, 2020, discussed in
chapter 6,

as well as unpublished research presented in chapter 7.



Zusammenfassung

The author is grateful to Bastian Heß for assisting with the German
translation of the abstract.

Wir verwenden die AdS/CFT-Korrespondenz und die Theorie der Hy-
drodynamik, um die Transporteigenschaften von 2 + 1-dimensionalen Elek-
tronisches Flüssigkeiten zu untersuchen. Somit nutzen wir sowohl theore-
tische Methoden der Festkörperphysik als auch der Hochenergiephysik, um
konkrete Vorhersagen zu treffen, die unmittelbar in Experimenten verifiziert
werden können.

Zunächst betrachten wir das Forschungsfeld der stark gekoppelten Elek-
tronischen Flüssigkeiten. Motiviert durch die frühen Ergebnisse für die Trans-
porteigenschaften schwach gekoppelter Flüssigkeiten von Gurzhi untersu-
chen wir, ob sich ähnliche Eigenschaften auch in stark gekoppelten Flüssigkei-
ten manifestieren. Dabei konzentrieren wir uns insbesondere auf den hy-
drodynamischen Teil des Gurzhi-Effekts, in welchem der Widerstand der
Flüssigkeit mit steigender Temperatur sinkt, weil sich im untersuchten Ma-
terial ein Poiseuillefluss von Elektronen bildet. Wir zeigen, dass dieser hydro-
dynamische Teil des Gurzhi-Effekts auch in stark gekoppelten und vollständig
relativistischen Flüssigkeiten realisiert ist, einige Eigenschaften sich hier-
bei aber quantitativ unterscheiden. Insbesondere zeigen stark gekoppelte
Flüssigkeiten immer kleinere Widerstände als schwach gekoppelte, und sind
damit wesentlich effektivere Leiter. Wir schlagen darüber hinaus vor, die
Abhängigkeit des Widerstands von der Kopplung zu nutzen, um die Kopp-
lungsstärke der Flüssigkeit zu messen. Für diese Messungen stellen wir ana-
lytische Ergebnisse bereit, welche den Widerstand als Funktion des Quotien-
ten aus Scherviskosität und Entropiedichte η/s der Flüssigkeit ausdrücken.
Dabei ist η/s selbst eine bekannte Funktion der Kopplungsstärke in den
Grenzfällen schwacher und unendlich starker Kopplung.

In einer weiteren Untersuchung stark gekoppelter Flüssigkeiten schlagen
wir Scandium-substituiertes Herbertsmithit (ScHb) als neuartiges, stark ge-
koppeltes Diracmaterial vor, welches auf dem Kagome-Gitter basiert. Die
hohe Kopplungsstärke und die Dirac-Eigenschaften dieses Materials vermit-
teln uns theoretischen und experimentellen Zugang zu nicht perturbativer re-
lativistischer und quantenkritischer Physik. Um die Transporteigenschaften
eines solchen Materials zu untersuchen, stellt die AdS/CFT-Korrespondenz
eine hervorragend geeignete Methode dar. Konkret nutzen wir AdS/CFT,
um eine Abschätzung von η/s in ScHb herzuleiten. Der so ermittelte Wert
ist wesentlich kleiner als der entsprechende Messwert für schwach gekop-
pelte Materialien. Der kleine Wert von η/s wiederum impliziert, dass die
Reynolds-Zahl Re in ScHb groß ist. Tatsächlich ist Re hinreichend groß, um
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erstmals Turbulenz in Elektronisches Flüssigkeiten beobachten zu können,
ein Effekt, der auch in viele anderen Flüssigkeiten in der Natur vorkommt.

Wir gehen zum zweiten Forschungsthema über, welches in der vorliegen-
den Arbeit besprochen wird: schwach gekoppelte, paritätsbrechende Elek-
tronisches Flüssigkeiten. Wir betracthen die hydrodynamische Bewegung
von Elektronen in einen zwei dimensionalen Kanal, und untersuchen die
sich ergebenden quantitativen und qualitativen Änderungen gegenüber dem
klassischen Hall-Effekt. Außer der Lorentzkraft ist die Bewegung einer pa-
ritätsbrechenden Flüss auch den Einflüssen der Hallviskositätskraft ausge-
setzt, welche die von der Hall Viskosität induzierte Scherspannungskraft ist.
Wir zeigen, dass das Wechselspiel dieser beiden Kräfte zu einer hydrody-
namischen Hall-Spannung führt, die nicht linear vom magnetischen Feld
abhängt. Noch wichtiger ist, dass Lorentz- sowie hallviskose Kraft für ein
nicht verschwindendes Magnetfeld gleich werden und damit zu einer trivia-
len hydrodynamischen Hall-Spannung führen. Darüber hinaus geben wir für
kleine Magnetfeldstärken analytische Ergebnisse an, die die Abhängigkeit
der hydrodynamischen Hall-Spannung von allen experimentell festgelegten
Parametern unserer Simulation, wie z.B. Temperatur und Dichte, beschrei-
ben. Diese Abhängigkeiten sind zusammen mit der verschwindenden hydro-
dynamischen Hall-Spannung charakteristische Eigenschaften hydrodynami-
schen Transports und können daher verwendet werden, um unsere Vorher-
sagen experimentell zu verifizieren.

Zu guter Letzt untersuchen wir, wie eine charakteristische Eigenschaft
von Elektronen, der Spin, in die hydrodynamische Theorie einbezogen wer-
den kann. Dazu konstruieren wir eine effektive Wirkung, die nicht dissipative
Spin-Hydrodynamik bis zur ersten Ordnung in einer geeigneten Ableitungs-
entwicklung beschreibt. Wir zeigen darüber hinaus, dass in zweiter Ordnung
dieser Entwicklung interessante Spin-Transporteffekte auftreten. Dabei stellt
sich heraus, dass die Rotation der Flüssigkeit seinen Spin polarisiert. Dies
ist die hydrodynamische Manifestation des Barnett-Effekts, die als Beispiel
für hydrodynamische Spintronics dient.

Zum Abschluss der vorliegenden Arbeit diskutieren wir mehrere mögliche
Erweiterungen unserer Untersuchungen und unterbreiten Vorschläge für wei-
tergehende Forschung in verschiedene Richtungen.

Sämtliche Forschung, die in der vorliegenden Arbeit behandelt wird, ba-
siert auf meinen Veröffentlichungen

[1] J. Erdmenger, I. Matthaiakakis, R. Meyer, und D. Rodŕıguez
Fernández, “Strongly coupled electron fluids in the Poiseuille regime,”
Phys. Rev. B, vol. 98, no. 19, p. 195143, 2018, besprochen in Kapitel
4,

[2] D. Di Sante, J. Erdmenger, M. Greiter, I. Matthaiakakis, R. Mey-
er, D. Rodŕıguez Fernández, R. Thomale, E. van Loon, und T. Weh-
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ling, “Turbulent hydrodynamics in strongly correlated Kagome me-
tals,” Nature Commun., vol. 11, no. 1, p. 3997, 2020, besprochen in
Kapitel 5,

[3] I. Matthaiakakis, D. Rodŕıguez Fernández, C. Tutschku, E. M.
Hankiewicz, J. Erdmenger, und R. Meyer, “Functional dependence
of Hall viscosity induced transverse voltage in two-dimensional Fermi
liquids,” Phys. Rev. B, vol. 101, no. 4, p. 045423, 2020, besprochen in
Kapitel 6,

sowie unveröffentlichter Forschungsarbeit, die in Kapitel 7 besprochen
wird.
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Chapter 1

Introduction

Water is evidently one of the most important fluids in the history of hu-
manity. As a result, much interest has been directed towards understanding
water’s properties and behaviour. The first surviving written account of a
theoretical exploration of water’s mechanical properties comes to us from
ancient Greece and Archimedes around 250 BC. Archimedes, with his law
of buoyancy, inaugurated the field of research known as hydrostatics (hydro
meaning water in ancient greek). Despite this relatively early formulation
of the principles of hydrostatics, the dynamics of water and other fluids
remained elusive until the 18th century [4]1. This changed when Euler,
among others, formulated his equations of hydrodynamics for a perfect and
incompressible fluid moving in three-dimensional space [5]

ρ
D~v

dt
= −∇P + ~F ,

Dρ

dt
= 0 . (1.1)

In Eq. (1.1), ~v is the fluid’s velocity, P the internal pressure of a fluid with
mass density ρ and ~F stands for any external force density acting on the
fluid, e.g. due to gravity. The derivative acting on ~v and ρ is the material
derivative, which describes their rate of change along the flow. It is defined
as

D

dt
= ∂t + (~v · ∇) . (1.2)

Despite Euler’s success, solutions to his equations failed to describe the
results of experiments. This discrepancy between theory and experiment
can be summarized in D’Alembert’s paradox [4]: An object moving within
a perfect fluid feels no net drag force. To resolve this issue, Navier and
independently Stokes introduced the concept of internal fluid friction, that

The style for the chapter headings used in this thesis is a modification of one of the
styles found in Vincent Zoonekynd’s latex website here.

1Note that this did not slow down engineers, who developed their own empirical rules
for understanding the behaviour of fluids [4].

1
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Chapter 1. Introduction

is friction between the molecules comprising the fluid. The strength of this
internal friction is characterized by a so-called transport coefficient, the shear
viscosity η. With the inclusion of η into hydrodynamics, the Euler equations
gave their place to the Navier-Stokes equations

ρ
D~v

dt
= −∇P + η∇2~v + ~F ,

Dρ

dt
= 0 . (1.3)

Mathematically, η changes the order of the hydrodynamic equations from
first to second, allowing the fluid’s momentum to diffuse. Through diffusion
D’Alembert’s paradox was resolved and the gap between theory and exper-
iment was finally bridged. The importance of adding the viscosity term to
the equations of hydrodynamics cannot be overstated: According to Lord
Kelvin, “hydrodynamics is to be the root of all physical science, and is at
present second to none in the beauty of its mathematics.” [4]. An example
of this importance is given by Maxwell’s introduction of the concept of the
electromagnetic field based on an analogy to hydrodynamics [6].

In recent years, additional transport coefficients analogous to η, have
been argued to play an important role in the equations of hydrodynam-
ics [7–9]. Then the following question naturally arises: If a single trans-
port coefficient, η, alters dramatically the behaviour of a fluid, what dras-
tic changes should we expect when additional transport coefficients are in-
cluded? The purpose of this thesis is to identify some of these effects on
the transport of fluids in 2 + 1 space+time dimensions, and connect them
to directly observable properties of solid state systems. At first glance, this
statement seems self-contradictory; how can a solid behave hydrodynami-
cally? Historically, the resolution of this contradiction is already hidden in
the derivation of the equations of hydrodynamics by Navier and Stokes [4].
However, we choose to resolve this paradox below by employing a modern
re-conceptualization of hydrodynamics, based on the advent of effective field
theories (EFTs) in the 20th century (cf. [10] for a recent historical overview
of EFTs).

Hydrodynamics as an EFT

We consider hydrodynamics to be an effective description of thermalized
matter at length and time scales far larger than any microscopic length
or time scale present in the system of interest2. Because of this hierar-
chy of scales, hydrodynamics should not be thought of as a theory for fluid
transport, but rather as a framework for transport. The difference between
framework and theory is that hydrodynamics provides the “scaffolding” for
describing transport, in the same way that quantum field theory (QFT)

2Examples of these length scales are the eigenfrequencies of particle excitations in the
system or particle-particle scattering times.

2



Chapter 1. Introduction

allows us to describe the dynamics of relativistic fields. Unlike QFT, hydro-
dynamics can give tangible predictions only through the use of additional
information about the thermalized microscopic theory of interest. This can
be seen more clearly by noting that the equations of motion of hydrody-
namics (hEOM) can not be derived from microscopic information about the
system, since we are considering length and time scales at which any tran-
sient microscopic effects become irrelevant for transport. Instead the hEOM
use the only remaining information we have about the system, the conserva-
tion or quasi-conservation laws obeyed by the microscopic theory in thermal
equilibrium. These conservation laws, according to Noether’s theorem [11],
take the same form for any system with the same underlying continuous
symmetries. Hence the only way to differentiate between these systems is to
include by hand some additional microscopic information into the hEOM.

It is exactly this generic framework nature of hydrodynamics that makes
it so useful: The assumption of thermal equilibrium allows us to resolve the
conserved charges of the system in terms of their conjugate thermodynamic
variables. For example, a neutral fluid conserves energy and momentum. We
can express these charges in terms of their conjugate variables, which are the
temperature T and the velocity profile ~v. The resulting expressions are the
system’s constitutive relations and take the same form for all systems with
the same (discrete and continuous) symmetries, regardless if the system
is macroscopically a solid or a fluid. Crucially though, the constitutive
relations can be specified completely up to a few numerical coefficients, the
transport coefficients. These transport coefficients are precisely the point
where microscopic information about the system enters the hydrodynamic
framework. This microscopic information is what allows us to differentiate
between a solid and a typical fluid behaving hydrodynamically.

Our general discussion on hydrodynamics shows the practical useful-
ness of hydrodynamics in analyzing the transport properties of many sys-
tems. However, despite hydrodynamics being around for a few hundred
years [5, 12], it was first applied to the problem of electronic transport in
the 1960s [13, 14]. The most important reason for this time-gap is the fol-
lowing: It is difficult to achieve the conditions for electron hydrodynamics
in condensed matter systems. The applicability of hydrodynamics depends
on a microscopic length scale K; hydrodynamics is a valid approximation
only if K is much smaller than any other length scale relevant to the system
of interest3. When it comes to electron hydrodynamics, K can be identified
with the electron-electron mean free path lee. A “small” lee allows electrons
to interact and achieve local thermodynamic equilibrium among themselves,
enabling a hydrodynamic approach at low energies. The particular length
scales lee has to compete against in a metal are the electron-phonon scat-

3Note that this is a necessary but not sufficient condition. For example, the physics of
the quantum Hall effect can be described by a modification of the Euler equations [15].

3



Chapter 1. Introduction

tering length lph, the electron-impurity scattering length limp and any other
geometric scale in the system, call it W . Hence, electron hydrodynamics is
a valid description for an electronic system in local equilibrium when

lee � lph, limp,W, ... . (1.4)

Typically, the scattering scales depend on temperature and, hence, condi-
tion (1.4) carves out a range of temperatures where electron hydrodynamics
is a valid approximation [13]. To avoid phonon contributions, one usually
freezes out the lattice vibrations by putting the system at a sufficiently low
enough temperature4. Then, assuming W has been chosen appropriately,
the only remaining obstacle to electron hydrodynamics is the impurity con-
tent of the system. The first instances of clean enough materials which
satisfy Eq. (1.4) were made and examined both theoretically and experi-
mentally nearly thirty years ago by Molenkamp and de Jong [16,17]5. This
was a remarkable achievement for the field of electron hydrodynamics, espe-
cially if one notes that the second observation of electron hydrodynamics was
made in 2016 [19]. Additional materials and direct observations of the elec-
tron flow followed suit shortly thereafter [20–23], thus establishing electron
hydrodynamics as a fully fledged field of study.

Hydrodynamic transport coefficients

The relatively young age of this field implies that early research focused
on areas closely connected with established methods and knowledge. In
particular, early research on hydrodynamics focused on i) calculating the
explicit form of transport coefficients for specific materials whose micro-
scopic description is well-known, ii) re-deriving hydrodynamics for various
novel symmetries enjoyed by condensed matter systems6.

Concerning i), the microscopics of a given material are described in
terms of a QFT. Therefore hydrodynamic transport coefficient calculations
can generally be performed within the framework of QFT. In particular,
these calculations are performed through Kubo’s linear response formal-
ism [24, 25], which relates the transport coefficient of interest to a partic-
ular retarded Green’s function. For typical materials, then one calculates
the corresponding Green’s function through well-known perturbative QFT
techniques. However, perturbation theory is useful only for weakly coupled
fluids. If a fluid is strongly coupled (cf. chapter 5 for an example of a

4Note that lee also increases with decreasing temperature. Therefore, we cannot cool
down the system at arbitrarily small temperatures.

5Note that [18] argues it was 1d diffusion of electrons that was observed by Molenkamp
and de Jong and not a hydrodynamic flow.

6Novel meaning here that these symmetries are not enjoyed by typical fluids such as
water.

4



Chapter 1. Introduction

strongly coupled material), perturbation theory fails and a new approach is
necessary.

The approach we employ within this thesis comes under the name Ad-
S/CFT correspondence or gauge/gravity duality. As we explain in more
detail in chapter 2, the AdS/CFT correspondence in its weakest form is a
duality between a gauge theory and a theory of gravity originally conjec-
tured in string theory models [26, 27]. Notably, the gauge/gravity corre-
spondence is a strong/weak form of duality, identifying a strongly coupled
gauge theory with a weakly curved theory of gravity. This allows us to turn a
non-perturbative QFT calculation into a textbook calculation within general
relativity. In particular, one can calculate retarded Green’s functions of op-
erators and, hence, transport coefficients, by imposing appropriate boundary
conditions on the black hole horizon of the gravitational dual. Naturally,
one of the first transport coefficients calculated through AdS/CFT is the
shear viscosity η. In particular, η has been shown to be proportional to
the entropy density of the fluid s. Most importantly, the proportionality
constant between η and s has been observed to take a universal value for
all infinitely coupled Lorentz-invariant fluids near charge neutrality, i.e. at
near vanishing fluid charge density,

η

s
=

~
4πkB

. (1.5)

This particular value of η/s is directly connected to Planckian dissipation,
i.e. to dissipation at time scales τP ∼ ~/kBT , via η/s ∼ TτP. Based on
dimensional analysis, τP is expected to be the smallest dissipation time pos-
sible in nature [28]. This led the authors of [29] to conjecture that Eq. (1.5)
is a lower bound for η/s for any viscous fluid found in nature. This minimal
value is referred to as the KSS bound after the authors of [29], Kovtun,
Son and Starinets. The KSS bound can rightfully be considered the most
important prediction of the gauge/gravity duality so far. This is because it
has also been put to the test in experiment. More precisely, η/s has been
experimentally measured for the strongly coupled quark-gluon plasma at
the LHC and RHIC accelerators, as well as for cold atom systems [30]. In
both cases, the measured valued of η/s was of similar order to, but always
bigger than, the KSS bound. Note, however, that violations do exist even
in theory, as we discuss in section 2.4.1.

The gauge/gravity results for η/s in conjunction with its successful ex-
perimental confirmation prompted condensed matter theorists to examine
whether similar results can be found in solids. To this end, η/s for weakly
coupled solids with a relativistic spectrum was calculated. In particular, a
value of the same order of magnitude for η/s was found in graphene [31–34]

η/s ' ~
4πkB

1.7

α2
, (1.6)
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Chapter 1. Introduction

with α graphene’s coupling constant. Despite being the same order of mag-
nitude, η/s for graphene is at least an order of magnitude larger than the
KSS bound because of graphene’s perturbative coupling strength, α < 1.
The perturbative results in conjunction with the gauge/gravity ones, in-
dicate η/s is a monotonically decreasing function of the coupling strength
and that the KSS bound is reached only deeply within the non-perturbative
regime.

Apart from the shear viscosity, one additional transport coefficient of
interest for conformal fluids is the quantum critical conductivity σ. In 3 + 1
dimensions the quantum critical conductivity is a key transport coefficient.
Its temperature dependence allows us to discern between Fermi-liquid be-
haviour, σ ∝ T−2, and non-Fermi liquid behaviour σ ∝ T−a, a 6= 2 [30].
Fortunately or unfortunately, the quantum critical conductivity is indepen-
dent of temperature in 2 + 1 dimensions7. However, similarly to η/s, σ
takes a particular quantum critical value for a large class of gauge/gravity
models σ ∼ e2/~ [35]. In contrast, weakly coupled fluids exhibit a larger
quantum critical conductivity because of their weak coupling [36]. Curi-
ously, it was shown that the DC conductivity is inversely proportional to
the entropy [37], suggesting a bound on the value of σ similar to the KSS
bound. However, further inspection showed that σ is proportional to 1/s
only for strong disorder [38].

The shear viscosity and the conductivity saturate the list of transport co-
efficients for conformally-invariant fluids8. Thankfully, here enters research-
focus ii) mentioned above. Namely the multitude of symmetries realized
in condensed matter systems, imply a similarly vast number of hydrody-
namic equations differing in which transport coefficients appear in them.
The first papers in this direction, considered how breaking parity-invariance
alters hydrodynamics [8,9]. Several additional transport coefficients appear
in this case. One of the most important ones for the purposes of this thesis
is the Hall-viscosity ηH. Similarly to the shear viscosity, the Hall viscosity
introduces (parity-breaking) stresses acting on the fluid to the Navier-Stokes
equations

ρ
D~v

dt
= −∇P + η∇2~v + ηH∇2(~v × ez) + ~F , (1.7)

with ez the unit vector in the direction normal to the fluid plane9. However,
unlike η, ηH is not related to dissipation. In this respect, the Hall viscosity
is for hydrodynamics, what the magnetic field is for the Lorentz force.

7Of course, if one deviates from quantum criticality, σ depends on temperature through
the ratio µ/T .

8Note that conformal invariance for us also includes invariance under both parity- and
time-reversal.

9The direction of ez is chosen so that the fluid is embedded in R3 with a right-handed
co-ordinate system.
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Chapter 1. Introduction

Apart from realizing novel exact symmetries, condensed matter systems
also exhibit anomalous symmetries [39]. Typically, one probes anomalies
by weakly gauging the anomalous symmetry through the introduction of an
external gauge field. The presence of the gauge field deforms the conserva-
tion law dual to the anomalous symmetry, thus explicitly invalidating it10.
The most famous example of an anomaly is given by the 3 + 1 dimensional
U(1) triangle anomaly in the presence of external electric ~E and magnetic
~B fields

∂µJ
µ = C ~E · ~B . (1.8)

Jµ is the U(1) current, conserved in the absence of an anomaly, and C is
the anomaly coefficient, which depends on the particular system we exam-
ine. The U(1) anomaly was first observed within the realm of high energy
physics [40, 41]. A little more than a decade later, it also emerged in con-
densed matter systems with a relativistic low-energy spectrum, namely, Weyl
semimetals [42]. As is expected, the modification of the conservation law of
Jµ due to the U(1) anomaly, also modifies the hydrodynamics of the, now
anomalous, fluid. In particular, the U(1) anomaly leads to novel transport
coefficients [7], altering the fluid’s conductivity in the presence of a magnetic
field [39,43,44].

Returning to flatland [45] and the 2 + 1 dimensional fluids of interest,
we find the well-known parity anomaly [46–49]

Jµ =
e

8π
εµνρFνρ , (1.9)

with e the electron charge and Fνρ Maxwell’s field strength tensor. In con-
trast to the U(1) anomaly, the parity anomaly was predicted for high energy
and condensed matter systems almost simultaneously. More precisely, the
parity anomaly was shown in the 1980s to appear in a monolayer of graphite
or, as we presently call it, graphene [49,50](see also [51–54] for more recent
work). Similarly to the U(1) anomaly, the breakdown of parity due to the
parity anomaly (1.9) strongly affects the transport in a fluid. In partic-
ular, it endows the fluid with a non-vanishing Hall conductivity and Hall
viscosity [9, 55] (see [56] for a review on the Hall viscosity).

Despite this large number of results on transport coefficients, theoretical
methods on how to measure and distinguish between the effects induced by
them are few and far between. This gap between transport coefficients and
the transport effects they induce, is partly bridged by this thesis. In partic-
ular we are interested in two aspects of hydrodynamic transport: transport
in strongly-coupled and in parity-breaking fluids. To see how our research
fits into the existing literature, let us give a partial review of it. We will fo-
cus on particular examples that help, first, to present the distinct transport

10In the absence of external gauge fields, the anomaly appears in n > 1-point functions
of the conserved current.
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Chapter 1. Introduction

characteristics exhibited by a material due to its hydrodynamic behaviour
and, second, to set the stage for understanding our research [1–3].

The Gurzhi effect and summary of results

Let us first review of the the Gurzhi effect, the first signature of hydrody-
namic transport in electronic wires predicted by Gurzhi [13, 14] and con-
firmed by Molenkamp and de Jong in (Al,Ga)As wires [16, 17]. To describe
the Gurzhi effect, let us consider a two-dimensional wire of width W and
length l � W , see Fig. 1.111. Assume we pump electrons through the wire
via an applied electric field aligned along the channel. Gurzhi considered
what happened to the resistance of such channels with varying temperature
T . We assume the temperature is small enough such that electrons in the
channel pass through it ballistically, lee = lee(T ) � W .12 In this case elec-
trons pass through the channel like billiard balls, colliding only with the
channel boundaries. In this ballistic regime, the resistance of the channel
RW can only depend on geometric parameters and hence it is constant in
temperature. Next we increase the temperature of the channel, which in
turn decreases lee & W . In this temperature regime, electrons collide with
the channel boundaries as well as with each other. As a consequence, the
resistance of the channel will become larger than RW . Increasing the tem-
perature further, we can reach the hydrodynamic regime for which lee �W .
In this regime electrons collide mostly with each other and behave collec-
tively. This allows them to drag each other along the channel within an
enveloping flow profile, see Fig. 1.2. As a result, the resistance of the wire
will start decreasing with increasing temperature until it reaches a minimum
value. This increase and subsequent decrease of the resistance with temper-
ature runs counter to the usual lore of transport in solids [57]. For this
reason it was given a specific name, the Gurzhi effect, and it is a hallmark of
hydrodynamic behaviour in electronic solids. If we increase the temperature
further, phonon effects will start affecting transport in the system. As a
consequence of electron-phonon collisions, the resistance of the channel will
once more start to increase with temperature.

It is precisely this “anomalous” behaviour of the resistance as a function
of temperature that was observed in [16], as shown in Fig.s 1.3a, 1.3b below.
In these plots, the resistance dV/dI is plotted as a function of the current
I flowing through the wire, instead of the temperature. This is because I is
directly observable and depends on the temperature of the electron gas due
to Joule heating, T ∼ I2.

It is important to remark here that our above discussion on the Gurzhi
effect relied on the assumption of weak coupling, since we assumed the exis-

11We assume that electron-impurity scattering is irrelevant for this description, i.e. the
channel is “clean”.

12Recall lee, like all scattering scales, in general depends on T .
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Figure 1.1: Channel of width W considered for the Gurzhi effect. Electrons
at temperatures such that lee � W are pumped through the
channel. They go through the channel ballistically, interacting
only through the channels boundaries.
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Figure 1.2: Channel of width W considered for the Gurzhi effect. Electrons
at temperatures such that lee � W are pumped through the
channel. As they move through the channel, they interact with
each other thus forming a fluid with velocity v.

tence of well-defined quasiparticles (the electrons) that propagate and inter-
act with each other as they traverse the channel. However, in recent years
moderately and strongly coupled materials have emerged, such as graphene
around criticality [58, 59], where this assumption fails. The question then
arises whether the Gurzhi effect can be realized in strongly coupled materi-
als. We undertook the task of answering this question from the point of view
of hydrodynamics in [1], as discussed in detail in chapter 4. In particular,
we carried out a complete analysis of the hEOM for a relativistic fluid in
a channel geometry. Crucially, we employed the gauge/gravity duality to
supplement the hEOM with the thermodynamic parameters and transport
coefficients of the fluid. In this way, we restricted ourselves to the non-
perturbative regime and explored the hydrodynamic channel flow for fluids
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Chapter 1. Introduction

(a) Resistance of a wire with width W = 3.9µm
and length l = 20.2µm as a function of the cur-
rent passing through the wire for different lat-
tice temperatures. From top to bottom T =
24.7, 20.4, 17.3, 13.6, 10.4, 8.7, 4.4, 1.5K.
Reprinted from [16] with permission from APS.

(b) Resistance of two wires with width W = 4µm
and lengths l = 63.7µm (top panel) and l =
127.3µm (bottom panel) as a function of the
current passing through the wire for differ-
ent lattice temperatures. From top to bottom
T = 4.5, 3.1, 1.8 K.. Reprinted from [16] with
permission from APS.
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Chapter 1. Introduction

whose η/s ratio is close to or even saturates the KSS bound. Our analy-
sis shows that strongly-coupled fluids do exhibit the decrease in resistance
predicted by Gurzhi at weak coupling, but with a relatively diminished re-
sistance. This renders strongly coupled fluids more efficient conductors of
electricity than their weakly coupled counterparts. Our research indicates,
then, that the search for efficient conductors should not only focus on in-
creasing the critical temperature of superconductors, but also on realizing
strongly coupled materials.13

To showcase that this is a fruitful research direction, my collaborators
and I have proposed a novel strongly coupled electronic system, Scandium-
substituted Herbertsmithite (ScHb), in [2]. ScHb is a kagome metal con-
structed from copper oxide plaquettes. It exhibits a relativistic spectrum,
similar to graphene, and a fine-structure constant of around 3. A fine-
structure constant so large renders perturbation theory invalid and non-
perturbative methods are necessary to understand the transport properties
of ScHb. We used the gauge/gravity duality to estimate ScHb’s η/s. The
resulting estimate shows that ScHb can exhibit one of the hallmarks of hy-
drodynamic behaviour in nature, turbulence. Turbulence has never been
observed in electronic fluids. In fact, it has even been suggested that a tur-
bulent electron flow is nigh on impossible [58]. Our proposal for ScHb ex-
plicitly defies these expectations and paves the way towards bringing turbu-
lence, strongly coupled electron fluids and the gauge/gravity duality within
the reach of tabletop condensed matter experiments. Our detailed proposal
for ScHb and its transport properties is presented in chapter 5.

Furthermore, in analogy to the Gurzhi effect, we explore how the Hall
viscosity affects transport within a wire. In particular, we found in [3] that
the Hall viscosity and hydrodynamic transport in general, alter the classi-
cal Hall effect present in 2 + 1 dimensional materials under the combined
influence of an in-plane external electric field and an out-of plane external
magnetic field. We find that the hydrodynamic Hall effect is vastly differ-
ent from the typical Hall effect in solids. Namely, while the standard Hall
effect is linear in B, the Hall effect in fluids is a highly non-linear function
of the external magnetic field. Even more importantly, the hydrodynamic
Hall effect vanishes at a non-vanishing value of the magnetic field. This
non-linearity and its vanishing are then distinct features of hydrodynamic
transport in materials and can be used to clearly distinguish between bal-
listic and hydrodynamic transport! We presented in [3] a detailed analysis
of the modified Hall effect and suggested ways it can be measured in exper-
iment. We present this analysis in chapter 6.

Finally, we note that the above applications have considered only the
transport of charge within electronic fluids. Recently, spintronics, devices us-

13Note that for us strongly coupled and strongly correlated are synonymous, in the sense
that a perturbation theory approach to the problem is invalid.
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ing the electron’s spin to transfer information, have been heavily researched
and developed [60]. It is interesting to understand how the properties of
these devices change once they start behaving hydrodynamically. To do so,
we need a theory of hydrodynamics which takes into account the macro-
scopically conserved electron spin. Such a theory, does not exist yet, which
is why we take the first steps towards building it in chapter 7. The con-
tents of chapter 7 are as of yet unpublished research I conducted during
my PhD studies. In particular, we discuss some of the intricacies appearing
in the construction of spin hydrodynamics and derive the effective action
of spinfull fluids up to first order in the microscopic length scale K. More
importantly we show that once one includes K2 corrections, interesting spin
transport phenomena emerge. An example of these includes the spontaneous
magnetization of a rotating fluid, i.e. the Barnett effect [61].

The structure of this thesis is the following: In chapter 2 we present a
short review of the AdS/CFT correspondence and its connection to trans-
port and hydrodynamics. In particular, we show how holography allows us
to specify the thermodynamics as well as the ratio η/s for a 2 + 1 dimen-
sional, charged relativistic fluid. We proceed in chapter 3 to give a review of
the construction of the constitutive relations of hydrodynamics for parity-
breaking fluids, using the methods of equilibrium partition functions as well
as the second law of thermodynamics. Then, in chapters 4, 5 and 6, we
apply hydrodynamics to derive the novel transport phenomena first appear-
ing in [1,2] and [3] respectively. We proceed in chapter 7 with our (partial)
construction of spin hydrodynamics. Finally, we present our conclusions and
suggestions for future research in chapter 8.
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Chapter 2

The AdS/CFT correspondence

In the present chapter we review the AdS/CFT correspondence and its ap-
plication to strongly coupled materials. We begin in section 2.1 by pre-
senting the original conjecture for the AdS/CFT correspondence [26]. We
also present the holographic dictionary [62, 63], which provides an explicit
map between observables in the strongly coupled CFT and gravity fields.1

Then, in section 2.2 we discuss how the correspondence can be extended to
describe QFTs at finite temperature and charge density and use this exten-
sion to derive their thermodynamic properties. We proceed in section 2.3
with a short presentation of the linear response formalism within QFT and
the AdS/CFT correspondence. Finally, we apply the results of section 2.3
in section 2.4 to calculate η/s for QFTs dual to the Einstein-Hilbert La-
grangian. This calculation leads to the well-known KSS lower bound on η/s
(1.5) discussed in the introduction. Finally, we discuss how one can intro-
duce coupling corrections to the KSS bound and whether these corrections
violate the bound.

2.1 The AdS/CFT correspondence

We motivate the AdS/CFT or gauge/gravity correspondence through its
original incarnation in string theory [26]. We base our account on several
textbooks and lecture notes [30, 64–66], as well as on the original article by
Maldacena [26].

To begin our discussion, let us present some general facts about type
IIB string theory2, for which Maldacena first proposed his conjecture. The
excitations of Type IIB string theory consist of both open and closed (su-
per)strings vibrating at a particular frequency while propagating in ten-

1We explain why this dictionary is holographic in nature below, see discussion below
Eq. (2.9).

2The classification type IIB simply means that the low-energy string spectrum contains
chiral fermions. In contrast type IIA string theory does not contain chiral matter.
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Chapter 2. The AdS/CFT correspondence

dimensional spacetime. The open strings, like those of a guitar, necessarily
have their endpoints fixed on p + 1 dimensional hypersurfaces called Dp-
branes. We can label the string endpoints and the D-brane they are fixed
upon, by assigning to each string endpoint a Chan-Paton factor. At low
energies, the Chan-Paton factors endow the string spectrum with a repre-
sentation of a unitary group. Due to this, low-energy open-string excitations
on the Dp-brane can be identified with the excitations of a gauge theory liv-
ing on the Dp-brane. For example, low-energy open string excitations with
their endpoints fixed on a single Dp-brane are described by a U(1) gauge
theory in p + 1 dimensions. On the other hand, closed strings are free to
move anywhere in spacetime. That is, they can start or on a Dp-brane,
or simply propagate in vacuum. Crucially, the low-energy excitations of
a closed string, involve spin-2 modes which can be naturally interpreted as
gravitons3. As a result, a closed string attached to Dp-brane can be thought
of as a graviton emitting or absorbing process depending on the direction
of time. Hence, we may think of Dp-branes as massive objects bending
spacetime with their gravitational field.

As we can see, both open strings — giving rise to a gauge theory —
and closed strings — giving rise to gravity — are closely related to Dp-
branes. It is this connection between strings and Dp-branes that allows
us to conjecture the gauge/gravity correspondence. To motivate a more
precise form of the conjecture, consider a stack of N coincident D3-branes
in flat 9+1 dimensional Minkowski space, M9,1. As already remarked, these
branes are massive gravitating objects. Namely, they can be thought as
gravitational solitons supported by their non-trivial Ricci curvature R ∼
1/L2. The curvature radius L can be expressed in terms of N and the only
free parameters in string theory, the string length ls and the string-string
interaction constant gs. In particular,(

L

ls

)4

= 4πgsN . (2.1)

To proceed, let us examine (2.1) in various limits. First, we assume gsN � 1,
i.e. L� ls. In this case, the D3-branes are far smaller than any string prop-
agating in the ambient spacetime. This implies a complete decoupling of the
dynamics of the D3-branes from the closed strings of Type IIB theory, since
no string is small enough to probe the branes or be sourced by them. This
decoupling becomes exact in the low-energy limit of string theory, formally
induced by taking ls → 0 4. In the same limit, the dynamics of the closed
strings are given by a free-supergravity theory on M9,1, while the dynamics

3Naturally means that the spin-2 string states satisfy all the gauge constraints as a
graviton state.

4This is the low-energy limit of string theory because it implies we work at energy
scales which cannot resolve the “stringy” structure of string theory.
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of the D3-branes are given solely by the low-energy open-string vibrations,
i.e by a 3 + 1 dimensional gauge theory. In particular, the open string
vibrations are described by a maximally supersymmetric, N = 4, super
Yang-Mills (SYM) gauge theory with gauge group SU(N). This is a (su-
per)conformal gauge theory with a dimensionless coupling strength, gYM.
Due to its string theoretic origin, gYM can be expressed in terms of gs as

g2
YM = 4πgs . (2.2)

Let us now examine the opposite limit, where gsN � 1 and L � ls. In
this limit, the D3-branes interact with the closed strings floating in space-
time, so a simple description of the dynamics in terms of open strings is not
enough. Instead, since the branes are far larger than the strings, they always
interact with each other. Therefore the branes are constantly emitting and
absorbing gravitons, suggesting an effective description of their dynamics
in terms of gravity is possible. Indeed, in the L � ls limit one can de-
scribe the D3-brane dynamics in terms of a Type IIB supergravity action,
i.e. a supersymmetric theory of gravity with chiral fermions [67]. As all
gravitational theories based on general relativity (GR), supergravity is non-
renormalizable. Therefore for the supergravity action to be well-defined, we
must suppress any quantum correction generating an infinite tower of higher
derivative relevant operators. To achieve this tree-level limit of supergravity,
we take gs � 1. In this way, we find that the D3-brane dynamics are de-
scribed by a well defined supergravity theory in the combined limit gs � 1
and N � 1 such that L � ls. Because we suppressed all quantum cor-
rections, the effective supergravity action includes only the Einstein-Hilbert
term (∼ R) plus the additional matter fields comprising the graviton su-
permultiplet [67]. Given this supergravity theory, we can now consider its
low-energy limit. Similarly to the case L� ls a decoupling between degrees
of freedom occurs. In particular, we find two decoupled supergravity the-
ories: A free supergravity theory on M9,1 and a supergravity theory on a
product spacetime with line element

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)

+ L2ds2
S5 . (2.3)

The first term on the right hand side (RHS) of Eq. (2.3) gives the line element
of a five dimensional anti-De Sitter (AdS5) spacetime with curvature radius
L2. The particular form of the AdS5 metric used here, defines a foliaton
of AdS5 along the z-direction in terms of 3 + 1 dimensional Minkowski
spacetime with metric ηµν . The second term in Eq. (2.3) gives the line
element of a five dimensional sphere of radius L. Thus, we can identify the
product spacetime of the supergravity theory with AdS5 × S5.

