
applied  
sciences

Article

Multi-Lens Array Full-Field X-ray Microscopy

Alexander Opolka 1,*, Dominik Müller 2 , Christian Fella 3, Andreas Balles 3 , Jürgen Mohr 1 and Arndt Last 1,*

����������
�������

Citation: Opolka, A.; Müller, D.;

Fella, C.; Balles, A.; Mohr, J.; Last, A.

Multi-Lens Array Full-Field X-ray

Microscopy. Appl. Sci. 2021, 11, 7234.

https://doi.org/10.3390/app11167234

Received: 26 June 2021

Accepted: 2 August 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT),
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; mohr.sulzfeld@t-online.de

2 Chair for X-ray Microscopy (LRM), Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany;
dominik.mueller@physik.uni-wuerzburg.de

3 Fraunhofer Development Center X-ray Technology (EZRT), 97074 Würzburg, Germany;
christian.fella@iis.fraunhofer.de (C.F.); andreas.balles@iis.fraunhofer.de (A.B.)

* Correspondence: phd@opolka.org (A.O.); arndt.last@kit.edu (A.L.)

Abstract: X-ray full-field microscopy at laboratory sources for photon energies above 10 keV suffers
from either long exposure times or low resolution. The photon flux is mainly limited by the objectives
used, having a limited numerical aperture NA. We show that this can be overcome by making
use of the cone-beam illumination of laboratory sources by imaging the same field of view (FoV)
several times under slightly different angles using an array of X-ray lenses. Using this technique, the
exposure time can be reduced drastically without any loss in terms of resolution. A proof-of-principle
is given using an existing laboratory metal-jet source at the 9.25 keV Ga Kα-line and compared to a
ray-tracing simulation of the setup.
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1. Introduction

This article introduces a method for hard X-ray full-field microscopy at laboratory
sources. Throughout this paper, full-field microscopy is understood as imaging the sample
plane to the image plane using an objective [1]. Magnified shadow projection is another
technique, strictly to be distinguished from full-field microscopy. The availability of labora-
tory sources, with cone-beam configurations and small coherence lengths, is advantageous
for full-field microscopy when compared to using synchrotron sources with their narrow
beam profile. The key disadvantage of laboratory sources is the comparably low photon
flux, in many cases leading to long exposure times in the range of hours [2]. This can be
inacceptable with respect to throughput or when samples change over time. The multi
full-field microscopy technique proposed here can drastically reduce the exposure time by
making use of the cone-beam characteristics of lab sources. The basic idea is making use of
the otherwise lost photon flux at large angles by using a special objective.

In X-ray full-field microscopy, sample illumination is crucial. Each sample point has
to be illuminated under different angles to obtain a high-resolution image [3]. At the
same time, only rays passing the objective will contribute to the image. At this point, a
distinction between classical X-ray sources with large X-ray spots and micro focus tubes
with their micro focus is helpful. Having a large source spot (e.g., of a rotating anode
source), the sample could be placed directly behind the exit window of the source for proper
illumination. The large source spot will illuminate the whole sample under many different
angles. Using a micro-focus source requires additional illumination optics between source
and sample to provide proper illumination. In both cases, the bottleneck is the NA of the
objective [4]. Accordingly, Fella introduces three possibilities to increase the flux on the
detector: increasing the source brightness, enlarging the limiting etendue (i.e., the NA of
the objective), and/or enlarging the efficiency of all optical elements which are used.

Typical objectives for X-ray full-field microscopy at photon energies in the range above
several keV are, for example, multilayer Laue lenses (MLLs) [5], Fresnel zone plates [6], or
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compound refractive lenses (CRLs) [7–11]. Fresnel zone plates have clear advantages for
X-ray energies below about 15 keV. The state-of-the-art optics for multi-keV X-ray energy
applications are CRLs [12]. Although MLLs have a potentially better performance than
CRLs at high X-ray energies [12], today, they do not reach the relatively large field of views
(FoVs) of 100 µm × 100 µm of CRLs, on which this project concentrates.

2. Materials and Methods
2.1. Multi Full-Field Microscopy

To decrease exposure times, it could be an option to increase the aperture of the
objective CRL. Unfortunately, increasing the effective aperture is limited due to absorption
at the outer parts of a CRL. Analogous arguments exist for other kinds of X-ray optics. As
an alternative, we suggest using an array of CRLs to reduce the exposure time of cone-beam
sources. In this case, the optical axes of the individual CRLs are not parallel to each other
but slightly tilted in such a way that they meet in the center point of the FoV. Thus, the same
part of the sample is imaged several times from slightly different directions. The multi
full-field microscopy principle is shown in Figure 1, assuming proper sample illumination.
A 3 × 3 array of slightly tilted objective lenses, a so-called multi-focus CRL (MFCRL), is
imaging the FoV to the scintillator plane. The scintillator converts the X-rays to visible
light, and this visible image is detected via a microscope objective on a CCD-detector (not
shown in Figure 1). The multi full-field microscopy principle has obvious similarities with
approaches towards tomography, where the sample has to be projected simultaneously
from various different directions [13,14], which results in a decrease of the total exposure
time for one tomograph [15]. In contrast to these methods, in multi full-field microscopy,
the imaging objective lens is positioned between the sample and the detector, and the
angles should be as small as possible to position as many images as possible side by side
on the detector.
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Figure 1. Sketch of the multi full-field microscopy principle. The multi-focus CRL (MFCRL) images
the sample with a certain magnification to the scintillator plane.

Due to small angles in X-ray optics, the Scheimpflug effect [16] can be neglected in the
first approximation. The Scheimpflug effect describes the tilt of the focus plane when the
objective plane and detector plane are not parallel to each other. For hard X-ray full-field
microscopy at laboratory sources, this principle could reduce the necessary exposure times
drastically. In the case of moderate magnifications, typically the complete detector area
is not used in these setups. Thus, applying the multi full-field principle is feasible even
with the detector existing in the system. Often 3 × 3 or even more images could be placed
beside each other on the detector. Using multi full-field microscopy instead of conventional
full-field microscopy, the number of photons gathered can be increased by a factor of n2 − 1
when using an n × n lens array. Thus, the signal to noise ratio (SNR) can be increased
drastically.
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2.2. Multi-Lens Array Fabrication

A large effective aperture, of course, is also crucial when using the multi full-field
principle. The effective aperture of a CRL is maximized when using suitable lens material
showing low X-ray absorption. Most X-ray transparent materials for CRLs are low atomic
Z-number materials such as lithium, beryllium, or carbon [17]. Lithium is very reactive
with humidity in the air, and fabricating Be-CRLs via imprinting [18] limits the possible
geometries of CRLs. In recent years, additive manufacturing processes that use direct
laser exposure have been tested for the production of CRLs [19,20]. This manufacturing
process is still slow [21] and, due to the voxel-wise exposure, provides quite rough surfaces
compared to lithographic processes.

Using lithographic fabrication methods allows the fabrication of an aligned array of
slightly tilted CRLs with high quality and precision. For these reasons, we fabricated multi-
focus CRLs via deep X-ray lithography. Deep X-ray lithography is a crucial part of the LIGA
technology (German acronym for lithography, electroplating, and molding), invented and
developed at KIT/IMT [22,23]. It is used to structure a resist of up to several millimeters in
height [24]. For CRLs, the resist mr-X (microresist technology GmbH, Berlin, Germany),
an epoxy-based negative resist, is used. A rectangular layout area of 20 mm × 60 mm is
exposed perpendicular to the substrate via an X-ray absorption mask. In this way, up
to about 40 line focus CRLs with a height of up to 2 mm are fabricated in one exposure.
After post-exposure bake and development, the CRLs are separated with a wafer saw. To
fabricate point focus CRLs, two corresponding line focus CRLs are mounted under 90◦ in
an interdigitated way (Figure 2). Currently, point focusing optics with apertures of up to
1.8 mm × 1.8 mm are fabricated.
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Figure 2. (a) SEM image of a 9 × 9 CRL array used for multi full-field X-ray microscopy. (b) Parameters of a multi-focus
CRL with physical aperture A, radius R in the apex of the parabola, total length L of the CRL, length Ln of a single lens
element, thickness d of the web, air gap a between two adjacent lens elements, and width bn between two entrance apertures.