Let us summarize what we have seen so far. We started from Type IIB
string theory and considered the two limiting cases gsN � 1 and gsN �
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1. We argued that the low energy description of these limits is given by
N = 4 SYM times supergravity on M9,1 on the one hand and supergravity
on AdS5 × S5 times supergravity on M9,1 on the other. Now comes the
crucial point: Due to supersymmetry, we can be certain that the gsN � 1
limit of Type IIB string theory is adiabatically connected to the gsN � 1
limit5. Assuming this adiabatic connection between the two limiting cases
is inherited by their respective low energy theories, we can conjecture that

D = 3+1,N = 4, SU(N) SYM gauge theory ∼= supergravity on AdS5×S5 .
(2.4)

Further, one can consistently reduce the S5 to fields propagating on AdS5

via Kaluza Klein reduction [68, 69] (see also [70]). Hence, the equivalence
Eq. (2.4) can also be expressed as

D = 3 + 1,N = 4, SU(N) SYM gauge theory ∼= supergravity on AdS5 .
(2.5)

This is the AdS/CFT correspondence as was first proposed in [26]. It is
a weak-strong coupling correspondence in the following sense: The super-
gravity theory is valid for gsN � 1, with N � 1. Using Eq. (2.2) we can
re-express this relation in terms of gYM as

g2
YMN = λ� 1 , (2.6)

where we introduced the ’t Hooft coupling λ. The ’t Hooft coupling acts
as the effective coupling strength of SYM in the large N limit. Therefore,
supergravity on AdS5 is an equivalent description of strongly coupled SYM6.
This is the so called weakest form of the AdS/CFT correspondence. One
can strengthen it by removing the requirement λ � 1, but still requiring
N � 1. In this limit, SYM is conjectured to be equivalent to classical string
theory since gs must be perturbatively small. Clearly, one can strengthen the
conjecture further by allowing gs to take any value, not necessarily small. In
this case, SYM is conjectured to be equivalent to the fully quantum Type IIB
string theory. As a final comment we note that the construction qualitatively
described above can be extended to include branes other than D3, leading
to the equivalence of gauge and gravity theories in various dimensions and
with various symmetries [30]. As a result, the AdS/CFT correspondence
has also been dubbed the gauge/gravity correspondence.

5Supersymmetry is not necessary for this adiabatic connection between large and small
gsN . Instead, the necessary condition is that no phase transitions occur in the system as
we move from one limit to the other [65].

6Because our conjecture is reflexive, we can also say that SYM is an equivalent descrip-
tion of sharply curved supergravity on AdS5 × S5.
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2.1.1 The holographic dictionary

To make practical use of the gauge/gravity correspondence, we must make
precise how it relates physical observables between the two sides. The pre-
scription for doing so is referred to as the holographic or GPKW dictionary,
after Gubser, Polyakov and Klebanov [63] and Witten [62]. We present our
version for the deduction of this prescription below7.

The physical observables of a d+ 1 dimensional gauge theory consist of
the correlation functions of local gauge-invariant operators O(x). These cor-
relation functions can be calculated directly from the generating functional
of the gauge theory, Zgauge, given by

Zgauge = Zgauge[J ] =

〈
exp

[
i

∫
dd+1x J(x) ◦ O(x)

]〉
, (2.7)

where J(x) is the source of the operator O(x), ◦ denotes the appropriate
inner product such that J(x) ◦ O(x) is a Lorentz scalar and the angled
brackets denote averaging over the asymptotic vacuum state of the gauge
theory and time-ordering.

On the other side of the correspondence, gravity does not have any well-
defined local operators because of diffeomorphism invariance. Instead, the-
ories of gravity are defined in terms of their dynamics, i.e. the gravitational
action, as well as their boundary conditions. Let us denote the bulk fields of
gravity and their boundary conditions by φ and φ0 respectively. An example
of a bulk field φ is the spacetime metric gµν of AdS5 presented in Eq. (2.3).
Its corresponding boundary condition is defined at the asymptotic boundary
z → 0 and is given by the Minkowski metric ηµν . Given φ and φ0, all the
physical properties of a theory of gravity are hidden in Sgrav[φ0], the on-shell
gravitational action8. To arrive at Sgrav[φ0] one expresses φ in terms of φ0

by solving φ’s EOM and substitutes the solution back into Sgrav[φ], hence
the characterization on-shell. As in all QFTs, the exponential of Sgrav[φ0]
defines the generating functional of gravity in the semiclassical limit [72]. In
particular,

Zgrav = Zgrav[φ0] = exp (iSgrav[φ0]) . (2.8)

Let us apply now this general discussion to the special case of super-
gravity on AdSd+2. In this case, the boundary fields φ0 are defined on the
d+ 1 dimensional boundary of AdSd+2. This boundary can be identified up
to a conformal transformation with d+1 dimensional Minkowski spacetime.

7No claim for the novelty of the following arguments is made. We just put textbook
QFT, GR and classical mechanics lore to use.

8This is true for any classical field theory (cf. chapter 6 of [71]). Gravity is distinguished
among these field theories, since boundary data are its only local invariants.
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This suggests the identification, up to a conformal factor, of the boundary
value φ0 with the source J(x) of the operator O(x) and, hence, leads to 9

Zgauge[φ0] = Zgrav[φ0] = exp (iSgrav[φ0]) . (2.9)

Equation (2.9) allows us to derive any and all correlation functions of the
operator O(x) in a strongly coupled gauge theory, via the on-shell action of
a theory of gravity. Thus the theory of gravity acts as an effective theory
for the operators O(x) of interest. Equivalently, all physical information of
a dynamical spacetime are given in terms of a gauge theory living on the
spacetime’s boundary. For this reason, the gauge/gravity correspondence
is also called the holographic correspondence or holography for short. This
holographic interpretation also allows us to give a physical meaning to the
additional bulk spacetime dimension. Namely, the z co-ordinate in Eq. (2.3)
can be interpreted as changing the energy of the dual QFT. That is, each
hypersurface z = constant can be identified with the boundary QFT, but at
a different energy scale. In particular, the boundary z = 0 is interpreted as
the UV limit of the dual QFT, while z =∞ as the IR.

This concludes our very general introduction of holography, concerning
QFTs at vanishing temperature and chemical potential. We can, however,
extend the correspondence to field theories at finite temperature and away
from charge neutrality. In particular, we argue in the following section that
a thermal QFT at finite chemical potential is dual to a spacetime with a
charged black hole residing in it. The temperature and total charge of the
QFT are identified with the Hawking temperature and charge of the black
hole.

2.2 Holographic thermodynamics

We now motivate and state the gauge/gravity correspondence for thermal
QFTs at finite charge density. For this purpose, we first consider a QFT in
thermal equilibrium at charge neutrality. The states of this thermal QFT are
defined on R3 and evolve in imaginary time τ . The imaginary time has the
topology of a circle with perimeter β, playing the role of inverse temperature,
meaning the QFT lives on the product manifold S1 × R3. Therefore, the
dual bulk geometry must be deformed at the boundary to exhibit the same
topology. That is, we must compactify the time direction into a circle while
leaving the spatial directions untouched. We can achieve this by introducing
a black hole into the bulk AdS space, which warps the time and the non-
QFT direction z. More precisely, consider an AdSd+2 black hole with the
line element

9There are less hand-waving arguments for identifying φ0 with J(x). For detailed
discussions from the string theory point of view see [64], while for discussions from the
gauge theory point of view see [30].
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ds2 =
L2

z2

(
dz2

f(z)
− f(z)dt2 + dx2

)
. (2.10)

In Eq. (2.10), t,x are the d + 1 QFT co-ordinates, while z is the extra
dimension of the bulk spacetime. The function f(z) is the blackening factor
with a simple zero at z = zh, the position of the black hole horizon. Rotating
t to imaginary time t = iτ , we find the Euclidean AdS black hole with line
element

ds2 ≡ gµνdxµdxν =
L2

z2

(
dz2

f(z)
+ f(z)dτ2 + dx2

)
. (2.11)

Due to the blackening factor, the Euclidean black hole exhibits a conical
singularity near the horizon. To avoid this singularity, we must compactify
τ down to a circle with inverse period β−1 given by

β−1 =
1

4π
f ′(zh) . (2.12)

Therefore after the compactification of τ , the boundary of AdS has the
proper topology to harbour a thermal QFT with inverse temperature β.
This makes it natural to identify a black hole spacetime with a thermal
QFT. A further motivation to identify a spacetime with a black hole with a
thermal QFT, is the energy interpretation of the bulk co-ordinate z. Viewed
from this perspective, the black hole with its event horizon forbids the UV
observer at z = 0 access to the IR degrees of freedom at z = ∞ [66].
This is exactly what placing a QFT at finite temperature does as well:
Thermal fluctuations excite all IR degrees of freedom with energy smaller
than β−1. Of course, we can make our discussion more rigorous via a suitable
modification of Maldacena’s original argument. The interested reader can
consult [30,64] for details.

To go further and consider QFTs away from charge neutrality, we must
also introduce a source for the charge density of the boundary QFT. The role
of this source can be played both by a background Coulomb potential as well
as a background chemical potential µ. Since the two are interchangeable,
we choose µ as the charge density source. In particular, we have for the
Euclidean partition function

Zgauge =

〈
exp

[
−
∫
dd+1x µJ0

]〉
, (2.13)

where J0 is the charge density of the QFT. In a relativistic theory, this
chemical potential must always appear as part of a U(1) gauge field aµ. To
be more precise, we must write

Zgauge = Zgauge[aµ] =

〈
exp

[
−
∫
dd+1x aµJ

µ

]〉
. (2.14)
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The zeroth component a0 gives the chemical potential, while the spatial
components ai source the current densities J i in the boundary QFT. Ac-
cording to the holographic dictionary (2.9), the gauge field aµ corresponds
to the boundary value of a bulk gauge field Aµ

10. That is, we can write

Zgauge[aµ] = exp (−Sgrav[Aµ = Aµ(aµ)]) , (2.15)

with Sgrav the gravitational action and Aµ expressed on-shell in terms of aµ.
To restrict the dual QFT to finite charge J0 but vanishing current J i, we
must choose aµ to be of the form

aµ = (at, ai) = (µ, 0) (2.16)

and

AM (z → 0) = (Az(z → 0), Aµ(z → 0)) = (0, aµ) . (2.17)

To summarize, in order for the dual QFT to be both at finite temperature
and density, we must consider a gravitational action with a dynamical metric
and gauge field. This action must be complex enough to accommodate both
a black hole solution of the form Eq. (2.11) and a non-trivial solution for
Aµ satisfying the boundary condition Eq. (2.17). The simplest action that
meets these requirements is the Einstein-Maxwell Lagrangian, consisting of
the Einstein-Hilbert term plus the Maxwell Lagrangian

SEM =

∫
dd+2x

√
g

[
−1

2κ2
(R− 2Λ)− 1

4g2
FµνF

µν

]
+ SGHY , (2.18)

with g and R the determinant and Ricci scalar of the bulk metric gµν ,
Λ = −d(d + 1)/(2L2) the cosmological constant enforcing AdSd+2 as one
of the solutions, and Fµν = ∂µAν − ∂νAµ is Aµ’s field strength. The con-
stants κ = 8πGd+2 and g2 are the gravitational and gauge couplings re-
spectively, with Gd+2 Newton’s gravitational constant. Note that because
of the asymptotic boundary of AdS space at z → 0, we have also included
the Gibbons-Hawking-York boundary term in the action [73,74]

SGHY =
−1

κ

∫
dd+1x

√
γ K . (2.19)

In Eq. (2.19), γ is the determinant of the induced metric at the boundary
and K = ∇µnµ the boundary’s extrinsic curvature with unit normal nµ =
L/(z

√
f(z)).

A solution of SEM’s EOM for Aµ is given by

10We will use the same notation for both bulk and boundary indices where no danger
of confusion arises.
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Aµ = (0, At, 0) , At = µ

(
1−

(
z

zh

)d−1
)
, (2.20)

where zh is the horizon of the black hole solution for gµν . The solution for
gµν , Aµ is referred to as the Reissner-Nordström black hole in honour of,
some of, its discoverers and has the form (2.11) with

f(z) = 1−M
(
z

zh

)d+1

+Q2

(
z

zh

)2d

, (2.21)

M = 1 +Q2 , Q2 =
z2
hµ

2

γ2
, γ2 =

dL2g2

(d− 1)κ2
. (2.22)

The constants M and Q are the mass and charge of the black hole. From
the point of view of the observer at infinity, they are the conserved mass
and charge of the black hole. Since the observer at infinity is identified with
the observer of a QFT, M and Q are also conserved quantities for the dual
gauge theory. As expected, M and Q correspond to the conserved energy11

E ∼M and charge q ∼ Q of the thermal QFT.
More precisely, given the Reissner-Nordström solution, we can evaluate

the gauge partition function Zgauge via Eq. (2.9). Since we are working
in Euclidean signature, Zgauge gives the thermal partition function of the
gauge theory. Furthermore, logZgauge = −Sgrav is proportional to the grand
potential Ω of the grand canonical ensemble, since we are working in a
homogeneous vacuum state characterized by constant β and µ [75]. Thus we
may calculate any thermodynamic property of the dual QFT by calculating
the on-shell gravitational action and its derivatives with respect to β and
µ. To bring Sgrav on-shell is a non-trivial task since the metric diverges as
z → 0. This divergence is akin to the UV divergences encountered in QFT
and can be renormalized via similar approaches, e.g. by calculating the
action on a cutoff surface z = ε � L instead of the boundary z = 0. After
renormalization, the action is finite and can act as the grand potential Ω of
the system. In particular we have for the Reissner-Norström solution [30]

Ω = −β−1 lnZgauge = β−1Sgrav = − LdM

2κ2zd+1
h

Vd , (2.23)

with Vd the spatial volume of the boundary QFT.
Through Ω we can finally derive all of the thermodynamic properties of

the dual QFT. Consider first the entropy of the dual QFT. It takes the form

S =
A

4Gd+2
=

2π

κ2

(
L

zh

)d
Vd , (2.24)

11The speed of light is set to one.
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where A is the area of the black hole horizon. This is a remarkable result:
The entropy of the QFT, calculated via the gravitational action, is given by
the Bekenstein-Hawking formula for the entropy of the black hole [76, 77].
This result acts as a further confirmation of the holographic principle: All
the degrees of freedom of the gravity theory are encoded on a hypersurface
with codimension one. However, we should mention that the QFT entropy is
given by Eq. (2.24) only for gravitational actions involving up to two deriva-
tives of the metric. For theories involving higher derivatives, additional
curvature invariants of the black horizon enter the formula for S [78, 79].

Further, we can derive the charge density of the dual QFT and find

ρ = − Ld

κ2zd+1
h

Q2 . (2.25)

Using ρ, S and β = T−1, we can also find the energy E and pressure P of
the fluid via the usual thermodynamic relations12

Ω = −PVd = E − TS − µρVd . (2.26)

Finally, let us present below the thermodynamic variables for 2 + 1 di-
mensional QFTs (to be used in chapter 4). To do so, we use a different
parametrization for the metric, employed in [1] and chapter 4. More pre-
cisely, we define z = L2/r and rewrite the metric as

ds2 =
L2

r2f(r)
dr2 +

r2

L2

(
−f(r)v2

Fdt
2 + dx2

)
, (2.27)

where we have also restored the speed of light vF and x = (x, y) is a spatial
vector. In this parametrization, the thermodynamics of the 2 + 1 QFT are
given by

ε =
L2

8πG4
~ vF

r3
H

L6
, P =

L2

16πG4
~ vF

r3
H

L6
, (2.28)

ρ =
L2

64πG4

(rH

L2

) µ

~vF
, s =

kBL
2

4G4

r2
H

L4
, (2.29)

where G4 the 3 + 1d gravitational constant and rH the horizon radius. For
later use, we also note that rH is given in terms of the QFT’s temperature
and chemical potential via

rH
L2

=
1

6

kBT

~ vF

(
4π +

√
16π2 +

3µ2

k2
BT

2

)
, (2.30)

with T = β−1 and kB Boltzmann’s constant.
This concludes our derivation of a QFT’s thermodynamic properties

through holography.

12We work in units where charge is dimensionless.
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2.3 Holographic transport

We proceed in the next section to describe how we can use holography to also
derive a QFT’s transport properties, i.e. its transport coefficients, following
[30, 80]. To begin, let us define the notion of transport. Transport for us
is defined as the change induced on the expectation value of an operator
due to an external field. More precisely, consider a local bosonic operator
O(x) perturbed by the external field φ(x)13. We assume that the QFT
Hamiltonian H is perturbed due to φ(x) as H → H+ δH with

δH = −
∫
dd+1x φ(x) ◦ O(x) , (2.31)

where ◦ was defined below (2.7). Let us assume that the state of the QFT
is defined by a density matrix ρ. It satisfies the Liouville equation of motion

i
dρ

dt
= [H+ δH, ρ] . (2.32)

Assuming δH is “small”, (2.32) can be solved up to first order in δH,
by expanding ρ = ρ0 + δρ. The density matrix ρ0 satisfies the unperturbed
Liouville equation, while δρ satisfies

i
dδρ

dt
' [H, δρ] + [δH, ρ] . (2.33)

Equation (2.33) can be solved analytically for δρ [80]. The total density
matrix ρ can then be used to calculate the expectation value of O(x) after
the perturbation. This expectation value differs from its equilibrium value
by an amount δ〈O(x)〉,

Tr [ρO(x)]− Tr [ρ0O(x)] ≡ δ〈O(x)〉 '
∫
dd+1y GO,OR (x, y) ◦ φ(y) , (2.34)

where GO,OR (x, y) is the retarded Green’s function between two O operators.
More precisely, we have

GO,OR (x, y) = 〈[O(x),O(y)]〉R , (2.35)

where the angled brackets denote averaging with respect to the equilibrium
ρ0 and the index R means O(x) is inserted at a time x0 > y0. This en-
sures the causal nature of the perturbation; O(x) changes only after it has
been perturbed by φ(y). We can re-express (2.34) in terms of the Fourier
transforms of the O’s and φ’s

δ〈O(k)〉 ' GO,OR (k) ◦ φ(k) , (2.36)

13Don’t let the notation full you, O(x) and φ(x) are not necessarily scalar operators.
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Equation (2.36) makes evident the physical meaning of the linear response
calculation. In particular, it allows us to identify the retarded Green’s func-
tion GO,OR (k) with a generalized susceptibility matrix, since it relates the
perturbation φ to the induced response of the system δ〈O〉 in a linear fash-
ion.

As an example, let us consider a perturbation due to an external gauge
field aµ. The gauge field appears in the perturbation Hamiltonian δH con-
tracted with the charge current of the QFT Jµ. So we may apply Eq. (2.36)
with φ→ aµ and O → Jµ to find the induced current

δ〈Jµ(k)〉 ' GJ
µ,Jν

R (k)aν(k) . (2.37)

To proceed, let us assume aµ(k) depends only on the frequency ω. Such a
frequency-dependent gauge field generates an electric field Eµ(ω) = iωaµ(ω).
Thus, we can re-write Eq. (2.37) as

δ〈Jµ(ω)〉 '
GJ

µ,Jν

R (ω)

iω
Eν(k) ≡ σµν(ω)Eν(ω) . (2.38)

Equation (2.38) is the well-known Ohm’s law that relates the current flowing
through a system to the external electric field which induced it. The matrix
appearing in Ohm’s law is of course the conductivity matrix σµν . Due to
linear response theory we can now express σµν in terms of a current-current
Green’s function

σµν(ω) =
GJ

µ,Jν

R

iω
. (2.39)

Last but certainly not least, we note that Eq. (2.36) provides us with a
simple recipe for calculating GO,OR through holography: The small pertur-
bation (2.31) to H also perturbs the source of O, call it Φ0, by Φ0 → Φ0 +φ.
This implies via the holographic dictionary, that Φ, the bulk field dual to
O, also gets perturbed. Because φ is considered a small perturbation, we
can calculate its effect on boundary observables by keeping only the leading
term in φ in the gravitational action. As a result, we no longer need to solve
the fully non-linear supergravity equations to calculate expectation values.
Instead, we need only to solve the linearized EOM for Φ and substitute the
solution back to the gravitational action. We provide a specific example of
this formalism in the next section, where we calculate the shear viscosity η
in 3 + 1 dimensions.

2.4 The shear viscosity to entropy density ratio

Let us apply the linear response formalism of the previous section to calcu-
late the shear viscosity η of a 3 + 1 dimensional fluid. Along the way, we
shall encounter and address some subtleties appearing in the calculation of
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retarded holographic Green’s functions that are due to the black hole in the
bulk. As we show, addressing these subtleties is necessary to ensure causal-
ity is not violated by the boundary QFT. Our analysis follows [30], as well
as the original article on the matter at hand [81]. To begin our derivation,
we note that η is given by the following Green’s function (cf. chapter 3)

η = − lim
ω→0

1

ω
ImGT

xy ,Txy

R (ω, 0) , (2.40)

with T xy the shear stress component of the energy-momentum of the bound-
ary QFT. Connecting to the notation of the previous section, T xy plays the
role of the operator O. Furthermore, the source of Tµν in the dual QFT
is simply the QFT’s metric. Hence, we can calculate GT

xy ,Txy

R and η by
perturbing the bulk metric gµν as

gxy → gxy + hxy , (2.41)

with hxy the metric perturbation. To make our discussion more precise, let
us consider a gravitational action which contains only the Einstein-Hilbert
term

Sgrav =
−1

2κ2

∫
dd+2x

√
g (R− 2Λ) . (2.42)

Under the perturbation (2.41), the action Sgrav becomes to leading order in
hxy

Sgrav ≡ Sh '
−1

2κ2

∫
dd+2x

√
ggµν∂µhxy∂νhxy . (2.43)

As we can see Sgrav has simplified considerably compared to the fully non-
linear Einstein-Hilbert action. Namely, Sh describes the dynamics of a
massless scalar field propagating in a black hole background. Physically,
the excitations of hxy are part of the graviton degrees of freedom of the bulk
metric.

To proceed with the calculation of η, we need to solve hxy’s EOM and
substitute the solution into Sh. For concreteness, we choose the bulk metric
gµν to be that of five dimensional AdS-Schwarschild black hole

ds2 = gµνdx
µdxν =

L2

4u2f(u)
du2 +

(πTL)2

u

(
−f(u)dt2 + dx2

)
, (2.44)

with f(u) = 1−u2 and T the black hole temperature. The horizon is located
at u = 1, while the boundary is at u = 0. We observe that gµν is translation
invariant in the boundary co-ordinates t,x. Therefore, we can simplify the
EOM by Fourier transforming hxy in the boundary directions
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hxy(u, x) =

∫
d4k

(2π)4
eik·xhxy(u, k) , (2.45)

with k ·x = ηµνk
µxν = −ωt+ k ·x. The Fourier transformed EOM in terms

of hxy(u, k) then read

4u3∂u

(
f

u
∂uhxy(u, k)

)
+

u

(πT )2f

(
ω2 − k2f

)
hxy(u, k) = 0 . (2.46)

As we can see the EOM of hxy is second order in u, so it requires two bound-
ary conditions to specify a unique solution. The first boundary condition
comes from the holographic dictionary: The boundary value of hxy is iden-
tified with the source of the perturbation h0

xy, i.e. hxy(u = 0, k) = h0
xy.

The second boundary condition must be imposed at the horizon. To derive
this boundary condition, we look for a regular solution of Eq. (2.46) around
u = 1. There are two such regular solutions near the horizon

hxy(u→ 1, k) ∝ (1− u)p , p = ± iω

4πT
. (2.47)

Which solution we choose as the boundary condition for hxy is crucial. It
will define whether the Green’s function we are calculating is a retarded or
advanced one. To see this, let us substitute Eq. (2.47) back into the Fourier
transform (2.45). We find

hx,y(u, x) ∼ exp [−iωt+ ik · x] (1−u)p = eik·x exp

[
−iω

(
t∓ ln(1− u)

4πT

)]
.

(2.48)

Now redefine the bulk co-ordinate u to U = ln(1− u)/4πT . After this redefi-
nition, the horizon is located at U → −∞ and the boundary at U = 0. More
importantly, the time dependence of the graviton field hx,y in Eq. (2.48) be-
comes that of a plane wave, hx,y ∼ e−iω(t∓U). The graviton moves away
from the horizon for the positive branch of p, but towards the horizon for
the negative branch. Clearly, a black hole (classically) emitting gravitons
cannot be black. Therefore, while we do have two regular solutions near the
horizon, only the infalling p = −iω/4πT solution is physical. From the QFT
point of view, the choice of the infalling branch makes sure that the poles
of the Green’s function appear in the lower-half of the complex frequency
plane. A Green’s function with such poles is by definition a retarded one
and respects causality [80].

To recapitulate, in order to calculate the retarded Green’s function for
the transverse components of the stress tensor T xyx, we linearized the equa-
tions of motion via the metric perturbation (2.41). Then we derived the
appropriate boundary conditions for the EOM by solving them near the
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asymptotic boundary and the black hole horizon. In particular, we identi-
fied hxy with the source of T xy at the boundary and chose infalling boundary
conditions at the black hole horizon. To incorporate both of these boundary
conditions, we can choose a product ansatz for hxy,

hx,y(u, k) = h0
xy(k)H(u, k),

with

H(u = 0, k) = 1 , H(u→ 1, k) = (1− u)−iω/4πT .

Assuming we can solve the EOM for H(u, k), we must then substitute the
solution back into Sh. The result is the following functional of the source
h0
xy(k) on the boundary spacetime

Sh =

∫
d4k

(2π)4
h0
xy(−k)F(k, u)h0

xy(k)
∣∣u=1

u=0
, (2.49)

with

F(k, u) =
−1

2κ2

√
−gguuH∗(u, k)∂uH(u, k) , (2.50)

and star denoting complex conjugation. Now the holographic dictionary, as
formulated in Eq. (2.9), tells us that the Green’s function for T xy is given
by the second variation of Sh with respect to h0

xy, i.e.

GT
xy ,Txy

R (k) = [−F(k, u)−F(−k, u)]u=1
u=0 = −2Re [F(k, u)]u=1

u=0 , (2.51)

where the last equality follows from F∗(k, u) = F(−k, u) which in turn is
a consequence of Sh being a real functional. As we can see GT

xy ,Txy

R (k) is
a purely real function, contrary to the traditional lore of Green’s functions
which dictates Green’s functions are in general complex functions of their
arguments [80]. This is a result of working in imaginary time. However, the
Green’s function appearing in Kubo formulae and which dictates transport
is necessarily a function of real time in order to enforce causality14. We may
derive the required real time Green’s function through the Euclidean result
via analytical continuation [82].

We may also derive the Green’s function in real time using the Schwinger-
Keldysh formalism [84, 85]. This formalism is more involved than the ap-
proach presented above. This is because finite temperature QFT is not
readily defined in Minkowski signature; a finite temperature QFT is in a
mixed state meaning it has no adiabatically connected in and out asymptotic
states [83]. Instead, to define a thermal QFT in real time one needs to use

14There are no light-cones and hence no concept of causality in Euclidean signature,
unless one prescribes a universal time as in non-relativistic mechanics.
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the in-in or out-out Schwinger-Keldysh formalism [84, 85]. The Schwinger-
Keldysh formalism was introduced into the AdS/CFT correspondence in [86]
(see also [87–90]) and, fortunately, it confirms the calculation we have pre-
sented so far. In fact, the result turns out simpler than expected. More
precisely the retarded Green’s function is given by

GT
xy ,Txy

R (k) = −2F(k, u = 0) . (2.52)

An intuitive explanation of this formula is the following: In the Schwinger-
Keldysh formalism, correlation functions are calculated by using two copies
of the same system. The only difference between the two copies is that
while one propagates forward in time, the other propagates backwards (see
Fig 2.1). Therefore, one can run the algorithm for calculating Green’s func-
tions above also in the Schwinger-Keldysh formalism, by applying it to each
copy of the system. Extra care, however, must be taken when choosing
the appropriate boundary conditions at the black hole horizons: The sys-
tem propagating forward in time must employ the usual infalling boundary
conditions. In contrast, the system propagating backwards in time must
employ the outgoing boundary conditions, with p = iω/4πT . This way, we
ensure that the black hole is indeed black for all observers. This difference
in boundary conditions means that the infalling waves will cancel the con-
tribution of the outgoing waves and, hence, the net effect of the black hole
horizon on the Green’s functions will be zero. Thus, we are left only with
the Green’s function contribution stemming from the asymptotic boundary.
Assuming time-reversal invariance15, these boundary contributions will be
the same and give the result (2.52).

Figure 2.1: Schwinger Keldysh contour for out of equilibrium QFT. The
initial state ρ(ti) of the system propagates from time ti to time
tf along the real axis. Then the state propagates for an arbitrary
imaginary time δ before returning to ti and its initial state along
the real axis.

After this long discussion, we are now ready to apply Eq. (2.52) and
write down the two-point Green’s function of T xy. In particular, we have

15More precisely, we assume the QFT respects a symmetry involving time reversal, e.g.
CPT invariance.
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for GT
xy ,Txy

R at zero wave-momentum [30]

GT
xy ,Txy

R (ω, 0) = −iωπ
3β−3L3

2κ2
= −iω 1

2κ2

(
L

zh

)3

, (2.53)

where in the last equality we used zh = β/π stemming from Eq. (2.12).
Therefore, the shear viscosity η finally reads

η =
1

2κ2

(
L

zh

)3

. (2.54)

Let us now combine the result for η with our result for the entropy
density s, (2.24), for d = 3. Doing so, leads to the celebrated KSS bound
for the ratio of η/s given by [29]

η

s
=

1

2κ2

(
L

zh

)3 κ2

2π

(
L

zh

)−3

=
1

4π
. (2.55)

This particular value for η/s is not simply a feature of the specific black
hole solution we used. Rather, any rotationally invariant black hole solution
of the Einstein-Hilbert action leads to exactly the same result for η/s for
any spacetime dimension [91]. In this sense, the KSS bound is a universal
feature of all infinitely-coupled rotationally invariant fluids. The question
is, however, if going away from the infinite coupling limit, and towards more
realistic QFTs, alters the value of η/s and how? We review the answer to
this question in the following subsection.

2.4.1 Coupling corrections

The gravitational action contains every parameter of the boundary QFT.
So in order to introduce coupling corrections to the KSS bound (2.55), we
must understand how the coupling of the QFT enters the action. Clearly,
the Einstein-Hilbert term ∼ R is coupling independent. Recall, however,
Eq. (2.1) (

L

ls

)4

= λ , (2.56)

where λ is the ’t Hooft coupling. Further note that, because L is the curva-
ture radius of AdS space, R ∼ L−2 and we can write

l2sR ∼
1√
λ
. (2.57)

Therefore, coupling corrections to η/s can be introduced via the inclusion of
curvature terms involving powers of R into the gravitational action. More
precisely, if we are interested in coupling corrections up to order λ−n/2, with
n a positive integer, we must modify the Einstein-Hilbert action to
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Sgrav =
−1

2κ2

∫
d5x
√
g

(
R− 2Λ +

i=n∑
i=1

cil
2i
s R

i+1

)
. (2.58)

Let us explain the notation in Eq. (2.58): The Ri+1 curvature term contains
all the contractions of the product of i+ 1 Riemann tensors. Similarly, the
ci are O(1) numbers multiplying each higher Riemann tensor contraction.
For example, the action for n = 1 reads

Sgrav =
−1

2κ2

∫
dd+2x

√
g
[
R− 2Λ + l2s

(
c1,1R

2 + c1,2R
2
µν + c1,3R

2
µνρσ

)]
,

(2.59)

with R2
µν = RµνR

µν , R2
µνρσ = RµνρσR

µνρσ. Note that in order to consis-
tently truncate the series of corrections to a finite order n, we must assume
that lsR� 1, i.e. 1/λ acts as a perturbation parameter.

Apart from the Riemann tensor, coupling corrections to Sgrav appear also
due to higher derivative terms of matter fields. To see this recall that the
matter fields on AdS5 stem from the dimensional reduction of the metric on
the S5. Since the curvature radius of S5 is also L−2, we may schematically
re-express Eq. (2.56) as

l2s∂µ∂
µφ ∼ 1√

λ
, (2.60)

for any matter field φ on AdS5. Hence, the inclusion of any higher derivative
term in the gravitational action captures the effect of coupling corrections
in the dual QFT.

Remarks:

• Our analysis of coupling corrections was based on the explicit D3-brane
construction of [26]. However, a similar analysis holds for any gravitational
dual based on a similar Dp-brane construction [92]. The only essential
difference between the p = 3 case and the rest is that the ’t Hooft coupling
λp 6=3 is no longer dimensionless. Consequently, λp 6=3 has in general a non-
trivial RG flow that needs to be taken into account in the gravitational
action. This can be achieved by the inclusion of a scalar field φ, the dilaton,
into the gravitational action. The dilaton can be thought of as a deformation
of the boundary QFT by a relevant scalar operator with coupling λp6=3.
Furthermore, φ couples to gravity and can deform the bulk geometry. This
deformation can be interpreted as the geometric realization of the RG flow
[30, 64]. For our purposes, it is important to note that the dilaton also
depends on λp6=3 and must be taken into account when discussing coupling
corrections in p 6= 3. More precisely [92],

eφ ∼ λ(7−p)/2
p 6=3 . (2.61)
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• Recall that higher derivative corrections in the gravitational action are
naturally generated by quantum effects. These quantum effects were sup-
pressed in our construction of the gauge/gravity correspondence by taking
gs � 1 and N � 1. This means that higher derivative corrections can also
induce 1/N corrections, instead of coupling corrections, to η/s. To avoid
mixing and matching 1/N corrections with 1/λ corrections, we must work in
the tree-level approximation for the gravitational action. For example, one
should not use QFT observables that stem purely from loop effects, such as
anomalies, to match observables derived from a higher derivative Sgrav.

Finally, let us give a brief survey of the known coupling corrections to
η/s, following [93] as well as the original publications mentioned below.

Quadratic Lagrangian: The quadratic curvature corrections take the
form of (2.59) in general d+ 2 bulk dimensions

Sgrav =
−1

2κ2

∫
dd+2x

√
g
[
R− 2Λ + l2s

(
c1,1R

2 + c1,2R
2
µν + c1,3R

2
µνρσ

)]
,

(2.62)
with R2

µν = RµνR
µν , R2

µνρσ = RµνρσR
µνρσ. The coefficients c1,i are not

uniquely defined: Sgrav is defined only up to O(1/
√
λ). Thus, any transfor-

mation of the metric that leaves the action invariant up to the same order
in λ is a symmetry of the truncated theory. In particular, we can transform
the metric gµν → gµν + δgµν with

δgµν = l2saRµν + l2sbRgµν , (2.63)

with a, b O(1) numbers. The effect of δgµν up to quadratic order in R is to
shift the constants c1,1 and c1,2 as [94]

c1,1 → c1,1 +
1

2
a+

3

2
b , c1,2 → c1,2 − a . (2.64)

Clearly, we can set c1,1 = 0 = c1,2 by choosing a = c1,2 and b = −2c1,1/3−
c1,2/3. This shows that only c1,3 leads to any physical change in η/s. An-
other useful choice for a and b is the following

a = c1,2 + 4c1,3 , b = −2

3
c1,3 − c1,1 . (2.65)

Using Eq. (2.65), we can bring the quadratic corrections in Sgrav into the
topological Gauss-Bonnet (GB) form

Sgrav =
−1

2κ2

∫
dd+2x

√
g
[
R− 2Λ + l2sc1,3

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)]
.

(2.66)
Bringing theR2 coupling corrections to the GB form is useful for two reasons:
First, despite the GB form being higher order, the EOM stemming from it
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Chapter 2. The AdS/CFT correspondence

are second order. This means that quadratic or GB gravity avoids the
usual Ostrogadski instabilities plaguing higher derivative theories [95, 96].
Equivalently, the propagating degrees of freedom of GB gravity are GR
gravitons (with a modified propagator [97]). Second, the GB form is non-
trivial only for d + 2 ≥ 5. As a result, the ratio η/s for QFTs living in
d = 216 spatial dimensions does not receive any corrections at this order17.
More precisely, following the same procedure as in section 2.4, we find for
η/s equals the KSS bound for d = 2, while for d ≥ 3 [97]

η

s
=

1

4π

(
1− 2(d+ 1)(d− 2)c1,3

l2s
L2

)

(2.56)
=

1

4π

(
1− 2(d+ 1)(d− 2)c1,3√

λ

)
. (2.67)

The resulting η/s scales with λ as expected from our general discussion
on coupling corrections. We can now ask whether the coupling corrections
violate the KSS bound. To do so, we must match the c1,3 coefficient to some
parameter of the boundary QFT. This was done in [98, 99] for a large class
of superconformal theories. They found that η/s violates the KSS bound for
several of these theories. Let us focus on the violation of the bound found
in [99] for N = 2 Sp(N) gauge theory

η

s
=

1

4π

(
1− 1

2N

)
. (2.68)

Clearly this is a peculiar result, the coupling correction has turned out to
be an 1/N correction. The reason for this is that both [98,99] have used the
conformal anomaly of superconformal theories to calculate c1,3. Anomalies
are fully quantum, loop effects. This violates our remark that only tree-level
observables must be used for matching and has led to the transmutation of
the coupling correction to an 1/N correction.

The question then becomes, can we identify c1,3 with a tree-level QFT
observable and does it lead to a violation of the bound? The answer was
given in the negative in [100]. More precisely, the authors of [100] have
shown that treating the action of quadratic gravity at tree-level leads to
causality violation, since it allows for spacetimes with e.g. closed timelike
curves. Although closed timelike curves are interesting for science-fiction18,

16The shear viscosity is undefined in d = 1 since T xy cannot exist.
17Note that the dilaton φ spoils this argument for d = 2. However, φ appears at least

quadratically in the action [98] and, hence, leads to sub-leading λ
−5/2
p6=3 corrections.