2.3. Microscopy Setup

To show the advantages of full-field microscopy with a multi-lens array, we present a
proof-of-principle, which was done at a mid-energy setup using the 9.25 keV Ga Kα-line.
The relatively low photon energy of 9.25 keV has been used, because no setup with higher
photon energies was available. Of course, Fresnel zone plates would be better suited for
this photon energies [25]. In our case, the 9 × 9 multi-focus CRL shown in Figure 2 was
used. The individual CRLs are designed for an X-ray energy of 9.25 keV. They have all
identical optical layout parameters. The object distance is designed to be 50 mm and the
image distance to be 700 mm (measured to the entrance aperture of the CRL). With a
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total length of the CRL of L = 4.7 mm, a magnification of approximately 13.1 is achieved.
The aperture of the Nv = 19 vertically focusing and Nh = 20 horizontally focusing lens
elements varies, respectively, from A1 = 46 µm at the first element (i.e., Nv,1 and Nh,1) over
A10 = 43.1 µm to A20 = 47.9 µm. This is referred to as Taille lens and allows for high spatial
resolution as well as homogeneous image quality [26]. The average transmission of the
CRL is 29%. At 24.2 keV, the average transmission of a suitable CRL (Nv = 136, Nh = 137)
with the same focal length would even reach 53%. The theoretical diffraction limited
resolution of the setup is bmin = λ/2NAeff = 0.5 µm, with the effective numerical aperture
NAeff. The complete parameters of the CRL used are summarized in Tables S1 and S2 in
the Supplementary Material. The different N for the two half lenses is used to minimize
astigmatism. Therefore, the radius of the horizontally focusing lens elements Rh = 6.09 µm
is slightly larger than the radius of the vertically focusing lens elements Rv = 6.08 µm. The
parameter b1 is 27 µm, i.e., for the first lens element, and increases continuously for the
next lens elements. The air gap a = 30 µm between neighboring lens elements is constant.
The lenses are designed in such a way that the center-to-center distance of adjacent images
on the scintillator is 956 µm.

The setup at LRM (Würzburg) uses a liquid MetalJet (Excillum, Kista, Sweden) source.
The spectrum of this source and the imaging efficiency in single lens full-field microscopy
are discussed in detail in [10]. As an objective lens, the above-described multi-focus CRL
was used. A photo of the setup is shown in Figure 3a. In the upper right corner, the position
of the metal jet is indicated by a white arrow. In front of the Be-window (not visible) in
the copper housing, a 7-axis manipulator for the condenser alignment (1 translation +
6-axis hexapod) is placed. The polycapillary (XOS polycapillary, length 155 mm, entrance
angle 0.95◦ and exit angle 0.3◦, focus size 100 µm) is used for proper sample illumination.
The sample is an absorption grating (period 2.4 µm, 10 µm gold thickness, microworks
GmbH), which is shown in Figure 3b. For the measurements, a rectangular aperture
(50 µm × 50 µm) was placed as near as possible to the sample, i.e., approximately 1.5 mm.
It limits the field of view. Thus, this aperture prevents neighboring images on the detector
plane from overlapping. The multi-focus CRL is placed 50 mm behind the sample and
images the latter to the detector system, which is 700 mm away from the CRL’s entrance
aperture. The detector system cannot be seen in Figure 3. It consists of a 50 µm thick
LuAG:Ce (Crytur, Turnov, Czech Republic) scintillator, two filter-to-filter screwed Nikkor
objective lenses (50 mm and 105 mm in infinity configuration), and a PCO.edge sCMOS
detector with 2560 × 2160 pixels of 6.5 µm pixel edge length, resulting in a sensor format
of 16.6 mm × 14 mm, respectively. This leads to an effective pixel size of 3.1 µm in the
scintillator plane. With the magnification of approximately 13.1 in the X-ray optical part,
the effective pixel size in the sample plane is about 240 nm.
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Figure 3. (a) Liquid MetalJet (LMJ) setup at the LRM in Würzburg. In the upper right corner, the
position of the metal jet is indicated by a white arrow. The Be exit window in the LMJ copper housing
is hidden by two capillaries mounted on a hexapod. The left capillary is a polycapillary, used for
illuminating an absorption grating (sample). For imaging the grating, an aperture (50 µm × 50 µm)
is placed as near as possible to the grating. (b) Light microscopy image of the absorption grating
(period 2.4 µm, 10 µm gold thick-ness, microworks GmbH) used as sample. The small differences in
contrast originate from the light microscope illumination, not from the absorption grating.

3. Results
3.1. Measurement Results

The multiple images of the grating are shown in Figure 4. The exposure time was
400 s. The images are dark-field and flat-field corrected with the use of a background
image taken with no sample in the beam. The areas outside the illumination cone of the
poly-capillary are black. Inside of the tilted 50 µm × 50 µm aperture, gold lamellas are
shown in gray (magnified section in Figure 4, middle). It can be seen by the different
vertical position of horizontally oriented structures that the FoV is slightly different for
each CRL. This deviation could be overcome by a more exact alignment of the distance
between sample and multi-focus CRL, leading to a larger effective FoV. The number of
images on the detector here is limited by the diameter of the illumination cone of the
polycapillary. The detector size would have allowed all 9 × 9 images of the multi-focus
CRL to be taken. Each of the 9 × 9 sub-images of the sample is generated by a different
single sub-CRL of the multi-CRL array.

Out of the 9 × 9 CRL array, a set of 3 × 4 images is used to create one image of the
effective FoV with high contrast (Figure 4, right). The contrast of the 2.4 µm period gold
lines in the final image was 12%, so the gratings’ period was clearly resolved.