18See “By His Bootstraps” by A. MacDonald for an example, highlighting the bootstrap
paradox associated to closed timelike curves.
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2.4. The shear viscosity to entropy density ratio

and maybe computer science [101], they are not a desirable feature of phys-
ical theories. Therefore, at tree level the c1,is must be set to zero and η/s
equals again the KSS bound.

To close our discussion on quadratic gravity, let us consider what happens
to η/s when additional matter fields are included. In particular, we consider
QFTs away from charge neutrality by including a dynamical gauge field
into the bulk gravitational action. The terms that can alter η/s have the
schematic form RF 2. The coefficients multiplying these terms are again
subject to change under field redefinitions. Using these field redefinitions,
one can set to zero most of the coefficients and find the following “minimal”
action [94]

Sgrav =
−1

2κ2

∫
dd+2x

√
g
[
(R− 2Λ) + l2scRFFRµνρσF

µνF ρσ
]
. (2.69)

The coefficient cRFF is the coupling constant of the bulk photon-graviton
interaction. As such, it can generically take any value. However, in su-
perconformal theories it necessarily takes the value cRFF = −c1,3/2 [94].
Therefore, for tree-level duals at a finite charge density, cRFF = 0 and η/s
is still given by the KSS bound. Despite this, let us quote the result for η/s
for a generic cRFF and d = 3 [94]

η

s
=

1

4π

(
1 +

32µ̄2cRFF

(1 +
√

1 + 2µ̄2/3)2

1√
λ

)
, (2.70)

with µ̄ = µ/T . Equation (2.70) shows that for cRFF < 0, the KSS bound is
violated when we move away from charge neutrality.

Cubic gravity: We now consider gravitational actions containing cu-
bic terms in the Ricci scalar. The discussion regarding cubic gravity is far
shorter than that of quadratic gravity. This is because of early work on
supergravity theories stemming as low-energy limits of superstring theory.
In particular, it was shown in [102] that the kinematics of graviton-graviton
scattering generated by cubic curvature terms are inconsistent with super-
symmetry. Therefore, cubic terms cannot be generated by a parent string
theory and hence cannot appear in the gravitational action. This means
that η/s does not receive coupling corrections at order 1/λ.

For those not fond of supersymmetry, note that the 1/λ corrections are
absent even if we break supersymmetry explicitly. More precisely, [92] shows
that cubic curvature corrections also lead to causality violation in the bulk
geometry and, hence, must be dropped from the action. This result is again
at tree level, hence the results of [92] leave open the question of 1/N correc-
tions to η/s from cubic curvature corrections in non-supersymmetric QFTs.

Quartic gravity: Finally, let us discuss gravitational actions which
include quartic curvature terms. Our general discussion on coupling correc-
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tions, shows that the R4 terms contribute to order λ−3/2 in η/s 19. A general
analysis of the quartic corrections to η/s in any dimension does not exist.
However, a comprehensive analysis for the original AdS5 dual ofN = 4 SYM
does exist [103, 104]. In particular the 10-dimensional supergravity action
relevant to the η/s calculations at quartic order is given by20

S10 =
−1

2κ2
10

∫
d10x
√
−G

[
R+ l6sγW

]
, (2.71)

with γ = ζ(3)/8, ζ(3) ' 1.2 is Apéry’s constant and G the 10-dimensional
metric, with Ricci scalar R defined by

ds2
10 = GMNdX

MdXN = e−10ν/3ds2
5 + e2νds2

S5 . (2.72)

The line elements ds2
S5 is that of the unit 5-sphere, while ds2

5 is a warped
version of the metric (2.44)

ds2
5 =

L2eb

4u2f(u)
du2 +

(πTL)2

u

(
−eaf(u)dt2 + dx2

)
, (2.73)

with

a(u) = −15l6sγ
(
5u2 + 5u4 − 3u6

)
,

b(u) = 15l6sγ
(
5u2 + 5u4 − 19u6

)
, (2.74)

ν(u) =
15l6sγ

32
u4
(
1 + u2

)
. (2.75)

Finally, W is a quartic polynomial of the Weyl tensor Cµνρσ, i.e. of the
traceless part of the Riemann tensor

W = CαβγδCεβγζC
ηκε
α Cζηκδ +

1

2
CαβγδCεζγδC

ηκε
α Cζηκβ . (2.76)

One can substitute the metric GMN into the action S10 and consistently
reduce the 10-dimensional action down to a 5-dimensional one. In particular
[103] found

Sgrav =
π3

2κ2
10

∫
d5x
√
−g
[
R+ 20e−16/3ν − 40

3
(∂µν)2 − 8e−40ν/3 + l6sγw

]
,

(2.77)

with w = 180u8 + 1800u8ν + O(ν2). With Sgrav at hand, we can run the
same algorithm for calculating η/s described in this section. In particular,

19Again, we note that the dilaton contributes sub-leading corrections.
20In writing Eq. (2.71), we have neglected the dilaton as well as additional gauge fields

appearing in it.
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[103] found that η/s, including quartic corrections, does not violate the KSS
bound and is given by

η

s
=

1

4π

(
1 +

15ζ(3)

λ3/2

)
=

1

4π

(
1 +

15N−3/2ζ(3)

g3
YM

)
, (2.78)

Note that because our starting point was a parent string theory of our 5-
dimensional action, we can be certain that the correction to η/s is indeed
due to the coupling and not 1/N . Note further that in the last equality
we have expressed λ in terms of the Yang-Mills coupling of the dual gauge
theory. We did so, because the final form of Eq. (2.78), allows us to apply
our formula for η/s for abelian gauge theories. Namely, we can replace g2

YM

with the fine structure constant α of the abelian theory to find

η

s
=

1

4π

(
1 +

15N−3/2ζ(3)

α3/2

)
. (2.79)

One issue with this application of Eq. (2.78) to abelian field theories, is the
physical interpretation of N . In non-abelian gauge theories, N is the rank of
the gauge group. In abelian gauge theories, however, the rank of the gauge
group is by default unity, so we cannot use it as an avatar of N21. Instead it
is expected that for abelian field theories N is a flavour index, i.e. N counts
the number of electron species of the dual QFT.

This concludes our overview of holography in general and on the bound
on η/s in particular. We have shown how a theory of gravity is related
to a strongly coupled QFT and how to match the observables between the
two sides. We used this matching between observables to show how we can
derive, first, the thermodynamic properties of a strongly coupled QFT and,
second, the QFT’s retarded Green’s functions. These Green’s functions are
related to the transport properties of the QFT via the appropriate linear
response Kubo formulae. In particular, we showed how we can derive the
KSS bound for the ratio η/s of strongly coupled QFTs and discussed the
effect of coupling corrections on said bound. We shall apply these results
in chapters 4 and 5 in order to define the thermodynamics and transport
coefficients appearing in our hydrodynamic simulations. Doing so, will allow
us to understand the dynamics of strongly coupled systems through hydro-
dynamics. However, before we proceed to solving the hEOM we first derive
them in the chapter that follows.

21Recall N � 1.
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Chapter 3

Hydrodynamics

In the present chapter we present a short review of hydrodynamics. In
particular, we derive the hydrodynamic constitutive relations for parity-
breaking, 2 + 1 dimensional charged relativistic fluids. We begin our deriva-
tion by reviewing the construction of the hydrodynamic equilibrium effective
action and constitutive relations of [105–108] in section 3.1. We apply this
formalism in section 3.2 to derive the equilibrium constitutive relations.
Then, we use a more general symmetry argument that allows us to describe
diffusive effects in section 3.3, following [9]. Having written down the consti-
tutive relations, we use them to derive Kubo formulae for the hydrodynamic
transport coefficients in section 3.4. The final part of our review of hydro-
dynamics contains a short discussion on turbulence and its phenomenology
in section 3.5.

3.1 Equilibrium partition function

We begin our journey towards the hydrodynamics of charged relativistic
fluids by first recounting some basic facts regarding equilibrium partition
functions, as found in [105,106]. The starting point of the equilibrium par-
tition function method is the fact that hydrodynamics is a framework for
describing thermalized matter. Therefore the quantum state of a fluid in
thermal equilibrium is described by a thermal density matrix of the form

ρ = exp

[
−

n∑
i=1

µaiQ
i
a

]
= exp

[
−µaiQia

]
, (3.1)

with n the number of conserved charges of the system {Qia} and {µai } the
corresponding conjugate thermodynamic variables/chemical potentials. The
index a is a placeholder for any internal symmetry index carried by non-
abelian charges.

Given ρ we can define the partition function of the system through the trace,
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Z = Z[µai ] = Tr [ρ] ≡ exp(−W ) , (3.2)

where W is the effective action of the system1.

The partition function Z ( the effective action W ) is extremely useful, be-
cause we can use it to derive the thermal average of the charges Qia via

〈Qia〉 =
Tr
[
ρQia

]
Tr [ρ]

= −∂ logZ
∂µai

=
∂W

∂µai
. (3.3)

In fact one can go even further and define all possible connected correlation
functions for say N charges in terms of W [75]2

〈Qi1a1
Qi2a2

...QiNaN 〉conn = (−)N+1 ∂NW

∂µa1
i1
∂µa2

i2
...∂µaNiN

. (3.4)

The thermal density matrix ρ as it stands in Eq. (3.1) can describe
any possible system is in thermal equilibrium, as long as the charges are
specified. To particularize ρ to the case of hydrodynamics, we will assume
that the underlying system has a continuum description on a spacetime M
with metric gµν . Then, we can express the Qia, as well as ρ in terms of the

charge current densities Qi,µa viz.

Qia =

∫
V
dΣµ Qi,µa , (3.5)

ρ = exp

[
−
∫

Σ
dΣµ µ

a
iQi,µa

]
= exp

[
−
∫

Σ
dΣ µaiQi,µa nµ

]
, (3.6)

where Σ is a spatial hypersurface of co-dimension one onM normal to nµ and
with volume element dΣ. Note that we pulled µia into the spatial integral,
since it is a spacetime constant in equilibrium.

Now that we have included the Qi,µa into the theory, we may wonder
whether we can derive its expectation value using an equation similar to
(3.3). The answer is yes, but to show how we must first bring Eq. (3.6)
into a more convenient form. To do that, we will assume the existence of
a timelike Killing vector V = N∂t on M . This timelike Killing vector can
be thought of as the time-direction of the observer for which the system in
thermal equilibrium. Given V , we can express the metric M and invariant
volume element, dV , on M as [109]

ds2 = −N2dt2 + γijdx
idxj ⇒ dV = NdtdΣ , (3.7)

1If the system is described by the canonical ensemble, W equals the free energy over
the temperature of the system.

2We restrict ourselves to connected diagrams, because these respect causality in
“healthy” quantum field theories and, hence, are in principle well-defined observables [75].
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with γij the metric on Σ and L ≡
∫
Ndt the length of the time dimension

of M . Then

Z = Tr exp

[
−L−1L

∫
Σ
dΣ µaiQi,µa nµ

]
= Tr exp

[
−
∫
M
dV

(
µai nµL

−1
)
Qi,µa

]
, (3.8)

where again we assume L to be constant in spacetime. Given Z as in
Eq. (3.8), we can re-interpret it as a special case of the QFT generating
functional for Qi,µa defined as

Z = Z[Aai,µ] =

〈
exp

[
−
∫
M
dV Aai,µQi,µa

]〉
. (3.9)

Clearly for a timelike Aai,µ ∝ nµ, we recover Z. Using this similarity between
Z and Z, we see that we can write down a generating functional for all of
the components of Qi,µa by introducing an external field Aai,µ into Z as

Z = Z[µai , A
a
i,µ] = Tr exp

[
−
∫
M
dV

(
µai nµL

−1 +Aai,µ
)
Qi,µa

]
. (3.10)

Note that the timelike part of Aai,µ alters the chemical potential µai and

hence the value of the equilibrium charge Qia [110]. In order to avoid this,
we choose to absorb µai into Aai,µ and define the partition function as

Z = Z[Aai,µ] = Tr exp

[
−
∫
M
dV Aai,µQi,µa

]
, Aai,µn

µ = −µaiL−1 . (3.11)

Choosing the timelike component of Aai,µ to be proportional to µai defines
the so-called thermodynamic frame of hydrodynamics. If one wants to work
in a more general frame, they must then re-define the chemical potentials as

Λai +Aai,µn
µ = −µaiL−1 , (3.12)

where Λai can be thought of as a gauge-fixing element, similar to the Maurer-
Cartan form in usual gauge theories [111,112]3.

Equation (3.21) means we must fix the gauge where Aµ’s is trivially zero.

Finally, we can take variations of Z[Aai,µ] to derive Qi,µa , and their connected

correlation functions i.e.4

3We clarify this statement with an explicit example in the following.
4We define the variation of W as δW =

∫
dV δAai,µδW/δA

a
i,µ. This definition, allows us

to drop the usual metric determinant factor present in textbook definitions of Eq. (3.13)
[112].
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〈Qi1,µ1
a1
Qi2,µ2
a2

...QiN ,µNaN
〉conn = (−)N+1 δNW

δAa1
i1,µ1

δAa2
i2,µ2

...δAaNiN ,µN

∣∣∣
Aai,⊥=0

,

(3.13)
with (Aai,⊥)µ = Aai,µ +Aai,µn

µ, the part of Aai,µ normal to nµ.

We have seen that introducing Aai,µ into Z enables us to derive 〈Qi,µa 〉.
But, if we are smart in the way we introduce Aai,µ, we can also derive the

conservation equations satisfied byQi,µa . To perform this derivation, consider
an infinitesimal deformation of Aai,µ of the form

Aai,µ → Aai,µ + δξA
a
i,µ , δξA

a
i,µn

µ = 0 , (3.14)

where ξ is the deformation parameter5 and we assumed the deformation is
normal to nµ in order to keep the value of the chemical potential fixed.
Under the deformation Eq. (3.14), the partition function becomes

Z[Aai,µ + δξA
a
i,µ] =

〈
exp

[
−
∫
M
dV δξA

a
i,µQi,µa

]〉
' Z[Aai,µ]−

∫
M
dV δξA

a
i,µ〈Qi,µa 〉 . (3.15)

Now comes the crux of the whole argument. We usually know the conserva-
tion law obeyed byQi,µ through Noether’s theorem [11]. So we can try fixing
δξAµ such that the RHS of Eq. (3.15) is proportional to the conservation
equation and vanished identically on-shell. Hence,

δξZ = Z[Aai,µ + δξA
a
i,µ]−Z[Aai,µ] = −

∫
M
dV δξA

a
i,µ〈Qi,µa 〉 = 0 (3.16)

and Z is invariant under the deformation (3.14) of Aai,µ. The reader might
have noticed that this method of fixing the transformation law of external
fields is exactly the Noether procedure for gauging a global symmetry [113].
Therefore we may think of Aai,µ as a non-dynamical gauge field, and Z[Aai,µ]
as a gauge invariant functional. Working the logic of our argument back-
wards, we can infer the conservation laws for a given set of charges by
introducing their associated gauge fields into Z and enforcing Eq. (3.16).6

Remarks:
• The gauge invariance is with respect to the restricted or residual gauge

transformations of Eq. (3.14) which keep the chemical potential fixed. This
distinction is of nil importance for equilibrium partition functions, but be-
comes crucial when considering the out of equilibrium case [114].

5That is δξ=0 = 0.
6We will see examples of this procedure in the following.
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• We can incorporate any possible anomaly present in the equations of
motion by loosening the assumption δξZ = 0 to

δξZ =

∫
dV G(ξ, Aai,µ) , (3.17)

where G(ξ, Aai,µ) is the anomaly of the symmetry generating Qi,µa .

Examples:

Global U(1) conserved charge: Consider a conserved electromagnetic
charge Q with charge current density Jµ. Then the external field gener-
ating correlation functions of Jµ is a co-vector field Aµ. Its timelike part
defines the usual chemical potential via

LnµAµ = µ/T ,

with T the temperature of the system7.
The conservation law for the current Jµ is simply

∂µJ
µ = ∂iJ

i = 0 . (3.18)

The second equality holds because we are by assumption in a static equilib-
rium with ∂t = 0. In order to generate the conservation law of Eq. (3.18)
from Eq. (3.16), we choose the co-vector field to transform as

A0 → A0 , Ai → Ai + ∂iξ. (3.19)

In a static equilibrium, we can rewrite Eq. (3.19) as

Aµ → Aµ + ∂µξ . (3.20)

Hence Aµ can be thought of as a U(1) gauge field8. The gauge covariance of
Aµ allows us to clarify the role of Λai in Eq. (3.12). Namely, the conservation
of Jµ implies that we can relax the condition LVAµ = 0 to LVAµ = pure
gauge. That is, there exists a scalar function Λ such that

LVAµ + ∂µΛ = 0 . (3.21)

Because of (3.21), the chemical potential of (3.1) is no longer time-independent

LV (µ/T ) = −LV Λ⇔ LV (µ/T + Λ) = 0 . (3.22)

The final equality, however, shows that the chemical potential shifted by Λ is
a time-independent quantity and can be used to define thermal equilibrium.

7Note that we have absorbed a minus sign into µ compared to the definition Eq. (3.11).
This was done to follow the usual convention for µ in thermodynamics.

8Note again the crucial role of static equilibrium for enlarging Eq. (3.19) to the full
U(1) gauge symmetry Eq. (3.19).
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The above discussion shows that µ/T in our formalism is defined modulo
the gauge transformation Λ which cancels Aµ’s time-evolution. This is why
Λ, and Λai in general, can be thought of as gauge-fixing parameters.

Energy-momentum conservation: As a final example, let us consider the
case of a conserved energy E and momentum P i. Since we are interested in
relativistic hydrodynamics, we assume that these conserved quantities com-
pile into a single Lorentz vector Pµ. The corresponding energy-momentum
density is given by the energy-momentum tensor Tµν = T νµ. We call the
respective external field that couples Tµν by gµν . Note that in this case, the
generating functional is usually written with an extra factor of 1/2

Z[gµν ] = Tr exp

[
−
∫
M
dV

1

2
Tµνgµν

]
, (3.23)

and the counterpart of Eq. (3.13) with an extra factor of two.
The conjugate “chemical potential” is given by

Lnµgµν ≡ βν . (3.24)

The transformation law for gµν can be derived by observing that the
conservation law for Tµν is simply,

∇µTµν = 0.

with ∇µ the covariant derivative on M . Hence, gµν transforms as9

gµν → gµν −∇(µξν). (3.25)

The transformation law Eq. (3.25), allows us to identify gµν as the metric
on M and ξµ as an infinitesimal diffeomorphism.

Finally, gµν being the metric implies

βµ = Lnµ . (3.26)

Equation (3.26) allows us to give a physical meaning to L−1. The quantum
state corresponding to energy conservation is simply the Boltzmann distri-
bution exp[−βH], with β the inverse temperature. In order for (3.23) to
match the Boltzmann distribution, then L = β. For this reason, βµ is also
called the thermal vector.

Let us summarize what we have found out so far. We saw that a con-
tinuous system in a thermal state generated by the conserved charges {Qia}
can be described by a generating functional Z[Aai,µ] or an effective action
W , which is gauge-invariant under the global symmetries that lead to the
conservation of the {Qia}. The timelike part of the external field Aai,µ can

9To be more precise, we should constrain ξν to be spacelike and time independent,
such that we do not change βν .
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be identified with the chemical potential, µai , thermodynamically conjugate
to Qia. This way, the charged densities derived from W via Eq. (3.13) be-
come functions of the chemical potentials. The expressions Qi,µa = Qi,µa [µai ]
are precisely the constitutive relations of hydrodynamics in global thermal
equilibrium.

In order to deviate from global thermal equilibrium, we formally allow
Aai,µ and hence µai to be functions in spacetime. However, we cannot allow
Aai,µ to be generic functions on spacetime. This is because we relied on the
time independence of µai in order to identify it with the timelike part of
Aai,µ

10. Therefore, we constrain the external gauge fields to be constant in
the time direction by enforcing

LVAai,µ = 0 , V = N∂t , (3.27)

where LV is the Lie derivative in the direction of the timelike vector V 11.
Because of condition Eq. (3.27), W is also called the hydrostatic effective
action.

On the practical side of things, in order to derive the constitutive rela-
tions we need to specify Z[Aai,µ] or equivalently W [Aai,µ]. To achieve this, we
take a phenomenological approach and assume that W is the most general
functional of Aai,µ that is consistent with the constraint Eq. (3.27) and the
gauge symmetries of Z, i.e. δξW = 0 modulo anomalous terms. Of course,
there are an infinite number of terms that are consistent with these two con-
straints and, hence, an infinite number of terms that enter the constitutive
relations. This makes the problem of solving the hydrodynamic equations of
motion (hEOM) intractable and so some approximations need to be made.
The approximation usually employed is that of expanding W in powers of
derivatives of Aai,µ as

W [Aai,µ] =

∫
dV

[
P0 +KP1 +K2P2 + ...

]
, (3.28)

where P0, P1, P2 depend on Aai,µ, its first, and second derivatives respec-
tively. The constant K is a length scale such that

K

∣∣∣∣∣∂µAai,νAai,ν

∣∣∣∣∣� 1 . (3.29)

Because of condition Eq. (3.29), we can truncate the expansion of W to
some finite order in K and keep only a finite number of terms in the hEOM.

10A more fundamental reason is that the state of the system is given by a thermal
density matrix only if the quantum analog of Liouville’s theorem holds; ρ must be time-
independent [110].

11In a system with a conserved symmetric energy-momentum tensor, as in Eq. (3.23),
we may identify V µ with the thermal vector βµ.
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Chapter 3. Hydrodynamics

Moreover, condition Eq. (3.29) implies that Aai,µ and hence Qi,µ vary

significantly only in scales larger than K e.g. Qi,µa (x + a) ' Qi,µa if a ≤ K.
Therefore, we may think of the fluid as consisting of patches with size K
which contain matter in thermal equilibrium “woven” together such that
they can be described by continuous fields Aai,µ. This physical picture also
clarifies the physical meaning of K: Thermal equilibrium is reached through
the interaction between the constituents of a system. Hence, K maybe
thought of as the maximum distance between fluid constituents that can
interact with each other.

Concluding remark: Before we use the formalism laid above to derive
the constitutive relations for charged relativistic fluids, let us remark on its
existing extensions. We have seen that hydrodynamics is described by a
classical effective action W [Aai,µ] that contains inside it all quantum effects.
We can make this construction look “more quantum” by integrating in some
new field degrees of freedom φ such that

e−W [Aai,µ] ≡
∫
Dφ exp

[
−I[φ,Aai,µ]

]
. (3.30)

The functional I[φ,Aai,µ] defines the quantum action of the fields φ in the
presence of external fields Aai,µ. We choose I[φ,Aai,µ], such that W is sym-
metric under the infinitesimal deformations δξ and the equations of motion
for φ are simply the hEOM. Both of these requirements can be satisfied by
choosing φ to transform under δξ and assuming that I[φ,Aai,µ] is a functional
of an invariant field combination schematically written as

Ba
i,µ = Ma,ν

b,µ [φ]Abi,ν + Cai,µ[φ] . (3.31)

The functionals Ma,ν
bµ and Cai,µ are chosen such that Ba

i,µ is invariant under

δξ, δξB
a
i,µ = 0, and the equations of motion for φ are the Qi,µa conservation

laws. For example, in the case of a U(1) symmetry we can choose φ to be a
compact scalar field φ such that

δξφ = −ξ , Bµ = Aµ + ∂µφ . (3.32)

The physical reasons for introducing the φ field are the following: First,
fixing the equations of motion of φ to be the conservation laws implies
that φ constitutes the dynamical degrees of freedom of the fluid.12 This
allows us to include quantum, thermal and out-of-equilibrium fluctuations
into hydrodynamics by applying on φ the in-in path integral or Schwinger-
Keldysh formalism [83–85,114,115]. Second, as we can see from Eq. (3.32),
φ generically appears in Ba

i,µ and, hence, in I only through its derivatives.
Therefore φ enjoys a shift symmetry which renders it massless. Several

12For example, φ can be the Lagrangian co-ordinates of the fluid flow.
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works on effective actions for hydrodynamics consider this massless field to
be the Goldstone mode of the symmetry generating Qi,µa [114]. This allows
us to apply all of the QFT machinery for writing down Goldstone boson
effective actions [116,117] in the realm of hydrodynamics [118].

We proceed with the derivation of the constitutive relations through the
formalism laid out above in the following section.

3.2 Hydrostatic charged relativistic fluids

In this section, we will apply the formalism of [105,106] laid out in section 3.1
to the case of 2 + 1d parity-breaking relativistic hydrodynamics of charged
fluids. The conserved charges for this case are the energy-momentum tensor
and U(1) current

{Qai,µ} = {Tµν , Jµ} . (3.33)

The external fields that couple to Tµν , Jµ are the metric gµν and U(1) gauge
field, Aµ described in the previous section. The corresponding chemical po-
tentials are the thermal vector βµ = βnµ of Eq. (3.26) and chemical potential
βµ = βµAµ. Since we are in static equilibrium, we assume the effective ac-
tion W is invariant under diffeomorphisms and U(1) gauge transformations
under which gµν and Aµ transform as

xµ → x′µ , g′µν(x′) =
∂xa

∂x′µ
∂xb

∂x′ν
gab(x) ,

(3.34)

A′µ(x′) =
∂xa

∂x′µ
Aa(x) , A′µ = Aµ + ∂µλ ,

with infinitesimal form

x′µ = xµ + ξµ(x) , g′µν(x′) = gµν(x)− ∂(µξν) ,

(3.35)

A′µ(x′) = Aµ(x)−Aa∂µξa , A′µ = Aµ + ∂µλ .

The infinitesimal transformations Eq. (3.35) lead to the field variations

δξgµν ≡ g′µν(x)− gµν(x) = −Lξgµν = −∇(µξν) ,

(3.36)

δξAµ = −LξAµ = −ξaFaµ − ∂µ(Aaξ
a) , δλAµ = ∂µλ .
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Using the variations in (3.36), we can translate the invariance of W into the
conservation laws for energy-momentum and charge13

∇µTµν = −JµFµν +Aν∂µJ
µ = −JµFµν , (3.37)

∂µJ
µ = 0 . (3.38)

Because we are interested in parity breaking fluids, let us also note how
gµν , Aµ transform under parity. In 2 + 1 dimensions we define parity as the
diffeomorphism which inverts one spatial co-ordinate, say the y co-ordinate.
Therefore, we define the parity operator P

P : xµ = (x0, x, y)→ P[x] = (x0, x,−y) , (3.39)

under which we find for gµν , Aµ

Aµ(x)
P→ (A0, A1,−A2)(P[x]) ,

(3.40)

gay(x)
P→ −gay(P[x]) , gyy(x)

P→ gyy(P[x]) , gab(x)
P→ gab(P[x]),

with a, b = x0, x.
Now that we have clarified the conserved charges and the conservation

laws – Eq.s (3.37), (3.38) – for charged relativistic fluids, we need to resolve
them in terms of βµ and µ/T . To do so, we proceed with constructing the
derivative expansion of W . We begin with the zeroth order in derivatives
action. To zeroth order part of W consists only of the gauge and diffeomor-
phism invariant scalars, S0, that can be constructed by the zeroth order data
gµν , Aµ and the thermal vector βµ. If we are interested in breaking parity
invariance we must also include the Levi-Civita tensor εµνρ into the list of
data. Thus, the zeroth order scalars and effective action W0 are simply

S0 = {β2, βµAµ} ' {T, µ} , (3.41)

W0 =

∫
dV P (S0) =

∫
d3x
√
−g P (T, µ) , (3.42)

where g is the metric determinant and both T and µ are assumed hydrostatic,
i.e. the Lie derivative in the direction of βµ vanishes identically, Lβ = 014.

Taking the variations of W with respect to gµν and Aµ, as shown in
appendix B, we find the constitutive relations for Tµν and Jµ

13Recall Eq.s (3.16) and (3.23).
14Being hydrostatic simply means that T and µ are time-independent. To see this,

boost in a co-ordinate system where β = β∂t.

46



3.2. Hydrostatic charged relativistic fluids

Tµν = εuµuν + P∆µν , Jµ = ρuµ , (3.43)

ε = T
∂P

∂T
+ µρ− P , uµ =

βµ√
−β2

, ∆µν = gµν + uµuν , ρ =
∂P

∂µ
.

(3.44)

The constitutive relations Eq. (3.43) alongside (3.44) define a perfect charged
relativistic fluid in 2+1 dimensions with energy ε, pressure P , charge density
ρ and velocity profile uµ [9, 119, 120]. Note that the expression for the
energy in Eq. (3.44) becomes the Gibbs-Duhem relation for charged matter
in thermal equilibrium, when we identify the entropy density15

s =
∂P

∂T
.

Let us now go beyond the perfect fluid limit by including first order
derivative corrections to W . Gauge invariance requires Aµ to appear in W
only through µ/T or through the field strength16

Fµν = ∂µAν − ∂νAµ = ∂[µAν] . (3.45)

The remaining building blocks for the first order data are the gradients of
temperature, chemical potential and velocity profile. To use these gradients
though we must constrain them to be hydrostatic, Lβ = 0. Being hydrostatic
allows us to resolve the aforementioned gradients into simpler first order data
(see App. A)

∂µT = −Taµ , ∂νµ = −µaν + Eν , ∂µuν = −uµaν + ωµν . (3.46)

where

aµ = uν∂νuµ , Eµ = Fµνu
ν , ωµν = ∆µa∆bν∂

[aub]/2 (3.47)

are the acceleration of the fluid, the electric field as seen in the rest frame of
the fluid and the vorticity tensor of the fluid respectively. Equation (3.46)
also teaches us that G = {uµ, aµ, Eµ} is an orthogonal co-ordinate system17.
This implies that Jµ can be expanded in terms of G and its parity-odd
counterpart G̃

15The Gibbs-Duhem relation can also be derived directly from the definition of
entropy S = −Tr [ρN log ρN ] and the normalized thermal density matrix ρN =
exp [−β(PV +H − µQ)].

16Recall µ/T has been gauge-fixed to a particular value, cf. discussion around Eq. (3.21).
17To show that aµE

µ = 0, perform the calculation in a co-ordinate system with uµ =
u∂t. Then recall aµE

µ is Lorentz invariant, when uµ is also rotated along.
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G̃ = {εµνρuνaρ, εµνρuνaρ} ≡ {(u× a)µ, (u× E)µ} . (3.48)

Having imposed the hydrodstatic constraints on the gradients of T , µ
and uµ we can now write down the most general first order scalars, S1, that
enter the effective action. We can generate S1 somewhat algorithmically:
We take the list of first order tensors, the gradients of T , µ and uµ, and
saturate them with the list of zeroth order vectors to produce scalars. Then
we enforce (3.46) and keep the non-trivial results S1. These are

S1 =
1

2
{εµνρuµF νρ, εµνρuµωνρ} ≡ {B,ω} , (3.49)

where B is the external magnetic field and ω the vorticity of the fluid. Note
that with our conventions, both B and ω are parity even — εµνρ, ωµν and
the spatial part of Fµν are all parity odd. If, however, we consider Aµ and
uµ fixed external fields, then B, ω are parity odd and break the parity
invariance of W .

Using S1, we can write the effective action at first order in derivatives
as18

W =

∫
ddx
√
−g [ P (T, µ) + α1B + α2ω] ≡

∫
ddx
√
−gP . (3.50)

The variation of the first order W can be found in App. B. The resulting
constitutive relations are

Tµν = Euµuν + Π∆µν + α1(u× E)(µuν) − α2(u× a)(µuν) ,

(3.51)

Jµ = Ruµ + ca(u× a)µ + cE(u× E)µ ,

with

E = T
∂P
∂T

+ µ
∂P
∂µ

+ α2ω − P , Π = P − α1B − α2ω

R =
∂P
∂µ
− α1ω , ca = T

∂α1

∂T
+ µ

∂a1

∂µ
− α1 , cE =

∂α1

∂µ
(3.52)

or in terms of the zeroth order energy, pressure and charge density found in
Eq. (3.44)

18The coefficients α1, α2 were denoted MB and MΩ in [9].
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E = ε+ caB +

(
T
∂α2

∂T
+ µ

∂α2

∂µ

)
ω , Π = P

R = ρ+ cEB +

(
∂α2

∂µ
− α1

)
ω , ca = T

∂α1

∂T
+ µ

∂a1

∂µ
− α1 , cE =

∂α1

∂µ
.

(3.53)

Equations (3.51) and (3.52) give the hydrostatic, first order constitutive
relations for a parity-breaking 2 + 1d relativistic fluid. We see that the lack
of parity invariance leads to the modification of the thermodynamics of the
fluid — E and R — as well as heat and charge transport in the direction of
the “parity-breaking” frame G̃ . These effects are governed by the acceler-
ation of and the electric field applied to the fluid and most importantly by
the coefficients α1 and α2 and the conductivity-like coefficients ca and cE .
However, these coefficients are not defined unambiguously. They are subject
to change under an emergent symmetry-transformation of truncated hydro-
dynamics. This symmetry transformation, first discussed in [119, 121], is
called a frame change and is the subject of the following subsection.

3.2.1 Frame Change

To see why the coefficients found in the constitutive relations are not uniquely
defined, let us go back to the equilibrium partition function (3.11)

Z = Z[Aai,µ] = Tr exp

[
−
∫
M
dV Aai,µQi,µa

]
, Aai,µn

µ = −µaiL−1 . (3.54)

To arrive at Eq. (3.54) we assumed that Aai,µ and, hence, µai are constant
in spacetime. When constant, the µai are fixed by the thermal averages of
the charges Qiµ [110]. Then we grew bolder and relaxed this assumption in
order to describe systems in local thermal equilibrium. This step forward
implies that we can no longer rely on Qia in order to derive the value of µai .
Instead we fixed the chemical potentials like any other field: We defined
their value via the solution of a set of differential equations, the hEOM.
Unfortunately, to make practical use of the hEOM we had to restrict to
some particular derivative order of the chemical potentials. It is in this step
that we introduced an ambiguity in the definition of the chemical potentials.

To make the above discussion more precise, let us go back to the consti-
tutive relations Eq. (3.51). Let us explore what happens to the constitutive
relations if the temperature, chemical potential and velocity profile all re-
ceive first order corrections

µ→ µ+ µ(1) , T → T + T(1) , uµ → uµ + uµ(1) . (3.55)
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Equation Eq. (3.55) defines a special kind of transformation called the frame
change. It can be thought of as the purely timelike version of the symmetry
transformation for the external gauge fields, gµν and Aµ. It is precisely the
kind of transformation we forbade in Eq. (3.14). Thus there is a priori no
reason for a frame change to leave the constitutive relations unchanged. In
fact under a frame change, we find for Eq. (3.51) up to first order in K

Tµν → Tµν = E ′uµuν + P ′∆µν

+ u(µ
[
εu
ν)
(1) + α1(u× E)ν) − α2(u× a)ν)

]
, (3.56)

Jµ → Jµ = R′uµ + ρuµ(1) + ca(u× a)µ + cE(u× E)µ , (3.57)

with

E ′ = E +
∂ε

∂T
T(1) +

∂ε

∂µ
µ(1) ,

P ′ = P +
∂P

∂T
T(1) +

∂P

∂µ
µ(1) , (3.58)

R′ = R+
∂ρ

∂T
T(1) +

∂ρ

∂µ
µ(1) .

Note that since uµ(1) is first order, it can be expanded like any vector in terms

of the first order elements of the frames G and G̃, Eq. (3.48). However if
we restrict uµ(1) to stem from a change of the effective action, uµ(1) must be

parallel to G̃ alone19. That is, we may write

uµ(1) = UE(u× E)µ + Ua(u× a)µ (3.59)

and

Tµν → Tµν = E ′uµuν + P ′∆µν

+ u(µ
[
(εUE + α1) (u× E)ν) + (εUa − α2) (u× a)ν)

]
,

(3.60)

Jµ → Jµ = R′uµ + + (ρUa + ca) (u× a)µ + (ρUE + cE) (u× E)µ ,
(3.61)

with UE , Ua functions of µ, T .

19All first order terms in the action are parity-breaking.

50



3.2. Hydrostatic charged relativistic fluids

We see then that under a frame change the hEOM remain invariant in
form. Only the coefficients in Eq. (3.53) change. These coefficients, similarly
to µ and T have no intrinsic physical meaning, but are defined from the
solution of the hEOM themselves20. This means that we could equally
well begin our discussion of hydrodynamics with the constitutive relations
in a new frame, Eq.s (3.60) and (3.61), without changing the underlying
local equilibrium physics. Therefore a frame change can be thought of as a
symmetry of truncated hydrodynamics.

We can use the frame-symmetry of hydrodynamics to redefine parts of
the constitutive relations to a form that we find more “physical” or con-
venient. More precisely, we can alter the thermodynamics of the fluid via
Eq. (3.58), as well some of the parity-odd transport coefficients in Tµν and
Jµ through Eq. (3.59). A particularly physical choice for relativistic hydro-
dynamics is to choose the flow of energy parallel to the velocity profile, i.e.
choose the frame for which

uµT
µν = −E ′uν , (3.62)

This condition fixes the coefficients UE and Ua in the uµ(1) expansion to

UE = −α1

ε
, Ua =

α2

ε
. (3.63)

We deem this choice of frame for Tµν physical, since it resembles the case
of a perfect fluid where uµT

µν = −εuν . In fact, if we want we can go even
further and use (3.58) and define E ′ = ε. There is an infinite number of
frames which satisfy E ′ = ε. To restrict ourselves to a single frame, we may
fix either P or R to their equilibrium values. Choosing R = ρ then fixes our
choice of frame completely to

T(1) =

(
cA

∂ρ
∂µ − cE

∂ε
∂µ

)
B +

[(
α1 − ∂α2

∂µ

)
∂ε
∂µ +

(
µ∂α2
∂µ + T ∂α2

∂T

)
∂ρ
∂µ

]
∂ε
∂µ

∂ρ
∂T −

∂ε
∂T

∂ρ
∂µ

(3.64)

µ(1) =

(
cA

∂ρ
∂T − cE

∂ε
∂T

)
B +

[(
α1 − ∂α2

∂µ

)
∂ε
∂T +

(
µ∂α2
∂µ + T ∂α2

∂T

)
∂ρ
∂T

]
∂ε
∂T

∂ρ
∂µ −

∂ε
∂µ

∂ρ
∂T

.

(3.65)

Thus our frame choice can be made unique via two covariant constraints
for the energy-momentum tensor and current,

uµT
µν = −εuν , uµJ

µ = −ρ , (3.66)

20The “α”s are functions of µ, T and µ, T are specified from the hEOM solutions.
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with ε and ρ the equilibrium energy and charge density respectively. This
is the so-called Landau frameof hydrodynamics [119]. For the sake of com-
pleteness we mention another frequently used frame in the literature, the
Eckart frame [121,122] defined via

uµT
µνuν = ε , Jµ = ρuµ . (3.67)

In the sequel we restrict ourselves to the Landau frame.

As a final remark on frame changes, we note that in recent years the
question of whether a frame change is a true symmetry of the theory is a
hot topic of investigation. The current consensus seems to be that a frame
change affects the stability of the theory under small perturbations of the
hydrodynamic fields or a change of the initial conditions [123–125]. There-
fore, it seems we are in anticipation of a new physical principle that either
picks out a stable family of frames or clarifies why relativistic hydrodynamics
is intrinsically not well-defined and a reformulation in terms of additional
dynamical degrees of freedom is necessary, such as in Israel-Stewart the-
ory [126–128].

To conclude our discussion of hydrostatic charged fluids, let us consider
in the following subsection a feature of our construction hidden in plain
sight: the second law of thermodynamics.

3.2.2 The second law of thermodynamics

The second law of thermodynamics postulates the existence of an entropy
function S = S(µ, T ) that never decreases with time [110]

∂S

∂t
≥ 0 . (3.68)

For relativistic fluids, we extend the second law to its local relativistic version

∂µs
µ ≥ 0 , (3.69)

with sµ the entropy density current. We can derive sµ in equilibrium using
the definition of the entropy in terms of the partition function Z

S =
∂

∂T
(T logZ) = − ∂

∂T
(TW ) = −

∫
dΣ

∂P
∂T

=

∫
dΣµs

µ , (3.70)

with sµ = ∂P/∂Tuµ ≡ suµ. In the second to last equality above, we have
first substituted the explicit form of W given by Eq. (3.50) and then used
the time-independence of the action to write W = T−1

∫
dV P. Now we can

explicitly calculate the divergence of the entropy current in equilibrium to
find
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∂µs
µ = (∂µs)u

µ + s∂µu
µ =

∂s

∂T
uµ∂µT +

∂s

∂µ
uν∂νµ+ s∂µu

µ = 0 , (3.71)

where in the last equality we have made use of Eq. (3.46).

There is one additional way to derive the entropy current, which becomes
quite useful when we try to go beyond the hydrostatic limit. So we will spend
some time discussing it here. This second definition comes directly from the
statistical definition of entropy via

s = −Tr [ρN log ρN ] , (3.72)

with ρN the normalized thermal density matrix21

ρN = eW exp

[∫
dΣµ (Tµνβν + βµJµ)

]
= exp

[
−
∫
dΣµ (Puµ − Tµνuν − µJµ)

1

T

]
. (3.73)

The definition of entropy Eq. (3.72) alongside Eq. (3.73) allows us to define
what we call the canonical entropy current Jµs as

Jµs = (Puµ − Tµνuν − µJµ) /T . (3.74)

It is straightforward to show that Jµs also has vanishing divergence, if one
uses the hEOM, Eq.s (3.37), (3.38), alongside the gradient expansion Eq. (3.46).
So we will not present the full calculation here. However, we want to men-
tion one particular part of the calculation that becomes of interest in fluids
with non-vanishing angular momentum. This term stems from the deriva-
tive of the thermal vector βν in Eq. (3.74), which in static equilibrium takes
the form

∂µJ
µ
s ⊃ −Tµν

(
a[µuν] + ωµν

)
/T . (3.75)

The terms in the parenthesis are anti-symmetric under the exchange of µ and
ν and, hence, vanish when contracted with the symmetric energy momentum
tensor. This, however, seizes to be true when a fluid possesses a conserved
angular momentum tensor. In that case, the energy momentum tensor is
allowed to contain an anti-symmetric part that can be thought of as the
source of spin-angular momentum. Then equilibrium can be achieved only
if the vorticity of the fluid spans the same plane as the velocity profile and
the acceleration [129], i.e. ωµν = u[µaν]. In simpler terms, a rotating fluid
can be in thermal equilibrium if the rotation axis is normal both to the

21Recall Tr[ρ] = Z = exp(−W ).
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velocity and the acceleration of the fluid. An exemplary case of such a
steady state is a fluid in a cylindrically symmetric vessel rotating with a
constant angular frequency around its symmetry axis.

Note that this requirement for a rigidly-rotating equilibrium is impossible
to satisfy in our case, since ωµν is by definition normal to the time-direction
uµ(see Eq. (3.47)). This implies that we cannot define an inertial frame
of reference with time parallel to the flow profile for a rotating fluid. The
fundamental reason for this is the following: A purely rotating frame of
reference is not connected to an inertial frame of reference via a Lorentz
transformation [130,131]. Recent work on hydrodynamics of rotating fluids
[129] has side-tracked this difficulty by introducing torsion into the system.
Torsion then alters the above condition such that uµ can again play the role
of time. We will see this in more detail in chapter 7.

In summary, we have seen that entropy production vanishes in equilib-
rium and the second law of thermodynamics is obeyed identically. Real-life
fluids, however, are rarely in state of hydrostatic equilibrium and their en-
tropy is ever-increasing until said equilibrium is reached. Therefore, any
realistic hydrodynamic theory must go beyond the equilibrium partition
function level and introduce diffusive, entropy-producing effects. There are
at least two ways of doing this: The first follows a similar path to the
above and describes hydrodynamics as an out-of-equilibrium field theory on
a Schwinger-Keldysh time contour [114, 132–135], while the second works
directly at the level of the conserved charges and constrains them using
symmetries and the second law of thermodynamics [8,9,119,120]. We follow
the second route to dissipation in the following subsection.

3.3 Dissipative charged relativistic fluids

In this section, we will construct the constitutive relations of first-order
parity-breaking hydrodynamics, first established in [9]. The construction
follows the symmetry analysis of Section 3.2: First we construct the energy-
momentum tensor Tµν and U(1) current Jµ consistent with diffeomorphism
and gauge invariance in subsection 3.3.1. Then we enforce the constraints
stemming from the second law of thermodynamics in section 3.3.2.

3.3.1 Symmetry Analysis

We begin our symmetry analysis by recounting the symmetries of the prob-
lem, diffeomorphism and U(1) gauge-invariance. Recall, that the diffeomor-
phism invariance we refer to leaves the velocity profile uµ unchanged. For
this reason, it is useful to decompose both Tµν and Jµ in an orthonormal
basis where the timelike direction is given by uµ. Performing this decompo-
sition, we find
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3.3. Dissipative charged relativistic fluids

Tµν = Euµuν + q(µuν) + Πµν , Jµ = Ruµ + jµ , (3.76)

with qµuµ = 0 = uµΠµν = Πµνuν and jµuµ = 0. We can further split Πµν

into its symmetric-traceless, πµν , and trace, Π, parts and express Tµν as

Tµν = Euµuν + Π∆µν + q(µuν) + πµν , Jµ = Ruµ + jµ . (3.77)

Having split Tµν and Jµ as in Eq. (3.77), the remaining task is to specify
the functions E ,Π and R as well as the vectors qµ, jµ and the tensor πµν .
Towards this end, we can employ the Landau-frame constraints Eq. (3.66)
discussed in subsection 3.2.1. Doing so fixes E and R to their thermal
equilibrium values and qµ to vanish, thus leading to simpler constitutive
relations

Tµν = εuµuν + Π∆µν + πµν , Jµ = ρuµ + jµ . (3.78)

Apart from the choice of frame, there is an additional simplification that
makes the construction of the constitutive relations simpler. The simplifi-
cation stems from the fact that the constitutive relations are the on-shell
expectation values the Tµν and Jµ operators. On-shell means here that the
fields of hydrodynamics – µ, T and uµ – satisfy the hEOM. Since, the con-
stitutive relations are valid only up to first order in the derivative expansion,
we must enforce the hEOM only to first order as well. This means that we
can restrict ourselves to constitutive relations for which uµ, µ and T satisfy
the first order equations of hydrodynamics. Let us see how this simplifies
the analysis, by first constructing the transverse trace of Tµν , the function
Π.

Constructing Π. In general, Π is a scalar under both diffeomorphisms
and gauge transformations and contains both zeroth and first order terms.
So we can construct Π in the same way we constructed the effective action
W in Section 3.2. In fact, consistency with thermodynamics requires

Π = P + dissipative corrections , (3.79)

where P is the effective action density in the Landau frame defined through
Eq.s (3.50), (3.58) and (3.64). The dissipative corrections in Π consist of
the scalars that where set to zero due to the hydrostatic constraint Lβ = 0
(see Eq. (3.46) and App. A). There are three such scalars at first order in
derivatives given by

SD = {uµ∂µT, uµ∂µµ, ∂µuµ} . (3.80)
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Restricting SD on-shell leaves us with only one dissipative scalar, say ∂µu
µ.

This can be seen from the scalar part of the equations of motion for hydro-
dynamics restricted to first order in the derivative expansion,

uν∂µT
µν ' − ∂ε

∂T
uµ∂µT −

∂ε

∂µ
uν∂νµ− ∂µuµ = 0 ,

∂µJ
µ ' ∂ρ

∂T
uµ∂µT +

∂ρ

∂µ
uν∂νµ+ ρ∂µu

µ = 0 . (3.81)

Therefore the first order, dissipative Π is given by22

Π = P ′ − ζ∂µuµ = P + 2χωω − χBB − ζ∂µuµ . (3.82)

The new transport coefficient ζ we introduced in Π is called the bulk vis-
cosity. Furthermore consistency with the hydrostatic result implies that P ′

is the Landau frame pressure given by Eq. (3.58) and Eq. (3.64).

Constructing πµν . Stepping up the complexity slightly, we now look at
the construction of the tensor part of Tµν . There are only two dissipative
tensors at first order in derivatives (see App. A), the shear tensor σµν and
its parity-odd version σ̃µν defined as

σµν = ∆µa

(
∂aub + ∂bua − gab∂λuλ

)
∆νb , (3.83)

σ̃µν =
1

2

(
εµαβu

ασβν + εναβu
ασβµ

)
. (3.84)

In curved space, the partial derivatives in σµν , σ̃µν should be replaced by
covariant derivatives. There are no tensor hEOM, so both σµν and σ̃µν
should appear in πµν . Therefore, πµν to first order in derivatives is simply

πµν = −ησµν − ηHσ̃µν , (3.85)

with η and ηH the shear and Hall viscosities, which we will be concerned
with for most of this thesis. We note again that the result for πµν vanishes
in the hydrostatic limit once we impose Lβ = 0.

Constructing jµ. Finally let us fix the transverse part of Jµ, jµ. The
most general transverse vector can be built out of the first order G and
G̃ vectors, Eq. (3.48), alongside the gradients of temperature and chemical
potential. Thus, the first order vector data are

V = {∆µν∂νT,∆
µν∂νµ,E

µ, aµ} , Ṽ µ = εµνρuνVρ = (u× V )µ . (3.86)

22We have introduced a factor of −2 in front of ω to match the definition in [9].
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3.3. Dissipative charged relativistic fluids

To put the data in V, Ṽ on-shell, we can use the first order transverse-vector
hEOM, ∆ρν∂µT

µν = ∆ρνF
νµJµ and its parity-odd counterpart ερσνu

σ∂µT
µν

= ερσνu
σF νµJµ

(ε+ P )aρ +
∂P

∂T
∆ρν∂

νT +
∂P

∂µ
∆ρν∂

νµ = ρEρ , (3.87)

(ε+ P )(u× a)ρ +
∂P

∂T
(u× ∂T )ρ +

∂P

∂µ
(u× ∂µ)ρ = ρ(u× E)ρ . (3.88)

The vector and pseudo-vector equations (3.87), (3.88) can be used to express
one vector in V and one pseudo-vector in Ṽ in terms of the rest of the data.
We choose to drop the acceleration vector aµ and its parity-odd partner
from the constitutive relations. Thus, we can express jµ as

jµ = χT∆µν∂νT + χM∆µν∂νµ+ χEE
µ + χ̃T (u× ∂T )µ

+ χ̃M (u× ∂µ)µ + χ̃E(u× E)µ , (3.89)

Note that in this case jµ does not reduce to the hydrostatic result of section
3.2, Eq. (3.51), even after a frame change. That means we need to constrain
the χs and χ̃s in order to recover the proper hydrostatic limit. Consequently,
the electric field Eµ and the gradients of µ, T must appear only through
a particular combination that vanishes in hydrostatic equilibrium. This
combination is simply Uµ = Eµ − T∆µν∂ν(µ/T ) and its parity-odd partner
u×U . In addition both u×E and u×∂T are allowed in jµ, since they have
a well-defined hydrostatic limit, see(3.46). Thus, the current consistent with
the hydrostatic constitutive relations simplifies down to

jµ = σUµ + σ̃(u× U)µ + χ̃T (u× ∂T )µ + χ̃E(u× E)µ . (3.90)

In fact, consistency with the hydrostatic constitutive relations Eq. (3.51),
also allows to specify the transport coefficients χ̃T and χ̃E , in terms of the
“conductivities” ca and cE in the Landau frame (see Eq.s (3.61) and (3.63))

T χ̃T = −ca , χ̃E = cE . (3.91)

Herein lies the power of the hydrostatic analysis we spent two section build-
ing up. Instead of working with jµ of Eq. (3.89) and its six independent
coefficients, we can now work with jµ of Eq. (3.90) and only two unspecified
coefficients. Contrast this with the entropy analysis in [9] which spent a
significant and non-trivial part of the calculation proving the expressions
for P, χ̃T and χ̃E , Eq.s (3.82), (3.91).

Finally, we are ready to write down the most general form of the consti-
tutive relations allowed by symmetry. To do so we apply Eq.s (3.82), (3.85)
and (3.90) to (3.78) and find
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Tµν = εuµuν + (P − ζ∂µuµ) ∆µν − ησµν − ηHσ̃
µν , (3.92)

Jµ = ρuµ + σUµ + σ̃(u× U)µ + χ̃T (u× ∂T )µ + χ̃E(u× E)µ . (3.93)

However, equations (3.92) and (3.93) are not the end of the story. We
must now make sure that our construction is consistent with the local second
law of thermodynamics. We do this in the following subsection.

3.3.2 The second law of thermodynamics

In this subsection, we derive the constraints on the transport coefficients
appearing in the constitutive relations (3.92) and (3.93) imposed by the
second law of thermodynamics. To perform the calculation we follow refer-
ences [119] and [9] closely.

We construct the entropy current following the inverse path than the
one followed in the previous section. Instead of using symmetry arguments
to derive the divergence of Tµν and Jµ, we will use the divergence of Tµν

and Jµ to derive the entropy current. If this starting point seems peculiar,
recall that the equations of motion, and their boundary conditions, hold all
physical information for the system. Therefore, it must be possible to derive
the entropy current directly from the equations of motion [119].

Let us call the entropy current JµS . It must satisfy a scalar equation
∂µJ

µ
S ≥ 0. Thus for constructing the entropy current, we must use a combi-

nation of the scalar hEOM. A bit of foresight and dimensional analysis leads
us to consider the following scalar combination

uµ∂νT
νµ + uµF

µνJν + µ∂µJ
µ = 0 . (3.94)

After a short calculation, we can re-express Eq. (3.94) as

∂µJ
µ
canon = −

[
∂ν

(µ
T

)
− Eν

T

]
jν−∂µ

(uν
T

)
πµν+∆µν∂µ

(uν
T

)
(ζ−2χω+χB) ,

(3.95)

with Jµcanon the canonical entropy current of section 3.2.2

Jµcanon = (Puµ − Tµνuν − µJµ) /T . (3.96)

To proceed further we split ∂µJ
µ
canon into hydrostatic and dissipative terms

by using Eq.s (3.85), (3.90) and the tensor expansion of ∂µuν Eq. (19). The
resulting expression is
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T∂µJ
µ
canon = Uνj

ν − σµνπµν + ∂µu
µ (ζ − 2χω + χB)

=
[
σU2 + η(σµν)2 + ζ(∂µu

µ)2
]
D

+ [χ̃TUµ (u× ∂T )µ + χ̃EUµ (u× E)µ + ∂µu
µ (−2χω + χB)]H .

(3.97)

There are several things of note in Eq. (3.97): First, neither ηH nor σ̃ appear
in it because σ̃µνσ

µν = 0 = Uµ(u × U)µ. It follows that ηH and σ̃ remain
unconstrained from the second law and can take any real value. Second,
each term in ∂µJ

µ
canon is independent of the rest. Therefore, each one of

them must be positive-definite in order to respect the second law. This
implies that we must constrain the coefficients in front of the dissipative
terms in the brackets labeled by D to be positive semi-definite, that is

σ ≥ 0 , η ≥ 0 , ζ ≥ 0 . (3.98)

Finally, let us discuss the hydrostatic terms in the bracket labeled by H.
The χ̃s and χs as well as the scalars they multiply are not necessarily positive
semi-definite and, hence, may disobey the second law of thermodynamics.
This is of course unacceptable, so some modification to our entropy current
construction must be made. To this end, we follow [7] and redefine the
entropy current to

Jµcanon → JµS = Jµcanon + νµ . (3.99)

The current νµ will be chosen such that ∂µν
µ cancels the hydrostatic terms

in ∂µJ
µ
can. Clearly, νµ must be parity odd. So going back to our symmetry

analysis, we find it can in general take the following form

νµ = ν̃1(u×∂T )µ+ ν̃2(u×E)µ+ ν̃3(u×∂µ/T )µ+
1

2
ν̃4ε

µνρFνρ+ ν̃5ε
µνρ∂νuρ .

(3.100)

Also note that since we are interested in the divergence of νµ, we may rede-
fine it at will by adding to it a divergenceless vector Nµ. This divergenceless
vector can be expressed in the same basis as νµ as

Nµ ≡ εµνρ∂ν(α̃uρ) = −∂α̃
∂T

(u× ∂T )µ − ∂α̃

∂µ/T
(u× ∂µ/T )µ + α̃εµνρ∂νuρ ,

(3.101)

with α̃ an arbitrary function of µ, T . As a result only two of the ν̃1, ν̃3, ν̃5

are independent. All that said, the remaining calculation involves taking
the divergence of νµ and enforcing the second law for JµS . The complete
analysis can be found in [9]. Below we simply report the final result
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ν̃2 = 0 , T ν̃4 = α1 ,
∂ν̃5

∂µ/T
+ ν̃3 =

1

T

∂α2

∂µ/T
− α1 ,

T 2

(
∂ν̃5

∂T
+ ν̃1

)
= T

∂α2

∂T
− 2α2 + fω(T ) , (3.102)

with fω(T ) an arbitrary function of T .
Enforcing the second law of thermodynamics concludes our construction

of parity-breaking hydrodynamics. Let us then write down the final result
for the constitutive relations

Tµν = εuµuν + (P − ζ∂µuµ) ∆µν − ησµν − ηHσ̃
µν , (3.103)

Jµ = ρuµ + σUµ + σ̃(u× U)µ + χ̃T (u× ∂T )µ + χ̃E(u× E)µ , (3.104)

alongside the entropy-constraints

ζ ≥ 0 , η ≥ 0 , σ ≥ 0 , σ̃, ηH ∈ R . (3.105)

As we mentioned in the introduction, the constitutive relations (3.103)
and (3.104) take the same form for every 2 + 1 dimensional parity-breaking
relativistic fluid. The only thing which differentiates one fluid from another
is the value of the transport coefficients appearing in those constitutive rela-
tions, such as η and ηH . One then wonders how can we know these values in
order to make quantitative predictions using our constitutive relations. The
answer, in a true EFT fashion, combines both the macroscopic constitutive
relations and the microscopic behaviour of the fluid and comes under the
name “response functions”. These response functions will be the subject of
the following section.

3.4 Response functions and transport coefficients

In this section, we consider the retarded two-point functions of the energy-
momentum tensor and U(1) current within parity-breaking hydrodynamics.
This derivation was first presented in [9]. We also use the response function
discussion found in [120]. We are interested in these 2-point functions be-
cause they can be shown to contain all the physical information regarding
the fluid fluctuations and the fluid’s response to a “small” external pertur-
bation [24, 25, 136]. In particular, we use these 2-point functions to derive
the spectrum of the fluid’s fluctuations and derive Kubo formulae which
define the transport coefficients such as η and ηH . These Kubo formulae
can then be applied to any microscopic theory to calculate the transport
coefficients and specify completely the constitutive relations for Tµν and Jµ

of a particular fluid.
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We begin, then, by defining the 2-point functions of interest. Within the
canonical approach to QFT, they take the following form [72]

Gµν,ρσTT (x) = 〈[Tµν(x), T ρσ(0)]〉R , Gµ,νJJ (x) = 〈[Jµ(x), Jν(0)]〉R
(3.106)

Gµν,ρTJ (x) = 〈[Tµν(x), Jρ(0)]〉R , Gµ,ρσJT (x) = 〈[Jµ(x), T ρσ(0)]〉R ,

where the angled brackets denote a thermal average with the thermal density
matrix ρ, Eq. (3.1), and the index means we have restricted t > 0. However,
instead of the canonical approach we will use the variatonal approach dis-
cussed in section 3.1 (cf. Eq. (3.13)) [120])23. In this approach, the Green’s
function can be defined via the variations of the one-point functions, i.e. the
constitutive relations24

δ
(√
−gTµν(0)

)
= −

∫
d3x
√
−g
[

1

2
Gµν,ρσTT (x)δgρσ(x) +Gµν,ρTJ (x)δAρ(x)

]
,

(3.107)

δ
(√
−gJµ(0)

)
= −

∫
d3x
√
−g
[

1

2
Gµ,ρσJT (x)δgρσ(x) +Gµ,νJJ (x)δAν(x)

]
.

(3.108)

The canonical and variational definitions differ only by contact terms that
stem from the variation of the metric determinant on the left-hand side of
Eq.s (3.107) and (3.108). These contact terms are physically important,
because they make consistent the Ward-Takahashi identities due to diffeo-
morphism and gauge-invariance [138].

Similarly to the constitutive relations, the 2-point functions are evalu-
ated on-shell. The relevant equations of motion that need to be satisfied in
this case are the hEOM up to second order in the derivative expansion. This
is the only way dissipation effects will become apparent in the Green’s func-
tion. We can use this on-shell constraint in order to calculate the Green’s
function directly through taking the variations of Tµν and Jµ. To do this,
we first introduce into the constitutive relations a metric and gauge field
perturbation

gµν → gµν + δgµν , Aµ → Aµ + δAµ . (3.109)

23If you are wondering why we can use the equilibrium partition function for diffusive
hydrodynamics, consult [137]. In this paper, the authors prove Eq.s (3.107) and (3.108)
rigorously using as a starting point the Schwinger-Keldysh functional integral.

24Our definitions match those in [120] and differ with those in [9] by an overall minus
sign.
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Then we can use the hEOM in order to express Tµν and Jµ in terms of δgµν ,
δAµ and simply read off the Green’s functions directly from Eq.s (3.107),
(3.108).

Clearly the recipe for calculating the Green’s function is algorithmically
simple. However, it is in general difficult to find an analytic solution to the
hEOM. For this reason, we will make several simplifications in the following.
First, we will assume a Minkowski background metric ηµν and a vanishing
background gauge field Aµ = 0. Second, we ignore fluid-fluid interactions
by linearizing the equations of motion. We choose to linearize the hEOM
around the thermal equilibrium background by expanding the hydrodynamic
fields as

T = T0 + δT , µ = µ0 + δµ , uµ = uµ(0) + δuµ , (3.110)

where T0, µ0 are constant and uµ(0) = (1, 0, 0). Note that the normalization

of uµ, u2 = −1, implies δuµ is normal to uµ. That is δuµ = (0, δu1, δu2). The
calculation of the linearised hEOM is straightforward, but tedious. So we
have included in App. C the code we have used to automatize the derivation.
Below we just quote the final result assuming ∂y = 0 for simplicity

DΦ = S , (3.111)

With Φ =
(
δµ, δT, δu1, δu2

)
the hydrodynamic fields vector, D the dif-

ferential operator matrix

D =


−σ∂2

x + ∂ρ0

∂µ ∂t
σµ0

T0
∂2
x + ∂ρ0

∂T ρ0∂x 0
∂ε0
∂µ ∂t

∂ε0
∂T ∂t (ε0 + P0)∂x 0

ρ0∂x s0∂x −(η + ζ)∂2
x + (ε0 + P0)∂t −(χω + ηH)∂2

x

0 0 ηH∂
2
x −η∂2

x + (ε0 + P0)∂t


(3.112)

and source S, which can be found in App. C.
Since the equations are linearized, they can be easily solved by going to
Fourier space with frequency w and momentum k along the x−direction,
where D becomes

D =


σk2 − iw ∂ρ0

∂µ −k2 σµ0

T0
− iw ∂ρ0

∂T ikρ0 0

−iw ∂ε0
∂µ −iw ∂ε0

∂T ik(ε0 + P0) 0

ikρ0 iks0 k2(η + ζ)− iw(ε0 + P0) k2(χω + ηH)
0 0 −k2ηH k2η − iw(ε0 + P0)

 .

(3.113)
We can solve Eq. (3.111) for Φ by inverting D. Imposing det[D] 6= 0, we
can then find Φ as a function of S by inverting D. Doing so, we can write
down all Green’s functions of the system. For the purposes of this thesis
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we focus only on three of these Green’s functions, G12,12
TT , G12,11

TT and G1,1
JJ .

These three Green’s functions can be used to define the corresponding three
transport coefficients– η, ηH and σ – most relevant for the applications of
hydrodynamics we have in mind. We have then [9]

η = lim
w→0

G12,12
TT (w, k)

iw
, ηH = lim

w→0

G12,11
TT (w, k)

iw
, σ = lim

w→0

G1,1
TT (w, k)

iw
.

(3.114)

The importance of the Kubo formulae Eq. (3.114) cannot be overstated.
First, they provide us with the physical meaning of the shear and Hall vis-
cosities as well as the conductivity as the proportionality constants between
a disturbance acting on the fluid and the fluid’s response. Second, they
give us a method for calculating these transport coefficients, by calculating
the right-hand sides of Eq. (3.114), the Green’s functions, for a given mi-
croscopic theory. This is exactly what was done in Chapter 2 and section
2.4.

With this we conclude the present section. But there are a lot more
to be said about Green’s functions derived directly from hydrodynamics .
Examples of these include, how the non-linear fluid-fluid interactions cause
thermal fluctuations that break the validity assumptions of hydrodynamics
[120], how one can constrain the spectrum of operators in CFTs directly
from the hydrodynamic equations of motion [139] and how stochastic effects
alter the behaviour of the fluid, even if no stochastic forces are present in
the constitutive relations [140].

3.5 Turbulence

To close off this short introduction of ours to hydrodynamics, we wish to
discuss the phenomenon of turbulence, which is a major motivator in one of
my works during the completion of my PhD [2]. The present discussion of
turbulence is brief and contains only the facts necessary for understanding [2]
in chapter 5. We follow references [1, 141, 142], albeit we our exposition of
turbulence has a somewhat different starting point than in these references.

To begin our discussion on turbulence, we state that the momentum-
momentum density Green’s function in real space takes the form [30]

G0i,0i
TT (t, x) ∼ 1

√
γηt

exp

[
− x2

4γηt

]
, γη =

η

ε+ P
. (3.115)

Because of the decaying exponential, Eq. (3.115) tells us that any momentum
introduced into the system at point (t, x) = 0, will have diffused by the
time one reaches point (t, x) by an exponential factor which depends on the
kinematic viscosity γη. This urges us to define fluids with “large” γη as more
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diffusive than fluids with a “small” one. However, this is not necessarily a
helpful definition in practical situations. We could restrict fluids with a
“large” kinematic viscosity to such a small region of space, that we never
see any diffusion at all. To remedy this, and obtain a useful classification of
fluids, we can introduce dimensionless variables in Eq. (3.115), i.e.

x→ χ =
x

L
, t→ τ =

t

T
, U =

L

T
, (3.116)

where L, T , U are typical macroscopic length, time and velocity scales char-
acterizing the fluid. For example, L could be the dimension of a channel con-
taining the moving fluid. In dimensionless units the momentum-momentum
Green’s functions becomes

G0i,0i
TT (τ, χ) ∼

√
Re

τ
exp

[
−Reχ

2

4τ

]
, (3.117)

where we have defined the dimensionless Reynolds number of the fluid Re =
LU/γη [143,144]. The inverse of the Reynolds number plays the role of the
diffusion constant in these dimensionless units, and can hence function as a
measure of how diffusive a fluid really is. More precisely, fluids with Re� 1
are less diffusive than fluids with Re� 1.

In the limit of infinite Re, momentum does not diffuse at all from its
point of injection. This suggests that fluids with large Re subject to external
forces, are vulnerable to instabilities due to the lack of diffusion. When these
instabilities grow to encompass the majority of the flow, the fluid is called
turbulent. For example, one may consider forcing an incompressible fluid
through a channel constriction. The constriction will force part of the fluid
to stop moving and part of it to move faster due to incompressibility. This
will create a discontinuity of the velocity profile that can be smoothed out
due to diffusion. However, if the constriction width is small enough such
that Re � 1, this discontinuity cannot be remedied and the flow will stay
discontinuous. This discontinuity is characteristic of turbulent behaviour.

At this point, we should note that the definition of the Reynolds number
is a phenomenological one, and should not be taken as a precise measure
of when turbulence sets in; for different flows, different Reynolds number
definitions might be more physical. To see this let us consider the hEOM
for parity-even fluids with the speed of light re-instated25. These are

1

v2
F

D~u

Dt
= −

(
~u

v2
F

D

Dt
+∇

)
ln(ε+ P )− η

ε+ P
~Σ, (3.118)

with

25What follows first appeared in the appendix of my work [1].
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3.5. Turbulence

~Σi ≡ ∂µσµii = 1, 2 ,
D

Dt
≡ uµ∂µ (3.119)

and vF is the speed of light in the fluid. To read off the Reynolds number
from Eq. (3.118), we need to express it in terms of dimensionless variables,
as in Eq. (3.116) . The hEOM in dimensionless form then read

D~u

Dτ
= −

[
~u
D

Dτ
+
(vF
U

)2
∇
]
ln(ε+ p)−

(vF
U

)2 ηU

L(ε+ p)
~̃Σ (3.120)

with Σ̃ the dimensionless form of Σ.
Now to read of the Reynolds number from Eq. (3.120), we need to bring

it into the diffusion equation form. Then the Green’s function of the hEOM
becomes that of Eq. (3.117). To do this, we simply need to assume that
ε and P are constant in spacetime. Then the Reynolds number is simply
the dimensionless number multiplying the second derivatives of the velocity
profile on the right-hand side of Eq. (3.120). Fortunately or unfortunately,
there is no unique dimensionless number that does the job. This is because

of ~̃Σ, since it contains terms proportional to (U/vF )a , a = 0, 2, 4.
Thus in the case of relativistic hydrodynamics, there are more than one
relevant definitions for the Reynolds number. These definitions depend on
how large the ratio of U/vF becomes. Let us focus on two of these definitions,
the non-relativistic(NR) and the ultra-relativistic(UR) limits of Eq. (3.120).

� NR limit: In this case vF /U >> 1, and Re may be defined

ReNR =
(ε+ P )L

ηU

(
U

vF

)2

=
LU

γη

(
U

vF

)2

= Re

(
U

vF

)2

. (3.121)

� UR limit: In this case we keep the terms proportional to (U/vF )4 in
~̃Σ and obtain

ReUR =
(ε+ P )L

ηU

(vF
U

)2
=
LU

γη

v2
F

U4
= Re

v2
F

U4
. (3.122)

The important distinction between the non-relativistic and the ultra-
relativistic Reynolds numbers, which makes them worthy of a definition, is
that in general ReUR � ReNR. This indicates that fluids with a velocity
approximating the speed of light are inherently more prone to the emergence
of turbulent instabilities, than non-relativistic fluids. A final useful formula
for Re, which we use in the sequel is

Re =
LU(ε+ P )

η
=
LU(µρ+ Ts)

η
∼ TLU s

η
. (3.123)
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Chapter 3. Hydrodynamics

In the second equality we used the Gibbs-Duhem relation ε+ P = µρ+ Ts
for parity-even fluids, while in the last equality we considered the charge
neutrality limit with ρ ∼ 0. The relevance of this limit will become obvious
in upcoming chapters, where we discuss holographic fluids which, has been
conjectured, exhibit the smallest possible value for η/s .

At this point, we deem it useful to summarize what we have seen so far
regarding relativistic hydrodynamics, in preparation of applying the hEOM
to electronic fluids. First, we considered hydrostatic fluids where the con-
straint of staticity allowed us to use the method of thermal equilibrium
partition functions to write down the hydrodynamic constitutive relations
for parity-breaking hydrodynamics in 2 + 1d. These manifested new trans-
port phenomena compared to parity-even fluids, due to the existence of
static parity-odd transport coefficients. Then we used symmetry and the
second law of thermodynamics to derive the complete constitutive relations
for dissipative relativistic fluids. In these constitutive relations, appeared
the transport coefficients which we focus on in the rest of this thesis. These
transport coefficients are the parity-even shear and parity-odd Hall viscosi-
ties η and ηH respectively. Having written down the constitutive relations,
we used them to derive Kubo formulae for η and ηH , which allow the mi-
croscopic derivation of these quantities, as seen in chapter 2 and chapters
4, 6 below. Finally, we introduced the notion of turbulence as an instability
of a given flow against small fluctuations and gave a phenomenological re-
quirement for when turbulent behaviour is expected to arise: The Reynolds
number Re of the flow must be much larger than 1.

Following this review of hydrodynamics, we proceed in the following
chapters to apply hydrodynamics to parity-even as well as parity-odd elec-
tronic systems, following my research on electron hydrodynamics as pub-
lished in [1–3]. First, we describe in chapter 4 how we used holography
and hydrodynamics to confirm the existence of the hydrodynamic tail of the
Gurzhi effect in strongly coupled electronic fluids and its consequences for
electronic transport in 2d channels [1].
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Chapter 4

Poiseuille flow of strongly coupled fluids

and the Gurzhi effect

The purpose of this chapter is to review our paper [1], which explores the
hydrodynamic tail of the Gurzhi effect for strongly coupled electronic sys-
tems. In particular, we find a monotonic decrease of the resistance as a
function of the current through a wire in the hydrodynamic regime. To do
so, we consider the Gurzhi setup consisting of a 2 + 1 dimensional channel
of width W and length l�W , see Fig. 4.1. We assume the electrons move
hydrodynamically along the channel in the presence of the Lorentz force
generated by a constant electric field ~E = (Ex, 0).

Figure 4.1: The channel setup examined in the main text. The channel is
aligned with the x-axis, and has a width W and length l. The
electrons move through the wire with a velocity βx(y) under
the influence of the electric field Ex. Reprinted from [1] with
permission from APS.

Our goal, then, is to explore the decrease in resistance predicted by
Gurzhi, by solving the hEOM in the channel setup of Fig. 4.1 and derive
the resistance of the channel as a function of the current moving through
the wire. The assumption of strong coupling will enter through the thermo-
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Chapter 4. Poiseuille flow of strongly coupled fluids and the Gurzhi effect

dynamics and transport coefficients of the fluid, as will be explained in due
time. For the moment, though, we will keep our analysis as general as we
can when possible. In the spirit of this generality, note that we are consider-
ing the fully relativistic hEOM, thus including materials with a relativistic
spectrum such as graphene.

In order to make precise quantitative predictions for electronic systems,
we need to re-express the constitutive relations in SI units. To transform
into SI units, we introduce vF, the Fermi velocity and e the electron charge
into the constitutive relations as

Tµν = ε
uµuν

v2
F

+ P∆µν − ησµν , (4.1)

Jµ = eρuµ + σ

[
Eµ − 1

e
T∆µν∂ν

(µ
T

)]
. (4.2)

with uµuµ = −v2
F, and ∆µν = ηµν + uµuν/v

2
F. Note that here vF plays the

role of the speed of light in the system.

In addition, we can take into account the bound currents present in
any electronic material. We accomplish this by expressing the electric field
acting on the system in terms of the electric displacement tensor [145]

Dµν = e

 0 Ex/εmvF 0
−Ex/εmvF 0 0

0 0 0

 , (4.3)

where εm is the electric permittivity of the material, which is proportional
to the vacuum one, ε0, εm = ε0εr. The inclusion of the displacement tensor
into our framework allows us to express the hEOM in terms of Dµν and the
free currents in the material jµ. In particular we have for the hEOM and
the free current

∂µT
µν =

h

e3vF
Dνµjµ , ∂µj

µ = 0 . (4.4)

jµ = eρuµ + σ

[
Eµ − 1

e
T∆µν∂ν

(µ
T

)]
, Eµ =

h

e3vF
Dµνuν . (4.5)

To approximate the conditions in real materials even closer, we will also
consider the effects of impurities on the system. To do so we introduce
a Drude-like dissipation term into the momentum-conservation equation.
That is we take

∆ρν∂µT
µν =

h

e3vF
Dνµjµ −

1

vFτimp
∆ρνT

tν , (4.6)
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Chapter 4. Poiseuille flow of strongly coupled fluids and the Gurzhi effect

with τimp = limp/vF the electron-impurity scattering time. Note that the
introduction of τimp implies the breaking of translation symmetry, since mo-
mentum is no longer conserved. We consider the breaking of the symmetry
to be soft, in the sense that we assume impurities do not deform the ther-
modynamics of homogeneous fluids presented in chapters 3.2 and 2. An a
posteriori justification of this assumption is presented in the sequel.