As expected, the total number of photons detected by the detector was increased
by a factor of the number of single images produced by the CRL array. The SNR of the
image summed up from twelve single images increased by a factor of 2.5 compared to
a single image of the sample (Figure 5). As the stochastic noise decreases with the root
of the increase in intensity, theoretically a reduction by a factor of nearly 3.5 would be
possible. In the experiment, the illumination was not completely homogeneous, and part
of the radiation was lost due to rays passing through the material blocks between the CRLs,
resulting in a lower improvement of the SNR. Of course, instead of increasing the SNR by
a factor of 2.5, one could instead decrease exposure time by a factor of 6.25.
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3.2. Simulation Results

Between the individual images of the field of view, the background should be dark or
show some stray light, because the FoV was stopped down. In the real measurements, how-
ever, clear structures can be seen between the individual images of the FoV. To understand
these structures, beam tracking simulations were performed with the commercial software
OpticStudio (Zemax LLC, Kirkland, WA, USA). The measurement setup was simulated
true to scale taking into account the aperture, the grating as a sample, and the illumination
with the polycapillary. The results are shown in Figure 6. There is an excellent agreement
with the measured data. By tracing the path of individual rays through the multi-focus
CRL, the origin of the structured background could be clarified. The background is caused
by rays that have partially or completely passed through the lens material in between the
individual CRLs on their way through the multi-focus CRL (Figure 7). Since the sample
illumination is also at wide angles, some rays only partially pass through a CRL and there-
fore do not contribute to the desired image. The structures in the background are caused
by the fact that there are rays that have passed through a significantly different number of
vertical or horizontal single lens elements. Such rays provide an image of the sample that
appears distorted in one direction in space, similar to imaging with an astigmatic lens. The
structured background disappears when an absorbing wall with windows for each CRL is
placed in front of and behind the multi-focus CRL in the simulation. In this case, all rays
that have not passed through the optics correctly are blocked out.
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Figure 7. Sketch of a 3 × 3 MFCRL array with a sample 1; the rays demonstrate a ray 2 regularly
passing the array; a ray 3 passing the horizontally focusing lens elements but missing the verti-
cally focusing elements; and a ray 4 passing the vertically focusing lens elements but missing the
horizontally focusing elements.

When the intensities of the 25 individual images are superimposed and summed up
in the correct position, a low-noise image of the sample is obtained as expected (Figure 6b).
The average intensity in the summed image of the sample was 22.8 times higher than in the
individual images. Theoretically one would have expected a factor of 25. The deviation is
due to the fact that the four outermost images are clearly vignetted due to the illumination
limited by the polycapillary and therefore contain less intensity. The intensity noise in the
image is reduced by a factor of 4.8 in the summed image in the simulation compared to
the individual images. This corresponds to the theoretical value, since the stochastic noise
decreases with the root of the increase in intensity.

4. Discussion

For the first time, an X-ray full-field microscope at a laboratory source was built using a
multi-focus CRL objective. Making use of the 9.25 keV Ga Kα-line, several non-overlapping
images of a 2.4 µm period absorption grating were generated with a contrast of 12%. The
gain in contrast by a factor of 2.5 when imaging the same FoV with a 4 × 3 CRL array
from slightly different directions was shown. The theoretical factor of 3.5 was not achieved
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due to not completely homogeneous illumination as well as rays passing through the
tmaterial blocks between the CRLs. Using ray-tracing simulations, it could be shown that
the structured image background between the individual images is created by those rays
that have not completely passed through a single CRL but have exited laterally before
passing through the entire lens.

Given this positive proof-of-principle at X-ray energies below 10 keV, a setup for
multi full-field microscopy at 24.2 keV is planned. This can be done by making use of the
24.2 keV In Kα-line, which is possible with, for example, an Indium alloy Excillum MetalJet
source [27]. The setup presented here (Section 2.3) contains an alloy of 95% Ga and 5% In,
resulting in an approximately 130 times less intense 24.2 keV In Kα-line, compared to the
9.25 keV Ga Kα-line [4]. For this reason, the 24.2 keV In Kα-line was not investigated for
this proof-of-principle. The multi-focus CRLs could be improved by adding front and back
apertures blocking all rays that did not pass the lenses correctly. Further improving the
multi full-field microscopy method includes automated merging of the single images as
well as making use of partly overlapping images.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11167234/s1, Table S1: Summarized parameters of the used MFCRL, Table S2: All aperture
sizes of the used MFCRL. The aperture Ai is the same for lens element Nv,i and Nh,i, i.e., for the ith
vertically and ith horizontally focusing lens element.
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