To solve the hEOM we make use of the emergent translation symmetry
of the channel in the x-direction1 and consider the following ansatz for the
velocity profile

uµ = γ(vF, βx(y), 0), γ =
[
1−

(
β2
x/vF

)2]−1/2
. (4.7)

βx(y) is the non-relativistic velocity of the fluid, which depends only on the
y co-ordinate, while γ is the usual Lorentz factor. We also assume that T
and µ are simply constant in the channel. We will justify this assumption in
more detail in section 6. Under these assumptions, the current conservation
equation is satisfied by default, while the momentum equations read

β′′x +
2γ2

v2
F

βxβ
′2
x = −ρExhvFεm

eγ2η
+

ε+ P

ητimpγ

βx
v2

F

, (4.8)

P ′ =
η

τimpv2
F

γ3βxβ
′
x =

η

τimpv2
F

γ′ , (4.9)

where ′ = ∂y. We supplement these equations with no-slip boundary condi-
tions for uµ and fix the pressure to take its equilibrium value at the boundary

ux(y = 0) = 0 = ux(y = W ) , P (y = 0) = p . (4.10)

with p = p(µ, T ) the equilibrium pressure. Before discussing the solution
for βx, we note that the pressure equation (4.9) can be integrated directly
to give

P = p+
η

τimpv2
F

[γ(y)− 1] . (4.11)

We observe that the pressure deviates from its translationally-invariant
value, p, by a constant shift and a spatially-modulating function of the
velocity profile. Recall that the constant shift was fixed by the boundary
conditions Eq. (4.10). If we wish, we could redefine the shift to any other
constant value. This phenomenological deformation of the equilibrium pres-
sure is enough to account for the change of thermodynamics due to the “soft”
breaking of translation invariance due to impurities [146]. This justifies our
assumption of homogeneous equilibrium for our fluid. A further justification

1Due to l � W , we expect ∂xu
µ ∼ uµ/l � uµ/W ∼ ∂yu

µ. Therefore, we can neglect
the x-gradients of uµ.
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Chapter 4. Poiseuille flow of strongly coupled fluids and the Gurzhi effect

of this assumption stems from the ultra-relativistic limit of Eq. (4.11). In
that case, γ →∞ and overshadows any constant contribution in P .

Apart from the constant shift due to impurities, the pressure becomes in
general a function of the y co-ordinate due to the flow. This can in principle
lead to an observable voltage difference across the channel, which is sourced
directly from the hydrodynamic flow of electrons. For the moment we will
focus our attention only on the Gurzhi effect in the channel and leave further
details on the properties of this voltage difference for section 6.

Next we turn our attention to the solution of the hEOM for βx. We are
interested in this solution, because we can substitute it into the current jµ

and extract the resistance R of the channel via using Ohm’s law2

R =
dV

dI
= l

dEx
dI

, I =

∫ W

0
dy jx =

∫ W

0
dy (eργβx + σEx) . (4.12)

To find R as a function of I, we need to first solve for βx as a function of
Ex. Then, we can calculate I directly as a function of Ex. Finally, we can
invert this relation to find Ex = Ex(I) and use Eq. (4.12) to find R. This
short discussion shows that R can be a non-constant function of the current
only if the velocity profile depends non-linearly on Ex. Since Ex appears as
a source for βx, this implies that the non-linear, relativistic correction terms
in the equation for βx are crucial for obtaining a non-constant R. A physical
way to state this result is that a fast velocity profile, induced by a “large”
electric field, induces a fast fluid and non-trivial current dependence. This
non-trivial current dependence will by default appear for “large” currents I.

As a consequence of the above discussion, restricting ourselves to the
non-relativistic limit of the hEOM allows us to derive the behaviour of R
around I = 0. According to Fig. 1.3a, this allows us to estimate the
maximum value of R. Let us derive this maximum of R in the following
section, in order to see how the above algorithm works and confirm our
intuition.

4.1 Non-relativistic limit

The non-relativistic limit of the equation for βx is found by taking βx �
v2

F , γ ∼ 1 in Eq. (4.8)

β′′x = −ρExhvFεm
eη

+
ε+ P

ητimp

βx
v2

F

. (4.13)

The solution to Eq. (4.13) can be found by standard methods and reads

2Recall ηµν = diag(−1, 1, 1) and jx = jx.
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4.1. Non-relativistic limit

βx =
ρExvFhεmλ

2
G

eη
[1− cosh(y/λG) + sinh(y/λG) tanh(W/2λG)] , (4.14)

with λG =
√
ηv2

Fτimp/(ε+ p) the Gurzhi length, quantifying the relative

strength of viscous to impurity effects on the flow. More precisely, taking
λG →∞ leads to a Poiseuille flow in the absence of impurities , while taking
λG →= 0 leads to an Ohmic flow with a constant βx. Given βx, we can easily
calculate the current to find

I = ExvFεm

[
σW

e2
+
ρ2λ3

G

η

(
W

λG
− 2 tanh(W/2λG)

)]
. (4.15)

We see that I is linear in Ex, so R is clearly independent of I. In particular

R =
l

vFεm

[
σW

e2
+
ρ2λ3

G

η

(
W

λG
− 2 tanh(W/2λG)

)]−1

. (4.16)

The calculated resistanceRmight be boring when it comes to the Gurzhi
effect, since it does not depend on the I,3, but it holds a few interesting
lessons regarding charge transport in electron fluids. The first lesson is
that we cannot disentangle shear-induced resistance and impurity induced
resistance. To see this, we expand R−1 at the limit of τimp → ∞. The
resulting expression is

R−1 =
hεmvFW

l

(
σ

e2
+
ρ2W 2

12η

)
− hεm(ε+ P )ρ2W 5

120η2limpl
. (4.17)

Equation (4.17) tells us that any small amount of impurities in the system
will necessarily entangle shear and impurity effects. This can be seen directly
from the equations of motion in Fourier space, where the βx propagator, Gβ
depends on η and τimp only through λG, Gβ = (k2 + 1/λ2

G)−1.

Another lesson to be gleaned from R is that quantum critical effects
to the conductivity are completely independent from viscosity effects. This
can be seen from the fact that R−1 can be written as a sum of resistors in
parallel

R−1 = R−1
σ +R−1

η , (4.18)

with

3Note that R depends on temperature in this case as well. However, we chose to
consider an experiment where only I and R can be measured directly.
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R−1
σ =

l

vFεm

σW

e2
, (4.19)

R−1
η =

ρ2λ3
G

η

(
W

λG
− 2 tanh(W/2λG)

)
. (4.20)

Note that this picture of parallel resistors is atypical for electronic materials.
In fact for typical materials, the total resistance is the sum of the resistivities
arising from different scattering mechanisms4. In standard nomenclature, we
say that hydrodynamic resistivities obey an inverse Matthiessen rule.

To conclude this section, let us also consider the limit where impuri-
ties dominate the flow. In this case, the Navier-Stokes equations become
algebraic

βx =
hεmρv

3
Fτimp

e(ε+ P )
Ex . (4.21)

It is useful to consider the conductivity for this particular regime, which is
defined as σ = jx/Ex and has the following form

σtot = σ + σD , σD =
hεmv

3
F

e(ε+ P )
ρ2τimp . (4.22)

The conductivity σD is the Drude conductivity of the channel. The form
of σtot begs a comparison of the two terms that comprise it in order to
check which, if any, dominates over the other. To do so, we must consider a
particular fluid for which σ 6= 0 and fix its thermodynamics and transport
coefficients. Let us do so below.

Our particular choice of fluid, for the comparison of conductivities is
motivated by our goal to analyze the Gurzhi effect for strongly coupled
fluids. We choose to restrict ourselves to the strongly coupled regime by
using holography to prescribe particular values to the thermodynamics and
transport coefficients of the fluid. This allows us to study not just a single
particular fluid, but a whole class of fluids described by holography.

The relevant analysis for the transport coefficients and thermodynamics
of holographic fluids has been discussed in chapter 2. Here, we quote only the
final results we will employ. As a reminder, we mention that the holographic
setup we use is an AdS Reissner-Nordström (AdS-RN) black hole in Einstein-
Maxwell theory with no higher derivative corrections, see Eq. (2.18). The
thermodynamics of AdS-RN are

4We implicitly used this result in our description of the Gurzhi effect. Recall that we
asserted the resistance becomes larger when phonon effects kick in.
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4.1. Non-relativistic limit

ε =
L2

8πG4
~ vF

r3
H

L6
, P =

L2

16πG4
~ vF

r3
H

L6
, (4.23)

ρ =
L2

64πG4

(rH

L2

) µ

~vF
, s =

kBL
2

4G4

r2
H

L4
, (4.24)

where L is the AdS radius, G4 the 3 + 1 dimensional gravitational constant
and rH the event horizon radius, which is related to the fluid’s temperature
and chemical potential via

rH
L2

=
1

6

kBT

~ vF

(
4π +

√
16π2 +

3µ2

k2
BT

2

)
. (4.25)

To make practical use of these equations, we must fix the ratio L2/G4. We
do so through a phenomenological matching of the charge density to typical
charge densities in experiments, ρ ∼ 1011cm−2 for temperature T = 2K and
µ = 4.5meV [16]. Doing so yields

L2

G4
= 64

√
3 . (4.26)

Having fixed the thermodynamics of the fluid, we proceed to its transport
coefficients. The two transport coefficients relevant for our purposes are σ
and η. The conductivity σ takes its quantum critical value [147–149]

σ =
L2

G4

(
sT

ε+ P

)2 e2

2h
= 32

√
3

(
sT

ε+ P

)2 e2

h
. (4.27)

Although unnecessary for the comparison of conductivities, let us also com-
ment on the value of η. In this work, we shall not use a single value for
η. Instead, we will vary η as a function of s starting from the KSS bound
(η/s)KSS = ~/4πkB, up to a maximum value of twenty times the bound.
This way, we “scan” the space of couplings from stronger to weaker ones
respectively.

Finally, we fix εm = 5ε0, vF = 105m/s and τimp = 10−12s. These are
typical values found in weakly coupled metals and in particular HgTe [150].
We expect εm, vF and τimp of strongly coupled fluids to take similar values
(see e.g. chapter 5). Putting everything together we find for the ratio of the
Drude to the quantum critical conductivity

σD
σ
' 0.84 . (4.28)

This shows that both conductivities play an important role in the total
conductivity of a strongly coupled channel with an Ohmic flow given by
Eq. (4.21). This is in stark contrast to the case of weakly coupled relativistic
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Chapter 4. Poiseuille flow of strongly coupled fluids and the Gurzhi effect

electronic fluids. In these system the conductivity ratio goes to zero, since
σ scales as 1/α2 with the coupling strength α� 1 [36].

This concludes what we wanted to mention on the non-relativistic limit
of the relativistic Navier-Stokes equations. To summarize, we found that i)
impurity and shear effects are entangled with one-another, ii) the “hydro-
dynamic” resistance obeys an inverse Matthiessen rule contrary to a typical
metallic resistance, iii) in strongly coupled systems the Drude and quantum
critical conductivity are of the same order of magnitude, unlike for weakly
coupled systems where the quantum critical conductivity dominates. To
proceed with our derivation of the hydrodynamic part of the Gurzhi effect,
we examine the fully relativistic equations in the next section.

4.2 Relativistic flows

Our approach for the derivation of the resistance in this section will be fully
numerical, since the non-linearities in the Navier-Stokes equations precludes
us from finding an analytical solution. In addition, we assume τimp →∞ in
this section in order to focus purely on shear effects, i.e. coupling effects, on
the resistance. To perform the numerical analysis, we first make the Navier-
Stokes equation Eq. (4.8) dimensionless via the introduction of dimensionless
parameters

u =
kBT

hvF
y , Ex =

h2εmv
2
F

ek2
B

Ex , w =
kBT

hvF
W . (4.29)

In terms of dimensionless parameters, the Navier-Stokes equation for βx
becomes

η

s

(
β̈x +

2γ2

v2
F

βxβ̇x
2
)

+ h
vFEx

γ2

ρ

s
= 0, β̇x =

∂βx
∂u

, (4.30)

where we made explicit the dependence of the equation on η/s by dividing
the whole equation with s. Now, the flow profile depends on {Ex, µ/T, η/s}
directly through the Navier-Stokes equations and on w implicitly through
the no-slip boundary conditions (4.10). Thus the set {Ex, µ/T, η/s, w} are
the input parameters for our numerical analysis. To begin with, let us plot
below the velocity profile solving Eq. (4.30) each time varying a different
input parameter.

We observe that the velocity of the fluid in the channel is a monoton-
ically increasing function of w, Ex and µ/kBT , while it is a monotonically
decreasing function of η/s. Recalling that η/s decreases with increasing
coupling strength, this means βx is a monotonically increasing function of
the coupling strength of the system as well.

This behaviour of βx as a function of each input parameter has a simple
physical explanation. For example, consider the dependence on Ex shown
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4.2. Relativistic flows

(a) Velocity profile as a function
of u at different values of Ex.
From top to bottom: Ex =
50, 20, 15, 10, 8, 6, 4, 2, 1 corre-
sponding to Ex ∈ [75, 1.5]mV/µm
respectively. The rest of the in-
put parameters are w = 1,
corresponding to W ∼ 5µm,
µ/kBT = 1 and η/s = (η/s)KSS.
Reprinted from [1]with permis-
sion from APS

(b) Velocity profile as a function of
u at varying values of µ/kBT .
From top to bottom: µ/kBT =
100, 50, 20, 10, 5, 1. The rest of
the parameters have been fixed to
Ex = 1, w = 1, η/s = (η/s)KSS.
Reprinted from [1]with permis-
sion from APS.

(c) Velocity profile as a function of
u at varying values of w. A
value of w = 1 corresponds to
W ' 5µm and similarly for larger
w. The rest of the input param-
eters have been fixed at Ex =
1, η/s = (η/s)KSS , µ/kBT =
1. Reprinted from [1]with permis-
sion from APS.

(d) Velocity profile as a func-
tion of u at varying η/s.
From top to bottom: η/s =
1, 2, 5, 10, 20, 50, 100, 200, 500, 100
in units where the KSS bound
equals one. The rest of the input
parameters have been fixed at
Ex = 1, w = 1, µ/kBT = 1.
Reprinted from [1]with permis-
sion from APS.
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Chapter 4. Poiseuille flow of strongly coupled fluids and the Gurzhi effect

in Fig.4.2a. As we increase Ex, we also increase the external Lorentz force
due to the electric field acting on the fluid, thus accelerating the fluid to
larger and larger velocities. Similarly, the external force is proportional to
the charge density of the fluid. In turn the charge density is a monotonically
increasing function of µ/kBT . Hence, the behaviour observed in Fig. 4.2b
where we plot βx for various values of µ/kBT . We also observe in Fig. 4.2c
that as w increases, so does βx. This is a consequence of the external electric
field and the reflection symmetry along the middle of the channel. Because
the external force always points in the same direction, the fluid can be
zero only at the boundaries of the channel. Then, the boundary conditions
and the reflection symmetry of the channel implies the existence of global
maximum of the flow in the middle of the channel. Put another the way,
the flow speed will increase from zero at y = 0 up to some maximum value
at y = W/2 and decrease again to zero at y = W . Since it must do that
in a continuous and monotonic way, the maximum of the flow will become
larger as we increase W .

Finally, we observe that the stronger the coupling strength in the system,
i.e. the smaller η/s becomes, the faster the fluid becomes. To see this is
the expected physical behaviour, recall that η/s affects the local momentum
transfer per degree of freedom of the fluid. Thus, keeping other input pa-
rameter fixed, more strongly coupled fluids will lose momentum towards the
boundaries more slowly than strongly coupled ones. This allows strongly
coupled fluids to absorb more of the momentum imparted to them by the
external electric field, since they do not need to lose as much of it to the
boundaries of the channel.

The inhibition of momentum dissipation for strongly coupled fluids also
means that strongly coupled fluids can become relativistic much more easily
than weakly coupled ones. To confirm this, we plot in Fig. 4.3 the maximum
of the velocity profile with η/s = (η/s)KSS as a function of µ/kBT at different
values of Ex. From this figure we see that a relatively small electric field
Ex ' 7.5mV/µm and µ/kBT ' 5 is enough to achieve almost luminal speeds
of propagation βx ' vF.

Proceeding now to the resistance of the channel, notice that we can calcu-
late it using the same algorithm as in section 4.1 for the numerical solutions
presented above. We plot the results of our calculation of R in Fig.4.4
below. We can clearly observe the expected drop of the resistance with in-
creasing current I, similar to the hydrodynamic part of the experimental
results presented in Fig.s 1.3a and 1.3b. More importantly, we also observe
a strong dependence of R on the value of η/s. This is important for two rea-
sons: First, it shows that strongly coupled fluids exhibit a smaller resistance
than their weakly coupled counterparts and are hence better conductors of
electricity. Second, this strong dependence on η/s, means that the we can
experimentally identify the value of η/s just by measuring the resistance of
the channel. This approach presumes that there exists at least one material
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4.2. Relativistic flows

Figure 4.3: Maximum of the velocity profile as a function of µ/kBT at differ-
ent values of Ex. From top to bottom: Ex = 5, 1, 0.1, 0.01, 10−3.
For illustration purposes, we have set w = 1. As mentioned in
the main text, η/s = (η/s)KSS.Reprinted from [1] with permis-
sion from APS.

whose value for η/s has been measured independently of its resistance. An
example of such a material is graphene with a value of η/s ' 4 − 8 times
the KSS bound [23].
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Figure 4.4: Resistance as a function of the current I at different values of
η/s. From top to bottom: η/s = 20, 5, 2, 1 times the KSS bound.
Reprinted from [1] with permission from APS.

Let us summarize our results. First, we have shown that the velocity
profile for fully relativistic fluids increases monotonically with the channel’s
width, the external electric field and the ratio µ/kBT . We have also shown
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that the velocity profile increases with decreasing η/s, interpreted as an in-
creasing coupling strength. Using these velocity profiles, we calculated the
explicit form of the resistance R of the channel as a function of the cur-
rent flowing through the channel. We have shown R takes the typical form
expected from the hydrodynamic part of the Gurzhi effect found in experi-
ments. In addition, we have shown that impurity and shear effects cannot
be disentangled within R. However, shear and quantum critical effects can
be separated via the inverse Matthiesen rule satisfied by R. Finally, we have
shown that strongly coupled fluids are better conductors of electricity than
weakly coupled ones, since they exhibit a smaller resistance and can reach
almost luminal speeds for typical values of the input parameters.

This ease of reaching luminal speeds at strong coupling leads us to think
of the possibility of turbulence in electronic channel setups. To this end
we apply equations (3.121) and (3.122) to our flows. Unfortunately, the
resulting value for Re ≤ 50 far smaller than the O(1000) value of Re neces-
sary to observe turbulence in 2 + 1d fluids. This value can be enhanced to
Re = O(100) if we impose a constriction on the channel or obstruct the flow
with a large compared to the channel obstacle, as in the graphene channel
setup of [151]. This value of Re is still not large enough to achieve tur-
bulence. It does, however, urges us to think of other materials where the
fluid parameters are such that an order of magnitude enhancement of Re
is achieved. In fact, my collaborators and I have proposed such a material
where an even larger enhancement can be observed [2]. This material goes
by the name Scandium-substituted Herbertsmithite or ScHb for short and
is the subject of the following chapter.

78



Chapter 5
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metals

In what follows we suggest the material Scandium-substituted Herbert-
smithite (ScHb) as a suitable candidate for strongly-coupled, relativistic
electron-hydrodynamics, following our publication [2]. There are a multi-
tude of reasons which motivate our proposal in particular and the search
for strongly coupled materials in general. The most relevant one for our
purposes is the fact that strongly coupled materials are expected to exhibit
transport properties that are way more exotic than the ones of weakly cou-
pled fluids. Examples of these are quantum critical phases of matter [28,66],
such as some models for high Tc superconductors and the quark gluon
plasma [30]. The transport properties of interest to us are those related
to hydrodynamics. We have already seen in chapter 4 that strongly coupled
fluids constitute more efficient electric conductors than weakly coupled ones.
Here we also argue that strongly coupled fluids are better suited for explor-
ing turbulent hydrodynamics in electron materials. To see this, we recall the
Reynolds number for fluids around charge neutrality given in Eq. (3.123)

Re ∼ TWU
s

η
, (5.1)

where T is the temperature of the fluid, W , U are typical length and ve-
locity scales characterizing the flow and the equality becomes exact only at
vanishing charge density. (5.1) is written in natural units. We bring it to SI
units by multiplying it with the appropriate factors of kB, ~ and vF to find

Re ∼ kBT

~vF

U

vF
W

(
ηkB

s~

)−1

. (5.2)

Almost every term in Eq. (5.2) depends on the coupling. In particular,
the Fermi velocity vF depends on the electron-electron coupling. Indeed,
the effective fine structure constant for QED in electronic systems is given
by [152]
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αeff =
e2

εm~vF
⇔ vF =

e2

εm~αeff
, (5.3)

where e is the electron charge and εm the electric permittivity of the material.
Second, the Reynolds number depends on the coupling via the coupling
dependence of η/s. More precisely, for weakly coupled fluids [31]

η/s ' ~
kB

0.04π

α2
eff

. (5.4)

while for strongly coupled 2 + 1d fluids around charge neutrality, we argue
in section 5.2 that it takes the form

η/s ' ~
4πkB

(
1 +

C
α3/2

)
, (5.5)

with C a phenomenological constant that we fix shortly. Finally, the typical
velocity U also depends implicitly on the coupling strength. To see this recall
Fig. 4.2d in section 4.2. This figure shows that the smaller η/s becomes, i.e.
the large the coupling becomes, the faster the fluid flows. Putting everything
together, we see that the Reynolds number is a monotonically increasing
function of the coupling strength. Hence, strongly coupled materials are the
ideal candidate for observing turbulent electronic flows.

A further motivation for the search of strongly coupled materials for my
collaborators and myself, is the prospect of using such materials to experi-
mentally test the predictions of holography and to postdict new holographic
phenomena seen in experiments.

In the next section we make precise our proposal for a strongly coupled
material, ScHb, by deriving its electron and phonon spectra, and most im-
portantly its effective coupling strength αScHb. We find a non-perturbatively
large value αScHb ' 3, implying the AdS/CFT correspondence can be used
to derive its transport properties. We focus on the ratio of shear viscosity
to entropy density η/s in section 5.2 where we use the AdS/CFT correspon-
dence to derive an estimate for η/s of the ScHb fluid. This estimate, when
substituted into the Reynolds number of the fluid, suggests that ScHb is
one of the first strongly-coupled materials proposed that can host a fully
turbulent flow.

5.1 Overview of ScHb and some of its essential
properties

The strongly coupled material we propose is based on a kagome lattice.
Kagome lattices are lattices that resemble a Jpanese basket-weaving pattern,
see Fig. 5.1a [153,154].
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(a) Example of a basket woven in
kagome-style. Source: http://www.

hfmphysics.com/2006/motif.html.

(b) Kagome lattice. The red, blue and
green points denote the occupied
points of the lattice, while e1, e2 are
a particular choice of the lattice basis
which spans the unit cell. Reprinted
from [155] with permission from APS.

The use of such a lattice is crucial, since its tri-hexagonal symmetry en-
sures the existence of a Dirac point in the spectrum [156]. However, whether
we have access to Dirac physics at low energies depends on how we popu-
late the kagome lattice points. To pin the Fermi level directly on the Dirac
point, we choose to construct the kagome lattice using CuO4 plaquettes.
This way, we can in principle generate the ScHb lattice, or in chemical no-
tation ScCu3(OH)6Cl2, see Fig. 5.2. Due the Scandium substitution, the
copper atoms tend to hybridize in terms of dx2−y2 orbitals. This has two im-
portant consequences: First, d-orbital hybridization implies that electrons
travelling in the lattice tend to spend more time around a single copper
atom than propagating around all of them. As a result the effective speed
of propagation of low-energy electrons, the Fermi velocity vF will tend to be
smaller than materials which hybridize in terms of less-correlated orbitals,
such as graphene and its p-orbitals. We find1

vScHb = 1.0 eV Å , vGr = 6.6 eV Å .2 (5.6)

The relatively small Fermi velocity implies that ScHb is expected to be more
strongly coupled than graphene, following the discussion around Eq. (5.3).
Second, the Scandium substitution allows us to reach the Dirac point at a
filling fraction n = 4/3. This implies that ScHb is expected to be robust
against magnetic instabilities and the dissolution of the Dirac point [157–
159]. Therefore, the effective Dirac-fermion low-energy description of ScHb
necessary for relativistic hydrodynamics is expected to be present for typical
experimental conditions.

1To see exactly how the Fermi velocities were calculated, consult the supplemental
of [2]. See also Fig. 5.2.

2For reference, the speed of light in the vacuum is c = 2× 103eV Å.
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Chapter 5. Turbulent hydrodynamics in kagome metals

This does not mean, however, that ScHb will necessarily exhibit hydro-
dynamic behaviour. Recall that for hydrodynamics to be a valid description
of the system, we have to ensure that electron-electron interactions dominate
over electron-phonon and electron-impurity interactions. Ab initio calcula-
tions of the electron-phonon coupling show that electron-phonon interactions
are negligible for temperatures T < Tph = 80K (see Fig. 5.2 and the supple-
mental of [2]). Unfortunately we cannot know whether impurity effects are
negligible, since the amount of impurities present in ScHb depends strongly
on the precise chemical process used for its synthesis. We can, however,
say that the complete Scandium substitution necessary to construct ScHb
implies that disorder due to vacant lattice sites will not appear in ScHb.
It is implicitly assumed in what follows that a clean enough sample can be
constructed.

Figure 5.2: a Crystal structure of ScHb as seen from the top. The kagome
lattice formed by the CuO4 plaquettes is drawn in orange. b
Band structure of the low-energy manifold of Sc-Herbertsmithite
along the high-symmetry directions of the Brillouin zone [160].
The Fermi velocity of ScHb is calculated via linear fit of the
band structure around the Dirac point (dashed black lines). For
comparison, we have also plotted with solid gray lines the cor-
responding linear fit for graphene. c Phonon spectrum for ScHb
(gray lines) and relative distribution of the electron-phonon cou-
pling strengths (blue circles). The horizontal dashed line denotes
the temperature Tph above which phonons with a sizeable cou-
pling are thermally activated.

Finally let us focus on the main point of constructing ScHb, its coupling
strength. To calculate αeff for ScHb, we use Eq. (5.3). To do so, we also
need to compute εm. We calculate εm directly from the calculated band
structure shown in Fig. 5.2 and find εm = (5 ± 0.5)ε0. Putting everything
together, we find that the effective fine structure constant for ScHb is

αScHb = 2.9± 0.3 . (5.7)
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For reference, let us compare αScHb with the current state of the art in
electronic hydrodynamics, hBN-encapsulated graphene. The fine structure
constant for graphene, within the same calculation scheme used to calculate
αScHb, is [2]

αGr = 0.5 − 1.0 . (5.8)

We observe that even if we take a representative value for αGr closer to
the upper limit of our computational error, say αGr = 0.9, we may still use
perturbation theory to describe the properties of graphene. On the other
hand, it is clear that ScHb is a strongly coupled material, whose transport
properties perturbation theory fails to capture even in principle. On the
contrary, holography is perfectly suited to describe the transport properties
of strongly coupled materials, such as ScHb. We apply holography to ScHb
in the next section, with a particular focus on η/s.

5.2 Holographic estimate for η/s and turbulence

Here we derive an estimate for the η/s ratio of ScHb and check whether it
leads to a large enough Re for turbulence to set in. To derive this estimate
we resort to the use of holography, since perturbation theory breaks down
at αScHb. We cannot, however, use holography with a pure Einstein-Hilbert
term, since the dual QFTs described by this term exhibit an infinite struc-
ture constant as we saw in 2. While αScHb is certainly non-perturbatively
large is nowhere near infinity. So the model we are going to use must involve
higher-derivative corrections as discussed in section 2.4.1. For 2 + 1 dimen-
sional charged fluids, this higher-derivative model exists in 3+1 dimensional
bulk dimensions and consists of the Einstein-Maxwell Lagrangian as well as
all higher derivative contractions of the Riemann and Maxwell tensors. For
our purposes, however, the Maxwell tensor can be neglected without loss of
generality. This is due to the fact that we are interested in η/s around the
Dirac point, where the charge density of the system is approximately zero.
In this limit, any corrections to η/s from the chemical potential vanish and
only the pure gravity terms remain relevant [161]. This follows from recall-
ing that η/s is calculated via the graviton propagator in the background
geometry; if the total charge of the background is vanishingly small, the
corrections to η/s due to the charge are negligible. Then, the bulk action
can be written schematically as

Sbulk =
1

16πGN

∫
d4x
√
−g
[
R− 2Λ + c2R

2 + c3R
3 + c4R

4
]
, (5.9)

where Rn contains all possible contractions of n Riemann tensors and cn are

coefficients of order O(λ(1−n)/2) ' O(α
(1−n)/2
eff ).
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Chapter 5. Turbulent hydrodynamics in kagome metals

Then we may use Sbulk to derive η/s as a function of the effective fine
structure. This task can be simplified considerably using the following ob-
servations. First, recall that since the action Sbulk is considered to be a
truncated higher-derivative expansion, it is subject to an emergent symme-
try transformation akin to a frame change. That is, we can deform the
metric by higher derivative terms without changing the underlying physics.
We exploit this symmetry to bring the quadratic terms in Sbulk to the Gauss-
Bonnet form

R2 → R2
µνρσ − 4R2

µν +R2 . (5.10)

This deformation is advantageous since the Gauss-Bonnet form is a topo-
logical invariant of 3 + 1 dimensional metric manifolds. As a result, the
quadratic terms in Sbulk do not contribute the graviton equations of mo-
tion, nor its propagator3. Hence, as shown explicitly in [97], the corrections
to η/s due to the R2 terms vanish and we may set c2 to zero. The resulting
action is then simply

Sbulk =
1

16πGN

∫
d4x
√
−g
[
R− 2Λ + c3R

3 + c4R
4
]
. (5.11)

However, our action can be simplified even further. In particular, we may
set c3 to zero as well. There are two justifications for this: First, recall that
if we can assume that our action stems from a well-defined Type IIB string-
theoretical action, then c3 = 0 by default [102]. Second, we choose to work
only at tree level in the gravitational action, in order to focus only only on
coupling, and not 1/N , corrections. This means that we can use the results
of [100] discussed in section 2.4.1. According to [100] we can set c3 = 0, if
we are to avoid acausal graviton-graviton scattering and closed time-loops
in the bulk4. Thus we are left with a significantly simpler action than the
original one, containing only quartic corrections of the Riemann tensor

Sbulk =
1

16πGN

∫
d4x
√
−g
[
R− 2Λ + c4R

4
]
. (5.12)

Then using Eq. (5.12) to calculate η/s we find [103,104]

η/s ' ~
4πkB

(
1 +

C
α

3/2
eff

)
. (5.13)

The phenomenological constant C depends on all the coefficients, denoted
schematically as c4, appearing in front of the quartic terms in Sbulk and

3A bulk topological invariant cannot contribute to a boundary action.
4Another way to avoid these pathologies is to include particles with spin larger than

2, as discussed in [100]. String theory with its infinite number of higher spin states, is an
example of such a non-pathologic theory.
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therefore is model dependent. To fix C we need to calculate it from a top-
down holographic model. However, constructing such a model and matching
it directly to ScHb is highly non-trivial if not impossible. So we will fol-
low a phenomenological approach and vary C over four order of magnitude,
C ∈ [5 × 10−4, 5]. This range was motivated from a well-known top-down
holographic construction for N = 4 SYM [103]. Within this model, the
range of C corresponds to varying the rank of the SYM gauge group from
N = 103 to N = 2.

The resulting estimate for η/s is shown in Fig. 5.3, as the blue band
generated by varying C. We observe in this figure that the estimate for ScHb
has a far smaller variance than the estimate for graphene. This provides
more credence to our assertion that holographic methods are reliable for
extracting the transport properties of materials at finite but large coupling
strengths. We should also mention that the holographic estimate for η/s
for graphene matches with experimental data from direct observations of
hydrodynamic flow in graphene around charge neutrality [23], unlike the
weak-coupling result drawn as black fading curve in Fig. 5.3.

Graphene

Sc-Hb
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Figure 5.3: The blue band gives the ratio η/s of Eq. (5.13) for C ∈ [5 ×
10−4, 5]. The black fading line in the figure is the weakcoupling
prediction for η/s of Eq. (5.4). The red dashed line corresponds
to the KSS bound, η/s = ~/4πkB. The blue vertical bars give
the estimates of η/s for graphene at αGr = 0.9 and for ScHb at
αScHb = 2.9. Figure reprinted from [2].

With the estimates for η/s at hand, we can now derive the Reynolds
number for a hydrodynamic flow in ScHb. We choose to present our estimate
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for ReScHb in terms of ReGr for reasons which will be clear presently. So,
assuming that the typical velocity scales for ScHb and graphene are equal,
UScHb = UGr, we find

ReScHb = (63− 156)ReGr . (5.14)

The ratio of Reynolds number in Eq. (5.14) should be considered as a lower
bound. This is because we expect from Fig. 4.2d UScHb > UGr for the
same input parameters. Thus we observe that the Reynolds number for
ScHb is at least two orders magnitude larger than the Reynolds number in
graphene. This enhancement is enough to reach the turbulent flow regime as
we now explain. To observe fully developed turbulence, a Reynolds number
larger than 1000 is necessary [162]. Several works for graphene and elec-
tron hydrodynamics in general, have shown that typical Reynolds numbers
for electronic flows range from Re = O(10) − O(100) [1, 151, 163]. Hence,
ReScHb = O(1000)−O(10000) which is certainly large enough for fully de-
veloped turbulence to be directly observable in ScHb flows.

Let us summarize the findings of this chapter. First, we gave a proposal
for a strongly coupled electronic system with a relativistic spectrum, ScHb.
We confirmed that this material is indeed strongly coupled by deriving its
coupling strength to be αScHb ' 2.9. We argued that this material, when
synthesized, is expected to host electron hydrodynamic flows, since insta-
bilities of the Dirac cone and large electron-phonon interactions are absent
at T < 80 K. We also argued that ScHb is a material where holographic
methods can be applied, by calculating a ratio η/s which is close to what is
expected in experiments. We also used this ratio to find a large Reynolds
number for ScHb, which gives us for the first time access to the turbulent
flow regime.

The discussion of both chapters 4 and 5 assumed parity is not broken. In
the following chapter we discuss parity-breaking effects by considering how
the Hall viscosity ηH alters hydrodynamic transport following [3].
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Hydrodynamic Hall effect in Fermi liquids

In this chapter, we explore the effect of the Hall viscosity ηH to hydrody-
namic transport of weakly-coupled Fermi liquids in a channel, first presented
in [3] by my collaborators and myself. In particular, we are interested in the
strain induced on the fluid due to the Hall viscosity. This strain, as seen in
the introduction and section 3.4, acts similarly to the Lorentz force in the
sense that its normal to the fluid motion. We expect then that the Hall-
viscous strain applied on a fluid within a channel will generate an analog of
the usual Hall effect by pushing electrons to the sides of the sample, see Fig.
6.1.

We choose to break the parity-invariance of our system by introducing
an external constant magnetic field B1. This has the effect of generating
a non-trivial Hall viscosity ηH, as well as altering the shear viscosity η of
the fluid. In particular, in this chapter we focus on weakly-coupled Fermi
liquids for which [164,165]

η =
η0

1 + (2lee/rc)2
, ηH =

2sgn(B)η0lee/rc
1 + (2lee/rc)2

. (6.1)

In Eq. (6.1), lee is the electron-electron interaction length and rc = meffvF/|eB|
is the cyclotron radius of electron with effective mass meff and charge e. The
shear viscosity at B = 0 is also fixed in terms of the thermodynamics of the
Fermi liquid to

η0 =
1

4
meffρ0vFlee , (6.2)

with ρ0 the equilibrium number density of the fluid.

Within this setup, we can write down the precise form of the total Hall
force Ftot after fixing our velocity profile ansatz. We choose to use the
velocity profile of chapter 4, that is

1Recall B is a pseudoscalar and not a pseudovector in 2 + 1d.
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Figure 6.1: Channel setup of interest in this chapter. An electron fluid is
forced to flow within a channel due to an external electric field
Ex. In addition, an external magnetic field B generates Ftot, the
sum of the Lorentz and Hall-viscous forces, on the fluid pushing
it towards the boundaries. This generates a finite chemical po-
tential difference ∆µ across the channel, shown as the slanted
black line. The velocity profile is drawn in solid red, while the
dashed red line denotes the profile’s extrapolation which defines
the slip length ls. Figure reprinted from [3] with permission from
APS.

vµ = γ(vF, βx(y), 0), γ =
[
1−

(
β2
x/vF

)2]−1/2
. (6.3)

For the purposes of our investigation, let us also focus on the non-relativistic
limit. This allows us to focus on the effects due to ηH alone without the
extra contributions from relativistic effects2. Then γ ' 1 and the velocity
profile reads

vµ = (vF, vx(y), 0) . (6.4)

With the above velocity profile, we find that the transverse force Ftot acting
on the fluid has the form

Ftot = eBρvx − ηH∂
2
yvx ≡ FB + FηH . (6.5)

Crucially, the Lorentz force FB has the opposite sign as the Hall-viscous
force FηH . This implies a diminution of the classical Hall effect in metals
within the regime of applicability of hydrodynamics, compared to typical,
ballistic transport in metals.

2Furthermore, weakly-coupled fluids are expected to be non-relativistic for typical ex-
periments, cf. discussion around Fig. 4.3.
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In the rest of this chapter, we derive the quantitative consequences of
the above discussion. To do so, we first set up our hEOM in section 6.1 for
the channel setup presented in Fig. 6.1. Then, in section 6.2 we solve the
hEOM for the velocity profile vx, derive the total Hall voltage ∆Vtot and
explore their dependence on external parameters.

6.1 Hydrodynamic equations of motion

To derive the hEOM, we start with our hydrodynamic expansion of the
energy-momentum and current presented in Eq.s (3.103), (3.104). In these
equations, several transport and thermodynamic parameters appear, e.g.
η, ηH, ζ, χ̃T . Of these, we take into account only η and ηH. The reason we
can do so varies from parameter to parameter. For example, ζ is irrelevant
because our ansatz for the velocity profile satisfies ∂µv

µ = 0 by default.
On the other hand, the quantum critical conductivity is generated only
through the counter-propagation of electrons and holes around the charge
neutrality point. As a result it becomes irrelevant in the Fermi liquid regime.
Unfortunately, we have no sufficient explanation why σ̃, χ̃T , χ̃E , χω or χB
can be neglected. So this assumption must be justified aposteriori through
experiments.

With these assumptions in mind, the most general form of the hEOM is
the following

(∂t + v · ∇) ρ = −ρ∇ · v, (6.6)

ρ (∂t + v · ∇) v = −∇P + η∇2v + ηH∇2(v × ez)

+ eρ(E + v ×B)− ρvFmeff

limp
v , (6.7)

with v = (vx, vy), limp the electron-impurity scattering length and ez is
normal to the plane defined by the channel3.

Next let us restrict ourselves to the flow ansatz of Eq. (6.4) and choose
E = −Exex, B = −Bez

4. Then the charge conservation equation (6.6)
is satisfied by default and the momentum conservation equations simplify
down to

η∂2
yvx = eρEx +

ρmeffvF

limp
vx , (6.8)

∂yP = eρBvx − ηH∂
2
yvx . (6.9)

3We assume the system is embedded in 3D space to accommodate experimentalists in
our setup.

4There signs of E, B were chosen in order to present the hEOM in what we consider
a more aesthetically pleasing form. Our results hold for any choice of signs.
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To proceed, we recall that the independent degrees of freedom of hydro-
dynamics are the velocity profile, the chemical potential µ and the temper-
ature T . Hence, we can re-express ∂yP as

∂yP =
∂P

∂µ
∂yµ+

∂P

∂T
∂yT = ρ∂yµ+ s∂yT . (6.10)

Expressing P in terms of µ and T , we see that the fluid is described by
a total of three degrees of freedom, while we have only two equations of
motion that can fix them. To proceed then, we must either extend our
ansatz and solve a more complicated set of equations or examine whether
we can fix one of the degrees of freedom apriori. We choose the second
route and examine whether µ or T can be fixed to its respective equilibrium
value. To this effect, we focus on the only term appearing in the hEOM
which involves derivatives of µ and T , ∂yP and Eq. (6.10). Equation (6.10)
can be re-written as

∂yP = ρµ0∂y(µ/µ0) + sT0∂y(T/T0) , (6.11)

where µ0 and T0 are the equilibrium chemical potential and temperature
respectively. We introduced µ0 and T0 since we expect

µ

µ0
' T

T0
. (6.12)

As a result the relative strength of the chemical potential and temperature
terms in ∂yP is quantified by the dimensionless ratio

U =
ρµ0

sT0
. (6.13)

If U � 1 we may neglect the temperature contribution, and vice-versa for
U � 1. Substituting in the parameters for a typical Fermi liquid, such
as GaAs, i.e. µ0 = O(50 meV) and T = O(1 K) we find U ' 1016. Thus,
temperature gradient effects are certainly irrelevant for our analysis and ∂yP
becomes

∂yP = ρ∂yµ . (6.14)

Then our hEOM become a closed system of equations for vx and µ

η∂2
yvx = eρEx +

ρmeffvF

limp
vx , (6.15)

ρ∂yµ = eρBvx − ηH∂
2
yvx . (6.16)

However, further examination of the equations of motion reveals a further
issue. We observe that the number density ρ being a function of µ, introduces
a non-linear coupling between µ and the electric field. This is an issue
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6.1. Hydrodynamic equations of motion

because experiments on electron hydrodynamics typically operate within
the linear-response regime. Otherwise the backreaction of the electric field,
for example to the energy of the fluid, must be taken into account. To evade
this problem, we expand µ in terms of a fluctuation field around equilibrium.
Therefore,

µ ' µ0 + δµ , |δµ| � |µ0| . (6.17)

Up to first order in δµ our hEOM, then read

η∂2
yvx =

(
ρ0 +

∂ρ0

∂µ
δµ

)
eEx +

ρ0vFmeff

limp
vx, (6.18)

ρ0∂yδµ =
(
eBρ0 − ηH∂

2
y

)
vx . (6.19)

Note that we have dropped a term ∝ Exvx from the expanded hEOM. This
is because a direct solution of the equations including this term led again
to non-linear effects in Ex. The same can be said for the term ∝ δµEx
in Eq. (6.17). However, we have chosen to leave this term in the hEOM,
because it allows some insight into the non-linear corrections due to Ex
without too much extra effort.

Given now the EOM for δµ, we can define the voltage drop across the
channel in terms of the velocity profile. In particular, we write

∆Vtot = [δµ(0)− δµ(W )] /e ≡ ∆VB + ∆VηH . (6.20)

where due to Eq. (6.19)

∆VB = −B
∫ W

0
dy vx , ∆VηH =

ηH
eρ0

∂yvx

∣∣∣∣y=W

y=0

. (6.21)

With ∆VB the classical Hall or Lorentz voltage5 and ∆VηH , what we call,
the Hall viscous voltage.

The definitions of the voltages are quite formal, but still hold a useful
lesson in them. We observe that if the fluid moves fast enough, the Lorentz
voltage will dominate over the Hall viscous voltage. This is simply because
the area under the velocity profile curve grows faster than the area of its
curvature, which in the absence of impurities is simply a constant. However,
we may imagine a value of the input parameters where the Hall viscous
voltage dominates. We shall derive these values in the next section and
argue they are within experimental reach and the domain of validity of
hydrodynamics.

To complete our discussion of our hEOM, we need to supplement them
with appropriate boundary conditions. We choose

5To verify that ∆VB is the classical Hall voltage, one can simply set vx = constant.
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vx(y = −ls) = 0 = vx(y = W + ls) , δµ(y = 0) = −δµ(y = W ) . (6.22)

The boundary conditions for vx generalize our no-slip boundary conditions
used in section 4, via the introduction of the slip length ls. A non-zero value
of ls implies that the channel boundaries are not completely diffusive and
allow the fluid to slip on them with a finite drift velocity. Note that these
are not the typical no-slip boundary conditions used in the literature [166],
but they can be mapped to the typical ones one-to-one (cf. the supplemental
of [3]). Finally, the boundary condition for δµ tries to capture our intuition
behind the classical Hall effect. That is we expect the charge accumulated to
one boundary to have come from the other. However, note that the boundary
condition for δµ can be neglected all together, since only differences in δµ
are measurable6.

Let us then consider in the following section, the solution of the hEOM
(6.18), (6.19) with the boundary conditions (6.22).

6.2 Velocity profile and Hall response

In this section, we solve analytically and numerically the hEOM (6.18),
(6.19) for vx and δµ. We then use the solutions to calculate the voltages
∆VB, ∆VηH and ∆Vtot. The dependence of these voltages on all of the
external parameters, such as the density, temperature and the slip length,
constitutes the novel research output of the work of my collaborators and
myself in [3].

To begin with our derivation of the voltages, we note that the system
of equations we plan to solve is linear and therefore can be solved directly
via Fourier transform. However, the solution is not that illuminating with
regards to the physical effects induced by ηH. For this reason, we will solve
the hEOM analytically only in the limit of “small” and “large” magnetic
fields, while we consider the numerical solution of the hEOM for intermediate
magnetic fields. The magnitude of the magnetic field is considered small in
the limit of rc � lG, where lG is the Gurzhi length defined below Eq. (4.14).
For a material such as GaAs, the condition rc � lG translates to B �
100 mT.

Solution for weak magnetic fields: To carry out the analysis of the hEOM
for weak magnetic fields, we introduce a power counting parameter ε and
assume

B → εB , ηH → εηH , δµ→ εδµ , vx = v0
x + εv1

x . (6.23)

6The absolute value of µ0 will always overshadow the absolute value of δµ.
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Using ε as a perturbation parameter results in the following equations up to
first order in ε

η∂2
yv

0
x −

meffvFρ0

limp
v0
x = eρ0Ex , (6.24)

ρ0∂yδµ =
(
eBρ0 − ηH∂

2
y

)
v0
x , (6.25)

η∂2
yv

1
x −

meffvFρ0

limp
v1
x = e

∂ρ0

∂µ
δµEx . (6.26)

The solution to the perturbative equations above, can be solved sequen-
tially. First we solve Eq. (6.24) for v0

x, which is nothing other than the
Poiseuille flow in the presence of impurities of section cf. Eq. (4.14). Then,
we use v0

X as a source of the chemical potential δµ. Finally, we use δµ as a
source for v1

x and solve Eq. (6.26).
Let us focus for the moment to the solution of Eq. (6.25) for δµ, which

is the main new result of our approach. The solution reads

δµ(y) =
elimpEx
meffvF

[
lG

(
meffvFηH

ηlimp
− eB

)
(A1 sinh[y/lG] +A2 cosh[y/lG])

− eBy

]
+ Γ , (6.27)

with

A1 = − cosh

(
W

2lG

)
sech

(
2ls +W

2lG

)
,

A2 = sinh

(
W

2lG

)
sech

(
2ls +W

2lG

)
,

Γ = −elimpEx
2meffvF

[
lG

(
meffvFηH

ηlimp
− eB

)
(A1 sinh[W/lG] +A2 cosh[W/lG] + 1)

− eBW

]
. (6.28)

Equation Eq. (6.27) defines the total Hall voltage across the channel bound-
aries via

∆Vtot = [δµ(0)− δµ(W )] /e . (6.29)

To make clear the novel physical effects hidden within ∆Vtot, we will expand
it in powers of W/lG � 17. We call this the clean channel limit, since for

7For a typical Fermi liquid we find lG ' 6µm, while typical channels range from
W = 1− 5µm.
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W � lG the shear effects dominate over the impurity ones. The resulting
expression ∆Vtot accurate up to third order in W/lG are

∆Vtot ≡ ∆VB + ∆VηH , (6.30)

with

∆VηH =
ηHEx
η

[
W − 1

12l2G

(
W 3 + 6lsW

2 + 6l2sW
)]

, (6.31)

∆VB = −sgn(B)Ex
3rclee

(
W 3 + 6lsW

2 + 6l2sW
)
. (6.32)

Equation (6.30) shows that the Hall viscosity generates a non-trivial
Hall-viscous voltage. The question is, however, whether we can measure
it in experiment. The simplest way to measure ∆VηH would be to restrict
ourselves in a regime where |∆VηH | � |∆VB|. To see whether this is possible,
we calculate the ratio of the Hall-viscous to the Lorentz voltage using Eq.s
(6.31),(6.32) and (6.1). We find

|∆VηH |
|∆VB|

=
6l2ee

W 2 + lsW + l2s
+ 2

lee

limp
' 6l2ee

W 2 + lsW + l2s
. (6.33)

We dropped the impurity term in (6.33) because lee � limp due to hydrody-
namics. From the remaining term, we observe that an increasing slip-length
will always decrease the ratio of the two voltages. This is physically intu-
itive, since a non-zero ls allows a non-vanishing velocity near the boundaries,
thus increasing the area under vx and in turn ∆VB (see Eq. (6.21)). Hence
to observe a dominant Hall-viscous voltage, we must engineer the channel
boundaries to diffuse momentum as efficiently as possible, such that ls = 0.
Methods (theoretical ones) on how to achieve this are described in [167].
Let us then restrict ourselves to the case of no-slip boundary conditions and
write the ratio of voltages as

|∆VηH |
|∆VB|

= 6

(
lee

W

)2

� 6 , (6.34)

where the last inequality follows from the assumption of hydrodynamics.
Therefore, the Hall-viscous voltage ∆VηH can at most be of the same order
of magnitude as the Lorentz one ∆VB. To see this more clearly, we have
plotted in Fig. 6.2 the absolute value of the two voltages varying all lengths
scales appearing in Eq. (6.33). In this figure, we clearly see that ∆VηH can
become larger than ∆VB, but not large enough for ∆VB be negligible within
the regime of applicability of hydrodynamics.
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Figure 6.2: Absolute value of the ratio of the Hall-viscous ∆VηH to the
Lorentz voltage ∆VB, with varying ls,W, lee and limp. For the pa-
rameters not varied in each figure, we choose ls = 0.5µm, W =
3µm, ρ0 = 9.1 × 1011cm−2, T = 1.4K, η0 = 1.7 × 10−16Js/m2

and limp = 40µm. The dashed lines correspond to |∆VηH | =
|∆VB|. Reprinted from [3] with permission from APS.

To summarize, we have found so far that the ratio of the viscous to
Lorentz voltage increases with increasing lee, while it decreases with in-
creasing ls, W and limp. These parameters can be chosen such that the
Hall-viscous voltage is larger than the Lorentz one, but not negligible. Mov-
ing forward, let us also examine whether the density and temperature de-
pendence of the voltages can be used to distinguish between the two contri-
butions.

The temperature and density dependence of the Hall-viscous and Lorentz
voltages is built into the shear and Hall viscosities, as well as the length
scales lee and lG. However, since only the ratio ηH/η = 2lee/rc appears in our
expressions for the voltages, we only need to specify lee and lG as functions of
ρ0 and T . The electron-electron scattering length is given by [164,168–170]

lee =
6vF~3

F 2
πmeffk

2
BT

2
ln2

(
~2πρ0

meffkBT

)
ρ0 , (6.35)

with Fπ a kinematic factor characterizing electron-electron collisions. To
specify lG as well, we need to know how limp depends on ρ0 and T . We
assume the impurities in the system are pointlike with scattering strength
ν0, density nimp and impurity-electron scattering length [171]
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limp =
vF~3

ρ0meffν
2
0nimp

. (6.36)

Using limp, lee and Eq. (6.2) for the shear viscosity, we find for lG

l2G '
1

4
limplee =

3

2nimp

v2
F~3 ln

(
~2πρ0

meffkBT

)
Fπmeffν0kBT

2

. (6.37)

The approximate equality in Eq. (6.37) stems from our approximating η ' η0

for weak magnetic fields.
Putting everything together, we find for the density and temperature

dependence of the voltages (6.31), (6.32)

∆VηH =
13~3ExW |e|B

F 2
πm

2
eff

ln2

(
~2πρ0

meffkBT

)
ρ0

(kBT )2

−
|e|Bm2

effν
2
0Ex

(
W 3 + 6lsW

2 + l3s
)

3π~5
nimp , (6.38)

∆VB =
|e|BExF 2

πmeff

36π~5

(kBT )2

ρ2
0 ln2

(
~2πρ0

meffkBT

) . (6.39)

Equations (6.38) and (6.39) show that the Hall-viscous contribution to the
total Hall voltage may be enhanced relative to the Lorentz one, by working
at large densities and smaller temperatures. More importantly, (6.38) and
(6.39) provide us with precise scaling laws with respect to temperature and
density which can be used in the simple experiment setup of Fig. 6.1 to
distinguish between the two contributions.

To conclude the discussion of our analytic results, let us discuss the
local values of the voltage as we cross the channel. These local values are of
interest since recent experiments have been able to measure them directly
[22,23]. We find for the voltages as a function of the transverse co-ordinate
y

∆VηH =
ηH

η
Ex

[
y − 1

12l2G
[6ls(ls +W ) + y(3W − 2y)] y

]
, (6.40)

∆VB = −sgn(B)Ex
3rclee

[6ls(ls +W ) + y(3W − 2y)] y . (6.41)

There are two important features of Eq.s (6.40) and (6.41). The first one is
the directly observable curvature κ of the Hall-field Ey = −∂y∆Vtot. For a
large limp it has the form
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κ = −4Ex
lee

[
sgn(B)

rc
+

ηH
ηlimp

]
. (6.42)

Unfortunately, κ is dominated by the 1/rc contribution, due to the hydro-
dynamic assumption lee/limp � 1, and hence κ is not immediately useful
for observing Hall-viscous transport. However, the value of the Hall field
at the boundaries is immediately useful since it depends strongly on the
Hall-viscosity,

Ey(0) = Ex

[
2ls(ls +W )

sgn(B)rclee
−
(

1− 2ls(ls +W )

limplee

)
ηH
η

]
ls→0
= −ηH

η
Ex . (6.43)

Clearly a Hall-field measurement near the boundaries of a highly diffusive
channel, allows a direct measurement of ηH (in units of η = 1).8

Numerical analysis. We have seen analytically, the Hall-viscous voltage
can be at most the same order of magnitude as the Lorentz voltage. This
can seem disheartening for observing Hall-viscous transport, however, the
two-voltages being equal leads to a distinctive imprint of hydrodynamics
to the Hall effect. That is the vanishing of the total Hall voltage ∆Vtot at
B = Bc 6= 0. This feature is not captured by our analytic calculations, so a
fully numerical solution of the hEOM is imperative. We plot this solution
for the velocity profile at various values of the magnetic field in Fig. 6.3.
The important features of the velocity profiles plotted in 6.3 are the follow-
ing: As we increase the magnetic field strength i) the flow becomes faster, ii)
the flow profile becomes flatter. This implies, due to (6.21), that the Hall-
viscous voltage will be the principal part of the total Hall-voltage for small
magnetic fields, while the Lorentz voltage will dominate for larger ones. As
a consequence, there exists a critical magnetic field strength B = Bc 6= 0
where we crossover from |∆VηH | > |∆VB| to |∆VηH | < |∆VB|. Exactly at
B = Bc the total Hall voltage must vanish, because of the opposite sign
of the two contributions. We confirm this intuition by plotting in Fig. 6.4
the voltages for GaAs as a function of the magnetic field and with varying
ls. We observe that the critical magnetic field appears to be of order 10mT
and its precise value can be shifted by varying the sample’s length scales.
For example, a larger ls will push Bc to smaller values. This is due to the
dependence of the voltage ratio on the sample’s length scales, cf. Eq. (6.33)
and Fig. 6.2.

We conclude the discussion of our work [3] by summarizing our results.
We examined the modifications to classical Hall transport in a channel, due
to hydrodynamics. In particular, we found that the classical Hall voltage

8Note that such a boundary measurement is not that easy to perform. The reason
is that present measurement techniques depend on induced currents and voltages on the
sample and probe. These can become discontinuous as the voltage probe approaches the
boundaries of the samples, and hence can bury the signal inside the surrounding noise.
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Figure 6.3: Velocity profile as a function of the transverse channel co-
ordinate for various magnetic field strengths, B ∈ [0, 0.6]T. The
input parameters are ρ0 = 9.1 × 1011cm−2, T = 1.4K, η0 =
1.7 × 10−16Js/m2 and limp = 40µm. Figure reprinted from [3]
with permission from APS.

gains an additional contribution due to the Hall viscosity and becomes non-
linear in the magnetic field strength. We have for the first time derived the
dependence of the Hall-viscous voltage to all external parameters and found
that it increases with increasing density, lee and decreasing temperature,
while it decreases for increasing ls,W and limp. We also presented precise
scaling laws for the temperature and density of the total Hall voltage and
shown how the Hall-field at the boundaries is directly related to the Hall
viscosity. Finally, we have derived a smoking-gun feature of hydrodynamic
transport in a channel, the vanishing of the total Hall voltage at a non-
vanishing magnetic field strength of order 10mT. Clearly, our results show
how hydrodynamic behaviour can make exotic even textbook examples of
transport such as the classical Hall effect and provide a multitude of ways
for identifying and quantifying this exotic behaviour.
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voltages in GaAs as a function of the magnetic field B and ls =
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W = 3µm, ρ0 = 9.1 × 1011cm−2, η0 = 1.7 × 10−16Js/m2 and
limp = 40µm. The critical magnetic field, Bc = O(10mT), is
defined by the bounce of ∆Vtot = 0. The Hall-viscous contri-
bution dominates for B < Bc. Figure reprinted from [3] with
permission from APS
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Chapter 7

Spinning-fluid hydrodynamics

In the present chapter, we present our construction of the hydrostatics of
a fluid whose thermal state includes a conserved orbital and spin angular
momentum. To begin, we discuss the intricacies with defining the thermal
state of a charged rotating relativistic fluid in thermal equilibrium and re-
count some of its thermodynamic properties in section 7.1. Based on this
discussion, we present in the same section two possible ways for construct-
ing the hydrostatic effective action for a spinning fluid. Finally, in section
7.2 we derive the hydrostatic effective action and constitutive relations of a
spinning fluid up to first order in the derivative expansion. We also comment
on the novel spin-transport effects arising at second order in the derivative
expansion.

Note: The paper [172] discussing spin hydrodynamics appeared while
we were working on the spin-fluid derivative expansion. Some of the results
appearing in said paper overlap with the results presented in the following.

7.1 Spinning fluid in thermal (quasi) equilibrium

In the present section we derive and discuss some of the properties of a
charged spinning fluid in thermal equilibrium.

As remarked in chapter 3, the thermal equilibrium state of a system is
defined in terms of the conserved charges of the system and their conjugate
thermodynamic variables entering the Boltzmann distribution. In our case,
the conserved charges are the energy-momentum, Pµ, the electromagnetic
charge, Q, and the total angular momentum J µν1. Thus we define the state
of a spinning fluid in global thermal equilibrium as

ρG = exp [−βµPµ − ζQ− ωµνJ µν ] , (7.1)

1Recall that the angular momentum is represented by an anti-symmetric tensor in
special relativity [72].
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where G stands for global, βµ is the thermal vector, and ζ, ωµν are the charge
and spin chemical potential over temperature of the system respectively. We
proceed as in chapter 3 and decompose the conserved charges in terms of
their respective tensor densities as

Pµ =

∫
Σ
dΣν T

µν ,

Q =

∫
Σ
dΣµJ

µ, (7.2)

J µν =

∫
Σ
dΣρ [xµT ρν − xνT ρµ + Sρµν ] .

In the above equations, Σ is a spatial surface with volume element dΣµ, and
Tµν , Jµ are the energy-momentum tensor and U(1) current respectively.
More importantly, the angular momentum density has been decomposed
into two parts: The first, proportional to Tµν , corresponds to the fluid’s or-
bital angular momentum density, while the second, Sρµν , to its spin-angular
momentum. Note that Sρµν inherits an anti-symmetry under µ ↔ ν from
the anti-symmetry of J µν .

In terms of the tensor densities, the density matrix now becomes

ρL = exp

[
−
∫

Σ
dΣa T

aµbµ + ζJa +
1

2
ωµνS

aµν

]
, (7.3)

where L stands for local and bµ = βµ − ωµνxν . Let us compare the density
matrix of Eq. (7.3) with that of Eq. (7.1). In Eq. (7.1), the conserved charges
are clearly, Pµ, Q and J µν . However, in Eq. (7.3) the conserved quantities
seem to be Pµ, Q and Sρµν . Clearly, this is physically impossible unless
the orbital angular momentum vanishes identically. However, we have not
made any such assumption. So how can Eq. (7.3) be equivalent to Eq. (7.1)?
The answer is the following: The difference between ρG and ρL is that the
momentum conserved under ρG is different from the momentum conserved
in ρL. Namely, ρG conserves the global momentum of the system in the
direction of the thermal vector βµ, while the momentum in ρL is, at most,
only locally conserved in the direction of the thermo-orbital vector bµ.

Let us explain why the momentum in ρL is only locally conserved: Note
that because of Lorentz invariance we can rotate βµ to align with the time
direction, βµ ∝ δtµ∂t. Then, the Boltzmann distribution takes its usual

form ρG ∝ e−βE with β = |βµ|, E the inverse temperature and energy of
the fluid respectively. We can also try to align bµ with the time direction.
Note, however, that bµ is not just a random vector in spacetime. In fact,
bµ is the vector generated by βµ after a local rotation with the “angular
velocity” matrix ωµν (cf. chapter 8 of [71]2). Hence for a general ωµν , bµ

2In [71] the authors work with the rotation group, but their approach generalizes
directly to the Lorentz group.
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defines a non-inertial frame of reference and so lies outside of any orbit
of the global Lorentz group. It does, however, lie in the orbit of a local
Lorentz transformation. So if we gauge Lorentz invariance, i.e. if we make
diffeomorphism invariance a symmetry of the fluid, we can identify a non-
inertial frame with an inertial one in the presence of a gravitational field
and define the conserved momentum of the system. That is, we can deform
the metric of the system from the Minkowski one and define the conserved
momentum in terms of bµ.

Unfortunately, this is again not in general possible for a rotating fluid.
In order for bµ to play the role of the direction of conserved momentum,
it must also be a timelike Killing vector of the metric. Being a timelike
Killing vector, bµ defines a foliation of spacetime and allows us to apply
the formalism of chapter 3 by splitting the spacetime volume element into
a temporal and spatial part (as in e.g. Eq. (3.7)). In general, however, bµ
cannot define a smooth foliation of spacetime in terms of spatial surfaces.
The condition for such a foliation to exist is the vanishing of Cartan’s second
structure equation

b ∧ db = b ∧ ω = 0, (7.4)

where b = bµdx
µ, ω = ωµνdx

µ ∧ dxν , d = dxµ∂µ and ∧ the anti-symmetric
product between forms. Physically we must impose Eq. (7.4) on bµ, because
if this condition fails to hold it is possible for observers in spacetime to time-
travel via regular space-travel on a particular hypersurface, see Fig.7.1c.
This is problematic since it implies that an extended body, such as a fluid,
can exist simultaneously in several different moments in time3. Clearly,
Eq. (7.4) is satisfied trivially when angular momentum is not conserved
because ωµν = 0 ( see Fig. 7.1a). Another, non-trivial, solution is a “pure
boost” in the plane defined by bµ and, say, the x-direction, with ωµν = b[µδ

x
ν]

(see Fig. 7.1b)4.
Despite these solutions, it is expected that no solution of Eq. (7.4) exist

for a general spin chemical potential ωµν . The reason is that bµ ceases to be
timelike for large enough values of the spatial components of ω. To see this,
consider a purely spatial ωµν given by

ω = Ωdx ∧ dx , (7.5)

with “angular frequency” Ω. In this case, bµ becomes spacelike for |x| >
rΩ ≡ |β|/|Ω|. The existence of rΩ means that the co-ordinate system at-
tached to bµ contains a horizon. Namely, rΩ defines a spacetime region
similar to the ergosphere of a rotating black hole. This is a region of space-
time, where worldlines change from timelike to spacelike. More importantly,

3Two events in spacetime are simultaneous if they happen on the same spatial hyper-
surface.

4In this case, (b ∧ ω)µνρ ∝ b[µbνδxν] = 0.
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Figure 7.1: Hypersurfaces of simultaneity for 2 + 1 dimensional observers
defined by a) a stationary observer with bµ = βµ parallel to the
t-axis. In particular, the hypersurfaces Σt1 , Σt2 are defined by
t = t1, t = t2 respectively. In b), the hypersurfaces of simultane-
ity are defined through an observer boosted in the x-direction
with respect to observer a). The tl co-ordinate is parallel to bµ,
related to βµ via the Lorentz boost ωµν = b[µδ

x
ν], and xl is the

boosted x co-ordinate. Similarly to a), Σl1 , Σl2 are defined by
tl = l1, tl = l2 respectively. In c) we sketch an example of an
observer whose bµ vector, parallel to the T -axis, does not satisfy
Eq. (7.4). In this case, the planes of simultaneity ΣT1 and ΣT2

intersect at least at one common point p. Any object at p, then,
exists at both time T = T1 and T = T2.

a fluid within the ergosphere can appear static to observers outside the er-
gosphere only if it moves faster than the speed of light. Therefore, if the
fluid lies within the ergosphere, bµ cannot define a foliation with which the
momentum of the fluid can be considered conserved or even well-defined.

On a more general note, the existence of a well-defined timelike thermo-
orbital vector bµ has been studied in the past, as an attempt to extend the
Unruh effect [173–175] to rotationally accelerating systems. In particular,
it has been found that a timelike Killing vector cannot be defined for all
values of the acceleration and angular rotation frequency of the observer
moving parallel to bµ [176]. This means that there is in general no single
timelike Killing vector we can use to define a thermal state with zero orbital
angular momentum, but non-zero spin angular momentum. However, it has
been suggested that a family of timelike Killing vectors rotating at different
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frequencies (as seen by an inertial observer) can in principle be used to
circumvent this issue [177].

So what is the relevance of this discussion to writing down spinning-
fluid hydrodynamics? It shows us that we can use two different methods
for constructing the effective action of spinning hydrodynamics: One where
the total angular momentum is conserved and one where spin angular mo-
mentum is conserved. We refer to these cases as the metric and vielbein
approaches for reasons that become clear below.

Note: The orbital angular momentum appears in a conservation law
in both the metric and vielbein approach (see Eq. (7.14) below). How-
ever, this is not obvious directly from the thermal density matrix of the
vielbein approach, because the orbital angular momentum is hidden inside
the energy-momentum of the system. To see this, consider for example the
Hamiltonian of a rotating observer Hr. It can be expressed as

Hr = H + ωµν (xµP ν − Pµxν) , (7.6)

with H, Pµ the Hamiltonian, momentum of the inertial observer.

Metric approach: First we consider the metric approach to spin-
hydrodynamics. In this approach, we consider as conserved quantities the
energy-momentum, charge and total angular momentum of the system. To
enforce the conservation of Tµν and Jµ we introduce the corresponding
gauge fields, the metric gµν and the U(1) gauge field Aµ respectively. We
must also introduce one additional tensor field to enforce the conservation
of the total angular momentum of the system, call it Γρµν . If we assume
Γρµν is completely independent from gµν , then the angular momentum Jµν
would be completely independent from the energy-momentum Pµ. This is
clearly wrong and must be corrected. To do so, we can either add additional
Lagrange multiplier fields in the effective action, or impose additional con-
straints directly on Γρµν . The second approach was considered in the absence
of spin-angular momentum in [111]. The authors of [111] have shown that
Γρµν is completely fixed in terms of the metric. In particular, Γρµν must take
the form of the Christoffel connection

Γρµν → Γ̊ρµν =
1

2
gρa (∂µgνa + ∂νgµa − ∂agµν) . (7.7)

In the absence of spin angular momentum and when Γρµν is given by the
Christoffel connection, we can redefine the energy-momentum such that the
orbital angular momentum tensor is identically conserved. More precisely,
instead of the canonical energy-momentum tensor Tµν , we can work with
the symmetric Belinfante energy-momentum tensor TµνB [111,178]. Working
with the Belinfante energy-momentum tensor means that ωµν can be set
to zero without loss of generality, since angular momentum conservation is
always satisfied by construction. As a result, the thermal state of the fluid
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Chapter 7. Spinning-fluid hydrodynamics

is defined only through the fluid’s energy-momentum and charge or equiva-
lently the fluid’s thermal vector βµ and chemical potential. It follows from
this discussion, that spin-angular momentum conservation is encoded by a
metric independent, non-Christoffel part to Γρµν . That is, we can decompose
Γρµν as

Γρµν = Γ̊ρµν +Kρ
µν . (7.8)

The tensor Kρ
µν is the so-called con-torsion tensor and is anti-symmetric

with respect to µ ↔ ν 5. With the inclusion of Kρ
µν into our setup, we

can now derive the constitutive relations for Tµν , Jµ and Sµνρ by writing
down the most general diffeomorphism and gauge invariant functional W =
W [gµν , Aµ,K

ρ
µν ] and using Eq. (3.13). The chemical potentials necessary for

this derivation are defined in terms of gµν , Aµ and Kρ
µν via Eq. (3.11) or

more precisely,

Lnµgµν ≡ βν , LnµAµ = −ζ = µ/T , LnρKµνρ = −ωµν ≡ µSµν/T , (7.9)

with L =
√
−β2 the length of the compactified time direction of gµν , parallel

to nµ, and µSµν the spin chemical potential.
We wish to remark that Kρ

µν , apart from a Lagrange multiplier, also has
a geometric interpretation. Namely, the con-torsion tensor turns Γρµν into a
torsionfull affine connection. More precisely, we can express the contorsion
tensor in terms of the torsion tensor T ρµν as

Kµνρ =
1

2
(Tµνρ + Tνρµ − Tρµν) . (7.10)

The non-trivial torsion tensor turns the metric geometry of our spacetime
into an Einstein-Cartan geometry [180, 181]. Geometrically, a non-trivial
torsion tensor alters the relative angle between hypersurfaces (spacelike or
timelike) defined by a non-inertial observer moving in spacetime, as in Fig.
7.1c [182]. In fact, the condition (7.4) can be written in terms of the torsion
tensor as

bµT
µ
κλ∆κ

b,ν∆λ
b,ρ = 0 , (7.11)

with ∆µ
b,ν the projector in a direction normal to bµ, i.e. ∆µ

b,νb
ν = 0. Phys-

ically, the torsion tensor is to the spin tensor, what the metric is to the
energy-momentum tensor. In particular, in a dynamical theory of torsion
the spin tensor acts as the source of torsion in the same way that Tµν acts
as a source to gµν . We discuss the importance of this observation within the
context of the gauge/gravity duality in chapter 8.

5Note that one can also choose a general asymmetric tensor in the place of Kρ
µν .

However, this asymmetric tensor leads to further conserved charges not considered here.
See [179] and chapter 8 for more details.
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7.1. Spinning fluid in thermal (quasi) equilibrium

Vielbein approach: The starting point for the vielbein approach is
the density matrix ρL given by Eq. (7.3). We can bring ρL into an effective
action form (recall (3.8)) by specifying equilibrium in terms of a timelike
vector nµ parallel to βµ. More precisely, we define

gµν = γµν + nµnν , nµ = −N∂µt ,
(7.12)

ds2 = −N2dt2 + γijdx
idxj , N =

√
−β2 ,

with γij the metric on the hypersurface Σ. Given gµν , we have then for ρL

ρ = exp

[
−β−1

∫
M
dDx
√
g naTµa bµ + ζnaJa +

1

2
naωµνS

µν
a

]
. (7.13)

At this point in chapter 3, we introduced external sources coupling to the
conserved charges. We know that these sources for Jµ and Sµνρ are Aµ and
Γµνρ respectively. We can, however, no longer choose the metric as the source
for Tµν , since in general we cannot take nµ to be parallel to bµ. Therefore,
we need to introduce a new field that will source Tµν . To derive this source
field, we can use the Noether procedure. That is, we can introduce a two-
tensor field eaµ and assume it transforms under the symmetries which lead
to the conservation of energy-momentum, charge and angular momentum

eaµ → e
′a
µ = eaµ + δeaµ.

Then we fix δeaµ such that it enforces the conservation laws. To be more
precise, the conservation laws for for a spinning fluid take the form

∂µT
µ
a = F aµJµ , ∂µJ

µ = 0 , ∂ρS
ρ
µν = −T[µν] . (7.14)

These transformation laws stem from local translation invariance, U(1) gauge
invariance and local Lorentz invariance. Since Tµν appears in the energy-
momentum and angular-momentum conservation equations, we see that eaµ
must transform both under local translations as well as local Lorentz rota-
tions, but be inert under U(1) gauge transformations. With some hindsight
involved, it is quite simple to derive the appropriate transformation laws.
Namely, we have

eaµ → eaµ + Lξeaµ , eaµ → eaµ + Ωa
b (x)ebµ. (7.15)

where ξ is an infinitesimal diffeomorphism and Ωa
b (x) an anti-symmetric

matrix parametrizing an infinitesimal local Lorentz transformation. The
transformation rules (7.15) provide eaµ with a geometric interpretation. In
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particular, eaµ is what in differential geometry is referred to as the vielbein
field. The inclusion of eaµ into our formulation, generically turns the space-
time into a torsionfull metric spacetime. More precisely, the field strength
of eaµ provides us with the torsion tensor as

T aµν = ∇[µe
a
ν] = ∂[µe

a
ν] +

(
Γρµν − Γρνµ

)
eaρ . (7.16)

Furthermore, eaµ can be considered an isomorphism between the spacetime
tangent space and the Minkowski spacetime tangent space. In this sense eaµ
provides us with the local mapping, suggested by [177], of the non-inertial
co-ordinate system, based on bµ, with an inertial one, thus allowing us to
define the conserved momentum in the direction of bµ

6. This isomorphism
between the inertial and non-inertial systems, also allows us to define the
metric of the spacetime by pulling back the Minkowski tangent space metric
to the spacetime

gµν = ηabe
a
µe
b
ν . (7.17)

It is also important to note that in this approach, the connection Γaµb is
a spacetime tangent space vector, but transforms as a connection under a
local Lorentz transformation Lac as

Γaµb → LacΓ
c
µd(L

−1)db + Lacd(L−1)cb. (7.18)

Note that the transformation for the connection in the vielbein approach is
different than the transformation of the connection Γρµν in the metric ap-
proach. In particular, the connection in the metric approach transforms as
a connection under spacetime diffeomorphisms and not under Minkowski
spacetime Lorentz transformations. However, the two connections are re-
lated to each other via the vielbein postulate [67]7

∇̃µeaν = ∂µe
a
ν + Γaµbe

b
ν − Γρµνe

a
ρ = 0 .8 (7.19)

With the inclusion of eaµ into our set of fields, we can now define the
effective action for spinning fluids as a diffeomorphism, U(1) gauge and
local Lorentz transformation invariant functional W = W [eaµ, Aµ,Γ

a
µb]. The

remaining detail to be fixed before we can use W , is the choice of thermal
state as in (7.9). We choose

βae
a
µ ≡ bµ , LnµAµ = −ζ =

µ

T
, LnρΓaρb = −ωab ≡

µS a
b

T
. (7.20)

6In the following, greek indices denote non-inertial co-ordinates and latin indices denote
inertial co-ordinates.

7Note that the vielbein postulate can also be thought of as a gauge transformation of
Γaµb with parameter eaµ. The gauge group in this case is the general linear group over the
real numbers [183].

8∇̃µ is the connection on both the Minkowski and spacetime tangent spaces.
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7.1. Spinning fluid in thermal (quasi) equilibrium

Again L =
√
−β2 is the length of the thermal circle.

Our definitions in Eq. (7.20) are the standard ones presented in Eq. (3.11).
Let us, however, give some comments regarding the condition βae

a
µ = bµ. We

claim that our frame choice for eaµ is a rule for translating thermodynamic
quantities, such as temperature, between the rotating observers moving with
the fluid (parallel to bµ) and non-rotating observers moving in time (parallel
to βµ). Or in other words, our frame choice for eaµ defines an Euler observer
that can measure the properties of the fluid at each point in spacetime even
though there is no globally defined Euler observer. For example consider
the temperature of the system βaβa

βaβa = (eaµb
µ)(eνabν) = eaµe

ν
ab
µbν = δνµb

µbν = bµbµ. (7.21)

In the above derivation we introduced the inverse frame eµa and used several
identities derivable directly from our frame choice for eaµ.

We have thus shown that the observer co-moving with the fluid measures
the same local temperature as the global observer. Similarly, both observers
measure the same values for the local charge and spin chemical potentials.
Moreover, because the mapping from bµ to βµ preserves their magnitudes,
we can identify ωµν with the transformation parameter for the local Lorentz
transformation connecting βµ to bµ. As a final remark, note that because
eaµ is not symmetric under exchange of its indices, the same holds for Tµa .
Contrast this with the energy momentum tensor Tµν in the metric approach
which is by construction symmetric under µ↔ ν.

This concludes our exposition of the routes we can take to construct the
effective action for spinning fluids. We have shown there are two equivalent
such roots, depending on if we choose the metric or the vielbein field as the
source of the energy-momentum tensor. These two approaches are equivalent
to each other via the mappings (7.17), (7.19), so one can choose either one
to construct the spinning fluid constitutive relations. We choose in the
following to use eaµ as the independent field and construct the effective action
W [eaµ, Aµ,Γ

a
µb]. The reason for this choice is the important role played by the

vielbein field in the description of gravitational and torsional anomalies9(see
e.g. [55,112]). We expect that modifying W to incorporate these anomalies
will be easier than modifying the equivalent functionalW = W [gµν , Aµ,Γ

ρ
µν ].

Before we proceed to writing down the effective action of a spinning fluid, let
us first use the Boltzmann distribution to derive some of the thermodynamic
properties of a spinning fluid, which will also appear in the constitutive
relations.

9Fermions couple directly to eaµ and not gµν .
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Chapter 7. Spinning-fluid hydrodynamics

Equilibrium entropy current and the Gibbs-Duhem relation
for spinning fluids

As an application of our general discussion on spinning-fluid thermodynam-
ics, we derive in this subsection the equilibrium entropy current and the
Gibbs-Duhem relation for fluids with angular momentum. To do that, we
define the normalized density matrix

ρN = exp [βµΩµ] exp

[
−βµPµ − ζQ−

1

2
ωµνJ µν

]
,

(7.22)

e−βµΩµ = Tr[ρG] = Tr

[
exp

[
−βµPµ − ζQ−

1

2
ωµνJ µν

]]
. (7.23)

Given ρN , the entropy of the system is defined as usual:

S = −Tr [ρN log ρN ] = βµΩµ + βµ〈Pµ〉+ ζ〈Q〉+
1

2
ωµν〈J µν〉. (7.24)

Now we may introduce a local entropy density for S and the grand potential
Ωµ as

S =

∫
Σ
dΣasa , Ωµ =

∫
Σ
dΣaΦµ

a . (7.25)

Using Eq. (7.25), we can then express the entropy current in terms of the
conserved tensor densities of the spinning fluid (7.2)

sa = βµΦµ
a + bµ〈Tµa 〉+ ζ〈Ja〉+

1

2
ωµν〈Sµνa 〉. (7.26)

If we assume that the partition function of the system, Z, is properly
normalized on-shell (os), then Φµ

a = 0 and we find for the on-shell entropy
current

sa
os
= bµ〈Tµa 〉+ ζ〈Ja〉+

1

2
ωµν〈Sµνa 〉. (7.27)

As expected, for ωµν = 0, Eq. (7.27) reduces to the well-known expressions
for the entropy current in charged relativistic fluids (see e.g. [9]).

Next, we derive the Gibbs-Duhem relation for spinning fluids. To do
that, assume βµ = β(1, 0, 0) and Ω0 = −PV , where P is the pressure and V
the volume of the system. With these assumptions we obtain from Eq. (7.24)

S = βPV + βE + ζN +
1

2
ωµν〈J µν〉.
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7.2. Equilibrium effective action

We then introduce the global densities for entropy, s = S/V , energy ε =
E/V , charge density ρ = N/V and angular momentum jµν = 〈J µν〉/V into
the equation and re-arrange it a bit to find

P + ε = sT − Tζρ− 1

2
Tωµνj

µν .

The last equation is quite familiar and can become even more so by introduc-
ing the number and spin chemical potentials ζT = −µ and ωµνT = −µSµν .
With the chemical potentials in place we finally arrive at the Gibbs-Duhem
relation for spinning fluids

ε+ P = sT + µρ+
1

2
µSµνj

µν . (7.28)

Again, Eq. (7.28) reduces to the familiar case of the charged fluid when
µSµν = 0.

7.2 Equilibrium effective action

In the present section, we shall write down the equilibrium or hydrostatic
effective action of spinning fluids and their corresponding constitutive rela-
tions to zeroth and first order in the derivative expansion. We shall also com-
ment on some of the transport effects generated from second order derivative
terms. Unless stated otherwise we work in a general spacetime dimension
D. We begin our construction at zeroth order in the derivative expansion,
i.e. the expansion in powers of K 10, in the following subsection.

Equilibrium effective action at O(K0)

As mentioned in the previous section, we construct the effective action using
as the sources the fields eaµ, Aµ and Γaµb. Consequently, the effective action is
constructed by the scalars we can build up out of the thermodynamic data
{bµ, µ, µSab}. In order to connect to the notation of chapter 3, we choose
to split bµ into two distinct zeroth order data. These are its magnitude
T = 1/

√
−b2 and its direction uµ = Tbµ. As the notation suggests, we

identify T with the temperature of the system and uµ with the fluid’s velocity
profile. Apart from {T, uµ, µ, µSab}, we have one additional zeroth order
datum we need to consider, the direction of time nµ. We have to consider nµ

because it defines the time-direction of our system, i.e. it defines equilibrium.
Finally, note that we are assuming µSab to be a zeroth order term.

Now we are ready to construct the zeroth order scalars for a spinning
fluid. In order to compactify our results, we choose to change the notation

10Recall the discussion around (3.28).
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a bit. Namely, we suppress index contractions and instead use quantum-
mechanical matrix notation, e.g. uµµSµνn

ν will be written as (u|µS |n). Simi-
larly, products of the spin chemical potential will be interpreted as a product
of matrices, e.g. (µS)2

µν = µSµaµ
Sa
ν . With this notation at hand, the zeroth

order scalars for general dimension D are

S0 =
{
T, µ/T, (u|n), (u+ n|(µS)k|u+ n), Tr

[
(µS)2k

]}
, (7.29)

where k is a positive integer and the trace is defined as usual, i.e as the
contraction of the free indices of (µS)2k. We note that the anti-symmetry
of µS implies that the diagonal components of (µS)k vanish if k is odd. For
example, (u|µS |u) = (n|µS |n) = 0 = (u|(µS)3|u), etc.

If we restrict ourselves to D = 2 + 1, we can construct additional zeroth
order scalars by using the Levi-Civita tensor εµνρ

11. The addition of the
Levi-Civita tensor adds two vectors and two anti-symmetric tensors into the
list of zeroth order data. These are

ε̃µ = εµνρu
νnρ, µ̃S,µ =

1

2
εµνρµSνρ, ũµν = εµνρu

ρ and ñµν = εµνρn
ρ. (7.30)

We can use the vectors in Eq. (7.30) to construct scalars as in Eq. (7.29).
However, not of all of these new scalars are independent of S0. For example

ε̃2 = 1− (u|n)2 , (µS |µS) = 2Tr
[
(µS)2

]
, ũ2 = Pu , ñ2 = Pn,

where Px is the projector in the direction of |x).
Using identities similar to the ones above, we end up with the extended

list of zeroth order scalars below

S0 =
{
T, µ/T, (u|n), (xi + µ̃S |

∏
i

(µS)kiXi|xj + µ̃S), Tr[
∏
i

(µS)kiXi],
}

(7.31)

where |xi) = |u), |n), |ε̃), Xi = 1, ũ, ñ, Pu, Pn, and ki are positive integers.

“Small” spin chemical potentials

Clearly, the list of zeroth order scalars S0 contains an infinite number of
terms. Therefore, the respective constitutive relations will also contain an
infinite number of terms. We doubt that such an expansion can ever be prac-
tically useful, unless certain simplifications are made. In this subsection, we

11For D > 3, one must use the corresponding Levi-Civita tensor.

112



7.2. Equilibrium effective action

explore what happens to the constitutive relations when the spin-chemical
potential is assumed to be small, i.e. O(K).

The small chemical potential regime, we believe, includes experimentally
interesting and available materials. For example, we know that graphene can
be in a regime where it exhibits spin transport (spin-Hall effect [184]) or in
a regime where it exhibit hydrodynamic behaviour. If we assume that the
transition from the spin transport regime to the hydrodynamic regime is
continuous, then there is necessarily a regime where graphene exhibits spin-
hydrodynamic transport with a small spin chemical potential. We assume
the last assertion to be true and leave its verification to experimentalists.

Furthermore, we can make a formal argument for why we may assume
the chemical potential to be O(K). Due to our frame choice (7.20), if µSµν
is O(K), then Γaµν is also O(K). Consequently, its field strength is O(K2).
The field strength of Γaµν is given by the Riemann tensor of our spacetime,
which is usually assumed second order in the derivative expansion. Hence,
the order counting of the Riemann tensor enforces µSµν = O(K).

With the above motivation, we proceed with the effective action con-
struction and assume that µS = O(K). The minimal list of scalars con-
taining µS splits into zeroth and first order scalars denoted by S0 and S1

respectively. These are

S0 = {T, µ/T, (u|n)} , S1 =
{

Tr
[
(ũ+ ñ)µS

]
, (u+ n+ ε̃|µS |u+ n+ ε̃)

}
.

(7.32)
Recall that µS is an anti-symmetric matrix and, hence, has vanishing diag-
onal elements in any basis.

A further simplification follows if we recall that |n) is defined in the
observer’s rest frame, while |u) is defined in the fluid’s frame. If we were
to define them both in the rest frame, then these two vectors are identical
because of our frame choice (7.20), see Fig. 7.2. Therefore, |u), |n) are not
independent and |ε̃) = 0.

Thus, we are finally led to the final list of scalars12

S0 = {T, µ/T} , S1 =
{

Tr
[
ũµS

]}
. (7.33)

Now we are ready to write down the effective action using S0 and S1. It
takes the form

W =

∫
d3x e

(
P (S0) + α(S0)Tr

[
ũµS

])
, (7.34)

with e the determinant of eaµ, and α(S0) an arbitrary function of S0.

If we compare W with the spinless fluid equilibrium effective action,
we see that P defines the pressure of the fluid and under variation gives

12Technically, S1 is an incomplete list, but we consider it here since it leads to an
equilibrium spin tensor.
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Figure 7.2: Mapping between the inertial(left) and non-inertial(right) rest
frames of 2 + 1 dimensional observers. On the left, the inertial
observer moves tangent to nµ, while they see the fluid move
in spacetime with velocity uµ. We transform the inertial co-
ordinate system to the non-inertial one shown on the right using
eaµ. Because of our fluid frame choice (7.20), na is parallel to ua.
In fact, since eaµ preserves their magnitude and both vectors have
unit magnitude, they are actually equal.

the usual ideal energy-momentum tensor and charge current for the system.
However, the extra term proportional to µS will alter all of these constitutive
relations. Let us first present the conserved current of the system. Following
the variation formulae presented in App. B, we find it is given by

Jµ ≡ 1

e

δW

δAµ

∣∣∣
Sources = 0

=

(
∂P

∂µ
+
∂α

∂µ
Tr
[
ũµS

])
uµ

=

(
ρ+

∂α

∂µ
εκλρuρµ

S
λκ

)
uµ, (7.35)

where ρ ≡ ∂P/∂µ is the usual charge density of the fluid in the absence of
spin. The extra term in Eq. (7.35), proportional to µS , generates an addi-
tional contribution to the charge density of the system. To see the physical
meaning of this extra term, let us assume that we can bring uµ to the form
uµ = (1, 0, 0). Then the extra term contributes to the charge density only if
µS12 6= 0. If µS12 6= 0, then the equilibrium density matrix of Eq. (7.13) tells us
that S12

0 6= 0. Running the logic backwards, if the fluid has a non-vanishing
and conserved spin in the out-of plane fluid direction, then the charge den-
sity of the fluid is altered when compared to a spinless fluid. Of course the
above discussion is only valid if ∂α/∂µ 6= 0. Unfortunately since both ρ
and ∂α/∂µ change the charge density of the system, it is not easy to dis-
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entangle the two just by calculating the current 1-point function.13 Finally,
note that the constitutive relation of the current implies that the pressure
of the fluid is altered in the presence of spin from P to P +αTr

[
ũµS

]
. This

expectation shall act as a consistency check below, when we write down the
energy-momentum tensor of the fluid.

We move on to the conserved spin tensor of the system which takes the
form

Sµνρ ≡
1

e

δW

δΓρµν

∣∣∣
Sources = 0

= αũµνuρ. (7.36)

Note that Sµνρ is anti-symmetric in its two upper indices, as expected from
the general arguments given in the previous sections. More importantly, Sµνρ
is O(K0) even though the effective action used for its derivation is O(K).
This implies that we can have a non-vanishing spin in the system even if
µS = 0. When µs = 0, the constitutive relations for the current and energy-
momentum tensor take the form of an ideal spinless fluid. Therefore, the
spin tensor decouples from the energy-momentum and charge transport of
the system. As a result, spin acts as an additional, independent mode of
transport one can use in technological applications of electron hydrodynam-
ics.

Finally, the constitutive relations (7.36) for Sµνρ allows us to elucidate
the physical meaning of α. To this end, assume that uµ can be brought to
the form uµ = (1, 0, 0) and consider the spin density tensor Sµν0 = αũµν . We
can dualize the spin density tensor to a spin density current via a contraction
with the Levi-Civita tensor. We find

S̃µ ≡
1

2
εµνρS

νρ
0 =

1

2
αεµνρũ

νρ = αuµ. (7.37)

The dual S̃µ is the spin current density, in the sense that its integral over
a spatial hypersurface gives the spin of the fluid. Hence, Eq. (7.37) shows
that α, in analogy to ρ, is the spin density of the system. Moreover, we now
have an easy way to calculate α fix completely the effective action (7.34):
Calculate the 1-point function of the spin current for a microscopic theory
and read of α as a function of T and µ. Note that when α and ρ are constant,
then charge conservation implies spin-current conservation. Therefore, the
left-hand side of angular momentum conservation (7.14) vanishes identically.
In turn, this means the anti-symmetric part of the energy momentum tensor
vanishes identically at this order in the derivative expansion. This can be
also be gleaned directly from Eq. (7.14) without any computation. Accord-
ing to Eq. (7.14), the anti-symmetric part of Tµa is O(KSµνρ ). Since Sµνρ is

13It is interesting to understand whether higher-point functions could allow for disam-
biguating between the two contributions. We will not pursue this problem in the present
thesis.
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O(K0), the anti-symmetric part of Tµa is at least O(K) and hence vanishes
identically at O(K0). This is another consistency check for the constitutive
relation for Tµa derived below.

Finally, let us write down the constitutive relations for the energy-
momentum tensor Tµa . To do that we need to derive the variation of the
determinant of eaµ, e. For this derivation, we will use the formula relating
eaµ and the spacetime metric

gµν = ηabe
a
µe
b
ν ⇒ e =

√
g, (7.38)

where g is the metric determinant. Taking the variation of the second equal-
ity we find

δe =
1

2

√
ggµνδgµν =

1

2
egµν

(
ηabδe

a
µe
b
ν + ηabe

a
µδe

b
ν

)
= eeµaδe

a
µ. (7.39)

The remaining variations are similar to those found in App. B. We find then
for the energy-momentum tensor

Tµa = −1

e

δW

δeaµ

∣∣∣
Sources =0

= −T ∂p
∂T

uµna + p eµa . (7.40)

The term proportional to eµa gives the pressure p of the fluid. We see that p
is indeed altered by the spin chemical potential from P to p = P+αTr

[
ũµS

]
as anticipated.

To recap the constitutive relations for an ideal spinning relativistic fluid
are

Jµ = ρuµ , Sµνρ = αũµνuρ , Tµa = (ε+ p)uµna + peµa , (7.41)

with

p = P + αTr
[
ũµS

]
, ρ =

∂p

∂µ
, ε+ p = −T ∂p

∂T
= Ts+ µρ+

1

2
αũµνµSµν ,

(7.42)
the thermodynamic pressure, charge and energy density of the fluid respec-
tively. To arrive at the final equality in Eq. (7.42), we used

∂p

∂T
=

(
∂p

∂T

)
µ,µS

+

(
∂p

∂µ/T

)
T,µS

∂(µ/T )

∂T
+

(
∂p

∂µSκλ/T

)
T,µ

∂(µSκλ/T )

∂T
,

(7.43)
and the standard definitions of the derivatives of the pressure in the grand
canonical ensemble [110].

We can also express α as a derivative of p, viz.
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α =
∂p

∂µSµν
ũµν . (7.44)

This last formula implies that the spin tensor density of the fluid is ρµνS =
αũµν , meaning we can write for the constitutive relations

Jµ = ρuµ , Sµνρ = ρµνS uρ , Tµa = (ε+ p)uµna + peµa , (7.45)

In their final form, (7.45), the constitutive relations atO(K0) are as expected
those of a perfect spinning fluid – also called a Weyssenhof fluid (see e.g.
[185]). Additional comments regarding the constitutive relations (7.41) were
given below Eq.s (7.35), (7.36) and (7.40).

We wish to make one final remark on the construction of this section: We
started with a zeroth order effective action with an infinite number of terms.
Then, to make calculations useful, we restricted to a finite subset of those
arguments. This had as a consequence the addition of first order terms in
the effective action. However, the resulting constitutive relations for the spin
tensor still turned out to be zeroth order and, thus, describing an equilibrium
configuration. Therefore, we see that the order of the effective action and
the order of the constitutive relations do not match. This phenomenon of
“order transmutation” seems puzzling to us, since it seems to break down the
fundamental assumptions of effective field theory; Higher order corrections
do not change the leading order contribution to physical observables. In a
sense, we could say that the addition of spin induces a UV/IR mixing of the
degrees of freedom.

One naive way out of this apparent breakdown of EFT is the following:
The inclusion of angular momentum introduces into our setup an additional
length scale call it l, e.g. the distance from the axis of rotation of a fluid-
particle dipole. If we restrict ourselves to distances K � l, then we wont
be able to measure any angular momentum since the fluid particles have
merged14. As we start separating the fluid particles, we can resolve the
angular momentum of the system and we can check whether it is conserved
or not, see Fig. 7.3. In other words, the EFT expansion we have written
down is not an expansion in K alone, but contains corrections in l/K. A self-
consistent microscopic derivation of spin-hydrodynamics should be carried
out to check the validity of this assertion15.

14There is no center of rotation.
15On a completely unrelated note, a similar expansion in terms of two scales appears

in neural network effective theories [186]. In this case the two scales are the depth and
width of the neural network.
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Figure 7.3: Channel (black borders) hosting a hydrodynamic flow (blue
filling). Pictured as dashed circles are two pairs of fluid-particles,
i.e. regions of the fluid of size K with constant temperature,
chemical potentials and velocity, rotating around each other.
The length l is twice the distance between each fluid particle
and the center of rotation. When l � K (left fluid-particle
pair), the rotation is observable and the fluid has a non-trivial
angular momentum. When l � K (right fluid-particle pair) the
fluid-particles merge partially and their angular momentum with
respect to the center of rotation is ill-defined.

Equilibrium effective action at O(K)

In this section we calculate the effective action and the constitutive relations
at first order in derivatives. Part of the answer is obvious from symmetry
arguments even in the non-dissipative case. For example, the current Jµ will
be just a generalization of the usual current in parity-breaking 2 + 1 hydro-
dynamics [9]. The generalization consists of considering the spin chemical
potential as an anti-symmetric first order tensor on the same footing as the
Maxwell tensor Fµν . That is, we can define “spin electromagnetic” fields
and include them into the current in the same way as the usual electromag-
netic fields. One aspect of this recipe can already be seen from the results of
the previous section, where the pressure gets altered by a term proportional
to the spatial components of µS . This is similar to what happens with the
magnetic field in 2 + 1 dimensions(see Eq.s (1.2a) and (1.3a) of [9]). Fol-
lowing the above, we can just write down the constitutive relation for the
dissipative current of a spinning fluid at first order in derivatives. It reads(in
matrix notation for simplicity

|J) = ρ|u) + σ [F |u)− TPu|∂µ/T )] + σ̃ũ [F |u)− TPu|∂µ/T )]

+ χ̃E ũF |u) +
(
F → µS

)
. (7.46)

Notation reminder: |x) = xµ, ∀ vector xµ, while A|x) and AB denote
the usual multiplication between matrices and vectors/matrices respectively.
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Also ũ = uµν = εµνρuρ and Pu is the projector in the direction of uµ. Be-
sides F, ũ and Pu, all other factors multiplying the vectors in Eq. (7.46) are
scalar functions of µ and T , i.e. transport coefficients. Note that Eq. (7.46)
is written in the Landau frame, where ρ = ∂P/∂µ and not equal to ∂p/∂µ.
Also note that not all of the vector data appear in the charged fluid constitu-
tive relation. The reason is that angular momentum conservation provides
a vector constraint that we can use to reduce the number of vector data by
one, as in section 3.3.1. Unfortunately the current |J) is valid only off-shell,
because we cannot know how the second law of thermodynamics affects the
transport coefficients in |J) without constructing the fully dissipative Tµa
and Sµνρ .

Let us, however, forget the above speculative arguments and proceed
with the equilibrium effective action expansion. To this order in the expan-
sion, we get an additional vector to generate scalars, the partial derivative
∂µ. This means that all of the scalars in the previous section are now con-
sidered functions in spacetime. However, to remain in equilibrium we will
assume that these functions are constant in time. In covariant terms, we
will assume that all the scalars are Lie transported along uµ, Lu = 0.

At this order in the expansion, the scalars will be build out of

{T, µ, µSab, uµ, εµνρ, Fµν}

and their derivatives. If we focus on the first order scalars, then we can take
the building blocks for the scalars to be

{∂µT, ∂µµ, µSab, εµνρ, ∂µuν , Fµν} .

Using these data and Lu = 0, we construct the following list of scalars at
most O(K).

S =
{
T, µ,Tr

[
ũ(µS + F +∇u)

]}
, (7.47)

with ∇u = ∇µuν = ∂µuν − Γρνµuρ. Using the above list, we can construct
the effective action for a spinning fluid at O(K). We find

W =

∫
d3xe

(
P (S0) + Tr

[
ũ
(
α(S0)µS + β(S0)F + γ(S0)∇u

)])
, (7.48)

where S0 = {T, µ/T} and ∇ = ∇µ the covariant derivative. First things
first, the thermodynamic pressure density of the fluid is obviously given by

p = P + Tr
[
ũ
(
αµS + βF + γ∂u

)]
. (7.49)

This is the standard result found for parity-breaking fluids in [9] and Eq. (3.50),
but in a slightly different notation and with P → p = P + αTr

[
ũµS

]
. In
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particular β = α1/2, γ = α2/2. Therefore, the equilibrium U(1) current
and energy-momentum tensor for spinning fluids are given by (3.51) with
P → P +αTr

[
ũµS

]
. Despite the lack of new terms in the constitutive rela-

tions for Jµ and Tµa , our re-writing of the effective action in matrix notation,
suggests a particular interpretation of the terms proportional to F . More
precisely, the term proportional to F is a so-called topological BF term [187].
Therefore, its corresponding contribution to the current can be thought of
as the source of vortex flux.

We proceed now to the derivation of the spin-density tensor. It takes
the Weyssenhof fluid form with a modified spin density

Sµνρ = (α+ γ) ũµνuρ. (7.50)

We may think of γ as the spin density induced by the rotation of the velocity
profile of the fluid. However, since the spin density of the fluid can be
modified under a frame change, we can choose the spin tensor density to
take its perfect fluid form as in (7.45).

This concludes our discussion of spin-effective actions at O(K). We saw
that this case is not much different than the O(K0) one. Indeed, we found
once again the constitutive relations for a perfect spin fluid. We proceed
in the next section to discuss the corrections at O(K2) and provide some
simple examples showcasing their contribution to spin transport.

A glimpse at the equilibrium effective action at O(K2)

We have seen that the spin tensor does not contain any new physically non-
trivial terms at first order in the effective action expansion. We expect this
to change in the next order of the expansion. To see, let us Taylor expand
our effective action up to first order in the connection. We have

W = W [Γρµν = 0] +

∫
d3x

(
Γρµν

δW

δΓρµν

∣∣∣
Sources = 0

Γρµν +O(Γ2)

)
'W [0] +

∫
d3xe Sµνρ Γρµν ≡W [0] +W

(1)
Γ . (7.51)

In the second equality of Eq. (7.51), we used the definition of the spin tensor
in terms of a derivative of W (see e.g. Eq. (7.36)). We now expand the spin
tensor in K as

Sµνρ = Sµν(0)ρ + Sµν(1)ρ +O(K2), (7.52)

with Sµν(i)ρ being of ith order in K. We substitute Eq. (7.52) into W
(1)
Γ of

Eq. (7.51) to find

W '
∫
d3xe

(
Sµν(0)ρΓ

ρ
µν + Sµν(1)ρΓ

ρ
µν

)
. (7.53)
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Now recall that we assume Γρµν = O(K). This means that the first and
second term on the right hand side of Eq. (7.53) are O(K) and O(K2) re-
spectively. This implies that if we want to observe K effects in the spin
tensor, we must expand W to second order in K. Similarly, in order to see
O(Ki) we must expand W up to O(Ki+1). Therefore, the anti-symmetric
part of Tµa , which we argued is O(K) can be generated by a O(K2) effective
action.

The full analysis of the second order corrections, is beyond the scope of
this thesis. However, to conclude this chapter, we shall discuss one particular
second order term that contributes to spin transport. This term leads to
the so called Barnett effect in 3 + 1 dimensions and a variant of it in 2 + 1
dimensions. The Barnett effect for 3 + 1 dimensional spin hydrodynamics
was first derived using the AdS/CFT correspondence in [129]. We noticed,
however, that the same effect can be recovered from the following effective
action

S =

∫
d4x |e|(∇[µuν])∇[µuν]. (7.54)

To calculate the spin tensor from Eq. (7.54), we just expand S up to
first order in Γλµν . To calculate said expansion, we recall that ∇µuν =

∂µuν − Γλµνuλ and, hence, the action S of Eq. (7.54) is a polynomial in the
connection. Explicitly, we have

S =

∫
d4x|e|

[
(∂u)2 − 2(∂[µuν])uρΓ

ρ
[µν] +O(Γ2)

]
. (7.55)

The linear in Γ term in the action of Eq. (7.55) is by definition the first
derivative of S with respect to the connection, evaluated at Γ = 0 and gives
us the spin tensor Sµνρ . Let us focus on the completely anti-symmetric part
of Sµνρ . It takes the form

Sµνρ = −2u[µ∂νuρ]. (7.56)

Note that the anti-symmetrization is over all indices in Eq. (7.56). In 3 +
1 dimensions, we can dualize the spin-tensor to a spin current via S̃µ =
εµνρσS

νρσ. We find

S̃µ = −2εµνρσu
[ν∂ρuσ] = −2εµνρσu

ν∂ρuσ = −2ωµ, (7.57)

With ωµ the vorticity of the fluid. Note that the dualization works in reverse
as well and so we can write16

Sµνρ = εµνρσS̃σ = −2εµνρσωσ. (7.58)

16One can also check that Eq. (7.58) agrees with Eq. (7.56) by using the definition of
ωµ and the properties of the ε symbol under contractions with another ε symbol.

121



Chapter 7. Spinning-fluid hydrodynamics

Equation (7.58) shows that a spinning fluid can exhibit the Barnett effect
[61], namely it states that fluid rotation leads to the polarization of the spin
of the fluid in the direction parallel to ωµ. The Barnett effect can also be
generated in 2 + 1 dimensions by an action of the form [188]

S =

∫
d3x|e|µSµν∇[µuν] . (7.59)

Namely, the fully anti-symmetric part of the spin tensor derived from Eq. (7.59)
is given by

Sµνρ = −1

6
εµνρω , (7.60)

with ω = εµνρu
µ∂νuρ the vorticity of the fluid.

Clearly, the Barnett effect is a directly observable effect in spin hydrody-
namics. For example, one can measure the spin of the fluid by measuring the
induced magnetic field due to the fluid’s polarization. However, estimating
the magnitude of this effect requires us to know all the terms appearing in
the spin tensor and its backreaction to the magnetic field. This goes beyond
the scope of this thesis, but we discuss it in more detail in the following and
final chapter of the thesis.
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Chapter 8

Conclusions and Outlook

8.1 Summary of main results

In this thesis, we explored how transport behaviour in a solid is altered when
electrons propagate hydrodynamically within it. More precisely, chapters 4
and 5 focused on quantitative and qualitative changes in transport induced
by increasing the coupling strength of a material to non-perturbatively large
values. In particular, in chapter 4, the Poiseuille flow behaviour and resis-
tance of a strongly coupled fluid were derived and analyzed. Crucial to this
analysis was the use of the AdS/CFT correspondence, described in chapter
2, which allowed us to perform a fully non-perturbative calculation for the
thermodynamic variables of the fluid. Furthermore, the AdS/CFT corre-
spondence provided us with the single transport coefficient employed as a
parameter in our simulations, the ratio of shear viscosity to entropy density
η/s. Using these results, we solved for the first time the fully relativistic
equations for a viscous fluid moving in a channel under the influence of an
electric field. Through these flow solutions, we showed that strongly coupled
fluids exhibit the hydrodynamic part of the Gurzhi effect, first predicted in
weakly coupled materials. Importantly, the resistance of strongly coupled
materials was shown to be always smaller than the resistance of a weakly
coupled material at roughly equal input parameters. This showcases that
strongly coupled materials constitute efficient conductors. Moreover, we de-
rived analytic solutions for our channel flows and used them to derive the
analytic dependence of the resistance on η/s. Since η/s depends on the cou-
pling constant, α, of the fluid, our formulae can be used to experimentally
identify α through a simple resistance measurement. Finally, we estimated
the Reynolds number of our flows and showed that they stay laminar.

On the other hand, in chapter 5, we explored whether a turbulent flow
can be achieved in another electronic material. We saw that weakly coupled
materials cannot, in general, become turbulent. This, however, ceases to be
true for strongly coupled materials. In particular, we presented a precise
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proposal for a strongly-coupled material where this assertion can be tested.
More precisely, we proposed a Dirac material, ScHb, based on a kagome
lattice populated by copper-oxide plaquettes. These plaquettes hybridize in
terms of d -orbital because of the replacement of zinc with scandium in Hb.
As a result, the Sc substitution makes the material strongly coupled with a
fine structure constant α ' 3 and puts its Fermi level around charge neutral-
ity. This implies that low-energy excitations of ScHb are quantum critical
Dirac fermions, similar to graphene. Due to ScHb’s large coupling strength,
we cannot use perturbation theory to analyze its properties. Instead, we
used the AdS/CFT correspondence to understand ScHb’s transport prop-
erties and, in particular, η/s. We estimated η/s at finite coupling by using
a higher-derivative bulk theory of gravity. According to the GPKW dictio-
nary, these higher derivative corrections encode 1/α3/2 corrections to η/s.
The error of the resulting estimate is small when compared to the error of
a similar η/s estimate for the moderately coupled graphene. This suggests
higher derivative gravity is an accurate way to capture the essential proper-
ties of non-perturbative materials. Finally, we used the derived estimate for
ScHb’s η/s, to show that ScHb exhibits a Reynolds number far larger than
1000. Such a large value for the Reynolds number shows that ScHb is the
first proposed Dirac material that can exhibit a fully turbulent flow.

Furthermore, in chapter 6 we focused on a trademark of solid state trans-
port, the Hall effect in the presence of a non-quantizing external magnetic
field. In particular, we examined modifications of the Hall effect for Fermi
liquids in the hydrodynamic regime. We have shown that the hydrodynamic
Hall effect is vastly different than the classical Hall effect. Namely, the hy-
drodynamic Hall voltage is a highly non-linear function of the magnetic
field. More importantly, this non-linear dependence makes the Hall volt-
age a non-monotonic function of the magnetic field. This non-monotonicity
leads to a distinctly hydrodynamic in nature transport feature, a zero of the
Hall voltage at non-vanishing magnetic fields. In addition, we derived an-
alytic formulae for the hydrodynamic Hall voltage for small (∼ O(10mT))
values of the magnetic field. We have used these formulae to understand
the dependence of the Hall voltage and its corresponding Hall field on all
experimentally relevant parameters, such as the fluid’s temperature and den-
sity. These dependences along with the aforementioned features of the Hall
voltage allow for the explicit experimental verification of our theoretical pre-
dictions. We have also shown that there already exists partial experimental
confirmation of our results in [22].

Finally, in chapter 7 we took the first step at extending electron hydro-
dynamics to include a macroscopically-conserved spin and orbital angular
momentum density. In particular, we have given a general discussion of the
thermodynamics of a spinning fluid and showed they can be described in
terms of either an inertial or non-inertial co-ordinate system in spacetime.
These distinct descriptions suggest two different approaches of generating
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the effective action of spinning fluids, differing in the operator generating the
energy-momentum tensor. One approach uses the metric, while the other
the vielbein field as the source. We have chosen the second, vielbein, ap-
proach and constructed the effective action of the spinning fluid. We have
shown that interesting new features related to spin transport can appear at
order O(K2) or higher in the derivative expansion because angular momen-
tum introduces an additional length scale into the system. To conclude the
chapter, we presented two examples of spin transport effects, namely the
Barnett effect appearing in both 3+1 and 2+1 dimensional spinning fluids.

To conclude, let us summarize below our main results

[1] Poiseuille flow of strongly coupled fluids and the Gurzhi effect.

– We solved for the first time the fully relativistic hEOM of an
electron fluid forced by a constant external electric field to move
along an infinitely long wire.

– We presented the dependence of these solutions to all external
parameters, i.e. the electric field, the wire width, the fluid’s
chemical potential over temperature ratio, as well as the fluid’s
coupling strength. In particular, we showed that the maximum
speed of the flow is a monotonically increasing function of all of
these parameters.

– We derived the resistance of the fluid and showed that it takes
the form predicted by Gurzhi in the hydrodynamic regime, even
at non-perturbatively large coupling strengths. In addition, we
showed the resistance is a monotonically decreasing function of
the coupling strength.

– We analyzed the effects of impurities on the resistance of a fully
relativistic fluid. We showed that the Drude contribution to the
conductivity at typical impurity densities is of the same order of
magnitude as the contributions due to quantum critical transport.
Furthermore, we showed that viscous and impurity effects cannot
be disentangled as long as the fluid flow is hydrodynamic and not
ohmic.

– We showed that strongly coupled fluids can reach relativistic
speeds more easily than weakly coupled ones, but this does not
lead to the development of turbulence.

[2] Turbulent hydrodynamics in kagome metals.

– We proposed a novel strongly coupled kagome material, ScHb.
Apart from its strong coupling, α = 3, ScHb’s Fermi level is
pinned exactly at the Dirac point, thus giving us access to rela-
tivistic and quantum critical physics around charge neutrality.
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– We used the AdS/CFT correspondence and a higher-derivative
theory of gravity to derive ScHb’s shear viscosity to entropy den-
sity ratio at finite coupling.

– The derived estimate is close to the KSS bound for a large range
of the phenomenological parameter entering the gravity model.
This implies that the Reynolds number of ScHb takes on values
which allow us to reach for the first time the turbulent flow regime
in electron fluids.

[3] Hydrodynamic Hall effect in Fermi liquids.

– We solved both numerically and analytically the hEOM for a
parity-breaking electron fluid flowing in a wire under the com-
bined influence of constant external electric and magnetic fields.

– We derived the hydrodynamic Hall voltage for a large range of
non-quantizing magnetic fields and other externally set parame-
ters, i.e. temperature, density, electric field, wire width and slip
length.

– We showed that the hydrodynamic Hall voltage can be decom-
posed into two contributions of opposite sign stemming from the
Lorentz force and the Hall viscosity respectively. This sign differ-
ence leads to a zero of the Hall voltage at non-zero values of the
magnetic field. Moreover, we showed the two contributions have
different dependences on the external parameters, which can be
used to disentangle them in experiment.

– We also derived the Hall voltage as a function of the transverse co-
ordinate of the channel. Using this local Hall voltage we showed
that the corresponding Hall field in the channel depends strongly
on the Hall viscosity in the case of vanishing slip length.

[4] Spin-fluid hydrodynamics.

– We discussed the different approaches one can use to construct
spin-fluid hydrodynamics and their physical interpretation in terms
of inertial and non-inertial observers.

– We constructed the effective action for non-dissipative fluids up
to first order in the derivative expansion and showed it takes the
perfect spin (or Weyssenhof) fluid form.

– We showed that interesting spin transport phenomena appear at
second order in the derivative expansion through the construction
of the effective action leading to the Barnett effect.

Below, we present possible extensions of the research presented in this
thesis, as well as additional ideas for further research.
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8.2 Outlook to further research

To begin with, let us discuss possible extensions of the research presented in
this thesis. First, we note that all of our hydrodynamic simulations in chap-
ters 4 and 6 were performed in a channel geometry. The reason for this is the
high symmetry of this setup, as well as the ease of performing experiments
in channel geometries. However, this is not the unique geometry available
in experiments. For example, channels with a Hall-bar or a Corbino disk
geometry [189] can be created. Moreover, it is possible to glue together
channels to create sharp corners or constrictions the fluid has to navigate
past. All of these geometries have lower symmetry than our channel geom-
etry, which generically leads to flows more complicated than the Poiseuille
one. Using these geometries one can explore the effect of having both veloc-
ity components be non-trivial. This in turn will generically make the charge
conservation equation and, thus, charge transport non-trivial. Finally, the
geometries with sharp corners or constrictions are perfect for understanding
the effects of the shear viscosity on the fluid’s properties. This is because
the viscosity is the only coefficient in our setups that can provide the friction
necessary for the fluid to turn around a sharp corner. Therefore, a small
enough viscosity, or η/s, may lead to a detachment between the flow and
the channel boundary. But since a fluid by definition fills all of the volume
available to it, this channel-fluid vacuum will have to be filled in, leading to
the creation of turbulent wakes (see Fig. 8.1).

Figure 8.1: A familiar example of a turbulent wake generated by the in-
ability of the fluid to “stick” to the surface of an airplane wing.
Image reprinted from [142].

Apart from different channel geometries, a further possible extension of
our previous work is to consider different electronic fluids. For example,
the research presented in chapter 6 was performed in the Fermi liquid limit
µ� T . This assumption allowed us to neglect any temperature fluctuations
in the system, as these were suppressed compared to the chemical potential
fluctuations. However, the opposite limit µ� T is also of interest. Namely
for graphene, µ � T gives us access to the Dirac dynamics of electrons
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around charge neutrality. Apart from examining relativistic physics, taking
µ� T also implies that temperature fluctuations can no longer be neglected.
Therefore, besides the modified Hall response, we expect the generation of
a heat gradient in the channel. This is nothing more than the manifestation
of the inverse Nernst effect [190] in hydrodynamic systems. Given the large
qualitative differences between the hydrodynamic and classical Hall effect,
we expect similar enlightening differences between the hydrodynamic and
ballistic inverse Nernst effect. Research in this direction is currently under
way.

Finally, let us discuss possible extensions of the research on strongly cou-
pled materials presented in chapter 5. One avenue of further research comes
from the material science side of our work. Namely, we may ask whether
additional strongly coupled materials can be built based on kagome or other
lattices. The answer to this question is positive, as some of our collabora-
tors in [2] have already confirmed. Namely, in [191], the 2 + 1 dimensional
Cu-dicyanoanthracene (Cu-DCA), an organometallic system was presented.
In the same paper, the coupling strength of Cu-DCA was calculated and
found to be α ' 13.

Certainly, then, more strongly coupled materials exist and their dynam-
ics should be analyzed. As was argued in chapter 5, holography is an ex-
cellent way to achieve this. In particular, more research should be done on
the emergence of turbulence from the gravity side. Present research in this
direction has already reproduced some of the important features of turbu-
lence, such as the Kolmogorov scaling of the flow power-spectrum [192–194].
It is interesting, though, to understand the onset of turbulence by analyzing
the flow fluctuations making the fluid unstable directly though holography.

Jet quenching

One further extension of the work presented in this thesis includes jet
quenching. Jet quenching refers to the phenomenon of energy loss of a probe
particle traveling within a medium. It has been investigated at length in
the realm of high-energy physics, and more precisely for heavy ion collisions
at the LHC and RHIC (see [195] for a review). More precisely, moments
after the heavy ion collision, a quark-gluon plasma (QGP) is formed in ad-
dition to one or more secondary particle jets. These jets consist of highly
energetic particles trying to make their way out of the viscous QGP and
(hopefully) into a particle detector. Clearly, whether the particles make it
into the detector depends on the jet-plasma interaction, i.e. if the QCD
coupling constant is large enough, no particle will make it to the detector
and the jet has been quenched.

One important phenomenological parameter describing jet quenching is,
unsurprisingly, the jet quenching parameter q̂. Given a jet particle moving
through the QGP, q̂ measures how fast its momentum transverse to the QGP

128



8.2. Outlook to further research

is diffused in the medium. In particular, q̂ is phenomenologically defined as

q̂ =
〈p2
⊥〉√

2L−
, (8.1)

with p⊥ the momentum of the probe particle normal to the QGP and L− the
elapsed light-cone time the particle has been within the QGP. Complemen-
tary to the definition (8.1), there exists a definition of q̂ in terms of a Wilson
line of a quark-antiquark pair within the QGP(see [196] for a derivation)

W (C) = exp

[
− 1

4
√

2
q̂L−L2

]
. (8.2)

C is the parallelogram with sides L− and L. The length scale L is conju-
gate to the transverse momentum p⊥ and can be thought of as the quark-
antiquark distance in the transverse direction.

Both of the above formulae can be used to calculate the jet quenching
parameter in perturbation theory, as well as holography: In perturbation
theory, one can use kinetic theory and calculate the momentum lost within
the QGP [195]. In holography, one can do one of two things: First, introduce
a probe particle at the boundary. The particle, similar to holographic fields,
gets extended into the boundary in the form of a string with one endpoint
fixed on the boundary. One then can use the Nambu-Goto action for a
string moving in the bulk spacetime and show it satisfies Newton’s law in
the presence of a drag force [197] ṗ⊥ ∝ −p⊥. We can then solve Newton’s
equations and use (8.1) to find q̂. In a similar fashion, one can calculate the
Wilson loop by considering a string with both of its endpoints fixed on the
boundary [196]. The resulting expression for q̂ in super Yang-Mills (SYM)
theory is to leading order in λ is [196]1

q̂ =
π3/2Γ(3/4)

Γ(5/4)

√
λT 3 , (8.3)

with Γ(x) the gamma function.
We see that q̂ acts as a direct probe of the coupling constant of SYM.

For this reason, we want to extend the SYM calculations to the case of
electronic flows in channels, thus providing an additional measure of the
fine structure constant of a material, apart from the resistance mentioned
in chapter 4. We cannot perform the Wilson line calculation, since Wilson
lines in the AdS/CFT correspondence are not defined for abelian gauge
theories2. Therefore, we have to extend the drag-force calculation of [197]
to include particles charged only under a U(1) gauge theory and not the
full SU(N) group of QCD. One possible way to achieve this, is within the
AdS5× S5 gravity dual of SYM. In particular, one can introduce additional

1As far as we are aware, both methods lead to the same result.
2The rank of the gauge group N � 1 by assumption.
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D-branes into the bulk spacetime, whose excitations will be charged only
under a U(1) symmetry. Clearly, for the D-brane excitations to be dual to
particles, we must employ D1-branes. Furthermore in order to enforce the
U(1) symmetry, the D1 brane strings must not attach to the stack of N
D3-branes in the bulk. This suggests that the D1-brane must be localized
on the S5. If this construction is possible, then dimensional reduction down
to AdS5 will provide us with the effective electron-string action and, hence,
the starting point for the drag force calculation.

Spinning fluid hydrodynamics

A further extension of our work involves spinful hydrodynamics. Clearly,
in order to understand spin hydrodynamics we need the complete list of
constitutive relations for Tµν , Jµ and most importantly Sµνρ. There are
several ways of writing down this decomposition, presented in 3. We used
one of these approaches to write down the constitutive relations up to first
order in the derivative expansion. However, due to the reasons elaborated in
chapter 7, interesting spin transport effects start appearing at second order.
Therefore, the complete effective action to second order in the derivative
expansion must be constructed. This is a non-trivial task because of the
large number of terms appearing at second order in the derivative expansion.

To aid in keeping track of all the terms at second order, we propose a re-
arranging of the source fields in spin-hydrodynamics. In particular, consider
the vielbein formulation of the effective action. The source fields for this
formulation, the vielbein field eaµ and the connection Γaµb, are both related
to spacetime gauge symmetries; Roughly speaking, eaµ is the gauge field of
translation invariance, while Γaµb is the gauge field of Lorentz invariance [183].
Our suggestion is then to combine both eaµ and Γaµb into a single gauge field
AM for translations and Lorentz rotations

AM = eaµPa + ΓaµbJ ba , (8.4)

with Pa,J ba the generators of translation and Lorenz transformations re-
spectively. Mathematically, AM is a Cartan-Ehresmann connection [198].
Physically, the decomposition of AM as in the RHS of Eq. (8.4) means that,
consistent parallel transport of vectors from one tangent space to another,
described by eaµ, also requires a rotation of the vector. In brief, AM describes
how to roll a tangent space on spacetime without slipping.

Using AM , we can now see that the spinning fluid effective action is
nothing more than a functional invariant under a non-abelian gauge group.
We expect that the resulting action will be much simpler than the action
constructed in our vielbein formalism. As a justification of this statement,
we note that AM has already been used as a means to solve 2+1 dimensional
quantum gravity [199,200], as well as to construct higher-spin theories [201],
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and torsion-matter interactions in Einstein-Cartan gravity [202,203]3.
Note that even after the construction of the effective action, we won’t

have a complete theory of hydrodynamics. That is because the effective
action can only capture non-dissipative phenomena. So in order to resolve
this problem, we should construct dissipative spin hydrodynamics using ei-
ther the Schwinger-Keldysh effective action or the entropy current approach
discussed in chapter 3.

Finally, once spin-hydrodynamics has been constructed one should derive
its predictions for electronic systems. This can be done in the simple channel
setup used in chapters 4 and 6. In particular, an analysis of the spin-Hall
effect in metals [184] behaving hydrodynamically should be carried out.

Metric affine gravity and the gauge/gravity duality

The next research idea we wish to discuss is an extension of spin-fluid hydro-
dynamics. Recall, that in the case of spin-fluid hydrodynamics, the space-
time geometry was an Einstein-Cartan one. That is, besides non-trivial
curvature, spacetime also hosted non-trivial torsion. We can generalize this
geometry further by endowing the spacetime with non-metricity Qµνρ. Non-
metricity, as the name suggests is related to the metric and more precisely
to the incompatibility of the metric with the connection

Qµνρ = ∇µgνρ . (8.5)

In metric-compatible spacetimes, as in conventional general relativity, the
non-metricity tensor Qµνρ vanishes by construction. However, there exist
connections such that Qµνρ as well as torsion are non-zero. The correspond-
ing spacetime is then a metric affine one [183]. A non-vanishing Qµνρ means
that the inner-product between vectors changes even if the vectors are con-
stant in spacetime. As a result, the causal structure of spacetime is different
at different points.

Like curvature and torsion, we can consider a dynamical Qµνρ tensor.
Doing so introduces an additional conserved current into the spacetime,
acting as a the source of Qµνρ. This source is the symmetric part of the
hyper-momentum tensor ∆µν . In particular, the trace of ∆ leads to an
overall change in volume of a spacetime region, while the traceless part
shears the light-cone structure of spacetime.

An interesting avenue for research is the derivation of the constitutive
relations for the currents of a metric affine spacetime directly through holog-
raphy. To achieve this we can use the fluid/gravity correspondence, which
we now explain(see [204] for a review). In the fluid/gravity framework, the

3To this list, we should also add the philosophical advantage of using AM ; the unifica-
tion of the conservation laws for energy-momentum and angular momentum This unifica-
tion might also be useful for unifying the inertial and non-inertial descriptions of thermal
equilibrium for a spinning fluid.

131



Chapter 8. Conclusions and Outlook

black hole in the bulk describing the thermodynamics of the QFT gets dis-
torted. In particular, a neutral black hole is given a finite velocity in a
timelike direction uµ. When this velocity is constant, the distorted black
hole is still a solution of the Einstein equations of motion. However, when
uµ as well as the black hole temperature β become spacetime fields, this
ceases to be true. Despite this, it is still possible to find an approximate
solution to the Einstein equations by assuming βµ = uµβ is a slowly varying
field in spacetime and expanding in its derivatives. This approach should be
familiar. We did precisely the same thing in chapter 3, when we went from
global thermal equilibrium to a local one and from that to hydrodynamics.
This is not a coincidence. To see this note that the energy-momentum ten-
sor Tµν calculated with the approximate solution to Einstein’s equations,
will be a function of βµ(x) and its derivatives up to our order of approxi-
mation. Furthermore, one of Einstein’s equations in the bulk ensures that
Tµν is conserved. A conserved Tµν expressed as a function of βµ(x) and its
derivatives is precisely what we defined as the constitutive relations for a
fluid. This short discussion shows that the bulk gravity solution can be used
to derive the boundary-fluid constitutive relations. This is the fluid/gravity
correspondence.

We can apply the fluid/gravity correspondence to calculate the consti-
tutive relations for a fluid moving in a metric affine spacetime. In order to
do so, we first need to specify the dynamics, i.e. the Lagrangian of metric
affine gravity LMAG. Thankfully, this has already been done in [183] up to
second order in curvature, torsion and non-metricity, although the precise
form of the Lagrangian is not that illuminating. In order then to apply
the fluid/gravity correspondence we must find an exact black hole solution
for MAG with a non-trivial torsion and non-metricity tensor. Luckily for
us, there is already a whole zoo of such black hole solutions in the liter-
ature [205]. Of these, the solution of [206] is of particular interest, since
it is a generalization of the Reissner-Nordström solution including torsion
and non-metricity4. The remaining tasks, then, for holographers is first to
perturb this black hole solution and find an approximate solution after the
perturbation. Second, to substitute the solution back to LMAG and use the
on-shell action to derive the constitutive relations. The second step, might
sound trivial, but is far from so. Recall that the on-shell action exhibits di-
vergences near the AdS boundary, which are dual to the UV divergences in a
QFT. To use the on-shell action as a generating functional, these divergences
must be renormalized by adding the appropriate boundary counterterms to
LMAG [207]. Working out the details of this renormalization procedure for
MAG is current work in progress [188].

4Note that due to the high symmetry of this solution, if torsion vanishes so does non-
metricity and vice-versa.
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Torsional anomalies

Finally, let us discuss a purely QFT project. To this end, we note that spin-
hydrodynamics is not the first time torsion has reared its head in condensed
matter physics. Namely, torsion is the source of the most controversial
anomaly of all, the Nie-Yah anomaly for the chiral current Jµ5 in 3 + 1
spacetime dimensions [208,209]

∂µJ
µ
5 =

e

16π2l2
εµνρληabT

a
µνT

b
ρλ . (8.6)

On the RHS of (8.6) we see the torsion tensor T aµν and the electron charge
e. Most important of all, the length scale l also appears. l is the reason
this anomaly is so controversial, since it is nothing more than the cutoff
scale used to regularize the UV divergence appearing in the calculation. The
appearance of l in Eq. (8.6) is troubling for two reasons: First of all it appears
in the one-point function of a hermitian and, hence, observable operator.
Therefore, the RHS of Eq. (8.6) has zero predictive power since it can be
adjusted at will to match the experiments. Second, chiral anomalies are by
and large topological beasts, i.e. the anomaly coefficients depend only on
the properties of the manifold the fermions are propagating upon(including
the spin structure) [112].

It is interesting then to understand what is the true nature of the length
scale and why it should appear in the torsional anomaly. Several proposed
answers exist: First, the cutoff is simply the cutoff [210]: In condensed mat-
ter systems the cutoff is not an arbitrary scale, but is set by the underlying
lattice. So l cannot be altered at will and (8.6) has predictive power. This
is a perfectly valid answer for condensed matter systems, but not so for
high energy physics. This is because the natural cutoff scale in high energy
physics is at the Planck scale, where quantum gravity effects also become
non-negligible. Therefore, the torsion tensor on RHS of (8.6) cannot be con-
sidered an external field, but must be replaced by its quantized counterpart,
whatever that may look like.

Another approach suggests that l is proportional to the temperature of
the system [211,212]. While this gives a precise physical meaning and a way
to measure l, it is not an appealing solution. This is because anomalies are
effects which stem from purely quantum, and not thermal, fluctuations. The
modification of the anomaly coefficient due to temperature, does however
suggest an interpretation for l: Recall that the temperature of the QFT is
encoded in the background geometry. Therefore, l should have a similar
geometric origin. We believe this geometric origin can be gleaned from the
Ehresmann connection AM of Eq. (8.4). More precisely, in Eq. (8.4) we have
split the connection into a translational and rotational part. However, we
can extend AM to a connection of their product group and write
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AM → AM =

(
Γaµb Λeaµ
−Λeaµ 0

)
. (8.7)

Physically, the inverse length scale Λ is the cosmological constant of the
spacetime we are considering5 [213]. Given AM , the translation part of its
curvature tensor, ΩT a

µν , is proportional to the torsion tensor

ΩT a
µν = ΛT aµν . (8.8)

Contrasting Eq. (8.8) with Eq. (8.6), it should be clear what we think the
origin of l is. We believe that l = Λ−1 and so we can write

∂µJ
µ
5 =

e

16π2
εµνρληabΩ

T a
µν ΩT b

ρλ . (8.9)

Expressing the anomaly in terms of ΩT a
µν brings the anomaly into a topo-

logically invariant form. Furthermore, we now know why l must be taken
to infinity: The calculation leading to Eq. (8.9) was performed around a
flat Minkowski space background with a vanishing cosmological constant.
Further motivation for our conjecture stems from the explicit calculation of
the anomaly in condensed matter. This calculation shows that l stems from
the vacuum energy of the material. In QFT models, the very same vac-
uum energy also contributes to the cosmological constant of the spacetime
(and leads to the “worst prediction of particle physics”) [214]. In order to
confirm our conjecture l = Λ−1, we must calculate the anomaly around a
De Sitter or AdS background. Furthermore, we should extend the formal-
ism leading to Aµ to a non-relativistic, thermal geometry in order to check
whether the temperature dependence found in [211, 212] has a similar geo-
metric origin. Finally, if our conjecture is correct, then the same length scale
l should appear in all anomalies involving torsion. Therefore, it is necessary
to construct theories where operators other than Jµ5 become anomalous in
the presence of torsion. This amounts to constructing all possible topologi-
cal QFTs involving Aµ and the gauge fields which couple to the anomalous
operators [112].

To conclude, we want to note that the conjunction of hydrodynamics,
high-energy and condensed matter physics has given us access to a plethora
of new and interesting phenomena, some of which were presented in this
thesis. More importantly the ideas for further research we discussed, show-
case that more of these phenomena and their far-reaching consequences on
theoretical expectations and technical applications are there to explore.

5This identification works even for Minkowski spacetime [213].

134



Acknowledgements

It is my honour to conclude this thesis with acknowledging the support of
everyone that made it possible. First, let me thank both my official and
unofficial supervisors Prof. Dr. Johanna Erdmenger and Dr. René Meyer,
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Tutschku, Bastian Heß, Pablo Basteiro, Prof. Dr. Ewelina M. Hankiewicz,
Prof. Dr. Ronny Thomale, Prof. Dr. Martin Greiter, Prof. Dr. Domenico
Di Sante and Sven Danz for the hours of fruitful physics discussions, which
always managed to expand my understanding on a given topic.

I would be remissed if I did not also acknowledge the valuable emotional
support provided by my friends and family, which made bearable even the
more stressful times of completing my PhD.

Finally, I want to thank the SFB - 1170 for funding my PhD research.

135





Appendix

Appendix

A Hydrostatic constraints

In this appendix we prove formulae (3.46) used to construct the hydrostatic
effective action of section 3.2. For ease of reference, we quote (3.46) below

∂µT = −Taµ , ∂νµ = −µaν + Eν , ∂µuν = −uµaν + ωµν . (10)

We star-off simple, by examining the gradient of temperature. We have

∂µT = ∂µ(−β2)−1/2 = (−β2)−3/2∂µβ = −T∂µ log β . (11)

In static equilibrium, we can re-express ∂µ log β in terms of the velocity
profile uµ. To see this, recall that uµ is also static, i.e.

0 = Lβuµ = βν∂µuν + uν∂µβ
ν = βuν∂νuµ + uν∂µ(β)uν + βuν∂µuν

= βaµ − ∂µβ ⇒ aµ = ∂µ log β . (12)

To prove Eq. (12), we used βµ = βuµ, u2 = −1 and defined the acceleration
vector aµ = uν∂νuµ. So, we can re-write Eq. (11) as

∂µT = −Taµ (13)

and the first part of (10) is complete. As a consistency check, note that
LβT = βµ∂µT = 0 is automatically satisfied because aµu

µ = 0.
Let’s proceed now to how statisticity constraints ∂µµ. Again we begin

with the definition of the chemical potential βµAµ = µ/T . We take the
gradient of this definition to find

∂µ(µ/T ) = ∂µ(βν)Aν + βν∂µAν = βν∂νAµ − βν∂νAµ + ∂µ(βν)Aν + βν∂µAν

= βν (∂µAν − ∂νAµ) + LβAµ = βνFνµ ≡ βEµ . (14)
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In the above derivation, we have added and subtracted βν∂µAν to construct
the Lie derivative of Aµ with respect to βµ, LβAµ. Then, in the last equality
we enforced LβAµ = 0 and introduced the electric field Eµ = Fµνu

ν . Now
we can use Eq. (14) in conjunction with Eq. (13) to find for the gradient of
the chemical potential

∂µµ = −µaµ + Eµ (15)

as promised. Again, we see that Eq. (15) satisfies Lβµ = 0 identically.

Finally, we will write down the expansion of ∂µuν in terms of first order
static data. To do so, let us first choose a co-ordinate system with one of its
axes parallel to uµ.6 In this co-ordinate system, we can expand any tensor
as

Aµν = auµuν + qµuν + uµhν + Ãµν , (16)

with

a = uµAµνu
ν , qµ = −∆a

µAabu
b , hµ = −uaAab∆b

µ , Ãµν = ∆µaA
ab∆bν

(17)

and ∆µν = gµν + uµuν the projector in the directions normal to uµ. Ex-
panding ∂µuν as in Eq. (16), we find a = 0 = qµ and hµ = −aµ. Thus,

∂µuν = −uµaν + ∂̃uµν . (18)

Further, we can decompose ∂̃uµν in terms a symmetric-traceless, anti-symmetric
and trace part simply by writing

∂̃uµν =
1

2
∆µa

(
∂aub + ∂bua − gab∂λuλ

)
∆νb +

1

2
∆µa

(
∂aub − ∂bua

)
∆νb

+
1

2
∆µag

ab∆bν∂λu
λ ≡ σµν + ωµν +

1

2
∆µν∂λu

λ . (19)

For brevity, we have defined the shear and vorticity tensors, σµν , ωµν re-
spectively as

σµν =
1

2
∆µa

(
∂aub + ∂bua − gab∂λuλ

)
∆νb ,

ωµν =
1

2
∆µa

(
∂aub − ∂bua

)
∆νb . (20)

6The physical reason for this choice of co-ordinate system is that the functional W is
invariant under diffeomoprhisms only in the directions normal to uµ when we are out of
equilibrium. See discussion around Eq. (3.25).
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Given the expansion Eq. (19), we can easily impose the staticity con-
straint Lβ = 0. Indeed note that the trace of ∂µuν is a pure time-derivative
and so must vanish in equilibrium. Similarly, σµν contains the trace of
∂µuν so it must also vanish in equilibrium. On the other hand, ωµν does
not contain any time-derivatives7 because of the transverse projectors ∆µν .
Therefore, we find that ∂µuν in equilibrium is simply given by

∂µuν = −uµaν + ωµν , (21)

thus concluding the derivation of Eq. (10).

B Variation of equilibrium effective action

In this appendix, we give an explicit derivation of the constitutive relations
Eq. (3.43) and Eq. (3.51) which stem from the equilibrium effective action

W =

∫
d3x
√
−g [ P (T, µ) + α1B + α2ω] ≡

∫
d3x
√
−gP . (22)

Where

T =
√
−β2 , µ =

βµ√
−β2

Aµ = uµAµ ,

B =
1

2
εµνρu

µF νρ , ω =
1

2
εµνρu

µωνρ (23)

and α1, α2 are functions of µ and T .

The constitutive relations are defined in terms of the variation of W and
more precisely

δW =

∫
d3x
√
−g
[

1

2
Tµνδgµν + JµδAµ

]
. (24)

To derive these variations, we will first derive simpler variations that can be
used to construct more complicated ones. To commence the derivation, we
consider the variation of the temperature

δT = δ(−β2)−1/2 =
−1

2
(−β2)−3/2δ(−β2)

=
1

2
(−β2)−3/2βµβνδgµν =

1

2
Tuµuνδgµν . (25)

One very important assumption that entered the derivation of Eq. (25) was
the non-variation of the thermal vector, δβµ = 0. This is natural assumption

7In the co-ordinate system where the time-direction is parallel to uµ.

139



Appendix . Appendix

for the following reason: In order for a system to be in static equilibrium
one needs to define time, which in a relativistic theory is defined through a
timelike Lorentz vector. The thermal vector βµ plays precisely this role in
our construction. We can use this property of βµ to find

δuµ = δ[βµ(−β2)−1/2] = βµδ(−β2)−1/2 =
1

2
uµuνuρδgνρ . (26)

We can also easily find the variation of the chemical potential

δµ = δ(uµAµ) =
1

2
uµAµu

νuρδgνρ + uµδAµ =
1

2
µuνuρδgνρ + uµδAµ . (27)

Given the variation of µ and T , we have for any function f of µ and T

δf(µ, T ) =
∂f

∂µ
δµ+

∂f

∂T
δT =

1

2
uµuν

(
T
∂f

∂T
+ µ

∂f

∂µ

)
δgµν+

∂f

∂µ
uµδAµ . (28)

We can apply this result when we consider the variation of W , keeping B
and ω, fixed to find

δ̃W =

∫ [
δ̃(
√
−g)P +

√
−gδ̃P

]
=

∫
dV

[
1

2

(
gµνP + uµuν

(
T
∂P
∂T

+ µ
∂P
∂µ

))
δgµν +

∂P
∂µ

uµδAµ

]
,

(29)

where δ̃B = 0 = δ̃ω and we have made use of well-known formula for the
variation of the metric determinant [122]

δ
√
−g =

1

2

√
−ggµνδgµν . (30)

We are now in position to write down the zeroth order constitutive relations
by simply setting B = 0 = ω in δ̃W . The result is that quoted in Eq. (3.43)
and which we repeat below for ease of reference

Tµν = εuµuν + P∆µν , Jµ = ρuµ , (31)

ε = T
∂P

∂T
+ µρ− P , uµ =

βµ√
−β2

, ∆µν = gµν + uµuν , ρ =
∂P

∂µ
.

(32)

To complete the derivation of the constitutive relations we need to derive
the variations of B and ω and use
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δW = δ̃W +

∫
d3x
√
−g [α1δB + α2δω] , (33)

which stems directly from the definitions of W and δ̃.

To take the variation of B we re-express it as

B =
1

2
εµνρuµFνρ =

1

2
εµνρuµFνρ . (34)

This way we simplify the calculation since we wont have to deal with ex-
pressing the variation of ∂νAρ in terms of the variation of ∂νAρ. Then to
compute δB, we need

δεµνρ = −δ
(

1√
−g

)
εµνρ = −1

2
εµνρ ,

(35)

δuµ = δ (gµνu
ν) = δgµνu

ν +
1

2
uµu

κuλδgκλ , (36)

where εµνρ the Levi-Civita symbol. The final identity we need is the the
e/m decomposition of Fµν ,

Fµν = uµEν − uνEµ + uλελµνB , (37)

which can be confirmed directly by contracting Fµν with uµ, uν and
εµνρ.

Putting everything together we find for δB

δB =
1

2
δ (εµνρuµFνρ) =

1

2

[
(u× E)(µuν) −B∆µν

]
δgµν + εµνρuµ∂νδAρ ,

(38)

with ∆µν = gµν + uµuν . Note that the partial derivative found in Eq. (38)
can be replaced by covariant derivative with a symmetric Christoffel con-
nection. We will use this derivative substitution in the following to simplify
our calculation.

Finally, we consider the variation of ω. In this case, we will use the defi-
nition of ω as in (23) with the Levi-Civita tensor with all lower indices. Be-
cause of this, we need the variation of the Levi-civita tensor εµνρ =

√
−gεµνρ

and of the inverse metric

δεµνρ =
1

2
εµνρg

κλδgκλ , δg
µν = −gµκgνλδgκλ. (39)

We will need δgµν during the variation of ωµν since δ does not commute
with ∂µ, but instead
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[δ, ∂ν ] = δgνµ∂µ . (40)

The last identity we will make use of in our derivation is the decomposition
of ∂µuν similar to the e/m decomposition of Fµν

∂µuν = −uµaν + ωµν = −uµaµ − εµνρωρ = −uµaν + uλελµνω . (41)

In the above decomposition ωρ is the angular velocity vector

ωµ =
1

2
εµνρω

νρ . (42)

The angular velocity vector is purely timelike, since ωµν is purely spacelike.
Therefore, ωµ = cuµ with c = −uµωµ = ω. We have, thus, all the ingredients
necessary to calculate δω to find

δω =
1

2
δ (εµνρu

µωνρ) =
1

2
ω [uµuν −∆µν ] δgµν −

1

2
(u× a)(µuν)δgµν . (43)

We are now ready to piece everything together and calculate the variation
of W . To aid our understanding let’s focus first on the variation with respect
to the metric

δW = δ̃W +

∫
d3x
√
−g [α1δB + α2δω]

=

∫
d3x
√
−g 1

2
δgµν

[
gµνP + uµuν

(
T
∂P
∂T

+ µ
∂P
∂µ

+ α2ω

)

− (α1B + α2ω) ∆µν + α1(u× E)(µuν) − α2(u× a)(µuν)

]

=

∫
d3x
√
−g 1

2
δgµν

[
uµuν

(
T
∂P
∂T

+ µ
∂P
∂µ

+ α2ω − P
)

+ ∆µν (P − α1B − α2ω) + α1(u× E)(µuν) + α2(u× a)(µuν)

]

≡
∫
d3x
√
−g 1

2
δgµνT

µν =

∫
dV

1

2
δgµνT

µν . (44)

Before we write down the explicit result for Tµν , let us also take the variation
of W with respect to Aµ
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B. Variation of equilibrium effective action

δW = δ̃W +

∫
d3x
√
−g α1δB

=

∫
d3x

[
δ̃
(√
−gP

)
+
√
−g (α1δB + α2δω)

]
=

∫
d3x
√
−g
(
∂P
∂µ

uµ + α1ε
µνρuν∇ρ

)
δAµ

=

∫
d3x
√
−g
[
∂P
∂µ

uµ −∇ρ(α1ε
µνρuν)

]
δAµ

=

∫
d3x
√
−g
[
∂P
∂µ

uµ − εµνρ
(
∂α1

∂T
∇ρT +

∂α1

∂µ
∇ρµ+ α1∇ρuν

)]
δAµ

=

∫
d3x
√
−g

[
∂P
∂µ

uµ + (u× a)µ
(
T
∂α1

∂T
+ µ

∂a1

∂µ
− α1

)

+ (u× E)µ
∂α1

∂µ
+ α1ω

µ

]
δAµ

=

∫
d3x
√
−g

[(
∂P
∂µ
− α1ω

)
uµ(u× a)µ

(
T
∂α1

∂T
+ µ

∂a1

∂µ
− α1

)

+ (u× E)µ
∂α1

∂µ

]
δAµ

≡
∫
d3x
√
−g JµδAµ =

∫
dV JµδAµ . (45)

Some comments on the last calculation: In the 4th line of the δAµ variation
we substituted the gradients of the temperature, chemical potential and
velocity profile via Eq. (3.46) in terms of the acceleration vector aµ and
the electric field Eµ = Fµνuν . We also used the angular velocity vector ωµ
Eq. (42) and its expansion in terms of uµ in the 4th and 5th lines of the
derivation respectively.

Thus we are ready, after a long dance with algebra, to write down the
energy-momentum tensor and charge current derived from the equilibrium
partition function at first order in the derivative expansion. We have

Tµν = Euµuν + Π∆µν + α1(u× E)(µuν) − α2(u× a)(µuν) ,

(46)

Jµ = Ruµ + ca(u× a)µ + cE(u× E)µ ,

with
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E = T
∂P
∂T

+ µ
∂P
∂µ

+ α2ω − P , Π = P − α1B − α2ω

R =
∂P
∂µ
− α1ω , ca = T

∂α1

∂T
+ µ

∂a1

∂µ
− α1 , cE =

∂α1

∂µ
. (47)

C Linearised hEOM

Below we reprint the code that we used to calculate the linearised equations
of motion (3.111).
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General definitions
In[ ]:= ClearAll;

coord = {t, x, y};

Assumptions[ϵ > 0]

h [t_, x_, y_] =

ϵ {{h00[t, x, y], h01[t, x, y], h02[t, x, y]}, {h01[t, x, y], h11[t, x, y], h12[t, x, y]},

{h02[t, x, y], h12[t, x, y], h22[t, x, y]}};(*Metric perturbation *)

metric = DiagonalMatrix[{-1, 1, 1}] + h[t, x, y];

metricsign = -1;

$Assumptions = And[t ∈ Reals, x ∈ Reals, y ∈ Reals];

SetDirectory["C://Users//iom06dg//Desktop//PhD//Wolfram Mathematica"];

(* Set directory where diffgeo.m is located *)

<< diffgeo.m

T[t_, x_, y_] = Τ0 + ϵ * δT[t, x, y];

(* temperature in terms of background, T0, and fluct field δT *)

μ[t_, x_, y_] = μ0 + ϵ * δμ[t, x, y];

(* same as temperature but with the chemical potential *)

u[t_, x_, y_] = {1, ϵ * v1[t, x, y], ϵ * v2[t, x, y]}; (*Velocity profile around,

equilibrium {1,0,0} and fluctuations propto ϵ. Index up *)

Delta[t_, x_, y_] = Normal[Series[inverse + u[t, x, y] ** u[t, x, y], {ϵ, 0, 1}]];

(* Projector normal to u up to order ϵ. Both upper indices *)

MatrixForm[Delta[t, x, y]];

En[t_, x_, y_] = ϵ0 + ϵ * ϵ0T * δT[t, x, y] + ϵ0m * δμ[t, x, y];

(* Definitions of energy, pressure and density up to first order in ϵ *)

P[t_, x_, y_] = P0 + ϵ * P0T * δT[t, x, y] + P0m * δμ[t, x, y];

ρ[t_, x_, y_] = ρ0 + ϵ * ρ0T * δT[t, x, y] + ρ0m * δμ[t, x, y];

Efield[t_, x_, y_] = ϵ * {0, Ex[t, x, y], Ey[t, x, y]};

(* Electric field, upper index*)

Fmn[t_, x_, y_] = Normal[Series[2 antisymmetrize[u[t, x, y] ** Efield[t, x, y]] +

raise[u[t, x, y].LeviCivita] * ϵ * B[t, x, y], {ϵ, 0, 1}]];

(* E/M decomposition of Maxwell's tensor, upper indices *)

Σ[t_, x_, y_] = Normal[Series[u[t, x, y].LeviCivita, {ϵ, 0, 1}]];

(* parity-odd projector, both indices down *)

(* Up to order ϵ,

all indices are raised and lowered by the Minkowski metric. So for spatial tensors,

one does not need to keep track of the index

position. This fails for any other background spatial metric*)

Out[ ]= Assumptions[ϵ > 0]

In[ ]:= Current- specific definitions

Printed by Wolfram Mathematica Student Edition

C. Linearised hEOM
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In[ ]:= U[t_, x_, y_] =

NormalSeriesEfield[t, x, y] - T[t, x, y] Delta[t, x, y].partialμ[t, x, y]  T[t, x, y],

{ϵ, 0, 1};(* Einstein vector, upper index *)

ΣU[t_, x_, y_] = -Normal[Series[raise[Σ[t, x, y].U[t, x, y]], {ϵ, 0, 1}]];

(* parity-odd U, E and gradT, index up*)

ΣE[t_, x_, y_] = -Normal[Series[raise[Σ[t, x, y].Efield[t, x, y]], {ϵ, 0, 1}]];

ΣT[t_, x_, y_] = -Normal[Series[raise[Σ[t, x, y].raise[partial[T[t, x, y]]]], {ϵ, 0, 1}]];

In[ ]:= Jm[t_, x_, y_] =

Normal[Series[ ρ[t, x, y] * u[t, x, y] + σ * U[t, x, y] + σp * ΣU[t, x, y] + χpT * ΣT[t, x, y] +

χpE * ΣE[t, x, y], {ϵ, 0, 1}]](* Current, upper index *)

MatrixForm[Jm[t, x, y]];

FJ[t_, x_, y_] = Normal[Series[Fmn[t, x, y].lower[Jm[t, x, y]], {ϵ, 0, 1}]];

(* Right-hand side of energy-momentum conservation, upper index *)

In[ ]:=

In[ ]:= Tensor- specific definitions
In[ ]:= Gradu[t_, x_, y_] = Normal[Series[covariant[lower[u[t, x, y]], {down}], {ϵ, 0, 1}]];

(*Definition of the gradient of u, both lower indices *)

ω[t_, x_, y_] =

Normal[Series[ contract[u[t, x, y].LeviCivita ** Gradu[t, x, y], {1, 3}, {2, 4}],

{ϵ, 0, 1}]]; (* vorticity *)

σt[t_, x_, y_] = 2 * Normal[Series[Delta[t, x, y].symmetrize[Gradu[t, x, y]].Delta[t, x, y],

{ϵ, 0, 1}]]; (* Shear tensor, both indices up*)

σpt[t_, x_, y_] = -Normal[Series[raise[symmetrize[

contract[Σ[t, x, y] ** lower[σt[t, x, y]], {2, 3}]]], {ϵ, 0, 1}]];

(* parity-odd shear tensor, upper indices *)

Π[t_, x_, y_] =

Normal[Series[P[t, x, y] - ζ * divergence[u[t, x, y]] + χo * ω[t, x, y] - ϵ * χB * B[t, x, y],

{ϵ, 0, 1}]]; (* Pressure term *)

In[ ]:= Clear[Tmn]

Tmn[t_, x_, y_] =

Normal[Series[ En[t, x, y] * u[t, x, y] ** u[t, x, y] + Π[t, x, y] * Delta[t, x, y],

{ϵ, 0, 1}]] - η * σt[t, x, y] - ηH * σpt[t, x, y];

MatrixForm[Tmn[t, x, y]];

DTmn[t_, x_, y_] =

Normal[Series[lower[covariant[Tmn[t, x, y], {up, up}], {2, 3}], {ϵ, 0, 1}]];

(* Covariant derivative of the energy momentum tensor, all indices down *)

Equations of motion
In[ ]:= EOMvector = FullSimplify[TraditionalForm[

Normal[Series[raise[contract[DTmn[t, x, y], {1, 2}]] == FJ[t, x, y], {ϵ, 0, 1}]]]]

In[ ]:= EOMscalar =

FullSimplify[TraditionalForm[Normal[Series[divergence[Jm[t, x, y]] ⩵ 0, {ϵ, 0, 1}]]]]

2     EOM-Linearization - Copy.nb

Printed by Wolfram Mathematica Student Edition
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[51] J. Böttcher, C. Tutschku, L. W. Molenkamp, and E. M. Hankiewicz,
“Survival of the Quantum Anomalous Hall Effect in Orbital Magnetic
Fields as a Consequence of the Parity Anomaly,” Phys. Rev. Lett.,
vol. 123, no. 22, p. 226602, 2019.
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